An I/O-Efficient Disk-based Graph System for Scalable Second-Order Random Walk of Large Graphs

Hongzheng Li*, Yingxia Shao**, Junping Du*, Bin Cui§, Lei Chen#
*School of Computer Science, Beijing University of Posts and Telecommunications
§School of EECS & Key Laboratory of High Confidence Software Technologies (MOE), Peking University
#Department of Computer Science and Engineering, Hong Kong University of Science and Technology
{Ethan_Lee,shaoyx}@bupt.edu.cn, junpingdu@126.com, bin.cui@pku.edu.cn, leichen@cse.ust.hk

ABSTRACT
Random walk is widely used in many graph analysis tasks, especially the first-order random walk. However, as a simplification of real-world problems, the first-order random walk is poor at modeling higher-order structures in the data. Recently, second-order random walk-based applications (e.g., Node2vec, Second-order PageRank) have become attractive. Due to the complexity of the second-order random walk models and memory limitations, it is not scalable to run second-order random walk-based applications on a single machine. Existing disk-based graph systems are only friendly to the first-order random walk models and suffer from expensive disk I/Os when executing the second-order random walk. This paper introduces an I/O-efficient disk-based graph system for the scalable second-order random walk of large graphs, called GraSorw. First, to eliminate massive light vertex I/Os, we develop a bi-block execution engine that converts random I/Os into sequential I/Os by applying a new triangular bi-block scheduling strategy, the bucket-based walk management, and the skewed walk storage. Second, to improve the I/O utilization, we design a learning-based block loading model to leverage the advantages of the full-load and on-demand load methods. Finally, we conducted extensive experiments on six large real datasets as well as several synthetic datasets. The empirical results demonstrate that the end-to-end time cost of popular tasks in GraSorw is reduced by more than one order of magnitude compared to the existing disk-based graph systems. The source code is available at https://github.com/DuoLife-QNL/GraSorw

1 INTRODUCTION
Random walk has been successfully used in a variety of graph analysis tasks [1, 6, 8, 11, 12, 20, 29, 30, 32, 39, 45]. Most of the existing tasks adopt first-order random walk models [17, 30], which assume that the next vertex of a walk only relies on the information of the current vertex. However, as a simplification of real-world problems, the first-order random walk is poor at retaining historical information. Previous studies [44] show that higher-order random walk models can provide better support for graph analysis tasks by selecting the next vertex based on more historical information. Node2vec [10] is one of the most successful applications of the second-order random walk model, and for the graph embedding task, it has better performance than DeepWalk [30], which uses the first-order random walk model. For the graph proximity measurements, PageRank [14] and SimRank [12] are two popular metrics. CoSimRank [33] is proposed to reduce the computation cost in SimRank. All of these metrics adopts the first-order random walk model. In recent years, Wu et al. [44] proposed second-order random walk-based PageRank and SimRank, and Liao et al. put forward the second-order CoSimRank [18]. They all demonstrated that the second-order approaches achieve better results compared to the standard ones through empirical studies. Second-order random walk-based models are also widely used in community detection tasks, such as overlapping community detection [5, 7] and arc-community detection [4]. Moreover, many other interesting applications adopt second-order random walk to model different complex systems. For example, in cloud services, ServiceRank [22] and CloudRanger [42] apply the second-order random walk to identify the culprit services which are responsible for cloud incidents. For the intelligent transportation systems, R. Besenczi et al. [3] introduced second-order random walk-based model on dual graph [31] to analysis the traffic flow on urban streets.

Nowadays, many real-world graphs occupy hundreds of Gigabytes in CSR format, which exceeds the size of the RAM for most commodity machines. Due to the limitation of memory, it is not scalable to run random walk models on large graphs with memory-based frameworks [36, 37] in a single machine. Many general disk-based graph systems [16, 23, 48] are proposed to conduct first-order random walks on large graphs. They originally partition the whole graph into several blocks, i.e., subgraphs. During execution, these systems load a block into memory, update all the activated vertices and edges in the current block, and repeat this operation until a certain termination condition is satisfied. DrunkardMob [15] is the first random walk oriented disk-based graph system, which proposes a framework to start millions of random walks simultaneously, and GraphWalker [43] follows its idea while using an asynchronous walk update method to reduce the I/O overhead further.

However, none of the existing disk-based graph systems has considered the second-order random walk model to the best of our knowledge. In this paper, we aim to design a scalable disk-based graph system for executing second-order random walk models on large graphs. We also adopt the idea of processing the whole graph into blocks to address the insufficiency of memory. The main challenge of designing such a system is to deal with the extreme I/O overhead, which is twofold:

Massive Light Vertex I/Os. When generating a random walk in existing block-based graph systems, the walk is associated with the block which contains its current vertex. Since the block is loaded into memory before processing the walk, the current vertex and its neighbors are in the block, and it is efficient to update the first-order random walk without disk I/Os. However, when processing a
second-order random walk which requires both the current vertex and previous vertex information, although the current vertex is easily retrieved from memory, the previous vertex might be retrieved from any other blocks in the disk, leading to a vertex I/O. These vertex I/Os are random and light and make it extremely I/O expensive to realize second-order random walk models on existing graph systems. Figure 1(a) visualizes the costs of running DeepWalk (i.e., first-order) and Node2vec (i.e., second-order) random walk in SOGW system (introduced in Section 7.1) with three large graph datasets, and we decompose the cost into block I/Os, walk I/Os, vertex I/Os and walk updating costs. It is clear to see that, in the second-order random walk task, the efficiency bottleneck is the cost of vertex I/Os.

Low Utilization of Block I/Os. Most of the existing block-based graph systems load the whole block at once. However, when the workload of a random walk task is light, or when the task is about to finish, the activated vertex might be just a small portion of the whole block, leading to a waste of block I/Os. Figure 1(b) visualizes the activated vertex ratio with regard to the time slots when running DeepWalk and Node2vec random walk tasks in SOGW system with LiveJournal dataset. We see that at the end of the tasks (i.e., about the last 20% time slots), the ratio is close to zero. To address low block I/O utilization, DynamicShards [41] and Graphene [19] dynamically adjust the layout of graph blocks to reduce the loading of useless data, but they do not consider the random walk features. GraphWalker [43] determines a proper block size according to the total number of random walks to improve the block I/O utilization, but such a solution is static and fails when tasks are about to finish and only few walks remain in the block.

To tackle the above two problems, we propose GraSorw, an I/O-efficient disk-based graph system for scalable second-order random walk, which is equipped with a bi-block execution engine and a learning-based block loading model to improve the I/O efficiency. The main techniques are as follows.

Bi-block Execution Engine. To solve the problem of massive light vertex I/Os, we propose a bi-block execution engine, which keeps two blocks (i.e., current block and ancillary block) in memory, guaranteeing the previous and current vertices are in memory as well. To realize an I/O-efficient bi-block execution engine, we need to schedule the execution sequence of blocks and organize the walk states properly, to reduce the block I/Os as much as possible. First, we theoretically analyze the hardness of block scheduling problems in the disk-based graph systems and discuss the influence between block scheduling strategies and the I/O cost. Then we introduce a triangular bi-block scheduling strategy which eliminates half block I/Os compared to the standard scheduling strategy. Furthermore, we develop a bucket-based in-memory walk management approach which merges random vertex I/Os into the sequence block I/Os, and a skewed walk storage to ensure the correctness of the new scheduling strategy.

Learning-based Block Loading Model. To improve the utilization of block I/Os, the challenge is to capture the dynamic workloads and estimate the costs of different block loading methods. In this work, we introduce two block loading methods – full load and on-demand load. The former is the traditional block loading method, and the latter only loads activated vertices. Then we build a learning-based block loading model in GraSorw, which dynamically selects proper block loading methods based on online statistics. The model uses the linear regression method to learn cost estimation models for the two block loading methods from historical data and derives a simple threshold-based selection criterion.

Finally, combining with the above technical contributions, we carefully implement GraSorw to efficiently process second-order random walk tasks on large graphs with a single machine. Experimental results on six large datasets show that GraSorw achieves efficiency improvement of more than one order of magnitude in common second-order random tasks such as random walk generation and PageRank query using Node2vec random walk model. To summarize, our contributions are as follows:

- We identify the I/O inefficiency of running second-order random walk models on existing disk-based graph processing systems and propose an I/O-efficient system GraSorw.
- We propose an efficient bi-block execution engine, which equips a triangular bi-block scheduling strategy, skewed walk storage, and bucket-based in-memory walk management to eliminate massive vertex I/Os.
- We propose a learning-based block loading model to improve the block I/O utilization when a few walks remain in the bucket.
- We compare our GraSorw with SOGW and SGSC on real-world and synthetic large graphs. The results show that GraSorw significantly reduces the end-to-end time of second-order random walk tasks and improves the I/O efficiency. We also demonstrate the effectiveness of GraSorw for the first-order random walk.

2 PRELIMINARY

A graph $G = (V, E)$ is defined by a set of vertices V, and a set of edges E. Each edge is a pair of the form $e = (u, v), u, v \in V$, where u is the source vertex and v is the destination vertex of e, and a_{uv} represents the corresponding weight. If such $e = (u, v)$ exists, then v is a neighbor of u, and we use $N(u)$ to denote the set of neighbors of u. In disk-based graph systems, a graph is partitioned into several blocks, and we use $B(\phi)$ to denote the ID of the block which vertex ϕ belongs to, and the ith block is denoted as B_i. Given a graph partition, we use N_B to represent the number of partitioned blocks. The notations frequently used in this paper are listed in Table 1.
2.1 Random Walk

A random walk \(w \) on graph \(G = (V, E) \) starts from a vertex, and for each step, it selects the next vertex to visit following a transition probability distribution \(p \). In first-order random walk models, \(p = p(z|v) \), which means the selection of the next vertex \(z \) only depends on the vertex \(v \) that walk \(w \) currently resides on. A walk \(w \) currently residing on vertex \(v \) is denoted by \(w^v \), and \(v \) is called the current vertex of \(w \). In second-order random walk models, \(p = p(z|uv) \), where \(u \) is the vertex that walk \(w \) previously resided on, and \(v \) is the current vertex of \(w \). Such a walk is denoted by \(w^uv \). The transition distribution and the corresponding distribution is called edge-edge distribution. Following the edge-edge distribution, selecting the next vertex \(z \) depends on both vertices \(u \) and \(v \).

Next we briefly review two popular random walk models.

DeepWalk model. In this paper, the DeepWalk model represents the first-order random walk model used by DeepWalk, a method of learning graph embeddings. The transition distribution in DeepWalk model is \(p(z|v) = a_{uz} / Z_v \), where \(Z_v = \sum_{u \in N(v)} a_{uv} \). The same distribution is used in most other first-order random walk models.

Node2vec model. In this paper, the Node2vec model represents the second-order random walk used by Node2vec, which is also a method of learning graph embeddings. In this model, for walk \(w^v_u \), we define biased weight:

\[
a'_{uz} = \begin{cases}
 \frac{a_{uv}}{p} & h_{uz} = 0 \\
 \frac{a_{uv}}{q} & h_{uz} = 1 \\
 \frac{a_{uv}}{q} & h_{uz} = 2
\end{cases}
\]

where \(z \in N(v), p, q \in \mathbb{R}^+ \) are two hyperparameters, and \(h_{uz} \) is the shortest hops between \(u \) and \(z \). For edges \((u, v)\) and \((u, z)\), the edge-edge transition distribution \(p(z|uv) = a'_{uz} / Z'_v \), where \(Z'_v = \sum_{u \in N(v)} a'_{uz} \).

2.2 Disk-based Random Walk System

In disk-based random walk systems, a graph is partitioned into several blocks, and only one block is loaded into memory at a time while updating the corresponding random walks. Figure 2 illustrates a partitioned graph and its storage in disk. GraphWalker [43] is a state-of-the-art disk-based random walk system. It first loads a block into memory, then loads walks belonging to that block and updates them asynchronously. These walks are called the current walks, and the block loaded into memory is called the current block. It applies a state-aware block scheduling strategy, which chooses the block with most walks in it to be the current block. The updating of a walk stops either when it moves out of the current block or when it reaches the termination condition. For the former situation, the walk is associated with the new block where it currently moves into. After updating all walks in the current block, the system chooses the next current block and updates the corresponding walks in memory. Such a cycle is called a time slot.

As introduced in the Introduction, there will be extreme I/O overhead when realizing second-order random walk models on existing disk-based random walk systems because of the massive light vertex I/Os and low utilization of block I/Os. In the next section, we will introduce GraSorw, which is an I/O-efficient disk-based graph system for the scalable second-order random walk over large graphs.

3 OVERVIEW OF GRASORW

GraSorw is an I/O-efficient disk-based graph system for the scalable second-order random walk. Similar to previous works, the graph and intermediate walks are stored on disk. The graph is partitioned into blocks, and each block is associated with a walk pool storing the intermediate walks. The difference is as follows: to reduce the massive vertex and block I/Os, we design a bi-block execution engine and a learning-based block loading model. Figure 3 describes the high-level execution flow of GraSorw. During the execution, the bi-block execution engine iteratively selects a block as the current block, uses the learning-based block loading model to load an ancillary block into memory, and updates the intermediate walks associated with the current block. Next, we detail the execution flow of GraSorw in a time slot.

In each time slot, ① the engine uses the bucket-based in-memory walk manager to load the intermediate walks associated with the current block into memory and merges them with the one in the in-memory walk pool forming the current walks. ② Then the manager splits current walks into buckets, and each bucket stores the walks having the same block set, in which the pair of blocks contains their previous and current residing vertices. Such bucket-based...
in-memory walk management merges massive vertex I/Os into a single block I/O, and the details are described in Section 4.3.

Considering that the previous and current residing vertices are involved in two blocks, before processing a bucket, we need to load another block into memory, called the ancillary block. In GraSorw, each ancillary block is corresponded with a bucket, while the current block is shared among all buckets. ③ In each time slot, the bi-block execution engine uses triangular bi-block scheduling method to determine the loading sequence of ancillary blocks and also uses the learning-based block loading model to load the block.

After loading the blocks, ④ the engine asynchronously updates the walks in the bucket. The current vertex of walks in this bucket can be either in the current block or the ancillary block, as the blue and orange arrows show. Moreover, since there are some edges connecting the two blocks, walks can also be updated across the two blocks. The updating of a walk stops when it moves to any vertex not belonging to the blocks in memory or when the termination condition is reached. ⑤ For the former situation, walk persistence is needed to preserve the information of these intermediate walks and update them in future. Intermediate walks have two places to go. Most of them are stored in the in-memory walk pool with skewed walk storage (introduced in Section 4.3.1), and others may be moved into buckets, caused by bucket-extending strategy introduced in Section 4.3.3. When the size of a walk pool reaches the pre-defined threshold, the in-memory walk pool is flushed to disk. After all walks in the bucket have terminated or been persisted, the next ancillary block is chosen with triangular bi-block scheduling, and the corresponding bucket is executed iteratively.

Note that the learning-based block loading model in GraSorw is proposed to improve the I/O utilization when the number of current walks is small. It uses a linear regression model to predict the cost by learning from historical logs, and on top of the model, we derive thresholds for each block and use the threshold to select the block loading method. The details are introduced in Section 5. In Figure 3, block 0 is fully loaded, and block 1 is loaded with the on-demand load method.

4 BI-BLOCK EXECUTION ENGINE

The basic idea of the bi-block execution engine is to keep two blocks (i.e., current block and ancillary block) in memory, thus guaranteeing the current and previous vertices are both in memory. To establish such an engine, we need to address the following two research questions: (RQ1) how do we schedule the two blocks to reduce block I/Os? and (RQ2) how do we manage the states of walks in disk and memory to support I/O-efficient block scheduling?

4.1 Block I/O Cost Analysis and Scheduling Strategy Revisit

Given a second-order random walk task and its input, the total number of block I/Os in GraSorw is related to two factors: the number of current block I/Os (i.e., time slots) and the number of ancillary block I/Os in each time slot. Minimizing the total number of block I/Os can be achieved by reducing the current block I/Os and the ancillary block I/Os separately. However, we show that obtaining the minimal number of current block I/Os is an NP-hard problem. In the following subsection, we present our triangular bi-block scheduling strategy, which focuses on reducing ancillary block I/Os.

Different block scheduling strategies incur different numbers of current block I/Os. We define the optimization problem of minimal current block I/Os as below:

Definition 1. *(The minimal current block I/Os problem).*

Given a graph \(G = (V, E) \) which is partitioned into \(N_B \) blocks \(B = \{B_1, B_2, ..., B_{N_B}\} \), and a task of the second-order random walk which generates \(M \) random walks, where each random walk \(w_i \) has a certain sequence of accessing current blocks, denoted by \(\{B_{i0}, B_{i1}, ..., B_{ij}\} \), \(0 < i \leq M, B_{ij} \in B \). The goal is to find a global block scheduling strategy \(\{B_1, B_2, ..., B_K\} \) so that all \(M \) random walks are generated and \(K \) is minimized, where \(K \) equals the number of current block I/Os.

The following theorem presents the hardness of the problem.

Theorem 1. The minimal current block I/Os problem is NP-hard.

Proof. Given a sequence \(S = s_1, s_2, ..., s_m \), a supersequence \(S' \) is a sequence from which items (e.g., \(s_j \)) can be removed to produce \(S \). We write \(S' \gg S \) if \(S' \) is a supersequence of \(S \). Given a set \(R = \{S_1, S_2, ..., S_M\} \) of sequences, the Shortest Common Supersequence of \(R, \text{SCS}(R) \), is a shortest sequence \(S' \) such that \(S' \gg S_i, i = 1, 2, ..., M \). In the minimal current block I/Os problem, the current block access sequence associated with a random walk \(w \), \(\{B_{00}, B_{11}, ..., B_{NN}\} \), forms
a sequence \(S = s_1, s_2, ..., s_m \), where \(s_i = B_i \), and we use \(S \sim w \) to represent the above relationship between the random walk \(w \) and sequence \(S \).

For a set \(\mathcal{W} = \{w_1, w_2, ..., w_M\} \) of \(M \) random walks, their sequences of current blocks form a set \(Q = \{S_1, S_2, ..., S_M\} \), where \(S_i \sim w_i \). By adding the constraint that \(R = Q \), the SCS problem is reduced to the minimal current block I/Os problem. Previous studies [24, 35] show that SCS is an NP-Complete problem, therefore, the minimal block I/Os problem is an NP-hard problem.

Although there are several approximation algorithms for the SCS problem [40], they assume the sequences are known ahead. However, in our problem, the block access sequence for a second-order random walk is unknown, and we need to design an online algorithm to solve the above problem. As far as we know, most existing heuristic online solutions of SCS problem have no (or poor) approximation error bound of the optimal solutions. Therefore, we empirically studied the different scheduling strategies [27, 43] for current blocks; the results in Appendix A show that no single method performs optimally on all datasets, and the performance of the same method on different datasets may vary widely. But in general, the iteration-based method, which loads the block from \(B_0 \) to \(B_N \) iteratively, achieves the best result in most cases. With such observations, in this paper, we adopt the iteration-based method to schedule the current block, and then focus on developing a new scheduling strategy, which optimizes the ancillary block I/Os.

4.2 Triangular Bi-Block Scheduling based Execution (RQ1)

As mentioned before, we use the iteration-based method to schedule the current blocks, which sequentially loads the current blocks from \(B_0 \) to \(B_{N-1} \) iteratively into memory, and skips the loading of a current block if there is no intermediate walk in it. Due to the asynchronous walk updating method [43] in GraSorw, there is no walk whose previous vertex and current vertex are in the same block. Then for each current block, we at most process \(N_B - 1 \) ancillary blocks, which incurs \(N_B - 1 \) block I/Os in a time slot. In other words, the total block I/Os of processing the whole graph once is at most

$$N = N_B + N_B(N_B - 1) = N_B^2$$

(2)

With the help of our skewed walk storage introduced in the next subsection, we can only load ancillary blocks whose ID is larger than the one of the current block. This is the triangular bi-block scheduling strategy, and the total block I/Os is computed as follows:

$$N = N_B - 1 + \sum_{b=0}^{N_B-2} (N_B - 1 - b) = \frac{1}{2}(N_B + 2)(N_B - 1).$$

(3)

Compared to the Equation 2, the triangular bi-block scheduling strategy saves about 50% block I/Os.

Algorithm 1 illustrates the execution procedure on the basis of the triangular bi-block scheduling strategy. The current block ID \(b \) iterates from 0 to \(N_B - 2 \) (Line 2), and in each time slot the ancillary block ID iterates from \(b + 1 \) to \(N_B - 1 \) (Line 13). After choosing the current block, the associated walks are loaded into memory and collected into different buckets (Line 3). The details of bucket collection is described in Section 4.3.2. Finally, walks are processed in bucket id order (Line 16), and the update of walks in each bucket can be accelerated in parallel. We discuss the space and time complexity of Algorithm 1 in Appendix C. Note that the correctness of Algorithm 1 is guaranteed by our skewed walk storage, which is introduced in Section 4.3.1. And the detailed proof of the correctness is presented in Appendix B.

4.3 Walk Management and Processing (RQ2)

In this subsection, we first describe the skewed walk storage, which supports the triangular bi-block scheduling strategy, and then introduce the bucket-based in-memory walk storage, which helps cluster the random vertex I/Os into blocks.

4.3.1 Skewed Walk Storage

Traditional walk storage methods associate a walk with the block to which its current vertex belongs. This brings limitations when updating walks under the triangular bi-block scheduling strategy. First, suppose that \(B_p \) is the current block and \(B_b \) is the previous block. With the traditional walk storage method, only walks currently in block \(B_b \) are loaded into memory, so only walks \(w_u^b \) such that \(u \in B_p, v \in B_b \) get updated in the triangular bi-block scheduling strategy. The walks \(w_u^b \) such that \(u \in B_p, v \in B_b \) are still in disk, and cannot utilize the ancillary block which has been loaded into memory more efficiently. Second, traditional walk storage cannot correctly support the triangular bi-block scheduling strategy. Because the walks currently in block \(B_b \) might have the ones of which the block ID of previous vertex is smaller than the ID of \(b \), then these walks would never be updated in triangular bi-block scheduling strategy. Therefore, we design a simple but effective skewed walk storage, which not only supports the triangular bi-block scheduling strategy but also helps update as many walks as possible in a time slot.

Algorithm 1 Triangular Bi-Block Scheduling in GraSorw

1. while has unfinished walk do
2. for \(b = 0 \rightarrow N_B - 2 \) do
3. \(\text{curWalks}[\cdot] \leftarrow \text{LoadWalks}(b) \) \quad \text{From the skewed walk storage}
4. for \(w \in \text{curWalks}[\cdot] \) do \quad \text{Collect bucket}
5. if \(\text{PreBlockId}(w) = b \) then
6. \(p \leftarrow \text{CurBlockId}(w) \)
7. else
8. \(p \leftarrow \text{PreBlockId}(w) \)
9. end if
10. \(\text{bucket}[p] \leftarrow \text{bucket}[p] \cup w \)
11. end for
12. \(\text{LoadSubGraph}(b) \)
13. for \(i = b + 1 \rightarrow N_B - 1 \) do
14. \(\text{LoadSubGraph}(i) \)
15. for \(w \in \text{bucket}[\cdot] \) do
16. \(\text{ProcessWalk}(w, b, i, \text{bucket}) \) \quad \text{Algorithm 2}
17. end for
18. end for
19. end for
20. end while
The skewed walk storage in GraSorw takes both the previous and current vertex of the walk into consideration to arrange the walks. Specifically, a walk \(w_i \) is associated with block \(B_i \), where \(i = \min(B(u), B(v)) \). Compared to the traditional walk storage, such storage splits the walks whose current vertices belong to the same block into two groups. One group contains the walks whose current vertices belong to the block with larger ID than their previous vertices belong to; the other group contains the remaining walks. Consequently, in the context of the triangular bi-block scheduling strategy, the first group is processed when the block which current vertices belong to is loaded as an ancillary block, and the second group is processed when the block which current vertices belong to is loaded as the current block.

4.3.2 Bucket-based in-Memory Walk Management

As introduced in Section 3, to merge random vertex I/Os into block I/Os, the bucket-based in-memory walk manager splits the current walks into buckets, and each bucket stores the walks having the same block set in which the pair of blocks contain their previous and current residing vertices. Specifically, let \(v_u = \{b_i, 0 \leq i < N_B\} \) be the set of buckets, then with the skewed walk storage, the current walks might also contain walks whose previous vertex belongs to the current block of the time slot. Let \(B_i \) be the current block, then a walk \(w_i \) is distributed into bucket:

\[
\begin{cases}
 b_B(u) & \text{if } u \text{ belongs to block } B_i \\
 b_B(u) & \text{if } v \text{ belongs to block } B_i
\end{cases}
\]

That is to say, the bucket collection also relies on both the current vertex and the previous vertex of the walk. Furthermore, combined with the skewed walk storage, if the walk is collected to bucket according to its previous vertex, then the ID of the block to which its current vertex belongs is smaller than that of the previous vertex, and vice versa. This walk management supports the triangular bi-block scheduling strategy.

4.3.3 Walk Processing

Finally, we describe the procedure of walk processing by combining the techniques of triangular bi-block scheduling and bucket-based walk management in Algorithm 2. The association between updated walks and blocks follows the organization in the skewed walk storage, denoted by the function \(\text{AssociateWithBlock} \), in which the walks are stored in the walk pool corresponding to the given block. In Function \(\text{ProcessWalk} \) in Algorithm 2, we first update the old walk \(w \), and the new walk after updating is denoted as \(w' \). Here we use \(\text{pre} \) and \(\text{cur} \) to denote the previous block ID and the current block ID of the new walk \(w' \), and \(b \) and \(i \) to represent the current block ID and ancillary block ID which are in memory now. For the new walk \(w' \), if \(\text{cur} < b \) then it should be associated with block \(\text{cur} \), since \(\text{pre} = b \) or \(i > \text{cur} \), as shown in Line 4 and Line 5. If \(\text{cur} \) is between \(b \) and \(i \), the association depends on whether its previous vertex belongs to the current block or the ancillary block, as shown in Line 6 to 10. As Line 12 to 18 shows, when the new walk moves to the block whose ID is larger than the one of the ancillary blocks in memory (i.e., \(i \)), we associate it with the block where the new walk previously moves out from. An exception is shown in Line 14, where we develop a \(\text{bucket-extending} \) strategy to improve the efficiency further. Specifically, when the new walk is previously moved out from the current block \(b \) (i.e., \(\text{pre}=b \)), instead of associating the new walk \(w' \) with the current block \(b \), we add it to the bucket corresponding to the current block \(\text{cur} \) of the new walk, which has not been executed as an ancillary block yet in this time slot. The \(\text{bucket-extending} \) strategy ensures new walks who meet the above condition are able to update as many steps as possible in a time slot. However, it also brings synchronization overhead when the updating of walks is executed in parallel. The efficient implementation of bucket-extending is discussed in Section 6.3.

During the updating, since there are two blocks in memory, the walks keep moving when they jump between the two blocks in memory, as Line 22 in Function \(\text{UpdateWalk} \) shown. Therefore, if two blocks are strongly connected (i.e., they have many edges across them), then walks can update much faster, without swapping the blocks in memory.

Figure 4 illustrates the key procedures of the walk processing with the skewed walk storage, bucket-based walk management, and the execution of buckets. Here we use \(w_{\text{pre}} \) to denote a walk, where \(\text{pre} = B(u) \) and \(\text{cur} = B(v) \). A Superstep shown in the figure represents the procedure that all walks in the task moves at least one step forward. In Superstep \(S+2 \), the walkers with red color are the ones being updated in their corresponding time slots, and the walkers in pink represent where the red walkers come from. The blue walkers represent where the red walkers are going to visit in the next step, and these walkers can be updated further in their time slots. The green walker is similar to the blue ones, but they...
have moved out the blocks in memory. In this example, the green walker satisfies the condition of the bucket extending strategy.

5 LEARNING-BASED BLOCK LOADING MODEL

As discussed in Section 4.2, the majority of block I/Os are caused by the ancillary block loading. When only a small portion of vertices in a block have walks residing on, then it may lead to a waste of the block I/Os. To improve the I/O utilization, we introduce two block loading methods in GraSorw, namely full load and on-demand load, and propose a learning-based model to automatically select a block loading method for ancillary block according to the runtime statistics.

5.1 Full load and On-Demand Load

Full-Load Method. This method has been widely used in existing disk-based graph systems, and it means that a whole block is loaded into memory at once. In GraSorw, the slice of Index File and CSR File of the corresponding block is loaded into memory. For example, if block 0 of the partitioned graph shown in Figure 2 is loaded by the full-load method, then the grey cells in Figure 6 are loaded into memory.

On-Demand-Load Method. This method means that only activated vertices in the corresponding block are loaded into memory. To load a block B with the on-demand-load method, we first check the current vertex and the previous vertex of each walk in the walk set \(W \), and record all the vertices which belong to the block B. These vertices are the activated vertices and will be used to update the walks. For each ancillary block, \(W \) is composed of the walks in the corresponding bucket. Then only the CSR segmentation related to the activated vertices is loaded. In GraSorw, the on-demand loading happens right before the execution of each bucket (as a replacement of Line 14 in Algorithm 1). Note that if any walk is able to update more than one step during execution and the information of the current vertex is not in memory, we should get its CSR segmentation solely from disk, which incurs few random vertex I/Os, and store it in memory as well.

Example. In Figure 5, we compare the I/O difference between full load and on-demand load through an example. Assume that there are eight walks being the current walks, and each value stored in the Index File and CSR File occupies 4 bytes in disk. The system decides to load block 2 with the on-demand-load method and load block 1 with the full-load method. The Vertex Map is used to record the activated vertices. Since block 1 is decided to be loaded with the full-load method as shown in Figure 5(a), the whole slice of the index file and the CSR file are loaded into memory, incurring 32 bytes I/O. After executing updates of walks in bucket 1, the memory for block 1 is freed. Before executing bucket 2, all walks in it are scanned to tally activated vertices for block 2. In the example shown in Figure 5(b), only the information of vertex 6 is needed, so the system only loads the CSR segmentation of vertex 6 into memory, and 20 bytes I/O is needed. In total, 52 bytes I/O is required to load the CSR information for the ancillary blocks. However, 64 bytes disk I/Os would be incurred if the pure full-load method is used to load both block 1 and block 2. In this example, block I/Os are saved by 18.8% by mixing the full load and on-demand load methods. Furthermore, there is no need to allocate memory to store the slice of the index file of block 2. This example implies that it is worthy of making a trade-off between two block loading methods.

5.2 Linear Regression Model for Block Loading

The key to automatically selecting a loading method for a block is to estimate the corresponding cost. However, it is difficult to develop heuristics for the cost model since the number of activated vertices is task-dependent and different data structures between the two block loading methods also influence the efficiency. In this paper, we develop a learning-based model to predicate the cost of each loading method. Next, we will describe the model and its training method.

5.2.1 Linear Regression Models for Cost Estimation. A block processing can be divided into two stages, the loading stage and the executing stage. Under full-load mode, to process a block and the corresponding \(W \), the whole block is loaded into memory (loading stage), and the walk updates (executing stage) are totally in memory without disk I/Os. Under on-demand load mode, only a portion of the block is loaded in the format of CSR segmentation.
We further find out that \(\eta > \eta_0 \) when \(|A| \) is very close to \(N_o \), it should be more efficient to process the block under full-load mode than on-demand-load mode. This is because under such circumstances loading an entire block is faster than \(|A| \) small I/Os, which accelerates the loading stage, and since there is no need to invoke I/Os when executing walk updates, the executing stage is also faster. In random walk tasks, it is very expensive to obtain the accurate \(|A| \) when \(|W| \) is large, so we use \(|W| \) to roughly estimate \(|A| \). Let \(\eta = |W|/N_o \), which roughly represents the ratio of vertices whose information is needed in the block. Let \(t_f \) and \(t_o \) be the total time of the loading and executing stage under full-load mode and on-demand-load mode, respectively. Empirical studies on datasets in Table 2 show that there exists an \(\eta_0 \) such that in general:

\[
\begin{align*}
 t_f > t_o & \quad \text{if} \quad \eta > \eta_0; \\
 t_f < t_o & \quad \text{if} \quad \eta < \eta_0.
\end{align*}
\]

(5)

We further find out that \(t_f \cdot \eta \) follows a linear regression model \(t_f = a_f \eta + b_f \) for each block, and \(t_o \cdot \eta \) follows \(t_o = a_o \eta \) when \(\eta < \eta_0 \). Here \(b_f \) means the cost of loading data in full-load mode, and no intercept exists in \(t_o \cdot \eta \) model because no separated loading is needed when \(|W| = 0 \) under on-demand-load mode.

5.2.2 Model Training and Learning of Thresholds. To train the parameters \(a_f, b_f, a_o \), we run the task twice to get the running log. Full-load mode is used for ancillary blocks in the first run, while in the second run, the on-demand load mode is used. We get the \(t_f \cdot \eta \) and \(t_o \cdot \eta \) running logs, and use these data to train \(a_f, b_f \) and \(a_o \). Therefore, we calculate \(\eta_0 = \frac{b_f}{a_f - a_o} \), and use \(\eta_0 \) as the loading mode switching threshold for the ancillary block. Specifically, if \(\eta > \eta_0 \), full-load mode is used, and on-demand-load mode is used otherwise.

6 IMPLEMENTATION

In this section, we present the implementation details of GraSorw. The graph is stored in the Compressed Sparse Row (CSR) format and is sequentially partitioned into blocks according to the IDs of the vertices. Figure 6 is an example of the graph organization in disk. The Start Vertex File indicates the start vertex of each block, and the index file specifies the start offset of the neighbors of a vertex. The Start Vertex File is read into memory at the very beginning when GraSorw starts, so to record the IDs of the start vertex of each block.

6.1 Walk Representation

To efficiently track the second-order random walks, we encode each walk with 128 bits shown in Figure 7. Source Vertex and Pre Vertex are the start vertex and previous vertex of the walk, and Cur Vertex is the offset of the current vertex in its residing blocks. Pre Block and Cur Block indicate the previous and current residing block of the walk, and Hop marks how many steps the walk has already moved. With the help of this walk encoding, GraSorw can process graphs with at most 4.3 trillion vertices, partitioned to no more than 1024 blocks. For a single walk, the maximum moving steps supported is 1024.

6.2 Graph Partition

The default graph partition method used in GraSorw is a sequential partition, which partitions the vertices in their ID order to different blocks and ensures that all blocks fit the pre-defined block size. GraSorw also supports custom graph partition, and users have to provide the corresponding edge list file and the block file. The edge list file is composed of all the edges in the graph, and the block file indicates the block each vertex belongs to.

In this paper, we also study the impact of different graph partition methods on the overall performance. For random walk tasks, updating as many steps as possible in a block is preferred. Increasing the density of a block provides help since there are more edges between vertices in this block, and the walks are more likely to stay inside the block comparing with the sparse block. METIS [13] is a popular and classical graph partition algorithm that aims to increase the density of each block. The influence of METIS partition to GraSorw is discussed in Section 7.5. We find out that customized graph partition methods like METIS can help improve the efficiency of GraSorw, but they take expensive time to pre-partition the whole graphs, and may face the out-of-core problem. While the sequential partition method is very fast.

6.3 Parallelism

During the processing of each bucket, multi-threads are executed in parallel. This brings the challenge of dealing with critical sections. As shown in Line 14 in Algorithm 2, the bucket-extending operation is used to append certain walks to buckets to be executed later in the current time slot. This forms a critical section because multi-threads may access the same bucket at the same time. Simple mutex that only allows one thread to write the bucket at one time brings in excessive synchronization overhead. To avoid this, we allocate buffers for each thread to store walks that meet the bucket-extending condition. Before executing a bucket, the buffer of each thread corresponding to this bucket is scanned, and walks
with a plain bucket model, which is implemented based on a simple walk collection idea. For the learning-based block loading model, we verify the improvement of I/O utilization and execution efficiency by using this model in GraSorw. We then test the impact of different graph partition methods. We also show the parameter sensitivity of GraSorw, including the variation of walk distribution and block size. Moreover, we evaluate the efficiency of GraSorw on a set of synthetic datasets with different graph distributions. Finally, we discuss the applicability of GraSorw for first-order random walks.

7 EXPERIMENTS

In this section, we report the experimental results on GraSorw. We first show the end-to-end performance of GraSorw, by comparing with two variants implemented on GraphWalker. Then we focus on the two main techniques proposed in this paper, respectively. For the bi-block execution engine, we compare its performance with a plain bucket model, which is implemented based on a simple bucket-based walk collection idea. For the learning-based block loading model, we verify the improvement of I/O utilization and execution efficiency by using this model in GraSorw. We then test the impact of different graph partition methods. We also show the parameter sensitivity of GraSorw, including the variation of walk distribution and block size. Moreover, we evaluate the efficiency of GraSorw on a set of synthetic datasets with different graph distributions. Finally, we discuss the applicability of GraSorw for first-order random walks.

7.1 Experimental Settings

All experiments are run on a server with 2 Intel Xeon(R) Gold 5220 CPU @ 2.20GHz and 377 GB memory. The graph data is stored on an SSD. Without specific clarification, each experiment is run in parallel, and the number of threads is set to 72.

Datasets. We use 6 datasets in our experiments: LiveJournal (LJ)\(^1\), Twitter (TW)\(^2\), Friendster (FR)\(^3\), UK200705 (UK)\(^4\), Kron29, which is a synthetic graph generated by Graph500 kronkecker\(^5\) and CrawlWeb (CW)\(^6\). The statistics and partitions are listed in Table 2. In the table, CSR Size indicates the storage cost to store graphs in CSR format, and Text Size is the size of the dataset stored in text format as an edge list. Block Size is a parameter set manually by the user. Block Number is the number of blocks that a graph is partitioned to, giving the block size. All graphs are processed in undirected.

Second-order random walk models. We use Node2vec models in our experiments. As Equation 1 shows, the Node2vec model is controlled by two hyper-parameters \(p\) and \(q\). In this paper, we mainly focus on I/O performance improvement, so we set \(p\) and \(q\) to 1 as a representation for comparison.

Benchmarks. Different benchmarks define different random walk tasks on the second-order random walk models. In our experiments, we choose two different benchmarks:

1. Random walk generation using the Node2vec model (RWNV). Following the random walk sampling approach in Node2vec, every node in a graph samples a set of random walks with a fixed length. Here we use the same parameter settings from the original work [10], and sample 10 walks per-vertex with walk length of 80.
2. PageRank Query using the Node2vec Model (PRNV). Given a query node \(v\), we run the second-order random walk with restart to estimate the second-order PageRank value [44]. The decay factor is 0.85, the maximum length is 20, and the total sample size is \(4|V|\). In addition, we randomly choose 10 to 100 query nodes for each dataset according to their data size.

Baselines: Since there is no existing systems designed for out-of-core second-order random walk processing, we take the following two implementations as baselines:

1. Second-Order GraphWalker (SOGW). The naive solution implemented on GraphWalker, which retrieves the previous vertex information directly from the disk as small vertex I/Os. We set the number of blocks in memory to 2 to make the memory cost equal to that of the other two methods. That is, if the block going to be load is already in memory, then no block loading is required. The block replacement strategy is the same as that of GraphWalker.
2. Second-order GraphWalker with Static Cache (SGSC). A static vertex cache whose size is the same as the block size is set in memory. Before the execution starts, we tally the out-degrees of all vertices in the graph and store the top-\(k\) vertices such that the degree sum is no less than the maximum edge number in one block according to the block size. There is no item replacement of the vertex cache during the execution.

7.2 End-to-End Performance

We first evaluate the overall performance of GraSorw compared to the two baseline systems, SOGW and SGSC. Due to the inefficiency of SOGW and SGSC, they cannot finish the tasks with standard parameters in reasonable time constraints when processing large graphs except LiveJournal. In this paper, we estimate their costs on graphs except for LiveJournal as below: According to the empirical studies in GraphWalker [43], the total time increases linearly with the walk length when it is not possible to put the whole graph in memory. Besides, we find that when running second-order random walk tasks on SOGW, since the previous vertex information should be retrieved from disk, which accounts for most of the time as shown in Figure 1(a), the total time also increases linearly with the number of walks. Therefore, we shorten the walk length for RWNV and start fewer walks from a vertex for both RWNV and PRNV. After obtaining the cost of the small-scale task, we estimate the

| Graph | |V| | |E| | Text Size | CSR Size | Block Size | Block Number | Edge-Cut |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|
| LiveJournal | 4.8M | 85.7M | 1.2GB | 364MB | 20000KB | 17 | 76.51% |
| Twitter | 41.7M | 2.4B | 37GB | 9.3GB | 120MB | 18 | 89.36% |
| Friendster | 65.6M | 3.6B | 58GB | 14GB | 512MB | 27 | 91.43% |
| UK200705 | 105M | 6.6B | 6.6B | 28GB | 10GB | 25 | 92.99% |
| Kron29 | 259M | 513M | 497GB | 128GB | 10GB | 13 | 92.99% |
| CrawlWeb | 3.6B | 226B | 4.6TB | 864GB | 100GB | 9 | - |

Table 2: Graph datasets and partition information.
that the time of initiating the static vertex cache is longer than the
time saved from its benefits. From the result comparison between
SGSC and GraSorw, we can see that for fixed memory size, rather
than leverage the memory space to store as many large-degree
vertices as possible, it is more efficient to use the memory to load
blocks (i.e., ancillary blocks) with the triangular bi-block sched-
uling. Overall, GraSorw has achieved 1.81× to 95× performance
improvement in RWNV task, and 1.43× to 19.1× improvement in
PRNV task.

In the figure, we also present the time cost breakdown for each
result, visualized as Execution time and I/O time. We see that the
I/O time cost for each task on all graphs has decreased significantly
in GraSorw. GraSorw reduces the I/O overhead most on Twitter,
increasing efficiency by 213× in RWNV and 138× in PRNV, com-
paring with SOGW. In SOGW, the expensive I/O cost comes from
the massive light vertex I/Os, while in GraSorw, with the help of
buckets and the ancillary block, these vertex I/Os used to retrieve
the information of the previous vertex of walks are converted into
block I/Os, which are more efficient.

7.3 The I/O-Efficiency of Bi-Block Execution
Engine

Here we compare the I/O efficiency of two execution engines in
GraSorw, the plain bucket engine (PB) and the bi-block execution
engine (Bi-Block). The former organizes walks in buckets with-
out the triangular bi-block scheduling strategy and the skewed
walk storage. In the plain bucket engine, walks are associated with
their current blocks, and the current walks are split into buckets
according to their previous blocks. There are also two block slots
in memory called the current block and the ancillary block, yet
no triangular bi-block scheduling is used, where the schedule of
the ancillary block starts from b_0 to b_{N_b-1}. We use the state-aware
block scheduling strategy proposed by GraphWalker to schedule
the current block.

The results of the two engines are shown in Table 3. The wall
time with the bi-block engine is 18% to 53% of the one with the
plain bucket engine for RWNV, and 16% to 60% for PRNV. The
performance improvement is more significant on larger graphs
such as UK, Kron29 and CrawlWeb, which is more than 60%. Next,
we deeply compare the block I/Os and execution time of the two
engines.

Block I/O comparison. We first focus on the block I/O over-
head of two engines. The block I/O number in the bi-block execution
engine is only 34% to 59% of the one in the plain bucket model for
RWNV, and 45% to 61% for PRNV, respectively. This is consistent
with the theoretical analysis that the triangular bi-block schedul-
ing strategy approximately cuts half of the block I/Os, according
to Equation 3. Concretely, the reason for block I/O reduction is
twofold. First, during each time slot, half of the ancillary block
loading whose ID is less than the current block is saved. Second,
the current block loading stops on b_{N_b-2}, so one block loading for
the current block is saved in each time slot. Another observation is
that when processing large graphs except for LJ, the block I/O time
of the bi-block engine is reduced to 16% to 40% on both tasks, which
is less than the reduction factor (i.e., 50%) of block I/O number. One
reason is that some expensive random I/Os of loading blocks in

Table 3: I/O efficiency of different execution engines.

graph	Method	Wall Time (s)	Execution Time (s)	Block I/O Number	Block I/O Time(s)	Wall Time (s)	Execution Time (s)	Block I/O Number	Block I/O Time(s)
LJ	PB	332	189	13584	90	9.8	5.7	38	3
	Bi-Block	175	100	6299	42	5.8	3.6	21	2
		(53%)	(53%)	(46%)	(46%)	(65%)	(63%)	(56%)	(64%)
TW	PB	6868	1905	15779	466	249.8	83.5	419	138.2
	Bi-Block	2960	1198	8090	1384	111.6	44.2	235	43.9
		(43%)	(63%)	(51%)	(31%)	(45%)	(53%)	(61%)	(32%)
FR	PB	14526	3982	34117	9743	439.9	103.6	964	283.5
	Bi-Block	6716	3217	18550	2882	240	102.7	581	94.3
		(46%)	(81%)	(54%)	(3%)	(55%)	(99%)	(6%)	(33%)
UK	PB	20707	4143	29309	16043	554.1	102.1	659	379.6
	Bi-Block	3789	744	10039	2596	146.5	32	312	81.0
		(18%)	(18%)	(34%)	(16%)	(26%)	(30%)	(47%)	(21%)
Kron29	PB	133491	24312	19392	104962	5793.3	827.0	878	4728
	Bi-Block	49694	12738	11608	34024	2102.5	366.9	520	1582.3
		(37%)	(52%)	(59%)	(32%)	(36%)	(44%)	(59%)	(34%)
CrawlWeb	PB	911114	316320	6384	568576	39649	22296	100	12309.4
	Bi-Block	249529	21206	26241	228256	6218.1	892.8	45	3772.6
		(27%)	(7%)	(41%)	(40%)	(16%)	(4%)	(45%)	(31%)

The percentages in parentheses are the ratio of the cost of Bi-Block to the one of PB, respectively.

7.4 The Effectiveness of Learning-based Block Loading

In this experiment, we first describe the efficiency of GraSorw when using the learning-based block loading model, then analyze the improvement of I/O utilization.

Efficiency. The overall performance of using the learning-based block loading model is shown in Figure 9. The execution time is the time cost of updating walks. Under pure full load mode, the execution time does not include any I/O costs, while using the learning-based block loading method, the execution time includes some I/O costs which is incurred by the on-demand block loading method because the on-demand block loading method might bring random vertex I/O during walk processing to get the vertex information that has not been loaded at the beginning. Therefore, in most of the results, the execution time of the learning-based method is longer than that of the full-load mode. For example, in Figure 9(a), the execution time increases 805 seconds in graph UK compared to the pure full-load mode. However, the total time by using the learning-based block loading model is less because of the reduction of block I/Os (see results of sequential partition on UK in Table 4). To be concrete, the difference between block I/O time in pure full load mode and the sum of block I/O time and on-demand load I/O time in learning-based block loading model is 2624 seconds (see results of sequential partition on UK in Table 4), which is much greater than the increase of execution time. Such trade-off is leveraged by the learning-based model described in Section 5.

I/O-Utilization. We then discuss the I/O utilization with the two block loading methods. We take the I/O utilization of a specific block as an example, and the results of other blocks in Twitter or other graphs are similar. Figure 10 shows the results under the pure full-load and learning-based block loading model. The I/O utilization is tallied after the execution of the corresponding bucket, and the x-axis represents the time slot of each block loading. The block I/O-utilization remains stable1 around 0.87 in the first 300 loads, we

1 There are periodic fluctuations during the plateau. This is caused by the different current blocks corresponding to the loaded ancillary block. The peak occurs when the current block has more edges connected with the ancillary block. To be concrete,
call this part the "plateau." After the plateau, the block I/O-utilization under pure full-load mode decreases close to 0. In this period, many walks reach the termination condition, and less information is required to update the few remaining walks. Since the pure full-load method still loads the whole block into memory, it suffers from low I/O utilization. Our learning-based block loading model is aware of the decreasing of update walks and is able to switch to on-demand loading mode. The on-demand loading ensures 100% of I/O utilization, and only a small portion of block is loaded into memory.

7.5 The Influence of Different Partitions

As discussed in Section 6, different graph partition methods influence the overall performance. We compare the performance of GraSorw under METIS partition and the default sequential partition with the RWNV task. Since METIS fails to partition graph FR and Kron29 in memory on our server, we only evaluate the performance during the plateau, each pair of the current block and auxiliary block forms a stable block I/O-utilization. The current block varies periodically from the b_{i-1} to the prior block of the auxiliary block, leading to periodic fluctuations of the I/O-utilization of the auxiliary block.

7.6 Parameter Sensitivity

7.6.1 Random Walk Distribution. To study the performance of GraSorw under different walk distributions, we add sensitivity experiments with different p, q of Node2vec, and the results of wall time are shown in Figure 11. We can see that GraSorw achieves the least wall time (i.e., best efficiency) in all cases. For RWNV, since all of the vertices are activated, the static cache strategy in SGSC does not bring in significant improvement. In fact, on Kron29, the wall time of SGSC is much longer, that is $1.7 \times$ and $1.8 \times$ that of SOGW under the two random walk distributions, respectively. On the other hand, GraSorw is able to handle this situation and the wall time is only 6% that of SOGW on Kron29 when $p = 4, q = 0.25$ and 7% when $p = 0.25, q = 4$. For tasks such as PRNV in which only a few vertices are initially activated, SGSC saves more time comparing of METIS partition on Twitter and UK, and the results of running RWNV task are shown in Table 4. The partitioned block number is the same as that in sequential partitioning, and we ensure that the size of each block is roughly the same, where the biggest block is not larger than 1.03 times the smallest one. We use the default K-way partition algorithm provided by METIS. For graph UK, the edge-cut of the METIS graph partition decreases significantly to 0.33%. For graph Twitter, the edge-cut is 55.14%.

The block I/O number of METIS partition is reduced compared to that in sequential partition for both loading methods. Specifically, for UK, the number of block I/O dropped by 72% under METIS partition in pure full load mode and 63% in the learning-based load mode. This is because the density of blocks is increased, and walks are more likely to update inside the block than moving out of the block. Consequently, walks are able to move more steps forward during a time slot, and the block I/O number is reduced. Furthermore, according to the discussion in Section 7.3, the decrease of block I/Os leads to the improvement of execution time as well.

Another observation is that METIS partition improves the efficiency of GraSorw when using the learning-based block loading model. Under sequential partition, the learning-based block loading model reduces 6% of wall time in Twitter comparing with the pure full load method, while under METIS partition, the reduction reaches 13%. This is caused by the decrease of edge-cut. For a graph partition with a lower edge-cut, most of the walks are able to reach the termination condition with fewer time slots because they tend to move forward inside the block. However, there are still few walks that tend to jump between different blocks, thus causing lots of block I/Os that have low I/O utilization under pure full-load mode. With the learning-based block loading model, these block I/Os can be completed by the on-demand loading method, thus increasing the I/O utilization and improving efficiency.

![Table 4: The performance of different loading methods with different partitions for the RWNV task.](image)

Table 4: The performance of different loading methods with different partitions for the RWNV task.

Graph	Partition	Pure Full Load	Learning-based Load					
	Wall Time(s)	Execution Time(s)	Block I/O Num	Wall Time(s)	Execution Time(s)	Block I/O Num	On-demand I/O Time(s)	On-demand I/O Num
TW Seq	3434	1317	1689	100%	3229	1206	1419	100%
TW METIS	2829	1039	1541	7540	2465	1053	1056	5145
UK Seq	4178	662	1765	13587	2982	1407	749	5995
UK METIS	1856	98	1044	3751	1165	166	294	998

![Figure 9: Performance of the learning-based block loading model on various datasets.](image)

![Figure 10: I/O-utilization with different block loading methods on Twitter.](image)
to that of RWNV. However, GraSorw still achieves the best result. For instance, when executing PRNV ($p = 4, q = 0.25$) on Twitter, the wall time of SGSC is 26% that of SOGW, while GraSorw is only 0.7%. Moreover, on Friendster, SGSC only saves slightly 3%-4% of wall time of SOGW, the time saved by GraSorw still achieves 86% for PRNV ($p = 4, q = 0.25$) and 68% for PRNV ($p = 0.25, q = 4$).

7.6.2 Block Size

We also study the performance of GraSorw with variation of block size and the number of blocks, and the results on three representative graphs are shown in Figure 12. Similar with previous tasks, there is no significant difference between SOGW and SGSC for RWNV, and for PRNV, the latter is only slightly faster. On the other hand, GraSorw consistently outperforms the baselines. The only exception happens when conducting RWNV on UK with block size set to 128MB. This is because when block size is small, the number of partitioned blocks of large graphs is big (197 in this case), and there are many ancillary block I/Os in GraSorw. Another observation is that as the block size increases, the advantage of GraSorw becomes more and more obvious. For example, on Twitter, the maximum performance improvement by GraSorw is achieved when the block size is set to 2GB, which is 114x and 91x speedups for RWNV and PRNV, respectively, compared to the SOGW. The third observation is that when the block size reaches to 8GB, difference between GraSorw and two baselines SOGW and SGSC becomes less obvious. For example, on Twitter, the wall time of SOGW is about 97x slower than the one of GraSorw when block size is 4GB (3 blocks in total), while it decreases to 4x slower when block size is enlarged to 8GB (2 blocks in total). This is because as the number of blocks decreases, walks can move more steps inside one block, and the number of walks crossing blocks becomes small, resulting fewer individual vertex I/Os. In summary, GraSorw achieves significant time reduction under different block sizes and number of blocks.

7.7 The Performance of GraSorw With Different Graph Distributions

To study the performance of GraSorw on graphs with different distributions, we generated 11 different graphs by considering three types of graph parameters, that are the skew parameters, density, and community structures. All these graphs are generated by using the popular network package NetworkX\(^8\). The information of each graph is shown in Table 5. Note that these experiments focus on the influence of graph distributions to GraSorw, we did not generate very large graph, and the CSR sizes of generated graphs is controlled to be similar to the one of Twitter or LiveJournal. In the following, we discuss the experimental results of the three types one-by-one.

\(^8\)https://networkx.org/documentation/stable/index.html
We also use Barabási–Albert preferential attachment method to generate a scale-free network, in which degrees of vertices follow power-law distribution. For the above three graphs, we make sure that they have the same number of vertices and edges. In other words, they have the same average degree, which is 40 in our experiments.

According to the results in Table 6, GraSorw achieves the best efficiency for all datasets. Concretely, GraSorw achieves 4.6×–6.1× speedup for RWNV, and 2.4×–4.9× for PRNV, compared to SOGW. Because of the bucket-based walk management and the existence of the ancillary block, the massive individual vertex I/Os, which are random I/Os, are converted to few sequential block I/Os, and this makes GraSorw be faster than baselines. The above results demonstrate that GraSorw is able to achieve high-performance on graphs with different skew parameters.

Influence of different densities.

To study the performance of GraSorw under different graph densities, we generate five random graphs with average degree being 5 (RandomG1), 50 (RandomG2), 500 (RandomG3), 3000 (RandomG4) and 22359 (RandomG5), respectively. Note that fixing the number of total edges to 500 million, we generate five random graphs with average degree being 5 (RandomG1), 50 (RandomG2), 500 (RandomG3), 5000 (RandomG4) and 22359 (RandomG5), respectively. With such settings, we find that the graphs generated are extremely dense. We have tried to generate graphs with less p and q to make it sparser, yet it takes too long time to generate such a graph using NetworkX.

From the experimental results, we see that SGSC outperforms GraSorw for RWNV tasks, while GraSorw remains faster than SOGW and SGSC for PRNV tasks. The phenomena is similar to the one of graphs with different densities. As discussed before, because the three graphs are extremely dense, the performance of GraSorwis influenced by the workload. The detailed explanation is presented in the experiments of “influence of different densities”.

Influence of skew parameters.

We generate a circulant graph and an Erdős–Rényi random network (RandomG). We also use Barabási–Albert preferential attachment method to generate a scale-free network (BASF), in which degrees of vertices follow power-law distribution. For the above three graphs, we make sure that they have the same number of vertices and edges. In other words, they have the same average degree, which is 40 in our experiments.

According to the results in Table 6, GraSorw achieves the best efficiency for all datasets. Concretely, GraSorw achieves 4.6×–6.1× speedup for RWNV, and 2.4×–4.9× for PRNV, compared to SOGW. Because of the bucket-based walk management and the existence of the ancillary block, the massive individual vertex I/Os, which are random I/Os, are converted to few sequential block I/Os, and this makes GraSorw be faster than baselines. The above results demonstrate that GraSorw is able to achieve high-performance on graphs with different skew parameters.

Influence of different densities.

To study the performance of GraSorw under different graph densities, we generate five random graphs with average degree being 5 (RandomG1), 50 (RandomG2), 500 (RandomG3), 3000 (RandomG4) and 22359 (RandomG5), respectively. Note that fixing the number of total edges to 500 million, we generate five random graphs with average degree being 5 (RandomG1), 50 (RandomG2), 500 (RandomG3), 5000 (RandomG4) and 22359 (RandomG5), respectively. With such settings, we find that the graphs generated are extremely dense. We have tried to generate graphs with less p and q to make it sparser, yet it takes too long time to generate such a graph using NetworkX.

From the experimental results, we see that SGSC outperforms GraSorw for RWNV tasks, while GraSorw remains faster than SOGW and SGSC for PRNV tasks. The phenomena is similar to the one of graphs with different densities. As discussed before, because the three graphs are extremely dense, the performance of GraSorwis influenced by the workload. The detailed explanation is presented in the experiments of “influence of different densities”.

Table 6: The wall time (in seconds) of three systems on different graphs.

GraphName	RWNV	PRNV
CirculantG	1696	772
RandomG	10200	9790
BASF	10118	10764
RandomG3	21195	2132
RandomG4	111	101
SBM1	110	96
SBM2	243	201
SBM3	179	162

Note: The I/O time of GraSorw is made up with block I/Os only.
Table 7: Result of First-order random walk execution. We compare GraSorw with GraphWalker and GraSorw without learning-based block loading (GraSorw-No-LBL).

Dataset	Wall Time (s)	Execution Time (s)	Block I/O Time (s)	Wall Time (s)	Execution Time (s)	Block I/O Time (s)	Wall Time (s)	Execution Time (s)	Block I/O Time (s)
LJ	137	84	53	135	86	48	135	88	47
TW	1366	851	515	1399	871	528	1302	793	509
FR	2122	1313	809	2200	1362	838	2128	1346	782
UK	2242	1463	779	1867	1189	677	1782	1123	660

7.8 The Performance of First-order Random Walk in GraSorw

Finally, we evaluate the performance of first-order random walk in GraSorw to demonstrate the applicability of our system. We take DeepWalk as the benchmark of first-order random walk tasks, and compare GraSorw with the state-of-the-art disk-based first-order random walk system GraphWalker. We also compare the results of GraSorw without learning-based block loading (GraSorw-No-LBL), which uses the Iteration-based method mentioned in Section 4.1 to schedule the current blocks. The experimental results are shown in Table 7. We see that GraSorw or GraSorw-No-LBL achieves the best efficiency on three datasets, i.e., LJ, TW and UK, and is comparable to GraphWalker on FR. Comparing with GraphWalker, GraSorw saves 21%, 23% and 16% of the wall time, execution time and block I/O time on UK, respectively. With the help of learning-based block loading method, the time cost of block I/Os in GraSorw is the least among all these four datasets, and it is 85%-99% of the one in GraphWalker. This is because some heavy I/Os of loading the complete block is converted to light vertex I/Os when the number of remained walks is small. In addition, comparing GraSorw-No-LBL with GraphWalker, both the execution time and block I/O time are similar. This demonstrates that the iterative block scheduling is effective for first-order random walks, and it is feasible to replace the state-aware block scheduling mechanism in GraphWalker with the iterative block scheduling.

8 RELATED WORK

Many systems have been designed to analyze large graphs in recent years. Some studies focused on how to migrate the benefits of distributed computing to graph processing. Pregel [25] proposes a synchronization model that represents various typical graph processing tasks as a series of iterations to run them on a cluster of machines. GraphLab [21] proposes a model for asynchronous processing, and PowerGraph [9] takes into account the power-law property of natural graphs for faster access to vertex information. However, distributed systems have high requirements of the running environment, which is expensive, and have high communication costs between nodes.

As another solution that is lightweight, inexpensive, and scalable, many single machine disk-based graph processing systems have been proposed. GraphChi [16] first organizes the graph data on disk in shards, thus converting random I/Os to sequential I/Os in each shard. X-Stream [34] employs a new edge-centric graph computation model that enables the system to stream the list of edges read from disk directly. GridGraph [48] designs a more clever fine-grained subgraph partitioning to avoid loading useless information into memory and accelerate I/O processing. In addition, the features of SSD are also considered by some systems. Liu et al. [19] designed a disk-based full-granularity I/O management by reorganizing the SSD format to store graph data completely on disk, which makes the performance of dedicated SSD-based graph processing systems closer to that of memory-based graph processing system. Due to the generality, these aforementioned systems did not consider the features of random walks and entail more time for random walk processing.

Meanwhile, due to the wide applicability of random walk, several dedicated systems or frameworks have been proposed to accelerate random walk processing. Most of them are designed in-core. Shao et al. [36, 37] proposed a framework for rational use of available memory, which switches between different sampling algorithms for different nodes to balance the time and space overheads. ThunderRW [38] designs a step-centric programming model to address the high CPU pipeline slots stalled due to irregular memory access in random walk tasks. UniNet [47] brings in a new edge sampler based on Metropolis-Hastings to efficiently sample the next steps of random walks and proposes a framework that provides a uniform representation of different random walk models and allows users to implement new graph representation learning models flexibly. However, these frameworks use a memory-based model and cannot provide help in the scalability of the large graph. KnightKing [46] is a distributed system aiming to optimize random walk processing and employs an efficient algorithm in second-order random walk sampling. There are also systems focusing on out-of-core random walk processing. DrumkardMob [15] encodes each walk and stores them in memory to support parallelism for billions of random walks. In a single block, it clusters vertices into batches and manages walks belongs to the batch together in the corresponding bucket. GraphWalker [15] adopts block-centric walk management and also uses a disk to store walks. It proposes state-aware block scheduling and asynchronous walk updating to reduce block I/Os. Different from these systems, GraSorw focuses on optimizing a large amount of random vertex I/Os in second-order random walk tasks, and converts these I/Os into sequential by employing bi-block execution engine and increases the I/O utilization with the help of learning-based block loading model.

9 CONCLUSION

Second-order random walk is an important method for modeling higher-order dependencies in data. The existing disk-based graph system cannot efficiently support the second-order random walk.
We proposed an I/O-efficient disk-based second-order random walk system. To reduce the massive light vertex I/Os, we developed a bi-block execution engine with a triangular bi-block scheduling strategy, which smartly converts small random I/Os into large sequential I/Os. To improve the I/O-utilization, we introduced a learning-based block loading model to select the proper block loading method automatically. Finally, we empirically evaluated our system on five large graphs, and the results demonstrated GraSorv significantly surpasses the existing disk-based random walk systems. Furthermore, considering that the processing of second-order random walks in most of these applications is an independent phase, GraSorv can be easily embedded or integrated into existing second-order random walk-based applications.

REFERENCES

[1] Ziv Bar-Yossef, Alexander Berg, Steve Chien, Jittat Fakcharoenphop, and Dror Weitz. 2000. Approximating aggregate queries about web pages via random walks. In Proceedings of the 26th International Conference on Very Large Data Bases, VLDB ’00: 335–344.

[2] Paolo Barone, Paola Bonizzoni, Gianluca Della Vedova, and Giancarlo Mauri. 2001. An approximation algorithm for the shortest common supersequence problem: an experimental analysis. Proceedings of the ACM Symposium on Applied Computing (2001), 56–60. https://doi.org/10.1145/372273.372275

[3] Renáto Besenczi, Norbert Bátfai, Péter Jeszenszky, Roland Major, Fanny Monori, and Márton Ispányi. 2021. Large-scale simulation of traffic flow using Markov model. PLoS ONE 16, 2 February (2021), 1–31. https://doi.org/10.1371/journal.pone.0240662

[4] Paolo Boldi and Marco Rosa. 2012. Arc-community detection via triangular random walks. Proceedings - 2012 68th Annual ACM Web Congress, LA-WEBCON 2012 (2012), 48–56. https://doi.org/10.1109/LA-WebCon.2012.19

[5] Xiaosheng Deng, Genghao Li, Miaoxiang Dong, and Kaoru Ota. 2017. Finding overlapping communities based on Markov chain and link clustering. Peer-to-Peer Networking and Applications 10, 2 (2017), 411–420. https://doi.org/10.1007/s12083-016-0457-0

[6] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. Metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol. Part F296. 135–144. https://doi.org/10.1145/3097983.3098036

[7] T. S. Evans and R. Lambiotte. 2009. Line graphs, link partitions, and overlapping communities. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics 80, 1 (2009). https://doi.org/10.1103/PhysRevE.80.016105 arXiv:0903.2181

[8] Dániel Fogaşar, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards scaling fully personalized PageRank: Algorithms, lower bounds, and experiments. Internet Mathematics 2, 3 (2005), 333–358. https://doi.org/10.1080/15427951.2005.10129104

[9] Joseph E. Gonzalez, Yucheng Low, Haisie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed graph-parallel computation on natural graphs. Technical Report 17–30 pages.

[10] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable feature learning for networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol. 19-17 August: 855–864. https://doi.org/10.1145/2939672.2939754 arXiv:1607.00653

[11] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc Najork. 2012. Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc Najork. 2012. The PageRank Citation Ranking: Bringing Order to the Web. Athenas: Cambridge University Press.

[12] Sanjeev Kumar. 1998. The PageRank Citation Ranking: Bringing Order to the Web. Proceedings - 2012 IEEE International Symposium on Workload Characterization, IISWC 2012 (1998), 111–112. https://doi.org/10.1109/IISWC.2012.6402911

[13] Glen Jeh and Jennifer Widom. 2002. SimRank: A measure of structural-context similarity. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol. 7, suppl. 4 (2002), 1392–1402. https://doi.org/10.1145/1471-2105-7-5412

[14] Amy N. Langville and Carl D. Meyer. 2011. The Unifying Power of Graph Theory: Exploring Data through Graphs. J. ACM 59, 3 (2012), 224–241. https://doi.org/10.1145/1993998.1994007

[15] Yingxia Shao, Shiyue Huang, Yawen Li, Xupeng Miao, Bao Cui, and Lei Chen. 2020. Memory-aware framework for fast and scalable second-order random walk on billion-edge natural graphs. VLDB Journal 30, 5 (sep 2021), 769–797. https://doi.org/10.1007/s00778-021-06696-2

[16] Yingxia Shao, Shiyue Huang, Xupeng Miao, Bao Cui, and Lei Chen. 2021. Memory-Aware Framework for Efficient Second-Order Random Walk on Large Graphs. Proceedings of the ACM SIGMOD International Conference on Management of Data (2020), 1797–1812. https://doi.org/10.1145/3318464.3380562

[17] Shixin Sun, Yuhang Chen, Shengliang Lu, Bingheng He, and Yuchen Li. 2021. ThunderRW: An In-Memory Graph Random Walk Engine. Proc. VLDB Endow.
Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018. VERSIE: Versatile graph embeddings from similarity measures. In The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018. 539–548. https://doi.org/10.1145/3178876.3186120 arXiv:1803.04742

Jonathan S. Turner. 1989. Approximation algorithms for the shortest common superstring problem. Information and Computation 83, 1 (1989), 1–20. https://doi.org/10.1016/0890-5401(89)90044-8

Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the edges you need: A generic I/O optimization for disk-based graph processing. Proceedings of the 2016 USENIX Annual Technical Conference, USENIX ATC 2016 (2016), 507–522.

Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Diheng Pan, Yuan Wang, and Pengfei Chen. 2018. CloudRanger: Root cause identification for cloud native systems. Proceedings - 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2018 (2018), 492–502. https://doi.org/10.1109/CCGRID.2018.00076

Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C.S. Lui. 2020. GraphWalker: An I/O-efficient and resource-friendly graph analytic system for fast and scalable random walks. Proceedings of the 2020 USENIX Annual Technical Conference, ATC 2020 (2020), 559–571.

Yubao Wu, Yuchen Bian, and Xiang Zhang. 2016. Remember where you came from: The second-order random walk based proximity measures. In Proceedings of the VLDB Endowment, Vol. 10. Association for Computing Machinery, 13–24. https://doi.org/10.14778/3015270.3015272

Jiayue Yang, Wu Yao, and Wenjie Zhang. 2021. Keyword Search on Large Graphs: A Survey. Data Science and Engineering 6, 2 (2021), 142–162. https://doi.org/10.1007/s41019-021-00154-4

Ke Yang, Ming Xing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang. 2019. Knightking: A fast distributed graph random walk engine. SOSP 2019 - Proceedings of the 27th ACM Symposium on Operating Systems Principles (2019), 524–537. https://doi.org/10.1145/3341301.3359634

Xingyu Yao, Yingxia Shao, Bin Cui, and Lei Chen. 2020. UniNet: Scalable Network Representation Learning with Metropolis-Hastings Sampling. 1 (2020). arXiv:2010.04895 http://arxiv.org/abs/2010.04895

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. Gridgraph: Large-scale graph processing on a single machine using 2-level hierarchical partitioning. Proceedings of the 2015 USENIX Annual Technical Conference, USENIX ATC 2015 (2015), 375–386.
A EFFICIENCY OF DIFFERENT SCHEDULING STRATEGY FOR CURRENT BLOCKS

The minimal current block I/Os problem is NP-hard, and it is interesting to know the effectiveness guarantee of the iteration-based method. In general, we should compare the iteration-based method to the ground truth or the optimal solution. However, for the minimal current block I/Os problem, it is difficult (or infeasible) to compute the ground truth even on small datasets. For a set of k sequences with length n, the space and time complexity to compute their accurate SCS is $O(n^k)$ using dynamic programming. That is to say, the time and space complexity is $O(n^k)$ when computing the accurate ground truth of the minimal current block I/Os for k walks with n steps. On a tiny graph with tens of nodes, a simple random walk task generates hundreds of walks, and each walk moves tens of steps. For example, for a simple tasks with 100 walks (10 steps for each walk), the computation of the ground truth requires 4 googol (4×10^{100}) bytes of memory, and takes billions of years to compute such an answer. Apparently, it is not feasible to perform such a task on general commodity machines within finite time. Similarly, P. Barone et al. [2] states that the computation of the ground truth of such a task is not acceptable due to time and space constraints when k reaches 5-8.

In the field of SCS problems in which it is not possible to compute the exact ground truth, a comparison between the proposed method and other existing method is presented [26, 28]. Similarly, we compare our iteration-based method with several other well-known heuristic solutions for SCS problems. Note that, as discussed in Section 4.1, not all approximated solution for SCS is feasible in our situation. This is because the minimal current block I/O problem defines an online SCS problem, that is, the next item of all sequences is not aware unless the current item in the supersequence is chosen. In the context of GraSorw, only the historical blocks are aware, thus, the global information of the sequences is missing when scheduling the next current block. Therefore, we only compare the existing solutions that are feasible for online SCS problems, and briefly make a list of how they are used in random walk tasks as follows:

- The Alphabet algorithm. The current block is scheduled from b_0 to b_{N_R}. The scheduling starts from b_0 again if there are walks not terminated. The approximation ratio of this method is N_R [28].

- Our Iteration-based method. It is similar to the Alphabet algorithm. The only difference is that when there is no walk in a certain block, it will be skipped and not chosen as the current block. The approximation ratio of this method is also N_R.

- The Min-Height method. The block currently containing the walk with shortest steps is chosen as the current block.

- The Max-Sum method. The block currently containing most walks is chosen as the current block.

- GraphWalker method. This is a mix of the Max-Sum and Min-Height method. With a probability p the current block is chosen by the Max-Sum method, and $1 - p$ chosen by the Min-Height method. In the experiment, we follow the settings in GraphWalker and set p to 0.8.

B CORRECTNESS PROOF OF ALGORITHM 1

Given a termination condition T which can be reached for each walk in finite steps, let N be the total number of walks, F be the set of walks that reach T, U be the set of walks that have not reached T, then we have $|N| = |F| + |U|$.

1. In the beginning, $|U| = N$. Since we ensure that the current vertex and the previous vertex of a walk belongs to different blocks after the initialization, it means no walk w^*_{uv} such that $B(u) = B(v)$ exists. During the initialization, a walk either reaches T and is added into F or walks out of the block $B(s)$, where s represents its source vertex. Therefore, we still have $|F| + |U| = N$ after the initialization stage.

2. In each time slot, no walk w^*_{uv} such that $B(u) = B(v)$ exists (ensured by Line 22 in Algorithm 2). Therefore, for a walk w^*_{uv}, either $B(u) > B(v)$ or $B(v) > B(u)$. With skewed walk storage, walks such that $B(u) > B(v)$ is associated with $B(v)$. Since $B(u) > B(v)$, from triangular block scheduling method we know that there exists a state such that $B(u)$ is loaded as the ancillary block and $B(v)$ is the current block. Consequently, the walk w^*_{uv} gets updated by at least one step forward. We can get the same results for walks such that $B(u) > B(u)$. Therefore, all walks get updated by at least one step forward in one time slot, and either reach T and are added into F or still stay in U. So after each time slot, $|F| + |U| = N$ still holds.

3. The algorithm terminates when $|U| = 0$. Since in each time slot all walks get updated by at least one step forward, they can reach T in finite steps. Let s_i be the number of steps of the i-th walk when it terminates and $S = \max(s_i)$, then after S time slots, $|F| = N$. We know that $|F| + |U| = N$ holds after each time slot, and when $|F| = N$, we have $|U| = 0$. Therefore, the termination condition (i.e., $|U| = 0$) of the algorithm can be reached, and the algorithm is correct.
Table 8: The performance of block I/O with different current block scheduling strategy. The number of blocks for each graph is consistent with Table 2.

Complexity Analysis of Algorithm 1

Algorithm 1 is made up with three components: 1. block loading, which includes the loading of current blocks and ancillary blocks; 2. walk processing, which includes the loading and execution of walks; 3. walk management, which collects walks to buckets. In the following, we discuss about the space and time cost one-by-one.

Cost of block loading. Let t_l be the time of loading one block into memory, s_b be the bytes that a block occupies, L be the length of each walk, and N the number of total walks. In each time slot, all walks move forward by at least one step. Therefore, the total number of time slot is at most L. From equation (3) we know that in each time slot, there are at most $\frac{1}{2}(N_B+2)(N_B-1)$ block I/Os. Therefore, the time cost of block loading is at most $\frac{1}{2}(N_B+2)(N_B-1) L t_l$. Since there are at most two blocks in memory at the same time, the space cost is $2s_b$.

Cost of walk processing. Let t_s be the average time cost to sample one step, t_w be the average time to load a walk, and s_w be the bytes that a walk occupies. In each time slot, all walks are loaded into memory, and the walk loading time is $NL t_w$. The total sampling time is $NL t_s$. For each current block, the average number of walks associated with it is N/N_B, and so the memory required for storing walks in memory is $s_w N/N_B$.

Cost of walk management. The array of storing the walks in memory is called the current walk array. Let t_b be the time of collecting one walk into its belonging bucket. Since a walk is updated at least one step forward after it has been collected into its belonging bucket, a walk is collected to bucket by at most L times. Then for N walks, the total collecting time cost is at most $NL t_b$. Note that after the collection of each walk, the walk is removed from the current walk array, and thus the buckets bring in no extra space.

Summing these costs up, the time complexity of Algorithm 1 is $O(N_B^2 L t_l + NL(t_s + t_w))$, and the space complexity is $O(2s_b + s_w N/N_B)$.
