SUPPLEMENTARY MATERIAL

Four cytotoxic annonaceous acetogenins from the seeds of Annona squamosa

Yunjie Miao, Xiaofang Xu, Fei Yuan, Yeye Shi, Yong Chen, Jianwei Chen, Xiang Li*

a Nanjing University of Chinese Medicine, pharmaceutical institute, Nanjing 210046, P.R. China
b Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, P.R. China

* Corresponding authors. Tel.: +86 2585811512; fax: +86 2585811524. E-mail address: lixiang_8182@163.com

Abstract Four new annonaceous acetogenins, squamocin-I (1), II (2) and III (3) and squamoxinone-D (4), together with seven known annonaceous acetogenins (5-11) were isolated from the seeds of Annona squamosa. The structures of all isolates were elucidated and characterized by spectral and chemical methods. Compounds 1-4 were evaluated for their cytotoxicities against Hep G2, SMMC 7721, BEL 7402, BGC 803 and H460 human cancer cell lines. Compound 1 exhibited better potent activity than the positive compound and compound 3 shows selectively cytotoxic activity against H460 with IC50 values of 0.0492 μg/ml.

Keywords Annonaceous acetogenins, HPLC, NMR, Anti-tumor
Contents

S1. H NMR (300 MHz, CDCl3) spectrum of compound 1
S2. C NMR (75 MHz, CDCl3) spectrum of compound 1
S3. HRESIMS spectrum of compound 1
S4. H NMR (300 MHz, CDCl3) spectrum of compound 2
S5. C NMR (75 MHz, CDCl3) spectrum of compound 2
S6. HRESIMS spectrum of compound 2
S7. H NMR (400 MHz, CDCl3) spectrum of compound 3
S8. C NMR (100 MHz, CDCl3) spectrum of compound 3
S9. HRESIMS spectrum of compound 3
S10. H NMR (400 MHz, CDCl3) spectrum of compound 4
S11. C NMR (100 MHz, CDCl3) spectrum of compound 4
S12. HRESIMS spectrum of compound 4
S13. Diagnostic ESIMS fragment ions (m/z) of 1-4. Peaks in parentheses were not observed
S14. 1H and 13C NMR spectroscopic data for compounds 1-2 recorded in CDCl3.
S15. 1H and 13C NMR spectroscopic data for compounds 3-4 recorded in CDCl3.
S3. HRESIMS spectrum of compound 1

S4. 1H NMR (300 MHz, CDCl3) spectrum of compound 2
S5. 13C NMR (75 MHz, CDCl3) spectrum of compound 2

S6. HRMS/MS spectrum of compound 2
S9. HRESIMS spectrum of compound 3

S10. 1H NMR (400 MHz, CDCl3) spectrum of compound 4
Figure S13. Diagnostic ESIMS fragment ions (m/z) of 1-4. Peaks in parentheses were not observed.
Table S1. 1H and 13C NMR spectroscopic data for compounds 1-2 recorded in CDCl$_3$.

Position	δ_C (ppm)	δ_H (J in Hz)	δ_C (ppm)	δ_H (J in Hz)
1	174.6	-	173.8	-
2	131.1	-	134.3	-
3	31.8	2.40, dd, 2.53, d (15.1 Hz)	25.1	2.26, t (6.2 Hz)
4	70.1	3.85-3.94, m	27.3	1.39-1.52, m
5	37.3	1.27-1.60, m	24.8-29.7	1.28-1.67, m
6	24.4-29.6	1.27-1.60, m	24.8-29.7	1.28-1.67, m
7	24.4-29.6	1.27-1.60, m	24.8-29.7	1.28-1.67, m
8	24.4-29.6	1.27-1.60, m	24.8-29.7	1.28-1.67, m
9	24.4-29.6	1.27-1.60, m	24.8-29.7	1.28-1.67, m
10	24.4-29.6	1.27-1.60, m	24.8-29.7	1.28-1.67, m
11	24.4-29.6	1.27-1.60, m	32.4	1.39-1.52, m
12	24.4-29.6	1.27-1.60, m	74.1	3.40, m
13	32.3	1.39-1.52, m	83.3	3.83-3.96, m
14	74.1	3.41, m	25.6	1.28-1.67, m
15	83.2	3.85-3.94, m	28.9	1.28-1.67, m
16	26.0	1.27-1.60, m	82.5	3.83-3.96, m
17	28.9	1.27-1.60, m	82.1	3.83-3.96, m
18	82.5	3.85-3.97, m	28.9	1.28-1.67, m
19	82.2	3.85-3.97, m	28.4	1.28-1.67, m
20	28.9	1.27-1.60, m	82.8	3.83-3.96, m
21	28.3	1.27-1.60, m	71.4	3.83-3.96, m
22	82.8	3.85-3.94, m	71.7	3.59, m
23	71.4	3.85-3.94, m	37.2	1.39-1.52, m
24	33.2	1.39-1.52, m	24.47-29.71	1.39-1.52, m
25	24.4-29.6	1.27-1.60, m	24.47-29.71	1.28-1.67, m
26	24.4-29.6	1.27-1.60, m	24.47-29.71	1.28-1.67, m
27	24.4-29.6	1.27-1.60, m	24.47-29.71	1.28-1.67, m
28	24.4-29.6	1.27-1.60, m	24.47-29.71	1.28-1.67, m
29	24.4-29.6	1.27-1.60, m	24.47-29.71	1.28-1.67, m
30	24.4-29.6	1.27-1.60, m	24.47-29.71	1.28-1.67, m
31	24.4-29.6	1.27-1.60, m	24.47-29.71	1.28-1.67, m
32	31.8	1.27-1.60, m	31.8	1.28-1.67, m
33	22.6	1.39-1.52, m	22.6	1.39-1.52, m
34	14.1	0.88, t (7.0 Hz)	14.1	0.88, t (6.7 Hz)
35	151.8	7.18, d (1.5 Hz)	148.8	6.99, d (1.5 Hz)
36	77.5	5.06, qd (7.0, 1.5 Hz)	77.4	5.00, qd (6.8, 1.5 Hz)
37	19.0	1.40, d (7.0 Hz)	19.2	1.41, d (6.8 Hz)

* δ from TMS (ppm). 1H-NMR [300 MHz, CDCl$_3$, m, J (Hz)] and 13C-NMR (75 MHz) spectroscopic data for Compounds 1 and 2.
Table S2. 1H and 13C NMR spectroscopic data for compounds 3-4 recorded in CDCl$_3$.*

Position	δ H	δ C	δ H	δ C
1	7.40	-	7.46	-
2	7.34	-	-	-
3	3.18	2.26, t (7.7 Hz)	3.19	2.40, m, 2.51, m
4	2.84	1.39-1.52, m	7.00	3.84, m
5	2.47-2.97	1.26-1.65, m	37.4	1.26-1.69, m
6	2.47-2.97	1.26-1.65, m	25.6-29.7	1.26-1.69, m
7	2.47-2.97	1.26-1.65, m	130.0	5.34, m
8	2.47-2.97	1.26-1.65, m	129.8	5.34, m
9	2.47-2.97	1.26-1.65, m	25.6-29.7	1.26-1.69, m
10	2.47-2.97	1.26-1.65, m	25.6-29.7	1.26-1.69, m
11	2.47-2.97	1.26-1.65, m	33.5	1.26-1.69, m
12	2.47-2.97	1.26-1.65, m	74.1	3.39, m
13	3.24	1.39-1.49, m	83.2	3.84, m
14	7.42	3.39, m	29.0	1.26-1.69, m
15	8.33	3.83-3.94, m	29.0	1.26-1.69, m
16	2.83	1.63, m, 1.87, m	81.8	3.84, m
17	29.0	1.63, m, 1.87, m	74.1	3.39, m
18	82.6	3.83-3.94, m	33.5	1.26-1.69, m
19	82.3	3.83-3.94, m	25.6-29.7	1.26-1.69, m
20	2.89	1.63, m, 1.87, m	25.6-29.7	1.26-1.69, m
21	25.7	1.63, m, 1.87, m	25.6-29.7	1.26-1.69, m
22	82.8	3.83-3.94, m	25.6-29.7	1.26-1.69, m
23	71.3	3.83-3.94, m	25.6-29.7	1.26-1.69, m
24	32.4	1.39-1.49, m	25.6-29.7	1.26-1.69, m
25	24.5-29.7	1.26-1.65, m	25.6-29.7	1.26-1.69, m
26	24.5-29.7	1.26-1.65, m	25.6-29.7	1.26-1.69, m
27	24.5-29.7	1.26-1.65, m	25.6-29.7	1.26-1.69, m
28	33.3	1.26-1.65, m	25.6-29.7	1.26-1.69, m
29	71.8	1.26-1.65, m	25.6-29.7	1.26-1.69, m
30	33.3	1.26-1.65, m	25.6-29.7	1.26-1.69, m
31	24.5-29.7	1.26-1.65, m	25.6-29.7	1.26-1.69, m
32	31.9	1.26-1.65, m	31.9	1.26-1.69, m
33	22.6	1.40-1.53, m	22.7	1.26-1.69, m
34	14.1	0.89, t (6.9 Hz)	14.1	0.88, t (6.7 Hz)
35	148.9	6.99, d (1.3 Hz)	151.8	7.19, d (1.1 Hz)
36	77.5	5.00, q, (6.8, 1.3 Hz)	78.0	5.06, q (6.8, 1.5 Hz)
37	19.2	1.41, d (6.8 Hz)	19.1	1.43, d (6.8 Hz)

* δ from TMS (ppm). 1H-NMR [400 MHz, CDCl$_3$, m (Hz)] and 13C-NMR [100 MHz] spectroscopic data for compounds 3 and 4.