Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer’s Disease

Ju Youn Lee1,2,3, Seung Hoon Han1,2,3, Min Hee Park1,2,3, Bosung Baek1,4, Im-Sook Song5, Min-Koo Choi6, Yoh Takuwa7, Hoon Ryu8,9, Seung Hyun Kim10, Xingxuan He11, Edward H. Schuchman11, Jae-Sung Bae1,2,3 & Hee Kyung Jin1,4

Although many reports have revealed the importance of defective microglia-mediated amyloid β phagocytosis in Alzheimer’s disease (AD), the underlying mechanism remains to be explored. Here we demonstrate that neurons in the brains of patients with AD and AD mice show reduction of sphingosine kinase1 (SphK1), leading to defective microglial phagocytosis and dysfunction of inflammation resolution due to decreased secretion of specialized proresolving mediators (SPMs). Elevation of SphK1 increased SPMs secretion, especially 15-R-Lipoxin A4, by promoting acetylation of serine residue 565 (S565) of cyclooxygenase2 (COX2) using acetyl-CoA, resulting in improvement of AD-like pathology in APP/PS1 mice. In contrast, conditional SphK1 deficiency in neurons reduced SPMs secretion and abnormal phagocytosis similar to AD. Together, these results uncover a novel mechanism of SphK1 pathogenesis in AD, in which impaired SPMs secretion leads to defective microglial phagocytosis, and suggests that SphK1 in neurons has acetyl-CoA-dependent cytoplasmic acetyltransferase activity towards COX2.
Alzheimer’s disease (AD), the most common form of dementia, is characterized by accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of aggregated amyloid β (Aβ) and hyperphosphorylated tau, respectively, leading to progressive cognitive impairment and dementia. Besides these hallmarks, dysregulation of glial cells, especially microglia that normally associate closely with Aβ, also are observed. In the AD brain, dysfunctional microglia contribute to the disease progression by releasing pro-inflammatory cytokines in response to Aβ deposition and/or by decreased Aβ phagocytosis. Dysfunction of microglia also causes chronic inflammation that is a consequence of failure to resolve the inflammation. Resolution is the final stage of the inflammatory response, and is induced by specialized proresolving mediators (SPMs) including Lipoxin A4 (LXA4), Resolvin E1 (RvE1), and Resolvin D1 (RvD1), known to be produced in microglia. This results in resolution of microglia function, such as increase of phagocytic microglia, down-regulation of pro-inflammatory cytokines, and active clearance of apoptotic cells and debris. Importantly, a recent study has reported that the resolution of inflammation is dysfunctional in patients with AD.

Sphingosine kinase (SphK) types 1 and 2 are key enzymes that convert sphingosine into sphingosine-1-phosphate (S1P), bioactive lipids known to regulate inflammation. Recently, the role of SphK in inflammation has been the main focus of research on many diseases, such as asthma, inflammatory bowel disease, and rheumatoid arthritis. However, the roles of SphK in neuroinflammation have not been fully understood in the AD brain. Here we show that neuronal SphK1 levels are reduced in AD brain, leading us to investigate the role of neuron-derived SphK1 in AD pathogenesis. Increased neuronal SphK1 improved microglia-mediated Aβ phagocytosis and protected cognitive deficits. Neuronal SphK1 also promoted SPMs secretion, especially 15-R-LXA4, by acetylating serine residue 565 (S565) of cyclooxygenase2 (COX2), resulting in increase of phagocytic microglia. Furthermore, we demonstrate that SphK1 activation restores SPMs secretion in AD patient-specific neurons, suggesting an important role of neuronal SphK1 as a regulator of microglial phagocytosis in AD, and indicating its potential therapeutic use for AD.

Results

Neuronal SphK1 affects AD pathology in APP/PS1 mice. To examine the role of SphK in AD, we first checked the SphK levels in cortex of APP/PS1 mouse brains. SphK1 mRNA expression and SphK activity were decreased in the brain of APP/PS1 mice compared with those of wild-type (WT) mice, while SphK2 mRNA did not differ between the groups (Fig. 1a). No significant differences in sphingosine and S1P levels were found (Fig. 1b). Next, to further investigate the cell contribution of decreased SphK1 levels in mouse brains, we isolated neurons, microglia, and astrocytes, known to be important cell types related to AD pathogenesis (Supplementary Fig. 1). SphK1 mRNA expression and SphK activity were significantly decreased in APP/PS1 neurons compared with WT neurons, although there were no significant difference in microglia and astrocytes. SphK2 mRNA expression did not differ in neurons, microglia, and astrocytes derived from WT and APP/PS1 mice (Fig. 1c). Sphingosine and S1P levels also were unchanged in these cells (Fig. 1d).

To further validate the reason of unaltered lipid levels in spite of reduced SphK activity in APP/PS1 mice, we investigated the relationship between SphK activity and lipid levels using neurons derived from WT, SphK1−/−, SphK2−/−, and SphK1tg mice. SphK activity was decreased in SphK1−/− and SphK2−/− mice-derived neurons and increased in SphK1tg mice-derived neurons compared with neurons derived from WT mice. Particularly, SphK activity in SphK1−/− mice-derived neurons was lower than SphK2−/−, indicating SphK1 was more effective in SphK activity. Unlike SphK activity, we found that S1P was dramatically decreased in neurons derived from SphK2−/− mice, but not in neurons derived from SphK1−/− and SphK1tg mice. Sphingosine levels were not different between the groups (Fig. 1e), similar to a previous study. These results suggested that SphK activity was principally dependent on SphK1 expression, and lipid levels, such as S1P, were principally regulated by SphK2 expression. Therefore, the comparable lipid levels in APP/PS1 mice and WT might be due to comparable SphK2 expression. Consistent with the presented data, SphK1 level in immunoreactivity and western blotting also was markedly reduced in APP/PS1 neurons (Fig. 1f, g). These results confirmed that SphK1 was diminished in APP/PS1 neurons and that this reduction, regardless of the lipid alternations, may influence disease progression and/or pathogenesis.

Next, to assess the influence of SphK1 in AD pathology, we bred SphK1 overexpressing tg mice to APP/PS1 animals (Supplementary Fig. 2a, b). In cortex derived from APP/PS1/SphK1 tg mice, SphK1 levels were increased (Fig. 1a). Importantly, SphK1 mRNA expression and SphK activity also were significantly increased in the neurons of APP/PS1/SphK1 tg mice compared with those of APP/PS1 mice. SphK1 mRNA levels were increased in the microglia and astrocytes of APP/PS1/SphK1 tg mice as well, but SphK activity was not altered (Fig. 1c). Similar to previous results, other sphingolipid factors were unaltered in the APP/PS1/SphK1 tg mice in spite of SphK1 overexpression (Fig. 1b, d). Immunofluorescence and western blotting also indicated restoration of SphK1 expression in neurons of APP/PS1/SphK1 tg mice (Fig. 1f, g).

To determine whether the increased neuronal SphK1 activity in APP/PS1/SphK1 tg mice affected AD pathology, we first determined the Aβ profile. Thioflavin S (ThioS) staining, immunofluorescence of 6E10, Aβ40 and Aβ42, and ELISA of Aβ40 and Aβ42 showed significantly lower Aβ levels in the 9-month-old APP/PS1/SphK1 tg mice than age-matched APP/PS1 mice (Fig. 2a, b and Supplementary Fig. 2c–e). In APP/PS1/SphK1tg mice, cerebral amyloid angiopathy also was reduced (Supplementary Fig. 2f). There were no significant differences of tau hyperphosphorylation between the two groups (Supplementary Fig. 2g). Synaptophysin, MAP2, Synapsin1, and PSD95 labeling density were reduced in APP/PS1 mice versus WT mice. However, APP/PS1/SphK1 tg mice had labeling density that was restored to those of WT mice (Supplementary Fig. 2h–k).

We also performed the Morris water maze task and fear conditioning to examine changes of learning and memory. Aged APP/PS1 mice showed severe deficits in memory formation, while APP/PS1/SphK1 tg mice were largely protected from this defect (Supplementary Fig. 3a–h). For locomotion and spontaneous activity, an open field test was used. APP/PS1/SphK1 tg mice showed improved locomotion and spontaneous activity compared with APP/PS1 mice (Supplementary Fig. 3i–l). Collectively, these results suggested that increased neuronal SphK1 in APP/PS1 mice reduced the Aβ load and improved learning and memory.

Neuronal SphK1 modulates neuroinflammation in APP/PS1 mice. To confirm the mechanism responsible for restoration of AD pathology in APP/PS1/SphK1 tg mice, we first assessed the apoptotic responses and APP processing in brain, but did not detect differences between the two groups (Supplementary Fig. 4a, b). Next, we examined the Aβ generating enzyme Bace-1.
but did not detect differences (Supplementary Fig. 4c). Also, the expression pattern of proteins related to endocytosis and autophagy showed no differences between the groups (Supplementary Fig. 4d, e). Our results indicated that apoptosis, processing of APP, modulation of the endocytic pathway and autophagy were not related with the increase of SphK1 in the APP/PS1/SphK1 tg mouse.

Inflammatory processes and the innate immune response are activated in the brains of people with AD. In principle, this neuroinflammation could either drive pathology or be the result of the ongoing disease process. To investigate the effect of increased neuronal SphK1 on neuroinflammation, we examined changes of microglia and astrocytes. APP/PS1/SphK1 tg mice showed a significant reduction of activated microglia and astrocytes compared to APP/PS1 mice (Fig. 2c, d). In addition, APP/PS1/SphK1 tg mice showed a decrease of pro-inflammatory markers, including TNF-α, IL-1β, IL-6 and iNOS, and immunoregulatory cytokine IL-10, and an increase of anti-inflammatory markers, including IL-4, TGF-β and Arg1, compared with APP/PS1 mice (Fig. 2e). Collectively, these data indicated that genetic SphK1 overexpression could improve the inflammatory response in AD brains, and that regulation of neuroinflammation might be an important mechanism that attenuates AD pathology by increased neuronal SphK1.

Fig. 1 SphK1 is decreased in APP/PS1 mice neuron. a SphK1 (n = 6-7 per group) and SphK2 mRNA (n = 5-7 per group) and SphK activity (n = 6-7 per group) in cortex of brain. b Detection of sphingosine (n = 6-7 per group) and S1P (n = 6-7 per group) in brain. c SphK1 and SphK2 mRNA (n = 4 per group) and SphK activity (n = 4-10 per group) in neurons, microglia, and astrocytes isolated from mouse brain. d Detection of sphingosine (n = 4-8 per group) and S1P (n = 4-8 per group) in neurons, microglia, and astrocytes isolated from mouse brain. e Detection of SphK activity, sphingosine and S1P in neurons isolated from WT, SphK1−/−, SphK2−/− and SphK1 tg mouse brain (n = 4 per group). f Left, representative immunofluorescence images of cortex showing SphK1 (green) merged with neuron (NeuN, red). Scale bars, 20 μm. Right, quantification of neuronal SphK1 (n = 5 per group). g Western blotting for SphK1 in neuron isolated from mouse brain (n = 4 per group). All data analysis was performed on 9-month-old mice. a–g One-way analysis of variance, Tukey’s post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001. All error bars indicate s.e.m.
Reduction neuronal SphK1 by Aβ activates microglia. Next, to investigate the relationship of Aβ and SphK1, we examined the time course of amyloid deposition in relation to SphK1 levels in APP/PS1 mice. ThioS staining showed that Aβ plaques began to appear at the age of 6 months (Supplementary Fig. 5a). Neuronal SphK1 also started to decrease in six-month-old APP/PS1 mice, and was significantly reduced at 9 months (Supplementary Fig. 5b). Microglia and astrocytes were activated at the age of 9 months in APP/PS1 mice (Supplementary Fig. 5c, d). Collectively, these results indicated that reduction of neuronal SphK1 was correlated with Aβ deposition, leading to activated glia cells in APP/PS1 mice.

To interrogate more directly the relationship of Aβ and SphK1, we treated neurons with 10 μM Aβ and determined the SphK1 levels. Treatment with Aβ reduced SphKI mRNA expression and SphK activity in neurons (Supplementary Fig. 5e). SphK1 mRNA expression is regulated through PI3K, AKT and mTOR signaling, and the enzyme activity of SphK1 is modulated by ERK1/2-mediated phosphorylation. To determine the signaling molecules that modulate SphK1 expression and activity in Aβ-treated neurons, we examined the levels of PI3K and phospho-ERK. PI3K levels showed a dramatic decrease following addition of Aβ to neurons, while an inhibitor of PI3K signaling (rapamycin) reduced it (Supplementary Fig. 5h). These data showed that Aβ led to reduction of neuronal SphK1 through the PI3K signaling pathway.
Next, to define the glial cell types responsible for neuronal SphK1-mediated inflammation, we utilized conditioned media (CM) from isolated primary neurons, microglia, and astrocytes. Neurons were stimulated with Aβ and CM was harvested as described in Supplementary Fig. 6a, b. CM of the Aβ-treated neurons induced a significant shift of inflammatory cytokines in microglia, while it had much less effect on the astrocytes (Supplementary Fig. 6a, b). Intriguingly, further transfer of the CM from these microglia to astrocytes led to significant changes in the production of inflammatory factors (Supplementary Fig. 6a). However, in the converse situation, when exposed to Aβ-treated neuron-astrocyte-CM, the microglia did not become activated (Supplementary Fig. 6b). Thus, the sequence of microglial activation appears to be neurons to microglia directly, not through astrocytes.

To elucidate whether neuronal SphK1 directly controlled microglial activation, neurons derived from WT and SphK1 tg mice were stimulated with Aβ, and CM was harvested as described in Supplementary Fig. 6c. Microglial activation was reduced after treatment of CM from Aβ-stimulated SphK1 tg neuron compared with CM from Aβ-treated WT neuron. Similar results were observed in astrocytes induced with Aβ-treated neuron-microglia-CM (Supplementary Fig. 6c). However, astrocytes were not directly affected by either Aβ-treated WT or SphK1 tg neurons CMs (Supplementary Fig. 6d). We also confirmed the visible differences in the response of microglia to Aβ-treated WT and SphK1 tg neurons. Morphology of activated microglia was observed in microglia treated with CM from Aβ-treated WT neurons compared with control neurons, and was reduced in microglia treated with CM from Aβ-treated SphK1 tg neurons (Supplementary Fig. 6e). These data indicated that microglia-mediated reduction of inflammation.

Neuronal SphK1 regulates SPMs secretion by acetylating COX2. Recent findings indicate that neurons are not merely passive partners of microglia, but rather control microglial activity. The variety of different signals that neurons use to control microglia can be divided into two categories: "Off" signals constitutively keep microglia in their resting state, antagonize pro-inflammatory activity, and include CD47, CX3CL1, BDNF, and CD200, and "On" signals are inducible and include CXCL10, CCL21, and MMP3. To test whether neurons with increased SphK1 regulate microglia activity through Off/On signals, we assessed these molecules in neurons derived from these mice. Although APP/PS1 neurons showed reduction of Off signals and increase of On signals compared with WT neurons, this did not change in APP/PS1/SphK1 tg neurons (Supplementary Fig. 7).

SPMs are a recently identified group of molecules that function in the resolution of inflammation. This includes arachidonic acid (AA)-derived LxA4, eicosapentaenoic acid (EPA)-derived RvE1 and docosahexaenoic acid (DHA)-derived RvD1. SPMs are agonists that can stimulate key cellular resolution events such as limiting neutrophil infiltration and enhancing clearance of debris by macrophages and microglia. We therefore examined whether neuronal SphK1 induces the secretion of SPMs regulating microglial activation, using ELISA. LxA4 and RvE1 levels were significantly lower in CM derived from APP/PS1 neurons than WT neurons and recovered in CM derived from APP/PS1/SphK1 tg neurons, suggesting that neuronal SphK1 might be related with secretion of SPMs (Fig. 3a). However, RvD1 did not change.

SPMs are biosynthesized from essential polyunsaturated fatty acids, such as AA, EPA, and DHA, via the consecutive actions of lipoxigenase (LOX-15) and/or COX2 enzymes. We therefore tested levels of LOX-15 and COX2 in neurons derived from mouse brains. The mRNA and protein levels of these enzymes did not vary between the groups (Fig. 3b, c). Recent studies have also revealed that aspirin inhibits prostanooid biosynthesis by acetylation of COX1 and COX2. Acetylation of COX2 by aspirin modifies the catalytic domain, blocking prostaglandin biosynthesis, but it remains active and produces SPMs in cells carrying COX2. Based on this concept, we examine whether SphK1 promotes acetylation of COX2 using acetyl-CoA in neurons, we purified COX2 and measured the acetylation level in the presence of [14C] acetyl-CoA using neuronal lysates derived from 9-month-old mice. Compared with WT, COX2 displayed low-level acetylation in neuron of APP/PS1 mice and this was enhanced in neuron of APP/PS1/SphK1 tg mice, suggesting that SphK1 modulates COX2 acetylation in neurons using acetyl-CoA.

Next, for confirmation of COX2 acetylation-derived SPMs secretion by SphK1, we identified several SPMs, including 15-R-LxA4, 15-S-LxA4, 17-R-RvD1, 17-S-RvD1, 18-R-RvE1 and PD1, using systematic LC-MS/MS. Interestingly, only 15-R-LxA4, one of COX2 acetylation-derived products, was found in neurons. Neurons derived from APP/PS1 mice exhibited a markedly decrease of 15-R-LxA4 compared with neurons derived from WT mice. These were restored in neurons derived from APP/PS1/SphK1 tg mice (Fig. 3e, f). 15-S-LxA4, 17-R-RvD1, 17-S-RvD1, 18-R-RvE1, and PD1 were not detected in neurons. Of note, because LC-MS/MS was based on the exact molecular formula rather than a fragmentation pattern, SPMs levels measured by LC-MS/MS was significantly lower or not detected compared with levels measured by ELISA. Overall, we confirmed that 15-R-LxA4, which is reported to be decreased in AD, was reduced in APP/PS1 mice, and that the elevation of SphK1 increased COX2 acetylation-derived 15-R-LxA4 secretion, suggesting the potential therapeutic use of SphK1 in AD. To gain more direct insights into the relationship between SphK1 and SPMs secretion in neurons, we treated WT neurons with SphK1 siRNA and determined the changes of SPMs. CM derived from SphK1 siRNA-treated neurons showed strongly reduced SPMs levels (except RvD1), similar to CM from APP/PS1 neurons (Supplementary Fig. 8a, b). Knockdown of SphK1 in normal neurons also caused reduction of COX2 acetylation and 15-R-LxA4 (Supplementary Fig. 8c, d).

These findings on SphK1-mediated COX2 acetylation led us to search for possible therapeutic applications of this pathway in AD. To increase SphK1 in neurons of APP/PS1 mice, we undertook PI3K signal activation using 740YP described above. 740YP-treated neurons derived from APP/PS1 mice exhibited an increase of COX2 acetylation compared with vehicle-treated animals (Supplementary Fig. 9a). Secreted SPMs were also elevated after 740YP treatment (Supplementary Fig. 9b). Together, these data indicated that SphK1 promoted acetyl-CoA-dependent acetyltransferase activity on COX2 in neurons and induced the secretion of SPMs, especially 15-R-LxA4.

SphK1 is an acetyl-CoA dependent acetyltransferase of COX2. To investigate the acetyltransferase activity of SphK1, kinetic and functional analysis, including determination of the acetyl binding and dissociation from the enzyme, was performed. Incorporation of acetyl group to SphK1 became saturated with increased concentration of acetyl-CoA, yielding K_D and K assay values of 58.2 μM and 0.0185 min⁻¹, respectively (Fig. 4a). Following equilibrium dialysis experiments, the incorporated acetyl group also was dissociated from the acetyl-CoA:SphK1 complex in the presence of competitive free acetyl-CoA in a concentration-dependent manner. This dissociation of acetyl-CoA and SphK1 was also saturated with higher inhibitor concentrations, resulting in a K_D.
value of 6.8 μM (Fig. 4b). The lower K_D (i.e., dissociation constant) value compared with K_M value (i.e., binding affinity) suggested the acetyltransferase characteristics of SphK1. The calculated turnover rate for SphK1 ($K_{cat} = 0.0185 \text{ min}^{-1}$) is quite low in comparison to those of known nuclear acetyltransferases. Since SphK1 is a cytoplasmic enzyme, it is comparable to that recently reported for cytoplasmic tau-K18 ($K_{cat} = 0.005 \text{ min}^{-1}$) and α-tubulin acetyltransferase (αTAT-1, $K_{cat} = 0.037 \text{ min}^{-1}$), which indicates distinct kinetic differences between nuclear and cytoplasmic acetyltransferases. We also confirmed that neuronal SphK1 acetyltransferase activity depends on concentration of sphingosine, as known substrate of SphK1. Incorporation of the acetyl group into SphK1 was not observed for 0 μM of sphingosine, and increased with increasing concentration of sphingosine, yielding the 60.2 and 6.4 μM K_M values at 10 and 100 μM sphingosine, respectively. However, K_{cat} did not differ with changing concentration of sphingosine (Fig. 4c). These results indicated that both sphingosine and acetyl-CoA were needed in SphK1 acetyltransferase activity, suggesting that sphingosine may participate in this catalytic reaction.

Fig. 3 Neuronal SphK1 induces SPMs secretion by COX2 acetylation. a Protein levels of LxA4, RvE1, and RvD1 were detected by using ELISA in CM of neurons derived from WT, APP/PS1, APP/PS1/SphK1 tg, and SphK1 tg mice (n = 6–8 per group). b mRNA levels of COX2 and LOX-15 in neurons derived from cortex of WT, APP/PS1, APP/PS1/SphK1 tg, and SphK1 tg mice (n = 4–6 per group). c Quantification of neuronal COX2 (n = 6 per group) and neuronal LOX-15 (n = 4–6 per group). d Acetylation assay of COX2 protein in neurons derived from WT, APP/PS1, APP/PS1/SphK1 tg, and SphK1 tg mice. [14C] aspirin-treated neuron was positive control. Sonicated neurons incubated in the presence of [14C] acetyl-CoA for 2 h at 37 °C and then COX2 was purified and analyzed on scintillation counter (n = 3–6 per group). e Representative chromatograms of blank, 15-R-LxA4 standard, and 15-R-LxA4 in WT samples (left panel). Molecular MS scanning from the peak at retention time 6.8 min (right upper panel) and MS/MS fragmentation pattern of 15-R-LxA4 from the peak at retention time 6.8 min (right lower panel). f Representative chromatograms (left panel) and quantification of 15-R-LxA4 in neurons derived from WT, APP/PS1, APP/PS1/SphK1 tg, and SphK1 tg mice with acetyl-CoA treatment (24 h after 2.5 mM acetyl-CoA treatment) (right panel, n = 6 per group). All data analysis was done on 9-month-old mice. a–d, f One-way analysis of variance, Tukey’s post hoc test. *P < 0.05, **P < 0.001. All error bars indicate s.e.m.
inhibitor-free acetyl-CoA concentration and dissociation constant (Fig. 4).

Fig. 4 SphK1 plays a role of acetyltransferase, acetylatyng S565 of COX2 in neurons. a Acetyl-CoA binding activity of SphK1 was analyzed by filter binding assay with 10 μM sphingosine. The binding velocity (V_{binding}) of [3H] acetyl-CoA to SphK1 was plotted to the acetyl-CoA concentration and the nonlinear regression analysis of the saturated plot yielded the kinetic parameters such as K_{cat} (catalytic constant) and K_M (Michaelis–Menten constant) for acetyl-CoA and SphK1 binding activity (n = 3 per group). b Dissociation of acetyl group from SphK1 was analyzed by equilibrium dialysis in the presence of 0, 5, 25, and 100 μM free acetyl-CoA. The dissociation rate (V_{dissociation}) of [3H] acetyl group from [3H] acetyl-CoA and SphK1 complex was plotted against inhibitor-free acetyl-CoA concentration and dissociation constant (K_D) was calculated from the nonlinear regression analysis (n = 3 per group). c Acetyl-CoA binding activity of SphK1 was analyzed by filter binding assay in the presence of 0, 10, and 100 μM sphingosine (n = 3 per group). d Acetylation assay of purified COX2 protein treated with SphK1 and [14C] acetyl-CoA in the presence of 100 μM sphingosine or not. BSA-treated COX2 protein was negative control (n = 4–6 per group). e LC-MS/MS spectra of ac-S565 in 560-GCPFTSFSVPDPHELILK-575 of COX2. f Acetylation assay of COX2 WT and COX2 S565A recombinants treated with SphK1 and [14C] acetyl-CoA in the presence of 100 μM sphingosine (n = 4–6 per group). g One-way analysis of variance, Tukey’s post hoc test. Student’s t test. ***P < 0.001. All error bars indicate s.e.m.

Next, to further characterize this reaction with regard to COX2, purified SphK1 was incubated with COX2 and [14C] acetyl-CoA in the presence or absence of sphingosine. These results showed that SphK1 possessed higher acetyltransferase activity towards COX2 in the presence of sphingosine rather compared with SphK1 alone, indicating that SphK1 might induce the acetylation on COX2 through sphingosine or a sphingosine intermediate (Fig. 4d).

Finally, to identify site(s) on COX2 acetylated by SphK1, we treated SphK1, acetyl-CoA and sphingosine with COX2. As mentioned above, COX2 treated with SphK1, acetyl-CoA, and sphingosine had an acetyl group, while COX2 treated in the absence of sphingosine did not. Serine 556 (S556) on peptide 560-GCPFTSFSVPDPHELILK-575 of COX2 was identified to be acetylated in the presence of SphK1, and this was different from the acetylated residue by aspirin (S516) \(^2\) (Fig. 4e, f). To establish the causality of this relationship, we mutated S565 of COX2 to an Ala 565 residue (S565A) and performed the acetylation assay. Although COX2 was acetylated by SphK1 and sphingosine, the S565A mutant decreased significantly acetylation...
of COX2 in the presence of SphK1, indicating that S565 is the main target site of SphK1-mediated COX2 acetylation (Fig. 4g).

SPMs from neuronal SphK1 control microglial Aβ phagocytosis. Previous study reported that SPMs regulate macrophage

Fig. 5 Increased SphK1 improves microglial phagocytosis. **a** Colocalization of microglia (Iba1, red) with Aβ (Aβ42, green) and quantification. Scale bars, 10 μm; 3D reconstruction from confocal image stacks scale bars, 10 μm (n = 7 per group). **b** Left, representative photomicrograph of live slice section incubated with fluorescent beads (green). Scale bar, 10 μm. White arrow point to phagocytotic microglia with fluorescent beads. Right, quantification of the number of microglial phagocytes normalized to the total number of microglia (n = 4–6 per group). **c** Up, immunofluorescence images of thio S (Aβ plaques, green) encapsulated within Lamp1 structures (phagolysosomes, blue) in microglia (Iba1, red) present in brains of APP/PS1 and APP/PS1/SphK1 tg mice. Low-magnification scale bars, 50 μm; High-magnification scale bars, 10 μm; 3D reconstruction from confocal image stacks scale bars, 10 μm. Down, quantitation of microglial volume occupied by Lamp1 phagolysosomes, percent of microglia containing Aβ-loaded phagolysosomes and Aβ encapsulated in phagolysosomes (n = 5 per group). **d** Morphology of microglia (Iba1, red) surrounding Aβ (ThioS, green) in cortex of APP/PS1 and APP/PS1/SphK1 tg mice. Inset, high-magnification (Scale bars, 10 μm) and Imaris-based three-dimensional images (Scale bars, 5 μm) of microglia surrounding Aβ. **e** Down, Imaris-based automated quantification of microglial morphology (n = 7–8 per group). **b** One-way analysis of variance, Tukey’s post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001. All error bars indicate s.e.m.
Neuronal SphK1 deficiency mimics AD-like pathology. To more closely study the role of neuronal SphK1 in neurons, we crossed mice expressing cre recombinase under the control of the CamK2 promoter (CamK2-cre mice) with SphK1 flox/flox to drive SphK1 deletion in neurons (Supplementary Fig. 11a). SphK1 mRNA expression and SpHK activity were decreased in neurons of CamK2-cre:SphK1 flox/flox mice, while no significant differences were observed in microglia and astrocytes (Supplementary Fig. 11b). Similar to previous results, sphingosine and SIP levels did not differ between the groups (Supplementary Fig. 11c). SphK1 immunoreactivity also was markedly reduced in neuron of CamK2-cre:SphK1 flox/flox mice (Supplementary Fig. 11d). These data demonstrated that CamK2-cre:SphK1 flox/flox mice were suitable to examine whether neuronal SphK1 itself regulate an inflammatory response, including microglia dysfunction.

First, to examine if neuronal SphK1 modulates microglial phagocytosis as shown in APP/PS1 mice, we performed a phagocytosis assay. Fewer microglia from CamK2-cre; SphK1 flox/flox mice were observed versus control mice using the phagocytosed fluorescent bead assay (Supplementary Fig. 11e). The enzymes related with degradation were not changed, but expression of CD36 was reduced in CamK2-cre:SphK1 flox/flox mice (Supplementary Fig. 11f). Next, we injected Aβ into the cortex of CamK2-cre:SphK1 flox/flox mice and performed the Aβ phagocytosis assay (Supplementary Fig. 12a). CamK2-cre; SphK1 flox/flox mice exhibited a decrease of Aβ phagocytic activity, although microglia surrounding the injected Aβ did not have any difference between control and CamK2-cre:SphK1 flox/flox mice (Supplementary Fig. 12b, c). Injected Aβ were still remained in cortex of CamK2-cre:SphK1 flox/flox mice more than control mice, suggesting that SphK1 deficiency in neuron interfere with amyloid uptake (Supplementary Fig. 12d, e). SphK1-mediated COX2 acetylation and 15-R-LxA4 secretion also were decreased in neurons derived from CamK2-cre:SphK1 flox/flox mice, and were restored after 740TP treatment (Supplementary Fig. 13a, b). Off/On signals were not changed in SphK1-deficient neurons (Supplementary Fig. 13c, d). Interestingly, CamK2-cre:SphK1 flox/flox mice exhibited abnormal inflammatory response (Supplementary Fig. 14a–c). Similar to previous results, microglia activation was initiated prior to astrocyte activation in CamK2-cre:SphK1 flox/flox mice (Supplementary Fig. 14d, e). Synaptic health and memory function were also impaired in CamK2-cre; SphK1 flox/flox (Supplementary Fig. 14f–i and 15). Taken together, these results supported the fact that neuronal SphK1 deficiency reduced microglial phagocytosis by downregulating 15-R-LxA4 secretion through COX2 acetylation, and evoked AD-like brain pathology including abnormal inflammation and neuronal dysfunction.

Neuronal SphK1 is reduced in AD patient-specific neurons. In order to assess the clinical importance of neuronal SphK1, SpHK activity and SphK1 expression were measured in the cortex from AD and control human subjects. SpHK levels were decreased in brain of AD patients compared with those of control subjects (Fig. 6). To explore whether the observed effects of SphK1 in the previous mouse results were paralleled by similar alterations in AD human neurons, we first established induced pluripotent stem cell (iPSC) with PS1 and ApoE4 mutations, and induced them to differentiate into neurons, as our previous studies.25,26 SphK1 mRNA expression and activity were significantly declined in PS1 and ApoE4 iPSC-derived neurons compared with normal iPSC-derived neuron. However, SphK2 mRNA expression and lipid levels did not differ between the groups (Supplementary Fig. 16a, b). PS1 and ApoE4 iPSC-derived neurons also showed significantly lower SphK1-mediated COX2 acetylation and SPMs secretion than neurons from normal iPSC (Supplementary Fig. 16c, d). These were restored to normal ranges by 740TP treatment that activates SphK1 (Supplementary Fig. 16e, f). Our results confirmed that reduction of SPMs secretion by SphK1-mediated COX2 acetylation occurred in AD patient neurons, and activation of SphK1 back to normal levels might improve microglial function by inducing SPMs secretion.

Discussion

Recently, SpHK has been shown as a key factor regulating the inflammatory response. SphK1 was increased in lipopolysaccharide-activated microglia and regulated expression of pro-inflammatory cytokines in microglia. In addition, it was suggested that decreasing SphK1 expression in microglia could reduce neuroinflammation.27–29 Unlike previous studies, we found that neuronal SphK1 was a main regulator of inflammatory response in AD. SphK1 was significantly reduced in the neuron, but not in microglia on APP/PS1 mice. SphK1 tg mice exhibited widespread and high expression levels of the transgene transcript in a variety of organs and cells, including neurons and microglia of brain.30 In contrast with elevated microglial SphK1-induced inflammation,28,29 APP/PS1/SphK1 tg mice showed decrease of inflammation although SphK1 expression was increased in microglia. These results suggest that neurons are the major population responsible for Aβ-mediated inflammation by SphK1 than microglia.

In the current study, dysfunction of microglia, including increase of pro-inflammatory marker and loss of phagocytic function, was reported in AD. The phagocytic capacity of

brain slices. More phagocytic microglia were found in APP/PS1/SphK1 tg mice compared to APP/PS1 mice using a fluorescent bead phagocytosis assay (Fig. 5b). To further investigate this effect, Aβ phagocytic aptitude of microglia were evaluated in vivo. APP/PS1/SphK1 tg brains showed demonstrably increased number of microglia that co-stained with lysosomes and Aβ. Importantly, phagolysosomes within microglia were increased in the cortex of APP/PS1/SphK1 tg mice compared to APP/PS1 mice. Analysis of plaque-associated microglia revealed an increased proportion of cells containing phagolysosome-encapsulated Aβ in SphK1-overexpressed APP/PS1 mice, although this trend did not reach statistical significance. Finally, the total amount of Aβ within phagolysosomes was significantly augmented in APP/PS1/SphK1 tg versus APP/PS1 brains (Fig. 5c). We also performed analysis for morphological characterization of microglia surrounding Aβ in APP/PS1 and APP/PS1/SphK1 tg mice. The phagocytic morphology (amoeboid microglial morphology) was more observed in APP/PS1/SphK1 tg mice than APP/PS1 mice (Fig. 5d). Next, we analyzed the expression of Aβ degrading enzymes, including neprilysin, matrix metallopeptidase 9, and insulin-degrading enzyme, because the immunohis-
microglia in AD can be restored, which may have important implications for future treatment of AD31,32. Our results showed that increase of SphK1 in APP/PS1 mice led to improved microglia function, such as increase of phagocytic ability, reduction of pro-inflammatory markers, and elevation of anti-inflammatory markers. We also found that conditional SphK1 deficiency in neurons evoked AD-like microglia dysfunction and abnormal inflammation, suggesting that neuronal SphK1 influence on microglia function and phenotype, and may be promising for treatment of AD. The brain possesses intrinsic mechanisms to modulate microglial activation through cell–cell interactions between microglia and neurons16. One such example is the Off/On signal expressed in neurons and we found that neuronal SphK1 did not affect this pathway. Recently, SPMs also have been shown to stimulate microglial phagocytosis and downregulate neuroinflammation7,33. Decreased SPMs and abnormal resolution of inflammation have been observed in patients with AD9. We found for the first time that SPMs secretion was declined in APP/PS1 mice and AD patient-derived neurons, and increased SphK1 in neuron restored microglia phagocytosis by elevating SPMs secretion. These findings support that neuronal SphK1 results in resolution of inflammation by regulating microglial function in AD. A previous study showed that neuron–astrocyte interactions via GABA caused memory impairment and contributed to pathology in AD34. Although astroglisosis as well as microglisosis also were increased in our AD mice, reduction of neuronal SphK1 was directly related to activation of microglia, but not astrocytes. These data indicate that neuron–microglia interactions are more responsive than neuron–astrocyte interactions to SphK1-mediated neuroinflammation. The differences between the previous and this study might be related to the brain regions that were examined. This study focused on the cortical region but previous studies concentrated on the hippocampus. Therefore, depending on the brain region, cell–cell interactions might be different, a hypothesis that remains to be tested in the future.

Recent reports have also shown that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduced the risk for the disorder and AD pathology1,35,36. NSAIDs generally inhibit the activity of COX1 and COX2, which were identified as the main targets of the inflammatory response. COX2 is a key player in initiating the inflammatory response by converting AA and ω-6 polyunsaturated fatty acid into pro-inflammatory prostaglandins (mainly PGE2) and triggering production of other pro-inflammatory chemokines and cytokines18. Because of this, a therapeutic strategy for inflammatory diseases including AD has involved inhibition of COX2. However, this is now challenged by the finding that COX2-derived SPMs possess anti-inflammatory and antioxidant properties18. Interestingly, production of SPMs increased in the presence of aspirin, which acetylates and inhibits COX218. This indicates that, unlike selective COX2 inhibitors or other NSAIDs that do not acetylate COX2, aspirin is unique in that it not only is able to inhibit the pro-inflammatory pathway but also triggers formation of SPMs. A recent study has also reported that aspirin treatment led to positive results in an AD mouse model37. However, aspirin use in AD patient has indicated no effect on pathology38. These results might be related to the fact that aspirin has multiple functions, such as COX1 inhibition, COX2 inhibition, and COX2 acetylation. It therefore seems difficult to definitively link its use to the production of SPMs. Our study showed for the first time that COX2 acetylation was reduced in AD neurons and regulated by specifically neuronal SphK1. Moreover, SphK1 regulated COX2 acetylation-derived SPMs secretion but not affected expression of COX2 mRNA and protein. These results indicate that an SphK1-acetytransferase activator on COX2 might be a novel therapeutic approach for AD.

SphK1 and SphK2 are lipid kinases that catalyzes the conversion of sphingosine to S1P. Although these two isoenzymes have distinct physiological functions, their distinctive roles in neurons
have not been extensively investigated. We confirmed that SphK2 is more responsible for generating S1P from sphingosine than SphK1, and, for the first time, defined a new role of neuronal SphK1-acetyltransferase activity on COX2. Neuronal SphK1 showed acetyl-CoA-dependent acetyltransferase activity in the presence of [1-4C] acetyl-CoA, resulting in the increase of COX2 acetylation. Based on these results, we suggest the new role of neuronal SphK1 as an acetyl-CoA-dependent cytoplasmic acetyltransferase activity of SphK1 on COX2, including structural analysis of SphK1-bound acetyl-CoA and further deciphering the role of sphingosine in this reaction.

Overall, the data presented here show that decreased SphK1 levels in AD neurons worsen microglia function, resulting in failure of resolution and exacerbation of AD pathology, namely Aβ plaques deposition and cognitive impairment (Supplementary Fig. 17). The correction of neuronal SphK1 elevated SPMs secretion by inducing COX2 acetylation, and effectively blocked AD progression. These findings describe new properties and functions for SphK1, identify new mechanisms contributing to AD, and suggest a new therapeutic approach for AD and perhaps other inflammatory conditions by modulating SphK1 activity.

Methods

Mice. Transgenic mice lines expressing the hAPP9595e (APP) and presenilin 1/2 (PS1) mutations were originated from GlaxoSmithKline (Harlow, UK) and maintained as described previously92. SphK1 tg mice (C57BL/6 background) were bred with APP/PS1 mice to generate APP/PS1/SphK1 tg mice. Because APP/PS1 mice show sex differences in disease progression, we used only male mice. Data analysis was done in 3-, 6-, 9- or 12-month-old mice. SphK1 (mouse) (C57BL/6 background) and SphK2 (mouse) (C57BL/6 background) were used to detect SphK activity and lipid in neurons. CamK2-cre (The Jackson Laboratory) and SphK1fox/fox mice were used to detect SphK1 in neurons. Block randomization method was used to allocate the animals to experimental groups. To eliminate the bias, we were blinded in experimental progress such as data collection and data analysis. Mice were housed at a 12 h day/12 h night cycle with free access to tap water and food pellets. All protocols were approved by the Kyungpook National University Institutional Animal Care and Use Committee (IACUC).

Cell isolation. Adult neurons and microglia were isolated from the mice brain as previously described92. In brief, the cortex of WT (2, 3, 6, 9 or 12-month-old), APP/PS1 (3, 6, 9 or 12-month-old), APP/PS1/SphK1 tg (9-month-old), SphK1 tg (2 or 9-month-old), SphK1fl/− (2-month-old), SphK2fl/− (2-month-old) or CamK2-cre/− mice (2-month-old) were minced in Hibernate A (GIBCO)/B27 (Invitrogen) medium and dissociated using papain (Worthington) solution. After tissue trituration, cells were separated by Optiprep (Sigma-Aldrich) and the pelleted cells were resuspended in DMEM/F12 medium. The supernatant containing the myelin was removed, the pellet was triturated to obtain a single-cell suspension. After enzymatic digestion, the dissociated cells were triturated in PBS (0.5% BSA) and stained with PE-GLAST (1:500, Molecular Probes), 1:42 (mouse, 1:1000, Millipore, MAB 2018), COX2 (rabbit, 1:50, Synaptic, SC-1151), and Lamp1 (mouse, 1:200, Abcam, ab24170). The sections were analyzed with a laser-scanning confocal microscope (FV1000; Olympus) or with a BX51 microscope (Olympus). MetaMorph software (Molecular Devices) was used for quantification.

Histological analysis. Thioflavin S staining was carried out according to previously described procedures92. We used SphK1 (rabbit, 1:50, Abgent, 8877), NeuN (mouse, 1:200, Millipore, MAB 377), 6E10 (mouse, 1:100, Signet, SIG93900), anti-2G10 (mouse, 1:1000, provided by D.R. Howlett, GlaxoSmithKline, Harlow, Essex, UK) for Aβ42, anti-g30 (rabbit, 1:1000, provided by D.R. Howlett) for Aβ40, SMA (mouse, 1:50, Covance, MAB323), Synaptophysin (rabbit, 1:1000, Millipore, MAB 5308), MAP2 (chicken, 1:200, Abcam, ab5392), Synaptophysin (rabbit, 1:100, Abcam, ab23127), Synaptic (rabbit, 1:500, Synaptic systems, 106 103), PSD95 (mouse, 1:100, Millipore, MAB1956), Iba1 (rabbit, 1:100, Wako, 019-19494), GFAP (rabbit, 1:50, Dako, N506), S100 (rabbit, 1:200, Dako, Z0131), SOX2 (mouse, 1:100, R&D Systems, MAB2018), 6E10 (rabbit, 1:50, Synaptic, SC-1151), and Lamp1 (mouse, 1:200, Abcam, ab24170). The sections were analyzed with a laser-scanning confocal microscope (EV1000; Olympus) or with a BX51 microscope (Olympus). MetaMorph software (Molecular Devices) was used for quantification. Three-dimensional reconstruction of microglia was recorded and analyzed using IMARIS software (Bitplane).

Western blotting. Samples were lysed in RIPA buffer (Cell Signaling Technology), then subjected to SDS–PAGE and transferred to a nitrocellulose membrane. Membranes were blocked with 5% milk, incubated with primary antibody and then incubated with the appropriate horseradish peroxidase-conjugated secondary antibody23,45. Primary antibodies to the following proteins were used: SphK1 (rabbit, 1:1000, Abgent, 8877), Synaptophysin (rabbit, 1:2000, Abcam, ab3227), MAP2 (chicken, 1:1000, Abcam, ab5392), Synaptophysin (rabbit, 1:1000, Synaptic systems, 106 103), PSD95 (mouse, 1:100, Millipore, MAB1956), Iba1 (rabbit, 1:500, Wako, 019-19494), GFAP (rabbit, 1:50, Dako, N506), S100 (rabbit, 1:200, Dako, Z0131), SOX2 (mouse, 1:100, R&D Systems, MAB2018), 6E10 (rabbit, 1:50, Synaptic, SC-1151), and Lamp1 (mouse, 1:200, Abcam, ab24170). The sections were analyzed with a laser-scanning confocal microscope (EV1000; Olympus) or with a BX51 microscope (Olympus). MetaMorph software (Molecular Devices) was used for quantification. Three-dimensional reconstruction of microglia was recorded and analyzed using IMARIS software (Bitplane).

Lipid extraction and sphingosine/S1P quantification. The brains or cerebellum were prepared as described above. To quantify the sphingosine and S1P levels, the dried lipid extract was resuspended in 0.1% Igepal CA-630. Four microliters of the lipid extracts were added into 20 μL of NDA derivatization reaction mixture (25 mM borate buffer, pH 9.0, containing 2.5 μM each of NDA and NaCN). The reaction mixture was diluted 1:5 with ethanol, and centrifuged at 13,000 rpm for 5 min. Thirty microliters of the supernatant was then transferred to a sampling vial for analysis. Sphingosine and S1P were applied onto a UPLC system for analysis. SphK activity was followed as phosphorylation of (7-nitro-2-[(3-aminopropyl)oxy]dylerythritol (NBD)-sphingosine (Avanti Polar Lipids) to NBD-SIP. Quantification was achieved by comparison with NBD-SIP (Avanti Polar Lipids) standards.

Histological analysis. Thioflavin S staining was carried out according to previously described procedures92. We used SphK1 (rabbit, 1:50, Abgent, 8877), NeuN (mouse, 1:200, Millipore, MAB 377), 6E10 (mouse, 1:100, Signet, SIG93900), anti-2G10 (mouse, 1:1000, provided by D.R. Howlett, GlaxoSmithKline, Harlow, Essex, UK) for Aβ42, anti-g30 (rabbit, 1:1000, provided by D.R. Howlett) for Aβ40, SMA (mouse, 1:50, Covance, MAB323), Synaptophysin (rabbit, 1:1000, Abcam, ab23127), Synaptic (rabbit, 1:500, Synaptic systems, 106 103), PSD95 (mouse, 1:100, Millipore, MAB1956), Iba1 (rabbit, 1:1000, Wako, 019-19494), GFAP (rabbit, 1:50, Dako, N506), S100 (rabbit, 1:200, Dako, Z0131), SOX2 (mouse, 1:100, R&D Systems, MAB2018), 6E10 (rabbit, 1:50, Synaptic, SC-1151), and Lamp1 (mouse, 1:200, Abcam, ab24170). The sections were analyzed with a laser-scanning confocal microscope (EV1000; Olympus) or with a BX51 microscope (Olympus). MetaMorph software (Molecular Devices) was used for quantification. Three-dimensional reconstruction of microglia was recorded and analyzed using IMARIS software (Bitplane).
Cell Signaling Technology, 5536), p-ERK (rabbit, 1:1000, Cell Signaling Technology, Inc.; Santa Cruz Biotechnology, Inc.). We performed quantitative Western blotting using the Phospho-ERK antibody. Image software (National Institutes of Health). Images were cropped for presentation. Full size images are presented in Supplemental Fig. 18.

ELISA. For measurement of Aβ40 and Aβ42, we used commercially available ELISA kits (MyBioSource). Cells were homogenized in buffer containing 0.2% sodium dodecyl sulfate (SDS), 50 mM sodium phosphate (pH 7.2), 0.1% Triton X-100, and 500 mM NaCl. Acetylation was measured by Western blotting after the manufacturer’s instructions. For measurement of Lx4A, Rx1, and RdV1 levels were assayed by using a mouse and human Lx4A, Rx1, RdV1 kit (MyBioSource) according to the manufacturer’s instructions.

Spk1 siRNA treatment. Spk1 siRNA (5′-GGUAAGCCAGGGAGACUGA-3′; 5′-UAGAAGGUGUACGUGUACUA-3′; 5′-GGAAGCUUGCUGCUAAG-3′; 5′-AGCCGAGGUGAACCUCUUA-3′, Dharmaco SMART pool) were resuspended in neuro2a from neurons from C57BL/6 mice for 48 h. Cells were collected and analyzed for acetylation assay.

Acetylation assay. Acetylation assay was performed according to previously described methods with minor modifications. Neurons were stimulated and resuspended in acetylation buffer (50 mM Tris/HCl, pH 8.0, 1.0 mM EDTA, 1 mM DTT, 10% DMSO). The supernatants were incubated with either [acetyl-14C] acetyl-CoA (2 µCi, PerkinElmer) and incubated for (2 h, 37 °C). Also, COX2 protein (10 µg, LSbio, LS-G21094) was incubated with Spk1 (0.01 mM, Cayman Chemical, 10 mM HEPES, and phosphenol (Sigma-Aldrich) or Spk1 only in the presence of [acetyl-14C] acetyl-CoA (2 h, 37 °C, 10% DMSO) and terminated by replacing the reaction tubes in ice for 5 min. For immunoprecipitation acetylated COX2, the sample was incubated with COX2 antibody (rabbit, Santa Cruz, SC-7951) (24 h, 4 °C) and precipitated by adding 50 µl protein-A sephrose (GE Healthcare). Acetylated COX2 proteins bound to beads were analyzed using a Tri-Carb 3110TR liquid scintillation counter (Perkin Elmer).

LC-MS/MS. To confirm the relationship of Spk1 and SPM1 secretion in neurons, neurons were isolated from WT, APP/PS1, APP/PS1/Spk1 tg and Spk1 tg mice at 9 months. The neurons were sonicated and resuspended in neuronal culture medium. The supernatants were incubated with 2.5 mM acetyl-CoA (Sigma) (24 h, 37 °C). Also, CM were harvested from primary neuron treated with Spk1 siRNA or control siRNA. A 200 µl aliquot of each cell lysate or CM was added to a 100 µl aliquot of 100 pg/ml of 15-S-LxA4-d5 (internal standard, Cayman Chemical) solution, and 600 µl of 1% formic acid solution, and 600 µl of water. After mixing thoroughly, 4 ml of ethyl acetate was added. After vortexing and centrifuging (13,200 rpm) 10 min each, the mixture was frozen in a dry freezer for 2 h. The organic supernatant was added to 1 ml hexane (Merck) and dried. The supernatant was reconstituted with 60% acetonitrile solution injected into the LC-MS/MS system. The analysis of the 15-R-LxA4 concentration was performed using an Agilent 6470 Triple Quad LC-MS/MS system (Agilent, Wilmington, DE, USA) coupled to a 15-R-LxA4-d5 solution (Cayman Chemical) only in the presence of [15-R-S]-LxA4 (15-R-LxA4-d5, 1 µCi/ml, Clontech) and 500 µCi/ml [3H]-acetyl-CoA. The [3H]-acetyl-CoA and SphK1 complex was placed in 100 µl reaction buffer in the presence of 0, 5, 25, and 100 µM acetyl-CoA inside the dialysis chamber and 5 ml of fresh reaction buffer was placed outside the chamber. The released free [3H]-acetyl-CoA outside the chamber was measured every 30 min for 3 h. The dissociation rate was plotted versus inhibitor concentration and dissociation constant (Kd) was calculated from the Michaelis–Menten equation using Sigma-plot program (ver 10.0, Systat Software Inc.)

Phagocytosis assay. The phagocytic activity of adult microglia in the cortex of live brain slices was analyzed following the protocol25. Brains from WT, APP/PS1, APP/PS1/Spk1 tg, Spk1 tg and CamK2-cre::Spkh1flu/flu mice were washed in carbogen-saturated (95% O2 and 5% CO2) artificial cerebrospinal fluid (ACSF) containing (mM): NaCl 126; KCl 2.5; MgSO4 1.25; CaCl2 2.5; NaH2PO4 1.25; NaHCO3 26; and glucose 10; pH 7.4 (all from Sigma). Coronal slices (130 µm) were prepared using a vibratome (Leica Biosystems, Nussloch, Germany) at 4 °C and allowed to rest in ACSF buffer at room temperature for 1 h before incubation with fluorescent carboxylated microspheres (1 µm diameter, Fluospheres, Invitrogen). Slices were placed in 4 ml of PBS (pH 7.4) for 30 min at 37 °C. The slices were washed and fixed with 4% PFA. To visualize microglia, slices were permeabilized (2% Triton X-100, 2% BSA and 10% normal goat serum in PBS) and incubated with biot (rabbit, 1:500, Wako), followed by donkey anti-rabbit Alexa 594 (1:1000, Invitrogen). The sections were analyzed with a laser-scanning confocal microscope (FV1000; Olympus). MetaMorph software (Molecular Devices) was used for quantification.

Aβ42 cortical injection. CamK2-cre::Spkh1flu/flu mice (2-month-old) were injected with Aβ (10 µM) at cortex of brain. After anesthesia with a combination of 100 mg/kg ketamine and 10 mg/kg xylazine, a stainless steel cannula was implanted in the animal’s cortex using a stereotaxic frame (David Kopf Instrument, Tujunga, CA). The guide cannula was fixed in the cortex brain region according to the following coordinates: 1.8 mm posterior to the bregma, 3 mm bilateral to the midline, and 1.2 mm ventral to the skull surface. The guide cannula allows a stable aperture in the brain by indicating where the treatments can be administered. The injection of aggregated Aβ was made bilaterally into the cortex using an injection cannula attached to a microsyringe (Hamilton). The volume of injection was 1 µl of 10 µM aggregated Aβ or 1 µl of PBS.

Behavioral studies. We performed behavioral studies to assess spatial learning and memory in the Morris water maze as previously described26,27. Animals were given four trials per day for 10 days to learn the task. At day 11, animals were given a probe trial in which the platform was removed. Fear conditioning was conducted as described in the protocol below. On the probe trial (day 10), mice were individually placed into the conditioning chamber. After a 60-s exploratory period, a tone (10 kHz, 70 dB) was delivered for 10 s; this served as the conditioned stimulus.
(CS). The CS co-terminated with the unconditioned stimulus (US), a scrambled electrical footshock (0.3 mA, 1 s). The CS–US pairing was delivered twice at a 20-s intertrial interval. On day 2, each mouse was placed in a test chamber containing the same exact context, but with no administration of a CS or foot shock. Freezing was analyzed for 5 min. On day 3, a mouse was placed in a test chamber that was different from the conditioning chamber. After a 60-s exploratory period, the tone was presented for 60 s without the footshock. The rate of freezing response of the mice was used to measure the fear memory. The open field test was used for locomotion and anxious behaviors. The open field box consisted of a square box. Each animal was placed in the box for 10 min. Overall activity in the box was measured, and the amount of time and distance traveled in the center arena was noted. After each trial, the test chambers were cleaned with a damp towel and distilled water followed by 70% alcohol.

Human brain samples. Neuropathological processing of control and AD human brain samples followed the procedures previously established for the Boston University Alzheimer’s Disease Center. Frontal cortical regions were used for experiments. Detailed information of brain tissues is described in Supplementary Table 1. In all cases where AD was diagnosed at autopsy, AD was stated as the cause of death. AD subjects had no evidence of other neurological disease based on neuropathological examination. Next of kin provided informed consent for participation and brain donation. This study was reviewed by the Boston University School of Medicine Institutional Review Board (Protocol H-28974), and was approved as exempt because the study involves only tissue collected from post-mortem, and consequently not classified as human subjects.

Preparation of human iPSCs-derived neurons. PS1 and ApoE4-iPSCs were established from the patient’s skin fibroblasts (Coriell Institute) as previously described25. On day 1, the VSV-G pseudotyped retroviral vector system carrying University Alzheimer brain samples followed the procedures previously established for the Boston and distilled water followed by 70% alcohol.

References
1. Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).
2. Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).
3. Saltar, M. W. & Stevenson, R. B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).
4. Guillot-Sestier, M. V. et al. IL10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuroph 85, 534–548 (2015).
5. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).
6. Minami, S. S. et al. Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat. Med. 20, 1157–1164 (2014).
7. Buckley, C. D., Gürroy, D. W. & Serhan, C. N. Pro-resolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40, 315–327 (2014).
8. Serhan, C. N. et al. Resolvin s: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002).
9. Wang, X. et al. Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement. 11, 40–50 (2015).
10. Melendez, A. J. Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochim. Biophys. Acta 1784, 66–75 (2008).
11. Mizuigushi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005).
12. Francy, J. M., Nag, A., Conroy, E. J., Hengst, J. A. & Yun, J. K. Sphingosine kinase 1 expression is regulated by signaling through PI3K, AKT2, and mTOR in human coronary artery smooth muscle cells. Biochim. Biophys. Acta 1769, 253–265 (2007).
13. Pitson, S. M. et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500 (2003).
14. Fedrich, R. et al. Soluble neuregulin-1 modulates disease pathology in rodent models of Charcot-Marie-Tooth disease 1A. Nat. Med. 20, 1055–1061 (2014).
15. Sajo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).
16. Biber, K., Neumann, H., Inoue, K. & Boddeke, H. W. Neuronal ‘on’ and ‘off’ signals control microglia. Trends Neurosci. 30, 596–602 (2007).
17. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).
18. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).
19. Fiorucci, S. et al. Relative contribution of acetylated cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) in regulating gastric mucosal integrity and adaptation to aspirin. Faseb J. 17, 1171–1173 (2003).
20. Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fattyacids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).
21. Recchiuti, A. & Serhan, C. N. Pro-resolving lipid mediators (SPMs) and their actions in regulating miRNA in novel resolution circuits in inflammation. Front. Immunol. 3, 298 (2012).
22. Cohen, T. J. et al. The microtubule-associated tau protein has intrinsic acetyltransferase activity. Nat. Struct. Mol. Bio. 20, 756–762 (2013).
23. Kalugkar, A. S. et al. Aspirin-like molecules that covalently inactivate acetyltransferase activity. Front. Immunol. 2, 298 (2012).
24. Mizwicki, M. T. et al. 1α,25-dihydroxyvitamin D3 and resolvin D1 reduce the balance between amyloid-β phagocytosis and inflammation in Alzheimer’s disease patients. J. Alzheimers Dis. 34, 155–170 (2013).
25. Lee, J. K. et al. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’sdisease. J. Exp. Med. 211, 1551–1570 (2014).
26. Lee, H. et al. Pathological roles of the VEGF/Spk pathway in Niemann-Pick type C neurons. Nat. Commun. 5, 5314 (2014).
27. Pchetcjksi, D. et al. The involvement of sphingosine kinase 1 in LPS-induced Toll-like receptor 4-mediated accumulation of HIF-1α protein, activation of ASK1 and production of the pro-inflammatory cytokine IL-6. Immunol. Cell Biol. 89, 268–274 (2011).
28. Naray, D. et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166, 132–144 (2010).
29. Lin, H. et al. Expression of sphingosine kinase 1 in ameboid microglial cells in the corpus callosum of postnatal rats. J. Neuroinflamm. 8, 13 (2011).
30. Takuwa, N. et al. S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species. Cardiovasc. Res. 85, 484–493 (2010).
31. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663 (2017).
32. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).
33. Medeiros, R. et al. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. *Am. J. Pathol.* **182**, 1780–1789 (2013).

34. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. *Nat. Med.* **20**, 886–889 (2014).

35. McGeer, P. L., McGeer, E., Rogers, J. & Sibley, J. Anti-inflammatory drugs and Alzheimer disease. *Lancet* **335**, 1037 (1990).

36. Morgan, D., Gordon, M. N., Tan, J., Wilcock, D. & Rojiani, A. M. Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. *J. Neuropathol. Exp. Neurol.* **64**, 743–753 (2005).

37. Doost Mohammadpour, J. et al. Non-selective NSAIDs improve the amyloid-β-mediated suppression of memory and synaptic plasticity. *Pharmacol. Biochem. Behav.* **132**, 33–41 (2015).

38. Thoonen, H. et al. Aspirin in Alzheimer’s disease: increased risk of intracerebral hemorrhage: cause for concern? *Stroke* **41**, 2690–2692 (2010).

39. Howlett, D. R. et al. Cognitive correlates of Abeta deposition in male and female mice bearing amyloid precursor protein and presenilin-1 mutant transgenes. *Brain Res.* **1017**, 130–136 (2004).

40. Allende, M. L. et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. *J. Biol. Chem.* **279**, 52487–52492 (2004).

41. Tsien, J. Z. et al. Subregion- and cell type–restricted gene knockout in mouse brain. *Cell* **27**, 1317–1326 (1996).

42. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. *Science* **316**, 295–298 (2007).

43. Brewer, G. J. & Torricelli, J. R. Isolation and culture of adult neurons and neurospheres. *Nat. Protoc.* **2**, 1490–1498 (2007).

44. Lovatt, D. et al. The transcriptome and metabolic signature of protoplasmic astrocytes in the adult murine cortex. *J. Neurosci.* **27**, 12253–12266 (2007).

45. Lee, J. K., Jin, H. K. & Bae, J. S. Bone marrow–derived mesenchymal stem cells attenuate amyloid β–induced memory impairment and apoptosis by inhibiting neuronal cell death. *Curr. Alzheimer Res.* **7**, 540–548 (2010).

46. Albuquerque, C., Joseph, D. J., Choudhury, P. & MacDermott, A. B. Dissection, plating, and maintenance of cortical astrocyte cultures. *Cold Spring Harb. Protoc.* **8**, pdb.prot5273 (2009).

47. Lee, J. K., Schuchman, E. H., Jin, H. K. & Bae, J. S. Soluble CCL5 derived from bone marrow–derived mesenchymal stem cells and activated by amyloid β–mediates Alzheimer’s disease in mice by recruiting bone marrow–induced microglia immune responses. *Stem Cells* **30**, 1544–1555 (2012).

48. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. *Nat. Neurosci.* **16**, 1618–1626 (2013).

49. Park, M. H. et al. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. *EMBO J.* **34**, 1648–1660 (2015).

50. Costantini, C. et al. A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. *Biochem. J.* **407**, 383–395 (2007).

51. Lewendon, A. et al. Replacement of catalytic histidine–195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate. *Biochemistry* **33**, 1944–1950 (1994).

52. Ellis, J., Bagshaw, C. R. & Shaw, W. V. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes. *Biochemistry* **30**, 10806–10813 (1991).

Acknowledgements

We particularly would like to thank Dr. Richard L. Proia provided SphK1 and SphK2 knockout mice. This work was supported by the Basic Science Research Program (2015R1A2A1A01004779, 2017R1A2A1A17069860) of the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future Planning (2017R1A4A1015652), Republic of Korea. This research was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI16C2131).

Author contributions

J.Y.L. designed and performed experiments and wrote the paper. S.H.H., M.H.P., B.B., I.S.S., M.-K.C., S.H.K., and X.H. performed experiments and analyzed data. H.R. performed human tissue experiments. E.H.S., J.-S.B. and H.K.J. interpreted the data and reviewed the paper. J.-S.B. and H.K.J. designed the study and wrote the paper. Y.T. generated and provided SphK1 tg mice. All authors discussed results and commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-03674-2.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.