Abstract—Boundary integral equation methods for analyzing electromagnetic scattering phenomena typically suffer from several of the following shortcomings: 1) ill-conditioning when the frequency is low; 2) ill-conditioning when the discretization density is high; 3) ill-conditioning when the structure contains global loops (which are computationally expensive to detect); 4) incorrect solution at low frequencies due to a loss of significant digits; and 5) the presence of spurious resonances. In this article, quasi-Helmholtz projectors are leveraged to obtain magnetic field integral equation (MFIE) that is immune to drawbacks 1)–4). Moreover, when this new MFIE is combined with a regularized electric field integral equation (EFIE), a new quasi-Helmholtz projector-combined field integral equation (CFIE) is obtained that is also immune to drawbacks 5). The numerical results corroborate the theory and show the practical impact of the newly proposed formulations.

Index Terms—Calderon strategies, electric, magnetic, and combined field integral equations, preconditioning.

I. INTRODUCTION

TIME-HARMONIC scattering by perfectly electrically conducting (PEC) objects oftentimes is modeled using frequency-domain boundary integral equations. Among them, electric and magnetic field integral equations (EFIEs and MFIEs) [1], [2] are the most popular.

Although the EFIE is easily discretized using Rao–Wilton–Glisson (RWG) basis functions [3], it suffers from ill-conditioning when the frequency is low and/or the discretization density is high. The MFIE, on the other hand, remains well conditioned in both regimes, provided that a mixed discretization scheme is employed [4]. In practice, however, it is not feasible to obtain accurate results for the MFIE at extremely low frequencies without resorting to highly precise numerical quadrature methods. Even at moderately low frequencies, both the EFIE and MFIE suffer from a loss of significant digits in the nonsolenoidal part of the current [5]–[7]. This loss of significant digits in the current is caused by the storage of two very differently scaled floating point numbers in the same memory location. This results in many digits of the smaller number to fall below the numerical cutoff imposed by the larger number.

The EFIE’s low-frequency conditioning and loss of accuracy problems can be overcome by using loop-star or loop-tree decompositions [8]–[12]. For multiply connected geometries, this requires the detection of global loops, which is computationally expensive [8]. These techniques also fail to address dense discretization breakdown phenomena [13], [14] that causes the EFIE’s condition number to grow quadratically with the inverse of the average edge length. Worse still, loop-star techniques for combatting the EFIE’s low-frequency conditioning problems further degrade the equation’s dense discretization behavior [15].

Several formulations have been introduced to address the EFIE’s low-frequency breakdown without resorting to global loop detection [16]–[18]. These solutions, however, do not address the equation’s ill-conditioning due to dense discretization. Both issues can be concurrently tackled by leveraging hierarchical quasi-Helmholtz decompositions [13], [19]–[21]. Approaches based on Calderon preconditioning [22]–[27] and Debye-inspired schemes [28] have been successfully coupled with these decompositions [14], [29]–[31]. The price to be paid for this dual stabilization is, once again, the need for global loop detection at very low frequencies. In addition, several of the aforementioned techniques fail to properly address low-frequency loss of significant digits occurring in the solution vector [5], [6], [32], [33]. Several of the above drawbacks have been successfully addressed by the promising scheme in [34] which introduces decoupled vector and scalar potentials obtained by exploiting freedom in the choice of the gauge to obtain a stable formulation. Alternative remedies to the loss of significant digits include perturbation methods [5], [32], [35] and Calderon regularization combined with loop-star decompositions [30], [31]. Both families of solutions do, however, have shortcomings: the former is only applicable at low frequencies and exhibits the same spectral issues as the formulation it is applied to—dense discretization breakdown for the EFIE or global loop detection for the MFIE and Calderon EFIE—while the latter also requires global loop detection and treatment of the dense discretization instability of the loop-star decomposition. It should also be noted that
some recent incarnations of augmented equations are immune to several of the aforementioned drawbacks, though they require the recovery of auxiliary quantities [36], [37].

Recently, an electric-type equation based on quasi-Helmholtz projectors was proposed that is immune to all the aforementioned issues [38]. A similar regularization has also been applied to the time-domain EFIE [39], [40] and both the time-domain and the frequency-domain Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) equations [41], [42]. Quasi-Helmholtz projectors also have been combined with other integral formulations. For instance, they have been used to cure the ill-conditioning in the volume EFIE related to the choice of material parameters [43].

In this article, quasi-Helmholtz projectors are used to obtain a new MFIE that no longer requires interaction integrals to be computed using extremely accurate quadrature rules. Additionally, the solenoidal (divergence free) and nonsolenoidal (non divergence free) current components are scaled such that the loss of significant digits at low frequencies is avoided. As a result, the formulation remains accurate down to extremely low frequencies. Scattering problems involving closed PEC objects can also be solved using the combined field integral equation (CFIE), which is a linear combination of the EFIE and the MFIE. This equation has the added benefit that it does not support spurious resonances [44]. In this article, the new regularization method for the MFIE is combined with that for the EFIE presented in [38]. The resulting CFIE is not only low-frequency stable but also immune to spurious resonances. The preliminary results of this research have been presented as conference contributions [45], [46]; these publications, however, presented only partial results without proofs and lacked the theoretical apparatus together with all implementation details.

This article is organized as follows. Section II defines the standard EFIE and MFIE as well as their discretizations and related quasi-Helmholtz current decompositions. Section III applies a quasi-Helmholtz decomposition to a new Calderón-like form of the MFIE. The resulting equation can be discretized accurately using standard numerical quadrature methods and scaled with respect to the frequency such that no low-frequency loss of significance occurs. Section IV combines this new MFIE with the regularized EFIE [38] to obtain an extremely low frequency stable CFIE. Section V discusses the numerical results that corroborate the theory and conclusions are presented in Section VI.

II. BACKGROUND AND NOTATIONS

The EFIE and MFIE operators T_k and K_k are defined as

\[(T_k j)(r) = (T_{s,k} j)(r) + (T_{h,k} j)(r) \]
\[(T_{s,k} j)(r) = jk \eta \hat{n} \times \int_\Gamma \frac{e^{-jkR}}{4\pi R} j(r') ds' \]
\[(T_{h,k} j)(r) = -\eta jk \hat{n} \times \nabla \int_\Gamma \frac{e^{-jkR}}{4\pi R} \nabla \cdot j(r') ds' \]
\[(K_k j)(r) = -\hat{n} \times p.v. \int_\Gamma \nabla \times \frac{e^{-jkR}}{4\pi R} j(r') ds' \]

where $R = ||r - r'||$, Γ is the boundary of a closed domain $\Omega \subset \mathbb{R}^3$, and \hat{n} is its exterior normal vector. Furthermore, given the angular frequency ω, $k = \omega \sqrt{\epsilon \mu}$ and $\eta = \sqrt{\mu/\epsilon}$; here, ϵ and μ the permittivity and permeability of vacuum, respectively. If Ω is perfectly conducting, it supports an electric current $j(r)$ satisfying both the EFIE

\[(T_k j)(r) = \hat{n} \times E^i(r) \]

and the MFIE

\[\left(\frac{\mathbf{T}}{2} + K_k \right) j(r) = \hat{n} \times H^i(r) \]

for all $r \in \Gamma$; here, \mathbf{T} is the identity operator and E^i and H^i denote the impinging electric and magnetic fields, respectively. To numerically solve these equations via a Petrov–Galerkin procedure, $j(r)$ is expanded into RWG basis functions $\{f_j(r)\}$ [3] as

\[j(r) \approx \sum_{j=1}^{N_e} [f_j] f_j(r) \]

where N_e is the number of edges of the mesh. Following [38], the RWG functions are normalized such that the flux through their defining edges equals one (i.e., they are not normalized by their edge length).

Next, the EFIE (5) is tested with rotated RWG functions $[\hat{n} \times f_j(r)]$, while the MFIE (6) is tested with rotated Buffa–Christiansen (BC) functions [47] $[\hat{n} \times g_j(r)]$. The BC functions $\{g_j\}$ are divergence-conforming functions defined on the barycentric refinement of the mesh. In addition, they are quasi curl-conforming in the sense that the mixed Gram matrix between curl-conforming rotated BC functions and RWG functions is well conditioned. For an explicit definition of these functions, the reader is referred to [14] and [47]. The testing procedure results in the following matrix equations:

\[\mathbf{G}^\dagger \mathbf{T}_e + \mathbf{K}_h j = \mathbf{v}_e \]

where

\[[\mathbf{T}_e]_{ij} = (\hat{n} \times f_i, \mathbf{T}_k f_j) \]
\[[\mathbf{T}_h]_{ij} = (\hat{n} \times f_i, \mathbf{T}_{s,k} f_j) \]
\[[\mathbf{T}_h]_{ij} = (\hat{n} \times f_i, \mathbf{T}_{h,k} f_j) \]
\[[\mathbf{K}_h]_{ij} = (\hat{n} \times g_i, \mathbf{K}_k f_j) \]
\[[\mathbf{G}]_{ij} = (f_i, \hat{n} \times g_j) \]
\[[\mathbf{v}_e]_i = (\hat{n} \times f_i, \hat{n} \times E^t) \]
\[[\mathbf{v}_h]_i = (\hat{n} \times g_i, \hat{n} \times H^t) \]

with $(a, b) = \int_\Gamma a(r) \cdot b(r) ds$. In what follows, we denote by \mathbf{T}_e, \mathbf{T}_s, and \mathbf{T}_h the BC-expanded counterparts of the discretized operators \mathbf{T}, \mathbf{T}_s, and \mathbf{T}_h, tested with rotated BC functions and computed with the complex wavenumber $-jk$, respectively. This choice, as further explained in the following, will play a key role in characterizing the high-frequency behavior of the final equation.
The solutions of (8) and (9) can be expressed as linear combinations of divergence-free (loop and harmonic functions) and of nondivergence-free (star functions) components via a quasi-Helmholtz decomposition

\[j = \Lambda l + \Sigma s + Hh \]

where the first two matrices \(\Lambda \in \mathbb{R}^{N_v \times N_v} \) and \(\Sigma \in \mathbb{R}^{N_c \times N_c} \) represent mappings from the RWG subspace to the local loop and star subspaces, respectively. Here, \(N_v \) and \(N_c \) are the number of vertices and cells of the mesh, respectively [8], [48]. These two mappings can be defined using only the connectivity information of the discretized geometry as

\[[\Lambda]_{ij} = \begin{cases} 1, & \text{if vertex } j \text{ equals } v_i^+ \\ -1, & \text{if vertex } j \text{ equals } v_i^- \\ 0, & \text{otherwise} \end{cases} \]

\[[\Sigma]_{ij} = \begin{cases} 1, & \text{if the cell } j \text{ equals } c_i^+ \\ -1, & \text{if the cell } j \text{ equals } c_i^- \\ 0, & \text{otherwise} \end{cases} \]

where vertices \(v_i^- \) and \(v_i^+ \) define the oriented edge characterizing the RWG function \(i \), and \(c_i^- \) and \(c_i^+ \) denote the corresponding cells (see Fig. 1). The matrix \(H \) represents the mapping from the RWG space to the quasi-harmonic or global loop space composed of 2 \(N_h \) functions, where \(N_h \) is the number of handles in the structure. The number of handles (or genus) of a surface is its number of holes; a sphere has no handles, while a torus has exactly one. For a complete description of this mapping and the associated harmonic functions, the reader is referred to [8] and [48].

A few properties of these matrices are recalled to facilitate further developments. For the sake of simplicity, we restrict ourselves to geometries with a single closed connected component, i.e., a single object containing no apertures. All derivations below can be extended to arbitrary geometries using the relations in [49]. Given this assumption, \(\Lambda \) has a nullspace spanned by the all-one vector \(1^\Lambda \in \mathbb{R}^{N_v} \), that is,

\[\Lambda 1^\Lambda = 0. \]

Similarly, the linear dependence of the star functions causes \(\Sigma \) to exhibit a 1-D null space spanned by the all-one vector \(1^\Sigma \in \mathbb{R}^{N_c} \), that is,

\[\Sigma 1^\Sigma = 0. \]

Finally, it is trivial to show that the loop and star subspaces are orthogonal, that is,

\[\Sigma^T \Lambda = 0. \]

As \(\Lambda \) and \(\Sigma \) are ill-conditioned and because of the high computational cost of detecting global loops required to build \(H \), it is convenient to leverage the quasi-Helmholtz projectors introduced in [38] to obtain a quasi-Helmholtz decomposition of the EFIE and MFIE operators. The projectors are defined as

\[P^\Sigma = \Sigma (\Sigma^T \Sigma)^+ \Sigma^T \]

\[P^\Lambda = I - P^\Sigma \]

where \(\Sigma^+ \) denotes the Moore–Penrose pseudoinverse and \(I \) is the discretized identity operator. Any RWG expansion coefficient vector can then be decomposed as

\[j = (P^\Lambda j) + (P^\Sigma j) \]

where \(P^\Lambda j \) and \(P^\Sigma j \) contain the RWG expansions of the solenoidal (loop) and nonsolenoidal (star) components of the current, respectively. The solenoidal components of the current are divergence-free functions that form loops, while the nonsolenoidal components are their complement and have been shown to be star-like in nature [9]. These projector matrices are Hermitian and can also be used to decompose the RWG testing space. Similarly, the dual projectors \(P^\Sigma \) and \(P^\Lambda H \) are defined as

\[P^\Lambda = \Lambda (\Lambda^T \Lambda)^+ \Lambda^T \]

\[P^\Sigma H = I - P^\Lambda H \]

and decompose any linear combination of BC (basis or testing) functions into a nonsolenoidal and a solenoidal part, respectively. It should be noted that construction of these projectors does not require the detection of global loops and that \((\Sigma^T \Sigma)^+ \) can be efficiently computed using multigrid preconditioners [38], [50].

III. REGULARIZING THE MFIE AT EXTREMELY LOW FREQUENCIES

A. Low-Frequency Behavior of the MFIE

The standard RWG discretization of the MFIE fails to provide accurate results at low frequencies due to the unphysical scaling of the solenoidal and nonsolenoidal components of the current [5]. It was shown in [4] and [51] that the mixed discretization of the MFIE (in which rotated BC or Chen–Wilton (CW) functions [52] are used as testing functions) improves the accuracy of its solution. In particular, the solenoidal and nonsolenoidal components of the current obtained from this formulation scale physically [33]. This result also holds true for multiply connected geometries [53].

The mixed MFIE formulation still suffers from three problems. First, the physical scaling of the current can only be retrieved when interaction integrals are computed to high accuracy [33]. Second, the nonsolenoidal current component scales as \(O(\omega) \), whereas the solenoidal component is of \(O(1) \). As a result, at very low frequencies and when using finite precision, both components should be stored in different arrays.
to prevent the nonsolenoidal component from losing accuracy [5], [6], [32], [53], [54]. Third, the static MFIE ($\omega = 0$) has a null space when applied to multiply connected geometries. It follows that the discretized MFIE has N_h singular values that scale as $O(\omega^2)$ [48]. Any accurate discretization of the MFIE operator must preserve this null space. Standard RWG discretizations of the MFIE operators are not capable of correctly modeling this null space [45]. The mixed MFIE, on the other hand, correctly models this null space [48]. Any accurate discretization of the MFIE operator computed with the imaginary wavenumber $-jk$ ($k \to -jk$). This equation is the magnetic field counterpart of the (localized) Calderón preconditioned electric operator in [38]. We propose to discretize (28) as

$$O_i = M^T \left(\frac{G^T}{2} - K_{-jk} \right) (G^T)^{-1} \nu_h$$

(29)

where

$$O = M^T \left(\frac{G^T}{2} - K_{-jk} \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_k \right) M_i$$

(30)

$$M = \frac{P^{\Lambda H} 1}{\alpha} + j P^\Sigma \alpha$$

(31)

$$M = \frac{P^{\Sigma H} 1}{\alpha} + j P^\Sigma \alpha$$

(32)

and $M_i = i$. The imaginary constant in the definition of M and M permits the preservation of the relevant parts of the solution for a large class of excitations (see [38]).

The coefficient α allows for rescaling of the solenoidal and nonsolenoidal components of the solution I of (29) to prevent loss of significant digits. Because $P^{\Sigma} + P^{\Lambda H} = P^\Lambda + P^{\Sigma H} = I$, the operator O in (29) can be decomposed as

$$O = (P^\Lambda + P^{\Sigma H}) O (P^{\Sigma} + P^{\Lambda H})$$

$$= P^\Lambda OP^{\Sigma} + P^\Lambda OP^{\Lambda H} + P^{\Sigma H} OP^{\Sigma} + P^{\Sigma H} OP^{\Lambda H}$$

(33)

which allows for the study of the low-frequency behavior of each of the separate terms. Analysis of the frequency behavior of the first three terms is quite straightforward and yields

$$P^\Lambda OP^{\Sigma} = O(\omega^2) \quad k \to 0$$

(34a)

$$P^\Lambda OP^{\Lambda H} = O(1) \quad k \to 0$$

(34b)

$$P^{\Sigma H} OP^{\Sigma} = O(1) \quad k \to 0.$$

(34c)

Analysis of the last term in (33) requires special care. It is known that when decomposing K_k as

$$K_k = K_0 + K'_k$$

(35)

where K_0 is the static limit of K_k and $K'_k = K_k - K_0$ is the dynamic remainder, $K'_k = O(k^2)$ as $k \to 0$ [53]. When using this decomposition in (29), it can be verified that K_0 satisfies

$$\overline{P}^{\Sigma H} \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) P^{\Lambda H} = 0.$$

(36)

The above equation holds the key to unlocking a frequency-stable MFIE. The proof of property (36) is provided in Appendix A. The term $\overline{P}^{\Sigma H} OP^{\Lambda H}$ can now be studied. To this end, note that

$$\alpha^2 \overline{P}^{\Sigma H} OP^{\Lambda H} =$$

$$= \overline{P}^{\Sigma H} \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) P^{\Lambda H}$$

$$+ \overline{P}^{\Sigma H} \left(\frac{G^T}{2} - K'_0 \right) (G^T)^{-1} (K'_0) P^{\Lambda H}$$

$$- \overline{P}^{\Sigma H} (K'_{-jk}) (G^T)^{-1} (G^T + K_0) P^{\Lambda H}$$

$$- \overline{P}^{\Sigma H} (K'_{-jk}) (G^T)^{-1} (K'_0) P^{\Lambda H}$$

$$= 0 + O(k^2) + O(k^2) - O(k^4)$$

(37)

which completes the low-frequency analysis of the overall operator

$$O = \overline{P}^\Lambda OP^{\Sigma} + \overline{P}^\Lambda OP^{\Lambda H} + \overline{P}^{\Sigma H} OP^{\Sigma} + \overline{P}^{\Sigma H} OP^{\Lambda H}$$

$$= O(\omega^2) + O(1) + O(1) + O\left(k^2 \right).$$

(38)

To choose α, we need to consider the physical scaling of the solenoidal and nonsolenoidal parts of the current in addition to the conditioning constraint imposed by (38); for a plane wave excitation [6]

$$P^{\Lambda H} i = O(1)$$

(39)

$$P^{\Sigma} i = O(k).$$

(40)

These scaling laws reveal that for a standard formulation, a severe loss of significant digits is expected due to the fact that the nonsolenoidal component of the current [which scales as $O(k)$] will disappear when stored alongside the solenoidal component [which scales as $O(1)$]. Instead, for the regularized formulation proposed here, the equation is solved for $I = M^{-1} j$, which scales as

$$P^{\Lambda H} j = O(\alpha)$$

(41)

$$P^{\Sigma} j = O(k/\alpha).$$

(42)

It is now evident that by setting $\alpha = \sqrt{k}$, the above scaling behaviors become

$$P^{\Lambda H} j = O(\sqrt{k})$$

(43)

$$P^{\Sigma} j = O(\sqrt{k}).$$

(44)

eliminating the low-frequency loss of significance and, at the same time, stabilizing the matrix at low frequencies. The latter is seen upon inserting the new scalings into (38)

$$O = O(\omega^2) + O(1) + O(1) + O\left(k^2 \right)$$

$$= O(k) + O(1) + O(1) + O(k).$$

(45)
To demonstrate that this equation represents a valid Calderón CFIE, i.e., is free from internal resonances, we prove in Appendix B that the operator
\[
\left(\eta^2 \left(\frac{I}{2} - K_{-jk} \right) \left(\frac{I}{2} + K_k \right) + T_{-jk} T_k \right)
\]
(48)
can be inverted for any \(k \).

The discretization of the proposed Yukawa–Calderón CFIE follows directly from that of the new MFIE in Section III and that of the EFIE in [38]:
\[
\eta^2 M^T \left(\frac{G^T}{2} - K_{-jk} \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_k \right) M_i
\]
\[
\begin{align*}
&+ M^T T M (G)^{-1} M^T T M_i \\
&= \eta^2 M^T \left(\frac{G^T}{2} - K_{-jk} \right) (G^T)^{-1} \nu_h \\
&\quad + M^T T M (G)^{-1} M^T \nu_e.
\end{align*}
\]
(49)

Here, \(\alpha = 1 \) and \(\alpha = \sqrt{2} \) in the high, and low-frequency regimes, respectively; the low-frequency regime is characterized by a wavelength smaller than the diameter of the structure. We next study this last regime in more detail.

The appropriate scaling law in the low-frequency regime follows from the results of the previous section:
\[
\begin{align*}
\eta^2 M^T & \left(\frac{G^T}{2} - K_{-jk} \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_k \right) M_i \\
&\quad + M^T T M (G)^{-1} M^T T M_i \\
&= -j (\partial T^H) (\partial T^H)^{-1} \eta + j \left(\partial T^H \right) (\partial T^H)^{-1} \left(\partial P^H \partial T^H \right) \\
&\quad + \eta^2 (\partial T^H) (\partial T^H)^{-1} \left(\partial \nu \right) P^H \\
&\quad + \eta^2 j (\partial T^H) (\partial T^H)^{-1} (\partial \nu^H) P^H \\
&\quad + O(k)
\end{align*}
\]
\[
\begin{align*}
&= O(1) + O(1) + O(1) + O(1) + O(1) + O(k).
\end{align*}
\]
(50)

Combining this result with the corresponding RHS scalings (43) and (44) proves the overall low-frequency stability of new CFIE.

Similar to the newly introduced MFIE, the new CFIE formulation can be accelerated with an appropriate fast solvers to attain \(O(n \log(n)) \) complexity. The computational costs detailed in Table I can be extended to this new combined field formulation by adding the costs of the Calderón EFIE.

V. NUMERICAL RESULTS

This section presents the numerical results that validate the above properties of the proposed MFIE and CFIE.

The first set of tests involves a PEC sphere of radius 1 m. Fig. 2 shows the scattered far field at \(f = 200 \text{ MHz} \) obtained using the new MFIE and CFIE as well as other established formulations (standard EFIE, EFIE with projectors, Calderón EFIE with projectors, mixed MFIE, and CFIE). For this high-frequency simulation, all formulations deliver accurate results, thereby validating our implementations. The first difference in performance between our new formulations and their standard

Formulation	# of Add	# of Mol
Mixed MFIE	1	1
Calderón-like MFIE	7	9
New Calderón-like MFIE at Low Frequency	12	18

TABLE I

NUMBER OF MATRIX OPERATIONS OF THE MAGNETIC FORMULATIONS
counterparts is noted when lowering the frequency. Fig. 3 shows data similar to Fig. 2 but for \(f = 1 \times 10^{-40} \) Hz. Clearly, accuracy breakdowns occur for the nonprojected methods, i.e., the mixed MFIE, the EFIE, and the CFIE (for the latter two, the lack of accuracy is also caused by conditioning problems). On the other hand, all projected formulations, including the two new ones, deliver accurate results for arbitrarily low frequencies.

The low-frequency stability of the new Calderón MFIE is further demonstrated in Fig. 4, which illustrates the conditioning of the different formulations for low frequencies. It is clear that the new MFIE remains as well conditioned as its standard counterpart. The Calderón CFIE is also low-frequency stable, unlike the standard CFIE, which exhibits a severe ill-conditioning caused by its EFIE contribution.

Fig. 5 shows that, despite its regularized low-frequency behavior, the Calderón MFIE is prone to spurious resonances causing it to become periodically ill-conditioned. This issue is shared by all noncombined formulations and can be overcome by combined field strategies. It is clear from the figure that both the new Calderón CFIE and its standard counterpart exhibit resonance-free behavior.

The last key property to be illustrated is the refinement stability of the proposed formulations. This property was verified
Fig. 6. Dense discretization behavior of the conditioning of the different formulations on a PEC sphere of radius 1 m. The nonresonant frequency has been kept constant for all simulations and corresponds to five unknowns per wavelength discretization for the least refined point.

Fig. 7. Comparison of the far fields scattered by a PEC square torus of inner radius 0.5 m and tube radius 0.25 m, discretized with an average edge length of 0.15 m, and excited by a 200 MHz plane wave with an amplitude of 1 V/m.

Fig. 8. Comparison of the far fields scattered by a PEC square torus of inner radius 0.5 m and tube radius 0.25 m, discretized with an average edge length of 0.15 m, and excited by a 1 \times 10^{-40} Hz plane wave with an amplitude of 1 V/m.

Fig. 9. Low-frequency behavior of the conditioning of the different formulations on a PEC square torus with an inner radius of 0.5 m, a tube radius of 0.25 m and meshed with an average edge length of 0.6 m.

by studying the dependence of the condition number of the different formulations applied to a unit radius sphere with increasing discretization density (see Fig. 6). These results confirm that the second kind nature of our new formulations renders them immune to the dense discretization breakdown.

In summary, the above results show that the new Calderón MFIE yields correct results for arbitrarily low frequencies and is well conditioned for both low frequencies and dense discretizations. Additionally, when combining this MFIE with the projector Calderón EFIE, a new Calderón CFIE is obtained that is low-frequency stable, immune to dense discretization breakdown, and free from nonphysical resonances.

To ensure that the properties illustrated so far still persist for multiply connected structures, many of the previous analyses were repeated for a square torus (obtained by connecting the ends of a cylinder of square cross section). The correctness of the formulation has been verified by studying the far field scattered by the torus at high and very low frequencies (see Figs. 7 and 8). Since no analytic solution is readily available for the square torus, the solution of the Calderón EFIE was used as a reference and particular care was taken to avoid frequencies corresponding to an internal resonance. While the results are similar to those of the sphere, the reader should be aware that, because of its toroidal and poloidal null spaces,
the Calderón MFIE required the usage of a pseudoinversion to obtain current solutions at very low frequencies.

The low-frequency stability of the Calderón MFIE and Calderón CFIE on the toroidal structure are demonstrated in Fig. 9, while their resonance-free behaviors is illustrated in Fig. 10. Finally, the resilience of both formulations to dense discretization breakdown is illustrated in Fig. 11, which presents the condition number of the discretized integral operators with increasing discretization.

One of the key advantages of the new Calderón MFIE scheme is that it does not require extremely accurate numerical integration rules because it allows explicit cancellation of near-zero terms. In other words, when implementing (33), the matrix product should be expanded and (36) must be explicitly set to 0 to obtain accurate results even with low-order numerical integration rules. The slow convergence of the standard numerical integration schemes can be seen in Fig. 12, in which the ratio of the norm of the term in (36) to the norm of the full operator with increasing number of integration points is presented. While this ratio does decrease with the number of Gaussian quadrature points, it does so very slowly
VI. CONCLUSION

This article presented a new Calderón-like MFIE that can be stably and effectively discretized using quasi-Helmholtz projectors. When linearly combined with a quasi-Helmholtz projector-based Calderón EFIE, a new CFIE that is immune from all drawbacks that plague the majority of existing formulations is obtained. In fact, the proposed CFIE remains well-conditioned both at low frequencies and for dense discretization densities, allows for an accurate solution at extremely low frequencies without requiring special numerical quadrature methods, does not require the detection of global loops when applied to multiply connected geometries, and is provably free from internal resonances. The numerical results confirm the theoretically predicted properties of the proposed equations.

APPENDIX A

PROOF OF THE FUNDAMENTAL MATRIX RELATIONSHIP (36)

To prove the validity of (36), that is,

\[P^\Sigma H \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) P^\Lambda H = 0. \]

(51)

We introduce \(P^{Pol} \), \(P^{Tor} \), \(P^{Pol} \), \(P^{Tor} \) the orthogonal projectors into the right and left null spaces of the internal and external MFIE operators, that is,

\[\left(\frac{G^T}{2} + K_0 \right) P^{Pol} = 0 \]

(52)

\[\left(\frac{G^T}{2} - K_0 \right) P^{Tor} = 0 \]

(53)

\[P^{Pol} \left(\frac{G^T}{2} - K_0 \right) = 0 \]

(54)

\[P^{Tor} \left(\frac{G^T}{2} + K_0 \right) = 0. \]

(55)

Note that

\[\left(\frac{G^T}{2} + K_0 \right) P^{Tor} = G^T P^{Tor} \]

(56)

\[\left(\frac{G^T}{2} - K_0 \right) P^{Pol} = G^T P^{Pol} \]

(57)

\[P^{Tor} \left(\frac{G^T}{2} - K_0 \right) = P^{Tor} G^T \]

(58)

\[P^{Pol} \left(\frac{G^T}{2} + K_0 \right) = P^{Pol} G^T. \]

(59)

We next define

\[Q^\Lambda = P^\Lambda H - P^{Pol} - P^{Tor} \]

(60)

which clearly satisfies

\[P^\Lambda Q^\Lambda = Q^\Lambda \]

(61)

since the union of the right null spaces of the internal and external MFIE operators contains all the nontrivial cycles of the structure [48]. In addition, the operator

\[Q^\Sigma = P^\Sigma H - P^{Pol} - P^{Tor} \]

(62)
satisfies
\[P^\Sigma Q^\Sigma = Q^\Sigma. \] (63)
It follows that:
\[
\begin{aligned}
\left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) P^{\Lambda H} \\
&= \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) (Q^\Lambda + P^{\text{Pol}} + P^{\text{Torr}}) \\
&= \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) Q^\Lambda \\
&+ \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) P^{\text{Torr}} \\
&= \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) Q^\Lambda \\
&+ \left(\frac{G^T}{2} - K_0 \right) P^{\text{Torr}} \\
&= \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) Q^\Lambda
\end{aligned}
\]
and similarly that
\[
\Pi^\Sigma H \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) = Q^\Sigma \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) .
\] (65)
Combining the above equations, it follows that:
\[
\Pi^\Sigma H \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) P^{\Lambda H} = Q^\Sigma \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) Q^\Lambda .
\] (66)
In the above expression, we now insert the identity matrices \((P^{\Lambda H} + P^\Sigma)\) and \((\Pi^\Sigma H + \Pi^\Lambda)\) obtaining
\[
\Pi^\Sigma H \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) P^{\Lambda H} = Q^\Sigma \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \left(\frac{G^T}{2} + K_0 \right) Q^\Lambda .
\] (67)
Given that
\[Q^\Sigma \left(\frac{G^T}{2} - K_0 \right) P^{\Lambda H} = Q^\Sigma P^\Sigma \left(\frac{G^T}{2} - K_0 \right) P^{\Lambda H} = 0 \] (68)
and that
\[\Pi^\Sigma H \left(\frac{G^T}{2} + K_0 \right) Q^\Lambda = \Pi^\Sigma H \left(\frac{G^T}{2} + K_0 \right) \Pi^\Lambda Q^\Lambda = 0 \] (69)
and considering the property
\[P^\Sigma (G^T)^{-1} \Pi^\Lambda = 0 \] (70)
It follows that:
\[
\Pi^\Sigma H \left(\frac{G^T}{2} - K_0 \right) (G^T)^{-1} \Pi^\Lambda = 0
\] (71)
which completes the proof.

\section*{APPENDIX B

Resonance-Free Proof for the New Calderón CFIE Operator}

Since the operator \(\left(\frac{T}{2} - K_{-jk} \right)\) always admits an inverse, the invertibility of (48) is equivalent to the invertibility of
\[
\left(\frac{T}{2} + K_j \right) + \left(\frac{T}{2} - K_{-jk} \right)^{-1} T_{-jk} T_k .
\] (72)
Given the anticommutation property
\[T^{-1} K + K T^{-1} = 0 \] (73)
which follows directly from the second Calderón identity
\[T^{-1} K = T^{-1} K T T^{-1} = -T^{-1} K T T^{-1} = -K T^{-1} \] and defining:
\[A = \left(\frac{T}{2} - K_{-jk} \right)^{-1} T_{-jk} \] (74)
it follows that:
\[
\begin{aligned}
\left(\hat{n} \times A \right)^T &= \left(\hat{n} \times \left(\frac{T}{2} - K_{-jk} \right)^{-1} T_{-jk} \right)^T \\
&= \left(\hat{n} \times \left(T_{-jk} \left(\frac{T}{2} - K_{-jk} \right)^{-1} \right) \right)^T \\
&= \left(\hat{n} \times \left(\left(\frac{T}{2} + K_{-jk} \right) T_{-jk} \right)^{-1} \right)^T \\
&= \left(\hat{n} \times T_{-jk} \left(\frac{T}{2} + K_{-jk}^{-1} \right) \right)^T \\
&= \left(\frac{T}{2} + K_{-jk}^{-1} \right)^T \hat{n} \times T_{-jk} \\
&= \left(\frac{T}{2} - K_{-jk}^{-1} \right)^{-1} \hat{n} \times \hat{n} \times T_{-jk} \\
&= \left(\frac{T}{2} - K_{-jk}^{-1} \right)^{-1} T_{-jk} \\
&= \hat{n} \times A
\end{aligned}
\] (75)
Given this result and the fact that
\[\hat{n} \times A = \hat{n} \times \left(\frac{T}{2} - K_{-jk}^{-1} \right) T_{-jk} \] (76)
is a real operator, the symmetry implies it being Hermitian, so that
\[x^T \left(\hat{n} \times \left(\frac{T}{2} - K_{-jk}^{-1} \right) T_{-jk} \right) x \] (77)
is real and nonzero. By leveraging a straightforward extension of [56, Th. 3.1], it follows that:
\[
\left(\left(\frac{T}{2} - K_{-jk} \right) \left(\frac{T}{2} + K_j \right) + T_{-jk} T_k \right)
\] (78)
is always invertible. Otherwise said, the proposed Yukawa–Calderón CFIE is resonance free.
computational electromagnetics. and development in the healthcare industry, while maintaining an interest in boundary integral equations. Since 2015, he has been active in research with the Microwave Department, IMT Atlantique, Brest, France. His research

[46] F. P. Andriulli, I. Bogaert, K. Cools, and E. Michielssen, “A well-conditioned combined field integral equation based on quasi-Helmholtz projectors,” in Proc. Int. Conf. Electromagn. Adv. Appl. (ICEAA), Sep. 2013, pp. 644–647.
[47] A. Buffa and S. H. Christiansen, “A dual finite element complex on the barycentric refinement,” Math. Comp., vol. 76, no. 260, pp. 1743–1770, Oct. 2007.
[48] K. Cools, F. Andriulli, F. Olyslager, and E. Michielssen, “Nullspaces of MFIE and Calderón preconditioned EFIE operators applied to toroidal surfaces,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3205–3215, Oct. 2009.
[49] D. R. Wilton, “Topological consideration in surface patch and volume cell modeling of electromagnetic scatterers,” in Proc. URSI Int. Symp. Electromagn. Theory, 1983, pp. 65–68.
[50] A. Napov and Y. Notay, “An algebraic multigrid method with guaranteed convergence rate,” SIAM J. Sci. Comput., vol. 34, no. 2, pp. A1079–A1109, Jan. 2012.
[51] K. Cools, F. P. Andriulli, F. Olyslager, and E. Michielssen, “Improving the MFIE’s accuracy by using a mixed discretization,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jun. 2009, pp. 1–4.
[52] Q. Chen and D. R. Wilton, “Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies,” in Proc. Int. Symp. Antennas Propag. Soc., Merging Technol., vol. 2, May 1990, pp. 590–593.
[53] I. Bogaert, K. Cools, F. P. Andriulli, and D. De Zutter, “Low frequency scaling of the mixed MFIE for scatterers with a non-simply connected surface,” in Proc. Int. Conf. Electromagn. Adv. Appl., Sep. 2011, pp. 951–954.
[54] I. Bogaert, K. Cools, F. P. Andriulli, J. Peeters, and D. De Zutter, “Low frequency stability of the mixed discretization of the MFIE,” in Proc. 5th Eur. Conf. Antennas Propag. (EUCAP), 2011, pp. 2463–2465.
[55] R. Adams, “Combined field integral equation formulations for electromagnetic scattering from convex geometries,” IEEE Trans. Antennas Propag., vol. 52, no. 5, pp. 1294–1303, May 2004.
[56] O. Bruno, T. Elling, R. Pfaffernroth, and C. Turc, “Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations,” J. Comput. Phys., vol. 228, no. 17, pp. 6169–6183, Sep. 2009.

Adrien Merlini (Member, IEEE) received the M.Sc.Eng. degree from the École Nationale Supérieure des Télécommunications de Bretagne, Télécom Bretagne, Brest, France, in 2015, and the Ph.D. degree from the École Nationale Supérieure Mines-Télécom Atlantique, IMT Atlantique, Nantes, France, in 2019. Between 2018 and 2019, he was a Visiting Ph.D. Student with the Politecnico di Torino, Turin, Italy, where he then joined as a Research Associate. Since December 2019, he has been an Associate Professor with the Microwave Department, IMT Atlantique, Brest, France. His research interest includes preconditioning and acceleration of integral equation solvers for electromagnetic simulations and their implementations.

Yves Beghein received the M.Sc.Eng. and Ph.D. degrees in engineering physics from Ghent University, Ghent, Belgium, in 2011 and 2015, respectively. Under the advischiorship of Prof. K. Cools from the University of Nottingham, Nottingham, U.K., and Prof. D. De Zutter from Ghent University, he studied and developed efficient modeling techniques for scattering problems in the frequency domain and in the time domain. In particular, his research focused on discretization and solution methods for boundary integral equations. Since 2015, he has been active in research and development in the healthcare industry, while maintaining an interest in computational electromagnetics.

Eric Michielssen (Fellow, IEEE) received the M.S. degree (summa cum laude) in electrical engineering from the Katholieke Universiteit Leuven (KUL), Leuven, Belgium, in 1987 and the Ph.D. degree in electrical engineering from the University of Illinois at Urbana-Champaign (UIUC), Champaign, IL, USA, in 1992. From 1992 to 2005, he served on the Faculty, UIUC. In 2005, he joined the University of Michigan, Ann Arbor, MI, USA, where he is currently the Louise Ganiard Johnson Professor of engineering and a Professor of electrical engineering and computer science. He also serves as the institution’s Associate Vice President for Advanced Research Computing and the Co-Director for its precision health initiative. He authored or coauthored over 200 journal articles and book chapters and over 400 papers in conference proceedings. His research interest includes all aspects of theoretical and applied computational electromagnetics. His research focuses on the development of fast frequency- and time-domain integral-equation-based techniques for analyzing electromagnetic phenomena and the development of robust optimizers for the synthesis of electromagnetic/optical devices.

Dr. Michielssen is a member of the URSI Commission B. He received the Belgian American Educational Foundation Fellowship in 1988 and the Schlumberger Fellowship in 1990. He was a recipient of the 1994 International Union of Radio Scientists (URSI) Young Scientist Fellowship, the 1995 National Science Foundation CAREER Award, and the 1998 Applied Computational Electromagnetics Society (ACES) Valued Service Award. In addition, he was named as the 1999 URSI United States National Committee Henry G. Booker Fellow and selected as a recipient of the 1999 URSI Koga Gold Medal. He was also awarded the UIUC’s 2001 Xerox Award for Faculty Research, appointed as the 2002 Beckman Fellow with the UIUC Center for Advanced Studies, named as a 2003 Scholar with the Sackler Institute of Advanced Studies, Tel Aviv University, Tel Aviv, Israel, selected as a UIUC 2003 University and Sony Scholar. In 2011, he received the UM College of Engineering David E. Liddle Research Excellence Award. In 2014, he was a recipient of the IEEE Antennas and Propagation Society (APS) Chen-To Tai Distinguished Educator Award. In 2017, he received the IEEE APS Sergei A. Schelkanov Transactions Prize Paper Award.

Kristof Cools received the M.Eng. degree in applied physics and the Ph.D. degree from Ghent University, Ghent, Belgium, in 2004 and 2008, respectively. He is currently an Assistant Professor with the Department of Applied Mathematics, TU Delft, Delft, The Netherlands. His current research interests include the spectral properties of the boundary integral operators of electromagnetics, stable, and accurate discretization schemes for frequency- and time-domain boundary element methods, domain decomposition techniques, and the implementations of these methods for execution on distributed high-performance computing infrastructure.

Dr. Cools was a recipient of the Young Scientist Best Paper Award at the International Conference on Electromagnetics in Advanced Applications (ICEAA) in 2008.
Francesco P. Andriulli (Senior Member, IEEE) received the Laurea degree in electrical engineering from the Politecnico di Torino, Turin, Italy, in 2004, the M.Sc. degree in electrical engineering and computer science from the University of Illinois at Chicago, Chicago, IL, USA, in 2004, and the Ph.D. degree in electrical engineering from the University of Michigan, Ann Arbor, MI, USA, in 2008.

From 2008 to 2010, he was a Research Associate with the Politecnico di Torino. From 2010 to 2017, he was an Associate Professor from 2010 to 2014 and then a Full Professor with the École Nationale Supérieure Mines-Télécom Atlantique, IMT Atlantique, previously ENST Bretagne, Brest, France. Since 2017, he has been a Full Professor with the Politecnico di Torino. His research interests are in computational electromagnetics with focus on frequency- and time-domain integral equation solvers, well-conditioned formulations, fast solvers, low-frequency electromagnetic analyses, and modeling techniques for antennas, wireless components, microwave circuits, and biomedical applications with a special focus on brain imaging.

Dr. Andriulli is a member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi, and of the International Union of Radio Science (URSI). He was a recipient of the Best Student Paper Award at the 2007 URSI North American Radio Science Meeting. He received the First Place at the Student Paper Context of the 2008 IEEE Antennas and Propagation Society (APS) International Symposium. He was a recipient of the 2009 RMTG Award for junior researchers and was awarded two URSI Young Scientist Awards at the International Symposium on Electromagnetic Theory in 2010 and 2013, where he was also awarded the Second Prize in the Best Paper Contest. He also received the 2015 the International Conference on Electromagnetics in Advanced Applications (ICEAA) the IEEE Antennas and Propagation in Wireless Communications (APWC) Best Paper Award. In addition, he coauthored with his students and collaborators other three First Prize conference papers, the International Symposium on Electromagnetic Theory (EMTS) 2016, URSI Germany National Meeting (URSI-DE) 2014, ICEAA 2009, a Second Prize conference paper, URSI General Assembly and Scientific Symposium (GASS) 2014, a Third Prize conference paper, IEEE-APS 2018, two honorable mention conference papers, ICEAA 2011 and URSI/IEEE-APS 2013, and other three finalist conference papers, URSI/IEEE-APS 2012, URSI/IEEE-APS 2007, and URSI/IEEE-APS 2006. Moreover, he received the 2014 IEEE AP-S Donald G. Dudley Jr. Undergraduate Teaching Award, the triennium 2014–2016 URSI Issac Koga Gold Medal, and the 2015 L. B. Felsen Award for Excellence in Electrodynamics. He is the Editor-in-Chief of the IEEE Antennas and Propagation Magazine. He serves as a Track Editor for the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION and an Associate Editor for the IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, IEEE ACCESS, the URSI Radio Science Letters, and the IET-Microwaves, Antennas and Propagation (MAP). He is also the Principal Investigator (PI) of the European Research Council (ERC) Consolidator Grant “321.”