Both basal and ontogenic promoter elements affect the timing and level of expression of a sea urchin H1 gene during early embryogenesis

Zhi-chun Lai, 1 Rob Maxson, 2 and Geoffrey Childs 1
1Departments of Genetics and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 USA; 2Department of Biochemistry, University of Southern California Medical School, Los Angeles, California 90033 USA

Late histone H1-β mRNA accumulates with the correct ontogenic pattern following microinjection of the cloned gene into fertilized sea urchin eggs. Sequences upstream of the gene encoding the sea urchin H1-β protein contain both basal and developmentally regulated elements. One late H1-specific activator sequence (USE IV) is required for the accumulation of mRNA following the blastula stage of development. All late H1 genes also contain a highly conserved GC-rich sequence resembling a low-affinity binding site for the mammalian transcription factor Sp1 that is required for basal expression of the H1-β gene at all stages of embryogenesis. When this GC-rich sequence [GGGCTG] is converted to a perfect core Sp1 sequence [GGGCGG], the H1-β transcripts accumulate to much greater levels and their peak accumulation is shifted to the early blastula stage rather than late blastula and gastrula stages of development. Coincidently, early H1 genes, whose peak expression is also at the early blastula stage, all contain the same core consensus sequence [GGGCGG]. Thus, both gene-specific activator sequences, as well as sequences that resemble sites for general transcription factors, may play a major role in determining the temporal patterns of gene expression during early embryogenesis.

[Key Words: Embryonic activator sequence; ontogenic gene expression]

Received September 14, 1987; revised version accepted December 31, 1987.

The histone multigene family in sea urchins has provided a model system to study the molecular mechanisms that govern temporal gene expression during early embryogenesis. There are several families of histone genes that are each expressed in a unique stage-specific manner in embryos and adult tissues (reviewed in Maxson et al. 1983a). The expression of the early histone genes, which are organized in 300–500 tandem arrays, is limited to the first 10–12 hr of embryogenesis, after which these genes are shut off and never used again in the life cycle of the animal [Maxson et al. 1983a]. The late histone proteins are encoded by a smaller multigene family consisting of 2–12 members that are dispersed in irregular arrays [Childs et al. 1982; Maxson et al. 1983b; Knowles and Childs 1986; Knowles et al. 1987]. The transcripts encoded by these genes are stored in small quantities in the egg, and the genes are transcribed during the first several cell divisions; however, their transcription rate increases at about the time the early family is inactivated [Knowles and Childs 1984; Knowles et al. 1987; M. Ito et al., in prep.]. Late histone transcripts peak in late blastula, and gastrula-stage embryos. Members of the late histone gene family are also transcribed in the adult tissues of the animal [Kemler and Busslinger 1986; Lieber et al. 1986; Halsell et al. 1987]. Three major variants of H1 histone proteins are synthesized during early embryogenesis. The α-subtype is encoded by the early genes, and the β- and γ-subtypes are each encoded by a unique sequence late gene [Knowles and Childs 1986; Knowles et al. 1987; Lai and Childs 1988].

We have cloned and sequenced the Strongylocentrotus purpuratus late H1-β gene and have determined its temporal pattern of expression during development [Lai and Childs 1988]. The gene is coordinately regulated with the H1-γ gene and shares extensive sequence homologies within the 350 bp upstream of the mRNA initiation site. In this paper we have identified some of the elements that are essential for both the basal and maximal expression, as well as the proper temporal expression of the H1-β gene. A series of deletion and point mutants of this gene were microinjected into fertilized sea urchin eggs, and the expression of the cloned DNA was monitored during embryogenesis. At least two distinct components of the promoter appear to be responsible for determining the time of maximal transcript accumulation during embryogenesis. In the wild-type promoter, an upstream sequence element [USE IV] at –288 to –317 further activates basal promoter activity at the blastula stage of development. Basal promoter activity requires
the TATA box, USE 0, and USE I. However, by altering a GC-rich sequence equivalent to a mammalian low-affinity Spl site (GGGCTG) [McKnight et al. 1984; Jones et al. 1986] in the USE I of the wild-type H1-β promoter to a sequence equivalent to higher affinity site (GGGCACG) also found in the early H1 promoter, we induce maximal accumulation of H1-β transcripts earlier in embryogenesis. Thus, a single base-pair difference in the sequence of binding sites for general transcription factors can play a major role in determining the temporal pattern of gene expression during embryogenesis.

Results

Comparison of H1 upstream sequences

Inspection of the 350 nucleotides immediately upstream of the H1-β mRNA initiation site reveals several sequences in common with H1-γ (Fig. 1). Upstream of the TATA box is a sequence (USE 0) that is 100% conserved among the three late H1 genes (19/19) and 79% conserved when compared with the early H1 gene (15/19). A GC-rich element (USE I) is present at the same position upstream of H1 genes in many species [Coles and Wells 1985; Perry et al. 1985]. The USE I of early genes corresponds to the consensus sequence for mammalian transcription factor Spl, whereas the USE I of all three late H1 genes differs by a single nucleotide from this consensus. Upstream of USE I is another H1-specific element, AAACAC [Coles and Wells 1985; Perry et al. 1985], which is the core of a highly conserved region of 65 bp in the three late H1 genes. Still farther upstream are two conserved late H1-specific sequences (USE III and USE IV) that extend from −210 to −226 and −288 to −317, respectively (Fig. 1). Each of these sequences is a candidate for an essential element of the H1-β promoter due to the extreme conservation maintained during the greater than 65 million years that Strongylo-

Figure 1. Conserved DNA sequences of sea urchin H1 gene promoters. Sequences identical among early or late H1 gene promoters are blocked. Core elements of the TATA box, USE 0, USE I, USE II, among all the H1 genes, and the homologous region of USE III and USE IV for all three late H1 promoters are indicated with darker shading. Numbers on left and right of each sequence indicate the position of the sequence relative to the mRNA initiation site of each gene. [S.p. α], S. purpuratus H1-α [Levy et al. 1982]; [S.p. β], S. purpuratus H1-β [Lai and Childs 1988]; [S.p. γ], S. purpuratus H1-γ [Knowles et al. 1987]; [L.p. α], L. pictus H1-γ [Knowles and Childs 1986]; [P.m. α] Psammochinus miliaris H1-α [Birnstiel et al. 1978].
centrotus purpuratus and Lytechinus pictus have survived as independent species (Smith 1981).

Ontogenic activation of microinjected H1 histone genes

Sea urchin cytoskeletal actin genes (Flytzanis et al. 1987), early histone H2A genes (Davidson et al. 1985), and early and late H2B genes (Colin et al. 1988) are all expressed in the proper temporal fashion following microinjection into eggs or one-cell zygotes. The proper spatial expression of the CyIIA actin gene only in aboral ectoderm cells has been confirmed by in situ hybridization (Hough-Evans et al. 1987). As an initial approach to the identification of cis-acting regulatory sequences in the late H1-β gene, we monitored the expression of a microinjected construct containing 1.3 kb of 5′-flanking sequence and 1.0 kb of 3′-flanking sequence. S. purpuratus H1 genes were microinjected into L. pictus eggs, and properly initiated mRNAs were monitored with an RNase protection assay. L. pictus embryos are known to contain all the trans-acting factors required for the proper expression of S. purpuratus histone genes because interspecies hybrids between these two sea urchin species regulate both maternal and paternal histone genes properly (Maxson and Egrie 1980). Endogenous H1-γ mRNA was used as a control for recovery of RNA in each sample. The results [Fig. 2] demonstrate that H1-β mRNA accumulates at about the appropriate embryonic stage following microinjection of the H1-β construct. H1-β transcripts appeared at low levels 8 hr postfertilization and accumulated for the next 10 hr. RNA from un.injected L. pictus embryos did not protect a fragment the size of S. purpuratus H1-β mRNA (see Figs. 4 and 5). Quantitative analysis of these data revealed that the transcripts derived from the injected H1-β gene accumulated to levels three- to fivefold higher than the endogenous H1-γ mRNA (Table 1). The H1-β transcripts do, however, decrease in abundance at later stages somewhat more rapidly than the endogenous late H1 mRNAs. This difference may be due either to post-transcriptional regulation, known to affect histone transcripts in a variety of systems (Osley et al. 1981; Maxson and Wilt 1982; Heintz et al. 1983; Weinberg et al. 1983) or to differences in the ability of these genes to compete with other genes for limiting quantities of trans-acting factors late in embryogenesis. We also monitored the amount of injected DNA during development (Table 1). Late H1-β DNA is replicated during the first 30 hr of embryogenesis, as are many linear DNA molecules (Flytzanis et al. 1985, 1987). Independent experiments with an early H1 DNA construct demonstrate that this DNA is also replicated during the first 30 hr of embryogenesis, yet transcription from this template occurs only for the first 10–12 hr, as expected [Z. Lai and G. Childs, 1981].

Figure 2. Ontogenic expression of microinjected S. purpuratus H1-β DNA. (A) About 3500 molecules of linearized H1-β DNA (3.0 kb SalI fragment in M13mpl9) were microinjected into each L. pictus one-cell zygote. Injected embryos were collected for extracting RNA at each indicated time. RNA of 30 embryos from each time point was probed with Sp6 transcripts complementary to S. purpuratus H1-β mRNA and L. pictus H1-γ mRNA, digested with RNase A and RNase T1, protected fragments were then resolved on 5% acrylamide–7 M urea gels. (Lane S.p. gast.) A control using 0.5 μg S. purpuratus gastrula RNA (30 hr), [lane L.p. gast.] the signal from 0.125 μg L. pictus gastrula RNA (30 hr). All samples including controls contained both probes in the hybridization reaction. (B) Diagram of hybridization probes and the sizes of the expected protected fragments. For the L. pictus H1-γ probe, the multiple bands are probably due to the template that was not completely digested with StyI.
We conclude that the continued expression of injected late H1 genes represents proper transcriptional activity and is not due to the difference in replication or stability of different injected DNA templates.

Deletion analysis of the H1-β promoter

A series of deletions that progressively removed DNA sequences at the 5' end of H1-β was used for the preliminary identification of upstream sequences required for proper regulation in vivo (Fig. 3A). Each of these deletion constructs was microinjected into the same batch of fertilized eggs, and the number of transcripts that accumulated by 20 hr postfertilization was quantitated relative to endogenous late H1-γ mRNA. The degree of amplification of each construct was also determined to ensure that the absence of H1-β transcripts with any given mutant was not due to loss of DNA or lack of amplification. Many experiments of this type indicate that as long as the injected DNA is amplified within a broad concentration range, the same intrinsic transcriptional capacity of the template is maintained (i.e., the same result is obtained if the number of templates remaining is reversed for the -1300 and -469 mutants in Fig. 3A). Measurements made by Flytzanis et al. (1987) also support this argument. After carefully measuring the number of molecules of CyIIIA-CAT actin fusion DNAs compared with the activity of the gene in many batches of eggs and embryos, these workers conclude that DNA is saturating with respect to the ability to activate the CAT genes. Removal of H1-β sequences 5' to -329 has no effect on the level of H1-β transcripts that accumulate by 20 hr. However, removal of the sequences from -329 to -106 or -93 consistently reduced the number of accumulated transcripts to 30% that of wild type. These deletions remove sequence elements II, III, and IV. Deletion mutants from which USE I is removed are not transcribed to detectable levels.

Although the number of H1-β transcripts peaks at about 20 hr, the previous experiment does not address the effect of these deletions on the temporal expression of this gene. Sequences upstream of -329 could be required for proper timing rather than maximal expression. To test this possibility, the temporal pattern of expression of several deletion constructs was tested (Fig. 3B). In deletion mutants up to -329, the expression pattern was indistinguishable quantitatively and qualitatively from that of a construct with 1.3 kb of upstream sequences. However, deletion down to -106 showed a basal level of H1-β transcripts at all developmental times tested. That is, without sequences distal to -106, the gene is expressed at the same low level as the wild-type gene for the first 10 hr of development but subsequently fails to accumulate additional transcripts because it is not transcriptionally activated as is the wild-type gene (Knowles and Childs 1984).

Effects of point mutations and short internal deletions

Deletion analysis showed that elements II, III, or IV, individually or together, are required for the accumulation of H1-β transcripts in late blastula, whereas USE I seems to be required for basal transcription. To test the effect of USE 0 or USE I alone on H1-β transcription, we constructed a set of site-directed mutants in the H1-β gene. As with the deletion mutations, a single batch of eggs was injected with wild-type and mutant constructs, and the abundance of H1-β was monitored relative to endogenous late H1-γ mRNA at 20 hr postfertilization (Fig. 4). Mutations that change three conserved cytidine residues in USE 0 (-52 to -50) to adenosines (Fig. 4, lane 7) or the conserved ACG sequence in USE 0 (-49 to -47) to GAT (Fig. 4, lane 6) both abolished transcription. We conclude that USE 0 is an essential element of the H1-β promoter. This sea-urchin-specific sequence may replace the requirement for the CCAAT sequence found in the same position of H1 genes in other species (Coles and Wells 1985). When three guanosines of USE I (-85 to -83) were changed to adenosines, all transcription from H1-β was abolished (Fig. 4, lane 5). Thus, despite the deviation from the Sp1 core consensus sequence, USE I is also an essential element of the H1-β promoter.

We also tested the effect of changing the thymidine in the late USE I sequence GGGCTG (-81) to a guanine, creating a consensus Sp1 site. Surprisingly, this mutation resulted in as much as five-fold fewer transcripts accumulating at 20 hr postfertilization than the wild-type construct (Fig. 4, lane 4). We also tested the effects of changing the TAT of the TATA box [positions -33 to -31] to GGG (Fig. 4, lane 11). Although this mutation decreased the levels of transcript accumulation to 30%...
Requirements for embryonic transcription

Injected H1-B DNA molecules/embryo	H1-B mRNA molecules/embryo	H1-B gene activ. %
1.2 x 10^6	2.0 x 10^6	100
4.7 x 10^4	5.6 x 10^5	104
1.4 x 10^4	4.9 x 10^5	108
1.2 x 10^4	1.2 x 10^5	98
3.0 x 10^4	1.5 x 10^5	98
1.5 x 10^4	7.0 x 10^5	98
2.3 x 10^4	2.0 x 10^5	< 1.4
2.0 x 10^4	2.0 x 10^5	< 0.4
3.0 x 10^4	3.0 x 10^5	< 0.8

Figure 3. Transcriptional activity of the microinjected S. purpuratus H1-B gene and 5' deletion constructs. (A) About 3500 linearized molecules of each construct were microinjected into L. pictus one-cell zygotes. Embryos were collected for extracting RNA or DNA at 20 hr postfertilization. RNA and DNA were manipulated as described in Methods. The 5' end of each construct is indicated. The number of H1-B transcripts accumulated at 20 hr postfertilization was calculated as described in Methods and normalized to the endogenous H1-γ mRNA in each sample. (B) Indicated constructs (−372; −329; −106) were microinjected, and embryos were collected at each time point postfertilization for preparing RNA, which was manipulated as described in Methods. RNA equivalent to 30 embryos was used in each hybridization reaction. (Lane S.p. gast.) 0.5 μg S. purpuratus gastrula (30 hr) RNA; (lane L.p. gast.) 0.125 μg L. pictus gastrula (30 hr) RNA.

of wild type, we see no evidence of aberrant initiation sites.

The sequences upstream of USE I required to induce mRNA accumulation above basal levels were further investigated by using short internal deletions of each element. Deletion of the entire USE II element between −121 and −155 had a significant effect [40–60% wild-type expression] [Fig. 4, lane 8]. Deletion of a 10-bp segment of USE III had a smaller, but still reproducible, effect on H1-β mRNA accumulation [Fig. 4, lane 12]. A 30-bp deletion of USE IV, on the other hand, resulted in only basal level accumulation [i.e., the same as in 8-hr embryos] of H1-β mRNA [Fig. 4, lane 13]. Each mutant construct was amplified to the same extent as the wild-type construct. Quantitative analysis of these data are presented in Table 2.

We tested the idea that USE IV is required for transcriptional activation of the H1-β gene at the blastula stage by examining the temporal expression of this deletion construct [Fig. 5]. At all time points [10, 16, and 20 hr postfertilization], only low levels of transcripts accumulate. Using the same batch of eggs and the same probes, embryos injected with the wild-type construct accumulate H1-β mRNA between 10 and 20 hr postfertilization, as expected. We conclude that USE IV is required for the activation of the H1-β gene at the late blastula stage of development.

Effect of the Sp1 mutation on temporal expression

We expected that conversion of the USE I sequence in the H1β gene to an authentic Sp1 high-affinity core-binding site might act to increase transcript abundance. As the early H1 gene contains the identical core Sp1 site, we measured the temporal expression of this construct. The data shown in Figure 6A and quantitated in Figure 6B (right panel) demonstrate that the pattern of transcript accumulation from this construct is now more typical of an early gene than a late gene. Transcripts are most abundant 10 hr postfertilization, decline by 16 hr, and are further reduced by 20 hr. The Sp1 construct is replicated during embryogenesis to the same extent as...
Figure 4. Analysis of point mutations and internal deletions within the *S. purpuratus* HI-β gene promoter. About 3500 linearized DNA molecules of each construct were microinjected into *L. pictus* one-cell zygotes. Embryos were collected for making RNA at 20 hr postfertilization. (Lane tRNA) 5 μg tRNA was used to hybridize to the mixed HI-β/HI-γ probes; (lane s.p. gast.) 0.5 μg *S. purpuratus* gastrula (30 hr) RNA; (lanes L.p. gast.) 0.125 μg *L. pictus* gastrula (30 hr) RNA; (lanes 1, 3, 9) RNA samples from uninjected embryos. Remaining lanes correspond to the point mutation and internal deletion constructs described in the lower part of the figure. Each experimental lane contains RNA equivalent to 30 embryos.

Experiment 1	Experiment 2				
H1-β DNA	**H1-β mRNAs**	**H1-β gene activity (%)**	**H1-β mRNAs**	**H1-β gene activity (%)**	
genes per embryo	per embryo		per embryo		
Wild type	2.1 × 10⁴	5.0 × 10⁶	100	1.2 × 10⁶	100
TATA*	1.9 × 10⁴	1.5 × 10⁶	29	<10⁴	<1.0
USE 0*	2.6 × 10⁴	<5 × 10⁶	<1.0	<10⁴	<1.0
USE II	1.1 × 10⁴	<5 × 10⁶	<1.0	<10⁴	<1.0
Sπ*	3.6 × 10⁴	1.1 × 10⁶	22	3.0 × 10⁶	25.2
USE III	1.6 × 10⁴	<5 × 10⁶	<1.0	<10⁴	<1.0
ΔUSE II	1.2 × 10⁴	1.9 × 10⁶	39	6.9 × 10⁵	58.0
ΔUSE III	1.9 × 10⁴	3.1 × 10⁶	62.0	—	—
ΔUSE IV	1.5 × 10⁴	9.8 × 10⁵	16.8	—	—

Primary data for each construct are shown in Fig. 4. Mutant constructs are described more completely in Methods and the text.

*Experiments 1 and 2 represent data from two separate groups of injections using different batches of eggs and sperm.

* Refers to the number of template DNA molecules remaining 20 hr postfertilization.

* Fraction of H1-β transcripts relative to the wild-type construct.

* Changes TAT at position -33 to -31 to GGG.

* Changes ACG at position -49 to -47 to GAT.

* Changes CCC at position -52 to -50 to AAA.

* Changes T at position -81 to G.

* Changes GGG at position -85 to -83 to AAA.
requirements for embryonic transcription

Figure 5. Effect of USE IV on the temporal expression of the H1-β gene. (A) Approximately 600 linearized DNA molecules of the wild-type (~1300) and ΔUSE IV deletion constructs were microinjected into each one-celled zygote, and embryos were collected at 10, 16, and 20 hr postfertilization. RNA was isolated as described and hybridized with S. purpuratus H1-β and L. pictus late H3 riboprobes. The late H3 transcripts accumulate with the same ontogenic pattern as the late H1 transcripts. (Lane M) Radiolabeled HaeIII-digested X714 DNA markers; (lane S. purpuratus) 0.5 µg S. purpuratus gastrula [30 hr] RNA; (lane L. pictus) L. pictus gastrula [30 hr] RNA. Each experiment contained the RNA equivalent to 30 embryos. (B) Diagram of hybridization probes and the sizes of the expected protected fragments.

Discussion

Our goal is to understand how related genes are transcribed at different times during early embryogenesis. Our approach to this question is to study the regulated expression of the sea urchin late H1-β gene following introduction of the cloned DNA into developing embryos. In this paper, we have shown that single-base differences in the binding site for general transcription factors not only can influence the levels of expression but the temporal accumulation as well. Late histone H1 genes are properly activated using this gene transfer system. The effects of mutant constructs on the accumulation of H1 transcripts argue that we are monitoring transcriptional events and that sequences within our constructs are sufficient for regulated expression of this gene. Deletion analysis of the H1-β promoter region demonstrated that 5’ sequences up to ~106 are sufficient for activation of transcription and basal expression of this gene. These sequences include a TATA box and two upstream sequence elements, USE 0 and USE I. Point mutations in the TATA box, USE 0, or USE I demonstrate that these sequences are each elements of the promoter. Similarly, the USE I element of a chicken H1 gene is essential for transcription in Xenopus oocytes or HeLa cells (Younghusband et al. 1986). Proteins bound at these sites would be required as part of a transcription complex that acts as a basal level promoter.

We utilized short internal deletion mutations as a preliminary means of assessing the role of other conserved elements of the late H1 upstream region. We observed reproducible decreases in H1-β mRNA accumulation with a USE II deletion and small but reproducible decreases with a USE III deletion. Deletion of the chicken USE II element has a negligible effect on transcript accumulation when assayed in frog oocytes or HeLa cells (Younghusband et al. 1986). The extreme conservation of the core USE II sequence from sea urchins to humans (Perry et al. 1985) argues that this sequence serves some function. Perhaps its role is to serve as an element involved in cell-cycle regulation by analogy with a different sequence that serves this role in yeast histone genes (Osley et al. 1986). USE III, a late gene-specific sequence, could be required for activation in adult tissues rather than embryos. USE IV, on the other hand, seems to be required for the induction or accumulation of H1-β transcripts between 10 and 20 hr postfertilization. Late histone genes are transcriptionally activated at this time [Knowles and Childs 1984]. Without this sequence element, only basal levels of mRNA accumulate throughout embryogenesis [Fig. 5]. We minimized the potential effects of proteins binding on different sides of the DNA helix by constructing the USE IV deletion so that precisely 30 bp of conserved sequences were re-
moved. The size of the conserved region is large enough to accommodate more than one sequence-specific DNA-binding protein. Point mutations and binding studies will be required to see whether this is the case. Additional studies will also be required to determine whether this element can induce expression on heterologous promoters in an orientation- and position-independent manner.

Perhaps our most provocative finding was the observation that a single-base mutation creating an authentic high-affinity core Spl-binding site not only affects the number of transcripts that accumulate but the temporal accumulation as well. One model that can explain this data requires that late H1 genes normally require Spl (or the sea urchin equivalent of this mammalian transcription factor) for transcription during the first 10 hr of development, but they compete very poorly with many other genes (including early H1) for this transcription factor due to the low-affinity binding site. Transcripts accumulate in late blastula-stage embryos at least in part because of the activity of USE IV. Creating an authentic high-affinity binding site for the factor in the late H1-β gene allows the injected DNA to compete effectively for this factor, with the result being high levels rather than basal transcription during the first 10 hr of development. This model is the opposite of one where somatic [late] Xenopus 5S genes bind more tightly to and compete better for limiting quantities of TFIIIA as embryogenesis proceeds [Brown 1984]. We are proposing that the somatic [late] family is unable to compete very well early in embryogenesis and the competition is with a general [Sp] or its equivalent) rather than gene-specific (TFIIIA) transcription factor. In our case, augmented transcription after the early blastula stage seems to result from a late gene-specific element (USE IV). We have previously pointed out the inconsistencies of having the sea urchin histone gene system utilize the simple Xenopus 5S gene competition model [Knowles and Childs 1987; M. Ito and R. Maxson, in prep.). In particular, we pointed out that this model cannot explain data where the low copy number gene family [late genes] augments their transcription rates at the blastula stage of development. The use of a late gene-specific sequence, USE IV, to augment and induce transcription beyond the early blastula stage better explains the available data and could, in fact, be shared among many genes that are activated at this stage of embryogenesis [Davidson 1986]. If this model is correct, the decline in tran-
script abundance seen with Sp1 mutation at later stages of embryogenesis would result from post-transcriptional events and could be tested using fusion constructs.

Another model consistent with our data is one where distinct factors recognize the core early and late USE I sequence. In this case, the protein binding to the sequence GGCGGG activates transcription only until the early blastula stage but at higher rates than a different protein that binds the sequence GGGCTG. Based on our data, this protein or another that also recognizes the sequence GGCGGG could act as a negative regulator in later stage embryos when the early H1 gene and the Sp1 H1-ß construct are not transcribed.

Methods
DNA sequence analysis
DNA was sequenced on M13 vectors [Messing and Vieira 1982], using the method of Sanger et al. [1977]. Deletions in M13 constructs used for sequencing and for microinjection were constructed using the procedure described by Dale et al. [1985].

Site-directed mutagenesis
Synthetic oligonucleotides that differ from the wild-type H1-ß promoter by a single nucleotide, three nucleotides, or span a region to be deleted were constructed on an Applied Biosystems automated DNA synthesizer. The 3.0-kb S. purpuratus H1-ß gene in the M13 vector was used as the template for in vitro mutagenesis. Mutants were prepared as described [Zoller and Smith 1983]. All mutations were confirmed by DNA sequence analysis. To sequence site-directed mutations, oligonucleotides shown in Table 3 were used as sequencing primers. [Lowercase letters or vertical lines refer to mutant bases or the site of deletions, respectively. Numbers refer to positions relative to the start of transcription.]

Microinjection of sea urchin one-cell zygotes
The procedure was essentially that of McMahon et al. [1985] and Colin [1986], using modifications worked out by A. Colin, unpubl. Unfertilized eggs were collected after injection of 0.5 M KC1 into adult S. purpuratus and kept in Millipore-filtered seawater at 4°C. Shed sperm was removed from male animals with a Pasteur pipette and stored on ice. Filtered seawater (FSW) acidified to pH 7.5 with hydrochloric acid was used for microinjection. Eggs were fertilized by the addition of a few drops of 20 × diluted sperm just prior to injection. Embryos were grown at 15°C. All DNA used for microinjection was linearized by digestion with a restriction enzyme, treated with RNase A and then proteinase K, followed by phenol–chloroform extraction. Following precipitation with ethanol, the DNA was resuspended in 0.2 μm filtered distilled water. The number of injected molecules was about 3500.

RNase protection assays
The S. purpuratus H1-ß gene fragment from position −556 to +317 was subcloned into pSP64, and an EcoRI–HindIII fragment [387 bp] spanning the 3′ end of the L. pictus H1-γ gene [Knowles and Childs 1986] was subcloned into pSP65. The L. pictus late H3 construct was described in Lieber et al. [1986]. H1-ß, H1-γ and late H3 antisense RNA probes were generated as described by Melton et al. [1984]. About 106 cpm of each probe was mixed with the RNA to be analyzed in 1 × RNase mapping buffer (40 mM Pipes at pH 6.7, 0.4 M NaCl, 1 mM EDTA) and 80% deionized formamide in a 20-μl reaction volume at 50°C for 18 hr. The reaction was then terminated by the addition of 180 μl RNase digestion buffer (10 mM Tris at pH 7.5, 5 mM EDTA, 300 mM NaCl), with 20 μg/ml RNase A and 2 μg/ml RNase T1. After 60 min at 30°C, 20 μl of 10% SDS and 50 μg of proteinase K were added, and the reaction incubated an additional 15 min. After phenol–chloroform extraction and ethanol precipitation, the protected RNA was analyzed on 5% acrylamide–7M urea gels. Samples from microinjected or control embryos were routinely analyzed with both probes in a single reaction mix.

Minipreparation of sea urchin embryo RNA and DNA
For each RNase protection assay, 20–30 normal embryos of a given age were collected by mouth micropipette. Embryos were washed in 200 μl of embryo wash solution (0.5 M NaCl, 10 mM

Table 3. Oligonucleotides used

Sequence partners	GC 26	GC 33	GC 29	GC 23	GC 24	GC 21	GC 22	GC 25	GC 31	GC 32
GC 32:	-183	-353	-42	-58	-61	-89	-94	-165	-236	-328
GC 26:										
GC 29:										
GC 23:										
GC 24:										
GC 21:										
GC 22:										
GC 25:										
GC 31:										
GC 32:										
GC 32:	5'-CATATTTAATTGAAAAG-3'	5'-GCATTTTATATGAAATT-3'	5'-CATATTTAATTGAAAAG-3'	5'-GCATTTTATATGAAATT-3'						

Requirements for embryonic transcription

\[
\text{(50 ng/μl} \times 2 \times 10^{-6} \text{μl}) \times (2.3 \times 10^{33} \times 10^{-9} \text{gm}) \div 10 \text{kb} \times 10^{3} \times 660 \]

Cold Spring Harbor Laboratory Press on July 19, 2018 - Published by genesdev.cshlp.org
Tris at pH 7.4, 50 mM EDTA, 10 mM EGTA]. Pelleted embryos were then resuspended in 200 μl of 0.3 M NaCl, 10 mM Tris (pH 7.4), 1 mM EDTA, 10 mM EGTA, and 0.1% SDS and extracted once with phenol, once with phenol–chloroform, and once with chloroform. RNA was precipitated using 10 μg carrier tRNA.

For DNA preparation, 20–30 normal embryos were collected and washed as above. Embryos were then resuspended in 50 μl of 250 mM Tris [pH 7.8], and 50 μl of 0.1 M EDTA [pH 8], 1% SDS, and 20 μg proteinase K were added. After incubation at 55°C for 2 h, nucleic acids were recovered by phenol extraction. RNA was degraded by treatment in 0.3 M NaOH for 1 h at 65°C, neutralized with 2 M (NH₄)₂SO₄, and applied to nitrocellulose filters using an S & S Minifold II apparatus (Flytzanis et al. 1987). M13mp19 DNA was labeled by nick translation and alkaline phosphatase reaction to detect and quantitate injected late H1-13 DNA. Slot blots were hybridized using standard procedures (Maniatis et al. 1982).

Quantitation of RNA and DNA

 Autoradiograms were scanned using an LKB Ultrascan Laser Densitometer. The absolute numbers of H1-γ transcripts were calculated by comparison with the signal generated using the identical probe and 30-hr S. purpuratus gastrula RNA. The number of transcripts per embryo equivalent of this RNA preparation was determined by solution RNA probe excess hybridization to be 10⁶. Recovery of RNA was monitored by measuring endogenous L. pictus H1-γ mRNA. There is 2.8 ng total RNA in each egg or embryo (Davidson 1986). When 500 ng of total S. purpuratus RNA at 30 hr is used as a control, the number of transcripts per embryo would be

\[
\text{Number of embryos} = \frac{500 \text{ ng}}{2.8 \text{ ng}} \times 10^6 \text{ AU*mm(tested)}
\]

The quantitation of endogenous H1-γ transcripts was done using identical procedures.

To measure the amount of injected DNA through early embryogenesis, injected and uninjected embryos were collected to make DNA which, in turn, was immobilized on nitrocellulose along with known quantities of M13 DNA. Nick-translated wild-type M13mp19 double-stranded DNA was used as a hybridization probe. By comparison of hybridization signals, the absolute number of exogenous DNA molecules can be calculated.

Acknowledgments

We thank Scott Hawley and Ken Krauter for reading the manuscript and for helpful discussions. Z.C.L. would like to thank Anita Colin for her patient and invaluable assistance in learning the microinjection procedure. This work was made possible by her teaching, as well as her experiments that optimized the microinjection procedure. This study was supported by a grant [GM 30333] from the National Institutes of Health and from the American Cancer Society to G.C.

References

Birnstiel, M., R. Portman, M. Busslinger, W. Schaffner, E. Probst, and A. Kressman. 1978. Functional organization of the histone genes in the sea urchin Psammechinus: A progress report in 'specific eukaryotic genes.' In Proceedings of the Alfred Benzon Symp. (ed. J. Engberg, J. Klenow, and V. Lieck). vol. 13, pp. 117–129.

Brown, D.D. 1984. The role of stable transcription complexes that repress and activate eukaryotic genes. Cell 37: 359–365.

Childs, G., C. Nocente-McGrath, T. Lieber, C. Holt, and J. Knowles. 1982. Sea urchin [L. pictus] late stage H3 and H4 genes: Characterization and mapping of a clustered but non-tandemly linked multigene family. Cell 31: 383–393.

Coles, L.S. and J.R.E. Wells. 1985. An H1 histone gene-specific 5' element and evolution of H1 and H5 genes. Nucleic Acids Res. 13: 585-594.

Colin, A.M. 1986. Rapid repetitive microinjection. Meth. Cell Biol. 27 395-406.

Colin, A.M., T.L. Catlin, S.H. Kidson, and R. Maxson. 1988. Closely linked early and late H2B histone genes are differentially expressed after microinjection into sea urchin zygotes. Proc. Natl. Acad. Sci. 84: (in press).

Dale, R.M.K., B.A. McClure, and J.P. Houchins. 1985. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: Application to sequencing the corn mitochondrial 18S rDNA. Plasmid 13: 31–40.

Davidson, E.H. 1986. Gene activity in early development, 3rd ed. Academic Press, Orlando, Florida.

Davidson, E.H., C.N. Flytzanis, J.J. Lee, S.J. Rose, and H.M. Sucov. 1985. Lineage-specific gene expression in the sea urchin embryo. Cold Spring Harbor Symp. Quant. Biol. 50: 321–328.

Flytzanis, C.N., R.J. Britten, and E.H. Davidson. 1987. Ontogenic activation of a fusion gene introduced into seaurchin eggs. Proc. Natl. Acad. Sci. 84: 151–155.

Flytzanis, C.N., A.P. McMahon, B.R. Hough-Evans, K.S. Katula, R.J. Britten, and E.H. Davidson. 1985. Persistence and integration of cloned DNA in postembryonic sea urchins. Dev. Biol. 108: 431–442.

Griffith, J., A. Hochschild, and M. Ptashne. 1986. DNA loops induced by cooperative binding of λ repressor. Nature 322: 750–752.

Halsell, S.B., M. Iro, and R. Maxson. 1987. Differential expression of early and late embryonic histone genes in adult tissues of the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 119: 268–274.

Heintz, N., H.L. Sive, and R.G. Roeder. 1983. Regulation of human histone gene expression: Kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle. Mol. Cell. Biol. 3: 539–550.

Hough-Evans, B.R., R.R. Franks, R.A. Cameron, R.J. Britten, and E.H. Davidson. 1987. Correct cell-type-specific expression of a fusion gene injected into sea urchin eggs. Dev. Biol. 121: 576–579.

Jones, K.A., J.T. Kadonaga, P.A. Luciw, and R. Tjian. 1986. Activation of the AIDS retrovirus promoter by the cellular transcription factor, Spl. Science 232: 755–759.

Kemler, R. and M. Busslinger. 1986. Characterization of two nonallelic pairs of late histone H2A and H2B genes of the sea urchin: Differential regulation in the embryo and tissue-specific expression in the adult. Mol. Cell. Biol. 6: 3746–3756.

Knowles, J.A. and G. Childs. 1984. Temporal expression of late histone messenger RNA in the sea urchin Lytechinus pictus. Proc. Natl. Acad. Sci. 81: 2411–2415.

Knowles, J.A. and G. Childs. 1986. Comparison of the late H1 histone genes of the sea urchin Lytechinus pictus and Strongylocentrotus purpuratus. Nucleic Acids Res. 14: 8121–8133.
Knowles, J.A., Z. Lai, and G. Childs. 1987. Isolation, characterization and expression of the gene encoding late histone subtype H1-v of the sea urchin Strongylocentrotus purpuratus. Mol. Cell. Biol. 7: 478–485.

Lai, Z.C. and G. Childs. 1988. Characterization of the structure and transcriptional patterns of the gene encoding the late histone subtype H1-β of the sea urchin Strongylocentrotus purpuratus. Mol. Cell. Biol. 13: (in press).

Levy, S., I. Sures, and L. Kedes. 1982. The nucleotide and amino acid coding sequence of a gene for H1 histone that interacts with euchromatin. The early embryonic H1 gene of the sea urchin Strongylocentrotus purpuratus. J. Biol. Chem. 257: 9438–9443.

Lieber, T., K. Weisser, and G. Childs. 1986. Analysis of histone gene expression in adult tissues of the sea urchin Strongylocentrotus purpuratus and Lytechinus pictus: Tissue-specific expression of sperm histone genes. Mol. Cell. Biol. 6: 2602–2612.

Maniatis, T., E.F. Fritsch, and J. Sambrook. 1982. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

McKnight, S.L., R.C. Kingsbury, A. Spence, and M. Smith. 1984. The distal transcription signals of the herpesvirus tk gene share a common hexanucleotide control sequence. Cell 37: 253–262.

McMahon, A.P., C.N. Flytzanis, B.R. Hough-Evans, K.S. Katula, R.J. Britten, and E.H. Davidson. 1985. Introduction of cloned DNA into sea urchin egg cytoplasm: Replication and persistence during embryogenesis. Dev. Biol. 108: 420–430.

Maxson, R.E. and J.C. Egrie. 1980. Expression of maternal and paternal histone genes during early cleavage stages of the echinoderm hybrid Strongylocentrotus purpuratus Lytechinus pictus. Dev. Biol. 74: 335–342.

Maxson, R.E. and F.H. Wilt. 1982. Accumulation of the early histone messenger RNAs during the development of Strongylocentrotus purpuratus. Dev. Biol. 94: 435–440.

Maxson, R.E., T.J. Mohun, R. Cohn, and L. Kedes. 1983a. Expression and organization of histone genes. Annu. Rev. Genet. 17: 239–277.

Maxson, R.E., T.J. Mohun, G. Gormezano, G. Childs, and L.H. Kedes. 1983b. Distinct organizations and patterns of expression of early and late gene sets in the sea urchin. Nature 301: 120–125.

Melton, D.A., P.A. Krieg, M.R. Rebagliati, T. Maniatis, K. Zinn, and M.R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA probes from plasmids containing a bacteriophage Sp6 promoter. Nucleic Acids Res. 12: 7034–7056.

Messing, J. and J. Vieira. 1982. A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments. Gene 19: 269–276.

Osley, M.A. and L.M. Hereford. 1981. Yeast histone genes show dosage compensation. Cell 24: 377-384.

Osley, M.A., J. Gould, S. Kim, M. Kane, and L. Hereford. 1986. Identification of sequences in a yeast histone promoter involved in periodic transcription. Cell 45: 537–544.

Perry, M., G.H. Thomsen, and R.G. Roeder. 1985. Genomic organization and nucleotide sequence of two distinct histone gene clusters from Xenopus laevis: Identification of novel conserved upstream sequence elements. J. Mol. Biol. 185: 479–499.

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463–5467.

Smith, A.B. 1981. Implications of lantern morphology for the phylogeny of post-paleozoic echinoids. Paleontology 24: 779–801.

Weinberg, E.S., M.B. Hendrickes, K. Hemminki, P.E. Kuwabara, and L.A. Farrelly. 1983. Timing and rates of synthesis of early histone mRNA in the embryo of Strongylocentrotus purpuratus. Dev. Biol. 98: 117–129.

Younghusband, H.B., R. Starm, and J.R.E. Wells. 1986. Mutagenesis of conserved 5' elements and transcription of a chicken H1 histone gene. Nucleic Acids Res. 14: 635–644.

Zoller, M. and M. Smith. 1983. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 100: 468–500.
Both basal and ontogenic promoter elements affect the timing and level of expression of a sea urchin H1 gene during early embryogenesis.

Z C Lai, R Maxson and G Childs

Genes Dev. 1988, 2:
Access the most recent version at doi:10.1101/gad.2.2.173