Harmonic analysis/Functional analysis

Hypergroupoids and C*-algebras

Hypergroupoïdes et C*-algèbres

Rohit Dilip Holkara, Jean Renault

Abstract

Let G be a locally compact groupoid. If X is a free and proper G-space, then \((X \ast X)/G\) is a groupoid equivalent to G. We consider the situation where X is proper, but no longer free. The formalism of groupoid C*-algebras and their representations is suitable to attach C*-algebras to this new object.

Résumé

Soit G un groupoïde localement compact. Si X est un G-espace qui est libre et propre, alors \((X \ast X)/G\) est un groupoïde équivalent à G. On considère la situation où X est seulement propre. Le formalisme des C*-algèbres de groupoïdes permet d’associer des C*-algèbres à ce nouvel objet.
Théorème 0.1. On suppose G à base dénombrable d’ouverts. Les représentations de l’algèbre involutive $C_c(G)$ qui sont non dégénérées et continues pour la topologie limite inductive se prolongent au triplet $(C_c(G), C_c(X), C_c((X \ast X)/G))$.

Comme dans [7], la démonstration repose sur le théorème de désintégration des représentations. On obtient la norme pleine et la norme réduite de $C_c((X \ast X)/G)$ en prenant respectivement la représentation universelle et la représentation régulière de $C_c(G)$. On définit les C^*-algèbres $C^*((X \ast X)/G)$ et $C_c^*((X \ast X)/G)$ de l’hypergroupoïde $(X \ast X)/G$ comme les C^*-complétions relatives à ces normes.

Les paires (G, K), où K est un sous-groupe compact d’un groupe localement compact G fournissent des exemples classiques d’hypergroupes qui rentrent dans le cadre ci-dessus (avec $G = K \ast K$ et α la mesure invariante). On obtient les C^*-algèbres $C^*(K/GK)$ et $C_c^*(K/GK)$. Si (G, K) est la complétion de Schlichting d’une paire de Hecke (Γ, Γ_0) comme dans [8], $C_c^*(K/GK)$ s’identifie à la C^*-algèbre de Hecke de ce triplet.

Considérons maintenant une paire (G, K) où K est un sous-groupe fermé d’un groupe localement compact. On suppose, de plus, que $H^{(0)} = G^{(0)}$, K est propre, l’application $r : G/K \rightarrow G^{(0)}$ admet un système de mesures invariant α et G possède un système de Haar λ. Alors $(G = K/K, \alpha)$ est un G-espace propre mesuré. Le théorème ci-dessus permet de définir les C^*-algèbres pleine et réduite de l’hypergroupoïde $(X \ast X)/G = K\backslash G/K$. Dans la section 1 de [6], les auteurs, motivés par la construction de C^*-algèbres de Hecke, considèrent le cas où $G = \Gamma \times Y$ est le groupoïde de l’action d’un groupe Γ sur un espace Y et $H = \Lambda \times Y$ où Λ est un sous-groupe de Γ qui agit proprement sur Y. L’article [5], qui propose une définition d’une paire de Gelfand dans le cadre des groupoïdes, considère aussi l’algèbre de convolution $C_c(K\backslash G/K)$ dans le cas où K est un sous-groupoïde compact d’un groupoïde localement compact G.

1. Introduction

This note stems from the elementary observation that the C^*-category of a groupoid G defined in [7] can be extended from principal G-spaces to proper G-spaces. When X is a principal locally compact G-space with invariant r-system α, one can construct the $*$-algebra $(\alpha, \alpha)_c$ and its C^*-completion (α, α); it is the C^*-algebra of the locally compact groupoid $(X \ast X)/G$ equipped with the Haar system induced by α. When X is only proper, the same formulas define the $*$-algebra $(\alpha, \alpha)_c$ and its C^*-completion (α, α); however, $(X \ast X)/G$ is no longer a groupoid, but a hypergroupoid. Objects like $(X \ast X)/G$ generalize both hypergroupoids (when the G-space X is transitive) and groupoids (when X is free). While convolution algebras of measures are commonly associated with hypergroupoids, our construction gives convolution algebras of functions and C^*-algebras. It also covers the construction of C^*-algebras from Hecke pairs as in [2,8]. In fact, the observation that $(X \ast X)/G$ is no longer a groupoid when X is not a free G-space but that its convolution algebra can still be defined appears in this context (see [6,3]). There, it is usual to introduce the reduced norm, while the existence of a maximal norm is problematic. Our framework provides natural maximal and reduced norms on the hypergroupoids we consider.

2. The C^*-category of a groupoid

We review the framework and the main results of [7], but assuming that the G-spaces are proper and no longer free. For the sake of simplicity, we consider here an untwisted groupoid G. Given a topological groupoid G (with unit space $G^{(0)}$ and range and source maps r and s), a left G-space is a topological space X endowed with a continuous map $r_X : X \rightarrow G^{(0)}$, assumed to be open and onto, and a continuous action map $G \times X \rightarrow X$, where $G \times X$ is the subspace of composable pairs, i.e. $(y, x) \in G \times X$ such that $s(y) = r(x)$, sending (y, x) to $y x$ in such a way that $(y y') x = y (y' x)$ for all composable triples (y, y', x). The convolution product is given by:

$$f \ast g(x, z) = \int f[x, y]g[y, z] d\beta^{r(x)}(y)$$

(2)
In this formula, a representative (x, z) has been fixed and $[x, z]$ denotes its class. The integration is over a compact set because the map $\varphi^x : Y^x(\lambda) \to (X * Y)/G$ defined by $\varphi^x(y) = [x, y]$ is proper. The resulting integral depends on $[x, z]$ only because of the invariance of β. One also defines:

$$(\alpha, f, \beta)^* = (\beta, f^*, \alpha)$$

where the involution is given by $f^*[y, x] = f[y, x]$.

Lemma 2.1. (Cf. [7, Lemma 3.1].) These operations are well defined and turn $C_c(G)$ into a $*$-category.

The next step is to define a C^*-norm on the $*$-category $C_c(G)$. A unitary representation of G is a pair (m, H) where m is a transverse measure class [1, Definition A.1.19] and H is a Borel G-Hilbert bundle. We recall that m associates with (X, α) a measure class $m(\alpha)$ on X/G in a coherent fashion. A unitary representation of G defines by integration a representation of $C_c(G)$, that is, a functor into the W^*-category of Hilbert spaces. It associates to the object (X, α) the Hilbert space $H(\alpha) = L^2(X/G, m(\alpha), X * H/G)$ and to the arrow $(\alpha, f, \beta) : H(\beta) \to H(\alpha)$ defined by:

$$\langle \xi \sqrt{\mu}, (L(\alpha, f, \beta)\eta) \sqrt{v} \rangle = \int f(x, y) \langle \xi[x], \eta[y] \rangle \sqrt{(\mu \circ \hat{\beta}_1)(v \circ \hat{\alpha}_2)[x, y]}$$

where the sections $\xi, \sqrt{\mu} \in H(\alpha)$ and $\eta, \sqrt{v} \in H(\beta)$ are written as half-densities: μ [resp. v] is a measure on X/G [resp. Y/G] in $m(\alpha)$ [resp. $m(\beta)$]. The systems of measures $\hat{\beta}_1$ and $\hat{\alpha}_2$ are induced by β and α respectively as in [7] or [1, Lemma A.1.3] for the proper case. For example, one has $\int f \, dm(\alpha) = \int f(x, y) \, dm(\alpha)(x, y)$. By definition, the measures $m_1 = \mu \circ \hat{\beta}_1$ and $m_2 = v \circ \hat{\alpha}_2$ are equivalent; their geometric mean is the measure $(dm_1/dm_2)^{1/2} \, dm_2$. Note that by Cauchy–Schwarz inequality,

$$\|L(\alpha, f, \beta)\| \leq \max \left(\sup_x \left\| \int f(x, y) \, dm(\alpha)(x, y) \right\|, \sup_y \left\| \int f(x, y) \, dm(\beta)(x, y) \right\| \right)$$

The 1-norm of f is defined as the right-hand side. Just as in [7], we have:

Theorem 2.2. (Cf. [7, Proposition 3.5, Theorem 4.1].)

1. Let (m, H) be a unitary representation of a locally compact groupoid G. Then the above formulas define a representation L of the $*$-category $C_c(G)$, called the integrated representation, which is continuous for the inductive limit topology and bounded for the 1-norm.

2. Let (G, λ) be a second countable locally compact groupoid with Haar system. Every representation of the $*$-algebra $C_c(G, \lambda)$ in a separable Hilbert space that is non-degenerate and continuous for the inductive limit topology is equivalent to an integrated representation.

We deduce from this theorem that, given a locally compact groupoid with the Haar system (G, λ), the $*$-category $C_c(G)$ can be completed into a C^*-category by defining the full C^*-norm $\|L(\alpha, f, \beta)\|$ as the supremum of $\|L(\alpha, f, \beta)\|$ over all unitary representations of G in separable Hilbert bundles. In particular, if (X, α) is a measured proper G-space, this defines the C^*-algebra $C_c(\alpha, \alpha)$. If, moreover, X is a free G-space, $(X * X)/G$ is a groupoid equivalent to G; the algebra (α, α) is the full C^*-algebra of this groupoid (endowed with the Haar system induced by α) and is Morita equivalent to $C^*_r(G, \lambda) = (\lambda, \lambda)$. If X is not free, $(X * X)/G$ is a hypergroupoid (the multiplication law is defined on its subsets rather than on its elements). It is still true that (λ, α) is a full C^*-module over (α, α), but its algebra of compact operators is only an ideal of $C^*_r(G, \lambda)$. One has similar results with the regular representation and the reduced norm. If we identify $(G * X)/G = X$ through the map $(y, x) \mapsto y^{-1}x$, we obtain the various incarnations (1) of the formula (2).

3. Examples

1. Let K be a compact subgroup of a locally compact group G. The homogeneous space $X = G/K$ is a proper G-space equipped with an invariant measure α. Then, $(X * X)/G$ is the double coset hypergroup $K'G/K$. The full and the regular representations of G yield respectively the full and the reduced C^*-algebras of this hypergroup.

2. Let Γ_0 be an almost normal subgroup of a discrete group Γ as in [2,8]. We equip Γ_G with the counting measure. Since Γ_0 acts on Γ/Γ_0 with finite orbits, the convolution product is well defined on $C_c(\Gamma_0 \setminus \Gamma/\Gamma_0)$, which becomes the Hecke algebra $H(\Gamma_0)$. Let (G, K) be the Schlichting completion of (Γ, Γ_0). Then $H(\Gamma, \Gamma_0)$ can be identified with $C_c(K \setminus G/K)$ and we are in the situation of the first example.

3. A particular case of the next example, which generalizes the first example, is given in [6, Section 1]. Let (G, λ) be a locally compact groupoid with the Haar system and K a closed subgroupoid with $K^0 = G^0$. Assume that K is a proper groupoid and that the map $r : G/K \to G^0$ has a G-invariant system of measures α. Then $(X = G/K, \alpha)$ is a measured proper G-space. Thus we can construct the hypergroupoid $(X * X)/G = K'G/K$ and its full and its reduced C^*-algebras. If K is principal, $(X * X)/G$ is a groupoid equivalent to G. The situation considered in [6] is the case of a semi-direct groupoid.
\[G = \Gamma \ltimes Y \] where a group \(\Gamma \) acts on a space \(Y \) and \(H = \Lambda \ltimes Y \), where \(\Lambda \) is a subgroup of \(\Gamma \) acting properly on \(Y \). The convolution algebra \(C_c(K \backslash G / K) \) also appears in [5] (with \(K \) compact), where the authors give a groupoid version of a Gelfand pair.

Acknowledgement

The authors thank the GdR 2947 NCG, which made this project possible.

References

[1] C. Anantharaman-Delaroche, J. Renault, Amenable Groupoids, Monographies de l'Enseignement Mathématique, vol. 36, L'Enseignement Mathématique, Genève, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain.

[2] J.-B. Bost, A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Sel. Math. New Ser. 1 (3) (1995) 411–457.

[3] A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, Colloquium Publications, vol. 55, American Mathematical Society, 2008.

[4] P. Ghez, R. Lima, J. Roberts, W*-categories, Pac. J. Math. 120 (1985) 79–109.

[5] K. Kangni, I. Toure, On groupoid algebras of biinvariant functions, Int. J. Math. Anal. 6 (41–44) (2012) 2101–2108.

[6] M. Laca, N. Larsen, S. Neshveyev, Phase transition in the Connes–Marcolli GL 2-system, J. Noncommut. Geom. 1 (4) (2007) 397–430.

[7] J. Renault, Représentations des produits croisés d'algèbres de groupoïdes, J. Oper. Theory 25 (1987) 3–36.

[8] K. Tzanev, C*-algèbres de Hecke et K-théorie, PhD thesis, Université Paris-7, December 2000.