It has been proposed that vulnerability to nicotine addiction is moderated by variation at the μ-opioid receptor locus (OPRM1), but results from human studies vary and prospective studies based on genotype are lacking. We have developed a humanized mouse model of the most common functional OPRM1 polymorphism rs1799971_A>G (A118G). Here we use this model system together with a cohort of German youth to examine the role of the OPRM1 A118G variation on nicotine reward. Nicotine reinforcement was examined in the humanized mouse model using i.v. self-administration. Male (n = 17) and female (n = 26) mice homozygous either for the major human A allele (AA) or the minor G allele (GG) underwent eight daily 2 h sessions of nicotine self-administration. Furthermore, male (n = 104) and female (n = 118) subjects homozygous for the A allele or carrying the G allele from the Mannheim Study of Children at Risk were evaluated for pleasurable and unpleasant experiences during their initial smoking experience. A significant sex-by-genotype effect was observed for nicotine self-administration. Male A118GG mice demonstrated higher nicotine intake than male A118AA mice, suggesting increased nicotine reinforcement. In contrast, there was no genotype effect in female mice. Human male G allele carriers reported increased pleasurable effects from their first smoking experience, as compared to male homozygous A, female G and female homozygous A allele carriers. The 118G allele appears to confer greater sensitivity to nicotine reinforcement in males, but not females.

Translational Psychiatry (2016) 6, e861; doi:10.1038/tp.2016.132; published online 26 July 2016
It thus remains unclear whether OPRM1 A118G alters the susceptibility to smoking behaviors. This is in contrast to studies in alcohol research, in which findings from animal models, human laboratory studies and some, but not all, clinical trials indicate that the OPRM1 118G allele confers increased alcohol reward and an enhanced therapeutic response to naltrexone. Further studies, both clinical and preclinical, are clearly necessary to clarify the pharmacogenetic role of this variant, which is of particular interest for individuals of European or Asian ancestry, where its frequency ranges from 15 to 50%.

Human genetic studies aimed at identifying risk variants suffer from two important potential confounds: linkage disequilibrium with other variants and stratification bias. To overcome this problem, we recently generated humanized mouse lines in which the endogenous mouse Oprm1 exon 1 was replaced with the corresponding human sequences encoding either the A- or G allele of rs1799971. By differing only in a single nucleotide, the h/mOPRM1-118AA and h/mOPRM1-118GG mouse lines allow for examination of the functional consequences of each variant in isolation. 118GG mice replicate important phenotypes associated with the G allele in humans, including increased alcohol reward and sensitivity to the effects of opioid antagonist treatment on alcohol intake, as well as a decreased analgesic efficacy of morphine, thus validating these humanized mouse lines as a reverse-translational tool.

Here we used this humanized OPRM1 mouse model in a translational approach to clarify some of the reported genotype and sex discrepancies associated with the A118G variation as related to nicotine reinforcement. First, we ascertained differences in nicotine self-administration of 118AA and 118GG mice of both sexes. We then examined whether the mouse findings would translate to humans by evaluating the pleasurable and unpleasant consequences of the first smoking experience reported by male and female participants of the Mannheim Study of Children at Risk, a prospective longitudinal study following infants from birth to young adulthood.

Figure 1. Nicotine dose–response in male C57Bl/6N mice. Male mice demonstrated increased responding (a) and an increased number of infusions obtained (b) for the 0.01 mg per kg dose nicotine relative to all other doses. *P < 0.05 relative to other doses.

MATERIALS AND METHODS

Animal study

Animals. Adult C57Bl/6N (Charles River, Sulzfeld, Germany), and male and female AA and GG mice aged 12–16 weeks were single-housed in a temperature-controlled (21 °C) environment maintained on a 12 h light–dark cycle (lights on at 0600 hours). Food and water was available ad libitum. All experiments were performed in accordance with EU guidelines on the care and use of laboratory animals and were approved by the local animal care committee (Regierungspräsidium, Karlsruhe, Germany).

The generation of the h/mOPRM1-118AA and -118GG mice has been described previously. Briefly, two humanized mouse lines were generated on a C57Bl/6 background. The mouse Oprm1 exon 1 was replaced by the human sequence. One line, h/mOPRM1-118AA, was homozygous for the major human 118A allele. For h/mOPRM1-118GG, the same insert was used, but site-directed mutagenesis was introduced to introduce a G in position 118. The lines are genetically identical, with the exception of the A→G substitution. The two lines were crossed and maintained through heterozygous breeding as a line carrying both alleles at the OPRM1-A118G site.

Drugs. Nicotine hydrogencitrate salt (Sigma-Aldrich, Steinheim, Germany) was dissolved in physiological saline (0.9% NaCl) for i.v. injection of 0, 0.01, 0.03 and 0.06 mg kg⁻¹ per 35 μl infusion for nicotine dose–response testing and 0.01 mg kg⁻¹ per 35 μl infusion for OPRM1 A118G characterization based on free base weight (final solution adjusted to ~pH 7 using NaOH). The 0.01 mg kg⁻¹ per infusion dose has previously been shown to support self-administration in mice, and in our hands results in the most robust responding and intake relative to other commonly-used doses (see ref. 46 and Figure 1).

Apparatus and behavioral procedures. Nicotine self-administration was assessed in 12 operant chambers (Med Associates, Fairfax, VT, USA) housed in light- and sound-attenuating cubicles. Each chamber (24.1 × 20.3 × 18.4 cm) was equipped with two levers (left and right), a food dispenser and a drug delivery system connected via infusion pump (PHM-100, Med Associates) located outside the cubicle. Operant chambers were controlled using Med-PC IV (Med Associates) software. Mice first underwent lever training under an Fixed Ratio 1 (FR1) schedule with 14 mg sweetened food pellets (TestDiet, St. Louis, MO, USA), as previously described. Following lever training, mice were implanted with an indwelling i.v. catheter (made in-house) into the jugular vein. Catheter patency was maintained with 0.15 ml heparanized saline (100 i.u. ml⁻¹) containing Baytril (0.7 mg ml⁻¹) administered daily throughout the experiment. After a 3 day recovery period, mice underwent daily 2 h nicotine dose–response testing to con

normal text
administration procedures were assessed as described above, except that the mice were not subjected to catheter implantation or nicotine infusions, and thus were only assessed for responding for the blinking light CS.

Human study

Participants. Subjects were participants of the Mannheim Study of Children at Risk, a prospective longitudinal study following infants at risk for later developmental disorders from birth to young adulthood, as previously described. Children were primarily of Caucasian ethnicity (99%). From a total of 384 infants, 312 subjects participated in the 23-year assessment. About 225 reported to have ever smoked at least 1 cigarette (72.1%) and 3 had incomplete data, leaving 222 young adults (104 males, 118 females) to be included into the analyses for the present study. The study design was approved by the Ethics Committee of the University of Heidelberg. All participants provided written informed consent.

Measures. At the ages of 15, 19, 22 and 23 years, participants completed a detailed smoking questionnaire including age of smoking onset and lifetime tobacco use (for example, the presence of at least one period of daily smoking). This inventory is part of the Substance Use Questionnaire designed by Müller and Abbot in collaboration with the World Health Organization (for more details see ref. 48). To measure the individual’s response to the initial experimentation with cigarettes, the early smoking experiences questionnaire was administered and the participants were asked to give global ratings of their pleasurable and unpleasant feelings (from 1 = none to 4 = intense) the first time they tried cigarettes. To reduce recall bias, the response to initial exposure was recorded at the assessment following smoking initiation (for example, smoking initiation at age 14 years: ratings at the assessment at age 15 years; smoking initiation at age 18 years: ratings at the assessment at age 19 years and so on). Smoking status at age 23 years and mean early smoking experiences are presented in Table 1. Psychosocial adversity as a potential confound was assessed 3 months after birth by rating the presence of 11 adverse family factors.

Genotyping. Genomic DNA was extracted either from ethylenediamine-tetraacetic acid anticoagulated venous blood or saliva according to standard procedures. The rs1799971 (or A118G) SNP of the OPRM1 gene was genotyped on a 7900HT Fast Real-Time PCR System (Life Technologies, Ober-Olmi, Germany), using a TaqMan S’ nuclease assay (TaqMan SNP Genotyping Assay ID C_8950074_1; Life Technologies). Three participants were homozygous and 62 heterozygous carriers of the G allele. About 157 participants were homozygous for the A allele, with no significant differences between males and females (Ober-Olm, Germany), using a TaqMan 5’ nuclease assay (TaqMan SNP Genotyping Assay ID C_8950074_1; Life Technologies). Three participants were homozygous and 62 heterozygous carriers of the G allele. About 157 participants were homozygous for the A allele, with no significant differences between males and females (Ober-Olm, Germany), using a TaqMan 5’ nuclease assay (TaqMan SNP Genotyping Assay ID C_8950074_1; Life Technologies). Three participants were homozygous and 62 heterozygous carriers of the G allele. About 157 participants were homozygous for the A allele, with no significant differences between males and females (X²=2.71, P=0.258). Genotype distribution did not significantly deviate from the Hardy–Weinberg equilibrium, neither in the entire sample (P=0.253) nor separately for males and females. Because of the low frequency of the G allele, homo- and heterozygous G allele carriers were combined to maximize the power of analyses.

Statistical analysis

All statistical analyses were performed using SPSS (IBM, Armonk, NY, USA). For animal data, a repeated measures analysis of variance (ANOVA) was used to evaluate lever pressing and nicotine reinforcers during nicotine dose–response testing. For nicotine self-administration in AA and GG mice, ANOVAs were used to evaluate sex and genotype effects on lever pressing and nicotine reinforcers achieved across daily self-administration sessions; due to the residual effects of food training, the first 2 days of nicotine self-administration were omitted in all analyses. For human data, ANOVAs were used to evaluate pleasurable and unpleasant early smoking sensations as a function of sex and genotype. In terms of pleasant sensations, an ordinal interaction pattern was observed with a postulated lack of power in the traditional ANOVA approach. Thus, using the procedure suggested by Strube and Bobko and Elias and Cropanzano, we compared the means in male homozygous A allele carriers, female G and female homozygous A allele carriers. In the case of nonsignificant differences, groups were combined and tested against male G allele carriers. For progression to daily smoking, logistic regression analyses were calculated to examine the effects of the factors OPRM1 genotype (AA coded as 0, G coded as 1) and sex (male coded as 0, female as 1) and their interaction. All models included age of initial exposure to nicotine and psychosocial adversity as covariates. Significance was set at P<0.05.

RESULTS

Nicotine dose response

Figure 1 shows the responding (a) and infusions obtained (b) for each nicotine dose. The 0.01 mg per kg dose refers to the final day of 8 days of self-administration prior to dose changes. A repeated measures ANOVA of dose × lever for active and inactive lever pressing revealed significant effects of lever (F(1,6) = 15.0, P<0.05) and dose (F(3,18) = 14.0, P<0.005), and a significant lever × dose interaction (F(3,18) = 8.0, P<0.005). Paired t-tests revealed that active lever pressing was greater in the 0.01 mg per kg dose than all other doses (all t(6) = 2.9, P<0.05), with no difference in active lever pressing between the 0 and 0.03 mg kg⁻¹ (t(6) = 0.9, P>0.05) doses, and both of these doses greater than 0.06 mg kg⁻¹ (all t(6) = 3.3, P<0.05). Inactive lever pressing differed between the 0.01 mg per kg dose and both other nicotine doses (all t(6) = 2.6, P<0.05), with no other significant differences among the different doses.

For infusions obtained, a repeated measures ANOVA of dose revealed a significant effect (F(3,18) = 10.3, P<0.0005). Paired t-tests demonstrated that the number of infusions obtained for the 0.01 mg per kg dose was significantly higher than all other doses (all t(6) = 2.7, P<0.05), with no difference in infusions between the 0 and 0.03 mg kg⁻¹ (t(6) = 0.3, P>0.05) doses, and both of these doses greater than 0.06 mg kg⁻¹ (all t(6) = 2.7, P<0.05). These data demonstrate that the 0.01 mg per kg nicotine results in increased responding and infusions obtained relative to other doses of nicotine.

Increased nicotine self-administration in male h/mOPRM1-118GG mice

Lever self-administration is an established operant method to assess the reinforcing properties of nicotine. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer. All mice (AA: 9 male, 15 female mice, GG: 8 males, 11 females) rapidly acquired stable lever pressing to nicotine as a reinforcer.
effects (all $F(5,75) < 1.4$, $P > 0.05$), indicating that male 118GG mice self-administered significantly more nicotine than male 118AA mice. For female mice, a two-way ANOVA (day × genotype) of nicotine reinforcers achieved on days 3–8 revealed no significant effects (all $F < 1$), indicating no genotype-specific differences among female mice. These data demonstrate that nicotine self-administration in the humanized mouse lines differ as a function of OPRM1 A118G genotype and sex and suggest greater nicotine reinforcement in male h/mOPRM1-118GG mice.

No difference in cue responding in male h/mOPRM1-118GG mice

Figure 3 shows the responding for the blinking light CS. A three-way ANOVA of days 3–8 (lever × genotype × day) revealed significant main effects of lever ($F(1,13) = 13.3$, $P < 0.005$) and day ($F(1,7,22.5) = 5.3$, $P < 0.05$), and a significant lever × day interaction ($F(5,65) = 3.0$, $P < 0.05$), but no other significant effects (all $F < 1$, except genotype: $F(1,13) = 1.3$, $P = 0.27$). These results indicate no genotype differences in sensory reinforcement, and a progressive decline in active relative to inactive lever responding in the absence of an unconditioned stimulus, and thus suggest that the differences in nicotine self-administration demonstrated in male AA and GG mice are likely due to differences in nicotine reward and not differences in sensory reinforcement.44,53

Increased pleasurable initial smoking experience in male G allele carriers

Human male G allele carriers rated their initial smoking experience as more pleasurable than male homozygous A allele carriers, female G allele carriers, and female homozygous A allele carriers. Figures 4a and b show the mean (± s.e.m.) scores on the Early Smoking Experiences questionnaire for pleasurable and unpleasant smoking experiences, respectively, for each genotype group, adjusted for age at initial exposure to nicotine and psychosocial adversity. A two-way ANOVA (sex × genotype) revealed main effects of sex ($F(1,216) = 4.37$, $P < 0.05$) and genotype ($F(1,216) = 4.28$, $P < 0.05$), but no significant interaction ($F(1,216) = 2.35$, $P > 0.05$). Mean pleasurable sensations did not differ between male homozygous A allele carriers, female G and female homozygous A allele carriers ($Fs < 1$). When combined, a highly significant difference occurred in contrast to male carriers of the G allele ($F(1,218) = 8.48$, $P < 0.005$). For unpleasant early smoking sensations, a two-way ANOVA (sex × genotype) revealed no significant main effects of sex ($F(1,216) = 1.91$, $P > 0.05$) or genotype ($F(1,216) = 0.31$, $P > 0.05$) and no significant interaction ($F(1,216) = 0.77$, $P > 0.05$). Furthermore, there were no significant main effects of sex (odds ratio (OR) = 1.40, 95% confidence interval (CI) = 0.69–2.85, $P = 0.354$) or genotype (OR = 2.28, CI = 0.91–5.70, $P = 0.078$) or sex × genotype interaction (OR = 1.66, CI = 0.47–5.85,

Figure 2. Self-administration of nicotine in male and female AA and GG mice. (a and b) Both male and female AA and GG mice showed discrimination between responding on the active and inactive levers (a and b). Data represent mean (± s.e.m.) number of presses on the active/inactive levers during eight daily 2 h sessions of nicotine self-administration (0.01 mg kg$^{-1}$ per infusion). (c) Male GG mice showed increased nicotine intake relative to AA male mice, while (d) female AA and GG mice did not differ in nicotine reinforcers achieved. Data represent mean (± s.e.m.) number of reinforcers achieved during 8 daily 2 h sessions of nicotine self-administration (0.01 mg kg$^{-1}$ per infusion). **$P < 0.005$.

Figure 3. Cue responding in male AA and GG mice. AA and GG mice showed similar responding for the blinking light CS. Data represent mean (± s.e.m.) number of presses on the active/inactive levers during eight daily 2 h sessions. CS, conditioned stimulus.

Translational Psychiatry (2016), 1 – 8
38 as well as increased male GG mice have shown a markedly enhanced alcohol-evoked reward, paralleled by experiments in the humanized mouse lines, in which behavioral measures of alcohol reinforcement relative to male AA carriers were found in this subgroup, but interestingly, these subjects recounted higher pleasurable sensations from their initial smoking experience than A homozygous females. Thus, further studies evaluating the response to nicotine in GG and AA female mice, as well as in humans, are warranted. Enhanced drug reward in OPRM1 A118G carriers could potentially increase the risk for excessive use and the development of substance use disorders, including smoking addiction, although...
this notion is not supported by human epidemiological data. A meta-analysis of available association studies failed to detect evidence for an effect of the A118G polymorphism on the risk for nicotine dependence.76 Also, in the cohort of youth analyzed here, we did not find evidence of a moderating effect of genotype on progression to daily smoking. Our findings contrast those from Kleinjan et al.,77 who reported that in males aged 13–15 years, the A allele was associated with a faster development of smoking behavior, whereas in females, G allele carriers showed a faster development of smoking. Further studies on adolescent smoking should address the role of genetic variation at the MOR gene locus on smoking behavior.

One of the primary implications of our findings is that similar to the treatment of alcoholism, MOR antagonists may be useful for smoking cessation and the efficacy of such treatments may be determined by pharmacogenetic effects of the A118G polymorphism. Naltrexone and nalmefene are both clinically-approved for the treatment of alcohol use disorders, and have a demonstrated efficacy in reducing consumption in large meta-analyses including more than 10,000 patients.33,78–80 For naltrexone, the pharmacogenetic influence of the A118G variant on treatment response has been established by meta-analysis.37 This was recently supported by the demonstration of increased sensitivity to both nalmefene and naltrexone treatment in OPRM1 118G mice,37 indicating that treatment with MOR antagonists may have a larger effect size when targeted to patients with a genotype that predicts response.

In contrast to alcohol studies, clinical trials examining the effectiveness of MOR antagonists in smoking cessation have been inconsistent. Although naltrexone has been demonstrated to decrease nicotine reward, smoking urge and cigarette consumption in various paradigms, and increase the efficacy of nicotine-replacement therapies for smoking cessation,24,81–85 consistent with a role for MOR in nicotine reinforcement, several other studies have demonstrated little or no success with MOR antagonists. In fact, recent meta-analyses of the effect of MOR antagonists on smoking cessation concluded that naltrexone had no beneficial effect on abstinence from smoking.86,87 To date, only one study has examined the efficacy of MOR antagonists as a function of OPRM1 A118G genotype regarding smoking behaviors. No effect of naltrexone as a function of either naltrexone or naltrexone treatment with MOR antagonists may have a larger effect size when targeted to patients with a genotype that predicts response.

In contrast to alcohol studies, clinical trials examining the effectiveness of MOR antagonists in smoking cessation have been inconsistent. Although naltrexone has been demonstrated to decrease nicotine reward, smoking urge and cigarette consumption in various paradigms, and increase the efficacy of nicotine-replacement therapies for smoking cessation,24,81–85 consistent with a role for MOR in nicotine reinforcement, several other studies have demonstrated little or no success with MOR antagonists. In fact, recent meta-analyses of the effect of MOR antagonists on smoking cessation concluded that naltrexone had no beneficial effect on abstinence from smoking.86,87 To date, only one study has examined the efficacy of MOR antagonists as a function of OPRM1 A118G genotype regarding smoking behaviors. No effect of naltrexone as a function of either naltrexone or naltrexone treatment with MOR antagonists may have a larger effect size when targeted to patients with a genotype that predicts response.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
Funding was obtained from the Bundesministerium für Bildung und Forschung (BMBF, FKZ 01EW1112 and 01ZX1311A (ref. 99)). REB was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, SPP1226, SP 383/1-1). Funding for the Mannheim Study for Children at Risk was provided by the DFG.

REFERENCES
1. WHO. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. World Health Organization: Geneva, Switzerland, 2009.
2. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224–2260.
3. Berendes F, Robledo P, Trigo JM, Martin-Garcia E, Maldonado R. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system. Neurosci Biobehav Rev 2010; 35: 220–231.
4. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001; 2: 119–128.
5. Cressey D. E-cigarettes: the lingering questions. Nature 2014; 513: 24–26.
6. Dutta LM, Glantz SA. Electronic cigarettes and conventional cigarette use among U.S. adolescents: a cross-sectional study. JAMA Pediatr 2014; 168: 610–617.
7. Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes. Nat Rev Genet 2005; 6: 521–532.
8. Li MD, Cheng R, Ma JZ, Swan GE. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 2003; 98: 23–31.
9. Vink JM, Willemzen G, Boomsma DI. Heritability of smoking initiation and nicotine dependence. Behav Genet 2005; 35: 397–406.
10. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L et al. Meta-analysis and imputation refine the association of 15q25 with smoking quantity. Nat Genet 2010; 42: 436–440.
11. Thorgersson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F et al. Sequence variants at CHRNA3–CHRNA5 and CYP2A6 affect smoking behavior. Nat Genet 2010; 42: 448–453.
12. Furgberg H, Kim Y, Dackor J, Boerwinkle E, Franceschini N, Ardissino D et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 2010; 42: 441–447.
21 Ismayilova N, Shoaib M. Alteration of intravenous nicotine self-administration by
22 Liu X, Jernigan C. Activation of the opioid μ1, but not δ or κ, receptors
33 Chamorro AJ, Marcos M, Miron-Canelo JA, Pastor I, Gonzalez-Sarmiento R, Laso FJ.
15 O’Loughlin J, Sylvestre MP, Labbe A, Low NC, Roy-Gagnon MH, Dugas EN et al.
28 Beyer A, Koch T, Schroder H, Schulz S, Hollt V. Effect of the A118G polymorphism
31 Perkins KA, Lerman C, Coddington S, Jetton C, Karelitz JL, Wilson A
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F
30 Ray R, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F
14 Gelernter J, Kranzler HR, Sherva R, Koesterer R, Almasy L, Zhao H
37 Bilbao A, Robinson JE, Heilig M, Malanga CJ, Spanagel R, Sommer WH
36 Ray LA, Bujarski S, Chin PF, Miotto K. Pharmacogenetics of naltrexone in Asian
34 Garbutt JC, Greenblatt AM, West SL, Morgan LC, Kampov-Polevoy A, Jordan HS
27 Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L
2012; 236
17 Ray R, Bujarski S, Chin PF, Miotto K. Pharmacogenetics of naltrexone in Asian
30 Ray R, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F
19 O’Loughlin J, Sylvestre MP, Labbe A, Low NC, Roy-Gagnon MH, Dugas EN et al.
210
13 Franklin TR, Wang Z, Li Y, Sub JJ, Goldman M, Lohoff F W et al. Dopamine trans-
porter genotype modulation of neural responses to smoking cues: confirmation in a new cohort. Addict Biol 2011; 16: 308–322.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice. Pharmacogenomics 2012; 13: 917–933.
31 Perkins KA, Lerman C, Coddington S, Jetton C, Karelitz JL, Wilson A
27 Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L et al. Association of
OPRM1 A118G with the relative reinforcing value of nicotine. Psycho-
pharmacology (Berl) 2005; 188: 355–363.
31 Perkins KA, Lerman C, Coddington S, Jetton C, Karelitz JL, Wilson A et al. Gene and
gene by sex associations with initial sensitivity to nicotine in nonsmokers. Behav Pharmacol 2008; 19: 630–640.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
31 Perkins KA, Lerman C, Coddington S, Jetton C, Karelitz JL, Wilson A et al. Gene and
gene by sex associations with initial sensitivity to nicotine in nonsmokers. Behav Pharmacol 2008; 19: 630–640.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
24 Rukstalis M, Jepson C, Strasser A, Lynch KG, Perkins K, Patterson F et al. Naltrexone
reduces the relative reinforcing value of nicotine in cigarette smoking choice paradigm. Psychopharmacology (Berl) 2005; 180: 41–48.
63 Fant RV, Everson D, Dayton G, Pickworth WB, Henningfield JE. Nicotine dependence in women. Am J Med Womens Assoc 1996; 51: 19–20, 2–4, 8.
64 Perkins KA, Gerlach D, Vender J, Grobe J, Meeker J, Hutchison S. Sex differences in the subjective and reinforcing effects of visual and olfactory cigarette smoke stimuli. Nicotine Tob Res 2001; 3: 141–150.
65 Pomerleau OP, Pomerleau CS, Mehinger AM, Snedecor SM, Ninowski R, Sen A. Nicotine dependence, depression, and gender: characterizing phenotypes based on withdrawal discomfort, response to smoking, and ability to abstain. Nicotine Tob Res 2005; 7: 91–102.
66 Perkins KA. Sex differences in nicotine reinforcement and reward: influences on the persistence of tobacco smoking. Nebr Symp Motiv 2009; 55: 143–169.
67 Van Voorhees EE, Mitchell JT, Mcclellan FB, Beckham JC, Kollins SH. Sex, ADHD symptoms, and smoking outcomes: an integrative model. Med Hypotheses 2012; 78: 585–593.
68 Donny EC, Caggiula AR, Rowell PP, Gharib MA, Maldovan V, Booth S et al. Sex differences in nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacology (Berlin) 2000; 151: 392–405.
69 Kota D, Martin BR, Damaj MI. Age-dependent differences in nicotine reward and withdrawal in female mice. Psychopharmacology (Berlin) 2008; 198: 201–210.
70 Torres OV, Natividad LA, Tejeda HA, Van Weelden SA, O’Dell LE. Female rats display dose-dependent differences to the rewarding and aversive effects of nicotine in an age-, hormone-, and sex-dependent manner. Psychopharmacology (Berlin) 2009; 206: 303–312.
71 Roth ME, Cosgrove KP, Carroll ME. Sex differences in the vulnerability to drug abuse: a review of preclinical studies. Neurosci Biobehav Rev 2004; 28: 533–546.
72 Sommer WH, Costa RM, Hansson AC. Dopamine systems adaptation during acquisition and consolidation of a skill. Front Integr Neurosci 2014; 8: 87.
73 Joshi D, Billar RB, Miller MM. Modulation of hypothalamic mu-opioid receptor density by estrogen: a quantitative autoradiographic study of the female C57BL/6J mouse. Brain Res Bull 1993; 30: 629–634.
74 Quesada A, Micevych P. Estrogen and CCK1 receptor modification of mu-opioid receptor binding in the cortex of female rats. Brain Res 2006; 1073–1074, 316–20.
75 Peckham EM, Graves SM, Jutkiewicz E, Becker J, Traylor JR. Role of gonadal hormones on mu-opioid-stimulated ([35]S)GTPgammaS binding in mice with morphine-mediated antinoceptive effect in male and female Sprague-Dawley rats. Psychopharmacology (Berlin) 2011; 218: 483–492.
76 Arias A, Feinon R, Kranzler HR. Association of an Asn40Asp (A118G) polymorphism in the mu-opioid receptor gene with substance dependence: a meta-analysis. Drug Alcohol Depend 2006; 83: 262–268.
77 Kleinjan M, Poelen EA, Engels RC, Verhagen M. Dual growth of adolescent smoking and drinking: evidence for an interaction between the mu-opioid receptor (OPRM1) A118G polymorphism and sex. Addict Biol 2013; 18: 1003–1012.
78 Jonas DE, Amick HR, Feltner C, Bobashev G, Thomas K, Wines R et al. Pharmacotherapy for adults with alcohol use disorders in outpatient settings: a systematic review and meta-analysis. JAMA 2014; 311: 1889–1900.
79 Rosner S, Leucht S, Lehert P, Solya M. Acomprosate supports abstinence, naltrexone prevents excessive drinking: evidence from a meta-analysis with unreported outcomes. J Psychopharmacol 2008; 22: 11–23.
80 Mann K, Bladstrom A, Torup L, Gual A, van den Brink W. Extending the treatment options in alcohol dependence: a randomized controlled study of as-needed nalmefene. Biol Psychiatry 2013; 73: 706–713.
81 King AC, Meyer PJ. Naltrexone alteration of acute smoking response in nicotine-dependent subjects. Pharmacol Biochem Behav 2000; 66: 563–572.
82 Fridberg DJ, Cao D, Grant JE, King AC. Naltrexone improves quit rates, attenuates smoking urge, and reduces alcohol use in heavy drinking smokers attempting to quit smoking. Alcohol Clin Exp Res 2014; 38: 2622–2629.
83 King A, Cao D, Zhang L, Rueger SY. Effects of the opioid receptor antagonist naltrexone on smoking and related behaviors in smokers preparing to quit: a randomized controlled trial. Addiction 2013; 108: 1836–1844.
84 Krishnan-Sarin S, Meandzija B, O’Malley S. Naltrexone and nicotine patch smoking cessation: a preliminary study. Nicotine Tob Res 2003; 5: 851–857.
85 Wewers ME, Dhatt R, Teijwani GA. Naltrexone administration affects ad libitum smoking behavior. Psychopharmacology (Berl) 1998; 140: 185–190.
86 David SP, Chu IM, Lancaster T, Stead LF, Evis AE, Prochaska JJ. Systematic review and meta-analysis of opioid antagonists for smoking cessation. BMJ Open 2014; 4: e004393.
87 David SP, Lancaster T, Stead LF, Evis AE, Prochaska JJ. Opioid antagonists for smoking cessation. Cochrane Database Syst Rev 2013; 6: CD003086.
88 Oertel BG, Kettner M, Schoch K, Renne C, Roskam B, Geisslinger G et al. A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J Biol Chem 2009; 284: 6530–6535.
89 Kroslak T, Laforte KS, Gianotti RJ, Ho A, Nielsen DA, Kreek MJ. The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem 2007; 103: 77–87.
90 Zhang Y, Wang D, Johnson AD, Papp AC, Sadew A. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem 2005; 280: 32618–32624.
91 Wang YJ, Huang P, Blendy JA, Liu-Chen LY. Brain region- and sex-specific alterations in DAMGO-stimulated ([35]S)GTPgammaS binding in mice with Oprem1 A112G. Alcohol Clin Exp Res 2014; 38: 354–361.
92 Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci 2015; 19: 414–420.
93 Kenny PJ. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol Biochem Behav 2011; 97: 700–707.
94 Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007; 315: 531–534.
95 Abdolahi A, Williams GC, Benesch CG, Wang HZ, Spitzer EM, Scott BE et al. Smoking cessation behaviors three months following acute insular damage from stroke. Addict Behav 2015; 21: 24–30.
96 Ray LA, Courtney KE, Hutchison KE, Mackillop J, Galvan A, Ghahremani DG. Initial evidence that OPRM1 genotype moderates ventral and dorsal striatum functional connectivity during alcohol cues. Alcohol Clin Exp Res 2014; 38: 78–89.
97 Gudehithlu KP, Duchemin AM, Tejwani GA, Neff NH, Hadjiconstantinou M. Nicotine-induced changes of brain beta-endorphin. Neuro peptides 2012; 46: 125–131.
98 Scott DJ, Domino EF, Heitzeit MM, Koepepe RA, Ni L, Guthrie S et al. Smoking modulation of mu-opioid and dopamine D2 receptor-mediated neurotransmission in humans. Neuropsychopharmacology 2007; 32: 450–457.
99 Spanagel R, Durstewitz D, Hansson A, Heinz A, Kloef F, Kohn G et al. A systems medicine research approach for studying alcohol addiction. Addict Biol 2013; 18: 883–896.