The therapeutic effects of Rho-ROCK inhibitors on CNS disorders

Abstract: Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes an attractive target for the development of drugs for treating central nervous system (CNS) disorders, since it has been recently revealed that this pathway is closely related to the pathogenesis of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD). In the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte-myelin glycoprotein (OMgp), and the recently identified repulsive guidance molecule (RGM). The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, and the inhibition of this pathway promotes axonal regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders.

Keywords: neuron, Rho, Rho-kinase, axonal regeneration, central nervous system disorder

Introduction

The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis due to its involvement in the regulation of actin cytoskeletal dynamics (Fukata et al 2003; Riento and Ridley 2003; Narumiya and Yasuda 2006). As with other small GTPases, Rho functions as a molecular switch that controls various intracellular signaling pathways by shuttling between an active (GTP-bound) and inactive (GDP-bound) state. The exchange between the GTP- and GDP-bound forms is controlled by several regulatory proteins. Guanine nucleotide exchange factors (GEFs) enhance the conversion of a GDP-bound form to a GTP-bound form, which results in Rho activation. The GTP-bound form of Rho subsequently interacts with its specific downstream targets and triggers intracellular signalling cascades. On the contrary, GTase activating proteins (GAPs) stimulate the GTase activity of Rho, which leads to the conversion of an active GTP-bound form to an inactive GDP-bound form. Furthermore, guanine nucleotide dissociation inhibitors (GDIs) maintain Rho in an inactive GDP-bound form by sequestering it in the cytosol. One of the well-characterized downstream effectors of Rho is the Rho-associated, coiled-coil-containing protein kinase (ROCK) (Leung et al 1995; Ishizaki et al 1996; Matsui et al 1996). ROCK is a serine/threonine protein kinase with a molecular mass of 160 kDa. Two isoforms of ROCK exist, ie, ROCKI and ROCKII, and these show 65% similarity in their amino acid sequences and 92% identity in their kinase domains. The kinase domain of both ROCK isoforms is located at the amino terminus, and this is followed by a coiled-coil domain containing the Rho-binding site (RBD) and a
pleckstrin-homology domain (PH) with an internal cysteine-rich domain (CRD) at the carboxyl terminus (Figure 1A) (Riento and Ridley 2003; Mueller et al 2005). The carboxyl terminal domain forms an autoinhibitory loop that folds back onto the catalytic domain and reduces the kinase activity of ROCK (Amano et al 1999). It has been suggested that the GTP-bound form of Rho activates ROCK by binding to the RBD in ROCK and counteracting the inhibitory interaction between the catalytic domain and the autoinhibitory region (Figure 1B).

With respect to tissue distribution, ROCKI and ROCKII transcripts are ubiquitously but differentially expressed (Nakagawa et al 1996). ROCKII is preferentially expressed in brain and muscle tissues, whereas ROCKI is abundantly expressed in nonneuronal tissues such as the liver, stomach, spleen, kidney, and testis. Both transcripts are highly expressed in the heart and lung. Although the two ROCK isoforms have been reported to have differential tissue distribution, the functional differences between them are less characterized. One such difference has been described in the process of membrane blebbing during apoptosis. In this case, it was demonstrated that caspase-3-dependent ROCKI cleavage removed the inhibitory domain of ROCKI, thereby rendering it constitutively active: this induced membrane blebbing during the course of apoptosis (Coleman et al 2001; Sebbagh et al 2001). Interestingly, ROCKII was not activated by caspase-3 since it lacked the cleavage site. On the contrary, ROCKII, not ROCKI, was specifically truncated and activated by a proapoptotic protease granzyme B in a caspase-independent manner during the membrane blebbing process (Sebbagh et al 2005). Gene deletion of ROCKI or ROCKII in mice also demonstrated the functional differences between the 2 isoforms (Thumkeo et al 2003; Shimizu et al 2005). Most ROCKII-deficient mice show embryonic lethality probably due to a defect in the placenta with thrombosis, whereas failure of eyelid closure and closure of the ventral body wall has been reported in ROCKI-knockout mice. However, detailed analysis demonstrated that the latter phenotypic defects were also evident in ROCKII-knockout mice, suggesting that both isoforms share some aspects of the same

Figure 1 A schematic drawing of ROCKI and ROCK activation by Rho. (A) ROCKI has the kinase domain at the amino terminus, followed by a coiled-coil domain containing the Rho-binding site (RBD), and a pleckstrin-homology domain (PH) with an internal cysteine-rich domain (CRD). ROCKII has a very similar structure. (B) A proposed mechanism of ROCK activation by GTP-bound Rho is shown (Amano et al 1999). The carboxyl terminal domain forms an autoinhibitory loop that folds back onto the kinase domain and inhibits the kinase activity of ROCK. GTP-bound Rho binds to the RBD region in ROCK and renders the catalytic domain of ROCK to be accessible to its substrates, which results in the activation of ROCK.
biological functions. It is noteworthy that after overcoming the perinatal problems, both ROCKI- and ROCKII-deficient mice develop normally without any obvious anatomical and functional abnormalities.

ROCK regulates the activities of many target proteins by its kinase activity. Some of these proteins such as the myosin light chain (MLC) regulate cell morphology (Brown and Bridgman 2004). Phosphorylated MLC induces actomyosin contraction by enhancement of myosin ATPase activity, which is a key step in cytoskeletal rearrangement (Ikebe and Hartshorne 1985; Ikebe et al 1986; Brown and Bridgman 2004). ROCK also increases MLC phosphorylation via the inhibition of MLC phosphatase by phosphorylation. Other ROCK substrates include the LIM (Lin11/Isll/Mec3) kinases (Ohashi et al 2000; Sumi et al 2001) and collapsin response mediator protein-2 (CRMP-2) (Arimura et al 2000, 2004), all of which are involved in the regulation of cytoskeletal reorganization.

Since a large number of reports have demonstrated the involvement of the Rho-ROCK pathway in the pathogenesis of several diseases, the Rho-ROCK pathway is considered to be a promising target for drug development in fields such as cardiovascular disease, cancer, erectile dysfunction, renal disease, and central nervous system (CNS) disorders (Cellek 2002; Shimokawa 2002; Lepley et al 2005; Mueller et al 2005; Nishikimi and Matsuoka 2006; Kubo et al 2007; Shimokawa and Rashid 2007). In this review, we summarize recent progress that has been made in understanding the involvement of the Rho-ROCK pathway in CNS disorders and discuss the potentials of Rho-ROCK inhibitors as pharmacotherapeutic drugs for treating CNS disorders.

Spinal cord injury

It is well known that in comparison to the axons of the peripheral nervous system (PNS), those of the adult mammalian CNS, including the spinal cord, regenerate poorly after injury. The lack of appropriate axonal regeneration in the CNS frequently results in permanent neuronal deficits such as paralysis following traumatic damage such as spinal cord injury. The pathology of CNS injuries, particularly spinal cord injuries, has been understood at a molecular level. It has been recently demonstrated that NgR1 only mediates growth cone collapse, not neurite outgrowth inhibition by the inhibitors is still debatable (Zheng et al 2005; Chivatakarn et al 2007). Initially, we reported that p75 NTR is required for neurite outgrowth inhibition by MAG by using postnatal dorsal root ganglion (DRG) neurons from mutant mice with a mutation in the p75NTR gene (Yamashita et al 2002). Subsequently, it was found that p75NTR and NgR form a receptor complex for MAG and the other 2 inhibitors, ie, Nogo and OMgp, suggesting that p75NTR induces the intracellular inhibitory signals of all these myelin-associated proteins in association with NgR (Figure 2) (Wang et al 2002a; Wong et al 2002c). Since the GPI-linked NgR lacks an intracellular domain, it was assumed that a coreceptor that activates the intracellular signaling cascade was present. The low-affinity neurotrophin receptor p75NTR has been identified as an NgR coreceptor. Initially, we reported that p75NTR is required for neurite outgrowth inhibition by MAG by using postnatal dorsal root ganglion (DRG) neurons from mutant mice with a mutation in the p75NTR gene (Yamashita et al 2002). Subsequently, it was found that p75NTR and NgR form a receptor complex for MAG and the other 2 inhibitors, ie, Nogo and OMgp, suggesting that p75NTR induces the intracellular inhibitory signals of all these myelin-associated proteins in association with NgR (Figure 2) (Wang et al 2002a; Wong et al 2002c). Thereafter, Lingo-1 was identified as an additional component of the receptor complex with NgR and p75NTR (Mi et al 2004). However, whether NgR is required for neurite outgrowth inhibition by the inhibitors is still debatable (Zheng et al 2005; Chivatakarn et al 2007). It has been recently demonstrated that NgR1 only mediates growth cone collapse, not neurite outgrowth inhibition, triggered by these inhibitors (Chivatakarn et al 2007). In contrast to NgR, p75NTR is involved in both growth cone collapse and neurite outgrowth inhibition induced by the inhibitors, suggesting that an unidentified receptor complex containing p75NTR mediates neurite outgrowth inhibition triggered by the inhibitors (Figure 2) (Wang et al 2002a; Wong et al 2002; Yamashita et al 2002; Chivatakarn et al 2007). Further studies revealed that TROY (also known as TAJ), a member of the tumor necrosis factor (TNF) receptor family,
formed a functional receptor complex with NgR and Lingo-1, which mediates the inhibitory activity of myelin-associated inhibitors (Park et al. 2005; Shao et al. 2005). These suggest that several types of receptor complexes convey the inhibitory actions of myelin-associated inhibitors (Figure 2).

Nogo, MAG, and OMgp clearly inhibit neurite outgrowth in vitro; however, their involvement in axonal outgrowth inhibition following in vivo CNS injury remains debatable. Although blockade of the Nogo-NgR pathway by a neutralizing antibody (Schnell and Schwab 1990; Bregman et al. 1995; Brosamle et al. 2000; Merkler et al. 2001) or its antagonistic peptide NEP1-40 (GrandPre et al. 2002; Li and Strittmatter 2003) promoted axonal outgrowth and functional recovery in rats with spinal cord injury, Nogo- or NgR-deficient mice exhibited conflicting results (Kim et al. 2003; Simonen et al. 2003; Zheng et al. 2003, 2005; Kim et al. 2004; Dimou et al. 2006). In addition, MAG-knockout mice or mice with the mutant p75NTR gene did not exhibit better functional recovery and axonal regeneration after spinal cord injury (Bartsch et al. 1995; Li et al. 1996; Song et al. 2004).

Recently, we discovered that the repulsive guidance molecule (RGMa) acts as another myelin-associated neurite outgrowth inhibitor that induces inhibitory signals independent of the NgR pathway (Figure 2) (Hata et al. 2006; Yamashita et al. 2007b). RGMa is a 33-kDa GPI-anchored protein, and neogenin has been found to be a functional receptor for RGM (Rajagopalan et al. 2004; Yamashita et al. 2007b). We found that RGMa significantly inhibits neurite outgrowth in cultured neurons (Hata et al. 2006; Kubo et al. in press). Interestingly, a neutralizing anti-RGMa antibody significantly enhances axonal outgrowth and functional recovery in rats with spinal cord injury (Hata et al. 2006), suggesting that RGMa causes poor axonal regeneration and functional recovery after spinal cord injury in addition to other myelin-associated inhibitors.

Since there are several types of myelin-associated neurite outgrowth inhibitors, a strategy to block a common intracellular effector molecule(s), if any, would be more effective. Recent studies have revealed that these myelin-associated inhibitors trigger the axonal growth-inhibitory signals via

Figure 2 Intracellular signal cascades of myelin-associated neurite outgrowth inhibitors. Myelin-associated neurite outgrowth inhibitors such as Nogo, MAG, and OMgp bind to the same receptor, namely, NgR. A receptor complex containing p75NTR mediates the inhibitory signals such as growth cone collapse and neurite outgrowth inhibition via the activation of Rho and ROCK. NgR is reported to be only involved in the pathway resulting in growth cone collapse (I), but not in the pathway resulting in neurite outgrowth inhibition (II), which suggests that an unknown receptor for the neurite outgrowth inhibitors mediates the latter pathway (Chivatakarn et al. 2007). In some neurons, TROY might be involved in this cascade instead of p75NTR. RGMb binds to a different receptor, namely neogenin and also activates the Rho-ROCK pathway. Other neurite outgrowth inhibitors such as chondroitin sulfate proteoglycans (CSPGs) and members of the semaphorin and ephrin families are also reported to activate the Rho-ROCK pathway for their inhibitory functions (not shown).
mediate the effects of the myelin-derived inhibitors. (Koprivica et al. 2005). At least in vitro, multiple signals, including conventional protein kinase C (PKC) (Hasegawa et al. 2003; Lingor et al. 2007). Therefore, Rho-ROCK is one of the most appropriate drug targets for counteracting the effects elicited by the different types of neurite outgrowth inhibitors. In addition to Rho-ROCK, several other proteins have been identified as effectors of neurite outgrowth inhibitors, including conventional protein kinase C (PKC) (Hasegawa et al. 2004; Sivasankaran et al. 2004; Conrad et al. 2007), glycogen synthase kinase (GSK)-3 (Eickholt et al. 2002; Ito et al. 2006), and the epidermal growth factor (EGF) receptor (Koprivica et al. 2005). At least in vitro, multiple signals mediate the effects of the myelin-derived inhibitors.

After spinal cord injury, RhoA activation is detected in both the neurons and glial cells around the lesion site (Dubreuil et al. 2003; Madura et al. 2004), suggesting that activated Rho is involved in blocking CNS regeneration and providing a strategy to promote the regeneration of injured CNS axons by reversing this inhibitory pathway in vivo. The in vivo therapeutic effects of Rho inactivation were demonstrated following optic nerve injury. C3 transferase (C3) and its cell-permeable derivatives such as C3-05 and C3-07, which are specific Rho inhibitors, promote axonal regeneration after optic nerve injury (Lehmann et al. 1999; Fischer et al. 2004; Bertrand et al. 2005). Subsequently, local application of C3 to the lesion site showed beneficial effects on histological and functional recovery in spinal cord transection injuries (Dergham et al. 2002). ROCK inactivation also exerts therapeutic effects on CNS injury. In rodent spinal cord injury, fasudil, which is the only clinically available ROCK inhibitor, and Y-27632 another ROCK inhibitor, enhance axonal regrowth and functional recovery (Hara et al. 2000; Dergham et al. 2002; Fournier et al. 2003; Sung et al. 2003). We also found that the cytoplasmic ROCK inhibitory protein p21Cip1/WAF1 promoted the sprouting and regeneration of CST fibers and functional recovery in rat spinal cord hemisection injuries (Tanaka et al. 2004). In addition, it was reported that Rho-ROCK inactivation exerts neuroprotective effects after spinal cord and optic nerve injuries and decreases tissue damage and cavity formation, which is another beneficial aspect of Rho-ROCK inhibition (Dubreuil et al. 2003; Fischer et al. 2004; Tanaka et al. 2004; Bertrand et al. 2005). These data in animal models strongly suggest that Rho-ROCK inhibitors provide therapeutic benefits in patients with spinal cord injury (Mueller et al. 2005; McKerracher and Higuchi 2006; Kubo et al. 2007).

Stroke

Ischemic stroke such as cerebral infarction is one of the primary CNS disorders and is associated with high morbidity and mortality. Animal models with permanent middle cerebral artery (MCA) occlusion demonstrated that infarction in the ischemic core occurs very rapidly after induction of ischemia and that ischemic damage expands to the peripheral region (ischemic penumbra) with time (Garcia et al. 1993). Therefore, Rho-ROCK is one of the most appropriate drug targets for counteracting the effects elicited by the different types of neurite outgrowth inhibitors. In addition to Rho-ROCK, several other proteins have been identified as effectors of neurite outgrowth inhibitors, including conventional protein kinase C (PKC) (Hasegawa et al. 2004; Sivasankaran et al. 2004; Conrad et al. 2007), glycogen synthase kinase (GSK)-3 (Eickholt et al. 2002; Ito et al. 2006), and the epidermal growth factor (EGF) receptor (Koprivica et al. 2005). At least in vitro, multiple signals mediate the effects of the myelin-derived inhibitors.
mediated by the upregulated expression of endothelial NO synthase by Rho-ROCK inhibition and the resultant increase in cerebral blood flow (Laufs et al 2000; Rikitake et al 2005). In addition, fasudil and hydroxyfasudil were reported to have a direct neuroprotective effect (Yamashita et al 2007a). It is noteworthy that delayed treatment with fasudil also prevents ischemia-induced neuronal death in the CA1 region of the gerbil hippocampus, suggesting that ROCK inhibition has a wide therapeutic time window in the treatment of ischemic stroke (Satoh et al 2007). Fasudil is currently the only clinically available ROCK inhibitor and was launched in Japan in 1995 to treat cerebral vasospasm after subarachnoid hemorrhage (Shibuya et al 1992). Several groups have performed clinical trials of fasudil for patients with angina (Shimokawa et al 2002; Vicari et al 2005) or acute ischemic stroke (Shibuya et al 2005), and fasudil exerted significant therapeutic effects in both diseases. In the clinical trials for stroke, enrolled patients (160 patients) received fasudil within 48 h of ischemic stroke onset, and 60 mg of fasudil was administered via intravenous injection twice daily for 14 days. Fasudil significantly improved both the neurological functions and clinical outcome of the patients and showed no severe side effects (Shibuya et al 2005). These results strongly suggest that Rho-ROCK inhibitors are beneficial and safe treatment options for ischemic stroke patients.

Alzheimer’s disease

Alzheimer’s disease (AD) is one of the most common causes of progressive dementia with massive neurodegeneration. The histopathological hallmarks of AD are extracellular deposits of senile plaques, which are composed of β-amyloid (Aβ) peptides, and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. Aβ1–40 and the more amyloidogenic Aβ1–42 are produced by sequential proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretase, whereas α-secretase cleaves APP within the Aβ domain and produces no Aβ peptides (Hardy and Selkoe 2002; Walsh and Selkoe 2004). Results from studies on genetic mutations and neurotoxicity strongly suggest that Aβ peptides, particularly soluble oligomers of Aβ peptides, play key roles in the pathogenesis of AD (Walsh and Selkoe 2004; Venkitaramani et al 2007). Epidemiological studies demonstrated that the risk of AD development is reduced in users of some types of drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs) (McGeer et al 1990, 1996; Anthony et al 2000) and statins, which are cholesterol-lowering HMGCoA reductase inhibitors (Jick et al 2000; Wolozin et al 2000; Rockwood et al 2002; Yaffe et al 2002). It was reported that some types of NSAIDs selectively reduce the production of amyloidogenic Aβ1–42 both in vitro and in vivo, independent of their inhibitory effects on cyclooxygenase (COX) activity (Weggen et al 2001, 2003; Eriksen et al 2003; Sagij et al 2003; Takahashi et al 2003; Beher et al 2004; Kukar et al 2005). Among these compounds, R-flurbiprofen, which is an enantiomer of the classical racemic NSAID flurbiprofen, has reduced COX inhibitory activity and thus less toxicity (Morihara et al 2002; Eriksen et al 2003). R-Flurbiprofen lowered the levels of Aβ1–42 and improved learning and memory deficits in a transgenic animal model of AD (Eriksen et al 2003; Kukar et al 2007). It also exerted beneficial effects in AD patients in a phase II clinical trial (Black et al 2006; Galasko et al 2007; Geerts 2007). It has been suggested that the inhibitory effects of NSAIDs on Aβ1–42 production are related to inhibition of the Rho-ROCK pathway both in cell cultures and in a transgenic mouse model of AD (Zhou et al 2003). However, many other groups have suggested that the decrease in Aβ1–42 production by these NSAIDs is due to their direct inhibitory effects on γ-secretase rather than due to the inhibition of the Rho-ROCK pathway (Eriksen et al 2003; Takahashi et al 2003; Weggen et al 2003; Beher et al 2004; Kukar et al 2005; Leuchtenberger et al 2006). Statins are also reported to reduce Aβ production in cell cultures and a transgenic mouse model of AD (Fassbender et al 2001; Petanceska et al 2002). The inhibition of Aβ production by statins is mediated by both the cholesterol lowering-dependent and -independent mechanisms (Cole and Vassar 2006). Although the precise molecular mechanisms remain to be determined, the reduction of Aβ by statins is at least partly attributed to the enhancement of α-secretase activity (Kojro et al 2001; Parvathy et al 2004). Independent of the depletion of cellular cholesterol levels, statins inhibit small GTPases including Rho by lowering protein isoprenylation via the reduction of mevalonate synthesis (Cole and Vassar 2006). It has been suggested that the inhibition of Rho-ROCK by statins results in the activation of α-secretase cleavage (Pedrini et al 2005) or the enhancement of APP lysosomal degradation (Ostrowski et al 2007), both of which lead to the inhibition of Aβ production. In addition, it was recently reported that Aβ inhibits neurite outgrowth through the activation of the Rho-ROCK pathway in SH-SY5Y neuroblastoma cells (Petratos et al 2008). It was suggested that the inhibitory effect of Aβ is at least partly mediated by the induction of an alternatively spliced form of CRMP-2, ie, CRMP-2A, and the upregulated phosphorylation of CRMP-2 by ROCK. These data suggest that the Rho-ROCK pathway is involved not only in Aβ production but also in Aβ-induced neurite outgrowth.
inhibition, suggesting that Rho-ROCK blockers would be beneficial in the treatment of AD patients.

Development of Rho-ROCK inhibitors

In the case of the Rho inhibitor, the cell-permeable C3 analog BA-210 was developed, and this molecule is currently in phase I/IIa clinical trials mainly to test its safety and tolerability in patients with acute thoracic or cervical spinal cord injuries without motor or sensory function (McKerracher and Higuchi 2006).

With regard to ROCK inhibitors, several types have been reported. Isoquinoline derivatives are typical ROCK inhibitors, and fasudil is one example (Figure 3) (Uehata et al 1997; Shimokawa 2002; Sasaki et al 2002). Fasudil blocks ROCK by competitive association with the ATP binding site of the kinase with a K_i value of 0.4 μM (Nagumo et al 2000; Jacobs et al 2006; Yamaguchi et al 2006a). Both ROCKI and ROCKII are inhibited by fasudil with IC_{50} values of 0.26 μM and 0.32 μM, respectively (Shibuya et al 2005). Regarding the specificity, cAMP-dependent protein kinase (PKA) and protein kinase C are also inhibited by fasudil with K_i values of 1.0 μM and 9.3 μM, respectively (Uehata et al 1997; Sasaki et al 2002). Hydroxyfasudil, a major active metabolite of fasudil in vivo, is slightly more effective than the original compound (Figure 3) (Rikitake et al 2005; Shibuya et al 2005). Dimethylfasudil (H-1152P) is an optimized derivative of fasudil, and it demonstrates higher potency and selectivity with K_i values of 1.6 nM for ROCK, 630 nM for PKA, and 9.27 μM for PKC (Sasaki et al 2002). More selective ROCK inhibitors in this category have also been developed by improvement of the fasudil and dimethylfasudil molecules (Tamura et al 2005). Y-27632, another type of ROCK inhibitor, is in the category of 4-aminopyridine derivatives (Uehata et al 1997). Y-27632 inhibits both ROCKI and ROCKII by competitively binding to the ATP binding pocket with K_i values of 0.22 μM and 0.3 μM, respectively (Ishizaki et al 2000; Jacobs et al 2006; Yamaguchi et al 2006b). With regard to its specificity, Y-27632 also inhibits citron kinase, PKN, PKC, and PKA with K_i values of 5.3 μM, 3.1 μM, 73 μM, and 25 μM, respectively (Ishizaki et al 2000). Optimization of this series produces a more potent ROCK inhibitor, ie, Y-39983, which exerts therapeutic effects on the axonal regeneration of crushed optic nerves (Sagawa et al 2007) and reduction of...
intraocular pressure, which is beneficial in the treatment of glaucoma (Nakajima et al. 2005; Tokushige et al. 2007). Other types of ROCK inhibitors have also been described (Mueller et al. 2005; Kubo et al. 2007; Shimokawa and Rashid 2007).

Safety issues
Fasudil, the only clinically available ROCK inhibitor, can be used to predict the expected side effects of ROCK inhibitors in humans. ROCK inhibition by fasudil in patients with cerebral vasospasm does not cause any severe side effects (Shibuya et al 1992). Additionally, in clinical trials of fasudil, in which patients with stable effort angina or acute ischemic stroke were treated, fasudil was well tolerated with no severe side effects, including none on the blood pressure and heart rate (Shimokawa et al 2002; Shibuya et al 2005; Vicari et al 2005).

However, ROCKI- or ROCKII-knockout mice exhibited developmental abnormalities (Thumkeo et al 2003; Shimizu et al 2005), and the administration of Y-27632 to mouse embryos resulted in severe prenatal defects (Wei et al 2001). These data strongly indicate that ROCK has critical functions during the developmental stage. Interestingly, it was recently reported that ROCK inhibition by the intracerebroventricular administration of Y-27632 increases anxiety-related behavior in mouse emotional behavior tests (Saitoh et al 2006). In addition, long-term topical administration of high doses of Y-39983 to the eyes results in sporadic punctate subconjunctival hemorrhage in rabbit and monkey eyes (Tokushige et al 2007). Therefore, further evaluation is required to assess the safety of ROCK inhibitors.

Concluding remarks
In this review, we summarize the therapeutic effects of Rho-ROCK inhibitors in animal models of CNS disorders such as spinal cord injuries, stroke, and AD. Further, in stroke patients, ROCK inhibition by fasudil led to therapeutic effects without severe side effects. These data strongly suggest that Rho-ROCK inhibition is a promising strategy to overcome CNS disorders such as spinal cord injuries, stroke, and AD in humans.

Disclosure
The authors declare no conflicts of interest.

References
Alabed YZ, Pool M, Ong Tone S, et al. 2007. Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci, 27:702–11.
Amano M, Chihara K, Nakamura N, et al. 1999. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem, 274:32418–24.
Anthony JC, Breitner JC, Zandi PP, et al. 2000. Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology, 54:2066–71.
Arimura N, Inagaki N, Chihara K, et al. 2000. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem, 275:23973–80.
Arimura N, Menager C, Fukata Y, et al. 2004. Role of CRMP-2 in neuronal polarity. J Neurobiol, 58:34–47.
Bartsch U, Bandtlow CE, Schnell L, et al. 1995. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron, 15:1375–81.
Beher D, Clarke EE, Wrigley JD, et al. 2004. Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site. Evidence for an allosteric mechanism. J Biol Chem, 279:43419–26.
Bertrand J, Winton MJ, Rodriguez-Hernandez N, et al. 2005. Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J Neurosci, 25:1113–21.
Black S, Wilcock GK, Haworth J, et al. 2006. Efficacy and safety of MPC-7869 (R-flurbiprofen), a selective Abeta42 lowering agent in mild Alzheimer's disease: results of a 12-month phase 2 trial and 1-year follow on study. Neurology, 66(suppl 2):A347.
Bregman BS, Kunkel-Bagden E, Schnell L, et al. 1995. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature, 378:498–501.
Brosamle C, Huber AB, Fiedler M, et al. 2000. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci, 20:8061–8.
Brown ME, Bridgman PC. 2004. Myosin function in nervous and sensory systems. J Neurobiol, 58:118–30.
Cellek S, Rees RW, Kalsi J. 2002. A Rho-kinase inhibitor, soluble guanylate cyclase activator and nitric oxide-releasing PDE5 inhibitor: novel approaches to erectile dysfunction. Expert Opin Invest Drugs, 11:1563–73.
Chivatakorn O, Kaneko S, He Z, et al. 2007. The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors. J Neurosci, 27:7117–24.
Cole SL, Vassar R. 2006. Isoprenoids and Alzheimer's disease: a complex relationship. Neurobiol Dis, 22:99–22.
Coleman ML, Sahai EA, Yeo M et al. 2001. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol, 3:339–45.
Conrad S, Genth H, Hofmann F, et al. 2007. Neogenin-RGMa signaling at the growth cone is bone morphogenetic protein-independent and involves RhoA, ROCK, and PKC. J Biol Chem, 282:16423–33.
David S, Aguayo AJ. 1981. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science, 214:931–3.
Dergham P, Ellezam B, Essagian C, et al. 2002. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci, 22:6570–7.
Dimou L, Schnell L, Montani L, et al. 2006. Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration. J Neurosci, 26:5591–603.
Domeniconi M, Zampieri N, Spencer T, et al. 2005. MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron, 46:849–55.
Dubreuil CI, Winton MJ, McKerracher L. 2003. Rho activation patterns at the growth cone is bone morphogenetic protein-independent and involves RhoA, ROCK, and PKC. J Biol Chem, 282:16423–33.
Eickboll BJ, Walsh FS, Doherty P. 2002. An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling. J Cell Biol, 157:211–7.
Eriksen JL, Sagi SA, Smith TE, et al. 2003. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest, 112:440–9.
Fassbender K, Simons M, Bergmann C, et al. 2001. Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA, 98:5856–61.

Fischer D, Petkova V, Thanos S, et al. 2004. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci, 24:8726–40.

Fournier AE, GrandPre T, Strittmatter SM. 2001. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature, 409:341–6.

Fournier AE, Takizawa BT, Strittmatter SM. 2003. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci, 23:1416–23.

Fukata M, Nakagawa M, Kaibuchi K. 2003. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol, 15:590–7.

Garcia JH, Yoshiya Y, Chen H, et al. 1993. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol, 142:623–35.

Galaslo DR, Graff-Radford N, May S, et al. 2007. Safety, tolerability, pharmacokinetics, and Abeta levels after short-term administration of R-flurbiprofen in healthy elderly individuals. Alzheimer Dis Assoc Disord, 21:292–9.

Geens H. 2007. Drug evaluation: (R)-flurbiprofen—an aniontomer of flurbiprofen for the treatment of Alzheimer's disease. I Drugs, 10:121–33.

GrandPre T, Li S, Strittmatter SM. 2002. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature, 417:547–51.

Hara M, Takayasu M, Watanabe K, et al. 2000. Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats. J Neurosurg, 93: 94–101.

Hardy J, Selkoe DJ. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297:353–6.

Hasegawa Y, Fujitani M, Hata K, et al. 2004. Promotion of axon regeneration by myelin-associated glycoprotein and Nogo through divergent signals downstream of Gi/G. J Neurosci, 24:6826–32.

Hata K, Fujitani M, Yasuda Y, et al. 2006. RGMa inhibition promotes axonal growth and recovery after spinal cord injury. J Cell Biol, 173: 47–58.

Ikebe M, Hartshorne DJ. 1985. Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem, 260:10027–31.

Ikebe M, Hartshorne DJ, Elzinga M. 1986. Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J Biol Chem, 261:36–43.

Ishizaki T, Maekawa M, Fujisawa K, et al. 1996. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J, 15:1885–93.

Ishizaki T, Uehata M, Tamechika I, et al. 2000. Pharmacological properties of Y–27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol, 57:976–83.

Ito Y, Oinuma I, Katoh H, et al. 2006. Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep, 7:704–9.

Jacobs M, Hayakawa K, Swenson L, et al. 2006. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J Biol Chem, 281: 260–8.

Jick H, Zornberg GL, Jick SS, et al. 2000. Statins and the risk of dementia. Lancet, 356:1627–31.

Josephson A, Trifunovski A, Widmer HR, et al. 2002. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans. J Comp Neurol, 453:292–304.

Kim JE, Li S, GrandPre T, et al. 2003. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron, 38:187–99.

Kim JE, Liu BP, Park JH, et al. 2004. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron, 44:439–51.

Kojoe E, Gimpl G, Lammich S, et al. 2001. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci USA, 98:5815–20.

Koprivica V, Cho KS, Park JB et al. 2005. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science, 310:106–10.

Kottis V, Thibault P, Nikol D, et al. 2002. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem, 82:1566–9.

Kubo T, Hata K, Yamaguchi A et al. 2007. Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration. Curr Pharm Des, 13:2493–9.

Kubo T, Endo M, Hata K et al. 2008. Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem, in press.

Kurat K, Murphy MP, Erikson JL, et al. 2005. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat Med, 11:545–50.

Kurat T, Prescott S, Erikson JL, et al. 2007. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci, 8:54.

Laufs U, Endres M, Stagliano N, et al. 2000. Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest, 106:15–24.

Lehmann M, Fournier A, Selles-Navarro I, et al. 1999. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci, 19:7537–47.

Lepley D, Paik JH, Hla T, et al. 2005. The G protein-coupled receptor SIP2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Res, 65:3788–95.

Leuchtenberger S, Kummer MP, Kurkat T, et al. 2006. Inhibitors of Rho-kinase module amyloid-beta (Abeta) secretion but lack selectivity for Abeta42. J Neurochem, 96:355–65.

Leung T, Manser E, Tan L, et al. 1995. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem, 270:29051–4.

Li M, Shibata A, Li C, et al. 1996. Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. J Neurosci Res, 46:404–14.

Li S, Strittmatter SM. 2003. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci, 23:4219–27.

Lingor P, Teusch N, Schwarz K, et al. 2007. Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J Neurochem, 103:181–9.

Madura T, Yamashita T, Kubo T, et al. 2004. Activation of Rho in the injured axons following spinal cord injury. J Neurosci Res, 78:29051–4.

Matsui T, Amano M, Yamamoto T, et al. 1996. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J, 15:2208–16.

McGeer PL, McGeer E, Rogers J et al. 1990. Anti-inflammatory drugs and Alzheimer disease. Lancet, 335:1037.

McGeer PL, Schulzer M, McGeer EG. 1996. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology, 47:425–32.

McKerracher L, David S, Jackson DL, et al. 1994. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13:805–11.

McKerracher L, Higuchi H. 2006. Targeting Rho to stimulate repair after spinal cord injury. J Neurotrauma, 23:309–17.

Merkler D, Metz GA, Raineteau O, et al. 2001. Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci, 21:3665–73.

Mi S, Lee X, Shao Z, et al. 2004. LINGO-1 is a component of the NOGO-66 receptor/p75 signaling complex. Nat Neurosci, 7:221–8.

Mimura F, Yamagishi S, Arimura N, et al. 2006. MAG inhibits microtubule assembly by a Rho-kinase dependent mechanism. J Biol Chem, 281:15970–9.
Monnier PP, Sierra A, Schwab JM, et al. 2003. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci, 22:319–30.

Morihara T, Chu T, Ubeda O, et al. 2002. Selective inhibition of Abeta42 production by NSAID R- enantiomers. J Neurochem, 83:1009–12.

Mueller BK, Mack H, Teusch N. 2005. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov, 4:387–98.

Mukhopadhyay G, Doherty P, Walsh FS, et al. 1994. Crocker PR, Filbin MT. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 13:757–67.

Nagumo H, Sasaki Y, Ono Y, et al. 2000. Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol, 278:C57–65.

Nakagawa O, Fujisawa K, Ishizaki T, et al. 1996. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett, 392:189–93.

Nakajima E, Nakajima T, Minagawa Y, et al. 2005. Contribution of ROCK in contraction of trabecular meshwork: proposed mechanism for regulating aqueous outflow in monkey and human eyes. J Pharm Sci, 94:701–8.

Narumiya S, Yasuda S. 2006. Rho GTPases in animal cell mitosis. Mol Cell Neurosci, 28:58–85.

Nagumo H, Sasaki Y, Ono Y, et al. 2000. Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol, 278:C57–65.

Nakagawa O, Fujisawa K, Ishizaki T, et al. 1996. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett, 392:189–93.

Nagumo H, Sasaki Y, Ono Y, et al. 2000. Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol, 278:C57–65.

Nakagawa O, Fujisawa K, Ishizaki T, et al. 1996. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett, 392:189–93.

Nakajima E, Nakajima T, Minagawa Y, et al. 2005. Contribution of ROCK in contraction of trabecular meshwork: proposed mechanism for regulating aqueous outflow in monkey and human eyes. J Pharm Sci, 94:701–8.

Narumiya S, Yasuda S. 2006. Rho GTPases in animal cell mitosis. Mol Cell Neurosci, 28:58–85.

Shimokawa H. 2002. Rho-kinase as a novel therapeutic target in cardiovascular disease: will it work? J Mol Neurosci, 18:199–205.

Ohashi K, Nagata K, Maekawa M, et al. 2000. Rho-associated kinase activates the formation of actin stress fibers in fibroblasts. J Cell Biol, 149:1363–73.

Ohashi K, Nagata K, Maekawa M, et al. 2000. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem, 275:3577–82.

Oertle T, van der Haar ME, Bandtlow CE, et al. 2003. Nogo-A inhibits axonal regeneration. J Neurosci, 23:815–27.

Park JB, Yiu G, Kaneko S, et al. 2005. EphA receptors regulate LIM-kinase 1 by phosphorylation of threonine 505 by ROCK, a Rho-dependent kinase. J Biol Chem, 280:21100–9.

Petanceska SS, DeRosa S, Olm V, et al. 2002. Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem, 282:26832–44.

Parvathy S, Ehrlich M, Pedrini S, et al. 2004. Atorvastatin-induced activation of Alzheimer's alpha secretase is resistant to standard inhibitors of protein phosphorylation-regulated ectodomain shedding. J Neurochem, 90:1005–10.

Oertle T, van der Haar ME, Bandtlow CE, et al. 2003. Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem, 282:26832–44.

Park JB, Yiu G, Kaneko S, et al. 2005. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron, 45:345–51.

Shibuya M, Hirai S, Seto M, et al. 2005. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J Neurol Sci, 238:31–9.

Shibuya M, Suzuki Y, Sugita K, et al. 1992. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg, 76:571–7.

Shibuya M, Hirai S, Seto M, et al. 2005. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J Neurol Sci, 238:31–9.

Shibuya M, Hirai S, Seto M, et al. 2005. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J Neurol Sci, 238:31–9.

Sagawa H, Terasaki H, Nakamura M, et al. 2007 A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol, 205:230–40.
Swiercz JM, Kuner R, Behrens J, et al. 2002. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron, 35:51–63.

Takahashi Y, Hayashi I, Tominari Y, et al. 2003. Sulindac sulfide is a noncompetitive gamma-secretase inhibitor that preferentially reduces Abeta 42 generation. J Biol Chem, 278:18664–70.

Tamura M, Nakao H, Yoshizaki H, et al. 2005. Development of specific Rho-kinase inhibitors and their clinical application. Biochim Biophys Acta, 1754:245–52.

Tanaka H, Yamashita T, Yachi K, et al. 2004. Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience, 127:155–64.

Thumkeo D, Keel J, Ishizaki T, et al. 2003. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol, 23:5043–55.

Tokushige H, Inatani M, Nemoto S, et al. 2007. Effects of topical administration of y-39983, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci, 48:3216–22.

Toshima Y, Satoh S, Ikegaki I, et al. 2000. A new model of cerebral microthrombosis in rats and the neuroprotective effect of a Rho-kinase inhibitor. Stroke, 31:2245–50.

Uehata M, Ishizaki T, Satoh H, et al. 1997. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389:990–4.

Venkitaramani DV, Chin J, Netzer WJ, et al. 2007. Beta-amyloid modulation of synaptic transmission and plasticity. J Neurosci, 27:11832–7.

Vicari RM, Chaitman B, Keefe D, et al. 2005. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J Am Coll Cardiol, 46:1803–11.

Wahl S, Barth H, Ciossek T, et al. 2000. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol, 149:263–70.

Walsh DM, Selkoe DJ. 2004. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron, 44:181–93.

Wang KC, Kim JA, Sivasankaran R, et al. 2002a. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature, 420:74–8.

Wang KC, Koprivica V, Kim JA, et al. 2002b. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417:941–4.

Wang X, Chun SJ, Treloar H, et al. 2002c. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J Neurosci, 22:5505–15.

Weggen S, Eriksen JL, Das P, et al. 2001. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 414:212–6.

Weggen S, Eriksen JL, Sagi SA, et al. 2003. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J Biol Chem, 278:31831–7.

Wei L, Roberts W, Wang L, et al. 2001. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development, 128:2953–62.

Wolozin B, Kellman W, Ruoosseau P et al. 2000. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol, 57:1439–43.

Wong ST, Henley JR, Kanning KC, et al. 2002. A p75 (NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci, 5:1302–8.

Yaffe K, Barrett-Connor E, Lin F, et al. 2002. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol, 59:378–84.

Yamaguchi H, Kasa M, Amano M, et al. 2006a. Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure, 14:589–600.

Yamaguchi H, Miwa Y, Kasa M, et al. 2006b. Structural basis for induced-fit binding of Rho-kinase to the inhibitor Y-27632. J Biochem (Tokyo), 140:305–11.

Yamashita K, Kotani Y, Nakajima Y et al. 2007a. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res, 1154:215–24.

Yamashita T, Fujitani M, Yamagishi S, et al. 2005. Multiple signals regulate axon regeneration through the Nogo receptor complex. Mol Neurobiol, 32:105–11.

Yamashita T, Higuchi H, Tohyama M. 2002. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol, 157:565–70.

Yamashita T, Mueller BK, Hata K. 2007b. Neogenin and repulsive guidance molecule signaling in the central nervous system. Curr Opin Neurobiol, 17:29–34.

Yamashita T, Tohyama M. 2003. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci, 6:461–7.

Zheng B, Atwal J, Ho C, et al. 2005. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci USA, 102:1205–10.

Zheng B, Ho C, Li S, et al. 2003. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron, 38:213–24.

Zhou Y, Su Y, Li B, et al. 2003. Nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J Biol Chem, 278:31831–7.
