Diabetic nephropathy in Africa: A systematic review

Jean Jacques N Noubiap, Jashira Naidoo, Andre P Kengne

Jean Jacques N Noubiap, Internal Medicine Unit, Edéa Regional Hospital, PO BOX 100 Edéa, Cameroon
Jashira Naidoo, Department of Medicine, Groote Schuur Hospital, University of Cape Town, 7925 Observatory, Cape Town, South Africa
Jashira Naidoo, Andre P Kengne, Non-Communicable Diseases Research Unit, South African Medical Research Council, 7505 Cape Town, South Africa

Author contributions: All authors contributed to this work.

Conflict-of-interest: None for all co-authors.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Andre P Kengne, Professor, Medical Research Council of South Africa, PO Box 19070 Tygerberg, 7505 Cape Town, South Africa. andre.kengne@mrc.ac.za
Telephone: +27-21-9380529
Fax: +27-21-9380460

Received: December 8, 2014
Peer-review started: December 9, 2014
First decision: January 20, 2015
Revised: February 18, 2015
Accepted: March 16, 2015
Article in press: March 18, 2015
Published online: June 10, 2015

Abstract

AIM: To determine the prevalence and incidence of diabetic nephropathy in Africa.

METHODS: We performed a systematic narrative review of published literature following the MOOSE Guidelines for Meta-Analysis and Systematic Reviews of Observational Studies. We searched PubMed-MEDLINE for all articles published in English and French languages between January 1994 and July 2014 using a predefined strategy based on the combination of relevant terms and the names of each of the 54 African countries and African sub-regions to capture the largest number of studies, and hand-searched the reference lists of retrieved articles. Included studies reported on the prevalence, incidence or determinants of chronic kidney disease (CKD) in people with diabetes within African countries.

RESULTS: Overall, we included 32 studies from 16 countries; two being population-based studies and the remaining being clinic-based surveys. Most of the studies (90.6%) were conducted in urban settings. Methods for assessing and classifying CKD varied widely. Measurement of urine protein was the most common method of assessing kidney damage (62.5% of studies). The overall prevalence of CKD varied from 11% to 83.7%. Incident event rates were 94.9% for proteinuria at 10 years of follow-up, 34.7% for end-stage renal disease at 5 years of follow-up and 18.4% for mortality from nephropathy at 20 years of follow-up. Duration of diabetes, blood pressure, advancing age, obesity and glucose control were the common determinants of kidney disease.

CONCLUSION: The burden of CKD is important among people with diabetes in Africa. High quality data from large population-based studies with validated measures of kidney function are still needed to better capture the magnitude and characteristics of diabetic nephropathy in Africa.

Key words: Diabetes; Diabetes nephropathy; Chronic kidney disease; Epidemiology; Prevalence; Incidence; Mortality; Africa; Systematic review

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Chronic kidney disease is a serious health threat for people with diabetes in Africa, with prevalence...
figures ranging from 11% to 83.7%. The incidence estimates suggest that 95% of people with diabetes may have proteinuria after 10 years from diabetes diagnosis; about 35% may develop end-stage renal disease after 5 years and 18% die from nephropathy after 20 years of disease duration. Hypertension, obesity, poor glycemic control and diabetes duration are the main risk factors of chronic kidney disease among diabetic patients in Africa. High quality data are needed to refine the epidemiology of diabetic nephropathy on the continent.

INTRODUCTION

Africa, like the rest of the world, is experiencing an increasing prevalence of diabetes alongside other non-communicable diseases, mainly as a result of urbanization, sedentary lifestyles, obesity and population growth and ageing[1]. Estimates for 2013 by the International Diabetes Federation (IDF) indicate that the number of adults with diabetes in the world will expand by 55%, from 381.8 million in 2013 to 591.9 million in 2035[2]. The largest increase of the population with diabetes will occur in sub-Saharan Africa, with a projected growth of 109.6%, from 19.8 million in 2013 to 41.5 million in 2035[2].

Diabetes causes significant morbidity, disability and early mortality. Diabetes has been identified as a major contributor in several other important diseases, both non-communicable diseases such as cardiovascular disease and renal disease[3,4], and communicable diseases such as invasive bacterial infections[5-8]. Mortality attributable to diabetes in sub-Saharan Africa was estimated to account for 8.6% of the total death in 2013[7]. Diabetic nephropathy (DN) is one of the most common complications of diabetes. The prevalence of DN is increasing steeply along with the diabetes epidemic[8]. Approximately one third to half of patients with diabetes develops renal manifestations[8-11]. DN is associated with increased premature mortality, end-stage renal disease and need to renal replacement therapy, cardiovascular diseases, and escalating health-care costs[9].

DN has been suggested to be more frequent among patients with diabetes in Africa as compared to those in the developed world due to delayed diagnosis, limited screening and diagnostic resources, poor control of blood sugar and other risk factors, and inadequate treatment at an early stage[7,12,13]. However, evidence to support the burden of kidney diseases in people with diabetes in Africa remains very patchy, and we are not aware of any effort to synthesize existing data on the occurrence of kidney disease in African populations with diabetes. Accordingly, the aim of this review is to provide a comprehensive overview of the published evidence on the occurrence of nephropathy in African people with diabetes.

MATERIALS AND METHODS

Data sources and search strategy

A systematic narrative review of published literature was performed following the MOOSE Guidelines for Meta-Analyses and Systematic Reviews of Observational Studies[44]. We searched MEDLINE via PubMed for articles published in English and French on DN in Africa between January 1994 and July 2014, using a predefined strategy based on the combination of relevant terms and the names of each of the 54 African countries and African sub-regions to capture the largest number of studies. The data search was limited to human studies. The last search date was October 22, 2014. Search histories are provided in Table 1. Once duplicate references were removed the titles and abstracts of the references were screened. The references of included articles were scanned to identify additional articles of interest.

Study selection and data extraction

We included cross-sectional, case-control or cohort studies of subjects with diabetes mellitus resident in African countries reporting the prevalence or incidence or progression of DN. We excluded studies of populations of African origin residing outside Africa; case series (sample size less than 50 subjects), letters, comments and editorials; studies not published in English or French. Two investigators (JJNN, APK) independently identified articles and sequentially screened them for inclusion (Figure 1). Disagreements were solved by a third investigator (JN). Full text articles were reviewed by two investigators (JJNN and APK) who independently extracted data regarding study setting and design, study population characteristics and prevalence or incidence of DN.

RESULTS

We identified 730 articles, of which 73 were reviewed in full-text; 32 met the inclusion criteria (Figure 1)[15-46].

Characteristics of included studies

Characteristics of the included studies are summarized in Table 2. The 32 studies were performed in 16 countries, with a geographical distribution covering all the African regions. However, more than half the studies [18 (56.3%)] were from South Africa (five), Nigeria (four), DR Congo (three) and Ethiopia (three).

Only two population-based studies were identified. In Democratic Republic of Congo, between March and April 2007, Makulo et al[35] studied pathologic
Table 1 Search history PubMed

Search terms	Hits
1 Diabetes[tf] OR Diabetes mellitus[tf] OR Type 1 diabetes[mesh] OR Type 1 diabetes mellitus[tf] OR T1DM[tf] OR Type 2 diabetes[tf]	445204
2 Renal insufficiency[tf] OR Renal failure[tf] OR Renal injury[tf] OR Renal disease[tf] kidney insufficiency[tf] OR Kidney failure[tf]	154354
3 # 1 AND # 2	20388
4 Diabetic nephropathy [MeSH Terms]	19406
5 # 3 OR # 4	34221
6 (((("Africa"[MeSH] OR Africa*[tw] OR Algeria*[tw] OR Angola*[tw] OR Benin*[tw] OR Botswana*[tw] OR "Burkina Faso"[tw] OR 54928 Burundi*[tw] OR Cameroon*[tw] OR 'Cape Verde'[tw] OR 'Central African Republic'[tw] OR Chad*[tw] OR Comoros*[tw] OR Congo*[tw] OR 'Democratic Republic of Congo'[tw] OR Djibouti*[tw] OR Egypt*[tw] OR 'Equatorial Guinea*[tw] OR Eritrea*[tw] OR Ethiopia*[tw] OR Gabon*[tw] OR Gambia*[tw] OR Ghana*[tw] OR Guinea*[tw] OR "Guinea Bissau"[tw] OR 'Ivory Coast'[tw] OR "Cote d'Ivoire"[tw] OR Jamahiriya*[tw] OR Jamahiriya*[tw] OR Kenya*[tw] OR Lesotho*[tw] OR Liberia*[tw] OR Libya*[tw] OR Libia*[tw] OR Madagascar*[tw] OR Malawi*[tw] OR Mali*[tw] OR Mauritania*[tw] OR Mauritius*[tw] OR Mayotte*[tw] OR Morocco*[tw] OR Mozambique*[tw] OR Mozambique*[tw] OR Namibia*[tw] OR Niger*[tw] OR Nigeria*[tw] OR Princip*[tw] OR Reunion*[tw] OR Rwanda*[tw] OR 'Sao Tome'[tw] OR Sao*[tw] OR Seychelles*[tw] OR 'Sierra Leone'[tw] OR Somalia*[tw] OR 'South Africa'[tw] OR 'St Helena'[tw] OR Sudan*[tw] OR Swaziland*[tw] OR Tanzania*[tw] OR Togo*[tw] OR Tunisia*[tw] OR Uganda*[tw] OR 'Western Sahara'[tw] OR Zaire*[tw] OR Zambia*[tw] OR Zimbabwe*[tw] OR 'Central African'[tw] OR 'Central African'[tw] OR 'West Africa'[tw] OR 'West African'[tw] OR 'Western Africa'[tw] OR 'Western African'[tw] OR 'East Africa'[tw] OR 'East African'[tw] OR 'Eastern African'[tw] OR 'Eastern African'[tw] OR 'North Africa'[tw] OR 'North African'[tw] OR 'Northern Africa'[tw] OR 'Southern Africa'[tw] OR 'South African'[tw] OR 'South African'[tw] OR 'sub Saharan Africa'[tw] OR 'sub Saharan Africa'[tw] OR 'sub Saharan Africa'[tw] OR 'sub Saharan Africa'[tw] OR 'sub Saharan African'[tw] NOT ('guinea pig'[tw] OR 'guinea pigs'[tw] OR 'aspergillus niger'[tw]))))	1065
7 # 5 AND # 6	918
8 #4 Limits: 1994/01/01 to 2014/10/22 and studies done in Humans	

| 918 articles retrieved from MEDLINE and screened based on title and abstract |
| 836 articles did not meet inclusion criteria |
| 7 full-texts of potentially relevant articles were not found |
| 75 full-text articles assessed for eligibility |
| 6 articles from review of bibliographies |
| 49 articles excluded |
| 32 articles included in the systematic review |

Figure 1 Flow diagram of study selection.

albuminuria among 81 diabetic patients identified through a population-based survey on the prevalence of diabetes involving 1898 participants. Pruijm et al. in Seychelles in 2004, conducted a large-scale population-based estimate of the prevalence of microalbuminuria among 1218 adults. All other studies were clinic-based surveys conducted mostly in diabetic clinics. There were three cohort studies (two prospective and one retrospective), one case-control study and the other 28 studies were cross-sectional with non-random sampling. Only three (9.4%) studies were conducted in rural settings.

Methods of assessment and classification of chronic kidney disease (CKD) varied widely. The studies assessed kidney function by urine protein [20 (62.5%) studies], urine albumin-to-creatinine ration (ACR) [9 (28.1%) studies], and estimation of glomerular filtration rate (GFR) by Cockcroft-Gault formula [3 (9.4%) studies] or by MDRD formula [4 (12.4%) studies]. Six studies (18.8%) measured kidney function by two methods, and renal biopsy was not performed in any study.

Prevalence of CKD

As depicted in Table 3, the overall prevalence of CKD varied from 11% in Tunisia to 83.7% in Tanzania. In studies where proteinuria was used to assess CKD, the prevalence varied from 5.3% in South Africa to 53.1% in Cameroon (study with a small sample size). When considering the estimation of the GFR, the prevalence ranged from 4.6% in Tanzania to 43.1% in Nigeria (study with a small sample size).

Incidence of CKD

A study in South Africa investigated the long-term incidence of proteinuria among T2DM patients. After 12 years of follow-up or death, 94.9% (56/59) had a proteinuria with a mean duration from diabetes onset to proteinuria of 9.7 (5.9) years. In another study in South Africa, found that 18.4% of T1DM patients had
Ref.	Country	Period	Design	Setting	Sample size	Mean or median age (yr)	Male (%)	Type and duration of diabetes (yr)	Duration FUP	Method for CKD assessment	Proteinuria	MDRD	Urine ACR	Cockroft-Gault
Motala et al (37), 2001	South Africa	Not precised	Retrospective cohort study	Clinic, urban	219	39.5 T1DM; 56.4 T2DM	19.6	16.10 T1DM; 18.6 T2DM	At least 10 yr	persistent proteinuria (Dipstick)	Proteinuria			
Elbagir et al (26), 1995	Sudan	Jan-July 1992	Cross-sectional, self-selected sampling	Clinic, urban	128	31.5 (15-75)	48.4	Insulin-treated; 9 (1-40)	NA	Proteinuria (Dipstick)	NA			
Sobngwi et al (44), 1999	Cameroon	Not precised	Cross-sectional, self-selected sampling	Clinic, urban	64	37.4 normotensive T1DM; 51.7 normotensive T2DM; 57.9 hypertensive T1DM	35.7	Proteinuria	NA					
Motala et al (37), 2001	South Africa	Not precised	Retrospective cohort study	Clinic, urban	219	39.5 T1DM; 56.4 T2DM	19.6	16.10 T1DM; 18.6 T2DM	At least 10 yr	persistent proteinuria (Dipstick)	Proteinuria			
Elbagir et al (26), 1995	Sudan	Jan-July 1992	Cross-sectional, self-selected sampling	Clinic, urban	128	31.5 (15-75)	48.4	Insulin-treated; 9 (1-40)	NA	Proteinuria (Dipstick)	NA			
Sobngwi et al (44), 1999	Cameroon	Not precised	Cross-sectional, self-selected sampling	Clinic, urban	64	37.4 normotensive T1DM; 51.7 normotensive T2DM; 57.9 hypertensive T1DM	35.7	Proteinuria	NA					
Motala et al (37), 2001	South Africa	Not precised	Retrospective cohort study	Clinic, urban	219	39.5 T1DM; 56.4 T2DM	19.6	16.10 T1DM; 18.6 T2DM	At least 10 yr	persistent proteinuria (Dipstick)	Proteinuria			
Elbagir et al (26), 1995	Sudan	Jan-July 1992	Cross-sectional, self-selected sampling	Clinic, urban	128	31.5 (15-75)	48.4	Insulin-treated; 9 (1-40)	NA	Proteinuria (Dipstick)	NA			
Sobngwi et al (44), 1999	Cameroon	Not precised	Cross-sectional, self-selected sampling	Clinic, urban	64	37.4 normotensive T1DM; 51.7 normotensive T2DM; 57.9 hypertensive T1DM	35.7	Proteinuria	NA					
Motala et al (37), 2001	South Africa	Not precised	Retrospective cohort study	Clinic, urban	219	39.5 T1DM; 56.4 T2DM	19.6	16.10 T1DM; 18.6 T2DM	At least 10 yr	persistent proteinuria (Dipstick)	Proteinuria			
Elbagir et al (26), 1995	Sudan	Jan-July 1992	Cross-sectional, self-selected sampling	Clinic, urban	128	31.5 (15-75)	48.4	Insulin-treated; 9 (1-40)	NA	Proteinuria (Dipstick)	NA			
Sobngwi et al (44), 1999	Cameroon	Not precised	Cross-sectional, self-selected sampling	Clinic, urban	64	37.4 normotensive T1DM; 51.7 normotensive T2DM; 57.9 hypertensive T1DM	35.7	Proteinuria	NA					
Motala et al (37), 2001	South Africa	Not precised	Retrospective cohort study	Clinic, urban	219	39.5 T1DM; 56.4 T2DM	19.6	16.10 T1DM; 18.6 T2DM	At least 10 yr	persistent proteinuria (Dipstick)	Proteinuria			
Elbagir et al (26), 1995	Sudan	Jan-July 1992	Cross-sectional, self-selected sampling	Clinic, urban	128	31.5 (15-75)	48.4	Insulin-treated; 9 (1-40)	NA	Proteinuria (Dipstick)	NA			
Sobngwi et al (44), 1999	Cameroon	Not precised	Cross-sectional, self-selected sampling	Clinic, urban	64	37.4 normotensive T1DM; 51.7 normotensive T2DM; 57.9 hypertensive T1DM	35.7	Proteinuria	NA					

Note: Table 2: General characteristics of studies of chronic kidney disease in people with diabetes in Africa.
Study	Country	Year	Sampling Type	Study Design	Site	N	Age	Sex	T1DM	T2DM	Proteinuria Type	Proteinuria Unit
Rotchford et al[40], 2002	South Africa	1999	Cross-sectional, self-selected sampling	Clinic, rural	South Africa	253	56.5	26.9	42.2	T1DM and T2DM	NA	Urine ACR
Risasi et al[40], 2009	DR Congo	11 June 2008 to 30 July 2008	Cross-sectional, self-selected sampling	Clinic, urban	DR Congo	181	19.1	38.7	57.6	T1DM	NA	Urine ACR
Rahlenbeck et al[43], 1997	Ethiopia	January - April 1995	Cross-sectional, self-selected sampling	Clinic, urban	Ethiopia	170	31.4	53.7	10.3	T2DM	NA	Proteinuria
Wanjohi et al[43], 2002	Kenya	June 2000 - January 2001	Cross-sectional, self-selected sampling	Clinic, urban	Kenya	100	53.7	37	10.3	T2DM	NA	Albuminuria
Nambuya et al[38], 1996	Uganda	1 January 1993 - 10 August 1994	Cross-sectional, self-selected sampling	Clinic, urban/urban (origin of participants)	Uganda	252	Not precised	46.4	45 (range 30-69)	T2DM and T1DM	NA	Proteinuria
Rissassi et al[42], 2009	DR Congo	11 June 2008 to 30 July 2008	Cross-sectional, self-selected sampling	Clinic, urban	DR Congo	181	19.1	38.7	57.6	T1DM	NA	Urine ACR
Rahlenbeck et al[40], 1997	Ethiopia	January - April 1995	Cross-sectional, self-selected sampling	Clinic, urban	Ethiopia	170	31.4	53.7	10.3	T2DM	NA	Proteinuria
Wanjohi et al[43], 2002	Kenya	June 2000 - January 2001	Cross-sectional, self-selected sampling	Clinic, urban	Kenya	100	53.7	37	10.3	T2DM	NA	Albuminuria
Nambuya et al[38], 1996	Uganda	1 January 1993 - 10 August 1994	Cross-sectional, self-selected sampling	Clinic, urban/urban (origin of participants)	Uganda	252	Not precised	46.4	45 (range 30-69)	T2DM and T1DM	NA	Proteinuria
Rissassi et al[42], 2009	DR Congo	11 June 2008 to 30 July 2008	Cross-sectional, self-selected sampling	Clinic, urban	DR Congo	181	19.1	38.7	57.6	T1DM	NA	Urine ACR
Rahlenbeck et al[40], 1997	Ethiopia	January - April 1995	Cross-sectional, self-selected sampling	Clinic, urban	Ethiopia	170	31.4	53.7	10.3	T2DM	NA	Proteinuria
Wanjohi et al[43], 2002	Kenya	June 2000 - January 2001	Cross-sectional, self-selected sampling	Clinic, urban	Kenya	100	53.7	37	10.3	T2DM	NA	Albuminuria
Nambuya et al[38], 1996	Uganda	1 January 1993 - 10 August 1994	Cross-sectional, self-selected sampling	Clinic, urban/urban (origin of participants)	Uganda	252	Not precised	46.4	45 (range 30-69)	T2DM and T1DM	NA	Proteinuria
Rissassi et al[42], 2009	DR Congo	11 June 2008 to 30 July 2008	Cross-sectional, self-selected sampling	Clinic, urban	DR Congo	181	19.1	38.7	57.6	T1DM	NA	Urine ACR
Rahlenbeck et al[40], 1997	Ethiopia	January - April 1995	Cross-sectional, self-selected sampling	Clinic, urban	Ethiopia	170	31.4	53.7	10.3	T2DM	NA	Proteinuria
Wanjohi et al[43], 2002	Kenya	June 2000 - January 2001	Cross-sectional, self-selected sampling	Clinic, urban	Kenya	100	53.7	37	10.3	T2DM	NA	Albuminuria
Nambuya et al[38], 1996	Uganda	1 January 1993 - 10 August 1994	Cross-sectional, self-selected sampling	Clinic, urban/urban (origin of participants)	Uganda	252	Not precised	46.4	45 (range 30-69)	T2DM and T1DM	NA	Proteinuria

ACR: Albumin-to-Creatinine Ratio; FUP: Follow-up; MDRD: Modification of diet renal disease; NA: Not applicable.
Ref.	Country	Sample size	Type of diabetes	Duration of follow-up	Diagnostic criteria for CKD	Prevalence	Incidence	Comments
Motala et al[37], 2001	South Africa	219	T1DM and T2DM	16.10 (4.9) yr	Persistent proteinuria (dipstick proteinuria on three or more consecutive occasions over 18 mo in the at absence of infection or cardiac failure)	Not applicable	24.6%	
Elbagir et al[26], 1995	Sudan	128	Insulin treated	Not applicable	Proteinuria (≥ 30 mg/dl)	22%	Not applicable	
Sobngwi et al[44], 1999	Cameroon	64	T1DM and T2DM	Not applicable	MDRD: CKD stage ≥ 2 according to the National Kidney foundation	53.1%	Not applicable	
Katchinga et al[43], 2010	DR Congo	98	T2DM	Not applicable	Proteinuria (30 mg/24 h)	18.1%	Not applicable	
Choukem et al[22], 2012	Cameroon	420	T2DM	Not applicable	Microalbuminuria: Urine Albumin-to-Creatinine Ratio 3.4-33.9 mg albumin/mmol creatinine	31%	Not applicable	
Keeton et al[41], 2004	South Africa	59	T2DM	12 yr	Urine Albumin-to-Creatinine Ratio (no detail)	Not applicable		After 12 yr of follow-up or death, 94.9% (56/59) had a proteinuria with a mean duration from diabetes onset to proteinuria of 9.7 (5.9) yr and in 66.1% (39/59) the SCR level had doubled during the study
Pruijn et al[39], 2008	Seychelles	1218	All types	Not applicable	Microalbuminuria: Urine Albumin-to-Creatinine Ratio 3.4-33.9 mg albumin/mmol creatinine	36.1%	Not applicable	
Alebiosu[34], 2003	Nigeria	342	T1DM and T2DM	Not applicable	Persistent proteinuria	28.4%	Not applicable	
Bouaziz et al[20], 2012	Tunisia	73	T2DM	Not applicable	Microalbuminuria: < 2.8 g/mol for women and < 2.3 g/mol for men	11%	Not applicable	
Ajayi et al[15], 2014	Nigeria	65	T2DM	Not applicable	MDRD: eGFR ≤ 60 mL/min per 1.73 m²	43.1%	Not applicable	
Levitt et al[35], 1997	South Africa	243	T2DM and T1DM	Not applicable	Urine Albumin-to-Creatinine Ratio > 3.4 mm/mmol Persistent proteinuria (for at least 3 consecutive visits)	36.7%	Not applicable	
Majaliwa et al[44], 2007	Tanzania	99	T1DM	Not applicable	Proteinuria (no detail)	29.3%	Not applicable	
Marshall et al[35], 2013	Rwanda	286	T1DM	Not applicable	Microalbuminuria: Urine Albumin-to-Creatinine Ratio = 30-299 mg/g	Microalbuminuria: 21%; Microalbuminuria: 5%	Not applicable	
Alebiosu et al[36], 2003	Nigeria	465	T2DM	Not applicable	Proteinuria and eGFR	41.1%	Not applicable	The method for the estimation of the GFR is not indicated Death due to chronic renal failure after 20 yr of follow-up was 9/49 (after exclusion of lost to follow)
Gill et al[38], 2005	South Africa	88	T1DM	20 yr	Persistent dipstick proteinuria	Not applicable		Death of renal cause after 20 yr = 18.4% (9/49)
Djojolo et al[35], 2001	Benin	152	T1DM and T2DM	Not applicable	Proteinuria (no detail)	20%	Not applicable	
Rotchford et al[35], 2002	South Africa	253	T1DM and T2DM	Not applicable	Microalbuminuria > 2.5 mg/ mmol in men or 3.5 mg/mmol in women	46.4%	Not applicable	
Study	Country	Number	Type	Not applicable	Microalbuminuria: Urine Albumin-to-Creatinine Ratio = 30-299 mg/g	Macroalbuminuria: Urine Albumin-to-Creatinine Ratio ≥ 300 mg/g	T1DM: 21.9% (microalbuminuria) and 7.3% (macroalbuminuria)	Not applicable
-------	---------	--------	------	----------------	---	---	---	----------------
Rissassi et al[42], 2009	DR congo	181	T1DM	Not applicable	Microalbuminuria: > 30 mg/L	Macroalbuminuria: > 300 mg/L	T1DM: 32% (microalbuminuria) and 15% (macroalbuminuria)	Not applicable
Rahlenbeck et al[40], 1997	Ethiopia	170	T1DM and T2DM	Not applicable	Microalbuminuria: > 30 mg/L	Macroalbuminuria: > 300 mg/L	T1DM: 21.9% (microalbuminuria) and 7.3% (macroalbuminuria)	Not applicable
Wanjohi et al[45], 2002	Kenya	100	T2DM	Not applicable	Proteinuria ≥ 20 mg	26%	Not applicable	
Nambuya et al[38], 1996	Uganda	252	T1DM and T2DM	Not applicable	Proteinuria (no detail)	17.1%	Not applicable	
Rasmussen et al[81], 2013	Ethiopia	101	T1DM and T2DM	Not applicable	Microalbuminuria: ACR > 3.5-35.0 for women and 2.5-25.0 mg/mmol for men	Microalbuminuria: > 300 mg/g	Microalbuminuria: 23.8%	Not applicable
Bentata et al[19], 2013	Morocco	72	T1DM	5 yr	At the time of enrollement	Microalbuminuria: 36.1%	Nephropathy: 15.3%	Microalbuminuria: 91%
Gill et al[27], 2008	Ethiopia	105	T1DM and T2DM	Not applicable	Nephropathy: ACR > 25.0 mg/mmol and retinopathy present	Microalbuminuria: 51%	Urinary ACR levels (to assess microalbuminuria and nephropathy) were done on admission were repeated on three specimens at three-monthly intervals	
Bouzid et al[81], 2011	Tunisia	689	T2DM	Not applicable	CKD: eGFR < 60 mL/min per 1.73 m² (Cockroft-Gault)	Microalbuminuria: 13%	Microalbuminuria: 10.1%	Not applicable
Janmohamed et al[81], 2013	Tanzania	369	T1DM and T2DM	Not applicable	CKD: eGFR < 60 mL/min per 1.73 m² (Cockroft-Gault) or microalbuminuria (> 20 mg/L) or overt proteinuria	CKD: 19.8%	Microalbuminuria: 2%	Microalbuminuria: 30%
Danquah et al[81], 2012	Ghana	671	T2DM	Not applicable	Proteinuria ≥ 20 mg/L	43%	Not applicable	
Lutale et al[81], 2007	Tanzania	244	T1DM and T2DM	Not applicable	Microalbuminuria: AER 20-200 μg/min	Microalbuminuria: 12.1% (T1DM); 9.8% (T2DM)	Microalbuminuria: 1.1% (T1DM); 7.2% (T2DM)	Not applicable

Microalbuminuria:
- Urine Albumin-to-Creatinine Ratio = 30-299 mg/g
- Urine Albumin-to-Creatinine Ratio ≥ 300 mg/g

Macroalbuminuria:
- Urine Albumin-to-Creatinine Ratio > 300 mg/g

Proteinuria:
- > 20 mg/L

Microalbuminuria:
- ACR > 2.5 and < 25.0 mg/mmol in men and > 3.5 and < 25.0 mg/mmol in women

Macroalbuminuria:
- AER ≥ 200 μg/min

CKD:
- eGFR < 60 mL/min per 1.73 m² (Cockroft-Gault)

Renal failure:
- eGFR < 60 mL/min per 1.73 m² (MDRD)

Nephropathy:
- ACR > 25.0 mg/mmol and retinopathy present

Overt proteinuria:
- eGFR < 60 mL/min per 1.73 m²: 24.7%

Macroalbuminuria was significantly associated with CKD (P < 0.00001).
Noubiap JJN et al. Diabetic nephropathy in Africa

Risk factors of CKD

Twenty studies (62.5%) reported factors associated with CKD in diabetic patients (Table 4). However, in most studies the method to assess this association was imprecise. In cross-sectional studies, correlates of CKD included systolic and diastolic high blood pressure, long duration of diabetes, older age, dyslipidemia, and obesity. In a study in Cameroon, T2DM patients with systolic hypertension and diastolic hypertension were respectively 1.45 (95% CI: 1.15-1.84; P = 0.006) and 1.33 (95% CI: 1.06-1.66; P = 0.026) times more likely to have nephropathy. Two studies in Rwanda and South Africa respectively showed that a one year increase in the duration of T1DM increased by 0.86 (95% CI: 0.77-0.96; P = 0.008) the odds of microalbuminuria, and that T1DM and T2DM patients with a duration of diabetes greater than 10 years were 4.19 times (95% CI: 1.93-9.10; P < 0.001) more likely to have microalbuminuria. Poor glycemic control as measured by HbA1c was also a strong predictor of nephropathy. For instance, HbA1c level greater than 10% and 14% were respectively associated with a 2.6 fold (95% CI: 1.1-6.4) and a 4.69 (95% CI: 1.65-13.3; P = 0.004) increase in the risk of nephropathy. A 1 g/dL decrease in hemoglobin level has been found to be associated with end-stage renal disease (OR 3.18, 95% CI: 1.47-6.87; P = 0.003). Studies in Nigeria showed that left ventricular hypertrophy, stroke, myocardial infarction and peripheral arterial disease were more frequent in T2DM patients with nephropathy, especially those with advanced stages.

DISCUSSION

Diabetic nephropathy is a common and morbid complication of diabetes and the leading cause of CKD in the developed world. The lack of renal registries means that there are no reliable statistics about the burden of CKD in people with diabetes in the majority of African countries. The current systematic review identified 32 relevant studies published over the last 20 years on kidney diseases in people with diabetes residing in Africa. Prevalence rates ranged from 11% to 83.7% for the overall CKD, 5.3% to 53.1% for CKD based on proteinuria, and 4.6% to 43.1% for CKD based on eGFR. Incident event rates were 94.9% for proteinuria at 10 years for follow-up, 34.7% for ERSD at 5 years of follow-up and 18.4% for mortality from nephropathy at 20 years of follow-up. Diagnosed duration of diabetes, blood pressure variables, advancing age, obesity and to some extent glucose control were the common determinants of kidney disease in people with diabetes. Studies were overwhelmingly hospital-based studies; half of them originated from four countries while variable definitions and methods for assessing nephropathy had been used across studies. The most recent overview of CKD in populations within Africa was completed in 2012, and was restricted to sub-Saharan African Countries. This review identified 90 articles representing data from 21 countries, with over half of the studies originating from South Africa, Nigeria and Ethiopia alone. Across 21 studies deemed to be of medium to high quality by the investigators, the pooled prevalence of CKD was 13.9% (95% CI: 12.2-15.7), with substantial heterogeneity across studies. The prevalence in people with diabetes ranged from 4% to 24% based essentially on proteinuria defined CKD. In our review without applying quality criteria, we found much higher prevalence of CKD, regardless of the definition. In four studies published in 2013 for instance, the prevalence of microalbuminuria ranged between 21% and 45%. Although issues with the quality of the studies preclude direct comparisons, it is likely that nephropathy is
Ref.	Country	Sample size	Type of diabetes	Diagnostic criteria for CKD	Risk factor	Measure of association	Factors adjusted for	Comments
Motala et al[37], 2001	South Africa	219	T1DM and T2DM	Persistent proteinuria	Not assessed			
Elbagir et al[26], 1995	Sudan	128	Insulin-treated	Proteinuria				
Sobongwi et al[44], 1999	Cameroon	64	T1DM and T2DM	Proteinuria				
Katshunga et al[30], 2010	DR Congo	98	T2DM	Proteinuria				
Choukem et al[22], 2012	Cameroon	420	T2DM	Proteinuria (50 mg/24 h)				
Keeton et al[31], 2004	South Africa	59	T2DM	Urine Albumin-to-Creatinine Ratio (no detail)				
Pruijm et al[39], 2008	Seychelles	1218	All types	Microalbuminuria: Urine Albumin-to-Creatinine Ratio 3.4-33.9 mg albumin/mmol creatinine	Not assessed			
Akebi et al[16], 2003	Nigeria	342	T1DM and T2DM	Persistent proteinuria	Not assessed			
Bouaziz et al[32], 2012	Tunisia	73	T2DM	Microalbuminuria: < 2.8 g/mol for women and < 2.5 g/mol for men				
Ajayi et al[15], 2014	Nigeria	65	T2DM	MDRD: eGFR ≤ 60 mL/min per 1.73 m²	Not assessed			
Levitt et al[33], 1997	South Africa	243	T2DM and T1DM	Urine Albumin-to-Creatinine Ratio > 3.4 mm/mmol and Persistent proteinuria (for at least 3 consecutive visits)	Not assessed			

Table 4: Risk factors for chronic kidney disease in people with diabetes

Ref.	Country	Sample size	Type of diabetes	Diagnostic criteria for CKD	Risk factor	Measure of association	Factors adjusted for	Comments
Motala et al[37], 2001	South Africa	219	T1DM and T2DM	Persistent proteinuria	Not assessed			
Elbagir et al[26], 1995	Sudan	128	Insulin-treated	Proteinuria				
Sobongwi et al[44], 1999	Cameroon	64	T1DM and T2DM	Proteinuria				
Katshunga et al[30], 2010	DR Congo	98	T2DM	Proteinuria				
Choukem et al[22], 2012	Cameroon	420	T2DM	Proteinuria (50 mg/24 h)				
Keeton et al[31], 2004	South Africa	59	T2DM	Urine Albumin-to-Creatinine Ratio (no detail)				
Pruijm et al[39], 2008	Seychelles	1218	All types	Microalbuminuria: Urine Albumin-to-Creatinine Ratio 3.4-33.9 mg albumin/mmol creatinine	Not assessed			
Akebi et al[16], 2003	Nigeria	342	T1DM and T2DM	Persistent proteinuria	Not assessed			
Bouaziz et al[32], 2012	Tunisia	73	T2DM	Microalbuminuria: < 2.8 g/mol for women and < 2.5 g/mol for men				
Ajayi et al[15], 2014	Nigeria	65	T2DM	MDRD: eGFR ≤ 60 mL/min per 1.73 m²	Not assessed			
Levitt et al[33], 1997	South Africa	243	T2DM and T1DM	Urine Albumin-to-Creatinine Ratio > 3.4 mm/mmol and Persistent proteinuria (for at least 3 consecutive visits)	Not assessed			
Table: Diabetic Nephropathy in Africa

Study	Country	Sample Size	Type of DM	Proteinuria	Risk Factors	OR (95% CI)	P-value	
Majaliwa et al. [34], 2007	Tanzania	99	T1DM	Proteinuria (no detail)	Missing insulin doses		P = 0.045	Not available
Marshall et al. [35], 2013	Rwanda	286	T1DM	Microalbuminuria: Urine Albumin-to-Creatinine Ratio = 30-299 mg/g	Duration of diabetes (one year increase)	aOR: 0.86, 95%CI: 0.77-0.96	P = 0.009	Each variable is adjusted for the others
					Age (increase)	aOR: 0.86, 95%CI: 0.77-0.96	P = 0.008	
					Diastolic BP (increase)	aOR: 0.86, 95%CI: 0.77-0.96	P = 0.004	
					HBA1c (increase)	aOR: 0.86, 95%CI: 0.77-0.96	P = 0.047	
Alebiosu et al. [36], 2003	Nigeria	465	T2DM	Proteinuria and eGFR (no detail)	Hypertension, left ventricular hypertrophy, stroke and myocardial infarction were more frequent in advanced stages of nephropathy	Not available	P < 0.05	Not available
					Duration of diabetes (one year increase)	aOR: 0.86, 95%CI: 0.77-0.96	P = 0.008	
					Diastolic BP (increase)	aOR: 0.86, 95%CI: 0.77-0.96	P = 0.004	
					HBA1c (increase)	aOR: 0.86, 95%CI: 0.77-0.96	P = 0.047	
Gill et al. [37], 2005	South Africa	88	T1DM	Persistent dipstick proteinuria			Not available	Not available
Djoko et al. [38], 2001	Benin	152	T1DM and T2DM	Proteinuria (no detail)			Not available	Not available
					Duration of diabetes > 5 yr		< 0.001	Model contains duration of diabetes, BMI, HbA1c, age and hypertension
Rotchford et al. [39], 2002	South Africa	253	T1DM and T2DM	Microalbuminuria > 2.5 mg/mmol in men or 3.5 mg/mmol in women	Duration of diabetes > 10 yr	4.19 (1.93-9.10)	< 0.001	
					BMI > 33	0.27 (0.08-0.48)	0.002	
					HbA1c > 14%	4.69 (1.65-13.3)	0.004	
					Hypertension	2.11 (1.07-4.17)	0.031	
					Age > 18 yr	2.9 (1.3-6.2)	No precision	
					HbA1c > 10%	2.6 (1.6-4)	No precision	
Rshallbeck et al. [40], 1997	Ethiopia	170	T1DM and T2DM	Microalbuminuria: Urine Albumin-to-Creatinine Ratio ≥ 0.3 mg/g	Duration of diabetes	Beta = 0.061, SE = 0.018 for T1DM	< 0.001	Hypertensive patients excluded
					albuminuria > 0.3 mg/L	Systolic blood pressure	Beta = 0.018 for T1DM	
						None identified	Beta = 0.027, SE = 0.008 for T1DM	
						None assessed		
Wanjohi et al. [41], 2002	Kenya	100	T2DM	Proteinuria ≥ 20mg			None identified	
Nambya et al. [42], 1996	Uganda	252	T1DM and T2DM	Proteinuria (no detail)			None assessed	
Rasmussen et al. [43], 2013	Zambia	101	T1DM and T2DM	Microalbuminuria: ACR = 3.5-35.0 for women and 2.5-25.0 mg/mmol for men			None assessed	
					Macroalbuminuria were ACR > 35.0 for women and > 25.0 for men			
Bentata et al. [44], 2013	Maroc	72	T1DM	End-stage renal disease: eGFR < 15 mL/min	Hemoglobin blood (per 1 g/dL decrease)	3.18 (1.47-6.87)	0.003	No precision
					Diastolic blood pressure (per 1 mmHg increase)	1.15 (1.04-1.27)	0.006	

Majaliwa et al. [34], 2007
Marshall et al. [35], 2013
Alebiosu et al. [36], 2003
Gill et al. [37], 2005
Djoko et al. [38], 2001
Rotchford et al. [39], 2002
Rissassi et al. [40], 2009
Rahlebeck et al. [41], 1997
Wanjohi et al. [42], 2002
Nambya et al. [43], 1996
Rasmussen et al. [44], 2013
Bentata et al. [45], 2013

These are independent risk factors for ESRD in type-1 diabetes patients with diabetic nephropathy.
Study	Country	Participants	Diagnosis	Renal Involvement	Diabetes Outcomes	Other Predictors	Measure of Association	p-Value	Results
Gill et al. [27], 2008	Ethiopia	105	T1DM and T2DM	Nephropathy: ACR > 25.0 mg/mmol and retinopathy present	None assessed				
			Microalbuminuria: ACR > 2.5 and < 25.0 mg/mmol in men and > 3.5 and < 25.0 mg/mmol in women						
Bouzid et al. [21], 2011	Tunisia	689	T2DM	Renal failure: creatinine clearance < 60 mL/min (Cockroft-Gault)	Microalbuminuria: ACR > 2.5 and < 25.0 mg/mmol in men and > 3.5 and < 25.0 mg/mmol in women	Older age	Not provided	< 0.0001	< 0.0001
						Hypertension		0.01	0.01
						Long duration of diabetes		0.02	0.02
						Higher BMI		0.03	0.03
Janmohamed et al. [29], 2013	Tanzania	369	T1DM and T2DM	CKD: eGFR < 60 mL/min per 1.73 m² (Cockroft-Gault) or microalbuminuria (> 20 mg/L) or overt proteinuria		Older age	1.03 (1.00-1.05)	0.05	Adjustment made, but no precision
Danquah et al. [23], 2012	Ghana	671	T2DM	Proteinuria ≥ 20 mg/l					
						Duration of diabetes	0.090 (0.049-0.131)	0.03	0.03
Lutale et al. [33], 2007	Tanzania	244	T1DM and T2DM	Abnormal proteinuria: AER > 20 μg/min					
Worku et al. [46], 2010	Ethiopia	305	T1DM and T2DM	Proteinuria (no detail)					
Makulo et al. [35], 2010	DR Congo	81	No precision	Microalbuminuria: ACR 30-299 mg/g					
						Macroalbuminuria: ACR ≥ 300 mg/g			
						Renal failure: eGFR < 60 mL/min per 1.73 m²			
Eghan et al. [25], 2007	Ghana	109	T1DM and T2DM	Microalbuminuria: ACR 30-300 mg/g					
						Duration of diabetes	0.04		The associations were assessed by comparing patients with and without microalbuminuria
						Serum creatinine	0.05	0.05	
						Blood urea nitrogen	0.01	0.01	
						Urine potassium	0.0061	0.0061	
						Duration of diabetes	< 0.05	0.05	
						Serum total cholesterol	< 0.05	0.05	
						Alcohol > 30 mg/d	< 0.05	0.05	
						Peripheral vascular disease	< 0.05	0.05	
						Stroke	< 0.05	0.05	

CKD: Chronic kidney disease; BMI: Body mass index; ACR: Albumin-to-Creatinine Ratio; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; eGFR: Epidermal growth factor receptor.
more frequent in population with diabetes within Africa than in developed countries. The review by Stanifer et al\cite{1} also identified many challenges and limitations, which largely apply to the current study.

The most important aspect in assessing incidence and prevalence of diabetic nephropathy in Africa is currently different diagnostic criteria for CKD. There are no clear definitions on DN. The 2012 KDIGO CKD classification assesses diabetes related kidney changes according to urinary albumin-to-creatinine ratio based on early morning spot urine samples\cite{2}. Quantification of proteinuria in assessing CKD is controversial as no optimal test exists. The National Institute for Health and Clinical Excellence (NICE) guidance has recommended that an early morning urinary ACR should be preferred to other tests of proteinuria, because ACR offers greater sensitivity for the detecting lower, but clinically significant, levels of proteinuria\cite{3}. Almost all the studies included in our review utilized urine tests to diagnose CKD, but only nine studies used ACR. Inconsistencies in the way and manner of reaching a diagnosis of DN in Africans are explained at least in part by issues relating to availability and accessibility of screening or diagnostic tools. Swanepoel et al\cite{4} have reviewed in detail some of the problems associated with nephrology in Africa and discussed the role of lack of amenities in diagnosing renal diseases. Another challenge to making the diagnosis of diabetic nephropathy in Africa is the degree to which other causes of chronic kidney disease have been excluded. A standard armamentarium of tests would include tests looking for HIV, hepatitis B and C, brief collagen screen, syphilis exclusion and other tests would have to be based on history and physical exam.

The classification of CKD is important in the definition of DN and has a few limitations that are universally acknowledged: eGFR underestimates kidney function and there is discordance in the estimates across different estimators\cite{5}; isolated microalbuminuria is a normal feature of aging, inflammation, vascular pathologies, smoking, diet and obesity which are all frequent in diabetes; decline in kidney function is an expected phenomenon with advanced age, just like diabetes risk increases with age. Further considerations to CKD classifications and DN definition limitations is that current guidelines take no notice of the single most important risk factor associated with CKD namely hypertension, which is present in over 50% of people with type 2 diabetes.

Risk factor association was not assessed in 12 of the 32 studies, however common risk factors included were hypertension, raised BMI, HbA1c and duration of diabetes. Despite advances in management over the last three decades, many people with diabetes still develop CKD. This may be partly explained by the poor achievement of blood pressure and blood glucose targets. Recently the JNC 8 guidelines have added to the controversy of various blood pressure targets needed for diabetic patients that would assist in preventing progression to CKD. Optimal targets when reached, however have shown to aid in progression to progression. Another risk factor pertinent to the developing world is the socioeconomic status of individuals in the causative role of diabetic nephropathy. Weil et al\cite{6}, in 2010 reviewed factors associated with disadvantage that may increase the risk of diabetic kidney disease, and the barriers to care that hinder attempts to provide an adequate therapeutic response\cite{6}.

Several mechanisms underlying the pathogenesis of diabetic nephropathy have been suggested and include glomerular hyperfiltration; hyperglycemia and the increased production of advanced glycation end products; hypoxia-inflammation and the activation of cytokines. Hyperfiltration commonly occur in early in the course of diabetes and involves glucose-dependent dilation of the afferent arteriolar dilation, and the enhanced filtration area secondary to the increase in the number of mesangial cells and capillary loops. Molecular level action involves vasoactive mediators like insulin-like growth factor 1, transforming growth factor beta, nitric oxide, prostaglandin, glucagon and vascular endothelial growth factor\cite{7}. Other hallmarks of diabetic nephropathy include nodular diabetic glomerulosclerosis and diffuse glomerulosclerosis, mediated at least in part by inflammatory processes and immune cells activity\cite{8}. Interstitial fibrosis and tubular atrophy are also seen early in DN, with the underlying pathogenetic mechanism being similar to those in progressive non diabetic renal disease\cite{9}.

Diabetic nephropathy ultimately occurs only in susceptible individuals with diabetes; which susceptibility is determined by the combined effect of genetic predisposition and non-genetic factors. Genetic susceptibility to diabetic nephropathy is by nature polygenic. Whole-genome scanning studies have identified several chromosomal regions linked with diabetic nephropathy; however, the pathophysiologic function of such genetic regions has yet to be fully elucidated. Genetic polymorphisms may explain the familial clustering of diabetic nephropathy\cite{10}. Some studies have suggested some detrimental effect of the double-deletion (DD) polymorphism of the angiotensin-converting enzyme (ACE) genotype on disease progression\cite{11}. Non-genetic determinants of diabetic nephropathy include among others socioeconomic factors, dietary factors, poor hyperglycemic control, hypertension, obesity and early life factors\cite{12,13}. Hypertension appears to be a strong correlate of disease progression in Black people\cite{14,15}.

The current review has some limitations. Included studies were mostly based on small samples, with different study designs and most of the studies were cross sectional with only two being retrospective cohorts and one case-control. A large proportion were based in urban clinics with and most of the populations studied were that attending a general diabetic clinic and the results may not be generalizable.
to primary care populations. Ideally chronic kidney disease should not be diagnosed on the basis of single measurements of serum creatinine and albuminuria, and standard baseline investigations are needed to exclude other causative kidney disease, although there is precedence for this in other studies in the West as well. Finally, detection of microalbuminuria was one of the most frequent method to assess the presence of diabetic nephropathy. As microalbuminuria is more a quantitative estimate of endothelial/vascular dysfunction than of diabetic nephropathy, the incidence and prevalence rate of diabetic nephropathy have probably been overestimated when assessing kidney function by urine protein.

In conclusion, the current review gives a small glimpse of the larger numbers of CKD in diabetics in Africa compared to Western society. CKD is a substantial health burden among diabetic patients on the African continent, with prevalence varying from 11% to 83.7% depending on the method of assessment. Estimates suggest that 95% of diabetics may have proteinuria after a 10 years duration of diabetes, about 35% may have an end-stage renal disease after 5 years and 18% die from nephropathy after 20 years of disease duration. Risk factors of CKD include mainly hypertension, obesity, poor glycemic control and disease duration. Better surveillance of diabetes is a necessary first step toward its prevention and control, which is now recognized as an urgent priority. An electronic database in African regions would be ideal to assist in this entity although it is presumed that we are light years away from that. At a primary care level it is very plausible that with early detection, proper screening, and management, the impact of diabetic nephropathy may be better mitigated to lessen its impact on society and healthcare.

REFERENCES

1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. *Nature* 2001; 414: 782-787 [PMID: 11742409 DOI: 10.1038/414782a]
2. Aguirre F, Brown A, Cho NH, Dahlquist G, Dodd S, Dunning T, Hirst M, Hwang C, Magliano D, Patterson C, Scott C, Shaw J, Soltész G, Usher-Smith J, Whiting D. IDF Diabetes Atlas: sixth edition. 6th ed. Basel, Switzerland: International Diabetes Federation, 2013
3. Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njolstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J. Diabetes mellitus, fasting glucose, and risk of cause-specific death. *N Engl J Med* 2011; 364: 829-841 [PMID: 21366474 DOI: 10.1056/NEJMoa1008862]
4. Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Mathew R, Dallongeville J, Groop PH. Epidemiology and risk factors for chronic kidney disease among diabetic patients in Africa. *Diabetes Metab* 2012; 38: 558-566 [PMID: 23036461 DOI: 10.1016/j.diabet.2012.08.004]
5. Muller LM, Gorter JK, Hak E, Goudwaard WL, Schellevis FG, Hoepelman AI, Rutten GE. Increased risk of common infections without diabetes: a meta-analysis. *PLoS Med* 2008; 5: e152 [PMID: 18630984 DOI: 10.1371/journal.pmed.0050152]
6. Assogba GF, Matussicht K, Woodward M, Bilo HJ, Chalmers J, Mathew R, Dallongeville J, Groop PH. Epidemiology and risk factors for chronic kidney disease. *Adv Chronic Kidney Dis* 2014; 21: 260-266 [PMID: 24780453 DOI: 10.1016/j.ackd.2014.03.009]
7. Harjutsalo V, Groop PH. Epidemiology and risk factors for diabetic kidney disease. *Adv Chronic Kidney Dis* 2016; 23: 444-456
8. Bakris GL, Assogba GF, Couchoud C, Roudier C, Pernet C, Fosse S, Roman I, Druet C, Stengel B, Fagot-Campagna A. Prevalence, screening and treatment of chronic kidney disease in people with type 2 diabetes in France: the ENTRED surveys (2001 and 2007). *Diabetes Metab* 2012; 38: 558-566 [PMID: 23036461 DOI: 10.1016/j.diabet.2012.08.004]
9. Thomas MC, Weckes AJ, Broadley OJ, Cooper ME, Mathew TH. The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NERFON study). *Med J Aust* 2006; 185: 140-144 [PMID: 16893533]
10. Kengne AP, Sogbwi E, Echouffo-Tcheugui JB, Mbayna JC. New insights on diabetes mellitus and obesity in Africa-Part 2:
prevention, screening and economic burden. Heart 2013; 99: 1072-1077 [PMID: 23680890 DOI: 10.1136/heartjnl-2013-303773]

Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet 2010; 375: 2254-2266 [PMID: 20701042 DOI: 10.1016/S0140-6736(10)60550-8]

Strouf DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennier D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-2012 [PMID: 10798670]

Ajayi S, Mavmen V, Ojji D. eGFR and chronic kidney disease stages among newly diagnosed asymptomatic hypertensives and diabetics seen in a tertiary care center in Nigeria. Ethn Dis 2014; 24: 220-225 [PMID: 24804370]

Ablebiosu CO. Clinical diabetic nephropathy in a tropical African population. West Afr J Med 2003; 22: 152-155 [PMID: 14529227]

Ablebiosu CO, Odusan O, Familoni OB, Jaiyesimi AE. Cardiovascular risk factors in type 2 diabetic Nigerians with clinical diabetic nephropathy. Cardiovasc J S Afr 2004; 15: 124-128 [PMID: 15258622]

Ablebiosu CO, Odusan O, Jaiyesimi A. Morbidity in relation to stage of diabetic nephropathy in type 2 diabetic patients. J Natl Med Assoc 2003; 95: 1042-1047 [PMID: 14651370]

Bentata Y, Haddaya I, Latrech H, Serraj K, Abouqal R. Progression of diabetic nephropathy, risk of end-stage renal disease and mortality in patients with type 1 diabetes. Saudi J Kidney Dis Transpl 2013; 24: 392-402 [PMID: 23538374]

Bouaziz A, Fatini I. Microalbuminuria following type 2 diabetes mellitus in Tunisian population. West Indian Med J 2010; 61: 881-889 [PMID: 24020228]

Bouzid C, Smida H, Kacem A, Turki Z, Ben Salem L, Ben Rayana C, Siama BC. [Renal failure in Tunisian patients with type 2 diabetes: frequency and related factors]. Tunis Med 2011; 89: 10-15 [PMID: 21267820]

Choukem SP, Dzudie A, Demahem M, Halle MP, Doualla MS, Jing B, Tolan S, Helmke N, Mukerjee R, Naicker S, Gebrekidan A, English P, Wile D, Tesfaye S. Diabetic nephropathy in Africa. Trop Med Int Health 2007; 12: 214-226 [PMID: 17563337 DOI: 10.1016/j.tropicalmed.2007.06.011]

Diabetes Res Clin Pract 2010; 9: 987-992 [PMID: 18147923]

Nouliap JJN, Mansour EA, Stanifer JW, Monkoe G. Long-term (20 years) outcome of diabetic nephropathy. Nephrol Ther 2010; 6: 520-525 [PMID: 20605543 DOI: 10.1016/j.nephro.2010.04.002]

Keeton GR, Smit RV, Bryer A. Renal outcome of type 2 diabetes in South Africa--a 12-year follow-up study. S Afr Med J 2004; 94: 771-775 [PMID: 15487844]

Levitt NS, Bradshaw D, Zwarenstein MF, Bawa AA, Maphumulo S. Audit of public sector primary diabetes care in Cape Town, South Africa: high prevalence of complications, uncontrolled hyperglycaemia, and hypertension. Diabet Med 1997; 14: 1073-1077 [PMID: 9455936 DOI: 10.1002/sdi.916-9136(1997 12)14]

23 Lulata JI, Thordarson H, Abbas ZG, Vetzik K. Microalbuminuria among Type 1 and Type 2 diabetic patients of African origin in Dar Es Salaam, Tanzania. BMC Nephrol 2007; 8: 2 [PMID: 17224056 DOI: 10.1186/1471-2369-8-2]

Majaliwa ES, Musunhi E, Ramaiya K, Mpmennbi R, Sanyiwa A, Mohn A, Chiarelli F. Survey on acute and chronic complications in children and adolescents with type 1 diabetes at Muhimbili National Hospital in Dar es Salaam, Tanzania. Diabetes Care 2007; 30: 2187-2192 [PMID: 17563337 DOI: 10.2337/dci06-095]

Makulo R, Nseka MN, Jadoul M, Mviti M, Muyer MT, Kiemenyewo B, Mandja M, Bieliel E, Mapatano MA, Epiba FR, Sumali EK, Kaimbo BK, Ne G, Buntinx F, Muls E. [Albuminuria during the screening for diabetes in a semi-rural area (Kisantu City, Dar Es Salaam)]. Nephrol Ther 2010; 6: 513-519 [PMID: 20627763 DOI: 10.1016/j.nephro.2010.04.004]

Marshall SL, Edlin D, Shomuma V, Ogil G, Arena VC, Orchard T. Current clinical status, glucose control, and complication rates of children and youth with type 1 diabetes in Rwanda. Pediatr Diabetes 2013; 14: 217-226 [PMID: 23270222 DOI: 10.1111/pedi.12007]

Motala AA, Prie FG, Gouws E, Anod A, Omar MA. Microvascular complications in South African patients with long-duration diabetes mellitus. S Afr Med J 2001; 91: 987-992 [PMID: 11847923]

Nambuya AP, Ottin MA, Whitehead H, Mulvaney D, Kennedy R, Hadden DR. The presentation of newly-diagnosed diabetic patients in Uganda. QJM 1996; 89: 705-711 [PMID: 8917747]

Pruijm MT, Madeleine G, Riesen WF, Burnier M, Bovet P. Prevalence of microalbuminuria in the general population of Seychelles and strong association with diabetes and hypertension independent of renal markers. J Hypertens 2008; 26: 871-877 [PMID: 18393228 DOI: 10.1097/1HJ.0b013e3282ec2f49]

Rahlenbeek SI, Ogbua-Yohannes A. Prevalence and epidemiology of micro- and macroalbuminuria in Tibetan diabetic patients. J Diab Complications 1997; 11: 343-349 [PMID: 9365876]

Rassmussen JB, Thomsen JA, Rossing P, Parkinson S, Christensen DL, Bygbjerg IC. Diabetes mellitus, hypertension and albuminuria in rural Zambia: a hospital-based survey. Trop Med Int Health 2013; 18: 1080-1084 [PMID: 23763632 DOI: 10.1111/tmi.12139]

Rassisi JR, Nseka M, Jadoul L, Lepira F, Kashongwe Z, Mbanya JC, Moukouri EN, Ngu KB. Microalbuminuria and macroalbuminuria in rural Zambia: a hospital-based survey. J Clin Hypertens (Greenwich) 2014; 16: 40-46 [PMID: 19853548 DOI: 10.1016/j.jch.2009.08.001]

Rotchford AP, Rotchford KM. Diabetes in rural South Africa--an assessment of care and complications. S Afr Med J 2002; 92: 536-541 [PMID: 12197196]

Sobngwi E, Mbanya JC, Moukouri EN, Ngu KB. Microalbuminuria and retinopathy in a diabetic population of Cameroon. Diabetes Res Clin Pract 2004; 69: 191-196 [PMID: 14624120]

Wanjohi FW, Otieno FC, Ogola EN, Amayo EO. Nephropathy in patients with recently diagnosed type 2 diabetes mellitus in black Africans. East Afr Med J 2002; 79: 399-404 [PMID: 12638839]

Worku D, Hamza L, Woldeemichael K. Patterns of diabetic complications at jimma university specialized hospital, southwest ethiopia. Ethiop J Health Sci 2010; 20: 33-39 [PMID: 22434758]

Stafner JW, Jang B, Tolan S, Helmke N, Mukerjee R, Naicker S, Patel U. The epidemiology of chronic kidney disease in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health 2014; 2: e174-e181 [PMID: 25102850 DOI: 10.1016/S2214-109X(14)70002-6]

Levin A, Stevens PE. Summary of KDIGO 2012 CKD Guideline
behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 2014; 85: 49-61 [PMID: 24284513 DOI: 10.1038/ki.2013.444]

49 National Collaborating Centre for Chronic Conditions. Chronic kidney disease: Early identification and management of chronic kidney disease in adults in primary and secondary care. London: NICE, 2008. Available from: URL: http://www.nice.org.uk/nicemedia/live/12069/42117/42117.pdf

50 Swanepoel CR, Warne N, Okpechi IG. Nephrology in Africa--not yet uhuru. Nat Rev Nephrol 2013; 9: 610-622 [PMID: 23958719 DOI: 10.1038/nrneph.2013.168]

51 Matsha TE, Yako YY, Rensburg MA, Hassan MS, Kengne AP, Erasmus RF. Chronic kidney diseases in mixed ancestry South African populations: prevalence, determinants and concordance between kidney function estimators. BMC Nephrol 2013; 14: 75 [PMID: 23547953 DOI: 10.1186/1471-2369-14-75]

52 Weil EJ, Curtis JM, Hanson RL, Knowler WC, Nelson RG. The impact of disadvantage on the development and progression of diabetic kidney disease. Clin Nephrol 2010; 74 Suppl 1: S32-S38 [PMID: 20979961]

53 Ruster C, Wolf G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci 2008; 13: 944-955 [PMID: 17981602]

54 Iwano M, Plieht D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110: 341-350 [PMID: 12163453 DOI: 10.1172/JCI15518]

55 Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989; 320: 1161-1165 [PMID: 2710189 DOI: 10.1056/NEJM198905043201801]

56 Marre M, Jeunemaitre X, Gallois Y, Rodier M, Chatellier G, Sert C, Dusselier L, Kahal Z, Chailrous L, Halimi S, Muller A, Sackmann H, Baudouez B, Bled F, Passa P, Allenc-Gelas F. Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathe Diabetique (GENEDIAB) study group. J Clin Invest 1997; 99: 1585-1595 [PMID: 9120002 DOI: 10.1172/JCI119321]

57 Nelson RG, Morgenstern H, Bennett PH. Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 1998; 47: 1489-1493 [PMID: 9726239]

58 Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease: the role of fetal programming. Hypertension 2006; 47: 502-508 [PMID: 16415374 DOI: 10.1161/01.HYP.0000198544.099-09.1a]

59 Brancati FL, Whittle JC, Whelton PK, Seidler AJ, Klag MJ. The excess incidence of diabetic end-stage renal disease among blacks. A population-based study of potential explanatory factors. JAMA 1992; 268: 3079-3084 [PMID: 1433738]

60 Chaiken RL, Palmisano J, Norton ME, Banerji MA, Bard M, Sachimechi I, Behzadi H, Lebovitz HE. Interaction of hypertension and diabetes on renal function in black NIDDM subjects. Kidney Int 1995; 47: 1697-1702 [PMID: 7643539]

P-Reviewer: de Oliveira JMF, Laghmani K S-Editor: Ji FF L-Editor: A E-Editor: Zhang DN
