The K_{ATP} channel in migraine pathophysiology: a novel therapeutic target for migraine

Mohammad Al-Mahdi Al-Karagholi, Jakob Møller Hansen, Johanne Severinsen, Inger Jansen-Olesen and Messoud Ashina

Abstract

Background: To review the distribution and function of K_{ATP} channels, describe the use of K_{ATP} channels openers in clinical trials and make the case that these channels may play a role in headache and migraine.

Discussion: KATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K_{ATP} channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K_{ATP} channel openers can provoke migraine in migraine sufferers is not known.

Conclusion: We suggest that K_{ATP} channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

Keywords: Migraine, K_{ATP} channel, K_{ATP} channels, Headache, Levcromakalim, Cromakalim

Introduction

Adenosine 5'-triphosphate-sensitive K⁺ (K_{ATP}) channel openers have been used in clinical trials for the treatment of hypertension and asthma. The most common side effect mentioned during treatment with K_{ATP} channel openers was headache [62, 64, 66–79] (Tables 2 and 3). However, only little attention has been focused on the role of K_{ATP} channels in migraine pathophysiology.

K_{ATP} channels were originally identified in cardiomyocytes [1], but have also been found in several tissues, including pancreatic α- and β-cells, smooth muscle, skeletal muscle and central neurons [2, 3]. The channels belong to the family of inwardly rectifying K⁺ channels that are inhibited at physiological intracellular levels ATP/ADP ratio. When intracellular ATP is reduced under conditions of metabolic challenges they open. K_{ATP} channels are critical in regulating insulin secretion, controlling vascular tone, and protecting cells against metabolic stress [2, 4, 5].

Over the past three decades, some preclinical evidence has emerged indicating that K_{ATP} channels may play an important role in migraine pathophysiology. In particular, the vasodilation effect of K_{ATP} channels is relevant, since it is has been established that endogenous neurotransmitters that trigger migraine attacks are often associated with dilation of cranial arteries [6].

Here we review preclinical and clinical studies on K_{ATP} channels and discuss the K_{ATP} channel as a novel therapeutic target for migraine treatment.

Molecular structure and isoforms

The K_{ATP} channel is a hetero-octameric complex that consists of four pore-forming K⁺ inwardly rectifying (Kir) subunits and four regulatory sulfonylurea receptor (SUR) subunits [7].

The Kir6.x subunit exists in two isoforms, Kir6.1 and Kir6.2. The SUR subunit belongs to the ATP-binding cassette (ABC) transporter family, regulated by...
sulfonylurea, with three isoforms, SUR1, SUR2A, and SUR2B [7, 8].

K\textsubscript{ATP} channels have specific tissue expression with different compositions of Kir\textsubscript{6.x} and SUR subunits which lead to distinct functional properties (Figs. 1 and 2 and Table 1).

Channel function

K\textsubscript{ATP} channel activity is controlled by changes in concentrations of intracellular ATP and magnesium adenosine diphosphate (Mg-ADP). K\textsubscript{ATP} channels couple the metabolic state of the cell to the membrane potential and thus play a crucial role in many tissues under both

Fig. 1 Molecular structure and isoforms. **a** Two major Kir\textsubscript{6.x} isoforms (Kir6.1 and Kir 6.2) and three major SUR isoforms (SUR1, SUR2A and SUR 2B) have been identified. **b** Kir\textsubscript{x} subunits combine tissue-specifically with different SUR subunits to form various native K\textsubscript{ATP} channels. Pancreatic, cardiac and smooth muscle K\textsubscript{ATP} channels are made up of Kir6.2/SUR1, Kir6.2/SUR2A and Kir6.1 (or Kir6.2)/SUR2B, respectively [2]. Kir, inwardly rectifying K+ channels; SUR, sulfonylurea receptor.
physiological and pathological conditions [9]. K⁺ channels participate in the regulation of vascular tone, including cerebral arteries [10]. When intracellular ATP is reduced, K_{ATP} channels become activated; K⁺ efflux hyperpolarize the membrane and close voltage-operated Ca^{2⁺}-channels (VOCC). The result is a decrease in cytosolic Ca^{2⁺} concentration followed by relaxation of vascular smooth muscle cells and an increase in blood flow [11]. The same applies if cells are exposed to metabolic stress such as ischemia or hypoglycemia [12]. Closure of K⁺ channels leads to membrane depolarization and constriction of the vessels [11]. In addition an increase in intracellular cAMP and cGMP levels activate K_{ATP} channels to produce vasodilation [11]. Synthetic K_{ATP} channel openers (like levcromakalim and cromakalim) and blockers (like glibenclamide, second generation of sulfonylurea and PNU37883A) directly activate or inhibit the vascular K_{ATP} channels, respectively [9] (Fig. 3).

Table 1 Distribution of K_{ATP} channels

Subtypes of K_{ATP} channels	Tissue expression	Migraine related structures
Kir6.2/SUR1 Pancreas and brain	DRG, TG and TNC from rats (20–24, 26).	
Kir6.2/SUR2A Cardiac and skeletal muscle		
Kir6.2/SUR2B Smooth muscle	DRG, TG, TNC, BA and MCA from rats (20–24, 26).	
Kir6.1/SUR2B Smooth muscle	MMA from rats, pigs and human; MCA from rats and pigs; BA, DRG, TG and TNC from rats (20–24, 26).	

DRG Dorsal root ganglia, TG trigeminal ganglion, TNC trigeminal nucleus caudatus, BA basilar artery, MMA middle meningeal artery, MCA middle cerebral artery

Distribution of K_{ATP} channels in migraine related structures

Intracranial arteries
K_{ATP} channels are present and functional in intracranial arteries [13–15]. They are found in vascular smooth muscle cells and vascular endothelial cells [16, 17]. In rat cerebral arteries, the distribution of K_{ATP} channels varies with vessel size and brain region [18]. Real time polymerase chain reaction (RT-PCR) analysis revealed Kir6.1 and SUR2B subunits in middle meningeal artery (MMA) and middle cerebral artery (MCA) in rats and pigs [19, 20]. This profile of K_{ATP} channels is also identified in human MMA [21] (Table 1).

Trigeminal ganglion and trigeminal nucleus caudalis
Kir6.1, Kir6.2, SUR1 and SUR2 are expressed in the trigeminal ganglion and trigeminal nucleus caudalis [22] (Table 1). In trigeminal neurons Kir 6.1 and Kir 6.2 immunoreactivity were expressed in cells with all soma sizes in all three divisions of the trigeminal ganglion [23].

K_{ATP} channels openers and migraine signaling pathways
A number of endogenous vasoactive signaling molecules have been implicated in migraine [6], and K_{ATP} channels may interact with these molecules.
Nitric oxide (NO)

In humans, infusion of the NO donor, glyceryl trinitrate, and inhibition of the breakdown of cGMP by sildenafil [24] provoke migraine attacks in migraineurs [25–27]. The NO-cGMP signaling pathway is involved in the relaxation of vascular smooth muscle [28]. In vitro studies with cerebral arteries isolated from rat and piglet and extra-cerebral arteries from rabbit reported that activation (opening) of K_ATP channels contributed to both cAMP- and cGMP-mediated vasodilation [29–31]. Yuan et al. [32] reported that sildenafil-induced vasodilation in porcine retinal arterioles was significantly inhibited by glibenclamide and suggested that cGMP signaling triggers opening of K_ATP channels. In contrast, NO-induced dural and pial artery dilation in rats was not attenuated by the K_ATP channel blocker, glibenclamide [33]. Together, these data suggest that interspecies differences are likely to explain the discrepancy in findings of the role of K_ATP channels in NO-induced vasodilation.

Calcitonin gene-related peptide (CGRP)

CGRP is one of the most potent endogenous vasodilators and major arteries in the intracranial circulation of man and animals are innervated by CGRP-containing nerve fibers [34–36]. Efficacy of CGRP antagonism is established in acute [37, 38] and preventive treatment of migraine [39]. CGRP activates vascular smooth muscle K_ATP channels indirectly through adenylate cyclase and protein kinase A (PKA) phosphorylation (Fig. 4) [40–43]. In rats, CGRP-induced dilation of the dural and pial arteries in vivo was shown to be inhibited by glibenclamide [33], but K_ATP channel openers do not interact with CGRP release in trigeminal ganglion and trigeminal nucleus caudalis [22]. This suggests that K_ATP channels are involved in CGRP-induced intracranial vasodilation.

Pituitary adenylate cyclase activating polypeptide (PACAP)

Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent endothelium independent vasodilator of various vascular beds, including cerebral arteries [44, 45]. In vivo and in vitro studies have demonstrated that PACAP dilates cranial arteries in different species, e.g. human cerebral arteries [34, 46, 47], pig pia artery, canine basilar artery, cat cerebral arteries, rabbit posterior cerebral arteries and rat middle cerebral arteries [48–52]. Emerging
data suggest that PACAP or its receptors are a promising target for migraine therapeutics [53]. PACAP has three types of receptors; pituitary adenylate cyclase PAC1 (pituitary adenylate cyclase receptor 1), VPAC1 (vasoactive intestinal peptide and pituitary adenylate cyclase receptor 1) and VPAC2 (vasoactive intestinal peptide and pituitary adenylate cyclase receptor 2) [54] the two latter ones are also activated by vasoactive intestinal peptide and all three receptors are found in cerebral artery smooth muscle cells [55]. Through these receptors, PACAP leads to an increase in intracellular cAMP, which activates PKA and produces vasodilation by several mechanisms including activation of K_{ATP} channels (Fig. 4) [45]. Interestingly, glibenclamide could partially inhibit PACAP induced vasodilation in cerebral, coronary and pulmonary arteries, suggesting that PACAP may also activate K_{ATP} channels [44, 45].

Prostaglandins

Prostacyclin (PGI₂) activates and sensitizes meningeal sensory afferents, and provokes immediate migraine-like attacks in migraine sufferers [56]. PGI₂ also increases K_{ATP} channel activity in vascular smooth muscle preparations by cAMP-dependent PKA activation [57] (Fig. 4).

Headache induced by K_{ATP} channels openers

In the late 80’s there was a tremendous interest in developing novel K_{ATP} channel openers for hypertension, angina pectoris and asthma. Three pharmacological drugs were developed, pinacidil, nicorandil and levcromakalim. One of most common adverse events after treatment reported in these studies was headache [58–63].

Six clinical trials with pinacidil have been published for treatment of essential hypertension. Between 7% and 21% of the patients reported headache as an adverse effect (Table 2).

Noricandil was tested for the treatment of angina pectoris and ischemic heart disease. 23% to 88% of the patients reported headache as an adverse event (Table 3). The high incidence of headache is likely due to the mixed K_{ATP} channel opener and NO donor properties of nicorandil which thus cause vasodilation via two separate mechanisms.

Levcromakalim was investigated for the treatment of asthma and essential hypertension. In these studies

Table 2 Headache incidences registered during randomized controlled trials (RCT) and open label clinical trials with pinacidil

Paper	Study design	Dose (daily)	Indication	No. of patients	Headache No.
Muiesan et al. 1985, Eur. J. Clin. Pharmacol [86].	RCT	30–75 mg	Essential hypertension	30	2 (7%)
Laher & Hickey 1985, J. Int. Med. Res [87].	Open label	12.5 mg	Healthy volunteers	12	1 (8%)
D’Arcy et al. 1985, Eur. J. Clin. Pharmacol [88].	Open label	20–100 mg	Essential hypertension	23	4 (17%)
Zachariah et al. 1986, Eur. J. Clin. Pharmacol [89].	RCT	62 mg (mean)	Essential hypertension	23	———
Sterndorff & Johansen 1988, Acta Med. Scand [90].	RCT	25–100 mg	Essential hypertension	71	7 (10%)
Goldberg 1988, J. Cardiovasc. Pharmacol [91].	RCT	25–100 mg	Essential hypertension	145	31 (21%)
between 29% and 76% of the patients reported headache as an adverse event (Table 4).

The selective synthetic K\textsubscript{ATP} channel openers levcromakalim and pinacidil have been shown to induce dilation in rat cranial arteries [13, 15, 19] and in isolated human cerebral arteries [64]. Moreover, the arterial dilation can be inhibited by synthetic K\textsubscript{ATP} channel blockers like glibenclamide [10, 33] and PNU37883A [21, 65] (Fig. 3). These findings suggest that high incidences of headache could be due to vasoactive effect of the K\textsubscript{ATP} channel openers in pain-sensitive extra- and/or intracerebral arteries.

Discussion and future perspectives

K\textsubscript{ATP} channels are expressed in migraine-related structures such as the cranial arteries, TG and TNC [18–22, 66]. K\textsubscript{ATP} channels are also connected to a number of key molecules in migraine pathogenesis, particularly nitric oxide, CGRP, PACAP and PGI\textsubscript{2} known to provoke migraine attacks [56, 67–71]. Therefore, the K\textsubscript{ATP} channels are interesting in migraine context.

Human experimental models have demonstrated that the activation of the cAMP and cGMP pathways can trigger headache in healthy volunteers and migraine attacks in migraine sufferers [6, 71, 72]. The cAMP and cGMP signaling pathways are crucial in the activation of K\textsubscript{ATP} channels, which result in the relaxation of smooth muscle [29–31]. Furthermore, synthetic K\textsubscript{ATP} channel openers like levcromakalim and pinacidil trigger headache in non-migraine patients [58–63]. Although a detailed description of levcromakalim- and pinacidil-induced headache and accompanying symptoms are lacking, these data support a role of K\textsubscript{ATP} channels in migraine headache. Because K\textsubscript{ATP} channel openers were tested for other indications, there are no available data on the potential migraine-inducing effects of pinacidil and levcromakalim in migraine patients. It is conceivable that both headache and migraine are underreported as adverse events, as was found for the phosphodiesterase inhibitors, cilostazol and sildenafil [73, 74].

In addition to the vasoactive effects, the K\textsubscript{ATP} channels might also tap into other parts of the migraine cascade. For a number of patients, migraine attacks are associated with transient focal neurological symptoms called the aura [75], possibly caused by cortical spread depression (CSD) [76]. During CSD K+ conductance is increased, and CSD may be inhibited by Kir antagonist [77]. The fact that K\textsubscript{ATP} channels open under cellular stress, as seen during long lasting depolarizations, could provide a link between K\textsubscript{ATP} channels, CSD and migraine aura.

With regard to the migraine pain, it is worth noting that K\textsubscript{ATP} channels are also found in peripheral nociceptive fibers [78] and activation of these channels play a crucial role in anti-nociception at both spinal and supra-spinal levels [23, 79]. The exact role of these findings in the headache induced by K\textsubscript{ATP} channel openers is unknown.

If K\textsubscript{ATP} channel openers are in fact able to trigger migraine, the next step to consider is whether K\textsubscript{ATP} channel antagonists can relieve migraine. K\textsubscript{ATP} blockers for the treatment of migraine should be selective for the Kir6.1/SUR2B subtype because of its dominant presence in vascular tissue (Table 1). The necessity of a subtype

Table 3	Headache incidences registered during randomized controlled trials (RCT) and open label clinical trials with nicorandil				
Paper	Study design	Dose (daily)	Indication	No. of patients	Headache No.
Camm & Maltz, 1989, Am. J. Cardiol [92].	RCT	20–60 mg	Angina pectoris	8	20 mg 50% 40 mg 88% 60 mg 67%
Raftery et al. 1993, Eur. Heart Journal [93].	RCT	20 mg and 40 mg	Angina pectoris	18	11 (61%)
Roland 1993, Eur. Heart Journal [94].	Review	10–80 mg	Angina pectoris	1680	36%
Wolf et al. 1993, Eur.J.Clin.Pharmacol [95].	RCT	20–200 μg i.v.	Healthy volunteers	48	19 (40%)
Witchitz & Darmaon, 1995, Cardiovasc. Drugs & Therap [96].	Open label	20–40 mg	Angina pectoris	197	45 (23%)
Dunn et al. 1999, Pharmacoepidemiology and Drug safety [97].	Prescription-event monitoring (PEM) study	Varying	Angina pectoris & ischemic heart disease	13,260	477 (4%)

Table 4	Headache incidences registered during randomized controlled trials (RCT) and open label clinical trials with levcromakalim				
Paper	Study design	Dose (daily)	Indication	No. of patients	Headache No.
Singer et al. 1989, J. Hypertens [98].	RCT	1.5 mg	Essential hypertension	8	4 (50%)
Williams et al. 1990, Lancet [60].	RCT	1.5 mg	Asthma	16	10 (62%)
Kidney et al. 1993, Thorax [62].	RCT	0.125–0.5 mg	Asthma	25	19 (76%)
Suzuki et al. 1995, Arzneim.-Forsch./Drug Res [99].	Open label	0.5–1.0 mg	Essential hypertension	14	4 (29%)
specific blocker is unavoidable because of occurrence of different subtypes in different tissues. Glibenclamide cannot be used due to its high affinity to the Kir6.2/SUR1 subtype of K\textsubscript{ATP} channels present in the pancreas with hypoglycemia as a side effect [80]. PNU-37883A is a Kir6.1 selective K\textsubscript{ATP} channel blocker that was originally developed as a diuretic drug [81, 82]. The drug was not approved for human studies because of its cardiac depressant activity in animal studies [83]. This precludes further clinical development of PNU-37883A due to possible serious adverse events but may not exclude further investigations in other blockers against Kir6.1 subunit because it is not clear if all blockers against Kir6.1 subunit have non-favorable effects. These findings indicate that the SUR2B subunit and the Kir6.1 subunit should be a potential target for the treatment of migraine, but proof of concept studies are needed to examine this hypothesis.

Conclusion

Emerging evidence suggests that K\textsubscript{ATP} channels could be involved in the pathophysiology of migraine. K\textsubscript{ATP} channels exist in structures which are believed to be linked to the pathophysiology of migraine, including cerebral and meningeal arteries and the trigeminal system [19–22]. It is established that the cAMP signaling pathway and possibly cGMP signaling pathway are involved in the activation of K\textsubscript{ATP} channels [29–31]. This is interesting in migraine contexts, as the two signaling pathways are likely to be crucial in the development of a migraine attack. We suggest that the presented clinical and theoretical evidence support further studies of K\textsubscript{ATP} channel openers in migraine context. Future human studies will help clarify the role of K\textsubscript{ATP} channels in the pathophysiology of migraine.

Abbreviations

Abbreviation	Definition
ABC transporter	ATP-binding cassette transporter
BA	Basilar artery
CGRP	Calcitonin gene-related peptide
CSD	Cortical spread depression
DRG	Dorsal root ganglia
K\textsubscript{ATP} channel	Adenosine 5′-triphosphate-sensitive K+ channel
Kir	K+ inwardly rectifying channel
MCA	Middle cerebral artery
Mg-ADP	Magnesium adenosine diphosphate
MMA	Middle meningeal artery
NO	Nitric oxide
PACAP	Pituitary adenylate cyclase activating polypeptide
PGI	Prostacyclin
SUR	Sulfonylurea receptor
TG	Trigeminal ganglion
TNC	Trigeminal nucleus caudatus
VOCC	Voltage-operated Ca2+ channels

Funding

This article was supported by the Lundbeck Foundation.

Authors’ contributions

MMK designed and performed the review, with the help of JMH, JS, IJO and MA. MMK drafted the manuscript with the help of JMH, JS, IJO and MA. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark. 2. Danish Headache Center, Department of Neurology, Glostrup Research Park, Rigshospitalet Glostrup, Copenhagen, Denmark.

Received: 3 July 2017 **Accepted:** 15 August 2017

Published online: 23 August 2017

References

1. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148. doi:10.1038/305147a0
2. Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135. doi:10.1210/er.20.2.101
3. Dunn-Meynell AA, Rawson NE, Levin BE (1998) Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 814:1–54. doi:10.1016/S0006-8993(98)00956-1
4. Yamada K, Inagaki N (2005) Neuroprotection by KATP channels. J Mol Cell Cardiol 38:945–949. doi:10.1016/j.yjmcc.2004.11.020
5. Saito T, Fujiwara Y, Fujiwara R, et al (2002) Experimental biology. 2001 symposium potassium channels that regulate vascular tone - which are the important players? ROLE OF AUGMENTED EXPRESSSION OF INTERMEDIATE-CONDUCTANCE CA 2 + + ACTIVATED K + CHANNELS IN. 324–329
6. Ashina M, Hansen JM, Olesen J (2013) Pearls and pitfalls in human pharmacological models of migraine: 30 years’ experience. Cephalalgia 33: 540–553. doi:10.1177/0333102412475234
7. Clement JP, Kunjilwar K, Gonzalez G et al (1997) Association and stoichiometry of (KATP) channel subunits. Neuron 19:822–838. doi:10.1016/S0896-6273(00)80321-9
8. Shnyg S-L, Nichols CG (1997) Octameric stoichiometry of the K_{ATP} complex. J Physiol 110:655–664. doi:10.1113/jphysiol.1998.000655
9. Rubaiy HN (2016) The therapeutic agents that target ATP-sensitive potassium channels. Acta Pharma 66:23–34. doi:10.1515/acph-2015-0040
10. Faraci FM, Sobey CG (1998) Role of potassium channels in regulation of cerebral vascular tone. J Cereb Blood Flow Metab 18:1047–1063. doi:10.1097/00004647-199810000-00001
11. Chrisebossolis S, Sobey CG (2003) Inwardly rectifying potassium channels in the regulation of vascular tone. Curr Drug Targets 4:281–289
12. Henn MC, Janjua VB, Zhang H et al (2016) Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate–sensitive potassium channel subunit Kir6.1. J Surg Res 206:460–465. doi:10.1016/j.jss.2016.05.043
13. Gozalov A, Petersen KA, Mortensen C et al (2005) Role of KATP channels in the regulation of rat duodenum and duodenal artery diameter. Cephalalgia 25:249–260. doi:10.1111/j.1468-2982.2004.00848.x
14. Kitazono T, Faraci FM, Taguchi H, Heistad DD (1995) Role of potassium channels in cerebral blood vessels. Stroke 26:1713–1723
15. Jansen-Olesen L, Mortensen CH, El-Bariaki N, Plov KB (2005) Characterization of KATP-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression. Eur J Pharmacol. 523:109–118. doi:10.1016/j.ejphar.2005.08.028
16. Janigro D, West GA, Gordon EL, Winn HR (1993) ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Phys. 265:C812–C821
17. Faraci FM, Heistad DD (1998) Regulation of the Cerebral Circulation: Role of Endothelium and Potassium Channels, Physiol Rev. 78:53–97
18. McPherson GA, Stork AP (1992) The resistance of some rat cerebral arteries to the vasorelaxant effect of cromakalim and other K+ channel openers. Br J Pharmacol 105:51–58. doi:10.1111/j.1476-5381.1992.tb14209.x
19. Ploug KB, Edvinsson L, Olesen J, Jansen-Olesen I (2006) Pharmacological and molecular comparison of KATP channels in rat basilar and middle cerebral arteries. Eur J Pharmacol 553:254–262. doi:10.1016/j.ejphar.2006.09.053
20. Ploug KB, Baun M, Hay-Schmidt A et al (2010) Presence and vascular pharmacology of KATP channel subtypes in rat central and peripheral tissues. Eur J Pharmacol 637:109–117. doi:10.1016/j.ejphar.2010.03.027
21. Ploug KB, Sørensen MA, Stræbøch L et al (2008) KATP channels in pig and human intracranial arteries. Eur J Pharmacol 601:43–49. doi:10.1016/j.ejphar.2008.10.041
22. Ploug KB, Amrutkar DV, Baum M et al (2012) K(ATP) channel openers in the trigeminovascular system. Cephalalgia 32:55–65. doi:10.1177/0333102411430266
23. Niu K, Salomon JL, Zang Y, Ro JY (2011) Sex differences in the contribution of ATP-sensitive K+ channels in trigeminal ganglia under an acute muscle pain condition. Neuroscience 180:344–352. doi:10.1016/j.neuroscience.2011.01.045
24. Leoni LAB, Leite GS, Wichi RB, Rodrigues B (2013) Sildenafil: two decades of clinical trials. Peptides 32:225–228. doi:10.1016/j.peptides.2013.01.006
25. Krause C, Thomasen LL, Birk S, Olsen J (2003) Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 126:241–247. doi:10.1093/brain/avw009
26. Olsen J, Thomsen LL, Lassen LH, Olsen U (1995) The nitric oxide hypothesis of migraine and other vascular headaches. Cephalalgia 15:94–100. doi:10.1080/0333102411430266
27. Olesen J, Iversen HK, Thomsen LL (1993) Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport 4:1027–1030
28. Niehaus L, Gottschalk S, Weber U (1998) Effect of drug-induced vasodilatation of basal brain arteries with nitroglycerin on blood flow velocity and volume flow in the middle cerebral artery. Ultraschall Med. 19:225–229. doi:10.1159/000100049
29. Armstead WM (1996) Role of ATP-sensitive K+ channels in CGMP-mediated arterial vasodilatation. Am J Physiol 270:H242–H246
30. Hjemdahl P, Ziegler A, Mehdorn HM (2001) Role of potassium channels in the relaxation induced by the nitric oxide (NO) donor DEA/NO in the isolated rat basilar artery. Neurosci Lett 313:21–24
31. Murphy ME, Brayden JE (1995) Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 486 (Pt 1):147–58. doi:10.1113/jphysiol.1995.sp020789
32. Yuan Z, Hein TW, Rosa RH, Kuo L (2008) Sildenafil (Viagra) evokes retinal responses in the rat via ATP-sensitive potassium channels. J Physiol. 586 (Pt 1):47–58. doi:10.1111/j.1469-810X.2008.5836.x
33. Ziegler A, Mehdorn HM (2001) Role of potassium channels in the relaxation induced by the nitric oxide (NO) donor DEA/NO in the isolated rat basilar artery. Neurosci Lett 313:21–24
34. Jansen-Olesen L, Gulbenkian S, Engel U et al (2004) Peptidergic and non-peptidergic innervation and vasmotor responses of human lenticulostrate and posterior cerebral arteries. Peptides 25:2105–2114. doi:10.1016/j.peptides.2004.08.002
35. Edvinsson L, Gulbenkian S, Barroso CP et al (1998) Inhibition of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotority. Peptides 19:1373–1381. doi:10.1016/S0196-9781(98)00066-7
36. Edvinsson L, Ekman R, Jansen I, Edvinsson L (2000) The effects of pituitary adenylate cyclase-activating polypeptide and migraine. Ann Clin Transl Neurol 1:1036–1040. doi:10.1007/s12031-010-9851-0
37. Wijers JJ, Wijers R, Schouten HS, et al (1987) Calcitonin gene-related peptide activates the K+ channel in rabbit arterial smooth muscle. J Physiol 407:377–387. doi:10.1113/jphysiol.1987.sp011982
38. Wellman GC, Quayle JM, Standen NB (1998) ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol. 507.1:117–129
39. Bruch L, Rubel S, Kästner A, et al (1998) Pituitary adenylate cyclase activating peptides relax human pulmonary arteries by opening of K ATP and K Ca channels. S86–S87
40. Chalovich JM, Eisenberg E (2005) NIH public access. Biophys Chem 257:2432–2437. doi:10.1016/j.jmcc.2010.12.017 Two stage
41. Amin FM, Asghar MS, Guo S, et al (2011) Headache and prolonged dilatation of the middle meningeal artery by PACAP38 in healthy volunteers: 32:140–149. doi:10.1177/0333102411433133
42. Amin FM, Hougaard A, Schytz HW et al (2014) Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain 137:779–794. doi:10.1093/brain/awt369
43. Erdling A, Shelykhzade M, Maddahi A et al (2013) VIP/PACAP receptors in cerebral arteries of rat: characterization, localization and relation to intracellular calcium. Neuroptides 47:85–92. doi:10.1016/j.neppe.2012.12.005
44. Daligast T, Hånell J, Fahrenkrug J et al (2003) VIP and PACAP display different vasodilatory effects in rabbit coronary and cerebral arteries. Regul Pept 110:83–87. doi:10.1016/S0167-0115(02)00205-7
45. Uddman R, Goadsby PJ, Jansen I, Edvinsson L (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat papillae and cerebral blood flow. J Cereb Blood Flow Metab 13:291–297. doi:10.1093/jcbfm/13.5.291
46. Tong S, Parfenova H, Shibata M et al (1993) Pituitary adenylate cyclase activating polypeptide dilates cerebral arterioles of newborn pigs. Proc Soc Exp Biol Med 203:343–347
47. Seki Y, Suzuki Y, Baskaya MK et al (1995) The effects of pituitary adenylate cyclase-activating polypeptide on cerebral arteries and vertebral artery blood flow in anesthetized dogs. Eur J Pharmacol 275:259–266
48. Zagoni AS, Edvinsson L, Goadsby PJ (2014) Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol 1:1036–1040. doi:10.1007/s12031-013-9113-3
49. Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary Adenylate Cyclase Activating polypeptide and its receptors: 20 years after the discovery. Pept Res 61:283–357. doi:10.1016/j.ipep.2009.09.023
50. Ray CI, Marshall JM (2006) The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol 570:85–96. doi:10.1113/jphysiol.2005.099390
51. Thomas P, Dixon MS, Winterton SJ, Sheridan DJ (1990) Acute haemodynamic effects of cromakalim in patients with angina pectoris. Br J Clin Pharmacol 29:325–331
52. Antihypertensive Effect of Levcromakalim in patients with essential hypertension.pdf
53. Williams AJ, Lee TH, Vyse T et al (1990) Attenuation of nocturnal asthma by potassium channel activator, BRL 38227, on airway function and responsiveness in chronic asthma. J Allergy Clin Immunol 86:1104–1110
54. Ho TW, Ferrari MD, Dodick DW et al (2008) Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 372:2115–2123. doi:10.1016/S0140-6736(08)61626-8
55. Hou M, Xing H, Cai Y et al (2017) The effect and safety of monoclonal antibodies to calcitonin gene-related peptide and its receptor on migraine: a systematic review and meta-analysis. J Headache Pain 18:42. doi:10.1186/s10194-017-0750-1
56. Nelson MT, Huang Y, Brayden JE et al (1990) Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 347:770–773. doi:10.1038/347770a0
57. Quayle JM, Bonev AO, Brayden JE, Nelson MT (1994) Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase a. J Physiol 475:9–13. doi:10.1111/j.1469-8137.1994.020045.x
58. Nakaya Y, City T (1995) Calcitonin gene-related peptide activates the K+ channels of vascular smooth muscle cells via adenylyl cyclase. 332–336
