Research Article

Study on the Mixed Materials Proportion of Stratum Based on the Modelling Experiment

Yijun Zhou¹ and Tao Xu²

¹College of Architecture and Engineering, North China University of Science and Technology, Tangshan 063210, China
²School of Civil Engineering, Southeast University, Nanjing 211189, China

Correspondence should be addressed to Tao Xu; xu-tao@seu.edu.cn

Received 4 May 2021; Accepted 19 May 2021; Published 26 May 2021

Academic Editor: Xiaohu Zhang

Copyright © 2021 Yijun Zhou and Tao Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is highly significant to select similar materials as well as the proportion of mixed materials in the model test. The mixed materials are used to simulate the stratum of the model test, including the iron ore powder, natural sands, gypsum, and lime. The stratum contains silty clay and silt soil. First of all, the symmetry coefficient of model mechanics parameters are calculated by the equation, and the symmetry ratio is 16:1. Second, calculate the proportion of compositions in mixed materials by the orthogonal test. The deviation method is used to analyze the mixed materials and how to influence the elastic modulus, cohesion, and friction angle. Finally, get the mixed materials which meet the symmetry theory and control factors.

1. Introduction

The model test is a method that uses the symmetry theory to reduce the size of the prototype. The symmetrical material is highly significant to the model test, and it usually contains some kinds of materials called mixed materials. Choosing suitable mixed materials can determine the model test whether success or not [1–3].

The mixed materials have been researched by some researchers. In abroad, Fumagalli [4] researched the model test of engineering geology initially in the 1960s. He used gypsum, powder of PbO, expansive soil, and water to simulate the stratum. Han et al. [5] researched the materials of MIB to study the rock and soil. Wang [6] selected the barite, quartz, and vaseline to study proportion of mixed materials in the model test. He found that different proportions of mixed materials lead to different results of the test. Chen and Zuo [7, 8] introduced several materials to study the influence for proportion of stratum, including PbO, gypsum, expansive soil, sands, starch, hardener, and so on.

The symmetry theory is mainly used to guide the model test to determine the proportion for the model and prototype [9–12].

The geology model test is highly complex and is affected by lots of factors, such as density of soil, cohesion of soil, friction angle of soil, elastic modulus of soil, and so on. Therefore, the much more important factor must be controlled, ignoring the less important factors [13–17].

To measure the proportion of mixed materials, some kinds of methods are introduced, including the direct shear test, orthogonal test, deviation analysis method, three axes test, and so on [18–26].

2. Materials and Methods

2.1. Determination of Symmetry Coefficient of Stratum

2.1.1. Symmetry Ratio. In the process of the model test, the symmetry ratio is a crucial step and also determines the model test whether it can correctly react to objective laws or not. The symmetry ratio is the ratio between the prototype and the model and marked C. The definitions of model test parameters are as follows: L is the length, r is the density, \(\delta \) is the displacement, \(\sigma \) is the stress, \(\varepsilon \) is the strain, \(\sigma^t \) is the tensile strength, \(\sigma^c \) is the compressive strength, \(c \) is the cohesion, \(\phi \) is the friction angle, \(\mu \) is Poisson’s ratio, and \(f \) is
the coefficient of friction. All of the parameters of symmetry ratio are given in Table 1.

2.1.2. Establishment of Symmetry Equation. According to the symmetry theory, establish the equation of the prototype and model, including the equilibrium equation, geometric equation, and physical equation.

(1) Establish a symmetrical condition by the equilibrium equation:

\[
\begin{align*}
\left\{ \begin{array}{l}
\left(\frac{\partial \sigma_x}{\partial x} \right)_p + \left(\frac{\partial \tau_{yx}}{\partial y} \right)_p + \left(\frac{\partial \tau_{zx}}{\partial z} \right)_p + X_p = 0 \\
\left(\frac{\partial \sigma_y}{\partial y} \right)_p + \left(\frac{\partial \tau_{zy}}{\partial z} \right)_p + \left(\frac{\partial \tau_{xy}}{\partial x} \right)_p + Y_p = 0 \\
\left(\frac{\partial \sigma_z}{\partial z} \right)_p + \left(\frac{\partial \tau_{zx}}{\partial x} \right)_p + \left(\frac{\partial \tau_{zy}}{\partial y} \right)_p + Z_p = 0
\end{array} \right. \quad \text{(1)}
\end{align*}
\]

Equilibrium equation of prototype:

\[
\begin{align*}
\left\{ \begin{array}{l}
\left(\frac{\partial \sigma_x}{\partial x} \right)_m + \left(\frac{\partial \tau_{yx}}{\partial y} \right)_m + \left(\frac{\partial \tau_{zx}}{\partial z} \right)_m + X_m = 0 \\
\left(\frac{\partial \sigma_y}{\partial y} \right)_m + \left(\frac{\partial \tau_{zy}}{\partial z} \right)_m + \left(\frac{\partial \tau_{xy}}{\partial x} \right)_m + Y_m = 0 \\
\left(\frac{\partial \sigma_z}{\partial z} \right)_m + \left(\frac{\partial \tau_{zx}}{\partial x} \right)_m + \left(\frac{\partial \tau_{zy}}{\partial y} \right)_m + Z_m = 0
\end{array} \right. \quad \text{(2)}
\end{align*}
\]

Equilibrium equation of model:

Substitute the symmetry coefficient \(c_\sigma, c_L, c_X \) into formula (1), and the following formula is obtained:

\[
\begin{align*}
\left\{ \begin{array}{l}
\left(\frac{\partial \sigma_x}{\partial x} \right)_m + \left(\frac{\partial \tau_{yx}}{\partial y} \right)_m + \left(\frac{\partial \tau_{zx}}{\partial z} \right)_m + \frac{c_L}{c_\sigma} X_m = 0 \\
\left(\frac{\partial \sigma_y}{\partial y} \right)_m + \left(\frac{\partial \tau_{zy}}{\partial z} \right)_m + \left(\frac{\partial \tau_{xy}}{\partial x} \right)_m + \frac{c_L}{c_\sigma} Y_m = 0 \\
\left(\frac{\partial \sigma_z}{\partial z} \right)_m + \left(\frac{\partial \tau_{zx}}{\partial x} \right)_m + \left(\frac{\partial \tau_{zy}}{\partial y} \right)_m + \frac{c_L}{c_\sigma} Z_m = 0
\end{array} \right. \quad \text{(3)}
\end{align*}
\]

According to formulas (2) and (3), we can get the equation for \(c_\sigma, c_L, c_X \).

\[
\frac{c_L}{c_\sigma} = 1. \quad \text{(4)}
\]
Table 1: Symmetry coefficient calculation formula.

Parameter	Length	Strain	Density	Volume force	Displacement	Stress	Elastic modulus	Poisson’s ratio	Friction angle	Cohesion
Symmetry ratio	$C_L = (L_P/L_m)$	$C_\varepsilon = (\varepsilon_P/\varepsilon_m)$	$C_\gamma = (\gamma_P/\gamma_m)$	$C_X = (X_P/X_m)$	$C_\delta = (\delta_P/\delta_m)$	$C_\sigma = (\sigma_P/\sigma_m)$	$C_E = (E_P/E_m)$	$C_\mu = (\mu_P/\mu_m)$	$C_\phi = (\phi_P/\phi_m)$	$C_C = (c_P/c_m)$
Substitute the symmetry coefficient c_i, c_δ, c_L into formula (5), and the following formula is obtained:
According to formulas (6) and (7), we can get the equation for c_ξ, c_η, c_L.

$$\frac{c_\xi c_L}{c_\eta} = 1.$$

(8)

(3) Establish a symmetrical condition by the physical equation:

Physical equation of prototype:

$$\begin{align*}
(\varepsilon_x)_p &= \frac{1}{E_p} \left[\sigma_x - \mu (\sigma_y + \sigma_z) \right]_p \\
(\varepsilon_y)_p &= \frac{1}{E_p} \left[\sigma_y - \mu (\sigma_x + \sigma_z) \right]_p \\
(\varepsilon_z)_p &= \frac{1}{E_p} \left[\sigma_z - \mu (\sigma_x + \sigma_y) \right]_p \\
\end{align*}$$

(9)

Physical equation of model:

$$\begin{align*}
(\varepsilon_x)_m &= \frac{1}{E_p} \left[\sigma_x - \mu (\sigma_y + \sigma_z) \right]_m \\
(\varepsilon_y)_m &= \frac{1}{E_p} \left[\sigma_y - \mu (\sigma_x + \sigma_z) \right]_m \\
(\varepsilon_z)_m &= \frac{1}{E_p} \left[\sigma_z - \mu (\sigma_x + \sigma_y) \right]_m \\
\end{align*}$$

(10)

Substitute the symmetrical coefficient $c_\xi, c_\eta, c_\mu, c_E$ into formula (9), and the following formula is obtained.
3.2. Determination of Mechanics Parameters for Stratum Symmetry Materials

3.2.1. Design of the Orthogonal Test. The orthogonal test is used to research the proportion of mixed materials, design three factors and three levels, a total of nine tests, according to the purpose of the test, considering the density, cohesion, friction angle, elastic modulus, and Poisson’s ratio as the control index, as given in Table 6.

3.2.2. Parameters of the Orthogonal Test. In order to get the five parameters, that is, density, cohesion, friction angle, elastic modulus, and Poisson’s ratio, the research adopts, respectively, the density test, the direct shear test, elastic modulus test, and Poisson’s ratio test.

(1) Density test

In the density test, the formula of density is given in the following equation, and the instruments are given in Table 7.

\[\rho = \frac{m_1 - m_2}{V_2}, \]

\(\rho \) is the density of soil, g/cm³; \(m_1 \) is the total quality of soil and ring knife, g; \(V_2 \) is the volume of ring knife, cm³.

(2) Direct shear test

The direct shear test is a common method to measure the shear strength of soil. There is about four times to measure the shear strength in one direct shear test, under different vertical pressures, measuring the shear stress when soil is destroyed. The formula is given as follows:

\[\tau_f = c + \sigma \tan \phi, \]

\(\tau_f \) is the shear strength of soil, kPa; \(c \) is the cohesion of soil, kPa; \(\phi \) is the friction angle of soil; \(\sigma \) is the vertical stress, kPa.

(3) Poisson’s ratio and the elastic modulus test

The value of Poisson’s ratio is measured by two steps:

(a) The lateral pressure coefficient \(K_0 \) of soil samples is obtained by the static pressure coefficient test

(b) Getting the value of Poisson’s ratio according to the generalized Hooker’s law

The elastic modulus is measured from the lateral compression test of similar materials, as shown in Figure 1, and the formula is derived as follows:
According to generalized Hooke’s law,
\[\varepsilon_x + \varepsilon_y = 0, \]
\[\varepsilon_x = \frac{\sigma_x}{E} - \frac{\mu (\sigma_y + \sigma_z)}{E}, \] (17)
\[\varepsilon_y = \frac{\sigma_y}{E} - \frac{\mu (\sigma_x + \sigma_z)}{E}. \] (18)

Substituting formulas (17) and (18) into formula (16), the following equation is obtained:
\[K_0 \frac{\sigma_z}{\sigma_z} = \frac{\mu}{1 - \mu}, \] (19)

where \(\mu \) is Poisson’s ratio; \(K_0 \) is the side pressure coefficient; \(E \) is the elastic modulus, kPa.

According to generalized Hooke’s law, the strain of \(Z \) axis is given in the following formula:
\[\varepsilon_z = \frac{\sigma_z}{E} - \frac{\mu (\sigma_x + \sigma_y)}{E}. \] (20)

Substituting \(\sigma_z = P, \) \(\sigma_x = \sigma_y = (\mu/(1-\mu))p \) into formula (20), the following equation is obtained:
\[E = \frac{P}{\varepsilon_z} \left(1 - \frac{2\mu^2}{1-\mu} \right), \] (21)
\[\varepsilon_z = \frac{\Delta H}{H} = \frac{(e_0 - e_1)}{(1 + e_0)}. \] (22)
According to the orthogonal test and relative error of friction angle, the dispersion of factors for friction angle, the friction angle, and the elastic modulus as well as Poisson’s ratio, they are out of consideration in the control factor.

4. Results and Analysis

According to design and the performed orthogonal test, the results of the orthogonal test obtained are given in Table 8.

Because the value of density almost has no change, as well as Poisson’s ratio, they are out of consideration in the following test.

First of all, to produce the mixed materials, select the cohesive force, the friction angle, and the elastic modulus as the control factor.

4.1. Analysis of Cohesive Force as the Control Factor

According to the results of the orthogonal test for nine group data, calculate the relative error of nine group cohesive data. The smaller the value of relative error, the more accurate the results, as given in Table 9.

According to the orthogonal test and relative error of cohesive, the dispersion of factors for A, B, and C is

\[A: (I_A - \delta)^2 + (II_A - \delta)^2 + (III_A - \delta)^2 = 112.92, \]
\[B: (I_B - \delta)^2 + (II_B - \delta)^2 + (III_B - \delta)^2 = 14.82, \] \hspace{1cm} (26)
\[C: (I_C - \delta)^2 + (II_C - \delta)^2 + (III_C - \delta)^2 = 35.25. \]

From the test results analysis and Figure 2, we can see that

(a) The relationship between the A, B, and C is \(A > C > B \)
(b) The factor 2 point is inflection point, and the line changes suddenly when through the factor 2 point.
(c) \(A1, B2, C2 \) is the closest value, respectively, in each factor compared with the prototype cohesion value

4.2. Analysis of Friction Angle as the Control Factor

According to the results of the orthogonal test for nine group data, calculate the relative error of nine group friction angle data. The smaller the value of relative error, the more accurate the results, as given in Table 10.

According to the orthogonal test and relative error of friction angle, the dispersion of factors for A, B, and C is

A: \((I_A - \delta)^2 + (II_A - \delta)^2 + (III_A - \delta)^2 = 0.0481,\]
B: \((I_B - \delta)^2 + (II_B - \delta)^2 + (III_B - \delta)^2 = 0.0065, \] \hspace{1cm} (27)
C: \((I_C - \delta)^2 + (II_C - \delta)^2 + (III_C - \delta)^2 = 0.0099. \]

From the test results analysis and Figure 3, we can see that

(a) The relationship between the A, B, and C is \(A > B > C \)
(b) The factor 2 point is inflection point, and the line changes suddenly when through the factor 2 point.
(c) \(A2, B3, C1 \) is the closest value, respectively, in each factor for the prototype friction angle value

4.3. Analysis of Elastic Modulus as the Control Factor

According to the results of the orthogonal test for nine group data, calculate the relative error of nine group elastic modulus data. The smaller the value of relative error, the more accurate the results, as given in Table 11.

According to the orthogonal test and relative error of elastic modulus, the dispersion of factors for A, B, and C is

A: \((I_A - \delta)^2 + (II_A - \delta)^2 + (III_A - \delta)^2 = 50.27,\]
B: \((I_B - \delta)^2 + (II_B - \delta)^2 + (III_B - \delta)^2 = 9.14, \] \hspace{1cm} (28)
C: \((I_C - \delta)^2 + (II_C - \delta)^2 + (III_C - \delta)^2 = 207.40. \]

From the test results analysis and Figure 4, we can see that

(a) The relationship between the A, B, and C is \(C > A > B \)
(b) The factor 2 point is inflection point, and the line changes suddenly when through the factor 2 point.
(c) \(A3, B2, C1 \) is the closest value, respectively, in each factor for the prototype elastic modulus value

As shown in Figures 5 and 6, according to the standard, the samples are damaged when the displacement of
Table 8: Orthogonal test conclusion.

Serial number	Proportion of iron and sand in mixture (%)	Quality ratio between iron and sand	Quality ratio between gypsum and lime	Elastic modulus (MPa)	Cohesion (kPa)	Friction angle (°)	Density (g/cm³)	Poisson’s ratio
1	80	2:3	2:1	9.76	16	29	2.24	0.30
2	80	1.5:3.5	1:1	17.95	2.8	31.28	2.16	0.35
3	80	1:4	1:2	23.78	16.05	28.80	2.11	0.37
4	85	2:3	1:1	19.94	29.69	26.60	2.28	0.34
5	85	1.5:3.5	1:2	21.56	22.87	27.19	2.17	0.36
6	85	1:4	2:1	8.43	27.29	25.11	2.05	0.31
7	90	2:3	1:2	16.37	20.06	27.91	2.25	0.35
8	90	1.5:3.5	2:1	2.48	24.48	27.58	2.15	0.30
9	90	1:4	1:1	13.68	10.43	28.48	2.09	0.33

Table 9: Cohesive force of relative error analysis.

Serial number	Proportion of iron and sand in mixture (%)	Quality ratio between iron and sand	Quality ratio between gypsum and lime	Relative error
1	80	2:3	2:1	15
2	80	1.5:3.5	1:1	1.8
3	80	1:4	1:2	15.05
4	85	2:3	1:1	28.69
5	85	1.5:3.5	1:2	21.87
6	85	1:4	2:1	26.29
7	90	2:3	1:2	19.06
8	90	1.5:3.5	2:1	23.48
9	90	1:4	1:1	9.43
I	10.62	20.92	21.59	P = 160.68
II	25.62	15.72	13.31	δ = P/9 = 17.85
III	17.32	16.92	18.66	

P, the sum of the data for every factor; δ, the average of the data for every factor; I, the average of relative error for factor 1; II, the average of relative error for factor 2; III, the average of relative error for factor 3.

Figure 2: Cohesive force of trend diagram.
Table 10: Friction angle of relative error analysis.

Serial number	Proportion of iron and sand in mixture (%)	Quality ratio between iron and sand	Quality ratio between gypsum and lime	Relative error
1	80	2:3	2:1	1.64
2	80	1.5 : 3.5	1:1	1.84
3	85	1:4	1:2	1.62
4	85	2:3	1:1	1.42
5	85	1.5 : 3.5	1:2	1.47
6	85	1:4	2:1	1.28
7	90	2:3	1:2	1.54
8	90	1.5 : 3.5	2:1	1.51
9	90	1:4	1:1	1.59
I	1.7	1.53	1.48	\(P = 13.92 \)
II	1.39	1.61	1.62	\(\delta = \frac{P}{9} = 1.55 \)

\(P \), the sum of the data for every factor; \(\delta \), the average of the data for every factor; I, the average of relative error for factor 1; II, the average of relative error for factor 2; III, the average of relative error for factor 3.

![Figure 3: Friction angle of trend diagram.](image)

Table 11: Elastic modulus of relative error analysis.

Serial number	Proportion of iron and sand in mixture (%)	Quality ratio between iron and sand	Quality ratio between gypsum and lime	Relative error
1	80	2:3	2:1	12.94
2	80	1.5 : 3.5	1:1	24.64
3	80	1:4	1:2	32.97
4	85	2:3	1:1	27.49
5	85	1.5 : 3.5	1:2	29.8
6	85	1:4	2:1	11.04
7	90	2:3	1:2	22.39
8	90	1.5 : 3.5	2:1	2.54
9	90	1:4	1:1	18.54
I	23.52	20.94	8.84	\(P = 182.36 \)
II	22.78	18.99	23.56	\(\delta = \frac{P}{9} = 20.26 \)

\(P \), the sum of the data for every factor; \(\delta \), the average of the data for every factor; I, the average of relative error for factor 1; II, the average of relative error for factor 2; III, the average of relative error for factor 3.
samples has no change obviously in the direct shear test. Finally, the proportion of mixed materials is shown in Figure 7. Based on the above three control factors, use the direct shear test to get the proportion of mixed materials, as given in Table 12.

Use the parameters of mixed materials to compare with the parameters of the prototype and model. It is proved that the proportion of mixed materials is reasonable and meets the requirements of symmetry ratio, as given in Tables 13 and 14.
5. Conclusion

(1) According to the symmetry theory, establish the equilibrium equation, geometric equation, and physical equation for the prototype and model. The symmetry ration of mixed materials is 16:1.

(2) Select the iron ore powder, natural sands, gypsum, and lime to be the mixed materials for model strutum. Use the orthogonal tests to get the proportion of compositions in mixed materials and analyze the results by the deviation.

(3) The proportion of compositions in mixed materials of silt soil is that the proportion of iron and sand in mixture is 80%, the quality ratio between iron and sand is 2:3, and the quality ratio between gypsum and lime is 2:1.

The proportion of compositions in mixed materials of silty clay is that the proportion of iron and sand in mixture is 90%, the quality ratio between iron and sand is 1.5:3.5, and the quality ratio between gypsum and lime is 1:2.

It is proved that the proportion of compositions in mixed materials is reasonable and meets the requirements of symmetry ratio compared with the parameters of the prototype and model.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The research was supported by the Fundamental Scientific Research Business Expenses of Provincial Universities in Hebei Province (JQN20200027) and North China University of Science and Technology Doctoral Research Startup Fund (BS201813).
References

[1] D. L. Luo, B. Gao, and Y. S. Sheng, "Study on similar materials of surrounding rock in tunnel anti-damping model test," *Journal of Shijiazhuang Railway Institute (Natural Science)*, vol. 21, no. 3, pp. 70–73, 2008.

[2] A. M. Chen, J. C. Gu, and J. Shen, "Application study on the geomechanical model experiment techniques," *Chinese Journal of Rock Mechanics and Engineering*, vol. 23, no. 22, pp. 3785–3789, 2004.

[3] H. M. Peng, Z. B. Peng, and J. T. Han, "Study on lithologic similar materials," *Guangdong Architecture Civil Engineering*, vol. 12, no. 12, pp. 12–17, 2002.

[4] E. Fumagalli, *Static and Geomechanical Models*, China Water Conservancy and Hydropower Press, Beijing, China, 1979.

[5] B. L. Han, X. L. Chen, and Y. L. Song, "Study on similar materials of rock mass," *Journal of Wuhan University of Hydraulic and Electrical Engineering*, vol. 30, no. 2, pp. 6–9, 1997.

[6] S. P. Wang, Model Test Study on the Tunnel with in Cracked Surrounding Rocks, Zhejiang University, Zhejiang, China, 2004.

[7] X. H. Chen, *Brittle Material Structure Model Test*, Water Resources and Electric Power Press, Beijing, China, 2000.

[8] D. Q. Zuo, *The Theory and Method of Model Test*, Water Resources and Electric Power Press, Beijing, China, 2001.

[9] W. F. Chen, *Constitutive Equations for Engineering Materials: Plasticity and Modeling*, Vol. 2, Elsevier, Amsterdam, The Netherlands, 1994.

[10] F. Armero and S. Oller, "A general framework for continuum damage models. I. infinitesimal plastic damage models in stress space," *International Journal of Solids and Structures*, vol. 37, no. 48–50, pp. 7409–7438, 1996.

[11] G. Meschke, R. Lackner, and H. A. Mang, "An anisotropic elastoplastic-damage model for plain concrete," *International Journal for Numerical Methods in Engineering*, vol. 42, no. 4, pp. 703–727, 1998.

[12] J. Y. Wu, J. Li, and R. Faria, "An energy release rate-based plastic-damage model for concrete," *International Journal of Solids and Structures*, vol. 43, no. 3–4, pp. 583–612, 2006.

[13] I. Carol, P. C. Prat, and C. M. López, "Normal/shear cracking model: application to discrete crack analysis," *Journal of Engineering Mechanics*, vol. 123, no. 8, pp. 765–773, 1997.

[14] G. T. Camacho and M. Ortiz, "Computational modelling of impact damage in brittle materials," *International Journal of Solids and Structures*, vol. 33, no. 20–22, pp. 2899–2938, 1996.

[15] F. Armero, "Large-scale modeling of localized dissipative mechanisms in a local continuum: applications to the numerical simulation of strain localization in rate-dependent inelastic solids," *Mechanics of Cohesive-Frictional Materials*, vol. 4, no. 2, pp. 101–131, 1999.

[16] J.-Y. Wu, "Unified analysis of enriched finite elements for modeling cohesive cracks," *Computer Methods in Applied Mechanics and Engineering*, vol. 200, no. 45–46, pp. 3031–3050, 2011.

[17] J.-Y. Wu and S.-L. Xu, "An augmented multcrack elastoplastic damage model for tensile cracking," *International Journal of Solids and Structures*, vol. 48, no. 18, pp. 2511–2528, 2011.

[18] C. Zhu, K. Zhang, H. Cai et al., "Combined application of optical fibers and CRLD bolts to monitor deformation of a pit-in-pit foundation," *Advances in Civil Engineering*, vol. 2019, Article ID 2572034, 16 pages, 2019.

[19] M. Cervera and J.-Y. Wu, "On the conformity of strong, regularized, embedded and smeared discontinuity approaches for the modeling of localized failure in solids," *International Journal of Solids and Structures*, vol. 71, pp. 19–38, 2015.

[20] E. Haghighat and S. Pietruszczak, "On modeling of discrete propagation of localized damage in cohesive-frictional materials," *International Journal for Numerical and Analytical Methods in Geomechanics*, vol. 39, no. 16, pp. 1774–1790, 2015.

[21] C. Zhu, Z. Yan, Y. Lin, F. Xiong, and Z. Tao, "Design and application of a monitoring system for a deep railway foundation pit project," *IEEE Access*, vol. 7, pp. 107591–107601, 2019.

[22] J. Su, Y. Wang, P. Yang, S. Han, N. Han, and W. Li, "Evaluating and modeling the idb of microencapsulated rejuvenator in aged bitumen by FTIR-ATR tests," *Materials*, vol. 9, no. 11, pp. 932–947, 2016.

[23] Q.-X. Meng, W.-Y. Xu, H.-L. Wang, X.-Y. Zhuang, W.-C. Xie, and T. Rabczuk, "Digisim—an open source software package for heterogeneous material modeling based on digital image processing," *Advances in Engineering Software*, vol. 148, Article ID 102836, 2020.

[24] C. Zhu, M.-c. He, M. Karakus, X.-h. Zhang, and Z. Guo, "The collision experiment between rolling stones of different shapes and protective cushion in open-pit mines," *Journal of Mountain Science*, vol. 18, no. 5, pp. 1391–1403, 2021.

[25] Q. Yin, J. Y. Wu, C. Zhu, M. C. He, and Q. X. Meng, "Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions," *Geomechanics and Geophysics for Geo-Energy and Geo-Resources*, vol. 7, p. 35, 2021.

[26] Q. Wang, Z. Jiang, B. Jiang, H. Gao, Y. Huang, and P. Zhang, "Research on an automatic roadway formation method in deep mining areas by roof cutting with high-strength bolt-grouting," *International Journal of Rock Mechanics and Mining Sciences*, vol. 128, Article ID 104264, 2020.