COVID-19-associated risks and effects in myasthenia gravis (CARE-MG)

During the COVID-19 pandemic, patients with neuromuscular disorders, especially patients with auto-immune myasthenia gravis, might be at greater risk of worse outcomes than otherwise healthy people because of an immunocompromised state related to immunotherapy and possible respiratory and bulbar muscular weakness. However, cessation of immunotherapy in neuromuscular disorders has severe risks as well. Moreover, infections are a well recognised trigger of symptom exacerbation in patients with myasthenia gravis, and some drugs used in therapeutic trials early in the pandemic, including hydroxychloroquine and azithromycin, can provoke symptom exacerbations. As there was no real-world evidence available at the onset of this pandemic and heightened concern existed for possible misinformation, an international group of neuromuscular physicians developed initial guidelines for managing myasthenia gravis, which were based on previous experience with viral illnesses in this patient population. However, the need for data to answer key clinical questions was quickly recognised and a registry was created to capture high-quality information about outcomes for patients with myasthenia gravis and laboratory-confirmed, or clinically suspected, COVID-19. This physician-reported registry, COVID-19 Associated Risks and Effects in Myasthenia Gravis (CARE-MG), is a joint effort of the International MG/COVID-19 Working Group and neurologists who help to take care of patients with myasthenia gravis globally and was formally launched on April 9, 2020. Registry data elements, inclusion and exclusion criteria, and research study approval are available in the appendix (appendix pp 7–8). The registry is still open and active accrual continues through electronic-form or paper-form submission of case reports. Data entry for each case submission takes approximately 10 min. Additional study details and steps for case submission are available from the Myasthenia Gravis Foundation of America website.

A total of 91 patients with myasthenia gravis were included at the time of interim analysis (Oct 5, 2020; appendix pp 10–12). Myasthenia gravis worsening or crisis requiring rescue therapy (eg, intravenous immunoglobulin, plasma exchange, or steroids) in the setting of COVID-19 was reported in 36 (40%) of 91 patients. Complete recovery or discharge to home was reported in 39 (43%) patients, whereas 22 (24%) patients died due to COVID-19. These preliminary data suggest that a global, physician-reported registry is feasible during times of crisis, even for rare diseases, such as myasthenia gravis. Current data, which might be biased toward poor outcomes reporting, show that patients with myasthenia gravis who are infected with severe acute respiratory syndrome coronavirus 2 are frequently admitted to hospital, have disease exacerbations, and have a higher mortality than the general population with COVID-19. More neurologists and neuromuscular specialists from across the globe need to submit details of cases to the CARE-MG registry if it is to become a more representative—in terms of contributing physicians, patients, and results—and provide the information necessary to enable evidence-based care for patients with myasthenia gravis during this pandemic.

See Online for appendix

COVID-19-associated risks and effects in myasthenia gravis (CARE-MG)

During the COVID-19 pandemic, patients with neuromuscular disorders, especially patients with auto-immune myasthenia gravis, might be at greater risk of worse outcomes than otherwise healthy people because of an immunocompromised state related to immunotherapy and possible respiratory and bulbar muscular weakness. However, cessation of immunotherapy in neuromuscular disorders has severe risks as well. Moreover, infections are a well recognised trigger of symptom exacerbation in patients with myasthenia gravis, and some drugs used in therapeutic trials early in the pandemic, including hydroxychloroquine and azithromycin, can provoke symptom exacerbations. As there was no real-world evidence available at the onset of this pandemic and heightened concern existed for possible misinformation, an international group of neuromuscular physicians developed initial guidelines for managing myasthenia gravis, which were based on previous experience with viral illnesses in this patient population. However, the need for data to answer key clinical questions was quickly recognised and a registry was created to capture high-quality information about outcomes for patients with myasthenia gravis and laboratory-confirmed, or clinically suspected, COVID-19. This physician-reported registry, COVID-19 Associated Risks and Effects in Myasthenia Gravis (CARE-MG), is a joint effort of the International MG/COVID-19 Working Group and neurologists who help to take care of patients with myasthenia gravis globally and was formally launched on April 9, 2020. Registry data elements, inclusion and exclusion criteria, and research study approval are available in the appendix (appendix pp 7–8). The registry is still open and active accrual continues through electronic-form or paper-form submission of case reports. Data entry for each case submission takes approximately 10 min. Additional study details and steps for case submission are available from the Myasthenia Gravis Foundation of America website.

A total of 91 patients with myasthenia gravis were included at the time of interim analysis (Oct 5, 2020; appendix pp 10–12). Myasthenia gravis worsening or crisis requiring rescue therapy (eg, intravenous immunoglobulin, plasma exchange, or steroids) in the setting of COVID-19 was reported in 36 (40%) of 91 patients. Complete recovery or discharge to home was reported in 39 (43%) patients, whereas 22 (24%) patients died due to COVID-19. These preliminary data suggest that a global, physician-reported registry is feasible during times of crisis, even for rare diseases, such as myasthenia gravis. Current data, which might be biased toward poor outcomes reporting, show that patients with myasthenia gravis who are infected with severe acute respiratory syndrome coronavirus 2 are frequently admitted to hospital, have disease exacerbations, and have a higher mortality than the general population with COVID-19. More neurologists and neuromuscular specialists from across the globe need to submit details of cases to the CARE-MG registry if it is to become a more representative—in terms of contributing physicians, patients, and results—and provide the information necessary to enable evidence-based care for patients with myasthenia gravis during this pandemic.

See Online for appendix
Training neurosurgeons in China

In their Correspondence, Norton and colleagues remarked that neurosurgery should be an attractive option for the best medical students, regardless of gender, ethnicity, or socioeconomic status. However, this might not be the case in China. Because of the skills and knowledge that neurological departments demand, recruitment of students is not easy. For example, in some institutions, neurosurgery students had a lower admission score than those in other clinical specialties, such as orthopaedics and cardiology. Also, data from the Beijing Institute of Neurosurgery show that many students apply to other departments and switch to neurosurgery only after not being accepted for their first choice. We believe that the long training period, low wages, and heterogeneity of clinical performance across different hospitals might discourage the best candidates from a career in this field.

In 2014, the National Health Commission established standardised training for residents, which extended the training period to 3 years. Standardised 2-4-year training periods for some specialists (eg, 2 years for general surgery and 4 years for neurosurgery) were implemented in 2017. All newly licensed doctors who want to specialise in neurosurgery, respiratory and critical care medicine, or cardiology must now complete extended specialist training after finishing their residential training. Although wages for residents have improved, they are still below the average income in other professional fields (eg, ophthalmology).

The heterogeneity in medical standards of neurological departments across China might also pose a problem. In most hospitals, neurosurgeons only manage patients with traumatic brain injury or intracranial haemorrhage, and they do not operate on brain tumours or do endovascular therapy for intracranial aneurysms. The rewards and challenges of complex neurosurgical interventions are restricted to a few hospitals, most of which are located in eastern China. We encourage every young trainee to try their best for a rewarding neurosurgical career in China. However, solutions to the recruitment and retention of new neurosurgeons are needed. We declare no competing interests.

*Jun Wang, Yuzhen Zhang
smuwangjun@163.com

Department of Neurosurgery, Nanfang Hospital, The First Clinical Medicine College, Southern Medical University, Guangzhou, China (JW, YZ)

1 Norton EJ, Bandyopadhyay S, Movaghal-Joshi J. Social media could address the gender gap in neurosurgery. Lancet Neurol 2020; 19: 382-83.

*Srikanth Muppidi, Jeffrey T Guptill, Saiju Jacob, Yingkai Li, Maria E Farrugia, Amanda C Guidon, Jinny O Tavee, Henry Kaminski, James F Howard Jr, Gary Cutter, Heinz Wiendl, Matthew B Maas, Isabel Ilia, Renato Mantegazza, Hirayuki MuraI, Kimiaki Utsugisawa, Richard J Nowak, and the CARE-MG Study Group

muppidis@stanford.edu

#Study group members are listed in the appendix p 13

Department of Neurology, Stanford Medical Center, Stanford, CA 94304, USA (SM); Duke University School of Medicine, Duke University, Durham, NC, USA (JTG, YL); Department of Neurology and Institute of Neuropathology, University Hospitalss Bremen HNO Foundation Trust, Bremin, UK (SJ); Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK (MEF); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA (ACG); The Ken and Ruth Davie Department of Neurology, Northwestern University, Chicago, IL, USA (JOT, MBM); Department of Neurology, The George Washington University, Washington, DC, USA (HK); Department of Neurology, University of North Carolina, Chapel Hill, NC, USA (JFHI); Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, USA (GC); Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany (HW); Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (II); Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy (RM); Neuroimmunology and Neuromuscular Diseases Unit, International University of Health and Welfare, Nanta, Japan (HM); Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan (KU); and Yale University School of Medicine, Yale University, New Haven, CT, USA (RJN)