Horn Linear Logic and Minsky Machines
(adapted, reshuffled, self-contained, fully detailed, cleansed, simplified, with pictures by myself, etc.)

Max Kanovich
University College London, UK and
National Research University Higher School of Economics

Twenty Years After

Contents

1 From linear logic to Horn Linear Logic HLL 2
 1.1 Language: Horn sequents ... 2
 1.2 LL rules used in cut-free derivations for Horn sequents 3
 1.3 The Inference Rules of Horn Linear Logic 3
 1.4 The proof of Theorem 1.1: From LL derivations to HLL derivations. 4

2 From HLL to tree-like Horn programs 6

3 FYI: Encoding Minsky Machines .. 10
 3.1 The Main Encoding .. 11
 3.2 FYI: From computations to tree-like Horn programs 12

4 From tree-like Horn programs to Minsky computations 15

List of Tables

1 The linear logic rules we use for Horn sequents. Here A is a Horn implication or \oplus-Horn implication ... 3
2 Horn Linear Logic HLL. Both \otimes and \oplus are assumed to be commutative and associative. 4

List of Figures

1 Elementary Horn Programs ... 2
2 The “Frame property” ... 2
3 Strong Forking. An \oplus-Horn implication $(X \twoheadrightarrow (Y_1 \oplus Y_2))$ as Non-deterministic choice 6
4 Cut as Composition of programs 13
5 The correspondence: Computation (a) — Horn Program (b) 13
6 The assignment operation correspondence: (a) — (b) 16
7 The ZERO-test correspondence: (a) — (b) 17
Here we give a detailed proof for the crucial point in our Minsky machine simulation:

Theorem 4.1 Any linear logic derivation for a Horn sequent of the form

$$((l_1 \otimes (l_2 \otimes \cdots \otimes l_n)), !\Phi, !K \vdash l_0)$$

can be transformed into a Minsky computation leading from an initial configuration of the form

$$(L_1, k_1, k_2, \ldots, k_n)$$

to the halting configuration

$$(L_0, 0, 0, \ldots, 0).$$

For the sake of perspicuity I include the information about the main encoding. In particular, this specifies what kind of Horn programs of a simple branching structure we are actually dealing with within the framework of our particular encoding.

Among other things, the presentation advantage of the 3-step program is that the non-trivial tricky points are distributed between the independent parts each of which we justify following its own intrinsic methodology (to say nothing of the induction used in the opposite directions):

1. From LL to HLL - we use purely proof-theoretic arguments.
2. From HLL to Horn programs - we translate trees (HLL derivations) into another trees (Horn programs) of the same shape, almost.
3. From Horn programs to Minsky computations - we use purely computational arguments.

Since the unavoidable implication of the 3-step program is undecidability of full linear logic, I would highly appreciate your comments on which issues looked suspicious to you to be addressed to with further detailization.

1 From linear logic to Horn Linear Logic HLL

We start from the purely proof-theoretic part:

Theorem 1.1 Any cut-free derivation for a Horn sequent of the form

$$W, \Gamma, !\Delta \vdash Z$$

can be transformed into a derivation in Horn Linear Logic, HLL.

1.1 Language: Horn sequents

The connectives \otimes and \oplus are assumed to be commutative and associative.

Here we confine ourselves to *Horn-like sequents* introduced in the following way.

Definition 1.1 The tensor product of a *positive number* of positive literals is called a **simple product**. A single literal q is also called a **simple product**.

Definition 1.2 We will use a natural isomorphism between non-empty finite multisets over positive literals and simple products: A multiset $\{q_1, q_2, \ldots, q_k\}$ is represented by the simple product $(q_1 \otimes q_2 \otimes \cdots \otimes q_k)$, and vice versa.

Definition 1.3 We will write $X \cong Y$ to indicate that X and Y represent one and the same multiset M.

Definition 1.4 Here, and henceforth, $X, X', Y, Y_i, U, V, W, Z$, etc., stand for \otimes-products of positive literals.

Horn implications are defined as follows:
A Horn implication is a formula of the form
\((X \rightarrow Y)\).

A \(\oplus\)-Horn implication is a formula of the form
\((X \rightarrow (Y_1 \oplus Y_2))\).

Definition 1.5 A Horn sequent is defined as a sequent of the form
\(W, \Gamma, !\Delta \vdash Z\)
where the multisets \(\Gamma\) and \(\Delta\) consist of Horn implications and \(\oplus\)-Horn implications, and \(W\) and \(Z\) are \(\otimes\)-products of positive literals.

1.2 LL rules used in cut-free derivations for Horn sequents

In Table 1 we collect all the inference rules of Linear Logic that can be used in cut-free derivations for Horn sequents.

(i) “Left rules”: \(L\otimes\), \(L\rightarrow\), \(L\rightarrow\oplus\), \(L\oplus\), \(L!\), \(W!\), \(C!\).

(ii) “Right rules”: \(R\otimes\).

The intuitionistic shape of the rules selected in Table 1 is caused by the fact that a sequent of the form
\(W, \Gamma, !\Delta \vdash\)

is not derivable in linear logic - simply replace all propositions with the constant \(\mathbf{1}\).

\[
\begin{array}{c}
\text{I} & X \vdash X \\
\text{L}\otimes & \Sigma, X, Y \vdash Z \\
\text{L}\rightarrow & \Sigma_1 \vdash X, \Sigma_2 \vdash Z \\
\text{L}\rightarrow\oplus & \Sigma_1 \vdash X, (X \rightarrow (Y_1 \oplus Y_2)), \Sigma_2 \vdash Z \\
\text{L}\oplus & \Sigma, Y_1 \vdash Z, \Sigma, Y_2 \vdash Z \\
\text{L!} & \Sigma, A \vdash Z \\
\text{W}! & \Sigma, !A \vdash Z \\
\text{R}\otimes & \Sigma_1 \vdash Z, \Sigma_2 \vdash Z, \Sigma_1, \Sigma_2 \vdash (Z_1 \otimes Z_2) \\
\text{C}! & \Sigma, !A, !A \vdash Z, \Sigma, !A \vdash Z \\
\end{array}
\]

Table 1: The linear logic rules we use for Horn sequents. Here \(A\) is a Horn implication or \(\oplus\)-Horn implication

1.3 The Inference Rules of Horn Linear Logic

The inference rules of the Horn Linear Logic \(HLL\) are given in Table 2.
Rule	LL Derivation	HLL Derivation
I	$X \vdash X$	$X \vdash X$
L\otimes	$X, \Gamma, \Delta \vdash Z$	$X, \Gamma, \Delta \vdash Z$ (where $X \equiv Y$)
H	$X, (X \multimap Y) \vdash Y$	$X, (X \multimap Y) \vdash Y$
M	$X, \Gamma, \Delta \vdash Y$	$(X \multimap Y), \Gamma, \Delta \vdash Y$
\oplus-H	$(Y_1 \multimap V), \Gamma, \Delta \vdash Z$	$(Y_2 \multimap V), \Gamma, (X \multimap (Y_1 \multimap Y_2)), \Delta \vdash Z$
L\multimap	$X, \Gamma, \Delta \vdash Z$	$X, \Gamma, \Delta \vdash Z$
W\multimap	$X, \Gamma, \Delta \vdash Z$	$X, \Gamma, \Delta \vdash Z$
Cut	$W, \Gamma_1, \Delta \vdash U \quad U, \Gamma_2, \Delta \vdash Z$	$W, \Gamma_1, \Delta \vdash U \quad U, \Gamma_2, \Delta \vdash Z$

Table 2: Horn Linear Logic HLL. Both \otimes and \oplus are assumed to be commutative and associative.

1.4 The proof of Theorem 1.1: From LL derivations to HLL derivations.

Given a cut-free derivation for the sequent $W, \Gamma, \Delta \vdash Z$ by induction we will simulate each of the LL rules in Table 1 with the HLL rules from Table 2.

Rule L\multimap and the like

(i) An (R\otimes)-rule of the form (here π_1 and π_2 are proofs that have been already constructed by induction with rules from Table 2):

$$\begin{align*}
\pi_1 & : \Sigma_1 \vdash Z_1 \\
\pi_2 & : \Sigma_2 \vdash Z_2
\end{align*}$$

is simulated with the HLL rules from Table 2:

$$\Sigma_1, \Sigma_2 \vdash (Z_1 \otimes Z_2)$$

(ii) An (L\multimap)-rule of the form (here π_1 and π_2 are proofs that have been already constructed by induction with rules from Table 2):

$$\begin{align*}
\pi_1 & : \Sigma_1 \vdash Z_1 \\
\pi_2 & : \Sigma_2 \vdash Z_2
\end{align*}$$

is simulated with the HLL rules from Table 2:

$$\Sigma_1, \Sigma_2 \vdash (Z_1 \otimes Z_2)$$

(iii) The remaining LL rules, save for L\otimes and L$\multimap$$\oplus$, are processed by the same token.
Challenging \(L\oplus \) and \(L\to\ominus \)

The main difficulties we meet with the rule \(L\oplus \) (and related to it \(L\to\ominus \)) are that the positions at which these rules are applied in the given cut-free LL derivation might have happened very far from each other. First, we have to contract the distance between their positions by pushing \(L\oplus \) downwards in accordance with Lemma 1.1 to make the application positions of \(L\oplus \) and \(L\to\ominus \) adjacent.

Lemma 1.1 Given a cut-free derivation with the rules from Table 1 by the appropriate ‘commuting conversions’ (see below), the left rule \(L\oplus \) can be pushed downwards (down to the related \(L\to\ominus \)), forming a piece of the derivation where the rules \(L\oplus \) and \(L\to\ominus \) are sitting in the adjacent positions so that the rule \(L\to\ominus \) is applied just after the rule \(L\oplus \):

\[
\begin{align*}
\pi_0 & \quad \Sigma' \vdash X \\
\pi_1 & \quad \Sigma', (Y_1 \oplus Y_2) \vdash U \\
\pi_2 & \quad \Sigma', (Y_1 \oplus Y_2) \vdash Z' \quad L\oplus \\
\Sigma' \vdash X, \pi_1 & \quad (Y_1 \oplus Y_2) \vdash U, \pi_2 & \quad Y_1, \Sigma'' \vdash Z' \\
& \quad \Sigma', (Y_1 \oplus Y_2), (Y_1 \oplus Y_2), (U \to V), \Sigma'' \vdash Z' \\
& \quad \Sigma', (Y_1 \oplus Y_2), (U \to V), \Sigma'' \vdash Z' \\
& \quad \Sigma', (Y_1 \oplus Y_2), (U \to V), \Sigma'' \vdash Z' \\
\end{align*}
\]

Proof. We consider all points of interaction between the rule \(L\oplus \) and other rules.

(a) A combination: “first \(L\oplus \), then \(L\to\ominus \),” of the form (here \(\pi_0, \pi_1 \) and \(\pi_2 \) are proofs):

\[
\begin{align*}
\pi_0 & \quad \Sigma' \vdash X \\
\pi_1 & \quad \Sigma', Y_1 \vdash U \\
\pi_2 & \quad \Sigma', Y_2 \vdash U \\
& \quad \Sigma', (Y_1 \oplus Y_2) \vdash U, \pi_2 & \quad \Sigma', (Y_1 \oplus Y_2) \vdash Z' \quad L\oplus \\
& \quad \Sigma', (Y_1 \oplus Y_2), (U \to V), \Sigma'' \vdash Z' \\
& \quad \Sigma', (Y_1 \oplus Y_2), (U \to V), \Sigma'' \vdash Z' \\
\end{align*}
\]

(b) A combination: “first \(L\oplus \), then \(R\otimes \),” of the form (here \(\pi_0, \pi_1 \) and \(\pi_2 \) are proofs):

\[
\begin{align*}
\pi_0 & \quad \Sigma' \vdash X \\
\pi_1 & \quad \Sigma', Y_1 \vdash Z' \\
\pi_2 & \quad \Sigma', Y_2 \vdash Z' \\
& \quad \Sigma', (Y_1 \oplus Y_2) \vdash Z' \quad L\oplus \\
& \quad \Sigma', (Y_1 \oplus Y_2), (Z' \otimes Z'') \vdash (Z' \otimes Z'') \\
& \quad \Sigma', (Y_1 \oplus Y_2) \vdash Z' \\
& \quad \Sigma', (Y_1 \oplus Y_2), (Z' \otimes Z'') \vdash (Z' \otimes Z'') \\
& \quad \Sigma', (Y_1 \oplus Y_2) \vdash Z' \\
\end{align*}
\]

(c) The appropriate ‘commuting conversions’ for the remaining combinations: “first \(L\oplus \), then \(R\otimes \)” can be constructed in a similar way.

Completing \(L\oplus \) and \(L\to\ominus \)

According to Lemma 1.1 in order to complete the proof of Theorem 1.1 it suffices to take a piece of the derivation where the rules \(L\oplus \) and \(L\to\ominus \) are sitting in the adjacent positions so that the rule \(L\to\ominus \) is
applied just after the rule $L\oplus$:

\[
\begin{array}{c}
\pi_0 & \pi_1 \\
\Sigma \vdash X & Y_1, \Sigma' \vdash Z' \\
\Sigma', (X \rightarrow (Y_1 \oplus Y_2)), \Sigma'' \vdash Z' & L\oplus \\
\pi_2 & \pi_2
\end{array}
\]

and simulate it with the HLL rules from Table 2 as follows:

\[
\begin{array}{c}
\pi_0 & \pi_1 \\
\Sigma \vdash X & Y_1, \Sigma' \vdash Z' \\
\Sigma, (X \rightarrow (Y_1 \oplus Y_2)), \Sigma'' \vdash Z' & \Theta-H \\
\pi_2 & \pi_2
\end{array}
\]

\[\text{Cut}\]

2 From HLL to tree-like Horn programs

As computational counterparts of Horn sequents, we will consider tree-like Horn programs with the following peculiarities:

Definition 2.1 A tree-like Horn program is a rooted binary tree such that

(a) Every edge of it is labelled by a Horn implication of the form $(X \rightarrow Y)$.

(b) The root of the tree is specified as the input vertex. A terminal vertex, i.e. a vertex with no outgoing edges, will be specified as an output one.

(c) A vertex v with exactly two outgoing edges (v, w_1) and (v, w_2) will be called divergent. These two outgoing edges should be labelled by Horn implications with one and the same antecedent, say $(X \rightarrow Y_1)$ and $(X \rightarrow Y_2)$, respectively.

Now, we should explain how such a program P runs for a given input W.

Definition 2.2 For a given tree-like Horn program P and any simple product W, a strong computation is defined by induction as follows:

We assign a simple product $\text{VALUE}(P, W, v)$ to each vertex v of P in such a way that

(a) For the root v_0,

\[\text{VALUE}(P, W, v_0) = W.\]

(b) For every non-terminal vertex v and its son w with the edge (v, w) labelled by a Horn implication $(X \rightarrow Y)$, if $\text{VALUE}(P, W, v)$ is defined and, for some simple product V:

\[\text{VALUE}(P, W, v) \cong (X \otimes V),\]

then

\[\text{VALUE}(P, W, w) = (Y \otimes V).\]

Otherwise, $\text{VALUE}(P, W, w)$ is declared to be undefined.

1 Here Σ'' represents a multiset of the form $V, \Gamma, !\Delta$, that is $\Sigma'' = V, \Gamma, !\Delta$

Recall also our convention: $(U \otimes V) = U, V$

2 This $\text{VALUE}(P, W, v)$ is perceived as the intermediate value of the strong computation performed by P, which is obtained at point v.
Definition 2.3 For a tree-like Horn program P and a simple product W, we say that

$$P(W) = Z$$

if for each terminal vertex w of P, $\text{VALUE}(P, W, w)$ is defined and

$$\text{VALUE}(P, W, w) \cong Z.$$

We will describe each of our program constructs by Linear Logic formulas. Namely, we will associate a certain formula A to each edge e of a given program P, and say that

"This formula A is used on the edge $e."$

Definition 2.4 Let P be a tree-like Horn program.

(a) If v is a non-divergent vertex of P with the outgoing edge e labelled by a Horn implication A, then we will say that

"Formula A itself is used on the edge $e."$

(b) Let v be a divergent vertex of P with two outgoing edges e_1 and e_2 labelled by Horn implications $(X \rightarrow Y_1)$ and $(X \rightarrow Y_2)$, respectively. Then we will say that

"Formula A is used on $e_1."$

and

"Formula A is used on $e_2."$

where formula A is defined as the following \oplus-Horn implication:

$$A = (X \rightarrow (Y_1 \oplus Y_2)).$$

Definition 2.5 A tree-like Horn program P is said to be a strong solution to a Horn sequent of the form

$$W, \Delta, \Gamma \vdash Z$$

if for each terminal vertex w of P, $\text{VALUE}(P, W, w)$ is defined and

$$\text{VALUE}(P, W, w) \cong Z.$$

and

(a) For every edge e in P, the formula A used on e is drawn either from Γ or from Δ.

(b) Whatever path b leading from the root to a terminal vertex we take, each formula A from Δ is used once and exactly once on this path b.

We prove that the Horn fragment of Linear Logic is complete under our computational interpretation.

Theorem 2.1 (Fairness) Given an HLL derivation (with the rules from Table 2) for a Horn sequent of the form

$$W, \Delta, \Gamma \vdash Z,$$

we can construct a tree-like Horn program P which is a strong solution to the given sequent.

Proof. For a given HLL derivation, running from its leaves (axioms) to its root, we assemble a tree-like Horn program P by induction. Below we consider all cases related to the rules from Table 2.

Case of Rule I. The elementary program from Figure 1(a), with its single vertex, will be a strong solution to any sequent of the form

$$X \vdash X.$$
Figure 1: Elementary Horn Programs.

Figure 2: The “Frame property”
Case of Rule H. The elementary program consisting of a single edge labelled by \((X \rightarrow Y)\) (see Figure 1(b)) will be a strong solution to the sequent

\[X, (X \rightarrow Y) \vdash Y. \]

Case of Rule M. Suppose that \(P\), with the input \(X\), is a strong solution to a sequent of the form

\[X, \Gamma, \Diamond \vdash Y. \]

Then as a Horn program \(P'\) we take the same \(P\) but with a larger input \((X \otimes V)\), so that, for any vertex \(w\) (see Figure 2):

\[\text{VALUE}(P', (X \otimes V), w) = \text{VALUE}(P, X, w) \otimes V. \]

It is easily verified this Horn program \(P'\) is a strong solution to the sequent

\[(X \otimes V), \Gamma, \Diamond \vdash (Y \otimes V). \]

Figure 3: Strong Forking. An \(\oplus\)-Horn implication \((X \rightarrow (Y_1 \oplus Y_2))\) as Non-deterministic choice

Case of Rule \(\oplus\)-H. Suppose that \(P_1\) and \(P_2\) are strong solutions to sequents of the form

\[(Y_1 \otimes V), \Gamma, \Diamond \vdash Z \]

and

\[(Y_2 \otimes V), \Gamma, \Diamond \vdash Z, \]

respectively.

Now a Horn program \(P'\) can be assembled with the help of the following operation of **Strong Forking** (see Figure 3):

(a) First, we create a new input vertex \(v_0\).

(b) After that, we connect \(v_0\) with the roots \(v_1\) of \(P_1\) and \(v_2\) of \(P_2\), and label the edge \((v_0, v_1)\) by the Horn implication \((X \rightarrow Y_1)\) and label the edge \((v_0, v_2)\) by the Horn implication \((X \rightarrow Y_2)\).
Figure 4: **Cut** as Composition of programs

It is easily verified this Horn program P' is a strong solution to the sequent
\[(X \otimes V), \Gamma, (X \circ (Y_1 \oplus Y_2)), !\Delta \vdash Z.\]

Case of Rule Cut. Suppose that P_1 and P_2 are strong solutions to sequents of the form
\[W, \Gamma_1, !\Delta_1 \vdash U\]
and
\[U, \Gamma_2, !\Delta_2 \vdash Z,\]
respectively.

Now we can construct a Horn program P' with the help of the following operation of **Composition** (see Figure 4):

(a) We glue each output vertex of P_1 to the root of a copy of the program P_2.

It is clear that such a Horn program P' is a strong solution to the sequent
\[W, \Gamma_1, \Gamma_2, !\Delta_1, !\Delta_2 \vdash Z.\]

The rest of the Cases. Given a Horn program P_0 that is a strong solution to a sequent representing the premise for one of the remaining rules, the same Horn program P_0 can be considered as a strong solution to the corresponding conclusion sequent.

3 **FYI: Encoding Minsky Machines**

The well-known non-deterministic n-counter machines are defined as follows.

Minsky machines deal with n counters that can contain non-negative integers. The current value of an m-th counter will be represented by the variable x_m. This value

(a) can be increased by 1, which is represented by the assignment operation $x_m := x_m + 1$;

(b) or can be decreased by 1, which is represented by the assignment operation $x_m := x_m - 1$;
Definition 3.1 The program of an n-counter machine M is a finite list of instructions

$I_1; I_2; \ldots; I_s$;

labelled by labels

$L_0, L_1, L_2, \ldots, L_i, \ldots, L_j, \ldots$

Each of these instructions is of one of the following five types:

1. $L_i : x_m := x_m + 1; \text{goto } L_j$;
2. $L_i : x_m := x_m - 1; \text{goto } L_j$;
3. $L_i : \text{if } (x_m > 0) \text{ then goto } L_j$;
4. $L_i : \text{if } (x_m = 0) \text{ then goto } L_j$;
5. $L_0 : \text{halt}$;

where L_i and L_j are labels, and $i \geq 1$.

Definition 3.2 An instantaneous description (configuration) is a tuple:

$\langle L, c_1, c_2, \ldots, c_n \rangle$

where L is a label,

c_1, c_2, \ldots, c_n are the current values of our n counters, respectively.

A computation of a Minsky machine M is a (finite) sequence of configurations

$K_1, K_2, \ldots, K_t, K_{t+1}, \ldots$,

such that each move (from K_t to K_{t+1}) can be performed by applying an instruction from the program of machine M.

3.1 The Main Encoding

In our encoding we will use the following literals:

1. $r_1, r_2, \ldots, r_m, \ldots, r_n$;
2. $l_0, l_1, l_2, \ldots, l_i, \ldots, l_j, \ldots$;
3. $\kappa_1, \kappa_2, \ldots, \kappa_m, \ldots, \kappa_n$;

Each instruction I from the list of instructions (1)-(4) of Definition 3.1 will be axiomatized by the corresponding Linear Logic formula φ_I in the following way:

$\varphi(1) = \langle l_i \multimap (l_j \otimes r_m) \rangle$,

$\varphi(2) = \langle ((l_i \otimes r_m) \multimap l_j) \rangle$,

$\varphi(3) = \langle (l_i \otimes r_m) \multimap (l_j \otimes r_m) \rangle$,

$\varphi(4) = \langle l_i \multimap (l_j \otimes \kappa_m) \rangle$.

For a given machine M, its program

$I_1; I_2; \ldots; I_s$;

is axiomatized by a multiset Φ_M as follows:

$\Phi_M = \varphi I_1, \varphi I_2, \ldots, \varphi I_s$.

In addition, for every m, by K_m we mean the multiset consisting of one Horn implication:

$(\kappa_m \multimap l_0)$.

3 Literal r_m is associated with the m-th counter.
4 Literal l_i represents label L_i.
5 Literal κ_m will be used to kill all literals except r_m.
and the following \((n - 1)\) **killing** implications:

\[((\kappa_m \otimes r_i) \circ \kappa_m), \quad (i \neq m)\]

We set that

\[
\mathcal{K} = \bigcup_{m = 1}^{n} \mathcal{K}_m
\]

We will prove that an **exact** correspondence exists between arbitrary computations of \(M\) on inputs

\[k_1, k_2, \ldots, k_n\]

and derivations for a sequent of the form

\[
(l_1 \otimes (r_1^k \otimes r_2^k \otimes \cdots \otimes r_n^k)), \Phi_M, \mathcal{K} \vdash l_0.
\]

More precisely, taking into account our complete computational interpretation for sequents of this kind (Theorem 2.1), we will prove an **exact** correspondence between arbitrary computations of \(M\) on inputs

\[k_1, k_2, \ldots, k_n\]

and **tree-like** strong solutions to this sequent

\[
(l_1 \otimes (r_1^k \otimes r_2^k \otimes \cdots \otimes r_n^k)), \Phi_M, \mathcal{K} \vdash l_0.
\]

In particular, each configuration \(K\)

\[
K = (L_i, c_1, c_2, \ldots, c_n)
\]

will be represented in Linear Logic by a simple tensor product

\[
\overline{K} = (l_i \otimes (r_1^{c_1} \otimes r_2^{c_2} \otimes \cdots \otimes r_n^{c_n})).
\]

3.2 FYI: From computations to tree-like Horn programs

Lemma 3.1 For given inputs \(k_1, k_2, \ldots, k_n\), let \(M\) be able to go from the initial configuration \((L_1, k_1, k_2, \ldots, k_n)\) to the halting configuration \((L_0, 0, 0, \ldots, 0)\).

Then we can construct a tree-like Horn program \(P\), which is a strong solution to the sequent

\[
(l_1 \otimes (r_1^k \otimes r_2^k \otimes \cdots \otimes r_n^k)), \Phi_M, \mathcal{K} \vdash l_0
\]

Proof. Let

\[K_0, K_1, K_2, \ldots, K_u, K_{u+1}, \ldots, K_t\]

be a computation of \(M\) (See Figure 5(a)) leading from the initial configuration \(K_0:\)

\[
K_0 = (L_1, k_1, k_2, \ldots, k_n),
\]

to the halting configuration \(K_t:\)

\[
K_t = (L_0, 0, 0, \ldots, 0).
\]

Running from the beginning of this sequence of configurations to its end, we will construct a tree-like Horn program \(P\), which is a strong solution to the sequent

\[
(l_1 \otimes (r_1^k \otimes r_2^k \otimes \cdots \otimes r_n^k)), \Phi_M, \mathcal{K} \vdash l_0
\]

and has the following peculiarities (See Figure 5(b))
Figure 5: The correspondence: Computation (a) — Horn Program (b).
(i) \(P(\widetilde{K}_0) = \widetilde{K}_t = l_0 \),
(ii) and, moreover, there exists a branch of \(P \), we call it \textit{main}:

\[v_0, v_1, v_2, \ldots, v_u, v_{u+1}, \ldots, v_t \]

such that for each vertex \(v_u \) from this \textit{main} branch:

\[\text{VALUE}(P, \widetilde{K}_0, v_u) \cong \widetilde{K}_u. \]

We construct the desired program \(P \) by induction:

The root \(v_0 \) of \(P \) is associated with the initial configuration \(K_0 \):

\[\text{VALUE}(P, \widetilde{K}_0, v_0) = (l_1 \otimes (r_{1}^{k_1} \otimes r_{2}^{k_2} \otimes \cdots \otimes r_{n}^{k_n})). \]

Let \(v_u \) be the terminal vertex of the fragment of \(P \) (that has already been constructed), associated with the current configuration \(K_u \):

\[\text{VALUE}(P, \widetilde{K}_0, v_u) \cong \widetilde{K}_u = (l_{i} \otimes (r_{1}^{a_1} \otimes r_{2}^{a_2} \otimes \cdots \otimes r_{n}^{a_n})). \]

The move from \(K_u \) to \(K_{u+1} \) is simulated in the following way:

(a) If this move is performed by applying an \textit{assignment operation} instruction \(I \) from the list of instructions (1)-(3) of Definition 3.1 then we create a new edge \((v_u, v_{u+1})\) and label this new edge by the corresponding Horn implication \(\varphi_I \), getting for this new terminal vertex \(v_{u+1} \):

\[\text{VALUE}(P, \widetilde{K}_0, v_{u+1}) \cong \widetilde{K}_{u+1}. \]

Figure 6 shows the case where this instruction \(I \) is of the form \(L_i : x_1 := x_1 - 1; \text{ goto } L_j \).

(b) Let the foregoing move be performed by applying a \textit{ZERO-test} instruction \(I \) of the form (4)

\[L_i : \text{ if } (x_m = 0) \text{ then goto } L_j. \]

The definability conditions of this move provide that

\[a_m = 0. \]

We extend the fragment of \(P \) (that has already been constructed) as follows (See Figure 7):

First, we create two new outgoing edges \((v_u, v_{u+1})\) and \((v_u, w_u)\), and label these new edges by the Horn implications

\[(l_i \circ l_j) \text{ and } (l_i \circ \kappa_m), \]

respectively. It is readily seen that

\[\text{VALUE}(P, \widetilde{K}_0, v_{u+1}) \cong (l_j \otimes (r_{1}^{a_1} \otimes r_{2}^{a_2} \otimes \cdots \otimes r_{m}^{a_m} \otimes \cdots \otimes r_{n}^{a_n}))) = \widetilde{K}_{u+1}, \]

\[\text{VALUE}(P, \widetilde{K}_0, w_u) \cong (\kappa_m \otimes (r_{1}^{a_1} \otimes r_{2}^{a_2} \otimes \cdots \otimes r_{m}^{a_m} \otimes \cdots \otimes r_{n}^{a_n}))). \]

Then, we create a chain of \(t_u \) new edges

\[(w_u, w_{1}^{u}), (w_{1}^{u}, w_{2}^{u}), \ldots, (w_{t_u}^{u} - 1, w_{t_u}^{u}) \]

where

\[t_u = a_1 + a_2 + \cdots + a_{m-1} + a_{m+1} + \cdots + a_n, \]

and label these new edges by such Horn implications from \(K_m \) as to \textit{kill} all occurrences of literals

\[r_1, r_2, \ldots, r_{m-1}, r_{m+1}, \ldots, r_n, \]
and ensure that

\[\text{VALUE}(P, \tilde{K}_0, w_{t_u}^w) \cong (\kappa_m \otimes (r_1^0 \otimes r_2^0 \otimes \cdots \otimes r_m^{a_m} \otimes \cdots \otimes r_n^0)). \]

Finally, we create a new edge \((w_{t_u}^w, w_{t_u}^w + 1)\), and label this new edge by the Horn implication

\[(\kappa_m \rightarrow l_0). \]

Taking into account that \(a_m = 0\), for the terminal vertex \(w_{t_u}^w + 1\) of the foregoing chain, we have:

\[\text{VALUE}(P, \tilde{K}_0, w_{t_u}^w + 1) = (l_0 \otimes (r_1^0 \otimes r_2^0 \otimes \cdots \otimes r_m^{a_m} \otimes \cdots \otimes r_n^0)) = l_0. \]

Hence, for all terminal vertices \(w\), i.e. both for the terminal vertex \(v_t\) of the main branch and for the terminal vertices of all auxiliary chains, we obtain that

\[\text{VALUE}(P, \tilde{K}_0, w) = l_0 = \tilde{K}_t. \]

Thus, our inductive process results in a \emph{tree-like} Horn program \(P\) that is a strong solution to the sequent

\[(l_1 \otimes (r_1^{k_1} \otimes r_2^{k_2} \otimes \cdots \otimes r_n^{k_n})), \Phi_M, \ K \vdash l_0 \]

\section{From tree-like Horn programs to Minsky computations}

\begin{theorem}
\label{thm:tree_to_minsky}
For given integers \(k_1, k_2, \ldots, k_n\), let a sequent of the form

\[(l_1 \otimes (r_1^{k_1} \otimes r_2^{k_2} \otimes \cdots \otimes r_n^{k_n})), \Phi_M, \ K \vdash l_0 \]

be derivable in Linear Logic. Then \(M\) can go from an initial configuration of the form

\[(L_1, k_1, k_2, \ldots, k_n) \]

to the halting configuration

\[(L_0, 0, 0, \ldots, 0). \]
\end{theorem}

\begin{proof}
By Theorem \ref{thm:linear_logic} and Theorem \ref{thm:linear_to_minsky}, we can construct a \emph{tree-like} Horn program \(P\) such that

(i) Each of the Horn implications occurring in \(P\) is drawn either from \(\Phi_M\) or from \(K\).

(ii) For all terminal vertices \(w\) of \(P\):

\[\text{VALUE}(P, W_0, w) = l_0 \]

where

\[W_0 = (l_1 \otimes (r_1^{k_1} \otimes r_2^{k_2} \otimes \cdots \otimes r_n^{k_n})). \]

\begin{lemma}
\label{lem:tree_to_minsky}
Running from the root \(v_0\) to terminal vertices of \(P\), we assemble the desired Minsky computation as follows:

(a) It is proved that program \(P\) cannot be but of the form represented in Figure \ref{fig:tree_to_minsky}

(b) We can identify a branch of \(P\), called the main branch:

\[v_0, v_1, v_2, \ldots, v_u, v_{u+1}, \ldots, v_t, \]

such that for all vertices \(v_u\) on this branch, \(\text{VALUE}(P, W_0, v_u)\) is proved to be of the form

\[\text{VALUE}(P, W_0, v_u) \cong (l_1 \otimes (r_1^{a_1} \otimes r_2^{a_2} \otimes \cdots \otimes r_n^{a_n})). \]
\end{lemma}
Figure 6: The assignment operation correspondence: (a) – (b).
Figure 7: The ZERO-test correspondence: (a) – (b).
(c) For all non-terminal vertices \(w' \) of \(P \) that are outside the main branch, \(\text{VALUE}(P, W_0, w') \) is proved to be of the form
\[
\text{VALUE}(P, W_0, w') \cong (\kappa_m \otimes (r_1^{a_1} \otimes r_2^{a_2} \otimes \cdots \otimes r_n^{a_n})).
\]

(d) Finally, the following sequence of configurations (See Figure 4)
\[K_0, K_1, K_2, \ldots, K_u, K_{u+1}, \ldots, K_t\]
such that for every integer \(u \)
\[\widetilde{K}_u \cong \text{VALUE}(P, W_0, v_u),\]
is proved to be a successful computation of \(M \) leading from the initial configuration \(K_0 \):
\[K_0 = (L_1, k_1, k_2, \ldots, k_n),\]
to the halting configuration \(K_t \):
\[K_t = (L_0, 0, 0, \ldots, 0).\]

Proof. Since
\[\widetilde{K}_0 = \text{VALUE}(P, W_0, v_0) = (l_1 \otimes (k_1 \otimes r_2 \otimes \cdots \otimes r_n)),\]
we have for the root \(v_0 \):
\[K_0 = (L_1, k_1, k_2, \ldots, k_n).\]
Let \(v_u \) be the current vertex on the main branch we are searching for, and, according to the inductive hypothesis, let \(\text{VALUE}(P, W_0, v_u) \) be of the form
\[\text{VALUE}(P, W_0, v_u) \cong \widetilde{K}_u = (l_i \otimes (r_1^{a_1} \otimes r_2^{a_2} \otimes \cdots \otimes r_n^{a_n})).\]

There are the following cases to be considered.

(a) Suppose that \(v_u \) is a non-divergent vertex with the only son which will be named \(v_{u+1} \). According to the definability conditions for our program \(P \), the single outgoing edge \((v_u, v_{u+1})\) cannot be labelled but by a Horn implication \(A \) from \(\Phi_M \). Moreover,
\[A = \varphi_I\]
for some instruction \(I \) of the form \((1)-(3)\) from Definition 3.1. Let this instruction \(I \) be of the form
\[L_i: \ x_1 := x_1 - 1; \text{goto } L_j;\]
and
\[A = ((l_i \otimes r_1) \rightarrow l_j).\]
Then we have (See Figure 5):
\[\text{VALUE}(P, W_0, v_{u+1}) \cong (l_j \otimes (r_1^{a_1-1} \otimes r_2^{a_2} \otimes \cdots \otimes r_n^{a_n})),\]
(and, hence, \(a_1 \geq 1 \)). Performing the foregoing instruction \(I \), machine \(M \) can move from the current configuration \(K_u \):
\[K_u = (L_i, a_1, a_2, \ldots, a_n),\]
to the next configuration \(K_{u+1} \):
\[K_{u+1} = (L_j, a_1-1, a_2, \ldots, a_n),\]
such that
\[\widetilde{K}_{u+1} \cong \text{VALUE}(P, W_0, v_{u+1}).\]
The remaining cases are handled similarly.
(b) The crucial point is where \(v_u \) is a vertex with two outgoing edges, say \((v_u, v_{u+1})\) and \((v_u, w_u)\), labelled by Horn implications \(A_1 \) and \(A_2 \), respectively. (See Figure 7)

It means that the implication used at this point of program \(P \) must be a \(\oplus \)-Horn implication \(A \) from \(\Phi_M \) of the form

\[
A = (l_i \ominus (l_j \oplus \kappa_m)),
\]

and, in addition,

\[
A_1 = (l_i \ominus l_j), \quad A_2 = (l_i \ominus \kappa_m).
\]

Therefore,

\[
\text{VALUE}(P, W_0, v_{u+1}) \cong (l_j \otimes (r_1^{a_1} \otimes r_2^{a_2} \otimes \cdots \otimes r_m^{a_m} \otimes \cdots \otimes r_n^{a_n}))
\]

\[
\text{VALUE}(P, W_0, w_u) \cong (\kappa_m \otimes (r_1^{a_1} \otimes r_2^{a_2} \otimes \cdots \otimes r_m^{a_m} \otimes \cdots \otimes r_n^{a_n})).
\]

Let us examine the descendants of the vertex \(w_u \).

Taking into account the definability conditions, any edge \((w_1, w_2)\), such that \(w_1 \) is a descendant of \(w_u \), cannot be labelled but by a Horn implication from \(K_m \).

So we can conclude that for all non-terminal descendants \(w' \) of the vertex \(w_u \), \(\text{VALUE}(P, W_0, w') \) is of the form

\[
\text{VALUE}(P, W_0, w') \cong (\kappa_m \otimes (r_1^{c_1} \otimes r_2^{c_2} \otimes \cdots \otimes r_m^{c_m} \otimes \cdots \otimes r_n^{c_n})).
\]

For the terminal descendant \(w \) of the vertex \(w_u \), \(\text{VALUE}(P, W_0, w) \) is to be of the form

\[
\text{VALUE}(P, W_0, w) \cong (l_0 \otimes (r_1^{c_1} \otimes r_2^{c_2} \otimes \cdots \otimes r_m^{c_m} \otimes \cdots \otimes r_n^{c_n})).
\]

Recalling that \(\text{VALUE}(P, W_0, w) = l_0 \),
we get the desired

\[
a_m = 0.
\]

Indeed,

\[
A = \varphi I
\]

for a \(\text{ZERO-test} \) instruction \(I \) of the form

\[
L_i : \text{if } (x_m = 0) \text{ then goto } L_j;
\]

Performing this instruction \(I \), machine \(M \) can move from the current configuration \(K_u \):

\[
K_u = (L_i, a_1, a_2, \ldots, a_m, \ldots, a_n),
\]

to the next configuration \(K_{u+1} \):

\[
K_{u+1} = (L_j, a_1, a_2, \ldots, a_m, \ldots, a_n),
\]

such that

\[
\text{VALUE}(P, W_0, v_{u+1}) \cong \text{VALUE}(P, W_0, v_{u+1}).
\]

(c) Suppose that the main branch we have been developing

\[
v_0, v_1, v_2, \ldots, v_u, v_{u+1}, \ldots, v_t,
\]

has ended at a vertex \(v_t \). According to what has been said,

\[
l_0 = \text{VALUE}(P, W_0, v_t) \cong \kappa_t = (l_j \otimes (r_1^{c_1} \otimes r_2^{c_2} \otimes \cdots \otimes r_n^{c_n})).
\]

Hence, this configuration \(K_t \) is the halting one:

\[
K_t = (L_0, 0, 0, \ldots, 0).
\]
Now, bringing together all the cases considered, we can complete Lemma 4.1 and, hence, Theorem 4.1.

Theorem 4.2 For given inputs k_1, k_2, \ldots, k_n, an n-counter Minsky machine M can go from the initial configuration $(L_1, k_1, k_2, \ldots, k_n)$ to the halting configuration $(L_0, 0, 0, \ldots, 0)$ if and only if a sequent of the form

$$(l_1 \otimes (r_1^{k_1} \otimes r_2^{k_2} \otimes \cdots \otimes r_n^{k_n})), \neg \Phi_M, \neg K \vdash l_0$$

is derivable in Linear Logic.

Proof. We bring together Lemma 3.1 and Theorem 4.1. \hfill \blacksquare

References

[1] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. 1979.

[2] V. Gehlot and C.A. Gunter. Normal process representatives. In *Proc. 5-th Annual IEEE Symposium on Logic in Computer Science, Philadelphia*, June 1990.

[3] Jean-Yves Girard. Linear logic. *Theoretical Computer Science*, 50:1, 1987, pp.1-102.

[4] Jean-Yves Girard. Linear logic: its syntax and semantics, In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, *Advances in Linear Logic*, London Mathematical Society Lecture Notes, Vol. 222, pp.1-42. Cambridge University Press, 1995.

[5] Max Kanovich. Horn Programming in Linear Logic is NP-complete. In *Proc. 7-th Annual IEEE Symposium on Logic in Computer Science, Santa Cruz*, June 1992, pp.200-210

[6] Max Kanovich. Linear logic as a logic of computations, *Annals of Pure and Applied Logic*, 67 (1994) pp.183-212

[7] Max Kanovich. The complexity of Horn fragments of linear logic. *Annals of Pure and Applied Logic*, 69:195–241, 1994.

[8] Max Kanovich. The Direct Simulation of Minsky machines in Linear logic, In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, *Advances in Linear Logic*, London Mathematical Society Lecture Notes, Vol. 222, pp.123-145. Cambridge University Press, 1995.

[9] Max Kanovich. Petri Nets, Horn Programs, Linear Logic, and Vector Games, *Annals of Pure and Applied Logic*, 75 (1995) pp.107-135

[10] R.S. Kosaraju. Decidability of reachability in vector addition systems. In *Proc. 14-th Annual Symposium on Theory of Computing*, 267-281, 1982. Preliminary Version.

[11] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision Problems for Propositional Linear Logic. *Annals of Pure and Applied Logic*, 56 (1992) pp.239-311.

[12] Patrick Lincoln. Deciding Provability of Linear Logic Formulas, In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, *Advances in Linear Logic*, London Mathematical Society Lecture Notes, Vol. 222, pp.109-122. Cambridge University Press, 1995.

[13] N. Marti-Oliet and J. Meseguer. From Petri Nets to Linear Logic. In: Springer LNCS 389, ed. by D.R. Pitt et al., 1989, pp.313-340

[14] E. Mayr, An algorithm for the general Petri net reachability problem. *SIAM J. Comput.*, 13, N 3, 441-460, 1984.

[15] M. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics in the theory of Turing machines. *Annals of Mathematics*, 74:3:437-455, 1961.