A NOTE ON KASPAROV PRODUCT AND DUALITY

HYUN HO LEE

ABSTRACT. Using Paschke-Higson Duality [Hig, Pa], we get a natural index pairing

\[K_i(A) \times K_{i+1}(D_\Phi) \to \mathbb{Z} \]

where \(i = 0, 1 \text{ (mod 2)} \)
and \(A \) is a separable \(C^* \)-algebra, \(\Phi \) is a representation of \(A \) on a separable Hilbert space \(\mathbb{H} \). We prove this is a special case of Kasparov Product [Kas].

1. INTRODUCTION

The purpose of this paper is to give a clear exposition of a connection between KK-theory [Kas] and index pairing

\[K_i(A) \times K_{i+1}(D_\Phi) \to \mathbb{Z} \]

where \(i = 0, 1 \text{ (mod 2)} \)

which is defined in Section 2. In fact, we are going to show that each index pairing is a Kasparov product only using elementary ingredients of K-theory and KK-theory. (see proposition 3.1 below and lemma 2.9, 2.12 below.) As an application of this approach, we show an alternate proof of Bott periodicity in KK-theory [Kas]; cf. Theorem 18.10.2 in [Bl]. In this proof, we do not use geometric argument (for example, use of Clifford algebra [Kas]) but operator theory and pure algebra.

2. PASCHKE-HIGSON DUALITY AND INDEX PAIRING

In this section, we review Paschke-Higson duality theory [Hig]. Throughout this article, \(\mathbb{H} \) is a separable infinite dimensional Hilbert space. \(\mathcal{B}(\mathbb{H}) \) is the set of linear bounded operators on \(\mathbb{H} \). \(\mathcal{K}(\mathbb{H}) \) (shortly \(\mathcal{K} \)) is an ideal of compact operators on \(\mathbb{H} \), and \(\mathcal{Q}(\mathbb{H}) \) (shortly \(\mathcal{Q} \)) is the Calkin algebra.

We use the following notation: if \(X \) and \(Y \) are operators in \(\mathcal{B}(\mathbb{H}) \) we shall write

\[X \sim Y \]

if \(X \) and \(Y \) differ by a compact operator.

\begin{itemize}
 \item \textit{Date:} December 15, 2007.
 \item \textit{2000 Mathematics Subject Classification.} Primary:46L80; Secondary:19K33,19K35.
 \item \textit{Key words and phrases.} KK-theory, Kasparov Product, Paschke-Higson Duality.
\end{itemize}
Note that every \(* \)-representation \(\Phi : A \to B(\mathbb{H}) \) determines a \(* \)-homomorphism \(\hat{\Phi} \) of \(A \) into the Calkin algebra.

Definition 2.1. Let \(A \) be \(C^* \)-algebra. A \(* \)-representation \(\Phi : A \to B(\mathbb{H}) \) is called admissible if it is non-degenerate and \(\ker(\hat{\Phi}) = 0 \).

Remark 2.2. If a \(* \)-representation is admissible, then it is necessarily faithful and its image contains no non-zero compact operator.

Definition 2.3. Let \(\Phi \) be a \(* \)-representation of \(A \) on \(\mathbb{H} \). Denote by \(D_\Phi(A) \) the essential commutant of \(\Phi(A) \) in \(B(\mathbb{H}) \). Thus

\[
D_\Phi(A) = \{ T \in B(\mathbb{H}) \mid \forall a \in A, [\Phi(a), T] \sim 0 \}
\]

Given two representations \(\Phi_0, \Phi_1 \) on \(\mathbb{H}_0, \mathbb{H}_1 \) respectively, we say they are approximately unitarily equivalent if there exists a sequence \(\{ U_n \} \) consisting of unitaries in \(B(\mathbb{H}_0, \mathbb{H}_1) \) such that

\[
\text{Ad}(U_n)\Phi_0(a) \sim \Phi_1(a) \quad \text{for all} \quad a \in A
\]

\[
\| \text{Ad}(U_n)\Phi_0(a) - \Phi_1(a) \| \to 0 \quad \text{as} \quad n \to \infty
\]

We write \(\Phi_0 \sim_u \Phi_1 \) in this case.

Theorem 2.4. (Voiculescu) Let \(A \) be a separable \(C^* \)-algebra and \(\Phi_i : A \to B(\mathbb{H}_i) \), \(i = 0, 1 \) be non-degenerate \(* \)-representations. Then if \(\ker(\hat{\Phi}_0) \subset \ker(\hat{\Phi}_1) \), then \(\Phi_0 \oplus \Phi_1 \sim_u \Phi_0 \) where \(\hat{\Phi} \) is the natural \(* \)-homomorphism into the Calkin algebra induced by a \(* \)-representation \(\Phi \).

Proof. See Corollary 1 in p343 of [Ar]. \(\square \)

Corollary 2.5. Assume \(\Phi_i : A \to B(\mathbb{H}_i) \) are admissible representations for \(i = 0, 1 \). Then \(\Phi_0 \sim_u \Phi_1 \).

Proof. Admissibility implies \(\ker(\hat{\Phi}) = 0 \). From this, the result is straightforward. \(\square \)

Recall that an extension of a unital separable \(C^* \)-algebra \(A \) is a unital \(* \)-monomorphism \(\tau \) of \(A \) into the Calkin algebra. We say \(\tau \) is split if there is a non-degenerate \(* \)-representation \(\rho \) such that \(\hat{\rho} = \tau \) and semi-split if there is a completely positive map \(\rho \) such that \(\hat{\rho} = \tau \).

Corollary 2.6. Let \(A \) be a separable unital \(C^* \)-algebra. If \(\tau \) is a unital injective extension of \(A \) and if \(\sigma \) is a split unital extension of \(A \), then \(\tau \oplus \sigma \) is unitarily equivalent \(\tau \).

Proof. See p352-353 in [Ar]. \(\square \)

Now we will prove the existence of admissible representation of \(A \).
Proposition 2.7. There is a non-degenerate *-representation Φ of for a separable C^*-algebra A such that $\text{Ker}(\Phi) = 0$.

Proof. Let π be a faithful representation of A on H_π. Take Φ as $\pi^\infty = \pi \oplus \pi \oplus \cdots$ and $H = H_\pi \oplus H_\pi \oplus \cdots$ \square

Definition 2.8. When Φ, Ψ are admissible representations of A on H, $D_\Phi(A)$ is isomorphic to $D_\Psi(A)$ by Corollary 2.5. Therefore we define $D(A) = D_\Phi(A)$ as the dual algebra of A up to unitary equivalence.

If p is a projection in $D_\Phi(A)$, we call it ample and can define an extension

$$\tau = \tau_{\Phi, p} : A \xrightarrow{\Phi(p) \mapsto \Phi_p} B(pH) \xrightarrow{\pi} Q(pH)$$

In general, this extension is not injective. However, if the extension $\tau_{\Phi, p}$ is injective, we call that an abstract Toeplitz extension.

To define the map from $K_0(D(A))(= K_0(D_\Phi(A)))$ to $\text{Ext}^{-1}(A)$, we need the following two technical lemmas.

Lemma 2.9. Let A be a unital C^*-algebra. For any $\alpha \in K_0(D(A))$, there exists a ample projection $p \in D(A)$ such that $\alpha = [p]_0$.

Proof. Step1: By Corollary 2.6, there is a unitary $u \in B(pH \oplus H, H)$ such that $\text{Ad}(u)(\Phi_p \oplus \Phi)(a) \sim \Phi(a)$ for any $a \in A$ if p is ample. Let $U = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}$. We can easily check that $U \in M_2(D_\Phi(A))$ and $UU^* = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}$, $U^*U = \begin{pmatrix} p & 0 \\ 0 & I \end{pmatrix}$. Therefore we have $[p \oplus I]_0 = [p \oplus 0]_0$. This implies $[p]_0 + [I]_0 = [P]_0$. In particular, $[I]_0 = 0$. Also you can conclude every two ample projections are Murray-von Neumann equivalent.

Step2: Note that $p \oplus I$ is always ample whether p is ample or not because $(\Phi \oplus \Phi)_{p \oplus I}(a)$ is never compact unless $a \in A$ is zero.

Step3: Any element in $K_0(D_\Phi(A))$ is written by $[q]_0 - [I]_0$ for some $q \in M_n(D_\Phi(A))$. As we observed in Step1, this is just $[q]_0$. By Step2, we may assume q is ample for $\Phi \oplus \Phi \oplus \cdots \oplus \Phi$. Now if we can show $[q]_0 = [p]_0$ for some ample $p \in D_\Phi(A)$, we are done.

Since $\Phi \oplus \Phi \oplus \cdots \oplus \Phi \sim_u \Phi$, there exists $v : \mathbb{H}^n \mapsto \mathbb{H}$ s.t.

1. $v^*v = 1_{B(\mathbb{H}^n)}$, $vv^* = 1_{B(\mathbb{H})}$

2. $\text{Ad}(v) \Phi \oplus \Phi \oplus \cdots \oplus \Phi \in K \quad \forall a \in A$.

Let $V = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $v \in \mathbb{M}_n(D_\Phi(A))$. Then $[q]_0 = [VqV^*]_0 = [vqv^*]_0$. It’s left to the reader to check that vqv^* is also ample. \hfill \Box

Lemma 2.10. Let $\phi : A \to \mathcal{B}(\mathbb{H}_1 \oplus \mathbb{H}_2)$ be a $*$-representation. Write $\phi(a) = \begin{pmatrix} \phi_{11}(a) & \phi_{12}(a) \\ \phi_{21}(a) & \phi_{22}(a) \end{pmatrix}$. Suppose ϕ_{11} is $*$-homomorphism modulo $K(\mathbb{H}_1)$. i.e., ϕ_{11} is $*$-homomorphism. Then $\phi_{12}(a)$, $\phi_{21}(a)$ are compacts for any $a \in A$ and ϕ_{22} is $*$-homomorphism.

Proof. Using $\phi(aa^*) = \phi(a)\phi(a^*)$ with decomposition of ϕ on $\mathbb{H}_1 \oplus \mathbb{H}_2$ and the fact ϕ_{11} is $*$-homomorphism modulo $K(\mathbb{H}_1)$, we have $\phi_{12}(a)\phi_{12}(a^*)$ is compact therefore $\phi(a)$ is compact for $a \in A$. Similarly, using $\phi(a^*a) = \phi(a)^*\phi(a)$, we have $\phi_{21}(a)$ is compact for $a \in A$. It follows that ϕ_{22} is $*$-homomorphism modulo $K(\mathbb{H}_2)$. \hfill \Box

Proposition 2.11. $K_0(D_\Phi(A)) \cong \text{Ext}^{-1}(A)$ where Φ is a admissible representation of A on a separable Hilbert space \mathbb{H}.

Proof. With the Lemma 2.9 in hand, we define the map from $K_0(D_\Phi(A))$ to $\text{Ext}^{-1}(A)$ as follows $

[p]_0 \mapsto [\tau_{\Phi,p}]

$ When $[p] = [q]$, as we have seen in the proof of Lemma 2.9, p and q are Murray- von-Neumann equivalent in $D_\Phi(A)$ so that partial isometry implementing this equivalence induces the equivalence between $\tau_{\Phi,p}$ and $\tau_{\Phi,q}$. Conversely, unitary equivalence between $\tau_{\Phi,p}$ and $\tau_{\Phi,q}$ induces Murray- von-Neumann equivalence between p and q evidently. From $\Phi \oplus \Phi \sim_u \Phi$, we get a unitary $u \in \mathcal{B}(\mathbb{H} \oplus \mathbb{H}, \mathbb{H})$ which induces a natural isomorphism $Ad(u) : \mathbb{M}_2(D_\Phi(A)) \to D_\Phi(A)$. Note $\pi \circ Ad(u) = Ad(u) \circ (\pi \otimes id_2)$. Since $[p] + [q] = [p \oplus q]$ and $p \oplus q$ is in $D_{\Phi \oplus \Phi}(A)$, $[p] + [q]$ is mapped to $[\pi \circ Ad(u) \circ (\Phi \oplus \Phi)p \oplus q] = [Ad(u) \circ ((\pi \otimes id_2) \circ (\Phi \oplus \Phi)p \oplus q]$ which is indeed $[\tau_{\Phi,p}] + [\tau_{\Phi,q}]$. So far we have shown the map is a monomorphism. It is remained to show the map is onto.

Suppose ρ is semi-split extension of A with a completely positive lifting $\psi : A \to \mathcal{B}(\mathbb{H})$. By Steinspring’s dilation theorem, there is a non-degenerate $*$-representation $\phi : A \to \mathcal{B}(\mathbb{H}_0)$ and an isometry $V : \mathbb{H} \to \mathbb{H}_0$ such that $\psi(a) = V^*\phi(a)V$ for all $a \in A$. If we set $P_1 = VV^*$ and $P_2 = 1 - P_1$, then $\mathbb{H}_0 = P_1(\mathbb{H}_0) \oplus P_2(\mathbb{H}_0) = \mathbb{H}_1 \oplus \mathbb{H}_2$. If we decompose ϕ on $\mathbb{H}_0 = \mathbb{H}_1 \oplus \mathbb{H}_2$, we have $V\psi(a)V^* = VV^*\phi(a)V^* = P_1\phi(a)P_1 = \phi_{11}(a)$. Since $\psi = \rho$ is (injective) $*$-homomorphism, we
can conclude \(\phi_{11} \) is (injective)*-homomorphism modulo compact. By the Lemma 2.10, \(\phi_{12}(a), \phi_{21}(a) \) are compacts for \(a \in A \) and \(\phi_{22} \) is *-homomorphism modulo compact. This implies that \([P_1, \phi] \in \mathcal{K}\). Thus \(\dot{\phi}_{11} \) is an abstract Toeplitz extension. Viewing \(V : \mathbb{H} \rightarrow \mathbb{H}_1 \) as an unitary, we can also see that \(\rho \) is unitarily equivalent to \(\dot{\phi}_{11} \). Hence we finish the proof. \[\square \]

Similarly, we are going to define the map from \(K_1(D(A)) \) to \(KK(A, \mathbb{C}) \). We begin with the following lemma which is expected as we have Lemma 2.9.

Lemma 2.12. Let \(A \) be as above. For any \(\alpha \in K_1(D(A)) \), there exists an unitary \(u \in D(A) \) such that \(\alpha = [u]_1 \).

Proof. Assume \(T \in M_n(D_\Phi(A)) \approx D_\Phi \oplus \Phi \oplus \ldots \oplus \Phi(A) \) is a unitary which represents \(\alpha \in K_1(D_\Phi(A)) \). Let \(V \) be as above and \(S = \begin{pmatrix} V & 1 - VV^* \\ 0 & V^* \end{pmatrix} \in M_{2n}(D_\Phi(A)) \). It is easy to check that \(VTV^* + 1 - VV^* = \begin{pmatrix} vTv^* & 0 \\ 0 & 1 \end{pmatrix} \) and \(S \begin{pmatrix} T & 0 \\ 0 & 1 \end{pmatrix} S^* = \begin{pmatrix} vTv^* + 1 - VV^* & 0 \\ 0 & 1 \end{pmatrix} \).

Therefore \([T]_1 = [vTv^*]_1\). It is left to the reader to check that \(vTv^* \in D(A) \) is also unitary. \[\square \]

Proposition 2.13. \(KK(A, \mathbb{C}) \cong K_1(D_\Phi) \) where \(\Phi \) is an admissible representation of unital separable \(C^* \)-algebra \(A \) on a separable Hilbert space \(\mathbb{H} \).

Proof. With the Lemma 2.12 we define the map from \(K_1(D_\Phi) \) to \(KK(A, \mathbb{C}) \) as follows.

\[
[u]_1 \mapsto \left[\left(\hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix} \right), \left(\begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix} \right) \right]
\]

where \(\hat{\mathbb{H}} \) is a graded Hilbert \(\mathbb{C} \)-module \(\mathbb{H} \oplus \mathbb{H} \) with the standard even grading. (See Chapter 14.2 in [Bi]). Indeed, this construction gives rise to well-defined group homomorphism. If \([u] = [v]\), then \(u \oplus 1 \) is homotopic to \(v \oplus 1 \) up to unitary.

Therefore \(\left(\hat{\mathbb{H}} \oplus \hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix} \right), \left(\begin{pmatrix} 0 & u^* \\ u & 0 \end{pmatrix} \right) \) is operator homotopic to \(\left(\hat{\mathbb{H}}, \begin{pmatrix} \Phi & 0 \\ 0 & \Phi \end{pmatrix} \right), \left(\begin{pmatrix} 0 & v^* \\ v & 0 \end{pmatrix} \right) \).
Let $\alpha \in KK(A, \mathbb{C})$ be represented by \((H_0 \oplus H_1, (\phi_0 \ 0, 0 \ u^* \ \phi_1), (0 \ u \ 0))\) where u is a unitary in $\mathcal{B}(H_0, H_1)$. Let $\Psi = \cdots \phi_0 \oplus \phi_0 \oplus \phi_1 \oplus \phi_1 \cdots$ and $H = \cdots H_0 \oplus H_0 \oplus H_1 \oplus H_1 \cdots$. We consider a degenerate cycle \[
(H \oplus H, (\Psi \ 0 \ 0), (0 \ I \ 0))\] Then \[
(H_0 \oplus H_1, (\phi_0 \ 0, 0 \ u^* \ \phi_1), (0 \ u \ 0)) \oplus (H \oplus H, (\Psi \ 0 \ 0), (0 \ I \ 0))\] is unitarily equivalent to \[
(H \oplus H, (\Psi \ 0 \ 0), (0 \ F^* \ 0))\] where $F = \begin{pmatrix} I & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & I \end{pmatrix}$ or shifting to the right i.e. F sends $(\cdots, \eta_1, \eta_0, \xi_0, \xi_1, \cdots)$ to $(\cdots, \eta_2, \eta_1, u\eta_0, \xi_0, \cdots)$.

Again by adding a degenerate cycle \[
(\hat{H}, (\Phi \ 0 \ 0), (0 \ I \ 0))\], we get \[
\alpha = \left[\begin{pmatrix} H \oplus H, (\Psi \oplus \Phi \ 0 \ 0), (0 \ F^* \oplus I) \end{pmatrix}\right] \]
Since Φ is admissible, we obtain a unitary $U \in \mathcal{B}(H \oplus H, H)$ such that $Ad(U) \circ \Psi \oplus \Phi \sim \Phi$,
\[
= \left[\begin{pmatrix} \hat{H}, (Ad(U) \circ \Psi \oplus \Phi) \oplus (Ad(U) \circ \Psi \oplus \Phi), (0 \ Ad(U)(F^* \oplus I) \ Ad(U)(F^* \oplus I)) \end{pmatrix}\right]
\]
By the lemma 4.1.10. in [JenThom]
\[
= \left[\begin{pmatrix} \hat{H}, \Phi \oplus \Phi, (0 \ Ad(U)(F^* \oplus I) \ Ad(U)(F^* \oplus I)) \end{pmatrix}\right]
\]
It is not hard to check that $Ad(U)(F \oplus I) \in D_\Phi(A)$ and α is the image of it. So we finish the proof. \(\square\)

Remark 2.14. A unital C^*-algebra A is said to have K_1-surjectivity if the natural map from $U(A)/U_0(A)$ to $K_1(A)$ is surjective and is said to have (strong)K_0-surjectivity if the group $K_0(A)$ is generated by $\{[p] \ | \ p$ is a projection in $A\}$. Therefore Lemma 2.9 and Lemma 2.12 show $D_\Phi(A)$ has (strong)K_0-surjectivity and K_1-surjectivity.
Now we are ready to define the index pairing between $K_i(A)$ and $K_{i+1}(D\Phi(A))$ for all $i = 0, 1$. For the following two definitions, we mean Index as the classical Fredholm index.

Given a projection $p \in M_k(A)$ and $u \in K_1(D\Phi(A))$, when Φ_k is k-th amplification of Φ, the operator

$$\Phi_k(p)u^{(k)}\Phi_k(p) : \Phi_k(p)(\mathbb{H}^k) \to \Phi_k(p)(\mathbb{H}^k)$$

is essentially unitary, and therefore Fredholm.

Definition 2.15. The (even)index pairing $K_0(A) \times K_1(D\Phi(A)) \to \mathbb{Z}$ is defined as follows.

$$([p], [u]) \longrightarrow \text{Index}\left(\Phi_k(p)u^{(k)}\Phi_k(p)\right)$$

where $p \in M_k(A)$ and Φ_k is k-th amplification of Φ.

Similarly, given $v \in M_k(A)$ and $p \in K_0(D\Phi(A))$, the operator

$$p^{(k)}\Phi_k(v)p^{(k)} - (1 - p^{(k)}) : \mathbb{H}^k \to \mathbb{H}^k$$

is essentially unitary, and therefore Fredholm.

Definition 2.16. The (odd)index pairing $K_1(A) \times K_0(D\Phi(A)) \to \mathbb{Z}$ is defined as follows.

$$([v], [p]) \longrightarrow \text{Index}\left(p^{(k)}\Phi_k(v)p^{(k)} - (1 - p^{(k)})\right)$$

if $v \in M_k(A)$ and Φ_k is k-th amplification of Φ.

3. **Kasparov Product and Duality**

In this section, we prove main results: Each index pairing is a special case of Kasparov product. Before doing this, we need some elementary computations of Kasparov groups.

Proposition 3.1. $KK(S, B) = K_1(B)$ where $S = \{ f \in C(\mathbb{T}) \mid f(1) = 0 \}$ and B is a C^*-algebra.

Proof. Most of proof can be found in [Lee]. We just note that any unitary in $K_1(B)$ can be liftable to $\phi \in KK(S, B)$ here $\phi : S \to B$ which is determined by sending $z - 1$ to $u - 1$.

Theorem 3.2. (Even case) the mapping $K_0(A) \times K_1(D\Phi) \to \mathbb{Z}$ is the Kasparov product $KK(S, SA) \times KK(SA, S) \to \mathbb{Z}$.

Proof. Without loss of generality, we may assume p is the element of A. (If necessary, consider $\mathbb{C}^k \otimes A$) Using the K-theory Bott map, p is mapped to $f_p(z) \in K_1(SA)$. Then as we have noted in Proposition 3.1 $f_p(z)$ is lifted to Ψ as the element of $KK(S, SA)$ where Ψ is the
*-homomorphism from S to SA which is determined by sending $z - 1$ to $(z - 1)p$.

On the other hand, $[u] \in K_1(D\Phi(A))$ is mapped to $[\mathcal{E}]$ in $KK(A, \mathbb{C})$ where $\mathcal{E} = \left(\mathbb{H}, (\Phi \circ \Phi), (0 \ 0) \right)$ is a Kasparov A-\mathbb{C} module by Proposition 2.13. Using natural isomorphism $\tau_S : KK(A, \mathbb{C}) \mapsto KK(SA, S)$, we can think of a Kasparov product Ψ by $[\tau_S(\mathcal{E})]$. Using elementary functorial properties, we can check Ψ to τ to Ψ. Using natural isomorphism 2.13. where E is determined by sending ρ to $(\hat{H}, \rho \oplus \rho, G)$.

Note that $\rho : \mathbb{C} \mapsto \mathcal{B}(\mathbb{H})$. Similarly, we have

Corollary 3.4. Let $x \in KK(C_1, S) \cong Ext(\mathbb{C}, S)$ be represented by the extension $0 \mapsto S \mapsto C \mapsto \mathbb{C} \mapsto 0$ and $y \in KK(S, C_1) \cong Ext(S, \mathbb{C})$ be
represented by the extension $0 \to K \to C^*(v - 1) \to S \to 0$ where v is a coisometry of Fredholm index 1 (e.g. the adjoint of the unilateral shift). Then $\mathbf{x} \cdot \mathbf{y} = 1_{C_1}$.

Proof. Note that \mathbf{x} corresponds to the unitary $t \mapsto e^{2\pi it}$ in $K_1(S)$ by the Brown’s Universal Coefficient Theorem [Br]. Also, the Busby invariant of $0 \to K \to C^*(v - 1) \to S \to 0$ is the homomorphism $\tau : S \to \mathbb{Q}$ sends $e^{2\pi it} - 1$ to $\pi(v) - 1$. Since $KK(C_1, C_1) \cong \mathbb{Z}$, using Theorem 3.3 we can conclude $\mathbf{x} \cdot \mathbf{y} = 1_{C_1}$. □

4. ACKNOWLEDGMENTS

I was greatly benefited from professor Dadarlat’s lecture on K-theory in 2004. I also would like to thank my advisor Larry Brown for helping me to learn KK-theory.

REFERENCES

[Ar] William Arveson Notes on extensions of C^*-algebras Duke Math. Journal Vol44 no2 329-355 (1977)
[Br] L.G.Brown The universal coefficient theorem for Ext and quasidiagonality pp60-64 in Operator algebras and group representations, I. Monographs of Stud. Math. 17, Pitman, Boston, Mass. 1984
[Bl] Bruce Blackadar K-theory for Operator Algebras MSRI Publicatons Vol.5 Second Edition Cambridge University Press 1998
[Hig] Nigel Higson C^*-Algebra Extension Theory and Duality J. Functional Analysis 129, 349-363(1995).
[JonThom] K.N.Jensen, K.Thomsen Elements of KK- theory Birkhäuser, Boston, 1991 MR94b:19008
[Kas] G.G. Kasparov The Operator K functor and extensions of C^*-algebras Mathe. USSR-Izv 16(1981) 513-572[English Translation]
[Lee] Hyun Ho Lee Completely positive map and extremal K-set 2006 Preprint
[Pa] William Pascheke K-theory for commutants in the Calkin algebra Pacific J. Math. 95 (1981) 427-437

DEPARTMENT OF MATHEMATICS PURDUE UNIVERSITY WEST LAFAYETTE, INDIANA 47907

E-mail address: ylee@math.purdue.edu