High laboratory mouse pre-weaning mortality associated with litter overlap, advanced mother age, small and large litters

Gabriela Munhoz Morello¹,², Jan Hultgren³, Sara Capas-Peneda¹,², Marc Whiltshire⁴, Aurelie Thomas⁵, Hannah Wardle-Jones⁵, Sophie Brajon¹,², Colin Gilbert⁴, I. Anna S. Olsson¹,²

¹Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto Portugal
²i3S – Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
³Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
⁴Babraham Institute, Babraham, Cambridge, United Kingdom
⁵Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom

*Corresponding author

E-mail: gabriela.morello@i3s.up.pt (GMM)
Abstract

High and variable pre-weaning mortality is a persistent problem among the main mouse strains used in biomedical research. If a modest 15% mortality rate is assumed across all mouse strains used in the EU, approximately 1 million more pups must be produced yearly to compensate for those which die. A few environmental and social factors have been identified as affecting pup mortality, but optimizing these factors does not cease the problem. This study is the first large study to mine data records from 219,975 pups from two breeding facilities to determine the major risk factors associated with mouse pre-weaning mortality. It was hypothesized that litter overlap (i.e. the presence of older siblings in the cage when new pups are born), a recurrent social configuration in trio-housed mice, is associated with increased newborn mortality, along with high mother age, large litter size, as well as a high number and age of older siblings in the cage. The estimated probability of pup death was two to seven percentage points higher in cages with compared to those without litter overlap. Litter overlap was associated with an increase in percentage of litter losses of 19% and 103%, respectively, in the two breeding facilities. Increased number and age of older siblings, high mother age, small litter size (less than four pups born) and large litter size (over 11 pups born) were associated with increased probability of pup death. Results suggest that common social cage configurations at breeding facilities are dangerous for the survivability of young mouse pups. The underlying mechanisms and strategies to avoid these situations should be further investigated.

Introduction

High pre-weaning mortality of laboratory mice is a major welfare and economic problem affecting mouse breeding at academic and industrial laboratories worldwide. Previous studies report pup
mortalities from less than 10% [1] to as high as 49% [2] for C57BL/6 mice, one of the most commonly used mouse strains. Despite the general ongoing effort to reduce the number of animals in research and improve their welfare according to the 3R principle for research[3], high pre-weaning mortality rates persist and very little systematic research has been done to identify causes of poor survival. Data from experimental and observational studies conducted by the authors of this work at different breeding facilities in three different countries revealed that 32% of 344 litters (retrospective analysis, Germany[4]), 33% of 55 litters (experimental data, U.K.[5]), and 18% of 510 litters (experimental data, Portugal[6]) were completely lost, with the overall mortality varying from 25[6] to 52% in trio-bred mice[5] in the experimental studies. If a modest level of 15% mortality is assumed across all mouse strains, at least 1 million more mice must be produced every year just in the European Union (EU) to compensate for pups that die before they can be used in science (estimate based on the number of mice used yearly in research in the EU; European Commission 2020 [7]). Such losses are contrary to the 3R principle that is now explicit in EU legislation[8] and incur extra breeding costs of €5-8 million yearly. Several environmental, management and behavioural factors have been linked to pup mortality, such as thermal environment of the cage, level of parental care, mother age, litter size, provision of nest material, and cage manipulation [5,9–13], but manipulating these factors has not as yet eliminated the mortality problem. Recently, we identified the presence of older litter mates in the cage when a new litter is born (litter overlap) as a major factor affecting pup survival [5]. In a study with 55 litters of C57BL/6 mice (n=521 pups) housed in trios [5], a 2.3 fold increase was found in litter loss in cages where older littermates were present, compared to trio cages with no older littermates. Litter overlap happens in both trio (two adult females and one male) and pair (one adult female and one male) housing, which are the most common configurations in mouse breeding. Although
litter overlap is more frequent in trios due to the presence of two breeding females, the number of pups weaned per litter is not reduced in trios compared to pairs, while trios wean more pups per cage [14]. One possible reason for this is that litter overlap in pair cages affects pup mortality more severely as compared to trio cages. In pair cages, litter overlap occurs when the only female of the cage gives birth before weaning her previous litter. In these cases, the age gap between litters becomes large, which might be especially detrimental to pup survival.

Previous research into factors affecting laboratory mouse reproduction used primarily experimental study approaches, where the sample size was small and animal management and data collection differed from standard practice in a breeding facility. With the increasing use of breeding management software, it is now possible to use much larger datasets representing the reality of practical laboratory mouse breeding. In this study, a dataset of 219,975 pups was analysed from two different collaborating breeding facilities in the UK (58,692 and 161,283 pups), by modelling the risk of a newborn mouse dying as a function of the age and number of older littermates, as well as of mother age. It was hypothesized that litter overlap is a recurrent social configuration and that the risk of pup mortality increases with litter overlap, high mother age, large litter size, as well as a high number and age of older siblings in the cage.

Material and methods

Data retrieval

Historical mouse breeding data was provided by two collaborating facilities. Therefore, this study did not involve any type of animal manipulation, observation, or use. Mouse breeding in the collaborating facilities was performed in line with the UK Animals (Scientific Procedures) Act of 1986.
Mouse breeding data were made available by two collaborating breeding facilities (C1, the Babraham Institute and C2, the Wellcome Sanger Institute). Historical production data were downloaded directly from their breeding management software (MCMS, Mouse Colony Management System, the Wellcome Sanger Institute Data Centre). C1 provided data from January 2014 to October 2018, and C2 provided data from January 2010 to March 2019. The datasets contained information on litter identity, breeding adults’ identities, date of birth, date of death, number of pups born and number of pups weaned.

Animals, housing, and management

The original dataset contained a total of 34,949 C57BL/6 litters and 219,975 pups. All mice were housed in trios (two females and one male) in individually ventilated cages (IVC). Details on animals, housing, and management are shown in Table 1.

Table 1. Animal, housing, and management characteristics for the collaborating animal facilities.

Mouse Strain	The Babraham Institute, C1	The Wellcome Sanger Institute, C2
Housing configuration	C57BL/6Babr	C57BL/6NTac
Type of cages	Trios	Trios
Ventilation rate	65 to 75 air changes/hour	60 air changes/hour
Air handling unit	Tecniplast DGM80 and DGM160	Tecniplast TouchSLIMLine™
Bedding	5 mm deep soft-wood-flake bedding (ECO6, Datesand group, Manchester, UK)	175 g of Aspen Chips (B&K Universal Ltd, Peninsula Plaza, Singapore)
Nest	7 g of white paper rolls (Enrich-n’Nest, Datesand group, Manchester, ENG, UK)	25 mm square Nestlet (Datesand group, Manchester, UK) derived from pulped cotton virgin fibreAr
Enrichment	Tecniplast Mouse Pouch Loft, a second level flooring within the cage	One cardboard bio-tunnel per cage
Water

Ad libitum, sterilized through reverse osmosis and provided through automatic drinking valves (Edstrom A160/QD2, Avidity Science LLC, Waterford, WI, USA)

Food

Ad libitum in the form of standard 9.5 mm diameter dry pellets (CRM(P), Special Diets Services, Witham, Essex, UK)

Cage change routine

Cages changed once every second week; cages with large litters sometimes cleaned every week

Cages assessed once a week and changed if needed

Room temperature (target)

20°C to 21°C

19°C to 23°C

Room relative humidity (target)

50%

45% to 65%

Light schedule

12 hours light (7:00-19:00) and 12 hours dark

12 hours light (7:30-19:30) and 12 hours dark

Weaning age (target)

21 days

19 to 23 days; male pups were euthanized before weaning

Breeding start age (target)

8 to 9 weeks

6 to 9 weeks

Retirement age (target)

24-32 weeks; longer if productive

24 weeks, or after 3 poor litters, or after 5 or 6 successful litters

Pup counting routine

Pups are counted once between their birth and day 7 (pp with minimal handling

Pups are counted whenever cages are cleaned. Pups less than five 5 d old are left undisturbed (not counted)

*aIVC=Individually ventilated cage

Statistical analysis

Data were collected from 58,692 pups in 9,261 litters and 161,283 pups in 25,688 litters from C1 and C2, respectively. Required information was retrieved using Scilab (version 6.0.1, Scilab Enterprises, Rungis, France), resulting in one data line per pup. A total of 11% (C1) and 21% (C2) of the data provided was excluded, mainly due to incongruent data records, implausibly large litters (more than 13 pups, unless confirmed as correct), unreliable information on number and age of...
older pups in the cage, or missing information. Male pups at C2 euthanized at day 7 pp or later were coded as surviving. Litters with males euthanized before day 7 pp were excluded.

Pup mortality before weaning was coded as 0 (survived) or 1 (died) and used as the dependent variable. Environmental and social factors were considered as risk factors for pup death. Independent variables representing environmental factors considered for analysis were Collaborator (C1 or C2), Season (Winter, Spring, Summer, Fall), Month (as an alternative predictor to Season), Weekday, and Year, while independent variables for social risk factors included Mother Age (continuous), Father Age (continuous), Litter Size (number of pups born; continuous), litter Overlap (whether or not older siblings were present at the time of birth of the focus litter; no or yes), Sibling Number (number of older pups in the cage at the time of birth of the focus litter; continuous) and Sibling Age (age of the older siblings; continuous).

The risk of pup death was modelled by mixed logistic regression, using the GLIMMIX procedure in SAS (2018 University Edition, SAS Institute Inc., Cary, NC, USA). Multicollinearity among independent variables was checked by using the variance inflation factor (VIF) and regressing each independent variable on the others. As a consequence, Year, Month, and Father Age were excluded from the analysis.

Data of C1 and C2 were combined together and two separate models were constructed; one model using data for all pups, including those with and without litter overlap, and another model for pups with litter overlap only. In both models, litter identity was included as a random effect to account for clustering. The models were built by adding one independent variable of interest (Mother Age, Litter Size, Overlap (first model) or Sibling Number and Sibling Age (second model)) at a time in a stepwise process with bidirectional elimination. Independent variables with P ≤ 0.05 were kept in the model. Weekday, Season, and Collaborator were then tested one at a time as confounders,
followed by possible interactions and higher order terms. Least-squares means of Weekday, Season, and Overlap were examined and compared among different variable levels.

Results

The percentage of pups dying before weaning was 39% at C1 and 14% at C2, while the mean number of Litter Size was 7.6 pups born/litter in both collaborators. In 42% of the C1 litters and 78% of the C2 litters no pups died. The percentage of litters with at least 90% death rate was 28% at C1 and 9% at C2. Approximately 50% and 57% of the litters were born with the presence of older siblings in the cage (litter overlap) in C1 and C2, respectively.

The first model (all pups) contained the variables Collaborator, Season, Weekday, Mother Age, Litter Size and Overlap. The second model (pups with litter overlap) contained variables Collaborator, Season, Weekday, Mother Age, Litter Size, Sibling Number, and Sibling Age. Collaborator interacted significantly with all the independent variables in both models, except Mother Age in the second model. Therefore, results for C1 and C2 are presented separately. Sibling Number interacted significantly with Sibling Age, while Litter Size affected pup death probability in a quadratic fashion in both models. Model details are available in S1 and S2 Tables.

The estimated probability of pup death was seven (C1) and two (C2) percentage points higher (P < 0.01) in cages with the presence of older siblings compared to cages without an older litter (Fig 1A and 1B). At C1, 31% of the overlapped and 26% of the non-overlapped litters had a total litter loss (all pups dying, Fig 1C), whereas at C2, the corresponding figures were 12% and 6% (Fig 1D).
Fig 1. Probability of pup death and litter mortality distribution. Probability of pup death in litters without (NO) or with (YES) the presence of older siblings in the cage (litter overlap) at (A) C1, the Babraham Institute, and (B) C2, the Wellcome Institute, based on least-square means. Percentage of litters born with litter overlap by category of pre-weaning mortality at (C) C1 and (D) C2, based on raw data. Numbers within brackets in the x-axis designate lower (left side) and upper (right side) limits of mortality range. An open bracket next to a number designates a non-inclusive limit.

The predicted probability for a pup to die as a function of Mother Age, Litter Size, Sibling Age, and Sibling Number is illustrated by Figs 2 and 3. Increased Mother Age, Sibling Number, and Sibling Age were associated (P < 0.01) with an increase in the probability of pups dying at both C1 and C2 (Figs 2 and 3).
Fig 2. Probability of pup death by Mother Age and Sibling Age. Predicted probabilities (least-squares means) of a pup to die as a function of Mother age for three distinct levels of Litter Size (number of pups born), at C1, the Babraham Institute and C2, the Wellcome Sanger Institute. Each
line corresponds to predictions for a specific value of Sibling Age, as depicted in the legend next to the top left graph. Predictions were obtained while assuming six older pups in the cage, the most recurrent Weekday (Thursday) and the most common Season (Spring) in the combined dataset.
Fig 3. Probability of pup death by Sibling Number and Sibling Age. Predicted probabilities (least-squares means) of a pup to die as a function of Sibling Number (number of older pups in the cage at the birth of the focal litter) for three distinct levels of Litter Size (number of pups born), at C1, the Babraham Institute and C2, the Wellcome Sanger Institute. Each line corresponds to predictions for a specific value of Sibling Age, as depicted in the legend next to the top left graph. Predictions were obtained while assuming six older pups in the cage, the most recurrent Weekday (Thursday) and the most common Season (Spring) in the combined dataset.

Pup death was associated with Litter Size in a quadratic fashion in both collaborators (P < 0.01). For all combinations of Mother Age and Sibling Age, the risk of death was nearly at its minimum around a litter sizes of 6-10 pups (mean litter size at birth for overlapped data: 7.3 ± 2.6 pups). Although Weekday and Season were not added to the models as variables of interest, these factors turned out to be confounders to the models (P < 0.01). The probability of death consistently decreased towards the end of the week at both collaborators, while the effect of Season lacked a consistent pattern between collaborators (available in S1 Fig). C1 was able to provide records on cage cleaning dates per Weekday for the period of 17 months (April 2018 to November 2019) for the colony. Cage change events also peaked in the beginning of the week and were lower towards the end of the week (available in S2 Fig).

Discussion

Neonatal mortality is a large problem in laboratory mouse breeding and improving pup survival is a key to improve the efficiency and sustainability of producing laboratory mice while complying with the 3R principle[8]. Here, we present the first large scale study of management, environmental and animal factors affecting pup survival based on data from over 200,000 C57BL/6 pups born during a period of 5 to 10 years in two large mouse breeding facilities. The study indicates that
litter overlap, a social configuration which frequently occurs in trio-breeding cages, results in a 30
to 60% increase in the probability of neonatal pup death. The higher the number and age of older
siblings in the cage, the greater is the risk of neonatal pup death. The probability of pups to die in
the presence of older siblings was also affected by mother age and litter size.

Irrespective of any mortality risks identified, the average litter mortality rates obtained both at C1
(39%) and C2 (14%) were higher than what was previously reported for C57BL/6J mice (8% pre-
weaning mortality[15] with pup counting at weaning and 3% mortality at three days pp[16] with
pup number obtained from video-records). Litter mortality was higher in C1 compared to C2 and
no differences were found between collaborators in the number of pups born per litter. Husbandry
differences between C1 and C2 may contribute to the mortality difference between both institute
as cage temperature, as well as nest and bedding amount and quality affect rodents’ breeding
performance[10–13]. An additional factor may be the practice of euthanizing male pups in C2.
Euthanized males after seven days of age were considered as survivals, but this is an assumption
and may have led to an underestimation of mortality. Finally, any differences in accuracy of data
entry may have affected the results. C1 had a more consistent and early counting of pups than C2.
Thus it is possible that C1 has a better accuracy in detecting the number of pups born compared to
C2 where pups born could be underestimated, considering that most of deaths happen within 48h
pp and dead pups often get cannibalized by the dam, thus not seen by the caretakers. Productivity
differences either in pup survivability or in the actual number of pups born due to the distinct
mouse sub-strains between C1 and C2 could also underlie the differences in overall mortality
found between C1 and C2.

The found higher mouse pre-weaning mortality in trios with overlapped litters, i.e. litters born
when an older litter was present, compared to non-overlapped litters is in agreement with previous
experimental findings. In outbred mice derived from the C57BL/6J, BALB/c, and DBA/1J strains, Schmidt et al. (2015) found pup mortality to increase with increasing age gap between the litters sharing a cage at a specific time. Understanding why being born into a cage with an older litter is so dangerous requires information about events around pup death and the condition of dead and dying pups. Past research have frequently associated pup mortality with infanticide, assuming that cannibalized pups were killed before they were eaten. However, previous behavior studies conducted by the authors of this study revealed that infanticide precedes less than 15% of the cannibalism events and that pups die primarily from other causes than direct killing. Litter asynchrony, which often leads to overlap, is likely to increase unequal competition for access to milk and parental care, trauma caused by trampling and stepping of newborns by the adults or the older siblings, and problems related with increased cage stocking density. Early access to milk is essential for the survival of newborn pups. Measurements of pup energy losses due to metabolism between nursing bouts, extrapolated for a period of 24 hours, revealed that if pups did not receive milk during their first day of life, they would lose approximately 8% of their birth weight, which would likely reduce their chances of survival. The presence of older and consequently heavier, more developed and more mobile pups in the cage may have interfered with the access of the newborns to milk in general and specifically to steal the iron-rich milk that is present in higher concentrations during the first week of lactation. Also, older and heavier siblings may be able to displace light newborn pups more easily from the dam's nipples, as compared to younger siblings. This could partly explain the interaction found in this work between the Number and the Age of Older Siblings in the cage, affecting pup death probability. The presence of two litters in the cage has been demonstrated to increase parturition duration and affect parental behavior. Adults in trio cages with two litters were observed to care for their
newborn pups a total of 20% less time (all the three adults together) than adults with one single litter in the cage[5], while parental investment is known to improve the chances of survival of young mice. In fact, C57BL/6 females which lost their litters entirely have been found to spend more time outside the nest and invested less time in building the nest prior to parturition[21], while the presence of males in cages with breeding females (CD-1) has been demonstrated to increase pup survival by facilitating maternal behavior[22]. Thus, reduced parental care in cages with more than one litter can be one of the mechanisms through which pup survivability is reduced in the presence of an older litter. Most often, when there are two females sharing a cage, they also share the same nest, and younger lighter pups get clustered together with the older, heavier, and more mobile pups. Data on post-mortem inspection performed in 324 C57BL/6J pups found dead, by the authors of this study, revealed that 24% of the pups had some kind of traumatic lesion, including bite wounds and bruises[23]. Higher stocking density leads to increased humidity and gas concentration in the air, with ammonia reaching above 150 ppm in mouse breeding cages prior to weaning[24,25]. Whereas the impact of these ammonia levels on newborn mice has not been studied, ammonia levels from 25 to 250 ppm have been demonstrated to destroy the surface layers of the trachea epithelium lining and increase the severity of rhinitis, otitis, tracheitis, and pneumonia in rats and mice[25–27]. The gas concentration problem may be aggravated by the fact that animal care-takers generally tend to avoid cleaning cages when litters were just born (to avoid pup disturbance).

Mother age

Pup death probability increased as Mother Age increased in both collaborators. In this study, Mother Age and parity were confounded. Thus, it was not possible to distinguish effects on pup
death probability of the dam's age and its birthing experience. Decreased productivity and
increased mortality in first-parity litters have been reported for a few different species[28,29], but
for mice this subject remains controversial. While first-parity BALB/c and 129/Sv dams were
reported to wean fewer pups per litter compared to later parity ones[30], we previously found an
increase in pup survival with lower parities[5] in an experimental study conducted in C1, whereas
another study did not find any significant differences in pup loss between first- and later parity
C57BL/6 or BALB/c dams[4].

The results for Mother Age are in agreement with those from Tarín et al. (2005)[9], who found
increased pup mortality and incidence of litters with at least one cannibalized pup with increased
parity. Tarín et al. (2005)[9] also compared breeding performance between mothers (F1 of
C57BL/6Jico × CBA/Jico) who started their reproductive life at age 70 d (young) and 357 d (old).
The authors found no differences between mother age group on pre-weaning mortality and litter
size both at birth and at weaning, but reported that young mothers produced F2 litters with higher
expectation of survival and body weight than those of old mothers.

Number of pups born

Pup death probability was higher in either small or large litters (less than four or more than 11
pups born). The reduced survivability in small litters is in agreement with previous reports for
C57BL/6[5] and F1 hybrid (C57BL/6Jico × CBA/Jico) mice[9]. This may be related to the amount
of parental care. Ehret and Bernecker (1986)[31] demonstrated that early pup vocalization, which
gradually increases in frequency after birth, is essential to maintain maternal attention at high
levels, which leads to improved pup weight gain, as compared to pups from mothers which were
unable to hear them. Therefore, it is possible that a small newly born litter does not emit sufficient
vocal cues to ensure sufficient maternal care. Rat litters[32] with one single pup were found to
perform only about 10% and 5% of the suckling stimuli performed by litters of 10 and 22 pups.

As a consequence, the milk yield of dams (estimated based on adjusted measures of the pups' daily weight gain) raising single pups was only -0.4% to 7.0% of those raising 10 pups, which led one-pup litters to have the lowest growth rate. More than half of the one-pup litters did not show any weight gain in the first five days pp. From an evolutionary perspective, a small litter is less worth investing in than a larger litter: Maestripieri and Alleva (1991) [33] demonstrated that CD-1 dams of large litters (eight pups) spent more than twice as much time displaying litter defense behaviors against intruder males than dams of small litters (four pups). The increase in pup death probability found in litters of 12 pups and above, on the other hand, may be a result of increased sibling competition for access to milk, as discussed above, and also may represent a ceiling in milk production capacity by the mothers[20,34,35].

Weekday and season

In both collaborators, there seemed to be a decrease the probability of pup death towards the end of the week, possibly associated with the timing of cage changes, a management routine which affects the mice as well as the accuracy of mortality detection. In C1, which provided records on cage cleaning dates, these closely mirrored the pattern of pup death probability. To reliably count the number of pups, the cage must be opened and animals moved, something that often only happens at cage cleaning when manipulation is unavoidable. Mortality is therefore likely to be more accurately detected for litters born on cage changing days. For example, an eight-pup litter born on a Tuesday with cage cleaning schedule for the same day will be recorded as an eight-pup litter. If two of these pups die in the following 24 hours, this litter's pre-weaning mortality will be recorded as being 25% at weaning. A similar litter born on a Saturday with two pups dying on
Sunday, and subsequently cannibalized, will be recorded at the Tuesday cage change as a litter with six pups born with no pre-weaning deaths.

Still, the mouse disturbance hypothesis cannot be disregarded. If pup mortality is affected by cage change, the same pattern would be expected in cage change frequency as in pup death probability per Weekday (of birth). Reeb-Whitaker et al. (2000)[1] found a higher pup mortality in cages with weekly changes than those changed once every two weeks. Cage change requires that mice are moved from the dirty to a clean cage, an event that triggers a stress response evidenced by increases in serum corticosterone[36] and general activity[37]. It is possible, therefore, that cage change interferes with parental behavior in breeding cages, which could aggravate pup mortality around those days.

Conclusions

The present study revealed that high pre-weaning mortality in laboratory mice (C57BL/6) is associated with advanced mother age, litter overlap, the presence of a high number and age of older siblings in the cage, and a small (less than four) or large (more than 11 pups) litter. The dynamics of parental care, sibling competition for access to milk, and issues related with the number of animals in the cage may underlie the effects found in pup mortality caused by the identified risks. Future studies should address sibling competition and parental behavior in asynchronized litters.

Acknowledgements

Dr. Luiz Henrique Antunes Rodrigues for providing technical input for the statistical modeling process. The Babraham Institute and the Wellcome Sanger Institute, UK, for providing the historical data used in this manuscript. Dr. Sofia Lamas for providing technical and scientific input.
References

1. Reeb-Whitaker CK, Paigen B, Beamer WG, Bronson RT, Churshill GA, Schweitzer IB, et al. The impact of reduced frequency of cage changes on the health of mice housed in ventilated cages. Lab Anim. 2001;35:58–73.

2. Inglis CA, Campbell ER, Auciello SL, Sarawar SR. Effects of Enrichment Devices on Stress-Related Problems in Mouse Breeding. Johns Hopkins Cent Altern to Anim Test Final Rep Anim Welf Enhanc Award 2004. 2004;(1):1–9.

3. Russell WMS, Burch RL. The principles of humane experimental technique. Methuen; 1959.

4. Weber EM, Algers B, Wurbel H, Hultgren J, Olsson IAS. Influence of Strain and Parity on the Risk of Litter Loss in Laboratory Mice. Reprod Dom Anim. 2013;48:292–6.

5. Brajon S, Morello GM, Teixeira MS, Hultgren J, Gilbert C, Olsson IAS. Social environment as a cause of litter loss in laboratory mouse: A behavioural study. Appl Anim Behav Sci. 2019;218:104827.

6. Morello GM, Brajon S, Capas-Peneda S, Hultgren J, Ferreira JM, Gilbert C, et al. Understanding pup mortality in laboratory mouse breeding: How the presence of an older litter in the cage aggravates pre-weaning mortality in mice housed in trios and in pairs. 2019 Jul 3 [cited 2020 February 23rd]. In UFAW International Animal Welfare Sc. Symp Available from https://www.ufaw.org.uk/downloads/bruges-2019---ufaw-symposium-programme-booklet-online-v1.pdf.

7. European Commission. 2019 report on the statistics on the use of animals for scientific purposes in the member states of the European Union in 2015-2017. 2020 Feb 5 [Cited 2020 Feb 23]. Brussels. Available from: https://eur-lex.europa.eu/legal-content/EN/.
9. Tarín JJ, Gómez-Piquer V, Rausell F, Navarro S, Hermenegildo C, Cano A. Delayed motherhood decreases life expectancy of mouse offspring. Biol Reprod. 2005;72(6):1336–43.

10. Potgieter FJ, Wilke PI. Effect of different bedding materials on the reproductive performance of mice. J S Afr Vet Assoc. 1997;68(1):8–15.

11. Eskola S, Kaliste-korhonen E. Nesting material and number of females per cage: effects on mouse productivity in BALB/c, C57BL/6J, DBA/2 and NIH/S mice. Lab Anim. 1999;33:122–8.

12. Paul MJ, Tuthill C, Kauffman AS, Zucker I. Pelage insulation, litter size, and ambient temperature impact maternal energy intake and offspring development during lactation. Physiol Behav. 2010;100:128–34.

13. Gaskill BN, Winnicker C, Garner JP, Pritchett-corning KR. The naked truth: Breeding performance in nude mice with and without nesting material. Appl Anim Behav Sci. 2013;143(2–4):110–6.

14. Wasson K. Retrospective analysis of reproductive performance of pair-bred compared with trio-bred mice. J Am Assoc Lab Anim Sci. 2017;56(2):190–3.

15. Mouse phenome database at the Jackson Laboratory. Phenotype measure: Jax5_wean_born_ration. [Cited 2020 Feb 23]. Bar Harbor. Available from: https://phenome.jax.org/measures/31406.

16. Murray SA, Morgan JL, Kane C, Sharma Y, Heffner CS, Lake J, et al. Mouse gestation
length is genetically determined. PLoS One. 2010 Aug;5(8):e12418.

17. Schmidt J, Kosztolányi A, Tókölyi J, Hugyecz B, Illés I, Király R, et al. Reproductive asynchrony and infanticide in house mice breeding communally. Anim Behav. 2015;101:201–11.

18. Stahl W, Kaneda Y. Cerebral Anomalies in Congenital Murine Toxoplasmosis: A Preliminary Report. Tokai J Exp Clin Med. 1999;23(6):261–5.

19. Weber EM, Algers B, Hultgren J, Olsson IAS. Pup mortality in laboratory mice--infanticide or not? Acta Vet Scand. 2013;55(1):83.

20. König B, Riester J, Markl H. Maternal care in house mice (Mus musculus): II. The energy cost of lactation as a function of litter size. J Zool. 1988;216:195–210.

21. Weber EM, Hultgren J, Algers B, Olsson IAS. Do laboratory mouse females that lose their litters behave differently around parturition? PLoS One. 2016 Aug;11(8):e0161238.

22. Wright SL, Brown RE. Maternal behavior, paternal behavior, and pup survival in CD-1 albino mice (Mus musculus) in three different housing conditions. J Comp Psychol. 2000;114(2):183–92.

23. Capas-Peneda S, Morello GM, Lamas S, Olsson IAS, Gilbert C. Causes of death in newborn C57BL/6 mice. 2020; Preprint in BioRxiv.

24. Eveleigh JR. Murine cage density: Cage ammonia levels during the reproductive performance of an inbred strain and two outbred stocks of monogamous breeding pairs of mice. Lab Anim. 1993;27(2):156–60.

25. Gamble MR, Clough G. Ammonia build-up in animal boxes and its effect on rat tracheal epithelium. Lab Anim. 1976;10(2):93–104.

26. Broderson JR, Lindsey JR, Crawford JE. The role of environmental ammonia in respiratory
mycoplasmosis of rats. Am J Pathol. 1976;85(1):115–30.

27. Vogelweid CM, Zapien KA, Honigford MJ, Li L, Li H, Marshall H. Effects of a 28-day cage-change interval on intracage ammonia levels, nasal histology, and perceived welfare of CD1 mice. J Am Assoc Lab Anim Sci. 2011;50(6):868–78.

28. Gourdine JL, Bidanel JP, Noblet J, Renaudeau D. Effects of season and breed on the feeding behavior of multiparous lactating sows in a tropical humid climate. J Anim Sci. 2006;84:469–80.

29. Dhakal K, Maltecca C, Cassady JP, Baloche G, Williams CM, Washburn SP. Calf birth weight, gestation length, calving ease, and neonatal calf mortality in Holstein, Jersey, and crossbred cows in a pasture system. J Dairy Sci. 2013;96(1):690–8.

30. Whitaker JW, Moy SS, Pritchett-Corning KR, Fletcher CA. Effects of enrichment and litter parity on reproductive performance and behavior in BALB/c and 129/Sv mice. J Am Assoc Lab Anim Sci. 2016;55(4):387–99.

31. Ehret G, Bernecker C. Low-frequency sound communication by mouse pups (Mus musculus): Wriggling calls release maternal behaviour. Anim Behav. 1986;34:821–30.

32. Russell JA. Milk yield, suckling behavior and milk ejection in the lactating rat nursing litters of different sizes. J Physiol. 1980;303(1):403–15.

33. Maestripieri D, Alleva E. Litter defence and parental investment allocation in house mice. Behav Processes. 1991;23(3):223–30.

34. Johnson MS, Thomson SC, Speakman JR. Limits to sustained energy intake: I. Lactation in the laboratory mouse Mus musculus. J Exp Biol. 2001;204:1925–35.

35. Vaanholt LM, Duah OA, Balduci S, Mitchell SE, Hambly C, Speakman JR. Limits to sustained energy intake. XXVII. Trade-offs between first and second litters in lactating mice
support the ecological context hypothesis. J Exp Biol. 2018;221(5).

36. Rasmussen S, Miller MM, Filipski SB, Tolwani RJ. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Anim Sci JAALAS. 2011;50(4):479–83.

37. Castelhano-Carlos MJ, Baumans V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Lab Anim. 2016;43:311–27.

Supporting information

S1 Fig. Probability of pup death by Weekday and Season. Predicted Probability (least-square means) of a pup to die as a function of (A) Weekday and (B) Season of birth at C1, the Babraham Institute, and C2, the Wellcome Sanger Institute. Data points with distinct labeled letters indicate statistical difference at 95% confidence level. Probability of a pup to die is depicted in terms of least-square means.
S2 Fig. Cage change frequency and probability of pup death by Weekday. Cage change frequency and predicted probability (least-square means) of a pup to die as a function of Weekday at C1, the Babraham Institute. Data points with distinct labeled letters indicate statistical difference at 95% confidence level. Cage change frequency is depicted as the percentage per weekday of the 78 cage change episodes which happened from April 2018 to November 2019 (available data records), in the studied room of C1.

S1 Table. Solutions for fixed effects of the model predicting the odds of pup death fitted in the whole processed dataset.

Effect	Estimate	Standard Error	t Value	Pr >	t	
Intercept	-1.0546	0.0751	-14.04	<0.0001		
Collaborator C1	2.3067	0.1011	22.81	<0.0001		
Collaborator C2	0.0000	n.a.	n.a.	n.a.		
Season Fall	-0.1468	0.0354	-4.14	<0.0001		
Season Spring	-0.1082	0.0360	-3.00	0.0027		
Season Summer	-0.1234	0.0400	-3.09	0.0020		
Season Winter	0.0000	n.a.	n.a.	n.a.		
Weekday 1	-0.0054	0.0517	-0.11	0.9162		
Weekday 2	0.7230	0.0472	15.33	<0.0001		
Weekday 3	1.2433	0.0463	26.86	<0.0001		
Weekday 4	1.4133	0.0453	31.18	<0.0001		
Weekday 5	0.8705	0.0461	16.88	<0.0001		
Weekday 6	0.3000	0.0482	6.22	<0.0001		
Effect	Num DF	F Value	Pr > F			
------------------------------	--------	---------	---------			
Collaborator	1	579.79	<0.0001			
Season	3	5.84	0.006			
Weekday	6	256.88	<0.0001			
Mother Age	1	511.62	<0.0001			
Litter Size^a	1	2563.59	<0.0001			
Litter Size^{2a}	1	1349.04	<0.0001			
Overlap 1 658.04 <0.0001
Collaborator*Season 3 13.55 <0.0001
Collaborator*Weekday 6 102.88 <0.0001
Collaborator*Mother Age 1 14.48 0.0001
Collaborator*Litter Size 1 54.30 <0.0001
Collaborator*Overlap 1 18.46 <0.0001

n.a.=not applicable.

Variable Litter Size was centered by its mean.

S2 Table. Solutions for fixed effects of the model predicting the odds of pup death fitted in the dataset containing only overlapped litters.

| Effect | Estimate | Standard Error | t Value | Pr > |t| |
|-------------------------|----------|----------------|---------|-------|---|
| Intercept | -11.5390 | 0.3921 | -29.43 | <0.0001 |
| Collaborator C1 | -2.2587 | 0.5681 | -3.98 | <0.0001 |
| Collaborator C2 | 0.0000 | n.a. | n.a. | n.a. |
| Weekday 1 | -0.0671 | 0.2256 | -0.30 | 0.7663 |
| Weekday 2 | 0.5713 | 0.2105 | 2.71 | 0.0066 |
| Weekday 3 | 1.1023 | 0.2139 | 5.15 | <0.0001 |
| Weekday 4 | 1.5854 | 0.2116 | 7.49 | <0.0001 |
| Weekday 5 | 0.3004 | 0.2109 | 1.42 | 0.1544 |
| Weekday 6 | 0.0120 | 0.2184 | 0.05 | 0.9563 |
| Weekday 7 | 0.0000 | n.a. | n.a. | n.a. |
| Season Fall | 0.0219 | 0.1584 | 0.14 | 0.8902 |
| Season Spring | 0.4246 | 0.1562 | 2.72 | 0.0066 |
| Season Summer | 0.4826 | 0.1564 | 3.09 | 0.0020 |
| Season Winter | 0.0000 | n.a. | n.a. | n.a. |
| Mother Age | 0.0083 | 0.0012 | 7.25 | <0.0001 |
| Litter Size | -0.2233 | 0.0228 | -9.78 | <0.0001 |
| Litter Size | 0.0814 | 0.0055 | 14.80 | <0.0001 |
| Sibling Number | 0.02873 | 0.0396 | 0.73 | 0.4676 |
| Sibling Age | -0.0143 | 0.0194 | -0.74 | 0.4618 |
| Sibling Number* | 0.0181 | 0.0029 | 6.29 | <0.0001 |
| Sibling Age | 0.5338 | 0.0217 | 24.61 | <0.0001 |
| Collaborator C1*Sibling Age | 0.0000 | n.a. | n.a. | n.a. |
| Collaborator C1*Sibling Number | 0.4587 | 0.0464 | 9.88 | <0.0001 |
| Collaborator C2*Sibling Number | 0.0000 | n.a. | n.a. | n.a. |
| Collaborator C1*Litter Size | 0.2170 | 0.0502 | 4.33 | <0.0001 |
| Collaborator C2*Litter Size | 0.0000 | n.a. | n.a. | n.a. |
| Collaborator C1*Season Fall | 0.5386 | 0.3721 | 1.45 | 0.1478 |
| Collaborator C1*Season Spring | -0.420 | 0.3566 | -0.12 | 0.9063 |
| Collaborator C1*Season Summer | -0.7081 | 0.3697 | -1.92 | 0.0554 |
Effect	Num DF	F Value	Pr > F
Collaborator	1	47.32	<0.0001
Weekday	6	3.96	0.0006
Season	3	1.96	0.1183
Mother Age	1	52.54	<0.0001
Litter Size\(^a\)	1	17.40	<0.0001
Litter Size\(^2\)	1	219.15	<0.0001
Sibling Number	1	40.91	<0.0001
Sibling Age	1	135.48	<0.0001
Sibling Number\(^*\)	1	39.61	<0.0001
Sibling Age			
Collaborator*Sibling Age	1	605.64	<0.0001
Collaborator*Sibling Number	1	97.59	<0.0001
Collaborator*Litter Size	1	18.72	<0.0001
Collaborator*Season	3	3.80	0.0098
Collaborator*Weekday	6	7.22	<0.0001

\(^a\)Variable Litter Size was centered by its mean.