A variant form of autoimmune pancreatitis successfully treated by steroid therapy, accompanied by von Meyenburg complex

Hideaki Miura, Shigehiro Kitamura, Haruki Yamada

Abstract
Diagnostic criteria for autoimmune pancreatitis (AIP) have been proposed and used clinically because, despite its unique clinicopathological features, AIP does not have disease-specific serological tests for confirmation. However, diagnosis of a patient with pancreatic lesions mimicking cancer who deviates from these diagnostic criteria is still difficult. We present herein a patient with a variant form of AIP successfully diagnosed by fine-needle biopsy, whose response to steroid therapy was excellent. A 55-year-old Japanese man was admitted to hospital because of jaundice and pancreatic head mass. AIP was considered as one of the differential diagnoses; however, as the patient showed neither pancreatic duct narrowing nor immunological abnormalities, he did not meet the Japanese diagnostic criteria for AIP. Histopathology of the pancreatic mass demonstrated abundant infiltration by lymphocytes and interstitial fibrosis, which suggested AIP. Immunoreaction to IgG4, which is supposed to be specific to AIP, was not observed; however, response to subsequent prednisolone therapy was good, with dramatic pancreatic head mass regression. Aside from the pancreatic head mass, diffusely spreading small lesions were observed throughout the liver. The likelihood of a potential association with extrapancreatic lesions of AIP was considered and led us to carry out a liver biopsy, which revealed biliary hamartoma, also called von Meyenburg complex (VMC). As IgG4-positive plasma cell infiltration was not demonstrated in the hamartomatous regions, the hepatic condition was thought to have occurred incidentally; however, to the best of our knowledge, this is the first report in which the association between AIP and VMC was investigated and discussed.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Autoimmune pancreatitis; Diagnostic criteria; IgG4; Biliary hamartoma; von Meyenburg complex

INTRODUCTION
Clinically unique chronic pancreatitis, in which autoimmune mechanisms are supposed to be involved, has been focused upon and investigated intensively over the last decade[1-3], and is now recognized as a clinical entity worldwide, autoimmune pancreatitis (AIP)[4-6]. Since disease-specific serological tests for determining AIP remain unavailable, diagnostic criteria for AIP have been proposed by incorporating characteristic clinical aspects of the disease[7-11]. Japanese criteria were established first in the world in 2002 by the Japan Pancreas Society (JPS)[7]; however, with the accumulation of clinical investigations of AIP, the JPS criteria were modified in 2006 by the Research Committee of Intractable Pancreatic Diseases (RCIPD)[9], because the concept of AIP has changed gradually with the detection of additional new clinicopathological aspects.
A 55-year-old Japanese man was referred and admitted to our hospital for the evaluation of jaundice and a pancreatic head mass on 2 May 2007. One week before admission, the patient had visited another hospital because of body weight loss and a 1-wk history of epigastralgia, and was found to have obstructive jaundice caused by pancreatic head swelling, upon abdominal ultrasonography (US). Upon admission, he was 170 cm tall and weighed 57.0 kg, blood pressure was 112/62 mmHg, and temperature was 37.1°C. There was no history of drug or alcohol abuse.

Physical examination revealed no abnormal findings except for jaundice of the conjunctiva and skin. Laboratory findings on admission are shown in Table 1. Abdominal US showed obstructive jaundice caused by a hypo-echoic pancreatic head mass that measured 43 mm in diameter, which compressed the lower portion of the bile duct, and resulted in upstream bile tract dilatation; B: Many tiny, diffuse hyperechoic patches or comet-like tails that suggested the presence of certain intrahepatic abnormalities, but the reason could not be elucidated.

Figure 1 Abdominal US. A: Pancreatic head mass with hypo-echogenicity, 43 mm in diameter, which compressed the lower portion of the bile duct, and resulted in upstream bile tract dilatation; B: Many tiny, diffuse hyperechoic patches or comet-like tails that suggested the presence of certain intrahepatic abnormalities, but the reason could not be elucidated.

Magnetic resonance cholangiopancreatography (MRCP) performed subsequently demonstrated intensive stenosis of the pancreatic head portion and peripheral dilatation of the common bile duct, as well as the skipped stenotic lesions of the main pancreatic duct (Figure 3). Simultaneously, on MRCP imaging, numerous hyper-intense round nodules of small diameter, presumably correlating with the US imaging of the liver, were found to be diffusely scattered throughout the liver (Figure 3).

We could not perform ERCP because of the lack of an expert ERCP endoscopist in the hospital. Upon MRCP, skipped stenotic lesions of the main pancreatic duct, which was suggestive of AIP was observed; however, irregular narrowing of the pancreatic duct seen in typical AIP was not observed. The levels of tumor markers, carbohydrate antigen (CA 19-9, DUPAN-2) and carcinoembryonic antigen (CEA), were normal. Immunologically, antinuclear antibody was absent and the serum level of total IgG as well as IgG4 was within the normal range (Table 1). As we could not obtain diagnostic confirmation from these sequential atypical clinical features of AIP or pancreatic cancer, we performed US-guided percutaneous aspiration biopsy using a 21G fine needle that targeted the pancreatic head mass on 15 May 2007. Histopathological examination demonstrated marked infiltration of pancreas parenchyma by mononuclear cells and fibrosis adjacent to the lesion, which suggested a diagnosis of AIP (Figure 4A). There were no malignant cells indicating
pancreatic cancer. These infiltrated cells were revealed to be mainly T lymphocytes by subsequent immunohistochemistry (Figure 4B), which was more compatible with AIP. However, plasma cell infiltration was scarce and immunoreaction to anti-IgG4 antibodies was not seen (Figure 4C).

The patient did not fulfill the JPS diagnostic criteria for AIP. However, as the presence of pancreatic cancer cells was histopathologically ruled out and the likelihood of spontaneous regression of obstructive jaundice seemed to be poor, we started oral prednisolone (PSL) therapy on 18 May 2007. Once PSL at an initial daily dose of 30 mg was introduced, prompt regression of the pancreatic head mass and improvement of bile and pancreatic duct dilatation was achieved (Figure 5A and B).

Apart from the pancreatic head mass, the presence of intrahepatic anomalies was suspected from the US and MRCP imaging. As AIP is known to show frequently a variety of extrapancreatic involvements, we carried out liver biopsy in order to elucidate the identity of the diffusely spreading aberrant echoes on US and small nodules seen on MRI, in addition to investigating the possible association with AIP. Histopathological examination of the hepatic parenchyma revealed aggregation of irregular-shaped cystic dilated bile ducts embedded in fibrous stroma, with minimal inflammatory reaction (Figure 6), and biliary hamartoma, also called VMC. Additionally, we performed immunohistochemistry using anti-IgG4 antibody, which resulted in negative interactions in those areas.

All laboratory abnormalities seen upon admission were normalized by 14 July 2007 (Table 1), and the patient remains in a good condition without recurrence at the present time, under maintenance therapy with 5 mg/d PSL.

DISCUSSION

This case report presents notable clinical information for dealing with AIP patients. First, the existence of a variant form of AIP not meeting the diagnostic criteria was verified by fine-needle aspiration biopsy, together with a subsequent dramatic good response to steroid therapy. Second, concomitant development of AIP and VMC was investigated and discussed for the first time, even though this condition might occur incidentally.

Sets of diagnostic criteria for AIP have been proposed by integrating several known unique morphological, immunological and histopathological characteristics of AIP. Currently, four major sets of diagnostic criteria for AIP have emerged from Japan[9], Italy[8], Korea[10] and the

Table 1 Laboratory data

Parameter	Normal value	May 2, 2007	July 14, 2007
WBC (White blood cell)	4000-9000/μL	10210	15350
RBC (Red blood cell)	504	471	
Hb (Hemoglobin)	14-18 g/dL	15.5	15.0
Plt (Platelet)	12-36 × 10^4/μL	33.9	23.4
TP (Total protein)	6.5-8.0 g/dL	6.8	6.9
Alb (Albumin)	3.9-4.9 g/dL	3.5	4.3
IgG (Immunoglobulin G)	870-1700 mg/dL	919	843
IgG4 (Immunoglobulin G4)	4.8-105 mg/dL	20.3	-
AST (Aspartate aminotransferase)	10-35 IU/L	49	19
ALT (Alanine aminotransferase)	4-30 IU/L	57	28
LDH (Lactate dehydrogenase)	100-230 IU/L	146	132
ALP (Alkaline phosphatase)	167-345 IU/L	992	265
γ-GTP (γ-glutamyl transpeptidase)	10-75 IU/L	140	51
TB (Total bilirubin)	0.2-1.2 mg/dL	4.6	0.7
DB (Direct bilirubin)	0-0.4 mg/dL	2.6	0.1
Amylase	30-120 IU/L	105	36
BUN (Blood urea nitrogen)	8-20 mg/dL	13	13
Cr (Creatinine)	0.6-1.1 mg/dL	0.6	0.7
CRP (C-reactive protein)	0.0-0.4 mg/dL	0.0	0.0
United States[11], and have been used clinically in each setting. However, there are some differences between each criterion for AIP that make it difficult to compare data in studies from different centers. Recently in 2008, Asian diagnostic criteria for AIP have been proposed by RCIPD and the Korean Society of Pancreatobiliary Diseases to reach an international consensus, thus enabling more cases to be accurately diagnosed and restraining the routine use of steroids for the diagnosis of AIP[21]. However, the histopathology was not diagnostic without so-called LPSP with scarce plasma cell infiltration.

In the JPS criteria established in 2002[7], on the basis of the minimum consensus features of AIP required to avoid misdiagnosing malignancy, but not to pick-up suspicious cases of AIP, the demonstration of diffuse swelling of the pancreas and diffuse and irregular narrowing of the main pancreatic duct by ERCP is stressed and is required first of all. On revision of the JPS criteria in 2006[9], more cases of AIP have been correctly diagnosed. However, in the present case, since pancreatic swelling was located in only the head portion, which resembled a solid tumor, and there were neither pancreatic duct narrowing nor immunological abnormalities including IgG4, AIP could not be definitely diagnosed even with application of the revised Japanese criteria.

There are an increasing number of reports dealing...
with atypical cases of AIP with focal swelling mimicking pancreatic cancer, as well as cases that begin with focal mass and progress to diffuse swelling, which results in a typical AIP appearance.[16-19]. However, the most important issue when dealing with localized mass-forming AIP is that we should differentiate it absolutely from pancreatic or biliary cancer, in order to prevent too ready use of steroids, and leaving cancer untreated under a mistaken diagnosis. With this in mind, we performed US-guided percutaneous fine-needle aspiration biopsy, which targeted the pancreatic head mass and showed massive inflammatory cell infiltration, as well as interstitial fibrosis, and denied the presence of malignant cells. Subsequent steroid therapy resulted in an excellent clinical course of the patient. As AIP is known to show favorable prognosis, as in the present case, when steroid therapy is adequately administered,[20] we should also detect suspicious variant forms of AIP before a patient undergoes invasive surgery.

It is debatable whether the diagnosis of AIP can be made from pancreatic core biopsy specimens, because they often do not show the complete spectrum of diagnostic change of lymphoplasmacytic sclerosing pancreatitis (LPSP) seen in typical AIP by routine histology alone.[21] In addition, certain types of pancreatic cancer exhibit a reaction that resembles LPSP.[21]. However, we think that the purpose of fine-needle aspiration biopsy is to rule out the presence of malignant cells, and to provide a basis for the introduction of steroid therapy, rather than to establish a diagnosis of AIP, when we encounter a patient with a pancreatic mass, in whom differential diagnosis is difficult. Therefore, when a patient presents with uncertain clinical features of a pancreatic tumor, the presence of AIP and pancreatic fine-needle aspiration biopsy should be considered as one of the diagnostic modalities.

As awareness of AIP increases and more cases are reported and clinically investigated, high serum IgG4 concentration has been recognized as a notable characteristic and a marker of AIP disease activity.[12]. Moreover, as the presence of a variety of extrapancreatic lesions related to IgG4-positive plasma cell infiltration, such as sclerosing cholangitis[23], sialadenitis[24] and retroperitoneal fibrosis[25], becomes evident, AIP has been proposed as one of the clinical aspects of generalized autoimmune IgG4-related sclerosing disease.[13-15]. Therefore, we should consider the presence of extrapancreatic lesions of AIP when encountering unexplained manifestations outwith the pancreas. In the present case, the initial features of diffusely scattered intrahepatic lesions demonstrated on US and MRCP first led us to consider them to be possible extrapancreatic lesions of AIP. However, subsequent liver biopsy showed the presence of a unique group of cystic and dilated bile ducts surrounded by a dense fibrocollagenous stroma, which was revealed to be biliary hamartoma. Biliary hamartomas, also referred to as VMC, are benign liver malformations that histopathologically include a cystic dilated bile duct, typically 0.1-0.3 cm in diameter, embedded in abundant fibrous stroma.[26]. As a result of its asymptomatic nature, this relatively rare entity is usually detected incidentally in 5.6% of reported autopsies.[27]. In view of the results of histopathological investigation of the liver, including negative IgG4 staining, it seems unlikely that a common pathogenesis underlies AIP and VMC. However, as far as we know, this is the first presentation dealing with both AIP and VMC.

In conclusion, we reported herein a variant form of AIP accompanied by VMC, which did not fulfill the Japanese diagnostic criteria. When we encounter a patient with atypical presentation of a pancreatic disease and find it difficult to make a diagnosis, despite applying diagnostic criteria, fine-needle aspiration biopsy of the pancreatic lesion should be considered as a diagnostic modality.

REFERENCES

1 Yoshida K, Toki F, Takeuchi T, Watanabe S, Shiratori K, Hayashi N. Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci 1995; 40: 1561-1568

2 Ito T, Nakano I, Koyanagi S, Miyahara T, Migita Y, Ogoshi K, Sakai H, Matsuenga S, Yasuda O, Sumii T, Nawata H. Autoimmune pancreatitis as a new clinical entity. Three cases of autoimmune pancreatitis with effective steroid therapy. Dig Dis Sci 1997; 42: 1458-1468

3 Okazaki K, Uchida K, Ohana M, Nakase H, Uose S, Inai M, Matsushima Y, Katamura K, Ohmori K, Chiba T. Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology 2000; 118: 573-581

4 Kim KP, Kim MH, Lee SS, Seo DW, Lee SK. Autoimmune pancreatitis: it may be a worldwide entity. Gastroenterology 2004; 126: 1214

5 Sutton R. Autoimmune pancreatitis--also a Western disease. Gut 2005; 54: 581-583

6 Song Y, Liu QD, Zhou NX, Zhang WZ, Wang DJ. Diagnosis and management of autoimmune pancreatitis: experience from China. World J Gastroenterol 2008; 14: 601-606

7 Members of the Criteria Committee for Autoimmune Pancreatitis of the Japan Pancreas Society. Diagnostic criteria for autoimmune pancreatitis by the Japan Pancreas Society. J Jpn Pancreas Soc (Suizou) 2002; 17: 585-587

8 Pearson RK, Longnecker DS, Chari ST, Smyrk TC, Okazaki K, Frulloni L, Cavallini G. Controversies in clinical pancreatology: autoimmune pancreatitis: does it exist? Pancreas 2003; 27: 1-15

9 Okazaki K, Kawa L, Kamisawa T, Naruse S, Tanaka S, Nishimori I, Ohara H, Ito T, Kiriyama S, Inui K, Shimosegawa T, Koizumi M, Suda K, Shiratori K, Yamaguchi K, Yamaguchi T, Sugiymama M, Otsuki M. Clinical diagnostic criteria of autoimmune pancreatitis: does it exist? Gastroenterology 2006; 41: 626-631

10 Kim KP, Kim MH, Kim JC, Lee SS, Seo DW, Lee SK. Diagnostic criteria for autoimmune chronic pancreatitis revisited. World J Gastroenterol 2006; 12: 2487-2496

11 Chari ST, Smyrk TC, Levy MJ, Topazian MD, Takahashi N, Zhang L, Clain JE, Pearson RK, Petersen BT, Vege SS, Farnell MB. Diagnosis of autoimmune pancreatitis: the Mayo Clinic experience. Clin Gastroenterol Hepatol 2006; 4: 1010-1016; quiz 934

12 Hamano H, Kawa S, Horiuchi A, Unno H, Furuya N, Akamatsu T, Fukushima M, Nikaidou T, Nakayama K, Usuda N, Kiyosawa K. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med 2001; 344.
13 Kamisawa T, Funata N, Hayashi Y, Eishi Y, Koike M, Tsuruta K, Okamoto A, Egawa N, Nakajima H. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol 2003; 38: 982-984

14 Hamano H, Arakura N, Muraki T, Ozaki Y, Kiyosawa K, Kawa S. Prevalence and distribution of extrapancreatic lesions complicating autoimmune pancreatitis. J Gastroenterol 2006; 41: 1197-1205

15 Kamisawa T, Nakajima H, Egawa N, Funata N, Tsuruta K, Okamoto A. IgG4-related sclerosing disease incorporating sclerosing pancreatitis, cholangitis, sialadenitis and retroperitoneal fibrosis with lymphadenopathy. Pancreatology 2006; 6: 132-137

16 Taniguchi T, Tanio H, Seko S, Nishida O, Inoue F, Okamoto M, Ishigami S, Kobayashi H. Autoimmune pancreatitis detected as a mass in the head of the pancreas without hypergammaglobulinemia, which relapsed after surgery: case report and review of the literature. Dig Dis Sci 2003; 48: 1465-1471

17 Wakabayashi T, Kawaura Y, Satomura Y, Watanabe H, Motoo Y, Okai T, Sawabu N. Clinical and imaging features of autoimmune pancreatitis with focal pancreatic swelling or mass formation: comparison with so-called tumor-forming pancreatitis and pancreatic carcinoma. Am J Gastroenterol 2003; 98: 2679-2687

18 Kobayashi G, Fujita N, Noda Y, Ito K, Horaguchi J, Takasawa O, Obana T, Nakahara K, Uzuki M, Sawai T. Lymphoplasmacytic sclerosing pancreatitis forming a localized mass: a variant form of autoimmune pancreatitis. J Gastroenterol 2007; 42: 650-656

19 Miura H, Kitamura S, Yamada H. An autopsy case of autoimmune pancreatitis after a 6-year history of steroid therapy accompanied by malignant dissemination of unknown origin. Eur J Gastroenterol Hepatol 2008; 20: 930-934

20 Kamisawa T, Yoshiike M, Egawa N, Nakajima H, Tsuruta K, Okamoto A. Treating patients with autoimmune pancreatitis: results from a long-term follow-up study. Panreatology 2005; 5: 234-238; discussion 228-240

21 Otsuki M, Chung JB, Okazaki K, Kim MH, Kamisawa T, Kawa S, Park SW, Shimosegawa T, Lee K, Ito T, Nishimori I, Notohara K, Naruse S, Ko SB, Kihara Y. Asian diagnostic criteria for autoimmune pancreatitis: consensus of the Japan-Korea Symposium on Autoimmune Pancreatitis. J Gastroenterol 2008; 43: 403-408

22 Zamboni G, Luttges J, Capelli P, Frulloni L, Cavallini G, Pederzoli P, Leins A, Longnecker D, Kloppel G. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a study on 53 resection specimens and 9 biopsy specimens. Virchows Arch 2004; 445: 552-563

23 Ichimura T, Kondo S, Ambo Y, Hirano S, Ohmi M, Okushiba S, Morikawa T, Shimizu M, Katoh H. Primary sclerosing cholangitis associated with autoimmune pancreatitis. Hepatogastroenterology 2002; 49: 1221-1224

24 Kamisawa T, Funata N, Hayashi Y, Tsuruta K, Okamoto A, Amemiya K, Egawa N, Nakajima H. Close relationship between autoimmune pancreatitis and multifocal fibrosclerosis. Gut 2003; 52: 683-687

25 Hamano H, Kawa S, Ochi Y, Unno H, Shiba N, Wajiki M, Nakazawa K, Shimojo H, Kiyosawa K. Hydronephrosis associated with retroperitoneal fibrosis and sclerosing pancreatitis. Lancet 2002; 359: 1403-1404

26 Lev-Toaff AS, Bach AM, Wechsler RJ, Hilpert PL, Gatalica Z, Rubin R. The radiologic and pathologic spectrum of biliary hamartomas. AJR Am J Roentgenol 1995; 165: 309-313

27 Redston MS, Wanless IR. The hepatic von Meyenburg complex: prevalence and association with hepatic and renal cysts among 2843 autopsies [corrected] Mod Pathol 1996; 9: 233-237