A Network Pharmacology Perspective
Investigation of the Pharmacological Mechanisms
of the Herbal Drug FDY003 in Gastric Cancer

Ho-Sung Lee1,2, In-Hee Lee1, Kyungrae Kang2, Sang-In Park3, Minho Jung4, Seung Gu Yang5, Tae-Wook Kwon2 and Dae-Yeon Lee1,2

Abstract
Gastric cancer (GC) is one of the most common and deadly malignant tumors worldwide. While the application of herbal drugs for GC treatment is increasing, the multicompound–multitarget pharmacological mechanisms involved are yet to be elucidated. By adopting a network pharmacology strategy, we investigated the properties of the anticancer herbal drug FDY003 against GC. We found that FDY003 reduced the viability of human GC cells and enhanced their chemosensitivity. We also identified 8 active phytochemical compounds in FDY003 that target 70 GC-associated genes and proteins. Gene ontology (GO) enrichment analysis suggested that the targets of FDY003 are involved in various cellular processes, such as cellular proliferation, survival, and death. We further identified various major FDY003 target GC-associated pathways, including PIK3-Akt, MAPK, Ras, HIF-1, ErbB, and p53 pathways. Taken together, the overall analysis presents insight at the systems level into the pharmacological activity of FDY003 against GC.

Keywords
herbal drugs, network pharmacology, gastric cancer, molecular mechanisms, anticancer agents

Received: October 8th, 2021; Accepted: December 20th, 2021.

Introduction
Gastric cancer (GC) is the fourth most frequent cause of cancer mortality, at a global rate of 0.77 million deaths per year1. The current standard treatment options for GC are chemotherapy, targeted therapy, and immunotherapy; however, the development of resistance and occurrence of side effects limit their therapeutic success3,4. Herbal drugs are also being widely applied as GC treatment as they exert potent anticancer activity, improve the therapeutic efficacy of standard cancer therapeutics, and ameliorate adverse events5-8. Additionally, they can prolong survival, increase cure rate, improve prognosis, alleviate symptoms, and enhance recovery in patients with GC5-8.

FDY003 is an anticancer herbal drug composed of Cordyceps militaris (Cm), Artemisia capillaris Thunberg (AcT), and Lonicera japonica Thunberg (LjT)9-11. It suppresses growth and promotes apoptosis in various cancers by targeting crucial genes and proteins associated with cancerous behaviors9-11. However, the anticancer effects of FDY003 on GC and the mechanisms involved need to be elucidated.

Network pharmacology has become one of the most efficient methodologies used in herbal drug-associated studies owing to its ability to effectively elucidate the complex multicompound–multitarget mechanisms of herbal drugs using related comprehensive pharmacological data12-14. The polypharmacological effects of herbal drugs are coordinated through complex interactions between the chemical compounds and their diverse therapeutic targets12-14. Thus, network pharmacology investigates the active pharmacological compounds in herbal drugs and their disease-related therapeutic targets12-14. This is done by analyzing the topological and functional features of diverse types of herbal drug-associated networks that consist of the interactions between their associated pharmacological components and targets12-14. By adopting a network pharmacology strategy, we investigated the properties of FDY003 as a treatment for GC.

1The Fore, Songpa-gu, Seoul, Republic of Korea
2Forest Hospital, Jongno-gu, Seoul, Republic of Korea
3Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
4Forest Hospital, Songpa-gu, Seoul, Republic of Korea
5Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea

Corresponding Author:
Dae-Yeon Lee, The Fore, 87, Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea.
Email: foresthrnd@gmail.com
Materials and Methods

Cell culture
AGS human GC cells were purchased from the Korean Cell Line Bank (Seoul, Korea) and cultured in Dulbecco’s modified Eagle’s medium (WELGENE Inc.) supplemented with 10% fetal bovine serum (WELGENE Inc.), 100 μg/mL streptomycin, and 100 U/mL penicillin (Life Technologies Corp.) at 37°C in a humidified atmosphere containing 5% CO₂.

Preparation of FDY003
Dried Cm (6.25 g), AcT (6.25 g), and LjT (4.16 g), which were purchased from Hanpure Pharmaceuticals (Pocheon, Korea), were ground, mixed, and placed in 70% ethanol (500 mL). The herbal extract was obtained by refluxing the mixture at 80°C for 3 h. Next, the extract was filtered, purified with 80% and 90% ethanol consecutively, lyophilized at 80°C, and stored at −20°C. The lyophilized samples were dissolved in distilled water prior to performing the experiments.

Cell viability analysis
Cell viability was measured using a water-soluble tetrazolium salt (WST-1) assay. In total, 1.0 × 10⁴ cells were seeded in a 96-well plate and incubated at 37°C for 72 h with FDY003 and/or 5-fluorouracil (5-FU; Sigma-Aldrich). Afterward, the cells were incubated with WST-1 solution (Daeil Lab Service Co., Ltd.) for 2 h at 37°C and 5% CO₂. Absorbances at 450 nm were measured using an xMark microplate absorbance spectrophotometer (Bio-Rad).

Bioactive compounds screening
Detailed data on the chemical compounds present in FDY003 were retrieved from the Traditional Chinese Medicine Systems Pharmacology¹⁵, Anticancer Herbs Database of Systems Pharmacology¹⁶, and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine¹⁷. Then, the pharmacologically bioactive compounds were identified based on their Caco-2 permeabilities, druglikenesses, and oral bioavailability parameters, which are widely used in network pharmacological analysis for compound screening²⁴,¹⁸. Caco-2 permeability determines whether a compound has pharmacologically suitable intestinal permeability²⁴,¹⁸, in which a value ≥−0.4 is generally used as an indicator for strong in vivo intestinal permeability²²,²³. Druglikeness is an indicator that assesses the potential of a compound to be a drug considering its molecular, physicochemical, and structural characteristics¹⁵,²⁴, in which a score ≥0.18 (the average score of all approved drugs) indicates good potential¹⁵,²⁴. Oral bioavailability evaluates whether an orally administered compound can successfully enter the target tissues and organs¹⁵,²⁵, in which a value ≥30% indicates effective absorption and distribution in the body¹⁵,²⁵. Thus, a compound was determined to be active if it satisfied the following criteria: Caco-2 permeability ≥−0.4, druglikeness ≥0.18, and oral bioavailability ≥30%¹⁴,¹⁵,¹⁸.

Target investigation
The simplified molecular-input line-entry system (SMILES) notations of the active compounds of FDY003 were collected from the PubChem database²⁶. Then, they were imported to SwissTargetPrediction²⁷, Search Tool for Interactions of Chemicals ²⁸, Similarity Ensemble Approach²⁹, and PharmMapper³⁰ to identify the human targets of each compound. Information on GC-associated genes and proteins was investigated using the search keyword “gastric cancer” on the following databases: DrugBank³², Therapeutic Target Database³¹, DisGeNET³¹, Comparative Toxicogenomics Database³², Online Mendelian Inheritance in Man³³, Human Genome Epidemiology Navigator³⁴, GeneCards³⁵, and Pharmacogenomics Knowledgebase³⁶.

Herbal medicine-related networks
A network is composed of nodes (eg, herbal medicines, compounds, targets, and pathways) and edges (or links) describing their pharmacological interactions and associations³⁷, in which the No. of edges of a given node is called the degree³⁷. The herbal medicine-compound-target (H-C-T) network depicts the association between the FDY003-constituting herbal medicines, their active phytochemical compounds, and the GC-associated genes and proteins targeted by the compounds. The H-C-T-pathway (H-C-T-P) network depicts the association between the targets of the H-C-T network and their related GC-associated pathways. The protein–protein interaction (PPI) network depicts the interactions between GC-associated targets using the STRING database³⁸. The networks were built, drawn, and analyzed using Cytoscape³⁹.

Survival analysis
The prognostic associations between the expression of FDY003 targets and the survival of patients with GC were computed using a Kaplan–Meier Plotter⁴⁰.

Investigation of functional enrichment for the FDY003 targets
Gene ontology (GO) and pathway enrichment for the FDY003 targets were investigated using g:Profiler⁴¹.

Analysis of molecular docking interaction
Information on the molecular structures of the active compounds of FDY003 and their targets was obtained from RCSB Protein Data Bank⁴² and PubChem⁴⁰. Then, the binding affinities between the compounds and their targets
were evaluated based on the molecular docking scores obtained by importing their structural information into Autodock Vina

Docking scores of ≤ -5.0 indicated strong binding affinities between compound–target pairs.

Results

Pharmacological effects of FDY003 for gastric cancer

To examine the pharmacological activity of FDY003 in GS, the viabilities of AGS cells were measured after treatment with FDY003 and/or 5-FU, a chemotherapeutic agent used in clinics for GC treatment. FDY003 reduced the viability and increased the 5-FU sensitivity of AGS cells (Supplementary Figure S1A and B), suggesting that FDY003 exhibits anti-GC effects.

The active phytochemical compounds and targets of FDY003

The active phytochemical compounds of FDY003 were determined based on their pharmacokinetic criteria (Supplementary Table S1). Moreover, some of them were determined to be active based on their reported potent pharmacological effects, although they did not meet the aforementioned criteria. In total, 18 FDY003 compounds were considered active (Supplementary Table S2). The targets of the active compounds were investigated using their structural information and, in total, 270 targets for FDY003 were identified, of which 70 were GC-associated targets (Supplementary Table S3).

Network-perspective pharmacological properties of FDY003 against gastric cancer

To investigate the pharmacological properties of FDY003 at the network level, we generated an H-C-T network using comprehensive FDY003-related data (Figure 1). The generated network was composed of 81 nodes (3 herbal medicines, 8 active phytochemical compounds, and 70 GC-associated targets) and 121 links (Figure 1 and Supplementary Table S3). The compounds quercetin, luteolin, and kaempferol had relatively many targets compared to other compounds (Figure 2 and Supplementary Table S3), demonstrating their potential importance in the anti-GC activities of FDY003. In addition, 78.6% of the FDY003 targets (55 of 70 targets) interacted with two or more compounds (Figure 1), demonstrating the multicomponent–multitarget characteristics of the herbal drug.

As the pharmacological effects of drugs are conferred through interactions with disease-related target genes and proteins, a PPI network (60 nodes and 272 links) consisting of FDY003 targets was built, in which the large-degree hub nodes with topological significance and potential as effective therapeutic targets were investigated. Following previous studies, the hubs were considered as nodes with degrees equal to or greater than twice the average degrees of all the nodes in a network. AKT1, MAPK1, MAPK3, MAPK9, PIK3CA, STAT3, and TP53 were identified as hubs in the PPI network (Figure 2), indicating that they are key targets in the anti-GC mechanism of FDY003. The survival analysis further suggested that the targets function as determinants for survival outcome in patients with GC (Figure 3), demonstrating their clinical significance.

Functional analysis of the FDY003 mechanisms

To gain insight into the pharmacological mechanisms involved in the anti-GC activities of FDY003, GO and pathway enrichment analyses were performed on the FDY003 targets. The targets were found to potentially be involved in regulating various cellular processes, such as cellular proliferation, survival, and death (Supplementary Figure S2). Furthermore, the FDY003 targets were found to be important constituents of the following diverse GC-associated signaling pathways:

- "Chemokine signaling pathway"
- "Epithelial cell signaling in Helicobacter pylori infection"
- "Erythropoietic leukemia viral oncogene homolog (ErbB) signaling pathway"
- "Estrogen signaling pathway"
- "Gastric cancer"
- "Hypoxia inducible factor-1 (HIF-1) signaling pathway"
- "Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway"
- "Mitogen-activated protein kinase (MAPK) signaling pathway"
- "Mammalian target of rapamycin (mTOR) signaling pathway"
- "Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B) signaling pathway"
- "p53 signaling pathway"
- "Pathways in cancer"
- "Programmed death ligand 1 (PD-L1) expression and programmed death-ligand 1 (PD-1) checkpoint pathway in cancer"
- "Phosphoinositide 3-kinase (PI3K)-Alt signaling pathway"
- "Ras signaling pathway"
- "Tumor necrosis factor (TNF) signaling pathway"
- "Vascular endothelial growth factor (VEGF) signaling pathway" (Figure 4 and Supplementary Figure S2). These findings demonstrated the molecular- and signaling-perspective mechanistic properties of FDY003 in GC treatment.

Molecular docking analysis for the FDY003 components

To verify the binding potential of the FDY003 components, the binding affinities between the active compounds of FDY003 and their targets were measured based on molecular docking analysis. The active compounds and their direct hub targets of the herbal drug [ie, AKT1-isorhamnetin (score = −6.4), AKT1-kaempferol (score = −6.6), AKT1-luteolin (score = −7.1), AKT1-quinotin (score = −6.9), MAPK1-kaempferol (score = −7.4), MAPK1-luteolin (score = −8.1), MAPK1-quinotin (score = −7.8), MAPK3-kaempferol (score = −8.4), MAPK3-luteolin (score = −8.8), MAPK3-quinotin (score = −9.1), MAPK8-isorhamnetin (score = −8.6), MAPK8-luteolin (score = −8.2), MAPK8-quinotin (score = −8.0), PIK3CA-quinotin (score = −8.5), STAT3-kaempferol (score = −7.7), STAT3-luteolin (score = −7.5), TP53-kaempferol (score = −8.7), TP53-luteolin (score = −9.0),...
and TP53–quercetin (score = −9.2) had docking scores of ≤−5.0 (Figure 5A–S), suggesting their binding activities.

Discussion

Although the application of herbal drugs for GC treatment has gained increasing attention,7–8 their complex multicomponent–multitarget mechanistic properties have yet to be investigated. In this study, we dissected the anti-GC properties of the herbal drug FDY003 through a systems perspective.9–11 We found that FDY003 suppressed the viability and enhanced the chemosensitivity of human GC cells. Based on the network pharmacological investigation, we identified 8 active phytochemical compounds in FDY003 and 70 GC-associated therapeutic targets that may confer the pharmacological effects of the herbal drug. The GO enrichment analysis suggested that the FDY003 targets are involved in various cellular processes, such as cellular proliferation, survival, and death. We further identified various GC-associated pathways that are major pharmacological targets of FDY003, such as the...
PI3K-Akt, MAPK, Ras, HIF-1, ErbB, and p53 pathways. These results demonstrate the comprehensive polypharmacological anti-GC mechanisms of the herbal drugs.

The molecular docking analysis revealed that the active compounds of FDY003 and their direct hub targets show molecular docking scores of ≤ −5.0 (Figure 5), suggesting that the targets have strong binding affinities with their interacting active compounds and that these interactions confer the treatment effects of FDY003 against LC. The major targets of FDY003 were found to be genes and proteins associated with GC mechanisms and relevant therapeutic targets for GC treatment. The protein kinases AKT1 (encoded by AKT1) and extracellular signal-regulated kinase 2 (ERK2; encoded by MAPK1) are involved in the induction of various cancerous behaviors, including migration, invasion, proliferation, metastasis, angiogenesis, survival, epithelial-to-mesenchymal transition (EMT), cancer stemness, and chemoresistance in GC cells, which can be suppressed by inhibiting the expression and activity of the abovementioned enzymes. Genetic alteration, expression, and activity of AKT1, MAPK1, and MAPK3 can also affect the risk of developing GC, clinical outcomes, recurrence, and survival rates in patients. Additionally, c-Jun NH2-terminal kinase 1 (JNK1; encoded by MAPK8), a kinase that coordinates cell migration, apoptosis, survival, and proliferation, plays an important role in the carcinogenesis and development of GC. Furthermore, genetic mutations in PI3KCA is a determinant of the chemosensitivity of GC. The chronic hyperactivation of STAT3 (encoded by STAT3) was also found to contribute to the tumorigenesis and development of GC by promoting uncontrolled proliferation, survival, angiogenesis, metastasis, inflammation, chemoresistance, and stem-like features in GC cells, and it has also been found to be correlated with poor survival rates in patients with GC. Lastly, a loss-of-function mutation in TP53 causes it to malfunction, leading to its crucial role in GC carcinogenesis; its expression levels and the presence of genetic alterations in this gene may act as predictors of survival, clinicopathological characteristics, and tumor recurrence in patients with GC.

The target pathways of FDY003 are also involved in the key signaling mechanisms of GC pathology. The chemokine signaling pathway plays a role in the regulation of the immune system and tumor microenvironment, and it is further involved in GC tumorigenesis by modulating tumor transformation, growth, survival, metastasis, invasion, and angiogenesis. The MAPK, HIF-1, ErbB, PI3K-Akt, mTOR, NF-kappa B, and Ras pathways are key modulators of GC carcinogenesis and progression through the regulation of malignant cellular behaviors such as proliferation, stem-like characteristics, migration, invasion, survival, angiogenesis, metastasis, apoptosis, chemoresistance, and EMT of GC cells. These oncogenic pathways have gained much attention as potential drug targets for targeted GC therapies. The estrogen signaling pathway controls proliferation, apoptosis, and invasion of GC cells, and it may act as a prognostic factor for the progression and survival of GC patients.

Figure 3. Survival analysis of gastric cancer (GC)-associated targets of FDY003. Kaplan–Meier curves for the overall survival of patients with GC with respect to the expression status of the indicated FDY003 targets.
prognosis of GC\(^{88-91}\). The dysregulation of JAK-STAT, TNF, and NF-kappa B signaling also leads to uncontrolled proliferation, survival, EMT, and protumorigenic inflammation in GC cells\(^{92,93}\). Moreover, functional deficiency of the p53 pathway may induce stemness and EMT in gastric epithelial cells, which ultimately leads to the formation, development, and metastasis of malignant GC tumors, and the genetic alterations in the components of this pathway are further associated with increased risk of GC\(^{78-81,94}\). Additionally, the PD-1/PD-L1 pathway regulates the promotion and persistence of immune responses in the tumor microenvironment, making it a potential target for immune checkpoint blockade therapy in treating GC\(^{95-97}\). The expression levels and activity of the components of this pathway may also serve as prognostic indicators for GC\(^{95-97}\). Furthermore, the VEGF pathway is important for tumor metastasis and growth by promoting angiogenesis, with its activity being associated with decreased survival in patients with GC\(^{98,99}\). Lastly, infection with *Helicobacter pylori* or Epstein–Barr virus may cause abnormalities in cell proliferation, survival, apoptosis, migration, invasion, and immune system, contributing to GC development\(^{100,101}\).

The phytochemicals of FDY003 have also been reported to function as anti-GC compounds. AcT and Cm exhibit anti-proliferative and pro-apoptotic effects on GC cells\(^{102,103}\). Cordycepin induces apoptosis and cell cycle arrest as well as inhibits proliferation, survival, and migration in human GC cells by targeting PI3K-Akt, caspase, and CLEC2 signaling\(^{104-106}\). Isothamnetin exhibits anti-migratory, anti-invasive, anti-proliferative, pro-apoptotic, and chemosensitizing effects by regulating peroxisome proliferator-activated receptor \(\gamma\) (PPAR-\(\gamma\)) and NF-kappa B cascades\(^{107,108}\). Kaempferol regulates the activities of Akt, cyclooxygenase-2 (COX-2), ERK, caspase, and endoplasmic reticulum (ER) stress signaling, leading to anti-proliferation and autophagic cell death in GC cells\(^{109,110}\). Luteolin inhibits proliferation, cell cycle progression, survival, migration, invasion, EMT, and angiogenesis as well as enhances the efficacy of chemotherapy and radiotherapy on GC cells by altering PI3K-Akt-mTOR, MAPK, STAT3, HIF-1, NF-kappa B, p53, and NOTCH1 signaling\(^{111-117}\). Quercetin reduces the survival, proliferation, stemness, metastasis, migration, invasion, and chemoresistance activities of GC cells by modulating PI3K-Akt-mTOR, HIF-1, Wnt, VEGF receptor (VEGFR), MAPK, caspase, protein kinase C (PKC), NF-kappa B, adenosine monophosphate (AMP)-activated protein kinase (AMPK), matrix metalloproteinases (MMP), uPAR, p53, and Hippo pathways\(^{118-125}\). It has also been reported that a higher intake of quercetin is associated with a decreased risk of developing GC\(^{118}\). \(\beta\)-Sitosterol suppresses the proliferation and survival capacity of GC cells through the modulation of AMPK, PTEN, heat shock protein 90 (HSP90), and caspase signaling\(^{126}\).

In summary, the network pharmacology analysis presented system-level insights into the pharmacological mechanisms underlying the anti-GC activity of FDY003. We identified the active phytochemical compounds and therapeutic targets responsible for the multicompound–multitarget pharmacological effects of FDY003. Through the functional analysis of FDY003 components, we identified the molecular- and signaling-level mechanisms of the herbal drug from a comprehensive systems perspective. Future studies are needed to elucidate the anticancer effects of FDY003 on various cancerous cellular behaviors such as migration, invasion, stemness, and angiogenesis, which may broaden the therapeutic usage of herbal drugs for cancer treatment.
Figure 5. Molecular docking analysis for the active phytochemical compounds of FDY003 and the gastric cancer (GC)-associated targets. (A) AKT1-isorhamnetin (score = −6.4). (B) AKT1-kaempferol (score = −6.6). (C) AKT1-luteolin (score = −7.1). (D) AKT1-quercetin (score = −6.9). (E) MAPK1-kaempferol (score = −7.4). (F) MAPK1-luteolin (score = −8.1). (G) MAPK1-quercetin (score = −7.8). (H) MAPK3-kaempferol (score = −8.4). (I) MAPK3-luteolin (score = −8.8). (J) MAPK3-quercetin (score = −9.1). (K) MAPK8-isorhamnetin (score = −8.6). (L) MAPK8-luteolin (score = −8.2). (M) MAPK8-quercetin (score = −8.0). (N) PIK3CA-quercetin (score = −8.5). (O) STAT3-kaempferol (score = −7.7). (P) STAT3-luteolin (score = −7.5). (Q) TP53-kaempferol (score = −8.7). (R) TP53-luteolin (score = −9.0). (S) TP53-quercetin (score = −9.2).
Acknowledgments
Not applicable.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (grant No. 2021R1F1A1049472).

Data Availability
All data generated or analyzed during this study are included in this published article and its Supplemental material file.

Author Contributions
Conceptualization: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. Methodology: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. Data collection: Ho-Sung Lee, In-Hee Lee, Kyungrae Kang, Sang-In Park, Minho Jung, Seung Gu Yang, and Tae-Wook Kwon. Data analysis and investigation: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. Writing: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. All authors read and approved the final manuscript.

Ethical Approval
Ethical Approval is not applicable for this article.

Statement of Human and Animal Rights
This article does not contain any studies with human or animal subjects.

Statement of Informed Consent
There are no human subjects in this article and informed consent is not applicable.

Trial Registration
Not applicable, because this article does not contain any clinical trials.

Supplemental Material
Supplemental material for this article is available online.

ORCID iD
Dae-Yeon Lee https://orcid.org/0000-0002-3198-9881

References
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
2. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71(3):264-279.
3. Marin JJ, Al-Abdulla R, Lozano E, et al. Mechanisms of resistance to chemotherapy in gastric cancer. Anticancer Agents Med Chem. 2016;16(3):318-334.
4. Woll E, Devries A, Eisterer W, et al. Chemotherapy in gastric cancer. Anticancer Res. 2008;28(2B):1213-1219.
5. Hung PF, Hsu CP, Chiang JH, et al. Complementary Chinese herbal medicine therapy improves survival of patients with gastric cancer in Taiwan: a nationwide retrospective matched-cohort study. J Ethnopharmacol. 2017;199(6):168-174.
6. Lee YK, Bae K, Yoo HS, Cho SH. Benefit of adjuvant traditional herbal medicine With chemotherapy for resectable gastric cancer. Integr Cancer Ther. 2018;17(3):619-627.
7. Takagushi S, Hiura Y, Takahashi T, et al. Effect of rikkunshito, a Japanese herbal medicine, on gastrointestinal symptoms and ghrelin levels in gastric cancer patients after gastrectomy. Gastro Can. 2013;16(2):167-174.
8. Yoshikawa K, Shimada M, Wakabayashi G, et al. Effect of dai-kenchuto, a traditional Japanese herbal medicine, after total gastrectomy for gastric cancer: a multicenter, randomized, double-blind, placebo-controlled, phase II trial. J Am Coll Surg. 2015;221(2):571-578.
9. Lee I-H, Lee D-YP. FDY003 Inhibits colon cancer in a Colo205 xenograft mouse model by decreasing oxidative stress. Pharmcosig Mag. 2019;15(65):675-681.
10. Lee H-S, Lee I-H, Kang K, et al. Systems pharmacology study of the anticervical cancer mechanisms of FDY003. Nat Prod Commun. 2020;15(12):1-15.
11. Lee HS, Lee IH, Kang K, et al. A network pharmacology study on the molecular mechanisms of FDY003 for breast cancer treatment. Evid Based Complement Alternat Med. 2021;2021(3919143):1-18.
12. Poornima P, Kumar JD, Zhao Q, Blander M, Efferth T. Network pharmacology of cancer: from understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmaco Ed. 2016;111:290-302.
13. Lee WY, Lee CY, Kim YS, Kim CE. The methodological trends of traditional herbal medicine employing network pharmacology. Bioinformatics. 2019;9(362):1-15.
14. Lee HS, Lee IH, Park SI, Lee DY. Network pharmacology-based investigation of the system-level molecular mechanisms of the hematopoietic activity of samul-tang, a traditional Korean herbal formula. Evid Based Complement Alternat Med. 2020;2020(9048089):1-17.
15. Ru J, Pi P, Wang J, et al. TCMS: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(13):1-6.
16. Tao W, Li B, Gao S, et al. CancerHSP: anticancer herbs database of systems pharmacology. Sci Rep. 2015;5(11481):1-6.
17. Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine. Sci Rep. 2016;6(21146):1-11.
30. Wang X, Shen Y, Wang S, et al. Pharmmapper 2017 update: a comprehensive target pharmacophore database. *Nucleic Acids Res* 2018;46(D1):D1074-D1082.

31. Pinero J, Bravo A, Queralt-Rosinach N, et al. DisGeNET: a disease-associated genes and variants. *Nucleic Acids Res* 2019;47(W1):W357-W364.

32. Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: update 2019. *Nucleic Acids Res* 2019;47(D1):D1102-D1109.

33. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. *Nucleic Acids Res* 2016;44(D1):D380-D384.

34. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. *Nat Genet.* 2008;40(2):124-125.

35. Safran M, Dalah I, Alexander J, et al. Genecards version 3: the human gene integrator. Database. 2010;2010(baq020):1-16.

36. Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. *Clin Pharmacol Ther.* 2012;92(4):414-417.

37. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s Functional organization. *Nat Rev Genet.* 2004;5(2):101-113.

38. Szklarczyk D, Gable AL, Lyon D, et al. STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic Acids Res.* 2019;47(D1):D607-D613.

39. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 2003;13(11):2498-2504.

40. Naga Y, Lanchzy A, Menyhart O, Gyorffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. *Sci Rep.* 2018;8(9227):1-9.

41. Raadverde U, Kolberg I, Kuzmin I, et al. Gprofsiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic Acids Res.* 2019;47(W1):W191-W198.

42. Burley SK, Berman HM, Bhikadiya C, et al. RCSB Protein database: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. *Nucleic Acids Res.* 2019;47(D1):D464-D474.

43. Trott O, Olson AJ. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J Comput Chem.* 2010;31(2):455-461.

44. Zhuang Z, Wen J, Zhang L, et al. Can network pharmacology identify the anti-virus and anti-inflammatory activities of shuanghuanqian oral liquid used in Chinese medicine for respiratory tract infection? *Eur J Integr Med.* 2020;37:1-12.

45. Zhang M, Yuan Y, Zhou W, et al. Network pharmacology analysis of chaihu lizhong tang treating non-alcoholic fatty liver disease. *Comput Biol Chem.* 2020;86:1-9.

46. Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. *Nat Rev Clin Oncol.* 2013;10(11):643-655.

47. Athanasiou A, Charalampos V, Vasilios T, Ashraf GM. Protein-Protein interaction (PPI) network: recent advances in drug discovery. *Curr Drug Metab.* 2017;18(1):5-10.

48. Huang J, Niu C, Green CD, Yang L, Mei H, Han JD. Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. *PLoS Comput Biol.* 2013;9(3):e1002921.

49. Zhu M, Gao L, Li X, et al. The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network. *J Drug Target.* 2009;17(7):524-532.

50. Cho DY, Kim YA, Przytycka TM. Chapter 5: network biology approach to complex diseases. *PLoS Comput Biol.* 2012;8(12):1-11.

51. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. *Nature.* 2001;411(6833):41-42.

52. Zhu J, Yi X, Zhang Y, Pan Z, Zhong L, Huang P. Systems pharmacology-based approach to comparatively study the independent and synergistic mechanisms of danhong injection and...
53. Zhong J, Liu Z, Zhou X, Xu J. Synergic anti-pruritus mechanisms of action for the radix Sophorae flavescentis and Fructus cnidii herbal pair. *Molecules*. 2017;22(1465):1-13.

54. Wang LL, Zhang L, Cui XF. Downregulation of long noncoding RNA LINC01419 inhibits cell migration, invasion, and tumor growth and promotes autophagy via inactivation of the PI3 K/Akt1/mTOR pathway in gastric cancer. *Ther Adv Med Oncol*. 2019;11:1-16.

55. Zhou W, Fu XQ, Zhang LL, et al. AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells. *Cell Death Dis*. 2013;4:e847:1-11.

56. Guo Q, Shi D, Lin L, et al. De-Ubiquitinating enzymes USP21 regulates MAPK1 expression by binding to transcription factor GATA3 to regulate tumor growth and cell stemness of gastric cancer. *Front Cell Dev Biol*. 2021;9(641981):1-13.

57. Husain SS, Szabo IL, Pai R, Soreghan B, Jones MK, Tarnawski AS. MAPK (ERK2) kinase—a key target for NSAIDs-induced inhibition of gastric cancer cell proliferation and growth. *Life Sci*. 2001;69(25-26):3045-3054.

58. Yu XX, Hu Z, Shen X, Dong LY, Zhou WZ, Hu WH. II-33 promotes gastric cancer cell invasion and migration Via ST2-ERK1/2 pathway. *Dig Dis Sci*. 2015;60(5):1265-1272.

59. Lu J, Bang H, Kim SM, et al. Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling. *Oncogene*. 2021;40(5):922-936.

60. Lin JX, Yoon C, Li P, et al. CDK5RAP3 As tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer. *Br J Cancer*. 2020;123(7):1131-1144.

61. Li SL, Chen X, Wu T, et al. Knockdown of TMPRSS3 inhibits gastric cancer cell proliferation, invasion and EMT via regulation of the ERK1/2 and PI3 K/Akt pathways. *Biomol Pharmacother*. 2018;107:841-848.

62. Wang Q, Tang Y, Wang T, et al. EPCR Promotes MGC803 human gastric cancer cell tumor angiogenesis in vitro through activating ERK1/2 and Akt in a PAR1-dependent manner. *Oncol Rep*. 2018;36(2):1565-1570.

63. Luo ZY, Wang YY, Zhao ZS, Li B, Chen JF. The expression of TMPRSS4 and Erk1 correlates with metastasis and poor prognosis in Chinese patients with gastric cancer. *PLoS One*. 2013;8(7):1-17.

64. Dong H, Liu H, Zhou W, et al. GLI1 Activation by non-classical pathway integrin alphavbeta3/ERK1/2 maintains stem cell-like phenotype of multilocular aggregates in gastric cancer peritoneal metastasis. *Cell Death Dis*. 2019;10(574a):1-13.

65. Liu SQ, Xu CY, Qin MB, et al. Ginkgo biloba extract enhances chemotherapy sensitivity and reverses chemoresistance through suppression of the KSR1-mediated ERK1/2 pathway in gastric cancer cells. *Oncol Rep*. 2015;33(6):2871-2882.

66. Yang Y, Yang C, Zhang J. C23 protein mediates bone morphogenetic protein-2-mediated EMT via up-regulation of Erk1/2 and Akt in gastric cancer. *Med Oncol*. 2015;32(76):1-8.

67. Wang MY, He J, Zhu ML, et al. A functional polymorphism (rs2494752) in the AKT1 promoter region and gastric adenocarcinoma risk in an eastern Chinese population. *Sci Rep*. 2016;6(2008):1-8.

68. Wang X, Lin Y, Lan F, et al. A GG allele of 3′-side AKT1 SNP is associated with decreased AKT1 activation and better prognosis of gastric cancer. *J Cancer Res Clin Oncol*. 2014;140(8):1399-1411.

69. Kim JG, Lee SJ, Chae YS, et al. Association between phosphorylated AMP-activated protein kinase and MAPK3/1 expression and prognosis for patients with gastric cancer. *Oncology*. 2013;85(2):78-85.

70. Mishra P, Senthivinayagam S, Rangasamy V, Sondarva G, Rana B. Mixed lineage kinase-3/JNK1 axis promotes migration of human gastric cancer cells following gastrin stimulation. *Mal Endocrinol*. 2010;24(3):598-607.

71. Shihata W, Maeda S, Hikida Y, et al. c-Jun NH2-terminal kinase 1 is a critical regulator for the development of gastric cancer in mice. *Cancer Res*. 2008;68(13):5031-5039.

72. Zhang S, Shi L, Ma H, et al. Dihydroartemisinin induces apoptosis in human gastric cancer cell line BGC-823 through activation of JNK1/2 and p38 MAPK signaling pathways. *J Recept Signal Transduct Res*. 2017;37(2):174-180.

73. Zhang Y, Zhou X, Cheng L, et al. PRKAA1 Promotes proliferation and inhibits apoptosis of gastric cancer cells through activating JNK1 and Akt pathways. *Oncol Rep*. 2020;28(3):213-223.

74. Li J, Davies BR, Han S, et al. The AKT inhibitor AZD5633 is selectively active in PI3KCA mutant gastric cancer, and sensitizes a patient-derived gastric cancer xenograph model with PTEN loss to taxotere. *J Transl Med*. 2013;11(241):1-10.

75. Ashrafizadeh M, Zarrabi A, Orouei S, et al. STAT3 Pathway in gastric cancer: signaling, therapeutic targeting and future prospects. *Biolog (Basel)*. 2020;9(126):1-36.

76. Giraud AS, Menheniott TR, Judd LM. Targeting STAT3 in gastric cancer. *Expert Opin Ther Targets*. 2012;16(9):889-901.

77. Zhang S, Huang S, Deng C, et al. Co-ordinated overexpression of SIRT1 and STAT3 is associated with poor survival outcome in gastric cancer patients. *Oncotarget*. 2017;8(12):18848-18860.

78. Busuttil RA, Zapparoli GV, Haupt S, et al. Role of p53 in the progression of gastric cancer. *Oncotarget*. 2014;5(23):12016-12026.

79. Fenoglio-Preiser CM, WANG J, Stemmermann GN, Noffsinger A. TP53 And gastric carcinoma: a review. *Hum Mutat*. 2003;21(3):258-270.

80. Fondevila C, Metges JP, Fuster J, et al. P53 and VEGF expression are independent predictors of tumour recurrence and survival following curative resection of gastric cancer. *Br J Cancer*. 2004;90(1):206-215.

81. Yildirim M, Kaya V, Demirpence O, Gunduz S, Bozcuk H. Prognostic significance of p53 in gastric cancer: a meta- analysis. *Asian Pac J Cancer Prev*. 2015;16(1):327-332.

82. Lee HJ, Song IC, Yun HJ, Jo DY, Kim S. CXC Chemokines and chemokine receptors in gastric cancer: from basic findings towards therapeutic targeting. *World J Gastroenterol*. 2014;20(7):1681-1693.
83. Riquelme I, Saavedra K, Espinoza JA, et al. Molecular classification of gastric cancer: towards a pathway-driven targeted therapy. *Oncotarget*. 2015;6(28):24750-24779.

84. Yang W, Raulf A, Klemmper SJ. Targeted therapy for gastric cancer: molecular pathways and ongoing investigations. *Biochem Biophys Acta*. 2014;1846(1):232-237.

85. Farran B, Muller S, Montenegro RC. Gastric cancer management: kinases as a target therapy. *Clin Exp Pharmocol Physiol*. 2017;44(6):613-622.

86. Kitajima Y, Miyazaki K. The critical impact of HIF-1α on gastric cancer biology. *Cancers (Basel)*. 2013;5(1):15-26.

87. Sokolova O, Naumann M. NF-kappaB Signaling in gastric cancer. *Toxins (Basel)*. 2017;9(4):1-22.

88. Ge X, Yan Y, Tian F, Wu D, Huang Y. Prognostic value of estrogen receptor alpha and estrogen receptor beta in gastric cancer based on a meta-analysis and The Cancer genome atlas (TCGA) datasets. *Int J Surg*. 2018;53:24-31.

89. Qin J, Liu M, Ding Q, et al. The direct effect of estrogen on cell viability and apoptosis in human gastric cancer cells. *Cell Biochem*. 2014;395(3):99-107.

90. Rahman MS U, Cao J. Estrogen receptors in gastric cancer: advances and perspectives. *World J Gastroenterol*. 2016;22(8):2475-2482.

91. Zhou J, Teng R, Xu C, et al. Overexpression of ERalpha inhibits proliferation and invasion of MKN28 gastric cancer cells by suppressing beta-catenin. *Oncol Rep*. 2013;30(4):1622-1630.

92. Khanna P, Chua PJ, Bay BH, Baeg GH. The JAK/STAT signaling pathway: kinases as a target therapy. *Clin Exp Pharmacol Physiol*. 2017;44(6):613-622.

93. Oguma K, Oshima H, Oshima M. Inflammation, tumor necrosis factor and Wnt promotion in gastric cancer development. *Oncol Rep*. 2017;38(2):125-132.

94. Song H, Bao J, Wei Y, et al. Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. *Oncol Rep*. 2015;33(2):868-874.

95. Pu Y, Zhang T, Wang J, et al. Luteolin suppresses the proliferation of gastric cancer CRL-1739 cells: a preliminary study. *J Cancer*. 2017;8(2291):1-15.

96. Wang Y, Lv Y, Liu TS, et al. Cordycepin suppresses cell proliferation and migration by targeting CLEC2 in human gastric cancer cells via Akt signaling pathway. *Life Sci*. 2019;223:110-119.

97. Ren LQ, Li Q, Zhang Y. Luteolin suppresses the proliferation of AGS human gastric cancer cells and acts in synergy with oxaliplatin. *J Cancer*. 2018;9(875):1-14.

98. Song H, Bao J, Wei Y, et al. Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. *Oncol Rep*. 2015;33(2):868-874.

99. Kim TW, Lee SY, Kim M, Cheon C, Ko SG. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. *Cell Death Dis*. 2018;9(875):1-14.

100. Kim J-H, Kim D-H, You J-H, et al. Isorhamnetin augments the anti-tumor effect of capcitabine through the negative regulation of NF-kappaB signaling cascade in gastric cancer. *Cancer Lett*. 2015;363(1):28-36.

101. Kim TW, Lee SY, Kim M, Cheon C, Ko SG. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. *Cell Death Dis*. 2018;9(875):1-14.

102. Manu KA, Shanmugam MK, Ramachandran I, et al. Isorhamnetin augments the anti-tumor effect of capcitabine through the negative regulation of NF-kappaB signaling cascade in gastric cancer. *Cancer Lett*. 2015;363(1):28-36.

103. Ramachandran I, Manu KA, Shanmugam MK, et al. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor gamma activation pathway in gastric cancer. *J Biol Chem*. 2012;287(45):38028-38040.

104. Kim TW, Lee SY, Kim M, Cheon C, Ko SG. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. *Cell Death Dis*. 2018;9(875):1-14.

105. Song H, Bao J, Wei Y, et al. Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. *Oncol Rep*. 2015;33(2):868-874.

106. Pu Y, Zhang T, Wang J, et al. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. *J Cancer*. 2018;9(20):3669-3675.

107. Radziejewska I, Borzym-Kluczyk M, Leszczynska K. Luteolin alters MUC1 extracellular domain, sT antigen, ADAM-17, IL-8, IL-10 and NF-kappaB signaling in human gastric cancer cells. *Int J Oncol*. 2016;49(6):154-160.

108. Wang Y, Lv Y, Liu TS, et al. Cordycepin suppresses cell proliferation and migration by targeting CLEC2 in human gastric cancer cells via Akt signaling pathway. *Life Sci*. 2019;223:110-119.

109. Manu KA, Shanmugam MK, Ramachandran I, et al. Isorhamnetin augments the anti-tumor effect of capcitabine through the negative regulation of NF-kappaB signaling cascade in gastric cancer. *Cancer Lett*. 2015;363(1):28-36.

110. Manu KA, Shanmugam MK, Ramachandran I, et al. Isorhamnetin augments the anti-tumor effect of capcitabine through the negative regulation of NF-kappaB signaling cascade in gastric cancer. *Cancer Lett*. 2015;363(1):28-36.

111. Riquelme I, Saavedra K, Espinoza JA, et al. Molecular classification of gastric cancer: towards a pathway-driven targeted therapy. *Oncotarget*. 2015;6(28):24750-24779.
116. Zang MD, Hu L, Fan ZY, et al. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the notch signaling pathway. *J Transl Med.* 2017;15(52):1-11.

117. Zhang Q, Wan L, Guo Y, et al. Radiosensitization effect of luteolin on human gastric cancer SGC-7901 cells. *J Biol Regul Homeost Agents.* 2009;23(2):71-78.

118. Ekstrom AM, Serafini M, Nyren O, Wolk A, Bosetti C, Bellocco R. Dietary quercetin intake and risk of gastric cancer: results from a population-based study in Sweden. *Ann Oncol.* 2011;22(2):438-443.

119. Lee HH, Lee S, Shin YS, Cho M, Kang H, Cho H. Anti-Cancer effect of quercetin in Xenograft models with EBV-associated human gastric carcinoma. *Molecules.* 2016;21(10):1-10.

120. Lei CS, Hou YC, Pai MH, Lin MT, Yeh SL. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies. *J Nutr Biochem.* 2018;51:105-113.

121. Li H, Chen C. Quercetin Has antimetastatic effects on gastric cancer cells via the interruption of uPA/uPAR function by modulating NF-kappab, PKC-delta, ERK1/2, and AMPKalpha. *Integr Cancer Ther.* 2018;17(2):511-523.

122. Shang HS, Lu HF, Lee CH, et al. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. *Environ Toxicol.* 2018;33(11):1168-1181.

123. Shen X, Si Y, Wang Z, Wang J, Guo Y, Zhang X. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3 K/Akt signaling. *Int J Mol Med.* 2016;38(2):619-626.

124. Wang K, Liu R, Li J, et al. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1alpha-mediated signaling. *Autophagy.* 2011;7(9):966-978.

125. Han Z, Cao J, Wang Y, et al. Quercetin suppresses proliferation and motility through modulating hippo pathway via upregulating miR-146a-5p in gastric cancer. *J Biomater Tissue Eng.* 2019;9(1):82-88.

126. Shin EJ, Choi HK, Sung MJ, et al. Anti-tumour effects of beta-sitosterol are mediated by AMPK/PTEN/HSP90 axis in AGS human gastric adenocarcinoma cells and xenograft mouse models. *Biochem Pharmaco.* 2018;152:60-70.