On the Application of High-Strength Reinforcement in Beamless Slab

V S Kuznetsov¹, Yu A Shaposhnikova²

¹Moscow State University of Civil Engineering, Department of Architectural Construction Design, Yaroslavl highway, 26, Moscow, 129337, Russia
²Moscow State University of Civil Engineering, Department of Reinforced Concrete and Stone Structures, Yaroslavl highway, 26, Moscow, 129337, Russia

E-mail: ¹vitalik.kuznetsov2016@yandex.ru, ²yuliatalyzova@yandex.ru

Abstract. The paper considers the peculiarities of the stress-strain state in the zone of junction of the slab of slabs with the joint using conventional and high-strength reinforcement. The maximum stresses in the stretched concrete before cracking correspond to the tensile strength of the concrete, and the stresses in the reinforcement before cracking depend on the reduction factor and were calculated for various classes of concrete. After the formation of cracks, the increase in stresses in the tensioned reinforcement depends on the width of the crack opening and the deformation of the reinforcement between the cracks. The paper shows that with a sufficient width of crack opening and a certain distance between the cracks, high-strength reinforcement can be used to increase the bearing capacity of the support sections of the plate. The total stresses in the reinforcement were calculated for different crack opening widths and different distances between the cracks, the results of which were used to plot the graphs. The graphs of the dependence of the content of high-strength reinforcement on the strength of the normal section, as well as the graphs of the growth of strength with different ratios of the number of rods, are plotted. According to the results of the work, it can be seen that, depending on the class of high-strength reinforcement and its quantity, the strength of normal sections can be increased up to two times.

1. Introduction

The use of beam-free ceilings remains one of the most relevant areas of development in reinforced concrete construction. When designing monolithic flat girders, as a rule, special attention is paid to the calculation and design of the junction area of the glueless slab plate to the column, since this zone has a great influence on the overall structural safety of the slab. Therefore, the study of the stress-strain state of this site, as well as the possibility of increasing the carrying capacity of this zone is of great importance, which is especially important for large spans (over 6 m), and, accordingly, large loads on this site, the slab and column.

The main provisions and calculations of the junction of the plate and the column are usually made in accordance with the regulatory documents, such as [1-9].

The study of the stress-strain state of this site was carried out by many Russian and foreign scientists, as described in [10–17]. The problems arising from the calculations of the junction of a column and a slab in monolithic structures, including the calculation for pushing, are covered in a
wide range of works, for example [10-14]. The following works [15-22] are devoted to strengthening the interface zones of a plate and a column.

In the present work, the peculiarities of the stress-strain state in the zone of junction of the slab of slabs to the column are considered when conventional and high-strength reinforcement are used together (Figure 1).

2. Methods
Consider the bearing capacity of the zone of junction of the girderless ceiling to the column when using conventional and high-strength reinforcement together (Figure 1).

![Figure 1. Node adjoining the flat girder to the column.](image)

When reinforcing a slab with conventional reinforcement classes A400-A500 with a yield area and sufficient strength of concrete, ensuring failure along reinforcement (ξ ≤ ξₕ), the reference moments cannot exceed the values determined by the physical yield strength of the longitudinal reinforcement and its quantity in the design section.

The maximum stresses in stretched concrete before cracking correspond to the tensile strength of concrete \(R_{bt,n} \), and in conventional and high-strength reinforcement before formation of cracks are \(\sigma_{s,0} = 2\alpha R_{bt,n} \). Here \(\alpha \) is the coefficient of reduction, equal to the ratio of elastic moduli of reinforcement and concrete \(\alpha = E_s / E_b \).

The stresses in the reinforcement \(\sigma_{s,0} \) before cracking, calculated for various classes of concrete, are presented in Table 1.

Concrete class	\(\sigma_{s,0} \) (MPa)
B20	19.64
B25	20.67
B30	21.54
B35	22.61
B40	23.33

After the formation of cracks, the relative deformations of the reinforcement are determined by the width of the crack opening \(a_{cr} \) and the distance between the cracks \(l_{cr} \) (excluding deformations of concrete and reinforcement in the block between the cracks).

The width of crack opening from the condition of retention of reinforcement with a short crack opening is assumed: for core reinforcement classes A240 ÷ A600 - 0.4 mm, for reinforcement A800 ÷ A1000 - 0.3 mm [1-3], the basic calculated distance between the cracks \(l_{cr} \), in accordance with [1-3], is determined by the formula (1).

\[
l_{cr} = 0.5A_{bt} \cdot d_s / A_s = 2A_{bt} / \pi d_s
\]

(1)

In formula (1), the area of stretched concrete \(A_{bt} \) is calculated with the height of the stretched zone no more than half the section height of the element (0.5h) and at least twice the protective layer “2a”
[1-5]. Here \(d_i\) is the diameter of the reinforcement, \(n\) is the number of rods in the design section. Structurally, in accordance with [1-3] the distance between the cracks \(l_{crc}\) is taken not less than 100 mm and not more than 400 mm.

After the formation of cracks, the increase in stresses in the tensioned reinforcement depends on the width of the opening of the \(a_{crc}\) cracks and the deformations of the reinforcement between the cracks. The stresses in the reinforcement were in accordance with Hooke's law: for ordinary reinforcement to calculate the strength.

The stresses in the reinforcement were in accordance with Hooke's law: for ordinary reinforcement to calculate the values of relative deformations and normal stresses in the longitudinal reinforcement. It should be borne in mind that for conventional reinforcement the stresses cannot exceed the yield strength, and for high-strength reinforcement temporary resistance. However, fulfilling the requirements of the first group of limit states, the design characteristics of reinforcement \(R_s\) are used to calculate the strength. They correspond to the yield strength for ordinary steel and the conditional yield strength for high-strength reinforcement. The total stresses in the reinforcement due to crack opening at the modulus of elasticity of reinforcement \(E_s = 200000 \text{ MPa}\) are shown in Table 2 [18-20].

Table 2. Total stresses in the reinforcement \(\sigma_s\) with \(a_{crc} = 0.4 \text{ mm}\) and different distances between the cracks \(l_{crc}\).

Concrete class	\(\sigma_s\)	50	100	150	200	250	300	350	400
B20	19.6	1619.6	819.6	553.0	419.6	339.6	286.3	248.2	219.6
B25	20.7	1620.7	820.7	554.0	420.7	340.7	287.3	249.2	220.7
B30	21.5	1621.5	821.5	554.9	421.5	341.5	288.2	250.1	221.5
B35	22.6	1622.6	822.6	555.9	422.6	342.6	289.3	251.2	222.6
B40	23.3	1623.3	823.3	556.7	423.3	343.3	290.0	251.9	223.3

The table shows that with a crack opening width of \(a_{crc} = 0.4 \text{ mm}\) and the distance between the cracks from 100 to 200 mm, the stresses in high-strength reinforcement reach \(\sigma_s \approx 550 \div 820 \text{ MPa}\), which indicates the possibility of using high-strength reinforcement for increasing the bearing capacity of the support sections of the plate.

To establish the share of high-strength reinforcement in increasing the load-bearing capacity of the slab in the support zone on the columns, a beam-less overlap was considered, with a thickness of \(h=200 \text{ mm}\), a column with \(b_h \times t_h = 400 \times 400 \text{ mm}\) section made of concrete of class B25 [21]. The upper reinforcement crossing the column are rods with a diameter of \(d_i = 14 \text{ mm}\), the number of rods is \(n = 5\), the pitch of rods is 70 mm, \(A_s = 7.69 \text{ cm}^2\) [18-20]. The width of the design section was equal to the width of the column \(b = b_h = 400 \text{ mm}\). In accordance with the standards, in all cases, the protective layer \(a_z \geq 20 \text{ mm}\) [1-3]. Take \(a_z = 20 \text{ mm}\)

\[a = a_z + d_i / 2 = 20 + 14 / 2 = 27 \text{ (mm)}.
\]

Maximum area of stretched concrete

\[A_{ht,max} = 0.5hb = 0.5 \cdot 20 \cdot 40 = 400 \text{ (cm}^2)\].

The minimum area of stretched concrete

\[A_{ht,min} = 2ab = 2 \cdot 2.7 \cdot 40 = 216 \text{ (cm}^2)\].

Estimated maximum crack spacing

\[l_{crc,min} = 0.5A_{ht,min} \cdot d_i / A_s = 2A_{ht,min} / (n\pi d_i) = 2 \cdot 400 / (5 \cdot 3.14 \cdot 1.4) = 36.4 \text{ (cm)}\].

It follows from the table that when reinforcing a plate with the most common reinforcement of class A400, \(R_s = 350 \text{ MPa}\), with a crack width of \(a_{crc} = 0.4 \text{ mm}\) and a distance between the cracks \(l_{crc} = 100 \div 200 \text{ mm}\), plastic deformations develop in the reinforcement, and the stresses stabilize on conditional yield strength (for calculating the strength of \(R_s\)) [18-21].

So the bearing moment on the face of the column with 5 rods of class A400 with a diameter of 14 mm and concrete B25 \((z_l = 0.6h = 0.6 \cdot 0.173 = 0.1038 \text{ m})\) is equal to

\[M_S = R_sA_z z_l = 350 \cdot 103 \cdot 7.69 \cdot 10^{-4} \cdot 0.6 \cdot 0.173 = 27.94 \text{ (kNm)}.
\]
When replacing 3 rods Ø14 mm class A400 with A600 reinforcement of the same diameter

\[M_s = (R_s A_s + \sigma_s A_s) z_0 = (350 \cdot 10^3 \cdot 3.08 \cdot 10^{-4} + 520 \cdot 10^3 \cdot 4.62 \cdot 10^{-4}) \cdot 0.1038 = 36.13 \text{ (kNm)}. \]

(7)

3. Results and discussion

The graphs in Figure 2 show the dependences of the stresses in the reinforcement with a crack width of 0.4 mm for different distances between the cracks and concrete classes.

Figure 2. Stresses in reinforcement with \(a_{crc} = 0.4 \text{ mm} \)

The graphs in Figure 3 show the dependences of the stresses in the reinforcement for different widths of cracks and the distances between the cracks for the concrete class B25.

Figure 3. Stresses in reinforcement with concrete B25, various crack widths and distances between the cracks.

The graphs in Figure 4 and Figure 5 show the bearing capacity of the section when reinforcing the section with fully A400 reinforcement and an increase in section strength by replacing the A400 reinforcement with the A800. It can be seen that, depending on the class of high-strength reinforcement and its quantity, the strength of normal sections can be increased up to two times.
4. Conclusions
The paper shows that with a sufficient width of crack opening and a certain distance between the cracks, high-strength reinforcement can be used to increase the bearing capacity of the support sections of the plate.

The strength of a section reinforced with A400 fully reinforcement can be increased by replacing A400 with an A800 reinforcement: depending on the grade of high-strength reinforcement and its amount, the strength of normal sections can be increased up to two times.

The results of the work can be used in the design of beam and flat floors in practical activities, if it is necessary to increase the bearing capacity of the section.

References
[1] 2007 SP 52-103-2007 Concrete monolithic construction of buildings
[2] 2012 SP 63 13330.2012 Concrete and reinforced concrete structures The main points The updated version of SNiP 52-01-2003 (Moscow)

[3] 2011 STO NOSTROY 2.6.54-2011 Monolithic concrete and reinforced concrete structures (Moscow)

[4] 1998 La norme NBN EN 1992-1-1 Eurocode 2

[5] 2006 Manual for the Design of Concrete Building Structures to Eurocode 2 Institution of Structural Engineers (London)

[6] 2010 BS8110 British Standart Structural use of concrete

[7] 2004 ACI 318-05 Building Code Requirements for Structural Concrete and Commentary

[8] 1998 ISO 2394 General Principles on Reliability of Structures (Geneva)

[9] 2004 EN1992-1-1 Manuel de calcul de Béton Armé selon

[10] Mnushkin M A, Eharmin K A Analysis of application of distributive systems of different type in connections of plate with columns in monolithic concrete buildings Analiz primeneniya raspredelitel'nyh sistem razlichnogo tipa v mestah soprjazhenija plity s kolonnami v monolitnyh zhelezobetonnyh zdanijah Urban economy and rational nature management Gorodskoe hozjajstvo i racional'noe prirodopol'zovanie Collection of scientific works of young scientists and students of the department "Civil Engineering and Applied Eclogy" for 2015 Sbornik nauchnyh trudov molodyh uchenyh i studentov kafedry "Grazhdansko stroitel'stvo i prikladnaja jekologija" za 2015 god. Sankt-Peterburg Publisher: St. Petersburg Polytechnical University of Peter the Great (St. Petersburg) 2016 pp 3-8

[11] Turgimbaeva A B, Tsyguliev D V Analysis of constructive decisions of the stressing knot of a plated flooring plate with columns of frame buildings Analiz konstruktivnyh resheniy uzla soprjazhenija bezbalochnoy beskapitel'noy plity s kolonnami karkasnyh zdanijy Bulletin of modern researches Vestnik sovremennyh issledovanij 6.1(21) 2018 pp 511-515

[12] Vysotsky S A Diagnostics of construction zones of reinforced concrete constructions Diagnostika zon soprjazhenija zhelezobetonnyh konstrukcij Industrial and civil construction Promyshlennoe i grazhdansko stroitel'stvo 2 2009 pp 17-19

[13] Filatov V B, Bubnov E P Technique and results of experimental research of flat reinforced concrete plates for promotion of tradition and innovation in construction and architecture Metodika i rezul'taty jekperimental'nogo issledovanija ploskih zhelezobetonnyh plit na prodavlivanie tradicii i innovacii v stroitel'stve i arhitekturke Building Digest of articles. Stroitel'stvo: Sbornik sateej Publisher: Samara State University of Architecture and Civil Engineering (Samara) 2017 pp 86-89

[14] Kuznetcov V S and Shaposhnikova Yu A 2016 On the definition deflections of monolithic slabs with the mixed reinforcing at the stage of limit equilibrium MATEC Web of Conferences (Web of Science) Available at: http://www.matec-conferences.org 2016 Accessed: Dec. 10, 2016

[15] Bolgov A N, Sokurov A Z and Alekseenko D V Promotion of extreme knots of plate stretching and columns, strengthened by transmitted arms Prodavlivanie krajnih uzlov soprjazhenija plity - kolonna, usilenykh vkleenoj poperechnoj armaturej Concrete and reinforced concrete Beton i zhelezobeton 3 2013 pp 11-14

[16] Vasyliev A B Patent for invention 2547035 Node pairing of column with monolithic overlapping Uzlovoe soprjazhenie kolonny s monolitnym perekrytiem Voronezh GASU (Voronezh) 2015

[17] Bojcov D A, Evstifeeva O V, Kostenko B V and Komolova Ju D Patent for invention 2687726 Knot of connection column and slipping plate Uzel soedineniya kolonny i plity perekrytiya JSC "NIPII "Lenmetroigiprotrans" (Moscow) 2019

[18] 2012 GOST 10922-2012 Reinforcing and embedded products, their welded, knitted and mechanic joints for reinforced concrete structures (Moscow)

[19] 2009 GOST 12000-2009 Steel reinforcing Methods of tensile testing (Moscow)
[20] 2008 STO 36555501-005-2006 The use of reinforcement A500S in reinforced concrete structures (Moscow)

[21] 2009 GOST. R 53231-2008 Concretes Strength control rules (Moscow)

[22] Solovev D B, Kuzora S S 2016 Implementation of noise-immune Rogowski coils for busbar differential protection modernization Electric Power Systems Research 138 pp. 223-232. [Online]. Available: http://dx.doi.org/10.1016/j.epsr.2016.03.039.