Rigidity and the Lower Bound Theorem for Doubly Cohen-Macaulay Complexes

Eran Nevo *

November 2, 2018

Abstract

We prove that for $d \geq 3$, the 1-skeleton of any $(d-1)$-dimensional doubly Cohen-Macaulay (abbreviated 2-CM) complex is generically d-rigid. This implies that Barnette’s lower bound inequalities for boundary complexes of simplicial polytopes ([4],[3]) hold for every 2-CM complex of dimension ≥ 2 (see Kalai [8]). Moreover, the initial part (g_0, g_1, g_2) of the g-vector of a 2-CM complex (of dimension ≥ 3) is an M-sequence. It was conjectured by Björner and Swartz [14] that the entire g-vector of a 2-CM complex is an M-sequence.

1 Introduction

The g-theorem gives a complete characterization of the f-vectors of boundary complexes of simplicial polytopes. It was conjectured by McMullen in 1970 and proved by Billera and Lee [5] (sufficiency) and by Stanley [13] (necessity) in 1980. A major open problem in f-vector theory is the g-conjecture, which asserts that this characterization holds for all homology spheres. The open part of this conjecture is to show that the g-vector of every homology sphere is an M-sequence, i.e. it is the f-vector of some order ideal of monomials. Based on the fact that homology spheres are doubly Cohen-Macaulay (abbreviated 2-CM) and that the g-vector of some other classes of 2-CM complexes is known to be an M-sequence (e.g. [14]), Björner and Swartz [14] recently suspected that

Conjecture 1.1 ([14], a weakening of Problem 4.2.) The g-vector of any 2-CM complex is an M-sequence.

We prove a first step in this direction, namely:

*Institute of Mathematics, The Hebrew University, Jerusalem Israel, E-mail address: eranevo@math.huji.ac.il
Theorem 1.2 Let K be a $(d-1)$-dimensional 2-CM simplicial complex (over some field) where $d \geq 4$. Then $(g_0(K), g_1(K), g_2(K))$ is an M-sequence.

This theorem follows from the following theorem, combined with an interpretation of rigidity in terms of the face ring (Stanley-Reisner ring), due (implicitly) to Lee [10].

Theorem 1.3 Let K be a $(d-1)$-dimensional 2-CM simplicial complex (over some field) where $d \geq 3$. Then K has a generically d-rigid 1-skeleton.

Kalai [8] showed that if a simplicial complex K of dimension ≥ 2 satisfies the following conditions then it satisfies Barnette’s lower bound inequalities:

(a) K has a generically $(\dim(K) + 1)$-rigid 1-skeleton.

(b) For each face F of K of codimension > 2, its link $lk_K(F)$ has a generically $(\dim(lk_K(F)) + 1)$-rigid 1-skeleton.

(c) For each face F of K of codimension 2, its link $lk_K(F)$ (which is a graph) has at least as many edges as vertices.

Kalai used this observation to prove that Barnette’s inequalities hold for a large class of simplicial complexes.

Observe that the link of a vertex in a 2-CM simplicial complex is 2-CM, and that a 2-CM graph is 2-connected. Combining it with Theorem 1.3 and the above result of Kalai we conclude:

Corollary 1.4 Let K be a $(d-1)$-dimensional 2-CM simplicial complex where $d \geq 3$. For all $0 \leq i \leq d-1$ $f_i(K) \geq f_i(n, d)$ where $f_i(n, d)$ is the number of i-faces in a (equivalently every) stacked d-polytope on n vertices. (Explicitly, $f_{d-1}(n, d) = (d-1)n - (d+1)(d-2)$ and $f_i(n, d) = \binom{d}{i}n - \binom{d+1}{i+1}$ for $1 \leq i \leq d-2$.) □

Theorem 1.3 is proved by decomposing K into a union of minimal $(d-1)$-cycle complexes (Fogelsanger’s notion [6]). Each of these pieces has a generically d-rigid 1-skeleton ([6]), and the decomposition is such that gluing the pieces together results in a complex with a generically d-rigid 1-skeleton. The decomposition is detailed in Theorem 3.4.

This paper is organized as follows: In Section 2 we give the necessary background from rigidity theory, explain the connection between rigidity and the face ring, and reduce the results mentioned in the Introduction to Theorem 3.4. In Section 3 we give the necessary background on 2-CM complexes, prove Theorem 3.4 and discuss related problems and results.

2 Rigidity

The presentation of rigidity here is based mainly on the one in Kalai [8]. Let $G = (V, E)$ be a graph. A map $f : V \rightarrow \mathbb{R}^d$ is called a $d-$embedding. It
is rigid if any small enough perturbation of it which preserves the lengths of the edges is induced by an isometry of \(\mathbb{R}^d \). Formally, \(f \) is called rigid if there exists an \(\varepsilon > 0 \) such that if \(g : V \to \mathbb{R}^d \) satisfies \(d(f(v), g(v)) < \varepsilon \) for every \(v \in V \) and \(d(g(u), g(w)) = d(f(u), f(w)) \) for every \(\{u, w\} \in E \), then \(d(g(u), g(w)) = d(f(u), f(w)) \) for every \(u, w \in V \) (where \(d(a, b) \) denotes the Euclidean distance between the points \(a \) and \(b \)).

\(G \) is called generically \(d \)-rigid if the set of its rigid \(d \)-embeddings is open and dense in the topological vector space of all of its \(d \)-embeddings.

Let \(V = [n] \), and let \(\text{Rig}(G, f) \) be the \(dn \times |E| \) matrix which is defined as follows: for its column corresponding to \(\{v < u\} \in E \) put the vector \(f(v) - f(u) \) (resp. \(f(u) - f(v) \)) at the entries of the \(d \) rows corresponding to \(v \) (resp. \(u \)) and zero otherwise. \(G \) is generically \(d \)-rigid iff \(\text{Im} (\text{Rig}(G, f)) = \text{Im} (\text{Rig}(K_V, f)) \) for a generic \(f \), where \(K_V \) is the complete graph on \(V \). \(\text{Rig}(G, f) \) is called the rigidity matrix of \(G \) (its rank is independent of the generic \(f \) that we choose).

Let \(G \) be the 1-skeleton of a \((d-1)\)-dimensional simplicial complex \(K \). We define \(d \) generic degree-one elements in the polynomial ring \(A = \mathbb{R}[x_1, \ldots, x_n] \) as follows: \(\Theta_i = \sum_{v \in [n]} f(v)_i x_v \) where \(f(v)_i \) is the projection of \(f(v) \) on the \(i \)-th coordinate, \(1 \leq i \leq d \). Then the sequence \(\Theta = (\Theta_1, \ldots, \Theta_d) \) is an l.s.o.p. for the face ring \(\mathbb{R}[K] = A/\mathcal{I}_K \) (\(\mathcal{I}_K \) is the ideal in \(A \) generated by the monomials whose support is not an element of \(K \)). Let \(H(K) = \mathbb{R}[K]/(\Theta) = H(K)_0 \oplus H(K)_1 \oplus \ldots \) where \((\Theta) \) is the ideal in \(A \) generated by the elements of \(\Theta \) and the grading is induced by the degree grading in \(A \). Consider the multiplication map \(\omega : H(K)_1 \to H(K)_2 \), \(m \to \omega m \) where \(\omega = \sum_{v \in [n]} x_v \).

Lee [10] proved that

\[
\dim_{\mathbb{R}} \ker (\text{Rig}(G, f)) = \dim_{\mathbb{R}} H(K)_2 - \dim_{\mathbb{R}} \omega (H(K)_1). \quad (1)
\]

Assume that \(G \) is generically \(d \)-rigid. Then \(\dim_{\mathbb{R}} \ker (\text{Rig}(G, f)) = f_1(K) - \text{rank} (\text{Rig}(K_V, f)) = g_2(K) = \dim_{\mathbb{R}} H(K)_2 - \dim_{\mathbb{R}} H(K)_1 \). Combining with \(\boxed{1} \), the map \(\omega \) is injective, and hence \(\dim_{\mathbb{R}} H(K)/(\omega) = g_i(K) \) for \(i = 2 \); clearly this holds for \(i = 0, 1 \) as well. Hence \((g_0(K), g_1(K), g_2(K)) \) is an M-sequence. We conclude that Theorem \(\boxed{1.3} \) implies Theorem \(\boxed{1.2} \) via the following algebraic result:

Theorem 2.1 Let \(K \) be a \((d-1)\)-dimensional 2-CM simplicial complex (over some field) where \(d \geq 3 \). Then the multiplication map \(\omega : H(K)_1 \to H(K)_2 \) is injective. \(\square \)

In order to prove Theorem \(\boxed{1.3} \) we need the concept of minimal cycle complexes, introduced by Fogelsanger [9]. We summarize his theory below.

Fix a field \(k \) (or more generally, any abelian group) and consider the formal chain complex on a ground set \([n]\), \(C = (\oplus \{k T : T \subseteq [n]\}, \partial) \), where \(\partial(1T) = \sum_{t \in T} \text{sign}(t, T) T \setminus \{t\} \) and \(\text{sign}(t, T) = (-1)^{|\{s \in T : s < t\}|} \). Define subchain, minimal \(d \)-cycle and minimal \(d \)-cycle complex as follows:
\[c' = \sum \{ b_T : T \subseteq [n], |T| = d + 1 \} \]
is a subchain of a \(d \)-chain \(c = \sum \{ a_T : T \subseteq [n], |T| = d + 1 \} \) iff for every such \(T, b_T = a_T \) or \(b_T = 0 \). A \(d \)-chain \(c \) is a \(d - \)cycle if \(\partial(c) = 0 \), and is a minimal \(d - \)cycle if its only subchains which are cycles are \(c \) and 0. A simplicial complex \(K \) which is spanned by the support of a minimal \(d - \)cycle is called a minimal \(d - \)cycle complex (over \(k \)), i.e. \(K = \{ S : \exists T S \subseteq T, a_T \neq 0 \} \) for some minimal \(d - \)cycle \(c \) as above. For example, triangulations of connected manifolds without boundary are minimal cycle complexes - fix \(k = \mathbb{Z}_2 \) and let the cycle be the sum of all facets.

The following is the main result in Fogelsanger’s thesis.

Theorem 2.2 (Fogelsanger [6]) For \(d \geq 3 \), every minimal \((d - 1)-\)cycle complex has a generically \(d \)-rigid 1-skeleton.

We will need the following gluing lemma, due of Asimov and Roth, who introduced the concept of generic rigidity of graphs [1].

Theorem 2.3 (Asimov and Roth [2]) Let \(G_1 \) and \(G_2 \) be generically \(d \)-rigid graphs. If \(G_1 \cap G_2 \) contains at least \(d \) vertices, then \(G_1 \cup G_2 \) is generically \(d \)-rigid.

Now we are ready to conclude Theorem 1.3 from the decomposition theorem, Theorem 3.4.

Proof of Theorem 1.3 Consider a decomposition sequence of \(K \) as guaranteed by Theorem 3.4 \(K = \bigcup_{i=1}^m S_i \). By Theorem 2.2 each \(S_i \) has a generically \(d \)-rigid 1-skeleton. By Theorem 2.3 for all \(2 \leq i \leq m \bigcup_{j=1}^i S_j \) has a generically \(d \)-rigid 1-skeleton, in particular \(K \) has a generically \(d \)-rigid 1-skeleton \((i = m)\). \(\Box \)

Remark: One can verify that Theorems 2.2 and 2.3 and hence also Theorem 1.3 continue to hold when replacing “generically \(d \)-rigid” by the notion “\(d \)-hyperconnected”, introduced by Kalai [7]. Both of these assertions have an interpretation in terms of algebraic shifting, introduced by Kalai (see e.g. his survey [8]), namely: for both the exterior and symmetric shifting operators over the field \(\mathbb{R} \), denoted by \(\Delta \), \(\{d, n\} \in \Delta(K) \). The existence of this edge in the shifted complex implies the non-negativity of \(g_2(K) \).

3 Decomposing a 2-CM complex

Definition 3.1 A simplicial complex \(K \) is 2 – CM (over a fixed field \(k \)) if it is Cohen-Macaulay and for every vertex \(v \in K \), \(K - v \) is Cohen-Macaulay of the same dimension as \(K \).

Here \(K - v \) is the simplicial complex \(\{T \in K : v \notin T\} \). By a theorem of Reisner [11], a simplicial complex \(L \) is Cohen-Macaulay iff it is pure and for every face \(T \in L \) (including the empty set) and every \(i < \text{dim}(\text{lk}_L(T)) \),
$\tilde{H}_i(lk_L(T); k) = 0$ where $lk_L(T) = \{S \in L : T \cap S = \emptyset, T \cup S \in L\}$ and $H_i(M; k)$ is the reduced i-th homology of M over k. The proof of Theorem \ref{thm:main} is by induction on $\text{dim}(K)$. Let us first consider the case where K is 1-dimensional.

A (simple finite) graph is 2-connected if after a deletion of any vertex from it, the remaining graph is connected and non trivial (i.e. is not a single vertex nor empty). Note that a graph is 2-CM iff it is 2-connected.

Lemma 3.2 A graph G is 2-connected iff there exists a decomposition $G = \bigcup_{i=1}^m C_i$ such that each C_i is a simple cycle and for every $1 < i \leq m$, $C_i \cap (\bigcup_{j<i} C_j)$ contains an edge.

Moreover, for each $i_0 \in [m]$ the C_i’s can be reordered by a permutation $\sigma : [m] \rightarrow [m]$ such that $\sigma^{-1}(1) = i_0$ and for every $i > 1$, $C_{\sigma^{-1}(i)} \cap (\bigcup_{j<i} C_{\sigma^{-1}(j)})$ contains an edge.

Proof: Whitney \cite{Whitney} showed that a graph G is 2-connected if it has an open ear decomposition, i.e. there exists a decomposition $G = \bigcup_{i=0}^m P_i$ such that each P_i is a simple open path, P_0 is an edge, $P_0 \cup P_1$ is a simple cycle and for every $1 < i \leq m P_i \cap (\bigcup_{j<i} P_j)$ equals the 2 end vertices of P_i.

Assume that G is 2-connected and consider an open ear decomposition as above. Let $C_1 = P_0 \cup P_1$. For $i > 1$ choose a simple path P_i in $\bigcup_{j<i} P_j$ that connects the 2 end vertices of P_i, and let $C_i = P_i \cup P_i$. (C_1, \ldots, C_m) is the desired decomposition sequence of G.

Let C be the graph whose vertices are the C_i’s and two of them are neighbors iff they have an edge in common. Thus, C is connected, and hence the ‘Moreover’ part of the Lemma is proved.

The other implication, that such a decomposition implies 2-connectivity, will not be used in the sequel, and its proof is omitted. \hfill \Box

For the induction step we need the following cone lemma. For v a vertex not in the support of a $(d-1)$-chain c, let $v \ast c$ denote the following d-chain: if $c = \sum\{a_T T : v \notin T \subseteq [n], |T| = d\}$ where $a_T \in k$ for all T, then $v \ast c = \sum\{\text{sign}(v, T)a_T T \cup \{v\} : v \notin T \subseteq [n], |T| = d\}$ where $\text{sign}(v, T) = (-1)^{|\{t \notin T : t < v\}|}$.

Lemma 3.3 Let s be a minimal $(d-1)$-cycle and let c be a minimal d-chain such that $\partial(c) = s$, i.e. c has no proper subchain c' such that $\partial(c') = s$. For v a vertex not in any face in supp(c), the support of c, define $\tilde{s} = c - v \ast s$. Then \tilde{s} is a minimal d-cycle.

Proof: $\partial(\tilde{s}) = \partial(c) - \partial(v \ast s) = s - (s - v \ast \partial(s)) = 0$ hence \tilde{s} is a d-cycle. To show that it is minimal, let \tilde{s} be a subchain of \tilde{s} such that $\partial(\tilde{s}) = 0$. Note that supp$(c) \cap$ supp$(v \ast s) = \emptyset$.

Case 1: v is contained in a face in supp(\tilde{s}). By the minimality of s, supp$(v \ast s) \subseteq$ supp(\tilde{s}). Thus, by the minimality of c also supp$(c) \subseteq$ supp(\tilde{s}) and
for every induction hypothesis, for every $i > 1$, $S_i \cap (\cup_{j<i} S_j)$ contains a d-face.

Moreover, for each $i_0 \in [m]$ the S_i’s can be reordered by a permutation $\sigma : [m] \to [m]$ such that $\sigma^{-1}(1) = i_0$ and for every $i > 1$, $S_{\sigma^{-1}(i)} \cap (\cup_{j<i} S_{\sigma^{-1}(j)})$ contains a d-face.

proof: The proof is by induction on d. For $d = 1$, by Lemma 3.2, $K = \cup_{i=1}^{m(K)} C_i$ such that each C_i is a simple cycle and for every $i > 1$ $C_i \cap (\cup_{j<i} C_j)$ contains an edge. Define $s_i = \sum \{\text{sign}(i)e : e \in (C_i)_1\}$, then s_i is a minimal 1-cycle (orient the edges properly: $\text{sign}(i)$ equals 1 or -1 accordingly) whose support spans the simplicial complex C_i. Moreover, by Lemma 3.2 each C_{i_0}, $i_0 \in [m(K)]$, can be chosen to be the first in such a decomposition sequence.

For $d > 1$, note that the link of every vertex in a 2-CM simplicial complex is 2-CM. For a vertex $v \in K$, as $lk_K(v)$ is 2-CM then by the induction hypothesis $lk_K(v) = \cup_{i=1}^{m(v)} C_i$ such that each C_i is a minimal $(d-1)$-cycle complex and for every $i > 1$ $C_i \cap (\cup_{j<i} C_j)$ contains a $(d-1)$-face. Let s_i be a minimal $(d-1)$-cycle whose support spans C_i. As $K - v$ is CM of dimension d, $\tilde{H}_{d-1}(K - v; k) = 0$. Hence there exists a d-chain c such that $\partial(c) = s_i$ and $\text{supp}(c) \subseteq K - v$.

Take c_i to be such a chain with a support of minimal cardinality. By Lemma 3.2, $\tilde{s}_i = c_i - v \ast s_i$ is a minimal d-cycle. Let $S_i(v)$ by the simplicial complex spanned by $\text{supp}(\tilde{s}_i)$; it is a minimal d-cycle complex. By the induction hypothesis, for every $i > 1$ $S_i(v) \cap (\cup_{j<i} S_j(v))$ contains a d-face (containing v). Thus, $K(v) := \cup_{i=1}^{m(v)} S_i(v)$ has the desired decomposition for every $v \in K$. $K = \cup_{v \in \text{Ver}(K)} K(v)$ as $\text{st}_K(v) \subseteq K(v)$ for every v, where $\text{st}_K(v) = \{T \in K : T \cup \{v\} \in K\}$.

Let v be any vertex of K. Since the 1-skeleton of K is connected, we can order the vertices of K such that $v_1 = v$ and for every $i > 1$ v_i is a neighbor of some v_j where $1 \leq j < i$. Let $v_{l(i)}$ be such a neighbor of v_i. By the induction hypothesis we can order the $S_j(v_i)$’s such that $S_1(v_i)$ will contain $v_{l(i)}$, and hence, as K is pure, will contain a d-face which appears in $K(v_{l(i)})$ (this face contains the edge $\{v_i, v_{l(i)}\}$). The resulting decomposition sequence $(S_1(v_1), ..., S_{m(v_i)}(v_1), S_1(v_2), ..., S_{m(v_2)}(v_2), ..., S_{m(v_n)}(v_n))$ is as desired.

Moreover, every $S_j(v_{i_0})$ where $i_0 \in [n]$ and $j \in [m(v_{i_0})]$ can be chosen to be the first in such a decomposition sequence. Indeed, by the induction hypothesis $S_j(v_{i_0})$ can be the first in the decomposition sequence of $K(v_{i_0})$, and as mentioned before, the connectivity of the 1-skeleton of K guarantees
that each such prefix \((S_1(v_0), \ldots, S_m(v_0))(v_0)\) can be completed to a decomposition sequence of \(K\) on the same \(S_j(v_i)'s\). □

Theorem 3.3 follows also from the following corollary combined with Theorem 2.2.

Corollary 3.5 Let \(K\) be a \(d\)-dimensional 2-CM simplicial complex over a field \(k\) (\(d \geq 1\)). Then \(K\) is a minimal cycle complex over the Abelian group \(\bar{k} = k(x_1, x_2, \ldots)\) whose elements are finite linear combinations of the \(x_i\)'s with coefficients in \(k\).

Proof: Consider a decomposition \(K = \bigcup_{i=1}^m S_i\) as guaranteed by Theorem 3.4 where \(S_i = \text{supp}(c_i)\) (the closure w.r.t. inclusion of \(\text{supp}(c_i)\)) for some minimal \(d\)-cycle \(c_i\) over \(k\). Define \(\tilde{c}_i = x_i c_i\), thus \(\tilde{c}_i\) is a minimal cycle over \(\bar{k}\). Define \(\tilde{c} = \sum_{i=1}^m \tilde{c}_i\). Clearly \(\tilde{c}\) is a cycle over \(\bar{k}\) whose support spans \(K\). It remains to show that \(\tilde{c}\) is minimal. Let \(\tilde{c}'\) be a subchain of \(\tilde{c}\) which is a cycle, \(\tilde{c}' \neq \tilde{c}\). We need to show that \(\tilde{c}' = 0\). Denote by \(\tilde{\alpha}_T(\tilde{c}'\tilde{c})\) the coefficient of the set \(T\) in \(\tilde{c}'\tilde{c}\) and by \(\tilde{\alpha}_T(i)\) the coefficient of the set \(T\) in \(\tilde{c}_i\). If \(\tilde{\alpha}_T(i) = 0\) then for every \(i\) such that \(\tilde{\alpha}_T(i) \neq 0\), the minimality of \(\tilde{c}_i\) implies that \(\tilde{\alpha}'_T = 0\) whenever \(\tilde{\alpha}'_T(i) \neq 0\). By assumption, there exists a set \(T_0\) such that \(\tilde{\alpha}'_{T_0} = 0 \neq \tilde{\alpha}'_{T_0}\). In particular, there exists an index \(i_0\) such that \(\tilde{\alpha}'_{T_{i_0}}(i_0) \neq 0\), hence \(\tilde{\alpha}'_{F} = 0\) whenever \(\tilde{\alpha}'_{F}(i_0) \neq 0\). As \(S_{i_0} \cap (\cup_{j<i_0} S_j)\) contains a \(d\)-face in case \(i_0 > 1\), repeated application of the above argument implies \(\tilde{\alpha}'_{F} = 0\) whenever \(\tilde{\alpha}'_{F}(1) \neq 0\). Repeated application of the fact that \(S_i \cap (\cup_{j<i} S_j)\) contains a \(d\)-face for \(i = 2, 3, \ldots\) and of the above argument shows that \(\tilde{\alpha}'_{F} = 0\) whenever \(\tilde{\alpha}'_{F}(i) \neq 0\) for some \(1 \leq i \leq m\), i.e. \(\tilde{c}' = 0\). □

A pure simplicial complex has a nowhere zero flow if there is an assignment of integer non-zero weights to all of its facets which forms a \(\mathbb{Z}\)-cycle. This generalizes the definition of a nowhere zero flow for graphs (e.g. [12] for a survey).

Corollary 3.6 Let \(K\) be a \(d\)-dimensional 2-CM simplicial complex over \(\mathbb{Q}\) (\(d \geq 1\)). Then \(K\) has a nowhere zero flow.

Proof: Consider a decomposition \(K = \bigcup_{i=1}^m S_i\) as guaranteed by Theorem 3.4. Multiplying by a common denominator, we may assume that each \(S_i = \text{supp}(c_i)\) for some minimal \(d\)-cycle \(c_i\) over \(\mathbb{Z}\) (instead of just over \(\mathbb{Q}\)). Let \(N\) be the maximal \(|\alpha|\) over all nonzero coefficients \(\alpha\) of the \(c_i\)'s, \(1 \leq i \leq m\). Let \(\tilde{c} = \sum_{i=1}^m (N^m)^i c_i\). \(\tilde{c}\) is a nowhere zero flow for \(K\); we omit the details. □

Problem 3.7 Can the \(S_i\)'s in Theorem 3.4 be taken to be homology spheres?

Yhonatan Iron and I proved (unpublished) the following lemma:
Lemma 3.8 Let K, L and $K \cap L$ be simplicial complexes of the same dimension $d-1$. Assume that K and L are weak-Lefschetz, i.e. that multiplication by a generic degree-one element g in $H = H(K), H(L)$, $g : H_{i-1} \rightarrow H_i$, is injective for all $i \leq \lfloor d/2 \rfloor$. If $K \cap L$ is CM then $K \cup L$ is weak-Lefschetz.

In view of this lemma, if the intersections $S_i \cap (\cup_{j<i} S_j)$ in Theorem 3.4 can be taken to be CM, and the S_i’s can be taken to be homology spheres, then Conjecture 1.1 would be reduced to the long standing g-conjecture for homology spheres. Can the intersections be guaranteed to be CM?

Acknowledgments

I would like to thank my advisor Gil Kalai, Anders Björner and Ed Swartz for helpful discussions. This research was done during the author’s stay at Institut Mittag-Leffler, supported by the ACE network.

References

[1] L. Asimov and B. Roth, The rigidity of graphs, *Trans. Amer. Math. Soc.*, **245** (1978), 279-289.

[2] L. Asimov and B. Roth, The rigidity of graphs: part II, *J. Math. Anal. Appl.*, **68** (1979), 171-190.

[3] D. Barnette, The minimum number of vertices of a simple polytope, *Isr. J. Math.*, **10** (1971), 121-125.

[4] D. Barnette, A proof of the lower bound conjecture for convex polytopes, *Pac. J. Math.*, **46** (1973), 349-354.

[5] L. G. Billera and C. W. Lee, A proof of the sufficiency of McMullen conditions for f-vectors of simplicial convex polytopes, *J. Combi. Theory, Ser. A*, **31** (1981), 237-255.

[6] A. Fogelsanger, The generic rigidity of minimal cycles, PhD. Dissertation, Cornell University (1988). Also at http://www.people.cornell.edu/pages/alf6/rigidity.htm.

[7] G. Kalai, Hyperconnectivity of graphs, *Graphs and Combi.*, **1**, (1985), 65-79.

[8] G. Kalai, Rigidity and the lower bound theorem, *Inven. Math.*, **88**, (1987), 125-151.

[9] G. Kalai, Algebraic Shifting, *Advanced Studies in Pure Math.*, **33** (2002), 121-163.
[10] K. W. Lee, Generalized stress and motion, in Polytopes: Abstract, Convex and Computational (T. Brztriczzy et al., eds.), (1995), pp.249-271.

[11] G. Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math., 21, (1976), 30-49.

[12] P.D. Seymour, Nowhere-zero flows, in Handbook of Combinatorics (R. Graham et al., eds.), Elsevier, Amsterdam, (1995), pp. 289-299.

[13] R. P. Stanley, The number of faces of simplicial convex polytopes, Adv. Math., 35 (1980), 236-238.

[14] E. Swartz, g-elements, finite buildings and higher Cohen-Macaulay connectivity, http://www.math.cornell.edu/~ebs/papers.html preprint.

[15] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc., 34 (1932), 339-362.