Feather mites (Acariformes: Analgoidea) associated with the hairy woodpecker Leuconotopicus villosus (Piciformes: Picidae) in Panama
Sergey V. Mironov, Sergio Bermudez

To cite this version:
Sergey V. Mironov, Sergio Bermudez. Feather mites (Acariformes: Analgoidea) associated with the hairy woodpecker Leuconotopicus villosus (Piciformes: Picidae) in Panama. Acarologia, 2017, 57 (4), pp.941-955. 10.24349/acarologia/20174218. hal-01598589

HAL Id: hal-01598589
https://hal.science/hal-01598589
Submitted on 29 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2017 (Volume 57): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2015): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Feather mites (Acariformes: Analgoidea) associated with the hairy woodpecker *Leuconotopicus villosus* (Piciformes: Picidae) in Panama

Sergey V. Mironov1 and Sergio Bermúdez2

(Received 17 February 2017; accepted 08 June 2017; published online 29 September 2017; edited by Karen McCoy)

1 Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, Saint Petersburg, 199034, Russia. (s) sergei.mironov@zin.ru

2 Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Calle 36 Este, Panamá, Panama. bermudezsec@gmail.com

ABSTRACT — Two new feather mite species of the superfamily Analgoidea are described from the hairy woodpecker *Leuconotopicus villosus* (Linnaeus, 1766) (Piciformes: Picidae) in Panama: *Pterotrogus panamensis* n. sp. (Pteronyssidae) and *Trouessartia hernandesi* n. sp. (Trouessartiidae). *Pterotrogus panamensis* belongs to the *simplex* species group and most clearly differs from the other species of this group in having the pregenital sclerite paired in males, and the hysteronotal shields strongly narrowed posteriorly in females. *Trouessartia hernandesi* is close to *T. picumni* Hernandez, 2014, the only previously known species of this genus from woodpeckers, and differs from the latter by having the following features: in both sexes, setae *d1* and *d2* are present and genual setae *cG*I, *cG*II and *mG*I are spiculiform; in males, epimerites IVa are long, bow-shaped and extend to the base of the genital apparatus; in females, the external copulatory tube is long and spiculiform.

KEYWORDS — Acari; Astigmata; Pteronyssidae; Trouessartiidae; *Pterotrogus*; *Trouessartia*; systematics; Picidae; Panama

INTRODUCTION

Feather mites are a vast group of astigmatan mites (Acari: Astigmata) that are highly specialized ectoparasites and commensals permanently living on birds. These mites currently include over 2500 species arranged, according to the most widely accepted concept, in two superfamilies, Analgoidea and Pterolichoidea. Feather mites are known from all presently recognized orders of birds; most live in various microhabitats of the plumage of their hosts, although representatives of some families live on the skin and even in the nasal cavities (Gaud and Atyeo 1996; Dabert and Mironov 1999; Proctor 2003; OConnor 2009).

Feather mites distributed in South America have been explored rather incompletely in relation to expected biodiversity and haphazardly regarding countries. To date, records of feather mites have been reviewed and summarized only for Brazil (Valim et al. 2011; Pedroso and Hernandes 2016) and Colombia (Barreto et al. 2012); for other countries, faunal data on these mites are scattered in taxonomic works and short faunal reports. In Panama, the biodiversity of feather mites has never been purposefully explored. In a total, 31 species represent-
ing 17 genera and 5 families (Alloptidae, Crypturoptidae, Freyanidae, Proctophylloidae, Pterolichidae, and Pteronyssidae) have been recorded in this country over the past fifty years (Atyeo and Braasch 1966; Peterson 1971; Gaud et al. 1973; Atyeo 1979, 1988, 1989a, 1989b, Atyeo et al. 1984; Atyeo and Pérez 1990; Park and Atyeo 1972, 1974a, 1974b, 1975; Kudon 1982a, 1982b; Mironov and Dabert 2001; Mironov 2005).

In the present paper, which we intend to be the first of a series of papers on feather mites of Panama, we describe two new species from the hairy woodpecker *Leuconotopicus villosus* (Linnaeus) (Piciformes: Picidae).

Materials and Methods

The material used in the present work was collected during our parasitological survey in Las Nubes station in the south-eastern part of La Amistad International Park (Chiriquí Province, Panama) in April of 2016. This field site has an elevation of 2500 – 2800 m and is predominantly covered with a cloud forest. Birds were captured with mist-nets, identified, and checked for the presence of ectosymbionts. Feather mites were taken from live birds under stereomicroscope with a preparation needle or fine forceps and placed in tubes with 96% ethanol. After processing, captured birds were released back to the wild. In the laboratory, feather mites were mounted on slides in Hoyer’s medium according to the standard technique for small acariform mites (Krantz and Walter 2009). Investigation of mite specimens and drawings were made using a Leica DM 2500 light microscope equipped with differential interference contrast (DIC) and a camera lucida.

The descriptions of new species and techniques for measuring morphological structures follows the modern formats elaborated for corresponding taxonomic groups of mites (Mironov 2005; Mironov and Wauthy 2005; Hernandes 2012, 2014; Mironov and González-Acuña 2013). General morphological terms and leg and idiosomal chaetotaxy follow Gaud and Atyeo (1996); idiosomal chaetotaxy also follows these authors with minor corrections for coxal setation by Norton (1998). All measurements are in micrometers (µm).

The taxonomic system and scientific names of birds follow Gill and Donsker (2017). Abbreviations used in collection numbers and type material repositories are as follows: BMOC and UMMZ – Museum of Zoology of the University of Michigan, Ann Arbor, USA; ZISP – Zoological Institute of the Russian Academy of Sciences, Saint-Petersburg, Russia.

Systematics

Family Pteronyssidae Oudemans, 1941

Genus Pterotrogus Gaud, 1981

Type species: *Pteronyssus simplex* Haller, 1882, by original designation.

The feather mite genus *Pterotrogus* Gaud (in: Facchin and Atyeo 1981) was originally established for the species *Pterotrogus simplex* (Haller, 1882) from *Melanerpes erythrocephalus* (Linnaeus) (Piciformes, Picidae). This genus is one of 12 pteronyssid genera restricted in their host associations to birds of the order Piciformes (Mironov 2003). To date, the genus *Pterotrogus* has included 17 species; all of them are associated with woodpeckers of the New World (Mironov 2005; Mironov et al. 2005; Hernandes 2012). Phylogenetic analysis of relationships within this genus, based on morphological characters, and a key to species were provided by Mironov (2005). All presently known species are arranged in four species groups: *iron, lanceolatus, sinusoidus*, and *simplex*. Representatives of this genus inhabit the ventral side of vanes of wing feathers (primaries, secondaries and tertiaries), where they are located in corridors.

Two species, *P. iron* Mironov, 2005 and *P. macrosinusoidus* Mironov, 2005, were previously recorded from *Campephilus guatemalensis* (Hartlaub) in Panama (Mironov 2005).
Pterotrogus panamensis n. sp.
(Figures 1–3)

Zoobank: 8045E708-460B-499B-947D-C5A4C5744DE6

Type material — Holotype male (BMOC 17-0211-001), 15 male and 15 female paratypes from *Leuconotopicus villosus* (Linnaeus, 1766) (Piciformes: Picidae), Panama, Chiriqui Province, La Amistad International Park, 8°53’38”N, 82°36’54”W, 30 April 2016, coll. S.V. Mironov.

Depository — Holotype, 8 male and 8 female paratypes – UMMZ, remaining paratypes – ZISP.

Description — Male (holotype, ranges for 10 paratypes in parentheses) (Figures 1, 3A–E) — Length of idiosoma from anterior end to lobar apices 275 (260 – 280), greatest width of idiosoma 150 (145 – 155). Idiosoma covered with entire dorsal shield, transverse trace between fused prodorsal and hysteronotal shields barely detectable, inner borders of scapular and humeral shields indistinct; (Fig. 1); lateral margins of prodorsal shield with small incisions around external scapular setae; dorsal surface without ornamentation. Bases of setae se separated by 72 (68 – 75). Length of hysterosoma from level of setae c2 to lobar apices 170 (155 – 170). Setae c3 lanceolate, with acute apex, 18 (15 – 18) long, 6 (5 – 6) wide. Hysterosoma distinctly narrowed posterior to level of trochanters III, opisthosoma approximately as wide as greatest body width; opisthosomal lobes short and widely rounded, with short truncate extensions bearing bases of setae h2, h3, and ps2; terminal cleft small semicircular, 12 (8 – 12) long. Dorsal setae e1 situated anterior to the levels of lateral setae e2 and hysteronotal gland openings gl. Macroseata h2 and h3 with enlargement in basal part. Setae ps1, f2 filiform, setae ps2 slightly thickened basally; length of setae: ps1 15 (15 – 18), ps2 33 (32 – 34), f2 17 (15 – 18). Dorsal measurements: c2:d2 85 (78 – 85), d2:e2 50 (45 – 50), e2:h3 40 (38 – 40), d1:d2 38 (34 – 38), e1:gl 15 (13 – 15), d2:gl 32 (22 – 35), h2:h2 32 (32 – 35), h3:h3 23 (23 – 24), ps1:ps1 10 (10 – 12), ps2:ps2 42 (42 – 45).

Epimerites I, II with narrow sclerotized areas. Inner ends of epimerites IIIa shaped as an oblique L. Setae 3a and 4b approximately at the same transverse level. Genital arch 15 (15 – 16) long, 10 (10 – 11) wide, aedeagus about one third the length of arch. Epiandrum present, minute. Premarginal sclerites present, represented by a pair of small longitudinal sclerites. Coxal setae σ approximately at level of genital arch apex. Genital shield and adanal shields absent. Diameter of anal discs 13 (11 – 13).

Tarsus I slightly longer than wide. Genua I, II without crests, femora I, II with ventral crest. Tarsus III 30 (28 – 30) long, with small subapical claw, seta r short, about half the length of this segment. Legs IV with ambulacral disc extending beyond level of lobar apices. Tarsus IV 15 (14 – 15) long, modified setae d, e spiniform. Length of solenidia: σ II 8 (6 – 8), σ II 5 (3 – 5), σ III 6 (5 – 6), ϕ IV 20 (20 – 22).

Female (ranges for 10 paratypes) (Figures 2, 3F, G) — Length of idiosoma 390 – 400, greatest width of idiosoma 160 – 170. Length of hysterosoma from level of setae c2 to posterior end 275 – 285. Transverse trace between fused prodorsal and hysteronotal shields barely detectable, scapular shields fused with prodorsal shield, lateral margins of prodorsal shield with deep triangular incisions around setal bases se and si, bases of setae se separated by 80 – 85. Lateral borders of hysteronotal shield irregularly jagged with edges indistinct; posterior end of hysteronotal shield strongly narrowed and sclerotized much more heavily than remaining area of this shield. Lateral areas of hysterosoma dotted, without striae, sclerotized more weakly than dorsal shields. Setae c3 lanceolate with acute apex, 16 – 20 long, 6 – 7 wide. Posterior margin of opisthosoma rounded, without lobes. Setae d1 posterior to level of setae cp, setae e1 anterior to levels of setae e2 and openings gl. External copulatory tube as small weakly sclerotized cone-like extension. Macroseata h2, h3 whip-like, without lanceolate basal enlargement. Setae ps1, ps2 and f2 filiform; length of setae: ps1 10 – 12, ps2 18 – 25, f2 12 – 15. Dorsal measurements: c2:d2 115 – 120, d2:e2 75 – 88, d2:gl 65 – 70, gl:e1 12 – 13, e2:h3 75 – 85, d1:d2 40 – 57, e1:e2 25 – 33, h2:h2 45 – 53, h3:h3 30 – 32, ps1:ps1 32 – 36.

Epimerites I, II as in the male. Epimerites III, IV with small triangular sclerotized areas. Epigynum shaped as long arch, with tips extending beyond level of setae g, without lateral extensions, 60 – 65 long, 70 – 78 wide; sclerotized folds of oviporus ex-
Figure 1: Pterotrogus panamensis n. sp., male: A – dorsal view, B – ventral view.
Figure 2: *Pterotrogus panamensis* n. sp., female: A – dorsal view, B – ventral view.
tending to midlevel of epimerites IV. Adanal sclerites absent.

Legs I, II as in male. Tarsus III 25 – 30, tarsus IV 30 – 33 long. Length of solenidia: σII 7 – 10, σIII 4 – 5, φIII 42 – 45, φIV 8 – 10.

Differential diagnosis — The new species, Pterotrogus panamensis n. sp., belongs to the simplex species group (Mironov 2005) in having, in both sexes, simple filiform setae on the posterior margin of the body ($f2$, $h2$, $h3$, $ps1$, and $ps2$) and by the absence of dorsal crests on segments of legs I, II. Among seven previously known species of this group (Mironov 2005; Hernandes 2012), the new species is most similar to P. colapti Mironov, 2005 from Colaptes punctigula guttatus (von Spix) (Pici-formes: Picidae) in having setae $c3$ lanceolate and setae $e1$ situated between levels of setae $d2$ and $c2$ in both sexes, and rounded incisions around bases of setae se in males. Pterotrogus panamensis n. sp. differs from this species by the following features: in males, a pair of small pregenital sclerites are present anterior to the genital arch, bases of setae $h2$ and $h3$ are slightly flattened and enlarged; in females, the posterior end of the hysteronotal shield is strongly narrowed (about 1/3 the width of the main body of the shield) and heavily sclerotized. In males of P. colapti and other species of the simplex group, the
pregenital sclerites are absent or represented by a single median band (*P. veniliornis* Mironov, 2005), setae *h*2 and *h*3 are simple whip-like; in females, the posterior end of the hysteronotal shield is widely rounded and without strong sclerotization.

Etymology — The specific epithet is derived from the country name where this species was found.

Family Trouessartiidae Gaud, 1957

Genus Trouessartia Canestrini, 1899

Type species: Dermaleichus corvinus Koch, 1841, by subsequent designation.

With 112 described species, the feather mite genus *Trouessartia* Canestrini, 1899 is the most species-rich within the family (Santana 1976; Gaud and Atyeo 1986, 1987; Constantinescu et al. 2013, 2016a; Mironov and González-Acuña 2013; Hernandes 2014; Mironov and Palma 2016; Mironov and Overstreet 2016). A world revision of this genus, including uniform (re)descriptions and a key to 71 valid species recognized at that time, was provided by Santana (1976). This monograph is still the main publication on systematics of this genus. Major references to taxonomic papers on *Trouessartia* published after this work were provided by Mironov and González-Acuña (2013), Constantinescu et al. (2013, 2016a, 2016b), Hernandes (2014), Hernandes and Valim (2015) and Mironov and Palma (2016).

The genus *Trouessartia* is distributed worldwide. Its representatives are predominately associated with passerines and have been recorded from members of 28 families as classified by Gill and Donsker (2017). Among the species living on passerines, almost all are associated with oscines, and only five species have so far been recorded from sub-oscines of the families Tyrannidae and Rhinocryptidae in South America. Three single records of *Trouessartia* species on non-passerine hosts of the orders Charadriiformes, Coraciiformes, and Psittaciformes were considered as the result of accidental contaminations, since they have never been collected from the same hosts (Orwig 1968; Santana 1976; Gaud and Atyeo 1996). The only species reliably known from non-passerine hosts is recently described *Trouessartia picumni* Hernandes, 2014 from the tawny piculet *Picornus fulvescens* (Stager) (Piciiformes: Piciidae) in Brazil (Hernandes 2014). Within the plumage of their hosts, mites of the genus *Trouessartia* are mainly located on the wing feathers (secondaries, tertiaries, and greater upper coverts) and the rectrices (Mironov and González-Acuña 2013). A new *Trouessartia* species described below is the first record of this genus in Panama.

Trouessartia hernandesi n. sp.
(Figures 4–6)

Zoobank: 04C29960-47E2-4D2F-A8CF-4B4EC79EDAD2

Type material — Holotype male (BMOC 17-0211-002), 15 male and 15 female paratypes from *Leuconotopicus villosus* (Linnaeus, 1766) (Piciiformes: Picidae), Panama, Chiriqui Province, La Amistad International Park, Las Nubes Ranger Station, 8°53’38”N, 82°36’54”W, 30 April 2016, coll. S.V. Mironov.

Depository — Holotype, 8 male and 8 female paratypes – UMMZ, remaining paratypes — ZISP.

Description — *Male* (holotype, ranges for 10 paratypes in parentheses) (Figures 4, 6A–E) — Length of idiosoma from anterior end to lobar apices excluding lamellae 400 (395 – 430), width of idiosoma at level of humeral shields 200 (195 – 215). Length of hysterosoma from level of sejugal furrow to lobar apices 255 (255 – 275). Prodorsal shield: covering almost all prodorsum, length along midline 145 (140 – 155), greatest width posterior to level of scapular setae 160 (155 – 165), anterior part at level of trochanters II not narrowed, anterolateral extensions rounded, lateral margins immediately posterior to level of scapular setae fused with anterior ends of scapular shields, posterior margin slightly convex, surface without ornamentation. Internal scapular setae *si* filiform, 23 (15 – 24) long, separated by 55 (55 – 60); external scapular setae *se* separated by 95 (92 – 102). Scapular shields with poorly sclerotized inner margin and with oblique heavily sclerotized ridges on outer margin. Setae *c*2 thin needle-like, 35 (30 – 35) long, situated on anterior margins of humeral shields. Setae *c*3 narrowly lanceolate, with acute apex, 20 (20 – 22) long. Hysteronotal shield entire, prohysteronotal and lobar parts connected by wide median band and delimited from each other by narrow lateral incisions and a small
FIGURE 4: Trouessartia hernandesi n. sp., male: A – dorsal view, B – ventral view.
Figure 5: Trouessartia hernandesi n. sp., female: A – dorsal view, B – ventral view.
FIGURE 6: Trouessartia hernandesi n. sp., details: A–C – legs I–III of male, respectively, D – tibia and tarsus IV of male, E – genital apparatus and opisthosoma of male, ventral view, F, G – tibia and tarsus III and IV of female, respectively, H – spermatheca and spermaducts. Abbreviations: ad – adanal apodeme, ae – aedeagus, as – adanal shield, bs – basal sclerite, cs – collar of spermatheca, ea – epiandrum, epIV – epimerites IVa, gp – genital papillae, is – intermedial sclerite, hs – head of spermatheca, pd – primary spermaduct, pm – parameres, sd – secondary spermaduct, ta – translobar apodeme, tl – terminal lamella.
median unsclerotized patch, total length from anterior margin to lobar apices excluding lamellae 255 (250 – 265). Prohysteronotal part: length along midline 180 (170 – 185), width at anterior margin 165 (160 – 170), anterior angles fused with humeral shields, lateral margins without incisions, dorsal hysterosomal apertures (DHA) absent, surface without ornamentation, supranal concavity area with heavily sclerotized semi-ovate patch. Dorsal setae d1, d2, e1 and e2 present. Length of lobar shield excluding terminal lamellae 75 (75 – 82), greatest width 82 (82 – 92). Apical parts of opisthosomal lobes approximate, separated by narrow U-shaped terminal cleft extending to level of setae h2; length of cleft from anterior end to lobar apices 25 (24 – 26), length from anterior end to apices of terminal lamellae 50 (50 – 58), width at midlevel 13 (12 – 13). Terminal lamellae semi-ovate, with smooth margins, length from bases of setae h3 to lamellar apices 28 (28 – 32), greatest width 28 (25 – 28). Distance between dorsal setae: c2:d2 66 (65 – 75), d2:e2 93 (86 – 95), c2:h2 66 (63 – 68), h2:h3 18 (18 – 20), h2:h2 50 (50-55), h3:h3 38 (38 – 40), d1:d2 40 (38 – 50), e1:x2 35 (33 – 40), h1:h2 11 (8 – 11), ps1:h3 5 (5 – 7).

Epimerites I free. Rudimentary sclerites rEpIIa small, roughly ovate. Genital apparatus base situated at levels of anterior margin of trochanters IV, length excluding epiandrum and basal sclerite 40 (38 – 40), width at base 24 (24 – 26). Epiandrum (pre-genital sclerite) present. Anterior and posterior genital papillae equal in size and situated equidistant from midline. Setae g filiform, with bases touching each other. Postgenital shield absent. Adanal apodemes thick, heavily sclerotized, with anterior ends slightly convergent and almost extending to level of trochanters IV, with narrow and barely detectable lateral membranes, without apophyses. Translobar apodeme present. Adanal shields bearing setae ps3 shaped as small triangles. Adanal suckers 13 (13 – 14) in diameter. Inner ends of epimerites IIIa with apices extending to level of humeral setae cp. Epimerites IVa long, bow-shaped, with anterior ends extending to almost midlevel of genital apparatus. Setae 4b situated anterior to level of setae 3a, approximately at level of epimerites IIIa tips; setae g and 4a at same transverse level. Distance between ventral setae: 4b:3a 20 (18 – 22), 4b:g 75 (72 – 82), g:ps3 56 (56 – 60), ps3:h3 80 (80-85).

Setae cG of genu I, II spiculiform, approximately equal in length to these segments, seta mGI spiculiform, approximately half the length of genu I, seta mGII filiform. Legs IV with ambulacral disc extending to level of setae h3. Trochanteral seta sRIII thick filiform, 30 (30 – 34) long. Tarsus IV 33 (30 – 33) long; modified setae d, barrel-shaped with discoid cap, situated closer to apex of tarsus; modified setae e hemispherical, situated apically. Length of solenidia: σII 25 (24 – 27), σII 13 (12 – 15), σIII 15 (14 – 16), ϕIV 38 (35 – 40).

Female (range for 10 paratypes) (Figures 5, 6F–H) — Length of idiosoma from anterior end to apices of hyaline lobar processes 495 – 520, width at level of humeral shields 205 – 220. Length of hysterosoma from level of sejugal furrow to apices of lobar processes 345 – 360. Prodorsal shield: generally shaped as in males, 155 – 165 long, 165 – 175 wide, surface without ornamentation. Setae si filiform, 17 – 19 long, separated by 60 – 65; setae se separated by 100 – 105. Setae c2 thin spiculiform, 26 – 27 long, situated on anterior margin of humeral shields. Setae c3 narrowly lanceolate, with acute apex, 19 – 20 long. Hysteronotal shield: length from anterior margin to level of acute posterior ends 300 – 325, width at anterior margin 165 – 175, lateral margins without incisions, DHA absent, area from level of trochanters IV to setae h2 with several longitudinal dash-like lacunae. Dorsal setae d1, d2, e1, e2 present. Setae f2 absent. Setae h1 short filiform, about 10 long, situated anteromesal to bases of setae h2, 10 – 12 from corresponding lateral margins of hysteronotal shield. Width of opisthosoma at level of setae h2 100 – 105. Setae ps1 situated closer to level of setae h2 than to setae h3. Supranal concavity opened posteriorly into terminal cleft. Length of terminal cleft from anterior margin to lobar apices 125 – 130, width of cleft at level of setae h3 42 – 44. Interlobar membrane narrow, developed only at anterior end of terminal cleft, distance from free margin of this membrane to lobar apices 105 – 110. External copulatory tube thick spiculiform, slightly curved, with base situated on free margin of interlobar membrane. Distance between dorsal setae: c2:d2 90 – 95,
d2:e2 90 – 95, e2:h2 65 – 68, h2:h3 82 – 85, h2:h2 82 – 85, h3:h3 62 – 68, d1:d2 42 – 45, e1:e2 38 – 43, h1:h2 19 – 20, h1:h1 63 – 65, ps1:h3 38 – 40.

Epimerites I free. Epigynum 38 – 40 long, 90 – 95 wide. Head of spermatheca with short col-lar, primary spermaduct without enlargements, sec-ondary spermaducts about 5 long with c-shaped ends. Inner margins of epimerites IIIa with narrow and acute extension directed rearward. Epimerites IVa long, with longitudinal groove. Anal opening without adanal sclerites.

Legs I, II as in males. Trochanteral setae sR III filiform, 30 – 32 long. Legs IV with ambulacral disc extending to midlevel between setae h2 and h3. Length of solenidia: σ II 24 – 26, σ II 10 – 12, σ III 15 – 17, φ IV 40 – 45.

Differential diagnosis — The new species, Trouessartia hernandesi n. sp., is close to T. picumni Her-nandes, 2014 from Picumnus fulvescens (Stager) (Pici-formes, Picidae). These two species constitute a dis-tinct species group, which we refer here the picumni group, characterized by the following common fea-tures: in both sexes, the prodorsal shield is fused with anterior ends of scapular shields, and the hys-teronotal shield is fused with anterior ends of the humeral shields, trochanteral setae sR III are long filiform; in females, setae ps I are situated closer to setae h2 than to h3. Trouessartia hernandesi differs from T. picumni by the following features: in both sexes, setae d1 and d2 are present, the lateral margins of the hysteronal shield lack any incisions, genual setae cGI, cGII and mGI are spiculiform; in males, epimerites IVa are long, bow-shaped and extend to the base of the genital apparatus; in females, the external copulatory tube is long spiculiform. In both sexes of T. picumni, setae d1 and d2 are absent, the lateral margins of the hysteronal shields have a notch-like incision at level of trochanters III, setae cGI, cGII and mGI are filiform; in males, epimerites IVa are short and barely extend to the level of setae g; in females, the external copulatory tube is absent, the copulatory opening is in the anterior end of the terminal cleft.

Etymology — The species is named after Dr. Fabio A. Hernandes (Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil), a prominent Brazilian expert on feather mites.

DISCUSSION

The hairy woodpecker, Leuconotopicus villosus (Lin-naeus), has a very broad distribution throughout North and Central America (del Hoyo et al. 2002). The most southern part of its range extends to western Panama, where this bird is represented by a subspecies L. v. extimus (Bangs) (Gill and Donsker 2017). The feather mite fauna of the hairy woodpecker has been previously explored in Canada (Mironov & Galloway 2006; Galloway et al. 2014), with four species reported: Neopteronysus pici (Scopoli, 1763), Pteronyssus brevipes (Berlese, 1884), P. picoides Černý & Schumilo, 1973 (Pteronyssidae), and Picalgoïdes picimajoris (Buchholz, 1869) (Psoroptoididae). All these mite species are rather common on woodpeckers of the genera Dendrocopos Koch, Leuconotopicus Malherbe and Picoïdes Lacépède in northern Eurasia and North America (Mironov 1989, 2003, 2004; Mironov and Galloway 2006). Although several individu-als of L. villosus were examined in Canada over the course of that study, none of the new mite species described herein was found. Similarly, none of the four species occurring on L. villosus in Canada have been found in Panama.

The most reasonable explanation of this discordance in the feather mite faunas is that the mites associated with the hairy woodpecker in Panama, Pterotrogus panamensis and Trouessartia hernandesi, might be of a secondary origin on this host. In other words, the ancestors of these mite species may have been transferred from unrelated and presently unknown host species. The mite genus Pterotro-gus is widely distributed on New World woodpeckers, particularly the species-rich genera Campephilus Gray, Colaptes Vigors and Veniliornis Bonaparte in Central and South America. A few species of Pterotrogus species are also known from single host species from the genera Dryocopus Boie, Leuconoto-picus, and Melanerpes Swainson in North America (Mironov 2005; Mironov et al. 2005; Hernandes 2012). We suggest that the ancestor of P. panamensis has shifted from a woodpecker species of the gen-
era Colaptes or Veniliornis harboring species of the simplex group (Mironov 2005).

The genus Trouessartia, currently including over 110 species and the richest genus within the family, is associated almost exclusively with passerines (Santana 1976; Mironov and González-Acuña 2013; Hernandes and Valim 2015, Mironov and Palma 2016). Trouessartia picumni Hernandes, 2014, described from piculets of the genus Picumnus Temminck (Picidae: Picumninae) in Brazil, is the only species previously known to be associated with piciform hosts (Hernandes 2014). Since T. hernandesi and T. picumni are closely related species, but associated with woodpeckers from very distant phylogenetic lineages (different subfamilies), we suggest that the ancestors of both mite species have been transferred from probably related passerine hosts.

ACKNOWLEDGEMENTS

The authors thank Dr. J. Bernal (UNACHI – Universidad Autónoma de Chiriquí, David, Panama) for his help in organization the field trip, and Y. Aguirre, L. González (Universidad Autónoma de Chiriquí, David, Panama), L. Domínguez, and S. Torres (Instituto Gorgas) for their major help in capturing animals and collecting ectoparasites. The capturing of hosts and collecting of parasites were performed according to the license (No. SE/A-100-2015, DAPVS-0743-2016) issued by the Environmental National Ministry of Panama. The taxonomic part of this study was supported by the Russian Foundation for Basic Research (No. 16-04-00486) for SM, and the field investigation was funded by the UNACHI grant (No. 184-CN-01-A095-04-2013) for SB.

REFERENCES

Atyeo W.T. 1979 — New feather mite taxa (Acarina: Pterolichoidea) from the avian order Caprimulgiformes — J. Med. Entomol., 16: 528-535. doi:10.1093/jmedent/16.6.528

Atyeo W.T. 1988 — Feather mites of the Aralichus canestrinii (Trouessart) complex (Acarina, Pterolichidae) from New World parrots (Psittacidae). I. From the genera Ara Lacépède and Anodorhynchus Spix — Fieldiana, Zool., N.S., 47: 1-26.

Atyeo W.T. 1989a — Aralichus porrectus (Mégnin & Trouessart) and related feather mite species (Acarina, Pterolichidae) from parrots of the genus Brotoferis Vigors (Aves, Psittacidae) — Syst. Parasitol., 14: 101-111. doi:10.1007/BF00016904

Atyeo W.T. 1989b — Paralarichus gen. n. (Acarina, Pterolichidae) from New World parrots (Aves, Psittacidae) — Zoologica Scripta, 18: 331-346. doi:10.1111/j.1463-6409.1989.tb00459.x

Atyeo W.T., Braasch N.L. 1966 — The feather mite genus Proctophyllodes (Sarcoptiformes: Proctophylloidae) — Bull. University Nebraska State Mus., 5: 1-354.

Atyeo W.T., Gaud J., Perez T.M. 1984 — Distigmesikya, a new genus, and five species of feather mites (Acarina: Pterolichidae) from New World parrots (Aves: Psittacidae) — Acarologia, 25: 67-76.

Barreto M., Burbano M.A., Proctor H.C., Mironov S.V., Wauthy G. 2012 — Feather mites (Acariformes: Psoroptidia) from Colombia: Preliminary list with new records — Zootaxa, 3516: 1-68.

Constantinescu I.C., Chişamera G., Pocora V., Stanciu C., Adam C. 2013 — Two new species of feather mites (Acarina: Analgoidea) from the moustached warbler, Acrocephalus melanopogon (Passeriformes, Acrocephalidae), in Romania — Zootaxa, 3516: 1-68.

Constantinescu I.C., Cobzaru I., Mukhim D.K.B., Adam C. 2016a — Two new species of the genus Trouessartia (Acarina: Trouessartiidae) from leiothrichid birds (Aves, Leiothrichidae) — Zookeys, 571: 59-79.

Constantinescu I.C., Cobzaru I., Mukhim D.K.B., Adam C. 2016b — Two new species of the feather mite genus Trouessartia (Acarina: Trouessartiidae) from Asia — Zootaxa, 4137(3): 357-374.

Dabert J., Mironov S.V. 1999 — Origin and evolution of feather mites (Astigmata) — Exp. Appl. Acarol., 23: 437-454. doi:10.1023/A:1006180705101

del Hoyo J., Elliott A., Sargatal J. (Eds.) 2002 — Handbook of the Birds of the World. Volume 7: Jacamars to Woodpeckers — Barcelona (Spain): Lynx Edicions. pp. 613.

Faccini J.L.H., Atyeo W.T. 1981 — Generic revisions of the Pteronyssinidae and Hyonyssiniae (Analgoidea: Avenzoaridae) — Proc. Acad. Nat. Sci. Philadelphia, 133: 20-72.
Galloway T.D., Proctor H.C., Mironov S.V. 2014 — Chapter 5. Chewing lice (Insecta: Phthiraptera: Amblycera, Ischnocera) and feather mites (Acari: Astigmata: Analgoidea, Pterolichoidea): Ectosymbionts of grassland birds in Canada. — In: Cárcamo H.A. and Giber-640

don S. D. J. (Eds.). Arthropods of Canadian Grasslands (Volume 3): Biodiversity and Systematics, Part 1; Biological Survey of Canada: Publisher. p. 139-188.

Gaud J., Atyeo W. T. 1986 — Les Trouessartia (Analgoidea, Trouessartiidae) parasites des hirondelles de l’Ancien Monde. I. Le groupe appendiculata — Acarologia, 27: 263-274.

Gaud J., Atyeo W. T. 1987 — Les Trouessartia (Analgoidea, Trouessartiidae) parasites des hirondelles de l’Ancien Monde. II. Le groupe minutipes — Acarologia, 28: 367-379.

Gaud J., Atyeo W. T. 1996 — Feather mites of the World (Acarina, Astigmata): the superspecific taxa — Mus. Roy. Afr. Centr., Annls., Sci. Zool., 277: 1-193 (Pt. 1, text), 1-436 (Pt. 2, illustrations).

Gaud J., Atyeo W.T., Berla H.F. 1973 — Acariens Sarcoptiformes plumicoles parasites des tinamous. — Acarologia, 14: 393-453.

Gill F.B., Donsker D.B. (Eds.) 2017 — IOC World Bird List [7.2] [Internet] — [25 May 2017] IOC World Bird List [25 May 2017]. Available from: http://dx.doi.org/10.14344/IOC.ML.7.2 doi:10.14344/IOC.ML.7.2

Hernandes F.A. 2012 — Two new feather mite species (Acari, Pteronyssidae) from the white-barred piculet, Picumnus cirratus (Aves: Piciformes) — Folia Parasitol., 59(4): 301-307. doi:10.14411/fp.2012.042

Hernandes F.A. 2014 — Five new species of the feather mite genus Trouessartia Canestrini from South America (Acari: Trouessartiidae) — Zootaxa, 3856: 50-72. doi:10.11646/zootaxa.3856.1.2

Hernandes F.A., Valim M.P. 2015 — A new species of the genus Trouessartia Canestrini (Acari: Trouessartiidae) from Neotropical passerines (Aves: Tyrannidae) — Int. J. Acarol., 41: 382-388. doi:10.1080/0167954.2015.1046921

Krantz G.W., Walter D.E. (Eds.) 2009 — A manual of acarology, 3rd edition — Lubbock: Texas Tech University Press. pp. 807.

Kudon L.H. 1982a — Descriptions of three new species in the genus Platycarus Kudon (Acarina: Proctophyllophoridae) — J. Georgia Entomol. Soc., 17: 525-530.

Kudon L.H. 1982b — Four new species of feather mites from the genus Platycarus (Acarina: Proctophyllophoridae) — J. Georgia Entomol. Soc., 17: 537-544.

Mironov S.V. 2003 — A review of feather mites of the genus Neopteronyssus (Astigmata Pteronyssidae) associated with woodpeckers (Piciformes Picidae) of the Old World — Belg. J. Entomol., 5: 37-77.

Mironov S.V. 1989 — A review of the feather mites of the subfamily Pteronyssinae from the USSR (Analgoidea, Avenzoaridae) — Parazitologicheskii Sbornik, Zoologicheskii Institut AN SSSR, 35: 96-124. [In Russian with English summary]

Mironov S.V. 2003 — A review of feather mites of the genus Neopteronyssus (Astigmata Pteronyssidae) associated with woodpeckers (Piciformes Picidae) of the Old World — Belg. J. Entomol., 5: 37-77.

Mironov S.V. 2004 — Taxonomic notes on four genera of the feather mite subfamily Pandalurinae (Astigmata: Psoroptoidea) — Acarina, 12(1): 3-16.

Mironov S.V. 2005 — Feather mites of the genus Pterotrogus Gaud 1981 (Analgoidea: Pteronyssidae) from the New World woodpeckers (Piciformes: Picidae) — Belg. J. Entomol., 7: 129-180.

Mironov S.V., Dabert J. 2001 — Monofreyana gen. n., a new feather mite genus of the family Freyanidae (Acari: Astigmata) from plovers (Charadriiformes: Charadridae) — Acarina, 9(2): 223-231.

Mironov S.V., Dabert J., Ehrnsberger R. 2005 — A new species of the feather mite genus Pterotrogus Gaud (Analgoidea: Pteronyssidae) from the ivory-billed woodpecker Campephilus principalis L. (Aves: Piciformes) — Annls. Entomol. Soc. Am., 98: 13-17. doi:10.1603/0013-8746(2005)098[0013:ANSOTF]2.0.CO;2

Mironov S.V., Galloway T.D. 2006 — New and little-known species of the feather mites (Acari: Analgoidea: Pteronyssidae) from birds in North America — The Canadian Entomologist, 138(2): 165-188. doi:10.4039/n05-047

Mironov S.V., Gonzalez-Acuña D.A. 2013 — A new feather mite species of the genus Trouessartia Canestrini 1899 (Acariformes: Trouessartiidae) from the white-crested elaenia Elaenia albiceps (Passeriformes: Tyrannidae) in Chile — Acarina, 21(2): 123-132.

Mironov S.V., Overstreet R.M. 2016 — A new feather mite of the genus Trouessartia Canestrini (Acariformes: Trouessartiidae) from the northern rough-winged swallow Stelgidopteryx serripennis (Passeriformes: Hirundinidae) in Pennsylvania — Acarina, 24(2): 3-9.

Mironov S.V., Palma R.L. 2016 — A new feather mite of the genus Trouessartia Canestrini 1899 (Acariformes: Trouessartiidae) from the Seychelles magpie-robin, Copsychus sechellarum (Passeriformes: Muscipicidae) — Acta Parasitol., 61(3): 629-635. doi:10.1515/ap-2016-0084
Mironov S.V., Wauthy G. 2005 — A review of the feather mite genus *Pteronyssoides* Hull, 1931 (Astigmata: Pteronyssidae) from African and European passerines (Aves: Passeriformes) with analysis of mite phylogeny and host associations — Bull. Inst. Roy. Sci. Natur. Belgique, Entomol., 75: 155-214.

Norton R. 1998 — Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes) — Exp. Appl. Acarol., 22: 559-594.

Orwig K.R. 1968 — The genera and species of the feather mite subfamily Trouessartinae except *Trouessartia* (Acarina: Proctophyllodidae) — Bull. University Nebraska State Mus., 8: 1-187.

OConnor B.M. 2009 — Chapter 16. Cohort Astigmatina — In: G.W. Krantz, and D.E. Walter (Eds.). A manual of acarology, 3rd edition; Lubbock: Texas Tech University Press. p. 565-658.

Park C.K., Atyeo W.T. 1972 — The species of a new subfamily of feather mites, the Allodectinae (Acarina: Proctophyllodidae) — Redia, 52: 653-678.

Park C.K., Atyeo W.T. 1974a — The pterodectine feather mites of hummingbirds: the genus *Toxorodectes* Park and Atyeo (the lecroyae and gladiger groups) — J. Georgia Entomol. Soc., 9: 18-32.

Park C.K., Atyeo W.T. 1974b — The pterodectine feather mites of hummingbirds: The genus *Trochilodectes* Park and Atyeo — J. Georgia Entomol. Soc., 9: 156-173.

Park C.K., Atyeo W.T. 1975 — The pterodectine feather mites of hummingbirds: the genus *Xynonodectes* Park and Atyeo — J. Georgia Entomol. Soc., 10: 128-144.

Pedroso L.G.A., Hernandes F.A. 2016 — New records of feather mites (Acariformes: Astigmata) from non-passerine birds (Aves) in Brazil — Check List, 12, 6, 2000: 1-25. doi:10.15560/12.6.2000

Peterson P.C. 1971 — A revision of the feather mite genus *Brephosceles* (Proctophyllodidae: Alloptinae) — Bull. University Nebraska State Mus., 9: 89-172.

Proctor H.C. 2003 — Feather mites (Acari: Astigmata): Ecology, Behavior, and Evolution — A. Rev. Entomol., 48: 185-209. doi:10.1146/annurev.ento.48.091801.112725

Santana F.J. 1976 — A review of the genus *Trouessartia* (Acarina: Alloptidae) — J. Med. Entomol., Suppl., 1: 1-128.

Valim M.P., Hernandes F.A., Proctor H.C. 2011 — Feather mites of Brazil (Acari: Astigmata: Alangoidea and Pterolichoidea) — Int. J. Acarol., 37, 293-324. doi:10.1080/01647954.2010.519719

COPYRIGHT

Mironov S.V. and Bermúdez S. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.