Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria—mini review

Valerii Z. Akhverdyan · Evgueni R. Gak · Irina L. Tokmakova · Nataliya V. Stoynova · Yurgis A. V. Yomantas · Sergey V. Mashko

Received: 29 April 2011 / Revised: 24 May 2011 / Accepted: 24 May 2011 / Published online: 23 June 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends. The dual-component system, which consists of an integrative plasmid with a mini-Mu and an easily eliminated helper plasmid encoding inducible transposition factors, is described in detail as a tool for the integration/amplification of recombinant DNAs. This chromosomal editing method is based on replicative transposition through the formation of a co-integrate that can be resolved in a recombination-dependent manner. (E-plus)- or (E-minus)-helpers that differ in the presence of the trans-acting E element are used to achieve the proper mini-Mu transposition intensity. The systems that have been developed for the construction of stably maintained mini-Mu multi-integrant strains of Escherichia coli and Methylophilus methylotrophus are described. A novel integration/amplification/fixation strategy is proposed for consecutive independent replicative transpositions of different mini-Mu(LER) units with “excisable” E elements in methylotrophic cells.

Keywords Chromosomal editing · Dual-component system · Enhancer element · Excisable marker · L/R ends · MuA transposase · Plasmid-less recombinant strain · Replicative transposition

Introduction

The relevance and practical significance of constructing plasmid-less recombinant bacterial strains for use in applied microbiology and biotechnology are increasing due to the potential for genetic instability to reduce the number of active recombinant alleles in plasmids (Friehs 2004) and restrictions on the application of plasmids in large-scale industries of the First World (European Council Directives 1990, 1998). In vivo chromosomal editing methods, which are primarily based on homologous and/or site-specific recombination of DNA as well as on transposition mechanisms, have been used to engineer plasmid-less bacteria (Balbás and Gosset 2001). The increase in genomic copy number of native or previously modified target genes is an important tool for chromosomal editing and the construction of stably maintained bacterial genomes. The development of new approaches for the integration (Minaeva et al. 2008; Rivero-Müller et al. 2007) and the increase in genomic copy number (Tyo et al. 2009) of recombinant DNA fragments remains relevant even for Escherichia coli and closely related Gram-negative bacteria for which recombineering-based technologies (Court et al. 2002; Sawitzke et al. 2007; Sharan et al. 2009) have already been developed to finely modulate the expression of chromosomal genes (De Mey et al. 2010; Katashkina et al. 2005; Meynial-Salles et al. 2005).
and sometimes conditionally increase (Doroshenko et al. 2010b) or silence (Krylov et al. 2010) the level of their transcription. The methods of integration/amplification are especially important for bacteria for which the genetic tools for the chromosomal editing are not as comprehensive and diversified as those available for E. coli.

The integration of target genes in a bacterial chromosome followed by the increase in genomic copy number can be efficiently achieved using a phage Mu-driven transposition system originally developed for E. coli and initially characterized more than 20 years ago (Castilho et al. 1984; Chaconas et al. 1981a, b). Since the mid-1980s, several Mu derivatives, mini-Mu(s), have been constructed and extensively used for applications in classical in vivo transposition, including insertional mutagenesis, gene fusion, and mapping techniques, as well as for gene cloning and DNA sequencing strategies (Groisman 1991; Groisman and Casadaban 1986, 1987). The highly efficient Mu-based technology of the in vitro DNA transposition has been developed as a convenient tool for the functional analysis of genes, genomes, and proteins because of the accurate nature reaction and the low stringency for the target preference (Haapa et al. 1999; Haapa-Paananen et al. 2002; Savilahti et al. 1995; Savilahti and Mizuuchi 1996; Turkainen et al. 2009). The construction of recombinant plasmid-less L-threonine-overproducing E. coli strains may have been the first application of mini-Mu as a vector for the integration/amplification of target pathway genes for metabolic engineering (Kurahashi et al. 1990; Kurahashi and Takinami 1991).

Comprehensive investigations, primarily in vitro, of the Mu-driven system have provided extensive insights into the molecular aspects of the transposition mechanism. These works have been recently summarized in excellent research papers and overviews (Abdelhakim et al. 2008; Au et al. 2006; Chaconas and Harshey 2002; Choi and Harshey 2010; Gueguen et al. 2005; Harshey and Jayaram 2006; Nakai et al. 2001; Rice and Baker 2001). However, in vivo Mu-driven systems may be underutilized in applied microbiology and biotechnology. The main aim of this review is to highlight, especially for the new generation of investigators, the potential application of Mu-driven systems as a powerful genetic tool for the integration/amplification of target genes and the construction of plasmid-less engineered bacterial strains.

Cis and trans requirements of Mu phage-mediated transposition

Known as the most efficient transposon, Mu is a temperate bacteriophage that is capable of growth on many enteric bacteria, including E. coli K-12. The Mu phage undergoes two alternative transposition pathways (Fig. 1) at different stages of its life cycle (Howe 1997; Paolozzi and Ghelardini 2006; Symonds et al. 1987). The Mu-driven “integrative” (or “conservative” or “nonreplicative”) transposition, which is also designated as a “simple insertion” (Akroyd and Symonds 1983; Harshey 1984; Liebart et al. 1982), and the “replicative” transposition (Chaconas et al. 1981b, 1996) are temporally separated. During the Mu phage infection step, various flanking sequences from the previous host are lost during the integrative transposition of the linear Mu DNA into a random site of the bacterial chromosome (Au et al. 2006; Bukhari and Zipser 1972). Replicative transposition through the formation of a “cointegrate” structure is obligatory for replication and for the production of approximately 100 phages during lytic growth (Chaconas et al. 1981b; Chaconas and Harshey 2002; Craigie and Mizuuchi 1985). As a result of replicative transposition, new copies of the Mu DNA occur at many sites in the bacterial genome, frequently within several kilobase pairs of one another. The most obvious factor that affects the random integration of Mu DNA into bacterial genes is their efficient transcription, which has a clearly negative impact on transposition (Manna et al. 2004).

Both Mu-mediated transposition pathways are catalyzed by a high-order protein–DNA complex called a transpososome (reviewed in Gueguen et al. 2005; Harshey and Jayaram 2006). The Mu DNA sites and proteins involved in transpososome assembly and function are presented in Figs. 2 and 3, respectively (for detailed references, see Chaconas and Harshey 2002; Harshey and Jayaram 2006). The core of the Mu transpososome is composed of two Mu end DNA segments (L and R ends) that are synapsed by stably bound multiple subunits of the transposase MuA, which catalyzes the specific DNA cleavage and joining required for transposition (Craigie et al. 1984; Kuo et al. 1991; Lavoie et al. 1991). The L/R ends each contain three MuA-binding sites (L1–L3 and R1–R3, correspondingly) with different spacings (Fig. 2a) (Craigie et al. 1984). MuA binds as a monomer to each L/R site, introducing an 80° to 90° bend (Kuo et al. 1991). The function of the cis- or trans-encoded MuA protein is essential for the transposition in vivo of the mini-Mu that is presented on supercoiled DNA and consists of the L/R sites (Patterson et al. 1986). The six binding sites are not equally important for transpososome assembly. Indeed, genetic experiments show the unimportance of the R3 site; a deletion of the L3 site results only in a 10-fold reduction in transposition in vivo (Groenen et al. 1985). It is shown in vitro that a MuA-mediated stable synaptic complex with only three (L1, R1, R2) sites could be formed in which the donor DNA strands are nicked and fully competent in the subsequent strand-transfer step of transposition (Kuo et al. 1991). The linear mini-Mu DNA flanked by the (R1R2) sites in an inverted orientation is efficiently used for in vitro MuA-mediated
assemble the transpososome followed by integrative transposition in vitro (Haapa et al. 1999; Savilahti et al. 1995) or in genomes of different organisms (Lamberg et al. 2002; Paatero et al. 2008; Pajunen et al. 2005).

In E. coli, Mu transpososome assembly is facilitated by two host-encoded DNA bending proteins—HU and a sequence-specific integration host factor (IHF) (Swinger and Rice 2004). HU binds in vivo to the spacer between L1 and L2 (Lavoie et al. 1996), introducing a bend and presumably drawing the bound MuA protomers together (Gueguen et al. 2005). The binding site for IHF is in an E element that is located approximately 1 kb from the L end in the native Mu DNA.

The enhancer element, E [earlier named as the internal activation sequence or IAS (Mizuuchi et al. 1995; Mizuuchi and Mizuuchi 1989)], stimulates transposition more than 100-fold in vitro and in vivo (Castilho et al. 1984; Leung et al. 1989; Surette et al. 1989). The E element partially overlaps with the O1–O3 region (Krause and Higgins 1986), which was initially identified as the operator to which the Mu c-repressor binds to silence the transcription of early phage functions from the Pe promoter (Fig. 2a). The E element is composed of two clusters of MuA-binding sequences separated by a binding site for IHF (Mizuuchi and Mizuuchi 1989; Surette et al. 1989). The site-specific IHF-mediated bending of DNA at the E element is presumed to assist MuA-mediated end-enhancer interactions (Harshey and Jayaram 2006).

IHF is required in vitro for the efficient transposition of the mini-Mu carrying the E element when the superhelical density (\(\sigma \)) of the donor DNA is low (Surette and Chaconas 1989), i.e., \(\sigma \) decreases from −0.05 (a characteristic value for naked bacterial superhelical DNA) to a level of \(\sigma \sim -0.025 \) [this density is typical for the “restrained” protein-bound DNA molecule in vivo (Dillon and Dorman 2010; Pettijohn 1996; Pettijohn and Pfenninger 1980)].
The in cis orientation of the E element in mini-Mu with respect to the L/R ends is critical to its function, while its distance from the ends does not seem to be significant. The E element can stimulate transposition if it is present in trans in an unlinked DNA molecule (Surette and Chaconas 1992). The presence of the E element is important for correct transpososome assembly (Fig. 3) (Allison and Chaconas 1992; Lavoie and Chaconas 1995; Watson and Chaconas 1996), and it remains associated with this complex throughout the transposition process (Pathania et al. 2002, 2003; Yin et al. 2007).

MuA is a 663-aa residue protein that can be divided into three domains by partial proteolysis; each domain can be functionally or structurally divided into subdomains (Fig. 2b, and reviewed in Rice and Baker 2001). The N-terminal domain of the MuA protein contacts the sequences of the L/R ends and the E element through separate regions (Mizuuchi et al. 1995). The central domain is involved in the catalysis of the transposition reactions. The C-terminal domain is responsible for the interaction with the host protein, ClpX (see below), and with the auxiliary transposition factor, the MuB protein. MuB not only modulates the activity of MuA (Faelen et al. 1978) but also delivers the target DNA to the transpososome (Chaconas and Harshey 2002; Roldan and Baker 2001) and protects the actively replicating/transposing Mu from self-integration (Ge et al. 2010; Han and Mizuuchi 2010). Both the DNA binding and activation of the MuA transposase functions of MuB are required for productive phage Mu replicative transposition, but only the activation of transposase is necessary for efficient integrative transposition (Roldan and Baker 2001). The MuB protein is not required for the integrative transposition (O’Day et al. 1978); however, it enhances the rate and extent of this pathway (Roldan and Baker 2001).
During the multistep reaction, the MuA present in the transpososome complex catalyzes the specific DNA single-stranded cleavages at the terminal CA dinucleotides of the L1 and R1 sites, using water as the nucleophile in such a way that 3′-OH groups of the transposable element are exposed (Mizuuchi 1984). These 3′ ends serve as nucleophiles for the subsequent joining or strand-transfer step, attacking phosphodiester bonds spaced 5 bp apart on target DNA in a one-step transesterification reaction (Mizuuchi and Adzuma 1991). The resulting θ-like DNA structure is a common intermediate for both transposition pathways (Chaconas and Harshey 2002; Harshey and Jayaram 2006). The host ClpX unfoldase ultimately destabilizes the transpososome, which facilitates the recruitment of the host-dependent DNA replication/repair machinery to finalize the “nick–join–replicative” or “nick–join–repair” transposition pathways (Fig. 4) (Abdelhakim et al. 2008; Nakai et al. 2001). In both cases, the strand transfer at staggered positions in target DNA strands will cause a duplication of 5 bp of the target DNA flanking the transposed Mu-based element. Probably, ClpX participates, as well, in stimulating the nuclease activity of the C-terminal domain of the transposase MuA (Wu and Chaconas 1995) in a highly regulated reaction that removes the attached host DNA after the incoming Mu genome has inserted into a bacterial chromosome according to the integrative transposition (Choi and Harshey 2010).

Mini-Mu as a genetic tool for E. coli chromosomal editing

The structures of mini-Mus can differ significantly. Some mini-Mus carry all of the genetic elements essential for transposition, replication, and packaging. Other derivatives possess only the Mu ends (later designated as mini-Mu(LR) units) and can be complemented in trans to perform Mu-specific functions in *E. coli* (Chaconas et al. 1981a; Harshey 1983; Patterson et al. 1986). Mini-Mu(cts) chromosomal vectors, which lack the genes required for
making phage particles, have been used for simultaneous thermo-induced replicative transposition and heterologous protein synthesis in *E. coli* (Weinberg et al. 1993).

However, the cis-encoded transposition factors in the mini-Mu(cts) constructs can cause instability in engineered strains even under noninduced conditions (Akhverdyan et al. 2007). Stabilization has been achieved through the use of dual-component systems in which the genes for the MuA and MuB transposition factors are encoded in trans on an unlinked/nontransposed DNA molecule and eliminated after mini-Mu transposition.

Different variants of this system have been developed (Akhverdyan et al. 2007; Castillo et al. 1984; Chaconas et al. 1981a; Groenen et al. 1985; Patterson et al. 1986). One of the most popular systems includes an “integrative” plasmid that consists of a mini-Mu(LR) unit as the first component and a compatible “helper” plasmid carrying the inducible MuA and MuB genes as the second component. Usually, the helper plasmid possesses an unstable replicon and can be easily eliminated from the cells. The transposed genes in a set of mini-Mu(LR) units are flanked by Rho-independent transcription terminators in a directly repeated orientation (Abalakina et al. 2008a, b; Gulevich et al. 2009). The upstream terminator prevents readthrough transcription of the randomly integrated mini-Mu unit from the chromosomal promoter. In turn, the downstream terminator interrupts internal readthrough transcription of the mini-Mu that could interfere with transpososome assembly in vivo (Patterson et al. 1986).

In the mini-Mu derivatives that could be assigned as mini-Mu(LER) units, an E element properly arranged between the L and R ends positively influences transposition (Leung et al. 1989). However, intense expression of the MuA and MuB genes, even when located in trans, leads to host cell lethality because of the overly efficient replicative transposition of the mini-Mu(LER) units (Akhverdyan et al. 2007; Lee 2002). Although artificial mini-Mu(LER) units are actively used in fundamental investigations of transpososome assembly and function in vitro and in vivo (Lee 2002), they have not been widely applied in stably engineered *E. coli* strains.

In contrast, in trans E element has been successfully used to significantly increase the transposition efficiency of the mini-Mu(LR) unit. A comparison of the E-carrier (E-plus)-helper and the helper that did not contain the E element (E-minus)-helper revealed a nearly two-order magnitude of increase in the transposition efficiency of the mini-Mu(LR) units when the (E-plus)-helper was used.

To facilitate the selection of the transposed mini-Mu, an antibiotic resistance marker (AntR) can be included. Markers that are flanked by the sequences essential for site-specific recombination, *attL*/*R* (Peredelchuk and Bennett 1997), *loxP* (Arakawa et al. 2001), or *FRT* (Datsenko and Wanner 2000), are usually used. These markers can be excised in vivo from the mini-Mu units by the corresponding recombinase to obtain the marker-less recombinant strain (Abalakina et al. 2008a; Gulevich et al. 2009; Wei et al. 2010).

Several protocols have been developed for mini-Mu(LR) unit transposition into the *E. coli* chromosome with the help of the dual-component Mu-driven system. The best results have been obtained when an (E-plus)-helper plasmid is first transferred into the recipient strain and is stably maintained under noninducing conditions. Then, an integrative plasmid is transferred into the helper–carrier strain; the efficacy of this step mainly determines the total efficiency of the detected mini-Mu(LR) unit transposition. Therefore, different strategies that are based on the presence of a selective marker in the mini-Mu(LR) unit are employed. For a marker–carrier mini-Mu, replication of the integrative plasmid is not necessary in the recipient cell. So, the transposase can be induced during plasmid entry followed by direct selection of the clones–integrants. Usually, transposition occurs in the majority of cells that receive the integrative plasmid (Zimenkov et al. 2004).

If the marker-less mini-Mu(LR) unit is used, the integrative plasmid has to be selectively transformed into the helper–carrier recipient. The transposase is then expressed in the cells that contain both autonomously replicating components of the Mu-driven system. Finally, the obtained clones–integrants are cured of the unstable plasmid(s). Usually, the transposition of the mini-Mu(LR) units can be detected in at least 10% of the induced cells (Savrasova et al. 2007).

Both strategies can lead to high-efficiency formation of clones possessing one or more (up to five to ten) copies of the mini-Mu(LR) unit in the chromosome (Akhverdyan et al. 2007). The copy number of the integrated mini-Mu can be increased further by reintroducing and expressing the E-plus-helper plasmid in the corresponding plasmid-less strain–integrant. The (E-minus)-helper plasmid has a significantly decreased but still detectable ability to facilitate intrachromosomal replicative transposition of mini-Mu(LR) units in *E. coli* (Gak et al., in preparation).

1 The p15A-based plasmid pMH10 was used as a helper in this dual-component system (Akhverdyan et al. 2007). pMH10 carried the fragment from pMud4041 (Symonds et al. 1987), which consisted of the Muc62 repressor gene and MuA, MuB with the native cts-controlled regulatory region including P*, promoter, and (E; O1–O3).

2 MuA and MuB genes controlled by the APu/O*, regulatory region were located in the nontransposing part of the single plasmid that carried the transposed mini-Mu(LR) unit as well (Patterson et al. 1986).

3 However, the efficiency of the developed dual-component Mu-driven system in *E. coli* is frequently so high that integrants of interest can easily be selected by total screening without using special AntR markers in the mini-Mu unit (Akhverdyan et al. 2007; Savrasova et al. 2007).
A dual-component Mu-driven system has been frequently used for *E. coli* chromosome editing and for constructing different bacterial strains for basic research and metabolically engineered amino acid production (Table 1). In most cases, the expression level of the Mu-integrated genes increased proportionally as the copy number in the chromosome increased. As a rule, the amplification of a biosynthetic operon leads to the increased accumulation of the corresponding amino acid. The amino acid production levels of the plasmid-less strains obtained were comparable to those of their plasmid-carrier recombinant analogs, and the former were significantly more stable during nonselective cultivation (Akhverdyan et al. 2007; Savrasoova et al. 2007).

The transposition of the mini-Mu(LR) unit into the bacterial chromosome mainly occurs through a "nick–join–replicative" mechanism with the formation of a cointegrate in which the integrative plasmid and the chromosome fuse and two copies of the mini-Mu unit border the junction of the fused replicons as direct repeats (Fig. 4) (Abalakina et al. 2008a; Patterson et al. 1986; Tokmakova 2010). The cointegrate is subsequently resolved by a reciprocal

Table 1

The list of several native and artificial genes/operons inserted into bacterial genomes using the dual-component Mu-driven integration/amplification system

Integrated gene(s)	Copy number	Purpose of the recombinant strain	Reference
Integration into *E. coli* genome			
P.lac→lacI	1	Investigation of an artificial autoregulated system	Skorokhodova et al. 2004
P.lac-lacI-ilvA7434	1	Investigation of L-threonine catabolism	Sycheva et al. 2003
KmR carrier mini-Mu(LR) units	1	Investigation of integration points determination	Zimenkov et al. 2004
*thrA*BC-CmR	1–10	Basic research	Akhverdyan et al. 2007
*P.R.thrA*BC-CmR	1–10	L-threonine production	ibid.
*P.R.-leuA*BCD-CmR	1–10	L-leucine production	ibid.
yddG	1	Investigation of aromatic amino acid export	Doroshenko et al. 2007
*P.ahpD*yeaS	≥1	Investigation of branched-chain amino acids export	Kutukova et al. 2005
*P.R.-leuA*BCD	1–5	Amino acid production	Savrasova et al. 2007
P.R.pgi-pfkA	≥1	Metabolic engineering	ibid.
P.R.glk	≥1	Metabolic engineering	ibid.
P.R.eno	≥1	Metabolic engineering	ibid.
P.R.ppc/ppc	≥1	Metabolic engineering	ibid.
P.lac-aroG4-serA5	1	L-tryptophan production	Gulevich et al. 2009
P.R-ilvGMED	4	Amino acid production; recipient for basic research	Eremina et al. 2010; Savrasova et al. 2006
P.R.prs (prs)*	≥1	L-histidine production	Klyachko et al. 2008
aroG4-pheA-aroL	1	L-phenylalanine production	Doroshenko et al. 2010a, b
P.R-ilvGMED	1	Isobutanol production via the L-valine biosynthetic pathway	Savrasova et al. 2011
scrKY ABR	≥1	To improve the sucrose uptake	Livshits et al. 2005
*P.R-ilvGMEDA*YC	≥1	L-isoleucine production	Savrasova et al. 2007
FR7-KmR-FR7	1	Basic research	Abalakina et al. 2008a
KmR-*xyle*E *puitala*	1	Basic research	ibid.
amyB _amylophilus-KmR*	1	Basic research	ibid.
amy + xyle	1–1	Basic research	ibid.
SmR (in mini-Mu(LR) units)	1–2	Enhancement of aromatic amino acid transport into the cell	Yomantas et al. 2010; Tokmakova et al. 2010
aroP_E. coli	1		
ZsGreen _zoonathus sp. SmR* (in mini-Mu(LR) units)	1–2		
ZsGreen, SmR (in mini-Mu(LR) units)	1–6		

Integration into *M. methylotrophus* genome

Integrated gene(s)	Copy number	Purpose of the recombinant strain	Reference
FRT-KmR-FRT	1	Basic research	Abalakina et al. 2008a

Springer
recombination event between the two mini-Mu units. The chromosomal structure of the final strain that contains one copy of the mini-Mu unit is the same as if integrative transposition of this unit had occurred. The sites of mini-Mu insertion in the *E. coli* chromosome could be precisely determined (Wei et al. 2010; Zimenkov et al. 2004) by inverse polymerase chain reaction (Ochman et al. 1988).

Several copies of the mini-Mu(LR) units can be easily detected in the bacterial genome after using the dual-component Mu-driven system. It could not be excluded that these multiple copies are due to independent transpositions from several copies of the nonreplicated integrative plasmid that were initially transformed into one cell or from several copies of autonomously replicated integrative plasmid. However, especially when the nonreplicating integrative plasmid was used, it seems more likely that the amplification is achieved due to the mini-Mu intrachromosomal replicative transposition. Certainly, the genome of the final stable plasmid-less multi-integrant strain may contain transposition-mediated chromosomal rearrangements, including inversions and/or deletions of bacterial DNA fragments (Watson et al. 2004).

Adaptation of the Mu-driven system for *Methylophilus methylotrophus* AS1

Interest in the use of methylotrophic bacteria for applied microbiology and biotechnology has increased in recent years (Schrader et al. 2009). Several genomes of methylotrophs have been sequenced (Chistoserdova et al. 2007; Vuilleumier et al. 2009). Significant progress has been made in elucidating the metabolism of these bacteria (Chistoserdova et al. 2009), and the number of tools available for genetic and metabolic engineering has expanded greatly (Bélanger et al. 2004; Choi et al. 2006; Marx and Lidstrom 2001, 2004). Strategies to produce fine and bulk chemicals using methylotrophs have been described previously (Bourque et al. 1995; Fitzgerald and Lidstrom 2003; Motoyama et al. 1993, 2001). In particular, the obligate methylotroph *Methylophilus methylotrophus* AS1, which was extensively studied with respect to the industrial-scale production of single cell protein from methanol in the 1970s (Anthony 1982; Vasey and Powell 1984), was recently metabolically engineered for the biosynthesis of L-lysine (Gunji and Yasueda 2006; Tsujimoto et al. 2006) and L-phenylalanine (Tokmakova et al. 2010) and for the efficient secretion of recombinant proteins (Itaya et al. 2008).

The adaptation of mini-Mu transposition for chromosomal editing in *M. methylotrophus* AS1 (Abalakina et al. 2008a, b) was a significant development. Mu-driven integration of the *E. coli* transporter gene into the methylotrophic genome was the basis for the development of an efficient method of constructing auxotrophic mutants (Yomantas et al. 2010) with the following exploiting the developed system for metabolic engineering of L-phenylalanine overproduction (Iomantas and Abalakina 2002; Tokmakova et al. 2008, 2010).

The adaptation of the Mu-driven system to *M. methylotrophus* AS1 included several stages (Abalakina et al. 2008a). Initially, a DNA fragment containing the genes from *E. coli* plasmid, pMH10 (Akherdyan et al. 2007), for the thermo-induced transposition factors was cloned into vectors containing the broad host range replicons of the IncQ (Chistoserdov and Tsygankov 1986) or IncPα groups (Ditta et al. 1985; Pansegrau et al. 1994). These new (E-plus)-helpers (Fig. 5a) were transformed into methylotrophic cells (by mobilization or electroporation) and maintained under strictly selective conditions without expressing the Mu transposition factors. All of the helpers could be easily eliminated from *M. methylotrophus* AS1 by aerobically culturing the cells in liquid medium without antibiotics (Abalakina et al. 2008a).

The constructed integrative plasmids could not autonomously replicate in methylotrophic cells. Because it was unclear if it was possible for Mu-driven transposition to occur, the MobRP4 α element (Simon et al. 1983, 1984) was included in the initial integrative plasmids to ensure their highly efficient transfer into *M. methylotrophus* by mobilization (Abalakina et al. 2008a). The next generation of integrative plasmids (Fig. 5b, see experimental details in Tokmakova 2010) did not carry the Mob+ element and could be autonomously maintained only in the pir+ *E. coli* strain used to propagate γ-replicon originating from R6K (Bowers et al. 2007). These integrative plasmids were introduced into the methylotrophic recipient cells by electroporation. The KmR gene, flanked by FRT sites, was used as the “excisable” selective marker in the constructed mini-Mu(LR) units (Abalakina et al. 2008a).

The mini-Mu(LR) unit can be detected in the *M. methylotrophus* AS1 chromosome after the transfer of the integrative plasmid into the helper–carrier cells in the presence of the partially induced (37°C) transposition factors. Curing the selected integrants of the helper plasmid and Flp-mediated elimination of the marker results in a plasmid-less marker-less recombinant strain that is ready for the next round of mini-Mu transposition (Abalakina et al. 2008a).

The efficiencies (10^-2–10^-3) of plasmid mobilization and Mu-driven integration are correlated. This means that, under the developed conditions, a mini-Mu(LR) unit is transposed into the bacterial chromosome of each cell of the recipient strain that received the integrative plasmid. As in *E. coli*, the transposition of the mini-Mu(LR) unit into the *M. methylotrophus* AS1 chromosome occurs through...
“nick–join–replicative” formation of the cointegrate, followed by its recombination-mediated resolution (Abalakina et al. 2008a). These factors suggested that the mini-Mu(LR) units might be amplified in M. methylotrophus with the assistance of the same set of host proteins (Au et al. 2006; Gueguen et al. 2005; North and Nakai 2005). However, the MuA- and MuB-mediated intrachromosomal duplication of the mini-Mu(LR) unit was detected only with a low (10^{-4}) frequency (Abalakina et al. 2008a).

The efficiency of the Mu-driven increase in genomic copy number in M. methylotrophus AS1 was increased 100-fold by exploiting the mini-Mu(LER) unit (Fig. 5b). When transferred as part of the integrative plasmid into M. methylotrophus, these units, like earlier used mini-Mu (LR), could be integrated into the bacterial chromosome with the formation of a cointegrate; the transposition efficiency of this process was equally high whether the helper was (E-plus) or (E-minus). On the contrary, the increase in genomic copy number efficacy of the mini-Mu (LER) or mini-Mu(LR) units was significantly dependent on the type of helper used (Table 2). The detected capacities for increase in genomic copy number for the mini-Mu (LER) and mini-Mu(LR) units differed by approximately four orders of magnitude in the presence of the expressed (E-minus)-helper.

These results served as the basis for a novel integration/amplification/fixation strategy that was developed for the M. methylotrophus AS1 Mu-driven system. The E element in the mini-Mu(LER) unit was substituted with its excisable analog, which was bracketed by loxP-like sites [lox66 and lox71 (Albert et al. 1995)] that could serve as the target for irreversible excision by phage P1 Cre recombinase (Abremski and Hoess 1984). Thus, the mini-Mu(LexoE[R]) unit (Fig. 5c) could be integrated and amplified in the M. methylotrophus AS1 genome according to the standard procedure (using (E-plus)- or (E-minus)-helpers), followed by Cre-mediated excision of the E element. The “residual” copies of the mini-Mu(LR) units in the chromosome could not be further efficiently amplified in the presence of the (E-minus)-helper plasmid. This allows the integration and independent amplification of another mini-Mu(LexoE[R]) unit into the M. methylotrophus AS1 genome without changing the number and location of the previously integrated genes (Fig. 6) (Tokmakova 2010).

There are still many fundamental questions concerning the differences in the efficiencies of the Mu-driven increase in genomic copy number in E. coli and M. methylotrophus. The answers likely depend on the precise nature of the respective transpososome assembly processes. These pro-

Table 2 Efficiency of the mini-Mu units amplification in the M. methylotrophus AS1 chromosome in dependence on the helpers’ structure

Mini-Mu unit \ Helper	(E-plus)	(E-minus)
(LR)	$~10^{-4}$	$~10^{-6}$
(LER)	$~10^{-2}$	$~10^{-2}$

The increase in genomic copy number efficiency was evaluated as the part of multi-integrants obtained after induced transposition factors expression in the single-integrant cells selected on the media with increased concentrations of streptomycin (2 mg/ml of Sm) used as a selective marker according to Abalakina et al. (2008a).
cesses could depend, in particular, on the intracellular concentrations of the expressed transposition factors and the DNA-bending host proteins that facilitate transposition at the “restrained” host DNAs.

Concluding remarks

We have reviewed the adaptation of the dual-component Mu-driven system for chromosomal editing and the construction of plasmid-less marker-less strains of several Gram-negative bacteria due to the integration/amplification of target genes by the “nick–join–replicative” pathway in vivo. Certainly, other methods could be used for the chromosomal amplification of the target genes as well. The same purposes could be achieved through the single insertion of a DNA cassette with multiple copies of the target gene (Choi et al. 2006). The marker-containing single insertions in different specific (Haldimann and Wanner 2001; Minaeva et al. 2008) or random (De Lorenzo and Timmis 1994; Peredelchuk and Bennett 1997; Wei et al. 2010) sites could be combined in one strain by general P1-mediated transduction, followed by marker curing. These alternative methods, each of which possesses its own specific advantages, are significantly inferior to the Mu-driven amplification approach with respect to ease-of-use and the speed with which a target can be achieved, especially if selection for the best variants of the multigener is possible.

Up today, in vitro-assembled Mu transpososome complexes have been efficiently applied for the in vivo random insertion of recombinant DNAs into different bacterial genomes by the “nick–join–repair” pathway (Haapa et al. 1999; Laasik et al. 2005; Lamberg et al. 2002; Lanckriet et al. 2009; Pajunen et al. 2005; Savilahti et al. 1995; Savilahti and Mizuuchi 1996; Tu Quoc et al. 2007; Wei et al. 2010; Wu et al. 2009). Moreover, efficient Mu transpososome-based integration has been verified even in yeast, mouse, and human genomes (Paatero et al. 2008; Turakainen et al. 2009). Many more host proteins likely participate in the process of Mu-driven replicative transposition than in the simple insertion of mini-Mu into the host chromosome (Au et al. 2006; North and Nakai 2005). It is possible that only integrative, but not replicative, transposition occurs in this broad range of host organisms, even when efficient intracellular expression of Mu transposition factors is provided. However, to broaden the range of hosts in which the Mu-driven system can be used for the integration/amplification of target genes, its adaptation should be attempted, especially by using mini-Mu(LR)/(LER) units in combination with different (E-plus)/(E-minus)-helpers expressed in different genetic backgrounds.

The combined Mu-driven system could be proposed when the in vitro-assembled MuA-mediated transpososome

Fig. 6 Application of the integration/amplification/fixation strategy. Initially, a mini-Mu(L[exE]R) unit is integrated and amplified in the chromosome of *M. methylotrophus* AS1 according to the replicative transposition in the presence of the expressed (E-minus)-helper plasmid. Then, the E element is excised by Cre-mediated site-specific recombination. The “truncated” mini-Mu(LR) units could be further amplified with very low frequency by (E-minus)-helper, i.e., their positions in the chromosome could be considered as fixated. So, the obtained multi-integrant could be served as the recipient for integration and independent amplification of new Mu(L[exE]R) units.
results single-copy integrants due to the integrative transposition, followed by the increase in genomic copy number of the integrated mini-Mu in vivo by the replicative transposition in the presence of the helper plasmid expressing MuA and MuB factors.

Acknowledgements This paper is devoted to the memory of Prof. Yuri I. Kozlov (1944–2007) who initiated the investigation and application of the Mu-driven integration/amplification systems at AGRI. The authors are extremely thankful to all of the AGRI members who participated in these investigations. In particular, we thank Drs. E.G. Abalakina, I.V. Biryukova, V.G. Doroshenko, A.M. Kaplan, A.O. Lobanov, V.V. Samsonov, E.A. Savrasova, Mrs. N.V. Gorshkova, and E.Y. Vávilova for their fruitful experimental cooperation and helpful discussions of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Abalakina EG, Tokmakova IL, Gorshkova NV, Gak ER, Akhverdyan VZ, Mashko SV, Yomantas YV (2008a) Phage Mu-driven two-plasmid system for integration of recombinant DNA in the Methylophilus methylotrophus genome. Appl Microbiol Biotechnol 81:191–200

Abalakina EG, Tokmakova IL, Gorshkova NV, Smirnov SV, Akhverdyan VZ, Mashko SV, Yomantas YV (2008b) Exploiting of the Mu-phage transposition system for recombinant DNA integration in the Methylophilus methylotrophus chromosome. Biotechnologiya 3:13–26 (in Russian)

Abdelhakim AH, Oakes EC, Sauer RT, Baker TA (2008) Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX. Mol Cell 30:39–50

Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259:1509–1514

Akhverdyan VZ, Savrasova EA, Kaplan AM, Lobanov AO, Vávilova EY, Kozlov YI (2007) Development of the mini-Mu system providing an effective integration and amplification of the genetic material in the Escherichia coli chromosome. Biotechnologiya 3:3–20 (in Russian)

Akroyd JE, Symonds N (1983) Evidence for a conservative pathway of transposition of bacteriophage Mu. Nature 303:84–86

Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lac sites placed in the plant genome. Plant J 7:649–659

Allison RG, Chaconas G (1992) Role of the A protein-binding sites in the in vitro transposition of Mu DNA. II. A complex circuit of interactions involving the Mu-ends and the transpositional enhancer. J Biol Chem 267:19963–19970

Anthony C (1982) The commercial exploitation of methylotrophs. In: Anthony C (ed) The biochemistry of methylotrophs. Academic, London, pp 328–378

Arakawa H, Lodygin D, Buerstedde JM (2001) Mutant losP vectors for selective marker recycle and conditional knock-outs. BMC Biotechnol 1:7

Au TK, Agrawal P, Harshey RM (2006) Chromosomal integration mechanism of infecting Mu virion DNA. J Bacteriol 188:1829–1834

Baker TA, Luo L (1994) Identification of residues in the Mu transposase essential for catalysis. Proc Natl Acad Sci USA 91:6654–6658

Balbàs P, Gosset G (2001) Chromosomal editing in Escherichia coli. Vectors for DNA integration and excision. Mol Biotechnol 19:1–12

Belanger L, Figueira MM, Bourque D, Morel L, Beland M, Laramée L, Grolearn D, Miguez CB (2004) Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation. FEMS Microbiol Lett 231:197–204

Bourque D, Pomerleau Y, Grolearn D (1995) High cell density production of poly-beta-hydrobutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol 44:367–376

Bowers LM, Krüger R, Filutowicz M (2007) Mechanism of origin activation by monomers of R6K-encoded π protein. J Mol Biol 368:928–938

Bukhari AI, Taylor AL (1975) Influence of insertions on packaging of host sequences covalently linked to bacteriophage Mu DNA. Proc Natl Acad Sci USA 72:4399–4403

Bukhari AI, Zipser D (1972) Random insertion of Mu-1 DNA within a single gene. Nature New Biol 236:240–243

Castilho BA, Olsson P, Casadaban MJ (1984) Plasmid insertion mutagenesis and lac gene fusion with mini-Mu bacteriophage transposons. J Bacteriol 158:488–495

Chaconas G, Harshey RM (2002) Transposition of phage Mu DNA. In: Craig NL, Craige R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology, Washington, pp 384–402

Chaconas G, deBruijn FG, Casadaban MJ, Lupski JR, Kwok TJ, Harshey RM, DubBow MS, Bukhari AI (1981a) In vitro and in vivo manipulations of bacteriophage Mu DNA: cloning of Mu ends and construction of mini-Mu’s carrying selectable markers. Gene 13:37–46

Chaconas G, Harshey RM, Savretnick N, Bukhari AI (1981b) Predominant end-products of prophage Mu DNA transposition during the lytic cycle are replicon fusions. J Mol Biol 150:341–359

Chaconas G, Lavoie BD, Watson MA (1996) DNA transposition: jumping gene machine, some assembly required. Curr Biol 6:817–820

Chistoserdov AY, Tsygankov YD (1986) Broad host range vectors derived from an RSF1010::Tn plasmid. Plasmid 16:817–820

Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T, Tapia R, Gilna P, Lucas S, Richardson PM, Lidstrom ME (2007) Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189:4020–4027

Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

Choi W, Harshey RM (2010) DNA repair by the cryptic endonuclease activity of Mu transposase. Proc Natl Acad Sci USA 107:10014–10019

Choi YJ, Bourque D, Morel L, Grolearn D, Miguez CB (2006) Multicopy integration and expression of heterologous genes in Methylobacterium extorquens ATCC 55366. Appl Environ Microbiol 72:753–759

Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388

Craigie R, Mizuuchi K (1985) Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate. Cell 41:867–876

Craigie R, Mizuuchi K, Mizuuchi M, Mizuuchi K (1984) Site-specific recognition of the bacteriophage Mu ends by the Mu A protein. Cell 39:387–394

Daniell E, Abelson J, Kim JS, Davidson N (1973) Heteroduplex structures of bacteriophage Mu DNA. Virology 51:237–239
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

De Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405

De Mey M, Maertens J, Boogmans S, Soetaert WK, andamme EJ, Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, Groisman EA, Casadaban MJ (1987) Cloning of genes from members of the family Enterobacteriaceae with mini-Mu bacteriophage containing plasmid replicons. J Bacteriol 169:687–693

Guiguen E, Rousseau P, Duval-Valentin G, Chandler M (2005) The transpososome: control of transposition at the level of catalysis. Trends Microbiol 13:543–549

Gulevich AI, Skorokhodova AI, Ermishev VI, Krylov AA, Minaeva NI, Poinskaia ZM, Zimenkov DV, Mashko SV (2009) New method of construction of artificial translational-coupled operons in bacterial chromosome. Mol Biol (Mosc) 43:547–557

Gunji Y, Yasueda H (2006) Enhancement of L-lysine production in methylophilus Methylophilus methylophilus by introducing a mutant LysE exporter. J Bacteriol 127:1–13

Haapa S, Taira S, Heikkinen E, Savilahti H (1999) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucl Acids Res 27:2777–2784

Haapa-Paananen S (2002) The mechanisms, applications, and target site selection of bacteriophage Mu minimal in vitro DNA transposition reaction. Academic dissertation (Savilahth —supervisor), Institute of Biotechnology and Department of Biosciences, University of Helsinki

Haapa-Paananen S, Raita, Savilahth (2002) DNA transposition of bacteriophage Mu. A quantitative analysis of target site selection in vitro. J Biol Chem 277:2843–2851

Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid–host systems for gene structure-function studies of bacteria. J Bacteriol 183:6384–6393

Han YW, Mizuuchi K (2010) Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism. Mol Cell 39:48–58

Harshey RM (1983) Switch in the transposition products of Mu DNA mediated by proteins: cointegrates versus simple insertions. Proc Natl Acad Sci USA 80:2012–2016

Harshey RM (1984) Transposition without duplication of infecting bacteriophage Mu DNA. Nature 311:580–583

Harshey RM, Bukhari AI (1983) Infecting bacteriophage Mu DNA forms a circular DNA–protein complex. J Mol Biol 167:427–441

Harshey RM, Jayaram M (2006) The Mu transpososome through a topological lens. Crit Rev Biochem Mol Bioi 41:387–405

Howe MM (1997) Bacteriophage Mu. In: Busby SJW, Thomas CM, Brown NL (eds) Molecular microbiology. Springer, Heidelberg, pp 65–80

Howe MM, Bade EG (1975) Molecular biology of bacteriophage Mu. Science 190:624–632

Iomantas YV, Abalakina EG (2002) Method for producing L-phenylalanine. Patent US6350596

Itaya H, Kikuchi Y, Date M (2008) Method for producing protein. Patent EP1882743

Katashkina JI, Skorokhodova SY, Zimenkov DV, Gulevich AV, Minaeva NI, Doroshenko VG, Biryukova IV, Mashko SV (2005) Tuning of expression level of the genes of interest located in the bacterial chromosome. Mol Biol (Mosc) 39:823–831

Klyachko EV, Shakulov RS, Kozlov YI (2008) Mutant phosphoribosylpyrophosphate synthetase and method for producing L-histidine. Patent EP1529839

Krause HM, Higgins NP (1986) Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor. J Biol Chem 261:3744–3752

Kremenetsova E, Giffin MJ, Pincus D, Baker TA (1998) Mutational analysis of the Mu transposase: contributions of two distinct regions of domain II to recombination. J Biol Chem 273:31358–31365

Krylov AA, Airich LG, Kiseleva EM, Minaeva NI, Biryukova IV, Mashko SV (2010) Conditional silencing of the Escherichia coli pykF gene results from artificial convergent transcription pro-
tested from Rho-dependent termination. J Mol Microbiol Biotechnol 18:1–13
Kuo CF, Zou AH, Jayaram M, Getzoff E, Harshey R (1991) DNA–protein complexes during attachment-site synthesis in Mu DNA transposition. EMBO J 10:1585–1591
Kurahashi O, Takinami K (1991) Transposon Mu as a genetic tool for stabilized amplification of genetic information. Proceedings of the 10th International Symposium on Life Sciences, Nara-shi, Japan, pp 109–111
Kurahashi O, Beyou A, Takinami K, Jarry B, Richard F (1990) Stabilized amplification in Gram negative bacteria with Mu phage and its application in l-threonine production. Proceedings of the International Symposium on Industrial Microorganisms, Société Française de Microbiologie, Paris, p 178
Kutukova E, Livshits V, Altman I, Pitsyn L, Zhiyatdinov M, Tokmakova I, Zakataeva N (2005) The yeaS (leaE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634
Laaski E, Ojarand M, Pajunen M, Savilahti H, Mie A (2005) Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol Lett 243:93–99
Lamberg A, Nieminen S, Qiao M, Savilahti H (2002) Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage Mu. Appl Environ Microbiol 68:705–712
Lanckriet A, Timbermont L, Happonen LJ, Pajunen MI, Pasmans F, Haesebrock E, Ducatelle R, Savilahti H, Van Immerseel F (2009) Assembly of phage Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol Lett 75:2638–2642
Lavoie BD, Chaconas G (1995) Transposition of phage Mu DNA. Curr Top Microbiol Immunol 204:83–102
Lavoie BD, Chan BC, Allison RG, Chaconas G (1991) Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Mu–host junction of the Mu type 1 transpososome. EMBO J 10:3051–3059
Lavoie BD, Shaw GS, Millner A, Chaconas G (1996) Anatomy of a flexer–DNA complex inside a higher-order transposition intermediate. Cell 85:761–771
Lee I (2002) Importance of the conserved TG/CA dinucleotide termini in transposase activity in the target site of Mu DNA strand transfer: evidence for a one-step transfermation mechanism. Cell 66:129–140
Mizuuchi K, Mizuuchi K (1989) Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implication for regulation. Cell 58:399–408
Mizuuchi M, Baker TA, Mizuuchi K (1995) Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Cell 83:375–385
Morgan GJ, Hatfull GF, Casjens S, Hendrix RW (2002) Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophage in Haemophilus, Neisseria and Deinococcus. J Mol Biol 317:337–359
Motoyama H, Anazawa H, Katsumata R, Araki K, Teshiba S (1993) Amino acid production from methanol by Methylobacterium glycogen mutants: isolation of L-glutamic acid hyper-producing mutants from M. glycogenes strains, and derivation of l-threonine- and L-lysine-producing mutants from them. Biosci Biotechnol Biochem 57:82–87
Motoyama H, Yano H, Terasaki Y, Anazawa H (2001) Overproduction of L-lysine from methanol by Methylobacterium glycogenes derivatives carrying a plasmid with a mutated dapA gene. Appl Environ Microbiol 67:3064–3070
Nakai H, Doseeva V, Jones JM (2001) Handoff from recombinase to replisome: insights from transposition. Proc Natl Acad Sci USA 98:8247–8254
North SH, Nakai H (2005) Host factors that promote transpososome disassembly and the PriA–PriC pathway for restart prionsome assembly. Mol Microbiol 56:1601–1616
O’Day KJ, Schultz DW, Howe MM (1978) Search for integration-deficient mutants of bacteriophage Mu. In: Schlessinger D (ed) Microbiology. American Society for Microbiology, Washington, pp 48–51
Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623
Paatero AO, Turakainen H, Happonen LJ, Olsson C, Palomaki T, Pajunen MI, Meng X, Otonkoski T, Tuuri T, Berry C, Malani N, Frilander MJ, Bushman FD, Savilahti H (2008) Bacteriophage Mu integration in yeast and mammalian genomes. Nucl Acids Res 36:e148
Pajunen MI, Pulliuinen AE, Finne J, Savilahti H (2005) Generation of transposon insertion mutant libraries for Gram-positive bacteria by electroporation of phage Mu DNA transposition complexes. Microbiology 151:1209–1218
Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisch VA, Thomas CM (1994) Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 239:623–663
Paolozzi L, Ghelardini P (2006) The bacteriophage Mu. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 469–496

 Springer
Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2004) Molecular biology of the gene, 5th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 316–334
Wei XX, Shi ZY, Li ZJ, Cai L, Wu Q, Chen GQ (2010) A mini-Mu transposon-based method for multiple DNA fragment integration into bacterial genomes. Appl Microbiol Biotechnol 87:1533–1541
Weinberg RA, De Ciechi PA, Obukowicz M (1993) A chromosomal expression vector for Escherichia coli based on the bacteriophage Mu. Gene 126:25–33
Wu Z, Chaconas G (1995) A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage. EMBO J 14:3835–3843
Wu Z, Xuanyuan Z, Li R, Jiang D, Li C, Xu H, Bai Y, Zhang X, Turakainen H, Saris PE, Savilahti H, Qiao M (2009) Mu transposition complex mutagenesis in Lactococcus lactis—identification of genes affecting nisin production. J Appl Microbiol 106:41–48
Yin Z, Suzuki A, Lou Z, Jayaram M, Harshey RM (2007) Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome. J Mol Biol 372:382–396
Yomantas YAV, Tokmakova IL, Gorshkova NV, Abalakina EG, Kazakova SM, Gak ER, Mashko SV (2010) Aromatic amino acid auxotrophs constructed by recombinant marker exchange in Methylophilus methylotrophus AS1 cells expressing the aroP encoded transporter of Escherichia coli. Appl Environ Microbiol 76:75–83
Zimenkov DV, SkorokhodovaAY, Katashkina JL, Minaeva NI, Savrasova EA, Biryukova IV, Doroshenko VG, Akhverdyan VZ, Mashko SV (2004) The regions in E. coli chromosome preferable for phage Mu-driven system of gene integration. Biotechnologiya 6:3–18 (in Russian)