Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions

Gian Luca Baiocchi, Michele Diana, Luigi Boni

Gian Luca Baiocchi, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25125, Italy
Michele Diana, IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg 67000, France
Michele Diana, IRCAD, Research Institute against Cancer of the Digestive System, Strasbourg 67000, France
Luigi Boni, General and Emergency Surgery, IRCCS - Ca’ Granda - Policlinico Hospital, Milan 20122, Italy

ORCID number: Gian Luca Baiocchi (0000-0003-2402-2178); Michele Diana (0000-0002-1390-8486); Luigi Boni (0000-0002-5906-3810).

Author contributions: Baiocchi GL and Boni L conceived the study; Baiocchi GL, Diana M, and Boni L critically reviewed the literature and supplied the material to be included in the manuscript’s Figures; Baiocchi GL drafted the manuscript; all authors approved the final version of the article.

Conflict-of-interest statement: Baiocchi GL, Diana M, and Boni L have received no funding and declare no conflicts of interest in relation to this specific work. Baiocchi GL received a travel grant from Stryker and from Karl Storz and has been the scientific organizer of the international workshop “Intraoperative ICG Fluorescence Imaging in Hepatobiliary and Visceral Surgery: State of the Art and New Frontiers,” (Brescia, Italy, October 21, 2017) partly funded (travel expenses) by Karl Storz and Stryker companies. Diana M is the recipient of a grant from the ARC Foundation (Project ELIOS) to develop fluorescence image-guided surgery. Boni L is a consultant for Stryz and Olympus.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Abstract
In recent years, the use of fluorescence-guided surgery (FGS) to treat benign and malignant visceral, hepatobiliary and pancreatic neoplasms has significantly increased. FGS relies on the fluorescence signal emitted by injected substances (fluorophores) after being illuminated by ad hoc laser sources to help guide the surgical procedure and provide the surgeon with real-time visualization of the fluorescent structures of interest that would be otherwise invisible. This review surveys and discusses the most common and emerging clinical applications of indocyanine green (ICG)-based fluorescence in visceral, hepatobiliary and pancreatic surgery. The analysis, findings, and discussion presented here rely on the authors’ significant experience with this technique in their medical institutions, an up-to-date review of the most relevant articles published on this topic between 2014 and 2018, and lengthy discussions with key opinion leaders in the field during recent conferences and congresses. For each application, the benefits and limitations of this technique, as well as applicable future directions, are described. The imaging of fluorescence emitted by ICG is a simple, fast,
In recent years, the use of fluorescence-guided surgery has become widespread in several medical and surgical specialties. Due to its relatively low cost and high availability, ICG is the most employed fluorophore in the clinical setting of general surgery.

The main goal of this overview is to survey and discuss the most recent and ongoing clinical applications of ICG-based fluorescence in visceral, hepatobiliary and pancreatic surgery. Up to date, vascular assessment of anastomotic stump in visceral surgery and extrahepatic biliary anatomy identification during difficult cholecystectomies are the most well established applications of ICG-based fluorescence surgery.

The in-depth analysis presented here relies on three main sources of information. First, the analysis draws on the authors' significant experience with this technology in their medical institutions. Second, an up-to-date review of the most relevant articles published on this topic between 2014 and 2018 presents the latest developments in this rapidly developing field. Lastly, lengthy discussions of the authors with key opinion leaders in the field during recent conferences and congresses add novel insights on the ongoing applications that will appear in the literature in the near future. In particular, the rationale of applying this technique to visceral and HBP surgery, the relevant physiopathological insights, the available data, and the ongoing clinical trials are thoroughly surveyed and discussed. For each application, the benefits and limitations of this technique are identified, and applicable future directions are described.

INTRODUCTION

Fluorescence-guided surgery (FGS) is a modality of intraoperative navigation that provides the surgeon with enhanced visualization of anatomical structures and/or an improved understanding of an organ’s current perfusion in real time[1-2]. To obtain a fluorescence signal, the operative field is exposed to near-infrared light sources, while the target is injected with a fluorescent dye, which can emit a fluorescence signal after being excited by ad hoc laser sources. The fluorescence signal can be visualized either directly on the operative field during open surgical procedures or captured by specific cameras and displayed on a screen in a minimally invasive setting. FGS is currently more adapted to the needs of surgical navigation because it does not require bulky equipment in the operating room and the enhanced information provided to the surgeon is displayed in real time, without interfering with the surgical workflow[3].

In the last few years, fluorescence imaging using the fluorescent properties of indocyanine green (ICG) has become widespread in several medical and surgical specialties[4]. Due to its relatively low cost and high availability, ICG is the most employed fluorophore in the clinical setting of general surgery.

The main goal of this overview is to survey and discuss the most recent and ongoing clinical applications of ICG-based fluorescence in visceral, hepatobiliary and pancreatic (HBP) surgery. Up to date, vascular assessment of anastomotic stump in visceral surgery and extrahepatic biliary anatomy identification during difficult cholecystectomies are the most well established applications of ICG-based fluorescence surgery.

The in-depth analysis presented here relies on three main sources of information. First, the analysis draws on the authors’ significant experience with this technology in their medical institutions. Second, an up-to-date review of the most relevant articles published on this topic between 2014 and 2018 presents the latest developments in this rapidly developing field. Lastly, lengthy discussions of the authors with key opinion leaders in the field during recent conferences and congresses add novel insights on the ongoing applications that will appear in the literature in the near future. In particular, the rationale of applying this technique to visceral and HBP surgery, the relevant physiopathological insights, the available data, and the ongoing clinical trials are thoroughly surveyed and discussed. For each application, the benefits and limitations of this technique are identified, and applicable future directions are described.

REAL-TIME VISCERAL PERFUSION

The estimation of real-time visceral perfusion is a promising intraoperative application of ICG-based fluorescence surgery. ICG-based fluorescence angiography might guide the identification of the optimal resection site and help estimate the blood supply of visceral anastomosis in both upper GI and colorectal surgery. The rationale behind fluorescence angiography is that the fluorescent dye, upon systemic injection, should reach and highlight only vascularized areas.

Focusing on colorectal surgery, it is well known that the rate of anastomotic leaks ranges between 5% and 7%, even in high-volume centers[5]. The introduction into daily clinical practice of a tool capable of delivering optimal stump vascularization could reduce this rate. In turn, this may eliminate dehiscence due to inadequate vascularization despite a macroscopically satisfactory appearance[6-8]. Some phase II trials have confirmed the feasibility, low cost, and high success rate of this procedure[9], reporting a leakage rate (< 3%) lower than the one expected on the basis of historical series in rectal anastomoses. The rate of changes in the
transection line varies from 5% to 40%. However, a few reports did not confirm these data; for instance, in a series of 346 colorectal interventions, Kim and colleagues reported a leakage rate of 7.5% and 6.4% with and without ICG intraoperative assessment, respectively. Some randomized prospective controlled trials are currently ongoing.

Similar use of ICG for intraoperative assessments has been investigated for esophagectomy and gastrectomy. When making the gastric tube during esophagectomy, the most cranial portion represents a critical point because the gastroepiploic vascularization reaches a macroscopically unclear cut-off at that level. A few retrospective, case-control studies have confirmed this hypothesis, showing a number of changes in the site of anastomosis as high as 25% and a reduction in the leakage rate from 18% to 3% and from 15% to 6% in the series reported by Karampinis and Kitagawa, respectively. In a consecutive series of 40 patients undergoing the Ivor-Lewis procedure, Koyanagi et al. compared the blood flow using ICG in the gastric conduit and in the greater curve; by employing ROC analysis, they identified a speed of 1.76 cm/s as the cut-off value predicting leakage. However, even in esophageal surgery, the lack of prospective randomized trials hampers the possibility of reaching a definitive conclusion supporting evaluation of the perfusion of the gastric conduit using ICG-based fluorescence.

The same principles for checking the perfusion of the upper extremity of the stomach transection line apply to sleeve gastrectomy in bariatric surgery. Identifying the less vascularized proximal area would allow a targeted resection and reduce the leakage rate along the suture line.

In many other clinical settings, the estimation of visceral perfusion may turn out to be a useful and relatively inexpensive intraoperative tool, for example, to assess the small bowel trophism during urgent interventions for intestinal ischemia, after mistaken division. The main point of debate remains the ideal injection time. Although fluorescence of the bile duct can be detected shortly after i.v. injection, the high fluorescence of the liver parenchyma makes it less evident in contrast. In our view, the ideal timing for this injection is 3 to 5 h before surgery. However, a recent series demonstrated that an injection 24 h before surgery could still be possible.

Biliary Anatomy

ICG-based fluorescence imaging to visualize and study biliary anatomy represents one of the most established applications of this technique in abdominal surgery. The reason is simple: the exclusively hepatic metabolism of ICG, which results in biliary excretion starting approximately 30 min after i.v. injection, enables clear visualization of the biliary anatomy, which is very useful during difficult cholecystectomies and from a theoretical point of view during the resection of centrally located liver tumors and hilar (Klatskin’s) tumors.

There is more than one comparative study that, although always retrospective, enables us to conclude that ICG-based fluorescence imaging is an extremely useful tool when applied to visualize and study the biliary anatomy. In a systematic review published in 2017, 19 studies were analyzed. There was moderate-quality evidence that ICG-assisted visualization of the extrahepatic bile duct is superior to intraoperative cholangiogram (RR = 1.16; 95%CI: 1.00-1.35). While the difference was not significant in that study, it was significant in some other single-center series.

Considering the relative ease and speed of the procedure, in the future, ICG-based visualization of the biliary anatomy might replace intraoperative cholangiography, which requires a preliminary dissection of the confluence between the cystic and bile ducts and cannulation of the structures.

Recently, in an experimental study with a limited number of cases (7 pigs), ICG injection directly into the gallbladder enabled superior biliary anatomy visualization compared to i.v. injection. The same study group translated their analysis to patients in a subsequent series of 46 cases.

With the aim of overoming the limits of retrospective data, a prospective randomized controlled trial (FALCON) was set up in 2016 to compare near-infrared fluorescence cholangiography-assisted laparoscopic cholecystectomy versus conventional laparoscopic cholecystectomy. The results are expected in 2 years.

The main point of debate remains the ideal injection time. Although fluorescence of the bile duct can be detected shortly after i.v. injection, the high fluorescence of the liver parenchyma makes it less evident in contrast. In our view, the ideal timing for this injection is 3 to 5 h before surgery. However, a recent series demonstrated that an injection 24 h before surgery could still be possible.

Liver Surgery

In liver surgery, the state of the art still considers ICG mainly as a simple reagent for the preoperative evaluation of hepatic function. The comparatively limited use of ICG-based fluorescence imaging in liver surgery with respect to other surgical specialties is slightly paradoxical, considering the pathophysiological
assumption that ICG exhibits only hepatic metabolism and only bile excretion. In addition, many centers devoted to liver surgery use the ICG clearance rate as a reliable liver function indicator\(^{28,29}\).

During the development of fluorescence cholangiography, it was discovered that ICG accumulates in the cancerous tissue of hepatocellular carcinoma (HCC) and in the noncancerous hepatic parenchyma around adenocarcinoma foci. The first application of this imaging technique was reported in 2009 by Ishizawa et al.\(^ {30}\) and Gotoh et al.\(^ {31}\).

From a theoretical point of view, three remarks should be taken into consideration. First, in HCC (which obviously contains hepatocytes), ICG can be captured and retained by malignant cells; moreover, the secretion of ICG may be altered due to architectural disorders reducing the possibility of excretion\(^ {32}\). Second, if the tumor is formed by non-hepatocellular cells, as in the case of metastases, ICG could be retained by a group of hepatocytes surrounding the nodule and compressed by the nodule itself\(^ {33}\). Third, if the nodule contains predominantly epithelial cells that are normally part of the biliary ducts (cholangiocarcinoma), they should not absorb the dye and should behave in a manner similar to metastases but with greater alterations in biliary delivery processes\(^ {34}\).

In clinical practice, however, these theoretical insights may not be taken into consideration because there is currently no clearly defined timing for i.v. injection. Indeed, especially at an early stage, increased vascularization of the neoplasm could result in greater exposure to the dye, regardless of the type of cells contained therein. The nodule behavior in the portal and tardive phases (with more or less washout) is also relevant in determining the amount of retained ICG. These factors translate into the absence of widely accepted guidelines for the intraoperative use of ICG-based fluorescence to differentiate benign from malignant nodules and among the different types of malignant tumors.

The key objective of ongoing studies (some of which are being performed in our medical institutions) is to enable differential diagnosis. ICG-based fluorescence may then be extremely helpful, as follows: (1) in the detection of small superficial malignant nodules not detected in the preoperative study (especially for managing metastases)\(^ {35}\); and (2) in excluding the malignant nature of small superficial nodules of uncertain contrast medium behavior (especially useful for HCC in cirrhotic liver tissue)\(^ {36}\).

To date, however, some consolidated uses in liver surgery exist. First, it is common practice that metastases in healthy livers are well visualized by the presence of an ICG capture ring due to the compression of the surrounding cells. This can be an advantage during laparoscopic surgery, where tactile sensation is not available as a guide for resection, and continuous monitoring with intraoperative ultrasound is both difficult and time consuming\(^ {37}\). The presence of the nontumor tissue ring can also be a useful indicator of the extent of resection required to obtain an adequate free margin\(^ {38}\).

Second, there is an increasing need to treat patients with liver metastases after they have undergone multiple chemotherapy cycles; in these cases, nontumor parenchyma is hardened and metastases are largely necrotic, and, hence, softer. For this reason, the normal, easy tactile perception of metastasis is more difficult, and finding a fluorescent area can be of great help.

The third application pertains to some primary liver neoplasms without a capsule, for which it is difficult to assess the optimum extent of the resection. In these cases, a good rule should be to check the absence of complete residual fluorescence at the end of the surgical transection.

Fourth, there are neoplasms with peripheral biliary infiltration and peribiliary spreading, which are not clearly recognizable by preoperative study, except for data indicating a dilatation of the upstream biliary structures\(^ {39}\). In these cases, ICG retention affects the whole area that drains the Glisson segment and not just the nodule, suggesting the need for a wider resection.

Moreover, some authors have assessed the use of ICG for detecting biliary leaks in the hepatic transection surface after liver resection\(^ {40}\). Finally, experimental studies involving intraportal and intrahepatic artery ICG injection (by celiac trunk catheterization in experimental models and by femoral puncture in hybrid operating rooms) have been published with the aim of achieving precise, real-time definitions of liver segmentation\(^ {41-43}\).

The lesion depth represents the major limitation in applying ICG-based fluorescence imaging to liver surgery. Further technological improvements are needed to deepen the fluorescence penetration more than the current 5-6 millimeters\(^ {44,45}\). In addition, few data exist regarding extrahepatic HCC metastases, but this may represent a promising clinical application for FGS\(^ {46}\).

ONCOLOGICAL SURGERY OF THE UPPER AND LOWER GI TRACTS

The simplest use of ICG to surgically treat cancers affecting the digestive tract consists of endoscopically marking tumors to see the tumor site, which is necessary for small and nonserous infiltrating cancers. In this context, ICG is similar to other dyes used to date (China, indigo carmine)\(^ {47,48}\).

However, the most intriguing and potentially powerful application of FGS is currently one involving nodal navigation in esophageal, gastric, and colorectal cancers\(^ {49}\). Injection of the dye into peritumoral tissues, ideally performed endoscopically in the submucosa, should allow for the intraoperative evaluation of lymphatic diffusion in real time. Multicentric prospective series are already available on the use of ICG to identify the sentinel lymph node in gastric cancer.
These studies demonstrate that ICG is superior to both radioactive tracers and dyestuffs used to date\[50,51\]. In a recent multicentric Japanese series of 44 EGCs, the identification of sentinel node basins and the accuracy of metastatic node identification were both 100%\[52\].

The same strategy has been used for assessing colorectal tumors, investigating both the sentinel node basin and the enlarged mesocolic excision area draining the tumor site\[53,54\]. This latter principle is indeed the opposite of the sentinel node strategy: the goal would be to remove all lymph nodes that have received ICG as possible metastatic sites originating from the specific tumor site. The method is primarily useful for anatomical studies. Indeed, the ideal injection timing for the visualization of lymph nodes is not yet clear. Likely, after many hours, the dye may pass local lymph node drainage stations and move up to the central lymphatic pathways. The ideal study should therefore include (1) a preoperative tumor injection at different times before surgery up to an intraoperative injection; (2) the subsequent removal of individual lymph nodes; (3) a fluorescence evaluation for each node; and (4) a comparison of the final histological data.

In clinical practice, the problems are mainly related to the feasibility of the injection. For cancer of the esophagus, stomach, and rectum, the injection can be endoscopic and intraoperative (despite causing an increase in time and costs), while in the proximal colon, it is easier to proceed with a serous injection during the initial stages of the intervention. Clinical experience shows that the injection should be limited to a few cc, as staining rapidly spreads in lymphatic and adipose tissues. If, during the injection, a few drops of dye come out of the serosa on the peritoneum, they stain the surrounding structures and the surgical instruments and cannot be washed away.

Despite the above limitations, the possible applications of this method for navigating lymph nodes appear to be of great interest and have very important clinical consequences. It is clearly emerging that the ideal lymphadenectomy needs to be individualized based on preoperative staging. However, in many cases, imaging is not able to discern with high probability, for example, between T1 and T2. On the other hand, limiting lymphadenectomy to stations of real potential interest could allow considerable time savings and reduce most of the major postoperative complications, often related to vascular lesions secondary to an excessive nodal dissection. On the other hand, for example, in rectal surgery, extending lymphadenectomy to stations, such as obturatory and inguinal nodes, that are not usually removed could reduce the rate of lymph node recurrence\[55\].

The same applies to periaortic stations in cardia and proximal stomach cancer, to the right colic artery basin in cecum and ascending colon cancer, and to flexural cancers. A small series of 10 hepatic and 10 splenic flexure colon cancers reported a 25% rate of changes to the mesocolon resection line due to ICG lymphatic flow visualization\[56\]. A subsequent series of 31 patients with splenic flexure cancer from the same study group confirmed that all metastatic nodes were included in the area determined by ICG lymphatic flow visualization and that interesting insights into the lymphatic spread of those tumors can be derived\[57\].

In the near future, it is important to search for a factor predicting the positivity of perigastric and extraperigastric nodes based on their ICG load. To date, a relationship between ICG quantities in dissected nodes and the likelihood of the nodes bearing metastases has not been demonstrated. Studies focusing on the sentinel node strategy have shown that the radioisotope count was a significant predictive factor for metastasis\[58\]. In contrast, some very limited series recently described patients with unexpected nodal metastases from colorectal cancer discovered by fluorescence visualization after i.v. ICG injection while searching for peritoneal carcinomatosis\[59\]; this report suggests that a particular tropism of intravenously injected ICG for cancer cells may be discovered.

Few studies have taken into account the same type of lymph node navigation in pancreatic cancers, which have extremely rich and complex lymph node spread patterns. A recent series of 10 patients undergoing laparoscopic pancreatectoduodenectomy for periampullary cancers with i.v. ICG injection during retroportal fat tissue dissection revealed a possible advantage in obtaining an R0 margin at this level\[60\]. However, at this stage, it is not possible to hypothesize and assess the clinical usefulness...
of this strategy in pancreatic surgery[61]. Interestingly, a small series of pancreatic neuroendocrine tumors (NETs) has demonstrated a clear affinity of ICG for NET cells, which enables the removal of some residual tissue at the end of the first resection in laparoscopic distal pancreatectomy[62].

PERITONEAL CARCINOMATOSIS

This is an area where few studies have been conducted[63]. Peritoneal carcinomatosis remains a mode of metastatic diffusion that is largely devoid of real therapeutic strategies. Thus, finding it at an early stage while it is too small to be visible to the human eye, could represent a major clinical breakthrough. Some current studies are trying to link ICG to epithelial cell markers that should not be present on the peritoneum, which contains only mesothelial cells. No clinical outcomes of these studies are yet available, but some experimental settings have been developed in animal models. For instance, Cheng and colleagues have shown that a surgical navigation system combining optical molecular targets with an ICG-linked molecular probe is able to identify a peritoneal carcinomatosis site as small as 1.8 mm[64]. On the other hand, reports of some very limited series have shown that after i.v. injection, ICG is retained by cancerous cells in the peritoneum[65,66]. There is no clear explanation for these clinical observations, which, if confirmed in larger studies, may have very high clinical value as a comprehensive modality for staging visceral cancers.

CONCLUSION AND PERSPECTIVE

The key take-home messages from this overview are as follows. (1) The most well-established use of fluorescence imaging is for checking anastomotic stump perfusion in visceral surgery (Figure 1); Some prospective uncontrolled series and retrospective controlled studies, mainly dealing with colorectal and esophageal surgery, have confirmed the usefulness of this technique; (2) The second field of application for which there is a unanimous consensus in the literature pertains to visualization of the biliary anatomy during cholecystectomy (Figure 2). A comparison with intraoperative cholangiography demonstrated the superiority of fluorescence in terms of simplicity, timing, and efficacy; (3) In liver surgery, multiple possible uses of fluorescence have been described (tumor visualization, especially in laparoscopic surgery, vascular segmentation, biliary leak identification) (Figure 3). However, no comparative studies are available; (4) With regard to lymph node navigation in gastrointestinal tumors, most studies in the literature have focused on the sentinel node technique, whereas the use of fluorescence for complete lymphadenectomy has been described only by a few very experienced centers (Figure 4); and (5) Finally, there are some interesting
Figure 3 Indocyanine green in liver surgery. Primary liver tumors show intense and complete staining because their hepatocytes take up ICG but do not secrete it (A and B); liver metastases show a ring appearance because their cells do not take up ICG but hepatocytes surrounding the nodule are compressed (C and D). ICG: Indocyanine green.

Figure 4 Indocyanine green fluorescence imaging in extended right hemicolecctiony. The figure displays the right branches of middle colic vessel division during extended right hemicolecctiony for transverse colon cancer. ICG injected in the tumor site spreads in nodes at the very proximal root of the artery. ICG fluorescence imaging allows a radical lymphadenectomy, including very small nodes (A and B). Only when all the stained nodes are removed may the nodal dissection be considered radical (C). ICG: Indocyanine green.
preliminary findings regarding the use of fluorescence for the early detection of peritoneal carcinomatosis.

An important issue pertains to the complexity and costs of this technology. The major positive feature is that the required training is minimal and the learning curve is extremely rapid, because the visualization is activated by either clicking a button on the camera or hitting a pedal. When considering the costs of ICG-based fluorescence imaging, the relevant distinction is between the fixed costs of the equipment versus the variable costs of the injections. The highest costs lie in obtaining a NIR fluorescence camera system with dedicated optical devices, cameras, and light cables. Depending on the system chosen (goggles, handheld, or stand alone), the cost of the system varies from several thousands to hundreds of thousands of USD (and similarly in other currencies). Nowadays, many major companies sell these tools; therefore, at the fast pace at which cost-saving technological change and updating are occurring, it is very likely that in the next 5 to 10 years most operating theaters will be equipped with the technology required to display the ICG-generated fluorescence. Once the NIR fluorescence camera system is available in a hospital, the additional cost of each surgical procedure utilizing ICG-based fluorescence imaging is relatively limited: as a matter of example, in Italy, Japan, and the United States, a 25 mg vial of ICG costs 80 euros, 588 yen, and 65 USD, respectively.

The imaging of fluorescence emitted by ICG is a simple, fast, and relatively inexpensive tool without side effects that has numerous different applications in surgery not only for treating cancers affecting the visceral and hepatobiliary systems but also for visualizing the biliary tree during difficult cholecystectomies. The fast pace at which technological development is occurring in this area and the ever-increasing availability of more powerful visual systems that can utilize this tool will transform some of these applications into the standard of care in the near future.

ACKNOWLEDGMENTS

The authors are grateful to RicerChiAmo onlus (www.ricerchiamobrescia.it) for supporting the international workshop "Intraoperative ICG Fluorescence Imaging in Hepatobiliary and Visceral Surgery: State of the Art and New Frontiers" held in Brescia (Italy) on October 21, 2017, which was attended by all three authors and turned out to be the driver of the conceptual development of this review.

REFERENCES

1. Diana M. Enabling precision digestive surgery with fluorescence imaging. Transl Gastroenterol Hepatol 2017; 2: 97 [PMID: 29264435 DOI: 10.21037/gh.2017.11.06]
2. Giusa S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 2010; 9: 237-255 [PMID: 20868625]
3. Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat Rev Cancer 2013; 13: 653-662 [PMID: 23924465 DOI: 10.1038/nrc3566]
4. Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA. Indocyanine green: historical context, current applications, and future considerations. Surg Innov 2016; 23: 166-175 [PMID: 26593555 DOI: 10.1177/1553566616604033]
5. Starker PM, Chinn B. Using outcomes data to justify instituting new technology: a single institution's experience. Surg Endosc 2018; 32: 1586-1592 [PMID: 29273871 DOI: 10.1007/s00464-017-6001-3]
6. Gossedge G, Vallance A, Jayne D. Diverse applications for near infra-red intraoperative imaging. Colorectal Dis 2015; 17 Suppl 3: 7-11 [PMID: 26394736 DOI: 10.1111/codi.13023]
7. Boni L, Fingerhut A, Marzorati A, Rauseli S, Dionigi G, Cassinotti E. Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study. Surg Endosc 2017; 31: 1836-1840 [PMID: 27553790 DOI: 10.1007/s00464-016-5181-6]
8. Mangano A, Gheza F, Chen LL, Minerva EM, Giuliani PC. Indocyanine green (Icg)-enhanced fluorescence for intraoperative assessment of bowel microperfusion during laparoscopic and robotic colorectal surgery: The quest for evidence-based results. Surg Technol Int 2018; 32: 101-104 [PMID: 29611153]
9. Ris F, Liot E, Buchs NC, Kraus R, Ismael G, Belfontali V, Douissard J, Cunningham C, Lindsey I, Guy R, Jones O, George B, Moore P, Mortensen NJ, Hompes R, Cahlil RA; near-infrared anastomotic perfusion assessment network VOIR. Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg 2018; Epub ahead of print [PMID: 29663330 DOI: 10.1002/bjs.10844]
10. Hellam M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transaction during robotic left-sided colorectal resection. Surg Endosc 2014; 28: 1695-1702 [PMID: 24385249 DOI: 10.1007/s00464-013-3377-6]
11. Kin C, Vo H, Welton L, Welton M. Equivocal effect of intraoperative fluorescence angiography on colorectal anastomotic leaks. Dis Colon Rectum 2015; 58: 582-587 [PMID: 25944430 DOI: 10.1097/DCR.0000000000000320]
12. Sujatha-Bhaskar S, Jafari MD, Stamos MJ. The role of fluorescent angiography in anastomotic leaks. Surg Technol Int 2017; 30: 83-88 [PMID: 28277591]
13. Kumagai Y, Ishiguro T, Haga N, Kusakura K, Kawai T, Ishida H. Hemodynamics of the reconstructed gastric tube during esophagectomy: assessment of outcomes with indocyanine green fluorescence. World J Surg 2014; 38: 138-143 [PMID: 24916170 DOI: 10.1007/s00268-013-2237-9]
14. Karampini I, Ronelliffisch U, Mertens C, Gerken A, Hetjens S, Post S, Kienle P, Nowak K. Indocyanine green tissue angiography affects anastomotic leakage after esophagectomy. A retrospective, case-control study. Int J Surg 2017; 48: 210-214 [PMID: 29146267 DOI: 10.1016/j.ijsu.2017.11.00]
15. Kitagawa H, Namikawa T, Iwabu J, Fujisawa K, Uemura S, Tsuda S, Hanazaki K. Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy. Surg Endosc 2018; 32: 1749-1754 [PMID: 29016846 DOI: 10.1007/s00464-017-5857-6]
16. Koyanagi K, Ozawa S, Oguma J, Kazuno A, Yamazaki Y, Ninomiya Y, Ochihi H, Tachimori Y. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: New predictive evaluation of anastomotic leakage after esophagectomy. Medicine (Baltimore) 2016; 95: e4386 [PMID: 27472732 DOI: 10.1097/MD.0000000000004386]
17. Frattini F, Lavazza M, Mangano A, Amico F, Rausel S, Rovera F, Boni L, Dionigi G. Indocyanine green-enhanced fluorescence in laparoscopic sleeve gastrectomy. Obes Surg 2015; 25: 949-950 [PMID: 25736231 DOI: 10.1007/s11695-015-1640-8]
18. Irie T, Matsutani T, Hagiwara N, Nomura T, Fujita I, Kanazawa
Y, Kakinuma D, Uchida E. Successful treatment of non-occlusive mesenteric ischemia with indocyanine green fluorescence and open-abdomen management. *Clin J Gastroenterol* 2017; 10: 514-518. [PMID: 28626724 DOI: 10.1007/s12326-017-0797-3]

19 Ishizawa T, Bandai Y, Iijichi M, Kaneko J, Hasegawa K, Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. *Br J Surg* 2010; 97: 1369-1377. [PMID: 20623766 DOI: 10.1002/bjs.7125]

20 Ashitate Y, Stockdale A, Choi HS, Laurence RG, Frangioni JV. Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. *J Surg Res* 2012; 176: 7-13. [PMID: 21816414 DOI: 10.1016/j.jss.2011.06.027]

21 Pesce A, Piccolo G, La Greca G, Paloo S. Utility of fluorescent cholangiography during laparoscopic cholecystectomy: a systematic review. *World J Gastroenterol* 2015; 21: 7877-7883. [PMID: 26167088 DOI: 10.3748/wjg.v21.i5.7877]

22 Viek SL, van Dam DA, Rubinstein SM, de Lange-de Klerk ME. Indocyanine green staining: experimental proof of the concept in a porcine model. *Surg Endosc* 2015; 29: 368-375. [PMID: 24986018 DOI: 10.1007/s00464-016-5318-7]

23 Osayi SN, Wendling MR, Droseed JM, Chaudhry UI, Perry KA, Noria SF, Mikami DJ, Needlemann BJ, Muscarella P 2nd, Abdel-Rahman M, Renton DB, Melvin WS, Hazej JW, Narula VK. Near-infrared fluorescent cholangiography facilitates identification of biliary anatomy during laparoscopic cholecystectomy. *Surg Endosc* 2015; 29: 368-375. [PMID: 24986018 DOI: 10.1007/s00464-016-5318-7]

24 Liu YY, Kong SH, Diana M, Légnier A, Wu CC, Kameyama M, Ohigashi H, Tomita Y, Miyamoto Y, Imaoka S. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging. *J Surg Oncol* 2009; 100: 75-79. [PMID: 19301311 DOI: 10.1002/jso.21272]

25 Kaibori M, Matsu K, Ishizaki M, Iida H, Sakaguchi T, Tsuda T, Okamura T, Inoue K, Shimada S, Ohtsubo S, Kusano M, Ikehara Y, Ozeki E, Kitazaki T, Kon M. Evaluation of fluorescence imaging with indocyanine green in hepatocellular carcinoma. *Cancer Imaging* 2016; 16: 6. [PMID: 27052371 DOI: 10.1186/s40464-016-0066-4]

26 Shimada S, Ohtsubo S, Ogawara K, Kusano M. Macro- and microscopic findings of ICG fluorescence in liver tumors. *World J Surg* 2015; 13: 198. [PMID: 26055754 DOI: 10.1007/s00464-015-4511-3]

27 Lim C, Vibert E, Azoulay D, Salloum C, Ishizawa T, Yoshioka R, Mise Y, Sakamoto Y, Aoki T, Sugawara Y, Hasegawa K, Kokudo N. Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. *J Visc Surg* 2014; 151: 117-124. [PMID: 24461273 DOI: 10.1016/j.jvjsurg.2013.11.003]

28 Pelosa A, Franchi E, Canepa MC, Barbieri L, Briani L, Ferrari B, Bianco I, Quaretti P, Brugnatelli S, Dionigi P, Maestri M. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. *HPB* (Oxford) 2013; 15: 928-934. [PMID: 23485815 DOI: 10.1111/hpb.12057]

29 Abo T, Nanashima A, Tobinaga S, Hidaka S, Taura N, Takagi K, Ariji Y, Miyakai H, Shibata H, Nagayasu T. Usefulness of intraoperative diagnosis of hepatic tumors located at the liver surface and hepatic segmental visualization using indocyanine green-phidotrope eye imaging. *Eur J Surg Oncol* 2015; 41: 257-264. [PMID: 25447030 DOI: 10.1016/j.ejso.2014.09.008]

30 Terasawa M, Ishizawa T, Mise Y, Inoue Y, Ito H, Takahashi Y, Sairu A. Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. *Surg Endosc* 2017; 31: 5111-5118. [PMID: 28455774 DOI: 10.1007/s00464-017-5576-z]

31 Zhang YM, Shi R, Hou JC, Liu ZR, Cui ZL, Li Y, Wu D, Shi Y, Shen ZY. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. *J Cancer Res Clin Oncol* 2017; 143: 51-58. [PMID: 27629877 DOI: 10.1007/s00432-016-2267-4]

32 Harada N, Ishizawa T, Muraoka A, Iijichi M, Kusaka K, Shibusaki M, Yamamoto K, Hasegawa K, Bandai Y, Kokudo N. Fluorescence navigation hepatectomy by visualization of localized cholestasis from bile duct tumor infiltration. *J Am Coll Surg* 2010; 210: e2-e6. [PMID: 20510795 DOI: 10.1016/j.jamcollsurg.2010.02.052]

33 Kaibori M, Ishizaki M, Matsu K, Kwon AH. Intraoperative indocyanine green fluorescence imaging for prevention of bile leakage after hepatic resection. *Surgery* 2011; 150: 91-98. [PMID: 21514613 DOI: 10.1016/j.surg.2011.02.011]

34 Kobayashi Y, Kawaguchi Y, Kobayashi K, Morik R, Arita J, Sakamoto Y, Hasegawa K, Kokudo N. Portal vein territory identification using indocyanine green fluorescence imaging: Technical details and short-term outcomes. *J Surg Oncol* 2017; 116: 1921-931. [PMID: 28695566 DOI: 10.1002/jso.24752]

35 Diana M, Liu YY, Pop R, Kong SH, Legnér A, Beaujeux R, Pessaux P, Soler L, Mutter D, Dallemagne B, Marescaux J. Superselective intra-arterial hepatic injection of indocyanine green (ICG) for fluorescence image-guided segmental positive staining: experimental proof of the concept. *Surg Endosc* 2017; 31: 1451-1460. [PMID: 27495341 DOI: 10.1007/s00464-016-5136-y]

36 Ueno M, Hayami S, Sonomura T, Tanaka R, Kawai M, Hiroino S, Okada KI, Yamazaki H. Indocyanine green fluorescence imaging techniques and interventional radiology during laparoscopic anatomical liver resection (with video). *Surg Endosc* 2018; 32: 1051-1055. [PMID: 2927369 DOI: 10.1007/s00464-017-5997-8]

37 Benedicenti S, Molfino S, Alfano MS, Molteni B, Porsio P, Popalini N, Baiocchi GL. Indocyanine green fluorescence-guided liver resection of metastasis from squamous cell carcinoma invading the biliary tree. *Case Reports Gastrointest Med* 2018; In press

38 Majlesara A, Golzi M, Hafezi M, Saffarizadeh A, Stenn A, Maier-Hein WJG | www.wjgnet.com 2929 July 21, 2018 | Volume 24 | Issue 27 |
ICG fluorescence imaging in abdominal surgery

L, Müller-Stich BP, Mehrabi A. Indocyanine green fluorescence imaging in hepatobiliary surgery. *Photodiagnosis Photodyn Ther* 2017; 17: 208-215 [PMID: 28017834 DOI: 10.1016/j.pdpdt.2016.12.005]

Sato S, Ishizawa T, Masuda K, Kaneko J, Aoki T, Sakamoto Y, Hasegawa K, Sugawara Y, Kokudo N. Indocyanine green fluorescent imaging for detecting extramural metastasis of hepatocellular carcinoma. *J Gastroenterol* 2013; 48: 1136-1143 [PMID: 23179608 DOI: 10.1159/0003554540]

Watanabe M, Murakami M, Ozawa Y, Yoshizawa S, Matsuji N, Aoki T. Intraoperative identification of colonic tumor sites using a near-infrared fluorescence endoscopic imaging system and indocyanine green. *Dig Surg* 2017; 34: 495-501 [PMID: 28219066 DOI: 10.1159/0004085450]

Nagata J, Fukunaga Y, Akiyoshi T, Konishi T, Fujimoto Y, Nagayama S, Yamamoto N, Ueno M. Colonic marking with near-infrared, light-emitting, diode-activated indocyanine green for laparoscopic colorectal surgery. *Dis Colon Rectum* 2016; 59: e14-e18 [PMID: 26734978 DOI: 10.1097/DCR.0000000000000542]

Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. *Dig Surg* 2008; 25: 103-108 [PMID: 18379188 DOI: 10.1159/000121905]

Kinami S, Oonishi T, Fujita T, Tomita Y, Funaki H, Fujita H, Nakano Y, Ueda N, Kosaka T. Optimal settings and accuracy of indocyanine green fluorescence imaging for sentinel node biopsy in early gastric cancer. *Onco Let* 2016; 11: 4055-4062 [PMID: 27313740 DOI: 10.3982/ol.2016.4492]

Tummers QR, Boogerd LS, de Steur WO, Verbeek FP, Boonstra MC, Handgraaf HJ, Frangioni JV, van de Velde CJ, Hartgrink HH, Vahrmeijer AL. Near-infrared fluorescence sentinel lymph node detection in gastric cancer: A pilot study. *World J Gastroenterol* 2016; 22: 3644-3651 [PMID: 27053856 DOI: 10.3748/wjg.v22.i13.3644]

Takahashi N, Nimura H, Fujita T, Mitsumori N, Shiraishi N, Kitano S, Satodate H, Yanaga K. Laparoscopic sentinel node navigation surgery for early gastric cancer: a prospective multicenter trial. *Langenbecks Arch Surg* 2017; 402: 27-32 [PMID: 27999935 DOI: 10.1007/s00423-016-1540-x]

Paiella S, De Pastena M, Landoni L, Esposito A, Casetti L, Miotto M, Rama M, Salvia R, Scechettin E, Bonamini D, Manzini G, D’Onofrio M, Marchegiani G, Basci I. Is there a role for near-infrared technology in laparoscopic resection of pancreatic neuroendocrine tumors? Results of the COLPAN “colour-and-resect the pancreas” study. *Surg Endosc* 2017; 31: 4478-4484 [PMID: 28374260 DOI: 10.1007/s00464-017-5501-5]

Filippello A, Porcheron J, Klein JP, Cottier M, Barabino G. Affinity of indocyanine green in the detection of colorectal peritoneal carcinomatosis. *Surg Innov* 2017; 24: 103-108 [PMID: 27909239 DOI: 10.1177/1553550616681897]

Lieto E, Auricchio A, Cardella F, Mabilia A, Basile N, Castellano P, Orditura M, Galizia G. Fluorescence-guided surgery in the combined treatment of peritoneal carcinomatosis from colorectal cancer: Preliminary Results and Considerations. *World J Surg* 2018; 42: 1154-1160 [PMID: 28929277 DOI: 10.1007/s00090-017-5289-z]

Cheng H, Chi C, Shang W, Rengaowa S, Cui J, Ye J, Jiang S, Mao Y, Zeng C, Huo H, Chen L, Tian J. Precise integrin-targeting near-infrared imaging-guided surgical method increases surgical qualification of peritoneal carcinomatosis from gastric cancer in mice. *Oncotarget* 2017; 8: 6258-6272 [PMID: 28009982 DOI: 10.18632/oncotarget.14058]

Liberal G, Vankerckhove S, Caldon MG, Ahmed B, Moreau M, Nakadi IE, Larsimont D, Donckier V, Bourgeois P, Group R&D for the Clinical Application of Fluorescence Imaging of the Jules Bordet’s Institute. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. *Ann Surg* 2016; 264: 1110-1115 [PMID: 27828822 DOI: 10.1097/SLA.0000000000001618]

P- Reviewer: Aktekin A, Assasa S, Hussain A, Mastoraki A
S- Editor: Gong ZM L- Editor: A E- Editor: Huang Y
