Random walks maximizing the probability to visit an interval

D. Dzindzalieta
dainiusda[eta]gmail.com

May 30, 2013

Abstract

We consider random walks, say $W_n = (M_0, M_1, \ldots, M_n)$, of length n starting at 0 and based on the martingale sequence M_k with differences $X_m = M_m - M_{m-1}$. Assuming that the differences are bounded, $|X_m| \leq 1$, we solve the problem

$$D_n(x) \overset{\text{def}}{=} \sup \mathbb{P}\{W_n \text{ visits an interval } [x, \infty)\}, \quad x \in \mathbb{R}, \quad (1)$$

where sup is taken over all possible W_n. In particular, we describe random walks which maximize the probability in (1). We also extend the result to super-martingales.

1 Introduction and results

We consider random walks, say $W_n = (M_0, M_1, \ldots, M_n)$ of length n starting at 0 and based on a martingale sequence $M_k = X_1 + \cdots + X_k$ (assume $M_0 = 0$)

1 Vilnius University Institute of Mathematics and Informatics, 4 Akademijos, Vilnius, Lithuania. This research was funded by a grant (No. MIP-12090) from the Research Council of Lithuania.

2 Keywords: random walks, maximal inequalities, probability to visit an interval, large deviations, martingale, super-martingale, bounds for tail probabilities, inequalities, bounded differences and random variables, inhomogeneous Markov chains.

3 2000 Mathematics Subject Classification. Primary 60E15. Secondary 60J10.
with differences \(X_m = M_m - M_{m-1} \). Let \(\mathcal{M} \) be the class of martingales with bounded differences such that \(|X_m| \leq 1 \) and \(\mathbb{E}(X_m | \mathcal{F}_{m-1}) = 0 \) with respect to some increasing sequence of algebras \(\emptyset \subset \mathcal{F}_0 \subset \cdots \subset \mathcal{F}_n \). If a random walk \(W_n \) is based on a martingale sequence of the class \(\mathcal{M} \) then we write symbolically \(W_n \in \mathcal{M} \). Extensions to super-martingales are provided at the end of the Introduction.

In this paper we provide a solution of the problem

\[
D_n(x) \overset{\text{def}}{=} \sup_{W_n \in \mathcal{M}} \mathbb{P}\{W_n \text{ visits an interval } [x, \infty)\}, \quad x \in \mathbb{R}.
\] (2)

In particular, we describe random walks which maximize the probability in (2) and give an explicit expression of the upper bound \(D_n(x) \). It turns out that the random walk maximizing the probability in (2) is an inhomogeneous Markov chain, i.e., given \(x \) and \(n \), the distribution of \(k \)th step depends only on \(M_{k-1} \) and \(k \). For integer \(x \in \mathbb{Z} \) the maximizing random walk is a simple symmetric random walk (that is, a symmetric random walk with independent steps of length 1) stopped at \(x \). For non-integer \(x \), the maximizing random walk makes some steps of smaller sizes. Smaller steps are needed to make a jump so that the remaining distance becomes integer and then continue as a simple random walk. The average total number of the smaller steps is bounded by 2. For martingales our result can be interpreted as a maximal inequality

\[
\mathbb{P}\left\{ \max_{1 \leq k \leq n} M_k \geq x \right\} \leq D_n(x).
\]

The maximal inequality is optimal since the equality is achieved by martingales related to the maximizing random walks, that is,

\[
\sup_{W_1, \ldots, W_n \in \mathcal{M}} \mathbb{P}\left\{ \max_{1 \leq k \leq n} M_k \geq x \right\} = D_n(x),
\] (3)

where we denote by \(W_k \) a random walk \((M_0, M_1, \ldots, M_k, M_k, \ldots, M_k) \in \mathcal{M}\).

To prove the result we introduce a general principle for maximal inequalities for (natural classes of) martingales which reads as

\[
\sup_{W_1, \ldots, W_n \in \mathcal{M}} \mathbb{P}\left\{ \max_{1 \leq k \leq n} M_k \geq x \right\} = \sup_{M_n \in \mathcal{M}} \mathbb{P}\{M_n \geq x\}
\] (4)

in our case. It means that for martingales, the solutions of problems of type (2) are inhomogeneous Markov chains, i.e., the problem of type (2) can
be always reduced to finding a solution of (2) in a class of inhomogeneous Markov chains.

Our methods are similar in spirit to a method used in [Ben01], where a solution of a problem (2) was provided for integer \(x \in \mathbb{Z} \). Namely, he showed that if \(R_n = \varepsilon_1 + \cdots + \varepsilon_n \) is a sum of Rademacher random variables such that \(\mathbb{P}\{\varepsilon_i = -1\} = \mathbb{P}\{\varepsilon_i = -1\} = 1/2 \) and \(B(n, k) \) is a normalized sum of \(n - k + 1 \) smallest binomial coefficients, i.e.,

\[
B(n, k) = 2^{-n} \sum_{i=0}^{n-k} \binom{\left\lceil \frac{i}{2} \right\rceil}{\frac{i}{2}}
\]

where \(\left\lfloor x \right\rfloor \) denotes an integer part of \(x \), then for all \(k \in \mathbb{Z} \)

\[
D_n(k) = B(n, k) = \begin{cases}
2 \mathbb{P}\{R_n \geq k + 1\} + \mathbb{P}\{R_n = k\} & \text{if } n + k \in 2\mathbb{Z}, \\
2 \mathbb{P}\{R_n \geq k + 1\} & \text{if } n + k \in 2\mathbb{Z} + 1.
\end{cases}
\]

Recently Dzindzalieta, Juškevičius and Šileikis [DJS12] solved the problem (2) in the case of sums of bounded independent symmetric random variables. They showed that if \(S_n = X_1 + \cdots + X_n \) is a sum of independent symmetric random variables such that \(|X_i| \leq 1 \) then

\[
\mathbb{P}\{S_n \geq x\} \leq \begin{cases}
\mathbb{P}\{R_n \geq x\} & \text{if } n + \left\lceil x \right\rceil \in 2\mathbb{Z}, \\
\mathbb{P}\{R_{n-1} \geq x\} & \text{if } n + \left\lceil x \right\rceil \in 2\mathbb{Z} + 1,
\end{cases}
\]

where \(\left\lceil x \right\rceil \) denotes the smallest integer number greater or equal to \(x \). We note that for integer \(x \) the random walk based on the sequence \(R_k \) stopped at a level \(x \) is a solution of (2).

As far as we are aware, the paper presents the first result where problems for martingales of type (2) and (3) are solved for all \(x \in \mathbb{R} \).

Let us turn to more detailed formulations of our results. For a martingale \(M_n \in \mathcal{M} \) and \(x \in \mathbb{R} \), we introduce the stopping time

\[
\tau_x = \min\{k : M_k \geq x\}.
\]

The stopping time \(\tau_x \) is a non-negative integer valued random variable possibly taking the value \(+\infty \) in cases where \(M_k < x \) for all \(k = 0, 1, \ldots \). For a martingale \(M_n \in \mathcal{M} \), define its version stopped at level \(x \) as

\[
M_{n,x} = M_{\tau_x \wedge n}, \quad a \wedge b = \min\{a, b\}.
\]
Given a random walk \(W_n = \{0, M_1, \ldots, M_n\} \) its stopped version is denoted as \(W_{n,x} = \{0, M_{1,x}, \ldots, M_{n,x}\} \).

Fix \(n \) and \(x > 0 \). The maximizing random walk \(RW_n = \{0, M^{x}_1, \ldots, M^{x}_n\} \) is defined as follows. We start at 0. Suppose that after \(k \) steps the remaining distance to the target \([x, \infty)\) is \(\rho_k \). The distribution of the next step is a Bernoulli random variable (which takes only two values), say \(X^{*} = X^{*}(k, \rho_k, n) \), such that

\[
\sup \mathbb{E} D_{n-k}(\rho_k - X) = \mathbb{E} D_{n-k}(\rho_k - X^{*})
\]

where \(\sup \) is taken over all random variables \(X \) such that \(|X| \leq 1 \) and \(\mathbb{E} X = 0 \).

The distribution of the next step \(X^{*} \) depends on four possible situations.

1) \(\rho_k \) is integer;
2) \(n - k \) is odd and \(0 < \rho_k < 1 \);
3) the integer part of \(\rho_k + n - k \) is even;
4) the integer part of \(\rho_k + n - k \) is odd and \(\rho_k > 1 \).

After \(k \) steps we make a step of length \(s_l \) or \(s_r \) to the left or right with probabilities \(p_i = \frac{s_r}{s_r + s_l} \) and \(q_i = \frac{s_l}{s_r + s_l} \) respectively. Let \(\{x\} \) denotes the

Depending on (i)-(iv) we have.

i) \(s_l = s_r = 1 \) with equal probabilities \(p_1 = q_1 = \frac{1}{2} \), i.e., we continue as a simple random walk;
ii) \(s_l = \rho_k \) and \(s_r = 1 - \rho_k \) with \(p_2 = 1 - \{\rho_k\} \) and \(q_2 = \{\rho_k\} \), i.e., we make a step so that the remaining distance \(\rho_{k+1} \) becomes equal either to 0 or 1;
(iii) \(s_l = \{\rho_k\} \) and \(s_r = 1 \) with \(p_3 = \frac{1}{1 + \{\rho_k\}} \) and \(q_3 = \frac{\{\rho_k\}}{1 + \{\rho_k\}} \), i.e., we make a step to the left so that \(\rho_{k+1} \) is of the same parity as \(n - k - 1 \) or to the right side as far as possible;
(iv) \(s_l = 1 \) and \(s_r = 1 - \{\rho_k\} \) with \(p_4 = \frac{1 - \{\rho_k\}}{2 - \{\rho_k\}} \) and \(q_4 = \frac{1}{2 - \{\rho_k\}} \), i.e., we make a step to the left so that \(\rho_{k+1} \) is of the same parity as \(n - k - 1 \) or to the right side as far as possible.

In other words if \(\rho_k \) is non-integer then the maximizing random walk jumps so that \(\rho_{k+1} \) becomes of the same parity as the remaining number of steps \(n - k - 1 \) or the step of length \(\min\{x, 1\} \) to the other side. If the remaining distance \(\rho_k \) is integer, then it continues as a simple random walk.

The main result of the paper is the following theorem.

Theorem 1. The random walk \(RW_n \) stopped at \(x \) maximizes the probability

\[
\mathbb{P}(\text{random walk stopped at } x) = \sup \mathbb{P}(\text{random walk stopped at } x) = \mathbb{P}(\text{random walk stopped at } x^{*})
\]
to visit an interval $[x, \infty)$ in first n steps, i.e., the following equalities hold

$$D_n(x) = \mathbb{P}\{RW_{n,x} \text{ visits an interval } [x, \infty)\} = \mathbb{P}\{M_{n,x}^x \geq x\},$$

(9)

for all $x \in \mathbb{R}$ and $n = 0, 1, 2, \ldots$.

An explicit definition of $D_n(x)$ depends on the parity of n. Namely, let $x = m + \alpha$ with $m \in \mathbb{Z}$ and $0 \leq \alpha < 1$.

If $m + n$ is odd then

$$D_n(x) = \sum_{i=0}^{h} a_i B(n - i - 1, m + i), \quad a_i = \frac{\alpha^i}{(1 + \alpha)^{i+1}},$$

(10)

where $h = (n - m - 1)/2$.

If $m + n$ is even then

$$D_n(x) = \sum_{i=0}^{m+1} b_i B(n - i - 1, m - i + 1),$$

(11)

where $b_i = \frac{(1-\alpha)^i}{(2-\alpha)^{i+1}}$, for $i < m$, $b_m = \alpha \left(\frac{1-\alpha}{2-\alpha}\right)^m$ and $b_{m+1} = (1 - \alpha) \left(\frac{1-\alpha}{2-\alpha}\right)^m$.

It is easy to see from (10) and (11) that D_n is decreasing and continuous for all $x \in \mathbb{R}$ except at $x = n$ it has a jump. In particular we have that $D_n(x) = 1$ for $x \leq 0$ and $D_n(x) = 0$ for $x > n$. In Section 3 we prove that the function D_n is piecewise convex and piecewise continuously differentiable. We also give the recursive definition of the function D_n.

A great number of papers is devoted to construction of upper bounds for tail probabilities of sums of random variables. The reader can find classical results in books [PB75, SW09]. One of the first and probably the most known non-asymptotic bound for $D_n(x)$ was given by Hoeffding in 1963 [Hoe63]. He proved that for all x the function $D_n(x)$ is bounded by $\exp\{-x^2/2n\}$. Hoeffding’s inequalities remained unimproved until 1995 when Talagrand [Tal95] inserted certain missing factors. Bentkus 1986–2007 [Ben87, Ben01, Ben04, BKZ06] developed induction based methods. If it is possible to overcome related technical difficulties, these methods lead to the best known upper bounds for the tail probabilities (see [BD10, DJS12] for examples of tight bounds received using these methods). In [Ben01] first tight bounds for $D_n(x)$ for integer x was received. To overcome technical difficulties for non-integer x in [Ben01] the linear interpolation between integer points was used, thus losing precision for non-integer x. Our method is similar in spirit to [Ben01].
1.1 An extension to super-martingales

Let \mathcal{SM} be the class of super-martingales with bounded differences such that $|X_m| \leq 1$ and $\mathbb{E}(X_k|\mathcal{F}_{k-1}) \leq 0$ with respect to some increasing sequence of algebras $\emptyset \subset \mathcal{F}_0 \subset \cdots \subset \mathcal{F}_n$. We show that

Theorem 2. For all $x \in \mathbb{R}$ we have

$$\sup_{SW_n \in \mathcal{SM}} \mathbb{P}\{SW_n \text{ visits an interval } [x, \infty)\} = D_n(x). \quad (12)$$

For super-martingales Theorem 2 can also be interpreted as the maximal inequality

$$\mathbb{P}\left\{ \max_{1 \leq k \leq n} M_k \geq x \right\} \leq D_n(x),$$

where $M_k \in \mathcal{SM}$, and furthermore, the sup over the class of super-martingales is achieved on a martingale class.

Proof of Theorem 2. Suppose that sup in (12) is achieved with some super-martingale $SM_n = X_1 + \cdots + X_n$. Let $M_n = Y_1 + \cdots + Y_n$ be a sum of random variables, such that

$$(Y_k|\mathcal{F}_{k-1}) = (\mathbb{E}(X_k|\mathcal{F}_{k-1}) - 1) \mathbb{E}(X_k|\mathcal{F}_{k-1}).$$

It is easy to see that $Y_k \geq 0$, $|X_k + Y_k| \leq 1$ and $\mathbb{E}(X_k + Y_k|\mathcal{F}_{k-1}) = 0$, so $SM_n + M_n \in \mathcal{M}$. Since $Y_k \geq 0$ we have that $M_n \geq 0$, so $\mathbb{P}\{SM_n + M_n \geq x\}$ is greater or equal to $\mathbb{P}\{SM_n \geq x\}$. This proves the theorem. \square

2 Maximal inequalities for martingales are equivalent to inequalities for tail probabilities

Let \mathcal{M} be a class of martingales. Introduce the upper bounds for tail probabilities and in the maximal inequalities as

$$B_n(x) \overset{\text{def}}{=} \sup_{M_n \in \mathcal{M}} \mathbb{P}\{M_n \geq x\}, \quad B^*_n(x) \overset{\text{def}}{=} \sup_{M_n \in \mathcal{M}} \mathbb{P}\left\{ \max_{0 \leq k \leq n} M_k \geq x \right\}$$
for $x \in \mathbb{R}$ (we define $M_0 = 0$).

Let as before τ_x be a stopping time defined by

$$\tau_x = \min\{k : M_k \geq x\}. \quad (13)$$

Theorem 3. If a class \mathcal{M} of martingales is closed under stopping at level x, then

$$B_n(x) \equiv B_n^*(x).$$

We can interpret Theorem 3 by saying that inequalities for tail probabilities for natural classes of martingales imply (seemingly stronger) maximal inequalities. This means that maximizing martingales are inhomogeneous Markov chains. Assume that for all $M_n \in \mathcal{M}$ we have

$$\mathbb{P}\{M_n \geq x\} \leq g_n(x)$$

with some function g which depends only on n and the class \mathcal{M}. Then it follows that

$$\mathbb{P}\left\{\max_{0 \leq k \leq n} M_k \geq x\right\} \leq g_n(x).$$

In particular, equalities (2)–(4) are equivalent.

Proof of Theorem 3. It is clear that $B_n \leq B_n^*$ since $M_n \leq \max_{0 \leq k \leq n} M_k$. Therefore it suffices to check the opposite inequality $B_n \geq B_n^*$. Let $M_n \in \mathcal{M}$. Using the fact that $M_{\tau_x \wedge n} \in \mathcal{M}$, we have

$$\mathbb{P}\left\{\max_{0 \leq k \leq n} M_k \geq x\right\} = \mathbb{P}\{M_{\tau_x \wedge n} \geq x\} \leq B_n(x). \quad (14)$$

Taking in (14) sup over $M_n \in \mathcal{M}$, we derive $B_n^* \geq B_n$. \qed

In general conditions of Theorem 3 are fulfilled under usual moment and range conditions. That is, conditions of type

$$\mathbb{E}(|X_k|^{\alpha_k} \mid \mathcal{F}_{k-1}) \leq g_k, \quad (X_k \mid \mathcal{F}_{k-1}) \in I_k,$$

with some \mathcal{F}_{k-1}-measurable $\alpha_k \geq 0$, $g_k \geq 0$, and intervals I_k with \mathcal{F}_{k-1}-measurable endpoints. One can use as well assumptions like symmetry, unimodality, etc.
3 Proofs

In order to prove Theorem 1 we need some additional lemmas.

Lemma 4. Suppose $f \in C^1(0,2)$ is a continuously differentiable, non-increasing, convex function on $(0,2)$. Suppose that f is also two times differentiable on intervals $(0,1)$ and $(1,2)$. The function $F : (0,2) \rightarrow \mathbb{R}$ defined as

\[
F(x) = \begin{cases}
\frac{1}{x+1} f(0) + \frac{x}{x+1} f(x+1) & \text{for } x \in (0,1]; \\
\frac{2-x}{3-x} f(x-1) + \frac{1}{3-x} f(2) & \text{for } x \in (1,2)
\end{cases}
\]

is convex on intervals $(0,1)$ and $(1,2)$.

Proof Since the function f is decreasing and convex, we have that

\[
f'(x+1) \geq \frac{f(x+1) - f(0)}{x+1} \quad \text{for } x \in (0,1); \quad \text{(15)}
\]

\[
f'(x-1) \leq \frac{f(2) - f(x-1)}{3-x} \quad \text{for } x \in (1,2). \quad \text{(16)}
\]

For $x \in (0,1)$ simple algebraic manipulations gives

\[
F''(x) = \frac{x}{x+1} f''(x+1) + \frac{2}{(x+1)^2} \left(f'(x+1) - \frac{f(x+1) - f(0)}{x+1} \right). \quad \text{(17)}
\]

By (15) the second term in right hand side of (17) is non-negative. Thus $F''(x) \geq 0$ for all $x \in (0,1)$.

For $x \in (1,2)$ similar algebraic manipulation gives

\[
F''(x) = \frac{2-x}{3-x} f''(x-1) - \frac{2}{(3-x)^2} \left(f'(x-1) - \frac{f(2) - f(x-1)}{3-x} \right). \quad \text{(18)}
\]

By (16) the second term in right hand side of (18) is non-negative. Thus $F''(x) \geq 0$ for all $x \in (1,2)$.

We use Lemma 4 to prove that the function $x \rightarrow D_n(x)$ satisfies the following analytic properties.

Lemma 5. The function D_n is convex and continuously differentiable on intervals $(n-2,n), (n-4,n-2), \ldots, (0,2\{n/2\})$.

8
Proof In order to prove this lemma it is very convenient to use a recursive
definition of the function $D_n(x)$ which easily follows from the the description
of the maximizing random walk $RW_{n,x}$. We have $D_0(x) = \mathbb{I}\{x \leq 0\}$ and

$$D_{n+1}(x) = \begin{cases}
1 & \text{if } x \leq 0, \\
p_1 D_n(x-1) + q_1 D_n(x+1) & \text{if } x \in \mathbb{Z} \text{ and } x > 0, \\
p_2 D_n(0) + q_2 D_n(1) & \text{if } n \in 2\mathbb{Z} + 1 \text{ and } x < 1, \\
p_3 D_n(\lfloor x \rfloor) + q_3 D_n(x+1) & \text{if } \lfloor x \rfloor + n \in 2\mathbb{Z} \text{ and } x > 0, \\
p_4 D_n(x-1) + q_4 D_n(\lceil x \rceil) & \text{if } \lceil x \rceil + n \in 2\mathbb{Z} \text{ and } x > 1, \\
0 & \text{if } x > n.
\end{cases} \tag{19}$$

where $p_i + q_i = 1$ with $p_1 = 1/2$, $p_2 = 1 - \{x\}$, $p_3 = \frac{1}{1+(x)}$ and $p_4 = \frac{1-(x)}{2-(x)}$.

To prove Lemma 4 we use induction on n. If $n = 0$ then $D_n(x) = \mathbb{I}\{x \leq 0\}$
clearly satisfies Lemma 5. Suppose that Lemma 4 holds for $n = k - 1 \geq 0$. Assume $n = k$.

First we prove that D_k is convex and continuously differentiable on intervals $(0,1), (1,2), \ldots, (k-1,k)$. Since D_k is rational and do not have discontinuities between integer points, it is clearly continuously differentiable on intervals $(0,1), (1,2), \ldots, (k-1,k)$. If $x \in (k-1,k]$ then by (10) we have that $D_k(x) = 2^{-k+1}/(x-k+1)$. Thus the function D_k is clearly convex on interval $(k-1,k)$. The convexity of D_k on intervals $(0,1), (1,2), \ldots, (k-2,k-1)$ follows directly from Lemma 4 and recursive
definition (19). To prove that the function D_k is also continuously differentiable on intervals $(k-2,k), (k-4,k-2), \ldots, (0,2\{k/2\})$ it is enough to show that $D_k'(m-0) = D_k'(m+0)$ for all $m \in \mathbb{N}$ such that $k+m \in 2\mathbb{Z} + 1$. If $x = m - 0$ (we consider only the case $m > 0$, since for $m = 0$ the function $D_k(x)$ is linear), then by (19) we have

$$D_k(x) = p_4 D_{k-1}(x-1) + q_4 D_{k-1}(m) \tag{20}$$

and since D_{k-1} is continuously differentiable at $x - 1$ we have

$$D_k'(x) = q_4^2 D_{k-1}(x-1) + p_4 D_{k-1}'(x-1) - q_4^2 D_{k-1}(m).$$

Since $x = m - 0$ we get that $D_k'(x) = D_{k-1}(x-1) - D_{k-1}(m)$. Similarly we have that if $x = m + 0$ then $D_k'(x) = D_{k-1}(m) - D_{k-1}(x-1)$. Since $D_{k-1}(m - 1) - D_{k-1}(m) = D_{k-1}(m) - D_{k-1}(m - 1)$ we get that
\[D_k'(m - 0) = D_k'(m + 0). \] Since \(D_k \) is continuously differentiable on intervals \((k - 2, k), (k - 4, k - 2), \ldots, (0, 2\{k/2\})\) and \(D_k \) is convex on intervals \((0, 1), (1, 2), \ldots, (k - 1, k)\) we have that \(D_k(x) \geq 0 \) is convex on \(x = m \) for all \(m \in \mathbb{N} \) such that \(k + m \in 2\mathbb{Z} + 1 \). This ends the proof of Lemma 4.

We also need the following lemma, which is used to find the minimal dominating linear function in a proof of Theorem 1.

Lemma 6. The function \(D_n \) satisfies the following inequalities.

a) If \(n \in 2\mathbb{Z} + 1 \) and \(0 < x < 1 \) then
\[
p_2 D_n(0) + q_2 D_n(1) - p_3 D_n(0) - q_3 D_n(x + 1) \geq 0. \tag{21}
\]
b) If \(\lfloor n + x \rfloor \in 2\mathbb{Z} \) then
\[
p_3 D_n(\lfloor x \rfloor) + q_3 D_n(x + 1) - p_1 D_n(x - 1) - q_1 D_n(x + 1) \geq 0. \tag{22}
\]
c) If \(\lfloor n + x \rfloor \in 2\mathbb{Z} + 1 \) and \(x > 1 \)
\[
p_4 D_n(x - 1) + q_4 D_n(\lfloor x \rfloor + 1) - p_1 D_n(x - 1) - q_1 D_n(x + 1) \geq 0. \tag{23}
\]

Here \(p_i \) and \(q_i \) are the same as in Lemma 4.

Proof We prove this lemma by induction on \(n \). If \(n = 0 \) then Lemma 6 is equivalent to the trivial inequality \(1 - 1 \geq 0 \). Suppose that the properties (a)–(c) holds for \(n = k - 1 \geq 0 \). Assume \(n = k \).

Proof of (a). We use the following equalities directly following from the definition of the function \(D_k \). If \(k \in 2\mathbb{Z} + 1 \) and \(x \in (0, 1) \) then
\[
D_k(0) = D_{k-1}(0);
D_k(1) = p_1 D_{k-1}(0) + q_1 D_{k-1}(2);
D_k(x + 1) = p_4 D_{k-1}(2) + q_4 D_{k-1}(x);
D_{k-1}(x) = D_{k-1}(0) + x (D_{k-1}(1) - D_{k-1}(0));
\]
We substitute all these equalities to (21) we get that the left hand side of (21) is equal to
\[
q_2 p_3 p_4 x (p_1 D_{k-1}(0) + q_1 D_{k-1}(2) - D_{k-1}(1))
\]
The inequality (21) follows from the inequality \(D_{k-1}(1) \leq D_k(1) = p_1 D_{k-1}(0) + q_1 D_{k-1}(2) \).
Proof of (b). We rewrite every term in the inequality (22) using the definition of the function D_k to get

$$p_1p_3(D_{k-1}([x] - 1) + D_{k-1}([x] + 1)) + q_3(p_3D_{k-1}([x] + 1) + q_3D_{k-1}(x + 2)) - p_1p_3(D_{k-1}([x] - 1) + D_{k-1}([x] + 1)) - p_1q_3(D_{k-1}(x) + D_{k-1}(x + 2)) \geq 0.$$

The inequality

$$p_3D_{k-1}([x] + 1) + q_3D_{k-1}(x + 2) \geq p_1D_{k-1}(x) + q_1D_{k-1}(x + 2)$$

follows from the inductive assumption (22) for $n = k - 1$.

Proof of (c). In this case we have to consider two separate cases.

Case $x > 2$. We again rewrite every term in the inequality (23) using the definition of the function D_k to get

$$p_4(p_4D_{k-1}(x - 2) + q_4D_{k-1}([x])) + q_4p_1(D_{k-1}([x]) + D_{k-1}([x] + 2)) - q_4p_1(D_{k-1}([x]) + D_{k-1}([x] + 2)) - p_4p_1(D_{k-1}(x - 2) + D_{k-1}(x)) \geq 0.$$

The inequality

$$p_4D_{k-1}(x - 2) + q_4D_{k-1}([x]) \geq p_1D_{k-1}(x - 2) + q_1D_{k-1}(x)$$

follows from the inductive assumption (23) for $n = k - 1$.

Case $1 < x < 2$. Firstly let us again rewrite the inequality (23) using the recursive definition of D_k. After combining the terms we get that (23) is equivalent to

$$xD_{k-1}(1) + (1 - x)D_{k-1}(0) - D_{k-1}(x) \geq 0. \quad (24)$$

Now we use the inequality

$$D_{k-1}(x) \leq (2 - x)D_{k-1}(1) + (x - 1)D_{k-1}(2).$$

to get that

$$xD_{k-1}(1) + (1 - x)D_{k-1}(0) - D_{k-1}(x) \geq$$

$$2(x - 1)D_{k-1}(1) + (1 - x)D_{k-1}(0) - (x - 1)D_{k-1}(2) =$$

$$(x - 1)(2D_{k-1}(1) - D_{k-1}(0) - D_{k-1}(2)) = 0.$$

which proves the inequality (23).
Now we are ready to prove Theorem 1.

Proof For \(x \leq 0 \) to achieve sup in (9) take \(M_n \equiv 0 \). For \(x > n \) the sup in (9) is equal to zero since \(M_n \leq n \) for all \(n = 0, 1, \ldots \). To prove Theorem 1 for \(x \in (0, n] \) we use induction on \(n \).

For \(n = 0 \) the statement is obvious since \(P\{M_0 \geq x\} = I\{x \leq 0\} = D_0(x) \).

Suppose that Theorem 1 holds for \(n = k > 0 \). Assume \(n = k + 1 \). In order to prove Theorem 1 it is enough to prove that \(D_{k+1} \) satisfies the recursive relations (19). We have

\[
P\{M_{k+1} \geq x\} = P\{X_2 + \cdots + X_{k+1} \geq x - X_1\}
\]

\[
= E P\{X_2 + \cdots + X_k \geq x - t | X_1 = t\}
\]

\[
\leq ED_k(x - X_1).
\]

Now for every \(x \) we find a linear function \(t \mapsto f(t) \) dominating the function \(t \mapsto D_k(x - t) \) on interval \([-1, 1] \) and touching it at two points, say \(x_1 \) and \(x_2 \), on different sides of zero. After this we consider a random variable, say \(X \in \{x_1, x_2\} \) with mean zero. It is clear that \(ED_k(x - X_1) \leq ED_k(x - X) \).

We show that the numbers \(x_1 \) and \(x_2 \) are so that (19) holds.

Since \(D_k \) is piecewise convex between integer points, the points where \(f(t) \) touches \(D_k(x - t) \) can be only the endpoints of an interval \([-1, 1] \) or the points where \(D_k(x - t) \) is not convex.

We consider four separate cases.

1. \(x \in \mathbb{Z} \);
2. \(k \in 2\mathbb{Z} + 1 \) and \(x < 1 \);
3. \(\lfloor x \rfloor + k \in 2\mathbb{Z} \);
4. \(\lfloor x \rfloor + k \in 2\mathbb{Z} \) and \(x > 1 \).

Case (i). Since \(x \in \mathbb{Z} \) the dominating linear function touches \(D_k(x - t) \) at integer points. So maximizing \(X_1 \in \{-1, 0, 1\} \).

If \(x+k \in 2\mathbb{Z} +1 \) then the function \(D_k(x-t) \) is convex on \((-1, 1) \) so maximizing \(X \) takes values 1 or \(-1 \) with equal probabilities 1/2.

If \(x + k \in 2\mathbb{Z} \), then

\[
D_k(x) = \frac{1}{2}(D_{k-1}(x-1) + D_{k-1}(x+1)) = \frac{1}{2}(D_k(x-1) + D_k(x+1)),
\]

so the dominating function touches \(D_k(x - t) \) at all three points \(-1, 0, 1 \). Taking \(X \in \{-1, 1\} \) we end the proof of the case (i).
The case (i) was firstly considered in [Ben01].

Case (ii). Since D_k is convex on intervals $(0, 1)$ and $(1, 3)$ the dominating minimal function can touch $D_k(x-t)$ only at $x, x-1, -1$. But due to an inequality (21) the linear function $f(t)$ going through $(x, D_k(0))$ and $(x-1, D_k(1))$ is above the point $(-1, D_k(x+1))$.

Case (iii). Since the function D_k is convex on intervals $(\lfloor x \rfloor - 1, \lfloor x \rfloor)$ and $(\lfloor x \rfloor, \lfloor x \rfloor + 2)$ the dominating minimal function can touch $D_k(x-t)$ only at $-1, \{x\}, 1$. But due to an inequality (22) the linear function $f(t)$ going through $(\{x\}, D_k(\lfloor x \rfloor))$ and $(-1, D_k(x+1))$ is above the point $(1, D_k(x-1))$.

Case (iv). Since the function D_k is convex on intervals $(\lfloor x \rfloor - 1, \lfloor x \rfloor + 1)$ and $(\lfloor x \rfloor + 1, \lfloor x \rfloor + 3)$ the dominating minimal function can touch $D_k(x+t)$ only at $-1, \{x\} - 1, 1$. But due to an inequality (23) the linear function $f(t)$ going through $(1, D_k(x-1))$ and $(\{x\} - 1, D_k(\lfloor x \rfloor + 1))$ is above the point $(-1, D_k(x+1))$.

References

[Ben87] V. Bentkus. Large deviations in Banach spaces. *Theory of Probability & Its Applications*, 31(4):627–632, 1987.

[Ben01] V. Bentkus. An inequality for large deviation probabilities of sums of bounded iid random variables. *Lithuanian Mathematical Journal*, 41(2):112–119, 2001.

[Ben04] V. Bentkus. On hoeffding’s inequalities. *Annals of probability*, pages 1650–1673, 2004.

[BKZ06] V. Bentkus, N. Kalosha, and M. Van Zuijlen. On domination of tail probabilities of (super) martingales: explicit bounds. *Lithuanian Mathematical Journal*, 46(1):1–43, 2006.

[BD10] D. Dzindzalieta and V. Bentkus. A tight Gaussian bound for weighted sums of Rademacher random variables. *preprint*, 2010.

[DJS12] D. Dzindzalieta, T. Juškevičius, and M.Šileikis. Optimal probability inequalities for random walks related to problems in extremal combinatorics. *SIAM Journal on Discrete Mathematics*, 26(2):828–837, 2012.
[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13–30, 1963.

[KS66] S. Karlin and W.J. Studden. *Tchebycheff systems: With applications in analysis and statistics*, volume 376. Interscience Publishers New York, 1966.

[PB75] V.V. Petrov and A.A. Brown. *Sums of independent random variables*, volume 197-5. Springer-Verlag Berlin, 1975.

[SW09] G.R. Shorack and J.A. Wellner. *Empirical processes with applications to statistics*, volume 59. Society for Industrial Mathematics, 2009.

[Tal95] M. Talagrand. The missing factor in hoeffding’s inequalities. In *Annales de l’IHP Probabilités et statistiques*, volume 31-4, pages 689–702. Elsevier, 1995.