Article Type:
Research Paper

Original Title of Article:
Technology proficiency self-assessments of teachers becoming professional in the 21st century: A scale adaptation study

Turkish Title of Article:
21. yüzyılda profesyonelleşen öğretmenlerin teknoloji yeterliliği öz-değerlendirmeleri: Bir ölçek uyarlama çalışması

Author(s):
Mustafa FİDAN, Murat DEBBAĞ, Barış ÇUKURBAŞI

For Cite in:
Fidan, M., Debbağ, M., & Çukurbaşi, B. (2020). Technology proficiency self-assessments of teachers becoming professional in the 21st century: A scale adaptation study. Pegem Eğitim ve Öğretim Dergisi, 10(2), 465-492. http://dx.doi.org/10.14527/pegegog.2020.016

Makale Türü:
Özgün Makale

Orijinal Makale Başlığı:
Technology proficiency self-assessments of teachers becoming professional in the 21st century: A scale adaptation study

Makalenin Türkçe Başlığı:
21. yüzyılda profesyonelleşen öğretmenlerin teknoloji yeterliliği öz-değerlendirmeleri: Bir ölçek uyarlama çalışması

Yazar(lar):
Mustafa FİDAN, Murat DEBBAĞ, Barış ÇUKURBAŞI

Kaynak Gösterimi İçin:
Fidan, M., Debbağ, M., & Çukurbaşi, B. (2020). Technology proficiency self-assessments of teachers becoming professional in the 21st century: A scale adaptation study. Pegem Eğitim ve Öğretim Dergisi, 10(2), 465-492. http://dx.doi.org/10.14527/pegegog.2020.016
Technology proficiency self-assessments of teachers becoming professional in the 21st century: A scale adaptation study

Mustafa FİDAN **a, Murat DEBBAĞ **b, Barış ÇUKURBAŞI ***c

a Bartın University, Faculty of Education, Bartın/Turkey
b Bartın University, Distance Edu. App. and Res., Bartın/Turkey
c Bartın University, Faculty of Science, Bartın/Turkey

Abstract

In this study, it was aimed to adapt the Technology Proficiency Self-Assessment Scale for 21st Century Learning (TPSA C-21), developed by Christensen and Knezek, into Turkey's conditions. The study sample consisted of 606 teachers working in 58 public schools affiliated to the Ministry of National Education in Bartın province. The original scale had a six-factor structure consisting of 34 items. In the adaptation stage, the Turkish version of the scale was initially created and then retranslated back into the source language. Next, the scale items were evaluated by linguists. Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) were used to determine the construct validity of the scale. As a result of the EFA, some of the items having inappropriate values were excluded from the scale and finally a structure with 24 items and four factors named "E-mail", "WWW", "Integrated Applications", and "Teaching with Technology" was obtained. The results of the CFA showed that the factor structure had adequate fit indexes. For reliability, internal consistency and test-retest correlation coefficients of the whole scale and its sub-dimensions were examined and these values were found to be acceptable. After all, this scale has become a measurement tool that can be used for research which enables educators to make relevant inferences about technology proficiency in 21st century learning.
Introduction

Technological developments in the 21st century, which is accepted as the digital age, have been influential in the field of education as well as in almost every field and brought a new dimension to teaching activities. The innovative and progressive aspect of technology coincides with the dynamic structure of education, thus creating a mutually decisive process. Particularly with the emergence of Industry 4.0, which upgrades the concept of digitalization and intends to shorten the innovation process, the 21st century skills that individuals should have today and in the future are also undergoing changes. As a matter of fact, when the reports of institutions and organizations such as The future of education and skills [OECD] (OECD, 2018), Partnership for 21st Century Skills [P21] (Partnership21, 2017), National Educational Technology Standards [NETS/ISTE] (ISTE, 2016), Assessment and Teaching of 21st Century Skills [ATCS21S] (Care et al., 2018), Education system alignment for 21st Century Skills (Care et al., 2019) and Skills and Capacity [HEART] (Dunbar, 2015) are analyzed, it is seen that one of the identified common skills is “knowledge, media and technology skills”.

On the other hand, in the ATC21S project, which was supported by the University of Melbourne under the sponsorship of Microsoft, Intel and CISCO to cover 60 institutions around the world, the importance of the skill of digital literacy in teaching 21st century skills to individuals was revealed and it was emphasized that it should be included in the curriculum (Binkley et al., 2012). This skill involves information and communication technologies (ICT) literacy (Byungura, 2018; Gaible, Mayanja & Michelazzi, 2018; Kylonen, 2012; Lewin & McNicol, 2015) as well as the access, selection and use of the right information from the right source by 21st century individuals. In addition, with the advancement of technology, it is expected that the students adapt to new technologies. This competence, also defined as digital fluency, consists of a synthesis of high-level thinking and digital literacy skills (Pinho & Lima, 2013). Therefore, 21st century skills are now becoming one of the main drivers in today’s and tomorrow’s educational understanding.

According to OECD (2018), which emphasizes that the learner characteristics of the new millennium have changed in parallel with the age, students now demonstrate different cognitive skills, regard technology as an indispensable element of their lives, and lead a digital life in which they are largely online. The competences of all stakeholders, who are involved in teaching activities and play a key role in the integration of education and technology, need to be enhanced in this sense. It is known that teachers are the most common stakeholder with whom today’s students called “digital natives” get in contact after their family and friends (Riegel & Mete, 2018). Considering that good teachers raise successful students in general (Darling-Hammond, 2015; Hill, Beisiegel, & Jacob, 2013), the importance of the fact that teachers who are expected to equip their students with these skills should be themselves competent in the same skills becomes specifically more apparent (Debbag, 2018; Görünlü & Küçükali, 2018; Harris, Mazman & Koçak-Usluel, 2011; Mishra, & Koehler, 2009; Vo & Nyugen, 2010). Teachers’ competence in this sense affects their status as a role model for their students in terms of using technology as well as their own professional development (Dağ, 2016). In this context, teachers’ professional development should be supported to meet the needs of all students (Sprott, 2019).

While standards set by the ISTE include seven standards under the headings of "Strengthening Professionalism" (learner, leader and citizen) and "Learning Catalyst" (collaborator, designer, facilitator and analyst) for instructors to use technology in their courses (ISTE, 2016), teacher competencies identified by the Ministry of National Education (MoNE) in Turkey include 16 different performance indicators associated with technology (MoNE, 2017).

Planning and implementing a successful teaching require understanding how technology relates to pedagogy and content (Koehler, Mishra, & Yahya, 2007). As a matter of fact, Pedagogical Content Knowledge (PCK), which is at the center of teachers’ professional development and accepted as an indispensable element of the concept of qualified teachers, has started to be called as Technological Pedagogical Content Knowledge (TPACK) in recent years by attracting technology into itself (Kaya & Yilayaz, 2013). In the literature, TPACK is defined as a critical knowledge base that should be developed.
by prospective teachers (Angeli & Valanides, 2005). In TPACK, which is a technology integration model, Mishra and Koehler (2006) emphasized how learning the educational contents including pedagogical concepts and techniques can be facilitated by using technology. Therefore, educational technologies should be based on pedagogically sound foundations in this model (Ferdig, 2006; Koehler et al., 2007).

The "knowledge of technology", one of the elements of technology, pedagogy and field knowledge on which the model is built, includes all educational technologies, from relatively simple technologies (board, books, etc.) to more complex digital technologies (Internet, computers, videos, etc.) (Koehler et al., 2007; Mishra & Koehler, 2006). In addition, researchers have stated that the information-communication technologies related skills involve skills such as using internet browsers, e-mail system, and word processing programs as well as the knowledge of computer software and hardware.

As a component of technology integration in education, a variety of projects about technological infrastructure have been put into practice to strengthen the infrastructure of schools in Turkey, especially in the last 20 years. Information Communication Technologies (ICT) class was established in 5800 schools between 1998 and 2007 with the Basic Education Development Project (BEDP/TEGEP). In addition, Enhancing Opportunities and Improving Technology Movement (FATIH) project has been carried out since 2011 to make the use of ICT tools more effective and widespread among all teachers and students (MoNE, 2012). However, improving technological infrastructure alone is not enough to integrate technology into education (Kaya & Koçak-Usluel, 2012; Perkmen & Tezci, 2011). At this point, the technology integration approaches TYPE I in which the student learns mainly through technology or TYPE II in which the student and learning are at the center and the student is actively responsible for his own learning comes into play (Maddux & Johnson, 2005). In TYPE I approach, technology is a helpful tool for teachers to provide students with basic information; in TYPE II approach, the teacher designs technological learning environment and guides students (Tezci, 2016). In both cases, teachers synthesizing and integrating above-mentioned technological, pedagogical, and field knowledge into learning process will facilitate and strengthen this integration (Orhan-Göksun, 2016; Schmidt et al., 2009). In this context, it is important to conduct studies investigating the technological proficiency of teachers in order to combine it with the two other types of knowledge.

On the other hand, it is clear that there is a need for teachers who have proficiency in using new technologies in order to get the optimum efficiency from educational technologies (Brun & Hinostroza, 2014; Ertmer, Ottenbreit-Leftwich, Sadik, Sendurur, & Sendurur, 2012; Koh, Chai, Benjamin, & Hong, 2015; Orhan-Göksun, 2016). According to Holmberg, Fransson, and Fors (2018), the ability to integrate digital technologies into teaching and learning activities is a part of teacher professionalism. In this context, it is necessary to equip teachers with the skills and tendencies that are essential for meeting the 21st century educational needs in their professional development in the digital age (Sprott, 2019). Teachers’ technology competencies are among these skills and tendencies and they play a decisive role in meeting the needs of the new generation learners who are called as digital natives both for the realization of the learning activities and for more efficient use of technology in daily life.

When the literature is examined, it is observed that teachers do not feel sufficient in the context of technological and technopedagogical knowledge in recent studies (Durak & Seferoğlu, 2017; Karadeniz & Vatanartıran, 2015) and the use of technopedagogical skill is lower than other skills among them (Garba, Byabazaire, & Busthami, 2015, Orhan-Göksun & Kurt, 2017). Therefore, it is very important to question the competence of teachers in the process of moving themselves from the present situation to the better one (Christensen & Knezek, 2017; Orhan, Kurt, Ozan, Vural, & Türkan, 2014). However, especially recently, it has been observed that researchers have been trying to develop 21st century qualifications by developing different measurement tools (Anagün, Atalay, Kilç, & Yaşar, 2016; Çalışan, Bozkurt, & Kan, 2019; Gür-Eroğan & Arsal, 2016; Orhan-Göksun & Kurt, 2015). The common features of the mentioned measurement tools are that they deal with the learner characteristics of the age or lifelong learning skills (such as critical thinking, problem solving, creativity, entrepreneurship) from a holistic perspective. However, the fact that these competences should be analyzed for a specific content rather than a general approach are regarded as educationally significant in terms of both making more
detailed relational implications for 21st century skills and reaching more comprehensive and concrete evidence on the subject. Therefore, there is a need to develop measurement tools for the sub-dimensions of 21st century skills.

As highlighted earlier, one of the most important components of these skills is seen as technology competencies. In the related literature, there are a limited number of valid and reliable measurement tools developed especially to be used with educators to determine their level of technology proficiency in 21st century learning. The TPSA (Technology Proficiency Self-Assessments) scale developed by Ropp (1999) was accepted internationally and adapted into the conditions of different countries and used in the national context. Original TPSA items were created to assess competences in areas identified as important by the ISTE Technology Standards writing team. Dimensions included in the scale consisting of 20 items represented four proficiency areas (i) "E-mail", (ii) "World Wide Web" (WWW), (iii) "Integrated Applications" and (iv) Technology Integration in Teaching". Ropp (1999) stated that the scale was developed in order to measure teachers' and prospective teachers' professional competencies in using technology in education and thus to ensure their progress towards proficiency. The adaptation of the scale into Turkish culture was conducted by Gençtürk, Gökçek, & Güneş (2010) on 205 prospective teachers, and as a result of this study, it was seen that the scale items had a single-factor structure.

Christensen and Knezek (2017) emphasized that the TPSA scale has been used in many studies while maintaining its respectable psychometric properties for more than 15 years but a new version of the TPSA scale including competencies for today's technologies is needed. Accordingly, Christensen and Knezek (2017) updated the TPSA scale in accordance with 21st century technological skills and introduced it as a new version called TPSA C-21. The TPSA C-21 development study was conducted with the participation of 466 teachers and the dimensions of "Teaching with Emerging Technologies" and "Emerging Technologies Skills" were added to the existing dimensions of the scale that Ropp (1999) developed. As a result of validity and reliability studies, the latest version of the TPSA C-21, which consists of 34 items, came out with a six-factor structure.

Considering the explanations above, it was intended both to create a scale measuring teachers’ 21st century technology proficiencies and contribute to the professional development of teachers in Turkey. Accordingly, the validity and reliability study of the TPSA C-21 scale, which was originally developed as a TPSA scale by Ropp (1999) and rearranged by Christensen and Knezek (2017) within the scope of 21st century skills, was conducted by adapting the scale into Turkish language in the present study.

Method

Participants

606 teachers participated voluntarily in the study from 58 public schools (19 primary schools, 24 secondary schools, 15 high schools) in the central district of Bartın province. 49.80% (302) of the participants were male and 50.20% (304) were female, and the mean year of service was M=15.93 (Min = 1, Max = 40, SD = 9.65). 209 (34.49%) teachers worked in primary, 226 (37.29%), in secondary and 151 (24.92%) in high schools. 134 of them (22.11%) completed postgraduate education. The distribution of teachers according to their branches is given in Appendix-1.

Data Collection Tools and Research Process

The scale (TPSA C-21) developed by Christensen and Knezek (2017) in America was used by adapting it into the conditions in Turkey. The original scale has a 6-factor structure consisting of 34 items (all positive). The distribution of the items in the scale according to the factors is as follows: "E-mail" (1-5), "WWW" (6-10), "Integrated Applications" (11-15), "Teaching with Technology" (16-20), "Teaching with Emerging Technologies" (21-29), "Emerging Technologies Skills" (30-34).

Christensen and Knezek (2017) have stated that the items on the TPSA scale, though developed within the scope of computerized learning and teaching, are essentially a contextual measurement of computer self-efficacy. There is a strong relationship between the initial version of the scale developed
by Ropp (1999) and the Computer Self-efficacy Scale, which supports the construct validity of TPSA (Ropp, 1999). In this context, as mentioned in both studies, TPSA and TPSA C-21 scales included items with expressions related to self-efficacy.

The scale was prepared in a form that participants could give responses on a 5-point Likert type (1: Strongly Disagree, 2: Disagree, 3: Partly Agree, 4: Agree, 5: Strongly Agree). Before the scale adaptation study, the first author R. Christensen was contacted via e-mail and necessary permissions were obtained. The scale items were translated from English into Turkish and the concordance between the original scale and the translated version was checked by a team of 12 experts, 7 from the field of foreign language education and 5, computer education and instructional technology, with at least a Ph.D. degree in their fields. The statements in some of the items were rearranged for teachers according to Turkey’s conditions. For example, the term “institution web site” in the original scale was revised as the “web site of my university or the Ministry of National Education”. Then the translations were brought together to form the most appropriate version of the scale.

Following these procedures, the scale items were translated back into English by three linguists and compared with the original form to ensure linguistic consistency. The scale was evaluated in terms of language and comprehensibility by two Turkish linguists (one with a Ph.D. degree in Turkish education and the other with a Ph.D. degree in Turkish language and literature) and the several scale items were adjusted in accordance with their feedbacks. As the next stage, three faculty members who had a command of both Turkish culture and American culture re-translated the final version of the adapted scale from the target language into the source language. After the back translation process, the scales for both cultures were compared and revised; and accordingly, the scale took its final form.

After this stage, eight faculty members working in the field of educational technology were consulted about the appropriateness of the items in terms of the content and face validity of the scale. At this stage, considering the Davis technique, the Content Validity Index (CVI) was calculated by dividing the number of experts who selected the options "appropriate" and "must be slightly corrected" in each item by the total number of experts (Davis, 1992). While the CVI values of the items ranged between .75 and 1.00, this value was calculated as .88 for the whole scale. According to these results, it can be said that the content validity of the scale items was at an acceptable level (Davis, 1992). In order to test the linguistic equivalence of the scale, at a two-week interval, the Turkish and English versions of the scale were respectively applied to 39 Turkish academicians working at Bartın University and also had a good command of English and the correlation coefficients between the two forms were calculated. The final version of the scale was read by 15 teachers before the application in order to determine the expressions that could create ambiguity for participants; and accordingly, it was observed that there was no confusing expression.

Necessary official permission was obtained from the Provincial Directorate of National Education to carry out the research. Accordingly, in determining the factor structure of the scale, the scale forms were first distributed to 712 teachers working in 31 different public schools (10 primary schools, 13 secondary schools, 8 high schools) and among them, 399 teachers completed the scale and provided feedback (Sample I). As 37 scales sent by them were not fully completed, Exploratory Factor Analysis (EFA) was performed with the 362-participant data set. Then, the determined factor structure of the scale was tested with Confirmatory Factor Analysis (CFA) on a sample different from the first sample. For this purpose, the scales that were put into the final form according to the EFA findings were distributed to 27 different public schools (9 primary schools, 11 secondary schools, 7 high schools) and feedback was received from 257 teachers (Sample II). 13 of the scale forms were not evaluated due to being incomplete and CFA was performed with the 244-participant valid dataset. The reliability analysis of the adapted scale was conducted with 52 participants selected from the second sample. Filling out the scale form took between 7 and 10 minutes. The process of the research is summarized in Figure-1 below.
Data Analysis

SPSS 23 and AMOS 21 programs were used to analyze the research data. Based on the data obtained in the study, EFA and CFA were performed to ensure the construct validity of the scale within the conditions of Turkey. Before performing the analyses, first the missing and incomplete data were examined and the outliers were checked.

Then, since the sample size was greater than 50, Kolmogorov Smirnov test was used to determine (Büyüköztürk, 2019) whether the data displayed a normal distribution for both these analyses and group comparisons (27.00% of top and bottom group). The results showed that p value was found to be greater than .05 for EFA (Z = .04, p = .50) and CFA (Z = .06, p = .29) and 27.00% of top and bottom group (Z = .04, p = .16). According to the results of the normality test (p> .05), it can be said that the data displayed a normal distribution (Büyüköztürk, 2019). On the other hand, as this test could easily be affected by the sample size, the skewness and kurtosis values (according to z values), histograms and Q-Q plot graphs of the data were also examined and the results were found to be consistent with the normality test findings.

The degree of agreement between the factor structures of the adapted scale were evaluated and interpreted according to the acceptability of the values of Adjusted Goodness of Fit Index (AGFI ≥ .90), Comparative Fit Index (CFI ≥ .90), Tucker Lewis Index (TLI ≥ .90), Root Mean Square Error of Approximation (RMSEA ≤ .08), and Standardized Root Mean Square Residual (SRMR ≤ .08) (Hair, Black, Babin, Anderson, & Tatham, 2006; Schumacker & Lomax, 2010; Kline, 2016). In addition, some researchers suggested that the χ²/df ratio less than 5 was also acceptable for model fit (Schermelleh-Engel, Moosbrugger, & Müller, 2003; Kline, 2016). However, since chi-square (χ²) value is affected by the sample size (Jöreskog & Sörbom, 1993), it was not used as a cohesion criterion in the present study but its ratio to the degree of freedom (df) was given for information purposes only. Cronbach’s alpha (α) internal consistency coefficient and test-retest reliability coefficient (r) were calculated to assess the reliability of the scale items. A value of .70 was accepted as the minimum criterion for reliability (Büyüköztürk, 2019).

Findings

Findings Regarding the Scale Adaptation Study

Findings related to linguistic equivalence: To test the linguistic equivalence of the scale, first the Turkish version and then the English version of the scale were applied to 39 Turkish academicians working at Bartın University at a two-week interval. In this regard, the correlation coefficient between the original version and the Turkish version of the scale was found to be significant and high (r = .84, p< .01). In general, the correlation coefficients between the items ranged from .62 to .91. Between the forms, linguistic equivalence coefficients (r) according to the factors were found to be .87 for the e-mail "factor, .80 for the "WWW" factor, .78 for the "IA" factor, and .86 for the "TT" factor.
Findings regarding the EFA: EFA was performed based on the data obtained from 362 participants to determine the construct validity of the measurement tool. The suitability of the sample size for EFA was examined by the Kaiser-Mayer-Olkin (KMO) test and found to be .93. A KMO value greater than .70 indicates that the sample size is sufficient for EFA (Bryman & Cramer, 1999). Bartlett Sphericity Test was used to check the appropriateness of the data. As a result of the measurement (χ² = 9854.95, p < .001), it can be said that the data is suitable for the EFA (Tabachnick & Fidell, 2007). The first EFA results showed that the items of the scale were grouped under 4 sub-factors (eigenvalues greater than 1) which constituted 68.15% of the total variance. In addition, the scree plot was also examined to determine the number of factors, and it was decided to examine the scale in a four-factor structure considering the fracture points (Appendix-2).

The principal component analysis was used during the EFA and the items were subjected to rotation using the varimax vertical rotation technique. Varimax is a common orthogonal rotation method for cases where there are two or more factor structures in scale development studies. This method was selected to facilitate the interpretation or report of factors and their items in the study (Büyüköztürk, 2019). Factor load distributions, obtained as a result of the analysis of the scale which was initially comprised of 34 items, were examined. Six items (29, 16, 14, 32, 33, 22) with a factor load below .40 and four items with overlapping factor loads (less than .10) under different factors (Costello & Osborne, 2005) (8, 16, 19, 30) were excluded from the scale. For this purpose, each item was excluded from the analysis one by one and the EFA was repeated; and thus, the most appropriate factor structure of the scale was determined. As a result of the EFA, the sub-dimensions of "Teaching with Technology (TT)", "Teaching with Emerging Technologies (TET)" and "Emerging Technologies Skills (ETS)" were compiled under a single factor.

However, the 31st item (I can download and watch movies/videos) which was located in the "TET" sub-dimension of the original scale appeared under the second factor (WWW) in the present study. Eight field experts (having publications in the field of educational technology) were consulted for the content validity of this factor structure and the appropriateness of the relevant item. In addition, the researchers who created the original scale were re-contacted and their views about the factor structure of the adapted scale and the distribution of items were also taken. In line with their feedbacks, the last factor was named as "Teaching with Technology "(TT) while the other factors remained the same as they existed in the original scale. For the item mentioned above, the experts agreed that it should be discussed in the scope of the second factor. As a result of all these procedures, the scale had a four-factor structure with 24 items. In this structure, it is remarkable that the items related to new technologies are collected under a single factor and in a general manner.

All the items that constitute the scale explain 68.98% of the total variance. Specifically, the five-item "Email" factor accounts for 17.12% of the total variance, the five-item "WWW" factor represents 8.07%, the four-item "Integrated Applications (IA)" factor explains 6.24% and the nine-item "Teaching with Technology (TT)" factor accounts for 36.54%. Factors of the scale and the distribution of factor loads according to the items are given in Table 1.

When Table 1 is examined, it is seen that the factor load values of the items range from .70 to .83; .59 to .76; .54 to .87; and .51 to .85, respectively. Field (2009) stated that .40 could be the cut-off point for factor loads and items with factor loads of .70 and above could be considered as excellent. The internal consistency of the scale was calculated as .88, .85, .83, .79 according to the factors, respectively. The Cronbach’s alpha (α) value for the whole scale was .81. These results show that the scale items are reliable.

Findings related to CFA: As a result of AFA, whether the four-factor structure of the scale would be confirmed on a different sample was tested by using CFA. The maximum likelihood method was used for CFA. As a result of the CFA conducted by using the data obtained from 244 pre-service teachers (Model-1); the four-factor and 24-item structure of the scale was found to have acceptable fit indexes (χ²/df = 5.17, p < .01; AGFI = .89, CFI = .90, TLI = .86, RMSEA = .06, SRMR = .07). On the other hand, when
Modification indexes of the items were examined, it was found that there were significant relationships among error variances of item pairs 6-7, 21-22, and 6-7. As a result of the DFA, the error variance values of the items also ranged between .42 and .80. The values less than .90 are acceptable for model (Çokluk, Şekerçioğlu, & Büyüköztürk, 2012).

Table 1.
Factor Analysis Results (Rotated Component Matrix).

Items	Factor Loads
1. I can send an e-mail to a friend	.74
2. I can subscribe to a discussion forum (like a Facebook group)	.70
3. I can send e-mail to many people at once by creating a recipient list.	.82
4. I can send a document as an attachment to an e-mail message.	.83
5. I can keep copies of the outgoing messages I send to others.	.75
6. I can find web pages related to topics of my interest using a search engine (Google, Yandex, etc.).	.66
7. I can search for and find the web sites of my university or the Ministry of Education.	.75
8. I can keep the track of websites I have previously visited (for example, by adding it to favorites) so that I can return to it later.	.59
9. I can find the primary sources of information that I can use in the teaching process on the internet	.76
11. I can create a graph (bar, circle, etc.) showing the proportions of colored candies in a package by using the spreadsheet (e.g. Excel).	.87
12. I can create a newspaper with graphics.	.88
13. I can save documents in a format that others can read in different word processing programs (such as saving word, pdf, rtf, or txt).	.54
15. I can create an informative database about important authors related to a subject matter.	.62
17. I can prepare a lesson or unit that integrates the software in question with the subject matter.	.62
18. I can use technology to collaborate with teachers and students who are not in the classroom.	.60
20. I can write a plan including a budget for the technologies to be purchased for my class.	.62
21. I can integrate mobile technologies into my own curriculum / lesson plan.	.63
23. I can create a blog or wiki for my students to collaborate.	.73
24. I can use online tools with my students to teach at a distance.	.82
25. I can teach one-to-one in environments where students have their own devices.	.85
26. In my class, I can find a way to make my students use a smartphone or tablet computer for their responses.	.82
28. I can use mobile devices to have my students access the learning activities.	.66
34. I can save and retrieve files in a cloud-based environment (such as Google Drive, Dropbox).	.51
Eigenvalues	4.03 1.90 1.47 8.84
Percentage of Variance Explained (%)	17.12 8.07 6.24 36.54
Cronbach’s Alpha (α)	.88 .85 .83 .79

F1: E-mail, F2: World Wide Web (WWW), F3: Integrated Applications (IA), F4: Teaching with Technology (TT)
Error correlations of these item pairs under the same factors were also re-tested by adding them to the model. As a result of CFA, it was found that this model had a good degree of agreement ($\chi^2/df = 4.12$, $p<.01$; AGFI = .90, CFI = .91, TLI = .92, RMSEA = .05, SRMR = .06). In other words, it can be said that the model-data agreement was confirmed in a four-factor structure. Standardized path diagrams and the relationships between factors are presented in the Appendix-3.

Standardized regression weights of the items ranged between .49 and .80. When the correlation values between the scale factors were examined; it was detected that there were significant positive correlations between the factors "E-mail and WWW" ($r = .30$), "E-mail and IA" ($r = .40$), "E-mail and TT" ($r = .32$), "WWW and IA" ($r = .34$), and "WWW and TT" ($r = .30$), and "IA and TT" ($r = .59$) ($p < .01$). Very high correlation coefficients between the factors provide evidence for the fact that the factors tend to measure the same or similar features. However, in the present study, according to the results of correlation analysis, it is seen that there are the low and medium levels of correlations between the factors.

On the other hand, the six-factor structure in the original version of the scale was also analyzed by CFA and compared with the four-factor structure adapted into Turkish. In this respect, in accordance with the six-factor and 34-item structure of the original scale, it was determined that the fit indexes were not at an acceptable level ($\chi^2/df = 6.12$, $p< .01$; AGFI = .69, CFI = .81). TLI = .79, RMSEA = .12, SRMR = .10). The proposed modification suggestions were also examined and the CFA was repeated, but the model-data fit was found inadequate. Table 2 shows the comparative indexes of the CFA results for the different models of the scale.

Table 2.

Model	Faktor	χ^2/df	AGFI	CFI	TLI	RMSEA	SRMR
Model-1	Four factors-24 items	4.12	.90	.91	.92	.05	.06
Model-2	Six factors-34 items	6.12	.69	.81	.79	.12	.10

When Table 2 is examined, the model for the six-factor structure of the scale developed in the United States seems to be not having adequate fit values on a sample in Turkey. Accordingly, the four-factor structure of the 24-item scale can be said to have displayed a better fit in Turkey’s conditions.

Findings related to reliability analysis: While the internal consistency reliability coefficients (α) of the scale items were ranging from .80 to .91, this coefficient for the whole scale was found to be .89. The internal consistency of the scale was calculated as .85, .82, .81, .89 according to the factors, respectively. These results show that the answers given to the scale items are consistent (Büyüköztürk, 2019). However, to determine test-retest reliability, the scale was re-applied to 52 participants selected from the CFA sample after three weeks. Test-retest reliability coefficient (r) of the scale was calculated as .85, .81, .83 and .89 according to factors, respectively ($p < .01$). The test-retest reliability coefficient (r) of the scale items ranged from .79 to .89 while this coefficient for the whole scale was calculated as .81 ($p < .01$). According to these results, it can be said that the responses to the scale are stable over time.

Findings related to item analysis: The differences between the total scores of the factors and the item scores of the 27.00% upper and lower groups were examined by t-test for independent samples. Accordingly, t values of all items were significant ($p < .01$) and varied from 18.03 to 23.25; from 12.27 to 23.43; from 22.62 to 41.39 and from 19.42 to 34.29 according to the factors, respectively. However, the adjusted item-total correlation coefficients were statistically significant ($p < .01$) and varied between .79 and .91; .75 and .82; .75 and .90; and .73 and .85 according to the factors, respectively. These results indicated that the distinctiveness of the scale items was high. Table 3 shows the factors of the scale, the distribution of factor loads according to items, item-total correlation coefficients (r) and t-values of the 27.00% lower-upper groups.
Table 3.

Results of the Item Analysis.

Items	r	t	Items	r	t
1	.79	18.03**	13	.77	22.62**
2	.83	21.40**	15	.75	28.73**
3	.90	23.25**	17	.75	21.90**
4	.85	21.80**	18	.73	19.42**
5	.91	22.42**	20	.75	22.75**
6	.80	13.19**	21	.78	25.42**
7	.82	12.27**	23	.78	27.12**
9	.75	23.43**	24	.80	34.29**
10	.82	19.85**	25	.85	33.25**
11	.81	19.32**	26	.81	28.85**
12	.89	34.40**	28	.78	24.42**
12	.90	41.39**	34	.78	24.87**

Discussion, Conclusion and Implications

Technology Proficiency Self-Assessment Questionnaire (TPSA C-21) developed by Christensen and Knezek (2017) for 21st Century Learning was adapted into Turkey’s conditions and teachers’ self-assessments were examined in terms of variables of gender, school type, postgraduate education status and year of service. As a result of the adaptation of the original scale consisting of 34 items and six dimensions into Turkish, 24 items were collected under four dimensions. In the first stage of the scale adaptation process; original scale items were translated from the target language into the source language and expert opinions were obtained with respect to the content and face validity of the adapted scale. A linguistic equivalence study was conducted to determine whether there was an error in the translation phase of the scale items and to reveal its relationship with the original form. EFA and CFA were used to determine the construct validity of the scale and reliability analyses of the items were performed. As a result of the EFA, the scale in Turkey’s conditions was found to have a four-factor structure, and 6 items were excluded from the scale due to having inadequate factor loads while 4 items were removed due to displaying overlapping values. The first three factors of the original scale (“E-mail”, “WWW” and “IA”) remained same, but the other three factors were combined within a general structure titled “TT”.

There are several scale adaptation studies that have changed factor names and factor structures of the original scales in the literature (Ünal & Teker, 2018; Önder & Beşoluk, 2010; Kutu & Sözbilir, 2011; Kaya, Kaya, & Emre, 2013; Koh, Chai, & Tsait, 2010; İşik & Demirel, 2018). In the document review study conducted by Boztunç-Öztürk, Eroğlu, and Kelecioğlu (2015), it was observed that a number of items were removed in 38 of 108 scale adaptation studies and no new item was recommended and the number of items in 4 of those studies remained unchanged but appeared on a dimension different from the dimension in the original scale. There are studies in the literature that provide evidence for removing a large number of items from the scale during the adaptation process (Afacan, Karakuş, & Uşak, 2013; İşik & Demirel, 2018; Kutu & Sözbilir, 2011).

In the current study, the most important factor affecting the change in the factor structure and number of items of the scale is thought to be the cultural differences between the country in which the scale was developed and the country in which the scale was adapted. In this regard, the Technological Pedagogical Content Knowledge Scale was adapted into Turkey's conditions by Kaya, Kaya, and Emre (2013) and the factor structure of the scale was altered as a result of the study. It was explained that the reason for this alteration could be the difference in terms of teacher characteristics and opportunities between the United States, where the original scale was developed and Turkey, where the adaptation was conducted. According to Klassen (2004), self-efficacy is influenced by cultural elements. Boztunç-Öztürk, Eroğlu, and Kelecioğlu (2015) suggest that biases stemming from the scale structure may appear...
in the measurement tool if the original scale does not correspond to the culture into which it is adapted and errors should be eliminated by taking into account these factors in the scale adaptation process. However, they also state that researchers and subject area experts who developed the original scale should be contacted to decide over the items that need to be statistically excluded at the end of the scale adaptation process (Boztunç-Öztürk, Eroğlu, & Kelecioğlu, 2015). In this direction, in the current study, the necessary procedures were performed by determining the factor structure of the scale after taking the opinions of both field experts and researchers who created the original scale.

The 31st item (I can download and watch movies/videos) under the "TET" factor in the original scale was included under the "WWW" factor in the current scale. This situation is thought to be due to individual and cultural differences between the target group to which the scale was adapted and the target group to which the original scale was applied. Besides, there was a consensus that the item 31, which appeared under the "WWW" factor, was structurally compatible with other items under this factor. In this regard, it was decided to include this item under the "WWW" factor in accordance with the opinions of field experts and researchers who formed the original scale. There are examples of similar situations in the literature. To exemplify, it was stated that two items were placed under another factor in the computer anxiety scale which was adapted into Turkish (Çavuş & Günbatar, 2008). In the studies, it was also seen that the items under separate factors were gathered under the same factor (Kaya, Kaya, & Emre, 2013).

Several activities regarding the use of technology in education have been carried out within the scope of the FATIH Project supported by the Ministry of National Education in Turkey; interactive whiteboards have been placed in 47158 schools since January 2019, the internet infrastructure at schools have been enhanced, a trouble-free access to the content services of the MoNE has been ensured, the online social education platform "EBA" has been created and teachers have been provided with the necessary training on how to use it (MoNE, 2019). Despite these improvements and innovations in the learning environments, the MoNE uses a filter in the internet service that it provides to schools. This filter prevents access to many video-music platforms and social networks at school. In addition, in-service training provided to teachers by the MoNE for ICT use are not at the level of integration of technology into education, but rather at the level of ICT literacy (Başak & Ayvacı, 2017). In addition, Çukurbaşi and Kıyıcı (2018) stated that teachers' awareness and preferences towards new technologies were weak and the courses and contents related to this subject matter were not comprehensive enough in the faculties of education. Moreover, in this study, positive results were obtained in terms of raising the awareness of prospective teachers about new technologies.

In consideration of all these explanations above, it is also believed that the items removed from the original scale in the process of adaptation into Turkish were affected by the differences between the country where the scale was created and the one where the scale was adapted in terms of the opportunities of schools for using and teaching relevant technologies as well as the cultural differences. For example, the items "I can download and listen to podcasts/audiobooks ", "I can use social media tools for instruction in the classroom (e.g. Facebook, Twitter, and others)" and "I can write an essay describing how I would use technology in my classroom" can be said to have been affected by such situations. Briefly, the 24-item and 4-factor structure of the scale which was adapted in accordance with the findings of the present study is considered to be valid and reliable in the conditions of Turkey. This adapted scale can give an idea about teachers' technology proficiency, especially in the digital age. Although, technopedagogical competences factor in which Orhan-Goksun (2016) developed a scale to determine 21st century skills are not similar to the scale in this study, but its content has micro level similarity. On the other hand, although there are similar measurement tools concerning 21st century skills in Turkish context (Anagün, Atalay, Kılıç, & Yaşar, 2016; Çoban, Bozkurt, & Kan, 2019, Gür-Erdoğan & Arsal, 2016; Orhan-Göksun & Kurt, 2015), target population and focus of these scales differ.

It was observed that some of these studies were Turkish adaptations of scales related to ISTE standards, one of the 21st century qualifications (Çoklar & Odabaşi, 2009; Simsek & Yazar, 2016). However, in these studies, adaptation was carried out by collecting data from prospective teachers. Only
Simsek and Yazar (2016) collected data from secondary and high school teachers in addition to prospective teachers in their research. Gürültü, Aslan and Alcı (2018) analyzed 21st century teaching skills used by primary schools teachers according to various variables. In this context, data were collected from teachers working in primary and secondary schools by the scale developed by Orhan-Göksun (2016) and an evaluation was made under the factor of technopagogical competencies. With this aspect, adapted as part of the research, TPSA C-21 differs in target audience and focus. Also, the scale adapted into Turkish can be applied to 21st century teachers working in pre-school, primary, secondary and high school levels in private or public institutions. In-depth investigations can be carried out by performing statistical analysis of the scores obtained and variables (dependent or independent) examined within the scope of the research.

As with any study, this study has certain limitations. Since the sample of the study consists of teachers who are currently working in primary, secondary and high school levels only in the central district of Bartın and contributing to the research voluntarily, it may be difficult to generalize the research results to the samples in different regions. In addition, this study does not include the teaching staff working in higher education level and prospective teachers studying in faculties of education. Therefore, the study can be carried out on different samples considering regional, cultural and educational differences, and the comparative re-examination of the psychometric properties of the scale may contribute to the validity and reliability of the scale. Especially, the instruments regarding instructional technologies may inherently become outdated over time and so they may be insufficient to reveal technological competencies of educators. Further research can test an extended version of the scale by revising its items in terms of emerging technologies.
Giriş

Dijital çağ olarak kabul edilen 21. yüzyılda yaşanan teknolojik gelişmeler, hemen hemen her alanda olduğu gibi eğitim alanı da etkilemiş, öğretim faaliyetlerine yeni bir boyut kazandırmıştır. Teknolojinin değişimle açık ve yenilikçi yö尼 eğitimin dinamik dokusuya örtümsmekte, bu sayede karşılıklı belirleyici bir süreç oluşmaktadır. Özellikle dijitalleşme kavramına sınıf atlatan ve inovasyon sürecini kısaltmayı öngören Endüstri 4.0 ile birlikte, günümüz ve gelecekte bireylerin sahip olması gereken 21. yüzyıl becerileri de değişime uğramaktadır. Nitekim bu becerileri ortaya koymak adına çalışanlar, 21. Yüzyıl Becerilerinin Değerlendirilmesi ve Öğretimi (Assessment and Teaching of 21st Century Skills) (ATCS21S) (Care vd., 2018), 21. Yüzyıl Becerileri için Eğitim Sistemi Uyumlu (Education System Alignment for 21st Century Skills) (Care vd., 2019) gibi kurum ve kuruluşların raporları analiz edildiğinde belirlenen ortak becerilerden birinin “bilgi, medya ve teknoloji becerileri” olduğu görülmektedir.

Diğer taraftan Melbourne Üniversitesi tarafından desteklenen Microsoft, Intel ve CISCO sponsorluğunda dünya çapında 60 kurumu kapsayacak şekilde gerçekleştirilen ATC21S projesinde, 21. yüzyıl becerilerinin eğitimle verilmesine dijital okuryazarlık becerisinin önemi ortaya konmuştur (Binkley et. al., 2012). Söz konusu beceri; 21. yüzyıl bireylerinin doğru kaynaktan doğru bilgiye ulaşması, seçmesi ve kullanması yanı sıra bilgi ve iletişim (BİT) okuryazarlığını da (Byungura, 2018; Gaible, Mayanja, & Michelazzi, 2018; Kylonen, 2012; Lewin & McNicol, 2015) içermektedir. Bununla birlikte teknolojinin sürekli gelişmesiyle bireylerin yenilikçi ve sürekli gelişen teknolojileri (BİT) okuryazarlığını da (Byungura, 2018; Gaible, Mayanja, & Michelazzi, 2018; Kylonen, 2012; Lewin & McNicol, 2015) içermektedir. Bununla birlikte dijital okuryazarlık becerisinin sentezinden oluşmaktadır (Pinho & Lima, 2013). Dolayısıyla 21. yüzyıl becerileri bu haline çıkmış ve geleceğin eğitim anlayışında artık temel yönlendiricilerden birisi haline gelmektedir.

Yeni binyılın öğrenen özelliklerinin çağa paralel olarak değiştiği vurgulayan OECD (2018) göre; öğrenciler artık farklı bilisel beceriler ortaya koymaktadır, teknolojiyi hayatlarının vazgeçilmez bir unsuru olarak görmekte ve büyük oranda çevrimiçi oldukları dijital bir yaşam sürdürümektedir. Öğretim faaliyetlerinde yer alan eğitim ve eğitim entegrasyonunda kilit rol üstlenen tüm paydaşların da bu anlamda yetkinliğinin artırılması gerekmektedir. Dijital yerliler olarak adlandırılan günümüz öğrencilerinin aile ve arkadaşlarından sonra en fazla iletişim geçtiği paydaşın öğrenmenin olduğu bilinmektedir (Riegel & Mete, 2018). Genel manada>iyi öğretmenlerin başarılı öğrenciler yetiştirmedi (Darling-Hammond, 2015; Hill, Beisiegel, & Jacob, 2013) düşünüldüğünde, spesifik olarak öğrencilerine bu becerilerin kazandırılması bekenen okuryazarlıkların yaşamda tek bir beceriye yeterlik sahibi olmalarının önemi daha da belirlenmiştir (Debbage, 2018; Görülgü & Küçükali, 2018; Harris, Mishra, & Koehler, 2009; Mazman & Koçak-Usluel, 2011; Vo & Nuygen, 2010). Öğretmenlerin bu anlamda yeterliliğini, kendi mesleki gelişimlerinin yanı sıra teknolojiyi kullanmanın haklı olma durumlarını da etkilemektedir (Dağ, 2016). Bu bağlamda tüm öğrencilerin ihtiyaçlarını karşılayacak şekilde öğretmenlerin profesyonel gelişiminin desteklenmesi gerekmektedir (Sprott, 2019).

ISTE tarafından belirlenen standartlarda eğitici derslerinde teknolojiyi kullanmalarına yönelik Profesyonellilik Güçlendirilmesi (öğrenen, lider veقاتل) ve Öğrenme Katalizörü (işbirliçi, tasarımcı, kolaylaştırıcı ve analist) başlıklarında çeşitli格式ları desteklenmesi, eğitimde en iyi öğretmenlerin “bilgi, medya ve teknoloji becerileri” olduğunu görüşmektedir.
pedagoji ve içerikle nasıl ilişkili olduğunu anlamayı gerektirmektedir (Koehler, Mishra, & Yahya, 2007). Nitekim öğretmenlerin mesleki gelişimlerinin merkezinde yer alan nitelikli öğretmeninin vazgeçilmez unsuru olarak kabul edilen Pedagojik Alan Bilgisi (PAB) son yıllarda teknolojiyi de kendi içerisinde çekerken Teknolojik Pedagojik Alan Bilgisi (TPAB) olarak anılmaya başlanmıştır (Kaya & Yılayaz, 2013). Alanyazında TPAB, öğretmen adaylarının geliştirilmesi gereken kritik bir bilgi tabanı olarak tanımlanmaktadır (Angeli & Valanides, 2005). Teknoloji entegrasyon modeli olan TPAB'da Mishra ve Koehler (2006), pedagojik kavram ve tekniklerden oluşan öğretmen içeriğinin öğretimineビルギメンシリネンクテルジョギシリー機械的に yer vermesi yanında, bu öğretim sürecini güçlendirmektedir (Mishra & Koehler, 2006; Koehler et. al., 2007). Teknoloji entegrasyonunun bir bileşeni olarak Teknolojik Altyapıya yönelik ise Türkiye'de özellikle son 20 yılda hayata geçirilen çeşitli projelerde okulların altyapısı güçlendirilmiş ve çağrıştırmıştır.

Eğitimde teknoloji entegrasyonunun bir bileşeni olarak teknolojik altyapıya yönelik ise Türkiye'de özellikle son 20 yılda hayata geçirilen çeşitli projelerde okulların altyapısı güçlendirilmeye çalışılmıştır. Lehrteği (TEGEP) ile 1998-2007 yılları arasında 5800 okula Bilgi İletişim Teknolojileri (BIT) sınıfı kurulmuştur. Ayrıca BIT araçlarının daha etkin kullanımının yanı sıra tüm öğretmen ve öğrencilere yaygınlaştırılması amacıyla 2011 yılından bu yana Fırsatları Artırma ve Teknolojiyi İyileştirme Hareketi (FATİH) Projesi yürütülmektedir (MEB, 2012). Ancak teknolojinin entegrasyonuna yönelik olarak, öğretmenin eğitime entegrasyon becerilerini için tekn başına yeterli değildir (Koehler et. al., 2007; Mishra & Koehler, 2006). Buna ilaveten araştırmacılar, bilgi-iletisim becerilerin ise; bilgisayar yazılım ve donanım bilgisinin yanı sıra internet tarayıcılarını, e-posta sistemini, kelime işlemci programlarını kullanma gibi becerileri içeriğini belirtmişlerdir.

Eğitimde teknoloji entegrasyonunun bir bileşeni olarak teknolojik altyapıya yönelik ise Türkiye'de özellikle son 20 yılda hayata geçirilen çeşitli projelerde okulların altyapısı güçlendirilmiş ve çağrıştırmıştır. Lehrteği (TEGEP) ile 1998-2007 yılları arasında 5800 okula Bilgi İletişim Teknolojileri (BIT) sınıfı kurulmuştur. Ayrıca BIT araçlarının daha etkin kullanımının yanı sıra tüm öğretmen ve öğrencilere yaygınlaştırılması amacıyla 2011 yılından bu yana Fırsatları Artırma ve Teknolojiyi İyileştirme Hareketi (FATİH) Projesi yürütülmektedir (MEB, 2012). Ancak teknolojinin altyapısına yönelik olarak, öğretmenin eğitime entegrasyon becerilerini için tekn başına yeterli değildir (Koehler et. al., 2007; Mishra & Koehler, 2006). Buna ilaveten araştırmacılar, bilgi-iletisim becerilerin ise; bilgisayar yazılım ve donanım bilgisinin yanı sıra internet tarayıcılarını, e-posta sistemini, kelime işlemci programlarını kullanma gibi becerileri içeriğini belirtmişlerdir.

Diger taraftan eğitsel teknolojilerin en iyi düzeyde verim alınabilmesi için yeni teknolojileri kullanma noktasında yetkinliğe sahip öğretmenlere ihtiyaç olduğu açıktır (Brun & Hinostroza, 2014; Erdemir, Ottenbreit-Leftwich, Sadik, Sendurur, & Sendurur, 2012; Koh, Chai, Benjamin, & Hong, 2015; Orhan-Göksun, 2016). Holmberg, Fransson ve Fossa (2018) göre, dijital teknolojilerin öğretmen ve öğrenme faaliyetlerine entegre etme becerileri öğretmen profesyonellinin bir parçasıdır. Bu bağlamda dijital çağda eğitsel becerileri mesleki gelişimlerinde 21. yüzyıl eğitim gereksinimlerinin karşılanması için esas olan beceri ve eğitimin kazandırılması gerektiğidir (Sprott, 2019). Öğretmenlerin teknoloji yeterliliklerini de bu beceri ve eğitimin corumalarında yer almaktadır. Bununla birlikte öğretmenlerin sahip olduğu teknolojik yeterlilikler, dijital yerli olarak adlandırılan yeni nesil öğretmenlerin hem öğrenme faaliyetlerinin gerçekleştirilmesine hem de günlük yaşamsal teknolojinin daha etkin kullanımına yönelik gereksinimlerinin karşılanması için önem arz eder. Bu bağlamda diğer bileşene sahip öğretmene sahip olduğu teknoloji yeterliliklerini; dijital yerli olarak adlandırılan yeni nesil öğretmenlerin hem öğrenme faaliyetlerinin gerçekleştirilmesine hem de günlük yaşamda teknolojinin daha etkin kullanımına yönelik gereksinimlerinin karşılanması için önem arz eder. Bu bağlamda diğer bileşine sahip öğretmenlerin sahip olduğu teknolojik yeterliliklerini; dijital yerli olarak adlandırılan yeni nesil öğretmenlerin hem öğrenme faaliyetlerinin gerçekleştirilmesine hem de günlük yaşamda teknolojinin daha etkin kullanımına yönelik gereksinimlerinin karşılanması için önem arz eder.
Kılıç, & Yaşar, 2016; Çoban, Bozkurt, & Kan, 2019, Gür-Erdoğan & Arsal, 2016; Orhan-Göksun & Kurt, 2015). Söz konusu ölçme araçlarının ortak yanları; çağın öğrenen özelliklerini ya da hayat boyu öğrenme becerilerini (eleştirel düşünme, problem çözme, yaraticilik, girișimcilik gibi) bütüncül bir bakış açısıyla ele alımları olarak görülmektedir. Oysaki bu yeterliklerin genel bir yaklaşımdan ziyade belirli bir içeriğe yönelik olarak analiz edilmesi; hem 21. yüzyıl becerilerine yönelik daha detaylı ilişkisel çıkarımların yapılması hem de konuyla ilgili daha kapsamlı ve somut kanıtlara ulaşılmasını açısından eğitsel bağlamda önemlidir. Dolayısıyla 21. yüzyıl becerilerinin alt boyutlarına yönelik de ölçme araçlarının geliştirilmesine ihtiyaç duyulmaktadır.

Daha önce vurgulandığı gibi, bu becerilerin en önemli saç ayaklarından birisi de teknoloji yeterlilikleri olarak görülmektedir. İlgili alanyazında özellikle eğiticilere yönelik 21. yüzyıl öğrenmelerinde teknoloji yeterlilik düzeyini belirlemek için kullanılan geçerli ve güvenilir ölçme araçları sınırlı saydadır. Ropp (1999) tarafından geliştirilen TPSA (Technology Proficiency Self-Assessment) ölçeği uluslararası bağlamda kabul görmüş ve farklı ülkelerin koşullarına da uyarlanarak ulusal bağlamda kullanılmıştır. Orijinal TPSA maddeleri, ISTE Teknoloji Standartları yazım ekibi tarafından önem duyulan alanlardaki yeterlikleri değerlendirmek için oluşturulmuştur. 20 maddeden oluşan ölçekte yer alan boyutlar; (i) “E-posta”, (ii) “World Wide Web” (WWW), (iii) “Entegre Uygulamalar” ve (iv) “Öğretimde Teknoloji Entegrasyonu” olmak üzere dört yeterlilik alanını temsil etmektedir. Ropp (1999) ölçeginin öğretmenlerin ve öğretmen adaylarının eğitimde teknoloji kullanabilme yeteneklerini ölçme ve bu sayede yeterlere yönelik yeterliklerini sağlama yeteneğini de belirtmiştir. Ölçünün Türk kültürüne uygun olarak 2010 yılında Gençtürk, Gökçek ve Güneş tarafından Türkçe'ye uyarlanmıştır. Christensen ve Knezek (2017) ise TPSA ölçeğinin 15 yılı aşkım süreli saygın psikometrik özellikleri koruyarak birçok çalışmaya katkıda bulunmuştur. Türkiye’deki öğretmenlerin 21. yüzyıl teknoloji yeterlilikleri ölçebilme ve ölçme araçının ortaya konması amaçlanmıştır. Bu doğrultuda araştırma, orijinali Ropp (1999) tarafından geliştirilen ve Chrisitensen ve Knezek (2017) tarafından 21. yüzyıl becerileri kapsamında yeniden düzenlenerek olarak Türkiye’ye uyarlamaları yapılarak gerçekleştirilmiştir.

Veri Toplama Araçları ve Araştırma Süreci

Araştırmada Christensen ve Knezek (2017) tarafından Amerika'da geliştirilen ölçegin (TPSA C-21) Türkiye koşullarına uyarlamaları yapılırlar ve olarak kullanılmıştır. Bu ölçek 34 maddeden (tümü olumlu) oluşan 6
faktörü bir yapıya sahiptir. Ölçekte yer alan maddelerin faktörlerine dağılımı: E-posta (1-5. maddeler); “WWW” (6-10 maddeler); “Entegre Uygulamalar” (11-15. maddeler); “Teknolojile Öğretim” (16-20. maddeler); “Güncel Teknolojilerle Öğretim” (21-29. maddeler); “Güncel Teknoloji Becerileri” (30-34. maddeler) şeklindedir.

Christensen ve Knezek (2017), TPSA ölçeğindeki maddelerin bilgisayarlı öğrenme ve öğretme kapsamında geliştirilmiş olsa da, esasen bilgisayar öz-yeterliğinin bağlamsal bir ölçüsü olduğunu belirtmektedir. Ropp (1999) tarafından geliştirilen ölçeğin ilk hali (TPSA) ve Bilgisayar Öz-yeterlikleri Ölçüsü arasında güçlü bir ilişki vardır ve bu durum TPSA’nın yapı geçerliğinin niteliktedir (Ropp, 1999). Bu doğrultuda TPSA ve TPSA C-21 ölçeklerinde her iki araştırmada da öğreticilerin yer aldığı maddelere neden olduğu özet-yeterlik ifadelerinin yer aldığı maddelere yer verilmiştir.

Ölçek katılımcıların 5li likert tipinde (1: Kesinlikle Katılmıyorum, 2: Katılmıyorum, 3: Kısmen Katılıyorum, 4: Katılıyorum, 5: Kesinlikle Katılıyorum) cevap verebileceği şekilde hazırlanmıştır. Ölçek uyarlamada çalışmaları önce, ölçekte geliştirilen birinci yazar R. Christensen ile mail yoluyla iletişime geçilerek gerekli izinler alınmıştır. Ölçek maddelerinin İngilizceden Türkçe ye çevirisi yapılmış ve orijinal ölçek ile çevirisi yapılan ölçeklerarası uyum en az doktora derecesine sahip 12 ’(7’si Yabancı Dil Eğitimi ve 5’si Bilgisayar ve Öğretim Teknolojileri Eğitimi -BÖTE- alanında) uzmandan oluşan bir ekip tarafından kontrol edilmiştir. Bazı maddelerde ya da belirtilen ifadeler öğretmenler açısından Türkiye koşullarına göre tekrar düzenlenmiştir. Örneğin “kurum web sitesini” ifadesi “üniversitemin veya Millî Eğitim Bakanlığı’nın internet sitesini” şeklinde revize edilmiştir. Daha sonra çeviri ve belirtilen ifadelerin yer aldığı maddelere uygun hali oluşturulmuştur.

Yapılan işlemlerden sonra ölçek maddeleri üç dil uygunluğunu sağlamak amacıyla İngilizceye geri çevrilmiştir ve orijinal formuyla karşılaştırılması yapılarak dil tutarlılığı sağlanmıştır. Ölçek dil ve anlaşılırlık açısından, iki Türk dil uzmanı (biri Türkçe eğitim diğeri ise Türk Dili ve Edebiyatı alanında doktora mezunu olan) tarafından değerlendirilmiştir ve onların dönüştürülmesi sonucu bazı maddelerde düzenlemeler yapılmıştır. Sonraki aşama hem Türkiye hem de Amerikan kültüründe hakim üç öğretim üyesi tarafından öğretnin uyarlanan son halinin hedef dilden kaynak dile tekrar çevirisini yapılmsı. Geri çeviri işleminden sonra her iki kültür yönelik öğrencilerin karşılaştırılacak tekrar gözden geçirilmiş ve bu doğrultuda ölçek formuna son şekli verilmiştir.

Bu aşamadan sonra, öğrencinin kapsam ve görünüş geçerliliği için, eğitim teknolojisi alanında çalışma sektöresi öğretmenin uygulamalarını kapsayan maddelerin uygunluğu için görüş alınmıştır. Bu aşamada Davis teknğini dikkate alınarak, her maddede “uygun” ve “hafifçe düzeltilmeli” seçeneğini işaretleyen uzmanların sayısının uygulama formuluıyla karşılaştırılması yapılmasını reddetmiştir. Ölçek dil ve anlaşılırlık açısından, iki Türk dil uzmanı (biri Türkiye eğitim diğeri ise Türk Dili ve Edebiyatı alanında doktora mezunu olan) tarafından değerlendirilmiştir ve onların dönüştürülmesi sonucu bazı maddelerde düzenlemeler yapılmıştır. Sonraki aşama hem Türkiye hem de Amerikan kültüründe hakim üç öğretim üyesi tarafından öğrencinin uyarlanan son halinin hedef dilden kaynak dile tekrar çevirisini yapılmsı. Geri çeviri işleminden sonra her iki kültür yönelik öğrencilerin karşılaştırılacak tekrar gözden geçirilmiş ve bu doğrultuda ölçek formuna son şekli verilmiştir.

Bu aşamadan sonra, öğrencinin kapsam ve görünüş geçerliliği için, eğitim teknolojisi alanında çalışma sektöresi öğretmenin uygulamalarını kapsayan maddelerin uygunluğu için görüş alınmıştır. Bu aşamada Davis teknğini dikkate alınarak, her maddede “uygun” ve “hafifçe düzeltilmeli” seçeneğini işaretleyen uzmanların sayısının uygulama formuluyla karşılaştırılması yapılmasını reddetmiştir. Ölçek dil ve anlaşılırlık açısından, iki Türk dil uzmanı (biri Türkiye eğitim diğeri ise Türk Dili ve Edebiyatı alanında doktora mezunu olan) tarafından değerlendirilmiştir ve onların dönüştürülmesi sonucu bazı maddelerde düzenlemeler yapılmıştır. Sonraki aşama hem Türkiye hem de Amerikan kültüründe hakim üç öğretim üyesi tarafından öğrencinin uyarlanan son halinin hedef dilden kaynak dile tekrar çevirisini yapılmsı. Geri çeviri işleminden sonra her iki kültür yönelik öğrencilerin karşılaştırılacak tekrar gözden geçirilmiş ve bu doğrultuda ölçek formuna son şekli verilmiştir.

Araştırmacının gerçekleştirdiği mesajlar için İİ Milli Eğitim Müdürlüğü’nün gerekli resmi izin alınmıştır. Araştırmanın uygulama çalışması yapılmıştır. Ölçünün faktör yapısını belirlemek istenen öğrenciler genelde, ölçüğü formu olarak, ölçüğün toplam 712 öğrenci ve 230 öğretmen ile 39 akademisyenin katılımıyla gerçekleşmiştir (Örneklem I). Ölçek formu olarak, ölçüğün toplam 712 öğrenci ve 230 öğretmen ile 39 akademisyenin katılımıyla gerçekleşmiştir (Örneklem II). Ölçünün belirlenen faktör yapısı ilk çalışma grubundan farklı bir örneklem üzerinde Doğrulayıcı Faktör Analizi (DFA) ile test edilmiştir. Bunun için AFA bulgularına göre sonra verilen ölçüğün formu olarak, ölçüğün toplam 712 öğrenci ve 230 öğretmen ile 39 akademisyenin katılımıyla gerçekleşmiştir (Örneklem II). Formlardan 3’ü eksik doldurulduğu 480
Mustafa FİDAN, Murat DEBBBAĞ, Barış ÇUKURBAŞI – Pemeg Eğitim ve Öğretim Dergisi, 10(2), 2020, 465-492

için değerlendirilmeye alınmamış, 244 geçerli veri setiyle CFA gerçekleştirilmiştir. Uyaranlan ölçeğin güvenilirlik analizi ise ikinci örneklemden seçilen 52 katılımcıyla gerçekleştirilmiştir. Ölçeğin doldurulması 7 ile 10 dakika arasında sürmüştür. Araştırmanın süreci aşağıda Şekil-1'de özetlenmiştir.

Şekil 1. Araştırma süreci.

Verilerin Analizi

Araştırmanın verilerinin analizinde SPSS 23 ve AMOS 21 programları kullanılmıştır. Araştırmda elde edilen veriler işığında ölçeğin Türkiye koşullarında yapısı geçerliliğinin sağlanması amacıyla AFA ve DFA gerçekleştirilmiştir. Analizler gerçekleştirilmeden önce kayıp ve eksik veriler incelenmiş, uç değerler (outliers) kontrol edilmiştir. Verilerin normal dağılım gösterip göstermediği, örneklem büyüklüğünün 50'den büyük olmasından dolayı, Kolmogorov Smirnov testi ile incelenmiştir (Büyüköztürk, 2019). Analiz sonucunda hem AFA (Z = .04, p = .15) hem de DFA (Z = .06, p = .29) için p değerinin .05'ten büyük olduğu görülmüştür. Bunun yanında, madde ayırıcı edilciği belirlenirken %27.00'lik alt-üst grup karşılaştırmasına yönelik verilerin normal dağılım gösterip göstermediği de aynı analizle incelenmiş ve p değerinin .05'ten büyük olduğu görülmüştür (Z = .04, p = .16). Söz konusu analiz sonuçlarına göre verilerin normal dağılım gösterdiği söylenebilir (Büyüköztürk, 2019). Öte yandan bu testin örneklem büyüklüğünden etkilenmesinden dolayı verilerin çarpıklık ve basıklık değerleri (z değerlerine göre), histogramlar ve Q-Q pilot grafikleri de incelenmiştir ve bu sonuçların normallik testi bulgularıyla tutarlı olduğu görülmüştür.

Uyarlaması yapılan ölçeğin faktör yapıları arasındaki uyum dereceleri; Düzeltilmiş Uyum İndeksi (AGFI ≥ .90), Karşılaştırma Uyum İndeksi (CFI ≥ .90), Yaklaşık Hataların Ortalaması (RMSEA ≤ .08) ve Standartize Edilmiş Hataların Ortalaması (SRMR ≤ .08) değerlerinin kabul edilmiş olmasında görülen korelerenin kabul edilebilir olması durumuna göre incelenerek yorumlanmıştır (Hair, Black, Babin, Anderson, & Tatham, 2006; Schumacker & Lomax, 2010; Kline, 2016). Ayrıca bazı araşturmacılar model uyumunu için x2/sd oranının 5'ten küçük olması da kabul edilebilsinin bir görünüş bildirilmiştir (Schermelleh-Engel, Moosbrugger, & Müller, 2003, Kline, 2016). Ancak, mevcut araştırDMAda x2/sd değeri örneklem büyüklüğündenden etkilenmesinden dolayı (Jöreskog & Sörbom, 1993) bu uyum ölçütü olarak kullanılmamış serbestlik derecesi (sd) ile oranı sadece bilgi amaçlı olarak verilmştir. Ölçek maddelerinin güvenilirliği için Cronbach alpha (α) iç tutarlılık katsayısı ve test-tekrar güvenilirlik katsayısı (r) hesaplanmıştır. Güvenilirlik için .70 değerleri minimum ölçüct olarak kabul edilmiştir (Büyüköztürk, 2019).

Bulgular

Ölçek Uyarlama Çalışmasına İlişkin Bulgular

Dilsel eşdeğerlilik bulguları: Ölçeğin dilsel eşdeğerliliğini test etmek için Bartın Üniversitesi'nde görev yapan İngilizce diliنه hakim 39 akademisyen 4 ka ha arayla ölçeğin önce Türkçe sonra İngilizce formu uygulanmıştır. Buna göre ölçeğin özgün hali ve Türkçe ye uyarlanmış biçimi arasında elde edilen korelasyon katsayısının anlamlı ve yüksek düzeyde olduğu tespit edilmiştir (r = .84, p< 01). Genel olarak maddeler arasındaki korelasyon katsayları .62 ile .91 arasında değişmektedir. Formlar arasında faktöre göre dilsel eşdeğerlilik katsayları (r) ise; “E-posta” faktörü için .87, “WWW” faktörü için .80, “EU” faktörü için .78 ve “TÖ” faktörü için .86 olarak bulunmuştur.
AFA'ya ilişkin bulgular: Ölçme araçının yapısı geçerliliğini belirlemek, 362 katılımcıdan elde edilen veriler üzerinden AFA gerçekleştirilmiştir. Örneklem büyüklüğünün AFA için uygunluğu için KMO ve olkin testi ile incelenmiş ve bu değeri .93 olarak bulunmuştur. KMO değeri .70'ten büyük olması 1.00'den büyük olup, örneklem sayısının AFA için yeterli olduğu işaret etmektedir (Bryman & Cramer, 1999). Verilerin uygunluğunu kontrol etmek için Bartlett Kureselik Testi kullanılmıştır. Ölçüm sonucunda (χ² = 9854.95, p< .01) verilerin AFA için uygundu olduğu söylenebilir (Tabachnick & Fidell, 2007). Gerçekleştirilen ilk AFA sonucu ölçek maddelerinin toplam varyansın %68.15'ini oluşturan 4 alt faktör altında (özdeğeri 1.00'den büyük) toplanmıştır. Ayrıca faktör sayısı belirlenmesinde yamaç birikinti grafiği de (scree plot) incelemiş, kırılma noktaları göz önünde bulundurularak ölçeğin dört faktörü bir yapıda incelemesine karar verilmiştir (Ek-2).

AFA gerçekleştirilirken temel bileşenler analizi kullanılmış, maddeler varimax dik döndürme tekniğinde yer alan ekranlarla rotasyona tabi tutulmuştur. Ölçek geliştirme çalışmalarında iki ya da daha fazla faktör yapısının olduğu durumlar için varimax dik kullanılarak bir ortogonal (dik) döndürme yöntemi kullanılmıştır. Faktörlerin ve ilgili maddelerin yorumlanmasına,ナイマン izleyenlerin rapor edilmesinde kolaylık sağlaması amacıyla, bu teknik seçilmiştir (Büyükoztürk, 2009). İlk 30 maddenin olgun analizi sonucunda ortaya çıkan faktör yapıları incelemiştir. Faktör yükleri .40'ın altında olan maddenin (12, 11, 17, 20, 22, 31) ve faktörü altında binişik faktör yüklerine (.10'dan küçük) sahip olan (Costello & Osborne, 2005) maddeler (8, 16, 19, 30) maddeler maddenin olgun analizi sonucunda ortaya çıkan faktör yapıları incelemiştir. Bunun için her bir madde tek tek analizle birlikte AFA tekrarlanmış ve ölçeğin en uygun faktör yapısı belirlenmiştir. AFA sonucunda, orijinal ölçüyü oluşturan "Teknolojiyle Öğretim" (TÖ), "Güncel Teknolojilerle Öğretim" (GTO) ve "Güncel Teknoloji Becerileri" (GTB) alt maddenin Zukunft ortamında yer alan maddenin (Film/video indirebilir ve izleyebilirim) mevcut araştırmada ikinci faktör (WWW) alt maddenin Zukunft ortamında yer alması öngörülmüştür. Bu faktör yapısının kapsamlı ve ilgili maddenin uygunluğuna yönelik sekiz alanın uzmanlarının (eğitim teknolojisi alanında çalışmaları olan) görüşüne başvurulmuştur. Ayrıca orijinal ölçüyü oluşturan araştırmacılarla tekrar ilişki katsayısına güncellenmiştir, uyaranın ölçümünün faktör yapısı ve maddelerin dağılımı göstericidir. Geri dönümlü doğrultusunda son durumun TÖ faktörü (TÖ) şeklinde isimlendirilmiş, diğer faktörler ise orijinal ölçüyü haline kalmıştır. İlgili maddenin Wikimedia (Film/video indirebilir ve izleyebilir) mevcut olduğu 16, 19, 30. maddeler ise orijinal ölçüyü haline kalmıştır. İlk maddenin (Film/video indirebilir ve izleyebilir) mevcut olduğu 16, 19, 30. maddeler ise orijinal ölçüyü haline kalmıştır. İlk 34 maddenin (Film/video indirebilir ve izleyebilir) mevcut olduğu 16, 19, 30. maddeler ise orijinal ölçüyü haline kalmıştır.

Ölçeğin olgunlaştırınan maddenin oluşturan "Teknolojiyle Öğretim" (TÖ), "Güncel Teknolojilerle Öğretim" (GTO) ve "Güncel Teknoloji Becerileri" (GTB) alt maddelerin toplam varyansını %68.98'ini açıklamaktadır. Spesifik olarak, beş maddenin oluşturan "E-posta" faktörü toplam varyansın %17.12'sini; beş maddenin oluşturan "WWW" faktörü %8.07'sini; maddenin oluşturan "Entegre Uygulamalar" (EU) faktörü %6.24'ünü ve dokuz maddenin oluşturan "Teknolojiyle Öğretim" (TÖ) faktörü ise %36.54'ünü açıklamaktadır. Ölçeğin faktörler ve faktör yüklerinin maddelere göre dağılımı Tablo 1'de verilmiştir.

Tablo 1 incelendiğinde maddenin yük değerleri faktörlere göre sırasıyla .70 ile .83; .59 ile .76; .54 ile .71; .51 ile .85 arasında değişmektedir. Field (2009) ölçek maddelerinin faktör yükleri için .40'ın kesim noktası olarak kabul edilir. Ölçeğin iç tutarlığına ilişkin Cronbach alpha (α) değerleri .88, .85, .83, .79 olarak hesaplanmıştır. Ölçeğin tümünün iç tutarlığı Cronbach alpha (α) değeri .81'dir. Bu sonuçlar ölçüğün güvenilir olduğunu göstermektedir.

DFA'ya ilişkin bulgular: Araştırılmadan önceden ölçüğün dört faktörü yapısının farklı bir örneklem üzerinde doğrulanıp doğrulanmadığı DFA kullanılarak test edilmiştir. DFA için en yüksek olabilirlik (maximum likelihood) yöntemi kullanılmıştır. 244 öğretmen adayından elde edilen veriler kullanılarak gerçekleştirdilmiş DFA sonucunda (Model-1); ölçüğün 24 maddeli dört faktör yapılsı yapısının kabul edilebilir düzeyde uyum indekslerine sahih olduğu tespit edilmiştir (χ²/sd = 5.17, p < .03; AGFI = .89, CFI = .90, TLI = .86, RMSEA = .06, SRMR = .07). Öte yandan, maddenin modifikasyon indeksleri incelendiğinde, m6-m7, m21-m22 ve m6-m7 arasında hata varyansları arasında anlamlı ilişki göz önünde bulundurularak ölçüğün dört faktörü bir yapıda incelemesine karar verilmiştir (Ek-2).
görülmüştür. DFA sonucunda maddelerin hata varyansı değerleri ise .42 ile .80 arasında değiştiği hesaplanmıştır. Bu değerlerin .90 dan küçük olması model için kabul edilebilir olduğunu göstermekteedir (Çokluk, Şekercioğlu, & Büyüköztürk, 2012).

Tablo 1.
Faktör Analizi Sonuçları (Döndürülmüş Bileşenler Matrisi).

Maddeler	Faktör Yükleri
1. Bir arkadaşına e-posta gönderebilirim.	
2. Bir tartışma forumuna (Facebook grubu gibi) abone olabilirim.	
3. Bir alıcı listesi oluşturarak, aynı anda birçok kişiye e-posta gönderebilirim.	
4. E-posta mesajına bir doküman ekleyip gönderebilirim.	
5. Başkalarına gönderdiğimiz mesajların kopyasını saklayabilirim.	
6. Bir arama motoru (Google, Yandex vs.) kullanarak ilgili verileri web sayfanızı bulabilirsiniz.	
7. Üniversitemin veya Milli Eğitim Bakanlığı’nın internet sitelerini arayarak bulabilirsiniz.	
8. Daha sonra tekrar dönebilmek için önceden ziyaret ettiği internet sitelerini saklayabilirsiniz (Örneğin, sık kullanılanlara ekleyerek).	
9. Eğitim süreçinde kullanabileceğiniz birincil bilgi kaynaklarınızı internetten bulabilirsiniz.	
10. Film/video indirebilir ve izleyebilirsiniz.	
11. Hesap tablosunu (Excel gibi) kullanarak bir paket içerisinde yer alan renkli şeylerin oranını gösteren bir grafik (çubuk, daire gibi) oluşturabilirsiniz.	
12. Grafiklerde gazete oluşturabilirsiniz.	
13. Başkalarının dokümanlarını farklı kelime işlemci programlarında okuyabileceğiniz formatta (word, pdf, rtf, txt) kaydetmek gibi) kaydedebilirsiniz.	
14. Daha sonra tekrar dönebilmek için önceden ziyaret ettiği internet sitelerini saklayabilirsiniz (Örneğin, sık kullanılanlara ekleyerek).	
15. Bir konu ile ilgili önemli yazarların bilgilerini internetten bulabilirsiniz.	
16. Bir konu ile ilgili önemli yazarların bilgilerini internetten bulabilirsiniz.	
17. Söz konusu yazılımı konu ile bir bütün oluşturacak şekilde birleştirir bir ders ya da unıte hazırlayabilirsiniz.	
18. Sınıfta olmayan öğretmenler ve öğrenciler ile iş birliğini yapmak için teknolojiyi kullanabilirsiniz.	
19. Sınıfta olmayan öğretmenler ve öğrenciler ile iş birliğini yapmak için teknolojiyi kullanabilirsiniz.	
20. Sınıfta olmayan öğretmenler ve öğrenciler ile iş birliğini yapmak için teknolojiyi kullanabilirsiniz.	
21. Kendi öğretim programına/ders planına mobil teknolojileri entegre edebilirsiniz.	
22. Öğrencilerin iş birliği yapması için bir blog yada wiki oluşturabilirsiniz.	
23. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
24. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
25. Öğrencilerin kendi cihazlarına sahip olduklarını ortamlarda bire bir öğretim yapabilirsiniz.	
26. Sınıfta olmayan öğretmenler ve öğrenciler ile iş birliğini yapmak için teknolojiyi kullanabilirsiniz.	
27. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
28. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
29. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
30. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
31. Film/video indirebilir ve izleyebilirsiniz.	
32. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
33. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	
34. Öğrencilerimle uzaktan öğretim yapmak için çevrimiçi araçları kullanabilirsiniz.	

Özdeğer	4.03	1.90	1.47	8.84
% Açıklanan varyans yüzdesi	17.12	8.07	6.24	36.54
Croanbach’s Alpha (α)	.88	.85	.83	.79

F1: E-posta, F2: World Wide Web (WWW), F3: Entegre Uygulamalar (EU), F4: Teknolojiyle Öğretim (TO)
Aynı faktörler altında yer alan bu madde çiftlerine ilişkin hata korelasyonları da modele eklenecek tekrar test edilmiştir. DFA sonucunda, bu modelin iyi düzeyde uyum gösterdiği tespit edilmiştir \(\chi^2 / sd = 4.12, p < .01; \text{AGFI} = .90, \text{CFI} = .91, \text{TLI} = .92, \text{RMSEA} = .05, \text{SRMR} = .06 \). Başka bir deyişle, model veri uyumunun dört faktörli yapıda doğrulandığı söylenebilir. Modele ilişkin standartlaştırılmış yol diyagramları ve faktörler arası ilişkiler Ek-3’te sunulmuştur.

Maddelerin standardize edilmiş regresyon yüklerinin .60 ile .92 arasında değiştiği görülmüştür. Ölçek faktörleri arasında korelasyon düzeyleri incelemiştir: “E-mail” ile “WWW” \((r = .30)\), “E-posta” ile “EU” \((r = .40)\), “E-posta” ile “TÖ” \((r = .32)\), “WWW” ile “EU” \((r = .34)\), “WWW” ile “TÖ” \((r = .30)\) ve “EU” ile .59 faktörleri arasında pozitif yönde anlamlı ilişkiler olduğu görülmüştür \((p < .01)\). Nitekim faktörler arasındaki çok yüksek düzeydeki korelasyon katsayıları, faktörlerin benzer ve aynı özelliği ölçümeye eğilimli olduklarına yönelik bulgular sunmaktadır. Ancak mevcut araştırmada korelasyon analizi sonuçlarına göre, faktörler arasında düşük ve orta düzeyde ilişkilerin olduğu görülmektedir.

Tablo 2 incelendiğinde, Amerika’da geliştirilen ölçeğin altı faktörlü yapısına ilişkin model, Türkiye’de uygulanan örneklem üzerinde yeterli uyum değerlerine sahip olduğu görülmüştür. Buna göre 24 maddelik ölçeğin dört faktörlü yapısının Türkiye koşullarında daha iyi uyum gösterdiği söylenebilir.

Güvenirlik analizine ilişkin bulgular: Ölçek maddelerinin iç-tutarlılık güvenilirlik katsayısı (\(\alpha\)) .80 ile .91 arasında değişirken, ölçeğin tümüne ilişkin bu katsayı .89 olarak bulunmuştur. Ölçeğin iç tutarlığına ilişkin Cronbach alpha \((\alpha)\) değerleri faktörlerle göre sırasıyla .85, .82, .81, .89 olarak hesaplanmıştır. Bu sonuçlar ölçek maddelerinin veri toplamının tutarlı olduğunu göstermektedir (Büyüköztürk, 2019). Bununla birlikte, tekrar güvenilirlik belirlemek için DFA yapılan örneklemde seçilen 52 katılımcıya üç haftalık bir zaman diliminden sonra ölçek tekrar uygulanmıştır. Ölçeğin test-tekrar güvenilirlik katsayısı \((r)\) faktörlerle göre sırasıyla .85, .81, .83 ve .89 olarak hesaplanmıştır \((p < .01)\). Ölçek maddelerinin test tekrar güvenilirlik katsayısı \((r)\) .79 ile .89 arasında değişikten, ölçeğin tümüne ilişkin ise bu katsayı .81 olarak hesaplanmıştır \((p < .01)\). Bu sonuçlara göre ölçüleceğini zaman içerisinde veřilecek cevapların kararlı olduğu söylenebilir.

Madde analizlerine ilişkin bulgular: Faktörlerin toplam puanları ile %27.00’lik alt-üst grupların madde puanları arasındaki farklıklar, bağımsız örneklemeler için t testi yapılarak incelemiştir. Buna göre tüm maddelerde ilişkin t değerleri anlamlı düzeyde olup \((p < .01)\) faktörlerle göre sırasıyla, 18.03 ile 23.25; 12.27 ile 23.43; 22.62 ile 41.39 ve 19.42 ile 34.29 arasında değişmiştir. Bununla birlikte, düzeltildmiş madde-toplam korelasyon katsayıları istatistiksel olarak anlamlıdır \((p < .01)\) ve faktörlerle göre sırasıyla .79 ile .91; .75 ile .82; .75 ile .90; .73 ile .85 arasında değişmiştir. Bu sonuçlar içliğinde ölçek maddelerinin artı edici özelliklerinin yüksek olduğunu göstermektedir. Ölçeğin faktörleri, faktör yüklerinin maddelere göre dağılımı, madde-toplam korelasyon katsayıları \((r)\) ve %27.00’lik alt-üst grupların arasındaki puan farklılıklarına ilişkin t değerleri Tablo 3’de verilmştir.
Tablo 3.
Madde Analizi Sonuçları.

Madde no	r	t	Madde no	r	t
m1	.79	18.03**	m13	.77	22.62**
m2	.83	21.40**	m15	.75	28.73**
m3	.90	23.25**	m17	.75	21.90**
m4	.85	21.80**	m18	.73	19.42**
m5	.91	22.42**	m20	.75	22.75**
m6	.80	13.19**	m21	.78	25.42**
m7	.82	12.27**	m23	.78	27.12**
m9	.75	23.43**	m24	.80	34.29**
m10	.82	19.85**	m25	.85	33.25**
m31	.81	19.32**	m26	.81	28.85**
m11	.89	34.40**	m28	.78	24.42**
m12	.90	41.39**	m34	.78	24.87**

**p< .01

Tartışma, Sonuç ve Öneriler

Bu araştırmada Christensen ve Knezek (2017) tarafından geliştirilen 21. Yüzyıl Öğrenmelerinde Teknoloji Yeterliliği Öz-değerlendirme Ölçeği (TPSA C-21) Türkiye koşullarına uyarlanmış ve öğretmenlerin söz konusu öz–değerlendirmeleri cinsiyet, okul türü, lisansüstü eğitim alma durumu ve hizmet yılı değişkenleri açısından incelenmiştir. 34 maddeli ve altı boyuttan oluşan orijinal ölçeğin Türkçe uyarlaması sonucunda, 24 madde dört boyut altında toplanmıştır. Araştırmada ölçek uygulama sürecinin ilk aşamasında; özgün öcek maddelerinin hedef dilden kaynak dile çevriliş yapımı, kapsam ve görüş geçerliliği için uzman görüşleri alınmıştır. Ölçek maddelerinin Türkçe çevriliş aşamasında bir hata olup olmadığını yönelik, özgün formla ilişkisini ortaya koyan dilsel eşdeğerlik çalışması yapılmıştır. Ölçünün yapı geçerliliğini belirlemeye AFA ve DFA kullanılmış, maddelerin güvenilirlik analizleri yapılmıştır. Ölçeğin yapı geçerliliğini belirlemeye AFA ve DFA kullanılmış, maddelerin güvenilirlik analizleri yapılmıştır. AFA sonucunda, ölçünün Çevrimdeki Türkçeye koşullarında dört faktörü bir yapıya sahip olduğu görülmüş, maddelerin 6’sı faktör yükünün yetersiz olmasından ve 4’ü ise binişik değer göstermesinden dolayı ölçen çektiştirilmiştir. Öüzgün ölçünün ilk üç faktörü (”E-posta”, “WWW” ve “EU”) aynı kalmış, ancak diğer üç faktör ise “TO” olarak genel bir yapıya birleştirilmiştir.

Alanyazın incelendiğinde ölçek uygulama çalışmalarında faktör isimlerinin ve faktör sayılarının değiştiği çok sayıda araştırma mevcuttur (Ünal & Teker, 2018; Önder & Beşoluk, 2010; Kutu & Süzbilir, 2011; Kaya, Kaya, & Emre, 2013; Koh, Chai, & Tsait, 2010; Işık & Demirel, 2018). Boztunç-Öztürk, Eroğlu ve Kelecioglu (2015) tarafından gerçekleştirilen doküman incelemesi çalışmasında, 108 ölçekte araştırma sonucunda faktör yapı analizinde 38’inde madde çıkarıldığı ve yeni bir madde önerilmediği; 4’ü ise madde sayısının aynı kaldığı ancak orijinal ölçekteki bir boynuzdaki farklı bir boynuzda yer aldığı görülmüş. Ölçek uygulama sürecinde fazla sayıda madde çıkarıldığında madde çıkarılmasına yönelik kanıt sağlayan alanyazın verdiği modeller mevcuttur (Afacan, Karakuş, & Uşak, 2013; Işık & Demirel, 2018; Kutu & Süzbilir, 2011).

Mevcut araştırmada ölçünün faktör yapısının ve madde sayısının değişmesinde etki eden en önemli unsurun ölçünün geliştirildiği ülke ile uygulandığı ülke arasındaki kültürel farklılıkların olduğu düşünülmektedir. Nitekim, Kaya, Kaya ve Emre (2013) tarafından Teknolojik Pedagojik Alan Bilgisi Ölçeği Türkiye koşullarında araştırmaya ve araştırma sonucunda ölçünün faktör yapında değişiklikler yapılmıştır. Bu durumun gerekliliği olarak orijinal ölçünün geliştirildiği Amerika ile uygulamanın yapıldığı Türkiye’deki öğretmen yapıları ve oranları arasındaki farklılıkların kaynaklanabileceği belirtilmiştir. Klassen’e (2004) göre öz-yeterlik kültürel unsurlardan etkilenmektedir. Boztunç-Öztürk, Eroğlu ve Kellecioglu (2015) orijinal ölçünün uygulandığı kültür ile uygulandığı kültürün denk olması, ölçüm aracında yapı kaynaklı yanıltıcı yol açığı ve ölçek uygulama sürecinde bu unsurlar dikkate alınarak hataların giderilmesini önermektedir. Bununla birlikte ölçek uygulama süreci sonunda istatistiksel olarak çıkarılması gereken maddeler için orijinal ölçü ile geliştirilen araçtırmaclar ve konu alanı uzmanları ile
iletişime geçerek bu maddeler ile ilgili karar verilmesi gerektiği belirtilmektedir (Boztunç – Öztürk, Erdoğan, & Keleçoğlu, 2015). Bu doğrultuda mevcut araştırmada ölçeğin faktör yapısının belirlenmesinde ve ilgili maddelerin çıkartılması hem alan uzmanlarının hem de özgün ölçeğin oluşturulduğunun araçtırucuların görüşleri alınarak gerçekleştirilmiştir.

Özgün ölçeke “GTÖ” faktöründe yer alan 31. madde (“Film/video indirebilir ve izleyebilirim”) mevcut araştırmada “WWW” faktörü altında yer almıştır. Bu durumun ölçeğin uyarlandığı hedef kitle ile özgün ölçeğin uyumlu olduğu hedef kitle arasındaki bireysel ve kültürel farklılıkların kaynağı olduğu düşünülmektedir. Bununla birlikte “WWW” faktörü altında ortaya çıkan 31. maddenin yapısal olarak bu faktörün altında diğer maddelerle uyumlu olduğuna yönelik görüş birliği sağlanmıştır. Bu doğrultuda alan uzmanlarından ve özgün ölçeğin oluşturulduğunun araçtırucuların görüşleri doğrultusunda bu maddenin “WWW” faktörü altında alınmasına karar verilmiştir. Benzer duruma ilişkin örnekler alanyazında yer almaktadır. Türkçeye uyarlanan bilgisayar kaygısı ölçeğinde uyarlama sonucunda iki madde diğer faktör altında geçti (Çavuş & Günbatar, 2008). Yapılan çalışmalarla ayrı faktörde yer alan maddelerin, aynı faktörde bir araya geldiğine dair öne sürülmektedir (Kaya, Kaya, & Emre, 2013).

Türkiye’de MEB tarafından desteklenen FATİH Projesi kapsamında eğitimde tehnoloji kullanımına yönelik sağlıkli ve etkili öğrenme ortamlarının oluşturulması çerçevesinde 2019 yılı ocak ayı itibariyle 47.158 okula etkili tahtalar kurulmuş, okullarda chimikalienin anlatıldığı ve ailelerin bu tehditlenmesi sağlanmış, öğretmenlere gerekli eğitim verilmeleri önem verilerek çevrimiçi sosyal eğitim platformu (EBA) hazırlanmıştır (MEB, 2019). Öğrenme ortamlarında ortaya koyulan bu hız ve gelişim hedef kitleye ait eğitim sistemi içerisinde filtre uygulanmıştır. Filtre kapasitelerde birçoğumuz sosyal medya ve video musik izlemeleri için uygun olmayan filtreler yer almaktadır. Ayrıca öğretmenlere MEB tarafındanBIT kullanımlarında ve hem cinsiyet hem de sosyal amaçlar açısından değişiklikler yaşanmakta ve detay azınlıklarının da bilinçli olarak uygulanmasına öncelik verilmiştir. Bu düzenlemelerin önceliği öğretimin sağlıklı bir şekilde gerçekleştirilmesi olacaktır (Çavuş & Günbatar, 2008). Yapılan çalışmalarla ayrı faktörde yer alan maddelerin, aynı faktörde bir araya geldiğine dair öne sürülmektedir (Kaya, Kaya, & Emre, 2013).

Türkiye’de MEB tarafindan desteklenen FATİH Projesi kapsamında eğitimde tehnoloji kullanımlarına yönelik sağlıkli ve etkili öğrenme ortamlarının oluşturulması çerçevesinde 2019 yılı ocak ayı itibariyle 47.158 okula etkili tahtalar kurulmuş, okullarda chimikalienin anlatıldığı ve ailelerin bu tehditlenmesi sağlanmış, öğretmenlere gerekli eğitim verilmeleri önem verilerek çevrimiçi sosyal eğitim platformu (EBA) hazırlanmıştır (MEB, 2019). Öğrenme ortamlarında ortaya koyulan bu hız ve gelişim hedef kitleye ait eğitim sistemi içerisinde filtre uygulanmıştır. Filtre kapasitelerde birçoğumuz sosyal medya ve video musik izlemeleri için uygun olmayan filtreler yer almaktadır. Ayrıca öğretmenlere MEB tarafındanBIT kullanımlarında ve hem cinsiyet hem de sosyal amaçlar açısından değişiklikler yaşanmakta ve detay azınlıklarının da bilinçli olarak uygulanmasına öncelik verilmiştir. Bu düzenlemelerin önceliği öğretimin sağlıklı bir şekilde gerçekleştirilmesi olacaktır (Çavuş & Günbatar, 2008). Yapılan çalışmalarla ayrı faktörde yer alan maddelerin, aynı faktörde bir araya geldiğine dair öne sürülmektedir (Kaya, Kaya, & Emre, 2013).

Türkiye’de MEB tarafından desteklenen FATİH Projesi kapsamında eğitimde tehnoloji kullanımlarına yönelik sağlıkli ve etkili öğrenme ortamlarının oluşturulması çerçevesinde 2019 yılı ocak ayı itibariyle 47.158 okula etkili tahtalar kurulmuş, okullarda chimikalienin anlatıldığı ve ailelerin bu tehditlenmesi sağlanmış, öğretmenlere gerekli eğitim verilmeleri önem verilerek çevrimiçi sosyal eğitim platformu (EBA) hazırlanmıştır (MEB, 2019). Öğrenme ortamlarında ortaya koyulan bu hız ve gelişim hedef kitleye ait eğitim sistemi içerisinde filtre uygulanmıştır. Filtre kapasitelerde birçoğumuz sosyal medya ve video musik izlemeleri için uygun olmayan filtreler yer almaktadır. Ayrıca öğretmenlere MEB tarafındanBIT kullanımlarında ve hem cinsiyet hem de sosyal amaçlar açısından değişiklikler yaşanmakta ve detay azınlıklarının da bilinçli olarak uygulanmasına öncelik verilmiştir. Bu düzenlemelerin önceliği öğretimin sağlıklı bir şekilde gerçekleştirilmesi olacaktır (Çavuş & Günbatar, 2008). Yapılan çalışmalarla ayrı faktörde yer alan maddelerin, aynı faktörde bir araya geldiğine dair öne sürülmektedir (Kaya, Kaya, & Emre, 2013).

Türkiye’de MEB tarafından desteklenen FATİH Projesi kapsamında eğitimde tehnoloji kullanımlarına yönelik sağlıkli ve etkili öğrenme ortamlarının oluşturulması çerçevesinde 2019 yılı ocak ayı itibariyle 47.158 okula etkili tahtalar kurulmuş, okullarda chimikalienin anlatıldığı ve ailelerin bu tehditlenmesi sağlanmış, öğretmenlere gerekli eğitim verilmeleri önem verilerek çevrimiçi sosyal eğitim platformu (EBA) hazırlanmıştır (MEB, 2019). Öğrenme ortamlarında ortaya koyulan bu hız ve gelişim hedef kitleye ait eğitim sistemi içerisinde filtre uygulanmıştır. Filtre kapasitelerde birçoğumuz sosyal medya ve video musik izlemeleri için uygun olmayan filtreler yer almaktadır. Ayrıca öğretmenlere MEB tarafındanBIT kullanımlarında ve hem cinsiyet hem de sosyal amaçlar açısından değişiklikler yaşanmakta ve detay azınlıklarının da bilinçli olarak uygulanmasına öncelik verilmiştir. Bu düzenlemelerin önceliği öğretimin sağlıklı bir şekilde gerçekleştirilmesi olacaktır (Çavuş & Günbatar, 2008). Yapılan çalışmalarla ayrı faktörde yer alan maddelerin, aynı faktörde bir araya geldiğine dair öne sürülmektedir (Kaya, Kaya, & Emre, 2013).
tarafından geliştirilen ölçek vasıtasıyla veriler toplanmış ve teknopedagojik yeterlikleri faktörü altına bir değerlendirme yapılmıştır. Bu yöнюle araştırma kapsamında uyarlanan 21. Yüzyıl Öğrenmelerinde Teknoloji Yeterliliği Öz-Değerlendirmeleri ölçeği Türkiye koşullarında özgün ve geliştirilebilir niteliktedir. Ayrıca araştırma kapsamında Türkçeye uyarlanan ölçek özel veya devlet kurumlarında okul öncesi, İlkokul, ortaokul ve lise kademelerinde görev yapan 21. yüzyıl öğretmenlerine uygulanabilir. Elde edilen sonuçlar ile araştırma kapsamında incelenen diğer bağımlı ve bağımsız değişkenler arasında istatistik analizleri yapılarak derinlemesine incelemeler gerçekleştirilebilir.

Araştırmanın her araştır Soda olduğu gibi belirli sınırlılıkları vardır. Araştırmanın örneklemının sadece Bartın il Merkez ilçesinde yer alan İlkokul, ortaokul ve lise kademelerinde halihazırda görev yapan ve gönüllü olarak araştırmaya katılan öğretmenlerden oluşması dolayısıyla, bu durum araştırma sonuçlarının farklı bölgelerdeki örneklemere genellenmesini zorlaştırabilir. Ayrıca çalışma yükseköğretimde görev yapan öğretmen elemanlarını ve eğitim fakültelerinde öğrenim gören öğretmen adaylarını kapsamamaktadır. Bu yüzden bu araştırma bölgesel, kültürel ve eğitsel farklılıklar göz önünde bulundurularak farklı örneklemeler üzerinde tekrar gerçekleştirilirilebilir ve ölçeğin psikometrik özelliklerinin karşılaştırılmalı olarak tekrar incelemesi de ölçeğin geçeriğine ve güvenilirlüğine katkı sağlayabilir. Özellikle öğretim teknolojilerinin ele alınıldığı ölçekler, doğası gereği, zamanla güncelliğini kaybedebilir ve bu yüzden eğiticilerin teknoloji yeterliliklerini belirlemekte yetersiz kalabilirler. Dolayısıyla gelecek araştırmalarda ölçek maddeleri tekrar gözden geçirilebilir ve içerik olarak daha uygun yeni teknolojilere ilişkin maddeler dahil edilerek ölçülen geniştirilmiş versiyonu oluşturulabilir.
References

Afacan, Ö., Karakuş, M., & Uşak, M. (2013). Turkish adaptation of the scale of “student perceptions of teachers’ knowledge (SPOTK)” and examining in the aspect of some variables. Journal of Educational Sciences Research, 3(1), 185-200.

Anاغûn, Ş. S., Atalay, N., Kilç, Z., & Yaşar, S. (2016). Öğretmen adaylarına yönelik 21. yüzül becerileri yeterlilik algıları ölçeginin geliştirilmesi: Geçerlik ve güvenilirlik çalışması. PAU Eğitim Fakültesi Dergisi, 40, 160-175.

Angeli, C., & Valanides, N. (2005). Preservice elementary teachers as information and communication technology designers: An instructional systems design model based on an expanded view of pedagogical content knowledge. Journal of Computer Assisted Learning, 21, 292-302.

Başak, M. H., & Ayvacı, H. Ş. (2017). Teknoloji entegrasyonunun eğitim alanında uygulanmasına yönelik bir karşılaştırma: Türkiye-Güney Kore örneği. Eğitim ve Bilim, 42(190), 465-492. doi:10.15390/EB.2017.6710.

Boztonç-Öztûrûk, N., Eroğlu, M. G., & Kelecioğlu, H. (2015). A review of articles concerning scale adaptation in the field of education. Education and Science, 40, 123-137.

Care, E., Vista, A., Kim, H., & Anderson, K. (2019). Education system alignment for 21st Century Skills: Focus on assessment. Washington, DC: Brookings.

Christensen, R. & Knezek, G. (2017) Validating the technology proficiency self-assessment questionnaire for 21st century learning (TPSA C-21), Journal of Digital Learning in Teacher Education, 33(1), 20-31.

Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 1-9.

Çavuş, H., & Günbatar, M. S. (2008). Computeranxiety scale Turkish adaptation study. Gazi University Journal of Gazi Educational Faculty, 28(3), 147-163.

Çoban, Ö., Bozkurt, S., & Kan, A. (2019). Eğitim yöneticisi 21. yy. becerileri ölçeginin geliştirilmesi: Geçerlik ve güvenilirlik çalışması. Kastamonu Education Journal, 27(3), 1059-1071.

Çokluk, Ö., Şekercioğlu, G., & Büyükoztürk, Ş. (2012). Sosyal bilimler için çok değişkenli istatistik: SPSS ve LISREL uygulamaları (2. ed.). Ankara: PEGEM Akademi.

Çukurbaş, B., & Kıyıcı, M. (2018). Öğretmen adaylarının öğretimde internet teknolojilerini kullanmaya yönelik tercihlerindeki değişim incelenmesi. Kastamonu Education Journal, 26(3), 765-776.
Dağ, F. (2016). Yaşam boyu öğrenme bağlamında Türkiye’de öğretmenlerin teknolojik yeteneklerinin geliştirilmesine yönelik mesleki gelişim çalışmalarının incelenmesi. International Journal of Human Sciences, 13(1), 90-111.

Darling-Hammond, L. (2015). The Flat world and education: How America’s commitment to equity will determine our future. New York: Teachers College Press.

Davis, L. L. (1992). Instrument review: getting the most from a panel of experts. Applied Nursing Research, 5(4), 194-197.

Debbağ, M. (2018). Öğretim ilke ve yöntemleri dersi öğretim programı için hazırlanmış ters-yüz edilmiş sınıf modelinin etkiliği. Unpublished doctoral dissertation, Abant İzzet Baysal University, Institute of Educational Sciences, Bolu.

Dunbar, M. (2015). Skills and capacity: What does learning need to look like today to prepare the workforce of 2030? (DFID think piece). Retrieved from http://www.heart-resources.org/wp-content/uploads/2016/01/DFID-Skills-and-Capacity-Think-Piece-Dunbar.pdf?x30250

Durak, H., & Seferoğlu, S. S. (2017). Öğretmenlerin teknoloji kullanım yeteneklerinde etkili olan faktörlerle ilgili bir inceleme. In B. Akköylü, A. İşman ve H. F. Odabaşı (Eds.) Eğitim teknolojileri okulama 2017, (pp.537-556). Ankara: TOJET-The Turkish Online Journal of Educational Technology.

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012). Teacher beliefs and technology integration practices: A critical relationship. Computers and Education, 59, 423-435.

Ferdig, R. E. (2006). Assessing technologies for teaching and learning: Understanding the importance of technological pedagogical content knowledge. British Journal of Educational Technology, 37(5), 749-760.

Field, A. (2009). Discovering statistics using SPSS (3th ed.). London: Sage Publishing.

Gaible, E., Mayanja, M. and Michelazzi, A. (2018). Transforming education through technology: Second-stage report. London: Health & Education Advice & Resource Team (HEART).

Garba, S. A., Byabazaire, Y., & Busthami, A. H. (2015). Toward the use of 21 st century teaching-learning approaches: The trend of development in Malaysian schools within the context of Asia Pacific. International Journal of Emerging Technologies in Learning, 10(4), 72-29.

Gençtürk, E., Gökçek, T., & Güneş, G. (2010). Reliability and validity study of the technology proficiency self-assessment scale. Procedia-Social and Behavioral Sciences, 2(2), 2863-2867.

Görgülü, D., & Küçükkali, R. (2018). Öğretmenlerin teknolojik liderlik özyetekerlerinin incelenmesi. Uluslararası Liderlik Çalışmaları Dergisi: Kuram ve Uygulama, 1 (1), 1-12.

Gür-Erdogan, D., & Arsal, Z. (2016). The development of lifelong learning trends scale (LLLTS). Sakarya University Journal of Education, 6(1), 114-122.

Gürültü, E., Aslan, M., & Alci, B. (2018). Investigation of elementary school teachers’ qualifications in the light of 21 st century skills, The Journal of Academic Social Sciences, 71, 543-560.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. New Jersey: Prentice-Hall.

Harris, J. B., Mishra, P., & Koehler, M. (2009). Teachers’ technological pedagogical content knowledge: Curriculum-based technology integration re Framed. Journal of Research on Technology in Education, 41(4), 393-416.

Hill, H. C., Beisiegel, M., & Jacob, R. (2013). Professional development research: Consensus, crossroads, and challenges. Educational Researcher, 42(9), 476-487.

Holmberg, J., Fransson, G., & Fors, U. (2018). Teachers’ pedagogical reasoning and reframing of practice in digital contexts. The International Journal of Information and Learning Technology, 35, 130-142.

ISTE (International Society for Technology in Education), (2016). ISTE standarts. Retrieved from http://www.iste.org/standarts.
Işık, U., & Demirel, M. (2018). Turkish adaptation of study-leisure conflict scale, its validity and reliability. *European Journal of Educational Studies, 4*(3), 31-43.

Jöreskog, K. G., & Sörbom, D. (1993). *LISREL 8: Structural equation modeling with the simplis command language*. United States of America: Scientific Software International.

Karadeniz, Ş., & Vatanartıran, S. (2015). Primary school teachers’ technological pedagogical content knowledge. *Elementary Education Online, 14*(3), 1017-1028.

Kaya, G., & Koçak Usluel, Y. (2012). Öğrenme-öğretme süreçlerinde BİT entegrasyonunu etkileyen faktörlerle yönelik içerik analizi. *Buca Eğitim Fakültesi Dergisi*, 31, 48-67.

Kaya, Z., Kaya, O. N., & Emre, İ. (2013). Adaptation of technological pedagogical content knowledge scale to Turkish. *Educational Sciences: Theory & Practice, 13*(4), 2367-2375.

Kaya Z., & Yılayaz. Ö. (2013). Öğretmen eğitiminin teknoloji entegrasyonu modelleri ve teknolojik pedagojik alan bilgisi. *Batı Anadolu Eğitim Bilimleri Dergisi (BAED)*, 4(8), 57-83.

Klassen, R. M. (2004). Optimism and realism: A review of self-efficacy from a cross-cultural perspectives. *International Journal of Psychology, 39*(3), 205-230.

Kline, R. B. (2016). *Methodology in the social sciences. Principles and Practice of Structural Equation Modeling* (4th edition). New York: Guilford Press.

Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. *Computers & Education, 49*, 740-762.

Koh, J. H. L., Chai, C. S., Benjamin, W., & Hong, H. Y. (2015). Technological pedagogical content knowledge (TPACK) and design thinking: A framework to support ict lesson design for 21st century learning. *The Asia-Pacific Education Researcher, 24*(3), 535-543.

Koh, J., Chai, C., & Tsait, C. (2010). Examining the technological pedagogicalcontent knowledge of Singapore pre-serviceteachers with a large-scale survey. *Journal of Computer Assisted Learning, 26*, 563-573.

Kutu, H., & Sözbilir, M. (2011). Adaptation of instructional materials motivation survey to Turkish: A validity and reliability study. *Necatibe Faculty of Education Journal of Science and Social Sciences Education, 5*(1), 292-312.

Kylonen, P. C. (2012). Measurement of 21st century skills within the common core state standards. *Paper presented at the Invitational Research Symposium on Technology Enhanced Assessments, 7-8 Mayis 2012*. Retrieved from https://www.ets.org/Media/Research/pdf/session5-kylonen-paper-tea2012.pdf.

Lewin, C., & McNicol, S. (2015). *Supporting the development of 21st century skills through ICT*. In Brinda, T., Reynolds, N., Romeike, R., & Schwill, A. (Eds.), KEYCIT 2014: Key competencies in informatics and ICT (pp. 181–198).

Maddux, C. D., & Johnson, D. L. (2005). Information technology, type II classroom integration, and the limited infrastructure in schools. *Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and Applied Research, 22*(3-4), 1-5.

Mazman, S. G., & Usluel, Y.K. (2011). Bilgi ve iletişim teknolojilerinin öğrenme-öğretim süreçlerine entegrasyonu: Göstergeler ve modeller. *Eğitim Teknolojisi Kuram ve Uygulama, 2*(1), 62-80.

MoNE, (2012). *Milli Eğitim Bakanlığı tamamlanan projeler*. Retrieved from http://projeler.meb.gov.tr/pkmtr/.

MoNE, (2017). *General competencies for teaching profession*. Retrieved from https://oygm.meb.gov.tr/meb_ys_dosyalar/2017_12/13161921_YRetmenlik_Mesle_Yi_Genel_YETERLYKLERi_onaylanan.pdf

MoNE, (2019). *FATİH projesi*. Retrieved from http://fatihprojesi.meb.gov.tr/index.html#contact.
Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: a framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. Retrieved from https://www.learntechlib.org/p/99246/.

OECD. (2018). The future of education and skills. OECD Publishing. Retrieved from https://www.oecd.org/education/2030%20Position%20Paper%20(05.04.2018).pdf

Orhan, D., Kurt, A. A., Ozan, S., Vural, S. S., & Türkan, F. (2014). Ulusal eğitim teknolojisi standartlarına genel bir bakış. Karaelmas Eğitim Bilimleri Dergisi, 2(1), 65-79.

Orhan-Göksun, D. (2016). Öğretmen adaylarının 21.yy. öğrenen becerileri ve 21. yy. öğretmen becerileri arasındakı ilişki. Unpublished doctoral dissertation, Anadolu University, Institute of Educational Sciences, Eskişehir.

Önder, İ., & Beşoluk, Ş. (2010). Adaptation of revised two factor study process questionnaire (R-SPQ-2F) to Turkish. Education and Science, 35(157), 1300-1337.

Palfrey, J., & Gasser, U. (2008). Born digital understanding the first generation of digital natives. New York: Basic Books.

Partnership for 21st Century Skills. (2017). The 4Cs: Skills for Today Research Series. Retrieved from http://www.p21.org/our-work/4cs-research-series

Perkmen, S., & Tezci, E. (eds.) (2011). Eğitimde teknoloji entegrasyonu: Materyal geliştirme ve çoklu ortam tasarımı. Ankara: Pegem Academy.

Pinho, I. D. C., & Lima, M. D. S. (2013). Teacher's digital fluency: a new competence for foreign language teaching. Revista Brasileira de Linguística Aplicada, 13(3), 711-739.

Riegel C., & Mete R. (2018). Educational technologies for k-12 learners: what digital natives and digital immigrants can teach one another. Educational Planning Journal, 24(4), 49-58.

Ropp, M. M. (1999) Exploring individual characteristics associated with learning to use computers in preservice teacher preparation. Journal of Research on Computing in Education, 31(4), 402-424.

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23-74.

Schmidt, D., Baran, E., Thompson A., Koehler, M. J., Mishra, P., & Shin, T. (2009). Technological pedagogical content knowledge (TPACK): The development and validation of an assessment instrument for pre-service teachers. Journal of Research on Technology in Education, 42(2), 123-149.

Schumacker, R.E. & Lomax, R.G. (2010). A beginner’s guide to structural equation modelling (3rd ed.). İngiltere: Routledge.

Simsek, O. & Yazar, T. (2016). Education technology standards self-efficacy (etsse) scale: A validity and reliability study. Eurasian Journal of Educational Research, 63, 311-334.

Sprott, R. A. (2019). Factors that foster and deter advanced teachers’ professional development. Teaching and Teacher Education, 77, 321-331.

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). New York: Pearson Education.

Tezci, E. (2016). Öğretmenlerin BİT entegrasyon yaklaşımının ölçülmesine yönelik ölçek geliştirme. Kastamonu Eğitim Dergisi, 24(2), 975-992.

Trilling, B. & Fadel, C. (2009). 21st century skills: Learning for life in our times. Francisco: Jossey-Bass.

Ünal, E., & Teker, N. (2018). The adaption of technology integration self-efficacy scale in Turkish. Journal of Social Sciences of Mus Alparslan University, 6(6), 973-978.

Vo, L., & Nguyen, H. (2010). Critical friends group for EFL teacher professional development. ELT Journal, 64(2), 205-213.
Appendix

Appendix 1. Distribution on Teachers By Branch

Branch	n	%
German Language	2	.30
Arabic	4	.70
Physical Education and Sports	10	1.70
Information Technologies	22	3.60
Biology	14	2.30
Office Management	5	.80
Child Development	3	.50
Geography	11	1.80
Religious Culture and Moral Knowledge	21	3.50
Literature	45	7.40
Philosophy	2	.30
Science	25	4.10
Physics	13	2.10
Graphics and Photography	4	.70
Visual Arts	7	1.20
Religious Vocational Courses	14	2.30
English Language	52	8.60
Chemistry	5	.80
Maths	56	9.20
Automotive	2	.30
Accounting and Finance	3	.50
Music	13	2.10
Healthcare Services	3	.50
Social Sciences	18	3.00
Primary Education	149	24.60
Special Education	13	2.10
School Counsellor	10	1.70
History	15	2.50
Special Education	18	3.00
Technology and Design	7	1.20
Turkish Language	37	6.10
Food and Beverage Services	1	.20
Total	606	100.00

Appendix 2. Scree Plot Graphic

Appendix 3. Confirmatory Factor Analysis Results of Four Factor Model