Polyharmonic Daubechies type wavelets in Image Processing and Astronomy, I

Ognyan Kounchev, Damyan Kalaglarsky

Abstract: We introduce a new family of multivariate wavelets which are obtained by "polyharmonic subdivision". They generalize directly the original compactly supported Daubechies wavelets.

Key words: Wavelet Analysis, Daubechies wavelet, Image Processing.

1 Introduction

We consider new multivariate polyharmonic Daubechies type wavelets which are called "polyharmonic subdivision wavelets". They have been recently introduced in the paper [5]. They are obtained by means of a procedure called "polyharmonic subdivision" which is a generalization of the classical one-dimensional subdivision scheme of Deslauriers-Dubuc [4] which is the original source for the first compactly supported wavelets of Daubechies in 1988, cf. [3]. This new family of polyharmonic wavelets is the second representative of the Polyharmonic Wavelet Analysis following the "polyspline wavelets" which have been introduced in the monograph [6].

An important feature of these newly-born wavelets is that they are a nice generalization of the one-dimensional wavelets of Daubechies: they form an orthonormal family, enjoy nice non-stationary "refinement operator" equations, and have compact filters. In addition to that they have elongated supports. Let us remind that a major drawback of the one-dimensional spline wavelets of Ch. Chui is that they do not have finite filters, and respectively, the polyspline wavelets of [6] do not have finite filters.

2 Construction of fundamental function Φ_m for exponential polynomials subdivision

The whole construction of the Daubechies type wavelets passes via the construction of the so-called fundamental function of subdivision, cf. [1]. In the present case we will work with non-stationary subdivision and we have a family of such functions Φ_m for all $m \in \mathbb{Z}$ which satisfy the refinement equations (two-scale relations) given by

$$\Phi_m(t) = \sum_{i \in \mathbb{Z}} a_i^{[m]} \Phi_{m+1}(2t - i) \quad \text{for all } t \in \mathbb{R}. \tag{1}$$

We define the non-stationary subdivision symbol by putting

$$a^{[k]}(z) := \sum_{j \in \mathbb{Z}} a_j^{[k]} z^j. \tag{2}$$
We are interested in special subdivision processes arising through the solutions of Ordinary Differential Equations. We assume that we are given a number of frequencies $0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_p$ and put for the frequency vector (with repetitions)

$$\Lambda = \{ \lambda_1, \lambda_2, \ldots, \lambda_N \} \cup \{ -\lambda_1, -\lambda_2, \ldots, -\lambda_N \}.$$

We consider the space of C^∞ solutions of the ODE

$$\prod_{j=1}^{p} \left(\frac{d^2}{dt^2} - \lambda_j^2 \right) f(t) = 0.$$

(3)

Let us recall a simple fact from ODEs: in the case of different λ_j’s the space of all C^∞ solutions in (3) is spanned by the set $\{ e^{\lambda_j t} : j = 1, 2, \ldots, p \}$. In the case of s coinciding indices $\lambda_i = \lambda_{i+1} = \ldots = \lambda_{i+s-1}$ we have that the solution set contains the functions $\{ t^s e^{\lambda_i t} : \ell = 0, 1, \ldots, s \}$.

Let us proceed to the construction of the subdivision symbols. We put $x_j = e^{-\lambda_j/2^{k+1}}$.

We define the following Laurent polynomial

$$d(z) := d^k(z) := \prod_{j=1}^{N} \frac{(z + x_j)(z^{-1} + x_j)}{(1 + x_j)^2}$$

and

$$P(x) := P^k(x) := \prod_{j=1}^{N} \left(1 - \frac{4x_j}{(1 + x_j)^2} x \right).$$

(4)

They satisfy the equality

$$d(e^{i\omega}) = P\left(\sin^2 \frac{\omega}{2} \right) \quad \text{for all } \omega \in \mathbb{R};$$

(5)

cf. [7]. We will often drop the dependence on the upper index in d, a, P and the other functions and symbols.

An important step for construction of the subdivision coefficients $a_j^{[m]}$ is the application of the Bezout theorem:

Proposition 1 There exists a unique polynomial Q with real coefficients of degree $N - 1$ such that

$$P(x) Q(x) + P(1-x) Q(1-x) = 1$$

and

$$Q(x) > 0 \quad \text{for } x \in (0, 1).$$

We define now the trigonometric polynomial $b(z) = b^k(z)$ by putting

$$b(e^{i\omega}) = Q\left(\sin^2 \frac{\omega}{2} \right).$$

We finally define the symmetric Laurent polynomial $a(z)$ by putting

$$a(z) := a^k(z) := 2 d(z) b(z) \quad \text{for } z \in \mathbb{C} \setminus \{0\}.$$

(6)

The following proposition is important for the application of the Riesz lemma to $a(z)$ and construction of the Wavelet Analysis, cf. [7], [5].
Proposition 2 The polynomial \(a(z) \) defined in (6) satisfies
\[
a(z) = \sum_{j=-2N+1}^{2N-1} a_j z^j
\]
with \(a_j = a_{-j} = \overline{a_j} \) and
\[
a(z) \geq 0 \quad \text{for all} \quad |z| = 1.
\]
The following fundamental result shows that the symbols \(a(z) \) are the non-stationary subdivision symbols for symmetric set of frequencies \(\Lambda \), cf. [5].

Theorem 3 For every exponential polynomial, i.e. for every solution to the equation
\[
Lf(t) := \prod_{j=1}^{N} \left(\frac{d^2}{dt^2} - \lambda_j^2 \right) f(t) = 0 \quad (7)
\]
we put
\[
f_k^j = f \left(\frac{j}{2^k} \right).
\]
Then \(f \) is reproduced by means of interpolatory subdivision, i.e.
\[
f_{k+1}^{j+1} = \sum_{j=-\infty}^{\infty} a(k)_{j-2} f_k^j \quad \text{for all} \quad j' \in \mathbb{Z}
\]
\[
f_{2j+1}^j = f_k^j \quad \text{for all} \quad j \in \mathbb{Z},
\]
For every \(m \in \mathbb{Z} \) the fundamental function of subdivision \(\Phi_m(t) \) is a continuous function obtained through the subdivision process [3], where one starts from \(f_0^j = \delta_j \) for \(j \in \mathbb{Z} \) (here \(\delta_j \) is the Kronecker symbol), i.e. we put \(\Phi_m(\frac{t}{2^m}) = \delta_j \), and \(\Phi_m \) satisfies the refinement equation [4].

Having in hand the functions \(\Phi_m \) and their refinement symbols \(a|m| \) we may follow the usual scheme for construction of father and mother wavelets which has been used by Daubechies, cf. [3], [1]. The following fundamental result has been proved in [5].

Theorem 4 There exists a polynomial \(g(z) = \sum_{j \in \mathbb{Z}} g_j z^j \) such that it is the "square root" of \(2a(z) \), i.e.
\[
a(e^{i\theta}) = \frac{1}{2} \left| g(e^{i\theta}) \right|^2 \quad (9)
\]
For every \(m \in \mathbb{Z} \) there exists a compactly supported function \(\varphi_m(t) \) which satisfies the refinement equation
\[
\varphi_m(t) = \sum_{j} g_j \varphi_{m+1}(2t-j), \quad (10)
\]
and the family \(\{ \varphi_m(t-j) \}_{j \in \mathbb{Z}} \) is orthonormal. (These are the non-stationary father wavelets.) The functions
\[
\psi_m(t) = \sum_{j \in \mathbb{Z}} (-1)^j g_{1-j} \varphi_{m+1}(2t-j)
\]
are the mother wavelets; the family \(\{ \psi_m(t-j) \}_{j \in \mathbb{Z}} \) is orthonormal and the family \(\{ \psi_m(t-j) \}_{m,j \in \mathbb{Z}} \) forms an orthonormal basis of \(L^2(\mathbb{R}) \).
2.1 The polyharmonic case

For the polyharmonic subdivision we will work with very special ODEs defined by

\[L_\xi := (d^2/\partial t^2 - \xi^2)^N \]

which are the Fourier transform of the polyharmonic operator \(\Delta^N \). For a fixed constant \(\xi \geq 0 \) we put

\[\Lambda := (-\xi, -\xi, ..., -\xi, \xi, \xi, ..., \xi) \in \mathbb{R}^{2N} \]

i.e. \(\lambda_j = \xi \), for \(j = 1, 2, ..., N \). Now for fixed \(\xi \geq 0 \) and \(k \in \mathbb{Z} \) we define the polynomial

\[d(z) := d[k]_\xi(z) := \frac{(z + x_0)^N (z - x_0)^N}{(1 + x_0)^{2N}} \quad \text{for} \quad z \in \mathbb{C}; \]

(13)

here we put \(x_0 := e^{-\xi/2^{k+1}} \). For the sake of simplicity we will very often drop the dependence on \(k \) and \(\xi \).

By (5) we have

\[d(e^{i\omega}) = P(\sin^2 \frac{\omega}{2}) \]

where

\[P(x) = \left(1 - \frac{4x_0}{(1 + x_0)^2} \right)^N = (1 - \eta x)^N, \]

(14)

and we have put

\[\eta = \eta[k]_\xi := \frac{4x_0}{(1 + x_0)^2} = \frac{2}{1 + \cosh(\xi/2^{k+1})}. \]

Then following Proposition 1 we have to find the polynomial solution \(Q \) to the equation

\[P(x) Q(x) + Q(1 - x) P(1 - x) = 1 \]

where \(Q \) has degree \(\leq N - 1 \).

Remark 5 Let us recall that the polynomial \(Q \) in the classical case, cf. e.g. [1], p. 195, satisfies condition

\[(1 - y)^N Q(y) + y^N Q(1 - y) = 1. \]

The lowest degree solution polynomial \(Q \) will be called Daubechies’ polynomial and we put

\[R_N(x) := \sum_{j=0}^{N-1} \binom{N + j - 1}{j} y^j. \]

(15)

(Note that in [3] and [1] the notation used is \(P_N \) !)

It is amazing that it is possible to solve the problem in Proposition 1 explicitly.

Proposition 6 Let \(\Lambda = (-\xi, -\xi, ..., -\xi, \xi, \xi, ..., \xi) \in \mathbb{R}^{2N} \). Then for the corresponding polynomial \(P(x) = (1 - \eta x)^N \), the polynomial \(Q \) of degree \(N - 1 \) defined by

\[Q(x) = Q_N^{k, \xi}(x) = (2 - \eta)^{-N} \sum_{j=0}^{N-1} \binom{N + j - 1}{j} \left(1 - \eta (1 - x) \right)^j \]

(16)

solves the equation

\[P(x) Q(x) + P(1 - x) Q(1 - x) = 1. \]

Hence,

\[Q(x) = (2 - \eta)^{-N} R_N \left(\frac{1 - \eta (1 - x)}{2 - \eta} \right). \]

(18)
Hence, we find the trigonometric polynomial \(b^{[k]}(z) \) by putting
\[
 b^{[k]}(z) := b^{[k]}(ξ(e^{iω})) := Q^{[k]}(ξ) \left(\sin^2 \frac{ω}{2} \right)
\]
where we recall the notations
\[
x = \sin^2 \frac{ω}{2} = \frac{1 - \cos ω}{2} = \frac{1}{2} - \frac{z + z^{-1}}{4},
\]
Finally, we obtain the subdivision symbol \(a^{[k]}(z) \) by putting
\[
 a^{[k]}(z) := a^{[k]}(ξ) (z) := 2d^{[k]}(ξ)(z) b^{[k]}(ξ)(z).
\]

Now by Theorem 4 we find the "square root" of the symbol \(a^{[k]}(z) \). This means that we have to take separately the "square root" of the Laurent polynomials \(d^{[k]}(z) \) and \(b^{[k]}(z) \). The "square root" of \(d^{[k]}(z) \) is obvious; taking the "square root" of \(b^{[k]}(z) \) needs taking the "square root" of the polynomial \(Q \).

3 Algorithm for finding the square root of the polynomials \(Q \)

For the algorithmic aspects of taking the "square root" of the polynomial \(Q \) it will be important to describe the polynomial \(Q \) through the zeros of the Daubechies' polynomial \(R_N \) in (15).

Proposition 7 Let the zeros of the Daubechies’ polynomial (15) be \(c^D_j \), i.e.
\[
 R_N(y) = \sum_{j=0}^{N-1} \binom{N + j - 1}{j} y^j = \frac{(2N-2)!}{((N-1)!)^2} \prod_{j=1}^{N-1} (y - c^D_j).
\]

Then the polynomial \(Q \) as determined by (16) is given by
\[
 Q(x) = (2 - η)^{-2N+1} η^{N-1} \frac{(2N-2)!}{((N-1)!)^2} \prod_{j=1}^{N-1} (x - C_j),
\]
where
\[
 C_j := \frac{c^D_j (2 - η) + η - 1}{η}.
\]

By formula (18) we have the representation
\[
 d^{[k]}(z) = \left| \frac{(z + x_0)^N}{(1 + x_0)^N} \right|^2 \text{ for } z = e^{iω},
\]

hence, we take the trigonometric polynomial
\[
 M_1(z) := \frac{(z + x_0)^N}{(1 + x_0)^N}
\]
as its "square root", i.e. \(d^{[k]}(z) = |M_1(z)|^2 \) for \(|z| = 1 \). Further, we have to take care of the "square root" of the polynomial \(b^{[k]}(z) \). Thus we have to find the polynomial \(M_2 \) of degree \(≤ N - 1 \) such that
\[
 |M_2(e^{iω})|^2 = \frac{1}{2} Q \left(\sin^2 \frac{ω}{2} \right),
\]
which may be obtained by using the roots of the Daubechies polynomials.
Remark 8 Let the polynomial Q have the zeros C_j as in Proposition \[7\] and let us put

$$c_j = 1 - 2C_j.$$

We see that $Q \left(\sin^2 \frac{\omega}{2} \right) = \tilde{Q} \left(\cos \omega \right)$ for some polynomial \tilde{Q} and c_j are the zeros of \tilde{Q}. Hence, we may apply the algorithm for the Riesz representation of \tilde{Q}, see e.g. \[7\], p. 197 – 198.

Thus we obtain finally for every integer $m \geq 0$ and $\xi \in \mathbb{Z}^n$ the representation

$$a^{[m],\xi}(z) = \frac{1}{2} |M_1(z) M_2(z)|^2,$$

(23)

and the family of functions

$$M(z) := M^{[m]}(z) := M^{[m],\xi}(z) := M_1(z) M_2(z)$$

(24)

represents the refinement masks for the family of scaling functions (father wavelets) \{$\phi_m(t)\}_{m\geq 0}$ for which the functions Φ_m are autocorrelation functions.

Remark 9 Note that the above factorization has been found in the special case $\xi = 0$ by Daubechies in \[3\], p. 266; the coefficients of the "square root" polynomial for $N = 2..10$ are in table 6.1 in \[3\]. A detailed discussion of more efficient methods for choosing the proper polynomial $M_2(z)$ is available in Strang-Nguyen \[8\], p. 157, in chapter 5.4 on Spectral factorization. The factorization of the Daubechies’ polynomial $R_N(y)$ is discussed in Burrus \[2\], on p. 78 and the Matlab program is $[hn,hin]=\text{daub}(N)$ in Appendix C. They work with the zeros of the polynomial R_N and provide a number of manipulations for finding a more stable factorization.

Acknowledgement. The first named author was sponsored partially by the Alexander von Humboldt Foundation, and both authors were sponsored by Project DO–2-275/2008 "Astroinformatics" with Bulgarian NSF.

References

[1] Ch. Blatter, Wavelets: A Primer, A K Peters, Natick, MA, 1998.
[2] S. Burrus, R. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms, Prentice Hall, Englewood Cliffs, N.J., 1998.
[3] I. Daubechies, Ten lectures on wavelets, SIAM, 2002.
[4] G. Deslauriers, S. Dubuc, Symmetric iterative interpolation process, Constr. Approx., 5 (1989), 49-68.
[5] N. Dyn, O. Kounchev, D. Levin, H. Render, Polyharmonic subdivision for CAGD and multivariate Daubechies type wavelets, preprint, 2010.
[6] O. Kounchev, Multivariate polysplines: Applications to Numerical and Wavelet Analysis, Academic Press, San Diego-London, 2001.
[7] Ch. Micchelli, Interpolatory Subdivision schemes and wavelets, Jour. Approx. Theory, 86 (1996), p. 41-71.
[8] G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.

ABOUT THE AUTHORS

Ognyan Kounchev, Prof., Dr., Institute of Mathematics and Informatics, Bulgarian Academy of Science, tel. +359 − 2 − 9793851; kounchev@gmx.de

Damyan Kalaglarsky, Institute of Astronomy, Bulgarian Academy of Science, tel. +359 − 2 − 9793851; damyan@skyarchive.org.