Systemic lupus erythematosus and myelofibrosis: A case report and revision of literature

F. Del Portoa,b, C. Tatarellib, A. Di Napolic, M. Proiettaa

a Sapienza Università di Roma, Facoltà di Medicina e Psicologia, Dipartimento di Medicina Clinica e Molecolare, UOC Medicina Interna, Ospedale Sant’Andrea, Via di Grottarossa 1035-1039, 00189 Rome, Italy
b Sapienza Università di Roma, Facoltà di Medicina e Psicologia, Dipartimento di Medicina Clinica e Molecolare, UOC Ematologia, Ospedale Sant’Andrea, Rome, Italy
c Sapienza Università di Roma, Facoltà di Medicina e Psicologia, Dipartimento di Medicina Clinica e Molecolare, UOC Anatomia Patologica, Ospedale Sant’Andrea, Rome, Italy

A R T I C L E I N F O

Keywords:
Systemic lupus erythematosus
Autoimmune myelofibrosis
Blood cytopenia

A B S T R A C T

Blood cytopenia represents one of the diagnostic criteria for systemic lupus erythematosus (SLE) and may occur as the first symptom of the disease. Antibody-mediated peripheral destruction of blood cells is the main cause of cytopenia observed in patients affected by SLE, however, inflammatory anemia, nutritional deficiencies, immunosuppressive therapy and, more rarely, myelofibrosis (MF) have also been documented. In the literature, 45 cases of autoimmune MF (AIMF) and SLE have been previously reported. Here the 46th case of a 43-year-old female with a SLE and an underhand cytopenia, with a review of the literature.

1. Introduction

Hematologic disorders affect 85% of patients suffering from systemic lupus erythematosus (SLE) \cite{1,2,3}, so that peripheral blood cytopenia represents one of the diagnostic criteria for SLE \cite{2,3}. In most of the cases, autoimmune haemolysis/leukopenia/thrombocytopenia, chronic inflammatory anemia and thrombocytopenia by anti-phospholipid syndrome occur, whereas myelofibrosis (MF) is rarely described \cite{4}. MF is SLE has been associated both with neoplastic and autoimmune diseases \cite{4}. Autoimmune MF (AIMF) is an uncommon hematologic disease characterized by anemia, bone marrow myelofibrosis, and an autoimmune feature \cite{5}. The association between AIMF and SLE represents an extremely rare condition, with 45 cases previously described in literature \cite{4}. Here we report the case of a 43-year-old female with SLE and an underhand cytopenia, with a review of the literature.

2. Case report

In November 2015, a 43-year-old female was admitted to the Surgery Department of our Hospital because of cholelithiasis with cholecystitis. During hospitalization, she developed fever, polyserositis, severe anemia (7.4 g/dl) and thrombocytopenia (27.000/mmc), so that she was transferred to our Department of Internal Medicine. Laboratory tests displayed anemia, thrombocytopenia and a marked increase of C-reactive protein (20.7 mg/dl) and erythrocyte sedimentation rate (85 mm/h) values. An empiric antibiotic treatment with piperacillin-tazobactam was started leading to a progressive improvement of the abdominal symptoms and signs, as also documented by abdominal ultrason and cholangio-MRI. However, fever and cytopenia persisted. Moreover, pericardial and pleural effusions worsened as demonstrated at echocardiogram and chest x-ray respectively. Infections and neoplasms were researched and ruled out. Considering polyserositis and cytopenia, autoantibodies were evaluated. Positive direct and indirect Coombs test and slightly positive antinuclear antibodies (1:40 homogeneous) were found, whereas all other autoantibodies were negative. In agreement with our haematologist, a bone marrow biopsy was performed showing: “Hypercellular bone marrow (70%) containing erythroid and myeloid elements and megakaryocytes showing hypolobated and hyperchromatic nuclei. A marked interstitial reticulin and collagen fibrosis (MF-3) was also evident (Fig. 1A,B). Immunohistochemistry for CD34 demonstrated rare immature hematopoietic precursors*. JAK-2 mutations were negative. Moreover, abdominal ultrasound was repeated confirming cholelithiasis and showing only a slight increase of liver size, with no spleen enlargement.

During hospitalization, a progressive increase of creatinine serum values up to 3 mg/dl, anuria and anasarca occurred. Moreover, a 1.5 g/daily of proteinuria was documented. Urinary sediment test demonstrated hematic and hyalines cylinders with undone red blood cells. A renal biopsy was not done since a contemporary progressive decrease of platelet values (up to

* Corresponding author.
E-mail address: flavia.delporto@uniroma1.it (F. Del Porto).
6000/mmc) occurred. Within 3 days patient's conditions become life threatening, thus considering renal dysfunction, positive Coombs test and ANA, a diagnosis of SLE was performed [1,3]. Autoimmune tests were repeated, confirming low titres ANA (1:80 homogenous) and showing a slight reduction of C3 and C4 complement fraction levels (C3 78 mg/dl and C4 9 mg/dl) and slightly positive anti dsDNA antibodies (1:20). Methylprednisolone 1 g iv/daily was started and continued for 3 days, obtaining a surprising fast and progressive improvement of clinical conditions and renal function. Azathioprine 50 mg/twice a day was also added achieving a gradual increase of peripheral blood cell count up to normal values. Within 3 months, the patients underwent to a progressive reduction of prednisone doses from 25 mg/daily to 10 mg/daily. After 6 months a bone marrow biopsy was repeated showing “hypercellular marrow (70%) due to myeloid and megakaryocyte proliferation with seldom hyperchromatic nuclei, decreased, reticulin fibrosis with focal formation of collagen bundles (MF-2)” (Fig. 1C, D). After one year of treatment, a follow-up bone marrow biopsy was further performed demonstrating a 30% cellular marrow and complete remission of bone marrow fibrosis (MF-0) (Fig. 1E, F). After 2 years follow-up, ANA are still positive (1:640), the patient is in good clinical condition, peripheral blood count is still within the normal range, 24-h proteinuria was progressively decreased up to values lower than 300 mg/24 h, no relapse of polyserositis was observed and no haematological diseases showed up. Maintenance therapy is still azathioprine 50 mg 1 cp twice a day and prednisone 7.5 mg/daily.

A literature search was done in PubMed, accessed via the National Library of Medicine PubMed interface (http://www.ncbi.nlm.gov/pubmed), using as keywords “systemic lupus erythematosus” and “myelofibrosis”. To our knowledge, only 45 cases of SLE and MF have been previously reported (Table 1).

Fig. 1. Histology of consecutive trephine bone marrow biopsies (BMB). Pre-treatment BMB showed marked reticulin and collagenic interstitial fibrosis (MF-3) (A Haematoxylin and Eosin stain x100; B Gomori reticulin stain x100). During treatment BMB showed reduced collagenic interstitial fibrosis (MF-2) (C Haematoxylin and Eosin stain x100; D Gomori reticulin stain x100). Post treatment BMB showed regression of bone marrow fibrosis (MF-0) (E Haematoxylin and Eosin stain x100; F Gomori reticulin stain x100).
Table 1
Autoimmune myelofibrosis in patients affected by systemic lupus erythematosus: review of the literature.

Author, year	sex, age	autoantibodies	cytopenia	therapy	response	renal failure	other features
Lau, 1968¹	F, 25	LE cells	pancytopenia	corticosteroid m	PBC improvement	no	Fever, weakness
Cavalcant, 1978²	M, 29	ANA, LE cells, complement	anemia	prednisone 60 mg/d	BMB improvement	no	none
Daly, 1983³	F, 16	ANA, dsDNA	pancytopenia	Prednisone 30 mg/d	PBC and BMB marked improvement	no	Weight loss, subcutaneous nodules, retinal exudates, Hemorrhagic features
Nani, 1984⁴	M, 28	ANA, LE cells, dsDNA	Anemia, platelets	corticosteroids ns	No response	Patient died	Proteinuria 1.1 g/24 h
Kaelin, 1986⁵	F, 27	ANA, dsDNA, Coombs+, antiplatelet	platelets	MTHYP 100 mg/6 h	PBC improvement	No response at BMB	
el Mouzan, 1988⁶	F, 13	ANA, dsDNA, LE cells, Coombs+ complement	pancytopenia	prednisolone 30 mg/d	PBC improvement	no	Fever, anorexia, hemorrhagic features
Matsouka, 1989⁷	F, 60	ANA, dsDNA, LE cells, complement	Anemia, platelets	Hydrocortisone 1 g/d	No response at BMB		
Inoue, 1992⁸	F, 24	ANA, LE cells, antiplatelet	anemia, platelets	MTHYP 1 g/d x 3 days then prednisone 1.2 mg/kg/d	The patient died	Proteinuria 1.8 g/24 h	
Foley-Nolan, 1992⁹	F, 20	ANA, Coombs+ complement	Anemia, platelets	Prednisone 60 mg/d plus azathioprine 150 mg/d	PBC and BMB complete regression	no	none
Borba, 1993¹⁰	F, 39	ANA, RNP, Coombs+ complement	neutropenia	MTHYP 500 mg/d x 2 d plus prednisone 10 mg/d	—	No response	Fever, Raynaud phenomenon
Hirose, 1993¹¹	F, 54	ANA, aCL, LA complement	pancytopenia	MTHYP 1 g/d x 3 d then prednisolone 60 mg/d	PBC and BMB marked improvement	no	Fever, weight loss
Fukuyama, 1994¹²	F, 54	ANA, aCL, LA complement	platelets	MTHYP 1 g/d x 3 d	PBC complete regression	no	Weight loss, fatigue
Paquette, 1994¹³	M, 68	ANA, complement	anemia, leukopenia	Prednisone 20 mg/d	PBC and BMB regression	no	Lung disease
Paquette, 1994¹³	F, 23	ANA, LE cells complement	Anemia, platelets	Prednisone 50 mg/d	PBC improvement	no	Pharyngeal ulcerations, retinal lesion
Paquette, 1994¹³	F, 27	ANA, Coombs+ complement	pancytopenia	Prednisone 60 mg/d	PBC and BMB response	no	Hemorrhagic features, lymph nodes
Paquette, 1994¹³	F, 56	ANA, dsDNA, LE cells complement	Anemia, platelets	Prednisone ns	PBC no response	Proteinuria ++	
Paquette, 1994¹³	F, 18	ANA, dsDNA, LE cells, Coombs+ complement	anemia, platelets	Prednisone 80 mg/d	PBC improvement	no	Fever, hemolytic features, lymph nodes
Paquette, 1994¹³	F, 70	ANA, Coombs+ complement	Anemia, platelets	high doses prednisone	PBC improvement	no	Fever, hemolytic features
Paquette, 1994¹³	F, 58	ANA, LE cells complement	pancytopenia	corticosteroid m	No response	The patient died	
Paquette, 1994¹³	F, 69	ANA, LE cells complement	anemia, platelets	Prednisone ns	BPC improvement	No response	

(continued on next page)
Author/Year	Sex	Age	Autoantibodies	Cytopenia	Other Features	Therapy	Response	Other Features
Ramakrishna, 1995	F	14	ANA, dsDNA, LAC, antiplatelet	Anemia, thrombocytopenia	Prednisone 75 mg/d	Complement	Not Response	Fever, weight loss, hemolytic anemia
Agarwal, 1995	F	15	ANA	Anemia, thrombocytopenia	Prednisone 2 mg/kg/d	PBC and BMB regression	Fever, hemolytic anemia	
Aharon, 1997	F	16	ANA, dsDNA, aCL, SSA	Pancytopenia	Prednisone 80 mg/d for 3 weeks	Colchicine	No Response	Fever, weight loss, abdominal pain, lymph nodes
Konstantinopoulos, 1998	F	17	ANA, dsDNA	Anemia, thrombocytopenia	Prednisone 1.2 mg/kg/d	PBC and BMB improvement	No Response	Liver dysfunction
Vora, 1998	F	18	ANA, dsDNA	Anemia	Prednisolone 1.2 mg/kg/d	PBC and BMB improvement	Fever, hemolytic anemia	
Kageyama, 1999	F	19	ANA, dsDNA	Pancytopenia	Corticosteroids	No Response	No Response	Fever, abdominal pain, myositis
Durupt, 2000	F	20	ANA, dsDNA	Anemia, thrombocytopenia	Prednisone 2 mg/kg plus cyclosporine 5 mg/kg	BMB nr	Fever, hemolytic anemia	
Kiss, 2000	F	21	ANA, aCL	Pancytopenia	MTHYP 1 g/d x 3d plus cyclophosphamide 50 mg/d	BMB nr	No Response	Fever, abdominal pain, myositis
Aziz, 2004	M	22	ANA, LAC, antimitochondrial	Anemia, epistaxis	Prednisone 1 mg/kg/d	Complement	No Response	Fever, hemolytic anemia
Pillai, 2009	F	23	ANA, dsDNA	Anemia, thrombocytopenia	MTHYP 500 mg x 5d then prednisone 1 mg/kg/d	BMB nr	Fever, hemolytic anemia	
Sacre, 2009	F	24	ANA, dsDNA	Anemia, thrombocytopenia	Prednisone 1 mg/kg/d plus IVIG	BMB nr	No Response	Fever, hemolytic anemia
Sarkar, 2009	M	25	ANA, dsDNA, Coombs+	Pancytopenia	Prednisone 60 mg/d	No Response	No Response	Liver dysfunction
Wanitpongpun a, 2012	F	26	ANA	Anemia, leukopenia	Prednisone 60 mg/d	PBC response	No Response	None
Hasrouni, 2013	F	27	ANA, dsDNA	Anemia, leukopenia	Prednisone 60 mg/d	PBC response	No Response	None
Fechner, 2014	F	28	na	Pancytopenia	Corticosteroids and immunosuppressives	BMB nr	Fever, hemolytic anemia	

(continued on next page)
Author, year	sex, age	autoantibodies	cytopenia	therapy	response	renal failure	other features	
F. Del Porto et al.	37	58-64	Table 1 (continued)					
Chalayer, 2014	F, 37	29	ANA, SSA, RNP	neutropenia	Methylprednisolone 500 mg/d for 3 days	No response to Fever, edema, psychosis	no	
Kakar, 2015	F, 38	30	ANA, SSA, RNP	neutropenia	Methylprednisolone 500 mg/d for 3 days	↓ complement	↓ com	
Pundole, 2015	F, 31	41	ANA, Coombs+, platelets	anemia, leukopenia and ↓ platelets	Prednisone 1 g x 3 days then Partial response	PBC improvement	↓ complement 60 mg oral prednisone then No response at BMB thereafter	20 mg oral prednisone
Kakar, 2016	F, 32	42	ANA, SSA, RNP	anemia, ↓ platelets	Prednisone 1.5 mg/kg/d	PBC and BMB regression 1.5.7.24/h	↑ creatinine,	
Ungprasert, 2016	F, 33	43	ANA, SSA, RNP	slight anemia, thrombocytopenia	Methylprednisolone 1 g x 3 d plus Cholelytiasis, cholecystitis, anasarca	PBC and BMB regression	↑ creatinine,	
Cansu, 2017	F, 34	44	ANA, SSA, RNP	anemia, ↓ platelets	Methylprednisolone 1 g x 3 d plus	PBC and BMB regression	↑ creatinine,	
Anderson, 2017	F, 35	45	ANA, SSA, RNP	anemia, lymphopenia	High doses corticosteroids then IVIG x 5 d	PBC improvement	No lethargy	
Anderson, 2017	F, 35	46	ANA, SSA, RNP	slight anemia, thrombocytopenia	Methylprednisolone 1 g x 3 d plus	PBC and BMB regression	↑ creatinine,	

ANA: antinuclear antibodies, dsDNA: double stranded antibodies, LA: lupus anticoagulant, aCL: anticardiolipin antibodies; PBC: peripheral blood cell count; BMB: bone marrow biopsy; MTHP: methylprednisolone; IVIG: intravenous immunoglobulins; HCQ: hydroxychloroquine; MMF: mycophenolate mofetil; ns: not specified; na: not available; nr: not repeated.

References:
1. Lau KS, White JC. Myelosclerosis associated with systemic lupus erythematosus in patients in West Malaysia. J Clin Pathol. 1969 Jul;22(4):433-8.
2. Cavalcante JR, Shadduck RK, Winkelstein A, Zeigler Z, Mendelow H. Red-cell hypoplasia and increased bone marrow reticulin in systemic lupus erythematosus: reversal with corticosteroid therapy. Am J Hematol. 1978;5(3):253-63.
3. Naimi NA, Jedna N. Myelofibrosis as a cause of pancytopenia in systemic lupus erythematosus. J Clin Pathol. 1983 Nov;36(11):1219-22.
4. Kaelin WG Jr, Spivak JL. Systemic lupus erythematosus and myelofibrosis. Am J Med. 1986 May;81(5):535-8.
5. Matsouka C, Liouris J, Andrianakos A, Papademetriou C, Karvountzis G. Systemic lupus erythematosus and myelofibrosis. Clin Rheumatol. 1989 Sep;8(3):253-63.
6. Inoue Y, Matsubara A, Okuya S, Okafuji K, Kaku K, Kaneko T. Myelofibrosis and systemic lupus erythematosus: reversal of myelofibrosis with high-dose corticosteroid therapy. Acta Haematol. 1992 Aug;88(2):110-5.
7. Foley-Nolan D, Martin MF, Rowbotham D, McVerry A, Gooi HC. Systemic lupus erythematosus presenting with myelofibrosis. J Rheumatol. 1992 Aug;19(8):1303-4.
8. Borba EF, Pereira RM, Velloso ED, Pereira IA, Goncalves CR, Yoshinari NH. Neutropenia associated with myelofibrosis in systemic lupus erythematosus. Acta Haematol. 1993;89(2):82-5.
9. Hirose W, Fukuya H, Anzai T, Kawagoe M, Kawai T, Watanabe K. Myelofibrosis and systemic lupus erythematosus. J Rheumatol. 1993 Dec;20(12):2164-6.
10. Paquette RL, Myleckipouri P, Rosen R. Antinuclear antibodies, double stranded antibodies, Lupus anticoagulant, aCL, anticardiolipin antibodies; PBC: peripheral blood cell count; BMB: bone marrow biopsy; MTHP: methylprednisolone; IVIG: intravenous immunoglobulins; HCQ: hydroxychloroquine; MMF: mycophenolate mofetil; ns: not specified; na: not available; nr: not repeated.

References:
1. The present patient was included in a case of 40 SLE patients who underwent to BMB. A case of systemic lupus erythematosus presenting with myelofibrosis. Pathology. 1995 Jul;27(3):253-5, Review.
15 Agarwal BR, Bhullar K, Dalvi R, Gauri K. Myelofibrosis secondary to SLE and its reversal on steroids therapy. Indian Pediatr. 1995 Nov;32(11):1207-10.
16 Aharon A, Levy Y, Bar-Dayan Y, Afek A, Zandman-Goddard G, Skurnik Y, Fabrizzi F, Shoenfeld Y. Successful treatment of early secondary myelofibrosis in SLE with IVIG. Haematologica 1997;82(4):353-7.
17 Konstantopoulos K, Terpos E, Prinolakis H, Kanta A, Variami E, Kanellopoulou G, Vaiopoulos G, Vassilakopoulos T, Pateras A, Moutsopoulos HM. Methylprednisolone as myelofibrosis. Nephrol Dial Transplant. 1998;13(6):1081-6.
18 Vora BJ, Byers RJ, Lucas GS, Gokal R. Reversal of osteomyelosclerosis-associated systemic lupus nephritis. Nephrol Dial Transplant. 1998 Jun;13(6):1559-61.
19 Kageyama Y. [A case of elderly-onset systemic lupus erythematosus (SLE) complicated with severe liver dysfunction and pancytopenia due to myelofibrosis]. Nihon Ronen Igakkai Zasshi. 1999 Dec;36(12):881-6.
20 Durupt S, David G, Durieu I I, Nove-Josserand R, Vital-Durand D. Myelofibrosis in systemic lupus erythematosus: a new case. Eur J Intern Med. 2000 Apr;11(2):89-90.
21 Kiss E, Gál I, Simkovics E, Kiss A, Bányai A, Szakáll S, Szegedi G. Myelofibrosis in systemic lupus erythematosus. Leuk Lymphoma. 2000 Nov;39(5-6):661-5.
22 Aziz AR, Mohammadian Y, Ruby C, Momin Z, Kumar A, Griciene P, Gintautas J. Systemic lupus erythematosus presenting with pancytopenia due to bone marrow fibrosis. Clin Adv Hematol Oncol. 2004 Jul;2(7):467-9; discussion 469-70.
23 Pillai VL, Anand V, Bhat B, Gaddipati V, Vaidya S, Pawar M, Bapat B. Myelofibrosis in systemic lupus erythematosus: a clinico-hematologic presentation. J Assoc Physicians India. 2009 Nov;57:767-8. PubMed
24 Sacré K, Aguilar C, Deligny C, Choudat L, Koch P, Arf S, Papo T. Lytic bone lesions in lupus-related myelofibrosis. Lupus. 2010 Mar;19(3):313-6.
25 Pillai VL, Anand V, Bhat B, Gaddipati V, Vaidya S, Pawar M, Bapat B. Myelofibrosis in systemic lupus erythematosus: a clinico-hematologic presentation. J Assoc Physicians India. 2009 Nov;57:767-8. PubMed
26 Wanitpongpun C, Teawtrakul N, Mahakkanukrauh A, Siritunyaporn S, Sirijerachai C, Chansung K. Bone marrow abnormalities in systemic lupus erythematosus with peripheral cytopenia. Clin Exp Rheumatol. 2012 Nov-Dec;30(6):825-9. Epub 2012 Dec 17.
27 Hasrouni E, Rogers HJ, Tabarroki A, Visconte V, Traina A, Meller M, Secker MA, Maciejewski JP, Ti Rv. A case of misdiagnosis: When lupus masquerades as primary myelofibrosis. SAGE Open Med Case Rep. 2013 Aug 20;1(2):e000113. Epub 2013 Aug 20.
28 Fechner A, Hummel V, Moutzouris M, Mandel J, Schumann-Clayton E, Dalladèbre B. Systemic lupus erythematosus with polanythrombocytosis due to myelofibrosis in a 49-year-old female. Rhinol Interv Imaging. 2014 May-Jun;Mar(2):55-6.
29 Chalier E, French C, Calbris P, Bone marrow fibrosis as a feature of systemic lupus erythematosus: a case report and literature review. Springerplus. 2014 Jul 23;3:49. Epub 2014 Jul 23.
30 Koduri PR, Parvez M, Kaza S, Vanajakshi S. Autoimmune myelofibrosis in Systemic Lupus Erythematosus. Report of Two Cases and Review of the Literature. Indian J Hematol Blood Transfus. 2016 Dec;32(4):396-79.
31 Pundole X, Konoplev S, Oo TH, Lu H. Autoimmune myelofibrosis and systemic lupus erythematosus in a middle-aged male presenting only with severe anemia: a case report. Medicine (Baltimore). 2015 May;94(19):e540-9.
32 Koduri PR, Konoplev S, Lu H, Oo TH, van Dijk-Bolderius J, Senger A, van der Putte B, van den Hoogen F, Stavrou M. Autoimmune myelofibrosis in systemic lupus erythematosus: a case report and literature review. Medicine (Baltimore). 2016 Sep 26;95(37):e5356. Epub 2016 Sep 26.
33 Fekete A, Hummel V, Moutzouris M, Mandel J, Schumann-Clayton E, Dalladèbre B. Systemic lupus erythematosus with polanythrombocytosis due to myelofibrosis in a 49-year-old female. Rhinol Interv Imaging. 2014 May-Jun;Mar(2):55-6.
34 Anderson E, Skal M, Osborn M, Paice J, Lees R. Lessons learned from bone marrow failure in systemic lupus erythematosus: Case reports and review of the literature. Semin Arthritis Rheum. 2017 Dec;46(8):1081-1084.
3. Discussion

This case seems of particular interest, since face up the topic of cytopenia in SLE. Blood cell count decrease in SLE can be related to several conditions including autoantibody mediated peripheral blood cell destruction, inflammatory anemia, immunosuppressive therapy [4] and more rarely to bone marrow diseases, such as primary myelofibrosis, aplastic anemia, bone marrow metastases and AIMF [6]. Pathogenesis of AIMF remains incompletely understood. It seems to depend on a nonspecific response of fibroblasts to growth factors, such as platelet derived growth factor (PDGF), transforming growth factor β and epidermal growth factor, released by neoplastic or reactive cells in the marrow [6]. In patients affected by SLE circulating immune complexes may induce megakaryocyte to release PDGF by binding Fc receptors [7]. Actually, in the literature AIMF occurred mainly in patients with active diseases, showing in 29/45 cases (64.4%) low complement levels and in 21/45 (46.6%) positive dsDNA (Table 1). Despite the association of SLE and MF has been rarely reported, in routine bone marrow biopsies obtained from SLE patients, a reticulin fibrosis is found, suggesting that bone marrow can represent one of the target of the disease. [8] Thus, it is likely that prevalence of AIMF in SLE is underestimated, mainly considering that AIMF responds to the immunosuppressive agents commonly used in treating SLE. Efficacy of corticosteroids, azathioprine, cyclosporine, mycophenolate mofetil and cyclophosphamide has been proven, whereas effectiveness of intravenous immunoglobulins and plasmapheresis is not established [4,9]. AIMF generally well responds to treatment, with a mortality of 20% (9/45 cases reported). However, in the literature most of the patients (80%) showed a marked improvement or a complete normalization of peripheral blood count, whereas bone marrow response (evaluated in 31/45 patients after treatment) was observed only in 51.6% of cases (Table 1).

AIMF is related to systemic autoimmune diseases, although it can also occur in the absence of any systemic manifestation [9]. Differential diagnosis between AIMF and SLE can be difficult, since they share some clinical and laboratory features, which sometimes overlap between themselves [9]. In the case here reported, anemia and thrombocytopenia represented the onset signs of a systemic autoimmune disease, with symptoms potentially related both to SLE and AIMF. Polymyositis and positive Coombs test, indeed, are included among diagnostic criteria of SLE, but could have also represented one of the autoimmune feature related to AIMF [9]. In our case, renal failure with increased creatinine levels, 1.5 g/24 h proteinuria, low complement levels and positive dsDNA strongly supported the diagnosis of SLE.

The first description of AIMF associated with SLE date back to 1968 and until now, there are 45 cases described in the literature (Table 1) [4]. AIMF often occurs in patients with a preceding diagnosis of SLE. However, more rarely, AIMF can pre-exist to SLE or can be diagnosed contemporary, as observed in our case [4,8,9].

Both neoplastic and autoimmune MF has been related to SLE [5,7–10], so that it seems of particular importance to perform an early diagnosis and to decide the appropriate treatment. Neoplastic forms of MF include PMF, chronic and acute myeloid malignancies, lymphoid neoplasms, mast cell disease and carcinomas metastatic to the marrow [7–9]. Clonal markers such as JAK2 can be helpful in distinguishing PMF from AIMF, although it is present in only 50–60% of the cases and a negative result do not exclude PMF [8]. Thus, we recommend performing bone marrow biopsy in SLE patients when causes of cytopenia are not completely clarified. PMF and other neoplastic forms of MF, indeed, are related to a high risk of mortality and need to an appropriate chemotherapy treatment up to allogeneic hematopoietic cell transplant [7].

In conclusion, this case focuses the attention on MF as possible cause of low peripheral blood cell count in patients affected by SLE. We wanted to suggest that prevalence of AIMF is underestimated since it share some clinical and laboratory features with SLE and generally respond to the immunosuppressive drugs commonly used in treating this systemic autoimmune disease. Moreover, neoplastic MF can also occur. Thus, we recommend performing bone marrow biopsy in SLE patients when causes of cytopenia are not completely clarified.

A written informed consent has been obtained from the patients.

Acknowledgements

The authors would thank Dr Gian Lorenzo Chiariion Casoni, UOC Medicina 3, Ospedale Sant’Andrea, Roma, Italy for clinical collaboration.

Funding

This case report has received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors have no conflict of interest to declare, including specific financial interests, relationships and affiliations relevant to the subject matter or materials discussed in the manuscript.

References

[1] D.M. Keeling, D.A. Isenberg, Haematological manifestations of systemic lupus erythematosus, Blood Rev. 7 (1993) 199–207.
[2] M.E. Hochberg, Updating the American college of rheumaology revised criteria for the classification of systemic lupus erythematosus, Arthritis Rheum. 40 (1997) 1725.
[3] M.I. Petri, A.M. Orbai, G.S. Alarcon, et al., Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus, Arthritis Rheum. 64 (8) (2012) 2677–2686, http://dx.doi.org/10.1002/art.34473.
[4] E. Chalayer, M. Firench, P. Cathébraset, Bone marrow fibrosis as a feature of systemic lupus erythematosus: a case report and literature review, SpringerPlus 3 (2014) 349.
[5] V. Pullarkat, R.D. Bass, J.Z. Gong, et al., Primary autoimmune myelofibrosis: definition of a distinct clinicopathologic syndrome, Am. J. Hematol. 72 (2003) 8–12.
[6] E. Kiss, I.A. Gaal, E.O. Simkovics, A. Kiss, Myelofibrosis in systemic lupus erythematosus, Leuk. Lymphoma 39 (2000) 661–665.
[7] A. Telfer, Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management, Am. J. Hematol. 91 (12) (2016) 1262–1271 (Review).
[8] R.M. Pereira, E.R. Velloso, Y. Menezes, S. Guandalino, J. Vassalo, N.H. Yoshinari, Bone marrow findings in systemic lupus erythematosus patients with peripheral cyopenias, Clin. Rheumatol. 17 (1998) 219–222.
[9] P. Ungprasert, V.R. Chowdhary, M.D. Davis, A. Makol, Autoimmune myelofibrosis with pancytopenia as a presenting manifestation of systemic lupus erythematosus responsive to mycophenolate mofetil, Lupus 25 (2016) 427–430.
[10] X. Pandole, S. Koneplev, O.T. Hlaing, Frepe, FACP, H. Lu, Autoimmune myelofibrosis and systemic lupus erythematosus in a middle-aged male presenting only with severe anemia. A case report, Medicine 94 (19) (2015) 1–4.