A Costas-Based Waveform for Local Range-Doppler Sidelobe Level Reduction
Nadav Neuberger and Risto Vehmas

Abstract—Target masking due to high sidelobes in the range-Doppler domain is a common problem in radar signal processing. Masking occurs when there is large variation in targets’ signal-to-noise-ratio levels, caused by differences in either range or radar cross section. In this letter, we consider the design of a waveform to reduce the masking of far range targets caused by near range targets. Our method is based on a time-frequency concatenation of a Costas sequence with shifted parts of itself. It allows the user to design a low sidelobe region in the range-Doppler domain. Moreover, it approximately preserves the desirable uniform sidelobe level and thumbtack behavior of the Costas ambiguity function. We demonstrate a 20 dB sidelobe level reduction within the desired region compared to a normal Costas code with the same bandwidth and pulse length.

Index Terms—Ambiguity function, radar detection, radar signal processing, sidelobe level reduction, waveform design.

I. INTRODUCTION

The ability of a radar system to estimate the range and Doppler of multiple targets heavily depends on the waveform of the transmitted signal. The range-Doppler (RD) response of the waveform is quantified by the ambiguity function (AF), which represents the theoretical matched filter (MF) output as a function of time delay (range) and Doppler frequency (radial velocity). It encapsulates the detection performance, range and Doppler estimation accuracies and target resolution capability of the waveform. Thus, one of the radar engineer’s tasks is to design a waveform with an AF that satisfies the required performance criteria for their specific use-case.

To provide fine range resolution and a high signal-to-noise ratio (SNR), either phase modulated (PM), frequency modulated (FM) or frequency-coded long pulses are commonly used [1]. To maximize the SNR, the received signal is commonly pulse compressed using the MF. When multiple targets with different SNR levels are present, the MF sidelobes of a strong target may mask the response of a weaker target – preventing its detection. Depending on the operational scenario, target masking may be undesirable only for a limited region in the RD domain. Thus, the AF sidelobe level (SLL) can be decreased in a certain region at the expense of increasing it at other unimportant areas.

Most of the existing methods for SLL reduction aim to optimize the sidelobes of the zero-Doppler cut of the AF of PM waveforms (e. g. [2]–[6]). To extend these approaches for a number of Doppler cuts, optimization-based PM waveforms have been considered in [7]–[11]. However, these methods have some drawbacks: they rely on non-ideal numerical optimization and the sidelobe structure outside the minimization region may be highly non-uniform.

Costas frequency coding is a well-known method to achieve a nearly constant SLL over the RD domain, i. e. an almost ideal “thumbtack” AF [12]. The length of the Costas sequence – the number of distinct frequency sub-pulses called chips – controls the SLL. References [13]–[15] present methods for choosing a Costas sequence to obtain a low SLL close to the AF mainlobe. Another frequency-coded waveform, the so-called “pushing sequence,” has also been proposed for the same purpose [16]. These methods are well-suited for reducing masking of closely spaced targets, thus enhancing detection performance in dense target environments.

Target masking may also present itself in a sparse target scenario when the sidelobes of a near target mask a far away target. This occurs when the pulse length is comparable to the target time delays and the relative range differences between the targets are large – implying large SNR differences. Thus, it is important to consider SLL reduction far away from the AF mainlobe as well.

In this letter, we propose a novel Costas-based frequency-coded waveform to achieve a low SLL for a rectangular area in the RD domain. The area consists of large time delays far away from the AF mainlobe and a limited set of Doppler frequencies around zero. Importantly, our waveform approximately achieves the desirable sidelobe properties of the Costas sequence. Using a numerical example, we demonstrate a significant SLL reduction within the region of interest compared to a normal Costas code with the same bandwidth and pulse length.

II. THEORETICAL BACKGROUND

A. Signal Model

We consider a monostatic radar system transmitting a signal $x$ as a function of fast time $t$. Throughout this letter, we will describe frequency-coded waveforms. A baseband waveform

Manuscript received December 17, 2020; revised February 28, 2021; accepted March 12, 2021. Date of publication March 18, 2021; date of current version April 16, 2021. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Ran Tao. (Corresponding author: Nadav Neuberger.)

Nadav Neuberger is with the Array-based Radar Imaging, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, 53343 Wachtberg, Germany (e-mail: nadav.neuberger@fhr.fraunhofer.de).

Risto Vehmas was with the Array-based Radar Imaging, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, 53343 Wachtberg, Germany. He is now with Elettronica GmbH, 53340 Meckenheim, Germany (e-mail: r.vehmas@elettronica.de).

Digital Object Identifier 10.1109/LSP.2021.3067219

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
can be expressed as

\[ x(t) = \sum_{m=0}^{M-1} x_m(t), \]  

(1)

where the \( m \)-th chip is defined as

\[ x_m(t) = a(t - mT_c) \exp(-i2\pi f_m t). \]  

(2)

In (2), \( a \) is the amplitude envelope of the chip, \( T_c \) is the chip length and \( f_m \) is the frequency of the \( m \)-th chip. Furthermore, \( f_m = p_m \Delta f \), where \( \Delta f \) is the frequency spacing between the chips and \( p_m \) is the \( m \)-th element of a permutation sequence \( p \in \mathbb{Z}^{M \times 1} \) of the integer set \( \{[-\frac{M-1}{2}], \ldots, 0, \ldots, \frac{M-1}{2}\} \), where \([ \cdot ]\) denotes the flooring function.

To ensure that the chips have no overlap (the cross-correlation between different chips is approximately zero), the frequency spacing \( \Delta f = 1/T_c \) [12]. Given the bandwidth \( B = M\Delta f \) and the pulse length \( T = MT_c \) of the waveform, the number of chips can be obtained as \( M = \sqrt{BT} \), where \([ \cdot ]\) denotes rounding to the nearest integer.

The formulation of the AF function is given by [1]

\[ AF(\tau, f_d) = \int_{-\infty}^{\infty} x(t)x^*(-t-\tau)e^{-i2\pi f_dt} dt, \]  

(3)

where \( \tau \) is the time delay and \( f_d \) is the Doppler frequency. As the total energy of the AF is fixed, reducing the SLL in a certain region will increase it elsewhere.

**B. Target Masking**

Target masking may occur when the SLL of a high SNR target is greater than the mainlobe response of a target with smaller SNR. Since the MF output is used in the target detection process, the weak target will be undetected and the dynamic range of the target detection will be degraded. Hence, it becomes important to design a waveform with such sidelobes that target masking is reduced.

The extent of time delays in the AF is limited by the length \( T \) of the transmitted pulse. By translating the time delays \( \tau \) into radial distances \( R \) according to \( R = c\tau/2 \), where \( c \) is the speed of light, we see that target masking occurs only if the range separation \( \Delta R \leq cT/2 \). Since the target SNR is inversely proportional to the fourth power of the range, long pulses may introduce major SNR differences between near and far range targets with similar radar cross section (RCS), leading to unwanted masking. For short pulses, masking may be caused due to differences in target RCS.

The masking phenomena may occur not only for the zero-Doppler cut (i.e. \( AF(\tau, 0) \)), but for any Doppler value, depending on the AF shape caused by the waveform modulation. For many applications, it is sufficient to define a bounded area free of potential masking in the RD domain (a practical scenario is given in Section V).

**III. Problem Formulation**

Our objective is to design the waveform \( x \) such that we overcome the masking problem, i.e. achieve the lowest possible SLL in a rectangular area

\[ A = \{ (\tau, f_d) \mid T_0 < \tau \leq T \wedge |f_d| < f_{th} \}. \]  

(4)

This helps to prevent near range targets from masking far range targets, whose SNR is likely to be much smaller. We assume that there is a threshold Doppler shift \( \pm f_{th} \), which is determined by the maximum possible difference between target radial velocities in the given scenario. We choose the delay limit \( T_0 \) as an integer fraction of \( T \). We define two more areas

\[ A^c = \{ (\tau, f_d) \mid 0 \leq \tau \leq T_0 \wedge |f_d| < f_{th} \} \]

\[ A^0 = \{ (\tau, f_d) \mid 0 \leq \tau \leq T \wedge |f_d| \geq f_{th} \} \]  

(5)

and summarize the practical requirements for the waveform design method as follows:

a) Minimal (ideally zero) SLL in \( A \)
b) As uniform SLL as possible in \( A^c \)
c) Optimal range resolution
d) No RD coupling
e) No restriction of any kind in \( A^0 \)

In general, we note that it is possible to reduce the SLL by using mismatched filters [17]. However, because they degrade the SNR, we do not consider them in this letter. While the optimization problem to satisfy requirements (a) and (e) is easily formulated for PM waveforms [7]-[11], the problem is non-convex and highly non-linear, leading to computationally intensive numerical global optimization. Thus, the results are affected by the initialization stage and other heuristic parameters. Moreover, it is difficult to fulfill condition (b), i.e. to control the SLL outside the minimization region. Also, the available bandwidth is not fully exploited in PM waveforms, leading to a violation of requirement (c).

Due to these reasons, we consider FM and frequency-coded waveforms. The most common coding scheme is the Linear Frequency Modulation (LFM) [1]. Despite the decreasing SLL with increasing time delay, the AF of the LFM exhibits a diagonal “ridge” – a coupling between range and Doppler. This coupling hinders unambiguous range and Doppler detection and estimation. Therefore, LFM is ruled out by failing to meet requirements (a), (b) and (d).

In the Costas waveform [12], each frequency index appears once in the code, in such a way that only one chip may have overlap for any given time and frequency shift. There is no RD coupling, but the SLL is not monotonically decreasing as a function of time delay, as in the LFM case. The SLL is nearly constant – inversely proportional to the code length \( M \) – over the entire RD domain (excluding the vicinity of the mainlobe). Since the range resolution is determined by the bandwidth, it remains the same for both LFM and Costas waveforms. Next, we propose a waveform meeting all of the above requirements.

**IV. Waveform Design Method**

Our waveform design is based on a particular concatenation of a pure Costas code. The purpose is to deflect sidelobe energy from \( A \) to \( A^0 \). The code structure, SLL and design procedure are presented next.

**A. Code Structure and Design**

We describe how to construct the frequency sequence \( f = [f_0 \ldots f_{M-1}]^T \) to satisfy our requirements (a)-(e). We start with a given bandwidth \( B \) and transmission length \( T \).
Then, two input parameters are needed to define the low SLL region $A$ in (4): the delay limit $T_0 = T/L$, where $L = 2, 3, 4, \ldots$ and the maximal expected target Doppler shift $f_{th} \ll B/2$. For simplicity and clarity of the concept, we will focus on $L = 2$ from here on.

The first part of our code consists of a pure Costas code of bandwidth $B_0 = B - f_{th}$ and length $T_0 = T/2$. Thus, the number of chips in the first part is $M_0 = \lceil \sqrt{B_0 T_0} \rceil$. We denote this Costas permutation sequence by $p_0 \in \mathbb{Z}^{M_0 \times 1}$. It can be chosen e.g. by the methods described in [15]. Thus, the frequency sequence of the first part is $f_0 = \Delta f p_0$.

For the next part of the code we choose frequencies $f_m$ satisfying

$$\frac{B}{2} \geq |f_m| \geq \frac{B_0}{2} + f_{th}. \tag{6}$$

This creates a gap in the time-frequency representation of the waveform, which controls the Doppler extent of the desired low SLL area in the AF. To maintain a nearly uniform SLL in $A_c$, we exploit the Costas sequence $c_0$ in the following manner. First, we calculate the required shift in the frequency indices $p_m$ for $m > M_0$ to satisfy (6) as

$$M_s = \left\lfloor M_0 \left( \frac{1}{2} + \frac{f_{th}}{B_0} \right) \right\rfloor. \tag{7}$$

Then, we obtain the shifted frequency indices of the second part as

$$p_1 = p_0 + \text{sgn}(p_0) \times M_s \tag{8}$$

and the corresponding frequency sequence $f_1 = \Delta f p_1$ satisfying (6). Finally, we obtain the frequency sequence of the waveform by concatenating the first and second parts as

$$f = [f_0^T \ f_1^T]^T. \tag{9}$$

Thus, we have a waveform consisting of $M = 2M_0$ chips with a bandwidth $B$ containing two small gaps of width $f_{th}$ in its spectrum (see Fig. 1). We note that it is possible to implement the frequency code $f$ as FM (with a continuous phase between the chips) e.g. by using the polyphase-coded FM method [18].

The above-described procedure can readily be extended for a different delay drop point $L > 2$. However, it should be noted that as $L$ increases, the length of the concatenated parts decreases, raising the SLL.

In Fig. 1, we illustrate the time-frequency coding concept of our waveform.

### B. Correlation Properties

To demonstrate the correlation properties of our waveform, we have plotted the discrete ambiguity function (DAF) [15] in Fig. 2. The DAF is the 2D cross-correlation of the permutation matrix of ones and zeros representing the waveform’s time-frequency coding scheme. For illustration purposes, we consider a code of length $M = 2M_0 = 12$ and a frequency gap $f_{th}$ corresponding to two chips. The rows correspond to shifts in Doppler, while the columns represent different delays (integer multiples of chips). As seen from the DAF in Fig. 2, for delays longer than the length $M_0$ and Doppler shifts below $f_{th}$, there are no overlapping chips (zero correlation). This results in the desired rectangular area $A$ in the AF, which is illustrated with red rectangles in Fig. 2.
f kHz. Choosing f, we can now derive the desired B and (ms f = .

Inside the DAF it is 0.9 dB higher. B/A

Because we use a Costas code as a basis of

For simplicity, we simulate the

is 0.9 dB higher for our waveform. By further increasing

MHz, and km/s. For delays shorter than Mf and Doppler shifts

below fth, there are two possible overlapping chips (see Figs. 1

and 2): one from the overlap of the first block (pure Costas

code) with itself and the second one from the overlap of the

concatenated part (shifted C1 and C2) with itself. This results

in the maximum SLL of two in the DAF inside A^c, which is

illustrated using a black rectangle in Fig. 2.

Thus, we suffer a penalty of twice the SLL of a Costas code of

length M, but retain a nearly uniform (either 0, 1 or 2) SLL inside

A^c (requirement (b)). Because we use a Costas code as a basis of

our method, requirements (c)-(d) are also fulfilled (provided that

fth < B/2, the spectrum remains close to uniform). Moreover,

our approach is analytical without any numerical optimization.

We note that the SLL in A^0 can be higher than two due to

additional overlapping chips. Moreover, the code structure

produces four ambiguous peaks, whose magnitude is one fourth

of the AF mainlobe (the red circles in Fig. 2). This intentional

effect happens for a certain delay-Doppler combination, where

a perfect overlap occurs between the first code block C1 and the

second part of the code (a shifted C1). However, these peaks are

located in A^0, which we consider to be a non-feasible area. By

non-feasible we mean that observed targets are not expected to

have these differences in T and fth.

As in any waveform, sidelobe behavior for small T is influ-

enced by the frequency spectrum of the signal. The separation

between the frequency blocks C1 and C2, controlled by fth,

impacts the uniformity of the spectrum. This will alter the

sidelobe behavior near the AF mainlobe, and must be considered

as a trade-off in the waveform design.

V. NUMERICAL RESULTS

For a practical demonstration, we consider using our wave-

form in a space surveillance scenario, where the span of target

ranges and pulse length are very large. Here, the objective is

to detect and track space debris with various sizes and ranges

(corresponding to different orbital heights). It is straightforward

to determine the maximal radial velocity a debris target can have

based on a Kepler orbit model [19].

We simulated the GESTRA system [20], [21] with the fol-

lowing parameters: carrier frequency fc = 1.33 GHz, B =

2 MHz, and T = 8.5 ms. For simplicity, we simulate the

MF response of a single pulse. The maximum target range is

3000 km and the maximal target radial velocity is vr = 7 km/s.

The associated Doppler shift is therefore fth = 2vr fc/c =

62 kHz. Choosing L = 2, we can now derive the desired

low SLL AF area as A = [4.25, 8.5] × [0, 62] (ms × kHz) =

[0.5, 1] × [−527, 527] (T × 1/T).

Following the design procedure of section IV, we construct

the waveform using the above parameters. The short time Fourier

transform (STFT) of our waveform is seen in Fig. 3. We then

proceed to calculate the AFs according to (3), which are shown

in Fig. 4. We calculate the mean SLL in A (enclosed by the

white rectangle) to be approximately 20 dB lower than for a pure

Costas code of equal length. This has the potential to drastically

improve the unwanted masking. As a penalty, the mean SLL in

A^c is 0.9 dB higher for our waveform. By further increasing

fth and minimizing the spectral overlap between the chips, the

SLL within A could decrease beyond 20 dB to allow a higher

dynamic range of target detection (on the account of increased

range sidelobes near the mainlobe).

VI. CONCLUSION

We presented an analytical method to design the AF of a

frequency-coded waveform based on Costas sequences to reduce

target masking far away from the AF mainlobe. Using two

user-defined parameters, a rectangular area in the AF domain

with reduced SLL can be designed. To achieve this, we assumed

a threshold value limiting possible differences in target Doppler

frequencies. The proposed waveform design method can be

adjusted for a wide variety of applications where the multiple

target masking problem presents itself.

Future work includes a careful examination of code se-

quences: for a given number of chips, several choices of the

corresponding equal length Costas code are possible. Through

optimization, it is possible to choose a sequence to decrease

the needed frequency gap between the code blocks, producing

a more uniform waveform spectrum.

ACKNOWLEDGMENT

The authors would like to thank Prof. Nadav Levanon for his

insightful comments.
REFERENCES

[1] N. Levanon and E. Mozeson, Radar Signals. Hoboken, NJ, USA: Wiley, 2004.
[2] P. Stoica, H. He, and J. Li, “New algorithms for designing unimodular sequences with good correlation properties,” IEEE Trans. Signal Process., vol. 57, no. 4, pp. 1415–1425, Apr. 2009.
[3] P. Stoica, H. He, and J. Li, “On designing sequences with impulse-like periodic correlation,” IEEE Signal Process. Lett., vol. 16, no. 8, pp. 703–706, Aug. 2009.
[4] M. Soltanalian and P. Stoica, “Computational design of sequences with good correlation properties,” IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2180–2193, May 2012.
[5] J. Song, P. Babu, and D. P. Palomar, “Optimization methods for designing sequences with low autocorrelation sidelobes,” IEEE Trans. Signal Process., vol. 63, no. 15, pp. 3998–4009, Aug. 2015.
[6] J. Song, P. Babu, and D. P. Palomar, “Sequence design to minimize the weighted integrated and peak sidelobe levels,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2051–2064, Apr. 2016.
[7] A. Aubry, A. De Maio, B. Jiang, and S. Zhang, “Ambiguity function shaping for cognitive radar via complex quartic optimization,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5603–5619, Nov. 2013.
[8] P. Arlery, R. Kassab, U. Tan, and F. Lehmann, “Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function,” in Proc. IEEE Radar Conf., May 2016, pp. 1–6.
[9] G. Cui, Y. Fu, X. Yu, and J. Li, “Local ambiguity function shaping via unimodular sequence design,” IEEE Signal Process. Lett., vol. 24, no. 7, pp. 977–981, Jul. 2017.
[10] Y. Jing, J. Liang, B. Tang, and J. Li, “Designing unimodular sequence with low peak of sidelobe level of local ambiguity function,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 3, pp. 1393–1406, Jun. 2019.
[11] H. Esmaili-Najafabadi, H. Leung, and P. W. Moo, “Unimodular waveform design with desired ambiguity function for cognitive radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 2489–2496, Jun. 2020.
[12] J. P. Costas, “A study of a class of detection waveforms having nearly ideal range-doppler ambiguity properties,” Proc. IEEE, vol. 72, no. 8, pp. 996–1009, Aug. 1984.
[13] P. E. Pace and C. Y. Ng, “Costas CW frequency hopping radar waveform: Peak sidelobe improvement using golay complementary sequences,” Electron. Lett., vol. 46, no. 2, pp. 169–170, Jan. 2010.
[14] B. Correll and J. K. Beard, “Selecting appropriate costas arrays for target detection,” in Proc. IEEE Radar Conf., May 2017, pp. 1216–1221.
[15] B. Correll, J. K. Beard, and C. N. Swanson, “Costas array waveforms for closely spaced target detection,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 2, pp. 1045–1076, Apr. 2020.
[16] C.-F. Chang and M. R. Bell, “Frequency-coded waveforms for enhanced delay-doppler resolution,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2960–2971, Nov. 2003.
[17] M. H. Ackroyd and F. Ghani, “Optimum mismatched filters for sidelobe suppression,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-9, no. 2, pp. 214–218, Mar. 1973.
[18] S. D. Blunt, M. Cook, J. Jakobsky, J. De Graaf, and E. Perrins, “Polyphase-coded FM (PCFM) radar waveforms, part I: Implementation,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 3, pp. 2218–2229, Jul. 2014.
[19] R. Kohlleppel, “Extent of observation parameters in space surveillance by radar,” in Proc. 19th Int. Radar Symp., Jun. 2018, pp. 1–7.
[20] H. Wilden et al., “GESTRA - A phased-array based surveillance and tracking radar for space situational awareness,” in Proc. IEEE Int. Symp. Phased Array Syst. Technol., Oct. 2016, pp. 1–5.
[21] H. Wilden et al., “GESTRA - Recent progress, mode design and signal processing,” in Proc. IEEE Int. Symp. Phased Array Syst. Technol., Oct. 2019, pp. 1–8.