Towards sub-30nm Contacted Gate Pitch, Forged Contact and Dynamically-Doped Nanosheets to Enhance Si and 2D Materials Device Scaling

Aryan Afzalian, Zubair Ahmed and Julien Ryckaert
imec, Leuven, Belgium, aryan.afzalian@imec.be

Abstract

We propose a novel Forked-Contacts, Dynamically-Doped Multigate transistor as ultimate scaling booster for both Si and 2D materials in aggressively-scaled nanosheet devices. Using accurate dissipative DFT-NEGF atomistic-simulation fundamentals and cell layout extrinsics, we demonstrate superior and optimal device characteristics and inverter energy - delays down to sub-30-nm pitches, i.e., a 10 nm scaling boost compared to the nanosheet MOSFET references. Keywords: CMOS, CGP scaling, Si, TMD, 2D materials, dynamic-doping

Introduction

The Dynamically-Doped (D2) Field-Effect Transistor is a novel device architecture that scales better than its MOSFET nanosheet (NS) counterpart [1], owing to the suppression of un gated extensions (spacers) from the device Contacted Gate-pitch (CGP) equation [1,2] and Fig. 1a. What used to be the NS chemically doped extensions are now electrically and dynamically-doped by the gate, i.e., a part of the channel. Hence, for a given CGP, the channel length \(L \) in the D2FET is twice the spacer length \(L_{SPACER} \) longer than \(L \) of a standard MOSFET, as it benefits from the full distance between the source (S) and drain (D) contact pads. The gate length \(L_G \) value could even be larger than \(L \), if the gate would overlap over the contact region of length \(L_c \) (Fig. 1). For a single-gate (SG) single-sheet device, this can simply be enabled by having the gate contact on the side opposite to the contacts, i.e., using for instance a top-contact and an individually back-gated transistor [1]. To enable a D2 tri-gate with stacked sheets, however, we propose here a doubled forked structure (E2), where the sheets are connected to a forked gate on one side and to forked S & D contacts on the other side (Fig. 1). Our simulation results show, as expected, that such a multigate E2D2 architecture enables a better electrostatic control and improved drive current at scaled CGP, especially for Si where the film thickness can be relaxed, compared to the SG-D2 transistor. We report here on the impact of the multigate E2D2 architecture innovation on intrinsic-device and loaded-inverter performance, when pitch is scaled well below 30 nm using accurate dissipative DFT-NEGF atomistic-simulation fundamentals and cell-layout extrinsics. The E2D2 architecture is benchmarked to NS MOSFETs using both Si and 2 emerging 2D transition metal dichalcogenide (TMD) monolayer (1ML) materials – one, WS\(_2\), with predicted fundamental drive similar to that of Si, the other, HfS\(_2\), featuring an enhanced fundamental drive current [1] – as test vehicles.

Methods

Current – Voltage (\(I_{D}V_{G} \), Fig. 2d inset) and intrinsic device capacitances (\(C_{GS} \)) (Fig. 2b) for Si and 2D TMD E2D2 and standard NS references are simulated using our first-principle atomistic NEGF solver ATOMOS, including electron-phonon scattering [1,2]. From these simulations the intrinsic single-sheet device fundamental performance vs. CGP can be assessed (Fig. 2). For each CGP, a full device optimization is made including film thickness (\(t_F \)) scaling for Si and extension doping for the NS. Note that the detrimental impact of quantum confinement, including mobility degradation, and source-to-drain direct tunneling are naturally included in our quantum transport solver. For computing stacked-inverter energy-delay products (Fig. 3), the extracted extrinsic capacitance of the cell layout \(C_{cell} \) and the backend-of-line load, \(C_{bk} \) are used (Fig. 1). \(C_{cell} \) values are reported in Fig. 4a. The number of stacked sheets (\(n_S \)) used is computed to allow a total stack height of 60 nm for all devices. \(n_S \) is the same for E2D2 and NS of a same material (\(n_S = 4 \) for Si and 5 for the TMDs owing to their 1ML thickness of about 0.6 nm [1]). The available width for a single sheet, \(W \), in our 5-track E2D2 layout cell is 12 nm. The standard NS layout is described in [3] and \(W \) is 12 nm as well.

Results

Owing to its 10 nm extended gate length at same CGP, the E2D2 SS and, hence, \(I_{D} \) at fixed \(I_{OFF} \) are superior compared to that of the NS as CGP is scaled below 30 nm for all materials. The E2D2 \(C_{Gi} \) are however larger at fixed CGP, the net effect being that the E2D2 optimal intrinsic delay is comparable to that of its NS counterpart, but shifted towards smaller
CGPs by about 10 nm, i.e., $2 \times L_{\text{SPACER}}$ (Fig. 2). Hence the E2D2 architecture enables a significant scaling boost. For Si, the optimal NS and E2D2 delays are obtained at CGP = 36, and 26 nm, respectively, i.e., $L_G = 10$ nm and $t_s = 3$ nm in both cases. For the 2D materials, a further 5 nm scaling boost is observed, and optimal delays are achieved at CGP = 31 and 21 nm for the NS and E2D2 respectively, corresponding to $L_G = 5$ nm in both cases. For the TMDs the 21 nm E2D2 CGP corresponds to the case where CGP is only limited by the contacts (L_C and the minimum isolation spacing, IS, required to separate subsequent pads, assuming IS = L_{SPACER} (Fig. 1)), hence ultimate gate scaling has been achieved. Further CGP reduction could only be achieved by scaling the contacts.

Next, we investigate the switching energy vs. delay (EDP) of high-performance stacked E2D2 and NS inverter cells for different CGPs at various V_{DD} (Fig. 3). For HfS$_2$/E2D2 and NS invertors, the optimal EDP is achieved at CGP = 21, $L_G = 5$ nm and CGP = 31, $L_G = 5$ nm respectively. We obtain a similar result for the WS$_2$ case (not shown here). For Si E2D2 and NS invertors, the optimal EDP is achieved at CGP = 26, $L_G = 10$ nm and CGP = 36, $L_G = 10$ nm respectively. Any further attempt to scale CGP by scaling L_G beyond this optimal value results in significant performance reduction (for the TMD E2D2 it is simply not possible to further scale CGP with L_G scaling). These results further confirm the 10 nm improved scalability, we obtained from the intrinsic device performance and delays (Fig. 2). The E2D2-inverter improved EDP performance compared to that of the NS is mostly linked to the reduced C_{BK} owing to CGP scaling.

This is confirmed in Fig. 4, where the loaded-inverter EDPs are shown for the 3 material cases at their optimal CGP and L_G values with and without C_{BK} included in the load. Regardless of the material system used, without C_{BK} (Fig. 4.a), the E2D2 performance are similar to that of their NS counterparts, while they are enhanced when C_{BK} is included (Fig. 4.b) (the E2D2 and NS devices also share the same optimal L_G of 10 nm for Si and 5 nm for the TMDs).

Fig. 3 Switching energy vs. delay (EDP) of high-performance stacked E2D2 and NS inverter cells for different CGP and L_G, as indicated in the figures, at various V_{DD} (0.4V to 0.7V). The devices are made of a) 1ML-HfS$_2$ with $t_S = 5$ sheets/device, b) Si with $t_S = 4$ sheets/device and optimized Si thickness t_s ranging from 3 to 5 nm. The inverters are loaded with the extrinsic capacitances of the cell layout C_{Cell} and a 50 CGP-long metal line with capacitance $C_{BK} = 198$ aF/µm [4], $I_{OFF} = 5$ nA/µm.

Conclusions

We proposed a compact E2D2 multigate architecture that enables sub-30 nm CGP, i.e., an improved $2 \times L_{\text{SPACER}}$ pitch scaling, compared to a NS reference, owing to the suppression of ungated extensions from the CGP equation. This E2D2 scaling benefits were measured in term of similar intrinsic performance and optimal delay but at a 10 nm reduced CGP. A similar conclusion was found comparing E2D2 and NS stacked-invertor cells. For backend-loaded invertors, the E2D2 EDP performance is further enhanced due to CGP and, hence, C_{BK} reduction. Similar relative benefits were observed regardless of the material system used. Compared to Si, a mature 2D material technology could potentially further enable an extra 5-nm CGP scaling boost, both for the E2D2 and NS architectures, with same or improved performance, if respectively WS$_2$, a material with a fundamental drive similar to Si, or HfS$_2$, a higher mobility material, were used.

References

[1] A. Afzalian, npj 2D Mater Appl 5, 2021. [2] A. Afzalian, IEEE Trans Electron Devices, 68,11,2021. [3] Z. Ahmed, IEDM, 2020, pp. 22.5.1. [4] https://irids.ieee.org/editions/2018