Nitrogen Dioxide Gas Sensor Based on Ag-Doped Graphene: A First-Principle Study

Qichao Li, Yamin Liu, Di Chen, Jianmin Miao, Xiao Zhi, Shengwei Deng, Shujing Lin, Han Jin, and Daxiang Cui

Abstract: High-performance tracking trace amounts of NO\textsubscript{2} with gas sensors could be helpful in protecting human health since high levels of NO\textsubscript{2} may increase the risk of developing acute exacerbation of chronic obstructive pulmonary disease. Among various gas sensors, Graphene-based sensors have attracted broad attention due to their sensitivity, particularly with the addition of noble metals (e.g., Ag). Nevertheless, the internal mechanism of improving the gas sensing behavior through doping Ag is still unclear. Herein, the impact of Ag doping on the sensing properties of Graphene-based sensors is systematically analyzed via first principles. Based on the density-functional theory (DFT), the adsorption behavior of specific gases (NO\textsubscript{2}, NH\textsubscript{3}, H\textsubscript{2}O, CO\textsubscript{2}, CH\textsubscript{4}, and C\textsubscript{2}H\textsubscript{6}) on Ag-doped Graphene (Ag–Gr) is calculated and compared. It is found that NO\textsubscript{2} shows the strongest interaction and largest Mulliken charge transfer to Ag–Gr among these studied gases, which may directly result in the highest sensitivity toward NO\textsubscript{2} for the Ag–Gr-based gas sensor.

Keywords: density-functional theory; gas sensing; nitrogen dioxide; graphene; single silver doping

1. Introduction

High-performance detecting of toxic gas molecules, such as NO\textsubscript{2} and NH\textsubscript{3}, is crucial for industry application and real-time monitoring of environmental pollutants [1,2], as it is widely agreed that NO\textsubscript{2} can produce acid rain and have adverse effects on plant growth [3,4]. Moreover, long-term exposure to NO\textsubscript{2} can result in human respiratory diseases, such as bronchitis, emphysema, and asthma [5,6]. Consequently, extensive attention and research have been focusing on the development of NO\textsubscript{2} sensors that are based on diverse sensing materials. Over the past decade, various kinds of relevant sensitive materials were announced, which were mainly focused on metal oxide semiconductors [7], transition-metal dichalcogenides [8–10], carbon-based materials [11], and ionic liquids [12–14]. For instance, Jang et al. reported 2D NbS\textsubscript{2} nanosheets for selective sensing NO\textsubscript{2}, and studied the sensing mechanisms through (density-functional theory) DFT calculations [8]. In addition, Myung et al. prepared SnO\textsubscript{2}/ZnO heterostructure films for detecting NO\textsubscript{2}, which presented high response performance and quick response/recovery speed [7]. Note that among the aforementioned sensing materials, graphene exhibits many attractive properties such as facile structural control, diversified synthetic methods, and exceptionally large surface area.
areas; graphene in particular, with its physically/chemically stable behavior is competent to endure harsh environments (for example, strong alkali/acidic conditions) [15,16]. Thus, it is believed that graphene would be a good candidate for developing high-performance NO$_2$ sensors.

To date, pristine and derivatives of graphene have been intensively studied, while the pristine graphene-based sensors suffered the problem of low response signals, long recovery time and poor selectivity toward NO$_2$, which restricted its sensing application [11,17–19]. For example, Leenaerts et al. investigated the adsorption properties of NO$_2$ on pristine graphene via DFT calculation, the adsorption energy is only 0.067 eV and charge transfer is -0.099 e, indicating that the interaction between NO$_2$ and pristine graphene was weak [20,21]. On the contrary, noble metal nanoparticles (NMPs) doping has proven to be a facile and effective method of improving the response performance of graphene for gas sensing [22]. Typical examples are demonstrated by Zhang et al. who used Au to modify graphene, which showed more sensitivity to H$_2$S and SOF$_2$ than pristine graphene [23]. They also carried out DFT calculations to confirm that graphene modified with Au could enhance the electrochemical reactivity of pristine graphene and activate the adsorbed gas molecules [24]. In 2019, Guha et al. reported that the response of Pt decorated and reduced graphene oxide (rGO) toward 400 ppm HCHO is 4.5 times that of bare rGO [25]. The DFT-based first-principle calculation also illustrated that Pt promoted the chemisorption of HCHO on Pt-rGO, which contributed to improving the sensing performance. In contrast to Pt-rGO, HCHO is only physically adsorbed on bare rGO. In 2020, Zeng et al. reported the simulation based on the first-principle study and demonstrated that Pd-doped graphene showed a more outstanding SO$_2$ adsorption performance than intrinsic graphene [26]. Compared with these frequently reported NMPs dopants (e.g., Au, Pt, Pd) [23,26,27], Ag has more potential due to its nontoxicity, antibacterial properties, high electrical/thermal conductivity, and cost-effectiveness. In our previous work [28], we have experimentally demonstrated that Ag nanoparticles modified reduced graphene oxide materials display outstanding sensing performance toward NO$_2$, including excellent sensitivity, fast response/recovery speed, low limit of detection (LOD), and good selectivity. Table 1 summarizes the comparison of the NO$_2$ sensing performance of different types of graphene-based materials in recent experimental works. Nevertheless, the internal mechanism of the improved gas sensing behavior through doping Ag is still unclear. In view of the fact that DFT has a wide range of applications in physics and chemistry, we especially studied the properties of molecules and condensed matter, such as determined the interactions of molecules in Deep Eutectic Solvents (DES) [29–32]. Herein, we theoretically illuminate the adsorption properties of NO$_2$ gas on Ag–Gr via the DFT. In order to reduce the simulation complexity, the graphene is doped by a single Ag atom. There are many DFT studies recently reported on metal-doped graphene, but the selectivity studies are limited [20]. Considering this circumstance, the adsorption performances for NH$_3$, H$_2$O, CO$_2$, and some volatile organic compounds (CH$_4$, C$_2$H$_6$) are also calculated to evaluate and clarify the selectivity of Ag–Gr. We anticipate that the initiatory theoretical study can provide helpful information and instructive direction on developing high-performance NO$_2$ sensors using noble metal-doped graphene.
Table 1. NO$_2$ sensing performance comparison of graphene-based materials in recent experimental works.

| Sensing Materials | Detection Range (ppm) | $|\text{Response}|$ (%) a | Response/Recovery Time (s) | LOD (ppb) | References |
|-------------------|------------------------|------------------------|-----------------------------|-----------|-------------|
| Ag-rGO aerogel | 0.05–5 | 8.6 (0.08 ppm) | 75/89.5 | 6.9 | Our previous work [28] |
| 1D rGO fiber | 1–20 | 0.39 (20 ppm) | 180/180 | 813 | [33] |
| graphene nanomesh | 1–10 | 6 (1 ppm) | 900/1200 | 15 | [34] |
| rGO hydrogel | 1–10 | 3.24 (10 ppm) | 600/6180 | 187 | [35] |
| Cs-GO | 0.18–12.2 | 1.5 (0.732 ppm) | 240/540 | 90 | [36] |
| Al-graphene | 1.2–5 | 8 (1.2 ppm) | 360/1200 | - | [37] |
| Au-rGO | 0.5–5 | 33 (5 ppm) | 132/386 | - | [38] |
| Si-graphene | 0.018–300 | 21.5 (50 ppm) | 126/378 | 18 | [18] |
| N-rGO | 0.02–0.8 | 11.7 (0.8 ppm) | 151/10 | 14 | [39] |
| SnO$_2$-rGO | 14–110 | 11.5 (110 ppm) | 480/480 | 2000 | [40] |
| Co$_3$O$_4$-rGO | 0.05–10 | 26.8 (5 ppm) | 90/2400 | 50 | [41] |
| MoS$_2$-Graphene | 1.2–100 | 6.83 (5 ppm) | 300/1800 | 1200 | [42] |

a Response = (R_g – R_a)/$R_a \times 100\%$, where R_g is the resistance in NO$_2$; R_a is the resistance in background gas.

2. Materials and Methods

First principle calculation is implemented in the DMol3 package [43–46]. Generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE) is used. Grimme custom method for DFT-D is chosen for better describing Van der Waals functionalization [47]. DFT Semi-core Pseudopots is used for core treatment, and basis sets DNP with 4.4 files. Monkhorst-pack grid parameters are set as $9 \times 9 \times 1$ for calculating electronic properties. The model contains a 4×4 graphene supercell doped with an Ag atom in the middle by replacing a carbon atom. The vacuum with 2 nm spacing in the z-axis direction is adopted for minimizing the interaction of adjacent layers of graphene. Gas molecules are added more than the distance of 0.36 nm above the Ag atom. All configurations are optimized until the energy tolerance is less than 2×10^{-5} Ha. Besides, NO$_2$ is a paramagnetic molecule [48,49], spin polarization is carried out in the adsorption calculation of NO$_2$ on Ag–Gr.

The adsorption energy (E_{ad}) of gas molecules on Ag–Gr is defined as:

$$E_{\text{ad}} = E_{\text{Ag/Gr + gas}} - E_{\text{Ag/Gr}} - E_{\text{gas}}$$ \hspace{1cm} (1)

where $E_{\text{Ag/Gr + gas}}$ is the total energy after gas adsorbed on the Ag–Gr, $E_{\text{Ag/Gr}}$ is the isolated optimized energy of Ag–Gr, and E_{gas} is the isolated optimized energy of the gas molecule.

3. Results

For the purpose of investigating the adsorption effect of gas molecules on single Ag-doped graphene, some typical gas molecules are tested. The adsorption distance (d), adsorption energy (E_{ad}), and Mulliken charge (Q) are calculated and the values are presented in Table 2. Finally, the interaction between gas molecules and Ag-doped graphene will be analyzed in detail.

Table 2. Adsorption distance, adsorption energy, and Mulliken charge of different gas molecules on Ag-doped graphene.

Gas	d (nm)	E_{ad} (eV)	Q (e)
NO$_2$	0.2224 (Ag-O)	−2.209	−0.450
NH$_3$	0.2295 (Ag-N)	−1.115	0.136
H$_2$O	0.2297 (Ag-O)	−0.930	0.122
CO$_2$	0.2626 (Ag-O)	−0.360	0.018
CH$_4$	0.2218 (Ag-H)	−0.335	0.031
C$_2$H$_6$	0.2395 (Ag-H)	−0.514	0.050
After finishing the Geometry Optimization task, the optimal stable adsorption configurations of all molecules are shown in Figure 1. For NO\textsubscript{2}, the N atom in NO\textsubscript{2} is far from Ag–Gr. The adsorption distance is defined as the nearest distance of atoms between gas molecules and Ag–Gr. Thus, the adsorption distance in NO\textsubscript{2}/Ag–Gr configuration is 0.2224 nm, which is less than the Van der Waals radii (O = 0.155 nm, Ag = 0.177 nm). The adsorption energy is \(-2.209\) eV, which is the largest value among all gas molecules, indicating strong adsorption properties. Meanwhile, the Mulliken transfer charge is \(-0.45\) e, suggesting that the charges transfer from Ag–Gr to NO\textsubscript{2}, where NO\textsubscript{2} acts as an electron acceptor. The Mulliken charge value is also the largest compared with other gases, meaning the super electron capture capability of NO\textsubscript{2}. Ag–Gr is one of the p-type semiconductor materials. When NO\textsubscript{2} molecules as the electron acceptor are adsorbed on Ag–Gr, the resistance of Ag–Gr will dramatically decrease. The total density of states (DOS) is calculated to further study the interaction between NO\textsubscript{2} and Ag–Gr. As presented in Figure 2a, the DOS changes obviously after NO\textsubscript{2} adsorbed on Ag–Gr, especially, near both sides of the Fermi level. Thus, both the largest adsorption energy and Mulliken transfer charge with the addition of dramatic DOS change illuminate stronger interaction between NO\textsubscript{2} and Ag–Gr than others, which is beneficial for gas sensitivity.

![Figure 1](image.png)

Figure 1. The optimal stable adsorption configurations of Ag–Gr with (a) NO\textsubscript{2}, (b) NH\textsubscript{3}, (c) H\textsubscript{2}O, (d) CO\textsubscript{2}, (e) CH\textsubscript{4}, and (f) C\textsubscript{2}H\textsubscript{6}.
In the case of CO$_2$, the adsorption distance on Ag–Gr is 0.2626 nm. Figure 2d shows that the contribution of CO$_2$ electronic states to total DOS is far away from the Fermi level. The adsorption energy is -0.360 eV, and the Mulliken transfer charge is only 0.018 e. The weak charge transfer indicates that the sensor based on Ag–Gr is not sensitive to CO$_2$.

For organic volatile compounds (VOCs), such as CH$_4$ and C$_2$H$_6$, the adsorption distances on Ag–Gr are 0.2218 nm and 0.2395 nm, respectively. From Figure 2e–f, the contributions of CH$_4$ and C$_2$H$_6$ electronic levels are both far away from the Fermi level. The adsorption energy of the two gas is -0.335 eV (CH$_4$) and -0.514 eV (C$_2$H$_6$). The Mulliken transfer charge of C$_2$H$_6$ is only 0.050 eV, indicating the weak sensitivity of Ag–Gr toward C$_2$H$_6$. For CH$_4$, both adsorption energy and Mulliken transfer charge (0.031 e) are very small, corresponding to the poor response toward CH$_4$ for Ag–Gr. Actually, the gas sensor based on Ag nanoparticles modified reduced graphene oxide has been experimentally demonstrated to have a poor response toward VOCs in our previous work. This characteristic allows Ag–Gr-based NO$_2$ sensors to have good selectivity.

Figure 2. The DOS comparison of Ag–Gr and Ag–Gr adsorption with (a) NO$_2$, (b) NH$_3$, (c) H$_2$O, (d) CO$_2$, (e) CH$_4$, and (f) C$_2$H$_6$.

Many recent studies on NO$_2$ sensors based on graphene or graphene derivatives have reported that the sensors have a response to NH$_3$ [50]. Thus, the adsorption performance of NH$_3$ on Ag–Gr should be investigated. After calculation, the adsorption distance of NH$_3$ on Ag–Gr is 0.2297 nm (Figure 1b), also less than Van der Waals radii (N = 0.16 nm, Ag = 0.177 nm). The adsorption energy is -1.115 eV and the Mulliken charge is 0.136 e, which indicates that obvious interaction takes place in the adsorption process, and the charge transfers from NH$_3$ to Ag–Gr. Contrary to NO$_2$, NH$_3$ plays the donor role. When exposed to the NH$_3$ atmosphere, the resistance of p-type Ag–Gr-based gas sensors will increase. The different change direction of resistance caused by NH$_3$ and NO$_2$ can be used...
for discriminating the two gas molecules. Besides, the DOS near the Fermi level has a small change (Figure 2b). Hence, NH$_3$ on Ag–Gr can slightly change the conductivity of Ag–Gr-based sensor.

Humidity interference in the sensing process often influences the accuracy of the gas sensors. The cross-response of humidity should be suppressed. Therefore, the adsorption properties of water on Ag–Gr are studied. The adsorption distance of H$_2$O on Ag–Gr is 0.2296 nm, less than Van der Waals radii (O = 0.155 nm, Ag = 0.177 nm). The adsorption energy (-0.930 eV) and Mulliken charge (0.122 e) show that the charge transfers from H$_2$O (donor role) to Ag–Gr. In Figure 2c, after adsorption, the contribution from H$_2$O electronic states to the total DOS of Ag–Gr is localized from -9.0 eV to -3.7 eV in valence bands and from 0.4 eV to 5 eV in conduction bands. Although H$_2$O can interact with Ag–Gr, the interaction could be weakened by some suitable methods, such as heating through a microheater, which is demonstrated as an effective method in our previous work [28].

In the case of CO$_2$, the adsorption distance on Ag–Gr is 0.2626 nm. Figure 2d shows that the contribution of CO$_2$ electronic states to total DOS is far away from the Fermi level. The adsorption energy is -0.360 eV, and the Mulliken transfer charge is only 0.018 e. The weak charge transfer indicates that the sensor based on Ag–Gr is not sensitive to CO$_2$.

For organic volatile compounds (VOCs), such as CH$_4$ and C$_2$H$_6$, the adsorption distances on Ag–Gr are 0.2218 nm and 0.2395 nm, respectively. From Figure 2e–f, the contributions of CH$_4$ and C$_2$H$_6$ electronic levels are both far away from the Fermi level. The adsorption energy of the two gases is approximately -0.335 eV (CH$_4$) and -0.514 eV (C$_2$H$_6$). The Mulliken transfer charge of C$_2$H$_6$ is only 0.050 e, indicating the weak sensitivity of Ag–Gr toward C$_2$H$_6$. For CH$_4$, both adsorption energy and Mulliken transfer charge are very small, corresponding to the poor response toward CH$_4$ for Ag–Gr. Actually, the gas sensor based on Ag nanoparticles modified reduced graphene oxide has been experimentally demonstrated to have a poor response toward VOCs in our previous work. This characteristic allows Ag–Gr-based NO$_2$ sensors to have good selectivity.

The total charge densities are calculated for further investigating the interaction of gas molecules and Ag–Gr. As shown in Figure 3a, a distinct electron orbital overlap between Ag–Gr and NO$_2$ molecules is observed. The strong overlap is consistent with the intense interaction once the Ag–Gr-based gas sensor is exposed to the NO$_2$ polluted air. Additionally, the difference charge densities are also performed. Figure 4 shows the difference charge densities of gas molecules’ adsorption on Ag–Gr. The colors blue and red are represented as losing electrons and obtaining electrons, respectively. As seen from Figure 4a, the conspicuous red regions surround O atoms of NO$_2$, and at the same moment, the obvious blue region surrounds the Ag atom. The electrons enrichment areas around O atoms nearly contact with the core electrons area around the Ag atom. In this case, strong interaction occurs between Ag and O atoms. Consequently, adsorbed NO$_2$ will significantly change the electrical conductivity of Ag–Gr, resulting in outstanding sensitivity. Compared with NO$_2$, the electron orbital overlap between both NH$_3$ and H$_2$O with Ag–Gr are smaller (Figure 3b–c), indicating a low sensitivity for Ag–Gr-based gas sensors. From difference charge densities plots in Figure 4b–c, we can see that the blue regions are obvious, and small red regions appear around both NH$_3$ and H$_2$O molecules. This is due to the donor properties of these two types of molecules. As for CO$_2$ and VOCs, shown in Figure 3d–f, it is noted that no electron orbital overlap exists between the other three gases (CO$_2$, CH$_4$, and C$_2$H$_6$) with Ag–Gr, demonstrating that the adsorption of CO$_2$, CH$_4$, and C$_2$H$_6$ on Ag–Gr layers are physisorption, resulting in the facts of very few charges transferring between gas molecules and Ag–Gr. This could be one of the main reasons that an Ag–Gr-based gas sensor is not sensitive to VOCs. From the six inserts of deformation electron density isosurfaces in Figure 3, we can also obtain consistent results, because the electron accumulation (pink) and depletion (yellow) regions between NO$_2$ and Ag are more obvious than those between other gas molecules and Ag.
Figure 3. Total charge densities of Ag–Gr adsorption with (a) NO\textsubscript{2}, (b) NH\textsubscript{3}, (c) H\textsubscript{2}O, (d) CO\textsubscript{2}, (e) CH\textsubscript{4}, and (f) C\textsubscript{2}H\textsubscript{6}; the inserts are the isosurfaces of deformation electron density with isovalues of ±0.12, where the yellow and pink regions represent electrons loss and accumulation, respectively.

4. Conclusions and Discussions

First-principle calculations are implemented to theoretically study the gas adsorption properties on an Ag–Gr surface. The results show that the adsorption energy and Mulliken transfer charge of NO\textsubscript{2} adsorbed on Ag–Gr are both the largest among all tested gases. After NO\textsubscript{2} adsorption, the DOS changes obviously, and the total/difference charge densities illustrate a strong interaction of NO\textsubscript{2} and Ag–Gr. Therefore, Ag–Gr-based sensors exhibit desirable sensitivity toward NO\textsubscript{2}. As for NH\textsubscript{3} and humidity, the theoretical analysis demonstrates that the interaction of these two gases with Ag–Gr is relatively weaker than that of NO\textsubscript{2}. In addition to responding to NO\textsubscript{2}, some experimental reports also show that...
4. Conclusions and Discussions

First-principle calculations are implemented to theoretically study the gas adsorption properties on an Ag–Gr surface. The results show that the adsorption energy and Mulliken transfer charge of NO$_2$ adsorbed on Ag–Gr are both the largest among all tested gases. After NO$_2$ adsorption, the DOS changes obviously, and the total/difference charge densities illustrate a strong interaction of NO$_2$ and Ag–Gr. Therefore, Ag–Gr-based sensors exhibit desirable sensitivity toward NO$_2$. As for NH$_3$ and humidity, the theoretical analysis demonstrates that the interaction of these two gases with Ag–Gr is relatively weaker than that of NO$_2$. In addition to responding to NO$_2$, some experimental reports also show that graphene and its derivatives have a weak response to ammonia and water [37,51–54]. The potential interference of NH$_3$ and humidity can be suppressed by heating or UV illuminating the sensor. As for CO$_2$ and VOCs (CH$_4$ and C$_2$H$_6$), the small Mulliken transfer charge and no electron orbital overlap between Ag–Gr and gas molecules indicate the physisorption properties and poor sensitivity, corresponding to the good selectivity to NO$_2$ of Ag–Gr-based sensors. Conclusively, although there will be a minor deviation in our theoretical analysis, we still anticipate that these results will be helpful in providing instructive direction on designing future high-performance sensing materials.

Author Contributions: Conceptualization, Q.L. and Y.L.; methodology, Q.L. and Y.L.; software, Q.L. and S.D.; validation, Q.L., Y.L., D.C. (Di Chen), J.M., H.J. and D.C. (Daxiang Cui); formal analysis, Q.L.; investigation, Q.L.; resources, D.C. (Di Chen), J.M., H.J. and D.C. (Daxiang Cui); data curation, Q.L.; writing—original draft preparation, Q.L.; writing—review and editing, Q.L., Y.L., D.C. (Di Chen), J.M., X.Z., S.L., H.J. and D.C. (Daxiang Cui); supervision, D.C. (Di Chen), J.M., H.J. and D.C. (Daxiang Cui); project administration, D.C. (Di Chen), J.M., H.J. and D.C. (Daxiang Cui); funding acquisition, D.C. (Di Chen), J.M., H.J. and D.C. (Daxiang Cui) All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 61774106, 21706229 and 81971736), Science and Technology Commission of Shanghai Municipality (No. 20JC141500, 21S31906400), and National Key Research and Development Program of China (No. 2017YFA0205301).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are very grateful to Xiaoming Yang and Zhejiang Fulai New Materials Co., Ltd. for their great help. We acknowledge analysis support from the Instrumental Analysis Center of Shanghai Jiao Tong University.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Wang, H.; Zhou, L.; Liu, Y.; Liu, F.; Liang, X.; Liu, F.; Gao, Y.; Yan, X.; Lu, G. UV-activated ultrasensitive and fast reversible ppb NO\(_2\) sensing based on ZnO nanorod modified by constructing interfacial electric field with In\(_2\)O\(_3\) nanoparticles. *Sens. Actuators B Chem.* 2020, 305, 127498. [CrossRef]

2. Zhang, D.; Yang, Z.; Li, P.; Pang, M.; Xue, Q. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe\(_2\) nanoflowers driven by single layer MoS\(_2\)-flake piezoelectric nanogenerators. *Nano Energy* 2019, 56. [CrossRef]

3. Hu, F.-F.; Tang, H.-Y.; Tan, C.-J.; Ye, H.-Y.; Chen, X.-P.; Zhang, G.-Q. Nitrogen Dioxide Gas Sensor Based on Monolayer SnS\(_2\): A First-Principle Study. *IEEE Electron Device Lett.* 2017, 38, 983–986. [CrossRef]

4. Wang, S.-G.; Tan, C.-J.; Yang, Q.; Xu, Y.-X.; Li, S.-L.; Chen, X.-P. A Novel Ultra-Sensitive Nitrogen Dioxide Sensor Based on Germanium Monosulfide Monolayer. *IEEE Electron Device Lett.* 2017, 38, 1590–1593. [CrossRef]

5. Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.; Wang, X. Flexible, 3D SnS\(_2\)/Reduced graphene oxide heterostructured NO\(_2\) sensor. *Sens. Actuators B Chem.* 2020, 305, 127445. [CrossRef]

6. Liao, N.; Zhou, H.; Zheng, B.; Xue, W. Silicon Oxycarbide-Derived Carbon as Potential NO\(_2\) Gas Sensor. *Sensors Actuators B Chem.* 2020, 305, 127428. [CrossRef]

7. Sharma, B.; Sharma, A.; Joshi, M.; Myung, J.-h. Sputtered SnO\(_2\)/ZnO Heterostructures for Improved NO\(_2\) Gas Sensing Properties. *Sensors* 2020, 8, 67. [CrossRef]

8. Kim, Y.; Kwon, K.C.; Kang, S.; Kim, C.; Kim, T.H.; Hong, S.-P.; Park, S.Y.; Suh, J.M.; Choi, M.-J.; Han, S.; et al. Two-Dimensional NbS\(_2\) Gas Sensors for Selective and Reversible NO\(_2\) Detection at Room Temperature. *ACS Sens.* 2019, 4, 2395–2402. [CrossRef] [PubMed]

9. Camargo Moreira, Ó.L.; Cheng, W.-Y.; Fuh, H.-R.; Chien, W.-C.; Yan, W.; Fei, H.; Xu, H.; Zhang, D.; Chen, Y.; Zhao, Y.; et al. High Selectivity Gas Sensing and Charge Transfer of SnSe\(_2\). *ACS Sens.* 2019, 4, 2546–2552. [CrossRef]

10. Panigrahi, P.; Hussain, T.; Karton, A.; Ahuja, R. Elemental Substitution of Two-Dimensional Transition Metal Dichalcogenides (MoSe\(_2\) and MoTe\(_2\)): Implications for Enhanced Gas Sensing. *ACS Sens.* 2019, 4, 2464–2653. [CrossRef]

11. Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. *Chem. Rev.* 2019, 119, 478–598. [CrossRef]

12. Nádherná, M.; Opekár, F.; Reiter, J. Ionic liquid–polymer electrolyte for amperometric solid-state NO\(_2\) sensor. *Electrochim. Acta* 2011, 56, 5650–5655. [CrossRef]

13. Gebicki, J.; Kloskowski, A.; Chrzanowski, W.; Stepnowski, P.; Namiesnik, J. Application of Ionic Liquids in Amperometric Gas Sensors. *Crit. Rev. Anal. Chem.* 2016, 46, 122–138. [CrossRef] [PubMed]

14. Nádherná, M.; Opekár, F.; Reiter, J.; Štulík, K. A planar, solid-state amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix. *Sens. Actuators B Chem.* 2012, 161, 811–817. [CrossRef]

15. Lee, S.W.; Lee, W.; Hong, Y.; Lee, G.; Yoon, D.S. Recent advances in carbon material-based NO\(_2\) gas sensors. *Sens. Actuators B Chem.* 2018, 255, 1788–1804. [CrossRef]

16. Li, Q.; Liu, Y.; Chen, D.; Miao, J.; Lin, S.; Cui, D. Highly Sensitive and Flexible Piezoresistive Pressure Sensors Based on 3D Reduced Graphene Oxide Aerogel. *IEEE Electron Device Lett.* 2021, 42, 589–592. [CrossRef]

17. Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.; Wang, X. Three-Dimensional Graphene Hydrogel Decorated with SnO\(_2\) for High-Performance NO\(_2\) Sensing with Enhanced Immunity to Humidity. *ACS Appl. Mater. Interfaces* 2020, 12, 2634–2643. [CrossRef]

18. Niu, F.; Shao, Z.-W.; Gao, H.; Tao, L.-M.; Ding, Y. Si-doped graphene nanosheets for NO\(_\text{x}\) gas sensing. *Sens. Actuators B Chem.* 2021, 328. [CrossRef]

19. Huang, J.; Chen, H.; Niu, W.; Fam, D.W.H.; Palaniappan, A.; Larisika, M.; Faulkner, S.H.; Nowack, C.; Nimmo, M.A.; Liedberg, B.; et al. Highly manufacturable graphene oxide biosensor for sensitive Interleukin-6 detection. *RSC Adv.* 2015, 5, 39245–39251. [CrossRef]

20. Cruz-Martínez, H.; Rojas-Chavez, H.; Montejano-Alvaro, F.; Pena-Castaneda, Y.A.; Matadamas-Ortiz, P.T.; Medina, D.I. Recent Developments in Graphene-Based Toxic Gas Sensors: A Theoretical Overview. *Sensors* 2021, 21, 992. [CrossRef]

21. Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H\(_2\)O, NH\(_3\), CO, NO\(_2\), and NO on graphene: A first-principles study. *Phys. Rev. B.* 2008, 77. [CrossRef]

22. Zhang, D.; Sun, Y.; Jiang, C.; Yao, Y.; Wang, D.; Zhang, Y. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum ternary nanocomposite and its sensing properties. *Sens. Actuators B Chem.* 2017, 253, 1120–1128. [CrossRef]

23. Zhang, X.; Yu, L.; Wu, X.; Hu, W. Experimental Sensing and Density Functional Theory Study of H\(_2\)S and SO\(_2\) Adsorption on Au-Modified Graphene. *Adv. Sci.* 2015, 2, 1500101. [CrossRef] [PubMed]

24. Zhang, X.; Yu, L.; Gui, Y.; Hu, W. First-principles study of SF\(_6\) decomposed gas adsorbed on Au-decorated graphene. *Appl. Surf. Sci.* 2016, 367, 259–269. [CrossRef]

25. Manna, B.; Chakrabarti, I.; Guha, P.K. Platinum Nanoparticles Decorated Graphene Oxide Based Resistive Device for Enhanced Formaldehyde Sensing: First-Principle Study and its Experimental Correlation. *IEEE Trans. Electron Devices* 2019, 66, 1942–1949. [CrossRef]

26. Gao, X.; Zhou, Q.; Wang, J.; Xu, L.; Zeng, W. Adsorption of SO\(_2\) molecule on Ni-doped and Pd-doped graphene based on first-principle study. *Appl. Surf. Sci.* 2020, 517, 146180. [CrossRef]
27. Zhao, C.; Wu, H. A first-principles study of the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study. *Appl. Surf. Sci.* 2018, 435, 1199–1212. [CrossRef]

28. Li, Q.; Chen, D.; Miao, J.; Lin, S.; Yu, Z.; Han, Y.; Yang, Z.; Zhi, X.; Cui, D.; An, Z. Ag-Modified 3D Reduced Graphene Oxide Aerogel-Based Sensor with an Embedded Microheater for a Fast Response and High-Sensitive Detection of NO₂. *ACS Appl. Mater. Interfaces* 2020, 12, 25243–25252. [CrossRef] [PubMed]

29. Makos-Chelstowska, P.; Słupek, E.; Gebicki, J. Deep eutectic solvent-based green absorbents for the effective removal of volatile organochlorine compounds from biogas. *Green Chem.* 2021, 23, 4814–4827. [CrossRef]

30. Makoś; Słupek, E.; Gebicki, J. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents—Experimental and theoretical studies. *J. Mol. Liq.* 2020, 308. [CrossRef]

31. Gutierrez, A.; Atilhan, M.; Aparicio, S. A theoretical study on lidocaine solubility in deep eutectic solvents. *Phys. Chem. Chem. Phys.* 2018, 20, 27464–27473. [CrossRef]

32. Atilhan, M.; Altamash, T.; Aparicio, S. Quantum Chemistry Insight into the Interactions Between Deep Eutectic Solvents and SO₂. *Molecules* 2019, 24, 2963. [CrossRef]

33. Choi, S.-J.; Lee, D.-M.; Yu, H.; Jang, J.-S.; Kim, M.-H.; Kang, J.-Y.; Jeong, H.S.; Kim, I.-D. All-carbon fiber-based chemical sensor: Improved reversible NO₂ reaction kinetics. *Sens. Actuators B Chem.* 2019, 290, 293–301. [CrossRef]

34. Paul, R.K.; Badhulika, S.; Saucedo, N.M.; Mulchandani, A. Graphene nanomesh as highly sensitive chemiresistor gas sensor. *Anal. Chem.* 2012, 84, 8171–8178. [CrossRef] [PubMed]

35. Wu, J.; Tao, K.; Miao, J.; Norford, L.K. Improved Selectivity and Sensitivity of Gas Sensing Using a 3D Reduced Graphene Oxide Hydrogel with an Integrated Microheater. *ACS Appl. Mater. Interfaces* 2015, 7, 27502–27510. [CrossRef] [PubMed]

36. Piloto, C.; Notarianni, M.; Shafiei, M.; Taran, E.; Galpaya, D.; Yan, C.; Motta, N. Highly NO₂ sensitive caesium doped graphene oxide conductometric sensors. *Beilstein J. Nanotechnol.* 2014, 5, 1073–1081. [CrossRef] [PubMed]

37. Cho, B.; Yoon, J.; Haehm, M.G.; Kim, D.-H.; Kim, A.R.; Kahng, Y.H.; Park, S.-W.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; et al. Graphene-based gas sensor: Metal decoration effect and application to a flexible device. *J. Mater. Chem. C* 2014, 2, 5280–5285. [CrossRef]

38. Zhang, H.; Li, Q.; Huang, J.; Du, Y.; Ruan, S.C. Reduced Graphene Oxide/Au Nanocomposite for NO(2) Sensing at Low Operating Temperature. *Sensors* 2016, 16, 1152. [CrossRef]

39. Wu, J.; Wu, Z.; Ding, H.; Yang, X.; Wei, Y.; Xiao, M.; Yang, Z.; Yang, B.R.; Liu, C.; Lu, X.; et al. Three-Dimensional-Structured Boron- and Nitrogen-Doped Graphene Hydrogel Enabling High-Sensitivity NO₂ Detection at Room Temperature. *ACS Sens. 2019, 4, 1889–1896. [CrossRef]

40. Li, L.; He, S.; Liu, M.; Zhang, C.; Chen, W. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. *Anal. Chem.* 2015, 87, 1638–1645. [CrossRef]

41. Zhang, B.; Cheng, M.; Liu, G.; Gao, Y.; Zhao, L.; Li, S.; Wang, Y.; Liu, F.; Liang, X.; Zhang, T.; et al. Room temperature NO₂ gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. *Sens. Actuators B Chem.* 2018, 263, 387–399. [CrossRef]

42. Cho, B.; Yoon, J.; Lim, S.K.; Kim, A.R.; Kim, D.H.; Park, S.G.; Kwon, J.D.; Lee, Y.J.; Lee, K.H.; Lee, B.H.; et al. Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. *ACS Appl. Mater. Interfaces* 2015, 7, 16775–16780. [CrossRef] [PubMed]

43. Kumar, J.; Nemade, H.B.; Giri, P.K. Adsorption of Small Molecules on Niobium Doped Graphene: A Study Based on Density Functional Theory. *IEEE Electron Device Lett.* 2018, 39, 296–299. [CrossRef]

44. Cui, H.; Zheng, K.; Zhang, Y.; Ye, H.; Chen, X. Superior Selectivity and Sensitivity of C3N Sensor in Probing Toxic Gases NO2 and SO2. *IEEE Electron Device Lett.* 2018, 39, 284–287. [CrossRef]

45. Zhang, D.; Cao, Y.; Yang, Z.; Wu, J. Nanoheterostructure Construction and DFT Study of Ni-Doped In2O3 Nanocubes/WS2 Hexagon Nanosheets for Formaldehyde Sensing at Room Temperature. *ACS Appl. Mater. Interfaces* 2020, 12, 11979–11989. [CrossRef] [PubMed]

46. Li, Q.; Chen, D.; Miao, J.; Lin, S.; Yu, Z.; Cui, D.; Yang, Z.; Chen, X. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. *Sens. Actuators B Chem.* 2021, 326. [CrossRef]

47. Luo, H.-C.; Meng, R.-S.; Gao, H.L.; Sun, X.; Xiao, J.; Ye, H.-Y.; Zhang, G.-Q.; Chen, X.-P. First-Principles Study of Nitric Oxide Sensor Based on Blue Phosphorus Monolayer. *IEEE Electron Device Lett.* 2017, 38, 1139–1142. [CrossRef]

48. Jin, C.; Tang, X.; Tan, X.; Smith, S.C.; Dai, Y.; Kou, L. A Janus MoS2 monolayer: A superior and strain-sensitive gas sensing material. *J. Mater. Chem. A* 2019, 7, 1099–1106. [CrossRef]

49. Tang, X.; Shang, J.; Gu, Y.; Du, A.; Kou, L. Reversible gas capture using a ferroelectric switch and 2D molecule multiferroics on the In₉Se₉ monolayer. *J. Mater. Chem. A* 2020, 8, 7331–7338. [CrossRef]

50. Wu, J.; Wei, Y.; Ding, H.; Wu, Z.; Yang, X.; Li, Z.; Huang, W.; Xie, X.; Tao, K.; Wang, X. Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH3 and NO2 Detection at Room Temperature. *ACS Appl. Mater. Interfaces* 2020, 12, 20623–20632. [CrossRef]

51. Tian, W.; Liu, X.; Yu, W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. *Appl. Sci.* 2018, 8, 1118. [CrossRef]

52. Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. *Sensors* 2018, 18, 3638. [CrossRef] [PubMed]
53. Li, H.; Wu, J.; Qi, X.; He, Q.; Lusman, C.; Lu, G.; Zhou, X.; Zhang, H. Graphene oxide scrolls on hydrophobic substrates fabricated by molecular combing and their application in gas sensing. Small 2013, 9, 382–386. [CrossRef] [PubMed]

54. Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhanen, T. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 2013, 7, 11166–11173. [CrossRef] [PubMed]