Spectroscopy of excited states of unbound nuclei ^{30}Ar and ^{29}Cl

X.-D. Xu1,2,3, I. Mukha3, L.V. Grigorenko4,5,6, C. Scheidenberger2,3, L. Acosta7, E. Casarejos9, V. Chudoba4, A.A. Ciemny10, W. Dominik10, J. Duéñas-Díaz11, V. Dumin12, J. M. Espino13, A. Estradé14, F. Farinon3, A. Fomichev3, H. Geissel1,2, T.A. Golubkova15, A. Gorskikh4,16, Z. Janas10, G. Kamiński17,13, O. Kiselev3, R. Knöbel18,19, S. Krupko4,16, M. Kuich18,19, Yu.A. Litvinov3, G. Marquinez-Durán11, I. Martel11, C. Mazzocchi10, C. Nociforo3, A.K. Ordúz11, M. Pfitzner10,3, S. Pietri3, M. Pomorski10, A. Prochazka3, S. Rymzhanova4, A.M. Sánchez-Benítez11, P. Sharov4, H. Simon13, B. Sitar19, R. Stepnev4, M. Stanoiu20, P. Strmen19, I. Szarka19, M. Takechi3, Y.K. Tanaka3, H. Weick3, M. Winkler3, and J.S. Winfield3

1School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
2II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen 35392, Germany
3GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291, Germany
4Flerov Laboratory of Nuclear Reactions, JINR, Dubna 141980, Russia
5National Research Nuclear University “MEPhI”, Moscow 115409, Russia
6National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
7INFN, Laboratori Nazionali del Sud, Via S. Sofia, Catania 95123, Italy
8Instituto de Física, Universidad Nacional Autónoma de México, México, D.F. 01000, Mexico
9University of Vigo, Vigo 36310, Spain
10Faculty of Physics, University of Warsaw, Warszawa 02-093, Poland
11Department of Applied Physics, University of Huelva, Huelva 21071, Spain
12Veksel and Baldin Laboratory of High Energy Physics, JINR, Dubna 141980, Russia
13Department of Atomic, Molecular and Nuclear Physics, University of Seville, Seville 41012, Spain
14University of Edinburgh, EH1 1HT Edinburgh, United Kingdom
15Advanced Educational and Scientific Center, Moscow State University, Moscow 121357, Russia
16FSBI “SSC RF ITEP” of NCR “Kurchatov Institute”, Moscow 117218, Russia
17Institute of Nuclear Physics PAN, Kraków 31-342, Poland
18Faculty of Physics, Warsaw University of Technology, Warszawa 00-662, Poland
19Faculty of Mathematics and Physics, Comenius University, Bratislava 84248, Slovakia
20IFIN-HH, Post Office Box MG-6, Bucharest, Romania and
21University of Tokyo, Tokyo 113-0033, Japan

Several states of proton-unbound isotopes ^{30}Ar and ^{29}Cl were investigated by measuring their in-flight decay products, ^{28}S+proton+proton and ^{28}S+proton, respectively. A refined analysis of ^{28}S-proton angular correlations indicates that the ground state of ^{30}Ar is located at $2.45^{+0.10}_{-0.15}$ MeV above the two-proton emission threshold. The theoretical investigation of the ^{30}Ar ground state decay demonstrates that its mechanism has the transition dynamics with a surprisingly strong sensitivity of the correlation patterns of the decay products to the two-proton decay energy of the ^{30}Ar ground state and the one-proton decay energy as well as the one-proton decay width of the ^{29}Cl ground state. The comparison of the experimental ^{28}S-proton angular correlations with those resulting from Monte Carlo simulations of the detector response illustrates that other observed ^{30}Ar excited states decay by sequential emission of protons via intermediate resonances in ^{29}Cl. Based on the findings, the decay schemes of the observed states in ^{30}Ar and ^{29}Cl were constructed. For calibration purposes and for checking the performance of the experimental setup, decays of the previously-known states of a two-proton emitter ^{19}Mg were remeasured. Evidences for one new excited state in ^{30}Mg and two unknown states in ^{18}Na were found.

PACS numbers: 23.50.+z, 25.10.+s, 27.30.+t

I. INTRODUCTION

Two-proton (2p) radioactivity is an exotic nuclear decay mode resulting in the simultaneous emission of two protons. It was proposed for the first time by Goldansky in the early 1960s [1]. In this pioneering work, simultaneous two-proton emission was predicted to appear in the even-proton number (Z) isotopes beyond the proton drip-line, in which one-proton (1p) emission is energetically prohibited but the ejection of two protons is energetically allowed due to the pairing interaction. More than 40 years after its prediction, ground-state 2p radioactivity was discovered in 2002 [2, 3]. Two experiments independently observed that the ground state (g.s.) of ^{45}Fe decays by simultaneous emission of two protons. Later ^{54}Zn [4], ^{19}Mg [5], ^{38}Ni [6], and ^{67}Kr [7] were found to be other g.s. 2p radioactive nuclei.

Among the g.s. 2p emitters hitherto observed, the half-lives of ^{45}Fe, ^{38}Ni, and ^{54}Zn are in the range of several ms,
which can be accessed by the conventional implantation-decay method. In the case of 19Mg, whose half-life was predicted in the range from a few ps to a few ns, a technique based on particle tracking of decays in flight (see details in Ref. [8]) was applied in order to investigate its decay properties. In this experiment, the trajectories of $2p$ decay products of 19Mg were measured by double-sided silicon micro-strip detectors. The $2p$-decay vertices and fragment correlations were reconstructed. The $2p$ decay energy and half-life of 19Mg g.s. were determined, which represented the first case of $2p$ radioactivity in s-d shell nuclei [5]. In a recent work [10], the half-life of 2g.s. of 30Ar was predicted in the range from a few ps to a few ns [8], dozens of prospective true lifetime dependencies on the decay energy and three-shell nuclei [5]. In a recent work [10], the half-life of 2g.s. of 30Ar was measured by another experimental technique, the extracted half-life value is consistent with the first measurements.

After the discovery of $2p$ radioactivity several theoretical efforts were dedicated to predictions of the $2p$ radioactivity landscape. In a systematic study of lifetime dependencies on the decay energy and three-body correlations applied to a number of isotopes by using a three-body model [8], dozens of prospective true $2p$ emitters were predicted. Among these candidates, 19Mg, 48Ni, and 54Zn have been proven to be indeed true $2p$ emitters. In a recent study, the global landscape of g.s. $2p$ radioactivity has been quantified by the energy density functional theory [11]. The main conclusion of this work is that $2p$-decaying isotopes exist in almost every isotopic chain between elements Ar and Pb, which indicates that g.s. $2p$ radioactivity is a typical feature for the proton-unbound isotopes with even atomic numbers. Those theoretical predictions provide guidance for the experimental search of $2p$ radioactive nuclei. For instance, 30Ar was predicted to be an s-d shell true $2p$ emitter by the three-body model [8]. The prediction for the 30Ar g.s. half-life was $T_{1/2}(^{30}$Ar$) = 0.7 - 33$ ps and the predicted separation energies were $S_{2p}(^{30}$Ar$) = -1.43$ MeV and $S_{2p}(^{30}$Ar$) = 0.35$ MeV, respectively. Considering its short lifetime, the in-flight decay method was applied. Several states in 30Ar and its $1p$-decay daughter nucleus 29Cl were investigated. The observation of 30Ar and 29Cl low-lying states, including their g.s., was reported in Ref. [12]. The assigned ground and first excited states of 29Cl were found at $1.8^{+0.1}_{-0.1}$ MeV and $2.3^{+0.1}_{-0.1}$ MeV above the $1p$ threshold, respectively. The g.s. of 30Ar was found to be at $2.25^{+0.15}_{-0.10}$ MeV above the $2p$ emission threshold [12]. A sophisticated data analysis together with theoretical investigations revealed that the g.s. of 30Ar is located at $2.45^{+0.05}_{-0.10}$ MeV above the $2p$ emission threshold [12]. Due to a strong Thomas-Ehman shift, the lowest states in 30Ar and 29Cl point to a violation of isobaric mirror symmetry in the structure of these unbound nuclei. Detailed investigations of the decay mechanism of the 30Ar ground state show that it is located in a transition region between simultaneous $2p$ decay and sequential emission of protons. Such an interplay between the true three-body and the sequential two-body decay mechanism is the first-time observation for nuclear ground state decays. For the first excited 2^+ state of 30Ar, the hint on so-called fine structure in the $2p$ decay was obtained by detecting two decay branches either into the ground state or first excited state of 28S [12].

Besides the g.s. and first excited states, several higher-lying excited states of 30Ar and 29Cl were also populated in this experiment. The present manuscript describes the details of the experiment and reports the first spectroscopy of observed excited states. The structure of the present manuscript is organized in the following way. To begin with, the experimental setup is introduced with the emphasis on the employed special ion-optic settings. Then the nuclear structure information on several observed states of the known $2p$ emitter 19Mg is presented. Afterwards, the detailed analysis of the angular correlations between decay products and the extraction of the decay properties of several excited states of 30Ar as well as 29Cl is described. Finally, discussions on the transition dynamics of 30Ar g.s. decays and the decay mechanisms of observed excited states of 30Ar are presented.

II. EXPERIMENT

The 30Ar experiment was performed at the Fragment Separator (FRS) [14] at GSI (Darmstadt, Germany). The FRS was operated with ion-optical settings in a separator-spectrometer mode. The primary 885 MeV/u 30Ar beam with an intensity up to 2×10^9 s$^{-1}$ impinged on a 8 g/cm2 9Be production target. The 620 MeV/u 31Ar fragments with an average intensity of 50 s$^{-1}$ were selected as a secondary beam and transported by the first half of the FRS to bombard a 9Be reaction target located at the middle focal plane F2 of the FRS. The thickness and the transverse dimension of the reaction target is 4.8 g/cm2 and 5×5 cm2, respectively. At the first focal plane F1 of the FRS, an aluminum wedge degrader was installed in order to achieve an achromatic focusing of 31Ar at the reaction target. 30Ar nuclei were produced via one-neutron (1n) knockout from the 31Ar ions. The decay products of 30Ar were tracked by a double-sided silicon micro-strip detector array placed just downstream of the reaction target. The projectile-like outgoing particles from the reaction target were analyzed by the second half of the FRS, which was operated as a magnetic spectrometer. The magnet settings between the focal planes F2 and F4 were tuned to transmit the targeted heavy ion (HI) fragments (e.g., 28S) down to the last focal plane F4.

The above-mentioned operation mode of the FRS requires a special ion-optical setting. Since the transverse dimensions of the reaction target and the tracking detectors are small, a focused secondary beam is required in order to have a small beam spot on the reaction target. Such a requirement was fulfilled by employing a wedge-shaped aluminum degrader to compensate the momentum deviation (from the reference particle) of the
The two protons and the recoil heavy ion (DSSDs [17] was employed to measure hit coordinates of the two protons and the recoil heavy ion (28S or 17Ne) resulting from the in-flight 2p decay. The high-precision position measurement by DSSDs allowed us to reconstruct fragment trajectories and to derive the decay vertex together with angular HI-proton and proton-proton correlations. In the second half of the FRS, the heavy ions arriving at the final focal plane of the FRS F4 were unambiguously identified by their magnetic rigidity Bp, time-of-flight (TOF), and energy deposition ΔE. The Bp of the ion was determined from the FRS magnet setting and the ion's position measured with TPCs. The TOF for the ion traveling from F2 to F4 was measured by using the scintillator SCI1 at F2 and scintillator SCI2 at F4. Then the ion's velocity (v) can be deduced from its TOF. Once the v is obtained, the mass-to-charge ratio (A/Q) can be determined by using the following equation

$$\frac{A}{Q} = \frac{Bpe}{3\gamma\epsilon u},$$

where ϵ is the electron charge, c is the speed of light, u is the atomic mass unit, β is the ion's velocity in unit of c ($\beta = v/c$), γ is the Lorentz factor ($\gamma = \sqrt{1 - \beta^2}$). Given the fact that the energy deposition (ΔE) of the HI in the Multiple Sampling Ionizing Chamber (MUSIC) is nearly proportional to the square of the ion's charge Q, the Q can be calculated form the ΔE measured by the MUSIC detector. At the high energies used in the present experiment (several hundred MeV/u), most of ions are fully stripped, thus we assume $Q = Z$. Therefore, the HI’s proton number Z can be determined from ΔE measurements. By plotting the distribution of Z versus A/Q, the identification of HI can be achieved since each isotope has a unique combination of Z and A/Q. Fig. 8 shows a two-dimensional PID plot for the ions which reached F4. In this plot, each nuclide occupies a unique position according to its proton number and mass-to-charge ratio. Therefore, the heavy ion of interest can be identified unambiguously. The ions of interest including 28S and 31Ar are well separated from other species and are highlighted by the circles.

FIG. 1: (Color online) Scheme of the FRS ion-optical system. The colored lines represent the calculated trajectories of 31Ar ions. The box at F2 denotes the experimental station including reaction target and tracking detectors. The horizontal slits at F2 are displayed. Detectors for the particle identification are represented by the box at F4. See text for details.

FIG. 2: Sketch of the detector setup. The secondary beam 4Z (31Ar or 20Mg) was tracked by position sensitive detectors TPC1 and TPC2 before impinging on the reaction target. The trajectories of two protons and HI daughter nucleus $^{4-3}(Z - 2)$ resulting from the decay of 2p precursor ^{4-3}Z (30Ar or 19Mg) were measured by the DSSD array. At the focal plane F4, the energy deposition of HI in the detector MUSIC was recorded. The time-of-flight of HI from F2 to F4 (≈35 m) was measured by using the scintillator detectors SCI1 and SCI2.
From 2p decays of 19Mg are described. Based on the measured trajectories of 17Ne and two protons which were emitted by the 2p decay of 19Mg, the angle between the 17Ne and proton’s trajectories (θ_{Ne-p}) as well as the angle between both protons’ trajectories (θ_{p-p}) can be obtained. The corresponding 17Ne-p angular correlations were reconstructed for all 17Ne + $p + p$ coincidences. Fig. 4(a) shows the scatter plot ($\theta_{Ne-p1}, \theta_{Ne-p2}$) for the measured angles between 17Ne and both protons. Since the two protons cannot be distinguished, the distribution is symmetrized with respect to proton permutations, and proton indexes are given for illustration purpose only. In this angular correlation plot, there are several intensity enhancements which provide the information on the 2p states in 19Mg and 1p resonances in 18Na.

III. INVESTIGATION OF KNOWN TWO-PROTON EMITTER 19Mg

For calibration purposes, the previously-known 2p radioactive nuclei 19Mg were also produced by a 1n knockout reaction from 20Mg ions obtained by fragmenting a 685 MeV/u 31Ar beam. The 2p decay properties of 19Mg were remeasured. By following the same procedure applied in previous studies of 19Mg [2, 8, 19], the decay properties of the precursors 19Mg and 30Ar were investigated on the basis of angular correlations between the HI daughter nucleus and the protons. In this section, the angular 17Ne-proton correlations obtained from 2p decays of 19Mg are described. Based on the measured trajectories of 17Ne and two protons which were emitted by the 2p decay of 19Mg, the angle between the 17Ne and proton’s trajectories (θ_{Ne-p}) as well as the angle between both protons’ trajectories (θ_{p-p}) can be obtained. The corresponding 17Ne-p angular correlations were reconstructed for all 17Ne + $p + p$ coincidences. Fig. 4(a) shows the scatter plot ($\theta_{Ne-p1}, \theta_{Ne-p2}$) for the measured angles between 17Ne and both protons. Since the two protons cannot be distinguished, the distribution is symmetrized with respect to proton permutations, and proton indexes are given for illustration purpose only. In this angular correlation plot, there are several intensity enhancements which provide the information on the 2p states in 19Mg and 1p resonances in 18Na.

In order to better reveal the decay properties from the measured 17Ne-proton angular correlations shown in Fig. 4(a), one may use the fact that the two protons emitted by one state of 19Mg share the total decay energy. Thus...
$\theta_{\text{Ne-p}}$ correlations from $2p$ decays of the same narrow state are accumulated along the arc with the radius

$$\rho_0(17\text{Ne} + p + p) = \sqrt{\theta_{\text{Ne-p1}}^2 + \theta_{\text{Ne-p2}}^2} = \text{const}.$$

Since ρ_0 is related to the energy sum of both emitted protons and therefore to the Q_{2p} of the parent state by the relation $Q_{2p} \sim \rho_0^2$ [19], one can obtain the indication of the parent state and its $2p$-decay energy by studying the distribution of ρ_0. The ρ_0 spectrum has a few peaks which allow us to select specific excitation-energy regions for the investigation. In the present study, the ρ_0 distribution measured for ^{19}Mg $2p$ decays is displayed in Fig. 4(b). Several well-separated intense peaks, which indicate the $2p$ decays of various states in ^{19}Mg, are clearly seen and labeled by Roman numerals. The peak in Fig. 4(b) corresponds to the arc in Fig. 4(a) labeled with the same Roman numeral. By gating on a particular ρ_0 peak, the decay events from a certain ^{19}Mg state can be selected. In the following, the states observed in ^{19}Mg will be investigated by comparing the measured $^{17}\text{Ne-p}$ angular correlations with the Monte Carlo (MC) simulations of the detector response.

A. Reference case: $1p$ and $2p$ decays of known states in ^{18}Na and ^{17}Mg

By comparing the $\theta_{\text{Ne-p}}$ angular correlations [Fig. 4(a)] with those obtained in the previous experiment (see Figure 2(e) in Ref. [19]), it was found that several known states of ^{19}Mg including its g.s. and several low-lying excited states were observed in the present experiment. They are shown by the peaks and arcs (i), (ii), (iii), and (iv) in Fig. 4. In order to quantitatively interpret the $^{17}\text{Ne-p}$ angular correlations obtained from the decays of these known states, MC simulations were performed by assuming the simultaneous $2p$ decay of the ^{19}Mg g.s. and the sequential $2p$ decay of ^{19}Mg excited states via low-lying ^{18}Na states. The simulated $\theta_{\text{Ne-p}}$ distributions were compared with the data obtained by choosing events with the ρ_0 gates (i), (ii), (iii), and (iv) indicated in Fig. 4(b). The corresponding results are shown in the panels (a), (b), (c) and (d) of Fig. 5, respectively. One can see that the simulations reproduce the data well. The deduced $2p$-decay energy (Q_{2p}) of the g.s. shown in (i) is $0.87^{+0.24}_{-0.07}$ MeV, which is consistent with the previous result of 0.76(6) MeV [19]. The deduced Q_{2p} values of the excited state (ii) and excited state (iv) are $2.5^{+0.8}_{-0.4}$ MeV and $5.1^{+0.3}_{-0.2}$ MeV, respectively, which agree within the errors with the previous data on the respective states at 2.14(23) MeV and 5.5(2) MeV [19]. The determined Q_{2p} for the broad peak (iii) is $3.2^{+1.2}_{-1.0}$ MeV, which matches the previously-measured states at 2.9(2) and 3.6(2) MeV. However, these two states cannot be resolved in the present experiment.

B. Hints to so far unknown $1p$- and $2p$- unbound states in ^{18}Na and ^{19}Mg

In Fig. 4(b), besides the known excited states of ^{19}Mg shown by the peaks (ii), (iii), and (iv), evidence on a new excited state of ^{19}Mg is displayed by the peak (v) which is located around $\rho_0 = 130$ mrad. The corresponding $\theta_{\text{Ne-p1}}$ versus $\theta_{\text{Ne-p2}}$ distribution is shown by the arc (v) in Fig. 4(a). One can see that most events fall into several clusters which indicate sequential emission of protons from one excited state of ^{19}Mg via intermediate resonances of ^{18}Na. It is worth mentioning that the hints to sequential proton emission from such an unknown excited state of ^{19}Mg can also be found in the experimental spectrum obtained from a previous study of ^{19}Mg (see Fig. 2(c) of [19]). Despite the low counts, the peak (v) and multiple-cluster structure in the corresponding arc (v) are quite evident, which may be attributed to a different detection scheme being applied thus leading to a better signal to noise ratio in the present experiment. The angular $\theta_{\text{Ne-p}}$ spectrum obtained by imposing the arc gate (v) ($119.0 < \rho_0 < 146.0$ mrad) is shown by the black dots in Fig. 5(e). Such a multiple peak structure cannot be described by a sequential $2p$ decay via any previously-known ^{18}Na state because the characteristic $\theta_{\text{Ne-p}}$ pattern generated from $1p$ decay of the known state in ^{18}Na does not fit any peak shown in Fig. 5(e). In order to interpret such experimental $\theta_{\text{Ne-p}}$ spectrum, the existence of two new ^{18}Na levels has to be assumed.

The hints of two new states expected for ^{18}Na can be found in Fig. 6 which displays the comparison of angular $\theta_{\text{Ne-p}}$ correlations obtained from the measured $^{17}\text{Ne} + p$ and $^{17}\text{Ne} + p + p$ coincidences in the present experiment. In the former case, parent ^{18}Na states may be populated via several possible reactions on ^{20}Mg, while the latter distribution is presumably due to the $2p$ emission from ^{19}Mg states. Five peaks (1-5) which coexist in both histograms suggest the states of ^{18}Na. According to the previous knowledge on the angular correlations obtained from the decays of known ^{18}Na states [19], the peaks 1-3 correspond to the the ^{18}Na states at 1.23 MeV, 1.55 MeV, and 2.084 MeV, respectively. The peaks 4 and 5 provide indications of two unknown excited states in ^{18}Na, which are located at 2.5 MeV and 4.0 MeV above the $1p$ threshold, respectively.

The two above-discussed new states in ^{18}Na provide a possible explanation for the observed $\theta_{\text{Ne-p}}$ distribution shown in Fig. 5(e), i.e., such a ^{17}Ne-proton angular correlations may originate from the decays of a previously unknown excited state in ^{19}Mg by sequential emission of protons via the above-mentioned two ^{18}Na excited states. To verify such a tentative assignment, MC simulations were performed. By varying the decay energies and lifetimes of ^{19}Mg state and ^{18}Na levels, we found that the simulation of sequential emission of protons from the ^{19}Mg excited state at $8.9^{+0.5}_{-0.8}$ MeV via the excited states of ^{18}Na at $2.5^{+0.7}_{-0.3}$ MeV and $4.0^{+1.5}_{-0.6}$ MeV can reproduce...
FIG. 5: (Color online) Measured 17Ne-p angular correlations (full circles with statistical errors) derived from the 2p decays of known 19Mg states. (a) Measured 17Ne-p angular correlations derived from the 2p decay of 19Mg g.s. gated by (i), $22.5 < \theta < 47.0$ mrad. The solid curve represents the corresponding MC simulation of the detector response to the simultaneous 2p decay of the 19Mg g.s. with $Q_{2p} = 0.87$ MeV. (b) The 2p decay of the excited state gated by (ii), $54.0 < \theta < 70.0$ mrad. The solid curve displays the simulation of the sequential 2p decay of 19Mg state at 2.5 MeV via 18Na states at 1.23 MeV (dotted curve) and 1.55 MeV (dashed curve). (c) The 2p decays gated by (iii), $70.0 < \theta < 85.5$ mrad. The solid curve is the simulation of the sequential 2p decay of 19Mg state at 3.2 MeV via the 1.55 MeV (dashed curve) and 2.084 MeV (dotted curve) levels in 18Na. (d) The 2p decays gated by (iv), $90.0 < \theta < 117.0$ mrad. The result of the simulation to the sequential 2p emission of 19Mg state at 5.1 MeV via 1.55 MeV state of 18Na state is depicted by the solid curve. (e) The 2p decay of a new excited state in 19Mg gated by (v), $119.0 < \theta < 146.0$ mrad. The dashed and dotted curves are the θ_{Ne-p} distributions obtained by simulations of sequential proton emission of 19Mg state at 8.9 MeV via two unknown observed 18Na states at 2.5 MeV and 4.0 MeV, respectively. The solid curve shows the summed fit.

The data. The corresponding two components are displayed by the dashed and dotted curves in Fig. 5(e), respectively. The summed fit generally agrees with the data. In particular, the multiple-peak structure of the experimental pattern is reasonably described. The energy level of 18Na around 2.5 MeV has been predicted in a theoretical work [2]. Given the fact that the limited amount of 19Mg 2p decay events identified in the present experiment provides only hints of a new 19Mg excited state and two new 18Na excited states, future experiments with improved conditions (e.g., better statistics) are desirable.
patterns and detailed theoretical calculations as well as MC simulations were performed.

IV. SPECTROSCOPY OF STATES OBSERVED IN 30Ar AND 29Cl

A. 28S-proton angular correlations

As described in Sec. II, the decays of 30Ar were identified by tracking the coincident 28S + p + p trajectories. Following a similar procedure to that conducted for 2p decays of 19Mg, we measured the angles between the decay products of 30Ar (i.e., θ_{S-p} and θ_{p1-p2}) and then reconstructed the 28S-proton angular correlations as well as the decay vertices. The scatter plot of θ_{S-p1} versus θ_{S-p2} for all identified 28S + p + p coincidences is shown in Fig. 7(a). Here proton indexes are given for illustration purposes only. Several intensity enhancements can be observed in this angular correlation plot, and they indicate on the 2p states in 30Ar and 1p resonances in 29Cl. The arcs labeled “A-H” in Fig. 7(a) correspond to peaks in the ρ_θ spectrum shown in Fig. 7(b), where $\rho_\theta = \sqrt{\theta_{S-p1}^2 + \theta_{S-p2}^2}$. As demonstrated in the previous chapter, the ρ_θ distribution is helpful in order to identify the states of 30Ar and to discriminate transitions of interest. In Fig. 7(b), the peaks labeled “A-H” suggest several states in 30Ar, and the corresponding arcs in Fig. 7(a) illustrate the 28S-proton angular correlation patterns. These arcs and peaks demonstrate the first observation of 2p decays from several states of the nucleus 30Ar. In order to deduce the nuclear structure information on these states and investigate their decay properties, careful analysis of θ_{S-p}

B. θ_{S-p} distributions of states observed in 30Ar

Since the θ_{S-p} distributions reflect energy spectra of protons emitted from the 2p decay of 30Ar states, they provide insight into the decay mechanisms of the parent states. The pattern of the θ_{S-p} distribution carries information on the decay branches of the 30Ar state. Fig. 8 displays the θ_{S-p} spectra obtained from the measured 28S + p + p coincidences which are selected by imposing the ρ_θ gates “A”, “B”, “C”, “D1”, “D2”, “E”, “F1”, “F2”, “G”, and “H” shown in Fig. 7. The proton spectrum of a simultaneous 2p decay of a state

![Image](image-url)
exhibits a relatively broad peak which corresponds to the half of the total 2p-decay energy Q_{2p}. In the case of the sequential emission of protons, a typical double-peak structure appears in the proton spectrum, and the two peaks are related to the decay energies of two 1p decays, i.e., one peak is located at the decay energy of the intermediate state of 1p-decay daughter nucleus (Q_{1p}) and the other peak is located around the 1p-decay energy of the mother nucleus (i.e., $Q_{2p} - Q_{1p}$). Moreover, multiple-peak structures may also be present in the proton spectrum, which indicate two or more decay branches. Therefore, one can obtain hints of the decay mechanism on the basis of the angular $\theta_{S,p}$ distribution. In the case of 30Ar, one can see in Fig. 8 that except the state “B”, all other 30Ar states show two or more $\theta_{S,p}$ peaks, which indicate a sequential decay mechanism. Concerning peak “B”, the angular 28S-proton spectrum presents a relatively broad peak which is almost twice more wide than that expected for a simultaneous 2p decay. On the other hand, the spectrum does not point to a sequential 2p emission, where the typical double-peak structure appears. Such an unexpected pattern was carefully studied in our previous work \[12\]. There, the peak “B” has been assigned to the g.s. of 30Ar. Its decay mechanism was identified in a transition region between simultaneous 2p decay and sequential emission of protons. The peak “C” was regarded as the first excited state of 30Ar. The decay of this state presents the first hint of a fine structure in the 2p decay, which provides the natural interpretation of the peak “A” and peak “C” \[12\]. In the present work, we will discuss the excited states of 30Ar with decay energies higher than that of the peak “C” and deduce their decay properties and decay mechanisms. Regarding the state “H” which is located at about 15 MeV above the 2p threshold, we will not discuss it further due to a few decay events observed from this state. Before investigating the 2p decay properties of the 30Ar states, the states of its 1p decay daughter nucleus 29Cl must be studied.

C. Decay energies of low-lying 29Cl states

As shown in Ref. \[12\], the comparison of the $\theta_{S,p}$ distribution obtained from the measured 28S + $p + p$ double coincidence and that from 28S + $p + p$ triple coincidences provide some guidance on the states in 29Cl, which were populated in the experiment. Such a comparison is displayed in Fig. 9. In the 28S + p case (the unfilled histogram in Fig. 9), the 29Cl states may be populated via several possible reactions on 31Ar, e.g., the two-step reaction 31Ar \rightarrow 30Ar + n followed by 30Ar \rightarrow 29Cl + p, or via the direct fragmentation 31Ar \rightarrow 29Cl + $n + p$. Concerning the $\theta_{S,p}$ spectrum obtained from the 28S + $p + p$ coincidence (grey-filled histogram in Fig. 9), population of 29Cl states are presumably due to the 2p emission from 30Ar states. Therefore, one may expect that the $\theta_{S,p}$ peaks in both distributions indicate the possible 29Cl states. In Fig. 9 several $\theta_{S,p}$ peaks (indicated by arrows) with decent intensities coexist in both spectra, which suggest the possible 29Cl resonances.

Concerning the 1p-decay energies of the 29Cl states indicated by the arrows in Fig. 9, one can deduce their values by employing the approximate linear relation

\[E_{1p} = E_{G.S.} + Q_{1p} \]

FIG. 8: Angular correlations $\theta_{S,p}$ derived from the measured 28S + $p + p$ coincidences by using the ρ_{0} gates shown in Fig. 7. The corresponding ρ_{0} ranges for the peaks “A”, “B”, “C”, “D1”, “D2”, “E”, “F1”, “F2”, “G”, and “H” are $38.5 < \rho_{0} < 45.5$ mrad [panel (a)], $48.0 < \rho_{0} < 60.0$ mrad [panel (b)], $62.5 < \rho_{0} < 67.0$ mrad [panel (c)], $67.0 < \rho_{0} < 72.0$ mrad [panel (d1)], $72.0 < \rho_{0} < 81.5$ mrad [panel (d2)], $81.5 < \rho_{0} < 93.5$ mrad [panel (e)], $93.5 < \rho_{0} < 108.0$ mrad [panel (f1)], $108.0 < \rho_{0} < 117.5$ mrad [panel (f2)], $120.0 < \rho_{0} < 132.0$ mrad [panel (g)], and $134.5 < \rho_{0} < 141.5$ mrad [panel (h)], respectively.
between the $\theta_{\Sigma p}$ and $\sqrt{Q_{\Sigma p}}$. The energies of the observed 29Cl levels (1-6) are 1.8(1) MeV, 2.3(1) MeV, 2.9(2) MeV, 3.5(1) MeV, 3.9(2) MeV, and 5.3(2) MeV, respectively. In order to assign the g.s. of 29Cl, the isobaric symmetry of mirror nuclei was considered, see Sec. [V B]

D. Decay schemes of 30Ar and 29Cl

As shown in Fig. 7 several states of 30Ar were populated in the present experiment. The decay energy of observed 30Ar states can be deduced from the ρ_θ distribution shown in Fig. 7(b). The comparison of $\theta_{\Sigma p}$ spectrum obtained from 28S + p coincidences and that deduced from 28S + $p + p$ coincidences suggests several states in 29Cl. By combining these results, we derived a tentative level scheme together with the decay branches for the observed 30Ar and 29Cl states. It is shown in Fig. 10. The g.s. and first excited state of 30Ar and 29Cl have been discussed in the Ref. [12]. The decay scheme of higher excited states is interpreted below.

V. DISCUSSION

In the previous section a quite detailed energy level and decay scheme was deduced. Such an assignment is based on the limited kinematic information derived from the angular distributions. The data also have limited statistical significance, which is a common situation for extreme exotic nuclear systems near and beyond the driplines. Therefore, the interpretation of the data is partly based on some speculations, which require detailed explanation. Our interpretation of the data is based on reasonable arguments, which take into account present knowledge. It is self-consistent, no alternative self-consistent interpretation which covers all aspects of the observed picture is achieved. Different issues which one had to elaborate in order to arrive to the interpretation shown in Fig. 10 are discussed in this section. Some of these issues have already been considered in Ref. [12]. All arguments are presented below in a systematic way.

A. Signature of 30Ar ground state

Identification of the 29Cl and 30Ar g.s. energies is the most important assignment on which the whole interpretation is based. The low-energy peaks in the 28S-p and 28S-p-correlations spectra may arise from decay channels populating the excited states of 28S*, which are instantaneously de-excited by γ-emission. In the present experiment the reaction target area was observed by an ancillary γ-ray detector. With its total registration efficiency of about 5%, this information could be useful for counting rates, say, an order of the magnitude higher than those available for 28Cl and 30Ar.

The candidates for 30Ar g.s. in Fig. 7 are peak “A” at $\rho_\theta \sim 44$ mrad (corresponding to $Q_{2p} = 1.4$ MeV) and peak “B” at $\rho_\theta \sim 59$ mrad (corresponding to $Q_{2p} = 2.45$ MeV). We point to three reasons which make the peak “B” preferable prescription for the 30Ar ground state.

The first argument is connected with a population cross section for the peak “A”. It comprises less than 5% of the total population intensity of all 30Ar states, and this value is unexpectedly low for the ground state. For comparison, one may look at some examples of
corresponding values obtained in the nucleon-knockout experiments populating s-d shell nuclei beyond the dripline. They are: \(\sim 20\% \) for \(^{19}\text{Mg} \) \cite{22}, \(\sim 35\% \) for \(^{16}\text{Ne} \) \cite{23}, \(\sim 60\% \) for \(^{20}\text{O} \) \cite{23}. These values and also other examples, which can be found in the literature, vary quite broadly demonstrating strong sensitivity to the individual structure of the precursor nucleus. However, such values never seem to be extremely small.

The second argument is connected with systematics of odd-even energy staggering (OES) and proton correlation pattern for the peak “A”. The OES is defined as

\[
2E_{\text{OES}} = S^{(A)}_{2N} - 2S^{(A-1)}_N,
\]

where \(S^{(A)}_{2N} \) and \(2S^{(A-1)}_N \) are separation energies for two nucleons in the system with mass number \(A \) and for one nucleon in its \(A-1 \) subsystem. This can be interpreted as a phenomenological paring energy value computed with the assumption that the structure of the nuclear with mass number \(A \) is represented by two valence nucleons populating single-particle configurations corresponding to \(A-1 \) system ground state. It was demonstrated in Fig. 6 of Ref. \cite{12} that the systematics of OES is very similar for the isotope chain leading to \(^{30}\text{Ar} \) and its mirror \(^{30}\text{Cl} \) isobar. The extrapolated value for \(^{30}\text{Ar} \) is \(2E_{\text{OES}} = 2.25 \) MeV. However, it is known that such a systematics breaks near the borderline of the nucleon stability \cite{24}. Therefore, the actually expected value of \(2E_{\text{OES}} \) should be a factor \(0.4 - 0.7 \) smaller.

Several reasonable prescriptions for proton and two-proton decay energies of \(^{29}\text{Cl} \) and \(^{30}\text{Ar} \), respectively, are shown in Table \ref{tab:prescriptions}. By considering the \(^{29}\text{S}-p \) angular correlations in Fig. \ref{fig:angular} the double-peak structure for the 1.4 MeV peak “A” can be interpreted as the result of the sequential emission of two protons with the energies of 0.6 and 0.8 MeV. As far as the emission order of protons is not known, one has to consider both prescriptions for the \(^{29}\text{Cl} \) \(Q_p \) value, which is marked as P1 and P2 in Table \ref{tab:prescriptions}. Both variants provide the OES values far beyond the range expected from systematics. Let’s assume that the double-peak structure of the \(p-p \) correlations is actually connected with a statistical “staggering” due to low data statistics and in reality a single peak characteristic for “true” \(2p \) emission should exist. Then one should assume the higher reasonable \(^{29}\text{Cl} \) g.s. position which value can be found as \(Q_p = 1.8 \) MeV from Fig. \ref{fig:angular} for this prescription, marked as P3, the OES value is somewhat overestimated. If one correlates the \(^{30}\text{Ar} \) g.s. with the peak “B” in Fig. \ref{fig:angular} (at \(Q_{2p} = 2.45 \) MeV), and assume \(Q_p = 1.8 \) MeV (the prescription P4), then the obtained OES value nicely fits the expected range. The relative population intensity of the peak “B” (\(\sim 15\% \) of the total) is also reasonably consistent with expectation for the ground state. An additional argument for the choice of \(Q_p = 1.8 \) MeV prescription comes from systematics of Coulomb displacement energies is described in the next section.

The plausible explanation of the “A” structure at 1.4 MeV is that this is a “fine-structure peak” for \(2p \) emission from the first excited (probably \(2^+ \)) state in \(^{30}\text{Ar} \) into the first excited state of \(^{28}\text{S} \) (\(2^+ \) at 1.507 MeV, see Fig. \ref{fig:levels}). The further discussion of this issue needed for a consistent description of the \(^{29}\text{Cl} \) and \(^{30}\text{Ar} \) decay schemes (see, Fig. \ref{fig:levels}) is provided in the Sec. \ref{sec:systematics}.

B. Thomas-Ehrman effect in \(^{29}\text{Cl}-^{29}\text{Mg}\)

If one assume the single-particle nature of the \(^{29}\text{Cl} \) low-lying states, their energies can be reliably evaluated basing on the spectrum of the isobaric mirror partner, the \(^{29}\text{Mg} \) nucleus. The g.s. of \(^{29}\text{Mg} \) is known to have spin-parity \(3/2^+ \) \cite{23} and it is reasonable to assume the single-particle \(d \)-wave structure of this state. The first excited state is separated just by 54 keV, see Fig. \ref{fig:levels}. According to shell model calculations with Brown-Wildenthal USDB Hamiltonian \cite{26}, this can be expected to be an \(s \)-wave \(1/2^+ \) state. For such a situation of practically degenerated \(s \) and \(d \)-wave states in \(^{29}\text{Mg} \), one may expect a strong modification of the level scheme due to the Thomas-Ehrman effect \cite{27,28}, which can be evaluated by using a simple potential model.

There are two major parameters, which controls the Coulomb displacement energies of nucleons in the potential model: (i) the charge radius of the core nucleus, which is a major characteristic of the charge distribution, and (ii) the radius parameter of the potential, which controls the nucleon orbital size. For the \(2^8\text{S}-p \) channel, the Woods-Saxon potential is used with two parameter sets, see Table \ref{tab:parameters}. The first set (P1 and P2 cases) is quite typical for light nuclei, it was also employed in the work on \(2p \) radioactivity \cite{29}. The second set (P3–P5) uses potential parameters of a global parameterization destined to obtain single-particle states for shell-model calculations \cite{30}. The charge radius of \(^{29}\text{S} \) is not known but can be extrapolated using the known values for \(^{32-36}\text{S} \) \cite{31}, which are in the range 3.26–3.30 fm. We consider the range \(r_{ch} = 3.18–3.26 \) fm as a realistic value for \(^{28}\text{S} \). For each nuclear potential set we use the upper and lower charge radius values (see Table \ref{tab:parameters}) to define the Coulomb potential of the homogeneously charged sphere of radius \(r_{sp} \) by the following expression

\[
r_{sp}^2 = \left(\frac{5}{3} \right) \left[r_{ch}^2 + r_{ch}(p)^2 \right].
\]

where \(r_{ch}(p) = 0.8 \) fm is the proton charge radius. The obtained \(Q_p \) values are in the range 1.69 – 1.79 MeV.

Table I: The odd-even staggering energy in \(^{30}\text{Ar} \) calculated under different assumptions about proton and two-proton decay energies in \(^{29}\text{Cl} \) and \(^{30}\text{Ar} \).

	Expected	P1	P2	P3	P4
\(Q_{2p}(^{30}\text{Ar}) \)	1.4	1.4	1.4	1.4	2.45
\(Q_p(^{29}\text{Cl}) \)	0.6	0.8	1.8	1.8	1.8
\(2E_{\text{OES}} \)	0.9–1.6	-0.2	0.2	2.2	1.15
which is consistent with the prescription of $Q_p = 1.8$ MeV for the peak denoted “(1)" in Fig. 9 in order to correspond to 29Cl ground state.

One may evaluate how strongly should one modify the potential model input to obtain $Q_p = 0.8$ MeV or $Q_p = 0.6$ which is required to associate the 1.4 MeV peak “A” with the 30Ar g.s. The P5 case in Table III shows how large should be the charge radius of 28S in order to get the Q_p value within the above-mentioned range. It is found that a value as large as $r_{ch} > 5$ fm is needed. However, charge radii as large as 5 fm become available for nuclei heavier than neodymium and mass numbers twice larger than that of 30Ar. Thus the decay energies $Q_p \sim 0.6-0.8$ MeV are unrealistic for 29Cl.

The 29Mg ground $3/2^+$ state and the 1.638 keV state (which may be assumed to be $5/2^+$ according to shell model calculations) belong to a d-wave doublet (it will be shown below that the actual situation may be more complicated, see discussion in Sec. V D). The states with such a structure have considerably larger (~ 0.5 MeV) Coulomb displacement energies in comparison with the s-wave $1/2^+$ state, see Fig. 10 and thus they provide different level ordering in 29Cl compared to 29Mg. Then the $3/2^+$ prescription for peak “(2)” with $Q_p = 2.3$ MeV, and the $5/2^+$ prescription for peak “(4)” with $Q_p = 3.5$ MeV are possible as well (see Fig. 9).

Fig. 10 shows the level scheme of 30Ar compared to that of the isobaric mirror partner 30Mg. There is an important difference in these schemes, which could be an evidence for strong Thomas-Ehrman effect in this isobaric mirror pair as well. Another origin could be a quite specific structure of the first excited state in 30Ar, as it is argued in Sec. V D.

C. Transition dynamics of 30Ar ground state decay

As we have shown above, the assignment of peak “B” in Fig. 7 to 30Ar ground state is plausible from the point of view of different energy systematics. However, the corresponding 28S-p angular correlations of this peak [see Fig. 5 (b)] show the pattern which we first found problematic to interpret. There is neither a single narrow “central” peak, typical for “true” 2p emission, nor a double (or other even-number) peak structure associated with the sequential emission of protons. Estimates of

| TABLE II: Parameters of the 28S-p potentials for $1/2^+$ state. On the neutron-rich side of the isobar these potentials exactly reproduce the neutron separation energy $S_n = 3.601$ MeV for the 29Mg first excited state. |
|-----------------|-----|-----|-----|-----|
| | P1 | P2 | P3 | P4 | P5 |
| r_0, a, fm | 1.2 | 1.2 | 1.26| 1.26| 1.662|
| r_{ch}, fm | 3.18| 3.26| 3.18| 3.26| 5.0 |
| U_0, MeV | −41.86 | −41.86 | −38.836 | 0.818 |
| Q_p, MeV | 1.785 | 1.755 | 1.715 | 1.685 | 0.818 |

Ref. [12] demonstrated that the natural explanation of this fact is connected with the peculiar “transitional" decay dynamics which is exactly on the borderline between “true” 2p and sequential 2p decay. The behavior of physical observables in such a “transitional" region demonstrates features analogous to phase transitions. Namely there is a very high sensitivity of observables to minor variations of parameters. The parameters of nuclear decays are not subject of free variation from outside like in phase transitions considered e.g. in thermodynamics. However, if our system of interest appears to belong to “transitional" decay dynamics case, then strong sensitivity to parameters paves the way to precise determination of parameters (or some of their combinations) based on observables.

Transitions between different regimes of three-body decays have been discussed in detail in Ref. [13]. There exist three distinct mechanisms of such decays — "true", democratic, and sequential — which all are characterized by the distinct pictures of three-body correlations and different systematic of the lifetimes Ref. [24]. In the most common case the transitions between these regimes are defined by three parameters: three-body decay energy $Q_{2p}(A)$, two-body decay energy of the ground state in the core-p subsystem $Q_p(A-1)$, and the width of the core-p ground state resonance $\Gamma_r(A-1)$. Qualitative illustration of the transition phenomenon in the three-body systems is provided in Fig. [12].

FIG. 11: Level schemes of 29Cl and 30Ar compared with schemes of isobaric mirror partners. Shell-model predictions (labeled with SM USD) for 29Mg and results of a cluster potential model (labeled with Cluster) for 29Cl are compared with the experimental data. The energies of 29Cl are shown relative to the $1p$ threshold. The energies of 29Mg states were shifted down by 3.655 MeV in order to compare them with the mirror states in 29Cl.

Based on the direct-decay model which was improved in the content of the present work, theoretical and simulation studies of the 30Ar 2p decay dependence on three general decay parameters have been performed in [12]. The strong dependence of lifetime systematics in the transition region on the parameter values is illustrated in Fig. [13]. The lifetime curves demonstrate a kink at the transition situation. This kink is more expressed for
small values of the two-body widths. Different curves are evaluated based on different assumption about proton width of the 29Cl g.s. The gap between lifetime curves is much larger in the true 2p decay part of the plots. This is connected with the fact that the sequential 2p decay width linearly depends on the 1p 29Cl g.s. width, while the true 2p decay width depend on that quadratically. Consequently, a stronger kink for smaller 1p width values is needed to compensate for this effect in the transition region.

The observables, which were found of considerable practical interest in the context of the present work, are three-body correlations among the heavy fragment and the protons. Fig. 12 (a) displays the calculated energy distributions between the 28S and one of the emitted protons. In the calculations, the resonant energy of 29Cl g.s., $Q_p^{(29Cl)}$, is set to 1.8 MeV and the $\Gamma^{(29Cl)}$ is fixed at 92 keV. One may clearly see that the shape and width of the spectrum profile change dramatically with the variation of $Q_{2p}^{(30Ar)}$, which represents a strong sensitivity of the decay mechanism to the $Q_{2p}^{(30Ar)}$. In the case of small $Q_{2p}^{(30Ar)}$, e.g., 2.35 MeV, the energy distribution between 28S and proton [blue dashed curve in Fig. 12 (a)] is mainly characterized by a bell-like spectrum centered at $\varepsilon = 0.5$, which indicates the true 2p decay. In contrast, the spectrum with a bit larger $Q_{2p}^{(30Ar)}$ value [e.g., $Q_{2p}^{(30Ar)} = 2.50$ MeV, the green dashed-dotted curve in Fig. 12 (a)] is mainly featured by a double-peak pattern (with two peaks at $\varepsilon = 0.75$ and at $\varepsilon = 0.25$), which typically corresponds to the sequential 2p emission. Therefore, the correlation pattern is extremely sensitive to calculation parameters, where small variations of $Q_{2p}^{(30Ar)}$ cause dramatic changes of the shapes of distributions. Similarly, the sensitivity of the energy distribution to $\Gamma^{(29Cl)}$ was also investigated. The corresponding results are shown in Fig. 12 (b). Here $Q_{2p}^{(30Ar)} = 2.45$ MeV and $Q_p^{(29Cl)} = 1.8$ MeV. With the increase of $\Gamma^{(29Cl)}$, an obvious change from a sequential two-body decay case to a true three-body decay situation can be observed.

In order to compare the model predictions of the 28S-p angular correlations with the experimental data, Monte Carlo simulations of the detector response to the 2p decay of 30Ar g.s. were performed. The momenta of three decay products used in the simulations were taken from the predictions of the direct decay model [13]. The corresponding results are shown in panels (c) and (d) of Fig. 13 which illustrate the dependence of the simulated $\theta_{S,p}$ spectrum on $Q_{2p}^{(30Ar)}$ and $\Gamma^{(29Cl)}$, respectively. In comparison of experimental $\theta_{S,p}$ distribution (grey histogram with statistical uncertainties) and various simulations, the model prediction with $Q_{2p} = 2.45$ MeV and $\Gamma^{(29Cl)} = 92$ keV (black solid curves in panels (c) and (d) of Fig. 13) reproduces the data.
FIG. 14: (Color online) Transition from the true-2p decay mechanism to the sequential proton emission mechanism of 30Ar ground state. (a) Energy distribution between core and one of the protons calculated by employing improved direct decay model [13], where the 2p-decay energy of 30Ar is varied. (b) Same as (a) but with variation of the width of 29Cl g.s. In the panels (c) and (d), the experimental θ_{sp} distribution measured for the decay of 30Ar g.s. (grey histogram with statistical uncertainties) is compared with those stemming from respective theoretical distributions in panels (a) and (b) after experimental bias is taken into account via Monte Carlo simulations.

The sensitivity of energy distributions of decay products to reasonable combinations of the parameters $\{Q_{2p}(^{30}\text{Ar}), Q_{p}(^{29}\text{Cl}), \Gamma_r(^{29}\text{Cl})\}$ was systematically investigated in [13]. A statistical analysis allowed to find the preferable combination of three parameters: $Q_{2p}(^{30}\text{Ar}) = 2.45^{+0.05}_{-0.10}$ MeV and $Q_{p}(^{29}\text{Cl}) = 1.8 \pm 0.1$ MeV, $\Gamma_r(^{29}\text{Cl}) = 85 \pm 30$ keV. The result $Q_{2p}(^{30}\text{Ar}) = 2.45^{+0.05}_{-0.10}$ MeV is somewhat different compared to the first-reported value $Q_{2p}(^{30}\text{Ar}) = 2.25^{+0.15}_{-0.10}$ MeV from Ref. [12], but consistent within the error bars. The determination of the width $\Gamma(^{29}\text{Cl})$ in an indirect way, based on the ^{30}Ar correlation data, should be regarded as a novel result of the proposed approach.

Three aspects of the current analysis should be emphasized. (i) The current studies were performed based on the data with quite limited statistics. Just fact of such opportunity is already very encouraging. Thus they should be regarded more as a proof-of-concept rather than a final result. It was not evident in advance that differences in the observed patterns would be sufficient to put restrictions on the physical parameters. (ii) It is demonstrated that the method is working even utilizing kinematically very limited information (angular distributions in the (heavy ion)-p channel. The application of the method to complete kinematics where the momenta vectors of all outgoing decay products are measured, should produce results of higher precision. (iii) To perform width measurements, standard experiments with quite high statistics are required. For example, the determination of $\Gamma(^{29}\text{Cl})$ in a standard RIB experiment on resonance scattering of ^{28}S on a hydrogen target would require the availability of a quite intense ^{28}S beam and registration of hundreds or thousands of decay events. The sensitivity of the proposed method even for low statistics can be understood as a result of kind of “quantum amplification”: the observed spectrum is not ^{29}Cl spectrum by itself, but the result of interference of ^{29}Cl decay amplitudes with other amplitudes involved in ^{30}Ar decay.

D. Structure of the first excited states in ^{29}Cl and ^{30}Ar

It was mentioned in Sec. VA that it could be reasonable to assume that the 1.4 MeV “A” structure in Fig. 8 is connected with 2p emission from the first excited (probably 2+) ^{30}Ar state into the first excited state of ^{28}S (2+ at 1.507 MeV, see Fig. 10). We demonstrate in this section that such an assumption leads to strong restrictions on the structure of the first excited states both in ^{29}Cl and ^{30}Ar as well as to a consistent description of the decay scheme for the low-lying states in ^{29}Cl and ^{30}Ar.

Within the above assumption one may associate the whole feeding to the peak “A” with the decay sequence

$$^{30}\text{Ar}(2.9) \rightarrow ^{29}\text{Cl}(2.3) \rightarrow ^{28}\text{S}(1.5),$$

while about 3/4 of the peak “C” corresponds to the sequence

$$^{30}\text{Ar}(2.9) \rightarrow ^{29}\text{Cl}(2.3) \rightarrow ^{28}\text{S}(0).$$

If one compares population intensities in Fig. 8 (a) and (c), then the sequence (2) is about 2 times more intense than sequence (3). If one sticks to the 3/2+ prescription for the 2.3 MeV ^{29}Cl state then the structure of its wave function (WF) can be schematically presented as

$$\Psi_{29\text{Cl}}(3/2^+) = \tilde{\alpha}\Psi_{28\text{S}(0^+)}[d_{1/2}^\dagger + \tilde{\beta}\Psi_{28\text{S}(2^+)}[s]_{1/2} + \tilde{\gamma}\Psi_{28\text{S}(2^+)}[d_{3/2}] .$$

The estimate of the penetration factors $P_d(E)$ provides the ratio

$$P_d(2.3) / P_s(0.9) \approx 15 - 25 .$$

This means that the $\tilde{\beta}$ coefficient should be as large as 0.86 - 0.93. Therefore, the structure of the first excited state of ^{29}Cl is totally dominated by the WF component with the ^{28}S subsystem in the 2+ state (the availability of some $\tilde{\gamma}$ terms can only increase the above estimate).

Next we must check whether this assumption is consistent with the decay scheme of 2.9 MeV state of
For the decay of the $E_T = 2.9$ MeV state there are two branches: (i) via the 1.8 MeV g.s. of 29Cl (assumed to be $1/2^+$) and (ii) via the 2.3 MeV state of 29Cl (assumed to be $3/2^+$). These branches are populated with a ratio around 3:1, see Fig. 8(c). Let’s assume that $E_T = 2.9$ MeV is a 2^+ state. In a schematic notation the 2^+ state WF can be represented as

$$
\Psi_{29\text{Ar}}(2^+) = \alpha \Psi_{28\text{S}}(0^+)[sd]_2 + \beta \Psi_{28\text{S}}(0^+)[d^2]_2 + \gamma \Psi_{28\text{S}}(2^+)[s^2]_0 + \delta \Psi_{28\text{S}}(2^+)[sd]_2 + \epsilon \Psi_{28\text{S}}(2^+)[d^2]_2.
$$

The estimate of penetration factors for the most probable decay branches provides

$$
P_d(1.1)/P_0(0.6) \approx 5 - 8.
$$

To match the observed d/s ratio around 3, one should assume

$$
\frac{\gamma^2 + \delta^2}{\alpha^2 + \beta^2} \approx 3,
$$

which actually means that the weight of the excited 28S configuration in the structure of the 2.9 MeV state of 30Ar is larger than 0.75 (the decay schemes cannot provide information about ϵ coefficient). The large weight of the excited 28S configuration in the structure of this state is also required to explain transitions to the 2.3 MeV state of 29Cl, which is dominated by the excited 28S configuration as well.

The structure of the 29Cl first excited state discussed here seems to contradict the discussion of Sec. V B about Thomas-Ehrman shifts: the valence nucleon can be in a s-wave configuration relative to the core (coefficient β) in Eq. (4). This should produce much smaller TES values. There may be two explanations here. One is that the term with $\hat{\gamma}$ is dominant in the structure of the 29Cl $3/2^+$. The other point is that the s-wave component should be much more compact in the WF (9), because the state is more bound (due to the excitation energy of 28S 2^+).

The decay of the $E_T = 3.4$ MeV state via the 1.8 MeV g.s. of 29Cl is dominant, while the decay path via the 2.3 MeV state is suppressed. This situation is naturally explained by the assumption that the 0^+_2 state decays via the $1/2^+$ g.s. of 29Cl by the emission of a s-wave proton. The assumption of $0^+, 2^+, \text{ and } 0^+_2$ level ordering in 30Ar is in agreement with the ordering expected from isobaric symmetry based on the 30Mg level scheme, see Fig. 11.

All other possible prescriptions of spins and energies of the $E_T = 2.9$ and $E_T = 3.4$ MeV state fail to describe the overall situation with reasonable physics assumptions.

E. Sequential emission of protons from higher excited states in 30Ar

In order to establish decay mechanisms of the 30Ar states located above the state “C”, we inspected the θ_{S-p} distribution resulting from the decays of such states by imposing the respective arc ρ_θ gates on the 30Ar 2p-decay events. In Fig. 8(d1), the θ_{S-p} spectrum derived from the peak “D1” exhibits a triple-peak structure, in which the middle and the right-most peaks match the 1.8 MeV peak (1) in Fig. 8 and 2.9 MeV peak (3) in Fig. 8 states observed in 29Cl, respectively. Therefore, a natural interpretation for the experimental θ_{S-p} spectrum is the sequential proton emission of the 30Ar state “D1” via the above-mentioned two 29Cl states. To test such an explanation, MC simulations were performed and the resulting θ_{S-p} spectra were compared with the data displayed in Fig. 15(a). There the dashed and dotted curves represent the simulations of the detector response to the 2p decay of the 3.9 MeV 30Ar state via the 29Cl resonances at 1.8 MeV and 2.9 MeV, respectively. The
VI. SUMMARY

The present work has investigated two proton-unbound nuclei 30Ar and 29Cl, which were identified by measuring the trajectories of their in-flight decay products 29S+p+p and 28S+p, respectively.

For calibration purposes, the decays of the previously-known true $2p$ emitter 19Mg were remeasured. The $2p$ radioactivity of the 19Mg ground state and the sequential emission of protons from several known excited states in 19Mg were confirmed. The deduced $2p$ decay energies are consistent with previous data. Evidence for a new excited state in 19Mg at $8.9^{+0.8}_{-0.7}$ MeV above the $2p$ threshold was found. We tentatively suggest that this new 19Mg state decays by sequential emission of protons via two so far unknown 18Na resonances at $2.5^{+0.7}_{-0.3}$ MeV and $4.0^{+1.5}_{-0.6}$ MeV above the $1p$ threshold, respectively.

By analyzing the 28S-p and 28S-p+p angular correlations, the 30Ar g.s. was found to be located at $2.45^{+0.05}_{-0.10}$ MeV above the $2p$-emission threshold and the 29Cl g.s. was found to be 1.8 ± 0.1 MeV above the p-emission threshold. The level and decay schemes of the observed states in 30Ar and 29Cl were reconstructed up to 13 and 6 MeV of excitation respectively.

Several problems relevant to the interpretation of the data were also discussed in this work. These include: Thomas-Ehrman shift in the states of 29Cl and 30Ar; transition character of decay dynamics of the 30Ar g.s. and the possibility to improve the determination of 29Cl and 30Ar ground states properties; evidence for that the structure of the first excited states of 29Cl and 30Ar is dominated by the 28S core in the 2^+ state; decay schemes of higher excited states of 30Ar.

The performed experimental studies are on the edge of modern experimental opportunities. Because of the limited statistics of the data, several issues of the corresponding nuclear structure cannot be elaborated completely, which leaves these aspects for future investigations.

Acknowledgments

This work was supported in part by the Helmholtz International Center for FAIR (HIC for FAIR), the Helmholtz Association (grant IK-RU-002), the Russian Ministry of Education and Science (grant No. NSh-932.2014.2), the Russian Science Foundation (grant No. 17-12-01367), the Polish National Science Center (Contract No. UMO-2011/01/B/ST2/01943), the Polish Ministry of Science and Higher Education (Grant No. 0079/DIA/2014/43, Grant Diamontowy), the Helmholtz-CAS Joint Research Group (grant HCJRG-108), the FPA2009-08848 contract (MICINN, Spain), the Justus-Liebig-Universität Gießen (JLU) and GSI under the JLU-GSI strategic Helmholtz partnership agreement. This article is a part of PhD thesis of X.-D. Xu. The authors acknowledge the help of D. Kostyleva in the preparation of the manuscript.

[1] V. Goldansky, Nucl. Phys. 19, 482 (1960).
[2] M. Pfützner, et al., Eur. Phys. J. A 14, 279 (2002).
[3] J. Giovinazzo, et al., Phys. Rev. Lett. 89, 102501 (2002).
[4] B. Blank, et al., Phys. Rev. Lett. 94, 232501 (2005).
FIG. 16: (Color online) Angular $\theta_{S,p}$ distributions reflecting the decays of several excited states in ^{30}Ar. (a) $2p$ decays selected by the ρ gate “E”, $81.5 < \rho < 93.5$ mrad. The simulation of sequential $2p$ emission from the ^{30}Ar e.s at 5.6 MeV via the 3.5 MeV (dashed curve) and the 2.9 MeV (dotted curve) states in ^{29}Cl is depicted by the solid curve. (b) $2p$ decays of excited state in ^{30}Ar selected by the ρ gate “F1”, $93.5 < \rho < 108.0$ mrad. The dashed and dotted curves are the $\theta_{S,p}$ distributions obtained by simulations of $2p$ emission of the ^{30}Ar state at 7.9 MeV via two ^{29}Cl states at 3.9 MeV and 2.9 MeV, respectively. The solid curve represents the summed fit. (c) Data obtained by imposing the ρ gate “F2”, $108.0 < \rho < 117.5$ mrad. The solid curve displays the $\theta_{S,p}$ spectrum obtained from the simulation of sequential proton ejection from the 9.4 MeV ^{30}Ar excited state via the ^{29}Cl resonance at 3.5 MeV. (d) The $2p$ decays selected by the ρ gate “G”, $120.0 < \rho < 132.0$ mrad. The solid curve shows the simulation of sequential $2p$ emission of the ^{30}Ar excited state at 12.6 MeV via the ^{29}Cl states at 3.5 MeV (dashed curve) and 5.3 MeV (dotted curve), respectively.

[5] I. Mukha, et al., Phys. Rev. Lett. 99, 182501 (2007).
[6] M. Pomorski, et al., Phys. Rev. C 83, 061303 (2011).
[7] T. Goigoux, et al., Phys. Rev. Lett. 117, 162501 (2016).
[8] L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C 68, 054005 (2003).
[9] I. Mukha, et al., Phys. Rev. C 82, 054315 (2010).
[10] P. Voss, et al., Phys. Rev. C 90, 014301 (2014).
[11] E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac, Phys. Rev. Lett. 110, 222501 (2013).
[12] I. Mukha, et al., Phys. Rev. Lett. 115, 202501 (2015).
[13] T. Golubkova, X.-D. Xu, L. Grigorenko, I. Mukha, C. Scheidenberger, and M. Zhukov, Phys. Lett. B 762, 263 (2016).
[14] H. Geissel, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 70, 286 (1992).
[15] M. Berz, H. Hoffmann, and H. Wolnik, Nucl. Instrum. Methods Phys. Res. A 258, 402 (1987).
[16] URL http://web-docs.gsi.de/~weick/gicosy/.
[17] M. Stanoiu, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 266, 4625 (2008).
[18] X.-D. Xu, Ph.D. thesis, Justus-Liebig-Universität, Gießen (2016).
[19] I. Mukha, et al., Phys. Rev. C 85, 044325 (2012).
[20] H. T. Fortune and R. Sherr, Phys. Rev. C 76, 014313 (2007).
[21] M. S. Basunia, Nucl. Data Sheets 114, 1189 (2013).
[22] K. W. Brown, et al., Phys. Rev. C 92, 034329 (2015).
[23] Y. Kondo, et al., Phys. Rev. Lett. 116, 102503 (2016).
[24] E. Comay, I. Kelson, and A. Zidon, Phys. Lett. B 210, 31 (1988).
[25] URL http://www.nndc.bnl.gov.
[26] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
[27] R. G. Thomas, Phys. Rev. 88, 1109 (1952).
[28] J. B. Ehrman, Phys. Rev. 81, 412 (1951).
[29] M. Pfützner, M. Karny, L. V. Grigorenko, and K. Rösager, Rev. Mod. Phys. 84, 567 (2012).
[30] N. Schwier, I. Wiedenhover, and I. A. Volya, arXiv: 0709.3525 (2007).
[31] I. Angeli and K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).