Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Development of an easy and rapid analytical method for the extraction and preconcentration of chloroquine phosphate from human biofluids prior to GC–MS analysis

Süleyman Bodur a, Sezin Erarpat a, Ömer Tahir Günkara a, Sezgin Bakırdere a,b,∗

a Department of Chemistry, Faculty of Art and Science, Yildiz Technical University, Davutpasa, Esenler, Istanbul 34210, Turkey
b Turkish Academy of Sciences (TÜBA), Piyade Street No: 27, Çankaya, Ankara 06690, Turkey

ARTICLE INFO

Keywords:
Biological samples
Chloroquine phosphate
Liquid phase microextraction
Magnetic solid phase extraction
Gas chromatography–mass spectrometry

ABSTRACT

A vortex assisted spraying based fine droplet formation liquid phase microextraction (VA-SFDF-LPME) method was developed to determine chloroquine phosphate at trace levels in human serum, urine and saliva samples by gas chromatography–mass spectrometry (GC–MS) with single quadrupole mass analyzer. In the first part, several liquid phase microextraction (LPME) and magnetic solid phase extraction (MSPE) methods were compared to each other in order to observe their extraction ability for the analyte. VA-SFDF-LPME method was selected as an efficient and easy extraction method due to its higher extraction efficiency. Optimization studies were carried out for the parameters such as extraction solvent type, sodium hydroxide volume/concentration, sample volume, spraying number and mixing type/period. Tukey’s method based on post hoc test was applied to all experimental data for the selection of optimum values. Optimum extraction parameters were found to be 12 mL initial sample volume, two sprays of dichloromethane, 0.75 mL of 60 g/kg sodium hydroxide and 15 s vortex. Under the optimum conditions, limit of detection and quantification (LOD and LOQ) were calculated as 2.8 and 9.2 μg/kg, respectively. Detection power of the GC–MS system was increased by approximately 317 folds with the developed extraction/preconcentration method. The applicability and accuracy of the proposed method was evaluated by spiking experiments and percent recovery results for human urine, serum and saliva samples were found in the range of 90.9% and 114.0% with low standard deviation values (1.9–9.4).

1. Introduction

The coronavirus (COVID-19) disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread worldwide and ruined the health system especially in developing countries (Sunkari, Korboe, Abu, & Kizildenz, 2020). The disease infects people by the direct contact of infected individuals, contaminated surfaces/wastes, airborne/respiratory droplets and fecal-oral routes (Heller, Mota, & Greco, 2020; Kitajima et al., 2020; Patricio Silva et al., 2021). Up to now, millions of people have been infected by the COVID-19 disease and death toll is still on the rise (Chandra, Verma, Singh, Jain, & Netam, 2021; COVID-19 Map - Johns Hopkins Coronavirus Resource Center, 2020). There are several antiviral drugs to fight against COVID-19 and its symptoms. Chloroquine with its antiviral property is known as one of candidate drugs used in the treatment of the disease (Costanzo, De Giglio, & Rovitiello, 2020). According to in vitro studies, SARS-CoV-2 was inhibited by using chloroquine chemical (Devaux, Rolain, Colson, & Raoult, 2020; Li, Geng, Peng, Meng, & Lu, 2020; Wang et al., 2020). On the other hand, chloroquine has various adverse effects on human bodies such as retinal toxicity, cardiotoxicity, neurotoxicity, myotoxicity and hypokalemia (Mubagwa, 2020). For these reasons, it is necessary to develop an analytical method for accurate and sensitive determination of chloroquine at trace levels in biological samples to obtain comprehensive evaluation on its detrimental effects and consequences.

In general, gas chromatography and liquid chromatography have been used to separate drugs and non-retained compounds from each other and equipped with proper detector for their instrumental detection (Kar, 2005). Chloroquine has been qualified/quantified by high performance liquid chromatography-ultraviolet detection (HPLC-UV) (Cheeung & Na-Bangchang, 2011), high performance liquid chromatography-fluorescence detection (HPLC-FL) (Samanidou, Evaggelopoulou, & Papadoyannis, 2005), gas chromatography (GC)-nitrogen...
mass spectrometry (LC-TOF-MS) and nuclear magnetic resonance (NMR) spectroscopy (Dongre et al., 2009). Additionally, there is no many studies in literature for the determination of chloroquine by using GC instruments. However, GC systems have higher resolution and peak capacity for complex matrices than LC systems. Moreover, GC hyphenated with MS are named as powerful measurement method for the volatile and semi-volatile compounds (McEwen et al., 2005).

Extraction methods are frequently used to eliminate or decrease matrix effects and preconcentrate the analyte into detectable concentrations (Marchi, Rudaz, & Veuthey, 2009). Several offline extraction and microextraction methods such as solid phase microextraction (SPME) (Beale et al., 2018; Kudlejova, Risticevic, and microextraction methods such as solid phase microextraction (SPME) (McEwen et al., 2005), headspace solid phase microextraction (HS-SPME) (Miekisch, Fuchs, Kamyszek, Neumann, & Schubert, 2008), dispersive liquid-liquid microextraction (DLLME) (Jain & Singh, 2016), magnetic solid phase extraction (MSPE) (Kui Li & ping Shi, 2019), switchable-hydrophilicity solvent-liquid microextraction (SLS-LLME) (Ahmar, Nejati-Yazdinejad, Najafi, & Hasheminasab, 2018; Alshama, Hassan, Al-Nidawi, Yilmaz, & Soylok, 2020; Shahvandi, Banitaba, & Ahmar, 2018), hollow-fiber liquid-phase microextraction (HF-LPME) (de Bairros et al., 2015), hollow-fiber with drop-to-drop solvent microextraction (HF-DDSME) (Tapadia, Shrivas, & Upadhyay, 2011), ionic liquid-dispersive liquid-liquid microextraction combined with micro-solid phase extraction (IL-DLLME-μ-SPE) (Ge & Lee, 2013), ultrasound-enhanced air-assisted liquid-liquid microextraction (USE-AALLME) (Barfi et al., 2015) and molecularly imprinted solid-phase microextraction (MISPME) (Ansari & Karimi, 2017) have been employed to extract and preconcentrate different drugs prior to their qualification/ quantification with proper instruments. In DLLME method, a dispersive solvent is used to efficiently disperse the extraction solvent into the aqueous solution (Assadi, Farajzadeh, & Bidari, 2012; Przyjazny, 2019; Sajid, 2018). However, the usage of dispersive solvent in the microextraction procedure causes to high solvent consumption and waste. For this reason, air-assisted liquid phase microextraction methods have been introduced to decrease or eliminate the dispersive solvent (Campillo, Gavazov, Vinas, Hagarova, & Andruch, 2020; Farajzadeh, Mohhebi, Pazhohan, Nematii, & Afshar Mogaddam, 2020). One study published by Dikmen et al. presented spraying based fine droplet formation liquid phase microextraction (SPDF-LPME) as a rapid and simple microextraction method for the extraction and preconcentration of a pesticide without dispersive solvent (Dikmen et al., 2020).

The object of this study was to develop a sensitive analytical method for trace determination of chloroquine phosphate in human urine, saliva and serum samples. In the determination, vortex assisted spraying based fine droplet formation liquid phase microextraction prior to GC-MS system was employed to preconcentrate the analyte. Influential parameters on the VA-SFDF-LPME method was fully optimized by univariate optimization approach. After the analytical performance studies, spiking experiments were performed in human urine, serum and saliva samples in an effort to ascertain the accuracy and applicability of the proposed method.

2. Experimental section

2.1. Chemicals and reagents

Chloroquine phosphate (99.4%) was supplied from Abdi Ibrahim pharmaceutical company (Istanbul, Turkey). Dichloromethane, 1,2-dichloroethane and ammonium hydroxide were purchased from Merck (Darmstadt, Germany). Chloroform, acetonitrile and ethanol were obtained from Isolab Laborgerite GmbH Chemicals (Eschau, Germany). Sodium hydroxide (98%) was supplied from Ak Kimya (Yalova, Turkey). Ultrapure water produced by Elga Flex 3 Water Purification System (High Wycombe, United Kingdom) was used during all sample/standard preparation and cleaning processes.

2.2. Instrumentation

Chromatographic separation of the analyte was performed on an Agilent 6890 gas chromatograph equipped with an HPSMS column (30 m length, 0.25 mm internal diameter and 0.25 μm film thickness). An Agilent 5973 mass selective detector with a single quadrupole was interfaced to GC system for the qualitative/quantitative determination of chloroquine. The analytical conditions of the GC-MS system were as follows: inlet temperature 290 °C; helium as the carrier gas at 3.0 mL/min; injection volume, 1.0 μL; injection mode, splitless; ionization voltage, 70 eV; MS source temperature, 230 °C; MS quadrupole temperature, 150 °C; transfer line temperature, 280 °C. A ramp temperature program consisting of an initial 120 °C was increased to 260 °C (60 °C/min) and held for 4.0 min. The second ramp was to 300 °C at the rate of 60 °C/min. Qualifier/quantifier ions and retention time for chloroquine were 319/86 m/z and 5.58 min, respectively.

An analytical balance (OHAUS PA214C) with a resolution of 0.1 mg was used throughout all sample/standard preparations. A vortex mixer supplied from IsoLab Laborgerite GmbH (Germany) was used for all mixing purposes. A centrifuge (Hettich-EBA20) was used to achieve distinct phase separation in the developed microextraction method.

2.3. Microextraction procedure

Sodium hydroxide (0.75 mL, 60 g/kg) was added into 12.0 mL sample/standard solution in order to remove phosphate ion found in the analyte structure. A spray bottle containing dichloromethane as the extraction solvent was connected to the centrifuge tube by a screw cap with a center hole. Next, the centrifuge tube was over turned and the extraction solvent was sprayed into the aqueous solution two times. The sprayed aqueous solution was then vortexed for 15.0 s to assist the analyte mass transfer from the aqueous phase to the extraction solvent. In order to facilitate the organic phase separation, the aqueous solution was centrifuged at 3461g for two minutes. The organic phase was transferred into a clean vial with the help of a microliter pipette and sent to the GC-MS system by an automatic liquid sampler. The repeatability of spray system was tested by gravimetric measurements. For this purpose, dichloromethane was sprayed two times with the help of spray system into three separate empty tubes. The mean value of dichloromethane sprayed was calculated as 0.281 ± 0.06 g corresponding to 211.6 ± 4.2 μL that was converted by using the density of dichloromethane.

In the experiments, all standard and sample solutions were prepared by gravimetric approach that has more accuracy and precision than the volumetric one.

2.4. Human urine, serum, and saliva samples

All biological samples were obtained from volunteers in our research laboratory. Protein precipitation was applied to all samples before applying the developed microextraction method.

In spiking experiments, human urine sample (2.33 g) was firstly spiked to desired concentration and alkaliﬁed by 0.95 g concentrated ammonium hydroxide. Acetonitrile (3.30 g) was added into the urine sample to precipitate protein ingredient in the sample and then diluted to 7.0 g with ultrapure water. After the protein precipitation, centrifugation process at 4420 g for 5.0 min was applied to the sample for the
3. Results and discussion

In this study, SFDF-LPME, DLLME and SHS-LPME methods were tried to compare their ability to preconcentrate the analyte from the aqueous solution. All experiments in Section 2.6 were done for the selected liquid phase microextraction methods. According to the results demonstrated in Fig. 1, the SFDF-LPME method is the best liquid based microextraction method among the tested ones. In addition, this method had different results according to ANOVA results at 95% confidence level. It is also clear that it had several benefits such as simplicity, cheapness, low solvent consumption and easy operability if compared to the SHS-LLME method having the second highest peak area.

MSPE was also tried to test its performance on the extraction/preconcentration of the analyte. However, no detectable signal was obtained for all type of nanoparticles. This result proved that the SFDF-LPME method was an efficient microextraction method for target analyte due to its high peak areas.
3.2. Optimization studies for the VA-SFDF-LPME method

First attempt to optimize the VA-SFDF-LPME method was the selection of extraction solvent. It is important to choose an ideal extraction solvent for the liquid based microextraction methods because it should have different density, water immiscibility and be capable of the pre-concentration of the analyte (Psillakis & Kalogerakis, 2002). Three halogenated solvents (chloroform, dichloromethane and 1,2-dichloroethane) were selected for this optimization. As can be seen in Fig. 2, all halogenated solvents gave different peak areas with low standard deviation values (≤10%). Dichloromethane was chosen as the optimum extraction solvent due to its maximum peak areas. Its experimental results were also statistically different from chloroform and 1,2-dichloroethane at 95% confidence interval.

In literature, DLLME is one the most used preconcentration methods for the determination of several organic and inorganic analytes. The key point in this method is to distribute the extraction solvent through the aqueous solution with the aid of a dispersive solvent that possess miscibility in both water and organic phases (Rutkowska, Plotka-Wasylka, Sajid, & Andruch, 2019). In spite of its high extraction efficiency and rapid equilibrium between the extraction solvent and aqueous phase, the requirement for the dispersive solvent results in competition with the extraction solvent for the analyte(s) and decreases the extraction outputs (Przyjazny, 2019). In this study, the selected extraction solvent was introduced into the aqueous solution by the spray system. Hence, dispersion of the extraction solvent into the aqueous solution was achieved without a dispersive solvent. In this optimization, spraying number was investigated between one and three sprays (Fig. 3) because of its effect on the preconcentration factor. According to the integrated peak areas, the best results were obtained when two sprays were applied to the aqueous solution. There was also a gradual decrease in the peak areas resulted from the inverse relationship between the volume of extraction solvent and preconcentration factor. Therefore, two sprays were used for the subsequent experiments.

Mixing is an effective way to enhance the mass transfer of the analyte from the aqueous phase to the extraction solvent. For this purpose, mechanical shaker, vortex and ultrasonication bath were examined to obtain high signal to noise ratios for the analyte. Vortex had slightly
higher peak heights than other mixing types. Its repeatability was also the lowest one when standard deviation values were considered. Hence, mixing with vortex was selected as the optimum one. Further experiments were done for the selection of vortex period. The tested periods were 15, 30, 45, 60 s. In addition, one experiment was performed without vortex mixing to make a comparison with other periods. The optimum period was determined as 15 s due to its high signals, low standard deviation value and statistically significant difference from other periods.

It is well known that initial volume of the sample is a critical parameter to achieve better results in the extraction of trace analytes from the aqueous samples (Soylak & Uzcan, 2020). Three different initial volumes of chloroquine standard solution (8.0, 10.0 and 12.0 mL) were tested to increase the preconcentration factor of the analyte. As expected, the highest results were recorded for 12.0 mL of sample volume (Fig. 4) which was also the maximum volume to avoid leaking from the screw cap of the centrifuge tube. Therefore, 12.0 mL was used as the initial sample volume for the further studies.

In this study, sodium hydroxide was used to remove phosphate ion from the analyte since there was no signal obtained from the analyte extraction without sodium hydroxide. However, sodium hydroxide concentration and volume can positively or negatively affect the analyte extraction and purification. Several concentrations of sodium hydroxide in the range of 20 and 80 g/kg were investigated to assess its effects on the developed method. Similar results were recorded for 20 and 40 g/kg of sodium hydroxide while 60 and 80 g/kg gave approximately 18% higher signals than the lower concentration values. Based on the peak areas, 60 g/kg was chosen as the optimum value to eliminate phosphate ions from the analyte.

Sodium hydroxide volume was also adjusted to its optimum value because its higher volumes could lead to excess dilution of the sample. 12.0 mL sample solutions with different volumes of sodium hydroxide between 0.25 and 1.0 mL were individually tested to determine the optimum volume. According to the ANOVA results, all volumes had similar results at 95% confidence interval. Although 0.25 mL had the highest peak areas, 0.75 mL was chosen as the optimum one because 0.25 mL gave higher standard deviation value.

3.3. Analytical figures of merit and recovery studies

A series of standard solutions containing different concentrations of the analyte was gravimetrically prepared and analyzed by the GC–MS system. The linearity of the analyte was achieved between 3.8 and 77.3 mg/kg with 0.9991 coefficient of determination value. Limit of detection and quantitation (LOD and LOQ) for the aqueous standard solution were found to be 0.9 and 2.9 mg/kg, respectively. The developed VA-SFDF-LPME-GC–MS method was also evaluated in terms of linearity,

![Fig. 4. Optimization of initial sample volume.](image)

Method	LOD\(^a\)	LOQ\(^a\)	Linear range	Coefficient of determination, \(R^2\)	Reference
LC-MS/MS\(^c\)	2.9 mg/kg	3.8–77.3 ng/kg	0.999	(Manafi, Khezeli, & Manafi, 2009)	
SDF-LPME-GC-MS\(^d\)	2.8 µg/kg	9.9–1003.9 µg/kg	0.9996	(Daneshfar, Khezeli, & Manafi, 2009)	
HPLC-UV/Vis\(^e\)	50 ng/mL	20–5000 ng/mL	0.9995	(Lejeune et al., 2007)	
HPLC-UV\(^f\)	0.3 µg/L	1.0–200 µg/L	0.9999	(Gallay et al., 2018)	
GC-NSD\(^g\)	5.0 ng/mL	–	0.9999	(Churchill et al., 1983)	

\(^a\) LOD: Limit of detection.
\(^b\) LOQ: Limit of quantification.
\(^c\) GC-MS: Gas chromatography-mass spectrometry.
\(^d\) VA-SFDF-LPME-GC-MS: Vortex assisted spraying based fine droplet formation liquid phase microextraction-gas chromatography-mass spectrometry.
\(^e\) LC-MS/MS: Liquid chromatography/tandem mass spectrometry.
\(^f\) HPLC: High performance liquid chromatography-UV/VIS detection.
\(^g\) GC-NSD: Gas chromatography-nitrogen selective detection.
μ–9.9 and LOQ for the aqueous standard solution were calculated as LOD and LOQ values. Under the optimum conditions, linear range, LOD and LOQ values for the analyte.

Table 2

Sample	Concentration, µg/kg	External calibration method, Recovery% ± SD	Matrix matching method, Recovery% ± SD
Human serum	57.8	44.8 ± 2.8	90.9 ± 5.6
Human urine	112.5	50.9 ± 1.3	107.2 ± 2.8
Human saliva	72.0	49.1 ± 1.2	102.0 ± 2.4
Human urine	110.5	75.5 ± 2.5	114.0 ± 3.8
Human saliva	110.8	44.0 ± 3.8	102.4 ± 8.8
Human urine	188.7	64.9 ± 1.2	101.5 ± 1.9
Human saliva	268.7	46.0 ± 3.1	101.5 ± 6.9
Human urine	268.8	47.3 ± 4.4	102.3 ± 9.4

Percent recovery results obtained for human urine, serum and saliva samples.

Table 2

Sample	Concentration, µg/kg	External calibration method, Recovery% ± SD	Matrix matching method, Recovery% ± SD
Human serum	57.8	44.8 ± 2.8	90.9 ± 5.6
Human urine	112.5	50.9 ± 1.3	107.2 ± 2.8
Human saliva	72.0	49.1 ± 1.2	102.0 ± 2.4
Human urine	110.5	75.5 ± 2.5	114.0 ± 3.8
Human saliva	110.8	44.0 ± 3.8	102.4 ± 8.8
Human urine	188.7	64.9 ± 1.2	101.5 ± 1.9
Human saliva	268.7	46.0 ± 3.1	101.5 ± 6.9
Human urine	268.8	47.3 ± 4.4	102.3 ± 9.4

Uncertainties (±): Standard deviation for n = 3.

LOD and LOQ values. Under the optimum conditions, linear range, LOD and LOQ for the aqueous standard solution were calculated as 9.9–1003.9, 2.8 and 9.2 µg/kg, respectively. If all dilution processes in Section 2.4 is used, LOD/LOQ values for human serum, urine and saliva samples were calculated as 141.6/471.9, 106.6/355.4 and 144.0/480.0 µg/kg, respectively. The analytical results are given in Table 1.

The developed method enhanced the detection power of GC–MS system by 317 times for target analyte calculated by dividing LOD value of GC–MS to that of VA-SFDF-LPME-GC–MS. This result indicates that trace levels of the analyte were preconcentrated and detected by the proposed VA-SFDF-LPME-GC–MS system. In Table 1, some liquid chromatographic methods such as high performance liquid chromatography (HPLC) (Lejeune et al., 2007), liquid chromatography/tandem mass spectrometry (LC-MS/MS) (Gallay et al., 2018), single drop liquid-liquid microextraction combined with isocratic high performance liquid chromatography with ultraviolet detection (LLLME-HPLC) (Daneshfar et al., 2009) were presented in literature for the determination of chloroquine at trace levels. However, there are limited number of gas chromatographic method to qualify and quantify chloroquine in biological samples. According to the limit of detection values in Table 1, the presented VA-SFDF-LPME-GC–MS method reached very low limit of detection by the help of a simple and rapid microextraction method without expensive and time-consuming methods. In addition, the developed microextraction method can be combined with more sensitive instruments like GC–MS/MS and LC-MS/MS systems to decrease LOD and LOQ values for the analyte.

The optimized VA-SFDF-LPME-GC–MS method was developed using aqueous standard solutions, but it should be evaluated in terms of its applicability to real samples including human urine, serum and saliva. For this reason, recovery experiments were performed to verify applicability and accuracy of the method. First, all samples were treated and preconcentrated according to the procedure detailed in Sections 2.3 and 2.4, respectively. However, all samples gave chromatographic signals below the detection limit. Next, the developed method was applied to the spiked samples. Percent recovery results calculated via external calibration method showed negative matrix effects on the analyte for the samples. In such cases, matrix matching calibration method can be used to compensate the matrix effects because of the similar matrices of calibration standard solutions and real samples. For this purpose, each sample was spiked at five different concentrations and calibration plots for each sample were obtained to quantify the analyte in the spiked samples. Table 2 demonstrates the details of recovery studies.

As given in Table 2, satisfactory recovery results were obtained for human serum (90.9%–107.2%), urine (93.7%–114%) and saliva (97.9%–102.4%) samples with repeatable signals when the matrix matching method was carried out. These results confirmed the method applicability and accuracy for the selected biological samples. Chromatograms obtained from GC–MS for the spiked samples and their blank measurements are given in Fig. 5.

4. Conclusion

In this study, chloroquine was isolated and preconcentrated from the selected biological samples by using a rapid and simple VA-SFDF-LPME-GC–MS method. In addition, several LPME and MSPE methods were...
investigated to get low limit of detection for the analyte. After the univariate optimization studies for the proposed method, LOD/LOQ values were recorded as 2.8/9.2 μg/kg. The LOD value of conventional GC–MS system was enhanced by about 317 folds. The developed method was successfully applied to the spiked biological samples to check the method applicability and accuracy. Satisfactory recovery results for the VA-SDF-LPME-GC–MS system were found in the range of 90.9%–114.0%. Further, the developed microextraction process is finished within 45 s for one sample with low volume organic solvent. It can be concluded that the proposed microextraction method was sensitive and accurate since LOD and LOQ values were at ppb levels and percent recovery results for the biological samples were close to 100%. The developed method can be applied for the preconcentration/extraction of a variety of analytes.

Declaration of Competing Interest
None.

Acknowledgement
This work was supported by Health Institutes of Turkey (TÜSEB). Project Number: 2020CV01-8946. The authors also would like to thank Abdi Ibrahim pharmaceutical company for supplying chloroquine phosphate standard.

References
Ahmar, H., Nejati-Yazdinejad, M., Najafi, M., & Hasheminasab, K. S. (2018). Switchable hydrophilicity solvent-based homogenous liquid-liquid microextraction (SH-cHLLME) combined with GC-FID for the quantification of methadone and tramadol. Chromatographia, 81(7), 1063–1070. https://doi.org/10.1007/s10317-018-1358-y.
Alhama, U., Hassan, M., Al-Nidawi, M., Yilmaz, E., & Soykal, M. (2020). Switchable-hydrophilicity solvent-liquid-liquid microextraction. TrAC, Trends in Analytical Chemistry, 131, Article 116025. https://doi.org/10.1016/j.trac.2020.116025.
Amador-Hernández, J., Fernández-Romero, J. M., & Luque De Castro, M. D. (2001). Continuous determination of chloroquine in plasma by laser-induced photochemical reaction and fluorescence. Analytical and Bioanalytical Chemistry, 369(5), 438–441. https://doi.org/10.1007/s002160000652.
Anvari, S., & Karimi, M. (2017). Recent progress, challenges and trends in trace determination of drug analysis using molecularly implanted solid-phase microextraction technology. Talanta, 164, 612–625 (Elsevier B.V.) https://doi.org/10.1016/j.talanta.2016.11.007.
Assadi, Y., Farajzadeh, M. A., & Bidari, A. (2012). Dispersive liquid-liquid microextraction. Comprehensive Sampling and Sample Preparation, 2, 181–212 (Elsevier B.V.) https://doi.org/10.1016/B978-0-12-381939-8.00015-X.
de Bairros, A. V., de Almeida, R. M., Pantaleo, L., Barcellos, T., Silva, S. M., & Yonamine, M. (2015). Determination of low levels of benzodiazepines and their metabolites in urine by hollow-fiber liquid-phase microextraction (LPME) and gas chromatography mass spectrometry (GC-MS). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 975, 24–33. https://doi.org/10.1016/j.jchromb.2014.10.040.
Barfi, B., Aghbari, A., Rajabi, M., Goochani Moghadam, A., Mirhaki, N., & Ahmadi, F. (2015). Comparison of ultrasound-enhanced assisted liquid-assisted liquid-liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples. Journal of Pharmaceutical and Biomedical Analysis, 111, 297–305. https://doi.org/10.1016/j.jpba.2015.03.034.
Beale, D. J., Finn, F. R., Kourmenos, K. A., Poojary, M. M., Narayana, V. K., Boughton, B. A., ... Dias, D. A. (2018). Review of recent developments in GC-MS approaches to metabonomics-based research. Metabolomics, 14(11), 152 (Springer New York LLC) https://doi.org/10.1007/s11306-018-1449-2.
Boonprasert, R., Sirin, J., Pongprut, P., Chatsiricharoenkul, S., & Chandranuppong, W. (2012). Development of the liquid chromatography tandem mass spectrometry method for determination of chloroquine and desethylchloroquine in human plasma. Siring Medical Journal, 66(2), 47–51. http://www.siritrmedj.com/content.php?content_id=2671.
Campillo, N., Gavazov, K., Višnaj, P., Haga, O., & Andruch, V. (2020). Liquid-liquid microextraction: update May 2016 to December 2018. Applied Spectroscopy Reviews, 55(4), 307–326 (Taylor and Francis Inc) https://doi.org/10.1080/05704928.2019.1604537.
Chandra, T. B., Verma, K., Singh, B. K., Jain, D., & Netam, S. S. (2021). Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble. Expert Systems with Applications, 165, Article 113909. https://doi.org/10.1016/j.eswa.2021.113909.
Cheonmung, A., & Na-Bangchang, K. (2011). HPLC with ultraviolet detection for the determination of chloroquine and desethylchloroquine in whole blood and finger-
S. Bodur et al.

Journal of Pharmacological and Toxicological Methods 108 (2021) 106949

American Society for Mass Spectrometry, 16(11), 1730-1738. https://doi.org/10.1016/j.jasms.2005.07.005.
Miekisch, W., Fuchs, P., Kamysek, S., Neumann, C., & Schubert, J. K. (2008). Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS. Clínica Chímica Acta, 395(1-2), 32-37. https://doi.org/10.1016/j.cca.2008.04.021.
Mubagwa, K. (2020). Cardiac effects and toxicity of chloroquine: A short update. International Journal of Antimicrobial Agents, 56(2), Article 106057. https://doi.org/10.1016/j.ijantimicag.2020.106057.
Patricio Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelo, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, 405, Article 126683 (Elsevier B.V.) https://doi.org/10.1016/j.cej.2020.126683.
Przyjazny, A. (2019). Extraction|Liquid-phase microextraction. Encyclopedia of Analytical Science, 52-62 (Elsevier) https://doi.org/10.1016/B978-0-12-409547-2.12678-2.
Psillakis, E., & Kalogerakis, N. (2002). Developments in single-drop microextraction. TrAC Trends in Analytical Chemistry, 21(1), 54-64. https://doi.org/10.1016/S0165-9936(01)00126-1.
Risticevic, S., Lord, H., Gorecki, T., Arthur, C. L., & Pawliszyn, J. (2010). Protocol for solid-phase microextraction method development. Nature Protocols, 5(1), 122–139. https://doi.org/10.1038/nprot.2009.179.
Rutkowska, M., Plotka-Wasylika, J., Sajid, M., & Andruch, V. (2019). Liquid-phase microextraction: A review of reviews. Microchemical Journal, 149, Article 103989. https://doi.org/10.1016/j.microc.2019.103989.
Sajid, M. (2018). Dispersive liquid-liquid microextraction coupled with derivatization: A review of different modes, applications, and green aspects. TrAC, Trends in Analytical Chemistry, 106, 169–182 (Elsevier B.V.) https://doi.org/10.1016/j.trac.2018.07.009.
Samanidou, V. F., Evaggelopoulos, E. N., & Papadoyannis, I. N. (2005). Simultaneous determination of quinine and chloroquine anti-malarial agents in pharmaceuticals and biological fluids by HPLC and fluorescence detection. Journal of Pharmaceutical and Biomedical Analysis, 38(1), 21–28. https://doi.org/10.1016/j.jpb.2004.12.005.
Shahvandi, S. K., Banitaba, M. H., & Ahmar, H. (2018). Development of a new pH assisted homogeneous liquid-liquid microextraction by a solvent with switchable hydrophilicity: Application for GC-MS determination of methamphetamine. Talanta, 186, 103–108. https://doi.org/10.1016/j.talanta.2018.02.115.
Singhal, P., Gaur, A., Behl, V., Gautam, A., Vardhney, B., Paliwal, J., & Batra, V. (2007). Sensitive and rapid chromatography/tandem mass spectrometric assay for the quantification of chloroquine in dog plasma. Journal of Chromatography B, 852(1-2), 293-299. https://doi.org/10.1016/j.jchromb.2007.01.022.
Soylak, M., & Ucan, F. (2020). A novel ultrasonication-assisted deep eutectic solvent microextraction procedure for tartrazine at trace levels from environmental samples. Journal of the Iranian Chemical Society, 17(2), 461–467. https://doi.org/10.1007/s13738-019-01781-5.
Sunkari, E. D., Korbou, H. M., Abu, M., & Kizildeniz, T. (2020). Sources and routes of SARS-CoV-2 transmission in water systems in Africa: Are there any sustainable remedies? Science of the Total Environment, 753, Article 142298. https://doi.org/10.1016/j.scitotenv.2020.142298.
Tapadia, K., Shrivas, K., & Upadhyay, L. S. B. (2011). GC-MS coupled with hollow-fiber drop-to-drop solvent microextraction for determination of antidepressants drugs in human blood sample. Chromatographia, 74(5-6), 437–442. https://doi.org/10.1007/s10337-011-2096-1.
Viala, A., Deturmeny, E., Estadieu, M., Durand, A., & Cano, J. P. (1981). Determination of chloroquine in blood by gas chromatography with nitrogen-selective detection using an internal standard. Journal of Chromatography B: Biomedical Sciences and Applications, 224(3), 503-506. https://doi.org/10.1016/S0378-4347(00)80228-5.
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., … Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0.