Altered Regulation of Renal Aquaporins and Sodium Transporters in Experimental Chronic Renal Failure

Tae-Hwan Kwon, M.D., Ph.D.
Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea

Chronic renal failure, which has an increased single nephron glomerular filtration rate in remnant kidney, is known to cause characteristic structural alterations in renal tubule epithelia in association with impaired urinary concentration and deranged urinary sodium excretion. This mini-review will deal with the changes in the renal expression of aquaporins (AQPs) and sodium transporters for elucidating the underlying cellular and molecular mechanisms for the urinary abnormalities of decreased urinary concentration and increased urinary sodium excretion.

Key words: Kidney Failure, Chronic, Aquaporins, Membrane transport proteins

Decreased expression of AQP2 in the collecting duct

A major function of the kidney is to regulate body water and sodium balance. This function is achieved and finely regulated by a number of cellular and molecular processes, including tubular reabsorption of water and sodium through renal tubular water channel proteins (aquaporins: AQPs) and/or sodium transporters. Since water can slowly diffuse through lipid bilayers, all biological membranes exhibit some degree of water permeability. Nevertheless, specialized membrane water transport molecules must exist in renal tubules that have distinctively high water permeability, hence this is crucial for maintaining the fluid reabsorption and the urinary concentration mechanism. Urinary concentration requires 1) establishment and maintenance of a hypertonic medullary interstitium and 2) vasopressin-regulated water transport across the collecting duct epithelium for osmotic equilibration. Thus, a defect in any of these mechanisms would be predicted to be associated with urinary concentrating defects. There was a marked reduction in the expression of the two collecting duct water channels AQP2 (Fig. 1) and AQP3 in rats with CRF induced by remnant kidney model (5/6 nephrectomy), indicating a defect in collecting duct water reabsorption. This is consistent with previous functional studies. In CRF, micropuncture and microcatheterization studies have indicated that the impaired urinary concentrating ability may, at least partly, be caused by the impairment of vasopressin-stimulated water reabsorption in the collecting duct. Consistent with this, patients with end-stage renal disease have urine which remains hypotonic to plasma despite the administration of supramaximal doses of vasopressin. This vasopressin-resistant hypoosmotic urine specifically implies abnormalities in collecting duct water reabsorption in patients with CRF. Fine et al observed that isolated and perfused cortical collecting ducts dissected from remnant kidneys of severely uremic rabbits exhibited a defect in the response to vasopressin. This was demonstrated both as decreased water flux (Jw) and...
decreased adenylate cyclase activity\textsuperscript{14}. Importantly, they also showed that the cyclic AMP analogue 8-bromo-cAMP failed to induce a normal hydromosotic response in the cortical collecting duct from remnant kidneys. Moreover, RT-PCR of total RNA from the inner medulla of CRF rat kidneys revealed a virtual absence of vasopressin V2-receptor mRNA\textsuperscript{15}. Thus, these studies provide firm evidence for significant defects in the collecting duct. The observation of reduced AQP2 and AQP3 expression including demonstration of a marked reduction of AQP2 in the apical plasma membrane (i.e., the active site) may explain these functional defects at the molecular level.

Fig. 1. Immunoblot of membrane fractions of total kidneys from CRF and sham operated rats. A) The immunoblot was reacted with affinity purified anti-AQP2, and reveal 29 kDa and 35-50 kDa AQP2 bands, representing non-glycosylated and glycosylated forms of AQP2. Densitometric analysis of all samples from CRF and sham operated rats (corrected according to loading and loading fraction of total kidney mass) reveals a marked decrease in AQP2 expression from 100±11% in sham operated controls (n=11) to 43±12% in CRF rats (n=13). *p<0.05.

Vasopressin-resistant polyuria and downregulation of AQP2

The finding of a vasopressin-resistant downregulation of AQP2 (and AQP3) expression in CRF rats raises the following possibilities: 1) Vasopressin resistance could, in part, be due to a potential downregulation of the V2-receptor protein. This would be consistent with the reduced vasopressin V2-receptor mRNA levels observed previously\textsuperscript{15}, 2) Inefficiency of vasopressin to increase adenylate cyclase activity and intracellular cAMP levels may also be due to potential defects in the signaling cascade distal to the V2-receptor (e.g., adenylate cyclase, PKA, etc). These two possibilities may be relevant since a cAMP-response element has been reported to be present in the AQP2 promoter\textsuperscript{16, 17}, 3) Other factors may override the cAMP-mediated control process. This may involve a “vasopressin-independent” signaling pathway, which has previously been suggested to exist\textsuperscript{18}. Each of the above three possibilities could hypothetically be involved in the previously described “vasopressin escape”-induced downregulation of AQP2. Thus, the downregulation of AQP2 observed in rats with CRF (where plasma vasopressin levels are known to be elevated and where AQP2 expression is unchanged in response to long-term dDAVP treatment) would be consistent with a “vasopressin escape”-like downregulation of AQP2 in CRF.

Altered expression of renal sodium transporters

Rats with CRF induced by 5/6 nephrectomy had 1) extensive hypertrophy and dilatation of remaining nephrons, 2) significant azotemia, 3) significant increases in urinary sodium excretion, and 4) marked increase in urine output with an impairment of urinary concentrating ability. In association with this, there was a significant decrease in total kidney levels of the major proximal tubule sodium transporter...
TH Kwon : Expression of Na⁺ transporters and AQP in renal failure

93

NHE3 (type 3 Na–H exchanger), NaPi-2 (type–2 Na–Pi cotransporter), and Na,K-ATPase in rats with CRF[9]. Immunocytochemistry confirmed that NHE3 and Na,K-ATPase levels in the proximal tubule were reduced[9]. Consistent with this, densities per nephron of NHE3, NaPi-2, and Na,K-ATPase did not increase proportionately to the extensive nephron hypertrophy, associated with the hyperfiltration in remnant nephrons. This is likely to play a significant role for the increased sodium excretion in CRF. In contrast, total kidney levels of the TAL (thick ascending limb) and DCT (distal convoluted tubule) sodium transporters NKCC2 (type–2 Na–K–2Cl cotransporter or type–1 bumetanide–sensitive Na–K–2Cl cotransporter) and NCC (thiazide–sensitive Na–Cl cotransporter) were not decreased in rats with CRF[9]. Consistent with this, the estimated densities per nephron of both NKCC2 and NCC were significantly increased, as also demonstrated by immunocytochemistry. Also, Na,K-ATPase labeling intensity was unchanged in the TAL and the DCT. Thus, expression of sodium transporters in the distal tubule is not decreased in remnant nephrons, indicating that the altered tubular handling of sodium in CRF may be caused primarily by changes in proximal tubule sodium transporter expression levels and that there appears to be a compensatory increase in sodium transporter expression in the distal tubule.

Dysregulation of sodium transporters in the proximal tubule

The proximal tubule is the site of reabsorption of approximately two thirds of the filtered NaCl that enters the tubular fluid[10]. Thus, it is evident that structural and functional adaptation of the proximal tubule in response to increased SNGFR and tubular fluid flow rate, which are known to occur in remnant kidney, may play a critical role in the changes of reabsorption and excretion of sodium and water. It has been demonstrated that the absolute sodium reabsorption in the proximal tubule is increased in parallel with the rise in SNGFR in the remnant kidney[10, 20, 21], whereas the fraction of the filtered sodium and water reabsorbed in the proximal tubule was significantly reduced[20, 22, 23].

In the “remnant kidney model”, SNGFR increases uniformly to values that are two– to threefold greater than normal[10, 24]. However, if the fraction of the filtered sodium load reclaimed by the proximal tubule is significantly decreased as suggested by many investigators[10, 22, 23, 25], it appears that changes in sodium excretion are modulated by proximal nephron segments. Indeed, a significant decrease in total kidney NHE3, NaPi-2, and Na,K-ATPase levels were observed in association with reduced labeling of NHE3 and Na,K-ATPase in the proximal tubule in rats with CRF. Moreover, estimated densities of NHE3 and Na,K-ATPase per nephron in remnant kidneys revealed a modest increase, but not significant. The hypertrophy, manifested by an increase in tubular diameter and length of the proximal tubule in remnant kidneys, appears to offer an explanation for this modest increase in densities per nephron of NHE3 and Na,K-ATPase. This may provide an explanation for the previously observed increase in absolute sodium reabsorption in the proximal tubule from CRF animals[20, 21]. However, at the same time, the inability to increase the densities per nephron of these sodium transporters proportionately to the increased SNGFR and tubular fluid flow rate may provide an explanation for 1) the previously observed reduced fractional reabsorption of sodium in the proximal tubule, 2) the glomerulotubular imbalance, and 3) the increased urinary excretion of sodium in CRF.

Dysregulation of sodium transporters in the distal tubule

The delivery of sodium and water to the distal end of the proximal tubule of superficial nephrons and to
the bend of Henle’s loop of juxtamedullary nephrons is known to be increased in remnant kidneys due to an increase in the filtered load and a decrease in the fractional reabsorption of sodium and water in the proximal tubule. This condition may be similar to acute and chronic loading with isotonic saline in normal rats. A large amount of evidence indicates that isotonic saline loading is associated with an elevation of SNGFR as well as a decrease in fractional proximal NaCl reabsorption. Furthermore, Landwehr et al. demonstrated that the increase in delivery to the loop of Henle is associated with a marked increase in NaCl absorption by the loop of Henle, presumably due to an increase in TAL NaCl absorption. Consistent with this, Ecelbarger et al. demonstrated that chronic oral saline loading in rats markedly increased NKCC2 abundance in the TAL of rat kidneys. The increased densities of NKCC2 in CRF rats are also consistent with this view. Moreover, it was observed that long-term oral NaCl loading results in an increase in the Na,K-ATPase activity of the medullary TAL of rats. This is also consistent with our observation that the Na,K-ATPase labeling of the TAL cells of remnant kidney was similar to the sham operated controls, which contrasts the significant reduction in the labeling of the proximal tubule. This also supports the view that a marked increase in the delivery of NaCl and water to the loop of Henle may partly upregulate several sodium transporters across the TAL and DCT. Moreover, a recent finding revealing that candesartan-treated CRF rats was associated with a dramatic increase of NKCC2 compared with untreated CRF rats further support this view. Thus, it could be possible that the increase in density of NKCC2 seen following 2 weeks after induction of 5/6 nephrectomy could at least partly be a consequence of a prolonged increase in the NaCl load delivered to the TAL partly due to both hyperfiltration and altered expression in the proximal sodium transporters in remnant kidneys. Other factors may also play an important role including potential increases in plasma vasopressin levels, which previously have been found to be associated with CRF induced by surgical reduction in kidney mass. Consistent with this, dDAVP treatment for 7 days of rats with CRF resulted in a greater increase in NKCC2 levels than seen in response to CRF alone, indicating that dDAVP can induce an increase in NKCC2 expression in CRF rats as demonstrated previously in normal rats. The NCC is expressed in the DCT of the kidney and is responsible for a large fraction of the net sodium and chloride reabsorption that occurs in the distal portion of the mammalian renal tubule. It was demonstrated that the DCT is an important site of action of mineralocorticoid and aldosterone upregulates the expression of NCC significantly. Since plasma aldosterone levels are known to be elevated significantly, this is likely to play a role in increasing NCC expression in 5/6 nephrectomized rats.

Summary

1. Reduced expression of renal AQP2, AQP3 and AQP1 in chronic renal failure

There is marked reduction in the expression levels of AQP2, AQP3, and AQP1 which is associated with the urinary concentration defect in polyuric CRF rats. The reduction is resistant to long-term treatment with dDAVP consistent with NDI. Since vasopressin levels are known to be elevated in rats with CRF induced by 5/6 nephrectomy, this suggests that there may be a “vasopressin escape”-induced downregulation of AQP2 in CRF rats. The observed downregulation of the collecting duct water channels AQP2, AQP3 and the proximal nephron water channel AQP1 may provide a molecular explanation for the urinary concentration defect associated with CRF.

2. Altered expression of major renal sodium transporters in chronic renal failure

The reduction in total kidney levels of NHE3,
NaPi-2 and Na,K-ATPase with altered expression per nephron of these transporters in response to the increased SNGFR and tubular fluid flow rate may provide cellular and molecular mechanisms for the increase in urinary sodium excretion in remnant nephrons. In contrast, there are compensatory increases in NKCC2 and NCC densities and maintained Na,K-ATPase expression in TAL and DCT. This indicates a compensatory increase which may be partly due to increased blood vasopressin and aldosterone levels and increased delivery of NaCl to the distal tubule in CRF.

Acknowledgments

This study was supported by the Regional Technology Innovation Program of the MOCIE, Korea (RT104-01-01).

References

1) Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A and Nielsen S: Aquaporin water channels—from atomic structure to clinical medicine. *J Physiol* 542:3-16, 2002

2) Knepper M and Burg M: Organization of nephron function. *Am J Physiol* 244:F579-F589, 1983

3) Knepper MA: Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. *Am J Physiol* 272:F3-12, 1997

4) Kwon TH, Hager H, Nejsum LN, Andersen ML, Frokiaer J, Nielsen S: Physiology and pathophysiology of renal aquaporins. *Semin Nephrol* 21:231-238, 2001

5) Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Kneppe MA: Aquaporins in the kidney: from molecules to medicine. *Physiol Rev* 82:205-244, 2002

6) Finkelstein A: Water and nonelectrolyte permeability of lipid bilayer membranes. *J Gen Physiol* 68:127-135, 1976

7) Knepper MA, Nielsen S, Chou CL, DiGiovanni SR: Mechanism of vasopressin action in the renal collecting duct. *Semin Nephrol* 14:230-232, 1994

8) Kwon T-H, Frokiaer J, Knepper MA and Nielsen S: Reduced AQP1, -2, and -3 levels in kidneys of rats with CRF induced by surgical reduction in renal mass. *Am J Physiol* 275:F724-F741, 1998

9) Kwon TH, Frokiaer J, Fernandez-Llama P, Maunsbach AB, Knepper MA, Nielsen S: Altered expression of Na transporters NHE-3, NaPi-II, Na,K-ATPase, BSC-1, and TSC in CRF rat kidneys. *Am J Physiol* 277:F257-F270, 1999

10) Buerkert J, Martin D, Prasad J, Chambless S and Klahr S: Response of deep nephrons and the terminal collecting duct to a reduction in renal mass. *Am J Physiol* 236:F454-64, 1979

11) Wilson DR and Sonnenberg H: Medullary collecting duct function in the remnant kidney before and after volume expansion. *Kidney Int* 15:487-501, 1979

12) Holliday MA, Egan TJ, Morris CR, Jarrah AS and Harrah JL: Pitressin-resistant hyposthenuria in chronic renal disease. *Am J Med* 42:378-387, 1967

13) Tannen RL, Regal EM, Dunn MJ and Schrier RW: Vasopressin-resistant hyposthenuria in advanced chronic renal disease. *N Engl J Med* 280:1135-1141, 1969

14) Fine LG, Schlondorff D, Trizna W, Gilbert RM and Bricker NS: Functional profile of the isolated uremic nephron. Impaired water permeability and adenylyl cyclase responsiveness of the cortical collecting tubule to vasopressin. *J Clin Invest* 61:1519-1527, 1978

15) Teitelbaum I and McGuinness S: Vasopressin resistance in chronic renal failure. Evidence for the role of decreased V2 receptor mRNA. *J Clin Invest* 96:378-385, 1995

16) Uchida S, Sasaki S, Fushimi K and Marumo F: Isolation of human aquaporin-CD gene. *J Biol Chem* 269:23451-23455, 1994

17) Yasui M, Zelenin SM, Celsi G and Aperia A: Adenylyl cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. *Am J Physiol* 272:F443-50, 1997

18) Ecelbarger CA, Nielsen S, Olson BR, Murase T, Baker EA, Knepper MA, Verbalis JG: Role of renal aquaporins in escape from vasopressin-induced antiurea in rats. *J Clin Invest* 99:1852-1863, 1997

19) Aronson PS: Role of ion exchangers in mediating NaCl transport in the proximal tubule. *Kidney Int* 49:1665-1670, 1996

20) Fine LG, Trizna W, Bourgoignie JJ, Bricker NS: Functional profile of the isolated uremic nephron. Role of compensatory hypertrophy in the control of fluid reabsorption by the proximal straight tubule. *J Clin Invest* 61:1508-1518, 1978

21) Trizna W, Yanagawa N, Bar Khayim Y, Houston B, Fine LG: Functional profile of the isolated uremic nephron. Evidence of proximal tubular "memory" in experimental renal disease. *J Clin Invest* 68:760-767, 1981
22) Lubowitz H, Parkerson ML, Rolf DB, Weisser F, Bricker NS. Effect of nephron loss on proximal tubular bicarbonate reabsorption in the rat. Am J Physiol 220:457–461, 1971
23) Schultze RG, Weisser F, Bricker NS: The influence of uremia on fractional sodium reabsorption by the proximal tubule of rats. Kidney Int 2:59–65, 1972
24) Weber H, Lin KY, Bricker NS. Effect of sodium intake on single nephron glomerular filtration rate and sodium reabsorption in experimental uremia. Kidney Int 8:14–20, 1975
25) Wong NL, Quamme GA, Dirks JH: Tubular handling of bicarbonate in dogs with experimental renal failure. Kidney Int 25:912–918, 1984
26) Wilcox CS, Baylis C, Wingo CS: Glomerular–tubular balance and proximal regulation. In: The Kidney: Physiology and Pathophysiology, edited by Seldin DW and Giebisch G. New York: Raven Press, 1992, p1807–1841.
27) Landwehr DM, Klose RM and Giebisch G. Renal tubular sodium and water reabsorption in the isotonic sodium chloride–loaded rat. Am J Physiol 212:1327–1333, 1967
28) Ecelbarger CA, Terris J, Hoyer JR, Nielsen S, Wade JB, Knepper MA: Localization and regulation of the rat renal Na⁺–K⁺–2Cl⁻ cotransporter, BSC-1. Am J Physiol 271:F619–F628, 1996
29) Wald H, Scherzer P and Popovtzer MM. Inhibition of thick ascending limb Na⁺–K⁺–ATPase activity in salt–loaded rats by furosemide. Am J Physiol 256:F549–F555, 1989
30) Kim EJ, Jung YW, Kwon TH: Angiotensin II AT1 receptor blockade changes expression of renal sodium transporters in rats with chronic renal failure. J Korean Med Sci 20:248–255, 2005
31) Bouby N, Bachmann S, Bichet D and Bankir L: Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. Am J Physiol 258:F973–F979, 1990.
32) Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA: Vasopressin increases Na–K–2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Physiol 276:F96–F103, 1999
33) Ellison DH, Velazquez H and Wright FS. Thiazide–sensitive sodium chloride cotransport in early distal tubule. Am J Physiol 253:F546–F554, 1987
34) Obermuller N, Bernstein P, Velazquez H, Reilly R, Moser D, Ellison DH, Bachmann S: Expression of the thiazide–sensitive Na–Cl cotransporter in rat and human kidney. Am J Physiol 269:F900–F910, 1995
35) Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB and Knepper MA: The thiazide–sensitive Na–Cl cotransporter is an aldosterone–induced protein. Proc Natl Acad Sci USA 95:14552–14557, 1998
36) Greene EL, Kren S and Hostetter TH: Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 98:1063–1068, 1996