Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Weiren Xia, Zhipeng Pei, Kai Leng and Xinhua Zhu*

Abstract

Perovskite manganites exhibit a broad range of structural, electronic, and magnetic properties, which are widely investigated since the discovery of the colossal magnetoresistance effect in 1994. As compared to the parent perovskite manganite oxides, rare earth-doped perovskite manganite oxides with a chemical composition of LnxA1-xMnO3 (where Ln represents rare earth metal elements such as La, Pr, Nd, A is divalent alkaline earth metal elements such as Ca, Sr, Ba) exhibit much diverse electrical properties due to that the rare earth doping leads to a change of valence states of manganese which plays a core role in the transport properties. There is not only the technological importance but also the need to understand the fundamental mechanisms behind the unusual magnetic and transport properties that attract enormous attention. Nowadays, with the rapid development of electronic devices toward integration and miniaturization, the feature sizes of the microelectronic devices based on rare earth-doped perovskite manganite are down-scaled into nanoscale dimensions. At nanoscale, various finite size effects in rare earth-doped perovskite manganite oxide nanostructures will lead to more interesting novel properties of this system. In recent years, much progress has been achieved on the rare earth-doped perovskite manganite oxide nanostructures after considerable experimental and theoretical efforts. This paper gives an overview of the state of art in the studies on the fabrication, structural characterization, physical properties, and functional applications of rare earth-doped perovskite manganite oxide nanostructures. Our review first starts with the short introduction of the research histories and the remarkable discoveries in the rare earth-doped perovskite manganites. In the second part, different methods for fabricating rare earth-doped perovskite manganite oxide nanostructures are summarized. Next, structural characterization and multifunctional properties of the rare earth-doped perovskite manganite oxide nanostructures are in-depth reviewed. In the following, potential applications of rare earth-doped perovskite manganite oxide nanostructures in the fields of magnetic memory devices and magnetic sensors, spintronic devices, solid oxide fuel cells, magnetic refrigeration, biomedicine, and catalysts are highlighted. Finally, this review concludes with some perspectives and challenges for the future researches of rare earth-doped perovskite manganite oxide nanostructures.

Keywords: Rare earth-doped perovskite manganite, Nanostructures, Fabrication methods, Structural characterization, Physics properties, Functional applications

Introduction

Perovskite manganites refer to a family of manganese compounds with a general composition of AMnO3, where A = La, Ca, Ba, Sr, Pb, Nd, Pr, which crystallize in the perovskite structure named after the mineral CaTiO3. Depending on the composition, they exhibit various magnetic and electric phenomena such as ferromagnetic, antiferromagnetic, charge, and orbital ordering. Thus, these properties have potential applications in the fields of sensors and spintronic devices. The early studies of perovskite manganites began in 1950, first performed by Jonner and Van Santen [1]. They found that the change of proportion of Mn4+ by introducing the bivalent alkaline earth metal elements (e.g., Ca, Sr, Ba) with different doping ratio into LaMnO3, could lead to the changes in the Curie temperature (namely the T_C) and saturation magnetization. Since then the term of “manganites” was adopted to refer to these compounds containing trivalent as well as tetravalent
manganese. One year later, Zener [2] proposed a “double exchange” (DE) mechanism to explain the unusual correlation between magnetism and electrical conduction, which was reported by Jonner and Van Santen. Based on the Zener’s theoretical studies; the DE mechanism was further developed in more detail [3–5]. At the same time, the experimental researches were also carried out.

As compared to the parent perovskite manganite oxides, rare earth-doped perovskite manganite oxides with a chemical composition of Ln\(_{x}\)A\(_{1-x}\)MnO\(_3\) (where Ln represents rare earth metal elements such as La, Pr, Nd, A is divalent alkaline earth metal elements such as Ca, Sr, Ba) exhibit much diverse electrical properties due to that the rare earth doping leads to a change of valence states of manganese which plays a core role in the transport properties. For example, La-doped SrMnO\(_3\) (La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\)) is a ferromagnetic (FM) metal, whereas SrMnO\(_3\) is an antiferromagnetic (AFM) insulator. Wollan and Koe [6] found a series of rare earth-doped perovskite manganite oxides Ln\(_x\)Ca\(_{1-x}\)MnO\(_3\) with the feature of FM and AFM properties depending upon the relative ion manganese content (Mn\(^{3+}\) and Mn\(^{4+}\)). In 1994, Jin et al. [7] first reported on the colossal magnetoresistance (CMR) effect in the perovskite La\(_{0.67}\)Ca\(_{0.33}\)MnO\(_3\) thin films grown on LaAlO\(_3\) substrates by laser ablation, where a several-tesla magnetic field could induce a 1000-fold change in the resistance of the epitaxial thin film of La\(_{0.67}\)Ca\(_{0.33}\)MnO\(_3\). Since that time, perovskite manganites become the focus of great interest again, both theories and experiments have been further advanced. In 1995, Millis et al. [8] pointed out that the phenomena observed in experimental consequences cannot be accounted by double exchange alone, such as the sharp drop in resistivity just below \(T_C\). Before long, Millis et al. [9] indicated that the essential physics of manganites are dominated by the interplay between electron-phonon coupling arising from the Jahn-Teller effects [10] and double exchange mechanism. Later, this newer theory as well as Jahn-Teller effect were adopted and discussed [11, 12]. In order to explain the novel physical transport properties more reasonably, many theoretical models have been proposed in recent years, such as one-orbital model (that is simple but incomplete) and two-orbital model (that is essential to explain the notorious orbital order tendency in Mn-oxides) [13].

From 1998 to 1999, Dagotto and his collaborators [14, 15] developed a theory of phase separation where phase segregation tendencies appeared in manganites. Gradually, phase separation theory was verified and recognized as the mainstream theory describing the perovskite manganese oxides [16, 17].

Rare earth-doped perovskite manganite oxides belong to the group of highly correlated systems, which display a wide spectrum of novel properties, including CMR effect, metal–insulator (M–I) transition, electronic phase separation (EPS), and complex structural phases in their phase diagrams due to the complex interactions among the spin, charge, orbital, and lattice degrees of freedom. There is not only the technological importance but also the need to understand the fundamental mechanisms behind the unusual magnetic and transport properties that attract enormous attention. Nowadays, with the rapid development of electronic devices towards integration and miniaturization, the feature sizes of the micro-electronic devices based on rare earth-doped perovskite manganite are down-scaled into nanoscale dimensions. At nanoscale, various finite size effects in rare earth-doped perovskite manganite oxide nanostructures (e.g., zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanostructures) will lead to more interesting novel properties of this system. In the past two decades, researches on the rare earth-doped perovskite manganite oxide nanostructures have achieved much progress after considerable experimental and theoretical efforts. In this paper, an overview of the state of art in the rare earth-doped perovskite manganite oxide nanostructures is presented, which covers the fabrication, structural characterization, physical properties, and functional applications. Due to the tremendous research efforts and the space limitations, it would be impossible to provide a complete overview on all existing topical literature, and therefore we limit ourselves to selected, but the representative results. Wherever possible, the readers are referred to the review articles, books and/or chapters in which selected sub-topics on the rare earth-doped perovskite manganite oxide nanostructures are discussed in full detail. Also, this review article seeks to present the topic not only from the viewpoint of fabrication methods but also tries to motivate the interest in these special compounds from the perspective of structural characterization, physical properties, and functional applications in the fields of microelectronic, magnetic, and spintronic devices, solid oxide fuel cells, magnetic refrigeration, biomedicine, and catalysts. This overview ends with some perspectives and challenges for the future researches of rare earth-doped perovskite manganite oxide nanostructures.

Synthesis Methods of Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Rare Earth-Doped Perovskite Manganese Oxide Nanoparticles

Molten Salt Synthesis

Molten salt synthesis (MSS) method is a simple, versatile, and environmental-friendly approach, which is widely used to synthesize high purity and nanoscale inorganic oxides with controllable compositions and morphologies. In this approach, inorganic molten salt is
served as the reaction medium to enhance the reaction rate and to reduce the reaction temperature of the reactant oxides [18]. Due to the short diffusion distances and large mobilities of the reactant oxides in the molten salts, the whole solid-state reactions are easily carried out at moderate temperatures (600–800 °C) in a short dwell time (less one hour). Besides the low formation temperature, molten salts also promote to stabilize the specific morphology of the final products. In addition, the morphology of the final products can be well controlled by adjusting the MSS processing parameters (e.g., the types and quantities of the used molten salts, different reactant oxides, annealing temperature and dwell time, and heating/cooling rates) in the MSS process.

In recent years, MSS method has been successfully used to synthesize rare earth-doped perovskite manganite oxide nanoparticles. For example, Luo et al. [19] synthesized La0.7Sr0.3MnO3 (LSMO) powders via MSS route, where stoichiometric La(NO3)3·6H2O, Sr(NO3)2, and Mn(NO3)2 were used as starting materials, and KNO3 was used as molten salt. By controlling the molar ratio of KNO3 and metal nitrates and the reaction temperature, they obtained the LSMO particles with average grain size modulated from 20 to 50 nm. A significant enhanced magnetoresistance was observed in these nanosized LSMO powders, especially at low temperature. Tian et al. [20] developed a facile molten salt synthetic route to synthesize La1-xSrₓMnO3 (x = 0, 0.3, 0.5, 0.7) nanoparticles, where the eutectic NaNO3–KNO3 mixture were used as molten salt and the nitrates of La, Mn, and Sr were used as reagents. The average grain sizes of the La1-xSrₓMnO3 (x = 0, 0.3, 0.5, 0.7) particles were about 20, 20, 19, and 25 nm, respectively. Later, by the same method, Tian et al. [21] also synthesized the La0.65Sr0.33MnO2.91 nanoparticles with particle sizes in the range of 20–60 nm. Xia et al. [22] also synthesized single-crystalline La1-xCaₓMnO3 (LCMO with x = 0.3 and 0.5) nanoparticles by MSS method, where the eutectic NaNO3–KNO3 mixture was used as the molten salt. By using NaNO2 as molten salt, Kačenka et al. [23] synthesized La1-xSrₓMnO3 (x = 0.18–0.37) nanoparticles, which were rather separated as compared with that synthesized by sol-gel route. Similarly, a series of single-phase La1-xSrₓMnO3 (x = 0.25–0.47) nanoparticles with an average size of ~ 50 nm were also synthesized [24].

Mechanochemical Processing

As an effective, economical, and versatile way to synthesizing ultrafine powders, mechanochemical processing (MCP) makes use of chemical reactions activated mechanically by high-energy ball milling. Muroi et al. [25] carried out the pioneering works on the synthesis of perovskite manganites by MCP, where the starting materials were LaCl3, CaCl2, MnCl2, and Na2CO3 was used as molten salt. They were mixed in an appropriate ratio via a chemical reaction to form La0.7Ca0.3MnO3 powders with particle sizes in the range of 20 nm–1.0 µm. Following a similar method, Spasojevic et al. [26] synthesized the La0.7Ca0.3MnO3 nanoparticles with an average size of 9 nm by high-energy ball milling in a single-step processing. By mechanical alloying method, Li et al. [27] also synthesized La2/3Ca1/3MnO3 powders with a grain size of ~ 18 nm. In another work, Manh’s group carried out a series of studies to synthesize La0.7Ca0.3MnO3 nanoparticles by reactive milling methods [28–32]. They found that the as-synthesized La0.7Ca0.3MnO3 nanoparticles exhibited super-paramagnetic behavior with a blocking temperature, which was reduced as increasing the milling time from 8 to 16 h [28]. Besides the La0.7Ca0.3MnO3 nanoparticles, La0.7Sr0.3MnO3 nanoparticles were also synthesized by reactive milling methods under different milling times [30, 31]. Recently, La0.7Ca0.3MnO3 nanoparticles with particle size of 21–43 nm were also synthesized by reactive milling and thermal processing methods [32].

Wet chemical Routes

Sol-Gel Process

Sol-gel process is a popular method for the synthesis of multicomponent metal oxides such as perovskite oxide materials. This process involves the formation of a sol by dissolving the metal aloxide, metal-organic, or metal-inorganic salt precursors in a suitable solvent, subsequent drying the gel followed by calcination, and sintering at high temperatures to form perovskite oxide materials.

Ravi et al. [33] used a modified sol-gel method to synthesize LSMO nanoparticles, where oxalic acid was used as chelating agent, oleic acid as surfactant in poly acrylic acid matrix, and metal nitrates as starting materials. The xerogel was heated at 100 °C and dried in atmosphere to obtain powders. And then, these powders were grinded and annealed at temperatures from 500 to 800 °C for 4 h to obtain LSMO nanoparticles with different particle sizes. Similarly, Pr1/2Sr1/2MnO3 [34], La0.4Pb0.6MnO3 [35], Nd0.5Sr0.5MnO3 [36], La1-xCaₓMnO3 [37], Ln0.67Sr0.33MnO3 (Ln = La, Pr and Nd) [38], and Pr-doped La0.67Ca0.33MnO3 nanoparticles [39] were also synthesized by this method. Their particle sizes can be well controlled by the annealing temperatures. Sarkar et al. [40] adopted the sol-gel-based polymeric precursor polyol route to synthesize Pr0.5Ca0.5MnO3 nanoparticles with particle size down to 10 nm. In their work, the polymer ethylene glycol was used to form a close network of metal ions in the precursor solution, which assists the reaction and enables the phase formation at relatively low temperatures.
Co-precipitation Method

The co-precipitation process involves the separation of a solid containing various ionic species from a solution phase. It is a very rare situation where a quantitative and simultaneous precipitation of all the cations occurs without segregation of any particular constituents in the precipitates to form a completely mixed-metal precursor. That is resulted from the different solubilities between the various precipitating phases, especially in the case of the solution containing more than one metal ion. Normally, this problem can be modified by introducing the precipitating agents (such as oxalates, tartarates, and citrates) that render the cations insoluble. Dyakonov et al. [41] synthesized (La$_{0.7}$Sr$_{0.3}$)Mn$_{1.1}$O$_3$ manganite nanoparticles by this method, where a mixture of stoichiometric amounts of high purity Mn$_3$O$_4$, La$_2$O$_3$, and SrCO$_3$ powders was dissolved in diluted nitric acid. This solution was evaporated and dried, and then fired at 500 °C to decompose the nitrates. The dry remainder was thoroughly ground again and annealed at temperatures from 800 to 950 °C for 20 h in air, and then followed by slow cooling down to room temperature. The resulting product was repeatedly ground, and nanopowders with average particle sizes of 40, 75, and 100 nm were obtained. Pang et al. [42] also synthesized the La$_{0.7}$Sr$_{0.3}$MnO$_3$ nanoparticles by a sonication-assisted co-precipitation method. Similarly, La$_{0.5}$Ca$_{0.5}$MnO$_3$ nanopowders with different average sizes (13, 18, and 26 nm) were obtained after annealing at 700, 800, and 900 °C, respectively [43]. By using an improved chemical co-precipitation method, Zi et al. [44] synthesized La$_{0.7}$Sr$_{0.3}$MnO$_3$ nanoparticles with particle sizes in the range of 50–200 nm.

(Microwave-) Hydrothermal Process

Hydrothermal process involves heating an aqueous suspension of insoluble salts in an autoclave at a moderate temperature and pressure so that the crystallization of a desired phase will take place. The hydrothermal synthesis is a powerful method for the preparation of very fine and homogeneous perovskite powders with a narrow size distribution and spherical morphology. Sin et al. [45] reported on the synthesis of single-crystalline La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles by a hydrothermal route in the presence of surfactant named as cetyltrimethylammonium bromide (CTAB). Analytical grade MnO$_4$, MnCl$_2$·4H$_2$O, LaCl$_3$·7H$_2$O, SrCl$_2$·6H$_2$O were used as starting materials. The chemical reactions were carried out in 10 ml Teflon-lined stainless steel autoclaves, where the added KOH maintained a proper alkalinity. Then, the CTAB powder was mixed with the above solution containing metal ions and agitated vigorously to obtain a homogeneous black solution. The reaction mixture was placed in the autoclaves and heated at 240 °C under the autogenously pressure for 1 day. The obtained product was filtered off and washed with ethanol and deionized water to remove the residual CTAB, potassium ions, and chloride ions. The final product was dried at 80 °C for 2 h to yield a small quantity of black powder. Urban et al. [46] also synthesized single-crystalline La$_{1-x}$Ba$_x$MnO$_3$ ($x = 0.3$, 0.5, and 0.6) nanocubes with sizes of 50–100 nm. Deng et al. [47] reported the synthesis of La$_{1-x}$Sr$_x$MO$_3$ ($M = Co, Mn; x = 0, 0.4$) particles by using a modified strategy of citric acid coupled with hydrothermal treatment [48]. They found that Sr-doping led to a decrease in the amount of over stoichiometric oxygen and also caused the Mn$^{4+}$ concentration to be increased, improving the redox ability of the catalysts consequently.

Microwave-hydrothermal (M-H) synthesis is a modified approach by involving the microwave heating techniques during the hydrothermal synthesis procedure. The microwave heating manner can largely increase the reaction and crystallization rate, and enhance fabrication efficiency. Recently, this method has been used to synthesize rare earth-doped perovskite manganite oxide nanostructures. Ifrah et al. [49] reported the microwave-assisted hydrothermal synthesis of La$_{0.8}$Ag$_{0.2}$MnO$_3$ nanoparticles, which were homogeneous with a crystallite size of 70 nm. Moreover, the La$_{0.8}$Ag$_{0.2}$MnO$_3$ nanoparticles were excellent in methane catalytic combustion. Anwar et al. [50] reported the microwave-assisted hydrothermal synthesis of La$_{0.67}$Sr$_{0.33}$MnO$_3$ nanoparticles, which had a rod-like morphology with average crystallite size of 11 nm.

Pyrophoric Reaction Process

Pyrophoric reaction process involves thermolysis of aqueous precursor solutions of coordinated metal compounds of organic amines and acids via the formation of mesoporous carbon precursors and their calcination at high temperatures (800 °C). Its principle is to atomistically disperse the complex metal ions in the polymeric network provided by organic coordinating agent, i.e., triethanolamine, during the pyrolysis of excess reagents. During the pyrolysis of the precursor solution, the metal ions or their salts form nanoclusters, which are embedded in the resulting matrix of mesoporous carbon. Slow volatilization of mesoporous carbon in the precursor material through low temperature between 500 and 800 °C air oxidation, aided by the catalytic effect of in situ metal ions, favors the formation of metal-oxide nanocrystals. The advantages of this method in preparing oxide nanoparticles are the high purity of the products, small particles sizes with narrow particle size distribution, good compositional control, and chemical homogeneity of the final products.
Dey et al. [51] obtained La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanoparticles with average size of 17 nm via pyrophoric reaction process, where high-purity La$_2$O$_3$, Mn(CH$_3$COO)$_2$, and CaCO$_3$ were used as starting materials. By the same method, Giri et al. obtained Sm$_{0.5}$Ca$_{0.5}$MnO$_3$ and Sm$_{0.09}$Ca$_{0.91}$MnO$_3$ nanoparticles [52–55]. These nanoparticles exhibit an exchange bias effect, which can be effectively tuned by the cooling field. Nagabushana et al. [56] also synthesized the La$_{1-x}$Sr$_x$MnO$_3$$_{3.5}$ nanopowders, where lanthanum nitrate La(NO$_3$)$_2$·6H$_2$O, strontium nitrate Sr(NO$_3$)$_2$·4H$_2$O, and manganese nitrate Mn(NO$_3$)$_2$·4H$_2$O were used as oxidizers and oxalyl hydrazine, C$_2$H$_6$N$_4$O$_2$ (ODH) as a fuel. Shinde et al. [57] reported on the synthesis of a series of Sr-doped lanthanum manganites by simple solution combustion technique. La$_{0.8}$Sr$_{0.2}$MnO$_3$ nanoparticles with different particle sizes were also synthesized by the nitrate-complex auto-ignition method [58].

Thermal Decomposition Synthesis

Thermal decomposition synthesis is fast, simple, and cost-effective synthesis route for preparations of metal oxide and complex oxide nanoparticles. Monodisperse magnetic nanocrystals with smaller sizes can essentially be synthesized through the thermal decomposition of organometallic compounds in high-boiling organic solvents containing stabilizing surfactants. In principle, the ratios of the starting reagents including organometallic compounds, surfactant, and solvent are the decisive parameters for the control of the size and morphology of magnetic nanoparticles. The reaction temperature and time as well as the aging period may also be crucial for the precise control of size and morphology [59]. The method is simple and convenient in operation, low in cost and high in direct yield, all volatile components volatilize, and the problem of carbon impurities is solved.

Recently, Huang et al. [60] synthesized the La$_{0.7}$Sr$_{0.3}$MnO$_3$ particles via the thermal decomposition of metal–complexes by using ethylenediaminetetraacetic acid as a complex agent. Daengsakul’s group [61–63] also synthesized La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles via thermal decomposition method by using acetate salts of La, Sr, and Mn as starting materials. To control the sizes of the La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles, thermal decomposition of the precursors was carried out at different temperatures. Similarly, La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles ($0 \leq x \leq 0.5$) were synthesized via a simple thermal decomposition method by using acetate salts of La, Sr, and Mn as starting materials in aqueous solution [62]. All the prepared La$_{1-x}$Sr$_x$MnO$_3$ ($x \leq 0.3$) nanoparticles had a perovskite structure with transformation from cubic to rhombohedral as the thermal decomposition temperature was over 900 °C, while the others remained cubic structure.

Other Methods

Moradi et al. [64] reported on the synthesis of La$_{0.8}$Sr$_{0.2}$MnO$_3$ nanoparticles with different particle sizes by the microwave irradiation process. Hintze et al. [65] prepared La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles via a reverse micelle microemulsion, which was based on CTAB used as a surfactant.

Preparation Methods for 1D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Recently, 1D perovskite manganite nanostructures such as nanowires, nanorods, nanotubes, nanofibers, and nanobelts have received much attention due to their unique features as compared with other low-dimensional systems such as 0D perovskite manganite nanostructures (or quantum dots) and 2D perovskite nanostructures (or quantum wells). The two-dimensional quantum confinement while one unconfined direction for the transport of carriers in the 1D perovskite manganite nanostructures, allows it to behave novel electrical transport and magnetic properties that are significantly different from their polycrystalline counterpart due to the nanosized dimensions. Besides, they also offer a good system to investigate the intrinsic size effects of physical properties. Understanding these behaviors at nanoscale dimension is of importance for developing new generation of revolutionary electronic nanodevices. However, there are numerous challenges on the fabrication and synthesis of these nanostructures with well-controlled dimensions, uniform sizes, phase purity, and homogenous chemical compositions. Since structural control is the key step in controlling properties and device performances, recently many physical techniques and chemical synthesis approaches are developed to understand and thereby control the nucleation and growth processes. In the past decade, significant progress has been made in the synthesis of 1D rare earth-doped perovskite manganite oxide nanostructures. The most commonly adopted techniques toward the realization of 1D rare earth-doped perovskite manganite oxide nanostructures are “bottom-up” routes (such as template-based synthesis, hydro/solvothermal synthesis, molten-salt synthesis, solution-based metal–organic decomposition, and electrospinning), and “top-down” approaches (such as focus ion beam (FIB) milling, and nanoimprint lithography (NIL) techniques). Basically, the synthesis routes to 1D rare earth-doped perovskite manganite oxide nanostructures can be divided into two different categories: (i) template-free synthesis, and (ii) template-assisted synthesis, which are briefly delineated in the following.
Template-Free Synthesis

Up to date, several template-free methods such as hydro/solvothermal synthesis, MSS method, electrospinning process have been used to synthesize 1D rare earth-doped perovskite manganite oxide nanostructures. For example, single-crystalline perovskite manganite La_{0.5}Ca_{0.5}MnO_3 nanowires with an orthorhombic structure were synthesized by a hydrothermal method [66]. These nanowires grew along [100] direction and had uniform diameter (~80 nm) with lengths ranging from several to several tens of micrometers. Similarly, single-crystalline La_{0.5}Sr_{0.5}MnO_3, La_{0.5}Ba_{0.5}MnO_3, and Pr_{0.5}Ca_{0.5}MnO_3 nanowires with a cubic structure were also synthesized by hydrothermal method [67–69]. In the Pr_{0.5}Ca_{0.5}MnO_3 nanowires, the charge ordering transition was suppressed and a ferromagnetic phase was observed, whereas the antiferromagnetic transition disappeared [69]. Datta et al. [70] also synthesized the single-crystalline La_{0.5}Sr_{0.5}MnO_3 nanowires with a diameter of ~50 nm and a length up to 10.0 μm. It was found that these La_{0.5}Sr_{0.5}MnO_3 nanowires had a FM–PM transition temperature (Curie temperature, T_C) at around 325 K, close to the bulk value (~330 K) of the single crystal. That indicates the functional behavior still retains even after the diameter size of the nanowires is reduced down to 45 nm. The electrical transport measurements from a single nanowire demonstrate that the nanowires exhibit an insulating behavior within the measured temperature range from 5 to 310 K, which is similar to the bulk system.

As a simple, one-step and effective method, electrospinning technique is also used to synthesize inorganic and hybrid compound nanofibers [71, 72]. In addition, the fiber sizes can be easily controlled by changing the electrospinning parameters, such as the applied potential, precursor concentrations, viscosity, and flow rate of the solution [73, 74]. The good examples are the La_{0.67}Sr_{0.33}MnO_3 nanowires with diameters in a range of 80–300 nm and length of 200 μm synthesized Judgersuren et al. [75] and the La_{0.75}Sr_{0.25}MnO_3 nanofibers synthesized by Huang et al. [76] In addition, multicomponent La_{0.3}Sr_{0.7}Co_{0.1}Mn_{0.9}O_3 (0.3 ≤ x ≤ 1) and La_{0.3}Pr_{0.7}Ca_{0.3}MnO_3 nanofibers are also synthesized by electrospinning method, which can be used as cathode materials in the next-generation high-performance supercapacitors and phase separation nanodevices, respectively [77, 78].

Rare earth-doped perovskite manganite oxide nanorods are also synthesized by using template-free method such as hydrothermal synthesis. For example, La_{0.65}Sr_{0.3}MnO_3 nanorods were successfully synthesized through a simple hydrothermal reaction followed by calcination at 850 °C for 2 h in air. Small nanorods having a diameter in the range of 80–120 nm tend to connect with each other forming long rods with length of a few hundred nm to a few micron [79]. Nano-sized La_{0.5}Ca_{0.5}MnO_3 manganites with rod-like morphologies were also obtained via the hydrothermal method in the presence of two mineralizers of sodium hydroxide (NaOH) and potassium hydroxide (KOH) at different alkalinity conditions (10, 15, and 20 M) [80].

Template-Assisted Methods

The template-assisted method is to use the pre-existing 1D nanostructures (e.g., nanoporous silicon, polycarbonate membranes, anodic aluminum oxide (AAO) membranes) as templates, which are filled up with the suitable polymeric precursors. The solution contained within the template is heat treated to form perovskite manganite oxide materials, and subsequently removing the template by chemical etching or calcination. Synthesis of 1D perovskite manganite oxide nanostructures through template-assisted method offer the following advantages: (a) the structure of the nanoarrays is subject to the structure of the template, (b) the channels of the template control the dimension sizes of the materials, (c) pore walls of template prevent the aggregation of the material, and (d) a large amount of nanowires or nanotubes can be massively produced. Among the common used template-assisted methods, the sol-gel template method combined with AAO as template is the most popular one, which is widely used to fabricate highly ordered perovskite manganite oxide nanostructures such as La_{0.8}Ca_{0.2}MnO_3 nanowires with nearly uniform diameter of about 30 nm [81], and the ordered array of La_{0.67}Ca_{0.33}MnO_3 nanowires with diameter of 60–70 nm and tens of microns in length [82]. Following the success of this method, perovskite manganite oxide nanowires of La_{0.6}Sr_{0.4}CoO_3 and La_{0.825}Sr_{0.175}MnO_3 with a diameter of 50 nm and length up to tens of microns were also synthesized with a polycrystalline perovskite structure [83]. Ordered arrays of La_{0.67}Sr_{0.33}MnO_3 nanowires with diameter of 60–70 nm and length up to tens of microns were prepared using a simple sol-gel process combining with nanoporous alumina as template [84].

Optical lithography is also used to fabricate (La_{0.8}Sr_{0.2}Ca_{0.3}MnO_3) wires starting from a single crystalline LPCMO film epitaxially grown on a LaAlO_3(100) substrate [85]. As the width of the wires is decreased, the resistivity of the LPCMO wires exhibits giant and ultrasharp steps upon varying temperature and magnetic field in the vicinity of the M–I transition. The origin of the ultrasharp transitions can be ascribed to the effect of spatial confinement on the percolative transport in manganites. Han et al. [86] fabricated the MgO/La_{0.67}Ca_{0.33}MnO_3 core-shell nanowires with the inner MgO core about 20 nm in diameter and the La_{0.67}Ca_{0.33}MnO_3 shell layer around 10 nm in thickness.
Here, the vertically aligned single-crystalline MgO nanowires act as excellent templates for epitaxial deposition of the desired transition metal oxides and lead to high-quality core-shell nanowires.

Besides the perovskite manganite oxide nanowires, perovskite manganite oxide nanotubes are also fabricated by using a sol-gel template-based method. Curiale et al. [87] synthesized the perovskite rare earth manganite oxide nanotubes such as La$_{0.67}$Sr$_{0.33}$MnO$_3$, La$_{0.67}$Ca$_{0.33}$MnO$_3$, and La$_{0.325}$Pr$_{0.300}$Ca$_{0.375}$MnO$_3$, by using a sol-gel template synthesis process. The typical length of the nanotubes was about 6 to 8 μm, and the average wall thickness was 45, 60, and 150 nm for the La$_{0.67}$Sr$_{0.33}$MnO$_3$, La$_{0.67}$Ca$_{0.33}$MnO$_3$, and La$_{0.325}$Pr$_{0.300}$Ca$_{0.375}$MnO$_3$ respectively. The walls of these nanotubes are composed of magnetic nanograins, and their sizes are less than the critical size for multidomain formation in manganites. As a consequence, each particle that constitutes of the nanotube walls is a single magnetic domain.

Highly ordered perovskite manganite La$_{2/3}$Ca$_{1/3}$MnO$_3$ nanotube arrays (with uniform diameter of 80 nm) were also successfully synthesized by a simple and rapid process, combining AAO template-assisted synthesis with microwave irradiation [88]. This method offers a quick hands-on route to produce nanotube arrays at relative low temperatures. Rare earth manganese oxide nanotubes with nominal composition of La$_{0.325}$Pr$_{0.300}$Ca$_{0.375}$MnO$_3$ (800 nm external diameter, 4 μm length, and wall thickness below 100 nm) were synthesized by pore wetting of porous polycarbonate templates with the liquid precursor, and then followed by microwave irradiation and a further calcination at 800 °C (two-stage thermal treatment) [89]. The wall thickness of these nanotubes was found to be formed by small crystals of approximately 20 nm. Perovskite La$_{0.35}$Ca$_{0.41}$CoO$_3$ nanotubes prepared by a sol-gel template method can be used as the catalysts in the air electrode for oxygen evolution, demonstrating superior catalytic activity and durability in comparison with that of the electrodes made by nanoparticles [90]. This indicates a promising application of La$_{0.35}$Ca$_{0.41}$CoO$_3$ nanotubes as electrocatalysts of air electrodes in fuel cells and rechargeable metal–air batteries. Perovskite Sm$_{0.55}$Sr$_{0.45}$MnO$_3$ nanotubes with diameter of 200 nm were also prepared by a sol-gel template method. Their walls are composed of nanoparticles with a diameter of 25 nm [91]. However, in these processes, the templates are usually dipped into the sols directly with the only driving force of capillary action. In the case of higher concentration sol, filling the pores become much difficult, especially for the templates with small pore diameters. While in the case of the sol with lower concentration, it usually results in serious shrinkage and cracking of porous templates during annealing process. Therefore, the synthesis of rare-doped perovskite manganite nanotubes with high crystallized quality by template-assisted method is still much challenging.

Synthesis Methods for 2D Rare-Earth-Doped Perovskite Manganite Oxide Nanostructures

2D rare earth-doped perovskite manganite oxide nanostructures include perovskite manganite oxide thin films, nanodot arrays, nanosheets, nanoplates, nanowalls, which exhibit interesting physical properties due to their complex interplays of spin, charge, orbital, and lattice degrees of freedom. They have promising applications in the fields of high-density memory and storage, sensors, and spintronic devices. Therefore, in the past few years, several methods have been developed to fabricate 2D rare earth-doped perovskite manganite oxide nanostructures [92–94]. For the reason of clarity, this section is divided into three subsections: current works on earth-doped perovskite manganite oxide thin films and/or multilayers, 2D earth-doped perovskite manganite oxide nanostructures based on planar structures, and rare earth-doped perovskite manganite oxide nanosheets.

Rare Earth-Doped Perovskite Manganite Oxide Thin Films or Multilayers

The growths of rare earth-doped perovskite manganite oxide thin films or multilayers are the process of taking the starting materials to be turned into films or multilayers and producing from its atoms, molecules, or ions in a gaseous state, which are then deposited onto the surface of a clean substrate. The prepared methods used to convert the starting materials into atomic, molecular, or ionized states are also diverse, which include physical vapor deposition (PVD) methods such as pulsed laser deposition (PLD), vacuum vapor deposition, RF magnetron sputtering, and chemical methods such as chemical solution deposition (CSD), chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), and molecular beam epitaxy (MBE). In the following sections, the most widely used techniques, including PLD, CSD, CVD, and MOCVD, and MBE techniques will be shortly introduced.

Pulsed Laser Deposition

PLD is a thin film deposition technique, in which thin film is grown by the ablation of one or more targets illuminated by a focused pulsed-laser beam [95]. In this method, a high power of pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited. PLD process generally can be divided into the following four stages [96]: the laser radiation interaction with the target, dynamic of the ablation materials, decomposition of the ablation materials onto the substrate, nucleation and growth of a thin film on
the substrate surface. PLD has several attractive features, including the stoichiometric transfer of material from the target, generation of energetic species, hyperthermal reaction between the ablated cations and molecular oxygen in the ablation plasma, and compatibility with background pressures ranging from ultra-high vacuum (UHV) to 100 Pa. Among them, the most feature characteristic of the PLD process is the ability to realize a stoichiometric transfer of the ablated material from a multi-cation target for many materials, achieving a composition of the film that is almost identical with that of the target, even though the target involves a complex stoichiometry. Moreover, the ability to easily vary the deposition rate is one of the principal features of PLD compared to other physical vapor deposition methods such as the sputtering technique. By controlling the growth conditions (e.g., the substrate temperature, chamber pressure, laser influence, target-to-substrate distance), many perovskite manganite oxide thin films or multilayers can be grown for high-performance electrical, magnetic, and optical devices. For example, Lawler et al. [97] grew the La$_{1-x}$Ca$_x$MnO$_3$ thin films by PLD, which were ferromagnetic when 0.2 $\leq x \leq$ 0.5 with $T_C \approx 250$ K. Harzheim et al. [98] also grew the La$_{0.66}$Ba$_{0.33}$MnO$_3$ films (with a thickness range of 5 to 250 nm) by PLD. Their CMR effects are dependent upon the thickness of epitaxial thin films deposited on MgO (100) and SrTiO$_3$ (STO) (100). A giant magnetoresistance near room temperature was observed in the ferromagnetic films of La$_{1-x}$Sr$_x$MnO$_3$ (0.16 $\leq x \leq$ 0.33) grown on (100) SrTiO$_3$ substrates by PLD [99]. Atomically defined epitaxy of the La$_{0.6}$Sr$_{0.4}$MnO$_3$ thin films with MnO$_2$ atomic layer as the terminating layer was also achieved by PLD method. The film as thin as 4 nm still shows a clear magnetic transition at $T_C = 240$ K, semimetallic conduction below T_C, and a novel magnetoresistive behavior down to the lowest temperature. Other rare earth-doped perovskite manganite oxide thin films such as La$_{0.6}$Pb$_{0.4}$MnO$_3$ [100], Nd$_{0.67}$Sr$_{0.3}$MnO$_3$ [101], Sm$_{1-x}$Sr$_x$MnO$_3$ [102], and Pr$_{0.6}$Ca$_{0.4}$MnO$_3$ [103] were also in situ deposited at different temperatures and oxygen partial pressures by PLD process. To check effects of strains in the charge-ordered epilaxial Pr$_{1-x}$Ca$_x$MnO$_3$ (x = 0.5, 0.6) thin films deposited on LaAlO$_3$ (LAO) and SrTiO$_3$ (STO) substrates, Haghiro-Gosnet et al. [104] carried out the Raman studies of the Pr$_{1-x}$Ca$_x$MnO$_3$ films with different thickness. They found that the $A_g(2)$ mode (related to the tilting angle of the MnO$_6$ octahedra) was highly sensitive to the local changes and distortions in the lattice caused by the variations in temperature, doping, and epitaxial strains. Dhakal et al. [105] performed the epitaxial growth of (La$_{1-x}$Pr$_x$)$_{0.67}$Ca$_{0.33}$MnO$_3$ (LPCMO) (with y = 0.4, 0.5, and 0.6) thin films on NdGaO$_3$ (NGO) (110) and STO (100) substrates by PLD, and the effect of spatial confinement on EPS in the La$_{0.325}$Pr$_{0.675}$Ca$_{0.25}$MnO$_3$ single-crystalline disks with diameters in the range of 500 nm–20 μm (fabricated from epitaxial LPCMO thin films by electron beam lithography) was investigated by Shao et al. [106]. It is found that the EPS state still remains to be the ground state in disks with the diameter of 800 nm or larger whereas vanishes in the 500-nm-diameter disks whose size is distinctly smaller than the characteristic length scale of the EPS domains. In the 500-nm-diameter disks, only the ferromagnetic phase was observed at all temperatures below Curie temperature T_C, indicating that the system was in a single-phase state rather than an EPS state. Kurij et al. [107] reported that all-oxide magnetic tunnel junctions with a semiconducting barrier, formed by the half-metallic ferromagnetic La$_{0.7}$Sr$_{0.3}$MnO$_3$ and n-type semiconductor SrTi$_{0.8}$Nb$_{0.2}$O$_3$ were designed. Multilayers with the compositions of La$_{0.7}$Sr$_{0.3}$MnO$_3$ (30 nm)/Nb:STO (1.8–3.0 nm)/La$_{0.7}$Sr$_{0.3}$MnO$_3$ (10 nm)/La$_{0.7}$Sr$_{0.3}$MnO$_3$Ru$_{0.01}$O$_{3}$ (20 nm) were grown in situ by pulsed laser deposition on TiO$_2$ single-terminated, (100)-oriented STO substrates. The Nb:STO layer thickness in the junctions varied from 1.8 to 3.0 nm, and the additional 10-nm-thick La$_{0.7}$Sr$_{0.3}$MnO$_3$ layer helped to avoid Ru diffusion into the barrier. It is found that tunnel junctions with an Nb:STO barrier exhibit an enhanced quality with a reduced number of defects, resulting in improved reproducibility of results, large TMR ratios between 100 and 350% between 20 and 100 K, and also a three orders of magnitude improvement of the low-frequency noise level. These results open the way to all oxide sensors for magnetometry applications. Xu et al. [108] reported on the epitaxial of La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrRu$_{1-x}$Ti$_x$O$_3$ (SR$_{1-x}$T$_x$O) superlattices on (001)-oriented (LaAlO$_3$)$_{0.5}$(SrAbo.5Ta$_{0.5}$O$_3$)$_{0.5}$ (LSAT) and (001)-oriented NGO single crystal substrates by PLD. Good reviews on the epitaxial growth of perovskite oxide thin films and superlattices can be found in the literatures [92–94].

Chemical Solution Deposition

CSD is also named as solution growth, controlled or arrested precipitation, etc. Chemical deposition of perovskite thin films results from moderately slow chemical reaction that leads to the formation of thin solid layer onto the immersed substrate surface at the expense of chemical reaction between the aqueous precursor solutions [109–111]. In this method, when cationic and anionic solutions are mixed together and if the ionic product exceeds or becomes equal to the solubility product, precipitation occurs as ions combine together on the substrate and in the solution to form nuclei. Perovskite manganite oxide thin films can be grown on
either metallic or nonmetallic substrates by dipping them in appropriate solutions of metal salts without the application of any electric field. Deposition may occur by homogeneous chemical reaction, usually reduction of metal ions, in a solution by a reducing agent. The growth rate and the degree of crystallinity depend upon the temperature of the solution. This method has many advantages such as large area thin film depositions, deposition at low temperature, and avoiding oxidation or corrosion of the metallic substrate [112].

Up to date, many perovskite manganite oxide thin films or multilayers have been synthesized by CSD method. Hasenkox et al. [113] reported on a flexible CSD method for the preparation of magnetoresistive La_{1-x}(Ca,Sr)$_x$MnO$_3$ thin films based completely on metal propionates. Tanaka et al. [114] also grew (La,Sr)MnO$_3$ thin films on STO (100) single crystal substrates by CSD method. Solanki et al. [115] measured the transport and magnetotransport properties of the $\text{La}_0.7\text{Pb}_{0.3}\text{MnO}_3$ thin films grown on single crystal LAO (100) substrates by CSD technique. The structural, surface, and electrical properties of the $\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ and $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ thin films deposited on (100)-oriented LAO single crystal substrates by CSD technique were also investigated [116, 117]. The Pr-doped $\text{La}_{0.8}\text{Pr}_{0.2}\text{Sr}_x\text{MnO}_3$ ($x = 0.1, 0.2, \text{and } 0.3$) thin films were also grown on STO (100) single crystal substrate by CSD method [118]. Details about the growth of perovskite manganite oxide thin films by CSD method can be found in good reviews contributed from Schwartz [111] and Zhang et al. [119].

CVD and MOCVD

CVD is one of the most popular routes to synthesize perovskite oxide functional nanomaterials. It is often used to prepare high-quality, high-performance thin films on large area wafers or complex patterned substrates. The key difference from CSD is that instead of solutions as precursors, materials are prepared by CVD via the deposition of gaseous precursor onto the substrate. Thus, it requires high vapor pressure composition as the precursor and often the substrate must be heated to a particular temperature to facilitate the deposition reaction as well as the motion of adatoms [120]. In the CVD process, the film composition and structure are rather sensitive to the substrate temperature, the precursor delivery ratio, and the vaporizer temperature. CVD processes have the advantage of high deposition rate and low deposition temperature. As compared with the CSD process, they offer much better control over the morphology, crystal structure and orientations, and as a result are often used to prepare epitaxial perovskite oxide thin films [121–123]. Herrero et al. [124] reported on the growth of perovskite manganite $\text{La}_{1-x}\text{A}_x\text{MnO}_3$ ($\text{A} = \text{Ca}, \text{Sr}$) thin films by a modified CVD process.

When metal-organic compounds are used as precursors, the process is generally referred to as MOCVD, which is a popular CVD method and commonly used in Si technologies and electronic device fabrication for the synthesis of thin films and coatings. This technique offers several potential advantages over other physical deposition processes such as (i) high degree of control in stoichiometry, crystallinity, and uniformity; (ii) a versatile composition control; and (iii) the ability to coat complex shapes and large areas. Depending upon the processing conditions, different MOCVD variants are available, for example, low-pressure MOCVD, atmospheric pressure MOCVD, direct liquid injection MOCVD, and plasma-enhanced MOCVD [125]. In the direct liquid injection MOCVD, microdroplets of precursor solution controlled by a computer are injected into the evaporator system. These droplets are produced by a high-speed electro-valve. The frequency and the time of the injection can be well adjusted so as to achieve the appropriate growth rate for each deposited material. Therefore, the final film stoichiometry can be precisely controlled by adjusting the respective concentrations of the precursors in the precursor liquid source. Up to date, MOCVD has been successfully used for growths of perovskite manganite oxide thin films or multilayers such as $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3$ [126], $\text{Pr}_{1-x}\text{Ca}_x\text{MnO}_3$ [127], and perovskite oxide superlattices such as ($\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$/SrTiO$_3$)$_{15}$ [128].

Molecular Beam Epitaxy

The molecular beam epitaxy (MBE) growth of thin films may be thought of as atomic spray painting, in which alternately shuttered elemental sources are employed to control the cation stoichiometry precisely, thus producing perovskite oxide thin films of exceptional quality. The flux of spray from each atomic or molecular beam is controlled by the temperature (and thus vapor pressure) of the effusion cell in which each species is contained. The duration of spray is individually controlled for each beam by shutters, which control not only the open time (and thus dose) but also the sequence in which species reach the growth surface. By controlling the shutters and temperature of the evaporant (which control dose and flux, respectively), the layering sequence of the desired structure can be customized. This technique is the premier synthesis technique for the synthesis of layered oxides with customized layering control down to the atomic layer level [94]. Reutler et al. [129] reported on the growth of $\text{La}_{2/3}\text{Ca}_{1/3}\text{MnO}_3$ films by laser molecular beam epitaxy on (001)-oriented STO and NGO single-crystal substrates. The film thickness was 200 nm for the films on STO and 40 nm for the films on NGO. Werner et al. [130] reported that resistance versus magnetic field measurements for a
La_{0.65}Sr_{0.35}MnO_3/SrTiO_3/La_{0.65}Sr_{0.35}MnO_3 tunnel junction grown by MBE, which showed a large field window of extremely high TMR at low temperatures. Peng et al. [131] systematically studied the dead-layer behavior of La_{0.6}Sr_{0.3}MnO_3 (LSMO)/STO heterostructures grown by ozone-assisted molecular beam epitaxy (OMBE). They found that the low kinetic energy of atomic beam could reduce extrinsic defects to the lowest level, and the composition was easily tuned at the single-atomic-layer level. Matou et al. [132] reported the reduction of the dead layer by growing La_{0.67}Sr_{0.33}MnO_3 on a LaMnO_3 layer, and they demonstrated the detection of TMR in the La_{0.6}Sr_{0.3}MnO_3/LaMnO_3/La_{0.67}Sr_{0.33}MnO_3 heterostructures grown by MBE with a shuttered growth technique.

2D Earth-Doped Perovskite Manganite Oxide Nanostructures Based on Planar Structures

Top-Down Methods

In recent years, 2D earth-doped perovskite manganite oxide nanostructures based on planar structures such as nanoplates [133] or lamella [134] and lateral arrays of nanodots [135] or nanowires [85] are fabricated. Different forms of “top-down” such as electron beam lithography (EBL) and NIL have been used for the geometrical patterning of 2D perovskite manganite nanostructures.

Singh-Bhalla et al. [136, 137] fabricated (La_{0.5}Pr_{0.5})_{0.67}Ca_{0.33}MnO_3 nanobridges and microbridges with a width ranging from 100 nm to 1 μm by a combination of photolithography and FIB. They first deposited single crystalline, epitaxial 30-nm-thick (La_{0.5}Pr_{0.5})_{0.67}Ca_{0.33}MnO_3 films on the NdGaO_3 (110) substrates at 820 °C by PLD, and then a combination of photolithography and FIB was employed to fabricate the (La_{0.3}Pr_{0.7})_{0.67}Ca_{0.33}MnO_3 nanobridges and microbridges. Peña et al. [138] also fabricated La_{2/3}Sr_{1/3}MnO_3 microbridges by standard photolithographic techniques. La_{2/3}Sr_{1/3}MnO_3 nanobridges with dimensions of less than 20 nm were also fabricated by FIB from the corresponding epitaxial thin film [139].

EBL is another nanofabrication technique in rapid development. Guo et al. [140] grew La_{0.67}Ca_{0.33}MnO_3 films with thickness of ~100 nm on STO (100) substrates by a PLD technique, and fabricated the La_{0.67}Ca_{0.33}MnO_3 microbridges with different widths (e.g., 1.5 μm, 1 μm, and 0.50 μm) via EBL technology. Beekman et al. [141] also grew thin La_{0.7}Ca_{0.3}MnO_3 films (with a thickness range of 20–70 nm) on STO (001) substrates by DC sputtering. And then, they fabricated the La_{0.7}Ca_{0.3}MnO_3 microbridges with a width of 5 μm by using EBL technology and Ar⁺ etching.

Bottom-Up Methods

Besides the top-down methods, bottom-up methods such as template-assisted synthesis are also used to fabricate 2D perovskite manganite oxide nanostructures based on lateral arrays of nanodots. In contrast, template-assisted “bottom-up” synthetic approaches provide a route to achieving 2D geometrical ordering of perovskite manganite nanostructures with narrow size distributions. Nanosphere lithography (NSL) has been demonstrated as a versatile template-based method for generating 2D perovskite manganite nanostructures [142]. In NSL, the spacing and size of the periodically arranged nanostructures can be readily controlled by using polymer spheres with different diameters, and/or by changing the amount of material deposited. For example, Liu et al. [143] prepared two-dimensional oxide nanoconstriction arrays via NSL. They dropped a drop of aqueous suspension of SiO_2 microspheres, with a diameter of 1.5 μm, onto a STO (100) substrate. These microspheres could self-assemble during the drying process and finally turned into a hexagon-like ordered monolayer. Then, a reactive ion etching process was proceeded to reduce the sizes of the microspheres. Subsequently, the substrate was put into a PLD chamber for the deposition of La_{0.67}Sr_{0.33}MnO_3, after that the sample was transferred into a furnace and annealed at 750 °C. After removing the microspheres, a La_{0.67}Sr_{0.33}MnO_3 nanoconstriction dot array was obtained. Under the low oxygen pressure, the La_{0.67}Sr_{0.33}MnO_3 film was deposited with the oxygen deficiency in La_{0.67}Sr_{0.33}MnO_3 nanoconstriction; the sample had to be further annealed at 900 °C for 8 h in air. Finally, the La_{0.67}Sr_{0.33}MnO_3 nanoconstriction dot arrays were obtained with sizes about 100 nm.

Synthesis Methods for 3D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Basically, there are two approaches for fabricating 3D perovskite-type oxide nanostructures: “bottom-up” and “top-down.” “Bottom-up” processing refers to the synthesis of nanostructures starting at the atomic or molecular level. Solution-based routes (e.g., sol-gel based chemical solution deposition, templating, solution phase decomposition, and hydro/solvothermal synthesis) are the most commonly employed in the “bottom-up” approaches for synthesizing 3D perovskite-type oxide nanostructures (i.e., vertically aligned nanowires, rods or tubes). “Top-down” processing, e.g., FIB milling and some lithographical methods such as NIL, consists of carving away at a bulk material to create coherently and continuously ordered nanosized structures. Recently, 3D perovskite manganite oxide nanostructures are prepared by 3D nano-template PLD method. The basic concept of this method is an inclined substrate deposition onto the side surfaces of a 3D nano-patterned substrate, i.e.,
3D nano-template is schematically shown in Fig. 1 [144]. At first, template wall structures are patterned on substrate by NIL technique using an organic resist (blue region) (Fig. 1a). Target material, i.e., metal oxide, is then deposited onto the side surface of the template patterns by PLD (Fig. 1b). After liftoff of templates and then etching for residual bottom film (Fig. 1c, d), self-standing metal oxide nano-wall wire arrays are obtained (Fig. 1e, f). Due to the right-angle side surface, the 3D nanotemplate acts as a shape and position reference point. The deposited material starts to grow at the side surface (interface) of the 3D nano-template while translating its shape. Therefore, the formation of nanostructures beyond the resolution limitations of top-down methods is realized. Recently, precisely size-controlled and crystalline (La0.275Pr0.35Ca0.375)MnO3 nanobox were fabricated on a MgO (001) substrate using this method [145]. In this process (see Fig. 2a), the MgO(001) substrate was first patterned with the organic resist cubes by NIL technique. And then, the (La0.275Pr0.35Ca0.375)MnO3 was deposited by the PLD technique on the four side-surfaces of the resist cube at room temperature (RT). The (La0.275Pr0.35Ca0.375)MnO3 nanoboxes were obtained in a large area (~ 20 mm²) after the (La0.275Pr0.35Ca0.375)MnO3 top layer, and the inner core resist were removed. To improve the crystallinity, the post-annealing process was carried out at 1270 K under the oxygen pressure of 1 Pa. The typical SEM image of the (La0.275Pr0.35Ca0.375)MnO3 nanoboxes is shown in Fig. 2b. The wall-width of nanoboxes were successfully controlled in a range from 160 nm down to 30 nm by changing the deposition time, as shown in Fig. 2c. These (La0.275Pr0.35Ca0.375)MnO3 nanoboxes exhibited the insulator–metal transition at the higher temperature than that in the corresponding film. This indicates that the well-aligned and reliably prepared, highly integrated CMR manganite 3D nanoboxes can provide a
way to tune the physical properties of the CMR oxides. 3D nanotemplate PLD technique can be used to fabricate various perovskite manganite oxide nanostructures.

Structural Characterization of Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Introduction

The structural characterizations of rare earth-doped perovskite manganite oxide nanostructures are conducted to investigate their crystal structures, chemical compositions, and morphologies. The crystal structures are usually characterized by X-ray diffraction (XRD), Raman spectrum, Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED). The chemical compositions are usually examined by energy dispersive X-ray spectroscopy (EDS), electronic energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). The chemical bonding and chemical structure of the prepared rare earth-doped perovskite manganite oxide nanostructures can be examined by XPS, EELS, FTIR, and Raman spectra. The morphologies are usually characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and TEM. In this section, the structural characterizations of rare earth-doped perovskite manganite oxide nanostructures are described to provide a brief review of the microstructural characterizations of rare earth-doped perovskite manganite oxide nanostructures.

Rare Earth-Doped Perovskite Manganite Oxide Nanoparticles

Up to date, many rare earth-doped perovskite manganite oxide nanoparticles have been synthesized by physical or chemical methods. Their physical and chemical properties are dependent upon the phase structures, morphologies, chemical compositions, and the grain size distributions of the nanoparticles as well as their thermal history during the synthesized process [146]. XRD is often used to identify the phase structure and the relative percents of different phases of the prepared nano-materials. In addition, some structural parameters such as particle size, lattice parameters (a, b, and c), lattice volume, and theoretical density can be derived from the XRD data. Also, XRD is also used to optimize the preparation conditions of rare earth-doped perovskite manganite oxide nanoparticles [147–149]. For example, Sayague’s et al. [147] synthesized the La$_{1-x}$Sr$_x$MnO$_{3+\delta}$ (0 ≤ x ≤ 1) nanoparticles by mechanochemistry synthesis method under different conditions (e.g., different substitutions of La by Sr modifiers; various milling time; heat treatment at 1000 °C under static air), and the XRD patterns of these samples are shown in Fig. 3. Figure 3a
shows the XRD patterns of the La$_{1-x}$Sr$_x$MnO$_{3+\delta}$ ($x = 0.25$) nanoparticles synthesized at different milling time. It was clearly observed that the solid state reaction during mechanochemistry synthesis process progressed significantly after 15 min milling and after 30 min it was almost finished. After only 45 min, no reactant peaks were detected and the solid-state reaction seemed to be complete. To ensure the full conversion, the mechanochemical synthesis of the nanoparticles was then carried out by 60 min ball milling. Figure 3b demonstrates the XRD patterns of the La$_{1-x}$Sr$_x$MnO$_{3+\delta}$ ($0 \leq x \leq 1$) nanoparticles with different substitutions of La by Sr modifiers obtained by mechanochemistry synthesis. All the nanoparticles crystallized in a single phase with pseudo-cubic symmetry and perovskite structure. The right-shift of the XRD reflections in 2θ was ascribed to the substitution of La by Sr modifier. Figure 3c displays the XRD patterns of the La$_{1-x}$Sr$_x$MnO$_{3+\delta}$ ($0 \leq x \leq 1$) nanoparticles heat treated at 1000 °C under static air. Higher crystallinity and well-defined symmetry were clearly observed. Similarly, the XRD reflections are shifted to smaller d-spacing as increasing the La substitution from $x = 0.0$ to $x = 0.75$ (see the inset). In the samples with $x = 0.0$ and $x = 0.25$, the maxima XRD reflections were clearly split demonstrating a structure very similar to La$_{0.95}$Mn$_{0.95}$O$_3$ (JCPDS No. 01085-1838) with rhombohedral cell ($R3c$ space group) calculated by Van Roosmalen et al. [150]. However, in the samples with $x = 0.50, 0.75, 0.80, 0.85$, and 0.90, the splitting of the maxima XRD reflections was not observed, which could be ascribed to different symmetries or different lattice parameters and same symmetry. The structural parameters of the synthesized samples in the La$_{1-x}$Sr$_x$MnO$_{3+\delta}$ ($0 \leq x \leq 1$) system were calculated by assuming a rhombohedral symmetry or cubic structure. The results showed a better fit when rhombohedral symmetry ($R3c$ space group) was used for samples with $0 \leq x \leq 0.90$. However, when the x value is equal to 1.0 (SrMnO$_3$), another perovskite structure with hexagonal symmetry and $P6_3/mmc$ space group (194) was observed. It was found that the volume of the unit cell was decreased as increasing the x value, which was due to the formation of Mn$^{4+}$ at the same time that La$^{3+}$ (136 pm) is substitute by Sr$^{2+}$ (144 pm) in the cationic subcell for keeping electronic neutrality. This is consistent with the ionic radius of Mn$^{4+}$ (53 pm) being smaller than that of Mn$^{3+}$ (65 pm), and indicates that the manganese ionic radius is actually the determinant of the unit cell volume. Moreover, it is also noticed that the appearance of Mn$^{4+}$ ion and its content was increased with increasing the strontium content, will reduce the John–Teller effect that was favored by the Mn$^{3+}$ cation. Therefore, the absence of the splitting of XRD peaks when the x values increase can be easily understood due to a higher symmetry of the structure. In order to investigate the changes of the crystallization and symmetry in milled samples (with pseudo-cubic symmetry) after annealing process (rhombohedral symmetry), XRD measurements as a function of the temperature from 30 to 1100 °C (up and down) under air atmosphere were performed. The results are shown in Fig. 4. With increasing the temperature, the crystallization process can be observed and at 1100 °C, a small diffraction peak at 2θ = 35 °C (marked with an asterisk) appear, which could be due to the formation of an orthorhombic phase [151]. As the temperature is lowered down to 800 °C, the small peak still exists and below this temperature it disappears. Below 500 °C, some reflections start to be split (see the inset) and a small peak appears before 2θ = 40 °C (marked with a cross), indicating the formation of the rhombohedral phase. The above results demonstrate that the rhombohedral phases are stable at low temperature, which can be explained in terms of oxygen composition. The orthorhombic phase is stable at high temperature (1100 °C) and its ability to accommodate the oxygen in the structure is smaller than that of the rhombohedral one, which stabilizes below 500 °C with an oxygen composition of La$_{0.75}$Sr$_{0.25}$MnO$_{3.11}$. The average crystallite size (D) was calculated from X-ray line broadening of the (110) diffraction peak using the Scherrer equation, which was about 20 nm close to the data obtained from SEM and TEM images. The preparation conditions (e.g., annealing temperature and time, and synthesis methods) affect greatly the morphology and surface characteristics of rare-earth doped perovskite manganite oxide nanoparticles, as revealed by SEM and TEM [19, 61, 147, 152]. Figure 5 shows the representative SEM images of some milled and heated samples. It was observed that all
the milling samples with pseudo-cubic perovskite structure had a similar microstructure characterized by aggregates of small particles. As expected, the heated samples were composed of larger faceted particles, being very similar in shape as can be seen in the H1 and H2 samples with same rhombohedral symmetry; however, the H8 sample with a hexagonal symmetry exhibited very round particles and smaller in size. The representative TEM and SAED results of the milled and heated samples are shown in Fig. 6. The TEM image of M1 sample (x = 0.0) (shown in Fig. 6a) had quite large particles formed in fact by agglomerated small crystallites in the nanometer size range as evidenced by the presence of rings in the SAED pattern. All the rings can be indexed in the pseudo-cubic structure (Pm-3m). TEM images of the H1 sample (Fig. 6b) and the H3 sample (Fig. 6c) also showed the presence of aggregates but formed by submicrometric crystallites of several hundred nanometers as observed in the enlargements of two of these crystals. The corresponding SAED patterns were taken along the [001], [211], and [100] zone axis. All the diffraction spots can be indexed in the rhombohedral structure (R-3c). The TEM image of the H8 sample (x = 1.0) shown in Fig. 6d displays the crystals with different sizes, and its SAED pattern taken from the [201] zone axe can be indexed in the hexagonal structure (P63/mmc), matching well with the XRD data. Tian et al. [20] also synthesized a series of crystalline La1-xSrxMnO3 nanoparticles with an average particle size of ~20 nm and good dispersion by MSS method. These La1-xSrxMnO3 nanoparticles are well dispersed in water to form a clear solution and do not deposit even after standing for several weeks, exhibiting a good dispersion.

The chemical bonding and structural information of the rare earth-doped perovskite manganite oxide nanoparticles can be revealed via FTIR and Raman spectra. For example, the main absorption band around 524 cm\(^{-1}\) observed in the FTIR spectra of the La0.7Sr0.3MnO3 nanoparticles synthesized by a modified sol-gel route can be ascribed to the stretching vibration mode of the metal-oxygen bond in the perovskite, which involves the internal motion of a change in Mn–O–Mn bond length in MnO\(_6\) octahedral [153]. The strong absorption peak around 1381 cm\(^{-1}\) in La0.7Sr0.3MnO3 particles (annealed at 500 °C) reveals that the stretching vibration of the carbonyl group (COO\(^-\)) in carbonate, which diminishes with increasing calcination temperature. The La0.7Sr0.3MnO3 particles annealed at 800 °C have a doublet in the main absorption band around 520 cm\(^{-1}\), which should belong to stretching (3v) and bending (4v) modes of the internal phonon modes of MnO\(_6\) octahedral. The stretching mode is related to the change of Mn–O–Mn bond length and the bending mode involves the change of Mn–O–Mn bond angle. The appearance of the stretching and bending modes at transmission spectra indicates that the perovskite structure of LSMO has been formed. In the Raman spectra of Pr-doped La0.67Ca0.33MnO3 nanoparticles synthesized via sol-gel route, three Raman peaks around 224 cm\(^{-1}\), 425 cm\(^{-1}\), and 680 cm\(^{-1}\) are observed, respectively [39]. The Raman peak around 224 cm\(^{-1}\) can be assigned as A\(_g(2)\), which is related to the tilting of MnO\(_6\) octahedron, whereas the Raman peak around 425 cm\(^{-1}\) is related to the Jahn-Teller type modes of the MnO\(_6\) octahedron [154]. The Raman peak around 680 cm\(^{-1}\) can be assigned as B\(_{2g}(1)\), which is related to the symmetric stretching vibration mode of oxygen in MnO\(_6\) octahedron [154]. With increasing the Pr-doping concentration (x) up to x = 0.4, the Raman peak around 680 cm\(^{-1}\) became disappeared. That was ascribed to the increased orthorhombic distortion in the LPCM nanoparticles with high Pr-doping concentrations, leading to the much weaker symmetric stretching vibration of oxygen in MnO\(_6\) octahedron [39].

XPS is a surface-sensitive technique, which provides the information of the surface elemental compositions and surface chemistry of a material. The surface compositions of rare earth-doped perovskite manganite oxide nanoparticles can be identified via XPS [21, 39, 154]. For example, Fig. 7 shows the Mn 2p3/2 and O 1s XPS spectra of LaMnO\(_{3.15}\) (LMO) and La0.67Sr0.33MnO\(_{2.91}\)
Fig. 6 TEM images and SAED patterns corresponding to a M1 ($x = 0$), b H1 ($x = 0$), c H3 ($x = 0.50$), and d H8 ($x = 1.0$) samples. The samples in the La$_{1-x}$Sr$_x$MnO$_{3±δ}$ ($0 \leq x \leq 1$) system with the first step after milling refer to M samples and after heated at 1100 °C under air atmosphere during 12 h refer to H samples. Reproduced with permission of [147].

Fig. 7 a Mn 2p3/2 and b O 1s XPS spectra of LaMnO$_{3.15}$ (LMO) and La$_{0.67}$Sr$_{0.33}$MnO$_{2.91}$ (LSMO) nanoparticles. Reproduced with permission of [21].
(LSMO) nanoparticles synthesized by MSS method, which are effective catalysts for volatile organic compounds combustion [21]. It is observed in Fig. 7a that, for each sample, an asymmetrical Mn 2p3/2 peak located at 642.2 eV could be resolved into two components with a binding energy of 641.5 eV and 642.9 eV, respectively. The former component can be assigned to the Mn^{3+} ions, whereas the latter one is assigned to the Mn^{4+} ions, indicating that the dual (Mn^{4+} and Mn^{3+}) ions coexist in both samples. Quantitative analysis of the molar ratio of Mn^{4+} to Mn^{3+} on the surface of LaMnO$_3$ was 0.72, while that of La$_{0.67}$Sr$_{0.33}$MnO$_{2.91}$ was 1.33. That is to say, the average oxidation states of manganese were 3.42 and 3.57 on the surface of LaMnO$_3$ and La$_{0.67}$Sr$_{0.33}$MnO$_{2.91}$ samples, respectively. In addition, it is also noticed that the peak area of Mn$^{4+}$ ion in the La$_{0.67}$Sr$_{0.33}$MnO$_{2.91}$ sample is 35% more than that of Mn$^{3+}$, whereas the peak area of Mn$^{4+}$ in the LaMnO$_3$ sample is less than that of Mn$^{4+}$. It can be concluded that the Sr enrichment on the surface makes the Mn$^{3+}$ ion on the surface of La$_{0.67}$Sr$_{0.33}$MnO$_{2.91}$ easy to be oxidized, increasing the surface concentration of Mn$^{4+}$. As demonstrated in Fig. 7b, the O 1s XPS peak could be decomposed into three components at binding energy (BE) equal to 529.5, 531.6, and 533.2 eV, which were ascribed to the surface lattice oxygen (O$^\alpha$), adsorbed oxygen (O$^\beta$, such as O$^{-}$, O$^2-$_{2}, or O$^2-$_{2}), and hydrated oxide species (O$^\gamma$), respectively [155, 156]. Obviously, after the partial substitution of Sr$^{2+}$ for La$^{3+}$, the intensities of the signals of O$^\alpha$ and O$^\gamma$ were decreased whereas the signal for O$^\beta$ was increased, indicating an enhancement in the amount of adsorbed oxygen species. Therefore, more structural defects such as oxygen vacancies contribute to the enhanced catalytic performance of the La$_{0.67}$Sr$_{0.33}$MnO$_{2.91}$ nanoparticles for toluene combustion.

1D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

The exciting developments in 1D perovskite manganite nanostructures must be effectively supported by a variety of structural characterization tools because the characterization provides invaluable information on the various microstructural, crystallographic, and atomic features, which can shed light on the unique properties exhibited by these fascinating materials. XRD is used for crystal structure analysis in which some structural parameters can be obtained. For example, Arabi et al. [80] synthesized the La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanorods by hydrothermal method under different conditions (e.g., different mineralization agents such as KOH and NaOH, various alkalinity conditions (10, 15, and 20 M)). Figure 8a shows the XRD patterns of the La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanorods synthesized in the presence of two different mineralization agents (KOH and NaOH) with various concentration, namely K10, K15, K20, N10, N15, and N20, respectively. It was found that all the six samples crystallized in orthorhombic structure with space group Pnma according to the diffraction peaks. A typical Rietveld refinement analysis of the sample N10 is displayed in Fig. 8b, indicating a good agreement between the observed and calculated profiles and no detectable secondary phase present. The FE-SEM micrographs confirmed the rod-like morphology of all the obtained samples.

![Fig. 8a](image1.png) **Fig. 8a** Room temperature XRD patterns of La$_{0.7}$Ca$_{0.3}$MnO$_3$ manganite nanorods synthesized via the hydrothermal method with two mineralizers namely sodium hydroxide (NaOH) and potassium hydroxide (KOH) in different alkalinity conditions (10, 15, and 20 M). **Fig. 8b** Room temperature XRD pattern (red symbol) and Rietveld profile (black line) for the sample N10. N (or K) means the NaOH (or KOH) mineralizer, 10 for the NaOH (or KOH) concentration. Reproduced with permission of [80]
Datta et al. [70] reported the template free synthesis of single-crystalline La$_{0.5}$Sr$_{0.5}$MnO$_3$ nanowires by hydrothermal method. XRD pattern (see inset in Fig. 9a) demonstrated that these nanowires crystallized in a tetragonal structure with the space group $I4/mcm$. The diameter and length of these nanowires were about 20–50 nm and 1–10 μm, as revealed by SEM image (Fig. 9a) and TEM image of a single nanowire (Fig. 9b). Single-crystalline nature of the nanowires was confirmed by the SAED pattern and HRTEM image (see insets in Fig. 9b). The lattice fringes with spacing of 0.311 nm were clearly resolved in the HRTEM image, corresponding the planar distance of (102) planes. The EDS data collected from the nanowire demonstrated that the atomic percentage ratio (La: Sr): Mn: O was approximately 1:1:3, close to the desired composition. The valence state of Mn in the nanowires was also quantitatively determined by EELS, which was about 3.5, very close to its bulk value. Similar work was also carried out to determine the Mn valence in the La$_{0.7}$Ca$_{0.3}$MnO$_3$, La$_{0.5}$Ca$_{0.5}$MnO$_3$, and La$_{0.7}$Sr$_{0.3}$MnO$_3$ nanowires synthesized by hydrothermal method [157]. In addition, single-crystalline perovskite manganite La$_{0.5}$Ba$_{0.5}$MnO$_3$ and La$_{0.5}$Sr$_{0.5}$MnO$_3$ nanowires were also synthesized by a hydrothermal method at low temperature [158]. They have a uniform width along the entire length, and their typical widths are in the range of 30–150 nm for La$_{0.5}$Ba$_{0.5}$MnO$_3$ and 50–400 nm for La$_{0.5}$Sr$_{0.5}$MnO$_3$. These nanowires grow along the [110] direction and their surfaces are clean without any sheathed amorphous phase. By the composite-hydroxide-mediated method, Wang et al. [159] synthesized the BaMnO$_3$ nanorods with diameters of 20–50 nm and lengths of 150–250 nm, which belong to a hexagonal structure with lattice parameters of $a = 0.5699$ nm and $c = 0.4817$ nm. By template-assisted method, Li et al. [160] also synthesized the La$_{0.33}$Pr$_{0.34}$Ca$_{0.33}$MnO$_3$/MgO core-shell nanowires with diameters about tens of nanometers in two steps.

Similarly, by using AAO membranes (pore size ~ 300 nm, thickness ~ 100 nm) as the templates, perovskite manganite La$_{0.75}$Ca$_{0.25}$MnO$_3$ nanotubes with the average diameter of 160 nm and lengths up to tens of micrometers were fabricated by laser induced plasma filling [161]. The XRD pattern of the synthesized La$_{0.75}$Ca$_{0.25}$MnO$_3$ nanotubes is shown in Fig. 10a, where all the diffraction peaks can be indexed perfectly to the standard monoclinic perovskite structure of bulk La$_{0.8}$Ca$_{0.2}$MnO$_3$ (JCPDS no. 44-1040), and no second phase was detectable. That indicated well-crystallized perovskite-type phase was successfully transferred from the target to the nanotubes via the PLD method. The composition of the as-prepared La$_{0.75}$Ca$_{0.25}$MnO$_3$ nanotubes was determined by EDS analysis technique, and the result matches well with the target. A representative SEM image of the La$_{0.75}$Ca$_{0.25}$MnO$_3$ nanotubes array is shown in Fig. 10b, which reveals uniform fluffy feature with an average length of 50 μm. The cross-sectional TEM image of the La$_{0.75}$Ca$_{0.25}$MnO$_3$ nanotubes is shown in Fig. 10c, where the maximum wall thickness was observed about 20 nm. This thin-walled feature determines the poor mechanical strength of the nanotubes, hence the ultrasonic processing was avoided during the nanotubes dispersion. This indicates that the length of the nanotubes can be controlled by the amount of deposition from several to tens of micrometers. It is also noticed that a nanowire-like structure with the diameter of ca. 10 nm is observed in TEM image (Fig. 10d), which may originate from either the broken walls of nanotubes or the curl of nanotubes during the annealing process. The uniformly distribution of the elements in the wall of

![Fig. 9 a](image-url) SEM and b TEM images of the La$_{0.5}$Sr$_{0.5}$MnO$_3$ (LSMO) nanowires synthesized by hydrothermal method. Inset in (a) is the XRD pattern of the LSMO nanowires, confirming the phase formation and phase purity. Insets in (b) are the selected area diffraction pattern and HRTEM image taken from a single LSMO nanowire, revealing the single crystalline nature of the LSMO nanowire. Reproduced with permission of [70].
individual nanotube was also confirmed by EDS element mapping.

2D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Perovskite manganite oxides have been a particularly appealing hunting ground for both condensed matter physics and practical device applications due to their physical properties, such as the high degree of spin polarization, CMR, spontaneous charge spin–orbital orderings, and so on [13, 162–166]. In thin films of rare earth perovskite manganites, RE$_{1-x}$M$_x$MnO$_3$ (RE = rare earth, M = Ca, Sr, Ba) with mixed-valence perovskite structure, their transport properties are highly dependent upon the deposition techniques, processing conditions, and the substrate used. Among all perovskite manganite thin films, La$_{1-x}$Sr$_x$MnO$_3$ has been the most widely investigated system due to its intrinsic magnetoresistance properties, electric-field tunable M-I transitions, half-metallic band structure, and the highest Curie temperature (T_c = 369 K for x = 0.33). Up to date, several deposition methods have been used for their growth. For example, PLD and CVD are versatile techniques that can be used both for the growth of epitaxial and polycrystalline films [167, 168], and RF magnetron sputtering and wet chemical processes are principally for polycrystalline films [169–172]. In contrast, MBE and atomic layer deposition (ALD) are mainly used for epitaxial films and superlattice structures. For example, polycrystalline perovskite manganite La$_{1-x}$Sr$_x$MnO$_3$ films with x = 0.15, 0.33, and 0.40 were deposited onto silicon (100) substrates by PLD in an 80/20 (Ar/O$_2$) atmosphere at room temperature [173]. After deposition, the films were air annealed at 900 °C for 1 h to obtain the desired crystalline phase. Several groups have epitaxially grown the La$_{0.67}$Sr$_{0.33}$MnO$_3$ thin films on different single-crystal substrates including STO (cubic), LAO (pseudocubic), NGO (orthorhombic), and MgO (cubic) [174–177]. Due to the small lattice mismatch between the La$_{0.67}$Sr$_{0.33}$MnO$_3$ and these substrates (except for MgO), the La$_{0.67}$Sr$_{0.33}$MnO$_3$ films exhibit single crystalline in a perfect epitaxy between the film and the substrate. Therefore, neither interfacial dislocations nor secondary phases’ inclusions are observed at the film/substrate interface, as it can be further identified by the cross-sectional HRTEM image [176]. Since the lattice strain is not released easily, therefore, the La$_{0.67}$Sr$_{0.33}$MnO$_3$ films (4–60 nm) exhibit a strong perpendicular magnetic anisotropy on LAO substrate due to the biaxial compressive strain. On the other hand, the La$_{0.67}$Sr$_{0.33}$MnO$_3$ films show the in-plane biaxial magnetic anisotropy on STO substrate by the tensile strain. The MnO$_6$ octahedra of the strained La$_{0.67}$Sr$_{0.33}$MnO$_3$ films are distorted and the hopping probabilities of e_g electrons are restricted. Localization of e_g electrons reduces the ferromagnetic interactions, enhancing the electrical resistivity of the La$_{0.67}$Sr$_{0.33}$MnO$_3$ thin films. As for the films thicker than 60 nm, different microstructures are reported. For
example, the films are still single crystalline without dislocations or intermediate layer in the whole thickness up to 120–130 nm [176, 178] or the films are divided into two regions with a strained bottom part and a relaxed top layer that are separated by an intrinsic interface containing a dislocation network [179]. These microstructures can be ascribed to strongly different growth parameters such as deposited temperature, the target-to-substrate distance, and oxygen pressure, laser influence. To make the full use of functionalities of the epitaxial La_{0.67}Sr_{0.33}MnO_3 thin films into the future devices such as sensors, data storage media, and IR detectors, the integration of the functional oxides into conventional semiconductor substrates is highly essential [180, 181]. However, the direct epitaxial growth of La_{0.67}Sr_{0.33}MnO_3 thin films and functional complex oxides on the Si substrates needs to be further developed due to the dissimilarities of these materials in chemical reactivity, structural parameters, and thermal stability [182]. Vila-Fungueiriño et al. [183] reported the high-quality epitaxial growth of the La_{0.67}Sr_{0.33}MnO_3 thin films on Si substrates with epitaxial STO thin buffer layer by a combination of CSD and MBE methods. Figure 11 displays the STEM image of atomic and chemical structure of the epitaxial La_{0.67}Sr_{0.33}MnO_3 (LSMO_PAD)/STO_MBE/Si heterostructure. Atomic-resolution Z-contrast images of the LSMO/STO/Si interface confirm an optimal epitaxial growth of LSMO ultra-thin films with a perfect crystalline coherence onto the STO/Si buffer layer. EELS measurements with atomic resolution (Figure 11 right) show that cationic intermixing is restricted to the first two unit cells, in agreement with the sharp contrast observed in the Z-contrast image.

To modulate the magnetic and transport properties of epitaxial La_{1-x}Sr_xMnO_3 thin films, superlattice structures such as (LSMO/STO)_n were grown on LAO substrates by MOCVD [184]. The XRD pattern (synchrotron) of the (LSMO/STO)_n superlattice is shown in Fig. 12a, which demonstrates well-resolved satellite peaks characteristic of the superlattice period. That indicates a good coherence over the stacking. Figure 12b shows a cross-sectional HRTEM image of the (LSMO/STO)_n superlattice, revealing sharp interfaces between individual layers. The perfect interfaces between adjacent layers extend on a very large scale. It is observed that the Tc value is decreased sharply when the thickness of the LSMO layer is decreased below 4 nm (see Fig. 12c) [163]. The dependence of Tc as a function of the LSMO thickness can be understood from the 2D scaling law proposed by Fisher and Barber [185], which gives a typical two-dimensional thickness of about four monolayers (t_{2D}~1.5–2 nm). Besides the (LSMO/STO)_n superlattice, the (La_{0.7}Sr_{0.3}MnO_3 (LSMO))_m/(SrRu_{1-x}Ti_xO_3 (SRTO))_n (x < 0.3) superlattices was also reported by Xu et al. [108]. For clarity, the sample is written as [m/n]_N (the numbers of m and n in square brackets denote the thicknesses of LSMO and SRTO in nanometers, respectively, and the subscript N denotes the periods, i.e., the repeat numbers of LSMO). Figure 13 shows a STEM image of the [1.2/2.4]_10 sample grown on NGO substrates, indicating the high quality of superlattices grown on NGO.

Fig. 11 Atomic resolution Z-contrast image of epitaxial La_{0.7}Sr_{0.3}MnO_3 (LSMO)_{10}/SrTiO_3(STO)_{MBE}/Si heterostructure viewed along the [100] direction. Detail of the Z-contrast image showing the coherent interface between the LSMO and the STO/Si buffer layers (left image). EELS image (right): color elemental mapping produced by overlaying the Mn L2,3 (green), Ti L2,3 (blue), Sr M4,5 (red), and La M4,5 (orange) elemental maps, displaying a high-quality chemical interface between the STO and LSMO layer, the structure of which is sketched in the left of the image, respectively. Reproduced with permission of [183].
Fig. 12

(a) XRD pattern (synchrotron) of the \([\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3]_{5}\) \([\text{SrTiO}_3]_{8}\) superlattice.

(b) Cross-sectional HRTEM image of the \([\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3]_{5}\) \([\text{SrTiO}_3]_{8}\) superlattice. Reproduced with permission of [184]. Copyright 2018, Taylor & Francis Group.

(c) Dependence of Curie temperature \((T_c)\) as a function of the thickness of the LSMO layer in \([\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3]_{m}\) \([\text{SrTiO}_3]_{8}\) superlattices grown by MOCVD. Reproduced with permission of [163].

Fig. 13

STEM image of the cross-sectional elemental mapping measured by spatially resolved electron energy loss spectroscopy for the \([\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3]/\text{SrRu}_0.8\text{Ti}_0.2\text{O}_3\) superlattice of \([1.2/2.4]_{10}\) grown on \(\text{NdGaO}_3\) (NGO)\((001)\). The sample written as \([m/n]\)\(_N\), where the numbers of \(m\) and \(n\) in square brackets denoting the thicknesses of the LSMO and SRTO layers in nanometers, respectively, and the subscript \(N\) representing the repeated number of LSMO layers. Reproduced with permission of [108].
The 2D morphology of perovskite manganite nanosheets have the advantage of direct implementation as potential building blocks for next-generation nanodevices due to their extended 2D network with rich electronic and magnetic properties. Recently, Sadhu and Bhattacharyya [186] synthesized pure-phase perovskite Pr$_{0.7}$Ca$_{0.3}$MnO$_3$ manganite nanosheets (PNS1) and Pr$_{0.51}$Ca$_{0.49}$MnO$_3$ manganite nanosheets (PNS2) via a “beakerless” pressure synthesis route. XRD Rietveld refinement patterns revealed that the PNS1 and PNS2 perovskite manganite nanosheets crystallized in the orthorhombic phase with the $Pnma$ space group. The TEM image of four stacked sheets (i–iv) of the representative PNS1 sample is shown in Fig. 14a, and the SAED pattern is shown as inset in Fig. 14a, indicating the characteristic reflections of the orthorhombic phase. Lattice fringes with spacing of 0.272 nm are observed in the HRTEM image (Fig. 14b), corresponding to the (112) plane reflection. Figure 14(c) displays the FE-SEM image of PNS1 nanosheets with thickness of 10–14 nm. In addition, the nanosheet surface spans over 500–600 nm, and on average 10–12 nanosheets remain stacked together. EDS data on ten different nanosheets provided the homogeneity profile of the samples (Fig. 14d, e). The nanosheet morphology (Fig. 14f), lattice fringes with FFT (Fig. 14g), and the EDS pattern (Fig. 14h) of the PNS2 samples were found similar to that for PNS1. The EDS results matched well with that of ICP-MS as Ca$^{2+}$/Pr$^{3+}$ atomic ratio which was 30.0 ± 0.5 for PNS1 and 49.0 ± 0.5 atom % for PNS2, respectively.

2D rare earth-doped perovskite manganite oxide nanostructures such as La$_{0.67}$Ca$_{0.33}$MnO$_3$ nanobridges are also fabricated by FIB method from the epitaxial La$_{0.67}$Ca$_{0.33}$MnO$_3$ thin films [187]. Figure 15 shows schematic diagrams for the fabrication process of La$_{0.67}$Ca$_{0.33}$MnO$_3$ nanobridges, which involves epitaxial growth of La$_{0.67}$Ca$_{0.33}$MnO$_3$ film by PLD method or MOCVD, nanobridge fabrication by FIB (or EBL), and four-electrode construction for physical measurement. For physical property measurements, the electric connection between the sample and instrument can be achieved in different ways such as wire bonding, indium and silver paint [188].
3D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Generally, 3D nanostructures can be fabricated via “top-down” and “bottom-up” approaches. For example, well-defined 3D epitaxial perovskite manganite oxide nanowall wires are prepared by using a unique nanofabrication technique combining of top-down nanolithography and bottom-up epitaxial thin-film growth [189–191]. A schematic diagram for growing such 3D nanostructures is shown in Fig. 16a, where (La 0.275Pr0.35Ca0.375)MnO3 is deposited onto the side-surface of 3D MgO using inclined PLD [192]. Figure 16b demonstrates a SEM image of (La0.275Pr0.35Ca0.375)MnO3 nanowall wires with 50 nm width on a MgO(001) single crystal substrate, where well-defined (La0.275Pr0.35Ca0.375)MnO3 nanowall wires with homogeneous lateral interfaces between each nanowire and the side-surface of the 3D-MgO nanotemplate, are realized. A single (La0.275Pr0.35Ca0.375)MnO3 nano-wall wire bridging two electrodes fabricated as a two probe device using photolithography is shown in Fig. 16c. The realization of nanowall-wire samples of strongly correlated perovskite manganite materials enables ones to capture single electronic domains when the width of the nanowall-wire approaching to a single electronic domain and to identify their M–I transition characteristics at the single domain scale. In addition, (La0.275Pr0.35Ca0.375)MnO3 nanowall-box are also grown by the same method [145].

3D nanostructured perovskite manganite materials such as branched nanorods or nanostructures have attracted extensive research attentions due to their unique 3D nature. By making full use of the vertical and horizontal dimensions, perovskite manganite oxide 3D nanostructures exhibit many fascinating physical and chemical properties due to their highly enhanced interfacial area and stability, as compared to the one-dimensional (1D) nanowire arrays [193–197]. Recently, 3D nanostructures have been successfully constructed by interlayering La0.67Ca0.33MnO3 (LCMO)–CeO2-based epitaxial vertically aligned nanocomposite thin films with pure CeO2 (or LSMO) layers, which were epitaxial grown on SrTiO3 (001) substrates via a PLD method [198]. This 3D strained framework structures combine both the lateral strain by the layered structures and the vertical strain in the vertically aligned nanocomposite and thus achieve the maximized strain tuning in LSMO. The schematic diagram illustrating the design of such 3D nanostructures is shown in Fig. 17, which creates 3D interconnected CeO2 or LSMO
framework microstructures within the thin films, and provides versatile tool to achieve 3D strain tuning. The structural characterizations of this 3D nanostructures are shown in Fig. 18 [198]. Clearly, the CeO$_2$ nanopillars with a large aspect ratio are vertically aligned and well distributed in the LSMO matrix and the sharp phase boundaries suggest the well separated growth of the two phases. Thus, a well-defined 3D interconnected LSMO frame is clearly achieved within the dense films. More importantly, by varying the types of the interlayers (e.g., CeO$_2$ or LSMO) and the number of interlayers from 1 to 3 layers, such 3D framework nanostructures effectively tune the electrical transport properties of LSMO, e.g., from a 3D insulating CeO$_2$ framework with integrated magnetic tunnel junction structures, to a 3D conducting LSMO framework, where the MR peak values have been tuned systematically to a record high of 66% at 56 K and enhanced MR properties at temperatures above room temperature (~ 325 K). This new 3D-framed design provides a novel approach in maximizing film strain, enhancing strain-driven functionalities, and manipulating the electrical transport properties effectively.

Physical Properties of Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Rare Earth-Doped Perovskite Manganite Oxide Nanoparticles

Magnetic Properties

Superconducting quantum interference device (SQUID) magnetometer is the most powerful, sensitive, and widely used instrument for magnetic characterization in material science. This device works on the principal of quantum interference produced using Josephson junctions. This measurement system is used for d.c. magnetization and M vs. H measurements of the samples. For d.c. magnetization, a small external field is applied and χ is measured as a function of temperature at constant applied field. For M-H measurements, magnetization is measured at a constant temperature while magnetic field is varied up to a certain value of positive and negative applied field. The most common units for the magnetic moment is emu. The natural unit of the magnetization is thus emu/g or emu/cm3. If one can estimate the number of atom in the sample, then one can also calculated the magnetic moment per atom in μ_B.

The perovskite manganite oxide nanoparticles of La$_{1-x}$Sr$_x$MnO$_3$ are one of the most attractive rare earth-doped perovskite manganites, which exhibit a metallic nature, large bandwidth, and the Curie temperature (T_C) as high as 300–370 K [199]. Their magnetic properties are influenced by many factors; the key ones include chemical compositions, the type and the degree of defectiveness of the crystal lattice, the particle size and morphology, the interactions between the particle, and the surrounding matrix and/or the neighboring particles. By changing the nanoparticle size, shape, composition, and structure, one can control to an extent the magnetic characteristics of the nanoparticles. For example, Baaziz et al. [148] synthesized La$_{0.9}$Sr$_{0.1}$MnO$_3$
nanoparticles by the citrate-gel method and annealed them at 600 °C (H6), 800 °C (H8), 1000 °C (H10), and 1200 °C (H12), respectively. Their magnetization (M) versus temperature (T) curves measured under the applied magnetic field of 500 Oe are shown in Fig. 19a. The T_C was obtained from the inflection points in dM/dT as a function of temperature for all samples in the inset (Fig. 19i). As shown in M–T curve, all samples exhibit a PM to FM transition at T_C upon cooling. The T_C dependent upon the particle sizes (d) is shown as an inset (Fig. 19ii) in Fig. 19a, where it is clearly observed that T_C decreases from 250 to 210 K with increasing the particle size from 45 to 95 nm. The decrease of the Curie temperature with increasing the particle size can be ascribed to the strain effects of grains induced by the distortion at grain boundaries and the orthorhombic strains caused by the strong J–T coupling. It was also found that the saturation magnetizations (M_sat) of the La_{0.9}Sr_{0.1}MnO_3 nanoparticles were increased with increasing the particle sizes, as shown in Fig. 19b. The reduction of M_sat in the small particles may be attributed to the loss of long-range ferromagnetic (FM) order in the smaller particle sized samples since the surface contribution is larger in this case. This can be explained in terms of a core-shell model developed for nanoparticles [58, 200, 201], where ideally the core part retains the bulk-like physical properties, but the outer shell (with thickness t) can be considered as a disordered magnetic system whose magnetization may be considered to be zero in the absence of the magnetic field (see the inset

Fig. 18 a Cross-sectional TEM image of the VAN thin film C0 and b its corresponding STEM image at low magnification. c Cross-sectional and d plan-view HRTEM images of sample C0. In the HRTEM image of (c), “C” in yellow points out the CeO_2 nanopillars and “L” in green points out the La_{0.7}Sr_{0.3}MnO_3 (LSMO) matrix. Clearly, those CeO_2 nanopillars with a large aspect ratio are vertically aligned and well distributed in the LSMO matrix and the sharp phase boundaries suggest the well separated growth of the two phases. Cross-sectional TEM images of the thin films e–g C1–C3 and h–j L1–L3, showing the microstructures of 3D interconnected CeO_2 and LSMO frames embedded within the thin films respectively. Reproduced with permission of [198]
of Fig. 19b). This shell is named as the dead layer, which does not have any spontaneous magnetization. As the particle size decreases, the shell thickness \(t \) increases, which enhances the inter-core separation between two neighboring particles, resulting in a decrease in the magnetic exchange energy. That is the reason why the reduction in the saturation magnetization with decreasing the particle size. In order to confirm this, \(M_{\text{sat}} \) value versus the inverse of the crystallite sizes \((1/d) \) is plotted in Fig. 19b, which reveals a quasi-linear relationship between the \(M_{\text{sat}} \) and \(1/d \). Similarly, the particle size effect on the magnetic properties of La\(_{1-x}\)Sr\(_x\)MnO\(_3\) nanoparticles synthesized by the microwave irradiation process was also observed [64].

Beside the particle size and the synthesis process, the magnetic properties of La\(_{1-x}\)Sr\(_x\)MnO\(_3\) nanoparticles are also dependent upon the Sr-doping level. Tian et al. [20] synthesized La\(_{1-x}\)Sr\(_x\)MnO\(_3\) \((x = 0, 0.3, 0.5, 0.7)\) nanoparticles by a facile molten salt synthetic route. Their magnetic properties were modified by the Sr-doping levels. The Curie temperatures \(T_C \) deduced from the magnetization \((M) \)-temperature \((T) \) curves were 208, 252, 257, and 275K for \(x = 0, 0.3, 0.5 \), and 0.7, indicating that the \(T_C \) values were increased with the Sr-doping levels. Recently, Xia et al. [39] synthesized (La\(_{1-x}\)Pr\(_x\))\(_{0.67}\)Ca\(_{0.33}\)MnO\(_3\) (LPCMO, \(x = 0.0 - 0.5 \)) nanoparticles via sol-gel process. Their \(T_C \) values were measured to be 233, 228, 180, and 171 K for the LPCMO samples \((x = 0.1, 0.2, 0.3, \) and 0.4), respectively, which were decreased with increasing the Pr-doping concentration. That is ascribed to that the double-exchange interactions in the LPCMO nanoparticles became weakened due to the narrower bandwidth and the reduced mobility of \(e_g \) electrons. Similarly, in the La\(_{1-x}\)Ba\(_x\)MnO\(_3\) \((x = 0.3, 0.5 \) and 0.6) nanocubes synthesized via hydrothermal methods, the low-temperature saturation magnetization was also decreased with increasing the Ba-doped content [46]. However, in the Ca\(_{1-x}\)Sm\(_x\)MnO\(_3\) (CSM, \(x = 0.0 - 0.20 \)) nanoparticles, the \(T_C \) value was first abruptly decreased with increasing the Sm-doping concentration up to 0.05, but with a further increase in the doping level, it has monotonically augmented and approached a plateau above \(x = 0.1 \), as shown in Fig. 20 [202]. The decrease in magnetic transition temperature demonstrates that the strength of the super-exchange interaction is reduced due to the dilution of the Mn\(^{4+}\) lattice by Mn\(^{3+}\) spins. While at moderate and larger doping regime, the magnetic behavior of nanograins are dominant by double exchange Mn\(^{3+}\)–O–Mn\(^{4+}\) interactions and the strong
inter/intragrain coupling. The M_{sat} was also increased linearly from 0 to 0.03, and then it was increased abruptly in the 0.03–0.05 doping level, approaching a plateau above $x = 0.1$ (seen in Fig. 20). Besides, as a popular system, Ca-doped lanthanum manganite, especially the magnetic properties of Ca-doped lanthanum manganite nanoparticles with different Ca doping levels were investigated by several groups [203–206]. The reduction of the M_{sat} due to the particle size reduction is attributed to the increase of magnetic dead layers. With decreasing the particle size, the finite-size effect causes the decrease of T_C.

To obtain information on the dynamical properties of magnetic nanoparticles, ac magnetic susceptibility is measured on cooling or heating the nanoparticle samples. The ac susceptibility (χ_{ac}) has two components: one is in-phase (χ') with the excitation while the other is a dissipative out of phase (χ'') component. Figure 21 shows the ac susceptibility of the La$_{0.8}$Sr$_{0.2}$MnO$_3$ nanoparticles (with particle size of 20 nm) versus temperature at an applied magnetic field of 1 mT and different frequencies (33.3, 111, 333.3, and 1000 Hz) [64]. In $\chi'(T)$ and $\chi''(T)$, a frequency-dependent peak near $T_b = 237$ K (blocking/freezing temperature) was observed, which shifted to a higher temperature as increasing the frequency. The frequency dependence of the ac magnetic susceptibility and appearance of the irreversibility temperature in the field cooling (FC) and zero-field cooling (ZFC) magnetization patterns are the signature for superparamagnetic/spin glass (SPM/SG) regime in both the interacting and non-interacting nanoparticles [207, 208].

Similar phenomenon was also reported for other perovskite manganite nanoparticles such as spin glass or paramagnetic/spin glass (SPM/SG) regime in both the magnetization patterns are the signature for superparamagnetic/spin glass (SPM/SG) regime in both the interacting and non-interacting nanoparticles [207, 208]. A frequency-dependent peak near $T_b = 237$ K (blocking/freezing temperature) was observed, which shifted to a higher temperature as increasing the frequency. The frequency dependence of the ac magnetic susceptibility and appearance of the irreversibility temperature in the field cooling (FC) and zero-field cooling (ZFC) magnetization patterns are the signature for superparamagnetic/spin glass (SPM/SG) regime in both the interacting and non-interacting nanoparticles [207, 208].

ΔS_M can be estimated from the M(H) curves and the use of the Maxwell’s relation

$$\Delta S_M = \int_0^H \left(\frac{\partial M(T,H)}{\partial T} \right)_H dH$$

(1)

where M is the magnetization, H is the magnetic field, and T is the temperature. The relative cooling power (RCP) proposed by Gschneidner et al. [215] is also an important parameter for selecting potential substances for magnetic refrigeration, which is described as the refrigeration capacity of magnetic refrigerant for magnetic refrigeration. It is evaluated using the relation

$$\text{RCP} = |\langle \Delta S_M \rangle_{\max}| \times \delta T_{\text{FWHM}}$$

(2)

where δT is the full width at half maximum of a $-\Delta S(T)$ curve.

Wang et al. [38] investigated the magnetocaloric effect in the Ln$_{0.67}$Sr$_{0.33}$MnO$_3$ (Ln = La, Pr and Nd) nanoparticles prepared by using the sol-gel method. Figure 22a–c shows the temperature dependence of $-\Delta S(T)$ under different changes of applied field from 1 to 5 T for LaSrMnO$_3$, PrSrMnO$_3$, and NdSrMnO$_3$ nanoparticles.
respectively. Under a field changing from 0 to 5 T, the maximum values of isothermal entropy change are found to be 2.49, 1.94, and 0.93 J/kg K for the samples with Ln = La, Pr, and Nd, respectively, and the corresponding values of RCP reach 225, 265, and 246 J/kg. The RCP as a function of magnetic field is presented in Fig. 22d. It is seen that the RCP increases in almost a linear way as the field increases. These results suggest that those nanoparticles could be useful for magnetic refrigeration in a broad temperature range.

Transport Properties

Transport property measurements of the manganite materials were carried out using standard four-terminal method on a Quantum Design PPMS system. At a constant applied field, resistance was measured as a function of temperature. Kumar et al. [154] synthesized the (La0.6Pr0.4)0.65Ca0.35MnO3 nanoparticles via a sol-gel route at different sintering temperatures, and measured their electrical transport properties. The electrical resistivities (\(\rho\)) as a function of temperature for the (La0.6Pr0.4)0.65Ca0.35MnO3 nanoparticles sintered at 600 °C, 800 °C, and 1000 °C was shown in Fig. 23. It was observed that the (La0.6Pr0.4)0.65Ca0.35MnO3 system shows insulator type behavior at higher temperatures due to the development of charge-ordered states in the nanocrystalline system, and starts to behave as a metal at lower temperatures because double exchange interaction

Fig. 22 Isothermal entropy changes as a function of temperature with field changes of 1, 2, 3, 4, and 5 T, a for LaSrMnO3, b for PrSrMnO3, and c for NdSrMnO3, respectively. d Relative cooling power (RCP) as a function of magnetic field for the Ln0.67Sr0.33MnO3 (Ln = La, Pr, and Nd) nanocrystalline samples. Reproduced with permission of [38]

Fig. 23 Variation of resistivity with the temperature for the (La0.6Pr0.4)0.65Ca0.35MnO3 nanoparticles sintered at 600 °C, 800 °C, and 1000 °C, respectively. Reproduced with permission of [154]
plays a dominant role in the transport behavior of the system. The insulator-metal transition temperature \(T_{IM} \) and resistivity \(\rho \) of nanoparticles are dependent upon the sintering temperature of the system (or the particle sizes). With increasing the sintering temperature, the particle (grain) size is increased; therefore, the effect of grain boundary is reduced and consequently the charge carriers in the nanocrystalline system face less scattering from the grain boundaries. This factor also improves the double exchange interaction mechanism and the system starts to show M–I transition at higher temperatures, and the resistivity of the system is also decreased significantly.

Zi et al. [44] prepared \(\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \) nanoparticles by a simple chemical co-precipitation route. To study the magnetoresistance (MR) effect, the magnetic field dependence of MR ratio at 10 K and 300 K by sweeping the applied magnetic field from \(-20\) to \(20\) kOe, was shown in Fig. 24. MR is defined as

\[
\text{MR} = \frac{\rho_H - \rho_0}{\rho_0} \times 100\%
\]

where \(\rho_H \) and \(\rho_0 \) refer to the resistivity under the applied and zero field, respectively. It can be seen that MR drops abruptly with the increasing field in low-field region, which is called as low-field magnetoresistance (LFMR). LFMR values at 10 and 300 K are 22.3% and 2.9% at 5 kOe, respectively. Because of the small coercive field, the alignment of the magnetization in each LSMO grain to the applied magnetic field occurs in the low-field region. At a comparatively high-field region above 5 kOe, MR decreases linearly with the applied field, but with a much reduced slope. High-field MR (HFMR) ratios at 10 and 300 K are 29.2% and 6.5% at 20 kOe, respectively. HFMR can be attributed to the non-collinear spins at LSMO boundaries.

To investigate the particle size effect on the transport properties of \(\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \) (LSMO) nanoparticles, Navin and Kurchania [216] synthesized the LSMO nanoparticles with particle sizes of 20 nm (LSMO-1), 23 nm (LSMO-2), and 26 nm (LSMO-3), respectively. Figure 25 shows their temperature dependence of resistivity measured under \((H = 1 \, \text{T}) \) and without magnetic field in the temperature range of 10–300 K. It was found that the resistivity values of the LSMO-1 nanoparticles (Fig. 25a) were higher than that of the LSMO-2 (Fig. 25b) and LSMO-3 (Fig. 25c) nanoparticles. That is ascribed to the smaller particle size in the LSMO-1 sample. As the particle sizes become smaller, more grain boundaries in the samples acts as scattering centers to the charge carriers, resulting in the larger resistivity. Besides, it was found that the value of resistivity of all samples decrease under an external magnetic field of 1 T. The applied magnetic field gives rise to the increasing of spin ordering and the decreasing of the localization of the charge, which result in the reduction of resistivity. The LFMR property is related to the spin dependent scattering or spin dependent tunneling of the conduction electrons near the interfaces and grain boundaries. Figure 26a shows the temperature dependence of the MR of the samples LSMO-1, LSMO-2, and LSMO-3 at an applied magnetic field of 1 T. It was found that their MR values increase monotonically with decreasing the temperature. The LFMR at 1 T and 10 K for the samples LSMO-1, LSMO-2, and LSMO-3 was obtained as 32.3%, 28.4%, and 25.1% respectively. Obviously, the LFMR enhanced with decreasing the particle sizes. Figure 26b shows the magnetic field dependence of the normalized resistivity \((\rho_H/\rho_0) \) with applied magnetic field at temperatures 10 K and 300 K, where \(\rho_0 \) and \(\rho_H \) are the resistivity without and with magnetic field respectively. A sharp drop in the value of resistivity in low magnetic field region was also observed and the resistivity does not saturate up to a magnetic field of 4 T.

The effects of doping levels on the electrical transport properties of perovskite manganite nanoparticles were also investigated. Thombare et al. [217] reported the electrical properties of \(\text{Nd}_{1-x}\text{Sr}_x\text{MnO}_3 \) (NSMO, \(0.3 \leq x \leq 7 \)) nanoparticles synthesized by glycine assisted auto combustion method. Figure 27a shows the resistivity for NSMO in the temperature range 5–300 K at zero magnetic field. It is found that all plots show high resistivity. The resistivity values slightly increases with the Sr concentration up to 100 K, whereas below that the rise in resistivity is steeper. The M–I transition is not observed in the present NSMO nanoparticles without applied
magnetic field. However, under applied magnetic field (H) of 8 T, the M–I transition temperature (T_P) was clearly observed around 12–48 K, as shown in Fig. 27b. These transition temperatures are lower than that in bulk counterpart. That may be due to the formation of small ferromagnetic clusters which are suffice for magnetic contribution but forbids conduction [218].

Optical Properties
The optical study of perovskite manganites has interestingly shown that they are controlled by the electronic structure of perovskites. Kumar et al. [154] synthesized...
(La$_{0.6}$Pr$_{0.4}$)$_{0.65}$Ca$_{0.35}$MnO$_3$ nanoparticles by sol-gel method and post-annealed at 600 °C, 800 °C, and 1000 °C. To investigate the optical absorbance and evaluate the optical band gap of (La$_{0.6}$Pr$_{0.4}$)$_{0.65}$Ca$_{0.35}$MnO$_3$, ultraviolet-visible (UV-Vis) spectroscopy measurements are carried out and the obtained UV-Vis spectra are shown in Fig. 28a. Obviously, there is a sharp absorption edge around 308 nm in ultraviolet region. The optical absorption edges can be analyzed as follows [219]:

$$\alpha h\nu \propto (h\nu - E_g)^n$$

where E_g is the band gap energy, $h\nu$ is the photon energy, and α is the absorption coefficient, depending upon the optical absorbance (A) and thickness (d). n can be equal to 1/2 (for direct transition process) or 2 (for indirect transition process). The variations of $(\alpha h\nu)^2$ versus photon energy ($h\nu$) for the (La$_{0.6}$Pr$_{0.4}$)$_{0.65}$Ca$_{0.35}$MnO$_3$ nanoparticles post-annealed at 600 °C, 800 °C, and 1000 °C are plotted in Fig. 28b. It is observed that $(\alpha h\nu)^2$ varies linearly for a very wide range of photon energy ($h\nu$), indicating a direct type of transitions in these systems. The intercepts of these plots on the energy axis give the energy band gaps of the systems, which were determined to be 3.52, 3.46, and 3.42 eV, respectively, for the (La$_{0.6}$Pr$_{0.4}$)$_{0.65}$Ca$_{0.35}$MnO$_3$ nanoparticles post-annealed at 600 °C, 800 °C, and 1000 °C. These direct band gaps fall into the range of wide band gap semiconductors. The decrease of the band gap (red-shift) with increasing post-annealing temperature can be attributed to the increased particle sizes. Negi et al. [220] also investigated the optical properties of GdMnO$_3$ nanoparticles synthesized by the modified sol-gel route. The room temperature optical absorption spectrum of the GdMnO$_3$ nanoparticles measured in the range of 200–600 nm clearly shows that the absorbance is less in the range of 380–600 nm. The low absorbance in the entire visible region is an essential condition for nonlinear optical applications [221]. An extrapolation of the linear
region of a plot of \((ahv)^2\) on the y-axis versus photon energy \((hv)\) on the x-axis gives the optical band gap \(\sim 2.9\) eV.

1D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Magnetic Properties

Chandra et al. [222] synthesized \(La_{0.67}Ca_{0.33}MnO_3\) crystalline nanowires with the average diameter of 70 nm by using porous templates of anodized alumina combined with CSD technique. Their temperature dependence of magnetization (M) measured at ZFC and FC modes and under a magnetic field of 100 Oe demonstrates that these nanowires undergo a PM to FM transition at \(T_C = 245\) K, which is defined by the minimum in \(dM/dT\). Similar feature was also reported for the \(La_{0.67}Ca_{0.33}MnO_3\) nanotubes [87]. Datta et al. [157] also synthesized \(La_{1-x}A_xMnO_3\) (where \(A = Ca, Sr; x = 0.3\) and 0.5) nanowires by hydrothermal method. All the nanowires undergo FM–PM phase transitions with increasing the temperature. Their \(T_C\) values are dependent upon the crystal structure as well as the Mn valence and oxygen stoichiometry.

Wang and Fan [223] reported on the magnetic properties of electron-doped \(Ca_{0.82}La_{0.18}MnO_3\) nanowires and nanoparticles, and compared them with their bulk counterpart. It is found that the \(Ca_{0.82}La_{0.18}MnO_3\) bulk exhibits a strong charge ordering (CO) peak at \(T_{CO} = 132\) K followed by an AFM ground state, whereas the CO peak becomes weak in the nanowires \((T_{CO} = 124\) K), and disappeared in the nanoparticles which exhibits a ferromagnetism with \(T_C = 165\) K. Chandra et al. [224] also reported on the magnetic properties of the single-crystalline \(La_{0.5}Sr_{0.5}MnO_3\) nanowires with diameter of 20–50 nm and length of 1–10 \(\mu\)m synthesized by the hydrothermal technique. Figure 29a–d shows their temperature dependence of dc magnetization \(M(T)\) measured under different applied magnetic fields. As the

Fig. 29 a, b Zero-field-cooled (ZFC) (blue), field-cooled-cooling (FCC) (green), and field-cooled-warming (FCW) (red) magnetization curves of the \(La_{0.5}Sr_{0.5}MnO_3\) nanowires measured under applied fields of a 100 Oe and b 1000 Oe. c, d ZFC and FCW magnetization curves obtained under applied magnetic field of c 2000 Oe and d 5000 Oe. e Real and f imaginary parts of linear ac susceptibility versus temperature plots for different frequencies. The inset of (e) shows a magnified view of \(\chi'(T)\) for more frequencies. Reproduced with permission of [224].
temperature is lowered from 340 K, the nanowires exhibit a PM to FM transition at $T_C \approx 315$ K followed by a peak at $T_N \approx 210$ K, which is associated with the onset of the FM–AFM transition. As the applied magnetic field is increased, the irreversible temperature shifts to lower temperatures as shown in Fig. 29b–d. Figure 29e, f demonstrates the temperature dependences of the real (χ') and imaginary (χ'') parts of ac susceptibility in the temperature range of 10–340 K, respectively. The χ' (T) curves show a maximum at T_N with no frequency dependence and a kink at T_L. In addition, the χ'' (T) curves, which reveal insight into magnetic loss behavior, showing a peak at T_C, a broad shoulder at T_N, and a kink at T_L. The χ' (T) peak shifts to a higher temperature as the frequency is increased, which is consistent with the results reported previously [225, 226].

Magnetocaloric properties

Kumaresavanji et al. [227] reported on the MCE in La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanotube arrays, which were synthesized by template-assisted sol-gel method in temperatures ranging from 179 to 293 K and under magnetic fields up to 5 T. Their temperature dependence of $-\Delta S_M$ at different fields for nanotube arrays and bulk is plotted in Fig. 30a, b. When compared with the bulk counterpart (4.8 J/kg K), the magnitude of the ΔS_M (1.9 J/kg K) is smaller for nanotube arrays. In addition, the temperature dependence of $-\Delta S_M$ curves for bulk sample show a narrow peak at 258 K which become broader and shift to lower temperature for nanotube arrays. The refrigerant capacitance (RC), is also an important parameter for selecting potential substances for magnetic refrigeration, which is described as the amount of heat transferred between the hot and cold sinks in one ideal refrigeration cycle. It is evaluated using the relation

$$RC(H) = \int_{T_1}^{T_2} \Delta S_M(T, H) dT$$

(5)

where T_1 and T_2 are the temperatures of cold and hot reservoirs, respectively, which correspond to the full width at half maximum (δT_{FWHM}) of the ΔS_M curves. The calculated δT_{FWHM} and RC values for nanotube arrays and bulk samples are depicted in Fig. 30c. The RC values vary linearly with H in both cases. Moreover, the RC value is reasonably large for bulk sample compared to nanotube arrays. However, the δT_{FWHM} values of nanotube arrays are nearly 54% larger than the observed one for bulk sample. The temperature dependence of ΔS_M curves of nanotube arrays and bulk at a field of 5 T are comparatively shown in Fig. 30d. The shadow part represents the δT_{FWHM} of nanotube arrays which is nearly three times larger than their bulk counterpart.

\[Fig. 30\] Temperature dependence of $-\Delta S_M$ curves for a La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) nanotube (NT) arrays and b LCMO bulk at different fields. c RC and δT_{FWHM} with respect to the field of the LCMO NT arrays and LCMO bulk sample. d Temperature dependence of $-\Delta S_M$ curves of the LCMO NT arrays and bulk at 5 T. Reproduced with permission of [227]
From this figure, one can understand how the nanotube arrays provide an expanded working temperature range compared to the bulk one. Even though the nanotube arrays present a broader ΔS_M curve, the ΔS_M value is lower compared to the bulk sample. However, the higher surface to volume ratio together with the hollow structure and broader peaks of ΔS_M indicate that the manganite nanotubes could be a suitable material for magnetic refrigeration in nano-electromechanical systems. The magnetocaloric properties of La$_{0.6}$Ca$_{0.4}$MnO$_3$ nanotubes with diameter of 280 nm and wall thickness of 10 nm were also reported by Andrade et al. [228]. It is found that the decrease of ΔS is commonly accompanied by a broadening in the ΔS curve. The RCP of nanoparticles is decreased with decreasing the particle size, but they still possess a larger cooling power than the nanotubes of the same compound, due to the broadening of the magnetic transition observed in these samples. In this way, it is important to notice that the reduced maximum value of ΔS observed for nanosystems is often accompanied by a broad magnetic entropy change.

Transport Properties

Lei et al. [229] successfully synthesized single-crystalline MgO/La$_{0.67}$Ca$_{0.33}$MnO$_3$ core-shell nanowires (MgO core is \sim 20 nm in diameter and the La$_{0.67}$Ca$_{0.33}$MnO$_3$ shell layer is \sim 10 nm in thickness) by depositing epitaxial La$_{0.67}$Ca$_{0.33}$MnO$_3$ sheaths onto MgO nanowire templates through the PLD technique. Transport investigations were carried out by measuring the four-probe resistance of individual core-shell nanowires, as shown in Fig. 31. The SEM image of a typical device with a 5-μm-long nanowire and four uniformly distributed electrodes is shown in Fig. 31a. The four-probe resistance of an MgO/La$_{0.67}$Ca$_{0.33}$MnO$_3$ nanowire was recorded as a function of temperature under two different magnetic fields (0 and 1 T), as shown in Fig. 31b. This M–I transition occurred at \sim 140 K under zero magnetic field, and the transition temperature shifted to \sim 160 K when a magnetic field of 1 T was applied normal to the device substrate. This M–I transition and transition temperature shifting effect induced by magnetic fields strongly suggest a correlation between the ferromagnetism and the metallic character, which is ascribed to the double-exchange mechanism. This M–I transition associated with FM to PM transition also happened in the MgO/La$_{0.67}$Sr$_{0.33}$MnO$_3$ core-shell nanowires with T_{MI}–240 K at $H = 0$ and the T_{MI} shifted to \sim 250 K under a perpendicular magnetic field of 1 T (Fig. 31c). In addition, MR measurements were also performed with both MgO/La$_{0.67}$Ca$_{0.33}$MnO$_3$ (inset of Fig. 31b) and MgO/La$_{0.67}$Sr$_{0.33}$MnO$_3$ (inset of Fig. 31c) core-shell nanowires at their transition temperature by sweeping the perpendicular magnetic field between ± 2.0 T. By defining the
MR ratio as \([R(H) - R(0)]/R(0) \times 100\%\), a value of MR = 34% was achieved at \(T = 140\) K and \(H = 2.0\) T for \(\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_3\) (inset of Fig. 31b), and 12% was achieved at \(T = 240\) K and \(H = 2.0\) T for \(\text{La}_{0.67}\text{Sr}_{0.33}\text{MnO}_3\) (inset of Fig. 31c).

Optical Properties

Arabi et al. [80] synthesized the \(\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) nanorods by hydrothermal method under different conditions (e.g., different mineralization agents KOH and NaOH; various alkalinity conditions (10, 15, and 20 M)). The UV–Vis absorption spectra of all the \(\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) nanorods are shown in Fig. 32a, where three obvious peaks are observed due to optical response in these \(\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) nanorods. The first peak was observed around 220 nm (5.6 eV) for all the samples. Strong absorption peak appeared at wavelengths about 325–380 nm (3.8–3.3 eV) and the third peak appeared around 950 nm (1.3 eV) in all the samples, as shown in inset of Fig. 32a. It is found that a decrease and broadening of the absorption peaks for the N-series samples is related to size reduction. Figure 32b shows the curves of \((\alpha h\nu)^2\) versus \(h\nu\), and the intercepts of these plots on the \(h\nu\) axis provide the optical band gaps. It can be obtained that the main band gaps are estimated to be 2.48, 2.39, and 2.19 eV for the samples K10, K15, and K20 as well as 2.18, 2.25, and 2.32 eV for the samples N10, N15, and N20, respectively. Recently, Arabi et al. [230] also investigated the optical properties of \(\text{La}_{0.68}\text{Ca}_{0.32}\text{MnO}_3\) nanowires prepared by hydrothermal method. Their optical band gap is estimated to be about 2.13 eV.

2D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Magnetic Properties

Shao et al. [106] fabricated \(\text{La}_{0.325}\text{Pr}_{0.3}\text{Ca}_{0.375}\text{MnO}_3\) single-crystalline disks with diameters from 500 nm to 20 \(\mu\)m to study the spatial confinement effect on EPS. By using electron beam lithography with a negative tone resist, the \(\text{La}_{0.325}\text{Pr}_{0.3}\text{Ca}_{0.375}\text{MnO}_3\) disks were derived from the epitaxial \(\text{La}_{0.325}\text{Pr}_{0.3}\text{Ca}_{0.375}\text{MnO}_3\) films with thickness of 60 nm grown on STO(001) substrates by PLD. Magnetic properties of these \(\text{La}_{0.325}\text{Pr}_{0.3}\text{Ca}_{0.375}\text{MnO}_3\) disk arrays are measured by SQUID and MFM. Figure 33 shows the transition from the EPS state to a single ferromagnetic metallic (FMM) state. Figure 33a shows the AFM images of the morphologies for the \(\text{La}_{0.325}\text{Pr}_{0.3}\text{Ca}_{0.375}\text{MnO}_3\) disks with different diameters. The corresponding MFM images of the \(\text{La}_{0.325}\text{Pr}_{0.3}\text{Ca}_{0.375}\text{MnO}_3\) disks acquired at different temperatures (10 K, 100 K, and 180 K) under a perpendicular magnetic field of 1 T are shown in Fig. 33b–d. In the color scale, the contrast below zero (red or black) represents FMM phase, while the contrast above zero (green or blue) represents non-ferromagnetic phase. Obviously, all the disks show distinct features of the EPS state (i.e., the coexistence of the FMM and charge order insulating (COI) phases), except for the 500 nm disk. The typical length scale of the EPS domains is around a micrometer. It was also found that with decreasing temperature, the portion of FMM phase was increased.

Huijben et al. [231] grew ultrathin \(\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3\) films with thicknesses from 3 to 70 unit cells on STO substrates by PLD method. Their magnetic properties are shown in Fig. 34. Figure 34a shows the \(M-H\) loops of
all samples. It is observed that the saturation magnetization (M_S) is increased with increasing the film thickness up to 13 unit cells (~48 Å), whereas the coercive field (H_C) is decreased. The M-T curves for all the films with different thickness are displayed in Fig. 34b, from which the Curie temperature T_C is determined. The thicknesses dependent of H_C and T_C is shown in Fig. 34c. It is found that H_C and T_C are nearly constant for thicknesses down to 13 unit cells. Further reduction in the film thickness results in a dramatic change in the magnetic properties, although the films remain ferromagnetic down to three unit cells (~12 Å).

Magnetocaloric Properties

Debnath et al. [232] reported on the magnetocaloric properties of an epitaxial La$_{0.8}$Ca$_{0.2}$MnO$_3$/LaAlO$_3$ thin film grown by PLD method. The magnetic entropy changes in the La$_{0.8}$Ca$_{0.2}$MnO$_3$ thin film for different magnetic field directions are shown in Fig. 35a–c, respectively. $|\Delta S_M|$ exhibits a peak with its maximum around 247 K near T_C. The maximum values of $|\Delta S_M|$ were estimated to be 35.90, 27.50, and 24.97 mJ cm$^{-3}$ K$^{-1}$ under a field change of 1 T for the different field directions, $H//ab$, $H//45^\circ$, and $H//c$, respectively. The $|\Delta S_M|$ peaks in all directions are significantly broadened over a wider temperature region. The RCP values of the thin film under different field directions are shown in Fig. 35d. Large RCP values (i.e., 1000 mJ/cm3 for the ab plane and 780 mJ/cm3 for the c-direction) are obtained, which are higher than those observed in other perovskite manganites and rare earth alloys [213, 233, 234]. Such higher entropy change value and higher RCP with no noticeable hysteresis loss will make the epitaxial La$_{0.8}$Ca$_{0.2}$MnO$_3$ films more attractive for use as a magnetic refrigeration with large useful temperature ranges.

Giri et al. [235] deposited epitaxial Sm$_{0.55}$Sr$_{0.45}$MnO$_3$ thin films on LAO(001), LSAT(001), and STO(001) single crystal substrates by PLD technique, and the relationship between magnetocaloric effect and lattice strain induced by the substrates was investigated. The temperature-dependent $|\Delta S_M|$ values at different magnetic field calculated from M-H data for the Sm$_{0.55}$Sr$_{0.45}$MnO$_3$ thin films grown on LAO (001), LSAT (001), and STO (001) single crystal substrates are shown in Fig. 36a–c, respectively. It is interesting to notice that the values of $|\Delta S_M|$ can be modulated by the lattice strain induced by the different substrates. The maximum value of $|\Delta S_M|$ was found to be ~10 J kg$^{-1}$ K$^{-1}$ for the Sm$_{0.55}$Sr$_{0.45}$MnO$_3$ films grown on STO under a field change of 6 T. The inset of Fig. 36a shows the M-H loop...
measured at 10 K with increasing and decreasing magnetic fields of the films grown on STO. The field hysteresis loss is very less, which is a well characteristic of magnetic refrigeration. This low-field large magnetic entropy change in the thin film is mainly due to the rapid change of magnetization near the transition temperature in the easy magnetization plane. The specific heat \(C_p\) data of the Sm\(_{0.55}\)Sr\(_{0.45}\)MnO\(_3\) film grown on LAO substrate is shown in Fig. 36d, which clearly shows a lambda-shaped anomaly close to \(T_C\). This is mainly arisen due to second-order magnetic phase transition. The peak temperature of \(C_p\) of the film matches well with \(T_C\) determined by dc magnetization measurement. The values of relative cooling power (RCP) are usually calculated for both the cases (near \(T_C\) and around \(T_p\)), and several methods have been used to calculate the value of RCP. For example, in the first method, RCP-1 is calculated from the product of maximum peak value \(\Delta S_M\) and the full width at half maximum, \(\delta T_{FWHM}\), i.e., RCP-1 = \(\Delta S_{M\max}\) \(\times\) \(\delta T_{FWHM}\). In second method, RCP-2 is estimated from the maximum value (area) of the product \(\Delta S_M\times\Delta T\) under the \(\Delta S_M\) vs. \(T\) curve. The \(\Delta S_M\) versus \(T\) curve of the Sm\(_{0.55}\)Sr\(_{0.45}\)MnO\(_3\) films grown on STO at magnetic field of 6 T is shown in Fig. 36e. The bigger rectangular sketch and shaded area corresponds to RCP-1 and RCP-2, respectively. Inset in Fig. 36e shows the value of RCP-2 as a function of magnetic field for three different films. Figure 36f demonstrates the value of RCP-1 as a function of magnetic field for three different films. It can be observed that for both the temperature regime, the value of RCP increases with increasing the magnetic fields. An important observation is that the values of RCP are significantly larger around \(T_C\) than \(T_p\). Therefore, a material in the same refrigeration cycle with higher RCP is preferred as it would confirm the transport of a greater amount of heat in an ideal refrigeration cycle. The epitaxial Sm\(_{0.55}\)Sr\(_{0.45}\)MnO\(_3\) films grown on STO exhibit large MCE modulated by lattice strain; their larger \(\Delta S_M\) and enhanced RCP with almost zero hysteresis loss make them ideal for magnetic refrigeration, providing an alternative approach in searching for energy efficient magnetic refrigerators.

Transport Properties

Chen et al. [236] investigated the transport properties of \((La_{1-x}Pr_x)_{0.67}Ca_{0.33}MnO_3\) \((0 \leq x \leq 0.35)\) films (with thicknesses from 9 to 60 nm) grown on NGO(110)OR substrates by PLD. Their temperature coefficient of resistance (TCR, defined by \((dp/dT)/\rho\), where \(\rho\) is the resistivity and \(T\) the temperature) is shown in Fig. 37a. The inset shows the corresponding \(\rho\)-T curves. The doping-level dependent \(T_C\) and TCR peak values are
shown in Fig. 37b. Obviously, the monotonous reduction of T_C is accompanied by the increasing Pr-doping. TCR value greatly relies on the Pr-doping level x, which reaches the maximum value at 88.17% K$^{-1}$ when doped at $x = 0.25$. The (La$_{1-x}$Pr$_x$)$_{0.67}$Ca$_{0.33}$MnO$_3$ film at $x = 0.25$ may give a suitable FMM clusters size and distribution, leading to a sharp MIT with an optimized TCR. Dhakal et al. [105] also reported on the electrical properties of the (La$_{1-y}$Pr$_y$)$_{0.67}$Ca$_{0.33}$MnO$_3$ ($y = 0.4, 0.5,$ and 0.6) films with thickness of 30 nm grown on NGO(110) and STO(100) substrates by PLD. They found that the M-I transition temperature T_{MI} was decreased with increasing the Pr-doping concentration due to the reduction of average A-site cation radii $<r_A>$. The transport properties of La$_{0.8-x}$Pr$_x$Sr$_x$MnO$_3$ ($x = 0.1, 0.2,$ and 0.3) manganite films were also reported by Solanki et al. [118]. Their results confirmed the effects of Sr-concentration on transport properties. As smaller sized Pr$^{3+}$ substituted at La-site in LaMnO$_3$ results in the reduction in Mn-O-Mn bond angle from 180° making superexchange competitive with Zener double exchange, while substitution of Sr$^{2+}$ in La$_{0.8-x}$Pr$_x$Sr$_x$MnO$_3$ system results in the increase in lattice parameters and the Mn-O-Mn bond angle toward 180°. Increase in Sr-concentration (from $x = 0.1$ to 0.3) enhances the e_g electron bandwidth due to larger size of Sr$^{2+}$ ion, promoting the motion of more itinerant electrons between Mn$^{3+}$ and Mn$^{4+}$ which in turn suppresses resistivity and enhances T_P (metal-insulator/semiconductor transition temperature). In addition, due to substitution of Sr$^{2+}(x)$ at La-site, average grain size increases and grain boundary density decreases resulting in the suppression in scattering of e_g electrons which in turn increases T_P.

The thickness-dependent transport properties of the La$_{0.7}$Pb$_{0.3}$MnO$_3$ manganite films grown on LAO(100) single crystal substrates by CSD technique are also reported [115]. Figure 38a shows the ρ-T data of all the La$_{0.7}$Pb$_{0.3}$MnO$_3$/LAO films under zero applied field. It is found that the ρ decreases and T_P increases up to 269 K (with thickness of 350 nm) as increasing the film thickness, which is ascribed to the total (in plane and out of plane) strain relaxation effect. Figure 38b shows low temperature MR behavior of various thickness films and bulk, the MR isotherms, at 5 K. It was found that bulk exhibits MR $\sim 38\%$ at 9 T, while the film only shows MR $\sim 42\%$ at room temperature. In addition, as the film thickness is increased, MR value at 5 K increases from
5% for 150 nm film to 18% for 350 nm film. This observation suggests the thickness-dependent microstructural effect on the transport and MR behavior of the La$_{0.7}$Pb$_{0.3}$MnO$_3$/LAO films at low temperature under high fields. The thickness-dependent transport properties in the La$_{0.7}$Sr$_{0.3}$MnO$_3$ thin films are also reported [116, 117, 237–239].

Optical Properties

Cesaria et al. [240] reported the optical response of 200-nm-thick La$_{0.7}$Sr$_{0.3}$MnO$_3$ films, which were deposited by PLD on amorphous silica substrates at nearly 600 °C under different oxygen pressures (0.1, 0.5, 1, 5, and 10 Pa). A blue-shift of the transmittance-curve edge was observed as the p(O$_2$) was increases from 1 to 10 Pa. That is ascribed to the changes of oxygen non-stoichiometry in the films, leading to larger Mn$^{4+}$/Mn$^{3+}$ ratios under higher oxygen pressure. In order to in-depth understand the optical response of the deposited films, the nature (direct or indirect) of the optical transitions in the films were investigated by plotting $(Ea(E))^n$ versus the photon energy (E) for $n = 1/2$ and 2, where $a(E)$ is the absorption coefficient. n is equal to 1/2 for indirect transition process or 2 for direct transition process. The graphs of $(Ea(E))^2$ versus energy E for all the deposited films exhibit a linear regions, as shown in Fig. 39a, from which the direct energy gap values (E_g) for the thin films can be estimated by extrapolation to the energy axis of the linear regions of the graphs. In the allowed direct transitions, the lowest energy one at nearly 1.0 eV was observed only for the films grown under oxygen pressures of 0.1 Pa and 0.5 Pa. That can be assigned to electronic excitations Mn$^{3+}$(e$_{1g}$)\rightarrowMn$^{3+}$(e$_{2g}$) from a bound state (owed to the lattice distortion around the Mn$^{3+}$ ion) into a final state also bound by lattice distortions. The highest observed transition appeared at nearly 3.5 eV. Other transitions were yielded at intermediate energies for all the examined values of p(O$_2$): optical
transitions of at least 2.45 eV were observed with increasing energy as p(O₂) was increased. The films grown under oxygen pressures of 10 Pa exhibited further transitions (at 3.04 eV and 3.50 eV), which can be assigned to transitions from O 2p states to the higher energy Mn 3+(e²g) band. In the plots of (\(E_a(E)\))^{1/2} versus energy (E) of the films grown under the oxygen pressure of 10 Pa and 0.5 Pa, linear regions were also observed, as shown in Fig. 39b, which may be assigned to indirect transitions (phonon assisted transitions, i.e., phonon absorption and phonon emission) or indicative of amorphous nature. The occurrence of two adjacent linear dependences can be interpreted as corresponding to phonon absorption and phonon emission processes leading to an indirect band gap. Indirect transitions are assigned to the films grown under oxygen pressures of 10 Pa, 5 Pa, and 1 Pa, and amorphous nature is detected in the films grown under oxygen pressures of 0.5 Pa and 0.1 Pa. Tanguturi et al. [241] reported the optical properties of Nd₀.⁷Sr₀.₃MnO₃ films grown on amorphous-SiO₂ substrate. In the absorption coefficient spectra of the as-deposited and annealed films, a broad peak in the region \(h\nu < 2\,\text{eV}\) was observed and beyond that they rose rapidly up to around 4 eV. Beyond 4 eV, no appreciable change in the spectrum was observed. The energy band gaps of the films were determined by plotting \((\alpha E)^2\) as a function of energy \(E\), which were determined to be 2.98 eV and 2.64 eV for the as-deposited and annealed films, respectively. Therefore, the amorphous film exhibits larger band gap as compared with the crystalline one. Such a large band gap value in amorphous phase is a known phenomenon [242].

3D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Up to date, only a limited works on 3D rare earth-doped perovskite manganite oxide nanostructures are available. Here, an example of 3D rare earth-doped perovskite manganite oxide nanostructure is demonstrated, which is constructed by interlayering La₀.⁷Sr₀.₃MnO₃ (LSMO)–CeO₂-based epitaxial vertically aligned nanocomposite...
(VAN) thin films with pure CeO$_2$ (or LSMO) layers. This 3D strained framework nanostructures combine both the lateral strain by the layered structures and the vertical strain in the VAN, and thus maximize the 3D strain states in the systems, manipulating the electron transport paths in these systems. For example, in the 3D nanostructured LSMO–CeO$_2$ VAN systems, the electrical transport properties can be effectively tuned from a 3D insulating CeO$_2$ framework with integrated magnetic tunnel junction structures, to a 3D conducting LSMO framework by varying the types of the interlayers (i.e., CeO$_2$ or LSMO) and the number of interlayers from 1 to 3 layers [198]. Figure 40 shows the transport properties of these 3D framed nanostructures. The temperature-dependent resistance (R–T) curves at zero-field are shown in Fig. 40a for samples C0–C3, and Fig. 40b depicts the temperature dependence of the MR (%) in the 3D-framed nanostructures C0–C3. It is observed
that in Fig. 40a, the resistance is decreased with increasing temperature, indicating typical semiconductor behavior in C0–C3 due to the large portion of CeO2 introduced in the nanostructures (CeO2:LSMO ≥ 1:1 in C0–C3). The MR (%) of the films C0–C3 is increased at first and then reduced as the temperature increasing from low temperature to room temperature. Therefore, a MR peak is observed around 50 K. It is also noticed that the 3D CeO2 frameworks could enhance the overall MR properties; for example, the MR peak value is increased from 40% (C0) to 51% (C3), 57% (C2), and maximized at 66% (C1). Such an enhancement can be ascribed to the 3D CeO2 framework not only tailoring the out-of-plane strain of the LSMO phase but also building up the 3D tunneling framework for the electron transport. The relatively lower MR (%) in C2 and C3 samples compared to C1 is possibly related to the surface roughness observed in both samples where the 3D insulating framework might not be effective in the top layers. In contrast to the C1–C3 samples, a metallic behavior is observed in the L1–L3 samples with a 3D LSMO framework, as shown in Fig. 40c. The resistances are gradually increased from 10 to 350 K with a M–I transition temperature (T_{MI}) at ~325 K. Such a metallic behavior is associated with the high composition of LSMO in L1–L3 and the 3D interconnected conductive LSMO frames built in the composite films L1–L3. Meanwhile, the resistance of the composite films L1–L3 decreases with inserting more lateral LSMO interlayers over the entire temperature regime. The LSMO interlayers interconnect with the vertical LSMO domains forming a conductive 3D frame in the film. Thus, the tunneling MR effect is effectively reduced. Figure 40d demonstrates the temperature dependence of MR for the nanocomposite thin films L0–L3 with the metal-to-insulator transition temperature (T_{MI}) marked for samples L1–L3. It is observed that such L1–L3 structures enable higher MR values at higher temperatures, e.g., 13% at 316 K in sample L2, which is a dramatic MR value improvement compared to C0–C3 and the previous reports at higher temperatures (e.g., near room temperature). Based on the above observations, it is clear that magnetic tunneling junctions (MTJ) of the LSMO/CeO2/LSMO and their geometrical arrangement in the 3D framework

![Fig. 40](image-url)

Fig. 40 a R–T plots of 3D CeO2 framed nanocomposite thin films C0—C3. b The temperature dependence of MR for the nanocomposite thin films C0–C3. c R–T plots of 3D La0.7Sr0.3MnO3 (LSMO) framed nanocomposite thin films L0–L3. The arrows point out the metal-to-insulator transition temperature T_{MI} of L1–L3. d The temperature dependence of MR for the nanocomposite thin films L0–L3 with the metal-to-insulator transition temperature T_{MI} marked for samples L1–L3. The single layer LSMO - CeO2 VAN thin films are named as C0 or L0, without LSMO or CeO2 as the interlayers. 3D CeO2 interlayered thin films with 1, 2, and 3 interlayers inserted in VAN structures are named as samples C1, C2, and C3, respectively. Similarly, 3D LSMO interlayered thin films with 1, 2, and 3 interlayers inserted in VAN are named as sample L1, L2, and L3, respectively. Reproduced with permission of [198]
nanostructures are very important for enhancing the low-field MR properties. In C1–C3 samples, there are effective vertical and lateral MTJ structures integrated in the system by incorporating CeO2 interlayers in the VAN system, such 3D insulating frameworks effectively maximize the 3D magnetic tunneling effect and lead to a record high MR% in the LSMO based systems. This 3D strain framework concept opens up a new avenue to maximize the film strain beyond the initial critical thickness and can be applied to many other material systems with strain-enabled functionalities beyond magnetotransport properties.

Applications of Rare Earth-Doped Perovskite Manganite Oxide Nanoparticles

Rare Earth-Doped Perovskite Manganite Oxide Nanoparticles

Magnetic Refrigeration

Magnetocaloric effect (MCE) makes magnetic materials attractive for potential applications in magnetic refrigeration. As compared to the conventional gas compression technology, the magnetic refrigeration technology offers many advantages, such as no use of any gasses or hazardous chemicals, low energy consumption, and low capital cost [243–245].

Mahato et al. [246] synthesized La$_{0.7}$Te$_{0.3}$MnO$_3$ nanoparticles with average particle size of 52 nm where a large magnetic entropy change of 12.5 J kg$^{-1}$ K$^{-1}$ was obtained near T_C for a field change of 50 kOe. These results confirmed the application for magnetic refrigeration. Yang et al. [247] reported that for La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanoparticles with average size of 30 and 50 nm, their maximum magnetic entropy changes at 15 kOe applied field were 1.01 and 1.20 J kg$^{-1}$ K$^{-1}$, respectively, indicating that the La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanoparticles could be considered as a potential candidate for magnetic refrigeration applications at room temperature. Phan et al. [248] demonstrated strong enhancement of both the MCE and refrigerant capacity in the nanostructured mixed phase manganite of La$_{0.35}$Pr$_{0.275}$Ca$_{0.375}$MnO$_3$ (with an average particle size of 50 nm). Compared to other candidates such as Pr$_{0.65}$(Ca$_{0.7}$Sr$_{0.3}$)$_{0.35}$MnO$_3$ (∼67 nm) [249], the higher entropy change (∼Δ$S_{\text{mag}}^{\text{max}}$) and RC (refrigerant capacity) values were achieved in the nanocrystalline sample.

Biomedical Applications

Magnetic nanoparticles offer some attractive possibilities in biomedicine. First, they have controllable sizes ranging from a few nanometers up to tens of nanometers, which places them at dimensions that are smaller than or comparable to those of a cell (10–100 μm), a virus (20–450 nm), a protein (5–50 nm), or a gene (2 nm wide and 10–100 nm long). This means that they can “get close” to a biological entity of interest. Indeed, they can be coated with biological molecules to make them interact with or bind to a biological entity, thereby providing a controllable means of “tagging” or addressing it. Second, the nanoparticles are magnetic, which means that they obey Coulomb’s law, and can be manipulated by an external magnetic field gradient. This “action at a distance,” combined with the intrinsic penetrability of magnetic fields into human tissue, opens up many applications involving the transport and/or immobilization of magnetic nanoparticles, or of magnetically tagged biological entities. In this way, they can be made to deliver a package, such as an anticancer drug, or a cohort of radionuclide atoms, to a targeted region of the body, such as a tumour. Third, the magnetic nanoparticles can be made to resonantly respond to a time-varying magnetic field, with advantageous results related to the transfer of energy from the exciting field to the nanoparticle. For example, the particle can be made to heat up, which leads to their use as hyperthermia agents, delivering toxic amounts of thermal energy to targeted bodies such as tumours; or as chemotherapy and radiotherapy enhancement agents, where a moderate degree of tissue warming results in more effective malignant cell destruction. These, and many other potential applications, are made available in biomedicine as a result of the special physical properties of magnetic nanoparticles [250].

Bhayani et al. [251] report, for the first time, immobilization of commonly used biocompatible molecules on La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles, namely bovine serum albumin and dextran. Such bioconjugated nanoparticles have a tremendous potential application, especially in the field of biomedicine. Daengsakul et al. [61, 62] reported the cytotoxicity of La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles with $x = 0, 0.1, 0.2, 0.3, 0.4,$ and 0.5 evaluated with cell NIH 3T3. The result showed that the La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles were not toxic to the cells. This will be useful for medical applications. Similar studies about the toxicity of the nanoparticles were performed by Zhang et al. for safe biomedical applications [252].

Magnetic resonance imaging (MRI) represents a powerful imaging method commonly utilized in clinical practice. The method shows excellent spatial resolution, which is very suitable not only for examination of human bodies but also for detailed anatomical studies of animal models in vivo in biological research. On the other hand, the sensitivities of other techniques, such as optical methods, single-photon emission computed tomography or positron emission tomography, are much higher. Thus, the design and synthesis of so called dual or multimodal probes is an important field. The combination of both respective approaches utilizing only one dual probe, e.g., magnetic nanoparticles tagged with
fluorescent moieties, establishes a very useful method for bioimaging. Moreover, fluorescent magnetic nanoparticles are promising materials for other medical applications, where the same tool might be used either for diagnostics or for therapy, like for magnetic hyperthermia and optically driven surgery. The positioning of the magnetic cores with the external magnetic field could be used in cell micromanipulation [253–255]. Kačenka et al. [256] reported the potential of magnetic nanoparticles based on the La$_{0.75}$Sr$_{0.25}$MnO$_3$ perovskite manganite for MRI. Fluorescent magnetic nanoparticles based on a perovskite manganite La$_{0.75}$Sr$_{0.25}$MnO$_3$ core coated with a two-ply silica layer were synthesized and thoroughly characterized in order to prepare a novel dual MRI/fluorescence probe with enhanced colloidal and chemical stability. Viability tests show that the complete particles are suitable for biological studies.

In recent years, magnetic nanoparticles have been used in magnetic hyperthermia, referring to the introduction of ferromagnetic or super-paramagnetic particles into the tumor tissue. The magnetic nanoparticles create heat that can be used to treat cancer when they are placed in alternating magnetic fields. The La$_{1-x}$Sr$_x$MnO$_3$ nanoparticles for hyperthermia applications are studied in details [257–260].

Catalysts

Research in environmental catalysis has continuously evolved over the last two decades owing to the necessity of obtaining worthwhile solutions to environmental pollution problems. The development of innovative environmental catalysts is a crucial factor toward the purpose of determining new sustainable manufacturing technologies. Rare earth perovskite manganites attract notable attention of explorers due to their high catalytic activity in numerous redox reactions [261, 262].

Oxygen electrocatalysis is one of the key processes limiting the efficiency of energy conversion devices such as fuel cells, electrolyzers, and metal-air batteries. In particular, the oxygen reduction reaction (ORR) is commonly associated with slow kinetics, requiring high overpotentials, and high catalyst loadings. Celorrio et al. [263] reported the effect of tellurium (Te) doping on the electrocatalytic activity of La$_{1-x}$Te$_x$MnO$_3$ nanoparticles with an average diameter in the range of 40 - 68 nm toward the oxygen reduction reaction.

Carbon monoxide is a colorless, odorless, and tasteless gas that is slightly lighter than air. It is toxic to humans and animals when encountered in higher concentrations. The catalytic oxidation of CO is utilized in various applications, e.g., indoor air cleaning, CO gas sensors, CO$_2$ lasers, and automotive exhaust treatment. The structural and catalytic properties of La$_{1-x}$(Sr or Bi)$_x$MnO$_3$ samples with $x = 0.0, 0.2$ or 0.4 for CO oxidation, are investigated [264].

Volatile organic compounds (VOCs), emitted from many industrial processes and transportation activities, are considered as great contributors to the atmospheric pollution and dangerous for their effect on the human health [265]. From an economical point of view, compared to an incineration process, catalytic combustion is one of the most interesting technology for the destruction of emissions of VOCs. Blasin-Aubé et al. [266] reported that the La$_{0.8}$Sr$_{0.2}$MnO$_3$ perovskite-type catalyst is highly active in the oxidative destruction of VOCs, especially for oxygenated compounds.

The possibility of catalytic activity enhancement in NO reduction is also studied [267]. Ran et al. synthesized the Ce-doped PrMnO$_3$ catalysts and investigated the effect of cerium doping on the catalytic properties of Ce-doped PrMnO$_3$ catalysts. Their results showed that in the case of the Ce-doped series with lower doping ratio, most of the Ce$^{4+}$ ions were introduced into the A-site to form perovskite-type oxides with some additional ceria. The oxidation state of manganese was more easily affected by the addition of cerium and more vacancies might arise at the A-site due to the structural limit of the oxide. High catalytic activity in NO reduction might be caused by the presence of oxygen vacancies and the relative ease of oxygen removal. Besides, ceria could also adsorb oxygen to sustain the reduction of NO.

Solid Oxide Fuel Cells

Solid oxide fuel cells (SOFCs) have become of great interest as a potential economical, clean, and efficient means of producing electricity in a variety of commercial and industrial applications. Its major advantages include high efficiency, potential for cogeneration, modular construction, and very low pollutant emissions. Lanthanum manganite-based oxides, e.g., La$_{1-x}$Ca$_x$MnO$_3$ and La$_{1-x}$Sr$_x$MnO$_3$, are promising materials as cathodes, because of their high electrical conductivity and good compatibility with yttria-stabilized zirconia (YSZ).

For example, nano-sized (La$_{0.85}$Sr$_{0.15}$)$_{0.9}$MnO$_3$ and Y$_{0.15}$Zr$_{0.85}$O$_{1.92}$ (YSZ–LSM) composite with 100–200 nm in diameter was co-synthesized by a glycine–nitrate process (GNP) [268]. Alternating current impedance measurement revealed that the co-synthesized LSM–YSZ electrode shows lower polarization resistance and activation energy than the physically mixed LSM–YSZ electrode. This electrochemical improvement was attributed to the increase in three-phase boundary and good dispersion of LSM and YSZ phases within the composite. Lay et al. [269] synthesized the Ce-doped La/Sr chromo-manganite series (Ce$_x$La$_{0.75-x}$Sr$_{0.25}$Cr$_{0.5}$Mn$_{0.5}$O$_3$ with $x = 0$, 0.10, 0.25, and 0.375) as potential SOFC anode or solid oxide electrolyzer cell (SOEC) cathode.
materials. All those materials are stable in both elaboration and operating conditions of an SOFC anode, and they are also stable in steam electrolysis of cathodic conditions in SOEC. Besides, the possibility of A\textsubscript{2-x}A+\textsubscript{x}MO\textsubscript{4} (A = Pr, Sm; A+ = Sr; M = Mn, Ni; x = 0.3, 0.6) as a cathode of SOFC was investigated by Nie et al. [270].

Besides being used as cathodes in solid oxide fuel cells, rare earth-doped pervoskite manganite oxides (Ln\textsubscript{A}, A\textsubscript{+} MnO\textsubscript{3}) also exhibit high potential for being used as redox materials for solar thermochemical fuel production from thermochemical H\textsubscript{2}O/CO\textsubscript{2} splitting [271]. It was reported that substituted lanthanum manganite pervoskite was one of the most suitable candidates among the pervoskite family, owing to its unique redox properties [272]. To further improve the redox properties of these materials, Nair and Abanades [273] performed a systematic study to investigate the effects of synthesis methods on the redox efficiency and performance stability for CO\textsubscript{2} splitting. They synthesized single-phase La\textsubscript{x}Sr\textsubscript{1-x}MnO\textsubscript{3} (LSMO) by using various technical routes such as solid-state reactions, pechini process, glycerine combustion, or glucose-assisted methods, and found that the materials synthesized by the pechini method exhibited the highest reactivity among the series, and a stable CO production of \(\approx 260 \) μmol g\(^{-1}\) was achieved at \(x = 0.5 \). They also found that the substitutions of Y/Ca/Ba at A-site and Al/Fe at B-site in (La,Sr)MnO\textsubscript{3} did not enhance the redox cycling capability as compared with LSMO. It was observed that Sr was the best A-site substituent and the presence of single Mn cation alone in B site was the most suitable option for promoting CO\textsubscript{2}-splitting activity. Furthermore, the addition of promotional agents and sintering inhibitor such as MgO and CeO\textsubscript{2} without altering the La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} composition could improve the CO\textsubscript{2}-splitting activity. For an overview on the recent progress on solar thermochemical splitting of water to generate hydrogen, we refer to other review articles [274–276].

1D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Catalysts

In the catalytic combustion of methane, the pervoskite manganites nanoparticles generally lose their activities due to the severe sintering under such a high-output and high-temperature reaction. As a consequence, designing of highly reactive and stable catalysts has been an interesting research direction in heterogeneous catalysis. Recently, some results indicate that the catalytic properties of the catalysts could be improved by controlling their morphologies and structure. For example, SrCO\textsubscript{3} nanowires showed higher activity for ethanol oxidation than the nanoparticles [277]. Besides, CeO\textsubscript{2} nanorods were more reactive for CO oxidation than the corresponding nanoparticles [278]. However, catalytic properties of 1D rare earth-doped pervoskite manganite have been scarcely reported. Teng [279] reported the hydrothermal synthesis of La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} nanowires, and the stability and the activity for methane combustion of La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} nanowires were also investigated. The results showed that after being calcined for a long time, the nanowires showed a higher stability as compared with the La\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3} nanoparticles. The nanowire catalyst maintained a higher catalytic activity for methane combustion. The photocatalytic activity of La\textsubscript{1-x}Ca\textsubscript{x}MnO\textsubscript{3}(x \approx 0.3) nanowires synthesized by hydrothermal method was also investigated by Arabi et al. [230]. The results revealed that La\textsubscript{0.66}Ca\textsubscript{0.32}MnO\textsubscript{3} nanowires exhibited sufficient photocatalytic activity for degradation of methylene blue solution under visible-light irradiation.

Solid Oxide Fuel Cells

Up to now, various approaches have been suggested to fabricate LSM/YSZ composite cathodes for SOFCs. Several researches have shown that electrode microstructure (i.e., particle size, pore size, and porosity) has a strong influence on the value of the area specific resistance (ASR) [280–282]. Da and Baus synthesized La\textsubscript{0.65}Sr\textsubscript{0.3}MnO\textsubscript{3} (LSM) nanorods through a simple hydrothermal reaction. It is worth noting that the ASR values in this work are substantially lower than most of the former reports available in the literature [268, 283–288]. They pointed out that the promising performance of the nanostructured LSM cathodes was attributed to the optimized microstructure, i.e., high surface area, small grain size, and good inter-granular connectivity, which make it a potential candidate for intermediate temperature SOFC application. In addition, nano-tube structured composite cathodes were also investigated [283]. L\textsubscript{a0.8}Sr\textsubscript{0.2}MnO\textsubscript{3-δ}/Zr\textsubscript{0.92}Y\textsubscript{0.08}O\textsubscript{2} (LSM/YSZ) composite nano-tubes are co-synthesized by a pore wetting technique as a cathode material for SOFCs. The as-prepared nanostructured composite cathode shows low ASR values of 0.17, 0.25, 0.39, and 0.52 Ω cm\(^{-2}\) at 850, 800, 750, and 700 °C, which is mainly due to small grain size, homogeneous particle distribution and fine pore structure of the material.

Magnetic Memory Devices

The elaboration of submicron MR read heads and high-sensitive elements of non-volatile memories (MRAM) passes through patterning processes that are commonly used in the semiconductor industry. The planar processes for thin-film patterning are based on two main steps: (i) the pattern definition in photon or electron sensitive polymer (resist) by lithography and (ii) the transfer of these nanostructures in the manganite film.
using dry etching [163]. Conventional UV lithography is traditionally used to get patterns higher than one micron in size; however, patterning at dimensions lower than 50 nm needs high-resolution techniques such as scanning electron beam lithography (SEBL), X-ray lithography (XRL), or Ni [289, 290]. At present, ultimate resolution limits of SEBL and XRL are well known [291, 292] and the electron PMMA (polymethylmethacrylate) resist allows replications below 20 nm. After nanolithography, the pattern transfer can be achieved using direct etching with the resist as mask, or using a metallic lift-off process followed by etching. The lift-off process is the preferred method for manganite etching since these CMR oxides are very hard materials compared to metals.

A magnetic domain wall separates two oppositely polarized magnetic regions, and a number of data storage schemes based on domain walls in magnetic nanowires have been proposed [293, 294]. In the race-track memory, each magnetic domain wall represents a data bit [299]. During the write operation, the domain wall is moved by external magnetic field or spin transfer torque [295–297]. To read a bit, GMR or TMR type devices are used to detect the stray field from the domain wall. To utilize such a scheme, it is critical to controllably create domain walls. Magnetic nanowires with an artificial pinning center, such as notches [293], bent conduits [298], and narrow rings [299], can serve this purpose. In perovskite manganite nanostructures, various types of domain patterns such as stripes [300], bubbles [301], and checker-boards [302] have been reported. For example, Wu et al. [303] reported on the perpendicular stripe magnetic domains in La$_{0.2}$Sr$_{0.3}$MnO$_3$ nanodots. Takamura et al. [304] reported flower-shaped, flux closure domain, and vortex structures in patterned manganites created by Ar$^+$ ion milling. Mathews et al. [305] reported successful fabrication of La$_{0.67}$Sr$_{0.33}$MnO$_3$ nanowires on NdGaO$_3$ substrate by using interference lithography. It was demonstrated that not only the shape anisotropy but also the substrate induced anisotropy play important roles in determining the magnetic easy axis in these manganite nanostructures. In spite of challenges in controlling magnetic domain walls in perovskite manganite oxide nanowires, several groups have reported current induced domain wall motion in perovskite manganite oxide materials such as La$_{0.2}$Sr$_{0.3}$MnO$_3$ and La$_{0.67}$Ba$_{0.33}$MnO$_3$. By using FIB milling, Ruotolo et al. [306] and Céspedes et al. [139] patterned La$_{0.2}$Sr$_{0.3}$MnO$_3$ into nanowires containing notches as the domain wall pinning centers. The MR measurements confirm the current induced domain wall depinning with a critical current density of 1011 A/m2. Liu et al. [307] reported current dependent low-field MR effect in La$_{0.67}$Sr$_{0.33}$MnO$_3$ nanowires with constrictions and they ascribed this effect to the spin polarized bias current. In a similar constricted La$_{0.67}$Ba$_{0.33}$MnO$_{3.5}$ nanowire, Pallecchi et al. [308] observed magnetic field and DC bias current dependent asymmetric resistance hysteresis, which was also connected to the effect spin transfer torque. Surprisingly, the threshold current was found to be in the range of 107–108 A/m2, much smaller than the typical current (1011 A/m2) needed for moving domain walls in metals [309]. A number of possibilities, such as stronger spin torque due to half metallicity, Joule heating assistance, and spin wave excitation, may contribute to such a drastic reduction in the threshold current.

Spintronic Devices

In terms of perovskite manganites, the large MR and the great tunability of CMR oxides are promising for magnetic recording, spin valve devices, and magnetic tunneling junctions [310–314]. However, there are several obstacles related to perovskite manganites in nanodevice applications. First, the spin polarization of manganites decays rapidly with temperature. Second, the defect chemistry and the stoichiometry–property correlation in perovskite manganites are quite complex [315, 316]. Third, the physical properties of interfaces in manganite-based devices remain elusive [317, 318]. Finally, there is the urgent need for developing suitable device processing techniques.

The spintronic devices exhibit prominent advantages, such as nonvolatility, increased processing speed, increased integration densities, and reduced power consumption. The significance and value of spintronics lies in the study of active control of carrier spin, and then the development of new devices and technologies, for example, spin transistors, spin-FET, spin-LED, spin-RTD, spin filters, spin modulators, reprogramming gate circuit.

Nanowires have been successfully incorporated into nanoelectronics [319], and naturally they are envisaged as ideal building blocks for nanoscale spintronics. For perovskite manganite oxides, nanowires and related heterostructures hopefully can enhance the Curie temperature [82] and the low-field MR [75, 320]. Another promising research topic is anisotropic magnetoresistance (AMR) which is a result of spin-orbital interaction and has important applications in magnetic field detection and data storage [321]. Significant magnetic anisotropy has been observed in perovskite manganite oxide nanowires [322]. In addition, the morphology of nanowire can be modified by annealing or growing on engineered substrates [323], which could significantly affect their properties. It is expected that more efforts will be made to explore the anisotropic transport properties of perovskite manganite oxide
nanowires and to gain deeper understanding of low-dimensional spin-dependent transport properties.

Spin valves based on perovskite manganite oxide nanowires are also reported. Gaucher et al. [324] successfully fabricated La$_{2/3}$Sr$_{1/3}$MnO$_3$ nanowires with the smallest width of 65 nm by combining electron beam lithography and ion beam etching. They showed that the electronic transport properties of these perovskite manganite oxide nanowires are comparable to those of unpatterned films.

2D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Magnetic Memory Devices

Typically, micrometer-sized La$_{0.7}$Sr$_{0.3}$MnO$_3$ dots with smooth edge and surface are etched in the corresponding films by such lift-off process. Ruzmetov et al. [135] fabricated regular arrays of epitaxial perovskite La$_{2/3}$Sr$_{1/3}$MnO$_3$ magnetic nanodots by PLD combined with electron beam lithography and argon ions exposure. The diameters of these dots are less than 100 nm with a height about 37 nm. These perovskite magnetic nanodots maintain their crystallinity, epitaxial structure, and ferromagnetic properties after the fabrication process, which have promising applications in magnetic massive memory devices.

Liu et al. [325] demonstrated a new programmable metallization cell based on amorphous La$_{0.79}$Sr$_{0.21}$MnO$_3$ thin films for nonvolatile memory applications. The schematic diagram of the metallization cell is shown in Fig. 41, where amorphous La$_{0.79}$Sr$_{0.21}$MnO$_3$ thin films are deposited on the Pt/Ti/SiO$_2$/Si substrates by rf magnetron sputtering. The Ag/amorphous La$_{0.79}$Sr$_{0.21}$MnO$_3$/Pt cell exhibited reversible bipolar resistive with a R$_{OFF}$/R$_{ON}$ ratio (>105), stable write/erase endurance (>105 cycles) with resistance ratio over 104, and stable retention for over 104 s. Such a sandwiched device may be a promising candidate for future nonvolatile memory applications.

Hoffman et al. [326] also tested the non-volatile memories using an electric-field-induced M–I transition in the PbZr$_{0.2}$Ti$_{0.8}$O$_3$/La$_{1-x}$Sr$_x$MnO$_3$ (PZT/LSMO), PZT/La$_{1-x}$Ca$_x$MnO$_3$ (PZT/LCMO), and PZT/La$_{1-x}$Sr$_x$CoO$_3$ (PZT/LSCO) devices. To study the switching speed of the Mott transition field effect devices, they fabricated a series of devices where the room temperature RC-time constants varied from 80 ns to 20 μs. They found the circuit RC-time constant limited the switching speed of devices down to 80 ns, offering the opportunity for faster operation though device scaling. Room temperature retention characteristics show a slow relaxation, with more than 75% of the initial polarization maintained after 21 days. These Mott transition field effect devices have promising potential for future non-volatile memory applications.

Spintronic Devices

Spin valves may be the most influential spintronic devices which have already found applications in magnetic data storage industry. Its basic working principle is the GMR effect [327, 328], where the resistance of a FM/NM (non-magnetic)/FM multilayers depends on the relative alignment between the two FM layers. Most GMR research focuses on transition metals, but spin valves have also been realized in oxides, in particular FM manganites [329, 330]. A related concept is the magnetic tunnel junction (MTJ) [331, 332], which also has vast applications in nonvolatile magnetic memory devices. The basic difference between spin valve and MTJ lies in the middle spacer layer, which needs to be insulating for MTJ, whereas for spin valve, this layer is conducting. A number of efforts have been devoted to create oxide based MTJ devices so far, especially due to the 100% spin polarization in several FM oxides, such as La$_{1-x}$Sr$_x$MnO$_3$ with $x \approx 0.33$, CrO$_2$ and Fe$_3$O$_4$. Lu et al. [333] and Sun et al. [334] first fabricated all-oxide MTJ device with La$_{0.67}$Sr$_{0.33}$MnO$_3$ and SrTiO$_3$ as FM and insulating layer, respectively. Subsequently, a record tunneling magnetoresistance (TMR) ratio of 1850% was reported in 2003 by Bowen et al. [335]. Despite these promising results, a major issue for the oxide based MTJ devices is that the working temperature is often lower than the room temperature, generally ascribed to the degraded interfaces [336, 337].

Magnetic Sensors

The application of perovskite manganite CMR thin films to magnetic sensors at room temperature has been considered. Compared to magnetoresistive sensors using permalloy films, the field coefficient of resistance (dR/dH)/R is much smaller, typically of about (10$^{-2}$–10$^{-1}$)%
per mT. However, they can operate over a wide field range and their characteristics should be maintained at submicron lateral size, since the CMR mechanism does not involve large scale entities such as magnetic domains and walls. By means of magnetic flux concentration with soft ferrite poles, the field coefficient of resistance can be increased up to 4% per mT [338]. Other applications of CMR of La_{0.67}Sr_{0.33}MnO_3 thin films to position sensors and to contact-less potentiometers are presently investigated [339]. The basic idea is to exploit the large resistance variation induced by the stray field of a permanent magnet in Sm-Co or Nd-Fe-B alloys.

In recent years, there has been growing demand for sensitive yet inexpensive infrared detectors for use in a variety of civilian, industrial, and defense applications such as thermal imaging, security systems and surveillance, night vision, biomedical imaging, fire detection, and environmental detection. The material for bolometric applications should possess a high temperature coefficient of resistivity (TCR), which enables small temperature variations caused by absorbed infrared radiation (IR) generate a significant voltage drop across the bolometer. High TCR in recently discovered CMR manganese oxides in the vicinity of metal-to-semiconductor phase transition makes them suitable for thermometer and bolometer applications. For example, Lissiuskas et al. [340] reported that the epistaxial submicron thick perovskite manganite La_{0.7}(Pb_{0.63}Sr_{0.37})_{0.3}MnO_3 films deposited on LAO single crystal by PLD exhibited high value of TCR (= 7.4% K\(^{-1}\) @ 295 K). Choudhary et al. [341] synthesized the polycrystalline/amorphous films with mixed-valence manganites (e.g., La_{0.7}Ca_{0.3}MnO_3, La_{0.5}Sr_{0.5}MnO_3, La_{0.5}Ba_{0.5}MnO_3, and (La_{0.6}Pr_{0.4})_{0.67}Ca_{0.33}MnO_3) by PLD at low temperature (450 °C) on single crystal (001) silicon substrate. These films are evaluated for uncooled bolometric applications.

Solid Oxide Fuel Cells

Lussier et al. [342] identified a mechanism whereby the strain at an interface is accommodated by modifying the chemical structure of the SOFC material to improve the lattice mismatch and distribute the strain energy over a larger volume (thickness), concentrate on two particular manganite compounds, La_{2/3}Ca_{1/3}MnO_3 and La_{1/2}Sr_{1/2}MnO_3 thin films.

3D Rare Earth-Doped Perovskite Manganite Oxide Nanostructures

Recently, several 3D rare earth-doped perovskite manganite oxide nanostructures such as 3D (La_{0.275}Pr_{0.35}Ca_{0.375})MnO_3 nanobox array structures (145), 3D strained LSMO–CeO_2 VAN nanostructures (198) fabricated by PLD technique are reported. It was found that 3D (La_{0.275}Pr_{0.35}Ca_{0.375})MnO_3 nanobox array structures exhibited an insulator-metal transition at higher temperature than that in the corresponding thin film, which provided a new way to tune the physical properties of CMR oxide 3D nanostructures. This enables 3D (La_{0.275}Pr_{0.35}Ca_{0.375})MnO_3 nanobox array structures to find promising application in oxide nanoelectronics by making full use of the huge electronic/spintronic phase transition. The 3D framework of LSMO–CeO_2 VAN nanostructures combine not only the lateral strains from the layered structures but also the vertical strain from the VAN, and thus maximize the 3D strain states in the systems, controlling the electron transport paths. This new 3D framed design provides a novel approach in maximizing film strain, enhancing strain-driven functionalities, and manipulating the electrical transport properties effectively. At present, the applications of 3D rare earth-doped perovskite manganite oxide nanostructures in the fields of oxide nanoelectronics, spintronics, and solar energy conversion are still in their infancy; thus, many problems remain unsolved and technical challenges lie ahead. In this direction, there is a long way to walk on before the commercialization of rare earth-doped perovskite manganite oxide nanostructures.

Conclusions and Perspectives

In this work, we have discussed the recent advances in the fabrication, structural characterization, physical properties, and functional applications of rare earth-doped perovskite manganite oxide nanostructures. It is our aim that we have captured all the excitements achieved in the development of rare earth-doped perovskite manganite oxide nanostructures used for microelectronic, magnetic, and spintronic nanodevices, providing some useful guidelines for the future researches. In spite of great progress made in the past two decades, considerable effort is highly required to realize the practical applications of rare earth-doped perovskite manganite oxide nanostructures in the next generation of oxide nanoelectronics. While many fascinating physical properties of rare earth-doped perovskite manganite oxide nanostructures are originated from the interactions among the spin, charge, orbital, and lattice degrees of freedom, whereas there is still a long way to go for obtaining a full understanding of the interaction mechanisms among the spin, charge, orbital, and lattice degrees of freedom. It is expected that in the next years, further progress will be achieved in the experimental and theoretical investigations on rare earth-doped perovskite manganite oxide nanostructures. We believe that this review of the recent advances on rare earth-doped perovskite manganite oxide nanostructures will motivate their future researches and applications of not only in the fields of oxide nanoelectronics, but also in energy and biomedical fields.
Abbreviations
OD: Zero-dimensional; 1D: One-dimensional; 2D: Two-dimensional; AAO: Anodic aluminium oxide; AFM: Antiferromagnetic; AFM: Atomic force microscopy; CMR: Colossal magnetoresistance; CSD: Chemical solution deposition; CTAB: Cetyltrimethylammonium bromide; CVD: Chemical vapor deposition; EDS: Energy Dispersive X-ray spectroscopy; EELS: Electronic energy loss spectroscopy; EPS: Electronic phase separation; FC: Field cooling; FE-SEM: Field-emission scanning electron microscopy; FIB: Focus ion beam; FM: Ferromagnetic; FTR: Fourier-transform infrared spectroscopy; HRTEM: High-resolution TEM; LAO: LaAlO 3; LCMO: La 0.7Ca 0.3MnO 3; LPCMO: La 0.8Sr 0.2Ca 0.3MnO 3; LSMO: La 0.7Sr 0.3MnO 3; MBE: Molecular beam epitaxy; MCE: Magnetocaloric effect; M-H: Microwave-hydrothermal; M–I: Metal-insulator; MOVD: Metalorganic chemical vapor deposition; MR: Magnetoresistance; MRT: Magnetic resonance imaging; MSS: Molten salt synthesis; MTJ: Magnetic tunneling junctions; NGO: NdGaO 3; PDL: Pulsed laser deposition; PPMA: Poly(methylmethacrylate); PVD: Physical vapor deposition; RCP: Relative cooling power; SAED: Selected area electron diffraction; SEBL: Scanning electron beam lithography; SG: Spin glass; SOFCs: Solid oxide fuel cells; SPM: Super-paramagnetic; STEM: Scanning transmission electron microscopy; STO: SrTiO 3; TCR: Temperature coefficient of resistivity; TEM: Transmission electron microscopy; UHV: Ultra-high vacuum; VOCs: Volatile organic compounds; XPS: X-ray photoelectron spectroscopy; XRD: X-ray diffraction; XRL: X-ray lithography; YSZ: Yttria-stabilized zirconia; ZFC: Zero-field cooling

Acknowledgments
Not available.

Authors’ Contributions
WX and XZ designed the structure and modified the manuscript articles; WX and ZP drafted the manuscript. KL participated in the sequence alignment. All authors read and approved the final manuscript.

Authors’ Information
WX is a current Ph.D. candidate at the School of Physics, Nanjing University, under the supervision of Prof. X. Zhu. He completed his undergraduate M. S. in Condensed Matter Physics in 2017 at the School of Physics, Nanjing University, where he studied fabrication and characterization of rare earth-doped perovskite manganite nanocrystals. XZ is a current Ph.D. candidate at the School of Physics, Nanjing University, under the supervision of Prof. X. Zhu. His research interests include the fabrication and characterization of low-dimensional perovskite manganite nanomaterials. PZ is a current M. Sci. candidate at the School of Physics, Nanjing University, under the supervision of Prof. X. Zhu. His research interests include the fabrication and characterization of double-perovskite oxide nanostructures. KL is a current M. Sci. candidate at the School of Physics, Nanjing University, under the supervision of Prof. X. Zhu. His research interests include the fabrication and characterization of double-perovskite oxide nanocrystals. ZR obtained his B.S., M.S., and Ph. D degrees in Materials Science from Xi’an Jiaotong University (Xi’an, China) in 1989, 1992, and 1995, respectively. He has been a professor at the School of Physics, Nanjing University since 2006. He worked as a research consultant at King Abdullah University of Science and Technology (KAUST, Kingdom of Saudi Arabia) in 2012 and 2013, Queen’s University of Belfast (United Kingdom) from 2004 to 2006, Max-Planck-Instit Microstrukturphys (Halle Saale, Germany) as an Alexander von Humboldt Research Fellowship from 2003 to 2004, and The Hong Kong Polytechnic University from 2000 to 2001. He was the recipients of the Alexander von Humboldt Research Scholarship in 2002, the First Grade National Natural Science prize from Ministry of Education of China in 2003, and Second Grade National Natural Science price from Ministry of Science and Technology of China in 2005, and Scientist Award from International Association of Advanced Materials (IAAM) in 2019. His current research interests include processing of multiferroic perovskite materials (nanocrystals, thin films, and bulk materials), and nanostructured fabrication; defects and microstructures of perovskite-structured materials characterized by HRTEM techniques; and microstructure-property relationships in both advanced functional ceramic materials and nanostructured functional materials. He has published > 135 papers in prestigious international refereed journals together with the SCI cited times of > 2000.

Funding
This work is supported by the National Natural Science Foundation of China (Grant No. 11674161, 11174122), Natural Science Foundation of Jiangsu Province (Grant No. BK20181250), and undergraduate teaching reform project from Nanjing University under grant No. X20191028402.

Availability of Data and Materials
It is a review article that gives a comprehensive overview of the recent progress in the fabrication, structural characterization, physical properties, and functional applications of rare earth-doped perovskite manganite oxide nanostructures.

Competing Interests
The authors declare that they have no competing interest.

Received: 23 August 2019 Accepted: 27 December 2019
Published online: 13 January 2020

References
1. Jonker GH, Van Santen JH: Ferromagnetic compounds of manganese with perovskite structure, physica 1950, 16:337–349.
2. Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403–405
3. Anderson PW, Hasegawa H (1955) Neutron diffraction study of the magnetic properties of Mn-Fe alloys. Phys Rev 106:675–681
4. De Gennes PG (1960) Effects of double exchange in magnetic crystals. Phys Rev 118:141–154
5. Kubo K, Ohata N (1972) A quantum theory of double exchange. I. J Phys Soc Jpn 33:21–32
6. Wollan EO, Koehler WC (1953) Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1–x)La x]Ca xMnO 3. Phys Rev 99:545–563
7. Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264:413–415
8. Mills AJ, Littlewood PB, Shaikman BI (1995) Double exchange alone does not explain the resistivity of La 1-xSr xMnO 3. Phys Rev Lett 74:5144–5147
9. Mills AJ, Shaikman BI, Muller R (1996) Dynamic Jahn-Teller effect and colossal magnetoresistance in La 1-xSr xMnO 3. Phys Rev Lett 77:175–178
10. Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc R Soc Lond A 161:220–235
11. Röderm H, Zang J, Bishop AR (1996) Lattice effects in the colossal-magnetoresistance manganites. Phys Rev Lett 76:1356–1359
12. Zhou JS, Goodenough JB (1998) Phonon-assisted double exchange in perovskite manganites. Phys Rev Lett 80:2665–2668
13. Dagotto E, Hotta T, Moreo A (2001) Colossal magnetoresistive materials: the key role of phase separation. Phys Rep 344:1–153
14. Yunoki S, Hu J, Malvezzi AI, Moreo A, Furukawa N, Dagotto E (1998) Phase separation in electronic models for magnetitens. Phys Rev Lett 80:848–848
15. Moreo A, Yunoki S, Dagotto E (1999) Phase separation scenario for manganese oxides and related materials. Science 283:2034–2040
16. Uehara M, Mori S, Chen CH, Cheong SW (1999) Percolative phase separation underlying colossal magnetoresistance in mixed-valent manganites. Nature 399:560–563
17. Tao J, Niebieskichwiat D, Varela M, Luo W, Schofield MA, Yu Z, Salmon MB, Zuo JM, Panteleides ST, Pennycook SJ: Direct imaging of nanoscale phase separation in La 1-xSr xMnO 3: relationship to colossal magnetoresistance. Phys Rev Lett 2009, 103: 097202.
18. Xue P, Wu H, Yu L, Zhu X (2018) Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: a review. J Mater Sci Technol 34: 914–930
19. Luo F, Huang Y, Yan C, Jiang S, Li X, Wang Z, Liao C (2003) Molten alkali metal nitrate flux to well-crystallized and homogeneous La 1-xSr xMnO 3 nanocrystallites. J Magn Magn Mater 260:173–180
20. Tian Y, Chen D, Jiao X (2006) La 1-xSr xMnO 3 (x = 0.3, 0.5, 0.7) Nanoparticles nearly freestanding in water: preparation and magnetic properties. Chem Mater 18:6088–6090
21. Tian Y, Lu W, Lu Y, Sun S (2016) Molten salt synthesis of strontium-doped lanthanum manganite nanoparticles with enhanced catalytic performance for toluene combustion. Nano 11:1650059
22. Xia W, Li L, Wu H, Xue P, Zuo X (2017) Molten salt route of La1−xCaxMnO3 nanoparticles: microstructural characterization, magnetic and electrical transport properties. Mater Charact 131:128–134
23. Kačenka M, Kaman O, Jiráek Z, Maryško M, Žákora P, Vratislav S, Luket I (2014) Magnetic properties of La1−xSrxMnO3 nanoparticles prepared in a molten salt. J Appl Phys 115:175825
24. Kačenka M, Kaman O, Jiráek Z, Maryško M, Veverka P, Veverka M, Vratislav S (2015) The magnetic and neutron diffraction studies of La1−xSrxMnO3 nanoparticles prepared via molten salt synthesis. J Solid State Chem 221:364–372
25. Muroi M, Street R, McCormick PG (2000) Enhancement of critical temperature in fine La1−xCaxMnO3 particles prepared by mechanochemical processing. J Appl Phys 87:3424–3431
26. Spasovcevic V, Mrakovic A, Perovic M, Kusigorski V, Blanusa J (2011) Superparamagnetism and transport properties of ultrathin La1−xCaxMnO3 powders. J Phys Condens Matter 13:141–148
27. Manh DH, Thuan NC, Phong PT, Hong LV, Phuc NX (2009) Magnetic properties of La1−xCaxMnO3 nanoparticles prepared by reactive milling. J Allop Compd 479:828–831
28. Manh DH, Phong PT, Thanh TD, Nam DNH, Hong LV, Phuc NX (2011) Size effects and interactions in La1−xCaxMnO3 nanoparticles. J Allop Compd 509:1373–1377
29. Manh DH, Thanh TD, Phuc NX, Hong LV, Phong PT, Hung LT (2011) Perovskite nanoparticles synthesised by reactive milling combined with thermal processing: preparation, morphology and structure characterisation. Int J Nanotechnol 8:241–254
30. Thanh TD, Manh DH, Phan TL, Phong PT, Hung LT, Phuc NX, Yu SC (2014) Coexistence of considerable inter-particle interactions and spin-glass behavior in La1−xCaxMnO3 nanoparticles. J Appl Phys 115:175804
31. Phong PT, Manh DH, Hoan LC, Ngai TV, Phuc NX, Lee I (2016) Particle size effects on La1−xCaxMnO3: Griffiths phase-like behavior and magnetocaloric study. J Allop Compd 662:557–567
32. Ravi S, Karthikeyan A (2014) Effect of calcination temperature on La1−xSrxMnO3 : Griffiths phase-like behavior and magnetocaloric study. Pys Procedia 54:44–54
33. Biswas A, Das I, Majumdar C (2005) Modification of the charge ordering in Pr1−x2Sr2−xMnO2. J Appl Phys 98:124310
34. Zhang T, Li G, Qian T, Yu JF, Xiang XQ, Li XG (2006) Effect of particle size on the structure and magnetic properties of La1−xCaxMnO3 nanoparticles. J Appl Phys 100:94302
35. Biswas A, Das I: Magnetic and transport properties of nanocrystalline Nd0.8Sr0.2MnO3. J Appl Phys 2007, 102:064303.
36. Martinek A, Ferretti M, Castellano C, Cimberle MR, Masini R, Peddis D, Ritter C (2013) Structural, microstructural and magnetic properties of La1−xCaxMnO3 nanoparticles. J Phys Condens Mater 25:176003
37. Wang GF, Li LR, Zhao ZR, Yu XQ, Zhang XF (2014) Structural and magnetocaloric effect of La0.8Sr0.2MnO3 nanosheets La0.8Sr0.2MnO3 nanosheets. Ceram Int 40:16449–16454
38. Xia W, Wu W, Xue P, Zhu X (2018) Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.8Sr0.2MnO3 nanoparticles synthesized via sol-gel process. Nanoscale Res Lett 13:135
39. Sarkar T, Mukhopadhyay PK, Raychaudhuri AK, Banerjee S (2007) Structural, magnetic, and catalytic properties of the manganese Pr1−x2Sr2−xMnO2 nanoparticles of the manganite Pr1−x2Sr2−xMnO2. J Appl Phys 101:124307
40. Dyakonov V, Šlaja-Waniewska A, Kazmierczak J, Piotrowski K, Leschnik O, Szymczak H, Zubov E, Monroya S, Paschenko V, Paschenko A, Shemyakov A, Yaryukhin V, Prilipko S, Mikhailov V, Kravchenko Z, Yu, Szymczak H, Zubov E, Myronova S, Pashchenko V, Pashchenko A, Moradi J, Ghazi ME, Ehsani MH, Kameli P, Anwar MS, Kumar S, Ahmed F, Kim GW, Koo BH (2014) Anwar MS, Kumar S, Ahmed F, Kim GW, Koo BH: Microwave assisted hydrothermal synthesis and magnetocaloric properties of La0.7Sr0.3MnO3 manganite. J Nanosci Nanotechnol. 2015, 125553–12556. J. Nanosci. Nanotechnol. 125553–125562.
41. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
42. Dyakonov V, Zhao ZR, Zhun XQ, Li XG, Liu W, Zhang L, Wang G, Dai H, He L, Xi Z (2007) Nanosized perovskite-type oxides La1-xSr0.5MnxO3 (M=Mn, x=0.4) for the catalytic removal of ethylene. Catal T 2016:420–429
43. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
44. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
45. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
46. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
47. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
48. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
49. Dey P, Nath TK, Mamka PK, Yusuf SM (2008) Enhanced grain surface effect on magnetic properties of nanometric La1−xCaxMnO3 (0 < x < 0.2) perovskites used in methane combustion. C R Chimie 10:1216–1226
67. Zhu D, Zhu H, Zhang YH (2002) Hydrothermal synthesis of single-crystal La$_{0.59}$Sr$_{0.41}$CoO$_3$ nanowire under mild conditions. J Phys Condens Matter 14: L519-L524

68. Zhu D, Zhu H, Zhang Y (2002) Hydrothermal synthesis of La$_{0.59}$Ba$_{0.41}$MnO$_3$ nanowire. Appl Phys Lett 80:1564–1566

69. Roca SS, Anuradha KN, Sarangi S, Bhat SV (2005) Weakening of charge order and antiferromagnetic to ferromagnetic switch over in Pr$_6$Ca$_2$MnO$_{12}$ nanowires. Appl Phys Lett 87:182503

70. Datta S, Chandra S, Samanta S, Das K, Srikant H, Ghosh B (2013) Growth and physical property study of single nanowire (diameter ~45 nm) of half doped manganite. J Nanomater 2013:1–6

71. Wang J, Yang Y, Huang Z, Kang F (2011) Coaxial carbon nanofibers/MnO$_2$ nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochem Acta 55:9240–9247

72. Miao Y, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428

73. Xie J, MacEwan MR, Li X, Sakkaya-Elbert X, Xia Y (2009) Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano 3:1151–1159

74. Sandhiya CP, John B, Gouri C (2013) Synthesis and electrochemical characterization of electropun lithium titauna ultrafine fibres. J Mater Sci 48:5827–5832

75. Jungersuren B, Kang S, DiPietro RS, Heiman D, McKeown D, Pegg IL, Philip J (2004) Fabrication of transition metal oxide core−−manganite wires. Phys Rev Lett 97:167201

76. Zhuang X, Fu Y, Qiao W, Cui L, Zhang J, Tang Z (2013) Transition metal oxide core−−manganite nanotubes by microwave irradiation in alumina templates. J Nanosci Nanotechnol 9:6084–6088

77. Young P, Leyva AG, Pastoriza H, Levy P (2003) Magnetism of manganese nanotubes constituted by assembled nanoparticles. Phys Rev B 75:244101

78. Sousa CT, Lopes AML, Proença MP, Leitão DC, Correia JG, Araujo JP (2009) Rapid synthesis of ordered manganese nanotubes by microwave irradiation in alumina templates. J Nanosci Nanotechnol 9:6084–6088

79. Zhang G, Chen J (2005) Synthesis and application of La$_{0.5}$Ca$_{0.5}$CoO$_3$ nanotubes. J Electrochem Soc 152:A2069–A2073

80. Andrade VM, Pedro SS, Caraballo Vivas RJ, Rocco DL, Reis MS, Campos APC, Coelho AA, Escote M, Zanetti A, Rossi AL (2016) Magnetocaloric functional properties of Sr$_{1-x}$Mn$_x$O$_3$ manganite due to advanced nanosized morphology. Mater Chem Phys 172:20–25

81. Tanaka H: Epitaxial growth of oxide films and nanostructures. In: Kuech TF, editor. Handbook of Crystal Growth Thin Films & Epitaxy, 2nd ed. Elsevier; 2015:555-604.

82. Yoshimoto M, Sasaki A, Akiba S (2004) Nanoscale epitaxial growth control of oxide thin films by laser molecular beam epitaxy—towards oxide nanoelectronics. Sci Technol Adv Mat 5:527–532

83. Slomke DG, Chen L, Pan X, Schmehl A, Zurbuchen MA (2008) A thin film approach to engineering functionality into oxides. J Am Ceram Soc 91: 2429–2454

84. Smith HM, Turner AF (1965) Vacuum deposited thin films using a ruby laser. Appl Optics 4:147–148

85. Krebs HU, Weisheit M, Faupel J, Süssk E, Scharf T, Fuhse C, Stormer M, Sturm K, Seibt M, Kijewski H, Nellie D, Panchenko E, Buback M (2003) Pulsed Laser Deposition (PLD) – A Versatile Thin Film Technique. In: Kramer B (ed) Advances in Solid State Physics. Springer, Berlin, Heidelberg, pp 505–518

86. Lawler JF, Lunney JG, Coey JMD (1994) Magnetooptic Faraday effect in La$_{1-x}$Ca$_x$MnO$_3$ films. Appl Phys Lett 65:3017–3018

87. Harzheim G, Schubert J, Beckers L, Zander W, Meertens D, Osthöver C, Buchal C (1998) Colossal magnetoresistance of thin films of La$_{0.5}$Sr$_{0.5}$MnO$_3$ as a function of film thickness. Mater Sci Eng B 56:147–151

88. Jin HU, Kwon C, Li Q, Greene RL, Venkatesan T (1994) Giant magnetoresistance in La$_{1−x}$Sr$_x$MnO$_3$ films near room temperature. Appl Phys Lett 65:2108–2110

89. Satyalkshmi KN, Manoharan SS, Hegde MS, Prasad V, Subramanyam SV (1995) Enhanced magnetoresistance in a-doped oxygen-deficient La$_{0.5}$Pb$_{0.5}$MnO$_3$ thin films. J Phys II 5:6885–6893

90. Xiong GC, Li Q, Fu HL, Bhagat SM, Lofland SE, Greene RL, Venkatesan T (1995) Giant magnetoresistive memory effect in Nd$_{0.5}$Sr$_{0.5}$MnO$_3$ films. Appl Phys Lett 67:3031–3033

91. Kanai M, Kuwahara H, Tomikai Y, Tokura Y (1996) Colossal magnetoresistance in Sm$_{1−x}$Sr$_x$MnO$_3$ films. J Phys: Condens Matter 8:6884–6897

92. Haghiri-Gosnet AM, Hervieu M, Simon C, Mercey B, Raveau B (2000) Charge ordering in Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ thin films: a new form initiated by strain effects of La$_{0.5}$NbO$_3$ substrate. J Appl Phys 88:3545–3551

93. Antonakos A, Pales D, Liokapis E, Filippi M, Prellier W (2008) Evaluation of the strains in charge-ordered Pr$_{1−x}$Ca$_x$MnO$_3$ thin films using Raman spectroscopy. J Appl Phys 104:064305

94. Ohta T, Tosado I, Biswas A (2007) Effect of strain and electric field on the electronic soft matter in manganite thin films. Phys Rev B 75:052404

95. Shao J, Liu H, Zhang K, Yu Y, Wu Y, Lin H, Niu J, Du K, Kou Y, Wei W, Lan F, Yang Z, Wang Y, Xiao J, Yin L, Plummer EW, Shen J (2016) Emerging single-phase state in small manganite nanodisks. Proc Natl Acad Sci 113:9228–9231

96. Kutt J, Soligarcia A, Maroutian T, Agnus G, Guerrero R, Calvet LE, Pannetier-Leceur M, Lecoeur P (2017) Low noise all-oxide magnetic tunnel junction based on a La$_{0.5}$Sr$_{0.5}$MnO$_3$/Nb/SrTiO$_3$ interface. Appl Phys Lett 110:082405

97. Xu H, Wan S, Chen B, Ma C, Jin F, Guo Z, Lan D, Chen F, Wu W (2017) Antiferromagnetic interlayer exchange coupling in all-perovskite La$_{0.5}$Sr$_{0.5}$MnO$_3$/Ru$_{0.1}$Ir$_{0.9}$ superlattices. Appl Phys Lett 110:082402

98. Fukushima J, Kodaira K, Matsuoka T (1984) Preparation of ferroelectric PZT films by thermal decomposition of organometallic compounds. J Mater Sci 19:595–598

99. Budd KD, Dey SK, Payne DA (1985) Sol-gel processing of PbTiO$_3$, PbZrO$_3$, and PZT thin films by thermal decomposition of organometallic compounds. J Mater Sci 20:1215–1219

100. Bassiri-Gharb N, Bastani Y, Bastani N, Bernal A (2014) Chemical growth of manganite thin films and nanostructures. Chem Soc Rev 43:2713–2727
116. Tank TM, Thaker CM, Chhatrala RS, Ganesan V, Sanyal SP (2013) Enhancement of temperature and field coefficient of resistance in CSD grown nanostucture La_{0.6}Ca_{0.4}MnO_3 thin films. J Nan Res Sci 24:155–162

117. Tank TM, Thaker CM, Bhalodia JA (2014) Structural transition in thickness dependent CSD grown nanostucture manganite thin films. Adv Mater Res 1047:131–139

118. Solanki PS, Doshi RR, Ravalia A, Keshtiani MJ, Pandya S, Ganesan V, Shah NA, Kuberka DG (2015) Transport studies on La_{0.6}Ca_{0.4}Sr_{0.5}MnO_3 nanomaterial. Physica B 465:71–80

119. Zhang Q, Sando D, Nagarajan V (2016) Chemical route derived bismuth ferrite thin films and nanomaterials. J Mater Chem C 4:4092–4124

120. Stinton DP, Besmann TM, Lowden RA (1998) Advanced ceramic by chemical vapor deposition techniques. Am Ceram Soc Bull 77:350–355

121. Wang HB, Meng GY, Peng DK (2000) Aerosol and plasma assisted chemical vapor deposition process for multi-component oxide La_{0.6}Sr_{0.4}MnO_3 thin film. Thin Solid Films 368:275–278

122. Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48:587–710

123. De Keijser M, Dormans GJM (1996) Chemical vapor deposition of Electroceramic thin films. NPS Bull 21:131–139

124. Herrero E, Cabarás MV, Alonso J, Conde F, González-Calbet JM, Vallet-Regí M (1999) Influence of the deposition parameters on La_{0.6}Sr_{0.4}MnO_3 films grown by low-pressure aerosol pyrolysis. Chem Mater 11:3521–3527

125. Singh MK, Yang Y, Takoudis CG (2009) Synthesis of multifunctional multifilatoic materials from metalorganics. Coord Chem Rev 253:2920–2934

126. Dubourdieu C, Audier M, Sénateur JP, Pierre J (1999) Effects of the microstructure on the magnetoretransport properties of polycrystalline manganite films grown by metalorganic chemical vapor deposition. J Appl Phys 86:6945–6955

127. Nakamura T, Homma K, Tai R, Nishio A, Tachibana K (2007) Electric-pulse-induced resistance switching in magnetoresistive manganite films grown by metalorganic chemical vapor deposition. IEEE Trans Magn 43:3070–3072

128. Dubourdieu C, Rosina M, Roussel H, Weiss F, Sénateur JP, Pierre J, Hodeau JL (2001) Pulsed liquid-injection metalorganic chemical vapor deposition of (La_{0.6}Sr_{0.4}Sr_{0.5})MnO_3 superlattices. J Appl Phys 79:1246–1248

129. Reutler P, Bensaid A, Herbstritt F, Höfener C, Marx A, Gross R (2000) Local microstructure on the magnetotransport properties of polycrystalline 29R0 critical current density of the metallic state of the manganite La_{0.6}Ca_{0.4}MnO_3. Appl Phys Lett 76:2384–2386

130. Werner R, Petrov AF, Miao LA, Kleiner R, Koelle D, Davidson BA (2011) Magnetic properties of La_{0.6}Sr_{0.4}MnO_3 nanoparticles. Physica B 395:250–254

131. Van Roosmalen JAM, Cordfunke EHP, Helmholdt R, Zandbergen HW (1994) The defect chemistry of La_{0.6}Sr_{0.4}MnO_3: structural aspects of LaMnO_3±x. J Mater Chem 4:1001–1005

132. Parakonakopoulos M, Mary F, Hartinger C, Pirinen A, Hemberger J, Lunkenheimer P, Loidl A, Mukhamkin AA, Ivanov Y, Babalbash AM. The phase diagram and optical properties of La_{0.6}Sr_{0.4}MnO_3 for x≤0.2. J Magn Magn Mater 2000, 211:118–127.

133. Tang W, Lu W, Luo X, Wang B, Zhou J, Song W, Yang Z, Sun Y (2010) Particle size effects on La_{0.6}Sr_{0.4}MnO_3 size-induced changes of magnetic phase transition order and magnetoclinetic study. J Magn Magn Mater 322:2360–2368

134. Gao F, Lewis RA, Wang XL, Dou SX (2002) Far-infrared reflection and transmission of La_{0.6}Sr_{0.4}MnO_3. J Alloy Compd 347:314–318

135. Kumar S, Dwivedi GD, Kumar S, Mathur RB, Saxena U, Ghosh AK, Joshi AG, Yang HD, Chatterjee S (2015) Structural, transport and optical properties of La_{0.6}Pr_{0.4}Ca_{0.2}MnO_3 nanocrystal: a wide band-gap magnetic semiconductor. Dalton Trans 44:3019–3117

136. Qiu Y, Zhou L, Sun L, Wang Z, Zhang J, Ou Yang P, Li Z, Liu S (2008) Perovskite-type oxide LaMnO_3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes. Catal Lett 126:1061–1111

137. Wu Y, Yu T, Dou B, Wang C, Xie X, Yu Z, Fan S, Fan Z, Wang L (1989) A comparative study on perovskite-type mixed oxide catalysts A_{x}La_{1-x}BO_3±x (A: Ca, Sr, Sr= La, Be, Mn, Fe, Co) for NH_3 oxidation. J Catal 120:88–107

138. Datta S, Ghatak A, Ghosh B (2016) Manganite (La_{0.6}Sr_{0.4}MnO_3) as a Sr, Ca nanowires with adaptable stoichiometry grown by hydrothermal method: understanding of growth mechanism using spatially resolved techniques. J Mater Sci 51:9679–9695

139. Zhu D, Zhu H, Zhang Y (2003) Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method. J Cryst Growth 249:172–175

140. Wang N, Hu CG, Xia CH, Feng B, Zhang ZW, Xi Y, Xiong YF (2007) Ultrasensitive gas sensitivity property of BaMnO_3 nanorods. Appl Phys Lett 90:163111

141. Li L, Li H, Zhai X, Zeng C (2013) Fabrication and magnetic properties of single-crystalline La_{0.6}Pr_{0.4}Sr_{0.2}MnO_3/MgO nanowires. Appl Phys Lett 103:113101

142. Wang N, Hua KG, Yuan L, Feng S (2018) Fabrication of ultralong perovskite structure nanotubes. RSC Adv. 8:367–373

143. Salamon MB, Jaime M (2001) The physics of manganites: structure and transport. Rev Mod Phys 73:583–628

144. Haghighi-Gosnet A, Renard J (2003) CMR manganites: physics, thin films and devices. J Phys D: Appl Phys 36:R127–R150
164. Pellegr W, Leceoor P, Mecory B (2001) Colossal-magnetoresistive manganite thin films. J Phys Condens Matter 13:R915–R944
165. Martin LW, Chu YH, Ramen R (2010) Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mat Sci Eng R 68–69:133
166. Tokura Y (2001) Critical features of colossal magnetoresistive materials. Rep Prog Phys 64:797–851
167. Chen A, Bi Z, Tsai C, Lee J, Su Q, Zhang X, Jia Q, MacManus-Driscoll JL, Wang H (2011) Tunable low-field magnetoresistance in (La0.6Sr0.4MnO3)0.5(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv Funct Mater 21:2423–2429
168. Nakamura T, Tai R, Nishimura T, Tachibana K (2005) Control of composition of manganite perovskites in metalorganic chemical vapor deposition with in situ spectroscopic monitoring. J Appl Phys 97:104712
169. Shiramu Y, Murata T (1997) Sol-gel synthesis of perovskite-type lanthanum manganite thin films and fine powders using metal acetylacetonate and polyvinyl alcohol. J Am Ceram Soc 80:2702–2704
170. Wang ZJ, Usuki H, Kumagai T, Kokawa H (2006) Microstructure and electrical properties of La0.7Sr0.3MnO3, thin films deposited by metallo-organic decomposition method. J Cryst Growth 298:78–79
171. Nilsen O, Lie M, Fjellvåg HF, Kjekshus A (2007) Growth of oxides with critical region. Phys Rev Lett 28:1516
172. Belmeguenai M, Mercone S, Adamo C, Méchin L, Fur C, Monod P, Moch P, Schlom DG (2010) Temperature dependence of magnetic properties of La1−xCaxMnO3, thin films on silicon substrates. Phys Rev B 81:245404
173. Calédon VS, Escobar-Alarcon L, Camps E, Rodil S, Betancourt J, Olaya JJ (2012) Pulsed laser deposition and characterization of La1−xCaxMnO3. Mat Sci Semicon Proc 15:492–498
174. Spankova M, Rosová A, Dobročka E, Chornik S, Vavra I, Stříbřek V, Machajdik D, Kobzerv AP, Sojková M (2015) Structural properties of epitaxial La0.6Sr0.4MnO3 films with increased temperature of metal–insulator transition grown on MgO substrates. Thin Solid Films 593:19–24
175. Boschker H, Mathews S, Adamo C, Méchin L, Fur C, Monod P, Moch P, Schlom DG (2010) Temperature dependence of magnetic properties of La1−xCaxMnO3, thin films on silicon substrates. Phys Rev B 81:245404
176. Haghiri-Gosnet AM, Wolfman J, Mercey B, Simon C, Lecoeur P, Korzenski M, Hervieu M, Desfeux R, Baldinozzi G (2000) Microstructure and magnetic properties of La0.7Ca0.3MnO3 nanobridge. Appl Phys A 115:791–795
177. Tie Y, Dong DY, Wang SL, Wu ZP, Cui C, Li PG, Li LH, Xiao JH, Tang WH (2014) Focused ion beam fabrication and magneto-electrical transport properties of La0.67Ca0.33MnO3 nanobridge. Appl Phys A 115:791–795
178. Guo H, Ward TZ (2013) Fabrication of Spatially Confined Complex Oxides. J Vis Exp 77:e50573
179. Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J Vac Sci Technol A 15:1460–1465
180. Karabacak T, Mallikarjunan A, Singh JP, Ye O, Wang G (2003) Lu T: B-phase tungsten nanorod formation by oblique-angle sputter deposition. Appl Phys Lett 83:3096–3098
181. Hsu DSY, Turner NH, Pierson KW, Shamamian VA (1992) 20 nm linewidth platinum pattern fabrication using conformal effusive-source molecular precursor deposition and sidewall lithography. J Vac Sci Technol B 10:2251–2258
182. Hattori AN, Fujiiwara Y, Fujiyawa K, Nguyen TVA, Nakamura T, Ichimiya M, Ashida M, Tanaka H (2015) Identification of giant Mott phase transition of single electric nanodomain in manganite nanowall wire. Nano Lett 15:4322–4328
183. Sun X, Li Q, Jiang J, Mao Y (2014) Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance. Nanoscale 6:8769–8780
184. Sun X, Li Q, Lu Y, Mao Y (2013) Three-dimensional ZnO@MnO2 core@shell nanostuctures for electrochemical energy storage. Chem Commun 49:4456–4458
185. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:720–730
186. Cheng C, Fan HJ (2012) Branched nanowires: Synthesis and energy applications. Nano Today 7:327–343
187. Qiu Y, Yan K, Deng H, Yang S (2012) Secondary branching and nitrogen doping of ZnO nanotetrapods: a highly active nanosensor for photoelectrochemical water splitting. Nano Lett 12:407–413
188. Sun X, Huang J, Jian J, Fan M, Wang H, Li Q, MacManus-Driscoll JL, Lu P, Zhang X, Wang H (2018) Three-dimensional strain engineering in epitaxial vertically aligned nanocomposite thin films with tunable magnetotransport properties. Mater Horiz 5:536–544
189. Urushibara A, Morimoto Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1−xCaxMnO3. Phys Rev B 51:14103–14109
190. Bhawmik RN, Nagarajan R, Ranganathan R (2004) Magnetic enhancement in antiferromagnetic nanomaterial of CoRh2O4. Phys Rev B 69:054430
191. Zhang T, Wang XP, Fang QF, Li KG (2014) Magnetic and charge ordering in nanosized manganites. Appl Phys Rev 1:031302
192. Samnaths CI, Retoux R, Singh MP, Noudem J (2009) Structure and properties of electron-doped Ca1−xSmxMnO3 nanoparticles. Mater Chem Phys 114:676–680
193. Ho TA, Thanh TD, Manh TV, Ho TO, Thang PD, Phan TL, Yu SC (2015) Critical behavior of La0.67Sr0.33MnO3 nanoparticles. Mater Trans 56:1331–1334
194. Zhou SM, Zhao SY, He LF, Guo YQ, Shi L (2010) Griffiths phase and exchange bias in La1−xCaxMnO3 (x=0.50, 0.67, and 0.75) nanoparticles. J Appl Phys 107:033006
195. Wang Y, Fan HJ (2011) Magnetic phase diagram and critical behavior of electron-doped La1−xCaxMnO3 (0≤x≤0.25) nanoparticles. Phys Rev B 83:224409
196. Zhou SM, Zhao SY, He LF, Guo YQ, Shi L (2010) Facile synthesis of Ca-doped manganese nanoparticles by a nonaqueous sol–gel method and their magnetic properties. Mater Chem Phys 119:716–728
197. Tiwari SD, Rajeev KP (2005) Signatures of spin-glass freezing in NiO nanoparticles. Phys Rev B 72:104433
198. Wu J, Leighton C (2003) Glassy ferromagnetism and magnetic phase separation in La1−xCaxCoO3. Phys Rev B 67:174408
199. Rostamnejadi A, Venkatesan K, Kameli P, Salamati H, Coey JMD (2011) Magnetocaloric effect in La0.67Sr0.33MnO3 nanoparticles. Appl Phys Lett 98:232006
200. Zhu T, Shen BG, Sun JR, Zhao JW, Zhan WS (2001) Surface spin-glass behavior in La0.67Sr0.33MnO3 nanoparticles. J Phys Condens Mater 13:7167–7172
201. Rostamnejadi A, Kameli P, Ghazi ME, Razavi FS (2014) An investigation on magnetic interacting La0.67Sr0.33MnO3 nanoparticles. Adv Mater 26:1270–1276
202. Zhu T, Shen BG, Sun JR, Zhao JW, Zhan WS (2001) Surface spin-glass behavior in La0.67Sr0.33MnO3 nanoparticles. J Phys Condens Mater 13:7167–7172
214. Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Mater Mag 308:325–340
215. Gschneider KA Jr, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Sci 30:387–429
216. Navin K, Kucharchia R (2018) The effect of particle size on structural, magnetic and transport properties of La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanoparticles. Ceram Int 44:4973–4980
217. Thombare B, Dusane P, Kekade S, Salanikhe A, Choudhary RJ, Phase DM, Devan RS, Patil SI (2019) Influence of nano-dimensionality on magnetotransport, magnetic and electrical properties of Nd$_{0.2}$Sr$_{0.8}$MnO$_3$. Phys Rev B 90:014425.
218. Debnath JC, Kim JH, Heo Y, Strydom AM, Dou SX (2013) Correlation between structural parameters and the magnetocaloric effect in epitaxial La$_{0.7}$Sr$_{0.3}$MnO$_3$ films. J Appl Phys 114:043507.
219. Mott NF, Gurney RW (1940) Electronic processes in ionic crystals. Oxford
220. Banday JA, Mir FA, Farooq S, Qurishi MA, Koul S, Razdan TK (2012) Structural, thermal and optical studies of oxypeucedanin hydrate monoclinic microcrystals from Prangos palubilia. Ann J Chem 3:204–209.
221. Chandra S, Figueroa AI, Ghosh B, Raychaudhuri AK, Phan MH, Mukherjee P, Srikanth H (2012) Fabrication and magnetic response probed by RF transverse magnetoresistance and magnetic susceptibility in La$_{0.7}$Ca$_{0.3}$MnO$_3$ nanowires. Physica B 407:175–178.
222. Weng Y, Fan HJ (2011) The origin of different magnetic properties in nanosized La$_{0.7}$Ca$_{0.3}$MnO$_3$: wires versus particles. Appl Phys Lett 98:142502.
223. S. Chandra, A. Biswas, S. Datta, B. Ghosh, A. K. Raychaudhuri and H. Srikanth, Nanotechnology, 2013, 24, 505712.
224. M. Kumareshvanji, M. Sousa CT, Pires A, Pereira AM, Lopes AML, Araujo JP, Kumaresavanji M, Sousa CT, Pires A, Pereira AM, Lopes AML, Araujo JP (2012) Suppression of a glassy magnetic state and emergent of a Griffiths-like phase on size reduction in Nd$_{0.8}$Sr$_{0.2}$MnO$_3$. J Magn Magn Mater 322:2537–2540.
225. Giri SK, Dasgupta P, Poddar A, Sahoo RC, Paladhi D, Nath TK (2015) Strain degradation of methylene blue solution under visible light irradiation. Bull Coord Chem Rev 245:505712.
226. Kundu S, Nath TK (2012) Suppression of a glassy magnetic state and emergence of a Griffiths-like phase on size reduction in Nd$_{0.7}$Sr$_{0.3}$MnO$_3$. J Magn Magn Mater 355:150–155.
227. Phan MH, Chandra S, Bingham NS, Srikanth H, Zhang QL, Cheong SW, Hoang TD, Chin HD (2010) Collapse of charge ordering and enhancement of the magnetocaloric effect in nanocrystalline La$_{0.7}$Sr$_{0.3}$MnO$_3$. Phys Rev Lett 97:242506.
228. Biswas A, Samanta T, Banerjee S, Das I (2008) Influence of charge ordering on magnetocaloric properties of nanocrystalline Pr$_{0.3}$Ca$_{0.7}$Sr$_{0.3}$MnO$_3$. Appl Phys Lett 92:212502.
229. Phan MH, Chandra S, Bingham NS, Srikanth H, Zhang QL, Cheong SW, Hoang TD, Chin HD (2010) Collapse of charge ordering and enhancement of the magnetocaloric effect in nanocrystalline La$_{0.7}$Sr$_{0.3}$MnO$_3$. Phys Rev Lett 97:242506.
230. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390.
231. Yang J, Lim E, Lee HJ, Park J, Lee SC, Lee K, Huh Y, Haam S (2008) Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials 29:2548–2555.
232. Gschneider KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1539–1553.
233. Manzoor S (2013) Ahmed A, ur Rashid A, Ahmad SN, Shaheen SA: Study of magnetothermal properties of strontium doped lanthanum manganite nanoparticles for hyperthermia applications. IEEE T Magn 49:3504–3507.
234. Jadhav SV, Nikam DS, Khot VM, Thorat ND, Phadatare MR, Nirghotam RS, Salunkhe AB, Pawar SH (2013) Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J Chem 37:3121–3130.
235. MankDH, Phong PT, Nañ MH, Tung PK, Phuc NX, Lee UI (2014) Structural and magnetic study of La$_{0.7}$Sr$_{0.3}$MnO$_3$ nanoparticles and AC magnetic heating characteristics for hyperthermia applications. Physica B 444:94–102.
