A new family of maximal curves over a finite field

M. Giulietti * and G. Korchmáros *

February 5, 2008

Abstract

A new family of \mathbb{F}_{q^2}-maximal curves is presented and some of their properties are investigated.

1 Introduction

Let q be a power of a prime number p. A maximal curve defined over a finite field \mathbb{F}_{q^2} with q^2 elements, briefly an \mathbb{F}_{q^2}-maximal curve, is a projective, geometrically irreducible, non-singular algebraic curve defined over \mathbb{F}_{q^2} whose number of \mathbb{F}_{q^2}-rational points attains the famous Hasse-Weil upper bound $q^2 + 1 + 2qg$ where g is the genus of the curve. Maximal curves have also been investigated for their applications in Coding theory. Surveys on maximal curves are found in [11, 14, 12, 13, 36, 37], see also [10, 9, 31, 35].

By a result of Serre, see Lachaud [27, Proposition 6], any non-singular curve which is \mathbb{F}_{q^2}-covered by an \mathbb{F}_{q^2}-maximal curve is also \mathbb{F}_{q^2}-maximal. Apparently, the known maximal curves are all Galois \mathbb{F}_{q^2}-covered by one of the curves below, see [11, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 28, 29].

(A) for every q, the Hermitian curve over \mathbb{F}_{q^2};

(B) for every $q = 2q_0^2$ with $q_0 = 2^h$, $h \geq 1$, the DLS curve (the Deligne-Lusztig curve associated with the Suzuki group) over \mathbb{F}_{q^4};

*Research supported by the Italian Ministry MURST, Strutture geometriche, combinatoria e loro applicazioni, PRIN 2006-2007.
(C) for every $q = 3q_0^2$ with $q_0 = 3^h$, $h \geq 1$, the DLR curve (the Deligne-Lusztig curve associated with the Ree group) over $\mathbb{F}_{q_0}^6$;

(D) for every $q = p^{3h}$, the GS-curve (the Garcia-Stichtenoth curve) over \mathbb{F}_{q^2}.

It seems plausible that each of the known \mathbb{F}_{q^2}-maximal curve is Galois \mathbb{F}_{q^2}-covered by exactly one of the above curves, apart from a very few possible exceptions for small q’s. This has been investigated so far in three special cases: The smallest GS-curve, $q = 8$, is Galois \mathbb{F}_{q^2}-covered by the Hermitian curve over \mathbb{F}_{64}, but this does not hold for $q = 27$, see [16], while an unpublished result by Rains and Zieve states that the smallest DLR-curve, $q=3$, is not Galois \mathbb{F}_{q^2}-covered by the Hermitian curve over \mathbb{F}_{3^6}.

In this preliminary report, a new \mathbb{F}_{q^2}-maximal curve X is constructed for every $q = n^3$. For $q > 8$, the relevant property of X is not being \mathbb{F}_{q^2}-covered by any of the four curves (A),(B),(C),(D); we stress that this even holds for non Galois \mathbb{F}_{q^2}-coverings. The case $q = 8$ remains open.

The automorphism group $\text{Aut}(X)$ of X is also determined; its size turns out to be large compared to the genus X. For curves with large automorphism groups, see [23, 30, 33].

2 Construction

Throughout this paper, p is a prime, $n = p^h$ and $q = n^3$ with $h \geq 1$.

We will need some identities in $\mathbb{F}_{n^2}[X]$ concerning the polynomial

$$h(X) = \sum_{i=0}^{n} (-1)^{i+1} X^{i(n-1)}. \tag{1}$$

Lemma 2.1.

$$X^{n^2} - X = (X^n + X)h(X), \tag{2}$$

and

$$X^{n^3} + X - (X^n + X)^{n^2-n+1} = (X^n + X)h(X)^{n+1}, \tag{3}$$

Proof. A straightforward computation shows (2). Also,

$$(X^n - X)^n(X^{n^3} - X + (X^n - X)^{n^2-n+1}) = (X^{n^2} - X)^{n+1}. \tag{4}$$
Now, choose $\rho \in \mathbb{F}_{q^2}$ with $\rho^n = -\rho$ and replace X by ρX. From (4),

$$[(\rho X)^n - \rho X]^n[(\rho X)^{n^3} - \rho X + ((\rho X)^n - \rho X)^{n^2-n+1}] = [((\rho X)^{n^2} - (\rho X))^{n+1}].$$

Since $\rho^{n^2} = \rho$ and $\rho^{n^3} = -\rho$, the assertion (3) follows.

In the three-dimensional projective space $\text{PG}(3, q^2)$ over \mathbb{F}_{q^2}, consider the algebraic curve \mathcal{X} defined to be the complete intersection of the surface Σ with affine equation

$$Z^{n^2-n+1} = Yh(X),$$

and the Hermitian cone \mathcal{C} with affine equation

$$X^n + X = Y^{n+1}.$$ (6)

Note that \mathcal{X} is defined over \mathbb{F}_{q^2} but it is viewed as a curve over the algebraic closure \mathbb{K} of \mathbb{F}_{q^2}. Moreover, \mathcal{X} has degree n^3+1 and possesses a unique infinite point, namely the infinite point X_∞ of the X-axis.

A treatise on Hermitian surfaces over a finite field is found in [24, 32]. Our aim is to prove the following theorem.

Theorem 2.2. \mathcal{X} is an \mathbb{F}_{q^2}-maximal curve.

To do this, it is enough to show the following two lemmas, see [26].

Lemma 2.3. The curve \mathcal{X} lies on the Hermitian surface \mathcal{H} with affine equation

$$X^{n^3} + X = Y^{n^3+1} + Z^{n^3+1}.$$ (7)

Proof. Clearly, $X_\infty \in \mathcal{H}$. Let $P = (x, y, z)$ be any affine point of \mathcal{X}. From (4), $z^{n^3+1} = y^{n+1}h(x)^{n+1}$. On the other hand, (3) together with (6) imply that $y^{n+1}h(x)^{n+1} = x^{n^3} + x - y^{n^3+1}$. This proves the assertion.

Lemma 2.4. The curve \mathcal{X} is irreducible over \mathbb{K}.

Proof. Let \mathcal{Y} be an irreducible component of \mathcal{X} defined over \mathbb{K}. Let $\mathbb{K}(\mathcal{Y})$ be the function field of \mathcal{Y}. Let $x, y, z, t \in \mathbb{K}(\mathcal{Y})$ be the coordinate functions of the embedding of \mathcal{Y} in $\text{PG}(3, \mathbb{K})$. Since \mathcal{Y} lies on \mathcal{H},

$$x^{n^3} + x - y^{n^3+1} - z^{n^3+1} = 0.$$ (8)
Take a non-singular affine point $P = (x_P, y_P, z_P)$ on \mathcal{Y}, and let $\xi = x - x_P$, $\eta = y - y_P$, $\zeta = z - z_P$. From (7),

$$\xi - \eta y_P^3 - \zeta z_P^3 = -\xi^3 + \eta^3 y_P + \eta^3 + 1 + \zeta^3 z_P + \zeta^3 + 1,$$

whence

$$v_P(\xi - \eta y_P^3 - \zeta z_P^3) \geq n_3,$$

where, as usual, $v_P(u)$ with $u \in K(\mathcal{X}) \setminus 0$ stands for the valuation of u at P.

Since the tangent plane π_P to H at P has equation

$$X - x_P - y_P^3 (Y - y_P) - z_P^3 (Z - z_P) = 0,$$

the intersection number $I(P, \mathcal{Y} \cap \pi_P)$ is at least n_3. Therefore, if $\mathcal{X} \neq \mathcal{Y}$, then either $\deg \mathcal{Y} = n_3$ or \mathcal{Y} lies on π. Since the equation of π_P may also be written as

$$X - y_P^3 Y - z_P^3 Z + x_P^3 = 0,$$

and

$$x_P^6 + x_P^3 - y_P^6 + n_3 - z_P^6 + n_3 = 0,$$

we see that the point, the so-called Frobenius image of P,

$$\varphi(P) = (x_P^{q^2}, y_P^{q^2}, z_P^{q^2})$$

also lies on π_P.

Now, in the former case, \mathcal{X} splits into \mathcal{Y} and a line. In particular, \mathcal{Y} is defined over \mathbb{F}_{q^2}. Now, if the above point is not defined over \mathbb{F}_{q^2}, that is $P \in \mathcal{Y}$ but $P \notin \text{PG}(3, \mathbb{K}) \setminus \text{PG}(3, \mathbb{F}_{q^2})$, then the point $\varphi(P)$ of \mathcal{Y} is distinct from P. Also, π_P contains $\varphi(P)$. From this, the intersection divisor of \mathcal{Y} cut out by π has degree bigger than n_3; a contradiction with $\deg \mathcal{Y} = n_3$.

It remains to consider the case where \mathcal{Y} lies on π for every non-singular affine point P. Since the tangent planes to H at distinct points of \mathcal{X} are distinct, \mathcal{Y} must be a line lying on H. But this contradicts the fact that the lines of \mathcal{C} contain the vertex of \mathcal{C} which is a point outside H. \square

From [26] and Theorem 2.2, \mathcal{X} is a non-singular curve, and the linear series $|qP + \varphi(P)|$ with $P \in \mathcal{X}$ is cut out by the planes of $\text{PG}(3, \mathbb{K})$. 4
Theorem 2.5. \mathcal{X} has genus $g = \frac{1}{2}(n^3 + 1)(n^2 - 2) + 1$.

Proof. Every linear collineation $(X, Y, Z) \to (X, Y, \lambda Z)$ with $\lambda^{n^2-n+1} = 1$ preserves both Σ and C. For $\lambda \neq 1$, the fixed points of such a collineation g_λ are exactly the points of the plane π_0 with equation $Z = 0$. Since π_0 contains no tangent to \mathcal{X}, the number of fixed points of g_λ with $\lambda \neq 1$ is independent from λ and equal to $n^3 + 1$.

The above collineation g_λ defines an automorphism of \mathcal{X}. Let Λ be the group consisting of all these automorphisms. Since $p \nmid |\Lambda|$, the Hurwitz genus formula gives:

$$2g - 2 = (n^2 - n + 1)(2\bar{g} - 2) + (n^3 + 1)(n^2 - n),$$

where \bar{g} is the genus of the quotient curve $\mathcal{Y} = \mathcal{X}/\Lambda$. From the definition of \mathcal{X} and Λ, this quotient curve \mathcal{Y} is the complete intersection of C and the rational surface of equation $Z = Y g(X)$. This shows that \mathcal{Y} is birationally equivalent to the Hermitian curve of equation $X^n + X = Y^{n+1}$. Since the latter curve has genus $\frac{1}{2}(n^2 - n)$, we find that $\bar{g} = \frac{1}{2}(n^2 - n)$. Now, from the above equation, $2g - 2 = (n^3 + 1)(n^2 - 2)$ whence the assertion follows. \[\square\]

3 \mathbb{F}_{q^2}-coverings of the Hermitian curves

We show that if $q > 8$ then \mathcal{X} is not \mathbb{F}_{q^2}-covered by any of the curves (A),(B),(C),(D). Actually, this holds trivially for (B),(C),(D), as the genus of each of the latter three curves is smaller than the genus of \mathcal{X}. Therefore, we only need to prove the following result.

Proposition 3.1. If $q > 8$, then \mathcal{X} is not \mathbb{F}_{q^2}-covered by the Hermitian curve defined over \mathbb{F}_{q^2}.

Proof. Assume on the contrary that \mathcal{X} is \mathbb{F}_{q^2}-covered by the Hermitian curve \mathcal{H}_q over \mathbb{F}_{q^2}. Let m denote the degree of such a covering φ. Since \mathcal{H}_q has genus $\frac{1}{2}q(q-1) = \frac{1}{2}n^3(n^3 - 1)$, the Hurwitz genus formula applied to φ gives:

$$n^6 - n^3 - 2 \geq m(n^3 + 1)(n^2 - 2).$$

This yields that $m \leq n$ for $n > 2$.

On the other hand, each of the $q^3 + 1 = n^9 + 1$ \mathbb{F}_{q^2}-rational point of \mathcal{H}_q lies over an \mathbb{F}_{q^2}-rational point of \mathcal{X} and the number of \mathbb{F}_{q^2}-rational points of
\mathcal{H}_q lying over a given \mathbb{F}_{q^2}-rational points of \mathcal{X} is at most m. Since \mathcal{X} has exactly $n^8 - n^6 + n^3 + 1$ \mathbb{F}_{q^2}-rational points, this gives:

$$n^9 + 1 \leq m(n^8 - n^6 + n^5 + 1).$$

For this $m > n$, a contradiction.

\[\square\]

4 Automorphism group over \mathbb{F}_{q^2}

Let $\text{Aut}(\mathcal{X})$ be the \mathbb{F}_{q^2}-automorphism group of \mathcal{X}. In terms of the associated function field, $\text{Aut}(\mathcal{X})$ is the group of all automorphisms of $\mathbb{K}(\mathcal{X})$ which fixes every element in the subfield \mathbb{F}_{q^2} of \mathbb{K}.

First we point out that $\text{Aut}(\mathcal{X})$ contains a subgroup isomorphic to the special unitary group $\text{SU}(3, n)$. This requires to lift $\text{SU}(3, n)$ to a collineation group of $\text{PG}(3, q^2)$.

If the non-degenerate Hermitian form in the three dimensional vector space $V(3, n^2)$ over \mathbb{F}_{n^2} is given by $X^nT + XT^n - Y^{n+1}$ then $\text{SU}(3, n)$ is represented by the matrix group of order $(n^3 + 1)n^3(n^2 - 1)$ generated by the following matrices:

For $a, b \in \mathbb{F}_{n^2}$ such that $a^n + a - b^{n+1} = 0$, and for $k \in \mathbb{F}_{n^2}$, $k \neq 0$,

$$Q_{(a,b)} = \begin{pmatrix} 1 & b^n & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, \quad H_k = \begin{pmatrix} k^{-n} & 0 & 0 \\ 0 & k^{n-1} & 0 \\ 0 & 0 & k \end{pmatrix}, \quad W = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

The subgroup of $\text{SU}(3, n)$ consisting of its scalar matrices λI, with $\lambda \in \mathbb{F}_{n^2}$, is either trivial or has order 3 according as $\gcd(3, n + 1)$ is either 1 or 3.

From each of the above matrices a 4×4-matrix arises by adding 0, 0, 1, 0 as a third row and as a third column. If $\tilde{Q}_{(a,b)}$, \tilde{H}_k, \tilde{W} are the 4×4 matrices obtained in this way, the matrix group T generated by them is isomorphic to $\text{SU}(3, n)$.

By the same lifting procedure, each 3×3 diagonal matrix λI defines a 4×4 diagonal matrix \tilde{D}_λ with diagonal $[\lambda, \lambda, 1, \lambda]$. If λ ranges over the set of all $(n^2 - n + 1)$-st roots of unity, the matrices \tilde{D}_λ form a cyclic group $C_{n^2 - n + 1}$. Obviously, \tilde{D}_λ commutes with every matrix in T, and hence the group M generated by T and $C_{n^2 - n + 1}$ is $TC_{n^2 - n + 1}$. Here, $T \cap C_{n^2 - n + 1}$ is either trivial or a subgroup of order 3, according as $\gcd(3, n + 1) = 1$ or $\gcd(3, n + 1) = 3$. In the latter case, let $C_{(n^2 - n + 1)/3}$ be the subgroup of $C_{n^2 - n + 1}$ of index 3. Note
that if \(\gcd(3, n+1) = 3 \) then \(9 \nmid (n^2 - n + 1) \). Therefore, \(M \) can be written as a direct product, namely

\[
M = \begin{cases}
T \times C_{n^2-n+1} & \text{when } \gcd(3, n+1) = 1; \\
T \times C_{(n^2-n+1)/3} & \text{when } \gcd(3, n+1) = 3.
\end{cases}
\]

In \(\text{PG}(3, q^2) \) equipped with homogeneous coordinates \((X, Y, Z, T)\), every regular \(4 \times 4 \) matrix defines a linear collineation, and two such matrices define the same linear collineation if and only if one is a multiple of the other. Since both third row and column in each of the above matrices is \(0, 0, 1, 0 \), the group \(M \) can be viewed as a collineation group of \(\text{PG}(3, q^2) \). Our aim is to prove that \(M \) preserves \(\mathcal{X} \). This will be done in two steps.

Lemma 4.1. The group \(T \) preserves \(\mathcal{X} \).

Proof. Let \(P = (x, y, z, 1) \in \mathcal{X} \). The image of \(P \) under \(\tilde{Q}_{(a,b)} \) is \((x_1, y_1, z, 1)\) with \(x_1 = x + b^ny + a \), \(y_1 = y + b \). From (9),

\[
x_1^n + x_1 = y_1^{n+1}.
\] (10)

Furthermore, if \(x^n + x \neq 0 \), then by (2)

\[
yh(x) = y \frac{x^n - x}{x^n + x} = y \frac{(x^n + x)^n - (x^n + x)}{x^n + x} = y \frac{y^{(n+1)n} - y^{n+1}}{y^{n+1}} = -y + y^{n^2}.
\]

Since \(b \in \mathbb{F}_{n^2} \), this implies that \(yh(x) = y_1(y_1^{n^2-1} - 1) \). On the other hand, from (10),

\[
y_1^{n^2-1} = (x_1^n + x_1)^{n-1}.
\]

Therefore, if \(x_1^n + x_1 \neq 0 \), then

\[
yh(x) = y_1((x_1^n + x_1)^{n-1} - 1) = y_1 \left(\frac{(x_1^n + x_1)^n}{x_1^n + x_1} - 1 \right) = y_1 h(x_1).
\]

Since \(x^n + x = 0 \) only holds for finitely many of points of \(\mathcal{X} \), and the same holds for \(x_1^n + x_1 = 0 \), this implies that \(\tilde{Q}_{(a,b)} \in \text{Aut}(\mathcal{X}) \).

Similar calculation works for \(\tilde{H}_k \) showing that \(\tilde{H}_k \in \text{Aut}(\mathcal{X}) \).

To deal with \(\tilde{W} \), homogeneous coordinates are needed. Note that (6) reads \(X^nT + XT^n = Y^{n+1} \) in homogeneous coordinates. Let \(P = (x, y, z, t) \) be a point of \(\mathcal{X} \). Then the image of \(P \) is the point \(P' = (t, -y, z, x) \). Since
\(x^n + xt^n = t^n x + tx^n\) and \(x^n t + xt^n - y^{n+1} = 0\), we have that \(P' \in \mathcal{C}\). Further, if \(x^n + xt^{n-1} \neq 0\) and \(t \neq 0\), then

\[y h(x) = y \frac{x^{n^2} - nx^{n^2-1}}{x^n + xt^{n-1}} = -y \frac{t^{n^2} - tx^{n^2-1}}{t^n + tx^{n-1}} = -yh(t)\]

From this \(\tilde{W} \in \text{Aut}(\mathcal{X})\), as \(x^n + xt^{n-1} = 0\) and \(t = 0\) only hold for finitely many points of \(\mathcal{X}\).

Lemma 4.2. The group \(C_{n^2 - n + 1}\) preserves \(\mathcal{X}\).

Proof. A straightforward computation shows the assertion.

Lemmas 4.1 and 4.2 have the following corollary.

Theorem 4.3. \(\text{Aut}(\mathcal{X})\) contains a subgroup \(M\) such that

\[M \cong \begin{cases} SU(3, n) \times C_{n^2 - n + 1} & \text{when } \gcd(3, n + 1) = 1; \\ SU(3, n) \times C_{(n^2 - n + 1)/3} & \text{when } \gcd(3, n + 1) = 3. \end{cases}\]

Actually, \(\text{Aut}(\mathcal{X}) = M\) when \(\gcd(3, n + 1) = 1\), but \(\text{Aut}(\mathcal{X})\) is a bit larger when \(\gcd(3, n + 1) = 3\). To show this, the following bound on \(|\text{Aut}(\mathcal{X})|\) will be useful.

Lemma 4.4. \(|\text{Aut}(\mathcal{X})| \leq (n^3 + 1)n^3(n^2 - 1)(n^2 - n + 1)\).

Proof. From the remark before Theorem 2.5, \(\text{Aut}(\mathcal{X})\) is linear, that is, it consists of all linear collineations of \(\text{PG}(3, \mathbb{K})\) preserving \(\mathcal{X}\). Obviously, \(\text{Aut}(\mathcal{X})\) fixes \(Z_\infty\), the vertex of \(\mathcal{C}\). Further, \(\text{Aut}(\mathcal{X})\) preserves \(\mathcal{H}\) as \(\mathcal{X}\) lies on \(\mathcal{H}\), and \(\text{Aut}(\mathcal{X})\) is a subgroup of \(\text{PGU}(4, q^2)\), see [26, Theorem 3.7]. Also, \(\text{Aut}(\mathcal{X})\) must preserve the plane \(\pi_0\) of equation \(Z = 0\), as \(\pi_0\) is the polar plane of \(Z_\infty\) under the unitary polarity arising from \(\mathcal{H}\). Therefore, \(\text{Aut}(\mathcal{X})\) induces a collineation group \(S\) of \(\pi_0\) preserving the Hermitian curve of \(\pi_0\) of equation (6). Hence, \(S\) is isomorphic to a subgroup of \(\text{PGU}(3, n)\). In particular, \(|S| \leq (n^3 + 1)n^3(n^2 - 1)\). The subgroup \(U\) of \(\text{Aut}(\mathcal{X})\) fixing \(\pi_0\) pointwise preserves every line through \(Z_\infty\). From (5), all, but finitely many, lines through \(Z_\infty\) meeting \(\mathcal{X}\) contain each exactly \(n^2 - n + 1\) pairwise distinct common points from \(\mathcal{X}\). Therefore, \(|U| \leq n^2 - n + 1\). Since \(|\text{Aut}(\mathcal{X})| = |S||U|\), the assertion follows.

For \(\gcd(3, n + 1) = 1\), Theorem 4.3 together with Lemma 4.4 determine \(\text{Aut}(\mathcal{X})\).
Theorem 4.5. If \(\gcd(3, n+1) = 1 \), then \(\text{Aut}(\mathcal{X}) \cong \text{SU}(3, n) \times C_{n^2-n+1} \). In particular, \(|\text{Aut}(\mathcal{X})| = n^3(n^3+1)(n^2-1)(n^2-n+1) \). Furthermore, \(\text{Aut}(\mathcal{X}) \) is defined over \(\mathbb{F}_{q^2} \) but it contains a subgroup isomorphic to \(\text{SU}(3, n) \) defined over \(\mathbb{F}_{n^2} \).

For \(\gcd(3, n+1) = 3 \), we exhibit one more linear collineation preserving \(\mathcal{X} \). To do this choose a primitive \(n^3 + 1 \) roots of unity in \(\mathbb{F}_{q^2} \), say \(\rho \), and define \(\tilde{E} \) to be the diagonal matrix

\[
[\rho^{-1}, \rho^{n^2-n}, 1, \rho^{-1}].
\]

It is straightforward to check that the associated linear collineation of \(\text{PG}(3, q^2) \) preserves \(\mathcal{X} \), and that it induces on \(\pi_0 \) the collineation \(\alpha \) associated to the diagonal matrix \([1, \rho^{n^2-n+1}, 1]\). In \(\pi_0 \), the Hermitian curve \(\mathcal{H}_0 \) of equation (6) is preserved by \(\alpha \) which also fixes every common point of \(\mathcal{H}_0 \) and the line of equation \(Y = 0 \). Since \(\alpha \) has order \(n+1 \) but the stabiliser of three collinear points of \(\mathcal{H}_0 \) has order \((n+1)/3 \) when \(\gcd(3, n+1) = 3 \), it turns out that \(\alpha \in \text{PGU}(3, n) \setminus \text{PSU}(3, n) \). Therefore, the group generated by \(M \) together with \(\tilde{E} \) is larger than \(M \) and, when viewed as a collineation group of \(\text{PG}(3, q^2) \), it preserves \(\mathcal{X} \). This together with Theorem 4.3 and Lemma 4.4 give the following result.

Theorem 4.6. Let \(\gcd(3, n+1) = 3 \). Then \(\text{Aut}(\mathcal{X}) \) has a normal subgroup \(C_{n^2-n+1} \) such that \(\text{Aut}(\mathcal{X})/C_{n^2-n+1} \cong \text{PGU}(3, n) \). In particular, \(|\text{Aut}(\mathcal{X})| = n^3(n^3+1)(n^2-1)(n^2-n+1) \). Also, \(\text{Aut}(\mathcal{X}) \) is defined over \(\mathbb{F}_{q^2} \) but it contains a subgroup isomorphic to \(\text{SU}(3, n) \) defined over \(\mathbb{F}_{n^2} \). Furthermore, \(\text{Aut}(\mathcal{X}) \) has a subgroup \(M \) index 3 such that \(M \cong \text{SU}(3, n) \times C_{(n^2-n+1)/3} \).

5 Some quotient curves with very large automorphism group

Since \(\text{Aut}(\mathcal{X}) \) is large, \(\mathcal{X} \) produces plenty of quotient curves. Here we limit ourselves to point out that some of these curves \(\mathcal{X}_1 \) have very large automorphism groups, that is, \(|\text{Aut}(\mathcal{X}_1)| > 24g_1^2 \) where \(g_1 \) is the genus of \(\mathcal{X}_1 \).

For a divisor \(d \) of \(n^2 - n + 1 \), the group \(C_{n^2-n+1} \) contains a subgroup \(C_d \) of order \(d \). Let \(\mathcal{X}_1 = \mathcal{X}/C_d \) the quotient curve of \(\mathcal{X} \) with respect to \(C_d \). Since \(C_d \) fixes exactly \(n^3 + 1 \) points of \(\mathcal{X} \), and \(C_d \) is tame, the Hurwitz genus
formula gives

\[(n^3 + 1)(n^2 - 2) = 2g - 2 = d(2g_1 - 2) + (d - 1)(n^3 + 1),\]

whence

\[g_1 = \frac{1}{2} \left(\frac{(n^3 + 1)(n^2 - d - 1)}{d} + 2 \right).\]

Furthermore, since \(C_d\) is a normal subgroup of \(\text{Aut}(\mathcal{X})\), see Theorems 4.5 and 4.6, \(\text{Aut}(\mathcal{X})/C_d\) is a subgroup \(G_1\) of \(\text{Aut}(\mathcal{X}_1)\) such that

\[|G_1| = \frac{n^3(n^3 + 1)(n^2 - 1)(n^2 - n + 1)}{d}.\]

Comparing \(|G_1|\) to \(g_1\) shows that if \(d \geq 7\) then \(|G_1| > 24g_1^2\).

6 The Weierstrass semigroup at an \(\mathbb{F}_{q^2}\)-rational place

As we observed in Section 2, \(X_\infty = (1, 0, 0, 0)\) is the unique infinite point of \(\mathcal{X}\). Our aim is to compute the Weierstrass semigroup \(H(X_\infty)\) of \(\mathcal{X}\) at \(X_\infty\). For this purpose, certain divisors on \(\mathcal{X}\) are to consider. From Section 2, the function field \(\mathbb{K}(\mathcal{X})\) of \(\mathcal{X}\) is \(\mathbb{K}(x, y, z)\) with \(z^n - n+1 = yL(x), x^n + x = y^{n+1}\).

Let \((\xi)\) denote the principal divisor of \(\xi \in \mathbb{K}(\mathcal{X}), \xi \neq 0\). Note that

\[(x)_\infty = (n^3+1)X_\infty, \quad (y)_\infty = (n^3-n^2+n)X_\infty, \quad (yh(x))_\infty = (n^3(n^2-n+1))X_\infty,\]

whence \((z)_\infty = n^3X_\infty\).

A useful tool for the study of \(H(X_\infty)\) is the concept of a telescopic semigroup, see [25, Section 5.4]. Let \((a_1, \ldots, a_k)\) be a sequence of positive integers with greatest common divisor 1. Define

\[d_i = \gcd(a_1, \ldots, a_i) \quad \text{and} \quad A_i = \{a_1/d_i, \ldots, a_i/d_i\}\]

for \(i = 1, \ldots, k\). Let \(d_0 = 0\). If \(a_i/d_i\) belongs to the semigroup generated by \(A_{i-1}\) for \(i = 2, \ldots, k\), then the sequence \((a_1, \ldots, a_k)\) is said to be telescopic. A semigroup is called telescopic if it is generated by a telescopic sequence. Recall that the genus of a numerical semigroup \(\Lambda\) is defined as the size of
$N_0 \setminus \Lambda$. By Proposition 5.35 in \cite{25}, the genus of a semigroup Λ generated by a telescopic sequence (a_1, \ldots, a_k) is

$$g(\Lambda) = \frac{1}{2} \left(1 + \sum_{i=1}^{k} \left(\frac{d_{i-1}}{d_i} - 1 \right) a_i \right) \quad (11)$$

Lemma 6.1. The genus of the numerical semigroup generated by the three integers $n^3 - n^2 + n, n^3, n^3 + 1$ is

$$\frac{(n^3 + 1)(n^2 - 2)}{2} + 1$$

Proof. The sequence $(n^3 - n^2 + n, n^3, n^3 + 1)$ is telescopic. Then (11) applies, and the claim follows from straightforward computation. \qed

Proposition 6.2. The Weierstrass semigroup of F at X_∞ is the subgroup generated by $n^3 - n^2 + n, n^3, n^3 + 1$.

Proof. The numerical semigroup Λ generated by $n^3 - n^2 + n, n^3, n^3 + 1$ is clearly contained in $H(X_\infty)$. As $g(H(X_\infty)) = g(\Lambda)$, the claim follows. \qed

As a corollary, we have the following result.

Proposition 6.3. The order sequence of X at X_∞ is $(0, 1, n^2 - n + 1, n^3 + 1)$.

Lemma 5.34 in \cite{25} enables us to compute a basis of the linear space $L(mX_\infty)$ for every positive integer m.

Lemma 6.4 (Lemma 5.34 in \cite{25}). If (a_1, \ldots, a_k) is telescopic, then for every m in the semigroup generated by a_1, \ldots, a_k there exist uniquely determined non-negative integers j_1, \ldots, j_k such that $0 \leq j_i < \frac{d_{i-1}}{d_i}$ for $i = 2, \ldots, k$ and

$$m = \sum_{i=1}^{k} j_i a_i.$$

Proposition 6.5. For a positive integer m, a basis of the linear space $L(mX_\infty)$ is

$$\{y_1^{j_1}z_2^{j_2}x_3^{j_3} \mid j_1(n^3 - n^2 + n) + j_2n^3 + j_3(n^3 + 1) \leq m, j_i \geq 0, j_2 \leq n^2 - n, j_3 \leq n - 1\}.$$

Proof. The result is an immediate consequence of Lemma 6.4. \qed
References

[1] M. Abdón and A. García, On a characterization of certain maximal curves, *Finite Fields Appl.* **10** (2004), 133–158.

[2] M. Abdón and L. Quoos, On the genera of subfields of the Hermitian function field, *Finite Fields Appl.* **10** (2004), 271–284.

[3] M. Abdón and F. Torres, On maximal curves in characteristic two, *Manuscripta Math.* **99** (1999), 39–53.

[4] M. Abdón and F. Torres, On F_{q^2}-maximal curves of genus $\frac{1}{6}(q^2 - 3q)$, *Beiträge Algebra Geom.* **46** (2005), 241–260.

[5] E. Çakçak and F. Özbudak, Subfields of the function field of the Deligne–Lusztig curve of Ree type, *Acta Arith.* **115** (2004), 133–180.

[6] E. Çakçak and F. Özbudak, Number of rational places of subfields of the function field of the Deligne–Lusztig curve of Ree type, *Acta Arith.* **120** (2005), 79–106.

[7] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve, *J. Algebra* **216** (1999), 56–76.

[8] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the Hermitian curve, *Comm. Algebra* **28** (2000), 4707–4728.

[9] R. Fuhrmann, A. García and F. Torres, On maximal curves, *J. Number Theory* **67**(1) (1997), 29–51.

[10] R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, *Manuscripta Math.* **89** (1996), 103–106.

[11] R. Fuhrmann and F. Torres, On Weierstrass points and optimal curves, *Rend. Circ. Mat. Palermo Suppl.* **51** (Recent Progress in Geometry, E. Ballico, G. Korchmáros Eds.) (1998), 25–46.

[12] A. García, Curves over finite fields attaining the Hasse–Weil upper bound, *European Congress of Mathematics, Vol. II* (Barcelona, 2000), Progr. Math. **202**, Birkhäuser, Basel, 2001, 199–205.
[13] A. Garcia, On curves with many rational points over finite fields, *Finite Fields with Applications to Coding Theory, Cryptography and Related Areas*, Springer, Berlin, 2002, 152–163.

[14] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, *IEEE Trans. Inform. Theory* 41 (1995), 1548–1563.

[15] A. Garcia and H. Stichtenoth, On Chebyshev polynomials and maximal curves, *Acta Arith.* 90 (1999), 301–311.

[16] A. Garcia and H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, *Bull. Braz. Math. Soc. (N.S.*) 37 (2006), 139–152.

[17] A. Garcia, H. Stichtenoth and C.P. Xing, On subfields of the Hermitian function field, *Compositio Math.* 120 (2000), 137–170.

[18] M. Giulietti, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Curves covered by the Hermitian curve, *Finite Fields Appl.* 12 (2006), 539–564.

[19] M. Giulietti, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Families of curves covered by the Hermitian curve, *Sémin. Cong.*, to appear.

[20] M. Giulietti, G. Korchmáros and F. Torres, Quotient curves of the Deligne–Lusztig curve of Suzuki type, *Acta Arith.*, 122 (2006), 245–274.

[21] J.P. Hansen, Deligne–Lusztig varieties and group codes, Lecture Notes in Math. 1518, Springer, Berlin, 1992, 63–81.

[22] J.P. Hansen and H. Stichtenoth, Group codes on certain algebraic curves with many rational points, *Appl. Algebra Eng. Comm. Comput.* 1 (1990), 67–77.

[23] H.-W. Henn, Funktionenkörper mit grosser Automorphismengruppe, *J. Reine Angew. Math.* 302 (1978), 96–115.

[24] J.W.P. Hirschfeld, *Finite Projective Spaces of Three Dimensions*, Oxford Univ. Press, Oxford, 1985, x+316 pp.
[25] T. Høholdt, J. Van Lint, R. Pellikaan, Algebraic geometry codes, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, North-Holland, 1998, pp. 871-961.

[26] G. Korchmáros and F. Torres, Embedding of a maximal curve in a Hermitian variety, Compositio Math. 128 (2001), 95–113.

[27] G. Lachaud, Sommes d’Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305, Série I (1987), 729–732.

[28] F. Pasticci, On quotient curves of the Suzuki curve, Ars Comb., to appear.

[29] J.P. Pedersen, A function field related to the Ree group, Coding Theory and Algebraic Geometry, Lecture Notes in Math. 1518, Springer, Berlin, 1992, 122–132.

[30] P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z. 117 (1970), 157–163.

[31] H.G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185–188.

[32] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. 70 (1965), 1–201.

[33] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe, Arch. Math. 24 (1973), 527–544.

[34] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkörpern, Arch. Math. 24 (1973), 615–631.

[35] H. Stichtenoth and C.P. Xing, The genus of maximal function fields, Manuscripta Math. 86 (1995), 217–224.
[36] G. van der Geer, Curves over finite fields and codes, *European Congress of Mathematics, Vol. II* (Barcelona, 2000), Progr. Math. 202, Birkhäuser, Basel, 2001, 225–238.

[37] G. van der Geer, Coding theory and algebraic curves over finite fields: a survey and questions, *Applications of Algebraic Geometry to Coding Theory, Physics and Computation*, NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer, Dordrecht, 2001, 139–159.