Toward prevention of childhood ALL by early-life immune training

Julia Hauer1,2 Ute Fischer3,4 and Arndt Borkhardt3,4

1National Center for Tumor Diseases (NCT), Dresden, Germany; 2Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; 3Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; and 4German Cancer Consortium (DKTK), partnering site Essen/Düsseldorf, Germany

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common form of childhood cancer. Chemotherapy is associated with life-long health sequelae and fails in ~20% of cases. Thus, prevention of leukemia would be preferable to treatment. Childhood leukemia frequently starts before birth, during fetal hematopoiesis. A first genetic hit (eg, the ETV6-RUNX1 gene fusion) leads to the expansion of preleukemic B-cell clones, which are detectable in healthy newborn cord blood (up to 5%). These preleukemic clones give rise to clinically overt leukemia in only ~0.2% of carriers. Experimental evidence suggests that a major driver of conversion from the preleukemic to the leukemic state is exposure to immune challenges. Novel insights have shed light on immune host responses and how they shape the complex interplay between (1) inherited or acquired genetic predispositions, (2) exposure to infection, and (3) abnormal cytokine release from immunologically untrained cells. Here, we integrate the recently emerging concept of “trained immunity” into existing models of childhood BCP-ALL and suggest future avenues toward leukemia prevention.

Building on Greaves’ model, the “infective lymphoid recovery hypothesis” focuses on the leukemia-promoting effects of recurrent delayed infection-driven heat-shock responses and lymphoid involution early in life. Infections can lead to a release of pro-inflammatory (Th1) cytokines, which can in turn promote cell survival and a hypermutable state. In an attempt to restore cytokine homeostasis following infection, the release of Th2 cytokines and interleukin-7 (IL-7) then places a proliferative pressure on immature B cells, including preleukemic cells.

In contrast to the previous 3 models, Smith’s theory highlights the importance of in utero infections passed from mother to fetus. This model is supported by evidence from a large number of studies that were recently evaluated in a comprehensive systematic review and meta-analysis of maternal infection in pregnancy and childhood leukemia. The results showed a significantly increased BCP-ALL risk associated with in utero influenza, varicella, and rubella infections.

Another theory, the adrenal hypothesis model by Schmiegelow et al., emphasizes the protective effect of early childhood infections that result in profound changes in the hypothalamus-pituitary-adrenal axis. Increased plasma cortisol levels resulting from infection-induced perturbations to the hypothalamus-pituitary-adrenal axis may directly eliminate preleukemic cells and suppress leukemia-promoting Th1-cytokine responses. This theory is supported by the fact that BCP-ALL patients are often extremely sensitive to glucocorticoid therapy.
In this review, we discuss how the absence of immune training early in life, as first proposed by Greaves, affects host responses to environmental challenges, and mechanisms by which this may promote BCP-ALL development. We further build on and refine these models by integrating the emerging novel concept of “trained immunity.” Trained immunity, in contrast to adaptive immune responses involving B and T cells, focuses on the responses and memory like properties of innate immune cells after infectious exposure and vaccination. This concept fits well into the time-restricted immune modulation occurring when children are particularly susceptible to BCP-ALL development. Finally, we summarize the current state of intervention research that ultimately aims to prevent the progression of the preleukemic clone into BCP-ALL.

Genetic predisposition in BCP-ALL
For childhood BCP-ALL to arise, a combination of genetic susceptibility and acquired somatic mutations is usually required. Genetic susceptibility observed in BCP-ALL is complex, ranging from very rare, but highly penetrant germline mutations in cancer predisposing genes to frequent, but low-penetrant somatic chromosomal aberrations and adverse combinations of germline single nucleotide polymorphisms associated with an elevated risk of developing childhood leukemia (Table 1). Most commonly, childhood BCP-ALL is characterized by recurrent somatic chromosomal aberrations, including aneuploidy and interchromosomal translocations originating in utero. These aberrations generate preleukemic cell clones, which frequently require secondary mutations to transform after a latency phase in early childhood (Figure 1). The most common translocation, t(12;21), encodes the oncoprotein ETV6-RUNX1 present in 5% of healthy newborns, ~1 in 500 of which will develop the disease. Although systematic studies are lacking, it seems reasonable to speculate that healthy carriers clear preleukemic cells later in life. The age peak of BCP-ALL in children and the almost complete absence of the ETV6-RUNX1 genetic subtype in adults with BCP-ALL supports this view. There are few cases of ETV6-RUNX1 BCP described in adults, and patients are usually young (median age, 24 years). In rare but informative cases of monozygotic twins (and thus complete HLA identity) with ETV6-RUNX1 predisposition, such silent, preleukemic cells can be detected years after birth without any evidence of disease.

Infection exposure triggers BCP-ALL: evidence from epidemiology and preclinical mouse models
The age peak, first described by Ward, is strikingly unique to BCP-ALL and coincides with the period when children are commonly exposed to infections through interactions with their peers in day care, kindergarten, and primary school settings in developed societies. Ward proposed that infection acts as a trigger in childhood BCP-ALL. Epidemiological data linking leukemia occurrence to infection space-time clusters have supported this hypothesis (Table 2). Although childhood BCP-ALL generally does not cluster geographically, 3 infection space-time clusters associated with increased BCP-ALL incidence may serve as examples: (1) Niles, USA (1957-1960); (2) Fallon, USA (1999-2004); and (3) Milan, Italy (2009-2010), the last of which was associated with an endemic AH1N1 swine flu outbreak. In Hong Kong in 2003, efforts to prevent the spread of communicable infections of severe acute respiratory syndrome (SARS) included a complete 2-month shutdown of public life, including schools and child day care facilities, and 6 months of additional strict measures. These actions resulted in a decrease in the number of common infections and coincided with a significant decrease in ALL.

It will be interesting to follow ALL incidence during the ongoing SARS-coronavirus-2 pandemic. Preliminary data were released by the Oslo University Hospital. They noted a reduction in ALL diagnoses in March 2020, when the Norwegian government implemented lockdown restrictions, closing schools, day care facilities, and after-school activities. The small sample size limits the conclusions that can be drawn, and cautionary notes were published to that effect.

In summary, epidemiological studies suggest infection as a potential trigger of BCP-ALL in children.

These observations have been experimentally supported in vitro and in vivo (Table 3). Stimulation of ETV6-RUNX1 transduced IL-7-dependent pre-B cells with bacterial lipopolysaccharide drove the expression of recombination activating gene 1/2 (RAG1/RAG2) and activation-induced cytidine deaminase (AID), as well as clonal evolution and outgrowth of BCP-ALL in a xenograft model. Another report found that genomic alterations caused by RAG1/RAG2 off-target activity, characterized by recombination signal sequence-like motifs near the breakpoints, dominated in patient- and clone-specific ETV6-RUNX1 fusions. Further reports showed that infection-induced RAG1/-2- and AID-dependent genomic alterations and the composition of the hematopoietic niche, including the cytokine milieu, presence of innate immune cells, were critical to progression of preleukemia to BCP-ALL. ETV6-RUNX1 cells demonstrated a competitive advantage in the presence of transforming growth factor-β compared with their wild-type counterparts. Furthermore, bone marrow stroma cells in the presence of tumor necrosis factor-α/IL-6 and IL-1β supported the outgrowth of ETV6-RUNX1 preleukemic clones in a hematopoietic niche model of ETV6-RUNX1 Ba/F3 cells.

These studies suggest additional overlaying mechanisms of leukemia evolution involving the interplay of preleukemic clones with innate immune and stromal cells in the bone marrow niche. In parallel, when transgenic mice with the ETV6-RUNX1 fusion or Pax5+/- heterozygosity were exposed to common infections, they developed BCP-ALL, although with incomplete penetrance. The high expression of AID observed in ETV6-RUNX1 preleukemic cells was recapitulated in Pax5+/- precursor cells, but did not affect BCP-ALL development. These murine models mimic specific aspects of BCP-ALL and enable the study of the interplay between genetic predisposition, host/environmental factors, and cooperating mutagenic events in BCP-ALL development. Notably, clonal evolution is not uniform in these murine models, but presents with distinct patterns of secondary somatic lesions dependent on the underlying genetic predisposition.

Evidence for training of immune cells in BCP-ALL
In contrast to lymphocyte-dependent immune responses, which lead to antigen-specific, long-term immunologic memories, the
Table 1. Genetic predisposition to BCP-ALL

Syndrome, gene(s)	Alteration	Consequence	Pathogenic variants	Presentation	Frequency	References
ETV6	Missense, nonsense, frameshift, splice site, deletion	LOF, loss of transcriptional repression, probably dominant negative	Various, distributed throughout and clustered in DNA-binding Ets domain	Variable, thrombocytopenia, bleeding tendency, red cell macrocytosis, multinegative malignancies (ALL, MDS, AML). Solid tumors can occur in adulthood.	~1% of "sporadic" ALL	107–114
IKZF1	Missense, nonsense, frameshift	LOF, altered subcellular localization, adhesion, and responsiveness to chemotherapy	Various, distributed throughout, mostly outside zinc finger regions	Immunodeficiency (CVID), autoimmunity, ALL	~1% of "sporadic" ALL	115–119
Li-Fraumeni syndrome, TP53	Missense, nonsense, frameshift	LOF, decreased transcriptional activity	Various, distributed throughout and clustered in DNA binding	Osteosarcoma, breast cancer, soft-tissue sarcoma, brain tumors, adrenocortical carcinoma, ALL (mainly hypodiploid)	~0.5% of "sporadic" ALL	109,120,121
PAX5	Missense	Hypomorphic variants, decreased repressive transcriptional activity	Arg38His Gly183Ser	ALL, no common abnormalities noted	Few affected families known	122–125
SH2B3	Biallelic frameshift	Increased JAK-STAT signaling, accelerated proliferation of lymphoid cells	c.671insGGCCCCCG p. Asp231Gly fs*38	Mild developmental delay, growth retardation, autoimmunity, ALL	2 siblings reported	126
TYK2	Missense	GOF, promotes TYK2 autophosphorylation and activation of downstream STAT family members	p.Pro760Leu p.Gly761Val affecting the pseudokinase domain	ALL and second primary ALL	2 unrelated patients reported	127
CMMRD syndrome, MLH1, MSH2, MSH6, PMS2	Biallelic mutations	LOF	PMS2 c.1831dupA	Early-onset solid cancer and leukemia, café-au-lait spots, hypopigmented skin lesions, adenomatous polyps, pilomatrixomas, or impaired immunoglobulin class switch recombination	~30% develop ALL or AML	128,129

CI, confidence interval; CMMRD, constitutional mismatch repair deficiency; CVID, common variable immunodeficiency; dbSNP, single nucleotide polymorphism database; GOF, gain of function; JMML, juvenile myelomonocytic leukemia; LOF, loss of function; MDS, myelodysplastic syndrome; OR, overall risk; RAF, risk allele frequency.
Table 1. (Continued)

Rare, highly penetrant germline variations

Syndrome, gene(s)	Alteration	Consequence	Pathogenic variants	Presentation	Frequency	References
Down syndrome (trisomy 21)	Trisomy, translocations	Aberrant gene dosage	Full trisomy of chromosome 21 or chromosome 21 translocations	Intellectual disability, cardiac abnormalities, facial dysmorphologies, transient abnormal myelopoiesis, predisposition to MDS, AML, ALL	~1% develop ALL or AML	130
Noonan syndrome, PTPN11, SOS1	Missense, indels	GOF, dysregulate the RAS-MAPK pathway	PTPN11: SH2 domain, PTP domain interacting surfaces; SOS1: PH domain and distributed	Skin manifestations, growth retardation, facial dysmorphologies, cardiac abnormalities, neurofibroma, rhabdomyosarcoma, JMML, ALL, AML	~0.5% develop high hyperdiploid ALL	131

Frequent, low-penetrant germline variations in BCP-ALL

Location	Gene	dbSNP	Position	Risk allele	RAF	OR (95% CI)	Comments	References
2q22.3	Intergenic	rs17481869	2:145366886	A	0.03	1.74 (1.45-2.09)	ETV6-RUNX1	132,133
2p16.1	Intergenic	rs2665658	2:60599687	A	0.34	4.0 (2.47-6.49)	TCF3-PBX1	134
3q28	TP63, intronic, upstream	rs17505102	3:189638987	G	0.92	1.37 (1.25-1.48)	ETV6-RUNX1	135
5q31.1	IRF1-AS1 intronic	rs886285	5:132429514	T	0.53	1.29 (1.18-1.41)	Hyperdiploidy	133
6p21.31	BAK1 intronic	rs210143	6:33579153	C	0.79	1.30 (1.19-1.43)	Hyperdiploidy	133
7p12.2	IKFZ1 intergenic	rs17133805	7: 50409816	G	0.21	1.65 (1.56-1.74)	—	25,136-138
8q24.1	CCDC26 intronic	rs4617118	8:129143897	G	0.21	1.28 (1.19-1.37)	—	139
8q24.21	CCDC26 intronic	rs75777619	8:129172930	G	0.12	1.26 (1.17-1.36)	—	133
9p21.3	CDKN2A p.Ala148Thr	rs3731249	9:21970917	T	0.01	2.23 (1.90-2.61)	—	140-142
9q21.3	CDKN2B-AS1 intronic	rs77728904	9:22057531	C	0.05	1.72 (1.50-1.97)	—	143,144
10p14	GATA3 intronic	rs3824662	10:8062245	A	0.20	1.29 (1.21-1.38)	Ph-like	145,146

CI, confidence interval; CMMRD, constitutional mismatch repair deficiency; CVID, common variable immunodeficiency; dbSNP, single nucleotide polymorphism database; GOF, gain of function; JMML, juvenile myelomonocytic leukemia; LOF, loss of function; MDS, myelodysplastic syndrome; OR, overall risk; RAF, risk allele frequency.
Frequent, low-penetrant germline variations in BCP-ALL

Location	Gene	dbSNP	Position	Risk allele	RAF	OR (95% CI)	Comments	References
10p12.31-12.2	PIP4K2A intronic	rs2296624 and others	10:22568017	C	0.73	1.25 (1.18-1.32)	Hyperdiploidy, all ethnic groups, frequency: Hispanics > Europeans > Africans	138,146,147
10q21.2	ARID5B intronic, upstream variant	rs10821936	10:61963818	C	0.36	1.80 (1.71-1.89)	Hyperdiploidy, all ethnic groups, frequency: Hispanics > Europeans > Africans	25,136–138
10q26.13	LCHP intronic	rs12779301	10:124604086	C	0.61	1.22 (1.15-1.29)	—	144
11p11.2	PTPRJ intronic	rs3942852	11:48093537	T	0.71	1.23 (1.11-1.32)	—	135
12q23.1	ELK3 intronic	rs4762284	12:96121984	T	0.43	1.15 (1.12-1.19)	—	144
14q11.2	CEBPALS, SLC7A8, regulatory region	rs2239630	14:23120140	A	0.64	1.28 (1.22-1.35)	More frequent in Europeans	25,148
17q12	GSDMB intronic	rs2290400	17:39909987	T	0.58	1.18 (1.11-1.25)	—	139
17q21.32	IGFBP1 Regulatory region	rs10853104	17:49014714	T	0.44	1.33 (1.21-1.47)	—	133
21q22.2	ERG intronic	rs9976326	21:38404563	T	0.22	1.33 (1.21-1.46)	High hyperdiploidy	133
21q22.2	ERG intronic	rs2836365	21:38396352	G	0.28	1.56 (1.33-1.83)	TCF3-PBX1, more frequent in Hispanics	149

Frequent, prenatal, low-penetrant somatic variations in childhood BCP-ALL

Variation	Alteration	Function	Frequency	References
ETV6-RUNX1	Translocation	Chimeric transcription factor	~25% of BCP-ALL	13,150
High hyperdiploidy	Aneuploidy	Aberrant gene dosage	~25% of BCP-ALL	151
TCF3-PBX1	Translocation	Chimeric transcription factor	~5-10% of BCP-ALL, frequency: Hispanics > Africans > Europeans	152,153
BCR-ABL1	Translocation	Chimeric transcription factor	~3%	154
Figure 1.

INTERVENTION FOR LEUKEMIA PREVENTION
contribute to innate-like immune defenses have only recently gained attention. Challenging a long-standing dogma, it has become clear that cellular responses of innate immune cells are modified based on whether a previous encounter with infection or immune stressors had occurred. In the following sections, we review evidence for the contribution of proper and timely training of immune cells in BCP-ALL. Recent data collected from epidemiological, experimental, and clinical studies in mice and humans may pave the way for early intervention, hopefully even before clinically full-blown BCP-ALL develops.

Innate host immune responses influence penetrance of BCP-ALL

Epidemiological data demonstrating that infections have an inverse and protective effect early in life (<1 year of age) may initially appear to contradict what is known from space-time cluster data and preclinical mouse models. However, exposure to infectious agents and immune challenges by proxy in infancy reinforce the idea of an early infection-induced protective effect against ALL. Relevant factors include birth order,33 mode of delivery,36–39 breastfeeding,40 early day-care attendance,33,34,41–46 birth order,33,41–46 early common infection, and animal contact (reviewed in Ajrouche et al).33 Further support for this hypothesis stems from a recent large-scale pooled and meta-analysis of 7847 leukemia cases (immunophenotype: 76% B-lineage, 10% T-ALL, rest unspecified/unknown) and 11 667 controls by the Childhood Leukemia International Consortium.47 The demonstration that regular contact with livestock, poultry, and pets in infancy (<1 year of age) reduced the risk of ALL development significantly.47 The reduced risk associated with contact with livestock was remarkably clear (odds ratio = 0.65; 95% confidence interval, 0.50–0.85).47 The influence of vaccines activating the innate and adaptive immune system, on the incidence of childhood ALL has also been explored. A meta-analysis of 12 studies48 observed that early vaccination (<3 months of age) with the Bacillus Calmette-Guérin (BCG) vaccine resulted in statistically robust protection from ALL.48 These associations are supported by numerous studies reporting on BCG vaccination of newborns and leukemia incidence in Austria,49 Chicago,50 and Quebec.51 In the latter 2 studies, the authors refer to mortality related to leukemia; thus, it remains debatable whether BCG vaccination modulated the course of leukemia or the mortality-associated infectious complications associated with the treatment. Before German reunification, BCG vaccination was compulsory in East but not in West Germany. This difference in vaccination protocol correlates with a lower rate of childhood leukemia in East Germany before reunification, which increased to West German levels 8 years after reunification.53,54

The protective role of early immune training in BCP-ALL development was explored in 2 transgenic murine BCP-ALL models: the Eμ-ret and the TCF3-PBX1 model.55,56 Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that detect potential harmful pathogens and activate downstream signaling pathways producing inflammatory cytokines (including type I interferon [IFN] and other mediators) that lead to the induction of innate immune responses. After ex vivo stimulation of TLR7, TLR8, or TLR9 leukemia-initiating precursor B cells derived from spleens of 4-week-old Eμ-ret mice showed reduced cell recovery, but increased cell expansion following TLR3 stimulation.29 Similar observations were made in the transgenic TCF3-PBX1 model.29,55 Treatment with IFN-α- or IFN-γ-neutralizing antibodies reversed these effects, implying that proliferation or regression of leukemia initiating cells is interferon-dependent.29,25 IFN-γ’s inhibitory activity on BCP-ALL was confirmed in IFN-γ−/− mice.29 Importantly, TLR9 stimulation induced long-term control of preleukemia and established leukemia in the same Eμ-ret model. Innate immune cells (namely natural killer [NK] cells and macrophages) were critical in mediating these effects.56 Collectively, these effects of trained immunity on host immune response and the hematopoietic stem cell compartment

Effects of trained immunity on host immune response and the hematopoietic stem cell compartment

Numerous studies laid the groundwork for establishing a new immunological principle, referred to as “innate immune memory” or “trained immunity,” to explain sustained memory-like properties of innate immune cells. In brief, macrophages, monocytes, and NK cells can undergo metabolic and epigenetic rewiring following exposure to infection, vaccination, or other immune stimuli, thereby modifying their expression profile and cell physiology. This plasticity provides innate immune cells with a memory, which subsequently modulates their response to a second, possibly heterologous stressor, such as infection exposure later in life.57 The induction of this long-lasting immunologic memory that is initiated at the level of bone marrow progenitors of the innate immune cells and is mediated by persistent epigenetic modifications in hematopoietic stem cells (HSCs) and myeloid progenitors depends on the transcription factor CCAAT/ enhancer-binding protein β (C/EBPβ).58 Variations in individual responses to trained-immunity inducers have been explained by different DNA methylation patterns.59 Thus, when cells of the hematopoietic niche are trained with β-Glucan and BCG, they show accumulation of methylated and acetylated histone complexes, specifically H3K4me3 and H3K27ac. Kaufmann et al demonstrated an open accessible chromatin structure after BCG exposure in HSCs.60 Remarkably, these epigenetic marks were partially preserved when HSC differentiated along myeloid and lymphoid lineages. Further mechanistic studies may reveal how these marks are maintained during hematopoietic differentiation and remain stable through DNA replication and cell cycle. Thus, we advocate for studies addressing the link between epigenetic rewiring of innate immune cells and presumed changes in their

![Figure 1. Contribution of trained immune responses to BCP-ALL development.](http://ashpublications.org/blood/article-pdf/138/16/1412/1828374/bloodbld2020009895.pdf)

Children genetically predisposed to BCP-ALL harbor clonally expanded preleukemic cells at birth. A hematopoietic stressor, such as infection, has the potential to trigger ALL at a later time point (2-6 years). The genetically determined immune responses, cytokine release, and basal cytokine levels, especially of interferons, may influence the outgrowth of the leukemic clone. However, the role of earlier-trained innate cells in the control of the preleukemic clone is largely unappreciated thus far. Epidemiological and experimental data suggest that innate immunity can be trained by BCG vaccination or β-glucan application, which substantially reduces the risk of developing BCP-ALL.
methylation and acetylation status in pro- and anti-inflammatory cytokine loci, as well as its connection to clonal outgrowth of pre-leukemic clones.

To add complexity to the model, the individual composition of host microbiota, collectively referred to as the microbiome, also profoundly affects trained immunity responses. The microbiome functionally rewires bone marrow progenitors and adds to interindividual variation in cytokine responses.57,61,62 Transient infection and immune stimuli not only train innate immune cells but also functionally reshape bacterial species.

Stacy et al demonstrated that oral infection of wild-type mice with *Klebsiella pneumoniae* leads to long-term remodelling of intestinal microbiota and enhanced resistance to subsequent infection. They deciphered the functional metabolic relationships in these new defense processes.63 The infected host deploy more taurine, a bile-acid derived metabolite, as an essential nutrient and taurine-trained microbiota enhance colonization resistance.63

β-Glucan64 and live vaccines such as BCG65 are the best-studied inductors of trained immunity. β-Glucan, a component of cell walls in yeast, fungi, and seaweed, increases secretion of innate immune mediators such as IL-1β and granulocyte-macrophage colony-stimulating factor. Besides its ability to regulate infection,60,64 β-Glucan is approved as an immunoadjuvant therapeutic drug for cancer in Japan, Australia, South Korea, and Taiwan. Upon β-glucan-induced trained immunity, granulocyte-monocyte progenitors give rise to neutrophils with an anti-tumor phenotype and suppress tumor growth via production of reactive oxygen species. This phenomenon was accompanied by complete rewiring of granulopoiesis via transcriptomic and epigenetic changes.66 The anti-tumor activity crucially depended on IFN-I signaling because pharmacologic or genetic blockade of IFN-α/β receptor abolished the anti-tumor activity of trained immunity. The trained immunity effect was independent of adaptive immune cells, was long lasting and remained stable when trained neutrophils were systemically transferred into tumor-bearing mice.66

Table 2. Selected epidemiological studies

Region	Associated agent	Cases	Time	References
Rural areas, UK	ND	NA	1946-1965	3,155
Niles, USA	Streptococcus	8	1957-1960	17
Fallon, USA	Adenovirus	13	1999-2004	18
Milan, Italy	Influenza A (H1N1) virus	7	4 wk, 2009/2010	19
UK	Influenza virus	NA	1974-2000	156
Switzerland	ND	NA	1985-2014	157

Proxies of exposure to infections associated with BCP-ALL

Proxy	Impact	References
Day care attendance	Increasing levels of social activity during the first year of life were associated with reduced risk.	42
Birth order	Being born later was associated with reduced risk.	158
Medication prescribed for infections	Medication prescribed for infections throughout childhood resulted in decreased risk.	159
Contact with livestock	Regular contact with livestock or pets was associated with lower risk.	47

Immunological modifiers

Modifier	Impact	References
Mode of delivery	Increased risk was associated with cesarean section.	36–38
Breastfeeding	Breastfeeding for 6 mo or longer was associated with lower risk.	40,88,89
Birth weight	Higher birth weight was associated with increased risk.	160,161

mo, months; NA, not applicable; ND, not determined; wk, weeks.
Table 3. Preclinical murine BCP-ALL infection models

Primary oncogenic lesion	Treatment	Outcome	Comment	References
Transgenic, retroviral LTR-driven ETV6-RUNX1 expression	No treatment	Decreased B-cell differentiation of early B-cell progenitors (Cd19⁺ to pro-B) to pre-B cells	First model of ETV6-RUNX1 preleukemia	162
Transgenic, β-globin promoter-driven ETV6-RUNX1 expression, lymphoid lineage specificity via IGH chain enhancer	No treatment	Expansion of early B-cell progenitors (Cd34⁺Cd38⁺Cd19⁺)	First lymphoid lineage-specific model of ETV6-RUNX1 preleukemia	26
Heterozygous knock-out, Pax5^{+/−}	Exposure to infectious environment	BCP-ALL, ~22% of mice	First in vivo model recapitulating human Pax5^{+/−} BCP-ALL	31
Transgenic, retroviral LTR-driven ETV6-RUNX1 expression	NOD-SCID transplanted with pretreated Aicda^{+/−}Rag1^{+/−}ETV6-RUNX1 cells (IL-7 withdrawal, LPS treatment of AID activation)	100% BCP-ALL in ex vivo LPS-treated Aicda^{+/−}Rag1^{+/−} background	First murine model showing the impact of bacterial infection on ETV6-RUNX1⁺ leukemia development	24
Transgenic, E2A-promoter-driven Ret expression	Treatment of IFNγ^{+/−} Euret mice with TLR ligands	Delay of BCP-ALL	First model of leukemia prevention through targeting IFN pathways	29
Transgenic, conditional E2A-promoter-driven E2A-PBX1 expression induced by Cd19, Mb1-, or Mx1-driven Cre expression	No treatment	BCP-ALL: 7% Cd19-Cre line, 53% Mb1-Cre line, 59% Mx1-Cre line	First in vivo model recapitulating human E2A-PBX1-BCP-ALL	163
Transgenic, conditional E2A-promoter-driven E2A-PBX1 expression induced by Cd19, Mb1-, or Mx1-driven Cre expression; Pax5^{+/−}	No treatment	Heterozygous deletion of Pax5 substantially increased penetrance and shortened BCP-ALL latency	Confirmed a tumor-suppressive role for Pax5 in the TgE2A-PBX1 background	163
Transgenic, Sca1-promoter-driven ETV6-RUNX1 expression	Exposure to infectious environment	BCP-ALL, ~10% of mice	First in vivo model recapitulating human ETV6-RUNX1⁺ BCP-ALL	30
Heterozygous knock-out, Pax5^{+/−}Aid^{−/−}	Exposure to infectious environment	BCP-ALL, ~30% of mice	First model showing that Aid does not affect latency or incidence of infection-mediated Pax5^{+/−} BCP-ALL development	32
Hetero- and homozygous knock-out, Pax5^{+/−}Aid^{−/−}	Exposure to infectious environment	BCP-ALL, ~30% of mice	First model showing that the infection-driven BCP-ALL development in Pax5^{+/−} mice is not dependent on T cells	81
Heterozygous knockout of Pax5^{+/−} in heterozygous v^{−/−} mice	Exposure to infectious environment	BCP-ALL, ~15% of mice	First model showing that the inhibition-driven BCP-ALL development in Pax5^{+/−} mice is not dependent on T cells	81
Heterozygous knockout Pax5^{+/−} in homozygous v^{−/−} mice	Exposure to infectious environment	BCP-ALL, ~15% of mice	First model showing that the infection-driven BCP-ALL development in Pax5^{+/−} mice is not dependent on T cells	81

LPS, lipopolysaccharide.

Short-term, acute IFN-α stimulation of dormant HSCs leads to self-renewal and an activated state, whereas chronic IFN-α treatment blocks self-renewal and promotes progression to the progenitor state in vitro and in vivo. Thus, exposure to infection and the accompanying host IFN response directs proliferation and differentiation of HSCs/PCs. However, IFN-mediated effects on preleukemic or BCP-ALL cells likely elicit different responses. In a pluripotent hematopoietic stem/progenitor cell line (EML1) stably expressing ETV6-RUNX1, IFN-α/β production was suppressed following treatment with IL-7, thereby blocking B-cell differentiation at an early stage. The IFN-α/β pathway and IRF3 expression were suppressed in ETV6-RUNX1-expressing cells, but the...
Cytokine profiles are altered at birth in children who later develop BCP-ALL

Two studies investigated cytokine levels at birth in children who subsequently developed BCP-ALL. Wemels and colleagues measured 11 cytokines at birth in 116 childhood ALL cases and compared them with 116 healthy controls. Lower IL-10 levels were observed at birth in 116 childhood ALL cases and compared with 116 healthy controls. Lower IL-10 levels were observed in survivors of ALL up to 11.9 years posttherapy.85 Overall, 8 of 9 detectable inflammatory markers in this study were abnormal in children who later developed BCP-ALL.

These studies suggest that children who develop BCP-ALL are born with an abnormal immune/cytokine response. Neither study assessed IFN levels, most likely because of technical limitations related to measuring these cytokines in dried neonatal blood spots. However, genome-wide studies have identified polymorphic IFN alleles associated with late onset of BCP-ALL in IFN-γ high producers and early onset in IFN-γ low producers, implying that in-born genetic polymorphisms determine the cytokine host response and affect BCP-ALL onset.22 This finding is further substantiated by the experimental observation that leukemia-initiating cell expansion was directly inhibited by IFN-γ but this phenomenon is restricted to the preleukemic phase only.28 The idea of inherited rare or common variants that affect the host response to infection exposure has been highlighted in recent years. The pattern of cytokine response related to specific pathogens in children is, to a large extent, inherited.73,74 This was shown in children both from healthy and diseased cohorts.75,76 Thus, in the future, cytogenomic studies deciphering host response to pathogens in specific leukemia subgroups will shed light on predisposing environmental conditions for the onset of leukemia. This approach will be an important tool for identifying children at risk early in life.

Overall, the complex interplay between three factors should be considered for the development of BCP-ALL: (1) inherited or acquired genetic risk factors (Table 1 and see Klco and Mul ligan);71 (2) exposure to infection; and (3) immunological immaturity with abnormal cytokine release of untrained cells (Figure 1). It seems plausible that the dysregulated cytokine profile is host-mediated, but not caused by the preleukemic cells themselves, since their frequency is very low.78,79

Toward intervention for prevention of BCP-ALL

Current knowledge points to several theory-guided, empirically supported avenues of BCP-ALL intervention and precautionary measures (Figure 2).
However, the connection between several NK cell subsets, the expression of particular HLA-encoded ligands (C2) for inhibitory NK-cell receptors (KIR2DL) and increased susceptibility to BCP-ALL (but not T-ALL) has been demonstrated.

Contact with livestock early in life not only fosters microbiome diversity, but also trains the immune system and significantly reduces the risk of BCP-ALL. In developed Western societies, the incidence of BCP-ALL is increased, as is that of asthma. These factors include:

- Folic acid uptake
- Avoidance of infection
- Healthy diet
- Social contacts
- Breast feeding
- Livestock contacts
- Use of probiotics
- Avoidance of overuse of antibiotics
- Reduction in harmful chemicals exposure
- Healthy diet

These measures can help to reduce the risk of BCP-ALL development in genetically predisposed children. Before birth, maternal uptake of folic acid and a healthy diet (brown) have been associated with a reduced risk of BCP-ALL development. Maternal infection in pregnancy is associated with a significantly increased BCP-ALL risk related to viral transmission. After birth, trained immunity (green) and microbiome diversity (yellow) are important factors supported by epidemiological (filled bars) or experimental (striped bars) evidence. Immunity can be trained through vaccinations (TIBVs) before the age of 3 months, by breastfeeding and by social and livestock contacts (including pets) in the first year of life. Microbiome diversity is supported by a natural delivery and gradually builds up after birth. Again, breastfeeding and social and livestock contacts in the first year of life also have a beneficial impact on gut microbial diversity. Although only demonstrated in experimental models, the avoidance of overuse of antibiotics, the application of probiotics and a diet consisting of microbiome-supportive fibers are interventions that could also reduce the risk of leukemia development. Exposure of parents and children to various harmful chemicals can influence the microbiome along with carcinogenic effects. Further evidence needs to be generated through large population-based studies to identify preventive measures and to substantiate initial data on vaginal seeding and fecal transplants.
2 disease states are epidemiologically linked and may represent 2 sides of the same coin. Both diseases are related to low exposure to immunological challenges in very early life. Of note, a thoughtfully designed birth cohort study recently demonstrated that the diversification of the gut microbiome of children growing up on a farm significantly contributed to asthma prevention. The protective effect was mainly mediated through specific microbial metabolites, such as fecal butyrate. Such studies can be used as a model toward prevention of BCP-ALL in children.

Training immunity

Immune responses in children are trained in early life through measures such as breastfeeding and social and livestock contact. A new concept of targeted intervention has recently emerged in form of trained-immunity-based vaccines (TIBV). Application of TIBVs seeks to increase host resistance against a broad spectrum of pathogens and to cross-protect against heterologous pathogens. Recently, TIBVs have been applied for prevention of autoimmune disease (including type 1 diabetes, multiple sclerosis), bladder cancer, and melanoma. TIBVs composed of PRR ligands are characterized by 2 distinguishing features that confer broad protection following administration. First, TIBVs aim to stimulate nonspecific effector responses of innate immune cells. Second, TIBVs stimulate the adaptive immune system through targeting activated dendritic cells, to increase antigen-specific and bystander responses. A TIBV example is the sublingual vaccine MV130 (composed of inactivated bacteria with a ratio of 90% gram-positive to 10% gram-negative strains), which is designed to prevent respiratory and urinary tract infections. In patients with common variable immunodeficiency, administration of MV130 resulted in a lower rate of respiratory infections, decreased antibiotic use, and fewer unscheduled doctor visits. MV130 also reduced the need for tonsillectomy in adults with recurrent tonsillitis. Well-studied TIBVs based on conventional vaccines are the BCG, Vaccinia, and influenza virus vaccines, which all can induce innate immune cell training.
the placebo group.100 BCG trained immunity effects are also beneficial in patients with non-muscle invasive bladder cancer as an immune-therapeutic approach in the urothelium, and have been used as a standard of care treatment of more than 40 years.101,102 In terms of efficacy, using a specific BCG strain is less important than the number of intravesical BCG installations. This principle is demonstrated by the NIMBUS randomized trial, in which patients who received a reduced number of BCG installations (n = 9 in the first year) showed far more cancer recurrences than patients treated with 15 installations.103 Furthermore, BCG vaccination of newborns reduced the risk of melanoma104 and leukemia, as reviewed previously. The protective link between BCG vaccination and childhood leukemia has been addressed by more than 12 studies since 1975.48 Although the protective beneficial effect of BCG as an immune modulator in early life is promising, little is known about potential detrimental effects. The protective mechanism of the trained immunity effect only lasts up to several months,105 although the capacity to enhance T-cell responses can be extended for up to 1 year.106 This is in sharp contrast to the sometimes life-long memory of adaptive immune cells gained through active infection. Thus, TIBVs are likely to have a transitory rather than permanent effects, which narrows their therapeutic window and might require repetitive application. Given the sharp age peak of childhood BCP-ALL, as identified more than 100 years ago, we nevertheless envision that cross-protective effects of vaccines may have potential to be used for leukemia prevention. If well-controlled large-scale clinical trials prove the benefits of TIBVs or microbiome nurturing, such interventions may become a recommendation in pediatric care.

Summary
The reviewed data suggest the integration of trained immunity, with its key component of a temporary, unspecific immunological memory mediated by innate immune cells that lack the capacity to elicit antigen-specific responses, into the existing models of BCP-ALL development in children. The trained immunity concept, developed through epidemiological and genetic studies over the past several decades, adds a novel piece to the puzzle and provides a target for interventions. Immunity can be trained through the application of appropriate vaccinations early in life. Thus, adoption of the vaccination recommendation or immunity modulation via TIBVs, microbiome modulation, and avoidance of overuse of antibiotics will be promising avenues toward prevention of BCP-ALL in children.

Acknowledgments
The authors apologize for omitting some of the excellent published work related to the topic because of the limited number of references allowed. The authors thank Triantafyllos Chavakis, Martin Bornhäuser, Shai Izraeli, Aleksandra Pandrya, Stewart Boden, Daniel Hein, and Franziska Auer for useful suggestions and critical reading of the manuscript.

J.H. was supported by ERCStg 852222 "PreventALL," ERAPerMed “GEPARD,” the German Cancer Aid (Translational Oncology Program 70112951), and the German Jose Carreras Foundation (DJCLS 07/19). A.B. was supported by Lowenstern e.V., the Katharina-Hardt-Stiftung, and the German Carreras Foundation (DJCLS 07/19). A.B. and U.F. (FKZ: 3618532275 and 3618532274) were supported by the German Federal Office for Radiation Protection (BSI) and the Foundation Unointercenni. U.F. was supported by the German Carreras Foundation (DJCLS 21R/2019).

Authorship
Contribution: J.H., U.F., and A.B. jointly contributed to conceptualization, screening and analyzed literature, and wrote the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

ORCID profiles: J.H., 0000-0002-4058-3058; U.F., 0000-0002-2455-2489; A.B., 0000-0002-6121-4737.

Correspondence: Arndt Borkhardt, Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Moorenstrasse, Düsseldorf 40225, Germany; e-mail: arndt.borkhardt@med.uni-duesseldorf.de.

Footnotes
Submitted 25 January 2021; accepted 21 April 2021; prepublished online on Blood First Edition 19 May 2021. DOI 10.1182/blood.2020009895.

REFERENCES
1. Fullbright JM, Raman S, McClellan WS, August KJ. Late effects of childhood leukemia therapy. Curr Hematol Malig Rep. 2011;6(3):195-205.
2. Williams HE, Howell CR, Chemaitilly W, et al. Diabetes mellitus among adult survivors of childhood acute lymphoblastic leukemia: a report from the St. Jude Lifetime Cohort Study. Cancer. 2020;126(4):870-878.
3. Kinlen L. Evidence for an infectious cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet. 1988;2(8624):1323-1327.
4. Greaves MF. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia. 1988;2(2):120-125.
5. Richardson RB. Promotional etiology for common childhood acute lymphoblastic leukemia: the infective lymphoid recovery hypothesis. Leuk Res. 2011;35(11):1425-1431.
6. Smith MA, Simon R, Strickler HD, McQuillan G, Ries LA, Linet MS. Evidence that childhood acute lymphoblastic leukemia is associated with an infectious agent linked to hygiene conditions. Cancer Causes Control. 1998;9(3):285-298.
7. He JR, Ramakrishnan R, Hirst JE, et al. Maternal infection in pregnancy and childhood leukemia: a systematic review and meta-analysis. J Pediatr. 2020;217:P98-P109.
8. Schmiegelow K, Vestergaard T, Nielsen SM, Hjalgrim H. Etiology of common childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet. 1988;2(8624):1323-1327.
9. Greaves MF. A causal mechanism for childhood acute lymphoblastic leukemia [published correction appears in Nat Rev Cancer. 2018;18(8):526]. Nat Rev Cancer. 2018;18(8):471-484.
10. Fischer U, Yang JJ, Ikawa T, et al. Cell fate decisions: the role of transcription factors in early B-cell development and leukemia. Blood Cancer Discov. 2020;1(3):224-233.
11. Roberts KG, Brady SW, Gu Z, et al. The genomic landscape of childhood acute lymphoblastic leukemia. Blood. 2019;134(suppl 1):649.
12. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541-1552.
13. Schäfer D, Olsen M, Lähnemann D, et al. Five percent of healthy newborns have an ETv6-RUNX1 fusion as revealed by DNA-based GIPFEL screening. Blood. 2018;131(7):821-826.
14. Burmeister T, Gökgübet N, Schwartz S, et al. Clinical features and prognostic implications of TCF3-PBX1 and ETv6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica. 2010;95(2):241-246.
15. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood. 1999;94(3):1057-1062.

16. Ward G. The infective theory of acute leukemia. Br J Childhood Dis. 1917;14:10-20.

17. Heath CW Jr, Hasterlik RJ. Leukemia among children in a suburban community. Am J Med. 1963;34:796-812.

18. Francis SS, Selvin S, Yang W, Buffer PA, Wiemels JL. Unusual space-time patterning of the Fallon, Nevada leukemia cluster: evidence of an infectious etiology. Chem Biol Interact. 2012;196(3):102-109.

19. Cazzaniga G, Bisanti L, Randi G, et al. Possible role of pandemic AH1N1 swine flu virus in a childhood leukemia cluster. Leukemia. 2017;31(8):1819-1821.

20. McNally RJ, Eden TO. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol. 2004;127(3):243-263.

21. Li CK, Zee B, Lee J, Chik KW, Ha SY, Lee V. Impact of SARS on development of childhood acute lymphoblastic leukaemia. Leukemia. 2007;21(7):1353-1356.

22. Jarvis KB, Lind A, LeBlanc M, Ruud E. Observed diagnosis in the diagnosis of acute lymphoblastic leukaemia in children during the COVID-19 pandemic. Acta Paediatr. 2021;110(2):596-597.

23. Schmiegelow K. Have COVID-19 affected ALL epidemiology? Acta Paediatr. 2021;110(2):387-388.

24. Swaminathan S, Klemm L, Park E, et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol. 2015;16(7):766-774.

25. Papaemmanuil E, Rapado I, Li Y, et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukaemia. Nat Genet. 2014;46(2):116-125.

26. Ford AM, Palmi C, Bueno C, et al. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest. 2009;119(4):826-836.

27. Beneforti L, Dander E, Bresolin S, et al. Proinflammatory cytokines favor the emergence of ETV6-RUNX1-positive pre-leukemic cells in a model of mesenchymal niche. Br J Haematol. 2020;190(2):262-273.

28. Fidanza M, Seif AE, Jo S, et al. IFN-γ directly inhibits murine B-cell precursor leukemia-initiating cell proliferation by toll-like receptor ligand-induced immune responses. Leukemia. 2016;30(10):2116-2119.

29. Fidanza M, Seif AE, DelMiccio A, et al. Inhibition of precursor B-cell malignancy progression by toll-like receptor ligand-induced immune responses. Leukemia. 2017;31(9):1419-1424.

30. Rodríguez-Hemández G, Hauer J, Martin-Lorenzo A, et al. Infection exposure promotes ETV6-RUNX1 precursor B-cell leukemia via impaired H3K4 demethylases. Cancer Res. 2017;77(16):4365-4377.

31. Martín-Lorenzo A, Hauer J, Vicente-Dueñas C, et al. Infection exposure is a causal factor in B-cell precursor acute lymphoblastic leukemia as a result of Pax5-inherited susceptibility. Cancer Discov. 2015;5(12):1328-1343.

32. Rodriguez-Hernández G, Opitz FV, Delgado P, et al. Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID. Nat Commun. 2019;10(1):5563.

33. Ajrouche R, Rudant J, Orsi L, et al. Childhood acute lymphoblastic leukemia and indicators of early immune stimulation: the Estelle study (SFCE). Br J Cancer. 2015;112(6):1017-1026.

34. Urayama KY, Buffer PA, Gallagher ER, Ayooob JM, Ma X. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol. 2010;39(3):718-732.

35. Dockerty JD, Draper G, Vincent T, Rowan SD, Bunch KJ. Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int J Epidemiol. 2001;30(6):1428-1437.

36. Greenbaum S, Sheiner E, Wainstock T, et al. Cesarane delivery and childhood malignancies: a single-center, population-based cohort study. J Pediatr. 2018;197:2P92-P296.

37. Wang R, Wiemels JL, Metayer C, et al. Cesarane section and risk of childhood acute lymphoblastic leukemia in a population-based, record-linkage study in California. Am J Epidemiol. 2017;185(2):96-105.

38. Marcotte EL, Thomopoulos TP, Infante-Rivard C, et al. Caesarean delivery and risk of childhood leukaemia: a pooled analysis from the Childhood Leukemia International Consortium (CLIC). Lancet Haematol. 2016;3(4):e176-e185.

39. Sevelsted A, Stokholm J, Bannelykke K, Bisgaard H. Cesarane section and chronic immune disorders. Pediatrics. 2015;135(1):e92-e98.

40. Amitay EL, Keinan-Boker L. Breastfeeding is associated with an increased risk of childhood B-cell acute lymphoblastic leukemia. JAMA. 2017;318(9):549-562.

41. Goodman RA, Osterholm MT, Granoff DM, Pickering LK. Infectious diseases and child leukemia: a systematic review and meta-analysis. JAMA. 2009;114;2(8):1596-1607.

42. Hauer J, Fischer U, Auer F, Borkhardt A. Regional BCG vaccination policy in former East- and West Germany may impact on both severity of SARS-CoV-2 and incidence of childhood leukemia. Leukemia. 2020;34(8):2217-2219.

43. Duque-Afonso J, Feng J, Scherer F, et al. Comparative genomics reveals multistep pathogenesis of E2A-PBX1 acute lymphoblastic leukemia. J Clin Invest. 2015;125(9):3667-3680.

44. Seif AE, Barnett DM, Milone M, Brown VI, Grupp SA, Reid GS. Long-term protection from syngeneic acute lymphoblastic leukemia by CpG ODN-mediated stimulation of innate and adaptive immune responses. Blood. 2009;114;2(8):2459-2466.

45. Bettaieb S, Jourd'heuil D, Roussel M, et al. Cell-based therapy for human acute lymphoblastic leukemia: a pooled meta-analysis of clinical trials. Leukemia. 2017;31(8):1819-1821.
polymorphic interferon-gamma alleles are associated with age at diagnosis and clinical risk groups. Leukemia. 2005;19(1):44-48.

73. Li Y, Oosting M, Smeekens SP, et al. A functional genomics approach to understand variation in cytokine production in humans. Cell. 2016;167(4):1099-1110.e14.

74. Jansen AFM, Schoffelen T, Bleeker-Rovers CP, et al. Genetic variations in innate immune genes affect response to Coxella burnetii and are associated with susceptibility to chronic Q fever. Clin Microbiol Infect. 2019;25(S):P631.E11-631.E15.

75. Li Y, Oosting M, Deelen P, et al. Individual variability and genetic influences on cytokine responses to bacteria and fungi [published correction appears in Nat Med. 2016;22(11):1192]. Nat Med. 2016;22(8):952-960.

76. Westendorp RG, Langermans JA, Huiswing TW, et al. Genetic influence on cytokine production and fatal meningococcal disease [published correction appears in Lancet. 349(9052):656]. Lancet. 1997;349(9046):170-173.

77. Klco JM, Mullighan CG. Advances in germline predisposition to acute leukemias and myeloid neoplasms. Nat Rev Cancer. 2021;21(2):122-137.

78. Boiers C, Richardson SE, Laycock E, et al. A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETv6-RUNX1. Dev Cell. 2018;44(3):362-377.e7.

79. Hein D, Borkhardt A, Fischer U. Insights into the prenatal origin of childhood acute lymphoblastic leukemia. Cancer Metastasis Rev. 2020;39(1):161-171.

80. Meisel M, Hinterleitner R, Pacis A, et al. Microbial signals drive pre-leukemic myeloproliferation in a Tet2-deficient host. Nature. 2018;557(7706):580-584.

81. Vicente-Dueñas C, Janssen S, Oldenburg M, et al. In vivo immune training of granulopoiesis promotes anti-tumor activity. Cell. 2020;183(3):771-785.e12.

82. de Laurentius A, Hiscott J, Alcalay M. The IL-10 family cytokines: from basic science to clinical translation. Immunity. 2019;50(4):871-891.

83. Chang JS, Zhou M, Buffler PA, Chakalagam AP, Metayer C, Wiemels JL. Profound deficit of IL10 at birth in children who develop childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1726-1740.

84. Ouyang W, O’Garra A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity. 2019;50(4):871-891.

85. Thomas R, Wong WSI, Saadon R, et al. Gut microbial composition difference between pediatric ALL survivors and siblings. Pediatr Hematol Oncol. 2020;37(6):475-488.

86. Korpela K, Helve O, Kolho KL, et al. Maternal fecal microbiota transplantation in Cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell. 2020;183(2):324-334.e5.

87. Huyhn J, Palansanthiran P, McMullan B. Potential transmission of herpes simplex virus via vaginal seeding. Pediatr Infect Dis J. 2018;37(11):e278.

88. Martin RM, Gunnell D, Owen CG, Smith GD. Breast-feeding and childhood cancer: a systematic review with metaanalysis. Int J Cancer. 2005;117(6):521-535.

89. Kwan ML, Buffler PA, Abrams B, Kiley VA. Breastfeeding and the risk of childhood leukemia: a meta-analysis. Public Health Rep. 2004;119(6):521-535.

90. Hawkes JS, Neumann MA, Gibson RA. The effect of breast feeding on lymphocyte subpopulations in healthy term infants at 6 months of age. Pediatr Res. 1999;45(5 Pt 1):649-651.

91. Babor F, Manser AR, Fischer JC, et al. KIR ligand C2 is associated with increased susceptibility to childhood ALL and confers an elevated risk for late relapse. Blood. 2014;124(14):2248-2251.

92. Dahl S, Schmidt LS, Vestergaard T, Schüz J, Schmiegelow K. Allergy and the risk of childhood leukemia: a meta-analysis. Leukemia. 2009;23(12):2300-2304.

93. Depner M, Taft DH, Kirjavainen PV, et al; PASTURE study group. Maturation of the gut microbiome in infants born after cesarean section. Cell. 2018;557(7706):580-584.

94. Covian C, Fernandez-Fierro A, Retamal-Diaz A, et al. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front Immunol. 2019;10:2806.

95. Aleksandru D, Valor L, Sánchez-Ramón S, et al. Sublingual therapeutic immunization with a polyvalent bacterial preparation in patients with recurrent respiratory infections: immunomodulatory effect on antigen-specific memory CD4+ T cells and impact on clinical outcome. Cell. 2020;183(2):615-627.
with recurrent tonsillitis. Hum Vacc Immunother. 2019;15(9):2150-2153.

99. Jensen KJ, Benn CS, van Crevel R. Unravelling the nature of non-specific effects of vaccines – a challenge for innate immunologists. Semin Immunol. 2016;28(4):377-383.

100. Arts RJW, Moolag SJCFM, Novakovic B, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89-100.e5.

101. Kawai K, Miyazaki J, Joraku A, Nishiyama H, et al. BCG vaccination protects against recurrent tonsillitis. Immunother. 2012;28(5):690-698.

102. Buffen K, Oosting M, Quintin J, et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog. 2014;10(10):e1004485.

103. Grimm MO, van der Heijden AG, Colombel JF, et al. BCG vaccination protects against recurrent tonsillitis. Semin Immunol. 2016;101(11):1333-1342.

104. Poggi M, Canault M, Favier M, et al. Germline variants in BTV6 underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34+ progenitors. Haematologica. 2017;102(2):282-294.

105. Churchman ML, Qian M, Te Kronnie G, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukaemia. Cancer Cell. 2018;33(5):937-948.e8.

106. Kleinnijenhuis J, Quintin J, Preijers F, et al. BCG instillations: results of the European Study Group. Treatment of high-grade non-muscle-invasive bladder carcinoma by standard number and dose of BCG instillations: results of the European Association of Urology Research Foundation randomised phase III clinical trial “NIMBUS.” Eur Urol. 2020;78(5):690-698.

107. Pfahlberg A, Kalmel KF, Grange JM, et al. Inverse association between melanoma and previous vaccinations against tuberculosis and smallpox: results of the FEBSM study. J Invest Dermatol. 2002;119(3):570-575.

108. Noetzli L, Lo RW, Lee-Sherick AB, et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog. 2014;10(10):e1004485.

109. Zhang J, Walsh MF, Wu G, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia. Nat Genet. 2013;45(3):242-252.

110. Topka S, Vijay A, Walsh MF, et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukaemia and familial B acute lymphoblastic leukaemia. Blood. 2021;137(10):1424-1428.

111. Duployez N, Abou Chahla W, Lejeune S, et al. Detection of a new heterozygous germline ETV6 mutation in a case with hyperdiploid acute lymphoblastic leukaemia. Eur J Haematol. 2018;100(1):104-107.

112. Rampersaud E, Ziegler DS, Iacobucci I, et al. Germline deletion of ETV6 in familial acute lymphoblastic leukaemia. Blood Adv. 2019;3(7):1039-1046.

113. Melazini F, Palombo F, Baldini A, et al. Clinical and pathogenic features of ETV6-related thymoboyctopenia with predisposition to acute lymphoblastic leukaemia. Haematologica. 2016;101(11):1333-1342.

114. Poggi M, Canault M, Favier M, et al. Germline variants in ETV6 underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34+ progenitors. Haematologica. 2017;102(2):282-294.

115. Churchman ML, Qian M, Te Kronnie G, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukaemia. Cancer Cell. 2018;33(5):937-948.e8.

116. Kuehn HS, Boisson B, Cunningham-Rundles C, et al. Loss of B cells in patients with hyperdiploid mutations in IKAROS. N Engl J Med. 2016;374(1):1032-1043.

117. Boutboul D, Kuehn HS, Van de Wynegaert Z, et al. Dominant-negative IKZF1 mutations cause a T, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128(7):3071-3087.

118. Yoshida N, Sakaguchi H, Muramatsu H, et al. Germline IKAROS mutation associated with primary immunodeficiency that progressed to T-cell acute lymphoblastic leukaemia. Leukemia. 2017;31(5):1221-1223.

119. Hoshino A, Okada S, Yoshida K, et al. Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol. 2017;140(1):233-231.

120. Holmfeldt L, Wei L, Diaz-Flores E, et al. The genomic landscape of hypodiploid acute lymphoblastic leukaemia. Nat Genet. 2013;45(2):242-252.

121. Qian M, Cao X, Devidas M, et al. TP53 germline variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukaemia in children. J Clin Oncol. 2018;36(6):591-599.

122. Auer F, Rüschendorf F, Gambert M, et al. Inherited susceptibility to pre-B-ALL caused by germline transmission of PAX5 c.S47G>A. Leukemia. 2014;28(5):1136-1138.

123. Shah S, Schrader KA, Waanders E, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B-cell acute lymphoblastic leukaemia. Nat Genet. 2013;45(10):1226-1231.

124. Duployez N, Jamrog LA, Fregona V, et al. Germline PAX5 mutation predisposes to recurrent tonsillitis. Hum Vacc Immunother. 2019;15(9):2150-2153.

125. Yazdanparast S, Khatami SR, Galehdari H, Jaseb K. One missense mutation in exon 2 of the PAX5 gene in Iran. Genet Mol Res. 2015;14(4):17768-17775.

126. Perez-Garcia A, Ambesi-Impiombato A, Hadler M, et al. Genetic loss of SH2B3 in acute lymphoblastic leukaemia. Blood. 2013;122(14):2425-2432.

127. Waanders E, Scheijen B, Jongmans MC, et al. Germline activating TYK2 mutations in pediatric patients with two primary acute lymphoblastic leukaemia occurrences. Leukemia. 2017;31(4):821-828.

128. Rippinger T, Schlegelberger B. Acute lymphoblastic leukaemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet. 2016;59(3):133-142.

129. Oshrine B, Grana N, Moore C, et al. B-cell acute lymphoblastic leukaemia with high mutation burden presenting in a child with constitutional mismatch repair deficiency. Blood Adv. 2019;3(12):1795-1798.

130. Izraeli S. The acute lymphoblastic leukaemia of Down syndrome - genetics and pathogenesis. Eur J Med Genet. 2016;59(3):158-161.

131. Cavé H, Caye A, Strullu M, et al. Acute lymphoblastic leukaemia in the context of RASopathies. Eur J Med Genet. 2016;59(3):173-178.

132. Vijayakrishnan J, Studd J, Broderick P, et al. PRACTICAL Consortium. Genome-wide association study identifies susceptibility loci for B-cell childhood acute lymphoblastic leukaemia [published correction appears in Nat Commun. 2019;10(1):419]. Nat Commun. 2018;9(1):1340.

133. Vijayakrishnan J, Qian M, Studd JB, et al. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat Commun. 2019;10(1):5348.

134. Lee SHR, Qian M, Yang W, et al. Genome-wide association study of susceptibility loci for TCF3-PBX1 acute lymphoblastic leukaemia in children. J Natl Cancer Inst. 2021;113(7):933-937.

135. Ellinghaus E, Stanulla M, Richter G, et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukaemia. Leukemia. 2012;26(5):902-909.

136. Trevisio LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukaemia. Nat Genet. 2009;41(9):1001-1005.

137. Urayama KY, Takagi M, Kawaguchi T, et al. Regional evaluation of childhood acute lymphoblastic leukaemia genetic susceptibility loci among Japanese. Sci Rep. 2018;8(1):789.

138. Xu H, Yang W, Perez-Andreu V, et al. Novel susceptibility variants at 10p12 31-12 2 for
childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst. 2013;105(10):733-742.

139. Wiemels JL, Walsh KM, de Smith AJ, et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun. 2018;9(1):286.

140. Xu H, Zhang H, Yang W, et al. Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nat Commun. 2015;6:7553.

141. Vijayakrishnan J, Henrion M, Moorman AV, et al. The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A. Sci Rep. 2015;5:15065.

142. Walsh KM, de Smith AJ, Hansen HM, et al. A heritable missense polymorphism in CDKN2A confers strong risk of childhood acute lymphoblastic leukaemia and is preferentially selected during clonal evolution. Cancer Res. 2015;75(22):4884-4894.

143. Hungate EA, Vora SR, Gamazon ER, et al. A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Nat Commun. 2016;7:10635.

144. Vijayakrishnan J, Kumar R, Henrion MY, et al. A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukaemia at 10q26.13 and 12q23.1. Leukemia. 2017;31(3):573-579.

145. Perez-Andreu V, Roberts KG, Harvey RC, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukaemia and risk of relapse. Nat Genet. 2013;45(12):1494-1498.

146. Migliorini G, Fiege B, Hosking FJ, et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukaemia and phenotype. Blood. 2013;122(19):3298-3307.

147. Walsh KM, de Smith AJ, Chokalingam AP, et al. Novel childhood ALL susceptibility locus BM1-PIP4K2A is specifically associated with the hyperdiploid subtype. Blood. 2013;121(23):4808-4809.

148. Studd JB, Vijayakrishnan J, Yang M, Migliorini G, Paulsson K, Houlston RS. Genetic and regulatory mechanism of susceptibility to high-hyperdiploid acute lymphoblastic leukaemia at 10p21.2. Nat Commun. 2017;8:14616.

149. Qian M, Xu H, Perez-Andreu V, et al. Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukaemia in Hispanics. Blood. 2019;133(7):724-729.

150. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukaemia. Proc Natl Acad Sci USA. 1998;95(8):4584-4588.

151. Maia AT, van der Velden VH, Harrison CJ, et al. Prenatal origin of hyperdiploid acute lymphoblastic leukaemia in identical twins. Leukemia. 2003;17(11):2202-2206.

152. Wiemels JL, Leonard BC, Wang Y, et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukaemia. Proc Natl Acad Sci USA. 2002;99(23):15101-15106.

153. Hein D, Dreisk J, Metzler M, et al. The preleukemic TCF3-PBX1 gene fusion can be generated in utero and is present in ≤0.6% of healthy newborns. Blood. 2019;134(16):1355-1358.

154. Cazzaniga G, van Delft FW, Lo Nigro L, et al. Developmental origins and impact of BCR-ABL1 fusion in childhood acute lymphoblastic leukemia. Blood. 2011;118(20):5559-5564.

155. Kirnlen LJ, Clarke K, Hudson C. Evidence from population mixing in British New Towns 1946-85 of an infective basis for childhood leukaemia. Lancet. 1990;336(8715):577-582.

156. Kroll ME, Draper GJ, Stiller CA, Murphy MF. Childhood leukaemia incidence in Britain, 1974-2000: time trends and possible relation to influenza epidemics. J Natl Cancer Inst. 2006;98(6):417-420.

157. Kreis C, Lupatsch JE, Niggli F, et al. The 9p21.3 risk of childhood acute lymphoblastic leukaemia in children. Pediatr Hematol Oncol. 2017;8:14616.

158. Palteo O, Lemeshow S, Phillips GS, et al. The association between birth order and childhood leukaemia may be modified by paternal age and birth weight. Pooled results from the International Childhood Cancer Cohort Consortium (4IC). Int J Cancer. 2019;144(1):26-33.

159. Morimoto LM, Kwan ML, Deorasangip K, et al. History of early childhood infections and acute lymphoblastic leukaemia risk among children in a US integrated health-care system. Am J Epidemiol. 2020;189(10):1076-1085.

160. Robison LL, Codd M, Gunderson P, Neglia JP, Smithson WA, King FL. Birth weight as a risk factor for childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol. 1987;4(1):63-72.

161. Oksuzyan S, Crespi CM, Cockburn M, Mezey G, Kheifets L. Birth weight and other perinatal characteristics and childhood leukaemia in California. Cancer Epidemiol. 2012;36(6):e359-e365.

162. Tszuki S, Seto M, Greaves M, Enver T. Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA. 2004;101(22):8443-8448.

163. Duque-Afonso J, Lin CH, Han K, et al. E2A-PBX1 remodells oncogenic signaling networks in B-cell precursor acute lymphoid leukemia. Cancer Res. 2016;76(23):6937-6949.

164. Schütz J, Erdmann F. Environmental exposure and risk of childhood leukaemia: an overview. Arch Med Res. 2016;47(8):607-614.

165. Whitehead TP, Adhamsmonstra P, Wang Y, et al. Home remodeling and risk of childhood leukemia. Int J Cancer. 2017;144(1):140-144.e4.

166. Patel DM, Jones RR, Booth BJ, et al; International Childhood Cancer Cohort Consortium. Parental occupational exposure to pesticides, animals and organic dust and risk of childhood leukemia and central nervous system tumors: findings from the International Childhood Cancer Cohort Consortium (4IC). Int J Cancer. 2020;146(4):943-952.