The effect of induction chemotherapy in patients with locally advanced nonsmall cell lung cancer who received chemoradiotherapy

A systematic review and meta-analysis

Hui Luo, MD, PhD, Xinshuang Yu, MD, PhD, Ning Liang, MD, Jian Xie, MD, Guodong Deng, MD, Qi Liu, MD, Jingxin Zhang, MD, Jiandong Zhang, MD, PhD, Hong Ge, MD, PhD.

Abstract

Background: The efficacy and toxicity of induction chemotherapy followed by concurrent chemoradiotherapy (CCRT) in patients with locally advanced nonsmall cell lung cancer (NSCLC) is unclear, we performed a systematic review and meta-analysis of published papers to quantitatively evaluate the potential benefit of induction chemotherapy.

Methods: Eligible studies of induction chemotherapy and chemoradiotherapy were retrieved through extensive searches of the PubMed, Science Direct, Embase, and Cochrane library databases from 1994 to 2015. We excluded studies that using non-English. Our primary endpoint was overall survival (OS), secondary endpoint was toxicity.

Results: Two studies of induction chemotherapy followed by CCRT versus CCRT alone and 5 studies of induction chemotherapy followed by CCRT versus CCRT followed by consolidation chemotherapy published in the same period were selected and analyzed. Our results showed that there was a significant benefit of induction chemotherapy plus CCRT compared to CCRT alone on 5-year OS without 1, 2, 3, and 4 years OS. Our analysis also indicated that induction chemotherapy was as effective as consolidation chemotherapy for patients who received CCRT on overall response and OS. Treatment-related toxicity was similar between the 2 group; however, leucopenia was significantly decreased in patients treated by induction chemotherapy (odds ratio [OR] = 0.43; 95% confidence interval [CI], 0.30–0.62; P < 0.00001).

Conclusion: Five year OS could be improved when induction chemotherapy was added into CCRT for patients of NSCLC. Except for a low rate of leucopenia, induction chemotherapy was no different compared to consolidation chemotherapy in patients with NSCLC treated by CCRT.

Abbreviations: CCRT = concurrent chemoradiotherapy, CI = confidence interval, NSCLC = nonsmall cell lung cancer, OR = odds ratio, ORR = objective response rate, OS = overall survival, RTOG = radiation therapy oncology group.

Keywords: concurrent chemoradiotherapy, consolidation chemotherapy, induction chemotherapy, meta-analysis, nonsmall cell lung cancer

1. Introduction

Lung cancer remains the most fatal disease worldwide. For these newly diagnosed, about 85% being nonsmall cell lung cancer (NSCLC). Patients with NSCLC who present at early stages can achieve long-term survival benefit from single modality therapy of either surgery or stereotactic body radiotherapy. Clinical stage III disease occupied approximately 8% to 20% of
these patients and 60% of which eventually die from their disease.\(^2\) The treatment for patients of locally advanced NSCLC is challenging which including unresectable stage III NSCLC according to the 7th edition TNM-staging classification in most guidelines.\(^3,4\) Locally advanced NSCLC should be treated with multimodality approach, including surgery, chemotherapy, and radiotherapy.\(^5\) Several studies have proved concurrent chemoradiotherapy (CCRT) in superior to sequential chemoradiotherapy, including a meta-analysis based on individual patient data.\(^6–8\)

Despite many clinical trials, the use of induction therapy and CCRT for locally advanced NSCLC remains controversial. This topic is most easily understood by considering the management of stage IIIA (N2) disease and T3-4 N0-1 tumors separately. In addition, an experience with induction therapy for earlier stage NSCLC has begun to emerge. Induction therapy has potential benefits in comparison with postoperative adjuvant therapy, including the assessment of systemic therapy in vivo, improved delivery of drugs to the tumor, earlier treatment of micro-metastatic disease, an increased likelihood of patients receiving the planned regimen, and down staging of disease before local therapy. Some of these, such as better drug delivery, are well accepted, whereas others, such as improved overall survival (OS) or progression-free survival, remain unproven.

Given the widespread use of induction chemotherapy in the treatment of NSCLC and the potential benefits, we sought to summary all clinical studies and determine the survival outcomes of NSCLC patients receiving induction chemotherapy.

2. Material and methods

Ethical approval and patient written informed consent are not required due to that this is a systematic review and meta-analysis of previously published studies. This study was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.\(^9\)

2.1. Inclusion and exclusion criteria

We identified all publications that studied survival outcomes in NSCLC patients treated with induction chemotherapy and CCRT. Exclusion criteria included noninduction chemotherapy, articles with no control group, a lack of data sufficient for odds ratio (OR) determination, and non-English language studies. In situations of insufficient data, attempts to contract primary authors were made.

2.2. Search strategy for identification of studies

All studies were searched from January 1994 to December 2015 from PubMed, Science Direct, Embase, and Cochrane Library. The following search terms were used: “nonsmall cell lung cancer,” “NSCLC,” “lung cancer,” “induction chemotherapy,” “neoadjuvant chemotherapy,” “chemoradiotherapy,” and “concurrent chemoradiotherapy.” The relevant reviews and meta-analysis regarding the role of induction chemotherapy of patients with NSCLC were examined for potential inclusive studies. A summary of the search strategy is provided in Fig. 1.

![Flowchart for search strategy](image)

Figure 1. Search process of meta-analysis on induction chemotherapy for patients of NSCLC who received CCRT. CCRT = concurrent chemoradiotherapy, NSCLC = nonsmall cell lung cancer.
2.3. Data extraction and quality assessment

Each of eligible articles were independently reviewed by 2 of the authors who extracted data on the following categories: dates over which the study was conducted, the details of the NSCLC, induction chemotherapy agent and dosing regimen, and radiotherapy treatment including dose and fraction. The extracted data were then crosschecked between the 2 authors to rule out discrepancy. In the situation of disagreement, a 3rd reviewer extracted the data once more after referring to the original articles.

2.3.1. Statistical analyses. For dichotomous outcomes, the OR was calculated with a 95% confidence interval (CI) using the Mantel–Haenszel method. Several studies report only Kaplan–Meier survival analysis. In those cases, ORs were extracted from the survival curves or rates using methods recommended by the Cochrane Handbook.[10] Meta-analyses were performed to calculate the pooled ORs from each clinical studies. [11] When there was no statistically significant heterogeneity was defined as P less than 0.1 or an I² statistic greater than 50%, I² values of 25 to 50% were deemed to represent low heterogeneity. When there was no statistically significant heterogeneity, a pooled effect was calculated with fixed-effects model; if not, a random-effects model was used. ORs and 95% CI for time-to-event outcomes were estimated as described by Parmar et al[12] and pooled according to Peto method. A 2 tailed P < 0.05 showed statistical significance. Statistical analyses were performed using Revman 5.3 (Cochrane Collaboration, Copenhagen).

3. Results

3.1. Trial flow and characteristics of the eligible trials

Seven studies met the inclusion criteria and were incorporated in the review, accounting for 1143 patients.[13–19] The studies selected were all either prospective or retrospective cohort studies. The flow chart of our study is shown in Fig. 1. Consequently, 2 trials[13,14] involving 596 patients and 5 studies[15–19] of 547 patients with advanced NSCLC were ultimately analyzed. Main characteristics of the selected trials are described in Tables 1 and 2.

A total of 7 researches were eligible for analyzing that included 5 randomized phase III trials[15–19] and 2 retrospective studies.[13,14] With a range for each trial (1.3–6.0 years), the median follow-up time was 3.3 years. The primary endpoints were detailed in all studies. Tables 1 and 2 showed the details of radiotherapy and chemotherapy in the selected researches. There were 4 trials investigated cisplatin-based chemotherapy regimens which include taxane, etoposide, gemcitabine, vinorelbine, and docetaxel. Carboplatin combined with paclitaxel chemotherapy regimens were used in 2 studies and only 1 research consisted of gemcitabine with docetaxel. Conformal radiotherapy was most used and there was a variety of radiation dose in the studies included in the analysis. The most common radiotherapy regimen was a total dose of 66 Gy in 33 fractions of 2.0 Gy per fraction.

3.2. Overall survival

3.2.1. Induction chemotherapy followed by CCRT versus CCRT alone. There were 2 studies involving 596 patients included in this comparison.[13,14] The statistical heterogeneity

Table 1
Characteristics of the included studies for induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone.

First author	Years	Patients	TNM stage	Induction chemotherapy regimens (3 weekly cycles)	Concurrent chemotherapy	Concurrent radiotherapy	Median follow-up, months
Huang et al	2007	265	IB–IIIB	Platinum and taxane-based (n=121)	Weekly	3D-CRT	19.0
				Cisplatin and etoposide (n=1)		Daily 1.8–2.0 Gy (n=183)	
				Cisplatin and gemcitabine (n=3)		Twice-daily 1.2 Gy (n=82)	
				Gemcitabine and vinorelbine (n=3)			
Vokes et al	2007	366	IB–IIIB	Carboplatin and paclitaxel (n=170)	Weekly	3D-CRT	38.0
				Paclitaxel and carboplatin		Daily 2.0 Gy (n=183)	

3D-CRT = 3-dimensional conformal radiation therapy.

Table 2
Characteristics of the included studies for induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy with consolidation chemotherapy.

First author	Years	Patients	TNM stage	Induction chemotherapy regimens (dose per cycle)	Consolidation chemotherapy regimens (dose per cycle)	Concurrent radiotherapy (5 fractions per week)	Median follow-up, months
Berghmans et al	2008	49	IB–IIIB	Two cycles cisplatin, gemcitabine, and vinorelbine	Two cycles cisplatin, gemcitabine, and vinorelbine	66 Gy daily 2.0 Gy	51.0
Senan et al	2011	70	IIA–IIIB	Two cycles cisplatin and docetaxel	Two cycles cisplatin and docetaxel	66 Gy in 33 daily 2.0 Gy	15.1
Belani et al	2005	166	IIA–IIIB	Two cycles carboplatin and paclitaxel	Two cycles carboplatin and paclitaxel	63 Gy daily 1.8–2.0 Gy	39.6
Garrido et al	2013	139	IIA–IIIB	Two cycles gemcitabine and docetaxel	Two cycles gemcitabine and docetaxel	60 Gy daily 2.0 Gy	57.0
Fournel et al	2015	127	IIA–IIIB	Two cycles cisplatin and docetaxel	Two cycles cisplatin and docetaxel	66 Gy daily 2.0 Gy	76.6
was moderate to high in 1, 2, and 4 year OS and a random effect model used ($I^2=0.89$, $P=0.002$; $I^2=0.55$, $P=0.14$; and $I^2=0.67$, $P=0.09$, respectively). No difference of OS at 1, 2, and 4 year were found between these 2 groups ($P=0.23$, $P=0.18$, $P=0.09$, respectively).

No statistical heterogeneity were found in 3 and 5 year OS ($I^2=0.00$, $P=0.49$; $I^2=0.00$, $P=0.40$, respectively). Although the P value of 3 year OS was 0.07 without statistical significance, it showed a favor of induction chemotherapy. The result of 5-year OS suggested that induction chemotherapy was a positive factor in locally advanced NSCLC (OR 1.98, 95% CI 1.24–3.17; $P=0.004$) (Fig. 2).

3.2.2. Induction chemotherapy followed by CCRT versus CCRT followed by consolidation chemotherapy. With 5 eligible trials of induction chemotherapy followed by CCRT compared to CCRT followed by consolidation chemotherapy included in the analysis were available of 1, 2, and 3-year OS.[15–19] No statistical heterogeneity was found in the outcomes.

The results showed no statistically significant in OS with induction chemotherapy ($P>0.05$) (Fig. 3). The 4 and 5-year OS were also reported in 3 studies and it revealed no statistical significance (Fig. 4). The final outcomes indicated that chemotherapy before or after CCRT were both effective. Data on objective response rate (ORR) were available from the 5 included studies of 547 patients using standard World Health Organization. The test for heterogeneity was no significant ($P=0.52$; $I^2=0.0$), so the fixed-effects model was used. The ORR in induction chemotherapy arm was similar to consolidation chemotherapy arm, 71.3% versus 68.0%, respectively. (OR 1.25; 95%CI, 0.86–1.83; $P=0.25$) (Fig. 5).

3.2.3. Toxicity. Methods for reporting toxicity were consistent among the 5 researches of induction chemotherapy followed by CCRT compared to CCRT followed by consolidation chemotherapy.[15–19] The most frequently reported toxic events (grade III to IV) are summarized. The statistical heterogeneity was low and a fixed-effect model was used. Both chemotherapy and
Figure 3. Forest plot of OR of 1, 2, and 3-year overall survival in induction chemotherapy followed by CCRT group versus CCRT with consolidation chemotherapy group. CCRT = concurrent chemoradiotherapy, OR = odds ratio.

Figure 4. Forest plot of OR of 4 and 5-year overall survival in induction chemotherapy followed by CCRT group versus CCRT with consolidation chemotherapy group. CCRT = concurrent chemoradiotherapy, OR = odds ratio.
radiotherapy most frequently led to grade III or more of leucopenia (OR = 0.43; 95% CI: 0.30–0.62; P < 0.00001), thrombocytopenia (OR = 0.66; 95% CI: 0.33–1.30; P = 0.23), radiation pneumonitis (OR = 0.49; 95% CI: 0.23–1.06; P = 0.07), and esophagitis (OR = 0.71; 95% CI: 0.46–1.11; P = 0.14) (Fig. 6). Only leucopenia was significantly higher in consolidation group than induction group. No significant difference in the number of treatment-related severe pulmonary, neurological, infection, cardiovascular, liver, and renal toxicity was observed between the 2 modalities.

4. Discussion

Our meta-analysis provides a summary of induction chemotherapy on the prognosis in locally advanced NSCLC patients who received CCRT. The difference of survival between the patients who received induction chemotherapy compared to those that did not receive induction chemotherapy is significant at 5-year OS. However, the 1, 2, 3, and 4 years OS are not achieved statistical significant. This outcome reflects that induction chemotherapy may be an important factor which affecting long-term survival but not short-term survival. For several decades, the survival rate of NSCLC has not been significantly improved for the reasons given below: both loco-regional recurrence and distant metastasis were easy to occur, and loco-regional failure being the primary culprit. Induction chemotherapy has been proved to reduce the size of local and regional lesions to improve local disease control while preserving normal structure and function as much as possible in locally advanced NSCLC patients.[20,21] Induction chemotherapy has a number of putative advantages including down staging, reduced tumor volume, delivery of treatment conveniently, and achieved high rates of treatment response. Induction chemotherapy, most importantly, may also facilitate selection for CCRT of patients with favorable tumor biology, patients who achieved treatment response prior to CCRT or who do not with progress disease can obtain a better survival. Moreover, it can avoid the morbidity of fruitless CCRT for patients with poor tumor biology who underwent disease progression after induction chemotherapy.[22–24] With the mechanisms above, patients of locally advanced NSCLC could
obtain better long-term survival in induction chemotherapy group than those who only treated by CCRT only. Marquez-Medina et al[23] reported that for patients treated by induction chemotherapy, the lower presence of angiolymphatic invasion and tumor necrosis were associated with a good survival. Further analysis should be conducted to improve the prognosis of patients with locally advanced NSCLC.

Although long-term OS benefit was identified from the induction chemotherapy regimen, the optimal sequencing of chemotherapy and CCRT in the management of locally advanced NSCLC has remained a subject of intense debates. Against this background, we present a meta-analysis to evaluate the efficacy and toxicity of induction chemotherapy followed by CCRT versus CCRT followed by consolidation chemotherapy in the treatment of locally advanced NSCLC.

To the best of our knowledge, this is the first meta-analysis of induction chemotherapy followed by CCRT in comparison to CCRT with consolidation chemotherapy. Under comprehensively searched literatures, our meta-analysis showed that patients in induction chemotherapy followed by CCRT arm with similar ORR (OR = 1.25, 95%CI 0.86–1.83, P = 0.25) compared with CCRT followed by consolidation chemotherapy arm. It indicated that induction chemotherapy is as efficient as consolidation chemotherapy for locally advanced NSCLC. Also, similar OS was obtained in both groups. The concept of induction chemotherapy followed by CCRT or CCRT followed by consolidation chemotherapy has become progressively more popular in an attempt to improve distant disease control.[24] This regimen is practically used in clinical treatment of patients with locally advanced NSCLC. When it comes to toxicities, the final results revealed no significant toxicity in terms of induction chemotherapy versus consolidation chemotherapy except induction chemotherapy with an decreased risk of grade 3 to 4 leukopenia (OR = 0.43, 95%CI 0.30–0.62, P < 0.00001). One potential explanation is the toxic effects lead on hematopoietic and immune systems after CCRT, as a result of myelosuppression. Although there is a trend of in favor of consolidation chemotherapy for radiation induced pneumonitis (P = 0.07) and esophagitis, both of which did not achieve statistical significance between the 2 cohort, these lower incidences could be interpreted by the use of modern radiation technologies and a less toxic chemotherapy regimens for induction or consolidation to prevent pulmonary as well as esophageal toxicities. Further exploration is needed to identify the potential mechanism.

Three-dimensional conventional radiation therapy is the standard treatment in NSCLC. The famous radiation therapy oncology group 0617 trial has established 60 Gy as the standard dose. It was performed as a randomized, phase III trial assessing a oncology group 0617 trial has established 60 Gy as the standard treatment in NSCLC. The famous radiation therapy, especially radiotherapy for stage III NSCLC in detail.[25]

It was identified from the induction chemotherapy regimen, the optimal sequencing of chemotherapy and CCRT in the management of locally advanced NSCLC has remained a subject of intense debates. Against this background, we present a meta-analysis to evaluate the efficacy and toxicity of induction chemotherapy followed by CCRT versus CCRT followed by consolidation chemotherapy in the treatment of locally advanced NSCLC.

In conclusion, published evidence is limited but does support the inclusion of induction chemotherapy for locally advanced NSCLC to achieve long-term survival. Both induction chemotherapy and consolidation chemotherapy are efficient for patients of locally advanced NSCLC who treated by CCRT, given the potential toxicities of adding consolidation chemotherapy to CCRT, clinicians should consider using this treatment strategy only in the context of a clinical trial to allow better assessment of its effectiveness.

References

[1] Jamal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.
[2] Goldstraw P, Crowley J, Chansky K, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2007;2:706–14.
[3] Eberhardt WE, De Ruyscher D, Weder W, et al. 2nd ESMO Consensus Conference in Lung Cancer: locally advanced stage III non-small-cell lung cancer. Ann Oncol 2015;26:i1573–88.
[4] Bezjak A, Temin S, Franklin G, et al. Definitive and adjuvant radiotherapy in locally advanced non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. J Clin Oncol 2015;33:2100–5.
[5] Rolland E, Le Chevalier T, Aupérin A, et al. Sequential radio-chemotherapy (RT-CT) versus radiotherapy alone (RT) and concomitant RT-CT versus RT alone in locally advanced non-small cell lung cancer (NSCLC): two metaanalyses using individual patient data (IPD) from randomised clinical trials (RCTs). J Thorac Oncol 2007;2:8309–10.
[6] Curran WJ, Paulus R, Langer CJ, et al. Sequential vs concurrent chemoradiation for stage III non-small cell lung cancer: randomised phase III trial RTOG 94-10. J Natl Cancer Inst 2011;103:1–9.
[7] Fournel P, Robinet G, Thomas P, et al. Randomized phase III trial of sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small-cell lung cancer: Groupe Lyon-Saint-Étienne d’Oncologie Thoracique-Groupe Français de Pneumo-Cancerologie. J Thorac Oncol 2007;2:8309–10.
[8] Hidalgo M, National Comprehensive Cancer Network. Practice Guideline. J Clin Oncol 2015;33:2100–5.
[8] Auperin A, Le Pechoux C, Rolland E, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced nonsmall-cell lung cancer. J Clin Oncol 2010;28:2181–90.

[9] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9.

[10] Tierney JE, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:16.

[11] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.

[12] Parmar MK, Torri V, Stewart L. Extracting summary statistics to incorporate summary time-to-event data into meta-analysis. Trials 2007;8:16.

[13] Vokes EE, Herndon JE, Kelley MJ, et al. Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III non-small-cell lung cancer: cancer and leukemia group B. J Clin Oncol 2007;25:1698–704.

[14] Huang EH, Liao Z, Cox JD, et al. Comparison of outcomes for patients with unresectable, locally advanced non-small-cell lung cancer treated with induction chemotherapy followed by concurrent chemoradiation vs. Concurrent chemoradiation alone. Int J Radiat Oncol Biol Phys 2007;68:779–83.

[15] Belani CP, Choy H, Bonomi P, et al. Combined chemoradiotherapy regimens of paclitaxel and carboplatin for locally advanced non-small-cell lung cancer: a randomized phase II locally advanced multi-modality protocol. J Clin Oncol 2003;21:5883–91.

[16] Schallier D, Bral S, Ilsen B, et al. Final overall results of a study with a novel triplet induction chemotherapy regimen (PACCAGE) followed by consolidation radiotherapy in locally advanced inoperable non-small cell lung cancer (NSCLC). J Thorac Oncol 2009;4:728–35.

[17] Hirsh V, Soulières D, Duclos M, et al. Phase II multicenter trial with carboplatin and gemcitabine induction chemotherapy followed by radiotherapy concomitantly with low-dose paclitaxel and gemcitabine for Stage IIA and IIB non-small cell lung cancer. J Thorac Oncol 2007;2:927–32.

[18] Krzakowski M, Provencio M, Utracka-Hutka B, et al. Oral vinorelbine and cisplatin as induction chemotherapy and concomitant chemoradiotherapy in stage III non-small cell lung cancer: final results of an international phase II trial. J Thorac Oncol 2008;3:1094–1102.

[19] Márquez-Medina D, Martin-Marco A, Caldero SG, et al. Little things make big things happen: angiolympathic invasion and tumor necrosis prognosticate the outcome of locally advanced non-small cell lung cancer treated with a prior induction therapy. Am J Clin Pathol 2015;143:889–94.

[20] Atkins RZ, D’Amico TA. Controversial issues regarding the use of induction chemotherapy for lung cancer. Semin Thorac Cardiovasc Surg 2005;17:191–194.

[21] Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 2015;16:187–99.

[22] Schild SE, Vokes EE. Pathways to improving combined modality therapy for stage III non-small cell lung cancer. Ann Oncol 2016;27:590–9.

[23] Kocak M, Ozkan A, Mayadagli A, et al. Induction chemotherapy and chemoradiation therapy for inoperable locally advanced non-small-cell lung cancer: a single-institution review of two different regimens. Clin Lung Cancer 2009;10:124–9.