Synthesis of spiroannulated and 3-arylated 1,2,4-trioxanes from mesitylol and methyl 4-hydroxytiglate by photooxygenation and peroxyacetalization

Axel G. Griesbeck*, Lars-Oliver Höinck and Jörg M. Neudörfl

Full Research Paper

Address:
University of Cologne, Department of Chemistry, Organic Chemistry, Greinstr. 4, D-50939 Köln, Germany; Fax: +49(0) 221 470 5057

Email:
Axel G. Griesbeck* - griesbeck@uni-koeln.de

* Corresponding author

Keywords:
en reaction; peracetalization; peroxides; singlet oxygen; trioxanes

Abstract

Cycloalkanones were utilized in the Lewis acid catalyzed peroxyacetalization of ß-hydroperoxy homoallylic alcohols (prepared by the ene reaction of the allylic alcohols mesitylol and methyl 4-hydroxytiglate, respectively, with singlet oxygen) to give spiroannulated 1,2,4-trioxanes 5a–5e and 9a–9e, respectively. A second series of 3-arylated trioxanes 10a–10h, that are available from the hydroperoxy alcohol 4 and benzaldehyde derivatives, was investigated by X-ray crystallography.

Introduction

The antimalaria-active molecule artesinin (1) is a naturally occurring sesquiterpene peroxide with remarkable pharmacological properties. Hydrophilic as well as lipophilic derivatives have been prepared from artesinin and show improved antimalarial properties and better bioavailabilities [1-5]. In recent years, additional medicinal properties of artesinin and the water soluble artesunates have been discovered such as activities against several cancer cell lines, schistosomiasis and antiviral properties [6,7]. The introduction of substituents into the central peroxide ring system as well as further ring annulation are straightforward approaches for the preparation of other active derivatives which might show promise in overcoming the forthcoming problem of artesinin resistance [8]. From a synthetic point of view, the preparation of the pharmacophore, the central 1,2,4-trioxane ring system, is possible by a number of strategies [9,10]. We, for example, have previously reported the use of the singlet oxygen ene reaction of allylic alcohols as a route to ß-hydroperoxy alcohols that can be transformed into 1,2,4-trioxanes by reaction with carbonyl compounds in the presence of Lewis acids [11]. This approach leads to simple cyclic peroxides (e.g. 2) which in some cases show similar antimalarial effects as the natural compound (Figure 1) [12]. An apparently useful structural feature is a large 3,3-spirofused hydrophobic group. The adamantane skeleton is a unique motif in other cyclic peroxides with antimalarial activities [13,14] which additionally exhibit other remarkable pharmaceutical properties [15-17]. In this publication we report the use of the alcohols 3 and 6 to explore further the synthetic approach to spirocyclic fused 1,2,4-trioxanes with a series of other spirofused ring structures.
Results and Discussion

3,3-Spiroannulated 1,2,4-trioxanes

The photooxygenation reactions via sensitization of triplet oxygen with
meso-tetraphenylporphyrin (TPP) were performed in polystyrene beads under solvent-free
conditions (Scheme 1) [18,19]. Numerous applications of the hydroperoxides 4 and 7,
that result from the singlet oxygen ene reactions, have already been reported [20,21]. In context with our work on bis-peroxide synthesis from bifunctional ketones [22], we have also studied
the peroxyacetelization of the allylic hydroperoxide 7 with the
bifunctional cyclohexane-1,4-dione (CHD, Scheme 2). In this case, one equivalent of the diketone gave the monoadduct 9e in 20% yield.

Table 1: 3,3-Spiroannulated 1,2,4-trioxanes by photooxygenation and peroxyacetelization. a

Tiglate-derived trioxanes	Yield [%]b O-O [Å]c	Mesitylol-derived trioxanes	Yield [%]b O-O [Å]d	
MeOOC				
5a	86	1.465⁹	9a	73⁸
MeOOC				
5b	12	1.480	9b	14
MeOOC				
5c	20	1.466	9c	20
MeOOC				
5d	30	1.427⁹	9d	40
MeOOC				
5e	5	1.480	9e	19

aStandard reaction conditions: substrate (2 mmol, 4 × 10⁻² M), CCl₄ (50 mL), meso-tetraphenylporphyrin (0.01 mmol, 2 × 10⁻⁴ M), r.t., 10 h; then addi-
tion of a solution of the carbonyl compound (2.5 mmol) in CH₂Cl₂ (10 mL), 0 °C, 3 h. bYields of peroxyacetelization. cFrom X-ray analysis, CCDC
deposited [23]. d[19]. e[20]. f[12].
The products from the reaction of monofunctional ketones with \(\beta \)-hydroperoxy alcohols \(4 \) and \(7 \) are collected in Table 1. All trioxanes \(5a-e \) derived from \(4 \) were crystalline and could be analyzed by X-ray structure analysis (Figure 2). The bond lengths of the crucial O-O bond were similar in all cases with the exception of the adamantane derivative \(5d \) which has a remarkably shorter O-O bond distance.

Figure 2: Structure of the spirobicyclic trioxane \(5c \) in the crystal.

4-Arylated 1,2,4-trioxanes

The 1,2,4-trioxanes \(10 \) were formed in moderate to good yields, with the Hock-type cleavage product from the \(\beta \)-hydroperdiol as the only side-product, from \(4 \) and substituted benzaldehydes under BF\(_3\)-catalysis in CH\(_2\)Cl\(_2\) solution (Scheme 3). In all cases the trans products were formed in high (>98:2) diastereoselectivities. All compounds could be crystallized from acetone or from the neat liquid. In the crystal the central 1,2,4-trioxane ring is almost undistorted in a cyclohexane chair conformation with the acrylate and the aryl substituents in equatorial positions (Figure 3). In the crystal lattice the compounds, especially the 4-halophenyl-substituted trioxanes, tend to form \(\pi \)-stacked stabilized chain structures with channels that are filled with water molecules (Figure 4). In the elementary cell of the 4-chloro derivative \(10c \), an average of 320 \(\AA^3 \) of channel space corresponds to one water molecules per trioxane molecule. By contrast, the 4-trifluoromethyl derivative \(10f \) crystallized in a compact chain-like package of anti-parallel arranged pairs of trioxanes.

The orientation of the aryl groups relative to the 1,2,4-trioxane equator depends largely on the nature of the para-substituent: in the phenyl-substituted trioxane \(10a \) and in the para-halogenated analogs \(10b-10d \), the aryl group is nearly coplanar with the C(3)-H bond, whereas in the 4-nitro-, 4-trifluoromethyl-, and 4-cyano compounds \(10e-10f \) coplanarity of the aryl substituent with the O(4)-C(3) bond of the trioxane chair was observed (Table 2 and for numbering Figure 5).

In the artemisinin-derived artemether (AM), the central trioxane ring has a twist-boat conformation resulting from the additional propylene bridge connecting C-3 and C-6. In Table 3 the yields of the peroxyacetalization reactions, the characteristic \(^{13} \)C NMR shifts of the peracetal carbon C-3 and two significant bond lengths are listed. It is clear that the electronic nature of the substituent on the aryl group does not significantly change the bond length of the central peroxide bond (mean value: 1.479 \(\AA \)). The mean value of the characteristic \(^{13} \)C NMR shift of the peroxycetal carbon C-3 is 103.4 ppm. The bond length of the central oxygen-oxygen bond in artemether as determined by an independent structure analysis is 1.472(1) \(\AA \).

More pronounced bond lengths effects were observed for the O2-C3 ring bonds that range from 1.39 to 1.45 \(\AA \). Analysis of
Thus, the peroxide bond of the nitro-substituted compound 10e as the most active AM and the fluoro compound 10b.

Conclusion

In summary, we have reported the synthesis of a series of six-membered ring 3,3-spiroannulated 1,2,4-trioxanes from methyl 4-hydroxytiglate and from mesitylol, respectively, by the singlet oxygen ene reaction and subsequent peroxyacetalization. A series of 4-arylated 1,2,4-trioxanes from methyl 4-hydroxytiglate was obtained by the same protocol. These compounds were fully characterized by spectroscopic methods and by X-ray structure determination.

Experimental

Synthesis of the 4-fluorophenyl derivative 10b: A solution of 290 mg (2.0 mmol) of the hydroperoxide 4 (prepared from methyl 4-hydroxytiglate (3) by the method described in [10]) and 220 mg (2.0 mmol) of 4-fluorobenzaldehyde in 40 ml of dichloromethane was treated at 0 °C with 0.2 ml of boron trifluoride in diethyl ether. After stirring overnight at room temperature, the solution was diluted to 100 ml with dichloromethane, washed successively with 20 ml of saturated aqueous sodium bicarbonate solution, brine and water. The organic phase was separated and dried. After evaporation and column chromatography (silica, EtOAc), 200 mg (40%) of 10b was obtained as a colorless viscous oil that crystallized as thin plates on standing: C_{13}H_{15}FO_6 (corresponds to C_{13}H_{15}FO_5 \times H_2O: colorless thin needles from aqueous acetone), M = 286.25, a = 6.1264(3), b = 16.8514(9), c = 26.2519(14), α, β, γ = 90°, orthorhombic, space group Pnna, Mo-Kα, 15276 reflections measured, 2948 reflections with I > 2σ(I), R_1 (all data) = 0.0573, wR_2 = 0.1811.

Acknowledgements

We thank the DFG for project funding and the University of Cologne for a start-up grant. Biological testing was performed in South-Korea. AGG is recipient of the 2009 Honda-Fujishima award (Asian Photochemistry Association) for the antimalarial trioxane research.
References

1. Kluyver, D. L. *Science* **1985**, *228*, 1049–1055. doi:10.1126/science.3887571

2. O'Neill, P. M.; Posner, G. H. *J. Med. Chem.* **2004**, *47*, 2945–2964. doi:10.1021/jm030571c

3. Zhou, W. S.; Xu, X. X. *Acc. Chem. Res.* **1994**, *27*, 211–216. doi:10.1021/ar00043a005

4. Robert, A.; Dechy-Cabaret, O.; Cazelles, J.; Meunier, B. *Acc. Chem. Res.* **2002**, *35*, 167–174. doi:10.1021/ar9901640

5. Meunier, B. *Acc. Chem. Res.* **2008**, *41*, 69–77. doi:10.1021/ar7000843

6. Effterth, T.; Romero, M. R.; Wolf, D. G.; Marin, J. J. G.; Marschall, M. *Clin. Infect. Dis.* **2008**, *47*, 804–811. doi:10.1086/591195

7. Effterth, T. *Curr. Drug Targets* **2006**, *7*, 407–421. doi:10.2174/138945006776359412

8. Maude, R. J.; Pontavornpinyo, W.; Salaratama, S.; Aguas, R.; Yeung, S.; Dondorp, A. M.; Day, N. P. J.; White, N. J.; White, L. J. *Malaria J.* **2009**, *8*, No. 31. doi:10.1186/1475-2875-8-31

9. Tang, Y.; Dong, Y.; Vennerstrom, J. L. *Med. Res. Rev.* **2004**, *24*, 425–448. doi:10.1002/med.10066

10. Rydén, A.-M.; Kayser, O. Chemistry, Biosynthesis and Biological Activity of Artemisinin and Related Natural Peroxides. In Bioactive Heterocycles III; Gupta, R. R., Ed.; Topics in Heterocyclic Chemistry, Vol. 9; Springer: Berlin, 2007; pp 1–31. doi:10.1007/7081_2007_085

11. Bartoschek, A.; El-Idreesy, T. T.; Griesbeck, A. G.; Höinck, L.-O.; Lex, J.; Miara, C.; Neudörfl, J. M. *Synthesis* **2005**, *2433–2444.*

12. Griesbeck, A. G.; El-Idreesy, T. T.; Höinck, L.-O.; Lex, J.; Brun, R. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 595–597. doi:10.1016/j.bmcl.2004.11.043

13. Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu, F. C. K.; Chollet, J.; Dorn, D.; Hunziker, D.; Mathé, H.; McIntosh, K.; Padmanilayam, M.; Tomas, J. S.; Scheurer, C.; Scorneaux, B.; Tang, Y. Q.; Wittlin, S.; Charman, W. N. *Nature* **2004**, *430*, 900–904. doi:10.1038/nature02779

14. Ellis, G. L.; Amewu, R.; Sabbani, S.; Stocks, P. A.; Shone, A.; Stanford, D.; Gibbons, P.; Davies, J.; Vivas, L.; Charnaud, S.; Bongard, E.; Hall, C.; Rimmer, K.; Lozanom, S.; Jesús, M.; Gargallo, D.; Ward, S. A.; O’Neill, P. M. J. *Med. Chem.* **2008**, *51*, 2170–2177. doi:10.1021/jm701435h

15. Miyazaki, A.; Tsuda, Y.; Fukushima, S.; Yokoi, T.; Vántus, T.; Bökényi, G.; Szabó, E.; Horváth, A.; Kéri, G.; Okada, Y. *J. Med. Chem.* **2008**, *51*, 5121–5124. doi:10.1021/jm701599w

16. Furber, M.; Alcaraz, L.; Bent, J. E.; Beyerbach, A.; Bowers, K.; Braddock, M.; Caffrey, M. V.; Cladingboel, D.; Collington, J.; Donald, D. K.; Fagura, M.; Ince, F.; Kinchin, E. C.; Laurent, C.; Lawson, M.; Luker, T. J.; Mortimore, M. M. P.; Pimm, A. D.; Riley, R. J.; Roberts, N.; Robertson, M.; Theaker, J.; Thome, P. V.; Weaver, R.; Webborn, P.; Willis, P. J. *Med. Chem.* **2007**, *50*, 5882–5885. doi:10.1021/jm070049w

17. Singh, C.; Kanchan, R.; Sharma, U.; Puri, S. K. J. *Med. Chem.* **2007**, *50*, 521–527. doi:10.1021/jm0610043

18. Griesbeck, A. G.; Bartoschek, A. *Chem. Commun.* **2002**, *1594–1595.* doi:10.1039/b204017d

19. Griesbeck, A. G.; El-Idreesy, T. T.; Bartoschek, A. *Adv. Synth. Catal.* **2004**, *346*, 245–251. doi:10.1002/adsc.200303181

20. Griesbeck, A. G.; Höinck, L.-O.; Lex, J. *J. Org. Chem.* **2006**, *71*, 247–249. doi:10.1021/jo051706o

21. Griesbeck, A. G.; El-Idreesy, T.; Tiege, M.; Brun, R. *Org. Lett.* **2002**, *4*, 4193–4195. doi:10.1021/ol026916n

22. Griesbeck, A. G.; Höinck, L.-O.; Lex, J.; Neudörfl, J.; Blunk, D.; El-Idreesy, T. T. *Molecules* **2008**, *13*, 1743–1758. doi:10.3390/503081743

23. The crystallographic data for the 3,3-spiroannulated 1,2,4-trioxanes 5b, 5c, and 5e have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC-776052 (5b), CCDC-776053 (5c), CCDC-775054 (5e).

24. The crystallographic data for the 3-arylated trioxanes 10b–d and 10f–h have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC-762733 (10b), CCDC-762734 (10c), CCDC-762735 (10d), CCDC-762736 (10f), CCDC-762737 (10g), CCDC-762738 (10h).

25. Griesbeck, A. G.; Brodowolf, A.; Höinck, L.-O.; El-Idreesy, T. T.; Kim, H.-S. unpublished results.

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.6.61