Updating non-standard neutrinos properties with Planck-CMB data and full-shape analysis of BOSS and eBOSS galaxies

Suresh Kumar, a Rafael C. Nunes, b,c Priya Yadav a

aDepartment of Mathematics, Indira Gandhi University, Meerpur, Haryana 122502, India
bInstituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS, Brazil
cDivisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1758, São José dos Campos, 12227-010, São Paulo, Brazil

E-mail: suresh.math@igu.ac.in, rafadcnunes@gmail.com, priya.math.rs@igu.ac.in

Abstract. Using the latest observational data from Planck-CMB and its combination with the pre-reconstructed full-shape (FS) galaxy power spectrum measurements from the BOSS DR12 sample and eBOSS LRG DR16 sample, we report the observational constraints on the cosmic neutrino properties given by the extended ΛCDM scenario: ΛCDM + $N_{\text{eff}} + \sum m_\nu + c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$, and its particular case ΛCDM + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$, where N_{eff}, $\sum m_\nu$, c_{eff}^2, c_{vis}^2, ξ_ν are the effective number of species, the total neutrino mass, the sound speed in the neutrinos rest frame, the viscosity parameter and the degeneracy parameter quantifying a cosmological leptonic asymmetry, respectively. We observe that the combination of FS power spectrum measurements with the CMB data significantly improves the parametric space of the models compared to the CMB data alone case. We find no evidence for neutrinos properties other than the ones predicted by the standard cosmological theory. Our most robust observational constraints are given by CMB + BOSS analysis. For the generalized extended ΛCDM scenario, we find $c_{\text{eff}}^2 = 0.3304^{+0.0064}_{-0.0075}$, $c_{\text{vis}}^2 = 0.301^{+0.037}_{-0.033}$, $\xi_\nu < 0.05$, $N_{\text{eff}} = 2.90 \pm 0.15$ at 68% CL, with $\sum m_\nu < 0.116$ eV at 95% CL. These are the strongest limits ever reported for these extended ΛCDM scenarios.
1 Introduction

The cosmic neutrinos are known to decouple from the rest of the cosmic plasma at $k_B T$ \sim MeV. These freely streaming relic neutrinos lead to the cosmic neutrino background (CNB) just like the directly observed cosmic microwave background (CMB) of cosmic photons. Though the relic neutrinos background is yet to be detected directly, some indirect measures have been established in this regard by using CMB, viz., estimates from the primordial abundances of light elements, clustering of the large scale structure (LSS), as well as few other cosmological and astrophysical observations (see [1–3] for a review). On the other hand, neutrino oscillations measured at terrestrial experiments indicate that at least two massive neutrinos exist in nature [4]. The KATRIN experiment provides an upper limit of 0.9 eV on the neutrino mass scale [5] while the neutrino mass hierarchy has recently been discussed in [6, 7]. The properties of the neutrinos cause direct effects in important cosmological sources, and thereby play an important role in the dynamics of the Universe, and in the determination of cosmological parameters [1–3]. The relic neutrinos may cause only gravitational effects on the CMB and LSS because they are decoupled (free-streaming particles) well before the time of recombination and structure formation.

The standard parameters that characterize the neutrinos effects on cosmological sources are the effective number of species N_{eff} and the total neutrino mass $\sum m_\nu$. The joint analysis with CMB and baryonic acoustic oscillations (BAO) data places an upper bound at 95% confidence level (CL) on the total neutrino mass and number, viz., $\sum m_\nu < 0.12$ eV and $N_{\text{eff}} = 3.04 \pm 0.33$, respectively [8]. The most robust and recent upper bound at 95% CL on the total neutrino mass is $\sum m_\nu < 0.09$ eV [9], obtained within the minimal ΛCDM framework. In [10], the authors report a 4σ evidence for nonzero neutrino mass. On the other hand, the value of N_{eff} via theoretical calculations is well determined within the framework of the standard model, viz., $N_{\text{eff}} = 3.046$. The evidence for a deviation from this value can be a signal that the radiation content of the Universe is not only due to photons and neutrinos, but also due to some extra relativistic relics, the so-called dark radiation sector. A larger value for N_{eff} could also arise from different physics, for instance, axions, decay of non-relativistic, gravity waves, dark energy, and a few other phenomena. The effects of N_{eff} are investigated in several contexts beyond the ΛCDM cosmology [11–13], and also with regard to a possible solution for the H_0 and/or S_8 tensions [14–22].

On the other hand, the information on the dark relativistic background can be obtained not only from its effects on the expansion rate of the Universe but also from its clustering
properties. Going beyond the standard properties, two phenomenological parameters c_{eff}^2 and c_{vis}^2 can be introduced. Here, c_{eff}^2 is the sound speed in the neutrinos rest frame and c_{vis}^2 is the viscosity parameter, which parameterizes the anisotropic stress. The evolution of standard neutrinos (non-interacting free-streaming neutrinos) is obtained for $c_{\text{eff}}^2 = c_{\text{vis}}^2 = 1/3$. It is important to mention that these parametrizations were strongly inspired by pioneer works about dark matter properties [23, 24]. These perturbation parameters can be constrained through measurements of the CMB anisotropies and LSS observations since dark radiation is coupled through gravity with all the remaining components. Observational constraints on c_{eff}^2 and c_{vis}^2 are investigated via different methods and approaches [25–32]. Measuring a deviation from $(c_{\text{eff}}^2, c_{\text{vis}}^2) = 1/3$ can open a new window for testing the dark radiation component, since, for example, a deviation in c_{vis}^2 could indicate a possible non-standard interaction.

Another natural extension of the physics properties of the neutrino is to consider a certain degree of lepton asymmetry (a cosmological leptonic asymmetry), which is usually parametrized by the so-called degeneracy parameter $\xi_{\nu} = u_{\nu} / T_{\nu}^0$ [33–35], where u_{ν} is the neutrino chemical potential and T_{ν}^0 is the current temperature of the relic neutrinos background, $T_{\nu}^0/T_{\text{CMB}} = (4/11)^{1/3}$. The leptonic asymmetry also shifts the equilibrium between protons and neutrons at the Big Bang Nucleosynthesis (BBN) epoch, leading to indirect effects on the CMB anisotropy through the primordial helium abundance Y_{He}. The effects of a leptonic asymmetry on BBN and CMB are investigated in many studies [36–50]. Also, it has been argued that the H_0 tension can be slightly alleviated up to a significant level via a non-null cosmological leptonic asymmetry [44, 51, 52].

In addition to the effects on CMB, non-standard neutrinos properties can also affect the LSS of the Universe. In recent years, beyond the information contained within the (reconstructed) BAO peaks, significant efforts have been made for extracting LSS clustering information from the full-shape (FS) power spectrum of biased tracers of the LSS. Significant advances in the so-called Effective Field Theory of LSS (EFTofLSS) have led to such efforts and concrete applications of real data from the galaxy redshift surveys [53–64]. The effective field theory-based full-shape analysis of the power spectrum has been applied to derive constraints on $\sum m_{\nu}$ and N_{eff} in [10, 65–67]. Also, EFTofLSS has been used to constrain the standard cosmological parameters and models beyond the ΛCDM cosmology [66, 68–91]. Besides the EFTofLSS, a number of other theoretical modeling approaches have been adopted in the analysis for galaxy clustering data to derive constraints on $\sum m_{\nu}$ and N_{eff} (see [81, 92–108] for a short list).

In this work, our goal is to make use of the EFTofLSS approach to explore whether redshift-space galaxy clustering data can improve state-of-the-art constraints on the non-standard neutrinos properties c_{eff}^2, c_{vis}^2 and ξ_{ν}. In this paper, we consider two extensions of the minimal ΛCDM model: i) ΛCDM + c_{eff}^2 + c_{vis}^2 + ξ_{ν} and ii) ΛCDM + N_{eff} + $\sum m_{\nu}$ + c_{eff}^2 + c_{vis}^2 + ξ_{ν}. The paper is organized as follows. In Section 2, we briefly summarize the theoretical framework adopted in this work. In Section 3, we describe the datasets and analysis methodology. In Sections 4 and 5, we present our main results and conclusions, respectively.

2 Theoretical Model

Neutrinos and antineutrinos of each flavour ν_i ($i = e, \mu, \tau$) behave like relativistic particles in the very early Universe. The energy density and pressure of massive degenerate neutrinos and antineutrinos (one species) are given by
\[\rho_{\nu_i} + \rho_{\bar{\nu}_i} = T^4_{\nu} \int \frac{d^3q}{2(\pi)^3} q^2 E_{\nu_i}(f_{\nu_i}(q) + f_{\bar{\nu}_i})) \]
\((2.1) \)

and

\[3(\rho_{\nu_i} + p_{\bar{\nu}_i}) = T^4_{\nu} \int \frac{d^3q}{2(\pi)^3} q^2 E_{\nu_i}(f_{\nu_i}(q) + f_{\bar{\nu}_i})) \].
\((2.2) \)

Here we have used $\hbar = c = k_B = 1$. Further, $E_{\nu_i}^2 = q^2 + a^2 m_{\nu_i}$ is one flavour neutrino/antineutrinos energy and $q = ap$ is the comoving momentum. The functions $f_{\nu_i}(q)$, $f_{\bar{\nu}_i}$ are the Fermi-Dirac phase space distributions given by

\[f_{\nu_i}(q) = \frac{1}{e^{E_{\nu_i}/T_{\nu} - \xi_{\nu}} + 1}, \quad f_{\bar{\nu}_i}(q) = \frac{1}{e^{E_{\bar{\nu}_i}/T_{\bar{\nu}} - \xi_{\bar{\nu}}} + 1} \],
\((2.3) \)

where $\xi_{\nu} = \mu/T_{\nu}$ is the neutrino degeneracy parameter. Usually, in cosmological analysis, ξ_{ν} is fixed to 0, but the presence of a significant and non-null ξ_{ν} can have some cosmological implications [36–49, 51, 52]. A large ξ_{ν} implies large neutrino asymmetry, which may contradict popular leptogenesis scenarios in which sphalerons effectively transfer lepton asymmetry to baryons in the early Universe [109]. Observational information on ξ_{ν} therefore has important implications on theories of matter-anti-matter asymmetry in the Universe [110]. If neutrino is Majorana, then $\xi_{\nu} = 0$ [41]. Therefore, if $\xi_{\nu} \neq 0$ is observed, neutrinos must be Dirac particles, and then the measurement of ξ_{ν} is of fundamental importance. On the other hand, a finite neutrino chemical potential would affect the neutrino energy density, which in turn would modify the CMB anisotropy spectra. The major impact of ξ_{ν} on CMB physics is that it modifies the expansion rate at early times.

The effect of ξ_{ν} can be expressed as an excess in N_{eff}, viz.,

\[\Delta N_{\text{eff}} = \sum_i \frac{30}{7} \left(\frac{\xi_{\nu,i}}{\pi} \right)^2 + \frac{15}{7} \left(\frac{\xi_{\nu,i}}{\pi} \right)^4, \]
\((2.4) \)

where the label i runs over the mass eigenstates. The above equation is only valid for massless neutrinos. With non-zero masses, the thermal distribution and energy density of neutrinos/antineutrinos are modified (see, for example, Ref. [33]). We have not taken into account such modifications in this work. However, as long as the masses of light mass eigenstates are much smaller than their momentum around the epoch of CMB decoupling, the above equation provides a good enough approximation. From Eq. (2.4), for $\xi_{\nu} > 0$, this fact induces an increase in the expansion rate at early times (in comparison with the hypothesis $\xi_{\nu} = 0$), and consequently an effect on H_0. We will discuss the consequence of this effect later.

In the literature, several approximations for massive neutrino are presented [111–118]. Here, we describe the evolution of linear perturbations using the methodology of [29], where an extension for massless and massive neutrinos is described where the null hypothesis with respect to the parameters c^2_{eff} and c^2_{vis} is assumed to be different from $c^2_{\text{eff}} = c^2_{\text{vis}} = 1/3$. For the massless case, i.e., in the relativistic limit, the continuity, Euler, and shear equations in the synchronous gauge are respectively given by
\[\delta_\nu = (1 - 3c_{\text{eff}}^2) \frac{\dot{a}}{a} \left(\delta_\nu + \frac{4}{k^2} \frac{\dot{a}}{a} \theta_\nu \right) - \frac{4}{3} (\theta_\nu + \frac{\dot{h}}{2}), \] (2.5)

\[\dot{\theta}_\nu = \frac{k^2}{4} (3c_{\text{eff}}^2) \left(\delta_\nu + \frac{4}{k^2} \frac{\dot{a}}{a} \theta_\nu \right) - \frac{\dot{a}}{a} \theta_\nu - k^2 \sigma_\nu, \] (2.6)

\[\dot{F}_{\nu l} = 2\dot{\sigma}_\nu = (3c_{\text{vis}}^2) \frac{8}{15} (\theta_\nu + (\dot{h} + 6\dot{\eta})/2) - \frac{3}{5} kF_{\nu 3}, \] (2.7)

where \(F_{\nu l} \) are the Legendre multipoles of the momentum integrated neutrino distribution function as defined in [112]. Further equations in the hierarchy are left unchanged.

For massive neutrinos, the modified Boltzmann hierarchy reads

\[\dot{\Psi}_0 = \frac{\dot{a}}{a} (1 - 3c_{\text{eff}}^2) \frac{q^2}{c^2} \left[\Psi_0 + 3 \frac{\dot{a}}{a} \frac{5p - \tilde{p}}{p + p qk} \Psi_1 \right] - \frac{q k}{\epsilon} \Psi_1 + \frac{\dot{h}}{6} \frac{d \ln f_0}{d \ln q}, \] (2.8)

\[\dot{\Psi}_1 = \frac{c_{\text{eff}}^2}{\epsilon} \frac{q k}{\epsilon} \left[\Psi_0 + 3 \frac{\dot{a}}{a} \frac{5p - \tilde{p}}{p + p qk} \Psi_1 \right] - \frac{\dot{a}}{a} \frac{5p - \tilde{p}}{p + p} \Psi_1 - \frac{2}{3} \frac{q k}{\epsilon} \Psi_2. \] (2.9)

The source term of the shear (\(l = 2 \)) is given by

\[\dot{\Psi}_2 = \frac{q k}{5\epsilon} \left(6c_{\text{vis}}^2 \Psi_1 - 3\Psi_3 \right) - 3c_{\text{vis}}^2 \frac{2}{15} (\dot{h} + 6\dot{\eta})/2 \frac{d \ln f_0}{d \ln q}. \] (2.10)

Higher momenta in the Boltzmann hierarchy are left unchanged. In the above equations, \(\tilde{p} \) is the so-called the pseudopressure, \(f_0(q) \) is the background phase-space distribution of the momentum \(q \) of the particle, \(\epsilon \) is the comoving energy of the particle. All these quantities are well defined and discussed in [111].

Note that the standard equation evolution (non-interacting free-streaming neutrinos) is obtained for \(c_{\text{eff}}^2 = c_{\text{vis}}^2 = 1/3 \). These latter conditions, in combination with \(\xi_\nu = 0 \), fix the evolution of standard neutrinos in cosmological analysis. The main objective of this work is to relax these three conditions. It is important to mention that the above model is a phenomenological model that parameterizes the behaviour of the neutrinos in a fluid-like fashion in terms of an effective sound speed and an effective viscosity parameter. In principle, strictly speaking, there is no reason to expect that a fundamental theory could be effectively described with a value of \(c_{\text{eff}}^2 \) and \(c_{\text{vis}}^2 \) different from the standard value of 1/3. A more fundamental description of neutrino self-interactions has been investigated in several papers, for instance, see [16, 17, 22, 32, 119–123]. Our aim in this work could be seen as a first attempt to confront non-standard neutrino properties with the full shape of LSS data, before a more fundamental analysis. Thus, in this work we will adopt the phenomenological model as introduced above.

On the other hand, we are interested in analysing the galaxy power spectrum data. To model the power spectrum we consider the one-loop (tree-level) order with all necessary components, including perturbative corrections, galaxy bias, ultraviolet counterterms, infrared re-summation and stochasticity. The details of the model considered in our analysis are described in [124] and references therein, including the conversion from real to redshift-space. Here we only review the main qualitative aspects. The model of the power spectrum multipoles takes the following form (before the effects of infrared re-summation and coordinate transformations):
\[
P_{g,\ell}(k) = P_{\text{tree}}^{g,\ell}(k) + P_{\text{1-loop}}^{g,\ell}(k) + P_{\text{ct}}^{g,\ell}(k) + P_{\text{stoch}}^{g,\ell}(k),
\]

where the four terms are: i) The usual linear theory Kaiser multipoles, scaling as the linear-theory power spectrum \(P_{\text{lin}}(k) \) at tree-level (linear) galaxy power spectrum. ii) The corresponding one-loop corrections perturbation, scaling as \(k^2 P_{\text{lin}}(k) \) on large scales. iii) The counterterms encapsulate complex short-scale physics that cannot be modeled perturbatively in addition to contributions from the Finger-of-God effect, and other degenerate effects, such as higher-derivative biases. These counterterms comprise of a fixed scale dependence which is predicted by EFT. In practice, this leads to three counterterms with free amplitudes \(\{c_0, c_2, \tilde{c} \} \), with the third parametrizing next-to-leading order effects from Finger-of-God which can affect larger scales than other non-linearities. iv) The term \(P_{\text{noise}} \) includes stochastic contributions to the galaxy power spectrum which, to one-loop order, includes only a constant, and direction-independent Poissonian shot-noise whose amplitude is a free parameter, \(P_{\text{shot}} \).

In this work, we limit ourselves to the monopole and quadrupole moments \((\ell = 0, 2) \). All multipoles are computed from the 2D anisotropic galaxy power spectrum as

\[
P_{g,\ell}(k) = \frac{2\ell + 1}{2} \int_{-1}^{1} d\mu P_{g}(k,\mu) P_{\ell}(\mu),
\]

where \(\mu \) is cosine of the angle between a Fourier mode \(k \) and the line-of-sight direction \(z \), whereas \(P_{\ell}(\mu) \) are the Legendre polynomials of order \(\ell \).

Note that the basis of bias operators, relating the galaxy \((\delta_g) \) and matter \((\delta) \) overdensity fields, is applied as

\[
\delta_g(\vec{x}) = b_1 \delta(\vec{x}) + b_2^2 \delta^2(\vec{x}) + b_2 \mathcal{G}_2(\vec{x}),
\]

where \(\mathcal{G}_2 \) is the tidal field operator. This strictly neglects the additional bias parameter \(b_{\Gamma_3} \), which we assume to be null in this work.

In total, we obtain a model with seven nuisance parameters: \(\{b_1, b_2, b_\mathcal{G}_2, P_{\text{shot}}, c_0, c_2, \tilde{c} \} \).

Since this is based on one-loop perturbation theory, we expect it to be accurate for \(k \lesssim 0.25 \) h/Mpc. Here we only use spectral data in this wavenumber range.

Lastly, we account for the effects of an incorrect fiducial cosmology through the Alcock-Paczynski distortion via the rescalings

\[
k \rightarrow k' \equiv k \left[\left(\frac{H_{\text{true}}}{H_{\text{fid}}} \right)^2 \mu^2 + \left(\frac{D_A_{\text{fid}}}{D_A_{\text{true}}} \right)^2 (1 - \mu^2) \right]^{1/2},
\]

\[
\mu \rightarrow \mu' \equiv \mu \left[\left(\frac{H_{\text{true}}}{H_{\text{fid}}} \right)^2 \mu^2 + \left(\frac{D_A_{\text{fid}}}{D_A_{\text{true}}} \right)^2 (1 - \mu^2) \right]^{-1/2},
\]

where unprimed quantities are measured observationally, and all quantities are evaluated at the sample redshift. Here, \(H \) is the Hubble parameter \(H(z) \), and \(D_A \) is the angular diameter distance \(D_A(z) \). The fiducial cosmology, which is used to calibrate the geometric distortion parameters, is assumed with the values \(\Omega_m,_{\text{fid}} = 0.31 \) and \(H_0 = 67.6 \) km/s/Mpc.
We emphasize that only the linear power spectrum prediction needs to be modified because it is the only place where the neutrinos physics considered here enters. Only the expansion, thermal history, and linear evolution of perturbations are affected by the model under consideration. So no changes are required in the standard routines. Our approach may be considered as a conservative one, considering the size of the uncertainties associated with current galaxy clustering measurements. However, it may be noted that this approach has already been used in several other works in the recent literature, where the FS galaxy clustering measurements with the only modifications being the input linear matter power spectra are used to constrain both early and late time new physics scenarios. The other species, namely, baryons, cold dark matter and photons follow the standard evolution, both at the background and perturbation levels. The dark energy is fixed to be a cosmological constant.

3 Data and Methodology

In order to derive constraints on the neutrinos parameters model, we use the following datasets.

- **CMB:** Measurements of CMB temperature anisotropy and polarization power spectra, as well as their cross-spectra, from the Planck 2018 legacy data release. We consider the high-\(\ell \) Plik likelihood for TT (in the multipole range \(30 \leq \ell \leq 2508 \)) as well as TE and EE (in the multipole range \(30 \leq \ell \leq 1996 \)), in combination with the low-\(\ell \) TT-only (\(2 \leq \ell \leq 29 \)) likelihood based on the Commander component-separation algorithm in pixel space, as well as the low-\(\ell \) EE-only (\(2 \leq \ell \leq 29 \)) SimAll likelihood [125]. We also include measurements of the CMB lensing power spectrum, as reconstructed from the temperature 4-point function [126].

- **BOSS:** Measurements of the monopole and quadrupole (\(\ell = 0 \) and \(\ell = 2 \) respectively) of the full-shape power spectrum of the BOSS DR12 galaxies, divided into four independent inputs: two distinct redshift bins at \(z_{\text{eff}} = 0.38 \) and \(z_{\text{eff}} = 0.61 \), observed in the North and South galactic caps (NGC and SGC), respectively.

- **eBOSS LRG:** Measurements of the monopole and quadrupole (\(\ell = 0 \) and \(\ell = 2 \) respectively) of the full-shape power spectrum of the eBOSS luminous red galaxy sample (DR16 eBOSS LRG) at effective redshift \(z_{\text{eff}} = 0.698 \), observed in the NGC and SGC.

In our analysis, we use the pre-reconstructed eBOSS LRG power spectrum multipoles, covariance matrices and window functions publicly available in https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_1 (see [127] for details of the sample). The final DR16 eBOSS LRG catalogue contains both old CMASS BOSS LRG observations in \(0.6 < z < 1.0 \) and the new eBOSS LRG observations within the same redshift range. This combined LRG sample is considered independent of the two lowest BOSS DR12 redshift samples. The eBOSS LRG and BOSS DR12 samples slightly overlap in redshift range \(0.5 < z < 0.75 \). Therefore, when we combine these two samples, we use only the low-\(z \) part of the BOSS DR12 sample since the highest redshift part is included in the eBOSS DR16 sample. Although this overlap is quite insignificant and does not present significant correlation between the eBOSS LRG and BOSS LRG samples, as validated in [128, 129].

We make use of the FS likelihood, which is publicly available at https://github.com/oliverphilcox/full_shape_likelihoods (see [66]), in the analyses with both DR16 eBOSS
LRG and DR12 BOSS. Theoretical predictions for the relevant observables are obtained using the Boltzmann solver CLASS-PT [124], which is itself an extension of the Boltzmann solver CLASS [130, 131], and it allows to compute the 1-loop auto- and cross-power spectra for matter fields and biased tracers both in real and redshift spaces, incorporating all the ingredients discussed in Sec. 2 required for the data comparison. We sample the posterior distributions for the parameters of the model through Monte Carlo Markov Chain (MCMC) methods, using the cosmological sampler MontePython [132, 133]. We assess the convergence of the MCMC chains using the Gelman-Rubin parameter $R - 1$ [134], requiring $R - 1 < 0.01$ for the chains to be converged.

The full model for the power spectrum is specified by the following nuisance parameters:

$$\{b_1, b_2, b_G\} \times \{c_0, c_2, \tilde{c}\} \times \{P_{\text{shot}}\},$$

(3.1)

where the first set encodes galaxy bias (from linear, quadratic, and tidal effects respectively), the second gives the counterterms for the monopole and quadrupole, whilst the final set accounts for the stochastic nature of the density field. Since the BOSS regions have different selection functions and calibrations, we allow the parameters to vary freely in each of the four data chunks. We consider the same for eBOSS data. Note that eBOSS sample has two data chunks. We assume the bias parameter priors as in [66].

For the analysis with FS data only (next, quantified by BOSS + eBOSS + BBN), we vary the following cosmological parameters:

$$\{\omega_b, \omega_c, h, \ln(10^{10} A_s), n_s\} \times \{c_{\text{eff}}, c_{\text{vis}}, \xi_{\nu}\}.$$

(3.2)

For the analyses with the CMB data, the baseline reads:

$$\{\omega_b, \omega_c, \theta_s, \ln(10^{10} A_s), n_s, \tau\} \times \{N_{\text{eff}}, \sum m_{\nu}, c_{\text{eff}}, c_{\text{vis}}, \xi_{\nu}\},$$

(3.3)

where the first six cosmological parameters in Eq. (3.3) denote the baryon and cold dark matter physical densities, the angular acoustic scale, the amplitude and tilt of the initial curvature power spectrum at the pivot scale $k = 0.05/\text{Mpc}$, and the optical depth to reionization, from which we obtain the derived parameters H_0, Ω_m and $S_8 = \sigma_8(\Omega_m/0.3)^{0.5}$. The parameters $N_{\text{eff}}, \sum m_{\nu}, c_{\text{eff}}, c_{\text{vis}}, \xi_{\nu}$, have been described previously. In Eq. (3.2), the parameter h is the reduced Hubble constant, $h = H_0/100$. We fix the neutrino mass to the lowest mass allowed by oscillation experiments $\sum m_{\nu} = 0.06$ eV and when it is let free in specific cases, we impose the flat prior $\sum m_{\nu} \in [0.06, 1]$ eV. All other baseline parameters are free for wide ranges of flat priors. In all analyses, we also impose $\xi_{\nu} > 0$.

We investigate the observational constraints on the two models: i) ΛCDM + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_{\nu}$, assuming $N_{\text{eff}} = 3.046$ and $\sum m_{\nu} = 0.06$ eV. ii) ΛCDM + $N_{\text{eff}} + \sum m_{\nu} + c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_{\nu}$. In what follows, we present and discuss the main results.

4 Main Results

The constraints on the main parameters of interest of the two models under consideration from CMB, CMB + BOSS and CMB + eBOSS data are summarized in Table 1. One-dimensional and two-dimensional marginalized confidence regions (68% and 95% CL) of the model parameters are displayed in Fig. 1 and Fig. 2.
Table 1: Constraints at 68% CL on selected parameters of the two models obtained from CMB, CMB + eBOSS and CMB + BOSS data. The upper limit on neutrino mass scale is reported at 95% CL.

Model →	ACMD + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$	ACMD + $N_{\text{eff}} + \sum m_\nu + c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$				
Parameter	CMB	CMB + eBOSS	CMB + BOSS	CMB	CMB + eBOSS	CMB + BOSS
c_{eff}^2	0.3313 ± 0.0068	$0.3313^{+0.0078}_{-0.0075}$	0.3306 ± 0.0063	$0.3297^{+0.0075}_{-0.0071}$	0.3285 ± 0.0074	$0.3304^{+0.0075}_{-0.0071}$
c_{vis}^2	0.304 ± 0.037	0.306 ± 0.033	$0.299^{+0.029}_{-0.031}$	$0.326^{+0.057}_{-0.048}$	$0.301^{+0.031}_{-0.033}$	
$\sum m_\nu$ [eV]	< 0.23	< 0.30	< 0.29	< 0.39	< 0.256	< 0.0508
N_{eff}		0.06	0.06	< 0.413	< 0.247	< 0.116
H_0 [km/s/Mpc]	67.89 ± 0.68	67.61 ± 0.55	68.13 ± 0.54	65.3 ± 2.2	$65.6^{+1.8}_{-1.6}$	67.5 ± 1.2
Ω_m	0.3117 ± 0.0079	$0.3161^{+0.0067}_{-0.0080}$	0.3086 ± 0.0067	$0.332^{+0.017}_{-0.026}$	$0.329^{+0.013}_{-0.016}$	0.3098 ± 0.0081
S_8	0.828 ± 0.015	0.832 ± 0.012	0.820 ± 0.012	0.827 ± 0.016	0.831 ± 0.012	0.821 ± 0.013

First we discuss our results obtained from the CMB data only analysis of the two models under consideration. To the authors’ knowledge, the parameters c_{eff}^2 and c_{vis}^2 were constrained in [29] using CMB data only, from the Planck-CMB 2013 data. Thus, our results obtained from the Planck-CMB 2018 legacy data release provide an update on these non-standard neutrinos properties. The authors in [29] report $c_{\text{eff}}^2 = 0.314 \pm 0.013$, $c_{\text{vis}}^2 = 0.49^{+0.12}_{-0.12}$ at 68% CL for the ACMD + $c_{\text{eff}}^2 + c_{\text{vis}}^2$ model and $c_{\text{eff}}^2 = 0.312 \pm 0.013$, $c_{\text{vis}}^2 = 0.56^{+0.14}_{-0.24}$ at 68% CL for the ACMD + $N_{\text{eff}} + \sum m_\nu + c_{\text{eff}}^2 + c_{\text{vis}}^2$ model. Note that we have one additional parameter in our baseline, namely ξ_ν. The parameter ξ_ν does not show correlation with c_{eff}^2 and c_{vis}^2 and this addition does not weaken a direct comparison with previous results, because no significant changes are expected. We can notice a significant improvement on the parameters c_{eff}^2 and c_{vis}^2 in the analysis with the Planck-CMB 2018 data. We obtain one order of magnitude improvement in the error bars. Also, we do not find any deviations from the standard prediction, and both parameters c_{eff}^2 and c_{vis}^2 are fully compatible with $c_{\text{eff}}^2 = c_{\text{vis}}^2 = 1/3$, while the analysis from Planck-CMB 2013 data shows a deviation at 1σ CL in c_{vis}^2 [29]. Within this general model-baseline, we find $\sum m_\nu < 0.413$ eV at 95% CL, and no deviation in N_{eff} from its default value.

As well known, assuming the minimal ACMD scenario, Planck-CMB data analysis provides $H_0 = 67.4 \pm 0.5$ km s$^{-1}$Mpc$^{-1}$ [8], which is in $\sim 5 \sigma$ tension with the SH0ES team local measurement $H_0 = 73.30 \pm 1.04$ km s$^{-1}$Mpc$^{-1}$ [135]. Additionally, many other late time measurements are in agreement with a higher value for the Hubble constant (see the discussion in [14, 136, 137]). Motivated by these observational discrepancies, unlikely to disappear completely by introducing multiple and unrelated systematic errors, it has been widely discussed in the literature whether new physics beyond the standard cosmological model can solve the H_0 tension (see [14, 136, 137] and references therein for a review). A positive value for ξ_ν will induce an increase in the expansion rate at early times, because it increases an excess in N_{eff} (see Eq. (2.4)), and consequently will affect the H_0 estimates. Thus, the parameters ξ_ν and H_0 are positively correlated, and it has been argued that the H_0 tension can be slightly alleviated for a significant value of $\xi_\nu > 6$ [51, 52]. For CMB data only analysis, we note that the two baseline-models analyzed here are not able to alleviate the H_0 tension. We find, $H_0 = 67.89 \pm 0.68$ km/s/Mpc and $H_0 = 65.3 \pm 2.2$ km/s/Mpc at 68% CL, for the different baselines adopted here. These results are at more than 4σ tension with the local measurement. Also, we do not find any deviations from $\xi_\nu \neq 0$ using CMB data. The upper limits at 68% CL on ξ_ν are reported in Table 1.

We now discuss the results from the CMB + FS dataset combination, that is, by consid-
Figure 1: One-dimensional and two-dimensional marginalized confidence regions (68% and 95% CL) for ξ_ν, c_{eff}^2, c_{vis}^2, H_0 and S_8, obtained from the CMB, CMB+eBOSS, and CMB+BOSS data for the ΛCDM + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$ model. The parameter H_0 is in units of km/s/Mpc.

Considering FS power spectrum measurements for the BOSS and eBOSS data with the CMB data. First, taking the baseline-model with $N_{\text{eff}} = 3.046$ and $\sum m_\nu = 0.06$ eV, i.e., ΛCDM + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$ model, we note a significant improvement in the constraints by the introduction of the FS dataset on the full base parameters, viz., CMB + eBOSS and CMB + BOSS data improve the constraints on the model baseline, with the exception for the bounds on ξ_ν. Thus, there is an increasing order of robustness with CMB, CMB + eBOSS and CMB + BOSS data, respectively, see Table 1, Fig. 1. Therefore, clearly the addition of FS measurements improves the constraints. It is important to note that BOSS sample covers positions and redshifts of four independent data-sets, while eBOSS sample does only two, as previously defined in Section 3. Thus, naturally, the analysis with BOSS generates more robust results than eBOSS, given the effective volumes of each sample in consideration.

Now, considering our second baseline-model, we can still notice some other perspectives. But, first we should mention that when N_{eff} and $\sum m_\nu$ become free parameters, naturally the error bars on the other parameters increase, and also the degree of correlations increases in comparison with the previous common baseline. In this specific model-baseline, when compared with the CMB only analysis, it becomes more evident that FS measurements can...
improve significantly the constraints on the full parametric space. We notice significant improvement on all parameters in the analysis with the CMB + BOSS data. The constraints on the parameters c_{eff}^2, c_{vis}^2, and N_{eff}, which quantify the neutrinos properties, are remarkably improved, see Figure 2. In particular, we find $\sum m_\nu < 0.413 \text{ eV}$ at 95\% CL from CMB only, and $\sum m_\nu < 0.116 \text{ eV}$ at 95\% CL from CMB + BOSS. It represents $\sim 28\%$ improvement in comparison with CMB only case. Within this generalized framework, we find $H_0 = 67.5 \pm 1.2 \text{ km/s/Mpc}$ and $S_8 = 0.821 \pm 0.013$, both at 68\% CL, from CMB + BOSS, which is a very robust constraint within this extended ΛCDM parametric space. Again, we do not find any evidence beyond the default values for all neutrino properties. The constraints from CMB + eBOSS, in terms of accuracy, are intermediate between CMB only and CMB + BOSS results. See Figure 2 and Table 1.

As previously mentioned, the addition of FS power spectrum measurements improve the observational constraints considerably on ξ_ν, H_0 and S_8, N_{eff}, and $\sum m_\nu$, c_{eff}^2, c_{vis}^2. The effect of the parameters c_{eff}^2, c_{vis}^2 on the power spectrum was discussed in detail in [29]. This non-standard model has effects below 1\% on large scales (for $k < 0.01 \text{ Mpc}^{-1}$), but on smaller scales the effects can become significant for c_{eff}^2. At scales between 0.01 and 0.2 Mpc$^{-1}$ increasing (decreasing) any of the two sound speed parameters causes a decrease (increase) on the amplitude of the power spectrum. This amplitude modulation is still below 1\%, even for significant changes in c_{vis}^2, but c_{eff}^2 can introduce modulations on the shape of the power

Figure 2: Same as in Figure 1, but for the ΛCDM + $N_{\text{eff}} + \sum m_\nu + c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$ model.
Table 2: Marginalized constraints on the bias parameters at 68% CL extracted from BOSS and eBOSS galaxies samples used in this work for the model-baseline, ΛCDM + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_{\nu}$. from the NGC and SGC respectively.

Parameter	BOSS $z_{\text{eff}} = 0.38$	BOSS $z_{\text{eff}} = 0.61$	eBOSS $z_{\text{eff}} = 0.698$			
	NGC	SGC	NGC	SGC	NGC	SGC
b_1	1.876 ± 0.042	$1.871^{+0.006}_{-0.009}$	1.983 ± 0.045	2.025 ± 0.050	2.244 ± 0.059	$2.317^{+0.054}_{-0.052}$
b_2	$-0.63^{+0.66}_{-0.78}$	$-0.55^{+0.07}_{-0.94}$	$-1.16^{+0.71}_{-0.99}$	$-0.29^{+0.81}_{-0.97}$	$-2.0^{+0.68}_{-0.8}$	$-1.04^{+0.71}_{-0.97}$
b_{G2}	$-0.14^{+0.06}_{-0.12}$	$0.21^{+0.15}_{-0.18}$	$-0.09^{+0.14}_{-0.17}$	0.08 ± 0.20	$-0.31^{+0.11}_{-0.14}$	-0.21 ± 0.14

Table 3: Same as Table 2, but for the model: ΛCDM + $N_{\text{eff}} + \sum m_{\nu} + c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_{\nu}$

Parameter	BOSS $z_{\text{eff}} = 0.38$	BOSS $z_{\text{eff}} = 0.61$	eBOSS $z_{\text{eff}} = 0.698$			
	NGC	SGC	NGC	SGC	NGC	SGC
b_1	1.876 ± 0.046	1.870 ± 0.056	1.979 ± 0.047	2.028 ± 0.055	2.266 ± 0.073	2.337 ± 0.072
b_2	$-0.65^{+0.67}_{-0.83}$	$-0.56^{+0.72}_{-0.94}$	$-1.29^{+0.87}_{-0.99}$	$-0.34^{+0.87}_{-0.99}$	$-1.9^{+0.68}_{-0.99}$	$-1.07^{+0.79}_{-0.95}$
b_{G2}	$-0.14^{+0.06}_{-0.12}$	$0.20^{+0.15}_{-0.18}$	$-0.09^{+0.14}_{-0.18}$	0.08 ± 0.21	$-0.34^{+0.11}_{-0.17}$	-0.23 ± 0.15

spectrum up to quasi-non-linear and mainly on non-linear scale. Therefore, within the limits of analysis in this work from the BOSS and eBOSS data, we are not able to robustly constrain these specific parameters using the FS galaxy power spectrum data only, especially c_{vis}^2. On the other hand, as demonstrated and explored in several previous works, the FS data alone are not very sensitive to ω_b, n_s and $\sum m_{\nu}$. In particular, the BOSS dataset (same considerations for eBOSS data) itself can only rule out very large neutrino masses ~ 1 eV (see $[65, 70]$ and references therein), which produce significant scale-dependent modifications to the matter power spectrum. Smaller neutrino masses can not be constrained with the BOSS data (FS data in general). The FS data can only improve the current neutrino mass bounds by breaking degeneracies internal to the CMB data. Same conclusion holds for c_{vis}^2 and c_{eff}^2.

Taking these considerations, we consider the BOSS + eBOSS + BBN joint analysis for the ΛCDM + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_{\nu}$ model. Here, BBN means a Gaussian prior on the physical baryon density parameter ρ_b arising from Big Bang Nucleosynthesis (BBN) constraints on the abundance of light elements: $100\rho_b = 2.233 \pm 0.036 [138]$. Note that, in principle, the FS data can constrain ω_b without any external input. However, this constraint is expected to be much weaker than the measurements from BBN or Planck. Thus, keeping in mind the eventual combination of the FS and Planck data as presented previously, it is reasonable to impose this prior. As expected, the parameters c_{eff}^2, c_{vis}^2, ξ_{ν} are weakly constrained. We find $c_{\text{eff}}^2 < 0.36$ at 68% CL. The parameters c_{vis}^2 and ξ_{ν} are practically unconstrained within some reasonable physical prior range. In particular, it would be necessary to go into the deeply nonlinear regime to constraint c_{vis}^2 parameter with only FS information. For BOSS + eBOSS + BBN data, we note that Ω_m is well constrained, viz., $\Omega_m = 0.308^{+0.026}_{-0.029}$ at 68% CL (and $S_8 = 0.751^{+0.077}_{-0.080}$ at 68% CL). Therefore the amplitude of perturbations are lower than predicted by the minimum standard model from the CMB analysis, but statistically compatible with each other. For the Hubble parameter, we find the constraint $H_0 = 72.2^{+3.2}_{-4.2}$ km/s/Mpc at 68% CL. Therefore, without CMB data, information from LSS alone (the mildly non-linear full-shape galaxy power spectrum) can not provide good accuracy on these neutrinos properties, as well as on the full model baseline, in general. We mention that FS clustering analyses in the minimal ΛCDM model with BOSS + eBOSS were recently carried out in $[139, 140]$. These works also take into account the quasar sample, which is not included in our analysis.
Figure 3: One-dimensional and two-dimensional marginalized confidence regions (68% and 95% CL) for the bias parameters b_1, b_2 and b_{G2} for the BOSS data sample at effective $z = 0.61$. The over-index $i = 1, 2$ means the constraints from the NGC and SGC respectively. The red region (Baseline 1) represents the model with $N_{\text{eff}} = 3.046$ and $\sum m_\nu = 0.06$ eV while the blue region (Baseline 2) with N_{eff} and $\sum m_\nu$ as free parameters, as discussed in the main text. We clearly see a perfect agreement of bias parameters between the different models.

Finally, it is important to explore the impact of the models on the bias parameters. We check whether the model-baseline i) ΛCDM + $c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$ and ii) ΛCDM + $N_{\text{eff}} + \sum m_\nu + c_{\text{eff}}^2 + c_{\text{vis}}^2 + \xi_\nu$, may affect the bias parameters in the final fit of the data. Table 2 and 3 summarize constraints on the bias parameters at 68% CL extracted from BOSS and eBOSS galaxies samples used in this work. Figure 3 shows the one-dimensional and two-dimensional marginalized confidence regions (68% and 95% CL) of the bias parameters b_1, b_2 and b_{G2} from the BOSS data sample at effective redshift $z = 0.61$. The over-index $i = 1, 2$ means the constraint from the NGC and SGC respectively. We find no deviations on the bias parameters in the extended ΛCDM models investigated in this work. Therefore, the bias parameters are self-consistent across different models. We come to the same conclusion for the sample at $z_{\text{eff}} = 0.38$. In Figure 4, we quantify the same perspective and conclusion for the eBOSS data at $z_{\text{eff}} = 0.698$.

– 12 –
5 Final Remarks

We have updated and improved the constraints on the neutrino properties within two extended \(\Lambda\) CDM scenarios using Planck-CMB 2018 data and its combination with the pre-reconstructed FS galaxy power spectrum measurements from the BOSS DR12 sample and eBOSS LRG DR16 sample. By exploiting the information content of the FS power spectrum of LSS tracers, we have shown that the combination CMB + FS significantly improves the constraint on non-standard neutrinos properties. More specifically, this joint analysis improves the previously known results up to an order of magnitude. Any deviation in the baseline \(\{N_{\text{eff}}, c_{\text{eff}}^{2}, c_{\text{vis}}^{2}, \xi_{\nu}\}\) would mean evidence for a new physics, but our analysis does not report such an evidence, and our results are consistent with the values predicted by standard cosmology theory. Our most robust observational constraints are given by the joint analysis CMB + BOSS summarized in Table 1, which provide the strongest limits ever reported for the extended scenario.

In this work, we have utilized the FS measurements from the BOSS DR12 sample and eBOSS LRG DR16 sample. Further, it would be interesting to forecast the model with the future LSS surveys, such as Euclid [141] and DESI [142]. Also, it would be interesting to confront the model with N-body simulations to constrain \(c_{\text{eff}}^{2}\) and \(c_{\text{vis}}^{2}\) with greater precision using only the LSS information. Finally, it could be worthwhile to test other well-motivated extended-\(\Lambda\) CDM models in light of the FS measurements. Most of these ideas are the subject of work in progress, which we hope to report soon.

Figure 4: Same as Figure 3, but for eBOSS galaxies data sample.
Acknowledgments

The authors thank the referee for valuable suggestions and comments, also thank Sunny Vagnozzi for useful discussions. S.K. gratefully acknowledges support from the Science and Engineering Research Board (SERB), Govt. of India (File No. CRG/2021/004658). R.C.N. acknowledges financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation) under the project No. 2018/18036-5. P.Y. is supported by Junior Research Fellowship (CSIR/UGC Ref. No. 191620128350) from University Grant Commission, Govt. of India.

References

[1] A. D. Dolgov, Neutrinos in cosmology, *Phys. Rep.* **370** (2002) 333, [arXiv:hep-ph/0202122].

[2] J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, *Phys. Rep.* **429** (2006) 307, [arXiv:astro-ph/0603494].

[3] M. Lattanzi and M. Gerbino, Status of neutrino properties and future prospects - cosmological and astrophysical constraints, arXiv:1712.07109.

[4] M. S. Athar, S. W. Barwick, T. Brunner, J. Cao, M. Danilov, K. Inoue et al., Status and perspectives of neutrino physics, *Prog. Part. Nucl. Phys.* **124** (2022) 103947, [arXiv:2111.07586].

[5] M. Aker, A. Beglarian, J. Behrens, A. Berlev, U. Besserer, B. Bieringer et al., First direct neutrino-mass measurement with sub-ev sensitivity, arXiv:2105.08533.

[6] S. Gariazzo, M. Gerbino, T. Brinckmann et al., Neutrino mass and mass ordering: No conclusive evidence for normal ordering, arXiv:2205.02195.

[7] R. Jimenez, C. Pena-Garay, K. Short, F. Simpson and L. Verde, Neutrino Masses and Mass Hierarchy: Evidence for the Normal Hierarchy, arXiv:2203.14247.

[8] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini et al., Planck 2018 results - VI. Cosmological parameters, *A&A* **641** (2020) A6, [arXiv:1807.06209].

[9] E. D. Valentino, S. Gariazzo and O. Mena, Most constraining cosmological neutrino mass bounds, *Phys. Rev. D* **104** (2021) 083504, [arXiv:2106.15267].

[10] A. Chudaykin, D. Gorbunov and N. Nedelko, Exploring ΛCDM extensions with SPT-3G and planck data: 4σ evidence for neutrino masses, full resolution of the Hubble crisis by dark energy with phantom crossing, and all that, arXiv:2203.03666.

[11] S. Kumar and R. C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, *Phys. Rev. D* **94** (2016) 123511, [arXiv:1608.02454].

[12] W. Yang, S. Pan, R. C. Nunes and D. F. Mota, Dark calling Dark: Interaction in the dark sector in presence of neutrino properties after Planck CMB final release, *JCAP* **04** (2020) 008, [arXiv:1910.08821].

[13] W. Yang, E. D. Valentino, O. Mena and S. Pan, Dynamical Dark sectors and Neutrino masses and abundances, *Phys. Rev. D* **102** (2020) 023535, [arXiv:2003.12552].

[14] E. Abdalla, G. F. Abellán, A. Aboubrahim, A. Agnello, O. Akarsu, Y. Akrani et al., Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies, arXiv:2203.06142.

[15] E. D. Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, L. Amendola, N. Arendse et al., Cosmology Intertwined III: $f \sigma_8$ and S_8, *Astropart. Phys.* **131** (2021) 102604, [arXiv:2008.11285].
[36] A. Caramete and L. A. Popa, *Cosmological evidence for leptonic asymmetry after Planck*, *JCAP* **02** (2014) 012, [arXiv:1311.3856].

[37] K. N. Abazajian, J. F. Beacom and N. F. Bell, *Stringent constraints on cosmological neutrino-antineutrino asymmetries from synchronized flavor transformation*, *Phys. Rev. D* **66** (2002) 013008, [arXiv:astro-ph/0203442].

[38] D. J. Schwarz and M. Stuke, *Does the CMB prefer a leptonic Universe?*, *New J. Phys.* **15** (2013) 033021, [arXiv:1211.6721].

[39] M. Lattanzi, R. Ruffini and G. V. Vereshchagin, *Joint constraints on the lepton asymmetry of the Universe and neutrino mass from the Wilkinson Microwave Anisotropy Probe*, *Phys. Rev. D* **72** (2005) 063003, [arXiv:astro-ph/0509079].

[40] W. H. Kinney and A. Riotto, *Measuring the Cosmological Lepton Asymmetry through the Cosmic Microwave Background Anisotropy*, *Phys. Rev. Lett.* **83** (1999) 3366, [arXiv:hep-ph/9903459].

[41] G. Mangano, G. Miele, S. Pastor, O. Pisanti and S. Sarikas, *Updated BBN bounds on the cosmological lepton asymmetry for non-zero θ_{13}*, *Phys. Lett. B.* **708** (2012) 1, [arXiv:1110.4335].

[42] E. Castorina, U. França, M. Lattanzi, J. Lesgourgues, G. Mangano, A. Melchiorri et al., *Cosmological lepton asymmetry with a nonzero mixing angle θ_{13}*, *Phys. Rev. D* **86** (2012) 023517, [arXiv:1204.2510].

[43] I. M. Oldengott and D. J. Schwarz, *Improved constraints on lepton asymmetry from the cosmic microwave background*, *EPL* **119** (2017) 29001, [arXiv:1706.01705].

[44] G. Barenboim, W. H. Kinney and W. -I. Park, *Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology*, *EPJ C* **77** (2017) 590, [arXiv:1609.03200].

[45] A. -K. Burns, T. M. P. Tait and M. Valli, *Indications for a Nonzero Lepton Asymmetry in the Early Universe*, [arXiv:2206.00693].

[46] O. Seto and Y. Toda, *Hubble tension in lepton asymmetric cosmology with an extra radiation*, *Phys. Rev. D* **104** (2021) 063019, [arXiv:2104.04381].

[47] S. Yeung, K. Lau and M. -C. Chu, *Relic neutrino degeneracies and their impact on cosmological parameters*, *JCAP* **04** (2021) 024, [arXiv:2010.01696].

[48] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, *Cosmological Non-Linearities as an Effective Fluid*, *JCAP* **07** (2012) 051, [arXiv:1004.2488].

[49] J. J. M. Carrasco, M. P. Hertzberg and L. Senatore, *The Effective Field Theory of Cosmological Large Scale Structures*, *JHEP* **09** (2012) 082, [arXiv:1206.2926].

[50] E. Pajer and M. Zaldarriaga, *On the Renormalization of the Effective Field Theory of Large Scale Structures*, *JCAP* **08** (2013) 037, [arXiv:1301.7182].
S. M. Carroll, S. Leichenauer and J. Pollack, *Consistent effective theory of long-wavelength cosmological perturbations*, Phys. Rev. D 90 (2014) 023518, [arXiv:1310.2920](https://arxiv.org/abs/1310.2920).

L. Senatore and M. Zaldarriaga, *The IR-resummed Effective Field Theory of Large Scale Structures*, JCAP 02 (2015) 013, [arXiv:1404.5954](https://arxiv.org/abs/1404.5954).

L. Senatore and M. Zaldarriaga, *Redshift Space Distortions in the Effective Field Theory of Large Scale Structures*, arXiv:1409.1225.

T. Baldauf, L. Mercolli and M. Zaldarriaga, *Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound*, Phys. Rev. D 92 (2015) 123007, [arXiv:1507.02256](https://arxiv.org/abs/1507.02256).

S. Foreman, H. Perrier and L. Senatore, *Precision Comparison of the Power Spectrum in the EFTofLSS with Simulations*, JCAP 05 (2016) 027, [arXiv:1507.05326](https://arxiv.org/abs/1507.05326).

L. Senatore and M. Zaldarriaga, *The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos*, arXiv:1707.04698.

T. Nishimichi, G. D'Amico, M.M. Ivanov, L. Senatore, M. Simonović, M. Takada et al., *Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum*, Phys. Rev. D 102 (2020) 123541, [arXiv:2003.08277](https://arxiv.org/abs/2003.08277).

T. L. Smith, V. Poulin and T. Simon, *Assessing the robustness of sound horizon-free determinations of the Hubble constant*, arXiv:2208.12992.

T. Simon, P. Zhang, V. Poulin and T. L. Smith, *On the consistency of effective field theory analyses of BOSS power spectrum*, arXiv:2208.05929.

M. M. Ivanov, M. Simonović and M. Zaldarriaga, *Cosmological Parameters and Neutrino Masses from the Final Planck and Full-Shape BOSS Data*, Phys. Rev. D 101 (2020) 083504, [arXiv:1912.08208](https://arxiv.org/abs/1912.08208).

O. H. E. Philcox, M. M. Ivanov, M. Simonović and M. Zaldarriaga, *Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent constraint on H0*, JCAP 05 (2020) 032, [arXiv:2002.04035](https://arxiv.org/abs/2002.04035).

M. M. Ivanov, *Cosmological constraints from the power spectrum of eBOSS emission line galaxies*, Phys. Rev. D 104 (2021) 103514, [arXiv:2106.12580](https://arxiv.org/abs/2106.12580).

O. H. E. Philcox and M. M. Ivanov, *BOSS DR12 full-shape cosmology: ΛCDM constraints from the large-scale galaxy power spectrum and bispectrum monopole*, Phys. Rev. D 105 (2022) 043517, [arXiv:2112.04815](https://arxiv.org/abs/2112.04815).

O. H. E. Philcox, G. S. Farren, B. D. Sherwin, E. J. Baxter and D. J. Brout, *Determining the Hubble Constant without the Sound Horizon: A 3.6% Constraint on H0 from Galaxy Surveys, CMB Lensing and Supernovae*, arXiv:2204.02984.

T. Colas, G. D'Amico, L. Senatore, P. Zhang and F. Beutler, *Efficient Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure*, JCAP 06 (2020) 001, [arXiv:1909.07951](https://arxiv.org/abs/1909.07951).

G. D'Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang et al., *The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure*, JCAP 05 (2020) 005, [arXiv:1909.05271](https://arxiv.org/abs/1909.05271).

M. M. Ivanov, M. Simonović and M. Zaldarriaga, *Cosmological Parameters from the BOSS Galaxy Power Spectrum*, JCAP 05 (2020) 042, [arXiv:1909.05277](https://arxiv.org/abs/1909.05277).

G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović and M. Zaldarriaga, *Constraints on Multi-Field Inflation from the Boss Galaxy Survey*, arXiv:2204.01781.
[74] G. D’Amico, L. Senatore and P. Zhang, *Limits on wCDM from the EFTofLSS with the PyBird code*, *JCAP* **01** (2021) 006, [arXiv:2003.07956].

[75] M. M. Ivanov, E. McDonough, J. C. Hill, M. Simonović, M. W. Toomey, S. Alexander et al., *Constraining Early Dark Energy with Large-Scale Structure*, *Phys. Rev. D* **102** (2020) 103502, [arXiv:2006.11235].

[76] G. D’Amico, L. Senatore, P. Zhang and H. Zheng, *The Hubble Tension in Light of the Full-Shape Analysis of Large-Scale Structure Data*, *JCAP* **05** (2021) 072, [arXiv:2006.12420].

[77] O. H. E. Philcox, B. D. Sherwin, G. S. Farren and E. J. Baxter, *Determining the Hubble Constant without the Sound Horizon: Measurements from Galaxy Surveys*, *Phys. Rev. D* **103** (2021) 023538, [arXiv:2008.08084].

[78] A. Chudaykin, M. M. Ivanov and M. Simonović, *Optimizing large-scale structure data analysis with the theoretical error likelihood*, *Phys. Rev. D* **103** (2021) 043525, [arXiv:2009.10724].

[79] A. Chudaykin, K. Dolgikh and M. M. Ivanov, *Constraints on the curvature of the Universe and dynamical dark energy from the Full-shape and BAO data*, *Phys. Rev. D* **103** (2021) 023507, [arXiv:2009.10106].

[80] G. D’Amico, Y. Donath, L. Senatore and P. Zhang, *Limits on Clustering and Smooth Quintessence from the EFTofLSS*, arXiv:2012.07554.

[81] M. M. Ivanov, O. H. E. Philcox, M. Simonović, M. Zaldarriaga, T. Nischimichi and M. Takada, *Cosmological constraints without nonlinear redshift-space distortions*, *Phys. Rev. D* **105** (2022) 043531, [arXiv:2110.00006].

[82] R. C. Nunes, S. Vagnozzi, S. Kumar, E. D. Valentino and O. Mena, *New tests of dark sector interactions from the full-shape galaxy power spectrum*, arXiv:2203.08093.

[83] T. Simon, G. F. Abellán, P. Du, V. Poulin and Y. Tsai, *Constraining decaying dark matter with BOSS data and the effective field theory of large-scale structures*, arXiv:2203.07440.

[84] G. D’Amico, L. Senatore and P. Zhang, *Limits on clustering and smooth quintessence from the EFTofLSS*, *JCAP* **01** (2022) 049, [arXiv:2207.14784].

[85] P. Carrilho, C. Moretti and A. Pourtsidou, *Cosmology with the EFTofLSS and BOSS: dark energy constraints and a note on priors*, arXiv:2207.13011.

[86] C. -T. Chiang, M. LoVerde and F. Villaescusa-Navarro, *First Detection of Scale-Dependent Linear Halo Bias in N-Body Simulations with Massive Neutrinos*, *Phys. Rev. Lett.* **122** (2019) 041302, [arXiv:1811.12412].
[93] A. E. Bayer, F. Villaescusa-Navarro, E. Massara, J. Liu, D. N. Spergel, L. Verde et al., Detecting Neutrino Mass by Combining Matter Clustering, Halos, and Voids, *ApJ* 919 (2021) 24, [arXiv:2102.05049].

[94] A. Boyle and F. Schmidt, Neutrino mass constraints beyond linear order: cosmology dependence and systematic biases, *JCAP* 04 (2021) 022, [arXiv:2011.10594].

[95] J. Z. Chen, A. Upadhye and Y. Y. Wong, The cosmic neutrino background as a collection of fluids in large-scale structure simulations, *JCAP* 03 (2021) 065, [arXiv:2011.12503].

[96] T. Brinckmann, D. C. Hooper, M. Archidiacono, J. Lesgourgues and T. Sprenger, The promising future of a robust cosmological neutrino mass measurement, *JCAP* 01 (2019) 059, [arXiv:1808.05955].

[97] A. Banerjee, E. Castorina, F. Villaescusa-Navarro, T. Court and M. Viel, Weighing neutrinos with the halo environment, *JCAP* 06 (2020) 032, [arXiv:1907.06598].

[98] A. J. Cuesta, V. Niro and L. Verde, Neutrino mass limits: robust information from the power spectrum of galaxy surveys, *Phys. Dark Univ.* 13 (2016) 77, [arXiv:1511.05983].

[99] E. Castorina, C. Carbone, J. Bel, E. Sefusatti and K. Dolag, DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos, *JCAP* 07 (2015) 043, [arXiv:1505.07148].

[100] E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho and K. Freese, Improvement of cosmological neutrino mass bounds, *Phys. Rev. D* 94 (2016) 083522, [arXiv:1605.04320].

[101] S. Vagnozzi, E. D. Valentino, S. Gariazzo, A. Melchiorri, O. Mena and J. Silk, The galaxy power spectrum take on spatial curvature and cosmic concordance, *Phys. Dark Univ.* 33 (2021) 100851, [arXiv:2010.02230].

[102] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho et al., Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy, *Phys. Rev. D* 96 (2017) 123503, [arXiv:1701.08172].

[103] E. Giusarma, S. Vagnozzi, S. Ho, S. Ferraro, K. Freese, R. Kamen-Rubio et al., Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses, *Phys. Rev. D* 98 (2018) 123526, [arXiv:1802.08694].

[104] M. Zennaro, J. Bel, J. Dossett, C. Carbone and L. Guzzo, Cosmological constraints from galaxy clustering in the presence of massive neutrinos, *Mon. Not. Roy. Astron. Soc.* 477 (2018) 491, [arXiv:1712.02866].

[105] W. Giarè, E. D. Valentino, A. Melchiorri and O. Mena, New cosmological bounds on hot relics: axions and neutrinos, *Mon. Not. Roy. Astron. Soc.* 505 (2021) 2703, [arXiv:2011.14704].

[106] W. L. Xu, N. DePorzio, J. B. Muñ oz and C. Dvorkin, Accurately weighing neutrinos with cosmological surveys, *Phys. Rev. D* 103 (2021) 023503, [arXiv:2006.09395].

[107] A. Loureiro, A. Cuceu, F. B. Abdalla, B. Moraes, L. Whiteway, M. McLeod et al., Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments, *Phys. Rev. Lett.* 123 (2019) 081301, [arXiv:1811.02678].

[108] I. Tanseri, S. Hagstotz, S. Vagnozzi, E. Giusarma and K. Freese, Updated neutrino mass constraints from galaxy clustering and CMB lensing-galaxy cross-correlation measurements, arXiv:2207.01913.

[109] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, *Phys. Lett. B* 174 (1986) 45.

[110] G. Mangano, G. Miele, S. Pastor, O. Pisanti and S. Sarikas, Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis, *JCAP* 03 (2011) 035, [arXiv:1011.0916].
[111] J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics, *JCAP* **09** (2011) 032, [arXiv:1104.2935].

[112] C. -P. Ma and E. Bertschinger, Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges, *ApJ* **455** (1995) 7, [arXiv:astro-ph/9506072].

[113] M. Shoji and E. Komatsu, Massive Neutrinos in Cosmology: Analytic Solutions and Fluid Approximation, *Phys. Rev. D* **81** (2010) 123516, [arXiv:1003.0942].

[114] F. Führer and Y. Y. Y. Wong, Higher-order massive neutrino perturbations in large-scale structure, *JCAP* **03** (2015) 046, [arXiv:1412.2764].

[115] Y. A. -Haimoud and S. Bird, An efficient implementation of massive neutrinos in non-linear structure formation simulations, *Mon. Not. Roy. Astron. Soc.* **428** (2013) 3375, [arXiv:1209.0461].

[116] D. Blas, M. Garny, T. Konstandin and J. Lesgourgues, Structure formation with massive neutrinos: going beyond linear theory, *JCAP* **11** (2014) 039, [arXiv:1408.2995].

[117] C. Fidler, A. Kleinjohann, T. Tram, C. Rampf and K. Koyama, A new approach to cosmological structure formation with massive neutrinos, *JCAP* **01** (2019) 025, [arXiv:1807.03701].

[118] T. Tram, J. Brandbyge, J. Dakin and S. Hannestad, Fully relativistic treatment of light neutrinos in N-body simulations, *JCAP* **03** (2019) 022, [arXiv:1811.00904].

[119] L. Lancaster, F. -Y. C. -Racine, L. Knox and Z. Pan, A tale of two modes: Neutrino free-streaming in the early universe, *JCAP* **07** (2017) 033, [arXiv:1704.06657].

[120] M. Park, C. D. Kreisch, J. Dunkley, B. Hadzhiyska and F. -Y. C. -Racine, *Λ*CDM or self-interacting neutrinos : How CMB data can tell the two models apart, *Phys. Rev. D* **100** (2019) 063524, [arXiv:1904.02625].

[121] I. M. Oldengott, T. Tram, C. Rampf and Y. Y. Y. Wong, Interacting neutrinos in cosmology: exact description and constraints, *JCAP* **11** (2017) 027, [arXiv:1706.02123].

[122] J. M. Berryman et. al., Neutrino Self-Interactions: A White Paper, [arXiv:2203.01955].

[123] M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad and T. Tram, Sterile neutrino self-interactions: H0 tension and short-baseline anomalies, *JCAP* **12** (2020) 029, [arXiv:2006.12885].

[124] A. Chudaykin, M. M. Ivanov, O. H. E. Philcox and M. Simonović, Nonlinear perturbation theory extension of the Boltzmann code CLASS, *Phys. Rev. D* **102** (2020) 063533, [arXiv:2004.10607].

[125] Planck collaboration, Planck 2018 results -V. CMB power spectra and likelihoods, *A&A* **641** (2020) A5, [arXiv:1907.12875].

[126] Planck collaboration, Planck 2018 results -VIII. Gravitational lensing, *A&A* **641** (2020) A8, [arXiv:1807.06210].

[127] H. Gil-Marín, J. E. Bautista, R. Paviot, M. Vargas-Magaña, S. de la Torre, S. Fromenteau et al., The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0, *Mon. Not. Roy. Astron. Soc.* **498** (2020) 2492, [arXiv:2007.08994].

[128] S. Alam, M. Aubert, S. Avila, C. Ballard, J. E. Bautista, M. A. Bershadzy et al., Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, *Phys. Rev. D* **103** (2021) 083533, [arXiv:2007.08991].
[129] G.-B. Zhao, Y. Wang, A. Taruya, W. Zhang, H. Gil-Marín, A. de Mattia et al., The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a multitracer analysis in Fourier space for measuring the cosmic structure growth and expansion rate, Mon. Not. Roy. Astron. Soc. 504 (2021) 33, [arXiv:2007.09011].

[130] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 07 (2011) 034, [arXiv:1104.2933].

[131] J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, arXiv:1104.2932.

[132] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative constraints on early cosmology with MONTE PYTHON, JCAP 02 (2013) 001, [arXiv:1210.7183].

[133] T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, Phys. Dark Univ. 24 (2019) 100260, [arXiv:1804.07261].

[134] A. Gelman and D. B. Rubin, Inference from Iterative Simulation Using Multiple Sequences, Statist. Sci. 7 (1992) 457.

[135] A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout, S. Casertano et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team, arXiv:2112.04510.

[136] E. D. Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri et al., In the realm of the Hubble tension—a review of solutions, Class. Quantum Grav. 38 (2021) 153001, [arXiv:2103.01183].

[137] L. Perivolaropoulos and F. Skara, Challenges for ΛCDM: An update, arXiv:2105.05208.

[138] V. Mossa et al., The baryon density of the Universe from an improved rate of deuterium burning, Nature 587 (2020) 210.

[139] A. Semenaité, A. G. Sánchez, A. Pezzotta, J. Hou, R. Scoccimarro, A. Eggemeier et al., Cosmological implications of the full shape of anisotropic clustering measurements in BOSS and eBOSS, arXiv:2111.03156.

[140] R. Neveux, E. Burtin, V. Ruhlmann-Kleider, A. de Mattia, A. Semenai̇te, K. S. Dawson et al., Combined full shape analysis of BOSS galaxies and eBOSS quasars using an iterative emulator, arXiv:2201.04679.

[141] L. Amendola, S. Appleby, A. Avgoustidis, D. Bacon, T. Baker et al., Cosmology and fundamental physics with the Euclid satellite, Living Rev. Relativ. 21 (2018) 2, [arXiv:1206.1225].

[142] DESI Collaboration, A. Aghamousa, J. Aguilar, S. Ahlen, S. Alam, L. E. Allen et al., The DESI Experiment Part I: Science, Targeting, and Survey Design, arXiv:1611.00036.