Tuberculosis: Still a Way to go ahead for a Lead- A Review

Abstract
Although decades of worship bring a light of new chemical classes and moieties for the treatment of tuberculosis and still running to enlighten more possible ways to withstand and draw a full stop to the condition, the standard reports of tuberculosis enlisting cases are still on the increment side rather to declining state. Since 90s the regimen of anti-TB drugs is well established but now it is under red alters concern as the drugs are resistant to the causative bacilli, M. tuberculosis, endangering mostly the developing countries and disease prone areas of the world. With the motivation of new drug approved for the disease, the moieties in the pipe line for the consideration of being a successful drug, the review also concerns about possible new classes for lead optimization process along with repurposed drugs trial.

Keywords: Bedaquiline; Delamanid; HIV; Anti-TB; Investigational moieties; Drug discovery; Lead; MDR

Introduction
During a decade and a half, a worldwide concept of High Burden Country (HBC) has gained a recognized position in the different documented context of Tb produced till date. In 2015, after the TB strategy modification and upgradement process by WHO, a new three HBC list has been defined to be used for the period of 2016-2020 enlisting 85-89% of the global burden and category details of each country. In this list, 14 countries have been mentioned to be the most prone zone of TB with increasing case and recurrence of TB with other additional health risk [1]. With the time, the TB cases are getting more complicated associating other diseases as well like HIV, MDR etc. The causative organism is a facultative one well known, Mycobacterium tuberculosis now with different modified virulent strains. TB mostly affects adults in their productive year besides; children can get affected at early stage of age 0-14 years also leading to drastic cases if not treated at time. Over 95% cases are of developing countries. In 2015 the largest amount of TB cases reported from Asia with 61% of new cases followed by Africa with 26%. Very common symptoms of TB are the cough with sputum and blood at times, besides, chest pain, weight loss, fever and night sweats [1-4]. In 2010 WHO first recommended the use of rapid test Xpert MTB/RIF® which simultaneously detects TB and resistance to rifampicin which is one of the first line drugs for the tuberculosis treatment. In 2016, four new diagnostic tests had been recommended by WHO, i.e., a rapid molecular test to detect TB where Xpert MTB/RIF® cannot be used and other three to detect resistance to first and second line TB medicines, like, Beacon assay (use ultra-sensitive PCR technique for M. tuberculosis complex and rifampicin resistance), the GeneXpertTB assay (automated assay process), molecular line probe assay (use PCR and revised hybridization process for rapid detection of mutation associate with drug resistance, Isoniazid and Rifampicin) [2,5]. Newly introduced other detections are, loop mediated isothermal application (TB-LAMP) for pulmonary tuberculosis diagnose and lateral flow urine lipoarabinomann assay (LF-LAM) for diagnose and screening of active tuberculosis patients with HIV [5].

Depending on the zone the treatment regimen for each country has some specific regimen which is being followed in that specific country and zone as all the countries have their own margin of condition. Here, the standard regimen recommended by WHO in 1997 for the tuberculosis treatment which is only modified in complex cases which has been later discussed, is as follows,

Treatment Category	Clinical Condition	TB regimen	
		Intensive Phase	Continuous Phase
Category I	• New (untreated) smear positive pulmonary TB.		
	• New smear negative pulmonary TB with extensive parenchymal involvement.		
	• New cases of severe forms of extra pulmonary TB.	2H_RR_EE₃ / S₃	4H_R
Category II	• Smear positive relapse.		
	• Smear positive treatment failure.		
	• Interrupted treatment cases.	2H_RR_EE₃ + 1H_RR_EE₃	5H_R
Category III	Smear negative pulmonary TB with limited parenchymal involvement or less form of extra pulmonary Tb.	2H_RR_EE₃	4H_R

Where, H: Isoniazid; R: Rifampicin; Z: Pyrazinamide; E: Ethambutol; S: Streptomycin.
Next comes another threat that is, HIV patients, who are 20-30 times more susceptible to develop active TB disease causing a lethal condition ensuring each other's aggressive progression and one third of the HIV patients worldwide have been reported with TB as well, in the enlisting of TB cases by WHO in 2015. About 35% death among HIV positive people were out of TB condition and about 1.2 million new cases of TB has been reported with HIV positive cases among which 71% cases are from African region [1-3,6,7]. The worst condition of tuberculosis is the multi-drug resistant tuberculosis (MDR-TB) in which the bacteria doesn't respond to Isoniazid and Rifampicin, the two most important first line drug of the regimen so it can only be treated with second line drug and extensive chemotherapy which are expensive and highly toxic. Besides these, extensively drug resistant TB (XRD-TB) is a more critical condition in which the bacilli become resistant to the second line drugs as well leaving no option of treatment. About 480000 people worldwide have enlisted as MDR TB patient in 2015, and about 9.5% of these are XRD TB in the report of the WHO. In 2016, WHO approved a new drug regimen for the MDR TB condition which doesn’t involve the strains of the bacilli resistant to second line drugs taken 9-12 months which taken up to 2 years. But XRD TB patients cannot use these; however, they are required to take longer MDR TB regimens to which one new drug, i.e., Bedaquiline (i) and Delamanid (ii), may be added in Figure 1 [1,3,4,7].

Discussion

With time the burden condition need to be reduced to reach nullification point of TB patient worldwide which is the prime aim of WHO for these session, the keen effort put to light on the nullification point of TB patient worldwide which is the prime aim of WHO for these session, the keen effort put to light on the

New drugs approved

Bedaquiline: In 2012, 28th of December, US FDA granted the approval of Johnson and Johnson’s drug bedaquiline formerly known as TM207 or R207910 for treating resistant cases prevalently in India, China and Eastern Europe. The diarylquinolone classed moiety hinders the proton pump of mycobacterial Adenosine Triphosphate (ATP) synthase enzyme, which is a crucial enzyme for ATP synthesis of the bacilli. The moiety targets the oligomeric and proteolipic subunit C of the enzyme leading to the cease of ATP synthesis subsequently death of the targeted cell. Besides these another approach for its mode of action has been depicted, i.e., it also binds to the epsilon subunit of the F$_{1}$F$_{0}$ ATP synthase of the bacilli. The best eye streaming thing is this drug is equipotent to replicating and dormant phase of the M. Tuberculosis bacilli [8-21] Figure 2.

Delamanid: With the requirement of critical condition management, though having a chance of resistant but not in sense prompt adaptation, due to the produg nature of the moiety, it has received the global approval for use in combination with an optimized background anti-TB regimen for MDR-TB in the EU and also is under review for marketing approval in Japan for same indication, in 2014, 28th of April, developed by Otsuku company. Chemically it is a nitro-dihydro-imidazooxazole which requires nitro-reduction intra-cellularly by F$_{1}$F$_{0}$-deazaflavin-dependent nitro-reductase present in M. tuberculosis, to produce the des-nitro-imidazooxazole form which is the active form, brings hindrance to the synthesis of methoxy mycolic and ketomycolic acid, the essential cell wall components of the targeted causative microbe. Besides, it is also being reported that a reactive intermediate metabolite formed between delamanid and des-nitro-imidazooxazole derivative plays a vital role in the inhibition of mycolic acid production of the cell. It has explicit documentation for having potent Invitro and invivo activity against both drug susceptibility and drug resistant strains of the bacilli with the plus advantage of no cross resistance and antagonist effect with the first line drugs. It also promotes intracellular generation of microbiocidal nitrogen oxidative intermediates including nitric oxides (NO) which can be the predominant encounter of the present situation and future possible prospective to achieve this thoughtful objective.

Destination

Nitroimidazole (Figure 3a): This class of drug has been explored to a great and has contributed to new era anti-TB drug, delamanid

Citation: Bose P, Harit AK, Halder KK (2017) Tuberculosis: Still a Way to go ahead for a Lead- A Review. J Anal Pharm Res 5(6): 00161.

DOI: 10.15406/japlr2017.05.00161
which is indicated for multi-drug resistance tuberculosis by WHO in 2014. Besides this another molecule known as PA-824 also called Proteomanid is under clinical trial phase three. The activity of the molecule is restricted to the complex situation as well there is a number of laboratory mutants have shown resistant to it in which the ability of producing F$_{ex}$ cofactor is lost and the drug remains inactive in the cell. Metronidazole which is a marketed product with other indication was under investigation but due to high dose leading to severe high rates of peripheral neuropathy occurrence so it is put out of the plot [35-38].

Ethylene-diamine (Figure 3b): Ethambutol of the standard anti-TB regimen is an ethylene-diamine class drug but in the real scenario it is considered to be a weak one among the total drug combination so a better potent moiety is being searched over and SQ109 gets its way to real molecular world but its long term trial hasn’t assured its destined anti-TB efficacy so still not a drug, SQ109 hinders the action of MnP,L3, an essential membrane protein which transport trehalose monomycolate into the cell envelope. So it inhibits genesis of mycic acid of cell wall instead of inhibiting arabinosyl transferase which is the prime action ethambutol [39-42].

Benzothiaizones (Figure 3c): This class of chemical moieties has been reported to be potent at nanomolar level concentration in vitro and ex-vivo condition and so considered to be one of the most critical molecular spatial belonging from the pipeline of TB drug discovery. BTZ043 is a potent candidate of the chemical class and active against drug susceptibility, MDR and XDR cases of the disease. The mode of action for the class is inhibition of decaprenyl-phosphoryl-beta-D-ribose 2’-epimerase (DprE1) enzyme which catalyzes the conversion of decaprenyl-phosphoryl-D-ribose to decaprenyl-phosphoryl-D-arabinose, the utmost important arabin precursor for the synthesis of essential cell wall components, arabinogalactan and lipoarabinomannan in turn causes the hindrance the cell wall synthesis leading to bacterial mortality. BTZ043 undergoes nitro-reduction in physiological environment and inhibits DprE1 enzyme covalently through a cysteine residue of the active site. Advantage of this molecule is it doesn’t have shown any antagonist action to the other drugs of the anti-TB regimen and as well with some molecules under the trials like, PA-824, SQ109 [43-48].

Oxazolidinedione (Figure 3d): Linezolid is well known drug of this category molecular entity but on potency and safety concern a better molecule sutezolid also referred as PNU-100480 is the pipeline drug of anti-TB drug challenge as linezolid on long term trial hasn’t assured its destined anti-TB efficacy so still not a drug. Linezolid is well known drug of this category molecular entity but on potency and safety concern a better molecule sutezolid also referred as PNU-100480 is the pipeline drug of anti-TB drug challenge as linezolid on long term trial hasn’t assured its destined anti-TB efficacy so still not a drug. Linezolid is well known drug of this category molecular entity but on potency and safety concern a better molecule sutezolid also referred as PNU-100480 is the pipeline drug of anti-TB drug challenge as linezolid on long term trial hasn’t assured its destined anti-TB efficacy so still not a drug. Linezolid is well known drug of this category molecular entity but on potency and safety concern a better molecule sutezolid also referred as PNU-100480 is the pipeline drug of anti-TB drug challenge as linezolid on long term trial hasn’t assured its destined anti-TB efficacy so still not a drug. Linezolid is well known drug of this category molecular entity but on potency and safety concern a better molecule sutezolid also referred as PNU-100480 is the pipeline drug of anti-TB drug challenge as linezolid on long term trial hasn’t assured its destined anti-TB efficacy so still not a drug. Linezolid is well known drug of this category molecular entity but on potency and safety concern a better molecule sutezolid also referred as PNU-100480 is the pipeline drug of anti-TB drug challenge as linezolid on long term trial hasn’t assured its destined anti-TB efficacy so still not a drug.
naphthyridone proclaims to be more active than isoniazid (first line and primary drug) and Gatifloxacin (second line drug) as well as it is potent for the MDR-TB condition as well in the MIC value range of 0.04 to 6.06µM which urges for a more attention towards this series development [61].

Isoniazid derivatives from renewable fatty acid (Figure 7b): in the structure of the conventional proto anti-TB drug both saturated and unsaturated fatty acid chains has been incorporated resulting in improvement in antimicrobial activity with appreciable MIC values. Compound, produced from palmitic acid, could a turning point for the new antibiotic era is being reported [65].

5-nitrothiazolylthiosemicarbazones (Figure 6a): The sensible versatile approach towards the semicarbazone derivative synthesis has bought to a conclusion that all the compound of this synthetic series screened against seven Mycobacterium species (M. tuberculosis, M. smegmatis ATCC14468, M. microti MTCC1727, M. vaccae MTCC997, M. phlei MTCC1724, M. fortuitum MTCC951, M. kansassi MTCC3058) shows moderate to high potency than INH with less cytotoxicity report with less MIC value range for each condition and args for the development of the series and brings in lime of lead optimization step [62].

5-(aryl/cyclohexylsulfanyl)-2-alkoxy-4,6-diarylnicotinonitriles (Figure 6b): The synthesized new variants of nicotinonitriles has been indicated for the potency more than pyrazinamide (first line drug) and ethumbutol (second line drug) with less potency than isoniazid against M. tuberculosis strain [63].

Isoniazid analogues (Figure 7a): A series of compounds are produced for the evaluation which reflects more potent compound development with less MIC values (MIC<10µM) with a range of compounds which proclaims for research lime light fall [64].

Isoniazid derivatives from renewable fatty acid (Figure 7b): in the structure of the conventional proto anti-TB drug both saturated and unsaturated fatty acid chains has been incorporated resulting in improvement in antimicrobial activity with appreciable MIC values. Compound, produced from palmitic acid, could a turning point for the new antibiotic era is being reported [65].

2,4-diaminoquinazoline derivatives (Figure 8 & 9): this versatile series has an attention drawing microbiological profile with bactericidal activity against replicating and non-replicating M. tuberculosis encouraging for the development of the series for bacterial viability [66].

Repurposed drugs

Already present antibiotic drug moieties in the market but indicated primarily for different disease is now being under the consideration for TB drug development process [67,68]. Linezolid (Figure 10a) was trialed for many years as an anti-TB drug molecule but now for the toxicity profile and low safety measures, it has been on hold and the other moieties of same class under being considered for studies [67]. Meropenem (Figure 10b) which is a carbapenem antibiotic indicated for bacterial disease presently, has been reported for having a promising potential and safety profile of acceptable limits in a case control
Tuberculosis: Still a Way to go ahead for a Lead- A Review

study of tuberculosis [69]. Co-trimoxazole (Figure 10c) which is an antibiotic of early stage antibiotic era has been reported for potent activity in multi-drug resistant tuberculosis treatment [70]. Moxifloxacin (Figure 10d) which has shown an appreciable activity along with other standard anti-TB drug can be a potent component in the regimen for drug sensitive tuberculosis for its safety profile and no intractability measures [71]. Nextly, one is the NSAID class compounds which are magical and wonder drugs are being evaluated and found to be potent anti-TB active, specifically, carprofen (Figure 10e) has shown the least MIC values. The efficacy, safety, toxicity and acceptability have reviewed on the animal models which conclude to potentially useful for alleviating the symptoms of TB [72].

![Figure 9: Symbol details used to specify atomic structures in the molecular system.](image)

![Figure 10: Chemical structure of the repurposed drugs for tuberculosis treatment.](image)

Conclusion

Former discussion already has cleared the efforts are being done by different scientists and researchers to find a new time line compounds or a group of compounds with advantages of using in a proper delivery means in single or combination form to establish a new regimen for the cure of present complex conditioned tuberculosis cases. It will be better approach if a group of drugs of different classes with different potential biological activity without inter-interactivity or affect the dosing of each other in in-vivo condition should be the next approach for the cure, treatment and maintenance for the disease. The mechanism of action of the new drugs should be on those bio molecular structures which don’t have alternative pathways easily but not present in human body cells as well but crucial for the bacteria to survive and also defines the bacteria to be the characteristic cell. Those protein structures should be the target site for the drug molecules. Besides another attempt should be made on the molecules which are already present as bactericidal should be checked for their activity on the M. tuberculosis, there resides a possibility that may some molecule has capacity to interact in different way from the reported and known ways. All these means should be fettered in a productive fledge to explicate a way to the treatment for decades.

Conflict of Interest

No conflict of interest.

References

1. http://www.who.int/tb/publications/global_report/en/
2. http://www.who.int/mediacentre/factsheets/fs104/en/
3. www.who.int/tb/country/data/profiles/en/
4. http://www.who.int/tb/publications/global_report/high_tb_burdencountrieslists2016-2020summary.pdf?ua=1
5. http://www.who.int/tb/WHOPolicyStatementSLLPA.pdf
6. https://www.health.ny.gov/diseases/chronic/basicstat.htm
7. http://www.unaids.org/en/resources/fact-sheet
8. https://www.wsj.com/articles/SB10001424127887323320404578213421059138236
9. Matteelli A, Carvalho AC, Dooley KE, Kritski A (2010) TMC207: The first compound of a new class of potent antituberculosis drug Future Microbiol 5(6): 849-858.
10. https://www.fda.gov/
11. Mahajan R (2013) Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res 3(1): 1-2.
12. Goel D (2014) Bedaquiline: A novel drug to combat multiple drug resistant tuberculosis. J Pharmacol Pharmacother 5(1): 76-78.
13. Andries K, Verhaaselt P, Guillemont J, Göhlmann HW, Neefs JM, et al. (2005) A diarylquinoline drug active on ATP synthase of Mycobacterium tuberculosis. Science 307(5707): 223-227.
14. Koul A, Dendouga N, Verguwen K, Molenberghs B, Vrancka L, et al. (2007) Diarylquinolines target subunit C of mycobacterial ATP synthase. Nat Chem Biol 3(6): 320-324.
15. Koul A, Vrancka L, Dendouga N, Balemans W, Van den Wyngaert I, et al. (2008) Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283(37): 25273-25280.
16. Rustomjee R, Diacon AH, Allen J, Venter A, Reddy C, et al. (2008) Early bactericidal activity and pharmacokinetics of the diarylquinolines TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother 52(8): 2831-2835.

Citation: Bose P, Harit AK, Halder KK (2017) Tuberculosis: Still a Way to go ahead for a Lead- A Review. J Anal Pharm Res 5(6): 00161. DOI: 10.15406/japlr2017.05.00161
17. Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008) The promototive force is required for maintaining ATP homeostasis and viability of hypoxic nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 105(33): 11945-11950.

18. Haagasma AC, Abdilahli-Abraham R, Wagner MJ, Krab K, Vergauwen K, et al. (2009) Selection of TMC207 towards microbacterial ATP synthase with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53(3): 1290-1292.

19. Diacon AH et al. (2009) The diarylquinoline TMC207 for multiple drug resistant tuberculosis. N Engl J Med 360: 2397-2405.

20. Huitric E, Verhaest P, Koul A, Andries K, Hoffner S, et al. (2010) Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel Diarylquinolines ATP synthase Inhibitor. Antimicrob Agents Chemother 54(3): 1022-1028.

21. Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RE, et al. (2012) Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug resistant tuberculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother 56(6): 3271-3276.

22. Kawasaki M (2005) Mechanism of action of OPC-67683 against M. tuberculosis. Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAc), Washington, DC: Poster F-1463, USA.

23. Doi N (2006) Characteristic antimicrobial spectra of the novel anti-TB drug candidates OPC-67683 and PA-824. Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAc), San Francisco CA: Poster F1-F1337a, USA.

24. (2008) Tuberculosis (Ednib). OPC-67683, 88(2): 132-133.

25. Mastumoto M, Hashizume H, Tomichige T, Kawasaki M, Tsubouchi H, et al. (2006) OPC-67683, a nitro dihydro imidazoazole derivative with promising derivatives with promising action against tuberculosis in vitro and in mice. PLoS Med 3(11): e466.

26. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, et al. (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by Intracellular NO release. Science 322(5906): 1392-1395.

27. Gler MT, Vija Skripconoka, Epifanio Sanchez-Garavito, Heping Xiao, Jose L Cabrera-Rivero, et al. (2012) Delamanid for Multidrug Resistant Pulmonary Tuberculosis. N Engl J Med 366: 2151-2160.

28. Diacon AH, Dawson R, Hanekom M, Narusky K, Venter A, et al. (2011) Early bactericidal activity of delamanid (OPC-67683) in smear positive multidrug tuberculosis patients. Int J Tuberc Lung Dis 15(7): 949-954.

29. Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, et al. (2013) Delamanid improves outcomes and reduces mortality in multidrug resistant tuberculosis. Eur Respir J 41(6): 1393-1400.

30. Field SK (2013) Safety and efficacy of Delamanid in the treatment of Multidrug-Resistant Tuberculosis (MDR-TB). Clinical Medicine Insights: Therapeutics 5: 137-149.

31. Ryan NJ, Lo JH (2014) Delamanid: First Global Approval. Drugs 74(9): 1041-1045.

32. Xavier AS, Lakshmanan M (2014) Delamanid: A new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother 5(3): 222-224.

33. Lewis JM, Sloan DJ (2015) The role of Delamanid in the treatment of drug resistant tuberculosis. Ther Clin Risk Manag 11: 779-791.

34. Rustomjee R, Zumla A (2015) Delamanid expanded access novel treatment of drug resistant tuberculosis. Infect Drug Resist 8: 359-366.

35. Manjunatha UH, Lahiri R, Randhawa B, Dowd CS, Krakenbuhl JL, et al. (2006) Mycobacterium leprae is naturally resistant to PA-824. Antimicrob Agents Chemother 50(10): 3350-3354.

36. Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, et al. (2012) Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Nat Acad Sci USA 109(35): 14188-14193.

37. Stover CK, Warrner P, VanDevanter DR, Sherman DR, Anin TM et al. (2000) A small molecule nitrimidazopyran drug candidate for the treatment of tuberculosis. Nature 405(6789): 962-966.

38. Carroll MW, Nevin D, Mountz JM, Lee JD, Jeong YJ, et al. (2010) Efficacy and safety of metronidazole for pulmonary multidrug resistant tuberculosis. Antimicrob Agents Chemother 54(8): 3402-3407.

39. Lee RE, Protopopova M, Crooks E, Slayden RA, Terrot M, et al. (2003) Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J Comb Chem 5(2): 172-187.

40. Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA (2007) Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 51(4): 1563-1565.

41. Reddy VM, Einck L, Andries K, Nacy CA (2010) In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob Agents Chemother 54(7): 2840-2846.

42. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, et al. (2012) SQ109 targets MplL3, a membrane transporter of tuberosemonomycate involved in mycolic acid donation to cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56(4): 1797-1809.

43. Makarov V, Manina G, Mukusova K, Moellmann U, Ryabova O, et al. (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking abirinian synthesis. Science 324(5926): 801-804.

44. Neres JJ, Pojer F, Molteni E, Chiarelli LR, Dhar N, et al. (2012) Structural basis for benzothiazinkmediated killing of Mycobacterium tuberculosis. Sci Transl Med 4(150): 150ra121.

45. Treferez C, Rengifo-Gonzalez M, Hinnen MJ, Schneider P, Makarov V, et al. (2010) Benzothiazinones: prodru that covalently modify the decaprenylphosphoryl-beta-D-ribose 2'-epimerase DprE1 of Mycobacterium tuberculosis. J Am Chem Soc 132(39): 13636-13665.

46. Christophe T, Mary Jackson, Hee Kyoung Jeon, Denis Fenistein, Monica Contreras-Dominguez, et al. (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking abirinian synthesis. J Am Chem Soc 132(39): 13636-13665.

47. Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA (2007) Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 51(4): 1563-1565.

48. Reddy VM, Einck L, Andries K, Nacy CA (2010) In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob Agents Chemother 54(7): 2840-2846.

49. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, et al. (2012) SQ109 targets MplL3, a membrane transporter of tuberosemonomycate involved in mycolic acid donation to cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56(4): 1797-1809.

50. Makarov V, Manina G, Mukusova K, Moellmann U, Ryabova O, et al. (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking abirinian synthesis. Science 324(5926): 801-804.

51. Neres JJ, Pojer F, Molteni E, Chiarelli LR, Dhar N, et al. (2012) Structural basis for benzothiazinkmediated killing of Mycobacterium tuberculosis. Sci Transl Med 4(150): 150ra121.

52. Treferez C, Rengifo-Gonzalez M, Hinnen MJ, Schneider P, Makarov V, et al. (2010) Benzothiazinones: prodru that covalently modify the decaprenylphosphoryl-beta-D-ribose 2'-epimerase DprE1 of Mycobacterium tuberculosis. J Am Chem Soc 132(39): 13636-13665.

53. Christophe T, Mary Jackson, Hee Kyoung Jeon, Denis Fenistein, Monica Contreras-Dominguez, et al. (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking abirinian synthesis. J Am Chem Soc 132(39): 13636-13665.
Tuberculosis: Still a Way to go ahead for a Lead- A Review

51. William KN, Brickner SJ, Stover CK, Zhu T, Ogden A, et al. (2009) Addition of PNU-100480 to the first line drugs shortens the time needed to cure murine tuberculosis. Am J Respir Crit Care Med 180(4): 371-376.

52. Swindells S (2012) New drugs to treat tuberculosis. F1000 Med Rep 4: 12.

53. Wallis RS, Rodney Dawson, Sven O. Friedrich, Amour Venter, Darcy Page, et al. (2014) Mycobacterial activity of Sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One 9(4): e94462.

54. Barbachyn MR, Hutchinson DK, Brickner SJ, Cynamon MH, Kilburn JO, et al. (1996) Identification of a novel oxazolidinone (U-1004800) with potent antimycobacterial activity. J Med Chem 39(3): 680-685.

55. Wallis RS, Jakubiec W, Kumar V, Bedarida G, Silvia A, et al. (2011) Biomarker assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis. Antimicrob Agents Chemother 55(2): 567-574.

56. Zhu T, Friedrich SO, Diacon A, Wallis RS, et al. (2014) Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in ex vivo Whole Blood cultures of patients with pulmonary tuberculosis. Antimicrob Agents Chemother 58(6): 3306-3311.

57. Balasubramanian V, Solapure S, Iyer H, Ghosh A, Sharma S, et al. (2014) Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob Agents Chemother 58(1): 495-502.

58. Shaharyar M, Siddiqui AA, All MA, Sriram D, Yogeesswari P (2006) Synthesis and invitro antimycobacterial activity of N1-nicotinoyl-3-4'-hydroxy-3'-methyl-phenyl-5'-[sub]phenyl]-2-pyrazolines. Bioorg Med Chem Lett 16(15): 3947-3949.

59. Ztouni GT (2008) Synthesis and anti-tuberculosis activity of new thiazolylhydrazone derivatives. European Journal of Medicinal Chemistry 43: 981-985.

60. Herzigová P, Klimesová V, Paláš K, Kaustová J, Dahse HM, et al. (2009) Preparation and in-vitro Evaluation of 4-Benzylsulfanylpyridine-2-carboxylic acid derivatives as potential antituberculosis agent. Arch Pharm Chem Life Sci 342(7): 394-404.

61. Dinakaran M, Senthilkumar P, Yogeesswari P, Sriram D (2009) Antitubercular activity of novel benzothiazolo naphthyridone carboxylic acid derivatives endowed with high activity toward multi-drug resistant tuberculosis. Biomed Pharmacother 63(1): 11-18.

62. Sriram D, Perumal Yogeesswari, Palaniappan Senthilkumar, Dewakar Sangaraju, et al. (2010) 5-nitrothiazolyloxythiosemicarbazones: Synthesis and antimicrobial evaluation against tubercular and non-tubercular mycobacterial species. Journal of Enzyme Inhibition and Medicinal Chemistry 25(1): 105-110.

63. Manikannan R (2010) Selective one-pot multicomponent synthesis and anti-tubercular evaluation of 5-(aryl/cyclohexylkylfurfanyl)-2-alkoxy-4,6-diarylnicotinonitriles. Bioorg Med Chem Lett 20: 3352-3355.

64. Ramani AV, Monika A, Indira VL, Karyawardhi G, Venkatesh J, et al. (2012) Synthesis of highly potent novel anti-tubercular isoniazid analogues with premilinary pharmacokinetic evaluation. Bioorg Med Chem Lett 22(8): 2764-2767.

65. Rodrigues MO, Cantos JB, O’oca CR, Soares KL, Coelho TS, et al. (2013) Synthesis and antitubercular activity of Isoniazid derivatives from renewable fatty acid. Bioorg Med Chem 21(22): 6910-6914.

66. Odinline J, O’Malley T, Kesicki EA, Alling T, Bailey MA, et al. (2014) Synthesis and evaluation of the 2,4-diamoquinazoline series as anti-tubercular agents. Bioorg Med Chem 22(24): 6965-6979.

67. Sotgiu G, Centis R, D’Ambrosio L, Alfennar JW, Anger HA, et al. (2012) Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XRD-TB: systematic review and meta-analysis. Eur Respir J 40(6): 1430-1442.

68. Lee M, Lee J, Carroll MW, Choi H, Min S, et al. (2012) Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 367(16): 1508-1518.

69. De LS, Alfennar JW, Sotgiu G, Centis R, D’Ambrosio L, et al. (2013) Efficacy and safety of meropenem/clavulanate added to linezolid containing regimens in the treatment of MDR/XDR-TB. Eur Respir J 41(6): 1386-1392.

70. Akraa N, van Altena R, Pranger AD, van Soolingen D, de Lange WC, et al. (2013) Evaluation of co-trimoxazole in treatment of multi-drug resistant tuberculosis. Eur Respir J 42(2): 504-512.

71. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, et al. (2014) Four-month Moxifloxacin-based regimens for drug-sensitive non-tuberculous mycobacterial species. N Engl J Med 371(17): 1577-1587.

72. Maitra A, Bates S, Shaik M, Evangolepoulos D, Abubakar I, et al. (2016) Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs. Br Med Bull 118(1): 136-148.