Quantum electronic transport across ‘bite’ defects in graphene nanoribbons

Michele Pizzochero¹², Kristián Cernevič², Gabriela Borin Barin⁶, Shiyong Wang¹, Pascal Ruffieux³, Roman Fasel¹⁵ and Oleg V Yazyev¹²∗

¹ Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
² National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
³ School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
⁴ Nanotech@Surfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-8600 Dübendorf, Switzerland
⁵ Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
⁶ These authors contributed equally to this work.
∗ Authors to whom any correspondence should be addressed.

E-mail: mpizzochero@g.harvard.edu and oleg.yazyev@epfl.ch

Keywords: graphene nanoribbons, defects, electronic transport, on-surface synthesis, DFT calculations

Supplementary material for this article is available online

Abstract

On-surface synthesis has recently emerged as an effective route towards the atomically precise fabrication of graphene nanoribbons (GNRs) of controlled topologies and widths. However, whether and to what degree structural disorder occurs in the resulting samples is a crucial issue for prospective applications that remains to be explored. Here, we experimentally visualize ubiquitous missing benzene rings at the edges of 9-atom wide armchair nanoribbons that form upon cleavage of phenyl groups in the precursor molecules. These defects are referred to as ‘bite’ defects. First, we address their density and spatial distribution on the basis of scanning tunnelling microscopy and find that they exhibit a strong tendency to aggregate. Next, we explore their effect on the quantum charge transport from first-principles calculations, revealing that such imperfections substantially disrupt the conduction properties at the band edges. Finally, we generalize our theoretical findings to wider nanoribbons in a systematic manner, hence establishing practical guidelines to minimize the detrimental role of such defects on the charge transport. Overall, our work portrays a detailed picture of ‘bite’ defects in bottom-up armchair GNRs and assesses their effect on the performance of carbon-based nanoelectronic devices.

1. Introduction

The first isolation of graphene over a decade ago sparked a number of new avenues for designing next-generation devices in the ultimate limit of miniaturization [1]. Being a highly flexible, mechanically robust two-dimensional sheet featuring massless Dirac fermions and ambipolar ballistic transport of charge carriers over microscopic length scales [2–4], graphene has qualified as a promising candidate for prospective applications in novel carbon-based electronics [5]. Yet, the success of graphene-based logic devices has been severely hampered by the lack of a band-gap in its low-energy electronic spectrum [1, 4], hence hindering the realization of sizable on–off current ratios.

Within the wealth of strategies that has been devised to promote a band-gap opening in graphene [6–9], quantum confinement of charge carriers—resulting in one-dimensional graphene nanoribbons (GNRs)—is arguably the most effective one [10, 11]. Conventionally, GNRs have been realized in a ‘top-down’ fashion by either nanolithographing graphene flakes or unzipping nanotubes [12, 13], yielding either irregular nanoribbons with disordered edges or providing little control over their width and chirality. The field has experienced a new renaissance with the first compelling demonstration of a ‘bottom-up’
approach that relies on the synthetic polymerization and subsequent cyclodehydrogenation of precursor molecules deposited on metallic surfaces [14]. Since then, by carefully selecting the precursor monomers, a large number of diverse nanoribbons with desired topologies, edge shapes and widths has been manufactured [15–17], thereby achieving a large degree of tunability over their electronic properties [10, 11, 18–21]. Remarkably, such a bottom-up approach has created the opportunity of assembling more complex two- [22, 23] and multi-terminal [14] junctions as well as heterojunctions [24–26] of GNRs, potentially paving the way towards all-carbon nanocircuitry [27–32].

Owing to their mechanical robustness, long-term stability under ambient conditions, easy transferability onto target substrates [33], fabrication scalability [34], and suitable band-gap width [35], 9-atom wide armchair graphene nanoribbons (9-AGNRs) have emerged among the most promising candidates to be integrated as active channels in field-effect transistors (FETs). In particular, among the graphene-based electronic devices realized so far, 9-AGNR-FETs are those displaying the highest performance, with 1 µA on-currents and 105 Ω on-off current ratio at drain voltage $V_D = -1$ V [19]. Although the detrimental role of defects on electronic devices is well known, the performance of current GNR-FETs is limited by significant Schottky barriers at the contacts, which have prevented an experimental characterization of the impact of GNR edge defects on the device performance. In fact, to what extent structural disorder is present in atomically precise GNRs is an issue which has not been settled to date, despite its crucial consequence on the resulting devices.

Here, we combine experimental and theoretical efforts to investigate defects in bottom-up AGNRs, with a special focus on 9-AGNRs. By means of scanning-tunnelling and atomic-force microscopies (AFMs), we identify missing benzene rings at the edges as abundant defects, and additionally underline their effect on the charge transport on the basis of extensive first-principles calculations. Overall, our work offers an unprecedented view on the nature of the structural disorder in synthetic AGNRs, which is instrumental to the realization of novel carbon-based electronic devices.

2. Results and discussion

We synthesize 9-AGNRs by relying on the coupling and subsequent cyclodehydrogenation of 3′, 6′-di-iodine-1,1′,2′,1′′-terphenyl (DITP) precursor molecule on the Au (111) surface [34], as we further detail in section 4. A representative scanning tunnelling microscopy (STM) image overviewing the resulting products is shown in figure 1(a). An additional STM image is given in supplementary figure S1 (available online at stacks.iop.org/2DM/8/035025/mmedia). It can be clearly observed that 9-AGNRs invariably exhibit missing atoms at the edges as a predominant type of disorder. We inspect the atomic structure of such defects through non-contact AFM (NC-AFM) imaging, as displayed in figure 1(b). Our result reveals that these defects—that we dub ‘bite’ defects—consist of a missing benzene ring, and we estimate their density to 0.19 ± 0.10 nm$^{-1}$. Such ‘bite’ defects originate from the C–C bond scission that occurs during the cyclodehydrogenation step of the reaction [35], as we show in supplementary figure S2. Similar defects have also been observed in chevron-edged GNRs synthesized from 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene precursors, and their formation was correlated with the cyclization of multiple flexible phenyl rings against each other [14, 36].

Furthermore, we study the spatial distribution of ‘bite’ defects. In figures 1(c) and (d), we give the pair distribution function (i.e. the normalized number of pairs of bite defects located at a given relative distance) of ‘bite’ defects forming either at the same edge (figure 1(c)) or at opposite edges (figure 1(d)). A representative STM image of each of the two configurations is also shown in the corresponding insets. Our analysis demonstrates that ‘bite’ defects strongly tend to agglomerate within approximately 2 nm, irrespective of whether the same or opposite edges are considered. Additionally, we found that the number of defects forming at the same edge is double than that forming at opposite edges, indicating that an edge selectivity is operative. Overall, we observe that ‘bite’ defects preferentially form close to each other at the same edge of 9-AGNRs.

With this systematic experimental exploration of ‘bite’ defects in AGNRs at hand, we next address their effect on the quantum charge transport by combining density-functional theory calculations with non-equilibrium Green’s function technique (see section 4). We start considering a single defect in 9-AGNR, the atomic structure of which is displayed in figure 2(a). In figure 2(b), we show the zero-bias conductance spectrum of a defective 9-AGNR, and additionally compare our result with that of the pristine nanoribbon that shows ideal conductance quantization. It is found that the introduction of a ‘bite’ defect leads to a pronounced decrease of the conductance at the band edges. The conductance profiles are very similar at the edges of both the valence and conduction bands, but the electron–hole asymmetry becomes more pronounced at higher energies. In order to quantify the conductance suppression effect, we introduce a descriptor, τ, which estimates the fraction of the conductance which is preserved in the vicinity (δE) of the valence band maximum (VBM) and conduction band minimum (CBM) upon the defect formation as:
Figure 1. STM and NC-AFM characterization of 9-AGNRs on Au(111). (a) STM topography image of 9-AGNRs (LHe, -1.5 V, 0.01 nA). Notice the ubiquitous presence of missing atoms at the edges. (b) Laplace-filtered NC-AFM image acquired with a CO-functionalized tip (0.01 V, 0.002 nA) of a ‘bite’ defect in 9-AGNR. Scale bar is 1 nm. (c), (d) Positional correlation analysis of ‘bite’ defects in 9-AGNRs, i.e. normalized frequency of occurrence (f) of relative distance between ‘bite’ defects (d) forming at the same edge (c) or opposite edges (d). Insets show STM images of representative configuration of defects pair.

$$\tau = \int_{\text{CBM} + \delta E}^{\text{VBM} - \delta E} \frac{G_d(E) dE}{\int_{\text{CBM} + \delta E}^{\text{VBM} - \delta E} G_p(E) dE} \%, \quad (1)$$

with $G_p(E)$ and $G_d(E)$ being the conductance of the defective and pristine AGNRs, respectively. Here and below, we assume $\delta E = 0.10$ eV and find $\tau = 26\%$, thus indicating a considerable reduction of the conductance due to the presence of a ‘bite’ defect at the edge of 9-AGNRs. We have verified that the values of τ obtained are rather insensitive to the choice of δE.

We extend our investigation through the determination of the charge transport properties under finite bias voltages. Figure 2(c) compares the I–V characteristics of a 9-AGNR with and without a ‘bite’ defect. In both cases, currents arise when the applied bias voltage exceeds in magnitude the width of the bandgap (~ 1 eV at the adopted level of theory). Within this regime, zero-energy contributions emerge in the conductance spectra shown in figures 2(d) and (e), hence signalling the enhancement of the tunnelling probability induced by the increase of the bias voltage. The current grows with the applied bias voltage following a nearly cubic scaling, as supported by the excellent agreement between the results of our calculations and the fit to the Simon’s formula appropriate to the intermediate-voltage range, $I \propto (V + V^3)$ [37, 38], as displayed in figure 2(c). The sign of the applied bias voltage is found to be irrelevant for shaping the evolution of both the current (figure 2(c)) and conductance (figures 2(d) and (e)), as a consequence of the electron–hole symmetry which is largely retained in a wide energy interval in the defective lattice. The main difference in the I–V characteristics of pristine and defective 9-AGNR traces back to the current intensities, which are found to be diminished by one order of magnitude upon the formation of a ‘bite’ defect. We remark that the current intensities observed in actual experiments are significantly lower than those resulting from our first-principles calculations [19, 29], likely due to the presence of Schottky barriers at the contacts. Overall, our findings clearly pinpoint the detrimental role that ‘bite’ defects play on the electronic transport properties of 9-AGNRs.

We then address the formation of pairs of ‘bite’ defects, either at the same edge or at the opposite edges of the nanoribbon, of the kind shown in the insets of figures 1(c) and (d). The configurations considered are presented in figure 3(a), and consist in introducing a second defect at increasing distances (up to 1 nm) from the first defective site. We assess the relative stability of ‘bite’ defects through the determination of their formation energy E_{form}, which is the primary quantity of interest when thermodynamic equilibrium prevails. As GNRs are binary
completely the introduction of defects changes the nominal stoichiometry, thus rendering E_{form} a linear function of the chemical potential μ of the constituent elements 39. The formation energy reads:

$$E_{\text{form}}(\mu) = E_d - E_p - n_H\mu_H + n_C\mu_C,$$

(2)

with E_d and E_p being the total energies of the defective and pristine models, respectively, n_H (n_C) the number of added (removed) H (C) atoms required to create the defect, while μ_C and μ_H are the corresponding chemical potentials. As usual, we assume that C and H are in thermal equilibrium with AGNRs of general formula C_yH_x through the equality $\mu_{C,H} = x\mu_C + y\mu_H$, where graphene and molecular hydrogen are assumed to be the reference systems for the determination of the chemical potential reservoirs. In figure 3(b), we present the formation energy of pairs of 'bite' defects. Our calculations indicate that their stability is enhanced when two defects are in proximity to each other (that is, sites α and β), with the formation energy attaining the lowest value when the second defect forms at nearest-neighbouring site (α) at the same edge. In contrast, when the distance between the two defects is larger than \sim9 Å (i.e. sites γ, δ, ϵ), E_{form} reaches its maximum and remains practically constant. The comparison of the results in figure 3(b) with twice the formation energy of a single 'bite' defect (0.64 and 0.16 eV in H-rich and C-rich conditions, respectively), suggests that, under thermodynamic equilibrium, 'bite' defects exhibit a tendency to aggregate at shortest distances (positions α and β), but the interaction is negligible at larger distances. From a qualitative point of view, this theoretical result parallels the experimental analysis of figure 1, although formation energies reflect the stability of defects under equilibrium, whereas the synthesis of 9-AGNRs (and of the defects emerging therein) is largely governed by the kinetic control.

In figure 4, we overview the conductance spectra of pairs of 'bite' defects in each of the ten configurations considered. In all cases, the conductance in the vicinity of the band edges is further reduced as compared to that of the nanoribbon containing either a single or no 'bite' defect. However, the degree to which this reduction occurs is largely controlled by the relative position of the defects. This can be clearly observed in figure 3(c), in which we report the values of the descriptor τ given in equation (1) for pairs of 'bite' defects. Depending on whether the defects are introduced at the same edge or at opposite edges, two distinct situations are identified. On the one hand, for defects forming at the same edges, τ decreases as the distance between defects increases. Specifically, the formation of a second defect at the α site preserves the largest amount of conductance ($\tau = 18\%$, only slightly lower than the value obtained in the single 'bite' defect case discussed above,
Figure 3. (a) Atomic structure of a single 'bite' defect in 9-AGNR, along with the lattice sites at which the introduction of a second 'bite' defect is introduced. (b) Formation energies of a pair of 'bite' defects forming at the sites given in panel (a) under C-rich and H-rich conditions, with defects forming at the same (opposite) edge(s) given in red (blue). (c) Evolution of the τ descriptor (given in equation (1)) for pair of 'bite' defects forming at the lattice sites given in panel (a), either at the same edge (red) or opposite edges (blue).

Figure 4. Conductance spectra of pairs of 'bite' defects (red) forming at (a) the same edge and (b) opposite edges, labelled according to figure 3(a). Upper panels show the atomic structure of the defects configuration considered in each case. Also given for comparative purposes are the conductance spectra of 9-AGNR either in the pristine case (grey) and hosting a single 'bite' defect (light blue).
Figure 5. (a) Formation energy and (b) τ of a single ‘bite’ defect in armchair graphene nanoribbons as a function of the increasing width n. (b) Local density of states 0.05 eV below the valence band edge of defective (left panels) and pristine (right panels) armchair nanoribbons in (c) 9-, (d) 10-, and (e) 11-AGNR, as obtained at the tight-binding level of theory.

$\tau = 26\%$). It is worth noticing in this context that this configuration is the thermodynamically stable one, see figure 3(b). On the other hand, the formation of a pair of defects at opposite edges yields an almost complete suppression of the conductance in the vicinity of the band edges ($\tau \approx 2\%$), with τ being insensitive to the specific defects configuration. Additional results concerning the stability and conductance of pairs of ‘bite’ defects at opposite edges of AGNR are given in the supplementary figures S3 and S4.

We next generalize our findings by comprehensively investigating the dependence of the stability and charge transport of ‘bite’ defects on the width of the AGNR. We consider a range of widths (n) spanning an interval from 6 up to 26 atoms. The calculated properties show clear multiple-of-3 oscillations (figures 5(a) and (b)), therefore we group the nanoribbons into the $n = 3p$, $3p + 1$ and $3p + 2$ families according to their width, where p is a positive integer ($2 \leq p \leq 8$ in the considered range of n). The stability of ‘bite’ defects as a function of the increasing width of the hosting AGNR is given in figure 5(a). The formation energy is highly sensitive to n. Specifically, this value increases with n in the 3p family, whereas it decreases when $n = 3p + 1$ or $3p + 2$. In all families, however, it remains approximately constant when the width is larger than 17 atoms. This finding suggest that, under thermodynamic equilibrium, narrow armchair nanoribbons belonging to the 3p family are the most susceptible systems to ‘bite’ defects. The enhanced stability of ‘bite’ defects in the 3p family can be interpreted in terms of Clar’s rule, see supplementary figure S5. For $n = 3p$, there exists a unique Clar’s formula whereas multiple energy-degenerate Clar’s formula can be conceived for $n \neq 3p$. The formation of the defect requires four C–C bonds to break. In the case of $n = 3p$, these bonds have lower bond order, whereas for $n \neq 3p$ their bond order is (on average) higher. Therefore, a larger energy cost is needed to create the ‘bite’ defect in AGNRs of width $n \neq 3p$.

Finally, we broaden our study by addressing the charge transport in defective AGNRs of varying width. The conductance spectra upon ‘bite’ defect formation in the 3p, 3p + 1 and 3p + 2 families are shown in figure 6. From a qualitative point of view, the disruption of the conductance is seen to be milder in wider nanoribbons as compared to the narrower ones. However, for a given value of p, the conductance in the vicinity of the band edges of 3p armchair nanoribbons undergoes the most drastic reduction. These effects can be translated on a quantitative basis through the determination of τ as a function of n, as given in figure 5(b). As far as the transport properties are concerned, the conductance increases with increasing the nanoribbon width, with τ exceeding 85% in the case of AGNRs of n larger than 22 atoms. This naturally reflects the decrease of edge-to-bulk ratio, end hence the effect of edge defects, upon increasing the width. Of the three families, however, we found that the conductance is the most strongly reduced in the 3p one. Indeed, τ is approximately halved in the 3p family as compared to both 3p + 1 and 3p + 2, when the same value of p is considered.

We rationalize the largest ‘bite’ defect-induced disruption of the conductance observed in the 3p family in terms of localization effects. In figures 5(c)–(e) we present the local density of states calculated at the tight-binding level (see section 4 and supplementary figure S6) slightly below the valence band edge for both pristine and defective 9-, 10-, and 11-AGNR, as representative members of 3p, 3p + 1, 3p + 2 families, respectively (see supplementary figures S7 and S8 for additional results).
Figure 6. Conductance spectra of pristine (grey area) and defective (coloured lines) armchair graphene nanoribbons for different widths, grouped according to their width into the 3p (red lines), 3p + 1 (green lines), and 3p + 2 (blue lines) families.

Already in the pristine armchair nanoribbons, the local density of states behaved differently in the three families, being mostly localized on the two inner (outer) edge atoms in the 3p (3p + 1) family, and rather uniformly distributed on the edges of the 3p + 2 family. Upon the introduction of the 'bite' defect, in 3p-AGNR we observe the emergence of a pronounced localization on the sublattice that is the closest to the defect, strongly affecting the local density of states across the entire width, and eventually leading to a significant decrease of the conductance. In contrast, albeit a weaker localization around the 'bite' defect is observed in the 3p + 1 and 3p + 2 families as well, the local density of states far from the defective site is substantially less altered in these systems, closely resembling that of the corresponding pristine nanoribbons. Furthermore, we notice that such localization effects become less relevant when the width of the nanoribbon is increased (see supplementary figure S7). Indeed, at larger values of \(n \), the local density of states in the regions far from the defective site remains nearly unperturbed, thereby explaining the sizable recovery of conductance at the band edges in wide AGNRs containing a 'bite' defects, as presented in figure 5(b).

3. Summary and conclusions

In summary, we have experimentally identified the 'bite' defects, i.e. missing benzene rings at the edges, as the predominant source of atomic-scale disorder in atomically precise 9-atom-wide AGNRs. These defects form upon phenyl-ring cleavage occurring during the cyclo-dehydrogenation step of their synthesis, and exhibit a substantial tendency to aggregate within \(\sim 2 \) nm. Our first-principles calculations reveal that 'bite' defects dramatically disrupt the charge transport of 9-AGNRs by reducing the conductance in the vicinity of the band edges from 74% up to 98%, depending on the number and configuration of defects considered. Additionally, we have expanded our theoretical investigation to \(n \)-AGNR (with \(6 \leq n \leq 26 \)), and found that conduction properties become less sensitive to 'bite' defects in wider nanoribbons and specifically in those belonging to the 3p + 1 and 3p + 2 families. Altogether, we suggest that the precursor molecule or the conditions employed in the 9-AGNRs synthesis need to be re-examined in order to fabricate 'bite' defect-free nanoribbons for high-performance applications in electronic devices. Alternatively, \(n \)-AGNRs with \(n \neq 3p \) qualify as better candidates to minimize the impact of such structural disorder on the electronic properties. To conclude, our work uncovers the role of ‘bite’ defects on the charge transport of AGNRs and establishes useful guidelines to mitigate their detrimental impact on the resulting electronic devices.

4. Methods

4.1. Experimental

9-AGNRs were synthesized from DITP as the precursor monomer under ultrahigh vacuum conditions [34]. First, the Au(111) (MaTeck GmbH) surface was cleaned by repeated cycles of Ar\(^+\) sputtering (1 keV) and annealing (470 °C). Next, the precursor molecules were thermally evaporated (95 °C) on the clean surface. Finally, the substrate was heated (0.5 °C s\(^{-1}\)) up to 200 °C with a 10 min holding time to activate the polymerization reaction, followed by annealing at 400 °C (0.5 °C s\(^{-1}\) with a holding time of 10 min) to form the GNRs via cyclo-dehydrogenation of the polyphenylene precursors. A total of 445 pair of defects in the same edge and 225 pair of defects in opposite edges were analysed using Igor Pro.
4.2. First-principles calculations

First-principles calculations have been performed within the density-functional theory framework, as implemented in SIESTA [42]. We treated the exchange and correlation effects under the generalized gradient approximation of Perdew et al [43]. Core electrons were described by separable norm-conserving pseudopotentials [44], while the Kohn–Sham wavefunctions of valence electrons were expanded in a linear combination of atomic orbitals of double-\(\zeta\) polarization (DZP) quality. Real space integrations have been performed with a 450 Ry mesh cutoff. The Brillouin zone was sampled with the equivalent of 21 \(\times\) 1 \(\times\) 1 k-mesh per unit cell in all cases but transport calculations, for which it was increased to 400 \(\times\) 1 \(\times\) 1. We optimized the atomic coordinates until the residual force acting on each atom converges to 0.01 eV Å\(^{-1}\). We introduced single ‘bite’ defects in otherwise pristine 7 \(\times\) 1 \(\times\) 1 supercells of 9-AGNR of increasing widths (6 \(\leq n \leq 26\)), containing from 112 (6-AGNR) to 392 atoms (26-AGNR). Pairs of ‘bite’ defects in 9-AGNR are modelled in a 14 \(\times\) 1 \(\times\) 1 supercell containing 308 atoms. Replicas along non-periodic directions are separated by a vacuum region larger than 10 Å.

4.3. Tight-binding calculations

We relied on a tight-binding model Hamiltonian with one \(p_z\) orbital per carbon atom with the help of kwant package [45]. The Hamiltonian is expressed as \(H = \sum_{\langle i,j \rangle} \epsilon_i c_i^\dagger c_j + \sum_i (\epsilon_i c_i^\dagger c_i + H.c.),\) where \(\epsilon_i\) is the on-site energy acting on the \(i\)-th site, \(t\) the nearest-neighbour hopping integral, \(c_i^\dagger (c_i)\) the operator that creates (annihilates) an electron on site \(i\) [4]. As proposed in [46], we included first, second, and third nearest-neighbour hopping integrals with corresponding values of \(-2.70, -0.20,\) and \(-0.18\) eV, respectively, while on-site repulsion is neglected. This tight-binding Hamiltonian yields results in excellent accord with density-functional theory calculations, as we show in the supplementary figure S6.

4.4. Quantum electronic transport calculations

In order to investigate the quantum transport properties of AGNRs, Hamiltonians obtained from density-functional theory and tight-binding calculations were next combined with the non-equilibrium Green’s function formalism, as implemented in TRANSIESTA [47] and kwant [45], respectively. In all transport calculations, the leads consist of pristine AGNRs. As is customary, the transmission coefficient \(T(E)\) of charge carriers of energy \(E\) flowing from the source to the drain electrode is determined through the usual \(T(E) = \text{Tr}[\Gamma_{L}(E)G^{\text{R}}(E)\Gamma_{R}G^{\text{L}}(E)],\) where
\[
\Gamma_{L,R} = \left[\Sigma_{L,R} - \Sigma^{\text{R}}_{L,R}\right],
\]
and the broadening function originating from to the coupling between the source (L) and the drain (R) electrodes separated by the central scattering region, as quantified by the self-energies \(\Sigma_{L,R},\) and \(G^\text{R} = [(E - H - \Sigma_{L} - \Sigma_{R})^{-1}]\) is the retarded Green’s function, with \(H\) and \(S\) being the Hamiltonian and the overlap matrix, respectively. From the obtained \(T(E)\), the conductance \(G(E)\) is achieved using the Landauer formula, that is \(G(E) = G_0 \int T(E) - \frac{\partial T(E)}{\partial E} dE,\) where \(G_0 = \frac{e^2}{h}\) is the conductance quantum and \(f(E, T)\) is the Fermi–Dirac distribution at a given electronic temperature \(T\). Finite-bias calculations have been performed in a self-consistent manner.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgements

M P acknowledges Yifei Guan for fruitful interactions and QuanSheng Wu at EPFL for technical assistance. M P, K C and O V Y are financially supported by the Swiss National Science Foundation (Grant No. 172543) and NCCR MARVEL. M P is partly supported by the Swiss National Science Foundation through the Early Postdoc. Mobility program (Grant No. P2ELP2-191706), G B B, P R, and R F acknowledge funding by the Swiss National Science Foundation under the Grant No. 20PC21-155644, the European Union Horizon 2020 research and innovation program under Grant Agreement No. 785219 (Graphene Flagship Core 2), and the Office of Naval Research BRC Program under the Grant N00014-12-1-1009. First-principles calculations have been performed at the Swiss National Supercomputing Center (CSCS) under the Project s1008.

ORCID iDs

Michele Pizzochero https://orcid.org/0000-0003-3948-8202
Kristiāns Ķerņevics https://orcid.org/0000-0001-8373-5454
Gabriela Borin Barin https://orcid.org/0000-0002-1069-6182
Pascal Ruffieux https://orcid.org/0000-0001-5729-5354
Roman Fasel https://orcid.org/0000-0002-1553-6487
Oleg V Yazyev https://orcid.org/0000-0001-7281-3199

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666
[2] Meunier Y, Souza Filho A G, Barros E B and Dresselhaus M S 2016 Physical properties of low-dimensional sp²-based carbon nanostructures Rev. Mod. Phys. 88 025005
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A...
2005 Two-dimensional gas of massless Dirac fermions in graphene Nature 438 197

[4] Castro Neto A, Guinea F, Peres N, Novoselov K and Geim A 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109

[5] Areshkin D A and White C T 2007 Building blocks for integrated graphene circuits Nano Lett. 7 3253

[6] Balog R et al 2010 Bandgap opening in graphene induced by patterned hydrogen adsorption Nat. Mater. 9 315

[7] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening ACS Nano 2 2301

[8] Zhang Y, Tang T T, Girir C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F P 2009 Direct observation of a widely tunable bandgap in bilayer graphene Nature 459 820

[9] Achilli S, Tantardini G F and Martinazzo R 2014 Hydrogen-dimer lines and electron waveguides in graphene Phys. Chem. Chem. Phys. 16 17610

[10] Son Y W, Cohen M I and Louie S G 2006 Energy gaps in graphene nanoribbons Phys. Rev. Lett. 97 216803

[11] Yazey O V A 2013 Guide to the design of electronic properties of graphene nanoribbons Acc. Chem. Rev. 46 2319

[12] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Energy band-gap engineering of graphene nanoribbons Phys. Rev. Lett. 98 216805

[13] Jiao L, Zhang L, Wang X, Diankov G and Dai H 2009 Narrow graphene nanoribbons from carbon nanotubes Nature 458 877

[14] Cai J et al 2010 Atomically precise bottom-up fabrication of graphene nanoribbons Nature 466 470

[15] Yano Y, Mitoma N, Ito H and Itami K A 2020 Quest for structurally uniform graphene nanoribbons: synthesis, properties and applications J. Org. Chem. 85 4

[16] Liu J et al 2015 Toward cove-edged low band gap graphene nanoribbons J. Am. Chem. Soc. 137 6097

[17] Vo T H et al 2014 Large-scale solution synthesis of narrow graphene nanoribbons Nat. Commun. 5 3189

[18] Chen Y-C, Cao T, Chen C, Pedramrazi Z, Haberer D, de Oteyza D G, Fischer F R, Louie S G and Crommie M F 2015 Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions Nat. Nanotechnol. 10 156

[19] Lillas J P et al 2017 Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons Nat. Commun. 8 633

[20] Gröning O et al 2018 Engineering of robust topological quantum phases in graphene nanoribbons Nature 560 209

[21] Pizzochero M and Kaxiras E 2021 Imprinting tunable π-electron systems in graphene nanoribbons via edge extensions J. Phys. Chem. Lett. 12 1214

[22] Blankenburg S, Cai J, Ruffieux P, Jaafar R, Passerone D, Feng X, Müllen K, Fasel R and Pignedoli C A 2012 Intraribbon heterojunction formation in ultrananarrow graphene nanoribbons ACS Nano 6 2020

[23] Ma C, Xiao Z, Huang J, Liang L, Lu W, Hong K, Sumpter B G, Bernholc J and Li A-P 2019 Direct writing of heterostructures in single atomically precise graphene nanoribbons Phys. Rev. Mater. 3 016001

[24] Bronner C et al 2018 Hierarchical on-surface synthesis of graphene nanoribbon heterojunctions ACS Nano 12 2193

[25] Nguyen G D et al 2017 Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor Nanotechnol. 12 1077

[26] Cai J et al 2014 Graphene nanoribbon heterojunctions Nat. Nanotechnol. 9 896

[27] Jacobsen P H, Kimouche A, Gebraad T, Ervasti M M, Thijsen J M, Liljeroth P and Swart I 2017 Electronic components embedded in a single graphene nanoribbon Nat. Commun. 8 119

[28] Kang J, Sarkar D, Khatami Y and Banerjee K 2013 Proposal for all-graphene monolithic logic circuits Appl. Phys. Lett. 103 083113

[29] Martini L et al 2019 Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes Carbon 146 36

[30] Sun Q et al 2020missive dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary Adv. Mater. 32 1906054

[31] El Abbassi M et al 2020 Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors ACS Nano 14 5734

[32] Černević K, Yazey O V and Pizzochero M 2020 Electronic transport across quantum dots in graphene nanoribbons: toward built-in gap-tunable metal-semiconductor-metal heterojunctions Phys. Rev. B 102 2014006

[33] Borin Barin G et al 2019 Surface-synthesized graphene nanoribbons for room temperature switching devices: substrate transfer and ex situ characterization ACS Appl. Nano Mater. 2 2184

[34] Di Giovanniantonia M et al 2018 On-surface growth dynamics of graphene nanoribbons: the role of halogen functionalization ACS Nano 12 74

[35] Talirz L et al 2017 On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons ACS Nano 11 1380

[36] Costa P S, Teeter J D, Enders A and Sinitiski A 2018 Chevron-based graphene nanoribbon heterojunctions: localized effects of lateral extension and structural defects on electronic properties Carbon 134 310

[37] Simmons J G 1963 Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film J. Appl. Phys. 34 1793

[38] Simmons J G 1963 Electric tunnel effect between dissimilar electrodes separated by a thin insulating film J. Appl. Phys. 34 2581

[39] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and Van de Walle C E 2014 First-principles calculations for point defects in solids Rev. Mod. Phys. 86 253

[40] Solé M 2013 Forty years of Clar’s aromatic π-sextet rule Front. Chem. 1 22

[41] Wasmann T, Seitsonen A P, Saitta A M, Lazzeri M and Mauri F 2010 Clar’s theory, π-electron distribution and geometry of graphene nanoribbons J. Am. Chem. Soc. 132 3440

[42] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejon P and The S-P D 2002 SIESTA method for ab initio order-N materials simulation J. Phys.: Condens. Matter. 14 2745–79

[43] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865

[44] Troullier N and Martins J L 1991 Efficient pseudopotentials for plane-wave calculations Phys. Rev. B 43 1993

[45] Groth W, Wimmer M, Akhmerov A R and Waintal X 2014 Kwant: a software package for quantum transport New J. Phys. 16 063065

[46] Hancock Y, Uppstu A, Salorius K, Harju A and Puska M J 2010 Generalized tight-binding transport model for graphene nanoribbon-based systems Phys. Rev. B 81 245402

[47] Papior N, Lorente N, Frederiksen T, Garcia A and Brandrup M 2017 Improvements on non-equilibrium and transport Green function techniques: the next-generation TRANSIESTA Comput. Phys. Commun. 212 8