Supplementary Material for

Synthesis of Tetraphenylporphyrinate Manganese(III) Siloxides by Silyl Group Transfer from Silanethiols

Daniel J. Meininger, Zeiph Kasrawi, Hadi D. Arman, and Zachary J. Tonzetich*

Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA

zachary.tonzetich@utsa.edu

Contents

Figure/Sentence	Pages
Figure S1. 1H NMR spectrum of [Mn(OSiPr$_3$)(TPP)].	S2
Figure S2. 1H NMR spectra of [Mn(OAc)(TPP)] and [Mn(OSiPr$_3$)(TPP)].	S3
Figure S3. 1H NMR spectrum of [Mn(OSiPh$_3$)(TPP)].	S4
Figure S4. Electronic absorption spectrum of [Mn(OSiPr$_3$)(TPP)].	S5
Figure S5. Electronic absorption spectrum of [Mn(OSiPh$_3$)(TPP)].	S6
Figure S6. HRMS of [Mn(OSiPr$_3$)(TPP)].	S7
Figure S7. HRMS of [Mn(OSiPh$_3$)(TPP)].	S8

Table S1. Crystallographic data and refinement parameters. | S9 |
Figure S1. 500 MHz 1H NMR spectrum of [Mn(OSiPr$_3$)(TPP)] in benzene-d$_6$ showing peak assignments. Asterisk denotes resonance due to C$_6$D$_5$H. The peaks between 0 and 5 ppm include resonances attributable to toluene and pentane from recrystallization.
Figure S2. Overlay of the 500 MHz 1H NMR spectra of [Mn(OAc)(TPP)] (red) and [Mn(OSi$_3$Pr$_3$(TPP)] (blue) in benzene-d_6 showing the upfield shift of the pyrrolic resonance upon substitution of the acetate group for the siloxide.
Figure S3. 500 MHz 1H NMR spectrum of [Mn(OSiPh$_3$)(TPP)] in benzene-d$_6$ showing peak assignments. Asterisk denotes resonance due to C$_6$D$_5$H. The cross denotes peaks due to excess HSSiPh$_3$.
Figure S4. Electronic absorption spectrum of [Mn(OSiPr$_3$)(TPP)] in toluene.
Figure S5. Electronic absorption spectrum of [Mn(OSiPh₃)(TPP)] in toluene.
Figure S6. HRMS (APCI, negative mode) of [Mn(OSi^iPr_3)(TPP)].

\[[M]^- = 840.3080 \]
Figure S7. HRMS (APCI, negative mode) of [Mn(OSiPh₃)(TPP)].
Table S1. Crystallographic data and refinement parameters for [Mn(OSiPr$_3$)(TPP)] and [Mn(OSiPh$_3$)(TPP)].

Compound	[Mn(OSiPr$_3$)(TPP)]	[Mn(OSiPh$_3$)(TPP)]
Empirical formula	C$_{53}$H$_{49}$MnN$_4$Si	C$_{62}$H$_{43}$MnN$_4$Si
Formula weight (g/mol)	840.99	943.03
Temperature (K)	98(2)	293(2)
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Unit cell dimensions (Å)		
a = 12.482(3)	a = 11.953(5)	
b = 13.124(4)	b = 13.955(6)	
c = 14.834(3)	c = 16.102(8)	
α = 75.206(17)	α = 101.262(8)	
β = 65.422(13)	β = 109.513(6)	
γ = 85.016(16)	γ = 93.035(7)	
Volume (Å3)	2136.1(9)	2463(2)
Z	2	2
Calculated density (g/cm3)	1.308	1.272
Absorption coefficient (mm$^{-1}$)	0.382	0.340
F(000)	884	980
Crystal size (mm)	0.35 \times 0.34 \times 0.05	0.2 \times 0.2 \times 0.2
Θ range	2.38 to 26.00$^\circ$	2.255 to 25.500$^\circ$
Limiting indices		
$-15 \leq h \leq 15$	$-14 \leq h \leq 14$,	
$-16 \leq k \leq 16$,	$-12 \leq k \leq 16$,	
$-16 \leq l \leq 18$	$-19 \leq l \leq 19$	
Reflections collected / unique	14376 / 8362	16310 / 9053
[R(int) = 0.0693]	[R(int) = 0.0612]	
Completeness to Θ	99.4%	98.8%
Absorption correction	multi-scan ABSCOR	multi-scan ABSCOR
Min. and max transmission	0.731 and 1.000	0.851 and 1.000
Data / restraints / parameters	8362 / 0 / 541	9053 / 0 / 622
Goodness-of-fit on F^2	1.010	1.042
Final R indices	$R_1 = 0.0563, \quad wR_2 = 0.1257$	$R_1 = 0.0539, \quad wR_2 = 0.1270$
[I $> 2\sigma$(I)]		
R indices (all data)	$R_1 = 0.0685, \quad wR_2 = 0.1352$	$R_1 = 0.0610, \quad wR_2 = 0.1330$
Largest diff. peak and hole (e·Å$^{-3}$)	0.471 and -0.531	0.390 and -0.437

5Refinement method was full-matrix least-squares on F^2; wavelength = 0.71073 Å. $R_1 = \sum||F_o| - |F_c||/\sum|F_o|; \quad wR_2 = \left(\sum[w(F_o^2 - F_c^2)]^2/\sum(w(F_o^2))^2\right)^{1/2}$.}

S9