QUADRATIC ρ-FUNCTIONAL INEQUALITIES

Sungsik Yun a, Jung Rye Lee $^b,^*$ and Jeong Pil Seo c

Abstract. In this paper, we solve the quadratic ρ-functional inequalities

$$\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\|$$

$$\leq \|\rho \left(4f \left(\frac{x + y}{2}\right) + f(x - y) - 2f(x) - 2f(y)\right)\|,$$

where ρ is a fixed complex number with $|\rho| < 1$, and

$$\|4f \left(\frac{x + y}{2}\right) + f(x - y) - 2f(x) - 2f(y)\|$$

$$\leq \|\rho(f(x + y) + f(x - y) - 2f(x) - 2f(y))\|,$$

where ρ is a fixed complex number with $|\rho| < \frac{1}{2}$.

Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [11] concerning the stability of group homomorphisms.

The functional equation $f(x + y) = f(x) + f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruţa [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The functional equation

$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$

Received by the editors March 21, 2016. Accepted April 07, 2016.

2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52.

Key words and phrases. Hyers-Ulam stability, quadratic ρ-functional inequality.

*Corresponding author.

© 2016 Korean Soc. Math. Educ.
is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [10] for mappings $f : E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain E_1 is replaced by an Abelian group.

The functional equation

$$4f\left(\frac{x+y}{2}\right) + (x-y) = 2f(x) + 2f(y)$$

is called a Jensen type quadratic equation. See [2, 4, 7, 9, 12] for more information on the stability problems of functional equations.

In Section 2, we solve the quadratic ρ-functional inequality (0.1) and prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (0.1) in complex Banach spaces.

In Section 3, we solve the quadratic ρ-functional inequality (0.2) and prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (0.2) in complex Banach spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is a real or complex normed space with norm $\| \cdot \|$ and that Y is a complex Banach space with norm $\| \cdot \|$.

2. QUADRATIC ρ-FUNCTIONAL INEQUALITY (0.1)

Throughout this section, assume that ρ is a fixed complex number with $|\rho| < 1$.

In this section, we solve and investigate the quadratic ρ-functional inequality (0.1) in complex Banach spaces.

Lemma 2.1. If a mapping $f : G \to Y$ satisfies

\begin{align}
\|f(x+y)+f(x-y)-2f(x)-2f(y)\| &

\leq \left\| \rho \left(4f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) - 2f(y) \right) \right\|
\end{align}

for all $x, y \in G$, then $f : G \to Y$ is quadratic.

Proof. Assume that $f : G \to Y$ satisfies (2.1).

Letting $x = y = 0$ in (2.1), we get $\|2f(0)\| \leq |\rho|\|f(0)\|$. So $f(0) = 0$.
Letting $y = x$ in (2.1), we get $\|f(2x) - 4f(x)\| \leq 0$ and so $f(2x) = 4f(x)$ for all $x \in G$. Thus

\begin{equation}
(2.2) \quad f \left(\frac{x}{2} \right) = \frac{1}{4} f(x)
\end{equation}

for all $x \in G$.

It follows from (2.1) and (2.2) that

\[
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \\
\leq \left\| \rho \left(4f \left(\frac{x + y}{2} \right) + f (x - y) - 2f(x) - 2f(y) \right) \right\| \\
= |\rho|\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\|
\]

and so

\[f(x + y) + f(x - y) = 2f(x) + 2f(y)\]

for all $x, y \in G$. □

We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (2.1) in complex Banach spaces.

Theorem 2.2. Let $r > 2$ and θ be nonnegative real numbers, and let $f : X \rightarrow Y$ be a mapping satisfying

\begin{equation}
(2.3) \quad \|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \\
\leq \left\| \rho \left(4f \left(\frac{x + y}{2} \right) + f (x - y) - 2f(x) - 2f(y) \right) \right\| + \theta(\|x\|^r + \|y\|^r)
\end{equation}

for all $x, y \in X$. Then there exists a unique quadratic mapping $h : X \rightarrow Y$ such that

\begin{equation}
(2.4) \quad \|f(x) - h(x)\| \leq \frac{2\theta}{2^r - 4} \|x\|^r
\end{equation}

for all $x \in X$.

Proof. Letting $x = y = 0$ in (2.3), we get $\|2f(0)\| \leq |\rho|\|f(0)\|$. So $f(0) = 0$.

Letting $y = x$ in (2.3), we get

\begin{equation}
(2.5) \quad \|f(2x) - 4f(x)\| \leq 2\theta\|x\|^r
\end{equation}

for all $x \in X$. So

\[
\left\| f(x) - 4f \left(\frac{x}{2} \right) \right\| \leq \frac{2}{2^r \theta} \|x\|^r
\]
for all \(x \in X \). Hence

\[
\|4^l f \left(\frac{x}{2^l} \right) - 4^m f \left(\frac{x}{2^m} \right) \| \leq \sum_{j=l}^{m-1} \|4^j f \left(\frac{x}{2^j} \right) - 4^{j+1} f \left(\frac{x}{2^{j+1}} \right) \|
\]

(2.6)

\[
\leq \frac{2}{2^r} \sum_{j=l}^{m-1} 4^j \theta \|x\|^r
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.6) that the sequence \(\{4^n f \left(\frac{x}{2^n} \right) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{4^n f \left(\frac{x}{2^n} \right) \} \) converges. So one can define the mapping \(h : X \rightarrow Y \) by

\[
h(x) := \lim_{n \to \infty} 4^n f \left(\frac{x}{2^n} \right)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.6), we get (2.4).

It follows from (2.3) that

\[
\|h(x + y) + h(x - y) - 2h(x) - 2h(y)\|
\]

\[
= \lim_{n \to \infty} 4^n \left\| 4f \left(\frac{x+y}{2^n} \right) + f \left(\frac{x-y}{2^n} \right) - 2f \left(\frac{x}{2^n} \right) - 2f \left(\frac{y}{2^n} \right) \right\|
\]

\[
\leq \lim_{n \to \infty} 4^n |\rho| \left\| 4f \left(\frac{x+y}{2^{n+1}} \right) + f \left(\frac{x-y}{2^{n+1}} \right) - 2f \left(\frac{x}{2^{n+1}} \right) - 2f \left(\frac{y}{2^{n+1}} \right) \right\|
\]

\[
+ \lim_{n \to \infty} \frac{4^n \theta}{2^{nr}} (\|x\|^r + \|y\|^r)
\]

\[
= |\rho| \left\| 4h \left(\frac{x+y}{2} \right) + h(x-y) - 2h(x) - 2h(y) \right\|
\]

for all \(x, y \in X \). So

\[
\|h(x+y) + h(x-y) - 2h(x) - 2h(y)\| \leq \left\| \rho \left(4h \left(\frac{x+y}{2} \right) + h(x-y) - 2h(x) - 2h(y) \right) \right\|
\]

for all \(x, y \in X \). By Lemma 2.1, the mapping \(h : X \rightarrow Y \) is quadratic.

Now, let \(T : X \rightarrow Y \) be another quadratic mapping satisfying (2.4). Then we have

\[
\|h(x) - T(x)\| = 4^n \left\| h \left(\frac{x}{2^n} \right) - T \left(\frac{x}{2^n} \right) \right\|
\]

\[
\leq 4^n \left(\left\| h \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right) \right\| + \left\| T \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right) \right\| \right)
\]

\[
\leq \frac{4 \cdot 4^n}{(2^r - 4) 2^{nr} \theta \|x\|^r},
\]
which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that $h(x) = T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h : X \to Y$ is a unique quadratic mapping satisfying (2.4).

Theorem 2.3. Let $r < 2$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying (2.3). Then there exists a unique quadratic mapping $h : X \to Y$ such that

(2.7) \[\|f(x) - h(x)\| \leq \frac{2\theta}{4 - 2^r} \|x\|^r \]

for all $x \in X$.

Proof. It follows from (2.5) that

\[\left\| f(x) - \frac{1}{4} f(2x) \right\| \leq \frac{\theta}{2} \|x\|^r \]

for all $x \in X$. Hence

\[
\left\| \frac{1}{4^l} f(2^lx) - \frac{1}{4^m} f(2^mx) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{4^j} f(2^jx) - \frac{1}{4^{j+1}} f(2^{j+1}x) \right\| \\
\leq \sum_{j=l}^{m-1} \frac{2^r}{4^j} \frac{\theta}{2} \|x\|^r
\]

for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (2.8) that the sequence $\{\frac{1}{4^l} f(2^lx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{4^l} f(2^lx)\}$ converges. So one can define the mapping $h : X \to Y$ by

\[h(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x) \]

for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (2.8), we get (2.7).

The rest of the proof is similar to the proof of Theorem 2.2.\[\Box \]

Remark 2.4. If ρ is a real number such that $-1 < \rho < 1$ and Y is a real Banach space, then all the assertions in this section remain valid.

3. Quadratic ρ-functional Inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with $|\rho| < \frac{1}{2}$.

In this section, we solve and investigate the quadratic ρ-functional inequality (0.2) in complex Banach spaces.
Lemma 3.1. If a mapping \(f : G \to Y \) satisfies
\[
\left\| 4f\left(\frac{x+y}{2} \right) + f(x-y) - 2f(x) - 2f(y) \right\|
\leq \|\rho(f(x+y) + f(x-y) - 2f(x) - 2f(y))\|
\]
for all \(x, y \in G \), then \(f : G \to Y \) is quadratic.

Proof. Assume that \(f : G \to Y \) satisfies (3.1).

Letting \(x = y = 0 \) in (3.1), we get
\[
\|f(0)\| \leq |\rho|\|2f(0)\|.
\]
So \(f(0) = 0 \).

Letting \(y = 0 \) in (3.1), we get
\[
\left\| 4f\left(\frac{x}{2} \right) - f(x) \right\| \leq 0
\]
and so
\[
4f\left(\frac{x}{2} \right) = f(x)
\]
for all \(x \in G \).

It follows from (3.1) and (3.2) that
\[
\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\|
\leq |\rho|\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\|
\]
and so
\[
f(x+y) + f(x-y) = 2f(x) + 2f(y)
\]
for all \(x, y \in G \). \(\square \)

We prove the Hyers-Ulam stability of the quadratic \(\rho \)-functional inequality (3.1) in complex Banach spaces.

Theorem 3.2. Let \(r > 2 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping such that
\[
\left\| 4f\left(\frac{x+y}{2} \right) + f(x-y) - 2f(x) - 2f(y) \right\|
\leq \|\rho(f(x+y) + f(x-y) - 2f(x) - 2f(y))\| + \theta(\|x\|^r + \|y\|^r)
\]
for all \(x, y \in X \). Then there exists a unique quadratic mapping \(h : X \to Y \) such that
\[
\|f(x) - h(x)\| \leq \frac{2r\theta}{2r - 4}\|x\|^r
\]
for all \(x \in X \).

Proof. Letting \(x = y = 0 \) in (3.3), we get
\[
\|f(0)\| \leq |\rho|\|2f(0)\|. \quad \text{So } f(0) = 0.
\]

Letting \(y = 0 \) in (3.3), we get
\(\| 4f \left(\frac{x}{2} \right) - f(x) \| \leq \theta \| x \|^{r} \)

for all \(x \in X \). So

\[
\begin{align*}
\| 4^l f \left(\frac{x}{2^{m}} \right) - 4^{m} f \left(\frac{x}{2^{m+1}} \right) \| & \leq \sum_{j=l}^{m-1} \| 4^j f \left(\frac{x}{2^{j+1}} \right) - 4^{j+1} f \left(\frac{x}{2^{j+1}} \right) \| \\
& \leq \sum_{j=l}^{m-1} \frac{4^j \theta}{2^j} \| x \|^{r}
\end{align*}
\]

(3.6)

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.6) that the sequence \(\{ 4^n f \left(\frac{x}{2^n} \right) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ 4^n f \left(\frac{x}{2^n} \right) \} \) converges. So one can define the mapping \(h : X \to Y \) by

\[
h(x) := \lim_{n \to \infty} 4^n f \left(\frac{x}{2^n} \right)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.6), we get (3.4).

It follows from (3.3) that

\[
\begin{align*}
\| 4h \left(\frac{x+y}{2} \right) + h(x-y) - 2h(x) - 2h(y) \| &= \lim_{n \to \infty} 4^n \left\| 4f \left(\frac{x+y}{2n+1} \right) + f \left(\frac{x-y}{2n} \right) - 2f \left(\frac{x}{2^n} \right) - 2f \left(\frac{y}{2^n} \right) \right\| \\
& \leq \lim_{n \to \infty} 4^n \left(\| f \left(\frac{x+y}{2n} \right) + f \left(\frac{x-y}{2n} \right) - 2f \left(\frac{x}{2^n} \right) - 2f \left(\frac{y}{2^n} \right) \| \right) \\
& \quad + \lim_{n \to \infty} \frac{4^n \theta}{2n} (\| x \|^{r} + \| y \|^{r}) \\
& = \| \rho(h(x+y) + h(x-y) - 2h(x) - 2h(y)) \|
\end{align*}
\]

for all \(x, y \in X \). So

\[
\| 4h \left(\frac{x+y}{2} \right) + h(x-y) - 2h(x) - 2h(y) \| \leq \| \rho(h(x+y) + h(x-y) - 2h(x) - 2h(y)) \|
\]

for all \(x, y \in X \). By Lemma 3.1, the mapping \(h : X \to Y \) is quadratic.

Now, let \(T : X \to Y \) be another quadratic mapping satisfying (3.4). Then we have

\[
\| h(x) - T(x) \| = 4^n \left\| h \left(\frac{x}{2^n} \right) - T \left(\frac{x}{2^n} \right) \right\| \\
\leq 4^n \left(\left\| h \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right) \right\| + \left\| T \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right) \right\| \right) \\
\leq \frac{2 \cdot 4^n \cdot 2^r \theta}{(2^r - 4)2^n} \| x \|^{r},
\]

(3.5)
which tends to zero as \(n \to \infty \) for all \(x \in X \). So we can conclude that \(h(x) = T(x) \) for all \(x \in X \). This proves the uniqueness of \(h \). Thus the mapping \(h : X \to Y \) is a unique quadratic mapping satisfying (3.4).

\[\square \]

Theorem 3.3. Let \(r < 2 \) and \(\theta \) be positive real numbers, and let \(f : X \to Y \) be a mapping satisfying (3.3). Then there exists a unique quadratic mapping \(h : X \to Y \) such that
\[
\|f(x) - h(x)\| \leq \frac{2^r \theta}{4 - 2^r} \|x\|^r
\]
for all \(x \in X \).

Proof. It follows from (3.5) that
\[
\left\| f(x) - \frac{1}{4} f(2x) \right\| \leq \frac{2^r \theta}{4} \|x\|^r
\]
for all \(x \in X \). Hence
\[
\left\| \frac{1}{4^l} f(2^l x) - \frac{1}{4^m} f(2^m x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{4^j} f(2^j x) - \frac{1}{4^{j+1}} f(2^{j+1} x) \right\|
\]
\[
\leq \frac{2^r \theta}{4} \sum_{j=l}^{m-1} \frac{2^r}{4^j} \|x\|^r
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.8) that the sequence \(\{ \frac{1}{4^m} f(2^m x) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ \frac{1}{4^m} f(2^m x) \} \) converges. So one can define the mapping \(h : X \to Y \) by
\[
h(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)
\]
for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.8), we get (3.7).

The rest of the proof is similar to the proof of Theorem 3.2. \(\square \)

Remark 3.4. If \(\rho \) is a real number such that \(-\frac{1}{2} < \rho < \frac{1}{2} \) and \(Y \) is a real Banach space, then all the assertions in this section remain valid.

Acknowledgments

The first author was supported by Hanshin University Research Grant.
REFERENCES

1. T. Aoki: On the stability of the linear transformation in Banach spaces. *J. Math. Soc. Japan* 2 (1950), 64-66.
2. A. Chahbi & N. Bounader: On the generalized stability of d’Alembert functional equation. *J. Nonlinear Sci. Appl.* 6 (2013), 198-204.
3. P.W. Cholewa: Remarks on the stability of functional equations. *Aequationes Math.* 27 (1984), 76-86.
4. G.Z. Eskandani & P. Gávruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. *J. Nonlinear Sci. Appl.* 5 (2012), 459-465.
5. P. Gávruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. *J. Math. Anal. Appl.* 184 (1994), 431-436.
6. D.H. Hyers, On the stability of the linear functional equation. *Proc. Natl. Acad. Sci. U.S.A.* 27 (1941), 222-224.
7. C. Park: Orthogonal stability of a cubic-quartic functional equation. *J. Nonlinear Sci. Appl.* 5 (2012), 28-36.
8. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. *Proc. Amer. Math. Soc.* 72 (1978), 297-300.
9. K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. *J. Nonlinear Sci. Appl.* 7 (2014), 18-27.
10. F. Skof: Propriet locali e approssimazione di operatori. *Rend. Sem. Mat. Fis. Milano* 53 (1983), 113-129.
11. S.M. Ulam: *A Collection of the Mathematical Problems*. Interscience Publ. New York, 1960.
12. C. Zaharia: On the probabilistic stability of the monomial functional equation. *J. Nonlinear Sci. Appl.* 6 (2013), 51-59.

aDepartment of Financial Mathematics, Hanshin University, Gyeonggi-do 18101, Korea
Email address: ssyun@hs.ac.kr

bDepartment of Mathematics, Daejin University, Kyeonggi 11159, Korea
Email address: jrlee@daejin.ac.kr

cOhsang High School, Gumi, Kyeongsangbuk-do 730-842, Korea
Email address: sjp4829@hanmail.net