Preprint: Please note that this article has not completed peer review.

Food insecurity during pregnancy in a maternal-infant cohort in Brazilian Western Amazon

Alanderson Alves Ramalho alandersonalves@hotmail.com
Universidade Federal do Acre
Corresponding Author
ORCiD: 0000-0002-7503-1376

Cibely Machado Holanda
Universidade Federal do Amazonas

Fernanda Andrade Martins
Universidade Federal do Acre

Bárbara Teles Cameli Rodrigues
Universidade Federal do Acre

Andréia Moreira Andrade
Universidade Federal do Acre

Rosalina Jorge Koifman
Escola Nacional de Saude Publica - Sergio Arouca

DOI: 10.21203/rs.2.17669/v1

SUBJECT AREAS Maternal & Fetal Medicine

KEYWORDS
Food and nutrition security, Pregnant women, Pregnancy, Maternal nutrition, Nutrition Surveys
Abstract

Background The aim of this study was to determine the prevalence and analyze the factors associated with food insecurity during gestation in a maternal-infant cohort in Rio Branco, Acre, Brazilian Western Amazon.

Methods A population-based cross-sectional study was conducted with parturients from a maternal-infant cohort in Rio Branco, located in the western Brazilian Amazon. The dependent variable food insecurity was obtained through the Brazilian Scale of Food Insecurity, and associated factors were identified through multiple logistic regression.

Results The prevalence of food insecurity in pregnancy was of 34.8% (IC95% = 32.2% - 37.5%). Regarding severity, the prevalence of mild food insecurity was 24.6% (95% CI = 22.3% - 27.0%), moderate food insecurity was 4.8% (95% CI = 3.6% - 6.0%), and severe food insecurity was 5.4% (95% CI = 4.3% - 6.8%). In the final multiple model, the factors directly associated with food insecurity were the presence of open sewage in the peridomestic environment (OR = 1.64; 95% CI: 1.21 - 2.22); belonging to economic classes C, D and E (OR = 1.99; 95% CI: 1.35 - 2.94); being an income transfer program beneficiary (OR = 1.65; 95% CI: 1.18 - 2.30), while the factors inversely associated with FI were schooling equal to or greater than 8 years (OR = 0.66; 95% CI: 0.49 - 0.90); having a partner (OR = 0.56; 95% CI: 0.39 - 0.79); primigestation (OR = 0.59; 95% CI: 0.44 - 0.78) and regular consumption of fruits and vegetables during pregnancy (OR = 0.63, 95% CI: 0.45 - 0.88).

Conclusions Despite the existence of income transfer programs, regular consumption of fruits and vegetables is still relatively low and was associated with
food insecurity in pregnant women. These findings reinforce the need for the ratification of actions aimed at the domestic economy in the income transfer programs and the development of actions of food and nutritional education in the gestational period.

background

Food security is the fulfillment of the right to regular and permanent access to safe, nutritious and sufficient food to meet dietary needs and food preferences in order to lead an active and healthy life (1).

With such a comprehensive and integrated concept, the determination of food security demands indicators able to synthesize complex phenomena, such as food consumption, anthropometric status and food availability, among other social and psychological factors (2). In the 1980s and 1990s, different forms of evaluation were studied in the United States, resulting in the most applied psychometric scale in current research, the US Household Food Security Survey Measure - HFSSM (3,4). The adaptation and validation of this instrument in Brazil resulted in the EBIA - Escala Brasileira de Insegurança Alimentar, or BFIS - Brazilian Food Insecurity Scale (5).

According to the report prepared by the United Nations Food and Agriculture Organization (6), the prevalence of food insecurity (FI) worldwide has improved, reducing from 18.6% in 1990-92 to 10.9% in 2014-16. In Latin America and the Caribbean, rates decreased from 66.1% to 5.5% during the same period. According to the Brazilian National Household Sample Survey (PNAD), the prevalence of FI in Brazilian households in 2013 was of 22.6% (20.5% in the urban area and 35.3% in the rural area). In the Northern region, FI was reported as 36.1%, and in the state of
Acre, 31.2% (7).

FI is mainly determined by poverty and social inequalities, and studies that analyze factors associated with food insecurity are decisive for preventive and health promoting programs and public policies (2,8).

FI repercussions can be observed mainly among the most vulnerable groups. Infant mortality, impairment of physical and mental development, low birth weight, maternal mortality, increased school dropout, and reduced school performance are related to lack of healthy and quality food as a consequence of precarious access income and goods and services (2,6,9). Several studies point to a direct relationship between FI and decreased nutritional status in children (10-14).

Although studies on FI during the gestational period are available, population-based studies have been published only for the United States (15,16). In Brazil, five studies analyzing FI in pregnant women were identified, with estimated prevalence ranging from 28.2% to 71.6%, but none was population-based (17-21), nor carried out in the Amazon. In this context, the aim of the present study was to determine the prevalence and analyze the factors associated with FI during gestation in a maternal-infant cohort in Rio Branco, Acre, Brazilian Western Amazon.

Food security is the fulfillment of the right to regular and permanent access to safe, nutritious and sufficient food to meet dietary needs and food preferences in order to lead an active and healthy life (1).

With such a comprehensive and integrated concept, the determination of food security demands indicators able to synthesize complex phenomena, such as food consumption, anthropometric status and food availability, among other social and psychological factors (2). In the 1980s and 1990s, different forms of evaluation were studied in the United States, resulting in the most applied psychometric scale
in current research, the US Household Food Security Survey Measure - HFSSM (3,4). The adaptation and validation of this instrument in Brazil resulted in the EBIA - *Escala Brasileira de Insegurança Alimentar*, or BFIS - Brazilian Food Insecurity Scale (5).

According to the report prepared by the United Nations Food and Agriculture Organization (6), the prevalence of food insecurity (FI) worldwide has improved, reducing from 18.6% in 1990-92 to 10.9% in 2014-16. In Latin America and the Caribbean, rates decreased from 66.1% to 5.5% during the same period. According to the Brazilian National Household Sample Survey (PNAD), the prevalence of FI in Brazilian households in 2013 was of 22.6% (20.5% in the urban area and 35.3% in the rural area). In the Northern region, FI was reported as 36.1%, and in the state of Acre, 31.2% (7).

FI is mainly determined by poverty and social inequalities, and studies that analyze factors associated with food insecurity are decisive for preventive and health promoting programs and public policies (2,8).

FI repercussions can be observed mainly among the most vulnerable groups. Infant mortality, impairment of physical and mental development, low birth weight, maternal mortality, increased school dropout, and reduced school performance are related to lack of healthy and quality food as a consequence of precarious access income and goods and services (2,6,9). Several studies point to a direct relationship between FI and decreased nutritional status in children (10-14).

Although studies on FI during the gestational period are available, population-based studies have been published only for the United States (15,16). In Brazil, five studies analyzing FI in pregnant women were identified, with estimated prevalence ranging from 28.2% to 71.6%, but none was population-based (17-21), nor carried
out in the Amazon. In this context, the aim of the present study was to determine
the prevalence and analyze the factors associated with FI during gestation in a
maternal-infant cohort in Rio Branco, Acre, Brazilian Western Amazon.

Methods

Design and study population

This was a cross-sectional population-based study developed using a maternal-
infant cohort in Rio Branco, Acre, Brazilian Western Amazon. The capital of the state
of Acre concentrates 47.32% of the total population of the state, with 89.42% of the
population located in the urban zone.

A total of 9,638 children were born alive in 2015 in Rio Branco, and 27.7% of the
mothers lived in another municipality. Of the 6,965 live births whose mothers
resided in the capital, only 0.11% occurred in an out-of-hospital environment.

For the determination of the minimum sample size, an expected prevalence of 50%
was adopted, with precision set for a sampling error of 0.05, at 95% confidence
level, 80% power and an odds ratio of 2. In these conditions, the minimum sample
size was of 964 parturients. To minimize non-response effects, 10% were added,
resulting in an estimated sample of 1,060 parturients.

Intrahospital delivery parturients in Rio Branco, Acre, who lived in the urban area
and were hospitalized for delivery between April and June 2015 were included in this
study. Parturients from multiple pregnancies were excluded. During the data
collection period, 1,205 women met the inclusion criteria, but 11 were excluded due
to twin pregnancy.

Data collection and variables

Data collection took place in the only two maternity hospitals in Rio Branco, by
means of a copy of hospital charts, a pregnancy card and an interview using a semi-structured instrument to obtain socioeconomic, demographic, maternal habits, prenatal care and delivery information. The data collection instrument was pre-tested and applied by health science academics. The interviews were carried out inside the maternity wards, with mothers approached about 12 hours after delivery. Research assistants worked in a scaling and job rotation system to cover every day, full time. The interviewers were trained to obtain standardization and uniformity concerning data collection procedures.

The dependent food insecurity variable was obtained through the Brazilian Food Insecurity Scale (EBIA), nationally validated, comprising 15 structured questions in increasing order of seriousness, starting with issues related to concerns about the possibility of food shortage and the quality and amount of food in the family and ending with specific questions about lack of food for one or more days (5). In 2010, the Technical Workshop for EBIA Analysis revised the scale, which now comprises 14 items (22). This was the version used in the present study, and each affirmative answer represented 1 point, with total scores ranging from 0 to 14 points.

Pregnant women who reported regular and permanent access to quality food in sufficient amounts who did not even feel that they would be restricted in the near future were classified as food security (0 points); those who reported uncertainty about the availability of food in the future in adequate quantity and amounts were classified as mild food insecurity (1 to 4 points); those who reported quantitative food reduction and/or disruption in food patterns resulting from lack of food among adults were classified as moderate food insecurity (5 to 9 points), and those that reported quantitative food decreases and/or disruption in feeding patterns resulting from lack of food among adults and/or children; and/or food deprivation /famine
were classified as severe food insecurity (10 to 14 points).

The independent variables were composed of socioeconomic and demographic conditions, prenatal care and gestational habits, hospital care and newborn characteristics. Family income was transformed into minimum wages (MW) considering the minimum wage salary in 2015 (R$ 788.00) and presented as less than 1.5 MW and equal or higher than 1.5 MW. The socioeconomic class variable was defined by the Brazilian Association of Research Companies criteria of 2014 (Brazilian Economic Classification Criteria, http://www.abep.org/criterio-brasil, accessed on 10/15/2015), classified as A, B, C, D and E. For the data analysis, these criteria were grouped into high (A and B) and low (C, D and E) classes. The frequency of food consumption was obtained by the regular consumption variable (5 times or more in the week) of fruits and vegetables, beans, meat, chicken and milk. The variable type of service at delivery was dichotomized as public and private. The newborn characteristics were composed of the following variables: gender, low birth weight and prematurity. The cut-off point for the definition of low birth weight was a birth weight below 2,500 g and for preterm birth was gestational age less than 37 weeks.

Statistical methods

The data were analyzed using the R software, version 3.3 (The R Foundation for Statistical Computing). The prevalence of the outcome was calculated by the respective confidence interval, while the distributions of the independent variables were identified using the Student t-test for comparison of means and the chi-square test for comparison of frequencies or proportions, with critical level $\alpha = 0.05$

To analyze the factors associated with the outcome of this study, a simple logistic regression was initially performed, selecting the independent variables that
presented associations with p value below 0.20 for subsequent application in the multiple models. The next step involved multiple logistic regression, where the variables presenting a p-value of less than 0.05 or that modified the overall fit of the model remained in the model.

Ethics

The study was approved by the Research Ethics Committee of the Federal University of Acre (1.074.982) and the National School of Public Health (1.677.226). The researchers received authorization from the two institutions in which the data collection was performed. Informed written consent was obtained from all interviewees. For those under 18 years of age, written consent from the parents / guardians was also obtained. All interviewees were guaranteed the right of non-participation in the study, as well as confidentiality concerning the collected information.

results

From the total 1194 participants, 18.9% were 13 to 19 years old, 32.5% were between 20 and 24 years old, 39.2% were between 25 and 34 years old and 9.4% were 35 years of age or older (mean = 25.12, SD = 6.70). Of the total number of women, 10.6% declared that they were white and 37.3% declared that they had an income of less than 1.5 minimum wages. Regarding schooling, 6.5% studied up to elementary school 1, 19.4% up to elementary school 2, 51.4% up to high school, and 22.6% up to higher education.

The prevalence of FI during pregnancy was of 34.8% (95% CI = 32.2% - 37.5%). Regarding FI severity, the prevalence of mild FI was of 24.6% (95% CI = 22.3% - 27.0%), moderate prevalence was of 4.8% (95% CI = 3.6% - 6.0%) and severe
prevalence was of 5.4% (95% CI = 4.3% - 6.8%). Increased food insecurity is associated with more unfavorable socioeconomic and demographic conditions. The pregnant women classified into more severe FI situations presented lower education levels, lower family income, governmental family grant program recipients and had no partner. The frequency of FI severity was also higher in homes where women were the head of the household and declared themselves non-white; in households with five or more residents; who had a resident below the age of 18 years old; homes with worse basic sanitation conditions, such as the presence of open sewage in the peridomestic environment, and the absence of a bathroom with toilet plumbing (Tables 1 and 2).

Table 3 displays the FI distribution prevalence in gestation according to prenatal care and gestational habits. FI prevalence was higher and associated with multigestion, a greater number of live children and prenatal care in the public health system. It was also associated with smoking and drinking alcohol during pregnancy, diabetes in gestation and non-regular consumption of red meat, milk, fruits and vegetables during the gestational period, as well as the regular consumption of soft drinks or artificial juices. FI was also more frequent in women that experienced a normal delivery and public care at delivery (Table 4).

In the multiple logistic regression model, the chance of FI in households with open-air sewage in the peridomestic environment was 1.64-fold higher than the chance of FI in homes with open-air sewage households in the vicinity. The chance of FI was also 99% higher in economic classes C, D and E, and 65% higher among governmental family grant program recipients. FI occurrence in women with a partner was 0.56-fold higher than FI chances for women with no partner. An inverse association between FI and schooling equal to or greater than eight years of study,
regular consumption of fruits, vegetables and primigestation was also observed, with protection estimated at 34%, 37% and 41%, respectively (Table 5).

discussion

Between the 1980s and 1990s, the United States developed a number of instruments to measure household FI and hunger, with two being the most noteworthy: the Cornell/Radimer instrument (23) and the Community Childhood Hunger Identification Project instrument (24). The former evaluated household FI aspects through qualitative questions about the lack of money to buy food, the sufficiency of food in terms of amount and variety, and reduced or excluded meals (23). The latter estimated the time and periodicity of FI through an objective scale that generated a score and assisted in the identification of hungry families (24). The union of these two experiments with other studies allowed for the creation of a measurement instrument comprising 18 items, the HFSSM (Household Food Security Survey Module), a scale capable of measuring FI and identifying different degrees of access to food, ranging from full satisfaction of food needs to levels of progressive severity of food restriction (3). In the process of adaptation of the scale to Brazil, items were reduced to 15, and after several validation studies in different Brazilian regions, the Brazilian Scale of Food Insecurity Measure (EBIA) was developed, with high national validity for FI diagnoses, subsequently revised in 2010 and which now comprises 14 items (22).

Since the insertion of the EBIA in the National Household Sample Survey (PNAD) in 2004, Brazil has determined the prevalence of household food security in national surveys (7). When comparing data from the last national survey to FI estimates for pregnant women in the urban area of Rio Branco, the prevalence of pregnant women
undergoing FI was higher than that estimated by PNAD in 2013 for the Brazilian urban population (20, 5%), and for the state of Acre (31.2%), and lower than the North (36.1%) and Northeast (38.1%) regions (7).

When stratified by severity, the prevalence of mild FI for pregnant women in the present study was higher than the PNAD estimates for Acre, North and Brazil (13.9%, 21.6% and 13.7%, respectively), while moderate and severe FI for pregnant women in Rio Branco was lower when compared to PNAD for the state of Acre, respectively moderate 6.1% and severe 11.2%, while the North Region presents moderate and severe at FI at 7.7% and 6.7% (7). However, the PNAD groups results from both rural and urban areas and data from the capital and from isolated municipalities in the interior of Acre, whose access is only by river or air. The municipalities with the highest prevalence of malnutrition in Brazil are located in these remote areas of the state, which corroborates the fact that the prevalence of moderate and severe FI in Acre is higher than areas displaying the same classification in the North region and in the entire country.

Two studies in the interior of the state of Acre evaluated food safety in children and estimated FI prevalence higher than those observed for pregnant women in Rio Branco. In 2010, Frazão et al. (25), when studying schoolchildren aged 7 to 9 in the urban area of Acrelândia, estimated FI prevalence at 54% (mild FI: 32.4% and moderate and severe FI: 21.6%). In an urban census of households with children under five in Assis Brasil, in 2011, Ramalho et al. determined that the prevalence of FI was of 40.6% (mild AI: 24.1%, moderate AI: 10.5%; severe MI: 6.0%) (13), although these results should be evaluated carefully, since, in addition to the population groups being distinct, the Municipal Human Development Index (IDHM) of the capital is also higher (Rio Branco: 0.73; Acrelândia: 0.60; Assis Brasil: 0.59).
Despite general national and international surveys, lack information for specific population groups, such as pregnant women, is still noted. The five national studies, identified herein that estimated the frequency of food security of pregnant women in Brazilian municipalities are not population-based. When comparing the results of the present study with these references, the prevalence of FI for pregnant women in the Rio Branco urban area was lower than those estimated in studies conducted in João Pessoa - PB (59.0%), (18), Recife - PE (71.6%) (17), Maceió – AL (42.7%) (20), Queimados and Petrópolis – RJ (37.8%) (19), and higher than the study carried out in Santo Antônio de Jesus - BA (28.16%) (21), although, the study in Bahia applied the 6-item United States Department of Agriculture (USDA) short-scale food safety measurement instrument, while the other studies used the 14 or 15-item EBIA.

In Colombia, a study carried out with pregnant women attended to in the urban area in the city of Cartagena estimated FI prevalence as 29.8% (mild: 23%, moderate: 6.3%, severe: 0.5%) (26). In the United States, two studies with pregnant women participating in the NHANES population survey from 1999 to 2006, and from 1999 to 2008, determined FI as 15.7% and 21%, respectively (15,16).

The main factors associated with FI in pregnant women in Rio Branco refer to unfavorable socioeconomic conditions, such as the presence of open sewage in the peridomestic environment, belonging to economic classes C, D and E, receiving a government family income transfer and having lower schooling levels.

Other studies also observed the association between FI in pregnant women and lower socioeconomic conditions. In Recife, among the food insecure mothers attended by three Family Health Units located in districts II and III, the chance of not having their own income was 3-fold higher than those who presented a monthly income (17). In a retrospective cohort with pregnant women attending university
hospitals and private obstetrics clinics in North Carolina, USA, a direct association between FI and poorer social class was observed (OR = 4.84, 95% CI: 2.37-8.75) (27). A similar situation was observed in adolescent pregnant women who underwent prenatal care in the three institutions providing health services belonging to the "ESE Salud Pereira" in Pereira, Colombia (28).

According to the PNAD 2013, the lower the monthly income of the family, the higher the proportion of households with moderate or severe FI (7). The PNAD also noted that the increase in the severity of food insecurity decreases the proportion of households covered by the sewage collection network: 63.2% with food security, 44.2% in light FI and 34.4% % in severe FI (7). This direct association between FI and lower economic class, participation in income transfer programs, and worse sanitary conditions was also observed in the present study for pregnant women in Rio Branco, as well as in other studies carried out with different population groups (8,13,29–31).

In Rio Branco, the lower level schooling of pregnant women was directly associated with FI. For Brazil, both urban and rural, the higher the educational level of the residents, the lower the prevalence of moderate or severe FI. In 2013, 13.7% of the residents with 1 to 3 years of schooling were in a situation of moderate or severe FI, while for those with 15 years or more of study the percentage was 1.2% (7). Other national studies also corroborate this assertion (8,29–32).

For the pregnant women in Rio Branco, the regular consumption of fruits and vegetables was inversely associated with FI, similar to what was observed by Lobo and collaborators in 19- to 35-year-old female parturients from two public maternity hospitals in João Pessoa, who estimated the magnitude of association between FI and regular consumption of raw salad at 0.79 (95% CI: 0.68-0.93); Cooked
vegetables: OR = 0.87 (95% CI: 0.76 -0.99); fresh fruit or fruit salad: OR = 0.64 (95% CI: 0.48-0.84) (18). This association was also observed in a study carried out with the adult population of Campinas (8).

According to data from the 2016 Surveillance Program on risk factors and protection for chronic diseases by telephone survey (Vigitel), the prevalence of regular consumption of fruits and vegetables for adult women in Rio Branco is of 30.3% (95% CI: 27.1% - 33.6%), being the third Brazilian capital that consumes this food group less regularly (33). The same survey indicates that the prevalence of overweight in adult women in Rio Branco is of 55.8% (95% CI: 52.2% - 59.5%) and obese adult women is of 22.8% (95% CI: 19, 7% - 25.9%), classifying this city as the most obese capital in the country and suggesting an inverse association between obesity and regular consumption of fruits, vegetables and vegetables (33). This association is consistent with the results of a review of 23 Brazilian studies on the association between fruit and vegetable intake and overweight in children, adolescents and adults (34).

The association between overweight and FI has been previously observed in different population groups (6,35–39), although it has not yet been well established during gestation. The relationship found by this study among low consumption of fruits, vegetables and food insecurity in pregnancy, concomitant with information from the capital’s Vigitel program, indicating the female population with the highest prevalence of overweight and obesity in Brazil, raises the hypothesis of association between food insecurity and overweight during pregnancy, and studies are required to elucidate the relationship between food consumption, gestational weight gain and food insecurity.

Regarding marital situation, the inverse association between food insecurity and
having a partner observed in pregnant women in Rio Branco is probably related to the social support increased by the family of the partner. A population-based study with adults in a metropolitan area of Rio de Janeiro, observed that individuals with high social support rates presented a lower chance of moderate food insecurity (OR = 0.96, 95% CI: 0.94 - 0.99) and severe (OR = 0.96, 95% CI: 0.94-0.98) (40). Another study carried out with pregnant women attended at the regional referral hospital in Gulu, Uganda, observed that the association between food insecurity and severity of depressive symptoms was moderated by social support, that is, was stronger among women in the low social support category (adjusted beta: 0.91, 95% CI 0.55 - 1.27) than women in the high social support group (adjusted beta 0.53, 95% CI 0.28-0.78, p value adjusted for interaction = 0.026) (41). Tsai et al. also observed similar results when studying food insufficiency, one of the aspects of food insecurity, in a cohort of population-based pregnant women in the periurban region of Cape Town, South Africa (42).

conclusions

The prevalence of food insecurity in gestation in Rio Branco was of 34.7%, directly associated with the presence of open sewage in the peridomestic environment, belonging to lower socioeconomic classes, being beneficiaries of an income transfer program, and inversely associated with schooling equal to or greater than 8 years, having a partner, primigestation and having regularly consumed fruits and vegetables during pregnancy.

Despite the existence of income transfer programs, regular consumption of fruits and vegetables is still relatively low and was associated with food insecurity in pregnant women. These findings reinforce the need for the ratification of actions
aimed at the domestic economy in the income transfer programs and the development of actions of food and nutritional education in the gestational period.

abbreviations

HFSSM - Household Food Security Survey Measure
EBIA - Brazilian Food Insecurity Scale (Escala Brasileira de Insegurança Alimentar)
FI - Food Insecurity
PNAD - Brazilian National Household Sample Survey
OR - Odds Ratio
CI - Confidence interval
Vigitel - Surveillance Program on risk factors and protection for chronic diseases by telephone survey

declarations

Ethics approval and consent to participate

The study was approved by the Research Ethics Committee of the Federal University of Acre (1.074.982) and the National School of Public Health (1.677.226). The researchers received authorization from the two institutions in which the data collection was performed. Informed written consent was obtained from all interviewees. For those under 18 years of age, written consent from the parents / guardians was also obtained. All interviewees were guaranteed the right of non-participation in the study, as well as confidentiality concerning the collected information.

Consent to publish

Not applicable.
Availability of data and material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request by e-mail alandersonalves@hotmail.com

Competing interests

The authors declare that they have no competing interests.

Funding

This study was financed in part by Programa de Pesquisa Para o SUS - Fundação de Amparo à Pesquisa do Estado do Acre (PPSUS/FAPAC 2013 6068-14-0000032).
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Authors’ contributions

The authors AAR and RJK carried out the conception, planning, analysis, interpretation and writing of the work; The authors CMH, FAM, BTCR, AMA participated in data collection, interpretation and critical review of content. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to the GPSCAM (Grupo de Pesquisa em Saúde Coletiva na Amazônia), professionals of the Maternidade Bárbara Heliodora and Hospital Santa Juliana, the population of Rio Branco, the health authorities of Rio Branco, the Fundação de Amparo à Pesquisa do Estado do Acre (FAPAC), the Federal University of Acre and the Post-graduation in Public Health for the support and collaboration.

Ethics approval and consent to participate

The study was approved by the Research Ethics Committee of the Federal University of Acre (1.074.982) and the National School of Public Health (1.677.226). The researchers received authorization from the two institutions in which the data
collection was performed. Informed written consent was obtained from all interviewees. For those under 18 years of age, written consent from the parents / guardians was also obtained. All interviewees were guaranteed the right of non-participation in the study, as well as confidentiality concerning the collected information.

Consent to publish

Not applicable.

Availability of data and material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request by e-mail

alandersonalves@hotmail.com

Competing interests

The authors declare that they have no competing interests.

Funding

This study was financed in part by Programa de Pesquisa Para o SUS - Fundação de Amparo à Pesquisa do Estado do Acre (PPSUS/FAPAC 2013 6068-14-0000032). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Authors’ contributions

The authors AAR and RJK carried out the conception, planning, analysis, interpretation and writing of the work; The authors CMH, FAM, BTCR, AMA participated in data collection, interpretation and critical review of content. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to the GPSCAM (Grupo de Pesquisa em Saúde Coletiva na Amazônia), professionals of the Maternidade Bárbara Heliodora and Hospital Santa Juliana, the population of Rio Branco, the health authorities of Rio Branco, the
Fundação de Amparo à Pesquisa do Estado do Acre (FAPAC), the Federal University of Acre and the Post-graduation in Public Health for the support and collaboration.

references

1. FAO, editor. World Food Summit Plan of Action, paragraph 1, [Internet]. 1996 [cited 2017 Jun 13]. (Rome Declaration on World Food Security). Available from: http://www.fao.org/docrep/003/w3613e/w3613e00.htm

2. FAO, editor. Strengthening the enabling environment for food security and nutrition. Rome: FAO; 2014. 52 p. (The state of food insecurity in the world).

3. Food Insecurity and Hunger in the United States: An Assessment of the Measure [Internet]. Washington, D.C.: National Academies Press; 2006 [cited 2017 Nov 29]. Available from: http://www.nap.edu/catalog/11578

4. Kepple AW, Segall-Corrêa AM. Conceituando e medindo segurança alimentar e nutricional. Ciênc Saúde Coletiva [Internet]. 2011 [cited 2017 Sep 8];16(1). Available from: http://www.redalyc.org/html/630/63015361018/

5. Pérez-Escamilla R, Segall-Corrêa AM, Kurdian Maranha L, Sampaio M de FA, Marín-León L, Panigassi G. An Adapted Version of the U.S. Department of Agriculture Food Insecurity Module Is a Valid Tool for Assessing Household Food Insecurity in Campinas, Brazil. J Nutr [Internet]. 2004 Aug 1;134(8):1923-8. Available from: http://jn.nutrition.org/content/134/8/1923.abstract

6. FAO, editor. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO; 2015. 56 p. (The state of food insecurity in the world).

7. Brasil. IBGE. Pesquisa Nacional por Amostra de Domicílios: segurança
alimentar, 2013. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística - IBGE; 2014. 133 p.

8. Panigassi G, Segall-Corrêa AM, Marin-León L, Pérez-Escamilla R, Sampaio M de FA, Maranha LK. Insegurança alimentar como indicador de iniquidade: análise de inquérito populacional. Cad Saúde Pública [Internet]. 2008 [cited 2017 Sep 8];24(10):2376-2384. Available from: http://www.scielosp.org/scielo.php?pid=S0102-311X2008001000018&script=sci_abstract&tlng=pt

9. Kepple AW, Segall-Corrêa AM. Conceituando e medindo segurança alimentar e nutricional. Ciênc Saúde Coletiva [Internet]. 2011 [cited 2017 Sep 8];16(1). Available from: http://www.redalyc.org/html/630/63015361018/

10. Gundersen C, Garasky S, Lohman BJ. Food Insecurity Is Not Associated with Childhood Obesity as Assessed Using Multiple Measures of Obesity. J Nutr [Internet]. 2009 Jun 1 [cited 2017 Sep 8];139(6):1173-8. Available from: http://jn.nutrition.org/cgi/doi/10.3945/jn.109.105361

11. Hackett M, Melgar-Quiñonez H, Álvarez MC. Household food insecurity associated with stunting and underweight among preschool children in Antioquia, Colombia. Rev Panam Salud Pública [Internet]. 2009 [cited 2017 Sep 8];25(6):506-510. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19695145

12. Ivers LC, Cullen KA. Food insecurity: special considerations for women. Am J Clin Nutr [Internet]. 2011 Dec 1 [cited 2017 Sep 8];94(6):1740S-1744S. Available from: http://www.ajcn.org/cgi/doi/10.3945/ajcn.111.012617

13. Ramalho AA, Mantovani SAS, Oliart-Guzmán H, Branco FLCC, Braña AM, Martins AC, et al. Food insecurity in families with children under five years of age on the Brazil-Peru Amazon border. J Hum Growth Dev [Internet]. 2016 Nov 28
14. Rose D. Household Food Insecurity and Overweight Status in Young School Children: Results From the Early Childhood Longitudinal Study. PEDIATRICS [Internet]. 2006 Feb 1 [cited 2017 Sep 8];117(2):464–73. Available from: http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2005-0582

15. Gamba R, Leung CW, Guendelman S, Lahiff M, Laraia BA. Household Food Insecurity Is Not Associated with Overall Diet Quality Among Pregnant Women in NHANES 1999–2008. Matern Child Health J [Internet]. 2016 Nov [cited 2017 Sep 8];20(11):2348–56. Available from: http://link.springer.com/10.1007/s10995-016-2058-1

16. Park CY, Eicher-Miller HA. Iron Deficiency Is Associated with Food Insecurity in Pregnant Females in the United States: National Health and Nutrition Examination Survey 1999-2010. J Acad Nutr Diet [Internet]. 2014 Dec [cited 2017 Sep 8];114(12):1967–73. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2212267214004924

17. Araújo AA, Santos ACO. Segurança alimentar e indicadores socioeconômicos de gestantes dos distritos sanitários II e III, Recife-Pernambuco. Rev APS. 2016;19(3):466-475. Available from: http://periodicos.ufjf.br/index.php/aps/article/view/15667

18. Lobo IKV. Coorte de nascimentos de João Pessoa: efeitos da insegurança alimentar na saúde materno-infantil. Universidade Federal da Paraíba; 2014. Available from: https://repositorio.ufpb.br/jspui/handle/tede/4305

19. Marano D, Gama SGN, Domingues RMSM, Souza Junior PRB. Prevalence and factors associated with nutritional deviations in women in the pre-pregnancy
phase in two municipalities of the State of Rio de Janeiro, Brazil. Rev Bras Epidemiol [Internet]. 2014 Mar [cited 2017 Sep 8];17(1):45–58. Available from: http://dx.doi.org/10.1590/1415-790X201400010005ENG

20. Oliveira ACM, Tavares MCM, Bezerra AR. Insegurança alimentar em gestantes da rede pública de saúde de uma capital do nordeste brasileiro. Ciênc Saúde Coletiva [Internet]. 2017 Feb [cited 2017 Sep 8];22(2):519–26. Available from: http://dx.doi.org/10.1590/1413-81232017222.27382015

21. Santos FDS. “Elas têm fome de quê? (In) seguranças alimentar e condições de saúde e nutrição de mulheres na fase gestacional”. 2015 [cited 2017 Sep 8]; Available from: https://repositorio.ufba.br/ri/handle/ri/18257

22. Segall-Corrêa AM, Marin-León L, Melgar-Quiñonez H, Pérez-Escamilla R. Refinement of the Brazilian Household Food Insecurity Measurement Scale: Recommendation for a 14-item EBIA. Rev Nutr [Internet]. 2014 Apr [cited 2017 Sep 8];27(2):241–51. Available from: http://dx.doi.org/10.1590/1415-52732014000200010

23. Radimer KL, Olson CM, Greene JC, Campbell CC, Habicht J-P. Understanding hunger and developing indicators to assess it in women and children. J Nutr Educ. 1992;24(1):36S–44S. Available from: https://doi.org/10.1016/S0022-3182(12)80137-3

24. Wehler CA, Scott RI, Anderson JJ. The Community Childhood Hunger Identification Project: a model of domestic hunger—demonstration project in Seattle, Washington. J Nutr Educ. 1992;24(1):29S–35S. Available from: https://doi.org/10.1016/S0022-3182(12)80135-X

25. Frazão P, Benicio MHD, Narvai PC, Cardoso MA. Food insecurity and dental caries in schoolchildren: a cross-sectional survey in the western Brazilian
26. López-Sáleme R, Díaz-Montes C, Bravo-Aljuriz L, Londoño-Hio N, Salgueedo-Pájaro M, Camargo-Marín CC, et al. Seguridad alimentaria y estado nutricional de las mujeres embarazadas en Cartagena, Colombia, 2011. Rev Salud Pública [Internet]. 2012 [cited 2017 Sep 8];14:200-12. Available from: http://www.scielosp.org/pdf/rsap/v14n2/v14n2a02

27. Laraia BA, Siega-Riz AM, Gundersen C, Dole N. Psychosocial factors and socioeconomic indicators are associated with household food insecurity among pregnant women. J Nutr [Internet]. 2006 [cited 2017 Sep 8];136(1):177-182. Available from: http://jn.nutrition.org/content/136/1/177.short

28. Tabares RQ, Astudillo MNM, Sierra LEÁ, Perea GAM. Estado nutricional y seguridad alimentaria en gestantes adolescentes: Pereira, Colombia, 2009. Investig Educ En Enferm [Internet]. 2010 [cited 2017 Sep 8];28(2):204-213. Available from: http://www.redalyc.org/pdf/1052/105215405006.pdf

29. Brasil. Centro Brasileiro de Análise e Planejamento. Pesquisa nacional de demografia e saúde da criança e da mulher: PNDS 2006, dimensões do processo reprodutivo e da saúde da criança. 1. ed. Brasília, DF: Ministério da Saúde: Centro Brasileiro de Análise e Planejamento; 2009. 298 p. (Série G. Estatística e informação em saúde). Available from: http://bvsms.saude.gov.br/bvs/publicacoes/pnds_crianca_mulher.pdf

30. Guerra LDS, Espinosa MM, Bezerra ACD, Guimarães LV, Lima-Lopes MA. Insegurança alimentar em domicílios com adolescentes da Amazônia Legal Brasileira: prevalência e fatores associados. Cad Saúde Pública [Internet]. 2013;29(2):335-348. Available from: http://dx.doi.org/10.1590/S0102-
31. Poblacion AP, Marín-León L, Segall-Corrêa AM, Silveira JA, Taddei JA de AC. Insegurança alimentar em domicílios brasileiros com crianças menores de cinco anos. Cad Saúde Pública [Internet]. 2014;30(5):1067–78. Available from: http://dx.doi.org/10.1590/0102-311X00072713

32. Poblacion AP, Cook JT, Marín-León L, Segall-Corrêa AM, Silveira JAC, Konstantyner T, et al. Food Insecurity and the Negative Impact on Brazilian Children’s Health—Why Does Food Security Matter for Our Future Prosperity? Brazilian National Survey (PNDS 2006/07). Food Nutr Bull [Internet]. 2016 Dec [cited 2017 Sep 8];37(4):585–98. Available from: http://journals.sagepub.com/doi/10.1177/0379572116664167

33. Brasil, Stopa SR, Iser BPM, Bernal RTI, Claro RM, Nardi ACF, et al. Vigilêncio Brasil 2016: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2016. Brasília, DF: Ministério da Saúde; 2017 p. 160.

34. Machado RHV, Feferbaum R, Leone C. Fruit intake and obesity. Fruit and vegetables consumption and obesity in Brazil. J Hum Growth Dev [Internet]. 2016 Aug 29;26(2):243. Available from: http://www.revistas.usp.br/jhgd/article/view/119293

35. Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav [Internet]. 2007 Jul [cited 2017 Dec 20];91(4):449–58. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0031938407001278

36. Ghattas H. Food Security and Nutrition in the context of the Global Nutrition
37. Kac G, Velásquez-Melendez G, Schlüssel MM, Segall-Córrea AM, Silva AA, Pérez-Escamilla R. Severe food insecurity is associated with obesity among Brazilian adolescent females. Public Health Nutr [Internet]. 2012 Oct [cited 2017 Sep 8];15(10):1854–60. Available from: http://www.journals.cambridge.org/abstract_S1368980011003582

38. Kain J, Vio F, Albala C. Obesity trends and determinant factors in Latin America. Cad Saúde Pública. 2003;19:S77–S86.

39. Velásquez-Melendez G, Schlüssel MM, Brito AS, Silva AA, Lopes-Filho JD, Kac G. Mild but not light or severe food insecurity is associated with obesity among Brazilian women. J Nutr [Internet]. 2011 [cited 2017 Sep 8];141(5):898–902. Available from: http://jn.nutrition.org/content/141/5/898.short

40. Interlenghi G dos S, Salles-Costa R. Inverse association between social support and household food insecurity in a metropolitan area of Rio de Janeiro, Brazil. Public Health Nutr [Internet]. 2015 Nov [cited 2017 Sep 8];18(16):2925–33. Available from: http://www.journals.cambridge.org/abstract_S1368980014001906

41. Natamba BK, Mehta S, Achan J, Stoltzfus RJ, Griffiths JK, Young SL. The association between food insecurity and depressive symptoms severity among pregnant women differs by social support category: a cross-sectional study: Association between food insecurity, depression and social support. Matern Child Nutr [Internet]. 2017 Jul [cited 2017 Sep 8];13(3):e12351. Available from: http://doi.wiley.com/10.1111/mcn.12351

42. Tsai AC, Tomlinson M, Comulada WS, Rotheram-Borus MJ. Food insufficiency, depression, and the modifying role of social support: Evidence from a
population-based, prospective cohort of pregnant women in peri-urban South Africa. Soc Sci Med [Internet]. 2016 Feb [cited 2017 Sep 8];151:69-77.

Available from: http://linkinghub.elsevier.com/retrieve/pii/S0277953615303014

tables

Table 1 - Percentage distribution of socioeconomic, demographic and health characteristics according to Fl. Rio Branco, Acre, 2015.

Variable	Total	Food security	Light Food Insecurity	Moderate Insecurity		
Type of paving of the residence street (n= 1193)						
Asphalt/cement/paving stone/brick	885 (74.2)	589 (66.6)	213 (24.1)	41 (4)		
Earth with other materials or just earth	308 (25.8)	189 (61.4)	81 (26.3)	16 (5)		
Open sewage (n=1186)						
No	920 (77.6)	626 (68.0)	203 (22.1)	45 (4)		
Yes	226 (22.4)	147 (65.3)	89 (33.5)	12 (4)		
Bathroom with toilet plumbing (n=1179)						
No	209 (17.7)	107 (51.2)	62 (29.7)	17 (8)		
Yes	970 (82.3)	658 (67.8)	231 (23.8)	39 (4)		
Age (n=1194)						
< 20	311 (26.0)	203 (65.3)	83 (26.7)	14 (4)		
20 to 34	762 (63.8)	502 (65.9)	180 (23.6)	37 (4)		
≥ 35	121 (10.1)	73 (60.3)	31 (25.6)	6 (5)		
Skin color (n=1193)						
White	126 (10.6)	95 (75.4)	26 (20.6)	3 (2)		
Not white	1067 (89.4)	682 (63.9)	268 (25.1)	54 (5)		
Schooling (n=1194)						
Up to elementary school 1	78 (6.5)	38 (48.7)	16 (20.5)	9 (11)		
Elementary school 2	232 (19.4)	119 (51.3)	71 (30.6)	19 (8)		
High school	614 (51.4)	402 (65.5)	164 (26.7)	23 (3)		
Higher education	270 (22.6)	219 (81.1)	43 (15.9)	6 (2)		
Marital status (n=1193)						
No partner	191 (16.0)	107 (56.0)	56 (29.3)	11 (5)		
With partner	1002 (84.0)	671 (67.0)	238 (23.8)	46 (4)		
Head of the family (n=1194)						
The interviewee	158 (13.2)	91 (57.6)	40 (25.3)	11 (7)		
Partner or other	1036 (86.8)	687 (66.3)	254 (24.5)	46 (4)		
Head of family schooling (n=1157)						
Education Level	n	%	n	%	n	%
------------------------------	-----	------	-----	------	-----	------
No school	54	4.7	30	55.6	14	25.9
Up to elementary school 1	132	11.4	69	52.3	34	25.7
Elementary school 2	203	17.5	118	58.1	52	25.6
High school	525	45.4	336	64.0	148	28.2
Higher education	3	5.6	3	5.6	19	3.6

Number of residents per household (n=1194)	n	%	n	%	n	%
1 or 2	334	28.0	230	68.9	80	24.0
3 to 5	549	46.0	361	65.8	141	25.7
5 or more	311	26.0	187	60.1	73	23.5

Any residents under the age of 18 (n=1194)	n	%	n	%	n	%
No	379	31.7	278	73.4	78	20.6
Yes	815	68.3	500	61.3	216	26.5

Any residents under the age of 15 (n=1194)	n	%	n	%	n	%
No	496	41.5	359	72.4	106	21.4
Yes	698	58.5	419	26.9	188	17.3

Family income in minimum salariess (n=1020)	n	%	n	%	n	%
Less than 1	160	15.7	72	45.0	50	31.3
1 to 2.9	578	56.7	348	60.4	166	28.7
3 or more	282	27.6	228	80.9	49	17.4

Government program (n=1133)	n	%	n	%	n	%
No	917	80.9	633	69.0	213	23.2
Yes	216	19.1	98	45.4	70	32.4

Socioeconomic class (n=1181)	n	%	n	%	n	%
A and B	242	20.5	198	81.8	37	15.3
C. D and E	935	79.5	569	60.6	256	27.3

Paid work (n=1141)	n	%	n	%	n	%
No	732	64.2	446	60.9	196	26.8
Yes	409	35.8	301	73.6	89	21.8

Primigestation (n=1193)	n	%	n	%	n	%
No	723	60.6	427	59.1	201	27.8
Yes	470	39.4	350	74.5	93	19.8

Type of prenatal care (n=1158)	n	%	n	%	n	%
Public	982	84.8	606	61.7	266	27.1
Private	176	15.2	145	82.4	25	14.2

Hypertension during pregnancy (n=1192)	n	%	n	%	n	%
No	1008	84.6	656	65.1	245	24.3
Yes	184	15.4	121	65.8	48	26.1

Anemia during pregnancy (n=992)	n	%	n	%	n	%
No	855	86.2	554	64.8	212	24.8
Yes	137	13.8	97	70.8	30	21.9

Diabetes during pregnancy (n=1186)	n	%	n	%	n	%
No	1086	91.6	717	66.0	262	24.1
Yes	100	8.4	58	58.0	28	28.0

Frequency of consumption of fruits and vegetables during pregnancy (n=1187)	n	%	n	%	n	%
Less than 5 times a week	925	77.9	578	62.5	234	25.3
5 times or more	262	22.1	196	74.8	58	22.1

| Type of childbirth service (n=1190) | n | % | n | % | n | % |

28
Variable	Food Insecurity	Food Security	P value	OR
Type of paving of the domicile street (n= 1193)				
Asphalt/cement/paving stone/brick	296 (71.3)	589 (75.7)	1	
Earth with other materials or just earth	119 (28.7)	189 (24.3)	0.1	1.2
Open sewage (n=1186)				
No	294 (71.2)	626 (81.0)		1
Yes	119 (28.8)	147 (19.0)	< 0.001	1.7
Bathroom with toilet plumbing (n=1179)				
No	102 (24.6)	107 (14.0)		1
Yes	312 (75.4)	658 (86.0)	< 0.001	0.1
Age (n=1194)				
13 to 19	75 (18.0)	147 (18.9)	0.543	1
20 to 24	135 (32.5)	253 (32.5)	1.0	
25 to 34	156 (37.5)	305 (39.2)	1.0	
35 or more	50 (12.0)	73 (9.4)		1.3
Skin color (n=1193)				
White	31 (7.5)	95 (12.2)		1
Not white	385 (92.5)	682 (87.8)	0.01	1.7
Schooling (n=1194)				
Up to elementary school 1	40 (9.6)	38 (4.9)	< 0.001	1
Elementary school 2	113 (27.2)	119 (15.3)	0.9	
High school	212 (51.0)	402 (51.7)	0.5	
Higher education	51 (12.3)	219 (28.1)	0.2	
Marital status (n=1193)				
No partner	84 (20.2)	107 (13.8)		1
With partner	331 (79.8)	671 (86.2)	0.004	0.6
Head of the family (n=1194)				
The interviewee	67 (16.1)	91 (11.7)		1
Partner or other	349 (83.9)	687 (88.3)	0.032	0.6
Head of family schooling (n=1157)				
Up to elementary school 1	87 (21.0)	99 (13.2)	< 0.001	1
Elementary school 2	85 (20.8)	118 (15.8)	0.8	
High school	189 (46.3)	336 (44.9)	0.6	
Higher education	47 (11.5)	196 (26.2)	0.2	
Number of residents per household (n=1194)				
1 or 2	104 (25.0)	230 (29.6)	0.062	1
3 to 5	188 (45.2)	361 (46.4)	1.1	
5 or more	124 (29.8)	187 (24.0)	1.4	

Table 2 - Food insecurity during gestation according to socioeconomic and demographic characteristics. Rio Branco, Acre, 2015.
Variable	Food Insecurity	Food Security	P value
First pregnancy (n = 1193)			
No	296 71.2	427 55.0	
Yes	120 28.8	350 45.0	< 0.001
Number of prenatal consultations (n=1170)			
None	3 0.7	6 0.8	0.011
1 to 6	131 32.2	194 25.4	
6 to 8	191 46.9	348 45.6	
8 or more	82 20.1	215 28.2	
Type of prenatal care(n=1158)			
Public	376 92.4	606 80.7	< 0.001
Private	31 7.6	145 19.3	
Number of living children (n=1191)			
None	117 28.3	351 45.2	
1 or 2	126 30.4	243 31.3	< 0.001
3 or more	171 41.3	183 23.6	
Smoked during pregnancy (n=1194)			
No	358 86.1	721 92.7	< 0.001
Yes	58 13.9	57 7.3	
Alcoholic beverage intake during pregnancy (n=1184)			
No	345 83.9	692 89.5	
Yes	66 16.1	81 10.5	0.06
Gestational weight gain reported by a professional (n=1178)			
they did not say anything	41 10.0	44 5.7	0.002
said that the weight gain was adequate	191 46.6	409 53.3	

Table 3 - Food insecurity in gestation according to prenatal care and gestational habits. Rio Branco, Acre, 2015.
said they were gaining a lot of weight said they were gaining little weight

	Yes	No
Hypertension during pregnancy (n=1192)	63	352
Anemia during pregnancy (n = 992)	40	301
Diabetes during pregnancy (n=1186)	42	369
Urinary tract infection during pregnancy (n=1191)	17	173
Syphilis during pregnancy (n=1191)	17	399
Hospitalization during pregnancy (n=1156)	71	332
Frequency of bean consumption during pregnancy (n=1193)	5	71
Frequency of fruit and vegetable consumption during pregnancy (n=1187)	5	396
Frequency of red meat consumption during pregnancy (n=1192)	5	163
Frequency of chicken consumption during pregnancy (n=1191)	5	355
Frequency of consumption of natural fruit juice during pregnancy (n=1191)	5	303
Frequency of the consumption of soft drinks and artificial juice during pregnancy (n=1189)	5	273
Frequency of milk consumption during pregnancy (n=1186)	5	141
Consumption of meat or chicken with excess fat (n=1175)	5	272

	Yes	No
Frequency of bean consumption during pregnancy (n=1193)	5	71
Frequency of fruit and vegetable consumption during pregnancy (n=1187)	5	396
Frequency of red meat consumption during pregnancy (n=1192)	5	163
Frequency of chicken consumption during pregnancy (n=1191)	5	355
Frequency of consumption of natural fruit juice during pregnancy (n=1191)	5	303
Frequency of the consumption of soft drinks and artificial juice during pregnancy (n=1189)	5	273
Frequency of milk consumption during pregnancy (n=1186)	5	141
Consumption of meat or chicken with excess fat (n=1175)	5	272

	Yes	No
Frequency of bean consumption during pregnancy (n=1193)	5	71
Frequency of fruit and vegetable consumption during pregnancy (n=1187)	5	396
Frequency of red meat consumption during pregnancy (n=1192)	5	163
Frequency of chicken consumption during pregnancy (n=1191)	5	355
Frequency of consumption of natural fruit juice during pregnancy (n=1191)	5	303
Frequency of the consumption of soft drinks and artificial juice during pregnancy (n=1189)	5	273
Frequency of milk consumption during pregnancy (n=1186)	5	141
Consumption of meat or chicken with excess fat (n=1175)	5	272

	Yes	No
Frequency of bean consumption during pregnancy (n=1193)	5	71
Frequency of fruit and vegetable consumption during pregnancy (n=1187)	5	396
Frequency of red meat consumption during pregnancy (n=1192)	5	163
Frequency of chicken consumption during pregnancy (n=1191)	5	355
Frequency of consumption of natural fruit juice during pregnancy (n=1191)	5	303
Frequency of the consumption of soft drinks and artificial juice during pregnancy (n=1189)	5	273
Frequency of milk consumption during pregnancy (n=1186)	5	141
Consumption of meat or chicken with excess fat (n=1175)	5	272
Table 4 - Food insecurity during pregnancy according to delivery and weight of the newborn. Rio Branco, 2015.

Variable	Food Insecurity	Food Security	p value	OR
Type of delivery (n=1192)				
Normal	237	383	1	
Ceasarean	178	394	0.01	0.73
Delivery unit (n=1194)				
Unit A	277	476	1	
Unit B	139	302	0.065	0.79
Type of childbirth service (n=1190)				
Public	394	670	< 0.001	0.36
Private	22	104		
Low weight at birth (n=1188)				
No	379	708	1	
Yes	34	67	0.808	0.95
Preterm (n=1184)				
No	365	692	1	
Yes	44	83	0.980	1.01

Table 5 - Factors associated with food insecurity during pregnancy in a cohort in Rio Branco, AC, 2015.

Variable	ORcrude	CI 95%	ORadjust	CI 95%
Open sewage			1	
No	1		1	
Yes	1.72	1.30 - 2.28	1.64	1.21 - 2.22
Socioeconomic class			1	
High (A and B)	1		1	
Low (C, D and E)	2.93	2.06 - 4.16	1.99	1.35 - 2.94
Government program			1	
No	1		1	
Yes	2.68	1.98 - 3.63	1.65	1.18 - 2.30
Schooling			1	
Up to 8 years	1		1	
8 years or more	0.43	0.33 - 0.57	0.66	0.49 - 0.90
Marital status			1	
No partner	1		1	
With partner	0.63	0.46 - 0.86	0.56	0.39 - 0.79
Primigestation			1	
No	1		1	
Yes	0.49	0.38 - 0.64	0.59	0.44 - 0.78
Frequency of fruit and vegetable consumption during pregnancy				
Less than 5 times a week	1		1	
5 vezes ou mais	0.56	0.41 - 0.76	0.63	0.45 - 0.88
