Research Article

Analysis of Economic Relationship Using the Concept of Complex Pythagorean Fuzzy Information

Naeem Jan,1 Saif Ur Rehman,1 Abdul Nasir,1 Hassen Aydi,2,3,4 and Sami Ullah Khan1

1Department of Mathematics, Gomal University, Dera Ismail Khan 29050, Pakistan
2Université de Sousse, Institut Supérieur d’Informatique et des Techniques de Communication, H. Sousse 4000, Tunisia
3Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
4China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

Correspondence should be addressed to Hassen Aydi; hassen.aydi@isima.rnu.tn

Received 5 April 2021; Accepted 26 May 2021; Published 9 June 2021

Academic Editor: Helena Rifà-Pous

Copyright © 2021 Naeem Jan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fuzzy set theory and fuzzy logics are the powerful mathematical tools to model the imprecision and vagueness. In this research, the novel concept of complex Pythagorean fuzzy relation (CPFR) is introduced. Furthermore, the types of CPFRs are explained with appropriate examples such as CPF composite relation, CPF equivalence relation, CPF order relation, and CPF equivalence classes. Moreover, numerous results and interesting properties of CPFRs are discussed in detail. Furthermore, the impacts of economic parameters over each other are studied through the proposed concepts of CPFRs. In addition, the application also discusses the effects of economic parameters of one country over the other countries’ economic parameters.

1. Introduction

In 1965, Zadeh [1] initiated the concepts of fuzzy sets (FSs). A FS is characterized by a mapping whose range is the unit interval [0, 1]. This mapping is called a degree of membership. Zadeh’s FS theory is used to model imprecise information and vagueness. Later in 1986, Atanassov [2] introduced the notion of intuitionistic fuzzy sets (IFSs). An IFS is a collection of objects characterized by a pair of mappings whose values range are between 0 and 1. These mappings represent the degree of membership and the degree of nonmembership of the object. Moreover, the sum of both the degrees of membership and nonmembership in an IFS must not exceed 1. This limitation persuaded Yager [3] to introduce a modified version of IFS, called a Pythagorean fuzzy set (PFS). Like IFSs, PFSs also consist of the degree of membership and the degree of nonmembership that attain values from the unit interval [0, 1] provided that the sum of squares of both the degrees does not exceed 1. Deschrijver and Kerre [4] wrote on the relationships between some extensions of FS theory. Maiers and Sherif [5] proposed the applications of FS theory. Klir [6] worked on FS interpolation of possibility theory. De et al. [7, 8] discussed some operations on IFSs and provided an application of IFSs in medical diagnosis. Szmidt and Kacprzyk [9] measured distance between IFSs. Peng et al. [10, 11] conceived some results for PFSs and provided an application. Ramot et al. [12] initiated the concept of complex fuzzy sets (CFSs). A CFS is characterized by the degree of membership that is a complex valued mapping, whose range is a unit circle in the complex plane. Since a complex number is a combination of real and imaginary numbers, the degree of membership is expressed in the polar form as \(\eta_C (h)e^{i(\xi_C (h))} \), where \(\eta_C (h) \) and \(\xi_C (h) \) are the real numbers from the unit interval. \(\eta_C (h) \) is known as the amplitude term and \(\xi_C (h) \) is known as the phase term. Therefore, a CFS is capable to model problems having a periodic nature. Alkouri and Salleh [13] introduced the concept of complex intuitionistic fuzzy sets (CIFSs). These sets comprise of a pair of complex valued degrees of membership and degree of...
nonmembership. Both the degrees attain values from a unit circle in a complex plane provided that their sum also lies within the unit circle. In other words, the sum of amplitude terms lies in the unit interval, and the sum of both the phase terms also lies in $[0, 1]$. Ullah et al. [14] amended the concept of CIFSs and provided the notion of complex Pythagorean fuzzy set (CPFS). These sets also discuss the complex valued degrees of membership and nonmembership provided that both the degrees and the sum of their squares lie within the unit circle of complex plane. Yazdanbakhsh and Dick [15] carried out a systematic review of CFs and logics. Tamir et al. [16, 17] provided the axiomatic theory of CF logics and carried out a systematic review of CFSs and logics. Rani and Garg [18] proposed the distance measures between CIFSs and applied them to decision-making processes. Ngan et al. [19] represented CIFS by quaternion numbers and applied them to decision-making. Yaqoob et al. [20] applied the concept of presented CIFS by quaternion numbers and applied them to the applications of CFS and CF logics. Bi et al. [23] introduced the CF arithmetic aggregation operators.

The set relations have various applications in mathematics, engineering, social sciences, and many other fields. Klir and Folger [24] defined the crisp relations (CRs). Several types of relations, such as inverse relation, reflexive relation, symmetric relation, transitive relation, composite relation, and equivalence relation, are defined. Mendel [25] initiated the theory of fuzzy relations (FRs). The plus point of FRs is that these relations indicate the grade of the relationship by the degree of membership. Burillo et al. [26] instigated the notion of intuitionistic fuzzy relations (IFRs). These relations not only discuss the degree of membership of the relationship but also deliberate the degree of nonmembership. Bhattacharya and Mukherjee [27] discussed the FRs and fuzzy groups. Yeh and Bang [28] presented the FRs and fuzzy graphs and applied these notions in clustering analysis. Blin [29] proposed FRs in group decision theory. Deschrijver and Kerre [30] worked on the composition of IFRs. Bustince and Burillo [31] gave structures on IFRs. Bustince [32] constructed the IFRs with predetermined properties, and Naz et al. [33] came up with a novel approach to decision-making with PF information. Alshammari et al. [34] presented the topological structure of CPFSs, and Dinakaran [35] analyzed the online food delivery industries using PFRs and composition.

This article proposes a novel concept of complex Pythagorean fuzzy relation (CPFR). The CPFRs consider the degrees of membership and nonmembership of any relation between the elements of CPFSs. Moreover, the complex nature of the relation allows to model problems with phase changes, such as periodicity. Although IFRs also cover both the degrees of membership as well as nonmembership, but they restrict the choice of numbers that could be assigned to the members of sets. For example, we cannot assign the membership degree $0.7 e^{i\phi_5}$ when the degree of nonmembership is $0.4 e^{i\phi_6}$ because the sum of amplitude terms exceeds 1, i.e., $0.7 + 0.4 = 1.1$. The same applies for the phase terms that their sum must not exceed 1. But, the advantage of proposed structure is that it eases these constraints by some modifications. It expands the choice of numbers to be assigned as the degrees. Furthermore, the types of CPFRs are explained with appropriate examples. Some of the types include CPF irreflexive relations, CPF antisymmetric relations, CPF equivalence relations, CPF order relations, and CPF equivalence classes. Additionally, some unique and interesting properties and results are achieved. Finally, in the support of the proposed work, an application is provided that helps in the investigation of quality of relationships among different economic indicators and the impacts that each economic parameter has on the other rest of the economic parameters. These concepts can be stretched to other frameworks of the fuzzy set theory which will give rise to many interesting structures. The range of applications of these complex natured structures might be so vast, since they can deal with problems that have multiple dimensions. In future, we will be looking to apply these notions to study the security and communication networks.

The study is arranged in the following way: Section 1 presents the introduction and the literature review. Section 2 reviews some of the predefined concepts that are used in current study. In Section 3, the complex Pythagorean fuzzy relations (CPFRs) and their types are discussed along with examples. Additionally, some results of the proposed relations have also been proved. The Section 4 proposes an application of CPFRs and its types for the investigation of direct and indirect effects of economic factors of one country on other countries. Finally, in Section 5, the research work is concluded.

2. Preliminaries

This section enlightens some related prerequisites such as fuzzy set (FS), complex fuzzy set (CFS), intuitionistic fuzzy set (IFS), complex intuitionistic fuzzy set (CIFS), Pythagorean fuzzy set (PFS), and complex Pythagorean fuzzy set (CPFS). Moreover, the Cartesian product and relations in above sets are also described with some examples.

Definition 1 (see [1]). Let \mathcal{B} be a universal set. Then, a set \mathbb{H} on \mathcal{B} is said to be a FS if it is of the form
\[
\mathbb{H} = \left\{ h_1, m(h_1) | h_1 \in \mathcal{B} \right\},
\]
where $m(h_1)$ is a fuzzy valued mapping, i.e., $m: \mathcal{B} \rightarrow [0, 1]$ and symbolizes the membership degree of the FS \mathbb{H}.

Definition 2 (see [12]). Let \mathcal{B} be a universal set. Then, a set \mathbb{H} on \mathcal{B} is said to be a CFS if it is of the form
\[
\mathbb{H} = \left\{ h_1, m_{\mathcal{B}}(h_1) | h_1 \in \mathcal{B} \right\},
\]
where $m_{\mathcal{B}}(h_1)$ is a complex valued mapping which symbolizes the membership degree of the CFS \mathbb{H}. This mapping $m_{\mathcal{B}}(h_1)$ is defined as
where C is defined as

$$Y(h_1) = \alpha + i\beta,$$

or

$$Y(h_1) = \eta_C(h_1)e^{\xi_C(h_1)2\pi i}, \quad \text{where } \eta_C(h_1), \xi_C(h_1) \in [0, 1].$$

Definition 3 (see [16]). Let $\mathbb{H} = \left\{ h_j, m_{\mathbb{H}_c}(h_j) | h_j \in \mathbb{B} \right\}$ and $\mathbb{K} = \left\{ k_h, m_{\mathbb{K}_c}(h_k) | h_k \in \mathbb{B} \right\}$, $j, k \in \mathbb{N}$, be two CFSs on the universal set \mathbb{B} with the membership degrees symbolized by the complex valued mappings $m_{\mathbb{H}_c}$ and $m_{\mathbb{K}_c}$, respectively. Then, the Cartesian product of \mathbb{H} and \mathbb{K} is denoted and defined as

$$\mathbb{H} \times \mathbb{K} = \left\{ (h_j, h_k), m_{(\mathbb{H}\times\mathbb{K})_c}(h_j, h_k), |h_j| \in \mathbb{H}, |h_k| \in \mathbb{K} \right\},$$

where the mapping $m_{(\mathbb{H}\times\mathbb{K})_c}: \mathbb{H} \times \mathbb{K} \rightarrow \{ |Y| \in \mathbb{C}, |Y| \leq 1 \}$ symbolizes the membership degree of the product $\mathbb{H} \times \mathbb{K}$ and is defined as

$$m_{(\mathbb{H}\times\mathbb{K})_c} (h_j, h_k) \leq \text{min} \left\{ m_{\mathbb{H}_c}(h_j), m_{\mathbb{K}_c}(h_k) \right\}. \quad (7)$$

Since $m_{(\mathbb{H}\times\mathbb{K})_c}$ is a complex valued mapping, one writes

$$Y(h_j, h_k) = \alpha_{jk} + i\beta_{jk}, \quad (8)$$

or

$$Y(h_j, h_k) = \eta_{(\mathbb{H}\times\mathbb{K})_c}(h_j, h_k)e^{\xi_{(\mathbb{H}\times\mathbb{K})_c}(h_j, h_k)2\pi i} = \min \left\{ \eta_{\mathbb{H}_c}(h_j), \eta_{\mathbb{K}_c}(h_k) \right\} e^{\min \{ \xi_{\mathbb{H}_c}(h_j), \xi_{\mathbb{K}_c}(h_k) \} 2\pi i},$$

where $\eta_{(\mathbb{H}\times\mathbb{K})_c}(h_j, h_k), \xi_{(\mathbb{H}\times\mathbb{K})_c}(h_j, h_k) \in [0, 1].$

Definition 4 (see [16]). Let $\mathbb{H} = \left\{ h_j, m_{\mathbb{H}_c}(h_j) | h_j \in \mathbb{B} \right\}$ and $\mathbb{K} = \left\{ k_h, m_{\mathbb{K}_c}(h_k) | h_k \in \mathbb{B} \right\}$ be two CFSs on \mathbb{B}. Then, a fuzzy relation (FR) \mathbb{R} is any subset of the product $\mathbb{H} \times \mathbb{K}$. It is denoted and defined as

$$\mathbb{R} = \left\{ (h_j, h_k), m_{\mathbb{R}_c}(h_j, h_k) | (h_j, h_k) \in \mathbb{H} \times \mathbb{K} \right\},$$

where $m_{\mathbb{R}_c}(h_j, h_k)$ symbolizes the membership degree of FR \mathbb{R} and

$$m_{\mathbb{R}_c}(h_j, h_k) = m_{(\mathbb{H}\times\mathbb{K})_c}(h_j, h_k). \quad (11)$$

Example 1. Consider a CFS \mathbb{H} on \mathbb{B}.

$$\mathbb{H} = \{ (h_1, 0.8e^{0.52\pi}), (h_2, 0.3e^{0.62\pi}), (h_3, 0e^{1.2\pi}) \}. \quad (12)$$

The Cartesian product $\mathbb{H} \times \mathbb{H}$ is

$$\mathbb{H} \times \mathbb{H} = \left\{ \begin{array}{l}
(h_1, h_1)0.8e^{0.52\pi}, (h_1, h_2)0.3e^{0.62\pi}, (h_1, h_3)0e^{1.2\pi}, \\
(h_2, h_1)0.3e^{0.52\pi}, (h_2, h_2)0.3e^{0.62\pi}, (h_2, h_3)0e^{1.2\pi}, \\
(h_3, h_1)0e^{0.52\pi}, (h_3, h_2)0e^{0.62\pi}, (h_3, h_3)0e^{1.2\pi}. \end{array} \right\} \quad (13)$$

The CFR \mathbb{R} is

$$\mathbb{R} = \{ (h_1, h_1)0.8e^{0.52\pi}, (h_1, h_2)0.3e^{0.52\pi}, (h_1, h_3)0e^{1.2\pi}, (h_2, h_1)0.3e^{0.62\pi}, (h_2, h_2)0e^{0.62\pi}, (h_2, h_3)0e^{1.2\pi}, (h_3, h_1)0e^{0.52\pi}, (h_3, h_2)0e^{0.62\pi}, (h_3, h_3)0e^{1.2\pi} \}. \quad (14)$$

Definition 5 (see [2]). Let \mathbb{B} be a universal set. Then, a set \mathbb{H} on \mathbb{B} is said to be an IFS if it is of the form

$$\mathbb{H} = \left\{ h_1, m(h_1), n(h_1) | h_1 \in \mathbb{B} \right\}, \quad (15)$$

provided that $m(h_1) + n(h_1) \in [0, 1]$, where $m(h_1)$ and $n(h_1)$ are the fuzzy valued mappings which symbolize the membership and nonmembership degrees of the IFS \mathbb{H}, respectively.

Definition 6 (see [13]). Let \mathbb{B} be a universal set. Then, a set \mathbb{H} on \mathbb{B} is said to be a CIFS if it is of the form

$$\mathbb{H} = \left\{ h_1, m_{\mathbb{H}_c}(h_1), n_{\mathbb{H}_c}(h_1) | h_1 \in \mathbb{B} \right\}, \quad (16)$$

where $m_{\mathbb{H}_c}$ and $n_{\mathbb{H}_c}$ are the complex valued mappings which represent the membership degree and nonmembership degree of CIFS \mathbb{H}, respectively. These mappings are defined as
\[m_{\text{nc}} : \mathcal{B} \rightarrow \{Y_1 | Y_1 \in \mathbb{C}, |Y_1| \leq 1\}, \]
\[n_{\text{nc}} : \mathcal{B} \rightarrow \{Y_2 | Y_2 \in \mathbb{C}, |Y_2| \leq 1\}, \]

where \(\mathbb{C} \) is the set of complex numbers. Thus,
\[Y_1 (h_1) = \alpha_1 + i\beta_1, \]
\[Y_2 (h_1) = \alpha_2 + i\beta_2, \]

provided that \((|Y_1(h_1)|^2 + |Y_2(h_1)|^2) \in [0, 1]\) or
\[Y_1 (h_1) = \eta_{\text{nc}}(h_1) e^{i\xi_{\text{nc}}(h_1)2\pi i}, \]
\[Y_2 (h_1) = \eta_{\text{nc}}(h_1) e^{i\xi_{\text{nc}}(h_1)2\pi i}, \]

where \(\eta_{\text{nc}}(h_1), \eta_{\text{nc}}(h_1), \xi_{\text{nc}}(h_1), \xi_{\text{nc}}(h_1) \in [0, 1] \), provided that \((|\eta_{\text{nc}}(h_1)|^2 + |\eta_{\text{nc}}(h_1)|^2)^2 \in [0, 1]\) and \((|\xi_{\text{nc}}(h_1)|^2 + |\xi_{\text{nc}}(h_1)|^2)^2 \in [0, 1]\).

Definition 7. ([3]). Let \(\mathbb{B} \) be a universal set. Then, a set \(\hat{H} \) on \(\mathcal{B} \) is said to be a Pythagorean fuzzy set (PFS) if it is of the form
\[\hat{H} = \{ h_1, m(h_1), n(h_1) | h_1 \in \mathbb{B} \}, \]

provided that \((m^2(h_1) + n^2(h_1)) \in [0, 1]\), where \(m(h_1) \) and \(n(h_1) \) are the fuzzy valued mappings which symbolize the membership and nonmembership degrees of the PFS \(\hat{H} \), respectively.

Definition 8 (see [14]). Let \(\mathcal{B} \) be a universal set. Then, a set \(\hat{H} \) on \(\mathcal{B} \) is said to be a CPFS if it is of the form
\[\hat{H} = \{ h_1, m_{\text{nc}}(h_1), n_{\text{nc}}(h_1) | h_1 \in \mathcal{B} \}, \]

where \(m_{\text{nc}}(h_1) \) and \(n_{\text{nc}}(h_1) \) are the complex valued mappings which symbolize the membership degree and nonmembership degree of CPFS \(\hat{H} \), respectively. These mappings are defined as
\[m_{\text{nc}} : \mathcal{B} \rightarrow \{Y_1 | Y_1 \in \mathbb{C}, |Y_1| \leq 1\}, \]
\[n_{\text{nc}} : \mathcal{B} \rightarrow \{Y_2 | Y_2 \in \mathbb{C}, |Y_2| \leq 1\}, \]

where \(\mathbb{C} \) is the set of complex numbers. Thus,
\[Y_1 (h_1) = \alpha_1 + i\beta_1, \]
\[Y_2 (h_1) = \alpha_2 + i\beta_2, \]

provided that \((|Y_1(h_1)|^2 + |Y_2(h_1)|^2) \in [0, 1]\) or
\[Y_1 (h_1) = \eta_{\text{nc}}(h_1) e^{i\xi_{\text{nc}}(h_1)2\pi i}, \]
\[Y_2 (h_1) = \eta_{\text{nc}}(h_1) e^{i\xi_{\text{nc}}(h_1)2\pi i}, \]

where \(\eta_{\text{nc}}(h_1), \eta_{\text{nc}}(h_1), \xi_{\text{nc}}(h_1), \xi_{\text{nc}}(h_1) \in [0, 1] \), provided that \((|\eta_{\text{nc}}(h_1)|^2 + |\eta_{\text{nc}}(h_1)|^2)^2 \in [0, 1]\) and \((|\xi_{\text{nc}}(h_1)|^2 + |\xi_{\text{nc}}(h_1)|^2)^2 \in [0, 1]\).

3. Main Results

Definition 9. The Cartesian product of the CPFSs \(\hat{H} = \{ h_1, m_{\text{nc}}(h_1), n_{\text{nc}}(h_1) | h_1 \in \mathcal{B} \} \) and \(\mathcal{K} = \{ h_k, m_{\text{nc}}(h_k), n_{\text{nc}}(h_k) | h_k \in \mathcal{B} \} \), \(j, k \in \mathbb{N} \) is defined by
\[\hat{H} \times \mathcal{K} = \{ (h_j, h_k) | m_{\text{nc}}(h_j), n_{\text{nc}}(h_j), m_{\text{nc}}(h_k), n_{\text{nc}}(h_k) \} \subseteq \hat{H} \times \mathcal{K} \].

The mappings \(m_{\text{nc}}(h_j, h_k) : \mathcal{B} \rightarrow \{Y_m | Y_m \in \mathbb{C}, |Y_m| \leq 1\} \) and \(n_{\text{nc}}(h_j, h_k) : \mathcal{B} \rightarrow \{Y_m | Y_m \in \mathbb{C}, |Y_m| \leq 1\} \) represent the degrees of membership and nonmembership \(\hat{H} \times \mathcal{K} \) and is defined as \(m_{\text{nc}}(h_j, h_k) = \min \{ m_{\text{nc}}(h_j), m_{\text{nc}}(h_k) \} \) and \(n_{\text{nc}}(h_j, h_k) = \max \{ n_{\text{nc}}(h_j), n_{\text{nc}}(h_k) \} \). Moreover, the complex numbers \(Y_m \) and \(Y_m \) for \(\hat{H} \times \mathcal{K} \) can be defined as
\[Y_m(h_j, h_k) = \eta_{\text{nc}}(h_j, h_k) e^{i\xi_{\text{nc}}(h_j, h_k)2\pi i} \]
\[Y_m(h_j, h_k) = \eta_{\text{nc}}(h_j, h_k) e^{i\xi_{\text{nc}}(h_j, h_k)2\pi i}, \]

with the conditions
\[0 \leq \left(\eta_{\text{nc}}(h_j, h_k) \right)^2 + \left(\eta_{\text{nc}}(h_j, h_k) \right)^2 \leq 1, \]
\[0 \leq \left(\xi_{\text{nc}}(h_j, h_k) \right)^2 + \left(\xi_{\text{nc}}(h_j, h_k) \right)^2 \leq 1. \]

Definition 10. A complex Pythagorean fuzzy relation (CPFR) denoted by \(\mathcal{R} \) is a nonempty subset of \(\hat{H} \times \mathcal{K} \), where \(\hat{H} \) and \(\mathcal{K} \) are the CPFSs.

Example 2. Take the CPFS,
\[
\mathcal{H} = \begin{cases}
(h_1, 0.6e^{(0.5)2\pi i}, 0.7e^{(0.6)2\pi i}) , \\
(h_2, 0.7e^{(0.6)2\pi i}, 0.5e^{(0.7)2\pi i})
\end{cases} .
\]

Now, find \(\mathcal{H} \times \mathcal{H} \). We have

\[
\mathcal{H} \times \mathcal{H} = \begin{cases}
((h_1, h_1), 0.6e^{(0.5)2\pi i}, 0.7e^{(0.6)2\pi i}) , \\
((h_1, h_2), 0.5e^{(0.5)2\pi i}, 0.5e^{(0.6)2\pi i}) , \\
((h_2, h_1), 0.5e^{(0.5)2\pi i}, 0.6e^{(0.5)2\pi i}) , \\
((h_2, h_2), 0.7e^{(0.6)2\pi i}, 0.5e^{(0.7)2\pi i})
\end{cases} .
\]

The CPR is

\[
\mathcal{R} = \begin{cases}
((h_1, h_2), 0.5e^{(0.5)2\pi i}, 0.5e^{(0.6)2\pi i}) , \\
((h_2, h_1), 0.5e^{(0.5)2\pi i}, 0.6e^{(0.5)2\pi i})
\end{cases} .
\]

Definition 11. The inverse of the CPFR \(\mathcal{R}^{-1} \) of the CPFR \(\mathcal{R} \) is called a CPF reflexive relation if

\[
\forall (h_1, h_2) \in \mathcal{R}^{-1} \Rightarrow (h_2, h_1) \in \mathcal{R}^{-1} .
\]

Example 3. Let the CPFR \(\mathcal{R} \) from (29),

\[
\mathcal{R}^{-1} = \begin{cases}
((h_2, h_1), 0.5e^{(0.5)2\pi i}, 0.5e^{(0.6)2\pi i}) , \\
((h_1, h_2), 0.5e^{(0.5)2\pi i}, 0.6e^{(0.5)2\pi i})
\end{cases} ,
\]

where \(\mathcal{R}_1 \subset \mathcal{R} \). Now, the inverse of \(\mathcal{R}_1 \) is

\[
\mathcal{R}_1^{-1} = \begin{cases}
((h_2, h_1), 0.5e^{(0.5)2\pi i}, 0.5e^{(0.6)2\pi i}) , \\
((h_1, h_2), 0.5e^{(0.5)2\pi i}, 0.6e^{(0.5)2\pi i})
\end{cases} .
\]

Definition 12. The CPFR \(\mathcal{R}_2 \) is called a CPF reflexive relation if

\[
\forall (h_1, h_2) \in \mathcal{R}_2 \Rightarrow (h_2, h_1) \in \mathcal{R}_2 ,
\]

while the CPFR \(\mathcal{R}_3 \) is an irreflexive relation if

\[
(h_1, h_1), m_{h_{\text{refl}}} (h_1, h_1), n_{h_{\text{refl}}} (h_1, h_1) \notin \mathcal{R}_3 .
\]

Example 4. From Example 2, in (29), the following relations \(\mathcal{R}_2 \) and \(\mathcal{R}_3 \) are CPF reflexive relation and irreflexive relation, respectively:

\[
\mathcal{R}_2 = \begin{cases}
((h_1, h_1), 0.6e^{(0.5)2\pi i}, 0.7e^{(0.6)2\pi i}) , \\
((h_2, h_2), 0.7e^{(0.6)2\pi i}, 0.5e^{(0.7)2\pi i})
\end{cases} ,
\]

\[
\mathcal{R}_3 = \begin{cases}
((h_1, h_2), 0.5e^{(0.5)2\pi i}, 0.5e^{(0.6)2\pi i}) , \\
((h_2, h_1), 0.5e^{(0.5)2\pi i}, 0.6e^{(0.5)2\pi i})
\end{cases} .
\]
Definition 13. A CPFR \tilde{R} is called a CPF symmetric relation if

$$\forall \left((h_1, h_2), m_{R_c}(h_1, h_2), n_{R_c}(h_1, h_2)\right) \in \tilde{R} \Rightarrow \left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right) \in \tilde{R}. \quad (35)$$

A CPFR \tilde{R}_1 is called a CPF asymmetric relation if

$$\forall \left((h_1, h_2), m_{R_c}(h_1, h_2), n_{R_c}(h_1, h_2)\right) \in \tilde{R}_1 \Rightarrow \left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right) \notin \tilde{R}_1. \quad (36)$$

A CPFR \tilde{R}_2 is called a CPF antisymmetric relation if

$$\left((h_1, h_2), m_{R_c}(h_1, h_2), n_{R_c}(h_1, h_2)\right) \in \tilde{R}_2,$$

$$\left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right) \in \tilde{R}_2 \Rightarrow \left((h_1, h_2), m_{R_c}(h_1, h_2), n_{R_c}(h_1, h_2)\right) \notin \tilde{R}_1,$$

$$= \left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right). \quad (37)$$

Example 5. The following CPF relations \tilde{R}_1, \tilde{R}_2, and \tilde{R}_3 are CPF symmetric relation, CPF asymmetric relation, and CPF antisymmetric relation, respectively:

$$\tilde{R}_1 = \{(h_1, h_2), 0.5e^{(0.7)2\pi i}, 0.6e^{(0.5)2\pi i}\}, \quad (h_2, h_1), 0.5e^{(0.7)2\pi i}, 0.6e^{(0.5)2\pi i}\}, \quad (38)$$

$$\tilde{R}_2 = \{(h_1, h_2), 0.6e^{(0.5)2\pi i}, 0.7e^{(0.6)2\pi i}\}, \quad (h_1, h_3), 0.7e^{(0.6)2\pi i}, 0.6e^{(0.5)2\pi i}\}, \quad \tilde{R}_3 = \{(h_1, h_3), 0.4e^{(0.5)2\pi i}, 0.9e^{(0.7)2\pi i}\}, \quad (h_3, h_3), 0.8e^{(0.6)2\pi i}, 0.4e^{(0.7)2\pi i}\}.$$

Theorem 1. A CPFR \tilde{R} is a symmetric relation iff $\tilde{R} = \tilde{R}^{-1}$.

Proof. Let $\tilde{R} = \tilde{R}^{-1}$, then we have

$$\left((h_1, h_2), m_{R_c}(h_1, h_2), n_{R_c}(h_1, h_2)\right) \in \tilde{R} \Rightarrow \left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right) \in \tilde{R}^{-1}. \quad (39)$$

Since $\tilde{R} = \tilde{R}^{-1}$, one writes

$$\left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right) \in \tilde{R}. \quad (40)$$

Hence proved that \tilde{R} is a CPF symmetric relation. Conversely, assume that \tilde{R} is a CPF symmetric relation. Then,

$$\left((h_1, h_2), m_{R_c}(h_1, h_2), n_{R_c}(h_1, h_2)\right) \in \tilde{R} \Rightarrow \left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right) \in \tilde{R}. \quad (41)$$

But, if

$$\left((h_1, h_2), m_{R_c}(h_1, h_2), n_{R_c}(h_1, h_2)\right) \in \tilde{R} \Rightarrow \left((h_2, h_1), m_{R_c}(h_2, h_1), n_{R_c}(h_2, h_1)\right) \in \tilde{R}^{-1}. \quad (42)$$

this implies that $\tilde{R} = \tilde{R}^{-1}$. \hfill \Box

Theorem 2. Let \tilde{R}_1 and \tilde{R}_2 are CPF symmetric relations, then their intersection, $\tilde{R}_1 \cap \tilde{R}_2$, is also a CPF symmetric relation.

Proof. Assume that \tilde{R}_1 and \tilde{R}_2 are two CPFR symmetric relations on CPFS \tilde{H}. Then, from the definition of CPFR,
Therefore, \bar{R}_1 and \bar{R}_2 are CPF symmetric relations. Then,

$$\left((h_2, h_1), m_{\bar{R}_c}(h_2, h_1), n_{\bar{R}_c}(h_2, h_1) \right) \in \bar{R}_1 \cap \bar{R}_2$$

Conversely assume that $\bar{R} \circ \bar{R} \subseteq \bar{R}$, then for

$$\left((h_1, h_2), m_{\bar{R}^c}(h_1, h_2), n_{\bar{R}^c}(h_1, h_2) \right) \in \bar{R},$$

one has

$$\left((h_1, h_3), m_{\bar{R}_c}(h_1, h_3), n_{\bar{R}_c}(h_1, h_3) \right) \in \bar{R}. \quad (51)$$

But,

$$\left((h_1, h_3), m_{\bar{R}_c}(h_1, h_3), n_{\bar{R}_c}(h_1, h_3) \right) \in \bar{R} \circ \bar{R}. \quad (52)$$

Hence, $\bar{R} \circ \bar{R} \subseteq \bar{R}$. This implies that

$$\left((h_1, h_3), m_{\bar{R}_c}(h_1, h_3), n_{\bar{R}_c}(h_1, h_3) \right) \in \bar{R}. \quad (54)$$

Hence, it is proved that \bar{R} is a CPF transitive relation. \square

Definition 16. A CPF \bar{R} is a reflexive relation if

$$\left((h_1, h_2), m_{\bar{R}_c}(h_1, h_2), n_{\bar{R}_c}(h_1, h_2) \right) \in \bar{R}, \quad (55)$$

Theorem 4. A CPF equivalence relation implies that $\bar{R} \circ \bar{R} = \bar{R}$.

Proof. We know that a CPF equivalence relation \bar{R} is also a CPF transitive relation, so in view of Theorem 3,

$$\bar{R} \times \bar{R} \subseteq \bar{R}. \quad (56)$$

We assume that

$$\left((h_1, h_2), m_{\bar{R}_c}(h_1, h_2), n_{\bar{R}_c}(h_1, h_2) \right) \in \bar{R}. \quad (57)$$

As \bar{R} is an equivalence relation and verifies the axioms of a CPF symmetric relation and CPF is a transitive relation,

$$\left((h_2, h_1), m_{\bar{R}_c}(h_2, h_1), n_{\bar{R}_c}(h_2, h_1) \right) \in \bar{R}. \quad (58)$$

In view of (57) and (58), we have that

$$\left((h_1, h_3), m_{\bar{R}_c}(h_1, h_3), n_{\bar{R}_c}(h_1, h_3) \right) \in \bar{R} \circ \bar{R}. \quad (59)$$

Now, from (57) and (59), we get that

$$\bar{R} \subseteq \bar{R} \times \bar{R}. \quad (60)$$
Theorem 5. The inverse CPF relation \overline{R}^{-1} of a CPF order relation is also a CPF-order relation.

Proof. The inverse CPF relation \overline{R}^{-1} of a CPF order relation is also a CPF-order relation, if \overline{R} verifies the following three properties of a CPF-order relation:

(P1) $\forall h_1 \in H, ((h_1, h_1), m_{Rc} (h_1, h_1), n_{Rc} (h_1, h_1)) \in \overline{R}$. Since \overline{R} is a CPF reflexive relation, $\Rightarrow ((h_1, h_1), m_{Rc} (h_1, h_1), n_{Rc} (h_1, h_1)) \in \overline{R}$.

Hence, \overline{R} is a CPF reflexive relation.

(P2) Let $((h_1, h_2), m_{Rc} (h_1, h_2), n_{Rc} (h_1, h_2)) \in \overline{R}$ and $((h_2, h_1), m_{Rc} (h_2, h_1), n_{Rc} (h_2, h_1)) \in \overline{R}$. Hence, \overline{R}^{-1} is a CPF symmetric relation. Similarly, \overline{R}^{-1} is a CPF reflexive relation.

Hence, \overline{R}^{-1} is a CPF antisymmetric relation.

(P3) Assume that $((h_1, h_2), m_{Rc} (h_1, h_2), n_{Rc} (h_1, h_2)) \in \overline{R}$ and $((h_2, h_3), m_{Rc} (h_2, h_3), n_{Rc} (h_2, h_3)) \in \overline{R}$. Since \overline{R} is a CPF transitive relation, $\Rightarrow ((h_1, h_3), m_{Rc} (h_1, h_3), n_{Rc} (h_1, h_3)) \in \overline{R}^{-1}$.

Hence, \overline{R}^{-1} is a CPF transitive relation.

Thus, from (P1), (P2), and (P3), \overline{R}^{-1} is also a CPF-order relation. □

Definition 17. For a CPF equivalence relation \overline{R}, $(h_1, m_{Rc} (h_1), n_{Rc} (h_1))$, the equivalence class of h_1 modulo \overline{R}, is $\overline{R}^{h_1} = \{ (h_2, m_{Rc} (h_2), n_{Rc} (h_2)) : ((h_2, h_1), m_{Rc} (h_2, h_1), n_{Rc} (h_2, h_1)) \in \overline{R} \}$.

Example 7. Let the CPF equivalence relation

$$\overline{R} = \left\{ \left((h_1, h_1), 0.5e^{(0.2)2\pi}, 0.5e^{(0.7)2\pi} \right), \left((h_1, h_2), 0.5e^{(0.5)2\pi}, 0.5e^{(0.7)2\pi} \right), \left((h_2, h_1), 0.5e^{(0.5)2\pi}, 0.6e^{(0.6)2\pi} \right), \left((h_2, h_2), 0.5e^{(0.6)2\pi}, 0.4e^{(0.5)2\pi} \right) \right\}. \quad (63)$$

Now, the equivalence classes of a CPF relation are

$$\overline{R}^{h_1} = \overline{R}^{h_2} = \{ (h_1, 0.6e^{(0.5)2\pi}, 0.5e^{(0.7)2\pi}), (h_2, 0.7e^{(0.6)2\pi}, 0.4e^{(0.5)2\pi}) \}. \quad (64)$$

Theorem 6. For a CPF equivalence relation \overline{R}, $(h_1, h_2), m_{Rc} (h_1, h_2), n_{Rc} (h_1, h_2)) \in \overline{R}$ if and only if $\overline{R}^{h_1} = \overline{R}^{h_2}$.

Proof. Assume that $\overline{R}^{h_1} = \overline{R}^{h_2}$, then for $h_3 \in \overline{R}$,

$$\left(h_3, m_{Rc} (h_3), n_{Rc} (h_3) \right) \in \overline{R}^{h_1}, \quad \Rightarrow \left(h_3, h_1 \right), m_{Rc} (h_3, h_1), n_{Rc} (h_3, h_1) \right) \in \overline{R}. \quad (65)$$

Since \overline{R} is symmetric, one writes

$$\left(h_1, h_3 \right), m_{Rc} (h_1, h_3), n_{Rc} (h_1, h_3) \right) \in \overline{R}. \quad (66)$$

Hence, \overline{R} is a CPF symmetric relation. Similarly,

$$\left(h_2, m_{Rc} (h_2), n_{Rc} (h_2) \right) \in \overline{R}^{h_1}, \quad \Rightarrow \left(h_2, h_1 \right), m_{Rc} (h_2, h_1), n_{Rc} (h_2, h_1) \right) \in \overline{R}, \quad (67)$$

since \overline{R} is transitive.

Hence, \overline{R}^{-1} is a CPF antisymmetric relation
Hence, we get that
\[\mathbb{R}^{h_1} \subseteq \mathbb{R}^{h_2}. \] (72)

Similarly, we assume that \(((h_1, h_2), m_{R_{c}}(h_1, h_2), n_{R_{c}}(h_1, h_2)) \in \mathbb{R} \) and \((h_3, m_{R_{c}}(h_3, h_2), n_{R_{c}}(h_3, h_2)) \in \mathbb{R}^{h_3} \), then
\[(h_3, h_2), m_{R_{c}}(h_3, h_2), n_{R_{c}}(h_3, h_2) \in \mathbb{R}. \] (73)

Since \(((h_1, h_2), m_{R_{c}}(h_1, h_2), n_{R_{c}}(h_1, h_2)) \in \mathbb{R} \), one writes \((h_2, h_1), m_{R_{c}}(h_2, h_1), n_{R_{c}}(h_2, h_1)) \in \mathbb{R} \), as \(\mathbb{R} \) is a CPF symmetric relation. Now, we have
\[(h_3, h_2), m_{R_{c}}(h_3, h_2), n_{R_{c}}(h_3, h_2) \in \mathbb{R}, \]
\[(h_2, h_1), m_{R_{c}}(h_2, h_1), n_{R_{c}}(h_2, h_1) \in \mathbb{R}, \] (74)
\[\Rightarrow (h_3, h_1), m_{R_{c}}(h_3, h_1), n_{R_{c}}(h_3, h_1) \in \mathbb{R}, \]
as \(\Rightarrow ((h_3, h_1), m_{R_{c}}(h_3, h_1), n_{R_{c}}(h_3, h_1)) \in \mathbb{R} \) is a CPF transitive relation. This implies that
\[(h_3, m_{R_{c}}(h_3), n_{R_{c}}(h_3)) \in \mathbb{R}^{h_1}. \] (75)

Hence,
\[\mathbb{R}^{h_2} \subseteq \mathbb{R}^{h_1}. \] (76)

Now, from (72) and (76), we get that \(\mathbb{R}^{h_1} = \mathbb{R}^{h_2} \). □

4. Application

In the section, an application of the proposed concepts is presented, which discusses the relationships among different economic indicators. Moreover, it also specifies the level of positive and negative impacts of one parameter on the others with respect to time phase.

Figure 1 demonstrates the algorithm and the procedure used in the application. The flow chart describes the stepwise progression for the investigation of quality of relationships between any two economic indicators. Initially, the economic parameters or indicators to be studied are collected. After that, the Cartesian product is found to achieve all the possible relations, which proves to be helpful in learning the relationships and the level of impacts of one parameter over the others. Next, different types and properties of CPFRs can be utilized to find out the unknown and indirect relationships. Last, the experiment is concluded by reading the complex Pythagorean fuzzy information, such that the first element in the pair of relation affects the second element. The amplitude term represents the level of effectiveness, and the phase term refers to the time phase. The degree of membership characterizes the positive effects, while the degree of nonmembership characterizes the negative effects of one parameter over the others.

Consider the set \(\mathbb{H} = \{ \text{Import, export, GDP, industry, agriculture, employment} \} \) of a country’s economic indicators. The goal is to find out the impacts of each indicator over the other with respect to time. Note that, in this experiment, the unit of time is taken to be a year. Hence, a CPFS \(\mathbb{H} \) is induced from the set \(\mathbb{H} \) as

\[
\mathbb{H} = \left\{ \begin{array}{l}
\left(\text{Import}, 0.3e^{(0.52)i}, 0.6e^{(0.52)i}, 0.2e^{(0.75)i} \right),
\left(\text{export}, 0.8e^{(0.52)i}, 0.2e^{(0.75)i} \right),
\left(\text{industry}, 0.7e^{(0.52)i}, 0.4e^{(0.25)i} \right),
\left(\text{agriculture}, 0.7e^{(0.25)i}, 0.5e^{(0.75)i} \right),
\left(\text{employment}, 0.9e^{(0.25)i}, 0.3e^{(0.75)i} \right) \end{array} \right\}. \] (77)
The investigation of relationships among the economic indicators attempts to find out the Cartesian product of $H \times H$. Hence,

$$H \times H = \left\{ \begin{array}{l}
(\text{Import, import, } 0.3e^{(0.52)\pi}, 0.6e^{(0.52)\pi}), (\text{import, export, } 0.3e^{(0.52)\pi}, 0.6e^{(0.75)2\pi}), \\
(\text{import, industry, } 0.3e^{(0.52)\pi}, 0.6e^{(0.52)\pi}), (\text{import, agriculture, } 0.3e^{(0.25)\pi}, 0.6e^{(0.75)2\pi}), \\
(\text{import, employment, } 0.3e^{(0.25)2\pi}, 0.6e^{(0.75)2\pi}), (\text{export, import, } 0.3e^{(0.52)\pi}, 0.6e^{(0.75)2\pi}), \\
(\text{export, export, } 0.8e^{(0.52)\pi}, 0.2e^{(0.75)2\pi}), (\text{export, industry, } 0.7e^{(0.52)\pi}, 0.4e^{(0.75)2\pi}), \\
(\text{export, agriculture, } 0.7e^{(0.25)2\pi}, 0.5e^{(0.75)2\pi}), (\text{export, employment, } 0.8e^{(0.25)2\pi}, 0.3e^{(0.75)2\pi}), \\
(\text{industry, import, } 0.3e^{(0.52)\pi}, 0.6e^{(0.52)\pi}), (\text{industry, export, } 0.7e^{(0.52)\pi}, 0.4e^{(0.75)2\pi}), \\
(\text{industry, employment, } 0.7e^{(0.25)2\pi}, 0.4e^{(0.25)2\pi}), (\text{industry, agriculture, } 0.7e^{(0.25)\pi}, 0.5e^{(0.75)2\pi}), \\
(\text{agriculture, export, } 0.7e^{(0.25)2\pi}, 0.5e^{(0.75)2\pi}), (\text{agriculture, import, } 0.3e^{(0.25)2\pi}, 0.6e^{(0.75)2\pi}), \\
(\text{agriculture, agriculture, } 0.7e^{(0.25)2\pi}, 0.5e^{(0.75)2\pi}), (\text{agriculture, employment, } 0.3e^{(0.52)2\pi}, 0.6e^{(0.52)2\pi}), \\
(\text{employment, import, } 0.3e^{(0.25)2\pi}, 0.6e^{(0.75)2\pi}), (\text{employment, export, } 0.8e^{(0.25)2\pi}, 0.3e^{(0.75)2\pi}), \\
(\text{employment, industry, } 0.7e^{(0.25)2\pi}, 0.4e^{(0.25)2\pi}), (\text{employment, agriculture, } 0.7e^{(0.25)\pi}, 0.3e^{(0.75)2\pi}), \\
(\text{employment, employment, } 0.9e^{(0.25)2\pi}, 0.3e^{(0.75)2\pi}) \end{array} \right. . \quad (78)$$

Each element of the Cartesian product given by equation (78) describes the magnitude of impacts of one factor over the other. For instance, (industry, export, 0.7e^{(0.52)\pi}, 0.4e^{(0.75)2\pi}) conveys that the degree of good impacts of the industry on the export of the country is 0.7 with respect to a year. Since, the imaginary part represents the time phase, so (0.52) = 1 year. In addition, the degree of bad impacts is 0.4 with respect to one and a half year. Likewise, (agriculture, industry, 0.7e^{(0.25)2\pi}, 0.5e^{(0.75)2\pi}) expresses that the degree of good and positive impacts of the agriculture over the industry of a country is 0.7 with respect to half a year, and the degree of bad and negative impacts is 0.5 with respect to one and a half year.

Suppose that the impacts of export on industry and the impacts of industry on employment are known, but the impacts of export over employment are not known. These unknown impacts can be easily found by using the complex Pythagorean fuzzy transitive relations because the Cartesian product is an equivalence relation.

Moreover, multiple sets of economic indicators of different countries can be considered, and the indirect impacts of one country’s economy over the other countries’ can be found using the CPF composite relations.

Consider three different countries: Pakistan (P), China (C), and Iran (I). The aim is to relate their economies through some economic parameters. Henceforth following are the three CP_j FSs,
The CPFR \tilde{R}_1 between the set P and C is found to be

$$\tilde{R}_1 = P \times C = \left\{ \begin{array}{l}
(\text{Trade}, \text{industry}), 0.7e^{(0.52i^2)}, 0.5e^{(0.52i^2)} \\
(\text{trade}, \text{agriculture}), 0.5e^{(0.52i^2)}, 0.6e^{(0.52i^2)} \\
(\text{agriculture}, \text{industry}), 0.8e^{(0.52i^2)}, 0.5e^{(0.52i^2)} \\
(\text{agriculture}, \text{agriculture}), 0.5e^{(0.75i^2)}, 0.6e^{(0.52i^2)} \\
\end{array} \right\} \quad (80)$$

The CPFR \tilde{R}_2 between the sets C and I is found to be

$$\tilde{R}_2 = C \times I = \left\{ \begin{array}{l}
(\text{Industry}, \text{trade}), 0.6e^{(0.25i^2)}, 0.5e^{(0.52i^2)} \\
(\text{industry}, \text{employment}), 0.7e^{(0.52i^2)}, 0.5e^{(0.75i^2)} \\
(\text{agriculture}, \text{trade}), 0.5e^{(0.25i^2)}, 0.6e^{(0.52i^2)} \\
(\text{agriculture}, \text{employment}), 0.5e^{(0.52i^2)}, 0.6e^{(0.75i^2)} \\
\end{array} \right\} \quad (81)$$

Now, by using the CPF composition relation \tilde{R}, the indirect relation between the sets P and I are found as given in Table 1. Trade (I) and employment (I) are the parameters of Iran, while trade (P) and agriculture (P) are the parameters of Pakistan.

5. Conclusion

In this study, the novel concept of complex Pythagorean fuzzy relation (CPFR) is defined. Additionally, the types of CPFRs are described with suitable examples. Some of the types are a CPFR irreflexive relation, a CPFR inverse relation, a CPFR asymmetric relation, a CPFR composite relation, a CPFR equivalence relation, a CPFR order relation, and a CPFR equivalence class. Furthermore, some useful and interesting properties and results of CPFRs are elaborated in detail. Moreover, an application of the proposed method is presented that discusses the impacts of economic parameters of a country over each other. Furthermore, the application also explains the effects of economic parameters of one country over the economic parameters of the other countries. The introduced concepts can be extended to other generalizations of fuzzy sets which will produce very interesting structures. These novel structures might have a rich variety of applications in sciences, technology, and economics.

Table 1: The CPyF composition relation \tilde{R}

$\tilde{R} = \tilde{R}_1 \circ \tilde{R}_2$	Trade (I)	Employment (I)
Trade (P)	$0.6e^{(0.25i^2)}, 0.5e^{(0.52i^2)}$	$0.7e^{(0.75i^2)}, 0.5e^{(0.52i^2)}$
Agriculture (P)	$0.6e^{(0.25i^2)}, 0.5e^{(0.52i^2)}$	$0.7e^{(0.75i^2)}, 0.3e^{(0.75i^2)}$

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986.
[3] R. R. Yager, “Pythagorean fuzzy subsets,” in Proceedings of the 2013 Joint IFSA World Congress and NAIPS Annual Meeting (IFSA/NAIPS), pp. 57–61, IEEE, Edmonton, Canada, June 2013.
[4] G. Deschrijver and E. E. Kerre, “On the relationship between some extensions of fuzzy set theory,” Fuzzy Sets and Systems, vol. 133, no. 2, pp. 227–235, 2003.
[5] J. Maier and Y. S. Sherif, “Applications of fuzzy set theory,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 175–189, 1985.
[6] G. J. Klim, “On fuzzy-set interpretation of possibility theory,” Fuzzy Sets and Systems, vol. 108, no. 3, pp. 263–273, 1999.
[7] S. K. De, R. Biswas, and A. R. Roy, “Some operations on intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 114, no. 3, pp. 477–484, 2000.
[8] S. K. De, R. Biswas, and A. R. Roy, “An application of intuitionistic fuzzy sets in medical diagnosis,” Fuzzy Sets and Systems, vol. 117, no. 2, pp. 209–213, 2001.
[9] E. Szmidt and J. Kacprzyk, “Distances between intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 114, no. 3, pp. 505–518, 2000.
[10] X. Peng and Y. Yang, “Some results for Pythagorean fuzzy sets,” International Journal of Intelligent Systems, vol. 30, no. 11, pp. 1133–1160, 2015.
[11] X. Peng, H. Yuan, and Y. Yang, “Pythagorean fuzzy information measures and their applications,” International Journal of Intelligent Systems, vol. 32, no. 10, pp. 991–1029, 2017.
[12] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 171–186, 2002.
A. S. Alkouri and A. R. Salleh, “Complex intuitionistic fuzzy sets,” *AIP Conference Proceedings*, vol. 1482, p. 464, 2012.

K. Ullah, T. Mahmood, Z. Ali, and N. Jan, “On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition,” *Complex & Intelligent Systems*, vol. 6, no. 1, pp. 15–27, 2019.

O. Yazdanbakhsh and S. Dick, “A systematic review of complex fuzzy sets and logic,” *Fuzzy Sets and Systems*, vol. 338, pp. 1–22, 2018.

D. E. Tamir, N. D. Rishe, and A. Kandel, “Complex fuzzy sets and complex fuzzy logic an overview of theory and applications,” *Fifty Years of Fuzzy Logic and its Applications*, vol. 236, pp. 661–681, 2015.

D. E. Tamir and A. Kandel, “Axiomatic theory of complex fuzzy logic and complex fuzzy classes,” *International Journal of Computers Communications & Control*, vol. 6, no. 3, pp. 562–576, 2011.

D. Rani and H. Garg, “Distance measures between the complex intuitionistic fuzzy sets and their applications to the decision-making process,” *International Journal for Uncertainty Quantification*, vol. 7, no. 5, 2017.

R. T. Ngan, L. H. Son, M. Ali, D. E. Tamir, N. D. Rishe, and A. Kandel, “Representing complex intuitionistic fuzzy set by quaternion numbers and applications to decision making,” *Applied Soft Computing*, vol. 87, Article ID 105961, 2020.

N. Yaqoob, M. Gulistan, S. Kadry, and H. A. Wahab, “Complex intuitionistic fuzzy graphs with application in cellular network provider companies,” *Mathematics*, vol. 7, no. 1, p. 35, 2019.

S. Dick, R. R. Yager, and O. Yazdanbakhsh, “On Pythagorean and complex fuzzy set operations,” *IEEE Transactions on Fuzzy Systems*, vol. 24, no. 5, pp. 1009–1021, 2015.

X. Ma, M. Akram, K. Zahid, and J. C. R. Alcantud, “Group decision-making framework using complex pythagorean fuzzy information,” *Neural Computing and Applications*, vol. 33, no. 6, pp. 2085–2105, 2020.

L. Bi, S. Dai, B. Hu, and S. Li, “Complex fuzzy arithmetic aggregation operators,” *Journal of Intelligent & Fuzzy Systems*, vol. 36, no. 3, pp. 2765–2771, 2019.

G. J. Klir and T. A. Folger, *Fuzzy Sets, Uncertainty, and Information*, Prentice-Hall, Englewood Clis, NJ, USA, 1988.

J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” *Proceedings of the IEEE*, vol. 83, no. 3, pp. 345–377, 1995.

P. Burillo and H. Bustince, “Intuitionistic fuzzy relations (Part I),” *Mathware and Soft Computing*, vol. 2, no. 1, pp. 5–38, 1995.

P. Bhattacharyya and N. P. Mukherjee, “Fuzzy relations and fuzzy groups,” *Information Sciences*, vol. 36, no. 3, pp. 267–282, 1985.

R. T. Yeh and S. Y. Bang, “Fuzzy relations, fuzzy graphs, and their applications to clustering analysis,” in *Fuzzy Sets and Their Applications to Cognitive and Decision Processes*. Academic Press, Cambridge, MA, USA, 1975.

J. M. Blin, “Fuzzy relations in group decision theory,” *Journal of Cybernetics*, vol. 4, 1974.

G. Deschrijver and E. E. Kerre, “On the composition of intuitionistic fuzzy relations,” *Fuzzy Sets and Systems*, vol. 136, no. 3, pp. 333–361, 2003.

H. Bustince and P. Burillo, “Structures on intuitionistic fuzzy relations,” *Fuzzy Sets and Systems*, vol. 78, no. 3, pp. 293–303, 1996.

H. Bustince, “Construction of intuitionistic fuzzy relations with predetermined properties,” *Fuzzy Sets and Systems*, vol. 109, no. 3, pp. 379–403, 2000.