Evolving role of 2B4/CD244 in T and NK cell responses during virus infection

Stephen N. Waggoner1,2 * and Vinay Kumar3

1 Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
2 Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA, USA
3 Department of Pathology, University of Chicago, Chicago, IL, USA

*Correspondence: Stephen N. Waggoner, Department of Pathology, University of Massachusetts Medical School, 5 Lake Avenue North, Worcester, Massachusetts 01655, USA.
e-mail: stephen.waggoner@umassmed.edu

INTRODUCTION

Immunity to virus infection involves the complex interplay of many different leukocytes, including natural killer (NK) cells (Biukowsi et al., 1983; Biron et al., 1989) and CD8 T cells (Zinkernagel and Welsh, 1976). Pro-inflammatory cytokines, including type I interferon (IFN), can stimulate the activation and proliferation of these cytolytic and cytokine-producing effector cells. Moreover, while CD8 T cell responses are induced by virus-derived peptides in the context of class I major histocompatibility (MHC) molecules, NK cell activity can be provoked by interactions of stimulatory NK cell receptors with stress-related protein-derived peptides in the context of chronic virus infection (Vivier and Anfossi, 2000). CD48 is highly up-regulated on the surface of Epstein–Barr virus infections. Engagement of 2B4 by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4–CD48 interactions in crosstalk between innate and adaptive immunity.

The signaling lymphocyte activation molecule (SLAM) family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/HSD1A, impaired 2B4-dependent stimulation of T and natural killer (NK) cell anti-viral functions in X-linked lymphoproliferative syndrome patients with uncontrolled Epstein-Barr virus infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4–CD48 interactions in crosstalk between innate and adaptive immunity.

SLAM FAMILY RECEPTORS IN VIRUS INFECTION

2B4 is a member of the signaling lymphocyte activation molecule (SLAM) family of CD2-related receptors, which includes SLAM (Cd11a/Slamf7), CD48 (Cd150/slamf1), CD244 (slamf4), NK-T-B-antigen (NTB-A, B) protein; SLAM, signaling lymphocyte activation molecule; TGF-beta, transforming growth factor-beta; XLP, X-linked lymphoproliferative.
Waggoner and Kumar 2B4 in anti-viral immune responses

Expression of UL7 in myeloid cells attenuated pro-inflammatory cytokine production. In contrast to SLAM receptors that are exploited by viruses, NTB-A and 2B4 contribute to effector cell-mediated killing of virus-infected cells. Co-engagement of NTB-A and NKGD2 on human NK cells promotes release of lytic granules and lysis of HIV-infected CD4 T cells (Ward et al., 2007). However, HIV-1 has evolved mechanisms to evade this SLAM receptor recognition through Vpu-mediated down-modulation of NTB-A expression on infected CD4 T cells (Shah et al., 2010). Thus, some SLAM receptors are sufficiently important to the host anti-viral response that viruses may encode proteins to negate their functions.

SAP FAMILY ADAPTORS AND XLP

Interactions between the ITSM motif of SLAM family receptors and the adaptor protein SAP enables recruitment of the Src family tyrosine kinase Fyn, which facilitates downstream signaling to modulate effector functionality (Veillette, 2006). EAT-2 and ERT serve a similar but mechanistically distinct role (Cannons et al., 2011). The SH2D1A gene that encodes SAP is mutated in patients with X-linked lymphoproliferative disorder (XLP) disease such that the SAP polypeptide is absent or dysfunctional (Coffey et al., 1998). These individuals often present with uncontrolled EBV-induced infectious mononucleosis, characterized by lymphoproliferation, organ failure and death. Infection of 2B4- or MHC-mediated inhibition permitted a partial increase in NK cell lysis of target cells. Co-engagement of NTB-A and 2B4 substantially contribute to the cytolytic defects of these effects in XLP (Nakajima et al., 2000; Parolini et al., 2000; Tangye et al., 2000b). Analysis of female XLP carriers with heterozygous expression of SAP revealed that engagement of 2B4 by CD48 can mediate activating as well as inhibitory signals, although the nature of functional dichotomy is a contentious issue. In humans, ligation of 2B4 with specific antibodies or CD48-expressing target cells provides an activating signal for NK cells (Tangye et al., 2000a). In XLP patients, 2B4 ligation can inhibit NK and CD8 T cell function (Nakajima et al., 2000; Parolini et al., 2000; Tangye et al., 2000b).

The understanding of the dual nature of 2B4 signaling has been complicated by studies in mice. In contrast to full-length 2B4 which bears four ITSM motifs, alternative splicing in mice generates a short form of 2B4 that contains only one ITSM (Stepp et al., 2008). Whereas overexpression of full-length 2B4 impaired NK cell cytotoxicity, the short form of 2B4 facilitated redirected lysis of tumor cells (Schutte et al., 1999). Two isoforms of human 2B4 that differ in a small portion of the extracellular domain were also described, where one facilitated lysis of CD48-expressing target cells and the other did not (Mathew et al., 2009). In vitro studies have provided conflicting results regarding the effect of 2B4 ligation on murine NK and CD8 T cells, with both activating and inhibitory roles described (Kabin et al., 1999; Kambayashi et al., 2000; Tangye et al., 2003; Assarsson et al., 2004; Mooney et al., 2004). Mutual expression of both 2B4 and CD48 by the effector and target cells in those assays could facilitate bi-directional signaling as well as interactions between 2B4 and CD48 expressed on neighboring effector cells (Kambayashi et al., 2001; Lee et al., 2003). Kumar and colleagues (Chlewicki et al., 2008) have proposed that the dual-function of 2B4 is dynamically regulated by the ligand density of CD48, 2B4 receptor expression levels, and availability of intracellular SAP protein in NK cells (Figure 1). Importantly, inhibition of NK cell lysis of self within the hematopoietic compartment is mediated by both 2B4 and MHC class I receptors in a non-redundant fashion (McNerney et al., 2005a). Loss of either 2B4- or MHC-mediated inhibition permitted a partial increase in NK cell lysis, whereas loss of ligands for both systems resulted in greatly elevated NK cell lysis of target cells.

CONTROL OF NK CELL FUNCTION BY 2B4

Given that 2B4 could mediate activation of NK and CD8 T cells, it was somewhat surprising that the generation of 2B4-deficient mice...
underscored an important inhibitory role for murine 2B4 (Lee et al., 2004; Vaidya et al., 2005). 2B4-deficient NK cells demonstrated an enhanced capacity to kill CD48-expressing target cells in vitro and in vivo (Lee et al., 2004; Vaidya et al., 2005), suggesting that 2B4 is involved in the maintenance of self-tolerance (McNerney et al., 2005a). While 2B4-deficient mice have strengthened the assertion that 2B4 is an important inhibitor of NK cell cytotoxic function (Figure 2A), no 2B4 deficiencies have been identified in humans, and it is unclear whether ablation of 2B4 expression on human NK cells would produce similar effects to those observed in mice.

Expression of 2B4 is dynamically regulated on human NK cells during virus infection. One study found that 2B4 expression on NK cells was transiently reduced after HIV infection (Ostrowski et al., 2005). Likewise, 2B4 expression was reduced on NK cells in hepatitis C virus (HCV)-infected individuals who demonstrated enhanced control of viral titers after type I IFN therapy (Ahlsten et al., 2011). Reduced 2B4 expression on NK cells may be indicative of the direct anti-viral activity of NK cells. Nonethe-

less, human NK cells up-regulated 2B4 expression and displayed enhanced functional activity following in vitro exposure to intramuscular vaccination with influenza A virus (Jost et al., 2011). Thus, reduced 2B4 expression on NK cells may be indicative of the direct anti-viral activity of NK cells. Nonetheless, human NK cells up-regulated 2B4 expression and displayed enhanced functional activity following in vitro exposure to or intramuscular vaccination with influenza A virus (Jost et al., 2011). In addition, heightened transforming growth factor-beta (TGF-β) expression during the immune tolerant phase of persistent hepatitis B virus (HBV) infection was associated with reduced expression of both 2B4 and SAP by NK cells (Sun et al., 2012). These low levels of 2B4 and SAP were further correlated with impaired cytotoxic and IFN-γ-producing activities of NK cells. Of note, TGF-β has recently been shown to contribute to the immaturity of NK cells and susceptibility to virus infection during murine infertility (Marcocci et al., 2012). Together, these studies support the idea that 2B4 functions as an activating receptor on human NK cells during virus infection.
Waggoner and Kumar 2B4 in anti-viral immune responses

FIGURE 2 | Modeling the consequences of 2B4 and SAP expression in immunity to persistent virus infection in mice. (A) In a wild-type scenario, virus infection may trigger NK cell lysis of activated CD4 T helper cells and to a lesser extent activated CD8 T cells. This results in less help from CD4 T cells, thereby lowering a loss of CD8 T cell anti-viral function in the context of high levels of replicating virus. Exhaustion of CD8 T cells permits viral persistence with limited immunopathology. (B) In the absence of SAP, NK and CD8 T cells exhibit an impaired ability to lyse virus-infected cells, resulting in a loss of viral control. Moreover, we postulate that the immunoregulatory lysis of activated T cells by NK cells may be suppressed in the absence of SAP thereby contributing to the exaggerated expansion of CD8 T cells and associated fatal immune pathology observed in LCMV-XLP. NK cells lysis of CD8 T cells is enhanced in the absence of 2B4. This causes a severe immune suppression in the context of high viral load, which in turn results in a life-long chronic infection and diminished T cell-mediated tissue damage.

In addition, antibody-mediated engagement of 2B4 counteracted PD-1 blockade-induced enhancement of HCV-specific CD8 T cell proliferation during in vitro culture of human PBMCs. The complex nature of 2B4/PD-1 mediated control of human T cell exhaustion could potentially be explained by our recent findings regarding the role of 2B4 on NK cells in preventing NK-mediated lysis of activated CD8 T cells (Waggoner et al., 2010).

ROLE OF 2B4 IN NK–T CELL CROSSTALK AND VIRAL PATHOGENESIS

In mice, NK cells play an important role in restricting virus replication during murine cytomegalovirus (MCMV) infection (Bukowski et al., 1983). NK cells may also contribute to immunity by regulating the magnitude and function of MCMV-specific T cell responses (Bukowski et al., 1994; Su et al., 2001; Robbins et al., 2007; Lee et al., 2009; Andrews et al., 2010; Stadnisky et al., 2011; Mittrovic et al., 2012; Narni-Mancinelli et al., 2012). NK cells could impair T cell responses by restricting antigen presentation (Andrews et al., 2010; Mittrovic et al., 2012) or through production of anti-inflammatory cytokines like IL-10 (Lee et al., 2009). Conversely, other studies reported that NK cells sustained conventional dendritic cell populations to enhance anti-viral T cell responses (Robbins et al., 2007; Stadnisky et al., 2011). However, these immunoregulatory contributions of NK cells is difficult to distinguish from the important role of NK cells in direct control of MCMV replication.

In contrast to MCMV, NK cells are largely dispensable in early control of LCMV infection (Bukowski et al., 1983; Welsh et al., 1991). We and others recently described an important role for NK cells in determination of viral clearance and disease associated with LCMV infection that involves direct lysis of virus-specific T cells (Waggoner et al., 2010, 2012; Lang et al., 2012). During infection with the clone 13 strain of LCMV, NK cells aided in the development of persistent infection rather than fatal immunopathology through perforin-mediated lysis of activated CD4 T cells, a population which acts to sustain function of the virus-specific CD8 T cells that mediate virus clearance and tissue damage (Waggoner et al., 2012). NK cells also regulate CD4 responses during LCMV Armstrong infection of CD8 T cell-deficient mice (Su et al., 2001). Natural killer cells can also mediate direct lysis of activated CD8 T cells (Rabinovich et al., 2003; Soderquest et al., 2011), but this lysis is much more effective when NK cells are not restrained by 2B4 expression (Waggoner et al., 2010). Through the use of different strains of LCMV and NK cell-deficient mice, Ohashi and colleagues (Lang et al., 2012) also demonstrated that NK cells control viral persistence and immunopathology during LCMV infection, but attributed this regulatory effect to perforin-dependent restriction of CD8 T cell expansion without addressing a role for
CD4 T cells. Using a modified in vivo cytotoxicity assay, we showed that virus infections and pro-inflammatory stimuli (e.g., polyIC) triggered a rapid, perforin-dependent lysis of activated, but not naive CD4 T cells (Waggoner et al., 2012). NK cell-dependent elimination of CD8 T cells was limited in these assays, suggesting that activated CD4 and CD8 T differ in their susceptibility to NK cell lysis. Notably, activated CD8 T cells expressed more CD48 than their activated CD8 T cell counterparts during LCMV clone 13 infection (Waggoner et al., 2012), and in the absence of CD8, NK cells displayed an enhanced ability to lyse activated CD8 T cells (Waggoner et al., 2010). As a consequence of dysregulated NK cell lysis of activated CD8 T cells, CD8-deficient mice suffered a lifelong chronic infection with LCMV clone 13 (Figure 2C). Thus, CD48-CD84 interactions can prevent NK cell lysis of CD8 T cells and the resulting loss of viral control. In combination with the effects of CD84 expression by either NK cells or CD8 T cells on the individual anti-viral activity of these effector cells described in the preceding sections, the role of CD84 in NK cell/T cell crosstalk may be important to consider when evaluating the use of antibody-mediated blockade of 2B4-CD48 interactions in the rescue of the exhausted virus-specific T cell response (Blackburn et al., 2009; Schlaphoff et al., 2011).

Of note, spontaneous clearance of HCV infection (Khakoo et al., 2004), delayed progression to AIDS during HIV infection (Martin et al., 2007), and resistance to HIV infection in chronically exposed sex workers (Jennes et al., 2006) have all been associated with expression of inhibitory killer immunoglobulin-like receptor (KIR) and their cognate HLA ligands. One interpretation of this observation is that stronger inhibition of NK cell immunoregulatory activity by an inhibitory KIR, or perhaps an inhibitory SLAM receptor such as 2B4, could enhance the virus-specific T cell response against the virus. In fact, the potency of NK cell responsiveness was inversely correlated with the magnitude of HIV-specific T cell responses in a cohort of elite controllers (Toniesso et al., 2012).

REFERENCES

Akhtari, G., Edlund, B., Hopal, I. J., Ronnestad, T., Sorensen, H., Fiscella, K. A., and Mathew, S. O. (2011). 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes. Biochem. Biophys. Res. Commun. 395, 503–507.

Albrecht, B., Lundeaker, S., Pucherer, K., Lemme, J., Hoogendijk, H., Palf, M., et al. (2008). 2B4-CD48 interactions acting via chimeric receptors orchestrates tumor-antigen-specific proliferation and in vitro expansion of human T cells. Cancer Immunol. Immunother. 57, 1991–2001.

Andresen, D. M., Enosvari, M. J., Andronac, C. E., Ntimokorn, M. E., Khong, A., Voigt, V., et al. (2010). Immune memory define the capacity of activated T cells to limit persistent infection. J. Exp. Med. 207, 1533–1543.

Anumand, H., Moscardi, E. S., Campbell, A. E., Hill, A. B., and Lanier, L. L. (2012). Direct recognition of cytomegalovirus by activating and inhibitory NK receptors. Science 336, 1525–1528.

Asanovskiy, E., Kamundeja, T., Schulte, J. D., Cranor, S. G., von Bonin, A., Jensen, P. E., et al. (2004). NK cells stimulate proliferation of T and NK cells through 2B4-CD48 interactions. J. Immunol. 173, 174–180.

Austen, R., Jepson, B., Buddle, M., Timms, J., Kunz, M., Blum, H. E., et al. (2010). Compersion of PD-L1, 2B4, CD40 and CD84 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog. 6, e1000897. doi: 10.1371/journal.ppat.1000897

Brom, C. A., Byron, K. S., and Sullivan, J. L. (1999). Several herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 340, 1731–1735.

Blackburn, S. D., Sun, H., Hanning, W. N., Zou, T., Wolkow, C. J., Polley, A., et al. (2009). Correlation of CD24+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37.

Bottino, C., Faken, M., Danesi, S., Mantovani, E., Augugliaro, R., Stover, S., et al. (2011). NTR-A, a novel SH2D1A-associated surface molecule contributing to the stability of natural killer cells to kill Epstein–Barr virus-infected B cells in X-linked lymphoproliferative disease. J. Exp. Med. 204, 235–246.

Brown, M. G., Dokun, A. O., Heusel, J. W., Smith, H. R., Hanning, W. N., Zou, T., Workman, C. J., Polley, A., et al. (2009). Correlation of CD24+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37.

Bukowski, J. F., Wells, B. A., Hahn, S., Okamura, K., and Wells, R. M. (1988). Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J. Immunol. 131, 1531–1538.

Bukowski, J. F., Wells, B. A., and Wells, R. M. (1984). Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J. Virol. 55, 119–128.

Cameto, L. J., Qi, H., Lu, K. T., Dutta, M., Gomez-Rodriguez, J., Cheng, J., et al. (2010). Optimal germinal center responses require a multistage T cell-B cell adhesion process involving
integrins, SLAM-associated protein, and CD40. Immunity 32, 253–265.

Canna, J. L., Tangye, S. G., and Schuster, D. P. L. (2011). SLAM family receptors and SAP activate immunity. Annu. Rev. Immunol. 29, 665–705.

Chou, G., Tai, A. K., Lin, M., Chang, T., Toreror, C., and Huhle, B. T. (2005). Signaling lymphocytic activa- tion molecule–associated protein is a negative regulator of the CD8 T cell response in mice. J. Immunol. 175, 2212–2218.

Chwialkowska, K., Volkovskaya, O., Balk- akaranova, V., Marintza, R. A., and Kumar, V. (2005). Molecular basis of the dual functions of CD24 (CD244). J. Immunol. 178, 8138–8146.

Chung, R., Aoyoji, A., Dut, J., Toreror, C., and Tan, R. (2005). Signaling lymphocytic acti- vation molecule–associated protein controls NK cell functions. J. Immunol. 174, 3153–3157.

Coiffy, A. J., Brookerbank, A. R., Bran- dan, O., Ooshkash, T., Howell, G. B., Byse, J. M., et al. (1998). Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encod- ing gene. Nat. Genet. 20, 129–135.

Crawford, A., and Wherry, E. J. (2009). The diversity of cytotoxic and inhibitory receptor pathways and the regulation of antiviral T cell responses. Nat. Immunol. 10, 422–28.

Cotty, S., Keni, E. N., Canna, J. L., Schuster, D. P. L., and Ahmadi, R. (2008). SAP is required for gener- ation of CD8 and CD4 T cells. Nature 454, 282–287.

Cotty, S., McCord, M. A., Austin, B. R., Wherry, E. J., and Ahmadi, R. (2009). Balance of stimulation and exhaustion controls SAP–CD48-mediated immuno- pathology in mouse settings. Blood 114, 2369–2376.

Cava, M. J., Keni, E. N., Mijares, L. A., Lamer, G., Lewis, J., Sap, G., et al. (2001). CD244 is required for NK cell responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP.

Chen, G., Tai, A. K., Lin, M., Chang, T., Toreror, C., and Huhle, B. T. (2005). Signaling lymphocytic activa- tion molecule–associated protein is a negative regulator of the CD8 T cell response in mice. J. Immunol. 175, 2212–2218.

Chwialkowska, K., Volkovskaya, O., Balkakaranova, V., Marintza, R. A., and Kumar, V. (2005). Molecular basis of the dual functions of CD24 (CD244). J. Immunol. 178, 8138–8146.

Chung, R., Aoyoji, A., Dut, J., Toreror, C., and Tan, R. (2005). Signaling lymphocytic acti- vation molecule–associated protein controls NK cell functions. J. Immunol. 174, 3153–3157.

Coiffy, A. J., Brookerbank, A. R., Bran- dan, O., Ooshkash, T., Howell, G. B., Byse, J. M., et al. (1998). Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encod- ing gene. Nat. Genet. 20, 129–135.

Crawford, A., and Wherry, E. J. (2009). The diversity of cytotoxic and inhibitory receptor pathways and the regulation of antiviral T cell responses. Nat. Immunol. 10, 422–28.

Cotty, S., Keni, E. N., Canna, J. L., Schuster, D. P. L., and Ahmadi, R. (2008). SAP is required for gener- ation of CD8 and CD4 T cells. Nature 454, 282–287.

Cotty, S., McCord, M. A., Austin, B. R., Wherry, E. J., and Ahmadi, R. (2009). Balance of stimulation and exhaustion controls SAP–CD48-mediated immuno- pathology in mouse settings. Blood 114, 2369–2376.

Cava, M. J., Keni, E. N., Mijares, L. A., Lamer, G., Lewis, J., Sap, G., et al. (2001). CD244 is required for NK cell responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP.

Chen, G., Tai, A. K., Lin, M., Chang, T., Toreror, C., and Huhle, B. T. (2005). Signaling lymphocytic activa- tion molecule–associated protein is a negative regulator of the CD8 T cell response in mice. J. Immunol. 175, 2212–2218.

Chwialkowska, K., Volkovskaya, O., Balkakaranova, V., Marintza, R. A., and Kumar, V. (2005). Molecular basis of the dual functions of CD24 (CD244). J. Immunol. 178, 8138–8146.

Chung, R., Aoyoji, A., Dut, J., Toreror, C., and Tan, R. (2005). Signaling lymphocytic acti- vation molecule–associated protein controls NK cell functions. J. Immunol. 174, 3153–3157.

Coiffy, A. J., Brookerbank, A. R., Bran- dan, O., Ooshkash, T., Howell, G. B., Byse, J. M., et al. (1998). Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encod- ing gene. Nat. Genet. 20, 129–135.

Crawford, A., and Wherry, E. J. (2009). The diversity of cytotoxic and inhibitory receptor pathways and the regulation of antiviral T cell responses. Nat. Immunol. 10, 422–28.

Cotty, S., Keni, E. N., Canna, J. L., Schuster, D. P. L., and Ahmadi, R. (2008). SAP is required for gener- ation of CD8 and CD4 T cells. Nature 454, 282–287.

Cotty, S., McCord, M. A., Austin, B. R., Wherry, E. J., and Ahmadi, R. (2009). Balance of stimulation and exhaustion controls SAP–CD48-mediated immuno- pathology in mouse settings. Blood 114, 2369–2376.

Cava, M. J., Keni, E. N., Mijares, L. A., Lamer, G., Lewis, J., Sap, G., et al. (2001). CD244 is required for NK cell responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP.
molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J. Exp. Med. 192, 537–546.

Pasquier, B., Yin, L., Fandehaloua, M. C., Reisatt, E. Blech-Querin, C., Lambert, N., et al. (2005). Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–702.

Qi, H., Cannons, J. L., Klauschen, F., Schlaphoff, V., Lunemann, S., Suneetha, Schatzle, J. D., Sheu, S., Stepp, S. E., Robbins, S. H., Bessou, G., Cornil-K, C., Arkwright, P. D., Kinnon, J. (2003). Activated, but not NTB-A by Vpu.

Devi, V. R., Gilmour, J. C., Rabinovich, B. A., Li, J., Shannon, J., Qi, H., Cannons, J. L., Klauschen, F., Schlaphoff, V., Lunemann, S., Suneetha, Schatzle, J. D., Sheu, S., Stepp, S. E., Robbins, S. H., Bessou, G., Cornil-K, C., Arkwright, P. D., Kinnon, J. (2003). Activated, but not NTB-A by Vpu.

Shaw, A. H., Sovierzan, B., Davis, Z. B., Ward, J. P., Field, E. M., Planells, V., et al. (2010). Degranulation of natural killer cells following interaction with HIV-1-infected cells is hindered by downregulation of NTR-A by Vpu. Cell Host Microbe 8, 397–409.

Sharif, K., Shandil, J. C., Gilmore, K. C., Aleshire, P. D., Kinnon, C., Thraiser, A. J., et al. (2004). SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood 103, 5621–5627.

Shen, H. and Wherry, E. J. (2007). CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19, 408–415.

Smith, H. R., Viswanath, J. W., Mathew, P. K., Kim, S., Dienes, B. G., Naidenko, O. V., et al. (2002). Recognition of virus-stimulated ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. U.S.A. 99, 8853–8857.

Sodeuf, Z., Watanabe, T., Zaloumis, A., Klatzmann, D., Palgi, B., Viret, E., et al. (2011). Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J. Immunol. 186, 3544–3548.

Stopp, M. D., Xie, Y., Costa, E. R., Bullock, T. N., and Brown, M. G. (2011). SMAC: class I-unbound NK cells enhance adaptive CD8 T cell viral immunity. Blood 117, 5135–5141.

Stopp, S. E., Schurich, J. D., Bennett, M., Kumar, V., and Mathew, P. A. (1999). Gene structure of the murine NK cell receptor 2B4 identifies two alternatively spliced isoforms with distinct cytoplasmic domains. Eur. J. Immunol. 29, 2392–2399.

Su, H. C., Nguyen, K. B., Salazar-Mather, T. P., Rank, M. C., Dohll, M. Y., and Boron, C. A. (2001). NK cell functions restrain T cell responses during viral infections. Eur. J. Immunol. 31, 3048–3055.

Sun, C., Fox, B., Tao, L., Xiao, S., Tan, Z., et al. (2012). Viral stress-induced up-regulation of NKG2D/DAP10 and 2B4 SAP expression on human NK cells contribute to HBV persistence. PLoS Pathog. 8:e1002926. doi: 10.1371/journal.ppat.1002926

Tang, G., Chen, Q., Hanson, L., Livak, L. J., and Lu, J. H. (2006). HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses. J. Immunol. 177, 495–501.

Tang, S. G., Phillips, J. H., Lamier, L. L., and Banchereau, J. (2008). Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol. 185, 2929–2936.

Tangpaisal, B. T., Guerinon, D., and Kumar, V. (2003). SAP inhibits NK cell fratricide. Blood 110, 2020–2025.

Tam, H., Ong, N., Tanaka, K., and Taniguchi, N. (2000). 2B4 (CD244) is a soluble receptor blocking virus. Nature 406, 893–897.

Tang-Peter, D. A., Schooley, R. T., Bhan, A. K., and Nadler, L. M. (1982). Epstein-Barr virus superfici- dizes a new human B cell differentiation antigen (B-Last 1) expressed on transformed lymphoblasts. Cell 30, 415–423.

Tommaso, C., Duh, F. M., Hob, R., Viviani, A., Hirvill, E., Martin, M. P., et al. (2012). Impact of protective KIR/HLA genotypes on NK cell and T cell function in HIV-1-infected controllers. AIDS 26, 1689–1678.

Vajdova, S. Y., Stopp, M. E., McNamery, M. E., Lee, J. K., Bennett, M., Lee, K. M., et al. (2010). Targeted disruption of the 2B4 gene in mice reveals its role in the activation of B16 melanoma cells. J. Immunol. 184, 800–807.

Vellinga, A. (2006). NK cell regulation by SLAM family receptors and SAP-related adapters. Immunol. Rev. 214, 22–44.

Vellinga, A., Dong, Z., Perez-Quintero, L. A., Zhang, M. C., and Cruz-Mance, M. E. (2009). Importance and mechanism of ‘switch’ function of SAP family adapters. Immunol. Rev. 232, 229–239.

Vezin, E., and Arozarena, N. (2004). Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat. Rev. Immunol. 4, 190–198.

Waggoner, S. N., Corbetta, M., Solin, L. K., and Welsh, R. M. (2012). Natural killer cell act as rheostats modulating antitumor T cells. Nature 481, 394–398.

Waggoner, S. N., Taniguchi, B. T., Mathews, P. A., Kumar, V., and Welsh, R. M. (2010). Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J. Clin. Invest. 120, 1952–1968.

Ward, J., Bonapace, M., Gado, J., Gaudin, J., Gueteman, J., Fugli, M., Marulak, D., et al. (2007). HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood 110, 2127–2137.

Wells, B. M., Bresnahan, J. O., Vargason, M., Hansen, K., et al. (2010). Germinal centre follicular helper cell II-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185, 190–202.

Zeitraum, R. M., and Welsh, R. M. (1976). H-2 compatibility requirement for virus-specific T-cell-mediated effector functions in vivo. I. Specificity of T cells conferring antiviral protection against lympho- cytic choriomeningitis virus is associated with H-2K and H-2D. J. Immunol. 117, 1495–1502.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential con- flict of interest.

Received: 28 September 2012, paper pending published: 19 October 2012, accepted: 26 November 2012, published online: 11 December 2012.

Copyright © 2013 Waggoner and Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning third-party graphics.