| Title | Visualization and categorization of ecological acoustic events based on discriminant features |
|-------|------------------------------------------------------------------------------------------|
| Author(s) | Huancapaza Hilasaca, Liz Maribel; Gaspar, Lucas Pacchiullio; Ribeiro, Milton Cezar; Minghim, Rosane |
| Publication date | 2021-01-26 |
| Original citation | Huancapaza Hilasaca, L. M., Gaspar, L. P., Ribeiro, M. C. and Minghim, R. (2021) 'Visualization and categorization of ecological acoustic events based on discriminant features', Ecological Indicators, 107316 (11 pp). doi: 10.1016/j.ecolind.2020.107316 |
| Type of publication | Article (peer-reviewed) |
| Link to publisher's version | [https://www.sciencedirect.com/science/article/pii/S1470160X20312589](https://www.sciencedirect.com/science/article/pii/S1470160X20312589)  
[http://dx.doi.org/10.1016/j.ecolind.2020.107316](http://dx.doi.org/10.1016/j.ecolind.2020.107316)  
Access to the full text of the published version may require a subscription. |
| Rights | © 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ([http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/)) |

Downloaded on 2021-04-19T10:28:02Z
Supplementary material for visualization and categorization of ecological acoustic events based on discriminant features

March 27, 2020

1. Algorithm Illustration

The algorithm is formulated with 4 stages, which are briefly described below: (i) in the start, the stage of data pre-processing is define, in this stage the reading of the data, creation of the spectrum and spectrogram image are performed; (ii) after, features are extracted using feature descriptors based on images, spectrum and audio signal; (iii) after that, the stage of analysis of the features is defined to analyze and identify their discrimination capacity to categorize events in the acoustic landscape; to achieve this objective, various visual and numerical approaches would be employed that assisted in the evaluation and determination of the most discriminant features; (iv) finally the stage of visualization of the instances by multidimensional projections, allows the user to visually evaluate the quality of the features reflected in the visual separability between the categories of events. Further details are presented in the Algorithm (1).
Algorithm 1 Algorithm to identify discriminant features.

**Input:**
- \textit{data}: labeled set of sound files from an acoustic landscape.
- \textit{model\_embedded}: Extra Trees Classifier (ETC) model to determine the importance of the features.
- \textit{model\_learn}: Random Forest Classifier \textit{RFC}, Support Vector Classifier \textit{SVC}, \textit{k}-nearest neighbors Classifier \textit{KNNC} ou Extreme Gradient Boosting Classifier \textit{XBGG}.

**Output:**
- \(X_{\text{discriminant}}\): more discriminant features for a determinate acoustic landscape.

1: \(Y \leftarrow \text{Labels}(\text{data})\) \hspace{1cm} \text{//sound file labels}
2: \(\text{repeat} = \text{True}\)
3: \(\text{while repeat} == \text{True} \text{ do}\)
   4: \(\hat{X} \leftarrow \text{PreprocessinData}(\text{data})\) \hspace{1cm} \text{//pre-processing of data}
   5: \(X_{\text{index}} \leftarrow \text{IndexFeatureDescription}(\hat{X})\) \hspace{1cm} \text{//acoustic index features}
   6: \(X_{\text{spectrum}} \leftarrow \text{SpectrumFeatureDescription}(\hat{X})\) \hspace{1cm} \text{//spectrum features}
   7: \(X_{\text{image}} \leftarrow \text{ImageFeatureDescription}(\hat{X})\) \hspace{1cm} \text{//spectrogram image features}
   8: \(X_{\text{raw}} \leftarrow (X_{\text{index}} \cup X_{\text{spectrum}} \cup X_{\text{image}})\) \hspace{1cm} \text{//total features}
   9: \(X_{\text{cleaned}} \leftarrow \text{FeatureCleaning}(X_{\text{raw}})\) \hspace{1cm} \text{//cleaning features}
10: \(X_{\text{normalized}} \leftarrow \text{FeatureNormalization}(X_{\text{cleaned}})\) \hspace{1cm} \text{//normalization of features}
11: \(X_{\text{analyzed}} \leftarrow \text{FeatureAnalysis}(X_{\text{normalized}})\) \hspace{1cm} \text{//analysis of features}
12: \(X_{\text{important}} \leftarrow \text{FeatureSelection}(\text{model\_embedded}, X_{\text{analyzed}})\) \hspace{1cm} \text{//importance of features}
13: \(X_{\text{ranking}} \leftarrow \text{FeatureRanking}(X_{\text{important}})\) \hspace{1cm} \text{//ranking of features}
14: \(X_{\text{discriminant}} \leftarrow [\emptyset]\) \hspace{1cm} \text{//to store the more discriminant features}
15: \(\text{max\_acc} \leftarrow 0\) \hspace{1cm} \text{//store value of maximum accuracy}
16: \(\text{for each } i \in \{0, \ldots, |X_{\text{ranking}}|\} \text{ do}\)
   17: \(X \leftarrow (X_{0_{\text{ranking}}}, \ldots, X_{i_{\text{ranking}}})\) \hspace{1cm} \text{//get the first n features of the ranking}
18: \(\text{acc} \leftarrow \text{Learning(\text{model\_learn}, X, Y)}\) \hspace{1cm} \text{//train a model and compute test accuracy (acc)}
19: \(\text{if acc} > \text{max\_acc} \text{ then}\)
   20: \(X_{\text{discriminant}} \leftarrow X\)
   21: \(\text{max\_acc} \leftarrow \text{acc}\)
22: \(\text{end if}\)
23: \(\text{end for}\)
24: \(\text{view} \leftarrow \text{Projection}(X_{\text{discriminant}})\) \hspace{1cm} \text{//visualization the data}
25: \(\text{repeat} \leftarrow \text{UserVisualEvaluation(view)}\) \hspace{1cm} \text{//the user evaluates the repetition}
26: \(\text{end while}\)