Exploring Cluster Ellipticals as Cosmological Standard Rods1,2

Ralf Bender3, R.P. Saglia, Bodo Ziegler3, Paola Belloni, Laura Greggio4, Ulrich Hopp

Universität-Sternwarte, Scheinerstraße 1, 81679 München, Germany

Gustavo Bruzual
CIDA, Apartado Postal 264, Mérida 5101-A, Venezuela

Received ________________; accepted ________________

1Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

2Based on observations carried out at the European Southern Observatory, La Silla, Chile.

3Visiting Astronomer of the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Planck-Institut für Astronomie, Heidelberg, jointly with the Spanish National Commission for Astronomy

4On leave from Dipartimento di Astronomia, Università di Bologna, I-40100 Bologna, Italy
ABSTRACT

We explore the possibility to calibrate massive cluster ellipticals as cosmological standard rods using the Fundamental Plane relation combined with a correction for luminosity evolution. Though cluster ellipticals certainly formed in a complex way, their passive evolution out to redshifts of about 1 indicates that basically all major merging and accretion events took place at higher redshifts. Therefore, a calibration of their luminosity evolution can be attempted. We propose to use the Mg$-\sigma$ relation for that purpose because it is independent of distance and cosmology. We discuss a variety of possible caveats, ranging from dynamical evolution to uncertainties in stellar population models and evolution corrections to the presence of age spread. Sources of major random and systematic errors are analysed as well.

We apply the described procedure to nine elliptical galaxies in two clusters at $z = 0.375$ and derive constraints on the cosmological model. For the best fitting Λ-free cosmological model we obtain: $q_0 \approx 0.1$, with 90% confidence limits being $0 < q_0 < 0.7$ (the lower limit being due to the presence of matter in the Universe). If the inflationary scenario applies (i.e. the Universe has flat geometry), then, for the best fitting model, matter and Λ contribute about equally to the critical cosmic density (i.e. $\Omega_m \approx \Omega_\Lambda \approx 0.5$). With 90% confidence Ω_Λ should be smaller than 0.9.

Subject headings: cosmology: observations – galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation
1. Introduction

A central issue of modern cosmology is the determination of the geometry of the Universe, or, equivalently of its density parameter Ω and of the cosmological constant Λ. In recent years, several lines of argument indicate that Ω may be smaller than 1, and, therefore, the universe may be open and have negative curvature. On the other hand, if the inflationary scenario applies (see, e.g., Linde 1990), then the Universe should have flat geometry, i.e., either the matter density has the critical value ($\Omega_m = 1$), or, if $\Omega_m < 1$, $\Omega_m + \Omega_\Lambda = 1$ with $\Omega_\Lambda = \Lambda/(3H_0^2)$. In the latter case, a non-zero cosmological constant is needed which may have interesting consequences for the cosmological deceleration parameter $q_o = \Omega_m/2 - \Omega_\Lambda$, i.e., q_o may be negative.

Most methods to determine the deceleration parameter q_o directly rely on the variation of the apparent sizes or brightnesses of standard objects with redshift (Sandage 1995). So far, all measurements were inconclusive, because all objects which were bright or large enough to be potential standard rods or candles (e.g. galaxies or clusters of galaxies), show significant evolution with redshift. In fact, until now most attempts to measure q_o were better tests for galaxy and cluster evolution than for the cosmological model. Only recently, Supernovae Ia, which may be true standard candles, have raised hopes for tighter constraints on q_o (e.g., Goobar & Perlmutter 1993, Leibundgut et al. 1996). The ongoing SNIa programs promise indeed to provide significant constraints on q_o (e.g., Perlmutter et al. 1997), once enough SNIa will have been found at intermediate redshifts and all observational caveats will have been understood.

In this paper we want to explore whether luminous cluster ellipticals can be calibrated as cosmological standard rods. Though it is almost certain that luminous elliptical galaxies have experienced a complex formation history (with events ranging from accretion of satellite galaxies to violent similar–mass mergers, see e.g. Bender (1990), Schweizer...
(1990)), most of these events took place early in their evolution. This follows both from the homogenous properties of local cluster ellipticals (Dressler et al. 1987, Bower, Lucey & Ellis 1992, Bender, Burstein & Faber 1993, Renzini & Ciotti 1993) and from the very small redshift evolution of luminosities (Glazebrook et al. 1995, Lilly et al. 1995), colors (Stanford, Eisenhardt & Dickinson 1997, Ellis et al. 1997), and spectral indices (Bender, Ziegler & Bruzual 1996). Furthermore, the redshift evolution of the Fundamental Plane relation of ellipticals (Djorgovski & Davis 1987, Faber et al. 1987, Bender, Burstein & Faber 1992) has also been found to be consistent with passive evolution of the stellar populations in ellipticals (van Dokkum & Franx 1996, Kelson et al. 1997). Basically passive evolution of cluster ellipticals is even expected in the most rapidly evolving standard cold dark matter model, where neither significant star formation nor accretion processes take place at \(z < 0.5\) (Kauffmann & Charlot 1997). The star formation activity observed in distant clusters of galaxies seems to be confined to blue infalling and/or harrassed disk galaxies (Oemler, Dressler & Butcher 1997, Moore, Lake & Katz 1997, Balogh et al. 1997) which may turn into intermediate luminosity S0s today but are unlikely to alter the population of massive cluster ellipticals at a significant level.

Because massive cluster ellipticals evolve only passively up to redshifts \(z = 0.5...1\), one can attempt to calibrate them as cosmological standard rods. The method proposed here is based on the Fundamental Plane relation of elliptical galaxies, which allows us to derive accurate radii from their velocity dispersions and surface brightnesses, combined with a correction for luminosity evolution obtained from the Mg–\(\sigma\) test (Bender, Ziegler & Bruzual 1996). We give a first application of this method by deriving constraints on \(q_o\) from nine ellipticals in two clusters at \(z = 0.375\). In §2 we present the method, in §3 we discuss possible caveats. In §4 observations and data analysis are described, the results of which are presented in §5. Conclusions are drawn in §6.
2. Calibrating elliptical galaxies as standard rods

The FP describes the observed tight scaling relation between effective radius (R_e), mean effective surface brightness ($\langle SB \rangle_e$) and velocity dispersion (σ) of cluster ellipticals:

$$\log R_e = 1.25 \log \sigma + 0.32 \langle SB \rangle_e - 8.895$$

with R_e in kpc, σ in km/s, $\langle SB \rangle_e$ in the B-band. The constant -8.895 was derived from the Coma cluster ellipticals with a Hubble constant of $H_o = 50$ km/s/Mpc, the error in the constant is about 0.01 (see below). The FP allows to predict the effective radii R_e of elliptical galaxies with better than 15% accuracy from their velocity dispersions and surface brightnesses, i.e., a distance dependent quantity (R_e) can be estimated from two distance independent quantities (σ, $\langle SB \rangle_e$). If a large enough number of ellipticals are measured per cluster, then the distance to the corresponding cluster can be determined with significantly better than 5% accuracy because otherwise the observed peculiar velocities of clusters would be much larger (e.g. Burstein 1989, Jørgensen, Franx & Kjærgaard 1996).

As argued in the introduction, we have strong evidence that massive ellipticals in rich clusters evolve only passively between now and at least $z \approx 0.5$. Passive evolution of the stellar population can be accurately measured with the Mg–σ relation which is independent from q_o and H_o (Bender, Ziegler & Bruzual 1996), and is within current limits the same for clusters of similar richness/velocity dispersion (Jørgensen 1997, see also below). In local cluster ellipticals, the Mg$_b$ absorption is tightly coupled to the velocity dispersion σ of the galaxy constraining the scatter in age and metallicity at a given σ to be smaller than 15%. Therefore, in the case of passive evolution, Mg$_b$ decreases with redshift only because the age of the population decreases. One can use population synthesis models to translate the observed Mg$_b$ weakening into an estimate of the B–band luminosity evolution. Based on models by Worthey (1994), Bruzual & Charlot (1997), and Bressan, Chiosi & Tantalo (1996) we obtain consistently $\Delta B = 1.4 \Delta$Mg$_b$ for a Salpeter initial mass
function, metallicities between 1/3 and 3 times solar and ages between 3 Gyr and 15 Gyr (see Figure 1). The slope of 1.4 shows no dependence (within 0.1) on evolutionary tracks and other differences in the synthesis models, which demonstrates that this differential comparison of Mg$_b$ and B-band evolution is quite robust (see also §3).

3. Caveats

Obviously, there is a number of caveats that have to be addressed at this point. Most of them need further checking before ellipticals can reliably serve as standard rods. However, the influence of all these effects is rather small and there is justified hope that they may be controlled better in the future.

(1) Dynamical evolution. We now have very good evidence that dynamical evolution will not alter the FP at a detectable level. There are two simple observational arguments. First, different types of objects, like anisotropic ellipticals, rotationally flattened ellipticals and S0 galaxies show no significant offsets from the mean FP relation. This means that objects of very different internal structure and dynamics and very different formation/evolution histories are indistinguishable in the edge–on view of the FP, implying that changes in the dynamical structure transforming objects from one type to another will not affect the FP relation. Second, the successful use of the FP to derive peculiar motions from clusters and groups of galaxies of different richness and internal evolution (Burstein, Faber & Dressler 1990) indicates that environment and interaction can alter the fundamental plane parameters on the few percent level at most. Finally, recent numerical simulations show that dissipationless merging of objects within the FP produces objects that are again in the plane (Capelato, de Carvalho & Carlberg 1993).
(2) Dependence on environment, i.e., systematic differences between the fundamental plane and Mg—σ relations of different clusters. At present, the small observed peculiar velocities of clusters (e.g., Burstein 1989, Jørgensen, Franx & Kjærgaard 1996) imply that the systematic variation of the FP zeropoint from cluster to cluster must be significantly smaller than 5%. For the Mg—σ relation a weak dependence on cluster velocity dispersion or richness has been observed (Jørgensen 1997, but see Colless et al., in preparation). In any case, there is no evidence that, at a given richness, the zeropoint of the Mgσ relation varies by more than 0.08 Å. Furthermore, the effects of different zeropoints can be minimized by observing a large enough sample of ellipticals in different clusters.

(3) Sample selection effects. We estimated the combined biasing effect of the sample size, sample selection and allowed range of the FP parameters by means of Monte Carlo simulations following Saglia et al. (1997a). We find that the systematic bias of the FP zero-point is smaller than the random variation estimated in Table 1, for the range of FP coefficients given by Jørgensen et al. (1996). A large complete sample of distant cluster ellipticals can minimize selection effects.

(4) Dust absorption. Dust absorption can be estimated by comparing colors and line-strength indices. We could rule out a significant presence of dust in the z = 0.375 ellipticals by checking the relation between their rest-frame B—V color and their Mgσ values, finding that it is consistent with the local (B—V)–Mgσ relation (e.g., Bender, Burstein & Faber 1993) and population synthesis models (Worthey 1994).

(5) Population synthesis models. At present, population synthesis models (e.g., Worthey 1994, Bruzual & Charlot 1997, Bressan, Chiosi & Tantalo 1996) do not always give a consistent interpretation of ages and metallicities of stellar populations. Close inspection shows that the differences mostly arise because of different zeropoints in the modeled magnitudes, colors and line-strengths for a given age-metallicity combination.
However, the different models agree very well with respect to differential relations. E.g., \(\frac{dM_{g_b}}{dB} \) as a function of age is virtually the same for all models, despite of different stellar evolution tracks and numerical codes (see Figure 1). At present, the biggest uncertainty with respect to the method discussed here stems from the fact that all synthesis codes rely on the same set of fitting-functions for the line-indices, introduced by Gorgas et al. (1993) and revised by Worthey (1994). These reproduce the Mg-indices of G- and K-stars as a function of temperature, gravity and metallicity in an excellent manner, but only for stars with solar abundance ratios while massive ellipticals are overabundant in Mg relative to Fe. It is plausible that the differential temperature dependence of the Mg\(_b\) index is not very sensitive to this effect but further checking is needed.

(6) Initial mass function. The relation between time evolution in the B-band and Mg\(_b\) is dependent on the exponent \(x \) of the initial mass function. From models of Bruzual & Charlot (1997) we find:
\[
\Delta B = 1.4(1 - 0.3(x - x_s)) \Delta M_{g_b},
\]
where the subscript \(s \) indicates the Salpeter exponent \((x_s = 1.35) \). At present, there is neither evidence nor a convincing physical argument for an IMF slope much different from Salpeter’s for the metallicities around solar and for the mass range concerned (between \(0.8M_\odot \) and \(1.2M_\odot \)). Still, this is a key assumption for the method to work.

(7) Effects of mixed populations. We performed tests with varying fractions of intermediate age populations superposed on an old population, all constrained in a way that the objects at \(z = 0.375 \) would not be regarded as of \(E + A \) type from spectral characteristics (Dressler & Gunn 1983). For plausible population mixes, the uncertainty in the evolution correction is smaller than 0.1 mag in the B–band. Figure 1 shows two examples for the Mg\(_b\) vs. B-band evolution of mixed populations. One experienced a 10% starburst 3 Gyrs, the other 1.5 Gyrs before the redshift of observation \((z = 0.4) \). In the second case a significant curvature is present in the Mg\(_b\)-B-relation. This indicates that
evolution effects due to mixed populations with $\Delta B < -0.6$ mag are more difficult to correct reliably. However, note that in case of massive ellipticals it is very difficult to add 10% of young stars over a short period because the gas content of most objects that can be accreted is too small relative to the total mass of the elliptical.

4. A First Application: Observations and Data Analysis

We analysed a sample of nine elliptical galaxies in the clusters Abell 370 and MS 1512+36 at $z = 0.375$. Abell 370 is of similar richness as the Coma Cluster, which serves as our local calibrator, MS 1512+36 is less rich.

Spectroscopic data were obtained at the Calar Alto 3.5m telescope and the NTT at ESO. Details of the spectroscopic observations and data analysis can be found in Ziegler & Bender (1997). The largest uncertainty in the obtained velocity dispersions and Mg_b-indices comes from the applied aperture corrections necessary to compare local and distant ellipticals. However, the errors from aperture corrections can be expected to become smaller in the near future because better data for nearby ellipticals will allow to integrate over apertures large enough for direct comparison with distant ellipticals, and spatial resolution will also improve for distant ellipticals due to the use of large telescopes. The spectroscopic parameters for the local comparison sample were taken from Faber et al. (1989). At present, there still exists some uncertainty in the parameters of the low-redshift $Mg_b - \sigma$ relation (Dressler et al. 1987, see Figure 2) because the Mg_2 values for Coma and Virgo ellipticals have to be transformed to Mg_b values. However, this uncertainty is not crucial at the present stage of analysis and will be reduced by future measurements. We used the relation $Mg_b = 15.0Mg_2$, see Ziegler & Bender (1997).

Accurate radii and surface brightnesses for the distant ellipticals were obtained with
the Hubble Space Telescope (HST) and the refurbished Wide Field and Planetary Camera (WFPCII). The structural parameters R_e and $\langle SB \rangle_e$ in the F675W filter were derived using the two-component fitting algorithm developed by Saglia et al. (1997b), with HST PSF convolution tables. Ground-based imaging at the ESO NTT and the Calar Alto 2.2m telescope in several colors (Ziegler, in preparation) complemented the HST imaging and allowed an accurate transformation to rest-frame colors using models of Bruzual & Charlot (1997). Surface brightnesses were transformed to rest-frame B-band, corrected for cosmological dimming $((1+z)^4)$ and for passive evolution using the Mgb $- \sigma$ relation described above. Galactic extinction was corrected using extinctions of Burstein & Heiles (1984), kindly provided by David Burstein.

The photometric parameters of the local comparison sample of Coma galaxies (Saglia, Bender & Dressler 1993) were re-derived with the same procedure as used for the $z = 0.375$ objects. The B-band photometric zeropoints were improved using aperture photometry from Longo, de Vaucouleurs & Corwin (1983) and Jørgensen, Franx & Kjærgaard (1995) reducing the rms scatter about the Coma FP to about 10% in the effective radius (see Figure 3). We applied K-corrections and corrections for galactic extinction as in Faber et al. (1989) plus the correction for the cosmological dimming of surface brightness. Since the $z = 0.375$ ellipticals are about a factor of 10 more distant than the Coma galaxies, the factor 10 better sampling and smaller PSF of HST relative to the ground-based imaging of Coma corresponds to a perfectly matched instrumental set-up.

Error analysis. An account of the major sources of error is given in Table 1. The dominant error is due to the correction for luminosity evolution. This error is partly random and partly systematic. For the rather few objects we consider here, the random error is still dominating. Note that because of error coupling in the Kormendy relation $R_e \propto I_e^{0.8} (I_e =$ surface brightness in linear flux units), the error in $R_e I_e^{-0.8}$ is much smaller than in each of
The fact that the scatter of the $z = 0.375$ ellipticals around the FP is somewhat smaller (only 15%) than we expect from the error estimate ($\approx 20\%$) suggests that our error estimate is conservative.

5. Results

The photometric and spectroscopic parameters for the elliptical galaxies in the clusters Abell 370 and MS 1512+36 at $z = 0.375$ are given in Table 2. Figure 2 shows the Mg$_b$ – σ relation for the local comparison sample of Coma and Virgo ellipticals and the nine ellipticals observed in Abell 370 and MS1512+36 at $z = 0.375$. The $z = 0.375$ objects show a Mg$_b$ weakening of about 0.345 Å which is typical for ellipticals at this redshift (Bender, Ziegler & Bruzual 1996).

Figure 3 shows the edge–on view of the Fundamental Plane for Coma ellipticals with $\sigma > 120$ km/s and for the $z = 0.375$ ellipticals. The angular distances at which a perfect
match between the two samples is achieved are 139 Mpc/h_{50} for Coma and 1400 Mpc/h_{50} for the $z = 0.375$ ellipticals (h_{50} is the Hubble constant in units of 50 km/s/Mpc), see below. The $z = 0.375$ objects are shown three times in Figure 3, first as observed in the rest-frame B-band, then with a correction applied for cosmological $(1+z)^4$ dimming, and finally corrected for luminosity evolution. The luminosity correction is calculated based on the mean offset in the Mg$_b$ absorption of the local and the $z = 0.375$ sample, i.e., $\Delta \langle SB \rangle_{B,e} = 1.4 \DeltaMg_b = 0.48$ mag/arcsec2. We could also have corrected the luminosity evolution of the objects individually and would have obtained the same result. In fact, the residuals of the distant ellipticals from the fundamental plane and from the Mg$_b - \sigma$ relation correlate with each other in the expected way, though the error bars are large (see Figure 4). This supports the idea that the evolution we see is really due to age. While for local samples of ellipticals we cannot conclude reliably that the residuals from the FP and Mg$_b - \sigma$ relations are correlated and caused by age (see Jørgensen, Franx & Kjærgaard 1996), the effects of age spread must increase with redshift and may lead to the correlation observed in Figure 4.

The cosmological model is constrained on the basis of Figure 3 as follows. The distance ratio at which the fully corrected FP of the $z = 0.375$ clusters matches the FP of Coma is 10.1 ± 0.8. With an angular distance of 139 Mpc/h_{50} for Coma (corrected to the Cosmic Microwave Background rest-frame following Faber et al. (1989)) this ratio corresponds to an angular distance of 1400 Mpc/h_{50} for Abell 370 and MS1512+36 at $z = 0.375$ which is the distance adopted in Figure 3 (h_{50} is the Hubble constant in units of 50 km/s/Mpc). For a plausible range of cosmological models, the distance to the Coma cluster is, because of its proximity, virtually independent from q_0 (at the level of 0.5%), while the distance to the $z = 0.375$ clusters varies by more than 10%. Since the geometry of the Universe
is determined by the ratio of distances, \(q_0 \) is independent from the Hubble constant. The relative error of mean distance to the \(z = 0.375 \) clusters is about 8% (see Table 1). The mean distance to \(z = 0.375 \) and its error give immediate constraints on the cosmological model, see Figure 5. If the cosmological constant vanishes then our measurements, together with the observational fact that there exists matter in the Universe, constrain the cosmological density parameter to be \(0 < \Omega_m < 1.4 \), or the cosmological deceleration parameter to be \(0 < q_0 < 0.7 \), with 90% confidence. If the Universe has flat geometry as suggested by inflation, then the preferred model would have \(\Omega_m = \Omega_A = 0.5 \). \(\Omega_A \) is constrained to fall in the range \(-0.25 < \Omega_A < +0.9\), again with 90% confidence.

6. Conclusions

We have explored the possibility to calibrate elliptical galaxies as cosmological standard rods. The proposed method is based on the fundamental plane relation of elliptical galaxies and the Mg\(_b\) – \(\sigma \) test which allows us to calibrate the luminosity evolution of their stellar populations. The main assumptions that have to be made for this procedure to work are: (1) the fundamental plane and Mg–\(\sigma \) relations are the same for clusters of similar richness and (2) the slope of the initial mass function of low mass stars is known and has the same value in different objects and environments (here we adopt the Salpeter value). Further critical issues that need future checking are the reliability of stellar population models and the influence of sample selection effects and mixed populations.

A first application of the method has been given. We have shown that, under the provisos given above, it is possible to derive interesting constraints on the matter density and the cosmological constant using elliptical galaxies. In the future, stronger constraints
should be possible if large samples of ellipticals up to redshift of close to 1 (Kelson et al. 1997) are analysed in a similar way, and if the caveats and systematic effects discussed above can be controlled efficiently.

Thanks go to Dr. R. Carlberg who provided redshifts for members of MS 1512+36 and to Dr. D. Burstein who calculated galactic extinctions for Abell 370 and MS 1512+36. We thank the anonymous referee for helpful comments. This work was funded by the Sonderforschungsbereich 375 of the DFG and by DARA grant 50 OR 9608 5. RB acknowledges additional support by the Max–Planck–Gesellschaft. LG was partially supported by the Alexander-von-Humboldt foundation, GB by the EU under CiL-CT93-0328VE.
REFERENCES

Balogh, M.L., Morris, S.L., Yee, H.K.C., Carlberg, R.G., Ellingson, E. 1997, ApJ, in press, astro-ph 9707339

Bender, R. 1990, in Dynamics and Interactions of Galaxies, ed. R. Wielen (Heidelberg: Springer)

Bender, R., Burstein, D., and Faber, S. M. 1992, ApJ, 399, 462

Bender, R., Burstein, D., and Faber, S. M. 1993, ApJ, 411, 153

Bender, R., Ziegler, B., and Bruzual, G. 1996, ApJ, 463, L51

Bower, R., Lucey, J. R., and Ellis, R. S. 1992, MNRAS, 254, 601

Bressan, A., Chiosi, C., and Tantalo, R. 1996, A&A, 311, 971

Bruzual, G. A. and Charlot, S. 1997, in preparation

Burstein, D. 1989, in World of Galaxies, ed. H. G. J. Corwin and L. Bottinelli (New York: Springer), 547

Burstein, D., Faber, S. M., and Dressler, A. 1990, ApJ, 354, 18

Burstein, D. and Heiles, C. 1984, ApJS, 54, 33

Capelato, H. V., de Carvalho, R. R., and Carlberg, R. G. 1995, ApJ, 451, 525

Djorgovski, S. and Davis, M. 1987, ApJ, 313, 59

Dokkum, P. G. van and Franx, M. 1996, MNRAS, 281, 985

Dressler, A. and Gunn, J. E. 1983, ApJ, 270, 7
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R.L., Faber, S.M., Terlevich, R.J., Wegner, G., 1987 ApJ, 313, 42

Ellis, R. S., Smail, I., Dressler, A., Couch, W. J., Oemler, A., Butcher, H., Sharples, R. 1997, ApJ, 483, 582

Faber, S. M., Dressler, A., Davies, R. L., Burstein, D., Lynden-Bell, D., Terlevich, R., and Wegner, G. 1987, in Nearly Normal Galaxies, From the Planck Time to the Present, ed. S. M. Faber (New York: Springer), 175

Faber, S. M., Wegner, G., Burstein, D., Davies, R. L., Dressler, A., Lynden-Bell, D., and Terlevich, R. J. 1989, ApJS, 69, 763

Glazebrook, K., Peacock, J. A., Miller, L., and Collins, C. A. 1995, MNRAS, 275, 169

Goobar, A. and Perlmutter, S. 1995, ApJ, 450, 14

Gorgas, J., Faber, S. M., Burstein, D., Gonzalez, J. J., Courteau, S., and Prosser, C. 1993, ApJS, 86, 153

Hamabe, M., and Kormendy, J. 1987, in Structure and Dynamics of Elliptical Galaxies, IAU Symp. 127, ed. T. de Zeeuw (Dordrecht: Reidel), p381

Jørgensen, I. 1997, MNRAS, 288, 161

Jørgensen, I., Franx, M., and Kjærgaard, P. 1995, MNRAS, 276, 1341

Jørgensen, I., Franx, M., and Kjærgaard, P. 1996, MNRAS, 280, 167

Kauffmann, G., Charlot, S. 1997, MNRAS, in press

Kelson, D. D., Dokkum, P. G. van, Franx, M., Illingworth, G. D., and Fabricant, D. 1997, ApJ, 478, L13
Kormendy, J. 1977, ApJ, 218, 333

Leibundgut, B. 1996, ApJ, 466, L21

Lilly, S. J., Tresse, L., Hammer, F., Crampton, D., and Le Fèvre, O. 1995, ApJ, 455, 108

Linde, A. 1990, Particle Physics and Inflationary Cosmos (Chur: Harwood Academic Publisher)

Longo, G., De Vaucouleurs, A., and Corwin, H. G. 1983, A general catalogue of photoelectric magnitudes and colors in the U, B, V system of 3,578 galaxies brighter than the 16-th V-magnitude (Austin: Univ. of Texas)

Moore, B., Lake, G., Katz, N. 1997, ApJ, in press, astro-ph/9701211

Oemler, A., Dressler, A., Butcher, H. 1997, ApJ, 474, 561

Perlmutter, S., et al. 1997, ApJ, 483, 565

Renzini, A., Ciotti, L. 1993, ApJ, 416, L49

Saglia, R. P., Bender, R., and Dressler, A. 1993, A&A, 279, 75

Saglia, R. P., Colless, M., Baggley, G., Bertschinger, E., Burstein, D., Davies, R. L., McMahan, Jr., R. K., and Wegner, G. 1997a, in Galaxy Scaling Relations: Origins, Evolution and Applications, eds. L. Da Costa et al. (Heidelberg: Springer), in press

Saglia, R. P., Bertschinger, E., Baggley, G., Burstein, D., Colless, M., Davies, R. L., McMahan, Jr., R. K., and Wegner, G. 1997b, ApJS, 109, 79

Sandage, A. 1995, in The Deep Universe, ed. A. Sandage et al. (Berlin: Springer)

Schweizer, F. 1990, in Dynamics and Interactions of Galaxies, ed. R. Wielen (Heidelberg: Springer)
Stanford, S. A., Eisenhardt, P. R. M., and Dickinson, M. 1997, ApJ, in press, astro-ph/970837

Worthey, G. 1994, ApJS, 95, 107

Ziegler, B. L. and Bender, R. 1997, MNRAS, in press
Fig. 1.— Differential relation between Mg\textsubscript{b} absorption and B-band luminosity as a function of age for different metallicities. Lines for different metallicities were normalized to the same B-band luminosity at an age of 12 Gyr and refer to simple stellar populations. Composite stellar populations are indicated via open and filled squares. The open (filled) squares trace the differential evolution of a single galaxy that consists to 90\% of an old population (E) to which a starburst 1.5 Gyr (3 Gyr) before observation added a mass of 10\%.

Fig. 2.— The Mg\textsubscript{b} − \sigma relation for elliptical galaxies in the Coma and Virgo clusters (filled circles) and for elliptical galaxies in Abell 370 and MS1512+36, both at \(z = 0.375 \) (open squares). All measurements have been brought to consistent aperture sizes. Typical error bars are given in the lower right. The best fit to the Coma data is \(\text{Mg}_b = 2.7 \log \sigma - 1.65 \) with \(\sigma \) in km/s. The lower Mg\textsubscript{b} of the distant ellipticals at a given \(\sigma \) is due to the (passive) evolution of their stellar populations with redshift.

Fig. 3.— The Fundamental Plane of elliptical and S0 galaxies. Small filled circles and small crosses denote elliptical galaxies and S0 galaxies in the Coma cluster with velocity dispersions \(\sigma > 120 \) km/s, effective radii \(R_e \) in kpc and effective surface brightnesses \(\langle SB \rangle_e \) in the B band, \(h_{50} \) is the Hubble constant in units of 50 km/s/Mpc. The typical measurement errors for the Coma objects are somewhat smaller than the scatter indicates. The large open diamonds show elliptical galaxies in Abell 370 and MS1512+36, both at a redshift of \(z = 0.375 \), as observed and transformed to the B-band rest frame. The large open squares show the \(z = 0.375 \) ellipticals after surface brightness has been corrected for cosmological \((1 + z)^4\) dimming. The large filled squares represent the redshifted ellipticals after a further correction for mean luminosity evolution has been applied. The correction was derived from the offset in the Mg−\sigma relations between the distant and local ellipticals (see Figure 2). A typical error bar is shown for the \(z = 0.375 \) ellipticals in the upper left. The FP relations match for an angular distance to Coma of 139 Mpc/\(h_{50} \) and an angular distance
of 1400 Mpc/h\(_50\) to Abell 370 and MS1512+36 at \(z = 0.375\). The upper and lower dashed lines show the mean FP relations of the \(z = 0.375\) objects if they were at a distance of 1100 Mpc/h\(_{50}\) or 1700 Mpc/h\(_{50}\), respectively.

Fig. 4.— The residuals from the local fundamental plane vs. the residuals from the local Mg\(_{b}\) − \(\sigma\) relation for the \(z = 0.375\) ellipticals. Though the error bars are large, the residuals seem to correlate with each other.

Fig. 5.— The plane of matter density as measured by \(\Omega_m\) against \(\Omega_\Lambda\) parametrizing the cosmological constant. Lines of constant angular distance for a redshift of 0.375 are shown. The ellipticals observed at this redshift allow to constrain the angular distance to \(z = 0.375\) which in turn defines a probability strip in the \(\Omega_\Lambda - \Omega_m\) plane. Values for \(\Omega_\Lambda\) and \(\Omega_m\) which have > 90% likelihood lie in the shaded area. The horizontal long–dashed line corresponds to a Universe without a cosmological constant, the diagonal short–dashed line to a Universe with no curvature (\(\Omega_m + \Omega_\Lambda = 1\)).
Table 1: Budget of major errors ($z = 0.375$ clusters relative to Coma cluster), with $FP = 1.25 \log \sigma + 0.32 \langle SB \rangle_e - 8.895$ and $\langle SB \rangle_e = -2.5 \log I_e + const$. For a brief discussion of the error in the Kormendy product see text. Note that the error of the mean is in some cases larger than the expected statistical error because of systematic effects.

source of error	error for single object	error of mean for 9 objects			
photometric ZP	$\Delta SB_e \approx 0.020$	≈ 0.020			
transformation to rest–frame	$\Delta SB_e \approx 0.030$	≈ 0.020			
reddening correction	$\Delta SB_e \approx 0.020$	≈ 0.020			
Kormendy product: $R_e I_e^{-0.8}$	$\Delta SB_e \approx 0.030$	≈ 0.011			
evolution correction	$\Delta SB_e \approx 0.180$	≈ 0.064			
velocity dispersion	$\Delta \log \sigma \approx 0.040$	≈ 0.014			
physical scatter in FP	$\Delta FP \approx 0.040$	≈ 0.014			
total error	$\Delta FP \approx 0.087$	≈ 0.032			
object	R_e	$(SB)_e$	log R_e	log σ	Mg$_b$
-----------------	-------	----------	-----------	-------------	--------
Abell 370 #13	0.830	20.18	0.755	2.445	4.805
Abell 370 #17	1.209	20.81	0.919	2.379	4.348
Abell 370 #18	0.884	20.48	0.783	2.409	4.479
Abell 370 #20	7.634	22.71	1.719	2.524	4.577
Abell 370 #23	1.387	20.90	0.978	2.494	4.992
Abell 370 #28	1.528	21.07	1.020	2.436	4.889
Abell 370 #32	1.889	21.37	1.112	2.314	4.035
MS1512+36 #09	4.755	22.57	1.513	2.462	4.694
MS1512+36 #11	1.147	21.10	0.896	2.290	3.977

Table 2: Photometric and kinematic data for elliptical galaxies at $z = 0.375$. Object identification as in Ziegler & Bender (1997). Surface brightnesses are means within the effective radius, refer to the rest-frame B-band and are corrected for extinction and cosmological dimming, but not for evolution. Effective radii in kpc were calculated with a distance of 1400 Mpc. Errors are given in Table 1 and shown in the plots.
Angular Distance in Mpc at $z=0.375$