The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: A narrative review

Cliff J. d C. Harvey Currop. 1, Grant M. Schofield 1, Micalla Williden 1

1 Human Potential Centre, Auckland University of Technology, Auckland, New Zealand

Corresponding Author: Cliff J. d C. Harvey
Email address: cliff@hpn.ac.nz

Background. Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase.

Methods. PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms “ketogenic diet”, “ketogenic”, “ketosis” and ketonaemia (/ ketonemia). Additionally, author names and reference lists were used for further search of the selected papers for related references.

Results. Evidence, from one mouse study, suggests that leucine doesn’t significantly increase beta-hydroxybutyrate (BOHB) but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn’t reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs) increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis.

Conclusions. There is a clear ketogenic effect of supplemental MCTs, however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction phase. Those that have typically were not designed to evaluate these variables as primary outcomes, and thus, more research is required to elucidate the role that supplementation might play in encouraging ketogenesis, improve time to NK, and reduce symptoms associated with keto-induction.
The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: A narrative review

Cliff J. d C. Harvey,1 Grant M. Schofield,1 Micalla Williden,1

1 Human Potential Centre, AUT University, Auckland, New Zealand

Corresponding author:

Cliff Harvey, 7 Ascension Place, Rosedale, Auckland 0632, New Zealand. +649 478 3702, cliff@hpn.ac.nz
The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction. A narrative review

ABSTRACT

Background. Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase.

Methods. PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms “ketogenic diet”, “ketogenic”, “ketosis” and ketonaemia (/ ketonemia). Additionally, author names and reference lists were used for further search of the selected papers for related references.

Results. Evidence, from one mouse study, suggests that leucine doesn’t significantly increase beta-hydroxybutyrate (BOHB) but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn’t reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs) increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis.
Conclusions. There is a clear ketogenic effect of supplemental MCTs, however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction phase. Those that have typically were not designed to evaluate these variables as primary outcomes, and thus, more research is required to elucidate the role that supplementation might play in encouraging ketogenesis, improve time to NK, and reduce symptoms associated with keto-induction.

Introduction

Very-low-carbohydrate ketogenic diets (VLCKDs) are becoming increasingly popular for mainstream and athletic use for a range of outcomes including weight-loss and maintenance, improved satiety and a reduction in hunger. The diet also offers specific benefits for health conditions ranging from neurological disorders, obesity, and diabetes and other conditions on the spectrum of metabolic syndrome, and offers potential for the adjunct treatment of various cancers. Ketogenic diets elicit a state of ketosis known as ‘nutritional ketosis’ (NK), a state of hyperketonaemia distinct from pathological ketosis such as diabetic ketoacidosis (DKA). Ketosis refers to the production of ketone bodies, derived from fats (and some amino acids) for use as an alternative fuel in times of fasting or drastic carbohydrate restriction. A restriction of carbohydrate, either by fasting or by restricting dietary carbohydrate, results in reduced insulin levels, thereby reducing lipogenesis (the creation of fats) and fat accumulation. When glycogen reserves become insufficient to supply the glucose necessary for normal β-oxidation of fat, via the provision of oxaloacetate in the Krebs cycle, acetyl-CoA is then used instead in the biosynthesis of ketone bodies via acetoacetyl-CoA and β-hydroxy-β-methylglutaryl-CoA to ensure provision of fuel to
the Central Nervous System (CNS), which usually relies on glucose. The process of ketogenesis further allows coenzymes to be freed to ensure continued fatty-acid β-oxidation. To elicit this carbohydrate restriction, while also providing sufficient alternate fuel to ensure sustainability of the diet, i.e. in comparison to fasting to achieve ketosis, VLCKDs have been used to encourage ketosis. Early research on KDs focussed on children with epilepsy and for this purpose, a VLCKD typically consists of a 3:1 to 4:1 ratio of lipid to non-lipid. This treatment for epilepsy was pioneered at Johns Hopkins University Hospital, and is referred to as a ‘classic’ or ‘standard’ ketogenic diet.

Ketogenic diets are now commonly applied, for a range of desired outcomes, and with differing definitions of what constitutes a ketogenic diet. Both low-energy diets and VLCKDs with fewer than 50 g of carbohydrate per day typically result in BOHB levels of ≥0.5 mmol.L\(^{-1}\). This threshold has been used as a cut-off point for entry into ketosis by Guerci and colleagues, and is commonly applied as a marker for entry into NK in the nutrition field, as compared to the typically higher levels expected in the medical field to elicit beneficial effects for seizure control in epileptic children.

Time to ketosis

There is a paucity of research that identifies specific time points to the now-common definition of NK, as defined by BOHB levels of ≥0.5 mmol.L\(^{-1}\). In a study comparing fasted ketogenic protocols to a more gradual initiation of a ketogenic diet, Bergqvist and colleagues observed that participants fasting, achieved mean levels of ≥0.5 mmol.L\(^{-1}\) BOHB, on the day following initiation of the diet, whereas those on a 1:1 ketogenic diet (by weight) achieved the same level two days after initiation of the diet. Other studies have measured either tangentially or directly, the achievement of ‘ketosis’ but have not specifically identified the time at which a level of ≥0.5
mmol.L\(^{-1}\) was achieved. Berry-Kravis and colleagues observed a mean time to ketosis (urinary >80mg/dl) of 42 hours. Wirrell and colleagues have demonstrated a mean time to ketosis of 33 and 58 hours for any trace of urinary ketones or ‘good ketosis’ (of >0.8 mmol.L\(^{-1}\)) respectively. Wusthoff et al. recorded two cases of adults with prolonged nonconvulsive status epilepticus in which ‘stable ketosis’ was achieved after 8 and 10 days respectively, 3.6 and >1.6 mmol.L\(^{-1}\), but the definition for ketosis, in this study, was not mentioned and we cannot extrapolate the time to NK as defined in clinical nutrition. Strzelczyk et al. suggested ketosis as the presence of urinary ketones, some 3.5 days after initiation of a ketogenic diet, but at that time participants had achieved serum BOHB of 3.6 mmol.L\(^{-1}\). Hoorn and colleagues observed no difference between fasted and non-fasted ketogenic protocols for time to ketosis, without specifically describing their definitions for ketosis or the time to ketosis itself.

So, while the achievement of ketosis has been described in the medical literature, there are inconsistencies in the measurement of, and definition for ketosis in these papers.

Adverse effects of keto-induction—the ‘keto-flu’

Adaptation to a VLCKD, or ‘keto-induction’, and the achievement of NK, when transitioning from a standard, higher carbohydrate diet, can cause various unpleasant effects. Symptoms of keto-induction are predominantly constipation, headache, halitosis, muscle cramps, diarrhoea, and general weakness and rash. These occur because of increased urinary sodium, potassium and water loss in response to lowered insulin levels, greatest between days 1-4 of a fast or ketogenic diet, and transient reductions in glucose provision to the brain, observed to occur on days 1-3, with blood glucose normalising after day four. Constipation may result from reduced food volume or reduced fibre intake, although this finding could be due to the groups that have been
studied, which have included children with disabilities, who commonly experience constipation due to immobility.32

These symptoms are often referred to in the mainstream and grey literature as ‘keto-flu’ but are not well illustrated in the scientific literature. For example, a Google search returns over 22,000 results for the term “keto-flu,” but the same term searched in MEDLINE Complete, CINAHL Complete, Alt HealthWatch, Food Science Source, SPORT Discus with Full Text, Psychology, and the EBSCO Behavioural Sciences Collection returns no results. Several studies have described adverse effects during ketogenic diets but to our knowledge, no studies have specifically described symptoms of keto-induction in the short time between commencing a ketogenic diet and the achievement of NK.

Adverse effects resulting from a VLCKD are likely to reduce compliance and tolerability,38 and thus affect the efficacy of these diets as clinical interventions.

There have been several methods suggested to reduce symptoms of keto-induction and to reduce the time taken to achieve NK, including the ketogenic amino acid leucine, short chain fatty acids, medium chain fatty acids, and exogenous ketones.

The aim of this paper, therefore, is to elucidate the evidence for and against commonly applied nutritional supplements, purported to be ketogenic, to inform clinical practice in the growing field of ketogenic diets for common-use. This paper reviews the available scientific literature relevant to improvements in time to ketosis and symptoms of keto-induction, resulting from these nutritional supplements.

Methods

PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched
Various purported ketogenic supplements, arising from a qualitative appraisal of forums, social media, message boards, and Google searches for ketogenic supplements, were searched along with the terms “ketogenic diet”, “ketogenic”, “ketosis” and ketonaemia (/ ketonemia). Additionally, author names and reference lists were used for further search of the selected papers for related references. There is a paucity of studies on time to NK and mitigation of symptoms of keto-induction as data related to the effects of various supplements on time to induction of ketosis and on symptoms of keto-induction are limited, and there is a lack of homogeneity between study objectives, outcomes, and measures, a narrative review style was chosen.

Results

Leucine

Leucine and lysine are solely ketogenic branched-chain amino acids (BCAAs). Thus, they do not contribute to gluconeogenesis. Higher leucine (and isoleucine) concentrations result from a ketogenic diet and are related to reduced glutamate-to-GABA ratio and this might explain some of the anti-seizure activity of a ketogenic diet in epilepsy. There appears to be a high affinity of kidney cells for ketogenesis from leucine.

Progression of fasting increases the conversion of leucine to ketone bodies and peripheral tissue is catabolised to provide leucine for ketogenesis. Leucine can also be degraded in rat astroglial cells to the ketone bodies, including BOHB, and when released by these cells, used by neighbouring neurones as a fuel substrate. Leucine also results in hepatic ketogenesis. Studies in mice have shown that while ingested L-leucine can reduce seizure activity similarly to a KD, it does not independently increase blood levels of BOHB. Evangeliou and colleagues have demonstrated that the addition of 20 g per day of BCAAs, including 9 g of leucine, in 17 children with intractable epilepsy, altering the ratio of lipid to protein from 4:1 to around 2.5:1, had no effect on ketosis,
along with greater reductions in seizure activity. The authors postulated that this could be due to
the ketogenic effect of leucine, but may also result from a greater availability of BCAAs.45

Short chain fatty acids

Short-chain fatty acids (SCFAs) have carbon chains between two and five in length. These fatty
acids include acetic acid (C:2), propionic acid (C:3), butyric acid (C:4), and valeric acid (C:5).

Short chain fatty acids, especially butyric acid, are used extensively as a fuel substrate by intestinal
epithelial cells.46 It is generally accepted that chain length affects the relative deposition of fatty
acids into either lymph or the portal vein.47 Those short-chain fatty acids that escape metabolism
by epithelial cells are, therefore, primarily absorbed via the hepatic portal vein and do not require
‘bundling’ with micelles and chylomicrons for absorption.48 The highest quantities of short-chain
fatty acids have been observed in portal blood, followed by hepatic, and far less in peripheral
blood.49 Thus, they bypass the usual route of absorption (for the more common long-chain fatty
acids) into the lymphatics and deposition into the bloodstream via the subclavian vein, and instead,
are transported via the hepatic portal vein to the liver where they can be converted into the ketone
bodies.50-52

Acetic acid

Acetic acid is a two-carbon SCFA. It comprises approximately 4-20% of vinegar. Vinegar has
been demonstrated to improve postprandial insulin sensitivity in healthy and diabetic people and
improve glycaemic responses to meals.53-55 Urinary excretion of acetone (a ketone body) is
increased in phloridzinised dogs and fasting rats after feeding with acetic acid.56 Acetone is the
spontaneous breakdown product of the ketone bodies acetoacetate and BOHB. Thus, it is likely
that acetic acid is ketogenic, and has additional benefits for overall metabolic health, however, no
research has been performed on acetic acid and its specific effects on the induction of ketosis or
mitigation of keto-induction symptoms in humans. Interestingly, vinegar is commonly prescribed as a ‘free food’ in ketogenic diet trials,57-59 and may provide an under-recognized stimulus for ketogenesis.

Butyric acid

Butyric acid (BTA) is a four-carbon, short-chain fatty acid found in the milk of ruminants and present in small amounts in many dairy foods. Most BTA in humans is produced by microbial intestinal fermentation of dietary fibre and resistant starch. Most of the butyric acid produced by this fermentation of starches is absorbed and used directly by colonocytes, with most of the remainder absorbed into the hepatic portal vein, and transported to the liver where it can be converted to ketone bodies.51, 52 A small amount is absorbed directly from the large colon and enters systemic circulation, to be used directly by peripheral tissue.51 Butyrate exerts effects directly on the colonic mucosa, including inhibition of inflammation and carcinogenesis, decreasing oxidative stress, and promotion of satiety.60, 61 Thus, it serves an important role in preserving the health of the colon, microbiota, and may have other beneficial roles for general and systemic health. Animal studies on the ketogenic potential of butyrate are mixed. For example, silage butyrate content has been shown to provide no significant effect on subclinical ketosis in dairy cows,62 however, sub-clinical ketosis is higher in those receiving silage higher in butyrate content.63

In a recent study in humans, the effect of L-leucine, octanoyl-monoacylglycerol (O-MAG), a monoglyceride consisting of an 8-carbon fatty acid, L-carnitine, and butyric acid on acetoacetate and BOHB were studied. Both 2 g and 4 g of butyric acid were demonstrated to be more ketogenic than either 5 g of leucine, or 5 or 10g of O-MAG.64

Medium Chain Triglycerides
In medium chain triglycerides (MCTs) two-to-three of the fatty acid chains attached to the glycerol backbone are medium in length. These medium-chain fatty acids (MCFAs) are comprised of a 6–12 carbon chain. The MCTs are: caproic (C6), caprylic (C8), capric (C10) and lauric acid (C12). Similar to the short-chain fatty acids and unlike long-chain triglycerides (LCTs), MCTs do not require the actions of bile, nor micellar-chylomicron mediated absorption into the lymphatics and instead are diffused directly into the hepatic portal vein and preferentially converted into bio-available ketone bodies in the liver. Huttenlocher and colleagues first demonstrated that diets containing fewer calories from lipids than a ‘classic’ ketogenic diet—around 60%-75% of calories—can induce NK if they include a high proportion of medium chain triglycerides (MCTs). A VLCKD with 60% of energy derived from MCTs, a three-fold greater intake of carbohydrate (18% vs. 6%) and a ~50% (7% vs. 10%) increase in protein compared to a standard ketogenic diet induces NK with no appreciable difference in BOHB levels.

Dietary MCTs are also known to promote both ketonaemia and ketogenesis in animals and humans with and without health conditions. MCTs promote ketonaemia and ketogenesis (useful to reduce the risk of night-time hypoglycaemic coma) in those with carnitine palmitoyltransferase deficiency, a rare genetic condition which inhibits the ability to produce ketone bodies from long-chain fatty acids. MCTs also increase BOHB when calorically dose-matched to either LCTs or carbohydrate in single feeding and non-ketogenic diet studies. When fed intravenously, MCTs increase ketogenesis when compared to both structurally similar fats and LCTs. However, ketogenesis is reduced by the simultaneous application of glucose. It has been demonstrated by Sandstrom and colleagues that in a hypercaloric diet, there are increased BOHB levels observed with the application of MCTs that aren’t seen in a hypocaloric state.
MCTs increase BOHB in a linear and dose-dependent fashion. For example, when eleven pre-term infants were fed formulas with either 25% or 50% of fat calories coming from MCTs for at least 96 hours (30 kcal/ml, around 50% calories from fat in total, 10% protein, 40% carbohydrate) the 50% MCT formula resulted in a mean plasma level of BOHB of 0.14 ± 0.03 mmol/L, a nearly three-fold increase over the lower MCT formula (0.06 ± 0.01). While there is a paucity of research on the effect of MCTs on the time taken to achieve NK, MCTs are demonstrably ketogenic and thus, allow induction of NK with lower proportions of fat in the diet, than that used in ‘classic’ 3 or 4:1 lipid to non-lipid (or ‘ketogenic ratio’) protocols. When ‘classic’ ketogenic diets with a greater than 3:1 ratio of lipid to non-lipid are compared to MCT ketogenic diets with 60% of calories from MCT, NK can be achieved with a lower lipid intake.

Huttenlocher first observed higher BOHB levels in children with epilepsy aged 2-9 years, at up to one month on an MCT ketogenic diet, and marginally lower after this time, when compared to a classic ketogenic diet, although these differences were not significant. In a study of 55 children with severe epilepsy, Schwartz and colleagues found modified ketogenic diets, MCT ketogenic diets, and classic ketogenic diets to all be ‘ketogenic’ (inducing NK) with peak ketone body concentrations of approximately 1 mmol/L, 1.5 mmol/L and 4 mmol/L respectively, after three weeks on the differing ketogenic protocols. Nine children were subsequently trialled on a second diet and profiled three weeks later. Cumulative results over 24 hours of metabolic testing demonstrate that expression of ketone bodies rises (in order) from a normal diet (little change) to a modified MCT diet, an MCT ketogenic diet, and the greatest rise in ketone bodies over 24 hours resulting from a classic (4:1) ketogenic diet. In a 12-month study, a classic ketogenic diet resulted in higher levels of BOHB (and acetoacetate) over all time periods (three, six, and 12 months) but this was only statistically significant at three and six months (p<0.001).
After ingestion of MCT at a dosage of 30g MCT/m² body surface area by nine children (in a study of seizure control), BOHB levels rose progressively after administration from a mean of 0.2 ± 0.1 mmol/L after an overnight fast to 1.05 ± 0.3 mmol/L at 180 minutes. Participants reached NK on average at 30-60 min with most participants in NK by the 90th minute, but there was significant variation in BOHB between individuals. With a lower dosage of 7.5 g of MCT taken three times per day after an acclimation period of 5 g MCT taken three times per day for one week, plasma BOHB was higher, yet not inducing NK.

Exogenous ketones

Exogenous ketone supplements provide BOHB directly to the body without requiring ketogenesis and without concurrent elevations in free fatty acids. They are considered to be a safe and effective way to increase ketone body concentrations. Ketone supplements demonstrate promise as potential adjunct treatments for brain injury, cancer, Angelman syndrome, for reducing inflammation by suppressing activation of the NLRP3 inflammasome, and Alzheimer’s disease. Ketone supplements might also improve fueling during exercise, reduce lactate production, and improve performance due to glucose sparing, and have positive effects on anxiety and mental performance and memory.

Exogenous ketone supplements are available as either salts or esters of BOHB. Supplements containing ketone salts (KS) are some combination of sodium-, magnesium-, calcium or potassium-BOHB, and are available commercially from several companies under patent. Ketone esters (KEs) at the time of writing, are only available for research, primarily as 1,3-butanediol monoester of BOHB and thus, the animal and human research has mostly focused on the use of ketone esters. Both ketone esters and salts elevate BOHB to levels consistent with NK, with ketone esters having greater effects on ketonaemia with ketone salts providing significantly higher
reporting of gastrointestinal symptoms. Ketone salts might provide a greater potential for long-term side effects if the inorganic ion load delivered is excessive for the individual. Conversely, R-1,3-butanediol from ketone monoesters is readily metabolized in the liver to AcAc. Clarke et al. detected no R-1,3-butanediol in the plasma of participants taking a ketone monoester supplement, except at the highest dosage of 714 mg/kg body weight, at which dose plasma R-1,3-butanediol was detectable at a level of $≤ 1.0 \text{ mmol/L}$ and was undetectable 4 hours later.

At a dosage of 395 mg/kg bodyweight, KE increased BOHB in healthy volunteers from 0.2 mmol/L ($±0.02$) at baseline to 3.3 mmol/L ($±0.2$) one hour later, and from 0.16 mmol/L ($± 0.02$) at baseline to 3.16 mmol/L ($± 0.14$). The same dose has been used to determine the effect on ketonaemia of KE taken with or without a meal. BOHB concentration (one-hour post-KE) was lower in those having taken a meal, but both groups achieved levels of ketonaemia consistent with NK; 2.1 mmol/L ($± 0.2$) and 3.1 mmol/L ($± 0.1$) respectively. In a study using higher dosages (0.573 g/kg BW) in healthy male athletes performing an hour of bicycle exercise at 75% of maximal exercise intensity BOHB levels rose from 0.1 to 3.4 mmol/L ($p<0.01$) following ketone drinks.

While it is clear that exogenous ketones increase serum BOHB, they are not ketogenic, and may, in fact, inhibit endogenous ketone production. In other words, they promote ketonaemia but do not encourage the creation of ketone bodies in the liver. So, it is more accurate to say that exogenous ketones mimic the effects, many of which are positive, of NK, rather than inducing it.

Conclusions

It’s unclear at this time whether an elevation in ketones over and above NK would mitigate the effects of keto-induction. It has, for example, been observed that mood is improved within the first
two weeks of a diet irrespective of macronutrient composition, and only one study, to our
knowledge, has demonstrated a correlation between ketone levels and memory performance.
Except for MCTs, there is limited research on the ketogenic potential of nutritional supplements,
especially in human subjects. While the ketogenic amino acid leucine may not independently
encourage ketogenesis to levels consistent with NK, more research is required, and the effect on
time to NK and symptoms of keto-induction, particularly in a classic KD, are at this stage
unknown.

Similarly, there is a paucity of research on the short-chain fatty acids and their effects on
ketogenesis. Their mode of absorption and metabolism, like that of MCTs, but perhaps even more
rapid, hints at a potential role for encouraging ketogenesis, and thus, the potential for improving
time to NK and reducing symptoms of keto-induction.

There is a considerable amount of research demonstrating that MCTs promote both primary
ketonaemia resulting from the conversion of medium chain fatty acids liberated from MCTs into
bio-available ketone bodies, and longer-term ketogenesis by facilitating keto-adaptation.

Expression of the ketone body BOHB is increased in a linear, dose-dependent manner in response
to oral loads of MCT but it is unclear whether MCTs independently improve time to NK. Modified
MCT ketogenic diets do not significantly hasten the induction of NK over a classic ketogenic diet
with a minimum of three parts lipid to one part non-lipid, but they do allow NK to occur in diets
containing greater amounts of non-lipid macronutrients.

There has, however, been little research performed on the application of MCTs to classic ketogenic
diets and whether, if applied, they would; a) improve time to NK, b) result in significantly higher
levels of BOHB, and c) significantly reduce symptoms of keto-induction. It is also unknown if, in
the context of a ketogenic diet, MCTs provide additional benefits, for example for physical and
mental performance and mood.

Exogenous ketones are unlikely to be ketogenic per se, and may inhibit ketogenesis, however, the
rapid and substantial elevation of BOHB offers potential to mitigate effects of keto-induction, and
thus, could play a role in improving adherence to a ketogenic diet. Newport et al. have reported
improvements in mood and cognitive performance resulting from ketone ester treatment over 20-
months in an Alzheimer's Disease case. In this case, cognitive performance tracked plasma BOHB
concentrations. In a direct, dose-matched comparison, Kesl and colleagues evaluated the effects
of ketone esters, salts, MCTs, and MCT + KS on blood BOHB in Sprague-Dawley rats at a dose
of 5 g/kg. At 0, 30, and 60 min and 4, 8, and 12 hrs post administration (by intragastric gavage)
KS + MCT and MCT supplementation rapidly elevated and sustained significant BOHB elevation
compared to control for the duration of the 4-week study. Ketone salts did not significantly elevate
BOHB at any time point tested compared to controls. Ketone ester supplements significantly
elevated BOHB levels for the duration of the 4-week study. This further demonstrates, albeit, in
non-human subjects, the superiority of KE to KS for elevating BOHB, and the utility of MCT for
the same purpose, but is likely to limited in applicability to health and performance as we have
seen demonstrable increases in BOHB, consistent with NK levels with supplementation of KS in
humans. Research performed on exogenous ketone supplements is, at this time, highly
preliminary, and has been predominantly performed using animal subjects. Further clinical
research is required to translate the potential benefits seen in these studies, to human models of
disease and disorder.
This review was limited by a dearth of studies demonstrating the effect of supplementation on the
time taken to achieve ketosis as defined by the *lingua franca* of NK, \(\geq 0.5 \text{ mmol.L}^{-1} \) and on
symptoms of keto-induction during this time.

While studies have described symptoms arising from a ketogenic diet, few studies have
specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction phase,
and the studies that have been performed typically have not been designed to evaluate these as
primary outcomes, and thus, our conclusions are extrapolated from a variety of sources. There is
also little consensus on whether greater levels of BOHB (over and above NK threshold) are, in
fact, associated with fewer symptoms of ‘keto-flu’, nor for that matter with improved outcomes
but as previously noted, Newport and colleagues have observed a linear correlation between mood
and cognition, and BOHB levels.\(^{109}\) Adverse effects associated with the induction of NK might
cause increased drop-out rates and preclude some of the positive effects for those that would
otherwise benefit from a VLCKD. For example, Yancy and colleagues noted an 8% overall
dropout rate due to difficulties adhering to an LCHF diet, with a further 5% withdrawing from
their study due to adverse effects.\(^{31}\) High attrition rates due to tolerability and gastrointestinal side
effects have also been noted in childhood epilepsy research utilising VLCKDs.\(^{7,29}\)

Preliminary research suggests that increased BOHB levels and a faster time-to-NK might improve
the acceptability of the KD and improve compliance rates, but more research is required to
understand the role that supplementation could play in encouraging ketogenesis, improving time
to NK, reducing symptoms associated with keto-induction, and the effect this might have on
improving adherence to, and outcomes from a VLCKD.

Acknowledgements
We acknowledge the support of our colleagues at the Human Potential Centre, AUT University, especially Eric Helms and Simon Thornley, who helped with the final editing of this document, and Darrell Bonetti who provided guidance on the direction of the review.

References

1. Bueno NB, de Melo ISV, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. British Journal of Nutrition. 2013;110(07):1178-87.
2. Paoli A, Bosco G, Camporesi E, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Frontiers in Psychology. 2015;6.
3. McClernon FJ, Yancy WS, Jr., Eberstein JA, Atkins RC, Westman EC. The effects of a low-carbohydrate ketogenic diet and a low-fat diet on mood, hunger, and other self-reported symptoms. Obesity (Silver Spring, Md). 2007;15(1):182-7.
4. Johnstone AM, Horgan GW, Murison SD, Bremner DM, Lobley GE. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. The American Journal of Clinical Nutrition. 2008;87(1):44-55.
5. Lechev F, Aronson N. Ketogenic Diet for the Treatment of Refractory Epilepsy in Children: A Systematic Review of Efficacy. Pediatrics. 2000;105(4):e46.
6. Keene DL. A Systematic Review of the Use of the Ketogenic Diet in Childhood Epilepsy. Pediatric Neurology. 2006;35(1):1-5.
7. Levy RG, Cooper PN, Giri P, Pulman J. Ketogenic diet and other dietary treatments for epilepsy. The Cochrane Library. 2012.
8. Henderson CB, Filloux FM, Alder SC, Lyon JL, Caplin DA. Efficacy of the Ketogenic Diet as a Treatment Option for Epilepsy: Meta-analysis. Journal of Child Neurology. 2006;21(3):193-8.
9. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al. The ketogenic diet for treatment of childhood epilepsy: a randomised controlled trial. The Lancet Neurology. 2008;7(6):500-6.
10. Paoli A, Rubini A, Volek J, Grimaldi K. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. European journal of clinical nutrition. 2013;67(8):789-96.
11. Sumithran P, Proietto J. Ketogenic diets for weight loss: A review of their principles, safety and efficacy. Obesity Research & Clinical Practice. 2008;2(1):1-13.
12. Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain research reviews. 2009;59(2):293-315.
13. Castro K, Faccioli LS, Baronio D, Gottfried C, Perry IS, dos Santos Riesgo R. Effect of a ketogenic diet on autism spectrum disorder: A systematic review. Research in Autism Spectrum Disorders. 2015;20:31-8.
14. Varshneya K, Carico C, Ortega A, Patil CG. The Efficacy of Ketogenic Diet and Associated Hypoglycemia as an Adjuvant Therapy for High-Grade Gliomas: A Review of the Literature. Cureus. 2015;7(2):e251.
15. Kulak D, Polotsky AJ. Should the ketogenic diet be considered for enhancing fertility? Maturitas. 2013;74(1):10-3.
16. Krebs HA. The regulation of the release of ketone bodies by the liver. Advances in Enzyme Regulation. 1966;4(0):339-53.
17. Nelson DL, Lehninger AL, Cox MM. Lehninger principles of biochemistry: Macmillan; 2008.
18. Livingstone S. Comprehensive Management of Epilepsy in Infancy, Childhood and Adolescence. Archives of Disease in Childhood. 1972;47(255):842-.
19. Livingston S, Pauli LL, Pruce I. KETOGENIC DIET IN TREATMENT OF CHILDHOOD EPILEPSY. Developmental Medicine and Child Neurology. 1977;19(6):833-4.
20. Gibson A, Seimon R, Lee C, Ayre J, Franklin J, Markovic T, et al. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obesity Reviews. 2015;16(1):64-76.
21. Guerci B, Benichou M, Floriot M, Bohme P, Fougnot S, Franck P, et al. Accuracy of an Electrochemical Sensor for Measuring Capillary Blood Ketones by Fingerstick Samples During Metabolic Deterioration After Continuous Subcutaneous Insulin Infusion Interruption in Type 1 Diabetic Patients. Diabetes Care. 2003;26(4):1137-41.
22. Gilbert DL, Pyzik PL, Freeman JM. The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J Child Neurol. 2000;15(12):787-90.
23. Bergqvist AGC, Schall JI, Gallagher PR, Cnaan A, Stallings VA. Fasting versus Gradual Initiation of the Ketogenic Diet: A Prospective, Randomized Clinical Trial of Efficacy. Epilepsia. 2005;46(11):1810-9.
24. Berry-Kravis E, Booth G, Sanchez AC, Woodbury-Kolb J. Carnitine Levels and the Ketogenic Diet. Epilepsia. 2001;42(11):1445-51.
25. Wirrell EC, Darwish HZ, Williams-Dyjur C, Blackman M, Lange V. Is a fast necessary when initiating the ketogenic diet? Journal of child neurology. 2002;17(3):179-82.
26. Wusthoff CJ, Kranick SM, Morley JF, Christina Bergqvist AG. The ketogenic diet in treatment of two adults with prolonged nonconvulsive status epilepticus. Epilepsia. 2010;51(6):1083-5.
27. Strzelczyk A, Reif PS, Bauer S, Belke M, Oertel WH, Knake S, et al. Intravenous initiation and maintenance of ketogenic diet: Proof of concept in super-refractory status epilepticus. Seizure. 2013;22(7):581-3.
28. Kang H-C, Lee Y-M, Kim HD, Lee JS, Slama A. Safe and Effective Use of the Ketogenic Diet in Children with Epilepsy and Mitochondrial Respiratory Chain Complex Defects. Epilepsia. 2007;48(1):82-8.
29. Chul Kang H, Joo Kim Y, Wook Kim D, Dong Kim H. Efficacy and Safety of the Ketogenic Diet for Intractable Childhood Epilepsy: Korean Multicentric Experience. Epilepsia. 2005;46(2):272-9.
30. Hartman AL, Vining EP. Clinical aspects of the ketogenic diet. Epilepsia. 2007;48(1):31-42.
31. Yancy WS, Jr., Olsen MK, Guyton JR, Bakst RP, Westman EC. A Low-Carbohydrate, Ketogenic Diet versus a Low-Fat Diet To Treat Obesity and Hyperlipidemia: A Randomized, Controlled Trial. Annals of Internal Medicine. 2004;140(10):769-77.
32. Kang HC, Chung DE, Kim DW, Kim HD. Early- and Late-onset Complications of the Ketogenic Diet for Intractable Epilepsy. Epilepsia. 2004;45(9):1116-23.
33. Hamwi GJ, Mitchell MC, Wieland RG, Kruger FA, Schachner SS. Sodium and Potassium Metabolism during Starvation. The American Journal of Clinical Nutrition. 1967;20(8):897-902.

34. DeFronzo RA, Goldberg M, AGus ZS. The effects of glucose and insulin on renal electrolyte transport. Journal of Clinical Investigation. 1976;58(1):83.

35. DeFronzo RA. The effect of insulin on renal sodium metabolism. Diabetologia. 1981;21(3):165-71.

36. Tiwari S, Riazi S, Eeelbarger CA. Insulin's impact on renal sodium transport and blood pressure in health, obesity, and diabetes. American journal of physiology Renal physiology. 2007;293(4):F974-84.

37. Harber MP, Schenk S, Barkan AL, Horowitz JF. Alterations in carbohydrate metabolism in response to short-term dietary carbohydrate restriction. American Journal of Physiology - Endocrinology and Metabolism. 2005;289(2):E306-E12.

38. Vining EP, Freeman JM, Ballaban-Gil K, Camfield CS, Camfield PR, Holmes GL, et al. A multicenter study of the efficacy of the ketogenic diet. Archives of neurology. 1998;55(11):1433-7.

39. Roy M, Beauvieux M-C, Naulin J, El Hamrani D, Gallis J-L, Cunnane SC, et al. Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using (1)H- and (13)C-NMR spectroscopy. Journal Of Cerebral Blood Flow And Metabolism: Official Journal Of The International Society Of Cerebral Blood Flow And Metabolism. 2015;35(7):1154-62.

40. Noda C, Ichihara A. Control of ketogenesis from amino acids. IV. Tissue specificity in oxidation of leucine, tyrosine, and lysine. Journal Of Biochemistry. 1976;80(5):1159-64.

41. Kulaylat MN, Frexes-Steed M, Geer R, Williams PE, Abumrad NN. The role of leucine in hepatic ketogenesis. Surgery. 1988;103(3):351-60.

42. Bixel MG, Hamprecht B. Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem. 1995;65(6):2450-61.

43. Holecek M, Safránek R, Rysavá R, Kadlcíková J, Sprogl L. Acute effects of acidosis on protein and amino acid metabolism in perfused rat liver. International Journal Of Experimental Pathology. 2003;84(4):185-90.

44. Hartman AL, Santos P, O'Riordan KJ, Stafstrom CE, Hardwick JM. Potent anti-seizure effects of D-leucine. Neurobiology of disease. 2015;82:46-53.

45. Athanasios E, Martha S, Vai D, Panagiota K, Anestis I, Astrinia S, et al. Branched Chain Amino Acids as Adjunctive Therapy to Ketogenic Diet in Epilepsy: Pilot Study and Hypothesis. Journal of Child Neurology. 2009;24(10):1268-72.

46. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic Health: Fermentation and Short Chain Fatty Acids. Journal of Clinical Gastroenterology. 2006;40(3):235-43.

47. Mu H, Høy C-E. The digestion of dietary triacylglycerols. Progress in Lipid Research. 2004;43(2):105-33.

48. Kuksis A. Biochemistry of glycerolipids and formation of chylomicrons. Champaign: AOCS Press; 2000. p. 119-81.

49. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221-7.
50. Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1987;86(3):439-72.

51. Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters. 2016;625:56-63.

52. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochemistry International. 2016;99:110-32.

53. Johnston CS, Kim CM, Buller AJ. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care. 2004;27(1):281-2.

54. Liljeberg H, Björck I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. European journal of clinical nutrition. 1998;52(5):368-71.

55. Brighenti F, Castellani G, Benini L, Casiraghi MC, Leopardi E, Crovetti R, et al. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. European journal of clinical nutrition. 1995;49(4):242-7.

56. MacKay EM, Barnes RH, Carne HO, Wick AN. Ketogenic activity of acetic acid. Journal of Biological Chemistry. 1940;135:157-63.

57. Rother ET. Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem. 2007;20:v-vi.

58. Perez-Guisado J, Munoz-Serrano A. A pilot study of the Spanish Ketogenic Mediterranean Diet: an effective therapy for the metabolic syndrome. Journal of medicinal food. 2011;14(7-8):681-7.

59. Nebeling LC, Lerner E. Implementing A Ketogenic Diet Based on Medium-chain Triglyceride Oil in Pediatric Patients with Cancer. Journal of the American Dietetic Association. 1995;95(6):693-7.

60. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics. 2008;27(2):104-19.

61. Fung KY, Cosgrove L, Lockett T, Head R, Topping DL. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. British Journal of Nutrition. 2012;108(05):820-31.

62. Samiei A, Liang J, Ghorbani G, Hirooka H, Ansari-Mahyari S, Sadri H, et al. Relationship between dietary energy level, silage butyric acid and body condition score with subclinical ketosis incidence in dairy cows. Adv Anim Vet Sci. 2015;3(6):354-61.

63. Vicente F, Rodríguez ML, Martínez-Fernández A, Soldado A, Argamenteria A, Pelaez M, et al. Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages. TheScientificWorldJournal. 2014;2014:279614.

64. St-Pierre V, Courchesne-Loyer A, Vandenberghhe C, Hennebelle M, Castellano C-A, Cunnane SC. Butyrate is more ketogenic than leucine or octanoate-monoacylglycerol in healthy adult humans. Journal of Functional Foods. 2017;32:170-5.

65. Marten B, Pfeuffer M, Schrezenmeir J. Medium-chain triglycerides. International Dairy Journal. 2006;16(11):1374-82.
514 66. Huttenlocher P, Wilbourn A, Signore J. Medium-chain triglycerides as a therapy for
515 intractable childhood epilepsy. Neurology. 1971;21(11):1097-.
516 67. Huttenlocher PR. Ketonemia and Seizures: Metabolic and Anticonvulsant Effects of
517 Two Ketogenic Diets in Childhood Epilepsy. Pediatr Res. 1976;10(5):536-40.
518 68. Bach A, Schirardin H, Weryha A, Bauer M. Ketogenic response to medium-chain
519 triglyceride load in the rat. The Journal of nutrition. 1977;107(10):1863-70.
519 69. Yeh YY, Zee P. Relation of ketosis to metabolic changes induced by acute medium-
520 chain triglyceride feeding in rats. The Journal of nutrition. 1976;106(1):58-67.
522 70. St-Onge M-P, Ross R, Parsons WD, Jones PJH. Medium-Chain Triglycerides
523 Increase Energy Expenditure and Decrease Adiposity in Overweight Men. Obesity Research.
524 2003;11(3):395-402.
525 71. Yajnik CS, Sardesai BS, Bhat DS, Naik SS, Raut KN, Shelgikar KM, et al. Ketosis
526 resistance in fibrocalculous pancreatic diabetes: II. Hepatic ketogenesis after oral medium-chain
527 triglycerides. Metabolism: Clinical And Experimental. 1997;46(1):1-4.
528 72. Bonnefont JP, Haas R, Wolff J, Thuy LP, Bucht a R, Carroll JE, et al. Deficiency of
529 carnitine palmitoyltransferase I. Journal Of Child Neurology. 1989;4(3):198-203.
529 73. Bougnères PF, Saudubray JM, Marsac C, Bernard O, Odièvre M, Girard J. Fasting
530 hypoglycemia resulting from hepatic carnitine palmitoyl transferase deficiency. The Journal Of
531 Pediatrics. 1981;98(5):742-6.
533 74. Decombaz J, Arnaud MJ, Milon H, Moesch H, Philippossian G, Thelin AL, et al.
534 Energy metabolism of medium-chain triglycerides versus carbohydrates during exercise. Eur J
535 Appl Physiol Occup Physiol. 1983;52(1):9-14.
536 75. Seaton TB, Welle SL, Warenko MK, Campbell RG. Thermic effect of medium-chain
537 and long-chain triglycerides in man. American Journal of Clinical Nutrition. 1986;44(5):630-4.
538 76. Yost TJ, Eckel RH. Hypocaloric feeding in obese women: metabolic effects of
539 medium-chain triglyceride substitution. American Journal Of Clinical Nutrition. 1989;49(2):320-
540 30.
541 77. Krotkiewski M. Value of VLCD supplementation with medium chain triglycerides.
542 Int J Obes Relat Metab Disord. 2001;25(9):1393-400.
543 78. Mingrone G, Greco AV, Castagneto M, De Gaetano A, Tataranni PA, Raguso C.
544 Kinetics and thermogenesis of medium-chain monocarboxylic and dicarboxylic acids in man:
545 sebacate and medium-chain triglycerides. JPEN Journal Of Parenteral And Enteral Nutrition.
546 1993;17(3):257-64.
547 79. Jiang ZM, Zhang SY, Wang XR, Yang NF, Zhu Y, Wilmore D. A comparison of
548 medium-chain and long-chain triglycerides in surgical patients. Annals Of Surgery.
549 1993;217(2):175-84.
549 80. Lai H, Chen W. Effects of medium-chain and long-chain triacylglycerols in pediatric
550 surgical patients. Nutrition. 2000;16(6):401-6.
552 81. Kolb S, Sailer D. Effect of fat emulsions containing medium-chain triglycerides and
553 glucose on ketone body production and excretion. JPEN J Parenter Enteral Nutr. 1984;8(3):285-9.
554 82. Sandström R, Hyltander A, Körner U, Lundholm K. Structured triglycerides were
555 well tolerated and induced increased whole body fat oxidation compared with long-chain
556 triglycerides in postoperative patients. JPEN Journal Of Parenteral And Enteral Nutrition.
557 1995;19(5):381-6.
83. Wu PY, Edmond J, Auestad N, Rambathla S, Benson J, Picone T. Medium-chain triglycerides in infant formulas and their relation to plasma ketone body concentrations. Pediatr Res. 1986;20(4):338-41.

84. Huttenlocher PR. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res. 1976;10(5):536-40.

85. Schwartz RM, Boyes S, Aynsley-Green A. Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Dev Med Child Neurol. 1989;31(2):152-60.

86. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia. 2009;50(5):1109-17.

87. Ross DL, Swaiman KF, Torres F, Hansen J. Early biochemical and EEG correlates of the ketogenic diet in children with atypical absence epilepsy. Pediatr Neurol. 1985;1(2):104-8.

88. Courchesne-Loyer A, Fortier M, Tremblay-Mercier J, Chouinard-Watkins R, Roy M, Nugent S, et al. Stimulation of mild, sustained ketonemia by medium-chain triacylglycerols in healthy humans: estimated potential contribution to brain energy metabolism. Nutrition. 2013;29(4):635-40.

89. Veech RL. Ketone ester effects on metabolism and transcription. Journal of Lipid Research. 2014;55(10):2004-6.

90. Hashim SA, VanItallie TB. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester. Journal Of Lipid Research. 2014;55(9):1818-26.

91. White H, Venkatesh B. Clinical review: Ketones and brain injury. Critical Care. 2011;15(2):219-.

92. Poff AM, Ward N, Seyfried TN, Arnold P, D'Agostino DP. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy. PloS one. 2015;10(6):e0127407-e.

93. Poff AM, Ari C, Arnold P, Seyfried TN, D'Agostino DP. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. International Journal Of Cancer. 2014;135(7):1711-20.

94. Ciarlone SL, Grieco JC, D'Agostino DP, Weeber EJ. Ketone ester supplementation attenuates seizure activity, and improves behavior and hippocampal synaptic plasticity in an Angelman syndrome mouse model. Neurobiology Of Disease. 2016.

95. Youm Y-H, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nature Medicine. 2015;21(3):263-9.

96. Kashiwaya Y, Bergman C, Lee J-H, Wan R, King MT, Mughal MR, et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer's disease. Neurobiology Of Aging. 2013;34(6):1530-9.

97. Okuda Y, Kawai K, Ohmori H, Yamashita K. Ketone body utilization and its metabolic effect in resting muscles of normal and streptozotocin-diabetic rats. Endocrinologia Japonica. 1991;38(3):245-51.

98. D'agostino DP, Arnold P, Kesl S. Compositions and methods for producing elevated and sustained ketosis. Google Patents; 2015.

99. Holdsworth D, Cox P, Clarke K. Oral ketone body supplementation accelerates and enhances glycogen synthesis in human skeletal muscle following exhaustive exercise. J Clin Lab Invest. 1967;19(3):218-28.
100. Stubbs B, Evans R, Clarke K, Cox P, editors. Ketone ester drinks increase blood ketone levels more effectively than ketone salt drinks. Proceedings of The Physiological Society; 2016: The Physiological Society.

101. Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regulatory toxicology and pharmacology : RTP. 2012;63(3):401-8.

102. Stubbs B, Willerton K, Clarke K, Cox P, editors. A ketone ester drink alters levels of circulating lipids and glucose. Proceedings of The Physiological Society; 2015: The Physiological Society.

103. Stubbs B, Willerton K, Clarke K, Cox P, editors. A ketone ester drink reduces appetite compared to an isocaloric carbohydrate drink. Proceedings of The Physiological Society; 2015: The Physiological Society.

104. Stubbs B, Willerton K, Hiyama S, Clarke K, Cox P, editors. Concomitant meal ingestion alters levels of circulating ketone bodies following a ketone ester drink. Proceedings of The Physiological Society; 2015: The Physiological Society.

105. Cox P, Ashmore T, Griffin J, Murray A, Clarke K, editors. A ketone ester drink sustains exercise performance whilst reducing muscle glycolysis. Proceedings of The Physiological Society; 2015: The Physiological Society.

106. Balasse EO, Neef MA. Inhibition of ketogenesis by ketone bodies in fasting humans. Metabolism. 1975;24(9):999-1007.

107. Rosen JC, Gross J, Loew D, Sims EA. Mood and appetite during minimal-carbohydrate and carbohydrate-supplemented hypocaloric diets. The American Journal of Clinical Nutrition. 1985;42(3):371-9.

108. Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging. 2012;33(2):425.e19-.e27.

109. Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer's disease. Alzheimer's & Dementia: The Journal Of The Alzheimer's Association. 2015;11(1):99-103.