Resolved optical–infrared spectral energy distributions of galaxies: universal relations and their break-down on local scales

Stefano Zibetti¹,²* and Brent Groves²

¹Dark Cosmology Centre, Niels Bohr Institute - University of Copenhagen Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
²Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

Accepted 2011 June 17. Received 2011 June 17; in original form 2011 April 7

ABSTRACT

A large body of evidence have demonstrated that the global rest-frame optical and infrared colours of galaxies correlate well with each other [i.e. \((u - g)\), with \((r - 8 \mu m)\)], as well as with other galaxy properties such as surface brightness and morphology. However, the processes that lead to the observed correlations are contrary; the stellar light that contributes to the optical is readily absorbed by dust which emits in the IR. Thus, on small scales we expect these correlations to break down. We examine here seven nearby galaxies ranging from early- to late-types, which have all been smoothed to the same physical scale and signal-to-noise ratio, using data from the optical to the mid-IR (\(u\) band to 8 \(\mu m\)). By examining these galaxies on a pixel-by-pixel basis we demonstrate that there is disconnect between the optical and IR when normalized to the near-IR (\(H\) band). For five of the seven galaxies we can decompose this disconnect into two distinct components through a principal component analysis of the \(H\)-band normalized spectral energy distribution (SED) of the pixels: one mainly correlated with variations in the IR, and the other correlated with variations in the optical. The two exceptions are the elliptical galaxy NGC 4552, whose SED can be well reproduced using a single principal component, and the highly inclined spiral NGC 3521, due to its complex dust geometry. By mapping these two components in the five ‘regular’ galaxies, it is clear they arise from distinct spatial regions. By comparing these components with the surface brightnesses in \(H\alpha\) and \(H\) band we demonstrate that the IR-dominated component is strongly associated with the specific star formation rate, while the optical-dominated component is broadly associated with the stellar mass density. However, when the pixels of all galaxies are compared, the well-known optical–IR colour correlations return, demonstrating that the variance observed within galaxies is around a mean which follows the well-known trend. As a final step, we extend this work by examining the extremely tight correlations observed between the Infrared Array Camera (IRAC)–near-IR colours, and demonstrate that these correlations are tight enough to use a single IRAC–near-IR colour (i.e. \(8 \mu m - H\)) to determine the fluxes in the other IRAC bands. These correlations arise from the differing contribution of stellar light and dust to the IRAC bands, enabling us to determine pure ‘stellar’ colours for these bands, but still demonstrating the need for dust (or stellar) corrections in these bands when being used as stellar (dust) tracers.

Key words: galaxies: general – galaxies: individual: NGC 4254 – galaxies: individual: NGC 4450 – galaxies: photometry – galaxies: stellar content – infrared: ISM.

1 INTRODUCTION

One of the remarkable aspects of astronomy is the strong correlations that exist between the broad observable properties of galaxies. The morphological sequence of galaxies first noted by Hubble (1926) correlates well with surface brightnesses, sizes and optical colours. These in turn correlate with and arise from the intrinsic physical properties of these galaxies, such as the total stellar masses \((M_*)\), star formation rates (SFR), and mean stellar ages and metallicities (for reviews on these correlations see Roberts & Haynes 1994; Kennicutt 1998).

The rest-frame optical colours of galaxies broadly correlate with each other [i.e. \((u - g)\), with \((g - r)\)], as well as with surface...
brightness (SB). While forming continuous sequence in colours, galaxies can be broadly classified into ‘blue’ and ‘red’ galaxies, especially when compared with luminosity or absolute magnitude, with a strong correlation with late- and early-type, respectively (Blanton et al. 2003). The variation in optical colours arise from differences in the star formation histories of galaxies, with UV to blue light dominated by short-lived massive stars, while the red to near-infrared light is more sensitive to the total amount of stars. This is complicated, however, by the presence of interstellar dust, which attenuates and reddens the stellar light (see e.g. Kennicutt 1998; Bruzual & Charlot 2003). Thus, the colours of a galaxy broadly measure the ratio of young to old stars, which is generally parameterized by the ratio of current to past star formation (\(b = \text{SFR}/\text{SFR}_\ast \)), or the ratio of the current SFR to the total stellar mass, the specific star formation rate (sSFR = \(\text{SFR}/M_\ast \)). In the local Universe, these intrinsic physical parameters, and thus a galaxy’s colours, are related to the total stellar mass of a galaxy (e.g. Brinchmann et al. 2004), with more massive galaxies having lower sSFRs and thus redder colours. The stellar mass, and thus the sSFR and colours, is related to the size, concentration, SB and mean metallicity of a galaxy (e.g. Kauffmann et al. 2003; Tremonti et al. 2004; Gallazzi et al. 2005).

In a similar manner, the IR colours of galaxies are also strongly associated with the intrinsic properties of the galaxies, with the IR fluxes increasing relative to the near-IR fluxes (i.e. becoming redder) from early- to late-type galaxies (see e.g. Kennicutt 1998, especially fig. 4), and with increasing sSFR (da Cunha, Charlot & Elbaz 2008). As with the optical colours, the infrared is sensitive to the younger stellar populations, as the IR emitting dust is heated predominantly by UV–blue light. In fact, the fluxes in both of these wavelength regions can be used as measures of a galaxy’s SFR (Kennicutt 1998), and a clear correlation between the global optical and IR colours is observed, in the sense that optically blue galaxies are also found to have enhanced IR emission (e.g. Hogg et al. 2005).

However on a physical basis, the processes that lead to the fluxes in these two wavelength regimes are contrary: the radiation from young stars that dominate the UV–blue optical colours is also that preferentially absorbed by dust which then re-emits in the IR (see e.g. Draine 2003). This contrary nature is exacerbated by the association of the youngest stars with the clouds of gas and dust from which they form, leading to relatively higher attenuation observed in star-forming regions (see e.g. Calzetti 1997; Charlot & Fall 2000). This contradiction of the observed galaxy scale correlation of both blue colours and IR excess and the physical contrary nature of dust absorption and UV–blue light emission indicates that on some spatial scale \(\text{within} \) galaxies this correlation must break down.

In some respect this difference is expected as the blue light and infrared emission arise from physically distinct components (i.e. stars and dust), and this correlation will break down once these different components are resolved out, as seen within our own Galaxy. However, this distinction between IR and blue light exists on larger scales within galaxies, as we show here by examining seven nearby galaxies that span a range of galaxy types from early to late. By examining all galaxies on the same spatial scales we demonstrate that the variation of the IR light and the blue light occurs in spatially distinct regions, and show the scales over which these regions occur. Importantly, these distinct components appear to be associated with different physical quantities that are correlated on galaxy scales: the sSFR and the stellar mass density.

In Section 2, we introduce the sample of galaxies, the multiwavelength data set and the relative reduction. In Section 3, we analyse the resolved spectral energy distributions (SEDs) of the individual galaxies, showing the correlations that exist to different degrees between the IR and optical colours, analysing them by means of principal component analysis (PCA), and showing how they depend upon other local observables, namely the NIR and H\(\alpha \) SB. In Section 4 we show how these local colour correlations (and lack thereof) result in stronger global correlations. Section 5 is devoted to an in-depth investigation of the SEDs between 1.65 and 8 \(\mu \)m, which we describe as a universal one-parameter family: fitting formulae to obtain the luminosity at intermediate wavelengths given \(H \) band and 8 \(\mu \)m estimates of purely stellar SEDs are provided. Section 6 concludes the paper with a summary of the principal results.

2 SAMPLE AND IMAGING DATA

The present sample of seven galaxies is drawn from the original sample of nine galaxies analysed in Zibetti, Charlot & Rix (2009, hereafter ZCR09). We require galaxies to be part of the Spitzer Infrared Nearby Galaxies Survey (SINGS; Kennicutt et al. 2003), a comprehensive imaging and spectroscopic study of 75 nearby galaxies \((D < 30 \text{ Mpc})\) conducted in the IR with the Spitzer Space Telescope, and have Sloan Digital Sky Survey (SDSS) imaging (York et al. 2000) as well as deep NIR imaging in \(H \) band (1.65 \(\mu \)m) from either Galaxy On Line Database Milano Network (GOLD-Mine; Gavazzi et al. 2003) or UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007). In addition, we require the galaxies to be at most \(\approx 17 \text{ Mpc} \) away (corresponding to the assumed distance to the Virgo cluster; Gavazzi et al. 1999), in order to resolve scales of approximately 200 pc at all wavelengths, from SDSS \(u \) band to IRAC 8 \(\mu \)m. This leaves us with a small, yet representative, sample of regular galaxies in the local Universe. The seven galaxies are listed in Table 1 along with their coordinates (according to NED/RC3), assumed distances, corresponding angular scale, source and depth of the NIR imaging (see below). With these seven galaxies we cover the full morphological range of regular ‘giant’ (3.9 \(\times \) 10\(^8\) < \(M^*\)/\(M_\odot \) < 9.3 \(\times \) 10\(^10\)) galaxies, from elliptical to Sc spiral, also corresponding to a range of sSFRs from \(< 10^{-11} \) to \(\approx 10^{-10} \) yr\(^{-1} \). In Table 2 we present these and other essential morphological and physical properties of the galaxies in the sample. The inferred metallicities also span the full range for galaxies of such stellar mass. Only two spirals have an apparent inclination in excess of 45°, thus allowing us to not only study a ‘clean’ sample of low inclination discs, for which the radiative transfer in the dusty interstellar medium (ISM) is expected to be relatively simple, but also explore possible complications due to a larger inclination. We note that nuclear activity from active galactic nuclei (AGN) does not influence our analysis significantly, as we include only weak or obscured AGN (no type 1) which affect only a very limited number of central pixels. The statistical effect of these AGN-affected pixels over the several thousands of pixels in each galaxy is negligible.

The SDSS and \(H \)-band images are processed, mosaicked (when required) and calibrated as explained in ZCR09. Spitzer Infrared Array Camera (IRAC) images are publicly available from SINGS, already calibrated in MJy sr\(^{-1}\) and sky-subtracted. For part of our analysis we also use narrow-band \(H\alpha \) imaging, provided as an ancillary data set of SINGS: details about the flux calibration of the ‘net’ (i.e. continuum-subtracted) images are given in the technical documentation that accompanies the data release. No \(H\alpha \) image is provided for the elliptical galaxy NGC 4552, which allegedly does not have any detectable \(H\alpha \) regions.

For all images, the properties of the background, which is the dominant contributor to the noise budget at all wavelengths, are
Table 1. The sample.

Name	RA (J2000.0)	Dec. (J2000.0)	Distance (Mpc)	Angular scale (pc arcsec⁻¹)	NIR source	Limiting SB(H) (My sr⁻¹)
NGC 3521	11°05'48.6"	-00°02'09"	9.2	45	UKIDSS	0.30
NGC 4254	12°18'49.6"	+14°24'59"	17.1	82	GOLDMine	0.21
NGC 4321	12°22'54.9"	+15°49'21.8"	17.1	82	GOLDMine	0.32
NGC 4450	12°28'29.6"	+17°05'06"	17.1	82	GOLDMine	0.35
NGC 4536	12°34'27.0"	+02°11'17"	17.1	82	GOLDMine	0.39
NGC 4552	12°38'39.8"	+12°33'23"	17.1	82	UKIDSS	0.47
NGC 4579	12°37'45.5"	+11°49'05"	17.1	82	GOLDMine	0.53

Notes. Columns: (1) NGC name. (2) Morphological type according to NED/RC3 (de Vaucouleurs et al. 1991), following the classification scheme of de Vaucouleurs (1959); S indicates spiral, E elliptical followed by a number indicating the ellipticity (0 means perfectly round); A is normal unbarred spiral, B barred, AB weakly barred; (s) is s-shaped, (r) indicates the presence of a ring, (rs) both ringed and s-shaped; a, b, c, d are the same as in the classical Hubble spiral classification. (3) Inclination (for spirals only), according to de Vaucouleurs et al. (1991); Jarrett et al. (2003). (4) Stellar mass from Skibba et al. (2011) assuming a Kroupa (2001) IMF, except NGC 4450 and NGC 4552. Stellar masses for these two galaxies have been computed multiplying the total H-band luminosity given by 2MASS-Large Galaxy Atlas (LGA; Jarrett et al. 2003) times the M^*/L_H computed according to ZCR09 using the $g − i, i − H$ colours measured from our images and corrected to a Kroupa (2001) IMF. (5) SFR from Skibba et al. (2011), based on Hα + 24 µm luminosity, except for NGC 4450 which is from Calzetti et al. (2010). (6) sSFR = SFR/M^*. (7) Gas phase metallicity, from the characteristic oxygen abundance from Moustakas et al. (2010) based on the Kobulnicky & Kewley (2004) calibration, except for NGC 4450, NGC 4552 and NGC 4579, which use the luminosity–metallicity relation. (8) Nuclear activity, from NED.

a Moustakas et al. (2010) find line ratios consistent with very low level AGN activity.

carefully computed. The mean background is subtracted by fitting a linear polynomial to the regions surrounding the galaxies, which are selected neither to display any strong contamination from bright sources nor to be affected by obvious artefacts. Noise properties in terms of pixel-based rms and fluctuations on scales of the order of a fraction of the galaxy’s effective radius are also determined in these regions and are then used to determine the adaptive smoothing strategy and the SB cuts to be applied in the following analysis.

We manually remove all obvious contaminating sources (foreground stars, background galaxies) by replacing those pixels with the surrounding average background plus noise, using the task IMEDIT in IRAF. For more extended or unamenable artefacts (e.g. the extended blooming due to the bright nucleus of NGC 4536 in IRAC bands) we simply mask out those pixels (and the corresponding ones in all bands) and discard them from the following analysis.

A pixel-by-pixel SED analysis requires two more steps: the placement of all images on a common plate scale, and to ensure that in each pixel at all wavelengths a sufficiently high signal-to-noise ratio (S/N) is provided. The imaging data involved in this analysis have point spread functions (PSF, for optical or H band) or point response functions (for Spitzer IRAC bands) full width at half-maximum (FWHM) ranging from approximately 1 arcsec (some SDSS images in good seeing conditions) to 2 arcsec (IRAC 8 µm), while pixel scales range from 0.4 (SDSS, UKIDSS) to 1.6 (some GOLDMine H-band images) arcsec per pixel. By re-sampling the images with a common pixel scale of >2.5 arcsec pixel⁻¹ we ensure that most of the flux of a point-like source is contained in one pixel. We can therefore avoid convolving all images to a common PSF, which would be hardly feasible for a number of H-band images where the PSF is severely under-sampled and not enough stars are available to compute it properly. We choose therefore to resample the images of the six galaxies belonging to the Virgo cluster to a pixel scale of 2.5 arcsec, corresponding to 207 pc pixel⁻¹ for the assumed distance to Virgo of 17.1 Mpc (Gavazzi et al. 1999). For the remaining galaxy, NGC 4521, we resample to a pixel scale of 4.65 arcsec pixel⁻¹, corresponding to the same physical resolution of 207 pc pixel⁻¹ as for the other galaxies.

In order to extend our analysis with a sufficiently high S/N out to a large fraction of the optical radius, as in ZCR09, we perform an adaptive median smoothing of the images using the code ADAPTSMOOTH (Zibetti 2009), which also allows the matching of the variable smoothing kernel among all bands. A minimum S/N = 20 per pixel is required in all bands, except a-SDSS, for which a minimum S/N of 10 is deemed as sufficient. In fact, this band is imaged with a significantly lower sensitivity in the SDSS, such that a more massive smoothing would be required and a smaller radial extent could be covered if the same S/N = 20 had to be required.
On the other hand, the large leverage of this band on the SED makes it possible to study pixel-to-pixel variations even with an accuracy of 10 per cent only, as we show in the following analysis. We note that the Hα images do not contribute to determine the size of the smoothing kernel required at each pixel (as this would imply missing a significant fraction of pixels where no substantial Hα emission is observed), but they are nevertheless smoothed according to the common kernel as for all other bands. Background-dominated noise is assumed for all images, with a uniform rms equal to the one measured in the background regions. A maximum smoothing radius of 4 pixels (two for NGC 3521) corresponding to ≈800 pc is allowed. All pixels for which the SB cannot be computed with the minimum required S/N even after smoothing over the maximum radius are flagged and discarded from the rest of the analysis. Furthermore, we also discard pixels whose SB is less than 10 times the typical large-scale background fluctuations, in order to avoid spurious effects at the low SB end of the pixel distribution. The limiting SB(H) that is reached as a result of these cuts is given in column 8 of Table 1.

Images of the galaxies in the 10 broad bands and in Hα after editing, adaptive smoothing and SB cuts, are shown in Figs A1–A7 in Appendix A, coded in grey intensity according to SB in units of MJy sr$^{-1}$. In the rest of the paper we discuss the analysis and the results for the full sample, but we show specific figures and plots only for two galaxies which are representative of late star-forming spirals (NGC 4254) and early-type galaxies (NGC 4450), with the remaining five being presented in the appendices (see Supporting Information).

3 SPATIALLY RESOLVED SEDS: INTERNAL TRENDS WITHIN GALAXIES

3.1 Pixel-by-pixel SEDs and colour–colour relations

The processing described in the previous section provides us with an optical to mid-IR SED for each valid pixel, described by an array of values for the SB in MJy sr$^{-1}$ in 10 broad bands (u, g, r, i, z, H, 3.6, 4.5, 5.7 and 8 µm) plus the SB in erg cm$^{-2}$ s$^{-1}$ arcsec$^{-2}$ for the Hα line emission. At each pixel we normalize log f_{ν} in each band to H band in order to be able to compare on the same scale the SED of pixels spanning about two orders of magnitude in SB and hence to study the spatial variations of the SED shape across the galaxies.

The choice of H band is dictated by three main reasons which make it the natural point of normalization. (i) 1.65 µm divides the SED into one part of pure stellar emission (possibly dust extinguished), shortwards of it, and one part affected by dust emission, longwards of it. (ii) The H band is the one that minimizes the effects of dust both in emission (see e.g. fig. 5 of da Cunha et al. 2008) and in absorption, as the extinction is always smaller at longer wavelengths. The z band is equally unaffected by dust emission, but is more sensitive to extinction; on the other hand, 3.6 µm, although even less affected by extinction than the H band, is severely affected by dust emission, as we show below. (iii) H-band luminosity is probably the best proxy to stellar mass, as shown e.g. in ZCR09, showing the minimum dependence of M/L on age, metallicity and dust; therefore normalizing to H band is close to normalizing to the stellar mass density at each pixel, a much more fundamental parameter than any SB. The distribution of pixels in SED for each galaxy is given for reference in the bottom-right panels of Figs A1–A7, respectively, in Appendix A (see Supporting Information). The number of pixels per bin of normalized log f_{ν} in each band is represented by colour coding. Galaxy SED distributions display different amount of scatter, which vary upon morphology and wavelength considered.

As we show in more detail in the following analysis, most of the scatter is contributed by the mid-IR and the u bands. It is interesting to note that the integrated SED of a galaxy (flux-weighted average of pixels, ‘+’ signs in the figures) does not perfectly correspond to the (number-weighted) mean pixel SED (‘×’) or the most frequent SED (peaks of the distributions). A similar effect was already noted by ZCR09, where it turned out to cause a significant bias in stellar mass estimates, and can be simply explained by the fact that regions of different brightness are often characterized by systematically different SEDs.

As a first step, we study the correlations between the normalized fluxes in all possible pairs of bands for all pixels within each galaxy. This is shown in Figs 1 and 2 for NGC 4254 and NGC 4450, respectively, with the remaining galaxies shown in Figs B1–B5 (see Supporting Information). In each panel of the figures we plot the distribution of pixels in the ($\log v_H f_{\nu_H} - \log v_H f_{\nu_Y}$) versus ($\log v_H f_{\nu_X} - \log v_H f_{\nu_\mu}$) space (where X and Y are any two broad bands among u, g, r, i, z, 3.6, 4.5, 5.7 and 8 µm), which is effectively a colour–colour space ($Y - H$) versus ($X - H$), modulo a linear transformation. The panels on the diagonal display the distribution of the fraction of pixels as a function of ($\log v_H f_{\nu_X} - \log v_H f_{\nu_\mu}$), which allows to directly derive a more quantitative information about the relative contributions of pixels at different colour. In all following discussion we refer to ($\log v_H f_{\nu_X} - \log v_H f_{\nu_\mu}$) as ‘[X] colour’ for brevity.

By comparing Figs 1 and 2 it is immediately clear that the late-type, star-forming galaxy NGC 4254 spans a much broader range of colours than the early-type NGC 4450, which is overall very uniform. Apart from this, both galaxies display common features in the colour–colour distributions, such that one can divide up these figures into three distinct regions, corresponding to different spectral correlations. In the upper-left panels we observe very significant correlations between optical colours, from $[u]$ to $[z]$. Similarly, the bottom-right panels display significant correlations between IRAC colours, from [3.6 µm] to [8 µm]. The third region includes the bottom left corner and shows IRAC colours versus optical colours: correlations in this region are very weak if present at all. In star-forming galaxies an exception to this is the [i] colour, which appears to (weakly) correlate with IRAC colours as well. This visual impression is quantitatively confirmed by the Spearman rank correlation coefficients, which we computed for each colour–colour distribution and are listed in the lower-right corner of each corresponding panel.

From this analysis we can conclude that, on the local scales probed by our actual pixelisation (from 200 pc up to $\lesssim 1$ kpc when the effects of the smoothing are maximal), the shapes of the SED in a given galaxy in the optical range can be described, to the first order, as a one-parameter family and the same holds true for the IR range. The two parts of the SED shortwards and bluewards of 1.65 µm appear to be largely uncorrelated. The optical SED is mainly driven by light-weighted mean stellar age (and secondarily by dust extinction and metallicity, see e.g. fig. A1 in ZCR09 and MacArthur et al. 2004) while the mid-IR SED probed by IRAC is

1 A typical example occurs in spiral galaxies with a bright central bulge: the pixels dominated by the red bulge light are fewer but brighter than the more numerous but dimmer pixels in the disc where the SED is bluer. As a result, the flux-weighted SED will be redder than the number-weighted one.
Figure 1. Distribution of the pixels of NGC 4254 in the ‘colour–colour’ spaces defined by the log νf_ν fluxes normalized to H band, for the u, g, r, i, z, 3.6, 4.5, 5.7 and 8 μm bands. The grey-scale intensity linearly traces the density of pixels at each point in the colour–colour spaces. The Spearman rank correlation coefficient for the distribution of pixels is written at the bottom-right corner of each corresponding panel. The histograms on the diagonal show the distribution of pixels in normalized log νf_ν colour space as labelled on the y-axis. The total number of pixels analysed in NGC 4254 is given at the top of the figure.

determined by polycyclic aromatic hydrocarbon (PAH) features and hot dust, which trace on-going star formation (e.g. Calzetti et al. 2007). This tells us that on local scales light-weighted mean stellar ages and actual on-going star formation are largely uncorrelated, most likely because stellar aging and star formation are subject to very different time-scales, namely $\approx 10^{8.9}$ and $\approx 10^7$ yr, respectively (e.g. Bruzual & Charlot 1993; Kennicutt 1998).

It is also very notable that in star-forming galaxies the colours of the two shortest-wavelength IRAC bands at 3.6 and 4.5 μm correlate extremely well with those of the longer-wavelength bands, which are dominated by PAH features, but are very weakly correlated with the z and i bands which are very good tracers of the stellar mass (e.g. ZCR09). This is in agreement with the finding of Mentuch, Abraham & Zibetti (2010), who show, using a pixel-by-pixel analysis, that the colour excess at 3.6 and 4.5 μm with respect to pure stellar emission extrapolated from J band (1.25 μm) is related to star formation. Therefore, caution should be used when adopting images at 3.6 μm alone to trace the...
stellar mass distribution in galaxies with no correction for the ‘dust’ contribution.

3.2 Principal component analysis of resolved SEDs

In this section we use PCA of the SEDs of all pixels, galaxy by galaxy, to show (i) that the variation of the optical part and of the IR part of the SED is uncorrelated and (ii) that these independent variations are spatially related to the structure of a galaxy.

We refer the reader to Jolliffe (2002) for a thorough description of PCA. For the present purpose it is sufficient to say that the goal of PCA is to ‘reduce the dimensionality of a data set consisting of a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This is achieved by transforming to a new set of variables, the principal components (PCs), which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables’ (Jolliffe 2002). In our specific application, for each pixel i of the N_{pix} pixels in a galaxy we consider the nine-dimensional SED vector given by the H-band normalized $\log \nu f_\nu$, i.e. $\text{SED}_i = \{\log \nu_X f_{\nu,X,i} - \log \nu_H f_{\nu_H,i}\}_{X=u,g,r,i,z,3.6,4.5,5.8,8.0 \mu m}$. The set of these N_{pix} SED vectors is then decomposed into PCs using the PCOMP function in IDL. Each SED$_i$ can be then represented as $\text{SED}_i = \text{SED}_{\text{mean}} + \sum_{j=1,9} a_{i,j} \text{PC}_j$, where SED_{mean} is the mean of all SEDs.

Figure 2. Same as Fig. 1, but for NGC 4450.
Figure 3. SED pixel distribution and PCA for NGC 4254. (a) The distribution of all pixels in terms of H-band normalized SED. At each wavelength, corresponding to the 10 optical-IR broad bands, the different colour intensities represent the number of pixels in bins of 0.02 dex of log νf_{ν}, as shown by the key on the right side. The mean SED (i.e. the arithmetic mean of log νf_{ν} for all pixels at each wavelength) is marked with blue crosses. (b), (c), (d) are analogous to (a), except that the SED of each pixel is not the observed one, but the one reconstructed by using only the mean plus one single PC (1, 2 and 3, respectively) times the corresponding coefficient. The colour key is the same as in (a). For each wavelength the Spearman rank correlation coefficient between the corresponding flux and the strength of the PC is written at the top of the graph. This number indicates both the relative strength and sign of the PC contribution to that wavelength. The number in parentheses besides the PC label is the fractional amount of variance contributed by the PC. Blue crosses are the mean SED, as in (a). In (e) we simultaneously map the intensity of PC1 and PC2 on the galaxy image. In the red–green–blue (RGB) rendition, the intensity of PC1 is mapped to the red channel (spanning the range corresponding to the range between the fifth and 95th percentile of the distribution in PC1 coefficient) and PC2 is similarly mapped to the blue channel. The green channel intensity is just the mean of the blue and the red ones. Note that the range of PC coefficients is centred on 0 and extends both positive (bright on the map) and negative (dark on the map). The overlaid contours correspond to different isophotal levels of $H\alpha$ emission: the five levels, ordered by increasing line thickness, correspond to log $S\!B(H\alpha)$ of -17.00, -16.25, -15.50, -14.75, -14.00 in units of erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$.

The arithmetic mean of SED, taken over all pixels, PC_j are the PC vectors, which are obtained as eigenvectors of the correlation matrix of the data set, and a_{ij} are the corresponding coefficients for ith pixel and jth component. In Figs 3 and 4, we illustrate the results of the PCA on our reference galaxies (corresponding figures for the complete sample are available in the Appendix, Figs C1–C5, see Supporting Information). Fig. 3(a) (top left) shows the pixel distribution of SEDs, with the arithmetic mean marked with blue crosses for reference. Figs 3(b)–(d) (to the right) display the pixel distribution in the SED space when only PC1, PC2 and PC3,
respectively, are used in addition to the mean, such that $S_{E,D,j} = S_{E,D,}\text{mean} + a_{i,j}PC_{j}$, for $j = 1, 2, 3$, respectively. As apparent from these plots, the majority of the scatter is accounted for by the first two PCs. This holds true for the two examples shown here and in general for the full sample. The variance in each PC is given by the number in parentheses next to the PC label in each plot. We find that typically \sim90 per cent of the variance is contained in the first two PCs (with PC1 typically contributing at least roughly twice as much as PC2) and only 2 to 7 per cent in PC3. The remaining variance is contributed in decreasing order by the other PCs, and is basically at the level of noise. While in general PCs are not expected to have any obvious physical interpretation (this is certainly the case for PC_{i}, $i > 3$), these plots show that PC1 and PC2 mainly affect the IR and the optical part of the SED very differently, but in a very consistent way for different morphological types and levels of star formation activity. In particular, PC1 accounts for most of the variations in the IR part of the SED and, in some cases, for part of the variations in the optical, whereas PC2 mainly reflects variations in the optical regime. This is seen more quantitatively with the Spearman rank correlation coefficients between colours and PC coefficients reported for each band at the top of Figs 3(b)–(d), with these numbers indicating the relative contribution and direction to each band. This relation of PC1 and PC2 holds true for five of the seven galaxies in our sample, with the only exceptions being the inclined spiral NGC 3521 and the elliptical galaxy NGC 4552, which we

Figure 4. Same as Fig. 3, but for NGC 4450.

\[2\text{For NGC 4536, the role of the first two PCs is switched: PC1 correlates best with optical colours, whereas PC2 anti-correlates with IR colours. However, modulo index exchange and sign of the correlation, the same observations}\]
The PCA demonstrates that the optical and IR parts of the SED are to large extent independent and their linear combination can reproduce pixels SED to high accuracy. As already noted in the previous section, this shows that on local scales (0.2 to ≤ 1 kpc) the PAH emission that drives IR colours is not related to the combination of mean light-weighted age of stars and extinction, which is traced by the optical colours. Apparently any combination of PAH emission and optical colours is allowed within a galaxy.

The decomposition into PCs provides a very compact representation of the SEDs, which is essentially given by the two coefficients describing the intensity of the two main PCs. In Figs 3(e) and 4(e) we show how the intensities of PC1 and PC2 affect different regions of the galaxies. The intensity of the red tint represents the intensity of PC1, while the blue one is for PC2. Regions dominated by either PCs in fact extend over a broad range of scales and trace a structure in which spiral arms, bright star-forming knots therein, interarm regions, bulge can be identified.

PC1 (mainly IR-related) is typically strong (positive, enhanced IR emission) where bright star-forming regions are found and is faint (negative, diminished IR emission) in the bulge and in the galaxy outskirts without ongoing star formation. The very close link between star formation and PC1 is analysed in more detail in the following section (Section 3.3) and is expected from the observed relations between PAH, mainly responsible for enhanced emission in the IRAC bands, and SFR (see e.g. Calzetti et al. 2007). By overlaying Hz isophotal contours on the maps of Figs 3(e) and 4(e) we show that PC1-bright regions are actually coincident with Hα-bright regions and therefore PC1 can be broadly interpreted as an indicator of SFR density. On the other hand, PC2 (mainly optical-related) is strong (i.e. positive, enhanced optical luminosity with respect to NIR) where young, unattenuated stellar associations are found along the spiral arms, but also in the disc outskirts, as an effect of gradients in age (and possibly also in metallicity), but is weak (i.e. negative, suppressed optical emission with respect to NIR) where bright star-forming regions are found and is faint (negative, diminished IR emission) in the bulge and in the galaxy outskirts without ongoing star formation. The very close link between star formation and PC1 is analysed in more detail in the following section (Section 3.3) and is expected from the observed relations between PAH, mainly responsible for enhanced emission in the IRAC bands, and SFR (see e.g. Calzetti et al. 2007). By overlaying Hz isophotal contours on the maps of Figs 3(e) and 4(e) we show that PC1-bright regions are actually coincident with Hα-bright regions and therefore PC1 can be broadly interpreted as an indicator of SFR density. On the other hand, PC2 (mainly optical-related) is strong (i.e. positive, enhanced optical luminosity with respect to NIR) where young, unattenuated stellar associations are found along the spiral arms, but also in the disc outskirts, as an effect of gradients in age (and possibly also in metallicity), but is weak (i.e. negative, suppressed optical emission with respect to NIR) in the bulge, in the interarm space and in heavily attenuated regions in the arms. This complex interplay between regions of different physical conditions results in the observed lack of correlation between the optical and the IR part of the SED. As can be inferred from Figs 3(e) and 4(e), this result appears to be robust against the choice of resolution scale, as long as a sufficient number of elements (pixels) can be analysed and the limit at which the internal structure of the star-forming regions start to be resolved is not reached (in fact, these scales are never reached in the galaxies explored here as they are almost a factor of 10 below our resolution).

It is notable that in the galaxies of later type (hence having higher sSFR) PC1 and PC2 appear to contribute very similar amount of variance in the [u] colour, which has, in fact, a very similar degree of correlation with the two main PCs. This can be easily accommodated in the interpretation given in the previous paragraph by considering that the flux in u band is contributed both by star-forming regions, hence correlated with PC1, and by the regular diffuse stellar population in relation to its age and relative attenuation, hence correlated with PC2.

3.2.1 PCA of the ‘anomalous’ galaxies NGC 4552 and NGC 3521

Contrary to all other galaxies, the PCA of the elliptical NGC 4552 results in PC1 being responsible for most (89 per cent) of the total SED variance. All pixels in NGC 4552 have SEDs very close to a pure stellar continuum, with no evidence for dust/PAH emission and the IR part being consistent with a Rayleigh–Jeans tail. PC1 affects the SED in the sense of changing the ‘curvature’, i.e. of enhancing or decreasing at the same time all bands relative to H. PC1 has a clear gradient, such that the central regions have redder optical–H colours and bluer H–IR colours, while the outskirts display the opposite. This kind of colour gradients is well known in the optical and NIR (see e.g. Michard 2000, 2005) and are usually well explained by metallicity gradients (Henry & Worthey 1999; Kobayashi & Arimoto 1999), plus possibly minor contributions of age gradients as well. Our analysis shows that there is only one parameter driving the SED variations in NGC 4552, and this is likely to be linked to the metallicity of the stellar population.

The case of NGC 3521 is opposite and much more complicated. First of all, the scatter in SED from pixel to pixel is evidently larger than in any other galaxy. The two main PCs of this galaxy contribute very similar amount of variance (54 and 40 per cent, respectively), at odds with the fact that PC1 is clearly the dominant contributor to the variance in all other galaxies. PC1 appears to be more closely correlated to optical colours than PC2, which, as opposed, has stronger correlations with the IR bands; however PC1 and PC2 do not separate optical and IR in a clear way. The spatial distribution of PC1 and PC2 intensity (Fig. C1) shows a surprising result. In the inner parts PC1 is approximately axisymmetric and reflects in part the spiral structure of the galaxy; beyond ≈50 arcsec, the symmetry is broken, with the western part of the galaxy displaying more intense, positive PC1, and the eastern part having mainly negative PC1. By looking at the colour-composite gH image of this galaxy (see ZCR09, fig. 5), we see that this reflects the differential attenuation and the scattering of light in the inclined disc. Thick dust lanes on the near side (to the west) strongly attenuate all optical wavelengths, and even attenuate the H band as well, meaning that our normalization will be biased for all these pixels. The opposite scenario is observed on the far side of the galaxy (to the east) where the dust back-scatters the light coming from the central regions, thus resulting in much bluer colours than expected from the intrinsic stellar population.

PC2 is clearly strong in the central concentrated bulge and in the very faint outskirts: this can be explained by the fact that PC2 anti-correlates with the colours which are most sensitive to current star formation and young stars.

In NGC 3521 the interplay between star formation, stellar age and dust appears much more complex than in other galaxies and this would explain why the PCA in this case produces very different results than in other galaxies. As we show in the following sections, this is also reflected in NGC 3521 being an outlier in a number of other relations.

3.3 Dependence of SEDs on surface brightness and star formation rate density

The PCA performed in the previous section allows us to condense the properties of pixel SEDs into just two parameters...
Figure 5. Dependence of PC1 and PC2 intensity on H band and $H\alpha$ SB in NGC 4254. Left: median intensity of PC1 for the pixels in bins of $\log \text{SB}(H) - \log \text{SB}(H\alpha)$ (width is 0.075 and 0.15 dex, respectively), colour coded according to the key on the right side. The diagonal lines are lines of constant $\text{SB}(H\alpha)/\text{SB}(H) \approx sSFR$. Bins with less than three contributing pixels are not displayed. Right: same as the left, but for PC2.

Figure 6. Same as Fig. 5, but for NGC 4450.
a straightforward physical interpretation, as already discussed in Section 3.2.1.

4 FROM INTERNAL TO GLOBAL SED CORRELATIONS

In this section, we show how to reconcile the lack of correlation between variations in optical and IR colours observed on local scales with the existence of such correlations between integrated colours of galaxies. In Fig. 7 we combine the pixels from all seven galaxies in the sample and show the combined colour–colour plots, like those analysed in Section 3. The coloured symbols identify the colours from the integral photometry of each galaxy, as indicated in the legend. Symbol colours from red to purple are used to represent ‘increasing’ morphological types, from early to late. As for individual galaxies, the optical colours of pixels are typically correlated to

![Figure 7](https://example.com/figure7.png)

Figure 7. The distribution of pixels of all galaxies in the ‘colour–colour’ spaces defined by the fluxes log v_f, normalized to H band, in u, g, r, i, z, 3.6, 4.5, 5.7 and 8 µm bands. The intensity of grey linearly traces the density of pixels at each point in the colour–colour spaces. The Spearman rank correlation coefficient among the pixels in each panel is written at its bottom-right corner. The histograms on the diagonal show the distribution of pixels in normalized log v_f, for each band as labelled on the y-axis. Coloured filled dots indicate the integral colours of individual galaxies, according to the legend at the top. Colours are chosen such that the sequence from red to purple is sorted by the morphological type of the galaxy, i.e. from early- to late-type.
very high degree, as are the IR colours. However, contrary to what we observe in individual galaxies, when the pixels from all galaxies are combined, the optical colours correlate with IR colours as well, albeit with a larger scatter than that observed between optical colours or between IR colours alone. The correlation is quantified in each panel by the Spearman rank correlation coefficient, which is typically \(\geq +0.8 \) for optical–optical and IR–IR colours, and \(\geq +0.5 \) for optical–IR colours. The global correlations in the optical versus IR colours result from the fact that, although each galaxy covers a limited region in the colour–colour diagrams with highly scattered clouds of points, the barycentres of the distributions follow well-defined relations. This can be seen in the colour–colour relations of the integrated points, where all galaxies, with the only notable exception of NGC 3521 (the blue point), follow very well defined sequences. In other words, we see that the shapes of the integrated SEDs are very correlated between galaxies: IR colours are very tightly linked to each other; by enhancing the IR flux relative to \(H \), bluer optical–\(H \) colours result, which, in turn, are very well correlated with each other. This is a natural consequence of galaxies’ star formation histories (SFHs) being typically smooth, such that a higher current rate of star formation (which causes enhanced IR flux) is generally accompanied by a higher abundance of young blue stars, formed in the recent past and already liberated from their dusty birth cloud (Charlot & Fall 2000). The only outlier in our sample to most of these correlations is NGC 3521, whose aspect and geometrical distribution of dust result in a complex and peculiar interplay between the attenuation and scattering of photons and hence in the observed anomalous colours (see also Section 3.2.1 and 5.3).

We note that not only is the relation between IR colours extremely tight for the integrated SEDs and for the average pixel distribution, but also almost all pixels, no matter which galaxy they belong to, appear to follow extremely tight universal relations, whose observed scatter is consistent with or just slightly larger than pure measurement errors. We analyse this in more detail in Section 5.

The degree of correlation between the \([8 \mu m] \) colour and other colours reaches a minimum with the SDSS \(z \) and \(i \) bands (Spearman rank correlation coefficient of \(+0.31 \) and \(+0.51 \), respectively), with the correlation with the \(z \) band being the lowest for all colour combinations. This can be understood by considering that the \([z] \) colour (effectively \(z - H \)) and the \([i] \) colour (effectively \(i - H \)) are almost insensitive to stellar age, marginally sensitive to dust extinction and are mainly driven by metallicity (e.g. ZCR09), while the \([8 \mu m]\) colour is essentially a sSFR indicator (as we showed above), whose relation with metallicity is not obvious (see e.g. Calzetti et al. 2007; Gordon et al. 2008). Colours at shorter wavelengths are increasingly related to stellar age and therefore it is not surprising that a better correlation with the \([8 \mu m]\) colour is observed. This reaches a maximum with the correlation of the \([8 \mu m]\) colour with the \([u]\) colour (for which a significant correlation was already observed within some individual galaxies), as this colour (effectively \(u - H \)) can be also used as a rough proxy of sSFR.

One last point to make about Fig. 7 is that in these colour–colour diagrams galaxies appear to be ordered in their integrated SEDs according to their morphological type (coded by the colours of the symbols). While this is not always exactly the case when one looks at optical colours, the order is exact in the IR colours. Li et al. (2007) also observed similar trends of \(8 \mu m \) (corrected for stellar contamination) versus \(3.6 \mu m \) with morphology. This might be surprising since morphologies are determined at optical wavelengths, not IR. In physical terms, this implies that the morphology of galaxies reflects primarily their sSFR, rather than the properties of their optical SED.

5 MID-IR COLOUR RELATIONS

5.1 A universal sequence of mid-IR colours and its predictive power

In this section we analyse in more detail the relations between IR colours and demonstrate that the SEDs in this spectral window are a one-parameter family to very high accuracy. In the mid-panels of Figs 8(a)–(c) we plot the flux at 3.6, 4.5 and 5.7 \(\mu m \), respectively, relative to the flux at 8 \(\mu m \) as a function of the \([8 \mu m] - [H] \) colour. Grey-scale levels represent the log of pixel densities in the colour–colour spaces for the five ‘regular’ galaxies: NGC 4552 and NGC 3521 are analysed separately, because of their anomalous natures (see also Section 5.3). The orange lines show the running percentiles for this distribution: 2.5, 16, 50, 84 and 97.2 per cent, from the bottom to the top, respectively.

The bottom panels of Figs 8(a)–(c) show the half-width of the 16–84 per cent percentile range, a robust proxy for the rms, of the pixels belonging only to the five ‘regular’ galaxies. The horizontal dotted line corresponds to the maximum rms that is expected for null intrinsic scatter and the minimum S/N of 20 in each band. At low \([8 \mu m] - [H] < -0.6 \), the scatter in the \([3.6 \mu m] - [8 \mu m] \) and \([4.5 \mu m] - [8 \mu m] \) colours is lower than the maximum possible contribution from measurement error, namely 0.02 dex or 5 per cent, and the relation is close to linear. At higher \([8 \mu m] - [H] \) the relations flatten and the scatter increases up to 0.035–0.040 dex (8–10 per cent), thus requiring significant intrinsic scatter to be explained. As far as scatter is concerned, for the \([5.7 \mu m] - [8 \mu m] \) colour the situation is reversed: \([8 \mu m] - [H] \) can be used to predict this colour to typical accuracy better than 7 per cent at \([8 \mu m] - [H] \geq -1 \), but its performance is significantly worse (10–12 per cent accuracy) at lower relative flux intensity. The slope of the relation also changes significantly from almost \(-1 \) at low \([8 \mu m] - [H] \) to \(0 \) at high values.

We fit fourth-degree polynomials to the relations observed for the five ‘regular’ galaxies. The coefficients are given in Table 3. The fits are shown as solid black lines in the mid-panels of Figs 8(a)–(c), where they almost perfectly overlap to the running median lines. These relations enable the generation of maps of the galaxies at 3.6, 4.5 and 5.7 \(\mu m \) just from the \(H \) band and 8 \(\mu m \) images. An example of this is shown in Fig. 9 for NGC 4254; the images of the remaining six galaxies are provided for comparison in Appendix E (Figs E1–E6, see Supporting Information). The three rows of images are for the IRAC 3.6, 4.5 and 5.7 \(\mu m \) bands, respectively. The first image in each row is the original image as observed; the image in the middle is the one ‘synthesised’ from the \(H \) band and 8 \(\mu m \) images using the fit relations given in Table 3, and the last image in each row is the synthetic image and the observed one. This figure, together with those relative to the other four ‘regular’ galaxies in Appendix E (Figs E2–E4, E6), illustrates three points: (i) the overall accuracy of the synthetic images is on average very good, typically within a few per cent; (ii) the same relations can be applied to all galaxies as no significant bias is seen from galaxy to galaxy; (iii) significant differences between the observed and the synthetic

© 2011 The Authors, MNRAS 417, 812–834

Monthly Notices of the Royal Astronomical Society © 2011 RAS
Figure 8. IRAC IR colour correlations. (a), (b) and (c): mid-panels show the distributions of pixels in the plane given by the flux at 3.6, 4.5 and 5.7 µm (a, b and c, respectively) relative to the flux at 8 µm versus the flux at 8 µm relative to the flux in H band (all fluxes are expressed in units of log νf_ν). NGC 3521 and NGC 4552 are represented by the blue and the red points, respectively, while the density distribution of pixels belonging to the other five galaxies are represented by the grey-scale shading (log scaling). For reference the global colours of the seven galaxies are plotted as filled circles, coloured according to the key in Fig. 7. The five orange lines show the running median and 2.5, 16, 84 and 97.5 percentiles of the pixel distribution for the five galaxies represented by the grey-scale shading. The solid black curve is a fourth-degree polynomial fitting to these pixels, whose coefficients are given in Table 3. The solid black straight line to the lower-left shows a slope of -1 to guide the eye. It is immediately clear that NGC 3521 and NGC 4552 are both outliers with respect to the rest of the sample. The points with error bars represent the pure stellar colours derived in Section 5.2. Theoretical predictions from CB07 for stellar population of ages >2Gyr and ≈1 Gyr are marked with a ‘×’ and a ‘+’ symbol, respectively, while the STARBURST99 predictions adopted by Helou et al. (2004) are marked with solid horizontal lines. In the bottom panels we plot the rms (the half-widths of the 16–84 percentile range) of the pixel distributions along the y-axis for the five galaxies, as a function of [8 µm] − [H]. The horizontal dashed line indicates the maximum rms possible due to measurement and photometric errors. In the top panels the local slope of the fitting polynomial is plotted. For reference, the slopes of 0 (corresponding to constant flux ratio to 8 µm) and -1 (corresponding to constant flux ratio to H) are marked as dotted lines. (d) For each pixel we define the quantity $\Delta_{\text{max}} \Delta \log \nu f_\nu$ as the maximum of the absolute deviation between log νf_ν observed and predicted based on the respective fitted polynomial functions, at 3.6 µm, 4.5 µm and 5.7 µm (see text for details). The fraction of pixels for which such a maximum deviation, Δ_{max}, is less than some difference, x, is plotted as solid lines, with blue showing the result for all galaxies, while black shows the result when the outliers NGC 3521 and NGC 4552 are excluded. The dotted lines show the fraction of H-band flux contained in pixels for which the maximum log νf_ν deviation is less than x, with blue for all and black excluding the outliers as for the other curves.

Images are observed in some pixels, up to the level of 20–30 per cent. The spatial distribution of these pixels with the largest deviations is not random, hence not simply a consequence of noise, but rather reflects to some extent the structure visible in the intensity images.
Table 3. Polynomial fit coefficients to the IR colour–colour relations presented in Fig. 8. The y colour named in Column 1 can be obtained from [8 μm]–[H] = x as y = c0 + c1x + c2x2 + c3x3 + c4x4. Note that colours relative to [H], i.e. [3.6 μm]–[H], [4.5 μm]–[H], [5.7 μm]–[H], can be obtained from analogous polynomial approximations as a function of [8 μm]–[H] by simply replacing c1 with c1 + 1.

Colour (1)	c0	c1	c2	c3	c4
[3.6 μm]–[8 μm]	−0.564	−0.639	0.420	0.291	0.079
[4.5 μm]–[8 μm]	−0.840	−0.572	0.471	0.321	0.091
[5.7 μm]–[8 μm]	−0.312	−0.114	0.201	0.092	0.060

To better quantify point (i) in the previous paragraph, we measure both the fractional area and H-band luminosity occupied by the pixels for which the predicted IRAC fluxes deviate from the observed ones by more than a given amount. For each pixel we determine the maximum absolute difference ‘max Δlog v_f,’ between the predicted and observed pixel fluxes log v_f, in the three bands, i.e. 3.6, 4.5 and 5.7 μm. We plot the fraction of pixels for which ‘max Δlog v_f,’ is less than a given amount x and the fraction of luminosity in those pixels as a function of x in Fig. 8(d) as solid and dotted lines, respectively. Black lines are for the five ‘regular’ galaxies only, while for the blue lines all seven galaxies are used. If we restrict the analysis to the ‘regular’ galaxies only, in 80 per cent of the pixels the maximum deviation between predicted and measured fluxes is <0.052 dex, i.e. <12.7 per cent; 90 per cent of pixels are in agreement within 0.069 dex, i.e. 17.2 per cent. In terms of luminosity fraction, the measured accuracy is slightly worse, thus indicating that the main reason of disagreement between the observed colours and those predicted from our simple fitting formulae does not originate from noise only (or mainly): in fact this plot shows that, on average, the deviating pixels have H-band SB higher than average. This confirms the point (iii) of the previous paragraph, extracted from the visual analysis of Fig. 9 (and analogues in Appendix E).

5.2 Relative dust and star contributions and constraints on the purely stellar SED

The IR colour–colour relations analysed in the previous section indicate that the knowledge of the flux ratio between the band mostly affected by dust and PAHs (8 μm) and the one including stellar emission only (H) is sufficient to determine the full SED in between. To the first order, we can represent the IR SED as a simple linear combination of a stellar and a dust component, basically templates with constant contributions to each band: at high values of [8 μm] – [H] the IR SED is strongly dominated by the dust component, while the stellar continuum dominates at low values. The flux at the three intermediate wavelengths is expected to asymptotically approach a constant ratio to [8 μm] going towards high [8 μm] – [H], whereas a constant ratio to [H] is expected to be approached at low values. These two regimes translate into slopes of 0 and −1, respectively, in the colour–colour relations of Fig. 8. In particular, the slope of −1 follows from the fact that for each [X] (3.6, 4.5 and 5.7 μm) [X] – [8 μm] = ([X] – [H]) – ([8 μm] – [H]); as we approach the purely stellar regime, [X] – [H] should become asymptotically constant and therefore [X] – [8 μm] versus [8 μm] – [H] should be asymptotically approximated by a line of slope −1.

It is therefore interesting to show the actual slopes as a function of [8 μm] – [H], which we plot in the upper panels of Figs 8(a)–(c). As far as 3.6 and 4.5 μm are concerned, while slopes close to −1 exist for a wide range, with slopes α < −0.8 measured up to [8 μm] – [H] = −0.5, a slope of α = −1 is reached only at the very lowest [8 μm] – [H] ratios. Past [8 μm] – [H] ≈ 0.0, α quickly approaches 0 for both bands, though it never reaches 0 in the actual data range for either. What these slopes imply is that, while the dust contribution is weak for most values of [8 μm] – [H], the fluxes at 3.6 and 4.5 μm can be considered to be ‘pure’ stellar continuum only for the very lowest [8 μm] – [H] ratios; as soon as some PAH emission appears at 8 μm, also 3.6 and 4.5 μm are affected. At [8 μm] – [H] > −0.5 typical of star-forming galaxies (see Fig. 7), these bands appear to be heavily contaminated by the PAH feature at 3.3 μm, in the 3.6 μm band, and by hot dust and extended wings of neighbouring PAH features, in the 4.5 μm band (e.g. Draine et al. 2007; Draine & Li 2007). This issue of dust contamination in the first two IRAC bands is also consistent with work by Meidt et al. (2011) and the increase in contamination with star formation was also found by Mentuch et al. (2010).

The slope of the [5.7 μm]–[8 μm] versus [8 μm] – [H] relation indicates that the 5.7 μm follows the 8 μm emission much more closely (as expected). At the lowest [8 μm] – [H] ratios, slope does not even reach −1, indicating that nowhere in the five ‘regular’ galaxies does the emission at 5.7 μm arise purely from stellar continuum. The slope α quickly increases towards 0, although this value is only reached at the very highest [8 μm] – [H] values: only there does the PAH/dust component fully dominate at 5.7 μm, while at lower values the contamination by stellar continuum is still significant. Interestingly, the scatter in the [5.7 μm] – [8 μm] at the highest [8 μm] – [H] values most likely reveals the maximal variation between the 6.6 μm and 7.7 μm PAH features (and underlying continuum) that dominate these bands, at least in NGC 4254 which dominates these colours. This scatter is small, both relative to the expected noise (bottom panel of Fig. 8c) and to the variation observed in these PAH features between galaxies, as shown for the SINGS galaxies in Smith et al. (2007, especially fig. 13).

The exact knowledge of the purely stellar contribution to the galaxies’ mid-IR SED is of great importance in order to gain a more accurate description of dust emission and its physics. As we showed in this section, this task is complicated by the fact that stellar and dust emission in this spectral region are always mixed to some degree. The commonly adopted approach to decouple these two components heavily relies on models (both for stellar and for dust emission) or/and SED fitting techniques (see e.g. Helou et al. 2004; da Cunha et al. 2008). It has to be stressed, however, that stellar population synthesis models in the mid-IR are still very uncertain and poorly constrained by observations. The diagnostic plots of Figs 8(a)–(c) allow us to derive empirical constraints on the purely stellar SED in the following way. In the simple hypothesis that (i) the SED at each pixel is just a linear combination of a constant stellar component and a constant dust component and (ii) H band is not contaminated by dust emission, pure stellar emission would correspond, in principle, to the minimum possible value of [8 μm] – [H] (8 μm) is chosen because it is the band most sensitive to dust emission and because [8 μm] – [H] offers the largest wavelength leverage. However, empirically it is very difficult to determine such a minimum because it is a limit which is never actually reached (no galaxy is fully dust-free) and because photometric errors and intrinsic SED variations of the stellar component (which are predicted by SPS models) increase the uncertainties. We use the simple analytical formulae that fit the empirical
Figure 9. The images of galaxies (NGC 4254 in this case) at 3.6, 4.5 and 5.7 µm can be reconstructed with great accuracy by combining the H-band and the 8 µm images only by means of the fitting functions provided in Table 3. On each of the three rows, for 3.6, 4.5 and 5.7 µm from top to bottom, we reproduce, from left to right, the original image of the galaxy, the synthetic image reconstructed from H band and the 8 µm images, and the ratio between the synthetic and the observed images. While most of the pixels display typical deviations of a few per cent, consistent with or just slightly larger than photometric uncertainties, larger deviations up to a few 10 per cent display a regular structure that hints at systematic departures from the universal fitting functions related to different local physical conditions.

relations of Figs 8(a)–(c) to extrapolate the flux ratios to the limit of pure stellar emission, which we determine as the point \([8 \mu m] - [H]\) at which the derivative of the relation is \(\alpha = -1\), according to the argument given previously. The determination of the purely stellar \([8 \mu m] - [H]\) depends on the relation one considers: for \([3.6 \mu m] - [8 \mu m]\) and \([5.7 \mu m] - [8 \mu m]\) the solution is actually found by extrapolation, whereas for \([4.5 \mu m] - [8 \mu m]\) \(\alpha = -1\) occurs within the range covered by the data. The variations in this ‘stellar point’ among the three different determinations provide some direct empirical estimate of the uncertainty of this flux ratio. Flux ratios between the other bands are obtained by plugging the resulting ‘stellar’ \([8 \mu m] - [H]\) colour into the corresponding fourth-order polynomials from Table 3. The resulting three determinations of the stellar flux ratios are given in Table 4, along with their mean and standard deviation. Our determinations are accurate at <0.01 dex (2 per cent) level for all bands except \([8 \mu m]\), whose ratio with respect to shorter wavelength cannot be estimated better than 20 per cent. We also report the IR flux ratios from SPS models: the wide-spread Helou et al. (2004) values, which were computed using STARBURST99 (Leitherer et al. 1999),

\[\text{This is possibly due to the fact that the 4.5 µm band is the only band not directly including PAH features and therefore might reach a constant ratio to H at higher [8 µm] - [H] than for the two other bands.}\]
and those we derive from a preliminary 2007 version (CB07 hereafter) of the Bruzual & Charlot (2003) SPS models, which includes an improved treatment of TP-AGB stars. These models predict little dependence on stellar metallicity and age for ages larger than 2 Gyr, while variation up to 30 per cent or more can be expected for younger populations. For this reason we report the ratios for simple stellar populations (SSPs) older than 2 Gyr and for an SSP 1 Gyr old, both using solar metallicity and Salpeter IMF. The Helou et al. (2004) values typically overestimate by ≈ 20 per cent the IR flux ratios to [3.6 μm] with respect to our empirical estimates. By contrast, the old CB07 SSPs are in excellent agreement with observed estimates between H and 4.5 μm, while it appears that fluxes at longer wavelengths are significantly underestimated by up to ≈ 50 per cent. In consideration of the apparent disagreement between SPS models, the empirical ratios derived from our analysis are of great importance to improve the SED modelling of this spectral region.

5.3 Mid-IR colour relations of the ‘anomalous’ galaxies NGC 4552 and NGC 3521

The two galaxies that stand out due to their anomalous PC analyses also have evident anomalies when we look at their IR colour–colour relations (i.e. red and blue clouds in Fig. 8). As expected from the lack of current star formation, the elliptical galaxy NGC 4552 has the lowest ratio of 8 μm luminosity to H and also the lowest ratios of luminosities in the three shorter IRAC bands with respect to [8 μm], as one can see from the red points in Fig. 8. However, a substantial fraction of those points appear to lie above the extrapolated colour relations for all other galaxies. Stellar population synthesis models of these spectral regions are unfortunately still too inaccurate to provide an explanation for these deviations of the order of 20–30 per cent. The observed phenomenon can be summarized by saying that the luminosity at shorter IR wavelengths is (increasingly) suppressed with respect to longer wavelengths. As we verify using the stellar population synthesis models with dust attenuation of ZCR09, these mid-IR colours could be explained by invoking a substantial amount of reddening by dust, which can in principle move the data points above and to the right of the relations. However, our maps show that the outer regions of the galaxy are the most affected by this effect and that there is a suppression of NIR emission also with respect to optical wavelengths. In addition, NGC 4552 is not detected at 160 μm with Spitzer (Draine et al. 2007), thus implying a negligible amount of dust. All these facts argue against dust reddening as a cause of the anomalous IR colours. We also explore the possibility that a radial variation of the stellar mass function originates such an effect: using CB07 SPS models we find that for stellar populations older than a couple of Gyr (as it is the case for NGC 4552), the IR colours differ by less than a few per cent going from a Salpeter to a Chabrier IMF. According to the spectral indices measured by Trager et al. (2000) in different apertures and the Sauron index maps of Kuntschner et al. (2006), NGC 4552 is iron-enriched and α-enhanced to supersolar values [by comparison with e.g. the Thomas, Maraston & Bender (2003) models]. \([\alpha/Fe]\) appears to moderately increase at large radii, while the decrease in the strength of the iron indices towards larger radii hints at a moderate decrease in metallicity. According to the CB07 SPS models, the decrease in metallicity could affect the mid-IR colours in the required direction. We note, however, that the anti-correlation between the strength of the iron indices and \([\alpha/Fe]\) (Thomas et al. 2003) makes this metallicity gradient quite uncertain. We suggest that the increase of \([\alpha/Fe]\) to values up to 0.35–0.40 dex higher than solar at large radii could be the reason of the anomalous (near)IR colours. A thorough investigation of the dependence of these colour on \([\alpha/Fe]\) and metallicity, which is beyond the scope of this paper, would be required to provide a robust explanation of the observed effects.

As already discussed in Section 3.2.1, anomalies in the SED of NGC 3521 result from the complex effects of substantial dust absorption and scattering. From Figs 8(d) and E1 (Appendix E, see Supporting Information), there is a significant fraction of pixels in this galaxy in good agreement with the ‘universal’ relations derived in the previous section. These pixels are located in the far (north-east) part of the inner disc, those apparently less affected by extinction and scatter. All other pixels appear to form a sequence offset from the relations of Fig. 8, which underestimate the fluxes at 3.6, 4.5 and 5.7 μm with respect to the observed ones. On the near (south-western) side of the disc the stellar light is heavily dust obscured, so much so that even the H band (and possibly the shortest IRAC bands) is attenuated, and this probably explains the offset of these pixels to the right (and up) of the relations. However, the reason for the pixels in the halo of the galaxy being similarly offset is unclear. It is possible that something similar to what happens in the outer regions of NGC 4552 occurs here as well, as the continuity between the sequence of the red and the blue pixels of Fig. 8 suggests.

6 SUMMARY AND CONCLUDING REMARKS

Using multiwavelength data (\(\alpha\) band to 8 μm) for seven nearby galaxies, resolved at scales of ≥ 200 pc pixel$^{-1}$ with an S/N of > 10–20 for each pixel, we have demonstrated, both qualitatively and
quantitatively, the disconnect that occurs between the optical and infrared colours relative to the near-IR H band on the small scales within galaxies. A very important point in the analysis is the choice of the H-band point as the normalization of the pixel SEDs, as this band is the least affected by dust absorption and emission at the same time and divides the portion of SEDs possibly affected by dust emission (longwards of it) from the one dominated by stellar emission, possibly extincted by dust (shortwards of it). Normalizing at other wavelengths where dust effects are more substantial would likely destroy the observed correlations by mixing different emission/absorption mechanisms. In fact, we have checked that using a slightly shorter wavelength for normalization, such as the z band, results in similar although more scattered correlations. On the other hand, if we move the normalization to longer wavelengths, we expect quite dramatic effects already at 3.6 μm, where we have demonstrated the contamination by dust emission to be substantial.

Qualitatively, the disconnect between the optical and infrared colours can be seen in colour–colour plots (Figs 1, 2 and B1–B5) where correlations can be visibly seen between optical–infrared colours, IR–IR colours, but not optical–IR colours. This holds true for all but two of the seven galaxies: NGC 4552, an elliptical galaxy whose colours at all wavelengths examined are dominated by stellar light from old stars, and thus all colours are correlated to a high degree; and NGC 3521, a more inclined late-type galaxy with significant scatter in its colours, with dust causing weird colour correlations due to the effects of attenuation on the near side of the galaxy, and scattering on the far side.

The observed disconnect in colours can be investigated using PCA of the distribution in H-band normalized SED space of the pixels in each galaxy. This analysis picks out two distinct and uncorrelated components in each of the five ‘typical’ galaxies; a component that dominates the variance and is strongly correlated to the variations in the IR, and a component that is mainly correlated to the variations in the optical (see Figs 3, 4 and C1–C5). These two components account for most (>90 per cent) of the observed variance in colours across the galaxies, and show distinct spatial variations in galaxies, with the dominant primary component associated with the IR variance (PC1) being stronger in spiral arms and star-forming regions, and the other optically dominated component (PC2) being suppressed in the interarm regions and enhanced in the outskirts of galaxies.

These two PCs can be associated with physical properties within the galaxies by comparison with the surface brightnesses in $H\alpha$ and in H band, themselves proxies for the SFR and stellar mass (M_*). This comparison (Figs 5, 6 and D1–D4) reveals a strong correlation of PC1 with increasing SB($H\alpha$)/SB(H), an indicator of the sSFR, while PC2 variation correlates with SB(H), although with significant scatter.

Altogether, these correlations indicate that PC1 is detecting regions where young stars are dominating the colours, and predominantly in the IR, while PC2 is picking up variations in the mean stellar age, which is associated with the stellar mass density, with the most massive regions generally the oldest on average. It is these two distinct components that both the colours and PCA technique reveal.

Given the disconnect observed on the small scales, it is surprising that the global correlations of galaxy colours and types exist (e.g. Kennicutt 1998). However, as Fig. 7 reveals, while there are distinctions on the pixel scales (>200 pc), globally the mean SEDs and colours trace very well the type of the galaxy, with later-types being bluer and dustier (IR brighter) than early-types. Within each galaxy, the scatter (and disconnect of IR and optical) is around this mean SED. In more physical terms, we can interpret this as the result of sSFR and stellar mass density (stellar age) being correlated between galaxies, but not (necessarily) within galaxies.

Interestingly, the relations between the mid-IR colours are even tighter when all seven galaxies in our sample are considered together. When an IR–IR colour (e.g. [3.6 μm] – [8 μm]) is plotted as a function of a IR–near-IR colour (i.e. [8 μm] – [H]) these tight relations are apparent (Fig. 8). Simple fourth-order polynomial fits to these relations (resulting in the coefficients in Table 3) have an rms scatter around them which is, most of the time, less than the maximum expected photometric uncertainties. These functional fits are tight enough that the [8 μm] – [H] colour images can be used as a predictive tool for the fluxes in the three other IRAC bands with deviation of only a few per cent typically (Fig. 9 and Figs E1–E6).

What these relationships reveal is the varying contribution of dust to the IRAC bands. The H band is purely stellar, with no dust contribution, while the 8 μm IRAC band is dominated by the 7.7 μm PAH complex, with only a weak stellar contribution, and thus the [8 μm] – [H] colour is a measure of relative dust contribution to the pixel SEDs. The colour–colour diagrams of Fig. 8 therefore show the contribution of dust and stars in each band, going from pure stellar (where the slope is -1) to dust dominated (where the slope is 0). By extrapolating the function fits to where the slope becomes -1 we are able to empirically determine the pure stellar colours in the IRAC bands (Table 3), at least for the galaxies in our sample. The plots clearly show the need to correct for dust when using the IRAC bands as tracers of stellar mass (see e.g. Meidt et al. 2011 for such a correction). Interestingly, these colours match that of the 2007 models of Bruzual & Charlot (2003) (not calibrated for these wavelengths) for old (>2 Gyr) stars at the shortest wavelengths, but is much redder (flatter SED) at the long (>5.7 and 8 μm) bands and bluer (steep SED) than that suggested by Helou et al. (2004) in these bands. Another interesting note is that the scatter of pixels in the stellar and dust regimes of these relations gives an indication of the intrinsic scatter in the stellar SED or the ‘dust’ SED, respectively, on the scales explored here. This scatter is surprisingly low (Figs 8a and b, lower panels), given the known contribution of various stellar evolutionary stages to the H band, though the scatter is somewhat larger for dust given the observed variation in PAH features and hot dust contribution in galaxies with Spitzer-Infrared Spectrograph (IRS; e.g. Smith et al. 2007).

In Summary, while on global scales the IR and optical colours of galaxies are correlated with their star formation history and galaxy-type, the correlation of IR and optical colours breaks down internally in galaxies on local scales. The IR- and optical-dominated components can be spatially associated with regions and with physical processes, with the IR excess coming from regions of high sSFR, while the optical excess is broadly associated with low H-band SB (stellar mass density) regions and to unobscured young stellar associations along spiral arms. The disconnect of optical and IR colours is because of this spatial distinction of the uniform underlying older stellar population, and the more concentrated, stochastic star-forming regions. However, this disconnect of optical and IR colours in galaxies is around a mean, and the mean colours of galaxies follow the well-observed trend of bluer optical and stronger IR in later-type galaxies. The IRAC colours within galaxies follow each other closely, with a tight enough relationship that a IRAC–near-IR colour can be used to predict the fluxes in the other IRAC bands.
ACKNOWLEDGMENTS

We thank the anonymous referee for useful comments that have led to an improved manuscript.

The Dark Cosmology Centre is funded by the Danish National Research Foundation. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Blanton M. R. et al., 2003, ApJ, 594, 186
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G., Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151
Bruzual A. G., Charlot S., 2003, MNRAS, 344, 1000
Calzetti D., 1997, AJ, 113, 162
Calzetti D. et al., 2007, ApJ, 666, 870
Calzetti D. et al., 2010, ApJ, 714, 1256
Charlot S., Fall S. M., 2000, ApJ, 539, 718
da Cunha E., Charlot S., Elbaz D., 2008, MNRAS, 388, 1595
de Vaucouleurs G., 1959, Handbuch der Physik, 53, 275
de Vaucouleurs G., de Vaucouleurs A., Corwin H. G., Jr, Buta R. J., Paturel G., Fouqué P., 1991, Third Reference Catalogue of Bright Galaxies. Springer-Verlag, Berlin, Heidelberg, New York
Draine B. T., 2003, ARA&A, 41, 241
Draine B. T., Li A., 2007, ApJ, 657, 810
Draine B. T. et al., 2007, ApJ, 663, 866
Gallazzi A., Charlot S., Brinchmann J., White S. D. M., Tremonti C. A., 2005, MNRAS, 362, 41
Gavazzi G., Boselli A., Scodeggio M., Pierini D., Belsole E., 1999, MNRAS, 304, 595
Gavazzi G., Boselli A., Donati A., Franzetti P., Scodeggio M., 2003, A&A, 400, 451
Gordon K. D., Engelbracht C. W., Rieke G. H., Misselt K. A., Smith J., Kennicutt R. C., Jr, 2008, ApJ, 682, 336
Helou G. et al., 2004, ApJS, 154, 253
Henry R. B. C., Worthey G., 1999, PASP, 111, 919
Hogg D. W., Tremonti C. A., Blanton M. R., Finkbeiner D. P., Padmanabhan N., Quintero A. D., Schlegel D. J., Wherry N., 2005, ApJ, 624, 162
Hubble E. P., 1926, ApJ, 64, 321
Jarrett T. H., Chester T., Cutri R., Schneider S. E., Huchra J. P., 2003, AJ, 125, 525
Jolliffe I. T., 2002, Principal Component Analysis, 2nd edn. Springer, Berlin
Kauffmann G. et al., 2003, MNRAS, 341, 54
Kennicutt R. C., 1998, ARA&A, 36, 189
Kennicutt R. C. et al., 2003, PASP, 115, 928
Kobayashi C., Arimoto N., 1999, ApJ, 527, 573
Kobulnicky H. A., Kewley L. J., 2004, ApJ, 617, 240
Kroupa P., 2001, MNRAS, 322, 231
Kuntschner H. et al., 2006, MNRAS, 369, 497
Lawrence A. et al., 2007, MNRAS, 379, 1599
Leitherer C. et al., 1999, ApJS, 123, 3
Li H., Wu H., Cao C., Zhu Y., 2007, AJ, 134, 1315
MacArthur L. A., Courteau S., Bell E., Holtzman J. A., 2004, ApJS, 152, 175
Meidt S. et al., 2011, ApJ, submitted
Mentuch E., Abraham R. G., Zibetti S., 2010, ApJ, 725, 1971
Michard R., 2000, A&A, 360, 85
Michard R., 2005, A&A, 441, 451
Moustakas J., Kennicutt R. C., Jr, Tremonti C. A., Dale D. A., Smith J.-D. T., Calzetti D., 2010, ApJS, 190, 233
Roberts M. S., Haynes M. P., 1994, ARA&A, 32, 115
Skibba R. A. et al., 2011, ApJ, 738, 89
Smith J. D. T. et al., 2007, ApJ, 656, 770
Thomas D., Maraston C., Bender R., 2003, MNRAS, 339, 897
Trager S. C., Faber S. M., Worthey G., Gonzalez J. J., 2000, AJ, 119, 1645
Tremonti C. A. et al., 2004, ApJ, 613, 898
York D. G. et al., 2000, AJ, 120, 1579
Zibetti S., 2009, preprint (arXiv:0911.4956)
Zibetti S., Charlot S., Rix H., 2009, MNRAS, 400, 1181 (ZCR09)
APPENDIX A: IMAGES IN ELEVEN BANDS AND SEDS FOR THE FULL SAMPLE

The full version of this Appendix is available as Supporting Information with the online version of the paper.

Figure A1. Images in the 11 bands used for the analysis in this work for NGC 3521. The grey-scale indicates the log of the SB in each band in MJy sr$^{-1}$ as defined by the colour bar to the right of each panel, except for the Hα image which is in log erg cm$^{-2}$ s$^{-1}$ arcsec$^{-2}$. In the lower-right panel we show the distribution of logνf_{ν} SEDs of the pixels for the galaxy, normalized to the H band. The Hα flux is also represented in this plot (at $\lambda = 0.6563$ μm) using a flux density corresponding to the flux divided by a passband of 1 \AA. The colour scale indicates the number density of pixels (in bins of 0.02 dex in normalized logνf_{ν}) as labelled in the key to the right. The blue symbols indicate the arithmetic mean of the pixels (‘×’ symbol) and the luminosity-weighted mean of the pixels (i.e. integrated SED of the galaxy, ‘+’ symbol).
APPENDIX B: COLOUR CORRELATIONS FOR THE FIVE GALAXIES NOT IN THE MAIN PAPER

The full version of this Appendix is available as Supporting Information with the online version of the paper.

Figure B1. As in Fig. 1, but for NGC 3521.
APPENDIX C: PCA DECOMPOSITION FOR THE FIVE GALAXIES NOT IN THE MAIN PAPER

The full version of this Appendix is available as Supporting Information with the online version of the paper.

Figure C1. As in Fig. 3, but for the galaxy NGC 3521.
APPENDIX D: DEPENDENCE OF PRINCIPAL COMPONENTS ON SURFACE BRIGHTNESS AND STAR FORMATION FOR THE FOUR GALAXIES NOT IN THE MAIN PAPER

The full version of this Appendix is available as Supporting Information with the online version of the paper.

Figure D1. As in Fig. 5, but for NGC 3521.

APPENDIX E: SYNTHETIC IRAC IMAGES FOR THE SIX GALAXIES NOT IN THE MAIN PAPER

The full version of this Appendix is available as Supporting Information with the online version of the paper.

Figure E1. As in Fig. 9, but for NGC 3521.
SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix A. Images in eleven bands and SEDs for the full sample.
Appendix B. Colour correlations for the five galaxies not in the main paper.
Appendix C. PCA decomposition for the five galaxies not in the main paper.
Appendix D. Dependence of principal components on surface brightness and star formation for the four galaxies not in the main paper.
Appendix E. Synthetic IRAC images for the six galaxies not in the main paper.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.