Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration

Shiro Suzuki¹, Takeshi Muneta¹,², Kunikazu Tsuji², Shizuko Ichinose³, Hatsune Makino⁴, Akihiro Umezawa⁴ and Ichiro Sekiya⁵*

Abstract

Introduction: Transplantation of mesenchymal stem cells (MSCs) derived from synovium is a promising therapy for cartilage regeneration. For clinical application, improvement of handling operation, enhancement of chondrogenic potential, and increase of MSCs adhesion efficiency are needed to achieve a more successful cartilage regeneration with a limited number of MSCs without scaffold. The use of aggregated MSCs may be one of the solutions. Here, we investigated the handling, properties and effectiveness of aggregated MSCs for cartilage regeneration.

Methods: Human and rabbit synovial MSCs were aggregated using the hanging drop technique. The gene expression changes after aggregation of synovial MSCs were analyzed by microarray and real time RT-PCR analyses. *In vitro* and *in vivo* chondrogenic potential of aggregates of synovial MSCs was examined.

Results: Aggregates of MSCs cultured for three days became visible, approximately 1 mm in diameter and solid and durable by manipulation; most of the cells were viable. Microarray analysis revealed up-regulation of chondrogenesis-related, anti-inflammatory and anti-apoptotic genes in aggregates of MSCs. *In vitro* studies showed higher amounts of cartilage matrix synthesis in pellets derived from aggregates of MSCs compared to pellets derived from MSCs cultured in a monolayer. In *in vivo* studies in rabbits, aggregates of MSCs could adhere promptly on the osteochondral defects by surface tension, and stay without any loss. Transplantation of aggregates of MSCs at relatively low density achieved successful cartilage regeneration. Contrary to our expectation, transplantation of aggregates of MSCs at high density failed to regenerate cartilage due to cell death and nutrient deprivation of aggregates of MSCs.

Conclusions: Aggregated synovial MSCs were a useful source for cartilage regeneration considering such factors as easy preparation, higher chondrogenic potential and efficient attachment.

Introduction

Synovial mesenchymal stem cells (MSCs) are an attractive cell source for cartilage regeneration because of their high expansion and chondrogenic potentials [1-5]. We previously reported that more than 60% of synovial mesenchymal stem cells placed on osteochondral defects adhered to the defect within 10 minutes and promoted cartilage regeneration [6,7]. With this local adherent technique, we can transplant synovial MSCs without scaffold. One of the disadvantages in this method is that the cell component in the suspension is invisible to the naked eye.

One of the solutions for this problem is to make aggregates of synovial MSCs [8-10]. This could enable MSCs not only to be visible but also to be heavier. Consequently, aggregates of MSCs will sink faster in the suspension medium than dispersed MSCs. The use of aggregates of MSCs may help to avoid loss of MSCs from targeted cartilage defects and improve the procedures of transplantation of synovial MSCs. However, there are still concerns; properties of synovial MSCs will be altered when synovial MSCs are aggregated. We do not know...
whether aggregates of MSCs adhere on the cartilage defect as we expect it will, and the proper number of aggregates is unclear.

In this study, properties of aggregates of human synovial MSCs were analyzed from the standpoints of morphology, gene profile and in vitro chondrogenic potential. Also, the effect of transplantation of aggregates of synovial MSCs was investigated in a rabbit cartilage defect model in terms of aggregate number, cell behavior and influential factors in the in vivo chondrogenesis of aggregates of synovial MSCs. Finally, we demonstrated the usefulness of aggregates of synovial MSCs as a source for cartilage regeneration therapy.

Materials and methods
Isolation and culture of human synovial MSCs
This study was approved by an institutional review board of Tokyo Medical and Dental University (No.1030), and informed consent was obtained from all subjects. Human synovium was harvested from donors during anterior cruciate ligament reconstruction surgery for ligament injury and digested in a 3 mg/ml collagenase D solution (Roche Diagnostics, Mannheim, Germany) in α-minimal essential medium (αMEM) (Invitrogen, Carlsbad, CA, USA) at 37°C. After three hours, digested cells were filtered through a 70 μm nylon filter (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), and the remaining tissues were discarded. The digested cells were plated in a 150 cm² culture dish (Nalge Nunc International, Rochester, NY, USA) in complete culture medium (CCM): αMEM containing 10% fetal bovine serum (FBS; Invitrogen), 100 units/ml penicillin (Invitrogen), 100 μg/ml streptomycin (Invitrogen), and 250 ng/ml amphotericin B (Invitrogen) and incubated at 37°C with 5% humidified CO₂. The medium was changed to remove nonadherent cells one day later and cultured for seven days as passage 0. The cells were then trypsinized, harvested and resuspended to be used for further assays. The cells that were transplanted in animals to be sacrificed at Day 0 and Day 14 were labeled for cell tracking by the fluorescent lipophilic tracer DiI (Molecular Probes, Eugene, OR, USA). For labeling, synovial MSCs were resuspended at 1 × 10⁶ cells/ml in αMEM without FBS and a DiI was added at a final concentration of 5 μl/ml. After incubation for 20 minutes at 37°C with 5% humidified CO₂, the cells were centrifuged at 450 g for 5 minutes and washed twice with phosphate-buffered saline (PBS) and the cells were then resuspended in CCM and cultured in hanging drops. We already reported that these cells had characteristics of MSCs [3,6,7,11].

Preparation of aggregates of synovial MSCs
A total of 2.5 × 10⁵ synovial MSCs were trypsinized, harvested and resuspended in 35 μl of CCM, plated on an inverted culture dish lid. The lid was inverted and placed on a culture dish containing PBS. The cells were cultured at 37°C with 5% humidified CO₂ for three days in hanging drops.

Histology of aggregates of human synovial MSCs
Aggregates of human synovial MSCs were fixied with 2.5% glutaraldehyde in 0.1 M PBS for two hours. The aggregates were washed overnight at 4°C in the same buffer and post-fixed with 1% OsO₄ buffered with 0.1 M PBS for two hours. The aggregates were dehydrated in a graded series of ethanol and embedded in Epon 812. Semi-thin (1 μm) sections for light microscopy were collected on glass slides and stained for 30 seconds with toluidine blue.

In vitro chondrogenic differentiation assay
A total of 2.5 × 10⁵ human synovial MSCs cultured as a monolayer were pelleted by trypsinization and centrifugation. The pellets or aggregate of human synovial MSCs cultured for three days in hanging drops were cultured in 400 μl chondrogenic medium consisting of high-glucose Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 1,000 ng/ml BMP-7 (Strayer Biotech, Boston, MA, USA), 10 ng/ml transforming growth factor-β3 (R&D Systems, Minneapolis, MN, USA), 100 nM dexamethasone (Sigma-Aldrich Corp., St. Louis, MO, USA), 50 μg/ml ascorbate-2-phosphate, 40 μg/ml proline, 100 μg/ml pyruvate, and 1:100 diluted ITS+Premix (6.25 μg/ml insulin, 6.25 μg/ml transferrin, 6.25 ng/ml selenium acid, 1.25 mg/ml bovine serum from knee joints of the rabbits, and digested in a 3 mg/ml collagenase type V in αMEM for three hours at 37°C. The digested cells were plated at 5 × 10⁴ cells/cm² in a 150 cm² culture dish in CCM and incubated at 37°C with 5% humidified CO₂. The medium was changed to remove nonadherent cells one day later and cultured for seven days as passage 0. The cells were then trypsinized, harvested and resuspended to be used for further assays. The cells that were transplanted in animals to be sacrificed at Day 0 and Day 14 were labeled for cell tracking by the fluorescent lipophilic tracer DiI (Molecular Probes, Eugene, OR, USA). For labeling, synovial MSCs were resuspended at 1 × 10⁶ cells/ml in αMEM without FBS and a DiI was added at a final concentration of 5 μl/ml. After incubation for 20 minutes at 37°C with 5% humidified CO₂, the cells were centrifuged at 450 g for 5 minutes and washed twice with phosphate-buffered saline (PBS) and the cells were then resuspended in CCM and cultured in hanging drops. We already reported that these cells had characteristics of MSCs [3,6,7,11].
albumin, and 5.35 mg/ml linoleic acid; BD Biosciences Discovery Labware, Bedford, MA, USA). The medium was changed every 3 to 4 days for 21 days.

Histology of pellets of human synovial MSCs
The pellets were embedded in paraffin, cut into 5-µm sections and stained with 1% Toluidine Blue. For immunohistochemistry, sections were treated with 0.4 mg/ml proteinase K (DAKO, Carpinteria, CA, USA) in Tris-HCl and normal horse serum after deparaffinization. Primary antibodies for type II collagen (Daiichi Fine Chemical, Toyama, Japan) and a secondary antibody of biotinylated horse anti-mouse IgG (Vector Laboratories, Burlingame, CA, USA) were employed. Immunostaining was detected with VECTASTAIN ABC reagent (Vector Laboratories) followed by 3,3′-diaminobenzidine staining.

Real-time RT PCR analysis
Total RNA was extracted from human synovial MSCs in a monolayer culture, aggregates of human synovial MSCs cultured for 1, 2 and 3 days, and the pellets cultured for 7, 14 and 21 days using QiA佐 (Qiagen, Hiden, Germany) and the RNeasy mini kit (Qiagen). cDNA was synthesized with oligo-dT primer from total RNA using the Transcriptor High Fidelity cDNA Synthesis kit (Roche Diagnostics) according to the manufacturer’s protocol. Reverse transcription (RT) was performed by 30 minutes incubation at 55°C followed by 5 minutes incubation at 85°C. Real-time PCR was performed in a LightCycler 480 instrument (Roche Diagnostics). Primer sequences and TaqMan probes are listed in Table 1. After an initial denaturation step (95°C for 10 minutes), amplification was performed for 40 cycles (95°C for 15 seconds, 60°C for 60 seconds). Relative amounts of mRNA were calculated and standardized as previously described [13,14].

DNA microarray analysis
Total RNA was extracted from human synovial MSCs in a monolayer culture, aggregates of human synovial MSCs cultured for three days. Human Genome U133 Plus 2.0 Array (GeneChip; Affymetrix, Santa Clara, CA, USA) containing the oligonucleotide probe set for more than 47,000 transcripts was used. The fluorescence intensity of each probe was quantified by using the GeneChip Analysis Suite 5.0 (Affymetrix). Gene expression data were normalized in Robust MultiChip Analysis (RMA). To analyze the data, we used hierarchical clustering using TIGR MultiExperiment Viewer (MeV) [15]. The microarray data have been deposited to the public database (GEO accession# GSE 31980).

In vivo transplantation
Under anesthesia, the left knee joint was approached through a medial parapatellar incision, and the patella was dislocated laterally. Full-thickness osteochondral defects (5 mm x 5 mm wide, 1.5 mm deep) were created in the trochlear groove of the femur. A total of 5, 10, 20, 40 and 80 aggregates of autologous rabbit synovial MSCs (2.5 x 10⁵ cells/aggregate) or 25 and 100 smaller aggregates of autologous rabbit synovial MSCs (1.0 x 10⁵ cells/aggregate) suspended in PBS were transplanted to the defect. To trace the transplanted cells, DiI-labeled aggregates of autologous rabbit synovial MSCs and aggregates of allogenic synovial MSCs derived from GFP transgenic rabbit were transplanted to the defect. For the control group, the defect was left empty. All rabbits were returned to their cages after the operation and were allowed to move freely. Animals were sacrificed with an overdose of sodium pentobarbital at 1, 2, and 4 days and at 12 weeks after the operation (n = 5 at each time).

Macroscopic examination
The cartilage defects were examined macroscopically for color, integrity and smoothness. Osteoarthritic changes and synovitis of the knee were also investigated. Digital images were taken using an Olympus MVX10 (Olympus, Tokyo, Japan).

Histological examination and fluorescent microscopic examination
The dissected distal femurs were immediately fixed in a 4% paraformaldehyde (PFA) solution. The specimens were decalcified in 4% ethylenediamine tetraacetic acid solution, dehydrated with a gradient ethanol series and

Table 1 Real-time RT PCR primer sequences

Primer name	Sequences	Probe No.
β-actin	forward: 5'-ATTGGCAATGACCGGTTGC-3'	11
	reverse: 5'-TGAAGGTATGGTTGTGAGTCG-3'	
BMP2	forward: 5'-CGACAGGCTGCCTCTCA-3'	49
	reverse: 5'-GGAGACAGCAAGCTGATTAG-3'	
SOX5	forward: 5'-TCTGTCCCAGCAAGGCTTAG-3'	41
	reverse: 5'-TGAGACATCATGTGCTAATAGTAG-3'	
SOX6	forward: 5'-GCCCTCTGCGACTACGCTT-3'	50
	reverse: 5'-GGCCCTTACGCTTCTGTTAGA-3'	
SOX9	forward: 5'-GTACCGCGACTGCAACAC-3'	61
	reverse: 5'-TGCTCTGCGTGCAAGTCT-3'	
TSG6	forward: 5'-CCAGATGACATCAGTAGAGCAGG-3'	78
	reverse: 5'-CATTGCAACATATTGATTTTGG-3'	
STC1	forward: 5'-CTCGTACGATGTGCTTCAACA-3'	40
	reverse: 5'-TGCTGACTGTGTCTTCATACA-3'	
COL2A1	forward: 5'-GTGTCAGGGCCAGCTATG-3'	75
	reverse: 5'-TCCCCAGTGGCTACAGACAGAT-3'	
AGGREGAN	forward: 5'-CTGGAGTCTTTGAGTTAAGG-3'	21
	reverse: 5'-TGGAGGGTGTAGGCTAGT-3'	
embedded in paraffin blocks. Sagittal sections 5 μm thick were obtained from the center of each defect and were stained with toluidine blue and Safranin O. For fluorescent microscopic examination and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, the fixed specimens were incubated at 4°C for three hours in 5%, 10%, 15% and 20% sucrose solution, respectively. After incubation, the fixed specimens were mounted on a holder. Then 30% optimal cutting temperature (OCT) (Sakura Finetek, Tokyo, Japan) in sucrose solution was added gently into the holder. The holder was frozen in hexan chilled by dry ice and stored at -80°C. Cryosections (10 μm) were prepared with an ultracut S microtome (Reichert, Wien, Austria) and a Microm HM560 cryostat.

Histological score
Histological sections of the repaired tissue were analyzed using a grading system consisting of five categories (cell morphology, morphology, matrix staining, surface regularity, cartilage thickness and integration of donor with host), which were modified from the repaired cartilage score described by Wakitani and colleagues [16], so that overly thick, regenerated cartilage could not be overestimated [6]. The scoring was performed in a blinded manner by two observers and there was no significant interobserver difference. The ratio of the safranin-O positive area over the defect was evaluated. Zeiss AxioVison software (Carl Zeiss, Oberkochen, Germany) was used for measurement of defects and safranin-O positive areas.

In vitro viability assay
Aggregates of rabbit synovial MSCs were plated at 1 or 40 aggregates/well in 96-well plates (Nunc) in CCM, and incubated at 37°C with 5% humidified CO₂ for seven days without medium change. Aggregates were fixed in 4% PFA for TUNEL staining.

TUNEL staining
For TUNEL staining, an apoptosis in situ detection kit (Wako Pure Chemical Industries, Ltd, Osaka, Japan) was used. The frozen semi-thin sections were incubated with terminal deoxynucleotidyl transferase for 10 minutes at 37°C in a moist chamber. The sections were washed with 0.1 M PBS for 15 minutes. Peroxidase-conjugated antibody was then applied to the specimens at 37°C for 10 minutes in a moist chamber. The sections were developed with 3,3-diaminobenizidine and counterstained with methyl green.

Statistical analysis
Comparisons between two groups were analyzed using the Mann-Whitney U test. Comparisons between multi groups were analyzed using the Kruskal-Wallis test and the Steel test. A P-value of < 0.05 was considered statistically significant.

Results
Appearance of aggregates of human synovial MSCs
Human synovial MSCs were aggregated using the hanging drop technique (Figure 1A). Three days after being cultured in the drop (Figure 1B), the aggregate, consisting of 250,000 MSCs, became approximately 1 mm in diameter (Figure 1C). The aggregate was not easily broken by manipulation. Sagittal sections of the aggregates showed heart-shape as a whole (Figure 1Da). The superficial layer was composed of spindle cells parallel to the surface, whereas the deep layer was comprised of round cells both at top and bottom of the aggregate (Figure 1Db, c). Though cells positive for TUNEL staining were observed, the number was only approximately under 5% (Figure 1Dd).

Transcriptome profile of aggregates of human synovial MSCs
To examine the sequential changes of gene expression profiles during aggregation of human synovial MSCs, microarray analyses were performed. The differences of gene profile between before and after aggregation exceeded those among donor variances (Figure 2A). The number of genes up-regulated more than five-fold was 621. The number of genes up-regulated more than 100-fold was 10, and these genes were related to hypoxia (integrin, alpha 2 (ITGA2), stanniocalcin 1 (STC1), chemokine (C-X-C motif) receptor 4 (CXCR4)), nutrient (BMP2, proprotein convertase subtilisin/kexin type 1 (PCSK1), secreted phosphoprotein 1 (SPP1), ITGA2, STC1), extra-cellular region (MMPI, MMP3), and cell adhesion (SPP1, ITGA2) (Table 2). The most up-regulated gene was BMP2, increased to 273 folds (Table 2). STC1 was also highly up-regulated in aggregates of synovial MSCs. The number of genes down-regulated less than one-fifth was 409, and the ontology for the genes was related to cell cycle. The microarray data are available at the public database (GEO accession# GSE 31980).

To further investigate gene expressions during aggregation of human synovial MSCs, real time RT-PCR analyses were additionally used for chondrogenesis-related genes (SRY (sex determining region Y)-box (SOX)5, -6, -9, and BMP2) and anti-inflammatory genes (TNFα, inducible gene 6 (TSG-6), and STC-1) in four donors. In most cases, expressions for these genes increased sequentially (Figure 2B).

In vitro chondrogenesis of aggregates of human synovial MSCs
In vitro chondrogenic ability of human synovial MSCs after hanging drop culture was compared to that of MSCs after monolayer culture (Figure 3A). Aggregates
Figure 1 Preparation and appearance of aggregates of human synovial MSCs. (A): Scheme of preparation of aggregates using hanging drop technique. (B): Drops hanging on the cover of 15 cm dish. (C): Macroscopic image of aggregate consisted of 250,000 MSCs, three days after cultured in hanging drop. (D): Sagittal sections of aggregates stained with toluidine blue (a, b, c) and TUNEL (d). TUNEL positive cells are indicated with arrows.
of MSCs differentiated into chondrocytes as well (Figure 3B). The wet weight of pellets derived from MSCs after hanging drop culture was heavier than that of pellets derived from MSCs after monolayer culture in all four donors at 14 or 21 days (Figure 3C). Real time RT-PCR analysis showed higher expression levels of collagen (COL)2A1, aggrecan and SOX9 for pellets derived from MSCs after hanging drop culture compared to MSCs after monolayer culture at 14 and 21 days (Figure 3D). Cartilage extracellular matrix synthesis and accumulation of type II collagen were confirmed by histological analysis stained with toluidine blue and immunohistochemical analysis (Figure 3E).

In vivo analysis for cartilage regeneration by transplantation of aggregates of synovial MSCs in rabbits

To examine whether transplantation of aggregates of synovial MSCs promotes cartilage regeneration, *in vivo* study was performed in rabbits. To further investigate the optimal number of aggregates consisting of 250,000 MSCs, 0 to 80 aggregates were transplanted into the defect.
At 0 days, in the case of 40 and 80 transplanted aggregates, the osteochondral defects were filled with aggregates labeled with DiI macroscopically (Figure 4A).

At four weeks, in the case of 5 and 10 transplanted aggregates, the osteochondral defect was mostly covered with a thick cartilage matrix (Figure 4B, C). In the case of 20 and 40 transplanted aggregates, the defect was partially covered with cartilage matrix. In the case of 80 transplanted aggregates, the defect was filled with only fibrous tissue, which appeared to be similar to the control (Figure 4B).

At 12 weeks, in the case of 10 transplanted aggregates, the border between cartilage and bone moved up, and thickness of the regenerated cartilage became similar to the neighboring cartilage (Figure 4B, D). In the case of 5 and 20 transplanted aggregates, the cartilage defect was partially covered with cartilage matrix. In the case of 40 and 80 transplanted aggregates, the defect was filled with only fibrous tissue, which appeared to be similar to the control (Figure 4B).

To answer this question, 25 or 100 aggregates, in which an aggregate consisted of 100,000 MSCs, were transplanted into the osteochondral defect.

At four weeks, in the case of 25 transplanted aggregates, the defect was fully filled with cartilage matrix (Figure 6A), in which the result was different from the case of 20 or more aggregates, in which an aggregate consisted of 250,000 MSCs. In the case of 100 transplanted aggregates, the defect was filled with fibrous tissue, and the histological score was inferior and the safranin-O positive area ratio was smaller. (Figure 6B, C).

Influences of aggregate number on viability of MSCs
To clarify why transplantation of aggregates over a certain number resulted in poor outcome, viability of cells was first examined by TUNEL staining. Compared to the case of 10 transplanted aggregates, much more TUNEL positive cells could be observed in the case of 80 transplanted aggregates (Figure 6D).

Another factor might be a nutrient deprivation and in vitro analyses using aggregates of rabbit synovial MSCs were performed. Seven days after 1 or 40 aggregates were cultured in a well of 96-well plates, the medium color changed to yellow in the case of 40 aggregates, while the color remained red in the case of only 1 aggregate (Figure 6E). TUNEL positive cells were much higher in the case of 40 aggregates than in the case of only 1 aggregate.

Discussion
In this study, to form aggregates of synovial MSCs, the hanging drop technique was used [8-10]. This is a simple method; expensive or specific tools are not required. Three days after cultured in the drop, the aggregate, consisting of 250,000 MSCs, became approximately 1 mm in diameter, large enough to be visible and solid enough to aspirate with a pipette. Aggregates of MSCs sank faster in the suspension medium than dispersed
Figure 3 *In vitro* chondrogenic ability of human synovial MSCs after hanging drop culture (A): Scheme for the analyses. (B): Macroscopic images of pellets derived from aggregates of MSCs and those of pellets derived from MSCs in a monolayer culture. (C): Wet weight in four individual donors. Values are the means with standard deviation (SD) (*P* < 0.05 by the Mann-Whitney U test). (D): Expressions of chondrogenesis-related genes by RT-PCR analyses. Values are the means with SD among four donors. The fold changes of *SOX9* and *AGGRECAN* expression levels were shown when the gene expression levels at Day 0 were normalized as 1. The fold changes of *COL2A1* expression levels were shown when the gene expression levels in MSCs in monolayer at Day 7 were normalized as 1 because *COL2A1* expression level at Day 0 was undetectable. (E): Histological sections of pellets stained with toluidine blue and immunohistochemical analysis for type II collagen.
Figure 4 Cartilage regeneration by transplantation of aggregates of synovial MSCs in rabbits (A): Macroscopic observation of osteochondral defects one minute after transplantation of indicated number of aggregates of MSCs. The aggregate consisted of 250,000 MSCs, labeled with Dil for visualization. (B): Macroscopic and histological observation. For histologies, sagittal sections were stained with safranin-O (SO) and toluidine blue (TB). (C, D): Magnified histology of the indicated area. (E): Histological score. Values are the means with SD. (n = 5, P < 0.05 by the Kruskal-Wallis test and the Steel test). (F): Ratio of the safranin-O positive area to the defect area. Values are the means with SD. (n = 5, P < 0.05 by the Kruskal-Wallis test and the Steel test).
MSCs and helped to avoid loss of MSCs from targeted cartilage defect. The use of aggregates was practically convenient for transplantation of MSCs.

In the previous report, the number of apoptotic or necrotic cells was greater in aggregates prepared with 100,000 or 250,000 human bone marrow MSCs, which was examined by flow cytometry, measuring propidium iodide uptake and annexin V labeling [10]. We examined the viability of aggregates of MSCs by TUNEL staining and confirmed that cells positive for TUNEL staining were observed; the number was small compared to the previous report. This difference may have been due to the difference of methods. Microarray analysis showed up-regulation of genes with ontology for regulation of cell death. The microarray data are available at the public database (GEO accession# GSE 31980). These results suggest that aggregation of 250,000 MSCs affect the viability of cells. However, we thought that aggregates of MSCs could be used as a source for cartilage regeneration because most cells which are cultured in drops for three days are viable.

Aggregation of synovial MSCs changed the gene expression profile dramatically without any special tools or chemical factors. This is possibly due to environmental changes, including cell-to-cell contact, hypoxic condition and low nutrient condition. Aggregation of human synovial MSCs increased expressions of several chondrogenesis-related genes and the most up-regulated gene was BMP2, which was also up-regulated in bone marrow MSCs [8,10].

In this study, we compared in vitro chondrogenesis potential of synovial MSCs after hanging drop culture with that of MSCs after monolayer culture. We used 1,000 ng/ml BMP7 for in vitro chondrogenesis assay. We previously examined the dose effect of BMP6 between 0 to 500 ng/ml for in vitro chondrogenesis of bone marrow MSCs. Cartilage pellets increased in size along with the concentration of BMP6, and a maximal effect was at 500 ng/ml [17]. Our preliminary experiments showed that 1,000 ng/ml BMP6 induced larger cartilage pellets than 500 ng/ml BMP6 in bone marrow and synovial MSCs. We obtained similar results with BMP7. Real time RT-PCR analysis showed higher expression levels of COL2A1, aggrecan and SOX9 for pellets derived from MSC-aggregates after hanging drop culture compared to those of MSCs in a monolayer culture.
Furthermore, the wet weight of pellets derived from MSC-aggregates after hanging drop culture was heavier than that of pellets derived MSCs in a monolayer culture. These indicate that chondrogenic potential increased in aggregates of MSCs after hanging drop culture.

In this study, we used an osteochondral defect model of rabbits, which have a higher, self-renewal capacity than bigger animals and humans. Therefore, the results obtained here should be critically evaluated. However, we prepared negative controls, which healed poorly at 4 and 12 weeks. We previously confirmed that the osteochondral defect created in the trochlear groove of the femur, similar to this study, was not repaired without any treatments 24 weeks after surgery [6]. These findings indicate that this rabbit model is useful to evaluate the effects of the treatments for cartilage regeneration.

For in vivo analysis of cartilage regeneration by transplantation of aggregates of synovial MSCs in rabbits, we prepared negative controls, which healed poorly at 4 and 12 weeks. We previously confirmed that the osteochondral defect created in the trochlear groove of the femur, similar to this study, was not repaired without any treatments 24 weeks after surgery [6]. These findings indicate that this rabbit model is useful to evaluate the effects of the treatments for cartilage regeneration.

Figure 6: Influences of cell number per an aggregate and of aggregate number for transplantation. (A): Macroscopic and histological observation four weeks after transplantation of 25 or 100 aggregates in which an aggregate consisted of 100,000 MSCs. (B): Histological score. Values are the means with SD (n = 4; P < 0.05 by the Mann-Whitney U test). (C): Ratio of the safranin-O positive area to the defect area. Values are the means with SD (n = 4; P < 0.05 by the Mann-Whitney U test). (D): Histological observation two weeks after transplantation of 10 and 80 aggregates in which an aggregate consisted of 250,000 MSCs labeled with DiI. Sagittal sections under fluorescence and the serial sections stained with TUNEL were shown. (E): In vitro analyses of aggregates of rabbit synovial MSCs. One or 40 aggregates, in which an aggregate consisted of 250,000 MSCs, were cultured in a well of 96-well plates. Macroscopic images for the wells and sagittal sections of the aggregates stained with TUNEL were shown.
successful cartilage regeneration was observed in the cases of a relatively small number of transplanted aggregates of MSCs, and the worst results were observed when the highest number of aggregates of MSCs was transplanted. These results were not what we expected, because we previously reported that better cartilage regeneration was obtained when higher cell densities of MSCs were embedded in collagen gel [3].

Why were poor results obtained when more than a certain number of aggregates were transplanted? We listed three possible reasons. First, nutrition to maintain transplanted MSCs was depleted and the environment around transplanted MSCs worsened when too many aggregates were transplanted. As shown in Figure 6E, in the case of 40 aggregates that were cultured for seven days in a well of 96-well plates, medium color changed to yellow. This means that adjustment of pH could not be controlled. Second, TUNEL positive cells increased when too many aggregates were transplanted. The number of TUNEL positive cells was higher when too many aggregates were transplanted (Figure 6D) than before transplantation (Figure 1D) and after a suitable number of aggregates were transplanted (Figure 6D). Third, transplantation of too many aggregates prevented chondro-progenitor cells from moving to the osteochondral defect without scaffolds; however, the use of scaffolds or materials to improve survival of transplanted cells is attractive. One of the methods is the use of a fibrin glue, which has an effect of improving survival of transplanted cells [26]. In addition, cell transplantation of MSCs with a fibrin glue can probably be performed under arthroscopic surgery. Further studies are needed to improve cell transplantation procedures.

Conclusion

Aggregated synovial MSCs were a useful source for cartilage regeneration considering such factors as easy preparation, higher chondrogenic potential and efficient attachment.

Abbreviations

αMEM: α-minimal essential medium; BMP: bone morphogenetic protein; CCM: complete culture medium; COL: collagen; CcR4: chemokine (C-X-C motif) receptor 4; EDTA: ethylenediaminetetraacetate; FBS: fetal bovine serum; GFP: green fluorescent protein; GJB2: gap junction protein, beta 2; JTG42: integrin, alpha 2; MeV: MultiExperiment Viewer; MMP: matrix metalloproteinase; MSC: mesenchymal stem cell; OCT: optimal cutting temperature; PBS: phosphate-buffered saline; PCK1: proprotein convertase subtilisin/kexin type 1; PFA: paraformaldehyde; RMA: Robust MultiChIP Analysis; RT: reverse transcription; SD: standard deviation; SO: safranin-O; SRY (sex determining region Y)-box; STC1: inducible gene 6; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.

Acknowledgements

This study was supported by “the Project for Realization of Regenerative Medicine” and “the Global Center of Excellence (GCOE) Program” by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan to IS, grants from the Japanese Ministry of Education Global Center of Excellence Program, International Research Center for Molecular Science in
Tooth and Bone Diseases to TM, and from a Health and Labor Sciences Research Grant, Research on Regenerative Medicine for Clinical Application to IS. Recombinant human BMP-7 was distributed by Stykker Biotech. We thank Miyoko Ojima for her expert help with histology and Izumi Nakagawa for management of our laboratory.

Author details
1. Section of Orthopedic Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. 2. Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. 3. Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan. 4. Instrumental Analysis Research Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. 5. Section of Cartilage Regeneration, Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.

Competing interests
All authors declare that they have no competing interests.

Received: 24 November 2011 Revised: 30 April 2012 Accepted: 7 June 2012 Published: 7 June 2012

References
1. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005, 52:2521-2529.
2. Shirasawa S, Sekiya I, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem 2006, 97:98-97.
3. Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I. Comparison of mesenchymal tissue-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008, 333:207-215.
4. Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, Sekiya I. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum 2008, 58:501-510.
5. Koga H, Engberdten L, Brinchmann JE, Muneta T, Sekiya I. Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surg Sports Traumatol Arthroc 2009, 17:1289-1297.
6. Koga H, Shimaya M, Muneta T, Nimura A, Monoto T, Hayashi M, Suzuki S, Ju YJ, Mochizuki T, Sekiya I. Local adherent technique for transplating mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther 2008, 10:R84.
7. Shimaya M, Muneta T, Ichinose S, Tsui K, Sekiya I. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthrits Cartilage 2010, 18:1300-1309.
8. Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 2007, 25:1761-1768.
9. Potapova IA, Brink PR, Cohen IS, Doronin SV. Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J Bioi Chem 2008, 283:13100-13107.
10. Bartosh TJ, Yostalo JH, Mohammadipoor A, Bazhanov N, Clebe K, Claypool K, Lee RH, Chai H, Prockop DJ. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci USA 2010, 107:13724-13729.
11. Miyamoto T, Muneta T, Tabuchi T, Matsumoto K, Saito H, Tsuji K, Sekiya I. Intravascular transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloprotease-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther 2010, 12:R206.
12. Takahashi R, Kuramoto T, Aoyagi K, Hashimoto S, Miyoshi I, Kasai N, Hakamata Y, Kobayashi E, Ueda M. Establishment and characterization of CAG/EGFP transgenic rabbit line. Transgen Res 2007, 16:115-120.
13. Niikura T, Hak DJ, Reddi AH. Global gene profiling reveals a downregulation of BMP gene expression in experimental atrophic nonunions compared to normal healing fractures. J Orthop Res 2006, 24:1463-1471.
14. Willems E, Leys N, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 2008, 379:127-129.
15. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thriagarajan M, White JA, Quackenbush J. TM4 microarray software suite. Methods Enzymol 2006, 411:134-193.
16. Wakitani S, Goto T, Pineda SJ, Young RG, Maniour JM, Caplan AI, Goldberg VM. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994, 76:579-592.
17. Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun 2001, 284:411-418.
18. Monto T, Muneta T, Hara K, Ju YJ, Mochizuki T, Makino H, Umezawa A, Sekiya I. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatol (Oxford) 2008, 47:1137-1143.
19. Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, Mochizuki T, Ichinose S, von der Mark K, Sekiya I. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells 2007, 25:689-696.
20. Wisniewski HG, Hua JC, Poppers DM, Naime D, Vlcek J, Cronstein BN. TNF/IL-1-inducible protein TSG-6 potentiates plasmid inhibition by inter-alpha-inhibitor and exerts a strong anti-inflammatory effect in vivo. J Immunol 1996, 156:1609-1615.
21. Maier R, Wisniewski HG, Vlcek J, Lotz M. TSG-6 expression in human articular chondrocytes. Possible implications in joint inflammation and cartilage degradation. Arthritis Rheum 1996, 39:552-559.
22. Mindrescu C, Dias AA, Olszewski RJ, Klein MJ, Reis LF, Wisniewski HG. Reduced susceptibility to collagen-induced arthritis in DBA/1J mice expressing the TSG-6 transgene. Arthritis Rheum 2002, 46:2653-2660.
23. Mindrescu C, Thorbecke GJ, Klein MJ, Vlcek J, Wisniewski HG. Amelioration of collagen-induced arthritis in DBA/1J mice by recombinant TSG-6, a tumor necrosis factor/interleukin-1-inducible protein. Arthritis Rheum 2000, 43:2668-2677.
24. Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R, D'Matta G, Sullivan DE, Prockop DJ. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 2000, 18:760-768.
25. Chung L, Garcia G, Lou Y, Zhou Q, Truong LD, D'Matta G, Lan X, Lan HY, Wang Y, Sheikh-Hamad D. Anti-inflammatory and renal protective actions of stanniocalcin-1 in a model of anti-glomerular basement membrane glomerulonephritis. Am J Pathol 2009, 174:1388-1398.
26. Guo HD, Wang HJ, Tan YZ, Wu JH. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction. Tissue Eng Part A 2011, 17:45-58.

Cite this article as: Suzuki et al.: Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration. Arthritis Research & Therapy 2012 14:R136.

doi:10.1186/ar3869

Cite this article as: Suzuki et al.: Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration. Arthritis Research & Therapy 2012 14:R136.