Preliminary Analysis of Dust Effects on Microwave Propagation Measured in Sudan

Elfatih A. A. Elsheikh, Islam Md. Rafiqul1, Jalel Chebil, Saad Bashir and Ahmad F. Ismail
Electrical and Computer Engineering Department, Kulliyyah of Engineering International Islamic University Malaysia (IIUM)
Jalan Gombak, 53100 Kuala Lumpur, Malaysia
E-mail: rafiq@iium.edu.my

Abstract. Dust storms are meteorological phenomena which occur for a percentage of time in arid and semi arid areas especially at African Sahara and Middle East. Measurements at existing microwave links have showed dust storms can potentially result in serious attenuation in signal level especially at Ku band and higher frequencies with direct impact on telecommunications system performance. Only a limited amount of research has been carried out and the available data was very scarce. Few prediction models have been developed to estimate microwave signal attenuation during the dust storm based on scattering theory and approximation of dust properties. However, real dust storm is a complex phenomenon which is difficult to be described by theoretical physical or mathematical models [5-6]. In this paper, an evaluation of the existing attenuation prediction models has been done based on the measured dust storm properties and measured attenuation in Sudan.

1. Introduction

It has been realized that attenuation is higher at frequency bands above to 10 GHz due to the sensitivity to weather conditions. Consequently, rain, snow, cloud, fog, dust storms and other phenomena cause signal attenuation which can seriously limit the performance of wireless communication systems[1-4]. Microwave signal attenuation due to dust storm is one of those potential problems and technical challenges need to be investigated in order to provide reliable wireless communication services[5-7]. Sand and dust-storms occur in many parts of the world, especially in the Middle East and arid parts of Asia, as well of Southwest USA, in the dry states such as Texas and Arizona.

Dust storms are becoming more frequent in some parts of the world; there is significant correlation between the increased occurrences of dust storm and the climate change phenomenon. From figure 1 it is obvious that the dust storm phenomena is increasing in recent years[8-9].

1 Islam Md Rafiqul: rafiq@iium.edu.my
Dust storms affect the microwave propagation and it is severe in high frequencies. It attenuates the signal and degrades the performance of microwave links especially in arid region\cite{10}. Limited research has been conducted in dust storm attenuation area. The scarcity of measured data forces researchers to work for the dust storm prediction modeling. Few theoretical models have been developed based on single scatterer, multiple scattering or mutual interaction phenomena \cite{1-3, 11-13}.

2. Measurement setup

Microwave links at 12GHz-13GHz and different lengths have been installed in Khartoum as shown in Fig. 2 and Table 1. All terrestrial links have been monitored and the transmitted and received signal levels have been recorded for one year. The corresponding visibility data have been collected from the meteorological department.
Table 1: Details of the four terrestrial links that are used for the study.

link	Location	Frequency MHZ	Length Km	
JERRAIF SOBA	E 32°36´8.70 N 15°36´29.90"	12765-12905	13031-13171	12.97
SOBA MODRAAT	E 32°29´56.00 N 15°32´41.50"	13031-13171	12765-12905	15.22
MODRAAT Omdurman	E 32°29´56.00 N 15°36´19.10"	12765-12905	13031-13171	7.19

Two attenuation prediction models have been evaluated using the analyzed dust particle properties, and based on the measured visibility and attenuation.

3. Dust Storm Prediction Models

Different approaches have been adopted to evaluate microwave signal attenuation due to dust storm in terms of its characteristics such as the number of dust particles per cubic meter, the mass of dust per cubic meter or visibility. Therefore, various investigations showed that the scattering of electromagnetic waves propagating in dust storms is influenced by various factors including incident wave frequency, permittivity, density, geometric scale, distribution of grains, moisture and chemical behavior of dust particles[14].

Two recent attenuation prediction models have been investigated. These models have been based on certain assumptions but rely on some empirical inputs such as particle shape, chemical composition, size and dielectric constant.

3.1 Chu’s Modified by Goldhirsh Model (1982)

Goldhirsh [1] has modified Chu’s model by expressing the specific attenuation coefficient as a function of visibility and particle size distribution as follows.

\[
\Lambda = \frac{5.67 \times 10^2}{\sqrt{\lambda r_e^2 \rho}} \times \frac{\epsilon'}{(\epsilon' + 2)^2 + \epsilon''^2} \sum P_i r_i^3 \quad [\text{dB/km}] \tag{1}
\]

where
- \(r \) = particle radius in meters.
- \(\lambda \) = wavelength (m).
- \(\epsilon' \), \(\epsilon'' \) = complex dielectric constant of dust particles.
- \(V \) = visibility (m)
- \(r_e \) = Equivalent particle radius in meter.

Although, Chu modified model has attained close agreement between predicted and measured attenuation, the model loses its reliability when used to predict attenuation above 37GHz [14-15].

3.2 Elshaikh Model (2008)

Elshaikh.Z.[15] has proposed a prediction model based on Mie scattering which can calculate the specific attenuation in microwave wave band with high reliability. The model has related attenuation coefficient to the visibility, particle size distribution.
\[A = \frac{r_e f}{V} (x + yr_e^2 f^2 + zr_e^3 f^3) \text{ [dB/km]} \]

(2)

where

\[r_e = \text{ Equivalent particle radius in meter.} \]
\[V = \text{ Visibility in kilometer.} \]
\[f = \text{ Frequency in GHz.} \]

\[x = \frac{1886 \times \varepsilon'}{(\varepsilon'+2)^2+\varepsilon'^2} \]

(3)

\[y = 137 \times 10^3 \times \varepsilon' \left(\frac{6(7\varepsilon'^2+7\varepsilon'^2+4\varepsilon'-20)}{5(\varepsilon'+2)^2+\varepsilon'^2}\right) + \frac{1}{15} + \frac{5}{3(\varepsilon'+3)^2+4\varepsilon'^2} \]

(4)

\[z = 379 \times 10^4 \left\{ \frac{(\varepsilon'-1)^2(\varepsilon'+2)+2(\varepsilon'-1)(\varepsilon'+2)-9+\varepsilon'^4}{(\varepsilon'+2)^2+\varepsilon'^2} \right\} \]

(5)

4. Measurements

In the study conducted by the author, a duststorm was monitored on September, 2008 in Khartoum- Sudan. One of most severe dust storm occurred on 21st of September. Dust storm attenuation measurements recorded by Marconi microwave system which monitoring a microwave network providing cell phone services in Sudan. Figure 3 and 4 show a record of microwave signal level during the storm. On the other hand, Sudan meteorological Authority recorded a visibility less than 50 m during the storm.

![SOBA_MUD](image_url)

Figure 3: Measured signal level for soba –MUD link on 21st September 2008.
Figure 3 showed that measured total attenuation for SOBA_MUD link was equal to 32 dB at 13GHz and 15.2 km link. Whereas, Figure 4 showed the measured total attenuation for SOBA_JERRAIF link equal to 36 dB at 13GHz and 13 km link length.

5. Predicted attenuation

Dust storm attenuation was predicted using models proposed by Goldhirsh and Zain with the parameters $r_e = 38 \mu m$, $e'=4.2$, $e''=1.56$, $V=50 m$ and $f=13 GHz$. Equations (1) to (5) were used to estimate the attenuations and presented in Table 2. Measured and predicted attenuation are compared in Table 3. It is obvious that the measured attenuation are 20 and 25 dB higher than that predicted by both models for Soba-Mud and Soba-Jerraif links respectively.

Link	Goldhirsh dB/km	Zain dB/km	Length km	Goldhirsh Total dB	Zain Total dB
SOBA_MUD	0.72	0.74	15.22	10.8	11.24
SOBA_JERRAIF	0.72	0.74	12.97	9.3	9.6

Table 3: Comparision between measured and predicted attenuation

Link	Goldhirsh dB	Zain dB	Measured dB
SOBA_MUD	10.8 dB	11.24 dB	32 dB
SOBA_JERRAIF	9.3 dB	9.6 dB	36 dB

6. Conclusion

Dust storms can cause serious attenuation in signal level especially at Ku band and higher frequencies with direct impact on telecommunications system performance. Two operational microwave links at 13 GHz in Sudan were monitored during dust storm and observed more than 30 dB attenuation for about 10 Km lengths. Models proposed by Goldhirsh and Zain were used to predict attenuation on both measurements. It is found that both models underestimate the attenuation measured on both microwave links.
References

[1] Goldhirsh, J. 1982. A parameter review and assessment of attenuation and backscatter properties associated with dust storms over desert regions in the frequency range of 1 to 10 GHz., IEEE Transactions on Antennas and Propagation, 30(6): p. 1121-1127.

[2] Ahmed, A.S., A.A. Ali, and M.A. Alhaider. 1987. Airborne Dust Size Analysis for Tropospheric Propagation of Millimetric Waves into Dust Storms. Geoscience and Remote Sensing, IEEE Transactions on. GE-25(5): p. 593-599.

[3] Elshaikh, Z.E.O. and M. Islam. 2009. Mathematical model for the prediction of microwave signal attenuation due to duststorm. Progress In Electromagnetics Research, 6: p. 139-153.

[4] Chen, H.Y. and C.C. Ku, 2012. Calculation of Wave Attenuation in Sand and Dust Storms by the FDTD and Turning Bands Methods at 10&#x2013;100 GHz. Antennas and Propagation, IEEE Transactions on, 60(6): p. 2951-2960.

[5] Abuhdima, E.M. and I.M. Saleh. Effect of sand and dust storms on GSM coverage signal in southern Libya. 2010: IEEE.

[6] Elabdin, Z., et al. 2008. Duststorm measurements for the prediction of attenuation on microwave signals in Sudan. International Conference on Computer and Communication Engineering, ICCCE 2008.

[7] Md. Rafiqul Islam, Zain Elabdin Omer Elshaikh, Othman O. Khalifa, AHM Zahirul Alam, Sheroz Khan and A.W. Naji. 2010. Prediction Of Signal Attenuation Due To Duststorms Using Mie Scattering. IIUM Engineering Journal (ISSN: 1511-788X), Vol. 11, No. 1, pp. 71-87.

[8] Islam, M.R., et al. Proposing a horizontal path adjustment factor for microwave link's attenuation prediction based on the analysis of dust storm behavior. in Communications (MCC), 2011 IEEE 10th Malaysia International Conference on. 2011.

[9] Ghobrial, S., et al., DUST STORMS IN THE SUDAN: INTENSITY AND PARTICLES'CHARACTERISTICS. IEEE, 1985. 85: p. 326-328.

[10] Xiao-Ying, D., C. Hsing-Yi, and G. Dong-Hui, Microwave and Millimeter-Wave Attenuation in Sand and Dust Storms. Antennas and Wireless Propagation Letters, IEEE, 2011. 10: p. 469-471.

[11] Ruike, Y., W. Zhensen, and Y. Jinguang, The Study of MMW and MW Attenuation Considering Multiple Scattering Effect in Sand and Dust Storms at Slant Paths. International journal of infrared and millimeter waves, 2003. 24(8): p. 1383-1392.

[12] Zhou, Y.-H., Q. Shu He, and X. Jing Zheng, Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles. The European Physical Journal E: Soft Matter and Biological Physics, 2005. 17(2): p. 181-187.

[13] Vishvakarma, B.R. and C.S. Rai. Limitations of Rayleigh scattering in the prediction of millimeter wave attenuation in sand and dust storms. in Geoscience and Remote Sensing Symposium, 1993. IGARSS '93. Better Understanding of Earth Environment., International. 1993.

[14] Li, X., L. Xie, and X. Zheng, The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012. 113(3): p. 251-258.

[15] Zain Elabdin, Z., et al. 2008. Development of mathematical model for the prediction of microwave signal attenuation due to duststorm. International Conference on Computer and Communication Engineering, 2008. ICCCE 2008.