Age at maturity of Mediterranean marine fishes

A. C. TSIKLIRAS, K. I. STERGIOU

doi: 10.12681/mms.659

To cite this article:

TSIKLIRAS, A. C., & STERGIOU, K. I. (2014). Age at maturity of Mediterranean marine fishes. Mediterranean Marine Science, 16(1), 5-20. https://doi.org/10.12681/mms.659
Age at maturity of Mediterranean marine fishes

A.C. TSIKLIRAS1 AND K.I. STERGIOU1,2

1 Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, UP Box 134, 541 24, Thessaloniki, Greece
2 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Aghios Kosmas, 16604, Athens, Greece

Corresponding author: atsik@bio.auth.gr
Handling Editor: Konstantinos Tsagarakis

Received: 3 October 2013; Accepted: 22 July 2014; Published on line: 26 September 2014.

Abstract

In this review, we collected data on the age at maturity (t_m) and maximum reported age (t_max) for 235 stocks of Mediterranean marine fishes, belonging to 82 species, 37 families, 12 orders and 2 classes (Actinopterygii and Elasmobranchii). Among Actinopterygii (mean t_m ± SD = 2.20 ± 1.43 y, n = 215), t_m ranged from 0.3 y, for the common goby Pomatoschistus microps, to 12 y, for the dusky grouper Epinephelus marginatus, while among Elasmobranchii (mean t_m ± SD = 5.94 ± 2.47 y, n = 20), t_m ranged between 2.7 y, for brown ray Raja miraletus, and 12 y for the picked dogfish Squalus acanthias. Overall, t_max ranged between 1 y, for the transparent goby Aphia minuta, and 70 y, for the wreckfish Polyprion americanus. Mean t_max of Actinopterygii (t_max ± SD = 10.14 ± 9.42 y) was lower than that of Elasmobranchii (t_max ± SD = 14.05 ± 8.47 y); t_m exhibited a strong positive linear relation with t_max for both Actinopterygii (log t_m = 0.58 x log t_max – 0.25, r² = 0.51, P < 0.001) and Elasmobranchii (log t_m = 0.67 x log t_max – 0.006, r² = 0.51, P = 0.007). Mean t_m/t_max did not differ significantly with sex within Actinopterygii (ANOVA: F = 0.27, P = 0.60, n = 90; females: mean ± SD = 0.276 ± 0.143; males: mean ± SD = 0.265 ± 0.138) and Elasmobranchii (ANOVA: F = 1.44, P = 0.25, n = 10; females: mean ± SD = 0.499 ± 0.166; males: mean ± SD = 0.418 ± 0.133). Finally, the dimensionless ratio t_m/t_max was significantly lower (ANOVA: F = 31.04, P < 0.001) for Actinopterygii (mean ± SD = 0.270 ± 0.135, n = 180) than for Elasmobranchii, (mean ± SD = 0.458 ± 0.152, n = 20), when stocks with combined sexes were excluded from the analysis.

Keywords: Age at maturity, maximum age, empirical equations, life history.

Introduction

The reproductive life history characteristics of stocks, such as spawning period (Tsikliras et al., 2010), length at maturity (Tsikliras & Stergiou, 2014) and fecundity (Despoti & Stergiou, 2013) are important for assessing the effects of fishing on populations and ecosystems (Jennings et al., 1998). Age at maturity (t_m) is a key element of the life history strategies of fishes and has been widely used in modelling and grouping fish species based on their traits (Winemiller & Rose, 1992; Rochet, 2000; King & McFarlane, 2003), as well as a stress indicator for fisheries (Trippel, 1995). Olsen et al. (2004) have shown that simultaneous decreases in growth rate and t_m are evidence of fishery-induced evolution in Atlantic cod (Gadus morhua) following population decrease that has been attributed to overfishing. The t_m is also essential in demographic analyses (Chen & Yuan, 2006) being the lower limit of generation time (= the mean age of the spawning stock), which is highly correlated with the intrinsic rate of population growth (Ainsley et al., 2011).

The availability of t_m estimates is limited compared to length at maturity data (Tsikliras & Stergiou, 2014) because it requires either ageing of caught individuals or knowledge of the local growth parameters in order for t_m to be estimated from the corresponding length at maturity. Therefore, the literature on the variability of t_m among families and orders of fish is rather scarce. Jennings et al. (1998) analyzed the life history traits of 18 fish stocks and report that stocks with high t_m, such as rays and skates, tend to decline more than expected from their rates of fishing mortality. Recently, Drazen & Haedrich (2012) analyzed the life history characteristics of 41 deep-sea demersal fishes and report that t_m increases with depth.

This review article is the third in the series of reviews on the reproductive biology of Mediterranean marine fishes, the first being by Tsikliras et al. (2010) on their spawning period, and complements the review on the size at maturity of Mediterranean fishes (Tsikliras & Stergiou, 2014).

The aim of the present work was to collect the available data on the age at maturity (t_m, y) and maximum reported age (t_max, y) for Mediterranean marine fish stocks and study: (a) the phylogenetic (between classes), sexual (between sexes) and habitat (among habitats - only for Actinopterygii) variability of t_m, (b) the relationship between t_m and t_max per class and (c) the dimensionless ratio.
Results

Perciformes were the most represented order (128 stocks; 54.5% of the total) of the dataset, Sparidae the most represented family (38 stocks; 16% of the total) and Trachurus trachurus the most represented species (17 stocks) (Table 1).

Overall, we collected data on t_m for 235 stocks, belonging to 82 species, 37 families, 12 orders and 2 classes (Table 1). Among Actinopterygii ($n = 215$), t_m ranged from 0.3 y, for the common goby Pomatoschistus microps, to 12 y for the dusky grouper Epinephelus marginatus, while among Elasmobranchii ($n = 20$), it ranged between 2.7 y, for the brown ray Raja miraletus, and 12 y for the picked dogfish Squallus acanthias. The mean $t_m \pm SD$ was 2.20 \pm 1.43 y for Actinopterygii and 5.94 \pm 2.47 y for Elasmobranchii (Table 1). The t_{max} ranged between 1 y, for the transparent goby Aphia minuta, and 70 y, for the wreckfish Polyprion americanus. Mean t_{max} was lower for Actinopterygii ($t_{\text{max}} \pm SD = 10.14 \pm 9.42$ y) compared to Elasmobranchii ($t_{\text{max}} \pm SD = 14.05 \pm 8.47$ y). The frequency distribution of t_m was unimodal for both classes, with a peak at 2 y for Actinopterygii and a peak at 5 y for Elasmobranchii (Fig. 1).

The t_m exhibited a strong positive linear relation with t_{max} for both Actinopterygii and Elasmobranchii (Fig. 2). The slopes of the relations did not differ between Actinopterygii and Elasmobranchii (ANCOVA: $F = 0.16$, $P = 0.69$) but the intercepts did (ANCOVA: $F = 72.45$, $P < 0.001$). The empirical equations on the logarithmic values were (the non-transformed equations are also given for comparability purposes):

$$\text{Actinopterygii} \quad \log t_m = 0.58 \times \log t_{\text{max}} - 0.25, \quad r^2 = 0.51, \quad P < 0.001, \quad n = 215$$

$$t_m = 0.11 \times t_{\text{max}} + 1.10$$

Fig. 1: Percentage frequency distribution of age at maturity (t_m, y) of Mediterranean marine stocks per class. Grey bars refer to Actinopterygii ($n = 215$) and black bars to Elasmobranchii ($n = 20$).
Table 1: Age (tm) at maturity of Mediterranean marine fish stock and location of study. Habitats: D: demersal, P: pelagic, R: reef-associated, BEP: benthopelagic, BAD: bathydemersal, BAP: bathypelagic. Years of sampling: Sex: F: females, M: males, C: combined sexes. N: number of specimens examined; Lmax: maximum length (cm); tm: age at maturity (y); tmax: maximum reported age (y); the tm/tmax ratio. Nomenclature based on FishBase. Italicized Lmax and tmax values were taken from FishBase (Froese & Pauly, 2014).

No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	Lmax	tm	tmax	tm/tmax	Reference	
1	ACTINOPTERYGII	Chlorophthalmidae	Chlorophthalmus agassizi	Ionian Sea	BAD	F	3342	19.2	3.0	8	0.38	D'Onglia et al. (2006)	
2	Synodontidae	Saurida undosquamis	Levantine Sea	R	1999-2000	F	234	30.0	1.0	8	0.13		
3		Saurida undosquamis	Levantine Sea	R	1999-2000	M	368	29.0	1.0	7	0.14		
4	Beloniformes	Belone belone	Aegean Sea	P	1997	F	240	57.5	2.0	8	0.25	Uckun et al. (2004)	
5	Clupeiformes	Sardina pilchardus	Aegean Sea	P	1993-1996	C	1271	15.6	1.0	4	0.25	Akyol et al. (1996)	
6		Sardina pilchardus	Aegean Sea	P	19.5	F	500	24.8	1.0	5	0.25	Mouhoub (1986)	
7		Sardina pilchardus	Aegean Sea	P	17.5	M	500	24.3	1.3	5	0.27	Mouhoub (1986)	
8		Sardina pilchardus	Aegean Sea	P	2000-2002	F	2849	17.3	1.0	4	0.25	Tsikliras & Koutrakis (2013)	
9		Sardina pilchardus	Aegean Sea	P	2000-2002	M	1993	16.2	0.9	4	0.22	Tsikliras & Koutrakis (2013)	
10		Sardinella aurita	Aegean Sea	P	2000-2002	F	500	24.8	1.0	5	0.25	Tsikliras & Antonopoulou (2006)	
11		Sardinella aurita	Aegean Sea	P	2000-2002	M	500	24.3	1.3	5	0.27	Tsikliras & Antonopoulou (2006)	
12		Sardinella aurita	Aegean Sea	P	2000-2002	C	1271	15.6	1.0	4	0.25	Tsikliras & Antonopoulou (2006)	
13		Dussumieriidae	Etrumeus sadina	Alexandria coast	P	2008	F	656	25.0	1.0	3	0.67	Osman et al. (2011)
14		Etrumeus sadina	Alexandria coast	P	2008	M	656	25.0	1.0	3	0.67	Osman et al. (2011)	
15		Engraulidae	Engraulis encrasicolus	Bay of Cadiz	P	1989	F	757	18.0	1.0	4	0.25	Millán (1999)
16		Engraulis encrasicolus	Bay of Cadiz	P	1990	F	1326	18.0	1.0	4	0.25	Millán (1999)	
17		Engraulis encrasicolus	Bay of Cadiz	P	1991	F	469	18.0	1.0	4	0.25	Millán (1999)	
18		Engraulis encrasicolus	Bay of Cadiz	P	1992	F	500	18.0	1.0	4	0.25	Millán (1999)	
19		Engraulis encrasicolus	Bay of Cadiz	P	1989	M	751	18.0	1.0	4	0.25	Millán (1999)	
20		Engraulis encrasicolus	Bay of Cadiz	P	1990	M	1181	18.0	1.0	4	0.25	Millán (1999)	
21		Engraulis encrasicolus	Bay of Cadiz	P	1991	M	564	18.0	1.0	4	0.25	Millán (1999)	
22		Engraulis encrasicolus	Bay of Cadiz	P	1992	M	612	18.0	1.0	4	0.25	Millán (1999)	
23		Engraulis encrasicolus	Bay of Cadiz	C	19.0	F+M	500	24.8	1.0	5	0.21	Bouaziz & Benoufi (2004)	
24	Gadidae	Micromesistius poutassou	Adriatic Sea	BAP	1986-1988	C	320	3.0	1.0	8	0.13	Fogliano & Granito (1981)	
25		Trisopterus capelanus	Aegean Sea	BAP	1995	F+M	1502	25.0	2.0	5	0.25	Politou & Papaconstantinou (1995)	
26		Trisopterus capelanus	Aegean Sea	BAP	1995	F+M	1011	25.0	2.0	5	0.25	Politou & Papaconstantinou (1995)	
27		Trisopterus capelanus	Aegean Sea	BAP	1996	F+M	887	25.0	2.0	5	0.20	Fogliano & Granito (1995)	
28		Micromesistius poutassou	Adriatic Sea	BAP	1995-1998	C	423	66.0	2.0	4	0.50	Zobal (2001)	

(continued)
No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	t_{max}	t_n	t_{max}	t_n	Reference
29	Merluccius merluccius	Algerian coast	D	F	73		65.5	2.9	9	0.32		Bouaziz et al. (2001)
30	Merluccius merluccius	-	D	F	955		68.0	2.7	9	0.30		Garcia-Rodriguez & Esteban (1995)
31	Merluccius merluccius	-	D	M	502		52.5	2.2	7	0.31		Garcia-Rodriguez & Esteban (1995)
32	Merluccius merluccius	Gulf of Lions	D	F	308		50.0	3.5	8	0.44		Recasens et al. (1998)
33	Merluccius merluccius	Gulf of Lions	D	M	619		42.0	3.0	8	0.38		Recasens et al. (1998)
34	Merluccius merluccius	Libyan coast	D	F	81		44.0	4.0	9	0.44		Mugahid & Hashem (1982)
35	Merluccius merluccius	Libyan coast	D	M	198		41.0	4.0	9	0.44		Mugahid & Hashem (1982)
36	Merluccius merluccius	Balearic Sea	D	F	955		68.0	2.0	7	0.29		Garcia-Rodriguez & Esteban (1995)
37	Merluccius merluccius	Balearic Sea	D	M	502		52.5	2.0	7	0.29		Garcia-Rodriguez & Esteban (1995)
38	Merluccius merluccius	Algerian coast	D	F			60.0	3.0	8	0.38		Bouaziz et al. (1998)
39	Merluccius merluccius	Algerian coast	D	M			60.0	2.0	8	0.25		Bouaziz et al. (1998)

Mugiliformes

No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	t_{max}	t_n	t_{max}	t_n	Reference
40	Mugilidae	Liza aurata	Ionian Sea	P	1992-1994	F	393	50.0	1.8	3	0.61	Hotos (1999)
41	Mugilidae	Liza aurata	Ionian Sea	P	1992-1994	M	312	50.0	2.1	3	0.70	Hotos (1999)
42	Mugilidae	Liza haematocheila	Aegean Sea	P	2003-2009	C	32	74.4	5.0	15	0.33	Minos et al. (2010)
43	Mugilidae	Liza haematocheila	Black Sea	D	1995	F	87	66.7	3.0	15	0.20	Okumus & Bascan (1997)
44	Mugilidae	Liza haematocheila	Black Sea	D	1995	M	79	66.7	2.0	15	0.13	Okumus & Bascan (1997)
45	Mugilidae	Liza ramada	Aegean Sea	P	1989-1990	F	39	38.6	3.0	10	0.30	Koutrakis (1994)
46	Mugilidae	Liza ramada	Ionian Sea	P	1990-1995	F	80	54.8	3.0	10	0.30	Minos (1996)
47	Mugilidae	Liza ramada	Ionian Sea	P	1990-1995	M	64	42.0	3.0	10	0.30	Minos (1996)
48	Mugilidae	Liza ramada	Levantine Sea	P	1992-1994	F	114	36.9	3.0	10	0.30	Ergene (2000)
49	Mugilidae	Liza ramada	Levantine Sea	P	1992-1994	M	87	36.9	3.0	10	0.30	Ergene (2000)
50	Mugilidae	Liza saliens	Aegean Sea	D	1989-1990	F	123	30.5	3.0	4	0.75	Koutrakis (1994)
51	Mugilidae	Liza saliens	Aegean Sea	D	1989-1990	M	55	30.5	3.0	4	0.75	Koutrakis (1994)
52	Mugilidae	Liza saliens	Ionian Sea	D	1991-1995	F	217	30.0	2.9	4	0.73	Katselis (1996)
53	Mugilidae	Liza saliens	Ionian Sea	D	1991-1995	M	272	24.0	2.1	4	0.52	Katselis (1996)

Perciformes

No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	t_{max}	t_n	t_{max}	t_n	Reference
54	Apogonidae	Apogon imberbis	NW Mediterranean	R	1998-1999	F	122	12.1	1.0	5	0.20	Klein & Raventos (2007)
55	Apogonidae	Apogon imberbis	NW Mediterranean	R	1998-1999	M	127	12.1	1.0	5	0.20	Klein & Raventos (2007)
56	Blednidae	Parablennius ruber	D				14.1	1.0	3	0.40		Azevedo & Homem (2002)
57	Carangidae	Caranx cryosus	Gulf of Gabes	R	2004-2006	F	777	41.4	2.8	11	0.25	Sley et al. (2012)
58	Carangidae	Caranx cryosus	Gulf of Gabes	R	2004-2006	M	891	41.6	2.4	11	0.22	Sley et al. (2012)
59	Seriola dumerili	Seriola dumerili	S Mediterranean	R	1990-1992	F	211	150.0	4.0	15	0.27	Minno et al. (1995)
60	Seriola dumerili	Seriola dumerili	S Mediterranean	R	1990-1992	M	205	150.0	3.5	15	0.23	Minno et al. (1995)
61	Trachurus mediterraneus	Trachurus mediterraneus	Aegean Sea	P	1989-1991	F	369	39.3	1.4	10	0.14	Karlou-Riga (1995)

(continued)
No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	L_{max}	t_m	t_{max}	L_m/L_{max}	Reference
62		Trachurus trachurus	Aegian Sea	P	1989-1991	F	595	33.9	2.6	10	0.26	Karlou-Riga (1995)
63		Trachurus trachurus	Adriatic Sea	P	1986	F	154	32.0	2.1	10	0.21	Alegria (1990)
64		Trachurus trachurus	Adriatic Sea	P	1986	M	150	32.0	2.6	10	0.26	Alegria (1990)
65		Trachurus trachurus	Adriatic Sea	P	1987	F	134	32.0	2.7	10	0.27	Alegria (1990)
66		Trachurus trachurus	Adriatic Sea	P	1987	M	155	32.0	2.8	10	0.28	Alegria (1990)
67		Trachurus trachurus	Adriatic Sea	P	1988	F	201	32.0	2.5	10	0.25	Alegria (1990)
68		Trachurus trachurus	Adriatic Sea	P	1988	M	180	32.0	2.7	10	0.27	Alegria (1990)
69		Trachurus trachurus		P		F	27.5	1.0	10	0.10	Koriichi (1988)	
70		Trachurus trachurus		P		M	27.5	1.0	10	0.10	Koriichi (1988)	
71		Trachurus trachurus	Balearic Sea	P	2001	F	33	22.0	2.0	10	0.20	Abaunza et al. (2003)
72		Trachurus trachurus	Balearic Sea	P	2001	M	67	22.0	2.0	10	0.20	Abaunza et al. (2003)
73		Trachurus trachurus	Ionian Sea	P	2001	F	43	37.0	1.9	10	0.19	Abaunza et al. (2003)
74		Trachurus trachurus	Ionian Sea	P	2001	M	41	43.0	2.7	10	0.27	Abaunza et al. (2003)
75		Trachurus trachurus	Aegian Sea	P	2001	F	85	34.0	2.6	10	0.26	Abaunza et al. (2003)
76		Trachurus trachurus	Aegian Sea	P	2001	M	67	37.0	0.9	10	0.09	Abaunza et al. (2003)
77		Trachurus trachurus	Alboran Sea	P	2001	F	29	39.0	1.8	10	0.18	Abaunza et al. (2003)
78		Trachurus trachurus	Alboran Sea	P	2001	M	60	37.0	1.8	10	0.18	Abaunza et al. (2003)
79	Centracanthidae	Spicara flexuosa	Ionian Sea	P	1984-1985	F	1870	14.7	1.0	5	0.20	Mytilineou (1988)
80	Spicara flexuosa	Ionian Sea	P	1984-1985	M	885	16.8	1.0	5	0.20	Mytilineou (1988)	
81	Spicara maena	Aegian Sea	P	2004-2007	F	1766	20.0	2.0	5	0.40	Soykan et al. (2010)	
82	Spicara maena	Aegian Sea	P	2004-2007	M	398	20.0	2.0	5	0.40	Soykan et al. (2010)	
83	Cepolidae	Cepola macrpphalma	Aegian Sea	D	1986-1988	F	1763	40.0	1.9	5	0.38	Stergiou et al. (1996)
84	Cepola macrpphalma	Aegian Sea	D	1986-1988	M	1588	60.0	2.6	6	0.43	Stergiou et al. (1996)	
85	Gobiidae	Aphro minuta	Balearic Sea	P	1985-1993	F	168	4.4	0.7	1	0.70	Iglesias & Morales-Nin (2001)
86	Aphro minuta	Balearic Sea	P	1985-1993	M	182	4.0	0.6	1	0.60	Iglesias & Morales-Nin (2001)	
87	Crystalllogobius linearis	Adriatic Sea	D	1996	F	114	3.3	0.4	1	0.42	La Mesa (2001)	
88	Crystalllogobius linearis	Adriatic Sea	D	1996	M	100	4.1	0.4	1	0.42	La Mesa (2001)	
89	Deltentosteus quadrimaculatus	Aegian Sea	D	2004-2007	F	527	9.2	2.0	5	0.40	Metin et al. (2011b)	
90	Deltentosteus quadrimaculatus	Aegian Sea	D	2004-2007	M	470	9.2	2.0	5	0.40	Metin et al. (2011b)	
91	Gobius vitatus	Adriatic Sea	D	2001-2002	F	402	5.4	0.8	2	0.35	Kovicic (2007)	
92	Gobius vitatus	Adriatic Sea	D	2001-2002	M	302	5.3	0.8	2	0.35	Kovicic (2007)	
93	Pomatoschistus marmoratus	Suez Canal	D	1986-1987	F	311	5.6	1.0	2	0.50	Fouda et al. (1993)	
94	Pomatoschistus marmoratus	Suez Canal	D	1986-1987	M	115	5.6	1.0	2	0.50	Fouda et al. (1993)	
95	Pomatoschistus microps	Mauguiro Lagoon	D	1985-1989	C	7363	4.7	0.3	2	0.15	Bouchereau et al. (1993)	
96	Silhouetsea aegyptia	Suez Canal	D	1986-1987	F	300	5.2	1.0	2	0.50	Fouda et al. (1993)	
97	Silhouetsea aegyptia	Suez Canal	D	1986-1987	M	178	5.2	1.0	2	0.50	Fouda et al. (1993)	

(continued)
No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	\(t_{\text{max}} \)	\(t_{\text{min}} \)	\(t_{\text{max}} \)	\(t_{\text{min}} / t_{\text{max}} \)	Reference
98	Mullidae	Mullus surmuletus	Mediterranean coast	D	2001	F	171	20.0	0.9	5	0.18	Franco et al. (2012)
99	Moronidae	Dicentrarchus labrax	Gulf of Annaba	D	1990-1991	F	300	60.0	3.0	15	0.20	Kara (1997)
100	Dicentrarchus labrax	Gulf of Annaba	D	1990-1991	M	227	60.0	2.0	15	0.13	Kara (1997)	
101	Dicentrarchus labrax	Tunisian coast	D	1973-1975	F	56.0	4.5	15	0.30	Quignard et al. (1978)		
102	Dicentrarchus labrax	Tunisian coast	D	1973-1975	M	56.0	2.5	15	0.17	Quignard et al. (1978)		
103	Dicentrarchus labrax	Alexandria coast	D	1981-1982	F	467	67.0	4.0	15	0.27	Wassef & El Emary (1989)	
104	Dicentrarchus labrax	Alexandria coast	D	1981-1982	M	232	44.4	2.0	15	0.13	Wassef & El Emary (1989)	
105	Mullidae	Mullus barbatus barbatus	Mediterranean coast	D	1995-1998	C	104	24.9	1.9	7	0.29	Zoubi (2001)
106	Mullus surmuletus	Mediterranean coast	D	2009	F	179	30.0	2.0	6	0.33	Lamrini (2010)	
107	Mullus surmuletus	Mediterranean coast	D	2009	M	113	29.0	2.0	5	0.40	Lamrini (2010)	
108	Mullus surmuletus	Mediterranean coast	D	2007-2008	C	1385	28.0	1.4	6	0.25	Mehanna (2009)	
109	Mullus surmuletus	Aegean Sea	D	1991-1992	F	157	29.9	2.0	6	0.33	Vassilopoulou & Papaconstantinou (1995)	
110	Mullus surmuletus	Aegean Sea	D	1991-1992	M	245	26.4	1.0	5	0.20	Vassilopoulou & Papaconstantinou (1995)	
111	Mullus surmuletus	Aegean Sea	D	1990-1992	F	32.0	1.0	6	0.17	Remones et al. (1995)		
112	Mullus surmuletus	Balaeric Sea	D	1990-1992	M	32.0	1.0	5	0.20	Remones et al. (1995)		
113	Upeneus moluccensis	Levantine Sea	R	2002-2003	F	343	21.1	1.0	5	0.20	Ozvarol et al. (2010)	
114	Upeneus moluccensis	Levantine Sea	R	2002-2003	M	121	16.4	1.0	5	0.20	Ozvarol et al. (2010)	
115	Upeneus pori	Levantine Sea	D	1999-2000	F	324	17.0	1.0	5	0.20	Ismen (2006)	
116	Upeneus pori	Levantine Sea	D	1999-2000	M	292	15.1	1.0	5	0.20	Ismen (2006)	
117	Polyprionidae	Polyprion americanus	Ionian Sea	D	1995-1996	F	127	59.2	2.6	21	0.12	Chakroun-Marzouk & Kiari (2003)
118	Pomatomidae	Pomatomus saltatrix	Gulf of Gabès	P	1998-2000	F	34.5	1.9	9	0.21	Dhib et al. (2006)	
119	Pomatomidae	Pomatomus saltatrix	Gulf of Gabès	P	1998-2000	M	288	34.5	2.4	9	0.27	Dhib et al. (2006)
120	Scaridae	Sperisomia cretensis	Aegian Sea	R	1985-1986	F	157	32.5	1.0	8	0.13	Papaconstantinou et al. (1988)
121	Scombrids	Scombrids	P	2005-2006	C	694	71.0	1.0	4	0.25	Ates et al. (2008)	
122	Serranidae	Epinephelus marginatus	Algerian coast	R	1994-1996	F	219	119.0	5.0	50	0.10	Marino et al. (2001)
123	Serranidae	Epinephelus marginatus	Balaeric Sea	R	1994-1996	M	59	129.0	12.0	50	0.24	Marino et al. (2001)

(continued)
No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	L_{\text{max}}	t_{m}	t_{\text{max}}	L_{m}/t_{\text{max}}	Reference
134	Sparidae	Serranus hepatus	Adriatic Sea	D	2002-2003	C	1218	9.0	2.0	7	0.29	Dulcie et al. (2007)
135		Boops boops	Mediterranean coast	D	1995-1998	C	110	25.6	1.4	5	0.29	Zoubi (2001)
136		Boops boops	Adriatic Sea	D	1957-1958	F	335	23.0	2.0	5	0.40	Alegria-Hernández (1990)
137		Boops boops	Adriatic Sea	D	1957-1958	M	440	20.0	1.5	5	0.30	Alegria-Hernández (1990)
138		Boops boops	Algerian coast	D		F		23.5	2.0	5	0.40	Chali-Chabane (1988)
139		Boops boops	Cretan Sea	D	1988-1990	F	778	18.0	1.0	5	0.20	Kallianiotis (1992)
140		Boops boops	Cretan Sea	D	1988-1990	M	597	18.0	1.0	5	0.20	Kallianiotis (1992)
141		Boops boops	Cretan Sea	D	1988-1990	F	695	18.0	1.0	5	0.20	Kallianiotis (1992)
142		Boops boops	Cretan Sea	D	1988-1990	M	456	18.0	1.0	5	0.20	Kallianiotis (1992)
143		Dentex dentex	Balaeic Sea	BEP	1993-1995	F	210	80.0	2.2	28	0.08	Morales-Nin & Moranta (1997)
144		Dentex dentex	Balaeic Sea	BEP	1993-1995	M	75.0	6.7	28	0.24	Morales-Nin & Moranta (1997)	
145		Diplodus annularis	Adriatic Sea	BEP	2000-2002	F	745	23.0	2.6	13	0.20	Matić-Skoko et al. (2007)
146		Diplodus annularis	Adriatic Sea	BEP	2000-2002	M	780	20.0	2.1	13	0.16	Matić-Skoko et al. (2007)
147		Diplodus sargus sargus	Gulf of Tunis	D	2002-2004	F	108	37.2	4.0	10	0.40	Mouine et al. (2007)
148		Diplodus sargus sargus	Gulf of Tunis	D	2002-2004	M	37	30.0	4.0	10	0.40	Mouine et al. (2007)
149		Diplodus sargus sargus	Algerian coast	D		F	98	34.6	4.0	10	0.40	Benchalel & Kara (2010)
150		Diplodus sargus sargus	Algerian coast	D		M	143	34.6	4.0	10	0.40	Benchalel & Kara (2010)
151		Diplodus sargus sargus	Algerian coast	D	2005-2006	F	98	34.6	4.0	10	0.40	Benchalel & Kara (2013)
152		Diplodus sargus sargus	Algerian coast	D	2005-2006	M	143	24.0	4.0	10	0.40	Benchalel & Kara (2013)
153		Diplodus vulgaris	Sicilian Channel	BEP	1997-1999	F	235	30.0	1.5	7	0.21	Beltrano et al. (2003)
154		Diplodus vulgaris	Sicilian Channel	BEP	1997-1999	M	209	30.0	2.0	7	0.29	Beltrano et al. (2003)
155		Diplodus vulgaris	Syrian coast	BEP	1999-2001	F	30.0	2.0	7	0.29	Hammond & Saad (2007)	
156		Diplodus vulgaris	Syrian coast	BEP	1999-2001	M	30.0	2.0	7	0.29	Hammond & Saad (2007)	
157		Lithognathus mormyrus	Levantine Sea	D	1998-1999	F	1612	27.7	2.0	12	0.16	Türkmen & Akyurt (2003)
158		Lithognathus mormyrus	Levantine Sea	D	1998-1999	M	1626	22.8	1.7	12	0.14	Türkmen & Akyurt (2003)
159		Lithognathus mormyrus	Sicilian Channel	D	1997-1998	F	221	34.0	1.7	12	0.14	Vitale et al. (2003, 2011)
160		Lithognathus mormyrus	Sicilian Channel	D	1997-1998	M	230	34.0	1.7	12	0.14	Vitale et al. (2003, 2011)
161		Lithognathus mormyrus	Sicilian Channel	D	1997-1998	F	142	35.0	1.6	12	0.13	Vitale et al. (2003, 2011)
162		Lithognathus mormyrus	Sicilian Channel	D	1997-1998	M	188	35.0	1.6	12	0.13	Vitale et al. (2003, 2011)
163		Lithognathus mormyrus	Aegean Sea	D	1997-1999	F	821	34.1	3.6	12	0.30	Kallianiotis et al. (2005)
164		Lithognathus mormyrus	Aegean Sea	D	1997-1999	M	477	28.8	2.5	12	0.21	Kallianiotis et al. (2005)
165		Pagellus acarne	Mediterranean coast	BEP	1995-1998	C	101	25.5	1.9	8	0.23	Zoubi (2001)
166		Pagellus erythrinus	Cretan Sea	BEP	1988-1991	F	27.1	1.8	6	0.30	Somarakis & Machias (2002)	
167		Pagellus erythrinus	Cretan Sea	BEP	1988-1991	M	27.1	2.0	7	0.29	Somarakis & Machias (2002)	
168		Pagellus erythrinus	Gulf of Alger	BEP		F	36.5	1.0	6	0.17	Cherabi (1987)	
169		Pagellus erythrinus	Aegean Sea	BEP	2002-2007	F	1717	24.9	2.0	7	0.29	Metin et al. (2011a)
No	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	L_{max}	H_n	t_{max}	L_{max}/H_n	Reference
----	-------------------	----------------------------------	---------------------	-------------	--------	-----	----	----------------	----------	------------	----------------	-----------------------------
170	Xiphiidae	Pagellus erythrinus	Aegean Sea	BEP	2002-2007	M	136	27.8	3.0	7	0.43	Metin et al. (2011a)
171	Sarpa salpa	Adriatic Sea	BEP	2004	M	601	36.8	2.0	15	0.13		Pallaoro et al. (2008)
172	Spondylusoma cantharus	Gulf of Tunis	BEP	2005-2006	F	330	31.6	4.0	13	0.31		Mouine et al. (2011)
173	Sphyraenidae	Sphyraena chrysotaenia	Mediterranean coast	P	F	27.0	1.0	8	0.13			Wadie et al. (1988)
174	Sphyraena chrysotaenia	Mediterranean coast	P	M	27.0					0.13		Wadie et al. (1988)
175	Sphyraena chrysotaenia	Gulf of Gabes	P	2003-2005	F	432	28.3	2.0	8	0.25		Zouari-Ktari et al. (2009)
176	Sphyraena chrysotaenia	Gulf of Gabes	P	2003-2005	M	516	24.9	2.0	8	0.25		Zouari-Ktari et al. (2009)
177	Sphyraena phryrena	Mediterranean coast	P	F	42.0					0.13		Wadie et al. (1988)
178	Sphyraena phryrena	Mediterranean coast	P	M	42.0					0.13		Wadie et al. (1988)
179	Uranoscopus scaber	Tunisian coast	D	F	537			33.0	2.0	5	0.40	Kartas & Bonda (1986)
180	Uranoscopus scaber	Tunisian coast	D	M	347			26.0	1.0	5	0.20	Kartas & Bonda (1986)
181	Xiphias gladius	Ligurian Sea	P	1990-2001	F	1847	334.5	4.0	10	0.40		Orsi Relini et al. (2003)

Pleuronectiformes

182	Scophthalmidae	Lepidorhombus boscii	Aegean Sea	D	1990-1992	F	1422	29.5	2.0	13	0.15	Vassilopoulos et al. (1997)
183	Lepidorhombus boscii	Aegean Sea	D	1990-1992	M	1009	23.5	1.0	11	0.09		Vassilopoulos et al. (1997)
184	Soleidae	Bathysolea profundiocola	Sardinia	BAP	F	16.5	2.9	12		0.24		Cau & Deiana (1983)
185	Bathysolea profundiocola	Sardinia	BAP	M	14.7					0.20		Cau & Deiana (1983)
186	Buglossidium luteum	Aegean Sea	D	2004-2007	F	563	11.6	2.0	13	0.15		Ilkayaz et al. (2010)
187	Buglossidium luteum	Aegean Sea	D	2004-2007	M	395	10.1	2.0	13	0.15		Ilkayaz et al. (2010)
188	Buglossidium luteum	Adriatic Sea	D	C	3400	14.5	1.0	13	0.08			Giovannardi & Piccinetti (1981)
189	Microchirus azetzi	Algarve Coast	D	1998-1999	F	623	37.6	2.9	8	0.36		Afonso-Dias et al. (2005)
190	Monochirus hispidus	Sardinia	D	F	14.1					0.17		Cau & Deiana (1983)
191	Monochirus hispidus	Sardinia	D	M	10.7					0.06		Cau & Deiana (1983)
192	Synapturichthys kleinii	Sardinia	D	F	39.5			3.6	9	0.40		Cau & Deiana (1983)
193	Synapturichthys kleinii	Sardinia	D	M	38.9			1.9	8	0.24		Cau & Deiana (1983)

Scorpaeniformes

194	Sebastidae	Helicolenus dactylopterus	Algerian coast	BAD	F	32.0	4.0	40	0.10			Nouar (2003)
195	Helicolenus dactylopterus	Algerian coast	BAD	M	28.0					0.10		Nouar (2003)
196	Scorpaenidae	Scorpaena elongata	Sicilian channel	D	1985-1998	F	664	57.0	8.0	30	0.27	Ragonese et al. (2003)
197	Scorpaena porcus	Gulf of Gabes	D	F	540			22.9	3.0	10	0.30	Bradi & Bouain (1991)
198	Scorpaena porcus	Gulf of Gabes	D	M	684			20.8	3.0	10	0.30	Bradi & Bouain (1991)
199	Scorpaena loppei	Balearic Islands	D	2005-2010	F	85	12.8	1.0	5	0.20		Ordines et al. (2012)
200	Scorpaena loppei	Balearic Islands	D	2005-2010	M	90	12.8	1.0	5	0.20		Ordines et al. (2012)
201	Triglidae	Chelidonichthys cuculus	Tyrrhenian Sea	D	1994-1997	F	27.0	2.0	21	0.10		Colloca et al. (2003)
202	Chelidonichthys cuculus	Tyrrhenian Sea	D	1994-1997	M	27.0	2.0	13	0.15			Colloca et al. (2003)
203	Chelidonichthys lucerna	Gulf of Gabes	D	2003-2004	F	195	36.0	3.0	15	0.20		Boudaya et al. (2008)

(continued)
No.	CLASS/Order/Family	Species	Location	Habitat	Year	Sex	N	L_{max}	t_m	t_{max}	t_m / t_{max}	Reference
204		Chelidonichthys lucerna	Gulf of Gabes	D	2003-2004	M	91	26.0	1.5	14	0.11	Boudaya et al. (2008)
205		Chelidonichthys lucerna	Iskenderun Bay	D	1999-2000	F	199	30.3	2.0	15	0.13	Ismen et al. (2004)
206		Chelidonichthys lucerna	Iskenderun Bay	D	1999-2000	M	143	21.2	2.0	14	0.14	Ismen et al. (2004)
207		Chelidonichthys lucerna	Marmara Sea	D	1996-1997	F	98	41.5	3.0	15	0.20	Eryilmaz & Meric (2005)
208		Chelidonichthys lucerna	Marmara Sea	D	1996-1997	M	45	37.0	3.0	14	0.21	Eryilmaz & Meric (2005)
209		Lepidotrigla cavillone	Aegean Sea	D	1976-1978	F	1429	16.0	1.5	5	0.30	Papaoconstantinou (1982)
210		Lepidotrigla cavillone	Tyrrhenian Sea	D	1985-1995	F	308	14.0	2.0	5	0.40	Colloca et al. (1997)
211		Lepidotrigla cavillone	Tyrrhenian Sea	D	1985-1995	M	2196	14.0	2.0	5	0.40	Colloca et al. (1997)
212		Lepidotrigla cavillone	Aegean Sea	D	2004-2007	F	824	14.0	2.0	5	0.40	Ilkyaz et al. (2010)
213		Lepidotrigla cavillone	Aegean Sea	D	2004-2007	M	603	15.0	2.0	5	0.40	Ilkyaz et al. (2010)

Zeiformes

No.	Species	Location	Reference
214	Zeids	Aegean Sea	Ismen et al. (2013)
215	Zeus faber	Aegean Sea	Ismen et al. (2013)

ELASMOBRANCHII

Rajiformes

No.	Species	Location	Year	Sex	N	L_{max}	t_m	t_{max}	t_m / t_{max}	Reference
216	Dasyatis pastinaca	Levantine Sea	1999-2000	F	110	88.0	4.5	10	0.45	Ismen (2003b)
217	Dasyatis pastinaca	Levantine Sea	1999-2000	M	146	73.0	4.5	10	0.45	Ismen (2003b)
218	Dipoturus oxyrinchus	Aegean Sea	2005-2007	F	89	100.0	8.0	9	0.89	Yigin & Ismen (2010)
219	Dipoturus oxyrinchus	Aegean Sea	2005-2007	M	90	86.5	6.0	9	0.67	Yigin & Ismen (2010)
220	Rajia radula	Gulf of Gabes	2007	F	550	80.0	5.9	12	0.49	Kadri et al. (2013)
221	Rajia radula	Gulf of Gabes	2007	M	400	65.0	4.5	9	0.50	Kadri et al. (2013)
222	Rajia miraletus	Gulf of Gabes	2007	F	95	56.0	4.4	9	0.49	Kadri et al. (2012)
223	Rajia miraletus	Gulf of Gabes	2007	M	85	58.0	2.7	7	0.39	Kadri et al. (2013)
224	Rajia undulata	Algarve Coast	1999-2000	F	93	88.2	9.0	14	0.64	Coelho & Erzini (2006)
225	Rajia undulata	Algarve Coast	1999-2000	M	94	83.2	8.0	14	0.57	Coelho & Erzini (2006)

Squaliformes

No.	Species	Location	Year	Sex	N	L_{max}	t_m	t_{max}	t_m / t_{max}	Reference	
228	Squalus acanthias	Black Sea	BEP	F	150.0	12.0	38	0.32	Demirhan & Seyhan (2007)		
229	Squalus acanthias	Black Sea	BEP	M	150.0	10.5	38	0.28	Demirhan & Seyhan (2007)		
230	Squalus blainville	Sicilian Channel	D	1985-1991	F	812	92.0	5.1	14	0.36	Cannizzaro et al. (1995)
231	Squalus blainville	Sicilian Channel	D	1985-1991	M	1038	73.5	3.3	13	0.25	Cannizzaro et al. (1995)
232	Squalus blainville	Gulf of Gabés	D	2004-2005	F	81	100.0	7.4	14	0.53	Marouani et al. (2007, 2010)
233	Squalus blainville	Gulf of Gabés	D	2004-2005	M	71	100.0	4.8	13	0.37	Marouani et al. (2007, 2010)

Carcharhiniformes

No.	Species	Location	Year	Sex	N	L_{max}	t_m	t_{max}	t_m / t_{max}	Reference	
234	Prionace glauca	E Mediterranean	P	1998-2003	F	178	349	5.5	12	0.46	Megalofonou et al. (2009)
235	Prionace glauca	E Mediterranean	P	1998-2003	M	323	330	4.9	12	0.41	Megalofonou et al. (2009)
Elasmobranchii log\(t_m\) = 0.67 x log\(t_{max}\) + 0.006, \(r^2 = 0.51\), \(P = 0.007\), \(n = 20\)

\((t_m = 0.23 x t_{max} + 2.72)\)

Mean \(t_m/t_{max}\) was not significantly different (ANOVA: \(F = 0.27\), \(P = 0.60\)) between female (mean ± SD = 0.276 ± 0.143, \(n = 90\)) and male (mean ± SD = 0.265 ± 0.138, \(n = 90\)) Actinopterygii (Fig. 3). Similarly, mean \(t_m/t_{max}\) was not significantly different (ANOVA: \(F = 1.44\), \(P = 0.25\)) between female (mean ± SD = 0.499 ± 0.166, \(n = 10\)) and male (mean ± SD = 0.418 ± 0.133, \(n = 10\)) Elasmobranchii (Fig. 3). Consequently, sexes were combined per class and mean \(t_m/t_{max}\) was then compared between classes. Mean \(t_m/t_{max}\) was significantly higher (ANOVA: \(F = 31.04\), \(P < 0.001\)) in Elasmobranchii (mean ± SD = 0.458 ± 0.152, \(n = 20\)) compared to Actinopterygii (mean ± SD = 0.270 ± 0.135, \(n = 180\)) (Fig. 4).

With respect to habitat, the mean \(t_m/t_{max}\) of Actinopterygii ranged between 0.06 and 0.43 for benthopelagic (BEP: mean ± SD = 0.22 ± 0.086, \(n = 23\)), between 0.06 and 0.75 for demersal (D: mean ± SD = 0.29 ± 0.142, \(n = 107\)), between 0.09 and 0.70 for pelagic (P: mean ± SD = 0.28 ± 0.143, \(n = 63\)), and between 0.10 and 0.27 for reef-associated stocks (R: mean ± SD = 0.19 ± 0.053, \(n = 16\)) (Fig. 5). Elasmobranchii (\(n = 20\)) as well as bathydemersal (BAD: \(n = 3\)) and bathypelagic (BAP: \(n = 3\)) actinopterygian stocks were excluded from this comparison because of their small sample size. Overall, mean \(t_m/t_{max}\) values were significantly different among the four habitat categories of Actinopterygii (ANOVA: \(F = 3.67\), \(P = 0.013\)). Based on Fisher’s LSD test, there were no differences in the means between benthopelagic and reef-associated (BEP and R), between benthopelagic and pelagic (BEP and P) and between demersal and pelagic (D and P) stocks, whereas reef-associated stocks, which had the lowest mean \(t_m/t_{max}\) differed significantly from demersal and pelagic ones (Fig. 5).

Discussion

The ranges of \(t_m\) values reported in the present work for Mediterranean marine fishes fall within the previously reported range of \(t_m\) values for actinopterygian and elasmobranch fishes. Actinopterygii generally mature earlier in life compared to Elasmobranchii (Goldman et al., 2015).
For the latter, \(t_m \) is variable, and has been reported to range from 2 to 26 y in 18 populations of 15 species (Chen & Yuan, 2006). The same range has been reported by Cailliet & Goldman (2004), with a bimodal distribution with one peak at 5–6 y and a second one at 15–25 y. Higher \(t_m \) values have been reported for long-lived elasmobranchs, such as the whale shark \(Rhincodon typus \) (> 22 y) and the picked dogfish \(Squalus acanthias \) (25–26 y) (Chen & Yuan, 2006; Dulvy et al., 2008). Similarly, for long-lived actinopterygians, such as the bluemouth rockfish \(Helicolenus dactylopterus \), ages at maturity higher than 15 y are known (Kelly et al., 1999). In their work, that reviewed the life history traits of 41 actinopterygian species, Drazen & Haedrich (2012) report that \(t_m \) ranges between 2 and 36 y, with six species having \(t_m \) that exceeds 20 y and five species having \(t_m \) that exceeds 100 y. A similar range of ages at maturity (0.5 to 35.5 y) has been reported by He & Stewart (2001) in their review of 235 fish stocks, including marine and freshwater finfishes, as well as a few elasmobranchs. It seems that, at least regarding elasmobranchs, and considering their small sample size in the present work, long-living, late-maturing sharks are rare in the Mediterranean Sea. Given that the larger elasmobranchs are more susceptible to overfishing (Dulvy et al., 2014), this under-representation may be due to their overexploitation that is known to occur in the Mediterranean (Stergiou & Tsikliras, 2011; Tsikliras et al., 2013b).

The positive relation between \(t_m \) and \(t_{max} \) (Fig. 2) confirms the general pattern that longer-lived species mature later and grow slower compared to their shorter-lived counterparts (Frisk, 2010). Indeed, elasmobranchs are located at the upper end of that spectrum (Fig. 2). A significant positive relation between longevity (\(t_{max} \)) and \(t_m \) has been reported previously for female and male batoids (females: \(t_m = 0.57 \cdot t_{max} + 1.02 \); males: \(t_m = 0.57 \cdot t_{max} + 0.47 \)) (Frisk, 2010). The empirical relation between \(t_m \) and \(t_{max} \) can be used for estimating \(t_m \) for species for which only \(t_{max} \) is known.

The dimensionless \(t_m/t_{max} \) ratio shows that actinopterygians mature very early, at around 1/3 of \(t_{max} \) within their lifespans. In contrast, elasmobranchs mature later, close to 1/2 of their \(t_{max} \). Similar results have been reported for several shark and skate stocks with this ratio being generally higher for skates than for other elasmobranch groups and teleosts generally (Frisk, 2010). In general, the onset of maturity may depend mainly on age for short-lived species that mature early, and mainly on size for their longer-lived, late-maturing counterparts, with developmental or genetic constraints more evident in longer lived species (Archibald et al., 1983; Roff, 1983). There are benefits and costs associated with reproducing early or late in life. Benefits associated with early maturity include increased probability of surviving to reproduce and reduced generation time, while the costs of early maturity include reduced survival and fecundity later in life (Roff, 1992). High adult mortality, as a result of fishing, may favour earlier maturation (Rochet, 1998). Such a cost of reproduction, i.e. a trade-off between present reproductive effort and future age-specific reproductive success, is evident across animals (Williams, 1966; Bell, 1980).

Although \(t_m \) might differ between sexes, the fact that, in the present work, we found no difference in the \(t_m/t_{max} \) ratio between males and females within both classes, may simply be attributed to the fact that \(t_m \) and \(t_{max} \) vary simultaneously and, within species, are determined by the corresponding growth and mortality patterns (e.g. Tsikliras et al., 2007; Gislason et al., 2010). For instance, a male that matures earlier will experience higher future mortalities and will have a shorter lifespan compared to a female that will mature later (e.g. Tsikliras & Koutrakis, 2013), i.e. age at maturity may co-vary with maximum age and, in the same way, size at maturity co-varies with asymptotic length (Beverton, 1992). Thus, the \(t_m/t_{max} \) ratio will remain the same and bi-maturism will be absent, as has been reported to occur for the length at maturity to maximum reported length (\(L_{m}/L_{max} \)) ratio (Tsikliras & Stergiou, 2014).

With the exception of reef-associated species, which exhibited the lowest \(t_m/t_{max} \) values, the \(t_m/t_{max} \) ratio of actinopterygians remained rather constant among the remaining habitat categories (Fig. 5) and had similar values with the overall \(t_m/t_{max} \) ratio for actinopterygians. A similar constancy among habitat categories has been reported for the \(L_{m}/L_{max} \) ratio of Mediterranean marine fishes (Tsikliras & Stergiou, 2014). Although there are several large-sized, long-lived, and late-maturing reef-associated species (e.g. groupers) in the Mediterranean Sea, in the
present dataset these species were rare in favour of small- and medium-sized reef inhabitants (Table 1). This might explain the lower t_m/t_{max} ratio for reef-associated species. Drazen & Haedrich (2012) report that t_m increases with depth but in our dataset there are no real deep-water species given that most of the species are commercial living on the continental shelf. Thus, we could not test this hypothesis. Besides deep-water species, special or complex cases of reproductive strategies, such as hermaphroditism and strategies involving spawning migrations were also rare in the dataset. Such strategies could also result in deviations from the general pattern that is presented here.

Finally, it should be noted that length at maturity and t_m should be independently estimated in reproductive biology, instead of t_m being indirectly estimated from the von Bertalanffy growth equation. This is because the growth trajectory may differ as a result of quicker or slower rates of approaching asymptotic lengths among individuals (He & Stewart, 2001). Hence, maturity can be reached at same length and different age and vice versa (Kozlowski, 1996).

References
Abuzaa, P., Gordo, L., Karlou-Riga, C., Murta, A., Eltink, A.T.G.W. et al., 2003. Growth and reproduction of horse mackerel, Trachurus trachurus (Carangidae). Reviews in Fish Biology and Fisheries, 13, 27-61.
Afonso-Dias, I., Reis, C., Andrade, J.P., 2005. Reproductive aspects of Microchirus azevia (Risso 1810) (Pisces: Soleidae) from the south coast of Portugal. Scientia Marina, 69, 275-283.
Ainsley, S.M., Ebert, D.A., Cailliet, G.M., 2011. Age, growth, and maturity of the whitebrow skate, Bathyura minispinosa, from the eastern Bering Sea. ICES Journal of Marine Science, 68, 1426-1434.
Akyol, O., Tokaç, A., Ünsal, S., 1996. An investigation on the growth and reproduction characteristics of the sardine (Sardina pilchardus) in the bay of Izmir (Aegean Sea). Turkish Journal of Fisheries and Aquatic Sciences, 13, 383-394
Alegria-Hernández, V., 1990. Some aspects of the reproductive biology of bogue (Boops boops L., Pisces, Sparidae) from the mid-Adriatic channels. Acta Adriatica, 31, 301-313.
Alegria, V., 1990. Size and age at first maturity in Horse mackerel (Trachurus trachurus L.) from the Adriatic Sea. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 32, 261.
Archibald, C.P., Fournier, D., Leaman, B.M., 1983. Reconstruction of stock history and development of rehabilitation strategies for Pacific ocean perch in Queen Charlotte Sound, Canada. North American Journal of Fisheries Management, 3, 283-294.
Ates, C., Cengiz-Deval, M., Bok, T., 2008. Age and growth of Atlantic bonito (Sardina sarda) in the Sea of Marmara and Black Sea, Turkey. Journal of Applied Ichthyology, 24, 546-550.
Azevedo, J.M.N., Homem, N., 2002. Age and growth, reproduction and diet of the red bream Parableniuss ruber (Bleniidae). Cybium, 26, 129-133.
Bell, G., 1980. The costs of reproduction and their consequences. American Naturalist, 116, 45-76.
Beltrano, A.M., Cannizzaro, L., Vitale, S., Milazzo, A., 2003. Aspetti della biologia di Diplodus vulgaris (Pisces: Sparidae) nello stretto di Sicilia. Biologia Marina Mediterranea, 10, 287-290.
Benchalel, W., Kara, M.H., 2010. Age, croissance et reproduction du sar commun Diplodus sargus sargus (Sparidae) des cotes de l’est algérien. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 39, 451.
Benchalel, W., Kara, M.H., 2013. Age and growth and reproduction of the white seabream Diplodus sargus sargus (Linnaeus, 1758) off the eastern coast of Algeria. Journal of Applied Ichthyology, 29, 64-70.
Beverton, R.J.H., 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology, 41 (Suppl. B), 137-160.
Binohlan, C., 1998. The MATURITY table. p. 176-179. In: FishBase 98: Concepts, Design and Data Sources. Froese R., Pauly, D. (Eds). ICLARM, Manila, Philippines.
Bouaziz, A., Bennoui, A., 2004. Etat d’exploitation du banc d’Engraulis encrasicolus (Linné, 1758) dans la baie d’Alger. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 37, 318.
Bouaziz, A., Bennoui, A., Brahim, B., 2001. Sur l’estimation de l’état d’exploitation du merlou Merluccius merluccius (Linnaeus 1847) de la région centre de la cote algérienne. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 36, 243.
Bouaziz, A., Bennoui, A., Djebali, F., Maurin, C., 1998. Reproduction du merlou Merluccius merluccius de la région de bouismail. Cahiers Options Méditerranée, 35, 109-117.
Bouchereau, J.-L., Quiignard, J.-P., Joyeux, J.-C., Tomasini, J.-A., 1993. Structure du stock des géniteurs de la population de Pomatoschistus microps (Kroyer, 1838) (Gobiidae), dans la lagune de Mauguito, France. Cybium, 17, 3-15.
Boudaya, L., Neifar, L., Rizzo, P., Badalucco, C., Bouain, A., et al., 2008. Growth and reproduction of Chelidonichthys lucerna (Linnaeus) (Pisces: Triglidae) in the Gulf of Gabès, Tunisia. Journal of Applied Ichthyology, 24, 581-588.
Bradai, M.N., Bouain, A., 1991. Reproduction de Scorpæna porcus (Linné, 1758) et de S. scrofa (Linné 1758) (Pisces, Scorpaenidae) du Golfe de Gabès. Oebalia, XVII, 167-180.
Cailliet, G.M., Goldman, K.J., 2004. Age determination and validation in Chondrichthyan fishes. p. 399-448. In: Biology of Sharks and Their Relatives. Carrier, J., Musick, J.A., Hetthaus, M.R. (Eds). CRC Press LLC, Boca Raton, FL.
Cannizzaro, L., Rizzo, P., Levi, D., Gancitano, S., 1995. Age determination and growth of Squalus blainvilli (Risso, 1826). Fisheries Research, 23, 113-125.
Carbonara, P., Constantino, G., Giovine, G., Lembo, G., Spedicato, M.T. et al., 2003. Some aspects of the life history of Polypterus africanus (Schneider, 1801) along the coasts of the north western Ionian Sea. Biologia Marina Mediterranea, 10, 102-112.
Cau, A., Deiana, A.M., 1983. Reproduction and accroissement dans quelques Soleidae de la Mediterranee de centre occidental. Rapport du Congres de la Commission Internationale pour l’Exploration Scientifique de la Mer Mediterranee, 28, 227.
Chakroun-Marzouk, N., Khari, M.-H., 2003. Le corb des cotes tunisiennes, Sciaena umbra (Sciaenidae): cycle sexuel, age et croissance. Cybium, 27, 211-225.
Chali-Chabane, F., 1988. Contribution a l’étude biologique et dynamique de la population de Boops boops de la baie de Bouismail (Alger). MSc Thesis, ISMAL, 133 pp.
Chen, P., Yuan, W., 2006. Demographic analysis based on the growth parameter of sharks. Fisheries Research, 78, 374-379.
Cherob, O., 1987. Contribution a l’étude de la biologie du pageot commun Pagellus erythrinus et a l’écologie de la famille des Sparidés de la baie d’Alger. MSc Thesis, USTHB, 203 pp.
Coelho, R., Erzini, K., 2006. Reproductive aspects of the undulate ray, *Raja undulata*, from the south coast of Portugal. *Fisheries Research*, 81, 80-85.

Colloca, F., Cardinale, M., Ardizzone, G.D., 1997. Biology, spatial distribution and population dynamics of *Lepidotrigla cavi- lome* (Pisces: Triglidae) in the central Tyrrhenian Sea. *Fisheries Research*, 32, 21-32.

Colloca, F., Cardinale, M., Marcello, A., Ardizzone, G.D., 2003. Tracing the life history of red gurnard (*Aspistriga cuxus*) using validated otolith annual rings. *Journal of Applied Ichthyology*, 19, 1-9.

Corriero, A., Karakulak, S., Santamaria, N., Deflorio, M., Spedcato, D. et al., 2005. Size and age at sexual maturity of female bluefin tuna (*Thunnus thynnus*). *Journal of the Mediterranean Sea*. *Journal of Applied Ichthyology*, 21, 483-486.

Demirhan, S.A., Seyhan, K., 2007. Maturity and fecundity of spiny dogfish (*Squalus acanthias* L., 1758) in the eastern Black Sea. *Turkish Journal of Zoology*, 31, 301-308.

Despoti, S., Stergiou, K.L., 2013. Fecundity of fishes: a review. p. 62-66. In: More Fish and More. Stergiou, K.L., Bobori, D., Tsikiras, A.C. (Eds), Aristotle University of Thessaloniki, Thessaloniki, Greece.

Dhieb, K., Ghorbel, M., Jarboui, O., Bouaïn, A., 2006. Interactions between reproduction and fisheries in Bluefish, *Pomatomus saltatrix* (Pomatodidae), from Gulf of Gabes (Tunisia). *Cybium*, 30, 355-364.

D’Onghia, G., Sion, L., Maiorano, P., Mytilineou, Ch., Dalessandro, S. et al., 2006. Population biology and life strategies of *Chlo- rophalumus agassizii* Bonaparte, 1840 (*Pisces*: Ostichthyidae) in the Mediterranean Sea. *Marine Biology*, 149, 435-446.

Drazen, J.C., Hacidrich, R.L., 2012. A continuum of life histories in deep-sea demersal fishes. *Deep-Sea Research I*, 61, 34-42.

Dulcić, J., Matic-Skoko, S., Paradin, A., Kraljević, M., 2007. Age, growth and mortality of brown comber, *Serranus hepatus* (Linnaeus, 1758) (*Pisces*: Serranidae), in the eastern Adriatic (Croatian coast). *Journal of Applied Ichthyology*, 23, 195-197.

Dulvy, N.K., Baum, J.K., Clarke, S., Compagno, L.J.V., Cortés, E. et al., 2008. You can swim but you can’t hide: the global status and conservation of oceanic pelagic sharks and rays. *Aquatine Conservation: Marine and Freshwater Ecosystems*, 18, 459-482.

Dulvy, N.K., Fowler, S.L., Musick, J.A., Cavanagh, R.D., Kyne, P.M. et al., 2014. Extinction risk and conservation of the world’s sharks and rays. *eLife*, 3, e00590.

Enajjar, S., Bradai, M.N., Bouain, A. 2012. Age, growth and sexual maturity of the blackchin guitarfish *Rhinobatos cuniculus* in the Gulf of Gabès (southern Tunisia, central Mediterranean).

Cahiers de Biologie Marine, 53, 17-23.

Ergene, S., 2000. Reproduction characteristics of thinline grey mullet *Liza ramada* (Risso, 1825) inhabiting Akgıl-Parandiz Lac- goons (Göksü Delta). *Turkish Journal of Zoology*, 24, 159-164.

Eryilmaz, L., Meric, N., 2005. Some biological characteristics of *Cynoscion luridus* (Pisces: Mugilidae) of the Mesolongi-Etoliko (Greece) lagoon. *Scientia Marina*, 77, 105-118.

Giovanardi, O., Piccinetti, C., 1981. Biology and fishery of the yellow sole, *Solea lutea* (Risso, 1810), in the western Adriatic Sea. *FAO Fisheries Reports*, 253, 101-103.

Gislasson, H., Daan, N., Rice, J.C., Pope, J.G., 2010. Size, growth, temperature and the natural mortality of fish. *Fish and Fisheries*, 11, 149-158.

Goldman, K.J., Cailliet, G.M., Andrews, A.H., Natanhon, L.J., 2012. Assessing the age and growth of Chondrichthyan fishes. p. 423-448. In: *Biology of Sharks and Their Relatives*. Carrier, J., Musick, J.A., Heithaus, M.R. (Eds). 2nd edition, CRC Press, Francis, Boca Raton, FL.

Hammond, V., Saad, A., 2007. Reproductive biology of *Diplodus vulgaris* (Family Sparidae) in the syrian coast. *Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée*, 38, 495.

He, X.J., Stewart, D.J., 2001. Age and size at first reproduction of fishes: predictive models based only on growth trajectories. *Ecology*, 82, 784-791.

Hotos, G.N., 1999. *Biology and population dynamics of Liza aurata* (Risso, 1810) (*Pisces*: Mugilidae) of the Mesolongi-Etoliko lagoon. PhD thesis, University of Patra, Greece, 415 pp.

Iglesias, M., Morales-Nin, B., 2001. Life cycle of the pelagic goby *Aphria minuta* (*Pisces*: Gobiidae). *Scientia Marina*, 65, 183-192.

Ilkay, A.T., Metin, G., Soykan, O., Kinacigil, H.T., 2010. Growth and reproduction of large-scaled gurnard (*Lepidotrigla cavi- lome*) (*Pisces*: Triglidae) in the eastern Aegean Sea, eastern Mediterranean. *Turkish Journal of Zoology*, 34, 471-478.

İşmen, A., 2003a. Maturity and fecundity of lizardfish (*Saurida undosquamis* Richardson, 1848) in İskenderun Bay (eastern Mediterranean). *Turkish Journal of Zoology*, 27, 231-238.

İşmen, A., 2003b. Age, growth, reproduction and food of common stingray (*Dasyatis pastinaca* L. 1758) in İskenderun Bay, the eastern Mediterranean. *Fisheries Research*, 60, 169-176.

İşmen, A., 2006. Growth and reproduction of Por’s goatfish (*Upeneus pori* Ben-Tuvia & Golani, 1989) in İskenderun Bay, the Eastern Mediterranean. *Turkish Journal of Zoology*, 30, 91-98.

İşmen, A., İşmen, P., Baustna, N., 2004. Age, growth and repro-
duction of Tub Gurnard (Chelidonichthys lucerna L. 1758) in the Bay of Iskenderun in the eastern Mediterranean. Turkish Journal of Veterinary and Animal Sciences, 28, 289-295.

İşmen, A., Arslan, M., Yigin, C.C., Bozbay, N.A., 2013. Age, growth, reproduction and feeding of John Dory, Zeus faber (Pisces: Zeidae), in the Saros Bay (North Aegean Sea). Journal of Applied Ichthyology, 29, 125-131.

Jennings, S., Reynolds, J.D., Mills, S.C., 1998. Life history correlates of responses to fisheries exploitation. Proceedings of the Royal Society of London B: Biological Sciences, 265, 333-339.

Jukić, S., Piccinetti, C., 1981. Quantitative and qualitative characteristics of demersal resources in the Adriatic Sea with some population dynamics estimates. FAO Fisheries Reports, 253, 73-79.

Kadri, H., Marouani, S., Bradai, M.N., Bouain, A., 2013. Age, growth and reproductive biology of the rough skate, Raja radiula (Chondrichthyes: Rajidae), off the Gulf of Gabès (southern Tunisia, central Mediterranean). Marine and Freshwater Research, 64, 540-548.

Kallianiotis, A.D., Marouani, S., Saidi, B., Bradai, M.N., Ghorbel, M. et al., 2012. Age, growth and reproduction of Raja mirarelaeus (Linnaeus, 1758) (Chondrichthyes: Rajidae) of the Gulf of Gabès (Tunisia, Central Mediterranean Sea). Marine Biology Research, 8, 388-396.

Kallianiotis, A.A., 1992. Biology and population structure of bogue [Boops boops (L.)] populations in the marine area of Crete. PhD thesis, University of Crete, Greece, 234 pp.

Kallianiotis, A., Torre, M., Argyri, A., 2005. Age, growth, mortality, reproduction and feeding habits of the striped seabream, Lithognathus mormyris (Pisces: Sparidae), in the coastal waters of the Thracian Sea, Greece. Scientia Marina, 69, 391-404.

Kara, M.H., 1997. Cycle sexuel et fécondité du loup Dicentrarchus labrax (Poisson Moronidé) du golfe d’Annaba. Cahiers de Biologie Marine, 38, 161-168.

Kara, M.H., Derbal, F., 1999. Données biologiques sur le mérou Epinephelus marginatus (Lowe, 1834) des cotes algériennes. Marine Life, 9, 21-27.

Karlov-Riga, C., 1995. Biology and dynamics of the Trachurus species (Pisces, Carangidae) in the Saronikon Gulf. PhD Thesis, Aristotle University of Thessaloniki, Greece, 296 pp.

Kartas, F., Bondka, B., 1986. Cycle sexual et reproduction de l’uranoscope Uroncus scaber des cotes Tunisiennes. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 30, 228.

Katselis, G.N., 1996. Biology and population dynamics of Liza saliens (Pisces: Mugilidae) in the Mesolongi-Etioliko lagoon. PhD Thesis, University of Patra, Greece, 193 pp.

Kelly, C.J., Connolly, P.L., Bracken, J.J., 1999. Age estimation, growth, maturity and distribution of the bluemouth rockfish Sebastes mystinus, in the Southern California Bight. ICES Journal of Marine Science, 56, 61-74.

King, J.R., McFarlane, G.A., 2003. Marine fish life history strategies: applications to fishery management. Fisheries Management and Ecology, 10, 249-264.

Klein, N.R., Raventos, N., 2007. Age, growth and reproductive parameters of the Mediterranean cardinal fish, Apogon imberbis. Journal of Applied Ichthyology, 23, 675-678.

Korich, H.S., 1988. Contribution à l’étude biologiques des deux espèces de saurets: Trachurus trachurus et T. mediterraneus et de la dynamique de T. trachurus en baie de Bou-Ismail. MSc Thesis, ISMAL, 203 pp.

Koutrakis, E.T., 1994. Biology and population dynamics of grey mullets (Pisces, Mugilidae) in the Lake Vistonis and the Lagoon of Porto-Lagos. PhD Thesis. Aristotle University of Thessaloniki, Greece, 233 pp.

Kovačić, M., 2007. Reproductive biology of the striped goby, Gobius vittatus (Gobiidae) in the northern Adriatic Sea. Scientia Marina, 71, 145-151.

Kozlowski, J., 1996. Optimal allocation of resources explains interspecific life-history patterns in animals with indeterminate growth. Proceedings of the Royal Society of London B: Biological Sciences, 263, 559-566.

La Mesa, M., 2001. Age and growth of Crystallogobius linears (von Duben, 1845) (Teleostei: Gobiidae) from the Adriatic Sea. Scientia Marina, 65, 375-381.

Lamrini, A., 2010. Croissance et reproduction du rouget barbe de roche (Mullus surmuletus l. 1758) dans la baie de M’Diq (Maroc). Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 39, 565.

Marino, G., Azzurro, E., Massari, A., Finoia, M.G., Mandich, A., 2001. Reproduction in the dusky grouper from the southern Mediterranean. Journal of Fish Biology, 58, 909-927.

Marino, G., Mandich, A., Massari, A., Andaloro, F., Porrello, S. et al., 1995. Aspects of reproductive biology of the Mediterranean amberjack (Seriola dumerili Risso) during the spawning period. Journal of Applied Ichthyology, 11, 9-24.

Marouani, S., Bradai, M.N., Bouain, A., 2007. Taille à la maturité sexuelle de Squalus blainvillei (Risso, 1826) du golfe de Gabès (Tunisie). Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 38, 536.

Marouani, S., Kadri, H., Saidi, B., Bouain, A., Bradai, M.N., 2010. Age, growth and age at sexual maturity of the longnose spurdog, Squalus blainvillei, in the Gulf of Gabès (Tunisia). Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 39, 581.

Matić-Skoko, S., Kraljević, M., Dulcić, J., Jardas, I., 2007. Age, growth, maturity, mortality, and yield-per-recruit for annular sea bream (Diplodus annularis L.) from the eastern middle Adriatic Sea. Journal of Applied Ichthyology, 23, 152-157.

Megalofonou, P., Damalas, D., De Metrio, G., 2009. Biological characteristics of blue shark, Prionace glauca, in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 89, 1233-1242.

Mehanna, S.F., 2009. Growth, mortality and spawning stock biomass of the striped red mullet Mullus surmuletus, in the Egyptian Mediterranean waters. Mediterranean Marine Science, 10, 5-17.

Metin, G., Ilyaz, A.T., Soykan, O., Kimaciil, H.T., 2011a. Biological characteristics of the common pandora, Pagellus erythrinus (Linnaeus, 1758), in the central Aegean Sea. Turkish Journal of Zoology, 35, 307-315.

Metin, G., Ilyaz, A.T., Soykan, O., Kimaciil, H.T., 2011b. Age, growth and reproduction of four-spotted goby, Deloventosteus quadrimaculatus (Valenciennes, 1837), in İzmir Bay (central Aegean Sea) (in English). Turkish Journal of Zoology, 35:711-716.

Millán, M., 1999. Reproductive characteristics and condition status of anchovy Engraulis encrasicolus L. from the Bay of Cadiz (SW Spain). Fisheries Research, 41, 73-86.

Minos, G.C., 1996. Biology and dynamics of Liza ramada (Pisces: Mugilidae) of the Mesolongi-Etioliko lagoon. PhD thesis, University of Patra, Greece, 272 pp.

Minos, G., Kokokiris, L., Economidis, P.S., 2010. Sexual maturity of the alien redlip mullet, Liza haematocheilus (Temminck & Schlegel, 1845) in north Aegean Sea (Greece). Journal of Applied Ichthyology, 26 (Suppl. 2), 96-101.
Morales-Nin, B., Moranta, J., 1997. Life history and fishery of the common dentex (Dentex dentex) in Mallorca (Balearic Islands, western Mediterranean). Fisheries Research, 30, 67-76.

Mouhoub, R., 1986. Contribution a l’étude de la biologie et de la dynamique de la population exploitee de la sardine Sardina pilchardus des cotes algéroises. MSc Thesis, USTHB, 163 pp.

Mouine, N., Francour, P., Ktari, M.-H., Chakroun-Marzouk, N., 2007. The reproductive biology of Diplodus sargus sargus in the Gulf of Tunis (central Mediterranean). Scientia Marina, 71, 461-469.

Mouine, N., Ktari, M.-H., Chakroun-Marzouk, N., 2011. Reproductive characteristics of Spondyliosoma canthus (Linnaeus, 1758) in the Gulf of Tunis. Journal of Applied Ichthyology, 27, 827-831.

Mugahid, A.R., Hashem, M.T., 1982. Some aspects of the fishery and fisheries research. Bulletin of the National Institute of Oceanography and Fisheries, ARE, 40, 145-162.

Mytilineou, C., 1988. L’hermaphrodisme et le cycle sexuel de la Gerie Spicara flexuosa (Centracanthidae) dans le golfe de Patraikois, Grece. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 31, 272.

Nouar, A., 2003. Ecologie, biologie et exploitation d’une espèce de la famille de Scorpaenidae Helicolenus dactylopterus des cotes algériennes. PhD Thesis, USTHB, 154 pp.

Okumuş, İ., Başçinar, M., 1997. Population structure, growth and reproduction of introduced Pacific mullet, Mugil so-iuy, in the Black Sea. Fisheries Research, 33, 131-137.

Olsen, E.M., Heino, M., Lilly, G.R., Morgan, M.J., Bratty, J. et al., 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature, 428, 932-935.

Ordines, F., Valls, M., Gourgue, A., 2012. Biology, feeding, and habitat preferences of Cadenat’s rockfish, Scorpaena loppei (Actinopterygi: Scorpaenidae), in the Bal- earic Islands (western Mediterranean). Acta Ichthyologica et Piscatoria, 42, 21-30.

Orsi Relini, L., Palandri, G., Garibaldi, F., 2003. Reproductive parameters of the Mediterranean swordfish. Biology Maria Mediterranea, 10, 210-222.

Osman, A.G.M., Akel, E.S.H., Farrag, M.M.S., Moustafa, M.A., 2004. Reproductive biology of round herring, Mugil so-iuy, in the Black Sea. Fisheries Research, 33, 131-137.

Ozvarol, Z.A.B., Balci, B.A., Gokoglu, M., Tasi, A., Kaya, Y. et al., 2010. Age growth and reproduction of goldband goatfish (Up- eneus molluccensis, Bleeker 1855) from the Gulf of Antalya (Tur- key). Journal of Animal and Veterinary Advances, 9, 939-945.

Pallaoro, A., Dulcič, J., Matić-Skoko, S., Kraljević, M., Jardas, I., 2008. Biology of the salema, Sarpa salpa (L. (1758)) (Pisces, Sparidae) in the middleeastern Adriatic. Journal of Applied Ichthyology, 24, 276-281.

Papacosmatatou, C., 1982. On the biology of Lepidotrigla cavill- triga (Triglidae) in Greek seas. Thalassographica, 5, 33-59.

Papacosmatatou, C., Caragitsou, E., Vasilopoulou, V., Petrikis, G., Stergiou, K., 1988. The coastal fisheries in the Kastellori- zo area (Dodecanese). NCMR Special Publication, 15, 1-106.

Paul, D. 1995. Adult longevity and the remaining population of fish. Trends in Ecology and Evolution, 10, 430.

Politou, C.-Y., Papacosmatatou, C., 1991. Population biology of Trisopterus minutus capelanus (Gadidae) from the eastern coast of Greece. Cybium, 15, 69-81.

Quignard, J.-P., Bouain, A., Ktari, M.H., 1978. Reproduction des loupes (Poissons, Teleosteen, Serranidae) Dicentrarchus la- brax (Linne, 1758) et D. punctatus (Bloch, 1792) des cotes tunisiennes. Bulletin de la Société des Sciences Naturelles Tunisie, 13, 19-24.

Ragonese, S., Gancitano, S., Norrito, G., Rizzo, P., Bono, G., 2003. Life history traits of the slender rockfish, Scorpaena elongata Can- denat, 1943 (Pisces, Scorpaenidae) of the Strait of Sicily (Mediterranean Sea). Biologia Marina Mediterranea, 10, 223-232.

Recasens, L., Lombarte, A., Morales-Nin, B., Torres, G.J., 1998. Spatiotemporal variation in the population structure of the European hake in the NW Mediterranean. Journal of Fish Bi- ology, 53, 387-401.

Reñones, O., Grau, A., Mas, X., Riera, F., Saborido-Rey, F., 2010. Reproductive pattern of an exploited dusky grouper Epinephe- lus marginatus (Lowe 1834) (Pisces: Serranidae) population in the western Mediterranean. Scientia Marina, 74, 523-537.

Reñones, O., Massuti, E., Morales-Nin, B., 1995. Life history of the red mullet Mullus surmuletus from the bottom trawl fishery off the Island of Majorca (north-west Mediterranean). Marine Biology, 123, 411-419.

Rochet, M.J., 1998. Short-term effects of fishing on life history traits of fishes. ICES Journal of Marine Science, 55, 371-391.

Rochet, M.J., 2000. A comparative approach to life-history strategies and tactics among four orders of teleost fish. ICES Jour- nal of Marine Science, 57, 228-239.

Roff, D., 1992. The evolution of life histories: theory and analysis. Chapman and Hall, New York, 548 pp.

Roff, D.A., 1983. An allocation model of growth and reproduction in fish. Canadian Journal of Fisheries and Aquatic Sciences, 40, 1395-1404.

Sley, A., Janbo, O., Ghorbel, M., Bouain, A., 2012. Annual re- productive cycle, spawning periodicity and sexual maturity of blue runner Caranx crysos (Pisces, Carangidae) from the Gulf of Gabes (Tunisia, Eastern Mediterranean). Journal of Applied Ichthyology, 28, 785-790.

Somarakis, S., Machias, A., 2002. Age, growth and bathymetric distribution of red Pandora (Pagellus erythrinus) on the Cre- tan shelf. Journal of the Marine Biological Association of the UK, 82, 149-160.

Soykan, O., Ilkyaz, A.T., Metin, G., Kinacigil, H.T., 2010. Growth and reproduction of spotted picarel (Spicara maena Linmae- us, 1758) in the central Aegean Sea, Turkey. Turkish Journal of Zoology, 34, 453-459.

Stergiou, K.I., Tsiklaris, A.C., 2011. Fishing-down, fishing- through and fishing-up: fundamental process versus technical details. Marine Ecology Progress Series, 441, 295-301.

Stergiou, K.I., Economidis, P., Sinis, A.I., 1996. Sex ratio, spawning season and size at maturity of red bandfish in the western Mediterranean. Journal of Fish Biology, 49, 561-572.

Trippel, E.E., 1995. Age at maturity as a stress indicator in fish- eries. BioScience, 45, 759-771.

Tsiklaris, A.C., Antonopouloou, E., 2006. Reproductive biology of the round sardinell (Sardinellina aurita) in the northeastern Mediterranean Sea. Scientia Marina, 32, 231-240.

Tsiklaris, A.C., Koutrakis, E.T., 2013. Growth and reproduction of European sardine, Sardina pilchardus (Pisces: Clupeidae), in northeastern Mediterranean. Cahiers de Biologie Marine, 54, 365-374.

Tsiklaris, A.C., Stergiou, K.I., 2014. Size at maturity of Medi- terranean marine fishes. Reviews in Fish Biology and Fisheries, 24, 219-268.
Tsikliras, A.C., Antonopoulou, E., Stergiou, K.I., 2007. A phenotypic trade-off between previous growth and present fecundity in round sardinella Sardinella aurita. Population Ecology, 49, 221-227.

Tsikliras, A.C., Antonopoulou, E., Stergiou, K.I., 2010. Spawning period of Mediterranean marine fishes. Reviews in Fish Biology and Fisheries, 20, 499-538.

Tsikliras, A.C., Stergiou, K.I., Froese, R. 2013a. Editorial on reproductive biology of fishes. Acta Ichthyologica et Piscatoria, 43, 1-5.

Tsikliras, A.C., Dinouli, A., Tsalkou, E., 2013b. Exploitation trends of the Mediterranean and Black Sea fisheries. Acta Adriatica, 54, 273-282.

Türkmen, M., Akyurt, İ., 2003. Growth characteristics, sex inversion and mortality rates of striped sea beram, Lithognathus mormyrus L., in İskenderun Bay. Turkish Journal of Zoology, 27, 323-329.

Uçkun, D., Akalin, S., Taşkavak, E., Toğulga, M., 2004. Some biological characteristics of the garfish (Belone belone L., 1761) in Izmir Bay, Aegean Sea. Journal of Applied Ichthyology, 20, 413-416.

Vassilopoulou, V., Papaconstantinou, C., 1995. Sexual maturity of the striped mullet (Mullus surmuletus) in the Aegean Sea. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 34, 261.

Vassilopoulou, V., Ondrias, I., Papaconstantinou, C., 1997. Data on the sexual maturity of the flatfish Lepidorhombus boscii (Risso) in the northeastern Mediterranean Sea (Greece). Proceedings of the American Fisheries Society Annual Meeting, 127, 42-43.

Vitale, S., Arkhipkin, A., Cannizzaro, L., Scalisi, M., 2011. Life history traits of the striped seabream Lithognathus mormyrus (Pisces, Sparidae) from two coastal fishing grounds in the Strait of Sicily. Journal of Applied Ichthyology, 27, 1086-1094.

Vitale, S., Cannizzaro, L., Bono, G., Beltrano, A.M., Milazzo, A. et al., 2003. Sexual maturation, age and growth of striped seabream Lithognathus mormyrus (L., 1758) (Pisces: Sparidae) south west coast of Sicily. Biologia Marina Mediterranea, 10, 233-241.

Wadie, W., Riskalla, S., Dowidar, N., 1988. Maturity of family Sphyraenidae in the southeastern Mediterranean Sea. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 31, 269.

Wassef, E., El Emary, H., 1989. Contribution to the biology of bass, Dicentrarchus labrax L. in the Egyptian Mediterranean waters off Alexandria. Cybium, 13, 327-345.

Williams, G.C., 1966. Natural selection, the cost of reproduction and a refinement of Lack’s principle. American Naturalist, 100, 687-690.

Winemiller, K.O., Rose, K.A., 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences, 49, 2196–2218.

Yigin, C., Ismen, A., 2010. Age, growth, reproduction and feed of longnosed skate, Dipturus oxyrinchus (Linnaeus, 1758) in Saros Bay, the north Aegean Sea. Journal of Applied Ichthyology, 26, 913-919.

Zouari-Ktari, R., Bradaï, M.-N., Bouaïn, A., 2009. Reproduction and Growth of the yellowstripe barracuda Sphyraena chrysaena Klunzinger, 1884, in Central Mediterranean. Reviews in Fisheries Science, 17, 485-493.

Zoubi, A., 2001. Biologie de reproduction des principales espèces demersales de la Méditerranée marocaine. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 36, 340.