Noise Analysis of Gate Electrode Work function Engineered Recessed Channel (GEWE-RC) MOSFET

Ajita Agarwala¹² and Rishu Chaujar¹³
¹ Microelectronics Research Lab, Delhi Technological University, Main Bawana Road, Delhi-42, India.
² Email: ajitaagarwala90@gmail.com
³ E-mail: rishuchaujar@rediffmail.com

Abstract. This paper discusses the noise assessment, using ATLAS device simulation software, of a gate electrode work function engineered recessed channel (GEWE-RC) MOSFET involving an RC and GEWE design integrated onto a conventional MOSFET. Furthermore, the behaviour of GEWE-RC MOSFET is compared with that of a conventional MOSFET having the same device parameters. This paper thus optimizes and predicts the feasibility of a novel design, i.e., GEWE-RC MOSFET for high-performance applications where device and noise reduction is a major concern. The noise metrics taken into consideration are: minimum noise figure and optimum source impedance. The statistical tools auto correlation and cross correlation are also analysed owing to the random nature of noise.

1. Introduction

To achieve higher speeds and packing densities, the world has witnessed the miniaturization of the basic MOS device structure. Today, CMOS technology has an established place in the design of multi-gigahertz communication circuits. This is due to the continuing down-scaling of MOS devices, which improves their RF performance characteristics. As the MOSFET is shrunk, some unwanted effects are observed such as punchthrough, hot carrier injection, noise in RF range, and dependence of threshold voltage on channel dimensions, DIBL and other short channel effect (SCEs) which affect the performance of the device in a negative manner. As MOSFET device sizes and signal levels are aggressively scaled down, the low-frequency noise (LFN) properties become increasingly important. This is because the signals are no longer significantly higher than the LFN, especially since the LFN level increases significantly as the device’s size is scaled down[1,2]. As the issue of noise becomes increasingly important in deep-submicron MOSFETs, it is necessary to be able to accurately measure and model the noise parameters of MOSFET to fully characterize its noise performance.

Concave MOSFETs are known to alleviate many of the SCEs [3,4]. This has been achieved by separating the source and drain (S/D) regions by a groove. Several studies have reported that the potential barrier formed at each concave corner is responsible for suppressing the SCEs, hot-carrier...
effects and punch-through. It is also responsible for the degradation of current driving capability and threshold voltage. The recess MOSFET, however, in conjunction with dual material gate (DMG) architecture [5,6], named as Gate electrode work function engineered recessed channel (GEWE-RC) MOSFET, as shown in figure 1, enhances drain current characteristics (shown in figure 2), average carrier velocity and suppresses SCEs, thereby proving superior to the conventional MOSFET. With DMG architecture, the step potential profile, due to different work functions of two metal gates, ensures reduction of SCEs and screening of the channel region under gate 1 from drain potential variations. Thus, the average electric field in the channel is enhanced, improving the electron velocity near the source and, hence, the carrier transport efficiency. Some past works on this device such as RF analysis[7] and linearity analysis[8] have been done before and they suggest the feasibility[9] of this model. The work has been complied in Chaujar et al. The GEWE-RC MOSFET [10,11] (figure 1) considered in this study also integrates the potential benefits of concave MOSFETs with DMG architecture for enhancing the noise performance of scaled devices in comparison to the conventional MOSFET.

For the purpose of the above mentioned noise analysis, structural design parameters, such as gate length, junction depth, substrate doping, gate metal work function and thickness of the oxide layer are tuned in GEWE-RC MOSFET to attain the best performance. The noise parameters examined are the minimum noise figure[12], $\text{NF}_{\text{min}}$, and optimum source admittance, $Y_{\text{opt}}$, or impedance, $Z_{\text{opt}}$, as they are important in the design of low noise RF circuits such as low noise amplifiers (LNA)[13] and mixers[14]. The statistical tools auto correlation and cross correlation are also analysed owing to the random nature of noise.

All simulations have been performed using ATLAS device simulation software. The models activated in simulation comprise the inversion layer Lombardi CVT mobility model along with the Shockley–Read–Hall (SRH) and Auger recombination models for minority carrier recombination. Furthermore, we adopt the hydrodynamic energy transport model which includes the continuity equations, momentum transport equations, energy balance equations of the carriers and Poisson’s equation [12]. It can model the non-local transport phenomenon, and hence presents a higher accuracy than the drift–diffusion method. The quantum corrections have not been taken into account because the quantum mechanical effects become significant when the gate oxide thickness is below 30˚A or 3 nm. In our study, since the gate oxide thickness is 3 nm, the quantum corrections are ignored [15]. The specifications of the device are given in Table 1.

| Design Parameters                  | Value           |
|------------------------------------|-----------------|
| Effective Channel Length           | 96nm            |
| Groove Depth                       | 70nm            |
| Source/Drain Junction Depth        | 50nm            |
| Negative Junction Depth            | 20nm            |
| Substrate Doping                   | $1 \times 10^{17}$ cm$^{-3}$ |
| Source/Drain Doping                | $1 \times 10^{20}$ cm$^{-3}$ |
| Physical Oxide Thickness           | 3nm             |
| Permittivity Of Oxide              | 3.9             |
| Work Function Of Gates             | Of gate 1=4.77eV |
|                                    | Of gate 2=4.1eV  |
Figure 1. The architecture of GEWE-RC MOSFET.

Figure 2. Id-Vg characteristics of GEWE-RC MOSFET.
2. Noise Analysis

Noise performance of a modern small-area MOS devices is dominated by random telegraph signal (RTS) fluctuations\[7,12\]. Their origin is the capture and subsequent emission of charge carriers at discrete trap levels near the Si–SiO\(_2\) interface\[16,17\]. For deep-submicrometer devices, the number of traps with energy within a few kT close to the surface Fermi level is small\[2\]. Both, the number of traps and their position over the channel are random variables\[16,18\]. Traps located in the gate oxide near the interface to the silicon capture and reemit some of the carriers responsible for the current flowing between the source and the drain of the device\[18\]. Hence, the carrier transport efficiency is hampered.

2.1. Results and Discussion

2.1.1. Minimum Noise Figure. The Figure 3 explains the effect of frequency on the noise behavior of GEWE-RC MOSFET and the Conventional MOSFET designs (with the same specifications), in terms of minimum noise figure. Results clearly reveal that noise figure for the conventional MOSFET decreases with the increasing frequency but that of GEWE-RC MOSFET increases with the increasing frequency. Although, it is noteworthy that the noise figure for the conventional MOSFET and GEWE-RC MOSFET at 1000Hz is 67.6643dB and 0.000212794dB respectively. Also, it is vital to observe that the lowest noise figure shown by the conventional MOSFET is 9.18454dB only. This observation can be mainly attributed to the work function difference of the gates in the GEWE-RC architecture, due to which a step-potential is introduced in the channel\[19\]. There exists a screening of the channel region from the drain induced variations due to which the number of carriers entering the channel remains comparatively less varied\[19\]. Also, the vertical electric field is reduced due to which the trapping of the carriers near the Si-SiO\(_2\) reduces, which results in the improved carrier transport efficiency\[20\].

![Minimum Noise Figure as a function of frequency.](image)

Figure 3. Minimum Noise Figure as a function of frequency.
2.1.2. Optimum Source Impedance. The Figure 4 gives the behavior of optimum source impedance ($Z_{\text{OPT}}=R_{\text{OPT}}+jX_{\text{OPT}}$) with respect to frequency. Because the oxide layer acts as a dielectric, there is essentially never any current between the gate and the channel during any part of the signal cycle[21]. As the oxide thickness is being continuously shrunk due to the scaling of the MOSFET, the MOSFET should have a large source impedance to avoid destruction by electrostatic charges. In the Figure 3 it can be vividly seen that optimum impedance for GEWE-RC MOSFET is much higher than that of the Conventional MOSFET.

2.1.3. Auto Correlation and Cross Correlation. The MOSFET is considered as a two port device (Figure 5) i.e. the noise induced at the gate is separated from the MOSFET and is depicted by $V_1$ and the noise received at the output is replaced by a voltage $V_2$[22]. Since noise is a random phenomenon, some statistical analysis is indispensable for this research. Thus, the autocorrelation and cross correlation of the voltages at the two ports of the devices are compared. From the above analysis it can be inferred that surface scattering with the Si-SiO$_2$ gate interface is noticeably reduced in the GEWE-RC MOSFET because of a lower vertical electric field. Therefore, isotropic scatterings present a reduced prevalence in this device[23]. Thus it can be concluded that the mean free path ($\lambda$) of carriers crossing the channel as a function of the frequency is much larger than in the conventional transistor[19]. This reduced influence of isotropic scatterings implies that the scattering mechanisms are not so effective in breaking the correlation between gate and drain current, which leads to higher cross correlation (i.e. $V_1.V_2^*$) between them[23]. Figure 6 depicts such behaviour. In Figure 6, the imaginary part of cross correlation for GEWE-RC MOSFET is abruptly ending as the y axis has a log scale and log is undefined for negative values. It is notable though that the values of imaginary part of cross correlation for GEWE-RC MOSFET abruptly finishes at 1GHz; this is due to the fact that the y axis of the graph has a log scale and the results for $\text{Im}(V_1.V_2^*)$ comes out to be negative. Thus, as log is undefined for negative values, the graph for $\text{Im}(V_1.V_2^*)$ abruptly ends at 1GHz. Auto correlation is the cross correlation of a signal with itself. As can be seen by Figure 7, there is higher
auto correlation between the input (i.e. \( V_1.V_1^* \)) and output voltages (i.e. \( V_2.V_2^* \)) in GEWE-RC MOSFET than the conventional MOSFET depicting lesser intrinsic noise in the former than the latter.

**Figure 5.** MOSFET as a two port device where the input noise is replaced by a voltage \( V_1 \) and the noise received at the output is replaced by \( V_2 \).

**Figure 6.** Cross correlation as a function of frequency.
3. Conclusion
As shown in this work, from the analysis of the microscopic noise sources and dynamic performance of the devices; GEWE-RC MOSFET exhibits superior noise performance in comparison to its conventional counterpart. It can be concluded that the reduced induced gate noise and stronger cross correlation are responsible for the noticeable improvements observed in the intrinsic minimum noise figure. Hence, proving its potency for low power, low noise and low supply voltage applications. Lower noise figure and higher optimum source impedance pertained by the GEWE-RC architecture strengthens the idea of using it for such applications, thereby giving a new opening for usage in RF applications.

4. References
[1] Brederlow R, Weber W, Schmitt-Landsidel D, and Thewes R 1999 Fluctuations of the low frequency noise of MOS transistors and their modeling in analog and RF-circuit IEDM Tech. Dig. 159.
[2] Säden M, Marinov O, Deen M J, and Ostling M 2002 A new model for the low-frequency noise and the noise level variation in polysilicon emitter BJTs IEEE Trans. Electron Devices 49 514.
[3] Takeda E, Kume H and Asai S 1983 New grooved-gate MOSFET with drain separated from channel implanted region (DSC) IEEE Trans. Electron Devices 30 448.
[4] Sreelal S, Lau C K and Samudra G S 2002 Parasitic capacitance characteristics of deep submicrometer grooved gate MOSFETs Semicond. Sci. Technol. 17 179.
[5] Long W and Chin K K 1997 Dual material gate field effect transistor (DMGFET) IEDM Tech. Dig. 549.
[6] Zhou X 2000 Exploring the novel characteristics of hetero-material gate field-effect transistors
(HMGFET’s) with gate-material engineering IEEE Trans. Electron Devices 47 113.
[7] Chaujar R, Kaur R, Saxena M, Gupta M and Gupta R S 2008 GEWE-RC MOSFET: A solution to CMOS technology for RFIC design based on the concept of intercept point; International Conference on Recent Advances in Microwave Theory and Applications, 2008 661.
[8] Rishu Chaujar, Ravneet Kaur, Manoj Saxena, Mridula Gupta and R. S. Gupta 2008 Intermodulation Distortion and Linearity Performance Assessment of 50-nm gate length L-DUMGAC MOSFET for RFIC Design, Superlattices and Microstructures 44 143.
[9] Chaujar R, Kaur R, Saxena M,Gupta, M and Gupta R S 2007 On-state and switching performance investigation of sub-50nm L-DUMGAC MOSFET design for high-speed logic applications Semiconductor Device Research Symposium, International 2007 1.
[10] Chaujar R, Kaur R, Saxena M, Gupta M and Gupta R S 2008 Laterally amalgamated DUal material Gate concave (L-DUMGAC) MOSFET for ULSI Microelectron. Eng., 85 566.
[11] Chaujar R, Kaur R, Saxena M, Gupta M and Gupta R S 2007 RF-Distortion in Sub-100 nm L-DUMGAC MOSFET 14th Int. Workshop on the Physics of Semiconductor Devices (IWPSD-2007) (Mumbai) 168.
[12] ATLAS Device Simulator, SILVACO International 2011.
[13] Shaeffer D K and Lee T H 1997 A 1.5 V, 1.5 GHz CMOS low noise amplifier IEEE J. Solid-State Circuits 32 745.
[14] Karanicolas A N Dec. 1996 A 2.7-V 900-MHz CMOS LNA and mixer IEEE J. Solid-State Circuits 31 1939.
[15] Lo S H, Buchanan D A, Taur Y and Wang W 1997 Quantum-mechanical modeling of electron tunnelling current from the inversion layer of ultra-thin-oxide nMOSFET’s IEEE Electron Device Lett. 18 209.
[16] Boutchacha T and Ghibaudo G 1998 Low frequency noise characterization of 0.18 μm Si CMOS transistors Phys. Status Solidi, A 167 261.
[17] Simoen E, Dierickx B, Clayes C L, and Declerck G J 1992 Explaining the amplitude of RTS noise in submicrometer MOSFETs IEEE Trans. Electron Devices 39 419.
[18] Kirton M J and Uren M J 1989 Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise Adv. Phys. 38 367.
[19] Chaujar R, Kaur R, Saxena M, Gupta M and Gupta R S 2008 TCAD Assessment of Gate Electrode Workfunction Engineered Recessed Channel (GEWE-RC) MOSFET and Its Multilayered Gate Architecture—Part I: Hot-Carrier-Reliability Evaluation, IEEE Trans on Electron Devices 2008 55 2602.
[20] Hou F C, Bosman G, and Law M E 2003 Simulation of oxide trapping noise in submicron n-channel MOSFETs, IEEE Trans. Electron Devices, 50 846.
[21] Ribes G, Mitard J, Denais M, Bruyere S, Monsieur F, Parthasarathy C, Vincent E, and Ghibaudo G 2005 Review on high-k dielectrics reliability issues IEEE Trans. Device Mater. Rel. 5 5.
[22] Belostotski L and Haslett J W 2008 Two-port noise figure optimization of source-degenerated cascode CMOS LNAs, Analog Integr. Circuits Signal Process. 55 125.
[23] Rengel R and Martin M J 2010 Electronic transport in laterally asymmetric channel MOSFET for RF analog applications IEEE Trans. Electron Devices 57 2448.