Supplementary Text

Results

Phenotypes of intermediate constructs

Homozygous replacement of only the 5' portion of the \textit{D.mel pb} locus with sequences from \textit{D.mim} (fragment 1) resulted in flies with a completely normal labellum, but with notable alterations in maxillary palp morphology and bristle patterning (fig. S4). Maxillary palps of fragment 1 replaced flies were bulbous with increased numbers of tufted bristles in the distal region of the maxillary palps (fig. S4A). Correspondingly, we observed greater numbers of underlying ELAV positive staining neurons with a broader distribution in developing pupal maxillary palps (fig. S4D), a phenotype reminiscent of that observed for the full \textit{pb-mim} replacement (Fig. 2G). Next, we replaced the 3'-most portion of the pb locus (fragment 2) alone (fig. S5, A and B) or in combination with replacement of fragment 1 (fig. S5, C and D). Flies homozygous for fragment 2 only displayed a partial loss of the \textit{pb} homeotic phenotype which consists of a transformation of labellum into arista (fig. S5, A and B). The hypomorphic fragment 2 phenotype dominated when combined with the fragment 1 replacement. In light of the fact that a replacement of the entire \textit{D.mel pb} locus with that of \textit{D.mim} provides nearly full rescue of \textit{pb} function, we speculate that long-range interactions between multiple species-specific cis-acting regulatory sequences are required to act in concert to provide full activity of the locus.

It is noteworthy that the phenotype of the full \textit{D.mim pb} replacement differs from the sum of its component parts in that replacement of only 5' portion of the locus leads to alteration in bristle numbers and underlying neurons (also observed in the full replacement) but does not result in altered orientation of the maxillary palps nor heart-shape palps in males, while replacement of only the 3' portion of the locus results in a partial loss-of-function phenotype. These observations underscore the importance of replacing the entire locus to accommodate potential species-specific evolution of interactions among distant cis-regulatory elements.
Fig. S1: Expression of the *pb*, *Dfd*, and *Scr* loci in third instar larvae. Expression of the *melPb-G4* (A), *Dfd-GAL4* (B) and *Scr-Gal4* (C) genes was visualized by the UAS-nlsGFP reporter gene.
(green) driven by T2A-GAL4 insertions into these loci respectively (Fig. 3A) in labial discs, salivary glands, leg disc T1, leg disc T2, eye-antennal discs and the brain/central nervous system.
Fig. S2: Expression of *pb*, *Dfd*, and *Scr* during metamorphosis. The expression of *melPb-G4* (A), *Dfd-GAL4* (B) and *Scr-Gal4* (C) in developing mouthparts using *UAS-nlsGFP* as the reporter gene (green). Each image represents individual frames from live imaging shown in Supplemental Data Movie 1, 2 and 3. The time the image was recorded is indicated (hr) and the arrowhead indicate the developing labial segment, the arrow indicates the maxillary primordia, and asterisk indicates T1 leg primordia expression. Scale bar, 250 μm.
Fig. S3: Deletion of the pb gene locus in D.mel (A) Scheme depicting whole pb locus deletion in D.mel pb, with pb and Zen2 gene introns and exons depicted on top. Also shown are the two gRNAs (gRNA1 and 2) and Cas9 used to delete the 38 kb pb locus and replace it with plasmid carrying an eGFP fluorescent eye marker cassette. (B) Fly heads from a pb wild type (Wt, w1118 strain) and a pb gene locus deletion (pb-/-) fly head. False color indicates maxillary palps (green), and arrowheads indicate labellar lobes. Scale bar, 50 μm.
Fig. S4: Replacement of pb fragment 1 from D.mim to D.mel (A) Scheme depicting the entire pb genomic locus from D.mel (38 kb), along with the replacement DNA fragment 1 (D.mim F1) from D.mim pb with 3xP3-GFP (GFP) marker cassette flanked by lox sites. (B) Bright field images of D.mel and D.mim F1 replaced head. False color indicates maxillary palps (green), and arrowheads indicate labellar lobes. Scale bar, 50 μm. (C) Female and male maxillary palps of D.mel and D.mim F1 replaced. Scale bar, 25 μm. Graph represents number of bristles on maxillary palp in D.mel, and D.mim F1 replaced genotypes. Error bars indicate standard deviation; No. of maxillary palp scored (n)=16; ****p < 0.0001. (D) Female maxillary palp neurons in the D.mel and D.mim F1 replaced animals, as visualized by staining with anti-Elav antibodies. Scale bar, 25 μm. Graph represents number of neurons in maxillary palp in D.mel and D.mim F1 genotypes. Error bars indicate standard deviation; No. of maxillary palp scored (n)=6; ****p < 0.0001.
Fig. S5: Replacement of pb fragment 2 from D.mim to D.mel (A) Scheme depicting whole pb genomic locus from D.mel (38 kb) and a replacement of D.mim fragments 2 (F2) along with 3xP3-RFP (RFP) marker cassette flanked by lox sites. (B) Bright field image of D.mel and D.mim F2
replaced heads. False color indicates maxillary palps (green), and arrowheads indicate labellar lobes. Scale bar, 50 μm. (C) Scheme depicting whole pb genomic locus from D.mel (38kb) and a replacement of both fragments-1 and 2 (D.mim F1-F2) replacement. (D) Bright field image of wild type D.mel and D.mim F1-F2 replaced heads. False color indicates maxillary palps (green), and arrowheads indicate labellar lobes. Scale bar, 50 μm.
Fig. S6: Variation of maxillary palp phenotypes in pb-mim replacement. Array of maxillary palps from *D. melanogaster* and *pb-mim* replaced females (A) and males (B). Asterisks indicate notch on inner surface. Scale bar, 25 μm.
A. Pb protein sequence conservation between *D. melanogaster* and *D. mimica*

B. Pb protein sequence conservation between *D. mimica* and *D. grimshawi*

C. Bar graph showing % protein conservation between different species.

D. Phylogenetic tree showing the relationship between different *Drosophila* species with time scale.

E. Diagram of the *pb* gene with exons, regulatory elements, and rescue experiments.

F. Fluorescent images showing expression patterns of genes in *Drosophila*.
Fig. S7: Comparison of Pb protein coding sequences and function in *D.mel* versus *D.mim* (A)
The Pb protein sequence alignment of *D.mim* compared to *D.mel*. The bar graph represents the conservation percentage of amino acid sequences. (B) The Pb protein sequence alignment of *D.mim* compared to *D.grim*. The bar graph represents the conservation percentage between single amino acid. (C) Pb (green) and zen2 (gray) paralog protein sequence comparison plotting percentage of amino acid conserved between *D.mim* and *D.mel* (*mim-mel*), *D.grim* and *D.mel* (*grim-mel*), and *D.mim* and *D.grim* (*mim-grim*). (D) Phylogenetic tree of Pb protein sequences of six *Drosophila* species. The tree was made using the maximum likelihood method with the CLC Main Workbench program. Bar indicates distance. (E) Schematic of the *pb* genomic regions engineered to incorporate Gal4-T2A fused to HoxA2 or HoxB2 cDNAs followed by 2 stop codons. (F) Images of control (*melPb-G4*) and Gal4-T2A:HoxA2 cDNAs driving expression of *UAS-nlsGFP* in primordia of the maxillary palps (Mx) and proboscis (Lb) in late pupae. The HoxA2 proboscis shape is altered because it has been partially transformed to legs.
Fig. S8: Comparison of genomic pb sequences in *Drosophilids* (A) Genomic sequence conservation between *pb* loci in *D.mim* and *D.mel*. Blue regions indicate exons and red regions indicate conserved non-coding regions. (B) Genomic sequence conservation between *pb* loci in *D.mim* and *D.grim*. Blue regions indicate exons and red regions indicate conserved non-coding regions. (C) Approximately equal mean GFP intensities were measured in the labellum of late pupae for the *melPb-G4* and *mimPb-G4* reporters driving expression of *UAS-nlsGFP*. Error bars indicate standard deviation; No. of pupae scored (n)=20; ns >0.05.
Fig. S9: Ectopic expression of Dfd, dsxM and dsxF in the D.mel pattern (A) Bright field image of melPb-G4, and melPb-G4>UAS-Dfd head. False color indicates maxillary palps (green) and arrowheads indicate labellar lobes. (B) Maxillary palp of melPb-G4>UAS-Dfd. (C) Representative maxillary palp of melPb-G4>UAS-dsxM male and female. (D) Bright field image of melPb-G4>UAS-dsxF fly head. Scale bar, 50 μm.
Source	Genotype		
BDSC:4775	w[1118]; P{w[+mC]=UAS-GFP.nls}14		
BDSC:7299	w[1118]; P{w[+mC]=UAS-Dfd.B}W4		
BDSC:7302	w[1118]; P{w[+mC]=UAS-Scr.M}EE2/TM6B, Tb[+]		
BDSC:44223	y[1] w*; P{w[+mC]=UAS-dsx.F}24-3		
BDSC:44224	y[1] w*; P{w[+mC]=UAS-dsx.M}2/CyO		
BDSC:7108	w*; P{w[+mC]=tubP-GAL80[ts]}10; TM2/TM6B, Tb[1]		
In this study	In this study		
In this study	w[1118]; melPb-Gal4		
In this study	w[1118]; melPb-Gal4_T2A_cDNA:Pb		
In this study	w[1118]; melPb-Gal4_T2A_cDNA:Pbmim		
In this study	w[1118]; melPb-Gal4_T2A_cDNA:HoxA2		
In this study	w[1118]; melPb-Gal4_T2A_cDNA:HoxB2		
In this study	w[1118]; mimPb-gal4		
In this study	w[1118]; Dfd-Gal4		
In this study	w[1118]; Scr-Gal4		
In this study	w[1118]; Pbdel		
In this study	w[1118]; pb-mim Frag1		
In this study	w[1118]; pb-mim Frag2		
In this study	w[1118]; pb-mim Frag1-2		
In this study	w[1118]; pb-mim Replaced		
gRNA	Sequences		
------------	--		
Del1_gRNA	GCACCGCGCATGTGCCGACC		
Del2_gRNA	GACGACTTGGGGTTGTATGA		
F1a_gRNA	GGAAGGCAGTGCGATTAGCG		
F1b_gRNA	GATCATCTGATAGGCTACTC		
F2a_gRNA	GGGGTGGAGAGTGCTCCGGG		
F2b_gRNA	GACGACTTGGGGTTGTATGA		
F3a_gRNA	GCAGTGCGATTAGCGTCTG		
F3b_gRNA	GCAGACTTCTTGCATAGCTT		
pbGal4_gRNA	GCATGAGAAAAGAGCTCATGA		
DfdGal4_gRNA	GCACCGTTCGTCACCAGA		
ScrGal4_gRNA	GTACCAGTTTGCACCTCGC		
Oligos_mimica	Fragment 1 Amplification Oligos	Fragment 2 Amplification Oligos	Fragment 3 Amplification Oligos
--------------	--------------------------------	--------------------------------	--------------------------------
AA83	GTGGAAATCACTTTATGATGTGATGACACC	AA181	GAGAATAAGCATAATCCAGATCCACCCC
AA319	GGTGAGACGGGTTGCGGGGTGGAATTTGCTGCC	AA182R	CGAAACGAAACTTATCAGCAACTACGTTC
AA320	GGCAAGAATCCTCCACCCCGGCAACCGTCTCAACC	AA246	GCTGCTGCACAAAAAGTATCCGACGTAGTGTGCTGATAAGTTTCGGTTTCG
AA281	CTACACATCCGCGCCTAAGTGCTGTG	AA247	CGGCAGATTTTGAAACGAGCAGCTTACCTGGAAGTGGTAGCAAAATGGTAG
AA282	CCAAGAAAGGGACAGCTACACACAGCAC	AA186	CTACCAGTTGCTACCATTCCAGGTTA
AA237	GATTCCGTACGAGTGTCGGCGCTTGGAATGCTTCACGCATTTATTTGTCG		
AA238	CCAAGTCCGAGTGAAAGTGACCAATAAATAGCGTAAGCATTCCAAGCG	AA187	CCAAAAGTTAAAAATTITSACGGAGAGCCC
AA239	GTATCTTGGCGCACTTATCTCCATAAATAGCTGAACAAAAATTGCGGC	AA217	CAGACAGACATCTAGTTAGGGCTCTCCTG
AA240	AA241	AA120	GAGTGGGGTGGGAAAACGTGCAAGATGAATG
AA241	GGCCTGAGCCACTGAAAAGGTCGCGCAATTAATTGTACGCCTTTATATGAG	AA178	GTCGGCTACGCACTTATGTAATAAATAGC
AA120	CAGTAGGTTGGACACGTCTACTCTACTCTAGTGACAGTTTCGACACCCCAC	AA191	CACTCCGACACTCTGACTTTATGCGCG
AA178	AATGGGTGGGAAAACGTGCAAGATGAATG	AA192	TCCTCAATAGCGCACTTCTGTTCGGCC
AA191	GTCGGCTACGCACTTATGTAATAAATAGCGC	AA242	TAGGCTGACAAAAAGCTTTAAAGCGGAAACAGAGAGTCGGCGCTATGAG
AA192	TCCTCAATAGCGCACTTCTGTTCGGCC	AA243	ATGGCGGACCTTCTCTGCGGGGTGGAATCTGGAATTATGCTTTACTCT
AA244	GCTTTGCAATCTGGCGAATACGATAAATGCTCAATCCAGATCCAC		
Sequencing oligos			
------------------	--		
AA104	CAAATGTGTCAGAGCTGAAACGTCATGATTAATG		
AA106	CATCATTAATCATGACGTTTCAGCTCTGACAC		
AA107	TCGTCGGGGCAGGCGGTGGTTTCTG		
AA107	GGAAATGTACATCGCATGGATGAAATGCCG		
AA108	GCAGCTGAATTCTGTCCAGAAACCGCCTGCG		
AA119	CATTCAATCTGACAGTTTTACCACCACACTC		
AA121	CCATCAGGGATGCTAAGAGCTGTCATC		
AA122	GATTGACAGCTCTTAGCTAGCAATCCCTGATG		
AA123	CGAATTGGAGTCTGACATTTCACGGG		
AA124	CCCGTGAAATGCAAGACTCCAATTCCG		
AA146	CACGCACATCGAAGAAAATACAG		
AA147	CGCCTTGGTGCGGCGTTGTTC		
AA148	GATTGACAGCTCTTAGCTAGCAATCCCTGATG		
AA149	CCTCATGGGTTACACGACAC		
AA150	GCCACTGCGAGTCAAGTGCC		
AA151	GGCTGCAATTGGTCTCGCAATTGG		
AA152	GCCGTGGAAGTTGAACCTCG		
AA152	GCCGTGGAAGTTGAACCTCG		
AA153	CAACGGGAGTGGAACCTCAACTCC		
AA154	GGAGTTGAAGTCTACACTCCGTTGGG		
AA155	GGATGATACAGGGAGCGGG		
AA156	GTGTTGCCCGGTGGTACGGC		
AA157	GCCAGGCATCAGCATGCAAATCG		
AA158	CTTGGTGCGGCGGCGGCTG		
AA159	GGGATCTCCGGACTCAAAGTG		
AA160	CGACTCGGATGTTGGTGCTG		
AA160	CGACTCGGATGTTGGTGCTG		
AA161	CGTGCTGAAATGGAAGTCAATGC		
AA176	CGAGTTGGATCGACATCCCACGG		
AA177	CGGCAGACAAAGTGCTGTC		
AA180	GGGGTGAGATCGGATGATGCTTATTCCT		
AA180	GGGGTGAGATCGGATGATGCTTATTCCT		
AA181	GAGAATAAGCATAATCCAGATCCACCCC		
---	---		
AA184	GACGTA-GTTGCTGATAAGTTTCGTTTGC		
AA185	TAACCTGGGAGTGTAGCAAAAATGGTAG		
AA189	GCATGGGCTTGGTGAAGATCGCAACAA		
AA190	TGCAAAATCTTCTAGTCCAGGCAACCAGGC		
AA193	GCCGAACAGAAATGCTCCTCTTACG		
AA194	TAAGGCCCTCTGGTCCATAAGACCTCTCCCC		
AA197	AAGACTCGTATACCCCTGTGG		
AA198	GCAGCTGTTGGCCGGTGTGCTG		
AA199	GCACAGCAGCCAATTCAACA		
AA200	CACATGCACCTGGACATGGGC		
AA201	ATTGATGATGCGGCTTTGGG		
AA202	CCCATAAGCTGCCTAATGGC		
AA202	CCCATAAGCTGCCTAATGGC		
AA203	GGAGGGTCCTCCGAACAGAG		
AA203	GGAGGGTCCTCCGAACAGAG		
AA204	CATCTCTGGCGCATTCCTAGG		
AA205	GCGAGCTTTGCTGGTCCTCACG		
AA206	CAGTGCTCTATGTCTGGCTG		
AA208	CGGATGATGCAACGATCCAGCAAG		
AA209	CCCGTCTACTTCAGCGCAGACTG		
AA209	CCCGTCTACTTCAGCGCAGACTG		
AA211	CCGCTCTTTGGACTCGGTCTG		
AA212	GCCAAGTTGGAAAGGCATTGG		
AA213	CATTTTGCTGGCGCAGACTG		
AA214	GCTGCCACGGTCACAGGACT		
AA215	GCTGCCACCGTCACAGGACT		
AA216	GCCTCTTCCATCTCTGGCTG		
AA216	GCCTCTTCCATCTCTGGCTG		
AA230	GTACACACTTTAGTAAGTGGTCCACCTAAAAACTCTACGCTTGC		
AA231	CTGGTGGCCTGCAACTAAATGTCGACAAACTTTAGT		
AA264	CATGGGACATTGAGCAGTTG		
AA264	CATGGGACATTGAGCAGTTG		
AA276	ACTCGGTGGCCAGTATCCCTGGATG		
AA281	GCAGCGGTGTGGCTCAAATAATGGC		
AA323	AGACCGAGCTGTCCATCAAGGAGGCCAAC		
AA348	GCAGCTCGACATGATGGAATGGAAATGGGACTG		
AA434	TGGGTTCAGCAACAGCACC		
Table S5: Maxillary palp Normalized GFP intensity

Pbmel_F	Pbmim_F	Pbmel_M	Pbmim_M
46.19951	51.31782	59.16485	48.7396
42.48317	44.69703	67.46287	52.63787
69.6953	60.86609	58.07277	38.97624
67.52748	46.04604	44.36089	33.70371
63.08936	53.90941	58.88911	32.82252
77.16411	55	54.98317	42.98094
66.83144	36.79876	45.97104	41.58614
65.5349	34.76807	54.54604	43.39059
51.55545	58.85272	59.16485	46.3896
54.95545	30.77401	65.46287	40.86262
44.06436	40.80743	58.07277	38.77327
51.66609	36.10767	44.36089	42.00965
60.19233	79.36386	58.88911	28.69183
68.6255	61.24233	54.98317	38.41287
50.40866	45.79802	45.97104	54.75718
42.56436	53.11238	54.54604	31.35272
43.57302	46.04134	47.55495	35.81188
48.44505	60.31757	49.48812	38.11634
52.53342	51.31782	55.81436	34.64653
68.99381	44.69703	42.56436	32.52401
47.55495	60.86609	43.57302	37.31114
49.48812	46.04604	48.44505	32.71708
55.81436	53.90941	54.98317	
62.02946	54.98317		
58.61906	36.79876		
57.33861	34.76807		
49.64183	58.85272		
56.0255	40.80743		
53.32129	36.10767		
54.34158	79.36386		
Table S6: Maxillary palp raw GFP intensity

Pbmel_F	Pbmim_F	Pbmel_M	Pbmim_M
186.646	207.324	239.026	196.908
171.632	180.576	272.55	212.657
281.569	245.899	234.614	157.464
272.811	186.026	179.218	136.163
254.881	217.794	237.912	132.603
311.743	222.2	222.132	173.643
269.999	148.667	185.723	168.008
264.761	140.463	220.366	175.298
208.284	237.765	239.026	187.414
222.02	124.327	272.55	165.085
178.02	164.862	234.614	156.644
208.731	145.875	179.218	169.719
243.177	320.63	237.912	115.915
277.247	247.419	222.132	155.188
203.651	185.024	185.723	221.219
171.96	214.574	220.366	126.665
176.035	186.007	192.122	144.68
195.718	243.683	199.932	153.99
212.235	207.324	225.49	139.972
278.735	180.576	171.96	131.397
192.122	245.899	176.035	150.737
199.932	186.026	195.718	132.177
225.49	217.794		
250.599	222.2		
236.821	148.667		
231.648	140.463		
200.553	237.765		
226.343	124.327		
252.978	164.862		
215.418	145.875		
250.038	320.63		
Table S7: Labellum GFP intensity

Pbmel	Pbmim
397.567	433.361
401.159	384.79
392.197	474.586
381.725	289.157
404.983	385.276
372.767	426.509
370.844	372.861
400.584	474.345
384.702	345.47
539.477	324.968
397.567	377.983
401.159	417.626
392.197	416.139
381.725	404.574
404.983	308.507
372.767	349.938
370.844	350.712
400.584	464.522
384.702	557.656
	462.451
Movie S1: The expression of melPb-GAL4 during metamorphosis.

Movie S2: The expression of Dfd-GAL4 during metamorphosis.

Movie S3: The expression of Scr-GAL4 during metamorphosis.

Data S1: *D. mim* zen2 and Pb protein and DNA sequences