Increasing Physical Activity with Mobile Devices

A Meta-Analysis

Jason T Fanning, Sean P Mullen, PhD, Edward McAuley, PhD
Background

• Physical activity (PA) is associated with reduced morbidity and mortality

• Despite endeavors to enhance participation, reduce attrition, and increase maintenance, PA rates remain low

• New consumer technologies offer a potential solution to these problems
The Mobile Device

• The Mobile Phone
 • Devices capable of communicating via voice and text

• Personal Digital Assistant (PDA)
 • Examples: Palm Pilot, Dell Axim
 • Offer organizational, basic word processing, internet, and entertainment features

• Smartphone
 • Combined PDA features with those of a mobile phone
 • Originally popular among businessmen, popularized by the 2007 release of the Apple iPhone
The Mobile Device

• Integrated into daily functioning for many individuals
• High levels of usage across demographic groups
 • 4 in 5 adults own mobile phones
 • 95% of young adults use mobile phones
 • In many western countries, mobile phones outnumber citizens
• An evolving technology
 • Many new features become less expensive and more widely used with time
Mobile Devices and Health

- Meta-analysis of mobile phone use for glucose control (Liang et. al., 2011)
 - 21 publications (n=1,657)
 - Overall reduction in HbA$_{1c}$ ($p<.001$)
- Systematic review and meta-analysis of the effect of internet-based interventions on health-related behavior (Webb et. al., 2010)
 - 85 studies targeting health behavior (n=43,236)
 - $d = 0.16$
 - 20 studies targeted physical activity
 - $d = 0.24$
- Lack of review or meta-analysis addressing physical activity behavior change with a mobile device
Purpose

• Conduct a review and meta-analysis in order to:
 1. Determine the efficacy of mobile devices in previous physical activity research
 2. Examine common features of mobile devices in the research context
 3. Develop recommendations for future use
Methods

• Extensive Search through February, 2012
 • Online databases
 • Reference lists
 • Direct requests to experts

• Inclusion Criteria:
 • Implementation of mobile technologies
 • Target physical activity
 • Provide original data
Methods

• Quality assessed via the *Guide to Community Preventative Services* data extraction form
 • Concerned with “threats to validity”
 • Good – 0 - 1 limitations
 • Fair – 2 - 4 limitations
 • Poor – 4+ limitations

• Note – no “gold-standard”
Analysis

• Extracted:
 • Means (M)
 • Standard Deviation (SD)

• Calculated: Cohen’s d

• Software: *Comprehensive Meta-Analysis*
 • *(Borenstein & Rothstein, 1999)*
Intervention Characteristics

- 9 Unique Studies (n=743)
 - 7: Mobile Phone
 - 6: SMS
 - 3: Native Application
 - 2: PDA
Characteristics

• Reported Outcomes
 • MVPA duration
 • MVPA frequency
 • % Active time spent in MVPA
 • Pedometer step counts
 • Number of days of exercise per week
 • Days per week walking for exercise
Results

Study Authors	N	Duration (weeks)	Effect
Conroy	198	24	-.075
Fjeldsoe	88	12	.548
Fukuoka	82	3	.311
Hurling	77	9	-.076
King	37	8	1.517
Nguyen	17	24	.788
Prestwich	134	4	.699
Shapiro	40	8	.501
Sirriyeh	118	2	.201
Results – Outcome Measures

Outcome	n	g	Q	I^2
Overall PA	9	.4170	26.92 (df=8, $p=.0007$)	70.28
MVPA Duration	4	.3395	14.31 (df=3, $p=.0025$)	79.04
Steps	2	.3498	0.1826 (df=1, $p=.6691$)	0
Results – Components

Component	n	g	Q	I²
Mobile Phone	7	.3905	8.85 (df=6, p=.1823)	32.20
SMS	6	.4064	8.6776 (df=5, p=.1226)	42.38
Native Apps	3	.5078	15.91 (df=2, p=.0004)	87.43
PDA	2	.6826	15.43 (df=1, p=.0001)	93.52
Results

• Quality:
 • Three studies of “good” quality
 • Five studies of “fair” quality
 • One study of “poor” quality
Discussion

• Results indicate that the mobile platform is effective for increasing physical activity behavior.

• There is significant heterogeneity among studies.

• Understanding common design issues is an important first step when considering design of future interventions.
Discussion: Design Characteristics

• The role of SMS
 • Supplement data collection
 • An alternate means of communication
 • May assess behavior in real time
 • Must be recognized as one of many tools

• Lacking Automation
 • The mobile environment is flexible and conducive to immersive tailoring and automation

• Theoretical frameworks must be adapted and developed which assess unique aspects of the mobile platform
Discussion: Native Applications

- Popularity of widespread app development is a unique and key feature to mobile devices
 - Reside on the device
 - More complex, more flexible than web applications
 - Reach a diverse population
- Previous work has been successful
 - Interesting examples
 - UbiFit (Consolvo, 2008)
 - Neat-o-Games (Fujuki, 2008)
Discussion: Ubiquity

• Most important advantage of mobile devices
 • Availability of diverse applications have led many to integrate their mobile device into their daily lives.
 • We can deliver materials and collect data with little additional burden

• Components which might hinder the usability for the participant should be minimized
Conclusion

• This research indicates that mobile devices are effective in increasing physical activity behavior.
• Much of the potential of the device is unexplored in the research setting.
 • Integral in daily functioning
 • Exchange rich multimedia information
 • Collection of data and distribution of materials in real time
• There is significant heterogeneity in study design and outcomes measured
• Future researchers must address new, popular technologies in a methodical, theoretically grounded fashion.
Thank You