Distributions of Charged Hadrons Associated with High Transverse Momentum Particles in pp and Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

J. Adams, C. Adler, M.M. Aggarwal, Z. Ahammed, J. Amonnett, B.D. Anderson, D. Arkhipkin, G.S. Averichev, S.K. Badyal, J. Balewski, O. Bariannikova, L.S. Barnby, J. Baudot, S. Bekele, V.V. Belaga, R. Bellwied, J. Berger, B.I. Bezverkhny, S. Bhardwaj, A.K. Bhati, B. Bichsel, A. Billmeier, L.C. Bland, C.O. Blyth, B.E. Bonner, B.V.K.S. Potukuchi, A. Bouchard, A. Brandin, A. Bravar, R.V. Cadman, X.Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, J. Carroll, J. Castillo, D. Cebra, P. Chaloupka, S. Chattopadhyay, H.F. Chen, S.P. Chernenko, A. Chikanian, W. Christie, J.P. Coffin, J.G. Cramer, H.J. Crawford, D. Das, S. Das, A.A. Derevschikov, L. Didenko, T. Dietel, W.J. Dong, X. Dong, J.E. Draper, F. Du, A.K. Dubey, V.B. Dunin, J.C. Dunlop, M.R. Dutta Majumdar, V. Eckardt, L.G. Efimov, V. Emelianov, J. Engelge, G. Eppley, B. Erazmus, M. Estienne, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, P. Filip, E. Finch, Y. Fisyak, D. Flierl, K.J. Foley, J. Fu, C.A. Gagliardi, N. Gagunashvili, J. Gans, M.S. Ganti, L. Gaultichet, F. Geurts, V. Ghazikhanian, P. Ghosh, J.E. Gonzalez, O. Grachov, O. Grebenyuk, S. Gronstal, D. Grosnick, S.M. Guertin, A. Gupta, T.D. Gutierrez, J.C. Hallman, A. Hamed, A. Hirsch, E. Hjort, G.H. Hwang, H.Z. Huang, S.L. Huang, E. Hughes, T.J. Humanic, G. Igo, A. Ishihara, P. Jacobs, W.W. Jacobs, M. Janik, H. Jiang, I. Johnson, P.O. Jones, E.G. Judd, S. Kabana, M. Kaplan, D. Keane, Y.V. Khodyrev, J. Kiryluk, A. Kissiel, J. Klay, S.R. Klein, A. Klyachko, D.D. Koetke, T. Kollegger, M. Koptyev, L. Kotchenda, A.D. Kovalenko, M. Kramer, P. Kravtsov, V.I. Kravtsov, K. Krueger, C. Kuhn, A.I. Kulikov, A. Kumar, G.J. Kunde, R.Kh. Kutuev, A.A. Kuznetsov, M.A.C. Lamont, J.M. Landgraf, S. Lange, B. Lasik, F. Laue, J. Laurent, A. Lebedev, R. Lednický, M.J. LeVine, C. Li, Q. Li, J.M. Lindenbaum, M.A. Lisa, F. Liu, L. Liu, Z. Liu, J.Q. Liu, T. Ljubicic, W.J. Llope, H. Long, R.S. Longacre, M. Lopez-Noriega, W.A. Love, T. Ludlam, D. Lynn, J. Ma, Y.G. Ma, D. Magesto, S. Mahajan, L.K. Mangotra, D.P. Mahapatra, R. Majka, R. Manweiler, S. Mariat, C. Markert, L. Martin, J. Marx, H.S. Matis, Yu.A. Matulienë, C.J. McClain, T.S. McShane, F. Meissner, Yu. Melnik, A. Meschini, M.L. Miller, Z. Milosevic, N.G. Minne, C. Mironov, A. Mischke, D. Mishra, J. Mitchell, B. Mohanty, L. Molnar, C.F. Moore, M.J. Mora-Corral, D.A. Morozov, V. Morozov, M.M. de Moura, M.G. Munhoz, B.K. Nandi, S.K. Nayak, T.K. Nayak, J.M. Nelson, P.K. Netrakanti, V.A. Nikitin, L.V. Nogach, B. Norman, S.B. Nurushev, G. Odyne, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S.K. Pal, P. Panebratsev, A.I. Paulinov, T. Pawlok, T. Peitzmann, V. Perevozchikov, C. Perkins, W. Peryt, V.A. Petrov, S.C. Phatak, R. Pich, M. Planinic, J. Pluta, N. Porile, J. Porter, A.M. Poskanzer, M. Potekhin, E. Potrebenikova, B.V.K.S. Potukuchi, D. Prindle, C. Pruneau, J. Putschke, H.G. Ritter, B.J. Roberts, O.V. Rogachevskiy, J.L. Romero, A. Rose, C. Roy, L.J. Ruan, R. Sahoo, I. Sakrejda, S. Salah, J. Sandweiss, I. Savin, J. Schambach, R.P. Scharenberg, N. Schmitz, L.S. Schroeder, K. Schröder, J. Seger, P. Seyboth, I. Savin, E. Shahaliev, J.L. Romero, M. Shao, G. Skoro, T. Tung, N. Smirnov, S. Smit, G. Sood, P. Sorensen, J. Sowinski, J. Speltz, H.M. Spinka, B. Srivastava, T.D.S. Stanislaus, R. Stock, A. Stolpovskiy, M. Strikhanov, B. Stringfellow, C. Struck, A.A.P. Suade, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T.J.M. Symons, A. Szanto de Toledo, P. Szczurek, A. Tai, J. Takahashi, A.H. Tang, D. Thein, J.H. Thomas, S. Timoshenko, M. Tokarev, M.B. Tonjes, T.A. Trainor, S. Trentalange, R.E. Tribble, O. Tsai, U. Trullrich, D.G. Underwood, G. Van Buren, A.M. VanderMolen, R. Varma, I. Vasilievsky, A.N. Vasiliev, R. Vernet, S.E. Vigdor, Y.P. Viyogi, S.A. Voloshin, V.M. Vznuzdaev, W. Waggoner, F. Wang, G. Wang, G. Wang, X.L. Wang, Y. Wang, Z.M. Wang, H. Ward, J.W. Watson, J.C. Webb, R. Wells, G.D. Westfall, C. Whitten Jr., H. Wieman, R. Willson, S.W. Wissink, R. Witt, J. Wood, J. Wu, N. Xu, Z. Xu, E. Yamamoto, P. Yepes, V.I. Yurevich, B. Yuting, Y.V. Zanevski, H. Zhang, W.M. Zhang, Z.P. Zhang.
Charged hadrons in $0.15 < p_\perp < 4 \text{ GeV}/c$ associated with particles of $p_\perp > 4 \text{ GeV}/c$ are reconstructed in pp and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$. The associated multiplicity and p_\perp magnitude sum are found to increase from pp to central Au+Au collisions. The associated p_\perp distributions, while similar in shape on the near side, are significantly softened on the away side in central Au+Au relative to pp and not much harder than that of inclusive hadrons. The results, consistent with jet quenching, suggest that the away-side fragments approach equilibration with the medium traversed.

PACS numbers: 25.75.-q, 25.75.Dw

Quantum Chromodynamics (QCD) predicts a phase transition between hadronic matter and quark-gluon plasma at a critical energy density of $\sim 1 \text{ GeV}/\text{fm}^3$. Such a phase transition is being actively pursued at the Relativistic Heavy-Ion Collider (RHIC). High transverse momentum (p_\perp) particles, emerging from hard scatterings, lose energy while traversing and interacting with the medium being developed in heavy-ion collisions. Energy
loss results in jet quenching [2] — suppressions of hadron yield and back-to-back angular correlation at high \(p_\perp \). Such suppressions were observed in central Au+Au collisions at RHIC [3,4] and attributed to final state interactions when no suppression was seen in d+Au [5]. Perturbative QCD model calculations invoking parton energy loss require 30 times the normal nuclear gluon density in order to account for the central Au+Au results [4].

The depleted energy at high \(p_\perp \) must be redistributed to low \(p_\perp \) particles [3,4]. Reconstruction of these particles will constrain models describing production mechanisms of high \(p_\perp \) particles, and may shed light on the underlying energy loss mechanism(s) and the degree of equilibration of jet products with the medium.

This Letter presents results from statistical reconstruction, via two-particle angular correlations, of charged hadrons in 0.15<\(p_\perp <4 \) GeV/c associated with a high \(p_\perp \) “trigger” particle in pp and Au+Au collisions at \(\sqrt{s_{NN}}=200 \) GeV. Two \(p_\perp \) windows for trigger particles, 4<\(p_\perp^{\text{trig}} <6 \) GeV/c and 6<\(p_\perp^{\text{trig}} <10 \) GeV/c, are presented. The latter range is expected [9,10] to provide a purer, though much lower statistics, sample of hard scattering products. Results are reported as a function of centrality for Au+Au collisions and the associated hadron \(p_\perp \).

Analysis. — The STAR experiment [11] is well suited for this measurement due to significant pseudo-rapidity (\(\eta \)) and complete azimuthal (\(\phi \)) coverage. The STAR Time Projection Chamber (TPC) resides in a magnetic field of 0.5 T along its cylindrical axis (= the beam direction). Events with reconstructed primary vertex within \(\pm 25 \) cm longitudinally of the TPC center are used. The Au+Au events are divided into 7 centrality classes as in [4].

High \(p_\perp \) trigger particles are selected with |\(\eta^{\text{trig}} \)|<0.7 and dca (distance of closest approach to the primary vertex) <1 cm. Other particles in the event with |\(\eta \)|<1.0 and dca<2 cm are paired with each trigger particle to form \(\Delta \eta = \eta - \eta^{\text{trig}} \) and \(\Delta \phi = \phi^{\text{trig}} - \phi \) distributions. The primary vertex is included in the momentum fit of the associated particles, but not for trigger particles to minimize weak decay background.

Combinatorial coincidences are removed by subtracting mixed-event-background of the same centrality bin, so that detector non-uniformities should affect signal and background distributions in the same way. The effect of elliptic flow (v2) is included by multiplying the Au+Au mixed-event background by 1+2v2(p2) sin(2\(\phi \)) cos(2\(\phi \)) [12]. The mixed events may not precisely match the underlying background in events with a trigger particle, e.g., due to different centrality distributions within each analyzed bin. Hence, an additional \(p_\perp \)-independent factor (1.46 for pp and 0.995-1.000 for Au+Au) has been applied to the background before subtraction, in order to normalize it to the measured \(\Delta \phi \) distribution within 0.8<|\(\Delta \phi \)|<1.2 for 0.15<\(p_\perp <4 \) GeV/c.

Figure 1 compares the background-subtracted \(\Delta \phi \) and \(\Delta \eta \) distributions for pp vs central Au+Au collisions, including [11(a) and 11(c)] or excluding [11(b) and 11(d)] the softest associated particles. The distributions are corrected for single-particle (and, in the case of \(\Delta \eta \), for two-particle) acceptance and efficiency, and are normalized per detected trigger particle. The \(\Delta \phi \) distributions in 11(b) support the qualitative conclusions of 11, exhibiting near- (\(\Delta \phi \approx 0 \)) and away-side (\(\Delta \phi \approx \pi \)) jet peaks, with the latter strongly suppressed by jet quenching in central Au+Au. Comparison of 11(a) and 11(b) shows that more soft associated hadrons are found per trigger particle in central Au+Au than in pp, on both the near and away sides. Inclusion of the soft particles broadens the \(\Delta \phi \) peaks, especially on the away side. Indeed, the away-side strength for central Au+Au in 11(a) is no longer even "jet"-like, but is rather consistent in shape with the \(|A - B \cos(\Delta \phi)| \) dependence expected [13] for purely statistical momentum balance of the nearside jet.

For associated hadrons within the nearside \(\Delta \phi \) region, the \(\Delta \eta \) distributions shown in Fig. 11(c) and 11(d) exhibit jet-like peaks that are broader for central Au+Au than for pp, and grow broader still in both cases when the soft associated hadrons are included. The away-side hadrons have an essentially flat distribution in \(\Delta \eta \) over the measured range for both pp and Au+Au - the latter are shown in 11(c) - as expected when a broad range of parton momenta contribute to jet production. This flat \(\Delta \eta \) distribution, combined with the limited TPC coverage (|\(\Delta \eta \)<1.4), implies that we cannot hope to recover the full away-side momentum needed to balance the nearside jets.

![Figure 1](image-url)

FIG. 1: Background subtracted (a),(b) \(\Delta \phi \) and (c),(d) \(\Delta \eta \) distributions for pp and 5-0% central Au+Au for 4<\(p_\perp^{\text{trig}} <6 \) GeV/c and two associated \(p_\perp \) ranges. The subtracted background level for \(p_\perp =0.15-4 \) GeV/c (2-4 GeV/c) is \(\frac{1}{N_{\text{trig}}} \frac{dN_{\text{dca}}}{d\Delta \phi} \approx 1.4 \) (0.007) in pp and \(\approx 211 \) (2.1) in 5-0% Au+Au.

The curve in (a) shows the shape of an \(|A - B \cos(\Delta \phi)| \) function. The curves in (c),(d) are Gaussian fits to the pp data.

To accommodate the features in Fig. 11, we define nearside (|\(\Delta \phi \)|<1.0, |\(\Delta \eta \)|<1.4) and away-side (|\(\Delta \phi \)|>1.0, |\(\eta \)|<1.0) regions for the remaining analysis. We integrate
the correlation peaks as measures of associated charged hadron multiplicities (N_{ch}). We obtain p_{\perp} magnitude sum ($P_{\perp} = \sum p_{\perp}$), which approximates associated energy, and vector sum ($\vec{P}_{\perp} = \sum p_{\perp} \cos \Delta \phi$) from the p_{\perp}-weighted $\Delta \phi$ and $\Delta \eta$ distributions multiplied by 1.58 ± 0.08 [14] to account for the undetected neutrals. The (p_{\perp}^{trig}) is then added in P_{\perp} and \vec{P}_{\perp} for the near side.

Systematic errors.—Table II lists the major sources of systematic uncertainties in N_{ch}. (1) The acceptance and efficiency correction has a 10% uncertainty. (2) In constructing the background, we use the average of the v_2 results from the modified reaction plane ($v_2\{\text{MRP}\}$) [15] and 4-particle ($v_2\{\text{4}\}$) [17] methods and assign the difference as uncertainty. For the 80-60% and 5-0% centralities where $v_2\{\text{4}\}$ are unavailable, we estimate $v_2\{\text{4}\} \approx v_2\{\text{MRP}\}/2$. Relatively small uncertainties arise on the away side because the $\Delta \phi$ integration range is much broader than $\pi/2$ and the background normalization is correlated with the v_2 correction used. (3) Uncertainties in background normalization for 0.15<p_{\perp}<4 GeV/c are estimated by varying the $\Delta \phi$ region for normalization. (4) An additional (single-sided) uncertainty due to possible p_{\perp}-dependent differences between the mixed-event and true background is estimated by comparing to results using p_{\perp}-dependent background normalization. The systematic errors from the above sources are added in quadrature, separately for the positive and negative uncertainties.

TABLE I: Major sources of systematic uncertainties (in percent) in N_{ch} for 4<p_{\perp}^{\text{trig}}<6 GeV/c.

source	pp	80-60%	30-20%	5-0%
near away	80-60%	near away	30-20%	5-0%
(1) effic.	±10	±10	±10	±10
(2) flow	+34	±4	±1	+1
(3) bkgd.	+22	+22	+22	+22
p_{\perp} (GeV/c)	+40	+40	+40	+40
(4) p_{\perp}	+1	+1	+1	+1
dep.	+1	+1	+1	+1
5-0%	80-40%	5-0%	80-40%	5-0%
+6	+6	+6	+6	
+12	+12	+12	+12	
+14	+14	+14	+14	
+10	+10	+10	+10	
+13	+13	+13	+13	
2.5-3.0	2.5-3.0	2.5-3.0	2.5-3.0	
-1	-1	-1	-1	
-16	-16	-16	-16	
-15	-15	-15	-15	

Results.—Figure 2 shows N_{ch} and P_{\perp} in pp and as a function of centrality (the charged hadron $dN_{ch}/d\eta$) in Au+Au collisions for the two p_{\perp}^{trig} windows of 4-6 GeV/c and 6-10 GeV/c. For pp and all centralities of Au+Au, $\langle p_{\perp}^{\text{trig}} \rangle \approx 4.55$ GeV/c and 7.0 GeV/c for the two p_{\perp}^{trig} windows, respectively. With the same (p_{\perp}^{trig}) trigger particle, N_{ch} and P_{\perp} increase from pp to central Au+Au for both the near and away sides, and for both p_{\perp}^{trig} selections.

Our results include nearly all associated hadrons on the near side but, as noted above, only the fraction within our acceptance on the away side. We find the away to near side $|\vec{P}_{\perp}| \text{ ratio} \approx 40\%$, independent of system or centrality.

Figure 3(a) and 3(b) shows the p_{\perp} distributions of associated charged hadrons for 4<p_{\perp}^{\text{trig}}<6 GeV/c in pp, peripheral 80-40% and central 5-0% Au+Au collisions. The Au+Au to pp spectra ratios (AA/pp) are depicted in Fig. 3(c) and 3(d). In the systematic uncertainties for AA/pp, sources (1), (3), and (4) in Table II tend to cancel. Results for peripheral Au+Au generally agree with pp (AA/$pp \approx 1$), while those for central Au+Au differ. On the near side, the central Au+Au collisions show a larger multiplicity of associated hadrons, but with (p_{\perp}^A) = 1.02±0.05(stat.)+0.17(syst.) GeV/c essentially unchanged within uncertainties from its pp value (1.15±0.06+0.14−0.12 GeV/c). On the away side, the spectrum is significantly softened in central Au+Au collisions; associated particles are depleted at high p_{\perp}, as first noted in [16], and are significantly enhanced at low p_{\perp}.

AA/pp cannot be readily compared to the analogous I_{AA} defined in [16], due to differences in integration ranges and methodology: e.g., the I_{AA} prescription in [16] omits two-particle acceptance corrections, and thereby suppresses long-range $\Delta \eta$ correlation signals which may contribute to AA/pp after mixed-event and elliptic flow subtractions. To permit quantitative comparison, we also extract I_{AA} using the same procedures and momentum range (2<p_{\perp}<4 GeV/c) as in [16]. The extracted values for 80-60% Au+Au are 0.99±0.11(stat.)+0.08(syst.) and 0.85±0.09+0.07−0.05 for near and away side, respectively; those for 5-0% Au+Au are 1.55±0.14+0.13−0.11 and 0.28±0.06+0.10−0.14. They differ numerically from [16] primarily due to our use of reduced v_2 values and a more stringent primary vertex.
cut for pp. The systematic errors quoted for I_{AA} are from v_2 and background uncertainties, the latter estimated by fitting to observed $\Delta \phi$ distributions over several ranges beyond the default $0.75<\Delta \phi<2.24$ used in [4].

Figure 3 shows the centrality dependence of $\langle p_{\perp} \rangle$ of the awayside associated hadrons. For both p_{\perp}^{trig} selections, $\langle p_{\perp} \rangle$ drops rapidly with increasing centrality, while that of inclusive hadrons (i.e. without trigger particle selection, in curve) rises. The trend toward convergence of the $\langle p_{\perp} \rangle$ for these two samples may indicate a progressive equilibration of the awayside associated hadrons with the bulk medium from peripheral to central collisions.

Discussion.—High p_{\perp} hadrons arise predominantly from jets in pp and peripheral Au+Au collisions, but softer production mechanisms [2,10] may be of comparable importance in central Au+Au for $4<p_{\perp}^{\text{trig}}<6$ GeV/c. Such softer contributions are expected to be negligible in the $6<p_{\perp}^{\text{trig}}<10$ GeV/c region. The consistency between the two p_{\perp}^{trig} windows thus suggests that the results reflect features of hard scattering in Au+Au collisions.

In the context of hard parton scattering and subsequent energy loss, high p_{\perp}^{trig} particles select preferentially di-jets produced near the medium surface [4]. The nearside jet traverses and interacts with a minimal amount of matter. No broadening relative to pp is observed for the nearside $\Delta \phi$ correlation. The observed broadening in $\Delta \eta$ is possibly due to transverse and/or longitudinal flow of the medium [17]. More hadrons and energy accompany the same p_{\perp}^{trig} trigger particle in central Au+Au than in pp. This could be the net effect of modest parton energy loss softening the resulting jet fragmentation function [8], plus energy pickup from the medium, part of which becomes correlated with the trigger through processes such as recombination [10], scattering, or flow [17].

Fig. 4: Awayside associated hadron $\langle p_{\perp} \rangle$ for $p_{\perp}^{\text{trig}}=4-6$ (6-10) GeV/c with systematic errors in band (caps).
modification of jets in heavy-ion collisions at RHIC.

We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL for their support. This work was supported in part by the HENP Divisions of the Office of Science of the U.S. DOE; the U.S. NSF; the BMBF of Germany; IN2P3, RA, RPL, and EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Science and Technology; the Ministry of Education and the NNSFC of China; Grant Agency of the Czech Republic, FOM and UU of the Netherlands, DAE, DST, and CSIR of the Government of India; the Swiss NSF.

* URL: www.star.bnl.gov

[1] F. Karsch, Nucl. Phys. A698, 199c (2002).
[2] M. Gyulassy and M. Plumber, Phys. Lett. B 243, 432 (1990); X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992); R. Baier, D. Schiff, and B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000).
[3] K. Adcox et al. (PHENIX Collaboration), Phys. Rev. Lett. 88, 022301 (2002); C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 202301 (2002); S.S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 072301 (2003); J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91, 172302 (2003).
[4] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 90, 082302 (2003).
[5] B.B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 91, 072302 (2003); S.S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 072303 (2003); J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91, 072304 (2003); I. Arsene et al. (BRAHMS Collaboration), Phys. Rev. Lett. 91, 072305 (2003).
[6] I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002); X.-N. Wang, Phys. Lett. B 595, 165 (2004).
[7] S. Pal and S. Pratt, Phys. Lett. B 574, 21 (2003); C.A. Salgado and U.A. Wiedemann, Phys. Rev. Lett. 93, 042301 (2004); I. Vitev, hep-ph/0501255.
[8] X.-N. Wang, Phys. Lett. B 579, 299 (2004).
[9] V. Greco, C.M. Ko, and P. Levai, Phys. Rev. C68, 034904 (2003); R.J. Fries et al., Phys. Rev. C68, 044902 (2003).
[10] R.C. Hwa and C.B. Yang, Phys. Rev. C70, 024905 (2004).
[11] K.H. Ackermann et al. (STAR Collaboration), Nucl. Instrum. Meth. A499, 624 (2003).
[12] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 90, 032301 (2003); J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 93, 252301 (2004).
[13] N. Borghini, P.M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C62, 034902 (2000).
[14] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 112301 (2004); S.S. Adler et al. (PHENIX Collaboration), Phys. Rev. C69, 034909 (2004). Assuming isospin symmetry, the ratio of total to charged hadron multiplicity ≈ 1.58. PYTHIA and HIJING models indicate a ratio of 1.60-1.65 for jet fragments with charged trigger particle $p_{T}^{TRIG} > 4$ GeV/c.
[15] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 014904 (2005).
[16] C. Adler et al. (STAR Collaboration), Phys. Rev. C66, 034904 (2002).
[17] S.A. Voloshin, nucl-th/0312065; N. Armesto, C.A. Salgado, and U.A. Wiedemann, Phys. Rev. Lett. 93, 242301 (2004).