In silico analysis of FLP 18 gene of Anguina tritici and phylogenetic analysis with other nematodes

Ashish Kumar Singh, Ila Joshi, Kuldeep Kumar, Pradeep Kumar Jain, and Anil Sirohi

DOI: https://doi.org/10.22271/j.ento.2020.v8.i5ag.7838

Abstract

flp 18 is a neuropeptide coding gene of FMR Famide-like peptides family having important role in behavioural regulation such as locomotory, feeding and reproduction of nematodes. Genome annotation of the newly sequenced genome of seed gall nematode (Anguina tritici) has revealed the presence of flp 18 in their genome. flp 18 gene has been proven as effective target for management of Meloidogyne incognita. In view of importance of this gene here we analyse the significance of flp 18 gene in A. tritici in different nematode species through the In silico approach. Homologous nucleotide sequences in other nematode species for the gene flp 18 were obtained on performing nucleotide BLAST in WormBase Parasite database. Multiple sequence alignment, identity and phylogenetic analysis were performed on the retrieved homologous sequences using CLUSTAL W programme. The BLAST result revealed the presence of flp 18 hits in different groups of plant parasitic nematodes with best hit (76) to Ditylenchus dipaci. Based on the finding it has been suggested that the flp 18 of A. tritici is conserved with identical homologs, and might have functional similarity among different nematodes species.

Keywords: flp 18, seed gall nematode, Anguina tritici, In silico, phylogenetic analysis

Introduction

FMRF amide like peptides (FLPs) are the important genetic component of nematode nervous system and largest neuropeptide coding gene family conserved across the phylum Nematoda [1]. More than 70 FLPs which have been mapped extensively in Caenorhabditis elegans have revealed their expression in almost 302 neuronal networks [2]. FLPs have been known to regulate vivid biological functions including muscular contractions, neuromodulation, egg laying, and feeding behaviours of nematodes. Among all the FLPs, particularly the flp 18 gene is crucial in nematodes which is responsible for synthesis of neuropeptide ligands of NPR-1 gene of GPCR (G Protein Couple Receptor) having role in foraging and aggregation of nematodes [3, 4, 5, 6, 7]. Availability of genomic data with annotated genetic information have revealed the distribution profile of flp 18 in various nematode groups including Ascasis caninum, Ancyclostoma ceylanicum, A. suum, Bursaphelenchus xylophilus, Caenorhabditis elegans, D. immitis, Globodera pallida, G. rostochiensis, Haemonchus concortus, Loa loa, M. chitwoodi, M. hapla, M. incognita, M. javanica, N. americanus, Nectaror brasiliensis, O. ochengi, O. ostertagii, O. volvulus, Pristionchus pacificus, Strongylus ratti, S. stercoralis, Trichinella muris, T. spiralis, W. bancrofti and recently in Ditylenchus destructor [2, 8]. flp 18 gene has been playing a significant role in regulating key biological process of nematodes and is a potential gene target in plant parasitic nematodes (PPNs) management through RNAi [9]. However, considering the diversity of nematodes there is still lack of genomic information about flp 18 gene in comparison to nematode distribution. In contrast to the free-living nematodes, and animal and human parasitic nematode, among PPNs the diversity of flp 18 are lesser known. Our genome sequencing effort of seed gall nematode (Anguina tritici) have confirmed the hits of flp 18 gene complement which have not been reported so far from this species of plant parasite. This study expands our knowledge about presence of flp 18 in Anguina tritici and diversity of its homologues, physicochemical properties and phylogenetic relationship of flp 18 gene in various nematodes.
Material and Methods

1. Mining for the homologus DNA sequence of gene FLP 18
The nucleotide sequences of annotated flp 18 gene (Figure 1) were obtained from the de-novo sequencing project of *Anguina tritici* (data unpublished in public domain).

Nucleotide sequence were translated into protein using EMBLASS Transeq [10]. flp 18 sequences were subjected to BLAST using WormBase Parasite database [11]. Nematode species having identical homologs were retrieved and used for multiple sequence alignment (MSA).

Query	164	GTCGTAAGACGCTATGAGCGCTAGGCTTCGGTCTACAGGAGCGTGGTCTTTCGAT	160
Scaffold_1118:195120	100	GTCGTAAGACGCTATGAGCGCTAGGCTTCGGTCTACAGGAGCGTGGTCTTTCGAT scaffold_1118:195120	100
Scaffold_1118:195160	42	GTCGTAAGACGCTATGAGCGCTAGGCTTCGGTCTACAGGAGCGTGGTCTTTCGAT scaffold_1118:195160	42

Fig 1: Alignment of FLP 18 nucleotide with *Anguina tritici* as query and *Ditylenchus dipsaci* as subject

2. Multiple sequence alignment and determination of identity
The similarity and percent identity among the retrieved sequences of flp 18 were determined by using DNA database of WormBase BLAST. MSA were performed using CLUSTAL 2.1 Genome Net programme and function “build” of ETE3 v3.3.1 [12].

3. Phylogenetic analysis of flp 18
To deduce the phylogenetic relationship the phylogenetic tree was reconstructed using the MSA file of nucleotide sequences retrieved from CLUSTAL 2.1. The tree was inferred and evaluated using the MEGA X [13] with bootstrap value of 1000 replications and other default parameters.

4. Prediction of physicochemical properties of flp 18
DNA sequence of flp 18 was translated into protein using ExPASy Translate SIB resource programme [14]. Physicochemical properties including amino acid, atomic composition, isolectric points, instability index etc. were predicted using ProtParam tool [15].

Results and Discussion
The genome sequence analysis of nematodes has revealed large number of genes coding for proteins involved in key biological function of nematodes. Among all the biological function neurotransmission is highly significant due to its role in assimilation and interpretation of information from surroundings and enables nematodes to respond according to the stimuli. The process of synaptic transmission is carried out by vast range of neuropeptide coding genes. The FLPs genes are one such family of neuropeptide coding genes which are crucial player in various functions of nematode including feeding, reproduction and movement [2]. In the genomic analysis of *A. tritici* we have predicted presence of flp 18 which have been known in other nematodes including free living (*C. elegans*), parasite of vertebrate (*Ascaris*) and plant parasites (*M. incognita*, *D. dipsaci*) [2, 8]. To develop an understanding for the role of flp 18 gene in *A. tritici* we predicted its physicochemical properties and functionality in relationship with other nematodes. The total length of nucleotide sequence and translated amino acid sequence of flp 18 gene obtained from *A. tritici* presented a variation in length. The total length of flp 18 nucleotide sequence was 1020 bp and amino acid were observed to be 325 (Table 1).

BLASTN search tool of WormBase Parasite database for flp18 presented best similarity with *D. dipsaci* with alignment length of 76, alignment score-40, E value cut-off 2.0E-11 and percent identity of 88.2% (Fig 1). This highest possible similarity in both species suggests similar evolution history and differentiation of flp-18 among both the species. BLASTN search revealed hits of flp 18 within other nematodes including *Meloidogyne*, *Plectus sambesii*, *Onchocerca flexuosa*, *Syphacia musris* etc. (Table 2). Additionally, the query coverage for BLASTN were found highest (76) for *D. dipsaci* and lowest (21) for *Strongylus vulgaris* (Table 2). Homology of flp 18 were inferred using Multiple sequence alignment (MSA) for 13 retrieved biological sequences of different species through CLUSTAL programme. Phylogenetic analysis conducted to trace the origin of flp 18 and their relation with other nematode species showed that in due course of evolution the flp 18 gene originated from common ancestors and diverged into two major branches. The flp 18 gene in *A. tritici* have been hypotescated to be more closely related to *D. dipsaci* (as they fall in same clade and having common divergence event and descendence) in comparison to other nematodes. there was less relatedness among other plant parasitic nematodes including *M. incognita*, *M. floridiensis*, *M. enterolobii*, *M. javanica* and *M. arenaria*. Similarly, PPNs like *M. incognita*, *M. floridiensis*, and *M. javanica*, *M. arenaria* were closely related to each other with respect to flp 18 gene based on the evolutionary history (Fig 2). The flp 18 protein analysis revealed various physicochemical properties (Table 3).

The number of amino acids were translated 325 from nucleotide sequences and molecular weight of flp 18 protein predicted to weigh 36770.94 kDa. The isolectric point (pI) of flp 18 were 10.22, the total number of negatively charged residues (Asp + Glu) are lower than the total number of positively charged residues (Arg + Lys) suggests their role in intercellular [16].

The estimated half-life of flp 18 protein revealed 1.1 hours which means the protein is classified as unstable on stability index [17]. flp 18 gene is a key gene having significant role in neuro transmission. *C. elegans* phenotype in RNAi mutant line of flp 18 showed various disrupted functions including decreased response to odour, increased reversal post starvation enhanced response to dauer formation, a significant functional role in suppression of overexicitacion in locomotory circuit was observed [18, 19, 20]. flp 18 has been known to play a key role in chemoreception (host finding by PPNs). RNAi knockdown study of flp 18 in *M. incognita* decreased chemotaxis to tomato roots and reduced the infectivity by 12s. The root exudates of Chrysanthemum were found to reduce the expression of *Mf-flp-18* hence having an effect on rate of infection of nematode in host plant [21]. Since *Anguina tritici* is also a PPN feeding on various part of the host plant from germinating stage (plumule) to tillering (leaves) and on the flowering of the plant seeds, it requires robust mechanism of growth and feeding.
neurotransmission and the presence of homologous gene flp 18 having close relation with other nematodes might give insights into same functional properties and similar role in chemoreception and movement of the nematode.

Table 1: Nucleotide and translated amino acid sequences of flp 18

Genome	Genomic Location	Length	Score	E-val	%ID
Ditylenchus dipsaci	Scaffold_1118:195145-195220	76	40	2.0E-11	88.2
Meloidogyne arenaria	M.Arenaria_Scaff525:34856-34886	31	23	0.28	93.5
Meloidogyne floridensis	scf7180000424632:8383-8413	31	23	0.28	93.5
Meloidogyne javanica	scf7180000424632:8383-8413	31	23	0.28	93.5
Meloidogyne enterolobii	scaffold26088_cov370:1071-1101	31	23	0.28	93.5
Meloidogyne incognita	FXSY01000192.1:10905-10935	31	23	0.28	93.5
Plectus sambesi	PSAMB.scaffold14934size1735:224	26	22	1.1	96.2
Onchocerca flexuosa	O_flexuosa-1.0_Cont1663-171459	21	21	4.4	100.0
Syphacia muris	SMUV_contig0000193:6417-6437	21	21	4.4	100.0
Pristionchus entomophagus	scaffold710:48350-48374	25	21	4.4	96.0
Teladorsagia circumcincta	TELCIRDFT_Contig2292-32490-32510	21	21	4.4	100.0
Strongylus vulgaris	SVUK_contig0031032-980-1000	21	21	4.4	100.0

Table 2: Diversity of FLP 18 obtained in nematode species

Table 3: Physicochemical properties of FLP 18

Number of amino acids:	325
Molecular weight:	36770.94
Theoretical pl:	10.22
Amino acid composition:	
Ala (A)	15
Arg (R)	28
Asn (N)	16
Asp (D)	6
Cys (C)	15
Gln (Q)	14
Glu (E)	11
Gly (G)	23
His (H)	7
Ile (I)	10
Leu (L)	32
Lys (K)	19
Met (M)	11
Phe (F)	14
Pro (P)	29
Ser (S)	28
Thr (T)	16
Trp (W)	10
Tyr (Y)	4
Val (V)	17
Pyl (O)	0
Sec (U)	0
Total number of negatively charged residues (Asp + Glu)	17
Total number of positively charged residues (Arg + Lys) 47

Atomic composition

Element	Count
Carbon C	1630
Hydrogen H	2580
Nitrogen N	482
Oxygen O	438
Sulfur S	26

Formula: C_{1630}H_{2580}N_{482}O_{438}S_{26}

Total number of atoms 5156

The estimated half-life 1.1 hours (mammalian reticulocytes, *in vitro*).

Instability index (II) is computed to be 50.63; this classifies the protein as unstable.

Aliphatic index 70.18

Fig 2: Phylogenetic tree of FLP 18 showing relationship with other nematode species

Conclusion

The *flp 18* gene is an important genetic component of nematodes nervous system having a key role of chemosensation in different nematodes. Genomic sequencing and analysis have revealed their presence in different nematode group and in few cases their role has been confirmed through generation of RNAi mutant phenotype. In genome sequencing and annotation study of seed gall nematodes (*Anguina tritici*) have predicted the presence of *flp*-18. The in-depth in-silico analysis revealed they may have evolutionary history close to the *Ditylenchus dipsaci* and other nematodes. With the present study we hypothesec that the *flp* 18 protein might be playing similar role in *A. tritici* as it does in other group of nematodes and in future it could be potential target for RNAi to understand functional genomics in *A. tritici* and their management through the novel approaches.

Acknowledgements: The Authors are thankful to ICAR-NIPB and ICAR-IARI for providing the necessary computational resource for this work.

References

1. McVeigh P, Leech S, Mair GR, Marks NJ, Geary TG, Maule AG. Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. Int. J Parasitol
2. Peymen K, Watteyne J, Froonincx L, Schoofs L, Beets I. The FMR Famide-Like Peptide Family in Nematodes. Frontiers in Endocrinology 2014;5:90.

3. Cowden C, Stretton AO, Davis RE, AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 1989;2(5):1465-73.

4. Cowden C, Stithigornpul P, Brackley P, Guastella J, Stretton AO. Localization and differential expression of FMRFamide-like immunoreactivity in the nematode Ascaris suum. J Comp Neurol 1993;333(3):455-68.

5. Li C, Nelson LS, Kim K, Nathoo A, Hart AC. Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann NY Acad Sci 1999;897(6):239-52.

6. Waggoner LE, Hardaker LA, Golik S, Schafer WR. Effect of a neuropeptide gene on behavioral states in Caenorhabditis elegans egg-laying. Genetics 2000;154(3):1181-92.

7. Dockray GJ. The expanding family of FRFamide peptides and their effects on feeding behaviour. Exp Physiol 2004;89(3):229-35.

8. Zheng J, Peng D, Chen L et al. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes. Proc Biol Sci 2016;283(1835):20160942.

9. Populu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevatsa R, Rao U. Utility of host delivered RNAi of two FMRF amide like peptides, flpL4 and flp-18, for the management of root knot nematode. Meloidogyne Incogn. PLoS One 2013;8(11),e80603.

10. Kanz C, Aldebert P, Althorpe N et al., The EMBL Nucleotide Sequence Database. Nucleic Acids Res 2005;33:D29-D33.

11. Kevin L, Howe, Bruce J, Bolt, Myriam Shafie, Paul Kersey, and Matthew Berriman. WormBase ParaSite a comprehensive resource for helminth genomics Molecular and Biochemical Parasitology 2017;215:2-10.

12. Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol Biol Evol 2016;33(6):1635-1638.

13. Kumar S, Stecher G, Li M, Knayz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 2018;35:1547-1549.

14. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. Ex PASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003;31:3784-3788.

15. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD. Protein Identification and Analysis Tools on the Ex PASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press 2005,571-607

16. Andrade MA, SI O'Donoghue, B Rost. Adaptation of protein surfaces to sub cellular location. J Mol. Biol 1998;276:517-525.

17. Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel 1990;4:155-161.

18. Pierce SB, Costa M, Wisotzkey R, Devadh S, Homburger SA, Buchman AR, et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001;15:672-86.

19. Nelson LS, Kim K, Memmott JE, Li C. FMRFamide-related gene family in the nematode, Caenorhabditis elegans. Brain Res Mol Brain Res 1998;58:103-11.

20. Stawicki TM, Takayanagi-Kiya S, Zhou K, Jin Y. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans. PLoS Genet 2013;9(5):e1003472.

21. Dong L, Li X, Huang L, Gao Y, Zhong L, Zheng Y et al. Lauric acid in crown daisy root exude potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J Exp Bot 2014;65:131-41.