Palaeoseismic records and instrumental data from continental interiors increasingly show that these areas of slow strain accumulation are more subject to seismic and associated natural hazards than previously thought (Tuttle & Schweig 1995; Johnston 1996; Johnston & Schweig 1996; Crone et al. 1997, 2003; Camelbeeck & Meghraoui 1998; Camelbeeck et al. 2000; Rastogi et al. 2001; Singh et al. 2004; England & Jackson 2011). This book explores some of the key issues arising in attempts to understand slowly deforming areas.

Earthquakes in slowly-deforming areas behave quite differently in space and time from those at plate boundaries, owing to the geometry of faults and the rate at which they are loaded (Fig. 1). Faults at plate boundaries are loaded at constant rates by steady relative plate motion. Consequently, earthquakes concentrate along the plate boundary faults, and show quasi-periodic occurrences, although the actual temporal patterns are often complicated. The apparent ‘gaps’ that appear will be filled in over time. However, in midcontinents, the tectonic loading is shared by a complex system of interacting faults spread over a large region, such that a large earthquake on one fault could increase the loading rates on remote faults in the system. Because the low tectonic loading rate is shared by many faults in midcontinents, individual faults may remain dormant for a long time and then become active for a short period. The resulting earthquakes are therefore episodic and spatially migrating (Li et al. 2009; Stein et al. 2009).

As a result, the precise future spatiotemporal behavior of large mid-continental earthquakes may be unpredictable, as is typically the case for complex dynamic systems. In particular, some of our instincts developed for plate boundaries may not apply within plates. In Australia, Clark et al. (2012) note that ‘periods of earthquake activity comprising a finite number of large events are separated by much longer periods of seismic quiescence, at the scale of a single fault and of proximal faults’. As a result, ‘assigning an “active/inactive” label to a fault in a slowly deforming area based upon the occurrence (or non-occurrence) of an event in the last few thousands to tens of thousands of years is not a useful indicator of future seismic potential’ (Clark et al. 2011). Moreover, ‘it is debatable whether a “recurrence interval” on individual faults applies’ (Clark 2003), so if the term is used to describe the idea that large earthquakes are separated by long time intervals, it does not imply that these intervals are similar and that the earthquakes are quasi-periodic. At the deepest level, it may not be useful to think in terms of a classic seismic cycle in which strain accumulates steadily and is released by quasi-periodic earthquakes. In other words, ‘the fundamental assumption of earthquakes occurring due to progressive strain build-up, and thus being in some way predictable in their periodicity, is not satisfied’ (Clark et al. 2015).

Where ‘recurrence intervals’ of ground-rupturing earthquakes are on the order of thousands to tens of thousands of years, slip rates on individual faults are below or barely at geodetic measurability. Consequently, decadal geodetic or seismicity records may not reflect long-term deformation and seismicity (Friedrich et al. 2003; Stein & Liu...
Even in areas with dense space-geodetic coverage, the relationship between strain accumulation and strain release is poorly understood. Furthermore, records of historical seismicity in these environments are too short to constrain the size of the largest possible earthquakes or their recurrence intervals (Schmedes et al. 2005; Fäh et al. 2009). Even in densely populated regions with long historical records, such as China or central Europe, earthquake catalogues do not cover more than 1000 or 2000 years and thus, are not sufficient to correctly assess how the seismicity and associated hazards vary in time and space (Stein & Mazotti 2007; Stein & Liu 2009; Liu et al. 2011). Liu et al. (2011) show that earthquakes in Central China have migrated over the past 2000 years, and that no fault in this region has ruptured twice in this time span. Accordingly, one of the most pressing and enigmatic problems in earthquake geology is assessing the spatiotemporal distribution of large earthquakes in low-strain (intraplate) regions. To extend the short records of seismicity, palaeoseismological and historical data are being used.

Although some seismicity occurs in cratonic interiors (Crone et al. 1997; Clark et al. 2014), more occurs in extensive, tectonically active intra-continental mountain belts or continental rift zones (Camelbeeck & Meghraoui 1996; McCalpin 2005; Zielke & Strecker 2009). If the resulting motion and deformation are large enough, such areas are treated as diffuse plate boundary zones (Gordon & Stein 1992). Relatively recent historic occurrences of major earthquakes, some exceeding magnitude 8, in low-strain regions of Central Asia or Mongolia (e.g. Bogdanovich et al. 1914; Baljiinyam et al. 1993; Schlupp & Cisternas 2007; Kalmetieva et al. 2009), provide the opportunity for detailed studies because they were reported, their effects were partly investigated only months afterwards and the ruptures are still well preserved in the landscape. Understanding these events that occurred unexpectedly 150 and more years ago may lead to better assessment of where such earthquakes might strike in the future.

Although seismic events in the interior of continents and low-strain regions represent a small fraction of the total number of earthquakes and have lower magnitudes than the highest at plate boundaries, they pose a significant hazard to societies (England & Jackson 2011). Part of the reason is

Fig. 1. Conceptual models for the difference between interplate (a) and intraplate or mid-continental (b) earthquakes. The plate boundary fault is loaded by steady relative plate motion, causing earthquakes are concentrated along the boundary. In mid-continents, slow far-field tectonic loading is shared by a complex system of interacting faults. Large earthquakes roam across widespread faults, as rupture of one fault zone may affect the loading on a distant fault. Modified from Liu et al. (2011).
that many seismogenic sources in such settings were unknown prior to rupture owing to a lack of exposure and thus were not included in hazard estimates. For example, the 2010 Canterbury (New Zealand) earthquake occurred on an unknown fault in a region where no large historical earthquakes were known (Gledhill et al. 2010), as did the 2012 Emilia earthquake in the Bologna region, northern Italy (Alessio et al. 2010) and the 2012 Pernik earthquake in Western Bulgaria (Radulov 2012). Accordingly, the numbers of fatalities reported from unexpected, moderate to large events in low-strain regions often exceed the death toll from earthquakes in high-strain areas by multiples (Fig. 2). Where earthquake recurrence is short enough to be in human memory, prepared communities and safer infrastructure often reduce fatalities. Learning more about earthquakes in continental interiors and low-strain regions should hopefully improve hazard assessments and achieve similar results.

Types of slowly deforming regions

Papers in this volume address earthquakes and deformation in slowly deforming regions worldwide. Such regions can be classified in several groups. One is stable continental regions of continental crust, including shelf regions, slopes and attenuated continental crust, which show no orogenic activity younger than early Cretaceous (Johnston 1989). Another is intraplate regions distant from plate boundaries, including ‘stable’ cratons and intracontinental rifts that are deforming too slowly (less than c. 1 mm a$^{-1}$) to be regarded as diffuse plate boundaries (e.g. European Cenozoic Rift System, Reelfoot Rift, Rio Grande Rift). Here, deformation rates on individual faults are usually smaller than geodetic measurability and earthquakes along these faults are characterized by long recurrence intervals that are in the order of thousands to tens of thousands of years. Faster-deforming regions can be regarded as diffuse plate boundaries, for instance the Basin-and-Range province, the Tien Shan mountains, Baikal Rift or East African Rift.

Limitations of instrumental, historic, and palaeoseismic catalogues

The short time span of instrumental seismology, i.e. about 120 years, is insufficient to characterize the seismicity of low-strain regions. Moreover, for events in the early period of analog seismic recordings, data coverage is usually poor and only few records are available or face uncertain near-future maintenance (e.g. Kulikova 2016). These valuable records, many of them on thermal paper, will be lost soon if not systematically collected and digitized. Modern analyses have been performed on some historic seismograms (e.g. Schlupp & Cisternas 2007; Kulikova & Krüger 2015; Kulikova et al. 2016), yielding estimates of magnitude, focal mechanism or other source parameters. Interestingly, a new archive, reaching a few more centuries back, may be available. In this volume, Krüger et al. (2015) combine magnetograms with seismic records from 1889 and 1911 for new estimates of the previously debated magnitude for an earthquake in Central Asia. For yet older seismic events, macroseismic observations provide useful data. However, such observations are limited or might be biased by population density, cultural and political changes, and other issues (e.g. Berberian 2014).

Stein et al. (2015) and Zöller et al. (2015) note the resulting difficulty in estimating how large the largest earthquakes to expect may be, which gives rise to uncertainties in hazard estimates. Zöller et al. (2015) analyse the earthquake catalogue of Central Asia, derived from historically reported and instrumentally measured data in the magnitude range between 4 and 8.3. They find high probabilities for occurrence of large magnitude events in short time intervals, even if such events are rare in the catalogue and probably have not occurred within the past c. 400 years. Although palaeoseismology can enhance the database, it also faces challenges. Clark et al. (2015) note that palaeoseismic studies in low-strain regions are hampered by complexities, related to the interplay of deformation, sedimentation, and surface processes.

Inherited structures

Deformation in low-strain settings is often guided by inherited structures and results from fault reactivation or rupture propagation along pre-existing zones of weakness (e.g. Sykes 1978). Such reactivated faulting does not fulfil Andersonian faulting criteria that apply to a homogeneous, isotropic medium. The resulting faulting need not occur along the most favourably oriented planes (e.g. Célérier 2008). Consequently, weak planes with a wide range of orientations can be activated by the same applied stresses, making ruptures more complex and less predictable for earthquake-hazard assessment. Subsequently, a large network of pre-existing structures in which faults were reactivated casually and infrequently may leave less reliable traces of cumulative displacements in the landscape. This effect may be even more pronounced if deformation rates are low with respect to landscape decay.

Examples of earthquakes associated with inherited zones of weakness abound. The New Madrid earthquake sequence occurred within a failed rift
Inverted Mesozoic rift-related normal faults guide thick-skinned deformation in the Andean broken foreland (e.g. Johnston & Schweig 1996). Changes in orientation of the maximum horizontal shortening direction can reactivate dip-slip faults as obliquely slipping or pure strike-slip faults (Strecker et al. 1990), or nearly reverse the sense of lateral motion. Remnants of the earlier phase that is unrelated to present-day tectonic conditions may then still be manifested in the landscape (Landgraf et al. 2009, 2013).

Fig. 2. Global seismicity and resulting earthquake fatalities. (a) Cartographic view of the world overlain with plate boundaries (red) and a five-year record of earthquakes with magnitudes above five. Seismicity is from the ANSS catalogue for 2010–14. Most earthquake occurrence reflects the locations of the plate boundaries. (b) Earthquake fatalities between 1900 and today based on NOAA catalogue (without tsunami). Data are plotted on a NASA view of the earth at night that illustrates heavily populated areas. Some of the deadliest earthquakes did not occur along plate boundaries, but in areas characterized by low present-day seismic activity.
Other examples have been described worldwide. The 2002 Molise earthquake sequence in Italy that included two shocks with M 5.7 was related to deformation within the Adriatic plate; prior to this sequence, no historical earthquakes had been reported in the epicentral area (Di Bucci & Mazzoli 2003). Inherited structural grain might control coseismic surface-deformation patterns, as demonstrated for the 2013 Balochistan earthquake (Val-lage et al. 2016), where inherited structures may have caused geometric complexities in the surface slip. Reactivation of inherited structures after distinct, but repeated phases of orogeny, occurs in the Tien Shan mountains of Central Asia (e.g. Selander et al. 2012; Macaulay et al. 2013). In this volume, Walker et al. (2015) discuss a case from Mongolia, where the low ratio of recently accumulated slip to the full length of the fault suggests modern reactivation of a pre-existing structure.

Recognition of active faults

The main problem in detecting potentially hazardous fault structures in the landscape of low-strain regions is the long time between individual rupture events (up to 10^2 years) and the many surface processes that can disguise a past rupture.

Anthropogenic and meteorological overprint

Research in palaeoseismology and tectonic geomorphology developed and advanced initially in remote arid regions (Wallace 1977, 1986; Sieh 1978; Schwartz & Coppersmith 1984; Sieh et al. 1989; Crone et al. 1997). In such areas, seismogenic surface structures are exposed over several kilometres and preserved over long periods of time, owing to low erosion rates and negligible anthropogenic landscape modification. Thus even low-strain intraplate fault systems usually preserve fault scarps or offset gullies, such that they are easily recognizable in the field and on remote sensing data such as orthophotos and digital elevation models.

In contrast to those in remote arid regions, fault scarps in humid and densely populated regions are subject to much greater degradation by meteorological and anthropogenic processes. Urbanization and farming may lead to rapid degradation of fault scarps, as ‘sharp edges’ produced by surface ruptures are often flattened shortly after the earthquake. Meteorologically induced effects degrading and/or obliterating fault scarps include solifluction (down-slope movement of water-saturated soil in periglacial environments), fluvial erosion and formation of dense vegetation cover. In low-strain regions with tectonic deformation rates well below 1 mm a^-1, the effects of seismogenic deformation are often barely distinguishable from fluvial and erosion processes and in many cases are entirely obliterated. Mining-induced subsidence may also disguise surface effects of tectonic deformation. In the coal and lignite mining areas of Central and Western Germany and Western Poland, mining induced subsidence rates are on the order of cm a^-1 – up to three orders of magnitude higher than tectonic slip rates (Perski 1998; Görres et al. 2006; Görres 2008; Kratzsch 2012). Consequently, the worst environments for preservation of fault scarps are densely populated low-strain fault systems in humid or moderately humid climate zones, as exemplified by the tectonically active areas in Central Europe, South America and parts of China.

Glacial and periglacial overprint

Most areas in intraplate Europe experienced periglacial climatic conditions during the Last Glacial Maximum. Therefore, potential records of faulting in trenches might be overprinted by or confused with features related to the annual freezing and thawing of permafrost soils (van Vliet-Laenoè et al. 2004). Ice veins are easily confused with smaller tension cracks, while normal faults might be mixed up with the steep orientation at periglacial wedges. Distorted sedimentary layers and flame structures might be caused by either cryoturbation or soft-sediment deformation during co-seismic liquefaction. Finally, even if a fault is identified, colluvial wedges might be misinterpreted as periglacial wedges or vice versa, resulting in different surface displacement values (e.g. Vanneste et al. 2001).

The deglaciation of wide regions in Northern Europe and North America after the Last Glacial Maximum has been recognized to reactivate faults by glacial isostatic adjustment that affects also areas south of the former ice shield (e.g. Steffen & Wu 2011). Intraplate regions therefore could have experienced a short-lived impulse of high seismicity during deglaciation that might not be reflected in recent instrumental seismicity, which seems to be dominated by the effects of the ‘ridge push’ from the Atlantic oceanic lithosphere (Bungum et al. 2010). In this volume, Mörner (2015) discusses such differences between long-term and recent seismicity.

Regional settings

Classic intraplate region discussed in this volume include Central and Northern Europe (Mörner 2015; Stein et al. 2015; Kübler et al. 2016; Shipton et al., this volume, in press), Mongolia (Walker et al. 2015), Inner Mongolia (Rudersdorf et al. 2015), and the Tien Shan mountains of Central Asia (e.g. Selander et al. 2012; Macaulay et al. 2013). In this volume, Walker et al. (2015) discuss a case from Mongolia, where the low ratio of recently accumulated slip to the full length of the fault suggests modern reactivation of a pre-existing structure.
part of a diffuse plate boundary zone. Considered as an intracontinental mountain belt or Tien Shan mountains in Central Asia that should be discussed by Krüger et al. (2015) and Zöller et al. (2015) discuss the Tien Shan mountains in Central Asia that should be considered as an intracontinental mountain belt or part of a diffuse plate boundary zone.

Central Europe

Most present-day seismicity in Central Europe is related to the reactivation of inherited zones of crustal weakness in the Late Variscan, Permocarboniferous and Mesozoic fault systems (Ziegler 1992; Schumacher 2002; Dézes et al. 2004). Cenozoic intraplate deformation in Central Europe has been attributed to far-field stresses from the continent–continent collision in the Alps and Pyrenees and the opening of the Atlantic Ocean (Illies 1975; Şengör et al. 1978; Ziegler 1992; Reichert et al. 2008), and to effects of rising mantle plumes (Hoernle et al. 1995; Goes et al. 1999; Ritter et al. 2001; Cloetingh et al. 2005).

One of Central Europe’s most tectonically and seismically active features is the European Cenozoic Rift System (ECRS). During the Late Eocene to Oligocene, ESE–WNW-directed extension led to the formation of the ECRS, which extends more than 1100 km from the North Sea to the western Mediterranean (Ahorner 1975; Illies 1975; Ziegler 1992; Reichert et al. 2008). It includes the Rhine and Rhône Valley Rift Systems, which are linked by the Burgundy and the eastern Paris Basin transfer zones with the grabens of the Massif Central. The southern part of the rift system consists of the Bresse Graben, the grabens of the Lower Rhône Valley, and their prolongation into the Western Mediterranean (Ziegler 1992, 1994; Jolivet et al. 1999; Michon et al. 2003; Dézes et al. 2004). The northern part of the ECRS is the Rhine Rift System including the Upper Rhine Graben, Lower Rhine Graben and the Hessian Graben system. The seismically active shallow Eger Graben of the Bohemian Massif is the ECRS’s easternmost graben (Ziegler 1992). The Upper and Lower Rhine Grabens are an active seismic zone. The largest historical earthquake in the region, and one of the largest known earthquakes in Central Europe, was the 1356 $M_t \approx 6.5$ Basel earthquake near the southern end of the Upper Rhine Graben. The earthquake severely damaged the city of Basel, causing several hundred fatalities (Mayer-Rosa & Cadiot 1979). For the Lower Rhine Graben, the largest historical earthquake is the $M_t \approx 6.2$ Düren earthquake of 1756 (Meidow 1994; Hinzen & Reamer 2007). This event occurred only a few weeks after the $M \approx 9$ Lisbon earthquake of 1755 (Babtista et al. 1998) – the largest historical earthquake of the European continent.

Central Asia (Kyrgyz and Kazakh Tien Shan and Mongolia)

Despite their distance from nominal plate boundaries, Central Asia’s northern Tien Shan mountains and the deformation belts in Mongolia have suffered a series of large-magnitude earthquakes, some exceeding M 8, in the past 150 years (e.g. Ignatiev 1886; Mushketov 1891; Bogdanovich et al. 1914; Khil’ko et al. 1985; Baljiinyam et al. 1993; Krüger et al. 2015; Arrowsmith et al. 2016). Such events are rare, given the slow slip rates – less than a few millimetres per year – of single active faults in those areas.

Both the Tien Shan and most of the Mongolian ranges were reactivated during renewed orogenic pulses between the Precambian and the Palaeozoic, and to a limited extent in Mesozoic time. Phases of deformation alternated with quiescence, yielding several zones of weakness (Tapponnier & Molnar 1979; Baljiinyam et al. 1993). Although they are more than a 1000 km north of the India–Eurasia plate boundary, they are affected by far-field strain from the ongoing collision. Thus, most areas in Kyrgyzstan and Mongolia experience roughly north-directed shortening at present. In Kyrgyzstan, active faults are mainly east–west striking, perpendicular to the main horizontal shortening direction; so most recent and historic earthquakes show thrusting and reverse-faulting mechanisms with minor strike-slip components or few strike-slip events (e.g. Nelson et al. 1987; Molnar & Ghose 2000; Thompson et al. 2002; Arrowsmith et al. 2016; Landgraf et al. 2016). However, major right-lateral strike-slip faults accommodate part of the north–south shortening in the northern Tien Shan (e.g. Korjenkov et al. 2010; Campbell et al. 2013, 2015). Reactivation of several inherited faults may result in complex ruptures, incorporating segments with different mechanisms (Abdrakhmatov et al. 2016). Interestingly, the known historical events seem to be located along the northern and southern borders of the Tien Shan (Kalmetieva et al. 2009; Landgraf et al. 2016), despite comparable Quaternary single-fault slip rates across the Tien Shan (Thompson et al. 2002) and continuously northward-decreasing GPS-velocities (Zubovich et al. 2010). In Mongolia, the mechanisms of active faulting vary between provinces, with dextral strike-slip in the Altay and left-lateral as well as oblique-slip faulting in combination with thrusting in the Gobi–Altay and Hangay Dome. Walker et al. (2015) document that active normal faulting is common in the Hangay area. Nevertheless, virtually all of these provinces have experienced large earthquakes in historical time.
distributed across the mountainous areas of the entire country (e.g. Khil’ko et al. 1985).

North America

Earthquakes are widespread within this presumably stable continent. The New Madrid seismic zone is best-known for its 1811–12 earthquakes, which include three or four large shocks \((M \geq 7.0) \) (Stein 2010; Hough & Page 2011). Other intraplate seismic zones include the Wabash Valley zone in southern Illinois and Indiana, a northeastern extension of the New Madrid zone, where palaeoliquefaction deposits indicate the past occurrence of large earthquakes (Obermeier 1999) that may have been comparable to those that occurred in the New Madrid zone in 1811–12. Moderate seismicity has been recorded in the southern Oklahoma and the Texas panhandle. Holocene \((c. \ 1.2 \text{ kyr ago}) \), and younger fault scarp deposits on the Meers Fault indicate earthquakes of magnitude greater than 6.5 (Madole & Rubin 1985; Crone & Luza 1990). The Eastern Tennessee seismic zone includes seismicity in the Valley and Ridge province of the southern Appalachians. The central Virginia seismic zone also shows clusters of seismicity, including the 2011 Mw 5.8 earthquake near Mineral. The Carolina seismic zone is best known for the destructive \((M \approx 6.5–7.0) \) event near Charleston, South Carolina. Palaeoseismic studies indicate at least seven prehistoric earthquakes in the past 6000 years (Obermeier et al. 1985; Talwani & Cox 1985). The entire east coast, including Charleston, Virginia and New England, can be viewed as a single seismic zone, consistent with the observation that seismicity occurs along many passive continental margins (Stein et al. 1979; Stein et al. 1989; Schulte & Mooney 2005; Wolin et al. 2012). Further north in the St Lawrence River Valley, numerous events with magnitude 6–7 have been recorded, including the 1663 M 7.3–7.9 Charlevoix earthquake in Quebec (Ebel 2011). Agurto-Detzel et al. (2015) give an overview of intraplate seismicity and tectonics in South America.

Australia

Clark et al. (2015) give an overview of intraplate seismicity and tectonics in Australia.

Topics/approaches

The papers in this volume are grouped into two sections: (1) Seismology and Hazard; and (2) Earthquake Geology. Areas discussed include North and South America, Central and Northern Europe, Central Asia, Mongolia and China, and Australia.

The first section deals with instrumental and historical earthquake data and associated hazard assessments. Three papers explore the limitations of seismic catalogues for hazard assessments. Focusing on challenges of the short instrumental record with respect to expected earthquake recurrence times in intraplate regions, Stein et al. (2015) consider the consequences of low-probability events for hazard evaluation in intraplate Europe. Zöller et al. (2015) use the regional earthquake catalogue for Central Asia to estimate the largest expected magnitude in a predefined time window. The authors use statistical methods, combined with a probabilistic consideration of magnitude errors, to infer that, for future periods of a few hundred years, earthquakes of \(M \geq 8.5 \) are possible. For the same region in Central Asia, Krüger et al. (2015) consider one of the earliest teleseismically recorded earthquakes (the 1889 Chilik earthquake), together with magnetostratigraphic evidence of this and a better known earthquake in the region, to constrain the large magnitude that was previously debated.

The other two papers in the first section focus on physical processes and their relation to the distribution of intraplate seismicity. Agurto-Detzel et al. (2015) consider possible lithospheric factors controlling the occurrence or non-occurrence of seismicity in intraplate South America. They argue that the most important factors are elastic thickness and heat flow, but also that Neoproterozoic fold belts show significantly higher seismicity, possibly owing to inherited zones of weakness. Costain (2016) discusses intraplate earthquakes and their aftershocks, triggered by groundwater recharge, with an example from North America. He provides a two-step model for the physical processes that influence crustal stress changes and might affect aftershock distributions.

The second section covers methods from structural geology, palaeoearthquake and tectonic geomorphology and incorporates field evidence. The transition between the two sections is given by Mörner (2015), who explores the compatibility of short-term seismic catalogues and long-term palaeoseismic records, a highly debated topic in seismological and palaeoearthquake communities, for Scandinavia. Kübler et al. (2016) report on geophysical, geological and morphological data indicating earthquake ground rupture in the Lower Rhine Graben and outline challenges in recognizing coseismic deformation in a densely populated low-strain region. Shipton et al. (this volume, in press) investigate the microstructures of cataclastic deformation in unconsolidated sand deposits related to deformation along the active Riedselz fault that is part of the northern Upper Rhine Graben in France. Clark et al. (2015) show a record of episodic faulting with temporally clustered
earthquakes from the Cadell Fault in southeast Australia, where fault slip rates averaged over a clustered period can be more than an order of magnitude higher than the long-term average. Moreover, they suggest that the assumption of earthquakes occurring owing to progressive strain build-up, and thus being in some way predictable in their periodicity, is not satisfied. Walker et al. (2015) investigate a newly initiated normal fault in the Hangay mountains of intraplate Mongolia that shows an approximately 80 km-long scarp and slipped during mid-Holocene time in a rare large-magnitude event. Rudersdorf et al. (2015) analyse seismically induced soft-sediment deformation structures in palaeo-lakebeds of the northeastern Ejina Basin in Inner Mongolia, and show that these structures can record palaeoearthquake where the present-day seismicity is low and the geomorphology does not indicate active tectonics. Finally, Arrowsmith et al. (2016) investigate the rupture of the 1911 Kebin earthquake that occurred near an 1889 earthquake studied by Krüger et al. (2015). Their field surveys, using slip measurements, indicate a segmented rupture incorporating large step-overs and a switch in fault vergence. Interestingly, the seismic moment calculated from the observed slip at the surface is lower than seismological estimates.

Outlook/implications for future work

Assessing seismic hazard in slowly deforming areas is challenging, and how well we do heavily depends on our ability to assess the spatiotemporal distribution of past large earthquakes and draw implications for the future. Even considering the long record of historical events in some populated areas, their time-span of about 1000 years probably fails to capture the activity of some faults with typical large-event recurrence intervals that are in the order of tens of thousands of years. To extend the short instrumental and historical records, palaeoearthquake data are increasingly being used. Although the precise spatiotemporal behavior of large midcontinental earthquakes may be unknowable, an intrinsic limitation of complex dynamic systems, the steady improvement of palaeoseismic methods is improving our knowledge of what has happened and giving insight into what may happen.

References

Abraschkatov, K.E., Walker, R.T. et al. 2016. Multi-segment rupture in the July 11th 1889 Chilik earthquake (Mw 8.0–8.3), Kazakh Tien Shan, interpreted from remote-sensing, field survey, and palaeoseismic trenching. Journal of Geophysical Research – Solid Earth, 121. https://doi.org/10.1002/2015JB012763

Agurto-Detzel, H., Assumpcao, M., Bianchi, M. & Pirchner, M. 2015. Intraplate seismicity in mid-plate South America: correlations with geophysical lithospheric parameters. In: Landgraf, A., Kübler, S., Hintersberger, E. & Stein, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online November 2, 2015, https://doi.org/10.1144/SP432.5

Ahrner, L. 1975. Present-day stress field and seismotectonic block movements along major fault zones in central Europe. Tectonophysics, 29, 233–249.

Alessio, G., Alfonso, L. et al. 2010. Evidence for surface rupture associated with the Mw 6.3 L’Aquila earthquake sequence of April 2009 (central Italy). Terra Nova, https://doi.org/10.1111/j.1365-3121.2009.00915.x

Arrowsmith, J.R., Crosby, C.J., Korjenkov, A.M., Mamyrov, E., Povolotskaya, I., Guralnik, B. & Landgraf, A. 2016. Surface rupture of the 1911 Kebin (Chon–Kemin) earthquake, Northern Tien Shan, Kyrgyzstan. In: Landgraf, A., Kübler, S., Hintersberger, E. & Stein, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online July 20, 2016, https://doi.org/10.1144/SP432.10

Babtista, M.A., Miranda, P.M.A., Miranda, J.M. & Mendes Victor, L.A. 1998. Constraints on the source of the 1755 Lisbon tsunami inferred from the numerical modelling of historical data. Journal of Geodynamics, 25, 159–174.

Baljnyam, L., Bayasgalan, A. et al. 1993. Ruptures of Major Earthquakes and Active Deformation in Mongolia and its Surroundings. Geological Society of America Memoir, 181, 1–60.

Berberian, M. 2014. Earthquakes and coseismic surface faulting on the Iranian Plateau, a historical, social and physical approach. In: Shroder, J.F., Jr. (series ed.) Developments in Earth Surface Processes. Elsevier, Amsterdam, 17, 2–714.

Bogdanovich, K.I., Kark, I.M., Korolkov, B.Y. & Mushketov, D.I. 1914. The Earthquake in the Northern Districts of the Tien Shan, 22 December 1910 (4 January 1911). Communications of the Geological Community, St Petersburg, Russia [in Russian].

Bungum, H., Oleisen, O., Pascal, C., Gibbons, S., Lindholm, C. & Vestøl, O. 2010. To what extent is the present seismicity of Norway driven by post-glacial rebound? Journal of the Geological Society, London, 167, 373–384. https://doi.org/10.1144/0016-76492009-009

Camelbeeck, T. & Meghraoui, M. 1996. Large earthquakes in Northern Europe more likely than once thought. EOS, 77, 405–409.

Camelbeeck, T. & Meghraoui, M. 1998. Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophysical Journal International, 132, 347–362.

Camelbeeck, T., Alexandre, P., Vanneste, K. & Meghraoui, M. 2000. Long-term seismicity in
regions of present day low seismic activity: the example of western Europe. Soil Dynamics and Earthquake Engineering, 20, 405–414.

CAMPBELL, G.E., WALKER, R.T., ABDRAKHMATOV, K., SCHWENNINGER, J.L., JACKSON, J., ELLIOTT, J.R. & COPLEY, A. 2013. The Djungarian fault: Late Quaternary tectonics and slip rate of a major right-lateral strike-slip fault in the northern Tien Shan region. Journal of Geophysical Research – Solid Earth, 118, 5681–5698, https://doi.org/10.1002/jgrb.50367

CAMPBELL, G.E., WALKER, R.T., ABDRAKHMATOV, K., JACKSON, J., ELLIOTT, J.R., MACKENZIE, D. & SCHWENNINGER, J.L. 2015. Great earthquakes in low strain rate continental interiors: an example from SE Kazakhstan. Journal of Geophysical Research – Solid Earth, 120, 5507–5534, https://doi.org/10.1002/2015JB011925

CÉLEIRÉ, B. 2008. Seeking Anderson’s faulting in seismicity: a centennial celebration. Reviews in Geophysics, 46, RG4001, https://doi.org/10.1029/2007RG000240

CLARK, D. 2003. Earthquakes move on but not without a trace. GEO News, 70, 30–35.

CLARK, D., McPHERSON, A. & COLLINS, C. 2011. Australia’s seismogenic neotectonic record. Geoscience Australia Record, 11, 1–95.

CLARK, D., McPHERSON, A. & VAN DISSEN, R. 2012. Long-term behaviour of Australian stable continental region (SCR) faults. Tectonophysics, 566, 1–30.

CLARK, D., McPHERSON, A., ALLEN, T. & DE KOK, M. 2014. Co-seismic surface deformation caused by the 23 March 2012 Mw 5.4 Emnella (Pukatja) earthquake, central Australia: implications for fault scaling relations in Cratonic settings. Bulletin of the Seismological Society of America, 104, 24–39.

CLARK, D., McPHERSON, A., CUPPER, M., COLLINS, C.D.N. & NELSON, G. 2015. The Cadell Fault, southeastern Australia: a record of temporally clustered morphogenic seismicity in a low-strain intraplate region. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online November 18, 2015, https://doi.org/10.1144/SP432.2

CLOETINGH, S., ZIEGLER, P.A., BEEKMAN, F., ANDRIESSEN, P.A.M., HARDEBOL, N. & DEZÉS, P. 2005. Intraplate deformation and 3D rheological structure of the Rhine Rift System and adjacent areas of the northern Alpine foreland. International Journal of Earth Science, 94, 758–776.

COSTAIN, J.K. 2016. Groundwater Recharge as the trigger of naturally occurring intraplate earthquakes. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online April 12 2016, https://doi.org/10.1144/SP432.9

CRONE, A.J. & LUZA, K.V. 1990. Style and timing of Holocene surface faulting on the Meers fault, southwestern Oklahoma. GSA Bulletin, 102, 1–17.

CRONE, A.J., MACHETTE, M.N. & BOWMAN, J.R. 1997. Episodic nature of earthquake activity in stable continental regions revealed by palaeoseismic studies of Australian and North American quaternary faults. Australian Journal of Earth Sciences, 44, 203–214.

CRONE, A.J., DE MARTINI, P.M., MACHETTE, M.N., OKUMURA, K. & PREScott, J.R. 2003. Paleoseismicity of two historically quiescent faults in Australia: implications for fault behavior in stable continental regions. Bulletin of the Seismological Society of America, 93, 1913–1934.

DÈZÈS, P., SCHMID, S.M. & ZIEGLER, P.A. 2004. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389, 1–33.

DI Bucci, D. & MAZZOLI, S. 2003. The October–November 2002 Molise seismic sequence (southern Italy): an expression of Adria intraplate deformation. Journal of the Geological Society, London, 160, 503–506.

EBEL, J.E. 2011. A new analysis of the magnitude of the February 1663 earthquake at Charlevoix, Quebec. Bulletin of the Seismological Society of America, 101, 1024–1038.

ENGLAND, P. & JACKSON, J. 2011. Uncharted seismic risk. Nature Geoscience, 4, 348–349.

FAH, D., GISLER, M. et al. 2009. The 1356 Basel earthquake: an interdisciplinary revision. Geophysical Journal International, 178, 351–374.

FRIEDRICH, A.M., WERNICKE, B. & NIEMI, N.A. 2003. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research, 108, 2199–2232.

GLEDDILL, K., RISTAU, J., REYNERS, M., FRY, B. & HOLDEN, C. 2010. The Darfield (Canterbury) Earthquake of September 2010: preliminary seismological report. Bulletin of the New Zealand Society for Earthquake Engineering, 43, 215–221.

GOES, S., SPARKMAN, W. & BIKWAARD, H. 1999. A lower mantle source for Central European volcanism. Science, 286, https://doi.org/10.1126/science.286.5446.1928

GORDON, R.G. & STEIN, S. 1992. Global tectonics and space geodesy. Science, 256, 333–342.

GÖRRES, B. 2008. Recent Site Motions in the Lower Rhine Embayment and the Eifel from 15 years of GPS data. Abstract Swiss Geoscience Meeting, 21–23 November 2008, Lugano, 1.

GÖRRES, B., SAGER, B. & CAMPBELL, J. 2006. Geodätische Bestimmung von Bodenbewegungen im Bereich des Erfrundsungszeins. Zeitschrift für Vermessungswesen, 16–24.

GRIER, M.E., Salifty, J.A. & Allmendinger, R.W. 1991. Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. Journal of South American Earth Sciences, 4, 351–372.

HENZEN, K.G. & REAMER, S.K. 2007. Seismicity, seismotectonics, and seismic hazard in the northern Rhine area. In: STEIN, S. & MAZZOLI, S. (eds) Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America, Special Papers, 425, 225–242.

HOERNLER, K., ZHANG YU, S. & GRAHAM, D. 1995. Seismic and geochemical evidence for large-scale mantle
upwelling beneath the eastern Atlantic and western and central Europe. *Nature*, 374, 34–39.

Hough, S.E. & Page, M. 2011. Toward a consistent model for strain accrual and release for the New Madrid Seismic Zone, central United States. *Journal of Geophysical Research – Solid Earth*, 116, https://doi.org/10.1029/2010JB007783

Iaffa, D.N., Sábat, F., Muñoz, J.A., Mon, R. & Gutiérrez, A.A. 2011. The role of inherited structures in a foreland basin evolution. The Metán Basin in NW Argentina. *Journal of Structural Geology*, 33, 1816–1828.

Iaffa, D.N., Sábat, F., Muñoz, J.A. & Carrera, N. 2013. Basin fragmentation controlled by tectonic inversion and basement uplift in Sierras Pampeanas and Santa Bárbara System, northwest Argentina. In: Nemčok, M., Mora, A. & Cosgrove, J.W. (eds) *Thick-Skin-Dominated Orozones: From Initial Inversion to Full Accretion*. Geological Society, London, Special Publications, 377, 101–117.

Ignatiev, I.V. 1886. Earthquakes in Tokmak district in 1885. *Russian Geographic Society*, 22, 1–14 [in Russian].

Illies, H. 1975. Intraplate tectonics in stable Europe as related to plate tectonics in the Alpine system. *International Journal of Earth Science*, 64, 677–699.

Johnston, A.C. 1989. The seismicity of ‘stable continental interiors’. In: Grgerecin, S. & Basham, P.W. (eds) *Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound*. Klwer Academic, Dordrecht, 299–327.

Johnston, A.C. 1996. Seismic moment assessment of earthquakes in stable continental regions – I. Instrumental seismicity. *Geophysical Journal International*, 124, 381–414.

Johnston, A.C. & Schweig, E.S. 1996. The Enigma of the New Madrid Earthquakes of 1811–1812. *Annual Review of Earth and Planetary Sciences*, 24, 339–384.

Jolivet, L., Frizon de Lamotte, D., Masclle, A. & Séranne, M. 1999. The Mediterranean Basins: Tertiary Extension within the Alpine Orogen – an introduction. In: Durand, B., Jolivet, L., Horvath, F. & Séranne, M. (eds) *The Mediterranean Basins: Tertiary Extension within the Alpine Orogen*. Geological Society, London, Special Publications, 156, 1–14, https://doi.org/10.1144/GSL.SP.1999.156.01.02

Kalmetieva, Z.A., Mikolaičiuk, A.V., Moldobekov, B.D., Meleshko, A.V., Jantiev, M.M. & Zubovich, A.V. 2009. *Atlas of Earthquakes in Kyrgyzstan*. ECHO, UNISDR, and CAGIAG, Bishkek, Kyrgyzstan.

Kilko, S.D., Kurushin, R.A. et al. 1985. Strong earthquakes, paleoseismogeological and macroseismic data. Earthquakes and the Base for Seismic Zoning of Mongolia. *The Joint Soviet–Mongolian Scientific Geological Research Expedition Transactions*, 41, 19–83.

Korjenkov, A.M., Bobrovskii, A.V. & Mamyrov, E.M. 2010. Evidence for strong paleoearthquakes along the Talas–Fergana fault near the Kök–Bel Pass, Kyrgyzstan. *Geotectonics*, 44, 262–270.

Kratzsch, H. 2012. *Mining Subsidence Engineering*. Springer Science & Business Media, Berlin.

Krüger, F., Kulikova, G. & Landgraf, A. 2015. Instrumental magnitude constraints for the 11 July, 1889, Chilik earthquake. In: *Landgraf, A., Krüger, S., Hintersberger, E. & Stein, S.* (eds) *Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions*. Geological Society, London, Special Publications, 432. First published online November 20, 2015, https://doi.org/10.1144/SP432.8

Kübler, S., Streich, R., Lück, E., Hoffmann, M., Friedrich, A.M. & Streecker, M.R. 2016. Active Faulting in a Populated Low-Strain Setting (Lower Rhine Graben, Central Europe) Identified by Geomorphic, Geophysical, and Geological Analysis. In: *Landgraf, A., Kübler, S., Hintersberger, E. & Stein, S.* (eds) *Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions*. Geological Society, London, Special Publications, 432. First published online August 4, 2016, https://doi.org/10.1144/SP432.11

Kulikova, G. 2016. Source parameters of the major historical earthquakes in the Tien-Shan region from the late 19th to the early 20th century, PhD thesis, https://publishup.uni-potsdam.de/opus4-upb/frontdoor/index/index/docId/8837

Kulikova, G. & Krüger, F. 2015. Source process of the 1911 M8.0 Chon-Kemin earthquake: investigation results by analogue seismic records. *Geophysical Journal International*, 201, 1891–1911, https://doi.org/10.1093/gji/ggv091

Kulikova, G., Schurr, B., Krüger, F., Brzoska, E. & Heimann, S. 2016. Source parameters of the Sarez-Pamir earthquake of 1911 February 18. *Geophysical Journal International*, 205, 1086–1098.

Landgraf, A., Ballato, P., Streecker, M.R., Friedrich, A. & Tabatabaei, S.H. & Shah pasandizadeh, M. 2009. Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz Mountains Iran: implications for fault-system evolution and interaction in a changing tectonic regime. *Geophysical Journal International*, 177, 676–690, https://doi.org/10.1111/j.1365-246X.2009.04089.x

Landgraf, A., Zielke, O., Arrowsmith, J.R., Ballato, P., Streecker, M.R., Friedrich, A. & Tabatabaei, S.H. 2013. Differentiating simple and composite tectonic landscapes using numerical fault-slip modeling with an example from the south-central Alborz Mountains. *Journal of Geophysical Research – Earth and Space Science*, 118, 1792–1805, https://doi.org/10.1002/jgrf.20109

Landgraf, A., Dzhumabaeva, A. et al. 2016. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: the northern Tien Shan, Kyrgyzstan. *Journal of Geophysical Research – Solid Earth*, 121, https://doi.org/10.1002/2015JB012714

Li, Q., Liu, M. & Stein, S. 2009. Spatial-temporal complexity of continental intraplate seismicity: insights from geodynamic modeling and implications for seismic hazard estimation. *Bulletin of the Seismological Society of America*, 99, https://doi.org/10.1785/0120080005

Liu, M., Stein, S. & Wang, H. 2011. 2000 years of migrating earthquakes in North China: how earthquakes in midcontinents differ from those at plate boundaries. *Lithosphere*, 3, 128–132, https://doi.org/10.1029/2010GL045852

Macaulay, E.A., Sobel, E.R., Mikolaičiuk, A., Landgraf, A., Kohn, B. & Stuart, F. 2013. Thermochemical insight into Late Cenozoic deformation in the
basement-cored Terskey Range, Kyrgyz Tien Shan. Tectonics, 32, 487–500, https://doi.org/10.1002/tect.20040

MADLE, R.F. & RUBIN, M. 1985. Holocene movement on the Meers Fault, Southwest Oklahoma. The Seismological Society of America, 1985. Annual Meeting. Seismological Society of America Eastern Section, El Cerrito, CA, 14–16 April 1985, 1–2.

MAYER-ROSA, D. & CADOT, B. 1979. A review of the 1356 Basel earthquake: basic data. Tectonophysics, 53, 325–333, https://doi.org/10.1016/0040-1951(79)90077-5

MCALPIN, J.P. 2005. Late Quaternary activity of the Pajarito fault, Rio Grande rift of northern New Mexico, USA. Tectonophysics, 408, 213–236.

MEOCHAN, L., VAN BALEN, R., MERLE, O. & PAGNIER, H. 2003. The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics, 367, 101–126.

MÖRNER, N.-A. 2015. Views on the dialectics between seismology and palaeoseismology with examples from southern Scandinavia. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online October 29, 2015, https://doi.org/10.1144/SP432.1

MOLNAR, P. & GHOSE, S. 2000. Seismic moments of major earthquakes and the rate of shortening across the Tien Shan. Geophysical Research Letters, 27, 2377–2380.

MUSHKETOV, I.V. 1891. Materials for investigation of earthquakes in Russia. Annex to the 27th Volume of Tidings of the Imperial Russian Geographical Society, 1–64 [in Russian].

NELSON, M.R., McCAFFREY, R. & MOLNAR, P. 1987. Source parameters for 11 earthquakes in the Tien Shan, Central Asia, determined by P and SH waveform inversions. Journal of Geophysical Research, 92, 12692–12648.

OBERMEIER, S.F. 1999. Seismic Liquefaction Features Examples from Paleoseismic Investigations in the Continental United States. US Geological Survey; USGS Information Services (Open-File Report Sales).

OBERMEIER, S.F., GOHN, G.S., WEEMS, R.E., GELINAS, R.L. & RUBIN, M. 1985. Geologic evidence for recurrent moderate to large earthquakes near Charleston, South Carolina. Science, 227, 408–411.

PERSKI, Z. 1998. Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian Coal mining region, Poland. International Archives of Photogrammetry and Remote Sensing, 32, 555–558.

RADUlov, A. 2012. Cosismic effects related to the Permik earthquake 22nd May, 2012 in West Bulgaria Abst. Geoscience, 121–122.

RASTOGI, B., GUPTA, H. ET AL. 2001. The deadliest stable continental region earthquake occurred near Bhuj on 26 January 2001. Journal of Seismology, 5, 609–615.

REICHERTER, K., FROITZHEIM, N. ET AL. 2008. Alpine tectonics North of the Alps. In: McCANN, T. (ed.) The Geology of Central Europe, Volume 2: Mesozoic and Cenozoic. Geological Society, London, 1233–1285.

RITTER, J.R.R., JORDAN, M., CHRISTENSEN, U.R. & ACHAUER, U. 2001. A mantle plume below the Eifel volcanic fields, Germany. Earth and Planetary Science Letters, 186, 7–14, https://doi.org/10.1016/s0012-821x(01)00226-6

RUDERSDORF, A., HARTMANN, K., KAIFENG, Y., STAUCH, G. & REICHERTER, K. 2015. Seismites as indicators for Holocene seismicity in the northeastern Ejina Basin, Inner Mongolia. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online October 29, 2015, https://doi.org/10.1144/SP432.6

SCHLAPP, A. & CISTERNAS, A. 2007. Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay). Geophysical Journal International, 169, 1115–1131.

SCHMIDES, J., HAINEZL, S., REAMER, S.K., SCHERBAUM, F. & HINZEN, K.G. 2005. Moment release in the Lower Rhine Embayment, Germany: seismological perspective of the deformation process. Geophysical Journal International, 160, 901–909.

SCHULTE, S.M. & MOONEY, W.D. 2005. An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophysical Journal International, 161, 707–721.

SCHUMACHER, M.E. 2002. Upper Rhine Graben: the role of preexisting structures during rift evolution. Tectonics, 21, 6–17, https://doi.org/10.1029/2001TC90022

SCHWARTZ, D.P. & COPPERSMITH, K.L. 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and the San Andreas faults. Journal of Geophysical Research, 89, 5681–5698.

SELANDER, J., OSKIN, M., ORMUKOV, C. & ABDRAKHMATOV, K. 2012. Inherited strike-slip faults as an origin for basement-cored uplifts: example of the Kungey and Zailiskiy Ranges, northern Tien Shan. Tectonics, 31, TC4026, https://doi.org/10.1029/2011TC003002

ŞENGÖR, A.M.C., BURKE, K. & DEWEY, J.F. 1978. Rifts at high angles to orogenic belts – tests for their origin and Upper Rhine Graben as an example. American Journal of Science, 278, 24–40.

SHIPTON, Z.K., MEGHRRAOUI, M. & MONRO, L. In press. Seismic slip on the west flank of the Upper Rhine Graben (France-Germany): evidence from tectonic morphology and cataclastic deformation bands. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publication, 432, https://doi.org/10.1144/SP432.12

SIH, K. 1978. Prehistoric earthquakes produced by slip on the San Andreas Fault at Pallet Creek, California. Journal of Geophysical Research, 83, 3907–3939.

SIH, K., STUVER, M. & BRILLINGER, D. 1989. A more precise chronology of earthquakes produced by the San Andreas Fault in Southern California. Journal of
Geophysical Research, 94, 603–623, https://doi.org/10.1029/JB904iB01p00603

SINGH, S., PACHECO, J., BANSAL, B., PÉREZ-CAMPOS, X., DATTATRAYAM, R. & SURESH, G. 2004. A source study of the Bhuj, India, earthquake of 26 January 2001 (Mw 7.6). Bulletin of the Seismological Society of America, 94, 1195–1206.

STEFFEN, H. & WU, P. 2011. Glacial isostatic adjustment in Fennoscandia – a review of data and modeling. Journal of Geodynamics, 52, 169–204.

STEIN, S. 2010. Disaster Deferred: How New Science is Changing Our View of Earthquake Hazards in the Midwest. Columbia University Press, New York.

STEIN, S. & LIU, M. 2009. Long aftershock sequences within continents and implications for earthquake hazard assessment. Nature, 462, 87–89, https://doi.org/10.1038/nature08502

STEIN, S. & MAZZOT, S. 2007. Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America, Special Papers, 425, 1–16.

STEIN, S., SLEEP, N., GELLER, R.J., WANG, S.C. & KROEGER, G.C. 1979. Earthquakes along the passive margin of eastern Canada. Geophysical Research Letters, 6, 537–540.

STEIN, S., CLOETINGH, S., SLEEP, N.H. & WORTEL, R. 1989. Passive margin earthquakes, stresses and rheology, Earthquakes at North-Atlantic Passive Margins. In: GREGERSEN, S. & BASHAM, P.W. (eds) Neotectonics and Postglacial Rebound. Springer, Ottawa, Canada, 231–259.

STEIN, S., LIU, M., CALAIS, E. & LI, Q. 2009. Midcontinent earthquakes as a complex system. Seismological Research Letters, 80, 551–553.

STEIN, S., LIU, M., CAMELBRICK, T., MERINO, M., LANDGRAF, A., HINTERSBERGER, E. & KÜBLER, S. 2015. Challenges in assessing seismic hazard in intraplate Europe. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online November 4, 2015, https://doi.org/10.1144/SP432.7

STRECKER, M.R., BLISNIUK, P.M. & EISBACHER, G.H. 1990. Rotation of extension direction in the central Kenya Rift. Geology, 18, 299–302.

SYKES, L.R. 1978. Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Reviews of Geophysics, 16, 621–688.

TALWANI, P. & COX, J. 1985. Paleoseismic evidence for recurrence of earthquakes near Charleston, South Carolina. Science, 229, 379–381.

TAPPONNIER, P. & MOLNAR, P. 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions. Journal of Geophysical Research, 84, 3425–3462.

THOMPSON, S.C., WELDON, R.J., RUBIN, C.M., ABRUKHMATOV, K., MOLNAR, P. & BERGER, G.W. 2002. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. Journal of Geophysical Research, 107, 2203, https://doi.org/10.1029/2001JB000596

TUTTLE, M.P. & SCHWEIG, E.S. 1995. Archeological and pedological evidence for large prehistoric earthquakes in the New Madrid seismic zone, central United States. Geology, 23, 253–256.

VALLAGE, A., KLINGER, Y., GRANDIN, R., DELORME, A. & DESEILLIGNY, M.P. 2016. Inherited structures impact on co-seismic surface deformation pattern during the 2013 Balochistan, Pakistan, earthquake. Geophysical Research Abstracts, 18, EGU2016-17342, EGU General Assembly 2016.

VANNESSE, K., VERBEECK, K. ET AL. 2001. Surface-rupturing history of the Bree fault scarp, Roer Valley graben: evidence for six events since the late Pleistocene. Journal of Seismology, 5, 329–359.

VAN VLEET-LAENOË, B., MAGVARI, A. & MEILLÈZ, F. 2004. Disthignishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global and Planetary Changes, 43, 103–127.

WALKER, R.T., WEGMANN, K.W. ET AL. 2015. The Egiin Davaa prehistoric rupture, central Mongolia: a large magnitude normal faulting earthquake on a reactivated fault with little cumulative slip located in a slowly deforming intraplate setting. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online November 18, 2015, https://doi.org/10.1144/SP432.4

WALLACE, R.E. 1977. Profiles and ages of young fault scarps, north-central Nevada. Geological Society of America Bulletin, 88, 1267–1281.

WALLACE, R.E. 1986. Active Tectonics – Studies in Geophysics. National Academic Press, Washington, DC.

WOLIN, E., STEIN, S., PIAZZAGLIA, F., MELTZER, A., KAFKA, A. & BERTI, C. 2012. Mineral, Virginia, earthquake illustrates seismicity of a passive-aggressive margin. Geophysical Research Letters, 39, https://doi.org/10.1029/2011GL050310

ZIEGLER, P.A. 1992. European Cenozoic rift system. Tectonophysics, 208, 91–111, https://doi.org/10.1016/0040-1951(92)90338-7

ZIEGLER, P.A. 1994. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouw, 73, 99–127.

ZIELKE, O. & STRECKER, M.R. 2009. Recurrence of Large Earthquakes in Magmatic Continental Rifts: insights from a Paleoseismic Study along the Laikipia–Marina Fault, Subukia Valley, Kenya Rift. Bulletin of the Seismological Society of America, 99, 61–70.

ZÖLLER, G., ULLAH, S., BINDI, D., PAROLAI, S. & MAHKIALOVA, N. 2015. The largest expected earthquake magnitudes in Central Asia: statistical inference from an earthquake catalogue with uncertain magnitudes. In: LANDGRAF, A., KÜBLER, S., HINTERSBERGER, E. & STEIN, S. (eds) Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publications, 432. First published online November 4, 2015, https://doi.org/10.1144/SP432.3

ZUBOVICH, A.V. ET AL. 2010. GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 29, TC6014, https://doi.org/10.1029/2010TC002772