Supplementary Information for “A systematic review of healthcare provider-targeted mobile applications for non-communicable diseases in low- and middle-income countries”

Supplementary Table 1. Search Strategies

Date of search	Database	Dates range	Search strategy
07.10.2019	Pubmed	2007-2019	2007:2019 [dp] (smartphone [mesh] OR smartphone [tiab] OR smart phone* [tiab] OR mobile phone* [tiab] OR mobile device* [tiab] OR cell phone* [tiab] OR tablet [mesh] OR tablet [tiab] OR tablets [tiab] OR "portable device" [tiab] OR ipad OR iphone* OR "android" OR iPhone Operating System) AND ("app" [tiab] OR "apps" [tiab] OR application [tiab] OR applications [tiab] OR mobile application* [tiab] OR software [tiab] OR tool [tiab]) AND (diagnosis [mesh] OR diagnose [tiab] OR diagnosed [tiab] OR diagnosis [tiab] OR diagnosis [tiab] OR diagnoses [tiab] OR diagnostic [tiab] OR diagnostics [tiab] OR screening [mesh] OR screening [tiab] OR screen [tiab] OR screened [tiab] OR screens [tiab] OR monitor [tiab] OR monitors [tiab] OR monitoring [tiab] OR monitored [tiab]) Timespan: 2007-2019.
07.10.2019	Web of Science	2007-2019	(smartphone [mesh] OR smartphone OR smart phone* OR mobile device* OR mobile phone* OR mobile device* OR cell phone* OR tablet [mesh] OR tablet OR tablets OR ipad OR iphone* OR "android" OR iPhone Operating System) AND TOPIC: ("app" OR "apps" OR application OR applications OR mobile application* OR software OR tool) AND TOPIC: (diagnosis [mesh] OR diagnose OR diagnosed OR diagnosis OR diagnoses OR diagnostic OR diagnostics OR screening [mesh] OR screening OR screen OR screened OR screens OR monitor [mesh] OR monitor OR monitors OR monitoring OR monitored) Timespan: 2007-2019.
30.09.2019	Cochrane Central	2007-2019	((smartphone OR smart phone* OR mobile phone* OR mobile device* OR cell phone* OR tablet OR tablets OR iphone or iPhones OR "android" OR iPhone Operating System OR ipad):ti,ab,kw AND ("app" OR "apps" OR application OR applications OR mobile application* OR software OR tool):ti,ab,kw AND ((diagnose OR diagnosed OR diagnosis OR diagnoses OR diagnostic OR diagnostics OR screening OR screen OR screened OR screens OR monitor OR monitors OR monitoring OR monitored)):ti,ab,kw
Supplementary Table 2. Themes and Categories

THEMES	SUBTHEMES	CATEGORIES	DEFINITIONS OR SUBCATEGORIES
Epidemiology	Medical Specialties	Cardiology	Medical specialty concerned with the study of the heart, its physiology, and its functions.
		Ophthalmology and Otorhinolaryngology	A surgical specialty concerned with the structure and function of the eye and the medical and surgical treatment of its defects and diseases. / A surgical specialty concerned with the study and treatment of disorders of the ear, nose, and throat.
		Neurology	A medical specialty concerned with the study of the structures, functions, and diseases of the nervous system.
	General Medicine		
	Maternal and Child Healthcare		The medical specialties concerned with the physiology and disorders primarily of the female genital tract, as well as female endocrinology and reproductive physiology, and maintaining health and providing medical care to children from birth to adolescence.
	Dermatology		A medical specialty concerned with the skin, its structure, functions, diseases, and treatment.
	Endocrinology		A subspecialty of internal medicine concerned with the metabolism, physiology, and disorders of the endocrine system.
	Hematology		A subspecialty of internal medicine concerned with morphology, physiology, and pathology of the blood and blood-forming tissue/ the dynamics of blood flow.
	Oncology		A subspecialty of internal medicine concerned with the study of neoplasms.
	Psychiatry		The medical science that deals with the origin, diagnosis, prevention, and treatment of mental disorders.
	Orthopedics and Traumatology		A specialty which utilizes medical, surgical, and physical methods to treat and correct deformities, diseases, and injuries to the skeletal system, its articulations, and associated structures.
	Pulmonary Medicine		A subspecialty of internal medicine concerned with the study of the respiratory system. It is especially concerned with diagnosis and treatment of diseases and defects of the lungs and bronchial tree.
	Nutrition and Sports Medicine		The field of medicine concerned with physical fitness and the diagnosis and treatment of injuries sustained in exercise and sports activities, as well as nutrition processes during exercise and athletic performance, nutritional requirements of athletes and the relationship between nutritional status and nutrition disorders in athletes.
	Surgery and Anesthesiology		Involves various branches of surgical practice limited to specialized areas in the human anatomy, alongside the study of anesthetics and anesthesia.
	Rheumatology		A subspecialty of internal medicine concerned with the study of inflammatory or degenerative processes and metabolic derangement of connective tissue structures which pertain to a variety of musculoskeletal disorders, such as arthritis.
	Allergology and Immunology		A medical specialty concerned with the hypersensitivity of the individual to foreign substances and protection from the resultant infection or disorder.
	Nephrology and Urology		Subspecialties concerned with the anatomy, physiology, and pathology of the kidney and concerned with the study, diagnosis, and treatment of diseases of the urinary tract in both sexes, and the genital tract in the male.
Technology	Type of Mobile Device*	Armband/Smartwatch	Wearable computers in the forms of a watch or a band usually wrist worn.
	Smartphones		A cell phone that includes additional software functions (such as email or an Internet browser)
	Mobile Phones		A portable, usually cordless, telephone for use in a cellular system
	Tablets		A mobile computing device that has a flat, rectangular form like that of a magazine or pad of paper, that is usually controlled by means of a touch screen, and that is typically used for accessing the Internet, watching videos, playing games, reading electronic books, etc.
	iPod Devices		A small electronic device for playing and storing digital audio and video files, proprietary of Apple Inc.
Operating System	iPhone Operating System	Mobile operating system created and developed by Apple Inc. exclusively for its hardware.	
------------------	-------------------------	--	
Operating System	Android	Mobile operating system based on a modified version of the Linux kernel and other open-source software, designed primarily for touchscreen mobile devices such as smartphones and tablets.	
Operating System	Windows	A group of several proprietary graphical operating system families, all of which are developed and marketed by Microsoft and targeted to different devices, ranging from Personal Computers to Mobile Phones.	
Operating System	Blackberry	A proprietary mobile operating system developed by Canadian company BlackBerry Limited for its BlackBerry line of smartphone handheld devices.	
Operating System	MultiPhone Operating System	Applicable to technologies that work on multiple operating systems.	
Operating System	Others	Includes HTML5, MIDet Implementation of JM2E using NetBeans 5.5, Symbian, Tiny OS Platform.	
Use of Accessories	Yes/No	Use or not of accessories additional to the mobile technology to achieve its purpose (i.e., electrodes, cellphone attachments, small screens, blood pressure cuffs, additional light sources, straps or bands, lenses, headphones).	
Cost	Ranges of $	0-20 USD, 21-100 USD, >100 USD, or Not specified or not costing assigned yet. Some costs in different currencies were converted to USD dollars using Google at April 2021 rates of conversion.	

METHODOLOGY

Author Affiliation	North America	Canada, USA
Author Affiliation	South America	Brazil, Colombia
Author Affiliation	Europe	Austria, Belgium, Denmark, England, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Netherlands, Poland, Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom
Author Affiliation	Africa	Cameroon, Madagascar, Nigeria, Rwanda, South Africa, Uganda, Zambia
Author Affiliation	Asia	Bangladesh, Bhutan, China, Hong Kong, India, Indonesia, Iran, Israel, Japan, Nepal, Republic of Korea, Singapore, South Korea, Taiwan, United Arab Emirates
Author Affiliation	Oceania	Australia, New Zealand
Author Affiliation	Multinational	Including several countries in the same study, either as collaborators or as study settings.

| Year of Publication | Year Ranges | 2006-2008, 2009-2011, 2012-2014, 2015-2017, 2018-2020 |
Study Design	Randomized Clinical Trials	A study design that randomly assigns participants into an experimental group or a control group. As the study is conducted, the only expected difference between the control and experimental groups in a randomized controlled trial (RCT) is the outcome variable being studied.
	Observational Cohort	Studies where researchers observe the effect of the studied technology without trying to change who is or isn’t exposed to it.
	Studies/Case Control	Studies where researchers observe the effect of the studied technology without trying to change who is or isn’t exposed to it.
	Case Series/Case Reports	A detailed report of the implementation of a technology in the diagnosis, monitoring or screening of an individual patient. A case series is group of case reports involving patients that were assisted in the diagnostic process by the same technology.
	Diagnostic Accuracy Study	A study that provides evidence on how well a technology correctly identifies or rules out disease and informs subsequent decisions about treatment for clinicians, their patients, and healthcare providers.
	Qualitative	Studies that collected and analyzed non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences.
	Technical Description/Testing	A technical description describes a technology in terms of its function, organization, parts and details, without using a study design framework to do so.

Sources: NCBI Mesh Medical Specialties¹, “Research Design: Qualitative, Quantitative, and Mixed Methods Approaches” Book².

¹An algorithm for the classification of study designs to assess diagnostic, prognostic, and predictive test accuracy in systematic reviews³

1. Medicine - MeSH - NCBI [Internet]. [cited 2021 May 13]. Available from: https://www.ncbi.nlm.nih.gov/mesh/?term=medical+specialties
2. Creswell JW. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications; 2009. 297 p.
3. Mathes T, Pieper D. An algorithm for the classification of study designs to assess diagnostic, prognostic, and predictive test accuracy in systematic reviews. Systematic Reviews. 2019 Sep 3;8(1):226.
Supplementary Table 3. Studies that include 10 most common diseases in database (n=121)

Diseases	Title	Authors	Disease RF	Clinical Domain	Aim	Type of Intervention	Mobile	Operating System	Study Population	Methods	Stage of Development	Cost	Year	Author Affiliation
Arrhythmia s (N=40)	Pit-a-Pat: A Smart Electrocardiogram System for Detecting Arrhythmia.	Jayeun Park, Kuyeon Lee, Kyungtae Kang	Arrhythmia	Cardiology	Monitoring	Mobile application	Smartphone	Android	MIT-BIH Arrhythmia database	Technical Testing	Developed	Not specified	2015	South Korea
	Diagnostic Performance of a Smart Device With Photoplethysmograph y Technology for Atrial Fibrillation Detection: Pilot Study (Pro-mAFA II Registry).	Fan, Y. et al.	Atrial Fibrillation	Cardiology	Diagnosis	Smartphone application	Smartphones (HUAWEI Mate 9, HUAWEI Honor TX), smart bands (HUAWEI Band 2)	Android	Consecutive inpatients were recruited from the Chinese People’s Liberation Army General Hospital (Beijing, China) from March 15 to April 1, 2018	Pretest/Posttests	Developed	Not specified	2019	China
	Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone	Lahdenoja, O. et al.	Atrial Fibrillation	Cardiology	Diagnosis	Smartphone application	Sony X-peria Z-series, Samsung Galaxy S5	Android	AFib patients and healthy controls	Experimental	Developed	Not specified	2016	Finland
	Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.	Gradl, S. et al.	Atrial Fibrillation	Cardiology	Monitoring	Mobile application	Smartphone - Samsung GT-I9000, Samsung GT-N7000, HTC Wildfire S A510e	Android	MIT-BIH Arrhythmia and the MIT-BIH Supraventricular databases.	Experimental	Prototype	Not specified	2014	Germany
	Smartphone electrographic monitoring for atrial fibrillation in acute ischemic stroke and transient ischemic attack	Tu, H. et al	Paroxysmal atrial fibrillation	Cardiology	Monitoring	Smartphone application	iPhone	Android and iPhone Operating System	Patients with ischemic stroke or transient ischemic attack (TIA) without known AF, Age>18 years	Experimental	Proof of principle	Not specified	2017	Multinational
	Contact-Free Screening of Atrial Fibrillation by a Smartphone Using Facial Pulsatile Photoplethysmograph ic Signals	Bryan P Yan, et al	Atrial fibrillation	Cardiology	Screening	Smartphone app	Smartphone	iPhone Operating System	Sample of 217 subjects	Experimental	Developed	Not specified	2018	United States
	Diagnostic Accuracy of a Novel Mobile Phone Application for the Detection and Monitoring of Atrial Fibrillation	Guy Rosen	Atrial fibrillation	Cardiology	Screening	Smartphone application	Smartphone	iPhone Operating System	Patients with atrial fibrillation	Experimental	Developed	Not specified	2018	United States
	Atrial fibrillation screening in pharmacies using an iPhone ECG: a qualitative review of implementation	Nicole Lawres, Ines Krass, Lis Neubeck et al	Atrial fibrillation	Cardiology	Screening	Smartphone application	Smartphone	iPhone Operating System	Pharmacists that had been present during a previous study called SEARCH AF, from 10 pharmacies in Sydney, Australia	Experimental	Available	Not specified	2015	Australia
	Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch	Tyson, G.H. et al.	Atrial fibrillation	Cardiology	Diagnosis	Mobile application	Apple watches	iPhone Operating System	Health eHeart Study participants with an Apple Watch	Experimental	Developed	Not specified	2018	United States
	Self-monitoring for atrial fibrillation recurrence in the discharge period post-cardiac surgery using an iPhone electrocardiogram	Lawres, N. et al.	Atrial fibrillation	Cardiology	Monitoring	Smartphone-based wireless single-lead ECG (SL-ECG)	Smartphone	iPhone Operating System	Patients with POAF following cardiac surgery	Observational	Developed	Not specified	2016	Australia
iPhone ECG application for community screening to detect silent atrial fibrillation: a novel technology to prevent stroke	Lau, J. et al.	Atrial fibrillation	Cardiology	Screening	Smartphone application	iPhone Operating System	Learning set and validation set of patients	Pretest/Posttest	Developed	Not specified	2013	Australi a		
---	---	---	---	---	---	---	---	---	---	---	---	---		
Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies: The SEARCH-AF study	Lawres, N. et al.	Atrial fibrillation	Cardiology	Screening	Smartphone application	iPhone Operating System	Pharmacy customers aged ≥65 years	Observational	Developed	Not specified	2014	Multinational		
Screening for atrial fibrillation in 13,122 Hong Kong citizens with smartphone electrocardiogram	Chan, N. & Choy, C.	Atrial fibrillation	Cardiology	Screening	Smartphone-based wireless single-lead ECG (SL-ECG)	iPhone Operating System	Hong Kong citizens	Experimental	Developed	Not specified	2016	China		
Diagnostic Accuracy of a Novel Mobile Phone Application for the Detection and Monitoring of Atrial Fibrillation	Rozen, G. et al.	Atrial fibrillation	Cardiology	Diagnosis/ Monitoring	Smartphone application	iPhone Operating System	Patients	Experimental	Developed	Not specified	2018	Multinational		
Can smartphone wireless ECGs be used to accurately assess ECG intervals in pediatrics? A comparison of mobile health monitoring to standard 12-lead ECG.	Gropler, M. et al.	Arrhythmia	Cardiology	Monitoring	Wireless mobile health (mHealth) device	iPhone Operating System	Pediatric outpatients age <18 years presenting for cardiology clinic visits. 3 groups based on age: 0–5 years, 6–10 years, and 11–18 years.	Experimental	Developed	Not specified	2018	United States		
A Smartphone Application to Diagnose the Mechanism of Pediatric Supraventricular Tachycardia	Fredman, D., Liberman, L., Silver, E.	Pediatric Supraventricular tachycardia	Cardiology	Diagnosis	Smartphone application	iPhone Operating System	Pediatric patients undergoing an ablation for SVT	Experimental	Developed	Not specified	2015	United States		
A single center randomized, controlled trial investigating the efficacy of a mHealth ECG technology intervention to improve the detection of atrial fibrillation: the iHEART study protocol	Hickey, K.T. et al.	Atrial fibrillation	Cardiology	Diagnosis	Smartphone application	iPhone Operating System	Participants with a recent history of atrial fibrillation	Experimental	Developed	Not specified	2016	United States		
Smart detection of atrial fibrillation	Krivoshe, L. et al.	Atrial fibrillation	Cardiology	Screening	Smartphone application	iPhone Operating System	Consecutive in-and outpatient at the University Hospital Basel	Experimental	Developed	Not specified	2016	Multinational		
Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO)	Brasier, N. et al.	Atrial fibrillation	Cardiology	Diagnosis	Smartphone camera-based application	iPhone Operating System	In-house patients with presumed AF and matched controls SR	Experimental	Developed	Not specified	2018	Multinational		
Mobile Phone-Based Use of the Photoplethysmograph y Technique to Detect Atrial Fibrillation in Primary Care: Diagnostic Accuracy Study of the FibrCheck App	Proesmans, T. et al.	Atrial fibrillation	Cardiology	Screening	Mobile phone application	iPhone Operating System	Patients aged 65 years and above, with or without a known history of AF, were recruited from 17 primary care facilities. Patients with an active pacemaker	Pretest/Posttest	Developed	Not specified	2018	Belgium		
Study Title	Authors	Field	Technology	Platform	Patients Excluded	Study Design	Status	Year	Country					
---	----------------------------------	----------------------------	------------------	-------------------------------	---	--------------------	--------------	--------------	-------------					
Contact-free screening of atrial fibrillation by a smartphone using facial pulsatile photoplethysmograph ic signals	Yan, B. P. et al.	Cardiology Screening	Smartphone app	iPhone Operating System	Patients admitted to the cardiology ward of the hospital for clinical reasons	Experimental	Developed	2018	Multinational					
Diagnostic Performance of a Smartphone-Based Photoplethysmograph ic Application for Atrial Fibrillation Screening in a Primary Care Setting	Chan, P. et al.	Cardiology Screening	Smartphone app	iPhone Operating System	Patients with hypertension, with diabetes mellitus, and/or aged ≥65 years	Pretest/Posttest	Developed	2016	Hong Kong					
Performance and Usability of a Novel Smartphone Application for Atrial Fibrillation Detection in an Ambulatory Population Referred for Cardiac Monitoring	Sardana, M. et al.	Cardiology Diagnosis	Smartphone app	iPhone Operating System	Ambulatory patients, referred for cardiac event monitoring for cryptogenic stroke or suspected AF	Experimental	Not specified	2016	United States					
Smartwatch Algorithm for Automated Detection of Atrial Fibrillation	Bumgarner, J. M. et al.	Cardiology Diagnosis	Apple smartwatch	iPhone Operating System	Consecutive patients with a diagnosis of AF who presented for scheduled elective CV with or without a planned transesophageal echocardiogram	Experimental	Prototype	2018	United States					
A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation	McMamus, D.D. et al.	Cardiology Diagnosis	Smartphone app	iPhone Operating System	Adults with persistent AFib	Experimental	Prototype	2013	United States					
Atrial fibrillation detection using an iPhone 4S	Lee, J. et al.	Cardiology Diagnosis	Smartphone app	iPhone Operating System	AF subjects undergoing electrical cardioversion	Experimental	Prototype	2013	United States					
Arrhythmia discrimination using a smartphone	Chong, J. W. et al.	Cardiology Diagnosis	Smartphone app	iPhone Operating System	Subjects with PVC and AC subjects as well as AF pre- and post-electrical cardioversion	Experimental	Prototype	2013	United States					
PULSE-SMART: Pulse-Based Arrhythmia Discrimination Using a Novel Smartphone Application	DAVID D. McMANUS, JO WOON CHONG, APURV SONE	Arrhythmia Diagnosis	Mobile app	iPhone Operating System	Patients with both benignant and malignant causes of irregular pulse	Pretest/Posttest	Validation	2016	United States					
The RITMIA+ Smartphone App for Automated Detection of Atrial Fibrillation: Accuracy in Consecutive Patients Undergoing Elective Electrical Cardioversion	Claudio Revesberi	Cardiology Monitoring	RITMIA App	Smartphone	Patients with atrial fibrillation	Observational	Developed	2019	Italy					
Study on Real-time Monitoring Technique for Cardiac Arrhythmia Based on Smartphone	Weng J, et al.	Cardiology Diagnosis/ Monitoring	Software for an ECG monitoring system on a smartphone platform	Smartphone	None	Technical testing	Not specified	2012	China					
Novel Methods of Faster Cardiovascular Diagnosis in Wireless Telecardiology	Sufi, F. et al.	Cardiology Diagnosis/ Monitoring	Generic ECG compression algorithm suitable for Mobile phones	Midlet implementation of J2ME using	None	Technical testing	Prototype	2009	Australia					
Study Title	Devices Used	Primary Outcomes	Study Design	Funding	Year	Country								
--	---	---	---------------------------------------	------------------------------	--------	-------------								
Excellent Symptom Rhythm Correlation in Patients with Palpitations Using A Novel Smartphone Based Event Recorder	William George Newnham, Muzahir Hassan Tayebjee	Cardiology Diagnosis Mobile application Smartphone	Not specified	Patients with palpitations	2017	United Kingdom								
Continuous heart rate monitoring for automatic detection of atrial fibrillation with novel bio-sensing technology	Hochstad, A. et al.	Cardiology Diagnosis PPG Wrist-watch sensor Custom-made wearable photo-plethysmograph [PPG] wrist-watch sensor	Not specified	Patients undergoing elective cardioversion of AF	2018	Israel								
Smart watches for heart rate assessment in atrial arrhythmias	Kosky, A.N. et al.	Cardiology Monitoring Smartwatch software FitBit (FB), Apple Watch (AW)	Not specified	Hospitalized patients	2018	Australia								
Detection of premature ventricular contractions using the RR-interval signal: a simple algorithm for mobile devices	Cuesta, P. et al.	Cardiology Diagnosis Algorithm for mobile devices Mobile devices	Not specified	Free application	2014	Spain								
Assessing the accuracy of an automated atrial fibrillation detection algorithm using smartphone technology: The iREAD Study	William, A.D. et al.	Cardiology Diagnosis Smartphone-coupled monitor Smartwatch coupled monitor	Not specified	Consecutive patients with AF admitted for antiarrhythmic drug initiation	2018	United States								
Diagnostic utility of smartphone ECG technology in the initial investigation of palpitations	Dimarco, A.D. et al.	Cardiology Diagnosis Smartphone application Smartphones	Not specified	Subjects of legal age	2019	United Kingdom								
Trial design of the WATCH AF trial - SmartWATCHes for detection of atrial fibrillation	Deener, M. et al.	Cardiology Diagnosis Smartwatch software Smartwatch couple (Samsung) and a wristband (Wavelet health)	Not specified	Experimental	2017	Germany								
Automated Real-Time Atrial Fibrillation Detection on a Wearable Wireless Sensor Platform	Francisco Rincan	Cardiology Monitoring Wearable device Wearable wireless sensor	Not specified	Technical testing	2012	Multinational								
Atrial Fibrillation Detection Using a Novel Cardiac Ambulatory Monitor Based on Photo-Plethysmography at the Wrist	Bonomi, A.G. et al.	Cardiology Diagnosis/ Monitoring Wrist-wearable device	Not specified	AF patients undergoing electrical cardioversion (ECV) and AF patients that were prescribed for 24 hours ECG Holter in outpatient settings (HOL)	2018	Netherlands								
Parkinson’s disease and essential tremor classification on mobile device	Alan Michael Woods et al	Neurology Diagnosis/ Screening App on smartphone Smartphone Android	Fourteen participants diagnosed with PD and eighteen participants with ET undertook our study	Technical testing	2014	New Zealand								
Study Title	Authors	Type	Participants	Setting	Outcome	Year	Country							
---	---	-------------	--	--	--	------	----------							
Wireless tremor through a Parkinson’s disease	Fraiwan, L. et al.	Experimental	PD patients and healthy controls	Developed	Not specified	2016	United Arab Emirates							
Predicting motor, cognitive & functional impairment in Parkinson’s	Christine Lo, Siddibarth Arora, Fahad Baig et al.	Experimental	Participants being ascribed a probability of Parkinson’s of at least 90% by trained researchers at their latest clinic assessment	Developed	Not specified	2019	United Kingdom							
A Smartphone Application for Automated Decision Support in Cognitive Task Based Evaluation of Central Nervous System Motor Disorders.	Lauritatis, A. et al.	Technical	Individuals with PD diagnosed clinically by a movement disorder specialist and control participants	Developed	Free on Google Play Store	2019	Lithuania							
Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: A pilot study	Aorea, S. et al.	Pilot	24 people diagnosed with Parkinson’s and 27 healthy controls	Developed	Pilot study	2015	Multinational							
A Mobile Cloud-Based Parkinson’s Disease Assessment System for Home-Based Monitoring	Pan, D. et al.	Prototype	PD Patients	Developed	Not specified	2015	United States							
Parkinson’s Disease Classification of mPower Walking Activity Participants	Benjamin Pittman	Developed	Volunteers	Developed	Not specified	2018	United States							
A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor	Kostikis, N. et al.	Developed	PD patients and age-matched healthy volunteers	Developed	Not specified	2015	Greece							
Validating an iPhone Operating System-based rhythmic auditory cuing evaluation (iRACE) for Parkinson’s disease	Zhu, S. et al.	Experimental	PD Patients	Developed	Not specified	2014	Singapore							
A validated smartphone-based assessment of gait and gait variability in Parkinson’s disease	Ellis, R.J. et al.	Developed	PD patients and healthy controls	Developed	Not specified	2015	Singapore							
Parkinson’s Disease Classification of mPower Walking Activity Participants	Pittman, R. et al.	Developed	Parkinson’s disease	Developed	Not specified	2018	United States							
Implementation of an iPhone for characterizing Parkinson’s disease tremor through a wireless device	Robert LeMoyne et al.	Experimental	One Parkinson disease diagnosed patient and a control individual	Experimental	Not specified	2010	United States							
Retinal Diseases (N=14)	Singh, S. and Xu, W.	Parkinson’s Disease	Neurology	Diagnosis	Smartphone application	iPhone Operating System	Unique participants	Experimental	Developed	Not specified	2019	United States		
------------------------	---------------------	---------------------	-----------	----------------	------------------------	------------------------	-------------------	--------------	----------	---------------	------	----------------		
Computed spiral analysis using the iPad	Sisti, J. A. et al.	Movement Disorders (essential tremor, Parkinson’s Disease, dystonia, etc.)	Neurology	Monitoring	CSA Ipad Application	Tablet	iPhone Operating System	Healthy controls and patients with moving disorders	Experimental	Developed	Not specified	2016	United States	
Non-Contact Human Gait Identification through IR-UWB Edge Based Monitoring Sensor	Soumya Prakash Rana	Parkinson’s Disease	Neurology	Monitoring	UWB pulsed radar	UWB P410 radar module	Not specified	Test subjects	Technical testing	Developed	Not specified	2019	England	
Parkinson’s disease and essential tremor classification on mobile device	Wood, A. M. et al.	Parkinson’s Disease	Neurology	Diagnosis	Smartphone application	Smartphone	Not specified	Participants diagnosed with PD and with ET	Experimental	Prototype	Not specified	2014	New Zealand	
An intelligent mobile based decision support system for retinal disease diagnosis	Bourouis, A. et al.	Retinal disease	Ophthalmology	Diagnosis	Smartphone based intelligent system	Smartphone	Android	Test images	Experimental	Developed	Not specified	2014	Multinational	
Decision Support Systems for Detection of Diabetic Retinopathy Using Smartphones	Prasanna, P. et al.	Diabetic Retinopathy	Ophthalmology	Screening	Smartphone application	Smartphone	Android	None	Technical testing	Developed	Not specified	2013	United States	
Enduring eye care with smartphones aiding real time diagnosis.	Sudhakar, M. S. & Bhoopathy Ragan K.	Retinal pathologies	Ophthalmology	Diagnosis	Add-on for smartphones	Smartphone	Android	None	Technical testing	Developed	Not specified	2014	India	
Wide-field smartphone fundus video camera based on miniaturized indirect ophthalmoscopy	Tosak, D. D et al	Retinal disease	Ophthalmology	Screening	Smartphone application	Smartphone	Android	Subjects without eye diseases	Technical testing	Proof of principle	Not specified	2018	Multinational	
Smartphone-Based Accurate Analysis of Retinal Vasculature towards Point-of-Care Diagnostics	Xiuya Xu et al	Diabetic retinopathy, various diseases	Ophthalmology	Diagnosis	Android app	Smartphone	Android	40 funduscopic from a data base and 10 healthy patients	Experimental	Developed	Not specified	2016	China	
Retinal imaging with smartphone.	Ademola Popoola, D., Olatunji, V.	Retinal diseases	Ophthalmology	Diagnosis	Smartphone camera for retinal imaging	Smartphone	Blackberry	Patients aged between 15 months and 61 years with various diagnosis.	Experimental	Tested in clinical practice	Not specified	2017	Nigeria	
Automatic diabetic retinopathy diagnosis using adjustable ophthalmoscope and multi-scale line operator	Qu, M. et al.	Diabetic retinopathy	Ophthalmology	Diagnosis/Screening	Smartphone ophthalmoscop e	Smartphone	iPhone Operating System	Patients after pupil dilation	Prototype	In development	Not specified	2017	China	
MII RetCam assisted smartphone-based fundus imaging for retinopathy of prematurity	Lekha, T. et al.	Retinopathy of prematurity	Ophthalmology	Diagnosis/ Monitoring	Smartphone add-on	Smartphone	iPhone Operating System	All the preterm babies subjected to MSFI as part of ROP screening from September 2017 to November 2018	Observational	Developed	MII RetCam device costs USD 380.	2019	India	
Mobile phones for retinopathy of prematurity screening in Lagos, Nigeria, sub-Saharan Africa	Tunji S. Oluweye, Adefunke Rotimi-Samu el, Adetunji Adenekan	Retinopathy of prematurity	Ophthalmology	Screening	Mobile application	Smartphone	iPhone Operating System	Preterm infants with birthweight of less than 1.5 kg or gestational age of less than 32 weeks	Technical testing	Available in App Store	Not specified	2016	Nigeria	
Hearing loss (N=13)	Smartphone Hearing Screening for School Children	Mohamed-Assmail, Faheem, De Wet, Eikelboom, Myburgh, Hall, James	Hearing loss	Otochinoiarynology	Screening	Mobile application	Smartphone	Android	School-age children from grade 1 to 3 with an average age of 8 years (±1 SD; range 5 to 12 years) were recruited from five public government schools in underserved regions of the Gauteng Province, South Africa.	Pretest/Posttest	Available	Not specified	2015	South Africa
---------------------	---	-----------------------	-------------	---------------------	----------	-------------------	-----------	---------	--------------------------	----------------	----------	------------------	-------	------------------
Hearing Tests Based on Biologically Calibrated Mobile Devices: Comparison With Pure-Tone Audiometry.	Marcin Masalski, MD, PhD; Tomasz Gryalsański, PhD (Eng); Tomasz Krecicki, PhD, MD	Hearing loss	Otochinoiarynology	Monitoring	Mobile application	Smartphone	Android	Patients of Otolaryngology Clinic	Pretest/Posttest	Available	Free	2018	Poland	
Smartphone-Based Hearing Screening at Primary Health Care Clinics	Christine Louw, De Wet, Swaepoel, Eikelboom, et al.	Hearing loss	Otochinoiarynology	Screening	Mobile application	Smartphone	Android	Patients from two Primary Health Care Centers in Tshwane Province, South Africa.	Experimental	Available	Free	2016	South Africa	
Extended High-Frequency Smartphone Audiometry: Validity and Reliability.	Bornman, M. et al.	Age-related hearing loss, noise-induced hearing loss (NIHL) and ototoxicity	Otochinoiarynology	Screening	Smartphone application	Samsung Galaxy Trend Neo	Android	Participants were recruited from adults attending the Audiology Department at Dr. George Mukhari Hospital, GaRankuwa, South Africa and from the University of Pretoria.	Experimental	Developed	Not specified	2019	Multinational	
Community-based hearing screening for young children using an mHealth service-delivery model	Hussein, S. et al.	Hearing loss	Otochinoiarynology	Screening	Smartphone-based hearing screening program	Smartphone	Android	Children (3-6 years old)	Experimental	Developed	Not specified	2018	South Africa	
Evaluation of the Hearing Test Pro Application as a Screening Tool for Hearing Loss Assessment.	Arena, Shaiba Kayode	Hearing loss	Otorhinolaryngology	Screening	Smartphone app as screening tool for hearing loss	Smartphone	Android	Adult android-phone users	Pretest/Postest	Available	Not specified	2018	Nigeria	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Tablet-Based Hearing Screening Test	Alessandra G. Samelli	Hearing loss	Otorhinolaryngology	Screening	Tablet-based software	Apple Ipad and Dell Notebook PC	iPhone Operating System	Patients with diverse types of hearing loss	Observational	Developed	Not specified	2017	Brazil	
Implementation of uHear™ – an iPhone Operating System-based application to screen for hearing loss - in older patients with cancer undergoing a comprehensive geriatric assessment	Michelle Lycka , Tom Roterbergh , Evi Martens et al	Presbycusis	Otorhinolaryngology	Screening	Mobile application	iPod, iPhone, iPad	iPhone Operating System	Older patients with cancer at the radiotherapy and oncology departments of the General Hospital Groeninge (Kortrijk, Belgium) from December 2014 till June 2015	Pretest/Postest	Available	Not specified	2016	Belgium	
Application-Based Hearing Screening in the Elderly Population	Leonid Livshitz, Reem Ghanayim, Carmi Krans et al	Presbycusis	Otorhinolaryngology	Screening	Mobile application	Tablet	iPhone Operating System	Patients 65 years of age or older hospitalized for any reason in an internal medicine department	Experimental	Available	Free	2017	United States	
Initial assessment of hearing loss using a mobile application for audiological evaluation	Derin, S. et al	Hearing loss	Otorhinolaryngology	Diagnosis	Mobile application	Smartphone	iPhone Operating System	Patients with hearing loss	Pretest/Postest	Developed	Not specified	2016	Turkey	
Smartphone-based audiometric test for screening hearing loss in the elderly	Abu-Ghanem, S. et al.	Hearing loss	Otorhinolaryngology	Screening	Smartphone app as screening tool for hearing loss	Smartphone - iPhone and Tablet - iPod, iPad	iPhone Operating System	Subjects aged 84.4 ± 6.73 years (mean ± SD) were recruited.	Pretest/Postest	Available	Free	2015	Israel	
Hearing loss in the developing world: evaluating the iPhone mobile device as a screening tool.	Peer, S. & Fagan, J.	Hearing Loss (High risk: Presbycusis, HIV and TB Therapy, Chemotherapy)	Otorhinolaryngology	Screening	Smartphone application	Smartphone	iPhone Operating System	Participants recruited from the Otolaryngology Clinic, Groote Schuur Hospital, Cape Town, South Africa.	Pretest/Postest	Developed	Free	2014	South Africa	
Hearing tests are just child’s play: the sound scout’s’ game for children entering school.	Dillon, H. et al.	Hearing loss	Otorhinolaryngology	Screening	Tablet-based hearing test	Tablet	iPhone Operating System or Android	Children (n=213) and adults (n=20) screened to have hearing thresholds of 20dB or better.	Experimental	Developed	Not specified	2018	United Kingdom	
Melanoma and other skin lesion detection using smart handheld devices.	Gouridakis et al	Melanoma	Dermatology	Diagnosis	Mobile application	Smartphone	iPhone Operating System	None	Technical testing	Not specified	Not specified	2014	Spain	
Cell phone usefulness to improve the skin cancer screening: preliminary results and critical analysis of mobile app development	Goulaert, C.E. et al.	Skin Cancer	Dermatology	Screening	Smartphone application	Smartphone	Android	Individuals monitored by routine skin cancer screening by the Cancer Prevention Department at Barretos Cancer Hospital during 2016.	Pretest/Postest	Developed	Not specified	2019	Brazil	
Early melanoma diagnosis with mobile imaging	Do, T.-T. et al	Melanoma	Dermatology	Diagnosis	Smartphone application	Smartphone (Samsung Galaxy S4)	Android	NA	Technical testing	Prototype	Not specified	2014	Singapore	
Skin Cancer Diagnostics with an All-Inclusive Smartphone Application	Kulwa, U. et al	Skin Cancer	Dermatology	Diagnosis	Smartphone application	Smartphone (Samsung S6)	Android	Images with Synthetic Minority Over-sampling Technique (SMOTE) and without SMOTE	Experimental	Prototype	Not specified	2019	United Kingdom	
Mobile teledermoscopy.	Borve, Alexander	Skin cancer	Dermatology	Screening	Mobile app and customised dermoscope	Smartphone	iPhone Operating System	Patients with one or more suspicious skin	Experimental	Not specified	Not specified	2013	Sweden	
Diabetes	(N=40)													
-----------------	---------													
SkinScan©: A Portable Library for Melanoma Detection on Handheld Devices	Wadhawan, T. et al	Melanoma	Dermatology	Screening	Smartphone application	Smartphone	iPhone Operating System	Not specified	Technical testing	Not specified	2011	United States		
Implementation of the 7-point checklist for melanoma detection on smart handheld devices	Wadhawan, T. et al	Melanoma	Dermatology	Diagnosis	Smartphone application	Smartphone and iPad	iPhone Operating System	Not specified	Technical testing	Not specified	2011	United States		
SkinScan©: A portable library for melanoma detection on handheld devices	Wadhawan, T. et al	Melanoma	Dermatology	Diagnosis	Smartphone application	iPhone 4, iPod, iPad and Android-based devices	iPhone Operating System	Artifacts free images	Experimental	Developed	Not specified	2011	United States	
Dermatologist-level classification of skin cancer with deep neural networks	Esteva, A. et al	Skin cancer	Dermatology	Screening/ Diagnosis	Single convolutional neural network algorithms	Smartphone	Not specified	Clinical images including dermoscopy images	Pretest/Posttest	Developed	Not specified	2017	United States	
Mobile teledermatology for skin tumour screening: diagnostic accuracy of clinical and dermoscopic image tele-evaluation using cellular phones	Kroemer, S. et al	Skin tumour	Dermatology	Screening	Telemedicine system	Nokia N73	Not specified	Patients from the general outpatient clinic at the Department of Dermatology, Medical University of Graz, Graz, Austria	Experimental	Developed	Not specified	2011	Austria	
Melanoma Screening with Cellular Phones	Massone, C. et al	Melanoma	Dermatology	Screening	Smartphone application	Sony Ericsson K750i	Not specified	Patients that attended the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz during two routine working days.	Experimental	Proof of principle	Not specified	2007	Austria	
Interactive diary for diabetes: a useful and easy-to-use new telemedicine system to support the decision-making process in type 1 diabetes	Rosi, M. et al	Diabetes	Endocrinology	Monitoring	Telemedicine system	Mobile phones	Not specified	Type 1 Diabetes patients	Experimental	Developed	Not more than 1.5 Euros	2009	Multinational	
Mobile communication using a mobile phone with a glucometer for glucose control in Type 2 patients with diabetes: as effective as an Internet-based glucose monitoring system	Cho, J-H. et al	Diabetes	Endocrinology	Monitoring	Mobile phone	Mobile Health-care diabetes phone: LG-KP8400	Not specified	Type 2 diabetes patients	Experimental	Developed	Not specified	2009	Republic of Korea	
Design of an mHealth app for the self-management of adolescent type 1 diabetes: a pilot study	Cafazzo, J. A. et al	Diabetes	Endocrinology	Monitoring	Smartphone application	iPhone 4 or iPod Touch	iPhone Operating System	Adolescents with type 1 diabetes	Experimental	Pilot	Not specified	2012	Canada	
Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial	Kirwan, M. et al	Diabetes	Endocrinology	Monitoring	Smartphone application	Smartphone	iPhone Operating System	Adult patients with type 1 Diabetes	Experimental	Developed	Free application	2013	Australia	
Re-usable electrochemical glucose sensors	Bandodkar, A. et al	Diabetes	Endocrinology	Monitoring	Smartphone-based reusable glucose meter	Smartphone	Android	NA	Technical testing	Prototype	Not specified	2018	United States	
Study Title	Anemia (N=7)	Disease	Department	Measurement	Methodology	Technology	Device Details	Operating System	Cost	Reference Years	Country			
-------------	-------------	---------	------------	-------------	-------------	-----------	---------------	-----------------	------	----------------	---------			
Evaluation of a mobile phone telemonitoring system for glycemic control in patients with diabetes	Diabetes	Endocrinology	Monitoring	Mobile phone-based system	Motorola A-100 mobile phone	Android	Patients with complicated diabetes	Experimental	Not specified	2009	United Kingdom			
Ultrabright Polymer-Dot Transducer Enabled Wireless Glucose Monitoring via a Smartphone	Diabetes	Endocrinology	Monitoring	Smartphone application	Smartphone- Huawei Mate 9	Android	BalbC nude mice (Vital River Laboratories, Beijing, China). 8-week-old female mice	Experimental	In vitro and in vivo studies	Not specified	2018	China		
Real time monitoring of glucose in whole blood by smartphone	Diabetes	Endocrinology	Monitoring	Combined thread-paper microfluidic device	Sony DSC-HX300 digital camera, a Samsung Galaxy S5 smartphone, a Samsung Galaxy Tab A tablet, and a Motorola Moto G4 Play smartphone	Android	None	Technical testing	Developed	Not specified	2019	Multinational		
Smartphone based non-invasive salivary glucose biPhone Operating Systemensor	Diabetes	Endocrinology	Diagnosis/Screening	Smartphone application	Smartphone	Android	Subjects between age group 20-80 years at Outpatient Department of Indian Institute of Technology Delhi hospital, New Delhi	Experimental	Developed	Not specified	2017	India		
Non-invasive blood glucose monitor based on spectroscopy using a smartphone	Diabetes	Endocrinology	Monitoring	Non-invasive blood glucose monitor	Smartphone	Android	Human subjects who drank Cola beverage of 50g sugar	Pretest/Posttest	Developed	Not specified	2014	United States		
Cost-effective and rapid blood analysis on a cellphone	Anemia	Hematology	Diagnosis	Mobile application	Smartphone	Android	Anonymous human whole blood samples obtained from UCLA Blood and Platelet Center	Experimental	Developed	Not specified	2013	United States		
3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia	Anemia	Hematology	Diagnosis	Smartphone application	Smartphone	Android	Patients and healthy donors aged 25-39 years and resident of the site zone	Experimental	In development	The overall cost per test is 50 cents.	2016	United States		
Histogram analysis for smartphone-based rapid hematocrit determination	Anemia	Hematology	Diagnosis	Lab-on-a-chip platform including a disposable microfluidic device and a smartphone app	Smartphone	Android	Healthy adult blood donor	Technical testing	Developed	US $300 (includes smartphone cost)	2017	South Korea		
Smartphone app for non-invasive detection of anemia using only patient-sourced photon	Anemia	Hematology	Screening	Mobile application	Smartphone	Android and iPhone Operating System	Patients with a variety of anemia diagnosis mixed with healthy subjects	Experimental	Developed	Not specified	2018	United States		
Detection and quantification of subtle changes in red blood cell density using a cell phone	Anemia	Hematology	Diagnosis	Smartphone add-on	Smartphone	iPhone Operating System	Multiple donors	Technical testing	Developed	Approx. $45.75 (iPhone device parts)	2016	United States		
Development and validation of a noncontact spectroscopic device for hemoglobin estimation at point-of-care	Anemia	Hematology	Screening	Software application running on a tablet computer	Tablet computer	Not specified	Patients of all ages, sex, and skin color	Pretest/Posttest	In development	Not specified	2017	India		
Impairment	Validation of dynamic random dot stereotests in pediatric vision screening.	Amblyopia, Anisometropia, Convergent strabismus, and Hyperopia	Ophthalmology	Screening	Tablet-based visual acuity test	Tablet	Android	Children with diagnoses of amblyopia, anisometropia, convergent strabismus, and hyperopia, as well as healthy subjects	Pretest/Posttest	Not specified	2019	Hungary		
---	---	---	---	---	---	---	---	---	---	---	---	---		
Visual Impairment (N=7)	Clinical Validation of a Smartphone-Based Adapter for Optic Disc Imaging in Kenya.		Ophthalmology	Diagnosis	Smartphone application	Smartphone	Android	Adults 55 years and older	Pretest/Posttest	Prototype	Not specified	2016	United Kingdom	
	Automated Measurement of Visual Acuity in Pediatric Ophthalmic Patients Using Principles of Game Design and Tablet Computers.	Visual impairment	Ophthalmology	Screening	Software application running on a tablet device	Tablet	Android	Patients from a pediatric ophthalmology outpatient clinic	Pretest/Posttest	Tested in clinical practice	Not specified	2016	United Kingdom	
	Performance of an iPad Application to Detect Moderate and Advanced Visual Field Loss in Nepal.	Visual field loss	Ophthalmology	Screening	Tablet application	Tablet	iPhone Operating System	Subjects: normal (NL), with glaucoma (GL) and with diabetic retinopathy (DR) at Tilganga Institute of Ophthalmology, Kathmandu, Nepal	Pretest/Posttest	Developed	Free	2017	Multinational	
	Normative values for a tablet computer-based application to assess chromatic contrast sensitivity.	Color vision deficiencies (could relate to ocular conditions such as diabetic retinopathy, age-related macular degeneration and glaucoma)	Ophthalmology	Diagnosis	Tablet computer-based games	Tablet	iPhone Operating System	Healthy control participants with a VA of 6/6 or better, measured with a Bailey Lovie LogMAR VA chart	Pretest/Posttest	Developed	Not specified	2017	Australia	
	Evaluation of a smartphone photoscreening app to detect refractive amblyopia risk factors in children aged 1-6 years.	Refractive amblyopia risk factors	Ophthalmology	Screening	Photoscreening tool	Smartphone	iPhone Operating System	Children aged 1-6 years	Pretest/Posttest	Food and Drug Administration on Approved device	Not specified	2018	United States	
	The Efficacy of a Novel Mobile Phone Application for Goldmann Ptosis	Superior visual field obstruction	Ophthalmology	Screening	Mobile application	Smartphone	iPhone Operating System	Ophthalmology board certified and fellowship-trained oculoplastic	Technical testing	In development	Not specified	2014	United States	
Supplementary Table 4. Studies with most advanced stage of development

Title	Authors	Name of the Technology	Disease RF	Clinical Domain	Aim	Type of Intervention	Mobile	OS	Study Population	Methods	Evaluation Values	Stage of Development	Cost	Year	Author Affiliation
A smartphone application to support recovery from alcoholism: a randomized clinical trial	Gustafson, D.H. et al.	Addiction–Comprehensive Health Enhancement System (A-CHESS)	Alcoholism	Psychiatry	Monitoring	Smartphone application	Smartphone	Not specified	Patients who met the criteria for DSM-IV alcohol dependence when they entered residential treatment	Experimental	Variability measures	Developed	8 months of A-CHESS cost about $597 per patient	2014	United States
The utility of hand-held mobile spirometers technology in a resource-constrained setting	Du Plessis, E. et al.	Air-Smart Spirometer	Chronic respiratory diseases	Pneumology	Screening	Smartphone application	Smartphone	Not specified	Consecutive patients and healthy volunteers	Experimental	Measures of diagnostic accuracy	Developed	Not specified	2019	South Africa
Screening for atrial fibrillation in 13 122 Hong Kong citizens with smartphone electrocardiogram	Chan, N. & Choy, C.	AliveCor	Atrial fibrillation	Cardiology	Screening	Smartphone application	Smartphone-based	Smartphone	Hong Kong citizens	Experimental	Measures of diagnostic accuracy	Developed	Not specified	2016	China
SPEAR Trial: Smartphone Pediatric Electrocardiogram Trial	Nguyen, H.H. et al.	AliveCor	ECG Monitoring	Cardiology	Diagnosis	Smartphone application	iPhone Operating System	Not specified	Pediatric patients with age 18 years or younger, with paroxysmal arrhythmia	Pretest/Posttest	Not specified	Developed	Not specified	2015	United States
Diagnostic utility of smartphone ECG technology in the initial investigation of palpitations	Dimarco, A.D. et al.	AliveCor	Palpitations	Cardiology	Diagnosis	Smartphone application	Smartphone	Not specified	Patients that experienced palpitations less than daily and had access to, and the ability to use, a smartphone	Experimental	Not specified	Developed	Not specified	2019	United Kingdom
Wireless Smartphone ECG Enables Large-Scale Screening in Diverse Populations.	Haberman, Z. et al.	AliveCor	ECG Monitoring	Cardiology	Screening	Smartphone application	Smartphone and tablet	iPhone Operating System and Android	University of Southern California (USC) Division I Athletes, asymptomatic USC students and ambulatory USC cardiology clinic patients	Experimental	Measures of diagnostic accuracy	Developed	Not specified	2015	United States
Self-monitoring for atrial fibrillation recurrence in the discharge period post-cardiac surgery using an iPhone electrocardiogram	Lowres, N. et al.	AliveCor Heart monitor	Atrial fibrillation	Cardiology	Monitoring	Smartphone-based wireless single-lead ECG (SL-ECG)	Smartphone	iPhone Operating System	Patients with POAF following cardiac surgery	Observational	Not specified	Developed	Not specified	2016	Australia

Abbreviations: ECG: Electrocardiogram. USA: United States of America
Lowres, N. et al.	AliveCor Heart Monitor	Atrial fibrillation	Cardiology	Screening	Smartphone application	Smartphone	iPhone Operating System	Pharmacy customers aged ≥65 years	Observational	Measures of diagnostic accuracy	Developed	Not specified	2014	Multinational		
Lau, J. et al.	AliveCor iPhone ECG	Atrial fibrillation	Cardiology	Screening	Smartphone application	Smartphone	iPhone Operating System	Learning set and validation set of patients	Pretest/Posttest	Measures of diagnostic accuracy and intra & interobserver values	Developed	Not specified	2013	Australia		
Groppler, M. et al.	Alivecor Kardia Mobile (KM)	Arrhythmia	Cardiology	Monitoring	Wireless mobile health (mHealth) device	Smartphone	iPhone Operating System	Pediatric outpatients aged <18 years presenting for cardiology clinic visits. 3 groups based on age: 0-3 years, 6–10 years, and 11–18 years	Experimental	Measures of diagnostic accuracy	Developed	Not specified	2018	United States		
Hickey, K.T. et al.	AliveCor® Mobile ECG	Atrial fibrillation	Cardiology	Diagnosis	Smartphone application	Smartphone	iPhone Operating System	Pediatric patients undergoing an ablation for SVT	Experimental	Not specified	Developed	Not specified	2015	United States		
William George, Newhama, Murzahir Hassan Tayebjee	AliveCorEC G	Palpitations	Cardiology	Diagnosis	Mobile application	Smartphone	iPhone Operating System	Participants with a recent history of atrial fibrillation	Experimental	Not specified	Developed	Not specified	2016	United States		
Muhlestein, J.B. et al.	AliveCor™ Heart Monitor	STEMI	Cardiology	Monitoring	Smartphone application	iPod Touch 5th Gen	iPhone Operating System	Patients for whom the hospital STEMI protocol was activated	Pre-Posttest	Not specified	Developed	Not specified	2015	Multinational		
Mitchell, K. et al.	Azumio’s Instant Heart Rate	Pulse rate	Cardiology	Monitoring	Smartphone application	Smartphone	iPhone Operating System and Android	Individuals from the Texas Woman’s University School of Physical Therapy – Houston Campus*	Pre-Posttest	Not specified	Developed	Not specified	2016	United States		
Cesaretti, M. et al.	BLIPS Ultra lens	Macrovesicular steatosis (MS)	Clinical Lab	Diagnosis	Smartphone with lens adaptor	Smartphone	iPhone Operating System	Liver donors aged > 18 y who underwent surgical liver biopsy	Experimental	Correlation values	Available	Ultra Blips Lens: 10 Euro Together with stage and light source: about 25 Euro	2017	France		
Title	Authors	Methodology	Participant Details	Study Design	Accuracy Measures	Setting	Year	Country								
---	--------------------------------	-------------	---	--------------------	--	-------------	--------	------------								
Assessment of a smartphone app (Capstesia) for measuring pulse pressure variation: agreement between two methods: A Cross-sectional study	Poh, M.Z. et al.	Smartphone	Healthy adult volunteers	Experimental	Measures of diagnostic accuracy	Developed	2016	United States								
Validation of a Standalone Smartphone Application for Measuring Heart Rate Using Imaging Photoplethysmography	Chan, P. et al.	Rhythm	Patients with hypertension, with diabetes mellitus, and/or aged ≥65 years	Pre-Posttest	Measures of diagnostic accuracy	Developed	2016	Hong Kong								
Diagnostic Performance of a Smartphone-Based Photoplethysmography e-Application for Atrial Fibrillation Screening in a Primary Care Setting	Bryan P. Yah, et al.	Atrial fibrillation	Sample of 217 subjects	Experimental	Measures of diagnostic accuracy and correlation values	Developed	2018	Unites States								
Diagnostic Accuracy of a Novel Mobile Phone Application for the Detection and Monitoring of Atrial Fibrillation	Rozen, G. et al.	Atrial fibrillation	Healthy adult volunteers	Experimental	Measures of diagnostic accuracy	Developed	2018	Multinational								
Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch	Tison, G.H. et al.	Atrial fibrillation	Healthy adult volunteers, participants with an Apple Watch	Experimental	Measures of diagnostic accuracy	Developed	2018	United States								
Design and pilot results of a mobile phone weight-loss application for women starting a meal replacement programme	Brindal, E. et al.	Weight loss	Overweight or obese adult women	Experimental	Variability measures	Developed	2013	Australia								
Mobile microscopy as a screening tool for oral cancer in India: A pilot study	Skandarajah, A. et al.	Oral cancer	Patients attending the dental out-patient departments of the Mazumdar-Shaw Medical Center (MSMC), Bangalore and its collaborative partner the KLE Society’s Dental College (KLESDC), Bangalore.	Pre-Test	Measures of diagnostic accuracy	Developed	2017	India								
A Smartphone-Based Tool for Rapid, Portable, and Automated Wide Field Retinal Imaging.	Kim, T. et al.	Retinal diseases	Subjects from the University of Michigan Kellogg Eye Center Retina Clinic	Experimental	Measures of diagnostic accuracy	Developed	2018	United States								
Reliability Analysis of a Smartphone-aided Measurement Method for the Cobb Angle of ScollPhone Operating Systems	Qiao, J. et al.	Ophthalmology	Patients with posteroanterior radiographs of adolescent idiopathic scollPhone Operating Systems patients with thoracic scollPhone	Pre-Posttest	Intra & interobserver values	Developed	2011	China								
Clinical chemistry measurements with commercially available test slides on a smartphone platform: Colorimetric determination of glucose and urea	Yuanyuan Wu et al	ColorAssist	Diagnostics for urea and glucose	Clinical lab	Diagnosis	Smartphone application	Smartphone	iPhone Operating System	Operating Systemis	Canine whole blood samples were collected from five different dogs	Technical testing	Diverse measurements	Developed	Not specified	2015	United States
Hormonal Smartphone Diagnostics.	P. R. Mutia-Garcia, J. L. Martinez-Hurtado, A. Beckley, M. Schmidmuyr , and V. Seifert-Klaus	Colorimetric	Reproductive and metabolic disorders	Maternal and child health	Monitoring	Smartphone application	Smartphone	iPhone Operating System	None	Technical testing	None	Available	Not specified	2018	Multinational	
Kidney Smartphone Diagnostics	P. R. Mutia-Garcia, J. L. Martinez-Hurtado	Colorimetric	Kidney damage	Nephrology	Monitoring	Mobile application	Smartphone	iPhone Operating System	None	Technical testing	None	Available	Not specified	2018	Australia	
Reliability of a smartphone-based goniometer for knee joint goniometry	Ferritero, G et al.	DrGoniometer (DrG)	Knee joint goniometry	Orthopedics and Traumatology	Diagnosis	Smartphone application	Smartphone	iPhone Operating System	None	Technical testing	None	Developed	Not specified	2013	Italy	
A Mobile Phone-Based Approach for Hearing Screening of School-Age Children. Cross-Sectional Validation Study.	Chu, Y. et al	Ear Scale App	Hearing status	Otoneurolaryngology	Screening	Smartphone application	Smartphone and Tablet	iPhone Operating System	School-age children	Observational	Measures of diagnostic accuracy	Developed	Free	2019	Taiwan	
Initial assessment of hearing loss using a mobile application for audiological evaluation	Dorin, S. et al	Ear Trumpet app	Hearing loss	Otoneurolaryngology	Diagnosis	Mobile application	Smartphone	iPhone Operating System	Patients with hearing loss	Pre-Posttest	Not specified	Developed	Not specified	2016	Turkey	
Automated audiometry using apple iPhone Operating System-based application technology.	Foudad, A., Bui, P., Djallilian, H	EarTrumpet	Audiology	Otoneurolaryngology	Diagnosis	Smartphone application	Smartphone, iPod and Tablet	iPhone Operating System	Subjects in the University of California, Irvine Medical Center neurotology clinic during their standard appointment for hearing evaluation	Experimental	Not specified	Developed	Not specified	2013	United States	
Validity of the Elite HRV smartphone application for examining heart rate variability in a field-based setting	Perrotta, A.S. et al	Elite HRV	Heart rate	Cardiology	Monitoring	Smartphone application	Smartphone	Not specified	Recreational athletes	Pre-Posttest	Measures of diagnostic accuracy and variability measures	Developed	Not specified	2017	Canada	
Utility of the EncephalApp Stroop Test for covert hepatic encephalopathy screening in Chinese cirrhotic patients.	Xin Zeng Et al	EncephalApp	Hepatic encephalopathy	Gastroenterology	Screening	Smartphone and tablet app	Smartphone and tablet	Not specified	Cirrhotic patients	Experimental	Measures of diagnostic accuracy	Developed	Not specified	2019	China	
Validation of EncephalApp, Smartphone-Based Stroop Test, for the Diagnosis of Covert Hepatic Encephalopathy.	Bajaj, J. et al	EncephalApp	Covert hepatic encephalopathy	Neurology	Diagnosis	Smartphone-based strop test	Smartphone and iPad	iPhone Operating System	Patients with cirrhosis and controls	Experimental	Measures of diagnostic accuracy and intra & interobserver values	Developed	Not specified	2015	United States	
Endoscope-i: an innovation in mobile endoscopic technology transforming the delivery of patient care in otolaryngology	N Mistry, C Coulson, A George	Endoscope-i	Patient care	Otoneurolaryngology	Diagnosis/Screening	Endoscopic Mobile Image System	Smartphone	iPhone Operating System	None	Technical testing	None	Developed	£ 999.00 (aprox)	2017	United Kingdom	
Diabetes self-management smartphone application for adults	Kirwan, M. et al	Glucose Buddy	Diabetes	Endocrinology	Monitoring	Smartphone application	Smartphone	iPhone Operating System	Adult patients with type 1 diabetes	Experimental	Variability measures	Developed	Free	2013	Australia	
Wojtczak, J., & Bonadonna, P.	Mobisante MobiUS system	Airway Anesthesiology	Diagnosis Smartphone-based application	Toshiba smartphone	Not specified	Healthy (body mass index <50) volunteers	Experimental	Variability measures	Developed	Not specified	2013	United States				