A new decay mode of higher charmonium

Li-Ye Xiao\(^1\)\(^2\) *, Xin-Zhen Weng\(^1\), Qi-Fang Lü\(^1\)\(^3\)\(^4\) †, Xian-Hui Zhong\(^3\)\(^4\) ‡, and Shi-Lin Zhu\(^1\)\(^2\)\(^5\) §

1) School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2) Center of High Energy Physics, Peking University, Beijing 100871, China
3) Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410008, China
4) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
5) Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

We calculate the \(\Lambda_c\) partial decay width of the excited vector charmonium states around 4.6 GeV with the quark pair creation model. We find that the partial decay width of the \(\Lambda_c\) mode can reach up to several MeV for \(\psi(4S, 5S, 6S)\). In contrast, the partial \(\Lambda_c\) decay width of the states \(\psi(3D, 4D, 5D)\) is less than one MeV. If the enhancement \(Y(4630)\) reported by the Belle Collaboration in \(\Lambda_c\) invariant-mass distribution is the same structure as \(Y(4660)\), the \(Y(4660)\) resonance is most likely to be a \(S\)-wave charmonium state.

PACS numbers:

I. INTRODUCTION

Since the Belle Collaboration reported the first member of the family of the charmonium-like states, \(X(3872)\), in 2003 [1], a series of charmonium-like states [2], called collectively XYZ states, have been observed by several major experimental collaborations such as Babar, BESIII, LHCb, CLEO-c and so on. To date, dozens of charmonium-like states [2] have been discovered. The charmonium systems may provide unique clues to the nonperturbative behavior of QCD in the low energy regime and have attracted a great deal of attention from the hadron physics community; see Ref. [3] for a review and references.

The \(Y(4660)\) resonance, as the most massive state among the charmonium-like states at present, was first reported by the Belle Collaboration [4] in the process \(e^+e^-\rightarrow\gamma\bar{c}c\) associated with the \(Y(4360)\) resonance in 2007. Its mass and width were determined to be \(M = (4664 \pm 16)\) MeV and \(\Gamma = (48 \pm 18)\) MeV, respectively. Later, this state was confirmed by BaBar collaboration [5] in the \(\pi^+\pi^-\psi(2S)\) invariant-mass distribution with new data on the process \(e^+e^-\rightarrow\gamma\bar{c}c\psi(2S)\) with the mass \(M = (4669 \pm 24)\) MeV and width \(\Gamma = (104 \pm 58)\) MeV. Since the \(Y(4660)\) resonance was produced from the \(e^+e^-\) annihilation, the quantum number is \(J^{PC} = 1^-\). Besides, the Belle Collaboration reported an enhancement, \(Y(4630)\), in the cross section of the \(e^+e^-\rightarrow\Lambda_c^+\Lambda_c^-\) in 2008 [6], whose mass and width are consistent within the errors with those of \(Y(4660)\). Hence, these two states may be the same structure although they were observed in different processes [7, 8].

Over the past decade, the properties of the charmonium-like state \(Y(4660)\) were extensively explored with various theoretical methods. In the framework of the screened potential model by Li and Chao [10], \(Y(4660)\) was a good candidate of the \(\psi(6S)\) state. However, Ding et al. [11] interpreted \(Y(4660)\) as the \(\psi(5S)\) state in the flux tube model, which is consistent with the prediction in Ref. [12]. Besides the interpretation of the conventional charmonium states, \(Y(4660)\) was also interpreted as a tetraquark state [13–22], \(f_0(980)\) bound state [23–26], baryonium [8, 27] and hadro-charmonium state [28] and so on. In addition, van Beveren et al. [29] argued that \(Y(4660)\) should not be associated with a resonance pole of the \(c\bar{c}\) propagator by analyzing the published BaBar data for the reaction \(e^+e^-\rightarrow D^+D^-\) [30]. For the properties of \(Y(4630)\), there are many theoretical interpretations as well [31–37].

According to the mass and spin-parity, the possible assignments of \(Y(4660)\) as a charmonium state are \(\psi(4S), \psi(5S), \psi(6S), \psi(3D), \psi(4D), \) or \(\psi(5D)\), which have been listed in Table I. In the framework of the quark pair creation model (QPC model), we calculate the decay width of the \(\Lambda_c\) mode for those vector charmonium states and obtain that (i) if the \(Y(4660)\) is a \(S\)-wave charmonium state, the partial decay width of the \(\Lambda_c\) mode can reach several MeV. However, if the \(Y(4660)\) is a \(D\)-wave charmonium state, the partial decay width of the \(\Lambda_c\) mode should be less than one MeV. (ii) If the enhancement \(Y(4630)\) reported by Belle Collaboration in \(\Lambda_c\) invariant-mass distribution is the same structure as \(Y(4660)\), the \(Y(4660)\) resonance is most likely to be a \(S\)-wave charmonium state.

This paper is organized as follows. In Sec. II we give a brief introduction of the QPC model. Then, we present our numerical results and discussions in Sec. III and summarize our results in Sec. IV.

II. A INTRODUCTION OF THE \(3P_0\) MODEL

The QPC model is known as \(3P_0\) model, which was first proposed by Micu [38], Carlitz and Kislinger [39], and further developed by the Orsay group [40, 41]. This model is widely used to study the OZI-allowed strong decays of hadrons. In the model, a quark pair \(q\bar{q}\) is created from the vacuum and then regroups with the quarks within the initial hadron to produce

\[^*\text{E-mail: liyuxiao@pku.edu.cn}\]
\[^\dagger\text{E-mail: lvqifang@hunnu.edu.cn}\]
\[^\ddagger\text{E-mail: zhulsl@pku.edu.cn}\]
two outgoing hadrons. In particular, the interaction Hamiltonian for one quark pair creation was assumed as [43, 45]

$$H_{q\bar{q}} = \gamma \sum_f 2m_f \int d^3 \mathbf{x} \bar{\psi}_f \gamma \cdot \mathbf{p} \psi_f,$$

where m_f is the constituent quark mass of flavor f, ψ_f denotes a Dirac quark field, and γ is a dimensionless parameter describing the $q\bar{q}$ pair-production strength, which is usually fixed by fitting the well measured decay widths.

![FIG. 1: The charmonium system decays into a $\Lambda_c \bar{\Lambda}_c$ pair.](image)

In this work, we extend the 3P_0 model to study the charmonium system decaying into a $\Lambda_c \bar{\Lambda}_c$ pair. For this type of reaction, it is necessary to create two light quark pairs, which is shown in Fig. 1. In the framework of the 3P_0 model, the helicity amplitude $M_{M_l A M_S A}$ for the process of $Y(4660)(A) \rightarrow \Lambda_c(B) + \bar{\Lambda}_c(C)$ reads

$$\delta^3(p_A - p_B - p_C)M_{M_l A M_S A} = \frac{\langle BC|H_{q\bar{q}}|k\rangle\langle k|H_{q\bar{q}}|A \rangle}{E_k - E_A},$$

Here, $p_A(p_B/p_C)$ represents the momentum of the hadron $A(B/C)$. E_k and E_A stand for the energy of the intermediate state k and initial state A, respectively. To simplify the calculations, we take $E_k - E_A$ as a constant, namely $E_k - E_A = 4m_f$. Under the above approximation, we can rewrite the Eq. (2) as

$$\delta^3(p_A - p_B - p_C)M_{M_l A M_S A} = \frac{\langle BC|H_{q\bar{q}}|H_{q\bar{q}}|A \rangle}{4m_f},$$

where m_f is the reduced mass of the created quark pair.

In the nonrelativistic limit, the transition operator for the two quark pairs creation under the 3P_0 model is given by

$$T = \frac{9\gamma^2}{4m_f} \sum_{m,m'} \langle 1m; 1 - m|00\rangle\langle 1m'; 1 - m'|00 \rangle$$

State	QM [46]	QM [47]	QM [48]	SSE/EA [49]	NR/GI [50]	SP [10]	LP/SP [51]		
$\psi(4S_1)$	4625	4450	4389	4398/4426	4406/4450	4273	4412/4281		
$\psi(5S_1)$	\cdots	\cdots	4641	4642/4672	\cdots	4463	4711/4472		
$\psi(3D_1)$	\cdots	4520	4426	4464/4477	\cdots	4317	4478/4336		
$\psi(4D_1)$	\cdots	\cdots	4641	4690/4707	\cdots	\cdots	\cdots	\cdots	\cdots
$\psi(3D_1)$	\cdots								

where ϕ_i $(i = 3, 4, 5, 6)$ corresponds to the three-vector momentum of the ith quark within the two created quark pairs. $\phi_0 = (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$ and $\omega_0 = \delta_{ij}$ correspond to the flavor function and color singlet, respectively. The solid harmonic polynomial $\chi_{m_i}^J(p) \equiv |p|^J \chi_i^m(\theta_p, \varphi_p)$ stand for the P-wave quark pairs, and $\chi_{1, m_i}^J(\theta_p, \varphi_p) = \chi_{-1, m_i}^J(\theta_p, \varphi_p)$ are the spin triplet states for the created quark pairs. $q_i b_{i,j}$ is the creation operator denoting the quark pairs creation in the vacuum.

Adopting the definition of the mock state $|52\rangle$, the meson (A) and baryon (B) states are defined as, respectively,

$$|A(N_A)^{2S_A+1}L_A J_A M_J_A (p_A)\rangle = \sqrt{2E_A \phi_A^2} \omega_A^{12} \sum_{M_l A M_S A} \langle L_A M_{L_A}; S_A M_{S_A}; J_A M_J_A | p_A \rangle$$

$$\times \int d^3 p_1 d^3 p_2 \delta^3(p_1 + p_2 - p_A) \times \psi_{N_i L_i M_{l_i} | p_i; p_i \rangle \chi_{M_{l_i} S_{l_i} A} \langle q_1 | q_1 \rangle \langle q_2 | q_2 \rangle},$$

$$|B(N_B)^{2S_B+1}L_B J_B M_J_B (p_B)\rangle = \sqrt{2E_B \phi_B^{135}} \omega_B^{135} \sum_{M_l B M_S B} \langle L_B M_{L_B}; S_B M_{S_B}; J_B M_J_B | p_B \rangle$$

$$\times \int d^3 p_1 d^3 p_3 \delta^3(p_1 + p_3 + p_2 - p_B) \times \psi_{N_i L_i M_{l_i} | p_i; p_i \rangle \chi_{M_{l_i} S_{l_i} B} \langle q_1 | q_3 \rangle \langle q_3 | q_5 \rangle},$$

The p_i $(i = 1, 2, 3, 5)$ denotes the momentum of quarks in hadrons A and B. Since the 3P_0 model obtains a reasonable description of the decay properties of many mesons with the simple harmonic oscillator (SHO) wave functions, and the numerical results of the decay widths are not strongly sensitive to the details of the spatial wave functions [43, 44, 53, 54], we adopt the SHO wave functions to describe the space-wave functions of the baryons in this work. With the simple SHO wave functions, the decay amplitudes can be calculated analytically. The SHO wave function of a meson without radial
excitations reads

\[\psi_{m}(p) = (-i)^{\frac{j+2}{2}} \sqrt{\frac{2^{j+2}}{\sqrt{(2j+1)!}} \frac{j+2}{\beta} \exp\left(-\frac{p^2}{2\beta^2}\right)} \gamma_m(p), \quad (7) \]

and the ground state space-wave function of a baryon reads

\[\psi_{0,0} = 3^{\frac{j}{2}} \left(\frac{1}{\pi \alpha_p^2} \right)^{\frac{j}{2}} \exp\left(-\frac{p^2}{2\alpha_p^2} - \frac{p^2}{2\alpha_s^2}\right), \quad (8) \]

Here the \(p_R \) stands for the relative momentum between the quark and antiquark within the meson. \(p_s \) and \(p_d \) stand for the momentum corresponding to \(\rho \) and \(\lambda \) Jacobi coordinates (see Fig. 2), respectively. Thus, we can obtain the helicity and the ground state space-wave function of a baryon, which are from the Particle Data Group [2].

\[\frac{\Gamma}{g} \sim l \]

The theoretical mass of the qq system where \(\rho \) and \(\lambda \) are the Jacobi coordinates defined as \(\rho = \frac{p}{\sqrt{\Gamma}} \) and \(\lambda = \frac{q-p_m}{\sqrt{\Gamma}} \), respectively. \(q_1 \) and \(q_2 \) represent the light \((u, d)\) quark, and \(Q_3 \) represents the charm quark.

For the strength of the quark pair creation from the vacuum, we adopt the definition from Ref. [58], where \(\gamma \) is a scale-dependent form,

\[\gamma(\mu) = \frac{\gamma_0}{\log(\frac{\mu}{\mu_0})}, \quad (14) \]

Here, \(\mu \) is the reduced mass of the quark-antiquark in the decaying meson, and \(\gamma_0 = 0.81 \pm 0.02 \) and \(\mu_0 = (49.84 \pm 2.58) \) GeV. According to Eq. (14), we get \(\gamma(\mu) \approx 0.29 \) with the mass of \(m_\gamma = 1628 \) MeV. So, the strength of the quark pair creation employed in this work is \(\gamma = 5.04 \) which is \(\sqrt{\gamma} \) or \(\gamma^4 \) times of that in Ref. [58] due to a different definition [44, 50, 59]. The uncertainty of the strength \(\gamma \) is around 30% and the partial decay width is proportional to \(\gamma^4 \), so the uncertainty of our theoretical results may be quite large.

III. CALCULATIONS AND RESULTS

The quantum number of the \(Y(4660) \) resonance is determined to be \(J^P = 1^- \) from the \(e^+e^- \) annihilation. The average values of mass and width listed in PDG [2] are \(M = (4643 \pm 9) \) MeV and \(\Gamma_{\text{total}} = 72 \pm 11 \) MeV, respectively. Around \(4660 \) MeV, there are six vector charmonium states, which are \(\psi(4S), \psi(5S), \psi(6S), \psi(3D), \psi(4D), \) and \(\psi(5D) \). In the following, we will discuss the decay properties of these states.

A. S wave

The theoretical mass of \(\psi(5S) \) is about 4.64 GeV (see Table I), which is agreement with the mass of \(Y(4660) \) in PDG [2] well. In addition, via evaluating the open flavor
strong decays, some people interpreted $Y(4660)$ as a $\psi(5S)$ state in the flux tube model [11] and QPC model [12], respectively. As the possible assignment of $Y(4660)$, it is crucial to study the decay properties of the $\psi(5S_1)$.

The predicted decay widths are large enough to be observed and that the possibility of Y these two states are listed in Table I. From the table it is seen ψ with a mass of $M = 4643$ MeV.

This branching ratio is the smallest, while it is quite large compared to the ratio ($O(10^{-3}) \sim O(10^{-5})$) of other charmonium states decaying into the baryon-antibaryon pair [13].

In addition, we also plot the decay width of the $\psi(4S_1)$ and $\psi(6S_1)$ as a function of the mass in the range of $M = (4580 – 4800)$ MeV in Fig. 3. The variation curves between the partial decay width and the mass for these two states are similar to that for $\psi(5S_1)$.

In brief, we have calculated the $\Lambda_c\bar{\Lambda}_c$ partial decay widths of the three S-wave states $\psi(4S_1)$, $\psi(5S_1)$, and $\psi(6S_1)$ with the QPC model. According to our predictions, the $\Lambda_c\bar{\Lambda}_c$ decay width can reach up to a few MeV. If $Y(4660)$ is a vector charmonium, it is very likely to be found in the $\Lambda_c\bar{\Lambda}_c$ channel.

B. D wave

The predicted mass of the state $\psi(4D_1)$ is listed in Table III. This state is a good candidate of the $Y(4660)$ resonance. So it is necessary to investigate the decay properties of $\psi(4D_1)$.

In the same way, we fix the mass of $\psi(4D_1)$ at $M = 4643$ MeV firstly. Then, we obtain the partial decay width

$$\Gamma[\psi(4D_1) \to \Lambda_c\bar{\Lambda}_c] \sim 0.19 \text{ MeV.}$$ (21)

This width seems not large, but it is enough to be observed in this decay channel in experiments. Moreover, the branching ratio is predicted to be

$$\mathcal{B}[\psi(4D_1) \to \Lambda_c\bar{\Lambda}_c] \sim 0.3\%.$$ (22)

We also plot the variation of the $\Lambda_c\bar{\Lambda}_c$ decay width as a function of the mass in Fig. 4. From the figure, the partial decay width for $\psi(4D_1)$ decaying into the $\Lambda_c\bar{\Lambda}_c$ pair is less than ~ 1.3 MeV in the range of $(4580 – 4800)$ MeV.

Furthermore, we analyze the decay properties of the states $\psi(3D_1)$ and $\psi(5D_1)$, and collect their predicted masses in Table III. From the table, the theoretical masses are either about $(100 – 200)$ MeV lighter or heavier than the mass of $Y(4660)$ in PDG [2]. We also study the decay properties of the two states in this work.

Taking the masses of the $\psi(3D_1)$ and $\psi(5D_1)$ as $M = 4643$ MeV, we get that the partial decay widths are

$$\Gamma[\psi(3D_1) \to \Lambda_c\bar{\Lambda}_c] \sim 0.33 \text{ MeV}$$ (23)

and

$$\Gamma[\psi(5D_1) \to \Lambda_c\bar{\Lambda}_c] \sim 0.09 \text{ MeV.}$$ (24)

If the $Y(4660)$ were the state $\psi(5D_1)$, one would be very hard to observe $Y(4660)$ in the $\Lambda_c\bar{\Lambda}_c$ channel.

The predicted masses of the states $\psi(3D_1)$ and $\psi(5D_1)$ certainly have a large uncertainty, which may bring uncertainties to our theoretical results. To investigate this effect, we plot the partial decay widths of these two states as functions of the masses in Fig. 4 as well.

The $\Lambda_c\bar{\Lambda}_c$ decay widths of the D-wave states are less than one MeV. The $\Lambda_c\bar{\Lambda}_c$ decay width ratio between the S-wave

State	$\psi(4S_1)$	$\psi(5S_1)$	$\psi(6S_1)$
$\Gamma[\Lambda_c\bar{\Lambda}_c]$	6.57	2.44	0.84
State	$\psi(3D_1)$	$\psi(4S_1)$	$\psi(5S_1)$
$\Gamma[\Lambda_c\bar{\Lambda}_c]$	0.33	0.19	0.09

$\psi(5S_1)$ is a good candidate of the $Y(4660)$ resonance. So it is necessary to investigate the decay properties of $\psi(4S_1)$.

Similarly, we plot the partial decay widths of these two states as function of the mass in the range of $(4580 – 4800)$ MeV in Fig. 3. The variation curves between the partial decay width and the mass for these two states are similar to that for $\psi(5S_1)$.
including low 4.6 GeV. This OZI allowed mode provides a new tool that is not kinematically allowed for the charmonium states below 4.6 GeV. This OZI allowed mode provides a new tool to explore the higher charmonium, which will be produced abundantly at Belle-II. We extend the original \(^3P_0\) model and consider the creation of two light \(q\bar{q}\) pairs from the vacuum, which is the first attempt along this direction in literatures up to our knowledge.

Based on our calculations, the decay widths of the \(S\)-wave states decaying into the \(\Lambda_c\bar{\Lambda}_c\) pair are about a few MeV, while the \(\Lambda_c\bar{\Lambda}_c\) decay widths of the \(D\)-wave states are less than one MeV. The \(\Lambda_c\bar{\Lambda}_c\) decay width ratio between the \(S\)-wave states and the \(D\)-wave states is \(O(10)\). If \(Y(4660)\) turns out to be a \(S\)-wave state, it has a good potential to be observed in the \(\Lambda_c\bar{\Lambda}_c\) channel.

C. The effect of \(\beta\)

We have considered six excited vector charmonium states around 4.6 GeV and investigated their \(\Lambda_c\bar{\Lambda}_c\) partial decay width. In the present work, all of the theoretical predictions are obtained with the parameter \(\beta = 500\) MeV. However, the harmonic oscillator parameter \(\beta\) for the excitation between the charm quarks in initial charmonium system is not determined precisely, which bares a large uncertainty. To investigate the uncertainties of the parameter \(\beta\), we further consider the decay properties as a function of the mass with two different \(\beta\) values: \(\beta = 450, 550\) MeV. The numerical results are shown in Figs. 3-4. One notes that the bigger \(\beta\) value leads to a larger decay width. Our main predictions hold in a reasonable range of the parameter \(\beta\).

IV. SUMMARY

In the present work, we calculate the \(\Lambda_c\bar{\Lambda}_c\) partial decay width of the excited vector charmonium around 4.6 GeV, including \(\psi(4S, 5S, 6S)\) and \(\psi(3D, 4D, 5D)\). The \(\Lambda_c\bar{\Lambda}_c\) mode is not kinematically allowed for the charmonium states below 4.6 GeV. This OZI allowed mode provides a new tool to explore the higher charmonium, which will be produced abundantly at Belle-II. We extend the original \(^3P_0\) model and consider the creation of two light \(q\bar{q}\) pairs from the vacuum, which is the first attempt along this direction in literatures up to our knowledge.

Based on our calculations, the decay widths of the \(S\)-wave states decaying into the \(\Lambda_c\bar{\Lambda}_c\) pair are about a few MeV, while the \(\Lambda_c\bar{\Lambda}_c\) decay widths of the \(D\)-wave states are less than one MeV. The \(\Lambda_c\bar{\Lambda}_c\) decay width ratio between the \(S\)-wave states and the \(D\)-wave states is \(O(10)\). If the \(Y(4660)\) is one of the \(S\)-wave states considered in this work, it may be observed in the \(\Lambda_c\bar{\Lambda}_c\) channel. Moreover, if the enhancement \(Y(4630)\) reported by Belle collaboration in \(\Lambda_c\bar{\Lambda}_c\) invariant-mass distribution is the same structure as the \(Y(4660)\), the \(Y(4660)\) is very likely to be a \(S\)-wave charmonium state. On the other hand, it will be very difficult to observe the excited \(D\)-wave vector charmonium in the \(\Lambda_c\bar{\Lambda}_c\) channel. In other words, the \(\Lambda_c\bar{\Lambda}_c\) mode can be used to pin down the internal structure of the vector charmonium.

Acknowledgements

We would like to thank Xiao-Lin Chen and Wei-Zhen Deng for very helpful discussions. This work is supported by the National Natural Science Foundation of China under Grants No. 11621131001, 11575008 and 11775078. This work is also in part supported by China Postdoctoral Science Foundation under Grant No. 2017M620492 and by National Key...
Basic Research Program of China (2015CB856700).

Appendix A: The Amplitude calculations

The harmonic oscillator wave functions for the ground charmed baryons $B(C)$ in our calculation are

$$
\psi^{B(C)}(0, 0, 0) = 3^{\frac{3}{2}} \left(\frac{1}{\pi \alpha_p^2} \right)^{\frac{3}{2}} \left(\frac{1}{\pi \alpha_j^2} \right)^{\frac{3}{2}} \exp \left[-\frac{p^2_\rho}{2\alpha_p^2} - \frac{p^2_4}{2\alpha_j^2} \right],
$$

(A1)

where $p_{\rho}^{B(C)} = \frac{1}{\sqrt{3}} (p_{3(2)} - p_{5(4)})$ and $p_{4}^{B(C)} = \frac{1}{\sqrt{3}} (p_{3(2)} + p_{5(4)} - 2p_{1(2)})$.

The ground state wave function of the meson is

$$
\Psi(0, 0) = \left(\frac{1}{\pi \beta^2} \right)^{\frac{3}{2}} \exp \left[-\frac{(p_1 - p_2)^2}{8\beta^2} \right]
$$

(A2)

Since all the final states are in the S-wave states in this calculations, the momentum space integration $I_{M_{1a}, m', c}(p)$ can be further expressed as $\prod (M_{1a}, m, m')$. For the $1S$ charmonium state decay:

$$
\Pi(0, 0, 0) = \left(\frac{1}{\pi \alpha_p^2} \right)^{\frac{3}{2}} \left(\frac{1}{\pi \alpha_j^2} \right)^{\frac{3}{2}} \left(\frac{1}{\pi \beta^2} \right)^{\frac{3}{2}} \exp \left[-\frac{\lambda_4 - \lambda_2^2}{4\lambda_2} p_B^2 \right]
$$

$$
\times \pi \sqrt{\frac{2}{2\lambda_1 - \lambda_2}} \left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2} \right)^{\frac{3}{2}} \left(\frac{3}{\lambda_1} - \frac{1}{\lambda_2} \right)^{\frac{3}{2}}
$$

$$
\Pi(0, 0, 0) = \Pi(0, -1, 1).
$$

(A3)

For the $1D$ charmonium state decay:

$$
\Pi(0, 0, 0) = \left(\frac{1}{\pi \alpha_p^2} \right)^{\frac{3}{2}} \left(\frac{1}{\pi \alpha_j^2} \right)^{\frac{3}{2}} \left(\frac{1}{\pi \beta^2} \right)^{\frac{3}{2}} \exp \left[-\frac{\lambda_4 - \lambda_2^2}{4\lambda_2} p_B^2 \right]
$$

$$
\times \pi \sqrt{\frac{2}{2\lambda_1 - \lambda_2}} \left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2} \right)^{\frac{3}{2}} \left(\frac{\sqrt{3} \lambda_2^2 p_B^2}{8\lambda_1} - \frac{\sqrt{3} \lambda_2^2 p_B^2}{8\lambda_2} \right)
$$

$$
- \sqrt{\frac{2}{2\lambda_1 - \lambda_2}} \left(\frac{3}{\lambda_1} - \frac{1}{\lambda_2} \right)^{\frac{3}{2}}
$$

$$
\Pi(0, 1, -1) = \Pi(0, -1, 1).
$$

(A4)

Here,

$$
\lambda_1 = \frac{1}{\alpha_p^2},
$$

(A10)

$$
\lambda_2 = \frac{1}{\alpha_j^2} + \frac{1}{3 \beta^2},
$$

(A11)

$$
\lambda_3 = -\sqrt{6} \frac{\lambda_3}{9 \beta^2},
$$

(A12)

$$
\lambda_4 = \frac{1}{18 \beta^2},
$$

(A13)

$$\sigma = \frac{1}{3} - \frac{\lambda_3}{2 \sqrt{6} \lambda_2},
$$

(A14)

$$\zeta = \frac{1}{3} + \frac{\lambda_3}{\sqrt{6} \lambda_2},
$$

(A15)

for the above expressions. $|P_B|$ reads as

$$
|P_B| = \sqrt{\frac{(m_A^2 - m_B^2 + m_C^2)(m_A^2 - m_B^2 - m_C^2)}{2m_A}}.
$$

(A16)

With the amplitudes for the $1S$ states decaying into two S-wave final states, we can obtain the radially and orbitally excited states’ amplitudes which are related to the lowest radial or orbital states by differentiation $[60]$.

$$
M_{4S} = \frac{1}{3 \sqrt{3}} \left(15 \beta \frac{\partial}{\partial \beta} + 6 \beta^2 \frac{\partial^2}{\partial \beta^2} + 2 \beta^3 \frac{\partial^3}{\partial \beta^3} \right) M_{1S},
$$

(A17)

$$
M_{5S} = \frac{1}{18 \sqrt{70}} \left(63 + 72 \beta \frac{\partial}{\partial \beta} + 96 \beta^2 \frac{\partial^2}{\partial \beta^2} + 24 \beta^3 \frac{\partial^3}{\partial \beta^3} \right) M_{1S},
$$

(A18)

$$
M_{6S} = \frac{1}{45 \sqrt{77}} \left(675 \beta \frac{\partial}{\partial \beta} + 240 \beta^2 \frac{\partial^2}{\partial \beta^2} + 120 \beta^3 \frac{\partial^3}{\partial \beta^3} \right) M_{1S},
$$

(A19)

$$
M_{3D} = \frac{1}{3 \sqrt{14}} \left(7 + 2 \beta \frac{\partial}{\partial \beta} + 2 \beta^2 \frac{\partial^2}{\partial \beta^2} \right) M_{1D}.
$$

(A20)
\[M_{4D} = \frac{1}{3} v_{231} \left(27 \beta \frac{\partial}{\partial \beta} + 6 \beta^2 \frac{\partial^2}{\partial \beta^2} + 2 \beta^3 \frac{\partial^3}{\partial \beta^3} \right) M_{1D}, \quad (A21) \]
\[M_{5D} = \frac{1}{6} v_{6006} \left(231 + 120 \beta \frac{\partial}{\partial \beta} + 144 \beta^2 \frac{\partial^2}{\partial \beta^2} + 24 \beta^3 \frac{\partial^3}{\partial \beta^3} \right) M_{1D}. \quad (A22) \]
[43] P. Geiger and E. S. Swanson, Distinguishing among strong decay models, Phys. Rev. D 50, 6855 (1994).
[44] E. S. Ackleh, T. Barnes and E. S. Swanson, On the mechanism of open flavor strong decays, Phys. Rev. D 54, 6811 (1996).
[45] F. E. Close and E. S. Swanson, Dynamics and decay of heavy-light hadrons, Phys. Rev. D 72, 094004 (2005).
[46] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Charmonium: Comparison with Experiment, Phys. Rev. D 21, 203 (1980).
[47] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189 (1985).
[48] J. Segovia, D. R. Entem and F. Fernandez, Charm spectroscopy beyond the constituent quark model, [arXiv:0810.2875 [hep-ph]].
[49] A. M. Badalian, B. L. G. Bakker and I. V. Danilkin, The $S \rightarrow D$ mixing and di-electron widths of higher charmonium 1^{--} states, Phys. Atom. Nucl. 72, 638 (2009).
[50] T. Barnes, S. Godfrey and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
[51] W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Charmonium spectrum and their electromagnetic transitions with higher multipole contributions, Phys. Rev. D 95, 034026 (2017).
[52] C. Hayne and N. Isgur, Beyond the Wave Function at the Origin: Some Momentum Dependent Effects in the Nonrelativistic Quark Model, Phys. Rev. D 25, 1944 (1982).
[53] R. Kokoski and N. Isgur, Meson Decays by Flux Tube Breaking, Phys. Rev. D 35, 907 (1987).
[54] H. G. Blundell and S. Godfrey, The Z(2220) revisited: Strong decays of the 1^3F_2, 1^3F_4, $s\bar{s}$ mesons, Phys. Rev. D 53, 3700 (1996).
[55] K. L. Wang, L. Y. Xiao, X. H. Zhong and Q. Zhao, Understanding the newly observed Ω_c states through their decays, Phys. Rev. D 95, 116010 (2017).
[56] L. Y. Xiao, K. L. Wang, Q. f. Lu, X. H. Zhong and S. L. Zhu, Strong and radiative decays of the doubly charmed baryons, Phys. Rev. D 96, 094005 (2017).
[57] L. Y. Xiao, Q. F. L and S. L. Zhu, Strong decays of the $1P$ and $2D$ doubly charmed states, Phys. Rev. D 97, 074005 (2018).
[58] J. Segovia, D. R. Entem and F. Fernandez, Scaling of the $3P_0$ Strength in Heavy Meson Strong Decays, Phys. Lett. B 715, 322 (2012).
[59] S. Godfrey and K. Moats, Bottomonium Mesons and Strategies for their Observation, Phys. Rev. D 92, 054034 (2015).
[60] J. F. Liu and G. J. Ding, Bottomonium Spectrum with Coupled-Channel Effects, Eur. Phys. J. C 72, 1981 (2012).