Let n be a positive integer, and consider the vector space of real-valued continuous functions on the unit sphere in \mathbb{R}^n. If $1 \leq p < \infty$, then we can define the L^p norm on this space in the usual manner, by taking the pth power of the absolute value of a function on the sphere, integrating it, and taking the $(1/p)$th power of the result. For $p = \infty$ we can use the supremum norm.
norm, which is the maximum of the absolute value of a continuous function on the sphere.

Inside the space of continuous functions on the unit sphere in \(\mathbb{R}^n \) we have the \(n \)-dimensional linear subspace of linear functions, whose value at a point is given by the inner product of that point with some fixed vector in \(\mathbb{R}^n \). For each \(p, 1 \leq p \leq \infty \), the \(p \)-norm mentioned in the previous paragraph applied to a linear function reduces to a constant multiple of the vector used in the inner product defining the linear function.

Thus there is an \(n \)-dimensional inner product space embedded isometrically into the space of real-valued continuous functions on the unit sphere in \(\mathbb{R}^n \) equipped with the \(p \)-norm for any \(p, 1 \leq p \leq \infty \), and similarly one can get \(n \)-dimensional complex inner product spaces in the space of complex-valued continuous functions on the unit sphere in \(\mathbb{C}^n \) equipped with the \(p \)-norm for any \(p, 1 \leq p \leq \infty \). In the first three sections of these notes we shall consider some related constructions in which \(p \)-norms can be compared to norms associated to inner products.

1 Gaussian random variables

Recall that
\[
\int_{-\infty}^{\infty} \exp(-\pi x^2) \, dx = 1.
\]
Indeed, the integral is a positive real number whose square is equal to
\[
\int_{\mathbb{R}^2} \exp(-\pi(x^2 + y^2)) \, dx \, dy,
\]
and this can be rewritten in polar coordinates as
\[
\int_0^{2\pi} \int_0^\infty \exp(-\pi r^2) \, r \, dr \, d\theta
\]
which reduces to
\[
2\pi \int_0^\infty r \exp(-\pi r^2) \, dr.
\]
This last integral can be computed directly, using the fundamental theorem of calculus.

Let \(n \) be a positive integer, and let
\[
\langle v, w \rangle = \sum_{j=1}^{n} v_j w_j
\]
be the standard inner product on \mathbb{R}^n, $v = (v_1, \ldots, v_n)$, $w = (w_1, \ldots, w_n)$.

Let $h(x)$ be a linear function on \mathbb{R}^n, so that there is a $v \in \mathbb{R}^n$ such that $h(x) = \langle x, v \rangle$ for all $x \in \mathbb{R}^n$.

It follows from the 1-dimensional computation that

\begin{equation}
\int_{\mathbb{R}^n} \exp(-\pi \langle x, x \rangle) \, dx = 1,
\end{equation}

i.e., the n-dimensional integral reduces exactly to a product of 1-dimensional integrals of the same type. If p is a positive real number, consider

\begin{equation}
\left(\int_{\mathbb{R}^n} |h(x)|^p \exp(-\pi \langle x, x \rangle) \, dx \right)^{1/p}.
\end{equation}

This is equal to the product of $|v| = \langle v, v \rangle^{1/2}$ and

\begin{equation}
\left(\int_{\mathbb{R}} |x|^p \exp(-\pi x^2) \, dx \right)^{1/p}.
\end{equation}

Of course this is trivial if $v = 0$, and if $v \neq 0$, then $h(x)$ is constant in the directions orthogonal to v. We can integrate out those directions to get a 1-dimensional integral, and after we pull out $|v|$ the result depends only on p.

Thus the linear functions on \mathbb{R}^n form an n-dimensional linear subspace of real-valued functions more generally, e.g., real-valued continuous functions of polynomial growth. The p-norm reduces to a constant multiple of the Euclidean norm for these functions. This does not quite work for $p = \infty$, in the sense that the functions are unbounded. Of course the coordinate functions x_1, \ldots, x_n on \mathbb{R}^n, with respect to the probability distribution given by the Gaussian function $\exp(-\pi \langle x, x \rangle)$, are independent random variables with mean 0 and the same Gaussian distribution individually. The linear functions on \mathbb{R}^n are the mean 0 Gaussian random variables which are linear combinations of these n functions.

\section{Rademacher functions}

For each positive integer ℓ let \mathcal{B}_ℓ denote the set of sequences (x_1, \ldots, x_ℓ) such that each x_j is either -1 or 1. Thus \mathcal{B}_ℓ has 2^ℓ elements.

We can think of \mathcal{B}_ℓ as a commutative group with respect to coordinatewise multiplication. In other words, \mathcal{B}_ℓ is a product of ℓ copies of the group with 2 elements.
For each \(j = 1, \ldots, \ell \) define \(r_j \) to be the function on \(B_\ell \) given by \(r_j(x) = x_j \). One can think of \(r_j \) as a homomorphism from \(B_\ell \) into the group \(\{\pm 1\} \). One can also think of the \(r_j \)'s as random variables, with respect to the uniform probability distribution on \(B_\ell \), so that the \(r_j \)'s are independent random variables which have mean 0 and are identically distributed as fair coin tosses.

If \(I \) is a subset of \(\{1, \ldots, \ell\} \), let us write \(w_I \) for the function on \(B_\ell \) which is the product of the \(r_j \)'s with \(j \in I \), where this is interpreted as being the function which is equal to 1 everywhere on \(B_\ell \) when \(I = \emptyset \). The \(r_j \)'s are called Rademacher functions, and the \(w_I \)'s are called Walsh functions.

For a pair of real-valued functions \(f_1(x), f_2(x) \) on \(B_\ell \), one can define their inner product to be

\[
2^{-\ell} \sum_{x \in B_\ell} f_1(x) f_2(x).
\]

The inner product of a Walsh function with itself is equal to 1, since \(w_I(x)^2 = 1 \) for all subsets \(I \) of \(\{1, \ldots, \ell\} \) and all \(x \in B_\ell \). If \(I_1, I_2 \) are distinct subsets of \(\{1, \ldots, \ell\} \), then one can show that the inner product of the corresponding Walsh functions on \(B_\ell \) is equal to 0.

Thus the Walsh functions form an orthonormal basis for the vector space of real-valued functions on \(B_\ell \) with respect to the inner product that we have defined. That is, they are orthonormal by the remarks in the previous paragraph, and they form a basis because there are \(2^\ell \) Walsh functions and the vector space of functions on \(B_\ell \) has dimension equal to \(2^\ell \).

The Rademacher functions \(r_1, \ldots, r_\ell \) are special cases of Walsh functions, corresponding to subsets \(I \) of \(\{1, \ldots, \ell\} \) with exactly one element. The linear combinations of the Rademacher functions form a very interesting \(\ell \)-dimensional subspace of the vector space of real-valued functions on \(B_\ell \).

For \(0 < p < \infty \), consider the quantity

\[
\left(2^{-\ell} \sum_{x \in B_\ell} |f(x)|^p \right)^{1/p},
\]

where \(f(x) \) is a real-valued function on \(B_\ell \). When \(p = 2 \) this is the norm associated to the inner product on functions on \(B_\ell \). This quantity is monotone increasing in \(p \), as a result of the fact that \(t^r \) defines a convex function on the nonnegative real numbers when \(r \geq 1 \).

For each \(p \geq 2 \) there is a positive real number \(C(p) \) such that

\[
\left(2^{-\ell} \sum_{x \in B_\ell} |f(x)|^p \right)^{1/p} \leq C(p) \left(2^{-\ell} \sum_{x \in B_\ell} |f(x)|^2 \right)^{1/2}
\]

(2.3)
when \(f \) is a linear combination of Rademacher functions. To see this, it suffices to consider the case where \(p \) is an even integer, by monotonicity in \(p \).

It is instructive to start with the case where \(p = 4 \). If \(f(x) \) is a linear combination of Rademacher functions, then one can expand \(f(x)^4 \) as a linear combination of certain Walsh functions, many of which have sum equal to 0, and the nonzero sums can be estimated in terms of the \(p = 2 \) case. Similar computations apply for larger \(p \)’s.

One can also show that for each positive real number \(q \leq 2 \) there is a positive real number \(C(p) \) such that

\[
(2.4) \quad \left(2^{-\ell} \sum_{x \in B_\ell} |f(x)|^2 \right)^{1/2} \leq C(p) \left(2^{-\ell} \sum_{x \in B_\ell} |f(x)|^q \right)^{1/q}.
\]

One can derive this from the earlier result using Hölder’s inequality, i.e., the quantity for \(p = 2 \) can be estimated in terms of the product of fractional powers of the quantity for \(p = 4 \) and the quantity for \(q < 2 \) by Hölder’s inequality, and therefore the quantity for \(p = 2 \) can be estimated in terms of the quantity for \(q < 2 \) since the quantity for \(p = 4 \) can be estimated in terms of the quantity for \(p = 2 \).

3 Lacunary series

Suppose that \(a_0, \ldots, a_n \) are complex numbers. Because

\[
(3.1) \quad \frac{1}{2\pi} \int_T z^j \bar{z}^l |dz|
\]

is equal to 0 when \(j \neq l \) and equal to 1 when \(j = l \), where \(T \) denotes the unit circle in the complex plane, we have that

\[
(3.2) \quad \frac{1}{2\pi} \int_T \left| \sum_{j=0}^n a_j z^j \right|^2 |dz| = \sum_{j=0}^n |a_j|^2.
\]

Now suppose that \(c_0, \ldots, c_m \) are complex numbers, and consider the function \(f(z) = \sum_{j=0}^m c_j z^{2^j} \). To estimate

\[
(3.3) \quad \frac{1}{2\pi} \int_T |f(z)|^4 |dz|,
\]

one can write \(|f(z)|^4 \) as \(f(z)^2 \bar{f}(z)^2 \) and expand the sums. Many of the terms integrate to 0.
Indeed, the integral of
\[z^{2j_1} z^{2j_2} \overline{z}^{2l_1} \overline{z}^{2l_2} \]
over the unit circle is equal to 0 unless
\[2^{j_1} + 2^{j_2} = 2^{l_1} + 2^{l_2}. \]

One can check that this happens for nonnegative integers \(j_1, j_2, l_1, l_2 \) if and only if \(j_1 = l_1 \) and \(j_2 = l_2 \) or \(j_1 = l_2 \) and \(j_2 = l_1 \).

As a result one can show that the integral of \(|f(z)|^4 \) over the unit circle is bounded by a constant times the square of the integral of \(|f(z)|^2 \). There are many variants and extensions of this observation.

4 Some matrix norms

Fix positive integers \(m, n \). Suppose that \(A \) is a linear mapping from \(\mathbb{R}^m \) to \(\mathbb{R}^n \) associated to the \(m \times n \) matrix \((a_{j,l})\) of real numbers. Thus for \(x = (x_1, \ldots, x_m) \in \mathbb{R}^m \), the \(l \)th component of \(A(x) \) is equal to \(\sum_{j=1}^m a_{j,l} x_j \).

If \(y = A(x) \) for some \(x \in \mathbb{R}^m \), then
\[|y_1| + \cdots + |y_n| \leq \left(\sum_{j=1}^m \sum_{l=1}^n |a_{j,l}| \right) \max(|x_1|, \ldots, |x_m|). \]

This inequality is optimal if the \(a_{j,l} \)'s are all nonnegative real numbers, as one can see by taking \(x_j = 1 \) for all \(j \).

Now suppose that \(T \) is a linear mapping from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) associated to the \(n \times m \) matrix \((t_{p,q})\) of real numbers in the same way as before. If \(x = T(y) \), then
\[\max(|x_1|, \ldots, |x_m|) \leq \max \{|t_{p,q}| : 1 \leq p \leq n, 1 \leq q \leq m \} \left(|y_1| + \cdots + |y_n| \right), \]
and it is easy to see that this inequality is sharp.

Let \(\lambda_1, \ldots, \lambda_m \) denote the linear mappings from \(\mathbb{R}^m \) into \(\mathbb{R} \) which take a given vector in \(\mathbb{R}^m \) to its \(m \) coordinates. Also let \(e_1, \ldots, e_n \) denote the standard basis vectors in \(\mathbb{R}^n \), so that \(e_j \) has \(j \)th coordinate equal to 1 and all other coordinates equal to 0. We can express \(A \) as a sum of rank-1 operators in the standard way,
\[A(x) = \sum_{j=1}^m \sum_{l=1}^n a_{j,l} \lambda_l(x) e_j. \]
The composition of $T \circ A$ defines a linear mapping from \mathbb{R}^m to itself, and the trace of the linear mapping is equal to

\begin{equation}
\sum_{j=1}^{m} \sum_{l=1}^{n} a_{j,l} t_{l,j}.
\end{equation}

(4.4)

The absolute value of the trace of $T \circ A$ is less than or equal to the product of $\sum_{j=1}^{m} \sum_{l=1}^{n} |a_{j,l}|$ and $\max\{|t_{p,q}| : 1 \leq p \leq n, 1 \leq q \leq m\}$, and this inequality is sharp.

5 Grothendieck’s inequality

Let m, n be positive integers, and let $(a_{j,l})$ be an $m \times n$ matrix of real numbers. Let us assume that this matrix is restricted in the sense that

\begin{equation}
|\sum_{j=1}^{m} \sum_{l=1}^{n} a_{j,l} v_l w_l| \leq 1
\end{equation}

(5.1)

whenever $v = (v_1, \ldots, v_m), w = (w_1, \ldots, w_n)$ satisfy

\begin{equation}
|v_1|, \ldots, |v_m|, |w_1|, \ldots, |w_n| \leq 1.
\end{equation}

(5.2)

Equivalently, $(a_{j,l})$ is restricted if

\begin{equation}
|y_1| + \cdots + |y_n| \leq \max(|x_1|, \ldots, |x_m|)
\end{equation}

(5.3)

for all $x \in \mathbb{R}^m$, where $y \in \mathbb{R}^n$ is given by $y_l = \sum_{j=1}^{m} a_{j,l} x_j$.

Let V be a finite-dimensional real vector space equipped with an inner product $\langle v, w \rangle$, which one can simply take to be a Euclidean space with the standard inner product. Let v_1, \ldots, v_m and w_1, \ldots, w_n be vectors in V. Grothendieck’s inequality states that there is a universal constant $k > 0$ so that if

\begin{equation}
\|v_1\|, \ldots, \|v_m\|, \|w_1\|, \ldots, \|w_n\| \leq 1,
\end{equation}

(5.4)

where $\|u\| = \langle u, u \rangle^{1/2}$ is the norm of $u \in V$ associated to the inner product, then

\begin{equation}
|\sum_{j=1}^{m} \sum_{l=1}^{n} a_{j,l} \langle v_l, w_l \rangle| \leq k.
\end{equation}

(5.5)

See volume 1 of [LinT2] for a proof, with $k = (\exp(\pi/2) - \exp(-\pi/2))/2$.

7
6 Maximal functions

As in Section 2, for each positive integer \(\ell \) let \(B_\ell \) denote the set of sequences \(x = (x_1, \ldots, x_\ell) \) of length \(\ell \) such that \(x_j \in \{ \pm 1 \} \) for all \(j \). In this section and the next one, for each real-valued function \(f \) on \(B_\ell \), we put

\[
\| f \|_p = \left(2^{-\ell} \sum_{x \in B_\ell} |f(x)|^p \right)^{1/p}
\]

when \(1 \leq p < \infty \) and

\[
\| f \|_\infty = \max \{|f(x)| : x \in B_\ell \}.
\]

If \(x \in B_\ell \) and \(k \) is an integer with \(0 \leq k \leq \ell \), let \(N_k(x) \) denote the set of \(y \in B_\ell \) such that \(y_j = x_j \) when \(j \leq k \). Thus \(N_0(x) = B_\ell \), \(N_\ell(x) = \{ x \} \), and \(N_k(x) \) has \(2^{\ell-k} \) elements for each \(k \).

If \(f(x) \) is a real-valued function on \(B_\ell \) and \(0 \leq k \leq \ell \), define \(E_k(f) \) to be the function on \(B_\ell \) whose value at a given point \(x \) is the average of \(f \) on \(N_k(x) \), i.e.,

\[
E_k(f)(x) = 2^{-\ell+k} \sum_{y \in N_k(x)} f(y).
\]

Thus \(E_k(f)(x) \) is a function on \(B_\ell \) which really only depends on the first \(k \) coordinates of \(x \). If \(h(x) \) is a function on \(B_\ell \) which depends on only the first \(k \) coordinates of \(x \), then

\[
E_k(h) = h,
\]

and in fact

\[
E_k(f h) = h E_k(f)
\]

for all functions \(f \) on \(B_\ell \).

Notice that if \(0 \leq k < \ell \) and \(f \) is a function on \(B_\ell \) such that \(f(x) \) depends only on the first \(k + 1 \) coordinates of \(x \), then \(f \) can be expressed uniquely as \(f_1 + r_{k+1} f_2 \), where \(r_{k+1}(x) = x_{k+1} \) as in Section 2 and \(f_1(x), f_2(x) \) depend only on the first \(k \) coordinates of \(x \). Moreover, \(E_k(f) = f_1 \) in this situation.

For each real-valued function \(f \) on \(B_\ell \) the associated maximal function is given by

\[
M(f)(x) = \max \{|E_k(x)| : 0 \leq k \leq \ell \},
\]

\(x \in B_\ell \). Observe that

\[
\| M(f) \|_\infty \leq \| f \|_\infty
\]
for all functions f on \mathcal{B}_ℓ, and in fact we have equality, since $E_\ell(f) = f$.

Fix a function f on \mathcal{B}_ℓ. Let λ be a positive real number, and consider the set

$$A_\lambda = \{x \in \mathcal{B}_\ell : M(f) > \lambda\}. \tag{6.8}$$

Thus A_λ is the set of $x \in \mathcal{B}_\ell$ such that $|E_k(f)(x)| > \lambda$ for some k, $0 \leq k \leq \ell$.

If $x \in A_\lambda$, so that $|E_k(f)(x)| > \lambda$ for some k, $0 \leq k \leq \ell$, then we automatically have that $|E_k(f)(y)| > \lambda$ for all $y \in N_k(x)$, since $E_k(f)$ is constant on $N_k(x)$. We can describe A_λ as the union of the subsets of \mathcal{B}_ℓ of the form $N_k(x)$ on which the absolute value of the average of f is larger than λ.

If x, x' are elements of \mathcal{B}_ℓ and k, k' are integers such that $0 \leq k, k' \leq \ell$, then

$$N_k(x) \subseteq N_{k'}(x'), \text{ or } N_{k'}(x') \subseteq N_k(x), \text{ or } N_k(x) \cap N_{k'}(x') = \emptyset. \tag{6.9}$$

This is easy to check from the definitions. We can think of A_λ as the union of the maximal subsets of \mathcal{B}_ℓ of the form $N_k(x)$ on which the absolute value of the average of f is larger than λ, and the maximality of these subsets implies that they are pairwise disjoint.

Let us write $|A_\lambda|$ for $2^{-\ell}$ times the number of elements of A_λ. In other words, if $a_\lambda(x)$ is the function on \mathcal{B}_ℓ such that $a_\lambda(x) = \lambda$ when $x \in A_\lambda$ and $a_\lambda(x) = 0$ otherwise, then

$$\|a_\lambda\|_1 = \lambda |A_\lambda|. \tag{6.10}$$

A key point now is that

$$\lambda |A_\lambda| \leq \|f\|_1. \tag{6.11}$$

This follows from the fact that A_λ is a disjoint union of sets of the form $N_k(x)$ on which the absolute value of the average of f is larger than λ.

Let $f'(x)$ be the function on \mathcal{B}_ℓ which is equal to $f(x)$ when $|f(x)| > \lambda$ and which is equal to 0 otherwise. Of course

$$|f(x) - f'(x)| \leq \lambda \tag{6.12}$$

for all $x \in \mathcal{B}_\ell$. Hence

$$M(f)(x) \leq M(f')(x) + \lambda \tag{6.13}$$

for all $x \in \mathcal{B}_\ell$.

9
Therefore \(A_{2\lambda} \) is contained in the set of \(x \in B_\ell \) such that \(M(f') > \lambda \), and the previous estimate implies that
\[
\lambda |A_{2\lambda}| \leq \|f'\|_1.
\]
Using this one can show that for each \(p > 1 \), \(\|M(f)\|_p \) is bounded by a constant depending only on \(p \) times \(\|f\|_p \).

7 Square functions

If \(f_1, f_2 \) are real-valued functions on \(B_\ell \), let us write \((f_1, f_2) \) for their inner product,
\[
(f_1, f_2) = 2^{-\ell} \sum_{x \in B_\ell} f_1(x)f_2(x).
\]
Thus the norm \(\|f\|_2 \) is the same as the norm associated to the inner product, which is to say that \(\|f\|^2 = (f, f) \) for all real-valued functions \(f \) on \(B_\ell \).

For any function \(f \) on \(B_\ell \), we can decompose \(f \) into the sum
\[
f = E_0(f) + \sum_{k=1}^{\ell} (E_k(f) - E_{k-1}(f)).
\]
The functions \(E_0(f), E_k(f) - E_{k-1}(f), 1 \leq k \leq \ell \), are pairwise orthogonal with respect to the inner product just defined.

In particular,
\[
\|f\|_2^2 = \|E_0(f)\|^2 + \sum_{k=1}^{\ell} \|E_k(f) - E_{k-1}(f)\|^2,
\]
where actually \(E_0(f) \) is a constant and its norm reduces to its absolute value. Define the square function associated to \(f \) by
\[
S(f)(x) = \left(|E_0(f)(x)|^2 + \sum_{k=1}^{\ell} |E_k(f)(x) - E_{k-1}(f)(x)|^2\right)^{1/2}.
\]
The previous formula for \(\|f\|_2 \) can be rewritten as
\[
\|S(f)\|_2 = \|f\|_2.
\]
As a special case, suppose that \(f = \sum_{j=1}^{\ell} a_j r_j \), where \(a_1, \ldots, a_\ell \) are real numbers and \(r_j(x) = x_j \). Then \(E_0(f) = 0 \), \(E_k(f) - E_{k-1}(f) = a_k r_k \), and \(S(f) \) is the constant \((\sum_{j=1}^{\ell} a_j^2)^{1/2}\).

Now let \(f \) be any real-valued function on \(B_\ell \). A very cool fact is that \(\|S(f)\|_4 \) is bounded by a constant times \(\|f\|_4 \).

It is easy enough to write \(S(f)^4 \) explicitly, by multiplying out the sums. One can rewrite this as a sum over \(k \), where each part in the sum is a product of something around level \(k \) times a sum involving the next levels. When one sums over \(x \in B_\ell \), these sums over levels \(\geq k \) can be analyzed using orthogonality.

The basic conclusion is that \(\|S(f)\|_4 \) can be estimated, using the Cauchy–Schwarz inequality, in terms of the product of \(\|S(f)\|_4^{1/2} \) and \(\|M(f^2)\|_2 \). Because we can estimate \(\|M(f^2)\|_2 \) in terms of \(\|f^2\|_2 \), which is the same as \(\|f\|_4^{1/2} \), we can estimate \(\|S(f)\|_4 \) in terms of \(\|f\|_4 \), as desired.

References

[BenL] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Colloquium Publications 48, American Mathematical Society, 2000.

[Boc] S. Bochner, Lectures on Fourier Integrals, translated by M. Tenenbaum and H. Pollard, Annals of Mathematics Studies 42, Princeton University Press, 1959.

[BocC] S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies 19, Princeton University Press, 1949.

[Duo] J. Duoandikoetxea, Fourier Analysis, translated and revised by D. Cruz-Uribe, SFO, American Mathematical Society, 2001.

[Dur] P. Duren, Theory of \(H^p \) Spaces, Academic Press, 1970.

[GarR] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.

[Gol] R. Goldberg, Methods of Real Analysis, 2nd edition, Wiley, 1976.
[HewS] E. Hewitt and K. Stromberg, *Real and Abstract Analysis*, Springer-Verlag, 1975.

[JohL] W. Johnson and J. Lindenstrauss, editors, *Handbook of the Geometry of Banach Spaces*, Volumes 1 and 2, North-Holland, 2001 and 2003.

[Jon] F. Jones, *Lebesgue Integration on Euclidean Space*, Jones and Bartlett, 1993.

[Jou] J.-L. Journé, *Calderón–Zygmund Operators, Pseudodifferential Operators and the Cauchy Integral of Calderón*, Lecture Notes in Mathematics 994, Springer-Verlag, 1983.

[Kra1] S. Krantz, *Real Analysis and Foundations*, CRC Press, 1991.

[Kra2] S. Krantz, *A Panorama of Harmonic Analysis*, Mathematical Association of America, 1999.

[LinT1] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces*, Lecture Notes in Mathematics 338, Springer-Verlag, 1973.

[LinT2] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces, I, Sequence Spaces and II, Function Spaces*, Springer-Verlag, 1977 and 1979.

[MilS] V. Milman and G. Schechtman, *Asymptotic theory of finite-dimensional normed vector spaces*, with an appendix by M. Gromov, Lecture Notes in Mathematics 1200, Springer-Verlag, 1986.

[Pis] G. Pisier, *The Volume of Convex Bodies and Banach Space Geometry*, Cambridge University Press, 1989.

[Rud1] W. Rudin, *Principles of Mathematical Analysis*, 3rd edition, McGraw-Hill, 1976.

[Rud2] W. Rudin, *Real and Complex Analysis*, 3rd edition, McGraw-Hill, 1987.

[Rud3] W. Rudin, *Functional Analysis*, 2nd edition, McGraw-Hill, 1991.
[Ste1] E. Stein, *Singular Integrals and Differentiability Properties of Functions*, Princeton University Press, 1970.

[Ste2] E. Stein, *The development of square functions in the work of A. Zygmund*, Bulletin of the American Mathematical Society (New Series) 7 (1982), 359–376.

[SteS1] E. Stein and R. Shakarchi, *Real Analysis*, Princeton University Press, to appear.

[SteS2] E. Stein and R. Shakarchi, *Probability Theory*, Princeton University Press, to appear.

[SteW] E. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton University Press, 1971.

[Str1] D. Stroock, *Probability Theory: An Analytic View*, Cambridge University Press, 1993.

[Str2] D. Stroock, *A Concise Introduction to the Theory of Integration*, 3rd edition, Birkhäuser, 1999.

[Woj] P. Wojtaszczyk, *Banach Spaces for Analysts*, Cambridge University Press, 1991.

[Zyg] A. Zygmund, *Trigonometric Series*, Volumes I and II, 3rd edition, Cambridge University Press, 2002.