A comprehensive survey on 3-equitable and divisor 3-equitable labeling of graphs

A. Parthiban1 and Sangeeta2

Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara-144 411, Punjab, India.

E-mail: parthiban.23447@lpu.co.in, sangeeta1028@gmail.com

Abstract. This article presents a short survey on 3-equitable and divisor 3-equitable labeling of graphs. For any graph $G(V,E)$ and $k > 0$, assign vertex labels from $\{0, 1, \ldots, k - 1\}$ such that when the edge labels induced by the absolute value of the difference of the vertex labels, the number of vertices labeled with i and the number of vertices labeled with j differ by at most one and the number of edges labeled with i and the number of edges labeled with j differ by at most one. We call a graph G with such an assignment of labels k-equitable. When $k = 3$, it becomes a 3-equitable labeling. In 2019, Sweta Srivastav et al. introduced the notion of divisor 3-equitable labeling of graphs. A bijection $f : V(G) \rightarrow \{1, 2, \ldots, n\}$ induces a function $f^* : E(G) \rightarrow \{0, 1, 2\}$ defined by for each edge $e = xy$, (i) $f^*(e) = 1$ if $f(x)f(y)$ or $f(y)f(x)$, (ii) $f^*(e) = 2$ if $f(x)f(y) = 2$ or $f(y)f(x) = 2$, and (iii) $f^*(e) = 0$ otherwise such that $|e_f(i) - e_f(j)| \leq 1$ for all $0 \leq i, j \leq 2$. A graph which admits a divisor 3-equitable labeling is called a divisor 3-equitable graph. This article stands divided into five sections. The first and fifth sections are reserved respectively for introduction and some important references. The second section deals with the 3-equitable labeling of graphs wherein some important known results have been recalled. The third section deals with the divisor 3-equitable labeling of graphs wherein a few known results have been outlined. In the fourth section we highlight certain conjectures and open problems in respect of the above mentioned labeling that still remain unsolved.

Keywords: 3-Equitable Labeling, 3-Equitable Graphs, Divisor 3-Equitable Labeling, Divisor 3-Equitable Graphs

1. Introduction

We consider only “non-trivial, simple, finite, connected, and undirected graph” in this paper. A graph labeling is an “assignment of labels” (mostly, numbers or colors) to the edges and/or vertices of a graph. For the standard terminology and notations we follow [1]. For $G = (V,E)$, a function f from V to $\{0, 1, 2\}$ with an “induced function” f^* from E to $\{0, 1, 2\}$ given by $f^*(e = uv) = |f(u) - f(v)|$ is 3-equitable labeling if the “number of vertices with label i and j differ by at most 1” and in the same way the “number of edges with label i and j differ by at most 1”, $0 < i, j < 2, i \neq j$. Also $|v_f(i) - v_f(j)| < 1$ and $|e_f(i) - e_f(j)| < 1, 0 < i, j < 2$. A graph which permits 3-equitable labeling is called a “3-equitable graph”. In this paper, we have summarized the results concerning the 3-equitable and divisor 3-equitable labeling of graphs. We also provide a brief introduction to the concerned labeling. Further, we recall a few relevant definitions & other necessary results which are important for the present study.

1 Corresponding Author
2 Research Scholar

Published under licence by IOP Publishing Ltd
Definition 1.
If the vertices (edges) of G are assigned values (mostly integers) subject to some restriction(s) is known as a vertex (edge) labeling of G.

Definition 2.
A “ternary vertex labeling (TVL)” of G is called a “3-equitable labeling” if $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for all $0 < i, j > 2$. A graph which permits a 3-equitable labeling is called a “3-equitable graph”.

Definition 3.
A chord of a cycle C_n is an “edge joining two non-adjacent vertices of C_n”.

Definition 4.
If "a divides b" (denoted by $a \mid b$), then there is a “positive integer k such that $b = ka$”. If "a does not divide b", then it is denoted by $a \nmid b$.

Definition 5.
The divisor function $d(n)$ of n, an integer, is the number of divisors of n.

Definition 6.
Let n, x denote an integer and a real number, respectively. The DSF (“divisor summability function”) $D(x)$ is the “sum of the number of divisors of n” for $n \leq x$.

Definition 7.
Let $f : V \rightarrow \{1, 2, \ldots, |V|\}$ be a bijection. For every edge xy, assign the label “1” if either $f(x) \mid f(y)$ or $f(y) \mid f(x)$ and the label “0” otherwise. Then f is called a “divisor cordial labeling” (DCL) if $|e_f(0) - e_f(1)| \leq 1$. A graph which permits a DCL is called a “divisor cordial graph”.

Definition 8.
A “binary vertex labeling” (BVL) of G is said to be a cordial labeling if $|v_f(0) - v_f(1)| \leq 1$ & $|e_f(0) - e_f(1)| \leq 1$. A graph which permits a cordial labeling is known as “cordial”.

Definition 9.
A TVL of G is said to be a “3-equitable labeling” if $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for all $0 \leq i, j \leq 2$. A graph G is 3-equitable if it permits a 3-equitable labeling.

Definition 10.
A function $f : V \rightarrow \{0, 1, 2\}$ such that each edge uv receives $|f(v_i) - f(v_j)|$ where $v_i, v_j \in V$ is said to be a “3-equitable labeling” if $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for all $0 \leq i, j \leq 2$ where $v_f(i)$ is the number of vertices labelled with i and $e_f(i)$ is the number of edges labelled with i.

Definition 11.
A function f from V of G to $\{0, 1, 2\}$ is called a 3-equitable labeling if the labels on the edges labels produced by “absolute difference of the labels of end vertices” of the respective edges in such a way that “the number of edges with label i and j differ by at most 1”.

Definition 12.
A mapping $f : V(G) \rightarrow \{0, 1, 2\}$ is called a TVL of G and $f(v)$ is called “the label of the vertex v of G” under f.

2. Certain well-known results on 3-equitable labeling

In this section, we highlight a few important results proved by different authors concerning the 3-equitable labeling of graphs.

Cahit [2] proved the following results.

Theorem 2.1.
(i) A cycle C_n is 3-equitable iff $C_n \not\equiv 3 \pmod{6}$.
(ii) A graph G which is Eulerian with $q \equiv 3 \pmod{6}$ is not 3-equitable.
(iii) Every caterpillar admits a 3-equitable labeling.
(iv) Every tree (with “fewer than five end vertices”) is 3-equitable.
Seoud et al. [13] proved the following results.

Theorem 2.2.
A graph $G(p, q)$ in which every vertex is of odd degree is not 3-equitable if $p \equiv 0 \text{ (mod 3)}$ and $q \equiv 3 \text{ (mod 6)}$.

Theorem 2.3.
(i) All fans except $P_2 + K_1$ are 3-equitable.
(ii) P_n^2 is 3-equitable for all n except 3.
(iii) $K_{m,n}$ ($3 \leq m \leq n$) is 3-equitable iff $(m, n) = (4, 4)$.

Bapat et al. [1] proved the following.

Theorem 2.4.
(i) Helms H_n (where $n \geq 4$) admit a 3-equitable labeling.
(ii) Flower graph is 3-equitable.
(iii) The “one-point union of any number of helms” is 3-equitable graph.
(iv) The “one-point union of any number of copies of K_4” is a 3-equitable graph.

Youssef gave the following result in [23].

Theorem 2.5.
The wheel $W_n = C_n + K_1$ is 3-equitable for all $n \geq 4$.

Vaidya et al. [17] have proved the following results.

Theorem 2.6.
(i) $D_2(C_n)$ is 3-equitable except for $n = 3 \& 5$.
(ii) $D_2(P_n)$ is 3-equitable except for $n = 3$.
(iii) $M(P_n)$ is 3-equitable.
(iv) $M(C_n)$ is 3-equitable for n even & not 3-equitable for n odd.

Vaidya et al. have also discussed the 3-equitable labeling of wheel related graphs in [15], some shell related graphs in [16], and some star related graphs in [21].

Theorem 2.7.
(i) All caterpillars are 3-equitable.
(ii) The graph $S'(K_{1,n})$ is 3-equitable.

Illustration: 3-equitable labeling of $S'(K_{1,7})$.
Theorem 2.8.

The graph $S'(B_{n,n})$ is 3-equitable.

Illustration: 3-equitable labeling of $S'(B_{6,6})$.

Theorem 2.9.

The graph $D_2(B_{n,n})$ is 3-equitable.

Illustration: 3-equitable labeling of $D_2(B_{5,5})$.

Theorem 2.10.

(i) For $n \geq 6$, the graph $C_n + K_n$ is 3-equitable if and only if n is even.
(ii) C_n^2 is 3-equitable if and only if $n \geq 8$.

I. Cahit [3] proved that C_n is 3-equitable, $n \not\equiv 3 \pmod{6}$. M. V. Bapat et al. in [1] proved that Helms H_n, ($n \geq 4$) are 3-equitable. S.K. Vaidya et al. in [14] have shown that $B_{n,n}$ is 3-equitable.

Theorem 2.11.

(i) Switching of any rim vertex of W_n (except for $n \equiv 1, 3, 5 \pmod{6}$) is 3-equitable.
(ii) The graph $Gn \oplus K_{1,n}$ is 3-equitable for all n.
(iii) The graph $G \oplus K_{1,n}$ is 3-equitable for all n, where G is “cycle having twin chords $C_{n,3}$”.

3. Some known results on divisor 3-equitable labeling

In this section, we present the divisor 3-equitable graphs.

Theorem 3.1.

Split graph $spl K(1,n)$ is 3-equitable prime cordial graph.

Theorem 3.2.

The graph obtained by “joining two copies of S_n by path P_k” permits a divisor cordial labeling for $n \geq 4$.

Theorem 3.3.
The jewel graph J_n is a divisor cordial.

Theorem 3.4.
The double cone $C_n + 2K_1$ is a divisor cordial graph.

Theorem 3.5.
Every complete graph is a divisor graph.

Theorem 3.6.
Every tree is a divisor graph.

Theorem 3.7.
The jewel graph J_n is divisor cordial.

Theorem 3.8.
Every full binary tree is divisor cordial.

Theorem 3.9.
Given n (a positive integer), there is a divisor cordial graph G with n vertices.

Theorem 3.10.
The cycle C_n is a divisor cordial.

Theorem 3.11.
The graph $K_{3,n}$ is divisor cordial.

Theorem 3.12.
Path P_n is divisor 3-equitable graph.

Illustration 3.1
n=3

Illustration 3.2
n=4

Illustration 3.3
n=9

Illustration 3.4
n=17

Theorem 3.13.
Cycle C_n is a divisor 3-equitable cordial.

Illustration 3.5
C_{12}
Illustration 3.6
C_{24}

4. Open Problems
In this section we highlight a few important open problems which are remaining unsolved.
1. Deriving new classes of 3-equitable graphs and divisor 3-equitable graphs in the context of other graph operations.
2. Investigating the “necessary and sufficient conditions” for a graph to admit a 3-equitable labeling and a divisor 3-equitable labeling.
3. Analysis of these two labeling on subgraphs/supergraphs of graphs that admit these labeling.
4. Complete characterization of 3-equitable and divisor 3-equitable graphs.
5. Exploring the exclusive applications of 3-equitable and divisor 3-equitable labeling.

Conclusion
In this article two important graph labeling called 3-equitable and divisor 3-equitable labeling are discussed in details. Certain important results concerning these two labeling are also given. The study of different graph labeling techniques plays a vital role in many areas of science and technology especially in the field of communication networks and network security. Establishing 3-equitable labeling and divisor 3-equitable labeling of other classes of graphs are still open and this is for future work.

REFERENCES
[1] Bapat M V and Limaye N B 2004 J. Combin. Math. Combin. Comput. 48 179
[2] Cahit I 1990 Util. Math. 37 189
[3] Cahit I 1995 Ars Combin 40 279
[4] Gallian J A 2013 The Electronics Journal of Combinatorics DS6
[5] Gross J and Yellen J 1999 Graph Theory and its Applications (CRC Press)
[6] Ghodasara G V and Sonchhatra S G 2015 IAENG International Journal of Applied Mathematics 4 (1) 1
[7] Harary F 1972 *Graph Theory* Addison Wesley, Massachusetts
[8] Muthaiyan A and Pugalenthi P 2014 *International Journal of Mathematics Trends and Technology* 12(2)
[9] Nellai Murugan A and Taj Nisha M 2014 *Indian Journal of Research* 3(3) 12
[10] Nellai Murugan A and Brinda Devi V 2014 *International Journal of Scientific Research* 3(4) 286
[11] Speyer D and Szaniszlo Z 2000 *Discrete Math.* 220 283
[12] Szaniszlo Z 1994 *Ars Combin.* 37 49
[13] Seoud M A and Abdel Maqsoud A E I 2000 *Proc. Math. Phys. Soc. Egypt* 75 67
[14] Vaidya S K and Shah N H 2013 *Annals of Pure and Applied Mathematics* 3(1) 67
[15] Vaidya S K, Dani N A, Kanani K K and Vihol P L 2009 *Advances and Applications in Discrete Mathematics* 4 71
[16] Vaidya S K, Dani N A, Kanani K K and Vihol P L 2009 *J. Sci. Res.* 1(3) 438
[17] Vaidya S K, Vihol P L and Barasara C M 2011 *Journal of Applied Computer Science and Mathematics* 11(5) 69
[18] Vaidya S K and Shah N H 2013 *Annals of Pure and Applied Mathematics* 4(2) 150
[19] Varatharajan R, Navanaeethakrishnan S and Nagarajan K 2011 *International J. Math. Combin.* 4 15
[20] Varatharajan R, Navanaeethakrishnan S and Nagarajan K 2012 *International Mathematical Forum* 7(35) 1737
[21] Vaidya S K, Dani N A, Kanani K K and Vihol P L 2009 *International Mathematical Forum* 4(31) 1543
[22] West D B 2001 *Introduction to Graph Theory*. Prentice-Hall of India.
[23] Youssef M Z 2003 *Util. Math.* 64 193