ANALYSIS OF DRINKING WATER QUALITY OF PESHAWAR CITY

Engr. Furqan Wali¹, Muhammad Asim Khan Marwat², Usama Raheel³,
Abid Ullah⁴, Engr. Marvan Raza⁵

Department of Civil Engineering Iqra National University, Peshawar
Hayatabad Phase 2, Khyber Pakhtunkhwa, Pakistan

Corresponding Author: ¹Engr. Furqan Wali

Email: ¹Furqanwali@inu.edu.pk

Abstract

In this paper, the authors analyze the drinking water quality of Peshawar city due to which authors concluded that water quality assessment of 18 locations inside Peshawar of various union council. Groundwater samples were collected from a tube well and subjected to physical, chemical and biological analysis to check their suitability for the purpose of drinking. Results exposed that out of 18 samples 10 samples of water were found unfit for drinking purposes. In the 10, samples most of the effect on the water quality was from the chemical and biological contamination. It is concluded that the old defective supply system, infrastructure and storage, as well as their lack of maintenance are the reason behind the pollution of drinking water in Peshawar.

Keywords: water quality assessment, physical, chemical and biological analysis, purpose of drinking Ground Water, Tube well,

I. Introduction

With sufficient water supplies, Pakistan is blessed. However, the country faces quantity and quality issues because of a lack of proper management policy for water supplies, quality water. The only limited population has access to public water supply (not even clean), while the rest of the population is dependent upon direct withdrawal of water from both surface and ground sources, where available, for their daily needs. Pakistan's environmental profile reveals that about 40 percent of deaths are attributable to water-borne diseases arising from the addition of effluent from various sources. Obviously, several studies have been carried out in the region, pointing to the declining quality of water sources. Research conducted they took water sample analysis from 15 sources in Abbottabad Pakistan, into Account and stated that due to microbiological problems, drinking water from different areas in the Abbottabad district was not appropriate for human health [III]. Similarly, another researcher also reported that most of the supplies of drinking water were fecally contaminated because the number of coliforms was found to be between 0 and 240. This study deliberates the degradation Engr. Furqan Wali et al
of groundwater quality due to natural subsoil pollutants or anthropogenic activities. Drinking water's low bacteriological content has also [I]. Contributed to a high incidence of waterborne diseases, whereas subsoil pollutants have exacerbated other conditions for customers. Besides, other studies have also highlighted the prevalence of excess heavy metals and nitrate content in the supply of drinking water, while also considering that it is unhealthy for human consumption [II]. Some researchers examined exceeded Manganese (Mn) and Lead (Pb) quantities (8.26 and 2.97 mg/l) in groundwater specimens collected from Peshawar city. Many of Pakistan's quality problems are due to lack of control of waste disposal, poor management of water distribution systems, lack of availability of treatment facilities and lack of public knowledge of water quality [V]. Therefore, there is a need for integrated management of water resources, which takes into account the environmental concerns. The public supply of water to Peshawar, the capital of the province of Khyber Pakhtunkhwa (KPK), relies on both surface and groundwater stored in overhead tanks and then distributed to households [VI]. However, this is limited to certain parts of the city while the suburban areas around the city are without proper water supply and sanitation systems. [VII] Contamination of drinking water because of many factors has led to various outbreaks of waterborne diseases. via extensive studies on the quality of drinking water and the identification of the different sources of pollution affecting groundwater in Peshawar, the present research in this regard was carried out in various Peshawar Union Councils [VIII] [IX]

The research focused on evaluating the area's drinking water quality with the following goals:

1. Depict the water samples for microbiological examination.
2. The fortitude of physio-chemical parameters of water samples.
3. Find out in collected samples the number of trace elements / heavy metals
4. Comparison of findings with limits for drinking water from The World Health Organization (WHO).

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance. Drinking water, also known as potable water, is water that is safe to drink or to use for food preparation. There are some types of drinking water known as Palatable water, Tap water. [X]

II. Problem Statement and Motivation

In Peshawar and surrounding areas, the potable water quality is varying due to variation in depth of saturated zone, poor recharge processes and ill sewerage system. The water extracted from these zones is not properly monitored and there might be impurities in potable water. The water supplied to the household without filtration which might contain different chemical substances and can lead to various human disease. The research will help find the presence of different substances and their variations by taking samples from different sources

III. Aims and Objectives

This research aims to analyze physical, chemical and biological water quality and compare it with the WHO guideline. The aim will be achieved through the

Engr. Furqan Wali et al
following objectives. To study the Physical, chemical and biological properties of potable water in the various union councils of the Peshawar area.

IV. Scope and Limitation of the Research

The main scope and purpose of this research is to know about physical, chemical and biological characteristics of water of Peshawar city to treat them accordingly by water treatment plants taking requisite steps to make the water safe for drinking purpose. The research gives us awareness about the water quality of different areas. Infect the contaminated water use is the source of various disease caused by germs found inside water. By not drinking such contaminated water we can save ourselves from various diseases to a greater extent.

V. Methodology

Mix methodology was adopted agglomerating both Qualitative and Quantitative approaches respectively. The samples were collected from different 18 sources, approximately 1 sample from each source.

Samples were examined under three types of analysis i.e.

1. Physical analysis.
2. Chemical analysis.
3. Biological analysis.

Due to the physical analysis first, we did a pH test for the drinking water in which we get if the water is acidic, basic or neutral. For every experiment of the sample in which we figure out the variation of values due to two common values, we select only one value for our result which is in comparison with WHO standards. The next test which we performed is the Turbidity test in which we conclude the viscosity of drinking water and its value is compared with WHO standards. Then the other test is TDS Test in which we conclude that if the water has the dissolved substances in excess means it exceed WHO limitations. The other test is the Hardness test which showed us the hardness of the water. The next test is of Color in which we conclude the watercolor which is then compared with WHO standards and due to chemical analysis, we did tests on Arsenic which conclude that is the drinking water fit to drink means its value is equal with the WHO standards. Arsenic causes cancer in the body of humans. The other test which was performed was the Fluoride test and its value is compared to WHO standardization. The other test is of Nitrate which causes the disease blue baby syndrome for the avoidance of the disease we compared its value with WHO limitations. The next one is the Sulphate test which value was compared by WHO standardizations. The other once was Magnesium, chloride and through biological analysis, we determined biological contamination. The results of samples obtained in the lab were compared with WHO guidelines.

Engr. Furqan Wali et al
V. Results

Parameters are the analysis of physical, chemical and biological characteristics of drinking water quality of Peshawar city. Which values are shown in the tables below and also some graphical representations are given.

Table 1 (Results of PH, Turbidity, TDS, Hardness, Colour, Arsenic)

Parameters	PH	Turbidity	TDS	Hardness	Colour	Arsenic	REMARKS
UC # 1	7.3	0.1	592	370	colourless	nil	Unfit
UC # 3	7.4	0.6	497	380	colourless	nil	Unfit
UC # 22	7.6	3.1	347.5	240	colourless	nil	Fit
UC # 23	7.2	0.4	506.5	400	colourless	nil	Fit
UC # 9	7.5	0.01	487	410	colourless	nil	Unfit
UC # 13	7.2	0.05	437	350	colourless	nil	Fit
UC # 4	7.3	0.31	578.6	440	colourless	nil	Fit
UC # 7	7.3	1.15	444	370	colourless	nil	Fit
UC # 11 Ijaz Abad	7.4	0.02	514	350	colourless	nil	unfit
UC # 12	7.3	0.01	455	350	colourless	nil	fit
UC # 14	7.1	0.9	568	470	colourless	nil	unfit
UC # 18	7.3	0	488.8	380	colourless	nil	unfit
UC # 10	7.3	1.5	613	430	colourless	nil	unfit
UC # 19	7.2	0.02	499	430	colourless	nil	fit
UC # 8	7.2	0.03	436	370	colourless	nil	unfit
UC # 25	7.5	0.01	495	420	colourless	nil	unfit
UC # 15	7.1	0.6	515	420	colourless	nil	unfit
UC # 21	7.3	0.01	460	370	colourless	nil	fit

WHO Standards 8.5 5 1000 500 colourless 50 (PSQCA)

Table 2 (Results of Fluoride, Nitrate, Sulphate, Magnesium, Chloride, Biological Contamination)

Parameters	Fluoride	Nitrate	Sulphate	Magnesium	Chloride	Biological Contamination	REMARKS
UC # 1	0.31	2.2	144	24.3	40	(+ve)	Unfit
UC # 3	0.29	7.2	70	22	30	(+ve)	Unfit
UC # 22	0.36	0.2	30	24.3	24	(-ve)	Fit
UC # 23	0.45	7	60	36.4	36	(-ve)	Fit
UC # 9	0.28	10.2	70	46	24	(+ve)	Unfit
UC # 13	0.42	2	55	45	28	(-ve)	Fit
UC # 4	0.24	5	106	31.5	40	(-ve)	Fit
UC # 7	0.36	9.2	50	29	20	(-ve)	fit

Engr. Furqan Wali et al
Table 3 (UC Details)

UC #	Union Council	WHO Standards
1	Sethi Town	1.5
2	UC # 12 Shaheen Muslim Town II	10
3	Afghan Colony	250
4	Supply Road	150
5	UC # 14 Police Station Kotwali	250
6	UC # 22 Yakatoot III	(-ve)
7	UC # 18 Library Kohati Gate	fit
8	UC # 23 Dast Badast Pir	unfit
9	UC # 20 Krishan Pura	unfit
10	UC # 10 Gulbahar Colony Num 1	fit
11	UC # 13 Madarssa Shaikh Abad	(-ve)
12	UC # 19 Mohalla Hafiz Azeem	fit
13	UC # 8 Faqir Abad	unfit
14	UC # 15 Govt High School. G T Road	fit
15	UC # 21 Habib Abad	unfit

Graph of pH

Engr. Furqan Wali et al
Graph of Turbidity

Graph of TDS

Engr. Furqan Wali et al
VI. Conclusion

From the above, it is concluded that 10 samples out of 18 were found contaminated and unhealthy for drinking purposes in the union council surveyed by the group. The study shows that out of 12 different parameters the presence of nitrate and risky microorganism exceeds the standards and making quality unsuitable for drinking purposes in the study area.

Engr. Furqan Wali et al
Table 3 conclusion details

Union Council No.	Remarks
1	Unfit
2	Unfit
3	Fit
4	Fit
5	Unfit
6	Fit
7	Fit
8	Fit
9	Unfit
10	Fit
11	Unfit
12	Unfit
13	Unfit
14	Fit
15	Unfit
16	Unfit
17	Unfit
18	Fit

VII. Recommendations

To provide quality water to the community of the union council no 1, 3, 9, 11, 14, 18, 10, 8, 25, 15 the following steps are therefore recommended:

The tube wells are very old and the supply lines have been rusted due to climatic and edaphic factors and therefore, proper maintenance or replacement of pipes required. To avoid contamination drainage systems of the studied area should be redesign and maintain by concerned authorities. Proper laws should be made by concerned authorities regarding disposal of the toilet wastes. At the local level, small treatment plants should be constructed for the monitoring and treatment of wastewater. Removal of nitrate and biological contamination can be possible by from different methods like distillation, reverse osmosis or ion exchange method.

Conflict of Interest:

Authors declared: No conflict of interest regarding this article
References

I. Ghulam Qadir Shar, Abdul Raheem Shar, Noor-Ul-Hassan Shar, Wahid Bux Jatoi, Waqas Mustafa Ghorı at el in 2014 “Assessment of the quality of drinking water of Thari.”

II. Mirwah Town and Surrounding Villages, District Khairpur, Sindh, Pakistan” where the Assessment of the Quality of Drinking water was done by Ghulam Qadir Shah in 2014.

III. M.K. Daud, Muhammad Nafees at el in 2017 “Drinking water quality status and contamination in Pakistan”.

IV. Muhammad Sheeraz, Muhammad Nadeem Khan, Muhammad Zeeshan Ahad, Fawad Ahmad, Mehr-e-Munir.; Effluents of Hayatabad Industrial Estate and Its Impacts on Human Health and Environment, J. Mech. Cont. & Math. Sci., Vol.-13, No.-5, November-December (2018) Pages 248-262

V. Shams Ali Baig, Zimo Lou, Muzaffar Ali Baig, Muhammad Qassim, Dilawar Farhan Shams, Qaisar Mahmood and Xinhua Xu at el in 2017 “Assessment of tap water quality and corrosion scales from the selected distribution systems in northern Pakistan”.

VI. Shams Ali Baig, Qaisar Mahmood, Bahadar Nawab, Mustafa Nawaz Shafqat, Arshid Pervez at el, 2017 “improvement of drinking water quality by using plant biomass through household biosand filter – A decentralized approach”.

VII. Sara Shoaiib Khan, Huma Tareen, Uzma Jabeen, Fariha Mangal, Zubia Masood, Sara Ahmed, Sherino Bibi, Musarat Riaz, Sabena Rizwan, Fazila Mandokhail, Uzma Irum, and Rabia Mangal in 2015 “Quality assessment of drinking water from the different colonies of Quetta city, Pakistan according to WHO Standards”.

VIII. Sardar khan, Rabia Rauf at el in 2014 2017 “Arsenic and heavy metals health risk assessment through drinking water consumption in the Peshawar District, Pakistan”.

IX. Toqeer Ahmad, Saba Imdad and Noor Mohammad Butt at el, in 2014 “Bacteriological assessment of drinking water of Islamabad Capital Territory, Pakistan”.

X. Z. A. Soomro, Dr. M. I. A. Khokhar, W. Hussain and M. Hussain at el in 2011 “Drinking water quality challenges in Pakistan”.

Engr. Furqan Wali et al