Elliptic Flow at Finite Shear Viscosity in a Kinetic Approach at RHIC
V. Grecoab, M. Colonnab, M. Di Toroab and G. Ferinia

aDipartimento di Fisica e Astronomia, Universit\`{a} di Catania, Via S. Sofia 64, 95125 Catania, Italy

bINFN-LNS, Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania, Italy

Within a covariant parton cascade, we discuss the impact of both finite shear viscosity η and freeze-out dynamics on the elliptic flow generated at RHIC. We find that the enhancement of η/s in the cross-over region of the QGP phase transition cannot be neglected in order to extract the information from the QGP phase. We also point out that the elliptic flow $v_2(p_T)$ for a fluid at $\eta/s \sim 0.1 - 0.2$ is consistent with the one needed by quark number scaling drawing a nice consistency between the nearly perfect fluid property of QGP and the coalescence process.

1. Introduction

The measure of the elliptic flow, $v_2(p_T)$, in the ultra-relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) has revealed that the so-called quark-gluon plasma (QGP) is an almost perfect fluid. However several approaches indicate that even a small finite value of the shear viscosity to entropy density ratio $\eta/s \sim 0.1 - 0.2$ affect significantly the strength of $v_2(p_t)$ \cite{1, 2}. Hence viscous corrections to ideal hydrodynamics are indeed large and causality and stability problems present in first order relativistic Navier Stokes hydrodynamics cannot be avoided \cite{3, 4}. Second-order Israel-Stewart approach has been developed to simulate the RHIC collision providing a first estimate of the η/s \cite{3}. Such an approach, apart from the limitation to 2+1D simulations, has the more fundamental problem that it is based on a gradient expansion at second order that is not complete and that anyway cannot be sufficient to describe correctly the dynamics of a fluid with large η/s as the one in the hadronic phase \cite{3, 4}.

We have developed a covariant kinetic approach that is able to simulate a fluid at finite η/s by mean of a local renormalization of the cross section, $\sigma \cdot \eta/s = (p)/15\rho$, similarly to \cite{4}, see Ref.\cite{5, 6} for more details. This has the advantage to be a 3+1D approach not based on a gradient expansion that is valid also for large viscosity and for out of equilibrium momentum distribution allowing a reliable description also of the intermediate p_T range where the important properties of quark number scaling (QNS) of $v_2(p_t)$ have been observed \cite{7}.
2. Impact of η/s increase in the cross-over region

We focus on the $Au + Au$ collisions at $\sqrt{s} = 200$ AGeV employing standard Glauber initial conditions in r-space, a Boltzmann equilibrium distribution in momentum space for partons at $p_T < 2$ GeV and a minijet distribution at higher p_T.

A first objective is to evaluate the importance of the increase of the η/s of the matter in the cross-over transition and in the hadronic phase [8]. This is of particular relevance because most of the work done till now to evaluate η/s has been done in the viscous hydrodynamics framework keeping the η/s constant during the entire evolution of the hadronic phase [11][2]. As also mentioned in Ref.[3], it is desirable to take into account the evolution of the η/s inside and below the QCD phase transition. We have realized this imposing an increase of the η/s as a function of the local energy density, as shown in Fig.1. While in hydrodynamics the η/s is kept constant during the entire evolution of the system (dashed lines) in our calculation it increases when the cross-over region starts. The impact of such increase on the $v_2(p_T)$ is shown on the right side of Fig.1. We see that even if most of the $v_2(p_T)$ is built up during the pure QGP phase, the cross-over region can still produce a damping of the elliptic flow. Such a finding is similar to Ref.[9], but here it is entwined in the context of QGP finite η/s showing the relevance for its evaluation. From Fig.1 we can deduce that neglecting the expected increase of η/s across the transition can introduce a systematic error of the order of $40-50\%$.

3. Scalings of v_2

An energy density dependent η/s represents also a way to realize a smooth kinetic freeze-out (f.o.) of the system. In Ref.[6], Fig.2 (left) here, we have shown that it is indeed the f.o. mainly responsible for the observed breaking of the scaling of $v_2(p_T)$ with the initial space eccentricity ϵ_x [10][11], at variance with ideal hydrodynamics prediction.
Figure 2. Left: $v_2(p_T)$ over eccentricity for different impact parameters. Right: Elliptic flow vs. p_T for three different value of η/s_{QGP} at $b=5$fm. Circles are data for the corresponding centrality [10] rescaled according to the n_q-scaling.

We notice the effect of viscosity increases with p_T and is larger in the intermediate-p_T region see Fig.[2]. Moreover when both a suitable f.o. condition and a finite η/s are taken into account for the description of the fireball evolution, not only the breaking of the v_2/ϵ_x scaling is reproduced along with the persistent $v_2(p_T)/<v_2>$ one [11], but also the shape of $v_2(p_T)$ is consistent with the one expected from QNS [7]. In Fig.(2) (right) $v_2(p_T)$ at partonic level for different η/s is shown together with the data from PHENIX, rescaled by the number of quarks that in the QNS scenario should correspond to quark one. We can see that a $\eta/s \sim 0.15 - 0.2$ is consistent with n_q scaling. Quantitatively a comparison with experiments needs the inclusion of an equation of state with phase transition that in the context of hydrodynamics has been shown to reduce significantly the v_2 [2] and therefore it can be envisaged to shift the agreement with the data down to $\eta/s \sim 0.1$. The inclusion of a mean field dynamics with phase transition is under investigation [12].

REFERENCES

1. P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99 (2007) 172301
2. H. Song and U. W. Heinz, Phys. Rev. C 78 (2008) 024902
3. P. Romatschke, arXiv:0902.3663 [hep-ph].
4. P. Huovinen and D. Molnar, Phys. Rev. C 79 (2009) 014906
5. G. Ferini, M. Colonna, M. Di Toro and V. Greco, Phys. Lett. B 670 (2009) 325
6. V. Greco et al., Prog. Part. Nucl. Phys. 62 (2009) 562, arXiv:0811.3170 [hep-ph]
7. R.J. Fries, V. Greco, P. Sorensen, Ann. Rev. Nucl. Part. Sci., 58 (2008) 177
8. N. Demir and S. A. Bass, arXiv:0907.4333 [nucl-th].
9. T. Hirano et al., Phys. Lett. B 636 (2006) 299
10. A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 98 (2007) 162301
11. B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 77 (2008) 054901
12. S. Plumari, V. Baran, M. Di Toro, G. Ferini, V. Greco, to be published.