Zeros of a random analytic function approach perfect spacing under repeated differentiation

Robin Pemantle, Sneha Subramanian

Abstract: We consider an analytic function f whose zero set forms a unit intensity Poisson process on the real line. We show that repeated differentiation causes the zero set to converge in distribution to a random translate of the integers.

Key words and phrases: Poisson, coefficient, saddle point, lattice, Cauchy integral, random series, translation-invariant.

Subject classification 30B20, 60G55; Secondary: 30C15.

\footnote{1Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA, pemantle@math.upenn.edu}
\footnote{2Research supported in part by NSF grant # DMS-1209117}
\footnote{3Department of Mathematics, University of California at Irvine, 340 Rowland Hall (Bldg. # 400), University of California, Irvine, CA 92697-3875, ssnagara@math.upenn.edu}
1 Introduction

Study of the relation of the zero set of a function f to the zero set of its derivative has a rich history. The Gauss-Lucas theorem (see, e.g., [Mar49, Theorem 6.1]) says that if f is a polynomial then the zero set of f' lies in the convex hull of the zero set of f. Another property of the differentiation operator is that it is complex zero decreasing: the number of non-real zeros of f' is at most the number of non-real zeros of f. This property is studied by [CC95] in the more general context of Pólya-Schur operators, which multiply the coefficients of a power series by a predetermined sequence. Much of the recent interest in such properties of the derivative and other operators stem from proposed attacks on the Riemann Hypothesis involving behavior of zeros under these operators [LM74, Con83]. See also [Pem12, Section 4] for a survey of combinatorial reasons to study locations of zeros such as log-concavity of coefficients [Bre89] and negative dependence properties [BBL09].

The vague statement that differentiation should even out the spacings of zeros is generally believed, and a number of proven results bear this out. For example, a theorem attributed to Riesz (later rediscovered by others) states that the minimum distance between zeros of certain entire functions with only real zeros is increased by differentiation; see [FR05, Section 2] for a history of this result and its appearance in [Sto26] and subsequent works of J. v. Sz.–Nagy and of P. Walker.

The logical extreme is that repeated differentiation should lead to zeros that are as evenly spaced as possible. If the original function f has real zeros, then all derivatives of f also have all real zeros. If the zeros of f have some long-run density on the real line, then one might expect the zero set under repeated differentiation to approach a lattice with this density. A sequence of results leading up to this was proved in [FR05]. They show that the gaps between zeros of $f' + af$ are bounded between the infimum and supremum of gaps between consecutive zeros of f and generalize this to a local density result that is applicable to the Riemann zeta function. They claim a result [FR05, Theorem 2.4.1] that implies the convergence of spacings of zeros to a constant (their Theorem 2.4.2) but a key piece of their proof, Proposition 5.2.1, has a hole that seemingly cannot be fixed (D. Farmer, personal communication).

The central object of this paper is a random analytic function f whose zeros form a unit intensity point process. We construct such a function and prove translation invariance in Proposition 2.1. Our main result is that as $k \to \infty$, the zero set of the kth derivative of f approaches a random translate of the integers. Thus we provide, for the first time, a proof of the lattice convergence result in the case of a random zero set.

The remainder of the paper is organized as follows. In the next section we give formal constructions and statements of the main results. We also prove preliminary results concerning the construction, interpretation and properties of the random function f. At the end of the section we state an estimate on the Taylor coefficients of f, Theorem 2.7 below, and show that Theorem 2.6 follows from Theorem 2.4 without too much trouble. In Section 3 we begin proving Theorem 2.7.
that is, estimating the coefficients of f. It is suggested in [PR05] that the Taylor series for f might prove interesting, and indeed our approach is based on determination of these coefficients. We evaluate these via Cauchy’s integral formula. In particular, in Theorem 3.2 we locate a saddle point σ_k of $z^{-k}f$. In Section 4.2 we prove some estimates on f, allowing us to localize the Cauchy integral to the saddle point and complete the proof of Theorem 2.7. We conclude with a brief discussion.

2 Statements and preliminary results

We assume there may be readers interested in analytic function theory but with no background in probability. We therefore include a couple of paragraphs of formalism regarding random functions and Poisson processes, with apologies to those readers for whom it is redundant.

2.1 Formalities

A random object X taking values in a S endowed with a σ-field S is a map $X : (\Omega, F) \to (S, S)$ where (Ω, F, P) is a probability space. We will never need explicitly to name the σ-field S on S, nor will we continue to say that maps must be measurable, though all maps are assumed to be. If S is the space of analytic functions, the map X may be thought of as a map $f : \Omega \times \mathbb{C} \to \mathbb{C}$. The statement "$f$ is a random analytic function" means that for any fixed $\omega \in \Omega$, the function $z \mapsto f(\omega, z)$ is an analytic function. The argument ω is always dropped from the notation, thus, e.g., one may refer to $f'(z)$ or $f(\lambda z)$, and so forth, which are also random analytic functions.

A unit intensity Poisson process on the real lines is a random counting measure N on the measurable subsets of \mathbb{R} such that for any disjoint collection of sets $\{A_1, \ldots, A_n\}$, of finite measure, the random variables $\{N(A_1), \ldots, N(A_n)\}$ are a collection of independent Poisson random variables with respective means $|A_1|, \ldots, |A_n|$ (here $|B|$ denotes the measure of B). The term "counting measure" refers to a measure taking values in the nonnegative integers; there is a random countable set E such that the measure of any set A is the cardinality of $A \cap E$. We informally refer to the set $E := \{x \in \mathbb{R} : N(\{x\}) = 1\}$ as the "points of the Poisson process."

Let Ω henceforth denote the space of counting measures on \mathbb{R}, equipped with its usual σ-field F, and let P denote the law of a unit intensity Poisson process. This simplifies our notation by allowing us to construct a random analytic function $f : \Omega \times \mathbb{C} \to \mathbb{C}$ by a formula for the value of $f(N, z)$, guaranteeing that the random function f is determined by the locations of the points of the Poisson process N.

For $N \in \Omega$ and $\lambda \in \mathbb{R}$, let $\tau_\lambda N$ denote the shift of the measure N that moves points to the right by λ; in other words, $\tau_\lambda N(A) := N(A - \lambda)$ where $A - \lambda$ denotes the leftward shift $\{x - \lambda : x \in A\}$. A unit intensity point process is translation invariant. This means formally that $P \circ \tau_\lambda = P$ for any
λ. If X is a random object in a space S admitting an action of the group \((\mathbb{R}, +)\), we say that X is constructed in a translation invariant manner from N if \(X(\tau_\lambda N) = \lambda X(N)\). This implies that the law of X is invariant under the \((\mathbb{R}, +)\)-action but not conversely. In what follows we will construct a random analytic function \(f\) which is translation invariant up to constant multiple. Formally, for any function \(g\) let \([g]\) denote the set of functions \(\{\lambda g : g \in \mathbb{R}\}\). Let \((\mathbb{R}, +)\) act on the set of analytic functions by translation in the domain: \(\lambda \ast g(z) := g(z - \lambda)\). This commutes with the projection \(g \mapsto [g]\). Our random analytic function \(f\) will have the property that \([f]\) is constructed in a translation invariant manner from \(N\).

2.2 Construction of \(f\)

Various quantities of interest will be defined as sums and products over the set of points of the Poisson process \(N\). The sum of \(g\) evaluated at the points of the counting measure \(N\) is more compactly denoted \(\int g \, dN\). If \(\int |g| \, dN < \infty\) then this is an absolutely convergent sum and its meaning is clear. Because many of these infinite sums and products are not absolutely convergent, we introduce notation for some symmetric sums that are conditionally convergent.

Let \(g : \mathbb{R} \to \mathbb{C}\) be any function. Let \(N_M\) denote the restriction of \(N\) to the interval \([-M, M]\). Thus, \(\int g \, dN_M\) denotes the sum of \(g(x)\) over those points of the process \(N\) lying in \([-M, M]\). Define the symmetric integral \(\int g \, dN\) to be equal to \(\lim_{M \to \infty} \int g \, dN_M\) when the limit exists. It is sometimes more intuitive to write such an integral as a sum over the points, \(x\), of \(N\). Thus we denote

\[
\sum_\ast g(x) := \int g(x) \, dN(x) = \lim_{M \to \infty} \int g(x) \, dN_M(x)
\]

when this limit exists.

Similarly for products, we define the symmetric limit by

\[
\prod_\ast g(s) := \lim_{M \to \infty} \exp \left(\int \log g \, dN_M \right).
\]

Note that although the logarithm is multi-valued, its integral against a counting measure is well defined up to multiples of \(2\pi i\), whence such an integral has a well defined exponential.

Theorem 2.1. Except for a set of values of \(N\) of measure zero, the symmetric product

\[
f(z) := \prod_\ast \left(1 - \frac{z}{x}\right)
\]

exists. The random function \(f\) defined by this product is analytic and translation invariant. In particular,

\[
f(\tau_\lambda N, z) = \frac{f(N, z - \lambda)}{f(N, -\lambda)}
\]

which implies \([f(\tau_\lambda N, \cdot)] = [f(N, \cdot - \lambda)]\).
We denote the k^{th} derivative of f by $f^{(k)}$. The following is an immediate consequence of Theorem 2.1.

Corollary 2.2. For each k, the law of the zero set of $f^{(k)}(z)$ is translation invariant. □

Translation invariance of f is a little awkward because it holds only up to a constant multiple. It is more natural to work with the logarithmic derivative

$$h(z) := \sum_z \frac{1}{z - x}.$$

Lemma 2.3. The random function h is meromorphic and its poles are precisely the points of the process N, each being a simple pole. Also h is translation invariant and is the uniform limit on compact sets of the functions

$$h_M(z) := \int \frac{1}{z - x} dN_M(x).$$

Proof: Let $\Delta_M := h_{M+1}(0) - h_M(0)$. It is easily checked that

(i) $\mathbb{P}(\Delta_M > \varepsilon)$ is summable in M;

(ii) $\mathbb{E}\Delta_M = 0$;

(iii) $\mathbb{E}\Delta_M^2$ is summable.

By Kolmogorov’s three series theorem, it follows that $\lim_{M \to \infty} h_M(0)$ exists almost surely.

To improve this to almost sure uniform convergence on compact sets, define the M^{th} tail remainder by $T_M(z) := h(z) - h_M(z)$ if the symmetric integral h exists. Equivalently,

$$T_M(z) := \lim_{R \to \infty} \int \frac{1}{z - x} d(N_R - N_M)(x)$$

if such a limit exists. Let K be any compact set of complex numbers. We claim that the limit exists and that

$$G(M) := \sup_{z \in K} |T_M(z) - T_M(0)| \to 0 \text{ almost surely as } M \to \infty. \quad (2.3)$$

To see this, assume without loss of generality that $M \geq 2 \sup\{|\Re\{z\}| : z \in K\}$. Then

$$T_M(z) - T_M(0) = \lim_{R \to \infty} \int \left(\frac{1}{z - x} - \frac{1}{-x} \right) d(N_R - N_M)(x). \quad (2.4)$$

Denote $C_K := \sup_{z \in K} |z|$. As long as $z \in K$ and $|x| \geq M$, the assumption on M gives

$$\left| \frac{1}{z - x} - \frac{1}{-x} \right| = \left| \frac{z}{x(z - x)} \right| \leq \frac{2C_K}{x^2}. \quad (2.5)$$
This implies that the integral in (2.4) is absolutely integrable with probability 1. Thus, almost surely, \(T_M(z) - T_M(0) \) is defined by the convergent integral

\[
T_M(z) - T_M(0) = \int \left(\frac{1}{z-x} - \frac{1}{-x} \right) d(N - N_M)(x).
\]

Plugging in (2.5), we see that

\[
G(M) \leq 2C_K \int x^{-2} d(N - N_M)(x),
\]

which goes to zero (by Lebesgue dominated convergence) except on the measure zero event that

\[
\int |x|^{-2} dN(x) = \infty.
\]

This proves (2.3). The triangle inequality then yields

\[
\sup_{z \in K} |T_M(z)| \leq G(M) + |T_M(0)|,
\]

both summands going to zero almost surely. By definition of \(T_M \), this means \(h_M \to h \) uniformly on \(K \).

The rest is easy. For fixed \(K \) and \(M \),

\[
h = h_M + \lim_{R \to \infty} (h_R - h_M).
\]

When \(M \) is sufficiently large and \(R > M \), the functions \(h_R - h_M \) are analytic on \(K \). Thus \(h \) is the sum of a meromorphic function with simple poles at the points of \(N \) in \(K \) and a uniform limit of analytic functions. Such a limit is analytic. Because \(K \) was arbitrary, \(h \) is meromorphic with simple poles exactly at the points of \(N \).

The final conclusion to check is that \(h \) is translation invariant. Unraveling the definitions gives

\[
h(\tau \lambda, z) = \int_{\tau \lambda} \frac{1}{z-x} dN(x)
\]

where \(\int_{\tau \lambda} \) is the limit as \(M \to \infty \) of the integral over \([-\lambda - M, -\lambda + M]\). Translation invariance then follows from checking that \(\int_{\tau \lambda} \frac{1}{z-x} dN(x) \) and \(\int_{\tau \lambda} \frac{1}{z-x} dN(x) \) both converge almost surely to zero. This follows from the large deviation bound

\[
P \left(\left| \int_{\tau \lambda} \frac{1}{z-x} dN(x) \right| \geq \varepsilon \right) = O(e^{-\varepsilon M})
\]

and Borel-Cantelli.

Proof of Theorem 2.1: The antiderivative of the meromorphic function \(h \) is an equivalence class (under addition of constants) of functions taking values in \(\mathbb{C} \mod (2\pi i) \). Choosing the antiderivative of \(h_m \) to vanish at the origin and exponentiating gives the functions \(f_M \), whose limit as \(M \to \infty \) is the symmetric product, \(f \). Analyticity follows because \(f \) is the uniform limit of analytic functions. Translation invariance up to constant multiple follows from translation invariance of \(h \). The choice of constant (2.2) follows from the definition, which forces \(f(0) = 1 \).

Before stating our main results, we introduce a few properties of the random analytic function \(f \).

Proposition 2.4. \(f(\overline{z}) = \overline{f(z)} \) and \(|f(a + bi)| \) is increasing in \(|b| \).

Proof: Invariance under conjugation is evident from the construction of \(f \). For \(a, b \in \mathbb{R} \),

\[
\log |f(a + bi)| = \sum \log \left| 1 + \frac{a + bi}{x} \right|
\]

\[
= \frac{1}{2} \sum \log \left[\left(1 + \frac{a}{x} \right)^2 + \left(\frac{|b|}{x} \right)^2 \right].
\]
Each term of the sum is increasing in $|b|$. \hfill \Box

The random function f, being almost surely an entire analytic function, almost surely possesses an everywhere convergent power series

$$f(z) = \sum_{n=0}^{\infty} e_n z^n.$$

By construction $f(0) = 1$, hence $e_0 = 1$. The function f is the uniform limit on compact sets of $f_M := \exp \left(\int \log(1 - z/x) dN_M(x) \right)$. The Taylor coefficients $e_{M,n}$ of f_M are the elementary symmetric functions of the negative reciprocals of the points of N_M:

$$e_{M,k} = e_k \left(\{-1/x : N_M(x) = 1\} \right).$$

It follows that $e_{M,k} \to e_k$ as $M \to \infty$ for each fixed k. Thus we may conceive of e_k as the k^{th} elementary symmetric function of an infinite collection of values, namely the negative reciprocals of the points of the Poisson process. The infinite sum defining this symmetric function is not absolutely convergent but converges conditionally in the manner described above.

We do not know a simple form for the marginal distribution of e_k except in the case $k = 1$. To see the distribution of e_1, observe that the negative reciprocals of the points of a unit intensity Poisson process are a point process with intensity dx/x^2. Summing symmetrically in the original points is the same as summing the negative reciprocals, excluding those in $[-\varepsilon, \varepsilon]$, and letting $\varepsilon \to 0$. By a well known construction of the stable laws (see, e.g. [Dur10, Section 3.7]), this immediately implies:

Proposition 2.5. The law of e_1 is a symmetric Cauchy distribution. \hfill \Box

While we have not before seen a systematic study of symmetric functions of points of an infinite Poisson process, symmetric functions of IID collections of variables have been studied before. These were first well understood in Rademacher variables (plus or minus one with probability 1/2 each). It was shown in [MS82, Theorem 1] that the marginal of e_k, suitably normalized, is the value of the k^{th} Hermite polynomial on a standard normal random input. This was extended to other distributions, the most general result we know of being the one in [Maj99].

2.3 Main result and reduction to coefficient analysis

The random analytic function f is the object of study for the remainder of the paper. Our main result is as follows, the proof of which occupies most of the remainder of the paper.

Theorem 2.6 (Main result). As $k \to \infty$, the zero set of $f^{(k)}$ converges in distribution to a uniform random translate of the integers.
We prove the main result via an analysis of the Taylor coefficients of \(f \), reducing Theorem 2.6 to the following result.

Theorem 2.7 (behavior of coefficients of the derivatives). Let \(a_{k,r} := [z^r] f^{(k)}(z) \). There are random quantities \(\{A_k\}_{k \geq 1} \) and \(\{\theta_k\}_{k \geq 1} \) such that

\[
a_{k,r} = A_k \left[\cos \left(\theta_k - \frac{r\pi}{2} \right) + o_k(1) \right] \cdot \frac{\pi^r}{r!} \text{ in probability}
\]

(2.6)

\[
\sum_{r=1}^{\infty} M^r \frac{|a_{k,r}|}{A_k} < \infty \text{ with probability } 1 - o(1),
\]

(2.7)

for any \(M > 0 \). The use of the term “in probability” in the first statement means that for every \(\varepsilon > 0 \) the quantity

\[
P \left(\left| \frac{\pi^r}{r!} a_{k,r} - \cos \left(\theta_k - \frac{r\pi}{2} \right) \right| > \varepsilon \right)
\]

goesto zero for fixed \(r \) as \(k \to \infty \).

A surprising consequence of this result is that the signs of the coefficients \(\{e_k\} \) are periodic with period 4. In particular, \(e_k \) and \(e_{k+2} \) have opposite signs with probability approaching 1 as \(k \to \infty \). It is interesting to compare this with simpler models, such as the Rademacher model in [MS82] in which a polynomial \(g \) has \(n \) zeros, each of them at \(\pm 1 \), with signs chosen by independent fair coin flips. The number of positive roots will be some number \(b = n/2 + O(\sqrt{n}) \). Once \(n \) and \(b \) are determined, the polynomial \(g \) is equal to \((z - 1)^b (z + 1)^{n-b} \). The coefficients of \(g \) are the elementary symmetric functions of \(b \) ones and \(n - b \) negative ones. The signs of these coefficients have 4-periodicity as well ([MS82, Remark 4]). An analogue of Theorem 2.7 in the case of IID variables with a reasonably general common distribution appears in [Maj99] (see also [Sub14] for extensions). The proofs, in that case as well as in the present paper, are via analytic combinatorics. We know of no elementary argument for the sign reversal between \(e_k \) and \(e_{k+2} \).

Proof of Theorem 2.6 from Theorem 2.7 We assume the conclusion of Theorem 2.7 holds and establish Theorem 2.6 in the following steps. Let \(\theta_k \) and \(A_k \) be as in the conclusion of Theorem 2.7.

Step 1: Convergence of the iterated derivatives on compact sets. Let \(\psi_k(x) := \cos(\pi x - \theta_k) \).

Fix any \(M > 0 \). Then

\[
sup_{x \in [-M,M]} \left| \frac{f^{(k)}(x)}{A_k} - \psi_k(x) \right| \to 0 \text{ in probability as } k \to \infty .
\]

(2.8)

To prove this, use the identity \(\cos(\theta_k - r\pi/2) = (-1)^j \cos(\theta_k) \) when \(r = 2j \) and \((-1)^j \sin(\theta_k) \) when

\footnote{This step is analogous to [FR05, Theorem 2.4.1], the correctness of which is unknown to us at this time.}
\[r = 2j + 1 \] to write
\[
\psi_k(x) = \cos(\theta_k) \cos(\pi x) + \sin(\theta_k) \sin(\pi x)
\]
\[
= \cos(\theta_k) \left[1 - \frac{\pi^2 x^2}{2!} + \cdots \right] + \sin(\theta_k) \left[\pi x - \frac{\pi^3 x^3}{3!} + \cdots \right]
\]
\[
= \sum_{r=0}^\infty \cos \left(\theta_k - \frac{r\pi}{2} \right) \frac{\pi^r}{r!} x^r.
\]
This last series is uniformly convergent on \([-M, M]\). Therefore, given \(\epsilon > 0\) we may choose \(L\) large enough so that
\[
\sup_{x \in [-M, M]} \left| \psi_k(x) - \sum_{r=0}^L \cos \left(\theta_k - \frac{r\pi}{2} \right) \frac{\pi^r}{r!} x^r \right| < \frac{\epsilon}{3}. \tag{2.9}
\]
By (2.7), we may choose \(L\) larger if necessary, in order to ensure that
\[
\sup_{x \in [-M, M]} \left| \sum_{r=L+1}^\infty a_{k,r} x^r \right| < \frac{\epsilon}{3}. \tag{2.10}
\]
for all \(x \in [-M, M]\). Fix such an \(L\) and use the power series for \(f^{(k)}\) to write
\[
\frac{f^{(k)}(x)}{A_k} - \psi_k(x) = \left(\sum_{r=0}^L \frac{a_{k,r}}{A_k} x^r - \psi_k(x) \right) + \sum_{r=L+1}^\infty \frac{a_{k,r}}{A_k} x^r. \tag{2.11}
\]
Putting (2.9) together with (2.6) shows that the first term on the right-hand side of (2.11) is at most \(\epsilon/3 + \sum_{r=0}^L \xi_r\) where \(\xi_r\) is the term of (2.6) that is \(o(1)\) in probability. By (2.6) we may choose \(k\) large enough so that \(\epsilon/3 + \sum_{r=0}^L \xi_r < 2\epsilon/3\) with probability at least \(1 - \epsilon/2\). Thus, we obtain
\[
\sup_{x \in [-M, M]} \left| \frac{f^{(k)}(x)}{A_k} - \psi_k(x) \right| \leq \epsilon
\]
with probability at least \(1 - \epsilon\), establishing (2.8).

Step 2: The \(k + 1^{st}\) derivative as well. Let \(\eta_k(x) := -\pi \sin(\pi x - \theta_k)\). Fix any \(M > 0\). Then
\[
\sup_{x \in [-M, M]} \left| \frac{f^{(k+1)}(x)}{A_k} - \eta_k(x) \right| \to 0 \text{ in probability as } k \to \infty. \tag{2.12}
\]
The argument is the same as in Step 1, except that we use the power series \(f^{(k+1)}(x) = \sum_{r=0}^\infty r a_{k,r} x^{r-1}\) in place of \(f^{(k)}(x) = \sum_{r=0}^\infty a_{k,r} x^r\) and \(\eta_k(x) = \sum_{r=1}^\infty \cos(\theta_k - r\pi/2) \frac{\pi^r}{(r-1)!} x^{r-1}\).

Step 3: Convergence of the zero set to some lattice. On any interval \([-M, M]\), the zero set of \(f^{(k)}\) converges to the zero set of \(\psi_k\) in probability. More precisely, for each \(\epsilon > 0\), if \(k\) is large enough, then except on a set of probability at most \(\epsilon\), for each zero of \(f^{(k)}\) in \([-M + 2\epsilon, M - 2\epsilon]\)
there is a unique zero of \(\psi_k \) within distance \(2\varepsilon \) and for each zero of \(\psi_k \) in \([-M + 2\varepsilon, M - 2\varepsilon]\) there is a unique zero of \(f^{(k)} \) within distance \(2\varepsilon \).

This follows from Steps 1 and 2 along with the following fact applied to \(\psi = \psi_k \), \(\tilde{\psi} = f^{(k)} \), \(I = [-M, M] \) and \(c = 1/2 \).

Lemma 2.8. Let \(\psi \) be any function of class \(C^1 \) on an interval \(I := [a, b] \). Suppose that \(\min\{|\psi x|, |\psi'|\} \geq c \) on \(I \). For any \(\varepsilon > 0 \), let \(I' \) denote \([a + \varepsilon, b - \varepsilon]\). Let \(\varepsilon < c^2 \) be positive, and suppose that a \(C^1 \) function \(\tilde{\psi} \) satisfies \(|\tilde{\psi} - \psi| \leq \varepsilon \) and \(|\tilde{\psi}' - \psi'| \leq c/2 \) on \(I \). Then the zeros of \(\psi \) and \(\tilde{\psi} \) on \(I \) are in correspondence as follows.

(i) For every \(x \in I'^{/c} \) with \(\psi(x) = 0 \) there is an \(\tilde{x} \in I \) such that \(\tilde{\psi}(\tilde{x}) = 0 \) and \(|\tilde{x} - x| \leq \varepsilon/c \). This \(\tilde{x} \) is the unique zero of \(\tilde{\psi} \) in the connected component of \(\{|\psi| < c\} \) containing \(x \).

(ii) For every \(\tilde{x} \in I'^{/c} \) with \(\tilde{\psi}(\tilde{x}) = 0 \) there is a \(x \in I \) with \(\psi(x) = 0 \). This \(x \) is the unique zero of \(\psi \) in the connected component of \(\{|\psi| < c\} \) containing \(\tilde{x} \).

Proof: For (i), pick any \(x \in I'^{/c} \) with \(\psi(x) = 0 \). Assume without loss of generality that \(\psi'(x) > 0 \) (the argument when \(\psi'(x) < 0 \) is completely analogous). On the connected component of \(|\psi| \leq c \) one has \(\psi' > c \). Consequently, moving to the right from \(x \) by at most \(\varepsilon/c \) finds a value \(x_2 \) such that \(\psi(x_2) \geq \varepsilon \), moving to the left from \(x \) by at most \(\varepsilon/c \) finds a value \(x_2 \) such that \(\psi(x_2) \leq -\varepsilon \), and \(\psi' \) will be at least \(c \) on \([x_1, x_2] \). We have \(\tilde{\psi} - \psi \leq \varepsilon \), whence \(\tilde{\psi}(x_1) \leq 0 \leq \tilde{\psi}(x_2) \), and by the Intermediate Value Theorem \(\tilde{\psi} \) has a zero \(\tilde{x} \) on \([x_1, x_2] \). To see uniqueness, note that if there were two such zeros, then there would be a zero of \(\tilde{\psi}' \), contradicting \(|\tilde{\psi}' - \tilde{\psi}| < c/2 \) and \(|\psi'| > c \).

To prove (ii), pick \(\tilde{x} \in I'^{/c} \) with \(\tilde{\psi}(\tilde{x}) = 0 \). Then \(|\psi(\tilde{x})| \leq \varepsilon \leq c \) whence \(|\psi'(\tilde{x})| > c \). Moving in the direction of decrease of \(|\psi(\tilde{x})| \), \(|\psi'| \) remains at least \(c \), so we must hit zero within a distance of \(\varepsilon/c \). Uniqueness follows again because another such zero would imply a critical point of \(\psi \) in a region where \(|\psi| < c \).

Step 4: Uniformity of the random translation. Because convergence in distribution is a weak convergence notion, it is equivalent to convergence on every \([-M, M] \). We have therefore proved that the zero set of \(f^{(k)} \) converges in distribution to a random translate of the integers. On the other hand, Corollary 2.2 showed that the zero set of \(f^{(k)} \) is translation invariant for all \(k \). This implies convergence of the zero set of \(f^{(k)} \) to a uniform random translation of \(\mathbb{Z} \), and completes the proof of Theorem 2.6 from Theorem 2.7. \(\square \)
3 Estimating coefficients

3.1 Overview

The coefficients $e_k := [z^k] f(z)$ will be estimated via the Cauchy integral formula

$$e_k = \frac{1}{2\pi i} \int z^{-k} f(z) \frac{dz}{z}. \quad (3.1)$$

Denote the logarithm of the integrand by $\phi_k(z) := \log f(z) - k \log z$. Saddle point integration theory requires the identification of a saddle point σ_k and a contour of integration Γ, in this case the circle through σ_k centered at the origin, with the following properties.

(i) σ_k is a critical point of ϕ, that is, $\phi'(\sigma_k) = 0$.

(ii) The contribution to the integral from a arc of Γ of length of order $\phi''(\sigma_k)^{-1/2}$ centered at σ_k is asymptotically equal to $e^{\phi(\sigma_k)} \sqrt{2\pi/\phi''(\sigma_k)}$.

(iii) The contribution to the integral from the complement of this arc is negligible.

In this case we have a real function f with two complex conjugate saddle points σ_k and $\overline{\sigma_k}$. Accordingly, there will be two conjugate arcs contributing two conjugate values to the integral while the complement of these two arcs contributes negligibly. One therefore modifies (i)–(iii) to:

(i') σ_k and $\overline{\sigma_k}$ are critical points of ϕ, and there are no others on the circle Γ, centered at the origin, of radius $|\sigma_k|$.

(ii') The contribution to the integral from a arc of Γ of length of order $\phi''(\sigma_k)^{-1/2}$ centered at σ_k is asymptotically equal to $e^{\phi(\sigma_k)} \sqrt{2\pi/\phi''(\sigma_k)}$.

(iii') The contribution to the integral from the complement of the two conjugate arcs is negligible compared to the contribution from either arc.

Note that (iii') leaves open the possibility that the two contributions approximately cancel, leaving the supposedly negligible term dominant.

3.2 Locating the dominant saddle point

The logarithm of the integrand in (3.1), also known as the phase function, is well defined up to multiples of $2\pi i$. We denote it by

$$\phi_k(z) := -k \log z + \sum_s \log \left(1 - \frac{z}{x} \right).$$

When $k = 0$ we denote $\sum_s \log(1 - z/x)$ simply by $\phi(z)$.

10
Proposition 3.1. For each k, r, the r^{th} derivative $\phi_k^{(r)}$ of the phase function ϕ_k is the meromorphic function defined by the almost surely convergent sum
\[
\phi_k^{(r)}(z) = (-1)^{r-1}(r-1)! \left[\frac{k}{z^r} + \sum_x \frac{1}{(z-x)^r} \right].
\] (3.2)
Thus in particular,
\[
\phi_k'(z) = -\frac{k}{z} + \sum_x \frac{1}{z-x}.
\]

PROOF: When $r = 1$, convergence of (3.2) and the fact that this is the derivative of ϕ is just Lemma 2.3 and the subsequent proof of Theorem 2.1 in which f is constructed from h. For $r \geq 2$, with probability 1 the sum is absolutely convergent. □

The main work of this subsection is to prove the following result, locating the dominant saddle point for the Cauchy integral.

Theorem 3.2 (location of saddle). Let $E_{M,k}$ be the event that ϕ_k has a unique zero, call it σ_k, in the ball of radius $Mk^{1/2}$ about ik/π. Then $P(E_{M,k}) \to 1$ as $M,k \to \infty$ with $k \geq 4\pi^2M^2$.

This is proved in several steps. We first show that $\phi_k'(ik/\pi)$ is roughly zero, then use estimates on the derivatives of ϕ and Rouché’s Theorem to bound how far the zero of ϕ_k' can be from ik/π.

The function ϕ_k' may be better understood if one applies the natural scale change $z = ky$. Under this change of variables,
\[
\phi_k'(z) = -\frac{1}{y} + \sum_x \frac{1/k}{y-x/k}.
\]
Denote the second of the two terms by
\[
h_k(y) := \sum_x \frac{1/k}{y-x/k}.
\]
We may rewrite this as $h_k(Y) = \frac{1}{y-x}dN^{(k)}(x)$ when $N^{(k)}$ denotes the rescaled measure defined by $N^{(k)}(A) = k^{-1}N(kA)$. The points of the process $N^{(k)}$ are k times as dense and $1/k$ times the mass of the points of N. Almost surely as $k \to \infty$ the measure $N^{(k)}$ converges to Lebesgue measure. In light of this it is not surprising that $h_k(y)$ is found near $\int \frac{1}{z-y}dy$. We begin by rigorously confirming this, the integral being equal to $-\pi \operatorname{sgn} \Im\{z\}$ away from the real axis.

Lemma 3.3. If z is not real then
\[
\mathbb{E} \int \frac{1}{|z-x|^m}dN(x) = \lim_{M \to \infty} \mathbb{E} \int \frac{1}{|z-x|^m}dN_M(x),
\]
for $m \geq 2$, and
\[
\mathbb{E} \int \frac{1}{(z-x)^m}dN(x) = \lim_{M \to \infty} \mathbb{E} \int \frac{1}{(z-x)^m}dN_M(x),
\]
for $m \geq 1$. 11
PROOF: The first equality holds trivially by Monotone Convergence Theorem. Next, write \mathcal{R}_M as
the number of points of the process N within $[-M, M]$, and $L = 2\Im(z)$. Then, for $m = 2$,

$$
\mathbb{E}\int \frac{1}{|z-x|^2} dN_M(x) = \mathbb{E} \sum_{j: |X_j| \leq M} \frac{1}{\Im(z)^2 + (\Re(z) - X_j)^2}
$$

$$
\leq \mathbb{E} \left(\frac{\mathcal{R}_L}{\Im(z)^2} \right) + \mathbb{E} \sum_{j: 2 \leq |X_j| \leq M} \frac{4}{|X_j|^2}
$$

$$
\leq \frac{2L}{\Im(z)^2} + \frac{4}{L}.
$$

Therefore, as $\Im(z) \neq 0$, $\mathbb{E} \int \frac{1}{|z-x|^2} dN(x) < \infty$, and moreover, $\mathbb{E} \int \frac{1}{|z-x|^m} dN(x) < \infty, \forall m \geq 2$. Thus, by Dominated Convergence Theorem,

$$
\mathbb{E} \int \frac{1}{(z-x)^m} dN(x) = \lim_{M \to \infty} \mathbb{E} \int \frac{1}{(z-x)^m} dN_M(x)
$$

holds for $m \geq 2$. We shall now show the above to hold true for $m = 1$.

Note that

$$
\mathbb{E} \left[\left(\int \frac{1}{|z-x|^2} dN_M(x) \right)^2 \right] = \mathbb{E} \int \frac{1}{|z-x|^2} dN_M(x) + \mathbb{E} \sum_{j \neq k: |X_j|, |X_k| \leq M} \frac{1}{(z-X_j)(z-X_k)}.
$$

The first term in the above equation converges to $\mathbb{E} \int \frac{1}{|z-x|^2} dN(x)$ as $M \to \infty$. As for the second part,

$$
\mathbb{E} \sum_{j \neq k: |X_j|, |X_k| \leq M} \frac{1}{(z-X_j)(z-X_k)} = \mathbb{E} \left[\mathcal{R}_M \left(\mathcal{R}_M - 1 \right) \cdot \mathbb{E} \left(\frac{1}{(z-U_1)(z-U_2)} \right) \right],
$$

where U_1 and U_2 are i.i.d. Uniform$(-M, M)$ random variables. So,

$$
\mathbb{E} \sum_{j \neq k: |X_j|, |X_k| \leq M} \frac{1}{(z-X_j)(z-X_k)} = \left(\int_{-M}^{M} \frac{1}{z-u} du \right)^2
$$

$$
= \left[-\log \left(\frac{M-z}{M+z} \right) - i \arctan \left(\frac{M - \Re(z)}{\Im(z)} \right)
+ i \arctan \left(\frac{-M - \Re(z)}{\Im(z)} \right) \right]^2
$$

$$
\to -\pi^2, \text{ as } M \to \infty.
$$

Thus the quantities $\left\{ \mathbb{E} \left[\left(\int \frac{1}{|z-x|^2} dN_M(x) \right)^2 \right], M > 0 \right\}$ have a uniform upper bound - let us call it $B(z)$. Then, given $\varepsilon > 0$,

$$
\mathbb{E} \left[\left| \int \frac{1}{z-x} dN_M(x) \right| \cdot 1_{\left| \int \frac{1}{z-x} dN_M(x) \right| \geq K} \right] \leq \frac{1}{K} \mathbb{E} \left[\left(\int \frac{1}{z-x} dN_M(x) \right)^2 \right]
$$

$$
\leq \frac{B(z)}{K} < \varepsilon,
$$

12
for $K > \frac{R(z)}{z}$. Thus, if z is not real, $\left\{ \mathbb{E} \left[\int \frac{1}{z-x} dN_M(x) \right], M > 0 \right\}$ is a uniformly integrable collection, and hence, converges in L_1.

Proposition 3.4. If z is not real then

$$\mathbb{E} \left[\int \frac{1}{z-x} dN(x) \right] = \mp i\pi \quad \text{(3.3)}$$

with the negative sign if z is in the upper half plane and the positive sign if z is in the lower half plane. If z is not real and $m \geq 2$ then

$$\mathbb{E} \left[\int (z-x)^m dN(x) \right] = 0. \quad \text{(3.4)}$$

Proof: If R_M denotes the number of Poisson points in $[-M, M]$, then conditioning on R_M, the Poisson points X_j that are contained in $[-M, M]$ are identically and independently distributed as Uniform$[-M, M]$. Then,

$$\mathbb{E} \left[\int \frac{1}{z-x} dN_M(x) \bigg| R_M \right] = R_M \cdot \mathbb{E} \left(\frac{1}{z-U} \right),$$

where $U \sim$ Uniform$[-M, M]$. Writing $z = re^{i\theta}$, we get,

$$\mathbb{E} \left[\int \frac{1}{z-x} dN_M(x) \bigg| R_M \right] = \frac{R_M}{2M} \int_{x \in [-M, M]} \frac{1}{r \cos \theta + ir \sin \theta - x} dx$$

$$= R_M \left[\frac{-1}{2M} \log \left| \frac{M-z}{M+z} \right| - i \frac{1}{2M} \arctan \left(\frac{M-r \cos \theta}{r \sin \theta} \right) \right.$$

$$+ \left. i \frac{1}{2M} \arctan \left(\frac{-M-r \cos \theta}{r \sin \theta} \right) \right]$$

$$\implies \mathbb{E} \left[\int \frac{1}{z-x} dN_M(x) \right] = - \log \left| \frac{M-z}{M+z} \right| - i \arctan \left(\frac{M-r \cos \theta}{r \sin \theta} \right)$$

$$+ i \arctan \left(\frac{-M-r \cos \theta}{r \sin \theta} \right)$$

since, $R_M \sim \text{Poisson}(2M)$. Taking $M \to \infty$, by Lemma 3.3 we get,

$$\mathbb{E} \left[\int \frac{1}{z-x} dN(x) \right] = -\pi i,$$

for z in the upper half plane, and,

$$\mathbb{E} \left[\int \frac{1}{z-x} dN(x) \right] = \pi i,$$

for z in the lower half plane, where the interchange of limits and expectation is by Lemma 3.3.
Now fix \(m \geq 2 \) and \(z \notin \mathbb{R} \).

\[
\mathbb{E} \left[\int \frac{1}{(z-x)^m} dN_M(x) \right] = R_M \cdot \mathbb{E} \left[\frac{1}{M^{m-1}} \right]
\]

\[
= \frac{R_M}{2M} \cdot \frac{1}{m-1} \left\{ \frac{1}{(z-M)^{m-1}} - \frac{1}{(M+z)^{m-1}} \right\}.
\]

\[
\Rightarrow \mathbb{E} \left[\int \frac{1}{(z-x)^m} dN_M(x) \right] = \frac{1}{m-1} \left\{ \frac{1}{(z-M)^{m-1}} - \frac{1}{(M+z)^{m-1}} \right\}.
\]

Thus, using Lemma 3.3,

\[
\mathbb{E} \left[\int z^{m-1} dN(x) \right] = \lim_{M \to \infty} \frac{1}{m-1} \left\{ \frac{1}{(z-M)^{m-1}} - \frac{1}{(M+z)^{m-1}} \right\} = 0.
\]

The next proposition and its corollaries help us to control how much the functions \(\phi_k \) and \(h_k \) can vary. These will be used first in Lemma 3.10 bounding \(h_k \) over a ball, then in Section 4.1 to estimate Taylor series involving \(\Phi_k \). We begin with a general result on the variance of a Poisson integral.

Proposition 3.5. Let \(\psi : \mathbb{R} \to \mathbb{C} \) be any bounded function with \(\int |\psi(x)|^2 \, dx < \infty \). Let \(Z \) denote the compensated Poisson integral of \(\psi \), namely

\[
Z := \lim_{M \to \infty} \left[\int \psi(x) dN_M(x) - \int_{-M}^{M} \psi(x) \, dx \right].
\]

Then \(Z \) is well defined and has finite variance given by

\[
\mathbb{E}|Z|^2 = \int |\psi(x)|^2 \, dx.
\]

Proof: This is a standard result but the proof is short so we supply it. Let

\[
Z_M := \int \psi(x) dN_M(x) - \int_{-M}^{M} \psi(x) \, dx
\]

and let \(\Delta_M := Z_M - Z_{M-1} \) denote the increments. We apply Kolmogorov’s Three Series Theorem to the independent sum \(\sum_{M=1}^{\infty} \Delta_M \), just as in the proof of Lemma 2.3. Hypothesis (i) is satisfied because \(\int_{M+1}^{M+2} |\psi| \) goes to zero. Hypothesis (ii) is satisfied because \(\mathbb{E}\Delta_M = 0 \) for all \(M \). To see that hypothesis (iii) is satisfied, observe that \(\mathbb{E}|\Delta_M|^2 = \int |\psi(x)|^2 \, dx \), the summability of which is equivalent to our assumption that \(\psi \in L^2 \). We conclude that the limit exists almost surely. By monotone convergence as \(M \to \infty \), \(\text{Var} (Z) = \int |\psi|^2 \).

Define

\[
W_r(z) := \int (z-x)^r \, dN(x).
\]

If \(\alpha > 1 \) and \(\lambda \) is real, the integral \(\int |z-x|^{-\alpha} \, dx \) is invariant under \(z \mapsto z + \lambda \) and scales by \(\lambda^{1-\alpha} \) under \(z \mapsto \lambda z \). Plugging in \(\psi(x) = (z-x)^r \) therefore yields the following immediate corollary.
Corollary 3.6. Let z have nonzero imaginary part and let $r \geq 2$ be an integer. Then $W_r(z)$ is well defined and there is a positive constant γ_r such that

$$
\mathbb{E}|W_r(z)|^2 = \frac{\gamma_r}{|\Im\{z\}|^{2r-1}}.
$$

□

In the case of $r = 1$ we obtain the explicit constant $\gamma_1 = 1:

$$
\mathbb{E}|W_1(z) \mp \pi i|^2 = \frac{\pi}{|\Im(z)|}.
$$

To see this, compute

$$
\mathbb{E} \left[\int \frac{1}{|z-x|^2} \, dN_M(x) \bigg| \mathcal{R}_N \right] = \frac{\mathcal{R}_N}{2N} \frac{1}{|z-x|} \left[\frac{1}{z-x} - \frac{1}{\tilde{z}-x} \right]
$$

Thus, taking expectations and by Lemma 3.3

$$
\mathbb{E} \left[\int \frac{1}{|z-x|^2} \, dN(x) \right] = \frac{1}{|z-x|} \left\{ \mathbb{E} \left[\int \frac{1}{z-x} \, dN(x) \bigg| \mathcal{R}_N \right] - \mathbb{E} \left[\int \frac{1}{\tilde{z}-x} \, dN(x) \bigg| \mathcal{R}_N \right] \right\}.
$$

Proposition 3.4 shows the difference of expectations on the right-hand side to be $-2i\pi$, yielding $\gamma_1 = \pi$.

Corollary 3.7. For y with nonzero imaginary part and $r \geq 1$, $W_r(ky)$ has variance $\mathbb{E}[\Re(W - \overline{W})^2 + \Im(W - \overline{W})^2] = k^{-1/2} \gamma_r(y)$. It follows (with $\delta_{1,r}$ denoting the Kronecker delta), that

$$
\phi^{(r)}_k(ky) = -i\pi \delta_{1,r} + (r - 1)! k^{1-r} \left(\frac{-1}{y} \right) + O \left(k^{1/2-r} \right)
$$

in probability as $k \to \infty$.

Proof: Let $N^{(k)}$ denote a Poisson law of intensity k, rescaled by k^{-1}. In other words, $N^{(k)}$ is the average of k independent Poisson laws of unit intensity. Under the change of variables $u = x/k$, the Poisson law $dN(x)$ becomes $kdN^{(k)}(u)$. Therefore,

$$
W_r(ky) = \int \frac{1}{(ky-x)^r} \, dN(x)
$$

$$
= k^{1-r} \int \frac{1}{(y-u)^r} \, dN^{(k)}(u)
$$

$$
= k^{1-r} \left(\frac{1}{k} \sum_{j=1}^{k} W_j^{[r]} \right)
$$

$$
in probability as k \to \infty.
where \(\{ W_r[1], \ldots, W_r[k] \} \) are \(k \) independent copies of \(W_r(y) \). Because \(W_r(y) \) has mean \(-i\pi \delta_{1,r}\) and variance \(\gamma_r(y) \), the variance of the average is \(k^{-1/2} \gamma_r(y) \). The remaining conclusion follows from the expression (12) for \(\phi_k(r) \) and the fact that a random variable with mean zero and variance \(V \) is \(O(V^{1/2}) \) in probability. \(\square \)

3.3 Uniformizing the estimates

At some juncture, our pointwise estimates need to be strengthened to uniform estimates. The following result is a foundation for this part of the program.

Lemma 3.8. Fix a compact set \(K \) in the upper half plane and an integer \(r \geq 1 \). There is a constant \(C \) such that for all integers \(k \geq 1 \),

\[
\mathbb{E} \sup_{z \in K} |h_k^{(r)}(z)| \leq C k^{-1/2}.
\]

Proof: Let \(F^{(k)} \) denote the CDF for the random compensated measure \(N^{(k)} - dx \) on \(\mathbb{R}^+ \), thus \(F(x) = N^{(k)}[0, x] - x \) when \(x > 0 \) and \(F(x) = x - N^{(k)}[x, 0] \) when \(x < 0 \). We have

\[
h_k^{(r)}(z) = \int_{x} C(z-x)^{-r-1} \, dN(x) = \int_{x} C(z-x)^{-r-1} \, dF^{(k)}(x)
\]

because \(\int_{x} (z-x)^{-r-1} \, dx = 0 \). This leads to

\[
\mathbb{E} \sup_{z \in K} |h_k^{(r)}(z)| \\
\leq \lim_{M \to \infty} \mathbb{E} \sup_{z \in K} \left| \int_{0}^{M} \frac{1}{(z-x)^r} \, dF^{(k)}(x) \right| + \mathbb{E} \sup_{z \in K} \left| \int_{-M}^{0} \frac{1}{(z-x)^r} \, dF^{(k)}(x) \right| ,
\]

The two terms are handled the same way. Integrating by parts,

\[
\int_{0}^{M} (z-x)^{-r} \, dF^{(k)}(x) = (z-x)^{-r} N[0, M] - \int_{-r}^{-r-1} F^{(k)}(x) \, dx.
\]

This implies that

\[
\mathbb{E} \sup_{z \in K} |h_k^{(r)}(z)| \\
\leq \lim_{M \to \infty} \left[\mathbb{E} |F^{(k)}(M)| \sup_{z \in K} |z-x|^{-r} + \int_{0}^{M} \sup_{z \in K} |z-x|^{-r-1} |F^{(k)}(x)| \, dx \right] \\
\leq C_K \lim_{M \to \infty} \left(M^{-r+1/2} + k^{-1/2} \right).
\]

Sending \(M \) to infinity gives the conclusion of the lemma. \(\square \)
Corollary 3.9.

(i) \(\sup_{z \in K} \left| h_k^{(r)}(z) \right| = O(k^{-1/2}) \) in probability.

(ii) \(h_k \) and its derivatives are Lipschitz on \(K \) with Lipschitz constant \(O(k^{-1/2}) \) in probability.

(iii) For \(r \geq 2 \), the \(O(k^{-1/2}) \) term in the expression \((3.3)\) for \(\phi_k^{(r)}(ky) \) is uniform as \(y \) varies over compact sets of the upper half plane.

Proof: Conclusion (i) is Markov’s inequality. Conclusion (ii) follows because any upper bound on a function \(|g'| \) is a Lipschitz constant for \(g \). Conclusion (iii) follows from the relation between \(h_k \) and \(\phi_k \). \(\square \)

Lemma 3.10. For any \(c > 0 \),

\[
P \left[\sup \left\{ \left| h_k(y) + i\pi \right| : \left| y - \frac{i}{\pi} \right| \leq Mk^{-1/2} \right\} \geq c Mk^{-1/2} \right] \to 0
\]

as \(M \to \infty \) with uniformly in \(k \geq 4\pi^2 M^2 \).

Proof: Fix \(c, \varepsilon > 0 \). Choose \(L > 0 \) such that the probability of the event \(G \) is at most \(\varepsilon/2 \), where \(G \) is the event that the Lipschitz constant for some \(h_k \) on the ball \(B(i\pi, 1/(2\pi)) \) is greater than \(L \). Let \(B \) be the ball of radius \(Mk^{-1/2} \) about \(i/\pi \). The assumption \(k \geq 4\pi^2 M^2 \) guarantees that \(B \) is a subset of the ball \(B(i\pi, 1/(2\pi)) \) over which the Lipschitz constant was computed. Let \(y \) be any point in \(B \). The ball of radius \(\rho := cMk^{-1/2}\varepsilon/(2L) \) about \(y \) intersects \(B \) in a set whose area is at least \(\rho^2 \sqrt{3}/2 \), the latter being the area of two equilateral triangles of side \(\rho \). If \(|h_k(y) + i/\pi| \geq cMk^{-1/2} \) and \(G \) goes not occur, then \(|h_k(u) + i/\pi| \geq (1/2)cMk^{-1/2} \) on the ball of radius \(\rho \) centered at \(y \).

Now we compute in two ways the expected measure \(E|S| \) of the set \(S \) of points \(u \in B \) such that \(|h_k(u) + i/\pi| \geq \rho \). First, by what we have just argued,

\[
E|S| \geq \frac{\sqrt{3}}{2} \rho^2 \left(Q - \frac{\varepsilon}{2} \right) = \left(Q - \frac{\varepsilon}{2} \right) \sqrt{\frac{3c^2 \varepsilon^2 M^2}{16L^2 k}} \quad (3.6)
\]

where \(Q \) is the probability that there exists a \(y \in B \) such that \(|h_k(y) + i/\pi| \geq cMk^{-1/2} \). Secondly, by Proposition 3.4 and the computation of \(\gamma_1 \), for each \(u \in B \), \(E h_k(u) + i/\pi = 0 \) and \(E |h_k(u)|^2 = \pi/k \), leading to \(E |h_k(u) + i/\pi| \leq \sqrt{2\pi/k} \) and hence

\[
P \left(\left| h_k(u) + \frac{i}{\pi} \right| \geq \rho \right) \leq \frac{\sqrt{2\pi/k}}{\rho} \leq \frac{\sqrt{2\pi/k}}{cMk^{-1/2}\varepsilon/(2L)} = \sqrt{\frac{32\pi L^2}{c^2 k} M^{-1/2}}.
\]
By Fubini’s theorem,
\[\mathbb{E}|S| \leq |B| \sup_{u \in B} \mathbb{P}\left(|h_k(u) + \frac{i}{\pi}| \geq cMk^{-1/2}\right) \leq \frac{M^2}{k} \sqrt{\frac{32 \pi^2 L^2}{c^2}} M^{-1/2}. \] (3.7)

Putting together the inequalities (3.6) and (3.7) gives
\[Q - \frac{\varepsilon}{2} \leq \sqrt{\frac{512 \pi^4 L^4}{3c^4 \varepsilon^2}} M^{-1/2}. \]

Once \(M \) is sufficiently larger that the radical is at most \(\varepsilon/2 \), this implies that \(Q \leq \varepsilon \). Because \(\varepsilon > 0 \) was arbitrary, we have shown that \(Q \to 0 \) as \(M \to \infty \) uniformly in \(k \), as desired. \(\square \)

Proof of Theorem 3.2: Using Lemma 3.10 for \(c < 1 \), we know that
\[\mathbb{P}\left[\sup \left\{ |h_k(y) + i\pi| : |y - \frac{i}{\pi}| \leq Mk^{-1/2} \right\} \leq cMk^{-1/2} \right] \to 1, \text{ as, } k \to \infty. \]

Writing
\[A_{M,k} = \left\{ \omega : \sup \left\{ |h_k(y) + i\pi| : |y - \frac{i}{\pi}| \leq Mk^{-1/2} \right\} \leq cMk^{-1/2} \right\}, \]
\[\forall \omega \in A_{M,k}, \text{ and all } y \text{ such that } |y - \frac{i}{\pi}| = Mk^{-1/2}, \]
\[|\phi_k(y)(\omega) - (-i\pi - \frac{1}{y})| = |h_k(y)(\omega) + i\pi| \leq cMk^{-1/2} \]
\[= c |y - \frac{i}{\pi}| \leq |y - \frac{i}{\pi}| \]
for \(k \) sufficiently large. Thus, by Rouche’s theorem, \(\phi_k(y)(\omega) \) and \(y - \frac{i}{\pi} \) have the same number of zeros inside the disc centered at \(i/\pi \) of radius \(Mk^{-1/2} \), i.e. exactly one. This implies that, \(\mathbb{P}(E_{M,k}) \to 1 \) as \(M, k \to \infty \) with \(k \geq 4 \pi^2 M^2 \). \(\square \)

4 The Cauchy integral

4.1 Dominant arc: saddle point estimate

We sum up those facts from the foregoing subsection that we will use to estimate the Cauchy integral in the dominant arc near \(\sigma_k \).

Lemma 4.1.
(i) \(\phi'(\sigma_k) = 0. \)

(ii) \(\sigma_k^2 \phi''(\sigma_k) = k + O(k^{1/2}) \) in probability as \(k \to \infty. \)

(iii) If \(K \) is the set \(\{ z : |z - \sigma_k| \leq k/2 \} \) then \(\sup_{z \in K} k^3 \phi^{(3)}(z) = O(k) \) in probability.

Proof: The first is just the definition of \(\sigma_k. \) For the second, using Corollary 3.9 for \(r = 2 \) and \(y = \frac{i}{\pi}, \) the estimate is uniform, hence

\[
\phi''(\sigma_k) = \phi''\left(\frac{ik}{\pi}\right) + O\left(k^{-3/2}\right) = -\frac{\pi^2}{k} + O\left(k^{-3/2}\right)
\]

in probability. Multiplying by \(\sigma_k^2 \sim -k^2/\pi^2 \) gives (ii). The argument for part (iii) is analogous to the argument for part (ii). \(\square \)

Definition 4.2 (Arcs, fixed value of \(\delta \)). For the remainder of the paper, fix a number \(\delta \in (1/3,1/2). \)

Parametrize the circle \(\Gamma \) through \(\sigma_k \) in several pieces, all oriented counterclockwise, as follows (see Figure 4.2). Define \(\Gamma_1 \) to be the arc \(\{ z : z = \sigma_k e^{i\theta}, -k^{-\delta} \leq \theta \leq k^{-\delta} \}. \) Define \(\Gamma_1' \) to be the arc \(\{ z : z = \sigma_k e^{i\theta}, -k^{-\delta} \leq \theta \leq k^{-\delta} \}, \) so that the arc is conjugate to \(\Gamma_1 \) but the orientation remains counterclockwise. Define \(\Gamma_2 \) to be the part of \(\Gamma \) in the second quadrant that is not part of \(\Gamma_1 \), define \(\Gamma_3 \) to be the part of \(\Gamma \) in the first quadrant not in \(\Gamma_1, \) and define \(\Gamma_2' \) and \(\Gamma_3' \) to be the respective conjugates. Define the phase function along \(\Gamma \) by

\[
g_k(t) := \phi_k(\sigma_k e^{i\theta}).
\]
Theorem 4.3 (Contribution from Γ_1). For any integer $r \geq 0$,
\[
\int_{\Gamma_1} \frac{f(z)}{z^{k+r+1}} dz \cdot \frac{1}{k^{-1/2} f(\sigma_k) \sigma_k^{-k-r}} \to i\sqrt{2\pi}
\]
in probability as $k \to \infty$.

Proof: For fixed k, the Taylor’s expansion of $g_k(t)$ gives us,
\[
g_k(t) = g_k(0) + t g_k'(0) + \frac{t^2}{2} g_k''(0) + \frac{t^3}{6} \left(\Re g_k^{(3)}(t_1) + i \Im g_k^{(3)}(t_2) \right),
\]
where t_1 and t_2 are points that lie between 0 and t.
By Lemma 4.1 $g_k'(0) = 0$ and $g_k''(0) = k + O \left(\frac{k}{2} \right)$ in probability. Thus,
\[
\sup_{|t| \leq k^{-\delta}} \sqrt{k} \exp \left(\frac{t^2}{2} g_k''(0) \right) - \exp \left(-\frac{kt^2}{2} \right) \to 0.
\]
In addition,
\[
\sup_{z \in \Gamma_1} \left| \frac{\sigma_k^r}{z^r} - 1 \right| \to 0,
\]
while, Lemma 4.1 also gives us
\[
\sup_{|t| \leq k^{-\delta}} \frac{t^3}{6} g_k^{(3)}(t) \to 0.
\]
Thus,
\[
\int_{\Gamma_1} \frac{f(z)}{z^{k+r+1}} dz = i \int_{-k^{-\delta}}^{k^{-\delta}} \sigma_k^{-r} \exp \left(g_k(0) + \frac{t^2}{2} g_k''(0) + \frac{t^3}{6} \left(\Re g_k^{(3)}(t_1) + i \Im g_k^{(3)}(t_2) \right) - i rt \right) dt,
\]
whence, as $k \to \infty$,
\[
\sqrt{k} \int_{\Gamma_1} \frac{f(z)}{z^{k+r+1}} dz \cdot \frac{1}{\sigma_k^{-r} \exp(g_k(0))} - i\sqrt{k} \int_{-k^{-\delta}}^{k^{-\delta}} \exp \left(-\frac{kt^2}{2} \right) dt \to 0.
\]
Changing variables to $t = u/\sqrt{k}$ shows that when $\delta < 1/2$, the integral is asymptotic to $\sqrt{2\pi/k}$.
Plugging in $g_k(0) = f(\sigma_k) \sigma_k^{-k}$ completes the proof. \hfill \Box

4.2 Negligible arcs and remainder of proof of Theorem 2.7

We now show that the Cauchy integral receives negligible contributions from $\Gamma_2, \Gamma_2', \Gamma_3$ and Γ_3'. By conjugate symmetry we need only check Γ_2 and Γ_3; the arguments are identical so we present only the one for Γ_2.

20
Let \(R := |\sigma_k| \) and let \(\beta \) denote the polar argument of \(\sigma_k \), that is, \(\beta := \arg(\sigma_k) - \pi/2 \), so that \(\sigma_k = iRe^{i\beta} \). By Theorem 3.2, \(\beta = O(k^{-1/2}) \) in probability. We define an exceptional event \(G_k \) of probability going to zero as follows.

Let \(G_k \) be the event that either \(R \notin [k/(2\pi), 2k/\pi] \) or \(\beta > k^{-\delta}/2 \).

If \(z = iRe^{i\theta} \) is a point of \(\Gamma_2 \) with polar argument \(\theta \), then \(\theta \) is at least \((1/2)k^{-\delta} \) on \(G_k \). Note that the notation suppresses the dependence of \(R \) and \(\beta \) on \(k \), which does not affect the proof of the in-probability result in Lemma 4.4.

Lemma 4.4.

\[
\int_{\Gamma_2} \frac{f(z)}{z^{k+\tau+1}f(\sigma_k)\sigma_k^{-k-\tau}} \, dz \rightarrow 0 \tag{4.1}
\]

in probability as \(k \to \infty \).

Proof: Let \(z = iRe^{i\theta} \in \Gamma_2 \). Our purpose is to show that \(|f(z)z^{-k}| \) is much smaller that \(|f(\sigma_k)\sigma_k^{-k}| \). On \(\Gamma_2 \) we are worried only about the magnitude, not the argument, so we may ignore the \(z^{-k} \) and \(\sigma^{-k} \) terms, working with \(\phi \) rather than with \(\phi_k \). This simplifies \(3.5 \) to

\[
\phi'(z) = -i\pi + O\left(k^{-1/2}\right) \tag{4.2}
\]

the estimate being uniform on the part of \(\Gamma_2 \) with polar argument less than \(\pi/2 - \varepsilon \) by part (iii) of Corollary 3.9. Let \(H_k \) be the exceptional event where the constant in the uniform \(O(k^{-1/2}) \) term is greater than \(k^{1/2-\delta}/100 \), the probability of \(H_k \) going to zero according to the corollary.

Integrating the derivative of \(\Re\{\phi(z)\} \) along \(\Gamma \) then gives

\[
\log \left| \frac{f(z)}{f(\sigma_k)} \right| = \pi \left(\Im\{z\} - \Im\{\sigma_k\} \right) + O\left(k^{-1/2}|z - \sigma_k|\right). \tag{4.3}
\]

The first of the two terms is \(\pi R(\cos(\theta) - \cos(\beta)) \) which is bounded from above by \(- (R/2)(\theta^2 - \beta^2)\) which is at most \(- (R/4)\theta^2 \) on \(G_k^c \). The second term is at most

\[
\frac{k^{1/2-\delta}}{100} k^{-1/2}(2R\theta)
\]

on \(G_k^c \cap H_k \), provided that \(\theta \leq \pi/2 - \varepsilon \). Combining yields

\[
\log \left| \frac{f(z)}{f(\sigma_k)} \right| \leq - \frac{R}{4} \theta^2 + \frac{k^{-\delta}}{100} (2R\theta) \leq -R\theta \left(\frac{\theta}{4} - \frac{k^{-\delta}}{50} \right) \leq -R\theta^2 \quad \frac{8}{k^{1/2-2\delta}}
\]

on \(\Gamma_2 \) as long as the polar argument of \(z \) is at most \(\pi/2 - \varepsilon \). Decompose \(\Gamma_2 = \Gamma_{2,1} + \Gamma_{2,2} \) according to whether \(\theta \) is less than or greater than \(\pi/2 - \varepsilon \). On \(G_k^c \) we know that \(\theta \geq (1/2)k^{-\delta} \) and \(R \geq k/(2\pi) \), hence on \(\Gamma_{2,1} \),

\[
\log \left| \frac{f(z)}{f(\sigma_k)} \right| \leq - \frac{k^{1/2-2\delta}}{64\pi}.
\]
Using $d\theta = dz/z$ we bound the desired integral from above by

$$\left| \int_{\Gamma_2} \frac{f(z)}{z^{k+r+1}} \frac{dz}{f(\sigma_k)\sigma_k^{-k-r}} \right| \leq \sqrt{k} \int_{\Gamma_2} \left| \frac{f(z)}{f(\sigma_k)} \right| d\theta.$$

On $G_k^c \cap H_k^c$, the contribution from $\Gamma_{2,1}$ is at most

$$\sqrt{k} |\Gamma_2| \exp \left[-\frac{k^{1-2\delta}}{64\pi} \right]. \quad (4.4)$$

Finally, to bound the contribution from $\Gamma_{2,2}$, use Proposition 2.4 to deduce $|f(z)| = |f(z')|$ where $\Re\{z'\} = \Re\{z\}$ and $\Im\{z'\} = k/(4\pi)$. Integrating (4.2) on the line segment between σ_k and z' now gives (4.3) again, and on $G_k^c \cap H_k^c$ the right-hand side is at most $-(k/4) + k^{-\delta}k < -k/8$ once $k \geq 8$. This shows the contribution from $\Gamma_{2,2}$ to be at most $\varepsilon Re^{-k/8}$. Adding this to (4.4) and noting that $\mathbb{P}(G_c \cup H_k) \to 0$ proves the lemma. \hfill \Box

Theorem 4.5. For fixed r as $k \to \infty$,

$$e_{k+r} = 2(-1)^{k+r} \Re \left\{ (1 + o(1))\sigma_k^{-k-r} f(\sigma_k) \sqrt{\frac{1}{2\pi k}} \right\}$$

in probability as $k \to \infty$.

PROOF: By Cauchy’s integral theorem,

$$e_{k+r} = \frac{(-1)^{k+r}}{2\pi i} \int_{\Gamma} f(z) z^{-k-r-1} dz.$$

By Theorem 1.3 and the fact that the contributions from Γ_1 and Γ_1' are conjugate, their sum is twice the real part of a quantity asymptotic to

$$\frac{1}{\sqrt{2\pi k}} f(\sigma_k)\sigma_k^{-k-r}. \quad (4.5)$$

By Lemma 4.4, the contributions from the remaining four arcs are negligible compared to (4.5). The theorem follows. \hfill \Box

PROOF OF THEOREM 2.7 By the definition of $a_{k,r}$, using Theorem 1.5 to evaluate e_k,

$$a_{k,r} = (-1)^{k+r} e_{k+r} \frac{(k + r)!}{r!}$$

$$= 2 \frac{k!}{k!} \frac{(k + r)!}{r!} \Re \left\{ (1 + o(1))\sigma_k^{-k-r} f(\sigma_k) \sqrt{\frac{1}{2\pi k}} \right\}.$$

22
For fixed r as $k \to \infty$ asymptotically $(k + r)!/k! \sim k^r$. Setting $A_k = k! \sqrt{\frac{2}{\pi k}} |\sigma_k^{-k} f(\sigma_k)|$ and $	heta_k = \arg\{\sigma_k^{-k} f(\sigma_k)\}$ simplifies this to

$$A_k \frac{k^r}{|\sigma_k|^r} \cos(\theta_k - r \arg(\sigma_k)).$$

Because in probability $\arg(\sigma_k) = \pi/2 + o(1)$ while $|\sigma_k| \sim k/\pi$, this simplifies finally to

$$a_{k,r} = A_k \left[\cos \left(\theta_k - \frac{r\pi}{2} \right) + o(1) \right] \cdot \frac{\pi^r}{r!} \text{ in probability},$$

proving the first part of the theorem.

Next, from the proof of Theorem 4.3 it is clear that

$$\left| \frac{\int_{\Gamma_1} \frac{f(z)}{\sigma_k^{z+r}} dz}{\int_{\Gamma_1} \left| \frac{\exp(g_k(t) - g_k(0))}{\sigma_k^r} \right| dt} \right| \leq \left| \int_{\Gamma_1} \frac{\exp(g_k(t) - g_k(0))}{\sigma_k^r} dt \right|$$

is bounded above in probability, and this bound is independent of r. Also the convergence in the proof of Lemma 4.4 is independent of r. Therefore,

$$\left| \frac{a_{k,r}}{A_k} \right| = O \left(\frac{(k + r)!}{k!} \frac{1}{r! |\sigma_k|^r} \right).$$

Since, for any $M > 0$,

$$\sum_{r=1}^{\infty} \frac{(k + r)!}{k!} \frac{\pi^r}{r!} \frac{M^r}{k^r} < \infty, \forall k > M\pi,$$

with the convergence being uniform over $k \in [T, \infty)$, with $T > M\pi$, we have our result.
References

[BBL09] J. Borcea, P. Brändén, and T. Liggett. Negative dependence and the geometry of polynomials. *J. AMS*, 22:521–567, 2009.

[Bre89] F. Brenti. Unimodal, log-concave and Pólya frequency sequences in combinatorics. *Memoirs of the AMS*, 413:106+viii, 1989.

[CC95] T. Craven and G. Csordas. Complex zero decreasing sequences. *Meth. Appl. Anal.*, 2:420–441, 1995.

[Con83] B. Conrey. Zeros of derivatives of Riemann’s ζ-function on the critical line. *J. Number Theory*, 16:49–74, 1983.

[Dur10] R. Durrett. *Probability: Theory and Examples*. Duxbury Press, New York, NY, fourth edition, 2010.

[FR05] D. Farmer and R. Rhoades. Differentiation evens out zero spacings. *Trans. AMS*, 357(9):3789–3811, 2005.

[LM74] N. Levinson and H. Montgomery. Zeros of the derivative of the Riemann zeta-function. *Acta Math.*, 133:49–65, 1974.

[Maj99] P. Major. The limit behavior of elementary symmetric polynomials of iid random variables when their order tends to infinity. *Ann. Probab.*, 27(4):1980–2010, 1999.

[Mar49] M. Marden. *Geometry of Polynomials*, volume 3 of *Mathematical Surveys and Monographs*. AMS, 1949.

[MS82] T. Móri and G. Szekely. Asymptotic behaviour of symmetric polynomial statistics. *Ann. Probab.*, 10:124–131, 1982.

[Pem12] R. Pemantle. Hyperbolicity and stable polynomials in combinatorics and probability. In *Current Developments in Mathematics*, pages 57–124. International Press, Somerville, MA, 2012.

[Sto26] A. Stoyanoff. Sur un théorème de M. Marcel Riesz. *Nouvelles Annales de Mathematique*, 1:97–99, 1926.

[Sub14] S. Subramanian. Zeros, critical points and coefficients of random functions. PhD thesis, University of Pennsylvania, 2014.