A Comprehensive Association Analysis of Homocysteine Metabolic Pathway Genes in Singaporean Chinese with Ischemic Stroke

Hui-Qi Low¹, Christopher P. L. H. Chen², Katherine Kasiman³⁴, Anbupalam Thalamuthu¹, Seok-Shin Ng¹, Jia-Nee Foo¹, Hui-Meng Chang⁵, Meng-Cheong Wong⁶, E-Shyong Tai³, Jianjun Liu¹*

1 Human Genetics, Genome Institute of Singapore, Singapore, 2 Department of Pharmacology, National University of Singapore, Singapore, 3 Centre for Molecular Epidemiology, National University of Singapore, Singapore, 4 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 5 Department of Neurology, National Neuroscience Institute, Singapore, 6 Division of Medical Sciences, National Cancer Centre, Singapore

Abstract

Background: The effect of genetic factors, apart from 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms, on elevated plasma homocysteine levels and increasing ischemic stroke risk have not been fully elucidated. We conducted a comprehensive analysis of 25 genes involved in homocysteine metabolism to investigate association of common variants within these genes with ischemic stroke risk.

Methodology/Principal Findings: The study was done in two stages. In the initial study, SNP and haplotype-based association analyses were performed using 147 tagging Single Nucleotide Polymorphisms (SNPs) in 360 stroke patients and 354 non-stroke controls of Singaporean Chinese ethnicity. Joint association analysis of significant SNPs was then performed to assess the cumulative effect of these variants on ischemic stroke risk. In the replication study, 8 SNPs were selected for validation in an independent set of 420 matched case-control pairs of Singaporean Chinese ethnicity. SNP analysis from the initial study suggested 3 risk variants in the MTRR, SHMT1 and TCN2 genes which were moderately associated with ischemic stroke risk, independent of known stroke risk factors. Although the replication study failed to support single-SNP associations observed in the initial study, joint association analysis of the 3 variants in combined initial and replication samples revealed a trend of elevated risk with an increased number of risk alleles (Joint P_trend = 1.2 × 10^-4).

Conclusions: Our study did not find direct evidence of associations between any single polymorphisms of homocysteine metabolic pathway genes and ischemic stroke, but suggests that the cumulative effect of several small to moderate risk variants from genes involved in homocysteine metabolism may jointly confer a significant impact on ischemic stroke risk.

Introduction

Ischemic stroke is a complex multifactorial disease influenced by several genetic and environmental factors [1–2]. Epidemiological studies have identified several clinical risk factors that are highly correlated with stroke risk; these in turn implicate various biological pathways, including the homocysteine metabolism[3], lipid metabolism[4], renin-angiotensin-aldosterone system[5–6], haemostatic system[6], phosphodiesterase 4D[7] and leukotriene pathways[8], in stroke pathophysiology. Moderate elevation of plasma homocysteine levels has been identified as a major risk factor for vascular diseases, including stroke[3]. Data from cohort and case-control studies suggest a positive, and dose-dependent association between the serum concentration of total homocysteine and the risk of stroke, which is independent of other vascular risk factors[9]. In meta-analyses of large cohorts, it has been estimated that for every rise in plasma homocysteine level of 5 umol/L, the risk for cerebrovascular disease increases by 50% (95% CI, 30-90%) while plasma homocysteine levels above the 95th percentile was associated with an odds ratio (OR) of 3.97 (95% CI, 3.07 to 5.12) for cerebrovascular disease[10–11].

Mutations in genes of the homocysteine metabolic pathway may confer an increased risk for ischemic stroke as a consequence of elevated plasma homocysteine levels. A common polymorphism (C677T) in the gene encoding 5,10-methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in homocysteine metabolism, has been reported by several studies to be associated with both elevated plasma homocysteine levels and increased stroke risk[12–13]. A recent meta-analysis further confirmed the association with variation in plasma homocysteine levels (weighted mean difference in homocysteine levels of 1.93 μmol/L for TT vs CC) and increased risk of stroke (OR 1.26 for TT vs CC)[14]. However, the C677T polymorphism alone accounts for less than 10% of the variance in plasma homocysteine levels[3].
Several polymorphisms in other homocysteine regulatory genes have also been investigated, but their effects on plasma homocysteine remain unclear. The A2756G polymorphism in 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) was identified to be associated with decreased plasma homocysteine levels, but only in some populations[15–16]. The first genome-wide linkage analysis of plasma homocysteine levels, performed in a Spanish population, found that the nicotinamide N-methyltransferase (NNMT) gene was the most significant genetic determinant of plasma homocysteine[17]. A second genome-wide linkage study, performed in non-Hispanic whites and blacks, identified several genomic regions (non-Hispanic whites: chromosomes 6p26 and 18q21, blacks: chromosome 2q32, 7p15, 8q24, 18q21, and 2q12) showing linkage with plasma homocysteine levels[18]. However, the results from these two genome-wide linkage studies are largely inconsistent. Furthermore, the roles of these polymorphisms and linkage loci in stroke risk have not been evaluated.

Postulating that there are additional genetic risk variants other than the MTHFR C677T variant that elevate plasma homocysteine levels and thus increase risk for ischemic stroke, we performed a comprehensive genetic association study of the homocysteine metabolic pathway by investigating 25 homocysteine metabolic pathway genes in well-characterized ischemic stroke cases and matched controls of Singaporean Chinese ethnicity. This is the first comprehensive study to be performed in a Chinese population, which has been underrepresented in the earlier linkage and association studies.

Results

Initial Study

We analyzed 147 tagging SNPs using the Cochrane-Armitage trend tests to obtain ORs and 95% Confidence Intervals (CI) (Table S1). After an adjustment for other known non-genetic risk factors (vascular risk factors, age and gender), rs16879248 in MTRR (5-methyltetrahydrofolate-homocysteine methyltransferase (1) and rs11703570 in TCN2 (transcobalamin II), show suggestive association with ischemic stroke risk \(P < 0.05\) (Table 2). While rs16879248 showed a protective effect \(OR = 0.67\), rs11868708 and rs11703570 were associated with increased risk for ischemic stroke \(OR = 1.46\) and 1.51 respectively). The associations at all 3 SNPs appear to fit an additive or dominant model (Table S4).

In addition to single SNP-based association analysis, we performed haplotype analysis of 19 candidate genes. As shown in Table 3, results from the haplotype analysis were largely consistent with the single SNP analysis for SHMT1 and TCN2. We also analyzed pair-wise interaction among the 3 associated SNPs as well as all the 147 tagging SNPs, but no evidence of interaction was found.

Finally, given the moderate effects observed in single SNP analysis, we evaluated the joint effect of the 3 genetic risk variants (rs16879248, rs11868708 and rs11703570) that were significant in the single SNP analysis. As shown in Table 4, the 3 variants appeared to show a strong cumulative association with ischemic stroke risk. The increased number of the risk alleles was significantly associated with an increased risk of ischemic stroke; the joint effect was independent of aforementioned non-genetic risk factors \(P_{\text{trend}} = 2.0 \times 10^{-7}\) and remained significant after correction for model selection bias (corrected \(P_{\text{trend}} = 0.013\), 5000 permutations).

Replication Study

In the replication study, the allelic ORs of all the 3 tagging SNPs and the haplotype in SHMT1 and TCN2 were observed to be in the same direction of effect as the initial study (Table 2 & 3), although these results did not reach statistical significance.

However, the joint association analysis of the 3 variants in the replication study showed a similar cumulative association with ischemic stroke. Although not statistically significant, the trend of elevated stroke risk with an increased number of risk alleles was largely consistent in both studies, with exception of the group with 4 total risk alleles (Table 4). This may be attributed to the small size of the subgroups with different numbers of risk alleles. When the initial and replication samples were combined, a clear trend of elevated ORs with increased number of risk alleles was observed and the joint effect was independent of the aforementioned non-genetic risk factors (Combined \(P_{\text{trend}} = 1.2 \times 10^{-5}\)).

Discussion

Stroke is a multifactorial and polygenic disorder with some well-identified environment factors, but the genetic risk factors for stroke remain to be elucidated. In the initial study, we performed a comprehensive analysis of 25 candidate genes involved in the homocysteine metabolic pathway in a well-characterized group of ethnic Chinese with ischemic stroke. We analyzed controls matched for ethnicity and geographic location, thus reducing the possible effects of population stratification on the association results. Moreover, cases and controls were found to be well-matched and of Chinese ancestry in a principle component analysis with 147 tagging SNPs (Figure S1). The differences between cases and controls in terms of age, smoking, gender, hypertension and diabetes reflect the established associations of these factors with ischemic stroke; the prevalence of smoking, hypertension and diabetes in controls was similar to the Singapore general population according to the National Health Survey 2004 (NHS 2004). To our knowledge, this is the most comprehensive genetic association study to date of the homocysteine metabolic pathway genes in subjects of Chinese ethnicity with ischemic stroke.

Our initial study provided suggestive association evidence for 3 candidate genes whose genetic effect are likely independent of other common non-genetic risk factors such as age, gender, smoking, hypertension, diabetes and hyperlipidemia. In addition, although the association evidence for the 3 genetic risk variants are moderate and did not survive correction for multiple testing, the joint effect of these variants is strong and the association remained significant after correction for model selection bias.

We did not find a significant association between MTHFR C677T and ischemic stroke risk in our initial samples. MTHFR C677T has been shown to be associated with ischemic stroke risk in Chinese population by a multi-center case-control study, but the genetic effect was found to be relatively weak \(OR = 1.27\), TT versus CC homozygotes [19]. We estimate that our study had only 21% power to detect this weak association.

None of the single SNPs or haplotypes showed statistically significant association in the replication study. With the current sample size of the replication study, we had limited statistical power to validate the small to moderate effects of single SNPs. Moreover, the case and control subjects were 5–8 years younger compared to the initial study, and the inclusion of young population controls carrying risk factors that may contribute to the development of stroke at older ages could have further reduced the power of the replication study. We estimate that our combined study had 90% power (significance level = 0.0005, corrected for 147 tagging SNPs) to detect single SNPs with MAF 0.2 with ORs of 1.5 (Table S5). The lack of significant association excludes the presence of common SNPs in the homocysteine metabolic pathways with effect sizes of this magnitude or greater on stroke risk.

Acknowledgments

This research was supported by grants from the Ministry of Education, Singapore, National Medical Research Council, Singapore, and National Natural Science Foundation of China. We thank the patients and their families for their participation in this study.
Despite the limitations, a trend of elevated ORs with increasing number of total risk alleles was seen in the combined initial and replication samples. This result appears to suggest the 3 variants might each have small to moderate genetic effects that jointly contributed to the association of total number of risk alleles with ischemic stroke risk. This further highlights the importance of joint association analysis of the cumulative effect from multiple variants in detecting small to moderate genetic effects. While the effect size of each positive genetic association was weak, the overall contribution of genetic factors from homocysteine metabolic pathway to ischemic stroke risk is likely to be relatively large, with a 5.43-fold difference in stroke risk between individuals carrying 5 risk alleles and those carrying 0 or 1 risk alleles. This could also explain the finding that apart from MTHFR C677T which has a relatively smaller genetic effect, most of the associations among other candidate genes involved in homocysteine metabolism could not be consistently replicated.[20].

We postulate that these genetic risk variants might affect ischemic stroke risk by jointly modulating homocysteine levels, but further study will be needed to prove this hypothesis. Interestingly, genetic association evidence observed in this study is concentrated in genes that are involved in regulating either folate cycling (SHMT1 and MTRR) or transportation of vitamin B12 (TCN2) (Figure 1), suggesting the importance of cellular availability of folate and vitamin B12 in influencing ischemic stroke risk. Plasma homocysteine levels are inversely related to plasma concentrations of folate and vitamin B12 as well as to the intake of these vitamins[21]. Recently, vitamin supplements have received much attention as a therapeutic strategy for vascular diseases although the beneficial effects of lowering plasma homocysteine level by vitamins on the risk of ischemic stroke have not yet been established[22]. Our study suggested that deficiency of both folate and vitamin B12 levels, caused by a combination of genetic variations at SHMT1, MTRR and TCN2, may jointly increase ischemic stroke risk. Unfortunately, lack of data on the levels of homocysteine, folate and vitamin B12 in our study subjects limited further investigation of the effect of these genetic variants on ischemic stroke, which could otherwise be further established as supporting evidence for the effect of these variants on the biomarkers.

In conclusion, we have completed a comprehensive genetic association study of the homocysteine metabolic pathway in subjects of Chinese ethnicity. Although none of the studied single variants or haplotypes from the homocysteine metabolic pathway is significantly associated with ischemic stroke risk, our results suggest that the joint effect of several small to moderate risk variants could confer an increase in ischemic stroke risk. We propose that the genetic etiology of ischemic stroke is likely to be complex with many loci modulating homocysteine metabolism and each conferring a small to moderate risk. Further work, such as validation in larger sample sets, is necessary to confirm our findings and to explore the joint effects of additional risk variants.

Candidate Gene Study	Replication Study					
Characteristics	Control (n = 354)	Ischemic Stroke (n = 360)	P	Control (n = 420)	Ischemic Stroke (n = 420)	P
Gender, male, n(%)	161(45.5%)	232(64.4%)	<0.0001	284(67.6%)	292(69.5%)	0.5520
Smokers, n(%)	67(19.0%)	104(28.9%)	0.0021	112(26.7%)	163(38.8%)	<0.0001
Hypertension, n(%)	174(49.3%)	264(73.3%)	<0.0001	194(46.2%)	306(72.9%)	<0.0001
Diabetes, n(%)	72(20.3%)	117(32.5%)	<0.0001	13(3.1%)	172(41.0%)	<0.0001
Hyperlipidemia, n(%)	159(45.4%)	170(47.2%)	0.5103	106(25.2%)	249(59.3%)	<0.0001
Mean Age, years ±SD	59.5±9.9	64.4±11.7	<0.0001	53.6±9.2	55.7±9.3	0.0013

doi:10.1371/journal.pone.0024757.t001

Characteristics of Significant SNPs and Their Association with Ischemic Stroke Risk under Additive Model.
Initial Study

dbSNP ID
rs16679248
rs11868708
rs11703570

*Major alleles given first, minor alleles second.
*Case-Control.
*Adjusted risk factors: gender, age, hypertension, diabetes, hyperlipidemia, smoking.
*perfectly correlated with rs16679248 (r² = 1); alleles:T/C.
*perfectly correlated with rs11868708 (r² = 1); alleles:T/C.
*perfectly correlated with rs11703570 (r² = 1); alleles:C/T.

doi:10.1371/journal.pone.0024757.t002
Ethics Statement

All participants agreed to provide blood samples and written informed consent for the study. The study was approved by the Singapore General Hospital Ethics Committee and performed in observance of the local institutional guidelines.

Study Subjects

The initial study recruited 384 stroke patients and 362 non-stroke controls 40 to 85 years of age of Singaporean Chinese ethnicity. All the cases of ischemic stroke were admitted to the Singapore General Hospital (SGH) Stroke Programme. Clinical diagnosis and classification of ischemic stroke was confirmed in all patients through the use of brain computerized tomography (CT) or magnetic resonance imaging (MRI). CT or MRI was performed within 48 hours of admission and the patients were systemically evaluated to rigorously determine stroke phenotype and vascular risk factors (hypertension, diabetes, hyperlipidemia and smoking). Demographic (age, gender, and ethnicity) information was also obtained from all the patients.

Controls were healthy volunteers from the Singapore population who agreed to provide their demographic, health (weight, height, physical activity) and vascular risk factor information for the study. Stroke was excluded on the basis of family history and a medical examination.

In the validation study, an additional 708 new stroke samples from the SGH Stroke Programme were recruited. Clinical diagnosis, ischemic stroke classification and demographic information were obtained as described above in the initial study. 903 stroke-free controls were recruited as part of the Singapore Prospective Study Program (SP2) which consists of individuals from 2 previous cross sectional studies, the 1992 National Health

Table 3. Haplotype Frequencies Distributions of Significant Haplotype Blocks among Cases and Controls.

Haplotype	Candidate Gene Study	Replication Study												
	SNPs	Allele	Freq	Chi Sq	P	Ph	SNPs	Allele	Freq	Chi Sq	P	Ph		
	Case	Control					Case	Control						
SHMT1-CCG	rs2273028	C/T	0.364	0.299	6.69	0.71x10^-3	0.78	rs2273028	C/T	0.339	0.312	1.434	0.23	0.96
	rs11868708	T/C					rs9909104	T/C						
	rs2273026	G/A					rs2273026	G/A						
TCN2-GA	rs5749131	A/G	0.042	0.095	11.12	8.54x10^-4	0.13	rs5749131	A/G	0.063	0.06	0.094	0.76	1
	rs11703570	A/T					rs2301953	C/T						

aMajor alleles given first, minor alleles second.
b1000 permutations performed.
cr² = 1 with rs11868708.
dr² = 1 with rs11703570.
doi:10.1371/journal.pone.0024757.t003

Materials and Methods

Table 4. Cumulative Effect of Risk Alleles on Ischemic Stroke Risk.

No of Risk Allele	Initial Study Study	Replication Study	Combined Analysis						
	Ctrl:Case OR	Pm	P_Trend	Ctrl:Case OR	Pm	P_Trend	Ctrl:Case OR	Pm	P_Trend
0 or 1	1.00 - 2.0x10^-3			1.00 - 0.111			1.00 - 1.20x10^-6		
2	1.84 (1.07-3.15)	0.027	1.81 (0.98-3.32)	0.056	1.77 (1.21-2.60)	0.004			
3	2.04 (1.41-4.08)	0.001	2.15 (1.18-3.94)	0.013	2.19 (1.50-3.21)	5.6x10^-5			
4	3.58 (1.93-6.67)	5.6x10^-5	1.49 (0.75-2.95)	0.257	2.23 (1.44-3.46)	3.2x10^-4			
5	13.5 (3.94-46.30)	3.5x10^-5	3.16 (1.16-8.60)	0.025	5.43 (2.68-11.00)	2.7x10^-6			

aRisk alleles are rs16879248:T or rs16879239:T, rs11868708:C or rs9909104:C, rs11703570:A or rs2301953:T.
bAdjusted risk factors: gender, age, hypertension, diabetes, hyperlipidemia, and smoking.
cSignificance by comparing to the base group carrying 0 or 1 risk allele.
dP value calculated by Cochran-Armitage Trends Test from the adjusted ORs.
doi:10.1371/journal.pone.0024757.t004
Survey and the 1998 National Health Survey, each representing a random sample of the Singapore population, were re-contacted between 2004 and 2007 [23–24]. Subjects who were successfully re-contacted and gave informed consent answered a questionnaire and attended a clinic examination. Fasting blood glucose was measured for all participants. We observed a significant difference in mean age of 708 cases (61.6 ± 11.7 years) and 903 controls (46.5 ± 10.2 years). Hence, cases and controls were matched with age, and 420 case-control pairs were included in the analysis. Samples analyzed in the validation study are independent from the initial samples.

Table 1 summarizes the characteristics of stroke patients and control subjects in each study. The cases and controls of both the initial and validation cohorts were significantly different in the prevalence of smokers, hypertension, and diabetes; to adjust for these differences, we entered these non-genetic factors as covariates in a logistic regression test for association.

SNP Selection and Genotyping

25 candidate genes known to be involved in homocysteine metabolic pathway (Figure 1, Table S2) were selected for the present study. The selection of the SNPs was done by using the SNP information from the International HapMap project (Phase I data) [25] and the dbSNP database (Build 124) to produce an evenly distributed set of SNPs for each gene. In the initial study, 417 SNPs from the 25 candidate genes were selected for genotyping analysis using the MassArray system from Sequenom (San Diego, USA) and the GoldenGate Assay from Illumina (San Diego, USA). After quality control filtering (criteria: MAF > 0.03, call rate > 0.9, HWE P > 0.05), the final dataset for association analysis contains the genotyping results of 285 SNPs in 714 samples. In the replication study, 8 SNPs which show significant association in the SNP-based and haplotype analysis were selected and genotyped using MassArray system from Sequenom (San Diego, USA) (Table S3). More information on the procedure of SNP selection is provided in the Text S1.

Statistical Analyses

All statistical analyses were performed using STATA 8.0 (StataCorp, TX: College Station), Haploview (version 4.0) and R program (version 2.2.1) [26–27]. To reduce the redundancy of SNPs in association analysis and thus the number of association tests, 147 tagging SNPs were identified from the 285 SNPs by using Paul de Bakker’s Tagger tag SNP selection algorithm implemented in Haploview and an r² cut-off of 0.8 [26]. Association analysis was then performed on the tagging SNPs using the Cochran-Armitage trend test. Genetic association was expressed as odds ratios (OR) of the rarer allele versus the common allele for having the disease phenotype, and the significance of association was tested using a logistic regression analysis adjusting for vascular risk factors, age, and gender.

Haplotype analysis was performed within the regions showing strong linkage disequilibrium (LD). Haplotype phase and population frequency were inferred and estimated from genotypes using the Expectation-Maximization (EM) algorithm implemented in Haplovew, and 35 LD blocks within 19 genes were identified using the Confidence Intervals method [28-29]. Haplotype association analysis was then performed for each common haplotype.
Homocysteine Metabolism Genes & Ischemic Stroke

(population frequency above 0.01) using Haploview. For haplotypes showing suggestive evidence ($P < 0.05$) by Haploview analysis, PHASE (v2.1) was used to reconstruct the haplotypes from the genotypes[30–31]. In order to account for the multiple SNPs and haplotypes tested, a permutation procedure (implemented in the Haploview) was used to obtain the corrected P-value of haplotype association.

To assess cumulative effect of multiple variants, a joint association analysis of the SNPs showing suggestive evidence ($P < 0.05$) in single SNP association testing was performed. The total number of risk alleles of the 3 SNPs in each individual was counted in each individual, as done in a recent study on prostate cancer[32]. Given the small number of individuals carrying none of the risk alleles, ORs of individuals carrying 2, 3, 4 and 5 risk alleles over the ones carrying none or 1 risk allele for developing ischemic stroke were evaluated using logistic regression analysis with adjustment for the aforementioned risk factors. To correct for model selection bias of the joint analysis, 5000 permutations were conducted in each individual, as done in a recent study on prostate cancer[32]. Given the small number of individuals carrying none of the risk alleles, ORs of individuals carrying 2, 3, 4 and 5 risk alleles over the ones carrying none or 1 risk allele for developing ischemic stroke were evaluated using logistic regression analysis with adjustment for the aforementioned risk factors. To correct for model selection bias of the joint analysis, 5000 permutations were performed to assess significance of the joint effect. Permutation was done by shuffling the phenotype status in the 714 samples. In each permutation, SNPs with suggestive evidence of association (adjusted $P < 0.05$) from the trend analysis were identified first, and significance (P-value) of the joint effect of suggested SNPs was then evaluated in the same way using multi-variable logistic regression analysis. Finally, P values from 5000 permutations were used to determine significance or exact P value of the joint effect of the 3 risk variants identified in this study.

Pair-wise interaction among SNPs was also investigated by adding an interaction term into the logistic regression analysis. An interaction is found to be significant if likelihood-ratio test P value is less than 0.05. All power estimations were computed using QUANTO (v1.2) [33–34].

SNP-based, haplotype and joint association analysis for the 8 selected SNPs in replication samples were carried out as described above.

Supporting Information

Figure S1 Principal Component Analysis (PCA) of the Initial Samples. Plots between the 1st and the 2nd-5th PCs, which were derived from the PCA analysis of 714 initial samples and 194 HapMap samples. All the cases are labeled in red, whereas the controls are labeled in white. The HapMap samples are labeled in blue (CHB), earth yellow (JPT), yellow (CEU) and green (YRI).

Table S1 Cochran-Armitage Trends Test Result for the 147 Tagging SNPs.

Trait	SNP	P-value
Cardiovascular disease	A1	0.04
Stroke	A2	0.02
Ischemic stroke	A3	0.01

Table S2 Number of SNPs Analyzed for each Candidate Gene.

Gene	SNPs
A1	100
A2	200
A3	300

Table S3 SNPs selected for replication study.

SNP	P-value
A1	0.01
A2	0.02

Table S4 Association of 3 Significant SNPs with Ischemic Stroke Susceptibility under Different Inheritance Models.

Model	P-value
A1	0.01
A2	0.02
A3	0.03

Table S5 Power Calculation for Two-stage Case-Control Association Study (Stage 1: 360 Cases & 354 Controls; Stage 2: 420 Cases & 420 Controls) at a Prevalence of 3% (Significant Level $= 0.0005$, 147 SNPs).

Text S1 Supplementary information of method.

Acknowledgments

We would like to thank Lee Hanguing Jasinda for recruitment of controls and data collection. We also express thanks to Wong Chung Hua and Dennis Tan Eng Kiat for their contribution in genotyping experiments. Partial results of this work were presented at the European Human Genetics Conference 2008 in Barcelona, Spain.

Author Contributions

Conceived and designed the experiments: JJ QL. Performed the experiments: KK S-SN. Analyzed the data: H-QL AT. Contributed reagents/materials/analysis tools: JJ CC H-MG M-CW E-ST. Wrote the paper: H-QL JI CC KK J-NF.

References

1. Khujinsans LA, Young BS, Borbom CA, Murray L, McMaster D, et al. (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101: 2483–2489.
2. Gellerink H, den Heijer M, Heil SG, Blom HJ (2005) Genetic determinants of plasma total homocysteine. Semin Vasc Med 5: 98–109.
3. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325: 1202.
4. Sudlow C, Martinez Gonzalez NA, Kim J, Clark C (2006) Does apolipoprotein E genotype influence the risk of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage? Systematic review and meta-analyses of 31 studies among 5961 cases and 17,963 controls. Stroke 37: 364–370.
5. Saved-Tahatabaize BA, Oostra BA, Isaacs A, van Duijn CM, Wittemaen J (2006) ACE polymorphisms. Cire Res 98: 1123–1133.
6. Casas JP, Hingorani AD, Bautista LE, Sharma P (2004) Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol 61: 1652–1661.
7. Gretarsdottir S, Thorleifsson G, Reynisdottir H, Jonsdottir S, et al. (2003) The gene encoding 5-lipoxygenase activating protein confers risk of ischemic stroke. Nat Genet 35: 131–138.
8. Holmberg S, Manolescu A, Thorleifsson G, Gretarsdottir S, Jonsdottir H, et al. (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36: 233–239.
9. Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288: 2015–2022.
10. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274: 1049–1057.
methylenetetrahydrofolate reductase gene C677T polymorphism was a risk factor for thrombotic stroke: a Multicenter Case-Control Study in China. Stroke 34: 2085–2090.

20. Matarin M, Brown WM, Dena H, Britton A, De Vrieze FW, et al. (2009) Candidate gene polymorphisms for ischemic stroke. Stroke 40: 3436–3442.

21. Selhub J, Jacobs PF, Wilson PW, Rush D, Rosenberg IH (1995) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270: 2693–2698.

22. VITATOPS Trial Study Group (2010) B vitamins in patients with recent transient ischaemic attack or stroke in the VITamins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol 9: 855–863.

23. Tan CE, Emmanuel SC, Tan BY, Jacob E (1999) Prevalence of diabetes and ethnic differences in cardiovascular risk factors. The 1992 Singapore National Health Survey. Diabetes Care 22: 241–247.

24. Cutter J, Tan BY, Chew SK (2001) Levels of cardiovascular disease risk factors in Singapore following a national intervention programme. Bull World Health Organ 79: 908–915.

25. The international HapMap Consortium (2003) The international HapMap project. Nature 426: 789–796.

26. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

27. R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

28. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, et al. (2005) Efficiency and power in genetic association studies. Nat Genet 37: 1217–1223.

29. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, et al. (2002) The structure of haplotype blocks in the human genome. Science 296: 2225–2229.

30. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68: 978–989.

31. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76: 449–462.

32. Zheng SL, Sun J, Winkel F, Smith S, Stattin P, et al. (2008) Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358: 910–919.

33. Gauderman WJ, Morrison JM QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. http://hydra.usc.edu/qcc.

34. Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21: 35–50.