Supplementary Information

Cysteine dependent conformation heterogeneity of *Shigella flexneri* autotransporter IcsA and implications in its function

Jilong Qin\(^1\,2\,*\), Yaoqin Hong\(^1\), Renato Morona\(^2\), Makrina Totsika\(^1\,*\)

\(^1\)Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia

\(^2\)School of Biological Sciences, University of Adelaide, Adelaide, Australia

Correspondence: *Jilong.qin@qut.edu.au* *Makrina.totsika@qut.edu.au*
Table S1. Strains, plasmids, and oligonucleotides

Bacterial strains	Description	Source
S. flexneri strains		
2457T	Wild-type Shigella flexneri 2a	1
ΔicsA	Shigella flexneri 2a icsA::tet	2
ΔipaD	Shigella flexneri 2a ipaD::frt	3
ΔicsA ΔipaD	Shigella flexneri 2a icsA::tet ipaD::frt	3
ΔicsB	Shigella flexneri 2a icsB::kan	This work
ΔicsA ΔicsB	Shigella flexneri 2a icsA::tet icsB::kan	This work
E. coli strains		
DH5a	F– φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1	Lab stock
TOP10	F– mcrA Δ(mrr−hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK λ– rpsL(StrR) endA1 nupG	Invitrogen
BL21C43(DE3)	F– ompT gal dcm lon hsdSB(rB–mB–) λ(DE3 [lacI lacUV5-T7 gene 1 ind1sam7 nin5]) and two uncharacterized mutations	Lucigen

Plasmids		
plcsA	icsA with its native promoter cloned into pBR322	4
pBR322	Cloning vector, AmpR, TcR	5
pKD46	Temperature sensitive plasmid expressing Red proteins, AmpR	6
pKD4	Plasmid carrying FRT flanked kanamycin resistant cassette, AmpR, KanR	6
plcsB-lpgA	icsB and lpgA with its native promoter cloned into pSU2718	This work
pSU2718	Cloning vector, ChlR	7
plcsA737-FLAG	FLAG×3 affinity tag inserted at i737 in plcsA	This work
plcsA-lcsP	icsA and lcsP cloned into pCDFDuet-1 with FLAG×3 affinity tag inserted at i54 of icsA	This work
plcsA130S	Codon substitution of cysteine to serine at 130	This work
plcsA375S	Codon substitution of cysteine to serine at 375	This work
plcsA379S	Codon substitution of cysteine to serine at 379	This work
plcsA375S/C379S	Codon substitution of cysteine to serine at 375 and 379	This work
plcsAFLAG-C130S	FLAG×3 in-frame addition at i737 in plcsA130S	This work
plcsAFLAG-C375S	FLAG×3 in-frame addition at i737 in plcsA375S	This work
plcsAFLAG-C379S	FLAG×3 in-frame addition at i737 in plcsA379S	This work
plcsAFLAG-C375S/C379S	FLAG×3 in-frame addition at i737 in plcsA375S/C379S	This work

Oligos		
Description	Sequence	
NcoI-icsA Fwd	CTACGACCATGGCTATGAATCAAATTCACAAATTTTTTGTAATATGACCC	
icsA-Sall Rev	CTACGAGTCGACTCAGGGGTATATTTTCACACCCAAAATAC	
NdeI-IcsP Fwd
icsP-KpnI Rev
FLAG i54 addition Fwd
FLAG i54 addition Rev
FLAG i737 addition Fwd
FLAG i737 addition Rev
icsB KO Fwd
icsB KO Rev
icsB-ipgA Fwd
icsB-ipgA Rev
IcsA C130S Fwd
IcsA C130S Rev
IcsA C375S/C379S Fwd
IcsA C375S/C379S Rev
IcsA C375S Rev
IcsA C379S Fwd
IcsA C379S Rev
Figure S1. Plaque formation by *S. flexneri* 2457T and its derivatives producing IcsA \(^{WT}\) and mutant IcsA proteins with MDCK-2 cells. Representative images were shown, and data was used to generate Figure 5 d&e respectively.
Figure S2. Western immunoblotting with bacterial cells expressing IcsA and its cysteine substitution mutants from 2457TΔipaD treated with hNE. Samples were taken at different time points as indicated above the blot. Samples from bacteria expressing IcsAWT were electrophoresed in parallel (left) with mutants (right) and blotted together to ensure equal exposure for direct comparison. Molecular markers (Precision Plus protein Dual color standards #1610374 BioRad) shown left as 250 kDa, 150 kDa, 100 kDa, 75 kDa, 50 kDa, 37 kDa, 25 kDa, 20 kDa, 15 kDa, and 10 kDa.

References

1 Van den Bosch, L., Manning, P. A. & Morona, R. Regulation of O-antigen chain length is required for *Shigella flexneri* virulence. *Molecular microbiology* **23**, 765-775, doi:10.1046/j.1365-2958.1997.2541625.x (1997).

2 Van den Bosch, L. & Morona, R. The actin-based motility defect of a *Shigella flexneri* rmlD rough LPS mutant is not due to loss of IcsA polarity. *Microb Pathog* **35**, 11-18 (2003).
3 Qin, J., Doyle, M. T., Tran, E. N. H. & Morona, R. The virulence domain of Shigella IcsA contains a subregion with specific host cell adhesion function. *PLoS One* **15**, e0227425, doi:10.1371/journal.pone.0227425 (2020).

4 Morona, R. & Van Den Bosch, L. Multicopy icsA is able to suppress the virulence defect caused by the wzzSF mutation in Shigella flexneri. *FEMS Microbiology Letters* **221**, 213-219, doi:10.1016/s0378-1097(03)00217-9 (2003).

5 Bolivar, F. *et al.* Construction and characterization of new cloning vehicle. II. A multipurpose cloning system. *Gene* **2**, 95-113, doi:https://doi.org/10.1016/0378-1119(77)90000-2 (1977).

6 Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A.* **97**, 6640-6645, doi:D - NLM: PMC18686 EDAT- 2000/06/01 09:00 MHDA- 2000/07/15 11:00 CRDT- 2000/06/01 09:00 AID - 10.1073/pnas.120163297 [doi] AID - 120163297 [pii] PST - ppublish (2000).

7 Martinez, E., Bartolome, B. & de la Cruz, F. pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. *Gene* **68**, 159-162, doi:10.1016/0378-1119(88)90608-7 (1988).