Research Article

A New Numerical Approximation Method for Two-Dimensional Wave Equation with Neumann Damped Boundary

Jiankang Liu1,2 and Suying Zhang1

1Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, Shanxi, China
2School of Mathematical Science, Shanxi University, Taiyuan 030006, Shanxi, China

Correspondence should be addressed to Suying Zhang; zhangsy@sxu.edu.cn

Received 27 October 2019; Revised 13 April 2020; Accepted 27 April 2020; Published 1 June 2020

Copyright © 2020 Jiankang Liu and Suying Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a fully discretized finite difference scheme is derived for two-dimensional wave equation with damped Neumann boundary conditions. By discrete energy method, the proposed difference scheme is proven to be of second-order convergence and of unconditional stability with respect to both initial conditions and right-hand term in a proper discretized L^2 norm. The theoretical result is verified by a numerical experiment.

1. Introduction

In this paper, we consider the finite difference discretization for the following initial boundary value problem (IBVP) of wave equation in a square $\Omega = (0,1) \times (0,1)$:

$$
w_{tt}(x, y, t) - \Delta w(x, y, t) = f(x, y, t), \quad (x, y, t) \in \Omega \times (0,T], \tag{1}
$$

$w(x, y, 0) = \varphi(x, y)$,

$w_t(x, y, 0) = \psi(x, y)$,

$(x, y) \in \Omega$, \tag{2}

$w(0, y, t) = 0$,

$w_x(1, y, t) = -w_t(1, y, t)$, \tag{3}

$y \in [0,1], t \in [0,T]$,

$w(x, 0, t) = 0$,

$w_y(x, 1, t) = -w_t(x, 1, t)$, \tag{4}

$x \in [0,1], t \in [0,T]$, where $\varphi(x, y)$, $\psi(x, y)$, and $f(x, y, t)$ are given sufficient smooth functions, and $\varphi(0, y) = \varphi(x, 0) = 0$, $\psi(0, y) = \psi(x, 0) = 0$, $\varphi_x(1, y) + \psi_y(x, 1) + \psi(x, 1) = 0$, which means that the initial conditions are compatible with boundary conditions.

This system arises in many important models for distributed parameter control systems. In particular, in the model of a vibrating flexible membrane, the solution w represents the transverse displacement of the membrane, and in models for acoustic pressure fields, the solution w represents the fluid pressure (see, [1, 2] for more examples). The boundary conditions on the right and top sides of Ω in (3) and (4) are called Neumann actuations with damped controller from the viewpoint of control theory. Here, this kind of boundary condition is regarded as damped Neumann boundary. For this special boundary condition, it is more complicated to construct a proper energy function to prove a priori estimate of proposed finite difference scheme than that of classical boundary conditions (Dirichlet, Neumann, or Robin).

The numerical analysis of second-order hyperbolic equations has been extensively studied for decades. Many numerical methods have been used to approximate this kind of problem, including Finite Element Methods [3, 4], Finite Volume Methods [5, 6], Finite Difference Methods [7, 8], Discontinuous Galerkin methods [9–11], Mixed Finite Element Methods [12] and so on. In [4], wave equation with
homogeneous boundary condition is considered, in which a posteriori error bounds in the $L^\infty(L^2)$ norm for finite element methods is derived under minimal regularity assumptions. A finite volume scheme on the non-conforming meshes for multidimensional wave equation is constructed in [6], where the error estimates for the approximations of the exact solution and its first derivatives is derived. An unconditionally stable and second-order convergent finite difference scheme is constructed for one-dimensional linear hyperbolic equation in [8]. As far as hyperbolic conservation law is concerned, there are many distinguished papers focused on this topic, for example, the classical ENO/WENO schemes [13], the improved ENO/WENO schemes [14–17], and so on. All linear numerical schemes are either dispersive or dissipative. The computational dispersion can lead to noise in the numerical solution. Dispersion and dissipation phenomena were investigated in [18–22], where some composite schemes were proposed to reduce the dispersive effect on the numerical solution. High order compact finite difference scheme is an efficient way for solving PDEs. In [23–25], the high order compact finite difference scheme was constructed for hyperbolic equations subject to homogeneous boundary condition.

There are also some investigations of the numerical methods for viscous or strongly damped hyperbolic equation [26–29]. However, most of them just considered the homogeneous boundary problems. In [3], the generalized version of this kind of boundary condition in [3, (2.2b)] was considered in the context of finite element methods. In [30], the mixed finite element formulation for second-order hyperbolic equation with absorbing boundary condition was investigated. Recently, the weak formulation of hyperbolic problems with inhomogeneous Dirichlet and Neumann boundary was considered in [31].

The rest of this paper is organized as follows. Some basic notations and lemmas are given in Section 2, which is essential to the analysis of finite difference schemes. Section 3 constructs the finite difference scheme for (1)-(4). A priori estimate of the proposed difference scheme is shown in Section 4. The unique solvability, convergence, and stability of proposed finite difference scheme are proved in Section 5. A numerical experiment is conducted in Section 6, before a conclusion is stated in Section 7.

2. Preliminary

Let m and n be two positive integers and assume that the space step and time step are $h = 1/m$ and $\tau = T/n$, respectively. Define $\Omega_h = \{(x, y) | x_i = ih, y_j = jh, 0 \leq i, j \leq m\}$, $\Omega_T = \{t_k | t_k = kr, 0 \leq k \leq n\}$ and $\Omega_{hr} = \Omega_h \times \Omega_T$. Let $w = \{w_{i,j}^k | 0 \leq i, j \leq m, 0 \leq k \leq n\}$ be the grid function on Ω_{hr}. We introduce the following difference and averaging operators:

\[
\begin{align*}
\delta_i w_{ij}^{k+1/2} &= \frac{w_{i+1,j}^k - w_{i,j}^k}{\tau}, \\
\delta_j w_{ij}^{k+1/2} &= \frac{w_{i,j+1}^k - w_{i,j}^k}{\tau}, \\
D_k w_{ij}^k &= \frac{w_{i,j+1}^k - w_{i,j}^k}{2\tau}, \\
\delta x^2 w_{ij}^k &= \frac{\delta x w_{ij}^{k+1/2} - \delta x w_{ij}^{k-1/2}}{\tau}, \\
\delta y^2 w_{ij}^k &= \frac{\delta y w_{ij}^{k+1/2} - \delta y w_{ij}^{k-1/2}}{\tau}, \\
\delta i^2 w_{ij}^k &= \frac{\delta i w_{ij}^{k+1/2} - \delta i w_{ij}^{k-1/2}}{h}, \\
\delta j^2 w_{ij}^k &= \frac{\delta j w_{ij}^{k+1/2} - \delta j w_{ij}^{k-1/2}}{h}, \\
\bar{\omega}_{ij}^k &= \frac{w_{ij}^{k+1} + w_{ij}^{k-1}}{2}.
\end{align*}
\]

The following lemmas (Lemma 1–Lemma 4) are necessary for analyzing the truncation error of the difference scheme and for proving the convergence of the difference scheme, which are analogous to lemmas in [32].

Lemma 1. Let $h > 0$ and c be two constants.

(a) If $g(x) \in C^2[c - h, c + h]$, then

\[g(c) = \frac{1}{2} \left(g(c - h) + g(c + h) \right) - \frac{h^2}{2} g''(\xi_0), \quad c - h < \xi_0 < c + h.
\]

(b) If $g(x) \in C^2[c,c + h]$, then

\[g'(c) = \frac{1}{h} \left(g(c + h) - g(c) \right) - \frac{h}{2} g''(\xi_1), \quad c - h < \xi_1 < c + h.
\]

(c) If $g(x) \in C^2[c - h, c]$, then

\[g''(c) = \frac{1}{h} \left(g(c) - g(c - h) \right) + \frac{h}{2} g''(\xi_2), \quad c - h < \xi_2 < c.
\]

(d) If $g(x) \in C^3[c - h, c + h]$, then

\[g'(c) = \frac{1}{2h} \left(g(c + h) - g(c - h) \right) - \frac{h^2}{6} g'''(\xi_3), \quad c - h < \xi_3 < c + h.
\]

(e) If $g(x) \in C^4[c - h, c + h]$, then

\[g''(c) = \frac{1}{2h} \left(g(c + h) - g(c - h) \right) - \frac{h^2}{24} g^{(4)}(\xi_4), \quad c - h < \xi_4 < c + h.
\]
\[g''(c) = \frac{1}{h^2} [g(c + h) - 2g(c) + g(c - h)] - \frac{h^2}{12}g^{(4)}(\xi), \]
\[c - h < \xi < c + h. \]
\[(f) \text{ If } g(x) \in C^3[\frac{c-h}{2}, c], \text{ then } \]
\[g''(c) = \frac{2}{h} \left(g(t) - \frac{g(c) - g(c - h)}{h} \right) + \frac{h}{6}g^{(3)}(\xi), \]
\[c - h < \xi < c. \]
\[(10) \]

Lemma 2 (Gronwall Inequality). Suppose \(\{F^k, G^k\} \) are nonnegative sequences such that \(F^{k+1} \leq (1 + c)rF^k + rG^k, \) \(k = 0, 1, 2, \ldots, \) then
\[F^k \leq \exp(ckt) \left(F^0 + r \sum_{i=1}^{k-1} G^i \right), \quad k = 0, 1, 2, \ldots, \]
where \(c \) is a nonnegative constant.

Lemma 3. Suppose the mesh grids be \(I_h = \{x_i | 0 \leq i \leq m\}, \) where \(x_i = ih, \ h = 1/m. \) Let \(u = \{u_i | 0 \leq i \leq m\} \) be mesh function on \(I_h \) such that \(u_0 = 0, \) then
\[\|u\|_{\infty} \leq |u|_1, \quad \|u\| \leq \frac{\sqrt{2}}{2}|u|_1, \]
where
\[|u|_1 = \sqrt{\sum_{i=1}^{m} (\delta_x u_{i-(1/2)})^2}, \]
\[\|u\| = \sqrt{h(1/2)u_0^2 + \sum_{i=1}^{m} u_i^2 + (1/2)u_m^2}, \]
\[\|u\|_{\infty} = \max_{0 \leq i \leq m} |u_i|. \]

Proof. For \(1 \leq i \leq m, \) we have
\[u_i = \sum_{j=1}^{i} (u_j - u_{j-1}) = h \sum_{j=1}^{i} \delta_x u_{j-(1/2)}. \]
\[(14) \]

Square both sides of (14) and apply the Cauchy–Schwarz inequality, then

\[\|v\| = \sqrt{\sum_{i,j=1}^{m} (v_{ij})^2}, \]
\[\|\delta_x v\| = \sqrt{\sum_{i=1}^{m} (\delta_x v_{i+(1/2),0})^2 + \sum_{i=1}^{m} (\delta_x v_{i+(1/2),j})^2 + \frac{1}{2}(\delta_x v_{i+(1/2),0})^2}, \]
\[\|\delta_y v\| = \sqrt{\sum_{j=1}^{m} (\delta_y v_{0,j+(1/2)})^2 + \sum_{j=1}^{m} (\delta_y v_{j+(1/2),0})^2 + \frac{1}{2}(\delta_y v_{0,j+(1/2)})^2}. \]
\[(22) \]
Lemma 4. Let \(v = \{ v_{ij} \mid 0 \leq i, j \leq m \} \) be mesh function on \(\Omega_h \) such that \(v_{0j} = v_{i0} = 0 \) for \(1 \leq i, j \leq m \), then we have
\[
\|v\| \leq \frac{1}{2} \|v\|, \quad (23)
\]
where \(|v| = (\|\delta_x v\|^2 + \|\delta_y v\|^2)^{1/2} \).

Proof. From Lemma 3, we have
\[
\sum_{i=1}^{m-1} u_{ij}^2 + \frac{h^2}{2} \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \left(\delta_x u_{i(1/2),j}\right)^2, \quad 1 \leq j \leq m. \quad (24)
\]

Multiplying both sides of (24) by \(h \) and summing for \(j \) from 1 to \(m-1 \), we get
\[
\sum_{i=1}^{m} u_{ij}^2 + \frac{h^2}{2} \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \left(\delta_x u_{i(1/2),j}\right)^2. \quad (25)
\]

Multiplying both sides of (24) by \(h/2 \) and letting \(j = m \) in (24), then after combining it with (25), we get
\[
\|u\|^2 \leq \frac{1}{2} \|\delta_x u\|^2. \quad (26)
\]
Similarly, we have
\[
\|u\|^2 \leq \frac{1}{2} \|\delta_y u\|^2. \quad (27)
\]
Combining (26) and (27), it follows
\[
\|u\| \leq \frac{1}{2} |u|_1. \quad (28)
\]

This completes the proof. \(\square \)

3. Derivation of the Finite Difference Scheme

Define the grid function \(W = \{ W_{ij}^k \mid 0 \leq i, j, m, 0 \leq k \leq n \} \) by
\[
W_{ij}^k = w(x_i, y_j, t_k), \quad 0 \leq i, j \leq m, 0 \leq k \leq n. \quad (29)
\]

Consider equation (1) at the inner points \((x_i, y_j, t_k)\) in \(\Omega_{bh} \), then it follows
\[
\partial_t^2 w(x_i, y_j, t_k) - \partial_x^2 w(x_i, y_j, t_k) - \partial_y^2 w(x_i, y_j, t_k) = f(x_i, y_j, t_k),
\]
\[1 \leq i, j \leq m - 1, 1 \leq k \leq n - 1. \quad (30)
\]

According to Lemma 1(e), it follows
\[
\delta_x^2 W_{ij}^k - \delta_y^2 W_{ij}^k = \frac{1}{2} \left(\frac{\partial_t W_{ij}^k}{\partial x} + \frac{\partial_t W_{ij}^k}{\partial y} \right) + O(\tau^2 + h^2).
\]
\[1 \leq i, j \leq m - 1, 1 \leq k \leq n - 1. \quad (31)
\]

where \(R_{ij}^k = O(\tau^2 + h^2) \). These are discrete equations at inner points.

Next we will pay our main attention to the derivation of difference equations at the boundary points. Considering the boundary condition 1.3 at \((x_m, y_j, t_k)\), it follows
\[
\frac{\partial w(x_m, y_j, t_k)}{\partial t} + \frac{\partial w(x_m, y_j, t_k)}{\partial x} = 0, \quad 1 \leq j \leq m - 1. \quad (32)
\]

Similarly, the boundary condition 1.4 at \((x_i, y_m, t_k)\) satisfies
\[
\frac{\partial w(x_i, y_m, t_k)}{\partial t} + \frac{\partial w(x_i, y_m, t_k)}{\partial y} = 0, \quad 1 \leq i \leq m - 1. \quad (33)
\]

By (3) and (4), the differential equation at the corner point \((x_m, y_m, t_k)\) reads
\[
\frac{2 \partial w(x_m, y_m, t_k)}{\partial t} + \frac{\partial w(x_m, y_m, t_k)}{\partial x} + \frac{\partial w(x_m, y_m, t_k)}{\partial y} = 0. \quad (34)
\]

According to Lemma 1(a), (c), and (d), we have
\[
\frac{\partial w(x_m, y_j, t_k)}{\partial t} = W(x_m, y_j, t_{k+1}) - W(x_m, y_j, t_{k-1}) \quad (35)
\]
\[+ O(\tau^2) = D_t W_{mj}^k + O(\tau^2), \quad (36)
\]
\[
\frac{\partial w(x_i, y_m, t_k)}{\partial t} = W(x_i, y_m, t_{k+1}) - W(x_i, y_m, t_{k-1}) + O(\tau^2)
\]
\[= D_t W_{im}^k + O(\tau^2), \quad (37)
\]
\[
\frac{\partial w(x_i, y_j, t_k)}{\partial x} = \frac{1}{2} \left(\frac{\partial w(x_i, y_j, t_{k-1})}{\partial x} + \frac{\partial w(x_i, y_j, t_{k+1})}{\partial x} \right)
\]
\[+ O(\tau^2) \quad (38)
\]
\[= D_x W_{ij}^k + \frac{h}{2} \left(\delta_x^2 W_{mj}^k - \delta_x^2 W_{im}^k \right)
\]
\[+ f(x_i, y_j, t_k) + O(\tau^2 + h^2), \quad (39)
\]

Applying (35) and (37) into (32), we get
\[
D_x W_{mj}^k + D_t W_{mj}^k + \frac{h}{2} \delta_x^2 W_{mj}^k - \frac{h}{2} \delta_y^2 W_{mj}^k = \frac{h}{2} f(x_m, y_j, t_k)
\]
\[+ R_{mj}^k, \quad 1 \leq j \leq m - 1, 1 \leq k \leq n - 1, \quad (40)
\]

where \(R_{mj}^k = O(\tau^2 + h^2) \). Similarly, we have
\[D_y W_{im}^\kappa + D_t W_{im}^\kappa + \frac{h^2}{2} \delta_x W_{im}^\kappa - \frac{h^2}{2} \delta_y W_{im}^\kappa = \frac{h}{2} f(x_i, y_m, t_k) + r_{im}, \]
\[D_x W_{mn}^\kappa + D_y W_{mn}^\kappa + 2D_t W_{mn}^\kappa + \frac{h^2}{2} \delta_x W_{mn}^\kappa = hf(x_m, y_m, t_k) + R_{mn}^k, \]
where \(R_{im}^k = O(\tau^2 + h^2) \) and \(R_{mn}^k = O(\tau^2 + h^2) \).

When \(k = 0 \), equation (1) at initial grids \((x_i, y_j, t_0)\) satisfies
\[\frac{\partial^2 w(x_i, y_j, t_0)}{\partial t^2} - \frac{\partial^2 w(x_i, y_j, t_0)}{\partial x^2} - \frac{\partial^2 w(x_i, y_j, t_0)}{\partial y^2} = f(x_i, y_j, t_0), \]
\[1 \leq i, j \leq m - 1. \]

From Lemma 1(f) we have,
\[\frac{\partial^3 w(x_i, y_j, t_0)}{\partial t^3} = \frac{2}{\tau} \left(\delta_t W_{ij}^{1/2} - w_t(x_i, y_j, t_0) \right) + O(\tau). \]
\[\text{Putting (43) into (42), then by Lemma 1(a) and (e), the following equations hold:} \]
\[\frac{2}{\tau} \left(\delta_t W_{ij}^{1/2} - w_t(x_i, y_j, t_0) \right) - \delta_x^2 W_{ij}^{1/2} - \delta_y^2 W_{ij}^{1/2} = f(x_i, y_j, t_0) + r_{ij}, \]
\[1 \leq i, j \leq m - 1, \]
where \(r_{ij} = O(\tau + h^2) \). At \((x_m, y_j, t_{1/2})\), we construct the following difference scheme:
\[\delta_x W_{m-1/2, j}^{1/2} + \frac{h}{\tau} \delta_t W_{m-1/2, j}^{1/2} - \frac{h^2}{2} \delta_x^2 W_{m-1/2, j}^{1/2} = \frac{h}{\tau} \psi(x_m, y_j) \]
\[+ \frac{h}{2} f(x_m, y_j, t_0) + r_{mj}, \]
where \(r_{mj} = O(\tau + h^2) \). Similarly, at \((x_i, y_m, t_{1/2})\) and \((x_m, y_m, t_{1/2})\), we have
\[\delta_y W_{im}^{1/2} + \frac{h}{\tau} \delta_t W_{im}^{1/2} - \frac{h^2}{2} \delta_y^2 W_{im}^{1/2} = \frac{h}{\tau} \psi(x_i, y_m) \]
\[+ \frac{h}{2} f(x_i, y_m, t_0) + r_{im}, \]
\[\delta_x W_{m-1/2, m}^{1/2} + \delta_x W_{m, m-1/2}^{1/2} + 2\delta_t W_{m, m}^{1/2} + \frac{h}{\tau} \delta_x W_{m, m}^{1/2} \]
\[= \frac{2h}{\tau} \psi(x_m, y_m) + h f(x_m, y_m, t_0) + r_{mn}, \]
respectively, where \(r_{im} = O(\tau^2 + h^2) \) and \(r_{mn} = O(\tau^2 + h^2) \).
For the initial condition and the left and bottom boundaries, we have
\[W_{ij}^0 = \varphi(x_i, y_j), \quad 0 \leq i, j \leq m, \]
\[W_{0j}^k = 0, \quad 0 \leq i \leq m, 1 \leq j \leq m, 1 \leq k \leq n. \]

Finally, by dropping the infinitesimals in (31), (39)–(47), with \(W_{ij}^0 \) replaced by \(w_{ij}^0 \), we get the finite difference schemes for (1)–(4) as follows
\[\delta_x^2 u_{ij}^k - \delta_x^2 u_{ij}^{k-1} - \delta_y^2 u_{ij}^{k-1} = f(x_i, y_j, t_k), \quad 1 \leq i, j \leq m - 1, \]
\[1 \leq k \leq n - 1, \]
\[D_x w_{mj}^k + D_y w_{mj}^k + \frac{h^2}{2} \delta_x w_{mj}^k - \frac{h^2}{2} \delta_y w_{mj}^k = \frac{h}{2} f(x_m, y_j, t_k), \]
\[1 \leq j \leq m - 1, 1 \leq k \leq n - 1, \]
\[D_y w_{mn}^k + D_x w_{mn}^k + 2D_t w_{mn}^k + \frac{h^2}{2} \delta_x w_{mn}^k = \frac{h}{2} f(x_m, y_m, t_k), \]
\[1 \leq k \leq n - 1, \]
\[\delta_x u_{m-1/2, j}^{1/2} - \delta_x u_{m-1/2, j}^{1/2} - \delta_y u_{m-1/2, j}^{1/2} = f(x_m, y_j, t_0) + \frac{2}{\tau} \psi(x_m, y_j), \]
\[1 \leq i, j \leq m - 1, \]
\[\delta_x u_{m-1/2, j}^{1/2} + \frac{h}{\tau} \delta_t u_{m-1/2, j}^{1/2} \]
\[+ \frac{h}{2} f(x_m, y_j, t_0), \quad 1 \leq j \leq m - 1, \]
\[\delta_x u_{m-1/2, j}^{1/2} + \delta_x u_{m-1/2, j}^{1/2} + 2\delta_t u_{m-1/2, j}^{1/2} + \frac{h}{\tau} \delta_x u_{m-1/2, j}^{1/2} \]
\[= \frac{2h}{\tau} \psi(x_m, y_j) + \frac{h}{2} f(x_m, y_j, t_0), \]
\[1 \leq i \leq m - 1. \]
where

\begin{align}
\psi_{ij} &= \varphi(x_i, y_j), \quad 0 \leq i, j \leq m, \\
u_{i0} &= 0, \\
u_{0j} &= 0,
\end{align}

\begin{equation}
0 \leq i \leq m, 1 \leq j \leq m, 1 \leq k \leq n.
\end{equation}

4. A Priori Estimate of the Difference Scheme

In order to prove the convergence and stability of difference schemes, we give a priori estimate of difference schemes (50)–(59).

Theorem 1. Suppose that \(\{ u_{ij} \mid 0 \leq i, j, 0 \leq k \leq n \} \) solves the following difference scheme:

\begin{equation}
\delta_t u_{ij}^k - \delta_x u_{ij}^k - \delta_y u_{ij}^k = f_{ij}^k, \quad 1 \leq i, j \leq m - 1, 1 \leq k \leq n - 1,
\end{equation}

\begin{align}
D_x u_{mj}^k + D_t u_{mj}^k + \frac{h_1^2}{2} u_{mj}^k - \frac{h_2^2}{2} u_{mj}^k = f_{mj}^k, & \quad 1 \leq j \leq m - 1, 1 \leq k \leq n - 1, \\
D_y u_{im}^k + D_t u_{im}^k + \frac{h_1^2}{2} u_{im}^k - \frac{h_2^2}{2} u_{im}^k = f_{im}^k, & \quad 1 \leq i \leq m - 1, 1 \leq k \leq n - 1,
\end{align}

then for arbitrary grid ratio \(\lambda = \tau/h \), we have

\begin{equation}
\| \delta_t u^{k(1/2)} \|^2 + \frac{1}{2} \left(|u^{k+1/2}_i|_1^2 + |u^k_i|^2 \right) \leq \exp \left(\frac{3}{2} T \right) \left(|\psi_{i0}|^2 + \frac{\tau^2}{4} \| f^0 \|^2 + \frac{h_T}{4} \sum_{j=1}^{m-1} |f_{mj}^0|^2 + \frac{h_T}{16} \sum_{i=1}^{m-1} |f_{im}^0|^2 + \frac{3\tau}{2} \sum_{l=1}^{k} \left| G_l \right|^2 \right),
\end{equation}

where

\begin{equation}
G_l = h^2 \sum_{i,j=1}^{m-1} \left(f_{ij}^k \right)^2 + \frac{h_T}{2} \sum_{j=1}^{m-1} |f_{mj}^i|^2 + \frac{h_T}{2} \sum_{i=1}^{m-1} |f_{im}^i|^2 + \frac{h_T}{8} |f_{mm}^i|^2, \quad 1 \leq i \leq n - 1.
\end{equation}

Proof. Define

\begin{equation}
E^k = \| \delta_t u^{k(1/2)} \|^2 + \frac{1}{2} \left(|u^{k+1/2}_1|_1^2 + |u^k_i|^2 \right).
\end{equation}

Multiplying both sides of (60) by \(2h^2 D_t u_{ij}^k \), and taking summation for \(i \) and \(j \) from 1 to \(m - 1 \), we get
\[
2h^2 \sum_{i,j=1}^{m-1} \delta_{i,j}^{k} u_{i,j} D_{i,j}^{k} u_{i,j} - 2h^2 \sum_{i,j=1}^{m-1} \delta_{i,j}^{k} u_{i,j} D_{i,j}^{k} u_{i,j} - 2h^2 \sum_{i,j=1}^{m-1} \delta_{i,j}^{k} u_{i,j} D_{i,j}^{k} u_{i,j} = 2h^2 \sum_{i,j=1}^{m-1} f_{i,j}^{k} D_{i,j}^{k} u_{i,j}, \quad 1 \leq k \leq n-1. \quad (73)
\]

The first term in (73) implies
\[
2h^2 \sum_{i,j=1}^{m-1} \delta_{i,j}^{k} u_{i,j} D_{i,j}^{k} u_{i,j} = \frac{1}{\tau} \left(h^2 \sum_{i,j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k(1/2)} \right)^2 - h^2 \sum_{i,j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k(1/2)} \right)^2 \right). \quad (74)
\]

The second term and the third term in (73) imply
\[
-2h^2 \sum_{i,j=1}^{m-1} \delta_{i,j}^{k} u_{i,j} D_{i,j}^{k} u_{i,j} \\
= -2h \sum_{i,j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k(1/2)} - \delta_{i,j}^{k} u_{i,j}^{k(1/2)} \right) D_{i,j}^{k} u_{i,j} \quad (75)
\]

respectively. Putting (74), (75) and (76) into (73), we get
\[
\frac{1}{\tau} \left(h^2 \sum_{i,j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k(1/2)} \right)^2 - h^2 \sum_{i,j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k(1/2)} \right)^2 \right) + \frac{1}{2\tau} \left(h^2 \sum_{i,j=1}^{m-1} \sum_{j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k+1} \right)^2 \right) - h^2 \sum_{i,j=1}^{m-1} \sum_{j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k(1/2)} \right)^2 + \frac{1}{2\tau} \left(h^2 \sum_{i,j=1}^{m-1} \sum_{j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k+1} \right)^2 \right) - h^2 \sum_{i,j=1}^{m-1} \sum_{j=1}^{m-1} \left(\delta_{i,j}^{k} u_{i,j}^{k-1} \right)^2 \\
= 2h^2 \sum_{i,j=1}^{m-1} f_{i,j}^{k} D_{i,j}^{k} u_{i,j} + 2h \sum_{j=1}^{m-1} D_{x} u_{m,j} D_{x} u_{m,j} + 2h \sum_{i=1}^{m-1} D_{y} u_{i,m} D_{y} u_{i,m}, \quad (77)
\]
where

\[
2h^2 \sum_{i,j=1}^{m-1} f_{ij}^k D_x u_{ij}^k \leq h^2 \sum_{i,j=1}^{m-1} (D_x u_{ij}^k)^2 + h^2 \sum_{i,j=1}^{m-1} (f_{ij}^k)^2 \leq \frac{1}{2} \left(h^2 \sum_{i,j=1}^{m-1} (\delta^1 u_{ij}^{k(1/2)})^2 + h^2 \sum_{i,j=1}^{m-1} (\delta^2 u_{ij}^{k(1/2)})^2 \right) + h^2 \sum_{i,j=1}^{m-1} (f_{ij}^k)^2. \tag{78}
\]

Considering (61)–(63) and by inequality \(2(b-a)a \leq (1/2)b^2\), we get

\[
2h \sum_{i=1}^{m-1} D_x u_{im}^k D_x u_{im}^k + 2h \sum_{i=1}^{m-1} D_y u_{im}^k D_y u_{im}^k
\]

\[
= h \sum_{i=1}^{m-1} \left(2\left(f_{im}^k - D_x u_{im}^k \right) D_x u_{im}^k - h\delta^2 u_{im}^k D_x u_{im} + h\delta^2 u_{im}^k D_x u_{im} \right)
\]

\[
+ h \sum_{i=1}^{m-1} \left(2\left(f_{im}^k - D_x u_{im}^k \right) D_y u_{im}^k - h\delta^2 u_{im}^k D_y u_{im} + h\delta^2 u_{im}^k D_y u_{im} \right)
\]

\[
\leq -\frac{h^2}{4\tau} \sum_{i=1}^{m-1} \left(\left(\delta^2 u_{im}^{k+1(1/2)} \right)^2 - \left(\delta^2 u_{im}^{k(1/2)} \right)^2 \right) - \frac{h^2}{4\tau} \sum_{i=1}^{m-1} \left(\left(\delta^2 u_{im}^{k+1(1/2)} \right)^2 - \left(\delta^2 u_{im}^{k(1/2)} \right)^2 \right)
\]

\[
+ \frac{1}{8} \sum_{i=1}^{m-1} \sum_{i=1}^{m-1} \left(f_{ij}^k \right)^2 + \frac{1}{8} \sum_{i=1}^{m-1} \sum_{i=1}^{m-1} \left(f_{ij}^k \right)^2,
\tag{79}
\]

According to the definition of \(E^k\), (77) implies

\[
\frac{1}{\tau} \left(E^k - E^{k-1} \right) \leq \frac{1}{2} \left(E^k + E^{k-1} \right) + h^2 \sum_{i,j=1}^{m-1} \left(f_{ij}^k \right)^2 + \frac{h}{2} \sum_{i=1}^{m-1} \left| f_{im}^k \right|^2
\]

\[
+ \frac{h}{2} \sum_{i=1}^{m-1} \sum_{i=1}^{m-1} \left(f_{ij}^k \right)^2 + \frac{h}{8} \sum_{i=1}^{m-1} \sum_{i=1}^{m-1} \left(f_{ij}^k \right)^2, \quad 1 \leq k \leq n - 1.
\tag{80}
\]

If we confine \(\tau \leq (2/3)\), then

\[
E^k \leq \left(1 + \frac{3\tau}{2} \right) E^{k-1} + \frac{3\tau}{2} G^k, \quad 1 \leq k \leq n - 1.
\tag{81}
\]

By Gronwall inequality in Lemma 2, we get

\[
E^k \leq \exp \left(\frac{3\tau k}{2} \right) \left(E^0 + \frac{3\tau}{2} \sum_{i=1}^{k} G^i \right), \quad 1 \leq k \leq n - 1.
\tag{82}
\]

Next we estimate \(E^0\). Multiplying (64) by \(h^2\delta \epsilon_{ij}^{1/2}\), and summing up for \(i\) and \(j\) from 1 to \(m - 1\), we have

\[
2h^2 \sum_{i,j=1}^{m-1} \left(\delta^1 \epsilon_{ij} \right)^2 - h^2 \sum_{i,j=1}^{m-1} \left(\delta^2 \epsilon_{ij} \right)^2 - h^2 \sum_{i,j=1}^{m-1} \left(\delta^1 \epsilon_{ij} \right)^2
\]

\[
= h^2 \sum_{i,j=1}^{m-1} f_{ij}^0 \delta \epsilon_{ij}^0,
\tag{83}
\]

which similarly implies

\[
\frac{2}{\tau} \| \delta \epsilon_{ij} \|^2 + \frac{1}{2\tau} \left(\| u_i \|^2 - \| u_0 \|^2 \right)
\]

\[
\leq \frac{1}{\tau} \| \delta \epsilon_{ij} \|^2 + \frac{\tau}{4} \| u_i \|^2 + \frac{h}{4} \sum_{j=1}^{m-1} \| f_{im}^0 \|^2 + \frac{h}{4} \sum_{j=1}^{m-1} \| f_{im}^0 \|^2 + \frac{h}{16} \| f_{mm}^0 \|^2.
\tag{84}
\]
According to the definition of E^0, we obtain
\[E^0 = \| \delta_t u^{1/2} \|^2 + \frac{1}{4} \left(\| u \|_1^2 + \| u_0 \|^2 \right) \]
\[\leq \| u \|^2 + \frac{r^2}{4} \| f \|^2 + \frac{h r}{4} \sum_{j=1}^{m-1} \| f_{mj} \|^2 + \frac{h r}{4} \sum_{i=1}^{m-1} \| f_{im} \|^2 + \frac{h r}{16} \| f_{mm} \|^2. \]
\[(85) \]

Putting (85) into (82) and noticing $k \tau \leq T$, we achieve (70). This completes the proof. □

5. Existence, Convergence, and Stability

In this section, we will discuss the unique solvability, convergence, and stability of the difference scheme (50)–(59).

Theorem 2. The difference scheme (50)–(59) is uniquely solvable.

Proof. Notice that u^0 is known by the initial condition. The difference scheme for u^1 is (54)–(59). We consider the following homogeneous equations of (54)–(59):
\[\frac{2}{\tau^2} w_{ij}^1 - \frac{1}{2} \delta_t w_{ij}^1 - \frac{1}{2} \delta_x w_{ij}^1 = 0, \quad 1 \leq i, j \leq m - 1, \quad (86) \]
\[\frac{1}{2} \delta_x w_{m-1/2,j}^1 + \frac{1}{r} w_{mj}^1 + \frac{h}{\tau^2} w_{mj}^1 = 0, \quad 1 \leq j \leq m - 1, \quad (87) \]
\[\frac{1}{2} \delta_x w_{i,m-1/2}^1 + \frac{1}{r} w_{im}^1 - \frac{h}{\tau^2} w_{im}^1 = 0, \quad 1 \leq i \leq m - 1, \quad (88) \]
\[\frac{1}{2} \delta_x w_{m-1/2,m-1/2}^1 + \frac{1}{2} \delta_x w_{m,m-1/2}^1 + \frac{1}{r} w_{mm}^1 + \frac{h}{\tau^2} w_{mm}^1 = 0, \quad (89) \]
\[w_{0j}^1 = 0, \quad 0 \leq i \leq m, \quad (90) \]
\[w_{ij}^1 = 0, \quad 1 \leq j \leq m. \quad (90) \]

Multiplying (86) by $h^2 w_{ij}^1$, summing up for i and j from 1 to $m - 1$, and combining with (87)–(90), we get
\[\frac{2}{\tau^2} \| w \|^2 + \frac{1}{2} \| w \|^2 + \frac{h}{r} \left(\sum_{j=1}^{m-1} \| w_{mj}^1 \|^2 + \sum_{i=1}^{m-1} \| w_{im}^1 \|^2 + \| w_{mm}^1 \|^2 \right) = 0, \quad (91) \]
which implies $w_{ij}^1 = 0 \ (0 \leq i, j \leq m)$. Thus, w^1 is uniquely solvable.

Now suppose that w^{k-1} and w^k are uniquely solvable. The difference schemes for w^{k+1} satisfy (50)–(53) and (59). The homogeneous equations read:
\[\frac{1}{2} \delta_x w_{ij}^{k+1} - \frac{1}{2} \delta_x w_{ij}^{k+1} - \frac{1}{2} \delta_x w_{ij}^{k+1} = 0, \quad 1 \leq i, j \leq m - 1, \quad (92) \]
\[\frac{1}{2} \delta_x w_{mj}^{k+1} + \frac{1}{r} w_{mj}^{k+1} + \frac{h}{\tau^2} w_{mj}^{k+1} + \frac{h}{\tau^2} w_{mj}^{k+1} = 0, \quad 1 \leq j \leq m - 1, \quad (93) \]
\[\frac{1}{2} \delta_x w_{im}^{k+1} + \frac{1}{r} w_{im}^{k+1} + \frac{h}{\tau^2} w_{im}^{k+1} + \frac{h}{\tau^2} w_{im}^{k+1} = 0, \quad 1 \leq i \leq m - 1, \quad (94) \]
\[\frac{1}{2} \delta_x w_{mm}^{k+1} + \frac{1}{r} w_{mm}^{k+1} + \frac{h}{\tau^2} w_{mm}^{k+1} = 0, \quad 1 \leq k \leq n - 1, \quad (95) \]
\[w_{0j}^k = 0, \quad (96) \]
\[w_{ij}^k = 0, \quad 0 \leq i \leq m, \quad 0 \leq j \leq m, \quad 1 \leq k \leq n. \quad (96) \]

Multiplying (92) by $h^2 w_{ij}^{k+1}$, and summing up for i and j from 1 to $m - 1$, and applying equations (93)–(96), we have
\[\frac{1}{\tau^2} \| w^{k+1} \|^2 + \frac{1}{2} \| w^{k+1} \|^2 + \frac{h}{r} \left(\sum_{j=1}^{m-1} \| w_{mj}^{k+1} \|^2 + \sum_{i=1}^{m-1} \| w_{im}^{k+1} \|^2 + \| w_{mm}^{k+1} \|^2 \right) = 0, \quad (97) \]
which means that $w_{ij}^{k+1} = 0 \ (0 \leq i, j \leq m)$. Thus w^{k+1} is uniquely solvable.

According to the principle of induction, the difference scheme of (50)–(59) is uniquely solvable for all $w^k \ (1 \leq k \leq n)$. This completes the proof. □

Define the pointwise error by
\[e_{ij}^k = W_{ij}^k - w_{ij}^k, \quad 0 \leq i, j \leq m, \quad 0 \leq k \leq n. \quad (98) \]

The following theorem states the convergence of difference scheme (50)–(59).

Theorem 3. Suppose that $w(x, y, t) \in C^4_{x,y,T}([0,T] \times [0,T])$ is the solution of (1)–(4) and $\{w_{ij}^k\}_{0 \leq i, j \leq m, 0 \leq k \leq n}$ is the solution of difference scheme (50)–(59). Then there exists a constant C_T such that
\[\| \delta_t w^{k+1} \|^2 + \frac{1}{2} \left(\| w^{k+1} \|^2 + \| w^{k} \|^2 \right) \leq \| \delta_t w^{k+1} \|^2 + \frac{1}{2} \left(\| w^{k+1} \|^2 + \| w^{k} \|^2 \right) \leq C_T (r^2 + h^2)^2, \quad 0 \leq k \leq n - 1, \quad (99) \]
where $C_T = \exp((3/2)r) / (5/2) + (3/2)T$.

Proof. Subtracting (50)–(59) from (31), (39)–(41) and (44)–(49) respectively, we have the following error equation...
According to Theorem 1, we get

\[
\|\delta_t e^{k+1}(t)\|_2^2 + \frac{1}{2} \left(|e^{k+1}|_1^2 + |e^k|_1^2 \right) \leq \exp \left(\frac{3}{2} k \tau \right) \left(|e^0|_1^2 + \frac{\tau^2}{4} \|r\|^2 + \frac{h r_{m-1}}{4} \sum_{j=1}^{m-1} |r_{mj}|^2 \right)
+ \frac{h r}{4} \sum_{i=1}^{m-1} |r_{im}|^2 + \frac{h r}{16} |r_{mm}|^2 + \sum_{i=1}^{k} \tilde{C}_l^j, \quad 1 \leq k \leq n - 1,
\]

where

\[
\tilde{C}_l^j = \|R\|_2^2 + \frac{h r_{m-1}}{2} \sum_{j=1}^{m-1} |r_{mj}|^2 + \frac{h r_{m-1}}{2} \sum_{j=1}^{m-1} |r_{im}|^2 + \frac{h r}{8} |R_{mm}|^2, \quad 1 \leq l \leq n - 1.
\]

Taking into account the order of \(r_{ij} \) and \(R_{ij}^k \) (0 ≤ i, j ≤ m, 1 ≤ k ≤ n), and the fact that \(e^0_{ij} = 0 \), there exists a generic constant \(c \) such that

\[
\|\delta_t e^{k+1/2}(t)\|_2^2 + \frac{1}{2} \left(|e^{k+1/2}|_1^2 + |e^{k/2}|_1^2 \right) \leq \exp \left(\frac{3}{2} k \tau \right) \left(\frac{\tau^2}{4} \left(\tau^2 + h^2 \right)^2 + \frac{\tau h}{4} \left(\tau^2 + h^2 \right)^2 + \frac{\tau h}{16} \left(\tau^2 + h^2 \right)^2 + \frac{1}{2} k \tau c^2 \left(\tau^2 + h^2 \right)^2 \right)
\]

\[
\leq \exp \left(\frac{3}{2} T \right) \left(\frac{5}{4} + \frac{3}{4} T \right) c^2 \left(\tau^2 + h^2 \right)^2 = C_\tau \left(\tau^2 + h^2 \right)^2, \quad 0 \leq k \leq n - 1.
\]
This completes the proof. \(\square\)

According to Lemma 4, we can conclude that \(\|u^k\| = O(\tau^2 + h^2)\) \((1 \leq k \leq n)\), namely, the difference solution is of second-order convergence in \(L^2\) norm.

\[
\left\| \delta_t w^{k+1/2} \right\|^2 + \frac{1}{2} \left(\left| w^{k+1} \right|_{L^1}^2 + \left| w^k \right|_{L^1}^2 \right) \leq \exp \left(\frac{3}{2} T \right) \left(\left| \varphi \right|_{L^2}^2 + c \left\| \psi \right\|^2 + \frac{c}{9} \left\| f \right\|^2 + \frac{3T}{2} \sum_{j=1}^n \left\| f^j \right\|^2 \right), \quad 0 \leq k \leq n - 1,
\]

\(\text{(104)}\)

\begin{table}[h]
\centering
\caption{Numerical convergence of scheme (50)--(59) in time \((h = 1/100, \ T = 1)\).}
\begin{tabular}{|c|c|c|}
\hline
\(\tau\) & \(EW(\tau, h)\) & Order \tabularnewline
\hline
1/20 & 1.2948e-002 & — \tabularnewline
1/40 & 2.9438e-003 & 2.1370 \tabularnewline
1/50 & 1.8099e-003 & 2.1799 \tabularnewline
1/60 & 1.2057e-003 & 2.2280 \tabularnewline
1/70 & 8.4660e-004 & 2.2938 \tabularnewline
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Numerical convergence of scheme (50)--(59) in space \((\tau = 1/200, \ T = 1)\).}
\begin{tabular}{|c|c|c|}
\hline
\(h\) & \(EW(\tau, h)\) & Order \tabularnewline
\hline
1/20 & 2.4487e-003 & — \tabularnewline
1/30 & 1.0292e-003 & 2.1377 \tabularnewline
1/40 & 5.4095e-004 & 2.2358 \tabularnewline
1/50 & 3.1889e-004 & 2.3683 \tabularnewline
1/60 & 2.0234e-004 & 2.4950 \tabularnewline
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Numerical convergence of scheme (50)--(59) with \(\lambda = 1\) \((T = 1)\).}
\begin{tabular}{|c|c|c|}
\hline
\(h\) & \(EW(\tau, h)\) & Order \tabularnewline
\hline
1/20 & 1.1049e-002 & — \tabularnewline
1/40 & 4.8033e-003 & 2.0545 \tabularnewline
1/50 & 2.6446e-003 & 2.0745 \tabularnewline
1/60 & 1.6725e-003 & 2.0462 \tabularnewline
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Numerical convergence of scheme (50)--(59) with \(\lambda = 2\) \((T = 1)\).}
\begin{tabular}{|c|c|c|}
\hline
\(h\) & \(EW(\tau, h)\) & Order \tabularnewline
\hline
1/30 & 2.1489e-002 & — \tabularnewline
1/40 & 1.2564e-002 & 1.8656 \tabularnewline
1/50 & 7.9166e-003 & 2.0699 \tabularnewline
1/60 & 5.4036e-003 & 2.0946 \tabularnewline
1/70 & 3.9183e-003 & 2.0850 \tabularnewline
\hline
\end{tabular}
\end{table}

Theorem 4. For any fixed grid ratio \(\lambda = \tau/h\), the difference scheme (50)--(59) is stable with respect to the initial value \(\varphi, \psi\), and the source term \(f\). More precisely, we have

\[
\left| \delta_t w^{k+1/2} \right|^2 + \frac{1}{2} \left(\left| w^{k+1} \right|_{L^1}^2 + \left| w^k \right|_{L^1}^2 \right) \leq \exp \left(\frac{3}{2} T \right) \left(\left| \varphi \right|_{L^2}^2 + c \left\| \psi \right\|^2 + \frac{c}{9} \left\| f \right\|^2 + \frac{3T}{2} \sum_{j=1}^n \left\| f^j \right\|^2 \right), \quad 0 \leq k \leq n - 1,
\]

\(\text{(104)}\)
where \(c = \max[2, (1/\lambda)] \).

\[
\| \delta_i w^{k+1/2} \|^2 + \frac{1}{2} \left(|w^{k+1}|^2 + |w^k|^2 \right) \leq \exp \left(\frac{3}{2} T \right) \left(E^0 + \frac{3 \tau}{2} \sum_{k=1}^{n-1} \| f_h^k \|^2 \right), \quad 0 \leq k \leq n - 1,
\]

where
\[
E^0 = \| \delta_i w^{1/2} \|^2 + \frac{1}{2} \left(|w^1|^2 + |w^0|^2 \right) \leq |\varphi|^2 + 2h^2 \sum_{i,j=1}^{m-1} \varphi_{ij}^2 + \frac{h^4}{2} \sum_{i,j=1}^{m-1} \varphi_{mm}^2 + \frac{h^2}{6} \varphi_{mm}^2 + \tau h^2 \sum_{i,j=1}^{n-1} \left(f_h^j \right)^2 + \frac{\tau h^4}{8} \sum_{i,j=1}^{n-1} \left(f_h^m \right)^2 + \frac{\tau h^6}{32} \left(f_h^mm \right)^2.
\]

(106)

Taking account into the fact that \(\tau \leq (2/\lambda) \), \(h = (\tau/\lambda) \leq (2/3\lambda) \), there exists constant \(c = \max[2, (1/\lambda)] \) such that
\[
E^0 \leq |\varphi|^2 + c\| \varphi \|^2 + \frac{c}{9} \| f_h \|^2,
\]

(107)

which ends the proof.

\[\square\]

6. Numerical Result

In order to test the convergence order of proposed difference schemes (50)–(59), we consider a two-dimensional damped wave equation, in which the source function \(f(x, y, t) \) is defined by

\[
f(x, y, t) = \frac{243\pi^2}{16} \exp \left(-\frac{9}{4} \pi \right) \sin \left(\frac{9}{4} \pi x \right) \sin \left(\frac{9}{4} \pi y \right).
\]

(108)

with initial conditions \(\varphi(x, y) \) and \(\psi(x, y) \) designed as

\[
\varphi(x, y) = \sin \left(\frac{9}{4} \pi x \right) \sin \left(\frac{9}{4} \pi y \right),
\]

(109)

\[
\psi(x, y) = -\frac{9}{4} \pi \sin \left(\frac{9}{4} \pi x \right) \sin \left(\frac{9}{4} \pi y \right).
\]

For this specified problem, the exact solution is

\[
w(x, y, t) = \exp \left(-\frac{9}{4} \pi t \right) \sin \left(\frac{9}{4} \pi x \right) \sin \left(\frac{9}{4} \pi y \right).
\]

(110)

For the source term and initial conditions defined above, the evolution mesh and contour map of the numerical solution of difference schemes (50)–(59) with \(N = 40 \) and \(T = 0.5 \) are shown in Figure 1.

Let us denote the error by

\[
EW(\tau, h) = \| w(\tau, h) - W(\tau, h) \|.
\]

(111)

Table 1 provides the computed results with a fixed \(h = 1/100 \). The data demonstrate that the temporal convergence order of difference scheme (50)–(59) is second order in discrete \(L^2 \)-norm, which is in accord with
theoretical analysis of Theorem 3. When the temporal size is
fixed with $\tau = 1/200$, Table 2 gives the discrete L^2-errors and
numerical convergence orders in space direction. From
these data, we can see that the spatial convergence order of
difference scheme (50)–(59) is also second order, which is in
agreement with theoretical results in Theorem 3.

The convergence results with fixed grid ratio $\lambda = 1$ and
$\lambda = 2$ are shown in Tables 3 and 4, respectively. For these two
cases, the proposed difference scheme (50)–(59) can pre-
serve both the convergence and stability. From the nu-
merical results, we can verify the unconditional stability of
difference scheme (50)–(59). Also for other different values
of λ, the same stability results can be drawn, which are
accordant with Theorem 4. The curve of convergence order
in Tables 1–4 is shown in Figure 2.

7. Conclusion

In this paper, a finite difference scheme is constructed for the
two-dimensional wave equation with a special boundary
condition, damped boundary condition. By introducing a
proper discrete L^2-norm, the proposed finite difference
scheme is proved to be second-order convergent in both
time and space and unconditionally stable with respect to
both initial conditions and source term. The theoretical
analysis method can be applied to three-dimensional
problems accordingly.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the NSF of China (nos.
11901365 and 11772177).

References

[1] J. L. Lions, “Exact controllability, stabilization and pertur-
bations for distributed systems,” SIAM Review, vol. 30, no. 1,
pp. 1–68, 1988.
[2] H. T. Banks, S. L. Keeling, and R. J. Silcox, “Optimal control
techniques for active noise suppression,” in Proceedings of the
27th IEEE Conference on Decision and Control, December
1988.
[3] T. Dupont, “L^2 estimates for galerkin methods for second
order hyperbolic equations,” SIAM Journal on Numerical
Analysis, vol. 10, no. 5, pp. 880–889, 1973.
[4] E. H. Georgoulis, O. Lakkis, and C. Makridakis, “A posteriori
$L (L^2)$-error bounds for finite element approximations to the
wave equation,” IMA Journal of Numerical Analysis, vol. 33,
no. 4, pp. 1245–1264, 2013.
[5] R. Eymard, T. Gallocet, M. Ghilani, and R. Herbin, “Error
estimates for the approximate solutions of a nonlinear hy-
perbolic equation given by finite volume schemes,” IMA
Journal of Numerical Analysis, vol. 18, no. 4, pp. 563–594,
1998.
[6] A. Bradji, “A theoretical analysis of a new finite volume
scheme for second order hyperbolic equations on general
nonconforming multidimensional spatial meshes,” Numerical
Methods for Partial Differential Equations, vol. 29, no. 1,
pp. 1–39, 2013.
[7] R. M. Beam and R. F. Warming, “An implicit finite-difference
algorithm for hyperbolic systems in conservation-law form,”
Journal of Computational Physics, vol. 22, no. 1, pp. 87–110,
1976.
[8] R. K. Mohanty, “An unconditionally stable difference scheme
for the one-space-dimensional linear hyperbolic equation,”
Applied Mathematics Letters, vol. 17, no. 1, pp. 101–105, 2004.
[9] M. J. Grote, A. Schneebeli, and D. Schötzau, “Discontinuous
galerkin finite element method for the wave equation,” SIAM
Journal on Numerical Analysis, vol. 44, no. 6, pp. 2408–2431,
2006.
[10] D. Appelö and T. Hagstrom, “A new discontinuous galerkin
formulation for wave equations in second-order form,” SIAM
Journal on Numerical Analysis, vol. 53, no. 6, pp. 2705–2726,
2015.
[11] B. Cockburn and V. Quenneville-Bélaire, “Uniform-in-time
superconvergence of the HDG methods for the acoustic wave
equation,” Mathematics of Computation, vol. 83, no. 285,
pp. 65–85, 2014.
[12] L. C. Cowsat, T. F. Dupont, and M. F. Wheeler, “A priori
estimates for mixed finite element methods for the wave
equation,” Computer Methods in Applied Mechanics and
Engineering, vol. 82, no. 1–3, pp. 205–222, 1990.
[13] C. W. Shu, Essentially Non-oscillatory and Weighted Essential-
ly Non-oscillatory Schemes for Hyperbolic Conservation
Laws, Springer, Berlin, Germany, 1998.
[14] L. Ivan, H. De Sterck, A. Susanto, and C. P. T. Groth, “High-
order centraleno finite-volume scheme for hyperbolic con-
servation laws on three-dimensional cubed-sphere grids,”
Journal of Computational Physics, vol. 282, pp. 157–182, 2015.
[15] J. Zhu and J. Qiu, “A new fifth order finite difference weno
scheme for solving hyperbolic conservation laws,” Journal of
Computational Physics, vol. 318, pp. 110–121, 2016.
[16] F. Zhao, L. Pan, Z. Li, and S. Wang, “A new class of high-order
weighted essentially non-oscillatory schemes for hyperbolic
conservation laws,” Computers & Fluids, vol. 159, pp. 81–94, 2017.
[17] J. Zhu and C.-W. Shu, “A new type of multi-resolution weno
schemes with increasingly higher order of accuracy on tri-
angular meshes,” Journal of Computational Physics, vol. 392,
pp. 19–33, 2019.
[18] A. R. Appadu, M. Z. Dauhoo, and S. D. D. V. Rughooputh,
“Control of numerical effects of dispersion and dissipation in
numerical schemes for efficient shock-capturing through an
optimal Courant number,” Computers & Fluids, vol. 37, no. 6,
pp. 767–783, 2008.
[19] A. R. Appadu, “Some applications of the concept of mini-
mized integrated exponential error for low dispersion and low
dissipation,” International Journal for Numerical Methods in
Fluids, vol. 68, no. 2, pp. 244–268, 2012.
[20] A. R. Appadu, “Optimised composite numerical schemes in 2-
D for hyperbolic conservation laws,” International Journal for
Numerical Methods in Fluids, vol. 69, no. 9, pp. 1522–1549,
2012.
[21] A. R. Appadu and A. A. I. Peer, “Optimized weighted es-
tentially nonoscillatory third-order schemes for hyperbolic
conservation laws,” Journal of Applied Mathematics, vol. 2013,
pp. 1–12, 2013.
[22] A. R. Appadu and S. N. N. Nguchue, "The technique of MIEELDLD as a measure of the shock-capturing property of numerical methods for hyperbolic conservation laws," *Progress in Computational Fluid Dynamics-An International Journal*, vol. 15, no. 4, pp. 247–264, 2015.

[23] L. Kong, P. Zhu, Y. Wang, and Z. Zeng, "Efficient and accurate numerical methods for the multidimensional convection-diffusion equations," *Mathematics and Computers in Simulation*, vol. 162, pp. 179–194, 2019.

[24] D. Deng and C. Zhang, "Application of a fourth-order compact ADI method to solve a two-dimensional linear hyperbolic equation," *International Journal of Computer Mathematics*, vol. 90, no. 2, pp. 273–291, 2013.

[25] H.-L. Liao and Z.-Z. Sun, "A two-level compact ADI method for solving second-order wave equations," *International Journal of Computer Mathematics*, vol. 90, no. 7, pp. 1471–1488, 2013.

[26] A. K. Pani and J. Y. Yuan, "Mixed finite element method for a strongly damped wave equation," *Numerical Methods for Partial Differential Equations*, vol. 17, no. 2, pp. 105–119, 2001.

[27] S. Karaa, "Error estimates for finite element approximations of a viscous wave equation," *Numerical Functional Analysis and Optimization*, vol. 32, no. 7, pp. 750–767, 2011.

[28] L. Gao, D. Liang, and B. Zhang, "Error estimates for mixed finite element approximations of the viscoelasticity wave equation," *Mathematical Methods in the Applied Sciences*, vol. 27, no. 17, pp. 1997–2016, 2004.

[29] R. K. Sinha, A. K. Pani, and S. K. Chung, "The effect of spatial quadrature on the semidiscrete finite element galerkin method for a strongly damped wave equation," *Numerical Functional Analysis and Optimization*, vol. 24, no. 3-4, pp. 311–325, 2003.

[30] L. C. Cowsar, T. F. Dupont, and M. F. Wheeler, "A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions," *SIAM Journal on Numerical Analysis*, vol. 33, no. 2, pp. 492–504, 1996.

[31] S. S. Şener, Y. Saraç, and M. Subaş, "Weak solutions to hyperbolic problems with inhomogeneous dirichlet and neumann boundary conditions," *Applied Mathematical Modelling*, vol. 37, no. 5, pp. 2623–2629, 2013.

[32] Z. Z. Sun, *Numerical Methods for Partial Differential Equations*, Science Press, China, 2012, in Chinese.