A strong bidirectional link between metabolic and psychiatric disorders exists; yet, the molecular basis underlying this interaction remains unresolved. Here we explored the role of the brown adipose tissue (BAT) as modulatory interface, focusing on the involvement of uncoupling protein 1 (UCP-1), a key metabolic regulator highly expressed in BAT, in the control of emotional behavior. Male and female constitutive UCP-1 knock-out (KO) mice were used to investigate the consequences of UCP-1 deficiency on anxiety-related and depression-related behaviors under mild thermogenic (23°C) and thermoneutral (29°C) conditions. UCP-1 KO mice displayed a selective enhancement of anxiety-related behavior exclusively under thermogenic conditions, but not at thermoneutrality. Neural and endocrine stress mediators were not affected in UCP-1 KO mice, which showed an activation of the integrated stress response alongside enhanced fibroblast-growth factor-21 (FGF-21) levels. However, viral-mediated overexpression of FGF-21 did not phenocopy the behavioral alterations of UCP-1 KO mice and blocking FGF-21 activity did not rescue the anxiogenic phenotype of UCP-1 KO mice. No effects of surgical removal of the intrascapular BAT on anxiety-like behavior or FGF-21 levels were observed in either UCP-1 KO or WT mice. We provide evidence for a novel role of UCP-1 in the regulation of emotions that manifests as inhibitory constraint on anxiety-related behavior, exclusively under thermogenic conditions. We propose this function of UCP-1 to be independent of its activity in the BAT and likely mediated through a central role of UCP-1 in brain regions with converging involvement in energy and emotional control.

Key words: anxiety; brown adipose tissue; fear; mouse behavior; uncoupling protein 1

Significance Statement
In this first description of a temperature-dependent phenotype of emotional behavior, we propose uncoupling protein-1 (UCP-1), the key component of the thermogenic function of the brown adipose tissue, as molecular break controlling anxiety-related behavior in mice. We suggest the involvement of UCP-1 in fear regulation to be mediated through its expression in brain regions with converging roles in energy and emotional control. These data are important and relevant in light of the largely unexplored bidirectional link between metabolic and psychiatric disorders, which has the potential for providing insight into novel therapeutic strategies for the management of both conditions.

Introduction
Mental disorders are often associated with somatic comorbidities, which prominently include metabolic disorders (e.g., metabolic syndrome, type II diabetes mellitus; Nousen et al., 2013). At the same time, metabolic disturbances are frequently paralleled by psychiatric manifestations with relevance to anxiety and depressive disorders (Kahl et al., 2015). While the mechanistic basis for the bidirectional association between metabolic and psychiatric disorders (Fulton et al., 2022) has not been defined, shared pathophysiological principles may include common neural circuits (Cai et al., 2014; Daviu et al., 2019; Bruchetta et al., 2020; Xia et al., 2021) and endocrine mediators [e.g., glucocorticoids (Moraitis et al., 2017), leptin.
with the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines and the U.K. Animals (Scientific Procedures Act, 1986) and associated guidelines (EU Directive 2010/63/EU for animal experiments) and were approved by the national ethical committee on animal care and use (Bundesministerium für Wissenschaft und Forschung: BMBWF-66.009/0175-V/3b/2019).

Genotyping

Ear punches were collected from 3-week-old mice. DNA was extracted from the biopsy specimens using a DNA extraction kit (Biocat). For the PCR-based amplification the following primers were used: WT forward, TCTGTACATAAAGGGAAGAC; WT reverse, CTTCATTCTGAGTTCCAT; KO forward, GATCCCCGGGCATTCGTAAT; KO reverse, CATCGAGGAACTGAGT. Electrophoresis was conducted in a 2% agarose gel for 1.5 h at 150 V. Samples from KO mice present with a single band at 206 bp, from WT mice a single band at 279 bp, and from heterozygous mice two bands at 206 and 279 bp.

Behavioral experiments

All mice were single housed before behavioral testing, since group-housed mice tend to huddle together, which could change the thermal environment, thus possibly biasing the thermoregulatory requirement of the experimental design.

For the baseline characterization of UCP-1 KO mice housed under thermogenic conditions (23°C), we used three different cohorts of mice. In the first cohort of mice, the behavioral consequences of UCP-1 KO mice were evaluated in the elevated plus maze (EPM), light-dark box (LD-BOX), forced swim test (FST), novelty-suppressed feeding (NSF) test, and open field test (OFT). The second cohort of mice was tested in the fear-conditioning paradigm. To exclude motor impairment as a confounding factor, a third cohort of WT and UCP-1 KO littermates was tested in the rotarod (RR) test. For the baseline characterization of UCP-1 KO mice under thermoneutral conditions (29°C), two different cohorts of mice were used. In the first cohort, the behavioral consequences of UCP-1 KO mice were evaluated in the EPM, LD-BOX, FST, NSF, and OFT. The second cohort of mice was tested in the contextual fear-conditioning paradigm. For all other behavioral experiments, a single cohort of mice was subjected to all behavioral tests.

Elevated plus maze. The EPM test was performed as previously described with the EPM consisting of two open and two closed arms (Dorninger et al., 2019). Mice were always placed at the center of the maze, facing the open arms. The intensity of the light was set at 40 lux for the open arms and 10 lux for the closed arms. Mice were placed for 5 min in the EPM, and the behavior was tracked automatically (VIDEOTRACK, Viewpoint). The percentage of open arm entries (open arm entries/total arm entries *100) was calculated to evaluate anxiety-like behavior (Pellow et al., 1985).

Light-dark box. The LD-BOX consisted of a rectangular arena (27.3 × 27.3 cm²) that was divided with an insert into two equal compartments. One compartment of the arena was brightly illuminated (250 lux), while the other one was dark (maximum, 5 lux). Behavior was recorded with an automated system (Activity Monitor; catalog #SOF 811, Med Associates), and the time spent in the light compartment was determined and used to indicate anxiety-like behavior (Belzung and Griebel, 2001).

Novelty-suppressed feeding. NSF was performed according to a previously published procedure (Reisinger et al., 2019). In brief, mice were fasted for 24 h, and body weight loss as a result of food deprivation was determined. Mice that lost >20% of their initial body weight were excluded from the study. On the day of testing, a food pellet was fixed on a paper and placed in the center of a brightly illuminated arena (800 lux), filled with bedding. Mice were always placed in the corner of the arena and the latency to start eating the food pellet was recorded and considered as an indicator for anxiety-like behavior. The maximum duration was 15 min. After the termination of the test, mice were transferred back to their home cage, where they were given access to a single food pellet for 5 min, and homecage food consumption was recorded to control for possible unspecific changes in appetitive behavior.

Materials and Methods

Animals

Heterozygous UCP-1 mice were purchased from The Jackson Laboratory (stock #003124) and used for breeding of UCP-1 knock-out (KO) mice. Male and female wild-type (WT) and UCP-1 KO littermates were used for all experiments on UCP-1 deficiency. Breeding occurred at regular housing temperature (23°C), and offspring were weaned at postnatal day 21. After weaning, mice were housed with same-sex littermates either at regular housing temperature (23°C) or at thermoneutrality (29°C) using an environmental chamber (HPP750life, Memmert) for temperature control. All mice were maintained at a regular 12 h light/dark cycle (lights on at 8:00 A.M.) and food (regular chow diet) and water available were ad libitum unless indicated otherwise. For FGF-21 overexpression experiments, C5BL6/N mice were purchased from Charles River. All animal experiments were conducted in agreement...
Forced swim test. The FST was conducted using an automated movement-tracking software (VideoTrack version 3, Viewpoint) as reported previously (Reisinger et al., 2020b). The test lasted for 6 min, and the percentage of immobility during the last 4 min of the test was used as an indicator of despair-like behavior related to depression.

Open field test. Mice were placed in a rectangular arena (27.3 × 27.3 cm²; 300-lux). Locomotor behavior was recorded for 30 min with an automated system (Activity Monitor, Med Associates), and the total ambulatory distance was calculated (Gabriel et al., 2020).

Rotarod. The RR test was used to assess motor coordination and was conducted as previously described (Muratspahić et al., 2021). The mice were placed on a rotating drum with the speed gradually increasing from 4 to 40 rounds/min. Every mouse was subjected to the RR test three times. The intertrial interval was set to 30 min. The latency to fall from the rotating drum was automatically recorded (Med Associates). The average latency to fall in the three trials was calculated and used as an index of motor coordination.

Fear conditioning. An automated video-based recording and conditioning system was used (Med Associates) applying a standard protocol (Dorninger et al., 2019). Briefly, mice were trained for 2 consecutive days. Each training session consisted of two pairs of mild footshock (0.60 mA; unconditional stimulus [US]) and white noise (75 dB; conditional stimulus [CS]). Contextual fear conditioning was tested 24 h after the last training day by placing the mice in the same chamber without US or CS presentation for a period of 5 min. The percentage of time spent immobile was quantified using the near-infrared Video Conditioning System for recording (Med Associates) and Video Freeze software (Med Associates) for analysis.

Surgical removal of brown adipose tissue
Anesthesia was induced with 5% isoflurane and maintained with 2.5% isoflurane (Forane, AbbVie). The interscapular BAT (iBAT) was surgically removed according to a published procedure (Connolly et al., 2002). A small incision was made along the dorsal midline. iBAT was exposed and carefully removed. For sham-operated mice, iBAT was exposed but not removed. The health status of all animals was closely monitored after the surgical procedure, and the body weight was measured. None of the mice lost >20% of the initial body weight or showed apparent signs of discomfort.

Serum analytes (corticosterone, epinephrine, norepinephrine, and FGF-21)
To evaluate the circadian rhythmicity of corticosterone (CORT) levels, blood was collected at four time points [circadian time (CT): CT4, CT10, CT16, CT22]. Blood sampling during the dark phase of the mice was performed under dim red light. To measure stress-induced CORT levels, mice were restrained in a modified 50 ml Falcon tube for 15 min (Zalutskaya et al., 2007). Mice were deeply anaesthetized with isoflurane, and the trunk blood was collected either immediately (time point 0) or 30 min after (time point 30) the termination of the stress exposure. Blood samples were kept at room temperature for at least 45 min before centrifugation at 1200 × g for 10 min for serum collection. Serum corticosterone (catalog #AD1-900–097, Enzo Life Sciences), epinephrine (Epi; catalog #E-EL-0045, Elabscience), norepinephrine (nor-Epi; catalog #E-EL-0047, Elabscience), and FGF-21 (catalog #MF2100, R&D Systems) were measured using commercially available enzyme immunoassay kits following manufacturer instruction.

FGF-21 overexpression
The production of liver-targeting, FGF-21-expressing adeno-associated virus (AAV) particles of the serotype AAV2.8 was performed as previously described in detail (Xiao et al., 1998; Gray et al., 2011; Körbelin et al., 2016). Briefly, the full-length murine FGF-21 cDNA was inserted into a pAAV-MCS plasmid-containing AAV inverted terminal repeat using BstBI (forward) and BsrGI (reverse) restriction enzyme sites. Together with a pAAV rep2 cap8 transfer plasmid and an AdpX6 helper plasmid, HEK cells were cotransfected, and virus particles purified from cell pellets and supernatants using iodixanol density gradients (Xiao et al., 1998; Gray et al., 2011; Körbelin et al., 2016). A dose of 1 × 10¹⁶ viral genome copies (vgc) was used for all additional experiments, similar to previous studies (Jimenez et al., 2018). AAV particles were diluted with PBS (Thermo Fisher Scientific) and 200 µl of a PBS solution containing 1 × 10¹⁵ vgc were injected intravenously into mice. Control mice received a tail vein injection of the same volume and number of vgc of AAV particles without transgene.

FGF-21 inhibition
Polyclonal antibodies against mouse FGF-21 (catalog #12180, Immunodiagnostics) were administered intraperitoneally at a dose of 250 µg/kg according to a published procedure (Li et al., 2020) 6 h before behavioral testing (Liu et al., 2019). The effect of FGF-21 inhibition in UCP-1 KO was evaluated in the contextual fear test. Control UCP-1 KO mice received a same dose of IgG (catalog #ab18469, Abcam).

Gene expression analysis
Animals were killed by cervical dislocation, and tissue samples were collected, rapidly frozen in liquid nitrogen, and stored at −80°C, until further processing. RNA was extracted using the miRNeasy Mini Kit (catalog #74104, Qiagen) following the manufacturer instructions. After RNA isolation, genomic DNA was removed using the DNA-free kit (catalog #AM1906, Thermo Fisher Scientific). The concentration and purity of RNA were determined using a nanodrop photometer (NanoPhotometer 7122 version 2.3.1, IMPLEN). At least 150 ng of RNA were transcribed into cDNA using the RevertAid First Strand cDNA Synthesis Kit (catalog #K1621, Thermo Fisher Scientific) following the instructions of the manufacturer. Relative levels of the selected transcripts were measured by quantitative real-time PCR (qRT-PCR) using the Go-Taq qPCR Master Mix 2× (catalog #A6002, Promega) and a CFX Connect PCR cycler (BIO-RAD). Relative differences in gene expression were calculated according to the 2⁻ΔΔCt method (Schmittgen and Livak, 2008). β-Actin was used as an internal housekeeping gene for brain samples, and 36B4 for adipose tissue samples and liver. A list with all primers sequences is provided in Extended Data Figure 3-1.

Experimental design and statistical analyses
All analyses were performed by an investigator blinded to the experimental condition of the animals. N numbers, full statistics, and p values are reported for each main effect, and all interactions are listed where relevant. The main text; a complete report including sample sizes for each experiment is given Table 1. Sample sizes were determined according to our own experience, and data provided in the literature (Kong et al., 2015; Dorninger et al., 2019; Reisinger et al., 2019, 2020a,b; Berger et al., 2020; Gabriel et al., 2020). All statistical analyses were conducted using GraphPad Prism 7. Data were tested for normality using the Kolmogorov–Smirnov test before further statistical evaluation. Outliers were removed using the Tukey’s boxplot method. For all analyses, p < 0.05 was considered statistically significant.

Results
UCP-1 deficiency enhances anxiety-like behavior under thermogenic conditions
To evaluate the consequences of UCP-1 deficiency on emotionality, we applied a series of paradigms for the examination of anxiety-related and depression-related behavior in UCP-1 KO mice and WT littermate controls, after confirming the absence of the UCP-1 transcript in KO mice (Extended Data Fig. 1-1A) Consistent with previous reports (Liu et al., 2003), we also found no alterations in the body weight of UCP-1 KO mice at 3 months of age (Extended Data Fig. 1-1B).

We first conducted experiments at 23°C (regular housing temperature), corresponding to thermogenic conditions, which are highly dependent on UCP-1-mediated nonshivering thermogenesis (Feldmann et al., 2009). Female and male UCP-1 KO mice presented with enhanced innate anxiety-like behavior in the LD-BOX, the NSF, and the EPM. In the LD-BOX, UCP-1...
Table 1. Full statistical reporting

Figures	Experiment	Parameter	Statistical test	n/group	Factor	Statistics, df	p	Fisher’s (uncorrected) multiple-comparisons test
1A	Light-dark box	Time in light box (s)	Two-way ANOVA	10–14	Sex	$F_{1,40} = 1.141$	$p = 0.2918$	WT males vs KO males; $p = 0.0012$
					Genotype	$F_{1,40} = 13.21$	$p = 0.0008$	WT females vs KO females; $p = 0.09$
1B	Novelty-suppressed feeding	Latency to feed (s)	Two-way ANOVA	10–14	Sex	$F_{1,40} = 0.191$	$p = 0.6645$	WT males vs KO males; $p = 0.0057$
					Genotype	$F_{1,40} = 2.026$	$p = 0.1624$	WT females vs KO females; $p = 0.0033$
1C	5 min food intake after NSF	Food intake (g)	Two-way ANOVA	10–14	Sex	$F_{1,40} = 0.2757$	$p = 0.6023$	WT males vs KO males; $p = 0.0628$
					Genotype	$F_{1,40} = 0.3895$	$p = 0.3648$	WT females vs KO females; $p = 0.0219$
1D	Contextual fear	Freezing (%)	Two-way ANOVA	8–14	Sex	$F_{1,39} = 0.2625$	$p = 0.8721$	Not applicable
					Genotype	$F_{1,39} = 5.751$	$p = 0.0025$	KO males vs KO females; $p = 0.1247$
1E	FST	Immobility (%)	Two-way ANOVA	11	Sex	$F_{1,40} = 0.01236$	$p = 0.3722$	Not applicable
					Genotype	$F_{1,40} = 0.1911$	$p = 0.5925$	Not applicable
1F	Open field test	Ambulatory distance (m)	Two-way ANOVA	10–14	Sex	$F_{1,40} = 2.33$	$p = 0.1434$	Not applicable
					Genotype	$F_{1,40} = 0.3198$	$p = 0.9497$	KO males vs KO females; $p = 0.9497$
1G	Rotarod	Latency to fall (s)	Two-way ANOVA	5–6	Sex	$F_{1,39} = 1.0178$	$p = 0.3895$	Not applicable
					Genotype	$F_{1,39} = 0.6634$	$p = 0.5342$	KO males vs KO females; $p = 0.5342$
2A	Light-dark box	Time in light box (s)	Two-way ANOVA	8–13	Sex	$F_{1,40} = 0.269$	$p = 0.1089$	Not applicable
					Genotype	$F_{1,40} = 2.219$	$p = 0.1442$	KO males vs KO females; $p = 0.1442$
2B	Novelty-suppressed feeding	Latency to feed (s)	Two-way ANOVA	9–13	Sex	$F_{1,39} = 1.302$	$p = 0.2609$	Not applicable
					Genotype	$F_{1,39} = 0.03546$	$p = 0.8516$	KO males vs KO females; $p = 0.8516$
2C	Elevate plus maze	Open arm entries (%)	Two-way ANOVA	5–6	Sex	$F_{1,39} = 1.034$	$p = 0.3359$	Not applicable
					Genotype	$F_{1,39} = 0.3722$	$p = 0.6902$	KO males vs KO females; $p = 0.6902$
2D	Contextual fear	Freezing (%)	Two-way ANOVA	8–14	Sex	$F_{1,39} = 4.17$	$p = 0.0520$	Not applicable
					Genotype	$F_{1,39} = 0.01236$	$p = 0.3722$	KO males vs KO females; $p = 0.3722$
2E	FST	Immobility (%)	Two-way ANOVA	9–14	Sex	$F_{1,40} = 0.008293$	$p = 0.9279$	Not applicable
					Genotype	$F_{1,40} = 0.7225$	$p = 0.4802$	KO males vs KO females; $p = 0.4802$
2F	Open field test	Ambulatory distance (m)	Two-way ANOVA	9–14	Sex	$F_{1,40} = 0.008293$	$p = 0.9279$	Not applicable
					Genotype	$F_{1,40} = 0.7225$	$p = 0.4802$	KO males vs KO females; $p = 0.4802$
3A	Serum norepinephrine	ng/ml	Two-way ANOVA	5–7	Sex	$F_{1,20} = 0.04829$	$p = 0.8282$	Not applicable
					Genotype	$F_{1,20} = 0.007154$	$p = 0.9334$	KO males vs KO females; $p = 0.9334$
3B	Serum epinephrine	ng/ml	Two-way ANOVA	5–7	Sex	$F_{1,20} = 0.7291$	$p = 0.4037$	Not applicable
					Genotype	$F_{1,20} = 0.1097$	$p = 0.7365$	KO males vs KO females; $p = 0.7365$
3C	Circadian corticosterone	ng/ml	Repeated-measures ANOVA	7–9	Sex	$F_{1,39} = 0.009773$	$p = 0.9010$	Not applicable
					Genotype	$F_{1,39} = 31.16$	$p = 0.0001$	KO males vs KO females; $p = 0.0001$
					Circadian time	$F_{1,39} = 4.2894-005$	$p = 0.0984$	KO males vs KO females; $p = 0.0984$
3D	Stress-induced corticosterone	ng/ml	Two-way ANOVA	4–5	Time after stress	$F_{1,30} = 0.04102$	$p = 0.8422$	WT: 0 vs 30 min; $p = 0.0028$
					Genotype	$F_{1,30} = 24.88$	$p = 0.0002$	KO: 0 vs 30 min; $p = 0.0033$

(Table continues.)
Table 1 Continued

Figures	Experiment	Parameter Description	Statistical test	n/group	Factor	Statistics, df	p	Fisher’s (uncorrected) multiple-comparisons test
3E	AT-4 expression in iBAT	Relative AT-4 expression to 36B4	Student’s t test	9	Genotype	t = 4.596, df = 16	p = 0.0003	Not applicable
3F	CHOP-10 expression in iBAT	Relative CHOP-10 expression to 36B4	Student’s t test	8–9	Genotype	t = 7.359, df = 15	p < 0.0001	Not applicable
3G	FGF-21 expression in iBAT	Relative FGF-21 expression to 36B4	Student’s t test	8–9	Genotype	t = 6.538, df = 15	p < 0.0001	Not applicable
3H	Serum FGF-21	pg/ml	Two-way ANOVA	3–5	Sex, Genotype	F1,13,120 = 2.896, p = 0.0603	WT males vs KO males; p = 0.0368	
3I	AT-4 expression in iBAT at thermoneutrality	Relative AT-4 expression to 36B4	Student’s t test	4	Genotype	t = 2.089, df = 6	p = 0.08	Not applicable
3J	CHOP-10 expression in iBAT at thermoneutrality	Relative CHOP-10 expression to 36B4	Student’s t test	4	Genotype	t = 0.4031, df = 6	p = 0.7	Not applicable
3K	FGF-21 expression in iBAT at thermoneutrality	Relative FGF-21 expression to 36B4	Student’s t test	3	Genotype	t = 1.690, df = 14	p = 0.17	Not applicable
4A	Body weight	Body weight change (%)	Student’s t test	9	FGF-21 treatment	t = 6.11, df = 16	p < 0.0001	Not applicable
4B	Food intake	Food intake (g) during 3rd week	Student’s t test	7–9	FGF-21 treatment	t = 6.517, df = 14	p < 0.0001	Not applicable
4C	Water intake	Water intake during 3rd week (ml)	Student’s t test	8–9	FGF-21 treatment	t = 6.393, df = 15	p < 0.0001	Not applicable
4D	Light-dark box	Time in light (s)	Student’s t test	8–9	FGF-21 treatment	t = 1.899, df = 15	p = 0.077	Not applicable
4E	Elevated plus maze	Open arm entries (%)	Student’s t test	8–9	FGF-21 treatment	t = 0.1832, df = 15	p = 0.8571	Not applicable
4F	FST	Immobility (%)	Student’s t test	9	FGF-21 treatment	t = 0.1902, df = 16	p = 0.8825	Not applicable
4G	Contextual fear	Freezing (%)	Student’s t test	9	FGF-21 treatment	t = 0.8401, df = 16	p = 0.4132	Not applicable
4H	Open field test	Ambulatory distance (m)	Student’s t test	8–9	FGF-21 treatment	t = 1.288, df = 15	p = 0.2173	Not applicable
4I	Contextual fear	Freezing (%)	Student’s t test	5	FGF-21 inhibition	t = 1.200, df = 8	p = 0.2645	Not applicable
5A	Elevated plus maze	Open arm entries (%)	Two-way ANOVA	5–7	Interaction, iBATx, Genotype	F1,7,52 = 0.981, p = 0.0360	WT iBATx vs KO iBATx, p = 0.0208	
5B	Contextual fear	Freezing (%)	Two-way ANOVA	5–7	Interaction, iBATx, Genotype	F1,12,120 = 1.954, p = 0.0604	Not applicable	
5C	FST	Immobility (%)	Two-way ANOVA	5–7	Interaction, iBATx, Genotype	F1,12,120 = 2.015, p = 0.8531	Not applicable	

*Note: *Fisher’s (uncorrected) multiple-comparisons test indicates the significance of differences among treatment groups after adjusting for multiple comparisons. The p-values are adjusted for multiple comparisons using the Bonferroni correction. The interaction terms and the main effects are tested separately. The table continues on the next page.*
KO mice spent significantly less time in the light compartment (Fig. 1A; $F_{(1,40)} = 13.21, p = 0.0008$); in the NSF test, latency to feed was enhanced in UCP-1 KO mice (Fig. 1B; $F_{(1,40)} = 18.29, p = 0.0001$). Home-cage food consumption immediately after the feed was enhanced in UCP-1 KO mice ($p = 0.0001$). Similarly, UCP-1 KO mice showed a decreased percentage of entries into the open arm in the EPM (Fig. 1C; $F_{(1,42)} = 9.304, p = 0.0039$), further confirming the results obtained in the LD-BOX and the NSF tests. The examination of learned fear responses in the fear-conditioning paradigm revealed augmented contextual fear responses in UCP-1 KO mice (Fig. 1D; $F_{(1,37)} = 10.56, p = 0.0025$).

There is a high degree of comorbidity between anxiety disorders and depressive disorders (Lamers et al., 2011). We therefore next explored depression-related behavioral despair in UCP-1 KO mice in the FST. No differences in immobility were detected between WT and UCP-1 KO in the FST (Fig. 1E). To further validate the behavioral results in the anxiety tests and exclude unspcific alterations in exploratory or motor activity and coordination as confounding factors, UCP-1 KO and WT littermates were tested in the OFT and the RR test. No effect of UCP-1 deficiency on distance traveled in the OFT ($p = 0.174$) was contingent on temperature conditions requiring thermogenesis. To address this question, we evaluated the emotional behavior of UCP-1 KO and WT mice at thermoneutrality (29°C), where the thermogenic requirement for BAT activation is minimal (Feldmann et al., 2009). A separate cohort of female and male UCP-1 WT and KO mice was housed at thermoneutrality directly after weaning and for at least 5 weeks before being subjected to the same battery of

KO mice spent significantly less time in the light compartment (Fig. 1A; $F_{(1,40)} = 13.21, p = 0.0008$); in the NSF test, latency to feed was enhanced in UCP-1 KO mice (Fig. 1B; $F_{(1,40)} = 18.29, p = 0.0001$). Home-cage food consumption immediately after the feed was enhanced in UCP-1 KO mice ($p = 0.0001$). Similarly, UCP-1 KO mice showed a decreased percentage of entries into the open arm in the EPM (Fig. 1C; $F_{(1,42)} = 9.304, p = 0.0039$), further confirming the results obtained in the LD-BOX and the NSF tests. The examination of learned fear responses in the fear-conditioning paradigm revealed augmented contextual fear responses in UCP-1 KO mice (Fig. 1D; $F_{(1,37)} = 10.56, p = 0.0025$).

There is a high degree of comorbidity between anxiety disorders and depressive disorders (Lamers et al., 2011). We therefore next explored depression-related behavioral despair in UCP-1 KO mice in the FST. No differences in immobility were detected between WT and UCP-1 KO in the FST (Fig. 1E). To further validate the behavioral results in the anxiety tests and exclude unspcific alterations in exploratory or motor activity and coordination as confounding factors, UCP-1 KO and WT littermates were tested in the OFT and the RR test. No effect of UCP-1 deficiency on distance traveled in the OFT (Fig. 1F) and the latency to fall off the rotating drum in the RR test (Fig. 1G) were found.

Anxiety-like behavior is independent of UCP-1 at thermoneutrality

Next, we asked whether the phenotype of UCP-1 KO mice was contingent on temperature conditions requiring thermogenesis. To address this question, we evaluated the emotional behavior of UCP-1 KO and WT mice at thermoneutrality (29°C), where the thermogenic requirement for BAT activation is minimal (Feldmann et al., 2009). A separate cohort of female and male UCP-1 WT and KO mice was housed at thermoneutrality directly after weaning and for at least 5 weeks before being subjected to the same battery of
behavioral tests. The genotypes did not differ in any measures of innate anxiety in the LD-BOX (Fig. 2A), the NSF (Fig. 2B,B’), or the EPM (Fig. 2C). Furthermore, no differences in contextual fear (Fig. 2D) or in behavioral despair in the FST (Fig. 2E) were noted. Exploratory and locomotor activity in the OFT (Fig. 2F) remained unaltered in UCP-1 KO mice under thermoneutrality, as did the body weight of 3-month-old mice (Extended Data Fig. 2-1).

These results demonstrate that UCP-1 is required for the regulation of anxiety-like behavior, but only under thermogenic conditions, suggesting an intricate relationship between the control of thermal and emotional homeostasis.

Neural and endocrine stress mediators are not affected by UCP-1 deficiency

BAT is densely innervated by the sympathetic nervous system, whose activation stimulates UCP-1 activity (Cannon and Nedergaard, 2004) in response to cold exposure. It has been previously shown that circulating epinephrine (Epi) and nor-epinephrine (not-Epi) increase in response to cold exposure (Paakkonen and Leppaluoto, 2002). Against this background, and considering the important involvement of catecholamines in the regulation of emotions, specifically their relevance to fear and anxiety disorders (Alves et al., 2016; Martinho et al., 2020), we tested whether circulating levels of Epi and nor-Epi were differing between UCP-1 KO mice and WT controls. However, serum levels of both nor-Epi (Fig. 3A) and Epi (Fig. 3B) remained unaffected in UCP-1 KO mice. In light of the tight interactions between the autonomic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis-mediated stress response, and taking into account the important contributions of glucocorticoids in the regulation of BAT activity (Ramage et al., 2016) and emotional function (Charmandari et al., 2005), we next examined the integrity of the humoral stress response system in UCP-1 KO mice. To this, serum CORT levels were assessed for their circadian rhythmicity and the sensitivity to acute stress exposure. At none of the four time points evaluated (CT4, CT10, CT16, and CT22) did CORT levels differ between UCP-1 KO and WT mice. As expected, corticosterone levels were highest just before the onset of the dark phase (CT10), regardless of the genotype (Fig. 3C; F(3,56) = 31.16, \(p < 0.0001 \)). Similarly, acute restraint stress-induced CORT levels were comparable between UCP-1 KO and WT littersmates, both immediately, and 30 min after the termination of stress exposure (Fig. 3D). Stress-induced CORT levels were higher immediately after termination of the stress for both genotypes (Fig. 3D; \(F(1,13) = 24.88, p < 0.001 \)).

Together these observations indicate that a derangement of either the neural or the humoral stress response system is unlikely to account for the increase in anxiety-like behavior in UCP-1 KO mice.

Activation of the integrated stress response system in UCP-1 KO mice

Previous reports have shown that the effects of UCP-1 deficiency extend beyond thermoregulation and that UCP-1 ablation induces mitochondrial stress (Kazak et al., 2017) and integrated stress response (ISR) activation (Bond et al., 2018). Here, we quantified the expression of activating transcription factor 4 (ATF-4) and DNA damage-inducible transcript 3 (CHOP-10), two key players in the integrated stress response system (Wang et al., 2018), in the BAT of UCP-1 KO and WT littermates. We found that both ATF-4 (Fig. 3E; \(p = 0.0003 \)) and CHOP-10 (Fig. 3F; \(p < 0.0001 \)) transcripts were significantly upregulated in the BAT of UCP-1 KO mice housed at 23°C compared with WT littermates under the same temperature conditions. ATF-4 and CHOP-10 are key
regulators of FGF-21, an integrated stress-responsive cytokine (Keipert et al., 2015) that is importantly involved in the control of energy homeostasis (Kharitonenkov et al., 2005). Quantification of FGF-21 expression revealed an increase in BAT FGF-21 levels in UCP-1 KO mice housed under thermogenic conditions (Fig. 3G; \(p < 0.0001 \)) compared with WT littermates. At the same time, augmented levels of circulating FGF-21 were observed in UCP-1 KO (Fig. 3H; \(t_{12} = 6.567, p = 0.0249 \)), as reported previously (Keipert et al., 2015). Results at thermoneutrality indicate that the changes in ATF-4, CHOP-10, and FGF-21 may be temperature dependent, as no significant differences in the expression of these transcripts were detected between genotypes at 29°C in the current dataset, while a trend was noted (Fig. 3I-K).

Considering increasing evidence for a role of FGF-21 in brain function and behavior (Bookout et al., 2013), we next tested the possible mechanistic link between increased circulating levels of FGF-21 and the behavioral phenotype of UCP-1. To this end, we modeled augmented serum FGF-21 levels by systemic administration of an FGF-21-encoding AAV in male WT C57BL/6N mice. Injection in the tail vein with the FGF-21 encoding AAV induced high peripheral levels of FGF-21 in WT and significantly increased FGF-21 expression in the livers of injected mice (Extended Data Fig. 4-1). Mice overexpressing FGF-21 gained less weight than the control (empty AAV)-treated counterparts (Fig. 4A; \(p < 0.0001 \)). Cumulative food (Fig. 4B; \(p < 0.0001 \)) and water intake (Fig. 4C; \(p < 0.0001 \)), measured during the third

Figure 2. Anxiety-related behavior of UCP-1 KO mice at thermoneutrality (29°C) is unaltered. A, Time spent in the light compartment of the LD-BOX. B, Latency to feed (in seconds) in the NSF test. B’, Home-cage food consumption (in grams), measured immediately after the NSF test. C, Percentage of open arm entries in the EPM. D, Percentage of freezing in the contextual fear test. E, Percentage of immobility in the FST. F, Total ambulatory distance traveled (in meters) in the OFT. Data were analyzed by two-way ANOVA with genotype and sex as main factors; \(n = 8-15 \)/group. Data are presented as mean ± SEM. Body weight of male and female UCP-1 KO and WT littermates are provided in Extended Data Figure 2-1.
week of experiments, were significantly increased in FGF-21-overexpressing mice, confirming previous reports that peripheral FGF-21 levels regulate food and water intake (Laeger et al., 2017; Turner et al., 2018).

However, FGF-21 overexpression had no effects on either anxiety-related behavior, as seen in LD-BOX, EPM, and fear-conditioning tests, or depression-related behavior (Fig. 4D–G). In addition, FGF-21 overexpression did not modulate locomotion in the OFT (Fig. 4H). These results indicate that increasing peripheral FGF-21 levels is not sufficient to mimic the behavioral phenotype of UCP-1 KO mice. To exclude sex-specific effects of FGF-21 overexpression, the experiments were repeated in a cohort of female WT C57BL/6N mice (Extended Data Fig. 4-2).

In contrast to male mice, FGF-21 overexpression in female mice did not result in reduced body weight (Extended Data Fig. 4-2A). However, both food and water intake measured during the third week of experiments were significantly increased in response to heightened FGF-21 levels (Extended Data Fig. 4-2B,C). Also in female WT mice, increased peripheral FGF-21 levels did not alter emotional behavior or locomotor activity (Extended Data Fig. 4-2D–H).

We then asked whether FGF-21 was required for the anxiogenic phenotype of UCP-1 KO mice. We tested this contingency using a polyclonal anti-FGF-21 antibody to block its activity before behavioral testing (Liu et al., 2019; Li et al., 2020). Yet, no effect of FGF-21 inhibition on contextual fear in UCP-1 KO animals was observed (Fig. 4I). Jointly, our results demonstrate that increased levels of FGF-21 are not mechanistically related to the behavioral disturbances displayed by UCP-1 KO mice.

The behavioral phenotype of UCP-1 KO mice persists after surgical removal of BAT

BAT–brain communication can be mediated through humoral signals or neural afferents. To further test whether...
BAT adipokines, other than FGF-21, or neural afferents from BAT to brain (Ryu et al., 2015) could contribute to the behavioral consequences of UCP-1 deficiency, interscapular BAT (iBAT) was surgically removed (iBATx) from adult UCP-1 KO and control mice (WT). A brief overview of the four experimental groups is provided in Extended Data Figure 5-1A (sham-operated UCP-1 KO mice (KO-Sham)) or iBAT removal surgery (KO-iBATx) and WT mice with either sham surgery (WT-Sham) or iBAT removal (WT-iBATx). The behavioral effects of iBATx were evaluated 4 weeks after surgery, when no evidence for iBAT regeneration was observed (Extended Data Fig. 5-1A,B). The previously noted genotype-dependent behavioral performance in innate and learned fear (i.e., EPM and contextual fear) was preserved also in iBATx groups, indicating that BAT surgical removal did not affect anxiety-like behavior in either UCP-1 KO or WT mice (Fig. 5A: $F_{(1,21)} = 5.021, p = 0.0360$; Fig. 5B: $F_{(1,21)} = 9.154, p = 0.0064$). iBATx did also not alter behavioral despair in the FST or exploratory locomotor activity in the OFT, in either UCP-1 KO or WT mice (Fig. 5C,D). iBATx also had no effect on FGF-21 levels in either UCP-1 KO or WT mice, as the previously found genotype-dependent effect was confirmed (Fig. 5E; $F_{(1,21)} = 13.18, p = 0.0016$), with UCP-1 KO mice presenting higher circulating FGF-21 levels than WT controls, regardless of the surgical treatment.

Together, our results show that the increase in anxiety observed in UCP-1 KO mice is not induced by enhanced levels of FGF-21 or other direct humoral or neural communicatory signals from BAT to brain, proposing a role for brain-expressed UCP-1 in the regulation of emotional behavior.

Discussion

Clinical evidence strongly supports a bidirectional association between emotional and metabolic disturbances. Both pathologies are of high prevalence and significant socioeconomic relevance (Wittchen et al., 2011). Yet, our understanding about the mechanistic basis mediating the comorbidity between affective and metabolic disorders is very limited. This is surprising, especially considering that current treatment options remain unsatisfactory for a high number of patients with anxiety and depressive disorders (Craske et al., 2017) and gaining insight into novel aspects about the underlying pathophysiological principles has the potential for opening up new avenues for alternative therapeutic interventions.

Here we set out to explore the role of UCP-1, a key metabolic regulator known for its essential function in BAT-dependent non-shivering thermogenesis, in emotional behavior in mice. We find that the depletion of UCP-1 in a genetic mouse model is associated with an anxiogenic behavioral phenotype that is manifested only under thermogenic conditions. Although the systemic endocrine and neural stress system is unaffected, UCP-1 KO mice show elevated ISR markers and related enhanced levels of FGF-21. However, increasing systemic FGF-21 levels in WT mice did not phenocopy augmented anxiety-like behavior observed in UCP-1 KO mice, and blocking FGF-21 activity in KO mice did not rescue their phenotype. Surgical iBAT removal had no effect on either the increased anxiety-like behavior or the elevated FGF-21 levels in UCP-1 KO mice. Thus, we observe a temperature-dependent regulation of anxiety-like behavior by UCP-1, which is not contingent on BAT.

Figure 4. Systemic FGF-21 overexpression does not alter emotional behavior. **A,** Percentage of body weight changes 3 weeks after viral overexpression of FGF-21. **B, C,** Cumulative food intake (B) and cumulative water intake (C) during the third week of viral overexpression of FGF-21. **D,** Time spent in the light compartment of the LD-BOX; percentage of open arm entries in the EPM (F), percentage of freezing in the contextual fear test (G), percentage of immobility in FST, and (H) ambulatory distance traveled (in meters) in the OFT in FGF-21-overexpressing and control mice. Data were analyzed with Student’s t test. N = 7–9/group. *p < 0.05, **p < 0.01, ***p < 0.001. **I,** Percentage of immobility in the contextual fear test in UCP-1 KO mice treated with IgG or polyclonal anti-FGF-21 antibody. Data were analyzed with Student’s t test. N = 5–9/group. *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± SEM. FGF-21 levels resulting from injection of AAV-FGF-21 are depicted in Extended Data Figure 4-1. The effects of FGF-21 overexpression in female mice are provided in Extended Data Figure 4-2.
The hypothesis that UCP-1 could serve as a molecular link between metabolic and emotional disorders, was originally motivated by the consideration that (1) UCP-1 is strongly expressed in BAT, and BAT is critical to energy control and consequently relevant to metabolic dysfunctions, including those associated with affective disorders (e.g., obesity and type II diabetes mellitus); and (2) A bidirectional communication between BAT and the brain exists, using both neural and endocrine pathways (Ryu et al., 2015; Villarroya et al., 2017).

Indeed, we find the consequences of UCP-1 deficiency to be reflected in a highly specific behavioral phenotype with robust and selective increase in innate and learned fear responses, exclusively under thermogenic conditions. There are different possibilities to explain this interaction between UCP-1 and temperature on emotional regulation: (1) under thermogenic conditions UCP-1-deficient mice compensate for the diminished BAT activity through the recruitment of alternative methods of thermogenesis, which also affect brain function and behavior; (2) A bidirectional communication between BAT and the brain exists, using both neural and endocrine pathways; (3) BAT-ATF-4 and CHOP-10. FGF-21 was obtained herein indicate that the removal of iBAT is not sufficient nor required for the anxiogenic phenotype observed in UCP-1 KO mice, as neither FGF-21 overexpression in WT animals nor blocking of FGF-21 activity in KO mice impacted the fear response. Since FGF-21 is not the only hormone released from BAT (Kiefer, 2017; Villarroya et al., 2017), and BAT-brain communication can be enabled by neural afferents from BAT to key regions of the brain (Ryu et al., 2015), we surgically removed iBAT, the largest brown adipose depot in mice (Ikeda et al., 2018), from a cohort of WT and UCP-1 KO mice. A similar approach had been previously used to identify iBAT in mice has the capacity to secrete and modulate circulating interleukin-6 levels in response to stress (Qing et al., 2020). Yet, surgical removal of iBAT neither ameliorated the behavioral abnormalities of UCP-1 KO mice nor affected the behavior of WT counterparts, suggesting that the behavioral consequences of UCP-1 deficiency are independent of its function in the BAT. Interestingly, iBATx also did not normalize the heightened FGF-21 levels observed in UCP-1 KO mice. Previous studies have suggested BAT as the major driver of increased FGF-21 levels in UCP-1 KO housed under conditions of thermal stress (Keipert et al., 2015). The results obtained herein indicate that the removal of iBAT is not sufficient to restore FGF-21 levels and that other fat depots, such as subcutaneous adipose tissue and organs, including liver and pancreas (Fon Tacer et al., 2010; Markan et al., 2014), may contribute to the heightened FGF-21 levels observed in UCP-1 KO mice.

Using the heightened anxiety response of UCP-1 KO mice in the contextual fear paradigm as a proxy of their emotional phenotype allows integration of the observed effects across models and paradigms in the present study. Jointly, these results indicate that neither peripheral responses to thermogenic conditions nor control (Charmandari et al., 2005; Moraitis et al., 2017), but we found no evidence for dysfunctional circadian regulation or stress-induced release of corticosterone in UCP-1 KO mice.

We then explored the possible differential release of batokines from the UCP-1-deficient BAT focusing on those with impact on the brain. Indeed, in agreement with earlier reports (Keipert et al., 2015), we observed significantly elevated BAT and serum levels of FGF-21 in UCP-1 KO mice, possibly resulting from enhanced ISR reflected in increased expression of BAT ATF-4 and CHOP-10. FGF-21 was a prime candidate for further investigation as a possible mediator between BAT and brain function as it is able to cross the blood–brain barrier (Hsuchou et al., 2007), has been shown to centrally (Owen et al., 2014) modulate important physiological functions (including water, alcohol, and sugar intake; Talukdar et al., 2016; Søberg et al., 2018; Turner et al., 2018), and binds at key regions in the brain controlling emotional behavior, such as the hypothalamus (Bookout et al., 2013; Owen et al., 2014). However, we found that FGF-21 was neither sufficient nor required for the anxiogenic phenotype observed in UCP-1 KO mice, as neither FGF-21 overexpression in WT animals nor blocking of FGF-21 activity in KO mice impacted the fear response.

![Figure 5](image.png)

Figure 5. iBATx does not alter emotional behavior. A–E, Percentage of open arm entries in the EPM (A), percentage of immobility in the contextual fear test (B), percentage of immobility in FST (C), ambulatory distance traveled (in meters) in the OFT (D), and serum FGF-21 levels (in picograms per milliliter) in UCP-1 KO and WT mice after iBATx or sham surgery (E), respectively. Data were analyzed by two-way ANOVA with genotype and BAT surgery (iBATx vs sham) as main factors; n = 5–7/group. Significant main effects of genotype are indicated: *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± SEM. The experimental design of the iBATx experiment is represented in Extended Data Figure 5-1.
direct humoral or neural communicatory signals from BAT to brain are relevant to the behavioral phenotype of UCP-1 KO mice, which suggests a direct role for brain-expressed UCP-1 in the regulation of emotional behavior. With regard to brain function, UCP-1 has hitherto only been associated with sleep regulation (Szentirmai and Kapás, 2014), and a central effect of UCP-1 in the regulation of energy balance through the control of food intake has been proposed (Okamatsu-Ogura et al., 2011). While previously the presence of other members of the UCP family of proteins in the brain has been affirmed and a role in neuronal function been demonstrated (for review, see Andrews et al., 2005), UCP-1 expression in the mouse brain (Lengacher et al., 2004; Wang et al., 2019) has remained contradictory. However, a recent study using UCP1−/− reporter mice convincingly delineated the active expression of UCP1 in the mouse brain, with abundant levels of UCP1 in the VMH and the amygdala (Claffin et al., 2022). Indeed, in the present study we also confirmed UCP-1 expression in the hypothalamus of WT mice.

Relevant to the anxiogenic phenotype of UCP-1 KO mice, VMH is a core structure of the innate defense network of the brain (Dielenberg and McGregor, 2001; Cheung et al., 2015) and receives direct input from neurons of the amygdala (Yamamoto et al., 2018). Importantly, amygdala neurons project to glutamatergic neurons in the VMH (Yamamoto et al., 2018), where UCP-1-expressing neurons are exclusively glutamatergic (Claffin et al., 2022). Thus, it can be hypothesized that UCP-1 may constitute a hitherto unknown molecular mediator of the innate defense network to contribute to the control of anxiety-like behavior. Important follow-up experiments to further investigate the central role of UCP-1 will like rely on examining the consequences of brain/nucleus-specific UCP-1 knockdown.

In summary, we here reveal a role for UCP-1 in the temperature-dependent regulation of anxiety-like behavior and propose this function to be mediated through a central effect of UCP-1 in brain regions forming part of the innate defense networks, suggesting UCP-1 as molecular link between metabolic and anxiety disorders.

References
Alves E, Lukoyanov N, Serrão P, Moura D, Moreira-Rodrigues M (2016) Epinephrine increases contextual learning through activation of peripheral β2-adrenergceptors. Psychopharmacology (Berl) 233:2099–2108.
Andrews ZB, Diano S, Horvath TL (2005) Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci 6:829–840.
Ates M, Dayi A, Kiray M, Sisman AR, Argülkaya S, Aksoy I, Baykara B, Buyuk E, Cetinkaya C, Cingoz S, Uysal N (2014) Anxiety- and depression-like behavior are correlated with leptin and leptin receptor expression in prefrontal cortex of streptozotocin-induced diabetic rats. Biotech Histochem 89:161–171.
Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behavior in mice: a review. Behav Brain Res 125:141–149.
Berg S, Stattmann M, Cicvaric A, Monje FJ, Coiro P, Hotka M, Ricken G, Hainfellner J, Greber-Platzer S, Yasuda M, Desnick RJ, Pollak DD (2020) Severe hydroxymethylbilane synthase deficiency causes depression-like behavior and mitochondrial dysfunction in a mouse model of homozygous dominant autistic intermitter poryphria. Acta Neuropathol Commun 8:38.
Bond LM, Burhans MS, Ntambi JM (2018) Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PLoS One 13:e0205726.
Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmqist JK, Takahashi JS, Mangelsdorf DJ, Klierew SA (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19:1147–1152.
Bruschetta G, Jin S, Liu ZW, Kim JD, Diano S (2020) MCHR signaling in dorsal raphe nucleus controls feeding, anxiety, and depression. Cell Rep 33:108267.
Cai H, Haubensak W, Anthony TE, Anderson DJ (2014) Central amygdala PKC-ε(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17:1240–1248.
Cannon B, Nedergraard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359.
Chamandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284.
Chatoth S, Ismail MH, Vatte C, Cyrus C, Ali Ali Z, Ahmed KA, Acharya S, Al Barqi AM, Al Ali A (2018) Association of uncoupling protein 1 (UCP1) gene polymorphism with obesity: a case-control study. BMC Med Genet 19:203.
Cheung CC, Krause WC, Edwards RH, Yang CF, Shah NM, Hnasko TS, Ingram HA (2015) Sex-dependent changes in metabolism and behavior, as well as reduced anxiety after eliminating ventromedial hypothalamic excitatory output. Mol Metab 4:857–866.
Claffin KE, Filippo KH, Sullivan AI, Naber MC, Zhou B, Neff TJ, Jensen–Cody SO, Potthoff MJ (2022) Conditional gene targeting using UCP1−/− mice directly targets the central nervous system beyond thermogenic adipose tissues. Mol Metab 55:101405.
Connolly E, Morrissey RD, Carnte JA (1982) The effect of interscapular brown adipose tissue removal on body-weight and cold response in the mouse. Br J Nutr 47:653–658.
Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017) Anxiety disorders. Nat Rev Dis Primers 3:17024.
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AR, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodyn GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517.
Davíu N, Bruchas MR, Moghaddam B, Sandi C, Beyele A (2019) Neurobiological links between stress and anxiety. Neurobiol Stress 11:100191.
Dielenberg RA, McGregor IS (2001) Defensive behavior in rats towards predatory odors: a review. Neurosci Biobehav Rev 25:597–609.
Dorninger F, Gundacker A, Zeiger G, Pollak DD, Berger J (2019) Ether lipid deficiency in mice produces a complex behavioral phenotype mimicking aspects of human psychiatric disorders. Int J Mol Sci 20:3929.
Feldmann HM, Golozoubova V, Cannon B, Nedergraard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209.
Fon Taker K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammad M, Kuro-o M, Mangelsdorf DJ, Klierew SA (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050–2064.
Fulton S, Decarrie-Spain L, Floramont X, Guiard B, Nakajima S (2022) The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metabol 33:18–35.
Gabriel MO, Nikou M, Akinola OB, Pollak DD, Sideromenos S (2020) Western diet-induced fear memory impairment is attenuated by 6-shogaol in C57BL/6N mice. Behav Brain Res 380:112419.
Gray SJ, Choi VW, Asokan A, Haberman RA, McCown TJ, Samulski RJ (2011) Production of recombinant adeno–associated viral vectors and use in in vitro and in vivo administration. Curr Protoc Neurosci Chapter 4: Unit 4.17.
Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286:12983–12990.
Hsucho H, Pan W, Kastin AJ (2007) The fasting polypeptide FGF21 can enter brain from blood. Peptides 28:2382–2386.
Ikeda K, Maretech P, Kajimura S (2018) The common and distinct features of human psychiatric disorders. Int J Mol Sci 19:1278–1359.
Jimenez V, et al. (2018) FGF21 gene therapy as treatment for obesity and insulin resistance. MMolMed 10:e8791.
Kahl KG, Schweiger U, Correll C, Müller C, Busch ML, Bauer M, Schwarz P (2015) Depression, anxiety disorders, and metabolic syndrome in a population at risk for type 2 diabetes mellitus. Brain Behav 5:00306.
Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. eLife 7:e37673.

Wang H, Willershäuser M, Karlas A, Gorpas D, Reber J, Ntzachristos V, Maurer S, Fromme T, Li Y, Klingenspor M (2019) A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol Metab 20:14–27.

Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:655–679.

Xia G, Han Y, Meng F, He Y, Srisai D, Farias M, Dang M, Palmiter RD, Xu Y, Wu Q (2021) Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Mol Psychiatry 26:2837–2853.

Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adenovirus vectors in the absence of helper adenovirus. J Virol 72:2224–2232.

Yamamoto R, Ahmed N, Ito T, Gungor NZ, Pare D (2018) Optogenetic study of anterior BNST and basomedial amygdala projections to the ventromedial hypothalamus. eNeuro 5:ENEURO.0204-18.2018.

Zalutskaya AA, Arai M, Bounoutas GS, Abou-Samra AB (2007) Impaired adaptation to repeated restraint and decreased response to cold in urocortin 1 knockout mice. Am J Physiol Endocrinol Metab 293:E259–E263.