Exploration of Gate Trench Module for Vertical GaN devices

M. Ruzzarin\(^1\), K. Geens\(^2\), M. Borga\(^2\), H. Liang\(^2\), S. You\(^2\), B. Bakroot\(^3\), S. Decoutere\(^2\), C. De Santi\(^1\), A. Neviani\(^1\), M. Meneghini\(^1\), G. Meneghesso\(^1\), E. Zanoni\(^1\)

\(^1\) University of Padova, Department of Information Engineering, Via Gradenigo 6/b, 35131, Padova, Italy

\(^2\) imec, Leuven, Kapeldreef 75, 3001 Leuven, Belgium

\(^3\) CMST, imec and Ghent University, Technologiepark 126, Ghent, 9052, Belgium

Abstract — The aim of this work is to present the optimization of the gate trench module for use in vertical GaN devices: we considered the impact of cleaning process of the etched surface of the gate trench, thickness of gate dielectric, and magnesium concentration of the p-GaN layer. The analysis was carried out by comparing the main DC parameters of devices that differ in surface cleaning process of the gate trench, gate dielectric thickness, and body layer doping. On the basis of experimental results, we report that: (i) a good cleaning process of the etched GaN surface of the gate trench is a key factor to enhance the device performance, (ii) a gate dielectric >35-nm SiO\(_2\) results in a narrow distribution for DC characteristics, (iii) lowering the p-doping in the body layer improves the ON-resistance (R\(_{ON}\)). Gate capacitance measurements are performed to further confirm the results. Hypotheses on dielectric trapping/de-trapping mechanisms under positive and negative gate bias are reported.

1. Introduction

Semiconductor electronic devices for power applications require normally-OFF operation, low ON-resistance, low leakage current and high breakdown voltage in order to reduce power losses and maintain reduced costs with electronics scaling [1][2]. Wide-bandgap transistors based on gallium nitride (GaN) are promising candidates for these requirements, due to the physical properties of the semiconductor in terms of high-conductivity, high frequency, high power operation. The most common GaN power devices with a high breakdown voltage have been AlGaN/GaN-based lateral HEMTs. In order to achieve normally-OFF operations the 2DEG below the gate region must be depleted, for example by using a p-type GaN layer between gate metal and AlGaN barrier [3][4][5]. Currently this approach is the most widely used for lateral GaN devices and excellent performance has been demonstrated with kV-range breakdown voltages [6][7]. However, in order to achieve higher breakdown voltage (> 1.5 kV) substantial gate-drain distance is necessary reducing the effective current density and increasing the chip size and cost. Moreover, the lateral devices are limited by the high substrate leakage and surface trapping effects [8]. In order to address high power levels (10-100kW) required for example in the automotive field, for data centers and photovoltaic systems, researchers are exploring vertical GaN devices. Compared to lateral structures, vertical GaN devices have several advantages: (i) the capability to achieve high breakdown voltage and current levels without enlarging the chip size, (ii) the superior reliability gained by moving the peak electric field away from the surface into bulk devices [9], (iii) the easier thermal management [10]. Several device architectures have been proposed: Current Aperture Vertical Electron Transistor (CAVET) [11], Vertical Field Effect Transistor (VFET)[12] and GaN nanowire arrays [13][14]. Also, Vertical GaN trench MOSFETs [15][16] are promising candidates for next generation of power devices: the regrowth of AlGaN/GaN structures is not needed and normally-OFF operation is intrinsically achieved [17]. However, there are still open issues, which include the material growth and device processing, the improvement of channel mobility and the research towards low-cost fabrication [18].

For GaN trench MOSFETs, the formation of the gate trench is fundamental to achieve a good performance, however the impact of the process used in the trench etching tends to result in rough surfaces in the trench [19]. A good dry etch process is therefore necessary to bring the roughness to a minimum. Removing impurities and residuals created during the dry etch process steps with a good cleaning process is then necessary.
Previous works demonstrated that a way to enhance the reliability of a device in the on state is to reduce the oxide field by increasing the gate oxide thickness. However, increasing the gate oxide thickness can increase the R_{ON} [23][24]. From the ON-resistance model reported by [25], R_{ON} is given by the sum of the channel resistance (R_{MOS}), and the series resistance. R_{MOS} is given by:

$$R_{MOS} = \frac{L}{\mu C_{ox}(V_G - I_{DS}R_{GS} - V_{FB})}$$

Under the assumption of varying only the dielectric thickness (the channel mobility μ, the gate-source resistance R_{GS}, I_{DS} and (V_G-V_{FB}) are supposed to be constants), since C_{ox} is inversely proportional to T_{OX}, R_{ON} depends on T_{OX}.

Another way to decrease the R_{ON} is lowering the p-doping in the p-layer [26][27]. This work reports an extensive analysis of the impact of some of these factors (cleaning process, dielectric thickness, body doping) on the DC characteristics of GaN semi-vertical devices with an Al$_2$O$_3$–SiO$_2$ stack as gate dielectric. Moreover, the gate instability under positive and negative biases is investigated and hypotheses on the trapping/detrapping mechanisms are given.

2. Experimental details

In this study, normally-OFF GaN-on-Si semi-vertical trench MOSFETs with different splits in the gate module are tested to analyze the impact of the gate trench on the device performance. The semi-vertical architecture is used as a test vehicle to develop optimal process modules for later implementation in a vertical device architecture. The gate dielectric consists of a bilayer [28] of 2.5 nm Al$_2$O$_3$ and SiO$_2$ with different thicknesses. The devices are grown on a silicon substrate. A schematic representation of the cross section of the device under test (DUT) is reported in Fig. 1. The epitaxial GaN stack includes stress compensation layers, a buried highly doped n$^+$ layer connected to the drain terminal to collect the current in a semi-vertical configuration, a relatively thick and lightly n-doped drift layer, a p-doped layer with different Mg chemical concentrations, and a top n$^+$ layer. The devices tested in this work vary in cleaning process, SiO$_2$ thickness, and magnesium chemical concentration.

3. Results and discussion

Fig. 2 shows I_DV_{DS} comparison in semi-log scale for 2 devices with different cleaning processes: clean 1 and clean 2. The devices processed with clean 2 result in a higher I_D in the transfer characteristic. In Figure 2 (b) the measured ON-resistance is compared for these devices, with different cleaning. In this work, the ON-resistance value is obtained by linear interpolation of the linear part of the I_DV_{DS} curve performed at $V_{GS} = V_{TH} + 4$ V. The cleaning process has a significant influence on surface scattering and Coulomb scattering impacting the mobility and thus, the R_{ON}. As shown in Fig. 2 (b) the devices processed with clean 2 have a lower R_{ON}. The devices with thicker SiO$_2$ (Fig. 3 (a)) show higher threshold voltage but also higher ON-resistance. The devices fabricated with lower magnesium chemical concentration show lower threshold voltage and lower ON-resistance (Fig. 3 (b)). Considering the above-mentioned trends of the main device parameters, the best device performance is
obtained for a gate dielectric consisting of 50 nm SiO$_2$ and for a p-body with a 2.5·10^{18} cm$^{-3}$ chemical Mg concentration. In order to study the robustness of the gate stack, the gate-drain current has been investigated. We have already observed that in forward gate the gate-source and the gate-drain leakage curves are the same, due to the electron channel which surrounds the whole trench. In Fig.4 the trends of the I_{DS} (V_{GS} gate leakage) for devices with different cleaning process (Fig.4 (a)), oxide thickness (Fig.4 (b)), and chemical Mg concentration (Fig.4 (c)) are reported. The trend of the gate leakage shows that the failure occurs due to the breakdown of the gate dielectric. The failures (reported in Fig. 5) occur due to the breakdown of the gate dielectric. For all process splits, failure voltage is far beyond the maximum operating voltage (which is 12 V). The failure voltage increases by increasing the thickness of the SiO$_2$ (Fig. 4 and 5 (b)), and is independent from the gate trench cleaning, as well as the Mg chemical concentration of the p-GaN layer (Fig. 5 (a),(c)). The average critical electric field obtained with 50 nm and 65 nm SiO$_2$ is around 8 MV/cm, while it drops to 6 MV/cm for the 35 nm thick SiO$_2$ layer; this lower critical field is expected to originate from local roughness in the GaN sidewall on the gate trench, which will affect the non-uniformity and roughness of the deposited dielectric more, when a thinner layer is applied.

In Figure 6 the gate-drain-source (G-DS) capacitances (measured with the gate at one potential and with drain and source connected together to the other potential) of the devices under test are reported. The gate-drain-source capacitance shows two regions depending on the applied gate voltage. At low gate voltage (V_{CH1}) a rise in the capacitance is observed when the accumulation channel is formed at the interface between Al$_2$O$_3$ and n-GaN drift layer. At high gate voltage (V_{CH2}) a further bump in the capacitance is observed at the inversion channel formation. The maximum value of the capacitance is the sum of the gate oxide capacitance for the sidewalls and the bottom of the trench. In Figure 6 the comparison among gate-drain capacitance of devices with different SiO$_2$-thickness (a) and Mg chemical concentration (b) is reported. By increasing the SiO$_2$ thickness, the total capacitance (e.g. the oxide capacitance) decreases and the threshold voltage at which the formation of the inversion channel occurs (V_{CH2}) slightly increases: the same increase was observed in the device threshold voltage (see Figure 3 (a)). By increasing the Mg chemical concentration, the value of the total capacitance remains the same, however the threshold voltage at which the formation of the inversion channel occurs increases, in good agreement with the results reported from DC measurements (Figure 3 (b)) and with the model proposed in [29].

All the devices under test show a positive hysteresis in the transfer characteristic suggesting a trapping mechanism due to electron trapping. I_{DS}-V_{GS} measurements are carried out between 0 V and V_{TH} + 5 V overdrive in forward (FWD) and backward (BWD) sweeping directions to further study the gate stability. The analysis was performed at 25 °C and at 150 °C for devices with different cleaning processes (a), SiO$_2$ thicknesses (b) and Mg chemical concentrations (c). (d) Plot of the threshold voltage variation of the backward curve (black), of the forward curve (red) and of the hysteresis (V_{TH} BWD-V_{TH} FWD) of the I_{DS}-V_{GS} curves performed forward and backward from 0 V to a maximum gate voltage increased from 4 V to 10 V with 1 V/step for the reference device.

$V_{TH} = m \log (V_G) + q$
Positive gate voltage:

Fig. 8 Pictorial view of the two possible mechanisms responsible of the positive hysteresis: (1) trapping of electrons from the inversion channel to the Al₂O₃ and/or SiO₂; (2) electrons accumulate in the potential barrier at the Al₂O₃/SiO₂ interface.

In order to further analyze the trapping mechanism responsible for the positive hysteresis, several IᵥGₚ measurements (forward and backward) have been performed on the reference device (with 50 nm SiO₂ and 2.5·10¹⁸ Mg chemical concentration) by increasing the maximum applied gate voltage. The plot of the variation of the threshold voltage is reported in Fig. 7 (d): the positive variation of the threshold voltage increases linearly with the logarithm of the maximum gate voltage. This result is consistent with those from metal-oxide-semiconductor field-effect transistors with high k dielectrics where ΔVth is observed to increase with a power law dependence on stress voltage [31][32]. The trapping mechanism is ascribed to injection of electrons from the channel toward the gate dielectric, the electrons can be trapped inside the Al₂O₃ and/or at the Al₂O₃/SiO₂ interface [33]. Moreover, a potential barrier of 1.47 eV [20] is created from the band alignment between SiO₂ and Al₂O₃, and electrons can accumulate at the interface between oxide layers. The semi-logarithmic trend of the threshold voltage with the maximum applied gate voltage can be explained by the fact that by increasing the applied gate voltage, the trapped and/or the accumulated electrons have a repulsive action towards other electrons and prevent them to be trapped/accumulated [34][35]. This trapping mechanism is the same in all the tested devices, independent from cleaning, SiO₂-thickness and Mg chemical concentration. By increasing the Mg concentration, the scattering effect at dielectric/GaN interface increases, possibly reducing mobility and increasing the trapping effect [26]. The observed trapping effect stays the same (Figure 4 (b)) by increasing the SiO₂-thickness suggesting that only the Al₂O₃ and/or the Al₂O₃-SiO₂ interface is affected by the electron trapping/accumulation. A pictorial representation of the trapping mechanisms responsible for the positive hysteresis is depicted in Figure 8.

The DUTs have also been investigated under negative gate bias by performing IᵥGₚ measurements from 7 V to a maximum gate negative voltage (upward) and from the same negative gate voltage to 7 V (backward). Although the device is biased well below the nominal gate operational voltage, this test is useful to further investigate the trapping phenomena occurring in the dielectric stack. In Figure 9 (a) the IᵥGₚ backward curves (negative to positive Vₒₓ) are reported, the upward curves are overlapped. A negative shift of the threshold voltage is obtained as reported in Figure 9 (b) and it increases linearly with the maximum negative gate voltage applied.

The mechanism is possibly ascribed to the holes which are accumulating at the interface under negative bias and can be injected in the gate dielectric. The negative shift of the threshold voltage under negative bias is much larger than the positive shift observed under positive gate bias. This can be due to the fact that there is a lower potential barrier with the SiO₂. Long et al. [20] report that from the alignment of SiO₂ and GaN there are 2 eV of gap with the valence band and 3.6 eV with the conduction band) and more holes are injected compared to electrons in the FWD mode. In Figure 10 (b), the amount of the net charge in the oxide is calculated for each shift (Vth BWD-V th FWD) of the threshold voltage when the device was submitted to negative gate bias.

Conclusions

In conclusion this work presents an exhaustive analysis of the optimization of the gate module in terms of cleaning process, gate dielectric thickness and body layer doping level. The
Fig. 10 Net charge in the oxide (SiO$_2$+Al$_2$O$_3$) calculated for each variation of the threshold voltage under positive gate bias (a), and negative gate bias (b).

The optimum device is selected with 50 nm of SiO$_2$ as gate dielectric and 2.5 x 10$^{-18}$ of Mg chemical concentration in order to have better gate yield, higher gate robustness and reduced R_{ox}.

The gate stability under positive and negative gate bias is analyzed: presumably, electrons injected from the inversion layer are trapped into the dielectric and/or at the Al$_2$O$_3$/SiO$_2$ interface inducing a positive shift of the threshold voltage not depending on the thickness of the SiO$_2$. The trapping effect is reduced for lower Mg concentrations, probably due to reduced scattering. By applying a negative gate voltage, a negative shift of the threshold voltage is induced. This is ascribed to the trapping of holes.

Acknowledgements

This paper has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826392. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Belgium, Germany, Italy, Norway, Slovakia, Spain, Sweden, Switzerland.

References

[1] I. Omura, W. Saito, T. Domon, K. Tsuda, Gallium Nitride Power HEMT for High Switching Frequency Power Electronics, (2007).

[2] E.A. Jones, F. Wang, B. Ozpineci, Application-Based Review of GaN HFETs, (2014) 24–29.

[3] X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska, M. Shur, Enhancement mode AlGaN/GaN HFET with selectively grown p/n junction gate, IEEE Electron. Lett. 36 (2000) 753–754.

[4] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, Gate Injection Transistor (GIT) – A Normally-Off Conductivity Modulation, 54 (2007) 3393–3399.

[5] O. Hilt, R. Zhuyntytska, J. Bock, E. Bahat-Treidel, F. Brunner, A. Knauer, S. Dickes, J. Wurfl, 70 m2/600 V normally-off GaN transistors on SiC and Si substrates, Proc. Int. Symp. Power Semicond. Devices ICs. 2015-June (2015) 237–240. https://doi.org/10.1109/SPSD2015.7123433.

[6] C.S. Suh, Y. Dora, N. Fichtenbaum, L. McCarthy, S. Keller, U.K. Mishra, High-breakdown enhancement-mode AlGaN/GaN HEMTs with integrated slant field-plate, in: Int. Electron Devices Meet., IEEE, 2006: pp. 1–3. https://doi.org/10.1109/IEDM.2006.346931.

[7] E. Dogmus, M. Zegaoi, F. Medjdoub, GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap, Appl. Phys. Express. 11 (2018) 3–7. https://doi.org/10.7567/APEX.11.034102.

[8] M. Meneghini, G. Menghesso, E. Zanoni, Power GaN Devices: Materials, Applications and Reliability, 2016. https://doi.org/10.1007/978-3-319-43199-4.

[9] R. Yeluri, J. Lu, C.A. Hurri, D.A. Browne, S. Chowdhury, S. Keller, J.S. Speck, U.K. Mishra, Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction, Appl. Phys. Lett. 106 (2015). https://doi.org/10.1063/1.4919866.

[10] Y. Zhang, M. Sun, Z. Liu, D. Piedra, H.S. Lee, F. Gao, T. Fujishima, T. Palacios, Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors, IEEE Trans. Electron Devices. 60 (2013) 2224–2230. https://doi.org/10.1109/TED.2013.2261072.

[11] M. Kanechika, M. Sugimoto, N. Soejima, H. Ueda, O. Ishiguro, M. Kodama, E. Hayashi, K. Itoh, T. Uesugi, T. Kachi, A vertically insulated gate AlGaN/GaN heterojunction field-effect transistor, Japanese J. Appl. Physics, Part 2 Lett. 46 (2007). https://doi.org/10.1143/JJAP.46.L503.

[12] M. Sun, M. Pan, X. Gao, T. Palacios, Vertical GaN Power FET on Bulk GaN Substrate, 74th Annu. Device Res. Conf. (2016) 1–2. https://doi.org/10.1109/DRC.2016.7548467.

[13] F. Yu, S. Yao, F. Römer, B. Witzigmann, T. Schimpke, M. Strassburg, A. Bakin, H.W. Schumacher, E. Peiner, H.S. Wasisto, A. Waag, GaN nanowire arrays with nonplanar sidewalls for vertically integrated field-effect transistors, Nanotechnology. 28 (2017) 1–9. https://doi.org/10.1088/1361-6528/aa57b6.

[14] F. Yu, K. Strempel, M.F. Fatahiah, H. Zhou, F. Romer, A. Bakin, B. Witzigmann, H.W. Schumacher, H.S. Wasisto, A. Waag, Normally off Vertical 3-D GaN Nanowire MOSFETs with Inverted p-GaN Channel, IEEE Trans. Electron Devices. 65 (2018) 2439–2445. https://doi.org/10.1109/TED.2018.2824985.

[15] T. Oka, Y. Ueno, T. Ina, H. Hasegawa, Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV, Appl. Phys. Express. 7 (2014). https://doi.org/10.7567/APEX.7.021002.

[16] C. Gupta, S.H. Chan, A. Agarwal, S. Keller, U.K. Mishra, OGFET: An In-Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET, IEEE Electron Device Lett. 39 (2018) 711–714. https://doi.org/10.1109/LED.2018.2813312.

[17] O. Hilet, K. Chikamatsu, T. Yamaguchi, T. Fujishima, H. Ohta, Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates, Appl. Phys. Express. 1 (2008). https://doi.org/10.1143/APEX.1.011105.

[18] J. Hu, Y. Zhang, M. Sun, D. Piedra, N. Chowdhury, T. Palacios, Materials and processing issues in vertical GaN power electronics, Mater. Sci. Semicond. Process. 78 (2018) 75–84. https://doi.org/10.1016/j.mssp.2017.09.033.

[19] Y. Zhang, M. Sun, Z. Liu, D. Piedra, J. Hu, X. Gao, T. Palacios, Trench formation and corner rounding in vertical GaN power devices, Appl. Phys. Lett. 110 (2017). https://doi.org/10.1063/1.4983558.

[20] R.D. Long, P.C. McIntyre, Surface preparation and deposited gate oxides for gallium nitride based metal oxide semiconductor devices, Materials (Basel). 5 (2012) 1297–1315. https://doi.org/10.3390/m0501279.

[21] L.L. Smith, S.W. King, R.J. Nemanich, R.F. Davis, Cleaning of GaN surfaces, J. Electron. Mater. 25 (1996) 805–810. https://doi.org/10.1007/BF02666640.

[22] M. Diale, F.D. Auret, N.G. Van Der Berg, W.D. Roos, Analysis of GaN cleaning procedures, Appl. Surf. Sci. 319 (2015) 279–289. https://doi.org/10.1016/j.apsusc.2014.11.024.

[23] J.H. Sceofield, M. Travick, P. Klimczyk, D.M. Fleetwood, Correlation between preirradiation channel mobility and radiation-induced interface-trap charge in metal-oxide-semiconductor transistors, Appl. Phys. Lett. 58 (1991) 2782–2784. https://doi.org/10.1063/1.104760.

[24] G.D. Wilk, R.M. Wallace, J.M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89 (2001) 5243–5275. https://doi.org/10.1063/1.1361065.
[25] M. Xiao, T. Palacios, Y. Zhang, ON-Resistance in Vertical Power FinFETs, IEEE Trans. Electron Devices. 66 (2019) 3903–3909. https://doi.org/10.1109/TED.2019.2928825.
[26] M.J. van Dort, P.H. Woerlee, A.J. Walker, C.A.H. Juffermans, H. Lifka, Influence of High Substrate Doping Levels on the Threshold Voltage and the Mobility of Deep-Submicrometer MOSFET’s, IEEE Trans. Electron Devices. 39 (1992) 932–938. https://doi.org/10.1109/16.127485.
[27] A. Pérez-Tomás, M. Placidi, X. Perpinà, A. Constant, P. Godignon, X. Jordà, P. Brosselard, J. Millán, GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling, J. Appl. Phys. 105 (2009). https://doi.org/10.1063/1.3140614.
[28] K. Mukherjee, C. De Santi, M. Borga, S. You, K. Geens, B. Bakerooot, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini, Demonstration of Bilayer Gate Insulator for Improved Reliability in GaN-on-Si Vertical Transistors, in: IRPS, 2020: pp. 4–5.
[29] M. Borga, K. Mukherjee, C. De Santi, S. Stoffels, K. Geens, S. You, B. Bakerooot, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini, Modeling of gate capacitance of GaN-based trench-gate vertical metal-oxide-semiconductor devices, Appl. Phys. Express. 13 (2020) 024006-1–024006-4.
[30] S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, Third Edition, John Wiley & Sons, 2007. https://doi.org/10.1007/978-3-319-03002-9.
[31] M. Jo, S. Kim, S. Jung, J.B. Park, J. Lee, H.S. Jung, R. Choi, H. Hwang, Effect of fast components in threshold-voltage shift on bias temperature instability in high-κ MOSFETs, IEEE Electron Device Lett. 31 (2010) 287–289. https://doi.org/10.1109/LED.2010.2041178.
[32] V. Huard, M. Denais, F. Perrier, N. Revil, C. Parthasarathy, A. Bravaix, E. Vincent, A thorough investigation of MOSFETs NBTI degradation, Microelectron. Reliab. 45 (2005) 83–98. https://doi.org/10.1016/j.microrel.2004.04.027.
[33] K. Mukherjee, M. Borga, M. Ruzzarin, C. De Santi, S. Stoffels, S. You, K. Geens, H. Liang, S. Decoutere, G. Meneghesso, E. Zanoni, M. Meneghini, Analysis of threshold voltage instabilities in semi-vertical GaN-on-Si FETs, Appl. Phys. Express. 13 (2020). https://doi.org/10.35848/1882-0786/a6dd.
[34] D.R. Wolters, J.J. Van Der Schoot, Kinetics of charge trapping in dielectrics, J. Appl. Phys. 58 (1985) 831–837. https://doi.org/10.1063/1.336152.
[35] V. V. Afanas’ev, Analysis of the Charge Trapping Kinetics, 2014. https://doi.org/10.1016/b978-0-08-099929-6.00006-3.