Camrelizumab combined with microwave ablation improves the objective response rate in advanced non-small cell lung cancer

ABSTRACT

Aim: The present study evaluated the safety and efficacy of camrelizumab (a programmed death-1 antibody) in combination with microwave ablation (MWA) in advanced non-small cell lung cancer (NSCLC).

Materials and Methods: A total of 21 patients were prospectively enrolled. MWA was performed in 25 pulmonary lesions during 21 sessions. Camrelizumab was administered 5–7 days after MWA as a dose of 200 mg, which was repeated every 2 weeks until disease progression or intolerable toxicities. The primary endpoints were safety and the objective response rate (ORR). Other endpoints included progression-free survival (PFS) and overall survival (OS).

Results: The technical success rate was 100%. No treatment-associated deaths were identified. Major complications, minor complications, and side effects of MWA were observed in 9, 8, and 14 patients, respectively. The main major complications included pneumonia, hypothyroidism, pulmonary hemorrhage, and pleural effusion. The adverse events of camrelizumab included reactive skin capillary hyperplasia (n = 9), hypothyroidism (n = 5), pneumonia (n = 4), fatigue (n = 2), leukopenia (n = 1), and neutropenia (n = 1). Grade 2 and 3 camrelizumab adverse events were identified in eight and three patients, respectively. The ORR was 33.3%, with two patients achieving complete response and five patients achieving partial response. The median PFS was 5.1 months and OS was not reached.

Conclusions: Camrelizumab administration combined with MWA was safe in the treatment of advanced NSCLC, and the combination improved the ORR of camrelizumab alone compared to previous reports.

KEY WORDS: Camrelizumab, lung cancer, microwave ablation, objective response, progression-free survival, PD-1 antibody

INTRODUCTION

In China, lung cancer remains the leading cause of cancer-related morbidity and mortality. Non-small cell lung cancer (NSCLC) accounts for nearly 85% of lung cancers, primarily diagnosed at an advanced stage, losing the opportunity for radical surgery.[1] In advanced NSCLC patients without epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes, the main treatment was previously chemotherapy.[2] Recently, immunotherapy targeting immune checkpoints, especially programmed death-1 (PD-1) or programmed death-ligand-1 (PD-L1), improved survival in advanced NSCLC, resulting in long-term survival becoming a reality.[3–7] Camrelizumab (AiRuiKa™) is a humanized high-affinity IgG4-kappa anti-PD-1 monoclonal antibody developed by Jiangsu Hengrui Medicine Co. Ltd. and indicated for the treatment of various malignancies.[8] However, the low response rate limited the applications of PD-1 antibodies.[9–11] Hence, the combination of PD-1 antibodies with other treatments was explored. The combination with chemotherapy or chemotherapy and targeted vascular endothelial growth factor receptor antibodies demonstrated survival advantage.[12] Moreover, PD-1 antibodies combined with irradiation improved survival. In a Phase II clinical trial in patients with oligometastases, pembrolizumab with irradiation at all tumor lesion sites demonstrated superior survival compared to pembrolizumab alone.[12] In addition, the PACIFIC trial reported that in locally advanced NSCLC unsuitable for surgery, concurrent chemoradiation

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com
followed by durvalumab indicated longer progression-free survival (PFS) compared to chemoradiation alone.[13]

Microwave ablation (MWA), as a thermal ablation method, is considered an alternative treatment in early-stage NSCLC contradicted to surgery or irradiation.[14,15] In case of advanced NSCLC, the combination of MWA and chemotherapy improved the PFS.[16,17] In patients with oligometastases or oligoprogression treated with EGFR-tyrosine kinase inhibitors, the survival advantage was dramatically significant.[18,19]

Furthermore, a previous study demonstrated that thermal ablation affects the immune function and PD-L1 expression in NSCLC. Treatment with MWA dramatically increased the proportion of CD8+ T cells and CD16+CD56+ natural killer (NK) cells. In concurrent colorectal carcinoma with oligometastatic liver metastases, when treated with radiofrequency ablation (RFA) in liver metastases, the primary tumors were biopsied preablation, followed by surgery postablation. The PD-L1 expression was upregulated in the postablation tumors compared to preablation tumors.[20] In addition, in breast tumor-bearing mice, the combination of PD-1 antibodies, CTLA-4 antibodies, and MWA indicated the best survival compared to MWA alone or immune therapy alone.[21] One case report confirmed that lesions previously treated with RFA shrank rapidly and dramatically compared to those untreated with RFA.[22]

To date, no study has explored the combination of MWA with PD-1 antibodies in the treatment of advanced NSCLC. Hence, this prospective study aimed to explore the safety and efficacy of MWA combined with camrelizumab.

MATERIALS AND METHODS

The inclusion and exclusion criteria
Patients with the following characteristics were prospectively enrolled in the study: (1) pathologically verified NSCLC, (2) Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0–1, (3) Stage IV or Stage IIIb or IIIc unfit for surgery, (4) at least one measurable tumor lesion other than the ablative lesions, (5) tumors located in the lung periphery, and (6) EGFR and ALK-negative mutations.

Patients with the following characteristics were excluded: (1) mixed NSCLC and small cell lung cancer (SCLC), (2) previous cancer during the past 5 years, (3) autoimmune diseases, (4) long-term hormone therapy, and (5) antibiotic treatments during the past 2 weeks.

Microwave ablation procedure
Under local anesthesia, MWA was performed at the primary and metastatic lung tumor sites. MWA was performed as previously described.[16,17] 5 gross glass opacity changed to ground glass opacity of 5–10 mm larger than the tumor edge was considered as technical success.

Camrelizumab administration
Following MWA, camrelizumab was administered after an interval of 5–7 days. Camrelizumab was administered intravenously at a dose of 200 mg, repeated every 2 weeks, and continued until disease progression or intolerable toxicities.

Microwave ablation complications
The complications of MWA were in accordance with the International Working Group on Image-Guided Tumor Ablation of the Society of Interventional Radiology. These complications were classified as major complications, minor complications, and side effects. A major complication refers to an event that leads to substantial morbidity and disability that increases the level of care, or results in hospital admission, or substantially lengthens the hospital stay. All other complications are considered as minor complications. Side effects are expected, undesirable consequences of the procedure that although occur commonly, rarely, or if ever, result in substantial morbidity. These include pain, the postablation syndrome, and asymptomatic pleural effusions and minimal asymptomatic perihepatic (or renal) fluid or blood collection seen during imaging.[23]

Adverse events with camrelizumab
The adverse events of camrelizumab were evaluated according to the common toxicity criteria 4.0. In patients with Grade 2 or more adverse events, camrelizumab administration was paused and glucocorticoid therapy was administered if necessary.

The response to microwave ablation and camrelizumab
Contrast-enhanced computed tomography was conducted 1 month post-MWA during the first three months and every 2 months during camrelizumab treatment for a period of 2 years and every 3 months thereafter.

The response to MWA was evaluated according to the expert consensus for the thermal ablation of primary and metastatic lung tumors (2018 edition), classified as complete ablation and incomplete ablation.[24]

The response to camrelizumab was evaluated according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, which included complete response (CR), partial response (PR), stable disease (SD), and progression disease (PD).[25]

The objective response rate (ORR) is defined as the proportion of patients who achieved CR and PR. Disease control rate (DCR) is the proportion of patients who achieved CR and PR, and SD newer lesions occurring during camrelizumab treatment were reevaluated 2 months later. Patients could continue camrelizumab treatment when the image evaluated the PD and patients did not display worsening symptoms.

Statistical analysis
All statistical analyses were performed using SPSS version 17.0 (SPSS Inc., Chicago, IL, USA). The PFS was
calculated from the date of MWA to disease progression or death. Overall survival (OS) was calculated from the date of MWA to death. Both PFS and OS were analyzed using the Kaplan–Meier method.

RESULTS

The characteristics of enrolled patients
A total of 21 patients were prospectively enrolled in the study. Among these patients, 13 patients were male, with a mean age of 64 years (ranging between 44 and 81). Most patients (11 patients) were current or previous smokers and had an ECOG of 1 (16 patients). Histologically, most patients demonstrated adenocarcinomas (n = 17), followed by squamous cell lung cancer (n = 3) and large cell lung cancer (n = 1). Eighteen patients were diagnosed with Stage IV cancer. EGFR and ALK were tested in all patients, with no EGFR-sensitive mutations or ALK fusion genes identified.

All patients were treated with MWA followed by camrelizumab. A total of 25 pulmonary tumor lesions were administered MWA during 21 procedures. The ablated tumors had a mean size of 3.4 cm (range: 1.4–7.9 cm). Most tumors were located in the right lung (n = 17) and upper or middle lobe (n = 16). The power applied was 40W, 50W, and 60W, with the mean ablative time of 13.4 min (range: 6–34 min). The details of enrolled patients and treatments are presented in Table 1.

The safety of microwave ablation combined with camrelizumab
All patients were treated with camrelizumab until the last follow-up conducted on October 30, 2019. Four median cycles of camrelizumab were performed (range: 1–14), with one patient treated with <4 cycles. Eleven patients indicated disease progression, and one fatality was noted.

The major complications, minor complications, and side effects were observed in 9, 8, and 14 patients, respectively. The main major complications included pneumothorax (n = 4), pneumonia (n = 4), hemorrhage (n = 3), and pleural effusion (n = 2). Chest tube insertions resolved the observed pneumothorax or pleural effusions, and the hemorrhage was observed in one patient. Three patients with pneumonia were administered anti-inflammatory therapy. Transbronchial artery interventional embolization was used to treat one patient with hemorrhage [Table 2].

The adverse events of camrelizumab as first or subsequent line treatment included reactive capillary endothelial proliferation (n = 9), hypothyroidism (n = 5), pneumonia (n = 4), fatigue (n = 2), leucopenia (n = 1), and neutropenia (n = 1). Grade 2 adverse events were identified in eight patients and Grade 3 adverse events were observed in three patients. Two patients with pneumonia discontinued treatment with camrelizumab and were treated with methylprednisolone and prednisone. After recovering from pneumonia, the two patients were rechallenged with camrelizumab; however, camrelizumab was terminated due to the occurrence of Grade 2 pneumonia [Table 3].
Objective response rate of camrelizumab combined with microwave ablation

Regarding the response to camrelizumab combined with MWA, CR was observed in two patients, PR was observed in five patients, and SD was observed in six patients [Figure 1]. The ORR was 33.3% and the DCR was 61.9%.

Overall survival with microwave ablation in combination with camrelizumab

With a median follow-up of 6 months, the median PFS was 5.1 months, ranging between 3.2 and 6.9 months. Death was reported in one patient, and the median OS was not reached.

DISCUSSION

In this study, we explored the combination of MWA and camrelizumab in advanced NSCLC, confirming that the combination was safe and improved the ORR.

PD-1 antibodies have been used extensively in the treatment of advanced NSCLC as first-line or subsequent therapies. The combination of PD-1 antibodies and the irradiation at all oligometastatic sites indicated survival advantage.

MWA, as a new thermal ablation method, has been indicated in the treatment of lung cancer. In addition, our previous prospective, randomized, controlled Phase III clinical trial confirmed that MWA in combination with chemotherapy improved both PFS and OS compared to chemotherapy alone as a first-line treatment in advanced NSCLC.

In this study, MWA combined with camrelizumab demonstrated superior ORR in first-line and subsequent treatments compared to previously reported data. However, the exact mechanism for this improvement remains unclear. We speculated that several reasons could be responsible for the observed results. First, studies have confirmed that oligometastatic NSCLC benefits from the combination of systemic and local treatments due to a reduction in tumor burden. Second, the immune reaction following treatment with MWA, particularly the immune function of CD8+ T cells and CD16+CD56+ NK cells, improved. Third, MWA and camrelizumab demonstrated synergistic effects. Previously, the transplanted tumor model of breast cancer indicated that MWA combined with the PD-1 and

Table 2: Complications of microwave ablation
n (%)
Major complication
Pneumothorax
Pneumonia
Hemorrhage
Pleural effusion
Minor complication
Pneumothorax
Subcutaneous emphysema
Side effects
Hemorrhage
Chest pain
Pleural effusion
Minor complications
Pneumothorax
Subcutaneous emphysema

Table 3: Adverse events of camrelizumab
n (%)
Reactive capillary hemangiomas
Grade 1
Grade 2
Hypothyroidia
Grade 1
Grade 2
Pneumonia
Grade 2
Grade 3
Fatigue
Grade 1
Leukopenia
Grade 3
Neutropenia
Grade 3

Figure 1: A 46-year-old female with Stage IV adenocarcinoma treated with camrelizumab and microwave ablation. (a-d) Multiple pulmonary metastases preablation. (e and f) Two lesions in the right lung were treated with microwave ablation. (g and h) Four months later, the lesions treated with microwave ablation became fibrotic scar. (i and j) Two months after administration of camrelizumab, the lesions disappeared and the response of immunotherapy was complete response.
CTLA-4 antibodies demonstrated a superior survival compared to the PD-1 antibody and CTLA-4 antibody or MWA alone.[21]

The PFS was observed in previous studies and OS was not reached, indicating that the combination of camrelizumab and MWA was not inferior to the PD-1 antibody alone.

With regard to the safety, major complications of MWA were observed in nine patients and were resolved by intervention. The adverse events of camrelizumab included reactive capillary endothelial proliferation, hypothyroidism, pneumonia, fatigue, leukopenia, and neutropenia. Grade 3 adverse events were identified in three patients, as observed in previous reports. Notably, no treatment-associated deaths were observed.[20,21]

This study had several limitations including the small sample size and limited follow-up dates. Furthermore, several patients received the PD-1 antibody for <3 cycles corrected to one patient received the PD-1 antibody for <4 cycles.

CONCLUSIONS

MWA combined with camrelizumab was safe and efficient in first-line and subsequent treatments of advanced NSCLC.

Financial support and sponsorship

Nil.

Conflicts of interest

Zhigang Wei was supported by the National Natural Science Foundation (81901851).

REFERENCES

1. Liu S, Chen Q, Guo L, Cao X, Sun X, Chen W, et al. Incidence and mortality of lung cancer in China, 2008-2012. Chin J Cancer Res 2018;30:580-7.
2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346:92-8.
3. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373:123-35.
4. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in advanced Non-squamous non-small-cell lung cancer. N Engl J Med 2015;373:1627-39.
5. Qin Q, Li B. Pembrolizumab for the treatment of nonsmall cell lung cancer: Current status and future directions. J Cancer Res Ther 2019;15:743-50.
6. Reck M, Rodriguez-Aguere D, Robinson AG, Hui R, Csoszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-33.
7. Mok TSK, Wu TL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019;393:1819-30.
8. Markham A, Keam SJ. Camrelizumab: First global approval. Drugs 2019;79:1355-61.
9. Gandhi L, Rodriguez-Aguere D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018;378:2078-92.
10. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüs M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 2018;379:2040-51.
11. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018;378:2288-301.
12. Bauml JM, Mick R, Ciunci C, Aggarwal C, Davis C, Evans T, et al. Pembrolizumab after completion of locally ablative therapy for oligometastatic non-small cell lung cancer: A phase 2 trial. JAMA oncology 2019. doi: 10.1001/jamaoncol.2019.1449.
13. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 2017;377:1919-29.
14. Yang X, Ye X, Huang G, Han X, Wang J, Li W, et al. Repeated percutaneous microwaves ablation for local recurrence of inoperable Stage I nonsmall cell lung cancer. Cancer Res 2017;13:683-8.
15. Yang X, Ye X, Lin Z, Jin Y, Zhang K, Dong Y, et al. Computed tomography-guided percutaneous microwave ablation for treatment of peripheral ground-glass opacity-lung adenocarcinoma: A pilot study. J Cancer Res Ther 2018;14:764-71.
16. Wei Z, Ye X, Yang X, Zheng A, Huang G, Li W, et al. Microwave ablation in combination with chemotherapy for the treatment of advanced non-small cell lung cancer. Cardiovasc Intervent Radiol 2015;38:135-42.
17. Wei Z, Ye X, Yang X, Huang G, Li W, Wang J, et al. Microwave ablation plus chemotherapy improved progression-free survival of advanced non-small cell lung cancer compared to chemotherapy alone. Med Oncol 2015;32:464.
18. Ni Y, Bi J, Ye X, Fan W, Yu G, Yang X, et al. Local microwave ablation with continued EGFR tyrosine kinase inhibitor as a treatment strategy in advanced non-small cell lung cancers that developed extra-central nervous system oligoprogressive disease during EGFR tyrosine kinase inhibitor treatment: A pilot study. Medicine (Baltimore) 2016;95:e3998.
19. Ni Y, Ye X, Yang X, Huang G, Li W, Wang J, et al. Microwave ablation as local consolidative therapy for patients with extracranial oligometastatic EGFR-mutant non-small cell lung cancer without progression after first-line EGR-TKIs treatment. J Cancer Res Clin Oncol 2019. doi: 10.1007/s00432-019-03043-6.
20. Shi L, Chen L, Wu C, Zhi Y, Xu B, Zheng X, et al. PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor. Clin Cancer Res 2016;22:1173-84.
21. Zhu J, Yu M, Chen L, Kong P, Li L, Ma G, et al. Enhanced antitumor efficacy through microwave ablation in combination with immune checkpoints blockade in breast cancer: A pre-clinical study in a murine model. Diagn Interv Imaging 2018;99:e13112.
22. Yin J, Dong J, Gao W, Wang Y. A case report of remarkable response to association of radiofrequency ablation with subsequent Atezolizumab in stage IV nonsmall cell lung cancer. Medicine (Baltimore) 2018;97:e13112.
23. Ahmed M, Solbiati L, Brake CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria–a 10-year update. Radiology 2014;273:241-60.
24. Ye X, Fan W, Wang H, Wang J, Wang Z, Gu S, et al. Expert consensus workshop report: Guidelines for thermal ablation of primary and metastatic lung tumors (2018 edition). J Cancer Res Ther 2018;14:730-44.
25. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-47.
26. Wei Z, Ye X, Geng D, Feng Q, Dong Y, Yang X, et al. Microwave ablation plus chemotherapy versus chemotherapy in advanced non-small cell lung cancer: A prospective, randomized, control, phase III clinical trial. J Clin Oncol 2017;35 Suppl 15:9048.

27. Gomez DR, Blumenschein GR Jr., Lee JJ, Hernandez M, Ye R, Camidge DR, et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: A multicentre, randomised, controlled, phase 2 study. Lancet Oncol 2016;17:1672-82.

28. Iyengar P, Wardak Z, Gerber DE, Tumati V, Ahn C, Hughes RS, et al. Consolidative radiotherapy for limited metastatic non-small-cell lung cancer: A phase 2 randomized clinical trial. JAMA Oncol 2018;4:e173501.

29. Wei Z, Ye X, Yang X, Huang G, Li W, Han X, et al. Efficacy and safety of microwave ablation in the treatment of patients with oligometastatic non-small-cell lung cancer: A retrospective study. Int J Hyperthermia 2019;36:827-34.

30. Yu MA, Liang P, Yu XL, Han ZY, Dong XJ, Wang YU, et al. Multiple courses of immunotherapy with different immune cell types for patients with hepatocellular carcinoma after microwave ablation. Exp Ther Med 2015;10:1460-6.

31. Zhou Y, Xu X, Ding J, Jing X, Wang F, Wang Y, et al. Dynamic changes of T-cell subsets and their relation with tumor recurrence after microwave ablation in patients with hepatocellular carcinoma. J Cancer Res Ther 2018;14:40-5.

32. Song Y, Wu J, Chen X, Lin T, Cao J, Liu Y, et al. A single-arm, multicenter, phase ii study of camrelizumab in relapsed or refractory classical Hodgkin lymphoma. Clin Cancer Res 2019. doi: 10.1158/1078-0432.CCR-19-1680.

33. Huang J, Xu B, Mo H, Zhang W, Chen X, Wu D, et al. Safety, activity, and biomarkers of SHR-1210, an anti-PD-1 antibody, for patients with advanced esophageal carcinoma. Clin Cancer Res 2018;24:1296-304.