Supercuspidal representations in non-defining characteristics

Jessica Fintzen

Abstract

We show that a mod-ℓ-representation of a p-adic group arising from the analogue of Yu’s construction is supercuspidal if and only if it arises from a supercuspidal representation of a finite reductive group. This has been previously shown by Henniart and Vigneras under the assumption that the second adjointness holds, a statement that is not yet available in the literature.

1 Introduction

The exhaustive explicit construction and parametrization of supercuspidal irreducible representations of p-adic groups with complex coefficients plays a key role in the complex representation theory of p-adic groups and beyond. For number theoretic applications it is often desirable to obtain analogous results for representations whose coefficients are valued in an algebraically closed field R of characteristic ℓ different from p. In that setting one needs to distinguish between cuspidal and supercuspidal representations. An exhaustive construction of the former, more general notion, is known if the p-adic group is tame and p does not divide the order of the Weyl group ([Fin]). This paper concludes the exhaustive construction of supercuspidal irreducible representations for p-adic groups in the same setting by determining which of the cuspidal representations are supercuspidal.

More precisely, we show that if an R-representation arising from the analogue of Yu’s construction is supercuspidal, then the representation of a finite reductive group that forms part of the input for the construction has to be supercuspidal as well (Theorem 1). Combined with the reverse implication proved by Henniart and Vigneras [HV, Theorem 6.10 and §6.4.2] and the result that all cuspidal R-representations arise from the analogue of Yu’s construction ([Fin, Theorem 4.1]), we obtain an exhaustive explicit construction of all supercuspidal irreducible R-representations.

MSC2020: 22E50, 20C20

Keywords: Supercuspidal ℓ-modular representations, representations of reductive groups over non-archimedean local fields, p-adic groups, modular representations

The author was partially supported by NSF Grants DMS-1802234 / DMS-2055230 and DMS-2044643, a Royal Society University Research Fellowship and a Sloan Research Fellowship.

1
Theorem 1 has previously been proven by Henniart and Vigneras (Theorem 6.10 and §6.4.2 in [HV]) using different techniques, but only under the assumption that the second adjointness holds in this setting. The second adjointness is so far only proven in the literature for depth-zero representations or if \(G \) is a general linear group, a classical group (with \(p \neq 2 \)) or a group of relative rank 1 ([Dat09]). Our approach does not rely on the second adjointness to hold.

Acknowledgments. The author thanks Guy Henniart and Marie-France Vigneras for helpful discussions related to the topic of this paper.

2 The main theorem and corollaries

Let \(F \) be a non-archimedean local field of residual characteristic \(p \) with ring of integers \(\mathcal{O} \) and residue field \(\mathbb{F}_q \). Let \(G \) be a (connected) reductive group over \(F \). Let \(R \) be an algebraically closed field of characteristic \(\ell \) different from \(p \). All representations in this paper are representations with coefficient field \(R \).

For a point \(x \) in the enlarged Bruhat–Tits building \(\mathcal{B}(G, F) \) of \(G \) over \(F \), we write \([x]\) for the image of the point \(x \) in the reduced Bruhat–Tits building, \(G[x] \) for the stabilizer of \([x]\), \(G_{x,0} \) for the parahoric subgroup, and \(G_{x,r} \) for the Moy–Prasad filtration subgroup of depth \(r \) for a positive real number \(r \).

Let \(((G_i)_{1 \leq i \leq n+1}, x \in \mathcal{B}(G_{n+1}, F) \subset \mathcal{B}(G,F), (r_i)_{1 \leq i \leq n}, \rho, (\phi_i)_{1 \leq i \leq n}) \) be an input for the construction of a cuspidal \(R \)-representation as in [Fin Section 2.2], i.e. following Yu’s construction [Yu01] adapted to the mod-\(\ell \) setting. If \(n > 0 \), then we assume that \(G \) and \(G_{n+1} \) split over a tamely ramified extension of \(F \) and \(p \neq 2 \), as in Yu’s construction. In the case of \(n = 0 \), the construction recovers the depth-zero representations and we allow \(G \) to be wildly ramified and/or \(p = 2 \). The irreducible \(R \)-representation \(\rho \) of \((G_{n+1})[x] \) is trivial on \((G_{n+1})_{x,0}^+ \) and its restriction to \((G_{n+1})_{x,0} \) is a cuspidal representation of \((G_{n+1})_{x,0}/(G_{n+1})_{x,0}^+ \). Note that the restriction of \(\rho \) to \((G_{n+1})_{x,0} \) is semisimple because \((G_{n+1})[x] \) normalizes \((G_{n+1})_{x,0} \). Hence it makes sense to talk about the restriction being supercuspidal or not.

From the tuple \(((G_i)_{1 \leq i \leq n+1}, x \in \mathcal{B}(G_{n+1}, F) \subset \mathcal{B}(G,F), (r_i)_{1 \leq i \leq n}, \rho, (\phi_i)_{1 \leq i \leq n}) \) we obtain a representation \((\tilde{\rho} = \rho \otimes \kappa, V_\rho \otimes V_\kappa) \) of

\[
\tilde{K} = (G_1)_x \otimes_{\mathcal{F}} (G_2)_x \otimes_{\mathcal{F}} \cdots (G_n)_x \otimes_{\mathcal{F}} (G_{n+1})_x
\]

([Fin Section 2.3]), where \(\rho \) also denotes the extension of the depth-zero representation \(\rho \) from \((G_{n+1})[x] \) to \(\tilde{K} \) that is trivial on \((G_1)_x \otimes_{\mathcal{F}} (G_2)_x \otimes_{\mathcal{F}} \cdots (G_n)_x \otimes_{\mathcal{F}} \), such that \(c\text{-ind}^G_{\tilde{K}}(\rho \otimes \kappa) \) is irreducible and cuspidal.

Theorem 1. With the above notation, if \(c\text{-ind}^G_{\tilde{K}}(\rho \otimes \kappa) \) is supercuspidal, then the restriction of \(\rho \) to \((G_{n+1})_{x,0} \) is supercuspidal as a representation of \((G_{n+1})_{x,0}/(G_{n+1})_{x,0}^+ \).

This theorem has been proven by Henniart and Vigneras ([HV Theorem 6.10 and §6.4.2]) under the assumption that the second adjointness holds in this setting, which is so far only
proven in the literature for depth-zero representations or if G is a general linear group, a classical group (with $p \neq 2$) or a reductive group of relative rank 1 ([Dat09]).

Combining Theorem 1 with the unconditional result of Henniart and Vigneras that $\text{c-ind}^G_K(\rho \otimes \kappa)$ is supercuspidal when the restriction of ρ to $(G_{n+1})_{x,0}$ is supercuspidal as a representation of $(G_{n+1})_{x,0}/(G_{n+1})_{x,0+}$ ([HV, Theorem 6.10 and §6.4.2]), we obtain the following unconditional Corollary 2.

Corollary 2. With the above notation, $\text{c-ind}^{G(F)}_K(\rho \otimes \kappa)$ is supercuspidal if and only if the restriction of ρ to $(G_{n+1})_{x,0}$ is supercuspidal as a representation of $(G_{n+1})_{x,0}/(G_{n+1})_{x,0+}$.

Proof.
Combine Theorem 1 with Theorem 6.10 and §6.4.2 of [HV].

Combined with [Fin, Theorem 4.1] we obtain the following result.

Corollary 3. Suppose that G splits over a tamely ramified field extension of F and p does not divide the order of the (absolute) Weyl group of G. Then all supercuspidal representations of $G(F)$ are of the form $\text{c-ind}^{G(F)}_K(\rho \otimes \kappa)$ as above where the restriction of ρ to $(G_{n+1})_{x,0}$ is supercuspidal as a representation of $(G_{n+1})_{x,0}/(G_{n+1})_{x,0+}$.

Proof.
This follows from Corollary 2 and [Fin, Theorem 4.1].

3 Proof of Theorem 1

Let $\pi := \text{c-ind}^{G(F)}_K(\rho \otimes \kappa)$ be a cuspidal irreducible representation as in the previous section. In this section we will prove that π being supercuspidal implies that ρ is supercuspidal, i.e. Theorem 1. This statement is trivially true if G_{n+1} is anisotropic as in this case $(G_{n+1})_{x,0}/(G_{n+1})_{x,0+}$ is also anisotropic and hence all its semisimple representations are supercuspidal. Thus we assume throughout that G_{n+1} is not anisotropic.

We will eventually prove the desired result by assuming that ρ is not supercuspidal and proving that then π is a subquotient of a parabolically induced representation, i.e. is not supercuspidal either. However, we will not make this assumption until the end of this section to first prove a series of results that hold without this assumption and might be useful on its own for other applications.

Let T be a maximally split, maximal torus of G_{n+1} such that x is contained in the apartment $\mathcal{A}(T, F)$ of T. Let λ be a cocharacter of T. We write $P_{G_i}(\lambda)$ for the parabolic subgroup of G_i ($1 \leq i \leq n + 1$) attached to λ as in Section 2.1 and 2.2, in particular Proposition 2.2.9, of [CGP15]. This means $P_{G_i}(\lambda)(F)$ consists of the elements $g \in G_i(F)$ for which the limit of $\lambda(t)g\lambda(t)^{-1}$ as t goes to zero exists (i.e. extends to a map from the affine line to G_i). Then the centralizer $Z_{G_i}(\lambda)$ of λ is a Levi subgroup of $P_{G_i}(\lambda)$, which we also denote by
Let \(U_{G_i}(\lambda) \) be the unipotent radical of \(P_{G_i}(\lambda) \) and \(\bar{U}_{G_i}(\lambda) \) the unipotent radical of the opposite parabolic \(\bar{P}_{G_i}(\lambda) \) of \(G_{G_i}(\lambda) \) with respect to \(M_{G_i}(\lambda) \).

Let \(\epsilon > 0 \) be sufficiently small so that \(G_{x,+} \subset G_{y,s} \subset G_{x,s} \) for \(s \in \{ \lambda, \frac{\lambda}{2}, \ldots, \frac{\lambda}{2^n}, 0 \} \) and \(y = x + \epsilon \lambda \in \mathcal{A}(T, F) \). While there is in general no canonical embedding of the Bruhat–Tits building of \(M_{n+1} := M_{G_{n+1}}(\lambda) \) into the Bruhat–Tits building of \(G_{n+1} \), the embedding is unique up to translation by \(X_s(Z(M_{n+1})) \otimes \mathbb{Z} \mathbb{R} \), where \(X_s(Z(M_{n+1})) \) denotes the cocharacters of the center \(Z(M_{n+1}) \) of \(M_{n+1} \), and we fix an embedding of Bruhat–Tits buildings throughout the paper to view \(\mathcal{B}(M_{n+1}, F) \) as a subset of \(\mathcal{B}(G_{n+1}, F) \). We will do the same for all twisted Levi subgroups of \(G \) to view all Bruhat–Tits buildings over \(F \) as subsets of \(\mathcal{B}(G, F) \). Then we have \(y = x + \epsilon \lambda \in \mathcal{B}(M_{n+1}, F) \subset \mathcal{B}(G_{n+1}, F) \subset \mathcal{B}(G, F) \), and

\[
(G_{n+1})_{y,0}/(G_{n+1})_{y,0+} \simeq (M_{n+1})_{y,0}/(M_{n+1})_{y,0+}.
\]

For \(z \in \{ x, y \} \) and \(s \in \{ 0, 0+ \} \), we set

\[
K_{z,s} = (G_1)_{z, \frac{s}{2}} (G_2)_{z, \frac{s}{2}} \ldots (G_n)_{z, \frac{s}{2}} (G_{n+1})_{z,s},
\]

\[
K_+ = (G_1)_{x, \frac{s}{2}+(G_2)_{x, \frac{s}{2}+} \ldots (G_n)_{x, \frac{s}{2}+} (G_{n+1})_{x,0+}.
\]

We might abbreviate the groups \(K_{x,0} \) and \(K_{x,0+} \) by \(K_0 \) and \(K_{0+} \), respectively, and write \(P = P_G(\lambda) \), \(M = M_G(\lambda) \), \(U = U_G(\lambda) \), \(\bar{P} = \bar{P}_G(\lambda) \) and \(\bar{U} = \bar{U}_G(\lambda) \). Then \(K_{y,0} \subset K_0 \) and

\[
K_{y,0} \cap U(F) = K_{y,0+} \cap U(F) = K_0 \cap U(F),
\]

\[
K_{y,0} \cap \bar{U}(F) = K_{y,0+} \cap \bar{U}(F) = K_+ \cap \bar{U}(F),
\]

\[
K_{y,0} = (K_{y,0} \cap \bar{U}(F))(K_{y,0} \cap M(F))(K_{y,0} \cap U(F)).
\]

Lemma 4.

(a) The space of \((K_0 \cap U(F))\)-fixed vectors \(V^K_{\kappa,0}(U(F)) \) of the representation \((\kappa, V_\kappa)\) is non-trivial.

(b) The representation \((\kappa, V_\kappa)\) is trivial when restricted to the subgroup \(K_{y,0} \cap \bar{U}(F) \).

(c) The subspace \(V^K_{\kappa,0}(U(F)) \) is preserved under the action of \(K_{y,0} \) via \(\kappa \).

Proof.

If \(\pi \) has depth-zero, \(\kappa \) is the trivial one dimensional representation, and hence all statements are trivially true. Thus we may assume \(n > 0 \) and hence that we are in the setting where \(G_{n+1} \) splits over a tamely ramified field extension. Let \(E \) be the splitting field of \(T \). Since \(\lambda \) factors through a maximal split torus, which is contained in a maximal torus the splits over a tamely ramified extension, we may assume without loss of generality that \(E \) is tamely ramified over \(F \). For \(1 \leq i \leq n \), we define

\[
U_i = G(F) \cap \left< U_{\alpha}(E)_{x, \frac{s}{2}} \mid \alpha \in \Phi(G_i, T) \setminus \Phi(G_{i+1}, T), \lambda(\alpha) > 0 \right>,
\]

\[
U_{n+1} = G(F) \cap \left< U_{\alpha}(E)_{x,0} \mid \alpha \in \Phi(G_{n+1}, T), \lambda(\alpha) > 0 \right>.
\]
where \(\Phi(G_i, T) \) denotes the root system of \(G_i \) with respect to \(T \) over the field \(E \) (for \(1 \leq i \leq n + 1 \)) and \(U_\alpha(E) \) denotes the depth-\(\frac{\alpha}{2} \) filtration subgroup of the root group \(U_\alpha(E) \) of \(G(E) \) corresponding to \(\alpha \) and normalized with respect to the valuation on \(E \) that extends the valuation on \(F \) used to define the Moy–Prasad filtration. Then

\[
K_0 \cap U(F) = U_1 U_2 \ldots U_{n+1}.
\]

Following [Fin21a, Section 2.5] we write \(V_\kappa = \bigotimes_{i=1}^{n} V_{\omega_i} \) so that the action of \(\kappa \) restricted to \(U_j \) (\(1 \leq j \leq n \)) is given by \(U_j \) acting on \(V_{\omega_k} \) for \(k \neq j \) via the character \(\hat{\phi}_k \) defined in loc. cit. and on \(V_{\omega_j} \) via a Heisenberg representation. The action of \(\kappa \) restricted to \(U_{n+1} \) arises from \(U_{n+1} \) acting on \(V_{\omega_k} \) via \(\phi_k \) tensored with a composition with a Weil representation, see loc. cit. for a precise definition. For \(1 \leq j < k \leq n \), the restriction of \(\hat{\phi}_k \) to \(U_j \) is trivial by the construction of \(\hat{\phi}_k \). For \(1 \leq k < j \leq n + 1 \), the restriction of \(\hat{\phi}_k \) to \(U_j \) equals the restriction of the character \(\phi_k \) from \(G_{k+1}(F) \) to \(U_j \). Since \(U_j \) is contained in the unipotent radical of a parabolic subgroup of \(G_{k+1}(F) \), we conclude that the restriction of \(\phi_k \) to \(U_j \) is trivial ([Tit64, Tit78]). Thus

\[
V_\kappa U_1 U_2 \ldots U_n = \bigotimes_{i=1}^{n} (V_{\omega_i})^{U_i}.
\]

Using the same arguments as in the proof of [Fin21a, Theorem 3.1], we obtain that the space \((V_{\omega_i})^{U_i} \) is nontrivial and that \(U_{n+1} \) acts on \((V_{\omega_i})^{U_i} \) via the restriction of the character \(\phi_i \) to \(U_{n+1} \) for \(1 \leq i \leq n \), which we observed above is trivial. Hence

\[
V_\kappa^{K_0 \cap U(F)} = V_\kappa U_1 U_2 \ldots U_n U_{n+1} = \bigotimes_{i=1}^{n} (V_{\omega_i})^{U_i} \neq \{0\}.
\]

For (b) recall that \(\kappa \) restricted to \(K_+ \) acts via the character \(\prod_{1 \leq i \leq n} \hat{\phi}_i \) (times identity). For \(1 \leq i \leq n \), we define

\[
\bar{U}_i^+ = G(F) \cap \left\{ U_\alpha(E) \mid \alpha \in \Phi(G_i, T) \setminus \Phi(G_{i+1}, T), \lambda(\alpha) < 0 \right\},
\]

\[
\bar{U}_{n+1}^+ = G(F) \cap \left\{ U_\alpha(E) \mid \alpha \in \Phi(G_{n+1}, T), \lambda(\alpha) < 0 \right\}.
\]

Then

\[
K_{y,0} \cap \bar{U}(F) = K_+ \cap \bar{U}(F) = \bar{U}_1^+ \bar{U}_2^+ \ldots \bar{U}_{n+1}^+.
\]

For \(1 \leq j \leq i \leq n \), the restriction of \(\hat{\phi}_i \) to \(\bar{U}_j^+ \) is trivial by the construction of \(\hat{\phi}_i \) and the definition of \(\bar{U}_j^+ \). For \(1 \leq i < j \leq n + 1 \), the restriction of \(\hat{\phi}_i \) to \(\bar{U}_j^+ \) equals the restriction of the character \(\phi_i \) from \(G_{i+1}(F) \) to \(\bar{U}_j^+ \). Since \(\bar{U}_j^+ \) is contained in the unipotent radical of a parabolic subgroup of \(G_{k+1}(F) \), the restriction of \(\phi_i \) to \(\bar{U}_j^+ \) is trivial ([Tit64, Tit78]). Hence the restriction of \((\kappa, V_\kappa) \) to \(K_{y,0} \cap \bar{U}(F) = \bar{U}_1^+ \bar{U}_2^+ \ldots \bar{U}_{n+1}^+ \) is trivial.

Claim (c) follows now from Equation (4) and the observation that \(K_{y,0} \cap M(F) \) normalizes \(K_{y,0} \cap U(F) = K_0 \cap U(F) \).

\(\square \)
Lemma 5. Let \((\rho', V_{\rho'})\) be a representation of \(K_{y,0}K_{0+}\) that is trivial on \(K_{0+}\). Then there exists a surjection of \(\tilde{K}\)-representations

\[
\text{pr} : \text{c-ind}_{K_{y,0}}^{\tilde{K}} (V_{\rho'} \otimes V_{\kappa}^{K_{0}\cap U(F)}) \rightarrow (\text{c-ind}_{K_{y,0}K_{0+}}^{\tilde{K}} V_{\rho'}) \otimes V_{\kappa}.
\]

Proof.
To ease notation, we abbreviate \((\text{c-ind}_{K_{y,0}}^{\tilde{K}} (\rho' \otimes \kappa), \text{c-ind}_{K_{y,0}}^{\tilde{K}} (V_{\rho'} \otimes V_{\kappa}^{K_{0}\cap U(F)})\)) by \((\sigma_1, V_{\sigma_1})\) and denote \((\text{c-ind}_{K_{y,0}K_{0+}}^{\tilde{K}} \rho', \text{c-ind}_{K_{y,0}K_{0+}}^{\tilde{K}} V_{\rho'}\) by \((\sigma_2, V_{\sigma_2})\). Using this notation we need to construct a surjection \(\text{pr}\) from \((\sigma_1, V_{\sigma_1})\) to \((\sigma_2 \otimes \kappa, V_{\sigma_2} \otimes V_{\kappa})\).

For \(v \in V_{\rho'}, w \in V_{\kappa}^{K_{0}\cap U(F)}\), we write \(f_{v \otimes w}\) for the element of \(V_{\sigma_1} = \text{c-ind}_{K_{y,0}}^{\tilde{K}} (V_{\rho'} \otimes V_{\kappa}^{K_{0}\cap U(F)})\) that is supported on \(K_{y,0}\) and satisfies \(f_{v \otimes w}(1) = v \otimes w\). Then an arbitrary element of \(V_{\sigma_1}\) can be written as

\[
\sum_{1 \leq i \leq j} c_i \sigma_1(g_i) f_{v_i \otimes w_i}
\]

with \(j \in \mathbb{N}\) and \(c_i \in R, g_i \in \tilde{K}, v_i \in V_{\rho'}, w_i \in V_{\kappa}^{K_{0}\cap U(F)}\) for \(1 \leq i \leq j\). For \(v \in V_{\rho'}\), we write \(f_v\) for the element of \(V_{\sigma_2} = \text{c-ind}_{K_{y,0}K_{0+}}^{\tilde{K}} V_{\rho'}\) that is supported on \(K_{y,0}K_{0+}\) and satisfies \(f_v(1) = v\). Then we define the morphism \(\text{pr} : V_{\sigma_1} \rightarrow V_{\sigma_2} \otimes V_{\kappa}\) by

\[
\text{pr} \left(\sum_{1 \leq i \leq j} c_i \sigma_1(g_i) f_{v_i \otimes w_i} \right) = \sum_{1 \leq i \leq j} c_i (\sigma_2(g_i) f_{v_i} \otimes \kappa(g_i) w_i).
\]

In order to see that this linear morphism is well defined, we assume that

\[
\sum_{1 \leq i \leq j} c_i \sigma_1(g_i) f_{v_i \otimes w_i} = 0
\]

and need to show that \(\text{pr}(\sum_{1 \leq i \leq j} c_i \sigma_1(g_i) f_{v_i \otimes w_i}) = \sum_{1 \leq i \leq j} c_i (\sigma_2(g_i) f_{v_i} \otimes \kappa(g_i) w_i) = 0\). By considering the support we reduce to the case that \(g_i \in K_{y,0}\) for \(1 \leq i \leq j\). Let \(u_1, u_2, \ldots, u_j\) be a basis for the \(R\)-linear span of \(\{\kappa(g_i) w_i\}_{1 \leq i \leq j}\) and write \(\kappa(g_i) w_i = \sum_{1 \leq i' \leq j'} d_{i,i'} u_{i'}\) for some \(d_{i,i'} \in R\) for \(1 \leq i \leq j\). Then

\[
0 = \sum_{1 \leq i \leq j} c_i \sigma_1(g_i) f_{v_i \otimes w_i}(1) = \sum_{1 \leq i \leq j} c_i (\rho' \otimes \kappa)(g_i)(v_i \otimes w_i) = \sum_{1 \leq i \leq j} c_i (\rho'(g_i) v_i \otimes \kappa(g_i) w_i)
\]

\[
= \sum_{1 \leq i \leq j} \sum_{1 \leq i' \leq j'} c_i d_{i,i'} (\rho'(g_i) v_i \otimes u_{i'}),
\]

which implies

\[
\sum_{1 \leq i \leq j} c_i d_{i,i'} (g_i) v_i = 0 \quad \text{for} \quad 1 \leq i' \leq j.
\]
Hence
\[
\sum_{1 \leq i \leq j} c_i (\sigma_2(g_i) f_{v_i} \otimes \kappa(g_i) w_i) = \sum_{1 \leq i \leq j} \sum_{1 \leq i' \leq j'} c_i (f_{\rho'(g_i)} v_i \otimes d_{i,i'} w_{i'})
\]
\[
= \sum_{1 \leq i' \leq j'} \left(\sum_{1 \leq i \leq j} c_i d_{i,i'} f_{\rho'(g_i)} v_i \otimes w_{i'} \right) = 0.
\]

Therefore \(pr\) is well defined and is by construction a \(\tilde{K}\)-homomorphism. It remains to show that the map \(pr : V_{\sigma_1} \to V_{\sigma_2} \otimes V_{\kappa}\) is surjective. Let \(v\) be a non-zero element of \(V_{\sigma_2} \otimes V_{\kappa} = (\text{c-ind}^R_{K_{y,0}K_{0+}} V_{\rho'}) \otimes V_{\kappa}\). Then there exists a positive integer \(j\), and elements \(v_i \in V_{\rho'}, w_i \in V_{\kappa}\) and \(g_i \in \tilde{K}\) for \(1 \leq i \leq j\) such that
\[
v = \sum_{1 \leq i \leq j} \sigma_2(g_i) f_{v_i} \otimes w_i.
\]
Since the restriction of \(\kappa\) to \(K_{0+}\) is irreducible, there exist an element \(w \in V_{\kappa}^{K_0 \cap U(F)}\), an integer \(j'\), elements \(h_{i'} \in K_{0+}\) and \(c_{i,i'} \in R\) for \(1 \leq i \leq j\) and \(1 \leq i' \leq j'\) such that
\[
\kappa(g_i^{-1})(w_i) = \sum_{1 \leq i' \leq j'} c_{i,i'} \kappa(h_{i'})(w).
\]
Thus, using that \((\rho', V_{\rho'})\) is trivial on \(K_{0+}\), we obtain
\[
v = \sum_{1 \leq i \leq j} \sigma_2(g_i) f_{v_i} \otimes w_i
\]
\[
= \sum_{1 \leq i \leq j} (\sigma_2 \otimes \kappa)(g_i)(f_{v_i} \otimes \kappa(g_i^{-1})(w_i))
\]
\[
= \sum_{1 \leq i \leq j} \sum_{1 \leq i' \leq j'} (\sigma_2 \otimes \kappa)(g_i)(f_{v_i} \otimes c_{i,i'} \kappa(h_{i'})(w))
\]
\[
= \sum_{1 \leq i \leq j} \sum_{1 \leq i' \leq j'} c_{i,i'} (\sigma_2 \otimes \kappa)(g_i h_{i'})(f_{v_i} \otimes w)
\]
\[
= \text{pr} \left(\sum_{1 \leq i \leq j} \sum_{1 \leq i' \leq j'} c_{i,i'} \sigma_1(g_i h_{i'})(f_{v_i} \otimes w) \right).
\]

Hence \(pr\) is surjective. \(\Box\)

This allows us to prove the following key lemma for the proof of Theorem 1.

Lemma 6. If \(\rho\) is not supercuspidal, then there exists a maximally split, maximal torus \(T\) of \(G_{n+1}\) whose apartment contains \(x\), a cocharacter \(\lambda\) of \(T\) and a representation \((\rho', V_{\rho'})\) of \(K_{y,0}\) (with \(y = x + \epsilon\lambda\) as above) that is trivial on \(K_{y,0+}\) such that the representation \((\rho \otimes \kappa, V_{\rho} \otimes V_{\kappa})\) is a subquotient of \(\text{c-ind}^R_{K_{y,0}} (V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)})\).
The cocharacter λ can be chosen so that $M := M_G(\lambda)$ is the centralizer of the maximal split torus in the center of $M_{n+1} := M_{G_{n+1}}(\lambda)$ and $\epsilon > 0$ can be chosen so that the point $y = x + \epsilon \lambda \in \mathcal{B}(M_{n+1}, F) \subset \mathcal{B}(G, F)$ is contained in a facet of minimal dimension of $\mathcal{B}(M_{n+1}, F)$ and

$$\sum_{i=1}^{n} \left(\dim \left(\frac{(G_i)_y^{G_i}}{(G_i)_{y, x_i^{G_i}}} \right) - \dim \left(\frac{(M_G(\lambda))_y^{M_G(\lambda)}}{(M_G(\lambda))_{y, x_i^{M_G(\lambda)}}} \right) \right) = 0. \quad (5)$$

Proof.
Suppose ρ is not supercuspidal. Recall that $\rho|_{(G_{n+1})_{x,0}}$ is semisimple as $(G_{n+1})_{x,0}$ is normal inside $(G_{n+1})_{[x]}$. Let ρ_1 be an irreducible quotient of $\rho|_{(G_{n+1})_{x,0}}$, viewed as a representation of $(G_{n+1})_{x,0}/(G_{n+1})_{x,0^+}$. We denote by G the connected reductive group over \mathbb{F}_q that satisfies for any unramified field extension E of F with residue field \mathfrak{f}_E that $G(\mathfrak{f}_E) = G_{n+1}(E)_{x,0}/G_{n+1}(E)_{x,0^+}$. Let P be a proper parabolic subgroup of G with Levi subgroup M_i, and ρ' a representation of $M(\mathbb{F}_q)$ such that ρ_1 is a subquotient of the parabolic induction $\text{Ind}_{P(\mathbb{F}_q)}^{G(\mathbb{F}_q)} \rho'$. Let S be a maximal split torus of M and \mathcal{S} the split torus defined over \mathcal{O} contained in the parahoric group scheme attached to G_{n+1} and x such that the special fiber of \mathcal{S} is S. We denote the generic fiber \mathcal{S}_G of \mathcal{S} by S. Note that S is a maximal split torus of G_{n+1}. Let C be the split subtorus of S whose special fiber $C := C_{\mathbb{F}_q}$ is the maximal split torus in the center of M. Let M be the centralizer of $C := C_{\mathbb{F}_q}$ in G. Then M is a Levi subgroup of G and there exists a cocharacter $\lambda \in X_*(S)$ such that $M = M_G(\lambda)$ (e.g. by [CGP15 Proposition 2.2.9] combined with the fact that Levi subgroups of a fixed parabolic are rationally conjugate). Choosing a maximally split, maximal torus T of G_{n+1} containing S, we can perform the above constructions to obtain a parabolic subgroup $P_G(\lambda)$ of G_i ($1 \leq i \leq n+1$) with Levi subgroup $M_i := M_{G_i}(\lambda) = Z_{G_i}(\lambda)$ and a point $y = x + \epsilon \lambda$ in the apartment $\mathcal{A}(T, F)$. Note that M_{n+1} is the centralizer of C in G_{n+1}, because M is the centralizer of C in G. Hence by Equation (1) and [MP96 Proposition 6.4(1)], the point y is a minimal facet of the building $\mathcal{B}(M_{n+1}, F)$. Moreover, since C is the maximal split torus in the center of M and $M(\mathbb{F}_q) = (M_{n+1})_{y,0}/(M_{n+1})_{y,0+}$, the torus C is the maximal split torus in the center of M_{n+1}. Hence M is the centralizer of the maximal split torus in the center of M_{n+1}, as desired. Moreover, by the definition of $M_{G_i}(\lambda)$, Equation (5) is satisfied by all but finitely many ϵ in the open interval $(0, 1)$. Hence we may choose $\epsilon > 0$ such that Equation (5) holds true.

Since we have

$$M(\mathbb{F}_q) = K_{y,0}/K_{y,0^+} = K_{y,0}K_{0^+}/K_{y,0^+}K_{0^+},$$

we may view ρ' as a representation of $K_{y,0}K_{0^+}$ via inflation. Note that the image of $K_{y,0}K_{0^+}$ in $K_{x,0}/K_{0^+} \simeq (G_{n+1})_{x,0}/(G_{n+1})_{x,0+}$ is $P(\mathbb{F}_q)$. Viewing ρ and ρ_1 as representations of \tilde{K} and $K_{x,0}$, respectively, by asking them to be trivial on $(G_1)_{x,0}(G_2)_{x,0} \cdots (G_n)_{x,0}$, we have by Frobenius reciprocity that the irreducible representation ρ is a quotient of $\text{c-ind}_{K_{x,0}}^{\tilde{K}} \rho_1$ and therefore a subquotient of

$$\text{c-ind}_{K_{x,0}}^{\tilde{K}} \text{c-ind}_{K_{y,0}K_{0^+}}^{K_{y,0}K_{0^+}} \rho' = \text{c-ind}_{K_{y,0}K_{0^+}}^{\tilde{K}} \rho'.$$
Therefore \((\rho \otimes \kappa, V_\rho \otimes V_\kappa)\) is a subquotient of \(((\text{c-ind}^{K}_{K_{y,0}})^{K_{y,0}}_{K_{y,0}^+} \rho') \otimes \kappa, \text{c-ind}^{K}_{K_{y,0}}\ (V_\rho' \otimes V_\kappa) \otimes V_\kappa).\) From Lemma 3 we deduce that \((\rho \otimes \kappa, V_\rho \otimes V_\kappa)\) is a subquotient of \(\text{c-ind}^{K}_{K_{y,0}}(V_\rho \otimes V_\kappa)^{K_0 \cap U(F)}\).

Proof of Theorem 1. Suppose \(\rho\) is not supercuspidal. We need to prove that \(\pi := \text{c-ind}^{G(F)}(\rho \otimes \kappa)\) is not supercuspidal. We let \(\lambda\) be as given by Lemma 3 which provides us with a point \(y = x + \epsilon \lambda\) and a parabolic subgroup \(P = P_G(\lambda)\) of \(G\) with Levi \(M = M_G(\lambda)\) and unipotent radical \(U\) as above. Then the representation \((\rho \otimes \kappa, V_\rho \otimes V_\kappa)\) is a subquotient of \(\text{c-ind}^{K}_{K_{y,0}}(V_\rho \otimes V_\kappa)^{K_0 \cap U(F)}\).

Hence \(\pi\) is a subquotient of \(\text{c-ind}^{G(F)}(V_\rho' \otimes V_\kappa^{K_0 \cap U(F)})\). We will show that the latter is isomorphic to a parabolic induction of a smooth representation from \(P(F)\), which will imply that \(\pi\) is not supercuspidal and hence finish the proof.

Recall from Equations (2), (3) and (4) that

\[
K_{y,0} = (K_{y,0} \cap \hat{U}(F))(K_{y,0} \cap M(F))(K_{y,0} \cap U(F))
\]

and that \(K_{y,0} \cap \hat{U}(F) = K_{y,0}^+ \cap \hat{U}(F)\) and \(K_{y,0} \cap U(F) = K_{y,0}^+ \cap U(F)\). Moreover, by Lemma 3 and since \(K_0 \supset K_{y,0}\) and \((\rho', V_{\rho'})\) is trivial on \(K_{y,0}^+\), the restriction of \(V_{\rho'} \otimes V_\kappa^{K_0 \cap U(F)}\) to \(K_{y,0} \cap \hat{U}(F)\) and to \(K_{y,0} \cap U(F)\) is trivial. Hence the pair

\[
(K_{y,0}, (\rho' \otimes \kappa, V_{\rho'} \otimes V_\kappa^{K_0 \cap U(F)}))
\]

is decomposed over the pair

\[
(K_{y,0} \cap M(F), ((\rho' \otimes \kappa)|_{K_{y,0} \cap M(F)}, V_{\rho'} \otimes V_\kappa^{K_0 \cap U(F)}))
\]

with respect to \(\hat{P}\) as in the notation of [Blo05 p. 245].

We write

\[
K_{y,+} = (G_1)_{y, \frac{y+1}{2}}(G_2)_{y, \frac{y+1}{2}} \cdots (G_n)_{y, \frac{y+1}{2}} + (G_n+1)_{y, 0}
\]

and note that the action of \(K_{y,+}\) on \(V_{\rho'} \otimes V_\kappa^{K_0 \cap U(F)}\) via \(\rho' \otimes \kappa\) is given by \(\prod_{1 \leq i \leq n} \hat{\phi}_i\) (times identity). Let \((\pi', V')\) be an irreducible smooth representation of \(G(F)\). Then we write \(V^{(K_{y,+}, \Pi \hat{\phi}_i)}\) for the subspace of \(V'\) on which \(K_{y,+}\) acts via \(\prod_{1 \leq i \leq n} \hat{\phi}_i\). Since \(y\) is contained in a facet of minimal dimension of \(\mathcal{B}(M_{n+1}, F)\) and Equation (5) holds by Lemma 3 (which ensures that the embedding of the Bruhat–Tits buildings is \((0, \frac{y}{2}, \ldots, \frac{y}{2})\)-generic relative to \(y\) as defined by [KY17 3.5 Definition], see also [Fin21], p. 341) we can apply the proof of [KY17 6.3 Theorem] to obtain that the restriction of the Jacquet functor with respect to \(\hat{U}\) to the subspace \(V^{(K_{y,+}, \Pi \hat{\phi}_i)}\) is injective. Note that while Kim and Yu work with complex coefficients in [KY17, their proof and [MP96, Proposition 6.7], on which the proof relies, also work with coefficients in the field \(R\). Hence the Jacquet functor with respect to \(\hat{U}\) is also injective when restricted to the maximal subspace of \(V'\) that is isomorphic to a direct sum of copies of \((\rho' \otimes \kappa, V_{\rho'} \otimes V_\kappa^{K_0 \cap U(F)}))\) as a \(K_{y,0}\)-representation. Therefore, the pair

\[
(K_{y,0}, (\rho' \otimes \kappa, V_{\rho'} \otimes V_\kappa^{K_0 \cap U(F)}))
\]
Supercuspidal representations in non-defining characteristics Jessica Fintzen

is a cover of

$$(K_{y,0} \cap M(F), ((\rho' \otimes \kappa)|_{K_{y,0} \cap M(F)}, V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)}))$$

with respect to \bar{P} as in [Blo05, p. 246 and Corollaire de Proposition 2]. Thus by [Blo05, Théorème 2] we have an isomorphism of $G(F)$-representations

$$c\text{-ind}^{G(F)}_{K_{y,0}}(V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)}) \simeq c\text{-ind}^{G(F)}_{K_{y,0} \cap M(F)}(V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)}),$$

where $U(F)$ acts trivially on $V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)}$. Therefore π is a subquotient of

$$c\text{-ind}^{G(F)}_{K_{y,0} \cap M(F)}U(F)(V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)}) \simeq c\text{-ind}^{G(F)}_{P(F)}(c\text{-ind}^{M(F)}_{K_{y,0} \cap M(F)}(V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)})) \simeq \text{Ind}^{G(F)}_{P(F)}\left(c\text{-ind}^{M(F)}_{K_{y,0} \cap M(F)}(V_{\rho'} \otimes V_{\kappa}^{K_0 \cap U(F)}) \right),$$

where $\text{Ind}^{G(F)}_{P(F)}$ denotes the (unnormalized) parabolic induction. This is a contradiction to π being supercuspidal.

References

[Blo05] Corinne Blondel, *Quelques propriétés des paires couvrantes*, Math. Ann. 331 (2005), no. 2, 243–257. MR2115455

[CGP15] Brian Conrad, Ofer Gabber, and Gopal Prasad, *Pseudo-reductive groups*, Second, New Mathematical Monographs, vol. 26, Cambridge University Press, Cambridge, 2015. MR3362817

[Dat09] Jean-François Dat, *Finitude pour les représentations lisses de groupes p-adiques*, J. Inst. Math. Jussieu 8 (2009), no. 2, 261–333. MR2485794

[Fin21a] Jessica Fintzen, *On the construction of tame supercuspidal representations*, Compos. Math. 157 (2021), no. 12, 2733–2746. MR4357723

[Fin21b] ________, *Types for tame p-adic groups*, Ann. of Math. (2) 193 (2021), no. 1, 303–346. MR4199732

[Fin] ________, *Tame cuspidal representations in non-defining characteristics*. Preprint, available at https://arxiv.org/pdf/1905.06374.pdf

[HV] Guy Henniart and Marie-France Vigneras, *Representations of a reductive p-adic group in characteristic distinct from p*. To appear in Tunisian J. of Mathematics, available at https://arxiv.org/pdf/2010.06462v2.pdf

[KY17] Ju-Lee Kim and Jiu-Kang Yu, *Construction of tame types*, Representation theory, number theory, and invariant theory, 2017, pp. 337–357. MR3753917

[MP96] Allen Moy and Gopal Prasad, *Jacquet functors and unrefined minimal K-types*, Comment. Math. Helv. 71 (1996), no. 1, 98–121.

[Tit64] J. Tits, *Algebraic and abstract simple groups*, Ann. of Math. (2) 80 (1964), 313–329. MR164968

[Tit78] Jacques Tits, *Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P. Platonov et al.),* Séminaire Bourbaki, 29e année (1976/77), 1978, pp. Exp. No. 505, pp. 218–236. MR521771

[Yu01] Jiu-Kang Yu, *Construction of tame supercuspidal representations*, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622 (electronic).
University of Cambridge, Cambridge, UK and Duke University, Durham, NC, USA

Mailing address: Trinity College, Cambridge, CB2 1TQ, UK

E-mail address: fintzen@maths.cam.ac.uk and fintzen@math.duke.edu