THEORETICAL STUDY (AB INITIO AND DFT METHODS) ON ACIDIC DISSOCIATION CONSTANT OF XYLENOL ORANGE IN AQUEOUS SOLUTION

Farhoush Kiani¹, Fazel Ghadernezhad², Fardad Koohyar³,⁴,* and S. Ahmad Shahidi⁵

¹Department of Chemistry, Faculty of Science, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
²Department of Chemistry, Faculty of Science, Sari Branch, Payam Noor University, Sari, Iran
³Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
⁴Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
⁵Department of Agriculture of Food Science Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

(Received April 2, 2015; revised April 14, 2017)

ABSTRACT. Analytical measurement of materials requires exact knowledge of their acid dissociation constant (pKₐ) values. In recent years, quantum mechanical calculations have been extensively used to study of acidities in the aqueous solutions and the results were compared with the experimental values. In this study, a theoretical study was carried out on xylenol orange (in water solution) by ab initio method. We calculated the pKₐ values of xylenol orange in water, using high-level ab initio (PM3), DFT (HF, B3LYP/6-31+G(d)) and SCRF methods. The experimental determination of these values (pKₐ,s) is a challenge because xylenol orange has a low solubility in water. We considered several ionization reactions and equilibriums in water that constitute the indispensable theoretical basis to calculate the pKₐ values of xylenol orange. The results show that the calculated pKₐ values have a comparable agreement with the experimentally determined pKₐ values. Therefore, this method can be used to predict such properties for indicators, drugs and other important molecules.

KEY WORDS: Ab initio, DFT method, Ionization constant, Xylenol orange, Atomic charge

INTRODUCTION

The pM indicator is a visual one which can act as a chelating agent to give a dye-metal complex for end point detection in the complexometric analyses. It is different from its dye, in color, and also has a low stability constant than the chelate-metal complex. Over 200 organic compounds form colored chelates with ions in a pM range that is unique to the cation and the dye selected. To be useful, the dye-metal chelates will usually be visible at 10⁻⁶ to 10⁻⁷ M concentration. Many of these indicators also have the typical properties of acid-base indicators and the color changes are the result of the displacement of the H⁺ by a metal ion [1]. The xylenol orange (3,3′-bis[N,N-bis(carboxymethyl)aminomethyl]-ocresolsulfonephthalein) is a weak polybasic acid which belongs to triphenylmethane dyes (Figure 1). It is an excellent complexometric indicator and potentiometric reagent for determination of many metal ions which is used in analytical chemistry with bind to metal cations at both their amino and acidic groups [2, 3]. It can be represented by the symbolic formula H₆L. It shows the presence of six ionizable hydrogens in the aqueous solutions. The six possible forms of xylenol orange (XO) are distributed in the pH range from 2 to 12 [2]. Due to the existence of more than one chelating system and the various acidic and basic properties of the XO molecule, which can form various complexes, the investigation on this system can be difficult. XO is used as an indicator, with color change from lemon to yellow, for determination of Bi and Th at pH range 1 to 3, Pb and Zn at pH range 4 to 5 and also Cd and Hg at pH range 5 to 6 [1]. It is also introduced (in form of Al-XO complex) as a colored reagent for determining trace amount of fluoride. This method is based on the

*Corresponding author. E-mail: fardadkoohyar@tdt.edu.vn
decolorization of a complex of Al(III) with xylenol orange as an ultra-sensitive colored reagent [4].

It must be pointed out that the acid equilibrium constants (K_a, $pK_a = -\log K_a$) is one of the most important molecular properties and has received considerable attention for understanding many chemical and biochemical processes. It depends on proton transfer and interprets the functional mechanism of ionizable groups in a protein at a molecular level. Accurate pK_a data are also important for understanding reaction mechanisms that do not involve proton transfer. For example, thermodynamic cycles that use pK_a data, are used to determine the hydricities and bond dissociation energies of metal hydrides and other compounds. These critical data can be used for elucidating reaction mechanisms that involve hydrogen atom transfer/proton-coupled electron transfer [5]. For these reasons, there is a strong interest for the development of reliable methods for pK_a prediction.

There are several experimental methods, like capillary electrophoresis [6] potentiometric titration [7] chromatographic [8] and IR, NMR or UV-Visible spectrometric [9-11], for studying on components acidities. In addition to these experimental methods, both ab initio and semi-empirical levels of theory have been extensively employed to the study of acidities and the results have been compared with the experimental values. Therefore, there are some studies dealing with the acid–base properties of compounds in aqueous solutions and gas phases [12, 13]. Computational chemistry can be valuable tool for evaluating the right sequence of deprotonation. This explains the many attempts to develop reliable methods for the calculation of accurate absolute or relative pK_a, [14-17].

In this paper, a theoretical study carried out on the pK_a of xylenol orange, in water, by ab initio and density functional theory (DFT) methods. Hartree-Fock (HF), ab initio and density functional geometry optimizations were performed with the Gaussian 09 program. The results were reoptimized at the B3LYP (the Becke’s three-parameter exchange functional and the Lee–Yang–Parr correlation functional) type of DFT by using the basis set 6-31+G(d). The ab initio geometries were employed for calculating the solvation free energies at the self-consistent reaction filed (SCRF) level [18]. ΔG was calculated and employed for determination of pK_a by $pK_a = \Delta G/2.303RT$ formula.

![Figure 1. The structure of xylenol orange](image)

EXPERIMENTAL

Ab initio calculations were performed with the Gaussian 09 system in the framework of density functional theory utilizing different combinations of functional and basis sets. By the semiempirical PM3 method includes in the program Hyper Chem version 7.0, the initial geometries of the different conformers of neutral xylenol orange, its anions and cations were
Theoretical study on acidic dissociation constant of xylenol orange in aqueous solution modeled. Hartree-Fock ab initio and density functional geometry optimizations were performed with the Gaussian 09 program. The optimizations were done using HF/6-31+G(d) method. The results were reoptimized at the B3LYP type of Density Functional Theory by using the basis set 6-31+G(d). The ab initio geometries were employed in calculating the solvation free energies at the mentioned basis set (Table 1).

RESULTS AND DISCUSSION

Xylenol orange is a triphenylmethane dye. It is well-known that the xylenol orange, in water, loses three protons and generates H8L7+. The H8L7+ form has tendency to lose nine acidic hydrogens. For H8L7+, a proton can be lost from four different groups to give different ionized species. These groups are including the carboxyl group, ammonium group, hydroxyl group and sulfonate (SO3H) group. The proton losing from the sulfonate group is more probable than the other groups.

The chemical interpretation of the changes is not straightforward. It is predicted that the proton of sulfonyl has the most acidic property. The calculations of microscopic constants indicate that the first and second pKas correspond to remove the proton of sulfonyl and hydroxyl groups, respectively. The third, fourth, fifth and sixth pKas correspond to remove the protons of the four carboxyl groups. The seventh pKa belongs to remove of the next hydroxyl group and finally the eighth and ninth pKas correspond to remove the protons of the two ammonium groups. It can be exactly approved by NMR spectroscopy [3].

The different models of molecules (zwitterions and unzwitterions) were investigated by the G09 program and different reactions including cationic, neutral, and anionic species were tested. But some of these reactions were not further considered because the estimated error in its acidic dissociation constants was unacceptable. Suitable models finally were chosen for the studied systems and the calculated values of the acidic dissociation constants for species are listed in Table 2.

Table 1. Calculated total energy at the B3LYP/6-31+G(d) level of theory for cationic, neutral, and anionic species of xylenol orange at 298.15 K.

Solvated species	G_{sol} (Hartree)	G_{sol}/molecule (kcal·mol⁻¹)	Solvated species	G_{sol} (Hartree)	G_{sol}/molecule (kcal·mol⁻¹)
H8L7+	-269	-1.67×10⁰	H8L7+	-269	-1.69×10⁰
H8L6+	-269	-1.69×10⁰	H8L6+	-269	-1.68×10⁰
H8L5+	-269	-1.69×10⁰	H8L5+	-269	-1.68×10⁰
H8L4+	-269	-1.69×10⁰	H8L4+	-269	-1.68×10⁰
H8L3+	-269	-1.69×10⁰	H8L3+	-269	-1.68×10⁰
H8L2+	-269	-1.69×10⁰	H8L2+	-269	-1.68×10⁰
H8L1+	-269	-1.69×10⁰	H8L1+	-269	-1.68×10⁰

G’sol: total free energy in solution.

Table 2. Values of pKas for the protonation of xylenol orange obtained at the B3LYP/6-31G(d) level of theory, at 298.15 K.

Selected equations	pKa (calculated) this work	pKa (experimental)	Ref
H8L7+ + OH(H2O) ⇄ H8L7+ + 2H2O	-1.78	-1.74	[3]
H8L6+ + OH ⇄ H8L6+ + H2O	-1.05	-1.09	[3]
H8L5+ + OH ⇄ H8L5+ + H2O	0.872	0.76	[3]
H8L4+ + OH ⇄ H8L4+ + H2O	1.12	1.15	[3]
H8L3+ + OH(H2O) ⇄ H8L3+ + 2H2O	2.53	2.58	[3]
H8L2+ + OH(H2O) ⇄ H8L2+ + H2O	3.30	3.23	[3]
H8L1+ + OH(H2O) ⇄ H8L1+ + 2H2O	4.63	4.60	[3]
HL+ + OH(H2O) ⇄ L+ + 2H2O	6.33	6.34	[3]
HL+ + OH(H2O) ⇄ L+ + H2O	10.7	10.5	[3]
HL+ + OH(H2O) ⇄ L+ + 2H2O	12.8	12.6	[3]

Bull. Chem. Soc. Ethiop. 2017, 31(1)
The acidic dissociation constants of xylenol orange have been determined using the potentiometric technique. The method of determining acidic dissociation constants was previously described, and its values were used in this work. These values are listed in Table 2 together with the calculated values using B3LYP type of Density Functional Theory by using the basis set 6-31+G(d) [3].

Solvent- solute interactions

Ionic product of water. It is well-known that all aqueous solutions contain hydrogen (H\(^+\)) and hydroxyl (OH\(^-\)) ions. In pure water, these ions are derived completely from the ionization of the water molecules as shown in the following equation:

\[
H_2O \rightleftharpoons OH^- + H^+ \tag{1}
\]

The H\(^+\) ion is hydrated by water molecules and appears as H\(_3\)O\(^+\). Therefore, the autoprotolysis of water molecules is better represented by the bellow reaction:

\[
2H_2O \rightleftharpoons OH^- + H_3O^+ \tag{2}
\]

Taking into account that water is only slightly dissociated, and also to simplify the discussion, we shall make the approximations of replacing the activities in acidity constants by the numerical values of the molar concentrations. Consequently:

\[
K_w = [H_3O^+][OH^-] \tag{3}
\]

At \(T = 298.15\) K, \(K_w = 1.008 \times 10^{-14}\). It shows that only a few of the water molecules are ionized [19]. Equations 2 and 3 are more used in studies of acid-base equilibria in aqueous media. On the other hand, the solvation of anions is effective in protic solvents where hydrogen bonds may be formed between the proton of the solvent and the lone pairs of electrons of the anion [20, 21]. The total energies of the single and solvated OH\(^-\) ions have been calculated in water at the B3LYP/6-31+ G(d) level of theory, using Tomasi’s model.

Considering these facts and to provide a more satisfactory representation of the protolysis of water, the reaction has been shown as follows:

\[
3H_2O \rightleftharpoons OH^-(H_2O) + H_3O^+ \tag{4}
\]

The above reaction shows that both H\(^+\) and OH\(^-\) ions are hydrated with one water molecule. Moreover, indicating with \(K_e\) the equilibrium constant of the reaction of equation 5 and taking into account equations 2 and 3, it is inferred that [11]:

\[
K_e = K_w/[H_2O] = 1.831 \times 10^{-16} \tag{5}
\]

Where, \([H_2O]\) is the molar concentration of water at 298.15K.

The total energies of xylenol orange species (cationic, neutral, and anionic) were calculated in water at the B3LYP/6-31+G(d) level of the theory. Table 1 summarizes the variations of the total energy (kJ·mol\(^{-1}\)) of the species.

First ionization constant of xylenol orange (XO)

As it has been mentioned, the first proton has lost from the sulphonyl group in XO and it suffers a reaction of partial neutralization as follows:
Theoretical study on acidic dissociation constant of xylenol orange in aqueous solution

\[\text{H}_9\text{L}^3^+ + \text{OH}^- (\text{H}_2\text{O}) \rightleftharpoons \text{H}_8\text{L}^{2^+} + 2\text{H}_2\text{O} \quad K_{c1} \quad (6) \]

In this reaction, \(\text{H}_9\text{L}^3^+ \) and \(\text{H}_8\text{L}^{2^+} \) are the cation forms of xylenol orange. This reaction is characterized by an equilibrium constant, \(K_{c1} \), which theoretically were determined. By combining equations 6 and 4, we obtained the reaction of equation 7 which defines the first ionization constant of xylenol orange (\(K_{a1} \)) and which considers the solvation of the \(\text{H}_9\text{L}^3^+ \):

\[\text{H}_9\text{L}^{3^+} + \text{H}_2\text{O} \rightleftharpoons \text{H}_8\text{L}^{2^+} + \text{H}_3\text{O}^+ \quad K_{a1} \quad (7) \]

It is evident that:

\[K_{a1} = K_{c1} \times K_N \quad (8) \]

The above equations were used to theoretically determine the value of the first ionization constant of xylenol orange in water.

The formation of \(\text{H}_8\text{L}^{2^+} \) implies that the electronic density of the \(\text{O}_{72} \) atom (\(q = -0.673 \)) decreases, in absolute value, compared with the \(\text{O}_{72} \) atom of the \(\text{H}_9\text{L}^{3^+} \) (\(q = -0.780 \)). It shows the first deprotonation of XO.

On the other hand, the \(\text{pK}_{a1} \) value of xylenol orange was theoretically obtained (\(\text{pK}_{a1} = -1.78 \)) (Table 2). It is relatively comparable with the experimental \(\text{pK}_{a1} \) value (\(\text{pK}_{a1} = -1.74 \)) [3].

Second ionization constant of xylenol orange

In second stage of ionization of xylenol orange, the \(\text{H}_8\text{L}^{2^+} \) losses proton from the hydroxyl agent and changes to \(\text{H}_7\text{L}^+ \) by a total neutralization as follows:

\[\text{H}_8\text{L}^{2^+} + \text{OH}^- \rightleftharpoons \text{H}_7\text{L}^+ + \text{H}_2\text{O} \quad K_{c2} \quad (9) \]

In the above equation, \(\text{H}_8\text{L}^{2^+} \) and \(\text{H}_7\text{L}^+ \) represent the xylenol orange cations with two and one positive charges, respectively. The reaction of eq. 9 is characterized by another equilibrium constant, \(K_{c2} \), which was also theoretically determined. By combining equations 2 and 9, the second ionization constant of xylenol orange were obtained as the bellow:

\[\text{H}_8\text{L}^{2^+} + \text{H}_2\text{O} \rightleftharpoons \text{H}_7\text{L}^+ + \text{H}_3\text{O}^+ \quad K_{a2} \quad (10) \]

The equilibrium constant \(K_{a2} \) that characterizes the above reaction, are:

\[K_{a2} = K_{c2} \times K_W \quad (11) \]

Equation 11 was used to obtain the value of the second ionization constant of xylenol orange in water.

The formation of the \(\text{H}_7\text{L}^+ \) implies that the electronic density of the \(\text{O}_{72} \) atom (\(q = -0.583 \)) decreases, in absolute value, compared with the \(\text{O}_{72} \) atom of the \(\text{H}_8\text{L}^{2^+} \) (\(q = -0.614 \)). It is evidence for the second deprotonation of XO.

Also, as seen in Table 2, the theoretically calculated \(\text{pK}_{a2} \) value of xylenol orange (\(\text{pK}_{a2} = -1.05 \)) is relatively comparable with the experimentally determined \(\text{pK}_{a2} \) (\(\text{pK}_{a2} = -1.09 \)) [3].

Third ionization constant of xylenol orange

Equation 12 shows the total neutralization for \(\text{H}_7\text{L}^+ \):

\[\text{H}_7\text{L}^+ + \text{H}_2\text{O} \rightleftharpoons \text{H}_6\text{L}^2^- + \text{H}_4\text{O}^- \quad K_{a3} \]
H$_7^+\text{L}^+ + \text{OH}^- \rightleftharpoons \text{H}_6\text{L} + \text{H}_2\text{O}$ K_{C3} \hspace{1cm} (12)

In the above reaction, H$_7^+\text{L}^+$ represents the xylenol orange with one positive charge and H$_6\text{L}$ represents the natural xylenol orange molecule. The reaction of equation 12 is characterized by another equilibrium constant, K_{C3}, which was also theoretically determined. By combining equations 2 and 12, the third ionization constant of xylenol orange were obtained as the bellow:

H$_7^+\text{L}^+ + \text{H}_2\text{O} \rightleftharpoons \text{H}_6\text{L} + \text{H}_3\text{O}^+$ K_a^3 \hspace{1cm} (13)

The equilibrium constant, K_a^3, that characterizes the above reaction, are:

\[K_a^3 = K_{C3} \times K_w \] \hspace{1cm} (14)

Equation 14 was used to obtain the value of the third ionization constant of xylenol orange in water.

At this step, the proton is lost from O_{60} of carboxyl group. The formation of the H$_6\text{L}$ implies that the electronic density of the O$_{60}$ atom ($q = -0.557$) increases notably (in absolute value) compared with the O$_{60}$ atom of the H$_7^+\text{L}^+$ ($q = -0.0177$). It shows the third deprotonation of XO.

Also the pK_a^3 value of xylenol orange was theoretically calculated ($pK_a^3 = 0.872$) (Table 2). It is relatively comparable with the experimentally determined pK_a^3 ($pK_a^3 = 0.76$) [3].

Fourth ionization constant of xylenol orange

There is selected that the H$_6\text{L}$ suffers total neutralization as the bellow:

H$_6\text{L} + \text{OH}^- \rightleftharpoons \text{H}_5\text{L}^- + \text{H}_2\text{O}$ K_{C4} \hspace{1cm} (15)

In the above reaction, H$_6\text{L}$ represents the natural xylenol orange molecule and H$_5\text{L}^-$ represents xylenol orange anion with one negative charge. The reaction of equation 15 is characterized by another equilibrium constant, K_{C4}, which was also theoretically determined. By combining equations 2 and 15, the forth ionization constant of xylenol orange, in water, was obtained:

H$_6\text{L} + \text{H}_2\text{O} \rightleftharpoons \text{H}_5\text{L}^- + \text{H}_3\text{O}^+$ K_a^4 \hspace{1cm} (16)

The equilibrium constant, K_a^4, that characterizes the above reaction, are:

\[K_a^4 = K_{C4} \times K_w \] \hspace{1cm} (17)

Equation 17 were used to obtain the value of the forth ionization constant of xylenol orange in water.

At this step, the proton is lost from O_{60} of carboxyl group. The formation of the H$_5\text{L}^-$ implies that the electronic density of the O$_{60}$ atom ($q = -0.719$) increases notably (in absolute value) compared with the O$_{60}$ atom of the H$_6\text{L}$ ($q = -0.616$). It is evidence for the fourth deprotonation of XO.

Also the pK_a^4 value of xylenol orange was theoretically calculated ($pK_a^4 = 1.12$) (Table 2). It can be seen that the theoretical pK_a^4 value is relatively comparable with the experimentally determined pK_a^4 ($pK_a^4 = 1.15$) [3].
Fifth ionization constant of xylenol orange

The fifth pKₐ value of XO in aqueous solution can be calculated using the following proton-transfer reaction:

\[H_5L^- + OH^- (H_2O) \rightleftharpoons H_4L^2^- + 2H_2O \quad K_{c5} \] \hspace{1cm} (18)

In this reaction, \(H_5L^- \) and \(H_4L^2^- \) are the xylenol orange anions with one and two negative charges, respectively. This reaction is characterized by an equilibrium constant, \(K_{c5} \), which was theoretically determined. By combining equations 18 and 5, we obtained the reaction of equation 19 which defines the fifth ionization constant of xylenol orange, \(K_{a5} \):

\[H_5L^- + H_2O \rightleftharpoons H_4L^2^- + H_3O^+ \quad K_{a5} \] \hspace{1cm} (19)

It is evident that:

\[K_{a5} = K_{c5} \times K_w \] \hspace{1cm} (20)

The above equations were used to theoretically determine the value of the fifth ionization constant of xylenol orange in water.

At this step, proton is lost from \(O_{43} \) atom of another carboxyl group, obviously. The formation of the \(H_4L^2^- \) implies that the electronic density of the \(O_{43} \) atom (\(q = -0.665 \)) increases notably (in absolute value) compared with the \(O_{43} \) atom of the \(H_5L^- \) (\(q = -0.0450 \)). It shows the fifth deprotonation of XO.

The pKₐ value of xylenol orange was theoretically obtained (pKₐ = 2.53). Table 2 shows that the theoretically obtained pKₐ value of xylenol orange is relatively comparable with the experimental pKₐ value (pKₐ = 2.58) [3].

Sixth ionization constant of xylenol orange

There is selected that the \(H_4L^2^- \) suffers total neutralization as the bellow:

\[H_4L^2^- + OH^- \rightleftharpoons H_3L^3^- + H_2O \quad K_{c6} \] \hspace{1cm} (21)

In the above reaction, \(H_4L^2^- \) and \(H_3L^3^- \) represent the xylenol orange anions with two and three negative charges, respectively. The reaction which was described in equation 21 is characterized by another equilibrium constant, \(K_{c6} \), which was also theoretically determined. Combining equations 2 and 21 results the sixth ionization constant of xylenol orange, in water:

\[H_4L^2^- + H_2O \rightleftharpoons H_3L^3^- + H_3O^+ \quad K_{a6} \] \hspace{1cm} (22)

The equilibrium constant, \(K_{a6} \), that characterizes the above reaction, are:

\[K_{a6} = K_{c6} \times K_w \] \hspace{1cm} (23)

Equation 23 was used to obtain the value of the sixth ionization constant of xylenol orange in water.

At this step proton is lost from \(O_{58} \) atom of the latest carboxyl group. The formation of the \(H_3L^3^- \) implies that the electronic density of the \(O_{58} \) atom (\(q = -0.706 \)) increases notably (in absolute value) compared with the \(O_{58} \) atom of the \(H_4L^2^- \) (\(q = -0.615 \)). It is evidence for sixth deprotonation of XO.
The pK_{a6} value of xylenol orange was theoretically calculated ($pK_{a6} = 3.29$). It is relatively comparable with the experimentally determined pK_{a6} ($pK_{a6} = 3.23$) (Table 2) [3].

Seventh ionization constant of xylenol orange

Equation 24 shows the seventh ionization step of xylenol orange:

$$H_3L^3^- + OH^-(H_2O) \rightleftharpoons H_2L^4^- + 2H_2O \quad K_{c7}$$

In this reaction, $H_3L^3^-$ and $H_2L^4^-$ are the xylenol orange anions with three and four negative charges, respectively. This reaction is characterized by equilibrium constant, K_{c7}, which was theoretically determined.

By combining equations 24 and 5, we reach to reaction of equation 25 which defines the seventh ionization constant of xylenol orange, K_{a7}, and which shows the solvation of the $H_3L^7^-$:

$$H_3L^7^- + H_2O \rightleftharpoons H_2L^8^- + H_3O^+ \quad K_{a7}$$

It is evident that:

$$K_{a7} = K_{c7} \times K_N$$

The above equation was used to theoretically determine the value of the seventh ionization constant of xylenol orange in water.

At this step, proton is lost from O_{28} atom of the latest carbonyl group. The formation of the $H_2L^7^-$ implies that the electronic density of the O_{28} atom ($q = -0.705$) increases notably compared with the O_{28} atom of the $H_3L^7^- (q = -0.774)$. It shows the seventh deprotonation of XO.

The pK_{a7} value of xylenol orange theoretically was obtained ($pK_{a7} = 6.33$). It is relatively comparable with the experimental pK_{a7} value ($pK_{a7} = 6.40$) (Table 2) [3].

Eighth ionization constant of xylenol orange

Equation 27 shows the eighth stage of ionization of xylenol orange:

$$H_2L^4^- + OH^-(H_2O) \rightleftharpoons HL^5^- + 2H_2O \quad K_{c8}$$

In this reaction, $H_2L^4^-$ and HL^5^- are the xylenol orange anions with four and five negative charges, respectively. This reaction is characterized by equilibrium constants, K_{c8}, which was theoretically determined. By combining equations 27 and 5, we obtained the reaction of equation 28 which defines the seventh ionization constant of xylenol orange, K_{a8}. It shows the solvation of the $H_2L^8^-$:

$$H_2L^8^- + H_2O \rightleftharpoons HL^9^- + H_3O^+ (K_{a8})$$

It is evident that:

$$K_{a8} = K_{c8} \times K_N$$

Equation 29 was used to theoretically determine the value of the eighth ionization constant of xylenol orange in water.
At this step, proton is lost from \(N_{35} \) atom. The formation of the \(\text{HL}^{5-} \) implies that the electronic density of the \(N_{35} \) atom \((q = 0.146)\) increases, in absolute value, compared with the \(N_{35} \) atom of the \(\text{H}_2\text{L}^+ \) \((q = -0.391)\). It is evidence for eighth deprotonation of XO. The \(pK_{a8} \) value of xylenol orange was theoretically obtained \((pK_{a8} = 10.7)\). Table 2 shows that the \(pK_{a8} \) value of xylenol orange is relatively comparable with the experimental \(pK_{a8} \) value \((pK_{a8} = 10.5)\) [3].

Ninth ionization constant of xylenol orange

Finally the latest proton is transferred according to the equation 30:

\[
\text{HL}^{5-} + \text{OH}(\text{H}_2\text{O}) \rightleftharpoons \text{L}^{6-} + 2\text{H}_2\text{O} \quad K_{c9}
\]

In this reaction, \(\text{HL}^{5-} \) and \(\text{L}^{6-} \) are the xylenol orange anions with five and six negative charges, respectively. This reaction is characterized by equilibrium constants, \(K_{c9} \), which was theoretically determined.

By combining equations 30 and 5, we obtained the reaction of equation 31 which defines the ninth ionization constant of xylenol orange, \(K_{a9} \). It shows the solvation of the \(\text{HL}^{5-} \):

\[
\text{HL}^{5-} + \text{H}_2\text{O} \rightleftharpoons \text{L}^{6-} + \text{H}_3\text{O}^+ \quad (K_{a9})
\]

It is evident that:

\[
K_{a9} = K_{c9} \times K_N
\]

Equation 32 was used to theoretically determine the value of the ninth ionization constant of xylenol orange in water. At this step, proton is lost from \(N_{35} \) atom. The formation of the \(\text{L}^{6-} \) implies that the electronic density of the \(N_{35} \) \((q = 0.152)\) atom increases notably (in absolute value) compared with the \(N_{35} \) atom of the \(\text{HL}^{5-} \) \((q = -0.318)\). It shows the ninth deprotonation of XO.

The \(pK_{a9} \) value of xylenol orange was theoretically obtained \((pK_{a9} = 12.8)\). It is relatively comparable with the experimental \(pK_{a9} \) value \((pK_{a9} = 12.6)\) (Table 2)[3].

CONCLUSION

In this study, the \(pK_{a} \) values of xylenol (XO), in water, have theoretically determined at 298.15 K using the ab initio and DFT methods. For XO, we compared the theoretical values of \(pK_{a} \) with the experimental ones and found that there is a good agreement between them. This agreement along with the electronic density (q) and structural properties are useful in nano calculation and nanotechnology for building nano sensors.

REFERENCES

1. Husain, A. *Pharmaceutical Analysis, Theoretical Basis of Analysis: Complexometric Titrations*, files.dheeruji.webnode.in: New Delhi; 2007.
2. Ivšić’, A.G.; Jovic’, O.; Matešić -Puac’, R.; Hrenar, T. *J. Mol. Struc.* 2009, 929, 149-153.
3. Baranyai, Z.; Gianolio, E.; Ramalingam, K.; Swenson, R.; Ranganathan, R.; Brücher, E.; Aime, S. *Contrast Media Mol. Imaging* 2007, 2, 94-102.
4. Zolgharnein, J.; Shahjerdi, A.; Azimi, G.; Ghasemi, J. *Anal. Sci.* 2009, 25, 1249-1253.
5. Ding, F.; Smith, J.M.; Wang, H. *J. Org. Chem.* 2009, 74, 2679-2691.
6. Foulon, C.; Danel, C.; Vaccher, C.; Yous, S.; Bonte, J.P.; Goossens, J.F. *J. Chromatogr. A* 2004, 1035, 131-136.
7. Molin, P.G.; Zon, M.A.; Fernandez, H. J. Electroanal. Chem. 2002, 520, 94-100.
8. Blanco, S.E.; Almandoz, M.C.; Ferretti, F.H. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2005, 61, 93-102.
9. Duc, M.; Gaboriaud, F.; Thomas, F. J. Colloid Interface Sci. 2005, 289, 139-147.
10. Alarcón-Angeles, G.; Corona-Avendaño, S.; Rojas-Hernández, A.; Romero-Romo, M.A.; Ramrez-Silva, M.T. Spectrochim. Acta Part A 2005, 61, 313-319.
11. Sanchez-Rivera, A.E.; Corona-Avendano, S.; Alarcon-Angeles, G.; Rojas-Hernandez, A.; Ramrez-Silva, M.T.; Romero-Romo, M.A. Spectrochim. Acta Part A 2003, 59, 3193-3203.
12. Kiani, F.; Izadi, H.; Tahermansouri, H.; Koohyar, F. Turk. J. Biochem. 2014, 39, 503-515.
13. Öretir, C.; Tokay, N. J. Mol. Struct. (Theochem) 2004, 679, 1-8.
14. Xu, Q.; Tanaka, K.; Mori, M.; Helaleh, M.I.H.; Hu, W.; Hasebe, K.; Toada, H. J. Chromatogr. A 2003, 997, 183-190.
15. Soriano, E.; Cerdán, S.; Ballesteros, P. J. Mol. Struc. (THEOCHEM) 2004, 684, 121-128.
16. Moisés, C.L.; Ramos, D.R.; Santaballa, J.A. Chem. Phys. Lett. 2006, 417, 28-33.
17. Saracino, G.A.A.; Improta, R.; Barone, V. Chem. Phys. Lett. 2003, 373, 411-415.
18. Elmali, D. J. Arts Sci. Say. 2007, 8, 23-33.
19. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669-681.
20. Kiani, F.; Rostamia, A.A.; Sharifi, S.; Bahadori, A. J. Mol. Struc. (Theochem) 2010, 956, 20-25.
21. Pliego Jr, J.R.; Riveros, J.M. Phys. Chem. Chem. Phys. 2002, 4, 1622-1627.