In Utero Activation of NK Cells in Congenital CMV Infection

Anna V Vaaben¹*, Justine Levan¹*, Catherine B T Nguyen¹, Perri C Callaway¹,², Mary Prahl³, Lakshmi Warrier¹, Felistas Nankya⁴, Kenneth Musinguzi⁴, Abel Kakuru⁴, Mary K Muhindo⁴, Grant Dorsey¹, Moses R. Kamya⁴,⁵, Margaret E. Feeney¹,³.

¹. Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
². Infectious Diseases and Immunity Graduate Group, University of California Berkeley, California, United States
³. Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
⁴. Infectious Disease Research Collaboration, Kampala, Uganda
⁵. Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda

* These authors contributed equally.

Corresponding Author: Margaret Feeney, MD (Margaret.Feeney@ucsf.edu)
Abstract

Background: Congenital cytomegalovirus (CMV) infection is the most common infectious cause of birth defects and neurological damage in newborns. Despite a well-established role for NK cells in control of CMV infection in older children and adults, it remains unknown whether fetal NK cells can sense and respond to CMV infection acquired in utero.

Methods: Here, we investigate the impact of congenital CMV infection on the neonatal NK cell repertoire by assessing the frequency, phenotype, and functional profile of NK cells in cord blood samples from newborns with congenital CMV and from uninfected controls enrolled in a birth cohort of Ugandan mothers and infants.

Results: We find that neonatal NK cells from congenitally CMV infected newborns show increased expression of cytotoxic mediators, signs of maturation and activation, and an expansion of mature CD56-negative NK cells, an NK cell subset associated with chronic viral infections in adults. Activation was particularly prominent in NK cell subsets expressing the Fcγ receptor CD16, indicating a role for antibody-mediated immunity against CMV in utero.

Conclusion: These findings demonstrate that NK cells can be activated in utero and suggest that NK cells may be an important component of the fetal and infant immune response against CMV.

Keywords: NK cells, Congenital CMV, Cytomegalovirus, CD56neg NK cells, NKG2C, Neonatal immunity, Cord blood, Flow cytometry.
Introduction

CMV is the most common congenital infection in humans, impacting 1-5% of all newborns[1]. Infection with CMV in utero can lead to poorly controlled viremia and devastating clinical consequences, including poor intrauterine growth, neurologic impairment, and hearing loss[2]. In contrast, primary infection with CMV in early childhood is common and generally asymptomatic, suggesting that the immune effector mechanisms responsible for control of CMV infection are not fully developed during gestation[3]. Because the fetus and newborn infant lack memory responses to previously encountered pathogens, their ability to mount defenses against acute viral infections is limited. Innate immune cells, including NK cells, likely comprise an important first line of defense to protect the infant upon encounter with pathogens.

NK cells kill virally infected cells via release of lytic granules containing granzyme B and perforin. This cytotoxic function can be triggered through direct contact-dependent recognition via activating NK receptors (NKR)s or indirectly via engagement of the low affinity IgG receptor CD16 (FcRγIIIa), enabling antibody-dependent cellular cytotoxicity (ADCC). The crucial role NK cells play in the host defense against CMV is demonstrated by cases of severe and even fatal CMV infection among children with genetic defects leading to selective NK cell deficiency[4,5]. However, the fetal NK cell response to congenital CMV (cCMV) infection has not been characterized.

Murine models suggest that NK cells may play a particularly important and non-redundant role in controlling CMV infection during early life. While murine cytomegalovirus (MCMV) infection is fatal in neonatal mice, infected neonates can be rescued from this lethal infection by adoptive transfer of NK cells from adult mice[6]. Whether NK cells play an equally essential role during CMV infection of human infants is unclear, as neonatal mice are profoundly immunodeficient at birth compared to newborn humans and lack phenotypically mature NK cells. Furthermore, MCMV encodes a ligand (m157) that can be directly sensed by the activating Ly49h receptor on murine NK cells, whereas no analogous activating
ligand-receptor pairing has yet been described for human NK cells and CMV[7,8]. Here, we investigated
the ability of fetal NK cells to sense and respond to CMV infection prenatally. We compared the
frequency and phenotype of NK cell subsets, including their expression of activation markers and
antiviral cytotoxic mediators, in cord blood from Ugandan infants with and without congenital CMV
infection. We found that congenital CMV infection resulted in prenatal expansion, activation, and
maturation of NK cells with robust upregulation of cytotoxic mediators. These findings were particularly
striking in the CD56dim and CD56neg NK cell subsets which express CD16 at a high frequency. These
findings suggest that NK cells, especially those capable of ADCC, may play an important role in the
immune response to CMV in utero.

Methods

Study population and sample collection
Cord blood mononuclear cells (CBMCs) were obtained from a subset of infants (n = 85) enrolled in a
clinical trial of prenatal malaria chemoprevention conducted in the Busia District, a highly malaria
endemic area in Eastern Uganda (PROMOTE-BC3: NCT02793622). Clinical and epidemiologic details
of this cohort have been previously published[9]. Approximately two-thirds of infants in the cohort had
histologic evidence of placental malaria at birth (including 68.6% of cCMV+ infants and 66.6% of CMV-
negative controls in this study). Umbilical cord blood was collected at the time of delivery using
umbilical cord blood collection kits (Pall Medical) and an aliquot of whole cord blood was preserved in
RNAlater (ThermoFisher). CBMCs were promptly isolated from the remaining cord blood using density
gradient centrifugation (Ficoll-Histopaque; GE Life Sciences) and cryopreserved in liquid nitrogen.

Ethical approval
Written informed consent was obtained for all study participants upon enrollment in the study. The study
protocol was approved by Makerere University School of Biomedical Sciences Ethics Committee,
Identification and evaluation of infants with congenital CMV infection

To identify congenitally CMV infected newborns, DNA was extracted from whole cord blood preserved in RNAlater using the QIAamp DNA Blood Mini Kit (Qiagen Inc) according to the manufacturer’s instructions. Presence of CMV nucleic acids was determined by qPCR targeting the viral UL123 and UL55 genes using custom primers and SYBR Green chemistry[10]. Growth parameters were reviewed for the 16 infants who were found to be CMV+ at birth. Infants were considered symptomatic if they had severe microcephaly at birth (less than the 3rd percentile for head circumference) or were severely small-for-gestational age (SGA; less than the 3rd percentile for birth weight for gestational age). Of the 16 newborns with congenital CMV infection included in this study, 5 were symptomatic at birth (2 with microcephaly, 2 with SGA, and 1 with both microcephaly and SGA).

Flow cytometry

CBMCs were thawed, counted, evaluated for viability, and stained for extra- and intracellular targets using standard protocols with antibodies listed in Supplementary Table 1[11,12]. CBMCs were stained with LIVE/DEAD Fixable Aqua or Near-IR (ThermoFisher) to exclude dead cells. For intracellular staining, CBMCs were fixed using the Cytofix/Cytoperm kit (BD) and stained in Perm/Wash buffer (BD) per manufacturer’s instructions. Data was acquired on an LSRII (BD) using FACS DIVA software. Compensation was performed using single-color stained UltraComp beads (Invitrogen) and a minimum of 500,000 events were recorded from each sample. SPHERO Rainbow Calibration Particles (BD) were used to normalize instrument settings across batches to ensure validity of MFI comparisons. Flow cytometry data was analyzed using FlowJo (Tree Star, V10.8). Co-expression analysis was calculated in FlowJo using Boolean gating and visualized in SPICE (NIAID, V6.1).
Statistical analysis

Statistical analyses were performed in R. Differences between groups were determined using non-parametric Wilcoxon rank sum test and p values < 0.05 were considered significant. All boxplots display median values with 25th/75th percentiles and all data points are shown.

Results

CMV infection in utero induces expansion of CD56-negative NK cells in cord blood

To evaluate the impact of congenital CMV infection on the newborn NK cell repertoire, we compared the frequency of NK cell subsets in cord blood samples derived from 16 congenitally CMV infected (cCMV+) and 69 uninfected (cCMV-) newborns using flow cytometry. NK cells were defined as live CD3-/CD14-/CD19-/CD7+ lymphocytes positive for CD56 and/or CD16. CD7 is an early lymphoid marker whose inclusion aids in separating NK cells, particularly those lacking CD56 expression, from non-classical myeloid cell populations[13]. We defined three major NK subsets based on relative expression of CD56 and CD16 (Fig. 1A): CD56dimCD16-/+ cells, which are more mature/cytotoxic and constitute the majority of peripheral NK cells; CD56brightCD16-/+ cells, which are considered developmentally less mature and finally CD56negCD16- NK cells which are increasingly recognized as an additional mature NK subset that expands during several chronic viral infections[14]. Overall, we did not observe any difference in the frequency of total NK cells, the sum of the three combined NK subsets, between cCMV+ and cCMV- newborns (P = 0.31, Fig. 1B). However, cCMV+ newborns displayed a skewed distribution towards more mature/differentiated NK cells, with a significantly higher frequency of CD56neg NK cells (P = 0.02, Fig. 1C). We further observed that NK cells from cCMV+ infants displayed a striking downregulation of CD7 as measured by median fluorescence intensity (MFI), although they remained clearly distinguishable from the CD7-negative population (Supplementary Fig. 1A). This downregulation was particularly evident among the more mature/differentiated subsets (CD56neg P <
NK cells in congenitally CMV infected newborns show increased expression of cytotoxic mediators

To assess the functional capacity of fetal NK cells in CMV infected newborns, we measured the expression of cytotoxic mediators granzyme B, perforin, and granulysin in cord blood from cCMV+ and cCMV- newborns. Overall, in all infants evaluated, a high percentage of cord blood NK cells expressed granzyme B and perforin, suggesting high functional capacity of newborn NK cells, consistent with previous findings[17]. Among cCMV+ infants, we observed a significantly higher proportion of granzyme B expression among all NK subsets (CD56neg P < 0.001; CD56dim P = 0.002; CD56bright P = 0.008), higher perforin expression on CD56neg (P = 0.003) and CD56bright (P = 0.04) NK cells, and higher granulysin expression on CD56bright NK cells (P = 0.01) with a trend toward higher expression on CD56neg cells (P = 0.07, Fig. 2A) as compared to cCMV- controls. In addition, among cCMV+ infants the MFI of granzyme B was significantly higher on all NK cell subsets (CD56neg P = 0.005; CD56dim P = 0.006; CD56bright P = 0.007), as was the staining intensity of perforin on CD56bright NK cells (P = 0.01) and granulysin on CD56dim (P = 0.009) and CD56bright (P = 0.001) NK cells (Fig. 2B). Co-expression analysis not only confirmed that the majority of CD56dim and CD56neg NK cells co-express both granzyme B and perforin, but also revealed that NK cells from cCMV+ individuals more frequently express at least one cytotoxic mediator and are also more likely to express more than one cytotoxic mediator (Fig. 2C).

While CD56neg NK cells overall had lower cytotoxic granule content than CD56dim NK cells, among cCMV+ infants this difference was diminished, with co-expression of perforin and granzyme B on CD56neg NK cells approaching that of CD56dim cells (CD56neg mean = 85.3% [95% CI ± 4.46]; CD56dim = 0.001; CD56dim P < 0.001) (Fig. 1D). NK cells have been shown to downregulate CD7 upon in vitro stimulation with IL-2 or IL-12+IL-18[15,16]. Thus, the reduced surface expression of CD7 on cord blood NK cells may suggest recent activation-induced downregulation. Together, these data indicate that even during fetal life, human NK cells are activated and differentiate in response to viral infection.
94.9% [95% CI ± 1.81]) implying functional competence of fetal CD56^{neg} NK cells (Fig. 2C). Together these data suggest that neonatal NK cells are fully equipped, at or before birth, with cytotoxic mediators to enable direct cytolysis and/or ADCC function and contribute to antiviral immunity in utero.

We additionally evaluated expression of T-bet and eomesodermin, transcription factors that govern NK cell maturation, development, and function, as well as the proliferation marker Ki67[18]. Consistent with previous findings, we found a sizeable proportion of cord blood NK cells expressing T-bet, with higher expression on the more mature NK subsets and minimal expression of eomesodermin across all NK subsets (Fig. 2D)[19]. We found no difference in T-bet or eomesodermin expression between cCMV+ and cCMV- samples, nor did we see any difference in the proliferation marker Ki67 aside from a trend towards less frequent expression among CD56^{bright} NK cells (P = 0.06, Fig. 2D).

NK cells from cCMV+ neonates show altered expression of activating and inhibitory NKR

NK cell activity is regulated through a complex interplay between germline-encoded activating and inhibitory receptors[20]. CMV infection is known to dramatically alter the NK cell receptor (NKR) repertoire in children and adults, leading most notably to an expansion of NK cells expressing the activating receptor NKG2C, often in combination with the terminal differentiation marker CD57 and the inhibitory receptor LILRB1[21]. To determine how CMV infection in utero influences the infant NK cell receptor repertoire, we compared the expression of NKRs on NK cells from cCMV+ newborns and uninfected controls. Overall, we saw high expression of the inhibitory receptor NKG2A across all NK subsets, supporting previous findings that NKG2A is more highly expressed on neonatal than adult NK cells and decreases with NK cell maturation[22,23]. Consistent with findings in CMV infected children and adults, cCMV+ newborns had decreased expression of NKG2A, particularly on the more mature subsets (CD56^{dim} P = 0.04, CD56^{neg}, P = 0.07, Fig. 3). They also had a lower frequency of CD56^{neg} and CD56^{dim} NK cells expressing the natural cytotoxicity receptor NKp30 (CD56^{neg} P = 0.009; CD56^{dim} P = 0.03, Fig. 3)[21,24]. Notably, cCMV was not associated with higher NK cell expression of the activating
receptor NKG2C, nor of the inhibitory receptor LILRB1 or the differentiation marker CD57, which were expressed at very low levels in nearly all infants (Fig. 3). Six infants, including one with congenital CMV infection, completely lacked NKG2C on all NK cells, consistent with the known ~10% frequency of NKG2C (KLRC2) gene deletion in African populations [25] (Fig. 3, highlighted in red). The cCMV+ infant lacking NKG2C+ NK cells was asymptomatic at birth and born at full term with normal growth parameters and an unremarkable NK cell profile with respect to NKR expression, NK subset frequencies, and expression of cytotoxic mediators. Together, our data indicate that the neonatal NK cell response to CMV differs somewhat from that described in children and adults, particularly with respect to expansion of NKG2C+ NK cells, which are a hallmark of the NK response to CMV infection later in life.

NKG2C expression is elevated in newborns with symptomatic CMV infection

Finally, we examined whether there is a relationship between cord blood NK cell phenotypes and clinical manifestations of congenital CMV. Among the 16 cCMV+ infants in our cohort, 5 had severe growth abnormalities at birth that were consistent with symptomatic congenital CMV infection, whereas the other 11 infants were asymptomatic, not severely microcephalic or SGA at birth. We compared NK cell subset frequencies and expression of cytotoxic mediators and NKR s between symptomatic and asymptomatic cCMV+ infants. We found no difference in the frequency of total NK cells (Fig. 4A) or in NK cell subsets (Fig. 4B) nor in expression of cytotoxic markers, proliferation markers or transcription factors (Fig. 4C). However, infants with symptomatic cCMV had a statistically higher percentage of NK cells expressing NKG2C ($P = 0.005$, Fig. 4D). This could suggest that the higher in utero inflammation associated with severe CMV disease fosters an expansion of NKG2C+ NK cells.

Discussion

The fetal immune system is uniquely prone towards tolerance in order to prevent fetal-maternal alloreactivity, which poses a challenge when viral infection occurs in utero. While NK cells play a critical
role in the host defense against CMV in adults, little is known about whether fetal NK cells can expand
and react to viral infection in utero[26]. Because NK cells develop by gestational week 6 and are the
dominant lymphocyte population in the fetal liver and lung, they are poised to play an important role in
the fetal immune response[27,28]. Here, we show that neonatal NK cells mature, differentiate, and
upregulate production of cytotoxic mediators in response to CMV infection in utero. This is, to our
knowledge, the first study to demonstrate in utero expansion and maturation of NK cells in response to a
congenital infection. These findings strongly suggest that NK cells may be an important component of
fetal and neonatal host defense against CMV and other viral pathogens.

Fetal and neonatal NK cells were previously thought to be functionally impaired, but it has subsequently
been shown that while they are hyporesponsive towards MHC-devoid cells, they can be readily activated
by cytokine and antibody-mediated stimulation[17,22,27,29]. During gestation, maternal antibodies are
transferred across the placenta to the fetus via an active transport mechanism mediated by FcRn, the
neonatal Fc receptor[30]. We speculate that fetal NK cells are preferentially activated via CD16
engagement by IgG, rather than by cytokines or MHC devoid cells, enabling them to harness the breadth
and specificity of maternal-origin IgG. Indeed, we found NK activation and expansion to be particularly
evident in the more mature NK cell subsets dominated by CD16+ cells: the CD56dim subset (100%
CD16+) and the CD56bright subset (~90% CD16+). Notably, it has recently been shown that the placenta
selectively transfers maternal antibodies with a glycosylation pattern that enhances binding to both FcRn
and to CD16[31]. This suggests that the placenta may preferentially sieve IgG with an Fc-profile skewed
towards activation of fetal NK cells. The ability of CD16+ NK cells to engage maternally derived anti-
CMV IgG may serve as a critical early immune defense, enabling the infant to, in a sense, “borrow”
immune memory from the mother. Enhanced antibody-mediated NK cell killing could help to explain the
much lower rate of adverse sequelae that is seen in congenitally infected infants born to mothers with pre-
existing anti-CMV antibodies compared to seronegative pregnant women who develop primary CMV
infection during pregnancy[32]. This is supported by the finding of Semmes et al. that high-avidity
maternal CMV-specific non-neutralizing antibodies correlate with protection against congenital CMV transmission, suggesting that Fc-mediated immune functions are important factors in protection against fetal infection[33].

In this study, we demonstrate that CD56neg NK cells, an NK subset associated with chronic viral infections in adults, expand in the cord blood of CMV infected newborns[14]. CD56neg NK cells are less well studied than their CD56 expressing counterparts, in part due to the absence of a canonical marker to define the NK lineage. Here, we used CD7 in some of our studies to aid in discerning the CD56neg NK subset[13]. CD56neg NK cells have been reported to be functionally impaired with decreased cytolytic, replicative, and antiviral potential, compared to their CD56-expressing counterparts[34–36]. In contrast to healthy adult peripheral blood, cord blood contains a sizeable population of CD56neg NK cells, even in the absence of infection. Similarly to adult CD56neg NK cells, cord blood CD56neg NK cells have been described as functionally impaired with reduced cytotoxic capacity[29,37,38]. Nonetheless, we observed that CD56neg NK cells from cCMV+ newborns downregulated CD7 and gained cytotoxic mediators at levels approaching that of the mature CD56dim subset. Additionally, more recent studies have shown that CD56neg NK cells in fact display high transcriptional and proteomic resemblance to the more mature and cytotoxic CD56dim NK cells, suggesting their functional competence may be greater than initially thought[39,40]. Specifically, Forconi et al. suggested that CD56neg NK cells are not well-adapted for direct natural cytotoxicity because of their downregulation of cytotoxic and activating receptors, but rather rely on antibody-dependent mechanisms to kill target cells, as illustrated by their high expression of both CD16 (FcRγIIIa/B) and CD32 (FcRγIIa/B)[40].

The phenotypic maturation of NK cells in cCMV+ infants resembled reports in CMV+ adults in some ways but diverged in others. In particular, we did not observe elevated frequencies of NKG2C+ cells in congenitally CMV-infected newborns, nor of the terminal differentiation marker CD57 or the inhibitory receptor LILRB1, both of which are frequently co-expressed on NKG2C+ NK cells[21,41,42]. We did,
however see lower frequencies of NK cells expressing NKG2A, the inhibitory counterpart of NKG2C.

NKG2C/A recognize the non-classical class I MHC molecule HLA-E on target cells[42]. HLA-E is normally stabilized at the cell surface by a conserved leader peptide derived from classical class I HLA molecules. However, in CMV infected cells, which downregulate class I HLA, a peptide derived from the CMV-encoded UL40 protein can stabilize HLA-E, leading to NKG2C-mediated NK cell activation[16,43]. This expansion of NKG2C+ NK cells appears unique to CMV infection and is not reported in response to other herpesvirus infections[24,41]. However, NKG2C+ NK cell expansion also requires co-stimulation in the form of pro-inflammatory cytokines, in particular IL-12[16,44]. IL-12 is under tight epigenetic control in utero as part of the tolerogenic immune environment maintained throughout gestation[45], and stimulation of cord blood NK cells with IL-12 has been shown to rapidly restore the functional capacity of cord blood NK cells to levels approaching that of adult NK cells[29,46].

Thus, it is possible that the restricted cytokine environment in utero hinders the expansion of NKG2C+ NK cells in the fetus.

We did, however, observe an increase in NKG2C specifically among symptomatic CMV cases, indicating that increased inflammation or viral load might be associated with fetal expression of NKG2C. Notably, Noyola et al. assessed NK cells in congenitally CMV-infected children 1 month to 7 years after birth and found that children with past symptomatic congenital CMV infection had higher NKG2C+ NK cell frequencies than those with asymptomatic congenital infection, further supporting an association of NKG2C upregulation with more severe infection[48].

Our study cohort was limited in size and ability to comprehensively evaluate congenital CMV symptomology, particularly hearing loss and neurocognitive disabilities, which can manifest years after birth. It will be important to determine in larger cohorts whether NK-mediated antiviral function correlates with clinical outcomes following congenital CMV infection. Future studies should additionally investigate the functional capacity of NK cells to mediate ADCC through maternal IgG engagement and to control viral replication.
Conclusion

In summary, we have demonstrated that despite the tolerogenic environment in utero, fetal NK cells expand, differentiate, and functionally mature in response to CMV infection prior to birth. This provides a critical innate first line of defense against viral infection at a time when the fetus lacks acquired immune memory. Along with prior studies demonstrating that neonatal NK cells can be potently activated by antibody-mediated stimulation[31], these findings strongly suggest that NK cells may be an important component of fetal and neonatal host defense against CMV, and perhaps other viral pathogens. Further, they suggest that vaccination strategies to optimize maternal titers of anti-CMV antibodies that favor transplacental transfer and FcR-engagement could be of benefit in protecting the fetus from adverse outcomes following congenital CMV infection.

Funding

This work was supported by NIH 5P01HD059454 (GD, MRK, MEF), R01AI093615 (MEF), and K24AI113002 (MEF).

Acknowledgements

The authors are very grateful to all the study participants and their families and would additionally like to sincerely thank all the study team members for their efforts and contributions.

Conflicts of Interest

None
References

1. Lanzieri TM, Dollard SC, Bialek SR, Grosse SD. Systematic review of the birth prevalence of congenital cytomegalovirus infection in developing countries. Int J Infect Dis. 2014; 22:44–48.

2. Boppana SB, Ross SA, Fowler KB. Congenital cytomegalovirus infection: clinical outcome. Clin Infect Dis. 2013; 57 Suppl 4:S178-181.

3. Gantt S, Orem J, Krantz EM, et al. Prospective Characterization of the Risk Factors for Transmission and Symptoms of Primary Human Herpesvirus Infections Among Ugandan Infants. J Infect Dis. 2016; 214(1):36–44.

4. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013; 132(3):515–525.

5. Mace EM, Paust S, Conte MI, et al. Human NK cell deficiency as a result of biallelic mutations in MCM10. J Clin Invest. 2020; 130(10):5272–5286.

6. Bukowski JF, Woda BA, Welsh RM. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol. 1984; 52(1):119–128.

7. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct Recognition of Cytomegalovirus by Activating and Inhibitory NK Cell Receptors. Science. American Association for the Advancement of Science; 2002; 296(5571):1323–1326.

8. Smith HRC, Heusel JW, Mehta IK, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. PNAS. National Academy of Sciences; 2002; 99(13):8826–8831.

9. Kajubi R, Ochieng T, Kakuru A, et al. Monthly sulfadoxine-pyrimethamine versus dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria in pregnancy: a double-blind, randomised, controlled, superiority trial. Lancet. 2019; 393(10179):1428–1439.
10. Boeckh M, Huang M, Ferrenberg J, et al. Optimization of Quantitative Detection of Cytomegalovirus DNA in Plasma by Real-Time PCR. Journal of Clinical Microbiology. American Society for Microbiology (ASM); 2004; 42(3):1142.

11. Lamoreaux L, Roederer M, Koup R. Intracellular cytokine optimization and standard operating procedure. Nat Protoc. 2006; 1(3):1507–1516.

12. Maecker HT, Trotter J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A. 2006; 69(9):1037–1042.

13. Milush JM, Long BR, Snyder-Cappione JE, et al. Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4. Blood. 2009; 114(23):4823–4831.

14. Björkström NK, Ljunggren H-G, Sandberg JK. CD56 negative NK cells: origin, function, and role in chronic viral disease. Trends in Immunology. 2010; 31(11):401–406.

15. Rabinowich H, Pricop L, Herberman RB, Whiteside TL. Expression and function of CD7 molecule on human natural killer cells. The Journal of Immunology. American Association of Immunologists; 1994; 152(2):517–526.

16. Hammer Q, Rücker T, Borst EM, et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol. 2018; 19(5):453–463.

17. Dalle J-H, Menezes J, Wagner É, et al. Characterization of Cord Blood Natural Killer Cells: Implications for Transplantation and Neonatal Infections. Pediatr Res. 2005; 57(5):649–655.

18. Zhang J, Le Gras S, Pouxviel K, et al. Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nat Commun. 2021; 12(1):5446.
19. Collins A, Rothman N, Liu K, Reiner SL. Eomesodermin and T-bet mark developmentally distinct human natural killer cells. JCI Insight. 2(5):e90063.

20. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008; 9(5):495–502.

21. Muntasell A, Vilches C, Angulo A, López-Botet M. Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: A different perspective of the host-pathogen interaction. European Journal of Immunology. 2013; 43(5):1133–1141.

22. Strauss-Albee DM, Liang EC, Ranganath T, Aziz N, Blish CA. The newborn human NK cell repertoire is phenotypically formed but functionally reduced. Cytometry Part B: Clinical Cytometry. 2017; 92(1):33–41.

23. Béziat V, Descours B, Parizot C, Debré P, Vieillard V. NK Cell Terminal Differentiation: Correlated Stepwise Decrease of NKG2A and Acquisition of KIRs. PLOS ONE. Public Library of Science; 2010; 5(8):e11966.

24. Gumá M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood. 2004; 104(12):3664–3671.

25. Goodier MR, White MJ, Darboe A, et al. Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions. Blood. 2014; 124(14):2213–2222.

26. Goodier MR, Riley E. Regulation of the human NK cell compartment by pathogens and vaccines. Clinical & translational immunology. Nature Publishing Group; 2021; 10:e1244.

27. Ivarsson MA, Loh L, Marquardt N, et al. Differentiation and functional regulation of human fetal NK cells. J Clin Invest. 2013; 123(9):3889–3901.
Phillips JH, Hori T, Nagler A, Bhat N, Spits H, Lanier LL. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon, delta proteins. J Exp Med. 1992; 175(4):1055–1066.

Gaddy J, Risdon G, Broxmeyer HE. Cord blood natural killer cells are functionally and phenotypically immature but readily respond to interleukin-2 and interleukin-12. J Interferon Cytokine Res. 1995; 15(6):527–536.

Callaway PC, Farrington LA, Feeney ME. Malaria and Early Life Immunity: Competence in Context. Front Immunol. 2021; 12:634749.

Jennewein MF, Goldfarb I, Dolatshahi S, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell. 2019; 178(1):202-215.e14.

Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med. 1992; 326(10):663–667.

Semmes EC, Miller IG, Jenks JA, et al. Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection. medRxiv. 2021; :2021.12.05.21267312.

Mavilio D, Lombardo G, Benjamin J, et al. Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A. 2005; 102(8):2886–2891.

Milush JM, López-Vergès S, York VA, et al. CD56negCD16+NK cells are activated mature NK cells with impaired effector function during HIV-1 infection. Retrovirology. 2013; 10(1):158.
36. Forconi CS, Cosgrove CP, Saikumar-Lakshmi P, et al. Poorly cytotoxic terminally differentiated CD56negCD16pos NK cells accumulate in Kenyan children with Burkitt lymphomas. Blood Adv. 2018; 2(10):1101–1114.

37. Gaddy J, Broxmeyer HE. Cord blood CD16+56- cells with low lytic activity are possible precursors of mature natural killer cells. Cell Immunol. 1997; 180(2):132–142.

38. Jacobson A, Bell F, Lejarcegui N, Mitchell C, Frenkel L, Horton H. Healthy Neonates Possess a CD56-Negative NK Cell Population with Reduced Anti-Viral Activity. PLoS One. 2013; 8(6):e67700.

39. Voigt J, Malone DFG, Dias J, et al. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur J Immunol. 2018; 48(9):1456–1469.

40. Forconi CS, Oduor CI, Oluoch PO, et al. A New Hope for CD56negCD16pos NK Cells as Unconventional Cytotoxic Mediators: An Adaptation to Chronic Diseases. Front Cell Infect Microbiol. 2020; 10:162.

41. Hendricks DW, Balfour HH, Dunmire SK, Schmeling DO, Hogquist KA, Lanier LL. Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol. 2014; 192(10):4492–4496.

42. Lopez-Vergès S, Milush JM, Schwartz BS, et al. Expansion of a unique CD57’NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci U S A. 2011; 108(36):14725–14732.

43. Braud VM, Allan DSJ, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998; 391(6669):795–799.
44. Tomasec P, Braud VM, Rickards C, et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science. 2000; 287(5455):1031.

45. Rölle A, Pollmann J, Ewen E-M, et al. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J Clin Invest. 2014; 124(12):5305–5316.

46. Goriely S, Van Lint C, Dadkhah R, et al. A Defect in Nucleosome Remodeling Prevents IL-12(p35) Gene Transcription in Neonatal Dendritic Cells. Journal of Experimental Medicine. 2004; 199(7):1011–1016.

47. Lau AS, Sigaroudinia M, Yeung MC, Kohl S. Interleukin-12 Induces Interferon-γ Expression and Natural Killer Cytotoxicity in Cord Blood Mononuclear Cells. Pediatr Res. 1996; 39(1):150–155.

48. Noyola DE, Fortuny C, Muntasell A, et al. Influence of congenital human cytomegalovirus infection and the NKG2C genotype on NK-cell subset distribution in children. European Journal of Immunology. 2012; 42(12):3256–3266.
Figure 1. **CD56^{neg}** NK cells expand in newborns with congenital CMV infection. A) Gating strategy for total NK cells and NK cell subsets. NK cells are defined as lymphocytes > single cells > CD3⁻/CD14⁻/CD19⁻/CD7⁺/CD56⁺ and/or CD16⁺. NK subsets are defined based on their relative expression of CD56 and CD16. Total NK cells is the sum of the three gated subsets. B) Frequency of total NK cells in CMV infected (cCMV+, n = 16, blue) and uninfected (cCMV-, n = 69, yellow) newborns. C) Frequency of NK cell subsets out of total NK cells in cord blood derived from cCMV+ (n = 16, blue) and cCMV- (n = 69, yellow) newborns. D) Density of CD7 expression on NK cells measured as normalized MFI (median) between cCMV+ (n = 16, blue) and cCMV- (n = 69, yellow) infants. *P < 0.05, ***P < 0.001, Wilcoxon rank sum test.
Figure 2. NK cells from cCMV+ neonates express higher levels of cytotoxic mediators. A) Frequency of cord blood NK cells expressing granzyme B, perforin and granulysin from cCMV+ newborns (n = 16, blue) and cCMV- controls (n = 69, yellow). Granulysin expression was evaluated on a smaller subset of cord blood samples (cCMV+, n = 8; cCMV-, n = 36). NK cells are defined as lymphocytes > single cells > CD3−/CD14−/CD19−/CD56+ and/or CD16+. Note that CD7 was not included in the flow cytometry panel used to evaluate markers listed in Figure 2. See details in Supplementary Figure 1B. B) Density of granzyme B, perforin and granulysin expression on NK cell subsets measured as normalized MFI from cCMV+ newborns (n = 16, blue) and cCMV- controls (n = 69, yellow). C) Proportion of NK cell subsets expressing the listed combination of granzyme B and perforin in cCMV- (n = 69) and cCMV+ infants (n = 16). Co-expression is calculated using Boolean gating in FlowJo and pie graphs, depicting average proportions, are generated in SPICE. D) Frequency of NK cells expressing T-bet, eomesodermin and Ki67 in cCMV+ infants (n = 16, blue) and cCMV- controls (n = 69, yellow). *P < 0.05, **P < 0.01, ***P < 0.001, Wilcoxon rank sum test.
Figure 3. NK cells show altered expression of NKR in cCMV+ newborns. Frequency of NK cells expressing NKG2A, NKp30, NKG2C, CD57 and LILRB1 in cord blood derived from cCMV+ (n = 16, blue) and cCMV- (n = 69, yellow) newborns. NK cells are defined as lymphocytes > single cells > CD3−/CD14−/CD19−/CD7+> CD56+ and/or CD16+. For NK cell gating strategy refer to Fig. 1A. Individuals with < 2% of their total NK cells expressing NKG2C+ are highlighted in red/below dotted line in the NKG2C panel. *P < 0.05, **P < 0.01, Wilcoxon rank sum test.

Figure 4. NK cell phenotype in symptomatic and asymptomatic cCMV cases. A) Frequency of total NK cells defined as CD3−/CD14−/CD19− lymphocytes in cord blood from symptomatic (n = 5, blue) and asymptomatic (n = 11, yellow) cCMV+ newborns. Newborns are defined as symptomatic if
they demonstrated severe microcephaly and/or were small-for-gestational age (SGA) at birth. B) Frequency of NK cell subsets out of total NK cells in cord blood derived from symptomatic (n = 5, blue) and asymptomatic (n = 11, yellow) cCMV+ newborns. C) Frequency of NK cells expressing granzyme B, perforin, granulysin, Tbet, eomesodermin and Ki67 in symptomatic (n = 5, blue) and asymptomatic (n = 11, yellow) cCMV+ newborns. C) Frequency of NK cells expressing NKG2A, NKp30, NKG2C, CD57 and LILRB1 in symptomatic (n = 5, blue) and asymptomatic (n = 11, yellow) cCMV+ newborns. **P < 0.01. For gating strategy of NK cell subsets refer to Fig. 1A for panels A, B and D, and supplementary Fig. 1B for panel C.
Supplementary Table 1. Antibodies for flow cytometry

Antibodies (Target	Color	Clone	Manufacturer)	Intracellular targets
Extracellular targets				**Intracellular targets**
NKG2C-BV421 (134591, BD)				Granzyme B-AF700 (GB11, BD)
CD3-BV510 (UCTH1, Biolegend)				Perforin-BV421 (δG9, BD)
CD14-BV510/APC-Cy7 (M5E2, Biolegend)				Eomes-PE-e610 (WD1928, Thermofisher)
CD19-BV510/APC-Cy7 (HIB19, Biolegend)				Tbet-BV711 (4B10, Biolegend)
CD56-BV605 (HCD56, Biolegend)				Ki67-PE (B56, BD)
NKp30-BV711 (P30-15, BD)				Granulysin-PE (DH2, Biolegend)
CD16-BV780/BV785 (3G8, Biolegend)				
NKG2A-FITC (REA110, Miltenyi)				
CD7-APC-eFluor 780 (124-1D1, Thermo/eBioscience)				
LILRB1-PE-Dazzle (GHI/75, Biolegend)				
CD57-PeCy7 (HNK1, Biolegend)				
Supplementary Figure 1. CD7 gating example and gating strategy for NK response markers A)

Representative flow contour plots showing gating of CD7+ events in two representative cord blood samples. Even in samples displaying substantial downregulation of CD7 measured as the median fluorescent intensity (MFI) (right), the CD7+ population is still easily distinguished. B) Gating strategy for response markers on NK cell subsets presented in Figure 2. NK cells are defined as lymphocytes > single cells > live/CD3+/CD14-/CD19- > CD56+ and/or CD16+ without the use of CD7. NK subsets are further defined based on relative expression of CD56 and CD16.