Florally rich habitats reduce insect pollination and the reproductive success of isolated plants

Tracie Marie Evans¹,³ (s1240421@sms.ed.ac.uk), Stephen Cavers² (scav@ceh.ac.uk), Richard Ennos¹ (rennos@ed.ac.uk), Adam J Vanbergen² (ajv@ceh.ac.uk), Matthew S Heard¹ (mshe@ceh.ac.uk)

¹ NERC Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, OX10 8BB, UK
² NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Edinburgh, EH26 0QB, UK
³ Institute of Evolutionary Biology, University of Edinburgh, Darwin Building, King's Buildings, Mayfield Rd, Edinburgh EH9 3JU, UK

*Corresponding author: s1240421@sms.ed.ac.uk

Running headline: Pollinator foraging and plant reproduction
Summary

1. Landscape heterogeneity in floral communities has the potential to modify pollinator behaviour. Pollinator foraging varies with the diversity, abundance and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately, the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape.

2. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behaviour and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy (Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially-isolated populations. The effects on pollinator activity, outcrossing and plant reproduction were measured.

3. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilisation within the partially self-compatible plant, E. californica.

4. These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighbouring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of
seed production and viability. Community context therefore requires consideration when designing and implementing conservation management for plants which are comparatively rare in the landscape.

Key-words: Microsatellites, Outcrossing, Paternity analysis, Pollen flow, Pollen limitation, Pollinator foraging, Self-fertilisation, Viability.

Introduction

Changes to the availability and diversity of floral resources through altered land use, including increased landscape fragmentation and simplification, can have considerable impacts on the structure, abundance and diversity of pollinator communities (Vanbergen et al. 2013; Senapathi et al. 2015; Potts et al. 2016). With an estimated 87.5% of flowering plant species worldwide at least partly reliant upon pollinators for reproductive success and long-term survival, this will have direct implications for plants (Ollerton, Winfree & Tarrant 2011). By transferring conspecific pollen between plant individuals, pollinators not only facilitate seed production but have important effects on fitness and population genetic diversity by increasing outcrossing and the exchange of novel alleles (Levin & Kerster 1974; Frankham 2005; Mannouris & Byers 2013).

Plant-pollinator interactions vary with plant population size, density and habitat context (Essenberg 2012; Mayer, Van Rossum & Jacquemart 2012). Habitats supporting a high abundance and species richness of flowering plants may either enhance or disrupt the transference of pollen to plants (Blaauw & Isaacs 2014; Vanbergen et al. 2014). The outcome
depends on pollinator visitation patterns, which are determined, in part, by the demography and characteristics of a species’ population relative to heterospecific co-flowering plants (Essenberg 2012). For instance, when at low floral densities, co-flowering heterospecific plants can facilitate pollinator visitation to a plant population by enhancing the overall attractiveness of a floral patch (Rathcke 1983). At high floral densities, co-flowering heterospecific plants may result in inter-specific competition for pollinators, which can reduce per capita visitation to a plant population, resulting in an insufficient supply of pollen that limits potential seed set (Ghazoul 2006). Alternatively, although pollinators may prefer foraging on particular plant species (Waser 1986; Chittka, Thomson & Waser 1999; Gegear & Laverty 2005), such fidelity may be relaxed in communities with high floral diversity, increasing the potential for inter-specific pollen transfer (Fontaine, Collin & Dajoz 2008). This has potential negative implications for plant reproduction. The supply of conspecific pollen to a plant can be reduced if it is lost during visitation to heterospecific plants (Wilcock & Neiland 2002); moreover, the deposition of heterospecific pollen, by clogging the stigma and style of conspecific plants, can inhibit pollination (Holland & Chamberlain 2007). Both lead to reduced pollination effectiveness and ultimately a reduction in plant seed set.

Pollinators face a metabolic trade-off when foraging for pollen and nectar (Charnov 1976; Vaudo et al. 2016) and optimal foraging theory predicts that they will maximise gain and minimise loss of energy (Charnov 1976). Thus, pollinators may forage slowly through habitats rich in floral resources, minimising travel distances between flower visits, and either avoid or promptly traverse florally-poor habitats (Pasquet et al. 2008; Lander et al. 2011). Moreover, pollinator foraging distances have been shown to exhibit an inverse relationship with the proportion of available foraging habitat (Carvell et al. 2012). Pollinator sensitivity to the
dispersion of floral resources at different spatial scales is partly influenced by traits, such as
body size, that predict their mobility and capacity to forage and disperse pollen (Greenleaf et
al. 2007; Redhead et al. 2016). Given the capacity of pollinators to mediate plant gene flow,
changes in foraging behaviour or pollinator community composition (e.g. body size
distributions) in response to variation in habitat floral resources may profoundly affect plant
fitness (Ward et al. 2005; Vanbergen et al. 2014). This may be particularly important for
spatially isolated populations of uncommon plant species because increases in floral diversity
might lead to greater inter-specific plant competition for pollinators (Ghazoul 2006) and reduce
the probability of long distance pollen dispersal (Eckert et al. 2010).

One approach to understanding the interaction between floral community diversity and
pollinator-mediated gene flow in locally rare plant populations is to analyse plant mating
patterns using highly variable molecular markers (microsatellites). This permits inference, and
even direct observation, of patterns of gene movement and mating (Ashley & Dow 1994),
enabling the quantification of relatedness between plants (Ashley & Dow 1994). The use of
such molecular methods has revealed that plant populations often exhibit spatial genetic
structure, where relatedness declines with distance between individuals (Loveless & Hamrick
1984). Increased frequency of mating between close relatives within plant populations can lead
to biparental inbreeding, resulting in reduced allelic diversity and greater homozygosity, which
has been linked to a reduction in the fitness and long-term survival of plants (Byers & Waller
1999). Low allelic diversity is particularly detrimental for self-incompatible plants whose
reproduction requires allelic variation at a single locus (the ‘S-locus’; Byers & Meagher 1992).
Although mutations can cause self-incompatibility systems to break down, resulting in partial
self-compatibility, self-fertilisation and mating between close relatives in these plants is
typically prevented (Richards 1997). As S-alleles are frequently lost through genetic drift, plant populations could face a reduction in compatible mates with negative implications for plant reproduction (Wagenius, Lonsdorf & Neuhauser 2007). Self-incompatibility coupled with spatially structured populations may therefore render some plant species vulnerable to reductions in gene flow due to altered pollinator foraging behaviour.

In this study, we investigated how the genetic connectivity and reproductive success of a locally rare and partially self-compatible plant species was affected by habitat floral cover and the activity and richness of pollinator communities. To simulate a species occurring at low population densities we deployed small arrays of Californian poppy (*Eschscholzia californica*) into a landscape-scale field experiment where floral cover had been manipulated through agri-environment planting of wildflower patches. In these experimental arrays, we measured pollinator activity, tracked insect-vectored pollen movement using microsatellite genotyping, seed set and progeny viability. Based on previous observations of altered pollinator behaviour in response to floral cover (Heard *et al.* 2007), we hypothesised that:

i) Habitats supporting high floral cover will increase the activity densities and richness of pollinator species in the vicinity of experimental arrays of a partially self-compatible plant (*E. californica*);

ii) The body size distribution of pollinators would be greater in florally rich habitats, reflecting the preference of *Bombus* spp. to flower species within sown wildflower patches (Carvell *et al.* 2007);
iii) Pollen movement between introduced experimental arrays of *E. californica* would be reduced in florally rich habitats, leading to pollen limitation, lower outcrossing rates, and fewer long distance pollination events;

iv) The reproductive success (seed set and progeny viability) of *Eschscholzia californica* would be reduced in florally rich habitats, reflecting higher selfing rates.

Materials and Methods

Experimental site and study system

The experiment was conducted on the Hillesden estate in Buckinghamshire, UK (1° 00’01’’W, 51° 57’16’’N), an intensive arable farm (~1000ha) situated on heavy clay soils with a relatively flat topography. Since 2005 a number of experimental landscape management ‘treatments’ have been established and managed across the estate within a randomised block design. These treatments, applied to 50-60 ha replicated land parcels, comprise varying proportions (0-8% of land out of production) of a range of wildlife habitat restoration options (including pollen and nectar rich flower margins and wildflower patches for pollinators) under compliance with the English agri-environment scheme (Pywell *et al.* 2015). Overall, these wildlife habitats comprised ~4% of the total area (Fig.1).

To test our hypotheses, we introduced the Californian poppy, *Eschscholzia californica* Cham., (Papaveraceae) (Seed source: Chiltern seeds Ltd., Wallingford, UK). Although considered naturalised in the UK (Preston, Pearman & Dines 2002), *E.californica* was locally absent, allowing us to unequivocally ascribe paternity in mating events. *Eschscholzia californica* is a
diploid species, with a partially self-compatible mating system, characterised by a low propensity to self-fertilise (Wright 1979), and thus predominantly requires insects for pollen transfer (Becker, Gleissberg & Smyth 2005). It possesses large, open flowers and is visited by a variety of insects from the orders: Diptera, Hymenoptera and Coleoptera (summarised in; Cook 1962).

In early June 2015, groups of three potted *E. californica* plants were positioned in a triangular, experimental array to simulate a locally rare plant population. Plants were separated by 1m to prevent fertilisation by direct neighbour contact. A total of sixteen arrays were introduced for a 16 day period across four 100ha replicate blocks (four arrays per block) separated by >500m to minimise between block movement of insect pollinators (Fig. 1). At the centre of each block, four experimental arrays were placed at 50m intervals along a 150m transect laid symmetrically across the boundary between an established wildflower patch (henceforth ‘florally rich’ habitat) and bare, fallow ground (henceforth ‘florally poor’ habitat) (Fig. 1). This ensured the first two arrays on a transect were located within the florally rich habitat, and the second two arrays within the florally poor habitat. The use of agri-environment scheme wildflower patches, sown with a common mix of 25 species including; *Trifoilum pratense*, *Centurea nigra* and *Leucanthemum vulgare* at a rate of 37 kg ha$^{-1}$ (Carvell *et al.* 2007), allowed for the standardisation of florally rich treatments across the four blocks. To ensure our habitat classification was accurate, prior to the start of the experiment we established the local floral abundance (Mean ± SE flowers m$^{-2}$; florally rich = 235.25 ± 42.15; florally poor=26.25 ± 14.08) and plant diversity (Shannon Mean ± SE florally rich=0.83 ± 0.17; florally poor=0.28 ± 0.15) by recording all floral units within a 1m radius surrounding each experimental array (Plant species list for each habitat type: Supplementary S1).
Pollinator activity and species richness

Pan traps are typically deployed to describe pollinator species richness and activity densities (Westphal et al. 2008). They have also been used to provide a surrogate measure of visitation, allowing for longer periods than standard observation methods (Ricketts et al. 2008). However, this survey method has been recognised to exhibit bias (Roulston, Smith & Brewster 2007) because the attractiveness of pan traps depends upon habitat and landscape context (Baum & Wallen 2011). Pollinators are less likely to encounter traps when floral resources are abundant and more likely to encounter traps when floral resources are scarce i.e. capture rates are proportional to visitation rates per unit flower area (Veddeler, Klein & Tscharntke 2006). We exploited this phenomenon to measure the attractiveness and pollinator activity density at our experimentally rare plant populations located within different habitats.

Pan traps comprised three water-filled circular plastic bowls (80 x 200 mm) painted with non-toxic fluorescent paint (1 yellow, 1 blue and 1 white; UV Gear, UK) placed in the centre of each array. Traps were deployed for 24 hours at each of the 16 arrays on the same day, twice weekly over the 16 day study period (totalling four surveys). Each survey was done in randomised order, between 0930 and 1700. Emptied traps were left in situ to maintain the same levels of visual attractiveness to foraging insects throughout the experiment. All insects from the main pollinator groups (Hymenoptera: Apoidea, Diptera: Syrphidae and Lepidoptera) were counted and identified to species level. In addition, given that insect pollinator body size correlates with foraging range (Greenleaf et al. 2007) and to a lesser extent, pollen deposition (Larsen, Williams & Kremen 2005), we measured the intertegular span (the distance between
the wing bases) of each insect from the main pollinator groups using digital callipers (given
the relationship between intertegular span and body size (Cane 1987)).

To ensure pollinators caught within pan traps could be used as a proxy for visitation, these data
were calibrated by direct visitor observations on the *E. californica* plants. Pollinator visitor
observations were conducted for each experimental array between 09.30 and 17.00 over four
surveying days (two per week). Observations lasted for 15 minutes, during which every insect
foraging (contacting an anther or stigma) was recorded and identified to a broad pollinator
group as above.

Genotype analysis

Eschscholzia californica was grown in compost under glasshouse conditions (day: night =
20° C:15° C photoperiod light: dark =12:12hr). Once at seedling stage, 50mg of fresh leaf
material was removed from 95 plants and DNA was extracted from each sample following the
Qiagen DNeasy 96 plant kit protocol (QIAGEN Ltd., Manchester, UK). The concentration of
DNA was quantified on a spectrometer (ND8000) and subsequently diluted to 10ng/µl.
Polymerase chain reaction (PCR) was conducted using seven non-overlapping microsatellite
markers (Veliz *et al.* 2012) with fluorescent dyes attached to the forward primer (DS-33 dye
set, Applied Biosystems™, California, USA). Separate PCRs were conducted for each primer
set, with the exception of two primers (Ecalifdi11 and Ecalifdi1), which were successful in a
multiplex PCR.
The PCR program settings were: 95°C for 5 minutes, 35 cycles of 94°C for 30 seconds, 55°C (or 56°C depending upon loci) for 60 seconds, 72°C for 30 seconds, followed by a final elongation phase of 72°C for 10 minutes. Standard reaction conditions were as follows: 10 ng of DNA, 0.1 µl of reverse primer (20 µM) and DS-33 attached forward primer (20 µM), 0.08 µl dNTPs (100 µM), 0.1 µl BSA, 1 µl Buffer and 0.1 µl Taq polymerase in a 10 µl reaction. The PCR products were combined and visualised on a 2% agarose gel. Fragment analysis was then performed on an ABI3730 under the following conditions: 0.3 µl Liz 500 size standard, 8.7 µl HiDi formamide and 1 µl PCR product. Alleles at all seven loci were manually scored on Genemarker V1.95 and ambiguous alleles were cloned and sequenced using TOPO® TA cloning kit® (Invitrogen™, California, USA) to verify that they were true alleles. Following this, we selected 48 plants with distinct genotypes to be deployed at pre-determined locations across the landscape (Fig.1). Where possible, plants were selected so that the three individual plants within each array were homozygous with the same allele at a selected locus. Whereas, each experimental array (a triplet of plant individuals) within a block was homozygous for a different allele at this locus. This allele structure in the design allowed for verification of long distance pollen movement (i.e. the presence of a novel allele at the selected locus was indicative of the array from which the pollen was sourced). During initial assessments the selected plants were shown to be polymorphic at the seven studied loci (7 loci: Number of alleles, A=2-8; Observed heterozygosity, Ho = 0.083-0.75). This points towards a high diversity of S-alleles in the base population, indicating cross-compatibility between parent plants.
To detect pollination events we genotyped approximately ten progeny per plant from each of the 48 field exposed plants (Mean ± SE = 9.52 ± 0.39) using 50mg of fresh leaf material and following protocols as above. The incidence of self-fertilisation in plants from each habitat was calculated manually by individually comparing each successfully amplified progeny against their maternal plant. If, at each of the seven loci, the progeny was a complete match for the maternal genotype, or was homozygote for one of the maternal plants alleles, it was scored as selfed. Alternatively, if any novel alleles were observed in the progeny that were not present in the maternal plant, the progeny was classified as outcrossed. Paternity was determined using Cervus 3.0.7 (Kalinowski, Taper & Marshall 2007), where each progeny sample was listed detailing alleles at the seven microsatellite loci, specifying the known maternal sample as well as the potential paternal samples. Here we analysed all progeny from within a block against all potential parents within that block. We accounted for self-fertilisation and selected for the most likely paternal parent based on a derivative of likelihood ratios; the delta score (Δ), which is the difference between the likelihood score of the most likely parent and the second most likely parent (Marshall et al. 1998). We only included assignments with a trio Δ confidence (the likelihood score of a mother-father-offspring match) above 95%, which is classified as high confidence (Marshall et al. 1998). For all paternal assignments, we recorded which habitat, if any, the pollen had crossed together with the distance travelled.

Plant fitness components: seed production, germination rates and progeny traits

All open flowers were removed from the 48 genotyped *E. californica* plants, prior to their placement in pre-marked locations across the landscape. They remained in the field for 16 days to ensure full anthesis of new flowers (which takes 3-4 days; Becker et al. 2005) and to allow
for multiple pollination events. After this period, all fruit were tagged to ensure that only fruit
development arising from the period of the field experiment were included in analyses. Plants
were then collected and stored under controlled glasshouse conditions (as above) until fruit
maturation. Upon maturation, tagged fruit were collected and the number of filled seeds per
fruit were counted to quantify seed set per plant.

To determine whether field exposed plants were limited by pollen, we supplemented a flower
from each of the 48 plants with outcrossed pollen. This involved methodically wiping four
dehiscing anthers from a donor plant onto the receptive stigma of a field exposed plant with
dissecting tweezers. Supplemented flowers were then covered with fine muslin to protect
against accidental windborne transfer of pollen from the glasshouse air-conditioning system.
Once matured, fruit were collected and the number of seeds per fruit was counted to determine
maximum seed set. The degree of pollen limitation was expressed as a ratio between the actual
seed set (field exposed plants) and the potential seed set (supplemented) in each of the 48 field
exposed plants.

To measure the viability of progeny from field exposed plants, 20 seeds from each of the 48
plants were sown into compost and kept under glasshouse conditions (as above). Germination
was recorded daily over a 30-day period and any seeds which had not germinated after 90 days
were recorded as non-viable. The germination success was expressed as a ratio between the
number of seeds which successfully germinated against the number of seeds which failed to
germinate in each of the 48 field exposed plants. Indeed, some species and populations of
E. californica can exhibit seed dormancy (Cook 1962), though this was found to be absent within our experimental plants (personal observation).

To further assess how reproduction by self-fertilisation affects the viability and growth traits of a partially self-compatible plant we performed a glasshouse experiment using 40 artificially crossed plants. On each plant, we emasculated two flowers and supplemented the first with outcrossed pollen and the second with self-pollen. This involved methodically wiping two dehiscing anthers from a donor plant or the focal plant onto the receptive stigma with dissecting tweezers, before covering it in fine muslin. From each supplemented plant, we sowed a seed from the outcrossed fruit and from the selfed fruit (given that selfed fruits predominantly only produced one seed) into 1L pots. These were then stored under glasshouse conditions (as above). We recorded the following fitness traits; the germination rate, the duration from germination to reproductive maturity (time of first flower), together with the height (cm) and the number of buds at reproductive maturity (biomass).

Statistical analysis

Pollinator activity density (a proxy for visitation) and the cumulative counts of pollinator species recorded at each experimental array were modelled using generalised linear mixed models (GLMMs) with a Poisson error distribution. When analysing the body size distribution of pollinator species caught with pan traps however, a Log-normal error distribution was instead used to account for non-integers. Plant fitness components were similarly analysed using GLMMs with a combination of Poisson (seed production per plant) and binomial (pollen limitation of each plant and the germination success of progeny) error distributions.
Within our models, fixed effects comprised of habitat type (florally rich/florally poor). Experimental block (Fig. 1) was fitted as a random effect to account for the spatial structure of our experimental design. For pollinator activity models, additional random effects were included to account for survey date and the pollinator species, when analysing the activity densities (64 surveys) and body size distribution (203 pollinators) of pollinators respectively. Additional random effects for models of plant fitness components were ‘plant identity’ for pollen limitation (42 surviving plants) and germination success (48 plants) and ‘fruit nested within plant’ for seed production (n=618) to account for variation between plants and fruit. Where present, overdispersion in the data was controlled for by fitting an observational level parameter to the random effects (Harrison 2014). We used AIC stepwise selection to find the minimum adequate model (Burnham & Anderson 2003) and analysed all models using Laplace approximation. The significance of the final models were analysed by comparison to a null model with the same random effects structure using an ANOVA. All analyses were conducted using R version x64 (R Core Team 2013) using the lme4 package (Bates et al. 2015).

When analysing the effects of self-fertilisation on plant fitness traits (e.g, height) we used a combination of chi-square contingency tables (the germination of selfed and outcrossed seeds), generalised linear models (GLMs) with a Poisson error distribution (plant height at reproductive maturity) and ANOVAs (duration to reproductive maturity and plant biomass at reproductive maturity). In both GLMs and ANOVAs the fitness trait measured was modelled against the mating system (outcrossed or selfed) for all surviving germinated seeds (n=56).
When analysing pollen movement parameters we used a combination of chi-square contingency tables (the incidence of self-fertilisation modelled against the number of outcrossing events) and binomial proportion tests (the distance of pollination events, the movement of pollen across habitats of different floral covers and the movement of pollen to and from habitats of different floral covers). For the distance of pollination events, we analysed the cumulative number of long-distance pollination events at each distance (50, 100 and 150m) against the total number of long-distance (50-150m) pollination events (n=34). For the movement of pollen across habitats we analysed all 50m movements where the intervening habitat varied (i.e. florally poor, a mixture of florally poor and florally rich and florally rich), against the total number of 50m pollination events (n=22). The movement of pollen to and from each habitat was similarly analysed by comparing the cumulative counts of long-distance pollination events (50-150m) leaving or entering a habitat against the total number of long-distance (50-150m) pollination events (n=34). For all models of pollen movement we used cumulative counts across all blocks. The relationship between the number of selfing incidents and the total number of long distance movements (50-150m) to and from each array was then analysed against the abundance of pollinators caught in pan traps using generalised linear models with a Poisson error distribution.

Results

Pollinator activity and species richness

Considering insect taxa generally thought to be the most effective pollinators (i.e. Apoidea, Syrphidae and to a lesser extent Lepidoptera), greater numbers were caught in pan-traps centred on the experimental plant arrays in florally poor habitats (Mean±SE Florally rich= 7.63±0.96;
Florally poor = 17.75±3.87; GLMM $z = -3.85$, df = 59, $p < 0.0001$; Fig. 2). Furthermore, the species richness of these main pollinator groups was similarly higher in traps centred on plant arrays in florally poor habitats (Mean±SE Florally Poor = 9.25±1.31; Florally rich = 5.5±0.57; GLMM $z = -2.74$, df = 13, $p = 0.006$; Fig. 2) (Pollinator species list from pan trap catches: Supplementary S2). However, the body size distribution of visiting pollinators was not significantly different between florally poor and florally rich habitats (Mean±SE Florally rich = 2.97±0.13; Florally poor = 2.60±0.07; $p = 0.427$).

The activity density of the main pollinator groups was mirrored by the overall catches of all potential pollinators (including non-Syrphid Diptera and Coleoptera). Twice as many pollinating insects were recorded in pan traps centred on the experimental plat arrays in florally poor habitats (Mean±SE 672.5±103.14) compared to florally rich habitats (Mean±SE 318.5±56.83) (GLMM $z = -4.68$, df = 59, $p < 0.0001$). Non-syrphid Diptera and Coleoptera comprised the greatest proportion of flower visiting taxa in both habitats (Florally poor = 0.97, Florally rich = 0.98) reflecting their typically greater abundance, although their efficacy as pollinators is debated (but see Orford et al. 2015).

The catches of pollinators within pan traps (from the main pollinator groups: Apoidea, Syrphidae and Lepidoptera) closely reflected the proportions observed to actively visit *E. californica* (Fig. 3), justifying the use of activity densities from pan traps as a proxy for actual plant visitation. Statistical analysis of these direct observations of pollinator visitation was, however, precluded by the sparseness of this data (total insects observed = 215 individuals).
As expected for a partially self-incompatible species, levels of selfing were low in field exposed plants. However, the proportion of progeny that were produced by self-fertilisation was marginally greater from plants within florally rich habitats (Florally rich=15%; Florally poor=9%; $\chi^2=3.69$, df=1, p=0.055). The incidence of selfing was not however correlated with pollinator activity densities (p=0.097).

Paternal assignments were achieved for 300 out of the 457 amplified samples, with the remainder (n=157) disregarded (trio Δ confidence score of below 95%). The greatest proportion of pollination events happened over short distances (1m=72%; Fig. 4). We observed a number of long distance pollen movements (n=34 (11% of all movements) and of these, a significantly greater proportion travelled 50m (65%), with fewer movements between 100 (24%) and 150m (12%) ($\chi^2=23.65$, df=2, p<0.001). These long distance pollen movements (50-150m) were significantly more frequent both to (Florally rich=32%; Florally poor=68%; $\chi^2=7.12$, df=1, p=0.008) and from (Florally rich=29%; Florally poor=71%; $\chi^2=9.94$, df=1, p=0.002) arrays within florally poor habitats. The movement of pollen between experimental arrays was affected by the floral richness of the intervening habitat. Regarding the total number of 50m pollination events across all blocks, pollen movement was greatest between two arrays positioned within florally poor habitats i.e. where the intervening habitat had low floral cover (Florally poor cover=73%, a mixture of both florally poor and florally rich cover=14% and florally rich cover=14%; $\chi^2=23.05$, df=2, p<0.001; Fig. 5). Furthermore, the total number of long distance movements (50-150m) to and from each array was positively correlated with pollinator activity densities (GLM $z=2.06$, df=15, p=0.036).
Plant fitness components: seed production, germination rates and progeny traits

The number of fruits and seeds produced per plant were highly variable (fruit range= 4-23, seed range=0-589). However, total seed set in arrays within florally poor habitats was 1.8 fold greater than in those within florally rich habitats (GLMM z=-1.980, df=613, p= 0.048; Fig. 6). Furthermore, the number of additional seeds produced by pollen supplementation was greater in florally rich habitats (GLMM z=2.396, df=38, p= 0.017; Fig. 6), indicating that plants were more pollen limited in florally rich habitats.

Germination rates of progeny arising from plants located in florally rich habitats was reduced, albeit marginally (Mean±SE Florally rich= 10.67±0.85; Florally poor= 12.96±0.87, GLMM z=-1.940, df = 44, p= 0.052). Our glasshouse viability trial to quantify the implications of selfing on progeny viability showed that a lower proportion of seeds germinated when produced by self-fertilisation, compared to seeds which were a product of outcrossing (outcrossed seeds= 0.8 (n=33); selfed seeds= 0.6 (n=24); $\chi^2=3.91$, df=1, p= 0.048, phi=0.25). However we found no effect of self-fertilisation in *E. californica* on later stage fitness traits (time to reproductive maturity (first flower) p= 0.210; height at reproductive maturity GLMM p= 0.078; biomass at reproductive maturity p= 0.143). The negative implications of self-fertilisation were thus limited to reduced germination.

Discussion

Habitat effects on pollinator visitation
Consistent with previous work (Veddeler, Klein & Tscharntke 2006) we found a negative association between florally rich habitats and the activity density and species richness of pollinators. Elsewhere, the abundance and richness of pollinators has been observed to increase with floral cover (Williams et al. 2015), especially where this cover is limited within the wider landscape (Heard et al. 2007). However, our results suggest that despite the increased aggregation of pollinators in habitats providing abundant, diverse floral resources, pollinator visitation and fidelity is effectively ‘diluted’, which may result in lower per capita visitation and greater interspecific competition for pollination (Veddeler, Klein & Tscharntke 2006; Sjodin 2007). Consequently, when embedded within a diverse community of co-flowering heterospecific plants offering a variety of floral pollen and nectar, rare plant species may be unable to co-opt pollinators (Ghazoul 2006). In contrast, where co-flowering, heterospecific competitors were scarce, our findings suggest that available pollinators would become concentrated, leading to potential increases in per capita visitation rates at the individual plant level (Veddeler, Klein & Tscharntke 2006; Tscharntke et al. 2012).

A diverse community of pollinators can provide niche complementarity (Pisanty et al. 2016), often leading to enhanced pollen deposition (Larsen, Williams & Kremen 2005) and seed production (Martins, Gonzalez & Lechowicz 2015). Alternatively, a high diversity of pollinators visiting diverse plant assemblages can result in an increase in heterospecific pollen deposition, which can interfere with conspecific pollination by stigma clogging (Holland & Chamberlain 2007). The extent to which the diversity of pollinator species provides a benefit to plants is determined by the functional diversity and pollination effectiveness of communities (Perfectti, Gomez & Bosch 2009). Indeed, pollinator species vary in their specialisation, pollen carrying behaviour and daily activity preferences, all of which affect pollination effectiveness.
Furthermore, pollination effectiveness has been associated with body size, where larger pollinator species can travel greater distances (Greenleaf et al. 2007) and deposit a larger amount of pollen per visit (Larsen, Williams & Kremen 2005). In this study, however, we found no difference in the size distribution of pollinators between florally rich and florally poor habitats, indicating that by this measure there was no difference in the trait structure of pollinator communities between habitats with different floral cover that could alter pollination effectiveness. Instead, pollination effectiveness may be driven by changes to the foraging behaviour of pollinator communities.

Habitat effects on pollen movement
Consistent with previous studies, our findings indicate that pollen movement between local populations was strongly affected by the floral composition of the habitat (Lander et al. 2011; Dyer et al. 2012). Pollen movement between experimental arrays (50m) was greater when the surrounding and intervening habitat comprised livestock grazed grassland or fallow ground with low richness of floral resources. In addition, we found very few pollination events between arrays separated by habitats of high floral cover or those with heterogeneous intervening habitats (i.e. a mixture of habitats comprising high and low floral cover). These results are consistent with our hypothesis that the foraging behaviour of pollinator communities is highly determined by habitat composition. This higher level of pollen movement between populations in florally poor habitats supports research which shows pollinators to conform to the weighted line foraging principle when encountering heterogenous landscapes (Lander et al. 2013). This principle assumes that pollinators will occupy optimal foraging habitat until resources are depleted, thus making short, energy efficient, movements between flowers. Conversely,
pollinators are expected under this principle to move greater distances within habitats that are nutritionally sub-optimal (Lander et al. 2013). By altering the insect-mediated connectivity between plant populations, the weighted line foraging strategy will have implications for genetic exchange and the genetic diversity of rare plant populations.

The floral cover of the surrounding habitat greatly affected the distance of pollen movement with plants in florally poor habitats subject to more long distance pollination events than those in florally rich habitats. We further show this to be positively correlated with activity density of pollinators. From this we can infer that pollinators were following optimal foraging expectations, where movement reflects energy efficient behaviour. Indeed, we show that in both habitats the majority of pollen movement was localised (1m). Of the long distance pollination events, a greater proportion were between plants separated by 50m, with fewer between distances of 50-150m. This pattern is consistent with a wealth of research indicating that although capable of travelling large distances (Hagler et al. 2011), pollinators predominantly travel considerably shorter distances (Rader et al. 2011), remaining in localised resource patches (Pasquet et al. 2008). This results in a distance decay distribution of pollen movement (Matter et al. 2013), suggesting that between block movement (>500m) in this experiment would be minimal. In spatially genetically structured plant populations, reduced long distance pollination events, particularly in florally rich habitats, will result in a higher frequency of mating between close relatives. As a consequence, self-incompatible and partially self-compatible plants will suffer from increased biparental inbreeding and a reduction in compatible mates (Turner, Stephens & Anderson 1982). This will negatively impact plant seed set and viability (Ward et al. 2005), together with the adaptive potential and consequently, the long term survival of rare plant populations (Etterson 2004).
Implications for plant reproductive success

Reductions in the activity densities and richness of pollinator species in florally rich habitats reflect the increased pollen limitation and reduced individual plant reproduction observed within experimental arrays located in florally rich habitats. Pollen limitation has been related to competition for pollinator visitation, with similar results observed in response to an increase in diversity (Vamosi, Steets & Ashman 2013) or density (Jakobsson, Lazaro & Totland 2009) of co-flowering plants. Low pollen receipt, a cause of pollen limitation, can result either in an increase in self-fertilisation (Kalisz, Vogler & Hanley 2004), or in the case of self-incompatible or partially self-compatible plants, where it is particularly detrimental, a direct reduction in seed production (Wagenius, Lonsdorf & Neuhauser 2007). Given the limited duration of stigma receptiveness the ability of a plant to attract pollinators is therefore important for both pollen receipt and seed production (Bernhardt, Mitchell & Michaels 2008).

As well as the supply of pollen, the quality of pollen is also critical to plant reproduction and fitness. Pollen quality refers to both the deposition of heterospecific pollen, which can result in physical or chemical inhibition of seed set (Kanchan & Jayachandra 1980; Holland & Chamberlain 2007) and to the genetic relatedness of pollen, which can lead to inbreeding depression (Fischer, Hock & Paschke 2003). Our findings indicate that, through alterations to pollinator visitation and subsequent reductions in pollen receipt, florally rich habitats can promote higher levels of self-fertilisation. Further, given reduced germination rates in progeny from plants in florally rich habitats and the negative relationship observed between germination and self-fertilisation, results are indicative of higher rates of self-fertilisation then detected by
microsatellite analysis. Reproduction by selfing in self-incompatible or partially self-compatible plants can have a negative impact on the fitness of progeny, shown in this study through a reduction in germination rates. These findings are consistent with previous research where self-fertilisation in self-incompatible plants resulted in inbreeding depression with negative implications for plant fitness (Bellanger et al. 2015). However, in contrast to previous studies (Thiele et al. 2010) reductions in germination did not translate into negative impacts on late fitness traits (e.g. time to reproductive maturity) of surviving plants. This suggests that the immediate effects on population persistence would be due more to changes in vital rates than trait differentiation.

Implications for the conservation of rare plants

Rarity in plants can be driven by biological or anthropogenic factors and is often characterised by populations comprising low genetic variation together with restrictions in size, local abundance, geographical range and/or habitat specificity (Espeland & Emam 2011). In this study, by simulating rare plant populations, we show that restrictions in a plant’s population size, over the longer term, could lead to an Allee effect, whereby increases in mating between close relatives, coupled with higher self-fertilisation rates further reduces genetic variation and ultimately, increases the risk of local extinction (Etterson 2004). We suggest that conservation efforts for plants facing conditions associated with rarity may benefit from focus on enhancing visitation and movement of pollinators between conspecifics. This could be achieved through a combination of: i) increasing the competitive advantage of plant populations (e.g. increasing a plant’s population size; Mayer et al. 2012), ii) managing surrounding habitats to enhance facilitation of pollinators to plant populations (e.g. introducing co-flowering species which
have complementary phenotypes; Ghazoul 2006), and iii) reducing the distance between conspecific populations (Van Rossum & Triest 2010).

Conclusion

Our findings show that habitat context mediates plant–pollinator interactions and alters the reproduction of rare plant populations. In florally rich habitats, rare plant populations are at a competitive disadvantage for pollinator visitation when faced with more abundant co-flowering heterospecific plants. Consequently, rare plant populations in these habitats suffer from increased rates of self-fertilisation, limited pollen movement, and reduced reproductive success. The implication is that plant populations dependent on insect pollinators may become less connected and more genetically depauperate when located in florally rich habitats, increasing the risk of genetic drift and extinction. Such an effect may hold for not only rare plants but also plants that are widespread but occur at low frequency within the environment.

Indeed, pollinator behaviour has been observed to alter in relation to landscape context at spatial scales related to foraging capacity (Steffan-Dewenter et al. 2002). Although not touched upon here given the small scale of the study, this might be expected to affect plant and pollinator interactions at the habitat level and therefore warrants future study.

Statement of authorship

All authors contributed substantially to the design and planning of the experiment, TME conducted the experiment, collected the data and performed the analysis. TME, SC and RE
performed the paternity analysis, TME wrote the first draft of the manuscript. All authors contributed substantially to revisions and gave final approval for publication.

Acknowledgements

We would like to thank Ivan Wright, Anna Oliver, Lindsay Newbold, Annika Perry, Marc Botham, Sarah Hulmes, Lucy Hulmes and Nadine Mitschunas for valuable assistance and advice during the experiment. Thanks to the Hillesden estate for allowing unlimited access to the site. We also thank David Gill and anonymous reviewers for helpful comments on the manuscript. This project was funded by the Natural Environment Research Council; NERC DTG NE/L501645/1.

Data Accessibility

Should the manuscript be accepted, data supporting results will be archived in the NERC Environmental Information Data Centre (EIDC) and the data DOI will be included at the end of the article.
References

Ashley, M.V. & Dow, B.D. (1994) The use of microsatellite analysis in population biology: background, methods and potential applications. *Exs*, 69, 185-201.

Bates, D., Maechler, M., Bolker, B.M. & Walker, S.C. (2015) Fitting Linear Mixed-Effects Models Using lme4. *Journal of Statistical Software*, 67, 1-48.

Baum, K.A. & Wallen, K.E. (2011) Potential Bias in Pan Trapping as a Function of Floral Abundance. *Journal of the Kansas Entomological Society*, 84, 155-159.

Becker, A., Gleissberg, S. & Smyth, D.R. (2005) Floral and vegetative morphogenesis in California poppy (Eschscholzia californica Cham.). *International Journal of Plant Sciences*, 166, 537-555.

Bellanger, S., Guillemin, J.P., Touzeau, S. & Darmency, H. (2015) Variation of inbreeding depression in Centaurea cyanus L., a self-incompatible species. *Flora*, 212, 24-29.

Bernhardt, C.E., Mitchell, R.J. & Michaels, H.J. (2008) Effects of population size and density on pollinator visitation, pollinator behavior, and pollen tube abundance in Lupinus perennis. *International Journal of Plant Sciences*, 169, 944-953.

Blaauw, B.R. & Isaacs, R. (2014) Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wild flowers. *Basic and Applied Ecology*, 15, 701-711.

Burnham, K.P. & Anderson, D.R. (2003) *Model selection and multimodel inference: a practical information-theoretic approach*. Springer Science & Business Media.
Byers, D.L. & Meagher, T.R. (1992) Mate availability in small populations of plant-species with homomorphic sporophytic self-incompatibility. *Heredity, 68*, 353-359.

Byers, D.L. & Waller, D.M. (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. *Annual Review of Ecology and Systematics, 30*, 479-513.

Cane, J.H. (1987) Estimation of bee size using intertegular span (Apoidea). *Journal of the Kansas Entomological Society, 60*, 145-147.

Carvell, C., Jordan, W.C., Bourke, A.F.G., Pickles, R., Redhead, J.W. & Heard, M.S. (2012) Molecular and spatial analyses reveal links between colony-specific foraging distance and landscape-level resource availability in two bumblebee species. *Oikos, 121*, 734-742.

Carvell, C., Meek, W.R., Pywell, R.F., Goulson, D. & Nowakowski, M. (2007) Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. *Journal of Applied Ecology, 44*, 29-40.

Charnov, E.L. (1976) Optimal foraging, marginal value theorem. *Theoretical Population Biology, 9*, 129-136.

Chittka, L., Thomson, J.D. & Waser, N.M. (1999) Flower constancy, insect psychology, and plant evolution. *Naturwissenschaften, 86*, 361-377.

Cook, S.A. (1962) Genetic System, Variation, and Adaptation in Eschscholzia californica. *Evolution, 16*, 278-299.
Dyer, R.J., Chan, D.M., Gardiakos, V.A. & Meadows, C.A. (2012) Pollination graphs: quantifying pollen pool covariance networks and the influence of intervening landscape on genetic connectivity in the North American understory tree, Cornus florida L. *Landscape Ecology*, 27, 239-251.

Eckert, C.G., Kalisz, S., Geber, M.A., Sargent, R., Elle, E., Cheptou, P.O., Goodwillie, C., Johnston, M.O., Kelly, J.K., Moeller, D.A., Porcher, E., Ree, R.H., Vallejo-Marín, M. & Winn, A.A. (2010) Plant mating systems in a changing world. *Trends in Ecology & Evolution*, 25, 35-43.

Espeland, E.K. & Emam, T.M. (2011) The value of structuring rarity: the seven types and links to reproductive ecology. *Biodiversity and Conservation*, 20, 963-985.

Essenberg, C.J. (2012) Explaining Variation in the Effect of Floral Density on Pollinator Visitation. *American Naturalist*, 180, 153-166.

Etterson, J.R. (2004) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains. *Evolution*, 58, 1459-1471.

Fischer, M., Hock, M. & Paschke, M. (2003) Low genetic variation reduces cross-compatibility and offspring fitness in populations of a narrow endemic plant with a self-incompatibility system. *Conservation Genetics*, 4, 325-336.

Fontaine, C., Collin, C.L. & Dajoz, I. (2008) Generalist foraging of pollinators: diet expansion at high density. *Journal of Ecology*, 96, 1002-1010.

Frankham, R. (2005) Genetics and extinction. *Biological Conservation*, 126, 131-140.
Gegear, R.J. & Laverty, T.M. (2005) Flower constancy in bumblebees: a test of the trait variability hypothesis. *Animal Behaviour, 69*, 939-949.

Ghazoul, J. (2006) Floral diversity and the facilitation of pollination. *Journal of Ecology, 94*, 295-304.

Greenleaf, S.S., Williams, N.M., Winfree, R. & Kremen, C. (2007) Bee foraging ranges and their relationship to body size. *Oecologia, 153*, 589-596.

Hagler, J.R., Mueller, S., Teuber, L.R., Machtley, S.A. & Van Deynze, A. (2011) Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. *Journal of Insect Science, 11*.

Harrison, X.A. (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. *PeerJ, 2*.

Heard, M.S., Carvell, C., Carreck, N.L., Rothery, P., Osborne, J.L. & Bourke, A.F.G. (2007) Landscape context not patch size determines bumble-bee density on flower mixtures sown for agri-environment schemes. *Biology Letters, 3*, 638-641.

Holland, J.N. & Chamberlain, S.A. (2007) Ecological and evolutionary mechanisms for low seed : ovule ratios: Need for a pluralistic approach? *Ecology, 88*, 706-715.

Jakobsson, A., Lazaro, A. & Totland, O. (2009) Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs. *Oecologia, 160*, 707-719.
Kalinowski, S.T., Taper, M.L. & Marshall, T.C. (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. *Molecular Ecology*, **16**, 1099-1106.

Kalisz, S., Vogler, D.W. & Hanley, K.M. (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. *Nature*, **430**, 884-887.

Kanchan, S. & Jayachandra (1980) Pollen allelopathy - a new phenomenon. *New Phytologist*, **84**, 739-746.

Lander, T.A., Bebber, D.P., Choy, C.T.L., Harris, S.A. & Boshier, D.H. (2011) The Circe Principle Explains How Resource-Rich Land Can Waylay Pollinators in Fragmented Landscapes. *Current Biology*, **21**, 1302-1307.

Lander, T.A., Klein, E.K., Stoeckel, S., Mariette, S., Musch, B. & Oddou-Muratorio, S. (2013) Interpreting realized pollen flow in terms of pollinator travel paths and land-use resistance in heterogeneous landscapes. *Landscape Ecology*, **28**, 1769-1783.

Larsen, T.H., Williams, N.M. & Kremen, C. (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. *Ecology Letters*, **8**, 538-547.

Levin, D.A. & Kerster, H.W. (1974) Gene flow in seed plants. *Evolutionary biology*, pp. 139-220. Springer.

Loveless, M.D. & Hamrick, J.L. (1984) Ecological determinants of genetic-structure in plant-populations. *Annual Review of Ecology and Systematics*, **15**, 65-95.
Mannouris, C. & Byers, D.L. (2013) The impact of habitat fragmentation on fitness-related traits in a native prairie plant, Chamaecrista fasciculata (Fabaceae). *Biological Journal of the Linnean Society, 108*, 55-67.

Marshall, T.C., Slate, J., Kruuk, L.E.B. & Pemberton, J.M. (1998) Statistical confidence for likelihood-based paternity inference in natural populations. *Molecular Ecology, 7*, 639-655.

Martins, K.T., Gonzalez, A. & Lechowicz, M.J. (2015) Pollination services are mediated by bee functional diversity and landscape context. *Agriculture Ecosystems & Environment, 200*, 12-20.

Matter, P., Kettle, C.J., Ghazoul, J., Hahn, T. & Pluess, A.R. (2013) Evaluating contemporary pollen dispersal in two common grassland species Ranunculus bulbosus L. (Ranunculaceae) and Trifolium montanum L. (Fabaceae) using an experimental approach. *Plant Biology, 15*, 583-592.

Pasquet, R.S., Peltier, A., Hufford, M.B., Oudin, E., Saulnier, J., Paul, L., Knudsen, J.T., Herren, H.R. & Gepts, P. (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. *Proceedings of the National Academy of Sciences of the United States of America, 105*, 13456-13461.

Perfectti, F., Gomez, J.M. & Bosch, J. (2009) The functional consequences of diversity in plant-pollinator interactions. *Oikos, 118*, 1430-1440.
Pisanty, G., Afik, O., Wajnberg, E. & Mandelik, Y. (2016) Watermelon pollinators exhibit complementarity in both visitation rate and single-visit pollination efficiency. *Journal of Applied Ecology*, **53**, 360-370.

Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J. & Vanbergen, A.J. (2016) Safeguarding pollinators and their values to human well-being. *Nature*, **540**, 220-229.

Preston, C.D., Pearman, D.A. & Dines, T.D. (2002) *New atlas of the British and Irish flora: an atlas of vascular plants of Britain, Ireland, the Isle of Man and the Channel Islands*. Oxford University Press, Oxford.

Pywell, R.F., Heard, M.S., Woodcock, B.A., Hinsley, S., Ridding, L., Nowakowski, M. & Bullock, J.M. (2015) Wildlife-friendly farming increases crop yield: evidence for ecological intensification. *Proceedings of the Royal Society B-Biological Sciences*, **282**.

R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rader, R., Edwards, W., Westcott, D.A., Cunningham, S.A. & Howlett, B.G. (2011) Pollen transport differs among bees and flies in a human-modified landscape. *Diversity and Distributions*, **17**, 519-529.

Rathcke, B. (1983) Competition and facilitation among plants for pollination. *Real, L. (Ed.). Pollination Biology. Xvii+338p. Academic Press, Inc.: Orlando, Fla., USA; London, England. Illus*, 305-330.
Redhead, J.W., Dreier, S., Bourke, A.F.G., Heard, M.S., Jordan, W.C., Sumner, S., Wang, J.L., & Carvell, C. (2016) Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species. *Ecological Applications, 26,* 726-739.

Richards, A.J. (1997) *Plant breeding systems.* Garland Science.

Ricketts, T.H., Regetz, J., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S.S., Klein, A.M., Mayfield, M.M., Morandin, L.A., Ochieng, A. & Viana, B.F. (2008) Landscape effects on crop pollination services: are there general patterns? *Ecology Letters, 11,* 499-515.

Roulston, T.H., Smith, S.A. & Brewster, A.L. (2007) A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera : Apiformes) fauna. *Journal of the Kansas Entomological Society, 80,* 179-181.

Senapathi, D., Carvalheiro, L.G., Biesmeijer, J.C., Dodson, C.A., Evans, R.L., McKerchar, M., Morton, R.D., Moss, E.D., Roberts, S.P.M., Kunin, W.E. & Potts, S.G. (2015) The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. *Proceedings of the Royal Society B-Biological Sciences, 282.*

Sjodin, N.E. (2007) Pollinator behavioural responses to grazing intensity. *Biodiversity and Conservation, 16,* 2103-2121.

Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. (2002) Scale-dependent effects of landscape context on three pollinator guilds. *Ecology, 83,* 1421-1432.
Thiele, J., Hansen, T., Siegismund, H.R. & Hauser, T.P. (2010) Genetic variation of inbreeding depression among floral and fitness traits in Silene nutans. *Heredity, 104*, 52-60.

Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahrig, L., Peter, B., Bengtsson, J., Clough, Y., Crist, T.O., Dormann, C.F., Ewers, R.M., Fruend, J., Holt, R.D., Holzschuh, A., Klein, A.M., Kleijn, D., Kremen, C., Landis, D.A., Laurance, W., Lindenmayer, D., Scherber, C., Sodhi, N., Steffan-Dewenter, I., Thies, C., van der Putten, W.H. & Westphal, C. (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. *Biological Reviews, 87*, 661-685.

Turner, M.E., Stephens, J.C. & Anderson, W.W. (1982) Homozygosity and patch structure in plant-populations as a result of nearest-neighbor pollination. *Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 79*, 203-207.

Vamosi, J.C., Steets, J.A. & Ashman, T.-L. (2013) Drivers of pollen limitation: macroecological interactions between breeding system, rarity, and diversity. *Plant Ecology & Diversity, 6*, 171-180.

Van Rossum, F. & Triest, L. (2010) Pollen dispersal in an insect-pollinated wet meadow herb along an urban river. *Landscape and Urban Planning, 95*, 201-208.

Vanbergen, A.J., Baude, M., Biesmeijer, J.C., Britton, N.F., Brown, M.J.F., Brown, M., Bryden, J., Budge, G.E., Bull, J.C., Carvell, C., Challinor, A.J., Connolly, C.N., Evans, D.J., Feil, E.J., Garratt, M.P., Greco, M.K., Heard, M.S., Jansen, V.A.A., Keeling, M.J., Kunis, W.E., Marris, G.C., Memmott, J., Murray, J.T., Nicolson, S.W., Osborne, J.L., Paxton, R.J., Pirk, C.W.W., Polce, C., Potts, S.G., Priest, N.K., Raine, N.E., Roberts,
S., Ryabov, E.V., Shafir, S., Shirley, M.D.F., Simpson, S.J., Stevenson, P.C., Stone, G.N., Termansen, M., Wright, G.A. & Insect Pollinators, I. (2013) Threats to an ecosystem service: pressures on pollinators. *Frontiers in Ecology and the Environment*, **11**, 251-259.

Vanbergen, A.J., Woodcock, B.A., Gray, A., Grant, F., Telford, A., Lambdon, P., Chapman, D.S., Pywell, R.F., Heard, M.S. & Cavers, S. (2014) Grazing alters insect visitation networks and plant mating systems. *Functional ecology*, **28**, 178-189.

Vaudo, A.D., Patch, H.M., Mortensen, D.A., Tooker, J.F. & Grozinger, C.M. (2016) Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. *Proceedings of the National Academy of Sciences of the United States of America*, **113**, E4035-E4042.

Veddeler, D., Klein, A.M. & Tscharntke, T. (2006) Contrasting responses of bee communities to coffee flowering at different spatial scales. *Oikos*, **112**, 594-601.

Veliz, D., Gauci, R. & Bustamante, R.O. (2012) Characterization of novel microsatellite markers for *Eschscholzia californica* (Papaveraceae), an invasive species in central Chile. *American Journal of Botany*, **99**, E366-E368.

Wagenius, S., Lonsdorf, E. & Neuhauser, C. (2007) Patch aging and the S-allee effect: Breeding system effects on the demographic response of plants to habitat fragmentation. *American Naturalist*, **169**, 383-397.

Ward, M., Dick, C.W., Gribel, R. & Lowe, A.J. (2005) To self, or not to self ... A review of outcrossing and pollen-mediated gene flow in neotropical trees. *Heredity*, **95**, 246-254.
Waser, N.M. (1986) Flower constancy—definition, cause, and measurement. *American Naturalist, 127*, 593-603.

Westphal, C., Bommarco, R., Carre, G., Lamborn, E., Morison, N., Petanidou, T., Potts, S.G., Roberts, S.P.M., Szentgyoergyi, H., Tscheulin, T., Vaissiere, B.E., Woyciechowski, M., Biesmeijer, J.C., Kunin, W.E., Settele, J. & Steffan-Dewenter, I. (2008) Measuring bee diversity in different european habitats and biogeographical regions. *Ecological Monographs, 78*, 653-671.

Wilcock, C. & Neiland, R. (2002) Pollination failure in plants: why it happens and when it matters. *Trends in Plant Science, 7*, 270-277.

Williams, N.M., Ward, K.L., Pope, N., Isaacs, R., Wilson, J., May, E.A., Ellis, J., Daniels, J., Pence, A., Ullmann, K. & Peters, J. (2015) Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. *Ecological Applications, 25*, 2119-2131.

Wright, G.M. (1979) Self-incompatibility in *Eschscholzia-californica*. *Heredity, 43*, 429-431.
Supplementary material

Additional supporting information may be found in the online version of this article.

Supplementary S1 Plant species list for each habitat type

Supplementary S2 Pollinator species list from pan trap catches
Fig. 1 The experimental set-up at the Hillesden estate, Buckinghamshire, UK. Blocks are denoted by boxes and are labelled blocks 1-4. Florally rich habitat represent all wildlife habitat options implemented under the English Agri-environment scheme.

Fig. 2 The activity densities (black boxes) and species richness (white boxes) of insects within main pollinator groups caught in pan traps within habitats differing in floral cover. Box plots represent the cumulative counts of all trapping periods, with counts averaged across each experimental array within florally poor and florally rich habitats. Bars summarise the median value (50th percentile), with boxes illustrating the upper and lower quartiles (25th and 75th percentile). Whiskers illustrate the minimum and maximum count.

Fig. 3 The proportion of insects within main pollinator groups observed during direct visitor observations of *E.californica* plants and those caught in pan traps within habitats differing in floral cover.

Fig. 4 The distance of pollen movement, averaged across all blocks, from experimental arrays located within habitats differing in floral cover (self-fertilisation is denoted by 0m). Dashed lines with open circles represents pollen movement from florally poor habitats and solid lines with filled circles represents pollen movement from florally rich habitats.

Fig. 5 The connectivity of experimental arrays, measured by the number of long distance pollen dispersal events (50m), averaged across all blocks, over habitats differing in floral cover. Mixed habitat denotes when the intervening habitat comprised of 25m of florally rich habitat and 25m of florally poor habitat; poor habitat denotes where the intervening habitat is comprised of 50m of florally poor habitat and rich habitat denotes where the intervening habitat is comprised of 50m of florally rich habitat.
Fig. 6 The mean number of seeds (denoted by open bars) produced by plants within habitats comprising different floral cover, together with the mean degree of pollen limitation (denoted by filled points) of these plants. Pollen limitation is illustrated here as the number of additional seeds produced by a plant after pollen supplementation (when compared to the number of seeds produced by the same plant under field conditions).
Fig. 2

![Box plot showing the number of pollinators in florally poor and florally rich habitats.](image-url)

- **Habitat**: Florally poor, Florally rich
- **Number of pollinators**: X-axis}

42
Fig. 3

The diagram shows the proportion of pollinators observed in different survey methods for floras贫和flora-rich conditions. The groups represented are Bombus spp., Apis mellifera, solitary bees, Syrphid, and Lepidoptera. The proportion of each group is indicated by the color and shade of the bars within the pan trap and observation sections.
Fig. 4

![Graph showing the number of pollen movements over distance]

- **Number of pollen movements**
- **Distance**

The graph illustrates the number of pollen movements over different distances, with the highest concentration observed at 1m and a steep decline thereafter.
Fig. 5

![Bar graph showing the number of pollination events in different intervening habitats.](image)

- **Intervening habitat**
 - Mixed
 - Poor
 - Rich

Number of pollination events

- Mixed: 0
- Poor: 4
- Rich: 1
Fig. 6

The figure shows a bar graph and a line graph comparing the number of seeds in florally poor and florally rich habitats. The bar graph indicates a higher number of seeds in the florally rich habitat, while the line graph illustrates an upward trend in seed production as the habitat becomes more florally rich.