ORIGINAL ARTICLE

MICROBIOLOGICAL EVALUATION OF ACTIVE CHRONIC OTITIS MEDIA AT BASE HOSPITAL SRIKOT, UTTARAKHAND
Ravindra Singh Bisht1, Vikas Sikarwar2, Sekhar Pal3, Charul Jakhwal4

HOW TO CITE THIS ARTICLE:
Ravindra Singh Bisht, Vikas Sikarwar, Sekhar Pal, Charul Jakhwal. "Microbiological Evaluation of Active Chronic Otitis Media at Base Hospital Srikot, Uttarakhand". Journal of Evolution of Medical and Dental Sciences 2014; Vol. 3, Issue 25, June 23; Page: 7021-7030, DOI: 10.14260/jemds/2014/2854

ABSTRACT: AIMS: The purpose of the study was to determine the prevalence of microbiological agents in active COM, in Garhwal hill region and establish antimicrobial susceptibility pattern of these micro-organisms. MATERIAL AND METHODS: The study was conducted in Outpatient Department of Otorhinolaryngology of Base Hospital Srikot, Uttarakhand. STATISTICAL ANALYSIS: SPSS version-17 was used. OBSERVATIONS & RESULTS: The age of patient ranged between age 18 and 80 years. Out of 150 cases 54.66% were females and 45.33% males. Peak age of presentation was 18-30 years. Bacteriological and mycological study showed mixed infections. Bacterial isolates were found to be present in 153 cases, out of which aerobic constituted 74.50%, rest were anaerobic (25.49%). Fungus was isolated in 22.72% of cases with bacterial overlapping. Staphylococcus aureus was the commonest aerobic bacteria. Commonest anaerobes Peptostreptococcus and among fungus Candida was found with highest frequency. Staphylococcus aureus showed highest sensitivity to Cephalosporins and least sensitivity to penicillin. Pseudomonas aerugenosa showed highest sensitivity to ciprofloxacin and least sensitivity to erythromycin and penicillin. E. coli showed highest sensitivity to amikacin and cefotaxime. CONCLUSION: Younger age group is most commonly affected, implying that early detection and prompt treatment during early stages can prevent major complications. Staphylococcus aureus was the commonest bacteria followed by Pseudomonas aerugenosa. The bacterial growth had a mixed infection pattern and single antibiotic therapy was not sufficient for the proper control of infection. A combination of two or more antibiotics covering both gram positive and gram negative bacteria will have better result than a single antibiotic. KEYWORDS: Active Chronic Otitis, Acute Suppurative Otitis Media, Ear discharge, bacteriological.

INTRODUCTION: Chronic otitis media (COM), is a permanent perforation of the pars tensa or flaccida resulting from earlier acute otitis media, negative middle ear pressure, or otitis media with effusion. Types of COM:1

a) Inactive mucosal COM or dry central perforation.
b) Active mucosal COM or central perforation with otorrhea.
c) Inactive squamous epithelial COM (retraction, atelectasis and epidermal involvement).
d) Active squamous epithelial COM (cholesteatoma).

The overall prevalence of active and inactive COM is reported to be about 4.1%. There is no gender difference in prevalence of COM. It is found to be highest amongst 41-80 years age group.2 Higher prevalence is generally seen in lower socioeconomic strata.3 It is more common in economically developing countries.4 If left untreated or inadequately healed, it can lead to many complications including conductive and sensorineural hearing loss.5

Microbiology of the mucopus removed from the ears with active COM is rarely sterile. Microbiological cultures frequently yield multiple organisms and these vary depending on climate,
patient population and on the usage of antimicrobials. There is a debate whether the presence of cholesteatoma influences microbiological findings. The bacteria are frequently found in the skin of the external canal, but may proliferate in the presence of trauma, inflammation, lacerations or high humidity. These bacteria may then gain entry to the middle ear through perforated tympanic membrane.

Depending upon whether the disease process is affecting the pars tensa or the pars flaccida of the tympanic membrane, the disease can be classified into two types: tubotympanic and atticoantral. Tubotympanic type is associated with central perforation and mucoid or mucopurulent ear discharge and the atticoantral type is associated with attic perforations and foul smelling scanty ear discharge. The widespread use of antibiotics has led to the emergence of multiple resistant strains of bacteria which can produce severe, difficult to treat infections. Poor follow-up of patients added upon the indiscriminate, haphazard and half-hearted use of antibiotics have resulted in the emergence of resistant strains. Thus, proper knowledge regarding the microbial flora involved and their antibiotic susceptibility pattern will be a major lead in combating the disease.

OBJECTIVES:

PRIMARY:
1. To determine the prevalence of microbiological agents isolated from the active COM cases in this region.

SECONDARY:
1. To know antimicrobial susceptibility pattern of these micro-organisms.
2. To know distribution of microbial agents associated with different types of COM.

MATERIAL AND METHODS:

Study Type: Cross sectional observational study.
Sample Size: 150
Study Duration: 2 months (May and June 2012).
Study Population: Individuals attending the Outpatient Department of Otorhinolaryngology of Base Hospital Srikot, Uttarakhand, with ear discharge for more than six weeks.

Inclusion Criteria:
1) Men and women having both unilateral/bilateral ear discharge for more than six weeks.
2) Age group – 18-80 years.

Exclusion Criteria:
1) Patients with Acute Suppurative Otitis Media (ASOM)
2) Patients with complications of ASOM.
3) Patients on systemic antimicrobials or on topical antimicrobials for any ear complaint during the time of examination.

This is a hospital based study carried out between May and June 2012 at the Base Hospital Srikot, Uttarakhand, India. 150 individuals with unilateral or bilateral ear discharge for more than six weeks were enrolled in the study. A thorough history, including duration of discharge, type of
discharge, drug history, other illnesses and complications was taken followed by a detailed ear examination.

Clinical significance was determined based on the presence of other supportive evidences like infection for more than 3 months and the presence of tympanic membrane perforation.

INFORMED CONSENT: All the details including the nature and purpose of the study was explained to the patients in detail. Individuals who voluntarily and knowingly gave written consent on a pre-designed consent form were enrolled.

Statistical Analysis: Was done using Statistical Package for Social Sciences (SPSS) version-17.

OBSERVATIONS & RESULTS: A total of 150 patients with history of ear discharge were included in the study. These were between age 18 and 80 years. Culture and sensitivity was done for the ear swabs collected from the active discharging ears in the Outpatient Department of Otorhinolaryngology. There were total 82 females (54.66%) and 68 males (45.33%) with a ratio of 1.20:1. The peak age of presentation was 18-30 years (48.66%).

Table 1: Age and sex wise distribution of cases: The results of the mycological and bacteriological study showed the presence of mixed infections of both aerobic and anaerobic bacteria with fungal infections. Bacterial isolates were found to be present in 153 cases, out of which aerobic isolates account to 114 cases (74.50%), the rest being anaerobic bacteria (39 cases) (25.49%). Fungus was isolated in 45 cases (22.72% of all isolates) overlapping with bacterial isolates.

Age groups	males	females	Total
18-30	32(47.05)	41(50)	73
31-45	24(35.29)	27(32.92)	51
46-60	8(11.76)	9(10.97)	17
>60	4(5.88)	5(6.09)	9
Total	**68**	**82**	**150**

Table 1: Age and sex wise distribution of cases
Table 2: Distribution of bacterial pathogens (aerobic) in Chronic Otitis Media: Bacteriological examination showed Staphylococcus aureus with highest frequency (in 60 cases) followed by Pseudomonas (28 cases), Escherichia coli (E. coli) and the rest others, as shown in table 2 and depicted in figure 1.

sl. No.	Aerobic isolates	Number (total=114)	%
1	Staphylococcus aureus	60	52.63%
2	Pseudomonas	28	24.56%
3	Escherichia coli	6	5.26%
4	Streptococcus	3	2.63%
5	Citrobacter koseri	3	2.63%
6	Morgenella	3	2.63%
7	Klebsiella pneumonia	3	2.63%
8	Pneumococcus	3	2.63%
9	Enterobacter	2	1.75%
10	Acinetobacter	2	1.75%
11	Proteus sp.	1	0.87%

Table 2: Distribution of bacterial pathogens (aerobic) in Chronic Otitis Media

Figure 1: Distribution of aerobic pathogens

Table 3: Distribution of bacterial pathogens (anaerobic) Chronic Otitis Media: Anaerobes were isolated in only 39 cases amongst which Peptostreptococcus was commonest (11 cases) (28.20%) followed by Clostridium (25.64%), Streptococcus (23.07%), Provetella (20.51%), Peptococcus (2.56%). (table 3, figure 2)
Table 3: Distribution of bacterial pathogens (anaerobic) Chronic Otitis Media

Sl. No.	Anaerobic isolates	Number (total=39)	%
1	Peptostreptococcus	11	28.20%
2	Clostridium	10	25.64%
3	Streptococcus	9	23.07%
4	Provetella	8	20.51%
5	Peptococcus	1	2.56%

Figure 2: Distribution of anaerobic pathogens

Table 4: Distribution of fungal pathogens in Chronic Otitis Media: Fungus was isolated in 45 cases amongst which Candida was found in highest frequency (30 cases) accounting to 66.66% followed by Aspergillus and Saprobiic fungi. (table-4)

sl. No.	Fungal isolates	Number (total=45)	%
1	Candida	30	66.66%
2	Aspergillus	9	20.00%
3	Saprobiic fungi	6	13.33%

Table 4: Distribution of fungal pathogens in Chronic Otitis Media

Table 5: Antibiotic susceptibility pattern of bacterial pathogens of Chronic Otitis Media: Staphylococcus aureus showed highest sensitivity to Cephalosporins (96.00%), followed by amikacin (95.00%), and showed least sensitivity to penicillin (23.33%). Pseudomonas aerugenosa showed highest sensitivity to ciprofloxacin (92.85%), followed by gentamycin (85.71%), and showed least sensitivity to erythromycin and penicillin (0.00%) E.coli showed highest sensitivity to amikacin and
ceftaxime (83.33%), followed by equal sensitivity to cephalosporins, gentamycin and ciprofloxacine (66.66%). The anaerobic isolates include Peptostreptococcus, Clostridium, Streptococcus, Provetella, Peptococcus. All of them were invariably sensitive to metronidazole.

SL. No.	Bacteria	Amp	Ampiclonav	Amik	Cefotax	Cefaz	Erythro	Genta	Cipro	Pen
1	Staph no=60	43(71.60%)	50(83.33%)	57(95.00%)	58(96.66%)	58(96.66%)	49(81.66%)	49(81.66%)	54(90.00%)	14(23.33%)
2	Pseudomonas no=28	21(75.00%)	17(60.71%)	21(75.00%)	21(75.00%)	21(75.00%)	0(00.00%)	24(85.71%)	26(92.85%)	0(00.00%)
3	E.coli no=6	0(00.00%)	2(33.33%)	5(83.33%)	5(83.33%)	3(50.00%)	0(00.00%)	4(66.66%)	4(66.66%)	0(00.00%)
4	Strept no=3	2(66.66%)	3(100.00%)	1(33.33%)	1(33.33%)	2(66.66%)	3(100.00%)	1(33.33%)	3(100.00%)	0(00.00%)
5	Citrobacter no=3	1(33.33%)	0(00.00%)	3(100.00%)	2(66.66%)	2(66.66%)	0(00.00%)	3(100.00%)	3(100.00%)	0(00.00%)
6	Morganella no=3	1(33.33%)	1(33.33%)	3(100.00%)	3(100.00%)	3(100.00%)	0(00.00%)	3(100.00%)	3(100.00%)	0(00.00%)
7	Klebsiella pneumonia no=3	2(66.66%)	2(66.66%)	3(100.00%)	3(100.00%)	2(66.66%)	0(00.00%)	3(100.00%)	3(100.00%)	0(00.00%)
8	Pneumo no=3	2(66.66%)	3(100.00%)	1(33.33%)	1(33.33%)	3(100.00%)	3(100.00%)	1(33.33%)	3(100.00%)	0(00.00%)
9	Entero no=2	0(00.00%)	0(00.00%)	2(100.00%)	2(100.00%)	2(100.00%)	0(00.00%)	2(100.00%)	2(100.00%)	0(00.00%)
10	Azinet no=2	0(00.00%)	0(00.00%)	2(100.00%)	2(100.00%)	1(50.00%)	0(00.00%)	2(100.00%)	1(50.00%)	0(00.00%)
11	Proteus sp no=1	1(100.00%)	1(100.00%)	1(100.00%)	1(100.00%)	1(100.00%)	0(00.00%)	1(100.00%)	1(100.00%)	0(00.00%)

Table 5: Antibiotic susceptibility pattern of bacterial pathogens of Chronic Otitis Media

(Amp- Ampillicin; Amoxiclav- Amoxicillin-clavulanic acid; Amik- Amikacin; Cefotax- Cefotaxime; Cefaz- Cefazolin; Erythro- Erythromycin; Genta- Gentamycin; Cipro- Ciprofloxacin; Pen- Penicillin; Staph- Staphylococcus aureus; Ps- Pseudomonas; Strepto- Streptococcus; Entero- Enterobacter; Acenito- Acenitobacter)

DISCUSSION: Discharging ear is a common problem faced not only by the ENT surgeon but also by the general practitioner. The disease has irreversible complications and thus an early bacteriological diagnosis and prompt treatment with proper antibiotic coverage is essential in combating the disease. This study is intended to define the infecting micro-organisms responsible for the disease and to study their antibiotic sensitivity pattern.

The methodology used for testing the antibiotic sensitivity of the isolates was strictly based on the CLSI guidelines. The patients who were on antibiotic treatments were excluded from the study through a thorough and detailed history, so that the isolates procured give the picture of causative organisms of COM. The CLSI guidelines were also used in the study of A.O. Okesola, O.A. Fasina but antibiotic treatment had not been considered as an exclusion criteria in their study. Maximum numbers of cases were seen in the age group 18-30 years, perhaps because upper respiratory tract infection is more common in younger population, which in turn causes ear infection.
The finding is comparable to the study of Shazia Parveen. S, Janardhan Rao R10 and V. K. Poorey and Arati lyer8 showing younger patients presenting more with the disease. Females dominated the number in this study, comparable to the study conducted in Nepal by Shrestha BL et al14 but contradictory findings were seen in the study of V. K. Poorey and Arati lyer8 and Harvinder Kumar, Sonia Seth11 in which males’ outnumbered females. The study was conducted on 150 cases from which 198 bacterial and fungal isolates were procured. The bacterial (aerobic and anaerobic) isolates were 153 in total and fungal isolates were 45.

Aerobes constituted 114 (57.57%) of total isolates. Anaerobes present in 39 isolates (19.69%) and fungus in 45 isolates (22.72%). In our study the most common bacteria causing COM is found to be Staphylococcal aureus (52.63%). The finding is supported by the study of Shrestha BL et al14 while most of the studies show Pseudomonas aeruginosa as the most common etiological agent8,7,11.

These micro-organisms lead to infection of the middle ear and pus discharge. The antibiotic sensitivity pattern of Staphylococcus aureus in this study revealed maximum sensitivity to cephalosporins (96.00%), followed by amikacin (95.00%), while the studies conducted by Shazia Parveen. S and Janardhan Rao R10 and Harvinder Kumar, Sonia Seth11 showed amikacin to be the most sensitive antibiotic. Minimum sensitivity against Staphylococcus aureus is shown by penicillin, because beta-lactamase enzyme secreted by staphylococcus bacteria. Ciprofloxacin [92.85%] was found to be the most sensitive antibiotic from the antimicrobial profile for Pseudomonas which is also comparable with the study by A.O. Okesola & O.A. Fasina6 while the study of Mansoor T et al7 showed amikacin as the most sensitive antibiotic for Pseudomonas. E. coli showed maximum sensitivity to amikacin [83.33%] comparable to the study of Shazia Parveen. S and Janardhan Rao R10.

Amongst the anaerobes isolated the most common organism found is Peptostreptococcus (28.20%) followed by Clostridium (25.64%), Streptococcus (23.07%), Provetella (20.51%), Peptococcus (2.56%), while the most frequently isolated anaerobic organisms in the study conducted by Monique Verhoeff et al was Bacteroides sp. (1—91%15.

Our study showed all of the anaerobes sensitive to metronidazole. Fungus was isolated from 22.72% of all isolates out of which Candida was found in highest frequency (66.66%), followed by Aspergillus Sp. (20.00%), in agreement with the study of Harvinder Kumar, Sonia Seth10 which showed Candida (60%) to be the most common fungal agent followed by Aspergillus (40%), whereas disagreeing were the results of the study conducted by Khanna V et al showed Aspergillus flavus to be the most common fungal agent causing COM.11 In view of the polymicrobial aetiology of COM, prompt appropriate antimicrobial therapy can effectively reverse the disease process and prevent the long term sequelae.

As 33 cases (22%) presented with common presentation of both tubotympanic and atticointonal types of COM, the objective of finding out the distribution of microbial agents associated with different types of COM was not met. Of these 23 cases presented with a marginal perforation in tympanic membrane with profuse mucoid discharge and 10 cases presented with a central perforation but with scanty purulent discharge. Thus, the delineation of these cases as a single type was not possible clinically and so this objective was dropped.

The major limitation in the study was the time allotted. Study could have been extended to include two seasons of summers (dry) and monsoon (warm and humid) and how the bacterial
composition changed according to them could have been studied. Moreover, the study could have included more number of subjects and the microbial agents causing complication of COM could also have been studied.

CONCLUSION: The study suggests COM to be a disease of younger age group being most common in 18-30 years, implying that early detection and prompt treatment during early stages can prevent major complications of the disease. The study also suggests that the most common etiological agent for Chronic Otitis Media was Staphylococcus aureus (52.63%) followed by Pseudomonas aeruginosa (24.56%). The bacterial growth pattern showed that most of the specimens were combination of different types of bacteria. The study also suggested that single antibiotic therapy was not sufficient for the proper control of infecting organisms. Here we concluded that a group of two antibiotics covering both gram positive and gram negative bacteria will have better result than a single antibiotic.

The result of isolate culture point towards a polymicrobial aetiology thus appropriate antimicrobial therapy can effectively reverse the disease process and prevent the long term sequelae.

SUMMARY: Chronic otitis media (COM) is one of the commonest illnesses in ENT practice which requires medical attention, more in children of poor socio-economic status and having in past inadequate treatment and negligent medical care. The present study was a cross sectional observational study conducted over a period of 2 months, involving 150 individuals complaining of unilateral or bilateral ear discharge for more than six weeks at the Outpatient Department of Otorhinolaryngology of Base Hospital Sriket, Uttarakhand.

The study aimed at finding the prevalence of isolates and their antimicrobial susceptibility pattern in active COM, in the general population of this region. After procuring a written consent on a pre-designed consent form a thorough history was taken followed by a detailed ear examination. The samples were collected in form of ear swabs, three from each patient. These were then tested for their culture and antibiotic sensitivity pattern.

The presence of mixed infections of both aerobic and anaerobic bacteria with fungal infections was seen. Aerobes constituted 114(57.57%) of total isolates while anaerobes were present in 39 isolates (19.69%) and fungus in 45isolates (22.72%). The most common bacteria causing COM was found to be Staphylococcal aureus which showed highest sensitivity to Cephalosporins (96.00%) followed by amikacin(95.00%).

Peptostreptococcus (28.20%) was the most common organism found amongst the anaerobes and Candida was the fungi found in highest frequency (66.6%). In view of the polymicrobial etiology of COM, prompt appropriate antimicrobial therapy can effectively reverse the disease process and prevent the long term sequelae.

REFERENCES:
1. George G Browning. Etiopathology of inflammatory condition of the external and middle ear. Chapter 3. In: Kerr A G (ed) Scott-Brown Otolaryngology, 6edn. Vol3. London: Arnold, 1997.
2. Browning GG, Gatehouse S. The Prevalence of Middle Ear Disease in the adult British population. Clinical Otolaryngology. 1992; 17: 317-21.
3. Saini S, Gupta N, Aparna, Seema, Sachdeva OP. Bacteriological study of paediatric and adult
Chronic Suppurative Otitis Media. Indian J Pathol Microbiol. 2005 Jul; 48 (3): 413-6.
4. Couzos S, Lea T, Mullar R, Murray R, Culbong M. Effectiveness of ototopical antibiotics for CSOM in Aboriginal children, a community based multicenter double blind randomized controlled trial. Med J Aust 2003; 179(4): 185-90.
5. El-sayed Y. Bone conduction impairment in uncomplicated CSOM. Am J Otolaryngol 1998; 19: 149-53.
6. A.O. Okesola, O.A. Fasina. trends in the resistance pattern of bacterial pathogens of otitis media in ibadan, nigeria. Afr. J. Clin. Exper. Microbial 13(1): 46-50.
7. Mansoor T, Musani MA, Khalid G, Kamal M. Pseudomonas aeruginosa in chronic suppurative otitis media: sensitivity spectrum against various antibiotics in Karachi. J Ayub Med Coll Abbottabad. 2009 Apr-Jun; 21(2): 120-3.
8. V. K. Poorey, Arati lyer. STUDY OF BACTERIAL FLORA IN CSOM AND ITS CLINICAL SIGNIFICANCE. Indian Journal of Otolaryngology and Head and Neck Surgery. 2002, Apr-Jun, 54(2): 91-95.
9. Chowdhury MA, Alauddin M. Comparative study between tubotympanic and atticoantral types of chronic suppurative otitis media. Bangladesh Med Res Counc Bull. 2002 Apr; 28(1): 36-44.
10. Shazia Parveen. S, Janardhan Rao Rao R. Aerobic bacteriology of Chronic Suppurative Otitis Media (CSOM) in a teaching hospital, Ranga Reddy Dist, Andhra Pradesh, India. J. Microbiol. Biotech. Res., 2012, 2 (4): 586-589.
11. Harvinder Kumar, Sonia Set H. Bacterial and Fungal Study of 100 Cases of Chronic Suppurative Otitis Media. Journal of Clinical and Diagnostic Research. 2011 November (Suppl-1), Vol-5(6): 1224-1227.
12. Khanna V, Chander J, Nagarkar NM, Dass A. Clinicimicrobiologic evaluation of active tubotympanic type chronic suppurative otitis media. J Otolaryngol. 2000 Jun; 29 (3):148-53.
13. Nwabuisi C, Ologe FE. Pathogenic agents of chronic suppurative otitis media in Ilorin, Nigeria. East Afr Med J. 2002 Apr; 79 (4):202-5.
14. Shrestha BL, Amartya R C M, Shrestha I, Ghosh I. Microbiological profile of Chronic Suppurative Otitis Media. Nepalese journal of E.N.T. Head & Neck Surgery. 2011 July-Dec, vol-2(2): 6-7.
15. Monique Verhoeff, Erwin L van der Veen, Maroeska M. Rovers, Elisabeth A.M. Sanders, Anne G.M. Schilder. Chronic suppurative otitis media: A review. International Journal of Pediatric Otorhinolaryngology 2006; 70:1—12.
| AUTHORS: | NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR: |
|---------------------------------------|---|
| 1. Ravindra Singh Bisht | Dr. Ravindra Singh Bisht, |
| 2. Vikas Sikarwar | Department of ENT, |
| 3. Sekhar Pal | Base Hospital, |
| 4. Charul Jakhwal | Srikot, Srinagar-246174, |
| | Uttarakhnad, India. |
| | Email: dr_rsbisht@rediffmail.com |

PARTICULARS OF CONTRIBUTORS:

1. Associate Professor, Department of ENT, VCSGGMS & RI, Srinagar, Pauri Garhwal, Uttarakhand, India.
2. Assistant Professor, Department of ENT, VCSGGMS & RI, Srinagar, Pauri Garhwal, Uttarakhand, India.
3. Assistant Professor, Department of ENT, VCSGGMS & RI, Srinagar, Pauri Garhwal, Uttarakhand, India.
4. MBBS Student, Department of ENT, VCSGGMS & RI, Srinagar, Pauri Garhwal, Uttarakhand, India.

Date of Submission: 19/05/2014.
Date of Peer Review: 20/05/2014.
Date of Acceptance: 10/06/2014.
Date of Publishing: 21/06/2014.