The Association Between Environmental Perchlorate, Nitrate, and Thiocyanate Exposure and Oral Pain in NHANES

Jintao Yu*, Jiawen Guo, Hengguo Zhang and Xu Cheng

Aim: To examine the human exposure to perchlorate, nitrate, and thiocyanate, and their associations with oral pain (OP) in the general population from the U.S.

Methods: A total of 13,554 participants were enrolled in the National Health and Nutrition Examination Survey. The urinary perchlorate, nitrate, and thiocyanate were measured using ion chromatography coupled with an electrospray tandem mass spectrometry. The multivariable linear and logistic regressions were performed to explore the associations of the urinary perchlorate, nitrate, and thiocyanate, with the prevalence of oral pain. Restricted cubic splines were used to explore the non-linearity.

Results: There are 3,129 OP cases. There was a higher urinary level of perchlorate, nitrate, and thiocyanate in OP. We found that urinary thiocyanate was positively associated with OP (odds ratio [OR] = 1.06; [1, 1.13]; p = 0.049). Restricted cubic splines revealed that urinary thiocyanate was in a U-shape association with OP.

Conclusions: Urinary thiocyanate was in a U-shape association with OP, suggesting that we should keep the exposure of thiocyanate under a reasonable range.

Keywords: perchlorate, nitrate, thiocyanate, oral pain, productivity loss

INTRODUCTION

Chronic oral diseases consist of dental caries and periodontal disease, which affect more than 3,500,000,000 individuals (1). Oral pain (OP) is a common clinical symptom of oral disease, which influenced oral functions and overall health (2). It eventually led to higher treatment costs for the government, health insurance companies, and individuals (2). However, little is known about the factors that are associated with OP in adults.

Perchlorate, thiocyanate, and nitrate are thyroid-disrupting chemicals (3). Milk and certain plants may be the main intake source of perchlorate for humans (4). Nitrate is commonly detected in contaminated water and processed meats (5). Thiocyanate is a metabolite of cyanide in tobacco, affecting human saliva and oral mucosa (6). Studies have shown that dairy milk, meats, and groundwater could be the main source of these chemicals (7, 8). The urinary levels of these three chemicals are widely used as biomarkers to assess their exposure status (9). Accumulating evidence has suggested that perchlorate, nitrate, and thiocyanate could affect thyroid function (9) and liver function (10), and can be related to obesity (11), and cancers (12). However, the association between perchlorate, nitrate, and thiocyanate exposure and the OP in the general population is not yet clear.
Yu et al. Thiocyanate Exposure Associating With OP

In this study, we explored the association between the urinary levels of perchlorate, nitrate, and thiocyanate and the OP among the general population.

METHODS

Study Population

The study used data from the National Health and Nutrition Examination Survey (NHANES) cycle of 2005–2014. A total of 20,436 participants with complete records of the three chemicals were available. After excluding the participants with missing data on OP (n = 6,880) and the urinary creatinine (n = 2), 13,554 participants were enrolled in the study (Figure 1). The study was approved by the review board of the National Center for Health Statistics.

Exposure Variable and Outcomes

Urine specimens were collected by the professional staff. Urinary levels of perchlorate, nitrate, and thiocyanate were measured by ion chromatography coupled with electrospray tandem mass spectrometry (https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/PERNT_H.htm).

Oral pain was diagnosed based on the responses to the question. The individuals who reported feeling the pain in the mouth, with frequencies, such as “very often,” “fairly often,” and “occasionally” last year, were grouped into the OP group, while those who answered “hardly ever” or “never” formed the non-OP group.

Covariates’ Collection

The baseline information was ascertained from the questionnaires, including gender, age, ethnicity/race, education, and poverty-income ratio (PIR). The body mass index (BMI) was determined by body weight and height. Urinary creatinine was also considered due to its role of being a dilution-dependent sample variation in urine concentrations (13). Urinary creatinine was determined by a Jaffe rate reaction for NHANES 2005–2006 and by an enzymatic method for NHANES 2007–2014 (14). Hypertension was defined as: (1) previous diagnosis of hypertension; or (2) blood pressure ≥ 140/90 mmHg; or (3) receiving anti-hypertensive drugs. Diabetes was defined as: (1) previous diagnosis of diabetes; (2) fasting plasma glucose ≥ 7 mmol/L; HbA1c ≥ 6.5%; or (3) taking anti-hyperglycemic drugs. Multiple imputations using a predictive mean matching (PMM) were performed for covariates with missing values.

Statistical Analysis

The variables were presented as numbers (percentage), and the mean (standard deviation) or the median (lower quartile, upper quartile).

TABLE 1 | Characteristics of the study population according to the status of oral pain (OP).

| Variables | Non-OP
|---|---|---|
| Male (%) | 5,188 (50.1) | 1,476 (46.2) | <0.001 |
| Age, years | 49.2 (18.8) | 45.6 (17.4) | <0.001 |
| Race (%) | | | <0.001 |
| Non-Hispanic white | 4,668 (47.0) | 1,265 (39.6) | |
| Non-Hispanic black | 2,210 (21.3) | 841 (26.3) | |
| Mexican American | 1,784 (17.2) | 633 (19.8) | |
| Others | 1,500 (14.5) | 453 (14.2) | |
| Education (%) | | | <0.001 |
| Less than high school | 2,615 (26.8) | 967 (32.4) | |
| High school or equivalent | 2,252 (23.1) | 748 (25.0) | |
| College or above | 4,889 (50.1) | 1,273 (42.6) | |
| PIR (%) | | | <0.001 |
| <1 | 1,777 (18.6) | 848 (28.4) | |
| 1–3 | 3,861 (40.3) | 1,301 (43.6) | |
| >3 | 3,933 (41.1) | 834 (28.0) | |
| BMI, kg/m² | 28.69 (6.63) | 29.07 (7.08) | 0.005 |
| Drinking, % | 1,343 (50.7) | 443 (53.0) | 0.273 |
| Smoking, % | | | <0.001 |
| Never | 5,323 (74.3) | 1,438 (61.9) | |
| Past | 334 (4.7) | 116 (5.0) | |
| Current | 1,510 (21.1) | 770 (33.1) | |
| Activity, % | | | 0.102 |
| Vigorous | 1,019 (17.0) | 340 (17.4) | |
| Moderate | 2,544 (42.4) | 778 (39.7) | |
| Inactive | 2,438 (40.6) | 841 (42.9) | |
| Hypertension, % | 1,953 (19.7) | 507 (15.6) | <0.001 |
| Diabetes, % | 1,625 (15.7) | 492 (15.4) | 0.735 |
| CVD, % | 1,052 (10.8) | 353 (11.8) | 0.125 |
| Creatinine, mg/dL | 122.5 (77.49) | 130.0 (79.8) | <0.001 |
| Perchlorate, ng/mL | 3.40 [1.86, 5.98] | 3.51 [1.97, 6.17] | 0.046 |
| Nitrate, mg/L | 44.4 [25.8, 69.6] | 47.9 [27.9, 74.2] | <0.001 |
| Thiocyanate, mg/L | 1.05 [0.51, 2.33] | 1.33 [0.57, 3.58] | <0.001 |

Data are presented as n (%), and mean (SD) or median [lower quartile, upper quartile].

PIR, poverty income ratio; BMI, body mass index; CVD, cardiovascular diseases.
upper quartile) as appropriate. Differences between groups were explored using Students’ t-test or the Mann–Whitney U-test, and the Chi-square tests. Considering the non-normal distribution, urinary perchlorate, nitrate, and thiocyanate were log2-transformed. The associations between the urinary levels of perchlorate, nitrate, and thiocyanate and the prevalence of OP were explored using the multivariate logistic regression models. The restricted cubic splines were used to describe the non-linear relationship. If the non-linear relation existed, a piecewise regression analysis based on the logistic regression models was performed to determine the inflection point. Subgroup analyses were performed to investigate whether the association was modified by gender, smoking habits, and races in the fully adjusted model. The R version 3.6 was used for statistical analysis with a P < 0.05 set as statistically significant.

RESULTS

The present study included 13,554 participants (mean age: 48.3 years old, male/female: 6,664/6,890). The median value for urinary perchlorate, nitrate, and thiocyanate were 3.43 (1.89 [first quartile]–6.02 [third quartile]) ng/ml, 45.3 (26.3–70.8) mg/l, and 1.12 (0.52–2.55) mg/l, respectively. There were 3,129 OP cases. In patients with OP, the levels of perchlorate, nitrate, and thiocyanate were higher (Table 1).

We calculated the OR for each quartile of exposure to study linearity or relationship of exposure with oral pain (Table 2). As shown in Table 2, the urinary perchlorate and nitrate were not significantly associated with OP. However, the urinary thiocyanate was positively associated with the risk of OP across the three models (Model 1: OR = 1.26, 95% CI: 1.21–1.32, p = 0.001; Model 2: OR = 1.06, 95% CI: 1.01–1.12, p = 0.046; and Model 3: OR = 1.06, 95% CI: 1.01–1.13, p = 0.049). However, compared with the lowest quartile of urinary thiocyanate, the highest quartile was not associated with the OP in fully adjusted models.

Considering the inconsistency when the urinary thiocyanate was treated as a categorical variable or as a continuous variable, we performed the restricted spline models based on Model 3 (Figure 2), in which the OR was a function of log2-transformed urinary perchlorate, nitrate, and thiocyanate. Perchlorate: Q1<1.89, 1.89≤Q2<3.43, 3.43≤Q3<6.02, and Q4≥6.02. Nitrate: Q1<26.3, 26.3≤Q2<45.3, 45.3≤Q3<70.8, and Q4≥70.8. Thiocyanate: Q1<0.52, 0.52≤Q2<1.12, 1.12≤Q3<2.55, and Q4≥2.55.
Yu et al. Thiocyanate Exposure Associating With OP

FIGURE 2 | The dose-response analysis between urinary thiocyanate with oral pain. The OR and their 95% CI were represented as association measure. The model was adjusted for creatinine, age, gender, race, education, PIR, BMI, drinking, smoking, activity, hypertension, diabetes, cardiovascular diseases, log₂-transformed urinary perchlorate, and nitrate. The urinary thiocyanate was log₂-transformed.

TABLE 3 | Two-piecewise regression analysis of the effect of thiocyanate on OP.

Outcomes	Inflection point [log (thiocyanate+1)]	Group	OR (95% CI)
OP	≤1.00	Female	0.77 [0.60, 0.99]
	>1.00	Male	1.14 [1.05, 1.22]

DISCUSSION

In this study, we found that the urinary thiocyanate was in a U-shape association with OP. However, the urinary perchlorate and nitrate were not significantly associated with OP. This was the first study to examine the association between perchlorate exposure and OP.

Previous studies have found that the factors associated with OP included non-Hispanic Black, lower-income status (15), depression status (16), and long working hours (17). Our study added a new contribution that the thiocyanate exposure was associated with OP, while the perchlorate or nitrate exposure had no relationship with OP. Thiocyanate level was higher in the saliva of smokers with chronic periodontitis (18). IvY investigated the relationships of different urinary chemical concentrations and adult oral health and found that urinary thiocyanate was related to teeth bone loss and loose (19). Compared with it, our study included a relatively large sample and further explored the non-linear relationship. Interestingly, we found a U-shaped association between urinary thiocyanate and oral pain, namely, a lower and a higher level of urinary thiocyanate; this association increased the risk of oral pain.

The underlying mechanisms deserved further investigation. Firstly, thiocyanate is a metabolite of cyanide in tobacco and

TABLE 4 | Subgroup analysis of the effect of thiocyanate on OP.

Subgroup	OR	P for interaction
Gender		0.483
Female	1.01 [0.92, 1.11]	
Male	1.10 [1.02, 1.19]	
Smoking habits		0.835
No	1.01 [0.92, 1.10]	
Yes	1.16 [1.07, 1.25]	
Races		0.135
Non-Hispanic white	1.11 [1.00, 1.22]	
Non-Hispanic black	1.07 [0.96, 1.19]	
Mexican American	0.86 [0.73, 1.02]	
Others	1.02 [0.86, 1.21]	
is detectable in saliva (20, 21) and in the oral mucosa (6), which could influence the oral microenvironment. Secondly, the thiocyanate may have an antibacterial and antioxidative role for cardiovascular diseases and respiratory viral infections (22, 23), but may aggravate the inflammation responses in the autoimmune disease and gastrointestinal disease (24, 25). Therefore, its effect on oral health could be related to the level of thiocyanate or the comorbidities.

However, several limitations existed in our study. Firstly, the single measurement of urinary thiocyanate might not be representative of long-term exposure. Secondly, this was a cross-sectional study. Thirdly, the OP was self-reported. Finally, diet exposure could influence oral health.

In summary, the thiocyanate exposure was in a U-shape association with the risk of OP. Further regulation of environmental chemicals might need to be considered in the prevention of adult oral health.

REFERENCES

1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. (2018) 392:1789–858. doi: 10.1016/S0140-6736(18)32279-7

2. Jin L, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S. Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis. (2016) 22:609–19. doi: 10.1111/odl.12428

3. Mervish NA, Pakaj A, Teitelbaum SL, Pinney SM, Kushin LH, et al. Thyroid antagonists (perchlorate, thiocyanate, and nitrate) and childhood growth in a longitudinal study of U.S. Girls. Environ Health Perspect. (2016) 124:542–9. doi: 10.1289/ehp.1409309

4. Wan Y, Wu Q, Abu-Naia KO, Asimakopoulos AG, Covaci A, Gevao B, et al. Occurrence of perchlorate in indoor dust from the United States and eleven other countries: implications for human exposure. Environ Int. (2015) 75:166–71. doi: 10.1016/j.envint.2014.11.005

5. Sindelar JJ, Milkowksi AL. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide. (2012) 26:259–66. doi: 10.1016/j.niox.2012.03.011

6. Prakruthi BV, Nandini DB, Donoghue M, Praveen SB, Kumar KM, Ashwini R. Effects of salivary thiocyanate levels on oral mucosa in young adult smokers: a biochemical and cytological study. J Oral Maxillofac Pathol. (2018) 22:204–9. doi: 10.4103/jomfp.JOMFP_49_17

7. Kumarathilaka P, Oze C, Indraratne SP, Vithanage M. Perchlorate as an antimicrobial agent: a review. Environ Int. (2014) 120:388–93. doi: 10.1016/j.envint.2018.08.024

8. Qin X, Zhang T, Gan Z, Sun H. Spatial distribution of perchlorate, thiocyanate, and nitrate in the aquatic environment of Tianjin, China: environmental source analysis. Chemosphere. (2014) 111:201–8. doi: 10.1016/j.chemosphere.2014.03.082

9. Lau FK, de Castro BR, Mills-Herring I, Tao L, Valentin-Blasini L, Alwis KU, et al. Urinary perchlorate as a measure of dietary and drinking water exposure in a representative sample of the United States population 2001-2008. J Expo Sci Environ Epidemiol. (2013) 23:207–14. doi: 10.1038/jes.2012.108

10. Zhao X, Zhou P, Chen X, Li X, Ding L. Perchlorate-induced oxidative stress in isolated liver mitochondria. Ecotoxicology. (2014) 23:1846–53. doi: 10.1007/s10646-014-1312-9

11. Zhu F, Huang M, Jiao J, Zhiang P, Mao L, Zhang Y. Environmental exposure to perchlorate, nitrate, and thiocyanate in relation to obesity: a population-based study. Environ Int. (2019) 133(Pt B):105191. doi: 10.1016/j.envint.2019.105191

12. Zhang L, Fang C, Liu L, Liu X, Fan S, Li J, et al. A case-control study of urinary levels of iodine, perchlorate and thiocyanate and risk of papillary thyroid cancer. Environ Int. (2018) 120:388–93. doi: 10.1016/j.envint.2018.08.024

13. O’Brien KM, Upson K, Cook NR, Weinberg CR. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect. (2016) 124:220–7. doi: 10.1289/ehp.1509693

14. Jin R, Zhu X, Shrubsole MJ, Yu C, Xia Z, Dai Q. Associations of renal function with urinary excretion of metals: evidence from NHANES 2003-2012. Environ Int. (2018) 121(Pt 2):1355–62. doi: 10.1016/j.envint.2018.11.002

15. Aldosari M, Mendes SDR, Aldosari A, Aldosari A, de Abreu M. Factors associated with oral pain and oral health-related productivity loss in the USA, National Health and Nutrition Examination Surveys (NHANES), 2015-2018. PLoS One. (2021) 16:e0258268. doi: 10.1371/journal.pone.0258268

16. Yang SE, Park YG, Han K, Min JA, Kim SY. Association between dental pain and depression in Korean adults using the Korean National Health and Nutrition Examination Survey. J Oral Rehabil. (2016) 45:51–8. doi: 10.1111/jor.12343

17. Kim Y, Lee S, Kim J, Park EC, Jang SI. Long working hours are associated with unmet dental needs in south Korean male adults who have experienced dental pain. BMC Oral Health. (2019) 19:256. doi: 10.1186/s12903-019-0953-8

18. Kalburghi CV, Naik KL, Kokatnur MV, Warad S. Estimation and correlation of salivary thiocyanate levels in healthy and different forms of tobacco users having chronic periodontitis: a cross-sectional biochemical study. Contemp Clin Dent. (2014) 5:182–6. doi: 10.4103/0976-237X.132312

19. Shiue I. Urinary heavy metals, phthalates, phenols, thiocyanate, parabens, pesticides, polyaromatic hydrocarbons but not arsenic or polyfluorinated compounds are associated with adult oral health: USA NHANES, 2011-2012. Environ Sci Pollut Res Int. (2015) 22:15636–45. doi: 10.1007/s11356-015-4749-3

20. Madiyal A, Ajila V, Babu SG, Hegde S, Kumari S, Madi M, et al. Status of thiocyanate levels in the serum and saliva of non-smokers, ex-smokers and smokers. Afr Health Sci. (2018) 18:727–36. doi: 10.4314/ahs.v18i3.31

21. Scherer G. Carbamoylhydrosulfate and thiocyanate as biomarkers of exposure to carbon monoxide and hydrogen cyanide in tobacco smoke. Exp Toxicol Pathol. (2006) 58:101–24. doi: 10.1016/j.etp.2006.07.001

22. Cegolon L, Salata C, Piccoli E, Juarez V, Palu G, Mastrangelo G, et al. In vitro antiviral activity of hypothiocyanite against A/H1N1/2009 pandemic influenza virus. Int J Hyg Environ Health. (2014) 217:17–22. doi: 10.1016/j.ijheh.2013.03.001

23. Nedoboy PE, Morgan PE, Mocatta TJ, Richards AM, Winterbourn CC, Davies MJ. High plasma thiocyanate levels are associated with enhanced

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at: NHANES.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by NCHS. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

JY designed the study. JG performed statistical analysis. HZ and XC wrote the manuscript. All authors contributed to the article and approved the submitted version.
myeloperoxidase-induced thiol oxidation and long-term survival in subjects following a first myocardial infarction. *Free Radic Res.* (2014) 48:1256–66. doi: 10.3109/10715762.2014.947286

24. Liu Y, Burton T, Rayner BS, San Gabriel PT, Shi H, El Kazzi M, et al. The role of sodium thiocyanate supplementation during dextran sodium sulphate-stimulated experimental colitis. *Arch Biochem Biophys.* (2020) 692:108490. doi: 10.1016/j.abb.2020.108490

25. Whitehouse MW, Jones M. Pro-inflammatory activity in rats of thiocyanate, a metabolite of the hydrocyanic acid inhaled from tobacco smoke. *Inflamm Res.* (2009) 58:693–704. doi: 10.1007/s00011-009-0038-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Yu, Guo, Zhang and Cheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.