Autoimmune complications of COVID-19

Niloufar Yazdanpanah1,2 | Nima Rezaei1,2,3

1Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
2Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
3Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Correspondence
Nima Rezaei, Children’s Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran.
Email: rezaei_nima@tums.ac.ir and rezaei_nima@yahoo.com

Abstract
Coronavirus disease 2019 (COVID-19) is still propagating a year after the start of the pandemic. Besides the complications patients face during the COVID-19 disease period, there is an accumulating body of evidence concerning the late-onset complications of COVID-19, of which autoimmune manifestations have attracted remarkable attention from the first months of the pandemic. Autoimmune hemolytic anemia, immune thrombocytopenic purpura, autoimmune thyroid diseases, Kawasaki disease, Guillain-Barre syndrome, and the detection of autoantibodies are the cues to the discovery of the potential of COVID-19 in inducing autoimmunity. Clarification of the pathophysiology of COVID-19 injuries to the host, whether it is direct viral injury or autoimmunity, could help to develop appropriate treatment.

KEYWORDS
autoantibody, autoimmunity, COVID-19, cytopenia, SARS-CoV-2

1 | INTRODUCTION

The world has witnessed the emergence of the rapidly growing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since December 2019. Affecting almost all countries, areas, and territories with more than 195 million confirmed cases and over 4 million death worldwide at the time of this writing—July 26, 2021,1 this newly emerged virus has become the main health concern since late 2019.2 Molecular investigations have been conducted to provide a more detailed understanding of the SARS-CoV-2 viral structure that might help to design or repurpose potential drugs or vaccines;3–6 while laboratory and clinical surveys aim to discover the different clinical manifestations of this infection and its association with other diseases and health complications. For instance, according to previous reports on autoimmune manifestations and autoimmune-related markers in coronavirus disease 2019 (COVID-19) patients, a growing body of research has been devoted to the exploration of the association between COVID-19 infection and autoimmune conditions. Acute hemolytic anemia, macrophage activating syndrome, Kawasaki-like disease, Guillain-Barre syndrome (GBS), Miller Fisher syndrome (MFS), autoimmune thrombotic thrombocytopenic purpura, autoimmune skin manifestations, and detection of autoantibodies are some of the pieces of evidence pointing to the potential interconnection between autoimmunity and COVID-19.7–11 As COVID-19 could be considered as a predisposing factor for auto-reactivity and is involved in mechanisms contribute to the initiation of autoimmunity, investigating the mutual association of autoimmunity and COVID-19 is of interest. Meanwhile, outcomes of explorations about the molecular mechanisms and related pathways involved in the association of autoimmunity and COVID-19 might be beneficial for accelerating the process of designing the treatment strategy, if translated to clinical utilization.12

2 | INFECTION AND AUTOIMMUNITY

Infections have been known as the most important environmental trigger in the complex pathophysiology of autoimmune diseases. Different mechanisms are hypothesized to explain how infections might provoke autoimmune reactions. Epitope spreading, bystander activation, cross-reaction or molecular mimicry, and presentation of cryptic antigens are the suggested mechanisms.13 For instance, type 1 diabetes mellitus (T1DM) as one of the most prevalent autoimmune diseases has been suggested to be associated with coxsackievirus,14 cytomegalovirus (CMV),15 and enteroviruses.16 Different types of viral infections such as hepatitis C virus (HCV),17 CMV,18 dengue virus,19 and parvovirus B1920,21 have been postulated to be associated with systemic lupus erythematosus (SLE) that represent a wide
TABLE 1  Autoimmune conditions associated with viral infections

| Associated autoimmunity | Virus | References |
|-------------------------|-------|------------|
| T1DM                    | Coxsackievirus | Eizirik and Op de Beeck<sup>14</sup> |
|                         | CMV   | Pak et al.<sup>15</sup> |
|                         | Enteroviruses | Stene and Rewers<sup>16</sup> |
|                         | Rotavirus | Gómez-Rial et al.<sup>27</sup> |
| SLE                     | HCV   | Stözlé et al.<sup>28</sup> |
|                         | CMV   | Chen et al.<sup>18</sup> |
|                         | Dengue virus | Rajadhyaksha and Mehra<sup>19</sup> |
|                         | Parvovirus B19 | Aslanidis et al.<sup>20</sup> and Chabert and Kallel<sup>21</sup> |
| MS                      | EBV   | Guan et al.<sup>22</sup> |
|                         | Measles virus | Tucker and Paskauskas<sup>23</sup> |
|                         | VZV   | Sotelo et al.<sup>24</sup> |
|                         | CMV   | Thakolwiboon et al.<sup>25,26</sup> |
|                         | Theiler's virus | Miller et al.<sup>29</sup> |
| ME/CFS                  | HHV-6 | Ablashi et al.<sup>30</sup> |
|                         | EBV   | Holmes et al.<sup>31</sup> |
|                         | Enteroviruses | McGarry et al.<sup>32</sup> |
|                         | Lentiviruses | Holmes et al.<sup>33</sup> |
|                         | CMV   | Martin<sup>34</sup> |
| CD                      | Rotavirus | Gómez-Rial et al.<sup>27</sup> |
| AIH                     | EBV   | Cabibi<sup>35</sup> |
|                         | HCV   | Tampaki and Paskauskas<sup>36</sup> |
| MG                      | WNV   | McBride et al.<sup>37</sup> |
|                         | JEV   | He et al.<sup>38</sup> |
| RA                      | CMV   | Pera et al.<sup>39</sup> |
|                         | EBV   | Dostál et al.<sup>40</sup> |
| GBS                     | Zika virus | Smatti et al.<sup>41</sup> |
|                         | EBV   | Kuwabara<sup>42</sup> |
|                         | CMV   | Kuwabara<sup>42</sup> |
|                         | Measles virus | Esposito and Longo<sup>43</sup> |
|                         | Enterovirus D68 | Esposito and Longo<sup>43</sup> |
|                         | Influenza A | Esposito and Longo<sup>42</sup> |
| KD                      | Adenoviruses | Chang et al.<sup>44</sup> |
|                         | Enteroviruses | Chang et al.<sup>44</sup> |
|                         | Rhinoviruses | Chang et al.<sup>44</sup> |

Abbreviations: AIH, autoimmune hepatitis; CD, celiac disease; CMV, cytomegalovirus; EBV, Epstein-Barr virus; GBS, Guillain-Barré syndrome; HCV, hepatitis C virus; HHV, human herpesvirus; JEV, Japanese encephalitis virus; KD, Kawasaki disease; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; MG, myasthenia gravis; MS, multiple sclerosis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; T1DM, type 1 diabetes mellitus; VZV, varicella-zoster virus; WNV, West Nile virus.

A variety of autoimmune manifestations. Furthermore, multiple sclerosis (MS) has been found to be associated with Epstein-Barr virus (EBV),<sup>22</sup> measles virus,<sup>23</sup> Varicella-zoster virus,<sup>24</sup> and CMV<sup>25,26</sup> (Table 1). The aforementioned examples support the role of viral infections in the initiation of autoimmune diseases particularly in individuals with genetic susceptibility.

Considering the current challenges of the COVID-19 pandemic regarding the discovery of proper vaccine or treatment, mental and physical health complications of social isolation, and healthcare expenses, the huge burden of this pandemic is evident.<sup>45</sup> On the other hand, autoimmune diseases induce a noticeable burden to society, individuals, and the healthcare system as well, as these are prevalent chronic conditions with no definite treatment up to date.<sup>46,47</sup> Taken together, the concomitance of COVID-19 infection and autoimmune diseases potentially induce a huge burden worldwide, as either the occurrence of COVID-19 infection in patients with pre-existing autoimmune diseases or the initiation of autoimmune manifestations in individuals with COVID-19 are associated with different complications.

3 | AUTOIMMUNE COMPLICATIONS OF COVID-19 INFECTION

From the start of the outbreak, several reports have appeared on the autoimmune manifestations and autoimmune sequelae of COVID-19 infection. Taking into consideration that viruses can induce type II and IV hypersensitivity reactions besides their specific cytopathic effect, COVID-19-mediated autoimmunity might be rationalized.<sup>48</sup> Production of autoantibodies following a viral infection that potentially leads to tissue injury (cross-reaction) is the suggested mechanism for viral-induced autoimmunity based on the concept of type II hypersensitivity.<sup>49</sup> Regarding type IV hypersensitivity, it is suggested that activated T cells against the virus might damage the self-tissues by conducting an inflammatory environment or directly attacking the cells. Furthermore, there are many theories explaining how SARS-CoV-2 mediates a hyperinflammatory state that results in autoimmune reactions; for instance, vascular injury due to immune-complex depositions and antibody-dependent enhancement (ADE) with immune complexes formed by IgG that potentially boosts viral replication in Fc-receptor expressing cells.<sup>50</sup> The observation of ADE by anti-spike protein antibody of severe acute respiratory syndrome coronavirus (SARS-CoV) further supports the possible role of ADE in autoimmunity mediated by COVID-19.

Clinical and laboratory findings indicate the hyperactivity of the immune system in COVID-19 cases. A study has compared the concentration of inflammatory markers in intensive care unit (ICU) admitted patients versus non-ICU patients.<sup>51</sup> Interleukin-2 (IL-2), IL-7, IL-10, tumor necrosis factor-α (TNF-α), GCSF, MIP-1A, IP-10, MCP-1, IFN-γ, and IL-1β were detected at higher levels in the blood samples of ICU patients, of which the last four mentioned immune mediators potentially initiate cytokine storm by stimulating the T helper 1 (Th1) immune response.<sup>51</sup> This might
be correlated with the disease severity of ICU-admitted patients. Besides, immune dysregulation was observed in COVID-19 patients particularly in severe cases. Qin et al. have tested 452 cases of COVID-19 and recorded the immunological findings from testing their blood samples. They reported a higher elevated level of IL-2R, IL-6, IL-8, IL-10, and TNF-α in severe cases compared to non-severe cases. Moreover, although the total count of B cells, natural killer (NK) cells, and T cells were declined significantly, especially in severe cases, it was observed that T cells were influenced more significantly than others were. CD3⁺CD4⁺T helper cells were reduced as well as the CD3⁺CD8⁺ suppressor T cells, whereas CD3⁺CD8⁺CD28⁻ suppressor cells were much remarkably lower in severe cases but the decrease in CD4⁺CD8⁺HLA-DR⁺ suppressor T cells level was not reported to be more significant in severe cases than in non-severe patients. Furthermore, naïve T cells and induced T regulatory (iTreg) cells (CD45⁻CD3⁺CD4⁺CD25⁺CD127low⁺) that are in charge of impeding the hyperinflammation and autoimmune reactions, represented a more prominent decrease in patients with severe COVID-19. Considering all the aforementioned findings regarding the immune dysregulation evidence in infected patients with COVID-19, postulating an autoimmunity process in the course of COVID-19 infection is of interest.

The described immune dysregulation along with the overproduction of cytokines that potentially leads to self-tissue damage is known as secondary hemophagocytic lymphohistiocytosis (HLH) that could usually appear following viral infections. The secondary HLH is documented in SARS-CoV patients as well. Although it has been presumed from the early time of the pandemic that COVID-19 does not severely affect children and the infection is mostly asymptomatic, observation of hyperinflammatory symptoms that potentially could conduct a favorable state for the initiation of autoimmune reactions was one of the important clues to the association of autoimmunity with COVID-19. Since late April 2020, the first reports of a multisystem inflammatory syndrome in children (MIS-C) related to COVID-19, in which its manifestations mimic Kawasaki disease, acquired considerable attention. Gastrointestinal, cardiovascular, hematologic, mucocutaneous, and respiratory involvement was of the most common findings in COVID-19 pediatric patients presented with MIS-C, respectively. These findings are in line with the obtained results from the same studies. As the antibody titer against COVID-19 was positive in the mentioned patients, it is fair to attribute the hyperinflammatory environment to the COVID-19-mediated cytokine storm than the direct viral injury to the host’s cells. A hyperinflammatory environment may lead to the activation of immune components that could result in autoimmune reactions. MIS-C demonstrates both type II and type IV hypersensitivity characteristics. The delay between the emergence of autoinflammatory syndromes and COVID-19 spread peaks might strengthen the possibility of virus-induced immune-mediated mechanisms underlying the reported clinical manifestations. MIS-C could occur during the whole course of the COVID-19 infection, while autoimmune manifestations in infected adults are often observed in the early active phase of the disease.

Different reports regarding the autoimmune associations of COVID-19 infection have gradually started to emerge. For instance, the first documented autoimmune reaction to the human nervous system was a case of a patient who developed weakness of her lower limbs that progressed to upper limbs within three days. This patient’s GBS diagnosis was confirmed by CSF test and electromyography. Meanwhile, she tested positive for COVID-19 while having GBS symptoms. Incidence of different peripheral nervous involvement stages in COVID-19 infected individuals, known as MFS, acute motor axonal neuropathy, and acute inflammatory demyelinating polyneuropathy has been reported through more studies. Existing reports on the neurologic autoimmune manifestations following infection with other coronaviruses such as SARS-CoV and Middle East respiratory syndrome coronavirus, further support the notion that COVID-19 might be capable of inducing autoimmune reactions against the nervous system.

Immune thrombocytopenic purpura (ITP) is defined as immunological destruction of platelets that result in a low number of circulating platelets. It has been reported in association with viral infections such as human immunodeficiency virus and HCV that are the well-described ones. Thrombocytopenia in a moderate form is reported in about 36% of admitted COVID-19 patients. However, a number of reports are indicative of the occurrence of thrombocytopenia in COVID-19 patients. Meanwhile, a meta-analysis suggested that thrombocytopenia is more pronounced in patients with a severe form of COVID-19 infection. Similar to COVID-19, SARS-CoV has been reported to be associated with thrombocytopenia that is attributed to direct viral injury to endothelium and the damage from mechanical ventilation potentially stimulating platelet activation and aggregation in the lungs, which in turn decline the number of platelets. However, the mechanism of ITP in COVID-19 remains to be explored. A case of Evans syndrome that is the concurrent incidence of ITP and hemolytic anemia is reported in a patient with COVID-19. Considering other COVID-19 cases that had developed hemolytic anemia besides the mentioned cases of ITP patients, the incidence of Evans syndrome could be the result of autoimmune reactions following COVID-19 infection.

There are several reports concerning the autoimmune endocrine pathologies following COVID-19 infection, for instance, autoimmune thyroid diseases. Lui et al. in a recent cohort studied the thyroid dysfunctions in admitted COVID-19 patients. They observed that incidence of thyroiditis during the convalescence period was rare; however, imbalances in the thyroid function tests and the detection of anti-thyroid antibodies in these patients highlighted the importance of thyroid screening tests in patients who have a history of COVID-19. Nevertheless, patients who had detectably altered thyroid function at admission recovered through the convalescence period. An overview of the recent reports regarding the autoimmune complications of COVID-19 is provided in Table 2.
| Autoimmune disease                  | Country         | Study design | Number of patients | Reference          |
|-------------------------------------|-----------------|--------------|--------------------|--------------------|
| Guillain-Barre syndrome             | Italy           | Case series  | 2                  | Assini et al. 89   |
|                                     | France          | Case series  | 2                  | Bigaut et al. 90   |
|                                     | United States   | Case series  | 2                  | Chan et al. 91     |
|                                     | Iran            | Case series  | 2                  | Ebrahimzadeh et al. 92 |
|                                     | Brazil          | Cohort       | 6                  | Espindola et al. 93 |
|                                     | Italy           | Cohort       | 30                 | Filosto et al. 84  |
|                                     | Italy           | Cohort       | 17                 | Filosto et al. 95  |
|                                     | Spain           | Cohort       | 11                 | Filosto et al. 96  |
|                                     | Italy           | Case series  | 6                  | Gamero et al. 97   |
|                                     | India           | Case series  | 2                  | Goel et al. 98     |
|                                     | Belgium         | Cohort       | 3                  | Goel et al. 99     |
|                                     | Spain           | Case series  | 2                  | Gutiérrez-Ortiz et al. 74 |
|                                     | UK              | Cohort       | 25                 | Keddie et al. 100  |
|                                     | France          | Case series  | 2                  | Cleret de Langavant et al. 101 |
|                                     | Switzerland     | Case series  | 3                  | Lascano et al. 102 |
|                                     | Italy           | Case series  | 5                  | Manganotti et al. 103 |
|                                     | France          | Cohort       | 15                 | Meppiel et al. 104 |
|                                     | India           | Case series  | 4                  | Nanda et al. 105   |
|                                     | UK              | Case series  | 3                  | Paterson et al. 106 |
|                                     | Iran            | Case series  | 2                  | Paybast et al. 107 |
|                                     | Italy           | Case series  | 5                  | Toscano et al. 66  |
| Immune thrombocytopenic purpura     | UK              | Case series  | 3                  | Ahmed et al. 108   |
|                                     | The Netherlands | Case series  | 3                  | Bomhof et al. 109  |
|                                     | United States   | Case series  | 2                  | Guirguis et al. 110 |
|                                     | France          | Case series  | 3                  | Lorenzo-Villalba et al. 111 |
|                                     | France          | Case series  | 14                 | Mahévas et al. 112 |
|                                     | Italy           | Case series  | 3                  | Pascolini et al. 113 |
|                                     | Portugal         | Case series  | 2                  | Pedroso et al. 114 |
|                                     | France          | Case series  | 3                  | Revuz et al. 115   |
|                                     | China/France    | Case series  | 2                  | Yang et al. 116    |
|                                     | Turkey           | Case series  | 2                  | Aydin and Demircan 117 |
| Autoimmune hemolytic anemia         | France          | Case series  | 2                  | Huscenot et al. 118 |
|                                     | United States   | Case series  | 2                  | Huscenot et al. 119 |
|                                     | France          | Case series  | 7                  | Lazarian et al. 120 |
| Kawasaki disease                    | Oman            | Case series  | 6                  | Al Maskari et al. 121 |
|                                     | France          | Case series  | 35                 | Belhadjer et al. 122 |
|                                     | United States   | Cohort       | 99                 | Dufort et al. 122  |
|                                     | United States   | Cohort       | 186                | Feldstein et al. 59 |

(Continues)
Interestingly, different autoantibodies have been detected in COVID-19 patients. For instance, antinuclear antibodies (ANA), lupus anticoagulant, anti-β2glycoprotein 1, and an anticardiolipin antibody that could be the cause of thromboembolic events in COVID-19 patients. Moreover, anti-Ro/SSA and autoantibody against type I IFN were reported detectable in COVID-19 patients. In addition, existing documents regarding the autoimmune cutaneous manifestations of COVID-19 and the onset of Grave’s disease after COVID-19 infections further support the possibility of COVID-19-mediated autoimmunity.

4 | CONCLUSION

Autoimmune diseases are chronic disabling conditions that negatively affect individuals, families, society, and the healthcare system. Besides this, pandemics are always associated with different concurrent complications and challenges, as well as potential sequelae that may emerge either early or late after the pandemics. According to the evidence of COVID-19-mediated autoimmunity, it might be fair to think of autoimmunity as a serious complication of COVID-19. Understanding the pathophysiology of autoimmune manifestations in COVID-19 patients might help further elucidating the mechanism of viral injury to the host’s body, whether it is the direct viral injury or autoimmune reactivity, which in turn could lead to a better and more efficient design of a treatment strategy. On the other hand, presuming the reactivity of the immune system as a result of COVID-19 infection and considering the earlier experience of the delay between the surge in the number of MIS-C or Kawasaki-like disease and the spread peaks of COVID-19, a time gap is expectable between the COVID-19 pandemic and autoimmune presentations. Hence, a more precise understanding of the involved mechanisms potentially helps to monitor and prevent the incidence or exacerbation of autoimmune manifestations.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

ORCID

Nima Rezaei  [http://orcid.org/0000-0002-3836-1827]

REFERENCES

1. WHO. Coronavirus Disease (COVID-19) Pandemic, Numbers at a Glance. 2020. Accessed January 25, 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=CjwKCAiA9bmABhBbEiwA5b35V4ptiHlgzds5BnPuUA_eDpR4oW1dZrg3XkA_ExcfoevCz79M8qX8RoCbewQAvD_BwE
2. Hanaei S, Rezaei N. COVID-19: developing from an outbreak to a pandemic. Arch Med Res. 2020;51:582-584.
3. Mohamed K, Yazdanpanah N, Saghzadeh A, Rezaei N. Computational drug discovery and repurposing for the treatment of COVID-19: a systematic review. Bioorg Chem. 2021;106:104490.
4. Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug development and medicinal chemistry efforts toward SARS-coronavirus and COVID-19 therapeutics. ChemMedChem. 2020;15(11):907-932.
5. Burton DR, Walker LM. Rational vaccine design in the time of COVID-19. Cell Host Microbe. 2020;27(5):695-698.
6. Lotfi M, Rezaei N. SARS-CoV-2: a comprehensive review from pathogenicity of the virus to clinical consequences. J Med Virol. 2020;92:1864-1874.

7. Albiol N, Awol R, Martino RJAoH. Autoimmune thrombotic thrombocytopenic purpura (TTP) associated with COVID-19. Ann Hematol. 2020;99:1673-1674.

8. Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020;16(8):413-414.

9. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680.

10. Günther C, Aschoff R, Beissert S. Cutaneous autoimmune diseases during COVID-19 pandemic. J Eur Acad Dermatol Venereol. 2020;34(11):e667-e670.

11. Vlachoyiannopoulos PG, Magira E, Alexopoulos H, et al. Auto-antibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Ann Rheum Dis. 2020;79(12):1661-1663.

12. Saghazadeh A, Rezaei N. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: anti-antibodies, immunoglobulins, and corticosteroids. Int Immunopharmacol. 2020;84:106560.

13. Ercolini AM, Miller SD. The role of infections in autoimmune diseases. Clin Exp Immunol. 2009;155(1):1-15.

14. Eizirik DL, Op de Beeck A. Coxsackievirus and type 1 diabetes. Trends Endocrinol Metab. 2018;29(3):137-139.

15. Pak CY, Eun HM, McArthur RG, Yoon JW. Association of coxsackievirus infection with type 1 diabetes. Lancet. 1988;332(8601):1-4.

16. Stözel U, Schuppan D, Tillmann HL, et al. Autoimmunity and HCV infection in porphyria cutanea tarda: a controlled study. Cell Mol Biol. 2002;48(1):43-47.

17. Chen J, Zhang H, Chen P, et al. Correlation between systemic lupus erythematosus and cytomegalovirus infection detected by different methods. Clin Rheumatol. 2015;34(4):691-698.

18. Rajadhyaksha A, Mehra S. Dengue fever evolving into systemic lupus erythematosus and lupus nephritis: a case report. Lupus. 2012;21(9):999-1002.

19. Aslanidis S, Pyraposopoulou A, Kontotasios K, Doumas S, Zamboulis C. Parvovirus B19 infection and systemic lupus erythematosus: activation of an aberrant pathway? Eur J Intern Med. 2008;19(5):314-318.

20. Chertoff P, Kellel H. Simultaneous presentation of parvovirus B19 infection and systemic lupus erythematosus in a patient: description and review of the literature. Eur J Case Rep Intern Med. 2020;7(12):001729.

21. Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B, Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neurology. 2019;84(12):373-386.

22. Tucker WG, Paskauskas AR. The MSMV hypothesis: measles virus and multiple sclerosis, etiology and treatment. Med Hypotheses. 2008;71(5):682-689.

23. Sotelo J, Ordoñez G, Pineda B. Varicella-zoster virus at relapses of multiple sclerosis. J Neurol. 2007;254(4):493-500.

24. Thakolwiboon S, Zhao-Fleming H, Karukote A, Pachariyanon P, Williams HG, Avila M. Regional differences in the association of cytomegalovirus seropositivity and multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord. 2020;15:102393.

25. Vanheusden M, Broux B, Welten S, et al. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. Sci Rep. 2017;7(1):663.

26. Gómez-Rial J, Rivero-Calle I, Salas A, Martínón-Torres F. Rotavirus and autoimmunity. J Infect. 2020;81(2):183-189.

27. Stözel U, et al. Autoimmunity and HCV infection in porphyria cutanea tarda: a controlled study. Cell Mol Biol. 2002;48(1):43-47.

28. Miller SD, Katz-Levy, Neville KL, Vanderlugt CL. Virus-induced autoimmunity: epitope spreading to myelin autoepitopes in Theiler's virus infection of the central nervous system. Adv Virus Res. 2001;56:199-217.

29. Abalash DV, Eastman HB, Owen CB, et al. Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue syndrome (CFS) patients. J Clin Virol. 2000;16(3):179-191.

30. Holmes GP, Kaplan JE, Stewart JA, Hunt B, Pinsky SF, Schonberger LB. A cluster of patients with a chronic mononucleosis-like syndrome. Is Epstein-Barr virus the cause? JAMA. 1987;257(17):2297-2302.

31. McGarry F, Gow J, Behan PO. Enterovirus in the chronic fatigue syndrome. Ann Intern Med. 1994;120(11):972-973.

32. Holmes MJ, Diack DS, Easingwood RA, Cross JP, Carlisle BE. Electron microscopic immunocytochemical profiles in chronic fatigue syndrome. J Psychairt. 1997;31(1):115-122.

33. Martin WJ. Detection of RNA sequences in cultures of a stealth virus isolated from the cerebrospinal fluid of a health care worker with chronic fatigue syndrome. Case report. Pathobiology. 1997; 65(1):57-60.

34. Cabbí D. Autoimmune hepatitis following Epstein-Barr virus infection. BMJ Case Rep. 2008;2008:bcr0620080071.

35. Tamakí M, Koskins J. Extrahepatic immune related manifestations in chronic hepatitis C virus infection. World J Gastroenterol. 2014;20(35):12372-12380.

36. McBride W, Gill KR, Wiviott L. West Nile virus infection with hearing loss. J Infect. 2006;53(5):e203-e205.

37. He D, Zhang H, Xiao J, et al. Molecular and clinical relationship between live-attenuated Japanese encephalitis vaccination and childhood onset myasthenia gravis. Ann Neurol. 2018;84(3):386-400.

38. Pera A, Broadley I, Davies KA, Kern F. Cytomegalovirus as a driver of excess cardiovascular mortality in rheumatoid arthritis: a red herring or a smoking gun? Circ Res. 2017;120(2):274-277.

39. Dostal C, Newkirk MM, Duffy KN, et al. Herpes viruses in multicase families with rheumatoid arthritis and systemic lupus erythematosus. Ann NY Acad Sci. 1997;815:334-337.

40. Smatti MK, Cyprian FS, Nasrallah G, Al Thani AA, Almishaal RO, Yasine HM. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses. 2019;11(8):762-880.

41. Kuwabora S, Guillin-Barré syndrome: epidemiology, pathophysiology and management. Drugs. 2004;64(6):597-610.

42. Esposito S, Longo MR, Guillin-Barré syndrome. Autoimmune Rev. 2017;16(11):96-101.

43. Chang LY, Lu CY, Shao PL, et al. Viral infections associated with Kawasaki disease. J Forms Med Assoc. 2014;113(3):148-154.

44. Miller IF, Becker AD, Grenfell BT, Metcalf CE. Disease and health of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3):197-207.

45. Miller IF, Becker AD, Grenfell BT, Metcalf CE. Disease and health of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3):197-207.

46. Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmune Rev. 2003;2(3):119-125.

47. Lin Y, Askonas B. Biological properties of an influenza A virus-specific killer T cell clone. Inhibition of virus replication in vivo and...
induction of delayed-type hypersensitivity reactions. J Exp Med. 1981;154(2):223-234.

49. Zhao Z-S, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science. 1998;279(5355):1344-1347.

50. Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020;5(10):1185-1191.

51. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506.

52. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768.

53. George MR. Hemophagocytic lymphohistiocytosis: review of etiologies and management. J Blood Med. 2014;5:69-86.

54. Filippovich A, McClain K, Grom A. Histiocytic disorders: recent insights into pathophysiology and practical guidelines. Biol Blood Marrow Transplant. 2010;16(1 suppl):S82-S89.

55. Cascio A, Pernice LM, Barberi G, et al. Secondary hemophagocytic lymphohistiocytosis in zoonoses. A systematic review. Eur Rev Med Pharmacol Sci. 2012;16(10):1324-1337.

56. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020;382(17):1663-1665.

57. Riollano M, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus type 1: autoimmune disease after viral infection. Science. 1998;279(5355):1344-1347.

58. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? The Lancet Neurology. 2020;19(5):383-384.

59. Alberti P, Beretta S, Piatti M, et al. Guillain-Barré syndrome related to COVID-19 infection. Neural Neuroimmunol Neuroinflamm. 2020;7(4):e741.

60. Mostel Z, Ayat P, Capric V, Trimingham A, McFarlane SI. Guillain-Barré syndrome in a COVID-19 patient: a case report and review of management strategies. Am J Med Case Rep. 2021;9(3):198-200.

61. Bueso T, Montalvan V, Lee J, et al. Guillain-Barré syndrome and COVID-19: a case report. Clin Neurol Neurosurg. 2021;200:106413.

62. Reyes-Bueno JA, García-Trujillo L, urbaneja P, et al. Miller-Fisher syndrome after SARS-CoV-2 infection. Eur J Neurol. 2020;27(9):1759-1761.

63. Ray A. Miller Fisher syndrome and COVID-19: is there a link? BMJ Case Rep. 2020;13(8):e236419.

64. Gutiérrez-Ortiz C, Méndez-Guerrero A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;95(5):e601.

65. Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014;194:145-158.

66. Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv Exp Med Biol. 2014;807:75-96.

67. Liebman HA. Viral-associated immune thrombocytopenic purpura. Hematology. 2008;2008(1):212-218.

68. Guan W-J, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.

69. Levraut M, Ottavi M, Lechtman S, DeLoughery TG. Simultaneous thrombocytopenic purpura after COVID-19 infection. Int J Lab Hematol. 2021;43(1):e28-e30.

70. Yang Y, Zhao J, Wu J, Teng Y, Xia X. A rare case of immune thrombocytopenic purpura, secondary to COVID-19. J Med Virol. 2020;92(11):2358-2360.

71. Hindlerden F, Yonal-Hindlerden I, Akar E, Kart-Yasar K. Covid-19 associated autoimimmune thrombotic thrombocytopenic purpura: report of a case. Thromb Res. 2020;195:136-138.

72. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145-148.

73. Yang M, Ng MH, Li CK. Thrombocytopenia in patients with severe acute respiratory syndrome. Hematology. 2005;10(2):101-105.

74. Hindlerden F, Yonal-Hindlerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune haemolytic anemia in COVID-19 infection, safely treated with steroids. Mediter J Hematol Infect Dis. 2020;12(1):2020053.

75. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Latent rheumatic, thyroid and phospholipid autoimmunity in hospitalized patients with severe coronavirus disease 2019 (COVID-19) infections: a case series. Case Rep Rheumatol. 2021;2021:971513.

76. Barré syn-...
91. Chan A, Rose J, Alvarez E, et al. A case series of Guillain-Barré syndrome following Covid-19 infection in New York. *Neurrol Clin Pract.* 2020;10:510-519. https://doi.org/10.1212/CPJ.0000000000000880

92. Ebrahimzadeh SA, Ghoreishi A, Rahimian N. Guillain-Barré syndrome associated with COVID-19. *Neurrol Clin Pract.* 2021;11(2); e196.

93. Espindola OM, Brandão CO, Gomes Y, et al. Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. *Int J Infect Dis.* 2021;102:155-162.

94. Filosto M, Cotti Piccinelli S, Gazzina S, et al. Guillain-Barré syndrome and COVID-19: an observational multicentre study from two Italian hotspot regions. *J Neurol Neurosurg Psychiatry.* 2021;92(7):751-756.

95. Foresti C, Servalli MC & Frigeni B et al. COVID-19 provoking Guillain–Barré syndrome: the Bergamo case series. *Eur J Neurol.* [Published online September 22, 2020]. https://doi.org/10.1111/ene.14549

96. Fragiel M, Miró Ò, Llorens P, et al. Incidence, clinical, risk factors and outcomes of Guillain-Barré in covid-19. *Ann Neurol.* 2021;89(3):598-603.

97. Gamero M, Del Sette M, Assini A, et al. COVID-19-related and not related Guillain-Barré syndromes share the same management pitfalls during lock down: the experience of Liguria in Italy. *J Neurol Sci.* 2020;418:117114.

98. Goel K, Kumar A, Diwan S, et al. Neurological manifestations of COVID-19: a series of seven cases. *Ind J Critic Care Med.* 2021;25(2):219-223.

99. Guilinot A, Maldonado Sloatjes S, Sellimi A, et al. Immune-mediated neurological syndromes in SARS-CoV-2-infected patients. *J Neurol.* 2021;268(3):751-757.

100. Keddie S, Pakpoo J, Mousele C, et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. *Brain.* 2021;144(2):682-693.

101. Cleret de Langavant L, Petit A, Nguyen Q, et al. Clinical description of the broad range of neurological presentations of COVID-19: a retrospective case series. *Rev Neurol.* 2021;177(3):275-282.

102. Lascano AM, Epiney JB, Coen M, et al. SARS-CoV-2 and Guillain-Barré syndrome: AIDP variant with a favourable outcome. *Eur J Neurol.* 2020;27(9):1751-1753.

103. Manganotti P, Bellavita G, D’Acunto L, et al. Clinical neurophysiology and cerebrospinal liquor analysis to detect Guillain-Barré syndrome and polyneuropathies in COVID-19 patients: a case series. *J Med Viro.* 2021;93(2):766-774.

104. Meppiel E, Peifer-Smadja N, Maury A, et al. Neurologic manifestations associated with COVID-19: a multicentre registry. *Clin Microbiol Infect.* 2021;27(3):458-466.

105. Nanda S, Handa R, Prasad A, et al. Covid-19 associated Guillain-Barré Syndrome: contrasting tale of four patients from a tertiary care centre in India. *Am J Emerg Med.* 2021;39:125-128.

106. Paterson RW, Brown RL, Benjamin L, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. *Brain.* 2020;143(10):3104-3120.

107. Paybast S, Gorji R, Mayvandadi S, Guillain-Barré Syndrome as a Neurological Complication of Novel COVID-19 Infection: a case report and review of the literature. *Neurologist.* 2020;25(4):101-103.

108. Ahmed MZ, Khakwani M, Venkatadasari I, et al. Thrombocytopenia as an initial manifestation of COVID-19: case series and literature review. *Br J Haematol.* 2020;189(6):1057-1058.

109. Bomhof G, Mutsaers P, Leebeek F, et al. COVID-19-associated immune thrombocytopenia. *Br J Haematol.* 2020;190(2):e61-e64.

110. Guirguis N, Rehman T, Shams Y, et al. SARS-CoV-2 Infection Inducing immune thrombocytopenic purpura: case series. *Ochsner J.* 2021;21(2):187-189.

111. Lorenzo-Villalba N, Zulfiqar AA, Auburtin M, et al. Thrombocytopenia in the course of COVID-19 infection. *Eur J Case Rep Intern Med.* 2020;7(6):001702.

112. Mahévas M, Mouis G, Andrés E, et al. Clinical characteristics, management and outcome of COVID-19-associated immune thrombocytopenia: a French multicentre series. *Br J Haematol.* 2020;190(4):e224-e229.

113. Pascolini S, Granito A, Muratori L, Lenzi M, Muratori P. Coronavirus disease associated immune thrombocytopenia: causation or correlation? *J Microbiol Immunol Infect.* 2021;54(3):531-533.

114. Pedroso A, Frade L, Trevas S, Correia MJ, Esteves AL. Immune thrombocytopenic purpura—different presentations in two COVID-19 patients. *Cureus.* 2020;12(10):e11202.

115. Revuz S, Vernier N, Saadi L, Campagne J, Poussing S, Maurier F. Immune thrombocytopenic purpura in patients with COVID-19. *Eur J Case Rep Intern Med.* 2020;7(7):001751.

116. Yang Y, Zhao J, Wu J, Teng Y, Xia X. A rare case of immune thrombocytopenic purpura, secondary to COVID-19. *J Med Virol.* 2020;92(11):2358-2360.

117. Aydin FY, Demircan V. Diagnosis and management of coronavirus disease-associated immune thrombocytopenia: a case series. *Rev Soc Bras Med Trop.* 2021;54:e0029.

118. Huscenot T, Galland J, Ouvrat M, et al. SARS-CoV-2-associated cold agglutinin disease: a report of two cases. *Ann Hematol.* 2020;99(8):1943-1944.

119. Jensen CE, Wilson S, Thombre A, Weiss S, Ma A. Cold agglutinin syndrome as a complication of COVID-19 in two cases. *Clin Infect Pract.* 2020;7:100041.

120. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. *Br J Haematol.* 2020;190(1):29-31.

121. Al Maskari N, Al Mukhaini K, Al Abrawi S, Al Reesi M, Al Abulsalam J, Elsidig N. SARS-CoV-2-related multisystem inflammatory syndrome in children: a case series. *Sultan Qaboos Univ Med J.* 2021;21(2):e302-e307.

122. Dufort EM, Koumans EH, Chow EJ, et al. Multisystem inflammatory syndrome in children (MIS-C) in New York State. *N Engl J Med.* 2020;383(4):347-358.

123. Hasan MR, Al Zubaidi K, Diab K, et al. COVID-19 related multisystem inflammatory syndrome in children (MIS-C): a case series from a tertiary care pediatric hospital in Qatar. *BMC Pediatr.* 2021;21(1):267.

124. Ionescu MD, Taras R, Dombici B, Balgradean M, Berghrea EC, Nicolescu A. The challenging diagnosis of pediatric multisystem inflammatory syndrome associated with Sars-Cov-2 infection—two case reports and literature review. *J Pers Med.* 2021;11(4).

125. Kurz H, Gombala T. Multisystem inflammatory syndrome in children (MIS-C)—a case series in December 2020 in Vienna, Austria. *Front Pediatr.* 2021;9:656768-656768.

126. Luna-Muñoz C, Reyes-Florian G, Seminario-Aliaga M, Stapleton-Herbozo A, Correa-López LE, Quiñones-Laveriano DM. Pediatric inflammatory multisystem syndrome associated with COVID-19: a report of 10 cases in a Peruvian hospital. *Medwave.* 2021;21(2):e8142.

127. Mamishi S, Movahedi Z, Mohammadi M, et al. Multisystem inflammatory syndrome associated with SARS-CoV-2 infection in 45 children: a first report from Iran. *Epidemiol Infect.* 2020;148:e196.

128. Pouletty M, Borocco C, Ouldall N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawasaki-COV-19): a multicentre cohort. *Ann Rheum Dis.* 2020;79(8):999-1006.
129. Ramcharan T, Nolan O, Lai CY, et al. Paediatric inflammatory multi-system syndrome: temporally associated with SARS-CoV-2 (PIMS-TS): cardiac features, management and short-term outcomes at a UK Tertiary Paediatric Hospital. Pediatr Cardiol. 2020;41(7):1391-1401.

130. Wehl G, Franke J, Frühwirth M, Edlinger M, Rauchenzauner M. Successful treatment of pediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS) with split doses of immunoglobulin G and estimation of PIMS-TS incidence in a county district in southern Germany. Healthcare. 2021;9(4):481-491.

131. Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 2020;324(3):259-269.

132. Mateu-Salat M, Urgell E, Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest. 2020;43(10):1527-1528.

133. Chen M, Zhou W, Xu W. Thyroid function analysis in 50 patients with COVID-19: a retrospective study. Thyroid. 2021;31(1):8-11.

134. Gazzaruso C, Carlo Stella N, Mariani G, et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin Rheumatol. 2020;39(7):2095-2097.

135. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876.

136. Fuji H, Tsuji T, Yuba T, et al. High levels of anti-SSA/Ro antibodies in COVID-19 patients with severe respiratory failure: a case-based review: High levels of anti-SSA/Ro antibodies in COVID-19. Clin Rheumatol. 2020;39(11):3171-3175.

137. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585.

138. Sarzaeim M, Rezaei N. Kawasaki disease and multisystem inflammatory syndrome in children with COVID-19. SN Compr Clin Med. 2020:1-6.

How to cite this article: Yazdanpanah N, Rezaei N. Autoimmune complications of COVID-19. J Med Virol. 2022;94:54-62. https://doi.org/10.1002/jmv.27292