INVERSION FORMULAS AND RANGE CHARACTERIZATIONS FOR THE ATTENUATED GEODESIC RAY TRANSFORM

YERNAT M. ASSYLBEKOV, FRANÇOIS MONARD, AND GUNTHER UHLMANN

Abstract. We present two range characterizations for the attenuated geodesic X-ray transform defined on pairs of functions and one-forms on simple surfaces. Such characterizations are based on first isolating the range over sums of functions and one-forms, then separating each sub-range in two ways, first by implicit conditions, second by deriving new inversion formulas for sums of functions and one-forms.

1. Introduction

Let \((M, g)\) be a smooth compact oriented Riemannian surface with boundary \(\partial M\), with unit tangent bundle \(SM := \{(x, v) \in TM : |v|_{g(x)} = 1\}\) and inward/outward boundaries

\[\partial_{\pm}SM = \{(x, v) \in SM : x \in \partial M, \pm \langle v, \nu_x \rangle_{g(x)} \geq 0\},\]

where \(\nu_x\) is the unit inward normal at \(x \in \partial M\). Denote \(\varphi_t : SM \to SM\) the geodesic flow, written as \(\varphi_t(x, v) = (\gamma_{x,v}(t), \dot{\gamma}_{x,v}(t))\) and defined for \(-\tau(x, -v) \leq t \leq \tau(x, v)\), where \(\tau(x, v)\) is the first exit time of the geodesic starting at \((x, v)\). Throughout the paper, we assume that \((M, g)\) is simple, meaning that the boundary is strictly convex and that any two points on the boundary are joined by a unique minimizing geodesic. In particular, this implies that \((M, g)\) is simply connected and that \(\tau(x, v)\) is bounded on \(SM\) (i.e., \((M, g)\) is non-trapping). For \(a \in C^\infty(M, \mathbb{C})\), the object of study is the attenuated geodesic ray transform \(I_a : C^\infty(SM) \to C^\infty(\partial_+ SM)\) defined for \(f \in C^\infty(SM)\) as

\[I_a f(x, v) = \int_0^{\tau(x, v)} f(\varphi_t(x, v)) \exp \left(\int_0^t a(\gamma_{x,v}(s)) \, ds\right) \, dt, \quad (x, v) \in \partial_+ SM.\]

The present article aims at providing range characterizations for this transform over pairs of functions and one-forms, or equivalently, when the integrand \(f\) above takes the form \(f(x, v) = f_0(x) + \alpha_x(v)\) for \([f_0, \alpha]\) a pair of a function and a one-form. As the transform above models some medical imaging modalities such as Computerized Tomography and Ultrasound Doppler Tomography in media with variable refractive index, range characterizations are useful to project noisy data onto the range of a given measurement operator before inverting for the unknown \((f_0, \alpha)\) here). In media with constant refractive index, modelled by the Euclidean metric in the parallel geometry, the problem was extensively studied \([19, 17, 2, 8, 38]\), and the range characterization was already a challenging issue yet to be solved \([18]\).
Recently, range characterizations for the attenuated transform on convex Euclidean domains were provided in terms of Hilbert transforms with respect to A-analytic function theory \`a la Bukhgeim, treating the case of functions \[31\], vector fields \[30\] and two-tensors \[29\], though such results are limited to Euclidean settings as A-analytic function theory has not yet been developed on general surfaces.

In the case of manifolds with no symmetries, parallel geometry does not exist and one must work with fan-beam coordinates. The scalar case has been studied in \[32, 15\] in the geodesic case, and in \[14\] in the Euclidean, fan-beam case, mainly focused on injectivity, stability and inversion procedures.

On to range characterizations, the first one in terms of boundary operators was provided by Pestov and Uhlmann in \[26\], later generalized to the case of transport with unitary connection, with further applications to the range characterization of the unattenuated transform over higher-order tensors \[22\]. Recently in \[16\], the range characterization in \[26\] was proved by the second author to be a generalization of the classical moment conditions in the Euclidean setting.

In the approach coming from \[26\], there is a boundary operator P which only depends on the scattering relation and the fiberwise Hilbert transform, and which characterizes the unattenuated transform over functions and one-forms. Further splitting of P into the sum $P_+ + P_-$ allows to separate ranges over functions and one-forms. A major challenge in the attenuated case is that, despite the fact that a similar operator exists for the ray transform over pairs (a fact which is one of the first features of this article), the splitting mentioned above is no longer straightforward. We then propose two approaches to separate the sub-ranges within the range over pairs.

The first approach is an implicit description given by adding constraints on the preimage by the P operator above, while the second one relies on inversion formulas for each term of the pair, from the data of both.

In \[15\], the second author provides inversion formulas for the attenuated ray transforms for functions and vector fields, including one which takes the form of a Fredholm equation, in which the operator may depend on the attenuation coefficient. The formulas presented here allows inversions for pairs (function + one-form) modulo natural obstructions. Moreover, the integrands can be supported up to the boundary. The formulas are exact provided that one can invert the unattenuated transform over functions and solenoidal vector fields. In that regard, the approach does not suffer from whether the attenuation is too low or too high as in \[15\]. Additionally, it is generalized to complex-valued attenuations, which requires using both holomorphic and antiholomorphic integrating factors, as in the first inversion procedure presented in \[32\]. An additional tool which is introduced and allows to extract information in a systematic fashion, is a way to turn transport solutions with holomorphic right-hand sides into holomorphic solutions themselves, by manipulating their boundary values. In some sense, this operation is to be understood as a change in the qualitative features of the solutions by “data” processing.

We now state the main results and give an outline of the remainder of the article in the next section.
2. Statements of main results

In what follows, for \(F \) some function space \((C^k, L^p, H^k, \text{etc.}) \), we denote by \(\mathcal{F}(M, \mathbb{C}) \) the corresponding space of pairs \([\alpha, f]\) with \(\alpha \) a 1-form and \(f \) a function on \(M \). In particular, \(C^\infty(M, \mathbb{C}) \) is the space of pairs \([\alpha, f]\), with \(\alpha \in C^\infty(\Lambda^1(M), \mathbb{C}) \) and \(f \in C^\infty(M, \mathbb{C}) \). Then \(\mathcal{I}_\alpha \) denotes the restriction of \(I_\alpha \) to \(C^\infty(M, \mathbb{C}) \):

\[
\mathcal{I}_\alpha[\alpha, f](x, v) := I^1_\alpha \alpha(x, v) + I^0_\alpha f(x, v), \quad (x, v) \in \partial_+ SM,
\]

where \(I^1_\alpha \) and \(I^0_\alpha \) are the restrictions of \(I_\alpha \) to 1-forms and functions on \(M \), respectively.

Let \(X(x, v) = \frac{d}{dt}|_{t=0} \varphi(t)(x, v) \) denote the generator of the geodesic flow of \(g \), a global section of \(T(SM) \). Here and below, for a given \(w \in C^\infty(\partial_+ SM, \mathbb{C}) \) we denote by \(w^\delta : SM \to \mathbb{C} \) the unique solution to the transport equation

\[
Xw^\delta + aw^\delta = 0 \quad (SM), \quad w^\delta|_{\partial_+ SM} = w.
\]

We then define \(Q_\alpha : C(\partial_+ SM, \mathbb{C}) \to C(\partial SM, \mathbb{C}) \), by \(Q_\alpha w := w^\delta|_{\partial SM} \). \(Q_\alpha \) takes the expression

\[
Q_\alpha w(x, v) = \begin{cases}
 w(x, v) & (x, v) \in \partial_+ SM, \\
 \exp\left(-\int_{-\tau(x, v)}^{0} a(\gamma_{x, v}(t))\right) w(\alpha(x, v)) & (x, v) \in \partial_- SM,
\end{cases} \quad (x, v) \in \partial_+ SM,
\]

where \(\alpha \) denotes the scattering relation\(^1\) defined in Section 3. As \(Q_\alpha w \) may only be continuous even when \(w \in C^\infty(\partial_+ SM) \), we define

\[
\mathcal{S}_\alpha^\infty(\partial_+ SM, \mathbb{C}) := \{ w \in C^\infty(\partial_+ SM, \mathbb{C}), \ Q_\alpha w \in C^\infty(\partial SM) \}.
\]

We also introduce the operator \(B_\alpha : C(\partial SM, \mathbb{C}) \to C(\partial_+ SM, \mathbb{C}) \) by

\[
B_\alpha u(x, v) := \exp\left(\int_{0}^{r(x, v)} a(\gamma_{x, v}(t)) \ dt\right) u \circ \alpha(x, v) - u(x, v), \quad (x, v) \in \partial_+ SM.
\]

Next, we introduce the operator \(P_\alpha : \mathcal{S}_\alpha^\infty(\partial_+ SM, \mathbb{C}) \to C^\infty(\partial_+ SM, \mathbb{C}) \) defined by \(P_\alpha := B_\alpha HQ_\alpha \), where \(H \) is the fiberwise Hilbert transform, defined in Section 3. Clearly the operator \(P_\alpha \) is completely determined by the scattering relation \(\alpha \) and the unattenuated ray transform of \(a \). The first main result of the paper is that the operator \(P_\alpha \) characterizes the ray transform \(\mathcal{I}_\alpha \) over pairs.

Theorem 2.1. Let \((M, g)\) be a simple surface and let \(\alpha \in C^\infty(M, \mathbb{R}) \). Then a function \(u \in C^\infty(\partial_+ SM, \mathbb{C}) \) belongs to the range of \(\mathcal{I}_\alpha \) if and only if \(u = P_\alpha w \) for some \(w \in \mathcal{S}_\alpha^\infty(\partial_+ SM, \mathbb{C}) \).

As mentioned in the introduction, the corresponding operator \(P := P_0 \), first introduced in [26], splits into two operators \(P_+ \) and \(P_- \) which characterize the ranges of \(P^0 \) and \(P^1 \) separately. In the attenuated case, such a splitting is no longer obvious. Sitting within the range of \(\mathcal{I}_\alpha \), a first range characterization for \(I^0_\alpha \) and \(I^1_\alpha \)

\(^1\)Throughout the paper, \(\alpha \) may denote either the scattering relation, or a general one-form, though which occurrence it is should appear clear from the context.
can be obtained by adding conditions on the preimage by P_a. Before stating the result, we introduce some notations.

Since M is oriented there is a circle action on the fibres of SM with infinitesimal generator V called the vertical vector field. For any two functions $u, v : SM \to \mathbb{C}$ define an inner product:

$$\langle u, v \rangle_{L^2(SM)} = \int_{SM} u \overline{v} d\Sigma^3,$$

where $d\Sigma^3$ is the Liouville measure of g on SM. The space $L^2(SM, \mathbb{C})$ decomposes orthogonally as a direct sum

$$L^2(SM, \mathbb{C}) = \bigoplus_{k \in \mathbb{Z}} H_k$$

where H_k is the eigenspace of $-iV$ corresponding to the eigenvalue k. Any function $u \in C^\infty(SM, \mathbb{C})$ has a Fourier series expansion

$$u = \sum_{k = -\infty}^{\infty} u_k, \quad u_k \in \Omega_k := C^\infty(SM, \mathbb{C}) \cap H_k.$$

In particular, $u \mapsto u_0$ and $u \mapsto u_{-1} + u_1$ are the projections of functions on SM onto functions and 1-forms on M, respectively; see Section 3.2.

Theorem 2.2. Let (M, g) be a simple surface and let $a \in C^\infty(M, \mathbb{C})$. The following range characterizations hold:

1. A function $u \in C^\infty(\partial_+ SM, \mathbb{C})$ belongs to the range of I^0_a if and only if $u = P_a w$ for some $w \in S^\infty(\partial_+ SM, \mathbb{C})$ such that $w_0^a = 0$.

2. A function $u \in C^\infty(\partial_+ SM, \mathbb{C})$ belongs to the range of I^1_a acting on solenoidal one-forms if and only if $u = P_a w$ for some $w \in S^\infty(\partial_+ SM, \mathbb{C})$ such that $w_{-1}^a + w_1^a = dp$ for some $p \in C^\infty(M, \mathbb{C})$.

We now derive reconstruction formulas for pairs, which in turn yield a second range characterization. Since the transform over pairs I_a has a kernel (namely, the "a-potential" pairs), it is first useful to change its domain in such a way which makes it injective without altering its range. To this end, we make our way in Theorem 6.1 and Lemma 6.2 and 6.3, into proving that any element $D \in \text{Range } I_a$ decomposes uniquely as

$$D = I_a[\ast dh_0 + \omega_1 + \omega_{-1}, f] = I^0_a f + I^+_a h_0 + I^+_a \omega_1 + I^{-1}_a \omega_{-1},$$

with $f \in C^\infty(M)$, $h_0 \in C^\infty_0(M)$ and $\omega_{\pm 1} \in \ker \eta_{\mp}$ are holomorphic and antiholomorphic one-forms. Moreover, $D = 0$ if and only if f, h_0, ω_1 and ω_{-1} vanish identically. This suggests that the quadruple $(f, h_0, \omega_1, \omega_{-1})$ can be reconstructed from D, and we proceed to provide reconstruction formulas for each term in Section 7. We first reconstruct ω_1 and ω_{-1} from D in Theorem 7.3, and in turn, explain how to remove $I_a[\omega_1 + \omega_{-1}, 0]$ from D. This is done using Hilbert bases of square integrable harmonic one-forms, combined with integration by parts on SM using appropriate adjoint transport solutions with one-sided fiber-harmonic content. In fact, the reconstruction of the terms $\omega_{\pm 1}$ is new even in the unattenuated case,
for which the first inversion formulas for one-forms appearing in [26] only treated one-forms \(\omega = \star dh \) with \(h|_{\partial M} = 0 \).

After reconstructing \(\omega_1 \) and \(\omega_{\perp} \), it remains to reconstruct \((f, h_0)\) from \(I_a[\star dh_0, f] \). As a means to obtain exact reconstruction formulas (i.e., not up to Fredholm errors), we first construct in section 7.2 a “holomorphization operator” \(\overline{B} : C^\infty(\partial SM) \to C^\infty(\partial_+ SM) \) (see Theorem 7.5 for details) such that if the equation \(Xu = -f \) holds with \(f \) holomorphic, then the function \(\overline{u} = u - (\overline{B}(u|_{\partial SM})_\psi) \) is a holomorphic solution of \(X\overline{u} = -f \) with \(\overline{u}_0 \) constant. An antiholomorphization counterpart \(\overline{B} \) is also defined there. Such operators, which allow to extract holomorphic and antiholomorphic contents at will, together with the use of so-called holomorphic and anti-holomorphic integrating factors first defined in [32], are key to deriving the following reconstruction formulas, which we prove in Section 7.3. See Section 3.2 for a definition of the Guillemin-Kazhdan operators \(\eta_{\pm} \) appearing below.

Theorem 2.3. Let \((M, g)\) a simple surface and \(a \in C^\infty(M, \mathbb{C}) \). Define \(\vec{w} \) and \(\vec{\omega} \) smooth holomorphic and antiholomorphic, odd, solutions of \(X\vec{w} = X\vec{\omega} = -a \), and let \(B \) and \(\overline{B} \) as in Theorem 7.5 and Corollary 7.6. Then the functions \((h_0, f)\) \(\in C^\infty_0(M) \times C^\infty_0(M) \) can be reconstructed from data \(I := I_a[\star dh_0, f] \) (extended by zero on \(\partial_- SM \)) via the following formulas:

\[
\begin{align*}
f &= -\eta_+ B + \eta_- B - \frac{a}{2} \left(\overline{D} + \overline{D} + i(g_+ - g_-) \right), \\
h_0 &= \frac{1}{2}(g_+ + g_-) - \frac{i}{2}(\overline{D} + \overline{D}),
\end{align*}
\]

where we have defined \(\overline{D} := e^{\vec{w}}(B(Ie^{\vec{\omega}}|_{\partial SM})_\psi) \), \(\overline{D} := e^{\vec{w}}(B(Ie^{\vec{\omega}}|_{\partial SM})_\psi) \), and where \(g_{\pm} \in \ker^0 \eta_{\pm} \), uniquely characterized by their boundary conditions

\[
g_+|_{\partial M} = -i(I - \overline{D}|_{\partial SM})_0, \quad g_-|_{\partial M} = i(I - \overline{D}|_{\partial SM})_0.
\]

The reconstruction formulas above then allow to construct in (31) and (38) explicit linear, idempotent operators \(P_{a,0}, P_{a,\perp}, P_{a,\pm} : \text{Range } I_a \to \text{Range } I_a \), such that

\[
P_{a,\pm 1} D = I_{\pm 1}^a \omega_{\pm 1}, \quad P_{a,0} D = I_0^a f, \quad P_{a,\perp} D = I_{a,\perp}^a h_0.
\]

Such operators allow to establish the following range characterization:

Theorem 2.4. Let \((M, g)\) a simple surface and let \(a \in C^\infty(M, \mathbb{C}) \). Then the following hold:

(i) A function \(u \in C^\infty(\partial_+ SM, \mathbb{C}) \) belongs to the range of \(I_{a}^0 \) if and only if \(u = P_{a} w \) for some \(w \in S_{\infty}^a(\partial_+ SM, \mathbb{C}) \) and \(P_{a,0} u = P_{a,\perp} u = P_{a,\pm} u = 0 \).

(ii) A function \(u \in C^\infty(\partial_+ SM, \mathbb{C}) \) belongs to the range of \(I_{a}^1 \) acting on solenoidal one-forms if and only if \(u = P_{a} w \) for some \(w \in S_{\infty}^a(\partial_+ SM, \mathbb{C}) \) and \(P_{a,0} u = 0 \).

This characterization is of practical relevance as it allows to project noisy data onto the range of \(I_{a}^0 \) or \(I_{a}^1 \) acting on solenoidal one-forms using explicit operators, before inversion.
Outline and roadmap of proofs. We first study the space of pairs (one-form, function) in Section 3.3, on which the operator I_a is defined. Proving Theorem 2.1 is based on the factorization $-2\pi P_\alpha = I_a \left[\begin{smallmatrix} 0 & K \end{smallmatrix} \right] I_a^*\pi$, which completes the proof once the surjectivity of $I_a^*\pi$ is proved in appropriate functional settings. A such surjectivity mainly relies on the injectivity of $I_a\pi$ ([32, Theorem 1.2]), and is based on pseudodifferential arguments on a slightly extended surface. Theorem 2.2 then follows by finding the appropriate additional conditions which characterize each sub-range.

On to the proof of Theorem 2.4, we first explain in Section 6 how to change the domain I_a in a way which makes it injective, in particular via the mapping $(f, h_0, \omega, \omega_1, \omega_1, f) \mapsto I_a[6 dh_0 + \omega_1 + \omega_1, f]$. Section 7 then explains how to reconstruct each term: we first reconstruct ω_1 and ω_1 in Section 7.1; then introduce holomorphization operators in Section 7.2; finally, we provide reconstruction formulas for (f, h_0) in Section 7.3. In both sections 7.1 and 7.3, we explain the implications of such inversions on the ability to construct projection operators for Theorem 2.4.

3. Preliminaries

3.1. Scattering relation and transport equations. Recall that for $(x, v) \in SM$, $\tau(x, v)$ denotes the first non-negative exit time $\tau(x, v)$ of the geodesic $\gamma_{x,v}$, with $x = \gamma_{x,v}(0)$, $\gamma_{x,v}(0)$ the scattering relation is the map $\alpha : \partial SM \rightarrow \partial SM$ defined as

$$\alpha(x, v) = \varphi_{\pm \tau(x, \pm v)}(x, v), \quad (x, v) \in \partial SM.$$

Since (M, g) is assumed to be simple, by [35, Lemma 4.1.1] we conclude that the scattering relation α is diffeomorphism and $\alpha^2 = I_d$. The attenuated ray transform (1) can be realized as the trace on $\partial_{v}SM$ of the solution $u : SM \rightarrow \mathbb{C}$ to the following transport problem on SM,

$$Xu + au = -f \quad (SM), \quad u|_{\partial_{v}SM} = 0,$$

where $f \in C^\infty(SM)$ represents the “source term”. This equation has a unique solution u^f, since on any fixed geodesic the transport equation is an ODE with zero initial condition and an integral expression gives us that $u|_{\partial_{v}SM}$ matches (1). For $w \in C^\infty(\partial_{v}SM, \mathbb{C}^n)$ given, let us denote $w_v(x, v) := w(\varphi_{-\tau(x, v)}(x, v))$ the unique solution u to the transport problem

$$Xu = 0 \quad (SM), \quad u|_{\partial_{v}SM} = w.$$

For $a \in C^\infty(M, \mathbb{C})$, define the integrating factor $U_a : SM \rightarrow \mathbb{C}$, unique solution to

$$(X + a)U_a = 0 \quad (SM), \quad U_a|_{\partial_{v}SM} = 1,$$

whose integral expression is given by

$$U_a(x, v) = \exp \left(-\int_{-\tau(x, v)}^{0} a(\gamma_{x,v}(s)) \, ds \right), \quad (x, v) \in SM.$$

By solving explicitly the transport equation along the geodesic, one can show that

$$U_a(\varphi_{\tau}(x, v)) = \exp \left(-\int_{0}^{\tau} a(\gamma_{x,v}(s)) \, ds \right), \quad (x, v) \in SM,$$

defined as SM where $f \in C^\infty(SM)$ represents the “source term”. This equation has a unique solution u^f, since on any fixed geodesic the transport equation is an ODE with zero initial condition and an integral expression gives us that $u|_{\partial_{v}SM}$ matches (1). For $w \in C^\infty(\partial_{v}SM, \mathbb{C}^n)$ given, let us denote $w_v(x, v) := w(\varphi_{-\tau(x, v)}(x, v))$ the unique solution u to the transport problem

$$Xu = 0 \quad (SM), \quad u|_{\partial_{v}SM} = w.$$

For $a \in C^\infty(M, \mathbb{C})$, define the integrating factor $U_a : SM \rightarrow \mathbb{C}$, unique solution to

$$(X + a)U_a = 0 \quad (SM), \quad U_a|_{\partial_{v}SM} = 1,$$

whose integral expression is given by

$$U_a(x, v) = \exp \left(-\int_{-\tau(x, v)}^{0} a(\gamma_{x,v}(s)) \, ds \right), \quad (x, v) \in SM.$$

By solving explicitly the transport equation along the geodesic, one can show that

$$U_a(\varphi_{\tau}(x, v)) = \exp \left(-\int_{0}^{\tau} a(\gamma_{x,v}(s)) \, ds \right), \quad (x, v) \in SM,$$
and hence the following integral formula holds:

\[I_a f(x, v) = \int_0^{\tau(x,v)} U_a^{-1}(\varphi_t(x, v)) f(\varphi_t(x, v)) \, dt, \quad (x, v) \in \partial_+ SM. \]

With the \(U_a \) notation, notice that the function \(w^\sharp \) defined in Section 2 is nothing but \(w^\sharp(x, v) = U_a(x, v)w(\psi(x, v)) \), and \(Q_a \) defined in (2) takes the expression

\[Q_a w(x, v) := \begin{cases} w(x, v) & (x, v) \in \partial_+ SM, \\
U_a(x, v)(w \circ \alpha)(x, v) & (x, v) \in \partial_- SM. \end{cases} \]

The space of those \(w \) for which \(w^\sharp \) is smooth in \(SM \) is denoted by

\[S^\infty_a(\partial_+ SM, \mathbb{C}) := \{ w \in C^\infty(\partial_+ SM, \mathbb{C}) : w^\sharp \in C^\infty(\partial_- SM, \mathbb{C}) \}, \]

where the second equality is a characterization in terms of the operator \(Q_a \), proved in [24, Lemma 5.1].

Another characterization of the \(B_a \) operator defined in (3) is that, for any smooth function \(\psi : SM \to \mathbb{C} \), we have

\[I_a((X + a)\psi)(x, v) = \exp \left(\int_0^{\tau(x,v)} a(\gamma_{x,v}(t)) \, dt \right) \psi \circ \alpha(x, v) - \psi(x, v) = B_a \psi|_{\partial SM}(x, v). \]

3.2. Geometry and Fourier analysis on \(SM \)

Since \(M \) is oriented there is a circle action on the fibres of \(SM \) with infinitesimal generator \(V \) called the vertical vector field. We complete \(X, V \) to a global frame of \(T(SM) \) by defining the vector field \(X_\perp := [X, V] \), where \([\cdot, \cdot]\) is the Lie bracket for vector fields. For any two functions \(u, v : SM \to \mathbb{C} \) define an inner product:

\[\langle u, v \rangle_{L^2(SM)} = \int_{SM} u \overline{v} \, d\Sigma^3, \]

where \(d\Sigma^3 \) is the Liouville measure of \(g \) on \(SM \). The space \(L^2(SM, \mathbb{C}) \) decomposes orthogonally as a direct sum

\[L^2(SM, \mathbb{C}) = \bigoplus_{k \in \mathbb{Z}} H_k \]

where \(H_k \) is the eigenspace of \(-iV\) corresponding to the eigenvalue \(k \). Any function \(u \in C^\infty(SM, \mathbb{C}) \) has a Fourier series expansion

\[u = \sum_{k=-\infty}^{\infty} u_k, \quad u_k \in \Omega_k := C^\infty(SM, \mathbb{C}) \cap H_k. \]

We recall the first order elliptic operators due to Guillemin and Kazhdan [10], defined by \(\eta_\pm = \frac{1}{2}(X \pm iX_\perp) \). By the commutation relations \([iV, \eta_+] = \eta_+ \) and \([iV, \eta_-] = -\eta_- \) we see that

\[\eta_+ : \Omega_k \to \Omega_{k+1}, \quad \eta_- : \Omega_k \to \Omega_{k-1}. \]

For the sequel, let us denote, for any \(k \in \mathbb{Z} \), \(\ker^k \eta_\pm := \Omega_k \cap \ker \eta_\pm \).
An important tool in our approach is the fiberwise Hilbert transform $H : C^\infty(SM, \mathbb{C}) \to C^\infty(SM, \mathbb{C})$, which we define in terms of Fourier coefficients as

$$H(u_k) = -i \text{sgn}(k) u_k, \quad \text{(with the convention sgn}(0) = 0).$$

The following commutator formula, which was derived by Pestov and Uhlmann in [27] and generalized in [24], will play an important role.

$$[H, X + a]u = X_u u_0 + (X_u u)_0, \quad u \in C^\infty(SM, \mathbb{C}). \quad (4)$$

This formula has been frequently used in recent works on inverse problems, see [22, 23, 24, 26, 27, 32].

3.3. The space of pairs. The inner product in the space $L^2(M, \mathbb{C})$ is given by

$$\langle [\alpha, f] | [\beta, h] \rangle_{L^2(M, \mathbb{C})} = \int_M \langle \alpha, \overline{\beta} \rangle_g dVol + \int_M f \overline{g} dVol.$$

Assume that $a \in C^\infty(M, \mathbb{C})$. Consider the following operators $d_a : H^1(M, \mathbb{C}) \to L^2(M, \mathbb{C})$ and $\delta_a : H^1(M, \mathbb{C}) \to L^2(M, \mathbb{C})$ defined by

$$d_a h = [dh, ah], \quad \delta_a[\alpha, f] = \delta\alpha - \overline{\pi} f.$$

The following integration by parts formula holds for these operators:

$$\langle \delta_a[\alpha, f] | h \rangle_{L^2(M, \mathbb{C})} + \langle [\alpha, f] | d_a h \rangle_{L^2(M, \mathbb{C})} = \langle i\nu, \alpha | h \rangle_{L^2(\partial M)},$$

where ν is the outward unit normal on ∂M. In particular, we obtain $d^*_a = -\delta_a$.

Introducing the spaces of a-solenoidal and a-potential pairs

$$L^2_{a,\text{sol}}(M, \mathbb{C}) = \{[\alpha, f] \in L^2(M, \mathbb{C}) : \delta_a[\alpha, f] = 0\},$$

$$L^2_{a,\text{pot}}(M, \mathbb{C}) = \{d_a h : h \in H^1_0(M, \mathbb{C})\},$$

Proposition 3.1 below implies the L^2-orthogonal decompositions

$$L^2(M, \mathbb{C}) = L^2_{a,\text{sol}}(M, \mathbb{C}) \oplus L^2_{a,\text{pot}}(M, \mathbb{C}),$$

$$C^\infty(M, \mathbb{C}) = C^\infty_{a,\text{sol}}(M, \mathbb{C}) \oplus C^\infty_{a,\text{pot}}(M, \mathbb{C}),$$

where we have defined $C^\infty_{a,\text{sol/pot}}(M, \mathbb{C}) := L^2_{a,\text{sol/pot}}(M, \mathbb{C}) \cap C^\infty(M, \mathbb{C})$.

Proposition 3.1. Let $a \in C^\infty(M, \mathbb{C})$ and let $k \geq 0$ be an integer. For a given $[\alpha, f] \in H^k(M, \mathbb{C})$ there are unique $[\beta, h] \in H^k(M, \mathbb{C})$ and $b \in H^{k+1}(M, \mathbb{C}) \cap H^1_0(M, \mathbb{C})$ such that $[\alpha, f] = [\beta, h] + db$ and $\delta_a[\beta, h] = 0$. Moreover, if $[\alpha, f] \in C^\infty(M, \mathbb{C})$ then $[\beta, h] \in C^\infty_{a,\text{sol}}(M, \mathbb{C})$ and $b \in C^\infty(M, \mathbb{C})$ with $b|_{\partial_M} = 0$.

Proof. For $[\alpha, f] \in L^2$, consider the problem for $b \in H^1_0(M, \mathbb{C})$

$$-\delta_a d_a b = -\delta_a[\alpha, f] \in H^{-1}(M, \mathbb{C}), \quad b|_{\partial M} = 0,$$

whose weak formulation consists in finding $b \in H^1_0(M, \mathbb{C})$ such that

$$(d_a b, d_a b')_{L^2(M, \mathbb{C})} = \langle -\delta_a[\alpha, f], b' \rangle_{H^{-1}, H^1_0}, \quad \forall b' \in H^1_0(M, \mathbb{C}),$$

where the sesquilinear form on the left-hand side, given by

$$(d_a b, d_a b')_{L^2(M, \mathbb{C})} = \int_M \langle d_a b, \overline{d_a b'} \rangle_g dVol + \int_M |a|^2 b \overline{b'} dVol.$$
is hermitian, continuous and coercive (since, when \(b = b' \), the second term is nonnegative and the first term controls the \(H^1_0 \) norm by virtue of Poincaré’s inequality). The existence and uniqueness of such a \(b \) is then provided by Lax-Milgram’s theorem, see e.g. [7, Theorem 1, Sec. 6.2.1]. Once \(b \) is constructed, set \([\beta, h] = [\alpha, f] - d_a b\) and the \(L^2 \) decomposition follows. Moreover, following results on higher order regularity for solutions of strongly elliptic equations (see for example [39, Proposition 11.10]), if \([\alpha, f] \in H^k \), then \(b \in H^{k+1} \cap H^1_0 \) and thus \([\beta, h] \in H^k \). In particular, if \([\alpha, f] \) are smooth, so are \(b \) and \([\beta, h] \).

3.4. Extension operators for \(a \)-solenoideal pairs. Our aim in this subsection is to extend \(a \)-solenoideal pair to a larger manifold as compactly supported \(a \)-solenoideal pair in the \(C^\infty \) setting. We will follow the arguments of [13] and [25].

Here and in what follows, \(H^1_{U,a,sol}(\tilde{M}^{int},C) \) and \(C^\infty_{U,a,sol}(\tilde{M}^{int},C) \) denote the subspaces of \(H^1_{a,sol}(\tilde{M}^{int},C) \) and \(C^\infty_{a,sol}(\tilde{M}^{int},C) \), respectively, consisting of elements supported in \(U \).

We start with the following lemma on the existence of \(a \)-solenoideal extensions that might not be compactly supported.

Lemma 3.2 (Smooth \(a \)-solenoideal extensions). Let \(M \) be a compact simply connected manifold contained in the interior of some Riemannian manifold \((\tilde{M},g)\) and let \(a \in C^\infty(M,C) \). There is an open neighborhood \(U \) of \(M \) and a linear operator \(\mathcal{E}_{a,U}: C^\infty_{a,sol}(M,C) \to C^\infty_{a,sol}(U,C) \) with \(\mathcal{E}_{a,U} = \text{Id} \) on \(M \) and \(\|\mathcal{E}_{a,U}[\alpha,f]\|_{H^1(U;C)} \leq C\|\alpha,f\|_{H^1(M;C)} \).

Proof. We cover \(\partial M \) in \(\tilde{M} \) by charts \(\{(O_\kappa,\Theta_\kappa)\}_\kappa \) with semi-geodesic local coordinates, i.e. each coordinate map \(\Theta_\kappa : O_\kappa \to \mathbb{R}^n \) is of the form \(\Theta_\kappa(p) = (x^1,\ldots,x^{n-1},x^n) = (x',x^n) \) such that \(\Theta_\kappa^{-1}(\{x^n = 0\}) \cap O_\kappa \subset \partial M, \Theta_\kappa^{-1}(\{x^n < 0\}) \cap O_\kappa \subset M^{int} \) and \(\Theta_\kappa^{-1}(x^n) = \nu \) is the unit outward (from \(M \)) normal to \(\partial M \).

In these coordinates, we have
\[
g^{kn} = \delta^{kn}, \quad \Gamma^{kn}_{\kappa} = \Gamma^{kn}_{\kappa n} = 0, \quad k = 1,\ldots,n.
\]
We determine \(U \setminus M \) as the sufficiently small semi-geodesic neighborhood of \(\partial M \) in \(\tilde{M} \) such that \(\overline{U} \subset \cup_\kappa O_\kappa \).

Given \([\alpha, f] \in C^\infty_{a,sol}(M,C) \). We extend the function \(f \) and the components \(\alpha_i', i' = 1,\ldots,n-1 \), smoothly to \(U \), and denote the extensions by \(h \) and \(\beta_i \), respectively. By the results in [33], these extensions can be done in a stable way
\[
\|h\|_{H^1(U;C)} \leq C\|f\|_{H^1(M;C)}, \quad \|\beta_i\|_{H^1(U;C)} \leq C\|\alpha_i\|_{H^1(M;C)}, \quad i' = 1,\ldots,n-1.
\]
(7)

Now we construct the last component \(\beta_n \) in \(\Theta_\kappa^{-1}(\{x^n > 0\}) \cap O_\kappa \). Since we want \(a \)-solenoideal extension, writing \(h^\kappa = h \circ \Theta^{-1}_\kappa \) and \(\beta_i^\kappa = \beta_i \circ \Theta^{-1}_\kappa, i = 1,\ldots,n \), we have
\[
\partial_n^\kappa \beta_n^\kappa - \sum_{j,k<\kappa} g^{jk} \Gamma_{jk}^\kappa \beta_n^\kappa = \overline{\alpha} h^\kappa - \sum_{j,k<\kappa} g^{jk} \partial_j \beta_k^\kappa + \sum_{j,k,l<\kappa} g^{jk} \Gamma_{jk}^\kappa \beta_l^\kappa. \tag{8}
\]
Observe that the right side is known, so it is a first order linear ordinary differential equation. Given the initial condition \(\beta_n^\kappa(x',0) = \alpha_n \circ \Theta^{-1}_\kappa(x',0) \), there is a unique
solution $\beta_n^o(x', x^n)$. In this way we construct continuous β_n^o in $\{x^n > 0\} \cap \Theta_\kappa(\mathcal{O}_n)$ which depends smoothly on x'. If U is sufficiently close to M, one can show that

$$|\beta_n^o(x', x^n)|^2 \leq C_{\mathcal{O}_n} \left(|\alpha_n \circ \Theta^{-1}_\kappa(x', 0)|^2 + |\mathcal{H}^n(x', x^n)|^2 + \sum_{j,k<n} |\partial_j \beta_k^o(x', x^n)|^2 \right),$$

for all $(x', x^n) \in \{x^n > 0\} \cap \Theta_\kappa(\mathcal{O}_n \cap U)$. Integrating over U and using compactness of M, we obtain

$$\|\beta_n\|_{L^2(U, \mathbb{C})} \leq C \left(\|\alpha_n\|_{L^2(\partial M, \mathbb{C})} + \|f\|_{H^1(M, \mathbb{C})} + \sum_{j < n} \|\alpha_j\|_{H^1(M, \mathbb{C})} \right).$$

Let V be a neighborhood of ∂M in M. Then for all $(x', x^n) \in \{x^n < 0\} \cap \Theta_\kappa(\mathcal{O}_n \cap V)$ we can show that

$$|\alpha_n(x', 0)|^2 \leq C_{\mathcal{O}_n} \left(|\alpha_n(x', x^n)|^2 + \int_{x^n}^0 |\alpha_n(x', x^n)|^2 dx^n + \int_{x^n}^0 |\partial_n \alpha_n(x', x^n)|^2 dx^n \right).$$

Integrating over M and using compactness of M, we obtain

$$\|\alpha_n\|_{L^2(\partial M, \mathbb{C})} \leq C \|\alpha\|_{H^1(M, \mathbb{C})},$$

and hence

$$\|\beta_n\|_{L^2(U, \mathbb{C})} \leq C \left(\|f\|_{H^1(M, \mathbb{C})} + \|\alpha\|_{H^1(M, \mathbb{C})} \right).$$

Therefore, combining the latter inequality together with (7) and (8), we come to

$$\|[\beta, h]\|_{H^1(U, \mathbb{C})} \leq C \|\alpha, f\|_{H^1(M, \mathbb{C})}.$$

Now, we want to show the smoothness of β_n. Differentiating (8) with respect to x^n, we show that $\beta_n^o(x', x^n)$ is smooth in $\{x^n \geq 0\} \cap \Theta_\kappa(\mathcal{O}_n)$. Moreover, using (8) and induction on the order of derivative with respect to x^n, we show

$$\partial^m \beta_n^o(x', 0) = \partial^m_n \alpha_n \circ \Theta^{-1}_\kappa(x', 0)$$

for all $m \geq 0$ integers. In other words, $\partial^m \beta_n(x', 0)$ agree with $\partial^m_n \alpha_n \circ \Theta^{-1}_\kappa(x', 0)$. Therefore, we obtain a smooth α-solenoidal pair

$$\mathcal{E}_{a, U}[\alpha, f] = \begin{cases} [\alpha, f] & \text{on } M, \\ [\beta, h] & \text{on } U \setminus M, \end{cases}$$

with $\|\mathcal{E}_{a, U}[\alpha, f]\|_{H^1(U, \mathbb{C})} \leq C \|\alpha, f\|_{H^1(M, \mathbb{C})}$. \hfill \square

Proposition 3.3. Let M be a compact simply connected manifold contained in the interior of some Riemannian manifold (\bar{M}, g) and let $a \in C^\infty(\bar{M}, \mathbb{C})$. There is a precompact neighborhood W of M in \bar{M}^{int} and a bounded map $\mathcal{E}_a : H^1_{a, \text{sol}}(M, \mathbb{C}) \to H^1_{W, a, \text{sol}}(\bar{M}^{\text{int}}, \mathbb{C})$ such that $\mathcal{E}_a|_M = \text{Id}$. Moreover, the restriction of \mathcal{E}_a to $C^\infty_{a, \text{sol}}(M, \mathbb{C})$ maps $C^\infty_{a, \text{sol}}(M, \mathbb{C})$ into $C^\infty_{W, a, \text{sol}}(\bar{M}^{\text{int}}, \mathbb{C})$.

Proof. Given $[\alpha, f] \in C^\infty_{a, \text{sol}}(M, \mathbb{C})$, Lemma 3.2 implies the existence of a neighborhood U of M and a linear operator $\mathcal{E}_{a, U} : C^\infty_{a, \text{sol}}(M, \mathbb{C}) \to C^\infty_{a, \text{sol}}(U, \mathbb{C})$ with $\mathcal{E}_{a, U} = \text{Id}$ on M and

$$\|\mathcal{E}_{a, U}[\alpha, f]\|_{H^1(U, \mathbb{C})} \leq C \|[\alpha, f]\|_{H^1(M, \mathbb{C})}.$$
Consider an open precompact set W such that $U \subset U \subset W \subset \mathcal{M}^{\text{int}}$. Then, using [33], we extend $\mathcal{E}_aU[\alpha, f]$ to \mathcal{M}^{int} and multiply the extension by a smooth cut-off function which is equal to 1 in U and supported in W, and we denote the resultant pair by $[\beta, h]$. Combining the result of [33] and Lemma 3.2 implies that
\[
\|\beta\|_{W^1(\mathcal{M}^{\text{int}}, \mathbb{C})} \leq C\|\alpha, f\|_{W^1(\mathcal{M}, \mathbb{C})}.
\]
Set $w = \delta_a[\beta, h]$ and $D = W \setminus \mathcal{M}$. We have $\text{supp } w \subset W \setminus U \subset D$.
We claim that $(w|v)_{L^2(D, \mathbb{C})} = 0$ for all $v \in H^1(D, \mathbb{C}) \cap \ker d_a$. Then, by [6, Corollary 1.6] (see also [28, Section 5.1]), there is a smooth one-form β_D on \mathcal{M}^{int} such that $\delta \beta_D = -w$ and $\text{supp } \beta_D \subset W \setminus \mathcal{M}^{\text{int}}$. Moreover, β_D satisfies
\[
\|\beta_D\|_{H^1(\mathcal{M}^{\text{int}}, \mathbb{C})} \leq C\|w\|_{L^2(\mathcal{M}^{\text{int}}, \mathbb{C})}.
\]
We define
\[
\mathcal{E}_a[\alpha, f] = [\beta + \beta_D, h],
\]
Then $\mathcal{E}_a[\alpha, f]|_{\mathcal{M}} = [\alpha, f]$, $\text{supp } \mathcal{E}_a[\alpha, f] \subset W$ and $\delta_a \mathcal{E}_a[\alpha, f] = \delta_a[\beta, h] + \delta \beta_D = w - w = 0$. Hence $\mathcal{E}_a[\alpha, f] \in C_{W, a, \text{sol}}(\mathcal{M}^{\text{int}}, \mathbb{C})$ and
\[
\|\mathcal{E}_a[\alpha, f]\|_{W^1(\mathcal{M}^{\text{int}}, \mathbb{C})} \leq C\|\alpha, f\|_{W^1(\mathcal{M}, \mathbb{C})}.
\]
Since $C^\infty(\mathcal{M}^{\text{int}}, \mathbb{C})$ is dense in $H^1(\mathcal{M}^{\text{int}}, \mathbb{C})$ under the H^1-norm, we extend \mathcal{E}_a to a bounded map $\mathcal{E}_a : H^1_{W, a, \text{sol}}(\mathcal{M}, \mathbb{C}) \to H^1_{W, a, \text{sol}}(\mathcal{M}^{\text{int}}, \mathbb{C})$ with $\mathcal{E}_a|_\mathcal{M} = \text{Id}$.

Now it is left to prove that $(w|v)_{L^2(D, \mathbb{C})} = 0$ for all $v \in H^1(D, \mathbb{C}) \cap \ker d_a$. For this, we study the solutions of the homogeneous problem. Let $v \in H^1(D, \mathbb{C})$ be a solution of
\[
\left\{ \begin{array}{l}
(-\Delta_a + |a|^2)v = 0 \text{ in } D, \\
\partial_N v = 0 \text{ on } \partial D,
\end{array} \right.
\]
where N is the unit outward normal on ∂D. Then by Green’s formula
\[
\|\nabla v\|_{L^2(D, \mathbb{C})}^2 + \|av\|_{L^2(D, \mathbb{C})}^2 = \|(-\Delta_a + |a|^2)v\|_{L^2(D, \mathbb{C})}^2 + \|\nabla v\|_{L^2(D, \mathbb{C})}^2 = 0.
\]
Thus, $\nabla v \equiv 0$ and $av \equiv 0$. In other words, $v \in \ker d_a$. Let K_a denotes the set of the solutions of the homogeneous problem, then
\[
K_a = \{ v \in H^1(D, \mathbb{C}) : \nabla v \equiv 0, av \equiv 0 \} = H^1(D, \mathbb{C}) \cap \ker d_a.
\]
If $a \equiv 0$, then K_a consists of constant solutions. Hence, for $v = \text{const} \in K_a$, integration by parts gives
\[
(w|v)_{L^2(D, \mathbb{C})} = (\delta_a[\beta, h]|v)_{L^2(D, \mathbb{C})} = -(i_v \alpha |v)_{L^2(D, \mathbb{C})} = 0,
\]
Now, if $a \neq 0$, then $K_a = \{0\}$. Hence, for $v = 0 \in K_a$ we trivially have $(w|v)_{L^2(D, \mathbb{C})} = (w|0)_{L^2(D, \mathbb{C})} = 0$.

4. Surjectivity results for the adjoints

The main purpose of this section is to obtain the surjectivity theorem 4.2, of the adjoint I^*_a, on which our range characterizations hinge. We first compute the adjoints of I_a and I_a in section 4.1, then prove Theorem 4.2 in section 4.2.
4.1. **Adjoint of I_a and I_{α}**. Let $d\Sigma^2$ be the volume form on $\partial(SM)$. Denote by $L_\mu^2(\partial+SM, \mathbb{C})$ the completion of $C_\infty^\infty(\partial+SM, \mathbb{C})$ for the inner product

$$
\langle h, h' \rangle_{L_\mu^2(\partial+SM, \mathbb{C})} = \int_{\partial+SM} \overline{h} h' \mu \ d\Sigma^2,
$$

where $\mu(x, v) := (v, v)_g(x)$. As in \cite{23}, using the integral representation for I_a and Santaló formula \cite[Lemma A.8]{4}, one can show that I_a can be extended to a bounded operator $I_a : L^2(SM, \mathbb{C}) \to L^2(\partial+SM, \mathbb{C})$.

Consider the dual $I_a^* : L_\mu^2(\partial+SM, \mathbb{C}) \to L^2(SM, \mathbb{C})$ of I_a, for which we now find an expression. For this consider $h \in L_\mu^2(\partial+SM, \mathbb{C})$. Using Santaló’s formula, for $f \in L^2(SM, \mathbb{C})$, we compute

$$
\langle I_a f, h \rangle_{L_\mu^2(\partial+SM, \mathbb{C})}
= \int_{\partial+SM} \left(\int_0^{\tau(x,v)} U_a^{-1}(\varphi_t(x,v)) f(\varphi_t(x,v)) \, dt \right) \overline{h(x,v)} \mu \ d\Sigma^2
= \int_{\partial+SM} \left(\int_0^{\tau(x,v)} U_a^{-1}(\varphi_t(x,v)) f(\varphi_t(x,v)) \overline{h_\psi(\varphi_t(x,v))} \, dt \right) \mu \ d\Sigma^2
= \int_{\partial+SM} \left(\int_0^{\tau(x,v)} f(\varphi_t(x,v)) U_a^{-1}(\varphi_t(x,v)) \overline{h_\psi(\varphi_t(x,v))} \, dt \right) \mu \ d\Sigma^2
= \int_{SM} \left(f(x,v) U_a^{-1}(x,v) \overline{h_\psi(x,v)} \right) \, d\Sigma^3(x,v).
$$

Therefore, we obtain

$$
I_a^* h = U_a^{-1} h_\psi = U_{-\varpi} h_\psi.
$$

Moreover, if $i_k : H_k \to L^2(SM, \mathbb{C})$ denotes the usual inclusion map, the one can show that

$$
I_{m,a}^* h = (U_a^{-1} h_\psi)_m = (U_{-\varpi} h_\psi)_m,
$$

where $I_{m,a} := I_a \circ i_k$.

From (9), one also can get the following explicit expressions for the adjoints of $I_a^0 : L^2(M, \mathbb{C}) \to L_\mu^2(\partial+SM, \mathbb{C})$ and $I_{\alpha}^1 : L^2(\Lambda^1(M), \mathbb{C}) \to L_\mu^2(\partial+SM, \mathbb{C})$:

$$
\begin{align*}
(I_a^0)^*(h)(x) &= \int_{S_x M} U_{-\varpi}(x,v) h_\psi(x,v) \, d\sigma_x(v), \\
(I_{\alpha}^1)^*(h)(x) &= \left(\int_{S_x M} v^i U_{-\varpi}(x,v) h_\psi(x,v) \, d\sigma_x(v) \right),
\end{align*}
$$

where $d\sigma_x$ is the measure on $S_x M$. The identifications of H_0 with $L^2(M, \mathbb{C})$ and $H_{-1} \oplus H_1$ with $L^2(\Lambda^1(M), \mathbb{C})$ imply that

$$
\begin{align*}
(I_a^0)^*(h) &= 2\pi(U_{-\varpi} h_\psi)_0, \\
(I_{\alpha}^1)^*(h) &= \pi(U_{-\varpi} h_\psi)_{-1} + \pi(U_{-\varpi} h_\psi)_{1},
\end{align*}
$$

see \cite[Remark 5.2]{22} for more details. Then we have

$$
I_a^* h = [(I_{\alpha}^1)^*(h), (I_a^0)^*(h)].
$$
Remark 4.1. Note that $\text{Im } I_a^* \text{ is in the orthogonal complement to } \ker I_a$, and hence if $\ker I_a = L^2_{a, \text{pos}}(M, \mathbb{C})$ then

$$\text{Im } I_a^* \subset L^2_{a, \text{sol}}(M, \mathbb{C}).$$

4.2. Surjectivity of I_a^*. The aim of this section is to prove the following result which is the analogue of the corresponding results in [1, 5, 22, 27, 26].

Theorem 4.2. Let (M, g) be a simple surface and let $a \in C^\infty(M, \mathbb{C})$. Suppose that $[\alpha, f] \in C^\infty_a(\partial_+ SM, \mathbb{C})$. Then there is $w \in S^\infty_a(\partial_+ SM, C)$ such that $I_a^*(w) = [\alpha, f]$.

Applying Theorem 4.2 to a pair of the form $[\alpha, 0]$ yields the following

Corollary 4.3. Let (M, g) be a simple surface and let $a \in C^\infty(M, \mathbb{C})$. Suppose that $\alpha : TM \to \mathbb{C}$ is a smooth, solenoidal one-form. Then there is $w \in S^\infty_a(\partial_+ SM, C)$ such that $(I_1^a)^*(w) = \alpha$ and $(I_0^a)^*(w) = 0$.

Proof of Theorem 4.2. We embed M into the interior of a compact surface \tilde{M} with boundary and extend the metric g to \tilde{M} and keep the same notation for the extension, choosing (\tilde{M}, g) to be sufficiently close to (M, g) so that it remains simple. We also extend the attenuation coefficient a to \tilde{M} smoothly and to be real valued, and keep the same notation for the extensions.

Before proceeding further let us introduce more conventions which will be used in this section. If A is a notation for some object in the context of the surface (M, g), then by \tilde{A} we denote the same object but in the context of the extended surface (\tilde{M}, g). For example, the notation \tilde{I}_a will denote the ray transform with domain $L^2(\tilde{M}, \mathbb{C})$ and $\tilde{N}_a := (\tilde{I}_a)^* \tilde{I}_a$.

According to Remark 4.1, we have

$$\delta_a \tilde{N}_a = 0. \quad (14)$$

Let r_M denote the restriction operator from \tilde{M} to M. We show the following:

Lemma 4.4. The operator

$$r_M \tilde{N}_a : C^\infty_0(\tilde{M}^{\text{int}}, \mathbb{C}) \to C^\infty_0(M, \mathbb{C}) \quad (15)$$

is surjective.

Assuming this result, we give the proof of Theorem 4.2. Suppose that $[\alpha, f] \in C^\infty_0(M, \mathbb{C})$. Then Lemma 4.4 ensure the existence of $[\beta, h] \in C^\infty_0(\tilde{M}^{\text{int}}, \mathbb{C})$ such that

$$[\alpha, f] = r_M \tilde{N}_a[\beta, h] = r_M (\tilde{I}_a)^* \tilde{I}_a[\beta, h].$$

Recall that \tilde{U}_a is the unique solution to the initial value problem

$$(X + a)\tilde{U}_a = 0 \text{ in } \tilde{M}, \quad \tilde{U}_a|_{\partial_+ \tilde{M}} = 1.$$

The integral expression for \tilde{U}_a is as follows:

$$\tilde{U}_a(x, v) = \exp \left(- \int_{-\tilde{r}(x, -v)}^{0} a(\gamma_{x, v}(s)) \, ds \right), \quad (x, v) \in \tilde{M}.$$
Here \(\tilde{\tau}(x, v) \) is the unique non-negative time when the geodesic \(\gamma_{x, v} \), with \(\gamma_{x, v}(0) = x \) and \(\dot{\gamma}_{x, v}(0) = v \), exits \(\tilde{M} \). Let us now define
\[
\tilde{w}(x, v) := \int_{-\tilde{\tau}(x, -v)}^{\tilde{\tau}(x, v)} \tilde{U}^{-1}_a(\gamma_{x, v}(t), \dot{\gamma}_{x, v}(t)) \left\{ \beta_3(\gamma_{x, v}(t)) \dot{\gamma}_{x, v}(t) + h(\gamma_{x, v}(t)) \right\} \, dt.
\]
Note that \(\tilde{w} \in C^\infty(S\tilde{M}^\text{int}, \mathbb{C}) \). From the definition, one can show that
\[
\tilde{\mathcal{T}}_a[\beta, h] = \tilde{w}|_{\partial_s SM}.
\]
Using the formulas (12) and (13) for the adjoints and using that \(\tilde{\mathcal{T}}_a = \tilde{I}^1_a + \tilde{I}^0_a \), we can obtain
\[
[\alpha, f] = r_M(\tilde{\mathcal{T}}_a)^* \tilde{\mathcal{T}}_a[\beta, h] = (\pi(U_{-\pi\tilde{w}})|_{SM} - 2\pi(U_{-\pi\tilde{w}})|_{SM} + \pi(U_{-\pi\tilde{w}})|_{SM}) \bigg|_{SM} = (\mathcal{T}_a)^*(U_{-\pi\tilde{w}})|_{\partial_s SM}.
\]
In the last step we used the fact that \(U_{-\pi} \) and \(U_{-\pi} \) are related by
\[
U_{-\pi}(x, v) = U_{-\pi}(x, v)(U_{-\pi}|_{\partial_s SM})\psi(x, v) \text{ for all } (x, v) \in SM.
\]
This is easy to see from the integral expressions for \(U_{-\pi} \) and \(U_{-\pi} \). Setting \(w = (U_{-\pi}\tilde{w})|_{\partial_s SM} \) we finish the proof. \(\Box \)

To prove Lemma 4.4 we need the following result.

Lemma 4.5. The normal operator \(\tilde{N}_a \) is a pseudodifferential operator of order \(-1\) in \(\tilde{M}^\text{int} \). Moreover, \(\tilde{N}_a \) is elliptic on a-solenoidal pairs.

We say that \(\tilde{N}_a \) is elliptic on a-solenoidal pairs, if \(\text{diag}(d_a\Lambda_\delta_a, \tilde{N}_a) \), acting on pairs, is elliptic (as a system of pseudodifferential operators of order \(-1\)), where \(\Lambda \) is a proper pseudodifferential operator on \(\tilde{M}^\text{int} \) with principal symbol \(1/|\xi|^3 \). Recall that \(\text{diag}(d_a\Lambda_\delta_a, \tilde{N}_a) \) is an elliptic system if \(\det \sigma_p(\text{diag}(d_a\Lambda_\delta_a, \tilde{N}_a))(x, \xi) \neq 0 \) for \((x, \xi) \in TM \setminus \{0\} \); see [36, page 46].

Proof. First, we prove that \(\tilde{N}_a \) is a pseudodifferential operator of order \(-1\) in \(\tilde{M}^\text{int} \). Recall that by \(\tilde{U}_a \) we denote the unique solution to
\[
(X + a)\tilde{U}_a = 0 \quad (\tilde{S}M), \quad \tilde{U}_a|_{\partial_s S\tilde{M}} = 1.
\]
Recall also that the normal operator is as follows \(\tilde{N}_a : L^2(\tilde{M}, \mathbb{C}) \rightarrow L^2(\tilde{M}, \mathbb{C}) \). Therefore, we introduce the following notation
\[
\tilde{N}_a[\alpha, f] = [\tilde{N}_a^{11} \alpha + \tilde{N}_a^{10} f, \tilde{N}_a^{01} \alpha + \tilde{N}_a^{00} f],
\]
with
\[
\tilde{N}_a^{11} := (\tilde{I}^1_a)^* \tilde{I}^1_a, \quad \tilde{N}_a^{10} := (\tilde{I}^1_a)^* \tilde{I}^0_a, \quad \tilde{N}_a^{01} := (\tilde{I}^0_a)^* \tilde{I}^1_a, \quad \tilde{N}_a^{00} := (\tilde{I}^0_a)^* \tilde{I}^0_a.
\]
Using (11), one can show that

\[
\left(\tilde{N}^1_\alpha\right)'(x) = \int_{S_1 M} v_i U_{-\pi}(x,v) \int_{\tilde{\tau}(x,v)}^{\tilde{\tau}(x,-v)} U^{-1}_a(\varphi_{x,v}(t))\alpha_i(\gamma_{x,v}(t))\dot{\gamma}_{x,v}^i(t) \, dt \, d\sigma_x(v),
\]

\[
\left(\tilde{N}^{10}_a\right)' f(x) = \int_{S_1 M} v_i U_{-\pi}(x,v) \int_{\tilde{\tau}(x,v)}^{\tilde{\tau}(x,-v)} U^{-1}_a(\varphi_{x,v}(t))f(\gamma_{x,v}(t)) \, dt \, d\sigma_x(v),
\]

\[
\left(\tilde{N}^{01}_a\right)i(x,\xi) = \int_{S_1 M} U_{-\pi}(x,v) \int_{\tilde{\tau}(x,v)}^{\tilde{\tau}(x,-v)} U^{-1}_a(\varphi_{x,v}(t))\alpha_i(\gamma_{x,v}(t))\dot{\gamma}_{x,v}^i(t) \, dt \, d\sigma_x(v),
\]

\[
\left(\tilde{N}^{00}_a\right) f(x) = \int_{S_1 M} U_{-\pi}(x,v) \int_{\tilde{\tau}(x,v)}^{\tilde{\tau}(x,-v)} U^{-1}_a(\varphi_{x,v}(t))f(\gamma_{x,v}(t)) \, dt \, d\sigma_x(v).
\]

Following [9, 11], we use [4, Lemma B.1] to deduce that \(\tilde{N}_a \) is a pseudodifferential operator of order \(-1\), and the principal symbols of the above operators are as follows:

\[
\sigma_p(\tilde{N}^{11}_\alpha)i(x,\xi) = 2\pi \int_{S_1 M} \omega \dot{\omega} \delta((\omega, \xi) g(x)) U_{-2 \text{Re}(a)}(x, \omega) \, d\sigma_x(\omega),
\]

\[
\sigma_p(\tilde{N}^{10}_a)'(x,\xi) = 2\pi \int_{S_1 M} \omega \dot{\omega} \delta((\omega, \xi) g(x)) U_{-2 \text{Re}(a)}(x, \omega) \, d\sigma_x(\omega),
\]

\[
\sigma_p(\tilde{N}^{01}_a)i(x,\xi) = 2\pi \int_{S_1 M} \omega \delta((\omega, \xi) g(x)) U_{-2 \text{Re}(a)}(x, \omega) \, d\sigma_x(\omega),
\]

\[
\sigma_p(\tilde{N}^{00}_a)(x,\xi) = 2\pi \int_{S_1 M} \delta((\omega, \xi) g(x)) U_{-2 \text{Re}(a)}(x, \omega) \, d\sigma_x(\omega).
\]

Now, we prove ellipticity. For this, note that the ellipticity of \(\text{diag}(d_a \Lambda \delta_a, \tilde{N}_a) \) is equivalent to saying that the principal symbol \(\sigma_p(\text{diag}(d_a \Lambda \delta_a, \tilde{N}_a))(x, \xi) \), acting on pairs, is injective for every \((x, \xi) \in T\tilde{M} \setminus \{0\} \); see the comments preceding [40, Definition 7.1]. Assume that \(\sigma_p(\tilde{N}_a)[\alpha, f] = 0 \) and \(\sigma_p(d_a \Lambda \delta_a)[\alpha, f] = 0 \) for some \(x \) and \(\xi \neq 0 \). Then it follows that

\[
\alpha_i(x)\xi^i = 0
\]

and

\[
(\sigma(\tilde{N}_a)[\alpha, f], [\alpha, f])_g = 2\pi \int_{S_1 M} |\alpha_i(x)\omega^i + f(x)|^2 \delta((\omega, \xi) g(x)) U_{-2 \text{Re}(a)}(x, \omega) \, d\sigma_x(\omega) = 0,
\]

where the inner product \((\cdot, \cdot)_g\) is as in (5) before the integration. Note that \(U_{-2 \text{Re}(a)} \) > 0 and that the set \(S_{x, \xi} := \{ \omega \in S_1 \tilde{M} : (\omega, \xi) g(x) = 0 \} \) is non-empty. Therefore, for all such \(\omega \), we get

\[
\alpha_i(x)\omega^i + f(x) = 0.
\]

Since \(-\omega \) is also in \(S_{x, \xi} \), we have

\[
-\alpha_i(x)\omega^i + f(x) = 0.
\]

These two equalities imply that \(f(x) = 0 \). Then (16) and (17) show that \(\alpha(x) = 0 \). Thus, \(\tilde{N}_a \) is elliptic on \(a \)-solenoidal pairs. \(\square \)
Now we give the proof of Lemma 4.4.

Proof of Lemma 4.4. For the proof we closely follow the arguments in [5]. First, we will show that \(r_M \tilde{N}_a \) has closed range. Since \(\text{diag}(\tilde{N}_a, d_a \Lambda \delta_a) \), acting on pairs, is elliptic, there is a parametrix

\[
P = \begin{pmatrix} X & Y \\ Z & T \end{pmatrix}
\]

such that

\[
\text{diag}(\tilde{N}_a, d_a \Lambda \delta_a)P = \begin{pmatrix} \tilde{N}_a X & \tilde{N}_a Y \\ d_a \Lambda \delta_a Z & d_a \Lambda \delta_a T \end{pmatrix} \equiv \text{Id},
\]

(18)

and

\[
P \text{diag}(\tilde{N}_a, d_a \Lambda \delta_a) = \begin{pmatrix} X \tilde{N}_a & Y d_a \Lambda \delta_a \\ Z \tilde{N}_a & T d_a \Lambda \delta_a \end{pmatrix} \equiv \text{Id},
\]

(19)

where \(\equiv \) means equivalence up to a smoothing operator.

Let us use the convention that for two pairs of operators the multiplication is defined as

\[
(A, B)(C, D) = AC + BD = (A, 0)(C, 0) + (0, B)(0, D).
\]

If we denote \(C_a := (\tilde{N}_a, d_a \Lambda \delta_a) \), then from (18) and (19) there is a pair of pseudodifferential operators \((A, B)\) such that

\[
(A, B)C_a = (A, 0)(\tilde{N}_a, 0) + (0, B)(0, d_a \Lambda \delta_a) \equiv \text{Id},
\]

\[
C_a(A, B) = (\tilde{N}_a, 0)(A, 0) + (0, d_a \Lambda \delta_a)(0, B) \equiv \text{Id}.
\]

(20)

In fact, \(A = \frac{1}{2}X \) and \(B = \frac{1}{2}T \). Using (14), we show that

\[
-\delta_a C_a = (-\delta_a \tilde{N}_a, -\delta_a d_a \Lambda \delta_a) = (0, -\delta_a d_a \Lambda \delta_a) = -\delta_a d_a (0, \Lambda \delta_a).
\]

The operator \(-\delta_a d_a\) is \(-\Delta_g + |a|^2\), which has a proper parametrix \((\Delta - |a|^2)^{-1} \). Then

\[
(0, \Lambda \delta_a) = (-\Delta_g + |a|^2)^{-1} \delta_a C_a.
\]

Therefore,

\[
(\tilde{N}_a, 0)(A, 0) - d_a(-\Delta_g + |a|^2)^{-1} \delta_a C_a(0, B) \equiv \text{Id}.
\]

Since \(C_a(0, B) = C_a(A, B) - (\tilde{N}_a, 0)(A, 0) \equiv \text{Id} - (\tilde{N}_a, 0)(A, 0) \) and \(\delta_a \tilde{N}_a = 0 \), this imply that

\[
\tilde{N}_a A - d_a(-\Delta_g + |a|^2)^{-1} \delta_a = \text{Id} + K,
\]

where \(K \) is a smoothing operator in \(\tilde{M}^\text{int} \). Restricting to \(C_0,\delta,\text{sol}(\tilde{M}^\text{int}, \mathbb{C}) \), we obtain

\[
\tilde{N}_a A[\alpha, f] = [\alpha, f] + K[\alpha, f], \quad \text{for all} \quad [\alpha, f] \in C_0,\delta,\text{sol}(\tilde{M}^\text{int}, \mathbb{C}).
\]

By Proposition 3.3, there is a precompact neighborhood \(W \) of \(M \) in \(\tilde{M}^\text{int} \) such that there is a bounded map \(\mathcal{E}_a : \mathcal{H}_a,\text{sol}(M, \mathbb{C}) \to \mathcal{H}^1_{W,\text{a},\text{sol}}(\tilde{M}^\text{int}, \mathbb{C}) \) such that \(\mathcal{E}_a|_{M} = \text{Id} \) and \(\mathcal{E}_a(C_0,\text{sol}(M, \mathbb{C})) \subset C_0,\text{sol}(\tilde{M}^\text{int}, \mathbb{C}) \). Then we have on \(\mathcal{H}^1_{a,\text{sol}}(M, \mathbb{C}) \)

\[
r_M \tilde{N}_a A \mathcal{E}_a = \text{Id} + r_M K \mathcal{E}_a.
\]
Since K is smoothing in \tilde{M}^{int}, the operator $r_{M}K\mathcal{E}_{a}$ is compact. Hence, the operator $\text{Id} + r_{M}K\mathcal{E}_{a} : \mathcal{H}_{a,\text{sol}}^{1}(M,\mathbb{C}) \to \mathcal{H}_{a,\text{sol}}^{1}(M,\mathbb{C})$ has closed and finite codimensional range. Since K is smoothing, we also get that the operator $\text{Id} + r_{M}K\mathcal{E}_{a} : C_{a,\text{sol}}^{\infty}(M,\mathbb{C}) \to C_{a,\text{sol}}^{\infty}(M,\mathbb{C})$ also has closed and finite codimensional range. Therefore, $r_{M}\tilde{\mathcal{N}}_{a}\mathcal{A}\mathcal{E}_{a}(C_{a,\text{sol}}^{\infty}(M,\mathbb{C}))$ is closed and has finite codimension in $C_{a,\text{sol}}^{\infty}(M,\mathbb{C})$. Since

$$r_{M}\tilde{\mathcal{N}}_{a}\mathcal{A}\mathcal{E}_{a}(C_{a,\text{sol}}^{\infty}(M,\mathbb{C})) \subset r_{M}\tilde{\mathcal{N}}_{a}(C_{0}^{\infty}(\tilde{M}^{\text{int}},\mathbb{C})) \subset C_{a,\text{sol}}^{\infty}(M,\mathbb{C}),$$

the intermediate space $r_{M}\tilde{\mathcal{N}}_{a}(C_{0}^{\infty}(\tilde{M}^{\text{int}},\mathbb{C}))$ is also closed in $C_{a,\text{sol}}^{\infty}(M,\mathbb{C})$.

Next, we show that the adjoint operator $(r_{M}\tilde{\mathcal{N}}_{a})^{*}$ has trivial kernel. According to (6), each functional on $C_{a,\text{sol}}^{\infty}(M,\mathbb{C})$ gives rise to a functional on $C_{a,\text{sol}}^{\infty}(M,\mathbb{C})$ that vanishes on $C_{a,\text{sol}}^{\infty}(M,\mathbb{C})$. Therefore, the dual of $C_{a,\text{sol}}^{\infty}(M,\mathbb{C})$ is

$$D'_{M,\delta a}(\tilde{M}^{\text{int}},\mathbb{C})$$

$$= \{[\alpha, f] \in D'(\tilde{M}^{\text{int}},\mathbb{C}) : \text{supp}[\alpha, f] \subset M, \langle[\alpha, f] | [\beta, h]\rangle = 0, \forall[\beta, h] \in C_{a,\text{sol}}^{\infty}(M,\mathbb{C})\},$$

where $[\beta, h] \in C_{a,\text{sol}}^{\infty}(\tilde{M}^{\text{int}})$ is any extension of $[\beta, h]$ from M to \tilde{M}^{int}. Then dual operator of (15) is

$$(r_{M}\tilde{\mathcal{N}}_{a})^{*} : D'_{M,\delta a}(\tilde{M}^{\text{int}},\mathbb{C}) \to D'(\tilde{M}^{\text{int}}).$$

For all $[\alpha, f] \in D'_{M,\delta a}(\tilde{M}^{\text{int}},\mathbb{C})$ and $[\beta, h] \in C_{a,\text{sol}}^{\infty}(\tilde{M}^{\text{int}})$

$$\langle(r_{M}\tilde{\mathcal{N}}_{a})^{*}[\alpha, f] | [\beta, h]\rangle = \langle[\alpha, f] | (r_{M}\tilde{\mathcal{N}}_{a}[\beta, h])^{*}\rangle = \langle[\alpha, f] | \tilde{\mathcal{N}}_{a}[\beta, h]\rangle = \langle\tilde{\mathcal{N}}_{a}[\alpha, f] | [\beta, h]\rangle.$$

Hence,

$$(r_{M}\tilde{\mathcal{N}}_{a})^{*} = \tilde{\mathcal{N}}_{a}|_{D'_{M,\delta a}(\tilde{M}^{\text{int}},\mathbb{C})}.$$
This implies that \(\tilde{N}_a[\beta, h] \) is smooth in \(\tilde{M}^{\text{int}} \). Now using the fact that \(\delta_a[\beta, h] = 0 \) and (20), we obtain that \([\beta, h] \) is smooth in \(\tilde{M}^{\text{int}} \) and hence according to (24), we conclude that \([\beta, h] \) is smooth on \(\tilde{M} \).

By (25), we have \(\tilde{N}_a ([\beta, h] + d_a p) = 0 \) with \([\beta, h] \in C^\infty (\tilde{M}, \mathbb{C}) \) and \(p \in C^\infty (\tilde{M}, \mathbb{C}) \). Then \(\tilde{I}_a ([\beta, h] + d_a p) = 0 \) and hence, by the injectivity result [32, Theorem 1.2], \([\beta, h] + d_a p = d_a q \) for some \(q \in C^\infty (\tilde{M}, \mathbb{C}) \) with \(q|_{\partial \tilde{M}} = 0 \). This, combined with the decomposition \([a, f] = [\beta, h] + d_a b \), gives

\[
[a, f] = -d_a p + d_a q + d_a b.
\]

Therefore, for every \([\gamma, v] \in C^\infty_{a, \text{sol}}(M, \mathbb{C}) \) we have

\[
\langle [a, f] | [\tilde{\gamma}, \tilde{v}] \rangle = \langle [d_a (-(p + q + b)) | [\tilde{\gamma}, \tilde{v}] \rangle = -\langle (-p + q + b) | \delta_a [\tilde{\gamma}, \tilde{v}] \rangle,
\]

where \([\tilde{\gamma}, \tilde{v}] \in C^\infty_{a, \text{sol}}(\tilde{M}^{\text{int}}, \mathbb{C}) \) is any extension of \([\gamma, v] \). By Proposition 3.3, we can take \([\tilde{\gamma}, \tilde{v}] \) to satisfy \(\delta_a [\tilde{\gamma}, \tilde{v}] = 0 \). Therefore, \([a, f] \) annihilates \(C^\infty_{a, \text{sol}}(M, \mathbb{C}) \). By the definition of \(D'_M, \delta_a (\tilde{M}^{\text{int}}, \mathbb{C}) \) we then have \([a, f] = 0 \). \(\square\)

5. Proofs of Theorems 2.1 and 2.2

Following [26, 22], we start with deriving the appropriate factorization for the operator \(P_a \). Suppose \(w \in S^\infty_\partial (\partial_+ SM, \mathbb{C}) \). Then \(w^\perp \) is a smooth solution of the transport equation \((X + a) w^\perp = 0\). Applying commutator formula (4) to \(w^\perp \), we obtain

\[
-(X + a) H w^\perp = X_\perp w^\perp_0 + (X_\perp w^\perp)_0.
\]

Note that \(X_\perp w^\perp_0 = \ast d w^\perp_0 \). Since \(X_\perp = i (\eta_- - \eta_+) \), using [22, Lemma 6.2], we also have

\[
(X_\perp w^\perp)_0 = i (\eta_- w^\perp_1 - \eta_+ w^\perp_{-1}) = \frac{1}{2} \ast d (w^\perp_{-1} + w^\perp_1).
\]

Therefore,

\[
-2\pi (X + a) H w^\perp = 2\pi \ast d w^\perp_0 + \pi \ast d (w^\perp_{-1} + w^\perp_1).
\]

Applying \(I_a \) to the above equality and using the expressions for the adjoint of the ray transform in (12) and (13), we deduce

\[
-2\pi P_a w = I_a [\ast d (I^0_{a -} \ast)^*(w), \ast d (I^1_{-a})^*(w)] = I_a [\ast d, \ast d] T_{\ast a} - \pi w.
\]

Proof of Theorem 2.2. Proof of Claim (1). Suppose that \(u = P_a w \) for some \(w \in S^\infty_\partial (\partial_+ SM, \mathbb{C}) \) with \(w^\perp_0 = 0 \). According to (12), \(w^\perp_0 = 0 \) is equivalent to saying \((I^0_{-a})^*(w) = 0\), the factorization (26) shows that \(u \) belongs to the range of \(I^0_{a} \).

Conversely, suppose \(u = I^0_{a} f \) for some \(f \in C^\infty (M, \mathbb{C}) \). By basic properties of the Hodge star \(\ast \), we know that \(f = \ast (f d \text{Vol}_g) \). Since \(M \) is simply connected and \(f d \text{Vol}_g \) is closed, there is a smooth one-form \(\alpha \) such that \(d\alpha = f d \text{Vol}_g \). Recall that \(\alpha \) can be written as \(\alpha = \alpha^s + dh \) where \(\alpha^s \) is solenoidal and \(h \in C^\infty (M, \mathbb{C}) \) such that \(h|_{\partial M} = 0 \). Then \(d\alpha = d\alpha^s \), since \(d^2 = 0 \). Therefore, without loss of generality, we can assume \(\alpha \) to be solenoidal. Thus, we have \(u = I^0_{a} \ast d\alpha \) with \(\alpha \) being...
there is from the previous sections, inverting where we have defined the space modulo the kernel of Theorem 6.1. and we establish the following: (note that any other normalization condition setting constants to zero may work)

\[u = I_a^0 \ast d(I_\pi^1)^*(w) = \mathcal{I}_a[\ast d(I_\pi^0)^*(w), \ast d(I_\pi^1)^*(w)] = P_aw, \]

which finishes the proof of Claim (1).

Proof of Claim (2). Suppose that \(u = P_aw \) for some \(w \in \mathcal{S}^\infty_a(\partial_+SM, \mathbb{C}) \) such that \(w_{\pi+1}^d + w_1^f = dp \) for some \(p \in C^\infty(M, \mathbb{C}) \). According to (13), \(w_{\pi+1}^d + w_1^f = dp \) is equivalent to saying \((I_\pi^1)^*(w) = dq \) for some \(q \in C^\infty(M, \mathbb{C}) \). Then the factorization (26) shows that \(u \) belongs to the range of \(I_a^1 \) acting on solenoidal one-forms. Conversely, suppose \(u = I_a^1 \ast d\varphi \) for some \(\varphi \in C^\infty(M, \mathbb{C}) \). Since the Hodge star operator \(\ast \) is isomorphism between \(\Omega^2(M, \mathbb{C}) \) and \(C^\infty(M, \mathbb{C}) \), there is a two-form \(\omega \) such that \(\ast \omega = a\varphi \). Since \(M \) is simply connected and \(\omega \) is closed, there is a smooth one-form \(\beta \) such that \(\omega = d\beta \). As in the proof of Claim 1, \(\beta \) can be taken to be solenoidal, i.e. \(\beta = \ast d\varphi \). Write \(a = \ast \beta = -dh \), then one can check that \(\delta_{\pi}^\ast[a, \varphi] = 0 \). Then by Theorem 4.2 there is \(w \in \mathcal{S}^\infty_a(\partial_+SM, \mathbb{C}) \) such that \(\mathcal{I}_\pi^\ast(w) = [a, \varphi] \). Since \(da = 0 \), using (26), we can conclude that

\[u = I_a^1 \ast d\varphi = \mathcal{I}_a[\ast d(I_\pi^0)^*(w), \ast d(I_\pi^1)^*(w)] = P_aw. \]

According to (13), since \(a = -dh \), we have

\[w_{\pi+1}^d + w_1^f = \frac{1}{\pi}(I_\pi^1)^*(w) = dq, \quad q = -\frac{1}{\pi}h. \]

Hence, the proof of Claim (2) is complete. \(\square \)

6. An injective decomposition of the range of \(I_a \)

While spaces of pairs are more amenable to the microlocal analysis arguments from the previous sections, inverting \(\mathcal{I}_a \) over pairs requires finding a representative modulo the kernel of \(\mathcal{I}_a \) of \(a \)-potential pairs. One way to achieve this below is to use a different domain of definition, over which the transform is injective. We first define the mapping

\[\check{C}^\infty(M) \times C^\infty(M) \ni (h, f) \mapsto \mathcal{I}_a[\ast dh, f] \in C^\infty(\partial_+SM), \]

where we have defined the space

\[\check{C}^\infty(M) := \left\{ h \in C^\infty(M) : \int_{\partial M} h(s) \, ds = 0 \right\}, \quad (27) \]

(note that any other normalization condition setting constants to zero may work)

and we establish the following:

Theorem 6.1. Let \((M, g)\) a simple surface with boundary and \(a \in C^\infty(M) \). Then:

(i) The transform \(\check{C}^\infty(M) \times C^\infty(M) \ni (h, f) \mapsto \mathcal{I}_a[\ast dh, f] \) is injective.

(ii) For any smooth pair \([a, b] \in \check{C}^\infty(M, \mathbb{C}) \), there exists a unique couple \((h, f) \in \check{C}^\infty(M) \times C^\infty(M) \) such that \(\mathcal{I}_a[a, b] = \mathcal{I}_a[\ast dh, f] \).
Proof of Theorem 6.1. Proof of (i). Suppose that \((h,f)\) are such that \(\mathcal{I}_a[\ast dh,f] = 0\). By solenoidal injectivity of \(\mathcal{I}_a\), this implies that \([\ast dh,f] = d_a m = [dm, am]\) for some function \(m\) vanishing on \(\partial M\). Then the equality \(\ast dh = dm\) implies that \(m\) and \(h\) are harmonic. Since \(m|_{\partial M} = 0\), then \(m = 0\) on \(M\). In turn, \(f = am = 0\) and since \(\ast dh = 0\) \(h\) is constant equal to zero, due to the normalization condition (27).

Proof of (ii). Let \([\alpha, b]\) a smooth pair. Then \(\mathcal{I}_a[\alpha, b] = u|_{\partial_\pm SM}\), where \(u\) is the solution to

\[
 Xu + au = -b - \alpha(v) \quad (SM), \quad u|_{\partial_\pm SM}.
\]

Now, \(\alpha\) has a unique Hodge decomposition \(\alpha = df' + \ast dh\) with \(f' \in C^\infty(M)\) with \(f'|_{\partial M} = 0\) and \(h \in \hat{C}^\infty(M)\). As functions on \(SM\), this means, \(\alpha(v) = Xu + X_\perp h\), and thus the previous transport equation can be rewritten as

\[
 X(u + f') + a(u + f') = -(b - af') - X_\perp h,
\]

where the functions \(u + f'\) and \(u\) agree on \(\partial_{\alpha} SM\). In particular, \((u + f')|_{\partial_\pm SM} = 0\) and

\[
 \mathcal{I}_a[\alpha, b] = u|_{\partial_\pm SM} = (u + f')|_{\partial_\pm SM} = \mathcal{I}_a[\ast dh, b - af'].
\]

Therefore, the couple \((h, b - af')\) provides the desired candidate, whose smoothness comes from elliptic regularity and smoothness of \(a\). In addition, such a couple is unique by virtue of (i). Theorem 6.1 is proved. \(\square\)

We now decompose \(h\) further. Recall that we define \(\ker^k \eta_{\pm} := \Omega_k \cap \ker \eta_{\pm}\).

Lemma 6.2. Any \(h \in \hat{C}^\infty(M)\) decomposes into \(h = h_0 + h_+ + h_-\), where \(h_0 \in C_0^\infty(M)\) is unique and \(h_\pm \in \ker^0 \eta_{\pm}\) are unique up to a constant. In particular, \(h = 0\) if and only if \(h_0 = 0\) and \(h_+\) and \(h_-\) are constant.

Proof. Let \(h \in \hat{C}^\infty(M)\) and define \(u\) unique harmonic function with \(u|_{\partial M} = h|_{\partial M}\). By elliptic regularity and smoothness of \(\partial M\), \(u \in \hat{C}^\infty(M)\). Let \(v\) the unique harmonic conjugate to \(u\) satisfying the normalization condition (27), such that \(du = \ast dv\). In the sense of functions on \(SM\), this is equivalent to saying \(Xu = X_\perp v\) which upon using that \(X = \eta_+ + \eta_-\) and \(X_\perp = \frac{1}{2}(\eta_+ - \eta_-)\), yields

\[
 \eta_+(u + iv) + \eta_-(u - iv) = 0.
\]

Projecting onto \(\Omega_1\) and \(\Omega_{-1}\) gives \(\eta_+(u + iv) = 0\) and \(\eta_-(u - iv)\). Therefore, the decomposition follows upon writing

\[
 h = (h - u) + \frac{1}{2}(u + iv) + \frac{1}{2}(u - iv).
\]

Lemma 6.2 is proved. \(\square\)

Upon decomposing \(h = h_0 + h_+ + h_-\) as in Lemma 6.2, and using that \(h_\pm \in \ker^0 \eta_{\pm}\), the data \(\mathcal{D} := \mathcal{I}_a[\ast dh, f]\) looks like

\[
 \mathcal{D} = \mathcal{I}_a(f + X_\perp h_0 - i\eta_+ h_- + i\eta_- h_+) + \mathcal{I}_a^0 f + \mathcal{I}_a^+ h_0 + \mathcal{I}_a^+ (-i\eta_+ h_-) + \mathcal{I}_a^- (i\eta_- h_+),
\]

where
where the equality does not depend on constants added to h_+ or h_-. From the commutator relation $[\eta_+, \eta_-] = \frac{1}{2}\kappa V$, we can see that $\eta_+ h_- \in \ker I \eta_- \in \ker I$ and $\eta_- h_+ \in \ker I^{-1} \eta_+$. Upon defining $\omega_1 = -i\eta_+ h_-$ and $\omega_{-1} = i\eta_- h_+$, and in light of Lemma 6.2, the decomposition $\star dh = \star dh_0 + \omega_1 + \omega_{-1}$ is unique and the left hand side is zero if and only if each summand of the right hand side is zero. Combining this with Theorem 6.1, we arrive at the following conclusion:

Lemma 6.3. For any $D \in \text{Range } I_a$, there exists a unique quadruple $(f, h_0, \omega_1, \omega_{-1}) \in C^\infty(M) \times C^\infty_0(M) \times \ker I \eta_- \times \ker I^{-1} \eta_+$ such that

$$D = I_a f + I^+_a h_0 + I^+_a \omega_1 + I^-_a \omega_{-1}.$$

In particular, $D = 0$ if and only if the entire quadruple vanishes identically.

7. Inversion approach

As Lemma 6.3 suggests, since the mapping $(f, h_0, \omega_1, \omega_{-1}) \mapsto D$ is injective, we expect to write reconstruction formulas for each element of the quadruple, which is the purpose of this section. The remainder is organized as follows:

- In Section 7.1, we will first show how to reconstruct ω_1 and ω_{-1} from D, thereby allowing us to remove the data $I^+_a \omega_1 + I^-_a \omega_{-1}$ from D.
- In Section 7.2, as a preparation toward the reconstruction of (h_0, f), we will construct a so-called boundary holomorphization operator, related to the unattenuated transform I_0.
- In Section 7.3, we will then show how to reconstruct (h_0, f) from the remaining data $I_a[\star dh_0, f]$ via explicit formulas.

7.1. Reconstruction of ω_1 and ω_{-1}. Here and below, by $O_{\geq k}$ (resp. $O_{\leq k}$), we denote an element $u \in C^\infty(SM)$ such that $u_p = 0$ for all $p < k$ (resp. all $p > k$). We first recall the following result from [22], see also [25].

Lemma 7.1 (Lemma 5.6 in [22]). Given any $f \in \Omega_m$, there exists $w \in C^\infty(SM, \mathbb{C})$ such that $Xw = 0$ and $w_{m} = f$.

Using Lemma 7.1, we prove the following:

Lemma 7.2. Let (M, g) simple and $a \in C^\infty(M, \mathbb{C})$. Then the following statements hold true:

1. For any $\phi \in \ker I \eta_-$, there exists $w = \phi + O_{\geq 2}$, solution of $Xw - \overline{a}w = 0$.
2. For any $\phi \in \ker I^{-1} \eta_+$, there exists $w = \phi + O_{\leq -2}$, solution of $Xw - \overline{a}w = 0$.

Proof of Lemma 7.2. Let \tilde{w}, \tilde{w} denote smooth, odd solutions of $X\tilde{w} = X\tilde{w} = \overline{a}$ with \tilde{w} holomorphic and \tilde{w} antiholomorphic, whose existence is established in [32, Proposition 4.1]. Then $e^{\tilde{w}}$ is a holomorphic solution of $(X - \overline{a})e^{\tilde{w}} = 0$ of the form $e^{\tilde{w}} = 1 + O_{\geq 1}$ and $e^{\tilde{w}} = 1 + O_{\leq -1}$ is an antiholomorphic solution of $(X - \overline{a})e^{\tilde{w}} = 0$.

Proof of (1). For $\phi \in \ker I \eta_-$, using Lemma 7.1, there exists v smooth solution of $Xv = 0$ with $v_1 = \phi$. Since $\eta_- v_1 = \eta_- \phi = 0$, then $v' = \sum_{k \geq 1} v_k$ is another smooth solution of $Xv' = 0$ with $v'_1 = v_1 = \phi$. Then setting $w = e^{\tilde{w}}v'$ completes the proof.
The spaces \(L^2(\ker^k \eta_{\pm}) \). In the sequel, we denote
\[
L^2(\ker^k \eta_{\pm}) := \{ f \in L^2(SM) : f_p = 0, \ p \neq k; \ \eta_{\pm} f = 0 \}.
\]
These spaces are closed subspaces of \(L^2(SM) \), essentially because, using isothermal coordinates, the operators \(\eta_{\pm} \) are \(\partial_M, \partial_\perp \) operators and that \(L^2(M) \)-limits of solutions of \(\partial_M f = 0 \) are in fact normal limits (uniform limits on compact subsets of \(M \)), and thus themselves solutions of \(\partial_M f = 0 \) (see for instance [37, Ex. 6 p254]). These spaces are therefore Hilbert spaces themselves, admitting complete orthonormal sets. For the sequel, we denote \(\{ \phi^{\pm1,(p)} \}_{p=0}^{\infty} \) orthonormal Hilbert bases of \(L^2(\ker^{\pm1} \eta_{\pm}) \). Then for any \(\phi^{1,(p)} \), we define \(w^{1,(p)} \) as in Lemma 7.2.1 and for any \(\phi^{-1,(p)} \), we define \(w^{-1,(p)} \) according to Lemma 7.2.2.

We now explain how to reconstruct elements of \(\ker^{\pm1} \eta_{\pm} \) from knowledge of their ray transforms, and notice how these reconstructions pay no heed to the additional terms \(f \) and \(h_0 \).

Theorem 7.3. Let \((M, g) \) a simple surface and \(a \in C^\infty(M, \mathbb{C}) \). Let \(\mathcal{D} \in \text{Range } I_a \) and \((f, h_0, \omega_1, \omega_{-1}) \) as in Lemma 6.3., then the harmonic one-forms \(\omega_1 \) and \(\omega_{-1} \) can be reconstructed from \(\mathcal{D} = I_a f + I_a h_0 + I_a^1 \omega_1 + I_a^{-1} \omega_{-1} \) via the formulas
\[
\begin{align*}
\omega_1 &= \sum_{p=0}^{\infty} \langle \mathcal{D}, w^{1,(p)} |_{\partial_+ SM} \rangle L_2^2(\partial_+ SM) \phi^{1,(p)}, \\
\omega_{-1} &= \sum_{p=0}^{\infty} \langle \mathcal{D}, w^{-1,(p)} |_{\partial_+ SM} \rangle L_2^2(\partial_+ SM) \phi^{-1,(p)}.
\end{align*}
\]

Proof. We only prove (28), as the proof of (29) is similar.

Proof of (28). Recall that \(\mathcal{D} = u |_{\partial_+ SM} \), where \(u \) solves the problem
\[
X u + au = -f - X_\perp h_0 - \omega_1 - \omega_{-1} \quad (SM).
\]
For any \(p \geq 0 \), setting \(\phi = \phi^{1,(p)} \) and \(w = w^{1,(p)} \), we take the \(L^2(SM) \) inner product of the transport equation above with \(w \) to make appear:
\[
\begin{align*}
\text{LHS} &= (X u + au, w)_{SM} = -\langle \mathcal{D}, u |_{\partial_+ SM} \rangle L_2^2(\partial_+ SM) + \langle u, -X w + au \rangle_{SM}, \\
\text{RHS} &= (-f - X_\perp h_0 - \omega_1 - \omega_{-1}, w)_{SM} = (-\eta_+ h_0 - \omega_1, \phi)_{SM} = -\langle \omega_1, \phi \rangle_{SM}.
\end{align*}
\]
where the integration by parts \((\eta_+ h_0, \phi)_{SM} = (h_0, \eta_+ \phi)_{SM} = 0 \) holds with no boundary term since \(h_0 |_{\partial M} = 0 \). We then arrive at the relation
\[
\langle \mathcal{D}, w |_{\partial_+ SM} \rangle L_2^2(\partial_+ SM) = (\omega_1, \phi)_{SM}.
\]
Therefore, for \(\phi = \phi^{1,(p)} \) above and \(w = w^{1,(p)} \) as in Lemma 7.2.1,
\[
\langle \mathcal{D}, w^{1,(p)} |_{\partial_+ SM} \rangle L_2^2(\partial_+ SM) = (\omega_1, \phi^{1,(p)})_{SM}, \quad \forall \ p \geq 0.
\]
Since $\omega_1 \in L^2(\ker I_{a,\pm 1})$, then Bessel’s inequality implies that
\[
\sum_{p=0}^{\infty} |\langle \mathcal{D}, w^{1,\pm 1}(p) |_{\partial \mathcal{M}} \rangle_{L^2_a(\partial \mathcal{M})}|^2 = \sum_{p=0}^{\infty} |\langle \omega_1, \phi^{1,\pm 1}(p) |_{\mathcal{M}} \rangle_{L^2_a(\partial \mathcal{M})}|^2 \leq \|\omega_1\|^2_{L^2},
\]
so that the following infinite sum makes sense:
\[
\omega_1 = \sum_{p=0}^{\infty} (\omega_1, \phi^{1,\pm 1}(p))_{\mathcal{M}} \phi^{1,\pm 1}(p) = \sum_{p=0}^{\infty} \langle \mathcal{D}, w^{1,\pm 1}(p) |_{\partial \mathcal{M}} \rangle_{L^2_a(\partial \mathcal{M})} \phi^{1,\pm 1}(p),
\]
hence (28) is given rise to two linear operators $I_{a,\pm 1} : \text{Range } \mathcal{I}_a \to \ker I_{a,\mp 1}$ satisfying
\[
\begin{align*}
I_a I_{a,+1}(I_a^0 f + I_a^1 h_0 + I_a^{-1} \omega_1 + I_a^{-1} \omega_{-1}) &= I_a^{-1} \omega_1, \\
I_a I_{a,-1}(I_a^0 f + I_a^1 h_0 + I_a^1 \omega_1 + I_a^{-1} \omega_{-1}) &= I_a^{-1} \omega_{-1}.
\end{align*}
\]
(30)

If we then define
\[
P_{a,\pm 1} : \text{Range } \mathcal{I}_a \to \text{Range } \mathcal{I}_a, \quad P_{a,\pm 1} := I_a I_{a,\pm 1},
\]
such operators are idempotent on $\text{Range } \mathcal{I}_a$ (i.e., satisfy $P_{a,\pm 1}^2 = P_{a,\pm 1}$). In particular, applying $Id - P_{a,1} - P_{a,-1}$ to \mathcal{D} allows to remove $I_a^{+1} \omega_1$ and $I_a^{-1} \omega_{-1}$ from \mathcal{D}.

Remark 7.4. If the data is not in the range of \mathcal{I}_a in the first place, the operators $I_{a,\pm 1}$ may pick up some additional components which are in the complement of $\text{Range } \mathcal{I}_a$. This behavior depends on the choice of first integral $w^{1,\pm 1}(p)$ for $\phi^{1,\pm 1}(p)$. Methods for finding such elements will be the object of future work.

7.2. Holomorphization of solutions to unattenuated transport equations with holomorphic right-hand side. As a preparation for the reconstruction of (f, h_0), this section focuses on the unattenuated transform
\[
\mathcal{C}^\infty(M) \times C^\infty(M) \ni (h, f) \mapsto \mathcal{I}_a[\mathcal{I}_a f, h],
\]
in particular, how its injectivity allows to produce holomorphic solutions to transport equations with holomorphic right-hand sides, out of any other solution of the same transport problem, via a so-called boundary holomorphization operator.

For conciseness, we will denote $\mathcal{I}_a[\mathcal{I}_a f, h] = \mathcal{I}_a[\mathcal{I}_a f, h]$, and we also denote I_0^+ and I_1^+ the unattenuated transforms over smooth functions and one-forms, and $I_1^+(h) := I_1^+(\mathcal{I}_a f)$ for $h \in \mathcal{C}^\infty(M)$. The remarks from Section 6 imply that, while I_1^+ is only solenoidal-injective and has a kernel, I_1^+ is injective and both transforms have the same range.

Recall the boundary operators $P_{\pm} := A_{\pm}^* H_{\pm} A_{\pm}$ defined in [26], where $A_+ w = Q_0 w = w_0 |_{\partial \mathcal{M}}$ and $A_{\pm}^* = B_{\pm}$ in our current notation. One may simply define $P = A_{\pm}^* H A_{\pm} = P_+ + P_-$, where in fact, the operators P_{\pm} represent the action of P on two orthogonal subspaces of $L^2_a(\partial \mathcal{M})$. In order to clarify this, let us define the antipodal scattering relation $\alpha_A : \partial \mathcal{M} \to \partial \mathcal{M}$ to be the scattering relation composed with the antipodal map $(x, v) \mapsto (x, -v)$. α_A is clearly an involution of
∂_+ SM, and since the measure μ dΣ^2 is preserved by the pull-back α^*_A, the following orthogonal decomposition holds

\[L^2_0(\partial_+ SM) = V^\perp_+ \oplus V^\perp_- , \quad V^\perp_\pm := \ker(Id \mp \alpha^*_A). \]
Further inspection of symmetries upon applying the operators \(A_+\), then \(H\), then \(A^*_-\) to functions in \(V^\perp_\pm\), shows that the operator \(P\), in this decomposition, has the matrix form \(P = \begin{bmatrix} 0 & P_\perp \\ P_\perp^* & 0 \end{bmatrix}\). The other facts below are also obvious:

- Range \(I^0 \subset V^\perp_+\) thus \((I^0)^*(V^\perp_-) = \{0\}\).
- Range \(I^\perp \subset V^\perp_\pm\) thus \((I^\perp)^*(V^\perp_\pm) = \{0\}\).

Now the range characterization [26, Theorem 4.5] states that \(P_- : C^\infty_\alpha(\partial_+ SM) \to C^\infty(\partial_+ SM)\) is surjective on the range of \(I^0\) and \(A^*_+ : C^\infty(\partial_+ SM) \to C^\infty(\partial_+ SM)\) is surjective on the range of \(I^\perp\). This justifies the existence of right inverses

\[P^\perp_+ : \text{Range } I^\perp \to C^\infty_\alpha(\partial_+ SM) \cap V^\perp_+, \quad P_+ P^\perp_+ = Id_{\text{Range } I^\perp}, \]
\[P^\perp_- : \text{Range } I^0 \to C^\infty(\partial_+ SM) \cap V^\perp_-, \quad P_- P^\perp_- = Id_{\text{Range } I^0}. \]

Using the factorizations \(2\pi P_+ = I^\perp(I^0)^*\) and \(2\pi P_- = -I^0(I^\perp)^*\), this implies

\[2\pi I^\perp h = 2\pi P_+ P^\perp_+ I^\perp h = I^\perp(I^0)^* P^\perp_+ I^\perp h, \quad \forall h \in C^\infty(M), \]
\[2\pi I^0 f = 2\pi P_- P^\perp_- I^0 f = -I^0(I^\perp)^* P^\perp_- I^0 f, \quad \forall f \in C^\infty(M), \]

which by injectivity of \(I^0\) and \(I^\perp\) implies

\[\frac{1}{2\pi}(I^0)^* P^\perp_+ I^\perp h = h + \text{constant}, \quad \forall h \in C^\infty(M), \]
\[-\frac{1}{2\pi}(I^\perp)^* P^\perp_- I^0 f = f, \quad \forall f \in C^\infty(M). \]

Out of the two right-inverses \(P^\perp_\pm\), we may construct a right inverse \(P^\perp\) for \(P\), defined on Range \(I^0 \oplus \text{Range } I^\perp = \text{Range } I^\perp + \text{Range } I^0\) and \(C^\infty_\alpha(\partial_+ SM)\)-valued, defined by

\[P^\perp w = P^\perp_+ \frac{1}{2}(Id + \alpha^*_A)w + P^- P^\perp_- \frac{1}{2}(Id - \alpha^*_A)w, \quad w \in \text{Range } I^\perp + \text{Range } I^0, \]

such that \(PP^\perp = Id\) on Range \(I^\perp + \text{Range } I^0\).

Theorem 7.5 (Holomorphization operator). Let \((M, g)\) a simple Riemannian surface with boundary. There exists a linear boundary operator

\[\overline{B} : C^\infty(\partial SM) \to C^\infty(\partial_+ SM) \]

such that for any function \(f \in C^\infty(\partial SM)\) and any solution \(u \) of \(Xu = -f\) smooth on \(SM\), the function \(\overline{u} := u - (\overline{B}(u|_{\partial SM}))|_{\psi}\) satisfies:

1. If \(f = f_{-1} + f_0 + \sum_{k \geq 1} f_k\), then \(\overline{u}\) is holomorphic.
2. If, additionally, \(f_{-1} = 0\), then \(\overline{u}_0\) is constant.

If \(P^\perp\) denotes any right-inverse for \(P\), then such an operator \(\overline{B}\) may be obtained by defining

\[\overline{B}h := \frac{1}{2}[(Id - iH)h + i(Id + iH)(A^*_+ P^\perp A^*_-(Id - iH)h)]|_{\partial_+ SM}. \]
By complex conjugation, we state a corollary of Theorem 7.5 without proof, regarding the existence of an anti-holomorphization operator.

Corollary 7.6 (Anti-holomorphization operator). With \(\overline{B} \) as in Theorem 7.5, the operator

\[
\overline{B} : C^\infty(\partial SM) \to C^\infty(\partial SM), \quad \overline{B}h := \overline{Bh}, \quad h \in C^\infty(\partial SM),
\]

is such that for any function \(f \in C^\infty(SM) \) and any solution \(u \) of \(Xu = -f \) smooth on \(SM \), the function \(\overline{u} := u - (\overline{B}(u|_{\partial SM}))_0 \) satisfies:

1. If \(f = \sum_{k \leq 1} f_k + f_0 + f_1 \), then \(\overline{u} \) is anti-holomorphic.
2. If, additionally, \(f_1 = 0 \), then \(\overline{u}_0 \) is constant.

Remark 7.7. Using the fact that \(\overline{B}(0) = 0 \) and \(\overline{B}(0) = 0 \), we recover the statement of [32, Proposition 5.1]: if \(u \) solves \(Xu = -f \) with \(f \) holomorphic (resp. anti-holomorphic), and \(u|_{\partial SM} = 0 \), then \(u \) is holomorphic (resp. antiholomorphic) and \(u_0 = 0 \).

Remark 7.8 (Continuity and explicitness of \(\overline{B} \) and \(\overline{B} \)). The continuity of \(\overline{B} \) and \(\overline{B} \) relies heavily on the continuity of \(P^\dagger \), for which explicit expressions remain to be found in general. In the case where the surface is such that the operator \(Id + W^2 \) is invertible (see [26, 15] for a definition of \(W \)), then such a right-inverse is explicitly constructed in [15]. This is done by using the factorizations \(2\pi P_\perp = I^\perp(I^0)^* \) and \(2\pi P_\perp = -I^0(I^\perp)^* \), and constructing explicit right-inverses for \((I^0)^* \), \((I^\perp)^* \), and inverting \(I^0 \), \(I^\perp \), using the Fredholm equations first derived in [26]. This construction is valid in the case of surfaces with Gaussian curvature close enough to constant, though whether the operator \(Id + W^2 \) is always invertible on simple surfaces remains open at present.

Proof of Theorem 7.5. Let \(P^\dagger \) a right-inverse for \(P \), let \(f \in C^\infty(SM) \) and \(u \) a solution of \(Xu = -f \). Write

\[
u = \frac{1}{2}(u^{(+)} + u^{(-)}), \quad u^{(\pm)} := (Id \pm iH)u,
\]

where \((Id - iH)u \) solves the PDE

\[
X(Id - iH)u = (Id - iH)Xu + [X, Id - iH]u = -2f_{-1} - f_0 + i(X_\perp u)_0 + iX_\perp u_0.
\]

Applying the Hodge decomposition to the one-form \(2f_{-1} \), there exists \(g \in C_0^\infty(M) \) and \(h \in C^\infty(M) \) such that \(2f_{-1} = Xg + X_\perp h \), in which case the previous equation can be rewritten as

\[
X(u^{(-)} + g) = -(f_0 - i(X_\perp u)_0) - X_\perp(h - iu_0).
\]

Upon integrating along geodesics, we make appear

\[
A^*_\perp(u^{(-)}|_{\partial SM}) = A^*_\perp(u^{(-)} + g)|_{\partial SM} = I^0[f_0 - i(X_\perp u)_0] + I^\perp[h - iu_0], \quad (34)
\]

where the right-hand-side belongs to \(\text{Range } T^{0,\perp} \).
Define \(u' = -i(Id + iH)(P^t A^+ (u(-) |_{\partial SM}))\psi \). \(u' \) is holomorphic by construction and we now claim that (i) \(u'_0 = -ih - u_0 + C \) (with \(C \) a constant), and (ii) \(u' \) is another solution of

\[
Xu' = -(f_0 - i(X_\perp u)_0) - X_\perp(h - iu_0).
\]

In both claims, we will make use of the observations that, using identities (32) and the equality (34), we have

\[
\frac{1}{2\pi} (I^0)^* P^t A^+ (u(-) |_{\partial SM}) = \frac{1}{2\pi} (I^\perp)^* P^t \mathcal{I}^\perp [h - iu_0] = h - iu_0 + iC \quad (C \text{ constant}),
\]

\[
\frac{1}{2\pi} (I^\perp)^* P^t A^+ (u(-) |_{\partial SM}) = \frac{1}{2\pi} (I^\perp)^* P^t I^0 [f_0 - i(X_\perp u)_0] = -(f_0 - i(X_\perp u)_0).
\]

Then proving claim (i) amounts to computing

\[
u'_0 = -i \left((Id + iH)(P^t A^+ (u(-) |_{\partial SM}))\psi \right)_0
\]

\[= -i \left((P^t A^+ (u(-) |_{\partial SM}))\psi \right)_0
\]

\[= -\frac{i}{2\pi} (I^0)^* P^t A^+ (u(-) |_{\partial SM})
\]

\[= -i(h - iu_0 + iC) = -ih - u_0 + C.
\]

Proving claim (ii) then amounts to computing

\[
Xu' = -Xi(Id + iH)(P^t A^+ (u(-) |_{\partial SM}))\psi
\]

\[= XH(P^t A^+ (u(-) |_{\partial SM}))\psi
\]

\[= -[H, X](P^t A^+ (u(-) |_{\partial SM}))\psi
\]

\[= - \left(X_\perp(P^t A^+ (u(-) |_{\partial SM}))\psi \right)_0 - X_\perp \left((P^t A^+ (u(-) |_{\partial SM}))\psi \right)_0
\]

\[= \frac{1}{2\pi} I^\perp P^t A^+ (u(-) |_{\partial SM}) - \frac{1}{2\pi} X_\perp I^0 P^t A^+ (u(-) |_{\partial SM})
\]

\[= -(f_0 - i(X_\perp u)_0) - X_\perp(h - iu_0 + iC).
\]

Now that the claims are proved, we use \(u' \) to rewrite \(u \) as

\[
u = \frac{1}{2}(u^{(+)} - g + u') + \frac{1}{2}(u^{(-)} + g - u'),
\]

where the first summand \(\frac{1}{2}(u^{(+)} - g + u') \) is holomorphic by construction, and where the second summand satisfies \(X \left(\frac{1}{2}(u^{(-)} + g - u') \right) = 0 \), so that it is equal to some \(h_\psi \), where \(h = \frac{1}{2}(u^{(-)} + g - u') |_{\partial SM} = \mathcal{B}(u |_{\partial SM}) \) by construction. So Claim 1 is proved. As for Claim 2, if \(f_{-1} = 0 \), then the Hodge decomposition above becomes \(h = g = 0 \), and using claim (i), we read

\[
2\frac{1}{2}(u^{(+)} - g + u')_0 = u_0 - g - ih - u_0 + C = C.
\]

Thus Theorem 7.5 is proved. \(\square \)
7.3. Reconstruction of \(f \) and \(h_0 \). In light of Section 7.1, given the quadruple \((f, h_0, \omega_1, \omega_2)\), it is possible to extract \(\mathcal{I}_a[\ast dh_0, f] \) from \(\mathcal{D} = I_a^0 f + I_a^1 h_0 + I_a^{-1} \omega_1 + I_a^{-1} \omega_{-1} \) via the processing \(\mathcal{I}_a[\ast dh_0, f] = (\text{Id} - P_{a,1} - P_{a,-1}) \mathcal{D} \). From this data, and using the results of the previous section, let us now provide explicit inversion formulas for \((h_0, f)\). Recall the statement of Theorem 2.3 stated in Section 2.

Theorem 7.9. Let \((M, g)\) a simple surface and \(a \in C^\infty(M, \mathbb{C})\). Define \(\tilde{w} \) and \(\overline{w} \) smooth holomorphic and antiholomorphic, odd, solutions of \(X \tilde{w} = X \overline{w} = -a \), and let \(\mathcal{B} \) and \(\overline{\mathcal{B}} \) as in Theorem 7.5 and Corollary 7.6. Then the functions \((h_0, f) \in C^\infty_0(M) \times C^\infty_0(M)\) can be reconstructed from data \(\mathcal{I} := \mathcal{I}_a[\ast dh_0, f] \) (extended by zero on \(\partial_- SM \)) via the following formulas:

\[
\begin{align*}
 f &= -\eta_+ \tilde{D}_{-1} - \eta_- \tilde{D}_1 - \frac{a}{2} \left(\tilde{D}_0 + \tilde{D}_0 + i(g_+ - g_-) \right), \\
 h_0 &= \frac{1}{2}(g_+ + g_-) - i \frac{a}{2}(\tilde{D}_0 - \tilde{D}_0),
\end{align*}
\]

where we have defined \(\tilde{D} := e^{\overline{w}}(\overline{\mathcal{B}}(\text{Id} - \overline{w} |_{\partial SM}))_\psi \), \(\overline{D} := e^{\tilde{w}}(\mathcal{B}(\text{Id} - \tilde{w} |_{\partial SM}))_\psi \), and where \(g_\pm \in \ker^\circ \eta_\pm \), uniquely characterized by their boundary conditions

\[
\begin{align*}
 g_+ |_{\partial M} &= -i (\mathcal{I} - \tilde{D}) |_{\partial SM} 0, \\
 g_- |_{\partial M} &= i (\mathcal{I} - \overline{D}) |_{\partial SM} 0.
\end{align*}
\]

Proof of Theorem 7.9. Let \(e^{-\tilde{w}} \) and \(e^{-\overline{w}} \) holomorphic and antiholomorphic integrating factors for \(a \) (in particular, \(\tilde{w} \) is an odd, holomorphic solution of \(X \tilde{w} = -a \) and \(\overline{w} \) is an odd, antiholomorphic solution of \(X \overline{w} = -a \)), so as to obtain

\[
X(u e^{-\tilde{w}}) = -(f + X \perp h_0) e^{-\tilde{w}} = -b(x, v),
\]

where \(b \) is of the form \(b_{-1} + b_0 + \mathcal{O}_{\geq 1} \) with, in particular, \(b_{-1} = -\frac{1}{i} \eta_- h_0 \). Thanks to Theorem 7.5, defining \(v := u e^{-\overline{w}} \), the function \(\tilde{v} = v - (\mathcal{B}(v |_{\partial SM}))_\psi \) is holomorphic and satisfies

\[
X \tilde{v} = -b.
\]

Then defining \(\tilde{u} := e^{\tilde{w}} \tilde{v} = u - e^{\tilde{w}}(\mathcal{B}(u e^{-\overline{w}} |_{\partial SM}))_\psi = u - \overline{D} \), \(\tilde{u} \) solves the equation

\[
X \tilde{u} + a \tilde{u} = -f - X \perp h_0. \tag{35}
\]

Similarly using the antiholomorphic integrating factor, the function \(\tilde{u} = u - e^{\overline{w}}(\mathcal{B}(u e^{-\overline{w}} |_{\partial SM}))_\psi = u - \mathcal{D} \) is antiholomorphic and solves

\[
X \tilde{u} + a \tilde{u} = -f - X \perp h_0. \tag{36}
\]

Projecting (35) onto \(H_{-1} \) and (36) onto \(H_1 \), we obtain

\[
\begin{align*}
 \eta_+ \tilde{u}_0 &= \frac{1}{i} \eta_- h_0 &\iff& \eta_- (h_0 - i \tilde{u}_0) = 0, \\
 \eta_- \tilde{u}_0 &= -\frac{1}{i} \eta_+ h_0 &\iff& \eta_+ (h_0 + i \tilde{u}_0) = 0.
\end{align*}
\]
This implies the relations:

\[h_0 - i\tilde{u}_0 = g_+ \in \ker^0 \eta_+, \]
\[h_0 + i\tilde{u}_0 = g_- \in \ker^0 \eta_. \] \tag{37}

which, since \(h_0 \) vanishes at the boundary, completely determines \(g_\pm \) from their boundary values, which are in turn determined from the boundary values of \(\tilde{u} \) and \(\tilde{u}_1 \), in turn determined by the data. Taking the half-sum, we obtain

\[h_0 = \frac{1}{2}(g_+ + g_-) - \frac{i}{2}(\tilde{u}_0 - u_0) = \frac{1}{2}(g_+ + g_-) - \frac{i}{2}(\bar{D}_0 - \bar{D}_0), \]

where the right-hand side is completely determined by data. On to the determination of \(f \), we project the equation \(Xu + au = -f - X_h h_0 \) onto \(H_0 \) to make appear

\[f = -\eta_+ u_{-1} - \eta_- u_1 - au_0, \]

and show how to determine each term from the data. Since \(\tilde{u} \) is holomorphic, then \(\tilde{u}_{-1} = 0 = u_{-1} - \bar{D}_{-1} \), so \(u_{-1} = \bar{D}_{-1} \). Since \(\tilde{u} \) is antiholomorphic, \(\tilde{u}_1 = 0 = u_1 - \bar{D}_1 \), so \(u_1 = \bar{D}_1 \). Finally,

\[u_0 = \frac{1}{2}(\tilde{u}_0 + \bar{D}_0 + \bar{u}_0 + \bar{D}_0) \overset{\text{(37)}}{=} \frac{1}{2}(\bar{D}_0 + \bar{D}_0) + \frac{i}{2}(g_+ - g_-). \]

We arrive at the following formula for \(f \)

\[f = -\eta_+ \bar{D}_{-1} - \eta_- \bar{D}_1 - \frac{a}{2} \left(\bar{D}_0 + \bar{D}_0 + i(g_+ - g_-) \right). \]

Theorem 7.9 is proved. \(\square \)

Theorem 7.9 gives rise to two linear operators

\[L_{a,0} : T_{a,0}^{0,\perp}(C_0^\infty(M) \times C^\infty(M)) \to C^\infty(M), \]
\[L_{a,\perp} : T_{a,\perp}^{0,\perp}(C_0^\infty(M) \times C^\infty(M)) \to C_0^\infty(M), \]

such that

\[I_a L_{a,0}(I_a^0 f + I_a^1 h_0) = I_a^0 f, \quad \text{and} \quad I_a L_{a,\perp}(I_a^0 f + I_a^1 h_0) = I_a^+ h_0. \]

If we then define \(P_{a,0}, P_{a,\perp} : \text{Range } T_{a}^{0,\perp} \to \text{Range } T_{a}^{0,\perp} \), by

\[P_{a,0} := I_a L_{a,0}(I - P_1 - P_{-1}), \quad P_{a,\perp} := I_a L_{a,\perp}(I - P_1 - P_{-1}), \] \tag{38}

such operators are idempotent, projections of \(\text{Range } T_a \) onto \(I_a^0(C^\infty(M)) \) and \(I_a^+ (C_0^\infty(M)) \), respectively.

Acknowledgements

FM acknowledges partial funding from NSF grant DMS-1634544. GU was partly supported by NSF and a Walker Family Professorship, FiDiPo Professorship and a Si-Yuan Professorship.
References

[1] G. Ainsworth, Y. M. Assylbekov, On the range of the attenuated magnetic ray transform for unitary connections and Higgs fields, Inverse Probl. Imaging (2015), 2, 317–335.
[2] J. Boman and J.-O. Strömberg, Novikov’s inversion formula for the attenuated radon transform, a new approach, J. Geom. Anal., 14 (2004).
[3] N. Bourbaki, Topological vector spaces, Springer-Verlag, Berlin, 1987.
[4] N. S. Dairbekov, G. P. Paternain, P. Stefanov, G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field, Adv. Math., 216 (2007), 535–609.
[5] N. Dairbekov, G. Uhlmann, Reconstructing the Metric and Magnetic Field from the Scattering Relation, Inverse Probl. Imaging, 4 (2010), 397–409.
[6] E. Delay, Smooth compactly supported solutions of some underdetermined elliptic PDE, with gluing applications, Comm. Partial Differential Equations 37 (2012) 1689–1716.
[7] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics Vol.19, AMS, 1998.
[8] D. Finch, Inside Out, Inverse problems and applications, MSRI publications. Cambridge University Press, 2004, ch. The attenuated X-ray transform: Recent developments.
[9] B. Frigyik, P. Stefanov, G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), no. 1, 89–108.
[10] V. Guillemin, D. Kazhdan, Some inverse Spectral results for negatively curved 2-manifolds, Topology, 19 (1980), 301–312.
[11] S. Holman, P. Stefanov, The weighted Doppler transform, Inverse Problems and Imaging 4 (2010), no. 1, 111–130.
[12] L. Hörmander, The analysis of linear partial differential operators, vol. I-IV.
[13] T. Kato, M. Mitrea, G. Ponce, M. Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Research Letters, 7 (2000) 643–650.
[14] S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated x-ray transforms in a unit disc, J. Inv. Ill-Posed Problems, 15 (2007), pp. 735–765.
[15] F. Monard, Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces, SIAM J. Math. Anal., 48:2 (2016), 1155–1177.
[16] F. Monard, Efficient tensor tomography in fan-beam coordinates, Inverse Problems and Imaging, 10:2 (2016).
[17] F. Natterer, Inversion of the attenuated radon transform, Inverse Problems, 17 (2001), pp. 113–9.
[18] R. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), pp. 677–700.
[19] R. G. Novikov, An inversion formula for the attenuated x-ray transformation, Ark. Math., 40 (2002), pp. 147–67.
[20] G. P. Paternain, M. Salo, G. Uhlmann, Spectral rigidity and invariant distributions on Anosov surfaces, J. Differential Geom. 98 (2014), 147–181
[21] G. P. Paternain, M. Salo, G. Uhlmann, Tensor tomography in two dimensions: progress and challenges, to appear in Chinese Annals of Math. Ser. B.
[22] G. P. Paternain, M. Salo, G. Uhlmann, On the range of the attenuated ray transform for unitary connections, Int. Math. Res. Not. (online) (2013).
[23] G. P. Paternain, M. Salo, G. Uhlmann, Tensor tomography on simple surfaces, Invent. Math. 193 (2013) 229–247.
[24] G. P. Paternain, M. Salo, G. Uhlmann, The attenuated ray transform for connections and Higgs fields, Geom. Funct. Anal. 22 (2012), 1460–1489.
[25] G. P. Paternain and H. Zhou, Invariant distributions and the geodesic ray transform, preprint, (2015). arXiv:1511.04547.
[26] L. Pestov, G. Uhlmann, On the Characterization of the Range and Inversion Formulas for the Geodesic X-Ray Transform, International Math. Research Notices, 80 (2004), 4331–4347.
[27] L. Pestov, G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. 161, no. 2 (2005), 1089–1106.
[28] W. Qiu, Interior regularity of solutions of the isotropically constrained plateau problem, Comm. Analysis. Geom. 11 (2003), no. 5, 945–986.
[29] K. Sadiq, O. Scherzer, and A. Tamasan, On the X-ray transform of planar symmetric 2	ensors, preprint, (2015). arXiv:1503.04322.
[30] K. Sadiq and A. Tamasan, On the range characterization of the two-dimensional attenuated Doppler transform, SIAM J. on Math. Anal., 47:3 (2015), 2001–2021.
[31] K., On the range of the attenuated radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367:8 (2015, online: 2014), 5375–5398.
[32] M. Salo, G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom. 88 (2011), no. 1, 161–187.
[33] R. T. Seeley, Extension of C∞ functions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), 625–626.
[34] V. A. Sharafutdinov, Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds, J. Geom. Anal. 17 (2007), 147–187.
[35] V. A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-Posed Problems Series. VSP, Utrecht, 1994.
[36] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001). Translated from the 1978 Russian original by Stig I. Andersson.
[37] E. M. Stein and R. Shakarchi, Real Analysis. Measure theory, integration, & Hilbert spaces, Princeton Lectures in Analysis, 2005.
[38] J.-O. Strömberg and J. Andersson, An identity for triplets of double hilbert transforms, with applications to the attenuated radon transform, Inverse Problems, 28 (2012), 125007.
[39] M. E. Taylor, Partial Differential Equations I. Basic Theory, Second edition. Applied Mathematical Sciences, 115. Springer, New York, 2011.
[40] F. Treves, An introduction to pseudo-differential operators and Fourier integral operators, Universidade Federal de Pernambuco, Instituto de Matematica, Editora Universitaria, Recife 1973.