Title
Magnetic brightening and control of dark excitons in monolayer WSe2.

Permalink
https://escholarship.org/uc/item/94n1m0xc

Journal
Nature nanotechnology, 12(9)

ISSN
1748-3387

Authors
Zhang, Xiao-Xiao
Cao, Ting
Lu, Zhengguang
et al.

Publication Date
2017-09-01

DOI
10.1038/nnano.2017.105

Peer reviewed
Magnetic brightening and control of dark excitons in monolayer WSe2

Xiao-Xiao Zhang1,2,3, Ting Cao4,5, Zhengguang Lu6,7, Yu-Chuan Lin8, Fan Zhang9, Ying Wang6,7, Zhiqiang Li6, James C. Hone9, Joshua A. Robinson8, Dmitry Smirnov6, Steven G. Louie4,5 and Tony F. Heinz2,3*

Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.

The electronic and optical properties of ultrathin transition metal dichalcogenide (TMDC) crystals in the MX2 (M = Mo, W; X = S, Se) family have been the subject of recent interest. These 2D semiconductors exhibit a direct bandgap at monolayer thickness1,2, have strong and anomalous excitonic interactions3–5, and offer the potential for highly efficient light emission. The materials also provide an ideal platform for access to the valley degree of freedom, since the optical selection rules provide a simple means of controlling valley excitation6–8. The coupling of the spin and valley degrees of freedom in the valence band (VB) has, moreover, been recognized as another distinctive feature of the monolayer TMDC systems9.

Despite important recent advances in our understanding of the electronic and optical properties of these materials, the nature of the spin splitting in the conduction bands (CBs) has yet to be fully elucidated by experiment. This information is essential for understanding the radiative properties of the materials, since allowed optical transitions in semiconductors occur without change in the spin of the electron. As a result, when the electron spins are polarized along the out-of-plane (z) direction, excitons with zero spin (Sz = 0, corresponding to bands with the same electron spin) are bright, while excitons with non-zero spin (Sz = ±1, corresponding to bands with opposite spin) are dark. (The spin of the hole is opposite to that of the electron for a given band state. In this Article, the bright state refers to the 1s exciton with Sz = 0 and spin-allowed transitions; the dark state to the 1s exciton with Sz = ±1 and spin-forbidden transitions.) In TMDCs, the CBs have been theoretically predicted to be fully spin polarized9–11 just like the more strongly split VBs. The spin splitting of the CBs is expected to be relatively modest, with a size comparable to room-temperature thermal energy and, significantly, exhibiting different signs (compared to the valence band splitting) depending on the chemical composition of the TMDC crystal. Specifically, in Mo compounds, electrons in the lowest CB are expected to have the same spin as those in the highest VB. In contrast, the opposite spin ordering is expected in W compounds (Fig. 1b), and, correspondingly, the lowest energy exciton is expected to be optically dark. The existence of this lower-lying dark state will quench light emission, particularly at low temperatures. Although distinct behaviour for the thermal activation of light emission has been observed in different TMDC monolayer semiconductors12–14, experiments have not revealed the exact energy structure of the excitonic states. The latter is of critical importance for valley and spin transport and for their manipulation in these systems.

Here, we mixed the spin components of the exciton states in monolayer WSe2 through the application of an in-plane magnetic field. This perturbation brightens the dark exciton states and allows us to observe light emission directly from these otherwise inaccessible states (In a study utilizing coupling to the out-of-plane transition dipole moment by surface plasmon polaritons, similar signatures of dark excitons have also recently been observed15). With a spectroscopic signature of the dark excitons, we measured the splitting between the originally bright and dark states with high precision. In the presence of free charge carriers in the WSe2 crystal, trions (charged excitons) also form16. The corresponding dark trion states also become visible with magnetic brightening. Our spectroscopic determination of the energies for the manifold of dark and bright excitonic states agrees well with our predictions of ab initio theory using the GW-BSE formalism. Interestingly, the energy splitting between the bright and dark charged excitons differs from that for the neutral excitons, reflecting the role of many-body interactions beyond the single-particle

1Department of Physics, Columbia University, New York, New York 10027, USA. 2Department of Applied Physics, Stanford University, Stanford, California 94305, USA. 3SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. 4Department of Physics, University of California, Berkeley, California 94720, USA. 5Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA. 6National High Magnetic Field Laboratory, Tallahassee, Florida 32312, USA. 7Department of Physics, Florida State University, Tallahassee, Florida 32310, USA. 8Department of Materials Science and Engineering and Center for 2-Dimensional and Layered materials, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. 9Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA.

*e-mail: tony.heinz@stanford.edu

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
of tens of kelvins, an appreciable tilt angle is achievable for an in-plane magnetic field. The scale bar represents the normalized photoluminescence intensity. For monolayer WSe2, electrons in the lower conduction band (CB2) have spin opposite that in the upper valence band (VB), rendering the lowest transition optically dark. Only transitions from the upper CB (at energy $h\nu_0$) are allowed. The spin-split CB bands, CB1 and CB2, can be described as the result of an effective out-of-plane magnetic field $B_{\|}$ acting on the electron magnetic moment. The blue and red lines represent bands with electrons’ spin up and down, respectively. The arrows indicate the spin of the electron/hole in an excitonic state. Under an external in-plane magnetic field $B_{\|}$, the total effective field $B_{\text{eff}} = B_{\text{int}} + B_{\|}$ is tilted away from the surface normal, resulting in tilted spin polarization of the CB electrons. Optical transitions at energy $h\nu_0$ from an exciton formed mainly from the lower CB and corresponding to the dark exciton then become weakly allowed.

Figure 1 | Conduction band structure of monolayer WSe2 and magnetic brightening of dark excitons. a, False-colour plot of the measured emission spectrum for monolayer WSe2 at a temperature of 30 K as a function of the strength of the applied $B_{\|}$. The displayed energy range includes emission from the neutral A exciton (X_0) and the associated trion state (X_T). Emission features from the dark exciton (X_D) and dark trion (X_{DT}) grow with increasing $B_{\|}$. The scale bar represents the normalized photoluminescence intensity. b, For monolayer WSe2, electrons in the lower conduction band (CB2) have spin opposite that in the upper valence band (VB), rendering the lowest transition optically dark. Only transitions from the upper CB (at energy $h\nu_0$) are allowed. The spin-split CB bands, CB1 and CB2, can be described as the result of an effective out-of-plane magnetic field $B_{\|}$ acting on the electron magnetic moment. The blue and red lines represent bands with electrons’ spin up and down, respectively. The arrows indicate the spin of the electron/hole in an excitonic state. Under an external in-plane magnetic field $B_{\|}$, the total effective field $B_{\text{eff}} = B_{\text{int}} + B_{\|}$ is tilted away from the surface normal, resulting in tilted spin polarization of the CB electrons. Optical transitions at energy $h\nu_0$ from an exciton formed mainly from the lower CB and corresponding to the dark exciton then become weakly allowed.

picture. Analysis of the splittings provides quantitative information about the CB band structure and many-body interactions in these materials.

Brightening the dark excitons allows us to explore the dynamics and valley properties of these states. Unlike their bright counterparts, we can dramatically alter the radiative lifetime of the dark states by tuning the strength of the applied magnetic field and thus explore states with lifetimes orders-of-magnitude longer than those intrinsic to the bright states. Moreover, the measured valley lifetime of the dark excitons, protected from inter-valley exchange scattering by their spin configuration, is also significantly longer than the valley lifetime of bright excitons. Such increased radiative and valley lifetimes are desirable for the development of valleytronic devices, as they facilitate encoding, storage and manipulation of valley information.

Emergence of dark excitons under $B_{\|}$

In our experiment, we directly observed the emergence of dark states with application of an in-plane magnetic field. The colour plot (Fig. 1a) provides an overview of the photoluminescence (PL) spectra from an exfoliated WSe2 monolayer for in-plane magnetic fields up to $B_{\|} = 31$ T. Two new states, labelled X_D and X_{DT}, are seen to emerge and become progressively more intense with increasing field. We first present a qualitative picture of how an in-plane magnetic field serves to brighten the spin-forbidden dark exciton states.

The spin–orbit-induced splitting of the CB can be attributed to an effective internal magnetic field B_{int}, oriented perpendicular to the plane of the 2D layer and acting on the electron spin (Fig. 1b). If we apply an external in-plane magnetic field $B_{\|}$, the total effective magnetic field acting on the CB electrons, $B_{\text{eff}} = B_{\text{int}} + B_{\|}$, is now tilted away from the normal direction by an angle $\sim B_{\|}/B_{\text{int}}$ in small $B_{\|}$ limit (Fig. 1c). Since the expected spin splitting of CBs of a few tens of meV corresponds to B_{int} of hundreds of teslas, an appreciable tilt angle is achievable for $B_{\|}$ of tens of teslas. On the other hand, the spin splitting in the VBs is \sim10 times greater than in the CBs. B_{int} is correspondingly larger for the VBs, and the tilting of B_{eff} for VBs can be neglected. Consequently, $B_{\|}$ causes the spin state of electrons in the lower CB to have a finite projection on the zero-field state in the upper VB, and radiative recombination becomes weakly allowed for this otherwise forbidden transition (Fig. 1b). We note that while an out-of-plane magnetic field causes measurable Zeeman shifts and Landau quantization of valleys, the in-plane field produces only very minor Zeeman shifts (Supplementary Section 6) and does not couple to the in-plane motion of electrons. The in-plane field thus allows us to probe directly the effects of spin mixing. Although the oscillator strength induced in the dark exciton by $B_{\|}$ remains small, emission from the brightened dark states can still be significant at low temperature as a result of the large occupation number of the lower-lying dark state. In-plane magnetic fields have also been used to brighten optically dark excitons in quantum dots and carbon nanotubes and quantum wells, although the physical mechanisms differ.

Figure 2 shows detailed PL spectra for different values of the applied magnetic field $B_{\|}$. In the absence of the field, four peaks are visible: the highest-energy peak (X_0) arising from the optically allowed transition of the neutral A exciton; the associated trion state (X_T) due to the presence of unintentional doping of the sample; and two lower-energy peaks (L1 and L2), attributed to localized excitons from defect states. As $B_{\|}$ is increased, two additional peaks, labelled X_D and X_{DT}, emerge and become prominent at high field strengths. The originally bright states, by contrast, show little response to the applied field. As will be justified in detail below, we assign the additional peaks to emission from the neutral dark exciton (X_D) and the charged dark exciton (X_{DT}). The WSe2 emission spectrum is simplified at higher sample temperatures where the localized exciton states are absent and the trion feature becomes less prominent. At a temperature of 100 K with $B_{\|} = 31$ T (Fig. 2b), we see the emergence of the neutral dark exciton X_D in the absence of the defect emission peaks. The inset of Fig. 2b shows that the extracted X_D feature has essentially the same width as that of the X_0 peak, which, we note, is significantly smaller than that of the trion. The energy shift between the X_0 and X_D features also agrees with that observed in the low-temperature data presented above. Additional PL spectra for temperatures between 4 K and 140 K are presented in Supplementary Section 2.

Our experimental observations strongly support the assignment of the X_D and X_{DT} peaks as emission from neutral and charged dark exciton emission associated with the split CBs. First, their
dark exciton oscillator strength with since the dark excitons in this system are predicted to lie at energies expected for brightened emission from a spin-forbidden transition: \(B_\| \) Zeeman shift of <0.1 meV for \(f_i \) meaningfull response to the application of an in-plane magnetic field. In a comparative study, we investigated MoSe\(_2\) monolayers and contrast the emission dynamics for bright and dark trion states using time-resolved photoluminescence (TRPL). In Fig. 2d, we subtracted the background emission from the L1 defect (measured at \(B_\| = 0 \)). The validity of this approach is substantiated by a global fitting analysis of magnetic field-dependent TRPL traces presented in Supplementary Section 6. We discuss later the physical origin and significance of the long lifetime of dark states.

Theoretical investigation of energy splittings

We now discuss the energy shifts of the dark exciton and dark trion relative to the corresponding bright states. Based on the spectra presented above, as well as additional results over a more extended temperature range of 4 K to 140 K (Supplementary Section 2), we find a bright–dark splitting of \(\Delta E_D = 47 \pm 1 \text{ meV} \) for the neutral exciton. A similar analysis of the bright–dark splitting for the above the corresponding bright states. The dark exciton states in MoSe\(_2\) will then have low thermal population and emission.

We further investigated the emission dynamics of the dark states using time-resolved photoluminescence (TRPL). In Fig. 2d, we contrast the emission dynamics for bright and dark trion states (emission from the neutral exciton was too weak for accurate TRPL measurement with the available \(B_\| = 17.5 \text{ T} \)). The dark trion emission exhibits a lifetime of 230 ± 10 ps, while the bright trion lifetime is less than 20 ps. In our analysis of the dark trion dynamics in Fig. 2d, we subtracted the background emission from the L1 defect (measured at \(B_\| = 0 \)). The validity of this approach is substantiated by a global fitting analysis of magnetic field-dependent TRPL traces presented in Supplementary Section 6. We discuss later the physical origin and significance of the long lifetime of dark states.
trion states yields $\Delta E_{\text{DT}} = 32 \pm 1$ meV. These values, being comparable to the room-temperature thermal energy, are consistent with the observed strong suppression of PL at low temperatures$^{12-14}$.

The peak shifts ΔE_B and ΔE_{DT} both reflect the splitting of ΔE_{CB} between the two underlying conduction bands (CB1 and CB2 in Figs 1 and 3). They are, however, also affected by the difference in exciton binding energies between the corresponding bright and dark states. Let us first consider how these factors play out for the case of the neutral bright and dark exciton. Using the BerkeleyGW package28, we applied the $ab\text{initio}$ GW-BSE approach29,30 to calculate the quasiparticle band structure and excitonic states in monolayer WSe$_2$. Our calculation shows that the binding energy difference between the bright and dark $1s$ excitons is 17 meV. As the calculated wavefunctions of the bright and dark excitons exhibit very similar radial distributions (Supplementary Fig. 14), we can examine the difference in binding energy using perturbation theory (see Supplementary Section 7 for details). We find that we can account for the difference in terms of two factors: the different spin configuration of the bright and dark excitons, and the different effective masses of electrons in CB1 and CB2. For the former, relative to the $S_z = \pm 1$ dark exciton, the $S_z = 0$ bright exciton experiences an additional repulsive electron–hole (e–h) exchange interaction, which shifts the bright exciton energy upwards by E^b (Fig. 3a). For the latter, from the quasiparticle band structure, CB2 in WSe$_2$ has a larger mass than higher-lying CB1 (Supplementary Section 7). This leads to an increased binding energy for the dark exciton; we denote the corresponding mass-induced shift as δE_B. Including the band splitting with the two many-body corrections, the bright–dark neutral exciton shift is $\Delta E_\text{D} \approx \Delta E_{\text{CB}}$ (40 meV) + E^b (6 meV) + δE_B (11 meV). For the overall shift, we obtain a value of $\Delta E_\text{D} = 57$ meV from our $ab\text{initio}$ GW-BSE calculations, in good agreement with the experimental value of 47 meV.

For the bright and dark states of the trion, we need to consider additional many-body effects in this three-body correlated state. For n-type trions, which are relevant for our experiment, the expected lowest-energy configurations for the bright and dark states are shown in Fig. 3b, as dictated by having different electron valley–spin configurations. (Based on the observed spectral shift between X_0 and X_γ, which differs for n- and p-type trions, we infer that we have n-type trions in our samples16. For completeness, we provide an analysis for p-type trions in the Supplementary Information.) ΔE_{CB} still gives the same single-particle contribution to ΔE_{DT}. However, unlike the neutral excitons, both the bright and dark trions experience e–h exchange interactions (Fig. 3b)—in the bright case, an intravalley exchange (E^b) and, in the dark case, an intervalley exchange interaction (E^d). As the e–h wavefunction overlap of the $S_z = 0$ exciton is almost identical for the intervalley and intravalley configurations, our calculation indicates that E^b and E^d are very similar (within ~1 meV). Therefore ΔE_{DT} can be approximated as $\Delta E_{\text{DT}} \approx \Delta E_{\text{CB}} + \delta E_\text{T}$, where δE_T is the mass-induced binding energy difference between the bright and dark trions. Because δE_T is expected to be smaller than δE_B, we expect—and observe experimentally—that $\Delta E_\text{D} \approx \Delta E_{\text{DT}}$.

From the experimental data and above analysis, we can estimate the CB splitting from our measurements to mitigate the uncertainty of the splitting predicted by theory9,10,31,32. If we assume a mass-induced binding energy difference of $\delta E_\text{T} = 0.5\delta E_\text{B}$, a first-order approximation based on averaging the electron band masses for the trion states, we then have $\Delta E_\text{D} \approx \Delta E_{\text{DT}} \approx \Delta E_{\text{CB}} + \delta E_\text{T}$ introduced above.

Radiative and valley lifetimes of dark excitons

We now demonstrate how this approach also serves to create new excitonic states with tunable properties. Bright excitons in monolayer TMDC materials exhibit exceptionally short (picosecond to subpicosecond) intrinsic radiative lifetimes, τ_{rad}. If $T > 0$, where T is temperature, as a consequence of their unusually large binding energies33. On the other hand, a long and tunable exciton radiative lifetime would be attractive for many purposes; brightened dark excitons offer just this possibility. Experimentally, we see evidence for a long radiative lifetime of the brightened dark states in our TRPL measurements (Fig. 2d).

Here, we provide a quantitative description of the effect of the applied B_\parallel on the dark excitons’ radiative properties. Since the magnetic field-induced mixing occurs predominantly between pairs of dark and bright states, an effective two-level model captures the underlying physics. The influence of B_\parallel is, moreover, quite simple because it does not couple to the in-plane motion of electrons, but only to their spin magnetic moment. In the weak-field limit, this model predicts a field-induced oscillator strength for the dark excitons $f_\parallel(B_\parallel) = (\mu_B B_\parallel/\Delta E_\text{D})^2 f_0$, where f_0 is the field-free bright exciton oscillator strength, ΔE_D is the bright–dark state splitting and μ_B is the Bohr magneton (details in Supplementary Section 7). This relation immediately explains the observed quadratic dependence of the PL with B_\parallel (Fig. 2c) under our experimental conditions where non-radiative relaxation of the excitons dominates (and the relaxation channels are not significantly altered by the magnetic field). For the highest applied field of $B_\parallel \approx 31$ T, we predict only a slight brightening of dark excitons of $f_\parallel \approx 1.4 \times 10^{-7} f_0$. As the lower-energy state, dark excitons with such small oscillator strength can, however, still dominate in PL (Fig. 2a) because of their much larger occupation at low temperature. Assuming thermal equilibrium occupation numbers, we can, for example, estimate the dark exciton oscillator strength from the observed strength of the dark exciton compared with the bright exciton for $B_\parallel \approx 31$ T at 100 K (Fig. 2b). We infer $f_\parallel \approx 4 \times 10^{-7} f_0$ (see Supplementary Section 7 for details), a value comparable to the prediction of the analysis given above. Moreover, we can

Figure 3 | Schematic illustration of bright and dark neutral and charged excitonic states. The blue and red lines represent spin-up and spin-down bands, respectively. a, The spin-valley configuration of neutral bright and dark excitons. ΔE_{CB} denotes the energy splitting of the two CBs. The blue line represents the e–h exchange interaction E^b for the ($S_z = \pm 0$) bright exciton, which is absent for the ($S_z = \pm 1$) dark exciton. b, Spin-valley configuration of the lowest-energy n-type bright and dark trion states. An e–h exchange interaction E^d is present for the intervalley ($S_z = 0$) e–h pair, as shown.
estimate the effective radiative lifetime of the brightened dark excitons from the ratio $f_{\sigma}/f_{\sigma'}$ and the bright-exciton effective radiative lifetime $\tau_{\text{rad-B}}(\sigma)$. Taking the previously reported 150 fs (ref. 33) as the intrinsic $\tau_{\text{rad-B}}(\sigma = 0)$, we predict $\tau_{\text{rad-B}}(\sigma = 28\text{ ns})$ for $B_{||} = 17.5\text{ T}$ at 4 K, corresponding to the conditions of Fig. 2d (Supplementary Section 7). This radiative lifetime is consistent with our measured emission time of 230 ps and the material’s low quantum efficiency. For $B_{||} = 10\text{ T}$ and $T = 50\text{ K}$, where we can still observe the dark state emission, we predict $\tau_{\text{rad-B}}(\sigma = 50\text{ K}) > 1\mu\text{s}$. For improved crystals exhibiting higher quantum efficiency and narrower emission features, one would be able to observe dark states with still longer radiative lifetimes. We can thus achieve wide tuning of effective radiative lifetimes under conditions where the brightened dark states are readily observable.

As a final area of exploration, we note that optical access to the valley degree of freedom and the inherent coupling of the valley and spin degrees of freedom in the TMDC monolayers are among the most interesting and distinctive properties of these materials. We have consequently also examined the valley properties of the magnetically brightened dark states. Since the optical valley selection rules reflect the character of the underlying band states, they should also be obeyed for the magnetically brightened dark states, thus providing a means of probing the valley degree of freedom. Results of such a measurement are presented in Fig. 4. For the bright states, we see enhancement of the emission with the same handedness (Fig. 4a,b), in accord with previous reports. For emission from the two brightened dark states (shaded grey areas in Fig. 4b), we also observe partial circular polarization, but the opposite handedness. This intriguing result reflects the distinctive nature of the dark excitons. Although the precise mechanism behind this observation remains unclear, we note that the creation of the dark excitons is expected to occur through relaxation of bright excitons by scattering of electrons into the lower CBs, either through an intervalley or intravalley scattering process. We expect the intervalley process, not requiring a spin flip, to be more efficient. Photoexcitation in one valley thus gives rise to a higher population of photogenerated electrons in the lowest CB in the other valley, which may explain the observed opposite circularly polarized emission.

The fact that the dark state exhibits circularly polarized emission also has implications for the valley lifetime of this state. Taking the experimental dark trion emission time $\sim 230\text{ ps}$ (Fig. 2d), together with its measured degree of circular polarization, we infer a dark state valley lifetime exceeding 60 ps. This value significantly exceeds the valley lifetime of the bright excitons, in which intervalley exciton exchange between the K and K' valleys is likely to play a crucial role in depolarization. Scattering of dark excitons between the different valleys would require an additional spin flip, making such exchange coupling much less efficient. The valley character of dark states is thus protected by their spin configuration.

Conclusion

The approach of magnetic brightening described here has yielded a direct spectroscopic determination of the energies of spin-forbidden dark excitonic states in a model TMDC monolayer, as well as important information about the CB splitting. Magnetic brightening of dark excitons also provides a route to produce optically observable states with long and widely tunable radiative lifetimes, as well as greater valley stability compared with bright excitons. These characteristics permit new approaches to store and manipulate photoexcited valley and spin information. The enhanced radiative and valley lifetimes, combined with the exceptionally strong many-body interactions present in these systems, offers, moreover, a promising platform to realize correlated exciton states, such as Bose–Einstein condensates.

Methods

Methods and any associated references are available in the online version of the paper.

Received 24 January 2017; accepted 26 April 2017; published online 26 June 2017.
Methods

Monolayers of WSe₂ were prepared by exfoliation from bulk crystals onto a SiO₂/Si substrate with a 300-nm-thick oxide layer. The monolayer flakes were identified by optical contrast microscopy and PL measurements. The selected monolayer was transferred onto another SiO₂/Si substrate with pre-patterned markers to facilitate optical measurements under the magnetic field. Information about the grown WSe₂ monolayers is presented in the Supplementary Information.

Optical measurements in the 31 T magnet were carried out using a fibre-based optical probe, while the polarization-resolved PL and TRPL measurements were made using free-space optics in the 17.5 T magnet. The TRPL measurements were performed by means of the time-resolved single-photon-counting technique. The excitation was provided by a frequency-doubled mode-locked Ti:sapphire (Coherent, Vitesse) laser operating at a repetition rate of 80 MHz with pulses of 300-fs duration at a wavelength of 400 nm. The collected PL was spectrally filtered by a grating monochromator (bandpass of 10 nm) and detected with an avalanche photodiode (PicoQuant, PDM) for analysis using time-resolved single photon counting (PicoQuant, PicoHarp 300). We determined the instrument response function of the TRPL set-up by using the temporal profile produced by the 800-nm femtosecond pulses from the mode-locked Ti:sapphire laser.

Theory

Density functional calculations were performed using the local density approximation (LDA) implemented in the Quantum ESPRESSO package. We assumed the experimental lattice constant of 3.28 Å in our calculations. The GW and GW + BSE calculations were carried out using the BerkeleyGW package. In the calculation of the electron self-energy, the dielectric matrix was constructed with a cutoff energy of 35 Ry. The dielectric matrix and the self-energy were calculated on an 18 × 18 × 1 k-grid. The quasiparticle bandgap was converged to within 0.05 eV. In the calculation of the excitonic states, the quasiparticle band structure was interpolated onto a 180 × 180 × 1 k-grid. The e–h interaction kernel was also calculated on the same grid. The 1s exciton binding energy was converged to within 0.1 eV. The spin–orbit coupling was included perturbatively within the LDA formalism.

Data availability. All data generated or analysed during this current study are available from the corresponding author on reasonable request.