ICSI 2014 Competition on Single Objective Optimization
(ICS-2014-BS)

Ying Tan, Junzhi Li, Zhongyang Zheng
Key Laboratory of Machine Perception (Ministry of Education)
Department of Machine Intelligence
School of Electronics Engineering and Computer Science
Peking University, Beijing, P.R. China
icsi2014competition@gmail.com

Abstract. This is the introduction and instruction to the ICSI 2014
Competition on Single Objective Optimization.

Keywords: Single Objective Optimization, Swarm Intelligence

1 Introduction

This competition will focus on single objective optimization, because it is the
key and fundamental problem in the Swarm Intelligence. In this competition, we
hope to provide a chance for every swarm intelligence algorithm to show its
performance and to learn from each other. We welcome any swarm intelligence
algorithm to participate in the competition, such as Particle Swarm Optimization,
Ant Colony Optimization, Artificial Bee Colony Algorithm, Bat Algorithm,
Intelligent Water Drops, Fireworks Algorithm, etc.
The codes for the competition is available at:
http://www.ic-si.org/competition/file.zip
If you have any suggestion, please inform us without hesitation.

2 Definition

The task is to minimize the evaluation function:

$$\min_{x \in [-100,100]^D} f(x)$$

There are 30 functions in this competition, all shifted and rotated, which
is named as ICSI-2014-Benchmark Suite, i.e., ICSI-2014-BS, for short, and
certainly they should be treated as black box problems.
2.1 Basic Functions

The following 23 functions are the same in definition as [3], [2] and [1].

1. Bent Cigar Function

\[f_1(x) = x_1^2 + 10^6 \sum_{i=2}^{D} x_i^2 \]

2. High Conditioned Elliptic Function

\[f_2(x) = \sum_{i=1}^{D} (10^6)^{\frac{i}{D-1}} x_i^2 \]

3. Neumaire 3 Function

\[x = D^2 x/100 \]

\[f_3(x) = \sum_{i=1}^{D} (x_i - 1)^2 + \sum_{i=1}^{D} x_i x_{i-1} + \frac{D(D+1)(D-1)}{6} \]

4. Discus Function

\[f_4(x) = 10^6 x_i^2 + \sum_{i=2}^{D} x_i^2 \]

5. Different Powers Function

\[f_5(x) = \sqrt{\sum_{i=1}^{D} |x_i|^{2+4+\frac{i-1}{D-1}}} \]

6. Rosenbrock’s Function

\[x = 30x/100 \]

\[f_6(x) = \sum_{i=1}^{D-1} (100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2) \]

7. Alpine Function

\[x = 10x/100 \]

\[f_7(x) = \sum_{i=1}^{D} |x_i \sin(x_i) + 0.1x_i| \]
8. Ackley’s Function

\[f_8(x) = -20 \exp(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_i^2}) - \exp\left(\frac{1}{D} \sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e \]

9. Weierstrass Function

\[x = x/100 \]

\[f_9(x) = \sum_{i=1}^{D} \left(\sum_{k=0}^{20} [0.5^k \cos(2\pi \cdot 3^k (x_i + 0.5))] \right) - D \sum_{k=0}^{20} [0.5^k \cos(2\pi \cdot 3^k \cdot 0.5)] \]

10. Griewank’s Function

\[x = 600x/100 \]

\[f_{10}(x) = \sum_{i=1}^{D} \frac{x_i^2}{4000} - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1 \]

11. Rastrigin’s Function

\[x = 5.12x/100 \]

\[f_{11}(x) = \sum_{i=1}^{D} (x_i^2 - 10 \cos(2\pi x_i) + 10) \]

12. Katsuura Function

\[x = 5x/100 \]

\[f_{12}(x) = \frac{10}{D^2} \prod_{i=1}^{D} \left(1 + \sum_{j=1}^{32} \frac{|2^j x_i - 2^j x_{i+1}|}{2^j} \right)^{10/D^2} - \frac{10}{D^2} \]

13. Expanded Scaffer’s F6 Function

\[g(x, y) = 0.5 + \frac{(\sin^2(\sqrt{x^2 + y^2}) - 0.5)}{(1 + 0.001(x^2 + y^2))^2} \]

\[f_{13}(x) = \sum_{i=1}^{D-1} g(x_i, x_{i+1}) + g(x_D, x_1) \]

14. HappyCat Function
\[f_{14}(x) = \sum_{i=1}^{D} x_i^2 - D|x|^\frac{1}{4} + (0.5 \sum_{i=1}^{D} x_i^2 + \sum_{i=1}^{D} x_i)/D + 0.5 \]

15. HGBat Function

\[f_{15}(x) = |\left(\sum_{i=1}^{D} x_i^2\right)^2 - \left(\sum_{i=1}^{D} x_i\right)^2| + (0.5 \sum_{i=1}^{D} x_i^2 + \sum_{i=1}^{D} x_i)/D + 0.5 \]

16. Schwefel’s Problem 2.22

\[x = 10x/100 \]

\[f_{16}(x) = \sum_{i=1}^{D} |x_i| + \prod_{i=1}^{D} |x_i| \]

17. Schwefel’s Problem 1.2

\[f_{17}(x) = \sum_{i=1}^{D} (\sum_{j=1}^{i} x_j)^2 \]

18. Schwefel’s Problem 2.26

\[x = 500x/100 \]

\[f_{18}(x) = \sum_{i=1}^{D} (x_i \sin(\sqrt{|x_i|})) \]

19. Penalized Function

\[x = 50x/100 \]

\[\mu(x_i, a, k, m) = \begin{cases}
 k(x_i - a)^m & x_i > a \\
 0 & a \leq x_i \leq a \\
 k(-x_i - a)^m & x_i < -a
\end{cases} \]

\[f_{19}(x) = 0.1\{\sin^2(3\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2[1 + \sin^2(3\pi x_{i+1})]\} \]

\[+ (x_D - 1)^2[1 + \sin^2(2\pi x_D)]\} + \sum_{i=1}^{D} \mu(x_i, 5, 100, 4) \]

20. Schaffer’s F7 Function

\[f_{20}(x) = (\frac{1}{D-1} \sum_{i=1}^{D-1} (x_i^2 + x_{i+1}^2)^\frac{1}{4} + (x_i^2 + x_{i+1}^2)^\frac{1}{4} \sin^2(50(x_i^2 + x_{i+1}^2)^{0.1})) \]
21. Salomon Function

\[f_{21}(x) = 1 - \cos(2\pi \sum_{i=1}^{D} x_i) + 0.1 \sum_{i=1}^{D} x_i^2 \]

2.2 Composition Functions

The following 7 functions are newly generated composition functions.

22. Well Function

\[f_{22}(x) = \begin{cases}
\sum_{i=1}^{D} x_i^2 & \text{max}(x) < 20 \\
400 \cdot D & \text{otherwise}
\end{cases} \]

23. '8'+13'+21'

\[f_{23}(x) = f_8(x) + f_{13}(x) \cdot 10 + f_{21}(x) \cdot 1e - 2 \]

24. '2'+9'+15'+16'

\[f_{24}(x) = f_2(x) \cdot 1e - 9 + f_9(x) \cdot 2 + f_{15}(x) \cdot 1e - 1 + f_{16}(x) \cdot 5e - 2 \]

25. '3'+4'+7'+18'

\[f_{25}(x) = f_3(x) \cdot 0.25 + f_4(x) \cdot 1e - 9 + f_7(x) + f_{18}(x) \cdot 1e - 2 \]

26. '5'+6'+12'

\[f_{26}(x) = f_5(x) \cdot 1e - 5 + f_6(x) \cdot 1e - 7 + f_{12}(x) \cdot 1e - 2 \]

27. ('10'+14'+20')*18'

\[f_{27}(x) = f_{18}(f_{10}(x), f_{14}(x), f_{20}(x)) \]

28. ('19'+17'+1')*9'

\[f_{28}(x) = f_9(f_{19}(x), f_{17}(x), f_1(x)) \]

29. ('3'+12'+15')*8'

\[f_{29}(x) = f_8(f_3(x), f_{12}(x), f_{15}(x)) \]

30. ('6'+21'+14')*13'

\[f_{30}(x) = f_{13}(f_6(x), f_{21}(x), f_{14}(x)) \]
3 Experiment

1. $D = 2, 10, 30, 50$, Search space: $[-100, 100]^D$, Maximum evaluation times: $D \ast 10000$.

 For each function and each D, run 51 times independently and record the best fitness found.

 Note that error smaller than $2^{-52} \approx 2.22e - 16$ (the eps in matlab) is 0.

2. Run the following program 5 times and record the MEAN time consumed as $T1$:

   ```
   for i = 1 : 300000
     evaluate(9 , rand(30,1)*200-100);
   end
   ```

 Run your algorithm on function 9 and $D = 30$ for 5 times, and record the MEAN time consumed as $T2$.

4 Format

 The following things should be included in your paper:

 1. Description of your algorithm.
 2. The parameters used in your experiment.
 3. Experimental environment.
 4. $T1, T2$ and $(T2 - T1)/T1$.
 5. For each $D = 2, D = 10, D = 30$ and $D = 50$, show a 30*5 table containing the Max, Min, Mean, Median and Standard deviation of fitness of each function.

 Besides, you also need to submit 4 result files to the organizers: name_2d.csv, name_10d.csv, name_30d.csv and name_50d.csv(for example:pso_2d.csv, pso_10d.csv, pso_30d.csv and pso_50d.csv), with each containing a 30*51 matrix, showing the best fitness found in each function and each run.

 The algorithms will be ranked according to their fitness value. The ranking and analysis will be published by the organizers later.

References

1. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization (2013)
2. Liang, J., Qu, B., Suganthan, P., Hernández-Díaz, A.G.: Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization (2013)
3. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. Evolutionary Computation, IEEE Transactions on 3(2), 82–102 (1999)
Comparison and Ranking Results of Algorithms in ICSI 2014 Competition on Single Objective Optimization

Junzhi Li and Ying Tan

Key Laboratory of Machine Perception (Ministry of Education)
Department of Machine Intelligence
School of Electronics Engineering and Computer Science
Peking University, Beijing, P.R. China
ljz@pku.edu.cn, ytan@pku.edu.cn

Abstract. In this technical report, the analyses, comparison and ranking results of the algorithms participating in the ICSI 2014 Competition on Single Objective Optimization (ICSI-2014-BS) are presented.

Keywords: Single Objective Optimization, Swarm Intelligence

1 Introduction

The Fifth International Conference on Swarm Intelligence (ICSI 2014) organized a competition session on Single Objective Optimization. A benchmark suite of 30 evaluation functions called ICSI-2014-BS is set up for this competition session. The competition requires participants to submit their algorithms’ evaluation results for 2, 10, 30 and 50 dimensions and their time complexity index.

There are in total 9 papers submitted to this competition session and 6 papers accepted at last. They are listed in Table 1.

#	Title
33	Evaluating a Hybrid DE and BBO with Self Adaptation on ICSI 2014 Benchmark Problems
86	The Multiple Population Co-evolution PSO Algorithm
92	Performance of Migrating Birds Optimization Algorithm on Continuous Functions
131	Dynamic Search Fireworks Algorithm for Solving ICSI2014 Competition Problems
178	Differential Evolution with Sparks Applied to ICSI 2014 Competition Functions
180	Applying Enhanced Fireworks Algorithm to ICSI 2014 Benchmark Suite
The abbreviations of the 6 algorithms are respectively: HSDB, MPCPSO, MBO, dynFWA, DESP and EFWA.

2 Overview of the Results

2.1 Time Complexity

We defined an index to measure the time complexity of the algorithms:
1. Run the following program 5 times and record the MEAN time consumed as T_1:

   ```
   for i = 1 : 300000
   evaluate(9 , rand(30,1)*200-100);
   end
   ```

2. Run the optimization algorithm on function 9 and $D = 30$ for 5 times, and record the MEAN time consumed as T_2.

3. And finally calculate the value $(T_2 - T_1)/T_1$ as the metric of the time complexity of the algorithm.

The results are shown in Table 2. Algorithms with smaller numbers are faster.

Algorithm	HSDB	MPCPSO	MBO	dynFWA	DESP	EFWA
$(T_2 - T_1)/T_1$	1.386	0.320	1.448	0.123	0.588	0.241

Table 2. Time Complexity

The index to some extent reveals the efficiency of the algorithms. However, we should note that such kind of metrics are very sensitive to the implementation details. Especially on MATLAB platform, a proper optimization of the codes would significantly reduce the time cost. In addition, time complexity of the algorithms is not the main concern in this competition, because for most real world optimization problems, the evaluation is overwhelmingly expensive.

2.2 Mean Fitness Value

We limit the evaluation times of each function to $10000 \times D$ for each dimensionality $D = 2, 10, 30, 50$. Table 3,4,5 and 6 present the mean fitness value of each dimensionality obtained by the algorithms over 51 independent runs. The best fitness values are highlighted.
Func \ Alg	HSDB	MPCPSO	MBO	dynFWA	DESP	EFWA
1	0.00E+00	1.75E-02	1.25E+03	1.56E+02	4.99E+02	4.32E+02
2	0.00E+00	2.54E+01	6.09E+02	4.90E+02	8.89E+02	5.07E+02
3	1.67E+00	1.67E+00	1.67E+00	1.67E+00	1.67E+00	1.67E+00
4	0.00E+00	3.95E+00	3.76E+02	1.79E+02	3.23E+02	3.21E+02
5	0.00E+00	3.47E-06	5.52E-01	3.85E-03	3.23E+00	7.91E-04
6	0.00E+00	5.66E-23	1.16E+00	1.21E-03	1.77E+00	2.70E-04
7	0.00E+00	1.59E-06	2.55E-03	9.70E-04	4.62E-03	6.15E-03
8	0.00E+00	1.03E-15	3.74E+00	2.45E-02	3.04E-01	8.19E-01
9	-4.00E+00	-4.00E+00	2.73E-01	-3.98E+00	-3.75E+00	-3.99E+00
10	-9.97E-01	-9.95E-01	2.29E-01	-9.76E-01	-7.92E-01	-9.85E-01
11	0.00E+00	6.20E-15	3.05E-01	7.02E-05	7.29E-01	1.63E-05
12	4.89E+01	4.95E+01	5.41E-01	4.93E+01	6.96E+01	5.17E+01
13	6.89E-03	1.07E-02	2.31E-02	1.55E-02	7.29E-02	2.64E-02
14	4.76E-03	5.66E-04	7.23E-01	6.47E-02	6.49E-02	1.61E-01
15	7.53E-04	2.41E-04	9.02E-01	1.74E-02	2.59E-01	3.81E-02
16	0.00E+00	6.76E-18	7.61E-02	2.31E-03	1.48E-01	5.43E-04
17	0.00E+00	0.00E+00	1.83E-01	3.63E-03	1.95E+00	8.96E-05
18	-8.38E+02	-7.72E+02	-8.39E+02	-8.38E+02	-6.49E+02	-6.25E+02
19	0.00E+00	4.44E-16	1.07E-01	1.14E-03	2.69E-03	9.26E-04
20	0.00E+00	0.00E+00	2.79E+00	0.00E+00	1.06E-13	0.00E+00
21	0.00E+00	0.00E+00	4.24E-01	1.98E-03	1.57E-02	3.53E-07
22	0.00E+00	5.08E-33	3.51E-01	2.27E-03	9.13E-01	5.40E-05
23	8.97E+00	8.97E+00	6.74E+00	8.99E+00	1.05E+01	9.16E+00
24	-4.53E+00	-4.51E+00	5.49E+02	-4.42E+00	-3.90E+00	-4.03E+00
25	-1.60E+00	-1.63E+00	4.23E+02	-1.57E+00	-9.05E-01	-1.10E+00
26	5.86E-01	6.04E-01	2.57E+00	6.68E-01	8.93E-01	7.81E-01
27	-3.74E+07	-3.73E+07	-3.83E+04	-3.74E+07	-2.93E+07	-2.99E+07
28	-5.22E+00	-5.74E+00	-8.85E-01	-5.24E+00	-5.32E+00	-5.07E+00
29	2.00E+01	2.00E+01	1.29E+01	2.00E+01	2.00E+01	2.00E+01
30	3.91E-01	3.19E-01	3.60E-01	3.39E-01	8.68E-01	6.31E-01
Table 4. Mean Fitness ($D = 10$)

Func	Alg	HSDB	MPCSPO	MBO	dynFW	DESP	EFW
1	5.91E+00	4.16E+03	5.74E+07	3.18E+04	9.12E+05	5.86E+04	
2	2.87E+01	3.11E+03	8.60E+02	9.49E+03	1.04E+03	7.52E+03	
3	1.70E+02	1.70E+02	2.44E+02	1.70E+02	1.71E+02	1.70E+02	
4	3.00E-01	7.86E+01	1.02E+03	6.48E+01	5.93E+00	1.89E+01	
5	9.36E-03	2.51E+00	1.36E+00	6.31E-02	2.86E+00	1.12E-01	
6	5.02E+00	5.37E+00	1.90E+03	6.56E+00	5.83E+01	7.81E+00	
7	1.30E-04	8.02E-03	8.04E-01	1.64E-02	9.09E-02	8.51E-01	
8	1.55E-01	2.48E+00	9.38E+00	2.03E+00	4.00E+00	1.66E+01	
9	-1.99E+01	-1.85E+01	4.72E+00	-1.84E+01	-1.77E+01	-1.48E+01	
10	-8.35E+00	-7.91E+00	1.69E+00	-7.24E+00	-6.80E+00	-2.16E+00	
11	1.05E+00	5.40E+00	2.64E+01	6.54E+00	1.18E+01	2.04E+01	
12	4.52E-01	4.76E-01	1.52E+00	4.70E-01	4.62E-01	4.96E-01	
13	4.00E-01	6.23E-01	2.15E+00	9.80E-01	1.16E+00	2.11E+00	
14	5.16E-02	5.82E-02	7.99E+00	8.83E-02	1.21E-01	7.24E-01	
15	4.85E-02	1.66E-01	1.20E+02	1.03E-01	2.32E-01	3.02E-01	
16	5.50E-03	2.16E-01	2.66E+00	2.67E-01	2.29E-01	2.45E-01	
17	7.46E-04	3.04E-02	1.77E+03	2.57E-03	1.30E-01	2.44E-02	
18	-2.27E+03	-1.94E+03	-2.91E+03	-2.31E+03	-1.97E+03	-3.00E+03	
19	6.86E-04	8.28E-03	4.22E+00	2.42E-02	3.51E-02	8.23E-01	
20	5.11E-03	1.31E-03	1.03E+01	3.95E-01	2.89E-01	9.57E+00	
21	9.99E-02	2.94E-01	1.48E+01	2.88E-01	5.98E-01	2.29E-01	
22	6.69E-04	3.46E-03	1.17E+02	4.80E-02	3.47E+00	9.16E-02	
23	1.94E+01	2.47E+01	3.83E+01	2.90E+01	3.03E+01	3.89E+01	
24	-3.53E+01	-3.16E+01	1.03E+03	-3.29E+01	-3.04E+01	-2.18E+01	
25	4.29E+01	4.29E+01	1.44E+03	4.36E+01	4.48E+01	4.37E+01	
26	6.71E-03	8.40E-03	2.33E+03	7.92E-03	8.95E-03	9.84E-03	
27	-1.02E+08	-2.82E+07	-1.37E+04	-7.83E+07	-5.25E+07	-9.75E+07	
28	-5.83E-00	-5.64E+00	1.51E+01	-5.77E+00	-5.40E+00	-5.37E+00	
29	2.00E+01	2.00E+01	2.14E+01	2.00E+01	2.00E+01	2.00E+01	
30	1.01E+00	1.02E+00	1.25E+00	1.02E+00	1.04E+00	1.04E+00	
Table 5. Mean Fitness $(D = 30)$

Func\Alg	HSDB	MPCPSO	MBO	dynFWA	DESP	EFWA
1	7.64E+04	4.01E+04	2.78E+08	5.48E+04	1.37E+07	6.64E+04
2	5.05E+03	9.24E+03	7.70E+02	1.26E+04	1.21E+03	2.13E+04
3	4.52E+03	4.52E+03	2.75E+04	4.52E+03	4.99E+03	4.52E+03
4	7.46E+00	6.72E+01	1.03E+03	3.03E+01	1.67E+00	8.91E+00
5	3.75E-02	4.04E-02	1.11E+00	7.79E-02	5.29E+00	7.12E-02
6	2.91E+01	2.91E+01	8.60E+03	3.64E+01	2.04E+02	3.03E+01
7	7.91E-03	1.83E-02	2.64E+00	1.20E-02	7.88E-02	2.12E+00
8	9.06E-01	3.04E+00	1.08E+01	2.75E+00	4.39E+00	1.93E+01
9	-5.83E+01	-5.35E+01	1.58E+01	-5.33E+01	-5.29E+01	-1.07E+01
10	-2.48E+01	-2.39E+01	3.77E+00	-2.22E+01	-2.05E+01	-1.27E+01
11	2.92E-02	1.47E+00	1.15E+02	1.07E+01	2.45E+01	7.82E+01
12	1.43E-02	1.40E-02	3.60E+00	1.41E-02	1.33E-02	1.41E-02
13	3.04E+00	1.91E+00	9.16E+00	2.98E+00	3.53E+00	7.32E+00
14	7.32E-03	2.11E-02	8.85E+00	4.61E-02	5.50E-02	1.94E+00
15	9.48E-02	4.55E-01	2.95E+02	2.41E-01	3.65E-01	8.91E-01
16	2.57E-01	7.66E-01	7.50E+00	6.31E-01	1.62E+00	4.92E-01
17	2.02E+00	7.11E+00	5.47E+04	2.17E+00	1.75E-01	1.07E+00
18	-5.82E+03	-2.50E+03	-4.49E+03	-5.03E+03	-4.53E+03	-9.01E+03
19	5.04E-03	2.50E-02	1.18E+01	1.95E-01	1.19E-01	1.27E+00
20	2.01E-01	6.43E-01	8.06E+00	2.76E+00	4.19E+00	1.15E-05
21	2.14E-01	7.23E-01	3.07E+01	8.87E-01	1.41E+00	6.86E-01
22	1.00E-01	4.81E-02	3.21E+02	7.58E-02	1.63E+01	6.73E-02
23	4.43E+01	3.96E+01	1.09E+02	4.98E+01	5.35E+01	9.27E+01
24	-1.15E+02	-1.06E+02	9.04E+02	-1.04E+02	-1.03E+02	-8.55E+01
25	1.13E+03	1.13E+03	1.93E+04	1.13E+03	1.26E+03	1.13E+03
26	4.38E-04	4.65E-04	8.21E+03	4.23E-04	6.31E-04	4.31E-04
27	-4.78E+08	-1.09E+08	-5.16E+03	-2.64E+08	-2.45E+08	-6.11E+08
28	-5.48E+00	-5.74E+00	5.52E+01	-5.80E+00	-5.49E+00	-5.52E+00
29	2.00E+01	2.00E+01	2.16E+01	2.00E+01	2.00E+01	2.00E+01
30	1.02E+00	1.04E+00	1.42E+00	1.06E+00	1.08E+00	1.09E+00
Table 6. Mean Fitness \((D = 50)\)

Func \ Alg	HSDB	MPCPSO	MBO	dynFWA	DESP	EFWA
1	5.60E+04	1.62E+05	3.87E+08	6.22E+04	4.03E+06	9.01E+04
2	9.04E+03	7.11E+04	8.31E+02	1.33E+04	1.06E+06	1.42E+04
3	2.09E+04	2.10E+04	2.69E+05	2.09E+04	2.89E+04	2.09E+04
4	7.66E+00	1.17E+02	1.06E+03	2.07E+01	5.16E+02	5.09E+00
5	3.54E-02	8.53E-02	1.05E+00	4.99E-02	2.84E+00	6.16E-02
6	4.88E+01	4.99E+01	2.67E+05	2.89E+04	9.59E+01	4.91E+01
7	2.01E-02	4.40E-02	3.35E+00	2.44E-02	8.12E-02	4.38E+00
8	1.52E+00	2.96E+00	9.89E+00	3.23E+00	3.08E+00	2.01E+00
9	-9.61E+01	-9.09E+01	2.42E+00	-8.78E+01	-9.05E+01	-1.29E+01
10	-4.35E+01	-3.12E+01	4.62E+00	-3.82E+01	-1.50E+01	-2.78E+01
11	3.61E-02	9.70E-02	1.61E+02	7.04E-01	2.21E+00	1.14E+02
12	2.76E-03	2.91E-03	3.72E+00	2.91E-03	3.04E-03	2.83E-03
13	4.09E+00	7.37E+00	1.69E+01	4.15E+00	1.45E+01	1.53E+01
14	1.69E-02	1.08E-02	8.04E+00	2.87E-02	1.11E-01	2.00E+00
15	4.26E-01	4.26E-01	3.69E+02	4.58E-01	4.60E-01	1.74E-00
16	5.89E-01	1.31E+00	1.06E+01	9.37E-01	1.60E+00	7.08E-01
17	6.43E+00	6.10E+00	1.60E+05	5.98E+00	3.42E+02	3.14E+00
18	-7.44E+01	-3.22E+03	-5.89E+03	-4.84E+03	-8.94E+03	-1.50E+04
19	9.37E+00	3.29E-01	1.46E+01	2.11E-01	7.94E-01	8.86E-01
20	3.11E+00	9.90E+00	6.76E+00	8.35E+00	2.87E+00	4.38E-06
21	4.06E-01	9.14E-01	3.79E+01	1.23E+00	1.76E+00	9.37E-01
22	3.73E-02	1.03E+01	4.07E+02	4.98E-02	3.78E+00	7.45E-02
23	4.43E+01	8.57E-01	1.86E+02	5.76E+01	1.61E+02	1.48E+02
24	-1.89E+02	-1.79E+02	8.56E+02	-1.73E+02	-1.79E+02	-1.50E+02
25	5.23E+03	5.26E+03	1.18E+05	5.23E+03	7.31E+03	5.23E+03
26	2.29E-04	2.34E-04	9.69E+03	2.27E-04	2.31E-04	2.25E-04
27	-8.43E+08	-2.62E+08	-4.00E+04	-3.60E+08	-2.39E+09	-2.32E+09
28	-5.54E+00	-5.85E+00	9.52E+01	-5.78E+00	-5.56E+00	-5.54E+00
29	2.00E+01	2.00E+01	2.17E+01	2.00E+01	2.00E+01	2.00E+01
30	1.04E+00	1.04E+00	1.45E+00	1.11E+00	1.09E+00	1.14E+00

3 Ranking Results

In order to rank the performance of the algorithms, we conducted a round robin on them. For each function, if algorithm A performs significantly better (examined by a t-test with 95% confidence level) than algorithm B, then A gets one point. The point numbers are presented in Table 7.
Table 7. Point Number

Dim	HSDB	MFCPSO	MBO	dynFWA	DESP	EFWA
2	113	104	23	60	16	42
10	127	88	9	82	46	41
30	104	85	8	75	63	66
50	117	77	12	91	45	73
Sum	461	354	52	308	170	222

So, the final ranking is:

1. Hybrid DE and BBO with Self Adaptation
2. Multiple Population Co-evolution PSO Algorithm
3. Dynamic Search Fireworks Algorithm
4. Enhanced Fireworks Algorithm
5. Differential Evolution with Sparks
6. Migrating Birds Optimization Algorithm

Congratulations to YuJun Zheng and XiaoBei Wu, whose paper *Evaluating a Hybrid DE and BBO with Self Adaptation on ICSI 2014 Benchmark Problems* wins the ICSI 2014 Competition on Single Objective Optimization. HSDB shows a significant advantage over other algorithms on all the dimensionality.

4 Acknowledgements

Thank all the authors for their participation. And we would like to give special thanks to Dr. Jane Jing Liang for her valuable advices.

This work was supported by National Natural Science Foundation of China (NSFC) under Grant No. 61375119, 61170057 and 60875080.