An adaptive modular approach to the design of channels transport of charged particles of high energies

I O Osadchuk* and V A Budkin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409, Russia

E-mail: vabudkin@mephi.ru, *in4es@list.ru

Abstract. The paper discusses the method of designing channels based on numerical simulations with the aim of achieving optimal beam parameters at the exit of the channel. Methodology was used to optimize the parameters of the transport channel of the electron accelerator, with significant loss of beam intensity in the output beam from the accelerator and in the process of transport of the beam for the experimental equipment.

1. Introduction
The channel configuration is determined by the dimensions of the accelerator hall and the experimental hall, as well as the requirements to the beam parameters and intensity. Numerical modeling allows to identify the causes of loss of particles along the channel length and the "contribution" of each feed item in the total loss.

Adaptive modular approach to the design of channels is to pre-select separate focusing systems (modules). Preliminary optimization of the parameters of the modules based on the requirements as to the channel as a whole, and to individual modules. It defines the alignment of elements along the length of the module and the orientation of the lens (focusing-defocusing). Then, a parameter optimization of the whole channel in general. The channel calculation is performed using the software package "KATRAN" in MATLAB and Scilab.

The graphical tool environment allow you to display trajectories of individual particles, the envelopes and phase portraits of beam in horizontal and vertical plane. This information is enough to prompt the channel of the desired operation mode and adaptation of the entire focusing system to the requirements of the focusing of the beam.

2. The transport channel parameters
Particle dynamics in the transport channel is described by the transformation matrix in the quadrupoles, the magnets and the drifts in the horizontal \(m_{ij} \) and vertical \(n_{ij} \) plane. The relationship of the beam parameters (linear dimensions – \(x, z \) and divergence – \(x', z' \)) at the output of channel (or individual element) with the input parameters is written as:

\[
\begin{bmatrix}
x_{out} \\
x'_{out}
\end{bmatrix} =
\begin{bmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
x_{in} \\
x'_{in}
\end{bmatrix} \\
... \\
\begin{bmatrix}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{bmatrix}
\begin{bmatrix}
z_{out} \\
z'_{out}
\end{bmatrix} =
\begin{bmatrix}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{bmatrix}
\begin{bmatrix}
z_{in} \\
z'_{in}
\end{bmatrix}
\]

(1)
Figure 1. Scheme of the transport channel. L - quadrupole lens, D - doublet of quadrupole lenses, M - bending magnet, S - experimental installation.

The elements of the matrices are functions of the geometric parameters of the channel and the values of the magnetic field in the quadrupole lenses and magnets. Thus, based on the values of matrix elements it is possible to form the target function F_t, which reflects the degree of achievement of the desired parameters of the beam in the plane of the experimental setup.

As an example, consider the modernization of the existing channel electron synchrotron (figure 1).

3. The optimization of channel parameters

The optimization of transportation channels includes next basic premises:

1. The length of the channel and location of the bending magnets remains unchanged (determined by existing premises)
2. Only the values of the magnetic fields in the lenses and doublets and their location along the channel varied.
3. The channel is formed from three types of focusing systems:
 - Two single quadrupole lenses
 - A doublet of quadrupole lenses
 - A doublet of quadrupole lenses in combination with a rotary magnet

Requirements for the beam parameters from the experiment – may be a little linear and angular dimensions of the beam at the exit of the channel.

These two requirements are competing, using methods of extreme search allows you to obtain a compromise solution. Minimum linear size of the beam in both planes at the exit of the channel is ensured by the conditions stigmatically image $m_{12} \to 0$, $n_{12} \to 0$ and about a single transformation $m_{11} \to 1$, $n_{11} \to 1$. The minimum divergence of the beam of electrons is mainly determined by the condition $m_{21} \to 0$, $n_{21} \to 0$.

The first step in the optimization of channel parameters is the choice of the schematic diagram of the position and orientation of the focusing elements along the length of the channel, which was carried out on the basis of the following provisions:

- The particle trajectories at the exit of the focusing system needs to be convergent and in between them an intermediate image of the electron beam.
- The output of the entire channel formed a stigmatic image of the electron beam.
- Linear sizes and the beam divergence at the channel outlet must be at the lowest.
A preliminary analysis of the individual modules allows more correctly generate the starting vector of the channel parameters, which are subject to optimization. As example, we present the analysis of the first focusing system (similar considered other systems of the channel).

4. The first system

Range of values of the magnetic field in the lenses. Formed stigmatic image at system output (the conditions $m_{12} \rightarrow 0, n_{12} \rightarrow 0$). The beam at the entrance of the transport channel has an elliptical cross-section, so that with the passage of the subsequent part of the channel ellipticity of the beam is not increased, the selected orientation of the lenses $O D O F O$. The criteria for assessing the quality of the focusing system are the values of the transverse dimensions of the beam, which should not exceed the size of the diameter of vacuum based.

The structure of the first system	Thickness (mg cm$^{-2}$)	Composition	Matrix channel
Drift (m)	1.448	1.448	-0.63782
Magnetic field (kGs)	0.5	0.9577384	-1.001506
Drift (m)	0.81	0.81	-1.56831
Magnetic field (kGs)	0.5	0.7700728	4.67739
Drift (m)	2.89	2.89	0.000096

The elements of the channel	Channel structure	Length (m)	Field (kGs)
Drift	L1(F)	1.448	1.0681174
Drift		0.217	
Drift		0.532	

Figure 2. The particle trajectories in the horizontal (solid lines) and vertical plane (dashed line).
Lens L2(D) 0.217 0.9053483
Drift 5.627

Table 3. Matrix transformation of the transport channel.

	Horizontal plane	Vertical plane
0.8567355	0.00000082	-0.3863055
0.0000067	1.1672214	-0.0000125

Figure 3. The particle trajectories in the horizontal (solid lines) and vertical plane (dashed line) channel as a whole.

As can be seen from the tables, after the optimization of channel parameters the parameters of the first focusing system (module) has undergone some correction overall.

5. Conclusion
Consideration of channels of transportation of charged particles of high energies for individual modules allows to trace the dynamics of the particles along the entire length of the channel and to choose its optimal structure.

The use of numerical optimization techniques gives an opportunity to choose the parameters of the elements of the channel, providing a minimal beam losses as well as the necessary configuration.

6. References
[1] Averyanov G P, Budkin V A and Dmitrieva V V 2011 (in Russian) CAD in Electrophysics, Part 1. Fundamentals of computer-aided design (Moscow: MEPhI) (Original Russian title: SAPR v Elektrofizike, chast 1. Osnovy avtomatizacii proekтирования)
[2] Averyanov G P et al. 2014 The Interactive Computer Environment for Designing and Tuning of Charged Particle Beams Transport Channels Proc. of RuPAC (Obninsk, Kaluga Region, Russia) pp 63-5

[3] Averyanov G P et al. 2014 Transportation channels calculation method in MATLAB PAST 3 pp 138-42

[4] Averyanov G P et al. 2015 (in Russian) Modeling the transport path of the electron beam output from “Pakhra” synchrotron Int. conf. “Stability and Control Processes” pp 165-6 (Original Russian title: Modelirovanie kanala transportirovki vyvedennogo jelektronnogo puchka sinhrotrona “Pahra”. Saint Petersburg. Saint Petersburg State University)