Abstract

In several Fair Isaac studies logistic regression has been shown to be a very competitive technology for developing unrestricted scoring models – especially for performance metrics like ROC area. Application of logistic regression has been hampered by the lack of software to handle complex score engineering, such as pattern constraints. The purpose of this paper is to develop a sequential quadratic programming approach to score engineered logistic regression. Gerald Fahner, Reference [6], has developed in SAS an approach to score engineered logistic regression based on iterative re-weighted least squares. This is the method used in SAS proc logistic. Gerald just overlaid constrained least squares to handle the score engineering. The sequential quadratic programming approach is based on a simple Taylor series expansion of minus log likelihood, which is locally quadratic. This is a more direct method for solving the problem. And it fits in with the methods described in References [1], [3], and [5], which are all based on quadratic programming or sequential quadratic programming. The paper also provides all of the simple MATLAB code for implementing the algorithm. In the same large score engineered fraud test example used in References [1], [3], and [5], the algorithm converged after four iterations. And, each iteration took 12 seconds.
There are several problems where logistic regression might be useful to Fair, Isaac. One problem is the scorecard with only a few characteristics and a small handful of attributes. In this case, the score distributions may be non-Normal, so that the divergence objective function is iffy. A second case is where the primary objective is to develop a very accurate estimate of the probability of Good for each account, rather than a score for making binary decisions. A third application is ObjectBoost, where the objective is to find observation weights so that the logistic regression score optimizes some business objective on the validation sample. To get a score engineered version of ObjectBoost, we need score engineered logistic regression. The ObjectBoost concept also works with scores that maximize divergence, but not as well as logistic regression. This is because divergence maximization is not as sensitive to observation weights.
Table of Contents

Abstract .. 1

Table of Contents .. 3

1. *Classical Logistic Regression* ... 4

2. *Score Engineered Logistic Regression* ... 6

3. *A Quadratic Programming Formulation* ... 7

 - Derivation of g and G ... 8

 - Matrix Computation of g, G, and M .. 10

 - MATLAB Formulation .. 11

4. *Application* .. 11

 - Iteration of the algorithm ... 11

 - Design matrix .. 11

 - Performance variable ... 12

 - Observation weights ... 12

 - Penalty parameter ... 12

 - Constraint matrices for the quadratic program ... 12

 - Initial value of β ... 13

 - Running the algorithm manually .. 13

 - Performance results .. 14

 - Logistic Regression Coefficients .. 16

References ... 17

Appendix 1. New MATLAB Functions ... 18

 - beta ... 18

 - MLRLL .. 19

 - scorecdfs ... 20

 - ROC ... 21

Appendix 2. Score Engineered Scorecards .. 22
1. Classical Logistic Regression

In logistic regression we have a binary outcome variable, \(y \), which can have the values 0 and 1, and a set of numerical predictors, \(x' = (x_1, ..., x_p) \). By tradition, \(x_1 = 1 \). This accommodates an intercept term in the model.

Let

\[
p(x) = \Pr\{y = 1 \mid x\}.
\]

There are two key assumptions underling logistic regression.

1. \(y \mid x \sim \text{Bernoulli}[p(x)] \)
2. \(\log \left(\frac{p(x)}{1 - p(x)} \right) = \sum_{j=1}^{q} \beta_j x_j \).

The \(\beta_j \)'s are called regression coefficients. The coefficient, \(\beta_1 \), is an intercept term. For scorecards and liquid scorecards (see Reference [3]) the \(x_j \)'s for \(j = 2, ..., q \) are either attribute indicator variables or B-spline basis functions. And since the liquid scorecard is so general, this pretty much covers the waterfront.

Our development data consists of \(n \) weighted observations on the variables \((y, x) \):

\[
(y_1, x_1), ..., (y_n, x_n).
\]

The weight is

\[
w' = (w_1, ..., w_n).
\]

The Bernoulli likelihood function is

\[
\prod_{i=1}^{n} \left[p(x_i)^{y_i} (1 - p(x_i))^{1-y_i} \right].
\]

The log likelihood is

\[
L = \sum_{i=1}^{n} \left[w_i y_i \log[p(x_i)] + w_i (1 - y_i) \log[1 - p(x_i)] \right]
\]

\[
= \sum_{i=1}^{n} w_i \left[y_i \log\left(\frac{p(x_i)}{1 - p(x_i)} \right) + \log[1 - p(x_i)] \right].
\]
It is useful to define the parameter

\[
\theta_i = \log \left(\frac{p(x_i)}{1 - p(x_i)} \right) = \sum_{j=1}^{q} \beta_j x_{ij}.
\]

A little algebra reveals the relationships

\[
p(x_i) = \frac{\exp(\theta_i)}{1 + \exp(\theta_i)}
\]

\[
1 - p(x_i) = \frac{1}{1 + \exp(\theta_i)}
\]

\[
\log[1 - p(x_i)] = -\log[1 + \exp(\theta_i)].
\]

Minus log likelihood can be written as

\[
M(\beta) = -L(\beta)
\]

\[
= \sum_{i=1}^{n} -w_i \left(y_i \theta_i - \log[1 + \exp(\theta_i)] \right).
\]

This minus log likelihood depends on the regression coefficients, \(\beta' = (\beta_1, \ldots, \beta_q) \), because

\[
\theta = X \ast \beta,
\]

where

\[
\theta' = (\theta_1, \ldots, \theta_n)
\]

\[
X = n \times q \text{ design matrix with elements, } x_{ij}.
\]

The classical logistic regression problem is

Find \(\beta \) to

Minimize \(M(\beta) \).

This is the problem solved by proc logistic in SAS, which uses iterative re-weighted least squares (see Chapter 13 of Reference [4]).
2. Score Engineered Logistic Regression

Classical logistic regression has limited applicability for Fair, Isaac and Company Inc., because it does not handle score engineering. To describe the score engineering problem it is convenient to decompose β into

$$ \beta' = [S_0 \ S']^T $$

where S_0 is the intercept coefficient and S are the score weights associated with the scorecard or liquid scorecard.

With score engineering, the logistic regression problem is

Find β to

Minimize $M(\beta) + \frac{\lambda}{q-1} S' S$

Subject to :

$A_{eq} \beta = b_{eq}$

$A \beta \leq b$.

The first set of constraints is the centering, cross restriction, group restriction, and in-weighting constraints. Most of these constraints involve only the scorecard part of the model, but you might want to in-weight S_0 to, e.g., the empirical log pop odds. The second set of constraints is the pattern constraints, which typically only involve the scorecard part of the model.

Note that in the logistic regression case, there is no weight of evidence scale. This is because the dependent variable, y, dictates the scale of the final model. However, the scorecard part of the model is a rough model of the information odds, which is approximately on the weight of evidence scale. And the score weights for the scorecard part of the model will vary around zero. This is why the penalty term involves only the scorecard part of the model.
The score engineered logistic regression problem can be re-expressed by defining the matrix

\[\mathbf{Ir} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad (q \times q \text{ matrix}) \, . \]

In this notation, the score engineered logistic regression problem is

Find \(\beta \) to

Minimize \(M(\beta) + \frac{\lambda}{q-1} \beta' \mathbf{Ir} \beta \)

Subject to:

\[\mathbf{A}_{eq} \beta = \mathbf{beq} \]
\[\mathbf{A} \beta \leq \mathbf{b} \, . \]

This is starting to look like the quadratic programming problems described in Reference [1]. However, \(M(\beta) \) is not a quadratic function. So the score engineered logistic regression problem is a non-linear programming problem.

3. A Quadratic Programming Formulation

The classical logistic regression problem is solved by iterative re-weighted least squares; i.e., a sequence of quadratic problems, Reference [4]. This method can be adapted to the score engineered case, by formulating an appropriate sequence of quadratic programs. In Reference [1] I showed that score development problems could be solved very quickly via quadratic programming.

Let \(\hat{\beta} \) denote the current best solution to the problem. Via Taylor series, I can approximate minus log likelihood in the neighborhood of \(\hat{\beta} \) by the quadratic function

\[\hat{M}(\beta) = M(\hat{\beta}) + \mathbf{g}^\prime (\beta - \hat{\beta}) + \frac{1}{2} (\beta - \hat{\beta})^\prime \mathbf{G} (\beta - \hat{\beta}) \]

where \(\mathbf{g} \) and \(\mathbf{G} \) are the gradient vector and Hessian matrix of the function, \(M(\beta) \), evaluated at \(\beta = \hat{\beta} \).
With this approximation the problem becomes

Find β to

Minimize $g'(\beta - \hat{\beta}) + \frac{1}{2}(\beta - \hat{\beta})'G(\beta - \hat{\beta}) + \frac{\lambda}{q-1}\beta' \cdot I_r \cdot \beta$

Subject to:

$A_{i} \cdot \beta = I_W$

$A_{cr} \cdot \beta = 0$

$A_{pr} \cdot \beta \leq 0$.

The objective function can be manipulated as

$g'(\beta - \hat{\beta}) + \frac{1}{2}(\beta - \hat{\beta})'G(\beta - \hat{\beta}) + \frac{\lambda}{q-1}\beta' \cdot I_r \cdot \beta$

$= g' \cdot \beta - g' \cdot \hat{\beta} + \frac{1}{2}[\beta' \cdot G \cdot \beta - 2\hat{\beta}' \cdot G \cdot \beta + \hat{\beta}' \cdot G \cdot \hat{\beta}]$

$+ \frac{\lambda}{q-1}\beta' \cdot I_r \cdot \beta$

$= \frac{1}{2}\beta' \cdot G \cdot \hat{\beta} - g' \cdot \hat{\beta} + [g' - \hat{\beta}' \cdot G] \cdot \beta$

$+ \beta' \cdot \frac{1}{2}\left[G + \frac{2\lambda}{q-1}I_r\right] \cdot \beta$.

Now the problem becomes

Find β to

Minimize $\frac{1}{2}\beta' \cdot \left[G + \frac{2\lambda}{q-1}I_r\right] \cdot \beta + [g' - \hat{\beta}' \cdot G] \cdot \beta$

Subject to:

$A_{eq} \cdot \beta = beq$

$A \cdot \beta \leq b$.

Derivation of g and G

By definition

$g' = \left(\frac{\partial M(\beta)}{\partial \beta_1}, \ldots, \frac{\partial M(\beta)}{\partial \beta_q}\right)$

$G = \left[\frac{\partial^2 M(\beta)}{\partial \beta_h \partial \beta_k}\right] \quad \text{a } q \times q \text{ symmetric matrix}$,

where these are evaluated at $\beta = \hat{\beta}$.

Let
\[m_i = -w_i \{ y_i \theta_i - \log[1 + \exp(\theta_i)] \} \]

so that I can write minus log likelihood as

\[M(\beta) = \sum_{i=1}^{n} m_i. \]

This means that

\[\frac{\partial M(\beta)}{\partial \beta_k} = \sum_{i=1}^{n} \frac{\partial m_i}{\partial \beta_k} \]

\[\frac{\partial^2 M(\beta)}{\partial \beta_k \partial \beta_l} = \sum_{i=1}^{n} \frac{\partial^2 m_i}{\partial \beta_k \partial \beta_l}. \]

The chain rule and elementary calculus yield

\[\frac{\partial m_i}{\partial \beta_k} = \frac{\partial m_i}{\partial \theta_i} \cdot \frac{\partial \theta_i}{\partial \beta_k} \]

\[= \left[- w_i \left\{ y_i - \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} \right\} \right] [x_{ik}] \]

\[= \left[- w_i \{ y_i - p_i \} \right] [x_{ik}] \]

\[= w_i (p_i - y_i) x_{ik} \]
Applying the chain rule again yields

\[
\frac{\partial^2 m_i}{\partial \beta_h \partial \beta_k} = \frac{\partial}{\partial \beta_k} \left[\frac{\partial m_i}{\partial \beta_h} \frac{\partial \theta_i}{\partial \theta} \right]
= \left[w_i \left(\frac{\exp(\theta_i)}{1 + \exp(\theta_i)} \right) \frac{1}{1 + \exp(\theta_i)} \right] \cdot [x_{ik}] \cdot [x_{jh}]
= w_i p_i (1 - p_i) x_{jh} x_{ik}.
\]

Hence

\[
\frac{\partial M(\beta)}{\partial \beta_k} = \sum_{i=1}^{n} w_i (p_i - y_i) x_{ik}
\frac{\partial^2 M(\beta)}{\partial \beta_h \partial \beta_k} = \sum_{i=1}^{n} w_i p_i (1 - p_i) x_{jh} x_{ik}.
\]

Matrix Computation of \(g, G, \) and \(M \)

To write the gradient and Hessian in matrix notation define

\[
p' = (p_1, \ldots, p_n)
\]

\[
y' = (y_1, \ldots, y_n)
\]

\[
w' = (w_1, \ldots, w_n)
\]

\[
Wp = n \times n \text{ diagonal matrix with } W_{pi} = w_i p_i (1 - p_i).
\]

In Section 1, I noted that

\[
\theta = X' \beta
\]

\[
p = \exp(\theta) / (1 + \exp(\theta)),
\]

where \(/ \) means element by element division.

Then

\[
g = X' \left[w \cdot (p - y) \right]
\]

\[
G = X' Wp \cdot X
\]

\[
M = w' \left[\log(1 + \exp(\theta)) - y \cdot \theta \right],
\]

where \(\cdot \) is matrix multiplication and \(\cdot \cdot \) is array element by element multiplication.
MATLAB Formulation

For the score engineered logistic regression quadratic program, the matrices in the general form of the MATLAB quadratic program (see Section 2.2 of Reference [1]) are

\[
H = G + \frac{2\gamma}{q - 1} I_r
\]

\[
f = g - G \ast \hat{\beta}
\]

\[
Aeq, beq, A, b
\]

\[
l = -\infty
\]

\[
u = +\infty.
\]

4. Application

To test the methodology, I will use the fraud test case used in References [1]. In this example, there are 25 prediction characteristics and 171 scorecard attributes. So the score engineered logistic regression model has 172 score coefficients, because there is an intercept term.

Iteration of the algorithm

The function, beta, given in Appendix 1 performs one iteration of the algorithm for computing the score engineered logistic regression solution. The current value of the logistic regression coefficients is called betain. The new value of the logistic regression coefficients is called betaout. The function is based on the theory developed above.

The initial iteration of the algorithm is the MATLAB code

```matlab
betaout=beta(Xr,yd,w,0,A,b,Aeq,beq,l,u,beta0);
```

I describe below how each of the input terms is computed.

Design matrix

From a design matrix point of view, logistic regression is the same as least squares regression, which was documented in Section 6 of Reference [1]. So I use the same design matrix as was used there. The computation of \(X_r \) is shown on p. 39 of Reference [1].
Performance variable

The performance variable is the same one that was used in several of the score developments in Reference [1]. The computation of y_d is shown on p.16 of Reference [1].

Observation weights

For comparison purposes, I will use the same observation weights used in Reference [1]; i.e., equal weights. So the MATLAB code is

$$w = \text{ones}(9907, 1);$$

Penalty parameter

For comparison purposes, I will use the same penalty parameter used for the development of S_1 in Section 2 of Reference [1]; i.e. $\lambda = 0$. So the MATLAB code is

$$\lambda = 0;$$

Constraint matrices for the quadratic program

For this application I will use the 59 equality constraints used for S_1 in Section 2.5 of Reference [1]. Hence, in MATLAB code

$$A_{eq} = \left[\text{zeros}(59, 1) \ A_c \right];$$

where A_c was defined in Section 2.5 of Reference [1]. The first column of A_{eq} reflects the existence of the additional intercept score coefficient.

In this example, there is no non-zero in-weighting, hence in MATLAB code

$$b_{eq} = \text{zeros}(59, 1);$$

For this application I will use the 106 pattern constraints used for S_1 in Section 2.5 of Reference [1]. Hence, in MATLAB code

$$A = \left[\text{zeros}(106, 1) \ A_p \right];$$

where A_p was defined in Section 2.5 of Reference [1]. The first column of A reflects the existence of the additional intercept score coefficient.

In this example, all of the inequality constraints are pattern constraints, hence in MATLAB code

$$b = \text{zeros}(106, 1);$$
And as usual (in all my papers on quadratic programming),
\[
l = -\infty \cdot \text{ones}(172, 1);
\]
\[
u = \infty \cdot \text{ones}(172, 1);
\]

Initial value of \(\beta \)

As an initial value of \(\beta \) I will use the scorecard, S1, in Reference [1] as the scorecard part of the logistic regression model. This is appropriated, because this scorecard is on a weight of evidence scale. For the initial intercept term, I will use log pop odds.

For the development sample there are 4940 Goods and 4967 Bads and \(w_i \equiv 1 \). So log pop odds is about equal to 0.

In MATLAB code the initial value of \(\beta \) is
\[
\text{beta0} = [0; S1];
\]

Running the algorithm manually

A manual run of the algorithm was done as follows
\[
\text{betaout} = \text{beta}(X_r, y_d, w, 0, A, b, Aeq, beq, l, u, \text{beta0});
\]
\[
\text{betaout2} = \text{beta}(X_r, y_d, w, 0, A, b, Aeq, beq, l, u, \text{betaout});
\]
\[
\text{betaout3} = \text{beta}(X_r, y_d, w, 0, A, b, Aeq, beq, l, u, \text{betaout2});
\]
\[
\text{betaout4} = \text{beta}(X_r, y_d, w, 0, A, b, Aeq, beq, l, u, \text{betaout3});
\]

Each time I measured how close I was to convergence by
\[
\max(\text{abs(betaout-betain)})
\]

Here is a table of the results

Iteration	betain	betaout	max(abs(betaout-betain))
1	beta0	betaout	.66
2	betaout	betaout2	.18
3	betaout2	betaout3	.013
4	betaout3	betaout4	.000057

Amazingly, it converged in four iterations.
Performance results

In this section I compare two engineered scores. The first engineered score is the score that maximizes divergence. The MATLAB computation of this score is

\[
\text{Score} = X_d \ast S_1;
\]

where \(X_d\) and \(S_1\) are defined in Section 2.5 of Reference [1]. This score is also given in Section 4.3 of Reference [5]. In fact, the matrices, \(X_d\) and \(S_1\) are in the MATLAB dataset, marginal, associated with Reference [5].

The second engineered score is the logistic regression score, which was designed to minimize the minus log likelihood function. It is defined by the MATLAB code

\[
\text{score4} = X_r \ast \beta_{\text{out}4};
\]

The table below shows how they fared

Engineered Score	Development Divergence	Development - Log Likelihood
Score (max divergence)	1.753	5070
score4 (logistic regression)	1.716	5046

The MATLAB code for computing the first column of this table is

\[
\text{Divergscore(Score, yd)}
\]
\[
\text{Divergscore(score4, yd)}
\]

The function, Divergscore, is documented in Appendix 2 of Reference [5].
The MATLAB code for computing the second column of this table is
\[
\text{MLRLL}(Xr, yde, w, beta0) \\
\text{MLRLL}(Xr, yd, w, betaout4)
\]
The function, \textit{MLRLL}, is documented in Appendix 1.

These results are consistent with what you would expect. The engineered score, Score, has higher divergence and the engineered score, score4, has less minus log likelihood. And both scores satisfy all the score engineering constraints.

We can also compare these scores on measures based on the ROC curve, even though the ROC curve was not used in their developments.

\begin{verbatim}
Engineered Score	Development	Development
	KS	ROC Area
Score (max divergence)	.4964	.8250
score4 (logistic regression)	.4973	.8257
\end{verbatim}

The MATLAB code for computing the first row of this table is
\[
[KS, ROCA] = \text{ROC}(\text{Score}, yd)
\]
The function, \textit{ROC}, is documented in Appendix 1. This function uses a new function, \textit{scorecdfs}, which is also documented in Appendix 1.

The MATLAB code for computing the second row of this table is
\[
[KS4, ROCA4] = \text{ROC}(\text{score4}, yd)
\]
Here we see that the logistic regression score has slightly better ROC curve properties on the development sample. This is a typical result.
The development ROC area result for my engineered logistic regression score is virtually the same as that obtained by Gerald Fahner using iterative re-weighted least squares, Reference [6]. The ROC area result for Gerald’s score is documented in Reference [7], where his score is called IRCLS (Iterative Re-weighted Constrained Least Squares).

These kinds of development sample results usually hold true for the validation sample for this kind of data and scorecard. However, I do not provide the validation sample results here, because that is not the purpose of this paper.

Logistic Regression Coefficients

The intercept coefficient is -.1026. The fact that this is not closer to the log pop odds of near zero, may reflect the constraints of score engineering.

The rest of the coefficients are shown in Appendix 2, column 6. For comparison, column 5 shows the score weights for the weight of evidence score, which maximizes divergence. As you can see, the coefficients are similar, but there are some differences. However, all of the score engineering constraints are satisfied for the logistic regression score weights.

Column 7 shows the score engineered logistic regression solution obtained by Gerald Fahner using the iterative re-weighted constrained least squares (IRCLS) approach to logistic regression, Reference [6]. As you can see, the solutions agree for the most part in the first two decimal places. Gerald’s intercept term was -.0920, which is close to my value of -.1026.
References

[1] Hoadley, Bruce, “A Quadratic Programming Approach to INFORM-NLP,” Fair, Isaac restricted Technical Paper, July 14, 2000.

[2] Hoadley, Bruce, “INFORM-NLP with Linear Equality Constraints,” Fair, Isaac restricted Technical Paper, August 16, 2000.

[3] Hoadley, Bruce, “Liquid Scorecards,” Fair, Isaac restricted Technical Paper, August 14, 2000.

[4] Agresti, Alan, “Categorical Data Analysis,” John Wiley & Sons, Inc., 1990.

[5] Hoadley, Bruce, “Step II Marginal Contribution using Quadratic Programming,” Fair, Isaac restricted Technical Paper, August 28, 2000.

[6] Fahner, Gerald, “Fitting Logistic Regression Models Using Iteratively Weighted Least Squares (IWLS),” Fair Isaac Technical Memorandum, August 8, 2000.

[7] Shikaloff, Nina, “Comparison of Algorithm Performance (using ROC Area) Across Several Models,” Fair Isaac Technical Notes, September 11, 2000.
Appendix 1. New MATLAB Functions

This appendix documents additional MATLAB functions that I wrote to do this analysis. This adds to the collection of functions documented in Appendix 2 of Reference [3] and Appendix 2 of Reference [5].

beta

function ...
betaout=beta(X,y,w,lambda,A,b,Aeq,beq,l,u,betain)

% This function computes one iteration of the
% logistic regression iterative quadratic
% programming algorithm.

% X = design matrix
% y = binary outcome vector
% w = observation weight vector
% lambda = penalty parameter
% A,b,Aeq,beq,l,u are the constraint
% matrices and vectors
% betain is the input value of the logistic
% regression coefficient vector
% betaout is the output value of the logistic
% regression coefficient vector
q=length(betain);
n=length(y);
one=ones(n,1);
Ir=eye(q);
Ir(1,1)=0;
theta=X*betain;
p=exp(theta)./(one+exp(theta));
g=X'*(w.*(p-y));
wp=w.*p.*(one-p);
Wp=spdiags(wp,0,n,n);
G=X'*Wp*X;
H=G+(2*lambda/(q-1))*Ir;
f=g-G*betain;
betalnout=quadprog(H,f,A,b,Aeq,beq,l,u,betain);

MLRLL

function M=MLRLL(X,y,w,beta)

% This function computes minus
% logistic regression log likelihood

% X = design matrix
% y = binary outcome vector
% w = observation weight vector
% beta = logistic regression coefficient vector

n=length(y);
theta=X*beta;
M=w'*(log(ones(n,1)+exp(theta))-y.*theta)
scorecdfs

function [FG,FB,orscore]=scorecdfs(score,y)

% This function computes the ordered score
% and the cdfs of the Goods and Bads

% length of score and y has to be equal
% score is a vector of scores
% y is a vector of binary performances, 1 is Good
% FG is the vector: cdf of the Goods
% FB is the vector: cdf of the Bads
% orscore is the ordered score vector

n=length(y);
A=[score y];
B=sortrows(A,1);
orscore=B(:,1);
CG=cumsum(B(:,2));
CB=cumsum(ones(n,1)-B(:,2));
FG=CG/CG(n);
FB=CB/CB(n);
ROC

\textbf{function} \ [KS,ROCA]=ROC(score,y)

\% This function computes the KS statistic
\% and the ROC area

\% length of score and y has to be equal
\% score is a vector of scores
\% y is a vector of binary performances, 1 is Good
\% KS is the Kolmogorov-Smirnoff statistic
\% ROCA is the ROC area

[FG,FB,orscore]=scorecdfs(score,y);
KS=max(FB-FG);
ROCA=trapz(FG,FB);
Appendix 2. Score Engineered Scorecards

Char	Attribute	Att #	Constraint	Maximum Divergence	QP Logistic Regression	IRCLS Logistic Regression
char170	-99999999	1	" = 0 "	0.000	-0.0000	0.0000
char170	0<5	2	> 3	0.306	0.3486	0.3465
char170	5<25	3	> 4	0.157	0.1596	0.1591
char170	25<35	4	> 5	-0.067	-0.0978	-0.0972
char170	35<300	5	> 6	-0.259	-0.2767	-0.2754
char170	300-High	6		-0.888	-0.8210	-0.8192
char170	NO	7	" = 0 "	0.000	0.0000	0.0000
char191	-99999999	8	" = 0 "	0.000	-0.0000	0.0000
char191	0<2	9	< 10	-1.150	-1.5565	-1.5322
char191	2<5	10	< 11	-1.088	-0.9659	-0.9639
char191	5<7	11	< 12	-0.630	-0.6835	-0.6803
char191	7<650	12	< 13	0.000	0.0037	0.0033
char191	650-High	13		0.096	0.1047	0.1041
char191	NO	14	" = 0 "	0.000	-0.0000	0.0000
char193	-99999999	15		0.396	0.4136	0.4120
char193	0	16	< 17	-1.485	-1.5459	-1.5397
char193	1	17	< 18	-1.317	-1.3312	-1.3275
char193	2	18	< 19	-1.262	-1.2254	-1.2214
char193	3<18	19	< 20	-0.086	-0.0898	-0.0895
char193	18-High	20		0.038	0.0383	0.0382
char193	NO	21	" = 0 "	0.000	-0.0000	0.0000
char211	-99999999	22		-0.096	-0.0400	-0.0403
char211	-9999998	23		0.545	0.4579	0.4570
char211	0	24	< 31	0.449	0.4003	0.3998
char211	1<7	25	< 30	-0.064	-0.0054	-0.0068
char211	7<35	26	< 27	-0.916	-0.8751	-0.8722
char211	35<80	27	< 28	-0.674	-0.6259	-0.6236
char211	80<200	28	< 29	-0.392	-0.3086	-0.3083
char211	200<400	29	< 30	-0.064	-0.0054	-0.0068
char211	400<800	30	< 31	-0.064	-0.0054	-0.0068
char211	800<1300	31	< 32	0.449	0.4003	0.3998
char211	1300<1700	32	< 33	0.449	0.4003	0.3998
char211	1700-High	33		0.449	0.4003	0.3998
char211	NO	34	" = 0 "	0.000	0	0.0000
char260	-99999999	35		-0.162	-0.1619	-0.1613
char260	0<101	36	> 37	0.463	0.4377	0.4367
char260	101<210	37	> 38	0.314	0.3229	0.3214
char260	210<305	38	> 39	0.312	0.3229	0.3214
char260	305<565	39	> 40	0.143	0.1998	0.1976
char260	565<700	40	> 41	-0.276	-0.3260	-0.3232
char260	700-High	41		-0.276	-0.3260	-0.3232
char260	NO	42	" = 0 "	0.000	0	0.0000
char320	-9999999<0	43	> 44	0.366	0.3619	0.3598
char320	0<590	44	> 45	0.105	0.1416	0.1396
char320	590<2055	45	> 46	0.105	0.1416	0.1396
char320	2055<8405	46	> 47	-0.088	-0.0318	-0.0334
char320	8405<16960	47	> 48	-0.120	-0.0756	-0.0761
char320	16960<20000	48	> 49	-0.120	-0.0756	-0.0761
char320	20000<30000	49	> 50	-0.213	-0.2563	-0.2543
char320	30000<40375	50	> 51	-0.361	-0.4934	-0.4880
char320	40375<70000	51	> 52	-0.361	-0.6377	-0.6277
char320	70000-High	52		-0.361	-0.6579	-0.6424

char320 NO INFORMATION 53 " = 0 " 0.000 0

char330	0	54	> 55	0.251	0.2592	0.2580
char330	1<250	55	> 56	-0.144	-0.1417	-0.1408
char330	250-High	56		-0.343	-0.3644	-0.3628
char330	57 " = 0 " 0.000 0					

char380	-9999999<0	58		0.000	-0.0000	0.0000
char380	0<635	59	> 60	0.106	0.1128	0.1124
char380	635<1210	60	> 61	-0.014	-0.0207	-0.0206
char380	1210<1915	61	> 62	-0.014	-0.0207	-0.0206
char380	1915<5000	62	> 63	-0.332	-0.3490	-0.3474
char380	5000-High	63		-0.775	-0.8131	-0.8108
char380	64 " = 0 " 0.000 0					

char471	-9999999	65		0.000	0.0000	0.0000
char471	0	66	< 67	-0.429	-0.4315	-0.4297
char471	1<101	67		0.016	0.0160	0.0159
char471	2 " = 0 " 0.000 0					

| char503 | 0 | 69 | | 0.010 | 0.0114 | 0.0114 |
| char503 | 1-High | 70 | < 69 | -1.482 | -1.7091 | -1.7003 |
| char503 | 71 " = 0 & < 69 " 0.000 0

char533	-9999999<1	72		0.156	0.1661	0.1653
char533	1	73	> 74	-0.359	-0.3725	-0.3709
char533	2	74	> 75	-0.849	-0.8236	-0.8212
char533	3	75	> 76	-0.909	-1.0465	-1.0400
char533	4	76	> 77	-0.909	-1.0465	-1.0400
char533	5-High	77		-0.909	-1.0465	-1.0400
char533	78 " = 0 " 0.000 0					

char635	0	79		0.004	-0.0007	-0.0007
char635	1<3	80	> 81	0.050	0.0571	0.0571
char635	3	81	> 82	0.050	0.0571	0.0571
char635	4	82	> 83	-0.153	-0.0930	-0.0943
char635	5	83	> 84	-0.400	-0.3862	-0.3851
char635	6-High	84		-0.619	-0.5508	-0.5494
char635	85 " = 0 " 0.000 0					

char665	0	86	> 87	0.106	0.1130	0.1125
char665	1	87	>88	-0.529	-0.5524	-0.5501
char665	2-High	88		-0.572	-0.6373	-0.6341
char665	89 " = 0 " 0.000 0					
char710	-9999999	90	" = 0 "	0.000	0.0000	0.0000
-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
char710	-9999998	91	" = 0 "	0.000	0.0000	0.0000
char710	0	92	> 93	0.066	0.0744	0.0741
char710	1-<360	93	> 94	0.066	0.0744	0.0741
char710	360-<675	94	> 95	0.043	0.0327	0.0327
char710	675-<2435	95	> 96	-0.343	-0.3813	-0.3795
char710	2435-High	96		-0.343	-0.3813	-0.3795
char710	NO INFORMATION	97	" = 0 "	0.000	0.0000	0.0000
char830	0	98	> 99	0.010	0.0114	0.0114
char830	1	99	> 100	0.009	0.0114	0.0114
char830	2-High	100		-0.353	-0.4092	-0.4071
char830	NO INFORMATION	101	" = 0 "	0.000	0.0000	0.0000
char835	0	102	. 103	0.056	0.0636	0.0633
char835	1	103	>104	-0.339	-0.3758	-0.3741
char835	2	104	>105	-0.420	-0.4760	-0.4737
char835	3	105	>106	-0.566	-0.6313	-0.6267
char835	4-High	106		-0.911	-1.2386	-1.2254
char835	NO INFORMATION	107	" = 0 "	0.000	0.0000	0.0000
char840	0	108	>109	0.235	0.2539	0.2508
char840	1	109	>110	-0.313	-0.2032	-0.2085
char840	2	110	>111	-1.062	-1.1682	-1.1643
char840	3-High	111		-1.497	-2.3472	-2.2563
char840	NO INFORMATION	112	" = 0 "	0.000	0.0000	0.0000
char843	1	113		0.737	0.8190	0.8108
char843	2	114		-0.188	-0.2589	-0.2551
char843	3	115		0.001	0.0010	0.0009
char843	4	116		-0.013	0.0079	0.0073
char843	NO INFORMATION	117	" = 0 "	0.000	0.0000	0.0000
char860	0	118	>119	0.010	0.0114	0.0114
char860	1-High	119		-0.528	-0.6086	-0.6055
char860	NO INFORMATION	120	" = 0 "	0.000	0.0000	0.0000
char870	0	121	>122	0.010	0.0114	0.0114
char870	1	122	>123	-0.289	-0.3336	-0.3319
char870	2-High	123		-0.289	-0.3336	-0.3319
char870	NO INFORMATION	124	" = 0 "	0.000	0.0000	0.0000
char950	-9999998-	125	> 126	0.659	0.6632	0.6613
---------	-----------	-----	-------	-------	-------	-------
char950	3300-<4901	126	> 127	0.324	0.2570	0.2575
char950	Travel	127	> 128	0.324	0.2570	0.2575
char950	5511-High	128	> 129	0.324	0.2570	0.2575
char950	MOTO	129	> 130	-0.007	-0.0542	-0.0533
char950	5697-<7995	130	> 131	-0.079	-0.0904	-0.0907
char950	3723-<5945	131	> 132	-0.079	-0.0904	-0.0907
char950	5611-<8000	132	> 133	-0.079	-0.0904	-0.0907
char950	4814-<4830	133	> 134	-0.079	-0.0904	-0.0907
char950	5013-<8100	134	> 135	-0.157	-0.0904	-0.0907
char950	Gas	135	> 136	-0.157	-0.0904	-0.0907
char950	5655-<5949	136	> 137	-0.193	-0.2126	-0.2118
char950	5300-<5942	137	> 138	-0.193	-0.2126	-0.2118
char950	5815-<5963	138	> 139	-0.490	-0.2786	-0.2811
char950	5423-<5655	139	> 140	-0.734	-0.7045	-0.7014
char950	NO	140	" = 0 "	0.000	0	0.0000
char960	Below -1700	141	< 142	-0.398	-0.4029	-0.4008
char960	-1700-<800	142	< 143	0.073	0.0736	0.0732
char960	-800-<450	143	< 144	0.073	0.0736	0.0732
char960	" -450-<High "	144	0.073	0.0736	0.0732	
char960	NO	145	" = 0 "	0.000	0	0.0000
char961	-9999999	146	< 148	-0.385	-0.4394	-0.4373
char961	-3000-<1700	147	< 148	-0.404	0.0121	0.0108
char961	-1700-<800	148	< 149	0.148	0.1262	0.1260
char961	-800-<550	149	< 150	0.186	0.1883	0.1880
char961	550-High	150	0	0	0	0.0000
char961	NO	151	" = 0 "	0.000	0	0.0000
char962	Below -1500	152	< 153	-0.085	-0.0756	-0.0758
char962	-1500-<1100	153	< 154	-0.085	-0.0756	-0.0758
char962	-1100-<850	154	< 155	-0.073	-0.0756	-0.0758
char962	-850-<550	155	< 156	-0.073	-0.0756	-0.0758
char962	-550-<400	156	< 157	0.019	0.0170	0.0173
char962	-400-<300	157	< 158	0.019	0.0170	0.0173
char962	-300-<1	158	< 159	0.019	0.0170	0.0173
char962	1=<200	159	< 160	0.104	0.0967	0.0969
char962	200-High	160	0.174	0.1740	0.1739	
char962	NO	161	" = 0 "	0.000	0	0.0000
char965	Below -950	162	< 163	-0.328	-0.2923	-0.2912
char965	-950-<750	163	< 164	-0.328	-0.2923	-0.2912
char965	-750-<550	164	< 165	-0.321	-0.2923	-0.2912
char965	-550-<400	165	< 166	-0.321	-0.2923	-0.2912
char965	-400-<300	166	< 167	-0.044	-0.0313	-0.0315
char965	-300-<200	167	< 168	0.186	0.1809	0.1797
char965	-200-<100	168	< 169	0.201	0.1809	0.1797
char965	-100-<80	169	< 170	0.366	0.3245	0.3236
char965	80-High	170	0.366	0.3245	0.3236	
char965	NO	171	" = 0 "	0.000	0	0.0000