Apoptotic-like programed cell death in fungi: the benefits in filamentous species

Neta Shelezingier1, Nir Goldfinger1 and Amir Sharon*

Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel

OVERVIEW

Organisms in the fungal kingdom can be separated into two distinct morphotypes: unicellular (yeasts) and multicellular (filamentous), with some species having a dimorphic appearance. Although this separation does not have a phylogenetic basis, the different in morphology also extends to the molecular level. Yeasts are the better studied group due to their long association with human civilization and ease of use; the combination of eukaryotic single cell type, genetic tractability, and the ability to easily quantify cell populations, make yeasts excellent research systems. In particular, the baker's yeast Saccharomyces cerevisiae has been used as a system to evaluate and study apoptosis.

We will compare the current status of knowledge on PCD in S. cerevisiae and filamentous species, and highlight the advantages of using S. cerevisiae along with filamentous species in the study of PCD.

PCD IN S. CEREVISIAE

In metazoa there are two major apoptotic pathways: the extrinsic pathway, composed of a so called death receptors and ligands of the TNF family, and the intrinsic pathway culminating in mitochondrial outer membrane permeability. In mammals the extrinsic pathway is mediated by the death-inducing signaling complex (DISC), which contains a death receptor trimer, FADD adaptor proteins and caspases 8 and 10. The intrinsic pathway is initiated by the release of cytochrome c from the mitochondria following apoptotic stimuli, which along with Apaf-1 and procaspase 9 form a heptameric complex known as the apoptosome (Mace and Reed, 2010). Pro- and anti-apoptotic members of the Bcl-2 family of proteins, which function upstream of or at the mitochondria membrane, are central regulators of PCD in animals (Chipuk et al., 2010).

Programmed cell death is induced in yeast by a variety of triggers and is accompanied by most if not all the typical characteristics of animal apoptosis (Xu and Reed, 1998; Rockenfeller and Madeo, 1998).

Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae.

Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.

Keywords: apoptosis, botrytis, fungi, PCD, Saccharomyces

www.frontiernlin.org

*Correspondence: Amir Sharon, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel. e-mail: amirsh@ex.tau.ac.il

1Neta Shelezingier and Nir Goldfinger have contributed equally to this work.
Filamentous fungi combine the genetic simplicity and short life cycle of yeast with the morphological complexity of multicellular organism. They typically form a network of interconnected hyphae, which are defined as "colonies" that grow by hyphal tip extension, branching, and fusion. In higher fungi (Ascomycota and Basidiomycota, subkingdom Dikarya), the septa along the hyphae are incomplete, leaving a pore through which cytoplasm and organelles can move (Glass and Fleschner, 2008). PCD has been observed in higher fungi during sexual and asexual development, for example during gills formation in mushrooms or formation of sclerotia in some Ascomycetes (Georgiou et al., 2006). This type of coordinated cell death echoes developmental PCD in higher eukaryotes. In addition, and similar to the situation in yeasts, PCD in filamentous fungi is also associated with stress adaptation, spore formation, antagonistic interactions, and aging (Sharon et al., 2009). However, some aspects of fungal PCD are significantly different between single cell and filamentous species. These differences might stem from the different lifestyles of single cell and multicellular organisms. In addition to differences due to unicellular and multicellular organization, there are processes related to PCD that either cannot be analyzed in S. cerevisiae, e.g., pathogenicity, or are significantly different in multicellular species. The use of filamentous species in these cases is of special importance.

PCD AND AGING

Aging is a process of progressive decline in the ability to withstand stress, damage, and disease. Aging processes have been extensively studied in various model organisms including S. cerevisiae. In addition, the filamentous fungus *Podospora anserina* has been used as a model to study aging in multicellular eukaryote (Ossweicz, 2002, 2011). In fact, study of aging in *P. anserina* started already in the 1950s, and the connection of mitochondria and aging was demonstrated for the first time in this fungus (Rizet, 1953). In *P. anserina*, senescence is characterized by an age-related decrease in mycelium growth rate, reduction in formation of aerial hyphae, increased pigmentation, and eventual death of peripheral hyphae (Albert and Sellem, 2002; Scheckhuber and Ossweicz, 2008). At the microscopic level, the peripheral hyphae show abnormal branching and swelling. In wild-type isolates of *P. anserina*, aging is correlated with accumulation of mutated mtDNA leading to mitochondrial genome instability (Stahl et al., 1978; Kuck et al., 1985; Ossweicz and Borghouts, 2000; Albert and Sellem, 2002). The instability of the mitochondrial genome correlates with appearance and accumulation of a 2.5-kb DNA fragments that correspond to an integral part of the 95-kb mtDNA and to the first intron (pl-intron) of the PetCOX1 gene, the first subunit of cytochrome oxidase (Cox) in the respiratory chain. Strains selected for increased lifespan were found to be deficient in Cox activity due to deletion of the first exon of the PetCOX1 gene. Deletion of PetCOX5 (encoding subunit V of Cox) led to severe decrease in growth rate, along with decreased ROS production, drastic reduction in the rearrangement of mtDNA, and a 30-fold increased lifespan of the fungus (Dufour et al., 2009). Mutants with deletions in genes encoding other Cox subunits had a similar phenotype (Lorin et al., 2011). In these mutants, respiration was carried out via alternative oxidase (Aox)-dependent pathways, an enzyme of the inner mitochondrial membrane. Genetic manipulation that restored ROS production to wild-type levels also reversed

References:

Carmona-Gutierrez et al., 2010.

Sharon et al., 2009.

Dufour et al., 2000.

Dufour et al., 2009.

Georgiou et al., 2006.

Teng et al., 2011.

Scheckhuber et al., 2007.

Ossweicz, 2002, 2011.

Rizet, 1953.
At least one, but usually two or three caspase-related genes are forced increased lifespan and reduced sensitivity to the apoptosis-inducing compound etoposide, further demonstrating the central role of mitochondrion-mediated PCD in aging (Scheckhuber et al., 2007). Collectively, these results indicate that increased ROS levels during aging trigger mitochondria-dependent PCD in senescent cultures of *P. anserina*. Deletion of putative AIFs also leads to lifespan extension, providing evidence that aging in *P. anserina* is programmed and tightly connected with PCD (Hamann et al., 2007; Brust et al., 2010).

Similar to all other systems, the final stages of PCD in fungi are carried out by cytosine proteases exhibiting caspase activity. At least one, but usually two or three caspase-related genes are found in fungi. While the enzymes encoded by these genes recognize the typical substrates of caspases, the encoded proteins show limited homology to animal caspases. Furthermore, they lack a cas domain, the most significant signature of caspases. It has been proposed that these proteins represent an ancient form of caspases and therefore they were termed metacaspases (Savoldi et al., 2008; Tiatassani et al., 2011). A caspase-independent pathway also exists in fungi, which (similar to situation in human) involves homologs of AIF and AIF-homologous mitochondria-associated inducers of death (AMID; Modjašedi et al., 2006).

Functional analyses of the metacaspase-dependent and -independent pathways were conducted by deletion of either the metacaspases or AIF members in *P. anserina*. Deletion of either of the two putative metacaspases, *PaMCA1* and *PaMCA2*, in *P. anserina* reduced sensitivity to PCD-promoting conditions and had a lifespan extending effect on the fungus (Hamann et al., 2007). The AIF family in *P. anserina* includes at least five members that are divided to cytosolic and mitochondria species. Deletion of the mitochondria-residing members, either *PaAIF2* or *PaAMID2*, caused reduced sensitivity to oxidative conditions and extended lifespan of the fungus. In contrast, deletion of the cytosolic isoforms of AIF, *PaAIF1* and *PaAMID1*, had no effect on lifespan and on sensitivity of the fungus to oxidative stress (Brust et al., 2010).

Together, *S. cerevisiae* and *P. anserina* form an excellent system for unraveling the role of mitochondria in aging. Both species are capable of adjusting their metabolism in case of mitochondria dysfunction, but *S. cerevisiae* does not have the Aox pathway, which is used by *P. anserina* to compensate for Cox deficiency. *S. cerevisiae* also lacks complex I of the mitochondria respiratory chain and therefore this complex can only be studied in *P. anserina* (Osiewacz and Scheckhuber, 2006). Likewise, *S. cerevisiae* can grow under anaerobic conditions, and hence is useful in studying processes that might be lethal in strict aerobes such as *P. anserina*.

PCD and Fungal Pathogenesis

During pathogenic interaction the host and the pathogen are exposed to PCD-inducing conditions and compounds (Sharon and Finkelshtein, 2009). Interestingly, all plant pathogenic fungi are filamentous in nature. While not as strict, most human fungal pathogens also are either filamentous or dimorphic. Furthermore, dimorphic pathogenic species, such as the human pathogen *Candida albicans* or the maize pathogen *Ustilago maydis*, switch from a yeast to a filamentous state during transition from a latent to a pathogenic state (Garber and Day, 1985; Lo et al., 1997). Hence, filamentous fungi can be used to study the role of pathogen PCD in plant and animal diseases.

In plants, the manipulation of the host apoptotic response, either enhancement (by necrotrophic pathogens) or suppression (by biotrophic pathogens) of PCD, is a common strategy used by fungi to weaken the host (Sharon and Finkelshtein, 2009). This phenomenon was demonstrated in transgenic plants expressing anti-apoptotic genes, which suppressed PCD and enhanced or reduced plants’ susceptibility to either biotrophic or necrotrophic pathogens, respectively (Dickman et al., 2001; Huckelhoven et al., 2001, 2003; del Pozo and Lam, 2003; Eichmann et al., 2004). A number of studies demonstrated limited necrosis and restricted spreading of the model necrotrophic pathogen *Botrytis cinerea* in plants that over-express anti-apoptotic genes or in hypersensitive response (HR)-deficient mutant plants that do not produce ROS, whereas accelerated cell death mutant plants are more susceptible to this pathogen (Govrin and Levine, 2000; Imani et al., 2006; Van Baarlen et al., 2007). Dihydrosphingosine-induced cell death was shown to mediate phytotoxicity of AAL toxin. This toxin is produced by the necrotrophic pathogen *Alternaria alternata* and belongs to a class of host-selective fungal mycotoxins that are structurally related to sphinganine, a precursor in plant sphingolipid biosynthesis. AAL toxin kills the cells of sensitive host plants by inducing PCD (Brandwagt et al., 2000). Administration of AAL toxin to sensitive tissues blocks sphingolipid biosynthesis and leads to accumulation of dihydrosphingosine. AAL-insensitive plants contain the ASC-1 resistance gene, a homolog of the yeast longevity assurance gene (LACI). Asc1p modifies sphingolipid metabolism in AAL-treated cells, thereby preventing accumulation of dihydrosphingosine and induction of apoptosis (Brandwagt et al., 2000; Spassieva et al., 2002).

Several studies documented fungal cell death during infection and showed that it was essential for completion of pathogenic life cycle (Howard et al., 1991; Thines et al., 2000; Veneault-Fourrey et al., 2006). In contrast, Barbrook and Sharon (2007) reported on hyper virulence of a cell death–protected *Colletotrichum gloeosporioides* strain, over-expressing human Bcl-2. These studies hint to a link between fungal PCD and disease. Early studies showed that some plant compounds, for example the tobacco pathogenesis related protein osmotin, can induce PCD in *S. cerevisiae* (Narasimhan et al., 2001). Additional antifungal peptides from other organisms were found, which can induce PCD in different fungi (Ramsdale, 2008), however the relevance of these results to pathogenesis remains unclear. More recent studies provided new and direct evidences that plant defense compounds induce PCD in fungi during plant colonization. The saponin α-tomatine, a sesquiterpene glycoside produced by tomato, has antifungal activity. Initially, α-tomatine was considered to promote fungal death by disruption of membrane integrity (Friedman, 2002). A more recent study showed that α-tomatine induces PCD in the plant pathogen *Fusarium oxysporum*. Moreover, PCD was found necessary for antifungal activity of the compound (Ito et al., 2007). Treatment with either ROS scavengers (ascorbic acid and dimethylthiourea) or a caspase inhibitor (Z-VAD-FMK) reduced fungal cell death in a dose-dependent manner, suggesting that α-tomatine-induced cell death in *F. oxysporum* is ROS...
and caspase-dependent. In addition, the fungicidal action of α-
aminocine was suppressed by the mitochondrial electron transport inhibitor oligomycin, suggesting a role for mitochondria in the process.

A more recent example demonstrated the role of PCD in pathogenicity of B. cinerea. Camalexin, the major phytoalexin produced in Arabidopsis, belongs to a group of secondary metabolites with anti-microbial activity that are produced in plants upon microbial attack (collectively called phytoalexins) and form a line of defense against potential pathogens (Kliebenstein et al., 2005; Lazniewska et al., 2010). Similar to other phytoalexins, camalexin has growth inhibiting activity against a wide range of microorganisms (Ferrari et al., 2003; Kliebenstein et al., 2005; Rowe et al., 2010). Micromolar concentrations of camalexin were found to induce PCD in B. cinerea, but at higher concentrations of camalexin the apoptotic markers were reduced, indicating that at these concentrations necrotic cell death was induced (Finkelshtein et al., 2011; Shlezinger et al., 2011b).

Similar results were also observed following treatment of B. cinerea with hexanoic acid, another plant defense compound (Finkelestein et al., 2011). These results suggest that when exposed to plant defense molecules during the early phase of infection, B. cinerea might be subjected to host-induced PCD. In this event, fungal anti-apoptotic machinery might be necessary for survival and pathogenicity. In order to investigate this possibility, Shlezinger et al. (2011b) tested the role of B. cinerea anti-apoptotic BcBIR1 protein in disease. This study revealed that following germination and formation of first contact with the plant, the fungus undergoes massive PCD (between 30 and 48 h post-inoculation (PI)), and then fully recovers at 72 h PI, when spreading lesions start to develop. PCD-modified strains were produced by manipulation of the BcBIR1 gene; overexpression strains were less sensitive, and knockdown strains were hypersensitive to apoptosis induction, respectively. Plant infection assays showed enhanced and reduced virulence of the BcBIR1 gene overexpression strains to wild-type strain respectively. Importantly, the levels of PCD in BcBIR1 over-expression strains was markedly reduced between 30 and 48 h PI compared to almost complete elimination of the wild-type cells at this time point. In contrast, in the knockdown strain there was early and intense PCD and it remained high also at 72 h PI, when the wild-type cells showed complete recovery. On Arabidopsis thaliana mutant plants that are impaired in defense responses and are hypersensitive to B. cinerea, PCD levels were reduced in all strains, confirming that the amount of fungal PCD is negatively correlated with plant susceptibility to the fungus. Specifically, the phytoalexin-deficient pad3 mutant, which does not produce camalexin, was highly susceptible to B. cinerea, and disease was produced on this line also following infection with the BcBIR1 knockdown strain. As pointed out, camalexin induced PCD in B. cinerea wild-type strain in vitro. In accordance with the PCD-promoting effect of camalexin, the BcBIR1 overexpression and knockdown strains showed reduced or enhanced sensitivity to camalexin, respectively, along with reduced PCD on the pad3 plants.

PCD IN CELL-CELL INTERACTIONS: HETEROKARYON INCOMPATIBILITY

In filamentous fungi, vegetative hyphae commonly fuse. These hyphae of different strains as part of parasexual reproduction (Saupe et al., 2000; Glass and Kaneko, 2003; Glass and Dementhon, 2006). The fusion between hyphae from different strains leads to formation of a heterokaryon, a situation in which cells contain nuclei of different genetic background. Specific heterokaryon-incompatibility (HI) loci determine fusion compatibility between hyphae from different strains (Leslie and Zeller, 1996; Glass et al., 2000). When hyphae that are not vegetative compatible fuse, a rapid, localized cell death is activated that specifically kills the fusion cell and prevents heterokaryon formation (Glass and Kaneko, 2003).

In many ways, HI resembles the HR in plants, during which localized PCD prevents pathogen spreading (Lam et al., 2011). Both HI and HR are accompanied by classical apoptotic markers and have been widely studied (Lazniewska et al., 1998; Jacobson et al., 1998; Glass et al., 2000; Saupe et al., 2000; Marek et al., 2003; Glass and Dementhon, 2006; Poussetti and Claus, 2007; Williams and Dickman, 2008). During HI, the fusion hyphae undergo a series of apoptosis-associated morphological changes, including cytoplasm condensation, vacuolization, and shrinkage of the plasma membrane (Glass and Kaneko, 2003; Marek et al., 2003; Glass and Dementhon, 2006). Nuclear fragmentation and positive TUNEL staining have also been documented. Data from whole genome microarrays of Neurospora crassa showed that ROS, phosphatidylinositol and calcium signaling, are all involved in HI and PCD. However, homologs of apoptotic genes, such as caspases (metacaspases) and AIF were not required for HI in N. crassa (Hutchison et al., 2009).

Severin and Hyman (2002) showed that in the absence of an appropriate mating partner, exposure of yeast cells to pheromones of the opposite mating type leads to ROS accumulation, DNA degradation, and cell death. It should be noted however that pheromone-induced cell death was observed at pheromone concentrations that were 10-fold higher than physiological concentrations; no cell death was induced by physiological concentrations of the mating pheromone. Unlike the case of yeast pheromones, PCD is a general phenomenon of HI and occurs naturally. The widespread occurrence and high number of HI loci in filamentous fungi argues for their importance. Therefore, HI represents an important process in which PCD plays major role. This system can be used in functional and mechanistic studies of heterologous apoptotic proteins and has several advantages over other systems, including budding yeasts. Mainly, the induction of PCD during HI is very rapid and it does not require application of exogenous substances (Garnjobst and Wilson, 1956; Biella et al., 2002; Glass and Kaneko, 2003; Shena et al., 2007). Thus, apoptosis can be studied under natural conditions in a short time period, in contrast to PCD induced by aging or starvation.

ANTIFUNGAL DRUGS AND PCD

Recognition in the importance of PCD in fungi has led to re-evaluation of the mode of action of leading antifungal drugs. Surprisingly, it was found that a range of well-known antifungal compounds induce PCD in fungi. For many years amphotericin B (Amb) has been the most common drug used to treat fungal infections (Bratburg et al., 1990). Similar to other polyene antibiotics, Amb has high affinity to sterols, particularly ergosterol.
AmB induces PCD in fungi, including the human pathogens *C. albicans* and *A. fumigatus* (Phillips et al., 2003; Moussavi and Robinson, 2004). Notably, at concentrations of 1 mg/ml AmB or higher, cell death shifted from apoptotic to necrotic, as determined by increased and decreased propidium iodine- and TUNEL-positive cells, respectively. Similar to HI PCD, appearance of apoptotic markers could not be blocked or reduced by caspase inhibitors, nor were any changes recorded in caspase activity, suggesting a caspase-independent process. Additional antifungal drugs of different chemical groups have been reported to induce PCD in fungi, suggesting that induced PCD might be a common mode of action for many antifungal compounds (Ramsdale, 2008). The induction of apoptosis by AmB might be mediated by sphingolipids that are released from the plasma membrane. Sphingolipid metabolism is associated with a wide range of cellular activities, including stress response, apoptosis, inflammation, cell-cycle regulation, and cancer development (Dickson, 1998; Kolesnick and Kroon, 1996; Hannun and Luberto, 2000; Hannun et al., 2001). Two major sphingoid bases of fungi – dihydrosphingosine and phospha sphingosine, induced ROS accumulation and cell death with typical markers of apoptosis in *Aspergillus nidulans* (Cheng et al., 2003).

Greater understanding of PCD in pathogenic fungi may offer a chance of exploiting the fungal death machinery to control fungal infections. Clearly identifiable differences between the death machineries of pathogens and their hosts make this a feasible task.

THE FUNGAL PCD MACHINERY

As pointed out earlier, the complete extrinsic apoptosis pathway and major signaling components upstream of the mitochondria (intrinsinc) pathway are not found in fungal genomes. This raises the question if there are functional homology of these proteins, which do not share sequence similarity. A number of studies showed that expression of Bcl-2 protein members triggers (e.g., Bax) or prevents (e.g., Bcl-2) PCD in fungi (Longo et al., 1997; Fröhlich and Madeo, 2000; Polcic and Forte, 2003; Barhoom and Bax) or prevents (e.g., Bcl-2) PCD in fungi (Longo et al., 1997; Fröhlich and Madeo, 2000; Polcic and Forte, 2003; Barhoom and Bax). A number of studies have shown that expression of Bcl-2 protein members triggers (e.g., Bax) or prevents (e.g., Bcl-2) PCD in fungi (Longo et al., 1997; Fröhlich and Madeo, 2000; Polcic and Forte, 2003; Barhoom and Bax). The availability of a large number of fungal genomes provides new opportunities to search for additional PCD-associated fungal genes. In many cases, homology with the entire animal ortholog is rather low or restricted to a specific domain and hence simple BLAST searches might not be sensitive enough to recognize the homology. In order to obtain a deeper coverage of the putative fungal PCD orthologs, a computer-guided approach was developed, which enables automatic searches of all available fungal genomes for presence of homologs of apoptotic proteins or domains (Shlezinger et al., 2011a). Using this approach, it is possible to identify all the fungal genes that are putative homologs of known apoptotic genes or that contain a putative apoptotic domain. Searches conducted with this program...
revealed that except for BIR, all other conserved apoptotic domains were absent from fungal genomes, including Bcl-2 homology (BH) domains (BH1–4), caspase recruitment domain (CARD), cellular apoptosis-susceptibility (CAS) protein, death domain (DD), death effector domain (DED), CIDE [cell death-inducing DNA fragmentation factor 45 kDa (CIDEA)-like effector], or death receptors. Likewise, homologs of many central apoptotic regulators, such as P53, Flip, Smac/Dubulatory, Apaf1, and even caspases are not readily found in fungi. It should be noted that putative homologs for some of these have been reported in filamentous species, including P53 (Katz et al., 2006) and PARP (Fuchs and Steller, 2011). However in most instances homology centers around parts of the proteins that are associated with general functions, such as protein interaction, while the domain known to mediate apoptosis is usually absent. A unique exception is the S. cerevisiae Bax1, a homolog of the human life guard 4 protein. Similar to all members of the life guard family of proteins, Bax1 contains a Bax inhibitor 1 (B-I-1)-like domain, and therefore was assumed to represent a yeast homolog of BI-1 (Chae et al., 2003; Cebulski et al., 2011). However, recent work has shown that this protein contains a BH3-like signature at the carboxy part of the protein. Remarkably, functional analyses confirmed a pro-apoptotic activity in these residues (Buttner et al., 2011). Search of fungal genomes using the domain-centered approach revealed a single homolog of life guard 4/Bax1 in all fungi. However, in filamentous species members of the subkingdom Dikarya (Ascomycetes and Basidiomycetes), a true homolog of plant and human BI-1 was also found (Goldfinger and Sharon, unpublished). These new findings indicate that additional “missing” fungal homologs of animal apoptotic proteins and domains might be found using more robust bioinformatic approaches.

SUMMARY

The realization in the early 1990s that yeast cells contain a suicide mechanism led to intense research of PCD in S. cerevisiae. The PCD response was characterized in great detail, S. cerevisiae homologs of mammalian apoptotic genes were identified, and the relevant proteins analyzed. Based on these studies it is now generally accepted that yeast cells contain a PCD machinery, which resembles the animal apoptosis machinery. Studies of PCD in additional fungal lagged behind the work in budding yeasts, and a more intense research was initiated only in the past decade. As expected, the machinery is similar to the one found in S. cerevisiae, however some differences were also revealed. Most significantly, it was realized that PCD is important for fungal pathogenicity and multicellular-level development. Furthermore, filamentous species contain more PCD-related genes, including a few homologs of animal apoptosis proteins, which are absent in yeasts, and some that are fungal specific, such as the HI proteins encoding genes. The expansion of the research to additional species also led to better mapping of apoptosis networks in fungi. Using robust bioinformatics, it was possible to not only identify more components of the PCD apparatus in fungi, but also to exclusively show what parts of the animal machinery are conserved or significantly altered. From such analyses it is now clear that the entire death receptors-mediated extrinsic pathway is missing in the fungal kingdom. Further, the main regulators of the intrinsic pathway that are responsible to initiate mitochondria-related apoptosis also seem to be largely absent in fungi. These discoveries put fungal PCD in a new light; while the pioneering studies in S. cerevisiae uncovered the presence of PCD machinery that is highly similar to animal apoptosis, the expansion of the research to additional fungal species shows that the molecular machinery bears significant differences compared with the animal apoptotic machinery. These differences probably also reflect differences in the execution and role of PCD in fungi compared to animals. We expect that research of fungal PCD will intensify and extend to an even wider range of species, leading to a deeper understanding of the regulation of this process and the physiological roles it has in fungal life cycles.

ACKNOWLEDGMENT

The work was supported by the Israel Science Foundation grant number 206/09.
to pathogens. Curr. Biol. 8, 1129–1132.

del Tran, G., and Lam, E. (2003). Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises in gene-mediated disease resistance response to tomato mosaic virus. Mol. Plant Microbe Interact. 16, 40–46.

Dickman, M. R., Park, Y. K., Obersdorf, T., Li, W., Clément, T., and French, R. (2001). Abrogation of disease development in plants expressing antipathogenic genes. Proc. Natl. Acad. Sci. U.S.A. 98, 6073–6078.

Dickson, R. C. (1998). Sphegoid lipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu. Rev. Biochem. 67, 27–48.

Dufour, E., Boulay, J., Rincheval, V., W., (2005). Comparative analysis of the diet.

Fedorova, N., Badger, J., Robson, Dickman, M. B., Park, Y. K., Oltersdorf, T., and Kieft, J. H., (2001). Apoptosis in filamentous fungi.

Fuchs, Y., and Steller, H. (2011). Programmed cell death in animal development and disease. Cell 147, 742–778.

Garbe, E. D., and Day, A. W. (1995). Genetic mapping of a phytopathogenic baculovirus, Caligo volans Bel Gal 146, 480–499.

Garbarg, B., and Wilson, J. E. (1996). Heterocaryosis and pro- topilistic incompatibility in Neurospora crassa. Proc. Natl. Acad. Sci. U.S.A. 93, 615–619.

García, C., Díez, N., and Azkunaga, G. (2006). Selective metamorphosis in filamentous fungi is induced by oxidative stress. Curr. Opin. Microbiol. 9, 315–318.

Glass, N. L., and Fink, G. (2008). The p35 BAX suppressor homologue BAX inhibitor-1 compromises non-transposon suppression of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol. Plant Microbe Interact. 17, 484–490.

Federova, N., Badger, J., Robson, Dickman, M. B., Park, Y. K., Oltersdorf, T., and Kieft, J. H., (2001). Apoptosis in filamentous fungi.

Glass, N. L., and Donahou, A. (2006). Non-self recognition and programmed cell death in filamentous fungi. Curr. Opin. Microbiol. 9, 553–558.

Glass, N. L., and Finestone, A. (2006). “Re-wiring the network: under-studied mechanisms and function of anamorphous in filamentous ascomycete fungi.” in Growth, Differentiation and Sexuality, ed S. Kais and R. Fischer (Berlin: Springer), 135–150.

Glass, N. L., and Kaneko, I. (2005). Apoptosis: parallel recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot. Cell 2, 1–4.

Görr, E., and Levine, A. (2004). Programmed cell death facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Science 305, 75–79.

Hamann, A., Brust, D., and Osiewacz, D. H., (2007). Deletion of putative xprG (phoG) gene encodes a putative sphingolipid metabolism: from secondary metabolites influence ascomycete fungi. Biochem. J. 40, 4893–4903.

Hannun, Y. A., Luberto, C., and Kronke, M. (1998). sphingosine 1-phosphate regulates ceramide production and apoptosis. Annu. Rev. Genet. 32, 415–448.

Hamann, A., and Hamann, A. (2002). Stealing of middle cell wall eliminations: a filamentous fungus gene products of barley BAX inhibitor 1 induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett. 581, 3217–3222.

Jacobson, D., Beurkens, K., and Fleissner, A. (2006). Genetic-mapping of a phytopathogenic Solanum tuberosum heterokaryon incompatibility in fungi. Curr. Opin. Microbiol. 9, 279–284.

Jia, G., Vogelsberg, J., and Kogel, K. H. (2003). Overexpression of barley BAX inhibitor-1 in carrot confers resistance to Botrytis cinerea. Mol. Plant Pathol. 4, 227–231.

Jia, G., Vogelsberg, J., Kogel, K. H. (2003). Microscopic and ultrastructural examination of vegetative incompatibility in diploid heterokaryons at HET loci in Neurospora crassa. Fungal Genet. Biol. 35, 45–56.

Kato, M. E., Gray, K. A., and Chessum, B. F. (2006). The ascomycete scaffold hyperkaryon incompatibility in fungi. Curr. Opin. Microbiol. 9, 553–558.

Katz, K. E., and Coker, R. E. (1997). Mitochondrial and ultrastructural examination of vegetative incompatibility in the filamentous fungus Podospora anserina. Mitochondrion 6, 9–16.

Kliebenstein, D. J., Rowe, H. C., Farre, I., Vanholme, R., Lam, E., and Ecker, J. R. (2005). The plant BAX inhibitor gene enhances superoxide dismutase and delays survival of yeast lacking superoxide dismutase and delays death of wild-type yeast. J. Cell Biol. 170, 1501–1508.

Korol, S., Dufour, E., and Samardzic-Chamet, A. (2006). Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim. Biophys. Acta 1757, 604–610.

Kupfer, T. D., and Reidel, S. J. (2010). Molecular cell death platforms and assemblies. Curr. Opin. Cell Biol. 22, 828–830.

Kudla, K. (2004). “Consequences of amphotericin B on the vitality of Candida albicans.” in Antimicrob. Agents Chemother., ed S., Ikeda, T., Kajihara, H., Dis, S., Ito, S., Ihara, T., Tamura, H., Tanaka, S., Ikeda, T., and R. Fischer (Berlin: Springer), 135–150.

Lam, E., Kato, N., and Low, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–852.

Launssenova, J., Maciuchik, V., Lawrence, C., and Kononenko, A. (2010). Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Annu. Rev. Phytopathol. 48, 1–10.

Leedl, F. and Zeller, K. A. (1996). Heterokaryon incompatibility in fungi more than just another way to die. J. Genet. 75, 423–428.

Liao, R. S., Rennie, R. P., and Talbot, J. A. (1999). Assessment of the effect of amphoerpoxin B 1 on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43, 1034–1041.

Lin, H.-J., Köhler, J. R., Dingemans, B., Lourenco, D., Cragg, A., and Fink, G. R. (1997). Nontumoural C. albicans mutants are avirulent. Cell 90, 939–948.

Longo, V. D., Eldeby, L. M., Buc- shonen, D. E., Valentine, J. S., and Graha, E. B. (1997). Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J. Cell Biol. 137, 1501–1508.

Lorin, S., Dufour, E., and Samardzic- Chamet, A. (2006). Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim. Biophys. Acta 1757, 604–610.

Mao, P. D., and Reidel, S. J. (2010). Molecular cell death platforms and assemblies. Curr. Opin. Cell Biol. 22, 828–830.

Markes, F., Carmena-Gutiérrez, D., Ring, E., Brummer, S., Humpf, T., and Kressner, G. (2009). Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem. Biophys. Res. Commun. 382, 227–231.

Markes, F., Freihich, E., and Froh- lich, K. U. (1997). A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734.

Mares, S., Wu, J., Louie Gauss, N., Geldshir, D., and Bostock, R. (2003). Nuclear DNAbreakdown during heterokaryon incompatibility in Neurospora crassa. Fungal Genet. Biol. 40, 126–135.

Mastronardi, P., Turcic, B., Hke, H. M., Molinelli, C. A., and Rosen, B. E. (2002). Glycosyl intermennase transfer is accelerated by HET-C2, a filamentous fungus gene product involved in the cell-incom- patibility response. Biochemistry 41, 535–542.
Modrzejewski, N., Giordano, F., Mades, F., and Krebner, G. (2006). Apoptosis-inducing factor: viral and lethal. Trends Cell Biol. 16, 246–272.
Mounani, S., and Bobert, G. (2011). Osmotin-like and amphiphilic B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology 157, 1937–1949.
Miller-Oldach, M., Braut, D., Hamann, A., and Osiewacz, H. D. (2011). Overexpression of Pap4 editing the poly (ADP-ribose) polymerase of Podospora anserina affects organismal aging. Mech. Ageing Dev. 132, 55–64.
Niemann, M. L., Danno, B., Cosca, M. A., Buss, J. L., Lue, D. Y., Porcks, J. M., Hasegawa, P. M., and Broxton, R. A. (2001). A plant defense response inducer mediates insecticidal activity. Mol. Cell. 8, 921–930.
Osiewacz, H. D. (2002). Aging in fungi: A fungal aging model. Mol. Microbiol. 41, 561–568.
Sharon, A., Finkelstein, A., Shleininger, N., and Harari, I. (2003). Fungal apoptotic functions: genes and gene families. Gene 308, 533–544.
Shlezinger, N., Goldfinger, N., and Sharon, A. (2012). Apoptotic-like programmed cell death. Front. Oncol. 2, 121, R32–R35.
Shlezinger, N., Doron, A., and Sharon, A. (2009). Podospora anserina: a model for cell death control. Adv. Plant Pathol. 8, 41–54.
Tschiersch, M., Grau, M., Egner, M., Walder, G., and Talbot, N. J. (2012). Biochemical and genetic analysis of homoeologous Arabidopsis with three Borreia species: an important role for cell death control. Front. Plant Sci. 3, 531–546.
Van Baarlen, P., Welling, E. J., Stuait, M., and Van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Borreia species: an important role for cell death control. Adv. Plant Pathol. 8, 41–54.
Williams, B., and Dickman, M. B. (2008). Plant programmed cell death: can’t live with it, can’t live without it. Mol. Plant Pathol. 9, 531–546.
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Received: 29 April 2012; accepted: 23 July 2012; published online: 07 August 2012
Citation: Shlezinger N, Goldfinger N and Sharon A (2012) Programmed cell death in fungi: the benefits in filamentous fungus. Front. Plant Sci. 3, 121, R32–R35. doi: 10.3389/fpls.2012.00007
This article was submitted to Frontiers in Molecular and Cellular Oncology, a specialty of Frontiers in Oncology.
Copyright © 2012 Shlezinger, Goldfinger and Sharon. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.