Diversification and limited information in the Kelly game

Matúš Medo

University of Fribourg, Switzerland

International Workshop “The Physics Approach To Risk”
Zürich, October 27-29, 2008
The Kelly game

1. in one turn, a fraction f of the current wealth can be invested
 - with the probability p, the invested amount is doubled
 - with the probability $1 - p$, the invested amount is lost

2. repeat (infinitely) many times

3. winning probability p is constant and known
The Kelly game

1. In one turn, a fraction f of the current wealth can be invested:
 - With the probability p, the invested amount is doubled.
 - With the probability $1 - p$, the invested amount is lost.

2. Repeat (infinitely) many times.

3. Winning probability p is constant and known.

Question: How to find the optimal investment fraction?
The Kelly game

1. in one turn, a fraction f of the current wealth can be invested
 - with the probability p, the invested amount is doubled
 - with the probability $1 - p$, the invested amount is lost
2. repeat (infinitely) many times
3. winning probability p is constant and known

question: how to find the optimal investment fraction?

well-known answer: maximise the exponential growth rate

\[
G(f) := \langle \ln (1 + fR_1) \rangle
\]

$R_1 =$ game return on one-turn basis
The Kelly game

- optimal investment fraction

\[f^*(p) = \begin{cases}
0 & p \in [0; \frac{1}{2}] \\
2p - 1 & p \in (\frac{1}{2}; 1]
\end{cases} \]

- optimal growth rate

\[G^*(p) = \ln 2 + p \ln p + (1 - p) \ln(1 - p) \]
The Kelly game

- **optimal investment fraction**

 \[f^*(p) = \begin{cases}
 0 & p \in [0; \frac{1}{2}] \\
 2p - 1 & p \in (\frac{1}{2}; 1]
 \end{cases} \]

- **optimal growth rate**

 \[G^*(p) = \ln 2 + p \ln p + (1 - p) \ln(1 - p) \]
The Kelly game

- optimal investment fraction

\[f^*(p) = \begin{cases}
0 & p \in [0; \frac{1}{2}] \\
2p - 1 & p \in (\frac{1}{2}; 1]
\end{cases} \]

- optimal growth rate

\[G^*(p) = \ln 2 + p \ln p + (1 - p) \ln(1 - p) \]

- in real life:
 - simultaneous games
 - unknown game properties
 - \ldots

\textit{Physica A} 387, 6151-6158 (2008)
Insider vs outsider: intro

- M games simultaneously played
- **insider strategy**: know one game better
- **outsider strategy**: gain by diversification
Insider vs outsider: intro

- \(M \) games simultaneously played
- **insider strategy**: know one game better
- **outsider strategy**: gain by diversification
- when the outsider outperforms the insider?
 - 1. little insider’s information
 - 2. extensive outsider’s diversification
Insider vs outsider: framework

1. M games

2. The winning probability of each game is either $p - \Delta$ or $p + \Delta$ (changing each turn randomly)

3. Insider knows the exact winning probability for one game (no diversification)

4. Outsider knows only the average winning probability p (invests evenly in M games)
Insider vs outsider: results

first approximation: $\Delta \approx (p - \frac{1}{2}) (\sqrt{2M} - 1)$
Limited information: framework

- even “noisy” information in the form $p \pm \Delta$ is artificial

- let’s assume that we use only T past turns for learning

⋯L W W W L W W L L W
Limited information: framework

- even “noisy” information in the form $p \pm \Delta$ is artificial
- let’s assume that we use only T past turns for learning

\[
\begin{array}{cccccccc}
\ldots & \text{L W W W L W W L L W} \\
\end{array}
\]

↓

information about the game
even “noisy” information in the form $p \pm \Delta$ is artificial

let’s assume that we use only T past turns for learning

\[
\ldots \text{L W W W L W W L L W}
\]

information about the game

our investment decision
Limited information: framework

- even “noisy” information in the form $p \pm \Delta$ is artificial
- let’s assume that we use only T past turns for learning

\[\ldots L W W W L W W L L W \]

\[T \text{ turns, } w \text{ wins} \]

↓

information about the game

↓

our investment decision
Limited information: framework

- even “noisy” information in the form $p \pm \Delta$ is artificial
- let’s assume that we use only T past turns for learning

\[\ldots \text{L W W W L W W L L W} \]
\[\downarrow \]
information about the game
\[\downarrow \]
our investment decision

T turns, w wins

$\varrho(p|w, T)$
even “noisy” information in the form $p \pm \Delta$ is artificial

let’s assume that we use only T past turns for learning

\[
\begin{array}{c}
\text{...L W W W L W W L L W} \\
\downarrow \\
\text{information about the game} \\
\downarrow \\
\text{our investment decision}
\end{array}
\]

T turns, w wins

$\varrho(p|w, T)$

$f^*(w, T)$
for any \(\varrho(p) \), \(G := \langle \ln(1 + f R_1) \rangle \) is maximised by

\[
f^*[\varrho] = 2\langle p \rangle_\varrho - 1
\]
Limited information: derivation

- For any $\varphi(p)$, $G := \langle \ln(1 + f R_1) \rangle$ is maximised by
 \[f^*[\varphi] = 2\langle p \rangle_\varphi - 1 \]

- Observing w wins in T turns gives us the information
 \[\varphi(p|w, T) \propto \pi(p) P(w|p, T) \]

- Here $P(w|p, T)$ is the binomial distribution
 \[P(w|p, T) = \binom{T}{w} p^w (1 - p)^{T-w} \]

- $\pi(p)$ is the prior distribution of p
Limited information: results

- no prior information about the game: \(\pi(p) = 1 \) for \(p \in [0; 1] \)
Limited information: results

- no prior information about the game: $\pi(p) = 1$ for $p \in [0; 1]$
- the optimal investment fraction is

$$f^*(w, T) = \begin{cases}
0 & w \leq T/2 \\
\frac{2w - T}{T + 2} & w > T/2
\end{cases}$$

- two interesting cases:

$$\lim_{T \to \infty} f^*(w, T) = 2 \lim_{T \to \infty} \frac{w}{T} - 1 = 2p - 1$$

$$f^*(T, T) = \frac{T}{T + 2} < 1$$
Limited information: results

\[G^* (p, T) \approx \ln 2 + p \ln p + (1 - p) \ln (1 - p) \]

Perfect information

\[1 - \frac{1}{2T} \]

Limited information

\[p = 0.52, p = 0.60, p = 0.70 \]
Limited information: results

\[G^*(p, T) \approx \ln 2 + p \ln p + (1 - p) \ln (1 - p) - \frac{1}{2T} \]

- Perfect information
- Limited information

![Graph showing the relationship between real return/ideal return and memory length for different values of p.](image)
The role of prior information

- what is $\pi(p)$?
 - a way how to quantify our prior lack of information
The role of prior information

- what is $\pi(p)$?
 1. a way how to quantify our prior lack of information
 2. aggregate information about p evolving in time

Matúš Medo (University of Fribourg) Diversification and limited information
Simple up and down economy

- simple pattern:
 - 80 good turns ($p = 0.8$)
 - 20 bad turns ($p = 0.2$)
 - repeated many times
Simple up and down economy

- simple pattern:
 - 80 good turns ($p = 0.8$)
 - 20 bad turns ($p = 0.2$)
 - repeated many times

- using the average p: return 6.9%
Simple up and down economy

- simple pattern:
 - 80 good turns \((p = 0.8)\)
 - 20 bad turns \((p = 0.2)\)
 - repeated many times

- using the average \(p\): return 6.9%

- using memory length 20: return 8.8%
Simple up and down economy

- simple pattern:
 - 80 good turns ($p = 0.8$)
 - 20 bad turns ($p = 0.2$)
 - repeated many times

- using the average p: return 6.9%

- using memory length 20: return 8.8%

- using memory length 20 “safely”: return 9.5%
Simple up and down economy

- simple pattern:
 - 80 good turns ($p = 0.8$)
 - 20 bad turns ($p = 0.2$)
 - repeated many times

- using the average p: return 6.9%

- using memory length 20: return 8.8%

- using memory length 20 “safely”: return 9.5%

- perfect information: return 16.7%
“There cannot be a sure-win game!”
“There cannot be a sure-win game!”

- set $\pi(p) = 0$ for $p > p_{\text{max}}$
Additional sources of information

- “There cannot be a sure-win game!”
 - set $\pi(p) = 0$ for $p > p_{\text{max}}$

- “Great, I have my posterior $P(p|w, T)$ but what if...”
“There cannot be a sure-win game!”
- set $\pi(p) = 0$ for $p > p_{\text{max}}$

“Great, I have my posterior $P(p|w, T)$ but what if...”
- set $P(\text{crisis comes}) = P_c$
- why necessary?
 because with enough data, prior beliefs are overruled!
Additional sources of information

- “There cannot be a sure-win game!”
 - set $\pi(p) = 0$ for $p > p_{\text{max}}$

- “Great, I have my posterior $P(p|w, T)$ but what if…”
 - set $P(\text{crisis comes}) = P_C$
 - why necessary?
 - because with enough data, prior beliefs are overruled!

- our framework is too simple to allow for more realistic considerations…
we have seen:

- diversification and limited information in toy systems
- simple analytical results
Conclusion

- **we have seen:**
 - diversification and limited information in toy systems
 - simple analytical results

- **we haven’t seen:**
 - realistic risky games (e.g., log-normal returns)
 - all capabilities of the prior information $\pi(p)$
 - less frequent portfolio rebalancing
 - transaction costs
 - …
we have seen:
- diversification and limited information in toy systems
- simple analytical results

we haven’t seen:
- realistic risky games (e.g., log-normal returns)
- all capabilities of the prior information $\pi(p)$
- less frequent portfolio rebalancing
- transaction costs
- . . .

Thank you for your attention