Land use and land cover transition is a dynamic process due to various anthropogenic activities and altering the landscape pattern of the metropolitan area of Lahore over the last two decades. LULC has been emerging masses of environmental problems including land use issues for the inhabitants, city planners, and managers. This research has been focused on the LULC change from 1998 to 2018 and their impact to forecast the upcoming transitions. Results have been validated by transition matrix, Google Earth data and kappa statistics.

1. Introduction

Currently, many regions around the globe have been facing the dramatic changes in LULC (Solaimani, 2010). These changes in LULC are the prompt response of anthropogenic activities upon nature followed by significant consequences (De Sherbinin, 2002; Eastman et al., 2005; Rai, 2017; Braiassoulis, 2019). The primary and most significant cause of change in LULC is urbanization (Omar, 2014; Kalmy and Cai, 2003; Chen, 2006). Urbanization has become a universal trend under the combined influence of biological factors and anthropogenic activities, which plays a vital role in the LULC changes all over the world (Sun, 2013; Zhao, 2018; Lu, 2018; Bk, 2003; Seto, 2011). Urbanization has not only influences on socioeconomic changes but also cause the loss of farmlands. In recent eras, the LULC has changed at large scale which transforming forest land into farmland and farmland into urban areas, resulting in unsustainable urban development (Seto, 2011; Li and Yeh, 2000; Mumtaz, 2020; Foley, 2005; Dabovky et al., 2011; Poelmans and Rompaey, 2009). Rapid growing population trends to move the people from rural to urban areas ultimately causing adverse growth in urbanization. Moreover, increase in urban population demands metropolitan luxuries and facilities for their living, including construction of new residential and commercial areas, public utility and road infrastructures which ultimately leaving footprints on eco-environment (Nasir, 2012).

No doubt, urbanization is more rapid in the 21st century as compared to past centuries (Montgomery, 2008). According to an estimate, it is considered that the number of people living in the global metropolitan regions are expected to increase ~ 80% from 2010-2050 (Mitchell and Moss, 2012). In South Asia, Pakistan is also expected to be more urbanized in 2050 (Mumtaz, 2020; Mustafa and Saeeds, 2013). Pakistan is one of those countries where urbanization has grown largely in major cities due to lack of planning and policies. In recent years, as like many other metropolitan cities of the world, Lahore (a metropolitan city of Pakistan) have also been experienced massive growth in population as well as landscape (Faisal, 2020). Lahore is a commercial hub, for the population living around and other different cities of the Pakistan in purpose for better life style (Faisal, 2020). Demand of better living style and tremendously acceleration in population has lead to urban sprawl and changes in existing pattern of LULC (Makhtav et al., 2005). In result of urban expansion and Over Cutting, the vegetation cover of Lahore has been decreased. Moreover, natural land has been replaced mainly by built-up areas (Mumtaz, 2020; Nespak, 2004). More and more demands of urban area for better lifestyle has turned the agriculture and barren land into different housing societies and other projects by local developers and Lahore Development Authority (LDA) (Faisal, 2020; Nespak, 2004; Shah and Ghauri, 2015). The vegetation cover of Lahore has tremendously decreased due to urban expansion and over cutting resulting in replacement of natural land into built up area (Mumtaz, 2020; Nespak, 2004).

This research has been focused on the LULC change from 1998 to 2018 and their impact to forecast the upcoming transitions. Results have been validated by transition matrix, Google Earth data and kappa statistics. Derived results have depicted the decreased in water bodies 2.70% to 0.60%, vegetation 24.90% to 22.60% and barren land 42.50% to 35.70% and increased in built up area 29.80% to 41% between 1998 to 2018. Finding clearly represents the loss of ecological and barren landscape over the last two decade and therefore urban expansion will likely to continue the change in landscape. This study will provide a baseline reference to urban planners and policymakers to make informed decision for management of land resources, urban land planning and for maintain sustainable land development.

Keywords
Land use land cover (LULC), CA-Markov Model, KAPPA statistic.
2004). And the city is growing like a concrete jungle without any proper planning (Masood, 2015). Therefore, it is necessary to thoroughly investigate trend of LU/LC transition by using transition matrix and future prediction to derive the attention of policymakers and planners towards Lahore.

Updated maps of past and current LU/LC can help to understand the dynamics of LU/LC transition which will be helpful for future policies (Eastman et al., 2005). Recent advancement in remote sensing technology provides unique opportunity to monitor the changes in LU/LC (Ullah, 2019; Tao, 2011; Shi, 2013). Since 1972, the launch of the different landsat satellites till present, continuously providing the remote sensing data which is available free of charges at large scale for numerous applications in social, economic, and environmental characteristics of urban areas (Wulder, 2016). Remotely based data available from past several years can provide better understanding to investigate the past and recent dynamics in LU/LC transitions as well as it’s drivers, which can be helpful for future urban sustainable policies (Eastman, 2005). Recently, Cellular Automata (CA) Markov chain model, and advanced tools of GIS & Remote sensing are recognized as a more effective and powerful modeling techniques for transition and future prediction of LU/LC (Kiyuttachai, 2013; Garcia, 2013; Malthari, 2010; Nouri, 2014; Ke et al., 2016; Akin et al., 2015; Guan, 2011). The Markov chain model helps in calculating the future changes based on the past and Cellular Automata (CA) for each change in spatial location (Mumtaz, 2020; Arsanjani, 2013; Keshkhtar and Voigt, 2016; Rimal, 2017). It has been widely utilized for investigating and planning of the urban areas including Wuhu (China); Hua Hin (Thailand); Saga (Japan); Setúbal/ Sesimbra (Portugal); central part of Germany; London (UK); Ahmadabad (India); Tehran (Iran); Santiago (Chile) and Foshan (China) (Ke et al., 2016; Kiyuttachai, 2013; Gun, 2011; Araya and Cabral, 2010; Munshi, 2014; Puertas et al., 2014; Krotkov, 2017).

No doubt, several studies have already been conducted to predict land use over many global regions. Still, very few studies has monitored the land use dynamic for the past and future predictions in the urbanized regions of Pakistan as well as in Lahore. This research attempted to monitor the changes of LU/LC from 1998-2018 and predicted LU/LC for 2023 and 2028 by using the CA-Markov chain model for developing an understanding toward the history and current scenarios in transition of LU/LC. So that this study will provide a direction to urban planners and policymakers to make informed decisions.

2. MATERIAL AND METHODS

2.1 Study Area

2.1.1 Lahore

Lahore is the second largest metropolitan city in Pakistan and capital of the Punjab Province. It lies between 31°15′—31°43′N and 74°10′—74°39′E, comprised of 1,842 km² area (Faisal, 2020). The study area has slopes from north east to the south west and located on the alluvial soil of River Ravi (Faisal, 2020; Nespal, 2004).

Figure 1: Study area Map (Lahore)

2.2 Data Processing and LU/LC map Preparation

This study examines the (a) trend and transition of LU/LC in Lahore from 1998-2018, (b) predict the LU/LC in future periods 2023 and 2028 by using different satellite imageries including Landsat 5 (TM) and Landsat 8 (OLI). Cloud free satellite imageries of May and June were collected (table 1) on the spatial resolution of 30 m for the period of 1998-2018. All satellite images were downloaded free of cost from the USGS Earth Explorer website (http://earthexplorer.usgs.gov). A vector layer of the Lahore administrative boundary was utilized as mask to subset the image and to clip the area of interest (AOI) in the Tagged Image File Format (TIFF). No atmospheric corrections were executed because of cloud free Landsat imageries (Bhatti and Tripathi, 2014; Deng and Wu, 2013). Then false-colored images were produced by layer-stacking on all spectral bands except thermal bands (Karakus et al., 2014). Maximum Likelihood Classifier (MLC) supervised classification technique was used to classify the pixels into different land-use classes (Asmala, 2012). Then spectral characteristics of Landsat imageries were analyzed by spectral signatures for different land cover classes. The LU/LC maps of the study area were categorized into four classes: vegetation, water bodies, built-up, and barren land. The error matrix was constructed to evaluate the accuracy of LU/LC classes after the preparation of LU/LC maps of all years. Ground truth samples for each land-use class were taken on random locations by using Google Earth (Zhang, 2013). The pixel value at the image was compared with ground truth samples and predicted for each land-use class. Percentage accuracy of each class was evaluated in ArcGIS by using frequency analysis and error matrix (Table 2).

2.2.1 Satellite images Description

Table 1: Satellite Images Description

Study Region	Year	Month	Sensor	Row/Path	Description
Lahore	1998	May	TM	119/036	TM
	2003	May	TM	149/036	TM
	2008	June	TM	149/036	OLI
	2013	June	TM	149/036	OLI
	2018	June	TM	149/036	OLI

2.3 Simulation of LU/LC Change Using the CA Markov Model

Cellular Automata (CA) integrated with the Markov Chain model offer a significant opportunity for urban growth trend and future predictions (Subedi et al., 2013; Fathizad et al., 2015; Wang et al., 2014; Roose and Hietala, 2018). For the very first time Markov Chain model was used for land-use simulations (Burnham, 1973). Markov Chain Model computes the comparison between two LU/LC images to predict the upcoming trend. The Markov model can also forecast the transfer rate among different land use categories. It can be used in spatial modeling for land use future forecasting (Halmy, 2015). The basic principle of CA is to explain the current state of land use changes for any location (cells), and even in neighboring cells (Sang, 2011). Simply, the homogeneous CA Markov model for prediction of land-use changes can be mathematically described as follows:

\[S(t+1) = Pij \times S(t) \]

where \(S \) represents the land use status at time \(t \), and \(S(t+1) \) land-use status at time \(t+1 \). Whereas \(Pij \) is the transition probability matrix in a state which can be calculated as follows (Mumtaz, 2020).

\[|| Pij || = \left| \begin{array}{c} \frac{P_{11}}{P_{21}} \frac{P_{12}}{P_{22}} \frac{P_{1N}}{P_{2N}} \\ \frac{P_{21}}{P_{11}} \frac{P_{22}}{P_{12}} \frac{P_{2N}}{P_{1N}} \end{array} \right| \]

\[0 \leq P_{ij} \leq 1 \]

(3)

\(P \) is the transition probability; \(P_{ij} \) stands for the probability of converting from current state \(i \) to another state \(j \) in next time; \(PN \) is the state probability of any time. The Low transition will have a probability near (0) \(\leq P_{ij} \leq 0 \) while the High transition will have a probability near (1).

2.4 Validating LU/LC Prediction Model

Predicted land use maps simulated by the CA-Markov model were compared with original land use to investigate the uncertainty in Simulation. Kappa Index of Agreement (KIA) approach was used to compare the simulated and original land use for accuracy comparison. The Kappa statistic measures the accuracy of a classification relative to a completely random classification on the scale of 0 (utterly random assignment of class labels) to 1 (100%) accuracy of class label assignment (Lillesand, 2015; Shawul and Chakma, 2019). The given formula calculated KIA Statistic.

\[KIA = \frac{Pr(a) - Pr(e)}{1 - Pr(e)} \]

Where \(Pr(a) \) represents the observed agreement, and \(Pr(e) \) represents chance agreement.
3. Results

3.1 Land use land cover (LULC) dynamics from 1998-2018

The classified images obtained after preprocessing and supervised classification is showing the land use dynamics of Lahore from 1998 to 2018. Ground truth data obtained from Google Earth was used to verify the classification accuracy. Tables 2 present the % of the accuracy assessment of land use land cover (LULC) maps for Lahore from the year 1998 to 2018. Moreover, results indicate that all the classes of Land use land cover maps have above the 70% accuracy. Figure 2 illustrates the classified images of Lahore city for the years 1998, 2003, 2008, 2013, and 2018. These images capture the spatial and temporal characteristics of land-use dynamics. Table 3 summarized the variations in trend of different land use classes.

The vegetation cover of Lahore was almost diminished due to unplanned overcutting and deforestation. Spatial land transition analysis and change detection matrix were prepared to understand the land encroachment for different land categories during the last two decades (Figure 3 and Table 4).

3.2 Future Land Use Dynamics 2023-2028

Land Use land cover (LULC) maps of satellite images 2003 and 2008 were used for prediction of 2013 LULC by using the Probability Transition matrix of the period 2003-2008 (displayed in table 5) for Lahore. Transition Matrix Probability summarized the possibility in which one class in converting to another class in a specified time. Here the Row and column indicate the categories of LULC over 2003 and 2008.

Land use maps of Lahore city predicted by the CA-Markov model were compared with the original LULC map of 2013 to investigate the accuracy of the model prediction. Spatial pattern of all land use categories in the predicted LULC map were noticed similar to the original LULC (Figure 4).

KAPPA Statistics were used to perform the accuracy assessment of each land use category predicted by the model with reference land use maps (Table 6). It was seen that the KAPPA values were found greater than 0.78 for each land use category, but all KAPPA values were 0.96 for Lahore city.

A higher value of KAPPA indicated that the CA Markov model suitable for future predictions of LULC maps for the study region.

Cite The Article: Faisal Mumtaz, Yu Tao, Waqar Ahmed Bashir, Mariam Kareem, Wang Gengke, Lingling Li, Barjeece Bashir (2020). Transition Of Lulc And Future Predictions By Using Ca-Markov Chain Model (A Case Study Of Metropolitan City Lahore, Pakistan). Earth Sciences Malaysia, 4(2): 146-151.
Table 7 represents the predicted LULC map of 2023 and 2028 for Lahore City. Results show that the barren land, water and vegetation cover will gradually decrease in 2023 and 2028 due to conversion of built-up area. The area covered by barren land was 658.59 km² (35.7%), vegetation land 416.55 km² (22.6%), water 11.41 km² (0.6%) in 2018 and will decrease to 593.35 km² (32.20%), vegetated land 390.27 km² (21.18%), water 7.41.35 km² (0.40%) in 2028 while the area of built-up land was 755.91 km² (4.10%) in 2018 and will rapidly increase to 851.37 km² (46.20%) in 2028.

Table 6: Overall, the Kappa Statistic between each Class of Original Image and IDRISI Image (Lahore city).

Class	Kappa
Water	0.9825
Vegetation	0.9209
Built-Up	0.9544
Barren	0.9371
Total	0.9487

The transition probability matrix were calculated from 2013-2018 to predict the LULC of 2023, and the probability matrix of 2018-2023 used to simulate the LULC map of 2028. Figure 5 illustrates the LULC maps of Lahore, simulated for the future period.

Figure 3: Transition of each LULC Class (1998-2018)

Figure 4: Validity of LULC by using Kappa Statistic

Table 7: Predicted LULC cover of 2023 and 2028 for Lahore

Study region	LU Classes	2018	2023	2028			
Lahore city	Water	11.41	0.6	0.44	7.41	0.40	
	Vegetation	416.55	22.6	403.14	21.08	390.27	21.18
	Built-up	755.91	41.0	806.84	43.79	851.37	46.20
	Barren	658.59	35.7	624.29	33.08	593.35	32.20

4. DISCUSSION

This study was carried out monitor the changes of LULC from 1998-2018 and predicted LULC for 2023 and 2028 by using the CA-Markov chain model for developing an understanding toward the history and current scenarios in transition of LULC. Results indicate that in the Lahore city area covered by water bodies, vegetation, and barren area decreasing gradually from 1998-2018, while built-up is increasing. In Lahore city, the area covered by water bodies, vegetation, and barren land was about 50.41 km² (2.7%), 458.73 km² (24.9%), and 783.44 km² (42.5%) in 1998, has decreased to 11.41 km² (0.6%), 416.55 km² (22.6%) and 658.59 km² (35.7%) in 2018. While built-up land has gradually increased from 549.77 km² (29.8%) in 1998 to 755.91 km² (41%) in 2018 due to the transformation of different land use categories into built up. Barren land was found to be decreased gradually with a higher rate, due to transform into other land use classes. Most of the agriculture and barren land was bought by Local developers or LDS (Lahore Development Authority) have been turned to different housing societies and other projects from the city government (Muntas, 2020; Shah and Gauri, 2015).

Further results of Transition matrix from 1998-2018 show that in Lahore city, 23.33 km² area of water has been changed into built-up land, and 11.84 km² area into barren land. Moreover, 150 km² area vegetation has been changed into built-up land. From 1998-2018 Lahore city has experienced a notable transition of the built-up area from vegetation land and barren land into housing societies, different construction projects under the Lahore Development Authority (LDA) and local developers (Nespak, 2004; Shah and Gauri, 2015). Most of the urban expansion has expand due to mega developmental project like Metro Bus, Orange Train and many other projects under China Pakistan Economic Corridor (CPEC) (Nespak, 2004; Shah and Gauri, 2015). No doubt, urban expansion has some advantages, including (i) provide employment opportunities, (ii) superior life style (iii) better production of goods & Services, etc. But also have some negative aspects, including rise in surface temperature of urban areas, because of (i) loss of agriculture land, (ii) increase of artificial material, including asphalt, concrete (Hallegatte and Corfee Morlot, 2011; Kant, 2009). Future predicted results for 2023 and 2028 indicate that Future urban sprawl is likely to continue, outweighed by the loss of barren land and cultivated land.

5. CONCLUSION

This study was thoroughly continued with the main objectives to examine the (a) Trend and transition of LULC in Lahore from 1998-2018, (b) predict the LULC in future periods 2023 and 2028. Results quantified that from 1998-2018 the LULC of the city has changed at a large scale, especially the growing buildup area. In Lahore city, the area covered by water bodies, vegetation, and barren land gradually have been gradually decreased while built-up land has gradually increased from 1998 to 2018, due to the transformation of different land-use categories into built-up.
Future urban sprawl is likely to continue, which will be outweighed by the loss of barren land and cultivated land as in the previous two decades. Local government should notice trends of LULC transition to plan some policies by keeping in viewing the predicted results of 2023 and 2026 because transitional changes in LULC and development of build-up land can affect the local climate, sustainability, and LST.

Acknowledgments
Authors, Faisal Mumtaz, Wang Gengke, Lingling Li and Barjeece Bashir acknowledge to Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCS) and University of Chinese Academy of Sciences (UCAS).

References
Akın, A., Sunar, F., Berberoğlu, S., 2015. Urban change analysis and future growth of Istanbul. Environmental monitoring and assessment, 187 (8), Pp. 506.
Araya, Y.H., Cabral, P., 2010. Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2 (6), Pp. 1549-1563.
Arsanjani, J.J., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, Pp. 265-275.
Aasma, A., 2012. Analysis of maximum likelihood classification on multispectral data. Applied Mathematical Sciences, 6 (129-132), Pp. 6425-6436.
Bhatti, S.S., Tripathi, N.K., 2014. Built-up area extraction using Landsat 8 OLI imagery. IScience & Remote Sensing, 51 (4), Pp. 445-467.
BK, K., 2003. Internal migration in Nepal: Population Monograph of Nepal 2003, II. Kathmandu: Central Bureau of Statistics.
Briassoulis, H., 2019. Analysis of land use change: theoretical and modeling approaches.
Burnham, B.O., 1973. Markov intertemporal land use simulation model. Journal of Agricultural and Applied Economics, 5 (1), Pp. 253-258.
Chen, X.L., 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote sensing of environment, 104 (2), Pp. 133-146.
De Sherbinin, A., 2002. A CIESIN thematic guide to land-use and land-cover change (LULC). Center for International Earth Science Information Network, Columbia University.
Deng, C., Wu, C., 2013. A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sensing of Environment, 133, Pp. 62-70.
Dubovik, O., Sliuzas, R., Flacke, J., 2011. Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (2), Pp. 235-246.
Eastman, J., Fossen, M.V., Solarzano, L., 2005. Transition potential modeling for land cover change. GIS, spatial analysis and modeling, Pp. 357-386.
Faisal, M., 2020. The relationship between vegetation dynamics and land surface temperature by using different satellite imagers: A Case study of Metropolitan cities of Pakistan. North American Academic Research, 3 (7), Pp. 1-15.
Fathizad, H., Rostami, N., Faramarzi, M., 2015. Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environmental monitoring and assessment, 187 (10), Pp. 629.
Foley, J.A., 2005. Global consequences of land use. Science, 309 (5734), Pp. 570-574.
Garcia, A., 2013. Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain. International Journal of Geographical Information Science, 27 (8), Pp. 1593-1611.
Guan, D., 2011. Modeling urban land use change by the integration of cellular automation and Markov model. Ecological Modelling, 222 (20-22), Pp. 3761-3772.
Hallegatte, S., Corfee-Morlot, J., 2011. Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction. Climatic Change, 104 (1), Pp. 1-12.
Halmy, M.W.A., 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-GA. Applied Geography, 63, Pp. 101-112.
Kalnay, E., Cal, M., 2003. Impact of urbanization and land-use change on climate. Nature, 423 (6939), Pp. 528.
Kant, Y., 2009. Satellite-based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, India. Journal of the Indian Society of Remote Sensing, 37 (2), Pp. 201-214.
Karakus, C.B., Kavak, K.S., Cerit, O., 2014. Determination of variations in land cover and land use by remote sensing and geographic information systems around the city of Sivas (Turkey). Fresenius Environ. Bull, 23 (3), Pp. 667-677.
Ke, X., Qi, L., Zeng, C., 2016. A partitioned and asynchronous cellular automata model for urban growth simulation. International Journal of Geographical Information Science, 30 (4), Pp. 637-659.
Keshkhar, H., Voigt, W., 2016. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Modeling Earth Systems and Environment, 2 (1), Pp. 10.
Kityutatchai, K., 2013. CA-Markov analysis of constrained coastal urban growth modeling: Hua Hin seaside city, Thailand. Sustainability, 5 (4), Pp. 1480-1500.
Krotkov, N.A., 2017. The version 3 OMI NO2 standard product. Atmospheric Measurement Techniques, 10 (9), Pp. 3133-3149.
Li, X., Yeh, A.G.O., 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14 (2), Pp. 131-152.
Lillesand, T., Kiefer, R.W., Chipman, J., 2015. Remote sensing and image interpretation. John Wiley & Sons.
Lu, Q., 2018. Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Computers, Environment and Urban Systems, 68, Pp. 121-132.
Maithani, S., 2010. Cellular automata based model of urban spatial growth. Journal of the Indian Society of Remote Sensing, 36 (4), Pp. 604-610.
Maktav, D., Erbek, F., Jürgens, C., 2005. Remote sensing of urban areas. International Journal of Remote Sensing, 26 (4), Pp. 655-659.
Masood, L., 2015. The deadly heat wave of Pakistan, June 2015. The international journal of occupational and environmental medicine, 6 (4), Pp. 672-247-8.
Mitchell, L.M.H.O.N., 2012. Urban Mobility in the 1st Century. NYU Rudin Center for Transportation Policy.
Montgomery, M.R., 2008. The urban transformation of the developing world. Science, 319 (5864), Pp. 761-764.
Mumtaz, F., 2020. Modeling Spatio-temporal Land Transformation and Its Associated Impacts on land Surface Temperature (LST). Remote Sensing, 12 (18), Pp. 2987.
Munshi, T., 2014. Logistic regression and cellular automata based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities, 39, Pp. 68-86.
Mustafa, D., Sawas, A., 2013. Urbanisation and political change in Pakistan: Exploring the known unknowns. Third World Quarterly, 34 (7), Pp.
Cite The Article: Faisal Mumtaz, Yu Tao, Waqar Ahmed Bashir, Mariam Kareem, Wang Gengke, Lingling Li, Barjeece Bashir(2020). Transition Of LULC And Future Predictions By Using CA-Markov Chain Model (A Case Study Of Metropolitan City Lahore, Pakistan). Earth Sciences Malaysia, 4(1): 146-151.