An introduction to the Mesozoic biotas of Scandinavia and its Arctic territories

BENJAMIN P. KEAR1*, JOHAN LINDGREN2, JØRN H. HURUM3,4, JESPER MILÀN5,6 & VIVI VAJDA2,7

1Museum of Evolution, Uppsala University, Norbyvägen 16, 752 36 Uppsala, Sweden
2Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
3Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway
4The University Centre in Svalbard, UNIS, Postboks 156, 9171 Longyearbyen, Norway
5Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-3640 Faxe, Denmark
6Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
7Department of Palaeobiology, Swedish Museum of Natural History, Postboks 50007, SE-104 05 Stockholm, Sweden

*Corresponding author (e-mail: benjamin.kear@em.uu.se)

Abstract: The Mesozoic biotas of Scandinavia have been studied for nearly two centuries. However, the last 15 years have witnessed an explosive advance in research, most notably on the richly fossiliferous Triassic (Olenekian–Carnian) and Jurassic (Tithonian) Lagerstätten of the Norwegian Arctic Svalbard archipelago, Late Cretaceous (Campanian) Kristianstad Basin and Vomb Trough of Skåne in southern Sweden, and the UNESCO heritage site at Stevns Klint in Denmark – the latter constituting one of the most complete Cretaceous–Palaeogene (Maastrichtian–Danian) boundary sections known globally. Other internationally significant deposits include earliest (Induan) and latest Triassic (Norian–Rhaetian) strata from the Danish autonomous territory of Greenland, and the Early Jurassic (Sinemurian–Pliensbachian) to Early Cretaceous (Berriasian) rocks of southern Sweden and the Danish Baltic island of Bornholm, respectively. Marine palaeocommunities are especially well documented, and comprise prolific benthic macroinvertebrates, together with pelagic cephalopods, chondrichthyan, actinopterygians and aquatic amniotes (ichthyopterygians, sauropterygians and mosasauroids). Terrestrial plant remains (lycophytes, sphenophytes, ferns, pteridosperms, cycadophytes, bennettitaleans and ginkgoes), including exceptionally well-preserved carbonized flowers, are also world famous, and are occasionally associated with faunal traces such as temnospondyl amphibian bones and dinosaurian footprints. While this collective documented record is substantial, much still awaits discovery. Thus, Scandinavia and its Arctic territories represent some of the most exciting prospects for future insights into the spectacular history of Mesozoic life and environments.

Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.

The Mesozoic fossil record of Scandinavia and its Arctic territories of Greenland and Svalbard span the dawn of the Triassic some 252 myr ago (Wordie Creek Formation, East Greenland: Nielsen 1935; Bendix-Almgren 1976; Looy et al. 2001; Stemmerik et al. 2001; Bjørager et al. 2006) through to the terminal Cretaceous–Palaeogene boundary 66 myr ago (Møns Klint Formation, Denmark: Damholt & Surylk 2012; Surylk & Adolfsen & Ward 2014; Hansen & Surylk 2014). This interval is marked by the nascence of modern faunal and floral biodiversity, and culminated in one of the most cataclysmic extinction events in Earth history. Much of our knowledge about the Mesozoic world has derived from the long tradition of palaeontological research in Europe (Rudwick 2008; Evans 2010), and yet many key biotas and bioevents from this continent remain comparatively underexplored. Scandinavia and its Arctic territories are therefore extremely important because they encompass not only a Boreal mid–high palaeolatitude setting (Surylk 1990; Ditchfield 1997), but have also witnessed a burgeoning of novel discoveries that reveal significant insights into the global spectrum of Mesozoic organisms, ecosystems and environments.

This Special Publication aims to encapsulate these latest palaeontological advances, and augments them with topical synopses from leading specialists in the field. Our introduction is intended to
provide additional contextual background, and, in particular, emphasizes the broad trends in floral successions and the distribution of faunal finds. Together, these highlight Scandinavia and its Arctic territories as a regional centre for Mesozoic biotic radiations, and a spectacular area for future field exploration with landmark research potential.

Institutional abbreviations

LO, Department of Geology, Lund University, Lund, Sweden; MGUH, Natural History Museum of Denmark, Copenhagen, Denmark; OESM, Østsjællands Museum, Store Heddinge, Denmark; PMO, University of Oslo Natural History Museum (Palaeontological Collection), Oslo, Norway; PMU, Palaeontology Collection, Museum of Evolution, Uppsala University, Uppsala, Sweden.

A synthesis of Scandinavian Mesozoic biotas

The Triassic

The long history of Scandinavia’s terrestrial biotas is charted through the palynological record, which manifests liverworts as the seminal colonizers of continental ecosystems in the early Palaeozoic (Late Ordovician) of southern Sweden (Badawy 2014). Increasing abundance and diversity of bryophytes and vascular plants occurred throughout the Silurian and Devonian in Ska˚ne (Mehlqvist et al. 2015) and Gotland (Hagström 1997), with the genesis of characteristic Mesozoic floras around the Permian-Triassic boundary in Greenland, Svalbard and the Oslo Rift: these collectively indicate turnover of regional biomes coincident with increasing aridity (Bercovici et al. 2015). The Permian-Triassic extinction event is represented by the disappearance of dominant hygrophilous Cordaites (which equate to gigantopterids in Cathaysia and glossopterids in Gondwana) and their replacement by emergent seed plants (Anderson et al. 1999; McLoughlin 2011).

The coeval chronicle of Triassic terrestrial faunas is not well represented until the Norian-Rhaetian of the Fleming Fjord Formation in Jameson Land, East Greenland (Klein et al. 2015; Milàn et al. 2015). Here, body fossils and footprints evidence various dinosaurian taxa, especially sauropodomorphs, together with plagiosaur and capitosaurs (primarily temnospondyl amphibians, rare rhamphorhynchoid pterosaurs, and early mammaliforms (e.g. Bendix-Almgreen 1976; Jenkins et al. 1994; Milàn et al. 2012a; Sulej et al. 2014; Clemmensen et al. 2015; Hansen et al. 2015; Klein et al. 2015). Fragmentary Late Triassic (Carnian-Rhaetian) temnospondyls are likewise known from both Svalbard and southern Sweden (Kear et al. 2015 and references therein), and coincide with lush vegetation comprising ginkgoes, cycads and bennettites, lycophytes, sphenophytes, and ferns (Vajda et al. 2013). Fossilized fungi and bacterial traces have also been reported from Hopen Island in the Svalbard archipelago (McLoughlin & Strullu-Derrien 2015). A bone fragment of a Late Triassic sauropodomorph was also recovered from a drill core in the North Sea 2256 m below the seabed (Hurum et al. 2006a).

Earliest Triassic (Induan–Olenekian) marine ecosystems are recognized from the Vardebukta Formation on Svalbard (Vigran et al. 2014), and most prolifically from the world-famous Wordie Creek Formation in East Greenland (Fig. 1a–e). These deposits incorporate bivalves, gastropods and ammonoids, as well as actinopterygian and coelecanth fishes (Speth 1932; Nielsen 1942, 1949; Donovan 1964) that span the Permian-Triassic boundary (Twitchett et al. 2001; Bijrager et al. 2006). Potentially anadromous Early Triassic temnospondyls (primarily tematosaurids, rhytidostians and capitosaurians) have also been described, with approximately equivalent occurrences found on Spitsbergen and other islands in Svalbard (Sæve-Söderbergh 1936; Cox & Smith 1973; reviewed by Kear et al. 2015): these are associated with actinopterygian fishes (Fig. 1f) and hybodontiform sharks (Stensiö 1921, 1925; Blazewiński et al. 2013).

Globally renowned Triassic marine ammonite fossils were recovered from Spitsbergen during the Nordenskjöld expeditions of 1864 and 1868 (Hulke 1873). More complete material was subsequently collected by Swedish scientists in 1908 and 1909 (Wiman 1910, 1916a, b, 1928, 1933), and constitutes a diverse assemblage of ichthyopterygians (Fig. 1g), including the phylogenetically important basal taxon Grippia longirostris (Maxwell & Kear 2013). Isolated pistosaurid sauropterygian remains have also been discovered (Kear & Maxwell 2013), and Hurum et al. (2014) documented Triassic ichthyosaurian material from Edgeøya (Vigran et al. 2014). The classic vertebrate successions of Wiman (1910) are, however, still used to subdivide the horizons on Spitsbergen (see Maxwell & Kear 2013): the lithostratigraphical work of Mørk et al. (1999), equating the actinopterygian- and temnospondyl-dominated ‘Fish Niveau’ to the lower Olenekian Lusitaniadalen Member of the Vikinghøgda Formation; the ‘Grippia Niveau’ and ‘Lower Saurian Niveau’ – both representing sequential components of the Late Olenekian–Anisian Vendomdalen Member of the Vikinghøgda Formation; and derived mixosaurid and shastasaurid ichthyosaurs from the ‘Upper Saurian Niveau’ characterizing the Landinian Blanknuten Member of the upper Botnehei Formation and the Carnian Tschermakfjellet Formation.
The Jurassic

The Triassic–Jurassic transition is marked by extinctions coincident with emissions from the Central Atlantic Magmatic Province (Sha et al. 2015). In the Scandinavian territories, this is evidenced by successions from East Greenland (Klein et al. 2015). These reveal an abrupt replacement of the Rhaetian ‘Lepidopteris flora’ (typified by seed ferns, Taxodiaceae and the enigmatic Ricciisporites-producing plants) by the Hettangian ‘Thaumatopteris flora’ (Harris 1931), which was dominated by ferns, Cheirolepidiaceae, Pinaceae and new groups of cycadophytes (Vajda et al. 2013). Compatible earliest Jurassic strata are exposed in southern Sweden and on the Danish Baltic island of Bornholm (Vajda & Wigforss-Lange 2009). Ornithopod and potential thyreophoran footprints (Gierliński & Ahlberg 1994; Milán & Gierliński 2004), together with isolated dinosaurian vertebrae

Fig. 1. Scandinavian Triassic localities and fossils. (a) Earliest Triassic (Induan–Olenekian) strata of the Wordie Creek Formation at Kap Stosch in East Greenland (photograph: Benjamin Kear); (b) actinopterygian fishes Bobastrania groenlandica (PMU 29041) and (c) Australosomus kochi (PMU 29036); (d) pectinoid bivalve Claraia (PMU 29004); and (e) ceratitid ammonoid Ophiceras (PMU 29145). Middle Triassic (Anisian–Landian) vertebrate remains from Spitsbergen: (f) skull of the actinopterygian Saurichthys elongatus (PMU 24010a); and (g) skull of the early ichthyopterygian Phalarodon (PMU 24577). Scale bars are 20 mm in (c) and (e), and 30 mm in (b), (d), (f) and (g).
(Bölaü 1954), have been described from the Rhaetian–Hettangian Höganaäs Formation of the Höganaäs Basin in southern Sweden.

Intense Jurassic volcanism, today revealed by volcanic necks in southern Sweden (Bergelin 2009), created lahar deposits that preserve plant remains in exceptional detail, even including visible cell nuclei (Bornfleure et al. 2014). More recent excavations in similar sediments overlying the Sinemurian–Pliensbachian Höör Sandstone have produced conifer wood with growth increments, permitting reconstruction of palaeoclimate, and pollen assemblages that evince the vegetative community (Vajda et al. 2016).

The Early–Middle Jurassic outcrops on Bornholm are situated within a complex fault block of the NW–SE-trending Sorgenfrei–Tornquist Zone (Gravesen 2009). The stratigraphically oldest finds occur in the Hettangian Sose Bugt Member of the Rønne Formation, and comprise deformation structures interpreted as dinosaurian tracks (Clemmensen et al. 2014). Associated organic-rich beds and abundant plant material otherwise infer a warm and humid palaeoenvironment (Petersen et al. 2003).

The Pliensbachian marginal marine Hasle Formation on Bornholm (Fig. 2a) has produced macroinvertebrates, as well as hybodontiform and neoselachian shark remains, together with rhomaeoaurid and plesiosaurid plesiosaurs (Surlyk & Noe-Nygaard 1986; Rees 1998; Milàn & Bonde 2001; Bonde 2004, 2012; Donovan & Surlyk 2003; Smith 2008). Recently, a small theropod footprint was also found in horizons subject to periodic subaerial exposure (Milàn & Surlyk 2015). In addition, enigmatic Pliensbachian marine amniotes have been reported from East Greenland (Bendix-Almgreen 1976), and Toarcian marine amniote and dinosaurian bones and teeth were recognized from Scandinavian erratics transported to northern Germany during Pleistocene glaciations (Sachs et al. 2016).

The Bajocian–Bathonian Bagå Formation exposed in an abandoned clay pit on the Bornholm coast between Hasle and Rønne has yielded sauropod, thyreophoran and theropod footprints (Milân & Bromley 2005; Milàn 2011) (Fig. 2b). These occur in conjunction with well-preserved fern, conifer and ginkgo fossils (Bartholin 1892; Gry 1969; Koppelhus & Nielsen 1994; Mehlqvist et al. 2009).

Late Jurassic (Kimmeridgian) plesiosaurs have been found on Milne Land in Greenland (Bendix-Almgreen 1976; Smith 2007), as well as on Spitsbergen, where both plesiosaursian vertebræ (Wiman 1914) and articulated skeletons (Kear & Maxwell 2013) were recovered with ichthyosaurian remains that have not yet been formally described. Subsequent systematic exploration of the Spitsbergen Jurassic outcrops by field teams from the University of Oslo (2004–12) has correlated this material with the late Tithonian Slottsmyra Member of the uppermost Agardhfjellet Formation (Hurum et al. 2012) (Fig. 2c). Since then, numerous plesiosaurid and large pliosaurid taxa, as well as ophthalmosaurid ichthyosaurians (Fig. 2d), have been identified (Knutsen et al. 2012a, b, c, d; Drucemiller et al. 2012; Roberts et al. 2014). Rich ammonite assemblages (Wierzbowski et al. 2011) (Fig. 2e) and methane seep horizons have further revealed a diverse ecosystem of bivalves and echinoderms (Hryniewicz et al. 2014 and references therein). Delsett et al. (2015) reviewed this current record in the context of its preservation and geological setting.

The Cretaceous

The terrestrial Jurassic–Cretaceous transition is distinguished at Eriksdal in Skåne, southern Sweden (Vajda & Wigforss-Lange 2006). This time frame marks the nascence of angiosperms, the oldest Scandinavian pollen records of which occur in the Hauterivian Nytorp Sand (Vajda 2001; Vajda & Wigforss-Lange 2006). Latest Jurassic–earliest Cretaceous plant fossils, bivalves, ammonites and an ophthalmosaurid ichthyosaurian skeleton are known from Andoya island in northern Norway (Norborg & Wulff-Pedersen 1997; Norborg et al. 1997). Early Cretaceous strata are also exposed on Bornholm, where the Berriasian Rabekeke, Robbe-dale and Jydegaard formations represent an interlinked barrier spit and lagoonal complex (Noe-Nygaard & Surlyk 1988). These rocks crop out along the coastal cliffs east of Arnager (Gravesen 2009), with the Rabekeke Formation having produced a prolific bone-bed assemblage of atroposaurid, bernissartiid and goniopholid crocodyliforms (Schwarz-Wings et al. 2009), actinopterygian fishes, urodelan and anuran amphibians, indeterminate turtles and lepidosauroids, dromaeosaurid and possible avian theropods, and a single tooth of the multituberculate mammal Summivodon (Lindgren et al. 2004, 2008; Rees et al. 2005). A trample ground with abundant large dinosaurian tracks (up to 700 mm in length) and possible lungfish aestivation burrows is also evident in overlying beds (Surlyk et al. 2008).

The uppermost horizons of the Jydegaard Formation likewise hosts a diverse range of hybodontiform sharks and bony fish, including the lepisosteiform Lepidotes, amioids, pycnodonts and stem teleosts: these occur in conjunction with unidentified turtles, the neosuchian crocodylomorph Pholidosaurus and a scincomorph lizard (Bonde 2004, 2012). Finally, isolated teeth of a dromaeosaurid and possible juvenile sauropod (Bonde & Christiansen 2003; Christiansen & Bonde 2003),
vertebrate coprolites (Milàn et al. 2012a, b), and
mass accumulations of non-marine bivalves and
gastropods have been reported (Noe-Nygaard
et al. 1987; Noe-Nygaard & Surlyk 1988).

Barremian–Aptian ornithopod tracks are known
from the Festningen Sandstone Member of the
Helvetiafjellet Formation on Spitsbergen (Hurum
et al. 2006b). These were first published in the
1960s (Lapparent 1960, 1962), and have been used
to elucidate Boreal high-latitude dinosaurian as-
semblage composition in Fennoscandia during the
Early Cretaceous (Gangloff 2012; Hurum et al.
2016a).

A potential avian femur was recently reported
from the Alban of Spitsbergen (Hurum et al.
2016b), and abundant plant fossils are recognized
from the Nuusuaq Basin in central-west Greenland
(Heer 1883; Koch 1964; Pedersen 1968; Boyd
This region further exposes a substantial marine section (Dam et al. 2009) with diverse Albian–Maastrichtian faunas comprising bivalves (including one of the world’s largest inoceramids measuring 1.78 m), gastropods, decapod crustaceans, brachiopods, bryozoans, corals, sponges (Floris 1967, 1972; Collins & Wienberg Rasmussen 1992), abundant pelagic belemnites, ammonites and actinopterygian fish (Birkelund 1956, 1965; Bendix-Almgreen 1969; Kennedy et al. 1999). The Wendel Hav Basin in NE Greenland (Stemmerik et al. 1998; Alsen 2007) similarly produces occasional Cretaceous ammonites and plesiosaurian remains (Bruhn 1999; Milàn 2009).

The Cenomanian marine Arnegger Greensand Formation on the west coast of Bornholm represents the earliest part of the Scandinavian Late Cretaceous. The representative fauna comprises ammonites, belemnites, bivalves, gastropods, brachiopods and foraminifera, together with abundant invertebrate burrow traces and isolated shark teeth (Kennedy et al. 1981; Larsson et al. 2000). The overlying Coniacian Arnegger Limestone Formation also preserves sponges, ammonites, belemnites and large numbers of bivalves, includingpectinids and inoceramids (Ravn 1916, 1925; Noe-Nygaard & Surylk 1985; Kennedy & Christensen 1991; Tröger & Christensen 1991). The Bavneodde Greensand Formation, which constitutes the youngest Mesozoic unit on Bornholm, contains abundant belemnites, bivalves, gastropods and brachiopods (Surylk 2006).

Charcoalified flowers from late Santonian and/or early Campanian fluvio-lacustrine argillaceous clays in the Kristianstad Basin of Skåne in southern Sweden are world renowned for their assemblage completeness and remarkable preservation (Skarby 1968; Friis et al. 2011). However, it is the highly fossiliferous early Campanian marine succession (Fig. 3a), especially within the restricted Belemmilocammaxammililatus belemnite zone (Christensen 1975), that initiated Mesozoic research in Sweden during the nineteenth (e.g. Nilsson 1827, 1836, 1857; Hisinger 1837; Schröder 1885; Lundgren 1888) and twentieth centuries (Wiman 1916c; Troedsson 1954; Persson 1959, 1962, 1963, 1967). The Kristianstad Basin Campanian fauna (see Sørensen et al. 2013 for the list) represents a distinctive rocky shore benthic invertebrate community (Surylk & Sørensen 2010; Einarssson et al. 2016), coexisting with actinopterygian fish, sharks, rays and chimaeroids (Siverson 1992; Bazzi et al. 2015; Siversson et al. 2015), cheloniod and trionychid turtles (Persson 1959; Scheyer et al. 2012) (Fig. 3b), various mosauridan lizards (e.g. Persson 1959; Lindgren & Siverson 2002, 2004; Lindgren 2004), elasmosaurid and polycotylid plesiosaurians (e.g. Persson 1959, 1962, 1963, 1967, 1990; Einarssson et al. 2010; Sachs et al. 2015), the dyrosaurid crocodilian Aigialosuchus villandensis (Persson 1959), and aquatic hesperornithiform birds (Rees & Lindgren 2005). Terrestrial non-avian dinosaurs, represented by neoceratopsians, ornithopods and a possible theropod (Lindgren et al. 2007; Poropat et al. 2015), inhabited island archipelagos (Surlyk & Christensen 1974), along with a mixed flora (lackland of angiosperms (Debeva) and conifers indicated by leaves and pollen from coeval sediments in the Vomb Trough (Halamski et al. 2016).

Lindgren (2004) recorded mosasaur teeth and bones from late Campanian and earliest Maastrichtian marine strata in Skåne, together with a virtually intact gavialid crocodilian skull (Fig. 3c) with associated postcranial elements of Thoracosaurus scanicus (Troedsson 1924; reassigned to the Cretaceous–Palaeogene species T. macrorhynchus by Brochu 2004) from the marine lower Paleocene (late–middle Danian) of Annetorp near Malmö in SW Sweden (Milàn et al. 2010). Latest Cretaceous fluvial and marine successions are also known from the Kangerlussuaq Basin of SE Greenland (Larsen et al. 2001). These are, as yet, incompletely documented but manifest ammonites, belemnites and bivalves, invertebrate trace fossils, and wood and leaf imprints (Larsen et al. 1999, 2001). Palynological studies have also been undertaken on latest Maastrichtian units in Greenland (Nøhr-Hansen 2012) and the North Sea (Rasmussen & Sheldon 2015).

Undoubtedly, the most famous Scandinavian latest Maastrichtian–Danian boundary section is exposed along the coastal cliffs at the Stevns Klint UNESCO World Heritage site in eastern Denmark (Fig. 3d). Extensive exposures of Maastrichtian chalk also occur on the adjacent islands of Møn and Falster. Collectively, these outcrops form the Møns Klint Formation, which has yielded a profuse marine fauna of approximately 450 invertebrate species (Damholt & Surylk 2012; Hansen & Surylk 2014) (Fig. 3e, f), in addition to an abundant ichnofauna (Bromley & Ekdale 1984; Ekdale & Bromley 1984), coprolites (Milàn 2015), and vertebrate body remains representing 31 identifiable chondrichthyan species (Adolfsson & Ward 2014) actinopterygians (Bonde et al. 2008) and marine amniotes, including mosasaurs (Lindgren & Jagt 2005), cheloniod sea turtles (Karl & Lindow 2009) and gavialid crocodylians (Gravesen & Jakobsen 2012).

Future directions for research

Mesozoic research has a long history in Scandinavia that has contributed to the development of palaeontology as a modern science (Ebbestad 2016). This
proud tradition continues to this day, with dynamic international collaborations and cutting-edge infrastructure facilitating innovative approaches and intensive exploration of its unique fossil resources. In particular, work undertaken in the remote Arctic regions of Svalbard and Greenland has garnered popular appeal, yet continued investigations into the well-documented localities of southern Sweden and Denmark have, over the last 15 years, generated more novel data than ever before. Aspects of this rapidly expanding work are highlighted in this Special Publications volume, which we hope will inspire new lines of inquiry. Indeed, a number of key areas are already attracting attention, such as the Triassic of Greenland, Svalbard and southern Sweden, and the Cretaceous–Palaeogene transition in Denmark. The rapid progress of these studies bodes exciting potential for the future, with
Scandinavia and its Arctic territories likely to reveal further significant discoveries that will have a major impact on the global perspective of Mesozoic biotas and bioevents.

Many have contributed to the successful completion of this work. However, foremost are the authors of the constituent papers, all of whom generously gave of their knowledge, time and support. The Geological Society of London Publishing House also skilfully handled production of the volume and ensured its timely completion. We extend our deepest thanks to all.

References

ADOLFSEN, J.S. & WARD, D.J. 2014. Crossing the boundary: an elasmosbranch fauna from Stevns Klint, Denmark. Palaeontology, 57, 591–629.

ALSEN, P. 2007. The Early Cretaceous (Late Ryazanian–Early Hauterivian) ammonite fauna of North-East Greenland: taxonomy, biostratigraphy, and biogeography. Fossils and Strata, 53, 1–229.

ANDERSON, J.M., ANDERSON, H.M. ET AL. 1999. Patterns of Gondwana plant colonisation and diversification. Journal of African Earth Sciences, 28, 145–167.

BADAWY, A.S., MEHLQVIST, K., VAJDÁ, V., AHLBERG, P. & CALMER, M. 2014. Late Ordovician (Katian) spores in Sweden – oldest land plant remains from Baltic. GFF, 136, 16–21.

BARTHOLIN, C.T. 1892. Nogle i den bornholmske jurafirma forekommende planteforstening. Botanisk Tidsskrift, 18, 12–28.

BAZZI, M., EINAHRIZ, E. & KEAR, B.P. 2015. Late Cretaceous (Campanian) actinopterygian fishes from the Kristianstad Basin of southern Sweden. In: KEAR, B.P., LINDEGREN, J., HURUM, J.H., MILÁN, J. & VAIĐA, V. (eds) Mesozoic Biotas of Scandinavia and Its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 21, 2015, http://doi.org/10.1144/SP434.5

BENDIX-ALMGREN, S.E. 1969. Notes on the Upper Cretaceous and Lower Tertiary fish faunas of northern West Greenland. Meddelelser fra Dansk Geologisk Forening, 19, 204–217.

BENDIX-ALMGREN, S.E. 1976. Palaeovertebrate faunas of Greenland. In: ESCHER, A. & WATT, W.S. (eds) Geology of Greenland. Geological Survey of Greenland, Copenhagen, 536–573.

BERCOVICI, C., CHU, Y., FOREL, M.-B., YU, J. & VAJDA, V. 2015. Terrestrial palaeoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences, 98, 225–246.

BERGELIN, I. 2009. Jurassic volcanism in Skåne, southern Sweden, and its relation to coeval regional and global events. GFF, 131, 165–175.

BIRKELUND, T. 1956. Upper Cretaceous belemnites from West Greenland. Meddelelser om Grønland, 137, 1–28.

BIRKELUND, T. 1965. Ammonites from the Upper Cretaceous of West Greenland. Meddelelser om Grønland, 179, 1–192.

BIRGER, M., SEIDLER, L., STEMMERIK, L. & SURLYK, F. 2006. Ammonoid stratigraphy and sedimentary evolution across the Permian–Triassic boundary in East Greenland. Geological Magazine, 143, 635–656.

BLAZJEWSKI, B., DUFFIN, C.J. ET AL. 2013. Saurichthytes (Pisces, Actinopterygii) teeth from the Lower Triassic of Spitsbergen, with comments on their stable isotope composition (13C and 180) and X-ray microtomography. Polish Polar Research, 34, 23–38.

BÖLAU, E. 1954. The first finds of dinosaurian skeletal remains in the Rhaetic–Liasic of N.W. Scania. GFF, 76, 501–503.

BOMFLEUR, B., McLUGHLIN, S. & VAJDÁ, V. 2014. Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in Royal Ferns. Science, 343, 1376–1377.

BONDE, N. 2004. An Early Cretaceous (Ryazanian) fauna of ‘Purbeck–Wealden’ type at Robeddale, Bornholm, Denmark. In: ARRATIA, G. & TINTORI, A. (eds) Mesozoic Fishes 3 – Systematics, Palaeoenvironments and Biodiversity. Dr. Friedrich Pfeil, Munich, 507–528.

BONDE, N. 2012. Danish dinosaurs: a review. In: GODEFROIT, P. (ed.) Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Indiana University Press, Bloomington, IN, 434–451.

BONDE, N. & CHRISTIANSEN, P. 2003. New dinosaurs from Denmark. Comptes Rendus Palevol, 2, 13–26.

BONDE, N., ANDERSEN, S., HALD, N. & JAKOBSEN, S.L. 2008. Danekræ – Danmarks bedste fossiler. Gyldendal, Copenhagen.

BOYD, A. 1992. Revision of the Late Cretaceous Pautút Flora from West Greenland: Gymnospermopsida (Cycadales, Cycadeoidales, Caytoniales, Ginkgoales, Coniferales). Palaeontographica B, 225, 105–172.

BROCHU, C.A. 2004. A new Late Cretaceous gavialoid crocodylian from eastern North America and the phylogenetic relationships of thoracosaur. Journal of Vertebrate Paleontology, 24, 610–633.

BRÖMLEY, R.G. & EKDALE, A.A. 1984. Trace fossil preservation in flint in the European Chalk. Journal of Paleontology, 58, 298–311.

BRUHN, R. 1999. Plesiosaurer og andet godtfolk på Nordgrønland. Varv, 1999, 109–112.

CHRISTENSEN, W.K. 1975. Upper Cretaceous belemnites from the Kristianstad area in Scania. Fossils and Strata, 7, 1–69.

CHRISTIANSEN, P. & BONDE, N. 2003. The first dinosaur from Denmark. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 227, 287–299.

CLEMMENSEN, L.B., MILÁN, J., PEDERSEN, G.K., JOHANNESSEN, A.B. & LARSEN, C. 2014. Dinosaur tracks in Lower Jurassic coastal plain sediments (Sose Bug Member, Rønne Formation) on Bornholm, Denmark. Lethaia, 47, 485–493.

CLEMMENSEN, L.B., MILÁN, J. ET AL. 2015. The vertebrate-bearing Late Triassic Fleming Fjord Formation of central East Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data. In: KEAR, B.P., LINDEGREN, J., HURUM, J.H., MILÁN, J. & VAIĐA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 16, 2015, http://doi.org/10.1144/SP434.3
COLLINS, J.S.H. & WIENBERG RASMUSSEN, H. 1992. Upper Cretaceous–lower Tertiary decapod crustaceans from West Greenland. Meddelelser om Gronland, 162, 1–46.

COX, C.B. & SMITH, D.G. 1973. A review of the Triassic vertebrate faunas of Svalbard. Geological Magazine, 110, 405–418.

DAM, G., PEDERSEN, G.K., SØNDERHOLM, M., MIDTGAARD, H.H., LARSEN, L.M., NØHR-HANSEN, H. & PEDERSEN, A.K. 2009. Lithostratigraphy of the Cretaceous–Palaeocene Nuussuaq Group, Nuussuaq Basin, West Greenland. Geological Survey of Denmark and Greenland Bulletin, 19.

DAMHOLT, T. & SURLYK, F. 2012. Nomination of Stevns Klint for Inclusion in the World Heritage List. Østsjeldlands Museum, St Heddinge.

DELSET, L.L., NOVIS, I.K., ROBERTS, A.J., KOEVERTS, M.J., HAMMER, Ø., DRUCKENMILLER, P.S. & HURUM, J.H. 2015. The Slottsmeja marine reptile Lagerstätte: depositional environments, taphonomy and diagenesis. In: KEAR, B.P., LINDGREN, J., HURUM, J.H., MILÁN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 16, 2015, updated version published online December 17, 2015, http://doi.org/10.1144/SP434.2

DITCHFIELD, P.W. 1997. High northern palaeolatitude Jurassic–Cretaceous palaeotemperature variation: new data from Kong Karls Land, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 163–175.

DONOVAN, D.T. 1964. Stratigraphy and ammonite fauna of the Volgian and Berriasian rocks of East Greenland. Meddelelser fra Dansk Geologisk Forening, 154, 1–34.

DONOVAN, D.T. & SURLYK, F. 2003. Lower Jurassic (Pliensbachian) ammonites from Bornholm, Baltic Sea, Denmark. In: INESON, J.R. & SURLYK, F. (eds) The Jurassic of Denmark and Greenland. Geologisk Survey of Denmark and Greenland Bulletin, 1, 555–583.

DRUCKENMILLER, P.S., HURUM, J.H., KNUSTEN, E.M. & NAKREM, H.A. 2012. Two new ichthyosaurs (Ichthyosauria: Ophthalmosaurusidae) from the Agardhfjellet Formation (Upper Jurassic: Volgian), Svalbard, Norway. Norwegian Journal of Geology, 92, 311–339.

EBBESDAL, J.O.R. 2016. Carl Wiman and the foundation of Mesozoic vertebrate palaeontology in Sweden. In: KEAR, B.P., LINDGREN, J., HURUM, J.H., MILÁN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online March 1, 2016, http://doi.org/10.1144/SP434.15

EINARSSON, E., LINDGREN, J., KEAR, B.P. & SIVERSON, M. 2010. Mosasaur bite marks on a plesiosaur propodial from the Campanian (Late Cretaceous) of southern Sweden. GFF, 132, 123–128.

EINARSSON, E., PRASZKIER, A. & VAJDA, V. 2016. First evidence of the Cretaceous decapod crustacean Protocallichianassa from Sweden. In: KEAR, B.P., LINDGREN, J., HURUM, J.H., MILÁN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online January 29, 2016, http://doi.org/10.1144/SP434.6

EIKDALE, A.A. & BROMLEY, R.G. 1984. Sedimentology and ichnology of the Cretaceous–Tertiary boundary in Denmark; implications for the causes of the terminal Cretaceous extinction. Journal of Sedimentary Research, 54, 681–703.

EVANS, M. 2010. The roles played by museums, collections and collectors in the early history of reptile palaeontology. In: MOODY, R.T.J., BUFFETAUT, E., NAISCH, D. & MARTILL, D.M. (eds) Dinosaurs and Other Extinct Saurians: A Historical Perspective. Geological Society, London, Special Publications, 343, 5–29, http://doi.org/10.1144/SP343.2

FLORIS, S. 1967. West Greenland scleractinian corals from Upper Cretaceous and Lower Tertiary. Meddelelser fra Dansk Geollogisk Forening, 17, 192–193.

FLORIS, S. 1972. Scleractinian corals from the Upper Cretaceous and Lower Tertiary of Nügssuaq, West Greenland. Meddelelser om Gronland, 100, 1–132.

FRIIS, E.M., CRANE, P.R. & PEDERSEN, R.K. 2011. Early Flowers and Angiosperm Evolution. Cambridge University Press, New York.

GANGLOFF, R.A. 2012. Dinosaurs Under the Aurora. Indiana University Press, Bloomington, IN.

GERLING, G. & AHLBERG, A. 1994. Late Triassic and Early Jurassic dinosaur footprints in the Höganas Formation of southern Sweden. Ichnos, 3, 99–105.

GRAVESEN, O. 2009. Structural analysis of superposed fault systems of the Bornholm horst block, Tornquist Zone, Denmark. Bulletin of the Geological Society of Denmark, 57, 25–49.

GRAVESEN, P. & JAKOBSEN, S.L. 2012. Skrivekriddets Fossilier. Gyldendal, Copenhagen.

GRY, H. 1969. Megaspores from the Jurassic of the island of Bornholm, Denmark. Meddelelser fra Dansk Geologisk Forening, 19, 69–89.

HAGSTRÖM, J. 1997. Land-derived palynomorphs from the Silurian of Gotland, Sweden. GFF, 119, 301–316.

HALAMSKI, A.T., KVÁČEK, J. & VAJDA, V. 2016. Late Cretaceous (Campanian) leaf and palynoflora from southern Skåne, Sweden. In: KEAR, B.P., LINDGREN, J., HURUM, J.H., MILÁN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online April 19, 2016, http://doi.org/10.1144/SP434.16

HANSEN, B.B., MILÁN, J. ET AL. 2015. Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. In: KEAR, B.P., LINDGREN, J., HURUM, J.H., MILÁN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 17, 2015, http://doi.org/10.1144/SP434.12

HANSEN, T. & SURLYK, F. 2014. Marine macrofossil communities in the uppermost Maastrichtian chalk of Stevns Klint, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 323–344.

HARRIS, T.M. 1931. Rhaetic floras. Biological Reviews, 6, 133–162.

HEER, O. 1883. Oversigt over Gronlands fossile flora. Meddelelser om Gronland, 5, 79–202.

MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION 9
The palaeoecology of the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from Spitsbergen, Svalbard.

Hurum, J.H., Bergan, M., Müller, R., Nystuen, J.P. & Klein, N. 2006a. A Late Triassic dinosaur bone, offshore Norway. Norwegian Journal of Geology, 86, 93–99.

Hurum, J.H., Milán, J., Hammer, O., Midtkandal, I., Amundsen, H. & Sæther, B. 2006b. Tracking polar dinosaurs – new finds from the Lower Cretaceous of Svalbard. Norwegian Journal of Geology, 86, 397–402.

Hurum, J.H., Nakrem, H.A., Hammer, Ø., Knutsen, E.M., Druckenmiller, P.S., Hryniewicz, K. & Novis, L.K. 2012. An Arctic Lagerstätte – the Slottsøya Member of the Aghardhfjellet Formation (Upper Jurassic–Lower Cretaceous) of Spitsbergen. Norwegian Journal of Geology, 92, 55–64.

Hurum, J.H., Roberts, A.J., Nakrem, H.A., Stenløkk, J.A. & Mørk, A. 2014. The first recovered ichthyosaur from the Middle Triassic of Edøyeya, Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 97–110.

Hurum, J.H., Druckenmiller, P.S., Hammer, Ø., Nakrem, H.A. & Olausen, S. 2016a. The theropod that wasn’t: an ornithopod tracksite from the Helvetiafjellet Formation (Lower Cretaceous) of Boltodden, Svalbard. In: Kear, B.P., Lindgren, J., Hurum, J.H., Milán, J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online January 6, 2016, http://doi.org/10.1144/SP434.10

Hurum, J.H., Roberts, A.J. et al. 2016b. Bird or mammal-like dinosaur? A femur from the Alban strata of Spitsbergen, Arctic Norway. Acta Palaeontologica Polonica, 67, 137–147.

Hisinger, W. 1837. Letheae Sveciae seu Petricratae Sveciae, iconibus et characteribus illustrata. P. A. Norstedt et Filiîi, Stockholm.

Hryniewicz, K., Nakrem, H.A., Hammer, Ø., Little, C.T.S., Kaim, A., Sandy, M.R. & Hurum, J. 2014. The palaeoecology of the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from Spitsbergen, Svalbard. Lethaia, 48, 353–374.

Hulke, J.W. 1873. Memorandum on some fossil vertebrates collected by the Swedish expedition to Spitzbergen in 1864 and 1868. Bihang till Kungliga Svenska Vetenskapakadeemiens Handlingar, 1, 1–11.

Hurum, J.H., Bergan, M., Müller, R., Nystuen, J.P. & Klein, N. 2006a. A Late Triassic dinosaur bone, offshore Norway. Norwegian Journal of Geology, 86, 93–99.

Kennedy, W.J. & Christensen, W.K. 1991. Coniacian and Santonian ammonites from Bornholm, Denmark. Bulletin of the Geological Society of Denmark, 38, 203–226.

Kennedy, W.J., Hancock, J.M. & Christensen, W.K. 1981. Alban and Cenomanian ammonites from the island of Bornholm (Denmark). Bulletin of the Geological Society of Denmark, 29, 203–244.

Kennedy, W.J., Nørh-Hansen, H. & Dam, G. 1999. The youngest Maastrichtian ammonite faunas from Nuussuaq, West Greenland. Geology of Greenland Survey Bulletin, 184, 13–17.

Klein, H., Milán, J. et al. 2015. Archosaur footprints (cf. Brachycrotherium) with unusual morphology from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland. In: Kear, B.P., Lindgren, J., Hurum, J.H., Milán, J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 16, 2015, http://doi.org/10.1144/SP434.1

Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. 2012a. Redescription and taxonomic clarification of ‘Tricleidus svalbardensis’ based on new material from the Agardhfjellet Formation (Middle Volgian), central Spitsbergen, Norway. Norwegian Journal of Geology, 92, 175–186.

Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. 2012b. Two species of long-necked plesiosaurians (Reptilia: Sauropterygia) from the Upper Jurassic (Middle Volgian) Agardhfjellet Formation of central Spitsbergen, Norway. Norwegian Journal of Geology, 92, 187–212.

Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. 2012c. A new plesiosaurid (Reptilia: Sauropterygia) from the Agardhfjellet Formation (Middle Volgian) of central Spitsbergen, Norway. Norwegian Journal of Geology, 92, 213–234.

Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. 2012d. A new species of Pliosaurus (Sauropterygia: Plesiosauria) from the Middle Volgian, central Spitsbergen, Norway. Norwegian Journal of Geology, 92, 235–258.

Koch, B.E. 1964. Review of fossil floras and nonmarine deposits of West Greenland. Geological Society of America Bulletin, 75, 535–548.

Koppelhus, E.B. & Nielsen, L.H. 1994. Palynostratigraphy and palaeoenvironments of the Lower to Middle Jurassic Bagå Formation of Bornholm, Denmark. Palynology, 18, 139–194.

Lapparent, A.F. de 1960. Decouverte de traces de pas de dinosaures dans le Crétacé de Spitsberg. Comptes rendus de l’Academie des Sciences, 251, 1399–1400.

Lapparent, A.F. de. 1962. Footprints of dinosaur in the Lower Cretaceous of Vestspsitbergen – Svalbard. Norsk Polarinstitutt Årbok, 1960, 14–21.

Larsen, M., Hamberg, L., Olausen, S., Preuss, T. & Stemmerik, L. 1999. Sandstone wedges of the Lower Cretaceous–Lower Tertiary Kangerlussuaq Basin, East Greenland – outcrop analogues to the offshore North Atlantic. In: Fleet, A.J. & Boldy, S.A.R. (eds) Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. Geological Society, London, 337–348, http://doi.org/10.1144/0050337.
LARSEN, M., BIERAGER, M., NEDKVITNE, T., OLAUSSEN, S., & PREUSS, T. 2001. Pre-basaltic sediments (Aptian–Paleocene) of the Kangerlussuaq Basin, southern East Greenland. *Geology of Greenland Survey Bulletin*, 189, 99–106.

LARSSON, K., SOLAKIUS, N. & VAJDA, V. 2000. Foraminifera and palynomorphs from the greensand–limestone sequences (Aptian–Coniacian) in southwestern Sweden. *Geologische Jahrbuch für Geologie und Paläontologie*, 216, 277–312.

LINDGREN, J. 2004. Stratigraphic distribution of Campanian and Maastrichtian mosasaurs in Sweden – evidence of an intercontinental marine extinction event? *GFF*, 126, 221–229.

LINDGREN, J. & JAGT, J.W.M. 2005. Danish mosasaurs. *Netherlands Journal of Geoscience*, 84, 315–320.

LINDGREN, J. & SIVERSON, M. 2002. *Tylosaurensivoensis*: a giant mosasaur from the early Campanian of Sweden. *Transactions of the Royal Society of Edinburgh, Earth Sciences*, 93, 73–93.

LINDGREN, J. & SIVERSON, M. 2004. The first record of the mosasaur *Clidastes* from Europe and its palaeogeographical implications. *Acta Palaeontologica Polonica*, 49, 219–234.

LINDGREN, J., REES, J., SIVERSON, M. & CUNY, G. 2004. The first Mesozoic mammal from Scandinavia. *GFF*, 126, 325–330.

LINDGREN, J., CURRIE, P.J., SIVERSON, M., REES, J., CEDERSTRÖM, P. & LINDGREN, F. 2007. The first neoceratopsian dinosaur remains from Europe. *Palaeontology*, 50, 929–937.

LINDGREN, J., CURRIE, P.J., REES, J., SIVERSON, M., LINDSTRÖM, S. & ALVMARK, C. 2008. Theropod dinosaur teeth from the lowestmost Cretaceous Rabekke Formation on Bornholm, Denmark. *Geobios*, 41, 253–262.

LOGG, C.V., TWITCHETT, R.J., DILCHER, D.L., VAN KONINENBURG-VAN CITERT, J.H. & VISSCHER, H. 2001. Life in the end-Permian dead zone. *Proceedings of the National Academy of Sciences of the United States of America*, 98, 7879–7883.

LUNDGREN, B. 1888. *List of the Fossil Faunas of Sweden. III. Mesozoic*. P. A. Norstedt & Söner, Stockholm.

MAXWELL, E.E. & KEAR, B.P. 2013. Triassic ichthyopertygian assemblages of the Svalbard archipelago: a reassessment of taxonomy and distribution. *GFF*, 135, 85–94.

MCLoughlin, S. 2011. *Glossopteris* – insights into the architecture and relationships of an iconic Permian Gondwanan plant. *Journal of the Botanical Society of Bengal*, 65, 93–106.

MCLoughlin, S. & STRULLU-DERRIEN, C. 2015. Biota and palaeoenvironment of a high middle-latitude Late Triassic peat-forming ecosystem from Hopen, Svalbard archipelago. *In: KEE, B.P., LINDGREN, J., HURUM, J.H., MILAN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories*. Geological Society, London, Special Publications, 434. First published online December 23, 2015, http://doi.org/10.1144/SP434.4

MEHLQVIST, K., VAJDA, V. & LARSSON, L. 2009. An assemblage of a Middle Jurassic flora from Bornholm, Denmark – a study of a historic collection at Lund University, Sweden. *GFF*, 131, 137–146.

MEHLQVIST, K., STEEMANS, P. & VAJDA, V. 2015. First evidence of Devonian strata in Sweden – A palynological investigation of Övedskloster drillcores 1 and 2, Skåne, Sweden. *Review of Palaeobotany and Palynology*, 221, 144–159.

MILAN, J. 2009. På svaneøglejagt 81° nord–gensyn met en 155 millioner å gammelt fossil. *Geologisk Nyt*, 2009, 10–15.

MILAN, J. 2011. New theropod, thyreophoran, and small sauropod tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark. *Bulletin of the Geological Society of Denmark*, 59, 51–59.

MILAN, J. & BONDE, N. 2001. Svanøegler, nye fund fra Bornholm. *Varv*, 2001, 3–8.

MILAN, J. & BROMLEY, R.G. 2005. Dinosaur footprints from the Middle Jurassic Bagå Formation, Bornholm, Denmark. *Bulletin of the Geological Society of Denmark*, 52, 7–15.

MILAN, J. & GHERLINI, G. 2004. A probable thyreophoran (Dinosauria, Ornithischia) footprint from the Upper Triassic of southern Sweden. *Bulletin of the Geological Society of Denmark*, 51, 71–75.

MILAN, J. & SURLIK, F. 2015. An enigmatic, diminutive theropod footprint in the shallow marine Pliensbachian Hasle Formation, Bornholm, Denmark. *Leiathia*, 48, 429–435.

MILAN, J., LINDGREN, J. & SLOTH, C. 2010. Hjemmekig i fortidsskrokdille – CT-scanning af et *Thoracosaurs*kranium. *Geologisk Nyt*, 2010, 12–16.

MILAN, J., CLEMMENSEN, L.B. ET AL. 2012a. A preliminary report on coprolites from the Late Jurassic part of the Kap Steward Formation, Jameson Land, East Greenland. *New Mexico Museum of Natural History and Science Bulletin*, 57, 203–205.

MILAN, J., RASMUSSEN, B.W. & BONDE, N. 2012b. Coprolites with prey remains and traces from coprophagous organisms from the Lower Cretaceous (Late Berriasian) Jydegaard Formation of Bornholm, Denmark. *New Mexico Museum of Natural History and Science Bulletin*, 57, 235–240.

MILAN, J., HUNT, A.P., ADOLPSEN, J.S., RASMUSSEN, B.W. & BIERAGER, M. 2015. First record of a vertebrate coprolite from the Upper Cretaceous (Maastrichtian) chalk of Stevns Klint, Denmark. *New Mexico Museum of Natural History and Science Bulletin*, 67, 227–229.

MÖRK, A., DALLMANN, W.K. ET AL. 1999. Mesozoic lithostratigraphy. *In: DALLMANN, W.K. (ed.) Lithostratigraphic Lexicon of Svalbard: Upper Paleozoic to Quaternary Bedrock. Review and Recommendations for Nomenclatural Use*. Norsk Polarinstitutt, Tromsø, 127–214.

NIELSEN, E. 1935. The Permian and Eotriassic vertebrate-bearing Beds at Godthaab Gulf (East Greenland). *Meddelelser om Grønland*, 98, 1–111.

NIELSEN, E. 1942. Studies on Triassic Fishes I. *Glaucoplepis* and *Boreosomus*. *Meddelelser om Grønland*, 138, 1–394.

NIELSEN, E. 1949. Studies on Triassic Fishes from Greenland II. *Australosomus* and *Birgeria*. *Meddelelser om Grønland*, 1949, 1–309.

NILSSON, S. 1827. *Petrificata Suecana formationis Cretacea, descripta et iconibus illustrata*. Pars prior. *Ver-tebrata et Mollusca sistens*. Londini Gothorum, Lund.
Nilsson, S. 1836. Fossilia amphibier, funna i Skåne och beskrifna af S. Nilsson. Kongliga Vetenskaps-Akademins Handlingar, 1835, 131–141.

Nilsson, S. 1857. Om fossila saurior och fiskar, funna i Skånes kritformation. Offert af Kongliga Vetenskaps-Akademiens Förhandlingar, 13, 47–49.

Nøe-Nygaard, N. & Sørløk, R. 1985. Mound bedding in a sponge-rich Coniacian chalk, Bornholm, Denmark. Bulletin of the Geological Society of Denmark, 34, 237–249.

Nøe-Nygaard, N. & Sørløk, F. 1988. Washover fan and brackish bay sedimentation in the Berriasian–Valanginian of Bornholm, Denmark. Sedimentology, 35, 197–217.

Nøe-Nygaard, N., Sørløk, F. & Płasecki, S. 1987. Bivalve mass mortality caused by toxic dinoflagellate blooms in a Berriasian–Valanginian lagoon, Bornholm, Denmark. Palaeoark, 2, 263–273.

Nør-Hansen, H. 2012. Palynostratigraphy of the Cretaceous–lower Palaeogene sedimentary succession in the Kangerlussuaq Basin, southern East Greenland. Review of Palaeobotany and Palynology, 178, 59–90.

Nørborg, A.K. & Wulff-Pedersen, E. 1997. Andøyas mesozoiske bergarter og fossiler. Naturen, 1, 40–45.

Nørborg, A.K., Dalland, A., Heintz, N. & Nørkem, H.A. 1997. Catalogue of Jurassic/Cretaceous Fossils And Sedimentary Rocks from Andøya, Northern Norway. Collections in the Paleontological Museum, Oslo, the Bergen Museum, the Tromsø Museum, and the Swedish Museum of Natural History, Stockholm. Contributions from the Paleontological Museum, University of Oslo, 406.

Pedersen, K.R. 1968. Angiospermous leaves from the Lower Cretaceous Kone Formation of northern West Greenland. Rapport Grønlands Geologiske Undersøgelse, 15, 17–18.

Persson, P.O. 1959. Reptiles from the Senonian (U. Cret.) of Scania (S. Sweden). Arkiv för Mineralogi och Geologi, 2, 431–478.

Persson, P.O. 1962. Notes on some reptile finds from the Mesozoic of Scania. Geologiska Föreningens Förhandlingar, 84, 144–150.

Persson, P.O. 1963. Studies on Mesozoic Marine Reptile Faunas with Particular Regard to the Plesiosauria. Publications from the Institutes of Mineralogy, Palaeontology, and Quaternary Geology, University of Lund, Sweden, 118.

Persson, P.O. 1967. New finds of plesiosaurian remains from the Cretaceous of Scania. Geologiska Föreningens i Stockholm Förhandlingar, 89, 67–73.

Persson, P.O. 1990. A plesiosaurian bone from a Cretaceous fissure-filling in NE Scania, Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 112, 141–142.

Petersen, H.L., Nielsen, L.H., Koppelhus, E.B. & Sørensen, H.S. 2003. Early and Middle Jurassic mires of Bornholm and the Fennoscandian Border Zone: a comparison of depositional environments and vegetation. In: Ineson, J.R., & Sørløk, F. (eds) The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 631–656.

Poropat, S.F., Einarsson, E., Lindgren, J., Bazzi, M., Lagerstam, C. & Kear, B.P. 2015. Late Cretaceous dinosaurian remains from the Kristianstad Basin of southern Sweden. In: Kear, B.P., Lindgren, J., Hurum, J.H., Milán, J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 16, 2015, http://doi.org/10.1144/SP434.8

Rasmussen, J.A. & Sheldon, E. 2015. Late Maastrichtian foraminiferal response to sea-level change and organic flux, Central Graben area, Danish North Sea. In: Kear, B.P., Lindgren, J., Hurum, J.H., Milán, J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 17, 2015, http://doi.org/10.1144/SP434.13

Ravn, J.P. 1916. Kridfaelejningerne paa Bornholms Sydvestkyst og deres Fauna. 1. Danmarks Geologiske Undersøgelses, serie 2, 30, 1–40.

Ravn, J.P. 1925. Det cenomane Basalkonglomerat paa Bornholm. Danmarks Geologiske Undersøgelser, Serie 2, 42, 1–64.

Rees, J. 1998. Early Jurassic selachians from the Hasle Formation on Bornholm, Denmark. Acta Palaeontologica Polonica, 43, 439–452.

Rees, J. & Lindgren, J. 2005. Aquatic birds from the Upper Cretaceous (Lower Campanian) of Sweden and the biology and distribution of hesperornithiforms. Palaeontology, 48, 1321–1329.

Rees, J., Lindgren, J. & Evans, S.E. 2005. Amphibians and small reptiles from the Berriasian Råbekke Formation on Bornholm, Denmark. GFF, 127, 233–238.

Roberts, A.J., Druckenmiller, P.S., Søyre, G.P. & Hurum, J.H. 2014. A new Upper Jurassic opthalmosaur ichthyosaur from the Slottsmøya Member, Agardhjellet Formation of central Spitsbergen. Plos One, 9, e103152.

Rudwick, M.J. 2008. The Meaning of Fossils. Episodes in the History of Palaeontology. University of Chicago Press, Chicago, IL.

Sachs, S., Lindgren, J. & Siverson, M. 2015. A partial plesiosaurian braincase from the Upper Cretaceous of Sweden. In: Kear, B.P., Lindgren, J., Hurum, J.H., Milán, J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 16, 2015, http://doi.org/10.1144/SP434.7

Sachs, S., Hornung, J.J., Lierl, H.-J. & Kear, B.P. 2016. Plesiosaurian fossils from Baltic glacial erratics: evidence of Early Jurassic marine amniotes from the southwestern margin of Fenoscandia. In: Kear, B.P., Lindgren, J., Hurum, J.H., Milán, J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online January 22, 2016, http://doi.org/10.1144/SP434.14

Sæve-Söderbergh, G. 1936. On the morphology of Triassic stegocephalians from Spitsbergen, and the interpretation of the endocranium in the labyrinthodontia. Kongliga Svenska Vetenskapsakademien's Handlingar, Series 16, 3, 1–181.

Scheyer, T.M., Mörs, T. & Einarsson, E. 2012. First record of soft-shelled turtles (Cryptodira, Trionychidae) from the Late Cretaceous of Europe. Journal of Vertebrate Paleontology, 32, 1027–1032.
MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION

SCHRÖDER, H. 1885. Saurierreste aus der baltischen Oberkreide. Jahrbuch der Königlich Preussischen Geologischen Landesanstalt und Bergakademie zu Berlin, 1884, 293–333.

SCHWARZ-WINGS, D., REES, J. & LINDGREN, J. 2009. Lower Cretaceous Mesoeucrocodylians from Scandinavia (Denmark and Sweden). Cretaceous Research, 30, 1345–1355.

SHA, J., OLSEN, P.E. ET AL. 2015. Triassic–Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China). Proceedings of the National Academy of Sciences of the United States of America, 112, 3624–3629.

SIVERTSON, M. 1992. Biology, dental morphology and taxonomy of lamniform sharks from the Campanian of the Kristianstad Basin, Sweden. Palaeontology, 35, 519–554.

SIVERTSON, M., COOK, T.D., CEDERSTRÖM, P. & RYAN, H.E. 2015. Early Campanian (Late Cretaceous) squatiniform and synechodontiform selachians from the Aåsen locality, Kristianstad Basin, Sweden. In: KEAR, B.P., LINDGREN, J., HURUM, J.H., MILÁN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434. First published online December 16, 2015, http://doi.org/10.1144/SP434/9

SKARRY, A. 1968. Extratropical pollenites (Pflug) emend. From the Upper Cretaceous of Scania, Sweden. Stockholm Contributions in Geology, 16, 1–60.

SMITH, A.S. 2007. The back-to-front pliosaur Cryptoclidus (Atractoclidus) aldingeri from the Kimmeridgian of Milne Land, Greenland. Bulletin of the Geological Society of Denmark, 55, 1–7.

SMITH, A.S. 2008. Plesiosaurs from the Pliensbachian (Lower Jurassic) of Bornholm, Denmark. Journal of Vertebrate Paleontology, 28, 1213–1217.

SPATH, L.F. 1932. The invertebrate faunas of the Bathonian deposits of Jameson Land (East Greenland). Meddelelser om Gronland, 87, 1–158.

STEMMERIK, L., DALHOFF, F., LARSEN, B.D., LYCK, J., MATHIENSEN, A. & NILSSON, I. 1998. Wandel Sea Basin, eastern north Greenland. Geology of Greenland Survey Bulletin, 180, 55–62.

STEMMERIK, L., BENDIX-ALMGREEN, S.E. & PIASECKI, S. 2001. The Permian–Triassic boundary in central East Greenland: past and present views. Bulletin of the Geological Society of Denmark, 48, 159–167.

STENSSØ, E.A. 1921. Triassic fishes from Spitzbergen. Part I. Holzhauern, Vienna.

STENSSØ, E.A. 1925. Triassic fishes from Spitzbergen. Part II. Kungliga Svenska Vetenskapsakademiens Handlingar, Serie 3, 2, 1–261.

SULEJ, T., WOLNIEMCZ, A., BONDE, N., BLAŻEJOWSKI, B., NIEDZWIEZKI, G. & TALANDA, M. 2014. New perspectives on the Late Triassic vertebrates of East Greenland: preliminary results of a Polish–Danish palaeontological expedition. Polish Polar Research, 35, 541–552.

SURLYK, F. 1990. Timing, style and sedimentary evolution of Late Palaeozoic–Mesozoic extensional basins of East Greenland. In: HARDMAN, R.F.P. & BROOKS, J. (eds) Tectonic Events Responsible for Britain’s Oil and Gas Reserves. Geological Society, London, Special Publications, 55, 107–125, http://doi.org/10.1144/GSL.SP.1990.055.01.05

SURLYK, F. 2006. Fra Ørkener til varme have. In: JENSEN, K.S. (ed.) Naturen i Danmark, Geologien. Gyldendal, Copenaghen, 139–180.

SURLYK, F. & CHRISTENSEN, W.K. 1974. Epifaunal zonation on an Upper Cretaceous rocky coast. Geology, 2, 529–534.

SURLYK, F. & NOE-NYGAARD, N. 1986. Hummocky cross-stratification from the Lower Jurassic Hasle Formation of Bornholm, Denmark. Sedimentary Geology, 46, 259–273.

SURLYK, F. & SØRENSEN, A.M. 2010. An early Campanian rocky shore at Ivø Klack, southern Sweden. Cretaceous Research, 31, 567–576.

SURLYK, F., MILÅN, J. & NOE-NYGAARD, N. 2008. Dinosaur tracks and possible lungfish aestivation burrows in a shallow coastal lake; lowermost Cretaceous, Bornholm, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 253–264.

SURLYK, F., RASMUSSEN, S.L. ET AL. 2013. Upper Campanian–Maastrichtian holostratigraphy of the eastern Danish Basin. Cretaceous Research, 46, 232–256.

SØRENSEN, A.M., SURLYK, F. & LINDGREN, J. 2013. Food resources and habitat selection of a diverse vertebrate fauna from the upper lower Campanian of the Kristianstad Basin, southern Sweden. Cretaceous Research, 42, 85–92.

TROEDSSON, G.T. 1924. On crocodilian remains from the Danian of Sweden. Lands Universitets Arsskrift, 20, 1–75.

TROEDSSON, G.T. 1954. Västra Göinge härads geologi. Västra Göinge Hembygdsföreningens Skrifter, 2, 63–157.

TRÖGER, K.A. & CHRISTENSEN, W.K. 1991. Upper Cretaceous (Cenomanian–Santonian) inoceramid bivalve faunas from the island of Bornholm, Denmark. Danmarks Geologiske Undersøgelser, Serie A, 28, 1–28.

TWITCHETT, R.J., LOOY, C.V., MORANTE, R., VISSCHER, H. & WIGNALL, P.B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 29, 351–354.

VAJDA, V. 2001. Aalenian to Cenomanian palynofloras of SW Scania, Sweden. Acta Palaeontologica Polonica, 46, 403–426.

VAJDA, V. & WIGFORS-LANGE, J. 2006. The Jurassic–Cretaceous transition of Southern Sweden – palynological and sedimentological interpretation. Progress in Natural Science, 16, 1–38.

VAJDA, V. & WIGFORS-LANGE, J. 2009. Onshore Jurassic of Scandinavia and related areas. GFF, 131, 5–23.

VAJDA, V., CALMER, M. & AHLBERG, A. 2013. Palynostratigraphy of dinosaur footprint-bearing deposits from the Triassic–Jurassic boundary interval of Sweden. GFF, 135, 120–130.

VAJDA, V., LINDSBERG, H. & MCLoughlin, S. 2016. Disrupted vegetation as a response to Jurassic volcanism in southern Sweden. In: KEAR, B.P., LINDGREN, J., HURUM, J.H., MILÅN, J. & VAJDA, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories.
Wiman, C. 1914. Ein Plesiosaurierwirbel aus dem jüngeren Mesozoic Spitzbergens. Bulletin Uppsala Universitet, Mineralogisk–Geologiska Institut, 12, 201–204.

Wiman, C. 1916a. Ein Plesiosaurierwirbel aus der Trias Spitzbergens. Bulletin of the Geological Institute of the University of Uppsala, 13, 223–226.

Wiman, C. 1916b. Notes on the marine Triassic reptile fauna of Spitsbergen. University of California Publications, Bulletin of the Department of Geology, 10, 63–73.

Wiman, C. 1916c. Blocktransport genom saurier. Geologiska Föreningens Förhandlingar, 38, 369–380.

Wiman, C. 1928. Eine neue marine Reptilien-Ordnung aus der Trias Spitzbergens. Bulletin of the Geological Institute of the University of Uppsala, 22, 183–196.

Wiman, C. 1933. Über Grippia longirostris. Nova Acta Regiae Societas Scientarum Upsaliensis Serie IV, 9, 1–19.