Abstract Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.

Keywords: electroencephalography, computational modeling, multiscale modeling, clinical applications

1 Introduction

Electroencephalography (EEG) has applications in many fields, spanning from basic neuroscientific research to clinical domains. However, despite the technological advances in recording precision, the full potential of EEG is currently not being exploited. One possible way to do so is to use computational models in order to integrate findings from electrophysiology, network-level models (the level of neuroimaging), and behavior (Franceschiello
et al., 2018, 2019). A model is defined in terms of a set of equations which describe the relationships between variables. Importantly, models exist for different spatial scales (Varela et al., 2001; Deco et al., 2008a), spanning from the single cell spike train up to macroscopic oscillations. The equations are used to simulate how each variable changes over time, or, in rare cases, to find analytical solutions for the relationships among the variables. The dynamics of the resulting time series are also influenced by a set of parameters, which can either be estimated from available data - for example, a model which simulates the firing of a certain neuron type could contain a time constant estimated from recordings on that type of neuron in rodents - or its value can be varied systematically in an exploratory manner. The goal is to produce time series of variables that can be compared to real data. In particular, one can simulate perturbations to brain activity, be it sensory stimulation, a therapeutic intervention like DBS or a drug, or a structural change due to the onset of a pathology, like neurodegeneration or a lesion, and predict what would be the resulting alterations observed in neural and clinical data.

An important application of EEG models is in the clinical domain. Psychiatric and neurological disorders impact a growing portion of the population, both as patients and caregivers, and with an enormous cost - both economical and humanitarian - to healthcare systems worldwide (Steel et al., 2014; Vigo et al., 2016; Feigin et al., 2019). One of the main obstacles in advancing patient care is the lack of individual diagnosis, prognosis, and treatment planning (Wium-Andersen et al., 2017). Computational models can be adapted to the individual by setting their parameters according to available data (i.e. either setting the parameter directly, if it is measurable, or looking for the parameter value which results in time series whose dynamics match recorded data). The adjusted parameter(s) can then be related to clinical markers, symptoms, and behavior, allowing for example to discriminate between pathologies. Using models in this personalized manner could provide additional diagnostic features in the form of model parameters and model output, eventually assisting clinicians in diagnosis and treatment planning.

Another obstacle is a general lack of scientific knowledge of disease mechanisms, including the mechanisms by which therapies exert their effect. As an example, deep brain stimulation (DBS) is a highly effective treatment for advanced Parkinsonism, in which electric pulses are delivered directly to certain deep brain structures via permanently implanted electrodes. Yet, it is largely unknown how exactly the applied stimulation manages to suppress motor symptoms such as tremor (Chiken and Nambu, 2016). This is also because the way in which motor symptoms result from the degradation of dopaminergic neurons in the substantia nigra is not fully understood (McGregor and Nelson, 2019). Besides animal models - which have their own ethical issues - *in silico* models are an indispensable tool for understanding brain disorders. Combining data available from a patient or group of patients with knowledge and hypotheses about mechanisms, a model can be generated which can help test these hypotheses.

Last but not least, models are much cheaper than animal testing or clinical trials. While models will not replace these approaches - at least not in the foreseeable future - they could help to formulate more specific hypotheses and thus, lead to smaller-scale experiments. Collecting invasive data is not generally possible in humans. EEG is an extremely versatile technology which allows non-invasive recording of neural activity in behaving humans. EEG is a cheap and portable technology, particularly compared to (f)MRI and MEG. Apart from these cost-efficiency considerations, EEG, like MEG, is a direct measure of the electromagnetic fields generated by the brain, and allows millisecond-resolution recordings, thus giving access to rich aspects of brain function which can inform models in a way that e.g. fMRI cannot (see section 2 for more details). In general, using different complementary sources of data to construct and validate a model will lead to better model predictions, as each recording technique has its own strengths and weaknesses, and a multimodal approach can balance them.

In our opinion, there are mostly two reasons why EEG has not been used more extensively in modeling studies, and particularly in a clinical context. First, there are numerous technical problems which make the processing and interpretation of EEG data challenging. EEG - like MEG - is measured on the scalp, and the problem of projecting this 2D-space into the 3D-brain space arises (Michel and Brunet, 2019). While multiple solutions exist for this inverse problem, it is unclear which one is the best and under which circumstances (Hassan et al., 2014; Mahjoory et al., 2017; Hedrich et al., 2017). EEG data require extensive preprocessing, e.g. removal of artifacts due to movements, eye blinks, etc., but these steps are far from being standardized, and many options exist. The recently started EEG-BIDS effort (Pernet et al., 2019) is a step towards the direction of standardization of EEG data and should facilitate, alongside with the much larger amount of publicly available data, studies that systematically evaluate the impact of preprocessing steps and compare source reconstruction algorithms. As the interest in EEG rises, the need to resolve these issues will trigger larger efforts that will benefit the entire community.
The contribution of this paper is threefold. First, this article summarizes computational approaches at different spatial scales in EEG, targeting non-experts readers. To the best of our knowledge, this paper represents the first review on this topic. Second, we will point out several ways in which computational models integrate EEG recordings, by using biologically relevant variables. Third, we discuss the clinical applications of computational models in EEG which have been developed. The field is greatly expanding and contains promising advancements both from research and clinical standpoints. We believe that this overview will make the field accessible for a broad audience, and indicate the next steps required to push modeling of EEG forward.

2 Electroencephalography

EEG is a non-invasive neuroimaging technique that measures the electrical activity of the brain (Biasiucci et al., 2019). EEG recordings have been a driver of research and clinical applications in neuroscience and neurology for nearly a century. EEG relies on the placement of electrodes on the person’s scalp, measuring the postsynaptic potentials of pyramidal neurons (Tivadar and Murray, 2019; da Silva, 2013). EEG does not directly measure the action potentials of neurons, though there are some indications of high-frequency oscillations being linked to spiking activity (Telenczuk et al., 2011). The neurotransmitter release generated by action potentials, whether excitatory or inhibitory, results in local currents at the apical dendrites that in turn lead to current sources and sinks in the extracellular space around the dendritic arbor (i.e. postsynaptic potentials, see Figure 1, bottom right block). EEG is generated by the local field potential (LFP), a signal that reflects summed synaptic activity of local populations of neurons. In the neocortex, pyramidal neurons are generally organized perpendicularly to the cortical surface, with apical dendrites toward the pial surface and axons pointing inferiorly towards the grey-white matter border. This alignment leads to the electrical fields of many neurons being summed up to generate a signal that is measurable at the scalp (Tivadar and Murray, 2019). Importantly, individual neurons of these populations need to be (nearly) synchronously active to be detectable by EEG.

As mentioned above, the electrical activity of the brain is recorded by means of electrodes, made of conductive materials, placed at the scalp. The propagation of electrical fields takes place due to the conductive properties of brain and head tissues, a phenomenon known as volume conduction (Kajikawa and Schroeder, 2011). The electrodes are connected to an amplifier which boosts the signal. Due to the biophysical nature of what is measured, i.e. a voltage - the difference of potential able to move charges from one site to the other - EEG records the differential measurements between an electrode at a specific position on the scalp and a reference site. Common analyses in EEG are the study of local phenomena such as peaks at specific latencies or scalp sites (event-related potential, ERPs); or the study of topography, i.e. the shape of the electric field at the scalp, which represents a global brain signature (Murray et al., 2008). EEG is known for its high temporal resolution. The biggest pitfalls of the technique are, on the other hand, the low spatial resolution and signal to noise ratio. A clear and exhaustive walk through these topics as well as an overview of strengths and pitfalls of using EEG is contained in Tivadar and Murray (2019) and for non-experts of the field in Biasiucci et al. (2019).

Despite being a measurement of the scalp activity, EEG can reveal the underlying neurophysiological mechanisms of the brain, and that is what classifies it as brain imaging tool. The estimation of the loci of active sources for the recorded brain activity at the scalp is called source reconstruction (Michel et al., 2004). However, the loci can belong to areas not necessarily below the considered electrode, a pitfall caused by volume conduction. Source reconstruction is a mathematical ill-posed inverse problem, as the solution is not unique. However, the addition of biophysical constraints to the inverse problem allows to retrieve a solution, which has been validated by means of intracranial recordings (Michel and Murray, 2012). Having obtained the source activity, one can estimate the functional connectivity between the sources, i.e. the statistical dependencies between brain areas, assumed to indicate their interactions (see also table 1). This can then be complemented with neuroanatomical/structural connectivity (table 1), which estimates white matter connections between brain areas.

Computational models stand at the interface between the physiology of neurons at different scales (single neuron, population, macro-scale) and perceptual behavior. EEG would greatly benefit from the integration of in-silico simulations, as computational models could
complement both the neurophysiological and behavioral interpretations of EEG recordings. In the following sections, we will discuss different types of computational models, i.e. the different scales at which the neural activity is simulated, how such models can be integrated in the analysis of EEG signals, and how such models have been used in new clinical applications.

3 Different types of computational models for EEG

A straightforward classification of computational models for EEG can be done based on the different scales of neurophysiological activity they integrate. For instance, we can distinguish three types of models (Figure 2 A):

1. **microscopic models on the level of single cells and micro-circuits**;
2. **mesoscopic models on the level of neural masses and neural fields**;
3. **macroscopic models taking into account the connectome/white matter**.

The integration of computational models has greatly advanced the field of applications of EEG, both for research and clinical purposes.

3.1 Computational models for EEG on the level of single cells and microcircuits

The purpose of this level of modeling is to address the origin of the EEG signal by investigating the relationship between its features and electrophysiological mechanisms (Figure 1, column A) with the tools of computational neuroscience. As detailed above, the EEG signal recorded from the scalp is the result of the spatial integration of the potential fluctuations in the extracellular medium. The EEG signal is mainly caused by the local field potential (LFP), while LFP is mainly driven by synaptic activity (Logothetis, 2003; Buzsaki et al., 2012) and volume conduction (Kajikawa and Schroeder, 2011). From the experimental standpoint, local network activity is usually measured as LFP (mainly in vivo - and rarely in vitro - animal data). By virtue of superposition, fluctuations in the LFP, and EEG more generally, are signatures of correlated neural activity (Pesaran et al., 2018). Cellular and microcircuit modeling are thus aimed at understanding the neurophysiological underpinnings of these correlations and the role played by cell types, connectivity and other properties in shaping the collective activity of neurons.

A primary goal of EEG modeling at the microscopic scale is on the one hand to predict the EEG signal generated by the summation of local dynamics on the microscopic scale and, on the other hand, to reconstruct the microscopic neural activity underlying the observed EEG. The first goal is far from being achieved, and the second is ill-posed due to the number of possible circuit and cellular combinations at the source level leading to similar EEGs. Implicit to these goals is to understand how features of neural circuits, such as the architecture, synapses and cell types, contribute to the generation of electromagnetic fields and their properties in a bottom-up fashion. Despite key insights, many shortcomings limit the interpretability of microcircuit models and the establishment of a one-to-one correspondence with EEG data. For instance, the contribution of spiking activity and correlated cellular fluctuations to LFPs and EEG power spectra remains unclear. Most microcircuit models characterize the net local network activity - used as a proxy for EEG - using the average firing rate or via the mean somatic membrane potential taken amongst populations of cells (of various types). Other studies have used a heuristic approach and approximated the EEG signal as a linear combination of somatic membrane potentials with random coefficients to account for both conduction effects and observational noise (Herrmann et al., 2016; Lefebvre et al., 2017). As such, microcircuit model predictions and experimental data cannot always be compared directly.

Cellular multicompartmental models, which oftentimes take cellular morphology and spatial configuration into consideration, are based on the celebrated Hodgkin-Huxley equations, which describe the temporal evolution of ionic flux across neuronal membranes (see Catterall et al. (2012), for a recent review). Such conductance-based models, which possess explicit and spatially distributed representations for cellular potentials, facilitate the prediction and/or comparison with LFP recordings. In contrast, single compartment models are difficult to interpret: while more abstract single compartment models such as Poisson neurons or integrate-and-fire models (Figure 2 A, left) are often used for their relative tractability and computational efficiency to construct more elaborate microcircuit models, they generally lack the neurophysiological richness to estimate EEG traces. Despite this, several computational advancements in recent years investigated how networks of integrate-and-fire neurons generate LFPs, clarifying the microscopic dynamics reflected in the EEG signal (Mazzoni et al., 2015, 2008, 2010, 2011; Deco et al., 2008b; Buehlmann and Deco, 2008; Barbieri et al., 2014). Such approaches have been used to understand the formation of correlated activity patterns in the hippocampus (e.g. oscillations), and their associated spectral fingerprints in the LFP (Chatzikalymniou and Skinner, 2018). Furthermore, a
Fig. 1 Electrophysiology of neural activity and EEG at different scales.

A. Single neuron/microcircuits

A.1 Patch clamp/microelectrode

A.2 Example: action potential

Voltage (mV) vs. Time (ms)

Action potentials, are high short-duration (1 ms) and high-amplitude (~100 mV) pulses caused by the membrane depolarization of a single neuron.

A.3 Example: Local field potential at macroscale

Voltage (μV) vs. Time (ms)

Local field potentials (LFPs) are transient electrical signals generated by the synchronous electrical activity of population of neurons. They can be recorded through invasive electrode microarrays inserted in the brain.

B. Population of neurons

B.1 Multicontact electrode

B.2 Example: Local field potential at mesoscale

Voltage (μV) vs. Time (ms)

B.3 Example: mean firing rate of brain regions (multiple microelectrodes)

C. Large neural populations

C.1 External electrodes

C.2 Electroencephalogram

The electrical activity of the brain can be measured by placing non-invasive electrodes on the scalp. EEG is a macroscopic measurement of the brain activity.

EEG

EEG records the postsynaptic currents in the extracellular space, which can be modeled as a current dipole.

Presynaptic neuron

Extracellular current sink

Extracellular current source

10 μm
A - Different spatial scales of computational models

Microscopic scale

Example: leaky integrate and fire neurons in a feedback inhibition loop

\[\tau \frac{dV_i(t)}{dt} = -[V_i(t) - V_L] + RI_i(t) \]

Mesoscopic scale

Example: Wilson-Cowan neural mass model

\[\tau \frac{dE(t)}{dt} = -E(t) + (1 - E(t)f_E)w_{EE}E - w_{EI}I(t) + h_E(t) \]

\[\tau \frac{dI(t)}{dt} = -I(t) + (1 - I(t))f_Iw_{II}I - w_{EI}E - w_{II}I + h_I(t) \]

Macroscopic scale

Example: Kuramoto model

\[\frac{d\theta_i(t)}{dt} = \omega + \sum_{j=1}^{N} C_{ij} \sin(\theta_j(t) - \tau_{ij}) - \theta_i(t) \]

B - Illustration of a typical modeling approach

activity simulated from node i

compute feature of interest (e.g. functional connectivity matrix)

node j

node k

node i

model fit depending on model parameters

Simulated functional connectivity

Compare to data

'Data fit'

Empirical functional connectivity

brain region

A - Illustration of computational models at the three scales treated here. Microscopic scale: Simple example of two \((i = 1, 2)\) leaky integrate-and-fire (LIF) neurons coupled together, a pyramidal neuron making an excitatory synapse to the interneuron, which in turn makes an inhibitory synapse to the pyramidal cell. This minimal circuit implements feedback inhibition, as the pyramidal cell, when activated, will excite the interneuron, which in turn will inhibit it. In the equation, \(V_i\) is the membrane potential of each of the two cells \(i = 1, 2\); \(V_L\) is the leak, or resting potential of the cells; \(R\) is a constant corresponding to the membrane resistance; \(I_i\) is the synaptic input that each cell receives from the other, and possibly background input; \(\tau\) is the time constant determining how quickly \(V_i\) decays. The model is simulated by setting a firing threshold, at which, when reached, a spike is recorded and \(V_i\) is reset to \(V_L\). Mesoscopic scale: The Wilson-Cowan-model, in which an excitatory \((E)\) and an inhibitory \((I)\) population are coupled together. The mean field equations describe the mean activity of a large number of neurons. \(f_E\) and \(f_I\) are sigmoid transfer functions whose values indicate how many neurons in the population reach the firing threshold, and \(h_E/h_I\) are external inputs like background noise. \(w_{EE}\) and \(w_{II}\) are constants corresponding to the strength of self-excitation/inhibition, and \(w_{EI}\) and \(w_{II}\) the strength of synaptic coupling between populations. Macroscopic scale: In order to simulate long-range interactions between cortical and even subcortical areas, brain network models couple together many mesoscopic ("local") models using the connection weights defined in the empirical structural connectivity matrix \(C\). The example equation defines the Kuramoto model, in which the phase \(\theta_n\) of each node \(n\) is used as a summary of its oscillatory activity around its natural frequency \(\omega\). Each node’s phase depends on the phases of connected nodes \(p\) taking into account the time delay \(\tau_{np}\), defined by the distances between nodes \(n\) and \(p\). \(k\) is a global scaling parameter controlling the strength of internode connections. B - Illustration of a typical modeling approach at the macroscopic scale. Activity is simulated for each node using the defined macroscopic model, e.g. the Kuramoto model from panel A, right. The feature of interest is then computed from this activity. Shown here is the functional connectivity matrix, e.g. phase locking values between nodes (table 1). This can then be compared to the empirical functional connectivity matrix computed in exactly the same way from experimental data, e.g. by correlating the entries of the matrix. The model fit can be determined depending on parameters of the model, e.g. the scaling parameter \(k\) or the unit speed, here indicated with "tau".
broad range of works modeled the origin of the local field potential and how it diffuses via volume conduction to generate the EEG signal (Hindriks et al., 2017; Lindén et al., 2011; Mäki-Marttunen et al., 2019; Skaar et al., 2019; Einevoll et al., 2013; Teleńczuk et al., 2017; Claude Bdard, 2009).

The key missing element for understanding the link between spiking network activity, LFP, and EEG signal, is the functional and spatial architecture of the networks. In particular, there are two open challenges. The first is to understand how the network connectivity affects the model dynamics that generate the LFP, and the second is to clarify how the spatial arrangement and morphology of neurons affect LFP diffusion (Mazzoni et al., 2015).

From this perspective, models of pyramidal cell dynamics and circuits should guide the interpretation of the EEG signal. For example, Destexhe and colleagues recently addressed the long-debated issue of the relative contribution of inhibitory and excitatory signals to the extracellular signal (Teleńczuk et al., 2019), suggesting that the main source of the EEG signal may stem from inhibitory - rather than excitatory - inputs to pyramidal cells. A recent spiking network model (Saponati et al., 2019) incorporates the modular architecture of the thalamus, in which subnetworks connect to different parts of the cortex (Barardi et al., 2016). This model was used to show how the propagation of activity from the thalamus shapes gamma oscillations in the cortex.

Computational models at the level of single cells and microcircuits have also been instrumental in elucidating the mechanisms underlying multiple EEG phenomena. For instance, such models were used to better understand EEG rhythm changes observed before, during and after anesthesia, using spiking network models (Michelle M McCarthy, 2008; Ching et al., 2012) and/or cortical micro-circuit models (Hutt et al., 2018). Some of these models have been extended to account for the effect of thalamocortical dynamics on EEG oscillations (Ching et al., 2010a; Hutt et al., 2018), highlighting the key role played by the thalamus on shaping EEG dynamics. In addition, microcircuit models have been used to understand the EEG response of cortical networks to non-invasive brain stimulation (e.g. TACS, TMS), especially in regard to the interaction between endogenous EEG oscillatory activity and stimulation patterns (Herrmann et al., 2016), in which thalamic interactions were found to play an important role (Lefebvre et al., 2017).

3.2 Computational models for EEG on the level of neural masses and neural fields

In this section we discuss models of population dynamics and how they could determine specific features of the electrical activity recorded by EEG (Figure 1, column B). Mean field models describe the average activity of a large population of neurons by modeling how the population - as a whole - transforms its input currents into an average output firing rate (Figure 2 A, middle; for details on how networks of spiking neurons are reduced to mean field formulations, see (Wong and Wang, 2006; Deco et al., 2013b; Coombes and Byrne, 2019; Byrne et al., 2020)). If we consider a population to be a small portion of the cortex containing pyramidal cells, the average activity modelled by the mean field can be understood as the LFP. Two types of models can be distinguished: neural mass models, where variables are a function of time only, and neural field models, where variables are functions of time and space. In this sense, neural field models can be seen as an extension of neural mass models, by taking into account the continuous shape of cortical tissue and the spatial distribution of neurons. These models allow for the description of local lateral inhibition as well as local axonal delays (Hutt et al., 2003; Atay and Hutt, 2006). An important application of neural field models is found in phenomenological models of visual hallucinations (Ermentrout and Cowan, 1979; Bressloff et al., 2001), and they have been used to model sleep and anaesthesia (Steyn-Ross et al., 1999; Bojak and Liley, 2005). Future applications may also involve both neural mass and neural field models to describe different cortical structures, similarly to the multiscale approach proposed in Cattani et al. (2016).

The most popular model on this mesoscopic scale was first described by Wilson & Cowan (Wilson and Cowan, 1973; Cowan et al., 2016) (Figure 2 A, middle), and all mean field models can be seen as deriving from this form. It consists of an inhibitory and an excitatory population, where usually, for the purpose of EEG, it is assumed that the excitatory population models pyramidal neurons while the inhibitory population takes the role of interneurons. A variant of this model was described in Jansen & Rit (Jansen and Rit, 1995) and goes back to the “lumped parameter” model by Lopes da Silva (Da Silva et al., 1974). It uses three distinct populations, i.e. a population of excitatory interneurons in addition to the two populations already mentioned. The reason this model has been popular in EEG modeling is that it accounts for the observation that inhibitory and excitatory synapses tend to deliver inputs to different parts of the pyramidal cell body (Sotero et al., 2007). In addition, thalamocortical loops are thought to greatly
contribute to the generation of oscillations observed in the cortex (Steriade et al., 1993), and an important class of neural field models deals with these loops and their dependency on external stimuli (Robinson et al., 2001, 2002).

The dynamical behavior of models can be manipulated to simulate different phenomena by varying their parameters. For example, the coupling parameters that determine the strength and speed of feedback-inhibition and feedforward-excitation can be varied (parameters \(w_{IE} \) and \(w_{EI} \) in Figure 2 A, middle), both within and between populations. Also it is possible to modify time constants (which govern the decay of activity in the local populations) or the strength of background noise. Changing these parameters \textit{in silico} can be interpreted biologically. For example, in Bojak and Liley (2005), the authors describe how a modified neural field model reproduces EEG spectra recorded during anaesthesia. The strength of inputs from the thalamus to the cortical neural populations was varied within a biologically plausible range.

Neural mass and neural field models are able to reproduce a range of dynamical behaviors that are observed in EEG, like oscillations in typical EEG frequency bands (David and Friston, 2003), phase-amplitude-coupling (Onslow et al., 2014; Sotero, 2016), evoked responses (Jansen et al., 1993; Jansen and Rit, 1995; David et al., 2005), and allows to model the EEG spectrum (David and Friston, 2003; Bojak and Liley, 2005; Moran et al., 2007).

By coupling together more than one model/set of populations, one can start investigating the effect that delays have on neural activity (Jirsa and Haken, 1996). In fact, Jansen & Rit (Jansen and Rit, 1995) coupled together two neural mass models in order to simulate the effect of interactions between cortical columns on their activity.

Often, activity simulated by mean field models is assumed to be related to local field potentials (Liley et al., 2002). However, models are usually set up such that the local field potential derives directly from the mean firing rate. In this way, an important aspect that underlies the EEG signal is neglected, namely, the synchrony (coherence) of the firing within a neural population (as opposed to synchrony between populations, which can be studied using e.g. instantaneous phase differences (Breakspear et al., 2004)). Phenomena such as event-related synchronization and desynchronization result from a change in this synchrony rather than from a change in firing rate. Recent models (Byrne et al., 2017, 2020) propose therefore a link between the firing rate and the Kuramoto order parameter, which is a measure of how dispersed firing is within a population.

3.3 Macroscopic computational models for EEG taking into account the connectome

In this section, we review existing literature on macroscopic computational models that take into account the connectome and discuss their potential to reveal the generative mechanisms of the macroscopic brain activity patterns detected with EEG and MEG (Figure 1, column C). We will use the term “brain network models” (BNM) in order to clearly distinguish this framework from other approaches to whole-brain modeling (Breakspear, 2017), e.g. using neural field models (Jirsa and Haken, 1996; Robinson et al., 1997; Coombes et al., 2007) or expansions of the thalamocortical models discussed above (Robinson et al., 2001; Freyer et al., 2011). We will also leave aside the large body of literature on dynamic causal modeling (DCM) (Kiebel et al., 2008; Pinotsis et al., 2012), as this deserves a more detailed review than the scope of this paper can provide.

Brain network models. In recent years, the interest in the human connectome has experienced a boom, creating the prolific and successful field of “connectomics”. In the framework of connectomics, the brain is conceptualized as a network made up of nodes and edges. Each node represents a brain region, and nodes are coupled together according to a weighted matrix representing the wiring structure of the brain (Figure 2 A, right). This so-called structural connectivity matrix (SC) is derived from white matter fiber bundles which connect distant brain regions (Behrens et al., 2003; Zhang et al., 2010; Hagmann et al., 2008; Sepulcre et al., 2010; Wedeen et al., 2012) and are measured using diffusion weighted magnetic resonance imaging (dMRI) (table 1). The set of all fiber bundles is called the connectome (Sporns, 2011). By coupling brain regions together according to the weights in the SC, the activity generated in each region depends also on the activity propagated from other regions along the connections given by the SC.

BNMs are used to study the role of structural connectivity in shaping brain activity patterns. Because this is a complex problem that involves the entire brain, it is important to find a balance between realism and reduction, so that useful predictions can be made. In practice, a common simplification is to assume that all brain regions are largely identical in their dynamical properties (Passingham et al., 2002). This reductionist approach keeps the number of parameters at a manageable level and still allows to investigate how collective phenomena emerge from the \textit{realistic} connectivity between nodes. In other words, BNMs do not necessarily aim at maximizing the fit to the empirically recorded brain signals. Rather, the goal is to reproduce specific temporal, spa-
tial or spectral features of the empirical data emerging at the macroscopic scale whose underlying mechanisms remain unclear (Figure 2 B).

Choice of local model. In mathematical terms, brain activity is simulated according to a system of coupled differential equations. The activity of each node is described by a mean-field model, such as the ones described in section 3.2, and coupling between the mean field models is parametrized by the empirical SC (Figure 1 A, right).

Importantly, the type of mean-field model used at the local level must be selected according to the hypothesis being tested. For example, BNMs have proven to be a powerful tool to elucidate the non-linear link between the brain’s structural wiring and the functional patterns of brain activity captured with resting-state functional magnetic resonance imaging (rsfMRI) (Deco et al., 2014a, 2013a; Honey et al., 2009; Deco et al., 2009; Cabral et al., 2011). However, oscillations in frequency ranges important for M/EEG (2-100 Hz) are often neglected in studies aiming at reproducing correlated fluctuations on the slow time scale of the fMRI signal. Thus, despite the insights gained by BNMs to understand rsfMRI signal dynamics, the same models do not necessarily serve to understand M/EEG signals and vice-versa (Cabral et al., 2017).

In Cabral et al. (2014), the local model employed includes a mechanism for the generation of collective oscillatory signals in order to address oscillatory components of M/EEG. To model brain-wide interactions between local nodes oscillating around a given natural frequency (in this case, 40 Hz, in the gamma frequency range), the Kuramoto model (Kuramoto, 2003; Yeung and Strogatz, 1999), was extended to incorporate realistic brain connectivity (SC) and time delays (determined by the lengths of the fibers in the SC (see also Finger et al. (2016); Figure 2 A, right). This model shows how, for a specific range of parameters, groups of nodes (communities) can temporarily synchronize at community-specific lower frequencies, obeying to universal rules that govern the behaviour of coupled oscillators with time delays. Thus, the model proposed a mechanism that explains how slow global rhythms in the alpha and beta-range emerge from interactions of fast local (gamma) oscillations generated by neuronal networks.

In contrast, Deco et al. (2019b) used a mean field model (Wilson and Cowan, 1973; Brunel and Wang, 2001; Deco and Jirsa, 2012; Deco et al., 2014b), which was tuned not to exhibit intrinsic oscillations. Because the brain could thus be considered as being in a noisy, low-activity state, the number of parameters was sufficiently reduced to investigate how activation patterns change over time on different time scales. Time scales including that of M/EEG (ten to several 100 ms) as well as that typical for fMRI (1-3 seconds) were considered, and the question was asked whether there is a time scale at which brain dynamics are particularly rich. The authors found that the best frequency resolution was on the scale of 200 ms, as both the number of co-activation patterns as well as their dynamics were richest, compared to other resolutions.

Emerging class of harmonics-based models. Although both the described BNMs as well as DCM (dynamic causal modeling) have a long history of success in modeling brain activity patterns, they have high-dimensionality, and usually require local oscillators governed by region-specific or spatially-varying model parameters. While this imbues such models with rich features capable of recreating complex behavior, they are challenging for some clinical applications where a small set of global features might be desired to assess the effect of disease on network activity. Therefore recently some laboratories have focused on low-dimensional processes involving diffusion or random walks (table 1) on the structural graph (table 1) instead of mean-field models, providing a simpler means of simulating functional connectivity (FC). These simpler models were able to match or exceed the predictive power of complex neural mass models or DCMs in predicting empirical FC (Abdelnour et al., 2014). Higher-order walks on graphs have also been quite successful; typically these methods involve a series expansion of the graph adjacency or Laplacian matrices (Meier et al., 2016; Becker et al., 2018) (table 1). Not surprisingly, the diffusion and series expansion methods are closely related, and most of these approaches may be interpreted as special cases of each other, as demonstrated elegantly in recent studies (Robinson et al., 2016; Deslauriers-Gauthier et al., 2020; Tewarie et al., 2020).

Whether using graph diffusion or series expansion, these models spread naturally employ the so-called eigenmodes, or harmonics, of graph adjacency or Laplacian matrices. Hence these methods were generalized to yield spectral graph models whereby e.g. Laplacian harmonics were sufficient to reproduce empirical FC, using only a few eigenmodes (Atasoy et al., 2016; Abdelnour et al., 2018). The Laplacian matrix in particular has a long history in graph modeling, and its eigenmodes are the orthonormal basis of the network and can thus represent arbitrary patterns on the network (Stewart, 1999). Such spectral graph models are computationally attractive due to low-dimensionality and more interpretable analytical solutions. The SC’s Laplacian eigenmodes may be thought of as the substrate on which functional patterns of the brain are established via a process of net-
work transmission (Abdelnour et al., 2018; Atasoy et al., 2016; Robinson et al., 2016; Preti and Van De Ville, 2019; Glomb et al., 2020). These models were strikingly successful in replicating canonical functional networks, which are stable large scale circuits made up of functionally distinct brain regions distributed across the cortex that were extracted by clustering a large fMRI dataset (Yeo et al., 2011).

While spectral graph models have demonstrated ability to capture essential steady-state, stationary characteristics of real brain activity, they are limited to modeling passive spread without oscillatory behavior. Hence they may not suitably accommodate a larger repertoire of dynamically-varying microstates or rich power spectra at higher frequencies typically observed on EEG or MEG. Capturing this rich repertoire would require a full accounting of axonal propagation delays as well as local neural population dynamics within graph models, as previously advocated (Cabral et al., 2011). Band-specific MEG resting-state networks were successfully modeled with a combination of delayed neural mass models and eigenmodes of the structural network (Tewarie et al., 2019), suggesting delayed interactions in a brain’s network give rise to functional patterns constrained by structural eigenmodes. Recently another effort was undertaken to characterise wide-band brain activity using graph harmonics in closed form (i.e. requiring no time-domain simulations), a rarity in the field of computational neuroscience (Raj et al., 2020). This “spectral graph model” of brain activity produced realistic power spectra that could successfully predict both the spatial as well as temporal properties of MEG empirical recordings (Raj et al., 2020). Intriguingly, the model has very few (six) parameters, all of which are global and not dependent on local oscillations. This method therefore exemplifies the power of graph methods in reproducing more complex and rich repertoire of brain activity, while keeping to a parsimonious approach that does not require the kinds of high-dimensional and non-linear oscillatory models that have traditionally held sway.

4 Applications of computational models of EEG

Network oscillations, captured through EEG, are thought to be relevant for brain functions, such as cognition, memory, perception and consciousness (Ward, 2003). Local brain regions produce oscillatory activity that propagates through the network to other brain regions. Alterations of oscillatory activity can be a sign of a brain disorder, and they are thought to be due to changes at the level of tissue and local/global connectivity. Due to its ability to capture such oscillatory activity, EEG is commonly used in research and clinical fields to study the neurophysiological bases of brain disorders, helping diagnosis and treatment (IV, 2014). Physiologically and theoretically inspired computational models are able to reproduce EEG signals, offering a unique tool which complements experimental approaches. The application of computational models reveals disease mechanisms, helps testing new clinical hypotheses, and to explore new surgical strategies in silico. This section presents computational models of EEG that have been employed to study different states of consciousness - wakefulness, deep sleep, anesthesia, and disorders of consciousness - as well as diseases such as neuropsychiatric disorders and epilepsy.

4.1 States of consciousness

A variety of models have been employed to investigate the brain dynamics in different physiological brain states, such as wakefulness and deep sleep (non-rapid eye movement, NREM) (Hill and Tononi, 2005; Cona et al., 2014; Robinson et al., 2002; Roberts and Robinson, 2012), and pharmacological conditions, such as anesthesia (Ching and Brown, 2014; Ching et al., 2010b; Sheeba et al., 2008; Hutt and Longtin, 2010; Liley et al., 2010). Other modeling approaches seek to elucidate the neurophysiological mechanisms underlying the presence or the absence of consciousness in wakefulness, NREM sleep and anesthesia, and they have crucial implications for the study of disorders of consciousness (DoC). DoC refer to a class of clinical conditions that may follow a severe brain injury (hypoxic/ischemic or traumatic brain injury) and include coma, vegetative state or unresponsive wakefulness syndrome (VS/UWS), and minimally conscious state (MCS). Coma has been defined as a state of unresponsiveness characterized by the absence of arousal (patients lie with their eyes closed) and, hence, of awareness. VS/UWS denotes a condition of wakefulness with reflex movements and without behavioural signs of awareness, while patients in MCS show unequivocal signs of interaction with the environment.

The current gold standard for clinical assessment of consciousness relies on the Coma Recovery Scale Revised (Giacino et al., 2004), which scores the ability of patients to behaviourally respond to sensory stimuli or commands. However, behavioral-based clinical diagnoses can lead to misclassification of MCS as VS/UWS because some patients may regain consciousness without recovering their ability to understand, move and communicate (Childs et al., 1993; Andrews et al., 1996; Schnakers et al., 2009). A great effort has been devoted to develop advanced imaging and neurophysiological
techniques for assessing covert consciousness and to improve diagnostic and prognostic accuracy (Edlow et al., 2017; Bodart et al., 2017; Stender et al., 2014; Bruno et al., 2011; Owen and Coleman, 2008; Stender et al., 2016). A novel neurophysiological approach to unravel the capacity of the brain to sustain consciousness exploits Transcranial Magnetic Stimulation (TMS) in combination with EEG (Rosanova et al., 2018; Casarotto et al., 2016). Specifically, the EEG response evoked by TMS in conscious subjects exhibits complex patterns of activation resulting from preserved cortical interactions. In contrast, when unconscious patients are stimulated with TMS, the evoked-response shows a local pattern of activation, similar to the one observed in healthy controls during NREM sleep and anesthesia.

The perturbational complexity index (PCI) (Casali et al., 2013) captures the dynamical complexity of TMS-evoked EEG potentials by means of the Lempel-Ziv compression algorithm, showing high values (low compressibility) for complex chains of activation typical of the awake state, and low values (high compressibility) for stereotypical patterns of activation typical of sleep and anesthesia. PCI has been validated on a benchmark population of 150 conscious and unconscious controls and tested on 81 severely brain-injured patients (Casarotto et al., 2016), showing an unprecedented high sensitivity (94.7%) in discriminating conscious from unconscious states.

A recently published modeling approach (Bensaid et al., 2019) investigates the physiological mechanisms underlying the generation of complex or stereotypical TMS-evoked EEG responses. The proposed brain network model, named COALIA, describes local dynamics as neural masses (Wendling et al., 2002) that include populations of pyramidal neurons and three different types of interneurons. Each neural mass describes the local field activity of one of 66 cortical brain regions (Desikan et al., 2006). Neural masses are connected with each other through long-range white matter fibers as described above (section 3.3). EEG signals are then simulated as neural mass activity. A systematic comparison of the complexity of simulated and real TMS-evoked EEG potentials through PCI suggested that the rhythmically patterned thalamocortical activity, typical of sleep, plays a key role in disrupting the complex patterns of activation evoked by TMS (Bensaid et al., 2019). Indeed, this rhythmical thalamocortical activity results in inhibition within the cortex that prevents information from propagating from one brain region to another, and thus disrupts functional integration, i.e. the ability of the brain to integrate information originating from different brain regions or groups of brain regions (Tononi, 1998). Functional integration is necessary, along with functional segregation, i.e. the ability of brain regions or groups of brain regions to fulfill a certain function distinct from other areas of the brain (Lord et al., 2017), to generate complex time-varying patterns of coordinated cortical activity that are typical of the awake brain, and thought to sustain consciousness and cognitive functions (Casali et al., 2013; Demertzi et al., 2019).

4.2 Neuropsychiatric disorders

Disruption of integration and segregation balance, which is fundamental for consciousness as mentioned in section 4.1, have been linked also to several neuropsychiatric disorders as a result of altered structural and functional connectivity (Bassett and Bullmore, 2009; Fornito et al., 2015; Menon, 2011; Deco et al., 2015). Among neuropsychiatric disorders, as reviewed in Lord et al. (2017), Alzheimer’s disease is characterized by a decrease in long-range functional connectivity, directly affecting integration between functional modules of the brain (Stam et al., 2007; Sanz-Arigita et al., 2010). Schizophrenia has been linked to a “subtle randomization” of global functional connectivity, such that the so-called “small-world” character of the network is disrupted (Alexander-Bloch et al., 2010; Lynall et al., 2010); a small-world network is characterized by short path lengths and strong modularity, network properties that are thought to promote information processing in the brain (Bassett and Bullmore, 2006) (but see Hilgetag and Goulas (2016)). Loss of integration has also been observed in schizophrenia (Damaraju et al., 2014).

As explained in section 3.3, whole-brain computational models provide insights into how anatomical connections shape and constrain functional connectivity (Deco et al., 2014a, 2013a; Honey et al., 2009). Using BNMs, Cabral and colleagues have shown that the alterations reported in schizophrenia (Lynall et al., 2010) can be explained by a decrease in connectivity between brain areas, occurring either at the local or global level and encompassing either axonal or synaptic mechanisms, hence reinforcing the idea of schizophrenia being the behavioural consequence of a multitude of causes disrupting connectivity between brain areas (Cabral et al., 2012b,a).

However, these models have focused on reproducing fMRI findings and are yet to be extended to address alterations in EEG spectral signatures in schizophrenia, namely increased EEG gamma-band power and decreased alpha power (Uhlhaas and Singer, 2013), which, following previous modeling insights (Cabral et al., 2014), may arise from reduced coupling between local gamma-band oscillators. Furthermore, BNMs can be employed to test how clinical interventions may help to re-establish
healthy network properties such as balance between integration and segregation or small-worldness (Deco et al., 2018, 2019a).

4.3 Epilepsy

Models have been employed to study pathological alterations of network oscillatory activity related to many diseases, including epilepsy (Stefanescu et al., 2012; Wendling, 2005; Lytton, 2008; Holt and Netoff, 2013). Epilepsy is a complex disease which impacts 1% of the world population and is drug resistant in approximately 30% of cases. Due to its intrinsic complexity, epilepsy research has strongly benefited, and will do so even more in the future, from an in silico environment where hypotheses about brain mechanisms of epileptic seizures can be tested in order to guide strategies for surgical, pharmacological and electrical stimulation techniques.

Focal epilepsy is a prototypical example of a disease that involves both local tissue and network properties. Focal epilepsy occurs when seizures originate in one or multiple sites, so-called epileptogenic zones (EZ), before recruiting close and distal non-epileptogenic areas pertaining to the pathological network. Patients with a history of drug-resistant focal epilepsy are candidates for surgery which targets epileptogenic areas and/or critical nodes presumably involved in the epileptogenic network. Successful outcomes of these procedures critically rely on the ability of clinicians to precisely identify the EZ.

A promising modeling approach aims at studying focal epilepsy through a single-subject virtual brain (Proix et al., 2017; Terry et al., 2012; Hutchings et al., 2015; Bansal et al., 2018; Soltesz and Staley, 2011), bringing together the description of how seizures start and end (seizure onset and offset, respectively) at a local level (through neural mass models) (Robinson et al., 2002; Wendling et al., 2002; Lopes da Silva et al., 2003; Breakspear et al., 2006; Jirsa et al., 2014) with individual brain connectivity derived from dMRI data. In this personalized approach, a patient’s brain is virtually reconstructed, such that systematic testing of many surgical scenarios is possible. The individual virtual brain approach provides clinicians with additional information, helping them to identify locations which are responsible for starting or propagating the seizure and whose removal would therefore lead to the patient being seizure-free while avoiding functional side effects of removing brain regions and connections (Olmi et al., 2019; Proix et al., 2017).

5 Discussion

In this paper we introduced different computational model types and their application to EEG, using a simple classification by spatial scale. Clearly not all models in the literature would necessarily belong to one category, but we believe this taxonomy can provide an entry point for non-experts. The main motivation behind this review was to identify obstacles that stand in the way of applying EEG modeling in both a research and clinical context, and to point out future directions that could remove these obstacles.

We have pointed out several recent efforts that have begun to more closely align models and experimental findings. Such integration of theory and experiment guarantees the use of biologically relevant measures within computational models of EEG, a crucial element if one wishes to use EEG models together with acquired data. For example, recent microcircuit models address the gap between theory and experiment by linking average firing rate - a measure of population activity preferred by the modeling community - and local field potential (LFP) - a measure that is generally thought to be a good proxy of the EEG signal (Saponati et al., 2019); recent mean field models explicitly include the contribution of neural synchronization to the LFP (Byrne et al., 2020), thereby integrating experimental knowledge about how the EEG signal is generated (da Silva, 2013); brain network models explore the contribution of empirically measured connectomes to macroscopic brain activity (Cabral et al., 2014); and applications of computational models already exist that use clinical measures to study e.g. coma (Bensaid et al., 2019), epilepsy (Olmi et al., 2019; Proix et al., 2017), and neuropsychiatric disorders (Spiegler et al., 2016; Kunze et al., 2016). Furthermore, some modeling approaches focus on providing a simple model for large-scale dynamics, making results more interpretable both from a theoretical and clinical standpoint (Abdelnour et al., 2018; Raj et al., 2020).

We have reviewed computational models on three spatial scales (Figure 2 A). Each scale models qualitatively different biological processes which can be measured using distinct recording techniques (Varela et al., 2001) (Figure 1). While EEG records activity at the macro-scale, mechanisms at each scale have an impact on the EEG signal and should therefore inform its interpretation. Therefore, ideally, scales should be combined to provide a complete picture of neural mechanisms underlying EEG activity, something that started to be explored for example in the simulation platform The Virtual Brain (TVB) (Sanz Leon et al., 2013; Falcon et al., 2016) or in studies showing the theoretical relationship between spiking networks and mean field formulations.
Table 1 Some terminology used in this paper.
Functional connectivity
Structural connectivity
Graph
Random walk
Laplacian
Eigenmodes
or “personal health”. Individual brain models could be used to integrate different sources of data (EEG, fMRI, ECG, etc.) in a “virtual patient”. This could complement data-driven approaches like connectome fingerprinting (in which individuals are identified using their individual connectome (Finn et al., 2015; Pallarés et al., 2018; Abbas et al., 2020)). The ultimate goal would be to use this virtual patient to tailor diagnosis and therapies around the needs of the patient (Wium-Andersen et al., 2017), reducing the economical burden and patient discomfort of clinical analyses and hospitalisation.

Acknowledgements The authors would like to thank Ana Hernando Ariza for the first image contained in this paper and the creativity, time and efforts she put into transforming the important messages of this article in graphics. The authors are particularly grateful to Prof. Jérémie Lefebvre and Prof. Micah M. Murray for their contributions, guidance and mentoring during the preparation of this article.

Funding

K.G. was funded by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung Award ID: 170873. J.C. was funded by the Portuguese Foundation for Science and Technology (FCT) CEECIND/03325/2017 and by projects UID/Multi/50026 (FCT), NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023. A.C. was supported by the Tiny Blue Dot Foundation. A.M. was supported by PREVIEW - Bando salute 2018 - Tuscany Regional Government. A.R. was supported by NIH grants R01NS092802, RF1AG062196 and R56AG064873. B.F. received financial support for this work by the Fondation Asile des aveugles (grant number 232933), a grantor advised by Carigest SA (number 232920).

Conflict of interest

The authors declare that they have no conflict of interest.

Authors contribution

K.G. and B.F. conceived the review. J.C. and A.R. contributed to section 2.2. A.M. contributed to section 2.1. A.C. entirely conceived section 3. K.G. and B.F. outlined all remaining contents and all authors contributed to the final draft and review.

References

Abbas K, Amico E, Svaldi DO, Tipnis U, Duong-Tran DA, Liu M, Rajapandian M, Harezlak J, Ances BM, Goiū J (2020) Geff: Graph embedding for functional fingerprinting. NeuroImage p 117181
Abdelnour F, Voss HU, Raj A (2014) Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neuroimage 90:335–347
Abdelnour F, Dayan M, Devinsky O, Tesen T, Raj A (2018) Functional brain connectivity is predictable from anatomic network’s laplacian eigen-structure. NeuroImage 172:728–739, DOI 10.1016/j.neuroimage.2018.02.016
Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore ET (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience 4:147, DOI 10.3389/fnsys.2010.00147
Andrews K, Murphy L, Munday R, Littlewood C (1996) Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ (Clinical research ed) 313(7048):13–16, DOI 10.1136/bmj.313.7048.13
Atasoy S, Donnelly I, Pearson J (2016) Human brain networks function in connectome-specific harmonic waves. Nature Communications 7(1):10340, DOI 10.1038/ncomms10340, URL http://www.nature.com/articles/ncomms10340
Atay FM, Hutt A (2006) Neural fields with distributed transmission speeds and long-range feedback delays. SIAM Journal on Applied Dynamical Systems 5(4):670–698
Bansal K, Nakuci J, Muldoon SF (2018) Personalized brain network models for assessing structure-function relationships. Current Opinion in Neurobiology 52:42–47, DOI 10.1016/j.conb.2018.04.014
Barardi A, García-Ojalvo G, Mazzoni A (2016) Transition between functional regimes in an integrate-and-fire network model of the thalamus. PLoS One p e0161934
Barbieri F, Mazzoni A, Logothetis NK, Panzeri S, Brunel N (2014) Stimulus dependence of local field potential spectra: Experiment versus theory. Journal of Neuroscience 34(44):14589–14605, DOI 10.1523/JNEUROSCI.5365-13.2014, URL https://www.jneurosci.org/content/34/44/14589, https://www.jneurosci.org/content/34/44/14589.full.pdf
Basser PJ, Mattiello J, LeBihan D (1994) Mr diffusion tensor spectroscopy and imaging. Biophysical journal 66(1):259–267
F, Landi C, Mariotti M, Devalle G, Laureys S, Tononi G, Massimini M (2016) Stratification of unresponsive patients by an independently validated index of brain complexity. Annals of Neurology 80(5):718–729, DOI 10.1002/ana.24779

Cattani A, Solinas S, Canuto C (2016) A hybrid model for the computationally-efficient simulation of the cerebellar granular layer. Frontiers in Computational Neuroscience 10:30

Catterall WA, Raman IM, Robinson HP, Sejnowski TJ, Paulsen O (2012) The hodgkin-huxley heritage: from channels to circuits. Journal of Neuroscience 32(41):14064–14073

Chatzikalymniou AP, Skinner FK (2018) Deciphering the contribution of oriens-lacunosum/molecular (olm) cells to intrinsic θ rhythms using biophysical local field potential (lfp) models. Enuero 5(4)

Chiken S, Nambu A (2016) Mechanism of deep brain stimulation: inhibition, excitation, or disruption? The Neuroscientist 22(3):313–322

Childs NL, Mercer WN, Childs HW (1993) Accuracy of diagnosis of persistent vegetative state. Neurology 43(8):1465–1467, DOI 10.1212/wnl.43.8.1465

Ching S, Brown EN (2014) Modeling the dynamical effects of anesthesia on brain circuits. Current Opinion in Neurobiology 25:116–122, DOI 10.1016/j.conb.2013.12.011

Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ (2010a) Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness. Proceedings of the National Academy of Sciences 107(52):22665–22670

Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ (2010b) Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proceedings of the National Academy of Sciences of the United States of America 107(52):22665–22670, DOI 10.1073/pnas.1017069108

Ching S, Purdon PL, Vijayan S, Kopell NJ, Brown EN (2012) A neurophysiological–metabolic model for burst suppression. Proceedings of the National Academy of Sciences 109(8):3095–3100

Chladni EFF (1802) Die Akustik. Breitkopf & Härtl

Claude Bdard AD (2009) Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophysical Journal pp 2589–2603

Colclough GL, Woolrich MW, Tewarie P, Brookes MJ, Quinn AJ, Smith SM (2016) How reliable are meg resting-state connectivity metrics? NeuroImage 138:284–293

Cona F, Lacanna M, Ursino M (2014) A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. Journal of Computational Neuroscience 37(1):125–148, DOI 10.1007/s10827-013-0493-1

Coombes S, Byrne Å (2019) Next generation neural mass models. In: Nonlinear Dynamics in Computational Neuroscience, Springer, pp 1–16

Coombes S, Venkov N, Shuai L, Bojak I, Liley DT, Laing CR (2007) Modeling electrocortical activity through improved local approximations of integral neural field equations. Physical Review E 76(5):051901

Cowan JD, Neuman J, van Drongelen W (2016) Wilson–cowan equations for neocortical dynamics. The Journal of Mathematical Neuroscience 6(1):1–24

Da Silva FL, Hoeks A, Smits H, Zetterberg L (1974) Model of brain rhythmic activity. Kybernetik 15(1):27–37

Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner JA, Vaidya JG, van Erp TG, Calhoun VD (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clinical 5:298–308, DOI 10.1016/j.nicl.2014.07.003

David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20(3):1743–1755

David O, Harrison L, Friston KJ (2005) Modelling event-related responses in the brain. NeuroImage 25(3):756–770

Deco G, Jirsa VK (2012) Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. Journal of Neuroscience 32(10):3366–3375

Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008a) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8):e1000092

Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008b) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS computational biology 4(8):e1000092

Deco G, Jirsa VK, McIntosh AR, Sporns O, Küttér R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences 106(25):10302–10307

Deco G, Jirsa VK, McIntosh AR (2013a) Resting brains never rest: computational insights into potential cognitive architectures. Trends in Neurosciences 36(5):268–274, DOI 10.1016/j.tins.2013.03.001

Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagnann P, Corbetta M (2013b) Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. Journal of Neuroscience 33(27):11239–11252
Deco G, McIntosh AR, Shen K, Hutchison RM, Menon RS, Everling S, Hagmann P, Jirsa VK (2014a) Identification of optimal structural connectivity using functional connectivity and neural modeling. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 34(23):7910–7916, DOI 10.1523/JNEUROSCI.4423-13.2014

Deco G, Ponce-Alvarez A, Hagmann P, Romani GL, Mantini D, Corbetta M (2014b) How local excitation–inhibition ratio impacts the whole brain dynamics. Journal of Neuroscience 34(23):7886–7898

Deco G, Tononi G, Boly M, Krügelbach ML (2015) Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience 16(7):430–439, DOI 10.1038/nrn3963

Deco G, Cabral J, Saenger VM, Boly M, Tagliazucchi E, Laufs H, Van Someren E, Jobst B, Stevner A, Krügelbach ML (2018) Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. NeuroImage 169:46–56

Deco G, Cruzat J, Cabral J, Tagliazucchi E, Laufs H, Logothetis NK, Krügelbach ML (2019a) Awakening: Predicting external stimulation to force transitions between different brain states. Proceedings of the National Academy of Sciences 116(36):18088–18097

Deco G, Cruzat J, Krügelbach ML (2019b) Brain songs framework used for discovering the relevant timescale of the human brain. Nature communications 10(1):1–13

Demertzi A, Tagliazucchi E, Dehaene S, Deco G, Battfeld P, Raimondo F, Martial C, Fernandez-Espejo D, Rohaut B, Voss HU, Schiff ND, Owen AM, Laureys S, Naccache L, Sitt JD (2019) Human consciousness is supported by dynamic complex patterns of brain signal coordination. Science Advances 5(2):eaat7603, DOI 10.1126/sciadv.aat7603

Desikan RS, Sgonne F, Fischl B, Quinn BT, DICKERSON BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980, DOI 10.1016/j.neuroimage.2006.01.021

Deslauriers-Gauthier S, Zucchielli M, Frigo M, Deriche R (2020) A unified framework for multimodal structure-function mapping based on eigenmodes. Medical Image Analysis 66:101799, doi:10.1016/j.media.2020.101799

Donneti L, Munoz MA (2004) Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment 2004(10):P10012

Edlow BL, Chatelle C, Spencer CA, Chu CJ, Bodien YG, O’Connor KL, Hirschberg RE, Hochberg LR, Giacino JT, Rosenthal ES, Wu O (2017) Early detection of consciousness in patients with acute severe traumatic brain injury. Brain: A Journal of Neurology 140(9):2399–2414, DOI 10.1093/brain/awx176

Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nature Reviews Neuroscience 14(11):770–785

Ermentrout GB, Cowan JD (1979) A mathematical theory of visual hallucination patterns. Biological cybernetics 34(3):137–150

Falcon MI, Jirsa V, Solodkin A (2016) A new neuroinformatics approach to personalized medicine in neurology: The virtual brain. Current opinion in neurology 29(4):429

Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, Culpepper WJ, Dorsey ER, Elbaz A, Ellenbogen RG, et al. (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology 18(5):459–480

Finger H, Bünstrup M, Cheng B, Messé A, Hilgetag C, Thomalla G, Gerloff C, König P (2016) Modeling of large-scale functional brain networks based on structural connectivity from dti: comparison with eeg derived phase coupling networks and evaluation of alternative methods along the modeling path. PLoS computational biology 12(8):e1005025

Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable RT (2015) Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature neuroscience 18(11):1664–1671

Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nature Reviews Neuroscience 16(3):159–172, DOI 10.1038/nrn3901

Franceschilli B, Sarti A, Citti G (2018) A neuromathematical model for geometrical optical illusions. Journal of Mathematical Imaging and Vision 60(1):94–108

Franceschilli B, Mashtakov A, Citti G, Sarti A (2019) Geometrical optical illusion via sub-riemannian geodesics in the roto-translation group. Differential Geometry and its Applications 65:55–77

Freyer F, Roberts JA, Becker R, Robinzon PA, Ritter P, Breakspear M (2011) Biophysical mechanisms of multistability in resting-state cortical rhythms. Journal of Neuroscience 31(17):6353–6361

Friston KJ (2011) Functional and effective connectivity: a review. Brain connectivity 1(1):13–36

Giacino JT, Kalmar K, Whyte J (2004) The jkf coma recovery scale-revised: measurement characteristics
and diagnostic utility. Archives of physical medicine and rehabilitation 85(12):2020–2029
Glomb K, Queralt JR, Pasucci D, Defferrard M, Tourbier S, Carboni M, Rubega M, Vulliemoz S, Plomp G, Hagmann P (2020) Connectome spectral analysis to track eeg task dynamics on a subsecond scale. NeuroImage p 117137
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS biology 6(7)
Hassan M, Dufor O, Merlet I, Berrou C, Wendling F (2014) Eeg source connectivity analysis: from dense array recordings to brain networks. PloS one 9(8):e105041
Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C (2017) Comparison of the spatial resolution of source imaging techniques in high-density eeg and meg. NeuroImage 157:531–544
Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J (2016) Shaping intrinsic neural oscillations with periodic stimulation. Journal of Neuroscience 36(19):5328–5337
Hilgetag CC, Goulas A (2016) Is the brain really a small-world network? Brain Structure and Function 221(4):2361–2366
Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology 93(3):1671–1698, DOI 10.1152/jn.00915.2004
Hindriks R, Schmiedt J, Arsiwalla XD, Peter A, Verschure PF, Fries P, Schmid MC, Deco G (2017) Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays. PloS one 12(12):e0187490
Holt AB, Netoff TI (2013) Computational modeling of epilepsy for an experimental neurologist. Experimental Neurology 244:75–86, DOI 10.1016/j.expneurol.2012.05.003
Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America 106(6):2035–2040, DOI 10.1073/pnas.0811168106
Hutchings F, Han CE, Keller SS, Weber B, Taylor PN, Kaiser M (2015) Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations. PLoS Computational Biology 11(12), DOI 10.1371/journal.pcbi.1004642, URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675531/113
Hutt A, Longtin A (2010) Effects of the anesthetic agent propofol on neural populations. Cognitive Neurodynamics 4(1):37–59, DOI 10.1007/s11571-009-9092-2
Hutt A, Bestehorn M, Wennemers T (2003) Pattern formation in intracortical neuronal fields. Network: Computation in Neural Systems 14(2):351–368
Hutt A, Lefebvre J, Hight D, Sleigh J (2018) Suppression of underlying neuronal fluctuations mediates eeg slowing during general anaesthesia. Neuroimage 173:414–428
IV WOT (2014) Handbook of EEG Interpretation, Second Edition. Demos Medical Publishing, google-Books-ID: BLsiAwAAQBAJ
Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological cybernetics 73(4):357–366
Jansen BH, Zouridakis G, Brandt ME (1993) A neurophysiologically-based mathematical model of flash visual evoked potentials. Biological cybernetics 68(3):275–283
Jeurissen B, Descoteaux M, Mori S, Leemans A (2019) Diffusion mri fiber tractography of the brain. NMR in Biomedicine 32(4):e3785
Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Physical Review Letters 77(5):960
Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain: A Journal of Neurology 137(Pt 8):2210–2230, DOI 10.1093/brain/awu133
Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion mri. Imaging in Medicine 2(3):341–355
Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72(5):847–858
Kiebel SJ, Garrido MI, Moran RJ, Friston KJ (2008) Dynamic causal modelling for eeg and meg. Cognitive neurodynamics 2(2):121
Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A (2016) Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study. NeuroImage 140:174–187, DOI 10.1016/j.neuroimage.2016.02.015
Kuramoto Y (2003) Chemical oscillations, waves, and turbulence. Courier Corporation
Lefebvre J, Hutt A, Frohlich F (2017) Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations. Elife 6:e32054
Liley DT, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems 13(1):67–82
Liley DTJ, Sinclair NC, Lipping T, Heyse B, Vereecke HEM, Struys MMRF (2010) Propofol and remifentanil differentially modulate frontal electroencephalo-
graphic activity. Anesthesiology 113(2):292–304, DOI 10.1097/ALN.0b013e3181e3d8a6
Lindén H, Tetzlaff T, Potjans TC, Petersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the lfp. Neuron 72(5):859–872
Logothetis NK (2003) The underpinnings of the bold functional magnetic resonance imaging signal. Journal of Neuroscience 23(10):3963–3971, DOI 10.1523/JNEUROSCI.23-10/3963, https://www.jneurosci.org/content/23/10/3963.full.pdf
Lord LD, Stevner AB, Deco G, Kringelbach ML (2017) Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 375(2096), DOI 10.1098/rsta.2016.0283
Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophreenia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 30(28):9477–9487, DOI 10.1523/JNEUROSCI.0333-10.2010
Lytton WW (2008) Computer modelling of epilepsy. Nature Reviews Neuroscience 9(8):626–637, DOI 10.1038/nrn2416, http://www.nature.com/articles/nrn2416
Mahjoory K, Nikulin VV, Botrel L, Linkenkaer-Hansen K, Fato MM, Haufe S (2017) Consistency of eeg source localization and connectivity estimates. Neuroimage 152:590–601
Mäki-Marttunen T, Kaufmann T, Elvsåshagen T, Devor A, Djurovic S, Westlye LT, Linne ML, Rietschel M, Schubert D, Borgwardt S, et al. (2019) Biophysical psychiatryhow computational neuroscience can help to understand the complex mechanisms of mental disorders. Frontiers in psychiatry 10
Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential networks in networks of excitatory and inhibitory neurons. PLoS computational biology 4(12)
Mazzoni A, Whittingstall K, Brunel N, Logothetis NK, Panzeri S (2010) Understanding the relationships between spike rate and delta/gamma frequency bands of lfps and eegs using a local cortical network model. NeuroImage 52(3):956 – 972, DOI https://doi.org/10.1016/j.neuroimage.2009.12.040, URL http://www.sciencedirect.com/science/article/pii/S1053811909013299
Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S (2011) Cortical dynamics during naturalistic sensory stimulations: Experiments and models. Journal of Physiology-Paris 105(1):2 – 15, DOI https://doi.org/10.1016/j.physparis.2011.07.014, URL http://www.sciencedirect.com/science/article/pii/S0928425711000425
Mazzoni A, Lindén H, Cuntz H, Lansner A, Panzeri S, Einevoll GT (2019) Computing the local field potential (lfp) from integrate-and-fire network models. PLoS computational biology 11(12):e1004584
McGregor MM, Nelson AB (2019) Circuit mechanisms of parkinsons disease. Neuron 101(6):1042–1056
Meier J, Tewarie P, Hillebrand A, Douw L, van Dijk BW, Stufflebeam SM, Van Mieghem P (2016) A mapping between structural and functional brain networks. Brain Connectivity 6(4):298–311, DOI 10.1089/brain.2015.0408, https://doi.org/10.1089/brain.2015.0408
Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences 15(10):483–506, DOI 10.1016/j.tics.2011.06.003
Michel CM, Brunet D (2019) Eeg source imaging: a practical review of the analysis steps. Frontiers in neurology 10:325
Michel CM, Murray MM (2012) Towards the utilization of eeg as a brain imaging tool. NeuroImage 61(2):371–385
Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, de Peralta RG (2004) Eeg source imaging. Clinical neurophysiology 115(10):2195–2222
Michelle M McCarthy NK Emery N Brown (2008) Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. The Journal of Neuroscience pp 13488–504
Moran RJ, Kiebel SJ, Stephan KE, Reilly R, Daunizeau J, Friston KJ (2007) A neural mass model of spectral responses in electrophysiology. NeuroImage 37(3):706–720
Murray MM, Brunet D, Michel CM (2008) Topographic erp analyses: a step-by-step tutorial review. Brain topography 20(4):249–264
Olmi S, Petkoski S, Guye M, Bartolomei F, Jirsa V (2019) Controlling seizure propagation in large-scale brain networks. PLoS computational biology 15(2):e1006805, DOI 10.1371/journal.pcbi.1006805
Onslow AC, Jones MW, Bogacz R (2014) A canonical circuit for generating phase-amplitude coupling. PLoS computational biology 10(8):e1004391
Owen AM, Coleman MR (2008) Detecting awareness in the vegetative state. Annals of the New York Academy of Sciences 1129:130–138, DOI 10.1196/annals.1417.018
Pallarés V, Insabato A, Sanjuán A, Kühn S, Mantini D, Deco G, Gilson M (2018) Extracting orthogonal subject-and condition-specific signatures from fmri data using whole-brain effective connectivity. Neuroimage 178:238–254

Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience 3(8):606–616

Pernet CR, Appelhoff S, Gorgolewski KJ, Delorme A, Oostenveld R (2019) Eeg-bids, an extension to the brain imaging data structure for electroencephalography. Scientific Data 6(1):1–5

Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R (2018) Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nature neuroscience 21(7):903–919

Pinotsis DA, Moran RJ, Friston KJ (2012) Dynamic causal modeling with neural fields. Neuroimage 59(2):1261–1274

Preti MG, Van De Ville D (2019) Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nature Communications 10(1), DOI 10.1038/s41467-019-12765-7, URL https://doi.org/10.1038/s41467-019-12765-7, arXiv:1905.07813

Proix T, Bartolomei F, Guye M, Jirsa VK (2017) Individual brain structure and modelling predict seizure propagation. Brain 140(3):641–654, DOI 10.1093/brain/awx004, URL https://academic.oup.com/brain/article/140/3/641/299632383:103978

Roberts JA, Robinson PA (2012) Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics 85(1 Pt 1):011910, DOI 10.1103/PhysRevE.85.011910

Robinson P, Rennie C, Wright J, Bahramali H, Gordon E, Rowe D (2001) Prediction of electroencephalographic spectra from neurophysiology. Physical Review E 63(2):021903

Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E 56(1):826

Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousable states and epileptic seizures. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics 65(4 Pt 1):041924, DOI 10.1103/PhysRevE.65.041924

Robinson PA, Zhao X, Aquino KM, Griffiths J, Sarkar S, Mehta-Pandjee G (2016) Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment. Neuroimage 142:79–98

Rosanova M, Fecchio M, Casarotto S, Sarasso S, Casali AG, Pigorini A, Comaniciu A, Seregni F, Devalle G, Citerio G, Bodart O, Boly M, Gossieres O, Laureys S, Massimini M (2018) Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nature Communications 9(1):4427, DOI 10.1038/s41467-018-06871-1

Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SARB, Maris E, Barkhof F, Scheltens P, Stamm CJ (2010) Loss of 'small-world' networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PloS One 5(11):e13788, DOI 10.1371/journal.pone.0013788

Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, Jirsa V (2013) The virtual brain: a simulator of primate brain network dynamics. Frontiers in neuroinformatics 7:10

Saponati M, Garcia-Ojalvo J, Cataldo E, Mazzoni A (2019) Integrate-and-fire network model of activity propagation from thalamus to cortex. Biosystems 173:104259

Rubert C, Vanhaudenhuyse A, Giacono J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC neurology 9:35, DOI 10.1186/1471-2377-9-35

Lopes da Silva F, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activ-
da Silva FL (2013) Egg and meg: relevance to neuroscience. Neuron 80(5):1112–1128
Sotero RC (2016) Topology, cross-frequency, and same-frequency band interactions shape the generation of phase-amplitude coupling in a neural mass model of a cortical column. PLoS computational biology 12(11):e1005180
Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC (2007) Realistically coupled neural mass models can generate eeg rhythms. Neural computation 19(2):478–512
Spiegler A, Hansen ECA, Bernard C, McIntosh AR, Jirsa VK (2016) Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain. eNeuro 3(5), DOI 10.1523/ENEURO.0068-16.2016
Sporns O (2011) The human connectome: a complex network. Annals of the New York Academy of Sciences 1224(1):109–125
Sporns O (2018) Graph theory methods: applications in brain networks. Dialogues in clinical neuroscience 20(2):111
Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex (New York, NY: 1991) 17(1):92–99, DOI 10.1093/cercor/bhj127
Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, Silove D (2014) The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. International journal of epidemiology 43(2):476–493
Stefanescu RA, Shivakeshavan RG, Talathi SS (2012) Computational models of epilepsy. Seizure 21(10):748–759, DOI 10.1016/j.seizure.2012.08.012
Stender J, Mortensen KN, Thibaut A, Darkner S, Laur eys A, Gjedde A, Kupers R (2016) The Minimal Energetic Requirement of Sustained Awareness after Brain Injury. Current biology: CB 26(11):1494–1499, DOI 10.1016/j.cub.2016.04.024
Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685
Stewart I (1999) Holes and hot spots. Nature 401(6756):863–865, DOI 10.1038/44730, URL http://www.nature.com/articles/44730
Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Liley D (1999) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Physical Review E 60(6):7299
Skaar JEW, Stasik AJ, Hagen E, Ness TV, Einevoll GT (2019) Estimation of neural network model parameters from local field potentials (lfps). bioRxiv p 564765
Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC (2007) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Physical Review E 60(6):7299
Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex (New York, NY: 1991) 17(1):92–99, DOI 10.1093/cercor/bhj127
Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, Silove D (2014) The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. International journal of epidemiology 43(2):476–493
Stefanescu RA, Shivakeshavan RG, Talathi SS (2012) Computational models of epilepsy. Seizure 21(10):748–759, DOI 10.1016/j.seizure.2012.08.012
Stender J, Mortensen KN, Thibaut A, Darkner S, Laureys A, Gjedde A, Kupers R (2016) The Minimal Energetic Requirement of Sustained Awareness after Brain Injury. Current biology: CB 26(11):1494–1499, DOI 10.1016/j.cub.2016.04.024
Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685
Stewart I (1999) Holes and hot spots. Nature 401(6756):863–865, DOI 10.1038/44730, URL http://www.nature.com/articles/44730
Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Liley D (1999) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Physical Review E 60(6):7299
Skaar JEW, Stasik AJ, Hagen E, Ness TV, Einevoll GT (2019) Estimation of neural network model parameters from local field potentials (lfps). bioRxiv p 564765
Sotero RC (2016) Topology, cross-frequency, and same-frequency band interactions shape the generation of phase-amplitude coupling in a neural mass model of a cortical column. PLoS computational biology 12(11):e1005180
Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC (2007) Realistically coupled neural mass models can generate eeg rhythms. Neural computation 19(2):478–512
Spiegler A, Hansen ECA, Bernard C, McIntosh AR, Jirsa VK (2016) Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain. eNeuro 3(5), DOI 10.1523/ENEURO.0068-16.2016
clinical neuroscience 15(3):301
Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nature reviews neuroscience 2(4):229
Vigo D, Thornicroft G, Atun R (2016) Estimating the true global burden of mental illness. The Lancet Psychiatry 3(2):171–178
Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences 7(12):553–559, DOI 10.1016/j.tics.2003.10.012
Wedeen VJ, Rosene DL, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas JH, Tseng WYI (2012) The geometric structure of the brain fiber pathways. Science 335(6076):1628–1634
Wendling F (2005) Neurocomputational models in the study of epileptic phenomena. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society 22(5):285–287
Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. The European Journal of Neuroscience 15(9):1499–1508, DOI 10.1046/j.1460-9568.2002.01985.x
Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thamic nervous tissue. Kybernetik 13(2):55–80
Wium-Andersen IK, Vinberg M, Kessing LV, McIntyre RS (2017) Personalized medicine in psychiatry. Nordic Journal of Psychiatry 71(1):12–19
Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. Journal of Neuroscience 26(4):1314–1328
Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology 106(3):1125–65, DOI 10.1152/jn.00338.2011, URL http://www.ncbi.nlm.nih.gov/pubmed/21653723 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3174820
Yeung MS, Strogatz SH (1999) Time delay in the kuramoto model of coupled oscillators. Physical Review Letters 82(3):648
Zhang D, Snyder AZ, Shimony JS, Fox MD, Raichle ME (2010) Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cerebral cortex 20(5):1187–1194