Hematological parameters in patients with bloodstream infection: A retrospective observational study

Wei Tang¹ #, Wanchun Zhang² #, Xin Li¹ #, Juan Cheng¹, Zhou Liu¹, Qiang Zhou¹, Shihe Guan¹

¹ Department of Clinical Laboratory, Second Hospital of Anhui Medical University, Hefei, Anhui, China
² Department of Gynecology and Obstetrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China

Authors contributed equally to this work.

Abstract

Introduction: To date, the relationship between the causative pathogens and the changes of hematological parameters was rarely referred and deserves further investigation.

Methodology: A total of 825 adult patients, including 134 negative blood cultures patients and 691 bloodstream infection (BSI) patients, were screened for eligibility in this study. Receiver operating characteristic curves and binary logistic regression models were used to assess the power of hematological parameters to distinguish patients with BSI caused by different pathogens.

Results: Except for platelet-to-lymphocyte ratio (PLR) and platelet larger cell count (P-LCC), the other hematological parameters investigated in the study were significantly different in patients with BSI caused by different pathogens, including Candida. The specific combinations of lymphocyte count (LYM), platelet count (PLT), neutrophil-to-lymphocyte ratio (NLR), mean platelet volume (MPV), MPV-to-PLT ratio (MPV/PLT), platelet larger cell ratio (P-LCR), and C-reactive protein (CRP) can improve the ability to distinguish various BSI from negative blood cultures. The highest area under the curve was 0.753 (95% CI 0.709-0.797) for positive blood cultures, 0.715 (95% CI 0.658-0.771) for Gram-positive pathogens BSI, 0.777 (95% CI 0.730-0.824) for Gram-negative pathogens BSI, 0.797 (95% CI 0.747-0.846) for Escherichia coli BSI, 0.943 (95% CI 0.899-0.987) for Enterobacter aerogenes BSI, 0.830 (95% CI 0.740-0.921) for Pseudomonas aeruginosa BSI, and 0.767 (95% CI 0.695-0.839) for Staphylococcus aureus BSI.

Conclusions: The specific combinations of hematological parameters can improve the power to distinguish patients with BSI caused by different pathogens. Attention to these parameters can be easily integrated into daily medical activities, without extra costs.

Key words: bloodstream infection; blood cultures; hematological parameters; differential ability.

J Infect Dev Ctries 2020; 14(11):1264-1273. doi:10.3855/jidc.12811

Copyright © 2020 Tang et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cells and monocytes, enhancing adaptive immune responses [15]. Moreover, during BSI, platelets detect pathogens via their Toll-like receptors [16], glomming onto neutrophils. In response, the neutrophils release neutrophil extracellular traps (NETs), webs of DNA, ensnaring pathogens [17,18]. Platelets are needed for the recruitment of neutrophils to tissues of inflammation and infection [19]. Additionally, pathogens that enter the bloodstream will produce diverse extracellular proteins and toxins, resulting in platelet activation or inhibition of platelet activation [20]. Taken together, it is apparent that the interaction between platelets and pathogens not only has important consequences for the pathophysiological response to pathogenic infection but also affect PLT and other platelet-related parameters.

To date, the relationship between the causative pathogens and the changes of hematological parameters was rarely referred and deserves further investigation. Given the protective role of neutrophils, lymphocytes, and platelets in immunity against pathogens, in this retrospective observational study, we sought to systematically investigate the changes of hematological parameters and their differential ability in patients with BSI caused by different pathogens.

Methodology
Study design and data collection
This retrospective observational study was conducted using laboratory and clinical data collected from the microbial information system, laboratory information system, and laboratory electronic medical record system of the Second Hospital of Anhui Medical University, a 2,200-bed tertiary teaching hospital in Hefei (8.0 million inhabitants), Anhui province, China. Since the vast majority of our daily blood cultures were negative, to balance the sample size between groups, we collected data between February 2011 and June 2019 for positive blood cultures and May 2019 to June 2019 (randomly selected) for negative blood cultures.

The inclusion criteria were as follows: (1) age of at least 18 years; (2) clinical suspicion of BSI; and (3) C-reactive protein (CRP), hematological tests, and blood culture ordered, simultaneously. The exclusion criteria were as follows: (1) concomitant hematological diseases; (2) cancer; (3) preexisting immunodeficiency; (4) receiving chemotherapy such as glucocorticoids; (5) chronic liver disease; (6) splenomegaly; and (7) massive hemorrhage.

Instrument and reagent
Serum CRP concentration was detected by Dimension EXL with LM automatic biochemistry analyzer (Siemens Healthcare Diagnostics, Newark, DE). Hematological parameters, such as NEU, lymphocyte count (LYM), PLT, mean platelet volume (MPV), platelet distribution width (PDW), and platelet larger cell ratio (P-LCR), were determined on Sysmex XE2100 hematology analyzer (Sysmex Corporation, Kobe). Subsequently, plateletcrit (PCT), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), mean platelet volume-to-platelet count ratio (MPV/PLT), and platelet larger cell count (P-LCC) were calculated. Blood cultures were incubated in BACTEC FX automatic blood culture system (Becton Dickinson, Sparks, MD). The suspected positive bottles were removed and subjected to culturing tests by using Colombian blood agar plate, chocolate agar plate, and anaerobe 5% sheep blood agar plate [10]. Identification of microorganisms was performed with VITEKII Compact system (BioMérieux, Marcy L’Etoile) and matrix-assisted laser desorption/ionization time-of-flight Microflex LT mass spectrometer (Bruker Daltonics, Hamburg). When no bacterial growth was detected for five days, the result was considered negative.

Statistical analysis
Statistical analyses were performed using SPSS version 19.0 (SPSS Inc., Chicago, IL). Firstly, all variables were tested for normal distribution by the Kolmogorov-Smirnov test. In accordance with the result of this test, the statistical significance of differences was tested using the Student's t-test or Mann-Whitney U test (two groups’ comparison). In the case of multigroup comparison, One-Way ANOVA (LSD) or nonparametric (Kruskal-Wallis) test was applied. Through the above steps, we examined the relationship between all independent variables and dependent variable, consequently, some independent variables that may be meaningless were filtered out. Then, binary logistic regression analysis was conducted. Odds ratios (OR) and 95% CI were calculated to determine the strength of the association between hematological parameters and BSI pathogens. Besides, receiver operating characteristic (ROC) curves were constructed to investigate area under the curve (AUC), 95% confidence intervals (CI), sensitivity, specificity, and cut-off value of hematological parameters [21]. Continuous variables were reported as mean values ± standard deviation (SD) or median with interquartile range (IQR), while categorical variables
were expressed as count and percentage. Two-sided p < 0.05 was considered to represent a statistically significant difference.

Ethics statement

Ethical approval was not required as all data used in this study were acquired retrospectively from the microbial information system, laboratory information system, and laboratory electronic medical record system.

Results

Demographic and laboratory characteristics of study subjects

A total of 825 patients were included in the study. Blood cultures were positive in 691 patients. The demographic characteristics of all patients are summarized in Table 1. As for gender distribution, there was no significant difference between positive and negative blood cultures. Nevertheless, patients with positive blood cultures were older than those with negative blood cultures (p = 0.001). Furthermore,
patients with isolated Gram-negative pathogens were older than that with Gram-positive pathogens (p < 0.001) and negative blood culture (p < 0.001) (Table 2). Moreover, patients with E. coli BSI were older than those with S. aureus BSI (p < 0.001) and negative blood culture (p < 0.001) (Table 3).

Changes of hematological parameters in negative and positive blood cultures

Other than PLR (p = 0.881) and P-LCC (p = 0.122), the other hematological parameters were significantly different between the two groups. NEU, MPV, PDW, PCT, MPV/PLT, P-LCR, and P-LCR were higher in patients with positive blood cultures, while PCT, LYMPH, and PLT were lower (Table 1).

Table 3. Demographic and laboratory characteristics of patients with negative blood cultures and different pathogens positive blood cultures.

Characteristics	Negative	S. epidermidis	S. haemolyticus	S. aureus	E. faecalis	E. faecium	Candida	P value
Number of patients	134	106	28	92	27	25	20	—
Males, number (%)	67 (50.0%)	61 (57.5%)	22 (78.6%)	59 (64.1%)	17 (63.0%)	12 (48.0%)	8 (40.0%)	—
Age (years)	6.95 (4.48-10.14)	7.58 (5.42-11.62)	8.47 ± 5.11	9.16 ± 5.32	8.63 ± 4.34	11.17 ± 6.82	11.04 ± 10.26	<0.001
NEU (10^3/L)	1.06 (0.72-1.35)	0.93 (0.58-1.53)	1.06 ± 0.49	0.90 ± 0.57	0.89 ± 0.70	0.92 ± 0.46	0.73 ± 0.52	<0.001
PDW (%)	15.90 (13.00-16.30)	15.75 (13.02-16.58)	14.50 ± 3.52	16.10 (13.92-16.98)	15.61 ± 3.25	15.26 ± 2.31	14.28 ± 2.96	0.01
NLR	0.20 (0.08-0.72)	0.22 (0.01-0.11)	0.16 ± 0.06	0.15 (0.11-0.22)	0.17 ± 0.10	0.23 ± 0.16	0.20 ± 0.11	<0.001
CRP (g/L)	7.58 (4.12-11.69)	8.38 (4.46-15.16)	10.29 ± 8.55	10.48 (8.61-16.21)	14.24 ± 11.77	15.11 ± 13.52	14.39 (8.13-27.10)	<0.001
PLR	50.70 (24.40-114.65)	81.39 ± 55.13	119.88 ± 75.13	146.45 ± 106.06	103.41 ± 78.87	110.14 ± 85.46	138.45 ± 77.37	<0.001
P-LCR (%)	27.02 ± 11.77	29.91 ± 9.76	31.33 ± 9.14	29.09 ± 9.61	32.71 ± 11.95	31.10 ± 8.61	27.76 ± 8.06	<0.001

Table 3 (continued). Demographic and laboratory characteristics of patients with negative blood cultures and different pathogens positive blood cultures.

Characteristics	E. coli	K. pneumoniae	E. aerogenes	E. cloacae	P. aeruginosa	A. baumannii	P value
Number of patients	235	80	11	20	30	17	—
Males, number (%)	82 (34.9%)	48 (60.0%)	11 (54.5%)	12 (60.0%)	19 (63.3%)	15 (88.2%)	—
Age (years)	63.00 (50.00-74.00)	60.46 ± 14.55	54.09 ± 13.49	65.90 ± 11.90	63.77 ± 16.34	52.88 ± 18.48	<0.001
NEU (10^3/L)	10.06 (7.09-14.09)	11.06 ± 6.16	12.17 ± 12.21	9.59 ± 4.37	11.38 ± 9.00	9.70 ± 6.47	<0.001
MPV (FL)	0.66 (0.46-0.94)	0.80 ± 0.53	0.50 ± 0.19	0.78 ± 0.40	0.90 ± 0.56	1.07 ± 0.67	<0.001
PLT (10^3/L)	145.82 ± 78.64	143.40 ± 83.54	127.54 ± 45.86	134.15 ± 61.58	161.43 ± 105.41	182.76 ± 118.23	<0.001
MPV (%)	10.92 ± 1.52	11.08 ± 1.49	10.80 ± 1.22	10.88 ± 1.64	10.82 ± 1.27	10.59 ± 1.54	<0.001
PDW (%)	16.10 (14.50-16.70)	16.40 (13.90-17.00)	16.41 ± 1.41	15.84 ± 2.39	15.01 ± 2.88	14.69 ± 3.46	0.01
NLR	0.16 (0.12-0.20)	0.16 ± 0.08	0.14 ± 0.04	0.16 ± 0.04	0.18 ± 0.10	0.19 ± 0.11	<0.001
CRP (g/L)	14.70 (9.47-24.78)	14.26 (8.37-25.19)	23.57 ± 19.44	16.31 ± 11.55	9.43 (5.27-18.28)	10.45 ± 7.22	<0.001
P-LCR (%)	7.50 (5.30-10.90)	8.10 (5.50-12.75)	9.35 ± 3.59	8.28 ± 3.20	9.81 ± 7.32	9.21 ± 7.66	<0.001

Data are shown as number (%) or mean ± standard deviation, if not otherwise specified. BSI: bloodstream infection; CRP: C-reactive protein; LYMPH: lymphocyte count; MPV: mean platelet volume; MPV/PLT: mean platelet volume-to-platelet count ratio; NEU: neutrophil count; NLR: neutrophil-to-lymphocyte ratio; PCT: plateletcrit; PDW: platelet distribution width; PLT: platelet count; PLR: platelet-to-lymphocyte ratio; P-LCC: platelet larger cell count; P-LCR: platelet larger cell ratio.
Changes of hematological parameters in negative, Gram-positive, Gram-negative, and Candida blood cultures

Similarly, other than PLR ($p = 0.158$) and P-LCC ($p = 0.075$), the other hematological parameters were significantly different among the four groups (Table 2). Compare to negative blood cultures, Gram-negative pathogens BSI have higher values of CRP, NEU, PDW, MPV, MPV/PLT, NLR, and P-LCR, but lower values of PLT, LYM, and PCT (Supplementary Figure 1); Gram-positive pathogens BSI have higher values of CRP, MPV, MPV/PLT, NLR, and P-LCR, but the lower value of PLT (Supplementary Figure 1a, 1c, 1d, 1e); Candida BSI have higher value of NLR, whereas a lower value of LYM (Supplementary Figure 1b, 1e). Furthermore, compared to Gram-positive pathogens BSI, Gram-negative pathogens BSI have higher values of CRP, NEU, MPV/PLT, NLR, and P-LCR, while lower values of PLT, LYM, and PCT (Supplementary Figure 1a, 1b, 1d, 1e). See Table 4 for more details.

Changes of hematological parameters in negative blood cultures and different pathogens BSI

Likewise, other than PLR ($p = 0.178$) and P-LCC ($p = 0.254$), the other hematological parameters were significantly different among negative blood cultures and different pathogens BSI (Table 3). Compare to negative blood cultures, E. coli BSI has higher values of CRP, NEU, MPV/PLT, NLR, and P-LCR, while lower values of PLT, LYM, and PCT (Supplementary Table 4.

Table 4. Changes of hematological parameters in patients with negative, Gram-positive, Gram-negative, and Candida blood cultures.

Comparison	Hematological parameters
Negative vs. Gram-positive	PLT, CRP, MPV, MPV/PLT, NLR, P-LCR
Gram-negative vs. Gram-negative	PLT, LYM, PCT, CRP, NEU, PDW, MPV, MPV/PLT, NLR, P-LCR
Candida vs. Gram-negative	PLT, LYM, PCT, CRP, NEU, MPV/PLT, NLR, P-LCR

CRP: C-reactive protein; LYM: lymphocyte count; MPV: mean platelet volume; MPV/PLT: mean platelet volume-to-platelet count ratio; NEU: neutrophil count; NLR: neutrophil-to-lymphocyte ratio; PCT: plateletcrit; PDW: platelet distribution width; PLT: platelet count; PLR: platelet-to-lymphocyte ratio; P-LCC: platelet larger cell count; P-LCR: platelet larger cell ratio; ↑: the value of hematological parameters increase; ↓: the value of hematological parameters decrease.

Table 5. Changes of hematological parameters in patients with negative blood cultures and different pathogens positive blood cultures.

Comparison	Hematological parameters
Negative vs. S. epidermidis	PLT, P-LCR
S. haemolyticus vs. E. coli	P-LCR
S. aureus vs. E. faecalis	P-LCR
E. faecium vs. K. pneumoniae	P-LCR
E. coli vs. P. aeruginosa	P-LCR
Candida vs. S. epidermidis	MPV/PLT
E. aerogenes vs. E. coli	MPV/PLT
K. pneumoniae vs. E. aerogenes	MPV/PLT
S. haemolyticus vs. E. coli	NLR
E. aerogenes vs. K. pneumoniae	NLR
S. aureus vs. K. pneumoniae	P-LCR
Candida vs. E. coli	MPV

CRP: C-reactive protein; LYM: lymphocyte count; MPV: mean platelet volume; MPV/PLT: mean platelet volume-to-platelet count ratio; NEU: neutrophil count; NLR: neutrophil-to-lymphocyte ratio; PCT: plateletcrit; PDW: platelet distribution width; PLT: platelet count; PLR: platelet-to-lymphocyte ratio; P-LCC: platelet larger cell count; P-LCR: platelet larger cell ratio; ↑: the value of hematological parameters increase; ↓: the value of hematological parameters decrease.
Figures 2, 3, 4, 5, 6); *K. pneumoniae* BSI has higher values of CRP, NEU, PDW, MPV, MPV/PLT, NLR, and P-LCR, while lower values of PLT, LYM, and PCT (Supplementary Figures 2, 3, 4, 5, 6); *E. aerogenes* BSI has higher values of NLR, and P-LCR, whereas lower value of LYM (Supplementary Figures 3, 6); *E. cloacae* BSI has higher values of MPV, and P-LCR (Supplementary Figures 4, 6); *P. aeruginosa* BSI has higher values of CRP, MPV, and P-LCR (Supplementary Figures 2, 4, 6); *S. epidermidis* BSI has higher value of P-LCR (Supplementary Figure 6); *S. haemolyticus* BSI has higher value of MPV (Supplementary Figure 4); *S. aureus* BSI has higher values of CRP, MPV (*p* = 0.002), and MPV/PLT, while lower value of PLT (Supplementary Figures 2, 4, 5); *E. faecalis* BSI has higher values of MPV, and P-LCR.

Figure 1. ROC curves of hematological parameters for differentiating negative blood cultures from positive blood cultures (a), Gram-positive pathogens bloodstream infection (BSI) (b), Gram-negative pathogens BSI (c), *Candida* BSI (d), *S. epidermidis* BSI (e), *S. haemolyticus* BSI (f), *S. aureus* BSI (g), *E. faecalis* BSI (h), *E. faecium* BSI (i), *K. pneumoniae* BSI (k), *E. aerogenes* BSI (l), *E. cloacae* BSI (m), and *P. aeruginosa* BSI (n).
(Supplementary Figures 4, 6); *E. faecium* BSI has higher value of MPV (Supplementary Figure 4); *Candida* BSI only has higher value of NLR (Supplementary Figure 6).

More importantly, compared to *S. epidermidis* BSI, *E. coli* BSI has higher values of CRP, MPV, MPV/PLT, and NLR, but lower values of PLT, LYM, and PCT (Supplementary Figures 2-6); *K. pneumoniae* BSI has higher values of MPV, MPV/PLT, NLR, and P-LCR, whereas lower values of PLT, and PCT (Supplementary Figures 2, 4, 5, 6); *E. aerogenes* BSI only has a lower value of LYM (Supplementary Figure 3); *S. aureus* BSI has a higher value of MPV/PLT, while lower values of PLT, and PCT (Supplementary Figures 2, 5).

Besides, compared to *S. haemolyticus* BSI, *E. coli* BSI has a higher value of NLR (Supplementary Figure 6); *E. aerogenes* BSI has a lower value of LYM (Supplementary Figure 3). Moreover, compared to *S. aureus* BSI, both *E. coli* BSI and *K. pneumoniae* BSI have a higher value of P-LCR (Supplementary Figure 6). Similarly, compare to *Candida* BSI, both *E. coli* BSI and *K. pneumoniae* BSI have a higher value of P-LCR as well (Supplementary Figure 6). See Table 5 for more details.

Differential ability of hematological parameters

ROC curves were constructed to evaluate the power of hematological parameters to distinguish patients with BSI caused by different pathogens. The AUC, optimal cutoff value, sensitivity, and specificity of each hematological parameter are presented in Supplementary Table 1. The related ROC curves are presented in Figures 1 and Figure 2.

![Figure 2](image-url)

Figure 2. ROC curves of hematological parameters for Gram-positive pathogens bloodstream infection (BSI) vs. Gram-negative pathogens BSI (a), *S. epidermidis* BSI vs. *S. aureus* BSI (b), *S. epidermidis* BSI vs. *E. coli* BSI (c), *S. epidermidis* BSI vs. *K. pneumoniae* BSI (d), *S. epidermidis* BSI vs. *E. aerogenes* BSI (e), *S. haemolyticus* BSI vs. *E. coli* BSI (f), *S. haemolyticus* BSI vs. *E. aerogenes* BSI (g), *S. aureus* BSI vs. *E. coli* BSI (h), *S. aureus* BSI vs. *K. pneumoniae* BSI (i), *Candida* BSI vs. *E. coli* BSI (j), *Candida* BSI vs. *K. pneumoniae* BSI (k).
Furthermore, we performed univariate logistic regression analysis to examine the associations of each hematological parameter with different pathogens BSI, and calculated the standardized regression coefficient (β) and the odds ratio (OR) for each blood cell parameter. See Supplementary Table 2 for more details. The combined ROC curves of relevant hematological parameters were shown in Figure 3. The combinations of relevant hematological parameters can increase the differential ability to different pathogens BSI.

Discussion

Blood culture is the most definitive way to confirm BSI. Nonetheless, this gold standard needs at least one day to get the result and may be influenced by many factors [22]. Besides, partly due to differences in both pathogen and host, individual clinical responses to BSI vary greatly [23]. To date, early recognition, rapid microbiological diagnosis, as well as prompt initiation of appropriate antibiotics are always the goals of clinicians who confront probable BSI [24]. Therefore, there is an urgent need for efficient and rapid detection of BSI. For this purpose, it is important to explore BSI comprehensively and deeply, especially the relationship between the causative pathogens and the changes of hematological parameters.

Previous studies have shown that, during BSI, secreted immunomodulatory proteins of pathogen activate platelets and the coagulation system [25-27]. Consequently, the platelet-leukocyte aggregates formed [28] and adhere to endothelium [29,30]. Eventually, the platelets are activated, aggregated, and consumed [31]. Additionally, it has been demonstrated that platelets with higher MPV values have a larger surface area and more granules, which is associated with their activation [32]. Furthermore, MPV, MPV/PLT, and PLR were considered as diagnostic adjunct tests for BSI [33-36]. Nevertheless, Johansson et al. have reported that there was no association between bacterial species and the occurrence of thrombocytopenia [37]. However, each species of bacterium, and even individual strains, have different mechanisms for interacting with platelets [18]. Actually, the immune responses of the host to Gram-positive pathogens are fundamentally different from Gram-negative pathogens [38,39]. Therefore, the kinds of causative pathogens should be taken into account. Opposite to our results, Djordjevic and coauthors reported [9] that patients with Gram-positive BSI have significantly lower values of MPV/PLT and PLR than those with negative blood cultures. Comparing to Gram-positive BSI and negative blood cultures, patients with Gram-negative BSI have the highest values of PLR. It should be noted that the population.

Figure 3. ROC curves of the specific combination of hematological parameters for differentiating negative blood cultures from positive blood cultures (a), Gram-positive pathogens bloodstream infection (BSI) (b), Gram-negative pathogens BSI (c), E. coli BSI (d), E. aerogenes BSI (e), P. aeruginosa BSI (f), S. aureus BSI (g).
included in that research were patients with critically ill BSI and severe trauma. Altogether, to some extent, platelet-related parameters may reflect the distinction of platelet activation in BSI caused by different pathogens. Although in a study by Wu et al., no significant differences were found in WBC, PLT, and CRP between BSI and negative blood cultures [11], while most of the previous studies have shown that the immune responses to BSI have obvious characteristics, such as the increase of NEU, NLR, PDW, and CRP [40], as well as the decrease of LYM [41]. These are consistent with our results. Furthermore, NLR and MPV were found to reflect the severity of BSI, as well as an independent predictor of death [9,42]. Currently, we provided the first retrospective observational study to systematically investigate the changes of more kinds of hematological parameters and their differential ability in patients with BSI caused by different pathogens, including Candida spp. Notably, our results provided some fundamental data, most of which were reported for the first time.

It is undeniable that our present study has some limitations. Firstly, the study was conducted at a single center, and the findings may not be readily suitable to patients with different demographic characteristics. Secondly, we excluded patients suffering from the severe underlying disease. Thirdly, patients with positive blood cultures were significantly older than those with negative blood cultures. Although this may be because older patients are more prone to BSI than younger patients, age-matched groups can better reflect the effects of different pathogens on hematological parameters. Fourthly, except for retrospective observational design, implementation of strict inclusion and exclusion criteria led to a lower number of patients with BSI caused by S. haemolyticus, E. faecalis, E. faecium, E. aerogenes, E. cloacae, P. aeruginosa, A. baumannii, and Candida. To explore the changes of hematological parameters and their differential ability in patients with BSI caused by more kinds of pathogens, further larger prospective studies are warranted.

Conclusions

Taken together, the specific combinations of hematological parameters can improve the power to distinguish patients with BSI caused by different pathogens. Attention to these parameters can be easily integrated into daily medical activities, without extra costs.

Acknowledgements

This work was supported by the Science Foundation of Anhui Medical University (grant number 2019xkj043), the Natural Science Foundation of Anhui Province (grant number 1908085QH366), and the National Natural Science Foundation of China (grant number 81972013).

References

1. Kerrigan SW (2015) The expanding field of platelet-bacterial interconnections. Platelets 26: 293-301.
2. Minasyan H (2017) Sepsis and septic shock: Pathogenesis and treatment perspectives. J Crit Care 40: 229-242.
3. Yıldız A, Albayrak M, Pala Ç, Şahin O, Afacan Öztürk HB, Güneş G, Maral S, Okutan H (2018) Infections in patients with lymphoma: An analysis of incidence, relationship, and risk factors. J Infect Dev Ctries 12: 741-747. doi: 10.3855/jide.10399.
4. Brun-Buisson C, Doyon F, Carlet J (1996) Bacteremia and severe sepsis in adults: a multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteremia-Sepsis Study Group. Am J Respir Crit Care Med 154: 617-624.
5. Diekema DJ, Hsueh PR, Mendes RE, Pfaffer MA, Rolston KV, Sader HS, Jones RN (2019) The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 63: e00355.
6. Duggan S, Leonhardt I, Hünninger K, Kurzai O (2015) Host response to Candida albicans bloodstream infection and sepsis. Virulence 6: 316-326.
7. Hawkins CA, Collignon P, Adams DN, Bowden FJ, Cook MC (2006) Profound lymphopenia and bacteremia. Intern Med J 36: 385-388.
8. Ates S, Oksuz H, Dogu B, Bozkus F, Ucmak H, Yantz F (2015) Can mean platelet volume and mean platelet volume/platelet count ratio be used as a diagnostic marker for sepsis and systemic inflammatory response syndrome. Saudi Med J 36: 1186-1190.
9. Djordjevic D, Rondovic G, Surbatovic M, Stanojevic I, Udovicic I, Andjelic T, Zeba S, Milosavljevic S, Stankovic N, Abazovic D, Jevdijc J, Vojvodic D (2018) Neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and mean platelet volume-to-platelet count ratio as biomarkers in critically ill and injured patients: which ratio to choose to predict outcome and nature of bacteremia. Mediators Inflamm 2018: 3758068.
10. Pan YP, Fang YP, Xu YH, Wang ZX, Shen JL (2017) The diagnostic value of procalcitonin versus other biomarkers in prediction of bloodstream infection. Clin Lab 63: 277-285.
11. Wu RX, Chiu CC, Lin TC, Yang YS, Lee Y, Lin JC, Chang FY (2017) Procalcitonin as a diagnostic biomarker for septic shock and bloodstream infection in burn patients from the Formosa Fun Coast dust explosion. J Microbiol Immunol Infect 50: 872-878.
12. Leslie M (2010) Cell biology. Beyond clotting: the powers of platelets. Science 328: 562-564.
13. Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67: 499-511.
14. Cox D, Kerrigan SW, Watson SP (2011) Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 9: 1097-1107.
15. Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11: 264-274.
16. Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107: 637-641.
17. Castanheira F, Kubes P (2019) Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133: 2178-2185.
18. Tunjungputri RN, van de Heijden W, Urbanus RT, de Groot M, van der Ven A, de Mast Q (2017) Higher platelet reactivity modulating acute and chronic inflammation. Blood 107: 637-641.
19. Pitchford S, Pan D, Welch HC (2017) Platelets in neutrophil recruitment to sites of inflammation. Curr Opin Hematol 24: 23-31.
20. Shannon O (2015) Platelet interaction with bacterial toxins and secreted products. Platelets 26: 302-308.
21. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148: 839-843.
22. Hall KK, Lyman JA (2006) Updated review of blood culture contamination. Clin Microbiol Rev 19: 788-802.
23. Lin MT, Albertson TE (2004) Genomic polymorphisms in sepsis. Crit Care Med 32: 569-579.
24. Minton J, Clayton J, Sandoe J, Mc Gann H, Wilcox M (2008) Improving early management of bloodstream infection: a quality improvement project. BMJ 336: 440-443.
25. Binsker U, Palankar R, Wesche J, Kohler TP, Prucha J, Burchhardt G, Rohde M, Schmidt F, Bröker BM, Mamat U, Minasyan H, Flachsbart F (2019) Blood coagulation: a powerful bactericidal mechanism of human innate immunity. Int Rev Immunol 38: 3-17.
26. Schouten M, Wiersinga WJ, Levi M, van der Poll T (2008) Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 83: 536-545.
27. Finsterbusch M, Schrottauer WC, Kral-Pointner JB, Salzmann M, Assinger A (2018) Measuring and interpreting platelet-leukocyte aggregates. Platelets 29: 677-685.
28. Müssbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Dutler H, Hohensinner P, Basilio J, Petzelbauer P, Assinger A, Schmidt J (2019) Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 10: 85.
30. Russwurm S, Vickers J, Meier-Hellmann A, Spangenberg P, Bredle D, Reinhart K, Lösche W (2002) Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 17: 263-268.
31. Gafter-Gvili A, Mansur N, Bivas A, Zemer-Wassercug N, Bishara J, Leibovici L, Paul M (2011) Thrombocytopenia in Staphylococcus aureus bacteremia: risk factors and prognostic importance. Mayo Clin Proc 86: 389-396.
32. Kim CH, Kim SJ, Lee MJ, Kwon YE, Kim YL, Park KS, Ryu HH, Park JT, Han SH, Yoo TH, Kang SW, Oh HJ (2015) An increase in mean platelet volume from baseline is associated with mortality in patients with severe sepsis or septic shock. PLoS One 10: e0119437.
33. Can E, Hamilcikan Ş, Can C (2018) The value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio for detecting early-onset neonatal sepsis. J Pediatr Hemat Oncol 40: c229-c232.
34. Hanaganahalli SB, Sreeram S, Bompad A, Kuppannagar SK, Suresh PK, Philipose CS (2018) Is MPV a predictive marker for neonatal sepsis? a pilot study. J Pediatr Hemat Oncol 40: 548-552.
35. Oh GH, Chung SP, Park YS, Hong JH, Lee HS, Chung HS, You JS, Park JW, Park I (2017) Mean platelet volume to platelet count ratio as a promising predictor of early mortality in severe sepsis. Shock 47: 323-330.
36. Wang Z, Zhao Q, Zhang D, Sun C, Bao C, Yi M, Xing L, Luo D (2016) Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens. Blood Coagul Fibrinolysis 27: 667-672.
37. Johansson D, Rasmussen M, Inghammar M (2018) Thrombocytopenia in bacteremia and association with bacterial species. Epidemiol Infect 146: 1312-1317.
38. Legrand M, Klijn E, Payden Ince C (2010) The response of the host microcirculation to bacterial sepsis: does the pathogen matter. J Mol Med (Berl) 88: 127-133.
39. Yipp BG, Andonogiu G, Howlett CJ, Robbins SM, Hartung T, Ho M, Kubes P (2002) Profound differences in leukocyte-endothelial cell responses to lipopolysaccharide versus lipoteichoic acid. J Immunol 168: 4650-4658.
40. Zhang HB, Chen J, Lan QF, Ma XI, Zhang SY (2016) Diagnostic values of red cell distribution width, platelet distribution width, and neutrophil-lymphocyte count ratio for sepsis. Exp Ther Med 12: 2215-2219.
41. de Jager CP, van Wijk PT, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC (2010) Lymphocytopoenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care 14: R192.
42. Liu X, Shen Y, Wang H, Ge Q, Fei A, Pan S (2016) Prognostic significance of neutrophil-to-lymphocyte ratio in patients with sepsis: a prospective observational study. Mediators Inflamm 2016: 8191254.

Corresponding author
S.H. Guan, PhD
Department of Clinical Laboratory, Second Hospital of Anhui Medical University, Address: Furong Road, No. 678, 230601, Hefei, China.
Phone: 86-551-63869508
Fax: 86-551-63869400
Email: 317822887@qq.com, shiheguan@126.com

Conflict of interests: No conflict of interests is declared.
Annex – Supplementary Items

Supplementary Figure 1. Hematological parameters among and between negative, Gram-positive, Gram-negative, and *Candida* blood cultures. (a) platelet count (PLT) and C-reactive protein (CRP); (b) neutrophil count (NEU) and lymphocyte count (LYM); (c) platelet distribution width (PDW) and mean platelet volume (MPV); (d) plateletcrit (PCT) and mean platelet volume-to-platelet count ratio (MPV/PLT); (e) neutrophil-to-lymphocyte ratio (NLR) and platelet larger cell ratio (P-LCR). Comparisons should be read from left to right. The estimate is located at the intersection of the column-defining blood cultures and the row-defining blood cultures. Significant results are bolded and underscored. Green means that, in comparison, the former is lower than the latter. Red means that, in comparison, the former is higher than the latter.

	Negative	Z = -4.454	Z = -7.946	Z = -2.476
	Gram-positive	Z = -3.031	Z = -3.737	Z = -0.889
	P = 0.015	P < 0.001	P < 0.001	P = 0.880
	Gram-negative	Z = -6.912	Z = -4.756	Z = -1.78
	P < 0.001	P < 0.001	P = 1.000	
	Z = -1.001	Z = -0.340	Z = -1.969	P = 0.293
	P = 1.000	P = 1.000	C. spp	

	Negative	Z = -2.477	Z = -5.973	Z = -3.354
	Gram-positive	Z = -2.139	Z = -4.301	Z = -2.348
	P = 0.195	P < 0.001	P = 0.113	
	Gram-negative	Z = -5.00	Z = -4.150	Z = -0.901
	P < 0.001	P < 0.001	P = 1.000	
	Z = -1.500	Z = -0.582	Z = -0.831	
	P = 0.801	P = 1.000	C. spp	

	Negative	Z = -3.780	Z = -5.834	Z = -0.502
	Gram-positive	Z = -2.131	Z = -2.376	Z = -1.168
	P = 0.199	P < 0.001	P = 1.000	
	Gram-negative	Z = -3.835	Z = -2.028	Z = -1.989
	P < 0.001	P = 0.255	P = 0.280	
	Z = -0.116	Z = 1.071	Z = -1.773	
	P = 1.000	P = 1.000	C. spp	

	Negative	Z = -3.369	Z = -6.708	Z = -0.456
	Gram-positive	Z = -2.029	Z = -4.018	Z = -1.069
	P = 0.255	P < 0.001	P = 1.000	
	Gram-negative	Z = -4.918	Z = -3.528	Z = -2.484
	P < 0.001	P < 0.001	P = 0.078	
	Z = -0.548	Z = -0.339	Z = -1.547	
	P = 1.000	P = 1.000	C. spp	

	Negative	P = 0.004	P < 0.001	P = 0.805
	Gram-positive	P = 0.012	P = 0.003	P = 0.403
	P = 0.001	P = 0.001	P = 0.075	
	C. spp	Z = -3.473	Z = -2.196	Z = -0.195
	P = 0.003	P = 0.168	P = 1.000	
Supplementary Figure 2. Platelet count (PLT) and C-reactive protein (CRP) values among and between negative blood cultures and bloodstream infection (BSI) caused by different pathogens. Comparisons should be read from left to right. The estimate is located at the intersection of the column-defining blood cultures and the row-defining blood cultures. Significant results are bolded and underscored. Green means that, in comparison, the former is lower than the latter. Red means that, in comparison, the former is higher than the latter.

Negative	S. epidermidis	S. haemolyticus	S. aureus	E. faecalis	E. faecium	E. coli	E. aerogenes	E. cloacae
Z = 0.126	0.804	0.026	0.019	0.019	0.019	0.019	0.019	0.019
P = 0.391	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010

Supplementary Figure 3. Neutrophil count (NEU) and lymphocyte count (LYM) values among and between negative blood cultures and bloodstream infection (BSI) caused by different pathogens. Comparisons should be read from left to right. The estimate is located at the intersection of the column-defining blood cultures and the row-defining blood cultures. Significant results are bolded and underscored. Green means that, in comparison, the former is lower than the latter. Red means that, in comparison, the former is higher than the latter.

Negative	S. epidermidis	S. haemolyticus	S. aureus	E. faecalis	E. faecium	E. coli	E. aerogenes	E. cloacae
Z = 0.932	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046
P = 0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010

Negative	S. epidermidis	S. haemolyticus	S. aureus	E. faecalis	E. faecium	E. coli	E. aerogenes	E. cloacae
Z = 2.506	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046
P = 0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
Supplementary Figure 4. Platelet distribution width (PDW) and mean platelet volume (MPV) values among and between negative blood cultures and bloodstream infection (BSI) caused by different pathogens. Comparisons should be read from left to right. The estimate is located at the intersection of the column-defining blood cultures and the row-defining blood cultures. Significant results are bolded and underscored. Green means that, in comparison, the former is lower than the latter. Red means that, in comparison, the former is higher than the latter.

Negative	PDW	MPV
S. epidermidis	0.059	0.068
S. haemolyticus	0.059	0.068
S. aureus	0.059	0.068
E. faecalis	0.059	0.068
E. coli	0.059	0.068
K. pneumoniae	0.059	0.068
E. cloacae	0.059	0.068
S. haemolyticus	0.059	0.068
S. enteritidis	0.059	0.068
C. difficile	0.059	0.068

Supplementary Figure 5. Plateletcrit (PCT) and mean platelet volume-to-platelet count ratio (MPV/PLT) values among and between negative blood cultures and bloodstream infection (BSI) caused by different pathogens. Comparisons should be read from left to right. The estimate is located at the intersection of the column-defining blood cultures and the row-defining blood cultures. Significant results are bolded and underscored. Green means that, in comparison, the former is lower than the latter. Red means that, in comparison, the former is higher than the latter.

Negative	PCT	MPV/PLT
S. epidermidis	0.059	0.068
S. haemolyticus	0.059	0.068
S. aureus	0.059	0.068
E. faecalis	0.059	0.068
E. coli	0.059	0.068
K. pneumoniae	0.059	0.068
E. cloacae	0.059	0.068
S. haemolyticus	0.059	0.068
S. enteritidis	0.059	0.068
C. difficile	0.059	0.068
Supplementary Table 1. Performance of hematological parameters in diagnosing bloodstream infection (BSI) caused by different pathogens.

Comparison	Hematological parameters	AUC	95% CI	Sensitivity (%)	Specificity (%)	Cut-off
Negative vs. BSI	NEU	0.620	0.585-0.653	61.4	60.4	7.66
	LYM	0.635	0.601-0.668	66.7	59.0	0.96
	PLT	0.653	0.619-0.685	38.4	87.3	121.00
	MPV	0.644	0.609-0.678	51.1	76.0	10.70
	PDW	0.589	0.554-0.624	28.7	93.2	16.60
	PCT	0.607	0.572-0.641	35.9	81.2	0.14
	NLR	0.674	0.641-0.706	65.3	66.4	9.01
	MPV/PLT	0.653	0.618-0.686	44.6	80.4	7.70
	P-LCR	0.637	0.597-0.676	48.4	75.9	31.90
	CRP	0.704	0.669-0.739	65.2	68.8	89.40
Negative vs. Gram-positive	PLT	0.584	0.535-0.632	32.0	87.3	121.00
	MPV	0.612	0.563-0.660	48.2	76.0	10.70
	NLR	0.598	0.549-0.646	54.0	66.4	9.01
	MPV/PLT	0.597	0.547-0.645	45.6	75.2	7.20
	P-LCR	0.597	0.540-0.653	38.5	79.7	33.30
	CRP	0.650	0.596-0.701	56.0	68.8	89.40
Negative vs. Candida	LYM	0.718	0.639-0.787	75.0	66.4	0.84
	NLR	0.730	0.652-0.798	65.0	80.6	13.38
Negative vs. Gram-negative	NEU	0.658	0.616-0.699	65.6	63.4	8.02
	LYM	0.677	0.635-0.717	72.8	59.0	0.96
	PLT	0.706	0.665-0.745	44.0	86.6	122.00
	MPV	0.673	0.630-0.715	54.0	75.9	10.70
	PDW	0.620	0.575-0.663	43.8	82.0	16.30
	MPV	MPV	P-LCR	CRP		
------------------	-----------	-----------	----------	-----------		
Gram-positive vs. Gram-negative						
Negative vs. S. epidermidis						
MPV	0.674	0.594	0.579	0.674		
PLT	0.605	0.556	0.540	0.695		
P-LCR	0.670	0.622	0.721	0.650		
CRP	0.737	0.695	0.759	0.650		
Negative vs. S. aureus						
MPV	0.650	0.567	0.598	0.605		
PLT	0.665	0.546	0.597	0.698		
P-LCR	0.670	0.622	0.721	0.650		
CRP	0.737	0.695	0.759	0.650		
Negative vs. E. cloacae						
MPV	0.674	0.594	0.579	0.674		
PLT	0.605	0.556	0.540	0.695		
P-LCR	0.670	0.622	0.721	0.650		
CRP	0.737	0.695	0.759	0.650		
Negative vs. S. faecal						
MPV	0.650	0.579	0.598	0.605		
PLT	0.665	0.546	0.597	0.698		
P-LCR	0.670	0.622	0.721	0.650		
CRP	0.737	0.695	0.759	0.650		
Negative vs. S. faecium						
MPV	0.679	0.599	0.597	0.674		
PLT	0.666	0.613	0.597	0.699		
P-LCR	0.670	0.622	0.721	0.650		
CRP	0.737	0.695	0.759	0.650		
Negative vs. K. pneumoniae						
MPV	0.666	0.598	0.597	0.674		
PLT	0.680	0.613	0.597	0.699		
P-LCR	0.672	0.604	0.597	0.672		
CRP	0.737	0.672	0.721	0.672		
Negative vs. E. aerogenes						
MPV	0.859	0.791	0.720	0.759		
PLT	0.722	0.657	0.657	0.697		
P-LCR	0.759	0.679	0.721	0.697		
CRP	0.737	0.679	0.721	0.697		
Negative vs. E. cloacae						
MPV	0.645	0.563	0.679	0.605		
P-LCR	0.634	0.551	0.721	0.679		
CRP	0.674	0.596	0.721	0.679		
Negative vs. P. aeruginosa						
MPV	0.675	0.592	0.679	0.587		
P-LCR	0.675	0.594	0.679	0.587		
CRP	0.675	0.594	0.679	0.587		
Negative vs. Candida						
MPV	0.654	0.582	0.679	0.574		
P-LCR	0.654	0.582	0.679	0.574		
CRP	0.654	0.582	0.679	0.574		
S. epidermidis vs. S. aureus						
MPV	0.675	0.621	0.726	0.675		
P-LCR	0.675	0.621	0.726	0.675		
CRP	0.675	0.621	0.726	0.675		
Tang et al. – Hematological parameters in patients with BSI

J Infect Dev Ctries 2020; 14(11):1264-1273.

Comparison	Hematological parameters	Standard β value	OR	95% CI Lower bound	95% CI Upper bound	P value
Negative vs. BSI						
	NEU	-0.002	0.998	0.942	1.057	0.938
	LYM	-0.020	0.980	0.927	1.060	0.920
	PLT	<0.001	0.999	0.979	1.020	0.925
	MPV	0.184	1.202	0.267	5.414	0.810
	PDW	-0.021	0.979	0.847	1.131	0.775
	PCT	6.026	41.424	<0.001	94.541	0.620
	NLR	0.040	1.041	1.005	1.077	**0.025**
	MPV/PLT	19.955	46.378	7.590	283.316	**0.029**
	P-LCR	-0.019	0.981	0.806	1.195	0.894
	CRP	0.008	1.008	1.005	1.011	**<0.001**
Negative vs. Gram-positive						
	PLT	0.005	1.005	1.001	1.009	**0.023**
	MPV	0.829	2.292	0.665	7.898	0.189
	NLR	0.026	1.026	1.001	1.052	**0.043**
	MPV/PLT	16.851	20.817	10.467	41.381	**0.023**
	P-LCR	-0.099	0.906	0.762	1.078	0.265
	CRP	0.006	1.006	1.003	1.009	**<0.001**
Negative vs. Candida						
	LYM	-0.852	0.427	0.112	1.630	0.213
	NLR	0.035	1.036	0.988	1.086	0.146
Negative vs. Gram-negative						
	NEU	0.023	1.024	0.956	1.096	0.502
	LYM	-0.068	0.935	0.577	1.515	0.784
	PLT	0.004	1.004	0.980	1.029	0.723
	MPV	-0.096	0.909	0.177	6.674	0.909
	PDW	-0.068	0.934	0.786	1.109	0.436
	PCT	-2.605	0.074	<0.001	74.321	0.853
BS1: bloodstream infection; CRP: C-reactive protein; LYM: lymphocyte count; MPV: mean platelet volume; MPV/PLT: mean platelet volume-to-platelet count ratio; NEU: neutrophil count; NLR: neutrophil-to-lymphocyte ratio; PCT: plateletcrit; PDW: platelet distribution width; PLT: platelet count; P-LCR: platelet larger cell ratio; AUC: the area under the curve; CI: confidence intervals.						

Supplementary Table 2. Univariate odds ratios of hematological parameters in diagnosing bloodstream infection (BSI) caused by different pathogens.
	CRP	NEU	LYM	PLT	PCT	NLR	MPV/PLT	P-LCR	CRP	1.009	1.006	1.013	
Gram-positive vs. Gram-negative													
Negative vs. S. epidermidis					-10.210	-1.384	-0.016	24.860	0.009	62.276	< 0.001	0.002	
S. epidermidis vs. P. aeruginosa													
S. epidermidis vs. E. cloacae													
S. epidermidis vs. K. pneumoniae													
Negative vs. S. haemolyticus													
Negative vs. S. aureus													
Negative vs. S. faecalis													
Negative vs. S. faecium													
Negative vs. E coli													
Negative vs. K. pneumoniae													
Negative vs. E. aerogenes													
Negative vs. E. cloacae													
Negative vs. P. aeruginosa													

Note: The table above compares hematological parameters (NEU, LYM, PLT, MPV, MPV/PLT, NLR, P-LCR, CRP, MPV) between different bacterial strains in patients with bloodstream infections (BSI). The statistical significance of the differences is indicated by p-values (p < 0.001, p < 0.0001).
Hematological Parameters in Patients with BSI

	PCT	NLR	MPV/PLT	P-LCR	S. epidermidis vs. E. aerogenes	S. haemolyticus vs. E. coli	S. haemolyticus vs. E. aerogenes	S. aureus vs. E. coli	S. aureus vs. K. pneumoniae	Candida vs. E. coli	Candida vs. K. pneumoniae
	-25.161	< 0.001	< 0.001	1.612							
	0.029	1.030	0.995	1.066							
	-2.488	0.083	< 0.001	6.233							
	0.192	1.211	0.934	1.570							
					0.007						
					0.003						
					0.011						
					0.004						
					0.058						
					0.023						

BSI: bloodstream infection; CRP: C-reactive protein; LYM: lymphocyte count; MPV: mean platelet volume; MPV/PLT: mean platelet volume-to-platelet count ratio; NEU: neutrophil count; NLR: neutrophil-to-lymphocyte ratio; PCT: plateletcrit; PDW: platelet distribution width; PLT: platelet count; P-LCR: platelet larger cell ratio; OR: odds ratios; CI: confidence intervals.