Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators

Zihang Meng\(^1\) Vikas Singh\(^1\) Sathya N. Ravi\(^2\)
\(^1\)University of Wisconsin-Madison
\(^2\)University of Illinois at Chicago
zihangm@cs.wisc.edu, vsingh@biostat.wisc.edu, sathya@uic.edu

Abstract

We study how stochastic differential equation (SDE) based ideas can inspire new modifications to existing algorithms for a set of problems in computer vision. Loosely speaking, our formulation is related to both explicit and implicit strategies for data augmentation and group equivariance, but is derived from new results in the SDE literature on estimating infinitesimal generators of a class of stochastic processes. If and when there is nominal agreement between the needs of an application/task and the inherent properties and behavior of the types of processes that we can efficiently handle, we obtain a very simple and efficient plug-in layer that can be incorporated within any existing network architecture, with minimal modification and only a few additional parameters. We show promising experiments on a number of vision tasks including few shot learning, point cloud transformers and deep variational segmentation obtaining efficiency or performance improvements.

1. Introduction

Consider a deep neural network model with parameters \(W\) which we train using the following update rule,

\[
W \leftarrow W - \eta \nabla_W \mathbb{E}_z R(W, z) \tag{1}
\]

where \(z\) is a random variable representing data and \(R(\cdot)\) represents the loss function. Now, consider a slightly general form of the same update formula,

\[
W \leftarrow W - \eta \nabla_W \mathbb{E}_z R(W, Tz) \tag{2}
\]

The only change here is the introduction of \(T\) which can be assumed to be \textit{some} data transformation matrix. If \(T = I\), we see that Stochastic Gradient Descent (SGD) is a special case of (2) under the assumption that we approximate the expectation in (2) with finite iid samples (or a mini-batch).

Let us unpack the data transformation notation a bit to check what it offers. If a set of transformations \(T\) are chosen beforehand, and applied to the data samples before training commences, \(Tz\) simply represents data samples derived via data augmentation. On the other hand, \(Tz\) may not necessarily be explicitly instantiated as above. For example, spherical CNN [16] shows that when point cloud type data are embedded on the sphere with spherical convolutional operators, then it is possible to learn representations of data that are equivariant to the group action of rotations with no explicit data augmentation procedure. In particular, these approaches register each data point on a standard template (like the sphere) on which efficient convolutions can be defined based on differential geometric constructions – in other words, utilizing the properties of the transformations \(T\) of interest and how they relate the data points, such a treatment enables the updates to implicitly take into account the loss on \(Tz\). Conceptually, many results [16, 48, 42] on equivariance show that by considering the \textit{entire} orbit of each sample (a 3D point cloud) during training, for special types of \(T\), it is possible to avoid explicit data augmentation.

We can take a more expanded view of the above idea. Repeated application of a transformation \(T\) on data point \(z\) produces a discrete sequence \(\{z(t)\}_{t=0}^{\infty}\) where \(z(0) = z, z(t) = T^{t-1}z\). In general, the transformation matrix at the \(t\)-th step, denoted by \(T(t)\), need not even be generated from a fixed matrix. Indeed, in practice \(T(t)\) is selected from a set of appropriate transformations such as rotation, blur and so on, with some ordering, which could even be stochastic. At a high level, approaches such as [16] can be seen as a special case of (2). Making this argument precise needs adding an appropriate number of auxiliary variables and by averaging over all possible realizable \(T\)'s – the specific steps are not particularly relevant since apart from helping set up the intuition we just described, algorithms for equivariance to specific group actions do not directly inform our development. For the sake of convenience, we will primarily focus on the continuous time system since under the same initial conditions, the trajectories of both (continuous and discrete) systems coincide at all integers \(t\).

What does \(z(t)\) actually represent? There are two interpretations of \(z(t)\): (i) it formalizes on-the-fly or instan-
Our contributions. Models such as a Neural ODE [10] and Neural SDE [34] usually parameterize the dynamical system as a stand-alone model, and show how gradients can be efficiently backpropagated through this module. We take a different line of approach: we propose a stochastic process inspired layer which, in its most rudimentary form, can be thought of as an augmentation scheme that can work with existing layers in deep neural networks. But different from explicit data augmentation (rotation, flipping) that happens in the input image space, our layer can be utilized in the feature space and is fully adaptive to the input. But it is more than another augmentation scheme. Our layer allows modeling the time varying/stochastic property of the data/features, and controls them by a proper parameterization which is highly parameter efficient. We show that this stochasticity is not only mathematically interesting, but can be exploited in applications including point cloud transformers, object segmentation and few-shot recognition.

1.1. Related Work.

Early work in vision has made extensive use of differential equations [7, 36, 43, 5], especially for segmentation. In machine learning, differential equations are useful for manifold learning [3] and semi-supervised learning [4, 38] among others. Recently, a number of strategies combine differential equations with deep neural networks (DNNs) for solving vision problems. For example, [9] utilizes a conditional random field after the CNN encoder to refine the semantic segmentation results whose update rules can be viewed as a differential equation and [37, 22] uses a CNN to extract visual features before feeding them to an active contour model which iteratively refines the contour according to the differential equation. Separately, the literature includes strategies for solving differential equations with DNNs [24, 39, 32]. Over the last few years, a num-

Figure 1: Overview of TMDlayer use in few-shot recognition, point cloud learning and segmentation. “EGNN” refers to edge-labeling graph neural network [25], “FF” refers to feed-forward layer [10] and “CV” refers to our proposed deep Chan Vese model [12]. The manifold (top) describes the meaning of \mathcal{L} and L_{m}: \mathcal{L} captures the structure of the manifold. L_{m} is an approximation of \mathcal{L} constructed from samples.
ber of formulations including neural ODE \cite{10}, neural SDE \cite{34} and augmented neural ODE \cite{13} have been proposed, motivated by the need to solve differential equation modules within DNNs. Note that \cite{34} proposes to stabilize the neural ODE network with stochastic noise, which leads to a neural SDE, a setting quite different from the one studied here. Finally, we note that SDEs as a tool have also been used for stochastic analysis of DNNs \cite{8}.

2. Preliminaries

Background. Partial differential equation (PDE) is a functional equation in which the solution satisfies given relations between its various partial derivatives interpreted as multivariable functions. Consider a commonly used PDE model for segmentation – the heat equation, $\frac{\partial u}{\partial t} = \Delta u$, where u depends on both X and t. By the celebrated Feynman-Kac formula, we know that the solution u can be equivalently written as a conditional expectation with respect to a continuous time stochastic process X_t. This means that the solution (segmentation) u can be obtained by averaging a sequence of stochastic integration problems. For prediction, we need an algebraic concept called the “generator” of a function (like a neural network) since we are more interested in the pushforward mappings $f(X_t)$.

Given a time invariant stochastic process X_t, the (infinitesimal) generator L of a function f is defined as,

$$
L f(x) := \lim_{t \to 0} \frac{E[f(X_t)] - f(x)}{t},
$$

(3)

If the process X_t is deterministic, the expectation operator E becomes identity, and so the generator L simply measures the instantaneous rate of change in f with respect to X. In addition, say that X_t can also be expressed as a (Itô) Stochastic Differential Equation (SDE), i.e., X_t satisfies:

$$
dX_t = b(X_t)dt + \sigma(X_t)dW_t,
$$

(4)

where W_t is a (multidimensional) Brownian motion with covariance C, and b, σ represent drift and diffusion functions. Then, it turns out that L can be written in closed form (without limit) as,

$$
L f = b \cdot \nabla f + \sigma C \sigma^T \cdot \nabla^2 f,
$$

(5)

where L acts as a linear operator on functions f, see \cite{29}. We will shortly explain how to estimate and utilize L.

Setup. Consider the setting where X represents our input features (say, an image as a 3D array for the RGB channels) and f is a network with L layers. Let the data be in the form of points $\mathcal{D}^{(m)} := x_1, x_2, \ldots, x_m \in \mathbb{R}^N$ with $N > 0$, which lie on a compact d-dimensional differentiable submanifold $\mathcal{M} \subseteq \mathbb{R}^N$ which is assumed to be unknown. We assume that f in our case is defined implicitly using samples $x_i \in \mathcal{M}$, and so it is impossible to obtain closed form expressions for the operators ∇, ∇^2 in \cite{5}. In such cases, recall that, when $\sigma \equiv 0$. Diffusion maps \cite{13} uncovers the geometric structure \mathcal{M} by using $\mathcal{D}^{(m)}$ to construct an $m \times m$ matrix L_m as an approximation of the linear operator L.

Interpreting SDE. Recall that when L is used on the input space, it can model stochastic transformations to the input image (rotation and clipping are special cases). When L is used on the feature space (e.g., in an intermediate layer of a DNN), it can then model stochastic transformations of the features where it is hard to hand design augmentation methods. Moreover, it enables us to parameterize and learn the underlying stochastic changes/SDE of the features.

Roadmap. In the next section, we describe the estimation of differential operator L within deep network training pipelines. Based on this estimate, we define TMDlayer as a approximation to $f(X_{\Delta t}) := f(X, \Delta t)$ for a small time interval Δt using Taylor’s theorem. In \cite{4} we discuss four different applications of TMDlayer, where the pushforward measure $f(X, \Delta t)$ under the flow of features (interpreted as a vector field) $f(X, 0)$ may be a reasonable choice.

3. Approximating \mathcal{L} in Feedforward Networks

We now discuss a recently proposed nonparametric procedure to estimate L_m given finite samples x when $\sigma \neq 0$. This is an important ingredient because in our setup, we often do not have a meaningful model of minibatch samples, especially in the high dimensional setting (e.g., images).

Constructing L_m in DNN training. The definition in \cite{5} while intuitive, is not immediately useful for computational purposes. Under some technical conditions such as smoothness of b, σ, f, and the rank of C, \cite{2} recently showed that for processes that satisfy \cite{4}, it is indeed possible to construct finite sample estimators L_m of L. In \cite{2}, the approach is called Target Measure Diffusion (TMD) so we call our proposed layer, a TMDlayer.

To construct the differential operator, we first need to compute a kernel matrix $K \in \mathbb{R}^{m \times m}$ from the data. For problems involving a graph or a set of points as input, we can simply use the given data points (m would be the number of nodes in the graph, or the number of points in the set), while for problems with a single input (e.g., standard image classification), we may not have access to m data points directly. In this case, we can construct the kernel matrix by sampling a batch from the dataset and processing them together because we can often assume that the entire dataset is, in fact, sampled from some underlying distribution.

After getting the set of data samples, we first project the data into a latent space \mathbb{R}^h with a suitable h using a learnable linear layer, before evaluating them with an appropriate kernel function such as,

$$
k_h(x, y) = \exp(-4\epsilon^{-1}||x - y||^2).
$$

(6)

We then follow \cite{2} to construct the differential operator L as
Algorithm 1: Operational steps in TMDlayer

1. **Input:** Function \(f \), a batch of data samples \(X = \{x_1, \ldots, x_m\} \), coefficient \(\epsilon \), parameterized time interval \(\Delta t \)
2. Construct distance matrix \(K \) by
3. Compute kernel density estimate: \(q_\epsilon(x_i) = \sum_{j=1}^{n} (K_\epsilon)_{ij} \)
4. Parameterize target distribution by \(\pi \)
5. Form the diagonal matrix \(D_{\epsilon, \pi} \) with components
 \[(D_{\epsilon, \pi})_{ii} = \pi^{1/2}(x_i)q_\epsilon^{-1}(x_i) \]
6. Use \(D_{\epsilon, \pi} \) to right-normalize \(K_\epsilon = K_{\delta}D_{\epsilon, \pi} \)
7. Construct \(L_m \) by
 \[(\tilde{D}_{\epsilon, \pi})_{ii} := \sum_{j=1}^{n} (K_\epsilon)_{ij} \]
8. **Return:** \(f(X) + \Delta t \cdot L_m f(X) \)

follows: we compute the kernel density estimate \(q_\epsilon(x_i) = \sum_{j=1}^{n} (K_\epsilon)_{ij} \). Then, we form the diagonal matrix \(D_{\epsilon, \pi} \) with components \((D_{\epsilon, \pi})_{ii} = \pi^{1/2}(x_i)q_\epsilon^{-1}(x_i) \). Here, we allow the network to learn \(\pi \) by
\[
\pi^{1/2},(x_i) = g(x_i), \tag{7}
\]
where \(g \) can be a linear layer or a MLP depending on the specific application. Next we use \(D_{\epsilon, \pi} \) to right-normalize the kernel matrix \(K_{\epsilon, \pi} = K_{\epsilon}D_{\epsilon, \pi} \) and use \(\tilde{D}_{\epsilon, \pi} \) which is the diagonal matrix of row sums of \(K_{\epsilon, \pi} \) to left-normalize \(K_{\epsilon, \pi} \). Then we can build the TMDmap operator as
\[
L_m = e^{-1}(\tilde{D}_{\epsilon, \pi}^{-1}K_{\epsilon, \pi} - I). \tag{8}
\]
We will use (8) to form our TMDlayer as described next.

3.1. TMDlayer: A Transductive Corrective via \(L_m \)

Observe that (8) is very general and can represent many computer vision tasks where the density \(\pi \) could be defined using a problem specific energy function, and \(W_1 \) is the source of noise. In other words, we aim to capture the underlying structure of the so-called image manifold \([61]\) by using its corresponding differential operator \([5]\). Intuitively, this means that if we are provided a network \(f_W \) with parameters \(W \), then by Taylor’s theorem, the infinitesimal generator estimate \(L_m \) can be used to approximate the change of \(f_W \) as follows:
\[
\mathbb{E}_x f_W(x, \Delta t) \approx f_W(x, 0) + \Delta t \cdot L_m[f_W], \tag{9}
\]
where \([f_W] \in \mathbb{R}^m \) such that the \(i \)-th coordinate \([f_W]_i = f_W(x_i) \), and \(\Delta t \) is interpreted as a hyperparameter in our use cases, see Algorithm [1].

Inference using \(L_m \). In the ERM framework, typically, each test sample is used independently, and identically i.e., network (at optimal parameters) is used in a sequential manner for predictive purposes. Our framework allows us to further use relationships between the test samples for prediction. In particular, we can design custom choices of \(b, \sigma \) tailored for downstream applications. For example, in applications that require robustness to small and structured perturbations, it may be natural to consider low bias diffusion processes i.e., we can prescribe the magnitude using \(\|b\|_p \leq \kappa \) almost everywhere for some small constant \(\kappa > 0 \) (akin to radius of perturbation) and structure using diffusion functions \(\sigma \), \(C \). Inference can then be performed using generators \(\mathcal{L} \) derived using the corresponding process.

Layerwise \(\mathcal{L} \) for improved estimation of \(L_m \). While (9) allows us to use \(L_m \) for any network with no modifications, using it naively can be unsatisfactory in practice. For example, often we find that features from input layers might not be too informative for the task and may hinder training, especially in the early stages. We suggest a simple adjustment: instead of applying approximation in (9) on the entire network, we do it layerwise — this could be every intermediate layer or several layers of interest. It means that \(f \) can in principle be any layer (e.g., a layer in graph neural networks or a layer in Resnet), as shown in Fig. [1].

Justification. Recall that most feed-forward neural networks can be completely defined by a finite sequence of linear transformations followed by activation functions (along with intermediate normalization layers). One option is to estimate \(L_m \) by directly applying the Taylor series-like expansion in (9) on \(f = f^l \circ f^{l-1} \circ \cdots \circ f^1 \) where \(l \) represents the number of layers. However, from (9) we can see that the variance of such an estimate of the value \(L_m[f_W] \) will be high due to the well-known propagation of uncertainty phenomenon (across \(f^i \)'s). To avoid this, we can estimate \(L_m[f_W] \) in a sequential manner i.e., use \(L_m[f_W^{-1}] \) to estimate \(L_m[f_W^{-1}] \forall i \in [l] \). We will show in [4] that this parameterization can be useful in various applications.

Synopsis. We briefly summarize the benefits of our TMDlayer next: (i) Our TMDlayer can parameterize the underlying stochastic transformations of features, providing a way to augment features at any layer. (ii) The stochasticity/randomness in our TMDlayer is a stability inducing operation for robust predictive purposes [20]. (iii) Our TMDlayer is parameter efficient. All we need is a projection linear layer \(h \) and a linear layer \(g \) parameterizing the density \(\pi \) and a scalar parameter \(\Delta t \). In practice, we can work with a small latent dimension (e.g., \(h = 16 \)) when constructing \(L_m \), thus the total number of parameters in TMDlayer is very small when compared with the layer function \(f \) in most deep learning applications. But the reader will see that a mild limitation of the SDE perspective in practice is that, in principle, the dynamics may eventually get stuck in a metastable state. This means that in this case, the estimate \(L_m \) will not be very informative in the forward pass, and so the gradient estimates might be biased. In such cases, it may be useful to add points by sampling on the orbit if needed. We will now describe four different vision settings where our TMDlayer can be instantiated in a plug-and-play manner.
4. Applications

In this section, we evaluate our TMDlayer in the context of different applications. As a warm-up, in §4.1, we demonstrate the use of TMDlayer on a simple image classification task. We study its properties in both inductive and transductive settings. Then, in §4.2, we move to learning with point cloud datasets. Here, we see that the data type naturally offers a suitable object for leveraging the features of TMDlayer. In this case, we conduct experiments in an inductive setting. Next, in §4.3, we explore the use of TMDlayer on a segmentation task (also in an inductive setting). We propose a novel deep active contour model which can be viewed as a dynamical process within a neural network. We demonstrate the use of our TMDlayer on top of such a dynamical process. Finally, in §4.4, we investigate few-shot learning. Here, the problem setup natively provides the graph needed for computing our L_m and allows transductive inference.

4.1. A Simple Sanity check on Resnet

We start with a simple example of image classification on CIFAR10 [28] using Resnet [23], to demonstrate applicability of our TMDlayer and evaluate its behavior.

4.1.1 Role of TMDlayer: Finetuning/Robustify Resnet

We choose Resnet-18 as the backbone network and simply treat each of its three residual blocks Res as f (see [23] for details of a residual block) in TMDlayer as follows,

$$f(x^{l-1}) = \text{Res}(x^{l-1}) \Rightarrow x^l = f(x^{l-1}) + \Delta t L_m f(x^{l-1}),$$

where x^l is the feature at the l-th layer and L_m is constructed from a mini-batch of samples.

4.1.2 Experimental results

During training, we first sample m data points in a batch and use it as the input so that we can construct L_m. During test time, an input batch also contains m samples (similar to training time), where m increases from 1 to 200. We can see from Table 1 that m does have an influence on the test accuracy where a larger m performs better than a smaller m. A key reason is that L_m using a larger m can better capture the geometric structure of the data.

We also test whether our TMDlayer can help improve the robustness of the network. We can assess this property by adding random noise to the input image and evaluating the test accuracy (see Table 2). With our TMDlayer, the network is more noise resilient. This can be partly attributed to the use of our parameterized Δt, which allows the network to control the stochastic process in the TMDlayer adaptively and dependent on the input. In summary, the performance profile is similar (Tab. 1) with small improvements in robustness (Tab. 2).

m	Inference w/ TMDlayer	Accuracy (%)
1	No	75.15
1	Yes	87.35
10	Yes	87.65
50	Yes	88.14
100	Yes	88.52
150	Yes	88.55
200	Yes	88.25

Table 1: Accuracy on test set of CIFAR10 after adding TMDlayer to Resnet-18. Here, m is the batch size used to construct L_m during test/inference time. The accuracy of Resnet-18 (trained/tested without TMDlayer) is 88.27% comparable to $m \in \{50, 100, 150\}$.

σ	0.01	0.02	0.03	0.05	0.1
Resnet-18	87.54	83.90	75.85	53.87	17.27
Ours	87.79	84.37	77.96	56.18	19.18

Table 2: Accuracy on CIFAR10 when adding random noise (mean = 0, std = σ) to the input. “Ours” refers to Resnet-18 plus the TMDlayer.

4.2. Point cloud transformer

Tasks involving learning with point cloud data is important within 3D vision. The input here is usually a 3D point cloud represented by a set of points, each associated with its own feature descriptor. These points can be naturally thought of as samples from the underlying distribution which captures the geometric structure of the object. The problem provides an ideal sandbox to study the effect of our TMDlayer. But before we do so, we provide some context for where and how the TMDlayer will be instantiated. Recently, [19] proposed a transformer based model for point cloud learning which achieves state-of-the-art performance on this task – and corresponds to an effective and creative use of transformers in this setting. Nonetheless, Transformer models are known to be parameter costly (e.g., see [5, 56, 59] for cheaper approximations effective in NLP settings) and it is sensible to check to what extent our TMDlayer operating on a simple linear layer can be competitive with the transformer layer proposed in [19]. Our goal will be to check if significant parameter efficiency is possible.

4.2.1 Problem formulation

Denote an input point cloud $P \in \mathbb{R}^{N \times d}$ with N points, each with a d-dimensional feature descriptor. The classification task is to predict a class or label for the entire point cloud.

4.2.2 Role of TMDlayer: Replace transformer layer

The point cloud transformer layer in [19] is constructed as,

$$F_{out} = FF(F_{in} - F_{sa}) + F_{in},$$

(10)
where FF refers to their feed-forward layer (a combination of Linear, BatchNorm and ReLU layer), and F_{in} is the output of self-attention module which takes F_{in} as input (we refer the reader to [19] for more details of their network design, also included in our appendix).

A Transformer layer is effective for point cloud because it simultaneously captures the relation between features of all points. Since our TMDLayer can be viewed as a diffusion operator which captures the structure of the underlying data manifold from the data, we can check to what extent its ability suffices. We use the TMDlayer on a single feed-forward layer to replace the Transformer layer in (10).

$$F_{out} = FF(F_{in}) + \Delta t \cdot L_m FF(F_{in}).$$

(11)

Surprisingly, it turns out that this simple layer can perform comparably with the carefully designed Transformer layer in (10) while offering a much more favorable parameter efficiency profile. Here, L_m is constructed using points of the same point cloud (setting is identical to baselines).

4.2.3 Experimental results

Dataset. We follow [19] to conduct a point cloud classification experiment on ModelNet40 [54]. The dataset contains 12311 CAD models in 40 object categories, widely used in benchmarking point cloud shape classification methods. We use the official splits for training/evaluation.

Network architecture and training details. We use the same network as [19] except that we replace each point cloud transformer layer with a TMDLayer built on a single feed forward layer. We follow [19] to use the same sampling strategy to uniformly sample each object via 1024 points and the same data augmentation strategy during training. The mini-batch size is 32 and we train 250 epochs using SGD (momentum 0.9, initial learning rate 0.01, cosine annealing schedule). The hidden dimension is 256 for the whole network and 16 for constructing L_m (in TMDLayer).

Results. We see from Table 3 that our approach achieves comparable performance with [19]. In terms of the number of parameters, using hidden dimension 256 (used in this experiment) as an example, one self-attention layer contains 148k parameters; one linear layer contains 65.5k parameters; and the TMDLayer module only needs 4k parameters.

4.3. Object segmentation

Here, we show that our TMDLayer (a dynamical system) can also be built on top of another dynamical system. We do so by demonstrating experiments on object segmentation.

Recall that active contour models are a family of effective segmentation models which evolve the contour iteratively until a final result is obtained. Among many options available in the literature (e.g., [44, 49, 57]), the widely used Chan-Vese [7] model evolves the contour based on a variational functional. Here, we propose to combine the Chan-Vese functional with a deep network by parameterizing the iterative evolution steps and build our TMDLayer on top of it. We see that this simple idea leads to improved results. The appendix includes more details of our model.

4.3.1 Problem formulation

Let Ω be a bounded open subset of \mathbb{R}^2, where $\partial \Omega$ is its boundary. Let $f : \Omega \rightarrow \mathbb{R}$ be an image, object segmentation involves predicting a dense map in $\Omega \rightarrow \mathbb{R}/0$ where 1 (and 0) indicates the object (and background). In our formulation, we parameterize the object contour by a level set function $\phi : \bar{\Omega} \rightarrow \mathbb{R}$ evolve it within the DNN. We note that hybrid approaches using level sets together with DNNs is not unique to our work, see [57, 58].

4.3.2 Role of TMDLayer: in deep active contour model

Our proposed deep active contour model evolves the contour in the form of a level set function within the network, and the update scheme is,

$$\phi^l = \phi^{l-1} + \frac{\partial \phi}{\partial t} \Delta t,'$$

(12)

where ϕ^{l-1} is the level set function at layer $l - 1$ and $\frac{\partial \phi}{\partial t}$ is derived from our proposed deep variational functional. The appendix includes more details of our model, the variational functional, and the derivation of update equation.

Denote the update function in (12) as $\phi' = f(\phi^{l-1})$. Then, our TMDLayer forward pass can be written as,

$$\phi^l = f(\phi^{l-1}) + \Delta t \cdot L_m f(\phi^{l-1}).$$

(13)

Remark 1 Note that $\Delta t'$ in (12) and the Δt in (13) correspond to two different dynamical systems. The first one

Method	Input	#Points	Accuracy(%)
PointNet	P	1k	89.2
A-SCN	P	1k	89.8
SO-Net	P, N	2k	90.9
Kd-Net	P	32k	91.8
PointNet++	P	1k	90.7
PointNet++	P, N	5k	91.9
PointGrid	P	1k	92.0
PCNN	P	1k	92.3
PointConv	P, N	1k	92.5
A-CNN	P, N	1k	92.6
DGCNN	P	1k	92.9
PCT	P	1k	93.2
Ours	P	1k	93.0

Table 3: Classification results on ModelNet40. Accuracy means overall accuracy. P = points, N = normals. “Ours” means replacing transformer layers in PCT with TMDLayer.
4.3.3 Experimental results

Dataset. The Vaihingen buildings dataset consists of 168 building images extracted from the training set of ISPRS “2D semantic labeling contest” with a resolution of 9cm. We use only 100 images to train the model and the remaining 68 serve as the test set.

Network Architecture and Experiment Setup. We use an encoder CNN with an architecture similar to [21] and [37]. The input is the original image. The network is trained with a learning rate of 10^{-4} for 300 epochs using a batch size of 10. We setup our baseline using the same CNN architecture to predict the segmentation mask without our Chan-Vese update module. Previous works combining active contour model and deep learning [37][33] often can only be used to provide segmentations of a single building based on manual initialization or another initialization (based on a separate algorithm) whereas our model can be used to segment multiple buildings in the image without any initialization. So, the results cannot be meaningfully compared. See our appendix for more details about the setup.

Results and Discussion. We use the average Intersection over Union (IoU) to evaluate the performance on Vaihingen dataset: the baseline yields 68.9 while our model without TMDlayer achieves 73.5 and our complete model with TMDlayer achieves 74.6, which is a significant improvement in terms of IoU. This experiment shows that our TMDlayer can be built on top of another dynamical system and can provide additional benefits. Qualitative results of the baseline and our model are shown in Fig. 2. Our method tends to predict a more precise shape/boundary, and also fixes some flaws/errors relative to the baseline results.

4.4 Few-shot learning

In N-way B-shot few-shot learning, the input is a set of $N \times B$ samples which naturally forms a fully connected graph. This serves to construct the differential operator L_m. To provide context for where and how our TMDlayer will be instantiated, we note that [25] proposed a GNN approach (EGNN) for few-shot learning and this model achieves state-of-the-art performance. We show that by adding our TMDlayer, the performance increases by a clear margin.

4.4.1 Problem formulation

Few-shot learning classification seeks to learn a classifier given only a few training samples for every class. Each few-shot classification task T contains a support set S which is a set of labeled input-label pairs and a query set Q (an unlabeled set where the learned classifier is evaluated). Given B labeled samples for each of N classes in the support set S, the problem is a N-way B-shot classification problem.

4.4.2 Role of TMDlayer: Use in graph neural network

Let G be the graph formed by samples from the task T, with nodes denoted as $V := \{V_i\}_{i=1,...,|T|}$. The node feature update equation is designed as (we refer readers to [25] or our appendix for more details about the network)

$$v_i^t = \text{NodeUpdate}(\{v_i^{t-1}\}, \{e_{ij}^{t-1}\}; \theta_i^t),$$

where v_i^t is the feature of node i at l-th layer, e_{ij} is the edge feature between node i and node j, and θ refers to the parameters in the update function. We abstract (14) as

$$v_i^t = f(v_i^{t-1})$$

and use our TMDlayer as,

$$v_i^t = f(v_i^{t-1}) + \Delta t \cdot L_m f(v_i^{t-1}).$$

Remark 3 In (15), the L_m is constructed using samples from the same episode, and f is a GNN module updating the node features using all node features and edge features.

4.4.3 Experimental results

Dataset. We follow [25] to conduct experiments on minImageNet, proposed by [51] and derived from ILSVRC-12 dataset [46]. Images are sampled from 100 different classes with 600 samples per class (size 84×84 pixels). We use the same splits as in [43][25]: 64, 16 and 20 classes for training, validation and testing respectively.
Network architecture and training details. We use the same graph neural network architecture and follow the training strategy as in [25] by utilizing the code provided by the authors. We add our TMDLayer as shown in [15] to each node update layer in the graph neural network, with a latent dimension of 16 for constructing L_m. We follow [25] to conduct experiments for 5-way 5-shot learning, in both transductive and non-transductive settings, as well as for both supervised and semi-supervised settings. The network is trained with Adam optimizer with an initial learning rate of 5×10^{-4} and weight decay of 10^{-6}. The learning rate is cut in half every 15000 episodes. For evaluation, each test episode is formed by randomly sampling 15 queries for each of 5 classes, and the performance is averaged over 600 randomly generated episodes from the test set. Note that the feature embedding module is a convolutional neural network which consists of four blocks (following [25]) and used in most few-shot learning models without any skip connections. Thus, Resnet-based models are excluded from the table for a fair comparison. We refer the reader to [25] or the appendix for more training and evaluation details.

Results. The performance of supervised and semi-supervised 5-way 5-shot learning is given in Tables 4–5 respectively. Our TMDLayer leads to consistent and clear improvements in both supervised and semi-supervised settings (also for transductive/non-transductive settings).

Model	Trans.	Accuracy(%)
Matching Networks [51]	No	55.30
Reptile [40]	No	62.74
Prototypical Net [47]	No	65.77
GNN [13]	No	66.41
EGNN [25]	No	66.85
Ours	No	68.35
MAML [17]	BN	63.11
Reptile + BN [40]	BN	65.99
Relation Net [50]	BN	67.07
MAML + Transduction [17]	Yes	66.19
TNP [33]	Yes	69.43
TPN (Higher K) [33]	Yes	69.86
EGNN+Transduction [25]	Yes	76.37
Ours+Transduction	Yes	77.78

Table 4: Results of 5-way 5-shot learning on miniImageNet, averaged over 600 test episodes. “Ours” means EGNN plus our TMDLayer, “BN” means that the query batch statistics are used instead of global batch normalization parameters.

4.5. Runtime overhead/Relation with augmentation

Runtime overhead. Our construction does involve some training time overhead because of computing the kernel matrix, and varies depending on the use case. For reference, the overhead is 10% in §4.2, 11% in §4.3 and 1% in §4.4.

Relationship with data augmentation. Data augmentation and TMDLayer are complementary, not mutually exclusive. In all our experiments, the baselines use data augmentations (e.g., random rotation or cropping). Our TMDLayer offers benefits, above and beyond augmentation.

5. Discussion and Conclusions

We proposed an SDE based framework that allows a unified view of several different learning tasks in vision. Our framework is beneficial where data generation (or the data itself) can be described using stochastic processes, or more specifically diffusion operators. This is particularly useful in settings where obtaining a deterministic model of the image manifold or learning density functions are impossible or challenging due to high sample complexity requirements. Our TMDLayer does not require explicit generation of diffused samples, especially during training, making it computationally efficient. The “process” of which the provided data sample is a snapshot and whose characterization is enabled by our TMDLayer, also appears to have implications for robust learning. Indeed, if the parameters that define the process are explicitly optimized, we should be able to establish an analogy between the resultant model as a stochastic/simpler version of recent results for certified margin radius maximization [60] which often require access to Monte Carlo sampling oracles [11]. We believe that periodicity in SDEs for data augmentation is an important missing ingredient – for instance – this may help model seasonal patterns in disease progression studies for predictions, automatically. For this purpose, tools from Floquet theory may allow us to consider transformed versions of the process, potentially with simplified generators. Our code is available at https://github.com/zihangm/neural-tmd-layer.

Acknowledgments

This work was supported by NIH grants RF1 AG059312 and RF1 AG062336. SNR was supported by UIC startup funds. We thank Baba Vemuri for providing many important suggestions on formulating the Chan-Vese model within deep networks.
References

[1] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by extension operators. arXiv preprint arXiv:1803.01091, 2018.

[2] Ralf Banisch, Zofia Trstanova, Andreas Bittracher, Stefan Klus, and Péter Koltai. Diffusion maps tailored to arbitrary non-degenerate itô processes. Applied and Computational Harmonic Analysis, 48(1):242–265, 2020.

[3] Mikhail Belkin, Lapartha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of machine learning research, 7(11), 2006.

[6] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. International journal of computer vision, 22(1):61–79, 1997.

[7] Tony F Chan and Luminita A Vese. Active contours without edges. IEEE Transactions on image processing, 10(2):266–277, 2001.

[8] Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks. In 2018 Information Theory and Applications Workshop (ITA), pages 1–10. IEEE, 2018.

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Jun-Yan Zhu, Alan L Yuille, and Trevor Darrell. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[10] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equations. arXiv preprint arXiv:1806.07366, 2018.

[11] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized smoothing. In International Conference on Machine Learning, pages 1310–1319. PMLR, 2019.

[12] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint arXiv:1801.10130, 2018.

[13] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic analysis, 21(1):5–30, 2006.

[14] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 113–123, 2019.

[15] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. arXiv preprint arXiv:1904.01681, 2019.

[16] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kosten Danilidis. Learning so(3) equivariant representations with spherical cnns. CoRR, 2017.

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.

[18] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043, 2017.

[19] Meng-Hao Guo, Jun-Xiong Cai, Chong-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud transformer. arXiv preprint arXiv:2012.09688, 2020.

[20] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In International Conference on Machine Learning, pages 1225–1234. PMLR, 2016.

[21] Bharath Harihara, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hypercolumns for object segmentation and fine-grained localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 447–456, 2015.

[22] Ali Hatamizadeh, Debleena Sengupta, and Demetri Terzopoulos. End-to-end deep convolutional active contours for image segmentation. arXiv preprint arXiv:1909.13359, 2019.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[24] Ehsan Karazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

[25] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph neural network for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11–20, 2019.

[26] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In Proceedings of the IEEE International Conference on Computer Vision, pages 863–872, 2017.

[27] Artem Komarichev, Zichun Zhong, and George Em Karniadakis. A-cnn: Annularly convolutional neural networks on point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7421–7430, 2019.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[29] Hiroshi Kunita. Stochastic flows and stochastic differential equations, volume 24. Cambridge university press, 1997.

[30] Truc Le and Ye Duan. Pointgrid: A deep network for 3d shape understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9204–9214, 2018.

[31] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9397–9406, 2018.

[32] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
