Universe consisting of diffusive Dark fluids: Thermodynamics and stability analysis

Subhayan Maity*, Pritikana Bhandari†, and Subenoy Chakraborty‡

Department of Mathematics, Jadavpur University, Kolkata-700032, West Bengal, India.

I. ABSTRACT

The present work deals with homogeneous and isotropic FLRW model of the Universe having a system of non-interacting diffusive cosmic fluids with barotropic equation of state (constant or variable equation of state parameter). Due to diffusive nature of the cosmic fluids, the divergence of the energy momentum tensor is chosen to be proportional to the diffusive current. The thermodynamic stability analysis of individual fluids is done and the stability conditions are expressed as restrictions on the equation of state parameter.

Keywords: Thermodynamical equilibrium, Diffusive cosmic fluid, Equation of State, Thermodynamic Properties.

PACS Numbers: 95.30.Sf, 98.80.Cq, 66.10.Cb, 74.25.Bt

II. INTRODUCTION

The greatest challenge of standard cosmology today is to accommodate the recent observational predictions [1–9]. The modern cosmology is facing the challenging issue of explaining the present accelerated expansion of the universe. In the framework of Einstein gravity, cosmologists are speculating some hypothetical exotic matter (known as dark energy (DE) having large negative pressure) to explain this accelerating phase. It is estimated [10] that about 70 percent of the cosmic fluid consists of this unknown DE component. The simplest as well as the common candidate for this dark fluid is the cosmological constant (the zero point energy of the
quantum fields). Although a large number of available observational data are in support of this cosmological parameter as a DE candidate but there are severe drawback of it at the interface of Cosmology and Particle Physics: the cosmological constant problem [11, 12] and the coincidence problem [13]. As a result there are several alternative proposed dynamical DE models into the picture. These DE models have been studied for the last several years [14], yet the cosmological constant is still the best observationally supported DE candidate. However, these different dynamic DE models cannot be compared from observational viewpoint as these models try to adjust the data seamlessly. As a result, cosmologists have been trying with interacting DE model to have a better understanding of the mechanism of this cosmic acceleration.

From recent past, interacting dark fluid models have been receiving much attention as they can provide small value of the cosmological constant and due to their ability of explaining the cosmic coincidence problem [15–17]. Moreover, recent observed data [18–23] favor interacting dark fluid models and it is possible to have an estimate of the coupling parameter in the interaction term by various observations [21–30]. Further, the cosmologists are of the opinion that these interacting dark fluid models may have the solution to the current tensions on \(\sigma_8 \) and the local value of the Hubble constant \((H_0) \) [22–31]. Moreover, it is speculated that cosmological perturbation analysis may be affected by the interaction terms and consequently, the lowest multipoles of the CMB spectrum [32, 33] should have an imprint of it.

On the other hand, the unknown nature of DE may have some clue from the thermodynamic laws which are applicable to all types of macroscopic systems and are based on experimental evidence. However, unlike classical mechanics or electromagnetism, thermodynamical analysis can not predict any definite value for observables, it may only give limit on physical processes. So it is reasonable to believe that thermodynamical study of dark cosmic fluid may indicate some unknown character of it. Investigation in this direction has been initiated recently by Barboza et al [34]. But their stability conditions demand that the DE should have constant (-ve) equation of state and it is not supported by observation.

Subsequently, Chakraborty and collaborators [35–38] in a series of works have shown the stability criteria for different type of dark fluids and have presented the stability conditions (in tabular form) for different ranges of the equation of state parameter. The present work is an extension of the interacting dark fluid model. Here a particular realization of the non-conservation of the energy momentum tensor is used with a diffusion of dark matter in a fluid of dark energy. The change of the energy-density is proportional to the particle density. The resulting non-equilibrium thermodynamics is studied and stability conditions are explicitly determined. The
paper is organized as follows: Section III deals with thermodynamical analysis of non-interacting cosmic fluids with constant equation of state. The stability criteria for non-interacting cosmic fluids with variable equation of state has been organized in Section IV. Finally, the paper ends with a brief discussion and the conclusion from the result in dark energy range in Section V.

III. THERMODYNAMIC ANALYSIS OF NON-INTERACTING DIFFUSIVE COSMIC FLUIDS HAVING CONSTANT EQUATION OF STATE PARAMETER

The universe is assumed to have different types of non-interacting cosmic fluids (including dark energy and dark matter). Here it will be examined whether all kinds of diffusive fluids are thermodynamically stable or not in an adiabatic universe. Let the equation of state of these cosmic fluids are barotropic in nature having explicit form (for i-th fluid)

\[p_i = w_i \rho_i, \]

where \(\omega_i \), a constant, is the barotropic index of the fluid and \(p_i \) and \(\rho_i \) are the pressure and energy density of the fluid respectively. So the Friedmann equations for the whole system take the form

\[3H^2 = \sum_i \rho_i \]
\[2\dot{H} + 3H^2 = -\sum_i p_i \]

where \(H = a^{-1} \dot{a} \) is the Hubble parameter, \(a(t) \) is called the scale factor of the universe as all physical distance is scaled with same factor “a” due to homogeneity and isotropy of space-time. Now due to the diffusive nature of the fluids, they do not obey the matter conservation equation \((T_{i\mu}^\mu = 0)\), rather they follow,

\[T_{i\mu}^\mu;\mu = 3k^2 N_i^\nu, \]

where \(N_i^\nu \) is the current of diffusion corresponding to that fluid and \(k \) is a constant. But for the whole universe, the total stress-energy tensor is conserved i.e. \((\sum_i T_{i\mu}^\mu = 0)\)

\[\sum_i N_i^\nu = 0. \]

In simplest form, the conservation equation (non conservation) takes the form for FLRW universe [39–41] as,

\[\frac{\partial \rho}{\partial t} + 3H(1 + \omega_i)\rho_i = \gamma_i a^{-3} \]
where, γ_i is a constant for a particular fluid but it is different for different fluids with $\sum_i \gamma_i = 0$. Now, in the context of classical thermodynamics, the contribution to the energy of the universe by i-th fluid is given by

$$E_i = \rho_i v$$

where, $v = v_0 a^3(t)$ is the physical volume of universe at given time t and at present time t_0, the physical volume is v_0 with $a(t_0) = 1$. According to the 1st law of thermodynamics (which is an energy conservation equation),

$$TdS_i = dE_i + p_i dv.$$

Integrating equation (6) one can easily find the expression for energy density of the i-th fluid as,

$$\rho_i = a^{-3(1+\omega_i)} \left[\rho_{i0} + \gamma_i \int_{t_0}^t a^{3\omega_i} dt \right]$$

where ρ_{i0} is the value of ρ_i at $t = t_0$ i.e. at the present time. The energy density of i-th fluid, from equation (9) can be arranged as

$$d(\ln \rho_i) = -(1 + \omega_i)d(\ln v) + d[\ln(\rho_{i0} + \gamma_i A_i)].$$

Now combining equations (10) and (11), a new relation among energy density, temperature and time can be written as

$$\frac{T}{\rho_i v} = \beta [\rho_{i0} + \gamma_i A_i]^{-\frac{1}{1+\omega_i}},$$

where β is an integration constant. Effectively at present time $t = t_0$,

$$\frac{T_0}{\rho_{i0} v_0} = \beta p_{i0}^{-\frac{1}{1+\omega_i}}.$$

Now equations (12) and (13) imply the evolution of energy of the i-th fluid with time and temperature as,

$$E_i = E_{i0} \left(\frac{T}{T_0} \right)^{1+\omega_i} \left[1 + \frac{\gamma_i}{\rho_{i0}} A_i \right]^{\frac{1}{1+\omega_i}}.$$

This can be termed as the modified equation of state of this fluid where as before $E_i = \rho_i v$ and $E_{i0} = \rho_{i0} v_0$.
A. Determination of thermodynamic derivatives: C_p, C_v, K_S, K_T

Now, the motivation of the present work is to find the criteria of thermodynamic stability of the universe. So the conditions which may be satisfied by the parameters, indicate the thermodynamic features of the evolution of the expanding universe. For any system the thermodynamic derivatives i.e. the heat capacities, compressibility and isobaric expansibility determine whether the system is stable or not. So it will be very important to analyze these parameters for each fluid in the present context.

From the 1st law of thermodynamics in equation (8), one can determine the two heat capacities: heat capacity at constant volume C_v and heat capacity at constant pressure C_p by the relations,

\[
C_v = \left[\frac{\partial Q}{\partial T} \right]_v = \left[\frac{\partial E}{\partial T} \right]_v \tag{15}
\]

\[
C_p = \left[\frac{\partial Q}{\partial T} \right]_p = \left[\frac{\partial H}{\partial T} \right]_p, \tag{16}
\]

where $H = E + pv$, is called the enthalpy of the system.

Now the relation between temperature of a system at a constant volume (T_a) and the physical equilibrium temperature is given by (according to [42])

\[
T = T_a \left(1 + \frac{\gamma_i}{\rho_i0} A_i \right) \tag{17}
\]

The temperature at a constant volume T_a also evolves as

\[
T_a = T_0 a^{-3\omega_i} \tag{18}
\]

So from equations (17) and (18),

\[
E_i = E_{i0} \left(\frac{1}{T_0} \right) T_a^{\frac{2 + \omega_i}{1 + \omega_i}} T_a^{-\frac{1}{1 + \omega_i}} \tag{19}
\]

Now from equations (15) and (19) one obtains,

\[
C_{iv} = \frac{2 + \omega_i}{1 + \omega_i} \left(\frac{E_{i0}}{T_0} \right) \left(\frac{T}{T_a} \right)^{\frac{1}{1 + \omega_i}} \tag{20}
\]

and equations (1), (16) and (19) yield (using the definition of enthalpy)

\[
C_{ip} = (2 + \omega_i) \left(\frac{E_{i0}}{T_0} \right) \left(\frac{T}{T_a} \right)^{\frac{1}{1 + \omega_i}} \left[1 - \frac{1}{2 + \omega_i} \left(\frac{T}{T_a} \right) \left(\frac{\partial T_a}{\partial T} \right) p_i \right]. \tag{21}
\]

Also equation (21) can be rewritten (using 17) as

\[
C_{ip} = \frac{E_0}{T_0} \left(\frac{T}{T_a} \right)^{\frac{1}{1 + \omega_i}} \left[(1 + \omega_i) + T \left\{ \frac{\partial}{\partial T} \ln \left(1 + \frac{\gamma_i}{\rho_i0} A_i \right) \right\} p_i \right]. \tag{22}
\]
Further assuming temperature and pressure as independent thermodynamic variables, the variation of volume can be expressed as (See ref. [34] and [35])

$$dv = v(\alpha dT - K_T dp)$$

(23)

where

$$\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p$$

(24)

is familiar as thermal expansibility. The isothermal compressibility (K_T) is given by

$$K_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T.$$

(25)

Similarly the adiabatic compressibility is

$$K_S = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_S.$$

(26)

In isothermal process,

$$\frac{\alpha}{K_T} = \left(\frac{\partial p}{\partial T} \right)_v.$$

(27)

Also one has the well established relation amongst heat capacities and compressibilities as [34]

$$\frac{C_p}{C_v} = \frac{K_S}{K_T}.$$

(28)

So one can find the expression for isothermal expansibility α from equation (11) as,

$$\alpha = -\frac{1}{\omega_i T} + \frac{1}{1 + \omega_i} \left[\frac{\partial}{\partial T} \ln \left(1 + \frac{\gamma_i}{\rho_i 0 A_i} \right) \right]_{p_i}.$$

(29)

Now equations (27) and (28) yield

$$K_{iT} = \frac{\alpha_i v}{\omega_i C_{iv}}$$

(30)

$$K_{iS} = \frac{\alpha_i v}{\omega_i C_{ip}}.$$

(31)

Hence one obtains the expressions for compressibilities from equations (29), (30) and (31) containing the dependence of diffusion parameter γ_i as,

$$K_{iT} = \frac{v}{\omega_i C_{iv}} \left[-\frac{1}{\omega_i T} + \frac{1}{1 + \omega_i} \left\{ \frac{\partial}{\partial T} \ln \left(1 + \frac{\gamma_i}{\rho_i 0 A_i} \right) \right\} \right]_{p_i}.$$

(32)

$$K_{iS} = \frac{v}{\omega_i C_{ip}} \left[-\frac{1}{\omega_i T} + \frac{1}{1 + \omega_i} \left\{ \frac{\partial}{\partial T} \ln \left(1 + \frac{\gamma_i}{\rho_i 0 A_i} \right) \right\} \right]_{p_i}.$$

(33)
B. Stability Conditions for cosmic fluids:

For thermodynamic stability of any fluid, it must follow the conditions \([34, 35]\) namely
\(C_p, C_v, K_T, K_S \geq 0\). For the present work, using the expressions of these thermodynamical
parameters, the stability conditions are presented in the following table I:

range of \(\omega_i\)	Stability Condition
\(\omega_i \geq 0\)	\[\frac{\partial}{\partial \ln T} \left(\ln \left(1 + \frac{\omega_i}{\rho_i A_i}\right)\right) \geq \frac{1 + \omega_i}{\omega_i}\]
\(-1 \leq \omega_i \leq 0\)	\(-1 + \omega_i \leq \frac{\partial}{\partial \ln T} \left(\ln \left(1 + \frac{\omega_i}{\rho_i A_i}\right)\right) \geq \frac{1 + \omega_i}{\omega_i}\) simultaneusly, which is not possible hence unstable.
\(-2 \leq \omega_i \leq -1\)	Unstable.
\(\omega_i \leq -2\)	\[\frac{\partial}{\partial \ln T} \left(\ln \left(1 + \frac{\omega_i}{\rho_i A_i}\right)\right) \geq -(1 + \omega_i)\]

FIG. 1: No point having value greater than \(-1(1 + \omega_i)\) and less than \(\frac{1 + \omega_i}{\omega_i}\) simultaneously.
IV. STABILITY CRITERIA WITH VARIABLE EQUATION OF STATE PARAMETER

So far we have examined the conditions for stability of cosmic fluids with constant equation of state parameters. In the present section the stability conditions will be discussed for cosmic fluids having variable equation of state parameters. The fluids are diffusive as before with no interaction amongst them. In such context, the solution of the conservation equation (6) yields,

\[\rho_i = \left[\rho_{i0} + \gamma_i \int_{t_0}^{t} a^{-3} e^{F_i(a)} dt \right] e^{-F_i(a)} \] \hspace{1cm} (34)

where,

\[F_i(a) = \int (1 + \omega_i) d(lnv). \] \hspace{1cm} (35)

Taking

\[\int_{t_0}^{t} a^{-3} e^{F_i(a)} dt = A_i(t), \]

one can write equation (34) as

\[\rho_i = e^{-F_i(a)} \left[\rho_{i0} + \gamma_i A_i(t) \right]. \] \hspace{1cm} (36)

A. Derivation of the relation between physical equilibrium temperature (T) and temperature at constant volume (T_a):

From 1st law of thermodynamics (i.e. equation (8)), by choosing entropy (S) as a function of two independent variables volume (v) and temperature (T), the condition for dS to be an exact differential gives

\[\left(\frac{\partial S}{\partial v} \right)_T = \frac{\rho}{T} (1 + \omega) \] \hspace{1cm} (37)

\[\left(\frac{\partial S}{\partial T} \right)_v = \frac{v}{T} \frac{dp}{dT} \] \hspace{1cm} (38)

and

\[\frac{dp}{\rho} = \frac{1 + \omega}{\omega} \frac{dT}{T} - \frac{d\omega}{\omega}. \] \hspace{1cm} (39)

Now, from equation (39) one obtains the energy density as a function of temperature as

\[\rho = \frac{B}{\omega} e^{\int \frac{1+\omega}{\omega} \frac{dT}{T}}. \] \hspace{1cm} (40)
Again, combining equations (38) and (40) the expression for entropy can be written as,

$$ S = v \frac{1 + \omega}{\omega T_a} B e^{\int \frac{1 + \omega}{\omega T_a} dT_a}. $$

(41)

Now, as for an adiabatic system $\Delta S = 0$, so one can determine from equation (41), the relation between T_0 and T_a (i.e. evolution of T_a) as

$$ T_a e^{-\int_{t_{\text{present}}}^t \frac{1 + \omega}{\omega T_a} dT_a} = T_0 \frac{1 + \omega}{1 + \omega_0} a^3. $$

(42)

Now combining equations (35), (36) and (42) one obtains,

$$ \rho_i = \frac{1}{\omega_i} e^{\int_{t_{\text{present}}}^t \frac{1 + \omega}{\omega_i} A_i(t)} [\rho_{i0} + \gamma_i A_i(t)], $$

(43)

or equivalently

$$ \rho_i = \frac{1}{\omega_i} e^{\int_{t_{\text{present}}}^t \frac{1 + \omega}{\omega_i} A_i(t)} 3z_i B(A_i) v_0^{-1} $$

(44)

where $z_i = \frac{\rho_0 v_0}{3T_0}$ and $B(A_i) = T_0 + \frac{\gamma T_0}{\rho_0} A_i(t)$.

Now as the adiabatic contribution of entropy for the i-th fluid (excluding the diffusive entropy ($S_{id} = \int \frac{\gamma_i}{\rho_0} dT$)) namely,

$$ S_{i(\text{ad})} = \frac{(1 + \omega_i) \rho_i v}{T} $$

(45)

does not vary (i.e. $d \ln(S_{i(\text{ad})}) = 0$), so temperature can be written as,

$$ T = \frac{1 + \omega_0}{\omega_0 L} \left(\frac{T_a}{T_0} \right) B(A_i) $$

(46)

where, L is a constant. Now combining (45) and (46) yields

$$ \left(1 + \frac{\gamma_i}{\rho_{i0}} A_i \right) = \left(\frac{T}{T_a} \right) Q $$

(47)

with $Q = \frac{\omega_0 L}{1 + \omega_0}$, a constant.

B. Thermodynamic derivatives

Similar to the above section, one can determine the heat capacities and compressibilities of the present thermodynamical system as follows: now the solution of equation (6), (or equivalently equation (34)) can be expressed as

$$ d \ln \rho_i = -(1 + \omega_i) d \ln v + d \ln \left[1 + \frac{\gamma_i}{\rho_{i0}} A_i \right]. $$

(48)
Again from equation (39), one finds
\[d \ln \rho_i = \frac{1 + \omega_i}{\omega_i}d \ln T - \frac{d \omega}{\omega} \tag{49} \]

Combining the above equations (48) and (49) one can write,
\[\frac{T}{E_i(1 + \omega_i)} = Ce^{-\int \frac{1}{1 + \omega_i}d \ln \left(1 + \frac{\gamma_i}{\rho_{i0}}A_i \right)} \tag{50} \]

Now imposing the initial conditions, one can formulate the modified equation of state in terms of evolution of energy with time and temperature as
\[E_i = E_{i0} \left(\frac{1 + \omega_{i0}}{1 + \omega_i} \right) \left(\frac{T}{T_0} \right) e^{\int_{\text{present}}^t \frac{1}{1 + \omega_i}d \ln \left(1 + \frac{\gamma_i}{\rho_{i0}}A_i \right)} \tag{51} \]

The above equation (51) can be written according to equation (47) as
\[E_i = E_{i0} \left(\frac{1 + \omega_{i0}}{1 + \omega_i} \right) \left(\frac{T}{T_0} \right) e^{\int_{\text{present}}^t \frac{1}{1 + \omega_i}d \ln \left(\frac{T}{T_a} \right)} \tag{52} \]

So using equations (15), (16), (47) and (51), one can easily express the heat capacities as
\[C_{iv} = \frac{E_i}{T(1 + \omega_i)} \left[(2 + \omega_i) - T \frac{d \omega}{dT} \right] \tag{53} \]
\[C_{ip} = \frac{E_i}{T} \left[(1 + \omega_i) + T \left\{ \frac{\partial}{\partial T} \ln \left(1 + \frac{\gamma_i}{\rho_{i0}}A_i \right) \right\} \right] \tag{54} \]

and hence one obtains the relation
\[\left(\frac{\partial p}{\partial T} \right)_v = \frac{\omega}{v}C_v + \rho \frac{d \omega}{dT} \tag{55} \]

Again equations (48) and (49) yield
\[d \ln T = \frac{d \omega_i}{1 + \omega_i} - \omega_i d \ln v + \frac{\omega_i}{1 + \omega_i}d \ln \left(1 + \frac{\gamma_i}{\rho_{i0}}A_i \right), \tag{56} \]

which implies along with equation (47) that
\[\left(\frac{\partial \omega}{\partial T} \right)_v = \frac{1 + \omega_i + \omega_i^2}{T(1 + \omega_i)} \tag{57} \]

So from equations (27), (53), (55) and (57) one writes
\[K_{iT} = \frac{\alpha_i v[2 + \omega_i - T \frac{d \omega_i}{dT}]}{C_{iv}[\omega_i\{1 + (2 + \omega_i - T \frac{d \omega_i}{dT})\} + 1 + \omega_i^2]} \tag{58} \]

and from (28), one obtains
\[K_{iS} = \frac{\alpha_i v[2 + \omega_i - T \frac{d \omega_i}{dT}]}{C_{ip}[\omega_i\{1 + (2 + \omega_i - T \frac{d \omega_i}{dT})\} + 1 + \omega_i^2]} \tag{59} \]
Now, using equation (56) the expression for α_i takes the form

$$\alpha_i = \left[\frac{\partial (\ln V)}{\partial T} \right]_{p_i} = \frac{1}{\omega_i(1 + \omega_i)} \left[\omega_i \left\{ \frac{\partial}{\partial T} \ln \left(\frac{1 + \gamma_i}{\rho_0} A_i \right) \right\}_{p_i} + \frac{d \omega_i}{dT} - \frac{1 + \omega_i}{T} \right]$$

(60)

and the expressions for K_T and K_S are given by (using equations (58), (59) and (60))

$$K_{iT} = \frac{V \left[\omega_i \left(\frac{\partial}{\partial T} \ln \left(\frac{1 + \gamma_i}{\rho_0} A_i \right) \right)_{p_i} + \frac{d \omega_i}{dT} - \frac{1 + \omega_i}{T} \right] [2 + \omega_i - T \frac{d \omega_i}{dT}]}{\omega_i(1 + \omega_i)/C_{iT} \left[\omega_i \left(1 + (2 + \omega_i - T \frac{d \omega_i}{dT}) \right) + 1 + \omega_i^2 \right]}$$

(61)

and

$$K_{iS} = \frac{V \left[\omega_i \left(\frac{\partial}{\partial T} \ln \left(\frac{1 + \gamma_i}{\rho_0} A_i \right) \right)_{p_i} + \frac{d \omega_i}{dT} - \frac{1 + \omega_i}{T} \right] [2 + \omega_i - T \frac{d \omega_i}{dT}]}{\omega_i(1 + \omega_i)/C_{iS} \left[\omega_i \left(1 + (2 + \omega_i - T \frac{d \omega_i}{dT}) \right) + 1 + \omega_i^2 \right]}$$

(62)

Now according to the conditions of thermodynamic stability, we analyze the equations (53), (54), (61) and (62) to find the restrictions of thermodynamic stability in different ranges of ω_i in the following Table II.

range of ω_i	Stability Condition
$\omega_i \geq 0$	$\frac{d \ln \omega_i}{d \ln T} \leq \frac{2 + \omega_i}{\omega_i}$ and $\left[\frac{\partial}{\partial T} \ln \left(\frac{1 + \gamma_i}{\rho_0} A_i \right) \right]_{p_i} \geq \max \left[\left(1 + \omega_i \right), \left(1 + \omega_i - \frac{d \ln \omega_i}{d \ln T} \right) \right]$
$-1 \leq \omega_i \leq 0$	$\left[\frac{\partial}{\partial T} \ln \left(\frac{1 + \gamma_i}{\rho_0} A_i \right) \right]_{p_i} \geq \max \left[\left(1 + \omega_i \right), \left(1 + \omega_i - \frac{d \ln \omega_i}{d \ln T} \right) \right]$ if $\frac{d \ln \omega_i}{d \ln T} \leq \frac{1 + 3 \omega_i + 2 \omega_i^2}{\omega_i^2}$.
Again $- (1 + \omega_i) \leq \left[\frac{\partial}{\partial T} \ln \left(\frac{1 + \gamma_i}{\rho_0} A_i \right) \right]_{p_i} \leq \left(1 + \omega_i - \frac{d \ln \omega_i}{d \ln T} \right)$ if $\frac{d \ln \omega_i}{d \ln T} \geq \frac{1 + 3 \omega_i + 2 \omega_i^2}{\omega_i^2}$	
$\omega_i \leq -1$	$\frac{d \ln \omega_i}{d \ln T} \leq \frac{2 + \omega_i}{\omega_i}$ and $\left[\frac{\partial}{\partial T} \ln \left(\frac{1 + \gamma_i}{\rho_0} A_i \right) \right]_{p_i} \geq \max \left[\left(1 + \omega_i \right), \left(1 + \omega_i - \frac{d \ln \omega_i}{d \ln T} \right) \right]$
FIG. 2: For the values of $\frac{d\ln\omega_i}{d\ln T} \in$ REGION-I, the stability condition is $-(1 + \omega_i) \leq \left[\frac{\partial \ln \left(1 + \gamma_i \rho_i A_i \right)}{\partial \ln T} \right]_{p_i} \leq \left(\frac{1 + \omega_i}{\omega_i} - \frac{d\ln\omega_i}{d\ln T}\right)$, for $\frac{d\ln\omega_i}{d\ln T} \in$ REGION-II, the stability condition is $\left[\frac{\partial \ln \left(1 + \gamma_i \rho_i A_i \right)}{\partial \ln T} \right]_{p_i} \geq \max \left[-(1 + \omega_i), \left(\frac{1 + \omega_i}{\omega_i} - \frac{d\ln\omega_i}{d\ln T}\right) \right]$ and in REGION-III unstable.

TABLE III: Conclusion on the result in Dark energy range ($-0.33 < \omega_i < 0$)

Nature of Dark Energy	Constraint on diffusion parameter γ_i	Restriction on $\frac{d\ln\omega_i}{d\ln T}$ from graphs
Constant equation of state parameter	Always unstable	Always unstable
Variable equation of state parameter	$\left[\frac{\partial \ln \left(1 + \gamma_i \rho_i A_i \right)}{\partial \ln T} \right]_{p_i} \geq \max \left[-(1 + \omega_i), \left(\frac{1 + \omega_i}{\omega_i} - \frac{d\ln\omega_i}{d\ln T}\right) \right]$	$2 + \omega_i \leq \frac{d\ln\omega_i}{d\ln T} \leq \frac{1 + 3\omega_i + 2\omega_i^2}{\omega_i^2}$
V. BRIEF DISCUSSIONS

A detailed thermodynamic study of non-interacting cosmic fluids having diffusive nature has been organized in the present work. As a result, individual fluid does not obey the energy conservation relation, rather the non-conservation is proportional to the corresponding diffusive current. Each component of the cosmic fluids is assumed to have barotropic equation of state with constant or variable equation of state parameter. The stability conditions are expressed in the form of inequalities for different ranges of equation of state parameter. Also, the stability conditions for both constant (Table I) and variable (Table II) equation of state parameter in the range $-1 < \omega_i < 0$ (i.e. for dark energy region) have been presented graphically in figure 1 and 2 respectively. From figure 2, different restrictions on diffusion parameter γ_i are found depending on whether the values of $\frac{d \ln \omega_i}{d \ln T}$ (i.e. relative variation of ω_i with respect to the temperature T) belong to REGION-I or REGION-II. However due to expanding nature of the universe, the isobaric expansibility (α_i) should always be positive. This condition restricts the function $\frac{d \ln \omega_i}{d \ln T}$ only in REGION-II, which is acceptable for expanding universe (Table III).

Further, it is interesting to note that, for constant equation of state parameter, (i.e. Table I), the system cannot be thermodynamically stable for $-1 < \omega_i \leq 0$. This result is very much similar to that of [34]. However, the present work is thermodynamically stable in phantom region in contrary with non-diffusive cosmic fluids [34]. Finally, it is found that diffusive fluid with variable equation of state parameter is thermodynamically stable for all possible values of ω_i under some restrictions on the diffusion parameter γ_i and nature of variation of ω_i with respect to temperature.

VI. ACKNOWLEDGEMENT

The authors are thankful to IUCAA, Pune, India for research facilities at Library. The author SM acknowledges UGC-JRF and PB acknowledges DST-INSPIRE (File no: IF160086) for awarding Research fellowship. Also SC acknowledges the UGC-DRS Program in the Department of Mathematics, Jadavpur University.
[1] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measurements of Omega and Lambda from 42 high redshift supernovae”, *Astrophys. J.* **517**, 565(1999) [arXiv: astro-ph/9812133].

[2] A. G. Riess et al. [Supernova Search Team], “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, *Astron. J.* **116**, 1009(1998) [arXiv: astro-ph/9805201].

[3] P. de Bernardis et al. [Boomerang Collaboration], “A Flat universe from high resolution maps of the cosmic microwave background radiation”, *Nature* **404**, 955(2000) [arXiv: astro-ph/0004404].

[4] W. J. Percival et al. [2dFGRS Collaboration], “The 2dF Galaxy Redshift Survey: The Power spectrum and the matter content of the Universe”, *Mon. Not. Roy. Astron. Soc.* **327**, 1297(2001) [arXiv: astro-ph/0105252].

[5] D. N. Spergel et al. [WMAP Collaboration], “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations : Determination of cosmological parameters”, *Astrophys. J. Suppl.* **148**, 175 (2003) [arXiv: astro-ph/0302209].

[6] B. Jain and A. Taylor, “Cross-correlation tomography : measuring dark energy evolution with weak lensing”, *Phys. Rev. Lett.* **91**, 141302(2003) [arXiv: astro-ph/0306046].

[7] M. Tegmark et al. [SDSS Collaboration], “Cosmological parameters from SDSS and WMAP”, *Phys. Rev. D* **69**, 103501(2004) [arXiv: astro-ph/0310723].

[8] D. J. Eisenstein et al. [SDSS Collaboration], “Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies”, *Astrophys. J.* **633**, 560(2005) [arXiv: astro-ph/0501171].

[9] E. Komatsu et al. [WMAP Collaboration], “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation”, *Astrophys. J. Suppl.* **192**, 18(2011) [arXiv: 1001.4538 [astro-ph.CO]].

[10] P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 results. XIII. Cosmological parameters”, *Astron. Astrophys.* **594**, A13(2016) [arXiv: 1502.01589 [astro-ph.CO]].
[11] S. Weinberg, “The Cosmological Constant Problem”, Rev. Mod. Phys. 61, 1(1989).

[12] T. Padmanabhan, “Cosmological constant: The Weight of the vacuum”, Phys. Rept. 380, 235(2003) [arXiv: hep-th/0212290].

[13] P. J. Steinhardt, “A quintessential introduction to dark energy”, Phil. Trans. Roy. Soc. Lond. A 361, 2497(2003).

[14] L. Amendola, S. Tsujikawa, “Dark Energy : Theory and Observations”, Cambridge, UK : Cambridge University Press (2010).

[15] Y. L. Bolotin, A. Kostenko, O. A. Lemets and D. A. Yerokhin, “Cosmological Evolution With Interaction Between Dark Energy And Dark Matter,” Int. J. Mod. Phys. D 24, no. 03, 1530007 (2014) [arXiv:1310.0085 [astro-ph.CO]].

[16] B. Wang, E. Abdalla, F. Atrio-Barandela and D. Pavon, “Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures,” Rept. Prog. Phys. 79, no. 9, 096901 (2016) [arXiv:1603.08299 [astro-ph.CO]].

[17] G. S. Sharov, S. Bhattacharya, S. Pan, R. C. Nunes and S. Chakraborty, “A new interacting two fluid model and its consequences,” Mon. Not. Roy. Astron. Soc. 466, no. 3, 3497 (2017) [arXiv:1701.00780 [gr-qc]].

[18] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri and D. Wands, “Indications of a late-time interaction in the dark sector,” Phys. Rev. Lett. 113, no. 18, 181301 (2014) [arXiv:1406.7297 [astro-ph.CO]].

[19] J. Sola, A. Gomez-Valent and J. de Cruz Prez, “Hints of dynamical vacuum energy in the expanding Universe,” Astrophys. J. 811, L14 (2015) [arXiv:1506.05793 [gr-qc]].

[20] J. Sola, J. de Cruz Prez, A. Gomez-Valent and R. C. Nunes, “Dynamical Vacuum against a rigid Cosmological Constant,” arXiv:1606.00450 [gr-qc].

[21] R. C. Nunes, S. Pan and E. N. Saridakis, “New constraints on interacting dark energy from cosmic chronometers,” Phys. Rev. D 94, no. 2, 023508 (2016) [arXiv:1605.01712 [astro-ph.CO]].

[22] S. Kumar and R. C. Nunes, “Probing the interaction between dark matter and dark energy in the presence of massive neutrinos,” Phys. Rev. D 94, no. 12, 123511 (2016) [arXiv:1608.02454].
[astro-ph.CO]]

[23] C. van de Bruck, J. Mifsud and J. Morrice, “Testing coupled dark energy models with their cosmological background evolution,” Phys. Rev. D 95, no. 4, 043513 (2017) [arXiv:1609.09855 [astro-ph.CO]].

[24] T. Yang, Z. K. Guo and R. G. Cai, “Reconstructing the interaction between dark energy and dark matter using Gaussian Processes,” Phys. Rev. D 91, no. 12, 123533 (2015) [arXiv:1505.04443 [astro-ph.CO]].

[25] W. Yang and L. Xu, “Cosmological constraints on interacting dark energy with redshift-space distortion after Planck data,” Phys. Rev. D 89, no. 8, 083517 (2014) [arXiv:1401.1286 [astro-ph.CO]].

[26] W. Yang and L. Xu, “Coupled dark energy with perturbed Hubble expansion rate,” Phys. Rev. D 90, no. 8, 083532 (2014) [arXiv:1409.5533 [astro-ph.CO]].

[27] W. Yang, H. Li, Y. Wu and J. Lu, “Cosmological constraints on coupled dark energy,” JCAP 1610, no. 10, 007 (2016) [arXiv:1608.07039 [astro-ph.CO]].

[28] D. M. Xia and S. Wang, “Constraining interacting dark energy models with latest cosmological observations,” Mon. Not. Roy. Astron. Soc. 463, no. 1, 952 (2016) [arXiv:1608.04545 [astro-ph.CO]].

[29] C. Caprini and N. Tamanini, “Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission,” JCAP 1610, no. 10, 006 (2016) [arXiv:1607.08755 [astro-ph.CO]].

[30] R. Murgia, S. Gariazzo and N. Fornengo, “Constraints on the Coupling between Dark Energy and Dark Matter from CMB data,” JCAP 1604, no. 04, 014 (2016) [arXiv:1602.01765 [astro-ph.CO]].

[31] A. Pourtsidou and T. Tram, “Reconciling CMB and structure growth measurements with dark energy interactions,” Phys. Rev. D 94, no. 4, 043518 (2016) [arXiv:1604.04222 [astro-ph.CO]].

[32] W. Zimdahl, “Interacting dark energy and cosmological equations of state,” Int. J. Mod. Phys. D 14, 2319 (2005) [gr-qc/0505056].

[33] B. Wang, J. Zang, C. Y. Lin, E. Abdalla and S. Micheletti, “Interacting Dark Energy and Dark Matter: Observational Constraints from Cosmological Parameters,” Nucl. Phys. B 778, 69 (2007) [astro-ph/0607126].
[34] E. M. Barboza, R. C. Nunes, E. M. C. Abreu and J. A. Neto, “Thermodynamic aspects of dark energy fluids,” Phys. Rev. D 92, no. 8, 083526 (2015).

[35] P. Bhandari, S. Haldar and S. Chakraborty, “Interacting dark energy model and thermal stability,” Eur. Phys. J. C 77, no. 12, 840 (2017).

[36] P. Bhandari, S. Haldar and S. Chakraborty, “Thermodynamics of the dissipative cosmic fluid and stability criteria,” Eur. Phys. J. A 54, no. 5, 78 (2018) [arXiv:1806.00085 [gr-qc]].

[37] A. A. Mamon, P. Bhandari and S. Chakraborty, “Study of thermal stability for different dark energy models,” arXiv:1802.07925 [gr-qc].

[38] S. Haldar, P. Bhandari and S. Chakraborty, “Emergent Scenario in first and second order non-equilibrium thermodynamics and stability analysis,” Annals Phys. 387, 203 (2017) [arXiv:1710.06793 [gr-qc]].

[39] L. Amendola, G. Camargo Campos and R. Rosenfeld, “Consequences of dark matter-dark energy interaction on cosmological parameters derived from SNIa data,” Phys. Rev. D 75, 083506 (2007).

[40] C. Boehmer, G. Caldera-Cabral, R. Lazkoz and R. Maartens, “Dynamics of dark energy with a coupling to dark matter,” AIP Conf. Proc. 1122, 197 (2009).

[41] J. A. S. Lima and I. Baranov, “Gravitationally Induced Particle Production: Thermodynamics and Kinetic Theory,” Phys. Rev. D 90, no. 4, 043515 (2014) [arXiv:1411.6589 [gr-qc]].

[42] Z. Haba, “Thermodynamics of diffusive DM/DE systems,” Gen. Rel. Grav. 49, no. 4, 58 (2017) [arXiv:1612.05999 [gr-qc]].