Low-carbohydrate diet and risk of cancer incidence: The Japan Public Health Center-based prospective study

Honglin Cai1 | Tomotaka Sobue1 | Tetsuhisa Kitamura1 | Junko Ishihara2
Akiko Nanri3,4 | Tetsuya Mizoue4 | Motoki Iwasaki5 | Taiki Yamaji5
Manami Inoue5 | Shoichiro Tsugane5,6 | Norie Sawada5

Abbreviations: BMI, body mass index; CIs, confidence intervals; CRC, colorectal cancer; ER−, estrogen receptor negative; FFQ, food frequency questionnaire; GC, gastric cancer; H. pylori, Helicobacter pylori; HCA, heterocyclic amines; HPFS, Health Professionals Follow-up Study; HRs, hazard ratios; IGF-1, insulin-like growth factor-1; JPHC, Japan Public Health Center-based Prospective Study; LC, lung cancer; LCD, low-carbohydrate diet; LCHP, low carbohydrate and high protein; NHS, Nurses’ Health Study; NOCs, N-nitroso compounds; PAHs, polycyclic aromatic hydrocarbons; PHC, public health center; RC, rectal cancer.

Abstract
Epidemiological evidence on the effects of a long-term low-carbohydrate diet (LCD) on cancer incidence remains sparse. We investigate the association between LCD and the risk of overall and specific cancer site incidence in a Japanese population-based prospective cohort study among 90 171 participants aged 45-74. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). During a median 17.0 y of follow-up, we identified 15 203 cancer cases. A higher overall LCD score was associated with increased overall cancer risk (HR = 1.08 [CI: 1.02-1.14], P-trend = .012), while it was associated with decreased gastric cancer (GC) risk (0.81 [0.71-0.93], P-trend = .006). A higher animal-based LCD score was associated with higher risk of overall cancer (1.08 [1.02-1.14], P-trend = .003), colorectal cancer (CRC) (1.11 [0.98-1.25], P-trend = .018), rectal cancer (RC) (1.24 [1.00-1.54], P-trend = .025), lung cancer (LC) (1.16 [1.00-1.34], P-trend = .042), and lower risk of GC (0.90 [0.79-1.01], P-trend = .033). Furthermore, we found that plant-based LCD score was related to lower GC incidence (0.87 [0.77-0.99], P-trend = .031). Additionally, adjusted for plant fat intake amplified the adverse associations (overall cancer: 1.08 [1.02-1.14] vs. 1.11 [1.05-1.18]; CRC: 1.08 [0.95-1.22] vs. 1.13 [0.99-1.30]; LC: 1.14 [0.98-1.33] vs. 1.19 [1.01-1.41]). We conclude that LCD enriching with animal products was associated with increased overall cancer, CRC, and LC incidence. These adverse associations could be attenuated by plant fat consumption. LCD reduces the risk of developing GC. Long-term adherence to LCD without paying attention to the balance between animal and plant food source consumption might cause adverse overall cancer incidence consequences.
1 | INTRODUCTION

Although a balanced diet has been recommended for health through various studies, diet low in carbohydrates and high in protein is still a popular option for weight loss and weight control. Such a LCD emphasizes the reduction of carbohydrate intake while encouraging increased intake of high-protein animal products that therefore contain high amounts of fat. When the intake of one macronutrient is high, the others will become low. Carbohydrates, protein, and fat are the three main macronutrients. Their effect on health should be evaluated as a whole rather than only focus on a single macronutrient. Therefore, a simple LCD summary score approach based on the percentage of energy from carbohydrate, protein, and fat were raised. As is well known, cancer is a disease that develops with years of potentially dangerous exposure to factors, including dietary habits. Several previous studies have investigated the association between a LCD and cancer morbidity or mortality. The NHS in the USA suggested that LCD with high plant protein and fat was associated with a decreased incidence of ER− breast cancer in postmenopausal women. Moreover, cohort studies in the USA demonstrated that a higher overall LCD score and a higher animal-based LCD score are related to higher cancer mortality. In contrast, the JPHC study showed no association between LCD and cancer mortality. To date, the long-term safety of LCD remains controversial, and the evidence on how LCD affects cancer incidence remains sparse.

Therefore, in this large Japanese population-based cohort study, we used the LCD score to evaluate the association between LCD and the risk of overall and specific cancer site incidence.

2 | MATERIALS AND METHODS

2.1 | Study population

The JPHC study was initiated in 1990 for cohort I and in 1993 for cohort II, at 11 PHC areas. In the baseline study, 140,420 participants were informed of the objectives of the study, and the completion of the survey questionnaire was regarded as providing consent to participate. A self-administered questionnaire was administered at the baseline, 5-y, and 10-y follow-ups. In this study, we took the 5-y follow-up survey as the starting point because it includes more comprehensive information on food intake.

Initially, the participants from the Tokyo area were not included because information on cancer incidence was unavailable (n = 7097). After excluding ineligible participants (non-Japanese nationality, late report of migration occurring before the start of the study, incorrect birth date, or lost to follow-up), 130,777 participants remained. Of these, 98,503 participants returned the 5-y questionnaire survey. We then excluded 1074 participants who did not respond to the food intake questions; 2514 participants who reported or were diagnosed with cancer before the 5-y follow-up questionnaire survey; and 4744 participants with energy intake at the upper or lower 2.5%. Finally, 90,171 participants were included in the present study.

2.2 | Food frequency questionnaire

The FFQ included 138 food items, and 9 beverage items, and was used to assess the average dietary food and beverage intake. Participants were asked about the frequency and portion size for each item consumed over the previous year. The daily food consumption (g/d) was calculated by multiplying the consumption frequency by the typical portion size. Food and nutrient intake was estimated using the Standard Table of Food consumption in Japan (7th revised and enlarged edition). The validity of the FFQ was assessed using either 14-d or 28-d dietary records. Spearman correlation coefficients between energy-adjusted intake for carbohydrate, fat, and protein derived from the FFQ, and those derived from dietary records were 0.66-0.69, 0.55-0.57, and 0.30-0.31, respectively, in men and 0.45-0.47, 0.39-0.46, and 0.24-0.33, respectively, in women. The reproducibility of estimates for intake of carbohydrate, fat, and protein between the two FFQs administered 1 y apart was 0.45-0.55, 0.47-0.57, and 0.47-0.57, respectively, in men, and 0.41-0.50, 0.38-0.52, and 0.32-0.54, respectively, in women. Furthermore, we estimated protein and fat intakes from animal and plant sources separately. Animal food included fish and shellfish, meat and processed meat, egg, milk and dairy products, and butter, and plant food included foods other than animal food. When we assessed the validity and reproducibility of animal or plant protein and fat derived from FFQ, the Spearman correlation coefficients between % energy of animal protein, animal fat, plant protein, and plant fat derived from FFQ, and those derived from the dietary records were 0.21, 0.42, 0.59, and 0.39, respectively, in men and 0.26, 0.42, 0.49, and 0.22, respectively, in women. The corresponding values between the two FFQs were 0.49, 0.53, 0.60, and 0.64, respectively, in men and 0.48, 0.53, 0.58, and 0.54, respectively, in women.

2.3 | Assessment of LCD score

The method used to assess LCD score has been described elsewhere. Briefly, according to the percentage of energy from carbohydrate, protein, or fat, participants were equally divided into 11 categories. For carbohydrate, participants from the lowest to highest category scored 10-0 points, while for protein and fat,
they scored 0-10 points. The LCD score was calculated as the total score of carbohydrate, protein, and fat, ranging from 0 to 30 points. A higher LCD score represented a lower carbohydrate intake with higher protein and fat intake. We then created separate scores for animal protein, animal fat, plant protein, and plant fat. Similarly, the animal-based LCD score was defined as the total score of carbohydrate, animal protein, and animal fat. The plant-based LCD score was the total score of carbohydrate, plant protein, and plant fat.

2.4 | Follow-up and case identification

We followed the study participants from the date of the 5-y follow-up questionnaire survey until the date of moving out of the study area, date of death, date of diagnosis with cancer, or the end of follow-up (December 31, 2012, for Osaka; December 31, 2013, for Kochi and Nagasaki areas; December 31, 2015, for the other areas), whichever occurred first.

The JPHC study incidence data were obtained from medical records and cancer registries with permission from the respective local governments of each study area. Death certificates were used as supplementary sources. According to the Japan cancer statistics in 2018, we selected the top 10 cancer sites (excluding malignant lymphoma) and 2 most common gender-related cancer sites (prostate and breast) for specific cancer site analyses. Cancer identification by site was assigned according to the International Classification of Diseases for Oncology, 3rd edition as follows: GC (C16), CRC (C18-C20), colon cancer (C18), RC (C19; C20), liver cancer (C22.0), pancreatic cancer (C25), LC (C34), esophageal cancer (C15), biliary tract cancer (C22.1; C23; C24), kidney cancer (C64), bladder cancer (C67), upper urinary tract cancer (C65; C66), prostate cancer (C61), and breast cancer (C50).

2.5 | Statistical analysis

Study participants were grouped into quintiles of overall LCD score, animal-based LCD score, and plant-based LCD score. Cox proportional hazards models were used to estimate HRs and 95% CIs to verify overall cancer and specific cancer site risk. The test for a linear trend was performed by entering the median value of each category into the model. All P-values were two-sided, and all statistical analyses were performed using SAS statistical software (version 9.4; SAS Institute Inc). We imputed missing data for covariates (BMI, smoking status, alcohol consumption, physical activity, coffee consumption, and green tea consumption, use of exogenous female hormones) (women only), and menopausal status (women only) by including all covariates, follow-up duration, and outcome in the model for multiple imputations (SAS PROC MI). We performed 10 rounds of imputation, then combined the estimates and P-trend values according to the Rubin rule (SAS PROC MIANALYZE).

We adjusted for age (continuous), sex, and area in Model 1. Model 2 was further adjusted for the following: smoking status (never, past, current with <20 cigarettes, 20-40 cigarettes, ≥40 cigarettes); alcohol consumption (none, occasional, regular of 1-150, 150-300, 300-450, ≥450 g alcohol/wk); BMI (<23, 23-25, 25-27, ≥27 kg/m²), history of diabetes mellitus (yes or no), total physical activity levels (Met-h/d, quartiles), total energy intake (kcal/d, quintiles), green tea consumption (never, <1 cup/d, 1 cup/d, 2-3 cups/d, ≥4 cups/d), and coffee consumption (never, <1 cup/d, 1 cup/d, 2-3 cups/d, ≥4 cups/d). For breast cancer in women, Model 2 simplified the categories for smoking status (never, past, current) and alcohol consumption (none, occasional, regular of 1-150, >150 g alcohol/wk), and contained 2 other covariables: use of exogenous female hormones (yes or no) and menopausal status (premenopausal, natural menopause, surgical menopause). Based on Model 2, Model 3 was further adjusted for sodium intake (quintiles) for GC. We tested the interaction for each LCD score with sex before analyzing the association between LCD score and risk of overall cancer and specific cancer site. To examine the effect of protein and fat intakes on cancer risk, we further adjusted for animal protein, animal fat, plant protein, and plant fat (% energy, quintiles). The correlation coefficients among these 4 macronutrients were tested before the adjustment. In sensitivity analyses, the above analyses were repeated after excluding cancer cases that were diagnosed in the first 3 y. Additionally, 32,335 participants from cohort II provided blood specimens at the date of baseline survey. Of them, 17,507 participants in our current study had undergone a *H. pylori* infection test and had atrophic gastritis status. We described the GC case distribution for this subpopulation, and then conducted subgroup analyses for the relationship between LCD score and GC risk in *H. pylori* antibody-positive participants (N = 11,934) with further adjustment for *H. pylori* antibody concentration (tertiles) and atrophic gastritis status (none, moderate, and severe) based on Model 2.

3 | RESULTS

Of 90,171 participants, we ascertained 15,203 cancer cases during a median 17.0 y of follow-up (1,418,371 person years). Participants in the highest quintile of any kind of LCD score tended to have a history of diabetes, higher total energy intake and consumed more coffee and green tea. Participants with higher overall LCD score or animal-based LCD score consumed more animal protein, animal fat, and plant fat, but less plant protein. Participants with higher plant-based LCD score had higher protein and fat consumption, but the amounts and gradients were lower than those in the overall LCD score and animal-based LCD score (Table 1).

Table 2 shows the association between LCD score and the risk of overall cancer and site-specific cancer. Higher overall LCD score was associated with increased overall cancer risk (HR = 1.08 [CI: 1.02-1.14], P-trend = .014), while it was associated with decreased GC risk (0.81 [0.71-0.93], P-trend = .006). A null association was observed in other cancers. Furthermore, a higher animal-based LCD score was associated with higher risk of overall cancer (1.08 [1.02-1.14], P-trend = .003), CRC (1.11 [0.98-1.25], P-trend = .018),...
	Overall LCD score^a	Animal-based LCD score^a	Plant-based LCD score^a						
	Q1	Q3	Q5	Q1	Q3	Q5	Q1	Q3	Q5
No. of subjects	17.410	17.685	17.495	19.030	16.663	19.125	18.531	16.304	18.000
Median score (range)	4 (2-5)	15 (14-16)	26 (24-28)	3 (1-5)	15 (14-16)	26 (25-28)	8 (6-9)	15 (14-16)	22 (21-24)
Age (y), mean ± SD	58.1 ± 8.2	570 ± 78	576 ± 78	58.1 ± 8.1	571 ± 7.8	573 ± 7.8	57.9 ± 8.2	57.1 ± 7.8	57.6 ± 7.7
Sex (men, %)	44.7	50.4	46.3	46.0	49.5	46.8	50.2	48.9	49.7
BMI (kg/m²), mean ± SD	23.4 ± 3.1	23.5 ± 3.0	23.6 ± 3.0	23.4 ± 3.1	23.5 ± 3.0	23.6 ± 3.1	23.4 ± 3.1	23.4 ± 3.0	23.6 ± 3.0
Current smoker (%)	23.3	24.9	21.0	22.9	24.8	22.7	27.3	24.0	21.5
Alcohol consumption (≥1 time/wk, %)	32.4	41.4	35.6	30.5	41.5	39.0	40.8	39.0	36.5
Physical activity (MET-h/d)	32.4 ± 6.4	32.6 ± 6.3	32.2 ± 6.2	32.4 ± 6.3	32.5 ± 6.3	32.2 ± 6.2	32.2 ± 6.4	32.5 ± 6.3	32.4 ± 6.2
History of diabetes (yes, %)	3.6	4.9	5.9	3.9	5.1	5.5	4.1	4.6	6.4
Coffee consumption (≥1 cup/d, %)	27.4	34.9	34.0	27.1	35.0	35.0	30.0	33.4	34.1
Dietary intake									
Total energy intake (kcal/d)	1705.8 ± 548.5	1997.7 ± 568.1	2292.3 ± 681.8	1745.3 ± 565.3	1989.3 ± 573.4	2280.3 ± 675.9	1809.5 ± 587.6	2030.0 ± 607.3	2135.5 ± 644.2
Carbohydrate (% energy/d)	66.0 ± 6.0	54.5 ± 5.9	44.1 ± 5.9	65.6 ± 5.7	54.3 ± 5.9	43.9 ± 6.2	59.8 ± 9.6	54.2 ± 9.0	50.2 ± 6.9
Protein (% energy/d)									
Animal protein	4.6 ± 1.5	7.5 ± 1.5	11.3 ± 2.6	4.5 ± 1.4	7.5 ± 1.3	11.3 ± 2.4	6.6 ± 2.7	7.9 ± 2.8	8.2 ± 2.6
Plant protein	7.2 ± 1.1	6.7 ± 1.3	6.1 ± 1.7	7.7 ± 1.3	6.7 ± 1.2	5.6 ± 1.2	6.0 ± 1.0	6.6 ± 1.3	7.8 ± 1.5
Fat (% energy/d)									
Animal fat	8.0 ± 3.0	13.6 ± 3.2	21.3 ± 5.7	7.6 ± 2.5	13.5 ± 2.5	22.1 ± 5.2	12.2 ± 5.6	14.6 ± 6.1	14.6 ± 5.2
Plant fat	8.9 ± 2.8	11.3 ± 3.2	13.0 ± 3.7	10.1 ± 3.6	11.3 ± 3.5	11.8 ± 3.3	7.3 ± 1.9	11.0 ± 1.8	15.3 ± 3.2
Red meat and processed meat (g/d)^b	27.2 ± 19.5	46.9 ± 27.2	75.3 ± 47	25.3 ± 17.7	46.1 ± 25.1	79.2 ± 47.8	38.6 ± 28.3	52.5 ± 37.7	51.7 ± 35.9
Vegetables (g/d)^b	192.7 ± 134.3	223.9 ± 134.7	230.6 ± 132.4	220.3 ± 159.7	221.8 ± 128.0	207.8 ± 116.0	145.7 ± 87.7	215.8 ± 110.9	296.7 ± 169.1

^a CAI et al.

^b Median ± interquartile range.
Table 1 (Continued)

Overall LCD score	Plant-based LCD score	Animal-based LCD score						
Q1	Q3	Q5	Q1	Q3	Q5	Q1	Q3	Q5
748	702	702	748	702	702	748	702	702
Fruits (g/d)	231.0 ± 153.5	216.0 ± 119.2	198.6 ± 102.7					
Sodium (g/d)	11.0 ± 5.4	12.3 ± 4.2	19.6 ± 7.2					
Use of exogenous female hormones (yes, %)	72.4	73.3	71.6					
Postmenopausal (yes, %)	71.7	71.8	71.7					

Note: Adjusted for total energy intake using residual method.

DISCUSSION

In this population-based cohort study, the overall LCD score was associated with increased overall cancer risk and reduced GC risk. When considering the LCD score based on animal or plant sources of protein and fat, we found the animal-based LCD score was correlated with increased overall cancer risk, marginally significant increase in CRC, RC, and LC risk, and a marginally significant decrease in GC risk. Furthermore, a higher plant-based LCD score was associated with a decreased incidence of GC.

To the best of our knowledge, only a few studies have investigated the association between LCD and cancer incidence. Our study is the first prospective study to evaluate the association between LCD and subsequent cancer incidence in Asia. To date, there have been only 3 prospective studies that have assessed the association between LCD and cancer incidence. The Nurse Health Study observed that a diet moderate in carbohydrate and high in plant protein and fat was related to a decreased ER− breast cancer incidence. However, the other 2 studies from Sweden only considered LCHP...
Cancer type	Overall LCD score	Animal-based LCD score	Plant-based LCD score									
	Q1	Q3	Q5									
No of subjects	17410	17685	17495	19030	16663	19125	18531	16304	19125	18000		
Median score	4 (2-5)	15 (14-16)	26 (24-28)	3 (1-5)	15 (14-16)	26 (25-28)	8 (6-9)	15 (14-16)	22 (21-24)			
Person years	271389	277554	276294	276205	261155.02	301490.86	281982	258195.43	285758.38			
Overall cancer, cases	2891	2997	3051	3195	2826	3322	3177	2766	3100	1.00	1.04	(0.98-1.09)
Model 1	1.00	1.04	1.07	1.05 (1.10-1.11)	1.09 (1.04-1.14)	.001	1.00	0.98 (0.93-1.10)	0.96 (0.91-1.01)			
Model 2	1.00	1.02	1.08	1.03 (0.98-1.08)	1.08 (1.02-1.14)	.003	1.00	0.99 (0.94-1.10)	0.99 (0.94-1.05)			
Model 3	1.00	1.05	1.09	1.04 (0.99-1.10)	1.09 (1.03-1.15)	.002	1.00	0.99 (0.94-1.10)	0.99 (0.93-1.05)			
3 y exclusion, cases	2540	2709	2701	2815	2538	2946	2816	2471	2755	1.00	0.86 (0.76-0.97)	0.82 (0.71-0.95)
Model 2	1.00	1.05	1.09	1.04 (0.99-1.10)	1.09 (1.03-1.15)	.002	1.00	0.99 (0.94-1.10)	0.99 (0.93-1.05)			
Gastric cancer, cases	569	500	448	621	457	516	554	434	476	1.00	0.88 (0.78-0.99)	0.86 (0.76-0.97)
Model 1	1.00	0.88	0.83	0.89 (0.79-1.00)	0.93 (0.83-1.05)	.095	1.00	0.88 (0.77-1.00)	0.86 (0.76-0.97)			
Model 2	1.00	0.86	0.81	0.86 (0.76-0.97)	0.90 (0.79-1.01)	.033	1.00	0.88 (0.77-1.00)	0.87 (0.77-0.99)			
Model 3	1.00	0.84	0.79	0.85 (0.75-0.96)	0.89 (0.78-1.00)	.023	1.00	0.85 (0.74-0.97)	0.82 (0.71-0.95)			
Colectal cancer, cases	550	549	551	604	518	627	583	545	574	1.00	0.98 (0.85-1.13)	0.95 (0.85-1.07)
Model 1	1.00	1.00	1.02	1.03 (0.92-1.16)	1.10 (0.99-1.24)	.022	1.00	1.03 (0.92-1.16)	0.95 (0.85-1.07)			
Model 2	1.00	1.00	1.08	0.99 (0.88-1.12)	1.11 (0.98-1.25)	.018	1.00	1.08 (0.96-1.21)	1.03 (0.91-1.17)			
Colon cancer, cases	393	380	385	435	358	428	411	392	384	1.00	0.98 (0.85-1.13)	0.89 (0.77-1.03)
Model 1	1.00	0.98	1.01	1.00 (0.87-1.15)	1.06 (0.92-1.21)	.185	1.00	1.04 (0.91-1.10)	0.89 (0.77-1.03)			
Model 2	1.00	0.97	1.04	0.96 (0.83-1.11)	1.06 (0.92-1.22)	.170	1.00	1.08 (0.94-1.24)	0.95 (0.82-1.10)			
Rectal cancer, cases	157	169	166	169	160	199	172	153	190	1.00	1.06 (0.85-1.32)	1.11 (0.89-1.13)
Model 1	1.00	1.06	1.07	1.11 (0.90-1.38)	1.23 (1.00-1.51)	.030	1.00	1.00 (0.80-1.25)	1.10 (0.89-1.35)			
TABLE 2 (Continued)

Cancer type	Overall LCD score	Animal-based LCD score	Plant-based LCD score									
	Q1	Q3	Q5	P-trenda	Q1	Q3	Q5	P-trenda	Q1	Q3	Q5	P-trenda
Liver cancer, cases												
Model 1	1.00	1.07	1.15	.034	1.00	1.08 (0.86-1.34)	1.24 (1.00-1.54)	.025	1.19	1.32	1.28	.381
Model 2	1.00	1.15	1.25	.271	1.00	1.61 (1.25-2.07)	1.36 (1.05-1.76)	.097	1.00	1.02 (0.81-1.29)	0.90 (0.71-1.14)	.381
Pancreatic cancer, cases	116	111	109	.571	1.00	1.06 (0.82-1.37)	0.96 (0.74-1.24)	.544	1.00	1.02 (0.77-1.34)	1.21 (0.93-1.58)	.327
Model 1	1.00	0.97	0.94	.544	1.00	1.03 (0.79-1.34)	0.92 (0.70-1.21)	.389	1.00	1.05 (0.79-1.39)	1.28 (0.98-1.69)	.161
Model 2	1.00	0.96	0.93	.544	1.00	1.03 (0.79-1.34)	0.92 (0.70-1.21)	.389	1.00	1.05 (0.79-1.39)	1.28 (0.98-1.69)	.161
Lung cancer, cases	368	390	404	.466	1.00	1.11 (0.97-1.28)	1.13 (0.98-1.29)	.083	1.00	0.97 (0.84-1.11)	0.88 (0.76-1.01)	.081
Model 1	1.00	1.05	1.09	.466	1.00	1.11 (0.97-1.28)	1.13 (0.98-1.29)	.083	1.00	0.97 (0.84-1.11)	0.88 (0.76-1.01)	.081
Model 2	1.00	1.05	1.14	.700	1.00	1.11 (0.96-1.28)	1.16 (1.00-1.34)	.042	1.00	0.99 (0.85-1.14)	0.92 (0.80-1.07)	.379
Esophageal cancer, cases	76	79	82	.195	1.00	1.21 (0.89-1.66)	1.29 (0.95-1.75)	.983	1.00	0.86 (0.65-1.15)	0.74 (0.56-0.99)	.008
Model 1	1.00	0.96	1.07	.195	1.00	1.21 (0.89-1.66)	1.29 (0.95-1.75)	.983	1.00	0.86 (0.65-1.15)	0.74 (0.56-0.99)	.008
Model 2	1.00	1.00	1.39	.352	1.00	1.13 (0.82-1.55)	1.39 (1.01-1.90)	.493	1.00	1.03 (0.78-1.38)	1.07 (0.79-1.44)	.883
Biliary tract cancer, cases	113	104	113	.352	1.00	1.13 (0.82-1.55)	1.39 (1.01-1.90)	.492	1.00	1.03 (0.78-1.38)	1.07 (0.79-1.44)	.883
Model 1	1.00	0.97	1.03	.948	1.00	0.88 (0.68-1.15)	0.96 (0.75-1.23)	.984	1.00	1.11 (0.86-1.43)	0.84 (0.65-1.10)	.415
Model 2	1.00	0.93	0.97	.725	1.00	0.84 (0.64-1.10)	0.89 (0.68-1.16)	.580	1.00	1.10 (0.85-1.42)	0.82 (0.62-1.08)	.343
Kidney cancer, cases	36	49	50	.710	1.00	1.00 (0.65-1.54)	1.05 (0.69-1.59)	.843	1.00	0.90 (0.58-1.39)	0.95 (0.63-1.44)	.975
Model 1	1.00	1.26	1.27	.710	1.00	1.00 (0.65-1.54)	1.05 (0.69-1.59)	.843	1.00	0.90 (0.58-1.39)	0.95 (0.63-1.44)	.975

(Continues)
Cancer type	Overall LCD score	Animal-based LCD score	Plant-based LCD score									
	Q1	Q3	Q5	P-trenda	Q1	Q3	Q5	P-trenda	Q1	Q3	Q5	P-trenda
Model 2	1.00	1.24	1.23	.879	1.00	1.01 (0.65-1.56)	1.07 (0.69-1.64)	.889	1.00	0.85 (0.55-1.32)	0.85 (0.55-1.31)	.591
Bladder cancer, cases	78	88	81	85	79	84	100	60	88			
Model 1	1.00	1.07 (0.79-1.45)	1.01 (0.74-1.39)	.842	1.00	1.09 (0.80-1.48)	1.04 (0.77-1.41)	.888	1.00	0.65 (0.47-0.90)	0.80 (0.60-1.08)	.162
Model 2	1.00	1.03 (0.76-1.41)	1.00 (0.72-1.39)	.806	1.00	1.06 (0.77-1.44)	1.03 (0.75-1.41)	.807	1.00	0.64 (0.46-0.89)	0.78 (0.58-1.07)	.149
Upper urinary tract cancer, cases	19	21	18	20	27	20	22	22	18			
Model 1	1.00	1.06 (0.57-1.98)	0.89 (0.47-1.72)	.608	1.00	1.54 (0.86-2.76)	0.98 (0.52-1.83)	.701	1.00	1.08 (0.60-1.96)	0.77 (0.41-1.44)	.218
Model 2	1.00	0.99 (0.52-1.86)	0.88 (0.44-1.73)	.588	1.00	1.46 (0.81-2.63)	0.97 (0.51-1.86)	.690	1.00	1.03 (0.56-1.89)	0.72 (0.37-1.39)	.178
Prostate cancer, casesb	232	298	300	261	256	300	280	270	315			
Model 1	1.00	1.14 (0.96-1.36)	1.18 (0.99-1.40)	.999	1.00	1.08 (0.91-1.29)	1.12 (0.95-1.32)	.076	1.00	1.05 (0.89-1.25)	1.04 (0.88-1.23)	.518
Model 2	1.00	1.12 (0.94-1.34)	1.17 (0.97-1.40)	.164	1.00	1.07 (0.90-1.28)	1.11 (0.93-1.32)	.111	1.00	1.04 (0.87-1.23)	1.02 (0.86-1.21)	.763
Breast cancer, casesb	157	169	188	181	161	198	158	183	177			
Model 1	1.00	1.09 (0.88-1.36)	1.14 (0.92-1.41)	.218	1.00	1.03 (0.83-1.28)	1.04 (0.85-1.27)	.384	1.00	1.15 (0.93-1.43)	1.01 (0.82-1.26)	.922
Model 2	1.00	1.09 (0.87-1.36)	1.10 (0.88-1.38)	.353	1.00	1.02 (0.82-1.26)	0.99 (0.80-1.23)	.658	1.00	1.14 (0.92-1.42)	0.99 (0.79-1.25)	.980

Abbreviations: LCD, low-carbohydrate diet.
Model 1 adjusted for age sex area.
Model 2 was further adjusted for smoking, drinking, BMI, total physical activity levels (MET-h/d), history of diabetes, total energy intake, green tea consumption, and coffee consumption.

a Linear trend across quintiles of LCD score was tested by entering the median values of each quintile into the Cox proportional hazards model.

b Prostate cancer was conducted in men; breast cancer was conducted in women, and were further adjusted for menopausal status (yes, no, natural; no, artificial), use of exogenous hormone pills (yes or no).

c Model 3 was further adjusted for sodium intake (quintile) for GC cancer based on Model 2.
intakes. One reported null associations with overall cancer and site-specific cancer incidence; the other suggested that an LCHP diet was linked to lower prostate cancer incidence. For mortality, a positive association has been found for animal-based LCD score and cancer mortality for pooling NHS and HPFS. In cohort studies of Swedish women or Japanese adults, neither showed a tendency toward a linear association between LCD score and cancer mortality. Taken together, the previous studies to date were not consistent in terms of the long-term effects of LCD on cancer risk.

In our study, a higher animal-based LCD score was related to higher overall cancer, CRC, RC, and LC risk. However, these associations disappeared for the plant-rich LCD score. Consistent with our findings, previous studies have noted that a higher intake of animal products is related to a westernized dietary pattern, which favors a higher intake of animal products. According to the World Cancer Research Fund's Cancer Report, there is convincing evidence that high red meat and processed meat consumption are associated with increased CRC risk. A previous study in JPHC found an adverse association between red meat consumption and LC risk. The biomedical plausibility is considerable. Red meat and processed meat would produce and contain carcinogens such as HCAs, PAHs, and NOCs during cooking or processing. These substances might act as pro-oxidants and, therefore, lead to carcinogenesis. Similarly, dietary fiber has anti-inflammatory properties; some types could attenuate postprandial rises in blood glucose and insulin by reducing the rate of glucose absorption. Therefore, an animal-based LCD might restrict healthy food consumption in the long run, causing the adverse effects of red meat to some extent. In the colon and rectal cancer analysis, we found that NOCs from red meat or processed meat are more carcinogenic to the rectum than the colon. Differences in rates of metabolism, fermentation, transit time, and expression of enzymes

TABLE 3 Hazard ratio (95% confident interval) of overall cancer, GC, CRC, and LC when further adjustment for macronutrient according to quintiles of overall LCD score

Cancer type	Overall LCD score	Q1 (2-5)	Q2 (9-11)	Q3 (14-16)	Q4 (19-22)	Q5 (24-28)	P-trenda
Overall cancer	Model 2	1.00	1.03 (0.97-1.08)	1.02 (0.97-1.08)	1.03 (0.97-1.08)	1.08 (1.02-1.14)	.012
	Adjusted for animal protein	1.00	1.02 (0.97-1.08)	1.01 (0.94-1.08)	1.00 (0.92-1.08)	1.03 (0.95-1.13)	.604
	Adjusted for animal fat	1.00	1.04 (0.98-1.10)	1.03 (0.97-1.10)	1.03 (0.96-1.10)	1.07 (0.99-1.16)	.162
	Adjusted for plant protein	1.00	1.02 (0.97-1.08)	1.02 (0.97-1.08)	1.02 (0.97-1.08)	1.07 (1.01-1.13)	.058
	Adjusted for plant fat	1.00	1.04 (0.98-1.09)	1.04 (0.99-1.10)	1.05 (0.99-1.11)	1.11 (1.05-1.18)	.001
GC	Model 2	1.00	0.84 (0.75-0.95)	0.86 (0.76-0.97)	0.84 (0.74-0.95)	0.81 (0.71-0.93)	.006
	Adjusted for animal protein	1.00	0.82 (0.71-0.94)	0.80 (0.68-0.95)	0.78 (0.65-0.95)	0.76 (0.61-0.95)	.034
	Adjusted for animal fat	1.00	0.86 (0.76-0.99)	0.89 (0.76-1.03)	0.86 (0.72-1.02)	0.80 (0.65-0.97)	.058
	Adjusted for plant protein	1.00	0.84 (0.74-0.95)	0.85 (0.75-0.97)	0.84 (0.74-0.95)	0.81 (0.70-0.93)	.007
	Adjusted for plant fat	1.00	0.85 (0.76-0.97)	0.88 (0.77-1.00)	0.87 (0.76-1.00)	0.85 (0.73-0.98)	.065
CRC	Model 2	1.00	1.00 (0.89-1.13)	1.00 (0.88-1.13)	1.06 (0.94-1.20)	1.08 (0.95-1.22)	.176
	Adjusted for animal protein	1.00	1.00 (0.88-1.14)	0.99 (0.84-1.16)	1.03 (0.87-1.23)	1.02 (0.83-1.25)	.798
	Adjusted for animal fat	1.00	1.02 (0.90-1.16)	1.00 (0.86-1.16)	1.04 (0.88-1.22)	1.04 (0.86-1.25)	.716
	Adjusted for plant protein	1.00	0.99 (0.88-1.12)	0.98 (0.87-1.11)	1.04 (0.92-1.17)	1.04 (0.91-1.18)	.471
	Adjusted for plant fat	1.00	1.02 (0.91-1.15)	1.03 (0.91-1.17)	1.11 (0.97-1.26)	1.13 (0.99-1.30)	.040
LC	Model 2	1.00	0.99 (0.86-1.15)	1.05 (0.91-1.22)	0.97 (0.83-1.12)	1.14 (0.98-1.33)	.170
	Adjusted for animal protein	1.00	0.96 (0.81-1.13)	0.97 (0.80-1.18)	0.87 (0.70-1.08)	1.00 (0.78-1.29)	.850
	Adjusted for animal fat	1.00	0.94 (0.80-1.10)	0.93 (0.78-1.12)	0.82 (0.67-1.00)	0.93 (0.74-1.17)	.386
	Adjusted for plant protein	1.00	0.98 (0.85-1.14)	1.03 (0.89-1.20)	0.94 (0.80-1.10)	1.08 (0.92-1.27)	.517
	Adjusted for plant fat	1.00	1.01 (0.87-1.17)	1.07 (0.92-1.25)	1.00 (0.85-1.17)	1.19 (1.01-1.41)	.055

Abbreviations: CRC, colorectal cancer; GC, gastric cancer; LC, lung cancer; LCD, low-carbohydrate diet.

aLinear trend across quintiles of LCD score was tested by entering the median values of each quintile into the Cox proportional hazards model.
and different morphology, are considered to be the reasons for the difference in the effect of a risk factor on the colon and rectum.31 Alternatively, it has been pointed out that an LCD with higher animal product consumption would increase the levels of cancer-promoting metabolites.32 A long-term higher intake of animal protein and fat is associated with increased insulin or IGF-1 levels, which are important tumor promoters, resulting in accelerated tumor cell proliferation.33,34 This hypothesis also supports our findings that adjustment for animal protein attenuated the adverse association between overall LCD and cancer risk. Conversely, although the plant-based LCD score was not associated with overall cancer, CRC, or LC risk, the positive associations of overall LCD were aggravated when adjusting for plant fat intake. In addition, the adverse associations of overall LCD for overall cancer and CRC risk were only observed in the low plant fat intake groups when stratifying plant fat intake (Table S2). Therefore, we supposed that increased plant fat intake could offset the adverse effects of consuming animal foods. A previous study has reported that plant fat enriched with unsaturated fatty acids could improve insulin sensitivity and, in turn, reduce circulating insulin and markers of inflammation.35

The stomach is the main organ that digests proteins, therefore it has high acidity of gastric juice. Previous studies have noted that gastric juice ascorbic acid has a role in preventing the formation of NOCs, and, therefore, protects against GC.36 It has been noted that the effects of carbohydrate and protein on stimulating gastric juice secretion are different; a low carbohydrate with moderate protein diet would prolong the gastric secretion duration, therefore, increasing the amount of gastric acid37,38; fresh fruits and vegetables are sources of ascorbic acid, which are linked to a reduction in stomach carcinogenesis.39 Our study showed that LCD score was associated with reduced GC incidence. This finding is consistent with the JPHC study on dietary patterns, which suggested that the traditional Japanese dietary pattern with high rice consumption increased GC incidence.40 Previous studies in JPHC have suggested that a higher salt content in food is positively associated with GC risk,41 especially when typically consuming rice with salted foods.50 However, in our study, the group with low-carbohydrate intake (QS) had a higher sodium intake, and further adjustment for sodium intake did not change the results of the association between LCD score and GC (Model 3). Our findings may support the mechanism that carbohydrate restriction with high-protein intake could promote gastric acid secretion to prevent gastric carcinogenesis.37 As there was a lack of data on H. pylori infection status for each subject, residual confounding of H. pylori might exist for the association between LCD score and GC.

\textit{H. pylori} is an independent factor responsible for GC, and 65\%-80\% of all GC cases were caused by \textit{H. pylori} infection.42 In our subpopulation, 92.2\% of GC cases were \textit{H. pylori} positive. Therefore, we could not assess the \textit{P}-value for interaction between LCD score and \textit{H. pylori} infection because GC cases without \textit{H. pylori} infections were limited. Analysis for the \textit{H. pylori} antibody-negative population also failed to be conduct, which meant that the direct effect of LCD on the risk of GC is unknown. Compared with the associations in the whole population, the protective effects of overall and animal-based LCD on GC were more pronounced in the \textit{H. pylori} antibody-positive population (Table S1). We speculated that interactions between foods and \textit{H. pylori} might exist. Previous studies have revealed that a diet pattern high in sweets and carbohydrates was positively associated with prevalence of \textit{H. pylori} infection.43 The prevalence of \textit{H. pylori}-related gastric pre-cancerous lesions progressively increased with increased starchy vegetable intake and reduced fresh fruit intake.44 It is supposed that a higher starchy food intake leads to an elevation in blood glucose level to reduce gastric acid secretion and subsequently creates an environment favorable for the growth and proliferation of \textit{H. pylori} and other microorganisms.45,46 Protein-enriched foods are potent stimulants of gastric acid secretion.38 Therefore, for the \textit{H. pylori} antibody-positive population, animal-based LCD had a more notable protective effect on GC through regulating the gastric acid secretion process to inhibit the growth and proliferation of \textit{H. pylori}. However, a similar protective association for plant-based LCD in the whole population was not observed in the \textit{H. pylori} antibody-positive population. Considering that the \textit{H. pylori} infection status could not be adjusted in the whole population analysis, residual confounding of \textit{H. pylori} might exist, therefore the inverse association between plant-based LCD and GC should be interpreted with caution. Further investigations between LCD and GC risk in non-\textit{H. pylori} infection populations are also warranted.

Our study had several strengths. This is a large, population-based, prospective study with a long follow-up period. The prospective design reduced recall bias and reverse causation. The reliable FFQ and available data from the questionnaire enabled us to calculate LCD scores and carefully adjust for important potential factors. Some limitations of our study warrant mention. First, due to the low validity of carbohydrate, protein, and fat intake, dietary information was assessed at a single time point, this caveat might have led to misclassification of LCD score. However, such misclassification tends to attenuate the association described in our study. Second, some participants in a subhealthy status might have changed their dietary behavior when answering the questionnaire. This may have obscured the relationship between LCD score and cancer risk. However, there was no material change in the results when we excluded the first 3 y of cancer cases in the sensitivity assessment. Third, as we could not adjust for some unmeasured covariables such as socioeconomic status and \textit{H. pylori} infection status for the whole population, potential residual confounding might not have been ruled out completely.

In conclusion, LCD enriched with animal products was associated with increased overall cancer, CRC, and LC incidence, and these adverse associations could be attenuated by plant fat consumption. LCD reduces the risk of developing GC. Long-term adherence to a LCD without paying attention to the balance between animal and plant food source might cause adverse overall cancer incidence consequences. Because the evidence on the association between
LCD score and risk of cancer incidence is limited, further studies are warranted.

ACKNOWLEDGMENTS
This study was supported by the National Cancer Center for Research and Development Fund (since 2011) (23-A-31[tokuj], 26-A-2, 29-A-4, and 2020-J-4), Grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare of Japan (from 1989 to 2010) (19sh-2). We thank all members of the JPHC Prospective Study Group for their valuable contributions. JPHC members (as of April 2020) are listed at https://epi.ncc.go.jp/en/jphc/781/8510.html.

CONFLICT OF INTEREST
Authors declare no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS
Cai: responsible for the data collection, statistical analysis, data interpretation, and manuscript drafting; Sobue, Kitamura, Ishihara, Nanri, Mizoue, Iwasaki, Yamaji, Inoue, Tsugane, Sawada: reviewed and edited the manuscript, data collection, and contributed to the discussion; Sawada: (principal investigator): obtained funding and designed, initiated, and organized the study, management of the study. All authors had primary responsibility for final content. All authors read and approved the final manuscript.

ETHICAL APPROVAL
The Institutional Review Board of the National Cancer Center, Tokyo, Japan approved the JPHC study. The present study was approved by the Ethical Review Board of Osaka University, Osaka, Japan.

DATA AVAILABILITY STATEMENT
For information on how to apply to gain access to JPHC data, following the instructions at https://epi.ncc.go.jp/en/jphc/805/8155.html.

ORCID
Honglin Cai https://orcid.org/0000-0002-7831-6764
Tomotaka Sobue https://orcid.org/0000-0003-2817-3483
Junho Ishihara https://orcid.org/0000-0002-9516-5646
Tetsuya Mizoue https://orcid.org/0000-0002-1198-2228
Motoki Iwasaki https://orcid.org/0000-0003-3319-4131
Manami Inoue https://orcid.org/0000-0003-1276-2398
Shoichiro Tsugane https://orcid.org/0000-0003-4105-2774
Norie Sawada https://orcid.org/0000-0002-9936-1476

REFERENCES
1. Krauss RM, Deckelbaum RJ, Ernst N, et al. Dietary guidelines for healthy American adults: a statement for health professionals from the Nutrition Committee, American Heart Association. Circulation. 1996;94:1795-1800.
2. Halton TL, Willett WC, Liu S, et al. Low-carbohydrate-diet score and the risk of coronary heart disease in women. New Engl J Med. 2006;355:1991-2002.
3. Fung TT, Hu FB, Hankinson SE, Willett WC, Holmes MD. Low-carbohydrate diets, dietary approaches to stop hypertension-style diets, and the risk of postmenopausal breast cancer. Am J Epidemiol. 2011;174:652-660.
4. Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med. 2010;153:261-272.
5. Akter S, Mizoue T, Nanri A, et al. Low carbohydrate diet and all cause and cause-specific mortality. Clin Nutr (Edinburgh, Scotland). 2021;40:2016-2024.
6. Tsugane S, Sawada N. The JPHC study: design and some findings on the typical Japanese diet. Jpn J Clin Oncol. 2014;44:777-782.
7. Sasaki S, Kobayashi M, Ishihara J, Tsugane S. Self-administered food frequency questionnaire used in the 5-year follow-up survey of the JPHC Study: questionnaire structure, computation algorithms, and area-based mean intake. J Epidemiol. 2003;13:S13-S22.
8. Science and Technology Agency. Standard Tables of Food Composition in Japan. 7th revised and, enlarged ed.: Printing Bureau of the Ministry of Finance; 2015.
9. Ishihara J, Inoue M, Kobayashi M, et al. Impact of the revision of a nutrient database on the validity of a self-administered food frequency questionnaire (FFQ). J Epidemiol. 2006;16:107-116.
10. Sasaki S, Ishihara J, Tsugane S. Reproducibility of a self-administered food frequency questionnaire used in the 5-year follow-up survey of the JPHC Study Cohort I to assess food and nutrient intake. J Epidemiol. 2003;13:S115-S124.
11. Ishihara J, Sobue T, Yamamoto S, et al. Validity and reproducibility of a self-administered food frequency questionnaire in the JPHC Study Cohort II: study design, participant profile and results in comparison with Cohort I. J Epidemiol. 2003;13:134-147.
12. Nanri A, Mizoue T, Kurotani K, et al. Low-carbohydrate diet and type 2 diabetes risk in Japanese men and women: the Japan Public Health Center-Based Prospective Study. PLoS One. 2015;10:e0118377.
13. World Health Organization. International Classification of Diseases for Oncology. 3rd ed. World Health Organization; 2000.
14. Berglund P, Heeringa S. Multiple Imputation of Missing Data Using SAS. Cary, NC, USA: SAS Institute Inc.; 2014.
15. Ratitch B, Lipkovich I, O’Kelly M. Combining analysis results from multiply imputed categorical data. 2013; 1-19.
16. Nilsson LM, Winkvist A, Johansson I, et al. Low-carbohydrate, high-protein diet score and risk of incident cancer; a prospective cohort study. Nutr J. 2013;12:58.
17. Ax E, Garmo H, Grundmark B, et al. Dietary patterns and prostate cancer risk: report from the population based ULSAM cohort study of Swedish men. Nutr Cancer. 2014;66:77-87.
18. Lagiou P, Sandin S, Weiderpass E, et al. Low carbohydrate?high protein diet and mortality in a cohort of Swedish women. J Intern Med. 2007;261:366-374.
19. Fung T, Hu FB, Fuchs C, et al. Major dietary patterns and the risk of colorectal cancer in women. Arch Intern Med. 2003;163:309-314.
20. Shin S, Saito E, Sawada N, et al. Dietary patterns and colorectal cancer risk in middle-aged adults: a large population-based prospective cohort study. Clin Nutr. 2018;37:1019-1026.
21. Stewart BW, Wild C. World Cancer Report 2014. Lyon, France; International Agency for Research on Cancer WHO Press; 2014; 630.
22. Cai H, Sobue T, Kitamura T, et al. Association between meat and saturated fatty acid intake and lung cancer risk: the Japan Public Health Center-based prospective study. Int J Cancer. 2020;147:3019-3028.
23. Sinha R, Knize MG, Salmon CP, et al. Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness. Food Chem Toxicol. 1998;36:289-297.
24. Felton JS, Malfatti MA, Knize MG, Salmon CP, Hopmans EC, Wu RW. Health risks of heterocyclic amines. Mutat Res-Fund Mol Med. 1997;376:37-41.
25. Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol. 2016;25:107-123.
26. Mirvish SS. N-nitroso compounds: their chemical and in vivo formation and possible importance as environmental carcinogens. J Toxicol Environ Health. 1977;2:1267-1277.
27. Mozafar A. Plant vitamins. Boca Raton, FL.: CRC Press; 2018.
28. Ma Y, Griffith JA, Chasan-Taber L, et al. Association between dietary fiber and serum C-reactive protein. Am J Clin Nutr. 2006;83:760-766.
29. Kay R. Dietary fiber. J Lipid Res. 1982;23:221-242.
30. Le Marchand L, Donlon T, Seifried A, Wilkens LR, Biomarkers P. Red meat intake, CYP2E1 genetic polymorphisms, and colorectal cancer risk. Cancer Epidemiol. 2002;11:1019-1024.
31. Iacopetta B. Are there two sides to colorectal cancer? Int J Cancer. 2002;101:403-408.
32. Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93:1062-1072.
33. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11:1441-1448.
34. Holmes MD, Pollak MN, Willett WC, Hankinson SE. Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomarkers Prev. 2002;11:852-861.
35. Martinez-González MA, Salas-Salvadó J, Estruch R, et al. Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis. 2015;58:50-60.
36. Schorah CJ, Sobala GM, Sanderson M, Collins N, Primrose JN. Gastric juice ascorbic acid: effects of disease and implications for gastric carcinogenesis. Am J Clin Nutr. 1991;53:2875-2935.
37. Lennard-Jones J, Fletcher J, Shaw D. Effect of different foods on the acidity of the gastric contents in patients with duodenal ulcer. 3. Effect of altering the proportions of protein and carbohydrate. Gut. 1968;9(2):177-182.
38. Brooks FP. Effect of diet on gastric secretion. Am J Clin Nutr. 1985;42:1006-1019.
39. Drake IM, Davies MJ, Mapstone NP, et al. Ascorbic acid may protect against human gastric cancer by scavenging mucosal oxygen radicals. Carcinogenesis. 1996;17:559-562.
40. Kim MK, Sasaki S, Sasazuki S, Tsugane S. Prospective study of three major dietary patterns and risk of gastric cancer in Japan. Int J Cancer. 2004;110:435-442.
41. Tsugane S, Sasazuki S, Kobayashi M, Sasaki S. Salt and salted food intake and subsequent risk of gastric cancer among middle-aged Japanese men and women. Br J Cancer. 2004;90:128-134.
42. De Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607-615.
43. Xia Y, Meng G, Zhang Q, et al. Dietary patterns are associated with Helicobacter pylori infection in Chinese adults: a cross-sectional study. Sci Rep. 2016;6:1-8.
44. Kato I, Vivas J, Plummer M, et al. Environmental factors in Helicobacter pylori-related gastric precancerous lesions in Venezuela. Cancer Epidemiol Biomarkers Prev. 2004;13:468-476.
45. Stacher G, Bauer P, Schulze D, Pointner H, Landgraf M. Effect of alterations of blood glucose levels on gastric acid secretion, plasma gastrin, and plasma osmolality in man. Am J Dig Dis. 1976;21:563-568.
46. Axon A. Relationship between Helicobacter pylori gastritis, gastric cancer and gastric acid secretion. Adv Med Sci. 2007;52:55–60.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Cai H, Sobue T, Kitamura T, et al. Low-carbohydrate diet and risk of cancer incidence: The Japan Public Health Center-based prospective study. Cancer Sci. 2022;113:744–755. doi:10.1111/cas.15215