An extensive optical study of V2491 Cyg (Nova Cyg 2008 N.2), from maximum brightness to return to quiescence

U. Munaria, A. Sivieroa, S. Dallaportaa, G. Cherinib, P. Valisab, L. Tomasellaa

aINAF Astronomical Observatory of Padova, 36012 Asiago (VI), Italy
bANS Collaboration, c/o Osservatorio Astronomico, via dell’Osservatorio 8, 36012 Asiago (VI), Italy

Abstract

The photometric and spectroscopic evolution of the He/N and very fast Nova Cyg 2008 N2 (V2491 Cyg) is studied in detail. A primary maximum was reached at $V = 7.45 \pm 0.05$ on April 11.37 (±0.1) 2008 UT, followed by a smooth decline characterized by $t_V^2 = 4.8$ days, and then a second maximum was attained at $V = 9.49 \pm 0.03$, 14.5 days after the primary one. This is the only third nova to have displayed a secondary maximum, after V2362 Cyg and V1493 Aql.

The development and energetics of the secondary maximum is studied in detail. The smooth decline that followed was accurately monitored until day +144 when the nova was 8.6 mag fainter than maximum brightness, well into its nebular phase, with its line and continuum emissivity declining as t^{-3}. The reddening affecting the nova was $E_{B-V} = 0.23 \pm 0.01$, and the distance of 14 kpc places the nova at a height above the galactic plane of 1.1 kpc, larger than typical for He/N novae. The expansion velocity of the bulk of ejecta was 2000 km/sec, with complex emission profiles and weak P-Cyg absorptions during the optically thick phase, and saddle-like profiles during the nebular phase. Photo-ionization analysis of the emission line spectrum indicates that the mass ejected by the outburst was $5.3 \times 10^{-6} \, M_\odot$ and the mass fractions to be $X = 0.573$, $Y = 0.287$, $Z = 0.140$, with those of individual elements being $N = 0.074$, $O = 0.049$, Ne = 0.015. The metallicity of the accreted material was $[\text{Fe/H}] = -0.25$, in line with ambient value at the nova galacto-centric distance. Additional spectroscopic and photometric observations at days +477 and +831 show the nova returned to the brightness level of the progenitor and to have resumed the accretion onto the white dwarf.

Keywords: stars: classical novae

1. Introduction

Nova Cyg 2008 N.2 (= V2491 Cyg, hereafter NCyg08-2) was discovered by K. Nishiyama and F. Kabashima at ∼ 7.7 mag on CCD images exposed on Apr 10.73 UT (see Nakano, 2008), and confirmed spectroscopically by Ayani and Matsumoto (2008). Immediately following the discovery, it was found that prior to the outburst NCyg08-2 was an X-ray source (Ibarra and Kuulkers, 2008; Ibarra et al., 2008; Ibarra et al., 2009), detected from the ROSAT survey era (1990/91) to three months before the outburst (a Swift observation for Jan 2, 2008). The only other nova to have been detected in the X-rays before the outburst was Nova Oph 1998 (=V2487 Oph, Hernanz and Sala, 2002). This contributed to trigger a tight X-ray monitoring of the outburst evolution, which results are described by Page et al., (2008, 2010); Osborne et al., (2008); Ness et al., (2008a,b); Kuulkers et al. (2008); Takei et al., (2009); Takei & Ness (2010). NOph08-2 displayed initially a hard X-ray spectrum originating from shocked gas, while a much brighter and softer X-ray spectrum emerged later. This super-soft X-ray emission, that originates from the protracted H-burning during the constant luminosity phase (Krautter, 2008), ended about 45 days past optical maximum (Hachisu and Kato, 2009; Page et al., 2010).

IR spectroscopic observations of NCyg08-2 have been briefly described by Lynch et al., (2008); Rudy et al., (2008); Ashok et al., (2008) and to a larger extent by Naik et al., (2009). They found a modest reddening, large expansion velocities remaining stable over time, slow spectral evolution and a classification as `He/N' nova following Williams (1992).

So far only preliminary descriptions of photometric and spectroscopic behavior in the optical have been published, and only in the form of telegrams/circulars. Tomov et al., (2008a,b) reported about the presence, on their low resolution prismatic spectra, of absorption components in Hβ and Hγ at large radial velocities,
ranging from -3500 to -6400 km/sec depending on the observing date and line.

In this paper we present a detailed study of NCyg08-2 at optical wavelengths, including a photo-ionization analysis of the ejecta and their chemical composition, based on our tight photometric and spectroscopic monitoring of the outburst, that extended from nova discovery well into its return to quiescence.

2. Observations

BVR_{CIC} photometry of NCyg08-2 has been obtained with several robotic, remotely controlled or manually operated telescopes of the ANS Collaboration. Technical details of this network of telescopes and their operational procedures are presented by Munari et al., (2010a). The network has been used already for detailed studies of some other recent novae (e.g. Munari et al., 2008a,b, 2010b).

All photometric measurements were carefully tied to the local BVR_{CIC} sequence calibrated by Henden and Munari (2008) against Landolt’s equatorial standards. The photometry is listed in Table 1 and the resulting light-curve is presented in Figure 1. In all, we obtained 66 independent BVR_{CIC} runs distributed over 53 different nights and spanning an interval of 830 days. The median value of the Poisson errors of the photometric points in Figure 1 is 0.005 mag in V, 0.008 in $B-V$, 0.006 in $V-R_C$, 0.004 in R_C-I_C and 0.006 in $V-I_C$. The mean r.m.s. of standard stars from the linear fit to color equations is 0.019 mag in V, 0.029 in $B-V$, 0.027 in $V-R_C$, 0.017 in R_C-I_C and 0.039 in $V-I_C$.

Spectroscopic observations of NCyg08-2 have been obtained with several telescopes: (i) the 3.5m TNG in La Palma (Canary Islands, Spain) and the high resolution spectrograph SARG, operated at a resolving power of 75 000, (ii) the 1.82m in Asiago equipped with the spectrograph/imager AFOSC with a 300 ln/mm grism and a 1720 ln/mm volume phase holographic grism, and (iii) the 0.6m telescope of the Schiaparelli observatory in Varese equipped with a multi mode spectrograph and various reflection gratings. A detailed journal of the spectroscopic observations is provided in Table 2. The spectroscopic data have been reduced and calibrated in IRAF using standard techniques involving correction for bias, dark and flat fields, and absolute fluxing using spectrophotometric standard stars observed along with the nova. The high accuracy of the absolute fluxes has been checked on all spectra by integrating the fluxes over the V and R_C bands (whose wavelength ranges are

![Figure 1: Light and color evolution of Nova Cyg 2008 N.2 from our CCD observations. The line around maximum brightness in the B band panel is taken from Figure 2. Photometry from Table 1, at epochs later than day +150, is not included.](image-url)
completely covered by our spectra) and comparing them with photometric data in Table 1. The differences never exceeded 0.1 mag for both photometric bands.

3. Photometric evolution

3.1. Rise, maximum brightness and early decline

The early photometric evolution (first 5 days) of NCyg08-2 is shown in greater detail in Figure 2. To draw it, we have used in addition to our photometry also literature data as indicated. Some of the literature data refer to unfiltered CCD observations calibrated against the red USNO-B magnitudes (rhomb symbols). They have been transformed into V magnitudes by applying a rigid shift of +0.68 mag as indicated by the comparison with nearly simultaneous true V band data in Figure 2. This is nicely confirmed by the photometry of Henden and Munari (2008) for 2005 field stars around NCyg08-2 that gives for them an average $V - R_C = +0.54 \pm 0.30$.

\[
V - R_C = +0.54 \pm 0.30 \times \Delta t - 0.058 \times (\Delta t)^2 + 0.003 \times (\Delta t)^3 \quad (2)
\]

\[
V - I_C = +1.22 \pm 0.055 \times \Delta t - 0.011 \times (\Delta t)^2 + 0.0001 \times (\Delta t)^3 \quad (3)
\]

where Δt is the time since maximum in the V band. These behaviors are normal for novae, for ex. similar to those displayed by the moderately slow FeII nova V2615 Oph (N Oph 2007, Munari et al., 2008a).

The heliocentric time t_o of maximum in the V band is well constrained in Figure 2 to be April 11.37, 2008 UT, with an uncertainty of 0.1 days. It will be used in this paper to count the elapsed time. The nova reached a maximum brightness of $V \sim 7.45$ and the decline time was $t_d = 4.8$ days, which corresponds to a classification as very fast nova according to Warner (1995).

The rise to maximum has been very fast too, with the last one magnitude jump completed in 0.6 days (cf Figure 2). The negative observation by Beize (2008), who found nothing down to a limiting magnitude of 14 at the position of the nova on April 8.83, implies that the last 6.5 mag of the rise to maximum have been covered in less than 2.5 days.

\[
B - V = +0.46 - 0.095 \times \Delta t + 0.009 \times (\Delta t)^2 \quad (1)
\]
respectively to \(\Delta M = \) magnitude 15 days past maximum are calibrated tools for our and other data as indicated.

3.2. Reddening

Our high resolution spectrum obtained with the 3.5m TNG telescope on day +14.9 provides a clean view of the absorption lines of interstellar NaI toward NCyg08-2. The profile of the NaI line at 5889.953 is presented in Figure 3. It shows several components associated to individual absorption clouds and/or spiral arms crossed by the line of sight to NCyg08-2. We have fitted them with sharp Gaussians, as common practice in high resolution spectroscopic studies of complex interstellar lines (eg Savage and Sembach, 1996; Welsh et al., 2010). The resulting individual Gaussians and the overall fit are overplotted to the observed spectrum in Figure 3, and their parameters are listed in Table 3. Five components are clearly present, with heliocentric velocities ranging from +4.1 to +49.4 km/s. Their equivalent widths have been transformed into the corresponding amounts of reddening using the calibration by Munari and Zwitter (1997). The total reddening affecting NCyg08-2 sums up to \(E_{B-V} = 0.24 \) for all normal novae have the same absolute magnitude 15 days past maximum set in before the nova had declined by two magnitudes in the \(V \) band. For the same reasons, \(E_{B-V} = 0.23 \) would bring Helton et al. (2008) distance in close agreement with the 14 kpc we derived.

van den Bergh and Younger (1987) derived a mean intrinsic color \((B-V)_0 = +0.23 \pm 0.06 \) for novae at maximum, and \((B-V)_0 = -0.02 \pm 0.04 \) for novae at \(t_2 \). For NCyg08-2, from Table 1 and Figure 2, it is \(B-V = +0.46 \) at maximum and \(B-V = +0.20 \) at \(t_2 \), which correspond respectively to \(E_{B-V} = 0.23 \) and \(E_{B-V} = 0.22 \).

The three estimates, corresponding to observing dates \(\Delta t = 0 \), +4.8 and +14.9 days, are in perfect agreement, and in the rest of this paper we will adopt \(E_{B-V} = 0.23 \pm 0.01 \) as the reddening affecting NCyg08-2.

3.3. Distance

The rate of decline from maximum and the observed magnitude 15 days past maximum are calibrated tools to estimate distances to novae.

Published relations between absolute magnitude and rate of decline generally take the form \(M_{\text{max}} = \alpha_M \log t_0 + \beta_M \). Cohen (1988) \(M_V - t^2 \) relation provides \(M_V = -9.06 \) for NCyg08-2. For \(E_{B-V} = 0.23 \) and a standard \(R_V = 3.1 \) extinction law, this corresponds to a distance of 14 kpc to NCyg08-2, and to a height above the galactic plane of \(z = 1.1 \) kpc. The shorter distance of 10.5 kpc preliminary derived by Helton et al. (2008), rests on the large \(E_{B-V} = 0.43 \) they adopted from Rudy et al. (2008). Using instead our more accurate value of \(E_{B-V} = 0.23 \) would bring Helton et al. (2008) distance in close agreement with the 14 kpc we derived.

The \(M_V - t^2 \) relations of Capaccioli et al. (1989) and Th. Schmidt-Kaler (cf Duerbeck, 1981) cannot be used with NCyg08-2 because the re-brightening toward 2nd maximum set in before the nova had declined by two whole magnitudes in the \(B \) band. For the same reasons, all relations involving \(t_3 \) are not applicable to NCyg08-2.

Buscombe and de Vaucouleurs (1955) suggested that all normal novae have the same absolute magnitude 15
days after maximum light. However, 15 days after maximum light corresponds to the time of 2nd maximum for NCyg08-2, and Buscombe and de Vaucouleurs’s relation is therefore not applicable.

The interstellar material causing most of the extinction is concentrated within 150–200 pc of the galactic plane. The line of sight to NCyg08-2 (at galactic coordinates $l=67.2$, $b=+4.4$ deg) emerges from it at about 2 kpc from the Sun, and it is approximately aligned with the Orion-Cygnus spiral arm. According to the Brand and Blitz (1993) maps, the mean heliocentric radial velocity of the interstellar material along the line of sight to NCyg08-2 increases up to ~30 km/sec at 2 kpc distance. This is the range of velocities observed for the stronger individual components of the interstellar NaID profile (Table 3).

The galactocentric distance of NCyg08-2 is $R=13$ kpc ($R^2 = R_{sun}^2 + d^2 - 2R_{sun}d\cos l$, where $d=14$ kpc is the distance Sun-nova and $R_{sun}=8.5$ kpc the galactocentric distance of the Sun). NCyg08-2 is therefore located in the external part of the Galaxy, at a significant height above the equatorial plane and in a low metallicity ambient.

Table 3: Heliocentric velocity, full width at half maximum, equivalent width and corresponding E_{B-V} for the individual components of the interstellar NaI 5889.953 Å line shown in Figure 3.

RV (km/s)	FWHM (km/s)	e.w. (Å)	E_{B-V}
+40.4	10	0.000	0.018
+34.8	10	0.252	0.089
+22.8	11	0.268	0.007
+13.4	5	0.055	0.015
+4.1	9	0.072	0.019
tot.			0.238

Figure 4: Light-curve, color evolution and flux evolution of the 2nd maximum. They are obtained as difference between the observed values and the underlying unperturbed decline, extrapolated from the photometric behaviour before and after the phase of the 2nd maximum. The flux in the top panel is reddening corrected and integrated over the the BVR_CI bands.

3.4. Second maximum and advanced decline

A relevant feature of the light-curve of NCyg08-2 is the re-brightening it displayed during early decline, two weeks past the principal maximum. To characterize some properties of this 2nd maximum, we have treated it as the emergence and then the disappearance of an additional source (hereafter AS) superimposed onto a normal and smooth underlying decline. Consequently, we have fitted (with a low degree polynomial) the light-curve of Figure 1 outside the re-brightening phase and then subtracted it to the light-curve itself. The resulting light-curve for AS (i.e. the photometric development of the 2nd maximum isolated from the rest) is presented in Figure 4.

The AS development appears symmetric in the rise
Figure 5: Spectroscopic evolution of Nova Cyg 2008-2. The spectra are offset for clarity by the indicated quantity. The ordinate scale is logarithmic to emphasize the visibility of weaker features. Figure 10 presents the spectral appearance of Nova Cyg 2008-2 at later epochs.

Figure 5: Spectroscopic evolution of Nova Cyg 2008-2. The spectra are offset for clarity by the indicated quantity. The ordinate scale is logarithmic to emphasize the visibility of weaker features. Figure 10 presents the spectral appearance of Nova Cyg 2008-2 at later epochs.

and decline branches and of a shape not much dissimilar from a Gaussian profile. It started on day +5.5, well before the nova could have decline by 3 mag from maximum. The peak brightness of AS occurred on day +14.5 (April 25.9), and AS ended by day +24 when the nova set back onto the normal exponential decline from maximum. At the time of peak AS brightness, NCyg08-2 became, with respect to the underlying unperturbed decline, brighter by $\Delta B = -1.5$ mag and bluer by $\Delta(B-V) = 0.02$, $\Delta(V-R_C) = -0.58$ and $\Delta(V-I_C) = -0.42$. At its peak brightness on day +14.5, the AS isolated from the rest would have shone at $V = 9.64$, $(B-V) = -0.02$, $(V-R_C) = 0.09$, $(V-I_C) = 0.18$, thus at an absolute magnitude $M_V = -6.83$. These colors, when corrected for the $E_{B-V} = 0.23$ reddening, are broadly consistent with those of a mid B-type star. Assuming that the bolometric correction for AS is the same of a B5-type supergiant photosphere ($B.C. = -1.0$ mag, Livingston 2000), the peak luminosity reached by AS was $1 \times 10^5 L_\odot$, or about 1/3 of the $3.5 \times 10^5 L_\odot$ of primary maximum. Integration over time of the luminosity radiated by AS provides a total of 2.5×10^{44} erg, an amount equivalent to the hydrogen burning of $2.7 \times 10^{-8} M_\odot$ of material of solar composition.

A second maximum has been rarely seen in novae, other two well known cases are V2362 Nova Cyg 2006 and V1493 Nova Aql 1999a, discussed in detail by Munari et al. (2008b). The time interval between principal and secondary maxima for these two novae have been 240 and 45 days, respectively. That seen in NCyg08-2 is therefore occurring much earlier (14.5 days) than in the other two known cases.

A generally accepted explanation for the secondary maxima is still missing. Pejcha (2009) suggested episodic fuel burnings, and Hachisu and Kato (2009) the release of additional energy associated with rotating magnetic fields. However, the lack of a periodic signal in their X-ray observations of NCyg08-2 argues, for Page et al. (2010), against the presence of a magnetic white dwarf in the system.

4. Spectral evolution

The spectral evolution of NCyg08-2 is presented in Figure 5. It covers the period from maximum optical brightness to advanced decline when the nova was well into the nebular stage (later evolutionary stages are covered in Figure 10). We also collected high resolution observations of the Hα emission line profile at four distinct epochs, and they are presented in Figure 6. These high resolution Hα will not be discussed in detail in this paper because they are merged into a larger dataset
by Ribeiro et al. (2010) that present a 3D morpho-
kine\-nematical model of NCyg08-2 ejecta.

NCyg08-2 displayed strong He and N lines since
maximum brightness, with negligible contribution by
FeII lines. Following Williams (1992), it thus belong
to the "He/N" class of novae. These novae tend to
be associated with a younger stellar population, evolve
faster, eject less material and harbor more massive white
dwarfs than the novae of the "FeII" type. The He/N
no-
vae lay closer to the galactic disk than the FeII variant
which display an older and more spheroidal spatial dis-
tribution, resembling that of the Bulge (e.g. della Valle
and Livio, 1998; Shafter, 2008 and references therein).
As a He/N nova, NCyg08-2 is unusually high above the
galactic plane, it laying at \(z=1.1\) kpc, much larger than
the scale height of \(\lesssim 100\) pc estimated by della Valle
and Livio (1998) for He/N novae. Other He/N novae high
above the Galactic plane were V477 Sct (\(=\)Nova Sct
2005 N2), located at \(z=0.6\) kpc (Munari et al., 2006), or
V2672 Oph (\(=\)Nova Oph 2009) at \(z=0.8\) kpc (Munari
et al. 2010c).

As typical for very fast novae, NCyg08-2 displayed
very broad emission lines and weak P-Cyg absorption
components. P-Cyg profiles were last detected on day
+11.6 on our spectra, and Table 4 summarizes their
properties. From Table 4, the average FWHM of emis-
sion components was 4420 km/sec and the average ve-
locity shift of the absorption components was
\(-4540\) km/sec, with however a significant dispersion among
different lines. This velocity is far larger than predicted
by McLaughlin (1960) relationships for mean velocities
of both principal and diffuse enhanced absorption spectra,
which predicts \(-1650\) and \(-2750\) km/sec, respectively. Tomov et al. (2008a,b) reported about a possible
P-Cyg absorption component in \(H\beta\) at \(-6400\) km/sec
on their low resolution, prismatic spectra for day +2.58,
and one at \(-5350\) km/sec in \(H\alpha\) for day +3.71. Our
larger resolution, very high S/N spectra for days +1.7
and +4.7 do not show these high velocity absorptions,
which could have been either spurious or very short
lived. The spectroscopic evolution of NCyg08-2 has
been directed toward increasing excitation conditions
along the decline from maximum, as normal for no-
vae. On our spectra, \(HeII\) 5412 and 4686 Å become
visible for the first time on day +21.6, when the nova
was \(\Delta B=3.6\) mag down from maximum.

The large optical thickness of \(H\alpha\) during the early
outburst phases and the 2\(^{nd}\) maximum is is illustrated
by the great intensity of OI 8446 Å in the spectra of
Figure 5. Its intensity under normal recombination, opti-
ically thin conditions should be 0.6 of the OI 7774 line,
which is instead far weaker on day +4.62 spectrum and

\[
\begin{array}{cccc}
\text{day:} & +1.7 & +4.7 & +11.6 \\
H\alpha & 6562.817 & \text{abs} & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & -4400 & -4590 & -4300 \\
\quad & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & 1.6 & 1.6 & 1.8 \\
H\beta & 4861.332 & \text{abs} & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & -3980 & -3940 & -3800 \\
\quad & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & 40 & 83 & 200 \\
H\gamma & 4340.468 & \text{abs} & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & -4040 & -4275 & -4845 \\
\quad & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & 4 & 4 & 5 \\
H\alpha & 4305.788 & \text{abs} & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & -4820 & -4865 & -4565 \\
\quad & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & 4 & 2 & 8 \\
NaI & 5892.938 & \text{abs} & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & -4620 & -4560 & -4565 \\
\quad & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & 0.2 & 0.2 & 0.2 \\
HeI & 5875.651 & \text{abs} & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & -4820 & -4865 & -4565 \\
\quad & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & 4 & 4 & 8 \\
NII & 5684.947 & \text{abs} & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & -4500 & -4565 & -4565 \\
\quad & \text{R V} & \text{\(\odot\)} & \text{E.W. (\AA)} \\
\quad & 5 & 5 & 8
\end{array}
\]

Figure 6: The evolution of the \(H\alpha\) of Nova Cyg 2008-2 on our high
resolution observations (see Table 2).
absent on day +21.6 spectrum. The inversion in intensity between the two OI lines is usually associated with fluorescence pumped by absorption of hydrogen Lyman-β photons, as first pointed out by Bowen (1947). For the Lyman-β fluorescence to be effective, the optical depth in Hα should be large, presumably owing to the population of the n = 2 level by trapped Lyman-α photons. The $F_{8446}/F_{H\alpha}$ flux ratio under optically thin, low ionization conditions and typical nova chemical abundances is quite low, $\sim 10^{-3}$ (Strittmatter et al. 1977). On days +4.62 and +21.6, the ratio $F_{8446}/F_{H\alpha}$ was 0.12 and 0.13, respectively.

On day +108 the nova was well into its nebular stage, and all lines of the spectrum in Figure 5 for that date were displaying a double peaked, saddle-like profile typical of an expanding shell or bipolar flow. Such a profile for the un-blended [OIII] 4363 Å and [NeIII] 3869 Å lines is presented in Figure 7, where the velocity separation of the two peaks is 4000 km/sec. It is worth to note that this velocity separation for the two peaks of the nebular emission line profiles is the same velocity separation of the shoulders in the Hα emission line profile observed close to optical maximum brightness (cf spectrum for day +1.74 in Figure 6).

As in most novae, also in NCyg08-2 Hβ evolved un-blended with other major lines during the whole pre-nebular phase. Figure 8 illustrates the time dependence of its integrated flux, and how it settled onto the dilution t^{-3} time scale as soon as the photometric re-brightening, connected to the 2nd maximum, was over. The same dilution t^{-3} time scale was reached, past 2nd maximum, also by the flux through the V-band as illustrated by the lower panel of Figure 8. Only at later times, the decline of the flux through the V-band started to deviate from the t^{-3} slope, because of the increasing contribution from the resumed accretion around the central star (see sect. 7) while the ejecta continued to fade away. Figure 8 also illustrates the evolution of the width of Hβ, plotted as the width at half of peak intensity (somewhat different from the FWHM of the Gaussian fitting to the actual profile). The evolution of the width has been characterized by two distinct slopes (plotted as dashed lines in the top panel of Figure 8), with the transition between the two occurring at the time of 2nd maximum. During the rise and decline from 2nd maximum, the width of Hβ (and the other lines as well) displayed a single expansion/contraction cycle (the solid line in the top panel of Figure 8), superimposed on the underlying trend.

The highest ionization line in the nebular spectrum of NCyg08-2 on day +108 was [FeX] 6375 Å. Its intensity is however too low to qualify that spectrum as a "coronal" one. Nevertheless the line is clearly present with a saddle-like profile. Its expansion velocity is ~ 1300 km/sec, lower than that of the other lines, suggesting an origin in the inner part of the expanding ejecta.
5. Photo-ionization analysis

A photo-ionization analysis of NCyg08-2 nebular spectrum for day +108 has been performed with the CLOUDY code, version c90 (Ferland et al., 1998), with the emission line fluxes given in Table 5. The geometry modeled by CLOUDY is that of a spherically symmetric shell, with radially variable density and filling factor. Given the emerging complexities of nova ejecta, in particular of the fast novae, with bipolar structures, equatorial belts, polar cups and jets, diffuse prolate structures etc. (see Ribeiro et al., 2009 for RS Oph; Woudt et al. 2009 for V445 Puppis; Munari et al., 2010c for V2672 Nova Oph 2009; Ribeiro et al., 2010 for V2491 Cyg) the spherical shell geometry adopted by CLOUDY may appear as an over-simplification. The parameters derived by CLOUDY should therefore regarded as first order approximations, useful to frame the overall picture in terms of energetics of the central star, nebula dimension, chemical composition, mass of the ejecta. This is the sense of the photo-ionization analysis carried out in this section.

We assumed a black body emission for the central star and modeled all lines in Table 5. The density profile of a shell, expanding as \(r = vt \), is \(\rho(r) \propto r^{-3} \) and we adopted it. This is supported by the results in Figure 8. We did not fix inner and outer radii for the ionized shell (\(r_{in} \) and \(r_{out} \)), and treated them as free parameters along with the covering factor \(\omega = \Omega/4\pi \) (which is the fraction of the 4\(\pi \) sr that is covered by gas, as viewed from the location of the central star). Only the abundances of chemical elements with observed lines were allowed to change, and all others were kept fixed to their solar value. The fluxes of the emission lines as resulting from the CLOUDY modeling are listed in Table 5 together with their observed values. The overall \(\chi^2 \) of the model is 43.7, or 18.0 if [OIII] 5007 is ignored. Table 6 summarizes the modeling results and Table 7 provides the chemical mass fractions.

The shell of ionized gas at day +108 appears to extend from \(r_{in} = 85 \) to \(r_{out} = 180 \) AU. Both the inner and outer radii are density boundaries (no neutral matter external to the shell). These radii correspond to expansion velocities of \(\sim 1350 \) and \(2900 \) km sec\(^{-1} \), respectively. The velocity at the inner radius nicely fits that observed for [FeX] (1300 km sec\(^{-1} \)), at the outer border the velocity observed for [NII] (2750 km sec\(^{-1} \)), and the mean value matches the \(\sim 2000 \) km sec\(^{-1} \) observed for [OIII] and [NeIII] lines (cf Figure 7).

The central ionizing source is found to have a radius \(R=0.006 \mathrm{R}_\odot \), a temperature \(T_{bol}=370000 \) K, and therefore a luminosity 650 \(L_\odot \) corresponding to \(M_{bol}=-2.3 \). Both the radius and the luminosity are smaller than expected during the constant-luminosity phase of fast novae (Starrfield, 1989; Krautter, 2008), indicating that by day +108 the stable H-burning at the surface of white dwarf was concluded. This is in agreement with evidences from X-ray observations that place the end of the stable H-burning phase of NCyg08-2 around day +42, according to Page et al., 2010, or day +50 following Hachisu and Kato, 2009.

\[M_{shell} = \frac{\omega}{X} \int_{r_{in}}^{r_{out}} 4\pi r^2 \rho(r) dr \]

This is very close to the range of ejected mass (from 2.0 to 1.5 \(10^{-3} \mathrm{M}_\odot \)) predicted by various authors (Polittano et al., 1995; Starrfield et al., 1998; Starrfield et al., 2008) for a WD mass of 1.25 \(\mathrm{M}_\odot \). Hachisu and
Table 6: Parameters of the CLOUDY model best fitting the de-reddened emission line ratio of Table 5. From top to bottom: temperature, radius and luminosity of the central black-body source; inner and outer radii of the emitting shell; hydrogen density; electronic density and temperature at the inner and outer radii; covering factor; and element abundances relative to solar.

Parameter	Value	Error	Value	Error
$\log T_{BB}^\text{in}$ (K)	5.57	0.22	ω	0.05
$\log T_{BB}^\text{out}$ (K)	6.63	0.60	H/H⊙	0.75
$\log L_{BB}$ (erg/sec)	36.40	0.75	He/He⊙	5.90
$\log r_\text{in}$ (cm)	15.11	0.59	N/N⊙	4.30
$\log r_\text{out}$ (cm)	15.43	0.38	O/O⊙	3.50
$\log \rho_\text{in}^\text{out}$ (cm$^{-3}$)	6.28	0.65	Ne/Ne⊙	0.60
$\log N_{\text{H}}^\text{in}$ (cm$^{-3}$)	6.36	0.75	Fe/Fe⊙	0.60
$\log T_e^\text{in}$ (K)	4.28			
$\log \rho_e^\text{out}$ (cm$^{-3}$)	5.32			
$\log N_e^\text{out}$ (cm$^{-3}$)	5.31			
$\log T_e^\text{out}$ (K)	4.07			

Kato (2009) estimated a mass of 1.3 M_\odot from fitting their models to the light-curve of NCyg08-2. This is in agreement with all physical models of nova explosion that predict the a mass of the white dwarf closer to the Chandrasekhar limit with decreasing speed classes t_2 and t_3 (Starfield, 1989).

The kinetic energy of the ejected shell is

$$E_{\text{kin}} = \frac{\omega}{X} \int_{r_\text{in}}^{r_\text{out}} 2\pi r^2 \rho_H(r) \left(\frac{r}{T} \right)^2 dr$$

$$E_{\text{kin}} = 5.6 \times 10^{44} \text{ergs}$$ \hspace{1cm} (5)

where the velocity of the ejecta is taken to be $v(r) = r/t_3$ which is consistent with an ejection over a short period of time around $t=0$.

The outburst had also to provide the energy to unbound the ejected material from the WD gravitational field. For a white dwarf of 1.3 M_\odot and $M_{\text{shell}}=1.6 \times 10^{-5} M_\odot$ ejecta, the binding energy is

$$E_{\text{bin}} = G \frac{M_{\text{WD}} M_{\text{ej}}}{R_{\text{WD}}}$$

$$E_{\text{bin}} = 6.0 \times 10^{45} \text{ergs}$$ \hspace{1cm} (6)

The mechanical energy released by the outburst ($E_{\text{bin}} + E_{\text{kin}}$) corresponds to the hydrogen burning of 7.0 10^{-7} M_\odot of accreted matter of solar composition, which is about 13% of the mass in the ejected shell.

5.2. Chemical abundances

The chemical mass fractions of NCyg08-2 given in Table 7 reflect the non-equilibrium CNO-cycle burning of hydrogen (see Gehrz et al., 1998; Hernanz, 2005), with overabundance of nitrogen and oxygen (no abundance for carbon was derived because the spectrum at day +108 does not display measurable lines of carbon ions, and none was expected to be visible given the prevailing excitation conditions). The abundance derived for iron, which is not produced by the TNR, corresponds to a metallicity for the accreted material of [Fe/H]=-0.25. The sub-solar value agrees with expected mean ambient metallicity for the Galactic disk ($-0.5 \lesssim [\text{Fe/H}] \lesssim -0.3$, Maciel and Costa, 2010) at the galactocentric distance (13 kpc) of NCyg08-2, and well within the local dispersion around the mean value.

There is a clear over-abundance of neon in the ejecta of NCyg08-2. This element is not produced during the nuclear runaway, but comes from mixing into the accreted envelope of material from the underlying massive white dwarf. In massive progenitors of white dwarfs, non-degenerate carbon ignition leads to the formation of a degenerate core mainly made of oxygen and neon. The minimum mass on the zero age main sequence leading to extensive carbon-burning is $M_\odot \sim 9.3 M_\odot$ and the resulting white dwarf will have a mass of $M_{\text{WD}} \geq 1.1 M_\odot$ (e.g. Gil-Pons et al., 2003). The observed over-abundance of neon thus confirms the evidences for a massive white dwarf in NCyg08-2 as inferred by the He/N classification, the rapid decline and small amount of ejected mass.

Hachisu and Kato (2009) fitted the light-curve of NCyg08-2 with one of their wind models characterized by the mass fractions $X=0.20$, $Y=0.48$, $Z=0.32$, $X(\text{CNO})=0.20$, $X(\text{Ne})=0.10$ and $X(\text{others})=0.02$ for the sum of all remaining metals. These mass fractions are not reconcilable with our results in Table 7. We tried to fit the observed spectra by adopting the mass fractions suggested by Hachisu and Kato (2009), but we were not able to achieve a satisfactory matching with observations.
6. The progenitor and the remnant

We have re-observed NCyg08-2 on 31 July 2009 and 21 July 2010 with the AFOSC spectrograph+imager mounted on the Asiago 1.82m telescope. These late visits at days $t=+477$ and $+831$ aimed to verify the identification of the progenitor and the remnant, if the nova had returned to quiescent brightness, and if accretion had resumed.

The identification and brightness of the progenitor of NCyg08-2 has been matter of discussion. IAUC 8934 listed various sources of measurement of the nova astrometric position, which differ by several arcsec, and reported conflicting identification with different USNO-B1.0 catalog stars. Jurdana-Sepic and Munari (2008) soon after the discovery of the nova examined historical plates from the Asiago Schmidt telescopes plate archive. Their measured the only star visible at the position of the nova and compatible with the available astrometric positions. They found this star stable over the period 1970-1986 around mean values $\langle V \rangle = 17.06$ and $B-V = +0.82$.

A serendipitous monitoring of the field of NCyg08-2 was carried out by Balman et al. (2008) from July to November 2007. They reported that the monitoring failed to reveal any source at the nova position brighter than the $R_C = 18.2$ mag limiting magnitude of their observations. Balman et al. do not specify what is the astrometric position they assumed for the nova. They linked their unfiltered CCD observations to the magnitude scale to USNO-B1 R_C of surrounding stars. By comparing with the Henden and Munari (2008) photometric sequence, no systematic offset larger than 0.1 mag is likely to affect USNO-B1 R_C values for the region of sky surrounding NCyg08-2.

Figure 9 compares our AFOSC I_C-band image from 31 July 2007 with the corresponding Palomar SDSS-II observation (obtained on 25 May 1989). The nova progenitor is barely perceptible on the SDSS-II image. On the AFOSC I_C-band image the nova and three nearby stars are identified, for which we have derived the following values: a star $V=15.40$, $B-V=+1.55$, $V-R_C=+0.84$, $V-I_C=+1.50$; b star $V=17.03$, $B-V=+0.83$, $V-R_C=+0.58$, $V-I_C=+1.15$, and c star $V=19.03$, $V-R_C=+0.74$ and $V-I_C=+1.44$.

The values for star b are identical to those found by Jurdana-Sepic and Munari (2008). This indicates that the star they assumed could be the progenitor is indeed the field star b in Figure 9. The true progenitor was too faint to be recorded by the Asiago Schmidt plates (limiting B magnitude typically between 18.0 and 18.5). The progenitor is catalogued as USNO-B1.0 1223-0482965 and it has no 2MASS counterpart. The USNO-B1.0 magnitudes appear unreliable for the stars in the immediate vicinity and for the progenitor itself, most probably an effect of the crowding in the field. For ex., contrary to evidence from direct inspection of the SDSS plates and results of CCD observations, the USNO-B1.0 catalogue gives the same $B = 16.2$ mag for both a and b stars, instead of respectively $B = 16.95$ and $B = 17.86$.

We have then estimated directly on Palomar SDSS-II images the brightness of the nova progenitor and found: $B = 18.3$, $R_C = 17.4$, $I_C = 16.9$ (uncertainties ± 0.2 mag).

On AFOSC images for 31 July 2009 the nova shined at $V = 17.44$, $R_C = 17.06$ and $I_C = 16.73$, and $V = 17.88$, $R_C = 17.49$ and $I_C = 17.14$ on 21 July 2010 (uncertainties ± 0.03 mag). Thus, at the time of the photometric and spectroscopic observations on days $+477$ and $+831$ the nova had returned to a brightness close to that of quiescence. Finally, it has to be noted that Balman et al. (2008) report that the progenitor was fainter than 18.2 in R_C band in 2007 is equivalent to say that it was fainter than star c in Figure 10. This was not the case at the time of the Palomar SDSS-II R_C image in Figure 9.

7. Resuming the accretion

The spectrum of NCyg08-2 on day $+477$, at a time when the nova had already returned close to quiescence brightness, is presented in Figure 10. It is characterized by a hot continuum and high excitation emission lines, with the intensity of HeII 4686 Å slightly larger than that of Hβ.

Two sets of lines are simultaneously present on the day $+477$ spectrum: (1) nebular lines from highly diluted, distant and expanding material, and (2) permitted lines from resumed accretion.

The first type of lines is exemplified by the saddle-like profiles of [OIII] 4959, 5007 Å lines. The in-
sert of Figure 10 illustrates the de-convolution of the [OIII] 4959, 5007 Å blend with two individual saddle-like profiles characterized by a velocity separation of 3050 km/sec of the two peaks. A similar de-convolution with a similar velocity separation works well for the [NII] 6548, 6584 Å blend, with in addition a single peaked Hα component superimposed. At the time of the nebular spectrum for day +108 in Figure 5, the velocity separation of the two peaks of the saddle-like profile of [OIII] lines was 4000 km/sec. Thus, in the intervening year, (i) the expansion of the ejecta has been either slowed down or (ii) the emission from [OIII], [NII] lines at day +477 came from more internal and therefore slower layers than [OIII], [NeIII] at day +108 in Figure 7. The first possibility requires a large deceleration of the ejecta and is not plausible. Supposing that (a) this occurred at a uniform rate in the time interval between day +108 and +477, and that (b) it involved the whole ejected shell, then the energy radiated by the associated shock front would have been \(1.7 \times 10^{44}\) erg for a mean luminosity of 5.5 \(10^{36}\) erg/sec \(\equiv 1400\) L\(_{\odot}\). Considering that the temperatures associated to shock fronts bring the peak of the emitted energy into the most energetic part of the electromagnetic spectrum, NCyg08-2 should have been a very bright and a very hard X-ray source during the time interval between day +108 and +477, contrary to evidence from the Swift observations by Page et al. (2010) that extend to day +236. The second possibility is instead in line with the fact that the emissivity of lines depend from electron density, which declines as \(r^{-3}\), thus faster in the outer ejecta that expand at higher velocities.

The second type of lines visible on the day +477 spectrum of Figure 10, which are characterized by a single-peaked and sharp profile, is composed by hydrogen Balmer series, HeI, HeII and NIII. These lines and the hot underlying continuum closely resemble those of cataclysmic variables, close matches being for example the spectra of BO Cet (Zwitter and Munari, 1995) or that of the old novae RR Pic (Williams and Ferguson, 1983) and HR Del (Munari et al., 1997). This close similarity with CV spectra supports the idea that accretion had already resumed at day +477 on NCyg08-2. The short time scale flickering of X-ray emission detected by Page et al. (2010) in NCyg08-2 at advanced evolutionary phase, when the hydrogen burning and super-soft phase was already over, is also supporting the fact that NCyg08-2 had resumed accretion at the time of our day +477 spectroscopic observation.

8. Acknowledgments

We would like to thank Andrea Frigo, Paolo Ochner, Flavio Castellani, Stefano Tomasoni and Valeria Luppi of the ANS Collaboration for their assistance in the acquisition and treatment of part of the data presented in this paper.

References

Ashok, N.M., Banerjee, D.P.K., Joshi, V. et al. 2008, CBET 1354
Ayani, K., Matsumoto, K. 2008, CBET 1334
Balman, S., Pekon, Y., Kiziloglu, U. 2008, ATel 1504
Beiza, J. 2008, IAUC 8934
Bowen, I. 1947, PASP 59, 196
Brand, J., Blitz, L. 1993, A&A 275, 67
Buscombe, W., de Vaucouleurs, G. 1955, Obs. 75, 170
Capaccioli, M., della Valle, M., d’Onofrio, M., Rosino, L. 1989, AJ 97, 1622
Cohen J.G. 1988, ASP Conf Ser 4, 114
della Valle, M., Livio, M. 1998, ApJ 506, 818
Duerbeck, H.W. 1981, PASP 93, 165
Ferland, G.J., Korista, K.T., Verner, D.A. et al. 1998, PASP 110, 761
Gehrz R. D., Truran J. W., Williams R. E., Starrfield S., 1998, PASP, 110, 3
Gil-Pons, P. et al. 2003, A&A 407, 1021
Hachisu, I., Kato, M. 2009, ApJ 694, L103
Helton, L.A., Woodward, C.E., Vanlandingham, K. et al. 2008, CBET 1379
Henden, A., Munari, U. 2008, IBVS 5834
Hernanz M., 2005, ASPC, 330, 265
Hernanz, M., Sala, G. 2002, Science 298, 393
Ibarra, A., Kuulkers, E. 2008, ATel 1473
Ibarra, A., Kuulkers, E., Beardmore, A. et al. 2008, ATel 1478
Ibarra, A., Kuulkers, E., Osborne, J.P. et al. 2009, A&A 497, L5
Jurdana-Sepic, R., Munari, U. 2008, IBVS 5839
Krautter, J. 2008, in Classical Novae, M.F. Bode and A. Evans eds., Cambridge Univ. Press, p. 232
Kuulkers, E., Ibarra, A., Page, K.L. et al. 2008, ATel 1480
Livingston, W.C. 2000, in Allen’s Astrophysical Quantities, 4th ed., A.N.Cox ed., Springer, pag. 339
Lynch, D.K., Russell, R.W., Rudy, R.J. et al. 2008, IAUC 8935
Maciel, W.J., Costa, R.D.D. 2010, in Chemical abundances in the Universe, IAU Cymph 265, K. Cunha et al. eds., in press (arXiv:0911.3763)
McLaughlin D.B. 1960, in Stellar Atmospheres, J.L. Greenstein ed., Univ. Chicago Press, page 585
Munari, U., Zwitter, T. 1997, A&A 318, 269
Munari, U., Zwitter, T. Bragaglia, A. 1997, A&AS 122, 495
Munari, U., Siviero, A., Navasardyan, H., Dallaporta, S. 2006, A&A 452, 567
Munari, U., Henden, A., Valentini, M. et al. 2008a, MNRAS 387, 344
Munari, U., Siviero, A., Henden, A. et al. 2008b, A&A 492, 145
Munari, U., Frigo, A., Siviero, A. 2010a, PASP, to be submitted
Munari, U., Henden, A., Valisa, P., Dallaporta, S., Righetti, G.L. 2010b, PASP 122, 898
Munari, U., Ribeiro V. A. R. M., Bode M., Saguner, T. 2010c, MNRAS, in press
Naik, S., Banerjee, D.P.K., Ashok, N.M. 2009, MNRAS 394, 1551
Nakano S. 2008, IAUC 8934
Ness, J.-U., Starrfield, S., Gonzalez, R. et al. 2008a, ATel 1561
Ness, J.-U., Starrfield, S., Gonzalez, R. et al. 2008b, ATel 1573
Osborne, J.P. Page, K.L., Evans, P.A. et al. 2008, ATel 1542
Page, K.L., Osborne, J.P., Evans, P.A. et al. 2008, ATel 1523
Page, K.L., Osborne, J.P., Evans, P.A., Wynns, G.A., Beardmore, A.P., Starling, R.L.C., Bode, M.F., Ibarra, A., Kuulkers, E., Ness, J.-U., Schwarz, G.J. 2010, MNRAS 401, 121
Pechta, O. 2009, ApJ 701, L119
Politano, M. Starrfield, S., Truran, J.W. et al. 1995, ApJ 448, 807
Ribeiro V. A. R. M., et al., 2009, ApJ, 703, 1955
Ribeiro V. A. R. M., Bode M., Munari U., et al., 2010, A&A to be submitted
Rudy, R.J., Lynch, D.K., Russell, R.W. et al. 2008, IAUC 8938
Savage B. D., Sembach K. R., 1996, ARA&A, 34, 279
Shafer, A.W. 2008, in Classical Novae, M.F. Bode and A. Evans eds., Cambridge Univ. Press, p. 335
Starrfield, S. 1989, in Classical Novae, M.F. Bode and A. Evans eds., Wiley, p. 39
Starrfield, S., Truran, J.W., Wiescher, M.C., Sparks, W.M. 1998, MNRAS 296, 502
Starrfield, S., Iliadis, C., Hix, W.R. 2008, in Classical Novae, M.F. Bode and A. Evans eds., Cambridge Univ. Press, p. 77
Strittmatter, P.A. et al. 1977, ApJ 216, 23
Takei, D., Tsujimoto, M., Kitanoto, S. et al. 2009, ApJ 697, L54
Takei, D., Ness, J.-U. 2010, AN 331, 183
Tomov, T., Mikolajewski, M., Ragan, E. et al. 2008a, ATel 1475
Tomov, T., Mikolajewski, M., Brozek, T. et al. 2008b, ATel 1485
van den Bergh, S., Younger, P.F. 1987, A&AS 70, 125
Warner, B. 1995, Cataclysmic Variable Stars, Cambridge University Press
Welsh, B.Y., Lallement, R., Vergely, J.-L., Raimond, S. 2010, A&A, in press (arXiv:0912.3040)
Williams, R.E., Ferguson, D.H. 1983, IAU Coll. 72, Cataclysmic Variables and Related Objects, M. Livio and G. Shaviv eds., p. 97
Williams R. E., 1992, AJ, 104, 725
Woudt, P.A., Steeghs, D., Karovska, M., Warner, B., Groot, P.J., Nelemans, G., Roelofs, G. H. A., Marsh, T. R., Nagayama, T., Smits, D.P., O’Brien, T. 2009, ApJ, 706, 738
Zwitter, T., Munari, U. 1995, A&AS 114, 575