Security of GPS/INS based On-road Location Tracking Systems

Sashank Narain*, Aanjhan Ranganathan† and Guevara Noubir‡
College of Computer and Information Science
Northeastern University, Boston, MA, USA
Email: *sashank@ccs.neu.edu, †aanjhan@northeastern.edu, ‡noubir@ccs.neu.edu

Abstract—Location information is critical to a wide-variety of navigation and tracking applications. Today, GPS is the de-facto outdoor localization system but has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing, and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination, and monitored by a INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We developed and evaluated algorithms that achieve such goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also designed, built, and demonstrated that the magnetometer can be actively spoofed using a combination of carefully controlled coils. We implemented and evaluated the impact of the attack using both real-world and simulated driving traces in more than 10 cities located around the world. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the true destination without being detected. We also show that it is possible for the adversary to reach almost 60–80% of possible points within the target region in some cities. Such results are only a lower-bound, as an adversary can adjust our parameters to spend more resources (e.g., time) on the target source/destination than we did for our performance evaluations of thousands of paths. We propose countermeasures which can severely limit an attackers ability without the need for any hardware modifications. For instance, our system can be used as the foundation for countering such attacks, both detecting and recommending paths that are difficult to spoof.

I. INTRODUCTION

The ability to track one’s location is important to a wide variety of safety- and security-critical applications. For example, logistics and supply chain management companies [1], [2], [3] that handle high-value commodities (e.g., currency notes) continuously monitor the locations of every vehicle in their fleet carrying valuable items to ensure their secure transportation to the intended destination. Emergency support services such as medical and law enforcement rely on location information to track their personnel, optimize response times and to even activate traffic signal lights appropriately. Law enforcement officials use ankle bracelets [4], [5] to monitor the location of defendants or parole and notify them if the offender strays outside an allowed area. Ride-hailing applications such as Uber and Lyft use location information for tracking, billing, and assigning drivers to trips. Furthermore, the locations of public transport [6], [7], [8] are continuously monitored to ensure smooth and timely operation of services. With the advent of autonomous vehicles and transport systems, the dependence on location information is only bound to increase. The majority of above applications rely on Global Positioning Systems (GPS) [9] which is the de facto outdoor localization system in use today. It is estimated that more than 8 billion GNSS devices [10] will be in use by the year 2020.

However, it has been widely demonstrated that GPS is vulnerable to signal spoofing attacks. One of the main reasons is the lack of any form of signal authentication. It is today possible to change the course of a ship [11], force a drone to land in an hostile area [12] or fake the current location in a road navigation system [13] by simply spoofing GPS signals. The increasing availability of low-cost radio hardware platforms make it feasible to execute such attacks with less than few hundred dollars worth of hardware equipment. There has been several evidences of jamming and spoofing reported in the media. For example, [14] quotes “Because the toll-taking for commercial trucks relies on GPS tracking, they can avoid paying through jamming. If a $45 device made your daily commute free, you too might be tempted to commit a federal crime.” Another report [15] mentions “Gary Bojczak admitted buying an illegal GPS jammer to thwart the tracking device in his company vehicle”. Several countermeasures have been proposed in the recent years either to detect or to mitigate signal spoofing attacks. Cryptographic mitigation techniques [16], [17], [18], [19] (e.g., military GPS systems where the spreading codes are secret) require changes to the satellite infrastructure. Furthermore their use requires distribution and management of shared secrets, which makes them impractical for majority of applications. Non-cryptographic countermeasures [20], [21], [22], [23], [24], [25], [26] rely on identifying anomalies in the physical characteristics of the received GPS signal. These techniques are either unreliable (e.g., large number of false alarms), effective only against

1Global Navigation Satellite Systems (GNSS) is an umbrella term for satellite based localization systems such as GPS, Galileo, Glonass etc.
naive attackers or require modifications to the GPS receiver itself. Alternate localization technologies using WiFi or cellular networks lack the accuracy and coverage required for the above-mentioned applications. Moreover, they consume significant amount of power and are susceptible to external signal and environmental interference.

Inertial navigation i.e., the use of sensors such as accelerometer, gyroscope and compass to navigate during temporary GPS outages have been around for decades, specifically in aircrafts, spacecrafts and military vehicles. The advancements in sensor manufacturing technologies have resulted in widespread integration of these sensors into many commonly used devices such as smart phones, tablets, fitness trackers and other wearables. Many vehicle tracking and automotive navigation systems have integrated GPS with inertial measurement units to improve localization and tracking of individual vehicles. Inertial sensors are key to the balancing and navigation technologies present in modern seagways. Low-cost inertial sensors have also proliferated into the consumer drone industry today. One of the key advantages of inertial navigation is its robustness and resilience to any form of wireless signal spoofing and jamming attacks as there is no need for the sensors to communicate or receive information from any external entity such as satellites or other terrestrial transponders. This makes them very attractive for use in security- and safety-critical localization and tracking applications where GPS (or any wireless) spoofing and jamming attacks are a concern. The main drawback of inertial navigation units is the accumulating error of the sensor measurements. These accumulated sensor measurement errors affect the estimated position and velocity over a longer duration of time and hence limit the maximum period an inertial unit can act independently. This affects aerial and maritime navigation capabilities significantly as the tracked vehicle has all the six degrees of freedom to move. However, in the context of road navigation, the vehicle is limited by the road network and can only navigate within the constraints of these existing roadways. These inherent constraints imposed by the road networks have made low-cost inertial sensors very valuable for quick attack detection and immediate tracking of cheating entities.

In this work, we evaluate the security guarantees of GPS/INS based on-road location tracking systems. Specifically, we address the following research questions: Given a geographic area’s road network and assuming that both GPS and inertial sensor data are continuously monitored for tracking an entity’s location, is it possible for an attacker to fake its navigation path or final destination? If yes, what are the attacker’s constraints and possibilities? Can we exploit the physical motion constraints that exist in an urban road network and design a secure navigation algorithm that generates travel routes that are hard to spoof? For example, can a driver of a vehicle carrying high-value commodities (e.g., currency notes) spoof his assigned route and deviate without being detected by the monitoring center? Can a parole with GPS/INS ankle monitor spoof his location and travel routes without causing any discrepancies in the estimates computed by both GPS and inertial sensors?

Specifically, we make the following contributions in this paper. First, we demonstrate that GPS/INS based on-road location tracking and navigation has severe limitations. We develop algorithms and a system that show it is indeed possible for an attacker to hijack vehicles far away from the intended destination or take an alternate route without triggering any alarms even though the GPS location as well as inertial sensors are continuously monitored. We leverage the regular patterns that exist in urban road networks and create a suite of algorithms which we refer to as ESCAPE that automatically suggests potential routes to spoof given a start point s, and end point d. The paths are generated to be highly plausible to travel from s to d, yet easy to spoof at the INS sensors levels. Spoofing means that the adversary will travel on an alternate path indistinguishable from the spoofed path. Our ESCAPE suite of algorithms provides possible escape routes an attacker can take without being detected while spoofing. It incorporates intersections turn angles, roads curvatures, and magnetometer bearing. We evaluated our attack’s feasibility and impact in 10 major cities across the globe and the results show that an attacker can potentially take the vehicle as far as 30 km before the monitoring system can detect a potential attack. Note that even after detection, the tracking system has no knowledge of the true location. To the best of our knowledge this is the first demonstration of the security vulnerabilities that exist in GPS/INS based location verification and tracking systems. Our attack affects several services and applications with effective monetary value running into several millions of dollars. Our attacks essentially renders the gyroscope and accelerometer useless by generating paths acceptable to the monitoring system, but have a signature indistinguishable from the trajectory effectively traveled by the adversary. For the magnetometer, a sensor that can play a critical role in detecting the incongruence of the claimed trajectory with the measured heading, we built and demonstrated the effectiveness of a magnetometer-spoofing device that physically generate a magnetic field compatible with the spoofed trajectory. Finally, based on the observations, we turn around our ESCAPE suite of attack algorithms to build a countermeasure that the tracking services can run to mitigate such spoofing attacks. Specifically, we modified ESCAPE to output secure navigation routes that can be assigned given a start and end points that severely limits the attacker’s possibilities.

II. BACKGROUND

A. Overview of GPS

GPS is today the de-facto outdoor localization system used. GPS is a satellite-based global navigation system that consists of more than 24 satellites orbiting the earth at more than 20,000 km above the ground. Each satellite is equipped with high-precision atomic clocks and hence the timing information available from the satellites are in near-perfect synchronization. Each satellite transmits messages referred to as the navigation messages that are spread using pseudorandom
codes unique to that satellite. The GPS receiver on the ground receives these navigation messages and estimates their time of arrival. Based on the time of transmission contained within the navigation message and its time of arrival, the receiver computes its distance to each of the visible satellites. Once the receiver acquires the navigation messages from at least four satellites, the GPS receiver estimates its own location and precise time using the standard technique of multilateration.

B. GPS Spoofing Attacks

Civilian GPS is easily vulnerable to signal spoofing attacks due to the lack of any signal authentication and the publicly known spreading codes for each satellite, modulation schemes, and data structure. A GPS signal spoofing attack is a physical-layer attack in which an attacker transmits specially crafted radio signals that are identical to authentic satellite signals. In a signal spoofing attack, the objective of an attacker may be to force a target receiver to (i) compute a false geographic location, (ii) compute a false time or (iii) disrupt the receiver by transmitting unexpected data. Due to the low power of the legitimate satellite signal at the receiver, the attacker’s spoofing signals can trivially overshadow the authentic signals. During a spoofing attack, the GPS receiver locks onto (acquires and tracks) the stronger signal i.e., the attacker’s signals, ignoring the legitimate satellite signals. This results in the receiver computing a false position, velocity and time based on the spoofing signals. Today, with the increasing availability of low-cost radio hardware platforms [42], [43] and open source GPS signal generation software [44], it is feasible to execute GPS spoofing attacks with less than $100 of hardware equipment. GPS signal generators can be programmed to transmit radio frequency signals corresponding to either a static position (e.g., latitude, longitude and elevation) or simulate entire motion trajectory. For example, an attacker can spoof the navigation route of a vehicle carrying high-value items and hijack it to any arbitrary location without raising any alarms. The operators of ride hailing services can fake the route taken by a vehicle and tracked using low-cost inertial sensors. The green path is the estimated trajectory in case of aerial navigation.

Fig. 1: The constraints imposed by the road networks lead to better accuracy in tracking road applications. The blue path is the actual and estimated route taken by a vehicle and tracked using low-cost inertial sensors. The green path is the estimated trajectory in case of aerial navigation.

One of the main drawbacks of low-cost inertial sensors (e.g., MEMS [45]) is that the process of dead-reckoning in general, results in a build-up of errors over the course of the measurement. Since the position, velocity, and attitude updates are products of single or double integration of raw inertial sensor readings, the errors propagate and affect the final position, velocity and attitude estimates. For example, due to the single integration performed on angular rate measurements, a constant gyroscope bias will produce a linearly growing angular error, the gyro noise will produce a ‘random walk’ growing with the square root of time. The double integration required to transform the accelerometer output to position produces a quadratically growing position error and a second-order ‘random walk’, for a constant accelerometer bias and white noise respectively. In numerical terms, a $25 \mu m^2/s^2$ accelerometer bias ($\approx 245 \mu g$) of a navigation grade sensor would produce a $1.59 km$ position error in one hour. The

Existing navigation and tracking infrastructure without the need for any hardware or software modifications to the GPS receiver.

Inertial navigation is the process of integrating the readings of select sensors such as accelerometers, gyroscopes, and magnetometer into a complete three-dimensional position, velocity, and orientation solution. Inertial navigation systems are classified as dead-reckoning, since the estimation process is iterative and uses prior information i.e., calculating from some previously known navigation solution. Accelerometers measure both gravitational and non-gravitational acceleration along each of the three axes. The gyroscopes measure the rate at which an object is rotating, and are used to compute the attitude and heading of the object. The gyroscope measurements aid the accelerometer in figuring out the orientation of the object. Typically, sets of three accelerometers and three gyroscopes, both orthogonally aligned, are usually combined into a single inertial measurement unit (IMU), which commonly contains additional analog and digital circuitry, including conversion and calibration components. As the name implies, the magnetometer measures the magnetic fields and thus determine the cardinal direction to which the object is pointing.

One of the main advantages of inertial sensors is that the process of dead-reckoning in general, results in a build-up of errors over the course of the measurement. Since the position, velocity, and attitude updates are products of single or double integration of raw inertial sensor readings, the errors propagate and affect the final position, velocity and attitude estimates. For example, due to the single integration performed on angular rate measurements, a constant gyroscope bias will produce a linearly growing angular error, the gyro noise will produce a ‘random walk’ growing with the square root of time. The double integration required to transform the accelerometer output to position produces a quadratically growing position error and a second-order ‘random walk’, for a constant accelerometer bias and white noise respectively. In numerical terms, a $25 \mu m^2/s^2$ accelerometer bias ($\approx 245 \mu g$) of a navigation grade sensor would produce a $1.59 km$ position error in one hour. The
aggravation of sensor errors becomes critical to aviation and maritime applications as the vehicle have more degrees of freedom to move. However, on road, the vehicles are limited
by the available road networks and are therefore severely constrained in their possible trajectories. Figure 1 illustrates how the bias errors affect the final position estimates in a road navigation scenario (with motion constraints) and aerial (without any motion constraints). These constraints imposed inherently by the road networks has led to the emergence of using inertial sensors to complement GPS navigation and tracking solutions. Moreover, the inertial sensors are largely immune to jamming which makes them invaluable to the safety and security-critical applications described previously.

In this paper, we focus on the security of such on-road systems that rely on both GPS and inertial sensor measurements for navigation and tracking. We begin with demonstrating how an attacker can fake his navigation route even if both the GPS and the inertial sensors are continuously monitored in the next section.

III. SPOOFING INS-AIDED LOCALIZATION SYSTEMS

In this section, we demonstrate spoofing attacks on road navigation and tracking applications that rely on both GPS and the inertial sensors for the localization. To the best of our knowledge, this is the first demonstration of spoofing attacks on GPS/INS localization systems. First, we describe the system and attacker model. Then, we give a high-level overview of the proposed spoofing attack algorithms and define relevant terminologies. Finally, we describe in detail the working of our attack algorithms.

A. System and Attacker Model

In this work, we focus on localization and tracking systems that rely on both GPS and INS measurements to navigate and track entities. As described previously, such GPS/INS systems are gaining popularity in road navigation and tracking applications due to the improved accuracy, availability and resilience to signal jamming/spoofing attacks. Our attack is independent of how the GPS/INS system is deployed i.e., it can either be an app on a trusted smartphone or a specialized tracking device (e.g., ankle monitors) installed on the entity of interest. The main objective of the monitoring system is to keep track of the location and navigation routes of the entities. We assume an attacker capable of generating and transmitting fake GPS signals corresponding to any location or navigation route of his choice using tools such as GPS-SDR-SIM [44]. The goal of the attacker is to spoof his location and navigation trajectory without being detected. For example, the attacker can try to deviate from an assigned navigation route and reach as far away as possible from the intended destination before an anomaly is detected and an alarm raised. At that moment, the adversary’s location remains undetermined. Alternately, the attacker starts and ends at the intended locations, however using a different route than the one being reported to the monitoring station. We assume that the attacker has full physical access to the entity being tracked and is aware of the GPS/INS system deployed for monitoring. However, we assume that the tracking device itself is tamper-proof. For example, the attacker can be a driver of a cargo company (or a hijacker) who has full access to the vehicle. He regularly drives this vehicle to transport high-value goods, and is aware of the GPS and INS based tracking system employed by the company. However, he cannot modify the software on the smartphone or physically tamper the tracking device.

B. Overview of the Attack

The primary objective of the attacker is to fake the reported navigation route without raising suspicion of any mischief. Note that simply spoofing GPS signals is not sufficient as the INS measurements will indicate discrepancies between the reported GPS location and the inertial estimates. In order to successfully execute the attack, it is now necessary for the attacker to identify and spoof navigation paths that have similar distances, road curvature, and turn angles to minimize the discrepancies between the INS and GPS estimates. Our system, which we refer to as ESCAPE, exploits the regular patterns that exist in many cities’ road networks and identifies navigation paths that are similar to the route that is reported to the monitoring center. As a result, the inconsistencies between the INS and GPS estimates are negligible and the attack is successfully executed.

The attack begins with the attacker providing the start and end points of the assigned trip to ESCAPE. Then, ESCAPE computes two sets of paths: (i) spoofed paths and (ii) escape paths. The spoofed paths are a set of paths that exist between the input start and end points of the trip. These are the paths that the attacker will generate fake GPS signals and spoof...
the receiver to report to the monitoring center. These should be plausible paths for the source and destination locations, and not raise suspicion. For every spoofed path, ESCAPE computes a set of escape paths which the attacker can use to deviate from the intended course while executing the spoofing attack. In other words, a spoofed path is the route that is reported to the monitoring center and the escape path is the true route taken by the attacker to reach an alternate destination. The attacker then picks an escape path that enables him to reach his intended location. The intended location can either be a point far away from the assigned destination (to buy the adversary some time) or just a diversion before reaching the assigned destination. The selected escape path corresponds to a spoofed path which the attacker can use to generate spoofing signals. Figure 2 illustrates an example of a spoofed path which the attacker can use to deviate from the intended course while executing the spoofing attack. In the next section, we present the inner working of our ESCAPE attack system.

C. Internals of ESCAPE

ESCAPE consists of three main building blocks: (i) graph constructor, ii) spoofed paths generator and (iii) escape paths generator. The graph constructor generates directed graphs based on the road network present in the geographic area of interest. Our attack does not enforce any limits on the geographic area. As the name suggests, the spoofed and escape paths generator blocks are responsible for computing and identifying spoofed and escape paths for the attacker.

1) Graph Constructor: The paths for a geographic area are generated from a directed graph \(G = (V, E) \). We chose OpenStreetMap [46] as the map provider because it contains accurate road information for all major cities of the world along with various meta-data such as types of roads and buildings. Each geographic area can be represented as \(G = (A, C, \theta, \vartheta) \), where \(A \) is a set of atomic sections and \(C = \{ \chi = (s, s') | s, s' \in A \} \) is a set of connections where \(\chi \) indicates a connection between two atomic sections \(s \) and \(s' \). We define an atomic section as a section of road between two intersections, such that it preserves the road’s curvature but does not contain turns or sharp curves. A connection becomes an intersection on the road that connects two atomic sections. Note that these connections may extend the same road or may turn into another road. The turn angle associated with a connection \(\chi \) is given by the function \(\theta(\chi) \) and the atomic section’s curvature is given by the function \(\vartheta(\chi) \) as defined in Equation 1. In this graph construction, we represent each atomic section \(s \) by a vertex \(v \in V \) and each connection \(\chi \) by an edge \(e \in E \). Figure 3 shows an example road network and the corresponding graph construction. A default speed limit is assigned to each atomic section based on the road type in OpenStreetMap. For example, a ‘motorway’ symbolizes interstates in the USA that have speed limits \(\approx 65 \text{mph} \). The length, speed limit, and geographic coordinates of the atomic section \(s \) are stored as attributes of the corresponding vertex \(v \). The length and speed limit are used to calculate the fastest time of travel between the end points. It is important to note that this is a one time initialization step for every geographic area.

2) Spoofed Paths Generator: Recall that the spoofed paths generator searches and compiles possible paths between the source and destination points assigned to a specific trip. We define spoofed paths as follows. The spoofed paths are a set
of N routes $S = \{S_1, \ldots, S_N\}$ such that S_i has a higher likelihood of spoofing than S_j, where $i < j$ and $S_i, S_j \in S$. Each route S_i contains a list of geographic coordinates starting and ending at the input source and destination. Given the geographic area of the attacker, the algorithm generates paths that maximize the probability of finding similar road curvature and turn angles in other sections of the area. Therefore, it maximizes the number of escape paths. It leverages the fact that urban areas have regular patterns where most roads typically run straight and turn angles are at right angles. This is achieved by implementing a scoring scheme that ranks paths containing such regular patterns higher than other non-regular paths between the same source and destination. Figure 4 shows the curvature and turn angle distribution for Manhattan and provides an intuition for our approach. Here we see that most turn angles are 90° which implies that a path with all $\approx 90^\circ$ turns, the probability of finding another path with similar turn angles (i.e., all $\approx 90^\circ$) will be high.

The idea underlying the spoofed paths generator is to find paths that contain attributes likely to be found in other sections of the geographic area. When such paths are found, they increase the likelihood of finding similar paths to other destinations in the geographic area. To this extent, we implement a scoring scheme that analyses the road curvature and turn angles of the geographic area and maximizes the score of paths that contain curvature and turns having a higher probability of occurrence. The path search algorithm is implemented as a modified Depth First Search (DFS) algorithm. A typical DFS implementation typically runs straight and turn angles are at right angles. This is typical of Manhattan and other cities synonymous with grid-like road structures. To use this information for scoring, a probability distribution table is precomputed for the area. This table can be represented as $P(\theta) = \{P(c,t) | c \in \theta, t \in \theta\}$, where each entry is the probability of occurrence of a specific curvature and turn combination (rounded to the nearest integer).

A path on the graph with M vertices can be represented using each vertex’s curvature and the next edge’s turn angle, i.e., $p = [(c_1, t_1), \ldots, (c_{M-1}, t_{M-1}), (c_M, 0)]$, where $c_i \in \theta$ and $t_i \in \theta$. In the beginning, the path is initialized to a score of 1. For each vertex s and edge $\chi = (s, s')$ added to the path, the probability $P(\vartheta(s), \theta(\chi'))$ is obtained from the table $P(\vartheta)$. Note that, owing to the algorithm construction, all connecting edges have equal probability of occurrence and are

 solving for the area.

The spoofed paths generator algorithm (Algorithm 1) takes the attacker’s source s and destination d vertices as parameters to recursively compute the output paths (lines 2 – 4), and filters the set of visited vertices v to backtrack and proceed with the depth-first search (lines 17 – 18).

Scoring: Recall that all the vertices of the graph $G = (V, E)$ are atomic sections, and the edges connect two atomic sections (c.f. Section III-C1). The turn angle of an edge $\chi = (s, s')$, where $(s, s') \in E$, is given by the function $\theta(\chi)$ and the curvature of an atomic section s is given by the function $\vartheta(s)$. This curvature $\vartheta(s)$ can be computed from the geographic coordinates of the atomic section. Let $B = \{B_1, \ldots, B_N\}$ denote the set of bearings computed from N geographic coordinates. Let B_0 be the bearing of an imaginary line connecting the first and last geographic coordinates of this atomic section. The curvature $\vartheta(s)$ of this atomic section is calculated as the normalized absolute difference of all bearings in B from the reference bearing B_0, i.e.,

$$\vartheta(s) = \frac{\sum_{i=1}^{N} |B_i - B_0|}{N}.$$ (1)

The set of all road curvatures $\vartheta = \{\vartheta(s') | \forall s' \in V\}$ and turn angles $\theta = \{\theta(\chi') | \forall \chi' \in E\}$ represents the road structure of the geographic area. Figure 4 shows these attributes for Manhattan. Note that most of the calculated curvature values are 0° and most turn angles are at 90°. This is typical of Manhattan and other cities synonymous with grid-like road structures. To use this information for scoring, a probability distribution table is precomputed for the area. This table can be represented as $P(\vartheta) = \{P(c,t) | c \in \vartheta, t \in \theta\}$, where each entry is the probability of occurrence of a specific curvature and turn combination (rounded to the nearest integer).
Filtering: The algorithm is designed to generate all paths between the input source and destination. For a large graph, the number of possibilities can be in the order of billions making this search very inefficient. To scale the computation, the algorithm uses the following filters to speed-up the search of plausible paths, while enabling ranking. Given the current path p, source s, edge e and destination d, the algorithm filters the edge when the path’s distance summed with the euclidean distance between the edge and destination exceeds a maximum allowed distance, i.e., $d(p) + d(c,d) > F * d(P_I)$ where $d(.)$ denotes the distance of a path and P_I denotes the shortest time path between the source and destination. For this work, we set $F = 1.2$ to only allow paths that are similar in distance to the computed shortest path. The algorithm also maintains the best N paths at all times, and any new path p' having a worse score is filtered. For our evaluation, we chose $N = 100$ in order to determine the attack efficiency in many cities for many paths (the algorithm runs in around 1 minute for each source/destination pair). However, a determined attacker with sufficient resources can easily use a larger N to increase the count of spoofed paths. Furthermore, the adversary will only be interested in a single source/destination pair of locations on each instance of the attack, and can therefore take more time to derive the largest set possible of spoofed and escape paths. The shortest path P_I is also bounded by a rectangle (with added padding of $m = 1000$ meters) such that all edges outside the rectangle become out of scope. Note that the above algorithm parameters are tunable and set to conservative values in this work. We believe that the attack performance can substantially improve when these parameters are tuned more aggressively, e.g., setting $F = 1.5$ and $N = 1000$ (large values of N are very reasonable when focusing on a single source/destination).

3) Escape Paths Generator: The idea behind the escape paths generator is to find all the paths an attacker can travel to reach different destinations without raising any alarms. An important consideration for this algorithm is that all computed paths must have similar accelerometer and gyroscope patterns to the spoofed paths, to avoid detection by GPS/INS tracking systems. We formally define escape paths as follows. The escape paths corresponding to a spoofed path S_i are a set of M routes $E_i = \{E_{i1}, \ldots, E_{iM}\}$ such that $E_{ij} \neq S_i$, but semantically similar to S_i, for any $E_{ij} \in E_i$. The paths are semantically similar when they have similar distances, road curvature and turn angles. These paths start at the input source, however, end at different destinations from the intended destination.

Given a spoofed path, the escape paths algorithm (Algorithm 2) generates a set of escape paths with similar distances, road curvatures and turn angles to the spoofed path. The algorithm is similar to that of the spoofed paths generator. The main differences being that the algorithm uses each spoofed path S_i generated in the previous stage as input, where $S_i \in S$, and outputs a set of escape paths E. Furthermore, the escape paths generator algorithm uses the count of turns in the spoofed path as a parameter to GenerateEscapePaths (lines 3 – 4) and checks whether the desired count of turns has been reached for the escape path under consideration (lines 10 – 12).

The deviations from the spoofed paths (to avoid INS detection) can be determined by analyzing the noise sensitivity of the inertial sensors used for tracking. We demonstrate that commodity accelerometers and gyroscopes present challenges in accurately calculating the distances, road curvature and turn angles which can allow an attacker to travel to multiple destinations without detection. We also show that magnetometers can be easily spoofed rendering them incapable of detecting anomalies in the heading direction of the vehicle. Our analysis of the accelerometer and gyroscope noise and the potential of magnetometer spoofing are reported in Section IV-A. Unlike the spoofed paths generator algorithm that ranked paths by score, the escape paths computed by this algorithm always have a score of 1. The intuition is that all paths that pass the algorithm’s filters are certain to avoid detection by INS.
Filtering: In this algorithm, we represent the input spoofed path by $S_I = \{(d_I, \vartheta_I, \theta_I)\}$ where d_I and ϑ_I denote the set of distances and road curvatures between intersections and θ_I denotes the turn angles at the intersections. We first present the idea of filtering using just turn angles ϑ_I, and later expand the discussion to include distances d_I and road curvatures ϑ_I. Let $\vartheta_I = \{\theta(\chi_1), \ldots, \theta(\chi_K)\}$ be the derived turn angles of the spoofed path, where K is the number of intersections. A turning connection $\chi' = (s, e)$ in the escape path, where $(s, e) \in E$, is valid for an intersection $k \in K$ when the turn angle difference is below a set threshold value T_θ, i.e., $|\theta(\chi) - \theta(\chi')| \leq T_\theta$. The parameter T_θ depends on the noise sensitivity of the gyroscope sensor.

The filter for distances d_I is similar to turn angles. Let $d_I = \{d_1, \ldots, d_{K+1}\}$ be the derived distances of the spoofed path traveled between K intersections. For an intersection $k \in K$, d_k represents the path’s distance from the previous intersection $k - 1$, i.e., $d_k = d(k) - d(k - 1)$ where $d(\cdot)$ denotes the total distance of the spoofed path at a given intersection. Note that $k = 0$ is the source of the path and $k + 1$ is the destination of the path. A connection χ' in the escape path is valid for intersection k when its path distance from previous intersection $k - 1$ is between a range defined by the k^{th} intersection of the spoofed path, i.e., $d_k * T_{d1} \leq d'(k) - d'(k - 1) \leq d_k * T_{d2}$. Here, $d'(\cdot)$ denotes the distance of the escape path at an intersection. The above parameters T_{d1} and T_{d2} depend on the noise sensitivity of the accelerometer sensor.

The filter for road curvature ϑ_I is more complex than turn angles and distances. The reason is that, given an intersection $k \in K$, the distance d_k and turn angle $\theta(\chi_k)$ are scalars while $\vartheta(\chi_k)$ is a vector that must be derived from bearings of the road segment s_k between intersections $k - 1$ and k. Two different vectors of bearings B_k and B'_1 for road segments s_k and s', respectively, cannot be compared directly as they may be of different lengths and in different orientations, e.g., B_k may be directed north when B'_1 is directed east. Our idea of calculating the road curvature similarity, denoted by $C(s_k, s')$, is to translate these bearings to the same size N using linear interpolation, convert the interpolated bearings to curvature, and then compare the curvatures. Let B_{1k} and $B'_{1'}$ represent the interpolated bearings for B_k and B'_1, respectively. The curvature of a road segment s with M bearings $B = [b_1, \ldots, b_M]$ can be derived by subtracting the first bearing b_1 from all the bearings in B, i.e., $\vartheta(s) = [(b_1 - b_1), \ldots, (b_M - b_1)]$. Let $\vartheta(s_k)$ and $\vartheta(s')$ be the curvatures derived from B_{1k} and $B'_{1'}$, respectively. The curvature similarity of the two segments can then be represented as:

$$C(s_k, s') = \{|c_k - c'| \ \forall c_k \in \vartheta(s_k), \forall c' \in \vartheta(s')\}. \quad (3)$$

A connection χ' in the escape path is valid for intersection k when the maximum curvature similarity value is below a set threshold value T_θ, i.e., $max(C(s_k, s')) \leq T_\theta$. Like turn filtering, this parameter T_θ also depends on the gyroscope noise sensitivity.

To avoid detection, the above discussed constraints must hold for all K intersections of the escape path. Therefore, a escape path is considered valid if and only if all the following conditions are met.

$$|\theta(\chi_k) - \theta(\chi')| \leq T_\theta, \quad \forall k = 1, \ldots, K$$
$$d_k * T_{d1} \leq d'(k) - d'(k - 1) \leq d_k * T_{d2}, \quad \forall k = 1, \ldots, K + 1$$
$$max(C(s_k, s')) \leq T_\theta, \quad \forall k = 1, \ldots, K + 1$$

IV. ATTACK IMPACT: IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of our attack and evaluate evaluate its effectiveness in various cities across the globe. First, we evaluate the accuracy of inertial sensors and derive realistic noise threshold settings for ESCAPE algorithm. Then, we describe the details of our experimental setup and the methodology. Finally, we present the results of our evaluation using two metrics, (i) displacement from the assigned destination and (ii) coverage area of the escape paths.

A. Accuracy of Inertial Sensors

The sensor data for evaluating the noise sensitivity of accelerometers and gyroscopes was obtained from an open dataset [47]. This dataset comprises of accelerometer, gyroscope and magnetometer samples recorded from ≈ 140 real driving experiments in the cities of Boston and Waltham, MA, USA. The sensor samples were collected on 4 smart phones (HTC One M7, LG Nexus 5, LG Nexus 5X, and Samsung S6). The GPS traces for these routes were also recorded for ground truth comparison. The authors of that work focused specifically on gyroscope noise during turns. We extend their work to also determine noise sensitivity when distance is calculated from the accelerometer sensor, as well as when road curvature is calculated from the gyroscope sensor.

1) Accelerometer Accuracy: The accelerometer sensor can be used to calculate the distance traveled for a path. This data can be represented as a vector $a = [(a_1 + n_1), \ldots, (a_T + n_T)]$ sampled at discrete time intervals $t \in T$, where a_i is the true acceleration experienced by the device on the x, y and z axis, and n_i is an unknown noise quantity caused by several factors. For example, the sensors have an inherent bias due to manufacturing defects such as axis misalignment. Another source of noise is the vibrations caused by the mechanical structure of the vehicle and the engine. Additional noise is induced on the sensor due to external environments such as road conditions and traffic.

We are interested in finding the range of divergence from the actual values due to n_i, when distance is calculated from the accelerometer path. To obtain this range, we calculated the distances between intersections using accelerometer data for each sensor path in the data-set, and compared it to the actual distances obtained from OpenStreetMap. Note that, to reduce the impact of noise, we performed the calibration and rotation techniques described in [47] before calculation. We also average multiple samples together to further reduce the impact from noise. As distances may significantly vary
between intersections, we represent the distance error as a ratio of the derived accelerometer distances to the actual distances. More precisely, if \(d_a \) is a vector of \(N \) derived accelerometer distances and \(d_a^\prime \) is a vector of \(N \) actual distances, then the errors \(e_a \) can be represented as a vector \(e_a = [(d_a^1/d_a^1), \ldots, (d_a^N/d_a^N)] \). Figure 5a shows the distribution of the errors \(e_a \). Note that the desired value for an error should be near 1, however, we see large variations ranging between 0.1 to 5. This indicates that the accelerometer sensor is unsuitable for distance calculation and enables an attacker to travel much larger distances than the intended path. Recall that the escape paths generator algorithm uses parameters \(T_{d1} \) and \(T_{d2} \) to filter connections of the escape paths based on distances (Section III-C3). These parameters are chosen from the error distribution \(e_a \) such that the allowed range is based on the \(75^{th} \) percentile of the distribution, i.e., \(T_{d1} = 0.2 \) and \(T_{d2} = 3.3 \).

2) Gyroscope Accuracy: The gyroscope sensor can be used to measure the turn angles and the road curvature of the path. This data can also be represented as the vector \(g = [(g_1 + n_1), \ldots, (g_T + n_T)] \), where \(g \) is the rate of angular change experienced by the device on the x, y and z axis, and \(n \) is an unknown noise quantity. In this case, however, the impact of \(n \) is not as significant as accelerometers and the measurements are closer to the actual values.

We are interested in finding the turn angle errors and the curvature errors calculated from the gyroscope data, in comparison to the actual values derived from OpenStreetMap. To calculate the turn errors, we use a similar approach to [47] in that we define a turn error as the absolute difference between the gyroscope derived turn angle and the actual turn angle.

However, we are interested in the overall error distribution for all the phones instead of individual phones. Figure 5b shows the distribution of the turn angle errors for all the turns in the data-set. The distribution reaffirms that the gyroscope is much more accurate than the accelerometer where 75% of the turn errors are within 5.5°.

To calculate the curvature errors, recall our technique for calculating curve similarity \(C(s_k, s^\prime) \) for two road segments \(s_k \) and \(s^\prime \) between the \((k - 1)^{th} \) and \(k^{th} \) intersections (Equation (3)). The road curvature \(\theta(s_k) \) is already known in the form of the gyroscope data. However, this curvature must be interpolated to the same length as \(\theta(s^\prime) \). Given the union of curve similarity sets for all \(K \) intersections for \(N \) sensor paths \(C = \bigcup_{i=1}^{N} C_i \), where \(C_i = \bigcup_{i=1}^{N} C(s_j, s^\prime_j) \), the curvature errors \(e_c \) is simply a set of absolute differences between all the points in the two curves, i.e., \(e_c = \{ |c_a - c_a^\prime| \} \). Figure 5c shows the distribution of the curve errors. Recall that the escape paths generator algorithm defines parameters \(T_\theta \) and \(T_\varphi \) to filter connections based on turn angles and curvature, respectively (Section III-C3). Based on the \(75^{th} \) percentile of the error distributions, we set the parameters to \(T_\theta = 5.5^\circ \) and \(T_\varphi = 2.8^\circ \) in our evaluations.

3) Magnetometer Spoofing: As a proof of concept, we built a prototype of a magnetometer spoofer for the Google Pixel 2 smart phone. Our experimental setup is shown in Figure 6a and consists of the following modules: (A) an ESP32 microcontroller, (B) a 8-channel relay module, (C) resistors for controlling current flow, (D) a two coils system, and (E) a Google Pixel 2 mounted on a car mount. We first identified the exact location of the magnetometer which is on the top-left of the phone (42mm from the top and 7mm from left edge of the phone). We designed and 3D printed a two-coils system, shown in Figure 6b, that snaps on to the phone and
allows the wrapping of enameled magnet wire. We focused on controlling the x and y axes as they are easily reachable. Using two coils each targeting one of the axes allows full control of the magnetic field in a plane. We used the following solenoid magnetic field formula to estimate the intensity:

$$ B = k\mu_0 n I $$

where k is the relative permeability, $\mu_0 = 4\pi \times 10^{-7}$ H/m, n is the coil turn density, and I is the electric current. Our coils turn density n is 155 turns/meter since we used 5 layers of 28 AWG enameled magnet wire. Without a core ($k = 1$), we estimated a magnetic field of 98μT with a current of 5mA, which is strong enough to impact the magnetometer. Note that if the magnetometer is not accessible in other systems, it is possible to use larger coils or channel the magnetic field using materials with higher relative permeability. While the relative permeability of air is 1, it is 5,000 for iron, and 200,000 for iron annealed in hydrogen. To control the current in each of the coils, we used the ESP32 microcontroller (Heltec WiFi Kit 32) with a sufficient number of GPIO/DAC pins to control the 8-channel relay module augmented with variable resistors for current tuning. The spoofer was written in Python and takes as input a sequence of bearings and durations. It sets the current in the coils to trigger turns with a timing that matches the input durations. The spoofing of an example route in Manhattan is shown in Figure 7.

B. Simulation Setup and Evaluation Methodology

We implemented the ESCAPE attack algorithms in PyPy, a JIT compiler based alternative implementation of Python. We used two servers running Intel Xeon CPUs at 2.40GHz with 12 cores and 20GB of RAM to execute the algorithms and evaluate its performance i.e., how far can an attacker escape, given a start and end point, without being detected.

Selection of cities:

We evaluate the effectiveness of our attack on the road networks of 10 major cities across the globe. The following cities were chosen across the continents of North America, Europe and Asia for the evaluation: Atlanta, Boston, Chicago, Houston, Manhattan and San Francisco (North America), Beijing (Asia), London, Frankfurt and Paris (Europe). The cities were chosen to represent the entire spectrum of urban characteristics such as major logistics and transportation hubs, dense population, city planning (e.g., grid-like or circular), etc. Figure 8 shows the cumulative road curvature and turn distributions for all selected cities. Recall that the road curvatures are calculated using Equation (1). We can observe that Chicago and Manhattan have mostly straight roads and right angled turns while the road networks of London and Paris have very unique characteristics.

Generation of spoofed and escape routes: The evaluation was performed by running simulations for every selected city. This simulation data comprised of 1000 randomly generated paths in every city, such that the path distances were uniformly distributed between 1km and 21Kms. The intention was to evaluate the potential of spoofing also as a function of the path distance. The simulation paths were generated as follows: (i) a random ‘Home’ and ‘Work’ location were chosen from OpenStreetMap inside the interest area, (ii) the geographic coordinates of the end points were retrieved, and (iii) the coordinates were given as input to the attack algorithms to compute the spoofed and escape paths. Recall that the spoofed paths are all possible paths between the source and destination points assigned to a specific trip and escape paths are all the paths an attacker can travel to reach different destinations without being detected by the GPS/INS based monitoring system. A ‘Home’ location can be chosen as a way or node in OpenStreetMap whose building type is one of the following: ‘apartments’, ‘house’, ‘residential’, or ‘bungalow’. Similarly, a ‘Work’ location can be chosen from the ‘commercial’ or ‘industrial’ tags.

C. Evaluation Results

We measure the performance of our attack using the two metrics: (i) displacement from the actual destination and (ii) coverage area.

Displacement from Intended Destination: We define displacement from the intended destination as the farthest distance an attacker can reach for a chosen trip (i.e., given a start and end point) without being detected. For every evaluation route, escape and spoofed paths are generated as described previously. We then calculate the euclidean distance between the destinations an attacker reaches by taking the escape route and the actual intended destination.
An obvious approach to mitigating the threat would be to deploy accurate accelerometer and gyroscope sensors. An approach to modeling the threat requires high quality sensors and the potential of spoofing in urban road networks even when both GPS and inertial sensors are used together for the localization and tracking. In this section, we present some approaches to mitigate spoofing attacks, specifically in road navigation and tracking applications.

A. Deploying Accurate Accelerometer and Gyroscope Sensors

An obvious approach to mitigating the threat would be to use high quality sensors. To measure the impact of sensor noise on the potential of spoofing, we re-ran the simulations on the cities using lower thresholds for the sensor noise. For this evaluation, we set the thresholds using the 25th percentile of the error distributions (c.f., Figure 5). The following thresholds were set for the escape paths generator algorithm: $T_\theta = 1.4^\circ$, $T_\theta = 0.2^\circ$, $T_d_1 = 0.6$ and $T_d_2 = 1.6$. Figure 11 shows
Fig. 10: Coverage Area of the Attacker: In cities like New York and Chicago, an attacker can cover more than 60% of the target land area without being detected.

Recall that both cities demonstrated high potential of spoofing for many paths. Using the above thresholds, we see a significant reduction in the percentage of routes that allow more than 5 km of displacement. However, there are several limitations with this approach. First, the sensors satisfying the above parameters are equivalent to aviation and military-grade sensors which are bulky and expensive (several thousands of dollars) to deploy. Furthermore, they consume significant amount of power ($\gtrsim 5$ watts) making it unsuitable for use in majority of tracking applications. Moreover, the attacker can still induce noise in the sensors by driving recklessly such as consistently switching lanes and accelerating / decelerating.

B. Secure Navigation Path Selection

Recall that the attack algorithm searches for navigation routes between the assigned start and end points containing attributes with the high probability of occurrence in other parts of the road network i.e., other sections of the graph (cf., Section III-C2). The final path score was calculated using Equation (2). The idea behind generating paths more resilient to spoofing is to simply negate this path score, i.e., $score = -\prod_{i=1}^{M} P(\theta(s_i), \theta(x_i))$. This has the effect of assigning the highest score to a path containing road curvature

Fig. 11: Preliminary results of countermeasure: We see that both using higher accuracy sensors (expensive, bulky, high power) and our secure navigation path selection (easy to deploy) significantly reduces the impact of the attack.
and turn angles with low probability of occurrence. These paths are less favorable for spoofing because the curvatures or turn angles in the path are more unique and, therefore, less likely in other sections. The algorithm uses the same inputs as the previous algorithm but sets the count of output paths \(N_P \) as 1, i.e., it outputs the most secure path it finds for the given source and destination. In other words, the application or service provider (e.g., logistics company) can assign “secure navigation routes” that are hard to fake because of unique road characteristics. Figure 11 shows the results of a preliminary evaluations for Chicago and San Francisco. Comparing with the original simulations, we again see that the attacker is significantly limited in the amount of routes available to him for reaching alternate destinations.

The key advantage of our secure navigation path algorithm is that there is no changes needed to the existing GPS/INS hardware tracking required. The company can simply choose the “secure path” to travel instead of deploying new sensors for every tracking device. Furthermore, even if there exists some potential for spoofing in the best possible secure path, the escape routes can be known well in advance and appropriate countermeasure be taken to prevent it.

VI. RELATED WORK

In this section we discuss relevant related work beginning with prior works that have demonstrated various attacks on GPS. In 2001, the Volpe report [43] first identified malicious interference with the civilian GPS signal as a serious problem. Following this several researchers have demonstrated the insecurity of GPS-based navigation by diverting the course of a yacht [11], forcing drones [12] to land in a hostile area and taken over navigation systems of transportation trucks [24] using spoofed GPS signals. More recently, researchers demonstrated a GPS signal generator that can be built for less than $300 [43]. Today, there exist public software repositories [44] as well as commercial GPS simulators [49], [50] that generate GPS signals for any chosen trajectory or navigation route. More advanced attacks were demonstrated in [51], [52] in which the attackers take over a target receiver that is already locked onto (i.e., continuously receiving navigation messages) authentic satellite signals without the receiver noticing any disruption or loss of navigation data. It was also shown that a variety of commercial GPS receivers were vulnerable and in some cases even caused permanent damage to the receivers.

A number of countermeasures have been proposed against GPS spoofing attacks. Several works [17], [18], [19] proposed solutions that are cryptographic in nature and therefore require modifications to the GPS infrastructure. Many non-cryptographic countermeasures rely on detecting anomalies in certain physical characteristics of the signal such as received satellite signal strength [24], ambient noise floor levels, automatic gain control values [20] and other data that are readily available as receiver observables on modern GPS receivers. Some other countermeasures [23], [53], [54] leveraged the signal’s spatial characteristics such as the received GPS signal’s direction or angle of arrival. Some proposed and analyzed the use of multiple synchronized GPS receivers [52], [55], [56] to detect spoofing. They show that spoofing a set of synchronized GPS receivers, with known relative distances or geometrical constellation restricts the number of locations from where an attacker can transmit the spoofing signals. Some other works [21] leveraged the difficulty of completely annihilating legitimate signals from the environment. Cross-validation of the position estimates against alternate navigation systems such as Galileo [57] were also proposed. All the above countermeasures require modifications to the GPS infrastructure or receiver. The multi receiver solutions require the receivers to be at least 5–6 m away from each other making them unsuitable for road navigation applications.

In the context of road navigation and tracking, using data from inertial sensors [29], [30], [31] alongside GPS is emerging as a popular choice for tracking and navigation in applications where spoofing and jamming are considered a threat. The absence of any communication between the inertial sensors and the external world for estimating the location makes it robust to signal spoofing and jamming attacks. Many works [36], [37], [38], [39], [40], [41] analyze and show that inertial sensors are promising for detection and mitigation of GPS spoofing attacks. Many commercial-off-the-shelf GPS/INS products [32], [33], [34], [35] are available and used in many civilian and military applications. Recently, analog attacks have also been demonstrated on inertial sensors. For example, WALNUT [58] shows how analog acoustic injection attacks can affect the digital integrity of a capacitive MEMS accelerometer. Son et al. [59] showed that acoustic interference on MEMS gyroscopes in drones can cause them to crash. In [60], Shoukry et al. demonstrate how to deliver fake readings to a anti-lock braking systems (ABS) via the magnetic wheel speed sensors using electromagnetic interference in an automotive setting. In this paper, we show that magnetometers are vulnerable to electromagnetic interference attacks and an attacker can precisely control its output.

Given the emergence of GPS/INS solutions, we believe our work emphasizes some fundamental security limitations of GPS/INS for road navigation and tracking applications.

VII. CONCLUSION

In this paper, we evaluated the security guarantees of GPS/INS based tracking and navigation for road transportation systems. To this extent, we designed a suite of algorithms that enable an attacker to derive escape routes and plausible destinations to reach without raising alarms even with the INS-aided GPS tracking and navigation system. We implemented and evaluated the impact of the attack using both real-world and simulated driving traces in more than 10 cities located around the world and showed that is possible for an attacker to evade detection and reach locations that are as far as 30 km away from the true destination and, in some cases, cover more than 60% of the target geographic region. Finally, we proposed countermeasures that do not require any hardware modifications and yet can severely limit the attacker’s ability to cheat.
“N.J. Man In A Jam, After Illegal GPS Device Interferes With Newark Liberty Operations,” https://newyork.cbslocal.com/2013/08/09/n-j-man-in-a-jam-after-illegal-gps-device-interferes-with-newark-liberty-operations/.

“GPS spoofing countermeasures,” in Proceedings of the 18th ACM Conference on Computer and communications security relying on the global positioning system,” http://www.navcen.uscg.gov/.

“LabSat GPS Simulator,” http://www.labsat.co.uk/.

“Successive Series-Defined GPS Signal Simulator,” https://github.com/oazgs/gps-sdr-sim.

G. M. Rebeiz, RF MEMS: theory, design, and technology. John Wiley & Sons, 2004.

OpenStreetMap, “OpenStreetMap Project,” https://www.openstreetmap.org/.

S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir, “Inferring user routes and locations using zero-permission mobile sensors,” in 2016 IEEE Symposium on Security and Privacy (SP), May 2016.

J. A. Volpe, “Vulnerability assessment of the transportation infrastructure relying on the global positioning system,” http://www.navcen.uscg.gov/.

“LabSat GPS Simulator,” http://www.labsat.co.uk/.

“GSS-xx Series Multi-channel advanced GNSS simulator,” http://www.spectracomcorp.com/.

T. Nighswander, B. M. Ledvina, J. Diamond, R. Brumley, and D. Brumley, “GPS software attacks,” in Proceedings of the ACM Conference on Computer and Communications Security, 2012.

N. O. Tippenhauser, C. Popper, K. B. Rasmussen, and S. Capkun, “On the requirements for successful GPS spoofing attacks,” in Proceedings of the 18th ACM Conference on Computer and communications security, 2011.

M. L. Psiaki, B. W. O’Hanlon, J. A. Bhatti, D. P. Shepard, and T. E. Humphreys, “Civilian GPS spoofing detection based on dual-receiver correlation of military signals,” Institute of Navigation GNSS (ION GNSS) 2011.

R. E. Phelts, “Multicorrelator techniques for robust mitigation of threats to gps signal quality,” Ph.D. dissertation, Stanford University, 2001.
[55] H. R. J. K. M. V. J. G. W. Swaszek, Peter F., “Analysis of a simple, multi-receiver gps spoof detector,” in Proceedings of the 2013 International Technical Meeting of The Institute of Navigation. ION, 2013.

[56] H. R. Swaszek, P.F., “A multiple cots receiver gnss spoof detector – extensions,” in Proceedings of the 2014 International Technical Meeting of The Institute of Navigation. ION, 2014.

[57] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media, 2007.

[58] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging doubt on the integrity of mems accelerometers with acoustic injection attacks,” in Security and Privacy (EuroS&P), 2017 IEEE European Symposium on. IEEE, 2017, pp. 3–18.

[59] Y. M. Son, H. C. Shin, D. K. Kim, Y. S. Park, J. H. Noh, K. B. Choi, J. W. Choi, and Y. D. Kim, “Rocking drones with intentional sound noise on gyroscopic sensors,” in 24th USENIX Security symposium. USENIX Association, 2015.

[60] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive spoofing attacks for anti-lock braking systems,” in International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2013, pp. 55–72.