Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations

Alireza Heidari¹,²,³,⁴*, Margaret Hotz¹,²,³, Nancy MacDonald¹,²,³, Victoria Peterson¹,²,³, Angela Caissutti¹,²,³, Elizabeth Besana¹,²,³, Jennifer Esposito¹,²,³, Katrina Schmitt¹,²,³, Ling-Yu Chan¹,²,³, Francesca Sherwood¹,²,³, Maria Henderson¹,²,³, Jimmy Kimmel¹,²,³

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA
3Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA
4American International Standards Institute, Irvine, CA 3800, USA
*Corresponding author: Scholar.Researcher.Scientist@gmail.com

Received November 13, 2021; Revised December 19, 2021; Accepted December 27, 2021

Abstract In the current research, catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) nano capsules delivery in DNA/RNA of cancer cells is investigated. The calculation of thickness and optical constants of Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) nano capsules delivery in DNA/RNA of cancer cells produced using sol–gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude–Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg–Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results.
1. Introduction

Catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) nano capsules delivery in DNA/RNA of cancer cells is investigated. Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) is a semi–conductor of type n which its 3d level is filling up [1-67] and it belongs to a group of smart materials that reacts to variations of temperature, electrical or magnetic fields and pressure. This oxide can be used as thin films for a wide range of applications including electrical and or optical–thermal switching tools and energy storing covers [67 -103]. Therefore, determining optical constants (refractive coefficient, n, and extinction coefficient, k) of Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) nano capsules delivery in DNA/RNA of cancer cells with mole ratio of 0.5, 1 and 1.5% of Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) is needed for parameters of dielectric function and the available results in the thickness which is defined as a range regarding physical condition [258- 313]. To do this, an initial guess of real and imaginary dielectric function according to its optical model should be selected and used for estimation extinction coefficient, k. for any thin layer, an appropriate optical parameters, various physical models such as Kuschi, Frouhi–Blumber and Tawk–Lorentz have been suggested to calculate refractive coefficient, n, and extinction coefficient, k. for any thin layer, an appropriate model should be selected and used for estimation of real and imaginary dielectric function according to its physical condition [258-313]. To do this, an initial guess is needed for parameters of dielectric function and thickness which is defined as a range regarding physical characteristics of thin film and the available results in the literature. Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄)–catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) nano capsules delivery in DNA/RNA of cancer cells are produced over glassy medium in sol–gel laboratory, Faculty of Chemistry, BioSpectroscopy Core Research Laboratory and Cancer Research Institute (CRI) at California South University, Irvine, California, USA, under similar conditions. Measurement of thin films are performed on four samples of Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) as catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) nano capsules delivery in DNA/RNA of cancer cells with mole ratio of 0.5, 1 and 1.5% of Osmium Dioxide (OsO₂) and Osmium Tetroxide (OsO₄) [314-578]. Simulation of experimental spectra are performed using a single reflection spectrum of thin films and through Drude–Lorentz physical model in optimization process of Lovenberg-Marquardt. Optical constants such as reflection coefficient, n, extinction coefficient, k, and layer thickness are simultaneously determined at wavelength of 400–1100 (nm).

2. Modeling, Simulation and Calculation Method

A usual method for describing optical constants of thin films is utilizing classic dispersion relationships based on di-electric function. One of the oldest and most applicable dispersion relationships is Drude-Lorentz di-electric equation which is based on the interaction between light and material. This relationship is shown in Eq. (1):

\[
\varepsilon = \varepsilon_\infty + \sum_{j=1}^{n} \frac{f_j E_{0j}^2}{E_{0j}^2 - E^2 + i\Gamma_j E} + \frac{E_P^2}{E^2 + i\epsilon_i E}
\]

where \(\varepsilon_\infty\), \(f_j\), \(E_0\) and \(\Gamma_1\) are di–electric constant at high frequencies, resonance amplitude, power and resonance width–band which are recognized as the reason for damping. Damping is due to absorption process which includes transition between two states. The third term is related to Drude model. \(E_p\) is density of Plasma energy and \(E_i\) is incident energy [4]. The complex di–electric function as \(\varepsilon = \varepsilon_1 + i \varepsilon_2\) which describes the reaction of material with electromagnetic waves as a function of photon energy, \(E\), or wavelength, \(\lambda\), has a real part \(\varepsilon_1\) and an imaginary part \(\varepsilon_2\). Real and imaginary parts of complex reflection coefficient, namely \(n(\lambda)\) and \(k(\lambda)\) are related to di–electric function as Eq. (2) [5]:

\[
n(\lambda) = \left(\frac{\varepsilon_1 + \left(\varepsilon_1^2 + \varepsilon_2^2\right)^{1/2}}{2}\right)^{1/2}
\]

\[
k(\lambda) = \left(\frac{-\varepsilon_1 + \left(\varepsilon_1^2 + \varepsilon_2^2\right)^{1/2}}{2}\right)^{1/2}
\]

Reflection spectrum (R) of samples for normal incident is a function of film thickness \(d\), medium reflection coefficient \(S\), incident light wavelength \(\lambda\), reflection coefficient \(n(\lambda)\) and extinction coefficient \(k(\lambda)\). Simulation of the measured reflection data using optimization of objective function, which is the square of difference between the measured reflection spectrum and the calculated one, is defined as:

\[
O = (\varepsilon_\infty, f, \Gamma, E_0, E_P, E_i, d) = \sum (R_{meas} - R_{calc})^2
\]
where, \(R_{\text{meas}} \) and \(R_{\text{calc}} \) are the measured and theoretical reflection spectrum, respectively. Using the fitting parameters obtained from minimization of objective function, dispersion curves of reflection and extinction coefficients can be estimated.

3. Results and Discussion

The measured and simulated reflection spectra with fitting parameters of Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\))–catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) nano capsules delivery in DNA/RNA of cancer cells at various concentrations of 0.5, 1 and 1.5\%, named as a, b, and c, and catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) nano capsules delivery in DNA/RNA of cancer cells sample, named as p, are shown in Figure 1 in wavelength range of 400-1100 (nm) (visible regions close to infrared) using Drude-Lorentz model for air, film, medium, air system.

![Figure 1](image1.png)

Figure 1. Results of simulating the reflection spectrum for Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\))–catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) nano capsules delivery in DNA/RNA of cancer cells at concentrations of (a) 0.5\%, (b) 1\%, (c) 1.5\% and (p) non–doped.

Comparison of the results were shown that the sample containing 0.5\% of Os (sample a) has shown more reflectivity than samples containing 1\% and 1.5\% of Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) (samples b and c). As can be seen in Figure (1), the reflection of thin films is decreased by increase in mole concentration of Os to Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)). This reduction can be attributed to various reasons such as increasing roughness, increasing thickness and increasing the concentration of contaminant. The results of investigation about surface roughness using AFM method confirms the increasing of roughness by increasing the concentration of Os. Therefore, dispersion of incident light is increased in thin films. Variation of thickness of thin film by increasing the percentage of Os is effective in variation of reflectivity of thin films which is due to sol viscosity. Changing the crystalline structure and chemical composition of thin films induced by penetration of Os ions into the crystalline lattice of Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) is another effective factor which leads to changing the reflection spectrum. The results of structural analysis using XRD confirms the tendency to be amorphous by increasing the concentration of contaminant.

The best fitting parameters obtained from optimization process and experimental data fitting are listed in Table 1.

![Table 1](image2.png)

Table 1. Fitting parameters of di–electric function of DL model

As can be seen in Table 1, more increase in Os leads to increase in \(\Gamma, f, E_0 \) and \(d \) and decrease in other parameters as crystalline structure and inter–atom distance changes in lattice of Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) thin film. According to [7], \(E_0 \) in the range of 2.9-3.1 (eV) shows optical transition capacity band to displaced state of conducting band which according to the data of Table 1, it can be concluded that optical transition energy (gaff energy) increases with increase in Os concentration. The calculation results of optical constants including reflection coefficient and extinction coefficient using the parameters of obtained di–electric function from the optimization process of thin films at various concentrations of Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) as 0.5\% (sample a), 1\% (sample b) and 1.5\% (sample c) are shown in Figure 2 and Figure 3, respectively.

![Figure 2](image3.png)

Figure 2. Reflection coefficient of Osmium Dioxide (OsO\(_2\)) and Osmium Tetroxide (OsO\(_4\)) thin films with Os concentrations of (a) 0.5\%, (b) 1\%, (c) 1.5\% and (p) pure sample.
As can be seen in Figure 2, reflection coefficient of samples at 500–1100 (nm) are the same and are decreased by increasing wavelength. By increasing the concentration of Os, reflection coefficient is totally reduced which is in good agreement with the results related to variations of reflectivity in Figure 1 in which, increasing roughness leads to increase in dispersion and hence, reducing the amount of reflection spectrum. It can be seen in Figure 3 that $k(\lambda)$ for two samples of p and a are of increasing rate at wavelength range of 400-500 (nm). Further, all samples are of decreasing rate at the range of 500-800 (nm). Totally, $k(\lambda)$ is reduced by increase in Os concentration. In other words, optical absorption is reduced in this range and the emerged peaks at extinction coefficient are in agreement with parameters of Drude–Lorentz obtained from the optimization algorithm.

4. Conclusions, Summary, Recommendations, Perspectives, Useful Suggestions and Future Studies

The results of optimization algorithm of Lovenberg–Marquardt with physical model of Drude–Lorentz for determining optical constants of Osmium Dioxide (OsO$_2$) and Osmium Tetroxide (OsO$_4$) catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO$_2$) and Osmium Tetroxide (OsO$_4$) nano capsules delivery in DNA/RNA of cancer cells produced using sol–gel method through a single reflection spectrum show that higher doping leads to lower reflectivity and reflection coefficient and also, leads to increase in thickness of thin layer.

Acknowledgements

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

References

[1] A. Heidari, C. Brown, “Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells”, J Nanomed Res., Volume 2, Issue 5, 20 Pages, 2015.
[2] A. Heidari, C. Brown, “Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh$_3$O$_7$) Nanoparticles”, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume 1, Issue 1, Pages 15–19, 2015.
[3] A. Heidari, “An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Sperm Quantity for Evaluation of Male Infertility”, Int J Adv Technol 7: e007, 2016.
[4] A. Heidari, “Extraction and Preconcentration of N-Toly–Sulfonyl–Phosphoramid–Saure–Dichlorid as an Anti–Cancer Drug from Plants: A Pharmacognosy Study”, J Pharmacogn Nat Prod 2: e103, 2016.
[5] A. Heidari, “A Thermodynamic Study on Hydration and Dehydration of DNA and RNA–Amphiphile Complexes”, J Bioeng Biomed Sci 5: 006, 2016.
[6] A. Heidari, “Computational Studies on Molecular Structures and Carbonyl and Ketene Groups’ Effects of Singlet and Triplet Energies of Azidoketene O=–C–CH–NNN and Isocyanatoketene O=–C–CH–N=C–O”, J Appl Computat Math 5: e142, 2016.
[7] A. Heidari, “Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR–FTIR, Raman and 1H NMR Spectroscopies”, J Biomol Res Ther 5: e146, 2016.
[8] A. Heidari, “Future Prospects of Point Fluorescence Spectroscopy, Fluorescence Imaging and Fluorescence Endoscopy in Photodynamic Therapy (PDT) for Cancer Cells”, J Bioanal Biomed 8: e135, 2016.
[9] A. Heidari, “A Bio–Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells”, Adv Cancer Prev 1: e012, 2016.
[10] A. Heidari, “Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh$_3$O$_7$) Nanoparticles”, J Biotechnol Biomater 6: e125, 2016.
[11] A. Heidari, “A Novel Experimental and Computational Approach to Photobiosimulation of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study”, J Res Development 4: 144, 2016.
[12] A. Heidari, “Biochemical and Pharmacodynamical Study of Microporous Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oritavancin, Telavancin and Dalbavancin Binding”, Biochem Physiol 5: e146, 2016.
[13] A. Heidari, “Anti–Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study”, Arch Cancer Res. 4: 1, 2016.
[14] A. Heidari, “Biospectroscopic Study on Multi–Component Reactions (MCRs) in Two A–Type and B–Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti–Cancer Drugs”, Arch Cancer Res. 4: 2, 2016.
[15] A. Heidari, “Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time–Dependent Bio–Heat Equation and Nd: YAG Lasers”, Arch Cancer Res. 4: 2, 2016.
[16] A. Heidari, “Quantitative Structure–Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh$_3$O$_7$) Nanoparticles as Anti–Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Multiple Linear and Non–Linear Correlation Approach”, Ann Clin Lab Res 4: 1, 2016.
[17] A. Heidari, “Biospectroscopic Study on Cadmium Oxide Nanoparticles Using Laser Irradiations at Presence of Intelligent Nanoparticles”, J Biomedical Sci. 5: 2, 2016.
[18] A. Heidari, “Measurement of the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca$^{2+}$), Iron (II) (Fe$^{2+}$), Magnesium (Mg$^{2+}$), Phosphate

![Figure 3. Extinction coefficient of Osmium Dioxide (OsO$_2$) and Osmium Tetroxide (OsO$_4$) thin films with Os concentrations of (a) 0.5%, (b) 1%, (c) 1.5% and (p) pure sample.](image-url)
(PO4)3− and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques", J Bioi. Biostat. 2016.

[19] A. Heidari, “Spectroscopy and Quantum Mechanics of the Helium Dimer (He2), Neon Dimer (Ne2), Argon Dimer (Ar2), Krypton Dimer (Kr2), Xenon Dimer (Xe2), Radon Dimer(Rn2) and Unnoquetum Dimer (Uuo2) Molecular Cations", Chem Sci J 7: e112, 2016.

[20] A. Heidari, “Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio-Spectroscopic Techniques", J Drug Metab Toxicol 7: e129, 2016.

[21] A. Heidari, “Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells Treatment”, Biochem Pharmacol (Los Angel) 5: 207, 2016.

[22] A. Heidari, “A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage”, Struct Chem Crystallogr Commum 2: 1, 2016.

[23] A. Heidari, “Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells", Pharm Anal Chem Open Access 2: 113, 2016.

[24] A. Heidari, “Chromatographic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA–Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh3O4) Nanoparticles as Anti–Cancer Drugs for Cancer Cells Treatment", Chemo Open Access 5: e129, 2016.

[25] A. Heidari, “Pharmacokinetics and Experimental Therapeutic Study on DNA, and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokinet Exp Ther 1: e005, 2016.

[26] A. Heidari, “Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques”, Insights Anal Electrochem 2: 1, 2016.

[27] A. Heidari, Using Nucleic Acids and Bioinformatic Approaches, “A Combined Computational and QM/MM Molecular Dynamics Study on Molecular Intensities and Shifts of Symmetric Vibration Modes of Ozone Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Rhodium (III) Oxide (Rh3O4) Nanoparticles as Anti-Cancer Drugs for Cancer Cells Treatment", J Heavy Met Toxicity Dis. 1: 2, 2016.

[28] A. Heidari, “A Combined Theoretical and Computational Study of the Belousov–Zhabskinsky Chaotic Reaction and Curtius Rearrangement for Synthesis of Methylloethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti–Cancer Drugs", Insights Med Phys. 1: 2, 2016.

[29] A. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed 1: e51, 2016.

[30] A. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedine Biotherapeutic Discov 6: e144, 2016.

[31] A. Heidari, “Molecular Dynamics and Monte–Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological study", J Glycobiol 5: e111, 2016.

[32] A. Heidari, “Synthesis and Study of 5–[(Pheny1sulfonyl)Amino]–1,3,4–Thiadiazole–2–Sulfonamide as Potential Anti–Permeus Drug Using Chromatography and Spectroscopy Techniques", Transl Med (Sunnyvale) 6: e138, 2016.

[33] A. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti–Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) Equations", Electronic J Biol 12: 4, 2016.

[34] A. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids”, Austin J Anal Pharm Chem. 3 (1): 1058, 2016.

[35] A. Heidari, C. Brown, “Phase, Composition and Morphology Study and Analysis of Os–Pi/HIC Nanocomposites", Nano Res Appl 2: 1, 2016.

[36] A. Heidari, C. Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cumene", International Journal of Advanced Chemistry, 4 (1) 5-9, 2016.

[37] A. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues", Arch Can Res. 4: 2, 2016.

[38] A. Heidari, “Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Zolimidine, Olprinone and Abafungin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs", J Data Mining Genomics & Proteomics 7: e125, 2016.

[39] A. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells”, J Pharmacogenomics Pharmacoproteomics 7: e153, 2016.

[40] A. Heidari, “Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach", Transl Biomed. 7: 2, 2016.

[41] A. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method", Arch Can Res. 4: 2, 2016.

[42] A. Heidari, “A Combined Computational and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Heptaplatin and Lobaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study", J Inform Data Min 1: 3, 2016.

[43] A. Heidari, “Linear and Non-Linear Quantitative Structure-Anti-Cancer-Activity Relationship (QSACAR) Study of Hydrox Ruthenium(DIVI 4), Ruthenium(IV) Oxide (RuO2) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and Anti-Cancer Nano Drugs”, J Integr Oncol 5: e110, 2016.

[44] A. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids and Computational Methods and Solution Reduction Method", J Nanosci Curr Res 1: e101, 2016.

[45] A. Heidari, “Coplanarity and Collinearity of 4’-Dinonyl-2,2’-Bithiazole in One Domain of Bleomycin and Pargylymgycin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drugs”, Int J Drug Dev & Res 8: 007-008, 2016.

[46] A. Heidari, “A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations", J Pharm Innov 5: 282, 2016.

[47] A. Heidari, “A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm", J Mol Biol Technol 1: 1, 2016.

[48] A. Heidari, “Computational Study on Molecular Structures of C20, C24, C28, C32, C36, C40, C44, C48, and C52 Fulleren Nano Molecules under Synchrotron Radiations Using Fuzzy Logic", J Materials Sci Eng 5: 282, 2016.

[49] A. Heidari, “Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs)”, J Appl Computat Math 5: e143, 2016.
A. Heidari, “The Impact of High Resolution Imaging on Diagnosis”, Int J Clin Med Imaging 3: 1000e101, 2016.

A. Heidari, “A Comparative Study of Conformational Behavior of Isotretinoin (13-Cis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid (ATRA)) Nanoparticles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and Density Functional Theory (DFT) Methods”, Insights in Biomed 1: 2, 2016.

A. Heidari, “Advances in Logic, Operations and Computational Mathematics”, J Appl Comput Math 5: 5, 2016.

A. Heidari, “Mathematical Equations in Predicting Physical Behavior”, J Appl Comput Math 5: 5, 2016.

A. Heidari, “Chemotherapy a Last Resort for Cancer Treatment”, Chemo Open Access 5: 4, 2016.

A. Heidari, “Separation and Pre-Concentration of Metal Cations-DNA-Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods”, Mass Spectrom Perfor Tech 2: e101, 2016.

A. Heidari, “Yoctosecond Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti-Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm”, Insight Pharm Res: 1, 2016.

A. Heidari, “Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiation Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies”, Int J Clin Med Imaging 3: 516, 2016.

A. Heidari, “A Novel Approach to Biology”, Electronic J Biol 12: 4, 2016.

A. Heidari, “Innovative Biomedical Equipment’s for Diagnosis and Treatment”, J Bioengineer & Biomedical Sci 6: 2, 2016.

A. Heidari, “Integrating Precision Cancer Medicine into Healthcare, Medicare Reimbursement Changes and the Practice of Oncology: Trends in Oncology Medicine and Practices”, J Oncol Med & Pract 1: 2, 2016.

A. Heidari, “Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Bioengineering Perspectives”, J Bioengineer & Biomedical Sci 6: 3, 2016.

A. Heidari, “X-Ray Fluorescence and X-Ray Diffraction Analysis of Nano-Sized Molecules and Clusters as Cross-Linking-Induced Anti-Cancer and Immune-Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells Membranes under Synchrotron Radiations: A Payload-Based Perspective”, Arch Chem Res. 1: 2, 2017.

A. Heidari, “Deficiencies in Repair of Double-Standard DNA/RNA-Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis: Number of Mutations in a Synchronous Tumor Varies by Age and Type of Synchronous Cancer”, J Appl Bioinforma Comput Biol, 6: 1, 2017.

A. Heidari, “Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Possible Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing”, Glob J Res Rev. 4: 2, 2017.

A. Heidari, “Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au3x-xAgx/Cux(SPh-tBu)24 to Au3x-xAgx/Cux(SPh-tBu)24 (x = 1-11) Nanomolecules for Synthesis of Au144-xAgx/Cux(SR)60, (SC4)60, (SC6)60, (SC12)60, (PEt)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (Au)60, (Uu)60 and (SC6H13)60 Nano Clusters as Anti-Cancer Nano Drugs”, J Nanomater Mol Nanotechnol; 6: 3, 2017.

A. Heidari, “Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research”, Int J Biomed Data Min 6: e103, 2017.

A. Heidari, “Study of Synthesis, Pharmacokinetis, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Olypamide Nanomolecules as Agent for Cancer Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy under Synchrotron Radiation”, J Dev Drugs 6: e154, 2017.

A. Heidari, “A Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer’s, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbiome/Antibiotic Resistance and Endovascular Stroke”, J Bioengineer & Biomedical Sci 7: e127, 2017.

A. Heidari, “Opinion on Computational Fluid Dynamics (CFD) Technique”, Fluid Mech Open Acc 4: 157, 2017.

A. Heidari, “Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au329(SR)84, Au329-xAgx(SR)84, Au25(pMBA)18 Nano Clusters”, J Surgery Emerg Med 1: 21, 2017.

A. Heidari, “Developmental Cell Biology in Adult Stem Cells Death and Autophagy to Trigger a Preventive Allergic Reaction to Common Airborne Allergens under Synchrotron Radiation Using Nanotechnology for Therapeutic Goals in Particular Allergy Shots (Immunotherapy)”, Cell Biol (Henderson, NV) 6: 1, 2017.

A. Heidari, “Changing Metal Powder Characteristics for Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins Adjustment in Cancer Metastases Induced by Osteosarcoma, Chondrosarcoma, Carcinoid, Carcinoma, Ewing’s Sarcoma, Fibrosarcoma and Secondary Hematopoietic Solid or Soft Tissue Tumors”, J Powder Metall Min 6: 170, 2017.

A. Heidari, “Nanomedicine-Based Combination Anti-Cancer Therapy between Nucleic Acid and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatment of Human Brain Tumors Using Hyaluronic Acid, Alurgonic Acid and Sodium Hyaluronic as Anti-Cancer Nano Drugs and Nucleic Acids Delivery under Synchrotron Radiation”, Am J Drug Deliv 5: 2, 2017.

A. Heidari, “Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells’ Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotech’s Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression”, J Bio Med Science 1: e103, 2017.

A. Heidari, “The Design Graphene-Based Nanosheets as a New Nanomaterial in Anti-Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti-Cancer Nano Drugs and Gene Delivery”, Br Biomed Bull 5: 305, 2017.

A. Heidari, “Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation”, Transcriptomics 5: e117, 2017.

A. Heidari, “Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins and Cell Adhesion Intelligent Nanomolecules Adjustment in Cancer Metastases Using Metalloenzymes and under Synchrotron Radiation”, Lett Health Biol Sci 2 (2): 1-4, 2017.

A. Heidari, “Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multifunctional Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation”, Br J Res, 4 (3): 16, 2017.

A. Heidari, “Sedative, Analgesic and Ultrasound-Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure, Nano Drug-Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity”, Res Rep Gastroenterol, 1: 1, 2017.
International Journal of Physics

[84] A. Heidari, “Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Orphan Nano Drugs to Treat Visible-Synchrotron Radiation-Driven Dosed Ordered Mesoporous Cadmium Oxide (CdO) Nanoparticles Photocatalysts Channels Resulted in an Interesting Synergistic Effect Enhancing Catalytic Anti-Cancer Activity”, J Med Oncol. Vol. 1 No. 1: 1-7, 2017.

[85] A. Heidari, “Non-Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapy Accelerators with Monochromatic Microwaves”, J Cell Biol Mol Sci 2 (1): 1-5, 2017.

[86] A. Heidari, “Design of Targeted Metal Chelation Therapeutics Nanocapsules as Colloidal Carriers and Blood-Brain Barrier (BBB) Translocation to Targeted Deliver Anti-Cancer Nano Drugs into the Human Brain to Treat Alzheimer’s Disease under Synchrotron Radiation”, J Nanotechnol Material Sci 4 (2): 1-5, 2017.

[87] R. Gobato, A. Heidari, “Calculation Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi”, Science Journal of Analytical Chemistry, Vol. 5, No. 6, Pages 76-85, 2017.

[88] A. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Lung Cancer Translational Anti-Cancer Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations”, J Med Oncol. Vol. 1 No. 1: 1-7, 2017.

[89] A. Heidari, “A Modern Ethnomedical Technique for Transformation, Prevention and Treatment of Human Malignant Gliomas Tumors into Human Benign Gliomas Tumors under Synchrotron Radiation”, J Pharm Sci Eng 5 (2): 1-6, 2017.

[90] A. Heidari, “Active Targeted Nanoparticles for Anti-Cancer Nano Drugs Delivery across the Blood-Brain Barrier for Human Brain Cancer Treatment, Multiple Sclerosis (MS) and Alzheimer's Diseases Using Chemical Modifications of Anti-Cancer Nano Drugs or Drug-Nanoparticles through Zika Virus (ZIKV) Nanocarriers under Synchrotron Radiation”, J Med Chem Toxicol, 2 (3): 1-5, 2017.

[91] A. Heidari, “Investigation of Medical, Medicinal, Clinical and Pharmaceutical Applications of Estradiol, Mestranol (Norlutin), Norethindrone (NET), Norethisterone Aceta (NETA), Norethisterone Enanthate (NETE) and Testosterone Nanoparticles as Biological Imaging, Cell Labeling, Anticancer Agents and Anti-Cancer Nano Drugs in Nanomedicines Based Drug Delivery Systems for Anti-Cancer Targeting and Treatment”, Parana Journal of Science and Education (PISSE)-v.3, n.4, (10-19) October 12, 2017.

[92] A. Heidari, “A Comparative Computational and Experimental Study on Different Vibrational Biospectroscopy Methods, Techniques and Applications for Human Cancer Cells in Tumor Tissues Simulation, Modeling, Research, Diagnosis and Treatment”, Open J Anal Bioanal Chem 1 (1): 014-020, 2017.

[93] A. Heidari, “Combination of DNA/RNA Ligands and Linear/Non-Linear Visible-Synchrotron Radiation-Driven Dosed Ordered Mesoporous Cadmium Oxide (CdO) Nanoparticles Photocatalysts Channels Resulted in an Interesting Synergistic Effect Enhancing Catalytic Anti-Cancer Activity”, Enz Eng 6: 1, 2017.

[94] A. Heidari, “Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta-2 Transferrin and Bacteriofeirerin-Based Anti-Cancer Nano Drugs Encapsulating Nanosphere as DNA-Binding Proteins from Starved Cells (DPS)”, Mod Appro Drug Des. 1 (1). MADD.000504. 2017.

[95] A. Heidari, “Potency of Human Interferon β-1a and Human Interferon β-1b in Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy of Encephalomyelitis Disseminate/Multiple Sclerosis (MS) and Hepatitis A, B, C, D, E, F and G Virus Enter and Targets Liver Cells”, J Proteomics Enzymol 6: 1, 2017.

[96] A. Heidari, “Transport Therapeutic Active Targeting of Human Brain Tumors Enable Anti-Cancer Nanodrugs Delivery across the Blood-Brain Barrier (BBB) to Treat Brain Diseases Using Nanoparticles and Nanocarriers under Synchrotron Radiation”, J Pharm Pharmaceutics 4 (2): 1-5, 2017.

[97] A. Heidari, C. Brown, “Combinatorial Therapeutic Approaches to DNA/RNA and Benzylpenicillin (Penicillin G), Fluoxetine Hydrochloride (Prozac and Sarafem), Propofol (Diprivan), Acetyl salicylic acid (ASA) (Aspirin), Naloxon Sodium (Aleva and Naproxy) and Dextromethamphenic Nanocapsules with Surface Conjugated DNA/RNA to Targeted Nano Drugs for Enhanced Anti-Cancer Efficacy and Targeted Cancer Therapy Using Nano Drugs Delivery Systems”, Ann Adv Chem. 1 (2): 061-069, 2017.

[98] A. Heidari, “High-Resolution Simulations of Human Brain Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations with the Passage of Time under Synchrotron Radiation”, Current Trends Anal Bioanal Chem, 1 (1): 35-41, 2017.

[99] A. Heidari, “Therapeutic Nanomedicine Different High-Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time under Synchrotron Radiation”, Austin J Anal Pharm Chem. 4 (3): 1091, 2017.

[100] A. Heidari, “A Comparative Computational and Experimental Image and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time under Synchrotron Radiation”, J Chem Sci Emerg Drugs 5: 1, 2017.

[101] A. Heidari, “A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy as Antibody-Drug Conjugate for the Treatment of Limited-Stage Small Cell Divere Epithelial Cancers”, Cancer Clin Res Rep, 1: 2, e001, 2017.

[102] A. Heidari, “A Novel and Modern Experimental Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Cancer Sci Res Open Access 4 (2): 061-069, 2017.

[103] A. Heidari, “Non-Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapy Accelerators with Monochromatic Microwaves”, J Cell Biol Mol Sci 2 (1): 1-5, 2017.

[104] A. Heidari, “Visualization of Metabolic Changes in Probing Human Cancer Cells and Tissues Metabolism Using Vivo ‘H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy and Self-Organizing Maps under Synchrotron Radiation”, SOJ Mater Sci Eng 5 (2): 1-6, 2017.

[105] A. Heidari, “Therapeutic Nanomedicine Different High-Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time under Synchrotron Radiation”, Austin J Anal Chem 4 (3): 1091, 2017.

[106] A. Heidari, “Therapeutic Nanomedicine Different High-Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time under Synchrotron Radiation”, J Chem Sci Emerg Drugs 5: 1, 2017.

[107] A. Heidari, “A Comparative Computational and Experimental Image and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time under Synchrotron Radiation”, Austen J Adv Chem. 4 (3): 1091, 2017.

[108] A. Heidari, “A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy as Antibody-Drug Conjugate for the Treatment of Limited-Stage Small Cell Diiverse Epithelial Cancers”, Cancer Clin Res Rep, 1: 2, e001, 2017.

[109] A. Heidari, “A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy as Antibody-Drug Conjugate for the Treatment of Limited-Stage Small Cell Diiverse Epithelial Cancers”, Cancer Clin Res Rep, 1: 2, e001, 2017.

[110] A. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations”, J Oral Cancer Res. D 17 (2017).

[111] A. Heidari, “Vibrational Deciether (DH), Centhetz (eHz), Milliherz (mHz), Microherz (μHz), Nanoherz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under
Synchrotron Radiation”, International Journal of Biomedicine, 7 (4), 335-340, 2017.

[112] A. Heidari, “Fluorescence Spectroscopy and Fluorescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, EC Cancer, 2 (5), 239-246, 2017.

[113] A. Heidari, “Photoacoustic Spectroscopy, Photomission Spectroscopy and Photothermal Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Oncol Ther, 3, 3, 045-052, 2017.

[114] A. Heidari, “J-Spectroscopy, Exchange Spectroscopy (EXSY), Nuclear Overhauser Effect Spectroscopy (NOESY) and Total Correlation Spectroscopy (TOCSY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Eng Sci J, 1 (2): 006-013, 2017.

[115] A. Heidari, “Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Biophrm Sci, 1, 103-107, 2017.

[116] A. Heidari, “Vibrational Decalct (dH2), Hectohertz (HHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Therahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Madridge J Anal Sci Instrum, 2 (1): 41-46, 2017.

[117] A. Heidari, “Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy and Non-Linear Two-Dimensional Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, J Mater Sci Nanotech 6 (1): 101, 2018.

[118] A. Heidari, “Fourier Transform Infrared (FTIR) Spectroscopy, Near-Infrared Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Int J Nanotech Nanomed, Volume 3, Issue 1, Pages 1-6, 2018.

[119] A. Heidari, “Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Austin Pharmacol Pharm, 3 (1): 1011, 2018.

[120] A. Heidari, “Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Blood Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation”, Madridge J Nov Drug Res, 1 (1): 18-24, 2017.

[121] A. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Open Access J Trans Med Res, 2 (1): 00026-00032, 2018.

[122] M. R. R. Gobato, R. Gobato, A. Heidari, “Planting of Jaboticaba Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, Vol. 3, No. 1, Pages 1-9, 2018.

[123] A. Heidari, “Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, SM J Clin. Med. Imaging, 4 (1): 1018, 2018.

[124] A. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NISS) and Nuclear Inelastic Absorption Spectroscopy (NIAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Pharm Sci, 2 (1): 1-14, 2018.

[125] A. Heidari, “X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Oncol Res, 2 (1): 1-14, 2018.

[126] A. Heidari, “Correlation Two-Dimensional Nuclear Magnetic Resonance (NMR) (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Can Sci, 1-1-001, 2018.

[127] A. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, SM J Biometrics Biostat, 3 (1): 1024, 2018.

[128] A. Heidari, “A Modern and Comprehensive Experimental Biospectroscopy Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Acc J Oncol Med. 1 (1), 2018.

[129] A. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMOC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinolgy and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018.

[130] A. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NIRVS), Nuclear Inelastic Scattering Spectroscopy (NISS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol. 6 (1): 1-5, 2018.

[131] A. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation”, Glob J Endocrinol Metab. 1 (3). GJEM. 000514-000519, 2018.

[132] A. Heidari, “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMOC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Pharma J. 1 (1): 002-008, 2018.

[133] A. Heidari, “A Modern Comparative and Comprehensive Experimental Biospectroscopy Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Analyt Molecucl Tech. 3 (1): 8; 2018.

[134] A. Heidari, “Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopy Comparative Study”, European Modern Studies Journal, Vol, 2, No. 1, 13-29, 2018.

[135] A. Heidari, “Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Imaging J Clin Medical Sci. 5 (1): 001-007, 2018.

[136] A. Heidari, “Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol. 6 (2e): 1-6, 2018.

[137] A. Heidari, “Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopy Comparative Study”, Ther Res Skin Dis 1 (1), 2018.

[138] A. Heidari, “Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy and Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, International Journal of Chemistry Papers, 2 (1): 1-12, 2018.

[139] A. Heidari, “Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy and 57Fe Mössbauer Spectroscopy Comparative...
Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Acta Scientific Cancer Biology 2.3: 17-20, 2018.

A. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Organic & Medicinal Chem J. 6 (1): 555-567, 2018.

A. Heidari, “Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDS-Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Biomat Bioeng. 2 (1): 001-007, 2018.

A. Heidari, “Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery”, Am J Nanotechnol Nanomed. 1 (1): 001-009, 2018.

A. Heidari, “Vivo ‘H or Proton NMR, 13C NMR, 1H NMR and 13P NMR Spectroscopic Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Ann Biometric Biostat. 1 (1): 1001, 2018.

A. Heidari, “Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues, and Tumors under Synchrotron Radiation”, Ann Cardiovasc Surg. 1 (2): 1006, 2018.

A. Heidari, “Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (6H-BNNTs) for Eliminating Cancer, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blastoforma Cancer Cells and Tissues”, Clin Med Rev Case Rep 5: 201, 2018.

A. Heidari, “Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOEASY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Pharmaceutical Sciences 2.5: 30-35, 2018.

A. Heidari, “Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluctuation X-Ray Scattering (FXS), Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Oncol Res Rev, Volume 1 (1): 1-10, 2018.

A. Heidari, “Pump-Probe Spectroscopy and Transient Gratting Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Adv Material Sci Engg, Volume 2, Issue 2, Pages 1-7, 2018.

A. Heidari, “Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Insights Pharmaco Pharm Sci 1 (1): 1-8, 2018.

A. Heidari, “Acoustic Spectroscopy, Acoustic Resonance Spectroscopy and Auger Spectroscopy Comparative Study on Anti-Cancer Nano Drugs Delivery in Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Nanosci Technol 5 (1): 1-9, 2018.

A. Heidari, “Niobium, Technetium, Rutheonium, Rhodium, Hafnium, Rheinum, Osmium and Iridium Ions Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Nanomed Nanotechnol, 3 (2): 000138, 2018.

A. Heidari, “Homonuclear Correlation Experiments such as Heteronuclear Double-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Austino J Proteomics Bioinform & Genomics. 5 (1): 1024, 2018.

A. Heidari, “Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy and Nuclear Resonance Vibrational Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, J Appl Biotechn Bioeng. 5 (3): 142-148, 2018.

A. Heidari, “Time-Dependent Vibrational Spectral Analysis of Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Cancer Oncol, 2 (2): 000124, 2018.

A. Heidari, “Palauamine and Miraculin Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Acta Scientific Cancer Biology 2.3: 144-156, 2018.

A. Heidari, “Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Pharma Anal Acta, 2 (1): 007-014, 2018.

A. Heidari, “Fourier Transform Infrared (FTIR) Spectroscopy, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy, Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy, Linear Two-Dimensional Infrared Correlation Spectroscopy, Non-Liner Two-Dimensional Infrared Spectroscopy, Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy, Infrared Photodissociation Spectroscopy, Infrared Correlation Table Spectroscopy, Near-Infrared Spectroscopy (NIRS), Mid-Infrared Spectroscopy (MIRS), Nuclear Resonance Vibrational Spectroscopy, Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Glob Imaging Insights, Volume 3 (2): 1-14, 2018.

A. Heidari, “Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Chroniche of Medicine and Surgery 2.3: 144-156, 2018.

A. Heidari, “Tetrais [3, 5-bis (Trifluoromethyl) Phenyl]"
A. Heidari, “Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Madridge J Nov Drug Res. 2 (1): 61-67, 2018.

A. Heidari, “Buckminsterfullerene (Fullerene), Bullvalene, Dickite (Klingite) and Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Madridge J Nov Drug Res. 2 (1): 61-67, 2018.

R. Gobato, A. Heidari, “Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations”, Malaysian Journal of Chemistry, Vol. 20 (1), 33-73, 2018.

A. Heidari, “Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part I)”, Malaysian Journal of Chemistry, Vol. 20 (1), 33-73, 2018.

A. Heidari, “Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part II)”, Malaysian Journal of Chemistry, Vol. 20 (2), 74-117, 2018.

A. Heidari, “Uranocene (U(4)H2) and Bis(Cyclococtetetraroflon) Fer(C4H3) or Fe(COT)2-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports, Vol. 1, Iss. 2, Pages 1-16, 2018.

A. Heidari, “Biomedical Systematic and Emerging Technological Study on Human Malignant and Benign Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (3): 1-7, 2018.

A. Heidari, “Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Res Dev Material Sci. 7(2). RDMS.000659, 2018.

A. Heidari, “C70-Carboxylfullerenes Molecule Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Glob Imaging Insights, Volume 3 (3): 1-7, 2018.

A. Heidari, “The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors”, International Journal of Advanced Chemistry, 6 (2) 140-156, 2018.

A. Heidari, “Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Heteronuclear Single-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBCC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations Using Cyclotron versus Synchrotron, Synchrocyclotron and the Large Hadron Collider (LHC) for Delivery of Proton and Helium Ion (Charged Particle) Beams for Oncology Radiotherapy”, European Journal of Advances in Engineering and Technology, 5 (7): 414-426, 2018.

A. Heidari, “Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, J Oncol Res; 1 (1): 1-20, 2018.

A. Heidari, “Use of Molecular Enzymes in the Treatment of Chronic Disorders”, Cane Oncol Open Access J. 1 (1): 12-15, 2018.

A. Heidari, “Vibrational Biospectroscopic Study and Chemical Structure Analysis of Unsaturated Polyanilies Nanoparticles as Anti-Cancer Polymeric Nanomedicines Using Synchrotron Radiation”, International Journal of Advanced Chemistry, 6 (2) 167-189, 2018.

A. Heidari, “Cadaverine, Putrescine, Spermine and Spermidine-Enhanced Pre catalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Parana Journal of Science and Education (PJSE)-v.4, n.5, (1-14) July 1, 2018.

A. Heidari, “Improving the Performance of Nano-Endofullerenes in Polyline Nanostucture-Based Biosensors by Covering California Millodioll Nanoparticles with Multi-Wall Carbon Nanotubes”, Journal of Advances in Nanomaterials, Vol. 3, No. 1, Pages 1-28, 2018.
Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend", Trends in Res, Volume 2 (1): 1-8, 2019.

[217] A. Heidari, "A Novel and Comprehensive Study on Manufacturing and Fabrication Nanoparticles Methods and Techniques", Int J Neur Endocrinology 2 (1): 1-18, 2019.

[218] A. Heidari, "A Combined Experimental and Computational Study on the Catalytic Effect of Aluminum Nitride Nanocrystal (AlN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenantrene, Chloroform, and Tetracene", Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

[219] A. Heidari, "Novel Experimental and Three-Dimensional (3D) Multiphysics Computational Framework of Michaelis-Menten Kinetics for Catalyst Processes Innovation, Characterization and Carrier Applications", Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

[220] A. Heidari, "The Hydrolysis Constants of Copper (I) (Cu+) and Copper (II) (Cu2+) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques", Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

[221] A. Heidari, "A Combined Experimental and Computational Study on the Catalytic Activity of Carbon Nanotubes (MWCNT) in Interpreting Infrared and Raman Spectra of Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation", Trends in Res, Volume 2 (2): 1-9, 2019.

[222] A. Heidari, J. Esposito, A. Caissutti, "Aplysatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigations of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis", J Chem Soc Trans 2 (2): 70-89, 2019.

[223] A. Heidari, J. Esposito, A. Caissutti, "Cyatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis", Br J Med Res. 6 (04): 21-60, 2019.

[224] A. Heidari, "Potential and Theranostics Applications of Novel Anti-Cancer Nano Drugs Delivery Systems in Preparing for Clinical Trials of Synchrotron Microbeam Radiation Therapy (SMRT) and Synchrotron Stereotactic Radiotherapy (SSRT) for Treatment of Human Cancer Cells, Tissues and Tumors Using Image Guided Synchrotron Radiotherapy (IGSRT)”, Ann Nanosci Nanotechnol. 3 (1): 1006-1019, 2019.

[225] A. Heidari, J. Esposito, A. Caissutti, "Study of Anti-Cancer Properties of Thin Layers of Cadmium Oxide (CdO) Nanostructure”, Int J Alloys Mater Methods 1 (1): 003-022, 2019.

[226] A. Heidari, J. Esposito, A. Caissutti, "Alpha-Conotoxin, Omega-Conotoxin and Mu-Conotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Phys. Chem. B 123 (34): 7807-7817, 2019.
[246] A. Heidari, J. Esposito, A. Caissutti, “Oxalic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Int J Analyt Bioanalit Methods 1 (1): 1-19, 2019.

[247] A. Heidari, “Investigation of the Processes of Absorption, Distribution, Metabolism and Elimination (ADME) as Vital and Important Factors for Modulating Drug Action and Toxicity”, Open Access J Oncol, 2 (1): 180010-180012, 2019.

[248] A. Heidari, J. Esposito, A. Caissutti, “Pertussis Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Chemistry Reports, Vol. 1 Iss. 2, Pages 1-5, 2019.

[249] R. Gobato, M. R. R. Gobato, A. Heidari, “Rhodochrosite as Crystal Oscillator”, Am J Biomed Sci & Res. 3 (2), 187, 2019.

[250] A. Heidari, J. Esposito, A. Caissutti, “Tetrodotoxin (TTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Journal of New Developments in Chemistry, Volume No: 2, Issue No: 3, Page Numbers 26-48, 2019.

[251] A. Heidari, J. Esposito, A. Caissutti, “The Importance of Analysis of Vibronic-Molecule Coupling Structure in Vibrational Spectra of Supramolecular Aggregates of (CA%M) Cyanuric Acid (CA) and Melamine (M) beyond the Franck-Condon Approximation”, Journal of Clinical and Medical Images, 2 (2): 1-20, 2019.

[252] A. Heidari, J. Esposito, A. Caissutti, “Micocystin-LR Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Malaysian Journal of Chemistry, Vol. 21 (1), 70-95, 2019.

[253] A. Heidari, J. Esposito, A. Caissutti, “Botulinum Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Journal of Mechanical Design and Vibration, vol. 7, no: 1-15, 2019.

[254] A. Heidari, J. Esposito, A. Caissutti, “Domocic Acid (DA) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Clinical Oncology Journal 1. 2: 03-07, 2019.

[255] A. Heidari, J. Esposito, A. Caissutti, “Surugatoxin (SGTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Clinical Oncology Journal 1. 2: 14-18, 2019.

[256] A. Heidari, J. Esposito, A. Caissutti, “Decarbamoylxaxotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Clinical Oncology Journal 1. 2: 19-23, 2019.

[257] A. Heidari, J. Esposito, A. Caissutti, “Gonyautoxin (GTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Clinical Oncology Journal 1. 2: 24-28, 2019.

[258] A. Heidari, J. Esposito, A. Caissutti, “Hisfrionicotocxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Drug Delivery Research 1. 1: 01-06, 2019.

[259] A. Heidari, J. Esposito, A. Caissutti, “Dihydrokainic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Drug Delivery Research 1. 1: 07-12, 2019.

[260] A. Heidari, J. Esposito, A. Caissutti, “Aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), M1 (AFM1), M2 (AFM2), Q1 (AFQ1) and Q3 (AFQ3) Time-Resolved Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Drug Delivery Research 1. 1: 25-32, 2019.

[261] A. Heidari, J. Esposito, A. Caissutti, “Mycotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Drug Delivery Research 1. 1: 13-18, 2019.

[262] A. Heidari, J. Esposito, A. Caissutti, “Butotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Drug Delivery Research 1. 1: 19-24, 2019.

[263] A. Heidari, J. Esposito, A. Caissutti, “Kainic Acid (Kainite) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Journal of Neurology 1. 2: 02-07, 2019.

[264] A. Heidari, J. Esposito, A. Caissutti, “Nereistoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Journal of Neurology 1. 2: 19-24, 2019.

[265] A. Heidari, J. Esposito, A. Caissutti, “Spider Toxin and Raventoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Journal of Neurology 1. 2: 19-24, 2019.

[266] A. Heidari, J. Esposito, A. Caissutti, “Ochratoxin A, Ochratoxin B, Ochratoxin C, Ochratoxin α and Ochratoxin TA Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Journal of Neurology 1. 2: 19-24, 2019.

[267] A. Heidari, J. Esposito, A. Caissutti, “Brevetoxin A and B Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Drug Delivery Research 1. 2: 03-10, 2019.

[268] A. Heidari, J. Esposito, A. Caissutti, “Lyngbyatoxin-a Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Drug Delivery Research 1. 2: 12-16, 2019.

[269] A. Heidari, J. Esposito, A. Caissutti, “Baccharactoxin (BTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Cientific Journal of Neurology 1. 3: 01-05, 2019.

[270] A. Heidari, J. Esposito, A. Caissutti, “Hanatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Int. J. Pharm. Sci. Res., 57 (1), Pages: 21-32, 2019.

[271] A. Heidari, J. Esposito, A. Caissutti, “Neurotoxin and Alpha-Neurotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, J Biomed Sci & Res. 3 (6), 550-563, 2019.

[272] A. Heidari, J. Esposito, A. Caissutti, “Antitoxin (ATX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure”, American Journal of Optics and Photonics, Vol. 7, No. 1, pp. 18-27, 2019.

[273] R. Gobato, M. R. R. Gobato, A. Heidari, “Calculation by UFF Method of Frequencies and Vibrational Temperatures of the Unit Cell of the Rhodochrosite Crystal”, International Journal of Advanced Chemistry, 7 (5) 77-81, 2019.
and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019.

[305] A. Heidari, J. Esposito, A. Caissutti, “Cholera Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019.

[306] A. Heidari, J. Esposito, A. Caissutti, “Cholera Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019.

[307] A. Heidari, J. Esposito, A. Caissutti, “Cholera Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019.

[308] A. Heidari, J. Esposito, A. Caissutti, “Cotyloctine Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019.

[309] A. Heidari, J. Esposito, A. Caissutti, “Cotyloctine Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019.

[310] A. Heidari, J. Esposito, A. Caissutti, “Cotyloctine Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1-14, 2019.

[311] A. Heidari, J. Esposito, A. Caissutti, “Cotyloctine Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1-13, 2019.

[312] A. Heidari, J. Esposito, A. Caissutti, “Cotyloctine Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1-14, 2019.

[313] A. Heidari, J. Esposito, A. Caissutti, “Cotyloctine Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1-14, 2019.

[314] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Investigation of Moscovium Nanoparticles as Anti-Cancer Nano Drugs for Human Cancer Cells, Tissues and Tumors Treatment”, Elixir Appl. Chem. 137A, 53943-53963, 2019.

[315] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Analysis of Function of the Beam Energy and Holmium Nanoparticles Delivery Effectiveness and Efficiency on Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 5, Issue 5, Pages 1-18, 2019.

[316] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Analysis of Function of the Beam Energy and Holmium Nanoparticles Delivery Effectiveness and Efficiency on Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 5, Issue 5, Pages 1-18, 2019.

[317] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Analysis of Function of the Beam Energy and Holmium Nanoparticles Delivery Effectiveness and Efficiency on Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 5, Issue 5, Pages 1-18, 2019.

[318] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Analysis of Function of the Beam Energy and Holmium Nanoparticles Delivery Effectiveness and Efficiency on Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 5, Issue 5, Pages 1-18, 2019.

[319] A. Heidari, K. Schmitt, M. Henderson, E. Besana, R. Gobato, “Pros and Cons of Livermorium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation Using Mathematica 12.0”, Panana Journal of Science and Education (PISE)-v. 6, n. 1, (1-31) January 11, 2020.

[320] R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “Challenging Giants. Hartree-Fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells Through Synchrotron Radiation”, Biomed J Sci & Tech Res 25 (1), pp. 18843-18848, 2020.

[321] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Interaction between Ytterbium Nanoparticles and Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 5, Issue 5, Pages 1-18, 2019.
[380] A. Heidari, R. Gobato, I. K. K. Dosh, A. Mitra, M. R. R. Gobato, "Single Layer Bioorganic Membrane Using the Karumi Molecular DNA/RNA Function", J. Phys. Chem. B, 111 (1): 16-20, 2020.

[381] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Study of Pulsed Time Structure of Nobelium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process Which Covers from Microwaves to Hard X-Rays”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-17, 2020.

[382] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Abraham-Lorentz-Dirac Force Approach to Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Rutherfordium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-17, 2020.

[383] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Liénard-Wiechert Field Study of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Seaborgium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-17, 2020.

[384] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Lorenz Gauge, Electric and Magnetic Fields Study of Interaction of Gravitationally Accelerating Ions through the Super Conorted ‘Tabular’ Polar Areas of Magnetic Fields and Hassium Nanoparticles”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-18, 2020.

[385] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Scalar Abraham-Lorentz-Dirac-Langevin Equation, Radiation Reaction and Vacuum Fluctuations Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Tennessine Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-17, 2020.

[386] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “The Dynamics and Quantum Mechanics of an Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Meitnerium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Dent Oral Maxillofac Res, Volume 6, Issue 2, Pages 1-17, 2020.

[387] A. Heidari, “Future Advanced Study of Thin Layers of DNA/RNA Hybrid Molecule Nanostructure”, J Mol Nanot Nanom 2 (1): 110-116, 2020.

[388] A. Heidari, “Market Analysis-Smart Parallel Intelligent Technology 2020”, J Smart Parallel Technol. 8: 4, 2020.

[389] A. Heidari, “Conference Announcement on Artificial Intelligence”, J Appl Bioinform Comput Biol. 8: 2, 2019.

[390] A. Heidari, “Awards on Artificial Intelligence and Cognitive Healthcare”, J Appl Bioinform Comput Biol. 8: 2, 2019.

[391] A. Heidari, “Study of Thin Layers of Cadmium Oxide (CdO) Nanostructure”, Nano Prog., 2 (3), 1-10, 2020.

[392] A. Heidari, “Young Researchers Awards: Young Scientist Awards & Best Poster Awards at Environmental Chemistry and Engineering Conference”, J Civil Environ Eng. 9: 3, 2019.

[393] A. Heidari, “2020 Market Analysis of Environmental Chemistry and Engineering Conference August 19-20, 2020 | Paris, France”, J Civil Environ Eng. 9: 4, 2019.

[394] A. Heidari, “2020 Awards for Environmental Chemistry and Engineering Conference August 19-20, 2020 | Paris, France”, J Civil Environ Eng. 9: 4, 2019.

[395] A. Heidari, “Past Conference Report of Environmental Chemistry and Engineering Conference”, J Civil Environ Eng. 9: 4, 2019.

[396] A. Heidari, “Awards Announcement on World Congress on Glycobiology & Glycochemistry”, J Appl Microbiol Biochem. Vol. 3 No 3, 2019.

[397] A. Heidari, “Market Analysis of Glycobiology and Glycochemistry 2020”, J Appl Microbiol Biochem. Vol. 3 No. 3, 2019.

[398] A. Heidari, “Young Research Forum-Young Scientist Awards: Geriatric-Health2020”, J Aging Geriatr Med. 3: 3, 2019.

[399] A. Heidari, “Young Scientist Awards at Tissue Engineering 2020 for the Best Researches in Tissue Engineering & Regenerative Medicine”, J Aging Geriatr Med. 3: 3, 2019.

[400] A. Heidari, “Effect of Solvent on Non-Linear Synchrotron Absorption of Multi-Walled Carbon Nanotubes (MWCNTs) with Fluorocarbon and Water”, Nano Environ. J 1 (1): 291-315, 2020.

[401] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Study of Copernicum Nanoparticles Delivery Process in Human Cancer Cells, Tissues and Tumors Under Gravitationally Accelerating Ions Through the Super Conorted ‘Tabular’ Polar Areas of Magnetic Fields”, Adv. Sci. Eng. Med. 12 (5), 571-575, 2020.

[402] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Specifying and Selective Targeting Human Cancer Cells, Tissues and Tumors with Seaborgium Nanoparticles as Carriers and Nano-Enhanced Drug Delivery and Therapeutic in Cancer Treatment and Beyond under Synchrotron Radiation”, Parana Journal of Science and Education. Vol. 6, No. 4, pp. 8-50, 2020.

[403] A. Heidari, “Enhancement of Visible Synchrotron Absorption in Cadmium Oxide (CdO) Nanoparticles Thin Layer Using Plasmonic Nanostructures: A Two-Dimensional (2D) Simulation”, Sci. Int. (Lahore), 32 (3), 329-354, 2020.

[404] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Nanomedicines Based Americium Nanoparticles Drug Delivery Systems for Anti-Cancer Targeting and Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-18, 2020.

[405] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Study of Exclusively Focused on Translational Areas of Pseudomercury Nanoparticles as Carriers and Nano Enhanced Drug Delivery under Supremacy of ‘Tabular’ Polar Areas of Magnetic Fields as Optothermal Human Gum Cancer Cells, Tissues and Tumors Treatment Technique under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-17, 2020.

[406] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Research Activities on Novel Drug Delivery Systems of Astatine Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-17, 2020.

[407] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Unprecedented Progresses of Biomedical Nanotechnology during Conventional Smart Drug Delivery Systems (SDDS) of Francium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-20, 2020.

[408] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Non-Invasive Image-Guided Targeted Drug Delivery of Radium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 6, Issue 3, Pages 1-20, 2020.

[409] A. Heidari, “A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysogenic Acid Diethyl Amide or LSD, Δ⁹-Tetrahydrocannabinol (THC) ([(+)-trans-Δ⁹- Tetrahydrocannabinol], Tboembrine (Xanthothe), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance”, Ely J Mat Sci Tech 1 (1): 1-2, 2018.

[410] A. Heidari, “Investigation of Prevention, Protection and Treatment of Lopinavir Effectiveness on Coronavirus Disease-2019 (COVID-19) Infection Using Fourier Transform Raman (FT-Raman) Biospectroscopy”, AJAN, 1 (3): 36-60, 2020.

[411] A. Heidari, “Stimulated FT-IR Biospectroscopic Study of Lopinavir Protective and Therapeutic Effect as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection”, AJAN, 1 (3): 61-85, 2020.

[412] A. Heidari, R. Gobato, “The Comparison of Active Cooperative and Traditional Teaching Methods in Nanochemistry Students’ Satisfaction and Learning of Clinical Nanochemistry”, AJAN, 1 (3): 86-112, 2020.

[413] A. Heidari, R. Gobato, “Study of Nanochemistry Students’ Satisfaction and Learning with Blended Education: An Action Research Study”, AJAN, 1 (3): 13-138, 2020.

[414] A. Heidari, “Study of Stimulated Raman Biospectroscopy in Lopinavir as a Potent Drug against Coronavirus Disease-2019 (COVID-19) Infection”, AJAN, 1 (3): 139-163, 2020.

[415] A. Heidari, “In Situ Monitoring of Ritonavir Protective and Therapeutic Influence as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection by Attenuated Total Reflectance-
Fourier Transform Infrared (ATR-FTIR Fingerprint) Biospectroscopy”, Saud J Biomed Res, 5 (6): 128-151, 2020.

[416] A. Heidari, “Application of Single-Walled Carbon Nanotubes (SWCNT) in the Production of Glucose Biosensors and Improving Their Performance Using Gold Colloid Nanoparticles and Usage of Polyvalene Nanostucture-Based Biosensors for Detecting Glucose and Cholesterol”, Malaysian Journal of Chemistry, Vol. 22 (2), 121-162, 2020.

[417] A. Heidari, “In Situ Monitoring of Lopinavir Protective and Therapeutic Influence as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection”, Saudi J Biomed Res, 5 (6): 152-174, 2020.

[418] A. Heidari, “Application of Lopinavir Protective and Therapeutic Influence as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR Fingerprint) Biospectroscopy”, Parana Journal of Science and Education (PJSE), Vol. 6, No. 5, pp. 29-60, 2020.

[419] A. Heidari, K. Schmitt, M. Henderson, E. Besana, “Modelling and Simulation of Interaction of Magnetobremsstrahlung Radiation and Niobium Nanoparticles Using Bending Magnets, Undulators and/or Wiggler in Storage Rings for Human Cancer Cells, Tissues and Tumors Treatment”, Sci. Int. (Lahore), 32 (4), 361-385, 2020.

[420] A. Heidari, “Onezological Study of Thin Layers of Imitinib Molecule Nanostructure for Chronic Myelogenous Leukemia (CML), Acute Lymphocytic Leukemia (ALL), Philadelphia Chromosome-Positive (Ph+)”, Gastrointestinal Stromal Tumors (GIST), Hypersensitive Syndrome (HES), Chronic Eosinophilic Leukemia (CEL), Systemic Mastocytosis and Myelodysplastic Syndrome Treatment”, Adv. Sci. Eng. Med. 12 (6), 753-760, 2020.

[421] A. Heidari, “Infrastructure of Synchrotronic Biosensor Based on Semiconductor Device Fabrication for Tracking, Monitoring, Imaging, Measuring, Diagnosing and Detecting Cancer Cells”, Semiconductor Science and Information Devices, Volume 01, Issue 02, Pages 29-57, 2019.

[422] A. Heidari, “In Situ Characterization of Lopinavir by ATR-FTIR Biospectroscopy”, Computational Chemistry, 8 (3), 27-42, 2020.

[423] A. Heidari, “Study of Stimulated Raman Biospectroscopy in Ritonavir as a Potent Drug against Coronavirus Disease-2019 (COVID-19) Infection”, Saud J Biomed Res, 5 (7): 188-211, 2020.

[424] A. Heidari, “Investigation of Prevention, Protection and Treatment of Ritonav Effectiveness on Coronavirus Disease-2019 (COVID-19) Infection Using Fourier Transform Raman (FT-Raman) Biospectroscopy”, Saud J Biomed Res, 5 (7): 212-235, 2020.

[425] R. Gobato, A. Heidari, “Cyclone Bomb Hits Southern Brazil in Atlantic Oceans”, Aswan University Journal of Environmental Studies (AUJES), Vol. 1, No. 1, pp. 57-96, 2020.

[426] A. Heidari, “Advanced Isotopic Labeling for the NMR Investigation of Challenging DNA/RNA of Gum Cancer Cells and Resistance Mutations”, Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-2, 2020.

[427] A. Heidari, “Scientific Challenges and Recent Advancements of Dermatology and Cosmetology”, J Clin Exp Pathol, Volume 3, Issue 9, 2019.

[428] R. Gobato, A. Heidari, A. Mitra, “Bioinorganic Membrane Using Cururu, A New Liquid Crystall”, Sumerian Journal of Biotechnology, Vol. 4, No. 1, pp. 4-7, 2021.

[429] A. Heidari, “A Stimulated FT-IR Biospectroscopic Study of Lopinavir Protective and Therapeutic Effect as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection”, Parana Journal of Science and Education (PJSE)-v. 7, n. 2, (1-33) March 1, 2021.

[430] A. Heidari, “Investigation of Prevention, Protection and Treatment of Ritonav Effectiveness on Coronavirus Disease-2019 (COVID-19) Infection Using Fourier Transform Raman (FT-Raman) Biospectroscopy”, Saud J Biomed Res, 5 (7): 212-235, 2020.

[431] R. Gobato, A. Heidari, “Exact NMR Simulation of Anti-Cancer Nano Drug-DNA/RNA Complexes in Gum Cancer Cells Spin Systems Using Tensor Train Formalism”, Dent Oral Maxillofac Res, Volume 6, Issue 5, Pages 1-2, 2020.

[432] A. Heidari, “The Anti-Cancer Nano Drug Delivery 13C-Edited/13C-Filtered Transferred Dynamic 15N(1H) NOE Measurements for Studying DNA/RNA Interactions with Short Non-Linear Motifs: A Modern Tool for Studying DNA/RNA Dynamics in Gum Cancer Cells”, Dent Oral Maxillofac Res, Volume 6, Issue 5, Pages 1-2, 2020.

[433] R. Gobato, A. Heidari, “DNA/RNA of Gum Cancer Cells—Anti-Cancer Nano Drugs Ligands Structure Determination with the Two-Dimensional NMR Molecular Line Shape Analysis of Single, Multiple, Zero and Double Quantum Correlation Experiments”, Dent Oral Maxillofac Res, Volume 6, Issue 5, Pages 1-3, 2020.

[434] A. Heidari, “Investigation of the Internal Structure and Dynamics of Gum Cancer Cells, Tissues and Tumors by 13C-NMR Spectra of DNA/RNA of Gum Cancer Cells as an Essential Structural Tool for Integrative Studies of Gum Cancer Cells Development”, Dent Oral Maxillofac Res, Volume 6, Issue 6, Pages 1-3, 2020.

[435] A. Heidari, “Investigation of Role and Applications of Polymeric Stimuli-Responsive Nanocomposite Materials as Biomolecules for Cancer Targeted in Anti-Cancer Nano Drugs Delivery Agents and Systems”, Parana Journal of Science and Education (PJSE), Vol. 6, No. 9, pp. 39-74, 2020.

[436] R. Gobato, A. Heidari, A. Mitra, M. R. R. Gobato, “Vortex Cotes’s Spiral in an Extratropical Cyclone in the Southern Coast of Brazil”, Archives in Biomedical Engineering & Biotechnology, Volume 4, Issue 4, Pages 1-4, 2020.

[437] R. Gobato, A. Heidari, “Vortex Hits Southern Brazil in 2020”, J Cur Tre Phy Res App, Volume 1, Issue 2, Pages 109-112, 2020.

[438] A. Heidari, “Synthesis of Fructose Biosensors and Progressing Their Efficiency Using Carbon Colloid Nanoparticles for Detecting Fructose and Triglycerides”, Adv. Sci. Eng. Med. 12 (8), 1002-1017, 2020.

[439] R. Gobato, A. Heidari, A. Mitra, M. R. R. Gobato, “Cotes's Spiral Vortex in Extratropical Cyclone Bomb South Atlantic Oceans”, Aswan University Journal of Environmental Studies (AUJES), Vol. 1, No. 2, pp. 147-156, 2020.

[440] A. Heidari, “World Congress on Health and Medical Science”, Journal of Emerging Diseases and Preventive Medicine, Volume 3, Issue 4, Page 01, 2020.

[441] A. Heidari, “World Congress on Health and Medical Science”, Journal of Emerging Diseases and Preventive Medicine, Volume 3, Issue 4, Page 01, 2020.

[442] A. Heidari, “World Congress on Health and Medical Science”, Journal of Emerging Diseases and Preventive Medicine, Volume 3, Issue 4, Page 01, 2020.
Doping on Their Optical Characteristics”, Adv. Sci. Eng. Med. 12 (10), 1224-1230, 2020.

[478] A. Heidari, “Vibrational Biospectroscopic Study on Biomedical and Clinical Engineering of Cancer Cells Fingerprints”, Adv. Sci. Eng. Med. 12 (10), 1272-1284, 2020.

[479] A. Heidari, “Effect of Temperature on DNA/RNA-Cadmium Oxide (CdO) Complex Nanoparticles Produced by Synchrotron Laser Ablation Method in the Cancer Cells”, Adv. Sci. Eng. Med. 12 (10), 1315-1322, 2020.

[480] A. Heidari, “Cadmium Oxide (CdO)-DNA/RNA Sandwiched Complex Composite Plasmonic Nanostructure in Cancer Cells under Synchrotron Radiation”, Nano Prog., 3 (6), 35-47, 2021.

[481] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisiutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “The Effect of Humidity Molarity on the Structural, Morphological, Optical and Electrical Properties of Nanostructured Cadmium Oxide (CdO) Nano Thin Films as Anti-Cancer Nano Drug in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 1: 61-105, 2021.

[482] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisiutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Annealing Effects on the Interband Transition and Optical Constants of Ruthenium (IV) Oxide (RuO₂) and Ruthenium (VIII) Oxide (RuO₄) Nano Thin Films in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 1: 106-149, 2021.

[483] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisiutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Rhodium (III) Oxide or Rhodium Sesquioxide (Rh₂O₃) and Ruthenium (IV) Oxide (RuO₂) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 1: 150-194, 2021.

[485] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisiutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Catalytic Effectiveness of Synchrotron and Synchrocyclotron Radiations on Osmium Dioxide (OsO₂) and Osmium Trioxide (OsO₃) Nano Capsules Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations”, Int J Hematol Oncol. 4: 1: 327-370, 2021.

[487] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisiutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Active Targeting of Ruthenium (IV) Oxide (RuO₂), Ruthenium Trioxide (Ru₂O₃) and Ruthenium (VIII) Oxide (RuO₄) Nanoparticles as Cancer Therapeutics Swell-up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations”, International Journal of Advanced Chemistry, 9 (2) 80-98, 2021.

[489] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisiutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Rhodium (IV) Oxide (Rh₂O₃) and Ruthenium (VIII) Oxide (RuO₄) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy on the Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations”, American Journal of Materials Engineering and Technology, Vol. 9, No. 1, 1-20, 2021.

[490] A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caisiutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “Cadmium Oxide (CdO) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations”, Journal of Materials Physics and Chemistry, Vol. 9, No. 2, 26-46, 2021.

[491] A. Heidari, E. Locci, S. Raymond, “Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies”, J. Res. Chem., 1 (2): 05-16, 2020.

[492] A. Heidari, E. Locci, S. Raymond, “Accelerating the Diagnosis and Treatment of Cancer Using Digital Pathology”, J. Res. Chem., 2 (1): 23-34, 2021.

[493] A. Heidari, E. Locci, S. Raymond, “Adoption of Artificial Intelligence (AI) in Breast Imaging and Breast Cancer Detection in Mammmography and Digital Breast Tomosynthesis”, J. Res. Chem., 2 (1): 11-22, 2021.

[494] A. Heidari, E. Locci, S. Raymond, “Tumor Diagnosis and Treatment Monitoring Using DNA/RNA in Blood to Detect, Track and Treat Cancer”, J. Res. Chem., 2 (2): 16-26, 2021.

[495] A. Heidari, E. Locci, S. Raymond, “Innovative Approaches for Cancer Treatment, Current Perspectives and New Challenges in Bio-Spectroscopy, Bio-sensor Research Laboratory of Cancer Research Institute (CRI), California South University (CSU)”, J. Res. Chem., 1 (1): 01-07, 2020.

[496] A. Heidari, E. Locci, S. Raymond, “T Cell Reprogramming against Cancer”, J. Res. Chem., 1 (2): 17-28, 2020.

[497] A. Heidari, E. Locci, S. Raymond, “Physiology and Pathology of Inmate Immune Response against Pathogens”, J. Res. Chem., 1 (2): 36-47, 2020.

[498] A. Heidari, E. Locci, S. Raymond, “Role and Applications of Artificial Intelligence (AI) and Biomedical Vibrational Spectroscopy in Cancer Diagnostics”, J. Res. Chem., 1 (2): 53-64, 2020.

[499] A. Heidari, E. Locci, S. Raymond, “Assessing the Role and Applications of Circulating, Genetic and Imaging Biomarkers in Cardiovascular Risk Prediction”, J. Res. Chem., 2 (2): 32-43, 2021.

[500] A. Heidari, E. Locci, S. Raymond, “Circulating Nucleic Acids as Biomarkers in Breast Cancer”, J. Res. Chem., 2 (1): 39-50, 2021.

[501] A. Heidari, E. Locci, S. Raymond, “What Are Answer Strategies Being Researched to Cure or Treat Cancer?”, Int J Hematol Oncol. 4: 1: 283-326, 2021.

[502] A. Heidari, E. Locci, S. Raymond, “Mammo Screen Artificial Intelligence (AI) Tool Improves Diagnostic Performance of Radiologists in Detecting Breast Cancer”, Int J Hematol Oncol. 4: 1: 327-370, 2021.

[503] A. Heidari, E. Locci, S. Raymond, “Next Generation Diagnostic Pathology Using Digital Pathology and Artificial Intelligence (AI) Tools to Augment a Pathological Diagnosis”, Int J Hematol Oncol. 4: 1: 371-413, 2021.

[504] A. Heidari, E. Locci, S. Raymond, “Mechanistic Basis and Therapeutic Strategies in Immune Evasion in Cancer”, Int J Hematol Oncol. 4: 1: 414-457, 2021.

[505] A. Heidari, E. Locci, S. Raymond, “Tumor Circulome in the Liquid Biopsies for Cancer Diagnosis and Prognosis”, Int J Hematol Oncol. 4: 1: 458-500, 2021.

[506] A. Heidari, E. Locci, S. Raymond, “Combatorial Approaches with Checkpoint Inhibitors to Enhance Anti-Tumor Immunity as Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy”, Int J Hematol Oncol. 4: 1: 501-547, 2021.

[507] A. Heidari, E. Locci, S. Raymond, “Prediction of the Survival Outcomes of Patients with Non-Small Cell Cancer Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography and Clinicalopathological Factors”, Int J Hematol Oncol. 4: 1: 548-593, 2021.

[508] A. Heidari, E. Locci, S. Raymond, “Nucleic Acids Aptamer Application in Diagnosis and Therapy of Cancer Based on Cell-SELEX Technology”, J Int J Hematol Oncol. 4: 1: 594-636, 2021.

[509] A. Heidari, E. Locci, S. Raymond, “The Immune System of the Human Body in Defense against Cancer”, Int J Hematol Oncol. 4: 1: 637-679, 2021.

[510] A. Heidari, E. Locci, S. Raymond, “Advancing Cancer Diagnostics with Artificial Intelligence (AI) and Biomedical
A. Heidari, E. Locci, S. Raymond, “Effective Cancer Treatment Technique in BioSpectroscopy Core Research Laboratory of Cancer Research Institute (CRI) at California South University (CSU)”, Parana Journal of Science and Education (PJSE)-v.7, n.8, (8-45) October 22, 2021.

A. Heidari, E. Locci, S. Raymond, “Artificial Intelligence Program to Support Breast Cancer Screening Using a Set of CT Scans”, Parana Journal of Science and Education (PJSE)- v.7, n.8, (46-83) October 22, 2021.

A. Heidari, E. Locci, S. Raymond, “Implications for Treatment Strategies in Cancer and Infectious Diseases”, J Chem Appl. 3: 1: 121-159, 2021.

A. Heidari, E. Locci, S. Raymond, “Unlocking the Potential of Vaccines Built on Messenger RNA”, J Chem Appl. 3: 1: 160-197, 2021.

A. Heidari, E. Locci, S. Raymond, “Targeting the Prion-Like Aggregation of Mutant p53 to Combat Cancer”, J Chem Appl. 3: 1: 198-236, 2021.

A. Heidari, E. Locci, S. Raymond, “Epigenetic Regulation of Hematopoiesis and Acute Leukemia”, J Chem Appl. 3: 1: 237-275, 2021.

A. Heidari, E. Locci, S. Raymond, “Visualizing Metabolic Processes at the Single-Cell Level Using Genetically Encoded Biosensor and Biomarker”, J Chem Appl. 3: 1: 276-314, 2021.

A. Heidari, E. Locci, S. Raymond, “Pediatric Brain Tumors Diagnosis and Treatment”, J Chem Appl. 3: 1: 315-352, 2021.

A. Heidari, E. Locci, S. Raymond, “Investigation of DNA Damage Induced by Alkylating Agents and Repair Pathways by Cooperating Mechanisms Driving the Formation of Colorectal Adenomas and Adenocarcinomas Using DNA Alkylation and DNA Methylation”, J Chem Appl. 3: 1: 353-394, 2021.

A. Heidari, E. Locci, S. Raymond, “Progress and Challenges of Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer”, J Chem Appl. 3: 1: 395-433, 2021.

A. Heidari, E. Locci, S. Raymond, “A Modernized Screening Technology for Cancer Non-Invasive Diversified Biosensors”, J Chem Appl. 3: 1: 434-472, 2021.

A. Heidari, M. Hotz, N. MacDonald, V. Peterson, A. Caissutti, E. Besana, J. Esposito, K. Schmitt, L.-Y. Chan, F. Sherwood, M. Henderson, J. Kimmel, “A New Strategy to Destroy Cancer Cells Using Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) Nanoparticles and Magnetic Fields under Synchrotron and Synchroncrolotron Radiations”, International Journal of Advanced Chemistry, 9 (2) 122-140, 2021.

A. Heidari, E. Locci, S. Raymond, “A Modernized Screening Technology for Cancer Non-Invasive Diversified Biosensors”, J Chem Appl. 3: 1: 434-472, 2021.

A. Heidari, E. Locci, S. Raymond, “Prostate Cancer: A Rare Brain Cancer in Children”, Parana Journal of Science and Education (PJSE)-v.7, n.9, (244-281) November 12, 2021.

A. Heidari, E. Locci, S. Raymond, “Overcoming Immune Depletion as the Main Goal of Developing New Therapies for Cancer or Severe Viral Infections”, Parana Journal of Science and Education (PJSE)-v.7, n.9, (349-387) November 12, 2021.

A. Heidari, E. Locci, S. Raymond, “Difference between an Optimal Immune Response as Aims to Kill Cancer and an Unwanted Response as Affect Healthy Tissue”, Parana Journal of Science and Education (PJSE)-v.7, n.9, (388-425) November 12, 2021.
