The space of all p-th roots of a nilpotent complex matrix is path-connected

Clément de Seguins Pazzis

March 17, 2022

Abstract

Let p be a positive integer and A be a nilpotent complex matrix. We prove that the set of all p-th roots of A is path-connected.

AMS Classification: 15A24; 54D05.

Keywords: Matrices, Nilpotency, Path-connectedness, Jordan normal form.

1 Introduction

Let U be an open subset of the field \mathbb{C} of complex numbers, $f : U \to \mathbb{C}$ be an analytic function and n be a positive integer. Given a matrix $A \in M_n(\mathbb{C})$, it is natural to ask whether the matrix equation $f(X) = A$, with unknown $X \in M_n(\mathbb{C})$, has at least one solution. By using the fact that X commutes with $f(X)$, and by using the characteristic subspaces of A, this problem can be reduced to the one of deciding whether the equation $g(X) = N$ has a solution, where N is a given nilpotent matrix, and g is a given analytic function.

There is a (not very satisfying) answer to that question, and we shall recall it in short notice. Given a nilpotent matrix $A \in M_n(\mathbb{C})$ and a positive integer k, we denote by $m_k(A)$ the number of Jordan cells of size k in the Jordan normal form of A. The sequence $(m_k(A))_{k \geq 1}$ is called the (Jordan) profile of A. It belongs to the additive semigroup $\mathbb{N}^{(\mathbb{N}^*)}$ of all sequences of non-negative integers.
with finite support and indexed over the positive integers (here, \(\mathbb{N} \) denotes the set of all non-negative integers, and \(\mathbb{N}^* \) the one of all positive integers). More generally, any element of \(\mathbb{N}^{(\mathbb{N}^*)} \) is called a profile. Two nilpotent matrices are similar if and only if they have the same Jordan profile. Throughout the article, profiles will be seen as elements of the abelian group \(\mathbb{Z}^{(\mathbb{N}^*)} \) of all sequences of integers with finite support.

Given \(k \in \mathbb{N}^* \), we denote by \(J_k \in M_k(\mathbb{C}) \) the Jordan cell of size \(k \) (i.e. the matrix of \(M_k(\mathbb{C}) \) in which the entry at the \((i, i+1)\)-spot equals 1 for all \(i \in [1, k-1] \), and all the other entries equal 0), and we denote its profile by \(e_k \) (so that \((e_k)_i = 1 \) if \(i = k \), and \((e_k)_i = 0 \) otherwise). We convene that \(J_0 \) is the 0-by-0 matrix and that \(e_0 \) is the zero sequence in \(\mathbb{N}^{(\mathbb{N}^*)} \).

The following result is folklore:

Lemma 1. Let \(k \) and \(p \) be positive integers. Then \(J_k^p \) is similar to the direct sum of \(k - pa \) copies of \(J_{a+1} \) and of \(p(a+1) - k \) copies of \(J_a \), for every non-negative integer \(a \) such that \(pa \leq k \leq p(a+1) \) (in particular, this holds when \(a \) is the quotient of \(k \) modulo \(p \)).

From there, one proves (see Appendix A for details) that, given a nilpotent matrix \(A \in M_n(\mathbb{C}) \), the equation \(f(X) = A \) has a solution if and only if the profile of \(A \) belongs to the sub-semigroup of \(\mathbb{N}^{(\mathbb{N}^*)} \) generated by the profiles of the form \(r \cdot e_{a+1} + (p-r) \cdot e_a \) – where \(a \) is a non-negative integer, \(p \) is the finite multiplicity of some zero of \(f \), and \(r \in [0, p] \) – and the profile \(e_1 \) if some zero of \(f \) has infinite multiplicity (i.e. \(f \) is constant on the connected component of that zero). In particular, if \(f \) has at least one simple zero then the equation \(f(X) = A \) has a solution for every nilpotent matrix \(A \).

The above characterization is not very convenient though. In very special cases, one can formulate an equivalent one that can easily be tested: a nilpotent matrix \(A \) has a \(p \)-th root if and only if, for all \(k \in \mathbb{N}^* \), the integer \(p - m_k(A) \) is less than or equal to the remainder of \(\sum_{j=k+1}^{+\infty} m_j(A) \) modulo \(p \) provided that this remainder is non-zero (for example, if \(p = 2 \) this means that \(m_k(A) > 0 \) whenever \(\sum_{j=k+1}^{+\infty} m_j(A) \) is odd). Moreover this result holds not only over the field of complex numbers, but over any skew field. If \(f \) has exactly two zeroes, one with multiplicity 2 and one with multiplicity 3 (e.g. if \(f : z \mapsto z^3(z-1)^2 \)), then, given a nilpotent matrix \(A \in M_n(\mathbb{C}) \), the equation \(f(X) = A \) has a solution if and only if there is no pair \((k, l)\) of positive integers for which \(m_k(A) = m_{k+2l}(A) = 0 \).
and $m_{k+i}(A) = 1$ for all $i \in [1, 2l - 1]$. We leave these results as exercises for the reader.

Here, we will stick to the equation $X^p = A$ for a fixed nilpotent complex matrix A and a fixed positive integer p. When this equation has a solution, we are interested in the topological structure of its solution set $A^{1/p}$, i.e. the set of all p-th roots of A. Note that all the matrices in $A^{1/p}$ are nilpotent.

A very ambitious goal is to understand the homotopy type of $A^{1/p}$. As a first step towards that goal, we will consider here its path-connectedness. Here is our main theorem:

Theorem 2. Let p be a positive integer and A be a nilpotent complex matrix. Then the set $A^{1/p}$ is path-connected.

The case $p = 1$ is straightforward. In the remainder of this section, we fix an integer $p > 1$ and a nilpotent matrix $A \in M_n(\mathbb{C})$. Given $m \in \mathbb{N}^{(N^*)}$, we denote by $A^{1/p}_m$ the subset of all $N \in A^{1/p}$ with profile m (of course this subset may be empty). We denote by $P_p(A)$ the set of all profiles m such that $A^{1/p}_m$ is non-empty. Hence, the family $(A^{1/p}_m)_{m \in P_p(A)}$ yields a partition of $A^{1/p}$.

Two profiles m and m' are called p-adjacent, and we write $m \sim_p m'$, when there exist non-negative integers a, k, l such that $p^a \leq k < l \leq p^{a+1}$ and

$$m - m' = \pm(e_k + e_l - e_{k+1} - e_{l-1}).$$

Finally, we denote by $A_p(A)$ the set of all pairs $\{m, m'\}$ of distinct p-adjacent elements of $P_p(A)$. Thus, we have defined a non-oriented graph $(P_p(A), A_p(A))$.

The definition of p-adjacency is motivated by the following basic result:

Lemma 3. Let a, k, l be integers such that $0 \leq pa \leq k < l \leq p(a + 1)$. Then the matrices $(J_k \oplus J_l)^p$ and $(J_{k+1} \oplus J_{l-1})^p$ are similar.

Proof. Denote respectively by r and s the remainders of k and $l - 1$ modulo p. By Lemma 1, we find that $(J_k \oplus J_l)^p$ is similar to the direct sum of $r + (s + 1)$ copies of J_a and of $p - r + (p - s - 1)$ copies of J_a. Likewise, $(J_{k+1} \oplus J_{l-1})^p$ is similar to the direct sum of $(r + 1) + s$ copies of J_a, and of $(p - r - 1) + (p - s)$ copies of J_a. The claimed result ensues.

We are now able to state the three steps of our proof of Theorem 2:

Lemma 4. Let $m \in P_p(A)$. Then the space $A^{1/p}_m$ is path-connected.
Lemma 5. Let \(m, m' \) be adjacent profiles in \(P_p(A) \). Then there exist \(N \in A^{1/p}_m \) and \(N' \in A^{1/p}_{m'} \) together with a path from \(N \) to \(N' \) in \(A^{1/p} \).

Lemma 6. The graph \((P_p(A), A_p(A)) \) is connected.

Combining those three results readily yields Theorem 2.

2 Proof of Theorem 2

Throughout this part, we let \(A \in M_n(\mathbb{C}) \) be a nilpotent matrix and \(p \) be a positive integer.

2.1 Proof of Lemma 4

Let \(m \) belong to \(P_p(A) \). Let \(X \) and \(Y \) belong to \(A^{1/p}_{m} \). The matrices \(X \) and \(Y \) are nilpotent with the same profile, and hence they are similar. Thus we have some \(P \in \text{GL}_n(\mathbb{C}) \) such that \(Y = PXP^{-1} \). Since \(X^p = Y^p = A \), we obtain that \(P \) belongs to the centralizer \(C(A) \) of \(A \) in the algebra \(M_n(\mathbb{C}) \). As \(C(A) \cap \text{GL}_n(\mathbb{C}) \) is a Zariski-open subset of the complex finite-dimensional vector space \(C(A) \), it is path-connected (see Lemma 7.2 in [5]). Choose a path \(Q : t \in [0, 1] \mapsto Q(t) \in C(A) \cap \text{GL}_n(\mathbb{C}) \) from \(I_n \) to \(P \). Then, one checks that \(q : t \in [0, 1] \mapsto Q(t)XQ(t)^{-1} \) is a path from \(X \) to \(Y \), and \(q(t)^p = Q(t)AQ(t)^{-1} = A \) for all \(t \in [0, 1] \). Finally, \(q(t) \) is similar to \(X \) for all \(t \in [0, 1] \), and hence its profile is \(m \). Hence, there is a path from \(X \) to \(Y \) in \(A^{1/p}_m \). This completes the proof of Lemma 4.

2.2 Proof of Lemma 5

As we will see, the proof of Lemma 5 boils down to the following basic result:

Lemma 7. Let \(a, k, l \) be integers such that \(0 \leq pa \leq k < l \leq p(a+1) \). Set \(N := k + l \). Then there exists a path \(\gamma : [0, 1] \to M_N(\mathbb{C}) \) such that:

(i) \(\gamma(0) = J_k \oplus J_l \);

(ii) \(\gamma(1) \) is similar to \(J_{k+1} \oplus J_{l-1} \);

(iii) the mapping \(t \in [0, 1] \mapsto \gamma(t)^p \) is constant.
Proof. We shall think in terms of endomorphisms of \mathbb{C}^N: denote by u the endomorphism of \mathbb{C}^N represented by $J_k \oplus J_l$ in the standard basis $(x_k, \ldots, x_1, y_1, \ldots, y_l)$ of \mathbb{C}^N. We convene that $y_j = 0$ for all $j > l$, and that $x_i = 0$ for all $i > k$. Hence, u maps x_i to x_{i+1} for all $i > 0$, and it maps y_j to y_{j+1} for all $j > 0$. Given $t \in [0,1]$, define u_t as the endomorphism of \mathbb{C}^N on the standard basis by $u_t(y_1) = (1-t)y_2 + tx_1$, and by mapping any other vector z of that basis to $u(z)$. Clearly, $t \in [0,1] \mapsto u_t$ is a path in the space of all endomorphisms of \mathbb{C}^N, and $u_0 = u$.

Next, one sees that u_1 is represented by the matrix $J_{k+1} \oplus J_{l-1}$ in the basis $(x_k, \ldots, x_1, y_1, \ldots, y_l)$.

Next, let $t \in (0,1)$. One checks that $(x_k, \ldots, x_1, (1-t)y_l + tx_{l-1}, \ldots, (1-t)y_2 + tx_1, y_1)$ is a basis of \mathbb{C}^N, and the matrix of u_t in that basis is $J_k \oplus J_l$. Hence, u_t is similar to u_0, and it follows that u_t^p is similar to u_0^p. Besides, Lemma 3 shows that u_t^p is also similar to u_0^p.

Now, for $t \in [0,1]$, denote by U_t the matrix of u_t in the standard basis of \mathbb{C}^N. It follows from the above that $t \in [0,1] \mapsto U_t$ is a path, in the space $M_N(\mathbb{C})$, from $J_k \oplus J_l$ to a matrix that is similar to $J_{k+1} \oplus J_{l-1}$, and that the path $t \in [0,1] \mapsto (U_t)^p$ takes its values in the similarity class $S(U_0^p)$ of the matrix U_0^p.

It is folklore that the mapping $P \in GL_N(\mathbb{C}) \mapsto PU_0^pP^{-1} \in S(U_0^p)$ is a fibration (it is a principal fibre bundle whose structural group is the group of all invertible elements of the centralizer of U_0^p): see Appendix B for a short elementary proof, and the combination of Theorem 1.4.3 and Proposition 1.4.6 of [1] and Proposition 8.3 of [2] for a more sophisticated one. Hence, there is a path $q : [0,1] \rightarrow GL_N(\mathbb{C})$ such that

$$\forall t \in [0,1], \quad U_t^p = q(t)U_0^p q(t)^{-1} \quad \text{and} \quad q(0) = I_N.$$

Finally, we consider the path $\gamma : t \in [0,1] \mapsto q(t)^{-1}U_t q(t) \in M_N(\mathbb{C})$. The above properties of q show that $t \mapsto \gamma(t)^p$ is constant. Next, $\gamma(0) = U_0 = J_k \oplus J_l$. Finally, $\gamma(1)$ is similar to U_1 and hence to $J_{k+1} \oplus J_{l-1}$. \qed

Now, we can prove Lemma 5. Let m, m' be distinct adjacent profiles in $P_p(A)$. We wish to prove that some element of A_1^1/m is path-connected in A_1^1/p to some element of A_1^1/m'. Without loss of generality, we can assume that there is a non-negative integer a together with elements $k < l$ of $[pa, p(a+1)]$ such that $m - m' = e_k + e_l - e_{k+1} - e_{l-1}$. As $m \neq m'$, we must have $l > k + 1$, and it follows that $m_k > 0$ and $m_l > 0$. Let us choose $N \in A_1^1/m$. Then N has at
least one Jordan cell of each size k and l. Hence, $N = P(B \oplus J_k \oplus J_l)P^{-1}$ for some nilpotent matrix B and some $P \in \text{GL}_n(\mathbb{C})$. The profile of B is obviously $m - e_k - e_l$.

Let us take a path γ that satisfies the conclusion of Lemma 7 for the pair (k, l): then, $q : t \in [0, 1] \mapsto P(B \oplus \gamma(t))P^{-1}$ is a path in $M_n(\mathbb{C})$, and we see from condition (iii) in Lemma 7 that $t \mapsto q(t)p$ is constant with value $q(0)p = Np = A$. In other words, q is a path in $A^{1/p}$. Finally, $q(1)$ is similar to $B \oplus \gamma(1)$, and hence to $B \oplus J_{k+1} \oplus J_{l-1}$, whose profile equals $(m - e_k - e_l) + e_{k+1} + e_{l-1} = m'$. Hence, $q(1) \in A^{1/p}_{m'}$. This completes the proof of Lemma 5.

2.3 Proof of Lemma 6

We start with some preliminary notation. Given an element $m \in \mathbb{Z}(N^*)$, we set $S(m) := \sum_{k=1}^{+\infty} km_k$ (called the size of m), and $m^{[p]} := \left(\sum_{p<k<p} (p - |k|) m_{pa+k} \right)_{a \geq 1}$, which is an element of $\mathbb{Z}([N^*)$. Note that both maps $S : \mathbb{Z}(N^*) \rightarrow \mathbb{Z}$ and $m \in \mathbb{Z}([N^*) \mapsto m^{[p]} \in \mathbb{Z}([N^*)$ are group homomorphisms.

Using the results recalled in the introduction, one sees that if m is the profile of some nilpotent matrix N, then $m^{[p]}$ is the profile of N^p, while $S(m)$ is obviously the number of rows of N, and hence $S(m^{[p]}) = S(m)$. Besides, using Lemma 3, we find that $m^{[p]} = (m')^{[p]}$ for any two p-adjacent profiles m and m'.

Given profiles m and m', a p-chain of profiles from m to m' is a list $(a^{(0)}, \ldots, a^{(N)})$ of profiles such that $a^{(i)}_p \sim a^{(i+1)}_p$ for all $i \in [0, N-1]$, and $m = a^{(0)}$ and $m' = a^{(N)}$.

From there, Lemma 6 can be seen as a reformulation of the following result:

Lemma 8. Let m, m' be two profiles such that $m^{[p]} = (m')^{[p]}$. Then there is a p-chain of profiles from m to m'.

Proof. Note that the assumptions yield $S(m) = S(m^{[p]}) = S((m')^{[p]}) = S(m')$. We will prove the result by induction on the size of m.

6
The result is obvious if \(S(m) = 0 \): in that case both \(m \) and \(m' \) equal the zero sequence, and we simply take the trivial chain \((m)\). Assume now that \(S(m) > 0 \).

Assume first that there exists an integer \(k \geq 1 \) such that \(m_k > 0 \) and \(m'_k > 0 \). Then \(m - e_k \) and \(m' - e_k \) obviously satisfy the assumptions, and their size equals \(S(m) - k \). By induction, there is a \(p \)-chain \((a^{(0)}, \ldots, a^{(N)})\) of profiles from \(m - e_k \) to \(m' - e_k \). Clearly, \((a^{(0)} + e_k, \ldots, a^{(N)} + e_k)\) is a \(p \)-chain of profiles from \(m \) to \(m' \).

Hence, in the remainder of the proof we assume that \(m_k m'_k = 0 \) for all \(k \geq 1 \). Denote by \(q \) the greatest positive integer such that \(m_q + m'_q > 0 \). Without loss of generality, we can assume that \(m'_q > 0 \) (and hence \(m_q = 0 \)). Denote by \(a \) the least (non-negative) integer such that \(q \in \left[p a, p(a + 1)\right] \), so that \(q > p a \). Hence, \(m_{a+1}^q = (m'_a)^q \geq q - p a \). In particular, \(m_k > 0 \) for some \(k \in \left[p a + 1, p(a + 1)\right] \), and we consider the greatest such integer \(k \). Note that \(p a < k < q \). If \(m_k > 1 \), we note that \(m - 2 e_k + e_{k+1} + e_{k-1} \) is still a profile that is \(p \)-adjacent to \(m \). If \(m_k = 1 \), then having \(m_{a+1}^q \geq q - p a \) we must also have \(m_l > 0 \) for some \(l \in \left[p a + 1, k - 1\right] \), and then we note that \(m - e_k - e_l + e_{k+1} + e_{l-1} \) is a profile. In any case, we have found a profile \(a^{(k+1)} \) that is \(p \)-adjacent to \(m \) and for which \(k + 1 \) is the greatest integer \(i \) such that \(a^{(k+1)} \) is \(\geq 0 \). Continuing by finite induction, we create a \(p \)-chain \((a^{(k)}, a^{(k+1)}, \ldots, a^{(q)})\) of profiles from \(m \) to some profile \(a^{(q)} \) such that \((a^{(q)})^q > 0 \). Hence \((a^{(q)})^p = \cdots = a^{(k)})^p = m^p = (m')^p \). As \((a^{(q)})^q > 0 \), the first case tackled in the above yields a \(p \)-chain of profiles from \(a^{(q)} \) to \(m' \). Linking those \(p \)-chains yields a \(p \)-chain of profiles from \(m \) to \(m' \).

Lemmas 4 to 6 are now proved, and hence Theorem 2 is established.

3 Further questions

Now that Theorem 2 has been proved, we wish to suggest several related open problems. First, given an analytic function \(f : U \to \mathbb{C} \), what are the nilpotent complex matrices \(A \) for which the set of all solutions of the equation \(f(X) = A \) is path-connected? More precisely, is there a simply characterization of such matrices in terms of the profile of \(A \) and the zeroes of \(f \) (and their multiplicities)?

Next, given a positive integer \(p \), we wonder about the homotopy type of \(A^{1/p} \). For example, if \(A = 0 \) then \(A^{1/p} \) is contractible (since it is star-shaped around 0). However, for \(E := \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \), one checks that \(E^{1/2} \) is the set of all matrices
of the form \[
\begin{bmatrix}
0 & x & y \\
0 & 0 & x^{-1} \\
0 & 0 & 0
\end{bmatrix},
\] a space that is homeomorphic to \((\mathbb{C} \setminus \{0\}) \times \mathbb{C}\) and hence homotopy equivalent to the circle \(S^1\) (and not contractible!). Is there a simple way to compute the homotopy type of \(A^{1/p}\) as a function of \(p\) and the profile of \(A\)? Computing the fundamental group of \(A^{1/p}\) would be interesting, for a start.

There are other interesting open questions related to the real and quaternionic cases. The set of all square roots of \(E\) with real entries is homeomorphic to \((\mathbb{R} \setminus \{0\}) \times \mathbb{R}\), and hence it has exactly two path-connected components. Is there a sensible way to compute the number of path-connected components of the set of all \(p\)-th roots of \(A\) (with real entries) as a function of \(p\) and of the profile of \(A\)? In that prospect, it is worthwhile to note that the real equivalent of Lemmas 5 and 6 holds (with the same proof): the only step that fails is the real equivalent of Lemma 4. Nevertheless, the set of all real \(p\)-th roots of \(A\) is a real affine variety, and hence it has finitely many path-connected components (alternatively, one can adapt the proof of Lemma 4 to yield that \(A^{1/p}\) has finitely many path-connected components, using the fact that \(C(A) \cap GL_n(\mathbb{R})\) is a Zariski open subset of a finite-dimensional real vector space, see [4], Section 2.4).

Finally, there are similar issues in the quaternionic case: in that one however we have not succeeded in finding a single example of a nilpotent quaternionic matrix \(A\) and of a positive integer \(p\) such that the set of all \(p\)-th roots of \(A\) is not path-connected.

Appendix

A When does the equation \(f(X) = N\) have a solution?

Let \(U\) be an open subset of \(\mathbb{C}\) and \(f : U \to \mathbb{C}\) be an analytic function. Let \(N \in M_n(\mathbb{C})\) be nilpotent. We wish to characterize the existence of a solution to the equation \(f(X) = N\) with unknown \(X \in M_n(\mathbb{C})\).

Lemma 9. Let \(N \in M_n(\mathbb{C})\) be a Jordan cell and \(x\) be a zero of \(f\) with finite multiplicity \(p\). Write \(n = mp + r\) the Euclidean division of \(n\) by \(p\). Then \(f(xI_n + N)\) is similar to the direct sum of \(r\) Jordan cells of size \(m + 1\) and of \(p - r\) Jordan cells of size \(m\).

Proof. This result is known by Lemma 4 if \(f : z \mapsto (z - x)^p\), in which case \(f(xI_n + N) = X_1 \oplus \ldots \oplus X_r\), where \(X_i = (xI_{m+1} + N_i)\) for some matrices \(N_i\) of size \(m + 1\). If \(f : z \mapsto (z - x)^p\), then \(f(xI_n + N) = (xI_n + N)^p\), which is similar to \(X_1 \oplus \ldots \oplus X_r\), where \(X_i = (xI_{m+1} + N_i)\) for some matrices \(N_i\) of size \(m + 1\).
In the general case we factorize \(f : z \mapsto (z - x)^pg(z) \) for some analytic function \(g \) on \(U \). Using the commutation of \(P := g(xI_n + N) \) with \(N \), we see that \(N^pP \) is nilpotent and \(\text{rk}((N^pP)^k) = \text{rk}((N^p)^k P^k) = \text{rk}((N^p)^k) \) for every non-negative integer \(k \). Classically, the similarity class of a nilpotent matrix \(M \) is characterized by the sequence of ranks \((\text{rk}(M^k))_{k \geq 0} \), and hence \(N^pP \simeq N^p \), which completes the proof.

If, on the other hand, \(x \) is a zero of \(f \) with infinite multiplicity (i.e. \(f \) vanishes on a whole neighborhood of \(x \)) then \(f(xI_n + N) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(x)}{k!} N^k = 0 \) for every nilpotent matrix \(N \) of \(M_n(\mathbb{C}) \), so \(f(xI_n + N) \) is the direct sum of \(n \) Jordan cells of size 1.

Now, let \(X \in M_n(\mathbb{C}) \) be such that \(f(X) = N \). The eigenvalues of \(f(X) \) are the images under \(f \) of those of \(X \), and hence the eigenvalues of \(X \) are zeroes of \(f \). Using the Jordan reduction theorem, we obtain

\[
X \simeq (x_1 I_{d_1} + N_1) \oplus \cdots \oplus (x_p I_{d_p} + N_p)
\]

where \(x_1, \ldots, x_p \) are zeroes of \(f \) and \(N_1, \ldots, N_p \) are Jordan cells with respective positive sizes \(d_1, \ldots, d_p \). Therefore

\[
N = f(X) \simeq f(x_1 I_{d_1} + N_1) \oplus \cdots \oplus f(x_p I_{d_p} + N_p)
\]

and it follows that the Jordan profile of \(N \) is the sum of the Jordan profiles of the matrices \(f(x_k I_{d_k} + N_k) \). Using Lemma 9 and the remark thereafter, we deduce the “only if” part in the following statement:

Theorem 10. Let \(N \in M_n(\mathbb{C}) \) be nilpotent. The following conditions are equivalent:

(i) There exists a matrix \(X \in M_n(\mathbb{C}) \) such that \(f(X) = N \).

(ii) The Jordan profile of \(N \) belongs to the sub-semigroup of \(\mathbb{N}^{(N^p)} \) generated by the elements of the form \((p - r) \cdot e_a + r \cdot e_{a+1} \) where \(p \) is the (finite) multiplicity of some zero of \(f \), \(a \) is an arbitrary non-negative integer and \(r \) belongs to \([0, p]\), together with the additional element \(e_1 \) if \(f \) has a zero with infinite multiplicity.

The “if” part of the above statement is proved in a similar fashion as the “only if” part.
B The fibration $P \mapsto PAP^{-1}$

Here, \mathbb{F} denotes one of the fields \mathbb{R} or \mathbb{C}. Let $A \in M_n(\mathbb{F})$. Denote by $C(A)$ the centralizer of A in the algebra $M_n(\mathbb{F})$, by $C(A)^\times$ its group of invertible elements, and by $S(A)$ the similarity class of A. We wish to prove that the mapping $\pi : P \in GL_n(\mathbb{F}) \mapsto PAP^{-1} \in S(A)$ defines a $C(A)^\times$-principal bundle. For the continuous left-action $(P, M) \mapsto PMP^{-1}$ of $GL_n(\mathbb{F})$ on $M_n(\mathbb{F})$, the stabilizer of A is $C(A)^\times$, and hence classically it suffices to prove that the mapping π admits a local cross-section around A.

The proof is based upon the following elementary lemma:

Lemma 11. Let V be a finite-dimensional vector space over \mathbb{F}. Let $u \in \text{End}(V)$, and let $x_0 \in V$ be a non-zero vector such that $u(x_0) = 0$. Then there exists a neighborhood U of u in $\text{End}(V)$, together with a continuous mapping $f : U \to V$ such that $v[f(v)] = 0$ for all $v \in U$ with the same rank as u, and $f(u) = x_0$.

Proof. Denote by n the dimension of V, and by p the rank of u. Let us extend x_0 first into a basis (e_{n-p}, \ldots, e_n) of the kernel of u, with $e_n = x_0$, and then into a basis $B := (e_1, \ldots, e_n)$. We extend the linearly independent p-tuple $(u(e_1), \ldots, u(e_p))$ into a basis $C := (u(e_1), \ldots, u(e_p), f_{p+1}, \ldots, f_n)$ of V. In the bases B and C, the matrix of u reads

$$\begin{bmatrix} I_p & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & 0_{(n-p) \times (n-p)} \end{bmatrix}.$$

For any $v \in \text{End}(V)$, let us write its matrix in the bases B and C as

$$M(v) = \begin{bmatrix} A(v) & C(v) \\ B(v) & D(v) \end{bmatrix}$$

along the same pattern. The mapping $v \in \text{End}(V) \mapsto A(v) \in M_p(\mathbb{F})$ is linear, and hence continuous. It follows that

$$U := \{ v \in \text{End}(V) : A(v) \in GL_p(\mathbb{F}) \}$$

is an open subset of $\text{End}(V)$ that contains u.

Next, let $v \in U$. Consider the invertible matrix

$$N(v) := \begin{bmatrix} I_p & -A(v)^{-1}C(v) \\ 0_{(n-p) \times p} & I_{n-p} \end{bmatrix} \in \text{GL}_n(\mathbb{F}),$$

10
so that \(M(v)N(v) = \begin{bmatrix} A(v) & 0_{p \times (n-p)} \\ B(v) & 0 \end{bmatrix} \) has the same rank as \(M(v) \). Assume that \(v \) has rank \(p \). Since \(A(v) \) has rank \(p \), it follows that the last \(n - p \) columns of \(M(v)N(v) \) equal zero, and in particular \(M(v) \) annihilates the last column of \(N(v) \).

For \(v \in U \), denote by \(f(v) \) the vector of \(V \) whose matrix in \(\mathcal{B} \) is the last column of \(N(v) \); obviously \(f : U \to V \) is continuous, and the previous study shows that \(v[f(v)] = 0 \) for all \(v \in U \) with rank \(p \). Finally, \(f(u) = e_n = x_0 \). □

Remark 1. Set \(p := \text{rk } u \) and define \(\text{End}_p(V) \) as the set of all endomorphisms of \(V \) with rank \(p \), and \(\xi : (u, x) \in \text{End}_p(V) \times V \mapsto u \in \text{End}_p(V) \) as the trivial vector bundle with fiber \(V \) and base space \(\text{End}_p(V) \). The mapping \(f : (u, x) \mapsto (u, u(x)) \) is obviously a \(\text{End}_p(V) \)-bundle morphism from \(\xi \) to itself with constant rank \(p \), therefore its kernel, which equals

\[
\left\{ \begin{array}{l}
\{(u, x) \in \text{End}_p(V) \times V : u(x) = 0\} \\
(u, x) \end{array} \right\} \to \text{End}_p(V) \to u,
\]

is also a vector bundle: see [3], Chapter 3 Theorem 8.2. The above result can then be obtained by using a local trivialization of this bundle.

We are now ready to construct the claimed local cross-section. Consider the endomorphism \(\text{ad}_A : M \mapsto AM - MA \) of the vector space \(\mathcal{M}_n(\mathbb{F}) \). Denote by \(p \) its rank. applying the above lemma, we find a neighborhood \(U \) of \(\text{ad}_A \) in \(\text{End}(\mathcal{M}_n(\mathbb{F})) \) together with a continuous mapping \(f : U \to \mathcal{M}_n(\mathbb{F}) \) such that \(f(\text{ad}_A) = I_n \) and \(v(f(v)) = 0 \) for all \(v \in U \) with rank \(p \). The mapping

\[\Phi : B \in \mathcal{M}_n(\mathbb{F}) \mapsto [M \mapsto BM - MA] \in \text{End}(\mathcal{M}_n(\mathbb{F})) \]

is affine, and hence continuous: thus \(U_0 := \Phi^{-1}(U) \) is a neighborhood of \(A \) in \(\mathcal{M}_n(\mathbb{F}) \). We set

\[g : B \in U_0 \cap S(A) \mapsto f(\Phi(B)) \in \mathcal{M}_n(\mathbb{F}), \]

so that \(g(A) = I_n \). Since \(g \) is continuous, \(U'_0 := g^{-1}(\text{GL}_n(\mathbb{F})) \) is a neighborhood of \(A \) in \(S(A) \).

We will conclude the proof by showing that the restriction \(g|_{U'_0} \) is a local cross-section for the mapping \(P \in \text{GL}_n(\mathbb{F}) \mapsto PAP^{-1} \in S(A) \).

Let \(B \in U'_0 \). Since \(B \in S(A) \), there is a matrix \(Q \in \text{GL}_n(\mathbb{F}) \) such that \(B = QAQ^{-1} \). It follows that \(\Phi(B) = L_Q \circ \text{ad}_A \circ L_Q^{-1} \) where \(L_N : M \mapsto NM \) for all \(N \in \mathcal{M}_n(\mathbb{F}) \). Hence, \(\text{rk } \Phi(B) = \text{rk}(\text{ad}_A) = p \). It follows that \(\Phi(B)[g(B)] = 0 \), that is
$Bg(B) = g(B)A$. Moreover, $g(B)$ is invertible, and hence $B = g(B)Ag(B)^{-1}$, as claimed.

References

[1] T. Bröcker and T. tom Dieck, *Representations of compact Lie groups*. Graduate Texts in Mathematics 98, Springer-Verlag, Berlin Heidelberg New York, 1985.

[2] J. Humphreys, *Linear algebraic groups*. Graduate Texts in Mathematics 21, Springer-Verlag, Berlin Heidelberg New York, 1975.

[3] D. Husemoller, *Fibre bundles, 3rd ed.*, Graduate Texts in Mathematics 20, Springer-Verlag, Berlin Heidelberg New York, 1994.

[4] J. Bochnak, M. Coste, M.-F. Roy, *Real algebraic geometry*, Ergebnisse der Mathematik und ihrer Grenzgebiete 36, Springer-Verlag, Berlin Heidelberg New York, 1998.

[5] I.R. Shafarevich, *Basic algebraic geometry 2, 3rd ed.*, Springer-Verlag, Berlin Heidelberg New York, 2013.