Electromagnetically induced transparency based on magnetic toroidal mode of dielectric reverse-symmetric spiral metasurfaces

Tao Fu*, Ziquan Zhou, Daofan Wang, Tianbo Yang, Haiou Li* and Yonghe Chen*

Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin, People’s Republic of China

* Authors to whom any correspondence should be addressed.
E-mail: ft85@guet.edu.cn, lihaiou@guet.edu.cn and yhchen@guet.edu.cn

Keywords: electromagnetically induced transparency, magnetic toroidal dipole, multipole decomposition, coupling

Abstract
The intriguing properties of the toroidal mode (TM) resonance can potentially promote a low-loss light–matter interaction. This study proposes an electromagnetically induced transparency (EIT) resonance with a high quality factor, which can reach 7798, and low mode volume can reach $0.009 \, \mu m^3$, high contrast ratio can reach nearly 100%, in the near-infrared region, which is generated by the magnetic TM in a reverse-symmetric coupling spiral metasurface. A two-oscillator model can only explain the influence of near-field coupling at the EIT point for weak coupling. Moreover, a multipole decomposition method shows that the excitation mechanism of EIT resonances originates from the destructive interference between the subradiant modes (magnetic toroidal dipole-electric quadrupole) and magnetic dipole resonance. Consequently, a new general extinction spectrum interference model is applied to fit all coupling conditions for both weak and strong coupling results that perfectly correspond to the multipole decomposition method. The results of this study could be useful in the analysis and understanding of the electromagnetic coupling characteristics of nanoparticles and provide a design approach for novel metasurfaces for low-loss optical applications.

1. Introduction
Electromagnetically induced transparency (EIT) resonances is a special case of Fano resonances with sharp lines, which play a key role in various applications, such as in nonlinear optics [1], supersensitive sensors [2, 3], lasers [4], and optical switching [5–7]. The physical mechanism of EIT, similar to Fano resonance, originates from the coupling effect of dark and bright modes. EIT can be viewed as a special phenomenon when the frequencies of broad and narrow spectrum resonances match each other [8]. Many plasmonic metamaterials supporting Fano and EIT resonances provide strong electromagnetic field confinement at a deep sub-wavelength scale [9]. However, these metamaterials have two disadvantages: first, an electric resonance is stronger than a magnetic resonance, which can cause stronger radiation losses. Second, the intrinsic Ohmic loss cannot be ignored, especially in the optical or near-infrared regions [2]. These disadvantages hinder the use of these materials in photonic integrated circuits or nonlinear applications that require high confinement and low losses. By contrast, a promising solution for all-dielectric metasurfaces composed of high-refractive-index and low-loss materials can support electrical and magnetic resonance with strong light confinement, small dissipation, and low thermal conductivity [10]. It is possible to flexibly design the novel magnetic resonance optical phenomenon; this has been widely studied, for example, in optical cloaking [11–13], dichroism [14], complete reflection [15, 16], and narrowband filtering [17]. However, the incident electromagnetic field is localized inside dielectric particles, which is not conducive to an interaction with the external environment [18]. A split gap can be introduced to enhance the near field...
to the outside of the nanocavity. However, this will cause energy leakage and a rapid decay in the high quality factor (Q-factor) [18, 19].

Recently, high electromagnetic field confinement, small radiation loss, and weak coupling in the free space of toroidal mode (TM) have attracted a lot of significant attentions [20–22]. Together, an electric dipole (ED), a magnetic dipole (MD) and a toroidal dipole (TD) constitute a basic electromagnetic excitation [23]. Recent applications take advantage of such properties in nanoswitches [5, 17] and enhanced nonlinear effects [1, 24]. In addition, there have been extensive investigations in exploring of the instrumentation techniques of toroidal metastructures toward high-performance metadevices, such as polarization converters [25, 26], low threshold nanolaser [4] and ultrasensitive immunobiosensors [27]. However, a TD cannot be represented by a standard multipole expansion and is often masked by much stronger ED and MD resonances, making its characteristic response extremely challenging [28, 29]. The most basic TM components are a magnetic toroidal dipole (MTD) and an electric toroidal dipole (ETD) [30]. Specifically, the ETD is produced by a polar current (current flowing along the torus meridian) and is equivalent to a closed loop of magnetic dipoles in a head-to-tail arrangement. Similarly, MTD can be regarded as a closed loop of electric dipoles in a head-to-tail arrangement [26, 30]. Hence, MTD and ETD exhibit a high electromagnetic field confinement, small radiation loss, and weak coupling in free space [31], which is conducive to the formation of resonance with a high Q-factor [32]. Some reports have been published on ETD Fano [33–35] and EIT resonance [17]. However, so far, there are only a few studies on the realization of MTD EIT resonance.

This study proposes an all-dielectric metasurface with an MTD to support EIT with a high Q-factor resonance in the near-infrared region. The metasurface is composed of a periodic reverse-symmetric coupled dielectric spiral. The near-field distribution of the MTD indicates that the energy is strongly localized at the EIT peak point. A proposed model is applied to analyze the transverse coupling in the two-oscillator model (TOM) to understand the EIT mechanism. For further suitability to strong coupling conditions, a multipole decomposition shows that the EIT resonance is caused by the destructive interference among the sub-radiant modes (MTD-electric quadrupole (EQD)) and the MD resonance of radiation. Then, a more general EIT extinction spectrum interference model (ESIM) explains the underlying physics and all simulated results of a finite element method. The EIT resonance reveals the complexity and diversity of the near-field coupling of electromagnetic modes in a dielectric coupled spiral structure. The intriguing properties of EIT may potentially facilitate light–matter interaction at a sub-wavelength scale, such as in sensors and slow light.

2. Simulation results and theoretical analysis

The MTD metasurface is composed of two periodically arranged Archimedes spirals of silicon (the refractive index of silicon was taken from reference [36]) placed over a standard silica substrate (refractive index $n_{SiO_2} = 1.45$), as shown in figure 1. The two spirals have a 180° rotational symmetry about the z axis. The geometric parameters of the metasurface in figures 1(a) and (b) are as follows: substrate height $H = 400$ nm, period $P_x = P_y = 900$ nm, inner radius $r = 5$ nm, spiral arm width $w = 45$ nm, gap $g = 21$ nm, the silicon thickness $h = 112$ nm, distance between two spiral centers $d = 208$ nm, desired number of turns $n = 2.5$, spiral growth rate $b = (w + g)/(2\pi)$. A unit cell of the metasurface is simulated using COMSOL Multiphysics®, a commercial software, and a finite-difference time-domain software from Lumerical Solutions. The unit cell is surrounded by air and excited by a plane wave polarized along the x axis with a propagation vector along the negative z axis. Floquet-periodic boundary conditions and perfectly matched layers are applied to the x–z and y–z planes and z axis, respectively.
Figure 2. EIT response of the metasurface. (a) Simulated reflection (blue lines) and transmission (red lines) spectra of the metasurface. (b), (d), and (f) Normalized magnetic field profile at dip1, dip2, and peak in the x–y plane bisecting the spiral metasurface. The color maps and black cones at EIT dip and peak spectral positions represent $|H|/|H_0|$ and magnetic field vector profile, respectively. The black arrows show the directions of the magnetic field. (c), (e), and (g) Normalized electric field profile at dip1, dip2, and peak in the y–z plane bisecting the spiral metasurface. The color maps and black cones at EIT dip and peak spectral positions represent E_z and electric field vector profile, respectively. The red arrows show the directions of the electric field. (h) Artistic image of MD generated because of the circulating current. (i) Artistic image of MTD generated because of the circulating electric field produced by a magnetic induction in the spiral configuration.

Table 1. The list for the performances of metasurface Q-factor including type of metasurface.

References	Year	Type of metasurface	Q-factor
[37]	2020	Spoof surface plasmons EIT	<100
[39]	2019	EIT resonance	270
[2]	2019	ETD Fano resonance	3189
[17]	2020	ETD–EIT resonance	4364
[40]	2021	Fano and EIT resonance–BIC	1370/816
[10]	2021	TD Fano resonance–BIC	120000
This work	—	MTD–EIT resonance	7798

The numerically calculated reflections and transmissions are shown in figure 2(a). An EIT with a high Q-factor (the ratio between the resonant wavelength λ_0 and the full width at half-maximum $\Delta \lambda$ of a transmission peak) of 7798 is realized in the near-infrared region, which is much higher than the Q-factor in the latest reported plasmonic [37, 38] and all-dielectric metasurface studies [39, 40], as depicted in table 1. The effective mode volume is calculated according to standard Purcell definition by using the COMSOL Multiphysics, $V_{\text{eff}} = \int_V \varepsilon(r)|E(r)|^2 dV / \max \left[\varepsilon(r)|E(r)|^2\right]$ [41], where $\varepsilon(r)$ is the dielectric constant, $E(r)$ is the electric field strength and V is a volume encompassing the resonator with a boundary in the radiation zone of the cavity mode. According to the above expression, the numerically calculated normalized effective mode volume of MTD–EIT is 0.009 μm3. The low mode volume and optimized Q/V_{eff} metasurface reveal enhanced sensitivity for ultrathin analyte overlay deposited on the metasurface, indicating that the designed metasurface is expected to enhance light–matter interactions. The spectral contrast ratio $|T_{\text{peak}} - T_{\text{dip}}| / |T_{\text{peak}} + T_{\text{dip}}| \times 100\%$ reaches approximately 100%, where T_{peak} and T_{dip} are the peak and dip values of the EIT resonance, respectively. To explore the EIT resonant responses more thoroughly, the electric field and magnetic field distributions of the EIT dip1, dip2, and peak (marked in figure 2(a)) are shown in figures 2(b)–(g). As shown in figures 2(b)–(e), the magnetic field for the two dips of the EIT resembles the MD resonance along the y axis in figures 2(b) and (d) (black arrows) [32, 42]. The electric field shows two weak opposite EDs with an insignificant coupling, as seen in figures 2(c) and (e) (red arrows). At the peak, figure 2(f) shows that a couple of opposite vortex magnetic fields cause two robust EDs (figure 2(g) with red arrows) to form the MTD (an artistic representation of figure 2(i)). In essence, although the electric field distribution forms a vortex in the two dips (figures 2(c) and (e)), its strength is not sufficient to form the MTD. Therefore, the high Q-factor of the EIT resonance is effectively from the excitation of the MTD and MD destructive interferences to suppress the radiation loss and non-radiative Ohmic loss [43, 44], which is different from previous studies of plasmonic spiral structures.
Figure 3. (a) Schematic diagram for the EIT in a prototype classical three-level system. (b) Simulated transmission spectra of single US (green solid line), DS (red solid line), and coupling spiral of the EIT (blue solid line) metamaterial structures. The black star indicates the origin coordinates.

Figure 4. (a) Transmission with numerical simulations (blue solid line) and theoretical calculations (red dashed line) with \(d \) varying from 178 to 208 nm. (b) Extracted FEM numerical simulations coupling parameters and damping as a function of lateral displacement \(d \) according to formula (1)—\(\text{Im}\{\xi\} \). (c) Correspondingly draw the electric field line distribution diagram on the color diagram of the magnetic energy density (logarithmic scale) at the resonance peaks of \(d = 208 \) nm, \(d = 190 \) nm, and \(d = 178 \) nm.

To further understand the underlying physical properties of the two modes, a theoretical model is introduced in the following section [37, 47].

The physical characteristics of the EIT can be analogized as an atomic system in figure 3(a) [48, 49]. \(|0\rangle \) is the ground state. Two higher states \(|1\rangle \) and \(|2\rangle \) are assumed to be the down spiral structure (DS) and the upper spiral structure (US), respectively. \(|0\rangle - |1\rangle \) and \(|0\rangle - |2\rangle \) are considered to be the excitation of the bright and dark modes in the EIT system. The transition rate \(\kappa \) between states \(|1\rangle \) and \(|2\rangle \) is related to the coupling strength between the two modes [48]. Consequently, in order to verify the destructive interference
recent studies [9, 50]. Successively with an increase in the bright mode and dark mode, respectively, which demonstrates that the destructive interference of two oscillator DSs and oscillator USs, respectively. Therefore, the resonances of DS and US are regarded as that the transmission of the DS has a resonant dip at 1084 nm, whereas the transmission of the US does not between the DS and the US, their transmissions are calculated, as shown in figure 3(b). It is clearly observed that the electromagnetic wave is expressed in terms of the displacement as [37, 47]:

\[P = \int \mathbf{j} d^3r \]

\[M = \frac{1}{2} \int \mathbf{(r \times j)} d^3r \]

\[T = \frac{1}{2} \int \mathbf{[(r \cdot j - 2r^2)]} d^3r \]

\[G = -\frac{1}{2} \int r^2 (r \times j) d^3r \]

\[Q_{\alpha\beta} = \frac{1}{2} \int \mathbf{[r \times j_\alpha + r_j \times j + \frac{2}{3} \delta_{\alpha\beta} (r \cdot j)]} d^3r \]

\[M_{\alpha\beta} = \frac{1}{2} \int \mathbf{[(r \times j) r_\alpha + r_\alpha (r \times j)]} d^3r \]

\[\mathbf{[1]} \]

\[\mathbf{[2]} \]

\[\mathbf{[3]} \]

where \(E \) and \(\mathbf{B} \) are the incident electromagnetic field, \(\mathbf{q}_b \) and \(\mathbf{q}_d \), \(m_b \) and \(m_d \), \(\omega_b \) and \(\omega_d \), and \(\gamma_b \) and \(\gamma_d \) represent the effective charges, effective masses, resonance angular frequencies and damping rates of the oscillator DSs and oscillator USs, respectively. \(q_d = q_d / A \) and \(m_d = m_d / B \) are substituted into the coupled differential equations (1) and (2). After solving equations (1) and (2), the effective electric polarizability of the electromagnetic wave is expressed in terms of the displacement as [37, 47]:

\[\xi_{\text{eff}} = \frac{\mathbf{q}_b \mathbf{S}_b + \mathbf{q}_d \mathbf{S}_d}{\varepsilon_0 E} = \xi_R + i \xi_I = \frac{K}{A^2B} \left[\frac{A (B + 1) \kappa^2 + A^2 \left(\omega^2 - \omega_d^2 \right) + B^2 \left(\omega^2 - \omega_b^2 \right)}{\kappa^2 - \left(\omega^2 - \omega_b^2 + i \omega \gamma_b \right) \left(\omega^2 - \omega_d^2 + i \omega \gamma_d \right)} \right] = \frac{A^2 \gamma_d + B \gamma_b}{\kappa^2 - \left(\omega^2 - \omega_b^2 + i \omega \gamma_b \right) \left(\omega^2 - \omega_d^2 + i \omega \gamma_d \right)}, \]

where \(\xi_R \) represents the dispersion and \(\xi_I \) gives the absorption within the medium. The simulated transmission (blue solid line) and fitting curve (red dashed line) are shown in figure 4(a). It is evident that the analytical fitting curve is in good agreement with the simulation results. The results show that the EIT is from the coupling between the DS and US modes. In figure 4(b), the coupling strength \(\kappa \) decreases successively with an increase in \(d \) from 178 to 208 nm, which can reduce the loss and is consistent with recent studies [9, 50]. \(\gamma_d \) decreases exponentially as \(d \) increases from 178 to 208 nm, whereas \(\gamma_b \) has a negligible change. In addition, \(\gamma_d \) is nearly 2228 times smaller than \(\gamma_b \) at \(d = 208 \) nm, which indicates that

![Figure 5. Scattered power (logarithmic scale) for the six major multipole moments including the ED, the MD, \(x \) component of the MTD (MTDx), EQD, and MQD.](image-url)
Figure 6. (a) Transmission calculated with FEM numerical simulations (blue solid line) and theoretical calculations (red dashed line) with \(d\) varying from 178 to 208 nm. (b) Extracted FEM numerical simulations frequency \(\omega_j\) and damping \(\Gamma_j\) as a function of lateral displacement \(d\) according to formula ESIM. (c) FEM numerical simulations for scattering power of MTD\(x\) and \(Q = \omega_j/\Gamma_j\) as a function of lateral displacement \(d\).

the radiation damping in the metasurface system is significantly suppressed [51]. Therefore, \(\gamma_d\) has a significant influence on the \(Q\)-factor of the EIT. The three typical magnetic energy density distributions of the EIT are shown in figure 4(c). The magnetic energy density decreases as \(d\) decreases, and rapidly dissipates in the background medium. However, there is a deviation in the off-resonant region of the simulated and fitted curves, especially in the case of a strong coupling (e.g., \(d = 178–184\) nm). A new effective method must be introduced here to explain the entire band curve.

The spectral features of EIT in the transmission and reflection are analyzed in detail using a multipole decomposition approach in Cartesian coordinates to identify the individual contributions of the multipole moments toward the total scattering power of the metasurface unit cell. According to the \(\exp(i\omega t)\) convention of a harmonic electromagnetic field, the induced displacement current density inside the unit cell structure can be expressed as [52]:

\[
J = i\omega\varepsilon_0 (\varepsilon_{p,r} - \varepsilon_{b,r}) E(r),
\]

where \(\omega\) is the angular frequency, \(\varepsilon_0\) is the vacuum permittivity, \(\varepsilon_{p,r}\) and \(\varepsilon_{b,r}\) are the respective permittivity of the nanoparticle structure and the background medium, and \(E(r)\) is the electric field. The moment and scattered power corresponding to each multipole are shown in table 2, where \(\delta\) is the Dirac delta function and the subscripts \(\alpha, \beta = x, y, z\) [53–55]. The scattered powers of different multipoles are presented in figure 5. In the inset of figure 5, MD makes the strongest contribution to the peak transmission at around 1107.47 nm. The scattering powers of the EQD and MTD take the second and third places, respectively, to the EIT. Then, the combination of MTD and EQD forms a small subradiation mode and destructively interferes with the broader band MD mode to form a narrow EIT. The contributions of the MQDs are small, but not negligible for the entire band. This essentially shows why a two-oscillator method does not fit perfectly in the off-resonant region. Consequently, the nature of the resonance multipole reveals the physical mechanism of the EIT.

A more general ESIM must be applied to analyze the simulation results more clearly. The ESIM expression is \(E(\omega) = |e(\omega)|^2\) [17, 19], and \(e(\omega)\) is expressed as

\[
e(\omega) = a_r + \sum_j b_j e^{i\omega_j} \left(\omega - \omega_j + i\Gamma_j\right)^{-1},
\]
Figure 7. The transmission calculated with simulations (blue solid line) and the ESIM calculations (red dashed line) with different (a) widths of w, (b) gaps of g, (c) thicknesses of h, and (d) turns of n. (e)–(h) Extracted numerical simulations frequency ω_j and damping Γ_j as a function of the w, g, h, and n, according to the ESIM.

where a_i is the constant amplitude of the background. b_i, Γ_i, φ_i, and ω_i represent the amplitude, damping, phase, and resonant frequencies of each mode, respectively. Comparing the results in figure 6(a) with figure 4(a), the fitted curve and simulated transmission match well when d varies from 178 to 208 nm, even in the off-resonant region. Figure 6(b) shows that the fitting frequencies ω_1 and ω_3 match from $d = 190$ to 208 nm. This is why the TOM method fits well in the same range as in figure 4(a). The slightly varying ω_2 cannot be neglected in the fitting curve away from the EIT range. In particular, when $d < 190$ nm, the two matching modes ω_1 and ω_3 are separated from each other, and the EIT resonance is transformed into a Fano resonance. Notably, the damping rate Γ_2 decreases with an increase in d, which determines the high Q-factor ($Q = \omega_2/\Gamma_2$) of EIT resonance [17]. Therefore, the d (or coupling strength) value has a more significant influence on the bandwidth and shape of the EIT, as shown in figure 6(c). As d increases, the scattering power of MTDs and Q-factor increase from 149 to 1350 and from 3980 to 14060, respectively. It is confirmed that an effective excitation of the MTD can strongly confine the electromagnetic fields and suppress damping (radiation loss) [31].

To further study the dependence of the EIT on different geometric parameters and ESIM generality, numerical (blue solid line) and theoretical calculations by the ESIM (red dashed line) of different geometric parameters (w, g, h, and n) are shown in figure 7. It is clear that the theoretical calculations and numerical simulations are in good agreement. From figures 7(a)–(d), the EIT resonances show that the blue shift is because of the decrease in the effective refractive index of the structure, and the resonance intensities remain almost unchanged as w, g, h, and n decrease. By comparing the impacts of different geometric parameters on the transmissions, we can see that the position of EIT resonances is more sensitive to w and h, whereas the linewidth is mainly affected by n. Notably, the fundamental resonant frequencies of the three modes decrease with a linear increase in w, g, h, and n (see figures 7(e)–(h)), which is consistent with the simulation results in figures 7(a)–(d). Meanwhile, the Q-factor is determined by Γ_2, and they are negatively correlated. Furthermore, the EIT resonance is converted to Fano resonance when the bright and dark modes have large detunings (see figures 7(a) and (e) $w = 40$ nm; and figures 7(e)–(h) $n = 1.5$). Based on these results, the position of EIT can be adjusted by adjusting the geometric parameters and maintaining the Q-factor of the metasurface above 10000 (see figures 7(e)–(h)), which can potentially realize the application of filters and sensors.
3. Conclusion

In this study, we proposed a metasurface based on periodical coupled spiral oscillators. The metasurface supports EIT resonance at approximately 1107.47 nm. The Q-factor of the EIT resonance reached 7798, the low mode volume can reach 0.009 \(\mu \text{m}^3 \), and the high contrast ratio reached approximately 100%. A detailed field distribution proved that the EIT resonance originates from the destructive interference between the MTD and MD resonances. In particular, the atomic EIT system and TOM describe and analyze the coupling characteristics of the EIT resonance under weak coupling conditions, and the theoretical calculations are in good agreement with the simulation results. Moreover, a multipole decomposition analysis further explains the origins of the EIT optical spectral properties, and the ESIM confirms the contribution of interference coupling between multipole resonances, which provides a more accurate and effective tool for theoretical optimization of metasurfaces in both weak and strong coupling conditions. In addition, the effect of the variation in other geometrical parameters on the EIT resonance has also been studied and well fitted by the ESIM, making our metasurfaces more suitable for potential applications. A theoretical analysis of the interference coupling and the intriguing properties of MTD resonances may potentially facilitate the optimization of optical properties and light–matter interaction at a sub-wavelength scale, such as in sensors and slow light.

Acknowledgments

This work was supported by National Natural Science Foundation of China (11965009); Natural Science Foundation of Guangxi (2018AD19057); Innovation Project of Guangxi Graduate Education (YCSW2021183) and Innovation Project of GUET Graduate Education (2020YCSX019).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Haiou Li https://orcid.org/0000-0001-8528-0635

References

[1] Ahmadivand A, Semmlinger M, Dong L, Gerislioglu B, Nordlander P and Halas N J 2019 Toroidal dipole-enhanced third harmonic generation of deep ultraviolet light using plasmonic meta-atoms Nano Lett. 19 605–11
[2] Chen X and Fan W 2019 Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing Opt. Lett. 44 5876–9
[3] Gupta M, Srivastava Y K, Manjappa M and Singh R 2017 Sensing with toroidal metamaterial Appl. Phys. Lett. 110 121108
[4] Gongora J S T, Miroshnichenko A E, Kivshar Y S and Fratalocchi A 2017 Anapole nanolasers for mode-locking and ultrafast pulse generation Nat. Commun. 8 15535
[5] He X, Tian L, Wang Y, Jiang J and Geng Z 2020 Active modulation and switching of toroidal resonance in micromachined reconfigurable terahertz metamaterials Results Phys. 17 103133
[6] Wang W and Qi J 2019 Polarization sensitive toroidal dipole metasurface for switch and magnetic field tunability Appl. Phys. Express 12 065004
[7] Gupta M, Srivastava Y K and Singh R 2018 A toroidal metamaterial switch Adv. Mater. 30 1704845
[8] Limonov M F, Rybin M V, Poddubny A N and Kivshar Y S 2017 Fano resonances in photonics Nat. Photon. 11 543–54
[9] Zhao Z, Gu Z, Ako R T, Zhao H and Sriram S 2020 Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface Opt. Express 28 15573–86
[10] Wang Y, Han Z, Du Y and Qin J 2021 Ultrasonic terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface Nanophotonics 10 1295–307
[11] Labate G, Ospanova A K, Nemkov N A, Basharin A A and Matekovits I 2020 Nonradiating toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface Nanophotonics 10 1295–307
[12] Labate G, Ospanova A K, Nemkov N A, Basharin A A and Matekovits I 2020 Nonradiating toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface Nanophotonics 10 1295–307
[13] Miroshnichenko A E, Evlyukhin A B, Yu Y F, Bakker R M, Chipouline A, Kuznetsov A I, Luk’yanchuk B, Chichkov B N and Kivshar Y S 2015 Nonradiating anapole modes in dielectric nanoparticles Nat. Commun. 6 8069
[14] Raybould T A, Fedotov V A, Papastamakos N, Kuprov I, Youngs I J, Chen W T, Tsai D P and Zheludev N I 2016 Toroidal circular dichroism Phys. Rev. B 94 035119
[15] Ahmadivand A, Gerislioglu B, Ahuja R and Mishra Y K 2020 Toroidal metaphotonics and metadevices Laser Photon. Rev. 14 1900326
[16] Baryshnikova K V, Smirnova D A, Luk'yanchuk B S and Kivshar Y S 2019 Optical anapoles: concepts and applications Adv. Opt. Mater. 7 1801350
[17] Sun G, Peng S, Zhang X and Zhu Y 2020 Switchable electromagnetically induced transparency with toroidal mode in a graphene-loaded all-dielectric metasurface Nanomaterials 10 10064
[18] Wang W, Zhao X, Xiong L, Zheng L, Shi Y, Liu Y and Qi J 2019 Broken symmetry theta-shaped dielectric arrays for a high Q-factor Fano resonance with anapole excitation and magnetic field tunability OSA Cont. Opt. 2 507–17
[19] Liu S-D, Wang Z-X, Wang W-I, Chen J-D and Chen Z-H 2017 High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays Opt. Express 25 22375–87
[20] Chen X and Fan W 2019 Toroidal metasurfaces integrated with microfluidic for terahertz refractive index sensing J. Phys. D: Appl. Phys. 52 485104
[21] Fan Y, Zhang F, Shen N-H, Fu Q, Wei Z, Li H and Soukoulis C M 2018 Achieving a high-Q response in metamaterials by manipulating the toroidal excitations Phys. Rev. A 97 033816
[22] Han S, Gupta M, Cong L, Srivastava Y K and Singh R 2017 Toroidal and magnetic Fano resonances in planar THz metamaterials J. Appl. Phys. 122 113105
[23] Lee T, Kim J, Koirala I, Yang Y, Badloe T, Jang J and Rho J 2021 Nearly perfect transmissive subtractive coloration through the spectral amplification of nematic scattering and lattice resonance ACS Appl. Mater. Interfaces 13 26299–307
[24] Grinblat G, Li Y, Nielsen M P, Oulton R F and Maier S A 2017 Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk ACS Nano 11 953–60
[25] Jing L, Wang Z, Zheng B, Wang H, Yang Y, Shen L, Yin W, Li E and Chen H 2018 Kirigami metamaterials for reconfigurable toroidal circular dichroism NPG Asia Mater. 10 888–98
[26] Guo L-Y, Li M-H, Huang X-J and Yang H-L 2014 Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion Appl. Phys. Lett. 105 033507
[27] Ahmadivand A, Gerisilöglo B, Ahuja R and Kumar Mishra Y 2020 Terahertz plasmonics: the rise of toroidal metadevices towards immunonbiosens Mater. Today 32 108–30
[28] Kaebelerer T, Fedotov V A, Papasimakis N, Tsai D P and Zheludev N I 2010 Toroidal dipolar response in a metamaterial Science 330 1510–2
[29] Gurvitz E A, Ladutenko K S, DerGashech P A, Elyukhin A B, Miroshnichenko A E and Shalin A S 2019 The high-order toroidal moments and anapole states in all-dielectric photonics Laser Photon. Rev. 13 1970025
[30] Cai E et al 2019 Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface Nanoscale 11 14446–54
[31] Papasimakis N, Fedotov V A, Savinov V, Raybould T A and Zheludev N I 2016 Electromagnetic toroidal excitations in matter and free space Nat. Mater. 15 263–71
[32] Liu X, Li J, Zhang Q and Wang Y 2020 Dual-toroidal dipole excitation on permittivity-asymmetric dielectric metasurfaces Opt. Lett. 45 2826–9
[33] Yang L, Yu S, Li H and Zhao T 2021 Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces Opt. Express 29 14905–16
[34] Li H, Yu S, Yang L and Zhao T 2021 High Q-factor multi-Fano resonances in all-dielectric double square hollow metasurfaces Opt. Laser Technol. 140 101727
[35] Cai Y, Huang Y, Zhu K and Wu H 2021 Symmetric metasurface with dual band polarization-independent high-Q resonances governed by symmetry-protected BIC Opt. Lett. 46 4049–52
[36] Edward D P and Palik E 1985 Handbook of Optical Constants of Solids (New York: Academic)
[37] Zhao Z, Zhao H, Ako R T, Nickl S and Sriram S 2020 Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry Appl. Phys. Lett. 117 011105
[38] Shen Z-Y, Yang H-L, Liu X, Huang X-J, Xiang T-Y, Wu J and Chen W 2020 Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response Front. Phys. 13 12601
[39] Ma T, Huang Q, He H, Zhao Y, Lin X and Lu Y 2019 All-dielectric toroidal metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range Opt. Express 27 16624–34
[40] He F, Liu J, Pan G, Shu F, Jing X and Hong Z 2021 Analogue of electromagnetically induced transparency in an all-dielectric double-layer metasurface based on bound states in the continuum Nanomaterials 11 2343
[41] Gupta M and Singh R 2020 Terahertz sensing with optimized Q/Vs metasurface cavities Adv. Opt. Mater. 8 1900205
[42] Diao J, Han B, Yin J, Li X, Lung T and Hong Z 2019 Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface IEEE Photon. J. 11 1–10
[43] Rutkaiya V, Heyroth F, Schmidt G, Novikov A, Shaleev M, Savelev R S, Schilling J and Petrov M 2021 Coupling of germanium quantum dots with collective sub-radiant modes of silicon nanopillar arrays ACS Photonics 8 209–17
[44] Ahmadivand A and Pala N 2014 Plasmon response of a metal-semiconductor multilayer 4π-spiral as a negative-index metamaterial J. Nanopart. Res. 16 2764
[45] Ziegler J I and Haguend R F 2010 Plasmonic response of nanoscale spirals Nano Lett. 10 3013–8
[46] Manjappa M, Chiari S-Y, Cong L, Bettiol A A, Zhang W and Singh R 2015 Tailoring the slow light behavior in terahertz metasurfaces Appl. Phys. Lett. 106 181101
[47] Xi J, You C, Feng H, Li X, Wang M, Dong L, Veronis G and Yun M 2020 Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance Opt. Express 28 31781–95
[48] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit Nat. Mater. 8 758–62
[49] Burrow J A, Yahiaoui R, Sarangar A, Mathews J, Agha I and Searles T A 2019 Eigenmode hybridization enables lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications Opt. Lett. 44 2705–8
[50] Bagic F and Akaoğlu B 2018 A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product J. Appl. Phys. 123 173101
[51] Liu X et al 2020 Tunable terahertz metamaterials based on anapole excitation with graphene for reconfigurable ACS Appl. Nano Mater. 3 2129–33
[52] Manna U, Sugimoto H, Eggema D, Coe B, Wang R, Biswas M and Fujii M 2020 Selective excitation and enhancement of multipolar resonances in dielectric nanospheres using cylindrical vector beams J. Appl. Phys. 127 033101
[54] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 The Fano resonance in plasmonic nanostructures and metamaterials Nat. Mater. 9 707–15
[55] Dubovik V M and Tugushev V V 1990 Toroid moments in electrodynamics and solid-state physics Phys. Rep. 187 145–202