Therapeutic applications of nanozymes and their role in cardiovascular disease

Naima Nashat¹ and Zeshan Haider²*

¹Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
²Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan

Abstract

Enzyme mimetic is an increasing pull to overcome the limitations on natural enzymes. Enzyme mimicking is done with the help of nanozymes. Nanozymes contain nonmaterial which have enzyme-like activity; this similar activity attracts the researchers. Nanozymes studies showed that they are exceptional in many aspects, such as robustness to a harsh environment, long term storage, easy mass production, and high stability. In the field of biomedical technology, nanozymes have exhibited advantages to diagnose and treat disease. Nanozymes used to treat many therapeutics affect anti-inflammatory, anti-ageing effects, neuroprotection, cytoprotection, dental biofilms, antioxidation, and antithrombotic effects. However, to broaden the applications of nanozymes, it is synergistically important to combine the activity of enzymes with properties of nanoscale such as optics, magnetic, mechanics, and electrics. Many types of enzymes have been reported, and their applications in Environmental remediation, therapeutics, and biosensor development. Compare with natural enzymes, current research on applications of nanozymes is tranquil somewhat limited. This uncertain issue will be the next borderline for promotes applications.

Introduction

Enzymes use as a catalyst in biology that converts substrates into products in any biochemical reaction which needs a catalyst. The first enzyme, urease, was said to be a protein in 1926, determined by James B. Since, enzymes well treated to be proteins that allow the enzymes to accomplish high activity as a catalyst. So, protein activity is missed when its exposure occurs at high temperature and high pH. Proteins are also affected by proteases present in the environment moreover natural enzymes have a high cost due to these practical applications of enzymes retard in industry [1].

However, enzyme mimetic is an increasing pull to overcome the limitations; enzyme mimicking is done with the help of nanozymes [2]. Nanozymes contain nonmaterial which have enzyme-like activity; this similar activity attracts the researchers. Nanozymes studies showed that they are extraordinary in many aspects, such as robustness to a harsh environment, long term storage, easy mass production, and high stability [3].

Nanozymes have different structures or sizes because nanomaterials are hard due to a porphyrinic nucleus, and proteins are soft [4]. So the comparison with natural enzymes nanozymes is more stable because the nanomaterials they contain, are inorganic [2]. Nanozymes have inherent properties, and unique catalytic activities due to this nanozymes have great attention towards mimetic the natural enzymes until now 50 kinds of nanoparticles have been found. Catalytic activities of enzymes are Catalase (CAT), Peroxidase (POD), glucose oxidase [5], Superoxide Dismutase (SOD). Nanozymes are mainly divided into carbon-based, noble metal nanozymes, metal oxide nanozymes [1].

Applications of magnetic nanoparticles include cell separation, nucleic acid separation, wastewater treatment, biomedical separation, magnetic target drug delivery, catalysis [4]. However, to broaden the applications of nanozymes, it is synergistically important to combine the activity of enzymes with properties of nanoscale such as optics, magnetic, mechanics, and electrics [2]. Many types of enzymes have been reported, and their applications in Environmental remediation, therapeutics, and biosensor development [6].
The many latest developments in the field of nanotechnology have broadened the approach to investigate the novel enzymes. The possible catalytic mechanism for nanozymes has unravelled when combined with computer theoretical calculations, simulation. These studies improve the nanozymes catalytic activities. In biomedical technology, nanozymes have exhibited advantages in diagnosing and treating disease [7].

Therapeutic application of enzymes

Due to eliminating reactive nitrogen species (RNS) or reactive oxygen species (Mulder, Fayad, & biology) [8], nanozymes have been used for latent therapeutic [9]. Some interesting enzyme mimetic applications include CoQ as Superoxide Dismutase (SOD) [10]. Their SOD mimicking activities mainly describe ROS effects, which converts the superoxide in H₂O₂ [3]. This section is based on the nanozymes therapeutic effect (Table 1) anti-inflammatory, anti-aging effects, neuroprotection, cytoprotection, dental biofilms, antioxidant, antithrombotic effects, etc.

Antinflammatory effects

Inflammation plays a role in diabetes, physiology of arthritis, irritable bowel syndrome, heart disease, Alzheimer’s disease, illnesses, and Parkinson’s disease. The major constituent of the yellow spice turmeric, curcumin derived from the Curcuma longa. It is non-toxic and safe and has anti-inflammatory properties [11]. A high level of nitric oxide [12] abnormally contributes to chronic inflammation and immunological disorder resulting in organ damage. Cerium oxide nanoceria has characteristics used in nanotherapeutics and decreases the moderator chronic inflammation [13]. Nanoceria can scavenge the reactive oxygen species [8] or free radicals and inhibit the mediators of inflammation from protecting the cell against the inflammatory diseases [4].

Catalase, glutathione peroxidase, and superoxide dismutase (SOD) are potent scavengers of ROS, in eye diseases, these enzymes are very effective because eye disease is related to oxidative stress. However, With the help of sodium hydroxide, enzymes are very effective because eye disease is related to many unfavourable reactions; for example, over-expression of ROS produces oxidative damage to DNA, lipids, and proteins. They also induce cell apoptosis and many other diseases like cancers, atherosclerosis, kidney diseases, arthritis, and neurodegeneration [16]. Antioxidants protect the tissues from damages compels the free radicals; It also improves the many other damaged tissues. Antioxidants are catalase, glutathione reductase, glutathione peroxidase, peroiredoxins, and superoxide dismutase. Biological antioxidant required some elements which have no antioxidant activity but needed for the proper functioning of biological antioxidant; these include iron, selenium, manganese, zinc, and copper [17]. The V₂O₅ has glutathione peroxidase (GPx) like antioxidant activity; it protects the cell from oxidative stress [18].

Superoxide Dismutase (SOD) enzyme is needed for antioxidants’ defenses, maintaining the level of O₂-. According to some new research, the Hollow PB nanozymes (HPBZs) contain mietenzyme-like properties such as neuroprotection, and they scavenge the ROS (19) (Figure 1). The over-production of ROS effect biomolecules leads to a wide range of human diseases, and induce tissue injury. Human skin which acts as a protective layer between the external environment and body is prone to pro-oxidant agents. ROS’s over-production causes inflammatory and allergic skin disease, for example, psoriasis, urticaria, and atopic dermatitis [20].

So, the Prussian blue nanoparticles have been reported about their antioxidant activity. The PB nanoparticles (PB NPS) a mixed-valence of iron cyanide containing hexacyanoferrate (Fe(CN)₆)₃⁻ complex and Fe³⁺ cations [21]. Due to their instability in biological buffers in vivo applications of PB nanoparticles are limited; the stability of these particles has been improved by coating with poly(vinylpyrrolidone), poly(diallyl dimethylammonium chloride), and polyethylene glycol, from all these the chitosan, is best due to its excellent biocompatibility, good stabilization, biosafety, and biodegradability.

Hyperion Oh, et al. developed PB/Chi nanoparticles using many chitosan samples ranging from 3 to 100 kDa to improve the antioxidant activity and stability PB nanoparticles (Figure 2). Chitosan is a polysaccharide that is a permeation enhancer and mucoadhesive that facilitates NP retention in the administration [22]. The improvement in stability was examined by monitor change in the diameter of the nanoparticles and appearance. The antioxidant activities were examined by deoxyribose assays and 2,2-diphenyl 1-1-picrylhydrazyl (DPPH) [23].

Table 1: Comparison of Graphene quantum dots with an inorganic, organic, and natural antimicrobial agent.

Characters	GQDs	Inorganic	Organic	Natural
Anti-bacterial	Good anti-bacterial efficiency.	Cause leakage of the metal ion.	Complicated process.	Poor anti-bacterial efficiency.
efficiency				
Antibiotic	Not resistance to antibiotics.	Resistance to antibiotics.	Resistance to antibiotics.	Resistance to heat and protease.
resistance				
Production cost	In vivo low cost of production due to usage of low dose.	The high cost of production and cause environmental pollution.	The high cost of production.	High cost to extract and in vivo usage.
Stability	Highly stability and low biotoxicity [42].	Instable in the biological environment [43].	Not stable.	Practical applications of the natural agent are crucial due to low stability [44].

Citation: Nashat N, Haider Z (2021) Therapeutic applications of nanozymes and their role in cardiovascular disease. Int J Nanomater Nanotechnol Nanomed 7(1): 009-018. DOI: https://dx.doi.org/10.17352/2455-3492.000039
Neuroprotection

Stroke is the third headmost cause of death which is also called cerebral ischemia. Bioenergetics failure occurs due to the reduction of oxygen and glucose delivery to the brain during a stroke. These conditions lead to stress, blood-brain barriers, and ultimately cell death occurs. Cerium oxide nanoparticles have the potential to treat the stroke. Cerium is a metal that belongs to the lanthanide series of the periodic table. When oxygen is combined with the cerium in a formulation of nanoparticles, they have also found antioxidant properties [24]. Cell line HT22 is the most well stood clonal cell system for analyzing the oxidative stress. The natural pro-oxidant for HT22 cells is the glutamate amino acid when glutamate is present, cysteine consumption is blocked, and oxytocic occurs. Reduction of C_2^+ to C_3^+ and loss of oxygen is retained by creating an oxygen vacancy. This is done with the help of ceria nanoparticles, and due to these reactions, catalytic application possible [25].

Antithrombosis effect

Bacterial infection and thrombus formation are two major harms. These harms lead to complications in biomedical devices such as heart valves, catheters, and vascular grafts. To develop the antimicrobial and antithrombotic is important to sustain the function of these biomedical devices [26]. Colloidal Mesoporous Silica (CMS) nanoparticles have engrossed enormous consideration as possible injectable drug delivery. In addition to their high Biodegradability and biocompatibility, CMS can selectively customize at their outer and inner surfaces to encapsulate molecules powerfully. They can be specifically functionalized on their outer surface [27]. The delivery of this multiple function CMS in the bloodstream prevents the thrombogenic effects. The coating of ethylene glycol addresses hemolytic behaviour and their fast degradation prevention. Moreover, the additional efforts are critical to delivering these manifold core–shell CMS to the blood and assurance sufficient circulation time to prevent the thrombotic effect. Heparin, anionic polysaccharide and highly sulfated, is best due to its anticoagulant property. Moreover, Heparin is conventionally injected intravenously or subcutaneously [28].

Heparin in free form involves an increased risk of bleeding due to these risks. Many other side effects occur. The example of this situation is this Heparin–induced thrombopenia even as diffusing all over the blood circulation system. Tissue targeted nanoceria the CMS with Heparin must be harmless and injectable into the bloodstream. Heparin and nanoceria prevent the clotting cascade’s establishment only in the abrupt vicinity of nanocarriers and have no side effects [29].

Nitric oxide [12] is predictable as an antiplatelet agent. Nitric oxide [12] can prevent thrombus formation. Due to its ability to increase the cyclic Guanosine Monophosphate (cGMP) levels within the platelets, Nitric oxide [12] showed the antiplatelet agents. So, lowering the intracellular Ca$^{2+}$ level required for the common passageway in the coagulation cascade, NO drug agents’ release to accomplish the antiplatelet activity in vivo. These in vivo studies attract to mimic the natural role of NO release from the endothelial cells. Endothelial cells are healthy blood vessels[30].

NO was arising from the oxidation of L arginine and catalyzed by the enzyme nitric oxide synthase. Moreover, these enzymes use O$_2$ as an oxidant and Nicotinamide Adenine Dinucleotide Phosphate (NADPH) as a cofactor. When the cofactor supplies and L arginine concentration are inadequate, the NO reduced form nitroxyl (HNO) produced [30]. Analogous to NO the HNO has an anti-thrombogenic effect. The NO generating catalysts and non-releasing materials have some problems, HNO is the possible solution.

However, there is no report on the local production of HNO efficiently prevent thrombus formation. Some reports showed Graphene hemin glucose oxidase’s conjugate use as a catalyst to generate HNO from L arginine and physiologically abundant glucose. These catalysts create a long–lasting antithrombotic covering [31].

Nanozymes role in cytoprotection

Platinum is used as an industrial catalyst in an extensive range. Some older studies about Platinum reported that the Pt NPs serve as both SOD mimics to scavenge H$_2$O$_2$, CAT, and O$_2^{-}$ [32]. Conventional methods also used poly (acrylic acid) (PAA)
in the research process to improve their biocompatibility. To in situ synthesize Pt nanostructures; Nie, et al. used nanocarrier apoferritin (about) protein shell. These ferritin–platinum nanoparticles were non-toxic, stable with exceptional catalase–like activity; catalyze the breakdown of H\textsubscript{2}O\textsubscript{2} and these nanoparticles are bioactive [32].

The non-cytotoxic properties of Pt NPs have been reported in previous research. All these studies showed that 10-4 - 10-1 ng/cm2 (7.86×10-7 - 7.86 mg/l) of 20-100 nm Pt NPs affected neither the cellular metabolism nor cell death [33]. Moreover, hybrids nanomaterials have been broadly invented. Graphene oxide [33] nanomaterials broadly use in research, due to their high conductivity, absorbing properties, large surface area, and outstanding biocompatibility [34].

However, the hybrid GO–Se nanomaterials have GPx like antioxidant properties for Cytoprotection. In the presence of GSH, the GPx catalyzes the breakdown of H\textsubscript{2}O\textsubscript{2} to the harmless product. These nanomaterials catalyze the decomposition of H\textsubscript{2}O\textsubscript{2} to the less reactive product. Comparison between Se NPs and GO–Se nanoparticles showed higher GPx mimic catalytic effectiveness. Moreover, GO–Se nanozymes are obsessed with a high capacity to scavenging the reactive oxygen species [35].

Liu and his co–workers constructed enzyme from the self–assembly of polymers with protein; this nanocomposite is used for cytoprotection. Protein (SP1) is a stress–responsive protein and has no sequence homology to other stress proteins. SOD and GPx’s catalytic centre assembled into protein (SP1) and polymer nanoparticles (PD5). The electrooptic contact between polymer and protein can self-assemble and form nanowires with SOD and GPx like properties (Figure 3). These nanocomposites scavenge the overexpressed reactive oxygen species and maintain the intracellular balance [36].

Anti-aging effect

Ageing is determined by the combination of environmental factors and genetics. *Caenorhabditis elegans* have identified many genes such as daf-16, Age-1, Sir2, and daf-2. From which the daf-16, daf-2, Age-1 are associate with insulin-dependent signalling. Moreover, these genes are involved in oxidative stress responses and lead to stress resistance and longevity [37].

The redox reaction involves ageing; the detoxification of ROS regulates ageing. The ageing–related diseases are preventing by the help of ROS scavenging enzymes. Quick, et al. [37]reported that C\textsubscript{60}(C(OOH))\textsubscript{3} based SOD mimic showed fascinating anti–ageing effects and also better mice cognition ability [37]. Comprehensive studies showed that the nanozymes lower the age–related mitochondrial superoxide and improve the biological functions of mitochondria. Moreover, these biological functions rescued the age–related cognitive destruction due to its presence in mitochondria [38].

However, the drosophila melanogaster has been used to explain biological processes' mechanisms, including ageing, metabolism, and developments. Moreover, drosophila’s short life cycle makes a suitable tool to study ageing mechanisms [39]. Zhang, et al. reported the *Drosophila* melanogaster ageing process (Figure 4).

They examined the effect of Fe\textsubscript{3}O\textsubscript{4} NPs on drosophila life span and ageing, examined drosophila on different age stages. Results showed that the aged drosophila has a low climbing ability. The daily uptake of 200μg/mL Fe\textsubscript{3}O\textsubscript{4} NPs reduced the ROS level and improved climbing ability [38].

Anti-bacterial effect

Bacteria produce many contagious diseases that have major health issues all over the world. Millions of peoples died due to bacterial related issues; anti–bacterial agents are primarily antibiotics [40]. Moreover, metal–containing inorganic salts, organic agents, and natural anti–bacterial agents are used as anti–bacterial materials. These antimicrobial agents have drawbacks (Table 2) [41]. So it is essential to induce stable, efficient, and novel antimicrobial agents to overcome bacterial diseases. The peroxidase constituent of cytochrome P\textsubscript{450}, take part in many essential living functions.

Peroxidase catalyzes the H\textsubscript{2}O\textsubscript{2} to generate an elevated level of -OH and oxidize abundant organic substrates. The Qu and co–workers productively implement Graphene quantum dots...
biofilms associated with the oral disease are dental cavities and nanozymes to deal with these oral diseases [45]. When bacteria, especially Streptococcus mutants, use the food sugar to produce the polysaccharides and focus them on the upper layer of the teeth, the environment will gradually be more acidic due to this cavities biofilms formed because bacteria can be entrenched in the extracellular surface. Hence, it is hard to remove the oral biofilm [46].

Moreover, the acidic environments in the biofilm region can liquefase the anepic component of teeth resulting in the commencement of dental cavities. Given the exclusive properties of enzymes, Koo’s group used Fe3O4 nanoparticles with CAT NPS as the peroxidase mimics to prevent oral bacterial biofilm [2,47]. At the low pH environment, the oral biofilm CAT NPs could catalyze the production of -OH to kill the embedded bacteria and mutilate the biofilm matrix. CAT NPS alleviates the osfified of apate in acidic pH and protects the teeth ideally. Moreover, the CAT NP/H2O2 system keeps adequately hinder the formation and decadence of cavities, on mucosal tissue with no side effects. They also showed that ferumoxide exhibit properties of peroxidase in a pH reliant manner. These nanoparticles bind under the ultra-structure of biofilm due to this bacterial membrane disturb. They also used rodent models of early childhood caries and ex vivo biofilm; finding showed that acid damage of the enamel surface and contingent applied ferumoxide effectually suppresses biofilm amassing, also prevents the start of tooth cavitation. Ferumoxide NPs serve as an efficient therapy for biofilm-related oral diseases [48].

Nanoymes role in cardiovascular disease

In the United States, over 80 million peoples have one in three deaths recognized for Cardiovascular Disease (CVD). Post myocardial infarction [1] heart failure can cause common deaths due to cardiovascular diseases. Mechanisms showed that in the place of damaged myocardium collagenous scar formation, these scars are non-contractile and lead to ventricular dilatation, infarct wall thinning and hypertrophy of the myocardium. If no particular treatment applied and left untreated, this failure progress due to this heart no longer supplies adequate blood to the body, which is distinct as heart failure [49]. Moreover, advanced therapies of CVD and current techniques for early detection are imperfect, and they also have less efficiency in preventing the diseases [8].

Nanotechnology involves the following constituents, human–made nature and the unique characteristics of new material and nanoscale dimensions of the whole system or its vital components. Cardiovascular nanomedicine aims to improve detection and address current CVD and therapy challenges by advancing in vivo and ex vivo biomarkers imaging and detection and improving tissue regeneration and drug delivery. Drugs are delivering with direct injection and nanocarriers [50].

Nanozymes

Nanozymes are nanomaterials with an affinity to wrap

Dental biofilms

Nanozymes also use to deal with oral diseases associated with biofilms. Bacterial biofilms bacteria that stay on the surface of contact, polysaccharides, secreting proteins, and biomolecules. Biomolecules enfold the bacteria due to these bacteria aggregates. As a result of these biofilms, many human diseases are produced. The most costly and common

Table 2: Applications of nanozymes and their mimetic enzymes.

Enzyme mimic	Nanomaterials	Applications	References
Peroxidase	Iron oxide	ELISA	[67]
Peroxidase	Dietary iron oxide	Anti-ageing, Neurodegeneration	[38]
Catalase	Iron oxide	Tumour detection	[67]
SOD	Cerium oxide	Suppress myocardial	[68]
SOD	Cerium oxide	inflammatory process	[69]
SOD	Cerium oxide	Retinal degenerative	[70]
SOD	Cerium oxide	Antioxidant	[4]
SOD	Cerium oxide	Neuroprotection	[24]
Oxidase	Cerium oxide	Detection	[71]
Catalase	Cerium oxide	Hydrogen peroxide	[72]
Oxidase	Zinc oxide	Detection	[73]
Nitric oxide synthase	Graphene herein	Antithrombosis	[30]
Peroxidase	Graphene herein	Detection	[74]
Glutathione Peroxidase	Graphene oxide-Selenium composites	Cytoprotection	[35]
Glutathione Peroxidase	Selenium-functionalized graphene oxide	Antioxidant	[75]
Glutathione Peroxidase	Graphene oxide	Biosensing	[35]
Oxidase	Manganese oxide	Immune-detection	[76]
Peroxidase	Manganese oxide	Immune-detection	[76]
Glutathione peroxidase	Trimanganese tetraoxide	Antioxidant	[77]
Glucose oxidase	Gold nanoparticles	Detection	[78]
Peroxidase	Platinum iridium	Immunoassay	[79]
Peroxidase	Ferromagnetic	Cancer therapy	[80]
Sulfite oxidase	Molybdenum trioxide	Cytoprotection	[81]
Peroxidase	Molybdenum disulfide	Cancer therapy	[82]
Glutathione Peroxidase	Vanadium pentoxide	Antioxidant	[83]
Halo-peroxidase	Vanadium pentoxide	Anti-bacterial	[84]
Glutathione Peroxidase	Tellurium nanorods	Antioxidant, anticancer	[85-87]
nanosized materials to transport, ideally release, and protect them at an addicted location or time. Nanocarrier size ranges from 1-100nm, many types of visitor molecules have been transferred with these nanocarriers, including imaging agents, metal nanoparticles, enzymes, dyes, and drugs [51]. Currently, many nanomaterials have been attempt and legalized in clinical trials: Liposomes [12] and micelles used in diseases as Drug Delivery Systems (DDS). Nanocarriers used in medicine to treat cardiovascular and other types of diseases differ in their chemical properties: nanotubes, polymeric nanoparticles, magnetic nanoparticles, liposomes, quantum dots, and dendrimers.

Liposomes

Liposomes size ranges from (80–300nm) they are lipid bilayer structure due to this use in medicine, and gene delivery. Liposomes are lipophilic and can pass target tissues/cell membranes [52]. These spherical vesicles have been most extensively investigated in nanomedicine with reapproval due to small toxicity for in vivo experiments. They have superior biocompatibility because liposome consists of phospholipids to form bilayer inside aqueous phase [53]. To protect the agents from degradation, they can also incorporate hydrophobic agents inward the lipid bilayer and hydrophilic therapeutic agents inside the aqueous place. The liposome’s advantages, such as high stability in biological environments, high agent-loading efficiency, controllable release kinetics, the biodistribution of theragnostic agents, and biocompatibility provide liposome with efficient pharmacokinetics [54]. By the process of encapsulation, the drug is fused in the liposomes. Moreover, liposomes are employed as coordinators to deliver particles under the skin layers due to this frequency of administration reduce [55].

Micelles

Micelles consist of amphiphilic artificial molecules. To form monolayer micelles self-gather in aqueous solution with a hydrophobic phase, they incorporate hydrophobic agents. The micelles’ size ranges from 10–100nm, and the inner space is more compassed than of liposomes [53]. These nanocarriers possessed of stimuli perceptive amphiphilic chunk copolymer are of pursuit due to their aptitude utilization in the field of discipline drug delivery [56].

Polymeric nanoparticles

Nanomedicine defines as the device of therapeutics and/or diagnostics on the nanoscale. Nanoscale gives benefits due to a huge degree of concurrent transfer and the prevention, treatment, and diagnosis of diseases in the biological systems [57]. Therapeutics based on polymeric nanoparticles are developed to advance the treatment and diagnosis of an extensive range of diseases. Leading in polymerization has implemented the engineering of leaded multifunctional polymeric NPs with accurate control, size, fictionalization, shape, and surface charge [58].

Advantage of these multifunctional polymeric NPs, where the rendition of multiple functional groups from nanoparticle manufacture empowers binding capabilities examined to linear polymers and higher cell recognition. Moreover, these polymers allow the encapsulation of cargo molecules that contain the drug and released at the targeted sites. In biosensing and photodynamic therapies fabrication of polymer, nanoparticles provide new avenues [58].

Poly(ethylene glycol) (PEG) is a hydrophilic, biocompatible, biologically inert polymer that has been permitted by the U.S. Food Drug Administration (FDA) for use in a wide range of application. The number and length of PEG cuffs per NPs have been shown to fabricate significant deviation in circulation time in blood vs clearance of organs by eliminating polymeric NPs [57]. Flourishing data supports the idea that NPS loaded coated drugs onto an angioplasty balloon surface is an assuring approach to moderately enhance and protract drug delivery to the wall of arteries [59]. Nanoparticles are made from poly(lactic-co-glycolic acid) (PLGA) which is a biodegradable polymer that has been used as a vehicle of drug delivery for continuous releases of both hydrophilic and hydrophobic drugs [22].

Carbon nanotubes: In nanotechnology, carbon nanotube has become the leading edge due to its unique thermal, mechanical and electrical properties. Their low weight and high mechanical strength combined with their stability and electron conductivity prepared them valuable materials for biomedical applications [60].

Moreover, single-walled carbon nanotube (SWCNT) has an exclusive 1-layer cylindrical structure that repose of a graphene sheet and nanometer-size diameter the length of several hundreds of nanometers. These single-walled carbon nanotubes are hydrophobic in aqueous media. They are used in life sciences and nanotechnology, carbon nanotube used as gene and drug delivery to the cells [61].

Nanoparticles local injection for myocardial infarction

Enormous inflammatory responses distinguish by the enrollment of macrophages and neutrophils to the flubbed myocardium. These sequential responses result in the curative of infarction. Enrollment leukocytes stash several proteinases such as protease, cathepsin B, and matrix metalloproteinases, to expedite the clearance away of necrotic debris. By the deposition of remodelling and new tissues, efficient repair of the myocardium is scanty completed. If this healing is imperfect, it may ultimately lead to the cleft of the heart failure and infarction [49].

The nanoparticles which are used in the study by Chang, et al. insulin growth factor (IGF-1) was complexed to poly(lactic-co-glycolic acid) (PLGA) by electro statistically employing polyethyleneimine (PEI) to established nanoparticles. These particles’ effect was checked by injecting these particles into the border zone following myocardial infarction in mice. The PEI/PLGA combination was also more powerful in lowering left ventricular systolic/diastolic, reducing infarct area, thickening the infarct wall [50].
A gene level approach examined by somasuntharam, et al. [62] brings Nox2–nicotinamide adenine dinucleotide phosphate (NADPH) oxidase small interfering RNA (siRNA) in polyketide situate nanoparticles. Nox2 is a known source of ROS and catalytic subunit of NADPH. Nox2 prevents cardiomyocytes apoptosis and improves cardiac function due to the complete knockout of Nox2 [62].

Atherosclerosis

Atherosclerosis is an analytical progression that involves the gathering of cholesterol underneath the intima of arteries. These progressions are pursued by local commencement of the immune system, deposition of connective tissues, and vascular smooth muscle cells [63]. Moreover, atherosclerotic plaque proceeds from the early atheromatous lesion. When the atheromatous plaque burst thromboembolic ischemia formed. These plaques are thin capped vulnerable through immune responses and inflammation and infiltration of macrophages with intraplaque haemorrhage, neovascular expansion of the vasa vasorum, and necrotic core enlargement [64]. Evidence showed that the ROS has a double role: oxidative stress as a harmful culprit and maintaining physiological vascular homeostasis as a signalling messenger. Dysfunction occurs when the ROS level beats the maximum limit due to this disease stat formed [65].

Atherosclerosis is a lipid and dietary accession disorder, in lesion formation lipid play a role they cannot report for all atherosclerosis corporations. Atherosclerosis begins with endothelial damage, and apolipoprotein B has attractions for the basal membrane exposed in the place, where the endothelium is damaged [12].

Angiogenic expansion of the vasa vasorum in the adventitia is the key feature of the atherosclerotic process; within atherosclerotic plaques, the extensive neovascular proliferation is prominent within lesions and linked with unstable stroke, myocardial infarction, and angina. To inhibit the proliferation of the vasa vasorum and quantifying angiogenesis research used rabbit model, they combined drug delivery and molecular imaging with targeted NPs. They used the drug fumagillin with an integrin targeted paramagnetic NPS \(\alpha_v\beta_3 \) [66].

Moreover, the cardiac magnetic resonance with \(\alpha_v\beta_3 \) targeted paramagnetic NPs used noninvasively showed that only 1-minute dose of \(\alpha_v\beta_3 \), with targeted fumagillin NPS lowered the angiogenesis of aortic for 3 weeks [64]. Many studies hypothesized that \(\alpha_v\beta_3 \), with targeted NPs serve as an efficient nanomedicine tool for drug delivery, monitoring atherosclerosis, and noninvasive characterization [66]. The application of nanozyme and their mimetic enzymes are given in Table 2.

Conclusion

Since the discovery of Fe3O4 nanoparticles as peroxidase mimics, nanozymes have attracted much attention. As natural enzyme mimics, nanozymes possess many advantages: low cost, easy preparation, excellent stability, and good durability. They have been widely applied in sensing, environmental treatment, anti-bacterial, cancer therapy, antioxidation, etc. This review summarized the classification, catalytic mechanism, activity regulation, and recent research progress of nanozymes in these fields in detail. Although nanozymes overcome many disadvantages of natural enzymes, several exciting challenges remain. Natural enzymes are widely used in fields, including medicine, food, industry, agriculture, environment, biotechnology, etc. Compared with natural enzymes, current research on applications of nanozymes are still rather limited. These unresolved issues will be the next frontier for further applications.

Authors’ contributions

Conceived and designed the experiments: Naima Nashat, and Zeshan Haider. Wrote the paper: Naima Nashat, and Zeshan Haider. Finally, finalized the final review paper by Zeshan Haider.

References

1. Li Z, Feng K, Zhang W, Ma M, Gu N, et al. (2018) Catalytic mechanism and application of enzymes. Chinese Science Bulletin 63: 2128-2139.
2. Gao L, Yan X (2016) Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 59: 400-402. Link: https://bit.ly/2NcxLk1
3. Wang X, Hu Y, Wei H (2013) eNanozymes in bionanotechnology from sensing to therapeutics and beyond. Royal society of chemistry.
4. Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, et al. (2017) Nanozyme applications in biology and medicine: an overview. Artif Cells Nanomed Biotechnol 45: 1-8. Link: https://bit.ly/2QKeK97
5. Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, et al. (2010) Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 31: 199-205. Link: https://bit.ly/3bUdpWm
6. Zhou Y, Liu B, Yang R, Liu J (2017) Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities. Bioconjug Chem 28: 2903-2909. Link: https://bit.ly/3iJweZm
7. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42: 6060-6093. Link: https://bit.ly/3mB5o9
8. Mulder WJ, Fayad ZA (2008) Nanomedicine captures cardiovascular disease. 28: 801.
9. Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorganic Chemistry Frontiers 3: 41-60. Link: https://rsc.li/3nOa8L8a
10. Vernekar AA, Das T, Ghosh S, Mugesh G (2016) A Remarkably Efficient MnFe2O4 -based Oxidase Nanozyme. Chem Asian J 11: 72-76. Link: https://bit.ly/3szMWUA
11. Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, et al. (2010) Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 80: 1833-1843. Link: https://bit.ly/3bIIXcu
12. Lombardo D, Calandra P, Barreca D, Magazu S, Kiselev MAJN (2016) Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials (Basel) 6: 125. Link: https://bit.ly/3SMigLJ
13. Hirat SM, Karakoti AS, Tyler RD, Sirranathan N, Seal S, et al. (2009) anti-inflammatory properties of cerium oxidebase nanoparticles. Small 5: 2848-2856. Link: https://bit.ly/3oPSZIA

Citation: Nashat N, Haider Z (2021) Therapeutic applications of nanozymes and their role in cardiovascular disease. Int J Nanomater Nanotechnol Nanomed 7(1): 009-018. DOI: https://dx.doi.org/10.17352/2455-3492.000039
Kost OA, Beznos OV, Davydova NG, Manickam DS, Nikolaiky II, et al. (2015) Superoxide Dismutase 1 Nanozyme for Treatment of Eye Inflammation. Oxid Med Cell Longev 2015: 5194239. Link: https://bit.ly/2X0d7ZG

Gechev TS, VanBreusegem F, Stone JM, Denev, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28: 1091-1101. Link: https://bit.ly/3uP2Zt

Thomas CE, Darley-Usmar V (2000) Forum on therapeutic applications of reactive oxygen and nitrogen species in human disease. Free Radic Biol Med 28: 1449-1450. Link: https://bit.ly/3sV5cFL

Singh S (2016) Cerium oxide-based nanomedicines: Redox phenomenon at biointerfaces. Bioinertphases 11: 04B202. Link: https://bit.ly/3oV5cFL

Huang Y, Liu Z, Liu C, Ju E, Zhang Y, et al. (2016) Self-Assembly of Multi-nanomolecules to Mimic an Intracellular Antioxidant Defense System. Angew Chem Int Ed Engl 55: 6646-6650. Link: https://bit.ly/3BO2Fe3

Zhang W, Hu S, Yin JJ, He W, Lu W, et al. (2016) Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 138: 5860-5865. Link: https://bit.ly/2M11NCG

Liu H, Zhang W, Ding L, Li XW, Wu Y, et al. (2019) Prussian blue-modified feritin nanoparticles for effective tumor chemo-photothermal combination therapy via enhancing reactive oxygen species production. J Biomater Appl 33: 1202-1213. Link: https://bit.ly/2XPHqps

Zhang W, Wu Y, Dong HJ, Yin JJ, Zhang H, et al. (2018) Sparks fly between ascorbic acid and iron-based nanozymes: A study on Prussian blue nanoparticle colloids. Surf B BioInterfaces 163: 379-384. Link: https://bit.ly/3sABnBq

Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CC, et al. (2014) Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 10: 2643-2652. Link: https://bit.ly/38TvH0

Oh H, Lee JS, Sung D, Lee JH, Moh SH, et al. (2019) Synergistic antioxidant activity of size controllable chitosan-templated Prussian blue nanoparticle. Nanomedicine 14: 2567-2578. Link: https://bit.ly/39lRRE

Estev ezAY, Pritchard S, Harper K, Aston JW, Lynch A, et al. (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51: 1155-1163. Link: https://bit.ly/2Nxcq9D

Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342: 86-91. Link: https://bit.ly/3BvYqJ

Cai W, Wu J, Xi C, Ashe AJ, Meyerhoff ME (2011) Carboxyl-ebselen-based layer-by-layer films as potential antiatherogenic and antimicrobial coatings. Biomaterials 32: 7774-7784. Link: https://bit.ly/3szmoJk

Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials 17: 1225-1236. Link: https://bit.ly/3oWCWIt

Cauda V, Schlossbauer A, Kecht J, Zürner A, Bein T (2009) Multiple core-shell functionalized colloidal mesoporous silica nanoparticles. Journal of the American Chemical Society 131: 11361-11370. Link: https://bit.ly/3nPgyj

Argyo C, Cauda V, Engelke H, Radler J, Bein G, et al. (2012) Heparin-coated colloidal mesoporous silica nanoparticles efficiently bind to antithrombin as an anticoagulant drug-delivery system. Chemistry 18: 428-432. Link: https://bit.ly/2LSw0Yx

Suchyta DJ, Handa H, Meyerhoff ME (2014) A nitric oxide-releasing heparin conjugate for delivery of a combined antiplatelet/anticoagulant agent. Mol Pharm 11: 645-650. Link: https://bit.ly/3qQQXB9

Xue T, Peng B, Xue M, Zhong X, Chiu CY, et al. (2014) Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nat Commun 5: 3200. Link: https://bit.ly/3sqZoSc

Fan J, Yin JJ, Ning B, Wu X, Hu Y, et al. (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32: 1611-1618. Link: https://bit.ly/3bLNZe5

Nakani shi H, Hamasaki T, Kinjo T, Yan H, Nakamichi N, et al. (2013) Low Concentration Platinum Nanoparticles Effectively Scavenge Reactive Oxygen Species in Rat Skeletal L6 Cells. Nano Biomedicine and Engineering 5: 85. Link: https://bit.ly/2kVD26

Cao Y, Ma Y, Zhang M, Wang H, Tu X, et al. (2014) Ultrasmall Graphene Oxide Supported Gold Nanoparticles as Adjuvants Improve Humoral and Cellular Immunity in Mice. Advanced Functional Materials 24: 6963-6971. Link: https://bit.ly/35N1yWY

Huang Y, Liu C, Pu F, Liu Z, Ren J, et al. (2017) A GO-Se nanoparticle as an antioxidant nanzyme for cytoprotection. Chem Commun (Camb) 53: 3082-3085. Link: https://bit.ly/3il5GSS

Sun H, Miao L, Li J, Fu S, An G, et al. (2015) Self-assembly of cricoid proteins induced by “soft nanoparticles”: an approach to design multienzyme-cooperative antioxidative systems. ACS Nano 9: 5461-5469. Link: https://bit.ly/3oT3QLK

Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, et al. (2008) A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29: 117-128. Link: https://bit.ly/3sHy1OT

Zhang Y, Wang Z, Li X, Wang L, Yin M, et al. (2016) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Advanced materials 28: 1387-1393. Link: https://bit.ly/39Bx9Mk

Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem Sci 35: 228-235. Link: https://bit.ly/2M1hwBE

Natsos G, Moutoutou N, Ahmad S, Kamran Z, Ioannidis A, et al. (2019) The genus Campylobacter: detection and isolation methods, species identification & typing techniques. Journal of the Hellenic Veterinary Medical Society 70: 1327-1338. Link: https://bit.ly/38Svoen

Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138. Link: https://bit.ly/2LZwnnA

Sun H, Gao N, Dong K, Ren J, Qu X (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8: 6202-6210. Link: https://bit.ly/3inX9X

Chakraborty A, Boer JC, Selomulya C, Plebanski M (2017) Amino acid mutation of murine SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29: 117-128. Link: https://bit.ly/3sHy1OT

Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68: 2255-2266. Link: https://bit.ly/38Nnkd

Jefferson K (2004) What drives bacteria to produce a biofilm? FEMS microbiology lett. 236: 163-173. Link: https://bit.ly/2MD2dw8

Ceming J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7: 113-130. Link: https://bit.ly/39GoWXi

Cormode DP, Gao L, Koo H (2018) Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol 36: 1327-1338. Link: https://bit.ly/38Svoen

Lancteau CRM (2019) Therapeutic applications of nanzymes and their role in cardiovascular disease. Int J Nanomater Nanotechnol Nanomed 7(1): 009-018. DOI: https://dx.doi.org/10.17352/2455-3492.000039
for treating cardiovascular disease. Biomater Sci 3: 564-580. Link: https://bit.ly/2LXE2j1

51. Kurniash IJ, Keitttz J, Haag RJCSR (2015) Dendritic nanocarriers based on hyperbranched polymers. Chemical Society Reviews 44: 4145-4164. Link: https://rsc.li/2LiExsl

52. Qamar SA, Asgher M, Khalid N, Safad M (2019) Nanobiotechnology in health sciences: Current applications and future perspectives. Biocatalysis and Agricultural Biotechnology 22. Link: https://bit.ly/2Y20tmJn

53. Katsuki S, Matoba T, Koga J, Nakano K, Egashira KJF (2017) Antiinflammatory nanomedicine for cardiovascular disease. Front Cardiovasc Med 4: 87. Link: https://bit.ly/2NCnXk

54. Xing H, Hvang K, Lu Y (2016) Recent developments of liposomes as nanocarriers for therapeutic applications. Theranostics 6: 1336-1352. Link: https://bit.ly/3q9Y0BB

55. Franzen S, Marengo A, Stella B, Minghetti P, Arpicco S, et al. (2018) Hyaluronic-decorated liposomes as drug delivery systems for cutaneous administration. Int J Pharm 535: 333-339. Link: https://bit.ly/3654CDr

56. Rosenbaum I, Harnoy AJ, Tirosh E, Buzhor M, Segal M, et al. (2015) Encapsulation and covalent bonding of molecular payload in enzymatically activated micellar nanocarriers. J Am Chem Soc 137: 2276-2284. Link: https://bit.ly/39KF4h

57. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41: 2545-2561. Link: https://bit.ly/2XM4hx

58. Lam SJ, Wong EH, Boyer C, Qiao GG (2018) Antimicrobial polymeric nanoparticles. Progress in polymer science 76: 40-64. Link: https://bit.ly/39EOFZ5

59. Iyer R, Kuriakose AE, Yaman S, Su LC, Shan D, et al. (2019) Nanoparticle eluting-angioplasty balloons to treat cardiovascular diseases. Int J Pharm 554: 212-223. Link: https://bit.ly/3bUePo

60. Martellini V, Bosi S, Peña B, Baj G, Long CS, et al. (2018) 3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS Applied Bio Materials 1: 1530-1537. Link: https://bit.ly/2LY0lq

61. Ohta T, Hashida Y, Yamashita F, Hashida M (2016) Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PE Gylation. J Pharm Sci 105: 2815-2824. Link: https://bit.ly/39HV38N

62. Somasuntharam I, Boopathy AV, Khan RS, Martinez MD, Brown ME, et al. (2019) Nanobiotechnology in health sciences: Current applications and future perspectives. Biocatalysis and Agricultural Biotechnology 22. Link: https://bit.ly/2Y20tmJn

63. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41: 2545-2561. Link: https://bit.ly/2XM4hx

64. Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, et al. (2008) Sequential synthesis of multifunctional nanogel particles by thiol–ene click chemistry: Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PE Gylation. J Pharm Sci 105: 2815-2824. Link: https://bit.ly/39HV38N

65. Kim KS, Song CG, Kang PMJA, signalling R (2019) Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases. Antioxid Redox Signal 34: 7790-7798. Link: https://bit.ly/2LUAG01

66. Peng FF, Zhang Y, Gu N (2008) Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chinese Chemical Letters 19: 14267-14271. Link: https://bit.ly/35NJADA

67. Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G (2017) A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed 56: 3822-3825. Link: https://bit.ly/3SNJADA

68. Zhou H, Han T, Wei Q, Zhang S (2016) Evaluation of cardiotropic activity of Fe nanozyme nanoparticles. Biomater Sci 3: 564-580. Link: https://bit.ly/2LI6Qfx

69. Liu X, Wang Q, Zhao H, Zhang L, Su Y, Chen Q, et al. (2013) Co3O4 nanoparticles as an efficient catalytic mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. Journal of Molecular Catalysis A: Chemical 378: 30-37. Link: https://bit.ly/2LXE2j1

70. Xue T, Jiang S, Qu Y, Su Q, Cheng R, et al. (2012) Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew Chem Int Ed Engl 51: 3822-3825. Link: https://bit.ly/3bUeePo

71. Asati A, Santra S, Kaittanis C, Nath S, Perez, JM (2009) The oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl 48: 2308-2312. Link: https://bit.ly/3bMdE6z

72. Mu J, Zhang L, Zhao M, Wang Y (2013) Co3O4 nanoparticles as an efficient catalytic mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. Journal of Molecular Catalysis A: Chemical 378: 30-37. Link: https://bit.ly/2XPr2yp

73. Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G (2017) A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed 56: 14267-14271. Link: https://bit.ly/2LUAG01

74. Zhou H, Han T, Wei Q, Zhang S (2016) Efficient enhancement of electrochemiluminescence from cadmium sulfide quantum dots by glucose oxidase mimicking gold nanoparticles for highly sensitive assay of methylene blue transferase activity. Anal Chem 88: 2976-2983. Link: https://bit.ly/2PVs4K

75. Xia J, Li F, Ji S, Xu H (2017) Selenium-functionalized graphene oxide that can modulate the balance of reactive oxygen species. ACS Appl Mater Interfaces 9: 21413-21421. Link: https://bit.ly/35NCKxO

76. Liu X, Wang Q, Zhao H, Zhang L, Su Y, Chen Q, et al. (2013) Co3O4 nanoparticles as both peroxidase and oxidase mimics. Analyst 137: 4552-4558. Link: https://bit.ly/39GlfvQ

77. Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G (2017) A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed Engl 56: 14267-14271. Link: https://bit.ly/2LUAG01

78. Zhou H, Han T, Wei Q, Zhang S (2016) Efficient enhancement of electrochemiluminescence from cadmium sulfide quantum dots by glucose oxidase mimicking gold nanoparticles for highly sensitive assay of methylene blue transferase activity. Anal Chem 88: 2976-2983. Link: https://bit.ly/2PVs4K

79. Xia J, Zhang J, Lu N, Kim MJ, Ghae K, et al. (2015) Pd–Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9: 10004-10004. Link: https://bit.ly/39KolKz

80. Peng FF, Zhang Y, Gu N (2008) Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chinese Chemical Letters 19: 730-733. Link: https://bit.ly/3bMYIKP

81. Ragg R, Natalio F, Tahir MN, Janssen H, Kashyp A, et al. (2014) Molybdenum trioxide nanoparticles with intrinsic sulfite oxidative activity. ACS Nano 8: 5182-5189. Link: https://bit.ly/35WVoGt

82. Liu T, Shi S, Liang C, Shen S, Cheng L, et al. (2015) Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging-guided photothermal therapy. ACS Nano 9: 950-960. Link: https://bit.ly/2L6Qfox

83. Ghosh S, Roy P, Karmokad N, Jemmis ED, Mugeh G (2018) Nanoozymes: Crystal-Faceted Dependent Enzyme-Mimetic Activity of V2O5 Nanomaterials. Angew Chem Int Ed Engl 130: 4600-4605. Link: https://bit.ly/2LVDHUT
84. Natalio F, André R, Hartog AF, Stoll B, Jochum KP, et al. (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7: 530. [Link: https://bit.ly/3BT7cZp]

85. Huang W, Wu H, Li X, Chen T (2016) Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents. Chem Asian J 11: 2301-2311. [Link: https://bit.ly/3BVUjJf]

86. Gao L, Liu Y, Kim D, Li Y, Hwang G, et al. (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101: 272-284. [Link: https://bit.ly/3nRI3CD]

87. Katsuki S, Matoba T, Koga Ji, Nakano K, Egashira K (2017) Antiinflammatory nanomedicine for cardiovascular disease. Front Cardiovasc Med 4. [Link: https://bit.ly/38NqYpg]