Markowitz-based cardinality constrained portfolio selection using Asexual Reproduction Optimization (ARO)

Taha Mansouri, a, Mohammad Reza Sadeghi Moghadam, b,

a Postdoctoral researcher, School of science, engineering, and environment, university of Salford, Email:t.mansouri@salford.ac.uk, Tel:+447411781036

b Department of Production and Operation Management, Faculty of Management, University of Tehran, Tehran, Iran, Email:rezasadeghi@ut.ac.ir, Tel:+989126396643

Corresponding author
Abstract:

The Markowitz-based portfolio selection turns to an NP-hard problem when considering cardinality constraints. In this case, existing exact solutions like quadratic programming may not be efficient to solve the problem. Many researchers, therefore, used heuristic and metaheuristic approaches in order to deal with the problem. This work presents Asexual Reproduction Optimization (ARO), a model free metaheuristic algorithm inspired by the asexual reproduction, in order to solve the portfolio optimization problem including cardinality constraint to ensure the investment in a given number of different assets and bounding constraint to limit the proportions of fund invested in each asset. This is the first time that this relatively new metaheuristic is in the field of portfolio optimization, and we show that ARO results in better quality solutions in comparison with some of the well-known metaheuristics stated in the literature. To validate our proposed algorithm, we measured the deviation of obtained results from the standard efficient frontier. We report our computational results on a set of publicly available
benchmark test problems relating to five main market indices containing 31, 85, 89, 98, and 225 assets. These results are used in order to test the efficiency of our proposed method in comparison to other existing metaheuristic solutions. The experimental results indicate that ARO outperforms Genetic Algorithm (GA), Tabu Search (TS), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) in most of test problems. In terms of the obtained error, by using ARO, the average error of the aforementioned test problems is reduced by approximately 20 percent of the minimum average error calculated for the above-mentioned algorithms.

Key Words: Portfolio optimization, Cardinality constraints, Markowitz mean-variance model, Asexual reproduction optimization, Efficient frontier.

1. **Introduction:**

Portfolio optimization, which is the problem of allocating the initial amount of capital among a given number of assets or securities, has attracted a lot of attention in the field of quantitative finance (Moral-Escudero, Ruiz-Torrubiano, & Suarez, 2006). In order to help investors in optimally forming their portfolio of assets, Markowitz (1952, 1959) has proposed a quantitative framework. Markowitz mean-variance model of portfolio selection which caused the development of *Modern Portfolio Theory (MPT)*, formulates the problem as a multi-objective optimization problem with two conflicting objectives: maximizing the expected return and minimizing the risk
(measured by variance) of a portfolio. Considering these two competing criteria simultaneously, there is no single optimal portfolio, but a set of portfolios forming the efficient frontier (EF). In other words, efficient frontier, also called Pareto-optimal front, is the collection of portfolios which result in minimum risk for a given level of return or equivalently, maximum return for a given level of risk.

The standard Markowitz model assumes a perfect market without any transaction costs and taxes, where short selling is forbidden, and assets are tradable in any non-negative fractions. This basic model belongs to the category of Quadratic Programming (QP) problems (Fernández & Gómez, 2007); thus, the efficient frontier could be found using standard QP solvers which are easily available and can guarantee to find the optimal solution, and be modified to include linear constraints (Chang, Meade, Beasley, & Sharaiha, 2000). However, in the absence of these unrealistic assumptions, or presence of some non linear real-world constraints, QP is not necessarily feasible for finding efficient portfolios any more.

Many researchers have tried to extend the Markowitz’s model (Markowitz, 1952) in order to capture more realistic market conditions by introducing some additional constraints. These include, cardinality constraint which limits the number of assets held in the portfolio, bounding (quantity or floor-ceiling) constraint, also known as buy-in thresholds, imposing lower and/or upper bounds on funds invested in each asset, pre-assignment constraint reflecting the investor’s preferences by requiring some specific assets to be held in the portfolio, round lot (minimum lots) constraint which forces the amount invested in each asset to be a multiple of minimum transaction lot, class constraint which limits the total weight assigned to a class (assets with common characteristics), as well as turnover and trading constraints that impose upper and lower bounds respectively on the variation of the assets weight from one period to another, which are particularly useful in multi period investments (Ponsich & Antonio, 2012; Lwin et al., 2014; Crama & Schyns, 2003; Tollo & Roli, 2008).

According to Metaxiotis & Liagkouras (2012), cardinality and bounding constraints occupy the main focus of the researchers. In practice, many investors prefer to hold a certain number of assets in their portfolio so as to facilitate its management, decrease transaction costs, and assure a minimum degree of diversification. Moreover, they prefer to avoid holding
very small and large proportion of assets in order to reduce administrative costs and risk, respectively (Anagnostopoulos & Mamanis, 2011; Lwin et al., 2014).

In this paper, we tackle the problem with regard to the extended Markowitz mean-variance model which includes cardinality and bounding constraints. In this case, we refer to the EF as cardinality constrained efficient frontier (CCEF). By introducing the cardinality constraint into the classic quadratic programming model, this problem turns to a mixed integer quadratic programming one which is NP-hard (Bienstock, 1996; Moral-Escudero et al., 2006; Shaw, Liu, & Kopman, 2008). In this case, exact optimization methods are not efficient for large problem sizes (Kalayci et al., 2017). Many researchers, therefore, take advantage of heuristic and metaheuristic approaches in order to deal with the problem (Maringer, 2006; Tollo & Roli, 2008). Although these approaches do not guarantee to find the optimal solution, they are efficient for finding near-optimal solutions.

Asexual Reproduction Optimization (ARO), proposed relatively recently in Farasat et al. (2010) and Mansouri et al. (2011), is an evolutionary individual based metaheuristic algorithm inspired by budding mechanism of asexual reproduction and has been used in very few studies (e.g. Khanteymoori et al., 2011; Kazemi et al., 2012; Noormohammadi Asl et al., 2014; Ahmadian & Khanteymoori, 2015; Yazdanparast et al., 2015). None of these studies deal with the portfolio selection problem (PSP).

The ARO has advantages that make it completely different from other metaphors. First, it is an individual-based algorithm. Thus, unlike population-based algorithms that require a large amount of computational resources to convert, ARO consumes much less. Hence, it converges faster. The second case is mathematical convergence, so it has good exploration and exploitation rates. Third, ARO does not require parameter settings, so you are unlikely to have trouble setting parameters that are a common meta-cognitive problem such as genetic algorithms (GA), annealing simulation (SA), taboo search (TS). And Particle Particle Optimization (PSO). In addition, the ARO does not use any selective mechanism such as a roulette wheel. Inappropriate selection of selection mechanisms may lead to problems such as premature convergence due to excessive selection pressure. Fourth providers in many benchmark issues have shown the computational power of this algorithm. Fifth, ARO is a free model algorithm that can be applied to various types of
optimization. (Mansouri et al., 2011) Finally, the ARO in this paper presents better results than the algorithms used in other papers.

For these reasons, we take advantage of ARO to tackle the Markowitz-based cardinality constrained portfolio selection problem. The main contribution of this study is to solve this problem more efficiently using a new approach. We apply a method which uses ARO to confront the portfolio selection problem. Our proposed method results in better quality solutions compare to some of the well-known metaheuristics which have been used in this field.

Computational results are reported for five analyses of weekly price data with regard to the following indices for the time period between March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in the UK, S&P 100 in the USA and Nikkei 225 in Japan.

The rest of this paper is organized as follows. A literature survey of exact, heuristic, and hybrid approaches to the problem is presented in Section 2. Section 3 describes the generic mean-variance portfolio selection problem, followed by the specific model in the presence of cardinality and bounding constraints. Section 4 introduces the proposed ARO algorithm along with its application to the problem under consideration. Computational experiments and results are discussed in Section 5. Conclusion and future work are presented in Section 6.

2. Literature review

According to Woodside-Oriakhi, Lucas, & Beasley (2011), researchers dealt with the cardinality constrained portfolio optimization using either exact or heuristic approaches. In this paper, we consider a third category to structure our literature survey: hybrid methods which combine an exact method with a heuristic one.

2.1. Exact approaches

As stated earlier, when considering the cardinality constraint into the model, exact methods may not be efficient to solve portfolio optimization problem for large problem samples. However, some researchers tried to deal with the problem using a relaxed version of cardinality constraint which
imposes an upper bound on the number of assets present in the portfolio. This approach, in which Eq. (14) is an inequality rather than equality, has a significantly less computational complexity (Woodside-Oriakhi et al., 2011). Moreover, the results show that researchers were able to handle this version of problem for limited problem sizes (Lwin et al., 2014).

Table 1 summarizes the exact approaches used in the literature to solve the PSP.

Authors	Constraints	Method	Datasets	risk measure
Bienstock (1996)	upper bound on the cardinality	branch-and-cut	3897 assets	variance
Lee & Mitchell (1997)	upper bound on the cardinality	interior point nonlinear branch-and-bound solver	5 datasets involving up to 150 assets	variance
Young (1998)	transaction costs	minimax	No computational results	minimum return
Li et al. (2006)	upper bound on the cardinality, round lots	convergent Lagrangian and contour-domain cut	30 assets from from the Hong Kong stock market	Variance
2.2. **Heuristic approaches**

With regard to the above-mentioned approach, using other risk measures than variance, Mansini & Speranza (1999) considered PSP with minimum transaction lots and showed that in this case, the problem of finding a feasible solution is NP-complete no matter what the risk measure is. In their work, they used Mean Semi-absolute Deviation as a measure of risk and presented three heuristics based on solving the linear programming relaxation to tackle the problem. Kellerer, Mansini, & Speranza (2000) also considered the same risk measure in their paper. They added fixed transaction costs to the previous model and employed two of the three Mixed Integer Linear Programming based (MILP-based) heuristics which were used in the previous study. In a more recent work, Chang, Yang, & Chang (2009) considered different risk criteria other than variance; semi-variance, mean absolute deviation (MAD) and variance with skewness. They employed Genetic Algorithm (GA), and showed its efficiency for solving these problems in different risk measures.

Heuristic attempts to solve the portfolio selection problem are summarized in Table 2.
Authors	Constraint	Method	Datasets	risk measure
Mansini & Speranza (1999)	minimum transaction lots	Basic, reduced cost, and iterated MILP-based heuristics	2 datasets involving 244 and 277 assets	Mean Semi-absolute Deviation
Kellerer et al. (2000)	fixed transaction costs, round lots	reduced cost and iterated MILP-based heuristics	1 dataset involving 244 assets	Mean Semi-absolute Deviation
Chang et al. (2000)	cardinality, bounding	GA, SA, TS	Hang Seng, DAX, FTSE, S&P100, Nikkei	variance
Jobst et al. (2001)	cardinality, bounding, round lots	integer restart, reoptimisation	test problems provided by Chang et al. (2000)	variance
Schaerf (2002)	cardinality, bounding	hill climbing, SA, TS	test problems provided by Chang et al. (2000)	variance
Crama & Schyns (2003)	Cardinality, turnover, trading	SA	1 dataset involving 151 US stocks	variance
Researchers & Year	Constraint Considered	Methodology	Dataset Description	Evaluation Criteria
--------------------------	----------------------------	--------------------------------------	---	--------------------
Derigs & Nickel (2003)	Consider any constraint is possible in this model	A metaheuristic approach based on SA	A case study containing 202 stocks related to DAX30 & STOXX200	Variance
Maringer & Kellerer (2003)	Upper bound on the cardinality	A combination of SA and ES	DAX30, FTSE100	Variance
Ehrgott et al. (2004)	Cardinality, bounding	Customized local search, SA, TS, GA	Four data sets involving up to 1416 assets	Volatility, S&P star ranking
Fernández & Gómez (2007)	Cardinality, bounding	HNN	Test problems provided by Chang et al. (2000)	Variance
Chiam et al. (2008)	Cardinality, bounding	An approach based on a multiobjective EA	Test problems provided by Chang et al. (2000)	Variance
Chang et al. (2009)	Cardinality, bounding	GA	HANG SENG, FTSE, S&P100	Semi-variance, MAD, variance with skewness
Authors	Cardinality, bounding, class	Method	Test Problems	Variance
-------------------------	-----------------------------	-------------------------	--	----------
Pai & Michel (2009)	an ES-based solution and k-means clustering	BSE 200, Nikkei 225		variance
Soleimani et al. (2009)	cardinality, round lots, market (sector) capitalization	GA	two randomly generated datasets with 500 and 2000 assets.	variance
Cura (2009)	cardinality, bounding	PSO	test problems provided by Chang et al. (2000)	variance
Anagnostopoulos & Mamanis (2010)	class, bounding	NSGA-II, PESA, SPEA2	two randomly generated data sets containing 200 and 300 assets	variance
Anagnostopoulos & Mamanis (2011)	cardinality, bounding	NPGA2, NSGA-II, PESA, SPEA2, e-MOEA	seven test problems involving up to 2196 assets	variance
Woodside-Oriakhi et al. (2011)	cardinality, bounding	GA, SA, TS	seven test problems involving up to 1318 assets	variance
Reference	Cardinality, Bounding	Algorithm	Test Problems Provided By	Objective
--	-----------------------	------------	---------------------------	-------------
Deng et al., 2012	cardinality, bounding	PSO	test problems provided by Chang et al. (2000)	variance
Lwin & Qu (2013)	cardinality, bounding	PBILDE	test problems provided by Chang et al. (2000)	variance
Lwin et al. (2014)	cardinality, bounding, pre-assignment, round lots	MODEwAwL	seven test problems involving up to 1318 assets	variance
Ni et al. (2017)	cardinality, bounding	DRTCPSO-AD, DRTCPSO-D, DRTCPSO-LIAD, DRTCPSO-LID	test problems provided by Chang et al. (2000)	variance
Kalayci et al. (2017)	cardinality, bounding	ABC	Hang Seng, DAX, FTSE, S&P100, Nikkei, XU030, XU100	variance
Meghwani & Thakur (2017)	cardinality, bounding, pre-assignment	NSGA-II, MOEA/D, GWAS- FGA	FF38, FF48	VaR, CVaR
Authors	Problem Description	Methodology	Parameters	Constraint(s)
--------	---------------------	-------------	------------	---------------
Liagkouras, K., & Metaxiotis, K. (2018)	Liquidity Upper and Lower limit of the cardinality constraint lower and upper bound constraints, transaction costs	proposed new Multi-period Fuzzy Portfolio Optimization Algorithm (MFPOA)	92 assets from FTSE-100 index in London	possibilistic variance of the portfolio return at each period.
Babazadeh, H., & Esfahanipour, A. (2019)	Cardinality Constraint Budget Constraint at each period	new design of NSGA-II	20 selected assets from S&P100	VaR
Ling, A., Sun, J., & Wang, M. (2019)	stochastic constraint Budget Constraint	A computationally tractable approximatio n approach based on second-order cone optimization	10Ind, 12Ind, iShare and DJIA, as in Rujeerapaiboon et al. (2016) , with all data from the French data library, Yahoo finance and	lower partial moment (LPM).
2.3. **Hybrid approaches**

More recently in the literature, researchers tried to tackle the portfolio optimization problem by implementing hybrid strategies that take advantage of both exact and heuristic approaches. Table 3 summarizes the Hybrid methods proposed in the literature.

Table 3

Hybrid approaches for portfolio selection problem.

Research	Constraints	Method	Datasets	risk measure
Ahmadi-Javid, A., & Fallah-Tafti, M. (2019)	cardinality, bounding	primal-dual interior-point algorithm, EVaR-PD algorithm	the Wind database	entropic value-at-risk (EVaR)
Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2019)	Budget Constraint, Cardinality, No short selling constraint, Contingent constraint	polynomial goal programming approach	a sample of twenty assets (n = 20) from National Stock Exchange (NSE), India	Variance entropy
Mohammadi, S., & Nazemi, A. (2020)	Budget Constraint	neural network	10 securities	VaR
Study	Objective	Approach	Test Problems	Results
-------------------------------	--------------------------------	---	---	-------------------------------
Moral-Escudero et al. (2006)	cardinality, bounding	combination of GA and QP	test problems provided by Chang et al. (2000)	variance
Streichert & Tanaka-yamawaki	upper bound on the cardinality, maximum limits with one exception	combination of a MOEA and a QP local search	Hang Seng 31, DAX 100	variance
(2006)				
Branke et al. (2009)	Cardinality, bounding, 5-10-40 rule from German investment law	envelope-based MOEA	Hang Seng 31, S&P 100, Nikkei 225, and a benchmark with 500 assets	variance
Ruiz-torrubiano & Suárez (2010)	upper bound on the cardinality, bounding	Preprocessing (pruning), SA, GAs, EDAs	test problems provided by Chang et al. (2000)	variance
Baykasoğlu et al. (2015)	cardinality, bounding	GRASP-QUAD	test problems provided by Chang et al. (2000)	Variance
Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018)	Bankruptcy Budget Constraint transaction costs Total wealth at each period	GA combined with penalty function	8 stocks	Variance
According to the literature reviewed above, since the pioneering work of Harry Markowitz (Markowitz, 1952), the mean-variance model of portfolio optimization has been the main framework for choosing optimal portfolios. Some extensions have been proposed for this model and among them, MVCCPO including cardinality and bounding constraints has attracted the most of researchers’ attention. Using metaheuristic algorithms became the main trend for dealing with this model after the research conducted by Chang et al. (2000) and hybrid methods which take advantage of both heuristic and exact solutions, have been used more recently in the literature.

The contribution of our paper is to complement the reviewed literature by proposing a new approach for portfolio selection based on the Markowitz mean-variance-model which results in better quality solutions in comparison with some of the well-known metaheuristics stated in the literature.

3. Problem Formulation

Let us start with the basic (unconstrained) Markowitz model. In its multiobjective form, it can be formulated as follows:
Minimize $\sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_{ij}$ \hspace{1cm} (1)

Maximize $\sum_{i=1}^{N} w_i \mu_i$ \hspace{1cm} (2)

subject to $\sum_{i=1}^{N} w_i = 1$ \hspace{1cm} (3)

$0 \leq w_i \leq 1$, \hspace{0.5cm} $i = 1, ..., N$ \hspace{1cm} (4)

Where N is the number of available assets, μ_i is the expected return of asset i, σ_{ij} is the covariance between asset i and j, and w_i is the decision variable representing the proportion of money invested in asset i. Eq. (1) minimizes the risk of the portfolio (measured by variance) while Eq. (2) maximizes the expected return of the portfolio. Eq. (3) defines the budget constraint which forces the investment of all the money in hand, i.e., asset weights must sum up to one. Finally, Eq. (4) states that all weights should be nonnegative.

By solving the above model, a set of efficient portfolios can be found. These Pareto-optimal (non-dominated) solutions form the unconstrained efficient frontier (UEF), i.e., a continuous curve representing the best possible trade off between risk and return.

This bi-objective model can be also represented as a single objective optimization problem; therefore, it could be solved by applying single objective solution techniques. The famous single objective representation of the basic Markowitz model is as follows:
Minimize \[\sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_{ij} \] (5)

subject to \[\sum_{i=1}^{N} w_i \mu_i = R^* \] (6)

\[\sum_{i=1}^{N} w_i = 1 \] (7)

\[0 \leq w_i \leq 1, \quad i = 1, \ldots, N \] (8)

This model attempts to minimize risk by considering the expected return as a constraint. Hence, solving the above single objective problem for different levels of expected return results in tracing the unconstrained efficient frontier.

According to Chang et al. (2000), designing a heuristic based on the above formulation is difficult in that it requires the expected return of the portfolio to be exactly \(R^* \).

In practice, for tracing the UEF, a popular approach is to introduce a weighting parameter \(\lambda \) (0 \leq \lambda \leq 1); thus, the objective function could be represented in a Lagrangian relaxation form (Chang et al., 2000; Anagnostopoulos & Mamanis, 2011):

Minimize \[\lambda \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_{ij} - (1 - \lambda) \sum_{i=1}^{N} w_i \mu_i \] (9)

subject to \[\sum_{i=1}^{N} w_i = 1 \] (10)
\[0 \leq w_i \leq 1, \quad i = 1, \ldots, N \tag{11} \]

By solving this QP problem for various values of \(\lambda \), the UEF can be traced from the portfolio with maximum return \((\lambda = 0) \) to the portfolio with minimum level of risk \((\lambda = 1) \). Chang et al. (2000) showed that when considering the unconstrained problem, by varying \(\lambda \) in Eq. (9), we can obtain exactly the same efficient frontier as we would get by solving Eqs. (5) - (8) for varying values of \(R^* \).

In order to find the cardinality constrained efficient frontier (CCEF), many researchers extended the above-mentioned model by adding cardinality and bounding constraints (e.g. Chang et al., 2000; Fernández & Gómez, 2007; Cura, 2009; Woodside-Oriakhi, Lucas, & Beasley, 2011; Deng, Lin, & Lo, 2012; Baykasoğlu, Yunusoglu, & Burcin Özsoydan, 2015):

\[
\begin{align*}
\text{Minimize} & \quad \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_{ij} - (1 - \lambda) \sum_{i=1}^{N} w_i \mu_i \\
\text{subject to} & \quad \sum_{i=1}^{N} w_i = 1 \\
& \quad \sum_{i=1}^{N} z_i = K \tag{14} \\
& \quad \varepsilon_i z_i \leq w_i \leq \delta_i z_i, \quad i = 1, \ldots, N \tag{15} \\
& \quad z_i \in \{0,1\}, \quad i = 1, \ldots, N \tag{16}
\end{align*}
\]

Where \(z_i \) is the decision variable indicating the existence of each asset in the portfolio, hence it is equal to 1, if asset \(i \) is included in the portfolio and zero otherwise. Eq. (14) defines the cardinality constraint (portfolio consists of exactly \(K \) assets) and Eq. (15) defines the bounding constraint which
imposes lower and upper limits on the weight of each asset. In this work, we will consider the same MVCCPO model (Eqs. (12) – (16)).

4. ARO for portfolio selection problem

In this section, we present our proposed algorithm for solving the cardinality constrained portfolio selection problem. First, we give a brief overview of the general ARO, then the particular implementation of this proposed algorithm that is customized for finding the CCEF will be presented.

4.1. Asexual Reproduction Optimization

ARO, which is an individual based evolutionary algorithm modelling the budding mechanism of asexual reproduction, was first described by Farasat et al. (2010) and Mansouri et al. (2011). In ARO, each individual produces a bud via a reproduction mechanism; afterward, the bud and its parent compete with respect to their fitness which is obtained from the objective function of the underlying optimization problem. Through competition for limited resources, the fitter one will survive, while the other will be discarded. This reproduction cycle is repeated until the stopping criteria are met.

Consider the following optimization problem:

\[
\text{Maximize } f(X) \quad \text{subject to } X \in S
\]

where \(X = (x_1, x_2, ..., x_n); x_i \in \mathbb{R} \ (i = 1, 2, ..., N) \) are the decision variables, \(f(X) \) is the objective function, and \(S \) defines the search space.

The pseudo code of ARO is illustrated in Figure 1.

4.2. The proposed ARO for finding the CCEF

Here, we introduce the customized version of ARO to deal with the
cardinality constrained portfolio optimization problem.

4.2.1. Notation

Table 4 introduces the notations used to describe the proposed version of ARO to solve the problem.

Symbol	Description
N	the whole number of available assets
K	the number of assets present in the portfolio
w_i	the proportion of capital invested in asset i
ε_i	the lower bound on the proportion invested in asset i
δ_i	the upper bound on the proportion invested in asset i
T_{max}	the number of running iterations for ARO
$R[x,y]$	a random integer number in $[x,y]$
$r[0,1]$	a random real number in $[x,y]$
R	the set of i whose proportions are fixed at δ_i
Q	the set of K distinct assets in the current solution
g	the length of selected substring from parent’s chromosome
b	the number of buds reproduced from the current parent

4.2.2. Solution representation and encoding

In our solution representation, a vector of size $2K$ is used to represent a portfolio. This vector consists of two distinct parts, the first part indicates the asset indices present in the portfolio, and the second part determines the proportion of capital to be invested in each asset in the portfolio. So, the first part would be an integer vector of size K with its elements belonging to $\{1, 2, \ldots, N\}$, and the second part consists of K real numbers from $[0,1]$ (Fig. 2).
Where x_i is an integer variable that belongs to $\{1, 2, ..., N\}$ and it represents the index of the i^{th} asset in our portfolio. As mentioned before, we will have K distinct assets in our portfolio, so, $(i = 1, 2, ..., K)$. In the second part of the solution representation, $w_i \in [0,1]$ denotes the value of investment in the asset x_i. For instance, if $K=4$, which means that we are constrained to have 4 distinct assets in our portfolio, and the whole number of assets in the market is $N=100$, we should pick 4 distinct integers from $\{1, 2, ..., 100\}$ to represent the asset indices we are going to hold in the portfolio. Assume that we pick asset number 1, 7, 34, and 87, and put the equal weights for them in the portfolio. Our solution representation will be like this:

FIGURE 3 ABOUT HERE

It is important to note that each number in $\{1, 2, ..., N\}$ cannot appear more than once in the integer part of the chromosome.

4.2.3. **Constraints satisfaction**

To meet the bounding constraint and ensuring that the sum of the proportions invested in assets equals one (Eq. (15), and Eq. (13)), the following approach is applied based on Chang et al. (2000):

Let Q be the set of K distinct assets in the current solution. The lower limits constraint can be satisfied if all weights in the candidate solution are adjusted by setting $w_i' = \varepsilon_i + w_i(1 - \sum_{i \in Q} \varepsilon_i) / \sum_{i \in Q} w_i$. Note here that $\sum_{i \in Q} w_i' = 1$. So, the above formula satisfies both the lower proportion limits and sum to one.

Let R be the set of i whose proportions are fixed at δ_i. In order to satisfy upper limits constraint, an iterative algorithm can be applied as shown in **Figure 4**.

FIGURE 4 ABOUT HERE
It is also noteworthy that there is no need for any mechanism to handle the cardinality constraint (Eq. (14)), since our solution representation presented in Section 4.2.2 requires each solution to contain exactly K distinct assets.

4.2.4. Mutation

In order for our proposed ARO to maximize diversity, we present two types of mutation.

4.2.4.1. Mutation of shares

In this type of mutation, a bud is reproduced by altering some genes from the integer part of its parent’s chromosome. In optimization terms, a new solution is generated by changing some asset indices present in the portfolio while weights remain unchanged.

In order to reproduce the bud, a substring of length g is randomly selected from the integer part of the parent’s chromosome. Thereafter, the genes presented in this substring are replaced with g integers which are absent in the remaining string.

To clarify more, suppose that we have $N = 10$, $K = 5$, and the integer part of the parent’s chromosome is shown in Figure 5. In order to select a substring, we randomly generate two distinct integers in $[1, K]$, i.e., $r_1 = [1, K]$ and $r_2 = R[r_1, K]$. so, $g = r_2 - r_1 + 1$. Assume that $r_1 = 2$, $r_2 = 3$. Hence, $\{8, 5\}$ should be eliminated from parent’s chromosome, and a string of length 2 composing of two distinct elements from $\{1, 3, 5, 6, 8, 9, 10\}$ (e.g., $3, 8$) will be substituted. (see Fig. 5).

4.2.4.2. Mutation of weights

We use two kinds of variation here to expand the search space, stochastic and chaotic. The former is used when we are stuck in local optimum and helps us to exit from it. Buy using The latter, we try to visit
maximum number of points near the solution. To select the kind of variation, we use the following function:

\[f(i, b) = \sin \left(\max \left(1 - \varphi^{\ln(i)} / b, 0 \right) \right) \frac{\pi}{2} \]

(18)

Where \(i \) shows the number of iteration, \(b \) is a variable representing the number of iterations we searched in local—i.e., the number of buds reproduced from the current parent—and \(\varphi \) is the golden number which is approximately equal to 1.618. The value of \(f(i, b) \) is decreasing in \(i \) and increasing in \(b \). Eq. (18) tries to produce a probable measure to determine the extent of being stuck in local optimum. We examined the above-mentioned function to produce this measure and found it suitable for our purpose.

Then, base on the value of \(f(i, b) \), we use the following procedure to select the variation: A random real number is generated in \([0, 1] \), i.e., \(r_3 = r[0, 1] \). If \(r_3 \) is lower than \(f(i, b) \), stochastic variation will be selected. Otherwise, we apply the chaotic variation.

In stochastic variation, we select a random substring of length \(g \) from the real part of the parent’s chromosome, then define \(p \) as follows:

\[p = 1 / (1 + \ln (g)) \]

(19)

For each gene from the selected substring, let \(r_4, r_5 = r[0, 1] \). If \(r_4 \leq p \) and \(r_5 \leq 0.3 \), the value of the gene will be replaced with \(p \) multiplied by a random number in \([0, 1] \). If \(r_4 \leq p \) and \(r_5 > 0.3 \), the new value of the gene takes a random real number in \([0, 1] \). Otherwise, the value of the gene remains unchanged.

In chaotic variation, we apply these steps for every gene in the real part of the parent’s chromosome: let \(r_6 = r[0, 1] \). If \(r_6 \leq 0.2 \), the value of the gene should be multiplied by \(0.2 \times f(i, b) \). If \(r_6 \) belongs to \([0.3, 0.7] \), then let \(r_7 = r[0, 1] \), and the value of the gene will be multiplied by \(r_7 + 0.2 \times f(i, b) \). Otherwise, the value of the gene remains unchanged.

4.2.5. Termination
Our proposed ARO terminates after running for a predefined number of iterations, T_{max}.

5. **Computational results**

In this section, our proposed ARO is evaluated and compared to other well-known existing heuristics used for tackling the cardinality constrained portfolio optimization based on the standard test problems. The heuristics which are used for comparison are Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), and Particle Swarm Optimization (PSO). We use the results reported by Chang et al. (2000) for GA, SA, and TS while PSO results was those reported by Deng et al. (2012). We report the computational results for finding 50 different portfolios on the CCEF for each data set using the values $\varepsilon_i = 0.01$, $\delta_i = 1$ ($i = 1, 2, \ldots, N$), and $K = 10$. We set the number of iterations which is the termination condition for ARO to 20000. The proposed algorithm is implemented in MATLAB language.

5.1. **Datasets**

The performance of our proposed algorithm is evaluated on the benchmark data related to five well-known major market indices from the publicly available OR-Library (Beasley, 1990). These test problems were built based on weekly prices between March 1992 and September 1997 for the following market indices: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA, and Nikkei 225 in Japan. The number of assets, N, related to each dataset is 31, 85, 89, 98 and 225, respectively. These data files contain mean return of each stock, covariance between these stocks, and the unconstrained efficient frontier composing of 2000 points (i.e., *standard efficient frontier*), which are accessible at http://people.brunel.ac.uk/~mastijb/jeb/orlib/portinfo.html. They were first provided by Chang et al. (2000) and were used in many other studies since then (e.g., Baykasoglu et al., 2015; Chiam et al., 2008; Cura, 2009; Deng et al., 2012; Fernández & Gómez, 2007; Lwin & Qu, 2013; Moral-Escudero et al., 2006; Ruiz-torrubiano & Suárez, 2010; Schaefer, 2002).

5.2. **Performance indicator**

To evaluate the performance of a heuristic, the quality of results could
be measured in terms of the deviation of obtained results from the optimal solution (Woodside-Oriakhi et al., 2011). In the case of finding the cardinality constrained efficient frontier, because of unavailability of the optimal CCEF, the quality of results could be measured according to their deviation from UEF which can be found simply by QP. Thus, we used exactly the same approach previously proposed by Chang et al. (2000) which is the most commonly used approach in the literature. For instance, the following studies used the same approach: Woodside-Oriakhi et al. (2011), Deng et al. (2012), Lwin & Qu (2013), Baykasoğlu et al. (2015).

Let \((s_p, R_p)\) be the standard deviation and return corresponding to a portfolio \(p\) found by ARO heuristic. By using linear interpolation, we can find \(s_p^*\) which is the standard deviation associated with \(R_p\) in standard efficient frontier. Hence, the \textit{standard deviation error} of portfolio \(p\) is defined as follows:

\[
\text{Standard deviation error (p)} = 100 \left| \frac{(s_p - s_p^*)}{s_p^*} \right| \quad (20)
\]

Similarly, let \(R_p^*\) be the return associated with \(s_p\) using linear interpolation in standard efficient frontier. Then, the \textit{return error} of portfolio \(p\) would be:

\[
\text{Return error (p)} = 100 \left| \frac{(R_p - R_p^*)}{R_p^*} \right| \quad (21)
\]

Furthermore, the minimum between two above-mentioned errors for portfolio \(p\) is defined as \textit{percentage error}, and by averaging this for all obtained portfolios, we can define \textit{mean percentage error}.

\[
\text{Percentage error (p)} = \min \{100 \left| \frac{(s_p - s_p^*)}{s_p^*} \right|, 100 \left| \frac{(R_p - R_p^*)}{R_p^*} \right| \} \quad (22)
\]

\[
\text{Mean percentage error} = \frac{\sum_{p=1}^{50} \text{percentage error (p)}}{50}. \quad (23)
\]

In other words, after obtaining all portfolios based on the targeted portfolios, we measure the vertical and horizontal distances to the standard UEF for each portfolio and compute the minimum of these two numbers. Then, our performance indicator, \textit{mean percentage error}, is the average of these derived
minimums for all obtained portfolios. For more details about this approach, see Chang et al. (2000).

5.3. Experiments

As mentioned before, the standard efficient frontier is the set of 2000 optimal portfolios on the UEF which is available from OR-Library (Beasley, 1990) for each of the five tested data sets. Figure 6 shows the heuristic frontier which is formed by the 50 portfolios found by ARO as well as the standard efficient frontier for each data set.

FIGURE 6 ABOUT HERE

This figure clearly illustrates that our proposed algorithm performs really well when dealing with portfolios requiring lower levels of risk and expected return. However, when finding portfolios which have much higher risk and expected return, the distance between standard efficient frontier and ARO heuristic frontier increases. The reason is that when we want to constitute portfolios with higher expected return, we should choose fewer assets which have higher mean return; in the unconstrained problem it would be possible to choose even one asset with the highest level of mean return, but when dealing with the constrained problem, our algorithm is forced to select exactly 10 assets because of the cardinality constraint. Hence, the portfolios which are close to top right corner of CCEF, have much significant percentage error.

Table 5 compares our results with those obtained by Chang et al. (2000) and Deng et al. (2012) based on the mean percentage error, for each data set. The best mean percentage error among them for each problem is written in boldface. These results show that our proposed method outperforms other heuristics in four out of five test problems. Therefore, the superiority of it is clear from the experimental results.

Table 5

Comparison of proposed ARO with other heuristics for finding the CCEF.

Index	N	GA	SA	TS	PSO	ARO

- For more details about this approach, see Chang et al. (2000).
- As mentioned before, the standard efficient frontier is the set of 2000 optimal portfolios on the UEF which is available from OR-Library (Beasley, 1990) for each of the five tested data sets. Figure 6 shows the heuristic frontier which is formed by the 50 portfolios found by ARO as well as the standard efficient frontier for each data set.

FIGURE 6 ABOUT HERE

This figure clearly illustrates that our proposed algorithm performs really well when dealing with portfolios requiring lower levels of risk and expected return. However, when finding portfolios which have much higher risk and expected return, the distance between standard efficient frontier and ARO heuristic frontier increases. The reason is that when we want to constitute portfolios with higher expected return, we should choose fewer assets which have higher mean return; in the unconstrained problem it would be possible to choose even one asset with the highest level of mean return, but when dealing with the constrained problem, our algorithm is forced to select exactly 10 assets because of the cardinality constraint. Hence, the portfolios which are close to top right corner of CCEF, have much significant percentage error.

Table 5 compares our results with those obtained by Chang et al. (2000) and Deng et al. (2012) based on the mean percentage error, for each data set. The best mean percentage error among them for each problem is written in boldface. These results show that our proposed method outperforms other heuristics in four out of five test problems. Therefore, the superiority of it is clear from the experimental results.
6. Conclusion

In this paper we considered the portfolio selection problem under cardinality constraint which requires a predetermined number of assets to be present in the portfolio as well as bounding constraint that impose upper and lower limits on the proportions of capital invested in each asset. These real world constraints turn the problem to an NP-hard one, consequently the classical methods may not be efficient to find the optimal solution for large problem sizes.

In our work, a version of ARO is proposed to find the cardinality constrained efficient frontier. Our algorithm uses two types of mutation which modifies share indices and weights of them, separately. We also took advantage of both stochastic and chaotic variations for mutation of shares. We evaluated the performance of the proposed approach using standard data sets considered previously in the literature which are related to five major market indices containing up to 225 assets. We also compared the results with those related to some well-known heuristics proposed previously to tackle the problem. The comparison showed that our proposed ARO outperforms GA, SA and TS applied by Chang et al. (2000) to the problem, and PSO proposed by Deng et al. (2012) in most cases. Numerical results showed that by using ARO, the average error of the aforementioned test problems is reduced by approximately 20 percent of the minimum average error calculated for the above-mentioned algorithms (see Table 5).

Future work using competitive co-evolutionary genetic algorithm to deal with the problem is currently underway.

References
Ahmadi-Javid, A., & Fallah-Tafti, M. (2019). Portfolio optimization with entropic value-at-risk. *European Journal of Operational Research, 279*, 225-241. http://doi.org/10.1016/j.ejor.2019.02.007

Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. *Computers and Operations Research, 37*(7), 1285–1297. http://doi.org/10.1016/j.cor.2009.09.009

Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. *Expert Systems with Applications, 38*(11), 14208–14217. http://doi.org/10.1016/j.eswa.2011.04.233

Babazadeh, H., & Esfahanipour, A. (2019). A novel multi period mean-VaR portfolio optimization model considering practical constraints and transaction cost. *Journal of Computational and Applied Mathematics, 361*, 313-342.

Baykasoğlu, A., Yunusoglu, M. G., & Burcin Özsoydan, F. (2015). A GRASP based solution approach to solve cardinality constrained portfolio optimization problems. *Computers & Industrial Engineering, 90*, 339–351. http://doi.org/http://dx.doi.org/10.1016/j.cie.2015.10.009

Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. *Journal of the operational research society, 1069-1072.*

Bertsimas, D., & Shioda, R. (2009). Algorithm for cardinality-constrained quadratic optimization. *Computational Optimization and Applications, 43*(1), 1–22. http://doi.org/10.1007/s10589-007-9126-9

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems. *Mathematical Programming, 74*(2), 121–140. http://doi.org/10.1007/BF02592208

Branke, J., Scheckenbach, B., Stein, M., Deb, K., & Schmeck, H. (2009). Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. *European Journal of Operational Research, 199*(3), 684–693. http://doi.org/10.1016/j.ejor.2008.01.054

Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. *Expert Systems with Applications, 36*(7), 10529–10537. http://doi.org/10.1016/j.eswa.2009.02.062

Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for
cardinality constrained portfolio optimisation. *Computers & Operations Research*, 27(13), 1271-1302.

Chiam, S. C., Tan, K. C., & Al Mamum, A. (2008). Evolutionary multi-objective portfolio optimization in practical context. *International Journal of Automation and Computing*, 5(1), 67–80. http://doi.org/10.1007/s11633-008-0067-2

Crama, Y., & Schyns, M. (2003). Simulated annealing for complex portfolio selection problems. *European Journal of Operational Research*, 150(3), 546–571. http://doi.org/10.1016/S0377-2217(02)00784-1

Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. *Nonlinear Analysis: Real World Applications*, 10(4), 2396–2406. http://doi.org/10.1016/j.nonrwa.2008.04.023

Deng, G.-F., Lin, W.-T., & Lo, C.-C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. *Expert Systems with Applications*, 39(4), 4558–4566. http://doi.org/10.1016/j.eswa.2011.09.129

Derigs, U., & Nickel, N. (2003). Meta-heuristic based decision support for portfolio optimization with a case study on tracking error minimization in passive portfolio management. *OR Spectrum*, 345–378.

Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. *European Journal of Operational Research*, 155(3), 752–770. http://doi.org/10.1016/S0377-2217(02)00881-0

Farasat, A., Menhaj, M. B., Mansouri, T., & Moghadam, M. R. S. (2010). ARO: A new model-free optimization algorithm inspired from asexual reproduction. *Applied Soft Computing Journal*, 10(4), 1284–1292. http://doi.org/10.1016/j.asoc.2010.05.011

Fernández, A., & Gómez, S. (2007). Portfolio selection using neural networks. *Computers & Operations Research*, 34(4), 1177–1191. http://doi.org/http://dx.doi.org/10.1016/j.cor.2005.06.017

Gulpinar, N., An, L. T. H., & Moeini, M. (2010). Robust investment strategies with discrete asset choice constraints using DC programming. *Optimization*, 59(1), 45–62. http://doi.org/10.1080/02331930903500274

Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2019). A polynomial goal programming approach for intuitionistic fuzzy. *Applied Soft Computing*, 85, 105781. http://doi.org/10.1016/j.asoc.2019.105781

Jobst, N. J., Horniman, M. D., Lucas, C. A., & Mitra, G. (2001). Computational
aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. *Quantitative Finance, 1*(5), 489–501.
http://doi.org/10.1088/1469-7688/1/5/301

Kalayci, C. B., Ertenlice, O., Akyer, H., & Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization. *Expert Systems with Applications, 85*, 61-75.

Kazemi, M., Najafi, J., & Menhaj, M. B. (2012). Fuzzy PD Cascade Controller Design for Ball and Beam System Based on an Improved ARO Technique. *Journal of Computer & Robotics, 5*(1), 1-6.

Kellerer, H., Mansini, R., & Speranza, M. G. (2000). Selecting Portfolios with Fixed Costs and Minimum Transaction Lots. *Annals of Operations Research, 287–304*. http://doi.org/10.1023/a:1019279918596

Lee, E. K., & Mitchell, J. E. (1997). Computational experience of an interior-point SQP algorithm in a parallel branch-and-bound framework. *Proceedings of High Performance Optimization Techniques 1997, 97-08.*

Liangkouras, K., & Metaxiotis, K. (2018). Multi-period mean–variance fuzzy portfolio optimization model with transaction costs. *Engineering Applications of Artificial Intelligence, 67*, 260-269.

Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. *Applied Mathematical Modelling, 56*, 539-550.

Li, D., Sun, X., & Wang, J. (2006). Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. *Mathematical Finance, 16*(1), 83–101. http://doi.org/10.1111/j.1467-9965.2006.00262.x

Ling, A., Sun, J., & Wang, M. (2019). Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set. *European Journal of Operational Research.* http://doi.org/10.1016/j.ejor.2019.01.012

Lwin, K., & Qu, R. (2013). A hybrid algorithm for constrained portfolio selection problems. *Applied Intelligence, 39*(2), 251–266. http://doi.org/10.1007/s10489-012-0411-7

Lwin, K., Qu, R., & Kendall, G. (2014). A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. *Applied Soft Computing, 24*, 757–772. http://doi.org/10.1016/j.asoc.2014.08.026
Mansini, R., & Speranza, M. G. (1999). Heuristic algorithms for the portfolio selection problem with minimum transaction lots. *European Journal of Operational Research, 114*(2), 219–233. http://doi.org/10.1016/S0377-2217(98)00252-5

Mansouri, T., Farasat, A., Menhaj, M. B., & Reza Sadeghi Moghadam, M. (2011). ARO: A new model free optimization algorithm for real time applications inspired by the asexual reproduction. *Expert Systems with Applications, 38*(5), 4866–4874. http://doi.org/10.1016/j.eswa.2010.09.084

Maringer, D. G. (2006). *Portfolio management with heuristic optimization* (Vol. 8). Springer Science & Business Media.

Maringer, D., & Kellerer, H. (2003). Optimization of cardinality constrained portfolios with a hybrid local search algorithm. *OR Spectrum, 25*(4), 481–495. http://doi.org/10.1007/s00291-003-0139-1

Markowitz, H. (1952). *Portfolio Selection*. *The Journal of Finance, 7*(1), 77–91.

Markowitz, H. (1959). *Portfolio Selection, Efficient Diversification of Investments*. J. Wiley.

Meghwani, S. S., & Thakur, M. (2017). Multi-objective heuristic algorithms for practical portfolio optimization and rebalancing with transaction cost. *Applied Soft Computing.*

Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. *Expert Systems with Applications, 39*(14), 11685–11698. http://doi.org/10.1016/j.eswa.2012.04.053

Mohammadi, S., & Nazemi, A. (2020). On portfolio management with value at risk and uncertain returns via an artificial neural network scheme. *Cognitive Systems Research, 59*, 247-263.

Moral-Escudero, R., Ruiz-Torrubiano, R., & Suarez, A. (2006). Selection of Optimal Investment Portfolios with Cardinality Constraints. *2006 IEEE International Conference on Evolutionary Computation*, 2382–2388. http://doi.org/10.1109/CEC.2006.1688603

Ni, Q., Yin, X., Tian, K., & Zhai, Y. (2017). Particle swarm optimization with dynamic random population topology strategies for a generalized portfolio selection problem. *Natural Computing, 16*(1), 31-44.

Pai, G. A. V., & Michel, T. (2009). Evolutionary optimization of constrained k-means clustered assets for diversification in small portfolios. *IEEE Transactions on Evolutionary Computation, 13*(5), 1030–1053.
Ruiz-Torrubiano, R., & Suárez, A. (2010). Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints. *IEEE Computational Intelligence Magazine, 5*(2), 92-107.

Schaerf, A. (2002). Local Search Techniques for Constrained Portfolio Selection Problems. *Computational Economics, 20*(3), 22.

Shaw, D., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. *Optimisation Methods & Software, 23*(3), 411–420. http://doi.org/10.1080/10556780701722542

Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. *Expert Systems with Applications, 36*(3), 5058–5063. http://doi.org/10.1016/j.eswa.2008.06.007

Streichert, F., & Tanaka-yamawaki, M. (2006). The Effect of Local Search on the Constrained Portfolio Selection Problem. *Evolutionary Computation, 23*(3), 2368–2374. http://doi.org/10.1109/CEC.2006.1688601

Tollo, G., & Roli, A. (2008). Metaheuristics for the portfolio selection problem. *International Journal of Operations Research, 5*(1), 13–35.

Vielma, J. P., Ahmed, S., & Nemhauser, G. L. (2008). A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs. *INFORMS Journal on Computing, 20*, 438–450. http://doi.org/10.1287/ijoc.1070.0256

Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. *European Journal of Operational Research, 213*(3), 538–550. http://doi.org/10.1016/j.ejor.2011.03.030

Yazdanparast, N., Shahbazian, M., Aghajani, M., & Abed, S. P. (2015). Design of nonlinear CSTR control system using active disturbance rejection control optimized by asexual reproduction optimization. *Journal of Automation and Control, 3*(2), 36–42.

Young, M. R. (1998). A Minimax Portfolio Selection Rule with Linear Programming Solution. *Management Science, 44*(5), 673–683. http://doi.org/10.1287/mnsc.44.5.673

Zhang, J., & Li, Q. (2019). Credibilistic Mean-Semi-Entropy Model for Multi-
Period Portfolio Selection with Background Risk. *Entropy, 21*(10), 944.
http://doi.org/10.3390/e21100944