APPLICATION OF HEALTH PROMOTION MODEL FOR BETTER SELF-CARE BEHAVIOR IN PATIENTS WITH DIABETES MELLITUS

Made Mahaguna Putra1*, Kusnanto2, Candra Panji Asmoro2, Tintin Sukartini2

1School of Health Sciences Buleleng, Indonesia
2Faculty of Nursing, Universitas Airlangga

*Corresponding author:
Made Mahaguna Putra, S.Kep., Ns., M.Kep
School of Health Sciences Buleleng
Jalan Raya Air Sanih KM 11, Buleleng, Bali, Indonesia.
Phone: +628990144825
Email: md.mahagunaputra@gmail.com

Abstract

Background: Diabetes mellitus (DM) is a major health problem in the world. DM patients should be able to perform self-care behavior. Diabetic self-care behavior is an effective strategy for controlling diabetes.

Objective: The purpose of this study was to examine a health promotion model in patients with type 2 diabetes mellitus.

Methods: A cross-sectional design was used, which involved 177 patients with type 2 diabetes from primary health care in Denpasar Bali Indonesia with a stratified random sampling. Independent variables were personal factors (age, sex, education, body mass index, socioeconomic status, self-motivation, illness perception, and belief), self-efficacy, and family support. The dependent variable was self-care behavior. A structural equation model was used to confirm the hypothesis model.

Results: Personal factors (education, socioeconomic, and perceptions) (t = 2.891) and family support (t = 5.746) were associated with self-care behavior. Self-efficacy did not affect self-care behavior (t = .139).

Conclusion: Diabetes self-care behavior is influenced by socioeconomic status, level of education, perception of the illness, and family support. Therefore, it is suggested for nurses to apply the health promotion model approach to increase self-care behavior of patients with type 2 diabetes mellitus.

KEYWORDS
diabetes mellitus; self-efficacy; family support; personal factors; self-care behavior

INTRODUCTION

One of main problems of diabetes management is behavior of patients towards their disease, which is influenced by different concepts and beliefs. Those who have gained knowledge about the management of the disease do not always apply the desired behavior change (Sharoni & Wu, 2012). Lack of attention to self-care behavior is a major cause of failure in the diabetes health program (Vazini & Barati, 2014) although lifestyle behavior is significantly associated with the risk of type 2 diabetes mellitus (DM) (den Braver et al., 2017). The evidence shows that the self-care behavior among diabetic patients is still low (Vazini & Barati, 2014).

Globally, it is more than 346 million people are estimated to have diabetes. This incidence is expected to rise to 592 million by 2035 (Bhandari & Kim, 2016; Waki et al., 2016). The incidence and prevalence of type 2 diabetes in many parts of the world increased, about 20%-25% of people aged over 65 years in the United States and Korea suffer from diabetes (Al-Amer et al., 2016; Kusnanto, 2017; M. Song et al., 2015). In Indonesia, the number of diabetic patients increased from 8.4 million in 2000 to around 21.3 million in 2030, which most likely occurs at a young and productive age. The second report shows an increase in the number of people with DM as much as 2-3 times in 2030 (Kusnanto, 2017). In Denpasar, the number of new incidences of diabetic patients by 2016 in all health centers is 3,400 incidents.

Diabetic patients have chronic complications from their disease (Kav et al., 2017), which affects mental and physical health. The other chronic complications are eye, kidney, cardiovascular, and nervous disorders. Prevention and cure of efficient strategies are
The instruments in this study included: education. high school educational background as minimum level of (age group of >80 years may be difficult to read, low prevalen patients who were selected using a stratified random sampling. This study employed a cross-methods. Study Design and Sample. Study Design and Sample. Methods. METHODS. Study Design and Sample. Study Design and Sample. Data Collection. Data Collection. Data Analysis. Data Analysis. needed to reduce the burden of the medical and economic. However, the problem of diabetes patients can be solved with self-care. Self-care will improve the quality of life and prevent acute and chronic complications of diabetes (Laxy et al., 2014; Vazini & Barati, 2014). In self-care, patients are responsible for managing day-to-day care for their illness (Kusnanto, 2017; Laxy et al., 2014). Diabetes management is related to lifestyle management, meal planning, physical exercise, medication adherence, weight control, monitoring blood glucose or urine levels, and psychological management of patients (Kusnanto, 2017). Adherence to self-care behaviors is necessary to prevent diabetes complications and improve the quality of life (See et al., 2017). A study by M. Song et al. (2015) explains that self-care behavior is an important strategy for achieving control of blood sugar, blood pressure, and cholesterol. Some research suggests that self-care behaviors improve health and quality of life, increase patient satisfaction, reduce healthcare costs, provide better symptom management, and improve survival (Vazini & Barati, 2014). To explain health improvement behavior among diabetic patients, this present study uses Pender Health Promotion Model as a comprehensive theoretical model (Dehdari et al., 2014), which explains the personal factors, perceived benefits of action, perceived obstacles to action, perceived self-efficacy, activity influences, interpersonal influences, and situational influences are important elements in behavioral change (Kurnia et al., 2017). Although this model can be used to explain various health behaviors, only a few studies have used this model (Dehdari et al., 2014). In Bali, there is no single study that has investigated the application of health promotion models on self-care behavior in diabetic patients. The application of health promotion models could help health service providers to proper interventions. Therefore, the aim of this study was to examine the application of health promotion models in patients with type 2 diabetes mellitus in the Denpasar Health Centre area, Bali Indonesia. All instruments were translated into Indonesian language. Permission was obtained to use all instruments. All items were rated using a Likert scale. The higher score denotes good level and lower score denotes bad level. The scoring process was not affected by demographic factors, such as age, gender, level of education, BMI, and socioeconomic status.

The questionnaire is composed of 19 statements consisting of reasons for undergoing medication and blood sugar checks (8 items) as well as reasons for complying with diet and exercise rules (11 items) (r= .367; Cronbach's alpha= .909). 3) Illness perception was measured using The Brief Illness Perception Questionnaire (1PO-R brief) (Broadbent et al., 2006). The questionnaire consists of 8 items with 11 scale points (range 0-10) (r= .506; Cronbach's alpha= .812). 4) Trust was measured using System of Belief Inventory (SBI) - 15R to obtain religious beliefs (belief in transcendence and transcendent meaning about human life) and the presence of religious practices (sub-items of belief, 10 items), and support received by the community religious (support items, 5 items: 3, 5, 7, 9, 13). Each item's score consists of a 4-point Likert scale (from 0 to 3) (Ripamonti et al., 2010) (r= .467; Cronbach's alpha= .946). 5) Self-efficacy was measured using diabetes management self-efficacy scale (DMSES) questionnaire (Bijl et al., 1999), which consists of 15 questions with a choice of confidence ranges in the ability to do activities or not (r= .362; Cronbach's alpha= .840). 6) Family support was measured using the Hensarling Diabetes Family Support Scale Questionnaire adapted from the Hensarling's Diabetes Family Support Scale (HDFSS) (Hensarling, 2009) The scale consists of 29 question items (r=.395; Cronbach's alpha=.940). 7) Self-care behavior was measured using a modification of the questionnaire derived from The Summary of Diabetes Self Care Actions (SDSCA) developed by Toobert et al. (2000) (r=.743; Cronbach's alpha=.812).

To explain health improvement behavior among diabetic patients, this present study uses Pender Health Promotion Model as a comprehensive theoretical model (Dehdari et al., 2014), which explains the personal factors, perceived benefits of action, perceived obstacles to action, perceived self-efficacy, activity influences, interpersonal influences, and situational influences are important elements in behavioral change (Kurnia et al., 2017). Although this model can be used to explain various health behaviors, only a few studies have used this model (Dehdari et al., 2014). In Bali, there is no single study that has investigated the application of health promotion models on self-care behavior in diabetic patients. The application of health promotion models could help health service providers to proper interventions. Therefore, the aim of this study was to examine the application of health promotion models in patients with type 2 diabetes mellitus in the Denpasar Health Centre area, Bali Indonesia.

METHODS. Study Design and Sample. Study Design and Sample. The inclusion criteria of the respondent were: a) aged 20-65 years (age group of >80 years may be difficult to read, low prevalence of type 2 DM at age <20 years (Lee et al., 2016), and b) holding high school educational background as minimum level of education.

Instruments. The instruments in this study included:

1) Demographic data, consisting of 8 questions: respondent's name (initial), age, gender, weight, height, Body Mass Index (BMI), education, occupation, income, length of suffering from diabetes mellitus.

2) Motivation was measured using a modification of the questionnaire derived from the Treatment Self-Regulation Questionnaire (TRSQ) developed by Ryan and Deci (2000).
model evaluation consists of two evaluation parts: 1) Evaluation of the measurement model or outer model, which is evaluated based on the validity results and the reliability of the indicator. The indicator is said to be valid if it has an outer loading value above .5 and a t-statistic value above 1.96. The reliability was examined using the indicators of the construct that form them. 2) Evaluation of structural model or inner model, which aims to know the magnitude of influence or relationship of causality between variables in the study, namely by obtaining the value of R square or coefficient of determination. 3) Hypothesis testing (Ghozali, 2008).

Ethical Consideration
The respondents involved in this study have been given an appropriate informed consent. This study was approved by the Research Ethics Committee Faculty of Nursing, Airlangga University (Approval Number: 611-KEPK).

RESULTS

Characteristics of Respondents
Table 1 shows that the average age of the respondents was 57.35 years, with the average BMI of 22.96 kg/m², and average socioeconomic status of Rp 1,532,800. Most respondents had a high school educational level, and their self-motivation was in a good category. Majority of participants had poor perceptions of disease, and poor self-efficacy. The family support in diabetic patients was also in a poor category.

Table 1 Characteristics of Respondents

Characteristics	f = 177	%	Mean	Std. Deviation
Age				
Late adulthood (36-45 years)	3	1.7	57.35 year	4.89 year
Early elderly (36-45 years)	56	31.6		
Late elderly (56-65 years)	118	66.7		
Gender				
Male	94	53.1		
Female	83	46.9		
Education level				
High school	117	66.1		
Higher education	60	33.9		
BMI				
Less	10	5.6	22.96 Kg/m²	2.93 Kg/m²
Normal	90	50.8		
More	77	43.5		
Socioeconomic status				
Low < 2,173,000	126	71.2	Rp 1,532,800	Rp 1,098,220
High ≥ 2,173,000	51	28.8		
Self-motivation				
Poor	67	37.9		
Good	110	62.1		
Perception				
Poor	94	53.1		
Good	83	46.9		
Belief				
Poor	99	55.9		
Good	78	44.1		
Self-efficacy				
Poor	101	57.1		
Good	76	42.9		
Family Support				
Emotional support				
Good	177	100		
Poor	0	0		
Informative support				
Good	32	18.1		
Poor	145	81.9		
Award support				
Good	62	35		
Poor	115	65		
Table 1 Characteristics of Respondents (Cont.)

Characteristics	$f=177$	%	Mean	Std. Deviation
Instrumental support				
Good	5	2.8	-	-
Poor	172	97.2	-	-
Self-care behavior				
Poor	89	50.3	-	-
Good	88	49.7	-	-

Relationship Among Variables

Table 2 shows that all variables had a loading factor of ≥ .6. In this study, the Average Variance Extracted (AVE) value was all valid (≥ .5). The value of composite reliability in all variables was reliable (≥ .7).

Table 2 Measurement model (inner model)

Variable	Sub Variable	Loading Factor	Average Variance Extracted (AVE)	Composite Reliability
Personal factor	Socioeconomic status	.907	.663	.854
	Education level	.735		
	Illness perception	.792		
Self-efficacy		1.000	1.000	1.000
Family support	Emotional support	.775	.735	.917
	Informative support	.888		
	Award support	.870		
	Instrumental support	0.889		
Self-care behavior		1.000	1.000	1.000

Figure 1 Structural model
Increased knowledge has associated with increased DM control as a basis for self-factors of self-management behavior, which influences their self-care behavior, but self-efficacy did not affect self-care behavior. Additionally, the findings revealed that the education level of individuals with low socioeconomic status had less confidence in the ability of self-management of diabetes, and this may be attributable to ineffective blood glucose control. But people with higher socioeconomic status have higher levels of access to health services comparing with those with lower socioeconomic status (Kirk et al., 2015; Yin et al., 2019).

Our findings also found diabetic patients had poor perception of their disease which influences their self-care behavior. Previous studies have shown that patients’ adherence to diabetic self-care is related to their perceptions about the disease and its treatment (Van Puffelen et al., 2015). However, self-perception plays an important role in the self-management behavior of diabetic patients. Health perception can affect self-care, diabetes management and several aspects of quality of life (Rostami et al., 2016).

Additionally, the findings revealed that the education level of diabetes patient was in the middle category. Compean Ortiz et al. (2016) explains that those with low education level have poor self-care behavior, or a low probability of involved in diabetes mellitus health behaviors (Bhandari & Kim, 2016). Bhandari and Kim (2016) also adds that the educational status are the important factors of self-care behavior. However, educational status is strongly related to the adequate knowledge which is considered as a basis for self-management behavior in diabetic patients. Increased knowledge has associated with increased DM control (Chourdakis et al., 2014).

Family support variable also had an influence on self-care behavior. In this study, the family support variable influenced 23.2% of self-care behavior. Family support has an important role in physical, mental and socioeconomic support for diabetic patients (Lundberg & Thrakul, 2013). Family support is associated with better self-care behavior and another source that helps individuals with diabetes to improve self-care (Ridi Putra et al., 2016; Wichit et al., 2017). Other research also found family interventions improve diabetes self-management (Baig et al., 2015). In this study, the family support is likely related to emotional support (feeling comfortable, patient values and behavior), appreciation (promoting understanding of stressful events), and information support (providing advice and information), and instrumental (financial support and services) (Y. Song et al., 2017). In addition, the special role given by family members to support diabetic patients is preparing and managing food, encouraging and monitoring physical exercise and monitoring blood glucose and other self-care behaviors (Shi et al., 2016; Wichit et al., 2017). It is very important to improve the self-care of DM patients by involving families in managing diabetes patients.

The limitation of this study was that the setting of the study was limited to Denpasar, which therefore the findings might not be able to be generalized. In addition, variables that affect self-efficacy and family support were not measured, which should be done in future studies.

Table 3 T-test results

Relationship between variables	Original Sample	Sample Mean	Std. Deviation	T Statistic
Personal Factors → Self Care Behavior	.208	.212	.072	2.891
Personal Factors → Self Efficacy	.167	.172	.083	2.015
Personal Factors → Family Support	.351	.354	.068	5.137
Self-Efficacy → Self Care Behavior	-.010	-.005	.075	.139
Family Support → Self Care Behavior	.370	.368	.064	5.746

The authors would like to thank the Head of Public Health Office of Denpasar Indonesia, and all staff who facilitated the data collection.

Acknowledgment

The authors would like to thank the Head of Public Health Office of Denpasar Indonesia, and all staff who facilitated the data collection.
process. In addition, we would like to provide special thanks to all of the respondents who have followed in this study.

Author Contribution

MMP developed the research proposal, conducted the study, analyzed data, and prepared the manuscript. KK guided and directed the research concepts. CPA guided and facilitated the research instruments. TS reviewed research results and publication texts.

ORCID

Made Mahaguna Putra: https://orcid.org/0000-0001-7800-646X
Kusnanto: https://orcid.org/0000-0002-6527-3005
Candra Panjo Asmoro: https://orcid.org/0000-0001-7766-2844
Tintin Sukartini: https://orcid.org/0000-0003-3869-7897

References

Al-Amer, R., Ramjan, L., Glew, P., Randall, S., & Salamonson, Y. (2016). Self-efficacy, depression, and self-care activities in adult Jordanians with type 2 diabetes: the role of illness perception. *Issues in Mental Health Nursing, 37*(10), 744-755. https://doi.org/10.1080/16121840.2016.1208692

Baig, A. A., Benitez, A., Quinn, M. T., & Burnet, D. L. (2015). Family interventions to improve diabetes outcomes for adults. *Annals of the New York Academy of Sciences, 1353*(1), 89. https://doi.org/10.1111/nyas.12844

Bhandari, P., & Kim, M. (2016). Self-care behaviors of nepalese adults with type 2 diabetes: A mixed methods analysis. *Nursing Research, 65*(3), 202-214. https://doi.org/10.1097/NNR.0000000000000153

Bijl, J. v. d., Poelgeest-Eeltink, A. v., & Shortridge-Baggett, L. (1999). The psychometric properties of the diabetes management self-efficacy scale for patients with type 2 diabetes mellitus. *Journal of Advanced Nursing, 30*(2), 352-359. https://doi.org/10.1046/j.1365-2648.1999.01077.x

Broadbent, E., Petrie, K. J., Main, J., & Weinman, J. (2006). The brief illness perception questionnaire. *Journal of Psychosomatic Research, 60*(6), 631-637. https://doi.org/10.1016/j.jpsychores.2005.10.020

Chourdakis, M., Kontogiannis, V., Malachas, K., Pliakas, T., & Kritis, A. (2014). Self-care behaviors of adults with type 2 diabetes mellitus in Greece. *Journal of Community Health, 39*(5), 972-979. https://doi.org/10.1007/s10900-014-9841-y

Compean Ortiz, L. G., Del Angel Perez, B., Reséndiz González, E., Piñones Martinez, S., Gonzalez Quirarte, N. H., & Berry, D. C. (2016). Self-care behaviors and glycemic control in low-income adults in Mexico with type 2 diabetes mellitus may have implications for patients of Mexican heritage living in the United States. *Clinical Nursing Research, 25*(2), 120-138. https://doi.org/10.1177/1054778815586542

Dehdari, T., Rahimi, T., Aryaeian, N., Gohari, M. R., & Esfeh, J. M. (2014). Developing and testing a measurement tool for assessing predictors of breakfast consumption based on a health promotion model. *Journal of Nutrition Education and Behavior, 46*(4), 250-258. https://doi.org/10.1016/j.jneb.2013.12.007

Den Braver, N. R., van den Braver, N. R., & de Vet, E., Duijzer, G., Ter Beek, J., Jansen, S. C., Hiddink, G. J., . . . Haveman-Nies, A. (2017). Determinants of lifestyle behavior change to prevent type 2 diabetes in high-risk individuals. *International Journal of Behavioral Nutrition and Physical Activity, 14*(1), 78. https://doi.org/10.1186/s12966-017-0532-9

Ghozali, I. (2008). *Structural Equation Modelling (II).* Semarang: Universitas Diponegoro.

Hensarling, J. (2009). Development and psychometric testing of *Hensarling's Diabetes Family Support Scale.* (Dissertation), Texas Woman’s University, Texas.

Hill, J. O., Galloway, J. M., Goley, A., Marrero, D. G., Minners, R., Montgomery, B., . . . Aroda, V. R. (2013). Scientific statement: socioeconomic determinants of prediabetes and type 2 diabetes. *Diabetes Care, 36*(8), 2430-2439. https://doi.org/10.2337/dc13-1161

Kav, S., Yilmaz, A. A., Bulut, Y., & Dogan, N. (2017). Self-efficacy, depression and self-care activities of people with type 2 diabetes in Turkey. *Collegian, 24*(1), 27-35. https://doi.org/10.1016/j.college.2015.09.005

Kirk, J. K., Arcury, T. A., Ip, E., Bell, R. A., Saldana, S., Nguyen, H. T., & Quandt, S. A. (2015). Diabetes symptoms and self-management behaviors in rural older adults. *Diabetes Research and Clinical Practice, 107*(1), 54-60. https://doi.org/10.1016/j.diabres.2014.10.005

Kurnia, A. D., Amatayakul, A., & Karuncharempantis, S. (2017). Predictors of diabetes self-management among type 2 diabetics in Indonesia: Application theory of the health promotion model. *International Journal of Nursing Sciences, 4*(3), 260-265.

Kusnanto, K. (2017). *Self Care Management-Holistic Psychospiritual Care on Independence, Glucose Level, and Hba1c of Type 2 Diabetes Mellitus Patient.* Jurnal Ners, 7(2), 99-106.

Laxy, M., Mieleck, A., Hunger, M., Schunk, M., Meisinger, C., Rückert, I.-M., . . . Holle, R. (2014). The association between patient-reported self-management behavior, intermediate clinical outcomes, and mortality in patients with type 2 diabetes: Results from the KORA-A study. *Diabetes Care, 37*(6), 1604-1612. https://doi.org/10.2337/dc13-2533

Le, C., Rong, S., Dingyun, Y., & Wenlong, C. (2016). Socioeconomic disparities in type 2 diabetes mellitus prevalence and self-management behaviors in rural southwest China. *Diabetes Research and Clinical Practice, 121*, 9-16. https://doi.org/10.1016/j.diabres.2016.07.032

Lee, Y.-J., Shin, S.-J., Wang, R.-H., Lin, K.-D., Lee, Y.-L., & Wang, Y.-H. (2016). Pathways of empowerment perceptions, health literacy, self-efficacy, and self-care behaviors to glycemic control in patients with type 2 diabetes mellitus. *Patient Education and Counseling, 99*(2), 287-294. https://doi.org/10.1016/j.pec.2015.08.021

Mayberry, L. S., Harper, K. J., & Osborn, C. Y. (2016). Family behaviors and type 2 diabetes: What to target and how to address in interventions for adults with low socioeconomic status. *Chronic Illness, 12*(3), 199-215. https://doi.org/10.1177/174395316644303

Pamungkas, R. A., Mayasari, A., & Nusdin, N. (2017). Factors associated with poor glycemic control among type 2 diabetes mellitus in Indonesia. *Buletin Nursing Journal, 3*(3), 272-280. https://doi.org/10.33546/bnj.61
Ridi Putra, K. W., Toonsiri, C., & Junprasert, S. (2016). Self-efficacy, psychological stress, family support, and eating behavior on type 2 diabetes mellitus. Belitung Nursing Journal, 2(1), 3-7. https://doi.org/10.33546/bnj.5

Ripamonti, C., Borreani, C., Maruelli, A., Proserpio, T., Pessi, M. A., & Miccinesi, G. (2010). System of belief inventory (SBI-15R): a validation study in Italian cancer patients on oncological, rehabilitation, psychological and supportive care settings. Tumori Journal, 96(6), 1016-1021.

Rostami, S., Parsa-Yekta, Z., Najafi-Ghezeljeh, T., Vanaki, Z., & Zarea, K. (2015). Self-perception in Iranian adolescents with diabetes: A qualitative study. Journal of Diabetes & Metabolic Disorders, 14(1), 36. https://doi.org/10.1186/s40200-015-0163-0

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68. https://doi.org/10.1037/0003-066x.55.1.68

Seo, K., Song, M., Choi, S., Kim, S. a., & Chang, S. J. (2017). Development of a scale to measure diabetes self-management behaviors among older Koreans with type 2 diabetes, b used on the seven domains identified by the American Association of Diabetes Educators. Japan Journal of Nursing Science, 14(2), 161-170. https://doi.org/10.1111/jjns.12145

Sharoni, S. K. A., & Wu, S. F. V. (2012). Self-efficacy and self-care behavior of Malaysian patients with type 2 diabetes: a cross sectional survey. Nursing & Health Sciences, 14(1), 38-45. https://doi.org/10.1111/j.1442-2018.2011.00658.x

Shi, M., Xu, M.-Y., Liu, Z.-L., Duan, X.-Y., Zhu, Y.-B., Shi, H.-M., ... Yu, X.-H. (2016). Effectiveness of family involvement in newly diagnosed type 2 diabetes patients: a follow-up study. Patient Education and Counseling, 99(5), 776-782.

Song, M., Choi, S., Kim, S.-a., Seo, K., & Lee, S. J. (2015). Intervention mapping protocol for developing a theory-based diabetes self-management education program. Research and Theory for Nursing Practice, 29(2), 94-112.

Song, Y., Nam, S., Park, S., Shin, I.-s., & Ku, B. J. (2017). The impact of social support on self-care of patients with diabetes: What is the effect of diabetes type? Systematic review and meta-analysis. The Diabetes Educator, 43(4), 396-412. https://doi.org/10.1177/0145721717712457

Toobert, D. J., Hampson, S. E., & Glasgow, R. E. (2000). The summary of diabetes self-care activities measure: results from 7 studies and a revised scale. Diabetes Care, 23(7), 943-950.

Van Puffelen, A. L., Heijmans, M. J. W. M., Rijken, M., Rutten, G. E. H. M., Nijpels, G., & Schellevis, F. G. (2015). Illness perceptions and self-care behaviours in the first years of living with type 2 diabetes: does the presence of complications matter? Psychology & Health, 30(11), 1274-1287. https://doi.org/10.1080/08870446.2015.1045511

Vazini, H., & Barati, M. (2014). The health belief model and self-care behaviors among type 2 diabetic patients. Iranian Journal of Diabetes and Obesity, 6(3), 107-113.

Waki, S., Shimizu, Y., Uchiumi, K., Asou, K., Kuroda, K., Murakado, N., ... Ishii, H. (2016). Structural model of self-care agency in patients with diabetes: A path analysis of the Instrument of Diabetes Self-Care Agency and body self-awareness. Japan Journal of Nursing Science, 13(4), 478-486. https://doi.org/10.1111/jjns.12127

Wichit, N., Mnatzaganian, G., Courtney, M., Schulz, P., & Johnson, M. (2017). Randomized controlled trial of a family-oriented self-management program to improve self-efficacy, glycemic control and quality of life among Thai individuals with Type 2 diabetes. Diabetes Research and Clinical Practice, 123, 37-48. https://doi.org/10.1016/j.diarres.2016.11.013

Yin, T., Yin, D.-L., Xiao, F., Xin, Q.-Q., Li, R.-L., Zheng, X.-G., . . . Chen, B.-W. (2019). Socioeconomic status moderates the association between patient satisfaction with community health service and self-management behaviors in patients with type 2 diabetes: A cross-sectional survey in China. Medicine, 98(22), e15849. https://doi.org/10.1097/md.0000000000015849

Cite this article as: Putra, M.M., Kusnanto., Asmoro, C.P., Sukartini, T. (2019). Application of health promotion model for better self-care behavior in patients with diabetes mellitus. Belitung Nursing Journal, 3(6), 239-245. https://doi.org/10.33546/bnj.913