Experimental characterization of the electronic structure of anatase TiO$_2$: Thermopower modulation

Yuki Nagao1, Akira Yoshikawa1, Kunihito Koumoto1, Takeharu Kato2, Yuichi Ikuhara2,3, and Hiromichi Ohta1,4,a

1Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
2Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2–4–1 Mutsuno, Atsuta, Nagoya 456–8587, Japan
3Institute of Engineering Innovation, The University of Tokyo, 2–11–16 Yayoi, Bunkyo, Tokyo 113–8656, Japan
4PRESTO, Japan Science and Technology Agency, Sanbancho, Tokyo 102–0075, Japan

Thermopower (S) for anatase TiO$_2$ epitaxial films (n_{3D}: 10^{17}–10^{21} cm$^{-3}$) and the gate voltage (V_g) dependence of S for thin film transistors (TFTs) based on TiO$_2$ films were investigated to clarify the electronic density of states (DOS) around the conduction band bottom. The slope of the $|S|$–$\log n_{3D}$ plots was $–20$ μVK$^{-1}$, which is an order magnitude smaller than that of semiconductors ($–198$ μVK$^{-1}$), and the $|S|$ values for the TFTs increased with V_g in the low V_g region, suggesting that the extra tail states are hybridized with the original conduction band bottom.
Anatase TiO$_2$ has received increased attention for several optoelectronic applications, including photocatalysts1 and dye-synthesized solar cells.2 Because most of these types of optoelectronic functions in TiO$_2$ depend on the electronic density of states (DOS) around the bandgap between the O 2p valence band and the Ti 3d conduction band,3 numerous studies have examined the DOS around the bandgap.4–11 To experimentally clarify the DOS, X-ray and/or ultraviolet photoelectron spectroscopy is used for the valence band, while inverse photoelectron spectroscopy (IPES) is used for the conduction band.4–8 However, clarifying the DOS around the conduction band bottom is very difficult due to the insufficient energy resolution of IPES (\sim100 meV12). Therefore, an ab initio band calculation is mainly used to clarify the DOS around the conduction band bottom for anatase TiO$_2$.9–11

In the present study, we aimed to clarify the DOS around the conduction band bottom by examining the thermopower (S) of anatase TiO$_2$ epitaxial films. The S value is an effective physical property because it reflects the energy differential of the DOS at the Fermi energy, \[\partial \text{DOS}(E)/\partial E|_{\text{EF}} \]. Furthermore, the S value depends on the three-dimensional carrier concentration (n_{3D}). In particular, a field effect transistor structure is appropriate to measure the S values of semiconductors with different n_{3D} because the gate voltage (V_g) can modulate n_{3D} of a FET.13–15 Although many studies have reported powder,16 film growth$^{17, 18}$ and FET fabrication$^{19, 20}$ of anatase TiO$_2$, few have examined the S value of anatase TiO$_2$.21–23

Herein we report the S values for anatase TiO$_2$ epitaxial films (n_{3D}: 10^{17}–10^{21} cm$^{-3}$) and the V_g dependence of S for a thin film transistor (TFT, on/off ratio >10^4, field effect mobility \sim0.9 cm2V$^{-1}$s$^{-1}$) based on an undoped TiO$_2$ epitaxial film. We found that the slope of the $|S| - \log n_{3D}$ plots for anatase TiO$_2$ films is \sim –20 µVK$^{-1}$, which is an order magnitude smaller than that of semiconductors with a parabolic DOS (\sim198 µVK$^{-1}$=$-\ln 10 \cdot k_B/e$), and $|S|$ values for TFTs increase with V_g in the low V_g region,
suggesting that the extra tail states are hybridized with the original conduction band bottom.

We fabricated several anatase TiO$_2$ epitaxial films by pulsed laser deposition (PLD, KrF excimer laser, 20 ns, \sim1 Jcm$^{-2}$pulse$^{-1}$, 10 Hz) on stepped (001) LaAlO$_3$ substrates at 700°C using Nb-doped or undoped rutile TiO$_2$ ceramic as targets. Reflection high energy electron diffraction, high resolution X-ray diffraction, and topographic AFM studies of the resultant films revealed that highly 001 oriented epitaxial TiO$_2$ (anatase) films were obtained with an epitaxial relationship (001)[100]TiO$_2$ || (001)[100] LaAlO$_3$. The TiO$_2$ film thicknesses, which were measured by grazing incidence X-ray reflection, were \sim100 nm. Figure 1 shows a cross sectional high-resolution transmission electron microscope (HRTEM) image of a TiO$_2$ film grown on (001) LaAlO$_3$, confirming heteroepitaxial growth of TiO$_2$. An abrupt heterointerface was observed between the TiO$_2$ film and the LaAlO$_3$ substrate.

Then we measured the carrier concentration (n_{3D}) and Hall mobility (μ_{Hall}) of the TiO$_2$ films [Fig. 2(a)], which were fabricated using undoped or Nb-doped TiO$_2$ ceramic targets by the dc four probe method with a van der Pauw electrode configuration at room temperature (RT). μ_{Hall} was independent of n_{3D} (\sim7 cm2V$^{-1}$s$^{-1}$, which corresponds well to the literature value \sim10 cm2V$^{-1}$s$^{-1}$) in the lower n_{3D} region (undoped films, $n_{3D}$$<$$10^{20}$ cm$^{-3}$). However, an n_{3D} dependence ($\sim n_{3D}^{-2/3}$) appeared in the higher n_{3D} region (Nb-doped films, $n_{3D}$$>$$10^{20}$ cm$^{-3}$), indicating that ionized impurity scattering predominantly occurs in the higher n_{3D} region.

Figure 2b shows the $|S|$–log n_{3D} plots for the TiO$_2$ films, which were measured using the conventional steady state method at RT. The negative S values indicated the films have an n-type conductivity. The $|S|$ value decreased almost proportionally from 150 to 20 μVK$^{-1}$ with log n_{3D}. We calculated the $|S|$–log n_{3D} relationship for anatase TiO$_2$ based on the assumption that the DOS around the conduction band bottom is
parabolic with a density of state effective mass of 1.25 m_0 where m_0 is the free electron mass, for comparison.24 Although the slope of the calculated $|S|\text{-log } n_{3D}$ line ($n_{3D}<10^{20}\text{ cm}^{-3}$) corresponded to $-\ln 10\cdot k_B/e = -198 \text{ μVK}^{-1}$, that of the observed line was an order magnitude smaller ($\approx 20 \text{ μVK}^{-1}$). In the higher n_{3D} region ($n_{3D}>10^{20}\text{ cm}^{-3}$), the observed $|S|$ values corresponded well to the calculated line. These results clearly indicate that the DOS around the conduction band bottom of the TiO$_2$ epitaxial film is not parabolic.

To further clarify the DOS shape around the conduction band bottom, we subsequently fabricated a top-gate TFT using a TiO$_2$ anatase epitaxial film (undoped, 30 nm thick). First, metallic Ti films (20 nm thick) were deposited for use as the source and drain electrodes. Deposition was performed through a stencil mask by electron beam (EB) evaporation (base pressure $\approx 10^{-4} \text{ Pa}$, no substrate heating). Second, a 200 nm thick Y$_2$O$_3$ film (polycrystalline, dielectric permittivity $\varepsilon_r=20$) was deposited through a stencil mask by PLD ($\approx 3 \text{ Jcm}^{-2} \text{ pulse}^{-1}$, oxygen pressure $\approx 1 \text{ Pa}$) using a dense polycrystalline Y$_2$O$_3$ ceramic as the target. Finally, a gate electrode, which was a metallic Ti film (20 nm thick), was deposited through a stencil mask by EB evaporation. The resultant TFT was annealed at 200°C in air to reduce the oxygen defects generated during the Y$_2$O$_3$ deposition.

The transistor characteristics of the resultant TiO$_2$ TFT were measured with a semiconductor device analyzer (B1500A, Agilent Technologies) at RT. The channel length (L) and channel width (W) of the TFT were both 400 μm. Figures 3(a) and (b) show typical transistor characteristics of a TiO$_2$–TFT [(a) drain current (I_d)–drain voltage (V_d) and (b) I_d–V_g curves]. Figure 3(a) clearly shows the current saturation and pinch off behavior, indicating that TFTs obey standard field effect theory. I_d of the TFT increased as V_g increased; hence, the channel was n-type and electron carriers were accumulated by positive V_g [Fig. 3(b)]. The on–off current ratio was $>10^4$. The
calculated threshold voltage was –17 V from the $I_d^{0.5} – V_g$ plot [inset of (b)]. The μ_{FE} values were obtained from $\mu_{FE}=g_m[(W/L)C_iV_d]^{-1}$ where g_m is transconductance $\partial I_d/\partial V_g$ and C_i is the capacitance per unit area (89 nFcm$^{-2}$). The μ_{FE} values of this TFT increased with V_g, and reached ~0.9 cm2V$^{-1}$s$^{-1}$ (Fig. 4).

We then measured the field-modulated S of the TiO$_2$ TFT using two Peltier devices to introduce a temperature difference (ΔT up to 3 K) between the source and drain electrodes. Details of the thermopower measurement are described elsewhere.14,15 Figure 4 shows the $|S|–V_g$ plots for the TiO$_2$ TFT. The negative S values confirmed the channel is an n-type. The $|S|$ value gradually increased from 330 to 390 μVK$^{-1}$ as V_g increased in the lower V_g region ($V_g<12$ V), and the sheet carrier concentration increased. On the other hand, in the higher V_g region ($V_g>12$ V), the $|S|$ value gradually decreased with V_g. As discussed above, the $|S|$ values should decrease with V_g because the carrier concentration increases with V_g for a parabolic DOS shape around the conduction band bottom. Because a small transition of I_d was also observed at $V_g~12$ V in the $I_d–V_g$ curve [Fig. 3(b)], the electronic states of the channel returned to the original DOS parabolic shape upon applying $V_g>12$ V.

These results indicate the DOS around the conduction band bottom for a TiO$_2$ epitaxial film is composed of not only the original parabolic DOS (high μ), but also small non-parabolic shaped DOS such as a tail state (low μ) hybridized near the conduction band bottom.

In summary, we have shown that the thermopower (S) measurements for anatase TiO$_2$ epitaxial films (undoped and Nb-doped, carrier concentration, n_{3D}: 1017–1021 cm$^{-3}$) are effective to experimentally clarify the electronic density of states (DOS) near the conduction band bottom. The slope of the $|S|–\log n_{3D}$ plots for anatase TiO$_2$ films is –20 μVK$^{-1}$, which is an order magnitude smaller than that of semiconductors with parabolic DOS (–198 μVK$^{-1}$= $\ln 10\cdot k_B/e$), and the $|S|$ values for TFTs increase with V_g in the
low V_g region. The DOS around the conduction band bottom for an TiO$_2$ epitaxial film is composed of both the parabolic shaped original DOS (high μ) and a small non-parabolic shaped DOS such as a tail state (low μ) hybridized near the conduction band bottom.

Some of this work was financially supported by MEXT (22360271, 22015009).

References

1. A. Fujisjima and K. Honda, *Nature* **238**, 37 (1972).
2. B. O’Regan and M. Grätzel, *Nature* **353**, 737 (1991).
3. X. Chen and S. S. Mao, *Chem. Rev.* **107**, 2891 (2007).
4. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo and F. Levy, *J. Appl. Phys.* **75**, 2945 (1994).
5. A. G. Thomas, W. R. Flavell, A. R. Kumarasinghe, A. K. Mallick, D. Tsoutsou, G. C. Smith, R. Stockbauer, S. Patel, M. Grätzel and R. Hengerer, *Phys. Rev. B* **67**, 035110 (2003).
6. A. G. Thomas, W. R. Flavell, A. K. Mallick, A. R. Kumarasinghe, D. Tsoutsou, N. Khan, C. Chatwin, S. Rayner, G. C. Smith, R. L. Stockbauer, S. Warren, T. K. Johal, S. Patel, D. Holland, A. Taleb and F. Wiame, *Phys. Rev. B* **75**, 035105 (2007).
7. A. Sandell, B. Sanyal, L. E. Walle, J. H. Richter, S. Plogmaker, P. G. Karlsson, A. Borg and P. Uvdal, *Phys. Rev. B* **78**, 075113 (2008).
8. A. E. Taverner, P. C. Hollamby, P. S. Aldridge, R. G. Egdell and W. C. Mackrodt, *Surface Science* **287**, 653 (1993).
9. Shang-Di Mo and W. Y. Ching, *Phys. Rev. B* **51**, 13023 (1995).
10. R. Asahi, Y. Taga, W. Mannstadt and A. J. Freeman, *Phys. Rev. B* **61**, 7459 (2000).
11. L. Chiodo et al., *Phys. Rev. B* **82**, 045207 (2010).
12. P. D. Johnson and S. L. Hulbert, *Rev. Sci. instrum.* **61**, 2277 (1990).
13 K. P. Pernstich, B. Rössner and B. Batlogg, *Nature Mater.* 7, 321 (2008).
14 H. Ohta, Y. Masuoka, R. Asahi, T. Kato, Y. Ikuhara, K. Nomura, and H. Hosono, *Appl. Phys. Lett.* 95, 113505 (2009).
15 A. Yoshikawa, K. Uchida, K. Koumoto, T. Kato, Y. Ikuhara, and H. Ohta, *Appl. Phys. Express* 2, 121103 (2009).
16 J. C. Hulteen and C. R. Martin, *J. Mater. Chem.* 7, 1075 (1997).
17 Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, *Science* 291, 854 (2001).
18 Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada and T. Hasegawa, *Appl. Phys. Lett.* 86, 252101 (2005).
19 M. Katayama, S. Ikesaka, J. Kuwano, H. Koinuma and Y. Matsumoto, *Appl. Phys. Lett.* 92, 132107 (2008).
20 M. Katayama, H. Koinuma and Y. Matsumoto, *Mater. Sci. Eng. B* 148, 19 (2008).
21 L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger and F. Levy, *J. Appl. Phys.* 75 633 (1994).
22 D. Kurita, S. Ohta, K. Sugiuara, H. Ohta and K. Koumoto, *J. Appl. Phys.* 100, 096105 (2006).
23 H. Ohta, S-W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono and K. Koumoto, *Nature Mater.* 6, 129 (2007).
24 H. Ohta, K. Sugiuara and K. Koumoto, *Inorg. Chem.* 47, 8429 (2008).
Fig. 1 Cross sectional HRTEM image of the TiO$_2$ epitaxial film grown on a (001) LaAlO$_3$ substrate with an epitaxial relationship (001)[100]TiO$_2$ || (001)[100] LaAlO$_3$. Nanobeam electron diffraction patterns for the TiO$_2$ and LaAlO$_3$ are also shown.
Fig. 2 Carrier concentration (n_{3D}) dependence of (a) Hall mobility (μ_{Hall}) and (b) thermopower ($|S|$) for TiO$_2$ epitaxial films (undoped and Nb-doped, ~100 nm thick) grown on (001) LaAlO$_3$. For comparison, μ_{Hall} of a bulk single crystal (REF 21) is plotted in (a) and the calculated $|S|$–log n_{3D} relationship for anatase TiO$_2$ is shown in (b).
Fig. 3 Typical transistor characteristics [(a) I_d-V_d and (b) I_d-V_g curves] of a TiO$_2$ TFT at RT. Current saturation and pinch off behavior are clear in (a). $I_d^{0.5}-V_g$ plots are shown in (b). On–off current ratio is $>10^4$ and V_{gth} is -17 V.
Fig. 4 Field modulation of thermopower, $|S|$–V_g plots of TiO$_2$ TFTs at RT. μ_{FE}–V_g plots are also shown. As V_g increases in the lower V_g region ($V_g < 12$ V), the $|S|$ value gradually increases from 330 to 390 μVK$^{-1}$, whereas the $|S|$ value gradually decreases with V_g in the higher V_g region ($V_g > +12$ V). As V_g increases, μ_{FE} gradually increases.