Exact Harmonic Metric for a Moving Reissner-Nordström Black Hole

G. He and W. Lin

School of Physical Science and Technology,
Southwest Jiaotong University, Chengdu 610031, China

Abstract

The exact harmonic metric for a moving Reissner-Nordström black hole with an arbitrary constant speed is presented. As an application, the post-Newtonian dynamics of a non-relativistic particle in this field is calculated.

PACS numbers: 04.20-q, 04.20.Jb, 04.70.Bw, 95.30.Sf

* To whom correspondence should be addressed. Email: wl@swjtu.edu.cn
I. INTRODUCTION

The motion of a gravitational source can affect the dynamics of particle passing by it, and this effect has attracted considerable attention over the last two decades [1–12]. There are several methods to calculate this effect. One is to directly solve Liénard-Wiechert gravitational potential from the field equations, which has been used to study light propagation in the gravitational field of an arbitrarily moving N-body system, as well as that with angular momentum [3, 5]. Another method takes advantage of the general covariance of field equations to obtain the metric of the moving source from the known static source’s metric via Lorentz transformation [13]. Recently, this method was employed to derive the time-dependent harmonic metrics of arbitrary-constant moving Schwarzschild and Kerr black holes [14–16].

In this work, we apply a Lorentz transformation to derive the exact harmonic metric for a moving Reissner-Nordström black hole with an arbitrary constant speed. Furthermore, based on the metric, we calculate the dynamics of a photon and a particle in the weak-field limit. In what follows we use geometrized units (\(G = c = 1\)).

II. EXACT HARMONIC METRIC FOR AN ARBITRARILY CONSTANTLY MOVING REISSNER-NORDSTRÖM BLACK HOLE

We start with the harmonic metric of Reissner-Nordström black hole, which can be written as [17]

\[
ds^2 = -\frac{R^2 - m^2 + Q^2}{(R + m)^2} dX_0^2 + \left(1 + \frac{m}{R}\right)^2 \left[\delta_{ij} + \frac{m^2 - Q^2}{R^2 - m^2 + Q^2} \frac{X_iX_j}{R^2}\right] dX_i dX_j ,
\]

where \(m\) and \(Q\) are the rest mass and electric charge of the black hole, respectively. \(i, j = 1, 2, 3\), and \(\delta_{ij}\) denotes Kronecker delta. Notice that here \(X_\mu\) denotes the contravariant vector \(x'^\mu = (t', x', y', z')\) for display convenience, and \(R^2 = X_1^2 + X_2^2 + X_3^2\).

Since Einstein field equations have the property of general covariance, the harmonic metric of a constantly moving R-N black hole can be obtained via applying a Lorentz boost to Eq. (1). We denote the coordinate frame of the background as \((t, x, y, z)\), and assume the velocity of the black hole to be \(\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3\), with \(\mathbf{e}_i\) \((i = 1, 2, 3)\) denoting the unit vector of 3-dimensional Cartesian coordinates. The Lorentz transformation between \((t, x, y, z)\) and the comoving frame \((t', x', y', z')\) of the moving hole can be written as

\[
x'^\alpha = \Lambda_{\beta}^\alpha x^\beta ,
\]
with

\[\Lambda_0^0 = \gamma, \quad \Lambda_0^i = -v_i \gamma, \\]

\[\Lambda_j^j = \delta_{ij} + v_i v_j \frac{\gamma - 1}{v^2}, \tag{5} \]

where \(\gamma = (1 - v^2)^{-\frac{1}{2}} \) is the Lorentz factor and \(v^2 = v_1^2 + v_2^2 + v_3^2 \). Therefore, the exact harmonic metric of the moving Reissner-Nordström black hole can be obtained as follows

\[g_{00} = -\frac{\gamma^2(R^2 - m^2 + Q^2)}{(R + m)^2} + \gamma^2 \left(1 + \frac{m}{R} \right)^2 \left[v^2 + \frac{(v \cdot X)^2(m^2 - Q^2)}{R^2(R^2 - m^2 + Q^2)} \right], \tag{6} \]

\[g_{0i} = v_i \gamma^2 \left[\frac{R^2 - m^2 + Q^2}{(R + m)^2} - \left(1 + \frac{m}{R} \right)^2 \right] - \gamma \left(1 + \frac{m}{R} \right)^2 \frac{m^2 - Q^2}{R^2(R^2 - m^2 + Q^2)} \times \]

\[\left[X_i (v \cdot X) + \frac{v_i (\gamma - 1)(v \cdot X)^2}{v^2} \right], \tag{7} \]

\[g_{ij} = \left(1 + \frac{m}{R} \right)^2 \left\{ \delta_{ij} + \frac{m^2 - Q^2}{R^2(R^2 - m^2 + Q^2)} \left[X_i + \frac{v_i (\gamma - 1)(v \cdot X)}{v^2} \right] \times \right. \]

\[\left. \left[X_j + \frac{v_j (\gamma - 1)(v \cdot X)}{v^2} \right] \right\} + v_i v_j \gamma^2 \left[\left(1 + \frac{m}{R} \right)^2 \frac{R^2 - m^2 + Q^2}{(R + m)^2} \right]. \tag{8} \]

If we set \(Q = 0 \), Eqs. (5) - (8) reduce to the harmonic metric of a moving Schwarzschild black hole with velocity \(v \)

\[g_{00} = -\frac{\gamma^2(1 + \Phi)}{1 - \Phi} + v^2 \gamma^2(1 - \Phi)^2 + \frac{\gamma^2 \Phi^2(1 - \Phi)(v \cdot X)^2}{R^2}, \tag{9} \]

\[g_{0i} = v_i \gamma^2 \left[\frac{1 + \Phi}{1 - \Phi} - (1 - \Phi)^2 \right] - \gamma \Phi^2(1 - \Phi) \left[\frac{X_i (v \cdot X)}{R^2} + \frac{v_i (\gamma - 1)(v \cdot X)^2}{v^2 R^2} \right], \tag{10} \]

\[g_{ij} = (1 - \Phi)^2 \delta_{ij} + \Phi^2(1 - \Phi) \left[\frac{X_i + v_i (\gamma - 1)(v \cdot X)}{v^2} \right] \left[\frac{X_j + v_j (\gamma - 1)(v \cdot X)}{v^2} \right] \]

\[+ v_i v_j \gamma^2 \left[(1 - \Phi)^2 \frac{1 + \Phi}{1 - \Phi} \right], \tag{11} \]

which are the extension of the exact metric [14] for a Schwarzschild black hole with \(v = ve_1 \). Here \(R \) is also equal to \(\sqrt{X_1^2 + X_2^2 + X_3^2} \). It is worth pointing out that Eqs. (9) - (11), to the first post-Minkowskian approximation, are in agreement with the gravitational Liénard-Wiechert retarded solution [3].

III. DYNAMICS OF PARTICLE IN THE WEAK-FIELD LIMIT

As an application, we apply the harmonic metric to derive the post-Newtonian dynamics of a neutral and non-relativistic particle in the far field of the moving Reissner-Nordström black hole.
First, we expand Eqs. (6) - (8) up to an order of $1/R^2$

\begin{align*}
g_{00} &= -1 - 2(1 + 2v^2)\Phi - 2\Phi^2 - \frac{Q^2}{R^2}, \\
g_{0i} &= 4v_i\Phi, \\
g_{ij} &= (1 - 2\Phi)\delta_{ij},
\end{align*}

(12)

(13)

(14)

where the velocity of the black hole has also been assumed to be non-relativistic, i.e., $\gamma \simeq 1$. After tedious but straightforward calculations, up to the order of v^4/R^2 (\overline{v} and \overline{r} denote typical values of velocity and separation of a system of particles, respectively), we can obtain the equation of motion of a massive particle as follows

\begin{equation}
\frac{du}{dt} = -\nabla \left(\Phi + 2v^2\Phi + 2\Phi^2 + \frac{Q^2}{2R^2} \right) - \frac{\partial \zeta}{\partial t} + u \times (\nabla \times \zeta) + 3u \frac{\partial \Phi}{\partial t} + 4u (u \cdot \nabla) \Phi - u^2 \nabla \Phi,
\end{equation}

(15)

where u denotes the velocity of the particle, and $\zeta = 4v\Phi$. When the charge of the black hole vanishes, this equation reduces to the post-Newtonian dynamics of a non-relativistic particle in the field of a moving Schwarzschild black hole [14, 18].

IV. CONCLUSION

The metric in harmonic coordinates plays an important role in the post-Newtonian dynamics and gravitational wave radiation. In this work we obtain the exact metric for a moving Reissner-Nordström black hole via applying a Lorentz boost to the Reissner-Nordström metric in the harmonic coordinates. This method can avoid directly solving the Einstein field equations for a moving gravitational source. Based on this metric, we derive the post-Newtonian dynamics of a non-relativistic particle. This metric can also be used to calculate the deflection and time delay of light passing by a non-static Reissner-Nordström black hole, as well as Hawking radiation of the black hole.

ACKNOWLEDGMENTS

This work was supported in part by the Program for New Century Excellent Talents in University (Grant No. NCET-10-0702), the National Basic Research Program of China (973 Program) (Grant No. 2013CB328904), and the Ph.D. Foundation of the Ministry of Education of China.
(Grant No. 20110184110016).

[1] K. H. Look, C. L. Tsou and H. Y. Kuo, Acta Phys. Sin. 23, 225 (1974).
[2] T. Pyne and M. Birkinshaw, Astrophys. J. 415, 459 (1993).
[3] S. M. Kopeikin and G. Schäfer, Phys. Rev. D 60, 124002 (1999).
[4] M. Sereno, Phys. Lett. A 305, 7 (2002).
[5] S. M. Kopeikin and B. Mashhoon, Phys. Rev. D 65, 064025 (2002).
[6] M. Q. Miao, S. J. Qing and L. C. An, Acta Phys. Sin. 7, 049 (2003).
[7] M. Sereno, Mon. Not. R. Astron. Soc. 359, L19 (2005).
[8] M. Sereno, Mon. Not. R. Astron. Soc. 380, 1023 (2007).
[9] S. M. Kopeikin and V. V. Makarov, Phys. Rev. D 75, 062002 (2007).
[10] C. Bonvin, Phys. Rev. D 78, 123530 (2008).
[11] S. C. Novati, M. Dall’Ora et al., Astrophys. J. 717, 987 (2010).
[12] S. Zschocke and S. A. Klioner, Class. Quantum Grav. 28, 015009 (2011).
[13] O. Wucknitz and U. Sperhake, Phys. Rev. D 69, 063001 (2004).
[14] G. He and W. Lin, Commun. Theor. Phys. 61, 270 (2014).
[15] G. He and W. Lin, Int. J. Mod. Phys. D 23, 1450031 (2014).
[16] G. He, C. Jiang and W. Lin, under review (2014).
[17] W. Lin and C. Jiang, Phys. Rev. D 89, 087502 (2014).
[18] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York (1972).