Using improved Operator Product Expansion in Finite Energy Sum Rules with ALEPH τ decay data, and determination of pQCD coupling

César Ayalaa, Gorazd Cvetičb and Diego Tecac

aInstituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
bDepartment of Physics, Universidad Técnica Federico Santa María (UTFSM), Casilla 110-V, Valparaíso, Chile
cDepartment of Physics, Universidad Técnica Federico Santa María (UTFSM), Casilla 110-V, Valparaíso, Chile

(Dated: December 6, 2021)

We use improved truncated Operator Product Expansion (OPE) for the Adler function, involving two types of terms with dimension $D = 6$, in the double-pinched Borel-Laplace Sum Rules and Finite Energy Sum Rules for the V+A channel strangeless semihadronic τ decays. The generation of the higher order perturbative QCD terms of the $D = 0$ part of the Adler function is carried out using a renormalon-motivated ansatz incorporating the leading UV renormalon and the first two leading IR renormalons. The truncated $D = 0$ part of the Sum Rules is evaluated by two variants of the fixed-order perturbation theory (FO), by Principal Value of the Borel resummation (PV), and by contour-improved perturbation theory (CI). For the experimental V+A channel spectral function we use the ALEPH τ-decay data. We point out that the truncated FO and PV evaluation methods account correctly for the renormalon structure of the Sum Rules, while this is not the case for the truncated CI evaluation. We extract the value of the MS coupling $\alpha_s(m_t^2) = 0.3198^{+0.0143}_{-0.0143}$, $[\alpha_s(M_Z^2) = 0.1187 \pm 0.0018]$ for the average of the two FO methods and the PV method, which we consider as our main result. If we included in the average also CI extraction, the value would be $\alpha_s(m_t^2) = 0.3270^{+0.0244}_{-0.0244}$, $[\alpha_s(M_Z^2) = 0.1195 \pm 0.0030]$. This work is an extension and improvement of our previous work \cite{1} where we used for the truncated OPE a more naive (and widely used) form and where the extracted values for $\alpha_s(M_Z^2)$ were somewhat lower.

Keywords: perturbative QCD; QCD phenomenology; semihadronic τ decays; renormalons

I. INTRODUCTION

One of the most important challenges of physics is the determination of fundamental parameters. In the case of strong interactions, the main parameter is the strong running coupling $\alpha(Q^2) = \alpha_s(Q^2)/\pi$ which depends on the squared (spacelike) momentum scale $Q^2(\equiv -q^2)$ characteristic of the process. This coupling is well determined at high energies $1 \text{ GeV}^2 < Q^2 \lesssim M_Z^2$ because of the high precision of the experiments and the theory. On the other hand, determinations at lower energies are a good test of the consistency of the theory. We study here the quantities related with the semihadronic decay width of τ lepton, which is at low scales $Q \lesssim m_\tau (\sim 1 \text{ GeV})$ and for which high precision experimental results are available from the ALPEH collaboration \cite{2,5}. Both the experimental and the theoretical results are related with the two-point correlation function of (ud) quark currents $\Pi(Q^2)$; the experimental results are given in terms of the spectral function $\omega(\sigma) \propto \text{Im} \Pi(\sigma - i\epsilon)$, while the theoretical results are usually given in terms of contour integrals of the derivative of the correlation function, $\mathcal{D}(Q^2) \propto d\Pi(Q^2)/d\ln Q^2$, known as the Adler function.

Specific contour integrals involving the Adler function give us various τ-decay sum rules, including the inclusive strangeless decay ratio $R_\tau = \Gamma(\tau \to \nu_\tau\text{hadrons})/\Gamma(\tau \to \nu_\tau\ell^-\bar{\nu}_\ell)$ \cite{1}. The Adler function was calculated by perturbation techniques of QCD up to $\mathcal{O}(\alpha_s^4)$, cf. \cite{12,14}. Determinations of the coupling from such sum rules, i.e., at low momenta $\sim m_\tau$, allow us to see the reliability of the theory because we can compare the extracted value of α_s with the known determinations at high energies through renormalisation group equation (RGE) evolution (see for instance \cite{15,17}).

For the theoretical expressions of the sum rules, the Operator Product Expansion (OPE) is used for the quark current correlator (and the related Adler function). This implies that the sum rules have the perturbative part (dimension $D = 0$), and the nonperturbative corrections ($D > 0$), and the latter are often small such as in the case of

\begin{itemize}
 \item The QCD part (canonical part) of R_τ is the quantity $r_\tau = r_{D=0} + \delta r_\tau(m_{u,d} \neq 0) + \sum_{D \geq 4} r(D)$ and it appears in the semihadronic strangeless V+A τ-decay ratio R_τ via the relation $R_\tau = 3V_{ud}^2 S_{\text{EW}}(1 + \delta S_{\text{EW}} + r_\tau)$, where $S_{\text{EW}} = 1.0198 \pm 0.0006$ \cite{6} and $\delta r_\tau(m_{u,d} \neq 0) \approx -8\pi^2 f_\pi^2 m_\pi^2/m_\tau^2 \approx -0.0026$ (with $f_\pi = 0.1305 \text{ GeV}$), cf. \cite{7,10}. $\delta S_{\text{EW}} = 0.0010 \pm 0.0010$ \cite{11} are electroweak corrections, V_{ud} is the CKM matrix element.
\end{itemize}
Numerical analysis of the extraction of the value of α the double-pinched form in order to suppress the duality-violating effects.

In Sec. VII we summarise the results and present our conclusions.

The evaluation of the D we present briefly the renormalon-motivated extension of the D τ the Adler function is performed now in a more realistic way. This work can be regarded by the (truncated) methods FO, \tilde{D} and D (cf. Appendix of [1]).

When the D presented arguments that such cancellations take place in sum rules at the bLO level in any renormalisation scheme $\kappa = 0$ contribution to the sum rule is written in terms of the series in logarithmic derivatives of $\sigma(\alpha)$. The third is the so-called principal-value (PV) evaluation, where the inverse Borel transformation is applied to the singular part of the Borel transform of the Adler function and the principal value prescription is applied for the integration across the IR.

The main goal of this work is to determine the value of the running coupling $\alpha_s(m^2)$. The sum rules we use for this determination are the Borel-Laplace sum rules, which are in the double-pinched form in order to suppress the duality-violating effects. The $D = 0$ contribution is evaluated through RGE along the contour $Q^2 = \sigma(\alpha)$.

The extraction of $\alpha_s(m^2)$ from the τ-decay data was performed in the past in the literature with the FO and CI approaches, giving different results. The tendency shows that the CI gives higher values of $\alpha_s(m^2)$ than the FO, even if the duality violation effects are explicitly taken into account with a model [14,23,24]. The discrepancy between the CI and FO was discussed in [26,27] in the large-β_0 (LO) approximation and then beyond-LO (bLO) in a renormalon-motivated model. The authors of [26,27] argued that the truncated FO approach in the r_* sum rule takes correctly into account some cancellations of the leading renormalon contributions of the Adler function. They presented theoretical arguments for this cancellations in the LO approximation. Further, they argued that such cancellation do not take place in the truncated CI approach. Beyond LO (bLO), such cancellations were demonstrated in an approach with a modified Borel transform in a specific renormalisation scheme [28]. In our previous work [1], we presented arguments that such cancellations take place in sum rules at the bLO level in any renormalisation scheme when the $D = 0$ contribution to the sum rule is written in terms of the series in logarithmic derivatives of $\alpha(\sigma)$ (cf. Appendix of [1]).

The main goal of this work is to determine the value of the running coupling $\alpha_s(m^2)$, by using a renormalon-motivated extension [19] of the Adler function for the $D = 0$ contribution and the OPE with the terms $D = 4$ and $D = 6$ Eq. (1). The sum rules we use for this determination are the Borel-Laplace sum rules, which are in the double-pinched form in order to suppress the duality-violating effects. The $D = 0$ contribution is evaluated by the (truncated) methods FO, \tilde{D}, PV and CI. The truncation index of these contributions is then determined by considering the double-pinched finite energy sum rules (FESRs) $\sigma^{(2,0)}$ and $\sigma^{(2,1)}$ and finding the value of the truncation index for which these quantities become locally stable under the variation of the index. This work can be regarded as a continuation and improvement of our previous analysis [1], where now the improved form (1) of the OPE terms is used; further, the variation of the higher order perturbation coefficients of the renormalon-motivated extension of the Adler function is performed now in a more realistic way.

This paper is organized as follows. In Sec. II we present the improved $D \geq 6$ terms of the OPE for the Adler function, and summarise the general form of the sum rules for the (strangeless) semihadronic τ-decay data. In Sec. III we present briefly the renormalon-motivated extension of the $D = 0$ Adler function, including the variation of the parameters of the model which reflect the variation of the higher order perturbation coefficients. In Sec. IV the specific sum rules used later in the analysis are presented. In Sec. V we summarise the various (truncated) methods used for the evaluation of the $D = 0$ contribution to the sum rules. Section VI is the main part of this work, it contains the numerical analysis of the extraction of the value of $\alpha_s(m^2)$ and of the $D = 4,6$ condensates, for the full V+A channel. In Sec. VII we summarise the results and present our conclusions.

2 Double-pinched forms of sum rules were shown to suppress sufficiently well the duality-violating effects in the work of [29] (cf. also [29,35]).
II. SUM RULES AND ADLER FUNCTION

The Adler function $D(Q^2)$ is defined as a logarithmic derivative of the quark current polarisation function $\Pi(Q^2)$

$$D(Q^2) \equiv -2\pi^2 \frac{d\Pi(Q^2)}{d\ln Q^2}. \quad (2)$$

We will consider the total (V+A)-channel, i.e., $\Pi(Q^2)$ will be the total (V+A)-channel polarisation function

$$\Pi(Q^2) = \Pi^{(1)}_V(Q^2) + \Pi^{(1)}_A(Q^2) + \Pi^{(0)}_A(Q^2). \quad (3)$$

In this V+A sum, the term $\Pi^{(0)}_V(Q^2)$ gives negligible contribution (to the sum rules) because $\text{Im} \Pi^{(0)}_V(-\sigma + i\epsilon) \propto (m_d - m_u)^2$. Further, we will neither include corrections $O(m^2_{u,d})$ and $O(m^4_{u,d})$ for being numerically negligible. The functions $\Pi^{(i)}_j(J = V, A$ and $i = 0, 1, 2)$ characterise the quark current correlator

$$\Pi_{j,\mu\nu}(q) = i \int d^4x \ e^{iq\cdot x} (T J_{\mu}(x) J_{\nu}(0)) = (q_{\mu} q_{\nu} - g_{\mu\nu} q^2) \Pi^{(1)}_j(Q^2) + q_{\mu} q_{\nu} \Pi^{(0)}_j(Q^2), \quad (4)$$

where J_{μ} are the up-down quark currents, $J_{\mu} = \bar{u} \gamma_{\mu} d$ and $\bar{u} \gamma_{\mu} \gamma_5 d$ for $J = V, A$, respectively. We recall that $q^2 \equiv -Q^2$ is the square of the momentum transfer, $q^2 = (q^0)^2 - \vec{q}^2$.

The usually used theoretical expression of the polarisation function has the following OPE form:

$$\Pi_{th}(Q^2; \mu^2) = -\frac{1}{2\pi^2} \ln \left(\frac{Q^2}{\mu^2}\right) + \Pi(Q^2)_{D=0} + \sum_{k \geq 2} \frac{O_{2k}}{(Q^2)^k} \left(1 + \mathcal{O}(a)\right). \quad (5)$$

Here, μ^2 is the squared renormalisation scale, and $O_{2k} \equiv \langle O_{2k}\rangle_{V+A}$ are condensates (vacuum expectation values) of dimension $D = 2k \geq 4$, for the full channel V+A. Such OPE form is usually used in numerical analyses, cf. [1] [25] [37] [42]. The corresponding Adler function is then

$$D_{th}(Q^2) \equiv -2\pi^2 \frac{d\Pi_{th}(Q^2)}{d\ln Q^2} = 1 + d(Q^2)_{D=0} + 2\pi^2 \sum_{k \geq 2} \frac{kO_{2k}}{(Q^2)^k}. \quad (6)$$

The $D = 2k$ term in this expansion is related to a renormalon singularity of the Borel transform $B[d](u)$ of the Adler function $d(Q^2)_{D=0}$. Namely, if the perturbation expansion of $d(Q^2)_{D=0}$ in powers of $d_\mu^2 = \alpha_s(\mu^2)/\pi$ is

$$d(Q^2)_{D=0, pt} = d_0 a(\kappa Q^2) + d_1(\kappa) a(\kappa Q^2)^2 + \ldots + d_n(\kappa) a(\kappa Q^2)^{n+1} + \ldots, \quad (d_0 = 1), \quad (7)$$

the expansion of the Borel transform $B[d](u; \kappa)$ is

$$B[d](u; \kappa) \equiv d_0 + \frac{d_1(\kappa)}{1!\beta_0} u + \ldots + \frac{d_n(\kappa)}{n!\beta_0^n} u^n + \ldots. \quad (8)$$

This Borel transform has singularities at positive $u = 2, 3, \ldots$ [infrared (IR) renormalons] and at negative $u = -1, -2, \ldots$ [ultraviolet (UV) renormalons]. It turns out that the $D = 2k$ term in the OPE expansion [8] has the form which cancels the ambiguity coming from the infrared renormalon singularity at the value $u = k$ of the Borel transform $B[d](u)$ of the Adler function $d(Q^2)_{D=0}$. However, this cancellation occurs only if the renormalon singularity has the form $\sim 1/(k - u)^\gamma_k$, where $\gamma_k = 1 + k \beta_k^2/\beta_0$. In the leading-$\beta_0$ (LB) approximation (i.e., where $\beta_1 = 0$), we have $\gamma_k = 1$, i.e., the singularity $\sim 1/(k - u)^\gamma_k$ corresponds in the LB approximation to a simple single pole. However, the Borel transform of the $D = 0$ Adler function is known to all orders in the LB approximation [13] [15], and it turns out that only the $u = 2$ singularity is a single pole, but all other IR singularities (at $u = 3, 4, \ldots$) are combinations of double and single poles. Consequently, when going beyond the LB approximation, the renormalon poles of the Adler function...
function at \(u = k \geq 3 \) are \(1/(k-u)^{5+k+1} \) and \(1/(k-u)^{5k} \) (and lower singularities). The corresponding OPE terms which cancel the ambiguities from these singularities at \(u = k \) \((k \geq 3)\) are then \(1/(Q^2)^k/a(Q^2) \) and \(1/(Q^2)^k \) [19]. This implies that the correct OPE expansion of the Adler function has the following form:

\[
\mathcal{D}_{th}(Q^2) \equiv -2\pi^2 \frac{d\Pi_{th}(Q^2)}{d\ln Q^2} = d(Q^2)_{D=0} + 1 + 4\pi^2 \frac{\langle O_4 \rangle}{(Q^2)^2} + 2\pi^2 \sum_{k \geq 3} \frac{k}{(Q^2)^k} \left[\frac{\langle O^{(2)}_{2k} \rangle}{a(Q^2)} + \langle O^{(1)}_{2k} \rangle \right],
\]

which has two different condensates for each \(D = 2k \geq 6 \). This form of the OPE terms was noted already in our previous work [2] [Eq. (59) there], but the implementation was left pending. In the expansion (9), we neglected terms \(O(a) \), i.e., terms \(\sim \langle O_{3k} \rangle a(Q^2) \), because they are relatively small for the considered momenta \(\langle Q^2 \rangle \approx 3 \text{ GeV}^2 \). It can be checked that this expansion then corresponds to the following expansion of the polarisation function:

\[
\Pi_{th}(Q^2, \mu^2) = -\frac{1}{2\pi^2} \ln \left(\frac{Q^2}{\mu^2} \right) + \Pi(Q^2)_{D=0} + \frac{\langle O_4 \rangle}{(Q^2)^2} \left(1 + O(a) \right) + \sum_{k \geq 3} \frac{1}{(Q^2)^k} \left[(1 - \beta_0) \frac{\langle O^{(2)}_{2k} \rangle}{a(Q^2)} + \langle O^{(1)}_{2k} \rangle (1 + O(a)) \right].
\]

We will use this OPE expansion (9)-(10) in the sum rules. According to the general principles of Quantum Field Theory, the considered polarisation function \(\Pi(Q^2; \mu^2) \) and its logarithmic derivative \(\mathcal{D}(Q^2) \) are holomorphic (i.e., analytic) functions of \(Q^2 \) in the complex \(Q^2 \)-plane with the exception of the real negative axis \((-\infty, -m^2)\). Then if \(g(Q^2) \) is a (arbitrary) holomorphic function of \(Q^2 \), then the Cauchy theorem can be applied to the integral \(\int dQ^2 g(Q^2)\Pi(Q^2; \mu^2) \) along a closed path in the complex \(Q^2 \)-plane that consists, for example, of the circle of finite radius \(|Q^2| = \sigma_{\text{max}} \equiv \sigma_m \) and lines above and below the negative axis avoiding thus the enclosure of the values \(Q^2 < 0 \) where the integrand is not holomorphic (cf. Fig. 1). This then implies

\[
\int_{C_1 + C_2} dQ^2 g(Q^2)\Pi(Q^2) = 0 \quad (11a)
\]

\[
\Rightarrow \int_{\sigma_m}^{\sigma_m + i \varepsilon} d\sigma g(-\sigma)\omega_{\text{exp}}(\sigma) = -i\pi \int_{|Q^2| = \sigma_m} dQ^2 g(Q^2)\Pi_{th}(Q^2),
\]

where the integration on the right-hand side of Eq. (11b) is counterclockwise \((Q^2 = \sigma_m e^{i\phi}, -\pi < \phi < \pi)\), and \(\omega(\sigma) \) is proportional to the discontinuity (spectral) function of the \((V+A)\)-channel polarisation function

\[
\omega(\sigma) \equiv 2\pi \Im \Pi(Q^2 = -\sigma - i\varepsilon).
\]

5 This can also be formulated in the following way [19]: the corresponding dimension \(D \equiv 2k \) operators have the one-loop anomalous dimension coefficient \(-\gamma_{O_D}^{(1)}/\beta_0 = 1, 0 \), respectively.
The quantity $\omega(\sigma)$ was measured by OPAL Collaboration \cite{46, 47}, and to an even higher precision by ALEPH Collaboration \cite{2-5}, in semihadronic strangeless decays of the τ lepton. In our analysis we will use the ALEPH data; they are presented in Fig. 2. Integration by parts allows us to replace the theoretical polarisation function in the sum rule (11b) by the Adler function (2)

$$\int_{\sigma m}^{\sigma m} d\sigma g(-\sigma) \omega_{\exp}(\sigma) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \mathcal{D}_{\text{th}}(\sigma_m e^{i\phi}) G(\sigma_m e^{i\phi}),$$

where $\mathcal{D}_{\text{th}}(Q^2)$ is given by the OPE expansion (9), and the (holomorphic) function G is the following integral of g:

$$G(Q^2) = \int_{-\sigma m}^{Q^2} dQ' g(Q'^2),$$

which is independent of the form of path from $-\sigma m$ to Q^2 in the Q'^2-complex plane because $g(Q'^2)$ is holomorphic.

III. RENORMALON-MOTIVATED EXTENSION OF THE ADLER FUNCTION

Here we summarise the main results of the renormalon-motivated extension of the Adler function. We refer for details to \cite{1, 19}. The expansion of the $D = 0$ part of the Adler function in powers of $a \equiv \alpha_s/\pi$ has the form (7), where the first four expansion coefficients ($d_0 = 1; d_1; d_2; d_3$) are exactly known \cite{12-14}. If we reorganise this expansion into the expansion in terms of the (related) logarithmic derivatives

$$\tilde{a}_{n+1}(Q^2) \equiv \frac{(-1)^n}{n!/\beta_0^n} \left(\frac{d}{d \ln Q^2} \right)^n a(Q^2) \quad (n = 0, 1, 2, \ldots),$$

we obtain

$$d(Q^2)_{D=0,\text{pt}} = \tilde{a}_0 a(\kappa Q^2) + \tilde{a}_1(\kappa) \tilde{a}_2(\kappa Q^2) + \ldots + \tilde{a}_n(\kappa) \tilde{a}_{n+1}(\kappa Q^2) + \ldots$$

By the use of the $\overline{\text{MS}}$ scheme RGE (which is known up to five-loops \cite{48})

$$\frac{da(\kappa Q^2)}{d \ln \kappa} = -\beta_0 a(\kappa Q^2)^2 - \beta_1 a(\kappa Q^2)^3 - \sum_{j=2}^{4} \beta_j a(\kappa Q^2)^{j+2},$$

FIG. 2: The spectral function $\omega(\sigma)$ for the $(V+A)$-channel, as measured by ALEPH Collaboration \cite{2-5}. The extremely narrow pion peak contribution $2\pi^2 f_2^2(\delta(\sigma - m_P^2)) (f_2 = 0.1305 \text{ GeV})$ has to be added to this. The last two bins have large uncertainties, so we exclude them, and this means that $\sigma_m = 2.80 \text{ GeV}^2$ in the sum rules.
the logarithmic derivatives \(\tilde{a}_n \) and the powers \(a^k \) can be related

\[
\tilde{a}_{n+1}(Q^2) = a(Q^2)^{n+1} + \sum_{m \geq 1} k_m (n+1) a(Q^2)^{n+1+m},
\]

(18a)

\[
a(Q^2)^{n+1} = \tilde{a}_{n+1}(Q^2) + \sum_{m \geq 1} k_m (n+1) \tilde{a}_{n+1+m}(Q^2),
\]

(18b)

and the expansion coefficients \(\tilde{d}_n \) and \(d_k \) are related analogously

\[
\tilde{d}_n(\kappa) = d_n(\kappa) + \sum_{s=1}^{n-1} \tilde{k}_s (n+1-s) d_{n-s}(\kappa)
\]

\[
(\tilde{d}_0 = d_0 = 1),
\]

(19a)

\[
d_n(\kappa) = \tilde{d}_n(\kappa) + \sum_{s=1}^{n-1} \tilde{k}_s (n+1-s) \tilde{d}_{n-s}(\kappa)
\]

\[
(n = 0, 1, 2, \ldots),
\]

(19b)

The coefficients \(\tilde{k}_s(n+1-s) \) and \(k_s(n+1-s) \) are specific \(\kappa \)-independent combinations of the \(\beta \)-function coefficients \(c_j = \beta_j/\beta_0 \), cf.

[19]. The new expansion coefficients \(\tilde{d}_n \) allow us to construct a Borel transform \(B[\tilde{d}](u) \) related to the original Borel transform \(B[d](u) \) of the Adler function [8]

\[
B[\tilde{d}](u; \kappa) \equiv \tilde{d}_0 + \frac{\tilde{d}_1(\kappa)}{1! \beta_0} u + \ldots + \frac{\tilde{d}_n(\kappa)}{n! \beta_0^n} u^n + \ldots,
\]

(20)

which contains all the information about the Adler function coefficients \(\tilde{d}_n \) (and thus \(d_n \)) but, in contrast to \(B[d](u) \), has the simple one-loop type (or: large-\(\beta_0 \) (LB)) renormalisation scale dependence

\[
\frac{d}{d \ln \kappa} \tilde{d}_n(\kappa) = n \beta_0 \tilde{d}_{n-1}(\kappa) \implies B[\tilde{d}](u; \kappa) = \kappa^n B[\tilde{d}](u).
\]

(21)

As a consequence, the renormalon structure of \(B[\tilde{d}](u) \) is of the LB-type, i.e., considerably simpler than the renormalon structure of \(B[d](u) \). Stated otherwise, it has the renormalon structure of the form as obtained in the LB approximation [13, 14]: \(B[d](u) \sim 1/(2-u), 1/(3-u)^2, 1/(3-u), \ldots \) near the IR renormalon locations \(u = 2, 3, \ldots \); and \(B[\tilde{d}](u) \sim 1/(1+u)^2, 1/(1+u), 1/(2+u), 1/(2+u) \), \ldots \) near the UV renormalon locations \(u = -1, -2, \ldots \). As shown in [19], this then implies that the Borel transform \(B[d](u) \) of the Adler function behaves near these renormalon locations as the theory suggests: \(B[d](u) \sim 1/(2-u)^{\gamma_2}, 1/(3-u)^{\gamma_3+1}, 1/(3-u)^{\gamma_3}, \ldots \) near \(u = 2, 3, \ldots \) where \(\gamma_p = 1 + p \beta_1/\beta_0^2 \); and \(B[\tilde{d}](u) \sim 1/(1+u)^{\gamma_1+1}, 1/(1+u)^{\gamma_1}, 1/(2+u)^{\gamma_2+1}, 1/(2+u)^{\gamma_2}, \ldots \) near \(u = -1, -2, \ldots \) where \(\gamma_p = 1 + p \beta_1/\beta_0^2 \).

The ansatz made for \(B[\tilde{d}](u) \) (with \(\kappa = 1 \)) in the \(\overline{\text{MS}} \) scheme includes the singularities at the locations \(u = 2, 3 \) and \(u = -1 \)

\[
B[\tilde{d}](u) = \exp \left(\tilde{K} u \right) \pi \left\{ \tilde{d}_{2,1}^R \left[\frac{1}{(2-u)} + \tilde{a}(-1) \ln \left(1 - \frac{u}{2} \right) \right] + \frac{\tilde{d}_{3,1}^R}{(3-u)} + \frac{\tilde{d}_{3,1}^U}{(1+u)^2} \right\},
\]

(22)

where the value of the parameter \(\tilde{a} \) in the \(\overline{\text{MS}} \) scheme is fixed, \(\tilde{a} = -0.255 \) [19]. The other five parameters (\(\tilde{K} \) and the residues \(\tilde{d}_{2,1}^R, \tilde{d}_{3,1}^R, \tilde{d}_{3,1}^U \)) can then be determined by the knowledge of the first five coefficients \(d_n \) (and thus \(\tilde{d}_n \)), \(n = 0, 1, 2, 3, 4 \). However, for \(n = 4 \), the coefficient \(d_4 \) of the Adler function is not yet exactly known. There are, however, estimates for the value of this coefficient. In Ref. [19], a similar ansatz as (22) was used in the lattice-related MiniMOM renormalisation scheme, not containing \(\tilde{d}_{3,1}^R/(3-u) \) term, and the resulting estimate \(d_4 = 338.19 \) in \(\overline{\text{MS}} \) scheme, with \(\kappa = 1 \) was extracted upon reexpansion. On the other hand, the effective charge (ECH) method [19] gives an estimate \(d_4 = 275 \) [14, 50]; a similar estimate \(d_4 = 277 \pm 51 \) was obtained in [51] based on Padé approximants. We will use in our renormalon-motivated model [72] the value \(d_4 = 338.19 \) as the central value, and will include the value \(d_4 = 275 \) via variation

\[
d_4 = 338.19 \pm 63.19
\]

(23)

Near the leading IR renormalon location \(u = 2 \), it is reasonable to include a subleading singularity \(\sim \ln(1-u/2) \) in \(B[d](u) \), which corresponds in the Borel transform of the Adler function to the subleading singularity \(B[d](u) \sim 1/(2-u)^{\gamma_2-1} \), cf. [19].
TABLE I: The values of \tilde{K} and of the renormalon residues $\tilde{d}_{i,j}^R$ ($X=\text{IR}, \text{UV}$) for the five-parameter ansatz 22 in the $\overline{\text{MS}}$ scheme, when d_4 is taken according to Eq. 23.

d_4	\tilde{K}	$\tilde{d}_{2,1}^R$	$\tilde{d}_{1,2}^R$	$\tilde{d}_{3,1}^R$	$\tilde{d}_{1,2}^\text{UV}$
338.19	0.5190	1.10826	-0.481538	-0.511642	-0.017704
338.19 - 63.19	0.16010	0.661852	2.04546	-0.68316	-0.012109
338.19 + 63.19	0.74838	1.61145	-1.73932	-0.852569	-0.00996802

TABLE II: The $\overline{\text{MS}}$ coefficients \tilde{d}_n and d_n (with $\kappa = 1$) ($n \leq 10$) for the three cases of d_4 Eq. 23.

n	$d_4 = 338.19$: \tilde{d}_n	$d_4 = 275$: \tilde{d}_n	$d_4 = 401.38$: \tilde{d}_n
0	1	1	1
1	1.63982	1.63982	1.63982
2	6.37101	6.37101	6.37101
3	26.3849	26.3849	26.3849
4	37.7719	-25.4181	275.
5	1732.04	1812.35	100.962
6	-9949.19	-19073.5	-872.595
7	322129.	411373.	279863.
8	-5.1117 × 10^6	-7.72963 × 10^6	2.94212 × 10^6
9	1.28702 × 10^8	8.8993 × 10^7	9.49762 × 10^7
10	-3.00623 × 10^9	-4.36871 × 10^9	-1.98736 × 10^9

In Table I we present the resulting parameters \tilde{K} and $\tilde{d}_{i,j}^R$ ($i = 2, 3; j = 1, 2$) and $\tilde{d}_{1,2}^\text{UV}$ for the central and the border values of d_4 Eq. 23. In Table II on the other hand, we present the values of the first 11 coefficients \tilde{d}_n and d_n of the Adler function, for the three mentioned values of d_4.

IV. SPECIFIC SUM RULES USED

Once having the expansion coefficients of $d(Q^2)_{D=0}$, we can apply various sum rules, i.e., various weight functions $g(Q^2)$ [cf. Eqs. 13-14]. We will primarily consider the double-pinched Borel-Laplace transforms $B(M^2)$ where M^2 is a complex squared energy parameter7.

\begin{equation}
\begin{aligned}
g_{M^2}(Q^2) &= \left(1 + \frac{Q^2}{\sigma_m}\right) \frac{1}{M^2} \exp \left(\frac{Q^2}{M^2}\right) \Rightarrow \\
G_{M^2}(Q^2) &= \left\{ \left[1 + \frac{Q^2}{\sigma_m}\right] - 2 \frac{M^2}{\sigma_m} \left[1 + \frac{Q^2}{\sigma_m}\right] + 2 \left[\frac{M^2}{\sigma_m}\right]^2 \right\} \exp \left(\frac{Q^2}{M^2}\right) - 2 \left[\frac{M^2}{\sigma_m}\right] \exp \left(-\frac{\sigma_m}{M^2}\right) \right) .
\end{aligned}
\end{equation}

The general sum rule Eq. 13 has on the left-hand side the experimental value, and on the right-hand side the theoretical value. Using the (double-pinched) Borel-Laplace weight function $g(Q^2)$ Eq. 24a, the left-hand side of the sum rule is written as

\begin{equation}
B_{\text{exp}}(M^2; \sigma_m) = \int_0^{\sigma_m} d\sigma \ g_{M^2}(-\sigma) \omega_{\text{exp}}(\sigma) = \frac{1}{M^2} \int_0^{\sigma_m} d\sigma \left(1 - \frac{\sigma}{\sigma_m}\right)^2 \exp \left(-\frac{\sigma}{M^2}\right) \omega_{\text{exp}}(\sigma),
\end{equation}

7 Double-pinched means that the weight functions $g(Q^2)$ have double zero at the Minkowskian point $Q^2 = \sigma_m$, which effectively suppresses the duality violation effects, cf. e.g. Ref. 25.
and the right-hand side as

\[B_{th}(M^2; \sigma_m) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \ G_{M^2} (\sigma_m e^{i\phi}) D_{th} (\sigma_m e^{i\phi}) \]

\[= \left[\left(1 - \frac{2M^2}{\sigma_m} \right) + 2 \left(\frac{M^2}{\sigma_m} \right) (1 - \exp (-\sigma_m/M^2)) \right] \]

\[+ \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \ \left\{ \left[(1 + e^{i\phi})^2 - 2 \frac{M^2}{\sigma_m} (1 + e^{i\phi}) + 2 \left(\frac{M^2}{\sigma_m} \right)^2 \right] \exp \left(\frac{\sigma_m}{M^2} e^{i\phi} \right) - 2 \left(\frac{M^2}{\sigma_m} \right)^2 \exp (-\sigma_m/M^2) \right\} d(\sigma_m e^{i\phi})_{D=0} \]

\[+ B_{th}(M^2; \sigma_m)_{D=4} + \sum_{k \geq 3} B_{th}(M^2; \sigma_m)_{D=2k}. \] (26)

The last terms here are the contributions of the dimension \(D = 2k \) condensates of the OPE of the Adler function.

\[B_{th}(M^2; \sigma_m)_{D=4} = \frac{2\pi^2(\Omega_4)}{(M^2)^2} \left(1 + 2 \frac{M^2}{\sigma_m} \right), \] (27a)

\[B_{th}(M^2; \sigma_m)_{D=2k} = \frac{2\pi^2}{(k-1)! (M^2)^k} \left(\langle O_{2k}^{(2)} \rangle + \langle O_{2k}^{(2)} \rangle / a(\sigma_m) \right) \left[1 + 2(k-1) \frac{M^2}{\sigma_m} + (k-1)(k-2) \left(\frac{M^2}{\sigma_m} \right)^2 \right] \]

\[+ \frac{2\pi^2k}{\sigma_m^{k-2}} \langle O_{2k}^{(2)} \rangle \beta_0 \left\{ \left[1 - 2 \frac{M^2}{\sigma_m} + 2 \left(\frac{M^2}{\sigma_m} \right)^2 \right] J_k \left(\frac{\sigma_m}{M^2} \right) + 2 \left(1 - \frac{M^2}{\sigma_m} \right) J_{k-1} \left(\frac{\sigma_m}{M^2} \right) + J_{k-2} \left(\frac{\sigma_m}{M^2} \right) \right\} \]

\[+ 2 \left(\frac{M^2}{\sigma_m} \right)^2 \exp \left[-\frac{\sigma_m}{M^2} \left(-\frac{1}{k} \right) \right], \] (27b)

where \(k = 3, 4, \ldots \). The coupling \(a(Q^2) \) at the OPE term \(\langle O_{2k}^{(2)} \rangle / a(Q^2) \) will be taken to run according to one-loop RGE along the contour \(|Q^2| = \sigma_m \)

\[\langle O_{2k}^{(2)} \rangle / a(\sigma_m) = \langle O_{2k}^{(2)} \rangle \left(\frac{1}{a(\sigma_m)} + i\beta_0 \phi \right), \] (28)

and \(J_s(A) \) are the integrals

\[J_s(A) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \ \exp \left[Ae^{i\phi} \right] e^{-is\phi} i\phi. \] (29)

The expressions for \(J_s(A) \) in terms of sums, for any complex \(A \) and any positive integer \(s \), are given in the Appendix. Further, explicit closed expressions are given there for \(J_s(A) \) with \(s = 1, 2, 3 \) (which are relevant for the \(D = 6 \) contribution).

On the other hand, one can use FESRs with (double-pinched) momenta \(a^{(2,n)} \) which are associated with the following weight functions \(g^{(2,n)}(Q^2) \) \((n = 0, 1, \ldots):\)

\[g^{(2,n)}(Q^2) = \frac{(n+3)}{(n+1)} \left(1 + \frac{Q^2}{\sigma_m} \right)^n \sum_{k=0}^{n} (k+1)(-1)^k \left(\frac{Q^2}{\sigma_m} \right)^k \]

\[= \frac{(n+3)}{(n+1)} \frac{1}{\sigma_m} \left[1 - (n+2) \left(\frac{Q^2}{\sigma_m} \right)^{n+1} + (n+1) \left(\frac{Q^2}{\sigma_m} \right)^{n+2} \right] \quad \Rightarrow \] (30a)

\[G^{(2,n)}(Q^2) = \frac{(n+3)}{(n+1)} \frac{Q^2}{\sigma_m} \left[1 - \left(\frac{Q^2}{\sigma_m} \right)^{n+1} \right] + \left[1 - \left(\frac{Q^2}{\sigma_m} \right)^{n+3} \right]. \] (30b)

\(^8\) If this \(1/a(Q^2) \) is run according to \(5\)-loop RGE (instead of one-loop RGE) along the contour, the numerical results do not change significantly.
The experimental and the theoretical parts of these FESR moments are then (we subtract unity for convenience)

\[a^{(2,n)}_{\text{exp}}(\sigma_m) = \int_0^\infty d\sigma \, g^{(2,n)}(-\sigma) \omega_{\text{exp}}(\sigma) - 1 \]
(31a)

\[a^{(2,n)}_{\text{th}}(\sigma_m) = \frac{1}{2\pi} \int_{-\pi}^\pi d\phi \, G^{(2,n)}(\sigma_m e^{i\phi}) \left[D_{\text{th}}(\sigma_m e^{i\phi}) - 1 \right] \]
(31b)

We will consider in particular the first two moments \(a^{(2,0)} \) and \(a^{(2,1)} \), up to \(D = 6 \) terms

\[\sum_{k \geq 2} a^{(2,0)}_{\text{th}}(\sigma_m)_{D=2k} = \frac{12\pi^2}{\sigma_m^4} O_4 + \frac{6\pi^2}{\sigma_m^2} \left\{ \langle O_6^{(1)} \rangle + \frac{O_6^{(2)}}{a(\sigma_m)} \right\} + \mathcal{O}\left(\frac{1}{\sigma_m^4} \right), \]
(32a)

\[\sum_{k \geq 2} a^{(2,1)}_{\text{th}}(\sigma_m)_{D=2k} = \frac{12\pi^2}{\sigma_m^3} \left\{ -\langle O_6^{(1)} \rangle + \frac{O_6^{(2)}}{a(\sigma_m)} \right\} + \mathcal{O}\left(\frac{1}{\sigma_m^4} \right). \]
(32b)

The expressions for \(a^{(2,n)}_{\text{th}}(\sigma_m)_{D=2k} \) for general integer \(n \geq 0 \) (and \(k \geq 2 \)) are given in the Appendix. We note that \(a^{(2,1)}(\sigma = m_\tau^2)_{D=0} \) is the \(D = 0 \) part of the canonical QCD (and strangeless and massless) \(\tau \)-decay ratio \(r_{\tau}^{(D=0)} \), cf. footnote 1.

V. METHODS OF EVALUATION OF THE D = 0 CONTRIBUTION

We will use four different methods for the evaluation of the truncated \(D = 0 \) contributions to the Sum Rules: Fixed Order Perturbation Theory using powers (FO); Fixed Order Perturbation Theory using logarithmic derivatives (FO or tFO); Contour Improved Perturbation Theory (CI); Inverse Borel Transformation with Principal Value (PV).

1. Fixed Order Perturbation Theory using powers (FO): The truncated power expansion \(d(\sigma_m e^{i\phi})^{[N_f]}_{D=0,pt} \) [cf. Eq. (7)]

\[d(\sigma_m e^{i\phi})^{[N_f]}_{D=0,pt} = a(\kappa \sigma_m e^{i\phi}) + \sum_{n=1}^{N_f-1} d_n(\kappa) a(\kappa \sigma_m e^{i\phi})^{n+1}, \]
(33)

which appears in the contour integrals in the sum rules, Eqs. (20) and (31b), is written as truncated Taylor expansion in powers of \(a(\kappa \sigma_m) \) up to (and including) \(a(\kappa \sigma_m)^{N_f} \). We point out that the Adler function \(d(Q^2)^{D=0} \) is a spacelike quantity (defined for general complex \(Q^2 \)); the sum rules are timelike quantities (defined only for positive quantities \(\sigma = \sigma_m > 0 \)), but are written in the FO approach in terms of powers of \(a(\kappa \sigma_m) \) where \(Q^2 = \kappa \sigma_m > 0 \) is a spacelike point in the complex \(Q^2 \)-plane.

2. Fixed Order Perturbation Theory using logarithmic derivatives (tFO): The truncated expansion \(d(\sigma_m e^{i\phi})^{[N_f]}_{D=0,lpt} \) [cf. Eq. (16)]

\[d(\sigma_m e^{i\phi}, \kappa)^{[N_f]}_{D=0,lpt} = a(\kappa \sigma_m e^{i\phi}) + \sum_{n=1}^{N_f-1} \tilde{d}_n(\kappa) \tilde{a}_{n+1}(\kappa \sigma_m e^{i\phi}) \]
(34)

in the contour integrals is written as truncated Taylor expansion in logarithmic derivatives \(\tilde{a}_{k+1}(\kappa \sigma_m) \) up to (and including) \(\tilde{a}_{N_f}(\kappa \sigma_m) \).

3. Contour Improved Perturbation Theory (CI): The truncated power expansion \(d(\sigma_m e^{i\phi})^{[N_f]}_{D=0,pt} \) in the contour integrals is kept as it is, \(a(\kappa \sigma_m e^{i\phi}) \) is the (five-loop) RGE-running coupling.

9 The expression (33) has some dependence on the renormalisation scale parameter \(\kappa \) due to truncation, \((d/d \ln \kappa) d(Q^2; \kappa)^{[N_f]}_{D=0,pt} \sim a^{N_f+1} \).
TABLE III: The results for $\alpha_s(m_t^2)$ and the three condensates (of the full V+A channel) as obtained by the Borel-Laplace sum rule. Included are the optimal truncation numbers (N_t) and the values of the fit quality χ^2 [cf. the text and Eq. (37)]. Note that $\langle O^{(1)}_\alpha \rangle$ is given in units of 10^{-6} GeV6 because it is in general smaller than $\langle O^{(0)}_\alpha \rangle$ by one order of magnitude.

method	$\alpha_s(m_t^2)$	$\langle O_\alpha \rangle (10^{-3}$ GeV$^4)$	$\langle O^{(1)}_\alpha \rangle (10^{-3}$ GeV$^6)$	$\langle O^{(2)}_\alpha \rangle (10^{-4}$ GeV$^6)$	N_t	χ^2
FOPT	0.3129$^{+0.0010}_{-0.0012}$	$-4.4^{+2.7}_{-2.9}$	$-2.7^{+0.6}_{-0.6}$	$+6.3 \pm 2.4$	8	1.1×10^{-3}
FOPT	0.3170$^{+0.0050}_{-0.0042}$	$-4.1^{+3.6}_{-2.5}$	$-3.0^{+0.7}_{-0.5}$	$+7.0 \pm 4.4$	5	2.1×10^{-3}
CIPT	0.3485$^{+0.0042}_{-0.0032}$	$-3.6^{+1.5}_{-1.5}$	$-3.2^{+2.1}_{-2.1}$	$+5.8^{+5.7}_{-2.4}$	4	0.5×10^{-3}
PV	0.3298$^{+0.0035}_{-0.0031}$	$-2.7^{+10.9}_{-2.9}$	$-6.0^{+16.6}_{-4.9}$	$+13.6^{+15.5}_{-21.0}$	6	6.1×10^{-3}

4. Inverse Borel Transformation with Principal Value (PV): The expression for the $D = 0$ part of the Adler function in the contour integrals is written as

$$
\left(d(m_\alpha e^{i\phi}) \right)_{D=0}^{(PV,[N_t])} = \frac{1}{\beta_0^2} \left(\int_{C^+} + \int_{C^-} \right) \frac{du}{u} \exp \left[\frac{-i\phi}{\beta_0 a(\kappa m_\alpha e^{i\phi})} \right] B[d](u;\kappa)_{\text{sing}} + \delta d(m_\alpha e^{i\phi};\kappa)_{D=0},
$$

where $B[d](u;\kappa)_{\text{sing}}$ is the singular part of the Borel transform of $d(Q^2)_{D=0}$, the arithmetic average over the integration paths C_\pm gives the Principal Value, and $\delta d(m_\alpha e^{i\phi};\kappa)_{D=0}$ is the truncated series in powers of $a(m_\alpha e^{i\phi})$ which completes the power terms corresponding to the Inverse Borel Transform of the singular part; we refer for a more detailed explanation to [1] (Sec. IV.B there).

VI. RESULTS OF FITTING THE BOREL-LAPLACE SUM RULES

In this Section we first fit the theoretical double-pinched Borel-Laplace sum rules, cf. Eqs. (13) and (25)-27, to the ALEPH experimental data (V+A channel) as explained in Sec. I. The theoretical Borel-Laplace sum rules $B_{th}(M^2;\sigma_m)$ are evaluated with various evaluation methods and various truncation indices N_t in the $D = 0$ contribution, cf. Sec. V for explanations. Subsequently, the resulting predictions for the (double-pinched) FESR moments $a^{(2,0)}(\sigma_m)$ and $a^{(2,1)}(\sigma_m)$ [cf. Eqs. (31)-(32)] are compared with the experimental data, for various truncation indices N_t, and the optimal N_t is fixed where the relative stability of these FESRs under variation of N_t is reached. We point out that in the analysis, the higher order contributions of the $D = 0$ Adler function contributions are generated (estimated) by the renormalon-motivated ansatz mentioned in Sec. III. Further, throughout the analysis, the OPE expansion (9) of the Adler function is performed up to $D = 2k = 6$ terms. Going beyond $D = 6$ terms is not well motivated in the present analysis, as the $D = 0$ Adler function is generated by a renormalon-motivated ansatz which includes IR renormalons up to $u = +3$ and not beyond. This means that an assumption is made that the higher IR renormalons ($u = +4$, etc.) give suppressed contributions to the $D = 0$ Adler function; such an assumption would then also suggest that the $D \geq 8$ OPE contributions to the Adler function are in general suppressed.

In practice, the double-pinched Borel Laplace sum rule is applied to the real parts

$$
\text{Re} B_{th}(M^2;\sigma_m) = \text{Re} B_{th}(M^2;\sigma_m),
$$

where for the Borel-Laplace scale parameters M^2 we take $M^2 = |M^2| \exp(i\Psi)$, where $0 \leq \Psi < \pi/2$. Specifically, we take 0.9 GeV$^2 \leq |M^2| \leq 1.5$ GeV2, and $\Psi = 0, \pi/6, \pi/4$. The choices of these values were motivated in [1]. In practice, we minimised the difference between the two quantities by minimising the following sum of squares:

$$
\chi^2 = \sum_{\alpha=0}^{n} \frac{\left(\text{Re} B_{th}(M^2;\sigma_m) - \text{Re} B_{th}(M^2;\sigma_m) \right)^2}{\delta_B(M^2)},
$$

where M^2 is a dense set of points along the chosen rays with $\Psi = 0, \pi/6, \pi/4$ and 0.9 GeV$^2 \leq |M^2| \leq 1.5$ GeV2. Specifically, we chose 11 equidistant points along each of the three rays. In the sum, the quantities $\delta_B(M^2)$ are the experimental standard deviations of $\text{Re} B_{th}(M^2;\sigma_m)$, cf. [1] for more explanation.

10 The sum thus contains 33 terms; but the fit results remain practically unchanged when the number of points is increased.
The expressions $\text{Re} B_{th}(M_{Z}^{2}, \sigma_{m})$ depend on four different parameters appearing in the OPE \([9]\) of the Adler function with $D \leq 6$: α_{s}, $\langle O_{4} \rangle$, $\langle O_{6}^{(1)} \rangle$ and $\langle O_{6}^{(2)} \rangle$. The minimisation of χ^{2} Eq. \([37]\) is performed by varying these four parameters simultaneously. In most cases the fits are very good, namely $\chi^{2} \lesssim 10^{-3}$.

In Table \([11]\) we present the results of this analysis.\(^{11}\) The uncertainties in the Table were obtained by combining various theoretical uncertainties and the experimental uncertainty, as will be explained below in more detail for the case of the parameter $\alpha_{s}(m_{Z}^{2})$.

The extracted values for α_{s}, with uncertainties from various sources given separately, are

$$
\alpha_{s}(m_{Z}^{2})^{(\text{FO})} = \begin{array}{c}
0.3125 \pm 0.0003 \text{(exp)} \\
0.3125 \pm 0.0010 \\
0.313 \pm 0.011,
\end{array} \quad \alpha_{s}(m_{Z}^{2})^{(\tilde{\text{FO}})} = \begin{array}{c}
0.3170 \pm 0.0003 \text{(exp)} \\
0.3170 \pm 0.0150 \\
0.317 \pm 0.015,
\end{array} \quad \alpha_{s}(m_{Z}^{2})^{(\text{CI})} = \begin{array}{c}
0.3488 \pm 0.0005 \text{(exp)} \\
0.3488 \pm 0.0142 \\
0.349 \pm 0.014,
\end{array} \quad \alpha_{s}(m_{Z}^{2})^{(\text{PV})} = \begin{array}{c}
0.3298 \pm 0.0006 \text{(exp)} \\
0.3298 \pm 0.0135 \\
0.330 \pm 0.013.
\end{array}
$$

The central values were extracted for the truncation index $N_{t} = 8, 5, 4, 6$ for the methods FO, $\tilde{\text{FO}}$, CI and PV, respectively, cf. Table \([11]\)\(^{12}\) and these values of N_{t} were obtained by looking for the local stability of the resulting FESRs $a^{(2,j)}(\sigma_{m})$ ($j = 0, 1$) under variation of N_{t} as explained earlier (see also Figs. 3 later below). In the results \([38]\), at the symbol $'\langle \rangle'$ is the variation when the renormalisation scale parameter κ ($\equiv \mu^{2}/Q^{2}$) is varied from $\kappa = 1$ up to $\kappa_{\text{max}} = 2$ and down to $\kappa_{\text{min}} = 0.5$, respectively. At the symbol $'(\text{exp})'$ is the maximal variation when the truncation number is varied around its central value N_{t} to $N_{t} \pm 1$ and $N_{t} \pm 2$ (in the case of $\tilde{\text{FO}}$, the variation interval was $N_{t} = 5 \pm 2$, the truncation $N_{t} = 3$ was not considered because of drastic change of condensate values there; in the case of CI, $N_{t} = 4 \pm 1$, i.e., $N_{t} = 2$ was not considered, for being an extreme truncation). At the symbol $'(d_{4})'$ is the variation when the coefficient d_{4} varies according to Eq. \([23]\)\(^{13}\). At the symbol $'(\text{amb})'$, the variations are (rough) estimates of the experimental uncertainties, and were obtained by the method explained in \([11]\). In the PV method, there is an additional (fourth) source of theoretical uncertainty $'(\text{amb})'$, which is an estimate of uncertainty due to the Borel integration ambiguity for the Adler function $\tilde{\text{FO}}$.

In the results Eqs. \([38]\) and Table \([11]\), the total uncertainties were obtained by adding the mentioned various uncertainties in quadrature. We see from Eqs. \([38]\) that the main sources of uncertainties are theoretical, especially $'(d_{4})'$ and $'\langle \rangle'$.\(^{14}\)

In Figs. 3(a)-(b) we present the (double-pinched) FESR momenta $a^{(2,0)}(\sigma_{m})$ and $a^{(2,1)}(\sigma_{m})$, Eqs. \([31]\) - \([32]\), at each truncation index N_{t}, for the four evaluation methods (FO, $\tilde{\text{FO}}$, CI, PT). For each N_{t} and each method, we use the

\(^{11}\) From the above values of $\langle O_{4} \rangle_{\text{V-A}}$, the corresponding values for the gluon condensate are obtained by using the relation $\langle a_{GG} \rangle = 6\langle O_{4} \rangle + 6f_{4}^{2}m_{s}^{2}$, where $6f_{4}^{2}m_{s}^{2} \approx 0.00199$ GeV\(^{4}\).

\(^{12}\) In Tables IV and V of Ref. \([1]\), the values of the condensates $\langle O_{D} \rangle$ were written in units 10^{-3} GeV\(^{D}\).

\(^{13}\) Cf. discussion after Eqs. \([58]\) of Ref. \([1]\).

\(^{14}\) The latter uncertainty is especially large in $\tilde{\text{FO}}$, CI and PV cases when κ decreases to $\kappa = 0.5$, indicating the problem of the vicinity of Landau singularities in (MS) pQCD couplings $a(0.5\sigma_{m}, e^{i\phi})$, taking into account that $0.5\sigma_{m} = 1.4$ GeV\(^{2}\) is quite low.
corresponding values of the parameters α_s, $\langle O_4 \rangle$, $\langle O_{6}^{(1)} \rangle$ and $\langle O_{6}^{(2)} \rangle$ obtained from the described (double-pinched) Borel-Laplace fits. From these Figures we can deduce that the (relatively) most stable values under the variation of N_t are $N_t = 8, 5, 4, 6$ for FO, FO, CI, PT, respectively. For this reason, we chose these values of N_t as the central values for the respective methods in Eqs. (38). We can see that in general, and for a reasonably wide range of N_t, the resulting predicted values of $a^{(2,0)}(\sigma_m)$ and $a^{(2,1)}(\sigma_m)$ are well compatible with the experimental results.

One may ask how the momenta $a^{(2,0)}(\sigma_m)$ and $a^{(2,1)}(\sigma_m)$ behave under variation of N_t when the parameters α_s, $\langle O_4 \rangle$, $\langle O_{6}^{(1)} \rangle$ and $\langle O_{6}^{(2)} \rangle$ are not varied but kept fixed. In that case, only the $D = 0$ contribution varies with N_t, while $D = 4, 6$ contributions become N_t-independent. In Figs. 4(a)-(b) we present these results, using for α_s the central value of each method, i.e., the corresponding central values in Table III. We can see that, in contrast to the results of Figs. 3(a)-(b), now the predictions are much more unstable under the variation of the truncation index N_t, indicating the importance of the inclusion of the OPE contributions $D = 4$ and $D = 6$ in the Borel-Laplace fit analysis (at each N_t).

VII. FINAL RESULTS AND CONCLUSIONS

We applied double-pinched Borel-Laplace sum rules to the $V+A$ channel semihadronic strangeless τ decay data of ALEPH. We used for $D = 0$ contribution to the Adler function the renormalon-motivated extension [19] for the higher order terms. We applied four different methods of evaluation (FO, FO, CI, PV). The optimal truncation index N_t (of the $D = 0$ Adler contribution) in the Borel-Laplace sum rules was fixed in such a way that the predicted FESR momenta $a^{(2,0)}$ and $a^{(2,1)}$ showed local stability under the variation of N_t.

As argued in detail in our previous work, the FO, FO and PV methods of evaluation of the sum rules lead to
In the PV case, the truncated series refers to the series \(\delta \ell \left(\sigma_m e^{i\phi} \right)_{|_{D>0}} \) in Eq. (35), which is free from the leading renormalon singularities and gives the corresponding contour integrals (sum rules) also free from the leading renormalon singularities.

We notice that the main result \(\alpha_s (m_\tau^2) \) is higher than the corresponding result when the more naive OPE \(6 \) (truncated at \(D \equiv 2k = 8 \)) is used for the Adler function \(1 \): \(\alpha_s (m_\tau^2) = 0.3116 \pm 0.0073 \) \(\left[\alpha_s (M_Z^2) = 0.1176 \pm 0.0010 \right] \). Therefore, we conclude that it is numerically significant to use the correct form \(9 \) of OPE (correspondingly truncated at \(D \equiv 2k = 6 \)), instead of the traditionally used (truncated) OPE form \(6 \).

The results were obtained by an analysis based on programs written by us in Mathematica that are freely available from [55].

Acknowledgments

This work was supported in part by FONDECYT (Chile) Grants No. 1200189 and No. 1180344 and ANID Fellowship No. 21211716.

\(15\) In the PV case, the truncated series refers to the series \(\delta \ell \left(\sigma_m e^{i\phi} \right)_{|_{D>0}} \) in Eq. (35), which is free from the leading renormalon singularities and gives the corresponding contour integrals (sum rules) also free from the leading renormalon singularities.

\(16\) These arguments, presented in a very general way in [1] (especially Appendix A there), are also compatible with somewhat related arguments presented in [20, 28]. A construction of Borel transforms of CI sum rules was proposed and investigated in [52] (cf. also [53]).
Appendix A: General explicit expressions for Borel-Laplace and FESR momenta $a^{(2,n)}$

The general explicit expression for the contribution of the dimension $D = 2k$ ($k = 2, 3, 4, \ldots$) of the theoretical Borel-Laplace sum rule [Eq. (26)] is given in Eqs. (27). In these expressions, for the parts involving only $\langle O_{2k}(1) + O_{2k}(2) / a(\sigma_m) \rangle$, the following integrals were used:

$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \exp(-is\phi) \exp(Ae^{i\phi}) = \frac{A^s}{s!}, \quad (A1)$$

where $s = 0, 1, 2, \ldots$ and A is a complex number ($A = \sigma_m / M^2$). These expressions were explained in [1] (App. A.2 there). On the other hand, for s negative integer ($s = -1, -2, \ldots$) these integrals are zero.

The parts proportional to $\langle O_{2k}(2) \beta_0 \rangle$ involve the integrals $J_s(A)$ given in Eq. (29). The change of variable $z = Ae^{i\phi}$ (s is a nonnegative integer) gives

$$J_s(A) = \frac{(-i)}{2\pi} A^s \int_{|A|} \frac{dz}{z^{s+1}} e^\Sigma \ln \left(\frac{z}{A}\right), \quad (A2)$$

where the integration in the complex z-plane runs along the circle of radius $|A|$, $z = Ae^{i\phi}$. If we assume first that $A > 0$, then the application of the Cauchy theorem to the integral

$$\oint_C \frac{dz}{z^{s+1}} e^\Sigma \ln z = 0 \quad (A3)$$

along the closed contour $C = C_A + C_\varepsilon^+ + C_\varepsilon^- - C_\delta$ depicted in Fig. 5 and taking the limit $0 < \varepsilon \ll \delta \to +0$, gives

![FIG. 5: The closed integration path in the complex z-plane for the integral Eq. (A3); C_A is the (counterclockwise) circular path of radius A ($A > 0$); C_ε^\pm are the linear paths parallel to the negative axis ($z = -s \mp i\varepsilon, -A \leq s \leq -\delta$); C_δ is the (clockwise) circular path of radius δ. The limit $\varepsilon \ll \delta \to +0$ is taken, i.e., first $\varepsilon \to +0$ and then $\delta \to +0$.]

When this is combined with the integral

$$\oint_{C_A} \frac{dz}{z^{s+1}} e^\Sigma (-\ln A) = -\frac{2\pi i}{s!} \ln A, \quad (A5)$$

we obtain

$$J_s(A) = A^s \sum_{\ell = -s}^\infty \frac{(-1)^\ell A^{\ell}}{(\ell + s)!}. \quad (A6)$$
When \(s = 1, 2, 3 \), the following explicit expressions are obtained from (A6):

\[
J_1(A) = e^{-A} - A[-1 + \gamma_E + \Gamma(0, A) + \ln A]
\]

\[
J_2(A) = \frac{1}{2} (-1 + A) e^{-A} - \frac{A^2}{4} [-3 + 2\gamma_E + 2\Gamma(0, A) + 2 \ln A]
\]

\[
J_3(A) = \frac{1}{6} (2 - A + A^2) e^{-A} - \frac{A^3}{36} [-11 + 6\gamma_E + 6\Gamma(0, A) + 6 \ln A],
\]

where \(\Gamma(a, A) \) is the incomplete Gamma function (we have here \(a = 0 \)), and \(\gamma_E \) is the Euler-Mascheroni constant (\(\gamma_E \approx 0.5772 \)). When \(A \) is not positive real but complex, these same formulas remain valid by complex continuation in \(A \). It can be checked by numerical evaluation (integration) of the integrals \(J_n(A) \) Eq. 29 for complex values of \(A \) that the explicit expressions (A7) are valid.

The general expression for the contribution of the dimension \(D = 2k \) (\(k \geq 2 \)) operators to the (double-pinched) FESR momenta \(a^{(2,n)}(\sigma_m) (n \geq 0) \) is

\[
a^{(2,n)}(\sigma_m)_{D=2k} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi G^{(2,n)}(\sigma_m e^{i\phi}) \frac{2\pi^2 k}{\sigma_m^k} e^{-i k \phi} \left[(O^{(1)}_{2k}) + (O^{(2)}_{2k}) \left(\frac{1}{a(\sigma_m)} + i\beta_0 \phi \right) \right]
\]

where we took one-loop running of \(1/a(Q^2) \) on the contour \(Q^2 = \sigma_m e^{i\phi} \) around \(\sigma_m \), Eq. (28). Evaluation of this integral then gives

\[
a^{(2,n)}(\sigma_m)_{D=2k} = \frac{2\pi^2 k}{\sigma_m^k} \left[(O^{(1)}_{2k}) + (O^{(2)}_{2k}) \left(\frac{1}{n+3} \delta_{k,n+2} + \delta_{k,n+3} \right) \right] \left(1 \right) \]

\[\left. + (O^{(2)}_{2k}) \beta_0 (0) \left(1 \right) \delta_{k,n+3} \left(1 \right) \right\}

[1] C. Ayala, G. Cvetič and D. Teca, “Determination of perturbative QCD coupling from ALEPH τ decay data using pinched Borel--Laplace and Finite Energy Sum Rules,” Eur. Phys. J. C 81 (2021) no.10, 930 [arXiv:2105.00356 [hep-ph]].

[2] S. Schael et al. [ALEPH Collaboration], “Branching ratios and spectral functions of tau decays: final ALEPH measurements and physics implications,” Phys. Rept. 421 (2005), 191 [hep-ex/0506072]. M. Davier, A. Höcker and Z. Zhang, “The Physics of hadronic tau decays,” Rev. Mod. Phys. 78 (2006), 1043 [hep-ph/0507078].

[3] M. Davier, S. Descotes-Genon, A. Höcker, B. Malaescu and Z. Zhang, “The Determination of \(\alpha_s \) from τ decays revisited,” Eur. Phys. J. C 56 (2008), 305 [arXiv:0803.0979 [hep-ph]].

[4] M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan and Z. Zhang, “Update of the ALEPH non-strange spectral functions from hadronic τ decays,” Eur. Phys. J. C 74 (2014) no. 3, 2803 [arXiv:1312.1501 [hep-ex]]. The measured data of ALEPH Collaboration, with covariance matrix corrections described in Ref. [3], are available on the following web page: http://alehweb.lal.in2p3.fr/tau/specfun13.html.

[5] W. J. Marciano and A. Sirlin, “Electroweak Radiative Corrections to tau Decay,” Phys. Rev. Lett. 61 (1988), 1815-1818.

[6] S. Narison and A. Pich, “QCD formulation of the τ decay and determination of \(\Lambda(MS) \),” Phys. Lett. B 211 (1988), 183-188.

[7] E. Braaten, “QCD predictions for the decay of the τ lepton,” Phys. Rev. Lett. 60 (1988), 1606-1609; E. Braaten, “The perturbative QCD corrections to the ratio \(R \) for τ decay,” Phys. Rev. D 39 (1989), 1458.

[8] E. Braaten, S. Narison and A. Pich, “QCD analysis of the τ hadronic width,” Nucl. Phys. B 373 (1992), 581-612.

[9] G. Cvetič and T. Lee, “Bilocal expansion of Borel amplitude and hadronic tau decay width,” Phys. Rev. D 64 (2001), 014030 [arXiv:hep-ph/0101297 [hep-ph]].

[10] E. Braaten and C. S. Li, “Electroweak radiative corrections to the semihadronic decay rate of the tau lepton,” Phys. Rev. D 42 (1990), 3888-3891.

[11] K. G. Chetyrkin, A. L. Kataev and F. V. Tkachov, “Higher order corrections to \(\sigma_T (e^+ e^- \rightarrow \text{hadrons}) \) in Quantum Chromodynamics,” Phys. Lett. B 85 (1979), 277; M. Dine and J. R. Sapirstein, “Higher order QCD corrections in \(e^+ e^- \) annihilation,” Phys. Rev. Lett. 43 (1979), 668; W. CELMASTER and R. J. GONSALVES, “An analytic calculation of higher order Quantum Chromodynamic corrections in \(e^+ e^- \) annihilation,” Phys. Rev. Lett. 44 (1980), 566.

[12] S. G. Gorishnii, A. L. Kataev and S. A. Larin, “The \(\Omega(a_s^2) \) corrections to \(\sigma_{\nu\tau}(e^+ e^- \rightarrow \text{hadrons}) \) and \(\Gamma(\tau^- \rightarrow \nu\tau \pm \text{hadrons}) \) in QCD,” Phys. Lett. B 259 (1991), 144; L. R. Surguladze and M. A. Samuel, “Total hadronic cross-section in \(e^+ e^- \) annihilation at the four loop level of perturbative QCD,” Phys. Rev. Lett. 66 (1991), 560 Erratum: [Phys. Rev. Lett. 66 (1991), 2416].

[13] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, “Order \(\alpha_s^4 \) QCD Corrections to Z and τ Decays,” Phys. Rev. Lett. 101 (2008), 012002 [arXiv:0801.1821 [hep-ph]].
A. Pich and A. Rodríguez-Sánchez, “Determination of the QCD coupling from ALEPH M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan and Z. Zhang, “Update of the ALEPH non-strange spectral functions from
C. A. Dominguez, L. A. Hernandez, K. Schilcher and H. Spiesberger, “Tests of quark-hadron duality in
M. González-Alonso, A. Pich and J. Prades, “Pinched weights and duality violation in QCD sum rules: a critical analysis,”
α
M. Beneke and M. Jamin, “Renormalons,” Phys. Rept. 79 (2000), 95 [arXiv:hep-ph/9911261 [hep-ph]].
M. Beneke, D. Boito and M. Jamin, “Perturbative expansion of τ hadronic spectral function moments and αs extractions,”
D. Boito and F. Oliani, “Renormalons in integrated spectral function moments and αs extractions,” Phys. Rev. D 101 (2020) no.7, 074003 [arXiv:2002.12410 [hep-ph]].
B. Chibisov, R. D. Dikeman, M. A. Shifman and N. Uraltsve, “Operator product expansion, heavy quarks, QCD duality and its violations.” Int. J. Mod. Phys. A 12 (1997), 2075-2133 [arXiv:hep-th/9605465 [hep-ph]].
K. Maltman, “Constraints on hadronic spectral functions from continuous families of finite energy sum rules,” Phys. Lett. B 440 (1998), 367 [arXiv:hep-ph/9901239 [hep-ph]].
C. A. Dominguez and K. Schilcher, “Chiral sum rules and duality in QCD,” Phys. Lett. B 448 (1999), 93-98 [arXiv:hep-ph/9811261 [hep-ph]].
V. Cirigliano, E. Golowich and K. Maltman, “QCD condensates for the light quark V-A correlator,” Phys. Rev. D 68 (2003), 054013 [arXiv:hep-ph/0305118 [hep-ph]].
M. González-Alonso, A. Pich and J. Prades, “Pinched weights and duality violation in QCD sum rules: a critical analysis,” Phys. Rev. D 82 (2010), 014019 [arXiv:1004.4987 [hep-ph]].
C. A. Dominguez, L. A. Hernandez, K. Schilcher and H. Spiesberger, “Tests of quark-hadron duality in τ-decays,” Mod. Phys. Lett. A 31 (2016) no.31, 1630036 [arXiv:1607.02048 [hep-ph]].
M. González-Alonso, A. Pich and A. Rodríguez-Sánchez, “Updated determination of chiral couplings and vacuum condensates from hadronic τ decay data,” Phys. Rev. D 94 (2016) no.1, 014017 [arXiv:1602.06112 [hep-ph]].
M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, “QCD and resonance physics. Theoretical foundations,” Nucl. Phys. B 147 (1979), 385-447.
A. Pich and A. Rodríguez-Sánchez, “Updated determination of αs(mτ2) from tau decays,” Mod. Phys. Lett. A 31 (2016) no.30, 1630032 [arXiv:1606.07764 [hep-ph]].
A. Rodríguez Sánchez, “The strong coupling from ALEPH tau decays,” Nucl. Part. Phys. Proc. 287-288 (2017), 81-84.
D. Boito, O. Catà, M. Golterman, M. Jamin, K. Maltman, J. Osborne and S. Peris, “A new determination of αs from hadronic τ decays,” Phys. Rev. D 84 (2011), 113006 [arXiv:1110.1127 [hep-ph]].
D. Boito, M. Golterman, M. Jamin, A. Mahdavi, K. Maltman, J. Osborne and S. Peris, “An Updated determination of αs from τ decays,” Phys. Rev. D 85 (2012), 093015 [arXiv:1203.3146 [hep-ph]].
D. Boito, M. Golterman, K. Maltman, J. Osborne and S. Peris, “Strong coupling from the revised ALEPH data for hadronic τ decays,” Phys. Rev. D 91 (2015) no.3, 034003 [arXiv:1410.3528 [hep-ph]].
D. Boito, M. Golterman, K. Maltman and S. Peris, “Strong coupling from hadronic τ decays: A critical appraisal,” Phys. Rev. D 95 (2017) no.3, 034024 [arXiv:1611.03457 [hep-ph]].
D. J. Broadhurst, “Large N expansion of QED: asymptotic photon propagator and contributions to the muon anomaly, for any number of loops,” Z. Phys. C 58 (1993), 339.
D. J. Broadhurst and A. L. Kataev, “Connections between deep inelastic and annihilation processes at next-to-next-leading order and beyond,” Phys. Lett. B 315 (1993), 179 [hep-ph/9308274].
M. Beneke, “Renormalons,” Phys. Rept. 317 (1999), 1 [hep-ph/9807443].
K. Ackerstaff et al. [OPAL Collaboration], “Measurement of the strong coupling constant αs and the vector and axial vector spectral functions in hadronic tau decays,” Eur. Phys. J. C 7 (1999), 571 [hep-ex/9808019].
D. Boito, M. Golterman, M. Jamin, A. Mahdavi, K. Maltman, J. Osborne and S. Peris, “An updated determination of αs from τ decays,” Phys. Rev. D 85 (2012), 093015 [arXiv:1203.3146 [hep-ph]].
P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, “Five-loop running of the QCD coupling constant,” Phys. Rev. Lett. 118
(2017) no. 8, 082002 [arXiv:1606.08659 [hep-ph]].

[49] G. Grunberg, “Renormalization group improved perturbative QCD,” Phys. Lett. 95B, 70 (1980) Erratum: [Phys. Lett. 110B, 501 (1982)]; “Renormalization scheme independent QCD and QED: the method of Effective Charges,” Phys. Rev. D 29, 2315 (1984).

[50] A. L. Kataev and V. V. Starshenko, “Estimates of the higher order QCD corrections to $R(s)$, R_τ and deep inelastic scattering sum rules,” Mod. Phys. Lett. A 10, 235 (1995) [hep-ph/9502348].

[51] D. Boito, P. Masjuan and F. Oliani, “Higher-order QCD corrections to hadronic τ decays from Padé approximants,” JHEP 1808, 075 (2018) [arXiv:1807.01567 [hep-ph]].

[52] A. H. Hoang and C. Regner, “Borel representation of τ hadronic spectral function moments in Contour-improved perturbation theory,” [arXiv:2008.00578 [hep-ph]]; “On the difference between FOPT and CIPT for hadronic tau decays,” The European Physical Journal Special Topics 230 (2021) no.12, 2625 [arXiv:2105.11222 [hep-ph]].

[53] M. A. Benitez-Rathgeb, D. Boito, A. H. Hoang and M. Jamin, “Reconciling the FOPT and CIPT predictions for the hadronic tau decay rate,” [arXiv:2111.09614 [hep-ph]].

[54] I. Caprini, “Conformal mapping of the Borel plane: going beyond perturbative QCD,” Phys. Rev. D 102 (2020) no.5, 054017 [arXiv:2006.16605 [hep-ph]].

[55] Mathematica programs (compatible with the version 11.1): SumRPMSbALEPHM2m090O61O62.m; this program calls the subroutines: AdlerFunction4lMiniMOMexact.m; MSbarRenMod5A.save (for $d_4 = 338.19$), MSbarRenMod5Ad4275.save (for $d_4 = 275.$), MSbarRenMod5Ad4401.save (for $d_4 = 401.38$); aMSQ2complS_almtauinput.m; expdataALEPH.m; SumRthMSbar.save; the program and the subroutines are available on www page http://www.gevetic.usm.cl/