Calcium Orthophosphates (CaPO₄) and Dentistry

Sergey V Dorozhkin

Kudrinskaja sq. 1-155, Moscow 123242, Russia

Abstract

Dental caries, also known as tooth decay or a cavity, remains a major public health problem in the most communities even though the prevalence of disease has decreased since the introduction of fluorides for dental care. In addition, there is dental erosion, which is a chemical wear of the dental hard tissues without the involvement of bacteria. Besides, there are other dental losses, which may be of a medical (decay or periodontal disease), age (population aging), traumatic (accident) or genetic (disorders) nature. All these cases clearly indicate that biomaterials to fill dental defects appear to be necessary to fulfill customers' needs regarding the properties and the processing of the products. Bioceramics and glass-ceramics are widely used for these purposes, as dental inlays, onlays, veneers, crowns or bridges. Calcium orthophosphates (CaPO₄) belong to bioceramics but they have some specific advantage over other types of bioceramics due to a chemical similarity to the inorganic part of both human and mammalian bones and teeth. Therefore, CaPO₄ (both alone and as constituents of various formulations) are used in dentistry as both dental fillers and implantable scaffolds. This review provides brief knowledge on CaPO₄ and describes in details current state-of-the-art on their applications in dentistry and dentistry-related fields. Among the recognized dental specialties, CaPO₄ are most frequently used in periodontics; however, the majority of the publications on CaPO₄ in dentistry are devoted to unspecified "dental" fields.

Keywords: Biooceramics; Hydroxyapatite; Calcium orthophosphates; Caries; Dentistry; Fillers; Oral; Scaffolds

Introduction

Dental caries, also known as tooth decay or a cavity, is an infectious disease (usually bacterial in origin), which causes demineralization and destruction of teeth. If left untreated, the disease can lead to pain, tooth loss and infection. Historically, this disease is very old and it is not exclusive of the human species. Namely, evidences of dental lesions compatible with caries have been observed in creatures as old as Paleozoic fishes (570 – 250 million years), Mesozoic herbivores dinosaurs (245 – 65 million years), prehominines of the Eocene (60 – 25 million years), as well as in Miocene (25 – 5 million years), Pliocene (5 – 1.6 million years) and Pleistocene animals (1.6 million – 10000 years). Nowadays caries is also detected in bears and other wild animals, as well as it is common in domestic animals [1]. Back to humans, dental caries has been detected in various epochs and societies throughout the world [2-9]. Even though in most developed countries the prevalence of the disease has decreased since the introduction of fluorides for dental care, dental caries remains a major public health problem.

Very briefly, dental caries occurs as this. As the most highly mineralized structure in vertebrate bodies, dental enamel is composed of numerous nanodimensional needle-like crystals of ion-substituted calcium orthophosphates (CaPO₄ with the apatite structure (so called "biological apatite"), which are bundled in parallel ordered prisms or rods to ensure unique mechanical strength, remarkable hardness and biological protection. Nevertheless, teeth possess some porosity allowing fluids beneath their surface. Organic (mainly, lactic and acetic) acids, produced by dental plaque cariogenic bacteria (such as Streptococcus mutans and Lactobacillus) from fermentable carbohydrates of sugar or from the remaining food debris, initiate the disease. When the sufficient quantity of acids is produced, so that the solution pH drops below ~ 5.5, the acids begin to demineralize (dissolve) dental enamel and the pores become larger (Figure 1a). The dissolution increases the concentration of calcium, orthophosphate/acid orthophosphate, magnesium, carbonate/bicarbonate ions in the microenvironment of the caries lesion, leading to the formation and transformation of different types of acidic CaPO₄ [10-12]. Several models have been developed to simulate dental caries [13-15].

Luckily, saliva has some restorative functions, acting not only as a buffer, to reduce the acidity caused by plaque bacteria, but also as the constant source of soluble ions of calcium and orthophosphate [11-16]. Therefore, upon neutralization of the plaque acids, CaPO₄ complexes from saliva diffuse into the channels between the depleted enamel rods, replenishing the supply of the dissolved ions (Figure 1b). Consequently, the surface of dental tissues is remineralized. Additional application of toothpastes, mouthwashes, mouth rinses, tooth mousses, etc, assists the remineralization. Thus, under normal circumstances, enamel demineralization is compensated by its remineralization. This dynamic process takes place more or less continually and equally in a favorable oral environment. However, when the demineralization exceeds the combined abilities of saliva, toothpastes, mouthwashes, mouth rinses, tooth mousses, etc, to remineralize, the dental tissues are progressively dissolved and finally break down, producing dental caries, which look like cavities and/or holes in the teeth [17]. An example of a cariogenic tooth is shown in Figure 2 [11]. Filling with artificial materials is a conventional treatment to repair damaged enamel. However, secondary caries frequently arise at the interfaces between the tooth and foreign materials, which always require restoration replacement [18].

In addition to dental caries, there is dental erosion, which is a chemical wear of the dental hard tissues without the involvement of bacteria. Clinical features are loss of surface structures with shallow lesions on smooth surfaces and cupping and flattening of cusps; already...
in early stages, coronal dentine often is exposed. Frequently, acid-containing drinks and/or food cause it. The acids that cause erosion are rather strong with an average pH of ~2 for the colas, ~2-2.5 for citrus fruits and ~1 for gastric contents. A repeated exposure leads to surface demineralization and, therefore, softening, while the softened surface is susceptible to loss by abrasion from food or a toothbrush. Repeated cycles of acid exposure lead to smooth, cupped out cavities. Surfaces most susceptible to erosion are the palatal surfaces of maxillary anterior teeth, although, other teeth are also affected. Currently, dental erosion is considered as one of the main tooth pathologies able to cause patient discomfort after periodontal diseases and caries [12,19,20].

Besides, there are other reasons why people need restorative dental biomaterials, such as inlays, onlays, crowns, veneers or bridges. The causes may be of a medical (decay or periodontal disease), age (population aging), traumatic (accident) or genetic (disorders) nature. All these causes adversely affect masticatory efficiency, language function, facial aesthetics and even the psychological health. Still other patients simply wish to change their smile to improve their appearance. Since no one wants to cover up their mouth when they smile, the demand for esthetic, tooth-colored (“invisible”) restorations permanently increase [21]. Finally, there are dental abrasion and dental attrition processes. The former is defined as the mechanical removal of hard tissues by the repeated introduction of foreign bodies into the oral cavity that are in contact with the teeth, while the latter is the physiological wearing away of dental hard tissues though tooth to tooth contact, without the intervention of foreign substances [12].

Therefore, due to their visibility, the restorative dental biomaterials are fundamentally different from those required to make artificial implants for bone replacements (reviewed in Refs. [22,23]). The greatest driving force to develop biomaterials for dental restoration is to fulfill the customers’ (patients, dentists and dental technicians) needs. In addition to the esthetic requirements, pressures from the environmental regulations and public apprehension are on the verge of eliminating dental amalgam as a practical and inexpensive restorative filling material [24]. Thus, by the late of 1990’s, amalgam use in several European countries was phased out. Consequently, a great challenge was and is the development of metal-free restorations with properties close to natural teeth (with respect to translucency, color and abrasive behavior) or even better mechanical properties and better durability than natural teeth [21].

Briefly, all restorative dental biomaterials must meet the following basic requirements [21]:

- They must be durable and biocompatible;
- Their optical characteristics (gloss, translucency and color, in particular) must be comparable to those of natural teeth;
- Their mechanical properties (strength and toughness) must meet the requirements of the indication range (namely, the required strength of an inlay is lower than that of a dental bridge);
- Their wear behavior must be similar to that of natural teeth.

In addition, they should be easily implantable or injectable, which is a critical requirement for any medical application.

Hence, a selecting problem of the appropriate biomaterials arises. When all material characteristics and clinical factors are considered,
bioceramics offer, perhaps, the best choice for a metal-free dentistry. Namely, bioceramics possess the excellent chemical durability, wear resistance, biocompatibility, environmental friendliness and esthetics. The bioceramic restorations can be used in situations such as treatments of primary caries where inlays can be applied without a more excessive removal of tooth structure that is associated with amalgam. Besides, bioceramic onlays or crowns can also be used in place of large amalgam restorations. However, the widespread use of all-ceramic restorations has been hindered by concerns related to marginal fracture resistance and clinical longevity. Therefore, the goal of dental bioceramics research is to produce all-ceramic dental restorative systems that utilize the known advantages of ceramic materials and minimize the existing disadvantages [25].

CaPO$_4$ belong to bioceramics but they have some specific advantages over other types of bioceramics due to a chemical similarity to the inorganic part of both human and mammalian bones and teeth. Due to these known similarities, dentists have been using CaPO$_4$ in clinical practice for over a century. Namely, Dr. Junius E. Cravens (1844 – 1920) from USA proffered creative concepts in pulp capping in the 1870’s. He had the opinion that dentin-like material would be the best to keep the pulp vital. Therefore, Cravens used a CaPO$_4$ powder, which was mixed with lactic acid to low viscosity. The result was a soluble calcium lactic orthophosphate, which was applied onto the exposed pulp tissue [26]. This pulp-capping agent was brought to the market by the S.S. White company with the trade name “Lacto-Phosphate of Lime” (Figure 3) [27]. Besides, CaPO$_4$ appear to be the only bioceramics potentially applicable for remineralization of dental surface [28].

The available CaPO$_4$, their standard abbreviations and solubility values are listed in Table 1 [29,30]. Additional details on CaPO$_4$, their properties and applications are available in the special monographs on the subject [31-33]. The objective of this overview is to provide current state-of-the-art on CaPO$_4$ applications in dentistry and dentistry-relevant fields.

General definitions and knowledge

According to Wikipedia, the free encyclopedia: “Dentistry is the branch of medicine that is involved in the study, diagnosis, prevention, and treatment of diseases, disorders and conditions of the oral cavity, maxillofacial area and the adjacent and associated structures and their impact on the human body. The American Dental Association recognizes nine dental specialties: public health dentistry, endodontics, oral and maxillofacial pathology, oral and maxillofacial radiology, oral and maxillofacial surgery, orthodontics, pediatric dentistry, periodontics, prosthodontics, and general dentistry. There are other dental niches such as oral medicine, dental aesthetics, dental implantation, and orofacial pain and temporomandibular disorders, some of them are recognized as dental specialties in other countries. In the European Union, all member states must recognize the specialties of orthodontics and oral and maxillofacial surgery” [34].

Now it is necessary to describe briefly all dental specialties and determine in which of them CaPO$_4$ are used. According to Wikipedia: “Dental public health is involved in the assessment of dental health needs and improving the dental health of populations rather than individuals. One of the controversial subjects relating to dental public health is fluoridation of drinking water” [35]. A search in Scopus database has been performed for papers containing in the title a combination of terms (keywords) “public health dentistry” + “apatite” and “public health dentistry” + “calcium phosphate”. Zero publications have been found in both cases (Table 2). Thus, this direction has nothing in common with CaPO$_4$. Endodontics (from the Greek ενδό (“inside” and οδός (“tooth”)) deals with the tooth pulp and tissues surrounding roots of teeth. If the pulp (containing nerves, arterioles, venules, lymphatic tissue, and fibrous tissue) becomes diseased or injured, endodontic treatment is required to save the tooth [36]. The results of a similar search (Table 2) revealed that CaPO$_4$ are used rarely in endodontics. Oral and maxillofacial pathology, radiology and surgery represent “the study, diagnosis, and sometimes the treatment of oral and maxillofacial related diseases", “the study and radiologic interpretation of oral and maxillofacial diseases" and "extractions, implants, and facial surgery", respectively [37]. Only surgery appears to deal with CaPO$_4$ occasionally (Table 2). Furthermore, within these three dental specialties, one needs to differentiate between “oral” and “maxillofacial” terms. The former term is relevant to the subject of this review, while the latter one is undoubtedly irrelevant, since it deals with treatment of the surrounding bones. Various CaPO$_4$-based formulations have been proposed for reconstruction of the contour and discontinuity defects in maxillofacial surgery [38-51]; however, this subject belongs to bone grafts [22,23]. Orthodontics, formerly orthodontia (from Greek ὀρθός (“straight, or proper, or perfect” and οδος (“tooth”)) is the first specialty of dentistry that is concerned with the study and treatment of malocclusions (improper bites), which may be a result of tooth irregularity, disproportionate jaw relationships, or both [52]. CaPO$_4$ are used rarely in orthodontics (Table 2). Pediatric dentistry (formerly pedodontics (American English) or paedodontics (Commonwealth English)) is the branch of dentistry dealing with children from birth through adolescence. It places special importance in preventing tooth decay. Additionally, pediatric dentists work toward the maintenance of primary teeth (baby teeth) until they are naturally lost. It is irrelevant
to the CaPO₄ subject (Table 2). Periodontics (also periodontology, from Greek περί (peri) “around” and ὀδός (odous) “tooth”) is the specialty of dentistry that studies supporting structures of teeth, as well as diseases of periodontium (these are specialized tissues investing the roots). Although CaPO₄ and supporting teeth, including cementum, periodontal ligament, alveolar bone and gingiva, characterized by the loss of support around teeth) and conditions that affect them. Although CaPO₄ are used in periodontics (Table 2); in fact, they are applied to treat alveolar bones, which, again, is another story [22,23]. Prosthodontics (from Greek προσθέσις (prosthesis) “addition” and ὀδός (odous) “tooth”), also known as dental prosthetics or prosthetic dentistry, is a dental specialty pertaining to the diagnosis, treatment planning, rehabilitation and maintenance of the oral function, comfort, appearance and health of patients with clinical conditions associated with missing or deficient teeth and/or oral and maxillofacial tissues using biocompatible substitutes [53]. CaPO₄ are used rarely in prosthodontics (Table 2). In addition, similar searches in Scopus database using key words “dental”, “dentistry”, “oral”, “ stomatology” and “caries” combined with “apatite” or “calcium phosphate” have been performed (Table 2, the bottom lines).

Brief information on current biomedical applications of CaPO₄

Due to a chemical similarity to the inorganic part of normal calcified tissues (bones, teeth and dent, antlers) of mammals, artificially prepared CaPO₄ possess good biocompatibility, bioactivity and osteoconductivity [29-33]. These properties of CaPO₄ are extensively used in medicine for repairing or replacement of injured or damaged bones and teeth. Since the diverse biomedical applications require different formulations, configurations and/or shapes, the biomedically relevant CaPO₄ are produced in various physical forms, such as: powders, particles, granules, dense blocks, porous scaffolds, self-setting formulations, suspensions, non-hardening pastes, implant coatings, as well as composite components of different origin (natural, biological or synthetic) often with the specific shapes, such as implants, prostheses or prosthetic devices [22,23,29-33,54]. In view of the fact that several dental specialties deal with an invasion into (such as, bone drilling to insert an implant) and/or treatment of the surrounding bones, in principle, all the aforementioned forms, formulations, configurations and shapes of CaPO₄ might be applicable to the dentistry field.

CaPO₄ for dental caries prevention and in dentifrices

Traditionally, caries prevention strategies are focused on reducing bacterial growth, neutralizing of oral acids and teeth remineralization. Among them, only the third strategy appears to deal with the CaPO₄ subject. Briefly, the teeth remineralization is a process in which dissolved CaPO₄ minerals are returned to the molecular structure of the teeth themselves. To reduce dental caries by performing remineralization, systemic and/or topical fluoridation of water is commonly used [55]. In addition, various ions-delivering agents are used in the form of dentifrices, toothpastes, mouthwashes, mouth rinses, chewing gums, etc. Many of these remineralizing agents contain CaPO₄ [56]. This is because the focus in caries research has shifted to development of methodologies for detection of the early stages of caries lesions and non-invasive treatment of these lesions. For example, in the presence of calcium and orthophosphate ions, topical fluoride ions promote formation of FA (which is the least soluble compound among all known types of CaPO₄, Table 1) in dental enamel. This property of fluorides has been known since, at least, 1956 [57]. However, to form one unit cell of FA, 10 calcium and 6 orthophosphate ions are required for every 2 fluoride ions. Hence, on topical application of fluoride ions, the availability of calcium and orthophosphate ions can be the limiting factor for net enamel remineralization to occur and this is highly exacerbated under the xerostomic (i.e. a dry mouth) conditions [28].

Now, let me describe the applications of CaPO₄ in dentifrices. According to Wikipedia: "Dentifrice are agents used along with toothbrush to clean and polish natural teeth. They are supplied as paste, powder, gel or liquid form." [58]. To the best of my findings, the first publication dealing with an application of CaPO₄ in dentistry was related to dentifrices. It was a presentation made at the 23rd general meeting of the International Association for Dental Research (held in Chicago, IL, May 27, 1945) and the abstract of that presentation was published shortly afterwards [59]. Since then, numerous studies devoted to various applications of CaPO₄ in dentifrices have been published [60-96]. A number of such formulations also contains fluorides [60,61,67,68,71-74,76,81,85,94-96].

Toothpastes: CaPO₄-containing toothpastes were found to promote a partial remineralization of the demineralized enamel [78,79,81-85,88-92,95], as well as depending on the addition of other constituents they also could possess some whitening effect [75,77,96] and reduce tooth sensitivity [82,89]. For example, the polishing and whitening properties of HA-containing toothpastes were investigated in a combined study [75]. The polishing properties were evaluated by means of artificial teeth by polishing with different toothpastes, while the brightening and whitening properties were examined in volunteers using two colorimeters with two specially made fiberscope. The results revealed that addition of HA to the toothpaste did not alter its polishing properties, while it did result in a marked increase in tooth whitening. It was also found that the brightening and whitening properties increased as the amount of HA in the toothpaste increased. Thus, HA-containing toothpaste appeared to be effective at whitening teeth and whitening was not due to their polishing effect on tooth surface [75]. The whitening properties of HA-containing toothpastes were also found by other researchers [77,96].

In addition, it is worth mentioning on a randomized study with 181 children (92 boys, 89 girls) from different Japanese schools over a period of 3 years [65]. After lunch, the children brushed their teeth under supervision with a toothpaste containing 5% HA and a control group with a paste without HA. Yearly controls of the DMFT (number of decayed, missing and filled teeth due to caries) index were diagnosed as well as the caries incidence on newly erupted teeth. The DMFT index appeared to be significantly deeper in the HA-containing toothpaste group, while the incidence for caries in newly erupted teeth was significantly lower if compared to the control [65].

Besides, dentifrices containing a combination of monofluorophosphate (MFP) with a DCPD abrasive were evaluated in a variety of in vivo tests [67]. MFP with silicon dioxide abrasive at an equivalent fluoride concentration was used for comparison. The data indicated that DCPD was more effective than silica in preventing plaque pH drop. A toothpaste containing MFP + DCPD was significantly more effective than an MFP + silica toothpaste. In addition, a toothpaste containing 45Ca radiolabeled DCPD was applied topically in rats’ teeth. The results showed that 45Ca was incorporated into the enamel with a concomitant reduction in enamel solubility. In a rat caries study using MFP + DCPD, matching placebo and MFP + silica, the MFP + DCPD dentifrice showed a significantly greater reduction in smooth surface caries. These dentifrices were also tested in an in situ human model for fluoride uptake in artificial root caries lesions where MFP + DCPD provided a significantly higher fluoride uptake than MFP + silica. A
Table 3. As seen from the Table 3, toothpastes for both human and
toothpastes, such toothpastes are commercially produced worldwide
are also added to toothpastes to provide remineralization properties, while DCPD
and DCPA are added to toothpastes as abrasives to provide a gentle
polishing action.

To finalize this section, one should mention on the studies, in
which addition of CaPO₄ to toothpastes did not show any positive
influence on enamel and/or dentin demineralization/remineralization
properties [97].

Chewing gums: Except of toothpastes, CaPO₄ are added to
chewing gums to reduce dental caries [98-116]. In the vast majority
of cases, a positive effect was noticed. Namely, to evaluate chewing
gums as a vehicle to increase salivary mineral saturation levels and
enhance salivation, both MPCM and the equimolar mixture of TTCP
with DCPA were chosen as experimental chewing gum additives
[103]. Each subject chewed a commercial sugar-free bubble gum
(control) for 16 min or the same gum to which 5 wt. % of MPCM or
TTCP + DCPA gum. The results suggested that the experimental gums could
enhance salivation, both MCPM and the equimolar mixture of TTCP
and orthophosphate ions in saliva during the 16-minute period even
were found to increase significantly the concentrations of calcium
animals are available. One should note that HA and ACP are added
to toothpastes to provide remineralization properties, while DCPD
and DCPA are added to toothpastes as abrasives to provide a gentle
polishing action.

To finalize this section, one should mention on the studies, in
which addition of CaPO₄ to toothpastes did not show any positive
influence on enamel and/or dentin demineralization/remineralization
properties [97].

Chewing gums: Except of toothpastes, CaPO₄ are added to
chewing gums to reduce dental caries [98-116]. In the vast majority
of cases, a positive effect was noticed. Namely, to evaluate chewing
gums as a vehicle to increase salivary mineral saturation levels and
enhance salivation, both MPCM and the equimolar mixture of TTCP
with DCPA were chosen as experimental chewing gum additives
[103]. Each subject chewed a commercial sugar-free bubble gum
(control) for 16 min or the same gum to which 5 wt. % of MPCM or
TTCP + DCPA gum. The results suggested that the experimental gums could
enhance salivation, both MCPM and the equimolar mixture of TTCP
and orthophosphate ions in saliva during the 16-minute period even
were found to increase significantly the concentrations of calcium
animals are available. One should note that HA and ACP are added
to toothpastes to provide remineralization properties, while DCPD
and DCPA are added to toothpastes as abrasives to provide a gentle
polishing action.

To finalize this section, one should mention on the studies, in
which addition of CaPO₄ to toothpastes did not show any positive
influence on enamel and/or dentin demineralization/remineralization
properties [97].

Chewing gums: Except of toothpastes, CaPO₄ are added to
chewing gums to reduce dental caries [98-116]. In the vast majority
of cases, a positive effect was noticed. Namely, to evaluate chewing
gums as a vehicle to increase salivary mineral saturation levels and
enhance salivation, both MPCM and the equimolar mixture of TTCP
with DCPA were chosen as experimental chewing gum additives
[103]. Each subject chewed a commercial sugar-free bubble gum
(control) for 16 min or the same gum to which 5 wt. % of MPCM or
TTCP + DCPA gum. The results suggested that the experimental gums could
enhance salivation, both MCPM and the equimolar mixture of TTCP
and orthophosphate ions in saliva during the 16-minute period even
were found to increase significantly the concentrations of calcium
animals are available. One should note that HA and ACP are added
to toothpastes to provide remineralization properties, while DCPD
and DCPA are added to toothpastes as abrasives to provide a gentle
polishing action.

To finalize this section, one should mention on the studies, in
which addition of CaPO₄ to toothpastes did not show any positive
influence on enamel and/or dentin demineralization/remineralization
properties [97].

Chewing gums: Except of toothpastes, CaPO₄ are added to
chewing gums to reduce dental caries [98-116]. In the vast majority
of cases, a positive effect was noticed. Namely, to evaluate chewing
gums as a vehicle to increase salivary mineral saturation levels and
enhance salivation, both MPCM and the equimolar mixture of TTCP
with DCPA were chosen as experimental chewing gum additives
[103]. Each subject chewed a commercial sugar-free bubble gum
(control) for 16 min or the same gum to which 5 wt. % of MPCM or
TTCP + DCPA gum. The results suggested that the experimental gums could
enhance salivation, both MCPM and the equimolar mixture of TTCP
and orthophosphate ions in saliva during the 16-minute period even
were found to increase significantly the concentrations of calcium
animals are available. One should note that HA and ACP are added
to toothpastes to provide remineralization properties, while DCPD
and DCPA are added to toothpastes as abrasives to provide a gentle
polishing action.
Type of CaPO₄	Human or Animals	Trade name and producer (when available)
HA	Human	Active Remineralization Toothpaste (A.R.T.) (Pearlie White, Colrison, Singapore)
		ApaCare (Cumdente, Germany)
		Apadent (Sangi Co., Japan)
		Apagard Premio (Sangi Co., Japan)
		Arcticum (SPLAT-COSMETICA, Russia)
		Biorepair (Coswell, Italy)
		Coolin Bubble (Canavena Co., Korea)
		DIO (DIO Co., Korea)
		Desensibilize Nano P (FGM Produtos Odontológicos, Brasil)
		Desensin repair (Dental)
		Hakusanshiko (Japan)
		Janina (Janina Ultra White, UK)
		Kalident - calcium hydroxyapatite (Kalichem, Italia)
		MAXDENT (ST3 Cosmetics, Bulgaria)
		Megasonex (Goldspire Group, Hong Kong)
		nanoXIM•CarePaste (FLUIDINOVA, Portugal)
		Parodontol Active (Svoboda Ltd., Russia)
		PrevDent (PrevDent International, Netherlandes)
		Reminel AfterBleach (Sangi Co., Japan)
		Remin (X-PUR, Oral Science, QC, Canada)
		R.O.C.S. SENSITIVE (DRC Group, Russia)
		Sensitive Reminex (Pharma Jenistec Co., Korea)
		Triple Denta (TripLife Co., Ltd., Korea)
		Ultracomplex (SPLAT-COSMETICA, Russia)
		UltraDEX Recalifying and Whitening (Periproducts Ltd., UK)
		VITIS anticaries toothpaste (Dental)
		YP Dental (You Co., Ltd. Japan)
ACP	Human	Age Defying (Arm & Hammer, Church & Dwight Co, NJ, USA)
		Complete Care (Arm & Hammer, Church & Dwight Co, NJ, USA)
		Enamel Care (Arm & Hammer, Church & Dwight Co, NJ, USA)
		Enamel Pro (Premier Dental Products Company, USA)
		Enamexon (Premier Dental Products Company, USA)
		INNOVA (SPLAT-COSMETICA, Russia)
		MI paste (GC America, IL, USA)
		MI paste plus (GC America, IL, USA)
DCPD or DCPA	Human	All White (Dr. Collins, USA)
		Dentu-Creme Denture (Polident, GlaxoSmithKline, UK)
		Plus White (CCA Industries Inc., NJ, USA)
		Pureen (Singapore)
		Snappy Jaws (Australia)
		Supersmile (USA)
		Triple Action Whitening (Pearl Drops, Church & Dwight, NJ, USA)
		Triple Power Whitening (Pearl Drops, Church & Dwight, NJ, USA)
		VITA-MYR (NV, USA)
	Animals	Advanced Oral Care (Nylabone, NJ, USA)
		C.E.T. Enzymatic (Virbac, TX, USA)
		Colgate Cavity Protection (Colgate-Palmolive, NY, USA)
		Dental Care Kit (Sentry Petrodex, Sergeant’s Pet Care Products, NE, USA)
		Dentifresh (Hatchwell, UK)
		Enzymatic toothpaste (Sentry Petrodex, Sergeant’s Pet Care Products, NE, USA)
		Four Paws Pet Dental (Four Paws Products, NY, USA)
		Original (Oxyfresh, ID, USA)
		R.O.C.S. PRO Baby (DRC Group, Russia)
		VetOne (VetOne, ID, USA)
Undisclosed CaPO₄	Human	TriMedica Pure MSM

Table 3: Trademarks of CaPO₄-containing commercial toothpastes.
analysis demonstrated that, regardless the gum type and chewing duration (e.g., 20 min or 5 min), the CPP-ACP nanocomplexes produced a dose-related remineralization of enamel subsurface lesions in situ. The gums containing 18.8 mg and 56.4 mg of the nanocomplexes, chewed for 20 min, four times per day for 14 days, increased enamel subsurface remineralization by 101% and 151%, respectively, relative to the control sugar-free gums. Microradiographs of the enamel lesions before and after remineralization showed that the CPP-ACP nanocomplexes promoted remineralization throughout the body of the lesion. Electron microprobe wavelength dispersive spectrometric analyses of sections of the remineralized enamel indicated that the mineral deposited was apatite with a higher Ca/P ratio than that in the stoichiometric HA. Acid challenge of the enamel remineralized by the CPP-ACP nanocomplexes in situ showed that the remineralized apatite was more resistant to acid challenge than the normal calcium-deficient carbonated tooth enamel. Thus, the clinical trials of CPP-ACP-containing sugar-free chewing gums demonstrated that these gums significantly slowed progression of caries and enhanced regression of caries compared with the control sugar-free gums [106-110].

Teeth remineralization: In general, remineralization of teeth can be defined as the process in which calcium and orthophosphate ions are supplied from a source external to teeth to promote their deposition into crystal voids in demineralized enamel, to produce net mineral gain into crystal voids in demineralized enamel, to produce net mineral gain. However, such studies keep going. For example, a remineralization potential of HA itself for caries lesion treatment was investigated [66]. Previously demineralized enamel blocks were immersed into an aqueous solution of sludgy HA at 37°C for 55 hours, followed by 24 hours washing with synthetic saliva and another group was washed only with synthetic saliva. Artificial caries lesions were remineralized slightly by immersion into artificial saliva but significant acceleration of remineralization was observed in the sludgy HA group [66]. Positive results were also obtained in other studies [64, 126-137]. Besides, remineralization of caries lesions could be performed by supersaturated solutions [138, 139] and/or gels [140-147] containing dissolved ions of calcium and orthophosphate. In addition, supersaturated by CaPO₄ mouth rinses were found to experience a significant increase in reversals of caries in high-risk for caries patients due to xerostomia (salivary hypofunction) [148]. A remineralization potential of sport drinks, containing nano-sized HA, was also studied [149, 150].

More complicated formulations, such as CaPO₄-loaded liposomes combined with amelogenin-inspired oligopeptides, have been also developed to promote remineralization of dental enamel [151]. Thus, CaPO₄ appear to be the chemicals able to reduce dental caries at the early stages. However, studies performed by using atomic force microscopy nano-indentation technique revealed that previously demineralized samples of dental enamel further exposed to remineralizing solutions did show a crystalline layer of CaPO₄ formed on their surface. Unfortunately, the re-precipitated deposits of CaPO₄ always consisted of loosely packed crystals and did not protect the underlying enamel from a subsequent acid attack. Furthermore, these surface deposits were completely removed by either a toothbrush or a short exposure to an erosive acidic solution [152-155]. In this context, it should be emphasized that the term “remineralization”, which is often misused in the literature, should imply the process of mineral growth that goes hand in hand with a strengthening effect of the weakened enamel surface. Since no strengthening of an exposure to remineralizing solutions was observed, it might be considered that no “passive mineralization” was found (in spite of the real evidence of the re-precipitated surface deposits of CaPO₄) [152, 154, 155].

Further details on the remineralization attempts of teeth are available in the topical reviews [156-158].

Dentin hypersensitivity treatments: As written in Wikipedia, the free encyclopedia: dentin hypersensitivity (abbreviated to DH or DHS and also termed sensitive dentin, dentin sensitivity, cervical sensitivity and/or cervical hypersensitivity) is dental pain which is sharp in character and of short duration, arising from exposed dentin surfaces in response to stimuli, typically thermal, evaporative, tactile, osmotic, chemical or electrical and which cannot be ascribed to any other dental disease [159]. Dentin hypersensitivity is a frequently reported oral pain condition, which is mostly diagnosed at the buccal surfaces of teeth, where enamel is missing due to erosion, abrasion and/or attrition. Contrary to enamel, which is dense and contains a small amount of pores, dentine has a great number of tiny tubes (“tubules”) that lead to the nerve and are filled with fluids. However, until about the third or fourth decade of life in healthy individuals, the surface of dentin is not exposed and the tubules are sealed. When a tooth loses its protection from gum recession and/or tooth enamel wear, these tubules are exposed to the outside, allowing external stimuli to reach the nerve endings. Therefore, even mild external stimuli such as hot or cold foods and beverages can cause a change in fluid movement, which causes the nerve endings to react in response, triggering a short but sharp pain (Figure 4).

Due to the aforementioned abilities of CaPO₄-containing formulations (section 4.3. Remineralization studies), some types of CaPO₄ were found to be able to treat this disease as well [82, 89, 114, 160-167]. For example, in sensitivity studies, a HA-containing toothpaste was compared with positive control toothpastes. That study demonstrated that the HA-containing toothpaste was similarly effective in reducing dentine hypersensitivity with pre-existing benchmark toothpastes [82]. Positive results were also obtained with both HA-containing Remenal After Bleach toothpaste [89] and an undisclosed nano-HA, potassium nitrate, sodium monofluorophosphate and antioxidants-containing toothpaste [166]. In another study, HA-treated teeth showed statistically significant reduction in hypersensitive symptoms compared to the control groups and the authors concluded that HA showed “definite potential as an effective and permanent desensitizer when used as an in-office procedure” [164]. Furthermore, a CaPO₄ precipitation method was once tried as a treatment for dentin hypersensitivity using vital teeth of beagle dogs. The results revealed...
that dentin tubules were occluded homogeneously and completely with an apatitic mineral after application of the CaPO$_4$ precipitation in vital teeth [162]. A commercial self-setting formulation TEETHMATE™ DESENSITIZER (Kuraray Noritake Dental Inc., Japan), consisting of a mixture of DCPA + TTCP + some additives, which formed CDHA precipitates upon exposure to saliva, appeared to able to occlude open dentinal tubules and, by this way, acted as an effective desensitizer compound [167].

Very schematically, the mechanism of dentin hypersensitivity and the major principles of its treatment by CaPO$_4$ are shown in Figure 4.

Clinical applications of CaPO$_4$ in dentistry

As written in introduction, dentists have been using CaPO$_4$ for over a century. However, to the best of my findings, the first available publication on decalcification of teeth as the reason of various dental pathologies was published in 1925 [168]. Furthermore, the clinical applications of CaPO$_4$ in dentistry started only in 1970-s [169]. Namely, the first application of a CaPO$_4$ (erroneously described as “TCP of HA structure”) bioceramics in surgically created periodontal defects was reported in 1975 [170], followed by a publication on alveolar ridge augmentation in 1978 [171], while the use of dense HA cylinders for immediate tooth root replacement was reported in 1979 [172]. A summary on early (before 1987) studies might be found in Table 3 of Ref. [173], while Table 4 of this publication represents the various types of dental applications of CaPO$_4$ in the middle of 1980-s [31,173].

Overall, the reasons for the clinical application of CaPO$_4$ in dentistry are similar to those for their applications in bone grafting. A chemical similarity to the inorganic phases of teeth and bones appears to be the major reason. Consequently, CaPO$_4$ possess an excellent biocompatibility, biotolerance, an ability to be resorbed by both tooth- and bone-related cells, osteoconductivity, etc. In addition, CaPO$_4$ are less expensive than most of the inorganic fillers used today. Below, the clinical applications of CaPO$_4$ in dentistry have been classified using two ways: according to the existing CaPO$_4$, listed in Table 1, and according to the modern dental specialties, listed in Table 2.

Classification according to the existing CaPO$_4$ (Table 1)

MCPM and MCPA: Just a few studies on dental applications of MCPM and MCPA were found in databases. According to the available publications, both compounds are used in dentistry as components of self-setting formulations [174,175], including sealers [176]. For example, a commercial product EndoSequence® BC Sealer (Brasseler USA, Savannah, Georgia) is a premixed ready-to-use injectable cement paste developed for permanent root canal filling and sealing applications. It contains zirconium oxide, calcium silicates, MCPA, calcium hydroxide, filler and thickening agents. When this sealer is placed in the root canal, it absorbs water from the dentin tubules causing hydration reactions of calcium silicates. Simultaneously, MCPA reacts with calcium hydroxide to precipitate CDHA. This leads to formation of a composite network of gel-like calcium silicate hydrates, which intimately mixes with CDHA crystals and forms a hermetic seal inside the root canal [176]. In addition, MCPM and/or MCPA were tried as components of caries-inhibiting dental biocomposites, releasing ions...
May provide the needed and unique combination of stress-bearing solutions and substantially increase the level of CaPO₄ protein casein and has a remarkable ability to stabilize CaPO₄ (Enamelon Inc., Cranbury, NJ, USA). CPP is produced from milk (Singapore) and an unstabilized ACP with a trade name Enamelon™ now commercially available: a casein phosphopeptide (CPP) stabilized two ACP-based remineralization systems have been developed and are experimentally created cranial defects [200] and enhanced reparative bone formation and cause osteoinduction and osteoconduction in alveolar ridge augmentation [196,199]. Furthermore, investigations pulpectomy [193], as a direct pulp capping material [197] and for self-setting formulations [197,198]. In addition, OCP was tried in as a coating [194,195], a component of bio-composites [195,196] and self-setting formulations [197,198]. In addition, OCP was tried in pulpectomy [193], as a direct pulp capping material [197] and for alveolar ridge augmentation [196,199]. Furthermore, investigations with rats revealed that implanted OCP could serve as a core for initiating bone formation and cause osteoinduction and osteoconduction in experimentally created cranial defects [200] and enhanced reparative dentine formation via induction of odontoblast differentiation [201].

ACP: Just a few publications were found on applications of OCP in dentistry and dentistry-related fields. Namely, OCP might be used as a coating [194,195], a component of bio-composites [195,196] and self-setting formulations [197,198]. In addition, OCP was tried in pulpectomy [193], as a direct pulp capping material [197] and for alveolar ridge augmentation [196,199]. Furthermore, investigations with rats revealed that implanted OCP could serve as a core for initiating bone formation and cause osteoinduction and osteoconduction in experimentally created cranial defects [200] and enhanced reparative dentine formation via induction of odontoblast differentiation [201].

ACP: Unlike OCP, ACPs appear to be very popular compounds for dental applications [28,113,115,116,161,163,202-252]. For example, two ACP-based remineralization systems have been developed and are now commercially available: a casein phosphopeptide (CPP) stabilized ACP with a trade name Recaldent™ (Cadbury Enterprises Pte Ltd., Singapore) and an unstabilized ACP with a trade name Enamelon™ (Enamelon Inc., Cranbury, NJ, USA). CPP is produced from milk protein casein and has a remarkable ability to stabilize CaPO₄ in solutions and substantially increase the level of CaPO₄ in dental plaque. Therefore, in Recaldent™ technology, it is claimed that CPP stabilizes high concentrations of calcium and orthophosphate ions, together with fluoride ions, at the tooth surface by binding to pellicle and plaque. Through the cluster sequence, CPP binds to forming nanodimensional clusters of ACP preventing their growth to the critical size required for nucleation and phase transformation. CPP-ACP nanodimensional complexes are formed as a result [253]. It is believed that these CPP-ACP nanocomplexes enter the porosities of an enamel subsurface lesion and diffuse down concentration gradients into the body of the subsurface lesion. Once present there, the nanocomplexes release the weakly bound calcium and orthophosphate ions, which would then deposit into crystal voids [117]. Due to ACPs’ bioactivity, local Ca- and PO₄ enriched environments are created with supersaturation conditions favorable for the regeneration of tooth mineral lost to decay or wear. Although all the available ions are stabilized by CPP from promoting dental calculus, they are freely available to diffuse down concentration gradients into enamel subsurface lesions thereby effectively promoting remineralization in vivo. The Enamelon™ technology applies calcium ions (e.g., calcium sulfate) and orthophosphate ions (e.g., ammonium orthophosphate, sometimes in the presence of fluoride ions) separately (e.g., from a dual chamber device). Therefore, as the salts mix with saliva they dissolve releasing calcium and orthophosphate ions and ACP (or F-containing ACP) forms intra-orally. In the intra-oral environment, both ACP and F-containing ACP are very unstable and rapidly transform to a more thermodynamically stable, insoluble crystalline phases, such as CDHA and a blend of CDHA + FA, respectively. It is believed that this helps rebuild tooth enamel through remineralization [71,254,255]; however, this approach may also promote dental calculus [28]. Thus, both previously prepared ACP (Recaldent™) and in situ precipitated ACP (Enamelon™) are used in dentistry to remineralize tooth surface. This property of ACPs is used in toothpastes (Table 3).

As seen from the available references, in dentistry ACPs are usually used as components of various biocomposites. In an acidic oral environment, such biocomposites take advantages of the ability of ACPs to release calcium and orthophosphate ions, which potentially can take part in enamel remineralization [94,106,107,109,110,113,115,116,202-212,216,217,231,232,247,248,252,256-281]. The ACP-containing biocomposites and hybrid biomaterials can be prepared in various forms, such as ceramtes [232] or nanodimensional fibers [234]. Such formulations are used mainly as anti-cariogenic and/or remineralizing agents [106,107,109,110,231,232,247,248,252,256-281], e.g., in chewing gums [106,107,109,110,113,115,116], sugar confections [213], various tooth mousses [259-261], bleaching gels [264,265], mouth rinses [266], various drinks [267,268] or even in milk [272,273]. To improve cell adhesion, coatings composed of ACP and hyaluronic acid were used [222]. Finally, ultrathin freestanding ACP sheets were manufactured and tested [251].

α-TCP and β-TCP: According to the available literature, α-TCP and/or β-TCP (unfortunately, the authors of the publications on the subject not always specify which of them was used) are widely used in dentistry and dentistry-related fields. For example, they are used for augmentation of the surrounding bones [171,282-289], in maxillofacial surgery [290-293], as a component of root canal sealers [294], as implant coatings [295], as remineralization [296-299] and pulpotomy [300] agents, for dental pulp capping [301-306], to treat perforations [307,308], as endodontic plugs [309] and to fill various types of bone defects and lesions [310-318].

In addition, β-TCP could be functionalized by various organic compounds, such as sodium lauryl sulfate [297], fumaric acid [298] and some other compounds [299,319,320]. Functionalization of β-TCP served two major roles: first, it provided a barrier that prevented premature β-TCP-fluoride interactions, and second, it provided

Table 4: Dental applications of CaPO₄ in the middle of 1980s [31,173].
1
2
3
4
5
6
7
a targeted delivery of β-TCP when applied to the teeth. Placebo-controlled clinical studies demonstrated that if compared to fluoride alone, the combination of fluoride plus functionalized β-TCP improved remineralization by building stronger, more acid-resistant mineral in both white-spot lesions as well as eroded enamel [297–299]. Once a therapy of 36 teeth with deep caries by both HA and undiscolored TCP was carried out. Repeated examinations of patients 1 and 6 months after treatment showed that both HA and TCP normalized the function of the pulp and caused remineralization of dentin in the bottom of carious cavity [321]. Furthermore, α-TCP-containing chewing gums were prepared and tested [104,105].

Apatites (HA, CDHA and FA): As seen in Table 2, apatites (HA, CDHA and FA) appear to be the most popular type of CaPO₄ used for dental applications. Since nanodimensional and nanocrystalline apatites are often considered as the model compounds of dental enamel due to both the chemical and phase similarities [31,32], their use in restorative dentistry offers several promising advantages, including intrinsic radio-opaque response, enhanced polishability and improved wear performance. In addition, they have hardness similar to that of natural teeth [322]. For example, nanodimensional HA particles were found to have an ability to infiltrate a demineralized collagen matrix of dentin. Afterwards, the infiltrated collagen matrix of dentin might provide a suitable scaffold for dentin remineralization, whereby the infiltrated HA particles could act as seeds within the collage matrix, and, given the appropriate remineralizing environment, dentin remineralization might occur [323]. In addition, it was demonstrated that nano-sized HA particles could be self-assembled to form enamel-like structures [324]. Therefore, a localized biomimetic repair of the enamel surface could be achieved by nano-sized (~20 nm) HA, which were analogues to the basic building blocks of the enamel rods. This similarity resulted in a good fixation of artificial biomaterials to natural tissues. Moreover, the enamel structure became reinforced by nanosized HA since a secondary caries was suppressed and the hardness was retained [325–327]. Furthermore, nano-sized HA could be adsorbed onto the enamel surface strongly and even be integrated into the natural enamel structure [328]. Generally, these studies also suggest that analogues of nanodimensional building blocks of biominerals should be highlighted in the entire subject of biomimeralization. This strategy may have prospective applications in dentistry as it offers an easy but effective method to reconstruct tooth enamel that is suffering from mineral losses.

Normally, apatites for dental applications are prepared from the pure chemicals; however, they could also be prepared from the biological sources, such as teeth [329]. Due to the versatile applications in dentistry, apatites could be used in various formulations, configurations and/or shapes. First, apatites are added to toothpastes (Table 3). Second, apatites are used as coatings to enhance osteoinductivity of various dental implants [330–342]. For example, degradation rates of dental implants covered by 50- and 100-micron thick coatings of HA, FA and fluorhydroxyapatite (FHA) were studied [333]. The implants were inserted in dog jaws and retrieved for histological analysis after 3, 6, and 12 months. The HA and FA coatings (even of 100-micron thick) were almost totally degraded within the implantation period. In contrast, the FHA coatings did not show significant degradation during the same period [333]. The apatite coatings on titanium implants followed by bisphosphonate-immobilization appeared to be effective in the promotion of osteogenesis on surfaces of dental implants [337]. Regarding their durability, the HA-coated dental implants were found to work well in the short to medium terms (during 4 – 6 years [343], 8 – 10 years [344] and 14 years [345]); nevertheless, even longer-term clinical results are awaited with a great interest.

Third, apatites are added as components to intermediate restorative materials [346,347], glass ionomer cements (which are dental restorative materials used for filling teeth) [348–355], as well as to various dental biocomposites [356–362], dentifrices and toothpastes [64,65,70,80,84,90–96]. HA-containing glass ionomer cements are commercially produced. For example, Calvite (Kerr Italia S.r.l.) is a light-cured cavity liner containing HA and glass ionomer powder. Furthermore, application of HA powder was found to be effective in apexogenesis of young permanent teeth of dogs [363]. In addition, an interesting approach to control dental caries by CDHA-osteonectin biocomposites was introduced [362]. Since caries is caused by acid production by bacteria in biofilms located on dental surfaces, its preventing involves a control of microorganisms producing the acids. Therefore, CDHA-osteonectin biocomposite particles were prepared to bind to bacteria in the biofilms, impede biofilms building-up without killing the microflora and release orthophosphate ions to buffer bacterial acid production if pH decreased below 6. Analysis of the results revealed that the treatment by either CDHA-osteonectin or pure osteonectin led to less biofilm formation compared to untreated controls. Thus, the anti-biofilm effect of the CDHA-osteonectin particles was ascribed to osteonectin, while CDHA was responsible for buffering effect, which kept pH always above 5.5 [362].

Forth, there are various types of self-setting apatite-forming and/or apatite-containing formulations [38-40,45-49,364-382]. For example, a cement was injected as a bone filler for gaps around oral implants placed on the medial femoral condyles of six goats and excellent bone formation around the graft material was found. Unfortunately, the degradation rate of the cement appeared to be very slow and no resorption was observed [373]. In another study, a cement was placed on artificially created periodontal defects but no significant difference was found between the cement and control. Nevertheless, the cement acted as a scaffold for bone formation and provided histocompatible healing of periodontal tissues [374]. Other investigators used cements for direct pulp capping [368,369] and compared them to calcium hydroxide. Both materials were found to be equally capable of producing a secondary dentin at ~ 24 weeks [368]. Still other investigators extracted all mandibular premolar teeth from beagles [371]. After one month of healing, alveolar bones were reduced to make space for previously fabricated CaPO₄ cement blocks. One more month later, 8-mm HA implants were placed in such a manner that the apical half was embedded into alveolar bones and the coronal half in the cement blocks. The investigators observed that the cement blocks were gradually replaced by bone and histopathologic features of the cement area were similar to that of natural bone. Moreover, the coronal half of the implants, previously surrounded by the cement, was firmly attached by natural bone [371]. In another study, the same researchers used fluorescent labeling analysis and electron microanalysis to measure the extent of new bone formation and elemental (Ca, P, Mg) distribution [372]. Besides, several apatite-forming and/or apatite-containing self-setting formulations were tested as root canal fillers [182,367,376] and sealers [364–366,370,375,377]. Since HA alone does not possess the self-setting abilities, to create a self-setting formulation it could be mixed with an epoxy resin [377]. To impart an antibacterial effect, an apatite-forming MCPM + CaO self-setting formulation with an excess of CaO (which after contact with water was transformed to Ca(OH)₂) was elaborated [176]. Finally, injectable forms of such cements can be used as adjunctive supportive agents for dental implants [380].

An interesting approach was performed in an attempt to regenerate the tooth enamel in vitro using thin and flexible HA sheets [383]. First, a thin HA film was deposited onto a soluble substrate by pulsed laser
deposition technique. Next, the HA film was collected as a free-standing sheet by dissolving the substrate using a solvent. HA sheets of 1 to several microns thick and up to 50 mm in diameter could be produced by this technique. Then, the HA sheet was adhered to the extracted human teeth using a CaPO$_4$-containing solution with pH of 5.5. The authors found that the HA sheet was fused with tooth enamel within approximately one week and that the HA sheet was effective for the restoration and conservation of the tooth in dental applications [383]. This approach was further developed in later studies by introducing a bit thicker (8 μm thick) HA sheets with additionally deposited a thin layer of undisclosed TCP of 500 nm thick [384,385]. One should mention that, due to a small thickness, the HA sheets are transparent (therefore, invisible) and their coloration is possible. Therefore, they could be applied in cosmetic dentistry. In addition, the HA sheets have a number of minute holes that allow liquid and air to escape from underneath to prevent their forming bubbles when it is applied onto a tooth. One problem is that it takes almost one day for an HA sheet to adhere firmly to the tooth’s surface. Similar sheets from ACP were developed and tested as well [251].

More to the point, dental applications of apatites include direct, pulp capping [306,386-390], dentin hypersensitivity treatments [164-166], using in endodontics [391-408], orthodontics [409-417] and maxillofacial surgery [290,336,418-444], orthognathic surgery [445-449], prostodontics [450-460] and periodontics [461-468].

To conclude this section, one should mention that due to a close chemical and phase similarities between apatites and dental enamel, dissolution of apatites in acids is considered as a good model of dental caries [479].

TTC: According to the available literature, TTC alone is rarely used in dentistry [480,481]. In the vast majority of the cases, TTC is combined with either other types of CaPO$_4$ (mainly DCPD or DCPA) or other chemicals to form various self-setting formulations [160,167,178,179,181,183-187], biocomposites [178,179,181,482] and root canal sealers [188] and fillings [483]. For example, a FA forming self-setting formulation consisting of solid TTC, solid NaF and liquid H$_2$PO$_4$ was prepared and used for *in vitro* filling of big enamel carious cavities. The results revealed that the hardened formulation was tightly combined with the enamel surface due to the chemical interaction between the formulation and enamel apatite [186]. Once a TTC-containing chewing gum was prepared and tested [103].

Biphasic and multiphasic CaPO$_4$ formulations: According to the definition, biphasic and multiphasic CaPO$_4$ formulations represent various blends of two or more individual types of CaPO$_4$, respectively, and, among them, a biphasic calcium phosphate (abbreviated as BCP) formulation, consisting of HA and β-TCP, appears to be the most popular one [23]. An injectable bone and dental substitute constituted of BCP and a hydrosoluble cellulose polymer as a carrier was developed [484]. This formulation was used for filling bone defects after tooth extractions in 11 patients. 3 years after surgery, small biopsies of the implanted areas were harvested and analyzed by using micro-computed tomography, non-decalcified histology and histomorphometry. The BCP granules appeared in direct contact with mineralized bone tissue, thereby supporting bone growth. A gradual substitution of the filler by bone tissue was observed thus preserving the height of the alveolar bone crest [485]. Similar results were obtained in another study [486]. In addition, BCP was found to be effective for healing of dental bones, osseous and/or intrabony defects [50,487-500]. For example, micro- and macroporous BCP combined with a fibrin sealant was found to be safe and effective in sinus floor elevation for dental implant placement, supporting bone regeneration [497]. Furthermore, BCP was used to fill dental root canals [501], while multiphasic CaPO$_4$ (α-TCP + HA + TTP) were applied as direct pulp capping materials [502].

Classification according to the dental specialties

Endodontics: Generally, root canal filling materials are divided into core materials and root canal sealers. Root canal obturation consists of placing an inert filling material in the space previously occupied by pulp tissue. To achieve successful endodontic therapy, it is important to obturate the root canal system completely. Thus, the effective endodontic obturation must provide a dimensionally stable, inert fluid tight apical seal that will eliminate any portal of communication between the canal space and the surrounding periradial tissues through the apical foramen. According to the databases, the earliest publication on use of CaPO$_4$ in endodontics was published in Japanese in 1983 [391], followed by a publication in English in 1984 [392]. Several examples of endodontic applications of CaPO$_4$ are given below (Table 2).

A case of combined endodontic-periodontic lesions on a mandibular first molar was treated by intentional replantation and application of HA. Four months after the surgery, a porcelain-mental full crown restoration was completed. The 15-month follow-up examination showed that the tooth was clinically and radiographically healthy and functioned well [400]. Several types of CaPO$_4$ (DCPD, OCP, β-TCP, BCP (HA + β-TCP) and HA) in particle sizes of < 5 μm or < 150 μm were used for pulp capping teeth of pigs, rats, and dogs. All types of CaPO$_4$ showed biocompatibility. Based on these results, it was suggested that these types of CaPO$_4$ might be useful for specific clinical applications in endodontics, such as, pulp capping (microparticles of HA, β-TCP, BCP) and pulpectomy (HA, OCP, DCPD) [193]. Applicability of CaPO$_4$ in pulpotomy and pulpectomy was confirmed in other studies [300,503,504].

Bone regeneration in endodontically induced periradial lesions using HA, platelet-rich plasma and a combination of HA with platelet-rich plasma was evaluated for a period of one year with 20 systemically healthy patients [405]. To qualify, the patient had to have a tooth where non-surgical root canal therapy had failed, periradial radiolucency was present and periradial root end surgery was required. The bony defect had to be confined to the apical area, with the bone covering the entire root surface coronally, with an intact lingual cortical plate. The patients were randomly divided into 4 groups, with 5 patients each, as follows: replacement with HA, replacement with platelet-rich plasma, replacement with HA with platelet-rich plasma and a control group with no substitutes. The radiographic evaluation revealed that the HA patients showed complete bone regeneration with evidence of a trabecular pattern at the end of one year, the platelet-rich plasma patients showed complete bone regeneration at the end of 6 months, while the control patients showed unsatisfactory bone regeneration even after one year. Thus, HA addition to platelet-rich plasma was proven to facilitate bone regeneration [405].

An injectable bone substitute made of a suspension of BCP (HA + β-TCP) bioceramics was used to fill dental root canals after removing of canal pulp [501]. The aim of that study was to verify the ability of a CaPO$_4$ ceramic suspension to fill the apical zone of teeth both *ex vivo* and *in vivo* in a sheep model. The results showed that injection was possible with a good level of BCP granules at the end of the root dental canal with extracted tooth. The scanning electron microscopy revealed mineral formation at the apex level with mineral tissue conduction between the BCP granules; however, only one tooth showed a good...
apical filling with a good sealing. The authors concluded that the sealing of the apex seemed to depend on the amount of BCP granules [501].

Furthermore, there are CaPO₄-containing endodontic and/or root canal sealers [188,294,364-366,370,375, 377,396,397,401,402,404,406-408,505-515]. The composition of 2 examples of such sealers (Sankin apatite root canal sealer and Capsenal) are presented in Table 5 [510]. Of them, Capsenal was found to result in both a higher alkalinity and a higher calcium ion releases than Sankin apatite root canal sealers [509]. The results of their application revealed that the sealers mentioned in Table 5 facilitated the periapical dentoalveolar and alveolar healing by controlling cellular mediators from periodontal ligament cells and osteoblast differentiation of precursor cells [510].

Furthermore, endodontic perforations were treated by CaPO₄ [307,308,393,511-516], but once a lack of complete healing was noticed [308]. Additional examples of the endodontic applications of CaPO₄ comprise the following cases. They can be used as components of endodontic cements [394,517] or coatings for endodontic dental implants [403], as well as serve as a root end filling material [397,399] and as endodontic endosseous implants [395]. Since CaPO₄ do not cause inflammation [307], they could be used as a hard plug deep inside teeth [309]. Finally yet importantly, CaPO₄ crowns were manufactured [518].

Oral and maxillofacial surgery: An insufficient bone volume and a poor bone density are common problems in edentulous patients with resorbed maxilla. One method that makes implant placement possible and as endodontic endosseous implants [395], as well as serve as a root end filling material [397,399] or coatings for endodontic dental implants [403], as well as serve as a root end filling material [397,399] and as endodontic endosseous implants [395]. Since CaPO₄ do not cause inflammation [307], they could be used as a hard plug deep inside teeth [309]. Finally yet importantly, CaPO₄ crowns were manufactured [518].

Due to these cases, CaPO₄ have been used in oral and maxillofacial surgery since 1980-s [290,418-427] and up to now many scientific articles have been published on the subject [38-51,291,428]. However, as written in section 2, the vast majority of the publications on this subject deals with a treatment of the surrounding bones and, thus, they fall into a category of bone substitutes, which is another story. Nevertheless, the following directions of CaPO₄ application in oral and maxillofacial surgery can be outlined: coatings on various types of dental implants [330-345,403,519-524], augmentation of the surrounding bones [44,196,199,283-289,336,371,287,411-437,525] and using as fillers of osseous mandible and/or jaw defects [292,369,378,438-444].

Orthodontics: According to the databases, the earliest publications on use of CaPO₄ in orthodontics appeared in 1989 [409-411]. Coatings of CaPO₄ (both HA [413] and α-TCP [295]) were successfully applied to titanium implants and the coated implants were found to be applicable as anchorage for short-term orthodontic treatment [413] and both types of coatings appeared to be effective stimulators of new bone formation [295]. In another study, HA addition to an orthodontic cement was found to have a protective action on the dental enamel near the orthodontic bands or brackets [412]. Furthermore, there are CaPO₄ bioceramic brackets Hyaline (Tomy International Inc., Tokyo, Japan) (Figure 5). In addition to excellent biocompatibility, these brackets have a hardness equivalent to that of tooth enamel, which eliminates fears of dental abrasion due to the occluding tooth even when the patient has a deep-bite [526-528].

However, among all available types of CaPO₄ (Table 1), ACP-containing formulations are most often used in orthodontics [215,218-221,223-227,229,235,236,239-244]. For example, an efficacy of an ACP-containing orthodontic biocomposite and a resin-modified glass ionomer cement on enamel demineralization adjacent to orthodontic brackets was evaluated by a new laser fluorescence device. The authors concluded that both formulations should be recommended for any at-risk orthodontic patient to provide preventive actions and potentially remineralize subclinical enamel demineralization [215]. Similarly, ACP-containing orthodontic biocomposites were found to reduce both enamel decalcification around orthodontic brackets [225,226,239] and bacterial adherence [239]. Furthermore, ACP-containing orthodontic biocomposites were found to possess a lower but still satisfactory bond strength needed to function as orthodontic adhesives [218,219,221,222,223]. Therefore, CPP-ACP biocomposite, either alone or combined with fluoride, may safely be used as a prophylactic agent before bracket bonding [236,242]. Besides, a pretreatment by CPP-ACP, enamel microabrasion and the combination of these two methods were found to improve bonding of orthodontic brackets to demineralized enamel [242].

Brand name	Manufacturer	Components
Sankin apatite root canal sealer (I, II and III)	Sankin Kogyo, Tokyo, Japan	Powder: α-TCP and Sankin HA in type I, iodof orm is added to powder in type II (50%) and type III (5%). Liquid: polyacrylic acid and water
CAPSEAL (I and II)	experimental	Powder: TTCP and DCPA, Portland cement (gray cement in type I and white cement in type II), zirconium oxide, and others. Liquid: hydroxypropyl methyl cellulose in sodium phosphate solution

Table 5: Composition of the available CaPO₄-containing sealer materials [510].

Figure 5: Appearances of CaPO₄ ceramic brackets hyaline and hyaline ii. (Reprinted with permission from Ref. [527]).
Adiaphoristic results were obtained either. For example, a topical treatment of white spot lesions after debonding of orthodontic appliances with a CPP-stabilized ACP agent resulted in significantly reduced fluorescence and reduced areas of the lesions after 4 weeks; however, the improvement was not superior to the natural regression following daily use of fluoride toothpaste [227]. In addition, no clinical advantages for use of a CPP-fluoridated ACP paste supplementary to normal oral hygiene over the time span of 12 weeks were found in another study [229].

Prosthodontics: Humans have long used both natural and synthetic materials as replacements for lost teeth. For example, the earliest known dental implant was made of iron and found in a Roman male, who lived around the first or second century AD [529]. The first known tooth made from a natural material was found in a Mayan woman, estimated around 600 CE, and was made of nacre from seashells [530]. Nevertheless, despite a long history of the tooth grafts, just a few publications on prosthodontic applications of CaPO₄ are available (Table 2). According to the databases, the earliest publication on the subject was published in 1983 [450], followed by another publication by the same authors [451]. A 4-year study and evaluation of non-resorbable HA to augment different alveolar ridges was performed. The technique used resulted in improved contour, height, and width of the alveolar ridge. The state and health of the tissues were found to be improved with the use of HA or HA combined with bone marrow [450]. However, the study dealt with a treatment of bones but not teeth, which is another story. Similar can be said about other publications on the subject [452-459]. Furthermore, as seen from the publication dates, all these papers were published in the previous century and only one recent paper [460] has been found. Nevertheless, even this recent paper is devoted to the preparation subject with just a possibility to use the material as dental prosthesis. Thus, one can mention on the past attempts to use CaPO₄ in prosthetic dentistry and, since no promising results were obtained, currently CaPO₄ are not used in prosthodontics.

To finalize this topic, it is important to mention that one of the challenges in dental implantology is to achieve and maintain a good osseointegration, as well as an epithelial junction of gingival tissues with the implants. An intimate junction among them may prevent bacteria colonization leading to peri-implantitis, while the direct bonding may ensure a biomechanical anchoring of the artificial dental roots (Figure 6) [531]. To achieve this, the presence of sufficient bone volume is an important prerequisite for dental implant placement. However, this is not always the case. Namely, atrophic maxilla and mandible bones are less tolerant to the placement of dental implants due to their reduced height and width; hence, supplementary bone augmentation by CaPO₄ might be necessary [532,533]. In addition, I would like to point the readers’ attention to a review on dental implants for patients with osteoporosis. According to the authors, osteoporosis is not a contraindication for the implant surgery if the accurate analysis of bone quality has been performed [534].

Periodontics (periodontology): In general, the regeneration of tissues affected by periodontal disease is a complex process; it encompasses formation of bones, cementum and periodontal ligaments [535]. According to the databases, the earliest publication on use of CaPO₄ in periodontics was published in 1974 [536], followed by research papers of 1975 [170] and 1977 [310] and a review of 1978 [311]. A schematic diagram of the management of periodontal defects by a bone graft technique is shown in Figure 7 [537]. However, as written in section 2, the vast majority of the publications on periodontics deals with a treatment of the surrounding bones and, thus, they fall into a category of bone substitutes [183,282,312-320,382,461-478,490,492,495,498-500,538-546]. Nevertheless, a few examples are given below.

The post-extraction bone resorption is an increasing problem in modern dentistry. Namely, after extraction of a tooth, the bony socket heals naturally. First, it is immediately filled with coagulated blood. In a few days afterwards, the granular and fibrous tissues are organized to form a new bone tissue gradually. However, due to the tooth absence, maxilla and/or mandibular alveolar atrophies occur simultaneously. These resorptive and remodeling phenomena of the surrounding bone negatively affect the support for the adjacent teeth; the shallow ridge makes it difficult for future prosthesis retention and less bony support remains for any dental implant placement in the future. To promote healing, the socket of an extracted tooth might be filled by CaPO₄ bioceramics. For example, an efficacy of commercial HA granules APAFILL-G™ as a filler to prevent the resorption of alveolar bone after tooth extraction was studied [547]. After seven days, the result revealed that only one of all treated patients experienced an adverse response observed at the clinical evaluation that promptly disappeared after analgesic treatment. The rest 32 dint had adverse clinical response. Radiographically, a continuous radio-opacity between bone and the implant resorption was detected after one year the surrounding alveolar bone maintained its contour without symptoms of resorption...
for the 100% of the patients [547]. In another study, two different types of HA grafting materials, biomimetic and nanocrystalline, were placed into fresh extraction sockets aiming to limit bone resorption. The surgical sites were histologically, clinically and radiographically evaluated 6 months after tooth extraction. The percentages of bone, osteoid areas [548].

Furthermore, repositioning maxillary and mandibular bone segments in orthognathic surgery frequently creates bone gaps or continuity defects. These often require grafting to provide positional stability and bony continuity and CaPO₄ are used for this purpose. For example, as early as 1987, a study to evaluate the use of coralline porous HA as a bone graft substitute in orthognathic surgery [445], followed by another study in 1989 [446]. 92 consecutive patients received totally of 355 block implants to the maxilla (294), mandible (41) and midface (20). There were 202 implants positioned directly adjacent to the maxillary sinus. Complications were minimal, the most common being exposure of the implant to the oral or nasal cavity. Histological evaluation of implants that were biopsied in nine patients, four to 16 months postsurgery, revealed connective tissue ingrowth throughout the implants with approximately one-third being bone of variable maturity and two-thirds being soft tissue [445]. Similar results were obtained in another study [446]. Periodontal ligaments around extracted sockets were found to have an ability to regenerate bone on HA-coated tooth-shaped implants [341]. Positive results were also observed in another study, in which bone formation around BCP (HA + β-TCP) particles in periodontal defects of dogs was found to be more discernible if compared to healing in control [486]. In addition, the porosity of the implanted CaPO₄ was found to influence periodontal healing of furcation defects in dogs [293].

To increase a treatment efficiency of the periodontal defects, CaPO₄ might be combined with the biologically active molecules, such as hormones, growth factors, morphogenetic proteins, etc. [491,549-555]. For example, an application of recombinant human growth and differentiation factor-3 (rhGDF-3) lyophilized onto β-TCP granules demonstrated an effective regeneration of the artificially created periodontal defects [549,550]. Positive results were also obtained for a combination of a recombinant human platelet-derived growth factor BB (rhPDGF-BB) with β-TCP for the treatment of human intra-osseous periodontal defects [551,552]. However, a combination of an enamel matrix derivative with BCP (HA + β-TCP) resulted in no to minimal new bone formation [491]. Furthermore, a combination of human bone morphogenetic protein-2 (rhBMP-2) with a biorsorbable CaPO₄ cement Ceredex™ was not suggested for periodontal indications [553]. Besides, there are results indicating that the use of CaPO₄ after open flap procedure does not improve the clinical and radiological treatment outcomes of periodontal intrabony defects [554]. Thus, applications of CaPO₄ in periodontology were not always positive.

Other types of oral applications: Of patients undergoing allogeneic hematopoietic stem cell transplantation, ~ 75% or even more experience oral mucositis, which is a painful acute complication that can delay discharge, interrupt treatment and threaten life. To help the patients, rinses, supersaturated by undisclosed types of CaPO₄, were prepared and evaluated. Compared to the control groups, the supersaturated CaPO₄ rinse groups were found to have significantly lower mean measures of oral toxicity, peak mouth pain and disease course duration [556-559].

Tissue Engineering Approaches

As seen from the aforementioned, CaPO₄ are widely used in dentistry to restore and/or repair various types of oral defects. However, all the previously mentioned approaches have encountered shortcomings if compare to the normal and healthy teeth and surrounding bones. Therefore, various tissue-engineering approaches to develop new strategies for tooth regeneration are attempted. The history of tissue engineering in dentistry started in 1982, when the first regeneration technology of periodontium was introduced [560]. The modern tissue engineering approaches in dentistry include combinations of cells, engineering materials and suitable biochemical and physicochemical factors to improve or replace biological functions. Finally, it will cause in vivo formation and growing of new functional tissues instead of reparation and/or replacement of damaged and/or missing ones by artificial materials and/or implants [561-565]. From the material point of view, there are two main approaches towards making a bioengineered tooth: scaffold-free and scaffold-based regenerations. The scaffold-free approaches, such as tissue recombination, cell pellet engineering and chimerical tooth engineering, are being developed and the correct tooth-like structures could be generated after transplantation in the sub-renal capsule [566-568]. However, with an exception of using soluble calcium- and orthophosphate-containing solutions to promote proliferation, osteogenic differentiation and mineralization of various types of dental cells [569], the scaffold-free approaches do not utilize CaPO₄. Therefore, in this review, scaffold-based tooth regeneration approaches are considered only. A schematic drawing of this process is shown in Figure 8 [570].

For example, it was hypothesized that dental follicle cells combined with β-TCP might become a novel therapeutic strategy to restore periodontal defects. The authors suggested isolation of dental follicle cells from a beagle dog. The isolated cells should be induced by bone morphogenetic protein-2, basic-fibroblast growth factors and dexamethasone and, then, seeded onto β-TCP bioceramics. Afterwards, the complex should be auto-implanted into the periodontal defects in the same dog to observe regeneration of periodontal tissue in vivo [571]. However, this was just a hypothesis. Let me describe the real investigations.

A biocompatibility of four different types of 3D scaffolds for regeneration of tooth tissues was tested [572]. The scaffolds consisted of pure poly(lactic-co-glycolic) acid (PLGA) or 50/50 w/w biocomposites of PLGA with HA, β-TCP or carbonate-containing HA. Afterwards, human dental pulp stem cells were seeded onto the scaffolds, followed by implantation into the mesentry or subrenal capsule of mice or rats for 4 to 5 weeks. The results showed that, while all CaPO₄-containing formulations were able to support effectively regeneration of the tooth tissues, the PLGA/β-TCP scaffolds appeared to be superior to the other three scaffolds for tooth tissues regeneration, especially for dentin formation [572]. Very promising results were also obtained by other researchers for β-TCP/chitosan biocomposites [573]. recombinant
human growth factor-beta 1 (rhTGF-β1) combined with two different bone grafts: calcified freeze-dried bone allograft and porous BCP [574] and a complex of recombinant human bone morphogenetic protein 2 (rhBMP-2)-mediated dental pulp stem cells and nano-HA/collagen/poly(L-lactide) for clinical reconstruction of periodontal bone defects [575].

In still other studies, polyglycolic acid (PGA) scaffolds were compared with β-TCP, fibrin and collagen scaffolds for their capacity to grow dental structures when seeded with tooth germs from 6-month-old minipigs. On fibrin and collagen gels, the porcine third molar tooth bud maintained its epithelial structure, resembling tooth buds, whereas on PGA and β-TCP the implanted tooth buds produced more dentin-like material [576]. Porous BCP (HA + β-TCP), powdered BCP and PGA fiber mesh were used as scaffolds and transplanted with cultured porcine dental pulp-derived cells into the backs of nude mice for 6 weeks. Although newly formed hard tissues were observed in all implants, a dentin-like hard tissue was observed when porous BCP was used [577]. Besides, incorporation of nano-sized HA into electrospun poly(e-caprolactone)/gelatin scaffolds was found to enhance dental pulp stem cell differentiation towards an odontoblast-like phenotype both in vitro and in vivo [578]. The osteoblast marker bone sialoprotein was highly expressed on β-TCP scaffolds seeded by dental follicle cells but almost absent in differentiated dental follicle cells without β-TCP. The latter means that dental progenitor cells have to be combined with CaPO₄ bioceramics.

To conclude this topic, the tissue engineering approaches of dental regenerations, obviously, appear to be the most promising healing technologies and many interesting studies on a combination of CaPO₄ scaffolds with cells and/or growth factors are expected to appear in the near future.

Conclusion

Biologically relevant types of CaPO₄ are the emerging bioceramics, which are widely used in various biomedical applications, including dentistry. They have excellent biomedical properties and biological behavior because their composition and structure are similar to those of human bones and teeth. Therefore, CaPO₄ possess exceptional biocompatibility and unique bioactivity, which are widely used in dentistry and dentistry-related fields. For example, incorporation of CaPO₄ into various restorative biomaterials was found to improve mechanical properties of the biomaterials without impeding their inherent biological properties. Other examples have been described above. Nevertheless, the versatile employing strategies of CaPO₄ in dentistry aim to ultimately reach the same goal, namely to enhance osseointegration process of dental implants in the context of immediate loading and to augment formation of surrounding bones to guarantee a long-term success. However, still the complete understanding related to use of CaPO₄ in clinical dentistry is lacking and further research is needed to improve their efficacy in clinical dentistry.

References

1. Lanfranco LP, Eggers S (2012) Caries through time: an anthropological overview. In: Contemporary approach to dental caries. Li MY (ed.). InTech, Rijeka, Croatia pp: 3-34.
2. Wang W, Zeng XL, Liu W (2008) Dental caries in ancient Chinese in Xia Dynasty. 43: 308-310.
3. Bellagarda G (1965) Dental caries and their treatment in the writings of the ancients. Minerva Med 56: 892-903.
4. Fujita H (2009) Dental caries in Japanese human skeletal remains. J Oral Biosci 51: 105-114.

5. Moore WJ, Corbett ME (1971) The distribution of dental caries in ancient British populations. Anglo-saxon period. Caries Res 5: 151-168.
6. Moore WJ, Corbett E (1973) The distribution of dental caries in ancient British populations. II. Iron Age. Romano-British and Mediaeval periods. Caries Res 7: 139-153.
7. Moore WJ, Corbett ME (1975) Distribution of dental caries in ancient British populations. iii. the 17th century. Caries Res 9: 163-175.
8. Corbett ME, Moore WJ (1976) Distribution of dental caries in ancient British populations. iv. the 19th century. caries res 10: 401-414.
9. Kerr NW (1990) The prevalence and pattern of distribution of root caries in a Scottish medieval population. J Dent Res 69: 857-860.
10. Le-Geros RZ (1999) Calcium phosphates in demineralization/remineralization processes. J Clin Dent 10: 65-73.
11. Gonzalez-Cabezbas C (2010) The chemistry of caries: remineralization and demineralization events with direct clinical relevance. Dent Clin North Am 54: 469-478.
12. West NX, Joiner A (2014) Enamel Mineral Loss. J Dent 42 Suppl 1: S2-11.
13. Ilie O, Van Loosdrecht Mc, Picioreanu C (2012) Mathematical modelling of tooth demineralisation and ph prof iles in dental plaque. J Theor Biol 309: 159-175.
14. Fabregas R, Rubinstein J (2014) On the initial propagation of dental caries. J R Soc Interface 11: 20140809.
15. Fabregas LR, Rubinstein J (2014) A mathematical model for the progression of dental caries. Math Med Biol 31: 319-337.
16. Dowd FJ (1999) Saliva and dental Caries. Dent Clin North Am 43: 579-597.
17. Fejerskov O, Kidd E (2009) Dental caries: the disease and its clinical management. (2ndedn). Wiley-Blackwell pp: 640.
18. Mjör IA, Toffenetti F (2000) Secondary Caries: A literature review with case reports. Quintessence Int 31: 165-179.
19. Eccles JD (1979) Dental erosion of non-industrial origin. A clinical survey and classification. J Prosthod Dent 42: 649-653.
20. Lussi A (2006) Dental erosion: from diagnosis to therapy. Karger: Basel Switzerland pp: 219.
59. Mcclendon JF, Carpousis A (1945) Prevention of dental caries by brushing the teeth. J Dent Res 24: 199.

60. Shern RJ, Couet KM, Chow LC, Brown WE (1979) Effects of sequential calcium phosphate–fluoride rinses on fluoride uptake in rats. J Dent Res 58: 1023.

61. Shern RJ, Chow LC, Couet KM, Kingman A, Brown WE (1984) Effects of sequential calcium phosphate-fluoride rinses on dental plaque, staining, fluoride uptake, and caries in rats. J Dent Res 63: 1355-1359.

62. Wefel JS, Harless JD (1987) The use of saturated DCPD in remineralization of artificial caries lesions in vitro. J Dent Res 66: 1640-1643.

63. Schreiber CT, Shern RJ, Chow LC, Kingman A (1988) Effects of rinses with an acidic calcium phosphate solution on fluoride uptake, caries, and in situ plaque ph. in rats. J Dent Res 67: 959-963.

64. Kani T, Kani M, Isozaki A, Kato H, Fukuda Y, et al. (1988) The effect to apatite-containing dentifrices on artificial caries lesions. J Dent Health 38: 364-365.

65. Kani T, Kani M, Isozaki A, Shimatani H, Ohashi T (1989) Effect of apatite-containing dentifrices on dental caries in school children. J Dent Health 39: 104-109.

66. Okashi T, Kani T, Isozaki A, Nishida A, Shimatani H, et al. (1991) Remineralization of artificial caries lesions by hydroxyapatite. J Dent Health 41: 214-223.

67. Gaffar A, Blake-Haskins J, Mellberg J (1993) In vivo studies with a dicalcium phosphate dihydrate/mp system for caries prevention. Int Dent J 43: 81-88.

68. Zhang YP, Jin CS, Miller S, Nathoo SA, Gaffar A (1995) Intra-oral remineralization of enamel with a MFP/DCPD and m/p/silica dentifrice using surface microhardness. J Clin Dent 6: 148-153.

69. Sullivan RJ, Charing A, Blake-Haskins J, Zhang YP, Miller SM, et al. (1997) In vivo detection of calcium from dicalcium phosphate dihydrate dentifrices in demineralized human enamel and plaque. Adv Dent Res 11: 380-387.

70. Kodaka T, Kobori M, Hirayama A, Masayuki A (1999) Abrasion of human enamel by brushing with a commercial dentifrice containing hydroxyapatite crystals in vitro. J Electron Microsc. 48: 167-172.

71. Hicks MJ, Flatz CM (2000) Enamel caries formation and lesion progression with a fluoridated dentifrice and a calcium-silicate containing fluoride dentifrice: A polarized light microscopic study. ASDC J Dent Child 67: 21-28.

72. Sullivan RJ, Masters J, Cantore R, Roberson A, Petroiu, et al. (2001) Development of an enhanced anticaries efficacy dual component dentifrice containing sodium fluoride and dicalcium phosphate dihydrate. Am J Dent, 14: 3A-11A.

73. Boneta AE, Neesmith A, Markodi S, Berkowitz HJ, Sánchez L, et al. (2001) The enhanced anticaries efficacy of a sodium fluoride and dicalcium phosphate dihydrate dentifrice in a dual-chambered tube. A 2-year caries clinical study on children in the USA. Am J Dent 14: 13A-17A.

74. Silva MFDA, Melo EVDS, Stewart B, De Vizio W, Sintes JL, et al. (2001) The enhanced anticaries efficacy of a sodium fluoride and dicalcium phosphate dihydrate dentifrice in a dual-chambered tube. A 2-year caries clinical study on children in Brazil. Am J Dent 14: 19A-23A.

75. Niwa M, Sato T, Li W, Aoki H, Aoki H, et al. (2001) Polishing and whitening properties of toothpaste containing hydroxyapatite. J Mater Sci Mater Med 12: 277-281.

76. Sintes JL, Ellis-Boneta A, Stewart B, Volpe AR, Lovett J (2002) Anticaries efficacy of a sodium monofluorophosphate dentifrice containing xylitol in children in Costa Rica. Am J Dent 15: 215-219.

77. Kim BJ, Jeong SH, Jang SO, Kim KN, Kwon HK, et al. (2006) Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng Mater 309-311: 541-544.

78. Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, et al. (2006) Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng Mater 309-311: 537-540.

79. Lv K, Zhang J, Meng X, Li X (2007) Remineralization effect of the nano-HA toothpaste on artificial caries. Key Eng Mater 330-332: 267-270.

80. Jeong SH, Hong SJ, Choi CH, Kim BI (2007) Effect of new dentifrice containing nano-sized carbonated apatite on enamel remineralization. Key Eng Mater 330-332: 291-294.

81. Roveri N, Battistella E, Bianchi CL, Fotrnan I, Foresti E, et al. (2009) Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater. 2009: 746383.
1. Wilson CJ (1975) The effect of calcium sucrose phosphates chewing gum on dental hypersensitivity. J Korean Acad Periodontal 39: 87-94.

2. Tschoppe P, Zandim DL, Martus P, Kleinbassa AM (2011) Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent Res 69: 430-437.

3. Najibfar K, Ramalingam K, Chedjieu I, Amavechi BT (2011) Remineralization of early caries by a nano-hydroxyapatite dentifrice. J Clin Dent 22: 139-143.

4. Wang CJ, Zhang YF, Wei J, Wei SC (2011) Repair of artificial enamel lesions by nano fluorapatite paste containing fluorin. J Clin Rehabil Tiss Eng Res 15: 6346-6350.

5. Koteun A, Kozlova D, Ganekes K, Biewald C, Seipold N, et al. (2012) Chlorhexidine-loaded calcium phosphate nanoparticles for dental maintenance treatment: combination of mineralising and antibacterial effects. RSC Adv 2: 870-875.

6. Vanichvatana S, Auychai P (2013) Efficacy of two calcium phosphate pastes on the remineralization of artificial caries. A randomized controlled double-blind in situ study. Int J Oral Sci 5: 224-228.

7. Sun Y, Li X, Deng Y, Sun JN, Tao D, et al. (2014) Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts. J Dent 42 Suppl 1: 330-38.

8. Browning WD, Cho SD, Deschepper EL (2012) Effect of a nano-hydroxyapatite paste on bleeding-related tooth sensitivity. J Esthet Restor Dent 24: 268-276.

9. Comar LM, Souza BM, Gracindo LF, Buzalaf MA, Magalhaes AC (2013) Impact of experimental nano-HAP pastes on bovine enamel and dentin submitted to a pH cycling model. Braz Dent J 24: 273-278.

10. Hannig C, Basche S, Burghardt T, Al-Ahmad A, Hannig M (2013) Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin Oral Investig 17: 805-814.

11. De Carvalho FG, Vieira BR, Santos RL, Carlo HL, Lopes PQ, et al. (2014) In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions. Pediatr Dent 36: 85-89.

12. Micelczeck A, Michalik J (2014) The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study. Am J Dent 27: 287-290.

13. Vayvahare S, Sharma DS, Kulkanik VK (2015) Effect of three different pastes on remineralization of initial enamel lesion: an in vitro study. J Clin Pediatr Dent 39: 149-160.

14. Souza BM, Comar LP, Vertuan M, Fernandes Neto C, Buzalaf MA, et al. (2015) Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental remineralization and remineralisation in situ. Caries Res 49: 499-507.

15. Hill RG, Gillam DG, Chen X (2015) The ability of a nano hydroxyapatite toothpaste and oral rinse containing fluoride to protect enamel during an acid challenge using 19F solid state NMR spectroscopy. Mater Lett 156: 69-71.

16. Esteves-Oliveira M, Santos NM, Meyer-Lueckel H, Wierichs RJ, Rodrigues JA (2016) Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro. Clin Oral Investig.

17. Pickett FD, Bilotti A (1965) The effects of a chewing gum containing dicalcium phosphate to a sugar-free chewing gum on enamel remineralization in situ. Caries Res 39: 251-254.

18. Cai F, Manton DJ, Shen P, Walker GD, Cross KJ, et al. (2007) Effect of addition of citric acid and casein phosphopeptide-amorphous calcium phosphate to a sugar-free chewing gum on enamel remineralization in situ. Caries Res 31: 377-383.

19. Morgan MV, Adams GG, Bailey DL, Tsao CE, Fischman SL, et al. (2008) The anticoagulant effect of sugar-free gum containing CPP-ACP nanocomplexes on approximal caries determined using digital bitewing radiography. Caries Res 42: 171-184.

20. Thaweboon S, Nakornchaimai S, Miyake Y, Yanagisawa T, Thaweboon B, et al. (2009) Remineralizor of enamel subsurface lesions by xylitol chewing gum containing funoran and calcium hydrogenphosphate. Southeast Asian J Tropical Medicine And Public Health 40: 345-353.

21. Todds MW, Childchimo D, Haas MS (2012) Delivery of active agents from chewing gum for improved remineralization. Adv Dent Res 24: 58-68.

22. Shammukha G, Santhosh BP, Preeti J, Naveen B, Indirjith G, et al. (2012) Evaluation of changes in salivary concentration of calcium by ccpp-containing chewing gum – a clinical trial. Int J Adv Res Oral Sci 1: 1-7.

23. Porciani PF, Chazin M, Grandini S (2014) A clinical study of the efficacy of a new chewing gum containing calcium hydroxyapatite in reducing dentin hypersensitivities. J Clin Dent 25: 32-36.

24. Emamieh S, Khaterizadeh Y, Ghasemi A, Baghban AA, et al. (2015) The effect of two types chewing gum containing casein phosphopeptide-amorphous calcium phosphate and xylitol on salivary Streptococcus mutans. J Conserv Dent 18: 192-195.

25. Sultan S, Teigi CR, Chaudhary S, Manuja N, Kaur H, et al. (2016) Effect of ACP-DDP chewing gum and natural chewable products on plaque Ph, calcium and phosphate concentration. J Clin Diagn Res 10: ZC13-17.

26. Cochrane NJ, Cai F, Hux NL, Burrow MF, Reynolds EC (2010) New approaches to enhanced remineralisation of tooth enamel. J Dent Res 89: 1187-1197.

27. Head JA (1912) A study of saliva and its action on tooth enamel in reference to its hardening and softening. J Am Med Ass 59: 2118-2122.

28. Koulourides T, Cueto H, Pigman W (1961) Rehardening of softened enamel surfaces of human teeth by solutions of calcium phosphates. Nature 189: 226-227.

29. Silverstone LM, Johnson NW (1971) The effect on sound human enamel of exposure to calcifying fluids in vitro. Caries Res 5: 323-342.

30. Silverstone LM (1972) Remineralization of human enamel in vitro. Proc R Soc Med 65: 906-908.

31. Cate JM, Arends J (1977) Remineralization of artificial enamel lesions in vitro. Caries Res 11: 277-286.

32. Ten Cate JM, Arends J (1978) Remineralization of artificial enamel lesions in vitro. II. Determination Of Activation Energy And Reaction Order. Caries Res 12: 213-222.

33. Ten Cate JM, Arends J (1980) Remineralization of artificial enamel lesions in vitro. III. A Study Of The Deposition Mechanism. Caries Res 14: 351-358.

34. Ten Cate JM, Jongebloed WL, Arends J (1981) Remineralization of artificial enamel lesions in vitro. IV. Influence of fluorides and diphosphonates on short- and long-term remineralization. Caries Res 15: 60-69.

35. Kim MY, Kwon HK, Choi CH, Kim BI (2007) Combined effects of nano-hydroxyapatite and NAF on remineralization of early caries lesion. Key Eng Mater 330-332: 1347-1350.
127. Lu K, Meng X, Zhang J, Li X, Zhou M. (2007) Inhibitory effect of synthetic nano-hydroxyapatite on dental caries. Key Eng. Mater. 330-332: 1539-1541.

128. Zhen T, Hongkun W, Anchnun M, Zhiqin C, Yubao L (2007) Effect of apatite nanoparticles on remineralization of the demineralized human dentin. Key Eng Mater 330-332: 1381-1384.

129. Rimondini L, Palazzo B, Iafisco M, Canegallo L, Demarosi F, et al. (2007) The remineralizing effect of carbonate-hydroxyapatite nanocrystals on dentine. Mater Sci Forum 539-543: 602-605.

130. Roveri N, Battistella E, Foitran I, Foresti E, Iafisco M, et al. (2008) Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Adv Mater Res 47-50: 821-824.

131. Huang SB, Gao SS, Yu HY (2009) Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater 4: 034104.

132. Yin Y, Yun S, Fang J, Chen H (2009) Chemical regeneration of human tooth enamel under near-physiological conditions. Chem Commun (Camb) : 5892-5894.

133. Lv KL, Yuan HW, Meng XC, Li XY (2010) Remineralization evaluation of nano-hydroxyapatite to artificial caries. Adv Mater Res 105-106: 576-579.

134. Huang S, Gao S, Cheng L, Yu H (2011) Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res 45: 450-458.

135. Wu XT, Mei ML, Li QL, Cao CY, Chen JL, Xia R, et al. (2015) A direct electric field-aided biomimetic mineralization system for the induction of remineralization of dentin collagen matrix. Materials 8: 7887-7899.

136. Haghgoo R, Rezvani MB, Salehi Zeinabadi M (2014) Comparison of nano-hydroxyapatite and sodium fluoride mouthrinse for remineralization of incipient carious lesions. J Dent (Tehran) 11: 406-410.

137. Besinis A, Van Noort R, Martin N (2014) Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dent Mater 30: 249-262.

138. Chow LC, Takagi S (1995) Remineralization of root lesions with concentrated calcium and phosphate solutions. Dent Mater J 14: 31-36.

139. Reynolds EC (1997) Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res 76: 1587-1595.

140. Wang HY, Sun KN, Shan T, Yang XQ, Zhao Y, et al. (2011) Biomimetic synthesis of fluorapatite coating. Adv Mater Res 306-307: 63-71.

141. Ning TY, Xu XH, Zhu LF, Zhu XP, Chu CH, et al. (2012) Biomimetic mineralization of dentin induced by agarose gel loaded with calcium phosphate. J Biomed Mater Res B Appl Biomater 100: 138-144.

142. Tian K, Peng M, Wu P, Liao CH, Huang FY (2012) Biomimetic mineralization of the hydroxyapatite with 3D-structure for enamel reconstruction. Adv Mater Res 391-392: 633-637.

143. Gu H, Mijares D, Zhao Z, Boylan R, Ling J, et al. (2013) Experimental antibacterial and mineralizing calcium phosphate-based treatment for dentin surfaces. J Biomater Appl 27: 783-790.

144. Chen L, Liang K, Li J, Wu D, Zhou X, et al. (2013) Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. Arch Oral Biol 58: 975-980.

145. Cao Y, Mei ML, Li QL, Lo EC, Chu CH (2014) Agarose hydrogel biomimetic mineralization model for the regeneration of enamel prismatic tissue. ACS Appl Mater Interfaces 6: 410-420.

146. Wu XT, Mei ML, Li QL, Cao CY, Chen JL, Xia R, et al. (2015) A direct electric field-aided biomimetic mineralization system for inducing the remineralization of dentin collagen matrix. Materials 8: 7898-7899.

147. Wang Q, Liu S, Gao X, Wei Y, Deng X, et al. (2015) Remineralizing efficacy of fluorohydroxyapatite gel on artificial dentinal caries lesion. J Nanomater 2015: 380326.

148. Singh ML, Papas AS (2009) Long-term clinical observation of dental caries in salivary hypofunction patients using a supersaturated calcium-phosphate remineralizing rinse. J Clin Dent 20: 87-92.

149. Lee HJ, Min JH, Choi CH, Kwon HG, Kim BI (2007) The remineralization potential of sports drink containing nano-sized hydroxyapatite. Key Eng Mater 330-332: 275-278.

150. Min JH, Kwon HK, Kim BI (2011) The addition of nano-sized hydroxyapatite to a sports drink to Inhibit Dental Erosion: In Vitro Study Using Bovine Enamel. J Dent 39: 629-635.

151. Luo J, Ning T, Cao Y, Zhu X, Xu X, et al. (2012) Biomimic enamel remineralization by hybridization calcium- and phosphate-loaded liposomes with amelogenin-inspired peptide. Key Eng Mater 512-515: 1727-1730.

152. Jandt KD (2006) Probing the future in functional soft drinks on the nanometre scale – Towards tooth friendly soft drinks. Trends Food Sci Technol 17: 263-271.

153. Lippert F, Parker DM, Jandt KD (2004) In situ remineralisation of surface softened human enamel studied with AFM nanoindentation. Surface Sci 553: 105-114.

154. Lippert F, Parker DM, Jandt KD (2004) In vitro demineralization / remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J Colloid Interf Sci 280: 442-448.

155. Lippert F, Parker DM, Jandt KD (2004) Toothbrush abrasion of surface softened enamel studied with tapping mode AFM and AFM nanoindentation. Caries Res 38: 464-472.

156. Li X, Wang J, Joiner A, Chang J (2014) The remineralisation of enamel: A review of the literature. J Dent 42 Suppl 1: S12-20.

157. Niu LN, Zhang W, Pasley DH, Breschi L, Mao J, et al. (2014) Biomimetic remineralization of dentin. Dent Mater 30: 77-96.

158. Cao CY, Mei ML, Li QL, Lo ECM, Chu CH (2015) Methods for biomimetic mineralisation of human enamel: A systematic review. Materials 8: 2873-2886.

159. https://en.wikipedia.org/wiki/Dentin_hypersensitivity (accessed in June 2016).

160. Sugawara A, Chow LC, Takagi S, Nishiyama M, Ohashi M (1989) An in vitro study of dentin hypersensitivity using calcium phosphate cement. Shika Zairyo Kikai 8: 292-294.

161. Yates R, Owens J, Jackson R, Newcombe RG, Addy M (1998) A split-mouth placebo-controlled study to determine the effect of amorphous calcium phosphate in the treatment of dentine hypersensitivity. J Clin Periodontol 25: 687-692.

162. Suge T, Ishikawa K, Kawasaki A, Suzuki K, Matsuo T, et al. (2002) Calcium phosphate precipitation method for the treatment of dentin hypersensitivity. Am J Dent 15: 220-226.

163. Geiger S, Matalon S, Blasalag J, Tung M, Eichmiller FC (2003) The clinical effect of amorphous calcium phosphate (ACP) on root surface hypersensitivity. Oper Dent 28: 496-500.

164. Shetty S, Kohad R, Yeltiwar R (2010) Hydroxyapatite as an in-office agent for tooth hypersensitivity: a clinical and scanning electron microscopic study. J Periodontol 81: 1781-1789.

165. Taha ST, Han H, Chang SR, Sovadinova I (2015) Nano/micro fluorohydroxyapatite crystal pastes in the treatment of dentin hypersensitivity: an in vitro study. Clin Oral Investig 19: 1921-1930.

166. B Low S, Allen EP, Kontogiorgos ED (2015) Reduction in dental hypersensitivity with nano-hydroxyapatite, potassium nitrate, sodium monofluorophosphate and antioxidants. Open Dent J 9: 92-97.

167. Mehta D, Gowda V, Finger WJ, Sasaki K (2015) Randomized, placebo-controlled study of the efficacy of a calcium phosphate containing paste on dentin hypersensitivity. Dent Mater 31: 1298-1303.

168. Miloslavich EL (1925) Calcium metabolism in its relation to dental pathology calciprival odontopathia. Int J Orthodont Oral Surg Radiography 11: 111-123.

169. Monroe EA, Votava W, Bass DB, Mcmullen J (1971) New calcium phosphate ceramic material for bone and tooth implants. J Dent Res 50: 860-861.

170. Nery EB, Lynch KL, Hirthe WM, Mueller KH (1975) Bioceramic implants in surgically produced infrabony defects. J Periodontol 28: 496-500.

171. Nery EB, Lynch KL, Hirthe WM, Mueller KH (1975) Bioceramic implants in surgically produced infrabony defects. J Periodontol 28: 496-500.

172. Nery EB, Lynch KL, Hirthe WM, Mueller KH (1975) Bioceramic implants in surgically produced infrabony defects. J Periodontol 28: 496-500.
173. Legeros RZ (1988) Calcium phosphate materials in restorative dentistry: A review. Adv Dent Res 2: 164-180.
174. Kouassi M, Michailettes P, Lacoste-Armynot A, Boudeville P (2003) Antibacterial effect of a hydroxyapatite cement for dental applications. J Endod 29: 100-103.
175. Medawar I, Neel EA, Valappil SP, Palmer G, Salih V, et al. (2009) Development of remineralizing, antibacterial dental materials. Acta Biomater 5: 2525-2539.
176. Koch KA, Brave DG, Nasseh AA (2010) Bioceramic technology: Closing the endo-restoreto-circle, Part I Dent Today 29: 100-105.
177. Xu HPK, Sun L, Weir MD, Takagi S, Chow LC, et al. (2007) Effects of incorporating nanosized calcium phosphate particles on of properties of whisker-reinforced dental composites. J Biomed Mater Res B Appl Biomater 81B: 116-125.
178. Dickens-Venz SH, Takagi S, Chow LC, Bowen RL, Johnston AD, et al. (1994) Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent Mater 10: 100-106.
179. Lee YK, Lim BS, Kim CW (2003) Mechanical Properties of calcium phosphate based dental filling and regeneration materials. J Oral Rehabil 30: 418-425.
180. Brik HE, Durand D, Nurit J, Munier S, Pauvert B, et al. (2002) Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J Biomed Mater Res 63: 447-453.
181. Dickens SH, Flaim GM, Takagi S (2003) Mechanical properties and biochemical activity of remineralizing resin-based Ca-P-O cements. Dent Mater 19: 558-566.
182. Michailettes P, Kouassi M, Brik H, Arminot A, Boudeville P (2005) Antimicrobial activity and tightness of A DCPD-Cao-based hydraulic calcium phosphate cement for root canal filling. J Biomed Mater Res B Appl Biomater 74: 760-767.
183. Xu HH, Takagi S, Sun L, Hussain L, Chow LC, et al. (2006) Development of a nonrigid, durable calcium phosphate cement for use in periodontal bone repair. J Am Dent Assoc 137: 1131-1138.
184. Sugawara A, Fujikawa K, Takagi S, Chow LC (2008) Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs. Dent Mater J 27: 787-794.
185. Wei J, Wang J, Shan W, Liu X, Ma J, et al. (2011) Development of fluorapatite cement for dental enamel defects repair. J Mater Sci Mater Med 22: 1607-1614.
186. Wei J, Wang J, Liu X, Ma J, Liu C, et al. (2011) Preparation of fluoride substitutedapatite cements as the building blocks for tooth enamel restoration. Appl Surf Sci 257: 8787-8792.
187. Thein-Han W, Liu J, Xu HH (2012) Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and cranioc maxillofacial bone repair. Dent Mater 28: 1069-1070.
188. Yoshikawa M, Hayami S, Tsuboi T, Toda T (1997) Histopathological study of a newly developed root canal sealer containing tetracalcium-dicalcium phosphates and 1.0% chondroitin sulfate. J Endod 23: 162-166.
189. Xu HH, Sun L, Weir MD, Antonucci JM, Takagi S, et al. (2006) Nano DCPA-whisker composites with high strength and Ca And PO(4) release. J Dent Res 85: 722-727.
190. Xu HH, Weir MD, Sun L, Takagi S, Chow LC (2007) Effects of calcium phosphate nanoparticles on Ca-P-O composite. J Dent Res 86: 378-383.
191. Xu HH, Weir MD, Sun L (2007) Nanocomposites with Ca and PO_4 release: Effects of reinforcement, dicalcium phosphate particle size and sialanization. Dent Mater 23: 1482-1491.
192. Chen MH (2010) Update on dental nanocomposites. J Dent Res 89: 549-560.
193. Jean AH, Pouponzi A, Daculis G (1993) Pulpal response to calcium phosphate materials. In vivo study of calcium phosphate materials in endodontics. Cell Mater 1993 3: 193-200.
194. Stefanic M, Knell K, Frieboes I, Kosmac T (2012) Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci 258: 4649-4656.
195. Bao L, Liu J, Shi F, Jiang Y, Liu G (2014) Preparation and characterization of TiO2 and si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci 290: 48-52.
196. Murak M, Matsui K, Kawai T, Kato Y, Matsui A, et al. (2012) Octacalcium phosphate collagen composites with titanium mesh facilitate alveolar augmentation in canine mandibular bone defects. Int J Oral Maxillofac Surg 41: 1161-1169.
197. Sena M, Yamashita Y, Nakano Y, Ogahki M, Nakamura S, et al. (2004) Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97: 749-755.
198. Imamura Y, Tanaka Y, Nagai A, Yamashita K, Takagi Y (2010) Self-sealing ability of OCP-mediated cement as a deciduous root canal filling material. Dent Mater J 20: 592-598.
199. Kamakura S, Sasano Y, Nakamura M, Suzuki O, Ohki H, et al. (1996) Initiation of alveolar ridge augmentation in the rat mandible by subperiosteal implantation of octacalcium phosphate. Arch Oral Biol 41: 1029-1038.
200. Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, et al. (2001) Implantation of octacalcium phosphate nucleates isolated bone formation in rat skull defects. Oral Dis 7: 259-265.
201. Wang X, Suzawa T, Miuachio T, Zhao B, Yasuhara R, et al. (2015) Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation. J Tissue Eng Regen Med 9: 1310-1320.
202. Ambrosio AM, Sahota JS, Khan Y, Laurencin CT (2001) A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res 58: 295-301.
203. Skrtic D, Antonucci JM, Eades ED (2001) Effect of the monomer and filler system on the remineralizing potential of bioactive dental composites based on amorphous calcium phosphate. Polym Adv Technol 12: 369-379.
204. Skrtic D, Antonucci JM, Eades ED (2003) Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol 108: 167-192.
205. Skrtic D, Antonucci JM, Eades ED, Edelman N (2004) Dental composites based on hybrid and surface-modified amorphous calcium phosphates. Biomaterials 25: 1141-1150.
206. Skrtic D, Antonucci JM (2005) Matrix resin effects on selected physicochemical properties of amorphous calcium phosphate composites. J Biomat Polym 20: 29-49.
207. Skrtic D, Antonucci JM, Eades ED (1996) Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater 12: 295-301.
208. Skrtic D, Antonucci JM (2007) Dental composites based on amorphous calcium phosphate – Resin composition/physicochemical properties study. J Biomater Appl 21: 375-393.
209. Skrtic D, Haller AW, Takagi S, Antonucci J, Eades, E. (1996) Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res 75: 1679-1686.
210. Oshiro M, Yamaguchi K, Takamizawa T, Inage H, Watanabe T, et al. (2007) Effect of CPP-ACP paste on tooth mineralization: An FE-SEM study. J Oral Sci 49: 115-120.
211. O’Donnell JN, Schumacher GE, Antonucci JM, Skrtic D (2009) Adhesion of amorphous calcium phosphate composites bonded to dentin: A study in failure modality. J Biomat Mater Res B Appl Biomater 90: 238-249.
212. Antonucci JM, O’Donnell JN, Schumacher GE, Skrtic D (2009) Amorphous calcium phosphate composites and their effect on composite-adhesive-dentin bonding. J Adhes Sci Technol 23: 1133-1147.
213. Walker GD, Cai F, Shen P, Adams GG, Reynolds C, et al. (2010) Casein phosphopeptide-amorphous calcium phosphate incorporated into sugar confections inhibits the progression of enamel subsurface lesions in situ. Caries Res 44: 33-40.
214. Xu HH, Moreau JL, Sun L, Chow LC (2011) Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 27: 762-769.
215. Uysal T, Amasyali M, Koyuturk AE, Sagdic D (2009) Efficiency of amorphous calcium phosphate-based dental composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res 75: 1679-1686.
217. Tung MS, Eichmiller FC (1999) Dental applications of amorphous calcium phosphates. J Clin Dent 10: 1-6.

218. Uysal T, Ustdal A, Nur M, Cetinbas B (2010) Bond strength of ceramic brackets bonded to enamel with amorphous calcium phosphate-containing orthodontic composite. Eur J Orthod 32: 281-284.

219. Dunn WU (2007) Shear bond strength of an amorphous calcium-phosphate-containing orthodontic resin cement. Am J Orthod Dentofacial Orthop 131: 243-247.

220. Keşk č, Çehreli SB, Sar ç, Üner B (2008) Effect of acidulated fluoride and casein phosphopeptide-amorphous calcium phosphate application on shear bond strength of orthodontic brackets. Angle Orthod 78: 129-133.

221. Foster JA, Berzins DW, Bradley TG (2008) Bond strength of an amorphous calcium phosphate-containing orthodontic adhesive. Angle Orthod 78: 339-344.

222. Sun W, Zhang F, Guo J, Wu J, Wu W (2008) Effects of amorphous calcium phosphate on periodontal ligament cell adhesion and proliferation in vitro. J Med Biol Eng 28: 107-112.

223. Uysal T, Ulker M, Baysal A, Usumez S (2009) Microleakage between composite- and composite-enamel interfaces of flexible spiral wire retainers. Part 2: Comparison of amorphous calcium-phosphate-containing adhesive with conventional lingual retainer composite. Eur J Orthod 31: 652-657.

224. Uysal T, Ulker M, Akdogan G, Ramoglu SI, Yilmaz E (2009) Bond strength of amorphous calcium phosphate-containing orthodontic composite used as a lingual retainer adhesive. Angle Orthod 79: 117-121.

225. Uysal T, Amasyali M, Ozcan S, Koyturk AE, Akyol M, et al. (2010) In vivo effects of amorphous calcium phosphate-containing orthodontic composite on enamel demineralization around orthodontic brackets. Aust Dent J 55: 285-291.

226. Uysal T, Amasyali M, Koyturk AE, Ozcan S, Sagdic D (2010) Amorphous calcium phosphate-containing orthodontic composites. Do they prevent remineralization around orthodontic brackets? Aust J Orthod 26: 10-15.

227. Birchner A, Christensen C, Kristensen B, Traerups S, Karlsson L, et al. (2011) Treatment of post-orthodontic white spot lesions with casein phosphopeptide-stabilised amorphous calcium phosphate. Clin Oral Investig 15: 369-373.

228. Antonucci JM, Skrlc D (2010) Fine-tuning of polymeric resins and their interfaces with amorphous calcium phosphate. A strategy for designing effective remineralizing dental composites. Polymers 2: 378-392.

229. Beeren MW, Van Der Veen MH, Van Beek H, Ten Cate JM (2010) Effects of casein phosphopeptide amorphous calcium fluoride phosphate paste on white spot lesions and dental plaque after orthodontic treatment: A 3-month follow-up. Eur J Oral Sci 118: 610-617.

230. Zhao J, Liu Y, Sun WB, Zhang H (2011) Amorphous calcium phosphate and its application in dentistry. Chem Cent J 5: 40.

231. Gupta R, Prakash V (2011) CPP-ACP complex as a new adjunctive agent for remineralisation: A Review. Oral Health Prev Dent 9: 151-165.

232. Zhang Q, Zou J, Yang R, Zhou X (2011) Remineralization effects of casein phosphopeptide-apatite:Ï Ca₃(PO₄)₂·2H₂O on artificial early enamel subsurface lesions in situ by sugar-free lozenges containing casein phosphopeptide-amorphous calcium fluoride phosphate – A systematic review. J Pharm Bio Sci 6: B702-B706.

233. Baysal A, Uysal T (2012) Do enamel microabrasion and casein phosphopeptide amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 82:36-41.

234. Prabhakar AR, Sharma D, Sugandhan S (2012) Comparative evaluation of the remineralising effects and surface microhardness of glass ionomer cement containing grape seed extract and casein phosphopeptide – Amorphous calcium phosphate: An in vitro study. Eur Arch Paediatr Dent 13:138-143.

235. Weir MD, Chow LC, Xu HH (2012) Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res 91: 979-984.

236. Zhao J, Liu Y, Sun WB, Yang X (2012) First detection, characterization, and application of amorphous calcium phosphate in dentistry. J Dent Sci 7: 316-323.

237. Farooq I, Moheeta IA, Imran Z, Farooq U (2013) A review of novel caries preventive material: Casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) complex. King Saud Univ J Dent Sci 4: 47-51.

238. Reema SD, Lahiri PK, Roy SS (2014) Review of casein phosphopeptide-amorphous calcium phosphate, Chin J Dent Res 17: 17-20.

239. Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC (2005) Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem 2005 280: 15362-15369.

240. Schemehein BR, Orban JC, Wood GD, Fischer GM, Winston AE (1999) Remineralization by fluoride enhanced with calcium and phosphate ingredients. J Clin Dent 10: 13-16.

241. Skrlc D, Antonucci JM (2011) Bioactive polymeric composites for tooth mineral regeneration: Physicochemical And Cellular Aspects. J Funct Biomater 2: 271-307.

242. Chow CK, Wu CD, Evans CA (2011) In vitro properties of orthodontic adhesives with fluoride or amorphous calcium phosphate. Int J Dent 2011: 583521.

243. Bar-Hillel R, Feuerstein O, Tickotsky N, Shapiro J, Moskovitz M (2012) Effects of amorphous calcium phosphate stabilized by casein phosphopeptides on enamel de- and remineralization in primary teeth: an in vitro study. J Dent Child (Chic) 79: 9-14.

244. Zhao J, Liu Y, Sun WB, Yang X (2012) First detection, characterization, and application of amorphous calcium phosphate in dentistry. J Dent Sci 7: 316-323.

245. Bar-Hillel R, Feuerstein O, Tickotsky N, Shapiro J, Moskovitz M (2012) Effects of amorphous calcium phosphate stabilized by casein phosphopeptides on enamel de- and remineralization in primary teeth: an in vitro study. J Dent Child (Chic) 79: 9-14.

246. Baysal A, Uysal T (2012) Do enamel microabrasion and casein phosphopeptide amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 82:36-41.

247. Prabhakar AR, Sharma D, Sugandhan S (2012) Comparative evaluation of the remineralising effects and surface microhardness of glass ionomer cement containing grape seed extract and casein phosphopeptide – Amorphous calcium phosphate: An in vitro study. Eur Arch Paediatr Dent 13:138-143.

248. Weir MD, Chow LC, Xu HH (2012) Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res 91: 979-984.

249. Zhao J, Liu Y, Sun WB, Yang X (2012) First detection, characterization, and application of amorphous calcium phosphate in dentistry. J Dent Sci 7: 316-323.

250. Farooq I, Moheeta IA, Imran Z, Farooq U (2013) A review of novel caries preventive material: Casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) complex. King Saud Univ J Dent Sci 4: 47-51.

251. Kato N, Yamamoto E, Isai A, Nishikawa H, Kusunoki M, et al. (2013) Ultrathin amorphous calcium phosphate freestanding sheet for dentin tubule sealing. Biocera Dev Appl 51:007.

252. Reema SD, Lahiri PK, Roy SS (2014) Review of casein phosphopeptide-amorphous calcium phosphate, Chin J Dent Res 17: 7-14.

253. Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC (2005) Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem 2005 280: 15362-15369.

254. Schemehein BR, Orban JC, Wood GD, Fischer GM, Winston AE (1999) Remineralization by fluoride enhanced with calcium and phosphate ingredients. J Clin Dent 10: 13-16.

255. Reema SD, Lahiri PK, Roy SS (2014) Review of casein phosphopeptide-amorphous calcium phosphate, Chin J Dent Res 17: 7-14.

256. Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC (2005) Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem 2005 280: 15362-15369.
enamel by polymeric amorphous calcium phosphate composite: quantitative microangiographic study. Dent Mater 25: 884-891.

259. Kumar VL, Itthagarun A, King NM (2008) The effect of casein phosphopeptide-Amorphous calcium phosphate on remineralization of artificial caries-like lesions: An in vitro study. Aust Dent J 53: 34-40.

260. Ranjitkar S, Rodriguez JM, Kaidonis JA, Richards LC, Townsend GC, et al. (2009) The effect of casein phosphopeptide-amorphous calcium phosphate on erosive enamel and dentine wear by toothbrush abrasion. J Dent 37: 250-254.

261. Ranjitkar S, Narayana T, Kaidonis JA, Hughes TE, Richards LC, et al. (2009) The effect of casein phosphopeptide-amorphous calcium phosphate on erosive dentine wear. Aust Dent J 54: 101-107.

262. Wegehaupt FJ, Altin T (2010) The role of fluoride and casein phosphopeptide/amorphous calcium phosphate in the prevention of erosive/abrasive wear in an in vitro model using hydrochloric acid. Caries Res 44: 358-363.

263. Al-Mullahi AM, Tounba KJ (2010) Effect of slow-release fluoride devices and casein phosphopeptide/amorphous calcium phosphate nanocomplexes on enamel remineralization in vitro. Caries Res 44: 364-371.

264. Giner M, Spaid M, Macdonald J, Felix H (2005) A 180-day clinical investigation of the tooth whitening efficacy of a bleaching gel with added amorphous calcium phosphate. J Clin Dent 16: 11-16.

265. Giner M, Macdonald J, Ziemba S, Felix H (2005) The clinical performance of professionally dispensed bleaching gel with added amorphous calcium phosphate. J Am Dent Assoc 136: 383-392.

266. Reynolds EC, Cai F, Cochrane NJ, Shen P, Walker GD, et al. (2008) Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res 87: 344-348.

267. Ramalingam L, Messer LB, Reynolds EC (2005) Adding casein phosphopeptide-amorphous calcium phosphate to sports drinks to eliminate in vitro erosion. Pediatr Dent 27: 61-67.

268. Panich M, Poothong S (2009) The effect of casein phosphopeptide-amorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J Am Dent Assoc 140: 455-460.

269. Silva KG, Pedirini D, Delbem AC, Ferreira L, Cannon M (2010) In situ evaluation of the remineralizing capacity of pit and fissure sealants containing amorphous calcium phosphate and/or fluoride. Acta Odontol Scand 68: 11-18.

270. Baynak S, Tunc ES, Sonmez IS, Erginmez T, Ozmen B (2009) Effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) application on enamel microhardness after bleaching. Am J Dent 22: 393-396.

271. Yengoal P, Mickenauts S (2009) Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): A meta-analysis. Acta Odontol Scand 67: 321-332.

272. Walker GD, Cai F, Shen P, Reynolds C, Ward B, et al. (2006) Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J Dairy Res 73: 74-78.

273. Walker GD, Cai F, Shen P, Bailey DL, Yuan Y, et al. (2009) Consumption of milk with added casein phosphopeptide-amorphous calcium phosphate remineralizes enamel subsurface lesions in situ. Aust Dent J 54: 245-249.

274. Willemsen A, Schulz-Dobrick B, Gleissner C (2009) In vitro evaluation of enamel remineralisation by a casein phosphopeptide-amorphous calcium phosphate paste. Oral Health Prev Dent 7: 13-21.

275. Mei HL, Chen LY, Zhang D, Zhang PL, Liu B, et al. (2009) Effects of casein phosphopeptide-stabilized amorphous calcium phosphate solution on enamel remineralization. J Clin Rehabil Tiss Eng Res 13: 4825-4828.

276. Aykut-Yektiner A, Kara N, Ates M, Erzin I, Ertugrul F (2014) Does casein phosphopeptide amorphous calcium phosphate provide remineralization on white spot lesions and inhibition of streptococcus mutans? J Clin Pediatr Dent 38: 302-306.

277. Zhou C, Zhang D, Bai Y, Li S (2014) Casein phosphopeptide-amorphous calcium phosphate remineralization of primary teeth early enamel lesions. J Dent 42: 21-29.

278. Li J, Xie X, Wang Y, Yin W, Antoun JS, et al. (2014) Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: A systematic review. J Dent 42: 769-777.

279. Zhang X, Li Y, Sun X, Kishen A, Deng X, et al. (2014) Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J Mater Sci Mater Med 25: 2619-2628.

280. He L, Deng D, Zhou X, Cheng L, et al. (2015) Novel tea polyphenol-modified calcium phosphate nanoparticle and its remineralization potential. J Biomed Mater Res B Appl Biomater 103: 1525-1531.

281. Zhang K, Cheng L, Wei MD, Bai YX, Xu HHK (2016) Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. Int J Oral Sci 8: 45-53.

282. Pepelassi EM, Bissada NF, Greenwell H, Farah CF (1991) Doxycycline-tricalcium phosphate composite graft facilitates osseous healing in advanced periodontal furcation defects. J Periodontol 62: 106-115.

283. Wittfag J, Schliegel KA, Schultz-Mosgau S, Nikenike E, Zimmermann R, et al. (2003) Sinus floor augmentation with beta-tricalciumphosphate (Beta-TCP): Does platelet-rich plasma promote its osseous integration and degradation? Clin Oral Implants Res 14: 213-218.

284. Zerbo IR, Zijderve SA, De Boer A, Bronckers AL, De Lange G, et al. (2004) Histomorphometry of human sinus floor augmentation using a porous beta-tricalciumphosphate: A prospective study. Clin Oral Implants Res 15: 724-732.

285. Zijderve SA, Zerbo IR, Van Den Bergh JPA, Schulten EAJM, Ten Bruggenkate CM (2005) Maxillary sinus floor augmentation using a β-tricalcium phosphate (Cerasorb®) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants 20: 432-440.

286. Shayesteh YS, Khoshtash A, Soleimani M, Alkhassan A, et al. (2008) Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg. Oral Med. Oral Pathol Oral Radiol Endod 106: 203-209.

287. Marukawa K, Ueki K, Okabe K, Nakagawa K, Yamamoto E (2011) Use of self-setting β-tricalcium phosphate for maxillary sinus augmentation in rabbit. Clin Oral Implants Res 22: 606-612.

288. Krijn RJ, Hoekstra JW, Van Den Beucken JJ, Meijer GJ, Jansen JA (2012) Maxillary sinus augmentation with microstructured tricalcium phosphate ceramic in sheep. Clin Oral Implants Res 23: 274-280.

289. Yoshino K, Taniguchi Y, Yoda, M, Matsukubo T (2013) Autotransplantation of tooth by osteotome sinus floor elevation technique with beta-tricalcium phosphate (β-TCP). J Oral Maxil Surg Med Path 25: 351-354.

290. Fischer-Brandies E, Dielent E (1985) Clinical use of tricalcium phosphate and hydroxyapatite in maxillofacial surgery. J Oral Implantol 12: 40-44.

291. Ignatius AA, Ohnmmacht M, Claes LE, Kreidler J, Palm F (2001) A Composite Polymer/Tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery. Key Eng Mater 361-363: 861-864.

292. Horch HH, Sader R, Paulke C, Neff A, Decke H, et al. (2006) Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 35: 708-713.

293. Saito E, Saito A, Kuboki Y, Kimura M, Honma Y, et al. (2012) Periodontal repair following implantation of beta-tricalcium phosphate with different pore structures in class III furcation defects in dogs. Dent Mater J 31: 681-688.

294. Bilginer E, Esener T, Saylemozayfu F, Tiltik AM (1997) The investigation of biocompatibility and apical microleakage of tricalcium phosphate based root canal sealers. J Endod 23: 105-109.

295. Niwa K, Ogawa K, Miyazawa K, Aoki T, Kawai T, et al. (2009) Application of a tricalcium phosphate coatings on titanium subperiosteal orthodontic implants reduces the time for absolute anchorage: A study using rabbit femora. Dent Mater J 28: 477-486.

296. Hong YW, Kim JH, Lee BH, Lee YK, Choi BJ, et al. (2008) The effect of nano-sized β-tricalcium phosphate on remineralization in glass ionomer dental luting cement. Key Eng Mater 361-363: 861-864.

297. Karlsson RL, Mackey AC, Walker ER, Frederick KE (2010) Surfactant-modified beta-TCP: structure, properties, and in vitro remineralization of subsurface enamel lesions. J Mater Sci Mater Med 21: 2009-2020.

298. Karlsson RL, Mackey AC, Walker ER, Frederick KE (2010) Preparation, characterization and in vitro efficacy of an acid-modified beta-TCP Material for dental hard-tissue remineralization. Acta Biomater 6: 969-978.
Saito A, Saito E, Ueda Y, Shibukawa Y, Honma Y, et al. (2014) Effect of tricalcium phosphate ceramic in the treatment of periodontal intraosseous defects: a systematic review and meta-analysis of randomised controlled trials. Arch Oral Biol 66: 44-54.

Maksimovskij Iu. Zemskova MI (1994) The use of a calcium phosphate ceramic in treating deep caries. Stomatologija (Mosk) 73: 14-17.

Wang Y, Wang QS (2010) Application of nano-hydroxyapatite and its composite biomaterials in stomatology. J Clin Rehabil Tiss Eng Res 14: 1426-1428.

Besinis A, Van Noort R, Martin N (2012) Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent. Mater. 28: 1012-1023.

Chen H, Clarkson BH, Sun K, Mansfield JF (2005) Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci 288: 97-103.

Onuma K, Yamagishi K, Oyane A (2005) Neucleation and growth of hydroxyapatite powders on artificial caries. Rare Metal Mat Eng 69: 128-130.

Delucchi L, Kim JH, Jung K, Kim SW (2012) Surface characteristics of a novel hydroxyapatite-coated dental implant. J Periodontal Res 47: 593-601.

Block MS, Kent JD, Kay JF (1987) Evaluation of hydroxyapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg 45: 601-607.

Block MS, Kent JD (1994) Long-term follow-up on hydroxyapatite-coated cylindrical dental implants: A comparison between developmental and recent periods. J Oral Maxillofac Surg 52: 937-943.

Jones JD, Saigusa M, Van Sickels JE, Tiner BD, Gardner WA (1997) Clinical evaluation of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84: 137-141.

Gineste L, Gineste M, Ranz X, Elleftherion A, Guilhem A, et al. (1999) Degradation of hydroxyapatite, fluorapatite, and fluorohydroxyapatite coatings of dental implants in dogs. J Biomed Mater Res 48: 224-234.

Ong JL, Chan DC (2000) Hydroxyapatite and their use as coatings in dental implants: A review. Crit Rev Biomed Eng 28: 667-707.

Jones JD, Luperi J, Van Sickels JE, Gardner W (1999) A 5-year comparison of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87: 649-652.

Block MS, Gardner D, Almerico B, Neal C (2000) Loaded hydroxyapatite-coated implants and uncoated titanium-threaded implants in distracted dog alveolar ridges. Oral Surg. Oral Med. Oral Pathol Oral Radiol Endod 89: 676-685.

Yoshinari M, Oda Y, Inoue T, Matuszuka K, Shimono M (2002) Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials 23: 2879-2885.

Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, et al. (2006) Biomimetic calcium phosphate composite coating of dental implants. Int J Oral Maxillofac Implants 21: 738-746.

Kim SG, Hahn BD, Park DS, Lee YC, Choi SJ, et al. (2011) Atherosclerosis formation of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J Oral Maxillofac Surg 69: E354-363.

Jung UW, Hwang JW, Choi DY, Hu KS, Kwon MK, et al. (2012) Surface characteristics of a novel hydroxyapatite-coated dental implant. J Periodontal Implant Sci 42: 59-63.

Kano T, Yamamoto R, Miyashita A, Komatsu K, Hayakawa T, et al. (2012) Regeneration of periodontal ligament for apatite-coated tooth-shaped titanium implants with and without occlusion using rat molar model. J Hard Tiss Biol 21:189-202.
342. Alghamdi HS, Cuipers VM, Wolke JG, Van Den Beucken JJ, Jansen JA (2013) Calcium-phosphate-coated oral implants promote osseointegration in osteoporosis. J Dent Res 92: 982-988.

343. Tinsley D, Watson CJ, Russell JL (2001) A comparison of hydroxyapatite-coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clin Oral Implants Res 12: 159-166.

344. Binahmed A, Stoykewych A, Hussain A, Lowe B, Pruthi V (2007) Long-Term Follow-Up Of hydroxyapatite-coated dental implants—a clinical trial. Int J Oral Maxillofac Implants 22: 963-968.

345. Iezzi G, Scarano A, Petrone G, Piattelli A (2007) Two human hydroxyapatite-coated dental implants retrieved after a 14-year loading period: A histologic and histomorphometric case report. J Periodontol 78: 940-947.

346. Owdalldy ID, Pitt Ford TR (1994) Effect of addition of hydroxyapatite on the physical properties of IRM. Int Endod J 27: 227-232.

347. Owdalldy ID, Chong BS, Pitt Ford TR, Wilson RF (1994) Biological properties of IRM with the addition of hydroxyapatite as a retrograde root filling material. Endod Dent Traumatol 10: 228-232.

348. Nicholson JW, Hawkins SJ, Smith JE (1993) The incorporation of hydroxyapatite into glass-polyalkenoate ("glass-ionomer") cements: A preliminary study. J Mater Sci Mater Med 4: 418-421.

349. Yap AU, Pek YS, Kumar RA, Cheang P, Khor KA (2002) Effects of incorporation of nano-hydroxyapatite into glass-ionomer cements (GIC). Acta Biomater 4: 432-440.

350. Moshaverinia A, Ansari S, Moshaverinia M, Roohpoor N, Darr JA, et al. (2008) Effects of incorporation of hydroxyapatite and fluorapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater 4: 389-397.

351. Goenka S, Balu R, Kumar TSS (2012) Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J Mech Behav Biomed Mater 7: 69-76.

352. Domingo C, Arcís RW, López-Macipe A, Osorio R, Rodríguez-Clemente, et al. (2001) Dental composites reinforced with hydroxyapatite: mechanical properties. Dent Mater 17: 1346-1353.

353. Lee SK, Lee SK, Lee SI, Park JH, Jang JH, et al. (2010) Effect of calcium phosphate ceramics on remineralization of experimental enamel lesions in vitro. Dent Mater 30: 708-711.

354. Krell KF, Wefel JS (1984) A calcium phosphate cement root canal sealer--scanning electron microscopic analysis. J Endod 10: 571-576.

355. Krell KV, Madison S (1985) Comparison of apical leakage in teeth obturated with a calcium phosphate cement or grossman's cement using lateral condensation. J Endod 11: 336-339.

356. Chohayeb AA, Chow LC, Tsaknis PJ (1987) Evaluation of calcium phosphate cement as a root canal sealer-filler material. J Endod 13: 384-387.

357. Sugawara A, Chow LC, Takagi S, Chohayeb H (1990) In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer-filler. J Endod 16: 162-165.

358. Chaung HM, Hong CH, Chiang CP, Lin SK, Kuo YS, et al. (1996) Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct pulp-capping agents. J Formos Med Assoc 95: 545-550.

359. Sugawara A, Kusunoki K, Namiki M, Horiuchi A, Nishiyama Y, et al. (2002) Histocompatible healing of a calcium phosphate cement for alveolar ridge augmentation. J Biomed Mater Res 61: 47-52.

360. Sugawara A, Fujiwara K, Kusunoki K, Ishikawa I, et al. (2003) Improved tribological and mechanical properties of hydroxyapatite and galla chinensis on remineralisation of initial enamel lesion World Acad Sci Eng Technol 40: 286-291.

361. Owadally ID, Chong BS, Pitt Ford TR, Wilson RF (1994) Biological properties of IRM with the addition of hydroxyapatite as a retrograde root filling material. Endod Dent Traumatol 10: 228-232.

362. Nicholson JW, Hawkins SJ, Smith JE (1993) The incorporation of hydroxyapatite into glass-polyalkenoate ("glass-ionomer") cements: A preliminary study. J Mater Sci Mater Med 4: 418-421.

363. Moshaverinia A, Ansari S, Moshaverinia M, Roohpoor N, Darr JA, et al. (2008) Effects of incorporation of hydroxyapatite and fluorapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater 4: 432-440.

364. Krell KF, Wefel JS (1984) A calcium phosphate cement root canal sealer--scanning electron microscopic analysis. J Endod 10: 571-576.

365. Krell KV, Madison S (1985) Comparison of apical leakage in teeth obturated with a calcium phosphate cement or grossman’s cement using lateral condensation. J Endod 11: 336-339.

366. Chohayeb AA, Chow LC, Tsaknis PJ (1987) Evaluation of calcium phosphate cement as a root canal sealer-filler material. J Endod 13: 384-387.

367. Sugawara A, Fukushima K, Sugawara K, Kusunoki K, Mura S, et al. (2002) Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. J Endod Mater 21: 296-305.

368. Sugawara A, Kusunoki K, Ishikawa I, et al. (2003) Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. J Endod Mater 21: 296-305.

369. Komuzzi L, Ooms E, Jansen JA (2002) Injectable calcium phosphate cement as a filler for bone defects around oral implants: an experimental study in goats. Clin Oral Implants Res 13: 304-311.

370. Cherri AM, Chow LC, Takagi S (2001) In vitro evaluation of a new calcium phosphate root canal filter/sealer. J Endod 27: 613-615.

371. Sugawara A, Fujikawa K, Kusunoki K, Nishiyama M, Mura S, et al. (2002) Histocompatible healing of a calcium phosphate cement for alveolar ridge augmentation. J Biomed Mater Res 61: 47-52.

372. Sugawara A, Fujiwara K, Kusunoki K, Nishiyama M, Mura S, et al. (2002) Histocompatible healing of a calcium phosphate cement for alveolar ridge augmentation using calcium phosphate cement. J Endod Mater 21: 296-305.

373. Kim JS, Baek SH, Bae KS (2004) In vitro study on the biocompatibility of newly developed Calcium Phosphate-Based Root Canal Sealers. J Endod 30: 708-711.

374. Noetzel J, Ozer K, Reishshauer BH, Anil A, Rössler R (2006) Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair, a histological study in dogs. Clin Oral Invest 10: 77-83.

375. Mitakosono W, Naing L, Mulyawati E, Busumudir A, Oo MMT (2007) Sealing ability of hydroxyapatite as a root canal sealer: In vivo study Dent J 40: 101-105.

376. Ascherman JA, Foo R, Nanda D, Parisen M (2008) Reconstruction of cranial bone defects using a quick-setting hydroxyapatite cement and absorbable cranial plates. J Craniofac Surg 19: 1131-1135.

377. Lee SK, Lee SK, Lee SI, Park JH, Jang JH, et al. (2010) Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod 36: 1537-1542.

378. Arisan V, Anil A, Wolke JG, Ozer K (2010) The effect of injectable calcium phosphate cement on bone anchorage of titanium implants: an experimental feasibility study in dogs. J Oral Maxillofac Surg 39: 463-468.

379. Barros CMB, De Oliveira SV, Marques JB, Viana KMS, Costa ACFM (2012) Analysis of the hydroxyapatite incorporate MTA dental application. Mater Sci Forum 727: 1381-1386.

380. Xiao Y, Yin Q, Wang L, Bao C (2015) Macro-porous calcium phosphate scaffold with collagen and growth factors for periodontal bone regeneration in dogs. Ceram Int 41: 1131-1135.

381. Dorozhkin SV (2016) Calcium Orthophosphates (CaPO4) and Dentistry. Bioceram Dev Appl 6: 096. doi: 10.4172/2090-5025.1000096

Citation: Dorozhkin SV (2016) Calcium Orthophosphates (CaPO4) and Dentistry. Bioceram Dev Appl 6: 096. doi: 10.4172/2090-5025.1000096

Volume 6 • Issue 2 • 1000096
408. Wang JP, Mascarés C, Donouche WB (1991) Electron microscopy characteristics of dentin repair after hydroxyapatite direct pulp capping in rats. J Oral Pathol Med 20: 502-508.

409. Jaber L, Mascarés C, Donouche WB (1992) Reaction of the dental pulp to hydroxyapatite. Oral Surg Oral Med Oral Pathol 73: 92-98.

410. Li T, Akao M, Takagi M (1998) Tissue reaction of hydroxyapatite sol to rat molar pulp. J Mater Sci Mater Med 9: 631-642.

411. Hayashi Y, Imai M, Yanagisuchi K, Vitoria I, Ikeda T (1999) Hydroxyapatite applied as direct pulp Capping Medicine Substitutes For Osteodentin. J Endod 25: 225-229.

412. Zhang W, Walboomers XF, Jansen JA (2008) The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-Beta 1. J Biomed Mater Res A 85: 439-444.

413. Nakagawa KI (1983) Clinico-pathological studies of dental biomaterials in endodontic therapy, with special reference to the biocompatibility of the hydroxyapatite on exposed vital human pulp Shikwa Gakuho 83: 501-527.

414. Maeda Y, Okada M, Okuno Y, Soga K, Yamamoto H, Okazaki M (1984) Clinical application of implant stabilizers: combined use of single-crystal sapphire endodontic implants with hydroxyapatite particles. J Osaka Univ Dent Sch 24: 131-144.

415. Roane JB, Benenati FW (1987) Successful management of a perforated mandibular molar using amalgam and hydroxylapatite. J Endod 13: 400-404.

416. Yamaguchi K (1989) Biological Evaluation of new hydroxyapatite endodontic cement in vivo. histopathological and clinico-pathological observation. Shikwa Gakuho 69: 761-792.

417. Tomizuka K (1990) Experimental study on apatite ceramics used as endodontic endosseous implant. Kokubyo Gakkai Zasshi 57: 221-226.

418. White JM, Goodis H (1991) In vitro evaluation of an hydroxyapatite root canal system filling material. J Endod 17: 561-566.

419. Macdonald A, Moore BK, Newton CW, Brown CE Jr (1994) Evaluation of an apatite cement as a root end filling material. J Endod 20: 598-604.

420. Gambarini G, Tagger M (1996) Sealing ability of a new hydroxyapatite-containing endodontic sealer using lateral condensation and thermic compaction of gutta-percha, in vitro. J Endod 22: 165-167.

421. Margin C, Yela loosoy C, Nissar R, Stevens R (2003) The comparative sealing ability of hydroxyapatite cement, mineral trioxide aggregate, and super ethoxybenzoic acid as root-end filling materials. J Endod 29: 261-264.

422. Yu L, Xu B, Wu B (2003) Treatment of combined endodontic-periodontic lesions by intentional replantation and application of hydroxylapatites. Dent Traumatol 19: 60-63.

423. Markovic D, Živojinovic V, Kokovic V, Jokanovic V (1987) Hydroxyapatite as a root canal system filling material: cytotoxicity testing. Mater Sci Forum 453-454: 555-560.

424. Teodorovic N, Martinovic Z (2005) Significance of crown-down root canal preparation technique in endodontic therapy by using the hydroxyapatite sealer. Vojnosanit Pregl 62: 447-452.

425. Fathi MH, Salehi M, Mortazavi V, Mousavi SB, Parsapour A (2012) Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. Int Endod J 45: 63-67.

426. Wang JP, Geogi G (2014) Antimicrobial and sealant properties of nanohydroxyapatite as endodontic sealer. Chin. J Tissue Eng Res 18: 3350-3354.

427. Alhashimi RA, Mannocci F, Sauro S (2016) Experimental polyethylene-hydroxyapatite carrier-based endodontic system: an in vitro study on dynamic thermomechanical properties, sealing ability, and measurements of micro-computed tomography voids. Eur J Oral Sci.

428. Harra Y, Murakami T, Kajiyama K, Maeda K, Akamine A, et al. (1989) Application of calcium phosphate ceramics to periodontal therapy. B. effects of orthodontic force on repaired bone with hydroxyapatite. Nihon Shishihuyo Gakkai Kaishi 31: 224-234.

429. Müller N (1989) Augmentation of alveolar process with hydroxyapatite. Clinical orthodontic experience. 44: 596-599.

430. Schneider B, Diedrich P (1989) Interaction between orthodontic tooth movement and hydroxyapatite ceramics. Dtsch Zahnarztbl Z 44: 282-285.

431. Giordano M, Macchi A, Ostinelli E, Tagliabue A (1996) Protective effect on enamel of ultra-micronized hydroxyapatite in combination with orthodontic composite cement. In vivo study. Minerva Stomatologica 45: 29-35.

432. Liang X, Tang SQ, Lu D, Zhao ZH, Chao YL, et al. (1998) Study on hydroxyapatite-coated titanium implants used as orthodontic anchorage – an experimental investigation of implant stability and peri-implant neck tissue in dogs. Chinese J Dent. Res. 1: 57-61.

433. Akhavan A, Sodagar A, Mojtahedzadeh F, Sodagar K (2013) Investigating the effect of incorporating nanosilver/nanohydroxyapatite particles on the shear bond strength of orthodontic adhesives. Acta Odontol Scand 71: 1038-1042.

434. Enan ET, Hammad SM (2013) Microleakage under orthodontic bands cemented with nano-hydroxyapatite-modified glass ionomer. Angle Orthod 83: 981-986.

435. Seifi M, Arayesh A, Shamloo N, Hamedi R (2015) Effect of nanocrystalline hydroxyapatite socket preservation on orthodontically induced inflammatory root resorption. Cell J 16: 514-527.

436. Ajiens S, Pakshir HR, Babanouri N (2016) Impact of nanohydroxyapatite on enamel surface roughness and color change after orthodontic debonding. Prog Orthod 17: 11.

437. Frame JW, Brady CL, Browne RM (1981) Augmentation of the edentulous mandible using bone and hydroxyapatite: a comparative study in dogs. Int J Oral Surg 10: 88-92.

438. Boyne P (1982) Impact of durapaste as a bone grafting material in oral and maxillofacial surgery. Compend Contin Educ Dent. 583-86.

439. Mangano C, Venini E, Venini G (1984) Dense Apatite Ceramic (DAC) as a bone substitute in oral surgery. Dent Cadmos 52: 97, 100-101, 104-5 Passim.

440. Cranin AN, Tobin GP, Grebman J (1987) Applications of hydroxyapatite in oral and maxillofacial surgery. Part I: Periodontal and endosseal-implant repairs. Compendium 8: 254-262.

441. Cranin AN, Tobin GP, Gelbman J (1987) Applications of hydroxyapatite in oral and maxillofacial surgery. Part II: Ridge augmentation and repair of major oral defects. Compendium 8: 334-340.

442. Frame JW, Brady CL (1987) The versatility of hydroxyapatite blocks in maxillofacial surgery. Br J Oral Maxillofac Surg 25: 452-464.

443. Frame JW (1987) Hydroxyapatite as a biomaterial for alveolar ridge augmentation. Int J Oral Maxillofac Surg 16: 642-655.

444. Asanami S, Koike O, Chikata M, Shiba H, Ikeuchi S, et al. (1988) Studies of the clinical usefulness of porous hydroxyapatite in the field of dental and oral surgery. Keio J Med 37: 265-281.

445. Shirakawa M, Nomura T, Itoh T, Sakai N, Shizume M (1988) Clinical application of hydroxyapatite ceramics APS-7 in the field of oral surgery. Shigaku 76: 782-815.

446. Salyer KE, Hall CD (1989) Porous hydroxyapatite as an on lay bone-graft substitute for maxillofacial surgery. Plast Reconstr Surg 84: 236-244.

447. Hemmerle J, Leize M, Voegel JC (1995) Long-term behaviour of a hydroxyapatite/collagen-glycosaminoglycan biomaterial used for oral surgery: a case report. J Mater Sci Mater Med 6: 360-366.

448. Kent JN, Quinn JH, Zide MF, Guerra LR, Boyne PJ (1983) Alveolar ridge augmentation using nonresorbable hydroxyapatite with or without autogenous cancellous bone. J Oral Maxillofac Surg 41: 629-642.

449. Holmes RE, Hagler HK (1987) Porous hydroxyapatite as a bone graft substitute in mandibular contour augmentation: a histometric study. J Oral Maxillofac Surg 45: 421-429.
431. Wittkampf AR (1988) Augmentation of the maxillary alveolar ridge with hydroxyapatite and fibrin glue. J Oral Maxillofac Surg 46: 1019-1021.

432. Friedman CD, Costantino PD, Takagi S, Chow LC (1996) Bone-source hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 43: 428-432.

433. Ylilinen P, Suuronen R, Taurio R, Törmälä P, Rokkanen P (2002) Use of hydroxyapatite/polymer-composite in facial bone augmentation. An experimental study. Int J Oral Maxillofac Surg 31: 405-409.

434. Hallman M, Hedlin M, Sennenby L, Lundgren S (2002) A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with bovine hydroxyapatite and autogenous bone. J Oral Maxillofac Surg 60: 277-284.

435. Wittfang J, Kessler P, Buchfelder M, Merten HA, Neukam FW, et al. (2004) Zecha PJ, Schortinghuis J, van der Wal JE, Nagursky H, van den Broek Wiltfang J, Kessler P, Buchfelder M, Merten HA, Neukam FW, et al. (2004)

436. Ylinen P, Suuronen R, Taurio R, Törmälä P, Rokkanen P (2002) Use of hydroxyapatite/polymer-composite in facial bone augmentation. An experimental study. Int J Oral Maxillofac Surg 31: 405-409.

437. Hallman M, Hedlin M, Sennenby L, Lundgren S (2002) A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with bovine hydroxyapatite and autogenous bone. J Oral Maxillofac Surg 60: 277-284.

438. Zecha PJ, Schortinghuis J, van der Wal JE, Nagursky H, van den Broek KC, et al. (2011) Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats. Int J Oral Maxillofac Surg 40: 533-542.

439. Scaranone A, Degidi M, Ferrotti V, Piattelli A, Iezzi G (2012) Sinus augmentation with phyrogenic hydroxyapatite: histological and histomorphometrical results after 6 months in humans. A case series Oral Maxillofac Surg 16: 41-45.

440. Wolford LM, Freitas RZ (1999) Porous block hydroxyapatite as a bone graft substitute in orthognathic surgery. J Prosthet Dent 82: 786-790.

441. Wolford LM, Wardrop RW, Hartog JM (1987) Coralline porous hydroxylapatite implants in periodontal bone lesions: results of a 1-year follow-up. J Clin Periodontol 22: 877-884.

442. Balshi TJ (1987) Preventive durapatite ridge augmentation for esthetic fixed prosthodontics. J Prosthet Dent 58: 105-117.

443. Moenning JE, Wolford LM (1989) Coralline porous hydroxylapatite as a bone graft substitute in orthognathic surgery. J Oral Maxillofac Surg 45: 1034-1042.

444. Rosen HM, Ackerman JL (1991) Porous Block Hydroxyapatite in Orthognathic Surgery. Angle Orthod 61: 185-191.

445. Cottrell DA, Wolford LM (1998) Long-term evaluation of the use of coraline hydroxyapatite in orthognathic surgery. J Oral Maxillofac Surg 56: 935-941.

446. Wolford LM, Freitas RZ (1999) Porous block hydroxyapatite as a bone graft substitute in the correction of jaw and craniofacial deformities. BUMC Proc 12: 243-246.

447. Larsen HD, Guerra LR, Finger IM (1984) Hydroxyapatite: Prosthodontic clinical considerations. Compend Contin Educ Dent 5: 786-790.

448. Balshi TJ (1987) Preventive durapatite ridge augmentation for esthetic fixed prosthodontics. J Prosthet Dent 58: 266-270.

449. Nelson DR, Von Gonten AS (1988) Prosthodontic management of the hydroxyapatite-augmented ridge. Gen Dent 36: 315-319.
intrabony defects in dogs: a histometric analysis. J Periodontal Implant Sci 41: 285-292.

473. Horváth A, Stavropoulos A, Windisch P, Lukács L, Gera I, et al. (2013) Histological evaluation of human intrabony periodontal defects treated with an unsintered nanocrystalline hydroxyapatite paste. Clin Oral Invest 17: 423-430.

474. Yoshinuma N, Sato S, Fukuyama T, Mural M, Io K (2012) AnalYSIS of nonresorbable hydroxyapatite graft material as a contributing factor in recurrent periodontitis. Int J Periodontics Restorative Dent 32: 31-36.

475. Shirai Y, Okuda K, Kubota T, Wolff LF, Yoshie H (2012) The comparative effectiveness of granules or blocks of superporous hydroxyapatite for the treatment of intrabony periodontal defects. Open J Stomatol 2: 81-87.

476. Machot EA, Hoffmann T, Lorenz K, Khalili I, Noack B (2014) Clinical outcomes after treatment of periodontal intrabony defects with nanocrystalline hydroxyapatite (Ostim) or enamel matrix derivatives (Engdogain): a randomized controlled clinical trial. BioMed Res Int 786353.

477. Madhumathi K, Kumar TSS (2014) Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed Mater (Bristol) 9: 035002.

478. Dorozhkin SV (2012) Dissolution mechanism of calcium apatites in acids: A review of literature. World J Methods 2: 1-17.

479. Xu HH, Moreau JL (2010) Dental glass-reinforced composite for caries inhibition: calcium phosphate ion release and mechanical properties. J Biomed Mater Res B Appl Biomater 92: 332-340.

480. Shen Q, Sun J, Wu J, Liu C, Chen F (2010) An in vitro investigation of the mechanical-chemical and biological properties of calcium phosphate/calcium silicate/bismuthum cement for dental pulp capping. J Biomed Mater Res B Appl Biomater 94B: 141-148.

481. Xu HH, Wei MD, Sun L (2009) Calcium and phosphate ion releasing composite: effect of pH on release and mechanical properties. Dent Mater 25: 535-542.

482. Chen YZ, Lü XY, Liu GD (2013) A Novel Root-End Filling Material Based On Hydroxyapatite, Tetracalcium Phosphate And Polycrylic Acid. Int Endod J 46: 556-564.

483. Daculsi G, Weiss P, Bouler JM, Gauthier O, Millot F, et al. (1999) Biphasic calcium phosphate/hydroxysoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 25: 595-615.

484. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, et al. (2007) The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 28: 3295-3305.

485. Struiliou X, Boutigny H, Badran Z, Fellah BH, Gauthier O, et al. (2011) Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med 22: 1707-1717.

486. Ellinger RF, Nery EB, Lynch KL, Keifer LM (1986) Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: A case report. Int J Periodontics Restorative Dent 6: 22-33.

487. Nery EB, Eslami A, Van Swol RL (1990) Biphasic calcium phosphate ceramic combined with fibrillar collagen with and without citric acid conditioning in the treatment of periodontal osseous defects. J Periodontol 61: 166-172.

488. Nery EB, Lee KK, Czajkowski S, Dooner JJ, Duggan M, et al. (1999) A veterans administration cooperative study of biphasic calcium phosphate ceramic in periodontal osseous defects. J Periodontol 61: 737-744.

489. Nery EB, LeGeros RZ, Lynch KL, Lee K (1992) Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol 63: 729-735.

490. Sculean A, Windisch P, Szendrői-Kiss D, Horváth A, Rosta P, et al. (2008) Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J Periodontol 79: 1991-1999.

491. Shi H, Ma J, Zhao N, Chen Y, Liao Y (2008) Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. J Mater Sci Mater Med 19: 3515-3524.

492. Su B, Su J, Ran J, Su B (2008) Biological performance of dental biphasic calcium phosphate ceramics modified by cold plasma. Key Eng Mater 372: 1264-1267.

493. Pandit N, Gupta R, Gupta S (2010) A comparative evaluation of biphasic calcium phosphate material and bioglass in the treatment of periodontal osseous defects: A clinical and radiological study. J Contemp Dent Pract 11: 025-032.

494. Kaushick BT, Jayakumar ND, Padmalatha O, Varghese S (2011) Treatment of human periodontal infrabony defects with hydroxyapatite + Bi tricalcium phosphate bone graft alone and in combination with platelet rich plasma: a randomized clinical trial. Indian J Dent Res 22: 505-510.

495. Kim S, Jung UW, Lee YK, Choi SH (2011) Effects of biphasic calcium phosphate bone substitute on circumferential bone defects around dental implants in dogs. Int J Oral Maxillofac Implants 26: 265-273.

496. Wagner W, Wiltfang J, Pichler H, Yildirim M, Ploder B, et al. (2012) Bone formation with a biphasic calcium phosphate combined with fibrin sealant in maxillary sinus floor elevation for delayed dental implant. Clin Oral Implants Res 23: 1112-1117.

497. Pietruska M, Pietruski J, Nagy K, Breca M, Arweiler NB, et al. (2012) Four-year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clin Oral Invest 16: 1191-1197.

498. Wang L, Li J, Xie Y, Yang P, Liao Y, et al. (2012) Effect of nano biphasic calcium phosphate bioeramics on periodontal regeneration in the treatment of alveolar defects. Adv Mater Res 486: 422-425.

499. Seong KC, Cho KS, Daculsi C, Seris E, Daculsi G (2013) Eight-year clinical follow-up of sinus grafts with micro-macroporous biphasic calcium phosphate granules. Key Eng Mater 587: 321-324.

500. Bosco J, Enkel B, Armengol V, Daculsi G, Jean A, et al. (2006) Bioactive calcium phosphate material for dental endodontic treatment. Root apical depositions. Key Eng Mater 311: 1157-1160.

501. Kiba W, Imazato S, Takahashi Y, Yoshioka S, Ebisu S, et al. (2010) Efficacy of polyphasic calcium phosphates as a direct pulp capping material. J Dent 38: 828-837.

502. Nevins AJ, LaPorta RF, Borden BG, Spangberg LS (1980) Pulpotomy and partial pulpectomy procedures in monkey teeth using cross-linked collagen-calcium phosphate gel. Oral Surg Oral Med Oral Pathol 49: 360-365.

503. Shayegan A, Atrash R, Petein M, Abbeele AV (2010) Nanohydroxyapatite used as a pulpotomy and direct pulp capping agent in primary pig teeth. J Dent Child (Chic) 77: 77-83.

504. Yang SE, Baek SH, Lee W, Kum KY, Bae KS (2007) Sodiumhydroxyapatite as a pulpotomy and direct pulp capping agent in primary pig teeth. J Endod 33: 979-981.

505. Khashaba RM, Chutkan NB, Borke JL (2009) Comparative study of biocompatibility of newly developed calcium phosphate-based root canal sealers. Int Endod J 44: 860-865.

506. Khashaba RM, Moussa MM, Chutkan NB, Borke JL (2011) The response of subcutaneous connective tissue to newly developed calcium phosphate-based root canal sealers. Int Endod J 44: 342-352.

507. Bae KH, Chang SW, Bae KS, Park DS (2011) Evaluation of Ph and calcium ion release in capseal I And II and in two other root canal sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112: E23-28.

508. Shon WJ, Bae KS, Baek SH, Kum KY, Han AR, et al. (2012) Effects of calcium phosphate endodontic sealers on the behavior of human periodontal ligament fibroblasts and MG63 osteoblast-like cells. J Biomed Mater Res B Appl Biomater 100B: 2141-2147.

509. Tiwari S, Nandlall B (2012) Role of synthetic hydroxyapatite in dentistry. Lab Lambert Academic Publishing: Saarbrucken Deutschland 90.

510. Chang SW, Lee SY, Kang SK, Kum KY, Kim EC (2014) In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod 40: 1642-1648.

511. Al-Haddad A, Abu Kasim NH, Che Ab Aziz ZA (2015) Interfacial adaptation and thickness of bioioderamic-based root canal sealers. Dent Mater J 34: 516-521.
513. Portella FF, Collares FM, Dos Santos LA, Dos Santos BP, Camassola M, et al. (2015) Glycerol salicylate-based containing β-tricalcium phosphate as a bioactive root canal sealer. J Biomed Mater Res B Appl Biomater 103: 1653-1669.

514. Chang SW, Lee YK, Zhu Q, Shon WJ, Lee WC, et al. (2015) Comparison of the rheological properties of four root canal sealers. Int J Oral Sci 7: 56-61.

515. Chau JY, Hutter JW, Mork TO, Nicoll BK (1997) An in vitro study of fucation perforation repair using calcium phosphate cement. J Endod 23: 588-592.

516. Cherng AM, Takagi S, Chow LC (2010) Acid neutralization capacity of a material. J Res Natl Inst Stand Technol 115: 471-476.

517. Ishida H, Nahara Y, Hamada T (1992) Dimensional accuracy of castable apatite ceramic crowns: the influence of heat treatment on dimensional changes and distortion of crowns. J Prosthodont Dent 68: 279-283.

518. Hulshoff JE, Jansen JA (1997) Initial interfacing sealing events around calcium phosphate (Ca-P) coated oral implants. Clin Oral Implants Res 8: 393-400.

519. Füg A, Ulm C, Tang S, Vasak C, Gruber R, et al. (2009) Long-term effects of magnetron-sputtered calcium phosphate coating on osseointegration of dental implants in non-human primates. Clin Oral Implants Res 20: 183-188.

520. Junker R, Manders PJ, Wolke J, Borisov Y, Braceras I, et al. (2011) Bone reaction adjacent to microplasma-sprayed calcium phosphate-coated oral implants subjected to an occlusal load, an experimental study in the dog. Clin Oral Implant Res 22: 135-142.

521. Palarie V, Bicer C, Lehmann KM, Zahalka M, Draentert FG, et al. (2012) Early outcome of an implant system with a resorbable adhesive calcium-phosphate coating-a prospective clinical study in partially dentate patients. Clin Oral Invest 16: 1039-1048.

522. Aghamali HS, Van Oirschot BA, Bosco R, Van Den Beucken JJ, Aldosari AA, et al. (2013) Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implants Res 24: 475-483.

523. Van Oirschot BA, Bronkhorst EM, Van Den Beucken JJ, Meijer GJ, Jansen JA, et al. (2016) A systematic review on the long-term success of calcium phosphate plasma-spray coated dental implants. Odontology.

524. Sato I, Akizuki T, Oda S, Tsuichioka H, Hayashi C, et al. (2009) Histological evaluation of alveolar ridge augmentation using injectable calcium phosphate bone cement in dogs. J Oral Rehabil 36: 762-769.

525. Meguro D, Hayakawa T, Kawasaki M, Kasai K (2006) Shear bond strength of calcium phosphate ceramic brackets to human enamel. Angle Orthod 76: 301-305.

526. Meguro D, Hayakawa T, Kasai K (2006) Efficacy of using orthodontic adhesive resin in bonding and debonding characteristics of a calcium phosphate ceramic bracket. Orthodont Waves 65: 148-154.

527. Hoo JH, Park YG (2007) Friction of calcium phosphate brackets to stainless steel wire. Korean J Orthod 37: 376-385.

528. Crubézy E, Murail P, Girard L, Bernadou JP (1998) False teeth of the Roman World. Nature 391: 29.

529. Bobbio A (1972) The first endosseous alloplastic implant in the history of man. Bull Hist Dent 20: 1-6.

530. Lavenus S, Louarn G, Layrolle P (2010) Nanotechnology and dental implants. Key Eng Mater, 192-195, 925-928.

531. Elangovan S, Jain S, Tsai PC, Margolis HC, Amiji M (2013) Nano-sized calcium phosphate particles for periodontal gene therapy. J Periodontol 84: 393-400.

532. Chen FM, Zhang J, Zhang M, An Y, Chen F, et al. (2010) A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 31: 7892-7927.

533. Hayashi C, Kinoshita A, Oda S, Mizutani K, Shirakata Y, et al. (2006) Injectable calcium phosphate bone cement provides favorable space and a scaffold for periodontal regeneration in dogs. J Periodontol 77: 940-946.

534. Shirakata Y, Setoguchi T, Machigashira M, Matsuyama T, Furuchi Y, et al. (2008) Comparison of injectable calcium phosphate bone cement grafting and open flap debridement in periodontal intrabony defects: a randomized clinical trial. J Periodontol 79: 25-32.

535. Chitissi MT, Shirmohammadi A, Faramarzi M, Pourabbas R, Rostamzadeh A (2011) A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal 16: 448-453.

536. Elgendy EA, Abo Shady TE (2015) Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony defects. J Indian Soc Periodontol 19: 61-85.

537. García D, García L, Pérez M, Suarez M, Delgado JA, et al. (2001) Filling of post-extraction dental socket with hydroxyapatite granules APAFILL-G™. Key Eng Mater, 192-195, 925-928.

538. Checchi V, Savarino L, Montevoci M, Felice P, Checchi L (2011) Clinical-radiographic and histological evaluation of two hydroxyapatites in human extraction sockets: A pilot study. Int J Oral Maxillofac Surg 40: 526-532.

539. Lee JS, Wikesjö UME, Jung UW, Choi SH, Pippig S, et al. (2010) Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a β-tricalcium phosphate carrier into one-wall intra bony defects in dogs. J Clin Periodontol 37: 382-389.

540. Emerton KB, Drapeau SJ, Prasad H, Rohrer M, Ro F, et al. (2011) Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. J Dent Res 90: 1416-1421.

541. Ridgeway HK, Mellonig JT, Cochran DL (2008) Human histologic and clinical evaluation of recombinant human platelet-derived growth factor and beta-tricalcium phosphate for the treatment of periodontal intraosseous defects. Int J Periodontics Restorative Dent 28: 171-179.

542. Jayakumar A, Rajababu P, Rohini S, Butchibabu K, Naveen A, et al. (2011) Multi-centre, randomized clinical trial on the efficacy and safety of recombinant human platelet-derived growth factor with β-tricalcium phosphate in human intra-osseous periodontal defects. J Clin Periodontol 38: 163-172.

543. Sorensen RG, Wikesjö UM, Kinoshita A, Wozney JM (2004) Periodontal repair in dogs: evaluation of a bioreabsorable calcium phosphate cement (Cererox) as a carrier for rhGDF-2. J Clin Periodontol 31: 796-804.

544. Pietruska M, Skurska A, Pietruski J, Dolić, Ška E, Anweller N, et al. (2012) Clinical and radiographic evaluation of intrabony periodontal defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute. Ann Anat 194: 533-537.

545. Elangovan S, Jain S, Tsai PC, Margolis HC, Arjul M (2013) Nano-sized calcium phosphate particles for periodontal gene therapy. J Periodontol 84: 117-125.
555. Papas A (2008) Calcium phosphate mouth rinse for preventing oral mucositis. Community Oncology 5: 171-172.

556. Wali/Ko-Grabowska A, Rzepecki P, Oborska S, Barzaä, J, Gawroä, S, Ski K, et al. (2011) Efficiency of supersaturated calcium phosphate mouth rinse treatment in patients receiving high-dose melphalan Or beam prior to autologous blood stem cell transplantation: A single-center experience. Transplant Proc 43: 3111-3113.

557. Markiewicz M, Dziernak-Miśla M, Frankiewicz A, Zielinska P, Koclega A, et al. (2012) Treating oral mucositis with a supersaturated calcium phosphate rinse: comparison with control in patients undergoing autologous hematopoietic stem cell transplantation. Support Care Cancer 20: 2223-2229.

558. Miyamoto CT, Wobb J, Micailey B, Li S, Achary MP (2012) A retrospective match controlled study of supersaturated calcium phosphate oral rinse vs. supportive care for radiation induced oral mucositis. J Cancer Ther 3: 630-636.

559. Nyman S, Lindhe J, Karring T, Rylander H (1982) New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 9: 290-296.

560. Chai Y, Slavkin HC (2003) Prospects for tooth regeneration in the 21st century: A perspective. Microsc Res Tech 60: 469-479.

561. Hu B, Nadini A, Kucher-Bopp S, Perrin-Schmitt F, Peters H, et al. (2006) Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 12: 2069-2075.

562. Duaiblè SE, Duaiblè MT, Zhang W, Asirican R, Vacanti JP, et al. (2008) Bioengineered dental tissues grown in the rat jaw. J Dent Res 87: 749-750.

563. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, et al. (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci 106: 13475-13480.

564. Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD (2012) Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 56: 495-520.

565. Yelick PC, Vacanti JP (2006) Bioengineered teeth from tooth bud cells. Dent Clin North Am 50: 191-203, VIII.

566. Nakao K, Morita R, Saij Y, Ishida K, Tomita Y, et al. (2007) The development of a bioengineered organ germ method. Nat Methods 4: 227-230.

567. Yu J, Wang Y, Deng Z, Tang L, Li Y, et al. (2007) Odontogenic capability; Bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99: 465-474.

568. An S, Jing L, Gao Y, Xiao Y (2012) Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J Periodontal Res. 47: 374-382.

569. Kitamura C, Nishihara T, Terashita M, Tabata Y, Washio A (2012) Local regeneration of dentin-pulp complex using controlled release of fgf-2 and naturally derived sponge-like scaffolds. Int J Dent 2012: 190561.

570. Zuolin J, Hong Q, Jiali T (2010) Dental follicle cells combined with beta-tricalcium phosphate ceramic: a novel available therapeutic strategy to restore periodontal defects. Med Hypotheses 75: 669-670.

571. Zheng L, Yang F, Shen H, Hu X, Mochizuki C, et al. (2011) The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials 32: 7053-7059.

572. Liao F, Chen Y, Li Z, Wang Y, Shi B, et al. (2010) A novel bioactive three-dimensional ß-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 21: 489-496.

573. Markopoulou CE, Derekà, VE, Vavouraki HN, Pepelassi EE, Mamalis AA, et al. (2011) Effect of rhbfgf-1 combined with bone grafts on human periodontal cell differentiation. Growth Factors 29: 14-20.

574. Liu HC, Ei L, Wang DS, Su F, Wu X, et al. (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A 17: 2417-2433.

575. Ohara T, Iitaya T, Usami K, Ando Y, Sakurai H, et al. (2010) Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A 94: 800-805.

576. Tomonoura A, Mizuno D, Hisada A, Kuno N, Ando Y, et al. (2010) Differential effect of scaffold shape on dentin regeneration. Ann Biomed Eng 38: 1664-1671.

577. Yang X, Yang F, Walboomers XF, Bian Z, Fan M, et al. (2010) The performance of dental pulp stem cells on nanofibrous PCL/Gelatin/Nha Scaffolds. J Biomed Mater Res A 93: 247-257.

578. Viale-Bouroncle S, Bey B, Reichert TE, Schmalz G, Morsczeck C (2011) ß-Tricalcium-phosphate stimulates the differentiation of dental follicle cells. J Mater Sci Mater Med 22: 1719-1724.