Dissection of $\alpha_4\beta_7$ integrin regulation by Rap1 using novel conformation-specific monoclonal anti-β_7 antibodies

Tsuyoshi Sato¹, Sayaka Ishihara¹, Ryoya Marui¹, Junichi Takagi² & Koko Katagiri¹*

Integrin activation is associated with conformational regulation. In this study, we developed a system to evaluate conformational changes in $\alpha_4\beta_7$ integrin. We first inserted the PA tag into the plexin-semaphorin-integrin (PSI) domain of β_7 chain, which reacted with an anti-PA tag antibody (NZ-1) in an Mn^{2+}-dependent manner. The small GTPase Rap1 deficiency, as well as chemokine stimulation and the introduction of the active form of Rap1, Rap1V12, enhanced the binding of NZ-1 to the PA-tagged mutant integrin, and increased the binding affinity to mucosal addressing cell adhesion molecule-1 (MAdCAM-1). Furthermore, we generated two kinds of hybridomas producing monoclonal antibodies (mAbs) that recognized Mn^{2+}-dependent epitopes of β_7. Both epitopes were exposed to bind to mAbs on the cells by the introduction of Rap1V12. Although one epitope in the PSI domain of β_7 was exposed on Rap1-deficient cells, the other epitope in the hybrid domain of β_7 was not. These data indicate that the conversion of Rap1-GDP to GTP exerts two distinct effects stepwise on the conformation of $\alpha_4\beta_7$. The induction of colitis by Rap1-deficient CD4+ effector/memory T cells suggests that the removal of constraining effect by Rap1-GDP on $\alpha_4\beta_7$ is sufficient for homing of these pathogenic T cells into colon lamina propria (LP).

Lymphocyte adhesion and migration are important for the generation and execution of immune and inflammatory responses. Integrins are a family of α/β heterodimeric adhesion receptors that transmit signals bi-directionally across the plasma membrane¹–³. In the multistep leukocyte adhesion cascade, selectins generally mediate rolling, and integrins mediate subsequent arrest. In contrast, the gut homing integrin $\alpha_4\beta_7$ mediates leukocyte rolling and arrest in vivo⁴. MAdCAM-1, a ligand for $\alpha_4\beta_7$, is constitutively expressed in postcapillary venules of intestinal lamina propria (LP) and acts as a key addressin for intestinal homing⁵. Therefore, the adhesive activity of $\alpha_4\beta_7$ directly reflects the ability of cells to move to the mucosal tissues of the intestine.

Regulation of T-cell trafficking by both Rap1-GTP and -GDP is a key control mechanism of the lymphocyte adhesion cascade⁶. Rap1-GTP recruits downstream effectors, such as RAPL (regulator of cell polarization and adhesion enriched in lymphoid tissues), which binds integrin α chain, and RIAM (RAP1-interacting adapter molecule) and talin which bind integrin β chain⁷–⁹. Rap1-GDP suppresses lymphocyte rolling behaviors via activation of LOK (lymphocyte-orientated kinase) and phosphorylation of ERM (ezrin, radixin and moesin)¹⁰. The T cell number in mesenteric lymph nodes is important for mucosal tolerance. Integrin activation by Rap1-GTP plays an important role in the circulation of naive T (Tₙ) cells, whereas Rap1-GDP in resting Tₙ and effector/memory T (Tₑₑₘ) cells limits rolling behaviors in blood vessels and retards lymphocyte homing¹⁰. Therefore, Rap1 deficiency leads to lymphopenia and the generation of pathogenic Tₑₑₘ cells in lymph nodes. Furthermore, it facilitates homing of Tₑₑₘ cells into the colon, which exacerbates spontaneous T-cell-dependent colitis and tubular adenomas¹⁰. Excess infiltration of Tₑₑₘ cells by Rap1 deficiency points to the involvement of Rap1-GDP in the regulation of the activation of $\alpha_4\beta_7$.

Binding of $\alpha_4\beta_7$ to MAdCAM-1 with high affinity is critical step for lymphocyte arrest. The regulation of the ligand-binding affinity is associated with conformational rearrangement of the integrin molecule¹¹. Previous studies showed that integrin extracellular domains existed in distinct global conformational states that differed

¹Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa 252-0373, Japan. ²Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan. *email: katagirk@kitasato-u.ac.jp
Figure 1. Detection of conformational changes in αβ7 using a PA tag. (a) (Left) A model of the conformational states of the extracellular domain of αβ7: bent form with a closed headpiece in low affinity and extended form with an open headpiece in high affinity. (Right) The binding of wild-type (wt) BAF cells to MAdCAM-1 in the presence of 1 mM Ca2+/Mg2+, or 0.5 mM Mn2+. The IMF (Mean Fluorescence Intensity) of binding to MAdCAM-1-Fc was normalized to the IMF of anti-β7 (FIB504). The IMF is presented as the fold-increase relative to that of wt cells in the presence of 1 mM Ca2+/Mg2+ values of 1. Data represent the mean ± SE of three independent experiments. *P < 0.005, versus in the presence of Ca2+/Mg2+. (b) (Upper) Systematic overview of the gene targeting strategy. The position of the single-guide RNA target site of exon 3 is indicated by an underline. (Lower) Flow cytometry profiles of anti-β7 of control or knockout cells using CRISPR/Cas9-mediated genome editing is shown. (c) (Left) Insertion sites of the PA tag. The PA tag sequence was inserted at the indicated sites of the β7 sequence in the designed mutants (Pains 1–4). (Right) Flow cytometry profiles of anti-β7 of BAF cells transfected with each designed mutant. (d) (Left) The binding of NZ-1 to each transfectant in the presence of 1 mM Ca2+/Mg2+, or 0.5 mM Mn2+. The IMF of binding of each transfectant to NZ-1 was normalized to the IMF of anti-β7, and is presented as the fold-increase relative to that of each transfectant in the presence of 1 mM Ca2+/Mg2+ values of 1. Data represent the mean ± SE of three independent experiments. (Right) Flow cytometry profiles of NZ-1 of Pains1 and Pains2 in the presence of 1 mM Ca2+/Mg2+, or 0.5 mM Mn2+. *P < 0.001, versus in the presence of Ca2+/Mg2+.

in their affinity for ligands: a low-affinity bent conformation with a close headpiece and a high-affinity extended conformation with an open headpiece.12–14 The equilibrium among these different states is regulated by integrin inside-out signaling and extracellular stimuli, such as divalent cations. Compared with the low-affinity state in Ca2+/Mg2+, the removal of Ca2+ or the addition of Mn2+ results in a marked increase in ligand-binding of almost all integrins15. There are few conventional activation-specific antibodies to recognize only activated αβ7.16,17

In this study, to explore the effects of Rap1 deficiency on the conformation of αβ7, we developed an epothei grafting system to detect conformational changes in αβ7 by inserting a PA tag into the PSI domain of the β7 chain. The PA tag was a 12-residue peptide (GVAMPGARDVV) derived from human podoplanin, which is recognized by NZ-1.18 We also prepared one rat mAb (G3 mAb), in which the epitope was located in the PSI domain, as was the case with the grafting site of the PA tag. Using NZ-1 or G3 mAb, we revealed that Rap1 deficiency, as well as chemokin stimulation, induced the active conformation of αβ7, suggesting that Rap1-GDP restricts conformation of αβ7 in an inactive state. The other rat mAb (H3 mAb), in which the epitope was located in the hybrid domain of the β7 chain, recognized the active conformation of αβ7 on Rap1V12-expressing cells, but not on Rap1-deficient cells. These data suggested that Rap1-GTP further promoted conformational change leading to high-affinity αβ7. Consistent with these data, Rap1-deficient CD4+ TES6 cells (pathogenic T cells), which home to colon LP in αβ7-MAdCAM-1-dependent manner and induce colitis, exhibited increased expression of the epitope recognized by G3 mAb but not H3 mAb. Thus, constraining effect by Rap1-GDP on αβ7 presumably contributes to suppress excessive infiltration of pathogenic T cells into colon LP and prevent the development of colitis.

Results
Development of a system to measure the active conformation of αβ7 by inserting a PA tag.

αβ7 showed low-affinity state to MAdCAM-1 in Ca2+/Mg2+, and the addition of Mn2+ increased the binding affinity of αβ7 to MAdCAM-1 (Fig. 1a). To probe the conformational state of αβ7, using the PA-tag-NZ-1 system (Fig. 1a), a BAF cell line (BAF cells), in which the β7 chain was knocked-out using CRISPR/Cas9-mediated genome editing, and β7 chains cDNA which were inserted PA tag into 4 locations (Pains 1: 23/24, Pains 2: 29/30, Pains 3: 427/428, Pains 4: 431/432) were introduced into BAF cells (Fib. 1bc). These insertion mutants of β7-expressing cells were stained with NZ-1 or FIB504 (conventional mAb against mouse/human β7, which recognizes the binding sites of αβ7 with MAdCAM-1) in the presence of 1 mM Ca2+/Mg2+ or 0.5 mM Mn2+, and analyzed by flow cytometry. All mutants of β7 were approximately equally expressed on the cell surface (Fig. 1c). PA expression on the surface of Pains2-expressing cells (Pains2 cells) was reduced in the low-affinity αβ7, with the bent conformation in the presence of Ca2+/Mg2+ and exhibited an eightfold increase in the high-affinity αβ7 with the extended conformation in the presence of Mn2+ (Fig. 1d). In the cells expressing other insertion mutants of β7, PA was exposed to be recognized by NZ-1 in the bent conformation, the same as in the extended conformation of β7 (Fig. 1d). These data showed that Pains2 in the PSI domain of β7 was an appropriate PA tag insertion design.

As exogenous addition of antibodies that preferentially bind to the extended conformation can shift the equilibrium toward the high-affinity state of integrins, they often activate integrins from outside the cell. Therefore, we confirmed the conformational change in αβ7 in the presence of Mn2+ using the Fv-clasp of NZ-1. The Fv-clasp of NZ-1, an artificially designed small antibody fragment of 37 kDa, was used as a reporter of conformational change, as it did not affect the equilibrium between the high- and low-affinity states.19 Using Fv-clasp of NZ-1, the expression of PA tag exhibited a 11-fold increase in the presence of Mn2+, compared to that in the presence of Ca2+/Mg2+ (Fig. 2), indicating that the surface expression of PA precisely reflects the active conformation of αβ7.

Rap1 deficiency induced a conformational change in αβ7. A conformational equilibrium between bent (low-affinity) and extended (high-affinity) states of integrin was found to be regulated by inside-out signaling such as Rap1. Using Pains2 cells, we examined the effects of Rap1 on the conformational state of αβ7. To this end, we introduced the GTP-binding form of Rap1, Rap1V12, Rap1 GTPase activating protein (GAP), Spa-1,
and knocked down of Rap1α/b in PAins2 cells (Fig. 3a). We confirmed that CXCL12-induced Rap1 activation was inhibited in Spa-1-expressing PAins2 cells (Fig. 3b).

Next, we examined the binding activity of α4β7 on each transfectant to soluble MAdCAM-1 in the presence or absence of CXCL12. As shown in Fig. 3c, CXCL12 stimulation elevated the binding of α4β7 on control cells to soluble MAdCAM-1, indicating that chemokine stimulation shifted the equilibrium of α4β7 toward high-affinity state. As expected, overexpression of Rap1V12 increased the binding of α4β7 to soluble MAdCAM-1, without CXCL12 stimulation (Fig. 3c). The inhibition of Rap1 activation by overexpression of Spa-1 suppressed CXCL12-dependent increase in the binding of α4β7 to MAdCAM-1 (Fig. 3c). Knockdown of Rap1 also significantly increased the binding activity, but the effect was weak compared to that of Rap1V12-expressing cells (Fig. 3c).

These data suggest that Rap1-GDP locks α4β7 in the low-affinity state and that Rap1-GTP further promotes an equilibrium toward high-affinity state of α4β7.

Subsequently, we examined changes in the surface expression of the PA tag in each transfectant. CXCL12 stimulation exhibited a 1.3-fold increase in PA surface expression, and overexpression of Spa-1 completely inhibited PA surface expression induced by CXCL12 stimulation (Fig. 3d), indicating that the conversion of Rap1-GDP to GTP is necessary for the surface expression of PA. Overexpression of Rap1V12 significantly promoted PA surface expression (Fig. 3d). PA surface expression was higher in Rap1-deficient cells as compared with that in Rap1V12-expressing cells (Fig. 3d), suggesting that the loss of Rap1-GDP induced a conformational change in α4β7 and that this change is different from the Rap1V12-induced conformation of α4β7. These results indicate that Rap1-GDP suppresses conformational changes to active form of α4β7.

In addition, talin is reported to bind Rap1-GTP and integrin, and trigger integrin activation. Therefore, we examined the effect of the knockdown (KD) of talin. The abundance of talin protein in talin KD cells was reduced to 5% of control cells (Fig. S1a). As shown in Fig. S1b, the silencing of talin reduced basal surface expression of PA, whereas CXCL12 increased surface expression of PA in talin-KD cells at a same proportion as control cells. This result suggests that talin is a basic cytoskeletal component necessary for active conformation of α4β7, rather than a downstream effector molecule of chemokine-mediated signaling.

Identification and characterization of rat mAbs to detect Rap1-dependent conformational changes in α4β7. To establish hybridomas producing mAbs that exclusively reacted with α4β7 in an Mn2+-dependent manner, immunogenic N-terminal amino acids (1–458) of β7-MBP fusion protein were injected into rats. A hybridoma producing rat mAb G3 (γ2/κ) for Mn2+-dependent conformation of α4β7 was established. As shown in Fig. 4a, the G3 epitope was almost not detected in the low-affinity α4β7 with a bent conformation in the presence of Ca2+/Mg2+ but increased 4.8-fold in the high-affinity α4β7 with the extended conformation in the presence of Mn2+.

Next, we tested the cross-reactivity of the G3 mAb with human α4β7 using Jurkat cells transfected with human β7. The surface expression level of β7 was determined in the Jurkat cells using FIB504 (Fig. 4a). G3 epitope expression in the Jurkat cells was extremely low in the presence of Ca2+/Mg2+ and increased fivefold in the presence of Mn2+ (Fig. 4a). To identify the epitope of G3, we constructed murine β7/β7 chimeras and the deletion mutant (Δ1–19) of β7. These mutants were co-expressed with endogenous α in β7-knockout BAF cells, and the surface expression level was confirmed by the immunostaining with FIB504 (Fig. 4b). As shown in Fig. 4b, the deletion of N-terminal 1–19 a.a. of β7, which does not exist in β7, let G3 mAb lose the reactivity to murine β7. Thus, flow cytometric analysis of these transfectants showed that the β7 segment 1–19 a.a. located in the PSI domain was close to the PA grafting site (Fig. 1c). As expected, G3
Figure 3. The conformation of α4β7 was regulated by Rap1. (a) Immunoblot of the total cell lysates from the cells introduced with control, T7-Rap1V12, flag-Spa-1-expressing, or Rap1a/b-knockdown cells with anti-T7, flag, or Rap1 antibodies. (b) GTP-bound Rap1 was analyzed by a pull-down assay using GST-Ral-GDS-RBD. Control or SPA-1-expressing cells were stimulated with 100 nM of CXCL12 at the indicated times, lysed, and subjected to a pull-down assay. Bound Rap1 and total Rap1 were detected by immunoblotting using an anti-Rap1 antibody. (c) Ligand binding affinity to soluble MAdCAM-1-Fc. The binding of each transfectant to soluble MAdCAM-1-Fc in the presence or absence of CXCL12. The IMF of soluble MAdCAM-1 binding was normalized to the IMF of anti-β7 (FIB504) and is presented as the fold-increase relative to that of unstimulated control cell values of 1. Data represent the mean ± SE of three independent experiments. *1 P<0.001, versus unstimulated control cells, *2 P<0.001, versus unstimulated control cells, *3 P<0.001, versus CXCL12-stimulated control cells, *4 P<0.05, versus unstimulated control cells. (d) The binding of NZ-1 to each transfectant in the presence or absence of CXCL12. The IMF of NZ-1 binding was normalized to the IMF of anti-β7 and is presented as the fold-increase relative to that of unstimulated control cell values of 1. Data represent the mean ± SE of three independent experiments. *1 P<0.001, versus unstimulated control cells, *2 P<0.001, versus unstimulated control cells, *3 P<0.001, versus CXCL12-stimulated control cells, *4 P<0.001, versus unstimulated control cells.
identify the epitope of H3, we constructed murine/human β7 chimeras. These chimeras were co-expressed with endogenous α4 in β7-knockout BAF cells, and the surface expression level was confirmed by immunostaining with FIB504 (Fig. 5b). Flow cytometry profiles of the transfectants with anti-β7 or G3 in the presence or absence of CXCL12. The IMF of binding to G3 mAb was normalized to the IMF of anti-β7 and is presented as the fold-increase relative to that of unstimulated control cell values of 1. Data represent the mean ± SE of three independent experiments. *P < 0.001, versus unstimulated control cells, *P < 0.005, versus CXCL12-stimulated control cells, *P < 0.001, versus unstimulated control cells.

epitope expression increased 1.2-fold with CXCL12 stimulation (Fig. 4c). Overexpression of Rap1V12 enhanced the expression of G3 epitope to 1.9-fold (Fig. 4c). Rap1-deficiency also increased the expression of G3 epitope to 2.8-fold (Fig. 4c). Consistent with the results using the PA-tag-NZ-1 system, these data indicate that Rap1-GDP locks the conformation of αβ7 in inactive state.

We also established a hybridoma producing rat mAb H3 (γ2/κ) to detect Mn2+-dependent conformation of αβ7. As shown in Fig. 5a, the expression of H3 epitope was almost not detected in the low-affinity of αβ7 with the bent conformation in the presence of Ca2+/Mg2+ and increased 33-fold in the presence of Mn2+. H3 mAb recognized the high-affinity αβ7. Subsequently, we explored the cross-reactivity of H3 mAb with human β7, using Jurkat cells transfected with human β7. H3 epitope on Jurkat cells was not expressed in the presence of Mn2+ (Fig. 5a), indicating that H3 mAb did not recognize the active conformation of human β7. To identify the epitope of H3, we constructed murine/human β7 chimeras. These chimeras were co-expressed with endogenous α4 in β7-knockout BAF cells, and the surface expression level was confirmed by immunostaining with FIB504 (Fig. 5b). Flow cytometric analysis of these transfectants showed that the β7 segment 373–393 a.a. located in the hybrid domain was required for binding of H3 mAb to β7 (Fig. 5b). As expected, the expression of H3 epitope also increased 1.4-fold with CXCL12 stimulation (Fig. 5c). Overexpression of Rap1V12 enhanced the expression of H3 epitope to 3.7-fold (Fig. 5c). However, Rap1 deficiency did not increase the expression of H3 epitope with or without CXCL12 stimulation (Fig. 5c). These data indicate that the expression of H3 epitope requires Rap1-GTP.

In our previous paper10, we demonstrated that T cell-specific Rap1-deficient mice developed severe colitis with infiltration of CD4+ TEM cells into colon LP and that adoptive transfer of these cells into normal mice induced colitis. Previous study also demonstrated that αβ7-MAdCAM-1-dependent rolling was significantly promoted in Rap1-deficient CD4+ TEM cells10. In the present study, the injection of a MAdCAM-1 inhibitory mAb into T cell-specific Rap1-deficient mice prevented the development of colitis (Fig. 6a, Fig. S3). These findings confirmed that the αβ7-MAdCAM-1 interaction was critical for the development of colitis in T cell-specific Rap1a/b-/- knockout mice. Therefore, we explored whether a conformational change in αβ7 was observed in pathogenic T cells. Since CCR9 and its ligand CCL25 are found to play essential roles in gut-homing of TEM cells21, we used CCL25 for the stimulation of CD4+ TEM cells. As shown in Fig. 6, G3 epitope significantly increased in pathogenic T cells as compared to that in wild-type TEM cells, although the surface expression of αβ7 was elevated in the pathogenic T cells. CCL25 increased the expression of G3 epitope in control cells but not in pathogenic T cells (Fig. 6b). As expected, the expression of the epitope recognized by H3 mAb was reduced and not induced by CCL25 stimulation in pathogenic T cells, although the addition of Mn2+ induced H3 epitope in these cells at a similar level to that in wild-type TEM cells (Fig. 6c). These data suggest that the epitope in αβ7 is presented for the infiltration of the pathogenic T cells into colon LP through rolling and arrest on MAdCAM-1-expressing endothelial cells.

In addition, previous study reports that CCL25 and CXCL10 induces different active conformation of αβ722, but there is no difference between the effects of CCL25 and CXCL10 in the expression of G3 and H3 epitopes on CD4+ TEM cells (Fig. S4).

Discussion

In this study, we developed a sensitive system to probe the conformational states of αβ7, using the insertion of PA tag into the PSI domain of the β7 chain. Using this system, we found that the conformation of αβ7 was regulated by Rap1. To examine the conformational changes of β7 in primary lymphocytes, we isolated two rat mAbs (G3 and H3) against activation-dependent αβ7. G3 mAb recognized the epitope in the PSI domain of β7, and H3 mAb recognized the epitope in the hybrid domain of β7 (Fig. 7a). Both epitopes were hidden in the low-affinity αβ7 with the bent conformation and exposed in the high-affinity αβ7 with the extended conformation induced by the addition of Mn2+. The introduction of Rap1V12 induced the exposure of G3 and H3 epitopes to be recognized by mAbs. However, the expression of G3 epitope was increased by depletion of Rap1-GDP.
(a) G3 epitope

Mouse β_1, $\text{Ca}^{2+}/\text{Mg}^{2+}$, Mn^{2+}

Human β_1, $\text{Ca}^{2+}/\text{Mg}^{2+}$, Mn^{2+}

(b) Mapping of G3 epitope

Mouse β_1, $\text{ELD T K I T S G E A A E W E D P D L S L}$

Human β_1, $\text{E L D A K T P S T G A T E W R N P H L S M}$

Mouse β_1, Q T T K

(c) Expression of G3 epitope

None

CXCL12
(a) Mouse β_7, H3 epitope

Mouse β_7, H3

Human β_7, Mn$^{2+}$

(b) Mapping of H3 epitope

Mouse β_7 (mβ_7), Human β_7 (hβ_7), Containing the epitope

mβ_7

mβ_7/hβ_7 (1-372)

mβ_7/hβ_7 (1-404)

mβ_7/hβ_7 (1-393)

Mouse β_7, TVTLEHPPLPGVSMFSHIC

Human β_7, TVTLEHPSSLPGVHISYESQC

(c) Expression of H3 epitope

Relative expression ratio

Control, Rap1V12, Spa-1, Rap1KD
The binding of α4β7 to the PSI domain of β7 was suppressed by Rap1-GDP, and loss of Rap1-GDP was sufficient for maximal expression of these epitopes (Fig. 7). On the other hand, H3 epitope in the hybrid domain of β7 was not exposed by only deletion of Rap-GDP. The overexpression of Rap1V12 as well as the addition of Mn2+, which increased the binding of α4β7 to soluble MadCAM-1, induced the exposure of H3 epitope (Figs. 3c, 5c). Thus, the surface expression of H3 epitope was strongly correlated with the binding activity of α4β7 to soluble MadCAM-1. These findings indicate that H3 mAb might detect the swing-out of the hybrid domain in the β7 chain, which is predicted to stabilize the high-affinity conformation (Fig. 7). These data suggest that Rap1-GDP restrained the bent conformation in α4β7 and maintain the binding of α4β7 to MadCAM-1 in low-affinity and to pathogenic TEM cells. In addition, as the inhibition of the conformational change in α4β7 seemed to be effective hybrid domain of β7 was not exposed by only deletion of Rap-GDP. The loss of Rap1-GTP had marginal effect GDP was sufficient for maximal expression of these epitopes (Fig. 7). On the other hand, H3 epitope in the hybrid domain of β7 was not exposed by only deletion of Rap-GDP. The overexpression of Rap1V12 as well as the addition of Mn2+, which increased the binding of α4β7 to soluble MadCAM-1, induced the exposure of H3 epitope (Figs. 3c, 5c). Thus, the surface expression of H3 epitope was strongly correlated with the binding activity of α4β7 to soluble MadCAM-1. These findings indicate that H3 mAb might detect the swing-out of the hybrid domain in the β7 chain, which is predicted to stabilize the high-affinity conformation (Fig. 7). These data suggest that Rap1-GDP restrained the bent conformation in α4β7 and maintain the binding of α4β7 to MadCAM-1 in low-affinity and to pathogenic TEM cells. In addition, as the inhibition of the conformational change in α4β7 seemed to be effective hybrid domain of β7 was not exposed by only deletion of Rap-GDP. The loss of Rap1-GTP had marginal effect GDP was sufficient for maximal expression of these epitopes (Fig. 7). On the other hand, H3 epitope in the hybrid domain of β7 was not exposed by only deletion of Rap-GDP. The overexpression of Rap1V12 as well as the addition of Mn2+, which increased the binding of α4β7 to soluble MadCAM-1, induced the exposure of H3 epitope (Figs. 3c, 5c). Thus, the surface expression of H3 epitope was strongly correlated with the binding activity of α4β7 to soluble MadCAM-1. These findings indicate that H3 mAb might detect the swing-out of the hybrid domain in the β7 chain, which is predicted to stabilize the high-affinity conformation (Fig. 7). These data suggest that Rap1-GDP restrained the bent conformation in α4β7 and maintain the binding of α4β7 to MadCAM-1. The overexpression of Rap1V12 as well as the addition of Mn2+, which increased the binding of α4β7 to soluble MadCAM-1, induced the exposure of H3 epitope (Figs. 3c, 5c). Thus, the surface expression of H3 epitope was strongly correlated with the binding activity of α4β7 to soluble MadCAM-1. These findings indicate that H3 mAb might detect the swing-out of the hybrid domain in the β7 chain, which is predicted to stabilize the high-affinity conformation (Fig. 7).
β vector. Then, as the fold-increase relative to that of unstimulated wt cell values of 1. Data represent the mean ± SE of three independent experiments. *1

ACT CAC TGC CTC CCA GGC GTT GCC ATG CCA GGT GCC GAA GAT GAT GTG GTG GAA GCC CAC GTC CTA

GTG CCT TCC TGC CAG AAG TGT -3

CCA GGT GCC GAA GAT GAT GTG GTG CAC TGC CTC CCA GAA GCC CAC -3

GAC CTG TCT CTG CAG GGC GTT GCC ATG CCA GGT GCC GAA GAT GAT GTG GTG GGA TCC TGC CAG CCA

-CCT

′

to treat colitis. By recognizing conformational changes in α4β7, the system can serve as a useful tool for studies on α4β7 activation mechanisms and the development of new therapies for colitis and subsequent colorectal cancer.

Methods

Mice. All animal experiments were carried out in accordance with Regulations for the Care and Use of Laboratory Animals in Kitasato University, and the protocols used in this study were ethically approved by the Institutional Animal Care and Use Committee for Kitasato University.

Rap1a/b mice containing floxed exons 2–3 of Rap1a, Rap1b mice containing floxed exon 1 of Rap1b were maintained under specific pathogen–free conditions. Those mice were crossed with CD4-Cre mice, yielding mice with T cell-specific deletion of Rap1a/b18.

Cell lines. Ba/F3 cells (BAF cells) and Jurkat cells were cultured as previously reported31. BAF cells were cultured with RPMI1640 medium containing 10% fetal calf serum, 50 mM beta-mercaptoethanol, and 1% WEHI-3 conditional medium as a source of interleukin 3. Jurkat cells were maintained with RPMI1640 medium containing 10% fetal calf serum. All cell lines were tested for mycoplasma contamination by 4′,6-diamidino-2-phenylindole (DAPI) staining with negative results.

Antibodies and reagents. Fluorescence-conjugated anti-mouse CD4, CD44, anti-β7 (FIB504) (BioLegend), anti-Rap1 (BD Biosciences), β-actin (Sigma), T7 (MBL), Flag (Wako), anti-talin (Abcam), APC-conjugated anti-Rat or human IgG, and peroxidase-conjugated goat anti-Rabbit or -mouse IgG (Cell Signaling) were used for flow cytometry and immunoblotting. Anti-MAdCAM-1 (MECA-367) (ATTCC), G3 and H3 mAb were purified using HiTrap Protein G HP (GE healthcare). Mouse CXCL12, CCL25 and CXCL10 were purchased from R&D Systems. The single-chain Fv of NZ-1 (Fv-clasp) was created by fusing an anti-parallel coiled-coil structure derived from the SARAH domain of human Mst1 kinase to the fragments of \(VH \) and \(VL \) of NZ-1. NZ-1VH-SARAH and \(VL \)-SARAH were separately expressed in strain BL21, and cultured in standard LB media. After the cell lysis by sonication, the denatured and solubilized V\(\text{H} \)-SARAH and V\(\text{L} \)-SARAH chains were then mixed, and the denaturing reagent was diluted to promote protein folding, and correctly-folded, disulfide-bonded Fv-clasp was purified as previously reported32. Fv-clasp was fluorescently labeled with Alexa Fluor 647 Amine- Reactive Dye (Thermo Fisher Scientific).

DNA constructs and transfection. cDNA encoding murine β7 cDNA was subcloned into a pcDNA3.1 vector. Then, β7 mutants with a PA tag were generated from a pcDNA3.1-murine β7 construct using inverse PCR. The following oligonucleotides and their corresponding complimentary strands were used: for PAins 1: 5′-CCT GACCTGTCCTCGACGGGCGTCCATGCACCATGCGAACAGATGTGTTGGGATCCTGCAAGCCA GT-3′; for PaIns 2: 5′-GGATCCCTGGCAAGGCGTTCGGCAGGATGTTGGGATTCCTGCAAGCCA GT-3′; for PaIns 3: 5′-GAGGCTAGCTGATTAGTTGGGATTCCTGCAAGCCA GTT-3′; for PaIns 4: 5′-GGGCTCGTCGCGGATGTTGGGATTCCTGCAAGCCA GTT-3′; and for PaIns 5: 5′-GGTCCTCGTCGCGGATGTTGGGATTCCTGCAAGCCA GTT-3′.

The insertion positions are shown in Fig. 1c. To generate expression constructs of the PaIns mutants, they were subcloned into an EcoRI/XbaI site of a lentivirus vector (CSII-EF-MCS; a gift from H. Miyoshi, RIKEN, Wako, Japan). A Rap1V12 mutant and Spa-1 were generated as previously described33. The fidelity of all the constructs was verified by sequencing.

Figure 6. Expression of G3 epitope in colitis-causing CD4+ Tem cells. (a) The administration of anti-MAdCAM-1 inhibited the development of spontaneous colitis in T cell-specific Rap1a/b knockout mice (colitis mice). (Upper) The body weights of colitis mice injected with control or anti-MAdCAM-1 Ab are presented as percentages of the original body weight. (n = 3 in each group). *P < 0.05 versus control Ab. (middle) Histology of intestinal inflammation in a set (×1) of the littermates of colitis mice that received control or anti-MAdCAM-1 Ab (×40). Scale bar, 500 μm. (right) Light microscopic assessment of damages of colitis. (lower) The density of infiltrated CD4+ T cells in the colon of colitis mice was evaluated using an immunohistological study. *P < 0.02 versus control Ab. (right) Frozen sections of the colon from colitis mice that received control or anti-MAdCAM-1 Ab were stained with anti-CD4 (green) and DAPI (red). Low (×100) Scale bar, 100 μm. (b) The expression of G3 epitope in CD4+ Tem cells. (Upper) The binding of G3 to wt and Rap1-deficient (Rap1KO) CD4+ (CD44+) Tem cells in the presence or absence of CCL25 (left) and with 1 mM Ca\(^{2+}\)/Mg\(^{2+}\), or 0.5 mM Mn\(^{2+}\) (right). The IMF of binding to G3 mAb was normalized to the IMF of anti-β7 (FIB504) and is presented as the fold-increase relative to that of unstimulated wt T cell values of 1. Data represent the mean ± SE of three independent experiments. *1P < 0.005, versus unstimulated wt cells. *2P < 0.001, versus unstimulated wt cells. (Lower) Flow cytometry profiles of anti-β7 on unstimulated wt and Rap1KO Tem cells (CD44+CD62L-) cells, and G3 mAb on β7+ gated wt and Rap1KO Tem. (c) (Upper) The binding of H3 mAb to wt and Rap1 KO CD4+ (CD44+) Tem cells in the presence or absence of CCL25 (left) and with 1 mM Ca\(^{2+}\)/Mg\(^{2+}\), or 0.5 mM Mn\(^{2+}\) (right). The IMF of binding to H3 mAb was normalized to the IMF of anti-β7, and is presented as the fold-increase relative to that of unstimulated wt cell values of 1. Data represent the mean ± SE of three independent experiments. *1P < 0.001 versus unstimulated wt cells. *2P < 0.001 versus unstimulated wt cells. (Lower) Flow cytometry profiles of anti-β7 on unstimulated wt and Rap1KO Tem (CD44+CD62L-) cells, and H3 mAb on β7+ gated wt and Rap1KO Tem.
MBP-β7 and Freund’s complete adjuvant (BD Biosciences). Then, 2 weeks later, lymphocytes were collected from iliac lymph nodes and fused with a murine myeloma cell line, SP2/0, using GenomeONE (ISHIHARA SANGYO)33. Hybridoma clones producing mAbs against the active form of β7 were screened by flow cytometry formed as described previously31. For NZ-1, G3 or H3 mAbs staining, cells were washed with binding buffer (0.1% BSA, 1 mM CaCl2, 1 mM MgCl2 or 0.1% BSA, 0.5 mM MnCl2 in HBSS), resuspended in 50 μl of the same buffer, and incubated for 30 min at 37 °C with 10 μg/ml of each mAb in the presence or absence of 0.5 mM EDTA. MBP-β7 was purified from cell lysates using a pMAL Protein Fusion and Purification System (New England Biolabs).

Generation of a hybridoma producing mAbs G3 or H3. DNA encoding N-terminal 1–458 amino acids of murine β7 was subcloned into a pMALc2x vector and that vector was transformed into E.coli BL21 competent cells. To synthesize mAbs, maltose binding protein (MBP)-β7, BL21 were cultured at 37 °C to reach an OD600 of 0.4–0.6, and then isopropyl β-D-thiogalactopyranoside was added to a concentration of 0.2 mM and incubated at 30 °C for 3 h. The cells were lysed in lysis buffer (0.1% Triton X-100, 20 mM Tris–HCl, 200 mM NaCl, and 1 mM EDTA). MBP-β7 was purified from cell lysates using a pMAL Protein Fusion and Purification System (New England Biolabs).

RNA-mediated interference and gene introduction via lentiviral transduction. RNA-mediated interference was used to suppress mouse expression. As previously reported34, a 19-nucleotide -specific sense RNA sequences or a scrambled control RNA sequence of (Rap1a: 5′-GAA TGG CCA AGG GTT TGC A-3′, Rap1b: 5′-AGA CACTGTAGTGTCTACA-3′, and talin: 5′-CGG TGA AGA CTA TCA TGG T-3′) were introduced into BAF cells using a lentivirus vector with GFP (a gift from Dr. Miyoshi H., RIKEN, Wako, Japan) containing the RNAi construct under control of the H1 promoter cassette, respectively. The production and concentration of lentivirus particles were assessed as previously described35. The transduction efficiencies were greater than 90%. A GFP high population was collected by cell sorting and subjected to immunoblot analysis.

Immunoblot analysis. BAF cells were lysed in buffer (1% Nonidet P-40, 150 mM NaCl, 25 mM Tris–HCl [pH 7.4], 10% glycerol, 2 mM MgCl2, 1 mM phenylmethylsulfonylfuoride, 1 mM leupeptin, and 0.1 mM aprotinin). Cell lysates were subjected to immunoblotting35.

Pull-down assays. Rap1-GTP was pulled down with a glutathione S-transferase (GST)-RBD of RalGDS fusion protein, respectively34. Briefly, 105 cells were lysed in ice-cold lysis buffer (1% Triton X-100, 50 mM Tris–HCl [pH 7.5], 100 mM NaCl, 10 mM MgCl2, 1 mM phenylmethylsulfonyl fluoride, 1 mM leupeptin, and 0.5 mM aprotinin) and incubated for 1 h at 4 °C with GST-fusion proteins coupled to glutathione agarose beads. The beads were washed three times with lysis buffer and subjected to immunoblot analysis using an anti-Rap1 antibody. Immunoblotting of total cell lysates (5 × 104 cells) was also performed.

Assessment of activation epitopes by mAbs staining. Immunofluorescence flow cytometry was performed as described previously31. For NZ-1, G3 or H3 mAbs staining, cells were washed with binding buffer (0.1% BSA, 1 mM CaCl2, 1 mM MgCl2 or 0.1% BSA, 0.5 mM MnCl2 in HBSS), resuspended in 50 μl of the same buffer, and incubated for 30 min at 37 °C with 10 μg/ml of each mAb in the presence or absence of 0.5 μM CXCL12, CCL25 or CXCL10. Mean fluorescence intensities were measured using a Gallios flow cytometry or CytoFLEX (Beckman Coulter).

Generation of β7-deficient BAF cells by the CRISPR/Cas9 system. The guide sequence targeting exon of the mouse β7 was cloned into pX330 (Addgene #42230)37, pX330-U6-Chimeric_BB-CCBH-HPspCas9 was a gift from Feng Zhang (Addgene #42230; RRID: Addgene_42230). pCAG-EgfpFP was used to examine efficiency of the target DNA cleavage by the guide sequence and Cas9 activity. The resultant guide sequence was cloned into GFP expressing plasmid pDNA458 (Addgene #48138)38. pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang (Addgene plasmid #48138, https://n2t.net/addingene:48138; RRID: Addgene_48138). The PX458 plasmid was transfected into BAF cells. 24 h after transfection, cells were sorted GFP-high population, followed by limiting dilution. Expression of full length β7 protein in each isolated clone was tested by flowcytometry. The sequence of the primer used were as follows: β7; Exon, For-
8. Lafuente, E. & Boussiotis, V. A. Rap1 regulation of RIAM and cell adhesion.

7. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion

5. Firrell, J. C. & Lipowsky, H. H. Leukocyte margination and deformation in mesenteric venules of rat.

6. Kinashi, T. & Katagiri, K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, Rap1. Immunol. Lett. 93, 1–5 (2004).

Epitope mapping of G3 and H3. Human/murine β7, murine β1/β7 chimeras or Δ1–19 murine β7, were constructed using an In-Fusion HD cloning kit (Takara). The In-Fusion HD enzyme premix fuses multiple PCR-generated sequences and linearized vectors efficiently and precisely, utilizing a 20-bp overlap at their ends. This 20-bp overlap allows complementary base pairs between two pieces of DNA to anneal, leading to fragment joining. Therefore, when individual DNA fragments derived from human β7, murine β1 or β7 were amplified by PCR, a 20-bp overlap was engineered by designing custom primers (Table S1). The objective DNA fragments with a 20-bp overlap were joined into a linearized CSII-EF-MCS-IRES2-venus vector. The constructs were transduced to β7-knockout BAF cells by lentivirus. The binding of G3 or H3 to the BAF cells expressing the chimera β7 was measured in the presence of 0.5 mM Mn2+ by flow cytometry.

Anti-MAdCAM-1 antibody treatment of colitis. T cell-specific Rap1a/b knockout mice aged 4 or 5 weeks were injected intraperitoneally with PBS containing 1 mg of rat IgG or anti-MAdCAM-1 antibody39 on days 0, 7, and 21. Their body weights were measured every 2 days. Pathological or frozen sections were prepared on day 28.

Histological examination. Colon sections were fixed in 10% buffered formalin and embedded in paraffin. Paraffin-embedded colon sections were cut (3 μm), stained with haematoxylin and eosin and examined on an Olympus IX51 light microscope equipped with a CCD (charge-coupled device) camera. Tissues were graded semiquantitatively as described before10,40. Histological grades were assigned in a blinded manner on a scale of 0–5, as follows: grade 0, no changes observed; grade 1, minimal scattered mucosal inflammatory cell infiltrates, with or without minimal epithelial hyperplasia; grade 2, mild scattered to diffuse inflammatory cell infiltrates, sometimes extending into the submucosa and associated with erosions, with mild to moderate epithelial hyperplasia and mild to moderate mucin depletion from goblet cells; grade 3, moderate inflammatory cell infiltrates that were sometimes transmural, with moderate to severe epithelial hyperplasia and mucin depletion; grade 4, marked inflammatory cell infiltrates that were often transmural and associated with crypt abscesses or occasional ulceration, with marked epithelial hyperplasia, mucin depletion; and grade 5, marked transmural inflammation with severe ulceration or loss of intestinal glands.

Immunostaining. Preparation of frozen sections of the colon from colitis mice were performed as described previously. Sections were blocked for 1 h at 20 °C with PBS containing 10% goat serum and 0.1% Triton X-100 and incubated overnight at 4 °C with APC conjugated anti-CD4 antibody. Nuclei were stained with SlowFade Gold anti-fade reagent with DAPI (Invitrogen). Sections were examined on TCS SP8 (Leica).

Measurement of soluble MAdCAM-1 binding.. The binding of mouse MAdCAM-1-Fc to BAF cells was measured as described before10. Cells were suspended in 50 μl binding buffer (0.1% BSA, 1 mM CaCl2, 1 mM MgCl2, or 0.1% BSA, 0.5 mM MnCl2 in HBSS), and 2 × 105 cells/50 μl were then incubated with mouse MAdCAM-1-Fc (30 μg/ml)44. After two washes, samples were incubated for 20 min on ice with APC-conjugated mouse antibody to human IgG Fc-specific antibody (1 μg/ml). Unbound secondary antibody was removed by washing. Mean fluorescence intensities were measured using Gallios flow cytometry (Beckman Coulter).

Statistical analysis. Statistical analysis was performed using two-tailed Student’s t-test. P values less than 0.05 were considered significant.

Received: 14 February 2020; Accepted: 20 July 2020
Published online: 06 August 2020

References
1. Hogg, N., Patzak, I. & Willenbrock, F. The insider's guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11, 416–426 (2011).
2. Humphries, J. D., Chastney, M. R., Askari, J. A. & Humphries, M. J. Signal transduction via integrin adhesion complexes. Curr. Opin. Cell Biol. 56, 14–21 (2019).
3. Lock, J. G. et al. Clathrin-containing adhesion complexes. J. Cell Biol. 218, 2086–2095 (2019).
4. Yu, Y. et al. Structural specializations of alpha(4)beta(7), an integrin that mediates rolling adhesion. J. Cell Biol. 196, 131–146 (2012).
5. Firrell, J. C. & Lipowsky, H. H. Leukocyte margination and deformation in mesenteric venules of rat. Am. J. Physiol. 256, H1667–H1674 (1989).
6. Kinashi, T. & Katagiri, K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, Rap1. Immunol. Lett. 93, 1–5 (2004).
7. Katagiri, K., Maeda, A., Shimomakka, M. & Kinashi, T. RAP1, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4, 741–748 (2003).
8. Lafuente, E. & Boussiotis, V. A. Rap1 regulation of RIAM and cell adhesion. Methods Enzymol. 407, 345–358 (2006).
9. Gingras, A. R. et al. Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem. J. Cell Biol. 218, 1789–1809 (2019).
10. Ishihara, S. et al. Dual functions of Rap1 are crucial for T-cell homeostasis and prevention of spontaneous colitis. Nat. Commun. 6, 8982 (2015).
11. Bachmann, M., Kukuruzanen, S., Hytonen, V. P. & Wehrle-Haller, B. Cell adhesion by integrins. Physiol. Rev. 99, 1655–1699 (2019).
12. Schurpf, T. & Springer, T. A. Regulation of integrin affinity on cell surfaces. EMBO J. 30, 4712–4727 (2011).
13. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003).
14. Xiao, T., Takagi, J., Coller, B. S., Wang, J. H. & Springer, T. A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67 (2004).
15. Zhang, K. & Chen, J. The regulation of integrin function by divalent cations. Cell Adh. Migr. 6, 20–29 (2012).
16. Qi, J. et al. Identification, characterization, and epitope mapping of human monoclonal antibody J19 that specifically recognizes activated integrin alpha4beta7. J. Biol. Chem. 287, 15749–15759 (2012).
17. Hosen, N. et al. The activated conformation of integrin beta2 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat. Med. 23, 1436–1443 (2017).
18. Fujii, Y. et al. Tailored placement of a turn-forming PA tag into the structured domain of a protein to probe its conformational state. J. Cell Sci. 129, 1512–1522 (2016).
19. Arimori, T. et al. Fv-clasp: An artificially designed small antibody fragment with improved production compatibility, stability, and crystallizability. Structure 25, 1611–1622.e4 (2017).
20. Zha, L. et al. Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat. Commun. 8, 1744 (2017).
21. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003).
22. Sun, H. et al. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev. Cell 30, 61–70 (2014).
23. Wang, S. et al. Integrin alpha4beta7 switches its ligand specificity via distinct conformer-specific activation. J. Cell Biol. 217, 2799–2812 (2018).
24. Li, J. et al. Conformational equilibria and intrinsic affinities define integrin activation. EMBO J. 36, 629–645 (2017).
25. Nordenfelt, P., Elliott, H. L. & Springer, T. A. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119 (2016).
26. Honda, S. et al. Topography of ligand-induced binding sites, including a novel cation-sensitive epitope (APS) at the amino terminus, of the human integrin beta3 subunit. J. Biol. Chem. 270, 11947–11954 (1995).
27. Pokharel, S. M. et al. Integrin activation by the lipid molecule 25-hydroxycholesterol induces a proinflammatory response. Nat. Commun. 10, 1482 (2019).
28. Byron, A. et al. Anti-integrin monoclonal antibodies. J. Cell Sci. 122, 4099–4101 (2009).
29. Wynne, J. P. et al. Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. J. Cell Biol. 199, 317–330 (2012).
30. Katagiri, K. et al. Crucial functions of the Rap1 effector molecule RAP1 in lymphocyte and dendritic cell trafficking. Nat. Immunol. 5, 1045–1051 (2004).
31. Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell Biol. 20, 1956–1969 (2000).
32. Katagiri, K., Hattori, M., Minato, N. & Kinashi, T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol. Cell Biol. 22, 1001–1015 (2002).
33. Sado, Y., Inoue, S., Tomomo, Y. & Omori, H. Lymphocytes from enlarged iliac lymph nodes as fusion partners for the production of monoclonal antibodies after a single tail base immunization attempt. Acta Histochem. Cytochem. 39, 89–94 (2006).
34. Ebisuno, Y. et al. Rap1 controls lymphocyte adhesion cascade and interstitial migration within lymph nodes in RAPL-dependent and -independent manners. Blood 115, 804–814 (2009).
35. Katagiri, K., Imamura, M. & Kinashi, T. Spatiotemporal regulation of the kinase Ms1 by binding protein RAP1 is critical for lymphocyte polarity and adhesion. Nat. Immunol. 7, 804–814 (2006).
36. Katagiri, K., Shimomak, M. & Kinashi, T. Rap1-mediated lymphocyte function-associated antigen-1 activation by the T cell antigen receptor is dependent on phospholipase C-gamma1. J. Biol. Chem. 279, 11875–11881 (2004).
37. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
38. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
39. Picarella, D. et al. Monoclonal antibodies specific for beta7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J. Immunol. 158, 2099–2106 (1997).
40. Chen, H. et al. Extracellular vesicles from apoptotic cells promote TGFbeta production in macrophages and suppress experimental colitis. Sci. Rep. 9, 5875 (2019).

Acknowledgements
We would like to thank Ms. N. Saho for technical assistance. This work was supported by Japan Society for the Promotion of Science KAKENHI 16K19163 and 19K07612, Takeda Science Foundation, The Naito Foundation, Kitasato University Research Grant for young researchers. Suzuken Memorial Foundation.

Author contributions
T.S. and K.K. designed, performed experiments, and wrote the paper. S.I., and R.M. performed the experiments. J.T. contributed to the preparation of essential materials and commented on the experiments and paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-70111-0.

Correspondence and requests for materials should be addressed to K.K.

Reprints and permissions information is available at https://www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
