INTRODUCTION

Cockroaches (Blattodea) are an insect order that comprises many highly adaptable species, some of which are feared as peridomestic pest species that were unintentionally introduced in many countries throughout the world. Even though most of these pest species are of tropic origin, some species such as the American cockroach, *Periplaneta americana* (Linnaeus 1758), the German cockroach, *Blattella germanica* (Linnaeus 1758) and the oriental cockroach *Blatta orientalis* (Linnaeus 1758) even established populations in temperate regions (Cochran, 1999).

Sixteen species of cockroaches have been reported for Austria so far (Table 1). Only seven of these species are native to the country and found in the wild and not considered pests. They belong to the family Ectobiidae and are placed in two genera, *Ectobius* (4 species) and *Phylldromica* (3). The remaining nine species, all of which are alien, belong to three families: Ectobiidae (2), Blaberidae (2) and Blattidae (5). Of *Nyctibora* sp. (Ectobiidae) and *Rhyparobia maderae* (Fabricius, 1781) (Blaberidae), only one specimen was ever found in Austria (Ebner, 1946). Most of the alien cockroach species are not (yet) present in the wild, but mainly found in synanthropic indoor habitats such as houses, tropical greenhouses, gardening shops or supermarkets. Several of these species are known to undergo mass reproductions. They can not only destroy and contaminate food reserves, but, because of their potential for transmitting diseases and triggering allergies, might also pose a risk to human health (Baur, Landau Lüscher, Müller, Schmidt, & Coray, 2004; Hubert, Stejskal, Athanassiou, & Throne, 2018; Pospischil, 2010).

Here, we report the first records of the originally tropic Surinam cockroach, *Pycnoscelus surinamensis* (L.), for Austria and thus Central Europe, which were encountered by chance when capturing *P. australasiae*...
TABLE 1 Cockroach species recorded in Austria so far

Taxon and author	Red list	Note	Published in
Ectobiidae			
Ectobius erythronotus Burr, 1898	VU	Native	Ebner (1951) and Derbuch and Berg (1999)
Ectobius lapponicus (Linnaeus, 1758)	Not listed	Native	Ebner (1951) and Derbuch and Berg (1999)
Ectobius supramontes Bohn, 2004	Not listed	Native	Bohn (2004)
Ectobius sylvestris (Poda, 1761)	Not listed	Native	Ebner (1951) and Derbuch and Berg (1999)
Ectobius vittiventris (A. Costa, 1847)	Not listed	Introduced	Zimmermann (2014)
Nyctibora sp. Burmeister, 1838	Not listed	Introduced	Ebner (1946)
Phyllodromica brevipennis (Fischer, 1853)	Not listed	Native	Derbuch and Berg (1999)
Phyllodromica maculata (Schreber, 1781)	Not listed	Native	Ebner (1951), Kreissl (1975), Ressl (1983) and Bohn and Chladek (2011)
Phyllodromica megerlei (Fieber, 1853)	VU	Native	Ebner (1951), Vidlicka and Majzlan (1997)
Blaberidae			
Panchlora nivea (Linnaeus, 1758)	Not listed	Introduced	Ebner (1946)
Pycnoscelus surinamensis (Linnaeus, 1758)	Not listed	Introduced	This study
Rhyparobia maderae (Fabricius, 1871)	Not listed	Introduced	Ebner (1946)
Blattidae			
Blatta orientalis Linnaeus, 1758	Not listed	Introduced	Ebner (1946, 1951) and Ressl (1983)
Blattella germanica (Linnaeus, 1767)	NE	Introduced	Ebner (1951) and Ressl (1995)
Periplaneta americana (Linnaeus, 1758)	Not listed	Introduced	Ebner (1946, 1951, 1953) and Kanzler (1998)
Periplaneta australasiae (Fabricius, 1775)	NE	Introduced	Ebner (1946, 1951, 1953) and Ressl (1983)
Supella longipalpa (Fabricius, 1798)	Not listed	Introduced	Rabitsch and Essl (2010)

Note. NE: Neozoa; VU: Vulnerable according to Adlbauer and Kaltenbach (1994). The new record of Pycnoscelus surinamensis is highlighted in bold.

at the botanical garden in Graz for a student’s course and amongst other cockroaches in the Butterfly House in Vienna.

2 | MATERIAL AND METHODS

We first discovered the Surinam cockroach in the Tropic House of the botanical garden in Graz (47°4’53.75”N, 15°27’24.88”E) on May 30, 2015. A single specimen (Figure 1a) was found among several Australian cockroach, Periplaneta australasiae (Fabricius, 1775), individuals. Three years later, on March 11, 2018, only a few Australian cockroaches remained, whereas numerous P. surinamensis were observed. On March 5, 2018, another population of the Surinam cockroach, including both adults and nymphs (Figure 1b,c), was discovered in the Butterfly House in Vienna (48°12’19.26”N, 16°21’59.74”E). The morphologically indistinguishable but bisexually reproducing Indian cockroach (P. indicus) was excluded as only females (and nymphs) were found. Three and four specimens of P. surinamensis were collected in the botanical garden in Graz and the Butterfly House in Vienna, respectively, put in >99% ethanol and deposited in the collection of the Natural History Museum in Vienna (Supporting Information Table S1).
Total genomic DNA was extracted using the DNaseasy® Blood & Tissue Kit (Qiagen) from leg muscle tissue. A 684 bp fragment of the first part of the mitochondrial COI gene, corresponding to the typical DNA barcoding region (Hebert, Cywinska, Ball, & de Waard, 2003), was amplified using the Phusion polymerase (Thermo Fischer Scientific) protocol, following the manufacturer’s instructions using the primers LCO1490 and HCO2198 (Folmer, Black, Lutz, & Vrijenhoek, 1994). PCR products were purified with ExoSAP-IT (Thermo Fisher Scientific). The sequencing reaction followed the protocol in Duftner, Koblmüller, and Sturmbauer (2005), using the same primers as for PCR. Sequencing products were purified with SephadexTM G-50 (Amersham Biosciences) and visualized on an ABI 3130xl capillary sequencer (Applied Biosystems). Sequences were aligned using MUSCLE (Edgar, 2004), as implemented in MEGA6 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). Additional sequences of *P. surinamensis* and other *Pycnoscelus* species available from GenBank and BOLD, including our new records from Austria (in bold). Acronyms indicate origin of the specimen (Thailand: T; French Polynesia: FP; Australia: Aus; United States of America: USA; Guyana: G and Austria: Aut; see Supporting Information Table S1). Numbers at nodes indicate bootstrap support values (only values >70 are shown) [Colour figure can be viewed at wileyonlinelibrary.com]
3 | RESULTS

DNA barcodes grouped the Austrian samples with previously published COI sequences of *P. surinamensis*, thus confirming the morphology-based identification. Furthermore, all specimens from Austria shared a single haplotype, which was identical to specimens from the United States of America, Guyana and French Polynesia (Figure 1d). Haplotypes were also shared between *P. surinamensis* and its bisexually reproducing ancestor *P. indicus*. Pairwise K2P distances ranged from 0% to 3.9% within *P. surinamensis*, and from 0% to 11.9% among the *Pycnoscelus* species included in our study.

4 | DISCUSSION

With the detection of the originally Indo-Malaysian Surinam cockroach *Pycnoscelus surinamensis* in Austria, the number of cockroach species reported for Austria increases to seventeen (Table 1), ten of which are alien. These Austrian *P. surinamensis* are also the first records of this species for Central Europe. Previously, the species has been reported from mainly tropical and subtropical regions, such as Florida, Louisiana, Texas and Hawaii in the United States, Cuba, Puerto Rico, the Bahamas, the Dominican Republic, Trinidad, Barbados, Martinique, Grenada, St. Vincent, Jamaica, Mexico, Costa Rica, Guiana, Brazil, Bermuda, Mauritius, the Central African Republic, Cameroon, Senegal, China, Taiwan, Australia, the Loyalty Islands, Japan, but also Spain and Sweden (Bell, Roth, & Nalepa, 2007; Garanto, 2015; Grandcolas, Dejean, & Deleporte, 1996; Schwabe, 1949). It is considered a peridomestic species that invades households and causes considerable damage to commercial rose, orchid and lily plantations, but also feeds on roots of pineapples, potato tubers, cucumbers, palm, tomatoes, papayas, figs, sweet potatoes and other plants (de Carvalho Moretti, Quirán, Solis, Rossi, & Thyssen, 2011; Schwabe, 1949). Outside its native range, it relies on human-mediated activities, especially transportation of soil, mulch, vegetable mould or plants from one human settlement to the next, to colonize new areas (Bell et al., 2007). Due to its synanthropic or peridomestic lifestyle (Grandcolas et al., 1996), it often finds itself in suitable climatic conditions right away, even when transported to subtropical or temperate regions, as *P. surinamensis* has been repeatedly reported from greenhouses (Schwabe, 1949; Pellens & Grandcolas, 2002; Yamauchi & Kato, 2009; Komatsu, Kawakami, Banzai, Ooi, & Uchida, 2015; Garanto, 2015; this study).

Pycnoscelus surinamensis is the thelytokous descendant of its bisexually reproducing progenitor *P. indicus* (Linnaeus 1758) (Bourguignon et al., 2018; Roth, 1967). Its parthenogenetic mode of reproduction facilitates a rapid establishment of new populations, with only a single female being sufficient to found a new population. It is noteworthy that many invasive species are parthenogenetic (e.g., Lombardo & Elkinton, 2017; Gutekunst et al., 2018) and that many taxa for which sexual reproduction is common in the native range, tend to switch to obligate or facultative parthenogenesis in introduced populations (e.g., Dybdahl & Kane, 2005; Caron, Ede, & Sunnucks, 2014). *Pycnoscelus surinamensis* is no exception as its almost global distribution contrasts the restricted distribution of *P. indicus* in the Indo-Malayan region (plus some introduced populations in Hawaii and Australia; Roth and Willis, 1960).

Numerous clonal lineages have been reported for *P. surinamensis*. This high clonal diversity and the establishment of general purpose genotypes are believed to underlie the species’ adaptability and considered one of the main reasons for the species’ colonization success (Parker, Selander, Hudson, & Lester, 1977; Niklasson & Parker, 1994). For Austria, we thus far identified only a single mitochondrial haplotype—likely corresponding to one clone—that is shared with samples from the USA, Guyana and French Polynesia. Overall, genetic distances among *P. surinamensis* haplotypes published so far are similar to levels of intraspecific divergence in other (sexually reproducing) cockroach taxa (Cho, Suh, & Bae, 2013; Che, Gui, Lo, Ritchie, & Wang, 2017).

Although the prevailing opinion is that this species’ dispersal ability is very limited without human intervention (de Carvalho Moretti et al., 2011; Pellens & Grandcolas, 2002), it may be considered as a potential pest species in Central Europe in the light of the current climate change. Global warming increasingly provides suitable conditions even outside of conditioned greenhouses, likely enhancing winter survival as well as redefining/broadening current species’ distributions (Dukes & Mooney, 1999; Robinet & Roques, 2010). Thus, to prevent an unintended spread of alien species, monitoring of all introduced cockroach species as well as careful handling of plants, soil and food to prevent further accidental dispersal of *P. surinamensis* and other exotic species is advised.

ACKNOWLEDGEMENTS

We are grateful to the HBLFA (Höhere Bundeslehr- und Forschungsanstalt für Gartenbau) and especially to Renate WölfliMaier for providing the specimens from Vienna. We also thank Iphigenie Jäger for the hint to the population in Vienna. We also thank Susanne Randolf for checking the collection of the Natural History Museum in Vienna and Wolfgang Rabitsch for additional information on Austrian cockroaches. Financial support was provided by the Austrian Federal Ministry of Education, Science and Research via an ABOL (Austrian barcode of Life; www.abol.ac.at) associated project within the framework of the “Hochschulraum-Strukturmittel” Funds and the University of Graz.

AUTHOR CONTRIBUTION

LZ, GK and SK designed the study. GK and CB collected samples. LZ conducted the laboratory work. LZ and SK analysed the data. LZ, GK and SK wrote the manuscript. All authors read and approved the manuscript.

ORCID

Lukas Zangl http://orcid.org/0000-0002-1175-564X
REFERENCES

Adlbauer, K., & Kaltenbach, A. (1994). Rote Liste gefährdeter Heuschrecken und Grillen, Ohrwürmer, Schaben und Fangschemiren (Saltatoria, Dermaptera, Blattodea, Mantodea). Rote Listen Gefährdeter Tiere Österreichs Grüne Reihe Des Bundesministeriums Für Umwelt Jugend Und Familie, 2, 83–92.

Baur, H., Landau Lüscher, I., Müller, G., Schmidt, M., & Coray, A. (2004). Taxonomie der Bernstein-Waldscheibe Ectobius vittiventris (A. Costa, 1847) (Blattodea: Blattellidae) und ihre Verbreitung in der Schweiz. Revue Suisse De Zoologie, 111, 395–424. https://doi.org/10.5962/bhl.part.80245

Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, behavior, and natural history. Baltimore, MD: JHU Press.

Bohn, H. (2004). The Blattoptera fauna of Switzerland and the adjacent regions of France, Italy, and Austria 1. The species of the sylvestris-group of Ectobius. Spiixiana, 27, 253–285.

Bohn, H., & Chladek, F. (2011). Revision of the macula-group of Phyllophronica: Species from Central Europe (Insecta: Blattodea: Blattellidae: Ectobiinae). Arthropod Systematics and Phylogeny, 68, 3–54.

Bourguignon, T., Tang, Q., Ho, S. Y. W., Juna, F., Wang, Z., Arab, D. A., ... Lo, N. (2018). Transoceanic dispersal and plate tectonics shaped global cockroach distributions: Evidence from mitochondrial phylogenies. Molecular Biology and Evolution, 35, 970–983. https://doi.org/10.1093/molbev/msy013

Caron, V., Ede, F. J., & Sunnucks, P. (2014). Unravelling the paradox of success of biological invaders? The case of the so-called invading parthenogenetic cockroach. PLoS ONE, 9, e97744. https://doi.org/10.1371/journal.pone.0097744

Chen, Y., Gu, S., Lo, N., Ritchie, A., & Wang, Z. (2017). Species delimitation and phylogenetic relationships in ectobid cockroaches (Dictyoptera, Blattodea) from China. PLoS ONE, 12, e0169006. https://doi.org/10.1371/journal.pone.0169006

Cho, S. Y., Suh, K. I., & Bae, Y. J. (2013). DNA barcode library and its efficacy for identifying food-associated insect pests in Korea. Entomological Research, 43, 253–261. https://doi.org/10.1111/1748-9967.12034

de Carvalho Moretti, T., Quirán, E. M., Solis, D. R., Rossi, M. L., & Thyssen, P. J. (2011). Pycnoscelus surinamensis (Linnaeus, 1758) (Blaberidea: Blaberidae), a cockroach with a possible association with the ant Brachymyrmmex crommyoi Forel, 1895 (Hymenoptera: Formicidae) and which may be exhibiting a domiciliation trend. Symbiosis, 53, 37–39. https://doi.org/10.1007/s13199-010-0101-3

Derbouch, G., & Berg, H.-M. (1999). Rote Liste der Geradflügler Kärntens (Insecta: Saltatoria, Dermaptera, Blattodea und Mantodea). Rote Listen Gefährdeter Tiere Kärntens Naturschutz in Kärnten, 15, 473–488.

Duffner, N., Koblmüller, S., & Sturmbauer, C. (2005). Evolutionary relationships of the Limnochromini, a tribe of benthic deepwater cichlid fish endemic to Lake Tanganyika, East Africa. Journal of Molecular Evolution, 60, 277–289. 10.1007/s00239-004-0017-8

Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14, 135–139. https://doi.org/10.1016/S0169-5347(98)01554-7

Dybdahl, M., & Kane, S. (2005). Adaptation vs. phenotypic plasticity in the success of a clonal invader. Ecology, 86, 1592–1601. https://doi.org/10.1890/04-0898

Ebner, R. (1946). Die Adventiv-Fauna an Orthopteren in Österreich. Mit 8 Figuren. Zentralblatt Für Das Gesamtgebiet Der Entomologie, Klagenfurt, 1, 109–122.

Ebner, R. (1951). Kritisches Verzeichnis der orthopteroiden Insekten von Österreich. Verhandlungen Der zoologisch-botanischen Gesellschaft in Österreich, 92, 143–165.

Ebner, R. (1953). Catalogus Faunae Austriae Teil XIIa: Saltatoria, Dermaptera, Blattodea, Mantodea. Vienna, Austria: Österreichische Akademie der Wissenschaften.

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420

Folmer, O. M., Black, W. H., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

Garanto, H. (2015). Växthuskackerlackan, Pycnoscelus surinamensis (L.). Bachelor thesis, Swedish University of Agricultural Sciences.

Grandcolas, P., Dejean, A., & Deleporte, P. (1996). The invading parthenogenetic cockroach: A natural history comment on Parker and Niklasson’s study. Journal of Evolutionary Biology, 9, 1023–1026. https://doi.org/10.1046/j.1420-9110.1996.90412023.x

Gutekunst, J., Andriantsosa, R., Falkenhayn, C., Hanna, K., Stein, W., Rasamy, J., & Lyko, F. (2018). Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecology & Evolution, 2, 567–573. https://doi.org/10.1038/s41558-018-0467-9

Hebert, P. D. N., Cywinska, A., Ball, S. L., & de Waard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218

Hubert, J., Stejskal, V., Athanassiou, C. G., & Throne, J. E. (2018). Health hazards associated with arthropod infestation of stored products. Annual Review of Entomology, 63, 553–573. https://doi.org/10.1146/annurev-ento-020117-043218

Kanzler, P. (1999). Populationserhebung bei Schaben im Tiergarten Schönbrunn und die Möglichkeiten zu deren Bekämpfung. Dissertation University of Veterinary Medicine Vienna.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581

Komatsu, N., Kawakami, Y., Banzai, A., Ooi, H. K., & Uchida, A. (2015). Species clarification of Ogasawara cockroaches which inhabit Japan. Tropical Biomedical Journal, 32(1), 98–108.

Kreissl, E. (1975). Hololampa maculate (SCHREBER) – eine für die Steiermark neue Schabenart (Insecta, Blattaria, Blattidae). Mitteilungen Zoologie Landesmuseum Joanneum, 3, 197–198.

Lombardo, J. A., & Elkinton, J. S. (2017). Environmental adaptation in an asexual invasive insect. Ecology and Evolution, 7, 5123–5130. https://doi.org/10.1002/ece3.2894

Niklasson, M., & Parker, E. D. Jr (1994). Fitness variation in an invading cockroach. Oikos, 71, 47–54. https://doi.org/10.2307/3546171

Parker, E. D. Jr, Selander, R. K., Hudson, R. O., & Lester, L. J. (1977). Genetic diversity in colonizing parthenogenetic cockroaches. Evolution, 31, 836–842. https://doi.org/10.1111/j.1558-5646.1977.tb01076.x

Pelless, R., & Grandcolas, P. (2002). Are successful colonizers necessarily invasive species? The case of the so-called invading parthenogenetic cockroach, Pycnoscelus surinamensis, in the Brazilian Atlantic forest. Revue D’ecologie La Terre Et La Vie, 57, 253–261.

Pospischil, R. (2010). Schaben (Dictyoptera, Blattodea) - Ihre Bedeutung als Überträger von Krankheitserregern und als Verursacher von Allergien. In H. Aspöck (Ed.), Krank durch Arthropoden (pp. 171–190). Denisia, 30.
Rabitsch, W., & Essl, F. (2010). Aliens: Neobiota und Klimawandel - Eine verhängnisvolle Affäre. Weitra, Austria: Bibliothek der Provinz.

Ressl, F. (1983). Naturkunde des Bezirkes Scheibbs. Tierwelt (2). Scheibbs, Austria: Verlag R & F Radinger.

Ressl, F. (1995). Naturkunde des Bezirkes Scheibbs. Tierwelt (3). Scheibbs, Austria: Verlag R & F Radinger.

Robinet, C., & Roques, A. (2010). Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5, 132–142. https://doi.org/10.1111/j.1749-4877.2010.00196.x

Roth, L. M. (1967). Sexual isolation in parthenogenetic Pycnoscelus surinamensis and application of the name Pycnoscelus indicus to its bisexual relative (Dictyoptera: Blattaria: Blaberidae: Pycnoscelinae). Annals of the Entomological Society of America, 60, 774–779. https://doi.org/10.1093/aesa/60.4.774

Roth, L. M., & Willis, E. R. (1960). A study of bisexual and parthenogenetic strains of Pycnoscelus surinamensis (Blattaria: Epilamprinae). Annals of the Entomological Society of America, 54, 12–25.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Schwabe, C. W. (1949). Observations on the life history of Pycnoscelus surinamensis (Linn.), the intermediate host of the chicken eyeworm in Hawaii. Hawaiian Entomological Society, 13, 433–436.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197

Vidlicka, L., & Majzlan, O. (1997). Revision of the megerlei-group of the cockroach genus Phylodromica Fieber (Blattaria: Blattellidae, Ectobiinae). Insect Systematics & Evolution, 28, 163–173. https://doi.org/10.1163/187631297X00033

Yamauchi, T., & Kato, H. (2009). Cockroaches inhabiting greenhouses of a botanical garden in Toyama Prefecture, Japan. Medical Entomology and Zoology, 60, 305–310. https://doi.org/10.7601/mez.60.305

Zimmermann, K. (2014). Scientific experience from pest advisory in Vorarlberg, Austria. In G. Müller, R. Pospischil, & W.-H. Robinson (Eds.), Proceedings of the International Conference on Urban Pests (pp. 315–318). Kft., Hungary: OOK-Press.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Zangl L, Kunz G, Berg C, Koblmüller S. First records of the parthenogenetic Surinam cockroach Pycnoscelus surinamensis (Insecta: Blattodea: Blaberidae) for Central Europe. J Appl Entomol. 2019;143:308–313. https://doi.org/10.1111/jen.12587