Influence of Abiotic Factors on Seasonal Incidence of Brinjal Shoot and Fruit Borer, *Leucinodes orbonalis* Guen. in Varanasi Region

Kantipudi Rajesh Kumar*, N.N. Singh, S.V.S. Raju and Vijay Kumar Mishra

Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India

*Corresponding author

Abstract

A field experiment was carried out to investigate the seasonal incidence and influence under unprotected conditions of abiotic factors on infestation of shoot and fruit borer (*Leucinodes orbonalis* Guenee) in brinjal during Kharif 2013-14 and 2014-15 of Varanasi region. The results revealed that the incidence of shoot and fruit borer and shoot infestation started from first week of August whereas, fruit infestation started from third week of September during both the years. The highest per cent shoot infestation was recorded in second week of September during both the years and the highest per cent fruit infestation of shoot and fruit borer was recorded on third week of October during both years. The shoot and fruit borer was active throughout the cropping season. Among the weather parameters, maximum temperature, minimum temperature, morning relative humidity and sunshine hours showed positive correlation but with rainfall and evening relative humidity showed negative correlation on the incidence of both shoot and fruit infestation by the pest. Thus the management of brinjal shoot and fruit borer during *Kharif* sown brinjal should therefore be initiated from August onwards using an integrated approach.

Keywords

Brinjal crop shoot, Infestation, *Leucinodes orbonalis* Guenee, Seasonal incidence.

Introduction

Solanum melongena L. commonly known as eggplant, brinjal and aubergine is one of the most popular vegetables grown in many regions of the world (Lawande and Chavan, 1998). Several biotic and abiotic factors directly and indirectly influence the plant growth and the growth and development of insect pests harbouring on the plant and contribute in lowering the yield in brinjal. Among various biotic factors, insect pests are important which greatly affect the quality and productivity of brinjal crop through inflicting a direct damage (Gupta et al., 1987). In the tropics, brinjal production is severely constrained by several insect and mite pests. The major insect pests of brinjal include fruit and shoot borer (BSFR), leafhopper, whitefly, thrips, aphid, spotted beetles, leaf roller, stem borer, blister beetle and the red spider mite (AVRDC, 2009). Arthropod biodiversity in the brinjal field showed that the brinjal shoot and fruit borer was the major and serious insect pest of brinjal crop. It infests both vegetative as well as reproductive stages of the crop which cause heavy losses in the yield to a tune of 40 to 80% (AVRDC, 2003). The incidence of this insect pest occurs either sporadically or in outbreak every year in the Indian subcontinent (Dhankar, 1988). Sandanayake and Edirisinghe (1992) reported...
that the larval feeding in fruit and shoot is mainly responsible for the damage to eggplant crop in Sri Lanka. The reduction in yield of brinjal fruits has been reported as high as 70% (Islam and Karim, 1991 and Dhandapani et al., 2003). The larvae of this pest bore into the tender shoots right from the nursery bed and can cause the apparent yield loss to the tune of 36.4 -63.0% (Kumar and Singh, 2012). The brinjal shoot and fruit borer infestation is responsible for both the qualitative and quantitative degradation of fruits round the year, but it attains the most serious stature during monsoon months (Chowdhury and Kashyap, 1992). The larvae of this pest initially feed on the terminal shoots damaging the growing points. Later these larvae bore into fruits and feed inside the contents making fruits unfit for human consumption (Srinivasan, 2008). Such attacks adversely affect not only the quality, but also the yield of the crop causing considerable economic damage every year. The variability in the pest population and damage can be related to changes in the ambient environment. The best way to avoid pest outbreak is possible when the congenital weather condition for the insect infestation is fully known (Dubey and Thorat, 1994). With a view on the climate change projections for India, an attempt has been made here to study the impact of the likely changes in abiotic factors in relation to shoot and fruit borer on brinjal crop under Varanasi agroclimatic conditions.

Results and Discussion

Seasonal incidence of brinjal shoot and fruit borer (Leucinodes orbonalis)

The data on shoot infestation and fruit infestation of brinjal shoot and fruit borer was recorded from first week of July to last week of November during both the years. It is evident from tables 1 and 2 that the shoot infestation of the pest occurred first time in the last week of July(2.67%, 3.73%) during both years and attained its peak during second week of September(24.38%, 28.12%) in both the years of experimentation respectively. While, the fruit infestation initiated from third week of September (8.47%, 12.24%) and attained its peak during third week of October (40.32%, 43.66%) in both the years, thereafter there was a gradual decrease in per cent infestation of shoot and fruit till the end of November(7.65%, 11.24% in shoots and 24.53%, 23.32% in fruits). Thus after the initiation of fruits, infestation on shoots gradually shifted to fruit thereafter continually decreasing on shoots.

Materials and Methods

The seasonal variation in the incidence of brinjal shoot and fruit borer (BSFB) was studied from the unprotected brinjal plots of 50 m² area in the vegetable research farm of Institute of Agricultural Sciences, Banaras Hindu University, Varanasi during 2013-2014 and 2014-2015. Thirty days old seedlings of brinjal variety Punjab Sadabahar were transplanted during the second week of July and the standard agronomic package of practices were followed to raise and maintain a healthy crop. Weekly incidence of brinjal shoot and fruit borer from total shoots and fruits were recorded as percentage shoot and fruit infestation from a total of 15 randomly selected plants from the initiation of damage. The data on ecological parameters like maximum temperature, minimum temperature, rainfall, sunshine and relative humidity (morning and evening) have been collected from the meteorological observatory, available at agricultural farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi and correlated with the incidence of shoot and fruit borer of brinjal with the help of SPSS 16 software.
and on fruits during 2nd week of October further the studies also revealed that the shoot infestation and fruit infestation gradually decreased during Kharif grown brinjal. Naqvi et al., (2009) also reported that the infestation of *L. orbonalis* Guenee in brinjal shoots started in the first week of August and remained up to second week of October, with peak infestation in second week of September in both the years. Infestation in shoots decreased after fruit setting and completely disappeared thereafter. The infestation in fruits was recorded in the second week of September and remained up to third week of October. The infestation increased gradually and reached maximum in the first week of October (63.09% on number and 51.45% loss on weight basis). The infestation of fruit borer started declining and persisted only up to third week of October. Whereas, Jat et al., (2002) while studying the seasonal incidence of *L. orbonalis* on aubergine cv. Pusa Purple Round. The infestation of shoot borer started from fourth week of August and reached to its peak in the last week of September. The pest started damaging the fruits from first week of October, peaked in the fourth week of October and continued up to second week of December.

Table 1 Influence of abiotic factors on seasonal incidence of shoot and fruit borer, *L. orbonalis* during Kharif 2013-14

Standard Week	Month and Date	Rainfall (mm)	Temperature (°C)	Relative Humidity (%)	Sunshine Hours	*Mean % Shoot Infestation	*Mean % Fruit Infestation
28	09-15	81.5	Max. 28.7 Min. 19.6	Morn 86 Even 72	3.4	0.00	0.00
29	16-22	0.0	Max. 33.8 Min. 18.3	Morn 86 Even 77	6.9	0.00	0.00
30	23-29	48.2	Max. 31.3 Min. 19.3	Morn 86 Even 77	5.8	0.00	0.00
31	30-05 Aug	69.5	Max. 32.8 Min. 20.5	Morn 84 Even 75	6.7	2.67	0.00
32	Aug 06-12	28.6	Max. 32.9 Min. 27	Morn 91 Even 76	4.6	5.73	0.00
33	13-19	37.4	Max. 33.6 Min. 20.7	Morn 88 Even 80	6.9	9.84	0.00
34	20-26	32.3	Max. 35.1 Min. 19.2	Morn 83 Even 74	6.9	12.43	0.00
35	27-02 Sep	150.3	Max. 33 Min. 22.7	Morn 92 Even 87	1.5	18.67	0.00
36	Sep 03-09	3.2	Max. 34.7 Min. 22.3	Morn 80 Even 66	7.6	22.46	0.00
37	10-16	0.0	Max. 32.9 Min. 21.9	Morn 85 Even 66	7.2	24.38	0.00
38	17-23	4.6	Max. 37.3 Min. 25.3	Morn 81 Even 76	8.0	21.72	8.47
39	24-30	12.2	Max. 32.4 Min. 25.5	Morn 86 Even 77	6.8	19.36	14.36
40	Oct 01-07	83.9	Max. 34.2 Min. 22.3	Morn 93 Even 85	3.9	17.53	23.78
41	08-14	44.0	Max. 35.2 Min. 24.8	Morn 84 Even 78	6.5	14.36	32.43
42	15-21	17.0	Max. 38.8 Min. 19.1	Morn 92 Even 80	4.2	11.87	40.32
43	22-28	0.0	Max. 38.2 Min. 19.1	Morn 88 Even 72	8.9	11.87	37.64
44	29-04 Nov	0.0	Max. 30.4 Min. 18.3	Morn 80 Even 76	7.8	10.32	33.46
45	Nov 05-11	0.0	Max. 32.4 Min. 25.5	Morn 84 Even 60	7.6	9.68	29.57
46	12-18	0.0	Max. 28.5 Min. 22.5	Morn 90 Even 48	7.9	8.43	27.34
47	19-25	0.0	Max. 29.9 Min. 18	Morn 89 Even 41	8.5	8.43	26.48
48	26-02 Dec	0.0	Max. 28.8 Min. 15.2	Morn 87 Even 46	8.1	7.65	24.53

Mean of three replications, each having 15 plants
Table.2 Influence of abiotic factors on seasonal incidence of shoot and fruit Borer, *L. orbonalis* during Kharif 2014-15

Standard Week	Month and Date	Rainfall (mm)	Temperature (°C)	Relative Humidity (%)	Sunshine Hours	*Mean % Shoot Infestation	*Mean % Fruit Infestation			
			Max.	Min.	Morn.	Even.				
28	09-15	0.0	29.7	16.7	79	63	7.9	0.00	0.00	
29	16-22	261.5	32.8	19.8	92	84	1.4	0.00	0.00	
30	23-29	4.6	29.3	12.6	82	65	4.8	0.00	0.00	
31	30-05 Aug	46.0	37.8	18.7	87	74	5.7	3.73	0.00	
32	Aug 06-12	142.7	32.9	16.4	87	74	4.1	6.40	0.00	
33	13-19	42.4	33.6	18.6	86	79	2.4	10.93	0.00	
34	20-26	14.0	35.1	19.5	77	60	6.7	13.00	0.00	
35	27-02 Sep	6.5	33	20.1	84	71	5.3	19.85	0.00	
36	Sep 03-09	34.9	34.7	21.4	85	69	6.0	23.26	0.00	
37	10-16	11.0	32.9	21.8	91	80	4.0	28.12	0.00	
38	17-23	13.7	37.3	22	87	72	5.2	25.37	12.24	
39	24-30	2.1	39.4	24.3	85	56	9.3	23.48	21.93	
40	Oct 01-07	0.0	34.2	24.2	79	64	7.2	21.84	28.86	
41	08-14	50.7	35.2	24	88	68	6.1	19.84	35.36	
42	15-21	0.0	36.8	17.8	88	69	6.8	17.63	43.66	
43	22-28	6.2	37.2	16.2	83	58	6.8	17.63	37.48	
44	29-04 Nov	0.0	30.4	18	85	41	6.8	16.48	34.13	
45	Nov 05-11	0.0	32.4	16.3	86	39	7.2	15.74	31.85	
46	12-18	0.0	32.5	13.6	83	37	5.4	14.23	28.64	
47	19-25	0.0	29.9	17	89	36	7.2	12.67	26.73	
48	26-02 Dec	0.0	28.8	14.9	84	49	7.3	11.24	23.32	

*Mean of three replications, each having 15 plants.

Table.3 Correlation coefficient (r) of *L. orbonalis* on brinjal with prevailing weather parameters

	Rainfall	Maximum Temperature	Minimum Temperature	Morning RH	Evening RH	Sun shine hours
Shoot infestation (%)	-0.065	0.388	0.583	0.004	-0.084	0.134
Fruit infestation (%)	-0.364	0.222	0.014	0.239	-0.242	0.328
Shoot infestation (%)	-0.451*	0.422	0.635	0.144	-0.109	0.381
Fruit infestation (%)	-0.389	0.158	0.010	0.061	-0.632**	0.521**

Correlation is significant at 0.01 % level of significance.

*Correlation is significant at 0.05% level of significance
Influence of weather parameters on shoot and fruit borer

Correlation coefficient between different weather parameters and percent shoot and fruit infestation of shoot and fruit borer during both the years of experimentation revealed that, maximum temperature, minimum temperature, morning relative humidity, sunshine hours recorded positive correlation with a correlation coefficient $r = 0.388$, 0.222, 0.422, 0.158 for maximum temperature, $r = 0.583$, 0.014, 0.635, 0.010 for minimum temperature, $r = 0.004$, 0.239, 0.144, 0.061 for morning relative humidity, $r = 0.134$, 0.328, 0.381, 0.521 for sunshine hours (Table 3), whereas, evening relative humidity and rainfall showed negative correlation $r = -0.084$, -0.242, -0.109, -0.632 for relative humidity, $r = -0.065$, -0.364, -0.451, -0.389 for rainfall (Table 3) for shoot and fruit infestation respectively.

Earlier reports suggest that there is a positive association of pest population with maximum temperature and minimum temperature by Singh et al., (2011), Shukla et al., (1989), Mathur et al., (2012), morning relative humidity positive correlation and evening relative humidity negative by Kumar and Singh (2013), sunshine hours positive association by Muthukumar and Kalyanasundaram (2003), and rainfall negative correlation by Yadav et al., (2015) and Bapuji Rao and Bhavani (2010). Hence this knowledge of incidence is helpful at what stage the management practices should be initiated to reduce shoot and fruit borer infestation which cause heavy losses to farmers.

Acknowledgement

The first author is thankful to Department of Science and Technology, New Delhi for providing financial assistance in terms of research award.

References

AVRDC. 2003. Rearing of eggplant fruit and shoot borer: A slide set and illustrated guide. In: AVRDC Publication No. 99-486. Shanhua, Asian Veg. Res. Develop. Centre, Taiwan. p. 12.

AVRDC. 2009. Insect and mite pests on eggplant: A field guide for identification and management. In: AVRDC Publication No. 09-729. Shanhua, The World Vegetable Center: Taiwan., p. 64.

Bapuji Rao, B. and Bhavani, B. 2010. Climate change – Likely effects on the population dynamics of brinjal shoot and fruit borer (Leucinodes orbonalis Guene.), Indian J. Dry land Agric. Res. Dev., 25(2): 58-62.

Chowdhury, O.P. and Kashyap, R.K. 1992. Effect of some management practices on the incidence of insect pests and yield of eggplant (Solanum melongena L.) in India. Trop. Pest Manage., 38(4): 416-419.

Dhankar, B.S. 1988. Progress in resistance studies in eggplant (Solanum melongena L.) against shoot and fruit borer (Leucinodes orbonalis Guenee) infestation. Trop. Pest Manage., 34: 343-345.

Dhandapani, N., Shalkar, U.R. and Murugan, M. 2003. Bio-intensive pest management in minor vegetable crops: An Indian perspective. J. Food Agri. Environ., 1(2): 330-339.

Dubey, R.C. and Thorat, P.G. 1994. The infestation of jassid on groundnut, sunflower and aphid on safflower at akola (Maharastra) in relation with meteorological factors. Plant Prot. Bull., 46(1): 43-47.

Gupta, H.C.L., Mehta, S.C. and Pareek, B.L. 1987. Bioefficiency and residue of carbaryl investigation in/on brinjal. Veg. Sci., 14(2): 185-194.

Islam, M.N. and Karim, M.A. 1991. Management of the brinjal shoot and fruit borer, Leucinodes orbonalis Guenee (Lepidoptera: Pyralidae) in field. In:
Annual Research Report. Entomology Division, Bangladesh Agric. Res. Inst. Joydabur, Gazipur. pp. 44-46.

Jat, K.L., Pareek, B.L. and Singh, S. 2002. Seasonal incidence of shoot and fruit borer (Leucinodes orbonalis Guen.) on eggplant (Solanum melongena L.) in Rajashstan. Ann. Biol., 18(2): 165-169.

Kumar, S. and Singh, D. 2013. Seasonal incidence and economic losses of brinjal shoot and fruit borer, Leucinodes orbonalis Guenee. Agric. Sci. Digest., 33(2): 98-103.

Kumar, S. and Singh, D. 2012. Seasonal fluctuation and extent of losses of Leucinodes orbonalis Guenee on Solanum melongena L. Ann. Pl. Protec. Sci., 20: 318-321.

Lawande, K.E. and Chavan, J.K. 1998. Eggplant (Brinjal) in: D.K. Salunkhe and S.K. Kadam (Eds.) “Handbook of Vegetable Science and Technology. Production, compostition, storage.

Mathur, Anjali., Singh, N.P., Mahesh, M. and Singh, S. 2012. Seasonal incidence and effect of abiotic factors on population dynamics of major insect pests on brinjal crop. J. Environ. Res. Develop., 7(1A): 421-435.

Muthukumar and Kalyanasundaram, M. 2003. Influence of abiotic factors on the incidence of major insect pests in brinjal (Solanum melongena L.). South Indian Horticulture, 51(1/6): 214-218.

Naqvi, A.R., Pareek, B.L. and Mitharwal, B.S. 2009. Seasonal incidence of shoot and fruit borer, Leucinodes orbonalis guenee infesting brinjal in hyper arid region of Rajasthan. J. Insect Sci., 22(2): 195-198.

Nonnecke, J.L. 1989. Vegetable production. Van Nostrand Reinhold, New York. 247p.

Sandanayake, W.R.M. and Edirisinghe, J.P. 1992. Trathala flavoorbitalis, parasitization and development in relation to host stage attacked. Insect Sci. its Application, 13(3): 287-292.

Shukla, R.P. 1989. Population fluctuation of Leucinodes orbonalis on brinjal (Solanum melongena) in relation to abiotic factors in Meghalaya. Indian J. Agric. Sci., 59(4): 260-264.

Srinivasan, B. 2008. Integrated pest management for eggplant fruit and shoot borer (Leucinodes orbonalis) South and South East Asia, past, present and future. J. Biopest., 1(2): 105-112.

Singh, R.K.R., Singh, T.K. and Shah, M.A.S. 2011. Population incidence of brinjal shoot and fruit borer, Leucinodes orbonalis Guen (Lepidoptera: Pyralidae) in Manipur. J. Exp. Zool., India, 14(1): 229-232.

Yadav, A., Raghuraman, M. and Choudhary, S. 2015. Impact of abiotic factors on population dynamics of fruit and shoot borer, Leucinodes orbonalis (guen.) in brinjal Solanum melongena L. J. Experimental Zool., 18(2): 765-768.

How to cite this article:

Kantipudi Rajesh Kumar, N.N. Singh, S.V.S. Raju and Vijay Kumar Mishra. 2017. Influence of Abiotic Factors on Seasonal Incidence of Brinjal Shoot and Fruit Borer, Leucinodes orbonalis Guen. in Varanasi Region. Int.J.Curr.Microbiol.App.Sci. 6(4): 1513-1518.

doi: https://doi.org/10.20546/ijcmas.2017.604.185