Antiulcer Activity of Petroleum Ether and Ethanolic Extracts of Tuber of *Pueraria tuberosa* Roxb. in Albino Rats

Md. Rageeb Md. Usman*, Gautam P. Vadnere, Nikita P. Patel
Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopa, Maharashtra, India.
*Corresponding author’s E-mail: rageebshaikh@gmail.com

Received: 18-10-2020; Revised: 15-12-2020; Accepted: 23-12-2020; Published on: 15-01-2021.

ABSTRACT

Peptic ulcer is one of the most common gastrointestinal disorders and a major cause of morbidity. The incidence and prevalence of peptic ulcer has been increasing worldwide. Persisting peptic ulcer leads to complications like gastrointestinal bleeding, gastric perforation and pyloric obstruction. The complications further increase the morbidity and mortality. The objectives of this study were to evaluate the antiulcer activity of pet. ether and ethanolic extracts of tuber of *Pueraria tuberosa* Roxb. in albino rats. Healthy wistar albino rat of male weighing about 120-180 grams were divided randomly into 4 groups (n=6). The drugs were given as 0.1 ml of 6% acetic acid once intrarectally. 7 day pretreatment with extract + on 8th day 0.1 ml of 6% acetic acid once intra rectally. 3 cm from the anal margin (Itton, 2000), Drug treatment continued up to 10th day. Started on day of acetic acid treatment, given orally as a suspension containing 0.5 % sodium CMC. Dose- 1.14 mg/Kg for 3 days. + On 8th day 0.1 ml of 6% acetic acid once intra rectally. Parameters like free acid, gastric volume and ulcer index were observed. Result from ulcer index showed better protective effect by ethanol extract of *Pueraria tuberosa*. Acetic acid caused increase in MPO level in blood and tissue up to 362 U/ml and 375 U/mg, respectively. After treatment with ethanol extract of *Pueraria tuberosa*, the MPO level in blood and tissue was decreased significantly to 260 U/ml and 332 U/mg respectively. Significant dose dependent reduction was observed after treatment with individual extract.

Keywords: *Pueraria tuberosa*, Tubers, anti-ulcer, Phytochemical, ethanolic extract.

INTRODUCTION

Peptic ulcer being one of the most uncontrolled gastrointestinal problems representing a chief health hazards in terms of morbidity and mortality. The etiology of gastroduodenal ulcers is influenced by diverse aggressive and defensive factors for example acid-pepsin secretion, mucosal barrier, mucus secretion, blood flow, cellular regeneration, and endogenous protective agents. Mucosal injury may happen when noxious factors “overwhelm” an intact mucosal protection or when the mucosal defense is somehow disrupted.

Medicinal plants are being used by mankind as a source of medicine since immemorial time. Medicinal plants are generally known as “Chemical Goldmines” as it contain a variety of natural chemicals, which are acceptable to human being and animal systems. A medicinal plant possesses curative properties due to the existence of various complex chemical substances of different composition known as secondary metabolites. According to World Health Organization more than 80% of the World’s population depends on traditional medicine for their primary healthcare requirements. Approximately 75% of the medicinally useful plant species produce in wild condition. *Pueraria* tuber is sweet in taste and used in indigenous system of Indian medicine as antirheumatic, aphrodisiac, tonic for strength, diuretic and galactagogue. Tubers are consumed as supplementary food and for birth control by assured Indian tribes.

Pueraria tuberosa Roxb., commonly known as kudzu, is a climber with woody tuberculated stem. It is a climbing, coiling and trailing vine with large tuberous roots. The tubers are globose or pot-like, about 25 centimeters (9.8 in) across and the insides are white, starchy and mildly sweet. Leaves are trifoliate and alternate, while the leaflets are egg-shaped, with round base and unequal sides. They are 18 cm (7.1 in) long and 16 cm (6.3 in) wide and are hairless above. Flowers are bisexual, around 1.5 cm (0.59 in) across and blue or purplish-blue in color. The fruit pods are linear, about 2–5 cm (0.79–1.97 in) long and constricted densely between the seeds. They have silky, bristly reddish-brown hair. Seeds vary from 3 to 6 in number. Indian Kudzu or *Pueraria tuberosa* Linn (Fabaceae) is an important medicinal plant of the Indian traditional system of medicine that is Ayurveda, and is mentioned in the Ayurvedic Pharmacopoeia of India under the name of Vidari. It is used in traditional medicine as a fertility control agent and as an aphrodisiac, cardiotonic, diuretic and galactagogue. It has exhibited antihyperglycemic, antihyperlipidemic, and antifertility in male rats, hepatoprotective, and anti-implantation activities. It is a constituent of various formulations used as nutritive, diuretic, expectorants, and for the management of rheumatism, fever, and
bronchitis. P. tuberosa tubers are rich in isoflavonoids and the important phytoconstituents are puerarin, daidzein, genistein, puetuberosanol, and tuberosin. During the past decade, interest in these isoflavonoids has increased considerably because of the beneficial effects proposed by epidemiologists, nutritionists, and food manufacturers. These isoflavonoids could interact with milk proteins, namely, bovine serum albumin, casein micelle, and β-lactoglobulin, as has been reported in case of certain food and drug preparation containing soya isoflavonoids.

The present work is to frame antiulcer activity of petroleum ether and ethanolic extracts of tuber of *Pueraria tuberosa* Roxb in albino rats. The plant of tuber of *Pueraria tuberosa* Roxb. Figure 1.

MATERIALS AND METHODS

Plant material

The plant specimens for the proposed study were collected from Chopda Tehsil (Adawad) MS, India in the month of April 2019 care was taken to select healthy plants and for normal organs. The plant was authenticated by Botanical Survey of India (BSI), Pune, Maharashtra, India. A voucher specimen (No. NIPPUT1) was deposited at B.S.I., Pune, India.

Animals

Male wistar rats weighing about 120-180 gm were procured. The animals were kept under a conventional light regimen at room temperature (about 250 C) and humidity. Animals were housed in polypropylene cages and were allowed free access to standard laboratory feed and water. All the animals have been divided into four groups and placed in separate cages, each consisting of six animals. The animals were acclimatized to the laboratory condition for one week before the onset of experiment. The Institutional Animals Ethics Committee approved the protocol vid no. NIB/ IAEC/ 11-12/ 23

Preparation of standard drug and extract solution:

Solution of all extracts was prepared in Tween 80.

Test drug was dissolved in distilled water or in physiological salt solution.

Prednisolone was dissolved in physiological saline.

Treatment of drug schedule (Table 1):

Group	Treatment
Control	0.1 ml of 6% acetic acid once intrarectally.
Test	7 day pretreatment with extract + on 8th day 0.1 ml of 6% acetic acid once intrarectally 3 cm from the anal margin (Itton, 2000), Drug treatment continued up to 10th day.
Prednisolone treatment	Started on day of acetic acid treatment, given orally as a suspension containing 0.5 % sodium CMC. Dose- 1.14 mg/Kg for 3 days. + On 8th day 0.1 ml of 6% acetic acid once intrarectally.

Acetic acid-induced ulcer model

Study comprises of four different groups (n=6) as summarized in treatment schedule. Test animals in group II to III receives seven day treatment of the different crude extract as mentioned in treatment schedule. On eighth day all animals receives 0.1 ml 6% acetic acid intrarectally. Prednisolone treatment in standard group was started on the day of acetic acid treatment. Drug treatment in all groups was continued up to 10th day. After 48 hrs. of colitis induction mice were sacrificed by cervical dislocation and dissected upon to remove colon. 5cm long piece of colon was flushed gently with saline, cut upon and scored for inflammation based on the macroscopic features. Tissues were fixed in 10% formalin saline and examined histopathologically. Biochemical evaluation of colon inflammation was done using assay of MPO activity and MDA activity.

Overnight fasted mice, anaesthetized by Pentobarbital sodium (55.00 mg/Kg i.p.) 0.1 ml of 6% acetic acid once intrarectally. Allow to hang in air by holding tails for 1 – 2 min.

Assessment of colitis severity

The colonic samples from mice with colitis were shown to have severe mucous damage with edema, deep ulceration and hemorrhages. Oral administration of the petroleum ether and ethanol extracts of tubers of *Pueraria tuberosa*, two days before infusion of acetic acid into the colon was found to prevent progression of colitis. In mice treated with extracts, colonic macroscopic scores and the total square of damage were significantly reduced compared with those in the vehicle treated colitis group.

Histopathological observation:

In the present study control group showed higher degree of pathological changes i.e. more damage noticed in this
group. Methanol extract group showed considerable good reaction as compared to the other treated groups. Results shown Table 2.

Table 2: Histopathological observation

Treatment Group	Ulceration	Hyperemia	Necrosis	Edema	Cellular infiltration	Goblet cell hyperplasia
Standard Prednisolone (5 mg/kg)	++	++	++	++	++	++
Pet. Ether extract 100 mg/kg	+++	+++	++	++	+++	+++
Ethanol extract 100 mg/kg	+++	++	++	++	++	+++
Control, Acetic acid (-ve)	++++	++++	++++	++	+++	+++

+: damage/ active changes up to less than 25 %; ++: damage/ active changes up to less than 50 %; +++: damage/ active changes up to less 75 %; ++++: damage/ active changes up to more than 75 %

Figure 2: Histopathology results

1. Prednisolone treated group, Red arrow – Hemorrhages
2. Pet. ether extract treated group, Red arrow – Hemorrhages & ulceration, Blue arrow - Cellular infiltration & edema.
3. Ethanol extract treated group, Red arrow – Hemorrhages, Blue arrow - Leucocytic infiltration
4. –Ve treated group, Red arrow -hemorrhages & ulceration, Blue arrow - Leucocytic infiltration

Table 3: Determination of Ulcer Index

Treatment Group	Ulcer Index	Percent Ulcer Protection
Prednisolone (5 mg/kg)	2.62	45.60
Pet. Ether extract 100 mg/kg	3.58	20.61
Ethanol extract 100 mg/kg	2.10	56.74
Acetic acid (negative)	3.96	0.00

Figure 3: Ulcer Index of various extracts
The present antiulcer activity of petroleum ether and ethanolic extracts of tuber of *Pueraria tuberosa* root in albino rats showed significant effect.

ACKNOWLEDGEMENT

The authors are extremely grateful to the Smt. S. S. Patil College of Pharmacy, Chopda, Maharashtra, India for providing financial support (faculty research) and research facilities to accomplish this study.
REFERENCES

1. Akhtar MS, Akhtar AH, Khan MA. Antiulcerogenic effects of Ocimum basilicum extracts volatile oils and flavonoid glycosides in albino rats, Int J Pharmacognosy, 1992;30(2):97-104.

2. Goel RK, Bhattacharya SK. Gastroduodenal mucosal defence and mucosal protective agents, Indian J Exp Biol, 1991; 29(2):701-14.

3. Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: Bench to bedside, Gastroenterology, 2008; 135(1):41-60.

4. Thomas, J. Medicinal and aromatic plants research in India. In UNDP. Proc. Training course on Indigenous Exploitation of Indigenous Medicinal and Aromatic Plants. Eijing, China, 1997;2(3):17-27.

5. Karthikeyan, A, V Shanthis, A Nagasathaya. Preliminary phytochemical and antibacterial screening of crude extract of the leaf of Adhatoda Vasica L, Int. J.Green Pharm., 2009; 3(4): 78-80.

6. Diallo, D, B Hveem, M A Mahmoud, G Betge, B S Paulsen and A. Maiga. An ethnobotanical survey of herbal drugs of Gourma district, Mali. Pharmaceutical Biology, 1999; 37(2): 80-91.

7. Laloo, R. C, L Kharlukhi, S Jeeva, B P Misra. Status of medicinal plants in the disturbed and the undisturbed sacred forests of Meghalaya, northeast India: population structure and regeneration efficacy of some important species, Curr Sci., 2006;90(2):225-232.

8. Kirtikar, K. R. and B. D. Basu. Indian Medicinal Plants, 2nd ed.; The Indian Press, Allahabad 1988.

9. Bhutani, S P, S S Chibber and T. Seshadri. Indian J. Chem, 1969;7(3):210.

10. Babu, PV, Rao, MA, Kumar, SMS, Rao, NV. A study on adaptogenic activity of tuber extracts of Pueraria tuberosa, Indian Drugs, 2006;43(6):486-92.

11. Danaei, G, Finucane, M.M, Lu, Y, Singh, G.M, Cowan, M.J, Paciorek, CJ.et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of healthexamination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 2011;378(9785):31–40.

12. Khandelwal, K.R. Practical Pharmacognosy, 9th ed., Nirali Prakashan 2002;45-56.

13. Khare, CP. Indian medicinal plants: An illustrated dictionary, New York: Springer Science, 2008;527.

14. Kokate, CK Practical Pharmacognosy, 3rd ed, Vallabh Prakashan, Delhi,1994;115-127.

15. Prakash, AO, Saxena, V, Shukla, S, Mathur, R. Contraceptive potency of Pueraria tuberosa D.C. and its hormonal status, Acta Eur Fertil, 1985;16(1):59-65.

16. Pramank, SS. Antioxidant and antistress activities of standardized Pueraria tuberosa (roxb. ex willd.) dc tuber root extract in wistar rats, Inventi Rapid: Ethnopharmacology, 2010;144(3):22-26.

17. Raghuwanshi, R and Jain, B. Hypoglycemic effect of Pueraria tuberosa tubers in healthy and alloxan diabetic Rats, J. Chem. Bio. Phy. Sci., 2012;2(1):270-272.

18. Roglic, G, Unwin, N. Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res Clin. Pract., 2010;87(3):15–19.

19. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Geneva, (WHO/NCD/NCS/99.2), 1999.

20. Ana Guedes Martins, Silvia Stanisquasi Guterres & George Gonzalez Ortega, Anti-ulcer Activity of Spray-dried Powders prepared from Leaf Extracts of Maytenus ilicifolia Martius ex Reiss, Acta Farm. Bonaerense. 2003;22(1):39-44.

21. Das D, Banerjee R. Effect of stress on the antioxidant enzymes and gastric ulceration, Mol and Cell Biochem., 2003;125(2):115-25.

22. Dashputre NL, Naikwade NS, Evaluation of Anti-Ulcer Activity of Methanolic Extract of Abutilon indicum Linn in Rats, International Journal of Pharmaceutical Sciences and Drug Research, 2011;3(2):97-100.

23. Deshpande SS, Saha GB, Parmar NS, Antiulcer activity of Tephrosia purpurea in rats, Indian Journal of Pharmacology, 2003;35(3):168-172.

24. Deshpande SS, Shah GB, Parmar NS. Antiulcer activity of T. purpurea in rats, Indian J. Pharmacol., 2002;34(2):144.

Source of Support: None declared.

Conflict of Interest: None declared.

For any question relates to this article, please reach us at: editor@globalresearchonline.net

New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_igpsrr@rediffmail.com