The Role of TLR4 896 A>G and 1196 C>T in Susceptibility to Infections: A Review and Meta-Analysis of Genetic Association Studies

Citation
Ziakas, Panayiotis D., Michael L. Prodromou, Joseph El Khoury, Elias Zintzaras, and Eleftherios Mylonakis. 2013. “The Role of TLR4 896 A>G and 1196 C>T in Susceptibility to Infections: A Review and Meta-Analysis of Genetic Association Studies.” PLoS ONE 8 (11): e81047. doi:10.1371/journal.pone.0081047. http://dx.doi.org/10.1371/journal.pone.0081047.

Published Version
doi:10.1371/journal.pone.0081047

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879137

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
The Role of \textit{TLR4} 896 A>G and 1196 C>T in Susceptibility to Infections: A Review and Meta-Analysis of Genetic Association Studies

Panayiotis D. Ziakas1,2, Michael L. Prodromou1,3, Joseph El Khoury4,8, Elias Zintzaras6,7, Eleftherios Mylonakis1,2*

1 Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island, United States of America, 2 Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America, 3 Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America, 4 Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 5 Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America, 6 Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, United States of America, 7 Department of Biomathematics, School of Medicine, University of Thessaly, Larissa, Greece

Abstract

\textbf{Background:} Toll-like receptor 4 plays a role in pathogen recognition, and common polymorphisms may alter host susceptibility to infectious diseases.

\textbf{Purpose:} To review the association of two common polymorphisms (\textit{TLR4} 896A>G and \textit{TLR4} 1196C>T) with infectious diseases.

\textbf{Data Sources:} We searched PubMed and EMBASE up to March 2013 for pertinent literature in English, and complemented search with references lists of eligible studies.

\textbf{Study Selection:} We included all studies that: reported an infectious outcome; had a case-control design and reported the \textit{TLR4} 896A>G and/or \textit{TLR4} 1196C>T genotype frequencies; 59 studies fulfilled these criteria and were analyzed.

\textbf{Data Extraction:} Two authors independently extracted study data.

\textbf{Data Synthesis:} The generalized odds ratio metric (OR\textsubscript{G}) was used to quantify the impact of \textit{TLR4} variants on disease susceptibility. A meta-analysis was undertaken for outcomes reported in >1 study. Eleven of 37 distinct outcomes were significant. \textit{TLR4} 896 A>G increased risk for all parasitic infections (OR\textsubscript{G} 1.59; 95%CI 1.05-2.42), malaria (1.31; 95%CI 1.04-1.66), brucellosis (2.66; 95%CI 1.66-4.27), cutaneous leishmaniasis (7.22; 95%CI 1.91-27.29), neurocysticercosis (4.39; 95%CI 2.53-7.61), \textit{Streptococcus pyogenes} tonsillar disease (2.93; 95%CI 1.24-6.93), typhoid fever (2.51; 95%CI 1.18-5.34) and adult urinary tract infections (1.98; 95%CI 1.04-3.98), but was protective for leprosy (0.36; 95%CI 0.22-0.60). \textit{TLR4} 1196 C>T effects were similar to \textit{TLR4} 896 A>G for brucellosis, cutaneous leishmaniasis, leprosy, typhoid fever and \textit{S. pyogenes} tonsillar disease, and was protective for bacterial vaginosis in pregnancy (0.55; 95%CI 0.31-0.98) and \textit{Haemophilus influenzae} tonsillar disease (0.42; 95%CI 0.17-1.00). The majority of significant associations were among predominantly Asian populations and significant associations were rare among European populations.

\textbf{Conclusions:} Depending on the type of infection and population, \textit{TLR4} polymorphisms are associated with increased, decreased or no difference in infectious disease. This may be due to differential functional expression of \textit{TLR4}, the co-segregation of \textit{TLR4} variants or a favorable inflammatory response.

Citation: Ziakas PD, Prodromou ML, El Khoury J, Zintzaras E, Mylonakis E (2013) The Role of \textit{TLR4} 896 A>G and 1196 C>T in Susceptibility to Infections: A Review and Meta-Analysis of Genetic Association Studies. PLoS ONE 8(11): e81047. doi:10.1371/journal.pone.0081047

Editor: Giuseppe Danilo Norata, University of Milan, Italy

Received July 15, 2013; Accepted October 17, 2013; Published November 25, 2013

Copyright: © 2013 Ziakas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The Brown University Infectious Diseases Program in Outcomes Research is supported through funding from the Warren Alpert School of Brown University, the Department of Medicine and the Division of Infectious Diseases. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: EM, M. D., Ph.D is a PLOS ONE Editorial Board member. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: emylonakis@lifespan.org
Introduction

Toll-like receptors (TLRs) are a class of highly conserved membrane bound pattern recognition receptors (PRRs) that play an integral role in the regulation of the immune system through the recognition of pathogen-associated molecular patterns (PAMPs) and the activation of immune response genes [1,2]. Toll-like receptor 4 (TLR4), is a well-studied TLR, specifically recognizing lipopolysaccharide from Gram-negative bacteria [3,4] and initiating intracellular signal cascades, that involve the adaptor protein encoded by the myeloid differentiation primary response gene 88 (MyD88), which ultimately activates nuclear factor kappa B [5] and leads to interferon production [6]. TLR4 has also been shown to recognize mannans of fungal pathogens [7], Mycobacterium tuberculosis [8], and the fusion protein of respiratory syncytial virus [9].

Two single nucleotide polymorphisms (SNPs), TLR4 896 A>G (corresponding to an Asp299Gly substitution mutation ; SNP ID: rs 4986790) and TLR4 1196 C>T (corresponding to a Thr399Ile substitution mutation; SNP ID: rs 4986791), have been shown to be associated with LPS hypersensitivity [10,11]. In whites, the two SNPs are in linkage disequilibrium (D=1 and r2=0.791, HapMap accessible at: http://hapmap.ncbi.nlm.nih.gov/). Structurally, these mutations are found outside of the ligand binding domain of TLR4 and crystal structures have shown that these mutations have no effect on LPS binding. Instead, they do cause local conformational changes around the area of the mutation that may affect folding efficiency, cell surface expression, protein stability, as well as interaction with downstream messenger proteins [12]. At the molecular level, it has been shown that the TLR4 896 A>G mutation interferes with TLR4 interaction with MyD88 and other downstream messengers [13]. These mutations also appear to affect the levels of functional TLR4 expression, leading to a 2-fold reduction [14]. This reduction is further amplified to 10-fold in the absence of myeloid differentiation factor 2 (MD-2) which forms a complex with TLR4 and LPS [14,15].

There has been great interest regarding the association of the TLR4 SNPs TLR4 896 A>G and TLR4 1196 C>T to susceptibility for infection and other non-infectious disease states. Clinical studies associating these SNPs to infectious disease susceptibility have produced mixed results [16-19]. The present study aims to reassess the association of the TLR4 SNPs TLR4 896 A>G and TLR4 1196 C>T with infectious disease susceptibility using the Generalized Odds Ratio (ORG), which can elucidate the magnitude and association of individual genotypes with susceptibility to disease [20].

Materials and Methods

Study Selection

We conducted searches on Pubmed and EMBASE up to March, 2013 (last access on March 3, 2013). The search terms included: "(toll AND like AND receptor AND 4 AND polymorphism) OR (TLR4 AND polymorphism) OR Asp299Gly OR D299G OR Thr399Ile OR T399I" for PubMed; "(tlr4'/exp OR 'tlr4') AND ('polymorphism OR asp299gly OR d299g OR thr399ile OR t399i')" for EMBASE. The titles and abstracts of the studies were reviewed; titles that included TLR4 polymorphisms and risk for infectious disease were included for more detailed evaluation. Studies that reviewed TLR4 polymorphisms and their association with non-infectious disease were excluded, as were studies that were not published in English. An eligible study fulfilled all of the following three criteria: (i) the study reported an infectious disease outcome, (ii) the study was performed using a case-control design, where “cases” refer to subjects with a disease outcome and controls refer to a healthy population (without the disease outcome), and, (iii) the study reported genotype frequencies for TLR4 896 A>C, TLR4 1196C>T, or both.

Data Extraction

Two authors (PDZ and MLP) independently extracted data from the final included articles. Any discrepancies were reviewed and resolved by consensus. The information extracted included name of first author, origin of population being studied, number of cases and controls being studied subdivided by genotype frequencies (homozygous wild-type, heterozygous, and homozygous mutant), the disease being studied, and the conclusions reportedly drawn from each study.

Data Synthesis

We used the generalized odds ratio (ORG) along with its 95% Confidence Interval (95% CI) to address the association of TLR4 896 A>C and TLR4 1196 C>T polymorphisms with outcomes of interest (disease susceptibility). The ORG provides a model-free approach of estimating the genetic risk in genetic association studies (GAS) and meta-analysis of GAS, depending on the mutational load [20]. The ORG is defined as follows: for any two subjects, one diseased (case) and one non-diseased (control), the ORG estimates the odds of being diseased relative to the odds of being non-diseased when the diseased subject has higher mutational load than the non-diseased subject, i.e. the risk of disease is proportional to the increased genetic exposure. Alternatively, the ORG shows how many diseased-healthy pairs exist in the study for which the diseased have the larger mutational load, relative to the number of pairs for which the non-diseased have the larger mutational load [20][21]. The ORG estimates the overall genetic risk effect by utilizing the complete genotype distribution whereas the OR of conventional genetic models (additive, dominant, recessive, co-dominant) is calculated by merging genotypes. In addition, the conventional genetic models are not independent and thus, the interpretation of results is difficult when more than one model is significant [22]. In the meta-analysis of GAS, heterogeneity was quantified using the Cochran’s Q and I² metric [20]. The existence of the differential magnitude of effect in large versus small studies was checked using the Harbord’s test [23] for meta-analysis involving at least four studies. Also, the Hardy-Weinberg equilibrium (HWE) was used as a quality criterion for control populations. HWE deviations may result in biased estimations as they can influence type-I error in single study effects, and may alter statistical significance in meta-analysis of gene-disease associations.
TLR4 896 A>G and disease susceptibility

For outcomes with more than 1 available study, a meta-analysis was performed for chronic periodontitis (10 studies) [61,63,65-72], Helicobacter pylori infection (2 studies) [52,53], malaria (3 studies) [54-56], meningococcal disease (4 studies) [57-60], sepsis (3 studies) [75-77], respiratory syncytial virus (2 studies) [73,74], tuberculosis (5 studies) [78-82] and urinary tract infections in children (3 studies) [83-85]. Combined effects were also calculated for all Gram negative infections [30,31,33,35,39,46,47,52,53,57-60], all Gram positive infections [43,45,46] and all parasitic infections [36,37,40,50,51,54-56] (Table 3). A significant risk was found for all parasitic infections combined (OR_0.159; 95% CI 1.05-2.42), effect derived from Asian, African and South American populations; Figure 1) and malaria (OR_0.131; 95% CI 1.04-1.66, a combined effect for African and Asian studies; Figure 2). The effect on malaria was of marginal significance across African studies [54,56] (OR_0.129; 95% CI 0.99-1.69). All other effects were insignificant, namely all Gram negative infections (OR_1.10; 95% CI 0.90-1.38), all Gram positive infections (OR_1.28; 95% CI 0.43-3.81), Chagas disease (OR_1.06; 95% CI 0.53-2.14), H. pylori (OR_0.91; 95% CI 0.61-1.36), meningococcal disease (OR_1.10; 95% CI 0.90-1.34), aggressive or chronic periodontitis (OR_1.04; 95% CI 0.53-2.04 and OR_0.94; 95% CI 0.75-1.18, respectively), respiratory syncytial virus (OR_1.02; 95% CI 0.72-1.44), sepsis (OR_0.81; 95% CI 0.41-1.56) and tuberculosis (OR_1.18; 95% CI 0.80-1.73). The meta-analysis results are summarized in Table 3. Statistical heterogeneity varied from absent to moderate. The Harbord’s test indicated that there is no differential magnitude of effect in large versus small studies for all outcomes (p<0.05). Across populations of European ancestry, the risk of meningococcal disease [57-59] (OR_1.12; 95% CI 0.85-1.49) and chronic periodontitis (excluding the two non-European studies [66,68]; OR_1.06; 95% CI 0.53-2.14) remained insignificant. The effects on meningococcal disease and aggressive periodontitis did not alter after removing from analysis the two studies not in HWE equilibrium (data not shown) [58,62]. Effects on tuberculosis remained insignificant across Indian [78,81] (OR_1.34; 95% CI 0.62-2.90) or S. American [80,82] populations (OR_1.30; 95% CI 0.39-4.33). For outcomes with a single available study, a significant risk was present for brucellosis (OR_2.66; 95% CI 1.66-4.27) [30], cutaneous leishmaniasis (OR_7.22; 95% CI 1.91-27.29) [36], neurocysticercosis (OR_4.39; 95% CI 2.53-7.61) [40], and typhoid fever (OR_2.51; 95% CI 1.18-5.34) [47]. All the significant single-study effects are summarized in Table 4.

Of note, all these effects were derived from Asian studies. Increased risk for tonsillar infection due to Streptococcus pyogenes (OR_2.93; 95% CI 1.24-6.93) [46] was noted in the Greek pediatric population, as was an increased risk for urinary tract infections in adults (OR_1.98; 95% CI 1.04-3.98) in a Chinese population [48]. Interestingly, not all outcomes were negative and the TLR4 896 A>G polymorphism was associated with significant protection against leprosy (OR_0.36; 95% CI 0.22-0.60) in East Africa [38]. The use of the OR_0 metric resulted in more conservative estimates of associations, as two reportedly significant associations (1 reporting increased risk for Gram-negative osteomyelitis [41] and 1 reporting a protective effect for Streptococcus pneumoniae in children [45]) were downgraded to non-significant. Six control populations deviated for HWE equilibrium [30,35,39,53,58,62], and associations of TLR4 variants with disease were readdressed after correcting genotypes with their expected frequencies. These effects did not change (they appear in brackets in Tables 1,2). Specifically, the association of TLR4 896 A>G and brucellosis [30] remained significant after HWE correction (OR_2.69; 95% CI 1.67-4.33).

TLR4 1196 C>T and disease susceptibility

A meta-analysis of GAS was performed for malaria (2 studies) [55,56], aggressive periodontitis (4 studies) [61,62,64,65], chronic periodontitis (9 studies) [61,63,65,67,69-72,87], and tuberculosis (3 studies) [78,80,81] and revealed no significant effects. Statistical heterogeneity varied from absent to moderate. Specifically, the combined effects were OR_1.30 (95% CI 0.64-2.65) for malaria, OR_0.78 (95% CI 0.42-1.65) for aggressive and OR_1.12 (0.83-1.52) for chronic periodontitis, and OR_1.07 (95% CI 0.81-1.42) for tuberculosis. Effects were also insignificant for all Gram negative infections combined [OR_1.11 (95% CI 0.66-1.87)][33,35,39,46,47,52], all Gram positive infections combined [OR_1.09 (95% CI 0.13-9.09)] [45,46] and all parasitic infections combined [OR_1.50 (95% CI 0.88-2.56)] [36,37,40,51,55,56]. The meta-analysis results are summarized in Table 3. The Harbord’s test indicated that there
Table 1. Genotypic frequencies reported for the TLR4 896 A>G SNP and association with disease outcome; significant effects are in bold; outcomes that have been studied more than once have been grouped together in the table, with the overall effect described in the shaded area† genotypic frequencies of controls that did not satisfy Hardy Weinberg Equilibrium, [effects in brackets after correction of HWE deviations].

Name	Population	A/A	A/G	G/G	Disease Outcome	Conclusion Reported	ORG (95% CI)	
Carvalho et al [29]	England	70	10	58	18	0 Aspergillosis	Overall susceptibility not studied	2.10 (0.92-4.81)
Rezazadeh et al [30]	Iran	65	46	68	127	3 Brucellosis	Increased risk†	2.66 (1.66-4.27) [2.69 (1.67-4.33)]
Doorduy et al [31]	Netherlands	608	72	3	405	49 1 Campylobacter	No association	1.00 (0.68-1.46)
Plantinga et al [32]	Tanzania	99	9	107	10	0 Oropharyngeal candidiasis in HIV	No association	1.02 (0.41-2.55)
Laisk et al [33]	Estonia	287	35	1	61	9 0 C.trachomatis(women)	No association	1.24 (0.58-2.67)
Szibeni et al [34]	Hungary	108	10	0	37	4 0 NecEnterocolitis in LBW infants	No association	1.26 (0.40-4.00)
Lee, et al [35]	United States	431	11	2	103	2 3 Gram –ve infections in liver transplant	No association†	0.66 (0.26-1.70) [0.42 (0.16-1.66)]
Ajdary, et al [36]	Iran	73	2	0	102	26 0 Leishmaniasis (Cutaneous)	Increased risk	7.22 (1.91-27.29)
Rasouli et al [37]	Iran	137	18	0	110	11 1 Leishmaniasis (Visceral)	No association	0.81 (0.38-1.75)
Bochud et al [38]	East Africa	155	37	2	375	32 2 Leprosy	Protective	0.36 (0.22-0.60)
West, et al [39]	Thailand	1377	20	1	484	5 0 Meliodosis	No association†	0.74 (0.29-1.92) [0.70 (0.27-1.78)]
Verma, et al [40]	India	127	22	1	77	61 2 Neurocystercerosis	Increased risk	4.39 (2.53-7.61)
Montes et al [41]	Spain	135	20	0	65	12 3 Osteomyelitis	Increased risk	1.55 (0.76-3.20)
Emonis et al [42]	Netherlands	374	58	1	293	42 2 Otitis media (acute)	Overall susceptibility not studied	0.96 (0.63-1.45)
Moens et al [43]	Belgium	161	16	1	84	13 2 Invasive pneumococcal infection	No association	1.69 (0.81-3.54)
Mrazek et al [44]	Czechoslovakia	217	34	1	89	9 0 Prosthetic joint infection	No association	0.66 (0.31-1.42)
Doorduy et al [31]	Netherlands	608	72	3	173	20 0 Salmonella gastroenteritis	No association	0.96 (0.57-1.60)
Yuan et al [45]	Australia	364	44	1	82	3 0 S. pneumoniae	Protective	0.35 (0.12-1.07)
Liadaki, et al [46]	Greece	195	27	0	99	6 0 Tonsillar Disease (H.influenzae)	No association	0.47 (0.19-1.14)
Liadaki, et al [46]	Greece	264	25	0	30	8 0 Tonsillar Disease (S.pyogenes)	Increased risk	2.93 (1.24-6.93)
Bhuvanendran, et al [47]	Malaysia	241	9	0	277	27 0 Typhoid Fever	Increased Risk	2.51 (1.18-5.34)
Yin, et al [48]	China	227	21	0	109	20 0 UTT (Adults)	Increased risk	1.98 (1.04-3.98)
Hawn et al [49]	United States	274	33	6	585	65 2 UTT (Women)	No association	0.79 (0.52-1.20)
Weitzel, et al [50]	Northern Chile	42	3	0	114	11 0 Chagas Disease	No association	1.06 (0.53-2.14)
Zafra et al [51]	Colombia	191	9	0	262	10 3 Chagas Disease	No association	1.20 (0.35-4.14)
Achyut et al [52]	India	168	32	0	110	20 0 H. pylori	No association	0.91 (0.61-1.36)
Moura et al [53]	Brazil	222	28	4	206	25 1 H. pylori	No association†	0.87 (0.50-1.50) [0.81 (0.47-1.40)]
Esposito, et al [54]	Burundi	300	36	1	528	72 2 Malaria (children)	No association	1.13 (0.74-1.73)
Zakeri, et al [55]	Iran	287	33	0	276	39 5 Malaria (all ages)	No association	1.38 (0.86-2.22)
Mockenhaupt et al [56]	Ghana	239	47	4	444	129 7 Malaria (pregnancy)	Overall susceptibility not studied	1.42 (0.99-2.02)
Biebl et al [57]	Austria	678	88	3	167	18 0 Meningococcal disease (all ages)	No association	1.10 (0.90-1.34)

TLR4 Polymorphisms and Infectious Diseases

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e81047
Table 1 (continued).

Name	Population	A/A	A/G	G/G	A/A	A/G	G/G	Disease Outcome	Conclusion Reported	ORG (95% CI)
Read et al [58]	England	787	81	11	924	110	13	Meningococcal disease (all ages)	No association	1.13 (0.86-1.51)
										[1.05-0.79-1.38]
Faber et al [59]	Europe	190	23	1	165	27	5	Meningococcal disease (infants)	Increased risk	1.55 (0.89-2.72)
Allen et al [60]	Gambia	198	51	2	198	51	3	Meningococcal meningitis (children)	No association	1.02 (0.67-1.56)
								Periodontitis (aggressive)		1.04 (0.53-2.04)
Brett et al [61]	England	90	7	0	37	8	0	Aggressive periodontitis	No association	2.73 (0.96-7.76)
Emingil et al [62]	West Europe	147	7	1	86	4	0	Aggressive periodontitis	No association	0.96 (0.30-3.12)
										[0.81-0.26-2.54]
James et al [63]	West Europe	103	20	0	69	4	0	Aggressive periodontitis	No association	0.33 (0.12-0.97)
Noack et al [64]	Germany	71	9	0	100	11	0	Aggressive periodontitis	No association	0.86 (0.35-2.13)
Schulz et al [65]	Germany	73	7	0	52	8	0	Aggressive periodontitis	No association	1.58 (0.56-4.47)
								Periodontitis (chronic)		0.94 (0.75-1.18)
Garlet, et al [66]	Brazil	131	74	12	135	56	6	Chronic periodontitis	No association	0.70 (0.47-1.03)
Noack et al [67]	Germany	68	8	0	96	12	0	Chronic periodontitis	No association	1.04 (0.42-2.61)
Sahingur et al [68]	United States	59	17	1	95	19	0	Chronic periodontitis	No association	0.67 (0.33-1.37)
Schulz et al [65]	Germany	73	7	0	66	7	0	Chronic periodontitis	No association	1.10 (0.38-3.19)
Izakovcicova Holla et al [69]	Czechoslovakia	195	23	0	147	24	0	Chronic periodontitis	No association	1.38 (0.76-2.53)
Berdeli et al [70]	Turkey	100	6	0	79	4	0	Chronic periodontitis	No association	0.88 (0.26-3.01)
James et al [63]	West Europe	78	16	0	77	17	1	Chronic periodontitis	No association	1.11 (0.53-2.31)
Brett et al [61]	England	90	7	0	47	6	0	Chronic periodontitis	No association	1.66 (0.55-4.97)
Laine et al [71]	Netherlands	90	8	1	90	10	0	Chronic periodontitis	No association	1.16 (0.46-2.93)
Folwaczyny et al [72]	Germany	236	8	0	234	10	0	Chronic periodontitis	No association	1.24 (0.50-3.12)
								Respiratory Syncytial Virus		1.02 (0.72-1.44)
Lofgren, et al [73]	Finland	290	59	7	251	55	6	Respiratory Syncytial Virus	No association	1.06 (0.73-1.66)
Paulus et al [74]	Canada	97	9	0	218	17	1	Respiratory Syncytial Virus	No association	0.84 (0.37-1.91)
								Sepsis		0.81 (0.42-1.56)
Ahmad-Nejad et al [75]	Germany	99	12	1	31	6	1	Sepsis (ICU)	No association	1.72 (0.64-4.63)
Carregaro et al [76]	Brazil	178	26	1	88	9	0	Sepsis (ICU)	No association	0.71 (0.33-1.56)
Feterowski et al [77]	Germany	135	19	0	143	10	0	Sepsis (ICU)	No association	0.51 (0.23-1.19)
								Tuberculosis		1.18 (0.80-1.73)
Najmi et al [78]	India	206	44	0	95	34	6	Tuberculosis	Increased association	2.00 (1.23-3.25)
Newport et al [79]	Gambia	235	58	5	241	62	4	Tuberculosis	No association	1.01(0.69-1.49)
Sanchez, et al [80]	Colombia	270	29	1	429	36	1	Tuberculosis	No association	0.78 (0.47-1.28)
Selvaraj et al [81]	South India	151	53	3	153	47	4	Tuberculosis	No association	0.91 (0.59-1.40)
Rosas-Taraco et al [82]	Mexico	110	4	0	94	10	0	Tuberculosis	No association	2.70 (0.87-8.39)
								UTI		1.41 (0.70-2.84)
Akill, et al [83]	Turkey	79	14	0	97	14	1	UTI-children	No association	0.85 (0.39-1.84)
Erfan, et al [84]	Turkey	29	1	0	28	2	0	UTI-children	No association	1.70 (0.22-13.37)
Karoly et al [85]	Hungary	218	17	0	88	15	0	UTI-children	Increased risk	2.18 (1.06-4.52)

is no differential magnitude of effect in large versus small studies for all outcomes (p≥0.05).

For outcomes with a single available study, a significant risk was present for cutaneous leishmaniasis in Iran (OR= 10.14; 95% CI 1.90-54.16) [36], neurocysticercosis in India (OR= 3.10; 95% CI 1.45-6.67) [40], S. pyogenes tonsillar disease in Greece (OR= 3.12; 95% CI 1.36-7.13) [46] and typhoid fever in Malaysia (OR= 2.26; 95% CI 1.01-5.07) [47]. A significant protection was conferred for bacterial vaginosis in pregnancy (OR= 0.55;95% CI 0.31-0.98) in the United States (notably,
Table 2. Genotypic frequencies reported for the *TLR4* 1196 C>T SNP and association with disease outcome; significant effects are in bold; outcomes that have been studied more than once have been grouped together in the table, with the overall effect described in the shaded area.

Name	Population	Case Genotype	Control Genotype	Disease Outcome	Conclusion Reported	ORg (95% CI)				
Goepfert et al [86]	United States	316	28	0	435	21	0	Bacterial Vaginosis in Pregnant	Protective	0.55 (0.31-0.98)
Lalik et al [33]	Estonia	287	35	1	61	9	0	C. trachomatis(women)	No association	1.24 (0.58-2.67)
Szebeni et al [34]	Hungary	108	10	0	37	4	0	NecEnteroColitis in LBW infants	No association	1.26 (0.39-4.00)
Lee, et al [35]	United States	395	64	4	89	18	1	Gram—ve infections in liver transplant	No association	1.23 (0.71-2.15)
Achuty et al [52]	India	188	11	1	115	9	6	H pylori	No association	2.08 (0.95-4.54)
Afdary, et al [36]		74	1	0	105	21	2	Leishmaniasis (Cutaneous)	Increased risk of infection	10.14 (1.90-54.16)
Rasouli et al [37]	Iran	137	18	0	112	9	1	Leishmaniasis (Visceral)	No association	0.67 (0.30-1.49)
Bochud et al [38]	East Africa	179	15	1	407	8	0	Melioidosis	Protective	0.23 (0.10-0.55)
West, et al [39]	Thailand	1379	22	1	486	3	0	Prosthetic joint infection	No association	0.43 (0.14-1.33)
Verma, et al [40]	India	140	9	1	114	25	1	Neurocyticercosis	Increased risk	3.13 (1.46-6.73)
Montes et al [41]	Spain	133	22	0	67	10	3	Osteomyelitis	Increased risk	1.19 (0.57-2.47)
Mrazek et al [44]	Czechoslovakia	219	33	0	88	0	0	Tonsillar Disease (H.influenzae)	Protective	0.42 (0.17-1.00)
Ahmad-Nejad et al [75]	Germany	98	13	1	31	6	1	Sepsis (ICU)	No association	1.58 (0.60-4.23)
Yuan et al [45]	Australia	365	43	1	82	3	0	S. pneumoniae	Protective	0.36 (0.12-1.09)
Liadaki, et al [46]	Greece	192	30	0	99	6	0	Tonsillar Disease (S.pyogenes)	Increased risk	3.12 (1.36-7.13)
Bhuvanendran, et al [47]	Malaysia	242	8	0	282	22	0	Typhoid Fever	Increased Risk	2.26 (1.01-5.07)
Hawn et al [49]	United States	277	35	4	589	69	0	UTI - Women	No association	0.83 (0.55-1.26)
	Chagas Disease	1	0	0	114	11	0	Chagas Disease	No association	1.19 (0.35-4.14)
	Malaria	282	9	0	267	8	0	Chagas disease	No association	0.95 (0.37-2.42)
	Zakeri, et al [55]	270	50	0	271	49	0	Malaria (all ages)	No association	0.98 (0.64-1.50)
	Mockenhaupt et al [56]	283	7	0	550	28	2	Malaria (pregnancy)	Overall susceptibility not studied	2.06 (0.91-4.62)
	Periodontitis (aggressive)	10.14 (1.90-54.16)								
	Periodontitis (chronic)	0.78 (0.42-1.65)								
	Tuberculosis	1.07 (0.81-1.42)								
	Najmi et al [56]	206	43	1	105	26	4	Tuberculosis	No association	1.37 (0.82-2.28)
	Sanchez, et al [80]	272	26	1	429	36	1	Tuberculosis	No association	0.87 (0.52-1.46)
Table 2 (continued).

Name	Population	Control Genotype	Case Genotype	C/C	C/T	T/T	C/C	C/T	T/T	Disease Outcome	Conclusion Reported	OR$_0$ (95% CI)
Selvaraj et al [81]	South India	152	46	4	150	49	4	150	49	4 Tuberculosis	No association	1.04 (0.58-1.61)

† genotypic frequencies of controls that did not satisfy Hardy Weinberg Equilibrium, [effects in brackets after correction of HWE deviations].

doi: 10.1371/journal.pone.0081047.t002

Table 3. Summary of disease associations derived from meta-analysis of case-control studies.

Disease Outcome	Studies	Polymorphism	Effect (OR$_0$; 95% CI)	P_Q	I^2	P_H
All Gram - infections	13	TLR4 896 A>G	1.10 (0.90-1.38)	0.01	52%	0.32
6	TLR4 1196 C>T	1.11 (0.66-1.67)	0.02	61%	0.59	
Helicobacter pylori	2	TLR4 896 A>G	0.91 (0.61-1.36)	0.79	-	-
Meningococcal Disease	4	TLR4 896 A>G	1.10 (0.90-1.34)	0.43	0	0.93
All Gram + infections	3	TLR4 896 A>G	1.28 (0.43-3.81)	0.01	77%	-
2	TLR4 1196 C>T	1.09(0.13-9.09)	0.002	-	-	
All parasitic infections	8	TLR4 896 A>G	1.59 (1.05-2.42)	<0.001	72%	0.72
7	TLR4 1196 C>T	1.50 (0.88-2.56)	0.01	64%	0.5	
Chagas Disease	2	TLR4 896 A>G	1.06 (0.53-2.14)	0.82	-	-
2	TLR4 1196 C>T	1.03 (0.49-2.18)	0.76	-	-	
Malaria	3	TLR4 896 A>G	1.31 (1.04-1.66)	0.71	0	-
2	TLR4 1196 C>T	1.30 (0.64-2.65)	0.11	-	-	
Periodontitis(Aggressive)	5	TLR4 896 A>G	1.04 (0.53-2.04)	0.07	52%	0.16
4	TLR4 1196 C>T	0.78 (0.42-1.65)	0.29	20%	0.92	
Periodontitis (Chronic)	10	TLR4 896 A>G	0.94 (0.75-1.18)	0.68	0	0.74
9	TLR4 1196 C>T	1.12 (0.83-1.52)	0.74	0	0.93	
RSV	2	TLR4 896 A>G	1.02 (0.72-1.44)	0.61	-	-
Sepsis	3	TLR4 896 A>G	0.81 (0.41-1.56)	0.16	45%	-
Tuberculosis	5	TLR4 896 A>G	1.18 (0.80-1.73)	0.03	63%	0.43
3	TLR4 1196 C>T	1.07 (0.81-1.42)	0.47	0	-	
LUTI (Children)	3	TLR4 896 A>G	1.41 (0.70-2.84)	0.21	35%	-

P$_Q$: p value for Q homogeneity test; P$_H$: p value for Harbord’s small study effects test, --not applicable

doi: 10.1371/journal.pone.0081047.t003

African Americans comprised 78% of the cases [86], leprosy in East Africa (OR$_0$ 0.23; 95% CI 0.10-0.55) [38], and Haemophilus influenzae tonsillar disease in a Greek pediatric population (OR$_0$ 0.42; 95% CI 0.17-1.00) [46]. The significant results are summarized in Table 4. Only 1 control population deviated from HWE equilibrium that assessed the risk of melioidosis [39], a risk that did not change after correction with the expected genotype frequencies (Table 2). Two reportedly significant associations for Gram-negative osteomyelitis (increased risk) and S. pneumoniae (protection) were not confirmed in this analysis with the use of the OR$_0$ metric.

The significant effects were unidirectional and similar in magnitude when both TLR4 896 A>G and 1196 C>T were examined (Table 4), that is if TLR4 896 A>G was protective then 1196 C>T was also protective. When TLR4 896 A>G increased risk, then 1196 C>T increased risk. Specifically, the point estimates for 896 A>G and 1196 C>T variants were (respectively): 7.22 and 10.14 for cutaneous leishmaniasis, 4.39 and 3.13 for neurocysticercosis, 2.93 and 3.12 for S. pyogenes tonsillar disease, 2.51 and 2.26 for typhoid fever, 0.36 and 0.23 for leprosy. An exception to the rule was H. influenzae tonsillar disease, where the protective effect of TLR4 896 A>G did not reach statistical significance (OR$_0$ 0.47; 95% CI 0.19-1.14), while 1196 C>T showed significant association (OR$_0$ 0.42; 95% CI 0.17-1.00).

Discussion

We performed a systematic literature review to address the potential association of 2 common TLR4 single nucleotide polymorphisms (TLR4 896 A>G, TLR4 1196 C>T) with infectious diseases. An increased risk was documented for all parasitic infections combined, malaria [54-56], brucellosis [30], cutaneous leishmaniasis [36], typhoid fever [47], neurocysticercosis [40] and adult urinary tract infections [48]. Interestingly, all these effects were reported in populations of Asian descent, with the exception of parasitic infections and malaria where the effect was a combined effect from Asian,
African and South American populations. This finding is more striking when we consider that European populations comprised the majority of GAS data (28 out of 59 studies, 48%) and a significant risk was found only for TLR4 polymorphisms and *S. pyogenes* tonsillitis among Greek children [46]. Another notable finding is that, for some infections, these single nucleotide polymorphisms were associated with lower infection rates. Overall, these effects sum to a total of 11 significant SNPs-disease associations that represent almost one third (30%) of all outcomes addressed in the eligible studies and there was consistency of effects (risk or protection) between 896 A>G and 1196 C>T variants when both associations were studied.

In this study we utilized the generalized odds ratio (OR₉) metric to quantify the magnitude of associations. This metric provides a straightforward interpretation of the relative risk effect, based solely on genotype distribution [20]. The generalized odds ratio overcomes this problem by directly quantifying the magnitude of association of a gene with disease [20]. Implementing the OR₉ obviates the need for selecting, estimating and interpreting individual genotype contrasts (dominant, recessive and co-dominant) and their effect. OR₉ can also be used in meta-analysis of GAS to summarize effects and produce robust results, avoiding the shortcomings of multiple model testing, namely the lack of biologic justification and non-independency of effects [20,88,89]. For example, for TLR4 896 A>G association with malaria, the combined OR₉ showed that the probability of having malaria might be 31% higher for subjects having higher mutational load relative to those with lower mutational load (subjects who are homozygous for G allele have the highest mutational load, those homozygous for A allele have the lowest, and heterozygous have an intermediate level). The application of the OR₉ metric also resulted in a more conservative estimate of
associations, given that associations for infections such as osteomyelitis (39) and *S. pneumonia* (43) were downgraded to insignificant. The associations derived from tuberculosis data were insignificant similar to those reported [90].

In our analysis, TLR4 polymorphisms were associated with susceptibility to a diverse spectrum of infections including Gram-negative, Gram-positive bacteria as well as parasitic infections, such as cutaneous leishmaniasis and neurocysticercosis. This wide spectrum of associations correlates with the spectrum of recognition molecules by TLR4. Indeed, TLR4 is involved in induction of cell-mediated immunity to *Brucella abortus* in mice [7] and TLR4 signaling also upregulates macrophage anti-leishmanial activity [91]. Similarly, binding of the *Salmonella typhi* porin OmpS1 to TLR4 leads to overexpression of MHCII and CD40 molecules and activation of dendritic cells [92]. TLR4 can recognize LPS of Gram-negative bacteria [3,4], glycans of the helminth *Taenia solium* [93] as well as the fusion protein of respiratory syncytial virus [9].

Interestingly, our analysis also confirmed that these polymorphisms are also protective for certain types of infection, such as leprosy. It is not clear why such polymorphisms confer increased susceptibility to some infection, but protect from others. It could be speculated that in some infections the immune response leads to an inflammatory response that is protective, whereas in others such response may be essential in the pathogenesis of the infectious process. An example is *Mycobacterium leprae* where the TLR4-mediated immune response to the pathogen may modulate inflammatory processes that influence disease manifestations but are not attributable to direct stimulation by M. leprae. Indeed, Bochud et al [38] found that the stimulation of monocytes with M. leprae inhibited their subsequent response to TLR4 stimulation with LPS.

![Figure 2. Malaria: Random effects (RE) generalized odds ratio (OR, G) estimates with the corresponding 95% confidence interval (CI) for the variant TLR4 896 A>G. The horizontal axis is plotted on a log scale.](image-url)

doi: 10.1371/journal.pone.0081047.g002
Table 4. Summary of significant associations with disease outcomes, derived from single case-control studies.

Study	Population	Disease Outcome	Polymorphism	ORG (95% CI)
Goepfert [66]	USA	Bacterial vaginosis (pregnancy)	TLR4 896 C>T	0.55
				(0.31-0.98)
Rezazadeh [30]	Iran	Brucellosis	TLR4 896 A>G	2.66
				(1.66-4.27)
Ajdary [36]	Iran	Cutaneous leishmaniasis	TLR4 896 A>G	7.22
				(1.91-27.29)
Bochud [38]	East Africa	Leprosy	TLR4 896 A>G	0.36
				(0.22-0.60)
			TLR4 1196 C>T	0.23(0.10-0.55)
Verma [40]	India	Neurocysticercosis	TLR4 896 A>G	4.39
				(2.53-7.61)
			TLR4 1196 C>T	3.13
				(1.46-6.73)
Liadaki [46]	Greece	H. influenzae (tonsillitis)	TLR4 1196 C>T	0.42
				(0.17-1.00)
Liadaki [46]	Greece	S. pyogenes (tonsillitis)	TLR4 896 A>G	2.93
				(1.24-6.93)
			TLR4 1196 C>T	3.12
				(1.36-7.13)
Bhuvanedran [47]	Malaysia	Typhoid fever	TLR4 896 A>G	2.51
				(1.18-5.34)
			TLR4 1196 C>T	2.26
				(1.01-5.07)
Yin [48]	China	UTI (Adults)	TLR4 896 A>G	1.98
				(1.04-3.98)

doi: 10.1371/journal.pone.0081047.t004

Among Indo-European populations, 6–14% of the individuals are double heterozygous for both polymorphisms [94]. It is suggested that the double heterozygous TLR4 896 A>G/TLR4 1196 C>T haplotype does not functionally differ from wild type TLR4. Therefore, co-segregation may result in a functionally neutral phenotype and, as seen in European populations, lead to the lack of significant associations. Conversely, TLR4 896 A>G was frequently found (10-18%) among African populations, with only 2% having TLR4 1196 C>T co-segregation. Two studies (on typhoid fever and leprosy) indicated weak linkage disequilibrium in Malaysian [47] and East African populations [38]. These differences between Europeans (co-segregation) compared to Asian and African population (lack of co-segregation) may explain why the majority of significant associations were noted for endemic diseases of Asia and Africa.

Our analysis on the impact of these polymorphisms in periodontitis illustrates the different impact of polymorphisms based on the population. More specifically, despite the bulk of studies on aggressive and chronic periodontitis, TLR4 variants did not show any significant association, even though TLR4 has been shown to be overexpressed in gingival epithelial cells and gingival fibroblasts [95-97] in association with periodontal inflammation involving pathogens related to periodontitis, such as Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans [98-101]. One possible explanation is that this finding was because all relevant studies were almost exclusively confined to European ancestry populations and the lack of susceptibility may be related to the strong linkage disequilibrium, that is the non-random association between 896 A>G and 1196 C>T in Europeans [94].

Importantly, our analysis highlights the need to evaluate the impact of these polymorphisms in different populations and various clinical conditions. Moreover, the absence of significant associations in meta-analysis data for periodontitis, tuberculosis, meningococcal disease and sepsis, signifies that the functional alterations related to polymorphic TLR4 variants may not be critical to produce the clinical phenotype. Lack of reproducibility stands as a barrier for conclusive evidence, and design, sample size and environmental and genetic heterogeneity between populations may affect results. Finally, the presence of a significant effect may rely on the magnitude of functional expression of TLR4. Protection or risk may be moderated by the level of TLR4 functional expression, which is modulated by TLR4 polymorphism and MD-2 presence [14,15]. Therefore, it is essential to explore whether MD-2 is important in the response to some infections, but not others, or that levels of TLR4 vary in one infection compared to another.

The heterogeneity of the populations studied along with multiple endpoints should also be considered as potential study limitation that may influence statistical power. Moreover, different populations mount diverse immunologic responses and the clinical relevance of polymorphisms is not always straightforward. The lack of association for a disease phenotype highlights that gene-to-gene interactions and gene-environment interactions may be influential parameters of disease association. Case-control design of individual GAS precludes adjusted analysis for gene-gene-environment interactions and may have reduced the efficiency of genetic risk estimates, though it is unlikely to inflate false-positive results [89].

Despite these limitations, genetic markers of immune response such as TLR4 variants, are valuable not only to classify high-risk patients based on disease susceptibility but also to predict disease severity and other sequelae. The associations of TLR4 896A>G with hearing loss in survivors of bacterial meningitis [102] and the increased risk of tympanostomy among toddlers with history of bronchiolitis [103] are indicative examples.

In conclusion, our analysis highlights the complex effect of TLR4 variants in susceptibility to infectious disease. Some of the effects, such as in malaria, are validated in a variety of studies, whereas single case-control studies should be cautiously interpreted until more information on the specific outcomes is added. Taken in their totality, our results indicate that depending on the infection and the population studied, the same polymorphism may be associated with risk, protection or have no effect. In this context, our analysis provides the rationale for understanding the protective or adverse effect of
TLR4 polymorphisms and may provide a basis to explain the maintenance of these polymorphisms.

Supporting Information

Checklist S1. PRISMA checklist. (DOC)

References

1. Creagh EM, O'Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27: 352-357. doi:10.1016/j.it.2006.06.003. PubMed: 16807108.
2. Beutler B (2004) Innate immunity: an overview. Mol Immunol 40: 845-859. doi:10.1016/j.molimm.2003.10.005. PubMed: 14698223.
3. Poltorak A, Smirnova I, Liu MY, Van Huffel S et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085-2088. doi:10.1126/science.282.5396.2085. PubMed: 9851930.
4. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T et al. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749-3752. PubMed: 10201887.
5. Miggini SM, O'Neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80: 220-226. doi:10.1189/jl.1105672. PubMed: 16689941.
6. Akira S (2003) Toll-like receptor signaling. J Biol Chem 278: 38105-38108. doi:10.1074/jbc.R300028200. PubMed: 12893815.
7. Campos MA, Rosinha GM, Almeida IC, Salgueiro XS, Jarvis JP et al. (2004) Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 72: 175-186. doi:10.1128/IAI.72.1.175-186.2004. PubMed: 14688095.
8. Sánchez D, Rojas J, Hernández I, Radzioch D, García LF et al. (2010) Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cell Immunol 260: 129-136. doi:10.1016/j.cellimm.2009.10.007. PubMed: 19919859.
9. Kourt-Jones EA, Popova L, Kawn L, Haynes LM, Jones LP et al. (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1: 398-401. doi:10.1038/140833. PubMed: 10206619.
10. Smirnova I, Mann N, Dols A, Derkx P, Weiss JP, Gioannini TL (2010) Expression meta-analysis. Gene 501: 213-218. doi:10.1016/j.gene.2012.04.027. PubMed: 22537674.
11. Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T et al. (2012) TLR4 polymorphisms and disease susceptibility. J Infect 64: 171-188. doi:10.1016/j.jinf.2012.04.027. PubMed: 22537674.
12. Ferwerda B, McCall MB, Verheijen K, Kulberg BJ, van der Ven AJ et al. (2008) Functional consequences of toll-like receptor 4 polymorphisms. Mol Med 14: 346-352. PubMed: 18231573.
13. Schröder NW, Schumann R (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5: 156-164. doi:10.1016/S1473-3099(05)70023-2. PubMed: 15766650.
14. Zintzaras E (2010) The generalized odds ratio as a measure of genetic risk: application in the analysis and meta-analysis of association studies. Stat Appl Genet Mol Biol 9: Article21.
15. Zintzaras E (2012) The power of the generalized odds ratio in assessing association in genetic studies with known mode of inheritance. J Appl Stat 39: 2569-2581. doi:10.1080/02664763.2012.722611.
16. Harbord RM, Egger M, Sterne JA (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25: 3443-3457. doi:10.1002/sim.2380. PubMed: 16345038.
17. Rodríguez S, Gaunt TR, Day IN (2009) Hardy-Weinberg equilibrium deviation on allele-based risk effect of genetic association studies and meta-analysis. Eur J Epidemiol 25: 553-560. doi:10.1007/s10654-010-9467-z. PubMed: 20526652.
18. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339: b2535. doi:10.1136/bmj.b2535. PubMed: 19622551.
19. Ziva N, Karsaliakos P, Prodromou ML, Mylonakis E (2013) Interleukin-6 polymorphisms and hematologic malignancy: a reappraisal of evidence from genetic association studies. Biomarkers [epub ahead of print]. PubMed: 24059848.
20. Kurt-Jones EA, Popova L, Kawn L, Haynes LM, Jones LP et al. (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1: 398-401. doi:10.1038/140833. PubMed: 10206619.
21. Smirnova I, Mann N, Dols A, Derkx P, Weiss JP, Gioannini TL (2010) Expression of functional D299G, T399I polymorphic variant of TLR4 depends more on coexpression of MD-2 than does wild-type TLR4. J Immunol 184: 4362-4367. doi:10.4049/jimmunol.1200020. PubMed: 22474023.
22. Prohinar P, Rallabhandi P, Weiss JP, Gioannini TL (2010) Expression of functional D299G, T399I polymorphic variant of TLR4 depends more on coexpression of MD-2 than does wild-type TLR4. J Immunol 184: 4362-4367. doi:10.4049/jimmunol.1200020. PubMed: 22474023.
23. Park BS, Song DH, Kim HM, Choi BS, Lee H et al. (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458: 1191-1195. doi:10.1038/nature07830. PubMed: 19622551.
24. Zhu L, Li X, Miao C (2012) Lack of association between TLR4 Asp299Gly and Thr99Ile polymorphisms and sepsis susceptibility: a meta-analysis. Gene 501: 213-218. doi:10.1016/j.gene.2012.04.027. PubMed: 22537674.
25. Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T et al. (2012) TLR4 polymorphisms and disease susceptibility. J Infect Dis 210: 456-4515. doi: 10.4049/jimmunol.1200020. PubMed: 22474023.
26. Zhu L, Li X, Miao C (2012) Lack of association between TLR4 Asp299Gly and Thr99Ile polymorphisms and sepsis susceptibility: a meta-analysis. Gene 501: 213-218. doi:10.1016/j.gene.2012.04.027. PubMed: 22537674.
27. Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T et al. (2012) TLR4 polymorphisms and disease susceptibility. J Infect Dis 210: 456-4515. doi: 10.4049/jimmunol.1200020. PubMed: 22474023.
28. Ferwerda B, McCall MB, Verheijen K, Kulberg BJ, van der Ven AJ et al. (2008) Functional consequences of toll-like receptor 4 polymorphisms. Mol Med 14: 346-352. PubMed: 18231573.
38. Rassoul M, Keshavarz M, Kalani M, Moravej A, Kiany S et al. (2012) Toll-like receptor 4 (TLR4) polymorphisms in Iranian patients with visceral leishmaniasis. Mol Biol Rep 39: 10795-10802. doi: 10.1007/s10077-012-1973-5. PubMed: 23053976.

39. Botched PY, Sinsimer D, Aderem A, Siddiqui MR, Saunders P et al. (2009) Polymorphisms in Toll-like receptor 4 (TLR4) are associated with protection against leprosy. Eur J Clin Microbiol Infect Dis 28: 1055-1065. doi: 10.1007/s10096-009-0746-0. PubMed: 19430824.

40. West TE, Chierakul W, Chantratita N, Limmathurotsakul D, Wuthiekanun V et al. (2012) Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun 13: 38-46. doi: 10.1038/gene.2011.49. PubMed: 21776015.

41. Montes AH, Asensio V, Alvarez V, Valle E, Ocana MG et al. (2006) The Toll-like receptor 4 (Asp299Gly) polymorphism is a risk factor for Gram-negative and haematogenous osteomyelitis. Clin Exp Immunol 143: 404-413. doi: 10.1111/j.1365-2249.2005.03002.x. PubMed: 16487238.

42. Emonts M, Veenhoven RH, Wiersema SP, Huizing-Duistermaat JJ, Walraven V et al. (2007) Genetic polymorphisms in immunoreceptor genes TNF-α, IL-10, and TLR4 are associated with recurrent acute otitis media. Pediatrics 120: 814-823. doi: 10.1542/peds.2007-0524. PubMed: 17908769.

43. Moens L, Verhaegen J, Peunk M, Vermeire S, De Boeck K et al. (2007) Toll-like receptor 4 and Toll-like receptor 4 polymorphism in invasive pneumococcal disease. Microbes Infect 9: 15-20. doi: 10.1016/j.micinf.2006.10.002. PubMed: 17196867.

44. Mrazek F, Gallo J, Stahelova A, Petrek M (2013) Coding variants of TLR2 and TLR4 genes do not substantially contribute to prosthetic joint infection. Inflamm Res 62: 483-487. doi: 10.1007/s00011-013-0601-8. PubMed: 23417728.

45. Yuan FF, Marks K, Wong M, Watson S, de Leon E et al. (2008) Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 86: 268-270. doi: 10.1038/ijicb.2007.155. PubMed: 18180796.

46. Liadaki P, Petnaki E, Skoulakis C, Tsirevelopoulo P, Klapa D et al. (2011) Toll-like receptor 4 gene (TLR4), but not TLR2 polymorphisms modify the risk of tonsillar disease due to Streptococcus pyogenes and Haemophilus influenzae. Clin Vaccine Immunol 18: 217-222. doi: 10.1128/CVI.00460-10. PubMed: 21599252.

47. Bhuvanendran S, Hussin HM, Meran LP, Anthony AA, Zhang L et al. (2011) Toll-like receptor-4 and TLR9 polymorphisms are associated with susceptibility to melioidosis. Trop Med Int Health 16: 280-286. doi: 10.1111/j.1365-3156.2010.02633.x. PubMed: 21372996.

48. Yi S, Hwang J, Ahn HS, Lee H, Park JY et al. (2013) Lack of association between the toll-like receptor 4 gene polymorphism and periodontal disease in Korean postmenopausal women. J Periodontol 84: 150-156. doi: 10.1902/jop.2011.10-0131. PubMed: 23397645.

49. Inoue T, Takahashi A, Kono M, Ichikawa K, Hoshino H et al. (2012) Lack of association between the toll-like receptor 4 gene polymorphisms and periodontal disease in a Japanese population. PLoS ONE 7: e38469. doi: 10.1371/journal.pone.0038469. PubMed: 23057331.

50. Noack B, Görgens H, Lorenz K, Ziegler A, Hoffmann T et al. (2008) Toll-like receptor 4 and IL-18 gene variants in aggressive periodontitis. J Dent Res 87: 640-642. doi: 10.1177/0022034507084121. PubMed: 16304445.

51. Faber J, Meyer CU, Gemmer C, Russo A, Finn A et al. (2006) Human toll-like receptor 4 mutations are associated with susceptibility to invasive meningococcal disease in infancy. Pediatr Infect Dis J 25: 80-81. doi: 10.1097/01.inf.0000195956.22547.fe. PubMed: 16359111.

52. Allen A, Obaro S, Bojang K, Awoyai AA, Greenwood BM et al. (2003) Variation in Toll-like receptor 4 and susceptibility to group A meningococcal meningitis in Gambian children. Pediatr Infect Dis J 22: 1003-1009. doi: 10.1097/01.inf.0000059431.15606.68. PubMed: 14628773.

53. Brett PM, Zygojanni P, Griffiths GS, Tomaz M, Parkar M et al. (2005) Functional gene polymorphisms in aggressive and chronic periodontitis. J Dent Res 84: 1149-1153. doi: 10.1177/0022034505084121. PubMed: 16304445.

54. Noack B, Görgens H, Lorenz K, Ziegler A, Hoffmann T et al. (2008) Toll-like receptor 4 and IL-18 gene variants in aggressive periodontitis. J Periodontol 35: 1020-1026. doi: 10.1111/j.1600-051x.2008.01334.x. PubMed: 18983635.

55. Noack B, Zisler N, Altermann W, Klapproth J, Zimmermann U et al. (2008) Impact of genetic variants of CD14 and TLR4 on subgingival periodontopathogens. Int J Immunogenet 35: 457-464. doi: 10.1111/j.1365-2176.2008.00811.x. PubMed: 19046305.

56. González-R, Trombone R, Letra A, Repoce CE et al. (2012) The use of common chinchigrivis as reference status increases the power and odds of periodontitis genetic studies: a proposal based in the exposure concept and clearer resistance and susceptibility phenotypes definition. J Clin Periodontol 39: 323-332. doi: 10.1111/j.1600-051x.2011.01659.x. PubMed: 22224464.

57. Noack B, Görgens H, Lorenz K, Schackert HK, Hoffmann T (2009) TLR4 and IL-1B gene variants in chronic periodontitis: impact on disease susceptibility and severity. Immunol Invest 38: 297-310. doi: 10.1080/0894193090318426290. PubMed: 19811440.

58. Sahingur SE, Xia XJ, Gunsolley J, Schenkein HA, Genco RJ et al. (2011) Single nucleotide polymorphisms of pattern recognition receptors and chronic periodontitis. J Periodontal Res 46: 184-192. doi: 10.1111/j.1600-0765.2010.00137.x. PubMed: 21198416.

59. Izakovicova Holla L, Buckova D, Fassnig A, Lala, Roubalikova L, Vanek J et al. (2012) Lack of association between chronic periodontitis and the Toll-like receptor 4 gene polymorphisms in a Czech population. J Clin Periodontol 39: 230-245. doi: 10.1111/j.1600-051x.2011.02189.x. PubMed: 22625731.

60. Noack B, Görgens H, Lorenz K, Eberlein A, Hoffmann T et al. (2008) Toll-like receptor 4 (TLR4) polymorphisms predispose to cutaneous leishmaniasis in endemic areas. TOLL4 Polymorphisms and Infectious Diseases.
86. Zintzaras E (2012) Gamma-aminobutyric acid A receptor, alpha-2 (GABA_A) variants and endogenous markers for alcoholism: a meta-analysis. Psychiatr Genet 22: 189-196. doi:10.1097/YPG.0b013e328354a3e3. PubMed: 22555154.

87. Zintzaras E, Doxani C, Rodopoulou P, Bakolas G, Zogas DC et al. (2012) Variants of the MTHFR gene and susceptibility to acute lymphoblastic leukemia in children: a synthesis of genetic association studies. Cancer Epidemiol Biomarkers Prev 21: 169-176. doi:10.1158/1055-9966.EPI-11-0093. PubMed: 22493242.

88. Tian T, Jin S, Dong L, Li G (2013) Lack of association between Toll-like receptor 4 gene Asp299Gly and Thr399ile polymorphisms and tuberculosis susceptibility: a meta-analysis. Infect Genet Evol 14: 156-160. doi:10.1016/j.meegid.2012.11.009. PubMed: 23200920.

89. Murray HW, Zhang Y, Zhang Y, Raman VS, Reid SG et al. (2013) Regulatory Actions of TLR2 and TLR4 in Leishmania donovani Infection in the Liver. Infect Immun 81: 2318-2326. doi:10.1128/IAI.01468-12. PubMed: 23589575.

90. Moreno-Eutimio MA, Tenorio-Calvo A, Pastelin-Palacios R, Perez-Shibayama C, Gil-Cruz C et al. (2013) Salmonella Typhi OmpS1 and OmpS2 porins are potent protective immunogens with adjuvant properties. Immunology, 139: 495-471. doi:10.1111/imn.12093. PubMed: 23432484.

91. Verma A, Prasad KN, Cheekatla SS, Niyati KK, Palival VK et al. (2013) Immune response in symptomatic and asymptomatic neurocysticercosis. Med Microbiol Immunol 200: 255-261. doi:10.1007/s00281-012-0199-x. PubMed: 21553794.

92. Ferwerda B, McCall MB, Alonso S, Giaremiello-Bourboulis EJ, Moukaroudi M et al. (2007) TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A 104: 16645-16650. doi:10.1073/pnas.0704828104. PubMed: 17925445.

93. Mori Y, Yoshimura A, Utsuki T, Lien E, Espevik T et al. (2003) Immunohistochemical localization of Toll-like receptor 2 and 4 in gingoval tissue from patients with periodontitis. Oral Microbiol Immunol 18: 54-58. doi:10.1034/j.1399-302X.2003.180109.x. PubMed: 12588460.

94. Ren L, Leung WK, Darveau RP, Jin L (2005) The expression profile of lipopolysaccharide-binding protein, membrane-bound CD14, and toll-like receptors 2 and 4 in chronic periodontitis. J Periodontol 76: 1950-1959. doi:10.1902/jop.2005.76.7.1950. PubMed: 16274315.

95. Wang PL, Ohura K, Fuji T, Oido-Mori M, Kowashi Y et al. (2003) DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 305: 970-973. doi:10.1016/S0006-291X(03)00621-0. PubMed: 12676925.

96. Kinane DF, Peterson M, Stathopoulos PG (2006) Environmental and other modifying factors of the periodontal diseases. Periodontol 2000 40: 107-119. doi:10.1111/j.1600-0757.2005.00136.x. PubMed: 16398688.

97. Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW et al. (2004) Polymorphonuclear gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun 72: 5041-5051. doi:10.1128/IAI.72.9.5041-5051.2004. PubMed: 15321997.

98. Mahanonda R, Pichyangkul S (2007) Toll-like receptors and their role in periodontal health and disease. Periodontol 2000 43: 41-55. doi:10.1111/j.1600-0757.2006.00179.x. PubMed: 17214834.

99. Kinane DF, Shiba H, Stathopoulos PG, Zhao H, Lappin DF et al. (2006) Gingival epithelial cells heterozygous for Toll-like receptor 4 polymorphisms Asp299Gly and Thr399ile are hypo-responsive to Porphyromonas gingivalis. Genes Immun 7: 190-200. doi:10.1038/sj.gen.6364282. PubMed: 16437123.

100. van Well GT, Sanders MS, Ouburg S, van Furth AM, Morré SA (2012) Variants of the MTHFR gene and susceptibility to acute lymphoblastic leukemia in children: a synthesis of genetic association studies. Cancer Epidemiol Biomarkers Prev 21: 169-176. doi:10.1158/1055-9966.EPI-11-0093. PubMed: 22308961.

101. Ertan P, Berdeli A, Yilmaz O, Gonulal DA, Yuksel H (2011) LY96, Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, Jawahar MS, Banurekha VV et al. (2007) Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor 4 Asp299Gly and Thr399ile gene polymorphisms and chronic periodontitis in a sample of south Indian population. J Indian Soc Periodontol 15: 366-370. doi:10.4103/0972-124X.92571. PubMed: 22368361.