MITOGENOME ANNOUNCEMENT

Mussel *Unio douglasiae* MG from the Chihe River: mitogenome description and phylogenetic analysis

Danni Li\(^{a,*}\), Pengjie Yang\(^{a,b,*}\), Yunjie Zhang\(^{a}\), Yueer Shen\(^{a}\), Yalin Zhang\(^{a}\), Qianxue Shao\(^{a}\), Pengyu Chen\(^{a}\) and Shoubao Yang\(^{a}\)

\(^{a}\)College of Life Sciences, Shaoxing University, Shaoxing, P.R. China; \(^{b}\)Sanmen Experimental Junior High School, Taizhou, P.R. China

ABSTRACT

The genus *Unio* is one of the widespread freshwater bivalves. To date, its intra-generic phylogeny remains controversial and therefore the mitochondrial genome data is needed. Here, we report the complete mitogenome of *Unio douglasiae* MG that is distributed in the Chihe River, a branch of Huaihe River, East China. This mitochondrial genome is 15,764 base pair in total length. It consists of 37 genes: 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes (12S and 16S). The base composition was 38.38% for A, 26.48% for T, 23.17% for C, and 11.98% for G, showing an obvious bias of higher A+T content (64.86%) than the G+C content (35.14%). Phylogenetic analysis showed that *U. douglasiae* MG is clustered with other *Unio* and *Nodularia* mollusks in the family Unionidae. These results showed that combine with morphological techniques, the mitogenome can provide useful information to further understanding of the genetics, systematics, and conservation of this endangered species.

Unio douglasiae (Gray) belongs to the Eulamellibranchia, Unionidae, Unio. It distributed widely in China, Korean, Eastern Russia, and Japan (Cho et al. 1983; Takaki 1992; Graf and Cummings 2007; Li et al. 2013; Nam et al. 2015; Nishio et al. 2016). In China, *U. douglasiae* is a widespread freshwater mussel distributed from the Zhijiang River, Dongting Lake, Yangtze River to Songhua River (Liu et al. 2009; Xu et al. 2009; Chen et al. 2010; Xiong et al. 2010; Xue et al. 2019). In addition, as a benthic bivalve and filter-feeder (Chen et al. 2011; Kim et al. 2011; Xiao et al. 2012; Ouyang et al. 2013; Wang et al. 2013), it plays an important role in maintaining water ecosystem balance, and serving as a biological indicator for water quality (Yokoyama and Park 2003; Watanabe et al. 2006; Maoka et al. 2012; Kim et al. 2017; Wang 2017; Jiang et al. 2020). However, its wild population declines rapidly due to overfishing, water pollution, and destruction of habitats.

In this study, the *U. douglasiae* MG specimen was collected from the Chihe River, a branch of Huaihe River in Mingguang city, Anhui province of China (Latitude 32.789726 and longitude 117.969780), and has been deposited at the Aquatic Service Platform of Shaoxing city (Voucher no. SXAF20200710).

The complete mitogenome sequence of *U. douglasiae* MG is obtained by PCR amplification and Sanger sequencing using an ABI3730 sequencer (Applied Biosystems, USA). It’s 15,764 bp in total length (GenBank accession no. MT764726), including 37 genes: 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes (12S and 16S). The base composition was 38.38% for A, 26.48% for T, 23.17% for C, and 11.98% for G, showing an obvious bias of higher A+T content (64.86%) than the G+C content (35.14%).

Similar to other mollusks, two tRNA genes (tRNA\(^{\text{Asp}}\) and tRNA\(^{\text{Thr}}\)) and nine protein-coding genes (*COXI*, *COXII*, *COXIII*, *ND3*, *ND4*, *ND4L*, *ND5*, *ATP6*, and *ATP8*) are encoded on the light strand (L-strand). Typical ‘ATG’ is used as the initiator codon in eight protein-coding genes (*COXII*, *COXIII*, *ND2*, *ND3*, *ND4*, *ND4L*, *ND6*, and *ATP6*). ‘TAA’ is used as the terminator codon in eight protein-coding genes (*COXII*, *COXIII*, *ND2*, *ND3*, *ND4*, *ND4L*, *ND6*, and *ATP6*). ‘TAG’ is used in five protein-coding genes (*COXI*, *ND1*, *ND4*, *ND4L*, and *ATP8*).

The total length of two rRNA genes (12S and 16S) is 2152 bp, and they are separated by three tRNA genes including *tRNA\(^{\text{Asp}}\)*, *tRNA\(^{\text{Thr}}\)*, and *tRNA\(^{\text{Thr}}\)*, which is identical to the rRNA gene arrangement of other mussels (Breton et al. 2011; Wang et al. 2016a, 2016b).

Twenty-six complete mitogenome sequences were used for phylogenetic tree construction by the neighbor-joining method (Figure 1). The results showed that *U. douglasiae* MG is clustered with other *Unio* and *Nodularia* mollusks in the family Unionidae. The present study shows that, combine with morphological techniques (Wei et al. 1994; Wu et al. 1999), the mitogenome can provide useful information to further understanding of the genetics, systematics, and conservation of this endangered species.

CONTACT Shoubao Yang shiouby@hotmail.com College of life sciences, Shaoxing University, Shaoxing 312000, P.R. China

\(^{*}\)These authors contributed equally to this work.

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Public Welfare Project of Shaoxing City [2018C20012], the Young & Middle-aged Academic Backbone Project of Shaoxing University [2014], the National University Student Innovation and Entrepreneurship Project [202010349001], and the Key Cultivation Project of 2021 Challenge Cup of Shaoxing University [2020].

Data availability statement

The data that support the findings of this study are freely available at NCBI GenBank database (https://www.ncbi.nlm.nih.gov) with a accession no. MT764726. And the data that support the findings of this study are also available from the corresponding author, Dr. Yang, upon reasonable request.

References

Breton S, Stewart DT, Shepardson S, Trdan RJ, Bogan AE, Chapman EG, Ruminas AJ, Piontkivska H, Hoeh WR. 2011. Novel protein genes in animal mtDNA: a new sex determination system in freshwater mussels (Bivalvia: Unionoida)? Mol Biol Evol. 28(5):1645–1659.
Chen TH, Ouyang S, Xiong LF, Qi T, Wu XP. 2010. Study on the population structure and reproductive traits of Unio douglasiae in Qinglan Lake, Jiangxi province. Acta Hydrobiol Sin. 36(3):473–480.
Chen B, Yin DG, Yuan Q, Luo J, Fan JH. 2011. Mechanisms of high rigidity and high strength of Unio Douglasiae shell. Rare Metal Mater Eng. 40(5):69–72.
Cho HC, Chung PR, Lee KT. 1983. Distribution of medically important freshwater snails And larval trematodes from Parafossarulus manchouricus and Semisulcospira libertina around the Jinyang Lake in Kyongsang-Nam-Do, Korea. Kisaengchunghak Chapchi. 21(2):193–204.
Graf DL, Cummings KS. 2007. Review of the systematics and global diversity of freshwater mussel species (bivalvia: Unionoida). J Molluscan Stud. 73(4):291–314.
Jiang WQ, Liu SL, Jian MF, Hu QW. 2020. Deposition characteristics of microplastics in benthic animals from the main estuaries of Poyang Lake. Chin J Ecol. 39(04):1273–1280.
Kim MS, Lee YJ, Ha SY, Kim BH, Hwang SJ, Kwon JT, Choi JW, Shin KH. 2017. Accumulation of microcystin (LR, RR and YR) in three freshwater bivalves in Microcystis aeruginosa bloom using dual isotope tracer. Mar Drugs. 15(7):226–241.
Kim BH, Lee JH, Hwang SJ. 2011. Inter- and intra-specific differences in filtering activities between two unionids, Anodonta woodiana and Unio douglasiae, in ambient eutrophic lake waters. Ecol Eng. 37(12):1957–1967.
