Association Between Obesity and COVID-19 Disease Severity in Saudi Population

Fulwah Yahya Alqahtani1, Fadilah Sfouq Aleanizy1, Rania Ali El Hadi Mohamed2,3, Nassr Al-Maflehi4, Bahauddeen M Alrfaei5, Thamer A Almangour6, Nora Alkhudair5, Ghada Bawazeer6, Ghalia Shamlan7, Marzouqah S Alanazi8

1Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 2College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; 3Federal Ministry of Health, Khartoum, Sudan; 4Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia; 5Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; 6Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 7Department of Human Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, 11362, Saudi Arabia; 8Emergency Medicine Consultant, Emergency Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia

Correspondence: Fulwah Yahya Alqahtani, Email fyalqahtani@ksu.edu.sa

Background: The persistent coronavirus disease 2019 (COVID-19) outbreak has placed a significant burden on the scientific and medical professions. The study examined the association between body mass index (BMI), stratified by category, and severe form of COVID-19, and to explore the influence of demographic characteristics and other known risk factors.

Methods: This was a retrospective analysis based on COVID-19 data from the Saudi Arabian Ministry of Health. Data were collected for all patients admitted to three main hospitals in Riyadh region between March 1st and July 30, 2020. The effects of BMI, demographic characteristics, clinical presentation, and comorbidities on infection severity were investigated.

Results: A total of 950 patients were included in the study (70% male, 85% aged younger than 60 years old). A total of 55 (5.8%) patients were underweight, 263 (27.7%) were normal weight, 351 (37%) were overweight, 161 (17%) were obese class I, 76 (8%) were obese class II, and 44 (4.6%) were obese class III. Cough, fever, and shortness of breath were the most common symptoms among overweight patients. According to the findings of a bivariate logistic regression study, class III obesity was significantly associated with a more severe form of COVID-19 (odds ratio, 2.874; 95% confidence interval, 1.344–6.149).

Conclusion: This study revealed that patients with a BMI ≥40 kg/m² had a higher risk of severe COVID-19 than those with normal weight. This suggests that obesity is a risk factor for severe COVID-19 and influences disease presentation.

Keywords: COVID-19, body mass index, obesity, severe COVID-19

Introduction

In March 2019, the World Health Organization declared the latest pandemic in human history caused by a novel strain of coronavirus.1 As of December 25, 2021, the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), officially known as COVID-19, infected more than 279 million cases with over 5,395,856 deaths.2 Approximately 14% of patients admitted with COVID-19 developed severe pneumonia and meet the criteria for acute respiratory distress syndrome.3 Several factors have been linked to COVID-19 disease severity and mortality. These include advanced age; male sex; and comorbid diabetes mellitus, cardiovascular disease, respiratory disease, kidney, and liver disorders.4,5 Obesity also emerged as one of the risk factors linked to unfavorable disease course and was a significant contributor to poor health outcomes, including higher incidence of ICU admissions and need for mechanical ventilation.5–8 Patients with body mass index (BMI) ≥30 kg/m² represent a substantial proportion of hospitalized patients with COVID-19.2 Two other studies found that obesity was a risk factor for invasive mechanical ventilation.9,10 A case control study of 179,288 patients admitted in the periods before the pandemic11,12 (149,098 patients) and (30,190 patients) during the pandemic found that...
patients with BMI >40 kg/m\(^2\) has higher odds for increased mortality during the COVID-19 compared to pre-pandemic odds.\(^{13}\)

Pre-dating the COVID-19 era, the association between obesity and markers of inflammation is well established. Indeed, during the 2009 H1N1 influenza pandemic obese patients had twice the risk of admission to ICU and death.\(^{14}\) Moreover, the main characteristics observed in severe COVID-19 is the overwhelming triggering of the body inflammatory responses with dysregulation of innate and adaptive immunity.\(^{15}\) Likewise, there is a wealth of literature describing the role of inflammatory, immunological and coagulopathic processes in obese patients leading to increased risk of cardiometabolic diseases, severity of illnesses and hospitalization.\(^{16}\) Hence, for obese patient, a coinfection with COVID-19 infection is a double whammy\(^ {17–19}\) independent of the age and comorbidities.\(^ {20}\) Recent literatures with data from various countries highlighted the severity of illness in COVID-19 in obese individuals\(^{21–24}\) in different population and ethnicity. Conversely, several studies demonstrated no difference in disease severity in obese patients.\(^ {25}\) In Saudi Arabia, the country recorded 552,406 COVID-19 cases, with 8870 deaths.\(^ {2}\) Obesity was reported to be prevalent in 35.6% of Saudi individuals according to a national survey done between 1995 and 2000.\(^ {26}\) In 2013, nationwide research revealed a prevalence rate of 28.7%.\(^ {27}\) However, to the best of our knowledge, a limited number of national studies has investigated the association between obesity and COVID-19. Therefore, this study aims to characterize the association between BMI, stratified by category, and the severe form of COVID-19, and to investigate interactions with demographic characteristics and other known risk factors.

Method

Study Design and Population

This is a retrospective study utilizing Ministry of Health databases linked to three main hospitals in Riyadh region. Patients with COVID-19 admitted from March 1, 2020 to July 30, 2020 were included in this study. The Institutional Review Board of the Ministry of Health approved the study protocol and methodology (IRB-20222E-RC20.239.R). Informed consent was obtained from all patients before participating in the study. The study was conducted in accordance with the hospital management guidelines and MoH regulations. Our research was in compliance with the Helsinki Declaration.

Data Measures

The demographics, clinical presentations, comorbidities, BMI, severity, and outcome of COVID-19 were obtained and recorded. All patients have documentation of COVID-19 diagnosis using nucleic acid test (real-time reverse transcriptase polymerase chain reaction assay [RT-PCR] for SARS-CoV-2).\(^ {28}\) Parent or legal guardian of patients under 18 years of age provided informed consent. Patients were stratified into different groups according to BMI as follows: underweight (≤18.5 kg/m\(^2\)), normal (18.5–24.9 kg/m\(^2\)), overweight (25.0–29.9 kg/m\(^2\)), class I obesity (30–34.9 kg/m\(^2\)), class II obesity (35–39.9 kg/m\(^2\)), and class III obesity (≥40 kg/m\(^2\)).\(^ {29}\)

For COVID-19 disease severity classification, WHO guidance on COVID-19 guidance was adopted.\(^ {30}\) The absence of clinical symptoms of COVID-19 infections with a positive RT-PCR result was defined as asymptomatic infections. Mild COVID-19 illness was defined as the absence of respiratory distress and imaging indications of pneumonia, as well as the presence of mild clinical symptoms. Moderate disease was defined as observable fever, respiratory symptoms, and pneumonia on CT. Severe disease was defined as the presence of at least one of the following three conditions: respiratory distress, a respiratory rate equal to or more than 30 beats per minute, oxygen saturation in the resting state ≤93%, or arterial blood oxygen partial pressure/oxygen concentration ≤300 mmHg (1 mmHg = 0.133 kPa). Critical illness was defined as when patients had respiratory failure requiring mechanical ventilation, shock, or combined organ failure necessitating intensive care unit (ICU) monitoring and treatment.

Statistical Analysis

Descriptive statistics were utilized, and significance was assessed using the chi-squared test and parametric or non-parametric binomial tests when appropriate, and multivariate binary logistic regression was used to determine the
association of obesity with severe or critical COVID-19 patients’ disease. Statistical analyses were performed using IBM SPSS version 25 software (IBM Corp., Armonk, NY, USA). The level of significance was set at 0.05 for all tests (P < 0.05).

Results
A total of 951 patients were diagnosed with COVID-19 between March 1 and July 30, 2020. Table 1 shows the demographic and clinical features of patients stratified by the BMI standard classification. Men accounted for 70% (664) and Saudi Nationals accounted for 53% (498) of the cases. BMI significantly increased with age from 21 to 60 years (p < 0.05). BMI distribution was as follows: overweight (351, 37%), class I obesity (161, 17%), class II obesity (76, 8%), and class III obesity (44, 4.6%). The majority of patients with COVID-19 patients had mild disease (602, 63%); 167 (17.6%) had moderate disease, 102 (10.7%) had severe disease, and only 63 (6.6%) were classified as critically ill (Table 1). Notably, BMI was significantly higher in patients with severe and critical disease (p < 0.05).

The most prevalent symptoms among patients with COVID-19 were fever, cough, and shortness of breath, and these symptoms were significantly associated with overweight patients (p < 0.05) (Table 2). A total of 3.8% of patients were asymptomatic.

Diabetes mellitus was found in 20% of patients with COVID-19, hypertension in 10%, immunocompromise in 5.4%, chronic kidney disease in 4.3%, asthma in 4.23%, and coronary heart disease in 3% (Table 3). A significant association was observed between diabetes mellitus and chronic liver disease in overweight patients (p < 0.05). Almost 2.5% of patients had travelled abroad before getting infected, while 20% of patients were in contact with positive cases. Management protocol employed and patient outcomes are summarized in Table 4. Antibiotics, bronchodilators, antimalaria, and corticosteroids were prescribed in 30%, 24.6%, 6.6%, and 2.5% of cases, respectively (Table 4). These medications were administered significantly more to overweight patients. Symptom’s improvement was seen in 45% of the cases with an average hospital stay of 10.02 ± 5.91 days and 2% of patients died from COVID-19 and they were all critical cases. The results of the bivariate logistic regression analysis are demonstrated in Table 5; class III obesity (odds ratio [OR] = 2.874; 95% confidence interval [CI], 1.344–6.149) and diabetes mellitus (OR = 5.385; 95% CI, 3.622–8.005) were significantly and independently associated (p < 0.05) with severe COVID-19.

Discussion
The focus of this study was to characterize the relationship between BMI, stratified by category, and severity of COVID-19, as well as to explore the interplay between demographic parameters and other recognized risk factors. In consistent with other studies, our findings demonstrated that overweight and obese patients were more likely to present with symptomatic disease with history of fever, cough, and shortness of breath. The multivariable analysis conducted in our study showed that the severity of COVID-19 increased significantly in patients with a BMI ≥40 kg/m². This is consistent with the earlier findings of others in which patients with BMI >35 kg/m² were found to require mechanical ventilation more than those with BMI <25 kg/m². The association between obesity and worse outcomes in patients with COVID-19 is expected. Thus, obese patients are associated with rapid progression of the disease. Similar findings were observed in obese patients who were infected with H1N1, a novel influenza A strain that emerged in 2009, and their weight had affected their risk of hospitalization, mechanical ventilation, and death, regardless of their other comorbidities.

Pulmonary complications are known to be more common in obese patients because of upper respiratory illnesses caused by a reduction in lung volume, hypoventilation, congestive heart failure, and acute respiratory distress syndrome. Moreover, recent studies have shown that COVID-19 infection leads to a hypercoagulable state, hence, elevated risk of pulmonary embolism, stroke, and arterial thrombosis. Furthermore, a systemic inflammatory response initiated by the activation of CD4+ T lymphocytes into T-helper 1 cells that produce cytokines is thought to contribute to the adverse respiratory outcomes observed in COVID-19 patients. This leads to massive production of inflammatory cytokines, causing a cytokine storm that results in apoptosis, vascular leakage, poor virus clearance, altered tissue homeostasis, acute lung injury, cardiac dysfunction, and subsequent acute respiratory distress syndrome. Therefore, elevation of inflammatory biomarkers, including ferritin, lactate dehydrogenase, D-dimer, and C-reactive protein, has...
Class of Obesity	Total								
Underweight (<18.5 kg/m²)									
Normal (18.5–24.9 kg/m²)									
Overweight (25.0–29.9 kg/m²)									
Class 1 Obesity (30–34.9 kg/m²)									
Class 2 Obesity (35–39.9 kg/m²)									
Class 3 Obesity (≥40 kg/m²)									
P-value									
Sex	Male	Female							
	37 (5.6%)	195 (29.4%)	253 (38.1%)	117 (17.6%)	39 (5.9%)	23 (3.5%)	664 (70%)		
	P-value	<0.05							
Nationality	Saudi	Non-Saudi							
	52 (10.4%)	122 (24.5%)	159 (31.9%)	78 (15.7%)	55 (11%)	32 (6.4%)	498 (52.9%)		
	P-value	<0.05							
Age	0–2.5 years	2.6–5 years	6–20 years	21–40 years	41–60 years	>61 years			
	9 (69.2%)	1 (9.1%)	25 (30.1%)	10 (2.6%)	1 (0.3%)	2 (1.6%)			
	4 (30.8%)	0 (0%)	29 (34.9%)	126 (32.9%)	76 (22.9%)	27 (21.1%)			
	0 (0%)	0 (0%)	13 (15.7%)	148 (38.6%)	141 (42.5%)	48 (37.5%)			
	0 (0%)	0 (0%)	8 (9.6%)	64 (16.7%)	62 (18.7%)	27 (21.1%)			
	1 (9.1%)	0 (0%)	4 (4.8%)	21 (5.5%)	33 (9.9%)	18 (14.1%)			
	11 (1.16%)	4 (4.8%)	83 (10%)	14 (3.7%)	19 (5.7%)	6 (4.7%)			
	P-value	<0.05							
Severity of illness	Mild	Moderate	Severe	Critical	Site of admission	ICU	General ward	Unknown	
	51 (8.5%)	3 (1.8%)	0 (0%)	2 (3.2%)	0 (0%)	14 (23.3%)	158 (31.7%)	26 (10.8%)	
	170 (28.2%)	49 (29.3%)	26 (25.5%)	15 (23.8%)	1 (0%)	30 (50%)	194 (39%)	51 (21.2%)	
	208 (34.6%)	78 (46.7%)	35 (34.3%)	24 (38.1%)	14 (23.3%)	13 (21.7%)	82 (16.5%)	71 (29.5%)	
	97 (16.1%)	25 (15%)	22 (21.6%)	12 (19%)	3 (1.8%)	9 (5.4%)	29 (5.8%)	44 (18.3%)	
	48 (8%)	9 (5.4%)	11 (10.8%)	5 (7.9%)	3 (1.8%)	2 (3.3%)	15 (3%)	31 (12.9%)	
	28 (4.7%)	3 (1.8%)	8 (7.8%)	5 (7.9%)	1 (1.7%)	1 (1.7%)	18 (7.5%)	18 (7.5%)	
	P-value	<0.05							
been reported in patients with severe COVID-19. In patients with obesity, there is chronic subclinical inflammation, which includes an increase in the same inflammatory markers that are involved in cytokine storm. In obesity, both hypercoagulable and hyperinflammatory states exist, which may increase the risk of COVID-19 infection severity.

Table 2 Distribution of Confirmed Cases of COVID-19 According to Symptoms, N=951

Symptoms	Underweight (<18.5 kg/m²)	Normal (18.5–24.9 kg/m²)	Overweight (25.0–29.9 kg/m²)	Class I Obesity (30–34.9 kg/m²)	Class II Obesity (35–39.9 kg/m²)	Class III Obesity (>40 kg/m²)	Total	P-value
Cough	2 (0.7%)	85 (29.1%)	126 (43.2%)	59 (20.2%)	12 (4.1%)	8 (2.7%)	292 (30%)	<0.05
Fever	4 (1.4%)	81 (27.7%)	131 (44.9%)	58 (19.9%)	12 (4.1%)	6 (2.1%)	292 (30%)	<0.05
Sore throat	0 (0%)	10 (32.3%)	11 (35.5%)	5 (16.1%)	4 (12.9%)	1 (3.2%)	31 (3.3%)	0.65
Shortness of breath	1 (0.5%)	59 (30.6%)	75 (38.9%)	42 (21.8%)	8 (4.1%)	8 (4.1%)	193 (20%)	<0.05
Diarrhoea	0 (0%)	19 (40.4%)	16 (34%)	9 (19.1%)	1 (2.1%)	2 (4.3%)	47 (5%)	0.14
Nausea	0 (0%)	6 (50%)	3 (25%)	2 (16.7%)	0 (0%)	1 (8.3%)	12 (13%)	0.45
Asymptomatic	2 (6.3%)	14 (43.8%)	9 (28.1%)	5 (15.6%)	2 (6.3%)	0 (0%)	32 (3.4%)	0.35

Table 3 Distribution of Confirmed Cases of COVID-19 According to Comorbidities, N=951

Comorbidities	Underweight (<18.5 kg/m²)	Normal (18.5–24.9 kg/m²)	Overweight (25.0–29.9 kg/m²)	Class I Obesity (30–34.9 kg/m²)	Class II Obesity (35–39.9 kg/m²)	Class III Obesity (>40 kg/m²)	Total	P-value
Hypertension	0 (0%)	25 (26.6%)	37 (39.4%)	21 (22.3%)	7 (7.4%)	4 (4.3%)	94 (10%)	0.14
Diabetes mellitus	1 (0.7%)	46 (31.1%)	56 (37.8%)	30 (20.3%)	11 (7.4%)	4 (2.7%)	148 (20%)	<0.05
Asthma	0 (0%)	10 (25%)	15 (37.5%)	11 (27.5%)	4 (10%)	0 (0%)	40 (4.2%)	0.18
COPD	0 (0%)	1 (7.1%)	7 (50%)	3 (21.4%)	3 (21.4%)	0 (0%)	14 (1.5%)	0.17
Coronary heart disease	0 (0%)	8 (28.6%)	12 (42.9%)	3 (10.7%)	3 (10.7%)	2 (7.1%)	28 (3%)	0.66
Heart failure	0 (0%)	6 (27.3%)	9 (40.9%)	4 (18.2%)	2 (9.1%)	1 (4.5%)	22 (2.3%)	0.91
Stroke	1 (8.3%)	3 (25%)	5 (41.7%)	0 (0%)	3 (25%)	0 (0%)	12 (1.3%)	0.21
Malignancy	0 (0%)	4 (26.7%)	8 (53.3%)	0 (0%)	2 (13.3%)	1 (6.7%)	15 (1.6%)	0.39
Chronic kidney disease	0 (0%)	12 (35.3%)	16 (47.1%)	4 (11.8%)	2 (5.9%)	0 (0%)	34 (4.3%)	0.44
Chronic liver disease	0 (0%)	2 (16.7%)	3 (25%)	3 (25%)	4 (33.3%)	0 (0%)	12 (1.8%)	<0.05
Immunocompromised disease	3 (8.8%)	10 (29.4%)	15 (44.1%)	3 (8.8%)	2 (5.9%)	1 (2.9%)	34 (5.4%)	0.45
Organ transplant	0 (0%)	0 (0%)	1 (100%)	0 (0%)	0 (0%)	0 (0%)	1 (0.1%)	0.88
Alterations in immunological function, particularly complement activation, thrombosis likelihood, and alterations in lung function are all possible causes of a worsened disease course in obese patients. An earlier study reported that obese patients, in comparison to those with normal weight, have altered immune cell activity. Such disturbances in host defense in obese patients could increase the risk of COVID-19 complications. The observed inflammation, platelet activation, and endothelial dysfunction observed in COVID-19 increase the risk of thrombotic illness in both the venous and arterial circulation. Thrombotic diseases, such as pulmonary embolism, are regarded as another manifestation of severe disease that contributes to the need for ICU admission and an increase in mortality, although it was not investigated in our study. As reported in a previous report, obesity is associated with a higher risk of thrombosis due to increased platelet activation and increased production of prothrombotic factors. This prothrombotic condition may predispose obese patients with COVID-19 to thrombotic incidents, which are associated with greater disease severity and poor prognosis.

Category	Underweight (≤18.5 kg/m²)	Normal (18.5–24.9 kg/m²)	Overweight (25.0–29.9 kg/m²)	Class I Obesity (30–34.9 kg/m²)	Class II Obesity (35–39.9 kg/m²)	Class III Obesity (≥40 kg/m²)	P-value	
Medications								
Antibiotics	4 (1.3%)	94 (30.1%)	132 (42.3%)	58 (18.6%)	16 (5.1%)	8 (2.6%)	312 (30%)	<0.05
Antimalaria	0 (0%)	19 (30.2%)	27 (42.9%)	13 (20.6%)	4 (6.3%)	0 (0%)	63 (6.6%)	<0.05
Bronchodilator	3 (2.9%)	28 (27.2%)	50 (48.5%)	17 (16.5%)	3 (2.9%)	2 (1.9%)	103 (10%)	<0.05
Corticosteroid	-	8 (33.3%)	10 (41.7%)	5 (20.8%)	1 (4.2%)	-	24 (2.5%)	<0.05
Symptoms improving	7 (1.6%)	141 (32.6%)	179 (41.4%)	77 (17.8%)	18 (4.2%)	10 (2.3%)	432 (50%)	0.87
Clinical outcome								
Death	0 (0%)	2 (15.4%)	5 (38.5%)	1 (7.7%)	2 (15.4%)	3 (23.1%)	13 (2%)	<0.05
Hospital admission period in days (Mean ± SD)	10.14 ± 4.74	9.62 ± 5.86	10.37 ± 6.37	10.16 ± 5.61	9.57 ± 4.01	9.5 ± 4.37	10.02 ± 5.91	0.94

Risk Factor	B	S.E.	Wald	df	P value	Exp (B)	95% CI for EXP (B)	
Lower	Upper							
Underweight (≤18.5 kg/m²)	-1.258	0.747	2.840	1	0.09	0.284	0.066	1.228
Overweight (25.0–29.9 kg/m²)	0.142	0.233	0.369	1	0.54	1.152	0.730	1.820
Class I obesity (30–34.9 kg/m²)	0.410	0.272	2.278	1	0.13	1.507	0.885	2.569
Class II obesity (35–39.9 kg/m²)	0.491	0.347	2.002	1	0.15	1.634	0.828	3.226
Class III obesity (≥40 kg/m²)	1.056	0.388	7.408	1	<0.05	2.874	1.344	6.149
History of diabetes mellitus	1.684	0.202	69.270	1	<0.05	5.385	3.622	8.005

Alqahtani et al
Dovepress
Dovepress
https://doi.org/10.2147/DMSO.S365491
Dovepress
Dovepress
Powered by TCPDF (www.tcpdf.org)
Having a high BMI has adverse consequences on lung function, lowering the forced expiratory volume and forced vital capacity.⁴⁷ The ability of a patient to sustain adequate oxygenation is directly affected by changes in the respiratory mechanics. This might explain the higher rate of cough and shortness of breath observed in our study in overweight patients than in patients with normal BMI.

In the current study, the prevalence of cardiometabolic disorders such as diabetes, hypertension, and coronary artery disease did not increase as BMI increased. However, diabetes mellitus was found to be associated with severe COVID-19, as revealed by multivariable regression analysis conducted in our study, which corroborates previous findings.⁴⁸–⁵⁰ This implies that these diseases contribute to poor COVID-19 outcomes, regardless of BMI.

Limitations of the study include the retrospective nature of this study and the limited number of patients included. Other factors may contribute to the severity of COVID-19 in obese patients, which could become significant in future studies involving larger sample sizes. Moreover, due to the small number of deaths recorded in our study, we were unable to investigate the effect of BMI on death rates.

Conclusion

In conclusion, the results of the current study collectively revealed that the severity of COVID-19 was significantly higher in patients with a BMI ≥40 kg/m². This study highlights obesity as a serious health problem, particularly regarding its association with severe COVID-19 infection and emphasizes the importance of addressing obesity as a public health issue in Saudi Arabia.

Acknowledgments

This research project was supported by the Researchers Supporting Project number (RSP-2021/340), King Saud University, Riyadh, Saudi Arabia.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Del Rio C, Malani PN. COVID-19-new insights on a rapidly changing epidemic. JAMA. 2020;323(14):1339–1340. doi:10.1001/jama.2020.3072
2. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052–2059. doi:10.1001/jama.2020.6775
3. Tzotzos SJ, Fischer B, Fischer H, Zeitlinger M. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: a global literature survey. Crit Care. 2020;24(1):516. doi:10.1186/s13054-020-03240-7
4. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
5. Aleamizy FS, Alqahtani FY, Alanazi MS, et al. Clinical characteristics and risk factors of patients with severe COVID-19 in Riyadh, Saudi Arabia: a retrospective study. J Infect Public Health. 2021;14(9):1133–1138. doi:10.1016/j.jiph.2021.07.014
6. Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21(6):e13034. doi:10.1111/obr.13034
7. Zhang X, Lewis AM, Moley JR, Brestoff JR. A systematic review and meta-analysis of obesity and COVID-19 outcomes. Sci Rep. 2021;11(1):7193. doi:10.1038/s41598-021-86694-1
8. Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: an updated systematic review and meta-analysis. J Med Virol. 2021;93(5):2662–2674. doi:10.1002/jmv.26677
9. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020;28(7):1195–1199. doi:10.1002/oby.22831
10. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020;8(7):562–564. doi:10.1016/S2213-8587(20)30160-1
11. Malik P, Patel U, Patel K, et al. Obesity a predictor of outcomes among adult inpatients with COVID-19 hospitalized patients-A systematic review and meta-analysis. J Med Virol. 2021;93(2):1188–1193. doi:10.1002/jmv.26555
12. Zhao X, Gang X, He G, et al. Obesity predicts the severity and mortality of COVID-19: a systematic review and meta-analysis. Front Endocrinol. 2020;11:595109. doi:10.3389/fendo.2020.595109
13. Soffer S, Zimlichman E, Glicksberg BS, et al. Obesity as a mortality risk factor in the medical ward: a case control study. BMC Endocr Disord. 2022;22(1):13. doi:10.1186/s12902-021-00912-5
14. Fezeu L, Julia C, Henegar A, et al. Obesity is associated with higher rate of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and meta-analysis. Obes Rev. 2011;12(8):653–659. doi:10.1111/j.1467-789X.2011.00864.x
15. Samprathi M, Jayashree M. Biomarkers in COVID-19: an up-to-date review. Front Pediatr. 2021;8. doi:10.3389/fped.2020.607647
16. Cohen E, Margalit I, Shochat T, Goldberg E, Krause I. Markers of chronic inflammation in overweight and obese individuals and the role of gender: a cross-Sectional study of a large cohort. J Inflamm Res. 2021;14:567–573. doi:10.2147/JIR.S294368

17. Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12(9):755–767. doi:10.1080/17476348.2018.1506331

18. Umbrello M, Fumagalli J, Pesenti A, Pathophysiology CD. Management of acute respiratory distress syndrome in obese patients. Semin Respir Crit Care Med. 2019;40(1):40–56. doi:10.1055/s-0039-165179

19. Andrade FB, Gualberto A, Rezende C, Percegoni N, Gameiro J, Hotz ED. The weight of obesity in immunity from influenza to COVID-19. Front Cell Infect Microbiol. 2021;11:638852. doi:10.3389/fcimb.2021.638852

20. Zhang F, Xiong Y, Wei Y, et al. Obesity predisposes to the risk of higher mortality in young COVID-19 patients. J Med Virol. 2020;92(11):2536–2542. doi:10.1002/jmv.26039

21. Noyola DE, Hermosillo-Arredondo N, Ramirez-Juarez C, Werge-Sanchez A. Association between obesity and COVID-19 mortality in Mexico: an Ecological study. J Infect Dev Ctries. 2021;15(10):1369–1403. doi:10.3855/jidc.15075

22. Zhang J, Xu Y, Shen B, et al. The association between obesity and patients with coronavirus disease 2019: a retrospective, single-center study, Wuhan. Int J Med Sci. 2021;18(8):1768–1777. doi:10.7150/ijms.54655

23. Hendren NS, de Lemos JA, Ayers C, et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID-19: results from the American Heart Association COVID-19 cardiovascular disease registry. Circulation. 2021;143(2):135–144. doi:10.1161/CIRCULATIONAHA.120.051936

24. Recalde M, Roel E, Pistoilo A, et al. Characteristics and outcomes of 627 044 COVID-19 patients living with and without obesity in the United States, Spain, and the United Kingdom. Int J Obes. 2021;45(11):2347–2357. doi:10.1038/s41366-021-00893-4

25. Kooistra EJ, de Nooij AH, Claassen WJ, et al. A higher BMI is not associated with a different immune response and disease course in critically ill COVID-19 patients. Int J Obes. 2021;45(3):687–694. doi:10.1038/s41366-021-00747-z

26. Al-Nozha MM, Al-Mazrou YY, Al-Maatouq MA, et al. Obesity in Saudi Arabia. Saudi Med J. 2005;26(5):824–829.

27. Alqarni SSM. A review of prevalence of obesity in Saudi Arabia. Int J Obes. 2020;44(10):1542–1549. doi:10.1038/s41366-021-00448-8

28. World Health Organization. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases; 2020.

29. WHO Consultation on Obesity, World Health Organization. Obesity: preventing and managing the global epidemic: report of a WHO consultation; 2000.

30. World Health Organization. Clinical Management of COVID-19: Interim Guidance. Geneva: World Health Organization; 2020.

31. Cheng WA, Turner L, Marentes Ruiz CJ, et al. Clinical manifestations of COVID-19 differ by age and obesity status. Influenza Other Respi Viruses. 2022;16(2):255–264. doi:10.1111/irv.12918

32. Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin Infect Dis. 2020;71(5):896–897. doi:10.1093/cid/ciaa415

33. Hajifiathalian K, Kumar S, Newberry C, et al. Obesity is associated with worse outcomes in COVID-19: analysis of early data from New York city. Obesity. 2020;28(9):1606–1612. doi:10.1101/obesity.22923

34. Cruz-Lagunas A, Jimenez-Alvarez L, Ramirez G, et al. Obesity and pro-inflammatory mediators are associated with acute kidney injury in patients with A/H1N1 influenza and acute respiratory distress syndrome. Exp Med Pathol. 2014;97(3):453–457. doi:10.1016/j.ymep.2014.10.006

35. Venkata C, Sampathkumar P, Afessa B. Hospitalized patients with 2009 H1N1 influenza infection: the Mayo Clinic experience. Mayo Clin Proc. 2010;85(8):799–805. doi:10.4065/mcp.2010.0166

36. Morgan OW, Bramley A, Fowlkes A, et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease. PLoS One. 2010;5(3):e9694. doi:10.1371/journal.pone.0009694

37. Bilaloglu S, Aphinyanaphongs Y, Jones S, Iturrate E, Hochman J, Berger JS. Thrombosis in hospitalized patients with COVID-19 in a New York city health system. JAMA. 2020;324(8):799–801. doi:10.1001/jama.2020.13372

38. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5

39. Zheng KL, Gao F, Wang XB, et al. Letter to the Editor: obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020;108:154244. doi:10.1016/j.metabol.2020.154244

40. Wang F, Hou H, Luo Y, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5:10. doi:10.1172/jci.insight.137799

41. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3(3):207–215. doi:10.1016/S2213-8587(14)0134-2

42. Ghanim H, Aljada A, Hofmeyr D, Syed T, Mohanty P, Dandona P. Circulating mononuclear cells in the obese are in a proinflammatory state. Cardiovasc Res. 2004;62(1):28–38. doi:10.1016/j.cardiores.2004.02.008

43. Vrijkotte THG, Verhulst FC, Kremers WK. The relationship of obesity with insulin resistance and metabolic syndrome: a Cross-Sectional Study of a large cohort. JAMA. 2006;295(2):253–260. doi:10.1001/jama.2005.739

44. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–2973. doi:10.1016/j.jacc.2020.04.031

45. Rosito GA, D'Agostino RB, Massaro J, et al. Association between obesity and a prothrombotic state: the Framingham Offspring Study. Thromb Haemost. 2009;91(4):683–689. doi:10.1160/TH03-01-0014

46. Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666–1687. doi:10.1093/cvr/cvaa106

47. Gong MN, Bajwa EK, Thompson BT, Christiani DC. Body mass index is associated with the development of acute respiratory distress syndrome. Thorax. 2010;65(1):44–50. doi:10.1136/thx.2009.117572

48. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi:10.1038/s41586-020-2521-4

49. Barron E, Bakai N, Taril O, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a Whole-Population study. Lancet Diabetes Endocrinol. 2020;8(10):813–822. doi:10.1016/S2213-8587(20)30272-2

50. Bailey L, Fabre R, Courjon J, Carles M, Dellamonica J, Pradier C. Obesity, diabetes, hypertension and severe outcomes among inpatients with coronavirus disease 2019: a nationwide study. Clin Microbiol Infect. 2022;28(1):114–123. doi:10.1016/j.cmi.2021.09.010
