Purely extradural spinal nerve root hemangioblastomas

ABSTRACT

Spinal nerve root hemangioblastomas present mostly as intradural-extradurally. Purely extradural spinal nerve root hemangioblastoma is a very rare entity. In this study, we aimed to analyze epidemiological perspectives of purely extradural spinal nerve root hemangioblastomas presented in English medical literature in addition to our own exemplary case. PubMed/MEDLINE was searched using the terms “hemangioblastoma,” “extradural,” “spinal,” and “nerve root.” Demographical variables of age, gender, concomitant presence of von Hippel–Lindau (VHL) disease; spinal imaging and/or intraoperative findings for tumor location were surveyed from retrieved articles. There are 38 patients with purely extradural spinal nerve root hemangioblastoma. The median age is 45 years (range = 24–72 years). Female:male ratio is 0.6. Spinal levels for purely extradural spinal nerve root hemangioblastomas, in order of decreasing frequency, are thoracic (48.6%), cervical (13.5%), lumbar (13.5%), lumbosacral (10.8%), sacral (8.1%), and thoracolumbar (5.4%). Concomitant presence of VHL disease is 45%. Purely extradural spinal nerve root hemangioblastomas are very rare and can be confused with other more common extradural spinal cord tumors. Concomitant presence of VHL disease is observed in less than half of the patients with purely extradural spinal nerve root hemangioblastomas. Surgery is the first-line treatment in these tumors.

Key words: Extradural; hemangioblastoma; spine; surgery; von Hippel–Lindau.

Introduction

Hemangioblastoma is a benign hypervascular tumor seen concomitant with von Hippel–Lindau (VHL) disease in ¼ of the patients and mostly presents in the posterior cranial fossa and the spinal cord (¼ intramedullary, ¼ extramedullary).\(^1,2\) Spinal nerve root hemangioblastomas present mostly as intradural-extradurally. Purely extradural spinal nerve root hemangioblastoma is a very rare entity. In this study, we aimed to analyze epidemiological perspectives of purely extradural spinal nerve root hemangioblastomas presented in English medical literature in addition to our own exemplary case.

Materials and Methods

PubMed/MEDLINE was searched using the terms “hemangioblastoma,” “extradural,” “spinal,” and “nerve root.” Patient demographical variables of age, gender, concomitant presence of VHL disease; spinal imaging and/or intraoperative findings for tumor location were surveyed from retrieved articles. Spinal nerve root hemangioblastoma cases with intradural origins were excluded from the final analysis.

Murat Hamit Aytar, Ulaş Yener\(^1\), Murat Şakir Ekşi\(^2\), Behram Kaya\(^3\), Serdar Özgen\(^4\), Aydin Sav\(^4\), Ahmet Alanay\(^5\)

Department of Neurosurgery, Vocational School of Health Services, Acıbadem University, Departments of \(^1\)Neurosurgery, \(^2\)Pathology and \(^3\)Orthopedics and Traumatology, Acıbadem University School of Medicine, \(^4\)Department of Neurosurgery, Acıbadem Maslak Hospital, Istanbul, Turkey, \(^5\)Department of Orthopedic Surgery-Spine Center, University of California at San Francisco, CA, USA

Address for correspondence: Dr. Murat Hamit Aytar, Special Family Hospital, Department of Neurosurgery, Talatpaşa Blv. Begonya Street, No:7-9, 34590, Istanbul, Turkey. E-mail: neurosurgery1968@gmail.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Aytar MH, Yener U, Ekşi MŞ, Kaya B, Özgen S, Sav A, et al. Purely extradural spinal nerve root hemangioblastomas. J Craniovertebr Junction Spine 2016;7:197-200.
Results

Thirty-eight patients with purely extradural spinal nerve root hemangioblastoma were retrieved from literature survey and our own case.[1,3–21] The median age is 45 years (range = 24–72 years). The female:male ratio is 0.6. Most common spinal location for purely extradural hemangioblastoma is thoracic level (48.6%). Other spinal locations are cervical (13.5%), lumbar (13.5%), lumbosacral (10.8%), sacral (8.1%), and thoracolumbar (5.4%). Concomitant presence of VHL disease is seen in 45% of the patients [Table 1].

Exemplary case

A 43-year-old man was admitted with dorsal and low back pain with progressive bilateral leg weakness. On neurological examination, he had 1/5 paraparesia and right foot clonus (2–3 beats). Whole spinal magnetic resonance imaging (MRI) was obtained, which depicted a mass lesion at thoracic 7–8 levels. The mass lesion enhanced intensely following intravenous (IV) contrast administration and it was located in the right posterolateral side of the spinal canal with some invasion into the same side intervertebral foramen [Figure 1]. The patient underwent surgery. Total laminectomy of T7–T8 and en bloc removal of mass lesion was performed by posterior approach. The mass lesion was adherent to the right T7 nerve root with slight infiltration to the dura mater [Figure 2]. No intraoperative

Table 1: Purely extradural spinal nerve root hemangioblastoma cases presented in the literature

Authors/year	Age/gender	Spinal level	VHL presence
Tarlov/1947	42/male	T11–T12	N/A
Smith and Estridge/1963	N/A	N/A	N/A
Murota and Symon/1989	33/male	T10	None
	56/female	C5	Present
Higgins et al./1996	30/male	T9	N/A
Chazono et al./1999	48/female	L5	None
Chu et al./2001	24/female	S1	Present
Hennier et al./2002	58/male	S1	None
Lee et al./2003	29/male	T12–L1, L5–S1	Present
Escott et al./2004	62/male	C8	None
Glasker et al./2005	35/male	T10	Present
	52/male	C7	None
	40/female	T6	Present
	48/female	L5	Present
	44/male	T6	None
	46/female	S1	Present
Kern et al./2006	34/female	T10	Present
Purandare et al./2012	32/male	T2	N/A*
Choudhury et al./2012	N/A/female	Thoracolumbar**	Present
Mitchell et al./2013	72/male	L3	None
Sun et al./2014	63/female	T4	None
Law et al./2014	59/male	L4	None
Roman-de Aragon et al./2014	48/male	L4	N/A
Zakaria et al./2014	40s/male	T3	N/A
Doyle and Fletcher/2014	N/A (12 patients)	C (2 patients),	N/A
		T (6 patients),	
		L5 (4 patients)	
Laviv and Rappaport/2015	N/A	T	None
Present case	43/male	T7	None

*Had concomitant cerebellar hemangioblastoma, **Exact location of the tumor was not mentioned. VHL - Von Hippel–Lindau, C - Cervical, T - Thoracic, L - Lumbar, S - Sacral, N/A - Not available
complication occurred. Postoperative neurological status of the patient was same as the preoperative condition. The histopathology of the specimen was compatible with grade-I hemangioblastoma (WHO 2007 classification) [Figure 3]. Neither he nor his family had a history of VHL disease. At the fourth postoperative day, he was discharged with ongoing physical rehabilitation.

Discussion

Lindau defined the hemangioblastoma in 1926. Origin of hemangioblastomas could not have been defined, yet. Hemangioblastomas present not only in the nervous system but also in other organs systems, so glial cells might not be the source of the tumor cells. Both mesodermal and neuroectodermal tissues have been proposed to be possible sources of hemangioblastoma, recently.[12]

Hemangioblastomas are sometimes seen concomitant with VHL disease, which is an autosomal dominant disorder of tumor suppressor gene, VHL.[13] More than half of the patients with spinal nerve root hemangioblastoma were found to have concomitant VHL disease.[11] However, in this study, concomitant VHL disease rate has been found as only 45%.

Spinal hemangioblastomas compose 1.6–5.8% of all spinal cord tumors and mostly present intramedullary in the dorsal aspect of cervical and thoracic spinal cord segments.[1,11] Sometimes, spinal hemangioblastomas present in both intramedullary and extramedullary (6–8% of spinal hemangioblastomas). Remaining rare locations are cauda equina, filum terminale, and proximal spinal nerve roots.[1,11] The most common site for purely extradural spinal nerve root hemangioblastomas is thoracic level (48.6%).

On MRI, spinal hemangioblastomas appear as hypo- to isointense on both T1- and T2-weighted scans with near homogeneous enhancement following IV contrast material administration. In the presence of intratumoral hemorrhage, intensities may differ on T1- and T2-weighted MRI.[11] Presence of prominent vessels in the subarachnoid space is diagnostic for hemangioblastomas.[8,23] Opposite to cystic components found in intracranial and intramedullary hemangioblastomas; extramedullary hemangioblastomas are solid in nature.[24] Angiography could be useful to depict vascularity of the tumor, and even preoperative embolization can be conveyed where needed.[11]

In differential diagnosis; meningioma, schwannoma, ependymoma, paraganglioglioma, and metastasis (especially renal cell carcinoma, due to its high vascularity) should be considered.[12]

Figure 2: A vascular lesion is observed just over the dura. The lesion is adherent to the dura, yet not invading it

Figure 3: Encapsulated hemangioblastoma nodule attached to fibrous tissue (a - H and E, ×0.8). Tumor tissue showing thin-walled blood vessels of various diameters (b - H and E, ×4.2). High magnification reveals cells with cytoplasmic vacuolation typical for a hemangioblastoma (c - H and E, ×44.3)
Management of spinal nerve root hemangioblastomas starts with appropriate preoperative imaging to prevent massive intra-operative bleeding. It should be kept in mind that hemangioblastomas may show invasion into surrounding soft and bony tissue. Surgical experience is the mainstay of success in excision of these tumors. There is a tendency to recur especially in cases with an inadequate amount of resection.

Conclusion

Purely extradural spinal nerve root hemangioblastomas are very rare, and they might be confused with other more common extradural spinal tumors. Concomitant presence of VHL disease is observed in less than half of the patients with purely extradural spinal nerve root hemangioblastoma. Surgery, with careful preoperative planning, is the first line treatment in these tumors.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

1. Law EK, Lee RK, Griffith JF, Siu DY, Ng HK. Spinal nerve root haemangioblastoma associated with reactive polycythemia. Case Rep Radiol 2014;2014:798620.
2. Senjaya F, Midha R. Thoracic nerve root hemangioblastoma – A diagnostic rarity. World Neurosurg 2012;78:88-9.
3. Smith RA, Estridge MN. Extradural spinal hemangioblastomas. Review of the literature and report of a case. Bull Los Angel Neuro Soc 1963;28:79-84.
4. Murota T, Symon L. Surgical management of hemangioblastoma of the spinal cord: A report of 18 cases. Neurosurgery 1989;25:699-707.
5. Chazono M, Shiba R, Funasaki H, Soshi S, Hattori A, Fujii K. Hemangioblastoma of the L-5 nerve root. Case illustration. J Neurosurg 1999;90 1 Suppl: 160.
6. Chu BC, Terae S, Hida K, Furukawa M, Abe S, Miyasaka K. MR findings in spinal hemangioblastoma: Correlation with symptoms and with angiographic and surgical findings. AJNR Am J Neuroradiol 2001;22:206-17.
7. Hermier M, Cotton F, Saint-Pierre G, Jouvet A, Ongolo-Zogo P, Fischer G, et al. Myelopathy and sciatica induced by an extradural S1 root haemangioblastoma. Neuroradiology 2002;44:494-8.
8. Escott EJ, Kleinschmidt-DeMasters BK, Brega K, Lillehei KO. Proximal nerve root spinal hemangioblastomas: Presentation of three cases, MR appearance, and literature review. Surg Neurol 2004;61:262-73.
9. Gläsker S, Berlis A, Pagenshteher A, Vougioukas V, Van Velthoven V. Characterization of hemangioblastomas of spinal nerves. Neurosurgery 2005;56:503-9.
10. Kern M, Naeini R, Lehmann TN, Benndorf G. Imaging of a thoracic spinal nerve root haemangioblastoma by three-dimensional digital angiography. J Clin Neurosci 2006;13:929-32.
11. Purandare HR, Misra BK. Thoracic nerve root hemangioblastoma: A rare cause of posterior mediastinal mass. World Neurosurg 2012;78:192. E1-3.
12. Mitchell A, Scheithauer BW, Wharen RE, Franck J, Chan K. Hemangioblastoma of spinal nerve: A report of six cases. Clin Neuropathol 2013;32:91-9.
13. Sun HI, Özduman K, Usseli MI, Özgen S, Pamir MN. Sporadic spinal hemangioblastomas can be effectively treated by microsurgery alone. World Neurosurg 2014;82:836-47.
14. Román-de Aragón M, Márquez T, Isla A, Gómez-de la Riva A. Hemangioblastoma of the right L4 nerve root with radicular extraforaminal involvement. Neurocirugia (Astur) 2014;25:286-9.
15. Zakaria R, Crooks D, Osman-Farah J. Reply to: Clinical Neuropathol 2013;32:91-9. Spinal nerve root hemangioblastoma may be predominantly extradural. Clin Neuropathol 2014;33:157-9.
16. Laviv Y, Rappaport ZH. Cord compression due to extradural thoracic nerve root hemangioblastoma. Br J Neurosurg 2015;29:281-4.
17. Doyle LA, Fletcher CD. Peripheral hemangioblastoma: Clinicopathologic characterization in a series of 22 cases. Am J Surg Pathol 2014;38:119-27.
18. Tarlov IM. Spinal extradural hemangioblastoma roentgenographically visualized with diodrast at operation and successfully removed. Radiology 1947;49:717-23.
19. Higgins JN, Lammie GA, Savy LE, Taylor WJ, Stevens JM. Intraosseous vertebral haemangioblastoma: MRI. Neuroradiology 1996;38 Suppl 1:S107-10.
20. Lee DK, Choe WJ, Chung CK, Kim HJ. Spinal cord hemangioblastoma: Surgical strategy and clinical outcome. J Neurooncol 2003;61:27-34.
21. Choudhury T, Jahan S, Kamal M, Hossain MM, Khan ZR. Von Hippel-Lindau disease in a pregnant lady. Mymensingh Med J 2012;21:184-7.
22. Lindau A. Studies on cerebellar cysts: Structure, pathogenesis and relationship with retinal angiomatosis. Acta Pathol Microbiol Scand 1926;1:1-128.
23. Sawyer B, Heng R, Ferris N. Typical magnetic resonance features of a haemangioblastoma, an uncommon nerve root lesion: Case report and literature review. Australas Radiol 2007;51:B28-30.
24. Browne TR, Adams RD, Roberson GH. Hemangioblastoma of the spinal cord. Review and report of five cases. Arch Neurol 1976;33:435-41.