Dear Editor,

Human platelet antigens (HPAs) are genetically inherited polymorphic glycoproteins expressed on the platelet membrane [1]. HPAs are transfusion and gestation compatibility determinants, and HPA alloantibodies have been reported in post-transfusion purpura, platelet transfusion refractoriness, and neonatal alloimmune thrombocytopenia (NAIT) cases [2].

Previously, we reported HPA allele frequency data for Malay subethnic groups [3] and Orang Asli [4] in Peninsular Malaysia. These earlier studies have provided a valuable preliminary source of genetic information for health assessments and population genetics. However, a complete picture of the genetic structure in Peninsular Malaysia should also include data from Malays (i.e., Deutero-Malays), Chinese, and Indians, as they represent >75% of the total population [5]. There are some HPA data for Malays, Chinese, and Indians reported by Tan, et al. [6]; the present HPA data can be compared with those data.

We typed HPA-1 to -6 and HPA-15 loci in blood samples obtained with informed consent from a total of 222 individuals registered as voluntary, non-remunerated blood donors at the Hospital Universiti Sains Malaysia (Kelantan), Hospital Seberang Jaya (Pulau Pinang), and Temerloh Hospital (Pahang) in Malaysia. The individuals were un-admixed with no history of intermarriage with other ethnic groups for three generations. The ethnicity classes of these samples were assigned as Malay (N=97), Chinese (N=77), and Indian (N=48) based on individual pedigree information. Our proposed study was reviewed and approved by the Human Ethical Committee, Universiti Sains Malaysia, Malaysia, and the Medical Research and Ethics Committee, Ministry of Health, Malaysia. The HPA typing and data analysis were performed as previously described by Wan Syafawati, et al. [3] and Syafawati et al. [4]. Briefly, isolated genomic DNA was amplified using polymerase chain reaction and sequence-specific primers (PCR-SSP) for HPA-1 to -6 and -15. Amplified products were then separated using agarose gel electrophoresis (2% agarose gels stained with ethidium bromide) and visualised using a UV photometer (Quantum ST4-1000/20M, VilberLourmat, Deutschland GmbH, Eberhardzell, Germany). The separated band patterns (amplified allele-specific HPA products and human growth hormone) were then compared with a 100 base pair DNA size standard (Bioline, London, UK). HPA allele frequencies were determined by dividing the allele count numbers...
by the total numbers of chromosomes (2n) tested. Genetic differ-
entiations between pairs of HPA population datasets were eval-
uated using Arlequin version 3.0 software [7] and were consid-
ered statistically significant at $P < 0.05$.

The present and previously reported HPA datasets of various
population groups in Peninsular Malaysia are shown in Table 1
[3, 4, 6]. These HPA datasets reveal that Malays and Chinese
differ significantly ($P < 0.05$) from Indians (Table 2). However,
no significant differences were observed between the HPA data-
sets of Malays and Chinese. Importantly, Malays, Chinese, and
Indians are the modern-day descendants of ancestrally unre-
lated ethnic groups in Peninsular Malaysia; the inability of the
HPA datasets to differentiate between Malays and Chinese needs
to be resolved using more informative genetic markers, includ-
ing genome-wide single nucleotide polymorphisms and whole
genome sequencing data [8]. In addition, some of the ancestral
relationships might also be obscured by demographic processes
such as natural selection and founder effects. Of these forces,
natural selection is expected to have a greater effect on genes
that are important in the medical field such as HPA, compared
with other regions in the human genome [11]. For example, some
differences observed between ancestrally related Proto-Malays
(Orang Kanaq), Malay subethnic groups, and Malays could pos-
sibly be attributed to gene flow via admixture and historical events
at the population level (as mentioned earlier), rather than differ-
ent origins (Table 2) [8].

In our view, HPA datasets for various population groups in Pen-
insular Malaysia (Tables 1 and 2) also have significant value for
health and have been identified as genetic risk factors for many
diseases [9]. The risk of HPA alloimmunization in Peninsular
Malaysia might be expected to be most frequently associated
with alloantibodies against HPA-3 and HPA-15 products, as
these are the most polymorphic loci observed within and be-
tween population groups in Peninsular Malaysia (Tables 1 and
2). Our hypothesis regarding HPA alloimmunization risk is sup-
ported by the presence of HPA-1a, -3a, -5a, and -15b alloanti-
bodies in most of the NAIT cases and multi-transfused throm-
bocytopenia patients in Malaysia [10]. Therefore, implementa-
tion of HPA typing could reduce the incidence of HPA alloim-
munization cases in Malaysia.

In conclusion, to the best of our knowledge, our study is the
first complete representative collection of HPA datasets for all
population groups in Peninsular Malaysia. These datasets can
be used for developing better healthcare services and as a ref-
ence standard for identifying genetic risk factors for many dis-
ases associated with HPAs.

Table 1. HPA allele frequency distribution in the present and previous studies

Population	(N)	1a	1b	2a	2b	3a	3b	4a	4b	5a	5b	6a	6b	15a	15b
Malays (present study)	97	0.985	0.015	0.969	0.031	0.510	0.490	1.000	0.000	0.990	0.010	0.990	0.010	0.479	0.521
Chinese (present study)	77	1.000	0.000	0.980	0.020	0.591	0.410	1.000	0.000	0.987	0.013	0.994	0.006	0.526	0.474
Indians (present study)	47	0.979	0.021	0.969	0.031	0.521	0.479	1.000	0.000	0.959	0.041	0.990	0.010	0.375	0.625
Banjar [3]	30	1.000	0.000	0.950	0.050	0.616	0.384	0.950	0.050	0.950	0.050	0.980	0.020	0.480	0.520
Bugis [3]	37	1.000	0.000	1.000	0.000	0.554	0.446	1.000	0.000	0.950	0.050	0.910	0.090	0.620	0.380
Champa [3]	51	0.980	0.020	0.970	0.030	0.677	0.323	1.000	0.000	0.990	0.010	0.980	0.090	0.480	0.520
Jawa [3]	39	1.000	0.000	1.000	0.000	0.628	0.372	1.000	0.000	0.960	0.040	1.000	0.000	0.450	0.550
Kelantan [3]	35	1.000	0.000	0.940	0.060	0.571	0.429	1.000	0.000	1.000	0.000	0.990	0.010	0.490	0.510
Orang Kanaq [4]	11	1.000	0.000	1.000	0.000	0.818	0.182	1.000	0.000	1.000	0.000	1.000	0.000	0.909	0.091
Batek [4]	27	1.000	0.000	1.000	0.000	0.500	0.500	1.000	0.000	0.852	0.148	1.000	0.000	0.000	1.000
Lanoh [4]	25	1.000	0.000	1.000	0.000	0.640	0.360	1.000	0.000	1.000	0.000	1.000	0.000	0.260	0.740
Kensiu [4]	36	0.958	0.042	1.000	0.000	0.875	0.125	1.000	0.000	0.847	0.153	1.000	0.000	0.361	0.639
Che Wong [4]	26	1.000	0.000	1.000	0.000	0.423	0.577	1.000	0.000	0.788	0.212	1.000	0.000	0.500	0.500
Semai [4]	40	0.988	0.012	1.000	0.000	0.671	0.329	1.000	0.000	0.890	0.110	1.000	0.000	0.524	0.476
Malays [6]	200	0.975	0.025	0.963	0.037	0.503	0.497	0.995	0.005	0.950	0.050	0.993	0.007	0.515	0.485
Chinese [6]	200	1.000	0.000	0.967	0.033	0.573	0.427	0.998	0.002	0.983	0.017	0.983	0.017	0.498	0.502
Indians [6]	200	0.885	0.115	0.960	0.040	0.620	0.380	0.995	0.005	0.940	0.060	0.995	0.005	0.408	0.592
Table 2A. Homogeneity between pairs of population groups in Peninsular Malaysia

	HPA-1	HPA-2															
	Malays†	Chinese†	Indians†	Banjar [3]	Bugis [3]	Champa [3]	Jawa [3]	Kelantan [3]	O. K. [4]	Batek [4]	Lanoh [4]	Kensiu [4]	C. W. [4]	Semai [4]	Malays [6]	Chinese [6]	Indians [6]
Malays†	*	0.257	NA	NA	0.558	NA	0.557	0.568	NA	NA	NA	0.340	NA	NA	NA	NA	<0.000
Chinese†	0.088	*	0.145	NA	NA	0.158	NA	NA	NA	NA	NA	0.332	NA	0.344	NA	NA	<0.000
Indians†	1.000	0.294	*	0.501	0.499	0.507	NA	0.534	0.544	0.650	0.538	NA	NA	NA	0.004		
Banjar [3]	0.441	0.063	0.669	*	NA	0.530	NA	NA	NA	NA	0.241	NA	NA	NA	NA	NA	0.003
Bugis [3]	0.184	1.000	0.254	0.085	*	0.508	NA	NA	NA	NA	NA	0.114	NA	NA	NA	NA	<0.000
Champa [3]	0.209	1.000	0.349	0.193	1.000	0.504	0.516	NA	0.539	0.645	0.545	NA	NA	NA	<0.000		
Jawa [3]	0.183	1.000	0.249	0.076	NA	1.000	*	NA	NA	NA	0.108	NA	NA	NA	NA	NA	0.001
Kelantan [3]	0.453	0.034	0.450	1.000	0.052	0.160	0.046	*	NA	NA	0.239	NA	NA	NA	NA	NA	<0.000
O. K. [4]	1.000	1.000	1.000	0.551	1.000	NA	0.557	*	NA	NA	NA	NA	NA	NA	NA	NA	0.162
Batek [4]	0.340	1.000	0.546	0.239	NA	1.000	NA	0.127	*	NA	NA	0.252	NA	NA	NA	NA	0.004
Lanoh [4]	0.343	1.000	0.545	0.241	NA	1.000	NA	0.135	*	NA	NA	0.263	NA	NA	NA	NA	0.008
Kensiu [4]	0.190	1.000	0.255	0.088	NA	1.000	NA	0.052	*	NA	NA	NA	NA	NA	NA	NA	0.159
C.W [4]	0.338	1.000	0.255	0.242	NA	1.000	NA	0.131	*	NA	NA	*	NA	NA	NA	NA	0.005
Semai [4]	0.178	1.000	0.249	0.076	NA	1.000	NA	0.043	*	NA	NA	*	NA	NA	NA	NA	0.004
Malays [6]	0.812	0.035	1.000	0.713	NA	0.079	NA	0.498	0.623	0.223	0.386	0.139	0.230	0.086	*	NA	<0.000
Chinese [6]	0.857	0.200	0.782	0.492	0.343	0.272	0.352	0.360	0.705	0.439	0.660	0.662	0.350	0.543	0.857	*	<0.000
Indians [6]	1.000	0.106	1.000	0.542	0.269	0.196	0.280	0.426	0.641	0.459	0.438	0.271	0.459	0.277	1.000	0.836	*

(Continued to the next page)
HPA-4	Malays [6]	Chinese [6]	Indians [6]	Banjar [3]	Bugis [3]	Champa [3]	Jawa [3]	Kelantan [3]	O. K. [4]	Batek [4]	Lanoh [4]	Kensiu [4]	C. W. [4]	Semai [4]	Malays [6]	Chinese [6]	Indians [6]
	NA	NA	NA	0.025	0.025	0.001	< 0.001	0.002	0.002	0.002	0.016	0.003	0.008	0.008	0.002	0.002	0.002
Malay	0.127	0.009	0.251	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Chinese	0.368	0.036	0.784	0.036	0.036	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
Indians	0.368	0.036	0.784	0.036	0.036	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
Table 2C. Continued

	HPA-5	HPA-6
Malays[1]	0.722	0.602
Chinese[1]	0.448	0.474
Indians[1]	1.000	<0.001
Banjar[3]	1.000	0.428
Bugis[3]	1.000	0.004
Champa[3]	1.000	0.002
Jawa[3]	1.000	0.002
Kelantan[3]	1.000	0.002
O. K.[4]	1.000	0.002
Batek[4]	1.000	0.002
Lanoh[4]	1.000	0.002
Kensiu[4]	1.000	0.002
C. W.[4]	1.000	0.002
Semai[4]	1.000	0.002
Malays[6]	0.722	0.602
Chinese[6]	0.448	0.474
Indians[6]	1.000	<0.001

(Continued to the next page)
	HPA-15																	
	Malays	Chinese	Indians	Banjar	Bugis	Champa	Jawa	Kelantan	O. K.	Batek	Lanoh	Kensi	C. W.	Semai	Malays	Chinese	Indians	
Malays	*	0.503	0.217	0.087	0.049	0.047	0.732	*	0.007	<0.001	0.019	0.144	0.013	0.255	0.687	0.904	0.176	
Chinese	*	*	0.033	0.022	0.065	0.127	0.521	*	0.001	<0.001	0.002	0.047	0.070	0.091	0.723	0.638	0.012	
Indians	*	*	*	*	*	0.120	0.007	0.308	0.375	<0.001	0.001	0.002	0.003	0.147	0.041	0.070	0.866	
Banjar [3]	*	*	*	*	*	0.300	0.626	*	0.046	0.862	0.013	0.001	0.020	<0.001	0.794	0.050	0.049	0.109
Bugis [3]	*	*	*	*	*	0.260	0.031	0.116	0.080	<0.001	0.002	0.003	<0.001	0.475	0.077	0.045	0.004	
Champa [3]	*	*	*	*	*	*	0.247	0.227	0.002	<0.001	0.001	0.063	0.082	<0.001	0.862	0.240	0.257	0.340
Jawa [3]	*	*	*	*	*	*	0.006	<0.001	<0.001	0.001	0.001	0.057	0.541	0.089	0.110	0.448	0.603	0.309
Kelantan [3]	*	*	*	*	*	*	*	<0.001	<0.001	0.013	0.031	0.003	<0.001	0.428	0.002	0.603	0.011	
O. K. [4]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	<0.001	0.001	<0.001	
Batek [4]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	
Lanoh [4]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.002	0.003	0.183	0.183	
Kensi [4]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.001	0.001	
C. W. [4]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.001	0.001	
Semai [4]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.001	0.001	
Malays [6]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.001	0.001	
Chinese [6]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.001	0.001	
Indians [6]	*	*	*	*	*	*	*	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.001	0.001	

Pairs of HPA datasets are considered significantly different if their $P<0.05$ and are bold.

*Data from the present study; reference HPA datasets were obtained from Syafawati, et al. [3], Syafawati, et al. [4], and Tan, et al. [6].

Abbreviations: HPA, human platelet antigen; NA, not applicable; *, no value; O.K, Orang Kanaq; C.W, Che Wong.

https://doi.org/10.3343/alm.2020.40.6.493
ACKNOWLEDGEMENTS

We are grateful to the volunteers and patients who contributed to this study. We specifically thank all the nurses and doctors who helped collect the blood samples.

AUTHOR CONTRIBUTIONS

CGNH designed and performed the research, collected the data, analyzed the data, and wrote the manuscript; ZZ helped design the study, managed sample collection, and obtained our ethics permit from the Ministry of Health, Malaysia; NSMR and THTM helped with study design, sampling, and data collection; MNH, AMD, GEG, and GKC designed the study, advised on statistics, and edited the manuscript; and HAE designed and directed the study, advised on statistics, edited the manuscript, funded the research, managed the study, and obtained ethical approval from Human Ethics Committee, Universiti Sains Malaysia.

CONFLICTS OF INTEREST

No potential conflicts of interest relevant to this paper were reported.

RESEARCH FUNDING

This research was supported by a Short-Term Grant (304/PPSK/6315142) and Bridging Grant (304/PPSK/6316132) awarded by the Universiti Sains Malaysia to Hisham A. Edinur. Geoffrey K. Chambers wishes to thank the Victoria University of Wellington for Alumnus Scholar support.

REFERENCES

1. Robinson J, Mistry K, McWilliam H, Lopez R, Marsh SG. IPD- the immunopolymorphism database. Nucleic Acids Res 2010;38:D863-9.
2. Saleh RM, Zefarina Z, Che Mat NF, Chambers GK, Edinur HA. Transfusion medicine and molecular genetic methods. Int J Prev Med 2018;9:45.
3. Wan Syafawati WU, Norhalifah HK, Zefarina Z, Zafarina Z, Panneerchelvam S, Norazmi MN, et al. Allele frequencies of human platelet antigens in Banjar, Bugis, Champa, Jawa, and Kelantan Malays in Peninsular Malaysia. Transfus Med 2015;25:326-32.
4. Syafawati WU, Zefarina Z, Zafarina Z, Hassan MN, Norazmi MN, Panneerchelvam S, et al. Human platelet antigen allelic diversity in Peninsular Malaysia. Immunohematology 2016;32:143-60.
5. Hajar CGN, Zulkafli Z, Md Riffin NS, Tuan Mohammad TH, Safuan S, Nelson BR, et al. Human neutrophil antigen frequency data for Malays, Chinese and Indians. Transfus Apher Sci 2019;102651.
6. Tan JY, Lian LH, Nadarajan VS. Genetic polymorphisms of human platelet antigens-1 to -6, and -15 in the Malaysian population. Blood Transfus 2012;10:368-76.
7. Excoffier L, Laval G, Schneider S. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 2007;1:47-50.
8. Norhalifah HK, Syaza FH, Chambers GK, Edinur HA. The genetic history of Peninsular Malaysia. Gene 2016;586:129-35.
9. Edinur HA, Dunn PP, Lea RA, Chambers GK. Human platelet antigens frequencies in Maori and Polynesian populations. Transfus Med 2013;23:330-7.
10. Wan Mahmood WH and Mustaffa R. Platelet alloantibody in multiply transfused thrombocytopenic patients. Int Med J Malaysia 2007;6:1-10.