Statistical downscaling and projection of future temperature change for Tabriz city, Iran.

A H Baghanam¹*, V Nourani², A Sheikhbabaei³, A J Seifi³

¹ Assistant Prof. Dept. of Water Resources Eng., Faculty of Civil Eng., Univ. of Tabriz, Iran
² Prof. Dept. of Water Resources Eng., Faculty of Civil Eng., Univ. of Tabriz, Iran; Faculty of Civil and Environmental Eng., Near East University, Lefkosa, TRNC, Cyprus
³ M.Sc. Dept. of Water Resources Eng., Faculty of Civil Eng., Univ. of Tabriz, Iran

*Corresponding author - Email: hosseinibaghanam@gmail.com

Abstract. In the 21st century, Climate change has become one of the prominent global challenges which threaten the world, and the changes in climate extremes are estimated to have catastrophic consequences on human society and the natural environment. To overcome the spatial-temporal inadequacy of the GCMs, Linking large-scale General Circulation Model (GCM) data with small-scale local climatic data highly comes to the fore. In this paper, two statistical downscaling techniques encompass LARS-WG and SDSM were employed for assessing the fluctuations of temperature predictand in Tabriz city, Iran. In order to choose the well-response GCMs a Multi-GCM ensemble approach was utilized by EC-EARTH, HadCM2, MIROC5, MPI-ESM GCMs from the CMIP5. To study the impact of climate change over the region, the periods of 1961-1990 and 1991-2005 were used as the baseline and validation period, respectively. Results of evaluation criteria disclosed the superior performance of Multi-GCM ensemble for predicting temperature predictand compared to single GCM models. Furthermore, the result of climate projection for the temperature predictand by both models revealed that the city will experience an increasing trend in temperatures for the horizon of 2021-2080. The average temperature will increase by 2.9 and 3.7 (°C) under Representative Concentration Pathways (RCPs) (i.e., RCP4.5 and 8.5), respectively.

Keywords: Climate change, General Circulation Models, Statistical downscaling, Tabriz city temperature

1. Introduction

Regarding the spatiotemporal inadequacy of General Circulation Models (GCMs), Connecting large-scale GCM data with small-scale local climatic data is of great importance. To overcome this issue, various downscaling approaches are being applied to increase the accuracy of the GCM-based impact models. Indeed downscaling is an approach to derive high-resolution data from low-resolution GCMs and classified into two primary categories, i.e., dynamical and statistical [1].

Dynamical downscaling is a technique to derive smaller-scale climatic data over a bounded area which are nested within the coarser scale climatic information via a high-resolution regional climate model
(RCM) driven by boundary conditions from GCMs, whereas statistical downscaling involves empirical links between coarse-scale predictors and local climate data predictand [2]. Statistical downscaling approaches are divided into the following subcategories; weather generators, e.g., Long Ashton Research Station-Weather Generator (LARS-WG) (Racsko et al. 1991); linear regression models, e.g., statistical downscaling model (SDSM) [3]; nonlinear regression models, e.g., artificial neural network (ANN) [4], support vector machine (SVM) [5], relevance vector machines (RVM) [6] and gene expression programming (GEP) [7].

In order to investigate downscaling methods precisely, [8] represented a thorough review of downscaling methods for climate change projections. LARS-WG and SDSM are widely used for climate projections, [9] analyzed the uncertainties retrieved from various downscaling models (i.e., LARS-WG, SDSM, and ANN) over a region in Canada. The results revealed the superiority of SDSM model for predicting minimum and maximum temperature, precipitation (i.e., predictands). [10] employed two statistical downscaling schemes (i.e., LARS-WG and SDSM) on the projection of future climate over the Thames River which resulted in preference of SDSM to LARS-WG for Minimum and maximum temperatures while for forecasting precipitation LARS-WG represented a superiority performance. [11] employed two statistical downscaling schemes (i.e., LARS-WG and SDSM) on the projection of future climate over the Thames River which resulted in preference of SDSM to LARS-WG for Minimum and maximum temperatures while for forecasting precipitation LARS-WG represented a superiority performance. [12] employed three statistical downscaling approaches (i.e., LARS-WG, Bias Corrected Disaggregation (BCD) and SDSM) to predict temperature and precipitation predictands in diverse study areas. As a result, the divergence between the predictions of various models derived from the regions experiencing severe precipitation intensities. [13] used two statistical downscaling methods (i.e., LARS-WG and SDSM) in order to downscale future climate scenarios of the Upper Blue Nile River basin. The used a multimodal average of LARS-WG and individual model results from SDSM which let to preference of LARS-WG to SDSM. [14] demonstrated that the application of ANN tool in downscaling without pre-processing of data is the principle reason for the drawback of such a data-based model. In this way, they developed an ANN-based statistical downscaling model using wavelet entropy and clustering methods to pre-process GCM data. Unlike the study of [9], they concluded that the performance of the nonlinear ANN model with pre-processing is better than the multi-linear one.

Given the contrary outputs of over-mentioned studies on the performance of various downscaling methods in diverse study areas, regarding the high environmental sensitivity of the city, projection of future climate by different downscaling methods highly comes to the fore. The following study sought to investigate whether the various downscaling schemes with multi GCM ensemble models reflect contradictory outcomes in climate projection over the study area or not.

2. Material and methods

2.1 Case study and data set
The present study encompasses a mountainous region in the northwest of Iran, Tabriz metropolis is the capital city of East Azerbaijan province and is located in the valley of a seasonal river. The study area is situated at 38°08′ N latitude and 46°29′ E longitude (Figure 1). The city lies on the Tabriz plain with a mild slope and at 60 km west ends on the east bank of the Urmia Lake [15]. The altitude of the city ranges from 1,350 to 1,600 meters above sea level. The annual mean temperature and precipitation are 12.2°C and 280 mm, respectively. Also, the Climate of the region is changed from semi-arid to arid based on the De Martonne aridity index [16]. Overall, the city’s weather is mild and fine in spring, dry and semi-hot in summer, humid and rainy during fall, and cold with snowfall in winter. During the last decades drying of the lake became the prominent environmental crisis in which the ecosystem of the region threatens.
Nevertheless, The synoptic station of Tabriz city was chosen to reflect the spatial variability of the climate. For the downscaling purpose, Large-scale GCM models were used (i.e., EC-EARTH, HadCM2, MIROC5, MPI-ESM) from the 5th Coupled Model Intercomparison Project (CMIP5) under RCP4.5 and 8.5 scenarios. Table 1.

In order to validate GCM-based downscaling, daily reanalysis datasets of the National Center for Environmental Prediction (NCEP) with the resolution of $2.5^\circ \times 2.5^\circ$ were extracted to calibrate downscaling models. The periods of 1961-2005 and 2021-2080 was utilized as the baseline and simulation period, respectively.

![Figure 1. Topography of the study area and its position on Iran’s map.](image)

No	Global Climate Model	Centre	Centre acronym	Country	Grid size (approximately)
1	EC-EARTH	Numerical weather prediction	ESM	Europe	$1.1^\circ \times 1.1^\circ$
2	HadGEM2	UK Met. Office	UKMO	UK	$1.4^\circ \times 1.9^\circ$
3	MIROC5	Met Research Institute, Japan	NIES	Japan	$1.2^\circ \times 2.5^\circ$
4	MPI-ESM	Max-Planck Met Institute	MPI-M	Germany	$1.9^\circ \times 1.9^\circ$

2.2 Proposed methodology
For the purpose of downscaling, two statistical downscaling methods (i.e., LARS-WG, SDSM) were applied by considering predictands comprises minimum and maximum temperature over a semi-cold region in the northwest of Iran.

Firstly, the daily data of stations were quality controlled. Minimum and maximum daily temperatures were considered as stochastic processes with daily mean and standard deviation through the process of downscaling by downscaling models. Seasonal averages were modeled by the finite series 3-order Fourier series and the residuals of the model were approximated by the normal distribution. The periods of 1961-1990 and 1991-2005 were considered as the baseline and validation periods for downscaling by LARS-WG, respectively. Afterward, SDSM as the second downscaling approach which required a proper
selection of predictors established a relationship between predictors and predictand based on partial correlation coefficients. Since the involvement of potential GCMs simultaneously in downscaling models could help to extract hidden information in each GCM, the ensemble approach can positively impact the results. Important predictor selection among GCMs was implemented in LARS-WG and SDSM models. It should be noted that in order to ensemble GCMs the average values of each predictor from four GCMs were calculated and used in downscaling models. Also, throughout the process of calibration in SDSM, parameters such as event threshold, corrected skew and variance inflation utilized to determine the best statistical fit between observed and simulated climate variables.

2.2.1 Lars-WG. The Long Ashton Research Station Weather Generator (LARS-WG) is a stochastic weather generator that produces synthetic daily time series of climate variables to derive finer-resolution spatial climate data from coarser-resolution GCM output, drawing on observed climatic data in the baseline period and climate change pattern [17].

2.2.2 SDSM. The Statistical Downscaling Model (SDSM) is a hybrid model based on multiple linear regression (MLR) and the stochastic weather generator (SWG), [18]. MLR represents statistical-empirical relevancy between NCEP large-scale climate variables (predictors) and local scale weather data (predictand) along the process of screening predictors and the calibration of SDSM which results in producing several regression parameters.

2.3 Evaluation criteria
Due to examining the efficiency of the proposed downscaling techniques, three evaluation criteria containing Correlation coefficient (CC), determination coefficient (DC), and root mean square error (RMSE), was employed. CC (as equation 1) as the most commonly used method to calculate the relevancy between calibrated and observed data ranging between -1 to +1, the greater CC represents to the better coefficient, while zero states no association between the two variables.

\[
CC = \frac{N(\sum OC) - (\sum O)(\sum C)}{\sqrt{[N\sum O^2 - (\sum O)^2][N\sum C^2 - (\sum C)^2]}}
\]

Moreover, in order to evaluate the precision of prediction in a downscaling model, determination coefficient (DC) is used. It measures how well observed results based on their proportion of total variation are replicated by the proposed model and ranges from 0 to 1 (equation 2).

\[
DC = 1 - \frac{\sum_{i=1}^{T}(0_1 - C_0)^2}{\sum_{i=1}^{T}(0_1 - 0_0)^2}
\]

RMSE as a measure to assesses the accuracy of downscaling models in predicting temperature (equation 3).

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{N}(O_i - C_i)^2}{N}}
\]

3. Results and discussion
The purpose of this study is to predict the performance of two statistical downscaling techniques (i.e., LARS-WG, SDSM) in downscaling predictands including minimum and maximum temperatures over a semi-cold region in northwestern Iran. Four GCMs (i.e., EC-EARTH, HadCM2, MIROC, MPI-ESM) separately and with multi-GCM ensemble approach were assigned to choose the dominant predictors. In this regard, important climate variables of all the GCMs were identified.
To enjoy effective characteristics of each GCM in future temperature simulation, an ensemble of four GCMs (i.e., EC-EARTH, HadCM2, MIROC5, MPI-ESM GCMs) is utilized in the proposed downscaling. Since various GCMs are developed according to different structures, climate downscaling and projection using different GCMs can lead to diverse results. Application of a multi-GCM approach can lead to efficient results since there is the opportunity to select dominant variables among various GCMs with different structural inheritance than being forced to select from one specific GCM. In this way, two downscaling models were performed by using ensemble of GCMs and reanalysis data (i.e., NCEP).

Downscaling models	GCM Models	Evaluation Criteria
LARS-WG	EC-EARTH	0.91 0.76 4.60
	HADGEM2	0.61 0.22 8.99
	MIROC5	0.91 0.82 4.07
	MPI-ESM	0.89 0.43 7.65
	Ensembles of GCMs	0.91 0.85 4.08
SDSM	Ensembles of GCMs	0.88 0.62 7.01

Outcomes of temperature downscaling at Tabriz station based on LARS-WG and SDSM models for single and multi-GCM approaches shown in Table 2.

According to the results of evaluation criteria, multi-GCM ensembles revealed a superior performance compared to single GCMs. To have a visual vision toward the performance of applied GCMs for temperature predictand, mean annual temperature of the observed and calibrated temperature for the single and ensemble multi-GCMs approach shown in figure 2. Also the distribution of mean annual temperature Boxplot of the Observed, Calibrated and Simulated Temperature shown in figure 3.

![Figure 2](image_url)

Figure 2. Mean annual temperature of the observed and calibrated temperature for the single and ensemble of multi-GCM approach.
Also, for the purpose of future climate projection, two statistical methods (i.e., LARS-WG, SDSM) was employed. In this regard, outputs of the ensemble multi-GCM models (i.e., EC-EARTH, HADGEM2, MIROC5, MPI-ESM) of CMIP5 under RCP4.5 and 8.5 scenarios were utilized for the horizon of 2021-2080. The results of the combined projection of models for the temperature predictand revealed the point that the city will experience an increasing trend in temperatures. The mean temperature will increase by 2.9 and 3.7 (°C) under RCP4.5 and 8.5 scenarios, respectively. The mean annual temperature variation during the baseline and simulated horizons has shown in figure. 4. The results of this study corresponds with previous researches like [19] and [16]. In their study, they employed the LARS-WG tool as a statistical downscaling method in East Azerbaijan province, Iran. Their projection concluded that, the average temperature rise of ~ 2.3 °C in about 2050.

4. Conclusions
Since temperature is an important factor in developing climate impact studies for the future horizons, temperature forecasting of the Tabriz stations was assessed by various statistical GCM-based downscaling models. Four different GCMs with the single and multi-GCM input approaches were employed in downscaling models under the RCPs 4.5 and 8.5. Outcomes of the simulations disclosed that, according to intermediate and high emission scenarios, the Tabriz station temperature will decrease on average (i.e., 2.9 and 3.7°C) under RCP 4.5 and 8.5 scenarios, respectively. The projection of climate in diverse climates through the use of various downscaling schemes has been contradictory. To achieve reliable
results, different downscaling methods require to implement. In this research, the output of two statistical
downscaling techniques (i.e. LARS-WG, SDSM) was analyzed for Tabriz city in northwestern Iran.
Overall, the results of this study provide promising evidence for statistical downscaling and more
specifically, the ensemble of multi-GCM models that utilized the hidden information of GCM
demonstrated the superior performance of this approach compared to using a single GCM.

References

[1] Hassanzadeh, Elmira, Alireza Nazemi, and Amin Elshorbagy. 2014. “Quantile-Based
Downscaling of Precipitation Using Genetic Programming: Application to IDF Curves in
Saskatoon.” *Journal of Hydrologic Engineering* 19(5): 943–55.

[2] Wilby, R. L., and T. M.L. Wigley. 1997. “Downscaling General Circulation Model Output: A
Review of Methods and Limitations.” *Progress in Physical Geography* 21(4): 530–48.

[3] RL Wilby, CW Dawson, EM Barrow. 2002. “Sdsm — a Decision Support Tool for the
Assessment of Regional Climate Change Impacts.” *Environmental Modelling & Software* 17(2):
145–57.

[4] Zorita, Eduardo, and Hans Von Storch. 1999. “The Analog Method as a Simple Statistical
Downscaling Technique: Comparison with More Complicated Methods.” *Journal of Climate* 12(8 PART 2): 2474–89.

[5] Tripathi, Shivam, V. V. Srinivas, and Ravi S. Nanjundiah. 2006. “Downscaling of Precipitation for
Climate Change Scenarios: A Support Vector Machine Approach.” *Journal of Hydrology* 330(3–4):
621–40.

[6] Ghosh, Subimal, and P. P. Mujumdar. 2008. “Statistical Downscaling of GCM Simulations to
Streamflow Using Relevance Vector Machine.” *Advances in Water Resources* 31(1): 132–46.

[7] Sachindra, D. A., and B. J.C. Perera. 2016. “Statistical Downscaling of General Circulation Model
Outputs to Precipitation Accounting for Non-Stationarities in Predictor-Predictand Relationships.”
PLoS ONE 11(12).

[8] Trzaska, S, E Schnarr - United States Agency for International Development by, and undefined
2014. “A Review of Downscaling Methods for Climate Change Projections.”

[9] Khan, Mohammad Sajjad, Paulin Coulibaly, and Yonas Dibike. 2006. “Uncertainty Analysis of
Statistical Downscaling Methods.” *Journal of Hydrology* 319(1–4): 357–82.

[10] King, Leanna M. et al. 2012. “The Effects of Climate Change on Extreme Precipitation Events in
the Upper Thames River Basin: A Comparison of Downscaling Approaches.” *Canadian Water
Resources Journal* 37(3): 253–74.

[11] Hassan, Zulkarnain, Supiah Shamsudin, and Sobri Harun. 2014. “Application of SDSM and
LARS-WG for Simulating and Downscaling of Rainfall and Temperature.” *Theoretical and
Applied Climatology* 116(1–2): 243–57.

[12] Vallam, P., and X. S. Qin. 2018. “Projecting Future Precipitation and Temperature at Sites with
Diverse Climate through Multiple Statistical Downscaling Schemes.” *Theoretical and Applied
Climatology* 134(1–2): 669–88.

[13] Mekonnen, D Fenta, M Disse - Hydrology and Earth System, and undefined 2018. “Analyzing the
Future Climate Change of Upper Blue Nile River Basin Using Statistical Downscaling
Techniques.” *mediatum.ub.tum.de*. https://mediatum.ub.tum.de/doc/1487914/file.pdf (September
23, 2019).

[14] Baghanam, Aida Hosseini et al. 2019. “Conjunction of Wavelet-Entropy and SOM Clustering for
Multi-GCM Statistical Downscaling.” *Hydrology Research* 50(1).

[15] Hassanzadeh, Elmira, Mahdi Zarghami, and Yousef Hassanzadeh. 2012. “Determining the Main
Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling.” *Water
Resources Management* 26(1): 129–45.

[16] Zarghami, Mahdi et al. 2011. “Impacts of Climate Change on Runoffs in East Azerbaijan, Iran.”
Global and Planetary Change 78(3–4): 137–46.
[17] Semenov, Mikhail A., and Elaine M. Barrow. 1997. “Use of a Stochastic Weather Generator in the Development of Climate Change Scenarios.” *Climatic Change* 35(4): 397–414.

[18] Harpham, Colin, and Robert L. Wilby. 2005. “Multi-Site Downscaling of Heavy Daily Precipitation Occurrence and Amounts.” *Journal of Hydrology* 312(1–4): 235–55.

[19] Nourani, Vahid, Zahra Razaghi Dadeh, Aida Hosseini Baghanam, and Amir Molajou. 2018. “ANN-Based Statistical Downscaling of Climatic Parameters Using Decision Tree Predictor Screening Method.” *Theoretical and Applied Climatology*.