Multi Solitons of a Bose-Einstein Condensate in a Three-Dimensional Ring

L. Salasnich
CNR-INFM, Research Unit of Milano University, Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano, Italy
E-mail: salasnich@mi.infn.it

(Received 30 October 2005)

A Bose-Einstein Condensate (BEC) made of alkali-metal atoms at ultra-low temperatures is well described by the three-dimensional cubic nonlinear Schrödinger equation, the so-called Gross-Pitaevskii equation (GPE). Here we consider an attractive BEC in a ring and by solving the GPE we predict the existence of bright solitons with single and multi-peaks, showing that they have a limited domain of dynamical stability. We also discuss finite-temperature effects on the transition from the uniform phase to the localized phase.

Key words: Matter waves; Solitons in Bose-Einstein condensates

PACS numbers: 03.75.-b; 03.75.Lm

Single and multiple bright soliton configurations in a Bose Einstein condensates (BEC) have been observed in two different experiments [1, 2]. These solitons, which can travel for long distances without dispersion, have been theoretically investigated by various authors due to their relevance in nonlinear atom optics [3, 4]. Very interesting appears the not yet experimentally studied case of an attractive BEC in a ring. For this system it has been predicted, on the basis of the one-dimensional (1D) theory, a quantum phase transition from a uniform condensate to a bright soliton [5].

Here we consider an attractive BEC in a 3D ring, taking into account transverse variations of the BEC width. We show that the phase diagram of the system reveals novel and peculiar phenomena: the localized soliton has a limited existence and stability domain and the system supports also multi-peak solitons, which can be dynamically stable.

The time-dependent Gross-Pitaevskii equation (GPE) for a BEC in a trapping potential $U(r)$ is given by

$$\left[i\hbar \frac{\partial}{\partial t} + \frac{\hbar^2}{2m} \nabla^2 - U(r) - \frac{4\pi \hbar^2 a_s(N-1)}{m} |\psi|^2 \right] \psi = 0$$

where N is the number of condensed atoms and a_s the s-wave scattering length of inter-atomic interaction. The GPE describes N trapped bosons in the same quantum state $\psi(r,t)$: a pure BEC of N atoms. The GPE is a mean-field Hartree equation and it is accurate for a dilute gas of condensed bosons at ultra-low temperature. The cubic term is obtained by using a contact pseudo-potential $V(r,r') = 4\pi \hbar^2 a_s/m \delta^3(r-r')$ to model the two-body interaction. If $a_s > 0$ there is repulsion between particles, if $a_s < 0$ there isattraction between particles [6].

We describe an attractive BEC in a cylinder, i.e. under transverse radial harmonic confinement and without axial longitudinal confinement, by using the self-focusing GPE ($a_s < 0$) with ω_\perp the transverse frequency of harmonic confinement. This self-focusing 3D GPE is the Euler-Lagrange equation of the following Lagrangian density

$$\mathcal{L} = \psi^* \left[i \frac{\partial}{\partial t} + \frac{\hbar^2}{2m} \nabla^2 - \frac{1}{2} (x^2 + x^2) + \frac{1}{2} \Gamma |\psi|^2 \right] \psi$$

where $\Gamma = 4\pi(N-1)|a_s|/a_\perp$ is the scaled inter-atomic strength. Here we use scaled units: energy
in units $\hbar \omega_\perp$, time in units of ω_\perp^{-1}, length in units of $a_\perp = \sqrt{\hbar/(m \omega_\perp)}$. To simplify the 3D problem, let us choose the trial wave function $\psi(\mathbf{r}, t) = f(z, t) \exp\left[-(x^2 + y^2)/(2\sigma(z, t)^2)\right]/\sqrt{\pi \sigma(z, t)^2}$. Inserting it into the Lagrangian, integrating over x and y and neglecting the derivatives of $\sigma(z, t)$ one finds an effective Lagrangian density $\hat{\mathcal{L}}$ which depends on the axial wave function $f(z, t)$ and the transverse width $\sigma(z, t)$. The two Euler-Lagrange equations of the effective Lagrangian $\hat{\mathcal{L}}$ with respect to f and σ are

$$i \frac{\partial}{\partial t} f = \left[-\frac{1}{2} \frac{\partial^2}{\partial z^2} + \frac{1}{2} \frac{1}{\sigma^2} + \sigma^2 - \frac{g}{\sigma^2} |f|^2 \right] f$$

$$\sigma^2 = \sqrt{1 - g|f|^2}$$

where $g = \Gamma/(2\pi) = 2(N - 1)|a_s|/a_\perp$. For $\sigma = 1$ the first equation becomes the familiar self-focusing 1D GPE, also called cubic nonlinear Schrödinger equation. The equation for σ can be inserted into the equation for f. In this way one gets the time-dependent non-polynomial Schrödinger equation (NPSE) [7].

In [7] we have verified that the NPSE gives results always very close to that of the 3D GPE under transverse harmonic confinement for both positive and negative scattering length a_s. The self-focusing NPSE ($a_s < 0$) admits a shape-invariant solution, called bright soliton, due to the interplay between the dispersive kinetic term and the attractive interaction term. Note that bright solitons of the self-focusing 3D GPE do not exist without transverse confinement. We have found [3, 4] that the bright soliton reduces, in the limit of very strong transverse confinement, namely for $g << 1$ (1D regime), to the textbook bright soliton of the self-focusing 1D GPE, whose axial wave function is $f(z) = \sqrt{g/4} \text{sech}(gz/2)$ Contrary to the self-focusing 1D GPE, the bright soliton of the self-focusing NPSE has a limited domain of existence: $0 < g < \frac{4}{3}$. If the strength g exceeds $4/3$ there is the so-called collapse of the BEC. Thus, the transverse dynamics of the BEC induces the instability of the solitonic solution.

As previously stressed, bright solitons have been observed in two experiments: a single soliton in an explosive trap at the Ecole Normale Superieure (ENS) of Paris [2], and a soliton train in a harmonic trap at Rice University [11]. We believe that in the near future there will be experiments on attractive BEC in a toroidal trap. In fact, toroidal traps have been recently produced: at Georgia Tech cold atoms in a magnetic ring (diameter of 2 cm) [8] and at Berkeley a BEC in a magnetic ring (diameter of 3 mm) [9].

To model an attractive BEC in a toroidal trap we consider now the self-focusing NPSE where the solution $f(z, t)$ has periodic boundary conditions:

$$f(z + L, t) = f(z, t)$$

where $L = 2\pi R$ is the azimuthal longitudinal length of the BEC and R is the azimuthal radius of the trap. Due to the periodic boundary conditions the stationary self-focusing NPSE admits a uniform solution, given by $f(z) = 1/\sqrt{L}$. One sees immediately that the uniform solution exists only for $g < 2\pi R$. The stationary NPSE admits also nodeless and nodal localized solutions (solitonic solutions). In Fig. 1 we plot the existence diagram of these solitonic solutions in the (R, g) plane. The diagram is obtained by numerically solving the NPSE. The one-peak localized nodeless solution exists between the two solid lines of Fig. 1. Nodeless two-peak localized solution exists between the two dashed lines while the nodal two-peak localized solution exists between the two dot-dashed lines.

We analyze the dynamical stability of the solutions by numerically solving the time-dependent NPSE taking as initial condition the stationary localized solution $f(z)$ with a very weak perturbation. In the left panels of Fig. 2 we plot the density profile $\rho(z) = |f(z)|^2$ of the solitonic solutions. In the right panels we show the time-dependence of the mean squared widths $\langle z^2 \rangle$ for the weakly perturbed solitonic solutions. A periodic oscillation means that the solitonic solution is dynamically stable. In the calculations we choose a ring axial length $L = 15$ and an interaction strength $g = 1$. We have studied the dynamical stability for various initial conditions. The main results are the following: i) the uniform solution is stable only below the lower curve of existence of the one-peak soliton; ii) the one-peak soliton is stable where it exists; iii) the nodal two-
peak soliton is stable in the plane \((R, g)\) only below the upper curve of existence of the one-peak soliton; iv) the nodeless two-peak soliton is unstable. Similar results are found for solitonic solutions with a larger number of peaks.

To conclude, we observe that the critical strength \(g^* = \pi a_\perp / 2R\) of the transition from the uniform state to the localized state at zero temperature has been determined in \([5]\) by investigating the Bogoliubov energy spectrum of the the self-focusing 1D GPE. The inclusion of finite-temperature effects is quite simple if one consider a non-interacting thermal cloud. In this way we find that the critical temperature \(T^*\) of transition from the uniform to the localized state is given by

\[
\frac{k_B T^*}{\hbar \omega_\perp} = \frac{a_\perp^2}{4 R^2} \left(N - \frac{\pi a_\perp^2}{4 |a_s| R} \right)
\]

where \(k_B\) is the Boltzmann constant, and using not-scaled quantities. Obviously if \(N < \pi a_\perp^2 / (4 |a_s| R)\) the system remains uniform at all temperatures.

References

[1] K.E. Strecker et al., Nature 417, 150 (2002).
[2] L. Khaykovich et al., Science 296, 1290 (2002).
[3] U. Al Khawaja et al., Phys. Rev. Lett. 89, 200404 (2002); L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 66, 043603 (2002); L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. Lett. 91, 080405 (2003); L.D. Carr and J. Brand, Phys. Rev. Lett. 92, 040401 (2004).
[4] L.D. Carr and Y. Castin, Phys. Rev. A 66, 063602 (2002); L. Salasnich, Phys. Rev. A 70, 053617 (2004).
[5] G.M. Kavoulakis, Phys. Rev. A 67, 011601(R) (2003); R. Kanamoto, H. Saito, and M. Ueda, Phys. Rev. A 67, 013608 (2003).
[6] L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003).
[7] L. Salasnich, Laser Phys. 12, 198 (2002); L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 65, 043614 (2002).
[8] J.A. Sauer, M.D. Barrett, and M.S. Chapman, Phys. Rev. Lett. 87, 270401 (2001).
[9] S. Gupta et al., Phys. Rev. Lett. 95, 143201 (2005).