This manuscript is under consideration in the journal *Energy Policy*. It has not been peer reviewed. Subsequent versions of this manuscript may have slightly different content. If accepted, the final version will be available via the “Peer-reviewed Publication DOI” link on the EarthArXiv webpage. Please feel free to contact the author with any feedback.

Canadian emissions and unconventional oil production exceed the 2°C global warming scenario

Alain Mignault

1 Independent researcher, Montreal, Canada

*Corresponding author.

E-mail address: alain.mignault@mail.mcgill.ca (A. Mignault).
Highlights

- Canada extracted more unconventional oil than its budget for the entire century.
- Canadian fossil fuel industry global emissions increased by 32% from 2011 to 2019.
- Global emissions of this industry represent 2.1 times entire national emissions.
- Annual national emissions exceed targets set by three models of the 2°C scenario.
- Policies to limit exports of fossil fuels and national emissions should be implemented.

Abstract

Canada could highly impact the climate, as it possesses the world’s third largest resources of unconventional oil. This paper evaluates in three ways whether Canada is respecting a scenario of fossil fuel production and greenhouse gas (GHG) emissions limiting warming to 2.0 °C by 2100. Firstly, McGlade and Ekins (2015) proposed a model providing production budgets for each fossil fuel producing country. Data show that Canada has extracted more unconventional oil than allocated for the entire century. Secondly, global GHG emissions from the Canadian fossil fuel industry were computed using a life-cycle analysis. Emissions increased by 32% from 2011 to 2019, although dropping 4.9% in 2020 because of the COVID-19 pandemic. Results also show that an increase of 1% in Canadian fossil fuel industry emissions cancels out at the global level a decrease of 2.1% in national emissions. Thirdly, three models providing a national carbon budget for Canada were compared to annual emissions. Emissions were higher than the targets set by these models. In conclusion, Canadian GHG emissions and unconventional oil production exceeded the amounts allowed by the 2°C scenario during the 2011-2020 period. Policies to reduce exports of fossil fuels and mitigate national emissions are discussed.

Keywords:
Fossil fuels; Emissions; GHG; Canada; Warming
1 Introduction

Canada merits special attention concerning climate for several reasons. Canada has the third largest
proven reserves of oil in the world with 169.7 billion barrels in 2019 (BP, 2020). It also has the
third largest resources of unconventional oil after the US and Venezuela (IEA, 2008; Jaffe et al.,
2011). Burning all Canadian fossil fuel resources would generate more greenhouse gases (GHG)
than the Global Carbon Budget (GCB) that should not be exceeded in order to limit warming to
2.0 °C by 2100 (McGlade and Ekins, 2015). Finally, in 2018 Canada had the second highest level
of GHG emissions per capita of the G7 after the USA. That year Canadians emitted on average
19.7 tonnes of GHG, while Americans emitted 20.4 tonnes (OECD, 2020; United Nations, 2019).

The aim of the present paper is to answer the following question: Is Canada on a path to
respect a scenario of fossil fuel production and GHG emissions providing a 67% chance to limit
warming to 2.0 °C by 2100? This question is addressed by dividing it into three sub-questions. The
first sub-question is: Does the exploitation of fossil fuels respect the quotas proposed by McGlade
and Ekins’ (2015) model to limit warming to 2.0 °C? To answer it, one has to compare the
cumulative Canadian production to the quotas provided by the global model proposed by these
authors. Based both on economic and climate factors, they computed the proportion of coal, oil
and gas that should not be burned to avoid emitting more than the upper limit of the GCB for the
2°C scenario. They provided these proportions for the major fossil fuel producing countries
including Canada. These proportions can be interpreted as production quotas (or production
budgets). Major environmental organizations have adopted this view, but not the Canadian
government (350.org, 2016; Abel et al., 2018; Cimons and Nesbit, 2016; Green, 2019; Trudeau,
2017). No scientific publication has assessed whether or not these limits have been respected or
exceeded and whether Canada respects the 2°C scenario. The present paper computes the
percentage of these quotas already spent and finds that the limit for unconventional oil has been
exceeded.

The second sub-question is: Are the global emissions of the Canadian fossil fuel industry
decreasing? To address it, the GHG emissions of Canadian fossil fuel production is assessed by
computing global emissions using a life-cycle analysis (LCA). As this evaluation is global, it
includes GHG released by burning exported fossil fuels. Emissions excluding exported fossil fuels
are examined in the following sub-question. It is important to assess LCA emissions because an
increase in Canadian fossil fuel industry production could cancel out at a global level the national
efforts to decrease emissions. In brief, results below show that such emissions have increased by 32% from 2011 to 2019.

The third sub-question is: Do Canadian national emissions respect the Carbon Budget (CB) proposed by different models simulating the 2.0 °C scenario? To answer it, Canadian emissions were compared with the proposed emission budget of three models. Many more models have been proposed to distribute the GCB amongst nations. However, only three models were identified that published explicit predictions about the CB of Canada (Alcaraz et al., 2018; Gignac and Matthews, 2015; Kanitkar et al., 2013). These are the models examined below and the results demonstrate that Canadian national emissions exceed the annual budget according to each of the three models presented. Several policies are discussed to limit exports of fossil fuels and to mitigate national emissions.

2 Canadian “unburnable” fossil fuels

2.1 McGlade and Ekins’ (2015) Model

The concepts of ‘resources’ and ‘reserves’ of fossil fuels are distinct. McGlade and Ekins (2015) define resources as the Remaining Ultimately Recoverable Resources (RURR) - the quantity of fossil fuels “that is recoverable over all time, with both current and future technology, irrespective of current economic conditions.” Reserves are a subset of resources that are “recoverable under current economic conditions and have a specific probability of being produced”.

McGlade and Ekins (2015) computed the proportion of coal, oil and gas resources that should not be burned to avoid emitting more than the upper limit of GCB for the 2°C scenario. They estimated that combustion of all world fossil fuel reserves would generate about 2,900 Gigatonnes of carbon dioxide (GtCO$_2$) and 11,000 GtCO$_2$ for all fossil fuel resources. This evaluation was based on multiple sources (Attanasi and Freeman, 2011; Babies et al., 2012; Iancu et al., 2010; IEA, 2013, 2011, 2008; Rogner et al., 2012). As this is much higher than the GCB, a significant proportion of these fossil fuels should stay in the ground. To determine production until 2050, they used their TIAM-UCL model (Anandaraja et al., 2011), a whole-system model maximizing social welfare under constraints, in conjunction with the climate model MAGICC (Meinshausen et al., 2011).
McGlade and Ekins found that globally 33% of oil, 49% of gas and 82% of coal should stay in the ground, and proposed quotas for each producing country. They concluded that Canada should leave in the ground 98% of hard coal, 97% of lignite, 72% of conventional oil, 99% of unconventional oil, 73% of conventional gas and 71% of unconventional gas (see Table 1). Note that the last three columns about GHG in Table 1 are original to the present paper and will be discussed in Section 3 below.

Table 1
Amount of Canadian fossil fuel resources to leave in the ground or to exploit according to the 2°C scenario

Resource Type	Amount to Leave (RURR)	Amount to Exploit	Total Resources (RURR)	% to Leave in the Ground	% to exploit	CO$_2$e to Leave (Gt)	CO$_2$e to Emit (Gt)	Total CO$_2$ (Gt)	
Hard Coal	34.3	0.7	35	Gt	98.0	2.0	85.3	1.7	87.0
Lignite	38.8	1.2	40	Gt	97.0	3.0	57.1	1.8	58.9
Conventional Oil	43.2	16.8	60	Gb	72.0	28.0	20.3	7.9	28.2
Unconventional Oil	632.5	7.5	640	Gb	98.8	1.2	429.6	5.1	434.7
Conventional Gas	3.6	1.4	5	Tcm	72.5	27.5	8.9	3.4	12.3
Unconventional Gas	17.8	7.3	25	Tcm	71.0	29.0	43.5	17.8	61.3
Total							644.7	37.6	682.4

RURR = Remaining Ultimately Recoverable Resources, Gt = gigatonne, Gb = gigabarrel, Tcm = trillion cubic meters, CO$_2$e = CO$_2$-equivalent.

Source: McGlade and Ekins (2015).

2.2 Methods
All raw data and detailed calculations for this section and the next ones can be downloaded from the Data Availability Section.

2.2.1 Coal production
Since 2014, Statistics Canada has ceased publishing complete production data for each coal type, but the US government still does (EIA, 2020; Statistics Canada, 2020a). Therefore, data on Canadian coal from the U.S. Energy Information Administration (EIA) was employed. Data for
2020 were missing. According to Statistics Canada, total production decreased by 21.8% in 2020, therefore production levels of 2019 for each coal type decreased by this proportion were adopted as an approximation for 2020.

2.2.2 Oil production
Oil production data comes from the Canadian Energy Regulator (CER) (Canadian Energy Regulator, 2021a). McGlade and Ekins (2015) classified oil into conventional and unconventional. Conventional oil includes the CER categories of conventional light crude, conventional heavy crude and condensate while unconventional oil includes synthetic crude oil and non-upgraded Alberta bitumen.

2.2.3 Gas production
Data on marketable natural gas production was also obtained from CER (Canadian Energy Regulator, 2021b). These data lack annual proportions of conventional and unconventional gas. Only the province of British Columbia (BC) publishes these proportions, therefore they were used to approximate Canadian production for 2011 to 2019 (BC Oil and Gas Commission, 2020). By fitting a curve through these points, the proportion of unconventional gas was estimated to be about 92% in 2020.

2.3 Results
Table 2 provides the amount of each fossil fuel produced between 2011 and 2020. It computes the percentage of the production budget (from Table 1) that has already been extracted. Fig. 1 shows this percentage for each fossil fuel. During this period, Canada spent 76.3% of its budget of hard coal, 7.4% of its lignite, 33.6% of its conventional oil, 115.8% of its unconventional oil, 23.9% of its conventional gas and 16.8% of its unconventional gas. For unconventional oil, Canada has therefore exceeded its budget for the entire 21st century. Indeed, unconventional oil production increased by 84% from 2011 to 2019.
Table 2

Canadian fossil fuels produced and percent of budget spent during the 2011-2020 period.

Fossil fuel	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Hard Coal (Gt)	0.058	0.058	0.060	0.061	0.051	0.051	0.053	0.052	0.051	0.040
Hard Coal Cumul. (Gt)	0.058	0.116	0.176	0.237	0.289	0.340	0.392	0.444	0.495	0.534
% of Budget Cumul.	8.3	16.6	25.2	33.9	41.2	48.6	56.1	63.4	70.7	76.3
Lignite (Gt)	0.009	0.009	0.009	0.008	0.010	0.010	0.009	0.009	0.009	0.007
Lignite Cumul. (Gt)	0.009	0.017	0.026	0.034	0.045	0.055	0.064	0.073	0.082	0.089
% of Budget Cumul.	0.7	1.4	2.2	2.9	3.7	4.6	5.3	6.1	6.8	7.4
Conv. Oil (Gb)	0.510	0.530	0.558	0.576	0.540	0.529	0.557	0.609	0.635	0.597
Conv. Oil Cumul. (Gb)	0.510	1.040	1.598	2.175	2.715	3.243	3.800	4.408	5.043	5.640
% of Budget Cumul.	3.0	6.2	9.5	12.9	16.2	19.3	22.6	26.2	30.0	33.6
Uncon. Oil (Gb)	0.597	0.667	0.717	0.793	0.869	0.884	0.976	1.063	1.076	1.040
Uncon. Oil Cumul. (Gb)	0.597	1.265	1.982	2.775	3.644	4.528	5.504	6.567	7.643	8.683
% of Budget Cumul.	8.0	16.9	26.4	37.0	48.6	60.4	73.4	87.6	101.9	115.8
Con. Gas (Tcm) at 15°C	0.069	0.056	0.047	0.041	0.035	0.025	0.021	0.015	0.013	0.013
Con. Gas Cumul. (Tcm)	0.069	0.126	0.172	0.213	0.248	0.273	0.294	0.309	0.322	0.335
% of Budget Cumul.	5.0	9.0	12.3	15.2	17.7	19.5	21.0	22.1	23.0	23.9
Uncon. Gas (Tcm) at 15°C	0.081	0.088	0.099	0.112	0.122	0.133	0.140	0.152	0.149	0.147
Uncon. Gas Cumul (Tcm)	0.081	0.169	0.268	0.380	0.502	0.635	0.775	0.927	1.076	1.223
% of Budget Cumul.	1.1	2.3	3.7	5.2	6.9	8.7	10.6	12.7	14.7	16.8

Gt = gigatonne, Gb = gigabarrel, Tcm = trillion cubic meters, Con. = conventional, Uncon. = unconventional, Cumul. = cumulative.

aData from EIA (EIA, 2020).

bData from CER (Canadian Energy Regulator, 2021a, 2021b).

cProportion of conventional versus unconventional natural gas (BC Oil and Gas Commission, 2020).
Fig 1. Percentage of the production budget already extracted as a function of time and type of fossil fuel according to the 2°C scenario from McGlade and Ekins’ (2015) model.
3 Global GHG emissions from Canadian fossil fuel production

3.1 Introduction

Are the global emissions of the Canadian fossil fuel industry decreasing? To assess these global emissions, one has to use emission factors obtained with LCA for each type of fossil fuel extracted in Canada. This analysis includes emissions during extraction, transformation, transportation and combustion, whether or not the fuel is exported. One limit of this section is that calculations do not include fossil fuels imported into Canada to be transformed or burned, but only those extracted in Canada. However, calculations in the next section include emissions of imported fuel and exclude downstream emissions of exported fuels.

3.2 Methods

3.2.1 Introduction

The selection of the proper emission factors for each type of fossil fuel is described below. Efforts were made to use emission factors developed or adapted to Canadian fossil fuels conditions. All factors referenced in this paper were computed using Global Warming Potential (GWP) with a horizon of 100 years (GWP100) after emission of the GHG.

3.2.2 Coal emissions

There are only a few publications on GHG emissions of Canadian coal (Jaques, 1992; Martin et al., 2004; The Climate Registry, 2020). The Canadian National Inventory Report 2021 submitted to the United Nations Framework Convention on Climate Change (UNFCCC) written by the Ministry of Environment and Climate Change Canada (ECCC) was adopted (ECCC, 2021). This document provides CO$_2$, CH$_4$ and N$_2$O emissions from different coal production processes, but does not combine them to produce a single emission factor expressed in CO$_2$-equivalent for each coal type. This is accomplished in the following paragraphs, starting with the chemical analysis of the carbon content of each coal type. Table 3 (column ‘CO2 only’) shows that CO$_2$ emissions are the following in tCO$_2$/tonne: 2.198 for bituminous coal from Alberta, 1.763 for sub-bituminous coal, and 1.460 for lignite. Note that Canada does not currently produce anthracite.
Table 3
Computations of emission factors for different types of Canadian coal.

	Total (tCO$_2$e/tonne)	CO$_2$ only (tCO$_2$/tonne)	CH$_4$ from mining (tCO$_2$e/tonne)	CH$_4$ and N$_2$O from use (tCO$_2$e/tonne)
Bituminous	2.241	2.198a	0.036a	0.007a
Sub-Bituminous	1.782	1.763a	0.010a	0.009a
Lignite	1.473	1.460a	0.004a	0.009a
Bituminous Metallurgical	2.763	2.720b	0.036a	0.007a
Bituminous Thermal	2.375	2.332b	0.036a	0.007a

aComputed with data from ECCC (ECCC, 2020a).
bComputed with data from EPA (EPA, 2013).

tCO$_2$e/tonne = tonnes of CO$_2$-equivalent per tonne of coal.

There are several issues with ECCC’s factors. Firstly, they do not differentiate between metallurgical and thermal bituminous coal. Secondly, no measures were taken on coal from BC, which produces 48% of Canadian coal (Natural Resources Canada, 2017). To remediate these issues, US emission factors from EPA were adopted as an approximation. This substitution is acceptable because CO$_2$ release depends on carbon content, whose range is standard for a given coal rank. Thus, the EPA emission factor of 2.720 tCO$_2$/tonne for industrial coking was adopted for metallurgical coal and the factor of 2.332 tCO$_2$/tonne for the industrial sector was adopted for thermal coal (EPA, 2013). Note that the production statistics for bituminous metallurgical coal include the coal used to make coke.

Thirdly, the emissions mentioned above are only for carbon dioxide (CO$_2$), therefore the impact of methane (CH$_4$) and nitrous oxide (N$_2$O) has to be added using data from ECCC. Given that almost all Canadian coal mines are now surface mines, only the fugitive emissions from surface mining were considered. These emissions amount (in kgCH$_4$/tonne) to 0.705 for gross bituminous coal (i.e., Run-Of-Mine or ROM), 0.2 for gross sub-bituminous coal and 0.07 for gross lignite. Averaging across seven Canadian mining projects, shows that it takes about 1.607 tonnes of ROM to make one tonne of clean coal (Canadian Mining Journal Staff, 2018; Coalspur Mines Limited, 2012; Colonial Coal International Corp., 2019; CST Canada Coal Limited, 2019; Hunter and Gilron, 2013; Marston Canada Ltd., 2008; Ram River Coal Corp., 2021). Therefore, emissions
for clean coal are obtained by multiplying emissions for ROM by 1.607 leading to 1.133 kgCH$_4$/tonne for bituminous coal, 0.321 for sub-bituminous coal and 0.112 for lignite.

There are also emissions related to the way coal is used. ECCC found that using coal for electric utilities emits 0.02 kgCH$_4$/tonne and 0.03 kgN$_2$O/tonne; industry, heat and steam plants emit 0.03 kgCH$_4$/tonne and 0.02 kgN$_2$O/tonne; finally, residential and public administration emit 4 kgCH$_4$/tonne and 0.02 kgN$_2$O/tonne. It is assumed that all bituminous coal is used for industry, heat and steam plans. It is also assumed that all sub-bituminous coal and lignite are used for electric utilities. These are conservative assumptions given that no residential use was attributed.

The emissions of methane and N$_2$O are converted to CO$_2$-equivalent using the following GWP100 coefficients: 32 and 282, respectively. These coefficients are from the Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report (AR5) with climate-carbon feedback (Edenhofer et al., 2014). These values are taken in the middle of the ranges recommended by EPA, that is, 28-36 for methane and 265–298 for nitrous oxide (EPA, 2016). For example, the emission factor for lignite equals 1.4727 tCO$_2$e/tonne of lignite = 1.460 tCO$_2$e/tonne + ((0.112 kgCH$_4$/tonne + 0.02 kgCH$_4$/tonne) x 32 kgCO$_2$e/kgCH$_4$ x 0.001 tonne/kg) + (0.03 kgN$_2$O/tonne x 282 kgCO$_2$e/kgN$_2$O x 0.001 tonne/kg). Emission factors for each coal type are presented in Table 3.

Table 1 computes emissions for all Canadian fossil fuel resources. The emission factor for hard coal applied in Table 1 is a weighted sum of the factors for bituminous metallurgical coal, bituminous thermal and sub-bituminous coal. The number of tonnes produced for a coal type in 2019 is employed as a weight. That year is selected because it is the latest year with complete production data. The emission factor obtained for hard coal is 2.487 tCO$_2$e/tonne.

Although emission factors used in Table 1 are optimal to evaluate emissions from a part of resources (e.g., column “CO$_2$ to emit”), they might overestimate emissions from the entire resources (RURR). A much more conservative evaluation of emissions linked to the RURR consists in taking into account only downstream emissions. By summing the columns ‘CO$_2$’ and ‘use’ of Table 3 and computing the weighted sum for hard coal, one obtains the downstream emission factors of 2.457 and 1.469 tCO$_2$e/tonne for hard coal and lignite, respectively.

3.2.3 Oil emissions

Researchers during the last decade have revised emissions of Canadian oil extraction upward (Gordon et al., 2015; IEA, 2010; IHS CERA, 2010; Koomey and Koomey, 2015). LCA emission
Factors were obtained from the most recent and sophisticated model, that is, the Global Oil-Climate-Index (OCI) (Gordon et al., 2015; Koomey and Koomey, 2015). The most recent studies suggest that emission factors from OCI could still be too low because fugitive emissions have been underestimated (Atherton et al., 2017; Baray et al., 2018; Chan et al., 2020; Li et al., 2017; Liggio et al., 2019; MacKay et al., 2021; Zavala-Araiza et al., 2018; Zhang et al., 2020). However, OCI was adopted because it provides the most accurate coefficients available.

OCI integrates prior models such as OPGEE and PRELIM while adding another layer called OPEM which takes into account downstream emissions. OPEM computes GHG from transport to consumers, burning of gasoline, diesel, jet fuel, residual fuel and liquefied petroleum gas. Emissions for other petroleum products are not included, such as petcoke, fuel oil, bunker fuel and asphalt.

Some assumptions were made to match existing coefficients of OCI with CER oil categories. Emissions of 487 kgCO$_2$e/barrel for Hibernia oil was applied to all conventional light oil. To estimate emissions of synthetic crude oil, the average of five brands was adopted, that is, 754 kgCO$_2$e/barrel. For non-upgraded bitumen, the average of three brands of dilbit was adopted: 634 kgCO$_2$e/barrel. As this database did not provide an emission factor for conventional heavy Canadian crude oil, the coefficient of 520 kgCO$_2$e/barrel for Canada Midale oil was adopted because its density is similar.

No coefficient for condensate (i.e., pentanes plus) was available. As it is extracted in a similar manner as conventional light crude oil, it was assumed that emissions differ only for the combustion phase. EPA published data showing that the combustion of one gallon of pentanes plus emits less CO$_2$ (2.59 kg/gallon less), less CH$_4$ (0.08 g/gallon less) and less N$_2$O (0.01 g/gallon less) than crude oil (Environmental Protection Agency, 2018). Thus, GHG in CO$_2$-equivalent for pentane plus are inferior by 109 kgCO$_2$e/barrel to emissions of conventional crude oil. This number is obtained in the following way: 2590 gCO$_2$/gallon + (0.08 gCH4/gallon x 32 gCO$_2$e/gCH4) + (0.01 gN$_2$O/gallon x 282 gCO$_2$e/gN$_2$O) = 2595 gCO$_2$e/gallon, where 32 and 282 are the GWP100 for methane and nitrous oxide, respectively (EPA, 2016). Converting from gallons to barrels, one obtains 109 kgCO$_2$e/barrel (i.e., 2.60 kg/gallon x 42 gallons/barrel). Therefore, the emission factor of condensate is 378 kgCO$_2$e/barrel, that is, 487 kgCO$_2$e/barrel – 109 kgCO$_2$e/barrel, where 487 kgCO$_2$e/barrel is the emission factor of conventional light crude oil.
To compute GHG from oil in Table 1, emission factors for conventional and unconventional oil were computed as a weighted sum of the previous coefficients using the number of barrels produced in 2019 as weights. For example, in the case of conventional oil the emission factor of 470 kgCO$_2$e/barrel is equal to (0.289 Gb of conventional light crude x 487 kgCO$_2$e/barrel + 0.188 Gb of conventional heavy crude x 520 kgCO$_2$e/barrel + 0.158 Gb of condensate x 378 kgCO$_2$e/barrel) / (0.289 Gb + 0.188 Gb + 0.158 Gb). A corresponding weighted sum equals 679 kgCO$_2$e/barrel for unconventional oil.

To compute a more conservative evaluation of GHG from the RURR, as explained for coal above, the downstream emission factors are necessary. They are in kgCO$_2$e/barrel: 436 for conventional crude oil (Hibernia), 426 for conventional heavy oil (Midale), 209 for condensate (pentanes plus), 539 for upgraded-bitumen (from 5 brands), 455 for non-upgraded bitumen (3 brands of dilbit) (EIA, 2016; Gordon et al., 2015; Koomey and Koomey, 2015). Weighted sums with these emission factors using the number of barrels produced in 2019 as weights result in the following downstream emission factors in kgCO$_2$e/barrel: 376 for conventional and 486 for unconventional oil.

3.2.4 Gas emissions

Most literature reviews have shown no significant difference between the LCA emissions of conventional gas compared to shale gas, although this is still debated (Balcombe et al., 2017; Burnham et al., 2012; Weber and Clavin, 2012). Consequently, the same coefficient is used for both types of gas. Because production volumes are reported at 15 °C and emission factors apply to gas at 0 °C, volumes were converted with the ideal gas equation to 0 °C and 1 atmosphere.

The emission factor for natural gas is construed as the sum of two numbers: upstream and downstream. Downstream, burning Canadian natural gas emits 1.926 kgCO$_2$e/m3. This number is obtained by averaging across various compositions from all producing provinces (Environment Canada, 2011). A study showed that the upstream emissions (pre-production, extraction, processing, transmission, storage & distribution) are equal to 0.357 kgCO$_2$e/m3 assuming 0.97% leaking of methane during this process (Balcombe et al., 2017). Recent studies in the U.S. have shown that 2.3% of leaking is more realistic during these steps (Alvarez et al., 2018). Other studies in Canada confirm that this evaluation is conservative and could even reach 3.7% for U.S. and Canada (Howarth, 2019; Zhang et al., 2020). The intermediate value of 2.3% leak rate was adopted, which leads to a correction of 0.305 kgCO$_2$e/m3. It is obtained with the following
calculation: $0.717 \text{kgCH}_4/m^3 \times (0.023 - 0.0097) \times 32 \text{kgCO}_2\text{e/kgCH}_4$, where $0.717 \text{kgCH}_4/m^3$ is the density of methane at 0 °C and 1 atmosphere and 32 is the GWP100 of methane (EPA, 2016). The total is $2.587 \text{kgCO}_2\text{e/m}^3$.

3.3 Results

Table 1 shows that the amount of GHG that Canada is allowed to emit according to the McGlade and Ekins (2015) model is $37.6 \text{GtCO}_2\text{-equivalent (GtCO}_2\text{e)}$ assuming conditions similar to those of 2019. Table 1 shows that if the totality of Canadian fossil fuel resources (RURR) was exploited, this would generate GHG emissions of $682 \text{GtCO}_2\text{e}$ assuming conditions similar to those of 2019. By using the more conservative factors taking into account only downstream emissions, one obtains $533 \text{GtCO}_2\text{e}$ for RURR.

Fig. 2 illustrates that oil is the main source of GHG emissions, followed by gas and then coal. Table 4 shows emissions from coal, oil and gas. In 2019, global emissions from coal represented $0.139 \text{GtCO}_2\text{e}$, from conventional oil 0.298, from unconventional oil 0.731 and from natural gas 0.398. The total amount of GHG emitted by the exploitation of Canadian fossil fuels has increased from $1.186 \text{GtCO}_2\text{e}$ in 2011 to 1.566 in 2019 and decreased to 1.489 in 2020. This represents a 32% increase from 2011 to 2019 followed by a 4.9% drop in 2020. Over the 2011-2020 period an amount of $13.86 \text{GtCO}_2\text{e}$ has been spent out of a CB of $37.6 \text{GtCO}_2\text{e}$ (from Table 1). This means that 37% of the fossil fuel budget for the 21st century has been spent in 10 years.
Fig. 2. Global emissions of CO$_2$-equivalent as a function of time for coal, (natural) gas, oil as well as total emissions.
Table 4
Fossil fuel production and CO₂-equivalent emissions using LCA.

FOSSIL FUELS	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Metallurgical Bit. Coal (Gt)	0.033	0.033	0.034	0.032	0.026	0.025	0.028	0.032	0.034	0.027
CO₂e (Gt)	0.092	0.091	0.094	0.088	0.072	0.069	0.078	0.089	0.094	0.073
Thermal Bit. Coal (Gt)	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.004	0.003	
CO₂e (Gt)	0.010	0.010	0.010	0.010	0.007	0.007	0.007	0.008	0.010	0.008
Sub-Bituminous Coal (Gt)	0.021	0.021	0.022	0.025	0.022	0.024	0.021	0.016	0.013	0.010
CO₂e (Gt)	0.038	0.037	0.039	0.045	0.040	0.042	0.038	0.028	0.023	0.018
Lignite (Gt)	0.009	0.009	0.009	0.008	0.010	0.010	0.009	0.009	0.009	0.007
CO₂e (Gt)	0.013	0.013	0.013	0.012	0.015	0.015	0.013	0.013	0.013	0.010
TOTAL COAL (Gt)	0.067	0.066	0.069	0.069	0.062	0.061	0.062	0.060	0.060	0.047
CO₂e (Gt)	0.152	0.150	0.156	0.154	0.134	0.132	0.137	0.138	0.139	0.109
Con. Light Crude (Gb)	0.303	0.314	0.338	0.342	0.304	0.287	0.294	0.295	0.288	0.253
CO₂e (Gb)	0.147	0.153	0.165	0.167	0.148	0.140	0.143	0.144	0.140	0.123
Con. Heavy Crude (Gb)	0.157	0.167	0.167	0.170	0.158	0.147	0.149	0.149	0.170	0.188
CO₂e (Gb)	0.081	0.087	0.087	0.089	0.082	0.077	0.078	0.088	0.098	0.096
Condensate (Gb)	0.050	0.050	0.053	0.064	0.078	0.094	0.114	0.144	0.159	0.158
CO₂e (Gb)	0.019	0.019	0.020	0.024	0.029	0.036	0.043	0.054	0.060	0.060
TOTAL CON. OIL (Gb)	0.510	0.530	0.558	0.576	0.540	0.529	0.557	0.609	0.635	0.597
CO₂e (Gb)	0.248	0.258	0.272	0.279	0.260	0.252	0.264	0.286	0.298	0.280
Upgraded Bitumen (Gb)	0.311	0.334	0.341	0.348	0.356	0.340	0.375	0.386	0.405	0.410
CO₂e (Gb)	0.234	0.252	0.257	0.262	0.268	0.256	0.282	0.291	0.306	0.309
Non-upgraded Bitumen (Gb)	0.287	0.333	0.376	0.446	0.513	0.543	0.601	0.678	0.671	0.631
CO₂e (Gb)	0.182	0.211	0.238	0.282	0.325	0.345	0.381	0.430	0.425	0.400
TOTAL UNCON. OIL (Gb)	0.597	0.667	0.717	0.793	0.869	0.884	0.976	1.063	1.076	1.040
CO₂e (Gb)	0.416	0.463	0.496	0.545	0.594	0.601	0.664	0.720	0.753	0.709
TOTAL OIL (Gb)	1.107	1.198	1.275	1.370	1.409	1.412	1.533	1.672	1.711	1.637
CO₂e (Gb)	0.664	0.721	0.767	0.824	0.853	0.853	0.927	1.007	1.029	0.988
Con. Gas at 0 °C (Tcm)	0.066	0.053	0.044	0.039	0.033	0.024	0.020	0.014	0.012	0.012
CO₂e (Gb)	0.170	0.138	0.114	0.101	0.085	0.062	0.051	0.037	0.032	0.031
Uncon. Gas at 0°C (Tcm)	0.077	0.083	0.094	0.106	0.116	0.126	0.132	0.144	0.142	0.139
CO₂e (Gb)	0.200	0.216	0.243	0.274	0.300	0.327	0.342	0.373	0.366	0.361
TOTAL GAS AT 0’C (Tcm)	0.143	0.137	0.138	0.145	0.149	0.150	0.152	0.158	0.154	0.152
CO₂e (Gb)	0.370	0.354	0.357	0.375	0.385	0.389	0.394	0.410	0.398	0.392
TOTAL CO₂e (Gt)	1.186	1.226	1.280	1.353	1.372	1.375	1.458	1.555	1.566	1.489
TOTAL CUMUL. CO₂e (Gt)	1.186	2.411	3.691	5.044	6.416	7.791	9.249	10.803	12.370	13.859

LCA = Life Cycle Analysis. CO₂e = CO₂-equivalent, Gt = gigatonne, Gb = gigabarrel, Tcm = Trillion Cubic Meter, Bit. = bituminous, Con. = conventional, Uncon. = unconventional, Cumul. = cumulative.
Table 4 reveals that most of the emissions increase is due to unconventional oil which increased from 0.416 to 0.731 GtCO$_2$e annually from 2011 to 2019. Emissions from natural gas have increased by 0.028 GtCO$_2$e from 2011 to 2019, which is more than the decrease in coal emissions of 0.013 GtCO$_2$e over that period.

4 Canadian national carbon budget

4.1 Introduction

Do Canadian national emissions respect the CB proposed by different models simulating the 2.0 °C scenario? One difficulty in answering this question is that there is no commonly accepted CB. Three models that calculated a CB specifically for Canada under the 2°C scenario are analysed below (Alcaraz et al., 2018; Gignac and Matthews, 2015; Kanitkar et al., 2013). These analyses complement the LCA fossil fuel emissions presented in the previous section because these models focus on national emissions, which include imported fossil fuels and exclude the combustion of fossil fuels extracted in Canada but burned after exportation.

4.2 Methods

To evaluate a specific model, the same emissions database as the model was used. The Model of Climate Justice (MCJ) and the Tata Institute of Social Sciences - Delhi Science Forum (TISS-DSF) model used the Climate Analysis Indicator Tool (CAIT) (Alcaraz et al., 2018; Climate Watch, 2020; Kanitkar et al., 2013). The model proposed by Gignac and Matthews (2015), or G&M, used the Carbon Dioxide Information Analysis Center (CDIAC) database (Boden et al., 2015). The MCJ and G&M models excluded Land Use, Land-Use Change and Forestry (LULUCF), while the TISS-DSF included it. Because the CAIT only has data until 2017 and CDIAC until 2014, data for the missing years had to be estimated. Although estimations could lack precision, it is valuable for policy evaluation to have at least a reasonable estimate of the CB spent.

To estimate missing data with credible values, ECCC emissions data from the Canadian government were used because they are available until 2019 inclusively (ECCC, 2021). The percent change from one year to the next using ECCC emissions excluding LULUCF was used to predict each missing year. Tests were performed to assess the precision of these estimations. For
CAIT excluding LULUCF, the average absolute value of the error in predicting the sum of three years of emissions over the 1990-2017 period using ECCC data is 0.83%. For CAIT including LULUCF, this error equals 5.2% (5.8% when using ECCC with LULUCF). For CDIAC excluding LULUCF, the average error in predicting the sum of six years of emissions over the 1990-2014 period is 1.2%.

In 2020, the COVID-19 pandemic caused an important drop of GHG emissions globally of 7% (Friedlingstein et al., 2020). Consistently, Table 4 shows that the global GHG emissions of the Canadian fossil fuel industry dropped by 4.9% in 2020. Therefore, a conservative drop of 7% was assumed for ECCC, CAIT and CDIAC in 2020. Historical and extrapolated data are shown in Table 5.

Table 5
Historical and estimated GHG emissions for Canada according to three sources.

GHG Emissions (GtCO₂e)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ECCC Excluding LULUCF	0.703	0.714	0.717	0.725	0.723	0.723	0.707	0.716	0.728	0.730	0.679
ECCC Including LULUCF	0.696	0.708	0.708	0.721	0.720	0.727	0.707	0.717	0.736	0.740	0.688
CAIT Excluding LULUCF	0.674	0.689	0.694	0.705	0.712	0.708	0.695	0.709	0.721	0.723	0.672
CAIT Including LULUCF	0.653	0.649	0.664	0.662	0.683	0.698	0.693	0.690	0.701	0.703	0.654
CDIAC Excluding LULUCF	0.540	0.542	0.522	0.521	0.541	0.541	0.529	0.535	0.544	0.546	0.508

ECCC: Environment and Climate Change Canada, LULUCF: Land Use, Land-Use Change and Forestry, CAIT: Climate Analysis Indicator Tool, CDIAC: Carbon Dioxide Information Analysis Center. Data in bold are estimated.

4.3 MCJ model

4.3.1 Introduction

MCJ is a model taking into account equity (Alcaraz et al., 2018). The annual responsibility of a country is defined as the per capita emissions of CO₂ minus the world average. They take 1992 as the starting date and use the Representative Concentration Pathways scenario with 2.6 W/m² (RCP2.6) from IPCC AR5 (Edenhofer et al., 2014), which provides a GCB of 1057 GtCO₂ within the 2°C objective. The MCJ model evolves countries’ emissions inversely to their responsibility factor starting in 2013. Emissions per capita for all countries converge toward the yearly average. The MCJ predicts a Canadian CB of 4.0 GtCO₂e from 2011 to 2100.
4.3.2 Results

The sum of the extrapolated data from CAIT excluding LULUCF, in Table 5, equals 7.029 GtCO$_2$e over the 2011-2020 period. Therefore, according to the MCJ model, Canada has already spent more than its CB for the 21st century. This is showed in Fig. 3.

![Fig. 3. Percentage of the Canadian carbon budget (CB) for the 21st century already spent according to three models: Model of Climate Justice (MCJ), Tata Institute of Social Sciences - Delhi Science Forum (TISS-DSF) and Gignac and Matthews (G&M).](image)

4.4 TISS-DSF model

4.4.1 Introduction

Kanitkar et al. (2013) distributed the GCB among regions using their TISS-DSF model (Kanitkar et al., 2013). They used the upper limit of GCB from 2010-2050 following the 2°C scenario. Fair share of the GCB for a given region was defined as proportional to its population. Entitlement designates the portion of the fair share that a region is allowed in a specified time period. The
TISS-DSF model computes future entitlement by subtracting each region’s historical emissions from its fair share. A negative future entitlement, implies that a region must reduce its emissions. The model allocates a quota of 7.92 GtCO$_2$e to Canada from 2010 to 2050.

4.4.2 Results

The sum of the extrapolated data from CAIT including LULUCF in Table 5 over the 2010-2020 period equals 7.451 GtCO$_2$e. Therefore, according to the TISS-DSF Model, Canada has spent 94.1% of its CB for the 2010-2050 period as showed in Fig. 3. This implies that Canada’s CB will be exhausted by the end of 2021 because the 0.469 GtCO$_2$e left is much lower than the annual national emissions of 0.679 GtCO$_2$e in 2020.

4.5 G&M model

4.5.1 Introduction

The G&M model follows the RCP2.6 scenario consistent with a 67% chance of limiting temperature rise to 2°C by 2100 (Gignac and Matthews, 2015). Their model follows the Contraction and Convergence framework where emissions converge toward a point of equal per capita emissions across nations at a given date. After this point, per capita emissions decrease toward zero at a further date (Meyer, 2000). They simulated two scenarios, both taking 2014 as the starting point, one taking 2035 as the convergence date and the other, 2050. They obtained a Canadian CB of 8 GtCO$_2$e in the first scenario and of 10 GtCO$_2$ in the second. Their 2035 convergence point scenario implies that per capita emissions drop 0.56 tonnes yearly, from 14.8 tonnes in 2013 to 2.4 tonnes in 2035.

Table 6 shows the data relevant to the 2035 scenario of the G&M model. Initial emissions equal 0.521 GtCO$_2$e. Dividing by the population leads to an initial value of 14.8 tCO$_2$e/capita (United Nations, 2019). By reducing this amount by 0.56 tCO$_2$e every year, one obtains the per capita target emissions until 2035. By multiplying by the population, one finds the target national emissions (in GtCO$_2$e/year).
Table 6

Canadian emissions compared to the annual targets of the G&M model.

Emissions CDIAC Excluding LULUCF (GtCO₂\text{e})	2013	2014	2015	2016	2017	2018	2019	2020
Canadian Population (thousands)\textsuperscript{\textit{a}}	35297	35664	36027	36383	36732	37075	37411	37742
Target Emissions Per Capita (tonne of CO₂\text{e}/person)	14.8	14.2	13.6	13.1	12.5	12.0	11.4	10.8
Target Emissions (GtCO₂\text{e})	0.521	0.506	0.491	0.476	0.460	0.443	0.426	0.409

CDIAC: Carbon Dioxide Information Analysis Center, LULUCF: Land Use, Land-Use Change, and Forestry, GtCO₂\text{e}: Gigatonne of CO₂-equivalent.

Data in \textbf{bold} are extrapolated.

aPopulation data is from United Nations World Population Prospects 2019.

4.5.2 Results

The sum of extrapolated CDIAC data excluding LULUCF (in Table 6) from 2014 to 2020 equals 3.74 GtCO₂. This represents 47% of the budget from the 2014-2035 scenario (see Fig. 3) and 37% of the budget from the 2014-2050 scenario. According to this model, Canada has not exhausted its CB. However, have Canadian per capita emissions been decreasing yearly by 0.56 tonnes since 2014? As shown in Table 6, from 2014 to 2020 the extrapolated emissions are higher than targets for every year. The sum of the target emissions from 2014 to 2020, in Table 6, equals 3.21 GtCO₂\text{e} and the sum of extrapolated emissions equals 3.74 GtCO₂\text{e}. Therefore, cumulative emissions are 16.6% higher than the targets.

5 Conclusion and policy implications

As Canadian annual unconventional oil production increased by 80% from 2011 to 2019 - reaching 1.08 gigabarrels (Gb) - Canada’s cumulative production over that period exceeded the 7.5 Gb budget set by McGlade and Ekins’ (2015) model. Unconventional oil extracted after 2019 represents ‘unburnable oil’, that is, oil that is beyond the upper limit of the 2°C scenario. Yet, in 2018 the federal government bought the TransMountain pipeline for 4.5 billion Canadian dollars (CAD $) and is building a new one, making it possible to increase production by 0.215 Gb annually (Morgan, 2018; TransMountain, 2017). In 2020, the federal government also scaled back
environmental assessment of offshore oil exploration, with the stated goal of shortening the average delay from 905 days to 90 days (Quinn, 2020). A 2018 report found that Canada provided more financial support to fossil fuel companies than any other G7 country (Whitley et al., 2018). During 2020, invoking the COVID-19 pandemic, the federal government increased subsidies for oil and gas by 200% reaching at least 1.9 billion CAD $ (Corkal, 2021).

There are, however, factors that could force a decrease in future oil production, such as American political and legal decisions. For example, on the day he took office, US president Joe Biden revoked the license to build Phase IV of the Keystone XL Pipeline which would have carried annually an extra 0.182 Gb to the US (CBC News, 2021; Monga, 2018). The governor of Michigan has recently issued an order to close the Enbridge Line 5 pipeline, which carries about 0.197 Gb of oil from Canada to the US each year. The company’s challenge of this order is currently before the US Federal Court (The Associated Press, 2021).

Canada has already extracted 76.3% of the hard coal budget proposed by McGlade and Ekins (2015). At the pace of 2019, this budget will be exhausted by the end of 2023. As a member of the Powering Past Coal Alliance (PPCA), Canada is phasing out coal power generation on its territory (PPCA, 2021). However, the extraction of metallurgical coal is promoted for exports (Fletcher, 2021). It is supported by exploration tax credits for coal mines in BC (BC Government, 2020). Indeed, investments in exploration for new coal mines totaled 70 million CAD $ in 2018 (Natural Resources Canada, 2018). Vancouver has a project to expand a coal terminal in its harbour to increase exports (Royal Vancouver Yacht Club, 2020). One possible factor motivating this expansion project is that Vancouver accepts American coal for export while the neighboring states of Washington and Oregon have blocked all proposed coal terminals during the last decade (Kerr, 2019).

Canada’s gas production increased by 7.6% from 2011 to 2019. This production is likely to increase further because the federal government has issued long-term export licenses to 24 Liquefied Natural Gas (LNG) terminal projects ranging between 20-40 years (Natural Resources Canada, 2020a). Their projected peak production is 0.30 Tcm/year, which would triple production and lead to GHG emissions higher than 2020 emissions from oil. The first Canadian LNG export terminals are scheduled to be in operation at Goldboro in Nova-Scotia and Kitimat (BC) around 2024 and 2025, respectively (Global Energy Monito Wikipeadia, 2021; Jang, 2021). Domestic consumption of natural gas has increased by 36% from 2010 to 2019, partly because Ontario
replaced its coal power generation plants with natural gas combined cycle plants (BP, 2020). Alberta plans to do the same (Healing, 2020).

The conversion from coal to natural gas is underway even though it is ill advised. Instead of a reduction, it could be very well be an increase. Given that the methane leak rate is in the 2.3%-3.7% range, if one applies a horizon of 20 years to compute the impact of these leaks (instead of the usual 100 years), then converting from coal to natural gas increases emissions (Lattanzio, 2015; Zhang et al., 2020). The horizon plays a role because methane concentration progressively decreases after its emission, so its warming impact is 2.5 times stronger on a horizon of 20 years than the usual horizon of 100 years. In any case, adopting a combination of renewable energy plants would mitigate emissions more efficiently (NREL, 2014). For example, wind and solar photovoltaic have a global emissions of 11 and 50 gCO₂e/KWh compared with 540 gCO₂e/KWh for natural gas even using GWP at 100 years.

From 2011 to 2019, Canadian national emissions increased by 4.5% according to ECCC (with LULUCF). These emissions are higher than the annual quotas allocated by three different models simulating the 2°C scenario. According to the MCJ model, this country has exhausted its entire GHG budget for the 21st century. According to the TISS-DSF model, Canada will exceed its entire Carbon Budget (CB) by the end of 2021. Finally, according to one scenario of the G&M model, 47% of its CB has been spent, but annual Canadian emissions are higher than annual targets every year from 2014 to 2020.

According to the ECCC, this national emission increase is attributed to higher fuel consumption for transportation, winter heating and oil and gas extraction (ECCC, 2020b). The rise in emissions for winter heating is mostly due to an increase in floor space and population. The increase in transportation emissions is caused by a steady upsurge in the number and size of vehicles. Indeed, the total number of vehicles registered increased every year from 2010 to 2019 with a 20.4% increase over that period (Statistics Canada, 2020b). Although the sales of new passenger cars decreased by 32.5%, the sale of light trucks (minivans, sport-utility vehicles, light trucks and vans) increased by 69.2% and the number of heavy trucks by 89.3% over that period (Statistics Canada, 2021). The result is that in 2017 Canada had the highest emissions level per kilometer traveled in the world according to the IEA (IEA, 2019).

Several measures could be taken to mitigate emissions from transportation. The European Commission proposed banning the sale of internal combustion engines as soon as 2025. The
deadline discussed in Canada is 2035 in the province of Quebec and 2040 in BC (CBC News, 2020; The Canadian Press, 2018). In Europe, a CO$_2$-based sales tax on vehicles has played a role in decreasing GHG emissions in transportation (Dineen et al., 2018). There are also proposals to ban publicity for large vehicles, promote carpooling, invest more in public transportation and facilitate active modes of transportation (Boyle et al., 2020; Simpkins, 2017; Stanley et al., 2011). The federal government has created a carbon tax applied to national emissions. Prior studies have shown that such a tax could decrease transportation emissions only if it is high enough (Andersson, 2019; Pretis, 2019). This tax started at $20 CAD per tonne in 2019 and will rise $10 per tonne each year until reaching $50 per tonne in 2022, then it will increase by $15 each year until reaching $170 per tonne in 2030 (ECCC, 2016).

Several measures could also be taken to mitigate emissions linked to winter heating and electricity consumption. In 2018, natural gas was used in 47.2% of residential heating systems (Natural Resources Canada, 2020b). Regarding commercial and institutional buildings, 43.8% of their energy use comes from natural gas (NRTEE, 2009). Building renewable energy power plants would make it possible for citizens and industries to adopt electricity as their heating source. Other proposals consist in individual initiatives. In the commercial sector, one study shows that the greatest GHG reduction could be achieved by installing heat pumps, efficient boilers, efficient lighting and high-isolation in building envelopes (Subramanyam et al., 2017a). For the residential sector, another study shows that the most GHG mitigation can be obtained with efficient lighting, efficient furnaces and high efficiency appliances (Subramanyam et al., 2017b).

Strauch proposed that there can be a positive feedback loop between policy and market for wind energy, photovoltaic (PV) solar panels and lithium-ion battery electric vehicles (Strauch, 2020). The drop in prices for producing these products makes it easier to adopt new policies which then favour an increased scale production and cost reduction. In order to mitigate national emissions, Canada should contribute to this positive feedback by supporting these three technologies while decreasing subsidies for fossil fuels. Alberta has programs to help its workers affected by the coal phase out (Alberta Government, 2021). Similar programs to help all fossil fuel workers transition towards a low-carbon economy can be implemented at an affordable cost for workers’ benefit but also to accelerate this transition (Evans and Phelan, 2016; Louie and Pearce, 2016).
As shown above, if Canadian RURR of fossil fuels were extracted and burned, it would release 682 gigatonnes of CO2-equivalent (GtCO$_2$e). A very conservative evaluation using only downstream emissions equals 533 GtCO$_2$e. Both amounts represent more GHG than the upper limit of 420 GtCO$_2$e, which is the Global Carbon Budget (GCB) providing a 67% chance to limit warming to 1.5 °C in 2100 according to IPCC (Rogelj et al., 2018). Both amounts are about half of the upper limit of 1,170 GtCO$_2$e, which would provide a 67% chance to limit warming to 2.0 °C by 2100. These numbers confirm that most of the RURR should not be exploited.

GHG emissions linked to Canadian fossil fuel exploitation increased by 32% from 2011 to 2019. The drop of 4.9% that occurred in 2020 can be attributed to the world wide lockdowns caused by the COVID-19 pandemic. Global emissions of the Canadian fossil fuel industry represent more than twice the national emissions. In 2019, the ratio of the global LCA emissions from the Canadian fossil fuel industry of 1.566 GtCO$_2$e over national emissions of 0.730 GtCO$_2$e (ECCC excluding LULUCF) equals 2.15. This means that Canadian exported fossil fuels generate more than twice as much GHG as emissions within Canada. It implies that an increase of 1% of Canadian fossil fuel industry emissions at the global level cancels out a drop of 2.15% of emissions at the national level. This finding emphasizes the importance of studying both national and global emissions of fossil fuel producing countries. It also highlights a known weakness of the Paris Agreement, that is, the fact that a country can respect the agreement by reducing its emissions but increase its exports of fossil fuels to countries breaching the agreement (Lee, 2017). This weakness is described in the following way by Moss: “the accounting rules of the United Nations, under the Paris Agreement, currently allow exporters to pass on responsibility for fossil fuel emissions. We must move from this territorial model of responsibility to one that considers the whole chain of responsibility for climate harms” (Moss, 2020). There is a growing gap between the total amount of fossil fuels that producing countries are planning to extract versus the total amount needed to reach the objectives of the Paris Agreement (UN Environment Programme, 2019). So far, the accord has failed to control emissions, as was predicted from the start because of the lack of accountability and of appropriate national carbon budgets (Kemp, 2018; Rogelj et al., 2016; Spash, 2016).

Canadian fossil fuel production is influenced by political, legal, technological, economic and environmental variables. The results presented here from multiple perspectives show that Canadian emissions linked to the exploitation of fossil fuels have continued to increase (except in
2020 because of the COVID-19 pandemic) and that this country is not reducing its anthropogenic national emissions fast enough to respect the 2°C scenario. This is consistent with other studies that have observed fossil fuel production increasing and becoming a greater threat to our planetary health (Jackson et al., 2019; UN Environment Programme, 2019). Future production is difficult to anticipate, but the results presented here stress the importance of closely monitoring and of mitigating Canadian national emissions. To reach this goal it is imperative to implement international policies to limit exports of fossil fuels and to implement several national policies with an emphasis on decreasing the number of vehicles, especially larger ones, and supporting the windmill/ PV solar/ electric vehicle trio as well as supporting the transition of fossil fuel workers to the renewable sector.

Declaration of competing interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

I thank for their advice D. H. Greenford at the Department of Geography, Planning and Environment at Concordia University, C. N. Le Fevre formerly at the Oxford Institute for Energy Studies and R. K. Lattanzio at the Congressional Research Service in Washington DC. I would like to express my sincere thanks to Janet Cleveland for the language corrections of the numerous drafts of this paper. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data Availability

All data and computations are available in this spreadsheet partitioned into six tabs: Overall, Coal, Coal2, Oil, Gas and National.
References

350.org, 2016. What does 350 mean? [WWW Document]. Toronto350. URL https://www.toronto350.org/350 (accessed 12.8.20).

Abel, S., Larsson, A., Simcock, K., 2018. Submission on the Crown Minerals (Petroleum) Amendment Bill. Greenpeace New Zealand Inc.

Alberta Government, 2021. Support for Albertans affected by coal phase out [WWW Document]. URL https://www.alberta.ca/support-for-coal-workers.aspx (accessed 3.22.21).

Alcaraz, O., Buenestado, P., Escribano, B., Sureda, B., Turon, A., Xercavins, J., 2018. Distributing the Global Carbon Budget with climate justice criteria. Climatic Change 149, 131–145. https://doi.org/10.1007/s10584-018-2224-0

Alvarez, R.A., Zavala-Araiza, D., Lyon, D.R., Allen, D.T., Barkley, Z.R., Brandt, A.R., Davis, K.J., Herndon, S.C., Jacob, D.J., Karion, A., Kort, E.A., Lamb, B.K., Lauvaux, T., Maasakkers, J.D., Marchese, A.J., Omara, M., Pacala, S.W., Peischl, J., Robinson, A.L., Shepson, P.B., Sweeney, C., Townsend-Small, A., Wofsy, S.C., Hamburg, S.P., 2018. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188. https://doi.org/10.1126/science.aar7204

Anandaraja, G., Pye, S., Usher, W., Kesicki, F., McGlade, C., 2011. TIAM-UCL Global Model Documentation.

Andersson, J.J., 2019. Carbon Taxes and CO₂ Emissions: Sweden as a Case Study. American Economic Journal: Economic Policy 11, 1–30. https://doi.org/10.1257/pol.20170144

Atherton, E., Risk, D., Fougère, C., Lavoie, M., Marshall, A., Werring, J., Williams, J.P., Minions, C., 2017. Mobile measurement of methane emissions from natural gas developments in Northeastern British Columbia, Canada. Atmospheric Chemistry and Physics 17, 12405–12420. https://doi.org/10.5194/acp-17-12405-2017

Attanasi, E.D., Freeman, P.A., 2011. Survey of stranded gas and delivered costs to Europe of selected gas resources. Presented at the SPE Hydrocarbon Economics and Evaluation Symposium 2010, pp. 149–162.

Babies, H., Bahr, A., Kus, J., Messner, J., Schauer, M., 2012. Energy Study 2012 Reserves, Resources and Availability of Energy Resources. Federal institute for Geosciences and natural resources (BGR).

Balcombe, P., Anderson, K., Speirs, J., Brandon, N., Hawkes, A., 2017. The Natural Gas Supply Chain: The Importance of Methane and Carbon Dioxide Emissions. ACS Sustainable Chem. Eng. 5, 3–20. https://doi.org/10.1021/acssuschemeng.6b00144

Baray, S., Darlington, A., Gordon, M., Hayden, K.L., Leithead, A., Li, S.-M., Liu, P.S.K., Mittermeier, R.L., Moussa, S.G., O’Brien, J., Staebler, R., Wolde, M., Worthy, D., McLaren, R., 2018. Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance. Atmospheric Chemistry and Physics 18, 7361–7378. https://doi.org/10.5194/acp-18-7361-2018

BC Government, 2020. Mining exploration tax credit for corporate income tax - Province of British Columbia [WWW Document]. URL https://www2.gov.bc.ca/gov/content/taxes/income-taxes/corporate/credits/mining-exploration (accessed 3.5.21).
BC Oil and Gas Commission, 2020. 2019 British Columbia’s Oil and Gas Reserves and Production Report. BC Oil and Gas Commission.

Boden, T., Andres, R., Marland, G., 2015. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2011) (V. 2015). https://doi.org/10.3334/CDIAC/00001_V2015

Boyle, D., Simms, A., Tricarico, E., Murray, L., Gillett, R., 2020. Smoking the climate - Lessons from the advertising ban on tobacco for tackling the climate emergency. New Weather Institute.

BP, 2020. Statistical Review of World Energy - 2020 69th edition.

Burnham, A., Han, J., Clark, C.E., Wang, M., Dunn, J.B., Palou-Rivera, I., 2012. Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum. Environ. Sci. Technol. 46, 619–627. https://doi.org/10.1021/es201942m

Canadian Energy Regulator, 2021a. Estimated Production of Canadian Crude Oil and Equivalent [WWW Document]. URL https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/crude-oil-petroleum-products/statistics/estimated-production-canadian-crude-oil-equivalent.html (accessed 4.24.21).

Canadian Energy Regulator, 2021b. Marketable Natural Gas Production in Canada [WWW Document]. URL https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/natural-gas/statistics/marketable-natural-gas-production-in-canada.html (accessed 4.24.21).

Canadian Mining Journal Staff, 2018. Colonial Coal floats PEA for Gordon Creek mine. MINING.COM.

CBC News, 2021. Alberta premier calls Biden’s XL cancellation a “gut punch” for U.S.-Canada trade relationship. CBC.

CBC News, 2020. Quebec to ban sale of new gas-powered vehicles as of 2035. CBC News.

Chan, E., Worthy, D.E.J., Chan, D., Ishizawa, M., Moran, M.D., Delcloo, A., Vogel, F., 2020. Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c04117

Cimons, M., Nesbit, J., 2016. Keep It In The Ground. Sierra Club, 350.org & Greenpeace. Climate Watch, 2020. Historical GHG Emissions [WWW Document]. URL https://www.climatewatchdata.org/ghg-emissions (accessed 11.25.20).

Coalspur Mines Limited, 2012. Vista Bankable Feasibility Study provides blueprint for the largest export thermal coal mine in North America [WWW Document]. URL https://www.newswire.ca/news-releases/vista-bankable-feasibility-study-provides-blueprint-for-the-largest-export-thermal-coal-mine-in-north-america-509504371.html (accessed 1.25.21).

Colonial Coal International Corp., 2019. Colonial Coal Announces Results of a Preliminary Economic Assessment for an Open Pit Only Mine at its Huguenot Project. Cision.

Corkal, V., 2021. Federal Fossil Fuel Subsidies in Canada: COVID-19 edition. International Institute for Sustainable Development - Global Subsidies Initiative.

CST Canada Coal Limited, 2019. Coal Resource and Coal Reserve Statement. CST Canada Coal Limited.

Dineen, D., Ryan, L., Gallachóir, B.Ó., 2018. Vehicle tax policies and new passenger car CO2 performance in EU member states. Climate Policy 18, 396–412. https://doi.org/10.1080/14693062.2017.1294044
ECCC, 2021. National Inventory Report 1990-2019: Greenhouse Gas Sources and Sinks in Canada. Environment and Climate Change Canada.

ECCC, 2020a. Emission Factors. Annex 3 of Canada’s greenhouse gas inventory; 1717-3094; 1990/1999-2003. Environment and Climate Change Canada.

ECCC, 2020b. National Inventory Report 1990-2018: Greenhouse Gas Sources and Sinks in Canada, Part 2 (No. En81-4E-PDF). Environment and Climate Change Canada.

ECCC, 2016. Pricing Carbon Pollution. Environment and Climate Change Canada.

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J.C., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., 2014. AR5 Climate Change 2014: Mitigation of Climate Change — IPCC. IPCC.

EIA, 2020. International - U.S. Energy Information Administration [WWW Document]. URL https://www.eia.gov/international/data/country/CAN/coal-and-coke/coal-and-coke-production (accessed 1.25.21).

EIA, 2016. Carbon Dioxide Emissions Coefficients [WWW Document]. URL https://www.eia.gov/environment/emissions/co2_vol_mass.php (accessed 11.27.20).

Environment Canada, 2011. National Inventory Report 1990-2009: Greenhouse Gas Sources and Sinks in Canada, Part 2. Environment Canada.

Environmental Protection Agency, 2018. Environmental Protection Agency. Emission factors for greenhouse gases inventories.

EPA, 2016. Understanding Global Warming Potentials [WWW Document]. EPA. URL https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed 1.12.21).

EPA, 2013. 2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements; Final Rule. Environmental Protection Agency.

Evans, G., Phelan, L., 2016. Transition to a post-carbon society: Linking environmental justice and just transition discourses. Energy Policy 99, 329–339. https://doi.org/10.1016/j.enpol.2016.05.003

Fletcher, R., 2021. Answers to questions about Alberta’s coal policy that, at this point, you’re too afraid to ask | CBC News. CBC.

Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S., Aragão, L.E.O.C., Arndt, A., Arora, V., Bates, N.R., Becker, M., Benoit-Cattin, A., Bittig, H.C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L.P., Evans, W., Florentie, L., Forster, P.M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R.A., Ilyina, T., Jain, A.K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lenten, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P.I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A.J.P., Sutton, A.J., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A.P., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W., Yue, X., Zaehe, S., 2020. Global Carbon Budget 2020. Earth System Science Data 12, 3269–3340. https://doi.org/10.5194/essd-12-3269-2020
Gignac, R., Matthews, H.D., 2015. Allocating a 2 °C cumulative carbon budget to countries. Environ. Res. Lett. 10, 075004. https://doi.org/10.1088/1748-9326/10/7/075004

Global Energy Monito Wikipeadia, 2021. Goldboro LNG Terminal [WWW Document]. Global Energy Monitor. URL https://www.gem.wiki/Goldboro_LNG_Terminal (accessed 4.25.21).

Gordon, D., Brandt, A., Bergerson, J., Koomey, J., Livingston, D., 2015. Assessing Global Oils — Carnegie Endowment for International Peace [WWW Document]. Assessing Global Oils — Carnegie Endowment for International Peace. URL http://oci.carnegieendowment.org/ (accessed 11.27.20).

Green, T.L., 2019. Zeroing in on Emissions. Canada clean power pathways - A review. David Suzuki Foundation.

Healing, D., 2020. Alberta set to retire coal power by 2023, ahead of 2030 provincial deadline [WWW Document]. Global News. URL https://globalnews.ca/news/7502144/alberta-coal-power-ahead-of-schedule/ (accessed 3.6.21).

Howarth, R.W., 2019. Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane? Biogeosciences 16, 3033–3046. https://doi.org/10.5194/bg-16-3033-2019

Hunter, M., Gilron, G., 2013. Carbon Creek metallurgical coal project: Project description. Executive summary. Cardero Coal Ltd.

Iancu, I., Trinnaman, J., Clark, A.W., 2010. Survey of Energy Resources. World Energy Council.

IEA, 2019. Fuel Economy in Major Car Markets: Technology and Policy Drivers 2005-2017. International Energy Agency.

IEA, 2013. World Energy Outlook. International Energy Agency.

IEA, 2011. World Energy Outlook. International Energy Agency.

IEA, 2010. World Energy Outlook 2010. International Energy Agency.

IEA, 2008. World Energy Outlook. International Energy Agency.

IHS CERA, 2010. Oil Sands, Greenhouse Gases, and US Oil Supply. Getting the Numbers Right. Special Report. IHS Cambridge Energy Research Associates, Inc.

Jackson, R.B., Friedlingstein, P., Andrew, R.M., Canadell, J.G., Quéré, C.L., Peters, G.P., 2019. Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environ. Res. Lett. 14, 121001. https://doi.org/10.1088/1748-9326/ab57b3

Jaffe, A.M., Medlock III, K.B., Soligo, R., 2011. The Status of World Oil Reserves: Conventional and Unconventional Resources in the Future Supply Mix. James A. Baker III Institute for Public Policy, Rice University.

Jang, B., 2021. LNG Canada CEO wary of delays on $18-billion Kitimat, B.C. energy project. Jaques, A., 1992. Canada’s Greenhouse Gas Emissions: Estimates for 1990 (No. EPS 5/AP/4). Environment Canada.

Kanitkar, T., Jayaraman, T., D’Souza, M., Purkayastha, P., 2013. Carbon budgets for climate change mitigation – a GAMS-based emissions model. Current Science 104, 1200–1206.

Kemp, L., 2018. A Systems Critique of the 2015 Paris Agreement on Climate, in: Pathways to a Sustainable Economy: Bridging the Gap between Paris Climate Change Commitments and Net Zero Emissions. pp. 25–41. https://doi.org/10.1007/978-3-319-67702-6_3

Kerr, J., 2019. James Kerr: Canada should not be shipping coal overseas for the U.S. Vancouver Sun.

Koomey, D.G., Adam Brandt, Joule Bergerson, Jonathan, Koomey, D.G., Adam Brandt, Joule Bergerson, Jonathan, 2015. Know Your Oil: Creating a Global Oil-Climate Index
Non-peer reviewed preprint submitted to EarthArXiv

[WWW Document]. Carnegie Endowment for International Peace. URL https://carnegieendowment.org/2015/03/11/know-your-oil-creating-global-oil-climate-index-pub-59285 (accessed 11.27.20).

Lattanzio, R.K., 2015. Life-Cycle Greenhouse Gas Assessment of Coal and Natural Gas in the Power Sector. Congressional Research Service.

Lee, M., 2017. Canada cannot have it both ways on climate and fossil fuel expansion [WWW Document]. Policy Note. URL https://www.policynote.ca/canada-cannot-have-it-both-ways-on-climate-and-fossil-fuel-expansion/ (accessed 3.7.21).

Li, S.-M., Leithead, A., Moussa, S.G., Liggi, J., Moran, M.D., Wang, D., Hayden, K., Darlington, A., Gordon, M., Staebler, R., Makar, P.A., Stroud, C.A., McLaren, R., Liu, P.S.K., O’Brien, J., Mittermeier, R.L., Zhang, J., Marson, G., Cober, S.G., Wolde, M., Wentzell, J.J.B., 2017. Differences between measured and reported volatile organic compound emissions from oil sands facilities in Alberta, Canada. PNAS 114, E3756–E3765. https://doi.org/10.1073/pnas.1617862114

Liggi, J., Li, S.-M., Staebler, R.M., Hayden, K., Darlington, A., Mittermeier, R.L., O’Brien, J., McLaren, R., Wolde, M., Worthy, D., Vogel, F., 2019. Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods. Nature Communications 10, 1863. https://doi.org/10.1038/s41467-019-09714-9

Louie, E.P., Pearce, J.M., 2016. Retraining investment for U.S. transition from coal to solar photovoltaic employment. Energy Economics 57, 295–302. https://doi.org/10.1016/j.eneco.2016.05.016

MacKay, K., Lavoie, M., Bourlon, E., Atherton, E., O’Connell, E., Baillie, J., Fougère, C., Risk, D., 2021. Methane emissions from upstream oil and gas production in Canada are underestimated. Scientific Reports 11, 8041. https://doi.org/10.1038/s41598-021-87610-3

Marston Canada Ltd., 2008. Technical report on coal resources and reserves of the Fording River operations for Elk Valley Coal Corp, Fording Canadian Coal Trust and Teck Cominco Ltd.

Martin, A., Collas, P., Blain, D., Ha, C., Liang, C., MacDonald, L., McKibbon, S., Palmer, C., Rhoades, K., 2004. Canada’s Greenhouse Gas Inventory 1990–2002. Environment Canada.

McGlade, C., Ekins, P., 2015. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517, 187–190. https://doi.org/10.1038/nature14016

Meinshausen, M., Raper, S., Wigley, T., 2011. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration. Atmospheric Chemistry and Physics 11, 1417–1456. https://doi.org/10.5194/acp-11-1417-2011

Meyer, A., 2000. Contraction and Convergence - The Global Solution to Climate Change. Green Books.

Monga, V., 2018. Keystone XL Pipeline Obtains Enough Shipper Commitments to Proceed. The Wall Street Journal.

Morgan, G., 2018. Canada buys Kinder Morgan’s Trans Mountain pipeline for $4.5 billion — but can we sell it? Finantial Post.

Moss, J., 2020. The Paris Agreement 5 years on: big coal exporters like Australia face a reckoning. La Conversation.
Natural Resources Canada, 2020a. Canadian LNG projects [WWW Document]. URL https://www.nrcan.gc.ca/our-natural-resources/energy-sources-distribution/clean-fossil-fuels/natural-gas/canadian-lng-projects/5683 (accessed 11.25.20).

Natural Resources Canada, 2020b. Residential Space Heating System Stock Share [WWW Document]. URL https://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/showTable.cfm?type=HB§or=resource&jurisdiction=00&rm=13&page=0 (accessed 3.20.21).

Natural Resources Canada, 2018. Canadian Mineral Exploration Information Bulletin [WWW Document]. URL https://www.nrcan.gc.ca/science-data/science-research/earth-sciences/earth-sciences-resources/earth-sciences-federal-programs/canadian-mineral-exploration-information-bulletin/17762 (accessed 2.16.21).

Natural Resources Canada, 2017. Coal Facts [WWW Document]. URL https://www.nrcan.gc.ca/science-data/data-analysis/energy-data-analysis/energy-facts/coal-facts/20071 (accessed 1.30.21).

NREL, 2014. Life Cycle Assessment Harmonization [WWW Document]. URL https://www.nrel.gov/analysis/life-cycle-assessment.html (accessed 3.20.21).

NRTEE, 2009. Geared for change. Energy efficiency in Canada’s commercial building sector., National Round Table on the Environment and the Economy (Canada). ed. Ottawa, Ontario.

OECD, 2020. Greenhouse gas emissions [WWW Document]. OECD.Stat. URL https://stats.oecd.org/Index.aspx?DataSetCode=AIR_GHG (accessed 11.27.20).

PPCA, 2021. PPCA Members | Powering Past Coal Alliance [WWW Document]. Powering Past Coal Alliance (PPCA). URL https://poweringpastcoal.org/members (accessed 3.6.21).

Pretis, F., 2019. Does a Carbon Tax Reduce CO2 Emissions? Evidence From British Columbia (SSRN Scholarly Paper No. ID 3329512). Social Science Research Network, Rochester, NY. https://doi.org/10.2139/ssrn.3329512

Quinn, M., 2020. Exploratory drilling now exempt from federal environmental impact assessment | CBC News [WWW Document]. CBC. URL https://www.cbc.ca/news/canada/newfoundland-labrador/offshore-drilling-enviromental-assessment-faster-1.5598253 (accessed 1.13.21).

Ram River Coal Corp., 2021. Aries Project [WWW Document]. URL http://www.ramcoal.com/aries-project (accessed 1.25.21).

Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., Meinshausen, M., 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639. https://doi.org/10.1038/nature18307

Rogelj, J., Shindell, D., Kejun, J., 2018. Chapter 2 — Global Warming of 1.5 °C. IPCC.

Rogner, H. H.-H., Aguilera, R., Archer, C., Bertani, R., Bhattacharya, S., Dusseauult, M., Gagnon, L., Haberl, H., Hoogwijk, M., Johnson, A., Rogner, M., Yakushev, V., Arent, D., Bryden, I., Krausmann, F., Odell, P., Schillings, C., Shafiei, A., 2012. Chapter 7 - Energy Resources and Potentials. In Global Energy Assessment - Toward a Sustainable Future. pp. 423–512. https://doi.org/10.13140/RG.2.1.3049.8724

Royal Vancouver Yacht Club, 2020. Proposed Coal Harbour Marina Expansion Project [WWW Document]. URL https://www.royalvan.com/default.aspx?p=.NET_ArticleView&tview=0&pluginid=1099322&ssid=334307&qfilter=RSC22012&itemID=314558 (accessed 3.6.21).
Simpkins, G., 2017. Expanding carpool lanes. Nature Climate Change 7, 686–686.
https://doi.org/10.1038/nclimate3405

Spash, C.L., 2016. This Changes Nothing: The Paris Agreement to Ignore Reality.
Globalizations 13, 928–933. https://doi.org/10.1080/14747731.2016.1161119

Stanley, J.K., Hensher, D.A., Loader, C., 2011. Road transport and climate change: Stepping off
the greenhouse gas. Transportation Research Part A: Policy and Practice, A Collection of
Papers: Transportation in a World of Climate Change 45, 1020–1030.
https://doi.org/10.1016/j.tra.2009.04.005

Statistics Canada, 2021. New motor vehicle sales by type of vehicle [WWW Document]. URL
https://doi.org/10.25318/2010000201-eng (accessed 3.7.21).

Statistics Canada, 2020a. Coal, monthly production and exports [WWW Document]. URL
https://doi.org/10.25318/2510004601-eng (accessed 11.25.20).

Statistics Canada, 2020b. Vehicle registrations by type of vehicle [WWW Document]. URL
https://doi.org/10.25318/2310006701-eng (accessed 3.7.21).

Strauch, Y., 2020. Beyond the low-carbon niche: Global tipping points in the rise of wind, solar,
and electric vehicles to regime scale systems. Energy Research & Social Science 62,
101364. https://doi.org/10.1016/j.erss.2019.101364

Subramanyam, V., Ahiduzzaman, Md., Kumar, A., 2017a. Greenhouse gas emissions mitigation
potential in the commercial and institutional sector. Energy and Buildings 140, 295–304.
https://doi.org/10.1016/j.enbuild.2017.02.007

Subramanyam, V., Kumar, A., Talaei, A., Mondal, Md.A.H., 2017b. Energy efficiency
 improvement opportunities and associated greenhouse gas abatement costs for the
residential sector. Energy 118, 795–807. https://doi.org/10.1016/j.energy.2016.10.115

The Associated Press, 2021. Enbridge rejects Michigan governor’s demand to shut down oil
pipeline in Great Lakes. CBC News.

The Canadian Press, 2018. Cars and trucks sold in B.C. by 2040 will be zero-emission:
government. CTVNews.

The Climate Registry, 2020. The climate registry. The Climate Registry.

TransMountain, 2017. Expansion Project [WWW Document]. URL
https://www.transmountain.com/project-overview? (accessed 11.25.20).

Trudeau, J., 2017. Justin Trudeau’s speech in Houston: Read a full transcript. Macleans.ca. URL
https://www.macleans.ca/economy/justin-trudeaus-speech-in-houston-read-a-full-
transcript/ (accessed 3.5.21).

UN Environment Programme, 2019. Production Gap Report 2019.

United Nations, 2019. World Population Prospects - Population Division - United Nations
[WWW Document]. World Population Prospects 2019. URL
https://population.un.org/wpp/Download/Standard/Population/ (accessed 11.27.20).

Weber, C.L., Clavin, C., 2012. Life Cycle Carbon Footprint of Shale Gas: Review of Evidence
and Implications. Environ. Sci. Technol. 46, 5688–5695.
https://doi.org/10.1021/es300375n

Whitley, S., Chen, H., Doukas, A., Gençsü, I., Gerasimchuk, I., 2018. G7 fossil fuel subsidy
scorecard: tracking the phase-out of fiscal support and public finance for oil, gas and
coal.

Zavala-Araiza, D., Herndon, S.C., Roscioli, J.R., Yacovitch, T.I., Johnson, M.R., Tyner, D.R.,
Omara, M., Knighton, B., Helmig, D., Schwietzke, S., 2018. Methane emissions from oil
and gas production sites in Alberta, Canada. Elementa: Science of the Anthropocene 6. https://doi.org/10.1525/elementa.284
Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J.D., Sadavarte, P., Lyon, D., Nesser, H., Sulprizio, M.P., Varon, D.J., Zhang, R., Houweling, S., Zavala-Araiza, D., Alvarez, R.A., Lorente, A., Hamburg, S.P., Aben, I., Jacob, D.J., 2020. Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances 6, eaaz5120. https://doi.org/10.1126/sciadv.eaaz5120