Like other DNA viruses, herpes simplex virus type 1 (HSV-1) replicates and proliferates in host cells continuously modulating the host molecular environment. Following a sophisticated temporal expression pattern, HSV-1 encodes at least 89 multifunctional proteins that interplay with and modify the host cell proteome. During the last decade, advances in mass spectrometry applications coupled to the development of proteomic separation methods have allowed to partially monitor the impact of HSV-1 infection in human cells. In this review, we discuss the current use of different proteome fractionation strategies to define HSV-1 targets in two major application areas: (i) viral-protein interactomics to decipher viral-protein interactions in host cells and (ii) differential quantitative proteomics to analyze the virally induced changes in the cellular proteome. Moreover, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and also post-translational modifications in HSV-1-infected cells that will greatly improve our molecular knowledge of HSV-1 infection.

Keywords: HSV-1, fractionation, labeling, proteomics, mass spectrometry
interactome was involved in different molecular function such as transcription, replication and recombination, chromatin remodeling, and RNA splicing (Taylor and Knipe, 2004). More recently, Lester and Deluca (2011) have isolated the ICP4-containing complexes from HeLa-infected cells using tandem affinity purification (TAP-ICP4) and protein fractionation by 1D gel SDS-PAGE, identifying more than 40 cellular proteins present in these complexes by LC–MS/MS from which 11 and 4 proteins were components of the transcription factor TFIID and the mediator complex respectively. In this case, proteomic data were functionally validated by immunofluorescence and chromatin immunoprecipitation experiments showing that TFIID and mediator are recruited to viral promoters as a function of ICP4 during infection (Lester and Deluca, 2011). On the other hand, more than 40 binary interactions have been detected between capsid, envelope, and tegument viral proteins using protein–protein interaction yeast two-hybrid system (Bernhard et al., 2005; Vittone et al., 2005; Lee et al., 2008). Different proteome composition of purified mature extracellular viruses has been also characterized by MS-based proteomics technology. The carefully developed workflow used by Loret et al. (2008) allowed the identification of 8 viral capsid proteins, 23 potential tegument proteins, and 13 viral glycoproteins. In this workflow, a multiple reaction monitoring (MRM) approach was used to detect specific viral glycoproteins in mature virion preparations. Interestingly, 49 different host proteins mainly involved in transport, cytoskeleton, and nucleotide binding were also accurately identified. Although it is necessary to functionally validate the presence of these host proteins in the extracellular virion structure,
these data clearly demonstrate that HSV-1 tegumentation may be considered as a highly dynamic process.

PROTEOMIC PROFILING OF HSV-1-INFECTED CELLS

Comparative proteomic strategies have been also used in HSV-1 research to elucidate host proteome modifications during the early stages of HSV-1 infection (Figure 1). One of the most popular methods for protein separation is 2D-electrophoresis (2-DE). Based on two independent biochemical characteristics of proteins, it combines isoelectric focusing, which separates proteins according to their isoelectric point (pI), and SDS-PAGE, which separates them further according to their molecular mass (Westermeier and Gorg, 2011). Using 35S labeling and 2-DE, Greco et al. (2000) demonstrated that although a strong shutoff in protein synthesis is induced in HSV-1 infection, the synthesis of some acidic ribosomal proteins is sustained or even induced early in infection. On the other hand, Antrobus et al. identified more than 100 protein species differentially expressed between non-infected and infected Hep-2 cells at 6 hpi. They used conventional 2-DE for protein separation and MS for protein identification. The host proteins identified in this study participate in a plethora of biological process and some of them were validated by western-blot analysis also in human diploid fibroblast (HF) cells (Antrobus et al., 2009).

Advanced prefractionation strategies in combination with MS, have provided powerful means to enrich and analyze organelle-specific subproteomes, obtaining valuable information that greatly expand our knowledge of the molecular mechanisms altered during HSV-1 infection. With the aim of detecting non-ribosomal proteins associated to the ribosome that may contribute to the HSV-1-induced translational control, Greco et al. extracted basic proteins from the ribosomal fraction from mock-infected and HSV-1-HeLa-infected cells. Using 35S, 2-DE, N-terminal sequencing, and MS, viral proteins such as VP19C and VP26, and host poly(A) binding protein 1 were identified associated to ribosomes with different kinetics upon HSV-1 infection (Greco et al., 2001). More recently, we have used complementary protein and peptide labeling strategies to understand the dynamics of the human hepatoma cell proteome behavior upon HSV-1 infection. To increase the efficiency of proteomic analysis, Santamaria et al. fractionated mock-infected and HuH7-infected cells to obtain cytosolic and microsomal proteomes independently, at different early time points of HSV-1 infection. After validating the efficiency of the enrichment procedure, proteome dynamics was analyzed in both subcellular fractions by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). This approach is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of two to three samples with different dyes and electrophoresis of all the samples on the same 2D gel, minimizing spot pattern variability and the number of gels in an experiment (Tannu and Hemby, 2006). Using this approach, 16 unique deregulated host protein species mainly involved in apoptosis, signal transduction, and endoplasmic reticulum associated degradation pathway were identified in HuH7-infected cells by LC–MS/MS analyses (Santamaria et al., 2009). Interestingly, three of these proteins (FK506-binding protein 4, hnRNPK and eukaryotic translation initiation factor 3 subunit 2) were also deregulated early upon infection in Hep-2 cells (Antrobus et al., 2009). These coincident proteins suggest that cellular mechanisms involved in microtubule dynamics and mRNA processing are common in infected cells with different origin indicating the importance of these targets for HSV-1 infection. Santamaria et al. (2009) demonstrated the activation of mitochondrial apoptotic and different canonical signaling pathways identifying PP2A as a pivotal target that may mediate the transduction of cell death signals and promote cell survival pathway arrest in HuH7 cells. In the near future, it would be interesting to study the specific role of PP2A in different kind of cells infected with other HSV-1 strains to obtain robust conclusions. Moreover, deciphering the potential interacrome of PP2A together with phosphoproteome-wide analysis of infected cells would increase our knowledge about the specific role of phosphorylation in HSV-1-infected cells.

Taking into account that HSV-1 replicates in the nucleus of the host cells, Sanchez-Quiles et al. (2011) have combined 2D-DIGE and tandem mass tag isobaric labeling (TMT) techniques to analyze nuclear proteome alterations in HuH7-infected cells. TMT is a liquid-based method that labels samples at the peptide level (Dayon et al., 2008). While DIGE separates only soluble proteins included in a pH range of 3–11 and a determined molecular weight, TMT can identify proteins outside these ranges. Moreover, DIGE is able to detect differential post-translationally modified proteins as well as different isoforms by resolving spots at different pI and molecular weight. However, these isoforms may not be distinguished with TMT approach, since labeling is completed at the peptide level and most peptide sequences are identical among a group of isoforms. In addition, proteins with extreme isoelectric points, large molecular weights, low solubility (hydrophobic proteins) and low copy numbers are poorly represented in 2D-DIGE experiments. The application of two different proteomic strategies was particularly useful in obtaining complementary information, identifying 62 differential components of the nuclear proteome of HuH7 hepatoma cells that may regulate host–virus interaction, cell cycle regulation, and RNA homeostasis upon infection (Sanchez-Quiles et al., 2011). In particular, Lamin A–C, also differentially expressed in Hep-2 infected cells (Antrobus et al., 2009), showed a complex differential isoform pattern upon HSV-1 infection, suggesting regulatory mechanisms based on post-translational modification events. Interestingly, 32 host proteins were enriched in infected nuclei. One of these early up-regulated proteins was protein quaking (QKI), involved in the regulation of mRNA stability, nuclear retention, and RNA transport (Galarneau and Richard, 2005). Using immunofluorescence assays, Sánchez-Quiles et al. have demonstrated that QKI-5 suffers a time-dependent redistribution in infected cells, shuttling from the nucleus to the cytosol upon HSV-1 infection. Interestingly, QKI depletion by knockdown strategy induces a clear delay in viral-protein synthesis, reducing the viral yield in infected cells (Sanchez-Quiles et al., 2011). Although the viral necessity of maintaining high expression levels of QKI during the infection should be demonstrated as a possible global mechanism of HSV-1 interference with host cells, these data suggest that QKI may be a potential target in the development of antiviral therapy.
All differential proteins provided by proteomic studies have undoubtedly extended our knowledge about HSV-1 infection at the molecular level. However, the protein repertoires reported are barely coincident. This variability is likely associated with specific biological properties of the samples analyzed (different cell lines, HSV-1 strains, and time point of infection used) and the heterogeneity of the analytical procedures used (fractionation methods to isolate specific organelles, and the use of gel-based or gel free proteomic workflows). Although differential proteomics has contributed to a better understanding about the specific proteome changes that occur early in infection, additional research is needed to elucidate whether these differentially expressed proteins are cellular targets used for HSV-1 to modulate the host proteome or are part of molecular events orchestrated by the cell to limit viral replication and propagation.

FUTURE DIRECTIONS

Although 2D-electrophoresis has been the technique of choice to monitor changes at protein level in HSV-1-infected cells, this approach presents some inherent disadvantages such as many protein spots are likely comprised of multiple proteins, poor spot resolution at higher pI values, and the difficulty in electrophoresing large and hydrophobic proteins in the first dimension separation. However, the rapid advances in high-resolution MS-based proteomics strategies may facilitate the global analysis of protein interacting partners of HSV-1 virion proteomes (Bailer and Haas, 2009), host protein components in HSV-1-infected secretome (Higa et al., 2008; Deng et al., 2010; Lietzen et al., 2011), and also the detection, identification, and quantification of thousands of novel HSV-1 targets in host cells to finally obtain an integrative view of proteome modifications during the viral cycle. In the near future, alternative proteomics methods such as SILAC (Ong and Mann, 2006; Harsha et al., 2008) or stable isotope dimethyl labeling (Boersema et al., 2009) will lead to more comprehensive and time-dependent analysis of HSV-1-induced changes in host proteomes. Nowadays, these high-throughput approaches have been established and constantly optimized in order to improve our understanding of phosphorylation events. Large-scale proteomic studies based on SILAC in combination with strong cation exchange (SCX) and titanium dioxide (TiO2) for phosphopeptide enrichment (Macek et al., 2009) would greatly contribute to the study of phosphorylation dynamics in HSV-1-infected cells. Using this shotgun approach, unexpected novel phosphorylation sites could be discovered in HSV-1 proteome, increasing our biological knowledge about the activation/deactivation status of multiple host signaling pathways during the infection. Moreover, the combination of immunoaffinity chromatography and MS-based quantitative MS (Pan et al., 2011), will be a valuable approach to characterize the glycoproteome of HSV-1-infected cells and also to map the specific changes in glycosylation patterns of HSV-1 surface proteins during the viral cycle. Finally, the application of native and ion-mobility MS in the near future (Uetrecht et al., 2011) will provide useful information about viral-protein and protein-complex structure, conformation, stoichiometry of an assembly, binding affinities, and the topology of a viral-protein complex (Uetrecht and Heck, 2011) increasing our knowledge on structural HSV-1 biology.

REFERENCES

Al-Duajili, L. I., Clerkin, P. P., Clement, C., McFerrin, H. E., Bhattacharjee, P. S., Varnell, E. D., Kaufman, H. E., and Hill, J. M. (2011) Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated? *Future Microbiol.* 6, 877–907.

Antibus, R., Grant, K., Gangadha- ran, B., Chittenden, D., Everett, R. D., Zitzmann, N., and Boutell, C. (2009). Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome. *Proteomics* 9, 3913–3927.

Argnani, R., Marconi, P., Volpi, I., Belanos, E., Carro, E., Ried, C., Santamaría, E., Pourchet, A., Epstein, A. L., Brocker, T., Corrales, F. J., Manservigi, R., Goicochea, I., Foschini, M., and Hernandez-Alcocea, R. (2011). Characterization of herpes simplex virus 1 strains as platforms for the development of oncolytic viruses against liver cancer. *Liver Int.* 31, 1542–1553.

Bailer, S. M., and Haas, J. (2009). Connecting viral with cellular interactomes. *Curr. Opin. Microbiol.* 12, 453–459.

Bernhard, O. K., Diefenbach, R. I., and Cunningham, A. L. (2005). New insights into viral structure and virus-cell interactions through proteomics. *Expert Rev. Proteomics* 2, 577–588.

Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A. J. (2009). Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. *Nat. Protoc.* 4, 484–494.

Chisholm, C., and Lopez, L. (2011). Cutaneous infections caused by *Herpesviridae*: a review. *Arch. Pathol. Lab. Med.* 135, 1357–1366.

Clement, C., Bhattacharjee, P. S., Kaufman, H. E., and Hill, J. M. (2009). Heat-induced reaction of HSV-1 in latent mice: upregulation in the TG of CDR3 and other immune response genes and their LAT-ICP0 locus. *Invest. Ophthalmo. Vis. Sci.* 50, 2853–2861.

Clement, C., Popp, M. P., Bloom, D. C., Schultz, G., Liu, L., Neumann, D. M., Bhattacharjee, P. S., and Hill, J. M. (2008). Microarray analysis of host gene expression for comparison between naive and HSV-1 latent rabbit trigeminal ganglia. *Mol. Vis.* 14, 1209–1221.

Clements, J. B., Watson, R. J., and Wilkie, N. M. (1977). Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genome. *Cell* 12, 275–285.

Dayon, L., Hainard, A., Licker, V., Turck, N., Khan, K., Hochstrasser, D. F., Burkhard, P. R., and Sanchez, J. C. (2008). Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. *Anal. Chem.* 80, 2921–2931.

Deng, W., De Hoog, C. L., Yu, H. B., Li, Y., Croxen, M. A., Thomas, N. A., Puente, J. L., Foster, L. I., and Finlay, B. B. A. (2010). Comprehensive proteomic analysis of the type III secretome of *Citrobacter rodentium*. *J. Biol. Chem.* 285, 6790–6800.

Dohner, K., Radtke, K., Schmidt, S., and Sodeik, B. (2006). Eclipse phase of herpes simplex virus type 1 infection: efficient dynemin-mediated capsid transport without the small capsid protein VP26. *J. Virol.* 80, 8211–8224.

Fontaine-Rodriguez, E. C., Taylor, T. J., Olesky, M., and Knipe, D. M. (2004). Proteomics of herpes simplex virus infected cell protein 27: association with translation initiation factors. *Virology* 330, 487–492.

Galanteau, A., and Richard, S. (2005). Target RNA motif and target mRNAs of the quaking STAR protein. *Nat. Struct. Mol. Biol.* 12, 691–698.

Greco, A., Bausch, N., Coutte, Y., and Diaz, J. J. (2000). Characterization by two-dimensional gel electrophoresis of host proteins whose synthesis is sustained or stimulated during the course of herpes simplex virus type 1 infection. *Electrophoresis* 21, 2522–2530.

Greco, A., Bienvenut, W., Sanchez, J. C., Kindbeiter, K., Hochstrasser, D., Madjar, J. I., and Diaz, J. J. (2001). Identification of ribosome-associated viral and cellular basic proteins during the course of infection with herpes simplex virus type 1. *Proteomics* 1, 345–359.

Harsha, H. C., Molina, H., and Pandey, A. (2008). Quantitative proteomic using stable isotope labeling with amino acids in cell culture. *Nat. Protoc.* 3, 505–516.
Higa, L. M., Caruso, M. B., Canellas, F., Soares, M. R., Oliveira-Cardvalho, A. L., Chapeaurouge, D. A., Almeida, P. M., Perales, J., Zingali, R. B., and Da Poina, A. T. (2008). Secretome of HepG2 cells infected with dengue virus: implications for pathogene-
sis. Biochim. Biophys. Acta 1784, 1607–1616.

Higaki, S., Gebhardt, B. M., Lukiw, W.
J., Thompson, H. W., and Hill, J. M.
(2002). Effect of immunosuppres-
sion on gene expression in the HSV-
1 latently infected mouse trigeminal
ganglion. Invest. Ophthalmol. Vis.
Sci. 43, 1862–1869.

Lee, J. H., Vittone, V., Diefenbach, E.,
Cunningham, A. L., and Diefenbach, R.
J. (2008). Identification of struc-
tural protein–protein interactions of
herpes simplex virus type 1. Virology
378, 337–354.

Lester, J. T., and Deluca, N. A. (2011).
Herpes simplex virus 1 ICp4 forms
complexes with TIFII D and media-
tor in virus-infected cells. J. Virol.85,
5733–5744.

Lietzen, N., Ohman, T., Rintahaka,
J., Julkunen, L., Aittokallio, T.,
Matikainen, S., and Nyman, T. A.
(2011). Quantitative subcellular
proteome and secretome profil-
ing of influenza A virus-infected
human primary macrophages.
PLoS Pathog. 7, e1001340.
doi:10.1371/journal.ppat.1001340

Loret, S., Guay, G., and Lippe, R.
(2008). Comprehensive characteri-
ization of extracellular herpes sim-
plex virus type 1 virions. J. Virol.82,
8605–8618.

Macek, B., Mann, M., and Olsen,
J. V. (2009). Global and site-
specific quantitative phosphoprote-
omics: principles and applications.
Annu. Rev. Pharmacol. Toxicol. 49,
199–221.

Mossman, K. L., Macgregor, P. P., Roz-
mus, M. J., Goryachev, A. B., Edwards,
A. M., and Smiley, J. R. (2001).
Herpes simplex virus triggers and then
disarms a host antiviral response. J.
Virol. 75, 750–758.

Nguyen, M. L., and Blaho, J. A.
(2007). Apoptosis during herpes simplex
virus infection. Adv. Virus Res. 69,
67–97.

Ong, S. E., and Mann, M. (2006). A prac-
tical recipe for stable isotope labeling
by amino acids in cell culture (SILAC).
Nat. Protoc. 1, 2650–2660.

Pan, S., Chen, R., Aebersold, R., and
Brentnall, T. A. (2011). Mass spec-
trometry based glycoproteomics –
a from proteomics perspective. Mol.
Cell Proteomics 10, R110.003251.

Ray, N., and Enquist, L. W. (2004).
Transcriptional response of a com-
mon permissive cell type to infection
by two diverse alphaherpesviruses. J.
Virol. 78, 3489–3501.

Rozenberg, F., Deback, C., and Agut,
H. (2011). Herpes simplex encephalitis:
from virus to therapy. Infect. Disord.
Drug Targets 11, 235–250.

Sanchez-Quiles, V., Mora, M. I., Segura,
V., Greco, A., Epstein, A. L., Fos-
chini, M. G., Dayon, L., Sanchez,
J. C., Prieto, J., Corrales, F. J., and
Santamaria, E. (2011). HSV-1 Cgal+
infection promotes quaking RNA
binding protein production and induces
nuclear-cytoplasmic shut-
ting of quaking I-5 isoform in
human hepatoma cells. Mol. Cell
Proteomics 10, M111.009126.

Santamaria, E., Mora, M. I., Potel,
C., Fernandez-Irigoyen, J., Carro-
Roldan, E., Hernandez-Alcoceba,
R., Prieto, J., Epstein, A. L., and
Corrales, F. J. (2009). Identification
of replication-competent HSV-
1 Cgal+ strain signaling targets in
human hepatoma cells by functional
organelle proteomics. Mol. Cell
Proteomics 8, 805–815.

Shen, Y., and Nemunaitis, J. (2006). Her-
pes simplex virus 1 (HSV-1) for can-
cer treatment. Cancer Gene Ther. 13,
975–992.

Sun, A., Devi-Rao, G. V., Rice, M. K.,
Gary, L. W., Bloom, D. C., Sandri-
Goldin, R. M., Ghazal, P., and Wag-
ner, E. K. (2004). Immediate–early
expression of the herpes simplex
virus type 1 ICP27 transcript is
not critical for efficient replication
in vitro or in vivo. J. Virol. 78,
10470–10478.

Taylor, T. J., Brockman, M. A., Mcnamee,
E. E., and Knipe, D. M. (2002). Her-
pes simplex virus. Front. Biosci. 7,
d752–d764.

Taylor, T. J., and Knipe, D. M.
(2004). Proteomes of herpes sim-
plex virus replication compart-
ments: association of cellular DNA
replication, repair, recombination,
and chromatin remodeling pro-
teins with ICP8. J. Virol. 78,
5856–5866.

Tian, Q., Stepaniants, S. B., Mao, M.,
Weng, L., Feetham, M. C., Doyle,
M. J., Yi, E. C., Dai, H., Thorsson,
V., Eng, J., Goodlett, D., Berger, J. P., Gunter,
B., Linseley, P. S., Stoughton, R. B.,
Aebersold, R., Collins, S. J., Han-
lon, W. A., and Hood, L. E. (2004).
Integrated genomic and proteomic
analyses of gene expression in mam-
malian cells. Mol. Cell Proteomics
3, 960–969.

Uetrecht, C., Barbu, I. M., Shoemaker,
G. K., Van Duijn, E., and Heck, A.
J. (2011). Interrogating viral capsid
assembly with ion mobility
mass spectrometry. Nat. Chem. 3, 126–132.

Zeier, Z., Aguilar, J. S., Lopez, C. M.,
Devi-Rao, G. B., Watson, Z. L., Baker,
H. V., Wagner, E. K., and Bloom, D.
C. (2009). A limited innate immune
response is induced by a replication-
defective herpes simplex virus vec-
tor following delivery to the murine
central nervous system. J. Neurovi-
rol. 15, 411–424.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 02 February 2012; accepted: 02
March 2012; published online: 20 March
2012.

Citation: Santamaria E, Sánchez-Quiles
V, Fernández-Irigoyen J and Corrales F
(2012) Contribution of MS-based pro-
etomics to the understanding of herpes
simplex virus type 1 interaction with
host cells. Front. Microbiol. 3:107.
doi: 10.3389/fmicb.2012.00107

This article was submitted to Frontiers in
Virology, a specialty of Frontiers in
Microbiology.

Copyright © 2012 Santamaria, Sánchez-
Quiles, Fernández-Irigoyen and Cor-
rales. This is an open-access article dis-
tributed under the terms of the Cre-
avive Commons Attribution Non Com-
mercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.

www.frontiersin.org March 2012 | Volume 3 | Article 107 | 5

Proteomic focus on HSV-1 infection