In vitro synergy of isavuconazole in combination with colistin against Candida auris

Patrick Schwarz 1,2*, Anne-Laure Bidaud 3 & Eric Dannaoui 3,4

The in vitro interactions of isavuconazole with colistin were evaluated against 15 clinical Candida auris isolates by a microdilution checkerboard technique based on the EUCAST reference method for antifungal susceptibility testing and by agar diffusion using isavuconazole gradient concentration strips with or without colistin incorporated RPMI agar. Interpretation of the checkerboard results was done by the fractional inhibitory concentration index and by response surface analysis based on the Bliss model. By checkerboard, combination was synergistic for 93% of the isolates when interpretation of the data was done by fractional inhibitory concentration index, and for 80% of the isolates by response surface analysis interpretation. By agar diffusion test, although all MICs in combination decreased compared to isavuconazole alone, only 13% of the isolates met the definition of synergy. Essential agreement of EUCAST and gradient concentration strip MICs at +/- 2 log2 dilutions was 93.3%. Antagonistic interactions were never observed for any technique or interpretation model used.

Candida auris is an emerging, multidrug-resistant, fungal pathogen, responsible for invasive hospital-acquired infections1–3. The yeast was first isolated from an ear sample in Japan and described in 20094. Initially supposed to be a rare pathogen, the incidence of this Candida species has increased and cases have been reported in several countries across five continents5. The emergence of C. auris is alarming, as the species has the potential to exhibit or to develop multidrug-resistance to antifungals6,7. C. auris is associated with a cumulative mortality rate of 33% in all reported cases until 2018 despite antifungal treatment8. Antifungal combination may be an interesting therapeutic approach to improve the prognosis of the patients. Indeed, combination of two molecules may reduce toxicity, decrease antifungal dosages, improve the pharmacokinetics of one or both drugs, and more importantly achieve synergistic interactions9. Nevertheless, only few studies have evaluated in vitro combinations against C. auris10–13. First of all, the combination of micafungin with voriconazole was synergistic against all tested isolates12. Another more recent study evaluated the combination of fluconazole with amphotericin B, voriconazole or micafungin against 15 isolates and showed no antagonism10. Antifungal combinations including fluconazole were also evaluated against C. auris isolates from a New York outbreak13. Combinations of antifungals with non-antifungal drugs such as colistin have also been tested11. Colistin belongs to the family of polymyxins, from the group of polymyxins E. It targets the external membrane of the gram negative bacteria, more precisely lipid A, a lipopolysaccharide14. This leads to an alteration of the external membrane, resulting in an increased membrane permeability, finally leading to cell death15. In Candida albicans and Rhizopus arrhizus, it has been shown that colistin damages the cytoplasmic membrane16,17. This mechanism of colistin could favour the penetration of antifungals, which would make the antibiotic an interesting partner to use in combination therapy for the treatment of fungal infections. Colistin has been tested in vitro against yeasts17,21, and filamentous fungi16,17,19,20, and in vivo in animal models of invasive candidiasis18,21, and mucormycosis16 with various activities and efficacies. Isavuconazole is a new broad spectrum azole recommended for treatment of invasive aspergillosis and mucormycosis22, but has also shown in vitro activity against several yeast species including C. auris23,24. Therefore, combination of colistin with isavuconazole may be of interest against C. auris. The objective of the present study was to evaluate the in vitro interaction of isavuconazole with colistin against a collection of clinical C. auris isolates.

1Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Baldingerstraße, 35043 Marburg, Germany. 2Center for Invasive Mycoses and Antifungals, Philippus University Marburg, 35037 Marburg, Germany. 3Unité de Parasitologie-Mycologie, Hôpital Européen Georges Pompidou, AP-HP, Faculté de Médecine, Université de Paris, 75015 Paris, France. 4EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole Nationale Vétérinaire D’Alfort, USC Anses, 94010 Maisons-Alfort, France. *email: patrick.schwarz@med.uni-marburg.de
Results

The interactions between isavuconazole and colistin evaluated by checkerboard (interpreted by FICI or by response surface analysis) and by agar diffusion against the 15 C. auris isolates are presented in Table 1. Percentages of the interactions of the different techniques and interpretation models are presented in Table 2.

By microbroth dilution method, the 15 isolates exhibited MICs for isavuconazole alone ranging from 0.004 to 1 µg/mL with a MIC50, MIC90, and geometric mean MIC of 0.25, 0.5, and 0.21 µg/mL, respectively (Table 1). Between the experiments, the isavuconazole MICs were within ±1 log2 dilutions in 100% of the cases (data not shown). Colistin alone did not exhibit in vitro activity alone at the concentrations used for the experiment. MICs for all isolates were >64 µg/mL. By checkerboard and interpretation by fractional inhibitory concentration index (FICI), the interaction of isavuconazole with colistin was synergistic for 93% of the isolates with FICIs ranging from 0.3125 to 0.5 with a mean FICI of 0.4.

Analysis of the checkerboard data by the response surface approach led to similar results. For the combination of isavuconazole with colistin the SUM-SYN-ANT metric ranged from −8.94 to 58.02 (Table 1), with a mean of 32.37. Overall synergy was obtained for 80% of the isolates (Table 2).

By agar diffusion assay MICs of isavuconazole were slightly higher as by checkerboard (p = 0.013) and ranged from 0.006 to 3 µg/mL with a MIC50, MIC90, and a geometric mean MIC of 0.5, 1, and 0.47 µg/mL, respectively. Nevertheless, there was a good correlation between EUCAST and gradient concentration strip MICs with an essential agreement, at ±1 log2 dilutions, of 93.3%. Growth on RPMI agar was not inhibited by incorporation of 64 µg/mL of colistin for all isolates. Although all MICs in combination were lower than MICs of isavuconazole alone, only two isolates met the definition of synergy of a decrease ≥2 log2 dilutions compared to isavuconazole alone. Nevertheless, a decrease of 1 log2 was seen for 6 additional isolates and a decrease of 1.5 log2 for 2 further isolates.

Antagonistic interactions were never observed whatever technique or method of analysis used. Figure 1 shows the synergistic interaction of isavuconazole in combination with colistin for isolate CBS 12771 by the different

Species	Collection number	Checkerboard MICs (µg/mL)	FICI	Response surface analysis	Agar diffusion assay* MICs (µg/mL)					
		ISA	COL	ISA/COL	INTPN	ISA	ISA + COL	INTPN		
C. auris CBS 10913	0.004	128	0.001/32	0.5	SYN	34.8	SYN	0.006	0.003	IND
C. auris CBS 12372	1	128	0.25/32	0.5	SYN	−8.94	IND	1	0.5	IND
C. auris CBS 12373	0.25	128	0.125/1	0.5078	IND	25.05	SYN	3	0.5	SYN
C. auris CBS 12766	0.25	128	0.06/8	0.3125	SYN	31.43	SYN	0.25	0.19	IND
C. auris CBS 12767	0.25	128	0.06/8	0.3125	SYN	23.91	IND	0.5	0.25	IND
C. auris CBS 12768	0.25	128	0.06/8	0.3125	SYN	25.13	SYN	0.38	0.25	IND
C. auris CBS 12769	0.25	128	0.06/8	0.3125	SYN	23.38	IND	0.75	0.25	IND
C. auris CBS 12770	0.5	128	0.125/8	0.3125	SYN	25.04	SYN	1	0.5	IND
C. auris CBS 12771	0.25	128	0.06/32	0.5	SYN	28.04	SYN	1	0.25	SYN
C. auris CBS 12772	0.25	128	0.06/16	0.375	SYN	44.93	SYN	0.5	0.25	IND
C. auris CBS 12773	0.125	128	0.03/32	0.5	SYN	37.50	SYN	0.5	0.19	IND
C. auris CBS 12774	0.25	128	0.06/16	0.375	SYN	38.7	SYN	0.75	0.38	IND
C. auris CBS 12775	0.25	128	0.06/16	0.375	SYN	55.42	SYN	0.5	0.38	IND
C. auris CBS 12776	0.25	128	0.06/16	0.375	SYN	58.02	SYN	0.38	0.25	IND
C. auris CBS 12777	0.25	128	0.06/32	0.5	SYN	42.71	SYN	0.5	0.38	IND

Table 1. Interaction of isavuconazole with colistin against Candida auris by checkerboard and interpretation by fractional inhibitory concentration index, response surface analysis and by agar diffusion. FICI, fractional inhibitory concentration index; INTPN, interpretation; SYN, synergy; IND, no interaction; ISA, isavuconazole; COL, colistin; CBS, Westerdijk Fungal Biodiversity Institute. *Colistin alone at 64 µg/mL incorporated in the RPMI agar did not inhibit the growth of any of the isolates. Other collection number: KCTC 17809. Other collection number: KCTC 17810.

Technique (interpretation)	% of isolates with the following interaction		
	Synergy	No interaction	Antagonism
Checkerboard (FICI)	93	7	0
Checkerboard (RSA)	80	20	0
Agar diffusion	13	87	0

Table 2. Summary of interactions of isavuconazole with colistin against 15 Candida auris isolates by checkerboard and interpretation by fractional inhibitory concentration index, response surface analysis and by agar diffusion. FICI, fractional inhibitory concentration index; RSA, response surface analysis.
in vitro techniques and interpretation models used in this study. Figure 2 shows the interaction of isavuconazole in combination with colistin against all 15 isolates by agar diffusion assay.

Discussion

Recently, the appearance of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)\(^{25}\), led to a global health crisis, since there were only symptomatic treatment options available\(^{26}\). Drugs designated for other diseases were repurposed for COVID-19 to overcome this therapeutic issue. Interventions against SARS-CoV-2 included prophylaxis to augment epithelial defence (e.g. angiotensin II receptor antagonists), reduction of viral load (e.g. remdesivir), tempering inflammatory signalling and injury (e.g. dexamethasone), and inhibitors targeting the molecular mediators of the maladaptive COVID-19 immune response (e.g. IL-6)\(^{27}\). There are three major advantages of drug repurposing: first the use of de-risked compounds, second the potentially lower overall development costs, and third shorter development timelines\(^{28}\). Already prior to the COVID-19 pandemic repurposing of drugs had become trendy. Repurposed drugs have shown activity against bacteria\(^{29}\), yeasts\(^{30,31}\), and filamentous fungi\(^{32-34}\). Colistin is a drug of last resort with activity against multidrug-resistant gram-negative bacteria such as *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, or *Acinetobacter baumannii*\(^{35}\); but colistin has also shown to damage the cell membrane of *C. albicans*\(^{17}\), which could make it an interesting partner in combination therapy against multidrug-resistant *C. auris* infections. Indeed, resistance to all four major classes of antifungals (polyenes, azoles, pyrimidines, and echinocandins) has been reported in clinical isolates of *C. auris*\(^{29}\). Therefore, combination therapy may be an interesting option compared to monotherapies for management of antifungal-resistant *C. auris* infections.

One of the problems of assessing antifungal combinations by the FICI is the choice of the endpoint. Fifty percent of inhibition is recommended for yeasts and azoles for the determination of the MICs of antifungals
Figure 2. Agar diffusion assay for the 15 isolates. (A) Panels: isavuconazole alone; (B) panels: isavuconazole + colistin at 64 µg/mL incorporated in the agar. Colistin alone at 64 µg/mL incorporated in the agar did not inhibit the growth of any of the isolates (pictures not shown).
After preparation, the medium was sterilized by vacuum filtration through a 0.22 µm pore size filter (Merck) and adjusted to pH 7.0 with 1 M sodium hydroxide. To allow growth to a final concentration of 2%, buffered with 3-(N-morpholino) propanesulfonic acid (MOPS) (Merck) at pH 7.0. In this study, broth microdilution MICs of colistin in combination ranged from 1 to 32 µg/mL. In patients with cystic fibrosis receiving prolonged colistin therapy, peak serum levels of 13 to 32 µg/mL were measured, which would be sufficient to be effective against our isolates; but it has to be noted that the use of colistin in critically ill patients is limited due to its nephrotoxicity. In critically ill patients peak levels of 0.5 to 9.4 µg/mL were reported. Nevertheless, in vivo synergistic interactions could be present at lower concentrations than those tested in vitro. Indeed, one study evaluated the in vitro interaction of tacrolimus with amphotericin B or fluconazole against Cryptococcus neoformans by checkerboard, and synergy was obtained for both combinations. Despite lower achievable tacrolimus serum concentrations than the concentrations used in the microplates, the outcome of solid organ transplant recipients with cryptococcosis receiving tacrolimus long-term therapy and fluconazole against Candida species was significantly better than the outcome of patients receiving only amphotericin B or fluconazole, respectively. Fifty microliters of each concentration were distributed from row 1 to 8 for colistin and from column 1 to 11 for isavuconazole. Column 12 was used as a growth control and contained 100 µL of double strength RPMI medium with 1% of DMSO.

Materials and methods
Isolates. A panel of 15 clinical C. auris isolates from the collection of Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands) was used for the experiments. All isolates have been identified by molecular biology previously. The isolates were subcultured from frozen stocks on Sabouraud dextrose agar slants containing chloramphenicol and gentamycin (Bio-Rad Laboratories, Feldkirchen, Germany) for 24 h at 35 °C to ensure purity and viability. The reference strains Candida krusei ATCC 6258 and Candida parapsilosis ATCC 22,019 were included as quality controls.

Medium preparation. As a test medium, Roswell Park Memorial Institute 1640 (RPMI) medium (with L-glutamine, with pH indicator, without bicarbonate) (Merck, Darmstadt, Germany) supplemented with d-glucose to a final concentration of 1%, buffered with 3-(N-morpholino) propanesulfonic acid (MOPS) (Merck) at a final concentration of 0.165 mol/L, and adjusted to pH 7.0 with 1 M sodium hydroxide, was used. To allow growth to a final concentration of 2%, buffered with 3-(N-morpholino) propanesulfonic acid (MOPS) (Merck) at pH 7.0. The medium was prepared in double strength. After preparation, the medium was sterilized by vacuum filtration through a 0.22 µm pore size filter (Merck).

Drugs and microplate preparation. The combination was tested using the EUCAST guidelines for antifungal susceptibility testing of yeasts, with modifications for a broth microdilution checkerboard procedure. Experiments were performed using Nunclon delta surface 96-wells microtiter plates for adherent cells (Thermo Fisher Scientific, Darmstadt, Germany). The included drugs were isavuconazole and colistin (Merck). The stock solutions of isavuconazole (3200 µg/mL) and colistin (12,800 µg/mL) were prepared in DMSO and sterile, distilled water, respectively. The drug dilutions were performed four times the final concentration in double strength RPMI medium. The combination was tested using a two-dimensional checkerboard with 2-fold dilutions. The final concentrations were 0.002 to 0.5 µg/mL and 1 to 64 µg/mL for isavuconazole and colistin, respectively. Fifty microliters of each concentration were distributed from row 1 to 8 for colistin and from column 1 to 11 for isavuconazole. Column 12 was used as a growth control and contained 100 µL of double strength RPMI medium with 1% of DMSO.
Inoculum preparation and inoculation of the microplates. Before the preparation of the inoculum, all isolates were subcultured for a second time on Sabouraud agar slants supplemented with chloramphenicol and cycloheximide and incubated at 35 °C, 95% humidity for 24 h. A few colonies were transferred to a sterile tube containing sterile distilled water. The suspension was counted in a haemocytometer and adjusted to 3.5 × 10^6 CFU/mL in sterile distilled water. This solution was used for the inoculation of the RPMI agar plates. The solution was further diluted to 2 × 10^5 CFU/mL, and 100 µL of the final inoculum were distributed in each well to inoculate the microdilution plates. The inoculum was microwaved plates on a Sabouraud dextrose agar plate with a sterile Drigalski spatula. After an incubation time of 24–48 h at 35 °C, the CFU were counted to ensure the inoculum size and the viability of the yeasts. The microplates were incubated at 35 °C, 95% humidity, and the optical densities were read spectrophotometrically at 24 h at a wavelength of 530 nm with the spectrometer MultiSkan FC (Thermo Fisher Scientific). Before the reading, the microplates were shaken with the PMS-1000 Microplate Shaker (Grant Instruments, Shepreth, United Kingdom). In each set of experiments a blank microplate was included. Each well of the blank microplates was inoculated with 100 µL of sterile distilled water. Blank microplates were also incubated at 35 °C, 95% humidity for 24 h. Before calculation of the MICs, the blank plate was subtracted from the microplates inoculated with the yeasts. Experiments were run in triplicate on different days.

Interpretation of the checkerboard results. Fractional inhibition concentration index. The MICs alone and in combination were defined as the lowest concentration that gave 50% of inhibition compared to the growth control determined by spectrophotometric reading. For the calculation of the FICI, the high off-scale MICs were converted to the next log2 dilution. The FICI was calculated as follows: FICI = (MICin combination/MICalone)isavuconazole + (MICin combination/MICalone)colistin. The FICI data was interpreted following way: FICI ≤ 0.5 = synergy, FICI > 0.5–4 = no interaction, and FICI > 4.0 = antagonism.

Response surface analysis. Response surface analysis are independent of endpoint definitions like the FICI analysis. The experimental data generated with the microplates as a percentage of growth compared to the growth control is transformed into a dose–response curve for each drug alone. Based on the Bliss model, a theoretical response surface of the combination corresponding to an indifferent interaction is calculated using the dose–response curves of both drugs. For the calculation of the synergy distribution, the modelled response surface is compared with experimental data. To visualize the results, the synergy levels were mapped onto the experimental combination dose–response surface. To summarize the synergy distribution, the SUM-SYN-ANT metric was used, which represents the sum of synergy and antagonism observed. For the interpretation of the metric, a threshold of 24.5% was used as previously determined. Synergy was assumed when the SUM-SYN-ANT was >24.5%, and antagonism was assumed when and < −24.5%. Between − 24.5 and 24.5%, no interaction was concluded. For the calculation of the SUM-SYN-ANT of the different isolates, the results of two different runs have been combined. All calculations were performed using Combenefit software.

Preparation of the RPMI agar plates. Fifteen grams of agar were dissolved in 450 mL of distilled water. After the pH was adjusted to 7 with 0.1 M NaOH, the solution was set to 500 mL with distilled water, and autoclaved for 20 min at 121 °C and 2 bars. The liquid agar and 500 mL of double strength RPMI medium were put into a water bath at 50 °C. After the adjustment of the temperature to 50 °C, both solutions were mixed under a flow bench and stirred by a stir fish. Additionally, colistin RPMI agar plates contained the adequate volume of sterile colistin stock solution to a final of 64 µg/mL. Twenty microliters of the liquid RPMI agar or colistin RPMI agar were added to sterile petri dishes (diameter 90 mm) (Merck) under a flow bench and allowed to cool down.

Inoculation of RPMI agar plates. The RPMI agar plates were inoculated using the inoculator retro C80 (bioMérieux, Nürtingen, Germany). Briefly, a sterile cotton swap was soaked in the yeast suspension set to 3.5 × 10^6 CFU/mL, and excess fluid was removed by pressing the swab against the wall of the tube. A cross was gently drawn over the agar surface using the wet cotton swap. After the inoculator was turned on with maximum rotation, the cotton swap was moved from the edge of the agar surface to the middle of plate and back applying a slight pressure. After inoculation, the plates were allowed to dry and isavuconazole gradient concentration strips were placed onto the agar surface. For the activity of isavuconazole alone RPMI agar plates were used. For the activity of colistin alone, and for the combination, colistin RPMI agar plates were used. Activity of colistin alone, was tested by inoculation of the agar plate, without placement of a gradient concentration strip onto the surface. Agar plates were incubated at 35 °C and pictures were taken at 48 h. Reading of the MICs was done according to the recommendations of the manufacturer.

Interpretation of the results of RPMI agar plates. A decrease or an increase of ≥ 2 log2 dilutions in MIC compared to the most active drug has been defined as synergy or antagonism, respectively. A decrease or an increase of less than 2 log2 dilutions in MIC to the most active drug has been defined as no interaction.

Comparison of EUCAST and gradient concentration strip MICs. Isavuconazole MICs obtained by EUCAST and gradient concentration strips were compared by a non-parametric unpaired t-test (Mann–Whitney). Essential agreement between the two methods was evaluated by calculating the percentage of the MICs, which differed by no more than 2 log2 dilutions.
Conference presentation. The results of this work (abstract number 2614) were published in the abstract book of the 30th European Congress of Clinical Microbiology and Infectious Diseases, supposed to be held 18th–21st April 2020 in Paris, France, but cancelled due to the COVID-19 pandemic.

Received: 20 August 2020; Accepted: 18 November 2020
Published online: 08 December 2020

References

1. Jeffery-Smith, A. et al. Candida auris: a review of the literature. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00029-17 (2018).
2. Lone, S. A. & Ahmad, A. Candida auris—the growing menace to global health. Mycoses 62, 620–637. https://doi.org/10.1111/myc.12904 (2019).
3. Spivak, E. S. & Hanson, K. E. Candida auris: an emerging fungal pathogen. J. Clin. Microbiol. https://doi.org/10.1128/JCM.01588-17 (2018).

7. Lockhart, S. R.

5. Bidaud, A. L., Chowdhary, A. & Dannaoui, E. Antifungal combinations. J. Antimicrob. Chemother. 53, 41–44. https://doi.org/10.1111/jac.13482.2018.00983.x (2009).
6. Bidaud, A. L., Botterel, F., Chowdhary, A. & Dannaoui, E. Antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against Candida auris shows no antagonism. Antimicrob. Agents Chemother. (2018) https://doi.org/10.1128/AAC.00225-18.

9. Vitale, R. G., Afeltra, J. & Dannaoui, E. Antifungal combinations. J. Antimicrob. Chemother. 73, 891–899. https://doi.org/10.1093/jac/dkz480 (2018).
10. Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140. https://doi.org/10.1093/cid/ciw691 (2017).

11. Bidaud, A. L., Dyenontin, E., Botterel, F., Chowdhary, A. & Dannaoui, E. Colistin interacts synergistically with echinocandins against Candida auris. Int. J. Antimicrob. Agents 55, 105901. https://doi.org/10.1016/j.ijantimicag.2020.105901 (2020).
12. Fakhim, H. et al. In vitro interactions of echinocandins with triazole against multidrug-resistant Candida auris. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01056-17 (2017).
13. O’Brien, B., Chaturvedi, S. & Chaturvedi, V. In vitro evaluation of antifungal drug combinations against multidrug-resistant Candida auris isolates from New York outbreak. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02195-19 (2020).

14. Gregoire, N., Aranza-Climent, V., Magreault, S., Marchand, S. & Courto, W. Clinical pharmacokinetics and pharmacodynamics of colistin. Clin. Pharmacokinet. 56, 441–460. https://doi.org/10.1007/s40262-017-0561-1 (2017).
15. Brennan-Krohn, T., Pironi, A. & Kirby, J. E. Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00873-18 (2018).
16. Ben-Ami, R., Lewis, R. E., Tarrand, J., Leventakos, K. & Kontoyiannis, D. P. Antifungal activity of colistin against Mucorales species in vitro and in a murine model of Rhizopus oryzae pulmonary infection. Antimicrob. Agents Chemother. 54, 484–490. https://doi.org/10.1128/AAC.00956-09 (2010).

17. Youshf, H., Ranque, S., Rolain, J. M. & Bittar, F. In vitro polymyxin activity against clinical multidrug-resistant fungi. Antimicrob. Resist. Infect. Control 8, 66. https://doi.org/10.1186/s13756-019-0521-7 (2019).
18. Mac-Callum, D. M., Desbois, A. P. & Coote, P. J. Enhanced efficacy of synergistic combinations of antifungal peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection. Eur. J. Clin. Microbiol. Infect. Dis. 32, 1055–1062. https://doi.org/10.1007/s11064-013-1850-8 (2013).
19. Schumuth, H. et al. In vitro activity of colistin as single agent and in combination with antifungals against filamentous fungi occurring in patients with cystic fibrosis. Mycoses 56, 297–303. https://doi.org/10.1111/myc.12022 (2013).
20. Teixeira-Santos, R. et al. Unveiling the synergistic interaction between liposomal amphotericin B and colistin. Front. Microbiol. 7, 1439. https://doi.org/10.3389/fmicb.2016.01439 (2016).
21. Zeitler, U. et al. Synergy of the antibiotic colistin with echinocandin antifungals in Candida species. J. Antimicrob. Chemother. 68, 1285–1296. https://doi.org/10.1093/jac/dks538 (2013).
22. Natesan, S. K. & Chandrasekar, P. H. Isavuconazole for the treatment of invasive aspergillosis and mucormycosis: current evidence, safety, efficacy, and clinical recommendations. Infect. Drug Resist. 9, 291–300. https://doi.org/10.2147/IDR.S102207 (2016).
23. Arendrup, M. C., Prakash, A., Meliatiis, J., Sharma, C. & Chowdhary, A. Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00485-17 (2017).
24. Ruiz-Gaitan, A. C., Canton, E., Fernandez-Rivero, M. E., Ramirez, P. & Peman, J. Outbreak of Candida auris in Spain: a comparison of antifungal activity by three methods with published data. Int. J. Antimicrob. Agents 53, 541–546. https://doi.org/10.1016/j.ijantimicag.2019.02.005 (2019).
25. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733. https://doi.org/10.1056/NEJMoa2001017 (2020).
26. Sanders, J. M., Monogue, M. L., Jodlowski, T. Z. & Cutrell, J. B. Pharmacologic treatments for coronavirus disease (COVID-19): a review. Jama. https://doi.org/10.1001/jama.2020.6019 (2019).
27. Hussman, J. P. Cellular and molecular pathways of COVID-19 and potential points of therapeutic intervention. Front. Pharmacol. https://doi.org/10.3389/fphar.2020.01169 (2020).
28. Pushpakan, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58. https://doi.org/10.1038/nrd.2018.168 (2019).
29. Miro-Canturri, A., Ayerbe-Algaba, R. & Smani, Y. Drug repurposing for the treatment of bacterial and fungal infections. Front. Microbiol. 10, 41. https://doi.org/10.3389/fmicb.2019.00041 (2019).
30. Bass, J. B. Jr. et al. Treatment of tuberculosis and tuberculosis infection in adults and children. Am. J. Respir. Crit. Care Med. 149, 1359–1374. https://doi.org/10.1164/ajcc, 1994.
31. Schwarz, P., Cornely, O. A. & Dannaoui, E. Antifungal combinations in Mucorales: a microbiological perspective. Mycoses https://doi.org/10.1111/myc.12909 (2019).
32. Schwarz, P. & Dannaoui, E. In vitro interaction between isavuconazole and tacrolimus, cyclosporin A or sirolimus against Aspergillus species. J. Fungi (Basel). https://doi.org/10.3390/jof06030103 (2020).
33. Schwarz, P., Schwarz, P. V., Felsek-Zech, H. & Dannaoui, E. In vitro interactions between isavuconazole and tacrolimus, cyclosporin A or sirolimus against Mucorales. J. Antimicrob. Chemother. 74, 1921–1927. https://doi.org/10.1093/jac/dkz102 (2019).
Author contributions

P.S. performed the experiments and wrote the first draft of the manuscript. All authors analyzed the results. The figures were prepared by A.-L.B. and E.D. E.D. and P.S. contributed to the revisions. All authors drafted the final article.

Funding

Open Access funding enabled and organized by Projekt DEAL. This study was supported by internal funding.

Competing interests

Patrick Schwarz has received research grants from Basilea Pharmaceutica, Gilead and Pfizer and received travel grants from Gilead and Pfizer. During the past 5 years, Eric Dannaoui has received research grants from MSD and Gilead; travel grants from Gilead, MSD, Pfizer, and Astellas; and speaker’s fee from Gilead, MSD, and Astellas. Anne-Laure Bidaud has none to declare.

Additional information

Correspondence and requests for materials should be addressed to P.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020