Nucleotide Oligomerization Domain 2 (Nod2) Is Not Involved in the Pattern Recognition of Candida albicans

Chantal A. A. van der Graaf,1,3 Mihai G. Netea,1,3 Barbara Franke,2 Stephen E. Girardin,4 Jos W. M. van der Meer,1,3 and Bart Jan Kullberg1,3,*

Departments of Medicine1 and Human Genetics,2 Radboud University Nijmegen Medical Center, and Nijmegen University Center for Infectious Diseases,3 Nijmegen, The Netherlands, and Unité de Pathogénie Microbiennne Moleculaire, Institut Pasteur, Paris, France4

Received 10 September 2005/Returned for modification 18 October 2005/Accepted 20 December 2005

Candida albicans is a major fungal pathogen which causes invasive bloodstream infections in immunocompromised hosts (5), as well as mucosal infections, such as recurrent vulvovaginal candidiasis (RVVC) in women. Despite the importance of C. albicans in causing disease, little is known of how it is recognized by cells and how the innate immune system mounts an effective defense. Recently, a role for Toll-like receptor 2 (TLR2) and TLR4, which are pattern recognition receptors for C. albicans, has been established (9). Analogous to the essential extracellular recognition functions mediated through TLRs (1), another important class of pattern recognition receptors comprises the nucleotide oligomerization domain (Nod) and caspase recruitment domain proteins, which are responsible for the intracellular recognition of microbial components like peptidoglycan (PGN) (4). It has been shown that homozygosity for the 3020insC frameshift variant of Nod2 gene is associated with decreased NF-κB translocation after stimulation with peptidoglycan, leading to a decreased proinflammatory cytokine response (3). Patients homozygous for the 3020insC frameshift mutation are at high risk for the development of Crohn’s disease (10). Recent data have shown that Nod2 modulates TLR2 signaling (13), and we have demonstrated synergistic effects of Nod2 with TLR2 and TLR4 (8). We therefore hypothesized that Nod2 contributes to the recognition of C. albicans by modulating TLR2- and TLR4-dependent Candida recognition.

In the present study, we have investigated whether Nod2 is involved in the recognition of C. albicans by using two experimental approaches. We assessed the prevalence of Nod2 polymorphisms in patients with Candida bloodstream infections and in patients with RVVC and investigated the role of Nod2 in cytokine stimulation by C. albicans blastoconidia.

Nod2 genotyping. Nod2 genotyping was performed for 40 nonneutropenic individuals who had Candida bloodstream infections (defined by at least one positive blood culture and clinical signs of infection) and 15 women with recurrent vulvovaginal candidiasis who had had more than three culture-proven symptomatic episodes of a vulvovaginal Candida infection during a 12-month period. The 51 healthy volunteers were blood donors at Radboud University Nijmegen Medical Center.

DNA was extracted from whole blood by standard procedures. Genotyping was performed by multiplex pyrosequencing (11). Amplification of fragments containing the polymorphic sites 2104C→T, 2722G→C, and 3020insC was performed in multiplex with a three-primer system: a biotin-labeled universal primer (5’-biotin-GCTGCTCCGGTTCATAGATT-3’) and two sequence-specific primers, one of which had a universal tail (Table 1). The 50-μl PCR mixtures contained 100 to 200 ng genomic DNA, 10 pmol of each sequence-specific primer, 1 pmol of each sequence-specific primer with a universal tail and 9 pmol of the biotin-labeled universal primer, PCR Gold Buffer (Applied Biosystems) with 2.5 mM MgCl2, 17 mM deoxynucleoside triphosphates, and 2 U Taq DNA polymerase (Applied Biosystems).

The samples were denaturated at 94°C for 10 min and then subjected to 40 cycles of amplification (94°C for 1 min, 62°C for 1 min, and 72°C for 1 min, with a final extension at 72°C for 7 min) in a PTC-200 thermal cycler (MJ Research). The genotyping results were validated by conventional sequencing.

The frequency of carriage of the Nod2 variants in patients and controls is shown in Table 2. The frequencies of Nod2 variant carriage were 17.5% among patients with Candida bloodstream infections and 20% among patients with recurrent vulvovaginal candidiasis, whereas it was 16% in healthy volunteers. We also compared the frequencies of carriage of individual Nod2 variants to the frequency data from other studies reporting on healthy Dutch volunteers (Table 2). By using Fisher’s exact test, no significant differences between Candida-infected patients and the healthy control groups were observed.

Peripheral blood mononuclear cell (PBMC) stimulation. Five healthy controls who were wild type for the Nod2 3020insC polymorphism, six patients with Crohn’s disease who were wild type for the Nod2 polymorphism and four patients with Crohn’s disease who were homozygous for the 3020insC polymorphism were investigated. The patients with Crohn’s disease have been described earlier (8) and were not treated with medication prone...
to modulate cytokines (steroids, anti-tumor necrosis factor [anti-TNF]) either before or during the experiments. Mononuclear cells were isolated from peripheral blood by density gradient centrifugation over Ficoll-Hypaque (Amersham Biosciences, Sweden); washed twice in sterile phosphate-buffered saline; and resuspended in RPMI 1640 supplemented with 10 mM L-glutamine, gentamicin at 10 μg/ml, and 10 mM pyruvate. The cells were counted in a hemacytometer, and the number of cells was adjusted to 5 × 10^6/ml. Heat-killed C. albicans blastoconidia (10^7 CFU/ml, strain ATCC MYA 3573), zymosan (100 μg/ml; Sigma, St. Louis, MO), Escherichia coli lipopolysaccharide (LPS; 1 ng/ml; Sigma), and Staphylococcus aureus peptidoglycan (1 ng/ml; Sigma) were added to 5 × 10^5 mononuclear cells in 100 μl in a 96-well microtiter plate (Greiner, Alphen a/d Rijn, The Netherlands) and were incubated for 24 h at 37°C in a 5% CO2 atmosphere.

When the PBMCs were stimulated with purified E. coli LPS (1 ng/ml), a TLR4 ligand, the levels of production of TNF and interleukin-10 (IL-10) in the patients homozygous for the 3020insC variant did not differ from those in patients with Crohn’s disease or healthy volunteers with wild-type Nod2 alleles (Fig. 1A and B). The cytokine responses by cells carrying the Nod2 frameshift mutation variant were not affected after stimulation with C. albicans blastoconidia or zymosan, a yeast cell wall particle, or TLR2 ligand. After stimulation with PGN, cells homozygous for the frameshift mutation variant

Table 1. Primer sequences for detection of 2104C→T, 2722G→C, and 3020insC frameshift mutations

SNP used for PCR	Primer	Primer sequence (5′→3′)	Modification	Fragment length (bp)
Universal primer	GCTGCTCCGGTTTCATAGATT	Biotin		
2104C→T Forward	TTCCTGGCAGGGCTGTGT			129
Reverse	AGCCGCTCTCCGTTTCATAGATT			
Sequence	ACATGGGGAAGGCCC			
2722G→C Forward	TAGAGGGAAGGAGACGGTAGTT			140
Reverse	AGCCGCTCTCCGTTTCATAGATT			
Sequence	CTGGTAAACCTTTICA			
3020insC Forward	AGCCGCTCTCCGTTTCATAGATT			127
Reverse	TTCCTACCAGACTTCCAGGATG			
Sequence	TGTCATCTCCTTCAAGGG			

* SNPs, single-nucleotide polymorphisms.

** Table 2. Frequency of carriage of Nod2 polymorphisms in patients with Candida bloodstream infection, patients with recurrent vulvovaginal candidiasis, and healthy volunteers, as well as data from Dutch healthy controls retrieved from the literature

Group	No. of patients with the following Nod2 variants/total no. of patients tested (%) Total (%)	
Candida bloodstream infection (n = 40)	2104C→T 2722G→C 3020insC	5/40 (12.5) 1/40 (2.5) 1/40 (2.5) 17.5
RVVC (n = 15)	3/15 (20) 0/15 0/15 20	
Control (n = 51)	2/49(4) 2/51 (4) 4/51 (8) 16	
Controls from literature	Laine et al. (6) Murillo et al. (7)	10/97 (10.3) 9/152 (5.9) 5/97 (5.2) 3/152 (2) 16

* One of the patients is homozygous.

** In two cases, genotyping failed.

* ND, not determined.

* NA, not applicable.

** FIG. 1. Production of TNF (A) and IL-10 (B) by the PBMCs of five healthy volunteers bearing the wild-type allele for Nod2 3020insC variant (control), six patients with Crohn’s disease bearing the wild-type alleles for Nod2 3020insC variant (Nod2-WT), and four patients with Crohn’s disease homozygous for this variant (Nod2-fs). The PBMCs were stimulated with E. coli LPS (1 ng/ml), S. aureus peptidoglycan (1 ng/ml), heat-killed C. albicans 10^7 CFU/ml, and zymosan (100 μg/ml). Data are represented as means ± standard errors of the means. *, P < 0.05, Mann-Whitney U test.
Women with RVVC is similar to that among healthy volunteers. However, in the present study, we showed significantly lower levels of TNF and IL-10 production compared to that by nod2 wild-type cells (Fig. 1A, B).

Stimulation of nod1- and nod2-transfected HEK cells. Studies examining the activation of NF-κB in cells overexpressing nod1 and nod2 were carried out as described previously (2). In brief, 1 × 10⁶/ml HEK293T cells were transfected overnight with 1 ng of either nod1 or nod2 plus 75 ng luciferase reporter plasmid. At the same time, heat-killed *Candida* blastoconidia (5 × 10⁶ CFU/ml and 5 × 10⁶ CFU/ml), MDP (100 nM), and TriDAP (100 nM) served as control stimuli for nod2 and nod1, respectively.

The innate detection of fungal products has been shown to involve both of the extracellular receptors TLR2 and TLR4. We have previously shown a role of TLR4 in disseminated candidiasis. Nature Immunol. 2001. Human nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276:2551–2554.

REFERENCES

1. Aderem, A., and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406:782–787.
2. Girardin, S. E., I. G. Boneca, L. A. M. Carneiro, A. Antignac, M. Jehanno, J. Viala, K. Tedin, M. K. Taha, A. Labigne, U. Zahringer, A. J. Coyle, P. S. DiStefano, J. Bertin, P. J. Sansonetti, and D. J. Philpott. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587.
3. Girardin, S. E., I. G. Boneca, G. Viala, M. Chamaillard, A. Labigne, G. Thomas, D. J. Philpott, and P. J. Sansonetti. 2003. NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:8869–8872.
4. Inohara, N., Y. Ogura, F. F. Chen, A. Muto, and G. Nunez. 2001. Human NOD1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276:2551–2554.
5. Kullberg, B. J., and A. M. L. Oude Lashof. 2002. Epidemiology of opportunistic invasive mycoses. Eur. J. Med. Res. 7:183–191.
6. Laine, M. L., I. S. Murillo, S. A. Morrè, E. G. Winkel, A. S. Pena, and A. J. van Winkelhoof. 2004. CARD15 gene mutations in periodontitis. J. Clin. Periodontol. 31:890–893.
7. Murillo, L., J. B. Crasius, A. A. van Bodegraven, B. Z. Alizadeh, and A. S. Pena. 2002. CARD15 gene and the classification of Crohn’s disease. Immunogenetics 54:59–61.
8. Netea, M. G., G. Ferwerda, D. J. de Jong, T. Jansen, L. Jacobs, M. Kramer, T. H. Naber, J. P. Drenth, S. E. Girardin, B. J. Kullberg, G. J. Adema, and J. W. M. van der Meer. 2005. NOD2 modulates specific TLR pathways for the induction of cytokine release. J. Immunol. 174:6518–6523.
9. Netea, M. G., C. A. A. van der Graaf, A. G. V. Kyn, C. Verschuuren, J. W. M. van der Meer, and B. J. Kullberg. 2002. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185:1483–1489.
10. Ogura, Y., D. K. Bonen, N. Inohara, D. L. Nicola, F. F. Chen, R. Ramos, H. Britton, T. Moran, R. Karaliaskas, R. H. Duerr, J. P. Aichkar, S. R. Brant, T. H. Bayless, B. K. Schirchner, S. B. Hanauer, G. Nunez, and J. H. Cho. 2001. A frameshift mutation in nod2 associated with susceptibility to Crohn’s disease. Nature 411:603–606.
11. Palmieri, O., S. Toth, A. Ferraris, A. Latiano, V. Annese, B. Palmieri, O., S. Toth, A. Ferraris, A. Latiano, V. Annese, B. Laine, M. L., L. S. Murillo, S. A. Morre, E. G. Winkel, A. S. Pena, and A. J. van Winkelhoof. 2002. CARD15 gene and the classification of Crohn’s disease. Immunogenetics 54:59–61.
12. Girardin, S. E., I. G. Boneca, G. Viala, M. Chamaillard, A. Labigne, G. Thomas, D. J. Philpott, and P. J. Sansonetti. 2003. NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:8869–8872.
13. Boneca, I. G., B. Z. Alizadeh, and A. S. Pena. 2002. CARD15 gene and the classification of Crohn’s disease. Immunogenetics 54:59–61.
14. Ogura, Y., D. K. Bonen, N. Inohara, D. L. Nicola, F. F. Chen, R. Ramos, H. Britton, T. Moran, R. Karaliaskas, R. H. Duerr, J. P. Aichkar, S. R. Brant, T. H. Bayless, B. K. Schirchner, S. B. Hanauer, G. Nunez, and J. H. Cho. 2001. A frameshift mutation in nod2 associated with susceptibility to Crohn’s disease. Nature 411:603–606.
15. Palmieri, O., S. Toth, A. Ferraris, A. Latiano, V. Annese, B. Laine, M. L., L. S. Murillo, S. A. Morre, E. G. Winkel, A. S. Pena, and A. J. van Winkelhoof. 2002. CARD15 gene and the classification of Crohn’s disease. Immunogenetics 54:59–61.
16. Girardin, S. E., I. G. Boneca, G. Viala, M. Chamaillard, A. Labigne, G. Thomas, D. J. Philpott, and P. J. Sansonetti. 2003. NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:8869–8872.
17. Boneca, I. G., B. Z. Alizadeh, and A. S. Pena. 2002. CARD15 gene and the classification of Crohn’s disease. Immunogenetics 54:59–61.