Application of artificial neural network and predictor screening method for downscaling climatic parameters

N Rouzegari¹, V Nourani²,³ and A Molajou⁴

¹ Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran. nazak_rouzegari@yahoo.com
² Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.
³ Department of Water Resources Engineering, Faculty of Civil Engineering, Near East University, Nicosia, Cyprus. vnourani@gmail.com
⁴ Department of Water Resources Engineering, Faculty of Civil Engineering, University of Science and Technology, Tehran, Iran. amir.molaju3@yahoo.com

Abstract. In this paper, artificial neural network (ANN) was used for downscaling the outputs of general circulation models (GCMs) to evaluate changes in precipitation and mean temperature for a future period in Urmia at the north-west of Iran. MIROC-ESM-CHEM from IPCC AR5 was selected as an acceptable model based on correlation coefficient (CC) values, which is calculated between precipitation of GCM models and precipitation data prepared by Urmia Meteorological Organization for 1951-2000. As a first step, the most important parameters of the MIROC-ESM-CHEM were selected before the downscaling process by ANN in the base period (1951-2000). Afterward, the future projections of precipitation and mean temperature during 2020-2060 were applied using ANN-based simulation according to the CC method. By comparing the results, the MIROC-ESM-CHEM showed a 2.01% increase under RCP4.5 and a 0.16% decrease under RCP8.5 in annual precipitation. Also, the temperature projection outputs showed the annual mean temperature would increase in the future period in this area, and it is likely to get warmer.

1. Introduction

Global climatic changes affected by carbon dioxide start to emerge within the next few decades. One of the most important impacts of climate change is changing in water availability in different parts, such as agricultural productions, food control, municipal, and industrial. The precipitation and temperature are the most important variables that studying their changes in the future can be more effective in increasing or eliminating the negative impacts such as drought and flash floods. General circulation models (GCMs) have been developed to simulate the present climate and predict future climatic change and investigate future precipitation and temperature fluctuations [1].

The relationships between the local climate and synoptic-scale circulation must be well understood to predict temperature and precipitation at the regional scale [2]. This should be followed by the application of downscaling procedures. Statistical downscaling models are the most largely applied in predicting hydrologic impact works under climate change scenarios [3].

Several statistical downscaling methods have been already developed and used for the statistically downscaling of GCM outputs. In the recent decade, artificial intelligence (AI)-based methods such as
ANN have been successfully used to predict the hydro-climatic variables or downscaling GCM outputs [4]; [5]. There are plenty of GCM data, and the huge numbers of inputs to the ANN model leads to poor performance of the model, so selecting the dominant inputs among many potential input variables is unavoidable [6]; [7]; [8]; [9].

This study shows the results of the CC method as a feature extraction model in statistical downscaling of precipitation and mean temperature at Urmia synoptic station. Finally, the future climate is projected based on the CC feature extraction method and appropriate downscaling model of GCM (i.e., MIROC-ESM-CHEM) under RCP4.5 and RCP8.5 scenarios.

2. Methods and materials

2.1. Case Study

Urmia city (37° 55′ N, 45° 08′ E) is located in the west of Urmia Lake in the north-west of Iran (figure 1). The city is affected by the winds of the northern and Siberian, Atlantic Ocean, and black and Mediterranean seas. It is an area with a cold and semi-arid climate. The average annual precipitation in this place is about 338 mm, and the average number of ice days during a year is 120 days. The years 1951–2000 were selected as the base period in this study. Monthly precipitation and mean temperature data are available for the base period. figures 2 and 3 shows the distribution of monthly precipitation and mean temperature of the Urmia synoptic station during 1951–2000 respectively.
2.2. CC method
The CC is a common method to evaluate the linear relation between two variables with the value in –1 to +1 range, in which +1 indicates the strong positive linear association and –1 shows the strong negative linear relationship. The value of zero indicates no relationship between the two variables. CC is defined as equation (1) [10]:

\[
CC = \frac{\Sigma (X - \bar{X}) (Y - \bar{Y})}{\sqrt{\Sigma (X - \bar{X})^2 \Sigma (Y - \bar{Y})^2}}
\]

where \(X\) and \(Y\) indicate predictand and predictor, and \(\bar{X}\) and \(\bar{Y}\) are mean values of predictand and predictor, respectively.

2.3. ANN model
In this paper, the three-layer Feed-Forward Neural Network (FFNN) structure (figure 4) is used to downscale the GCM outputs. A layer of processing elements does independent calculations on data and receives and passes the result to another layer. The next layer may in turn make its independent calculation and pass on the result to another layer. Finally, a subgroup of one or more processing elements computes the output of the network. The processing elements are units that are similar to neurons working in the brain. Hence, they are referred to as cells or artificial neurons.

In this study, the Levenberg-Marquardt scheme of the backpropagation algorithm, which has a higher convergence rate [11], was applied in the ANN training process to achieve the best efficiency of the ANN model. The activation function that was applied as the nonlinear kernel of neural networks is the sigmoid Tangent function. The process of network training was stopped when the error rate was obtained in the verification data. In this kind of model, especially in the ANN model, the developing
of the appropriate architecture (i.e. the number of hidden neurons and the number of iteration) is such an important subject that should be taken into consideration [9]. The best conditions were achieved by trial-error testing.

2.4. Evaluation criteria
In this study, both testing and training performances were evaluated using the CC (see equation 1) and the following index [12].

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X - Y)^2}$$ (2)

Here $RMSE$ indicates the error in the units of the model’s output, X, Y and n are observed, simulated and the number of observations data, respectively.

3. Result and discussion
In this study, the predictors (i.e. precipitation) of 22 GCMs model from the 5th Assessment Report (AR5) of IPCC (CMIP5) were chosen. Among the 22 GCMs, one model was selected by comparing CC over monthly precipitation (predictor) data of GCMs and precipitation data (predictand) from the Urmia Meteorological Organization for 1951-2000. The predictors were picked out in four grid points around the study area (figure 1). The results are shown in table 1.

GCM model	S1	S2	S3	S4
1 BCC-CSM 1-1-m	0.18	0.22	0.12	0.15
2 BNU-ESM	0.13	0.14	0.13	0.14
3 CanESM2	0.27	0.24	0.23	0.19
4 CCM3	0.29	0.32	0.24	0.27
5 CMCC-CMS	0.38	0.34	0.28	0.37
6 CSIRO-Mk3-6-0	0.29	0.21	0.14	0.20
7 EC-EARTH	0.40	0.38	0.41	0.42
8 FGOALS-g2	-0.25	-0.22	-0.25	-0.22
9 FIO-ESM	0.28	0.28	0.28	0.28
10 MIROC-ESM-CHEM	**0.43**	**0.57**	**0.43**	**0.44**
11 MPI-ESM-MR	0.40	0.23	0.29	0.38
12 MRI-CGCM3	0.38	0.38	0.26	0.33
13 ACCESS1-3	0.17	0.21	0.41	0.28
14 CESM1-BGC	0.34	0.32	0.28	0.33
15 CMCC-CM	0.39	0.38	0.36	0.38
16 CNRM-CM5	0.31	0.29	0.31	0.29
17 GFDL-CM3	0.32	0.33	0.28	0.40
18 GISS-E2-H	0.24	0.03	0.34	0.37
19 INMCM4	0.28	0.28	0.21	0.24
20 IPSL-CM5A-LR	0.25	0.04	0.16	0.16
21 MIROC5	0.29	0.29	0.20	0.23
22 NorESM1-M	0.36	0.35	0.23	0.26

It can be inferred that the MIROC-ESM-CHEM model with a higher value of CC (i.e., equal to 0.57) is the best in this study. The applied predictors in the MIROC-ESM-CHEM model shown in table 2 were selected as the [13] study.

In the downscaling procedure, it is important to select the dominant predictors [14]. So, for this purpose, the CC feature extraction method was applied. In this way, the predictors with the maximum
Table 2. List of the applied predictors in the current study [13].

Predictor	Description
Mass content of cloud ice (clivi)	Surface Toa Incoming Shortwave Radiation (rsdt)
Cloud area fraction (clt)	Surface Toa Outgoing Shortwave Radiation (rsdt)
Cloud condensed water content (clwvi)	Column Water Vapor (prw)
Surface Evaporation (evspsb1)	Near-Surface Wind Speed (sfcWind)
Surface Latent Heat Flux (hfls)	Temperature at Various Pressure Levels (ta)
Specific Humidity at Various Pressure Levels (hls) (hPa)	Maximum Near-Surface Air Temperature (tasmax)
Surface Upwelling Longwave radiation (rlus)	Minimum Near-Surface Air Temperature (tasmin)
Near-Surface Specific Humidity (huss)	Sea surface temperature (ts)
Near Surface Relative Humidity (hurs)	Near Surface Air Temperature (tas)
Precipitation (pr)	Surface Downward Eastward Wind Stress (tauu)
Convective Precipitation (prc)	Surface Downward Northward Wind Stress (tauv)
Surface Net downward radiative flux at top of atmosphere (rtmt)	Zonal Wind at Various Pressure Levels (ua)
Surface air Pressure (ps)	Eastward Near-Surface Wind Speed (uas)
Relative Humidity at Various Pressure Levels (hur)	Meridional Wind Various Pressure Levels (va)
Surface Toa Outgoing Longwave Radiation (rlut)	Northward Near-Surface Wind Speed (vas)
Surface Downwelling Shortwave Radiation (rsds)	Geopotential Height at Various Pressure Levels (zg)

values of CC, computed between predictor and predictand, in each grid point were ranked and selected.

Table 3 represents the dominant predictors of the MIROC-ESM-CHEM model. The results of precipitation in table 3 denote that the precipitation depends on the atmosphere mass content of cloud ice. This water and ice crystals (clivi) can fall due to the gravity and cause to rain. Another parameter is Toa outgoing longwave flux. The solar radiation on the Earth (rlut) heats its air. This air can rise (ta(200)) (200 hp= pressure level) and expand and get cooler.

Also, the variables from the humidity type (i.e. hur (700), hur (200)) are other dominant parameters that were expected to be chosen because of the obvious and important role of humidity in precipitation formation [13]. Similar to the case of precipitation, the linear relation of mean temperature with the temperature of large-scale variables was calculated. So, the air temperature (ta), the sea surface temperature (ts) and the near-surface air temperature (tas) in different grid points were selected as dominant predictors in the CC-based method.

Table 3. The selected dominant predictors based on the CC method.

Model	Dominant predictors for precipitation^{a)}	Dominant predictors for temperature^{a)}
MIROC-ESM-CHEM	hur(700)(1), ta(200)(1), rlut(1), hur(700)(2), clivi(2)	ta(850)(1), tas(2), tas(3), ta(850)(3)

^a Number of grid point selected around the city based on MIROC-ESM-CHEM model (a=1,2,3,4)

In the next step, the dominant predictors extracted by the CC feature extraction method were downscaled by the ANN model for Urmia city during the base period (1951-2000). For this purpose, 75% of data were selected for training, and 25% of data were selected for testing [15]. 50-year average monthly precipitation and temperature downscaled from MIROC-ESM-CHEM model predictions were compared to the 50-year average monthly observed precipitation and temperature in figures 5 and 6 for the base period, respectively.

As shown in these figures, the MIROC-ESM-CHEM model showed the average precipitation that is 5.45% greater than observed precipitation, and the average temperature that is 0.9% higher than the observed temperature in several months. The results of precipitation and temperature downscaling according to the CC and RMSE (normalized value) evaluation criteria are presented in table 4. It can be seen that the MIROC-ESM-CHEM model produces acceptable climate prediction for this research.
Figure 5. Observed and simulated precipitation values for the base period (1951–2000) based on MIROC-ESM-CHEM and ANN model.

Figure 6. Observed and simulated precipitation values for the base period (1951–2000) based on MIROC-ESM-CHEM and ANN model.

Table 4. The results of downscaling by ANN model using dominant CC feature extraction method (1951-2000).

Climate variable	CC	RMSE			
		Train	Test	Train	Test
Precipitation	0.88	0.84		0.11	0.14
Temperature	0.98	0.97		0.05	0.06

In the final step, the monthly precipitation and mean temperature of Urmia city were projected for the future period (2020–2060) for MIROC-ESM-CHEM, which are shown in figures 7 and 8 respectively. The future climate variables for this model were extracted under RCP4.5 and RCP8.5 scenarios in four mentioned grid points. According to figure 7, the precipitation will both increase and decrease in different months during 2020-2060. It can be seen that the precipitation will increase during summer based on both scenarios, and the results are distinct in other months. Generally, the amount of precipitation increases by 2.01% under RCP4.5 and decreases 0.16% under RCP8.5 relative to the base period.

The results of the mean temperature indicate that the mean temperature will increase in the future (see figure 8); however, it will be almost constant in May, July, and October based on RCP8.5 scenario and higher in January, February, March and Jun. These results are in agreement with the [16]
and [9] reports which expressed that the frequency of heat waves is likely to increase in large part of Asia.

The temperature variation in RCP4.5 is higher in January-March, which could be due to the impact of increasing the amount of greenhouse gases. By calculating the change percentage for the mean temperature, it is obvious that future periods exhibit a higher temperature of about 3.66% and 3.3% under RCP4.5 and RCP8.5, respectively, in comparison with the base period. Generally, it can be said that the increase of global warming in the future could lead to changing the sea level and the amount of humidity, which will affect the precipitation pattern.

4. Conclusion
The results obtained in this study indicate that, according to outcomes, it is expected that the monthly precipitation of the study area will change between -0.16% and 2.01%, while the mean temperature will increase between 3.3% and 3.66%. It is obvious that the increase of global warming in the future could lead to a change in sea level, the amount of humidity, and the precipitation pattern. Finally, it is suggested to consider the uncertainty of different GCM models and scenarios to obtain more adequate outcomes, by applying more models and scenarios. Overall, in this study, ANN used for statistical downscaling due to its popularity, easy application and proper accuracy and it leaded to accurate results.
References

[1] Xu C 1999 From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches J. Progress in physical Geography 23(2) 229-249
[2] Schoof JT and Pryor SC 2001 Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks J. Climatology: Royal Meteorological Society 21(7) 773-790
[3] Khan MS, Coulibaly P and Dibike Y 2006 Uncertainty analysis of statistical downscaling methods J. Hydrology 319(1-4) 357-382
[4] Harpham C and Wilby RL 2005 Multi-site downscaling of heavy daily precipitation occurrence and amounts J. Hydrology 312(1-4) 235-255
[5] Chadwick R, Coppola E and Giorgi F 2011 An artificial neural network technique for downscaling GCM outputs to RCM spatial scale J. Nonlinear Processes in Geophysics 8(6) 1013-28
[6] Sachindra DA, Huang F, Barton A and Perera BJC 2013 Least square support vector and multi-linear regression for statistically downscaling general circulation model outputs to catchment stream flows J. Climatology 33(5) 1087-1106
[7] Ahmadi M, Bozorg Haddad O and Loáiciga HA 2015 Adaptive reservoir operation rules under climatic change J. Water Resources Management 24(9) 1247-66
[8] Taormina R, Chau KW and Sivakumar B 2015 Neural network river forecasting through base flow separation and binary-coded swarm optimization J. Hydrology 529(3) 1788-97
[9] Nourani V, Razaghpazadeh Z, Baghanam AH and Molajou A 2019 ANN-based statistical downscaling of climatic parameters using decision tree predictor screening method. J. Theoretical and Applied Climatology 137(3-4) 1729-46
[10] Baghanam AH, Nourani V, Keynejad MA, Taghipour H and Alami MT 2019 Conjunction of wavelet-entropy and SOM clustering for multi-GCM statistical downscaling J. Hydrology Research 50(1) 1-23
[11] Kisi O 2004 Multi-Layer perceptrons with levenberg-marquardt training algorithm for suspended sediment concentration prediction and estimation J. Hydrological Sciences 49(6) 1025-40
[12] Babel MS, Sirisena TAJG and Singherratna N 2017 Incorporating large-scale atmospheric variables in long-term seasonal rainfall forecasting using artificial neural networks: an application to the ping basin in Thailand J. Hydrology Research 48(3) 867-882
[13] Jato-Espino D, Sillanpää N, Charlesworth SM and Rodriguez Hernandez J 2019 A simulation-optimization methodology to model urban catchments under non-stationary extreme rainfall events J. Environmental Modelling & Software 122 1-15
[14] Kisi O 2007 Evapotranspiration modelling from climatic data using a neural computing technique J. Hydrological Processes 21(14) 1925-34
[15] Komasi M and Sharghi S 2016 Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process J. Water Science and Technology 73(8) 1937-53
[16] Stocker TF, Qin D, Plattner GK et al 2013 Climate change 2013: The Physical Science Basis (Cambridge University Press, Cambridge, USA: United Kingdom and New York, NY) p 1535