IMPACT OF PARTIAL REPLACEMENT OF ALFALFA HAY WITH PRICKLY PEAR PEELS (PPPS) ON PRODUCTIVE PERFORMANCE OF RABBITS.

A.A. Bakr
Regional center for food and feed, Agricultural Research center, Giza, Egypt.

(Received 15/10/2019, accepted 28/11/2019)

SUMMARY

Forty New Zealand white rabbits (NZW) male rabbits weighed 500±6 g were used in the present study to determine the effect of using residues prickly pear peels of a source of dietary feedstuffs on productive performance, digestibility, some blood constituents and Economic efficiency of rabbit. The animals were divided into four experimental groups of 10 rabbits each. The experimental diets replacing hay with prickly pear peels (ppps) at portion (0.0, 25, 50 and 75%) respectively. Results obtained could be summarized as follow: The final live body weight, total weight gain and performance index were significantly (p<0.05) affected by experimental treatment groups. The highest (p<0.05) values of live body weight, total weight gain and performance index were recorded by rabbits fed 75 % (ppps) Inclusion (1986.5g, 1489g and 73.30 %) followed by received Inclusion level 50 % (ppps) (1946.97g, 1416.37g and 68.31 %), respectively compared with the 25 % (ppps) (1836.97g, 1339.37g and 59.45 %) or control (1778.75g, 1283.45g and 53.74 %), respectively. Feed intake (g), protein intake, and digestible energy intake were significantly (p<0.05) decreased with increasing (ppps) levels. Rabbits fed (ppps) (75%) diet recorded a significant bester feed conversion ratio (FCR) value followed by those of 50 %, 25 and control respectively. Digestibility coefficient and nutritive values (DM, CP, CF, TDN and DE) were significantly improved for rabbits fed diet contained (ppps) compared to those fed the control diet. Cecal PH value and NH3 –N concentrations were higher (p<0.05) in the control group than those of the treatment groups. Concentration of TVFAS was lower in control whereas the highest was obtained by treatment 75 % of (ppps) (p<0.05). Also inclusion of tested material significantly (p<0.05) increased dressing percentage and carcass weight. Plasma concentrations of total proteins, albumin and globulin were increased (p<0.05) whereas ALT, AST, total lipids, total cholesterol, HDL and LDL were decreased (p<0.05) by treatments of (ppps). The best Economical efficiency and relative economical efficiency values were recorded with rabbits fed 75 % (ppps) inclusion followed by rabbits received 50 % and 25 % treatment of (ppps) respectively it could be concluded that replacing hay with prickly pear peels (ppps) at portion (25, 50 and 75%) into diets recorded the beneficial growth performance, nutrients digestibility, and the best Economical efficiency of NZW Rabbits.

Keywords: NZW rabbits, prickly pear peels, performance, digestibility.

INTRODUCTION

In Egypt, the reduction in local feedstuff resources is considered as the main constrains for improving and developing animal production. Many problems confront the development of livestock one of which is shortage feedstuff and high cost of concentrate feed mixture. Therefore, it is believed that inclusion of some agricultural by products to replace a part of the concentrate diet for animal become on obligation (El-Ashry et al., 2001; Deraz and Ismail, 2001 and Bassuny et al., 2003). Increasing animal protein production in Egypt was depend upon the possibility of exploring and utilizing all possible and available resources of agriculture CO2 products in animal feeding (El-Shinnawy and Eassawy, 2016). The processing of many fruits results in accumulation of large quantities of by – products. Proper utilization of these by – products could reduce waste disposal problems and serve as a potential new source of fats and protein for use in food and feed (Kamel and Kakuda, 2002).

In Egypt, the total area annually cultivated with prickly pear (pp) was about 14100 feddans producing about 284000 tons, fruits which calculated about 13420 tons of peels (Anon ymous, 2008). Fruits of (pp) are recognized as an important source of vitamins for local people. The vegetable stems and fruits of pp are useful for a variety of purposes including food (fresh fruit, paste, jam, salads and refreshing drinks)
fodder (auxiliary, feed for cattle, sheep and goats) and medicinal (antidiuretic agent) and for industrial products such as alcohol, pectin and oils (Lakshminarayana, 1980).

Cactus opuntia cladodes or cactus or *opuntia prickly cladodes* (pads) (COC) are known for their medicinal properties such as an auxiliary treatment for obesity and gastrointestinal or cardiovascular disorders. Also, the extracts of this material decrease level of cholesterol, triglyceride and serum glucose (Kaur, et al., 2012). The information about the usage of COC as forage source for growing rabbits is very rare in the literature. For instance, COC accumulate after processing of prickly pear that can cause environmental pollution. Prickly pears have fundamental economic importance in many desert areas especially in north Sinai, which are produced in abundant quantities. Cactus is a desertification plant and a highly palatable to wild and domesticated rabbits (Hoffman et al., 1993 and Ruiz-Feria, 1996). Its secondary compounds had antimicrobial effects by acting against bacteria, protozoa and fungi. Phenolic compounds are the main active components (Burt, 2004 and Zeedan (2015).

The opuntia species cladodes serve as a source of varied number of phytoconstituents mainly sugar, phenolics and pigments. Opuntia prickly cladodes (pads) are an important source of several nutritional substances like pectin, mucilage and minerals. The pads, also known as cladodes are an excellent source of proteins including essential amino acids, high malic acid contents and good source of vitamin A, vitamin E, vitamin C, flavonoid fraction, carotenoids, chlorophylls and phenolic constituents. Several studies have reported that high levels of amino acids especially proline, taurine and serine can also be found in prickly pads (Stintzing and Carle, 2005; Feugang et al., 2006, Cardador-Martinez et al., 2011 and Badr et al., 2017).

Cactus opuntia cladodes are rich in potassium followed by calcium and magnesium, whereas other elements are in typical range (Batista et al., 2003 Ben Salem et al., 2005, and Badr et al., 2017).

More recently, the antioxidant properties of the most frequent cactus pear betalains (betanin and indicaxanthin) have been revealed, anti-hyperglycemia and regulator of blood cholesterol (Tesoriere et al., 2005 and Stintzing et al., 2005). Kaur, et al. (2012) indicated that the plants of the Cactaceae family contain flavonol 3-O-glycosides (quercetin, kaempferol, and isorhamnetin), dihydroflavonols, flavonones, and flavanones. Opuntia cladodes are an excellent energy source, rich in nonfibrous carbohydrates and presents high dry matter digestibility coefficient (Wanderley et al., 2002) and Costa et al. (2012). Demonstrated that increasing levels of cactus pear in the diet of these sheep favours a high digestibility of nutrients and improves the quality of forage. Louacini, et al. (2012) showed that the regulatory effect on blood glucose and hypolipidemic in both humans and animals.

Peels and seeds are the waste products of the pp fruits processing in dustiest ppp make about 50% of the whole fruit weight and is subsequently the major by-product while, seed constitute about 10-15% of the edible pulp and are usually discarded as waste after extraction of the pulp. Stintzing et al. (2000) indicated that the oil processed from the seeds constitutes 7.15% of the whole seed weight and is characterized by high degree of instauration where in linoleic acid is the major fatty acid (57-77.1%).

The fruits have a thick peel enclosing a delicately flavored very seedy pulp. There are few reports in literatures about the utilization of the peels of PP fruits. Badr et al. (2017) cleared that PPs is a source of protein (4.75%), carbohydrates (59.25%), calcium (2.04%), iron (80.35%), zinc (37.49mg/kg), copper (1.92mg/kg), phosphorous (0.9%), mannann (7.76%), beta-glucan (27.25%) and B-carotene (141.4ug/100g). PPs content of hemicellulose, cellulose and lignin were 0.5, 10.92% and 1.2%, respectively. Amino acid profile ensured the existence of fifteen amino acids of which seven were essentials: leucine (0.22%), valine (0.19%), lysine (0.11%), phenylalanine (0.14%), threonine (0.14%), isoleucine (0.15%) and histidine (0.09%). The remaining amino acids were aspartic acid (0.28%), arginine (0.15%), alanine (0.19%), proline (0.23%), glutamic acid (0.32%), glycine (0.18%) and serine (0.14%). So, the chemical composition indicated that PPs is rich (on dry matter basis) in its content especially in readily digestible carbohydrate that it may serve as a good source of fermentable ME. Although it has been used as an animal feed its value especially for farm animals, has received little research attention. One of the major needs within the PP industry is the development of new processed PP products as well as the fruit by products. These new functional components from prickly pear peel open new possibilities for adding value to a very ancient, but not sufficiently known, crop of the arid and semi-arid regions. The expansion of the PP cultivation in arid and semi-arid areas could be of interest for stimulating bioindustries in developing countries (Terrazas et al., 2002).

The objective of this experiment was to examine the effects of replacing hay with prickly pear peels (ppps) contained diets on production, performance, nutrient digestibility coefficients, blood constituents and economic efficiency of growing rabbits.
MATERIALS AND METHODS

The present study was carried out in the rabbit try farm of poultry production Department, faculty of Agriculture, Elsharkia, zkazik University and Regional center for food and feed (RCFF), Agric. Res. Center (ARC), Ministry of Agric., Giza, Egypt. This work designed to study the influence of replacing hay with prickly pear peels (ppps) at portion (25, 50 and 75%) at different levels on growth performance, digestibility, and economic evaluation of growing New Zealand white rabbits.

Preparation of the dried powder of PPPs and feed ingredients:

The prickly pear peels (PPPs) were collected from local market of Giza Governorate during summer season (August 2016). The peels were dried by spreading in direct sun after being chopped (about 3cm length). The peels were shuffled upside-down and mixed well every day until its moisture content regressed to about 20%. Complete drying was done by using an oven at 55C for 8h., the dried peels and feed ingredients were grounded in a blender for 5min and packed in polyethylene bags until analysis.

Chemical analysis:

Representative samples of feed ingredients and experimental rations were taken for proximate analysis according to the procedures of AOAC (2002).

Fiber fraction analysis:

Natural detergent fiber (NDF), Acid detergent fiber (ADF) and acid detergent lignin (ADL) contents of feed ingredients and experimental rations were determined by analysis of fiber fraction according to Van Soest et.al. (1991). Cellulose (CEL) and hemicellulose (HEM.) content were calculated respectively, by subtracting ADL from ADF and ADF from NDF.

Experimental animals:-

Forty weaned New Zealand White rabbits (NZW) of male rabbits aged 35 days and weighed 500+6 on average were equally and randomly divided into four groups (10 in each one).

Feeding and drinking management:-

Feed and water were offered adlibitum throughout the experimental period from 5 to 14 weeks of age. All rabbits were nearly equal in live body weight at the beginning of the experiment. All nutrients, essential amino acids, minerals and vitamins in the experimental diets were adjusted according to the rabbit requirements of NRC (1977). All the experimental animals were healthy and clinically free from internal and external parasites and were kept under the same management and hygienic conditions. Table (1) shows the composition and calculated analysis of the experimental diets. The first group was fed adlibitum, throughout experiment period from 5 to 14 weeks of age, a pelleted diet and kept untreated and served as a control. While the other groups (second, third and fourth) were fed with pellet replaced with levels of hay 25, 50 or 75% dried prickly pear peals (PPP) respectively.

Growth performance:-

Rabbits were weighed in the morning before receiving feed or water and feed intake was recorded biweekly during the experimental period. Body weight gain (BWG) was calculated by subtracting the initial live body weights from final ones of each growth period. Feed conversion ratio (FCR) was obtained by dividing the amount of total feed intake (TFI) on the corresponding weight gain. Also, performance index (PI) was calculated according to North (1981). Average protein and digestible energy intakes were calculated by multiplying feed intake by percent of protein and digestible energy contents of experimental diets.

Digestibility trial:-

The collection period lasted for 5 days. Feed intake was measured and feces output was collected daily. Hair and scattered feed were separated or taken out of the feces. The collected feces for rabbits of each treatment was pooled together, and dried at 60 C till constant weight. The dried feces for the successive five days was left few hours to get equilibrium with the atmosphere and then ground, well mixed and stored in screw-top glass jars for chemical analysis. Chemical analysis was carried out for diets and feces according to methods of AOAC (2002).The values of total digestible nutrients (TDN) and digestible crude protein (DCP) were calculated according to the classic formula (Cheeke et al., 1982). DE (kcal/kg DM) = 4253-32.6 (CF %) 144.4 (Ash %), according to Fekete and Gippert (1986).
Table (1) Composition and calculated analysis of the experimental diets

Ingredient	Control	25%	50%	75%
Alfalfa hay	32	24	16	8
Soy bean seed, meal (44%)	7.5	7.5	7.5	7.5
Prickly pear peels	0	8	16	24
Corn Gluten meal	5	5.4	5.9	6.4
Yellow corn	12.15	11.05	9	7
Calcium phosphate dibasic	0.5	0.5	0.5	0.5
Sun flower oil	1.39	1.29	1.29	1.29
Molasses	3	3	3	3
Wheat bran	24.33	25.03	26.33	27.5
Salt	0.5	0.5	0.5	0.5
Premix	0.3	0.3	0.3	0.3
Limes tone	1.25	1.35	1.6	1.9
L-lysine Hcl	0.05	0.05	0.05	0.05
DL Methionine	0.33	0.33	0.33	0.33
Total	100	100	100	100

Calculated analysis**

	Control	25%	50%	75%
DE, Kcal/kg	2529	2534	2537	2539
Crude protein (CP)	16.63	16.42	16.29	16.15
Ether extract (EE)	3.93	3.94	4.03	4.13
NFE	58.24	59.81	61.18	62.95
Ca%	1.11	1.03	1.01	1.01
Total P%	0.62	0.6	0.6	0.59
Lys %	0.701	0.63	0.62	0.59
Meth %	0.6058	0.59	0.58	0.58
CF%	14	12.4	10.7	9.09

* Each 3 kg of vit and Min in Premix contain: 60000000IU vit A, 900000 IU vit D3 400000mg vit E,2000mg vit K, 2000mg vit B1, 4000mg vit B2, 2000mg vit B6, 10mg vit B12, 50000mg Niacin, 10000mg pantothenic acid, 50mg Biotin, 3000mg Folic acid, 250000 mg choline, 50000mg Zn, 8500mg Mn, 50000mg Fe, 50000mg Cu, 200mg I , 100mg Se and 100mg Co.

** According to NRC (1977).

Cecum samples:

Samples of cecum content were individually taken from rabbits of each group and cecum contents were obtained after slaughtering and filtrated to estimate PH and cecum micro flora. Cecum ammonia-nitrogen determination was carried out as soon as possible using the steam distillation method described by Ahmed (1976). Cecum total volatile fatty acids (VFAs) content was measured according to AOAC (1995).

Carcass characteristics:

At the end of the experimental period (14 weeks of age), a total number of 20 rabbits (five rabbits from each group) were randomly taken for slaughter. Assigned rabbits were fasted for 16 hours before slaughtering and individually weighed as pre-slaughter weight. Animals were slaughtered by cutting the jugular veins of the neck, when complete bleeding was achieved, slaughter weight was recorded. After skinning, the carcass was opened down and all entrails were removed and the empty carcass, heart, liver, kidneys and spleen were separately weighed, each of them was proportioned to the live pre-slaughter weight. Dressing percentage was calculated according to Steven et al. (1981).

Biochemical parameters:

Blood samples were taken at the time of slaughter and then centrifugated at 3000 r.p.m. for 20 minutes to obtain plasma and kept at -20 C until analysis. Blood plasma was assigned for determination of total protein, albumin, urea – N, cholesterol, Low Density Lipoprotein (LDL~cholesterol), High Density Lipoprotein (HDL~cholesterol), Triglyceride and liver function (aspartate aminotransferase “AST” and alanine aminotransferase “ALT”). Non-coagulated blood was tested shortly after collection for estimating blood pictures. White and red blood cells were counted according to Feldman et al. (2000).
Statistical analysis:

Data were analyzed according to the statistical analysis system user guide, (SAS 1998). Separating among means was carried out by using Duncan multiple test, (Duncan, 1955).

RESULTS AND DISCUSSION

The chemical composition of prickly pear peels (PPPs) and Alfalfa hay

The chemical compositions of feed ingredients are presented in Table (2). The results showed that the chemical composition of alfalfa hay were within the corresponding ranges reported by El-Shinnawy et al. (2011) and Badr et al. (2017). The data for chemical composition of PPPs were in agreement with those obtained by (Gregory and Felker, 1992; Felker, 1995; Lopez et al., 2001; El-said et al. 2011 and Badr et al., 2017).

Table (2): The chemical analysis of prickly pear peels and Alfalfa hay

Item	OM	CP	EE	CF	NFE	NDF	ADF	ADL	ASH	DE*
Prickly pear peels	89.37	6.50	3.76	8.9	69.31	14.82	11.06	2.70	11.53	2298
Alfalfa dehydrated meal	81.20	13.3	2.33	33.3	41.24	62.2	44.4	11.27	9.8	1751

\[DE*(Kcal / kg DM) = 4253 – 32.6 (CF %) -144.4 (Ash %), \]

according to Faceted and Gippert (1986).

It showed that PPPs had lower content of CP (6.50), CF (8.9), NDF (14.82), ADF (11.06) and ADL (2.7%) while, it had higher values of NFE (69.31) EE (3.76) and DE (2298) when compared with Alfalfa hay. This results reported by (Dekock, 1980; Flachowsky and Yami, 1985; and Hanselka and Paschal, 1990). The NDF content of PPPs obtained in this study is higher than that reported by Amare et al. (2009). Badr et al. (2017) reported that it contains 4.75% CP, carbohydrates 59.25%, fiber 3.15% fat 3.55% and Ash 11.00%.

Chemical analysis of the rations:-

All experimental rations were iso-caloric and iso-nitrogenous approximately (Table 1). The chemical analysis of different experimental rations was in the same range approximately for CP, EE, CF, NFE and DE contents. The percentages of crude protein ranged from 16.15 to 16.63% ether extract content was ranged from 3.93 to 4.13% crude fiber content 9.09 to 14% nitrogen free extract content was ranged from 58.24 to 62.95 and digestible energy ranged from 2529 to 2539 kcal/kg for the four tested rations. The variation in chemical composition may be related to differ in source of roughage incorporated in rations formulation.

Growth performance:-

Results in Table (3) shows that the final live body weight, total body weight gain and performance index were significantly (P<0.05) affected by experimental treatments. The highest (P<0.05) values of live body weight, total body weight gain and performance index were recorded by rabbits of treatment 75% PPPs (1986.5g, 1489g and 73.30%) followed by those of 50% PPPs (1946.97 g, 1446.37g and 68.31%) respectively compared with the other experimental treatments. While the lowest (P<0.05) live body weight, total body weight gain and performance index were recorded the control group (1778.75g, 1283.45g and 53.74%) respectively. These results are in agreement with results of Atti, et al. (2009) and Aguilar-yanez et al. (2011). Ruiz-feira et al (1998) reported that fed rabbits leucaena inclusion had the poorest performance, whereas the opposite was true with diet of 10% cactus, growth traits was improved Gebremariam et al (2006) concluded that inclusion of cactus in the experimental diet or other comparable diets to up to 50% on DM basis for sheep fed tef straw promotes weight gain without causing digestive disturbances. Abu shammalah (2007). Reported that the average final body weights of the growing rabbit age 56 days fed 20% and 40% cactus opuntia cladodes (COC) were relatively similar to the average final body weights of control. Taddesse, et al. (2014) reported that supplemented spineless cactus goats (150g/head/d/cactus) had higher final BW and mean daily BW gain as compared to the control.
Improvement growth performance may be attributed to mode of action of PPP including the maintaining a beneficial microbial population and improving digestion. The increased live weight gain in rabbits fed PPPs diets can be explained by the associative effects of high soluble carbohydrates contained the cactus. Also cactus is a desertification plant and a highly palatable to wild and domesticated rabbits. Prickly pear peels (PPP) are an important source of several nutritional substances like pectin, mucilage and minerals. The prickly pear peels (PPP) also known as an excellent source of proteins including essential amino acids, high malic acid contents and good source of vitamin, flavonoid fraction, carotenoids and phenolic constituents. Several studies have reported that high levels of amino acids especially proline, valine, serine and proline can also be found in prickly pear (Stintzing and Carle, 2005; Feugang et al., 2006, Cardador Martinez et al., 2011 and Badr et al., 2017). General cladodes are rich in pectin, mucilage and minerals, whereas the fruits are good sources of vitamins, amino acids and betalains (Habibi et al., 2005). Cowan, (1999) reported that plant derived products contain a great diversity of photochemical such as phenolic acids, flavonoids and tannins. These increments in live body weight and body weight gain may be attributed to increasing digestion of all nutrients (Table 3), decreasing PH, NH3-N mmol/L. concentration and the increasing of VFA in the cecum, according improving the nutrients utilization may be attributed to the conversion of ammonia-N into microbial protein for the benefit of rabbits which characterized by the pseudo-rumination.

Feed intake and feed conversion:-

The data shows that there is significant effect of treatment PPPs on total feed intake (TFI), feed conversion ratio (FCR), protein intake, (PI) and digestible energy intake of rabbits (Table 4). Feed intake (g/day), protein intake, and digestible energy intake significantly (P<0.05) decreased with increasing PPPs levels containing diets. Rabbits fed PPPs diet recorded significantly better FCR values. Prickly pear peels (PPPs) improved the feed digestibility and utilization of ammonia and (PPPs) constituted of like minerals, sugars, organic acid, amino acids, lipids, terpenes, high malic acid contents, good source of vitamin A, vitamin C, flavonoid, carotenoids, chlorophylls and phenolic constituents. The decrease of feed intake in rabbit fed PPPs could be explained by the in nutrient supply such as minerals and water soluble vitamins could accelerate nutrients metabolism and increase energy digestibility. Also, PPPs can improve the condition of the intestines and enhances the overage daily weight gain and digestibility. These results are in agreement with finding of Gebremaryam, et al., (2006), Einkamerer (2008), Einkamerer, et al., (2009), Menezes, et al.,(2010) and Badr Azza (2017) in sheep, Mendez- Liorentte et al., (2008) and Aguilar. Yanez, et al.,(2011) in lambs.

Table (3): Effect of dietary PPP levels on growth performance of growing rabbits

Parameters	Treatments	Zero	1	2	3	L.S.D
Initial live body weight		495.3 a	497.6 a	500.6 a	497.5 a	N.S
Final live body weight		1778.75 b	1836.97 b	1946.97 a	1986.5 a	75.4751
Total weight gain		1283.42 b	1339.37 b	1446.37 a	1489 a	80.1467
Average weight gain		22.91 b	23.92 b	25.28 a	26.58 a	1.4277
Feed intake (FI)		4248 a	4150 b	4120 b	4040 c	69.0262
Feed conversion ratio (FCR)		3.31 a	3.09 b	2.85 c	2.71 c	0.20888
Performance index		53.74 c	59.45 c	68.31 b	73.30 b	5.8118
Protein intake (PI)		706.44 a	684.03 b	671.14 c	652.45 d	11.0152
Protein efficiency ratio (PER)		1.82 a	1.96 c	2.16 b	2.28 a	0.12513
Digestible energy index		10743.19 a	10516.1 b	10452.44 b	10257.56 c	174.9400
Efficiency of energy utilization		8.37 a	7.85 b	7.23 c	6.88 c	0.53113
No. of dead Rabbits		1	1	-	-	

*P ≤ 0.05, NS: not significant. 1PI= (Body weight (kg) / Feed conversion) ×100.

Abu Shammalah (2007) reported that average feed intake, g/day in rabbits fed Opuntia cladodes (COC) were 87.60, 63.80, 53.00 and 34.60 gm. for control, 20%, 40% and 60% respectively, Zeedan et al. (2015) reported that feed intake (g/day), protein intake, and digestible energy intake were significantly (P<0.05) decreased with increasing cladodes Opuntia cladodes (COC) in fed rabbits. The increase prickly pear peels (PPPs) level significantly (P<0.05) improved feed conversion compared to control diet (Table 3).
Significant differences among administration were found for the FCR, it was noted that the best FCR (2.71, 2.85) was recorded for rabbits fed with 75% and 50% respectively followed by those treated 25% (3.09 this finding is very consistent with those reported by Abu Shammalah (2007) who reported that average feed conversion ratios in rabbits fed the control diet c, either 20%, 40% or 60% were 3.33, 3.01, 2.85 and 3.25 respectively, Zeedan et al. (2015) reported that rabbits fed cactus opuntia cladodes (COC) 30% diet recorded a significant better FCR value followed by those of 20 and 10% tested material respectively.

These improvements in FCR and lower feed intake may be attributed to PPPs inclusion decreases NH\textsubscript{3}-N (Table 5) and increases digestion of all nutrients (Table 5). In the present experiment, improved FCR with PPPs inclusion may be due to improve their crude protein digestibility and improve nutrient utilization of flavonoids and phenolic acids contained PPPs. Also the improvement of FCR of PPPs level may be due to a beneficial microbial environment in the gut which might have enhanced digestion, absorption and utilization of nutrients. Also the improvement of FCR may be due to the antioxidant, antimicrobial and anti-inflammatory activity as well as nutrient utilization depended on the presence of flavonoids and phenolic acids (Ennouri, et al., 2014, Cawan, 1999) and Badr et al., 2017.

Mortality rate:

Results indicated that there is no dead for experimental groups fed 50% and 75% (PPPs) inclusion (Table 3). It may be due to immune system compared to the control group. The decrease in mortality may be due to the decrease in PH and NH\textsubscript{3}-N, in the cecum which leading to decrease the diarrhea. Also, to the antibacterial, antimicrobial and anti-inflammatory activity effect of PPPs and improving nutrient utilization due to the presence of flavonoids and phenolic acids, (Ennouri, et al., 2014) and (Cawan, 1999) reported that prickly pear cactus has hight dry matter digestibility and also to be highly palatably to wild and domesticated rabbits. Zeeman (2005) reported that digestibility of most chemical constituents significantly increased (P<0.05) in line with increased Opuntia inclusion and the low fiber content of Opuntia is positively correlated with DM digestibility. Ben salem et al. (1996) concluded that the apparent DM digestibility increases with addition of Opuntia cladodes due to its higher easily digestible carbohydrate content. Also, Zeeman (2005) found that ascribed the higher digestibility to the fact that Opuntia cladodes contain higher levels of easily digestible carbohydrates. The highest digestibility was observed in the treatment of 75% PPPs followed by the diet of 50% PPPs, 25% PPPs, respectively. Despite the low nutrimental quality of the spinesse cactus, it conferred a better digestibility, given the high fermentative capacity of its carbohydrates (Misra et al., 2006). Digestible organic matter is important for ruminal microbial protein synthesis as an energy source. This difference may be due to the high content of non-structural carbohydrates (NSC) found in cactus. Tegegne, et al. (2005) found that the high concentration of soluble carbohydrates in cactus facilitates the incorporation of nitrogen into microbial protein, which is the main source of metabolizable protein for the host animal. The highest digestibility of all nutrients in treated groups can be discussed from the point that PPPs contains minerals (Mg, Ca, K, Na, Cu, Zn, Mn, P and Fe), amino acid, high malic acid contents, vitamin A, vitamin E, vitamin C, flavonoid, carotenoids, phenolic constituents, which may be associated with improvement in digestibility of all nutrients (Stintzing and Carle, 2005, Habibi et al., 2005, Feugang et al., 2006, Abu Shammalah, 2007, Cardador-Martinez et al., 2011, Cordova-Torres et al., 2015 and Badr et al., 2017).

The compounds with antimicrobial effect maintained the health of the digestive tract and improved both digestion and absorption. Consequently, the improving in the nutrients digestibility, for treated groups may be reflected a better growth performance as shown in Table (3). Apportion of the increase in digestibility may have resulted from the reduction of intake that occurred. It is well documented that digestibility of the diet increases with decreasing intake (NRC, 1977 and Zeedan et al. (2017).

In this study, the results showed that the use of PPPs improved digestibility of nutrients and absorption this reaction can lead to increase feed utilization and improve performance.
Table (4): Digestibility coefficient of the experimental rations

Parameter	Control	25%	50%	75%	L.S.D
Digestion coefficient %					
DM	65.22c	65.82bc	66.53b	67.74a	1.1067
CP	65.48c	66.50bc	67.23ab	68.28a	1.1639
EE	67.92c	68.43c	69.23b	69.95a	0.7197
CF	46.27d	48.43c	51.51b	53.75a	0.8123
NFE	69.90d	72.44c	75.62b	77.98a	1.2013
NDF	43.28d	44.64c	45.87b	47.94a	0.7581
ADF	41.01d	43.43c	44.69b	45.90a	0.9849
ADL	33.86d	35.86c	37.59b	38.35a	0.5768
Nutritive values					
TDN %	61.38d	62.42c	64.52b	66.48a	0.7981
DCP %	10.88a	10.92a	10.95a	11.02a	*N.S
DE** (Kcal /Kg)	2719.43d	2765.35c	2858.23b	2945.36a	35.3584

*a, b and means in the same row bearing different superscripts are significantly different.

*: P ≤ 0.05, NS: not significant.

**DE (kcal / kg) = TDN × 44.3.

Cecum traits:

The cecum PH, ammonia-N concentrations and total VFN concentrations (mmol/L) of cecum contents are presented in Table (5). Cecum PH value is one of the most important factors, which affect microbial fermentation in the cecum and influences their functions concerning the values of caecal PH, there were significant (P<0.05) lower PH and NH3-N with increasing PPPs. The lowest acidity was recorded for rabbits treatment fed 75% PPPs inclusion. The increasing PPPs resulted in more fermentation in the caecal, thus reduced caecal PH as a result of increasing volatile fatty acids production.

Table (5): Effect of prickly pear peels (ppps) levels on Cecal fermentation activity of growing rabbits

Item	Control	25 %	50 %	75 %	L.S.D
Cecum PH	6.85c	6.53b	6.15c	5.67d	0.29889
NH3-N (Memel/L)	20.16a	19.30a	17.72b	16.61c	0.99420
Total VFA (Memel/L)	49.94d	46.50c	62.28b	65.73a	2.97257

Table (6): Effect of prickly pear peels levels on some carcass traits of growing rabbits

Item	control	25 %	50 %	75 %	L.S.D
Pre. Slaughter weight (g)	1798.75b	1856.97b	1976.97a	1996.5a	75.47513
Carcass weight (g)	828.66b	876.12b	964.80a	1057.47a	71.139171
Dressing weight (g)	891.08b	952.63b	1055.35a	1156.3a	71.46524
Dressing %	49.54b	51.30b	53.38a	57.91a	1.867127
Total giblets weight %	3.47d	4.12c	4.58b	4.95a	0.30794
Heart	0.45a	0.46a	0.46a	0.47a	*NS*
Liver	2.01d	2.33c	2.67b	2.95b	2.72983
Kidney	1.01c	1.33c	1.45b	1.53a	1.038740
Chemical analysis of carcass meat on DM basis %					
Control	7.18a	7.13a	7.21a	7.52a	
Moisture %	19.19c	20.12b	20.22b	21.05a	0.714468
EE %	2.96a	3.05a	2.70b	2.23c	0.257015
Ash %	1.79a	1.62ab	1.51b	1.43b	0.241855

*a, b, c and d Means in the same row bearing different superscripts are significantly different.

* P ≤ 0.05, NS: not significant.

These results are in agreement with those reported by Bisop, *et al.* (2007), Mendez. Liorente, *et al.* (2008) in sheep, Vieira, *et al.* (2008) in goats and Zeedan, *et al.* (2015) found that cecal PH value and
NH$_3$-N concentration were higher (P<0.05) in the control group than those fed with 30,20 and 10% Cactus Opuntia cladodes (COC).

On the other hand, Misra, et al. (2006) found that ruminal NH$_3$-N was not significantly different between lambs fed 0, 10 and 20% cactus Opuntia cladodes (COC) but were higher than 30 and 40%. High cactus Opuntia (COC) inclusion significantly increased (P<0.05) the concentration of total VFA compared to control. The used of PPPs that is probably the most interest to rabbit’s producers is as an antimicrobial and antioxidants Zeedan, et al. (2015) (The flavonoids, phenolic components play a significant role in the free radical scavenging capacity of cactus opuntia cladodes (COC) (Abu Shammalah 2007 and Cardador-Martinez et al., 2011). The increased total VFA may be attributed to the effect of decreasing PH and NH$_3$-N increased the digestible protein and TDN with high PPPs level (Table 4). The decreased cecum PH, the decreased ammonia-N concentration and the higher VFA concentration suggest active microbiol synthesis existed in the cecum. Also, decreasing NH$_3$-N concentration may be attributed to the conversion of ammonia-N into microbial protein for the benefit of rabbits which characterized by the pseudo-rumination and improvement in digestion of nutrient in Table (4). (Zeedan et al., 2015). On the other hand, Ben salem and Smith (2008) reported that the high content of sugars in cactus pear did not affect ruminal fermentation in sheep.

Carcass characteristics and chemical composition:

Results in Table (6) show that significant variation between dietary treatments of PPPs for all carcass characteristics. Rabbits fed 75% PPPs had the highest value all carcass characteristics than other rabbit’s treatments groups. The increase in carcass traits for treated groups may be mainly related to the increase in growth performance and digestibility. These results are agreement with (Zeedan et al., 2015) who found that rabbits received 30% cactus opuntia cladodes (COC) had the highest value all carcass characteristics than other rabbit’s treatments groups. Mahouachi, et al., (2012). Ruiz. Feria et al., (1998) who evaluated that rabbits fed leucaena had the poorest performance, but when fed 10% level cactus, growth and carcass traits were improved. Abu Shammalah (2007) found that the carcass weight, kidneys, spleen and liver of rabbits significantly (P<0.05) with cactus supplementation. On the other hand Attie et al., (2006) showed that the carcass weight of goat kids decreased significantly (P<0.05) with cactus supplementation.

Generally, the increase in carcass traits in treated groups can be discussed from the point that PPPs contains minerals (Mg, Ca, K, Na, Cu, Zn, Mn, P and Fe), amino acid, high malic acid contents, vitamin A, vitamin E, vitamin C, flavonoid, carotenoids, phenolic constituents, which may be associated with improvement in digestibility of all nutrients (Stintzing and Carle, 2005, Feugang et al., 2006, Abu Shammalah, 2007, Cardador. Martinez et al., 2011 ,Cordova-Torres et al., 2015) and Zeedan et al., 2015.

Concerning the chemical analysis for carcass (Table 6),the results shows a significant effect was found as feeding PPPs inclusion with in crude protein (CP), ether extract (EE) and ash of meat. Zeedan et al., (2015) found that results shows a significant effect was found as feeding (COC) inclusion with in crude protein (CP), ether extract (EE) and ash of meat on the other hand Mahouachi, et al., (2012) reported that no significant differences were found for moisture, crude protein, and ash contents between treatment groups.

These values led to improve the meat quality and better effects to human health. Also, the increase in protein in rabbit meat can be attributed mainly to the presence of amino acids, vitamins, increase of protein digestibility as mentioned in Table (4) and trace elements of PPPs are nutritionally beneficial for improving intestinal absorption and digestion of all nutrient due the stimulus to the development proliferation and differentiation of intestinal cells and because they improve the environmental conditions for the intestinal microbial ecosystem.

Blood constituents:

Results in Table (7) shows that there is a significant difference (P<0.05) in biochemical parameters was recorded as feeding inclusion levels of tested material. Significant differences were detected for plasma total protein, albumin and globulin. However, the increase in total protein, albumin and globulin was in a normal range as receiving 75% PPPs may be associated with improvement of crude protein digestibility as shown in Table (4) and this result is in harmony with finding of Zeedan et al. (2015) and Brahim, et al.(2012). Increase globulin concentration with increased PPPs inclusion which was observed in the present study may be an indication of increased immunity in the rabbits since the liver will be able to synthesize enough globulins for immunologic action. This explains the decrease in the mortality with increased PPPs analysis of variance shows that there is a significant effect due to dietary treatment an cholesterol, LDL, HDL and triglyceride was detected in this respect. All inclusion level of tested material
decreased cholesterol, LDL, HDL and triglyceride compared to the control diet (Zeedan et al., 2015) and Wolfram, et al. (2002) reported that ingestion of fresh cladodes reduced cholesterol concentration.

Table (7): Effect of Prickly pear peels (PPPs) on some constituents in blood plasma of growing rabbits

Item	Control	25%	50%	75%	L.S.D
ALT	27.28a	25.64b	25.10bc	24.63c	0.88663
AST	39.43a	38.66b	38.38b	37.76c	0.614333
Total lipid	5.28a	4.68b	4.36b	3.67c	0.33456
LDL	25.99a	25.71ab	25.05b	25.92ab	0.83689
HDL	55.60a	52.84b	46.95c	45.10c	1.99682
Triglyceride	1.57a	1.52a	1.46b	1.42b	0.054080
Cholesterol	81.59a	78.55b	72.01c	71.02c	1.770766
Globulin	2.23c	2.90bc	3.63ab	3.85a	0.7885312
Albumin	3.54a	3.59a	3.84a	3.89a	N.S
Total protein	5.77c	6.49b	7.48c	7.74c	0.6225973
Red blood cells (N × 10³/mm³)	4.08 a	4.25 a	4.50 a	4.66 a	NS
White blood cells (N × 10³/mm³)	5.56 a	5.60 a	5.63 a	5.93 a	NS

P ≤ 0.05, NS: not significant

Louacini, et al., (2012) showed that the pectin of opuntia tends to reduce cholesterol by binding to bile and the increases of their concentraconen enhance the catabolism of cholesterol. Feugang et al.,(2006) suggested that cactus pear reduces cholesterol levels in human blood and modify low density lipoprotein (LDL). The antioxidant properties of the most frequent cactus pear battalionas (betanin and indicaxanthine) have been revealed anti-hyperglycemia and regulator of blood cholesterol (Tesoriere et al., 2005, Stintzing and Carle 2005), Zeedan et al. (2015) and Badr et al.,(2017). Overall, the effects of cactus are generally attributed to the high fiber content of the cladodes. The decrease of cholesterol levels may be directly related to the influence of PPPs an lipid metabolism. Liver function as AST and ALT activity were not affected by dietary treatments with supplementing PPPs.

Values of AST and ALT were within the normal range and indicated that the animals were generally in a good nutritional status and their livers were in a normal health condition. Plasma AST and ALT (Table 7) were determined as an indicator for enzymatic activity related to the rate of protein metabolism and liver function. It was showed that significant variations (P<0.05) were found for dietary treatments applied in liver functions. The protective effect of PPPs on some organs such as liver and brain may be due to its contents of some flavonoids which play a role as antioxidant against oxidative material which caused damage to such organs. These results are agreement with Stintzing and Carle (2005), Feugang et al. (2006), Abushamalah (2007) and Zeedan et al. (2015). Data in Table (7) illustrated that value of each of blood components including (red and white blood cells count) were increased in rabbits fed diet contained ppps than those of the control. The increase in WBCs in treated groups can be attributed mainly to the antibacterial functions, antimicrobial, anti-inflammatory activity and antioxidant of ppps (Ennouri et al., 2014; Zeedan et al. 2015 and Badr et al., 2017). Generally, the increase in blood constituents may be due to the role of ppp in improving all nutrient digestibility (Table 4). The improvements in the blood components of result of treatment with ppps may be due to the enhancement in the immune response (minerals and flavonoids have a role in enhancing immune system). Inclusion of the minerals composition are comprised of (Mg, Ca, K, Na, Cu, Zn, Mn, P and Fe) vitamin A, vitamin E, vitamin C, carotenoids, phenolic constituents and flavonoid (Stintzing and Carle, 2005; Feugang et al., 2006; Abushamalah, 2007; Cardador-Martinez et al., 2011; Cordova-Torres et al., 2015 and Badr et al., 2017).

Economical efficiency:-

The effects of dietary treatments on economical efficiency are presented in Table (8). The greatest total revenue and economical efficiency were calculated for rabbits fed diet containing 75% PPPs followed by 50% PPPs and 25% PPPs compared with control. The relative Economical efficiency values

544
were 117.65, 141.58 and 159.84% for rabbits fed 25%, 50% and 75% PPPs respectively. Badr Azza et al. (2017), and Zeedan et al (2015) reported that the greatest total revenue and economical efficiency were calculated for rabbits fed diet containing 30% cactus opuntia cladodes (COC) followed by 20% (COC) and 10% (COC) compared with control. Aguilar-Yáñez et al. (2011) reported that the economic analysis shows that feeding sheep with dehydrated and fresh spineless cactus, net gains increase to 16.23$ and 17.84$, respectively while, the control was only 12.98$ (diets with dehydrated and fresh spineless cactus, respectively).

Items	control	25%	50%	75%
Initial live body weight (g)	495.3	497.6	500.6	500.6
Final live body weight (g)	1778.75	1836.97	1946.97	1946.97
Total gain (g)	1283.45	1339.37	1446.37	1446.37
Feed intake of feed (g)	4248	4150	4120	4040
Price 1kg FI (L.E)	5	4.840	4.680	4.400
Total feed cost/Rabbit (L.E)	21.24	20.00	19.30	17.78
Cost of Kg gain/Rabbit (L.E)	16.55	14.93	13.34	11.94
Total cost / Rabbit (L.E)	51.24	50	49.30	47.78
Cost / kg BW (L.E)	28.81	26.78	25.32	24.10
Total revenue	76.49	78.99	83.72	85.42
Net revenue Rabbit (L.E)	25.25	28.99	34.42	37.64
Economic efficiency	0.493	0.580	0.698	0.788
Relative economic %	100	117.65	141.58	159.84

Economical efficiency = Net revenues / Total cost; price kg live = 43 L.E; CFM = 5000 L.E per ton; PPP= 500 L.E per ton.

CONCLUSION:

Under the conditions of this study, it could be advantageous to using PPPs to growing rabbits without any adverse effect on health. The prickly pear peels (PPPs) will have appositive influence on the health primarily aiming to improve immune status of rabbits, improve their growth performances, digestibility and nutritive value, cecum traits, carcass characteristics, some blood constituents and economical efficiency. It can be concluded that (PPPs) feed as available and very low cost feed can be used as a partial feed to maintain rabbit’s growth under unavoidable economical conditions and higher feed prices in Egypt. However, there is need of chemical and nutritional evaluations and more work is required for the application of PPPs in in-vivo trials for feeding ruminants.

REFERENCES:

Abu Shammalah, K. N. (2007). Evaluation of Cactus (Opuntia Sp.) as Forage Source for Growing Rabbits in the Gaza Strip. M.Sc. Thesis, the Islamic Univ. –Gaza, Faculty of Sci. Master of Biological Sci..

Aguilar–Yáñez, M. I., O. Hernández–Mendo , I. Guerrero–Legarreta, J.E. Ramírez–Bribiesca, G. Aranda–Osorio and M.M. Crosby–Galvan (2011). Productive response of lambs fed with fresh or dehydrated spineless cactus (Opuntia ficus–indica L.). J. PACD 13: 23–35.

Ahmed, B. M. (1976). The use of non-protein nitrogenous compounds in rabbit rations. M. Sc. Thesis. Tanta Univ.

Amare D. S. Melaku and G. Berhane (2009). Supplementation of iso nitrogenous oil seed cakes in cactus (Opuntia ficus–indica)–tef straw (Eragrostis tef) based feeding of Tigray Highland sheep, Anim. Feed Sci. Technol., 148 (2-4), 214-226
Anonymous (2008): Annual report of statistical analysis section. Economic research institute. Agricultural Research Center. Ministry of Agriculture.

AOAC (1995). Official Methods of Analysis (Sixteenth Edition) Association of Official Analytical Chemists Washington, D.C.

AOAC (2002). Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed. Van Soest, P.J.; J.B., Robertson and B.A., Lewis; (1991): Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci.74, 3583-3597.Gaithersburg, Maryland, USA.

Atti, N., M. Mahouachi and H. Rouissi (2006). The effect of spineless cactus (Opuntia ficus-indica f. internis) supplementation on growth, carcass, meat quality and fatty acid composition of male goat kids. Meat Sci. 73: 229-235.

Atti, N., M. Mahouachi, F. Zouaghi and H. Rouissi (2009). Incorporation of cactus (Opuntia ficus-indica f. inermis) in young goats diets: 1. Effects on intake, digestion, growth and carcass composition. Livestock Res. for Rural Devel. 21 (12): 217-230.

Badr Azza. M.M., A.A. Bakr and M.M. El-Shinnawy (2017). Prediction the nutritive value of prickly pear peels as a natural unconventional feed resource for feeding ruminants from chemical composition and in vitro digestibility using DAISY II incubator technology. Egyptian J. Nutr. and Feeds,20: (2).

Badr, S. E. A.; A.A. bakr; Gihan M. El-moghazy and O. A. Wahdan (2017). Anticancer activity and hypolipidemic effect of methanolic and ethanolic prickly pear cactus peel extracts. Egypt. Nut. Society Issue. The first International conference of nutrition, Hurghada, April.

Bassuny, S.M.; A.A. Abdel-Aziz; M.F. EL-Sayis and M.A. Abdul (2003). Fibrous crops by-product as feed.2- Effect of chemical and chemi biological treatments on feed intake, nutritive values some ruminal and blood constituents. Egypt J. Nut. and Feed, 6 (Special Issue):901-912.

Batista, A. M., A.F. Mustafa, T. McAllister, Y. Wang, H. Soita and J.J. McKinnon (2003). Effects of variety on chemical composition, in situ nutrient disappearance and in vitro gas

Ben Salem, H. and T. Smith (2008). Feeding strategies to increase small ruminant production in dry environments. Small Rum. Res. 77: 174–194.

Ben Salem, H., A. Nefzaoui, H. Abdouli and E.R. Ørskov (1996). Effect of increasing level of spineless cactus (Opuntia ficus-indica var. Inermis) on intake and digestion by sheep given straw-based diets. Anim. Sci. 62:293-299.

Ben Salem, H., H. Abdouli, A. Nefzaoui, L. Ben Salem El-Mastouri (2005). Nutritive value, behaviour, and growth of Barbarine lambs fed on oldman saltbush (Atriplex nummularia L.) Tesoriere, L., Butera, D., Pintaudi, M., Allegra, M. and Livera, M. A. (2004). Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with Vit. C. Am. J. Clinique. Nut. 80: 391-395.

Bisop S.V., M.A. Ferreira and A.S.C. Veras (2007). Palma forrageira em substituição ao feno de capim-elefante: efeito sobre consumo, digestibilidade e características de fermentação ruminal em ovinos. R. Bras. Zootec. 36:1902-1909.

Brahmi, D., Y. Ayed, M. Hfaiedh, C. Bouaziz, H. Ben Mansour, L. Zourgui and H. Bacha (2012). Protective effect of cactus cladode extract against cisplatin induced oxidative stress, genotoxicity and apoptosis in balb/c mice: combination with phytochemical composition. BMC Complementary and Alternative Medicine, 12:111

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94: 223–253

Cardador-Martínez, A., C. Jiménez-Martínez, and G. Sandoval (2011). Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Ciénc. Technol. Aliment, Campinas, 31(3): 782-788.

Cheeke, P. R.; N.M. Patton and G.S. Tempelton (1982). Rabbit Production. 5th Edition, Interstate Printers and Publishers Danville II., USA.
Cordova-Torres, A.V., J.C. Mendoza-Mendoza, G. Bernal-Santos, T. García-Gasca, J.R. Kawas, R.G. Costa, C. Mondragon Jacoboa and H.M. Andrade-Montemayor (2015). Nutritional Composition, in vitro Degradability and Gas Production of Opuntia ficus indica and Four Other Wild Cacti Species. Life Sci. J. 12(2s):42-54

Costa, R. G., I.H. Trevino, G.R. de Medeiros, A.N. Medeiros, T.F. Pinto, R.L. de Oliveira (2012). Effects of replacing corn with cactus pear (Opuntia ficus indica Mill) on the performance of Santa Inês lambs. Small Rum. Res. 102: 13–17.

Cowan MM. (1999). Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:564-582.

Einkamerer, O. B. (2008). Animal performance and utilization of Opuntia-based diets by sheep. M.Sc. Agric. Thesis. Univ. of the Free State, Bloemfontein, S. Afr.

DeKock, G.C. (1980). Drought resistant fodder shrub crops in South Africa. In: Le Houerou, H.N. (ed.) Browse in Africa: The current state of knowledge. ILCA, Ethiopia. pp. 109-114.

Deraz, A. and H. Ismail (2001). Cotton stalks treated with white –rot Fungi for feeding sheep. Egypt J. Nutr. Feeds, 4 (Special Issue):433-434.

detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci.74, 3583-3597.

Duncan, D.B. (1955). Multiple range and multiple F-test. Biometrics, 11:1-42.

Einkamerer, O. B. (2008). Animal performance and utilization of Opuntia-based diets by sheep. M.Sc. Agric. Thesis. Univ. of the Free State, Bloemfontein, S. Afr.

Einkamerer, O.B., H.O. De Waal, W.J. Combrinck and M.D. Fair (2009). Feed utilization and growth of Dorper wethers on Opuntia-based diets. S. Afr. J. of Anim. Sci. 39: 53-57.

El- Shinnawy, A. M. and M. M. T. Eassawy (2016). Improving potato vine utilization by sheep using biocem treatment. J. Animal and poultry prod., Mansoura Univ.m vol. 7(9):323-330.

El- Shinnawy, M.M.; M.F. Emara; H.F.A. Motawe; Fatma, M. Salman and A. M.El. Shinnawy (2011). Effect of two kinds of bacteria inoculants on preservation and nutritive values of urine broad bean silages compared with clover hay. The 4th Scientific conference of animal Welch Research Conf. in the Middle East and North Africa.

EL-Ashry, M.A.; A.M. Kholif; H.M. EL-Sayed; M. Fadel and S.M. Kholif (2001). Biological treatments of banana wastes for lactating goats feeding. Proc.8th Conf. Animal Nutri. 23-26 October, Sharm EL-Sheikh, Egypt.

El-Said, N.M.; A.I. Nagib; Z. A. Rahman and S. F. Deraz (2011). Prickly pear (Opuntia ficus. Indica (L)mill) peels: Chemical composition, nutritional value and protective effects on liver and kidney functions and cholesterol in rats. Functional plant Science and Biotechnology, Global science books

El-Shinnawy (2011). Effect of two kinds of bacteria inoculants on preservation and nutritive values of urine broad bean silages compared with clover hay. The 4th Scientific conference of animal Welch Research Conf. in the Middle East and North Africa.

Ennouri, M.; I. Ammar; B. Khemakhem; H. Attia (2014). Chemical Composition and Antibacterial Activity of Opuntia Ficus-Indica F. Inermis (Cactus Pear) Flowers. J. Med. Food, 17:908–914.

Fekete, S and T. Gippert (1986). Digestibility and nutritive value of nineteen feedstuffs. J. Appl. Rabbit Res., 9: 103- 108.

Feldman, B. F.; J.G. Zinkl and N.C. Jain (2000). Schalm’s Veterinary Hematology. Lippincott Williams and Wilkins, Philadelphia, USA.

Felker, P. (1995). Forage and fodder production and utilization. In: G. Barbera, P., Inglese and E. Pimienta-Barrios (eds.). Agro-ecology, cultivation and uses of cactus pear. FAO Plant Production and Protection Paper 132. Rome. pp.144-154.

Feugang, J.M., P. Konarski, D. Zou, F.C. Stintzing, C. Zou (2006). Nutritional and medicinal use of cactus pear (opuntia spp.) cladodes and fruits. Frontiers in Bioscience. 11: 2574-2589.

Flachowsky, G and A. Yami (1985). Composition, digestibility and feed intake of Opuntia by Ogade sheep. Archiv-für-Tierernahrung. 35, 599-606. (Abstract).
Bakr

Gebremariam, T. S.; S. Melaku and A. Yami (2006). Effect of different levels of cactus (Opuntia ficus-indica) inclusion on feed intake, digestibility and body weight gain in teff (Eragrostis teff) straw-based feeding of sheep. Ani. Feed Sci. and Tech. 131: 42–51.

Gregory, R.A. and P. Felker (1992). Crude protein and phosphorus contents of eight contrasting Opuntia forage clones. Journal of Arid Environment. 22, 323-331.

Habibi Y, M. Mahrouz and M.R. Vignon (2005). Isolation and structural characterization of protocatechuic acid from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Polymers 60: 205-213.

Hanselka, C.W. and J.C. Paschal (1990). Prickly pear cactus: an important rangeland resource. Progress report. Texas agricultural experiment station. Beef cattle research in Texas. (Abstract). Hanselka, C.W. and J.C. Paschal. 1991. Prickly pear cactus: an important rangeland resource. In: Progress Report. pp. 141-143. Texas Agr. Exp. Sta., U.S.A.

Hoffman, M. T., C.D. James, G.I.H. Kerley and W.G. Whitford (1993). Rabbit herb ivory and its effect on cladode, flower and fruit production of opuntia violacea var macrocentra (cactaceae) in the northern Chihuahuan desert, New Mexico. The southwestern Naturalist, 38 (4): 309-315

Kamel B.S., and y. Kakuda (2002). Fatty acids in fruits and fruits products. In: chow C,K,(ED.) fatty acids in food and their health Implication (2nd Edn.), Mar-cell Dekker, New Yourk.Pp239-270.

Kaur, M., A. Kaur and R. Sharma (2012). Pharmacological actions of Opuntia ficus indica: A Review. J. Appl. Pharmaceutical Sci. 2: 15-18.

Lakshminarayana (1980). Sapodilla and prickly pear. In: Nagy S. Shaw PE (Eds.) Tropical and Subtropical Fruits. Vol. 4: 255-264.

Leslie, H. and C.H. Frank (1989). Practical Immunology. Third ed. pp. 23.

López, G.J.J., R.J.M. Fuentesand and R.A., Rodríguez (2001). Production and use of Opuntia as forage in northern Mexico. In: Mondragon, C. and Gonzalez, S. (eds.). Cactus (Opuntia spp.) as forage. FAO Plant Production and Protection Paper, 169. Rome. pp. 29-36.

Louacini, B., D. Abdelkader, M. Halbouche and K. Ghazi (2012). Effect of incorporation of the spineless Opuntia ficus indica in diets on biochemical parameters and its impact on the average weight of ewes during the maintenance. Global Vet. 8 (4): 352-359.

Mahouachi, M., N. Atti and H. Hajji (2012). Use of spineless cactus (opuntia ficus indica f. inermis) for dairy goats and growing kids: impacts on milk production, kid’s growth, and meat quality. The Scientific World J. Volume 2012, Article ID 321567, 4 pages. doi:10.1100/2012/321567

Mendoza-Jiorentie, F., R.G. Ramírez-Lozano, J.I. Aguilera-Soto and C.F. Arechiga-Flores (2008). Performance and nutrient digestion of lambs fed incremental levels of wild cactus (Opuntia leucotrichia). Conference on International Research on Food Security, Natural Resource Management and Rural Development.

Menezes, C.M.D., L.M.J. Schwalbach, W.J. Combrinck, M.D. Fair and H.O. Dewaal (2010). Effects of sun-dried Opuntia ficus-indica on feed and water intake and excretion of urine and faeces by Dorper sheep. S. Afr. J. Anim. Sci. 40 (5):491-494.

Misra, A. K., A.S. Mishra, M.K. Tripathi, O.H. Chaturvedi, S. Vaithyanathan, R. Prasad and R.C. Jakhmola (2006). Intake, digestion and microbial protein synthesis in sheep on hay supplemented with prickly pear cactus [Opuntia ficus-indica (L.) Mill.] with or without groundnut meal. Small Rum. Res. 63:125-134.

North, M. O. (1981). Commercial chicken production. Annual. 2nd Edition. Av. Publishing company I. N. C., West-post Connecticut. U.S.A

NRC (1977). National Research Council: Nutrient Requirements of Rabbits. 2nd Revised Edition, National Academy of Sciences, Washington, DC. USA.

Ruiz-Feria, C. A., S. D. Lukefahr, M. A Pro., C. P. Becerril, and P. Felker (1996). Cactus (Opuntia stricta) and mesquite (Prosopis glandulosa var. glandulosa) as forage resources for growing rabbits in semi-arid, subtropical south Texas. In: Proc 6th World Rabbit Congress, Toulouse, France, 3:257-261.

Ruiz–Feria, C. A., S.D. Lukefahr and P. Felker (1998). Evaluation of Leucaena leucocephala and cactus as forages for growing rabbits. Livestock Res. for Rural Development. http://www.cipav.org.co/lrrd/lrrd10/2/luke102.htm

548
SAS. (1998). JMP User's Guide, Version 3.1. SAS Institute Inc., N.C.

Steven, W. D.; W.D. Hohenboken; P.R. Cheeke; N.M. Patton and W.H. Kennick (1981). Carcass and meat characteristics of Flernish Giant and New Zealand White purebred and terminal cross rabbits. J. App. Rabbit Res., 4: 66.

Stintzing, F.C. and R. Carle (2005). Cactus stems (Opuntia spp.): A review on their chemistry technology, and uses. Molecular Nut. and Food Res. 49:175-194.

Stintzing, F.C; A. Schieber and R. Carle (2000). Cactus pear, a promising component of functional food Obst- Gemils and Kartoffeluerarheitung 85:40-47.

Stintzing; F.C; A. Schieber and R. Carle (2000). Cactus pear, a promising component of functional food Obst- Gemils and Kartoffeluerarheitung 85:40-47.

subtropical fruits. Composition properties and uses. AVI. West port. CT:415-44.

Taddesse, D., S. Melakub and Y. Mekashac (2014). Effect of Supplementation of Cactus and Selected Browses Mix on Feed Utilization of Somali Goats. American Scientific Res. J. for Eng., Tech. and Sci. 9 (1): 20-34.

Tegegne, F., C. Kijora and K.J. Peters (2005). Study on the effects of incorporating various levels of cactus pear (Opuntia ficus-indica) on the performance of sheep. Conf. on Inte. Agric. Res. for Development. Stuttgart-Hohenheim, October 11-13.

Terrazas, J. J.; R.I. Basurin; J. C. Montadez- Saeuz; M.I. Agular; R. Nega and J. C. Contreras- Esquivel (2002). Pricky pear (Opuntia ficus- Indica) peels as a new desert fiber. Preparation and partial characterization. In: Annual Meeting and Food. Expo Anaheim, CA, California: 114

Tesoriere L., D. Butera, M. Allegra, M. Fazzari and M.A. Livrea (2005). Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. J. of Agric. and Food Chem. 53: 1266-1270. and supplemented or not with barley grains or spineless cactus (Opuntia ficus-indica f. inermis) pads. Small Rum. Res. 59: 229-237.

Van Soest, P.J.; J.B. Robertson and B.A. Lewis. (1991). Methods of dietary fiber, neutral

Vieira E. L., A. M. V. Batista, A. Guim, F. F. Carvalho, A. C. Nascimento, R. F. S. Araújo, A. F. Mustafa (2008). Effects of hay inclusion on intake, in vivo nutrient utilization and ruminal fermentation of goats fed spineless.

Wanderley, W. L., M.A. Ferreira, D.K.B. Andrade, A.S.C. Véras, I. Farias, L.E. Lima and A.M.A. Dias (2002). Replacement of forage cactus (Opuntia ficus indica Mill) for sorghum silage (Sorghum bicolor (L.)Moench) in the dairy cows feeding. Rev.Bras.Zootec. 31: 273–281.

Wolfram, R. M., H. Kritz, P. Schmid, Y.E. Fthimiou, Y. Stamatopoulos and H. Sinzinger (2002). Effect of prickly pear (Opuntia robusta) onglucose- and lipid-metabolism in non diabetics with hyperlipidemia, Wr klin Wschr, 114: 840-846.

Zeedan , Kh.; I. I. Zeedan, Battaa, A. M. El-Neney, A. I. Abd EL. Lateif, Nasra B. Awadien and T. A. Ebeid (2015). Effect of using residues prickly pear as a source of dietary feed stuffs on productive performance, biological treats and immune response of rabbits. Egyptian Poultry Science Journal ISSN: 1110-5623 (Print) – 2090-0570 (On line).

Zeeman, D. Z. (2005). Evaluation of sun-dried Opuntia ficus-indica var. Algerian cladodes in sheep diets. M.Sc. Agric. Thesis. Univ. of the Free State, Bloemfontein.
تأثير استبدال دريس البرسيم بقشر التين الشوكي على الأداء الإنتاجي للإرانب

عادل أحمد بكر
المركز الإقليمى للأغذية والاعلاف – مركز البحوث الزراعية – الجيزة

استخدمت في هذه الدراسة أربعون أرنب تيوزيلندى أبيض بمتوسط وزن 500 ± 0.6 جرام لتقييم استخدام قشر التين الشوكي كمصدر غذائي على الأداء الإنتاجي الإرانب، الهضم، وبعض مكونات الدم والكفاءة الاقتصادية للإرانب. قسمت الارانب عشوائيا إلى 4 مجموعات بكل مجموعة 10 أرانب وكانت المجموعات الغذائية عبارة عن كنترول واستبدال دريس البرسيم بنسبة 25%, 50%, 75% من قشر التين الشوكي للمجفف على التوالي. وأوضحت النتائج المتحصل عليها من هذه الدراسة: تراوحت نسبة البروتين الخام من 16.15 إلى 16.63 % في حين تراوحت الطاقة المهضومة من 2529 إلى 2539 كيلو كالوري جامدة للعلائق الأربعة المختبرة. وزن الجسم ومعدل زيادة وزن الجسم وعامل الكفاءة أعلى معنويًا في المجموعات المعالمة وكانت أعلى وزن الجسم ومعدل زيادة وزن الجسم ومعامل الكفاءة في المعالمة 75% من قشر التين الشوكي المجفف (1986.15 جم – 1489.73 جم - 73.30 %) يليهم 50% (1946.97 جم – 1446.37 جم – 68.31 %) ثم 25% (1836.97 جم – 1339.37 جم – 53.74 %) بالمقارنة بالكنترول (1778.75 جم – 1239.75 جم – 53.74 %) على التوالي. حدد تحسن معنوي في قيم معاملات هضم DE، ADL، ADF، NDF، NFE، CF ، CP-DM للمعاداة على قشر التين الشوكي المجفف بالمقارنة بالكنترول. كان الرقم الهيدروجيني في الأفري وNH3-N أعلى في المجموعات المغذاة بالكنترول بالمقارنة بالمجاميع الأخرى وكان تركيز TVFAs أتعلي في المجاميع المغذة بالكنترول. المجموعات المعاداة على قشر التين الشوكي كانت أعلى معنويًا في نسبة التصافوح ووزن الأجزاء المنكوبة بالمقارنة بالكنترول. أنزيمات الكبد في الحدود المسموح بها في المجموعات المعاداة على قشر التين الشوكي والكنترول بينما تراوحت مكونات الدم الأخرى مثل البروتينات الكلي والأبيومين والجلوبولين في المجموعات المعاداة على قشر التين الشوكي المغذى بالكنترول. كانت تركيزات كل من كرات الدم البيضاء و كرات الدم الحمراء في البلارما أعلى في المجموعات المعاداة على قشر التين الشوكي بالمقارنة بالكنترول. سجلت أفضل كفاءة اقتصادية مع الأركان المغذى على 75% قشر التين الشوكي لليهار الإرانب المعاداة على 50% و 25% على التوالي. مما سبق يوضح أن استخدام قشر التين الشوكي كان مفيد لمعالجة النمو وعاملات الهضم وأفضل كفاءة اقتصادية للإرانب النيدولاني.