Access to a Catalytically Generated Umpolung Reagent through the Use of Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral Vicinal Aminoalcohol Synthons

Samantha L. Gargaro, Raphael K. Klake, Kevin L. Burns, Sharon O. Elele, Skyler L. Gentry, and Joshua D. Sieber

Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3028, United States

Supporting Information

ABSTRACT: We report the development of a stereoselective method for the allylation of ketones utilizing N-substituted allyl equivalents generated from a chiral allenamide. By employing N-heterocyclic carbenes as ligands for the Cu catalyst, good branched selectivity can be obtained with high diastereoselection. This methodology allows access to a catalytically generated, polarity-reversed (umpolung) allyl nucleophile to enable the preparation of chiral 1,2-aminoalcohol synthons containing a dissonant functional group relationship.

Chiral 1,2-aminoalcohols [1 (Figure 1)] make up an important class of biologically active compounds prevalent in nature and the pharmaceutical industry. A recent publication states that there are currently >300000 compounds, >2000 natural products, and >80 Food and Drug Administration-approved drugs bearing this motif. As a result, the development of asymmetric methods for preparing 1,2-aminoalcohols is an important endeavor in organic chemistry.1–3 However, the 1,2-dipolar substitution present in 1 can be challenging to access using typical two-electron processes (i.e., electrophile + nucleophile) because the 1,2-relationship between the hydrosyl and amino groups creates a dissonant pattern about the carbon skeleton.4 As a result, polarity-reversed (umpolung)5 methods for accessing anion coupling of enamines and ketones (Figure 1 B). The process presumably is enabled by the catalytic generation of α-aminoanion equivalent 9 by hydrocupration of enamine 7 by a chiral Cu–H catalyst. Addition of 9 to a ketone ultimately generates silylated product 10 after turnover of the catalyst with silane. Additionally, we recently developed a Cu-catalyzed reductive coupling of ketones and allenamide 11 for the diastereoselective synthesis of linear product 12 that represents a masked γ-hydroxyaldehyde equivalent (Figure 1C).5 By tuning of the ligand in this reaction, high linear selectivity could be obtained when using phosphoramidite (PhO)2PNMe2 (14) for this process. This methodology is currently proposed to proceed through the catalytically generated α,γ-aminoanion 13. Initial results imply that linear selectivity occurs through addition of 13 to ketone 6 at the γ-position of the anion due to the directing effect of the oxazolidinone by coordination with Cu. Inspired by the work of Malcolmson,6,7 we envisioned that if the ligand could be modified to destabilize the coordinating ability of the oxazolidinone, the α-site of nucleophile 13 may become more reactive, enabling a branched selective process to provide b-12 as an 1,2-aminoalcohol surrogate. Such a process would represent a catalytic stereoselective aminationlation reaction that is only recently beginning to emerge.2,10,11 The results of our study to enable a diastereoselective synthesis of 1,2-aminoalcohol synthon b-12 by use of an N-heterocyclic carbene (NHC)-derived Cu catalyst are disclosed herein.

Investigation of the ligand effect in the reaction of acetophenone with allenamide 11 was initially studied in an effort to develop a branched selective reductive coupling for the formation of product b-12a (Table 1). Allenamide 11 bearing the phenethanol-derived oxazolidinone chiral auxiliary
was specifically examined because the benzylic N-substitution allows for additional options for subsequent deprotection of the amino group within b-12a (e.g., hydrogenolysis). Previous work toward developing the linear selective version of this reaction identified that when using monodentate phosphine ligands, a decreasing linear selectivity was obtained as the electron-donating ability of the phosphine improved (entries 1–4).

Because coordination of the oxazolidinone moiety to Cu is believed to be important for improving linear selectivity, increasing branched selectivity with increasing ligand electron-donating ability can be rationalized by inhibition of oxazolidinone binding to Cu as the catalyst becomes more electron-rich. On the basis of this concept, we hypothesized that reaction conditions that would inhibit oxazolidinone coordination should enable improved branched selectivity (e.g., bidentate ligands, coordinating solvents, and strongly electron-donating ligands). Therefore, we initially investigated some electron-rich bidentate phosphine ligands (entries 5–10). Use of dppe, a common ligand employed in Cu-catalyzed reductive coupling reactions, afforded branched selectivity albeit with poor diastereoselectivity (entry 5). Use of more strongly coordinating solvents was not beneficial (entries 6 and 7), and changing the bite angle of the ligand (entry 8) or the size of the phosphorus substituent (entries 9 and 10) did not offer any additional improvements. Finally, we investigated NHC ligands due to their strong electron-donating ability (entries 11–14). Gratifyingly, use of SIMes enabled good branched selectivity with good yield and acceptable diastereoselectivity (entry 14).

After identifying a catalyst for selective generation of the branched product (Table 1, entry 14), we next investigated the scope of this reductive coupling reaction (Scheme 1). Both electron-rich (b-12b) and electron-poor (b-12c and b-12j) ketones performed similarly in the reaction, affording slightly improved diastereoselectivities. Aryl halides (b-12d and b-12l) and heterocyclic ketones (b-12e–h) were well tolerated in the reaction, and a ketone with a free amino group (b-12n) could also be employed. Overall, the reaction was very sensitive to steric effects. For example, meta substitution (b-12d and b-12j) afforded reduced branched selectivity, resulting in a lower overall yield. Similarly, ortho substitution (b-12m) was not well tolerated, leading to a low yield of a branched product due to the formation of increased amounts of the linear product. Cyclic ketones (b-12o and b-12q) also afforded reduced branched selectivity. Furthermore, an aliphatic ketone also generated preferentially the linear reaction product (l-12r).

A rationale for the observed stereochemical outcome and the branched selectivity obtained when using NHC ligands in the reaction is given in Scheme 2. Previous work demonstrated that the use of phosphine ligands in the reaction results in selective formation of linear product l-12a through proposed y-addition of complex π-15 or b-σ-15 to ketones through a closed chairlike transition state. Initial hydrocupration of 11 is proposed to occur trans to the large oxazolidinone group to give rise initially to the Z geometry of (σ-allyl)Cu complex l-Z-15. The preferred linear selectivity is believed to occur by a preference for complexes π-15 and/or b-σ-15 due to the A

Table 1. Copper-Catalyzed Reductive Coupling

entry	ligand	TEP \(^{b}\) yield b-12a \(^c\) (%)	dr \(^d\)	b-l \(^f\)	
1	P(O)H\(_3\) \(_2\)	2085	<2	–	1.99
2	(Ph\(_2\)P\(_2\))NMee	–	2	3.97	
3	P(NMe\(_2\))\(_2\)	2062	16	88:12	17.83
4	PCy\(_3\)	2056	17	93:7	20.80
5	depe	–	47	53:47	77.23
6	depe	–	28	59:41	65.35
7	depe	–	24	60:40	53:47
8	depm	–	25	92.8	39.61
9	dcyppe	–	32	54:46	66.34
10	depe	–	27	57.43	50.50
11	l-PPr	2052	70	87:13	87:13
12	l-PPr	2052	15	82:18	99:1
13	l-Me	2051	76	93:7	83:17
14	l-Me	2052	78	92.8	89:11

\(^{b}\)6a (0.25 mmol) and 11 (0.30 mmol) in 0.5 mL of toluene. See the Supporting Information for details. \(^{c}\)Tolman electronic parameter from refs 12 and 14a. \(^{d}\)Determined by \(^1\)HNMR spectroscopy on the unpurified reaction mixture using dimethylfumarate as a standard. \(^{e}\)Reaction in DME. \(^{f}\)Reaction in THF. \(^{g}\)Diisocyclohexylphosphino-methane. \(^{h}\)Diisocyclopentylphosphinoethane.
strain present in \(l-Z-15 \) and the directing effect of the oxazolidinone carbonyl \(\text{9,17} \) that distorts \(\pi-15 \) so that Cu is biased toward the \(\alpha \)-site. \(\text{18} \) The \(A_{1,3} \)-strain present in \(l-Z-15 \) appears to be the main interaction that leads to linear product formation using phosphate ligands because both electron-rich (Table 1, entry 4) and electron-deficient (Table 1, entry 1) phosphines provide linear selectivity. However, ligand electronics still play an important role as weakening the electron-donating ability of the phosphate allows for an increase in the linear selectivity, presumably due to enhancement of the coordinating ability of the oxazolidinone moiety as Cu becomes more electrophilic (Table 1, entries 1−4). \(\text{9} \)

Finally, because the \(A_{1,3} \)-strain appears to play a critical role in regioselectivity, full isomerization of \(15 \) to \(l-E-15 \) likely is not occurring, which suggests that the alkene moiety of \(b-\sigma-15 \) is still bound to Cu. \(\text{9,18} \)

On the basis of the preceding analysis, the branched product would be expected to arise from reaction of ketone \(6a \) with \(l-Z-15 \) or \(l-Z-16 \). When NHNC ligands are employed (i.e., \(l-Z-16 \) and \(\pi-16 \)), reaction of the linear (\(\sigma \)-allyl)Cu complex \(l-Z-16 \) with ketone \(6a \) through dipole-minimized \(\text{19} \) chairlike \(\text{20} \) transition structure \(17 \) correctly predicts the observed major diastereomer formed in the reaction (determined by X-ray crystallographic analysis of \(b-12a \)). \(\text{15} \) The preference for \(l-Z-16 \) over \(\pi-16 \) for NHNC ligands can be rationalized by the strong electron-donating ability of these ligands \(\text{14} \) that can disfavor oxazolidinone coordination and because the large mesitylene group may sterically shield the Cu atom from carbonyl coordination. Evidence for this steric shielding effect by the NHNC is supported by the improved branched selectivity that was obtained when utilizing IPr or SIPr in place of IMes or SIMes, respectively (Table 1, entries 11 and 12 vs entries 13 and 14). For example, SIPr and SIMes are electronically similar, yet the more sterically demanding SIPr ligand provided improved branched selectivity over SIMes albeit with reduced diastereocntrol. Presumably, these effects introduced by the NHC ligand are stronger than those of the \(A_{1,3} \)-strain present.
in l-Z-16, resulting in selective formation of the branched product.

Overall, there appears to be a delicate balance between the stability of l-Z-16 versus π-16, and the resulting transition states leading to branched versus linear product formation in this (NHC)Cu-catalyzed reductive coupling reaction as ortho-substituted (12m and 12o), cyclic (12o and 12q), and dialkyl (12r) ketones all resulted in reduced branched selectivity. The cause of this decreased regioselectivity for these ketones requires further investigation but may arise due to enhanced steric interactions present with these ketones in transition structure 17 due to the presence of ortho substitution (12m and 12o) or nonplanar substituents (12q and 12r) on the ketone electrophile.

On the basis of the model given in Scheme 2, allenamide 18 lacking branching on the oxazolidinone was examined in the reaction (Scheme 3). If steric and electronic effects of the NHC ligand in π-16 are more pronounced than the A1,3-strain present in l-Z-16, one would predict that alleviating A1,3-strain in l-Z-16 would lead to increased branched selectivity. Consistent with this proposal, use of unsubstituted allenamide 18 having a smaller oxazolidinone group relative to allenamide 11 in the reaction afforded improved branched selectivity (96:4 b:l), further supporting the importance of oxazolidinone size and the magnitude of the A1,3 interaction present in the linear (π-allyl)Cu complexes (l-Z-15 and l-Z-16) as a tuning element for reaction regioselectivity.

Synthetic applications of the products produced in the branched selective Cu-catalyzed reductive coupling reaction are given in Scheme 4. The reaction could be carried out on a 1.0 mmol scale, and diastereomERICALLY pure product could be isolated after crystallization from hexanes/EtOAc in good overall yield. Oxidative cleavage of the olefin functionality of b-12a was achieved to enable the synthesis of chiral π-amido-β-hydroxyaldehyde 20. Finally, to remove the chiral oxazolidinone group to unmask the 1,2-aminoalcohol, treatment of b-12a with NaH led to clean carbamate migration affording 21. The phenethanol group of 21 was then cleaved to carbamate protected aminoalcohol 22 through mesylation/elimination followed by acid hydrolysis of the enamide in good overall yield for the three-step sequence.21 Basic hydrolysis of 22 then provided 1,2-aminoalcohol 23.

In conclusion, we have disclosed a strategy for the stereoselective reductive coupling of ketones and a chiral allenamide to selectively afford branched products providing diastereomERICALLY pure patterns. This method employs simple starting materials and a readily available catalyst system for furnishing chiral products with increased complexity in an efficient manner. Further development of this reaction to enable stereocONTrol by a chiral catalyst is currently being pursued and will be reported in due course.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.9b03937.

Experimental procedures, characterization data for all compounds, and NMR spectra (PDF)

Accession Codes

CCDC 1936234 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: jdsieber@vcu.edu.

ORCID

Samantha L. Gargaro: 0000-0001-7518-3591
Raphael K. Klake: 0000-0002-7135-0505
Joshua D. Sieber: 0000-0001-6607-5097

Author Contributions

†S.L.G. and R.K.K. contributed equally to this work.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Start-up funding from Virginia Commonwealth University (VCU) and the Bill and Melinda Gates Foundation (The Medicines for All Institute, Grant OPP#1176590) is gratefully acknowledged. The authors thank Dr. Falk Musayev (VCU) for X-ray crystallographic analysis that was partially supported by Structural Biology resources provided by National Institutes of Health Shared Instrumentation Grant S10-OD021756 (MKS) and Virginia General Assembly Higher Education Equipment Trust Fund (HEETF) to VCU. The authors thank
Organic Letters

Dr. Joseph Turner (VCU) for assistance in collecting HRMS data.

REFERENCES

(1) Davison, E. K.; Sperry, J. Natural Products with Heteroatom-Rich Ring Systems. J. Nat. Prod. 2017, 80, 3060−3079. (b) Gupta, P.; Mahajan, N. Biocatalytic Approaches Towards the Stereoselective Synthesis of Vicinal Amino Alcohols. New J. Chem. 2018, 42, 12296−12327. (c) Wetzel, S.; Schiefenauer, A.; Roggo, S.; Ertl, P.; Waldmann, H. Chimia 2007, 61, 355−360. (d) Sehl, T.; Maugeri, Z.; Rother, D. Multi-Step Synthesis Strategies Towards 1,2-Amino Alcohols with Special Emphasis on Phenylpropanolamines. J. Mol. Catal. B: Enzym. 2015, 114, 65−71. (e) Mustaq, S.; Abbasi, B. H.; Uzair, B.; Abbasi, R. Natural Products as Reservoirs of Novel Therapeutic Agents. EXCLI Journal 2018, 17, 420−451.

(2) Spielmann, K.; Xiang, M.; Schwartz, L. A.; Beak, P. Kinetics and Mechanism of the (−)-Sparteine-Mediated Deprotonation of (E)-N-Boc-(p-methoxylphenyl)-3-cyclohexyllallylamine. J. Am. Chem. Soc. 2001, 123, 4919−4927.

(3) For reviews, see: (a) Palomo, C.; Oiarbide, M.; Laso, A. Recent Advances in the Catalytic Asymmetric Nitroaldol (Henry) Reaction. Chimia 2011, 65, 2011−2013. (b) Brändström, G.; Klaer, T.; Glorius, F. Diastereoselective Allylation of Aldehydes by Dual Photoredox and Chromium Catalysis. Org. Lett. 2019, 21, 7992−7998. (c) For metal-catalyzed amination looking toward a racemic product, see: (a) Skucas, E.; Zbieg, J. R.; Krische, M. J. anti-Amination of Aldehydes via Ruthenium Catalyzed Transfer Hydrogenative Coupling of Sulfonamido-Allenes: 1,2-Aminoalcohols. J. Am. Chem. Soc. 2009, 131, 5054−5055. (b) Zhang, Z.; McNitturff, E. L.; Krische, M. J. Allenamide Hydro-Hydroxyalkylation: 1,2-Aminoalcohols via Ruthenium Catalyzed Carboxyl anti-Amination. Org. Lett. 2010, 12, 2514−2517. (c) Zeng, W.; Chen, W.; Xiao, H.; Krische, M. J. Carboxyl anti-(α-Amino)alllylation via Ruthenium Catalyzed Hydrogen Auto-Transfer: Use of an Acetylenic Pyrrole as an Allymetal Pronucleophile. Org. Lett. 2017, 19, 4876−4879. (d) Vyas, S. A.; Schafer, F.; Thaheut-Aca, A.; Luckemeier, L.; Glorius, F. Diastereoselective Allylation of Aldehydes by Dual Photoredox and Chromium Catalysis. J. Am. Chem. Soc. 2017, 140, 12705−12709.

(11) For auxiliary-based amination, see: (a) Barrett, A. G. M.; Seefeld, M. A. B-[((E)-3-(Diphenylamino)allyl)]-disopinocamphanoborane: An Excellent Reagent for the Stereoselective Synthesis of anti-β-Diphenylamino Alcohols. J. Am. Chem. Soc. Chem. Commun. 1993, 339−9. (b) Barrett, A. G. M.; Seefeld, M. A. The Use of B-[((E)-3-(Diphenylamino)allyl)]disopinocamphanoborane as a Reagent for the Stereoselective Synthesis of anti-β-Diphenylaminoo Alcohols and trans-1-Diphenylamino-2-(1-hydroxyalkyl)-cyclopropanes. Tetrahedron 1993, 49, 7857−7870. (c) Barrett, A. G. M.; Seefeld, M. A.; Williams, D. J. Covenient Asymmetric Synthesis of anti-β-Amino Alcohols: An X-ray Crystallographic Study of (4R,2,2-Dimethyl-4-{[25-(diphenylmethyleneamino)-1S)-hydroxy-3-buten-1-yl]-1,3-dioxolane. J. Chem. Soc. Chem. Commun. 1994, 1053−1054.

(12) Tolman, C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977, 77, 313−348.

(13) (a) Tsai, E. Y.; Liu, R. Y.; Yang, Y.; Buchwald, S. L. A Regio- and Enantioselective CuH-Catalyzed Ketone Allylation with Terminal Alkenes. J. Am. Chem. Soc. 2018, 140, 2007−2011. (b) Liu, R. Y.; Zou, Y.; Yang, Y.; Buchwald, S. L. Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct. J. Am. Chem. Soc. 2019, 141, 2251−2256. (c) Liu, T. Y.; Yang, Y.; Buchwald, S. L. Regiodivergent and Diastereoselective CuH-Catalyzed Allylation of Imines with Terminal Alkenes. Angew. Chem., Int. Ed. 2016, 55, 14077−14080. (d) Li, C.; Liu, R. Y.; Jeskiewitz, L. T.; Yang, Y.; Liu, P.; Buchwald, S. L. CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications. J. Am. Chem. Soc. 2019, 141, 5062−5070.

(14) (a) Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo, L.; Höff, C. D.; Nolan, S. P. Steric and Electronic Properties of N-Heterocyclic Carbenes (NHC): A Detailed Study on Their
Interactions with Ni(CO)₄. J. Am. Chem. Soc. 2005, 127, 2485–2495.
(b) Droge, T.; Glorius, F. The Measure of All Rings – N-Heterocyclic Carbenes. Angew. Chem., Int. Ed. 2010, 49, 6940–6952. (c) Diez-González, S.; Nolan, S. P. Stereoelectronic Parameters Associated with N-Heterocyclic Carbene (NHC) Ligands: A Quest for Understanding. Coord. Chem. Rev. 2007, 251, 874–993. (d) Cavallo, L.; Corea, A.; Costabile, C.; Jacobsen, H. Steric and Electronic Effects in the Bonding of N-Heterocyclic Ligands to Transition Metals. J. Organomet. Chem. 2005, 690, 5407–5413.
(15) Stereochemical assignments of the minor diastereomers formed in the reaction have not yet been determined.
(16) (a) Trost, B. M.; Xie, J.; Sieber, J. D. The Palladium Catalyzed Asymmetric Addition of Oxindoles and Allenes: An Atom-Economical Versatile Method for the Construction of Chiral Indole Alkaloids. J. Am. Chem. Soc. 2011, 133, 20611–20622. (b) Hiroi, K.; Kato, F.; Yamagata, A. Asymmetric Direct α,β-Functionalization of Allenes via Asymmetric Carbopalladation. Chem. Lett. 1998, 27, 397–398. (c) Gamez, P.; Ariente, C.; Gore, J.; Cazes, B. Stereoselectivity of the Carbopalladation-Functionalization of Allenic Compounds: A Mechanistic Study. Tetrahedron 1998, 54, 14835–14844.
(17) For a recent example of Cu-oxazolidinone coordination utilizing allenamides, see: (a) Takimoto, M.; Gholap, S. S.; Hou, Z. Alkylative Carboxylation of Ynamides and Allenamides with Functionalized Alkylzinc Halides and Carbon Dioxide by a Copper Catalyst. Chem. - Eur. J. 2019, 25, 8363–8370. (b) Gholap, S. S.; Takimoto, M.; Hou, Z. Regioselective Alkylative Carboxylation of Allenamides with Carbon Dioxide and Dialkylzinc Reagents Catalyzed by an N-Heterocyclic Carbene-Copper Complex. Chem. - Eur. J. 2016, 22, 8547–8552.
(18) For the purpose of discussion, intermediates π-15 and b-σ-15 were considered as discrete intermediates; however, it is possible that these are a single species. For instance, the actual intermediate formed from the isomerization of l-Z-15 could be a distorted (π-allyl)Cu complex of type π-15 with the Cu atom shifted toward the C atom of the π-allyl bearing the oxazolidinone substituent because of the directing effect. This possibility needs to be investigated further but would still be consistent with the model proposed for regiocontrol in this transformation.
(19) (a) Evans, D. A.; Nelson, J. V.; Taber, T. R. Stereoselective Aldol Condensations. Topics in Stereochem. 2007, 13, 1–115. (b) Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Chiral Enolate Design. Pure Appl. Chem. 1981, 53, 1109–1127. (c) Shinisha, C. B.; Sunoj, R. B. Transition State Models for Probing Stereinduction in Evans Chiral Auxiliary-Based Asymmetric Aldol Reaction. J. Am. Chem. Soc. 2010, 132, 12319–12330.
(20) (a) For examples of closed transition states for addition of (allyl)Cu intermediates to carbonyl electrophiles, see ref 13d. (b) Boreux, A.; Indukuri, K.; Gagosz, F.; Riant, O. Acyl Fluoride as Efficient Electrophiles for the Copper-Catalyzed Borocarbonylation of Allenes. ACS Catal. 2017, 7, 8200–8204.
(21) (a) Nyzam, V.; Belaud, C.; Zanmattio, F.; Villieras, J. Sterecontrolled Synthesis of Chiral Secondary (α-Methylene-β-Substituted)-γ-Lactams by Addition of β-Functional Crotylzinc Reagents to Chiral Imines. Tetrahedron: Asymmetry 1996, 7, 1835–1843. (b) Fains, O.; Vernon, J. M. Chemoselective Debenzylation Involving Removal of a 2-Hydroxy-1-phenylethyl Group from Nitrogen. Tetrahedron Lett. 1997, 38, 8265–8266.