Predicting mortality for Covid-19 in the US. Delayed Elasticity Method

Luis Ángel Hierro
Senior Lecturer in Economics
Department of Economics and Economic History (Former Head)
Universidad de Sevilla
Avda. Ramón y Cajal, 1
41018 Sevilla (Spain)
Email: lhierro@us.es

Antonio José Garzón
Postgraduate Teaching Assistant in Economics
Department of Economics and Economic History
Universidad de Sevilla
Avda. Ramón y Cajal, 1
41018 Sevilla (Spain)
Email: antoniojgarzon@gmail.com

Pedro Atienza-Montero (Corresponding Author)
Lecturer in Economics
Department of Economics and Economic History
Universidad de Sevilla
Avda. Ramón y Cajal, 1
41018 Sevilla (Spain)
Email: atienza@us.es

José Luis Márquez
Medical Doctor (Ph. Dr.)
Gastroenterology Unit (Former Head)
Hospital Universitario Virgen del Rocio
Avda. Manuel Siurot s/n
41013-Sevilla (Spain)
Email: jmarquezhuvr@gmail.com

Abstract: The evolution of the pandemic caused by COVID-19, its high reproductive number and the associated clinical needs, is overwhelming national health systems. We propose a method for predicting the number of deaths, and which will enable the health authorities of the countries involved to plan the resources needed to face the pandemic as many days in advance as possible. We employ OLS to perform the econometric estimation, and through RMSE, MSE, MAPE, and SMAPE forecast performance measures we select the best lagged predictor of both dependent variables. Our objective is rather to estimate a leading indicator of clinical needs. Having a forecast model available several days in advance can enable governments to more effectively face the gap between needs and resources triggered by the outbreak and thus reduce the deaths caused by COVID-19.

Keywords: COVID-19, predictions, clinical needs, mortality
Predictive models for Covid-19 focus on predicting the evolution of infections through exponential adjustment, without predefined models, or with predefined infections and number of deaths models. These models can be highly complex, based on very detailed epidemiological features of the disease studied and can allow clinical strategies to be analyzed, yet their predictive accuracy is low. This makes them ineffective for prediction purposes and prevents health authorities from having reliable predictions in advance.

Methodology

We propose the following method (Delayed Elasticity Method-DEM). Using officially published data from the Johns Hopkins University CSSE, we econometrically estimate the following equation:

\[
\log(Deaths_t) = \alpha + \beta \log(Cases_{t-i}) + \epsilon_t
\]
(1)

where \(i=1, 2 \ldots, 10\) are the number of delays of the explanatory variable, \(Deaths_t\) is the total number of deaths up to day \(t\), \(Cases_t\) is the number of cases detected up to date \(t\).

The coefficient \(\beta_{-i}\) is what in economics is called elasticity and it represents the relationship between the variation of the dependent and independent variables:

\[
\beta_{-i} = \frac{\Delta Deaths_t}{Deaths_t} \cdot \frac{\Delta Cases_{t-i}}{Cases_{t-i}}
\]
(2)

After estimating equations using different lags, we select the one with the best forecast performance (which minimizes forecasting errors). We calculate RMSE as an indicator of predictive accuracy. Other indicators can be used, such as MAE, MAPE or SMAPE. RMSE is defined as follows:

\[
RMSE = \sqrt{\frac{\sum_{t=T+1}^{T+N}(\hat{y} - y)^2}{N}}
\]
(3)
where \(N \) is the number of out-of-sample observations, which we use to estimate the forecast performance of our estimate, \(\hat{\gamma} \) is the estimated value of the dependent variable, and \(\gamma \) is the actual value.

Finally, we select the estimate with the lagged explanatory variable that shows the lowest value in this indicator, and we make the corresponding prediction in total values.

Results

The estimation sample spans from 3/4/2020 to 3/29/2020. We left March 30, 31 and April 1 as out-of-sample observations in order to measure the forecast performance of the estimated model. Estimation is performed through the OLS estimator. We select the model including seven delays, since it shows the lowest RMSE value. The equation of the model that evidences the best forecast performance is the following:

\[
\log(\hat{Deaths}_t) = -0.7543 + 0.8227 \times \log(\hat{Cases}_{t-7}) + \epsilon_t
\]

(4)

The delayed elasticity, \(\beta = 0.8227 \), implies that a 1% increase in the number of infected cases predicts a 0.82% increase in the number of deaths seven days later. The estimate presents a high goodness of fit, with an R-square of 0.99.

Figure 1 displays the evolution of daily new confirmed deaths and new confirmed cases 7 days before.

Figure 1. Evolution of daily confirmed deaths and 7-day delayed daily confirmed cases.

![Graph showing daily confirmed deaths and cases](image)

Source: authors’ own compilation and Johns Hopkins University CSSE

Table 1 shows the number of actual and estimated deaths, as well as the errors for each time period. To obtain the total number of deaths, we carry out the following transformation

\[
\hat{Deaths}_t = \exp(\log(\hat{Deaths}_t))
\]

(5)
Table 1. Actual vs estimated deaths and estimate error.

Date	Cases	Deaths	Deaths (Est)	Error	Error %
3/4/2020	149	11	13	2.09	19.03
3/5/2020	217	12	13	1.28	10.68
3/6/2020	262	14	14	-0.34	2.45
3/7/2020	402	17	15	-1.86	10.95
3/8/2020	518	21	16	-4.77	22.72
3/9/2020	583	22	20	-1.55	7.05
3/10/2020	959	28	24	-4.17	14.91
3/11/2020	1,281	36	29	-7.13	19.82
3/12/2020	1,663	40	39	-0.67	1.68
3/13/2020	2,179	47	46	-1.08	2.29
3/14/2020	2,727	54	65	11.32	20.95
3/15/2020	3,499	63	80	17.46	27.72
3/16/2020	4,632	85	89	-1.86	4.33
3/17/2020	6,421	108	134	25.56	23.67
3/18/2020	7,783	118	169	51.48	43.63
3/19/2020	13,677	200	210	10.07	5.04
3/20/2020	19,100	244	262	18.38	7.53
3/21/2020	25,489	307	316	8.56	2.79
3/22/2020	33,276	417	387	-29.61	7.10
3/23/2020	43,847	557	488	-69.04	12.40
3/24/2020	53,740	706	638	-67.63	9.58
3/25/2020	65,778	942	748	-194.16	20.61
3/26/2020	83,836	1,209	1,189	-19.81	1.64
3/27/2020	101,657	1,581	1,565	-15.75	1.00
3/28/2020	121,478	2,026	1,985	-41.33	2.04
3/29/2020	140,886	2,467	2,471	4.40	0.18
3/30/2020	161,807	2,978	3,101	123.09	4.13
3/31/2020	188,172	3,873	3,666	-206.86	5.34
4/1/2020	213,372	4,757	4,329	-427.56	8.99
4/2/2020			5,286		
4/3/2020			6,194		
4/4/2020			7,172		
4/5/2020			8,102		
4/6/2020			9,079		

Source: authors’ own compilation and Johns Hopkins University CSSE. Deaths(est) values are rounded to integer values. Out-of-sample dates in bold.

Discussion
The result of the DEM is a model with a very high predictive accuracy, offering a seven-day advance for deaths in the US. This advanced forecast is what can allow the authorities to improve resources planning to face the clinical needs-health resources gap caused by the epidemic.
The DEM is replicable to any country, state, region, city or hospital area, and is applicable to other clinical situations apart from deaths and can also be applied to anticipate health needs (ICUs, hospital beds…).

The DEM does, nevertheless, evidence certain shortcomings that must be taken into account and that basically affect available data. It only uses one independent variable; detected cases. If the number of tests for possible Covid-19 infected cases were to be increased, the model would tend to overestimate future deaths and would need to be recalibrated. The same effect would be caused by applying new clinical strategies that reduce the fatality ratio. These effects can be corrected by performing a re-estimation when the model loses its predictive accuracy.

Author Contributions: Luis Ángel Hierro: study design, literature search (Google Scholar) and writing of the Summary, Research in Context, Introduction, and Discussion. Antonio José Garzón: econometric treatment, data analysis, and writing of the Methods and Results. Pedro Atienza: data collection, data analysis, Figures, Tables, References and corresponding author. José Luis Márquez: literature search (PubMed), evaluation of the impact of the results, revision of the text and structure for adaptation to J. Clin. Med., and adaptation of the language to medical scientific terminology. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1 Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? The Lancet 2020; published online Mar 13. DOI: 10.1016/S0140-6736(20)30627-9

2 Jung SM, Akhmetzhanov AR, Hayashi K, et al. Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: Inference using exported cases. Journal of Clinical medicine 2020; 9(2):523. Published online Feb 14. DOI: 10.3390/jcm9020523

3 Al-qaness MA, Ewees AA, Fan H, Abd El Aziz M. Optimization Method for Forecasting Confirmed Cases of COVID-19 in China. Journal of Clinical Medicine 2020; 9(3):674. Published online Mar 2. DOI:10.3390/jcm9030674.

4 Flaxman S, Mishra S Gandy S et al. Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. 30 March 2020 - Imperial College London https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/COVID-19/ (accessed March 31, 2020)

5 Dong, Ensheng, Hongru Du, and Lauren Gardner. "An interactive web-based dashboard to track COVID-19 in real time." The Lancet Infectious Diseases (2020).
Other forecast performance indicator:

Mean Absolute Error (MAE):

\[
MAE = \frac{\sum_{t=T+1}^{T+N} |\bar{y}_t - y_t|}{N}
\]
(2A)

Mean Absolute Percentage Error (MAPE):

\[
MAPE = \frac{\sum_{t=T+1}^{T+N} (\bar{y}_t - y_t)^2}{N}
\]
(3A)

Symmetric Mean Absolute Percentage Error (SMAPE):

\[
SMAPe = \frac{\sum_{t=T+1}^{T+N} |\bar{y}_t - y_t|}{(|\bar{y}_t| + |y_t|)/2} \times \frac{100}{N}
\]
(4A)

Lags	RMSE	MAE	MAPE	SMAPE
1	1462.45	1382.47	41.25	52.37
2	1284.91	1206.2	35.84	44.03
3	1075.51	1006.51	29.85	35.34
4	885.1	823.97	24.36	27.92
5	656.56	601.78	17.62	19.45
6	357.85	280.45	7.59	8.04
7	216.25	197.38	6.68	6.42
8	646.64	635.86	19.59	17.84
9	1117.68	1080.37	32.75	28.11
10	1545.14	1465.83	43.82	35.83

Sources: authors’ own compilation. Selected lag in bold.
Table A2. Estimation output for equation (1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(CASES(-7))	0.843878	0.016864	50.03987	0.0000
C	-0.920055	0.117526	-7.828543	0.0000

R-squared | 0.990898 | Mean dependent var | 4.728880
Adjusted R-squared | 0.990503 | S.D. dependent var | 1.677035
S.E. of regression | 0.163435 | Akaike info criterion | -0.708180
Sum squared resid | 0.614356 | Schwarz criterion | -0.610670
Log likelihood | 10.85225 | Hannan-Quinn criter. | -0.681134
F-statistic | 2503.989 | Durbin-Watson stat | 0.482811
Prob(F-statistic) | 0.000000 | | |

Source: Authors’ own compilation

Figure A2. Model estimate values, actual values, and residuals

Source: authors’ own compilation

Figure A1. Actual vs estimated total deaths

Source: authors’ own compilation