Detection of enteroviruses and hepatitis A virus in water by consensus primer multiplex RT-PCR

Jun-Wen Li, Xin-Wei Wang, Chang-Qing Yuan, Jin-Lai Zheng, Min Jin, Nong Song, Xiu-Quan Shi, Fu-Huan Chao

Abstract
AIM: To develop a rapid detection method of enteroviruses and Hepatitis A virus (HAV).

METHODS: A one-step, single-tube consensus primers multiplex RT-PCR was developed to simultaneously detect Poliovirus, Coxsackie virus, Echovirus and HAV. A general upstream primer and a HAV primer and four different sets of primers (5 primers) specific for Poliovirus, Coxsackievirus, Echovirus and HAV cDNA were mixed in the PCR mixture to reverse transcript and amplify the target DNA. Four distinct amplified DNA segments representing Poliovirus, Coxsackie virus, Echovirus and HAV were identified by gel electrophoresis as 589-, 671-, 1084-, and 1128 bp sequences, respectively. Semi-nested PCR was used to confirm the amplified products for each enterovirus and HAV.

RESULTS: All four kinds of viral genome RNA were detected, and producing four bands which could be differentiated by the band size on the gel. To confirm the specificity of the multiplex PCR products, semi-nested PCR was performed. For all the four strains tested gave positive results. The detection sensitivity of multiplex PCR was similar to that of monoplex RT-PCR which was 24 PFU for Poliovirus, 21 PFU for Coxsackie virus, 60 PFU for Echovirus and 105 TCID50 for HAV. The minimum amount of enteric viral RNA detected by semi-nested PCR was equivalent to 2.4 PFU for Poliovirus, 2.1 PFU for Coxsackie virus, 6.0 PFU for Echovirus and 10.5 TCID50 for HAV.

CONCLUSION: The consensus primers multiplex RT-PCR has more advantages over monoplex RT-PCR for enteric viruses detection, namely, the rapid turnaround time and cost-effectiveness.

INTRODUCTION
Enteroviruses include Poliovirus, Coxsackie virus and Echo virus. Enteroviruses and HAV can bring about many diseases.
MATERIALS AND METHODS

Viruses and viruses assays
Plaque-purified Poliovirus type 1, strain LSc, Cox B1,3 and 4 or Echo 7,9,11,12 virus were used as the model for the enteroviruses that may be present in the water. These viruses were grown and assayed by using African green monkey kidney (Vero) cells as previously described[10]. The viruses were titrated by the plaque method and expressed as plaque-forming units (PFU). The NJ-3 strain of HAV (Institute of Military Medical Research of Nanjing) was adopted to the human hepatoma cell line PLC/PRF/5 by serial passages. The HAV antigen was detected by ELISA method.

Virus seeding
A virus mixture containing 1.0×10^5 PFU of Poliovirus type 1, strain LSc, Cox B1,3 or Echo 9 virus, and 1.0×10^5 TCID$_{50}$ of HAV was seeded into 10 liters of water samples. The seeded and unseeded samples were concentrated by electropositive filter media particle as described previously by Jun-Wen Li, and the recovery of seeded viruses was 88.7% [8]. The final concentrates were 1.0 ml. If needed, which was cultured for three days for HAV or one day for other enteroviruses. The sensitivities of RT-PCR were evaluated with the ten-fold dilutions of HAV or other enteroviruses which were made with HPLC grade water.

RNA extraction and purification
Viral genome RNA was extracted and purified by the TRIzol Reagent kit (Life Technologies) according to the manufacturer’s recommendation, and the RNA was stored at -20°C for future analysis.

Primers
The consensus primer of enteroviruses was from the 5' non-coding region because of their presence in many enteroviruses serotypes [7,9]; the specific primers for enteric viruses, including HAV, were selected from the 5' coding region; and the semi-nested PCR primers were designed within the fragment of the first PCR products. The information of primers was summarized in Table 1.

Table 1 Nucleotide sequences and positions of primers

Primers	Sequence(5' → 3')	Position	band sizes (bp)
CE(+1)	AGTGGATCCATGCCTCCGTG	620-639	
P(-)1	TCCACCAAGCTTCGACTTC	1169-1190	571
P(-)2	GCATTACGTACGTGCAC	1271-1290	671
C(-)1	CACCAACACCCATACCTGCA	1470-1489	870
C(-)2	GCGCACATTGGCAGATTTGTG	1683-1703	1084
E(-)1	CGACCGCCTCTCAGGTTCA	1330-1349	730
E(-)2	TTATTTGCTGGGAAACCTTG	1727-1747	1128
H(+)1	CCAATCTTCCTGATACCA	1557-1577	
H(+)2	GATTTGTTGCTGAGATTGC	989-1008	589

+: upstream primer, -: downstream primer, 1: semi-nested primer; 2: the first PCR primer, CE: general primer, P: primers of Polioviruses; C: primers of Coxsackie viruses; E: primers of Echoviruses; H: primers of HAV

One-step, single-tube multiplex PCR
2-10 µl of purified viral RNAs were added in a final 100 µl containing 1×PCR buffer with 1.5 mM MgCl$_2$, 0.2 mM each of dNTP, 0.2 µM each of the primers, 10 U Rnase inhibitor, 5 mM of DTT, 1 µl of mixture of reverse transcriptase and DNA polymerase. RT was carried out at 50°C for 30 min. This was followed by an initial denaturation at 94°C for 3 min, and 30 PCR cycles of denaturation at 94°C for 0.5 min, annealing at 60°C for 0.5 min and extension at 68°C for 1 min with a fixed ramp time of 3 seconds for each cycle [10].

Semi-nested PCR
The semi-nested PCR was carried out on a final 50 µl containing 1×PCR buffer with 2.5 mM MgCl$_2$, 0.2 mM each of dNTP, 0.2 µM each of primers, 1 µl of the first PCR product and 2.5 U of Taq polymerase. This was followed by an initial denaturation at 94°C for 3 min, and 30 PCR cycles of denaturation at 94°C for 0.5 min, annealing at 60°C for 0.5 min and extension at 68°C for 1 min [12,13].

Analysis of PCR products
10 µl of each amplified product was electrophoresed on a 1.5% agarose gel in 1×TBE buffer containing 0.5 µg/ml ethidium bromide. The amplified bands were directly visualized under UV light [7,14].

RESULTS

Specificities of the primers
First, only one kind of viral RNA extracted from cell culture was tested in the multiplex PCR with all the primers. It is shown that only one amplicon was yielded, which was in agreement with the information on the designed primers (results not shown).

Secondly, two kinds of viral RNA were added to the multiplex PCR, it is expected that there were two PCR products on the gel which were conformed to the theoretical results (Figure 1).

Figure 1 PCR products of two types of viruses
M: DNA ladder; A: HAV and PV, B: HAV and CV, C: HAV and EV; D: PV and CV, E: PV and EV, F: CV and EV

Thirdly, three kinds of viral RNA were tested in the multiplex PCR, and given similar results (Figure 2).

Fourthly, all four kinds of viral genome RNA were detected, and produced four bands which could be differentiated by the band size on the gel (Figure 3).

To confirm the specificity of the multiplex PCR products, semi-nested PCR was performed. For all the four strains tested gave positive results (Figure 4).
The detection sensitivity of multiplex PCR was similar to that of monoplex RT-PCR which was 24 PFU for Poliovirus, 21 PFU for Coxsackie virus, 60 PFU for Echovirus and 105 TCID₉₀ for HAV. The minimum amount of enteric viral RNA detected by semi-nested PCR was equivalent to 2.4 PFU for Poliovirus, 2.1 PFU for Coxsackie virus, 6.0 PFU for Echovirus and 10.5 TCID₉₀ for HAV (Table 2). The method achieved a 10 folds higher sensitivity than that of multiplex PCR.

Detection of viral genome after concentration

A tap water with and without seeding enteroviruses were collected for testing. Viruses added in the 10 liters of water which were not concentrated in primary could not be detected by the multiplex PCR or semi-nested PCR, even when 200-1 000 PFU or TCID₉₀ of viruses were seeded. However, viruses seed in the waters which were concentrated with electropositive filter media could be detected by multiplex PCR and semi-nested PCR and obtained the similar sensitivity with that from cell cultures.

50 liters of tap water, or river water, or 5 liters of sewage, or 10 liters of ocean water were concentrated with electropositive filter media, and the virus RNAs were extracted from the concentrates. The multiplex PCR and semi-nested PCR were used to amplify the enteric viruses RNA. It is found that only Poliovirus RNA could be detected from the concentrate from 50 liters river water, other enteroviruses were not detected.

Table 2 Sensitivity of semi-nested-PCR for different viruses

Viruses	10⁰	10ⁱ	10²	10³
Poliovirus	+	+	+	+ (2.4)
Coxsackie virus B3	+	+	+	+ (2.1)
Echovirus 9	+	+	+	+ (6.0)
Three viruses	+	+	+ (10.5)	-

DISCUSSION

In our studies, cell culture and PCR are combined together to improve the detection sensitivity and specificity. For the cell culture method, it has the advantages of large volume of testing water and high sensitivity. Viable viruses can be fostered and reproduced even if there is existence of only one type. But it is poor in specificity [15]. Types of virus can’t be distinguished according to pathological changes cell and immunology method is needed to make further identifications. So it is heavy, complicated and time consuming (at least 3 days; it will take 6-8 weeks to identify hepatitis A virus) to implement the test. As for PCR, it has the advantages of high specificity and simpler operation. But its sensitivity can’t come up to the testing standards owing to its small testing size, and the same positive results are obtained no matter the virus is infectious or not so long as nucleic acid is complete. The improved cell culturing-PCR technique combines the high sensitivity of cell culture with the high specificity of PCR together, and avoids the shortcomings of low specificity and long testing period of cell culture, only two or four days are needed to detect Poliovirus, Coxsackie virus, Echovirus or HAV (cell culture for one or three days), thus two thirds testing time of cell culture is saved. Furthermore, cell culture dilutes the substances which play inhibiting effect on PCR in water, which further improves the sensitivity of PCR. In addition, this technique is only used to test the infectious viruses in water, hence inconsistency of PCR results with actual infectivity can be avoided [16].

The accuracy and reliability are ensured by using semi-nested PCR to identify PCR products. The techniques used at present to determine PCR products are Southern hybridization, PCR- depended DNA fingerprint pattern, nucleic acid sequencing and nested PCR, etc. [15,16]. Southern blot is poor in sensitivity and very complicated to handle [17-24]. It is generally taken as tool enzyme in molecule cloning and demands enzyme chip points existing in the expanded segment; DNA fingerprint pattern is poor in specificity with unstable results; nucleic acid sequencing is complicated, costly and low in efficiency; while
REFERENCES

1 Egger D, Pasamontes L, Ostermayer M and Bienz K. Reverse transcription multiplex PCR for differentiation between Polio- and enteroviruses from clinical and environmental samples. J Clin Microbiol 1995;33:1442-1447

2 Reynolds KA, Gerba CP, Pepper IL. Detection of infectious enteroviruses by an integrated cell culture-PCR. Appl Environ Microbiol 1996;62:1424-1427

3 Chapman NM, Tracy S, Gauntt CJ, Fortmueller U. Molecular detection and identification of enteroviruses using enzymatic amplification and nucleic acid hybridization. J Clin Microbiol 1990;28:843-850

4 Gouyader FL, Dubois E, Menard D, Pommepuy M. Detection of hepatitis A virus, rotavirus, and enterovirus in naturally contaminated shellfish and sediment by reverse transcription-seminested PCR. Appl Environ Microbiol 1994;60:3665-3671

5 Gantzer G, Senoud S, Maul A, Levi Y, Schwartzbrod L. Enterovirus genomes in wastewater: concentration on glass wool and glass power and detection by RT-PCR. J Virol Methd 1997;52:265-271

6 Tsai YL, Tran B, Sangermano LR, Palmer C. Detection of poliovirus, HAV, and rotavirus from sewage and ocean water by tripex RT-PCR. Appl Environ Microbiol 1994;60:2400-2407

7 Zoll GJ, Melchers WJG, Kopecka H, Jambros G, van der Poel HJA, Galama JMD. General primer-mediated polymerase chain reaction for detection of enteroviruses: application for diagnostic routine and persistent infections. J Clin Microbiol 1992;30:160-165

8 Li JW, Wang XW, Rui QY, Song N, Zhang FG, Ou YC, Chao FH. A new and simple method for concentration of enteric viruses from water. J Virol Methd 1998;74:99-108

9 Sheng DL. Current Protocols for Molecular Biology(1st edition). Beijing: Senior Education Press, 1993:147-149

10 Sellner LN, Coelen RJ, Mackenzie JS. A one-tube, one manipulation RT-PCR reaction for detection of Ross River virus. J Virol Methd 1992;40:255-264

11 Abraham R, Chonnaintree T, McCombs L, Prabhakar B, Verde PTL, Ogra PL. Rapid detection of poliovirus by RT-PCR: application for differentiation between poliovirus and nonpoliovirus enterovirus. J Clin Microbiol 1993;31:395-399

12 Yu QF. Modern Sanitary Microbiology(1st edition). Beijing: People Medical Press, 1995:54-66

13 Li JW, Zhang FG, Chao FH, Wang XW, Song N, Wang FY. Detection of enteroviruses by semi-nested RT-PCR. Zhongguo Weshang Jingian Zazhi 1996;6:125-127

14 Yang DL, Wang BC. DNA Amplification and Application in Medicine. Jinan: Shangdong Science and Technological Press, 1992:74-79

15 Seah CLK, Chow VTK, Tan HC, Chan YC. Rapid, single RT-PCR typing of dengue viruses using five NS3 gene primers. J Virol Methd 1995;51:193-200

16 Straub TM, Pepper IL, Gerba CP. Comparison of PCR and cell culture for detection of enteroviruses in sludge-amended field soils and determination of their transport. Appl Environ Microbiol 1995;61:2066-2068

17 Shieh YSC, Wait D, Tai L, Sobsey MD. Methods to remove inhibitors in sewage and other fecal wastes for enterovirus detection by the PCR. J Virol Methd 1995;54:51-66

18 Moore NJ, Margolin AB. Evaluation of radioactive and nonradioactive gene probes and cell culture for detection of poliovirus in water samples. Appl Environ Microbiol 1993;59:3145-3146

19 Williams SJ, Schwer C, Krishnarao ASM, Heid C, Karger BL, Williams PM. Quantitative competitive PCR: analysis of amplified products of the HIV-1 gag gene by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 1996;236:146-152

20 Doktucz MJ, Hurst GB, Goudarzi SH, M. Luckey SA, Tang K, Chen H, Uziel M, Jacobson KB, Woychik RP, Buchanan MV. Analysis of PCR-amplified DNA products by mass spectrometry using matrix-assisted laser desorption and electrospray: current status. Anal Biochem 1995;230:205-214

21 Li JW, Zhang FG, Chao FH, Wang XW, Song N. Detection of HAV by one-step, one-tube RT-PCR. Zhongguo Weshang Jingian Zazhi 1996;6:63-65

22 Ma JF, Gerba CP, Pepper IL. Increased sensitivity of poliovirus detection in tap water concentrates by RT-PCR. J Virol Methd 1995;55:295-302

23 Xiong ZG, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acid Res 1995;23:2532-2534

24 Xun ZX. Current Biochemical Theory and Research Technology(1st edition). Beijing:Military Medical Sciences Press, 1995:422-424

25 Tilston P, Corbett G. A single tube nested PCR for the detection of hepatitis C virus RNA. J Virol Methd 1995;53:121-129