Functional identity enhances aboveground productivity of a coastal saline meadow mediated by *Tamarix chinensis* in Laizhou Bay, China

Shijie Yi1,2, Pan Wu1,2, Xiqiang Peng1,2, Fenghua Bai1,2, Yanan Gao1,2, Wenxin Zhang3, Ning Du1,2* & Weihua Guo1,2*

Research in recent decades has confirmed that biodiversity influences ecosystem productivity; however, the potential mechanisms regulating this process remain subject to controversy, due to variation across ecosystems. Here, the effects of biodiversity on ecosystem productivity were evaluated using three variables of biodiversity (taxonomic diversity, functional identity, and functional diversity) and surrounding environmental conditions in a coastal saline meadow located on the south coast of Laizhou Bay, China. At this site, the shrub and field layers were primarily dominated by *Tamarix chinensis* and natural mesic grasses, respectively. Our results showed that functional identity, which is quantified as the community weighted mean of trait values, had greater explanatory ability than taxonomic and functional diversity. Thus, ecosystem productivity was determined disproportionately by the specific traits of dominant species. *T. chinensis* coverage was a biotic environmental factor that indirectly affected ecosystem productivity by increasing the community weighted mean of plant maximum height, which simultaneously declined with species richness. The present study advances our understanding of the mechanisms driving variation in the productivity of temperate coastal saline meadows, providing evidence supporting the “mass ratio” hypothesis.

With the increasingly severe decline in biodiversity, it is crucial to evaluate the underlying consequences on ecosystem functioning caused by biodiversity loss1. Hence, the relationship between biodiversity and ecosystem functioning has been a hot and controversial topic in ecology in recent decades2–5, especially when considering ecosystem productivity across different vegetation types6–9.

Initial studies on biodiversity-productivity relationships mainly focused how taxonomic attributes (i.e. species richness as a traditional proxy of biodiversity) affect productivity10–13. One study that reviewed hundreds of articles showed that the effects of taxonomic diversity on productivity cannot be predicted, with the underlying mechanism being equally complex14. However, there is increasing evidence that functional traits represent the functional dissimilarity among species that coexist in a given community15,16, and that they are closely associated with niche difference processes. Thus, functional traits might have a stronger predictive power than taxonomic diversity on the biodiversity-productivity relationship6,8,15,17. Several recent studies have also elucidated a clear link between productivity and the physiological traits of dominant species15,16, highlighting the relevance of the trait-based approach to explain the variation in community productivity8,19.

Two conceptually different, but not mutually exclusive, mechanisms have emerged to explain how biodiversity affects ecosystem productivity: (1) selection and (2) complementarity effects. Selection effects influence biomass accumulation determined by the dominance of species20 with the highest yield or its functional traits in a community17. Specifically, ecosystem biomass is mainly determined by its functional identity, which is quantified

1Institute of Ecology and Biodiversity, School of Life Science, Shandong University, Qingdao, 266237, People’s Republic of China. 2Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Qingdao, 266237, People’s Republic of China. 3Shandong Academy of Forestry, Jinan, 250014, People’s Republic of China. *email: n edu@sdu.edu.cn; whguo_sdu@163.com
Table 1. Results of the multiple linear regression and model averaging of environmental, taxonomic diversity, functional identity, functional diversity variables, and aboveground biomass. SW, sum of weight; SMC, soil moisture content; EC, electrical conductivity; TN, total nitrogen; TP, total phosphorus; CEC, cation exchange capacity; OC, organic carbon; AN, available nitrogen; EP, extractable phosphorus; AK, available kalium. CWM, community weighted mean; FDis, functional dispersion index; Hmax, maximum height; LDMC, leaf dry matter content; SLA, specific leaf area; T. chinensis coverage was used as a biotic variable sets | Variables | SW | Estimate value | Standard error | 95% confidence interval | p
--- | --- | --- | --- | --- | ---
Environmental | SMC | 0.24 | 0.073 | 0.136 | (−0.194, 0.341) | 0.604
| EC | 0.49 | −0.182 | 0.127 | (−0.430, 0.067) | 0.152
| TN | 0.30 | 0.095 | 0.163 | (−0.225, 0.415) | 0.573
| TP | 0.28 | −0.113 | 0.131 | (−0.371, 0.144) | 0.396
| CEC | 0.27 | −0.111 | 0.152 | (−0.409, 0.186) | 0.472
| OC | 0.28 | 0.102 | 0.148 | (−0.188, 0.392) | 0.499
| AN | 0.24 | 0.001 | 0.124 | (−0.242, 0.244) | 0.993
| EP | 0.24 | −0.004 | 0.130 | (−0.259, 0.251) | 0.977
| AK | 0.30 | −1.05 | 0.151 | (−0.401, 0.192) | 0.499
| T. chinensis coverage | 0.68 | 0.261 | 0.138 | (−0.009, 0.531) | 0.058
Taxonomic diversity | Species richness | 0.90 | −0.286 | 0.114 | (−0.509, −0.064) | 0.012
| Species evenness | 0.71 | −0.218 | 0.114 | (−0.441, 0.004) | 0.054
Functional identity | CWM.Hmax | 1.00 | 0.532 | 0.110 | (0.316, 0.747) | <0.001
| CWM.LDMC | 0.32 | −0.109 | 0.112 | (−0.328, 0.111) | 0.337
| CWM.N | 0.25 | 0.018 | 0.124 | (−0.226, 0.261) | 0.896
| CWM.P | 0.37 | −0.143 | 0.127 | (−0.392, 0.105) | 0.262
| CWM.SM | 0.25 | −0.085 | 0.120 | (−0.321, 0.151) | 0.489
Functional diversity | FDis.Hmax | 0.35 | −0.121 | 0.126 | (−0.367, 0.125) | 0.340
| FDis.SLA | 0.40 | −0.089 | 0.151 | (−0.385, 0.207) | 0.568
| FDis.LDMC | 0.74 | 0.359 | 0.148 | (0.069, 0.648) | 0.015
| FDis.N | 0.69 | −0.274 | 0.170 | (−0.607, 0.058) | 0.106
| FDis.P | 0.38 | −0.143 | 0.153 | (−0.442, 0.156) | 0.354
| FDis.SM | 0.41 | −0.117 | 0.148 | (−0.406, 0.173) | 0.438

as the community weighted mean (CWM) of trait values and is supported by the "mass ratio" hypothesis. Some studies suggest that the "mass ratio" hypothesis is the foundation of the relationships between functional attributes and ecosystem productivity. The different dimensions of diversity, such as taxonomic diversity and functional diversity, enhance productivity through the mechanism of complementary resource use in more diverse communities, which is described as complementarity effects. The complementarity effects are supported by studies which have observed markedly positive relationships between diversity and productivity. The environment drives the relationship between biodiversity and ecosystem productivity. In particular, primary productivity is influenced by soil fertility when sampling across highly variable environmental conditions. The life-history strategies of species are influenced by the surrounding environment, leading to systematic changes of particular trait values along the environmental gradient, thereby linking surrounding environment and community productivity. This phenomenon could explain a significant amount of variation in productivity.

This study aimed to determine how different dimensions of biodiversity influence productivity due to the impact of environmental factors. Specifically, we evaluated the effects of three different dimensions of biodiversity (taxonomic diversity, functional identity, and functional diversity), soil properties, and aboveground biomass of a coastal saline meadow located on the south coast of Laizhou Bay, China. We tested which biodiversity dimension best explains variation in the productivity of the saline meadow, and whether it reflected selection or complementarity effects. We also tested how environmental factors mediate biodiversity-productivity relationships, and the potential processes that influence the biomass dynamics of the coastal meadow in our study region.

Results

Predictors of biotic and environmental variables. Tamarix chinensis coverage was used as a biotic environmental factor that explained large amounts of variation in aboveground biomass of meadows (AGB), while none of the environmental factors were significant in the multiple linear regression analysis (Table 1). Species richness was better at explaining variation in AGB than species evenness for the taxonomic diversity variables (Table 1). For the functional attributes of community, we found that the CWM of plant maximum height (Hmax) and the functional dispersion (FDis) of leaf dry matter content (LDMC) were the most important predictors explaining AGB accumulation for the functional identity and functional diversity variables, respectively.
Therefore, based on multiple linear regression and model averaging, *T. chinensis* coverage, species richness, CWM of Hmax, and FDis of LDMC best predicted AGB in the coastal saline meadow. All biodiversity predictors were particularly sensitive to AGB compared to the selected environmental predictor, *T. chinensis* coverage (Fig. 1). Specifically, the CWM of Hmax had a relatively and strongly positive correlation with AGB ($R^2 = 0.326$, $p < 0.001$). In comparison, species richness ($R^2 = 0.112$, $p = 0.002$) and the FDis of LDMC ($R^2 = 0.072$, $p = 0.012$) had significantly negative effects on AGB. However, no significant effect was detected between *T. chinensis* coverage and AGB.

Correlation between predictors and AGB. All biodiversity predictors were particularly sensitive to AGB compared to the selected environmental predictor, *T. chinensis* coverage (Fig. 1). Specifically, the CWM of Hmax had a relatively and strongly positive correlation with AGB ($R^2 = 0.326$, $p < 0.001$). In comparison, species richness ($R^2 = 0.112$, $p = 0.002$) and the FDis of LDMC ($R^2 = 0.072$, $p = 0.012$) had significantly negative effects on AGB. However, no significant effect was detected between *T. chinensis* coverage and AGB.

Structural equation model. The model that best fitted our observation data included AGB, species richness, CWM of Hmax, and FDis of LDMC best predicted AGB in the coastal saline meadow.
AGB directly, but it largely promoted the CWM of H_{max} (Fig. 2, $\lambda = 0.36$) and contributed to a clear decline in species richness (Fig. 2, $\lambda = -0.23$).

Discussion
This study identified the key predictors of biodiversity that drive dynamic changes to productivity, elucidating how biodiversity influences productivity in saline meadow. Specifically, we showed that selection effects strongly influenced ecosystem productivity, while complementarity effects did not. In particular, the maximum height of dominant species significantly enhanced productivity mediated by *T. chinensis* coverage.

The environment was hypothesised to be primarily important for productivity in the resource-limited habitat, and should, therefore, provide better predictive power than measurements of biodiversity\(^4\). Unexpectedly, none of the univariate edaphic variables captured the variation in AGB. However, *T. chinensis* coverage served as an appropriate proxy for environmental variables in SEM, indicating that *T. chinensis* influences meadow species, but with no clear direct effect. Previous work reported that *T. chinensis* exhibits the facilitation effect on coexisting herbaceous species in the same region\(^4,35\). *T. chinensis* transfers nutrients from the deep soil layer to the surface, producing the “fertile island” to enhance the available nutrients for meadow species\(^34,35\). Species richness represented an important and logical approach for estimating the realised niche differentiation. Theoretically, this parameter, is related to the extent of niche differentiation in biomes\(^4,35\). Furthermore, species richness showed better independence from other biodiversity indexes than evenness (see Appendix S1). This parameter might independently capture variation in AGB well. For the functional identity variables, the CWM of H_{max} was vital for AGB, rather than leaf and seed traits. Maximum plant height, was an indicator for competition for available resources (e.g. nutrients, light)\(^36\). It was also important for the biomass production of plants\(^37\). The CWM of H_{max} was correlated with the plant growth of the most abundant species, and represented one of the main drivers of biomass in grasslands and forests\(^36,38\). For the measurements of functional diversity, the FDIs of LDMC was associated with AGB. LDMC was an independent strategy axis related to plant tolerance for stressful environment, indicating that conservative strategy and environment tolerance are important for biomass production in saline meadows\(^39,40\).

As the environmental predictor, *T. chinensis* coverage did not improve AGB in the linear regression. However, *T. chinensis* coverage improved AGB through the functional identity variables, even though there was no direct correlation between *T. chinensis* coverage and AGB in SEM. In our study, we identified some soil fertility factors, including soil organic carbon, total nitrogen, available kalium, and cation exchange capacity. These factors were notably and positively related to *T. chinensis* coverage based on the Pearson correlation test ($r = 0.4–0.7$, see Appendix 1), indicating soil fertility increased with *T. chinensis* coverage, and confirming the existence of the facilitation effect. Previous studies also demonstrated that net facilitation effect was more likely to occur in stressful environments\(^39\). Specifically, the formation of fertile islands is an important process driving the positive interactions between shrubs and grass\(^39\).

For taxonomic diversity, our results indicated that species richness was negatively correlated to AGB in the linear regression, and lost significance when accounting for the selected environmental predictor, *T. chinensis*. Negative and non-significant correlations between species richness and AGB have been observed in previous studies\(^4,5,40,41\), with the opposite being found for complementarity effects. This negative association has been documented in fertilisation experiments\(^34\) and in communities with high productivity\(^42\). In our study, the distribution to promote AGB in the linear regression but had no significant correlation with AGB in the SEM. Thus, increased variation in LDMC might have a negative influence on productivity, supported by previous work\(^47\). Species survival tended to be a conservative life-history strategy, showing a pattern of functional convergence in response...
to strong environmental pressures via higher LDMC. These results were supported by the findings of studies in temperate forests, which showed that trees promote carbon storage by improving stem specific density. This phenomenon arises because LDMC was closely related to stem specific density, which is considered to be an analogical index to stem specific density in herbaceous species. However, many studies have stated that functional diversity enhances productivity through optimal resource use. In particular, because barren environments have a weak competition intensity, complementarity effects are more likely to drive productivity. Yet, our results showed the opposite effect, in which functional dispersion was negatively correlated with AGB. This phenomenon is probably explained by the presence of highly productivity species that had similar specific trait values and low-levels of community functional dispersion in the stressful environment. Thus, complementarity effects had a negligible role in driving variation in AGB in our study.

Our results show that *T. chinensis* clearly promotes the maximum height of dominant species and decreases species richness, which, in turn increases the productivity of saline meadows indirectly in the temperate coastal zone. Our study demonstrates the important role of functional identity and selection effects on the relationship between biodiversity and ecosystem productivity, supporting the "mass ratio" hypothesis. Our study indicates that conservation measures should concentrate on protecting woody species that facilitate grasses to optimise the production of saline meadows in temperate coastal zones.

Methods

Study area. The natural coastal saline meadow examined in this study is located in a marine reserve (37°03′–37°07′N; 119°20′–119°23′E) in the south part of Laizhou Bay, China. The mean annual temperature of the study area is 12 °C and the mean annual precipitation is 630 mm. In this region, we can find the youngest coastal wetland ecosystems in China, with dramatic changes in environment and landscape from shoreline to inland area. The saline meadow is the most important vegetation type in this region which contributes towards stabilising sandy habitat and preventing seawater encroachment. *T. chinensis* is the dominant species of shrub and the only arboroid species within the study area. This species, has been previously confirmed to facilitate the growth of herbaceous plants by improving the availability of nutrient resources in microhabitats. For the herb layer, *Artemisia capillaris*, *Artemisia scoparia*, *Setaria viridis* and *Conyza Canadensis* were the dominant species in the study area. Moreover, our study area encompassed a broad environmental gradient, extending from the shoreline to inland area. Consequently, the productivity and species composition of biomes noticeably changed. Therefore, it is necessary to examine how biodiversity influences productivity in coastal wetland ecosystem.

Establishment of plots. We separated a 2.5 km × 2.5 km area into twenty-five 500 × 500 m grid blocks in the core of the reserve (Fig. 3), that has never been cultivated, but it has been disturbed artificially by the construction of canals and roads. For each block, three plots (10 m × 10 m) were established to characterize the *T. chinensis* in terms of coverage, average height and the number of branches that was at least 50 m from the closest...
artificial facilities (canal or roads), resulting in 75 plots in total. Within each plot, three quadrats (1 m × 1 m) were established at the centre and the opposite two corners of a plot that were not shaded by the T. chinensis canopy.

In each quadrat, all herbaceous plants were taxonomically identified and the coverage per species was recorded. Subsequently, we harvested all aboveground biomass per quadrat to assess the primary productivity of the saline meadow community at the end of the growing season (August to September 2017). Because the biomass has reached the annual peak during sampling, the aboveground biomass is close to the net primary productivity of saline meadow\(^4\). We calculated the aboveground biomass of meadows (AGB) at the plot level as an average mass following drying at 80 ℃ for 48 h. The AGB ranged from 47.61 g/m\(^2\) to 544.89 g/m\(^2\), with an average of 257.72 g/m\(^2\). Because we lost one AGB dataset, we implemented the subsequent analyses on the data from the remaining 74 plots.

Trait measurements. We chose six functional traits to assess different functional strategies for each species that was identified. Specifically, maximum plant height was associated with a strategy axis of competition; leaf traits (specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus concentration) represented the leaf economics spectrum, and were related to an acquisitive or conservative resource use strategy; and seed mass was correlated with dispersal capability\(^26,35\). With the exception of seed mass, each functional trait was measured for at least 10 individual replicates per species sampled in each plot to incorporate intraspecific variation into trait measures. This is because intraspecific trait variation influences community composition and, hence, ecosystem productivity\(^26\). We collected and measured functional traits in the plots by following standardised protocols\(^26\).

For overall plant traits, we used maximum plant height (H\(_\text{max}\)), which was determined as the shortest distance between the upper boundary of main photosynthetic tissues and the ground. For the leaf morphologic traits, we chose mature and healthy leaves exposed to sunshine with petioles and rachis to calculate specific leaf area (SLA) and leaf dry matter content (LDMC). SLA was calculated as the oven-dried leaf area divided by its oven-dried mass. LDMC was calculated as the oven-dry mass divided by its fresh mass. To determine leaf chemical traits, leaves without any petiole or rachis were collected, oven-dried, and ground before measuring leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC), respectively. Seed mass (SM) was based on the oven-dried mass of 1000 seeds obtained from both the study area and the Germplasm Bank of Wild Species in Southwest China (http://www.genobank.org). This parameter represented a species-level trait value.

Environmental variables. For each plot, 12 biotic and abiotic environmental variables were collected and quantified in our study. Three biotic environmental variables influencing the growth of meadows, including T. chinensis coverage, average height, the number of branches, were obtained from the field site. We used T. chinensis coverage as a proxy for biotic variables because it was closely associated with AGB and was strongly correlated with other biotic variables. Among the abiotic variables, we measured nine soil properties, including soil moisture coverage as a proxy for biotic variables because it was closely associated with AGB and was strongly correlated with soil moisture coverage and air temperature, which are two important drivers of meadow productivity\(^30\). The soil properties measured included soil water content, air temperature, soil water content, soil temperature, and soil redox potential. The values of these soil properties were further processed to fit the normal distribution prior to statistical analysis. We used trait values at the plot scale and considered plot-level intraspecific trait variability in calculation. For functional diversity variables, we used all trait data are continuous variables and the values are greater than 0, the logarithmic transformation is used to make the trait data follow the normal distribution prior to statistical analysis. We used trait values at the plot scale and considered plot-level intraspecific trait variability in calculation. For functional diversity variables, we calculated functional dispersion (FDis) indices based on a log-transformed monoculture trait value to assess community functional diversity. This variable is rarely correlated with species richness; thus, it was used to ensure that functional diversity variables were independent of taxonomic diversity variables\(^39\). Indeed, we found that functional dispersion had low correlations with species richness (Appendix 1). Moreover, single-trait functional dispersion indices have been shown to capture important information on trait variation across the environmental gradient\(^46\), as well as in ecosystem processes\(^41,62\). In addition, to avoid bias in the results of the selected indices, we calculated Rao’s Quadratic entropy index, which was calculated as the abundance-weighted functional distance...
of two random individuals in a community}^{29,61}. Because Rao’s Q index was highly correlated with functional dispersion indices, we did not describe these results further. All functional diversity indices were calculated using the R package ‘FD’^{29}.

Statistical analyses. We applied structural equation modelling (SEM) to test the direct and indirect impacts of environmental factors and biodiversity variables on ecosystem productivity. Our conceptual model was constructed using existing knowledge of biodiversity-ecosystem functioning, validated by the observational data of previous studies}^{3,5,64}. In our study, we tested three alternative pathways from biodiversity to AGB, which cause variation in AGB accumulation in the coastal saline meadow. As sample size was limited, the SEM based on our observational data required simplification}^{64}. Specifically, we only selected the best individual predictor per set of variables (environment, functional identity, functional diversity, and taxonomic diversity) that was expected to have the greatest influence on variation in AGB.

Multiple linear regression and multi-model inference analyses were conducted to evaluate the relative strength of different individual factors on AGB simultaneously. For these analyses, we used the original AGB data that were normally distributed as dependent variables, and we standardized all biodiversity factors as independent variables. We excluded individual factors for which variance inflation factors scores were greater than three during the calculation to avoid notable and substantial multi-collinearity in the models}^{66}. We calculated the full standardised effect size to evaluate which individual factor was the most sensitive predictor}^{66,67}. Factors with a 95% confidence interval of standardised effect size that excluded zero and had a sum of weight (SW) value greater than 0.9 were determined as the best predictors on variation of AGB}^{69}. If none of the factors met our criteria, we selected the factor with the largest SW value as the best predictor.

In addition, we also tested exponential, lognormal, and unimodal correlations between different variables and AGB; however, we did not find any other function shape for the correlations. Multiple linear regression and multi-model inference analyses were conducted using the R package 'MuMIn'70.

We examined the relationships between selected predictors and AGB using linear regression to evaluate biodiversity-productivity relationships. We then imported observational data into our conceptual SEM to assess the impacts of all predictors. The initial SEMs were conducted using the R package 'lavaan'71, and included all predictors selected from the set of variables and AGB. We aggregated the existing covariant relationship between different biodiversity predictors into SEMs. We assessed the utility of SEMs using a Chi-square test, root mean square error of approximation (RMSEA), and goodness-of-fit index (GFI). The final SEM was adopted with a good fit (p > 0.05), a RMSEA < 0.05, and a GFI > 0.9572.

Data availability

The datasets analysed during the current study are available from the corresponding authors on request.

Received: 13 March 2019; Accepted: 4 March 2020;
Published online: 02 April 2020

References

1. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecol. Monogr.* 75, 3–35 (2005).
2. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. *Nature* 412, 72–76 (2001).
3. Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. *Proc. Natl. Acad. Sci. USA* 104, 20684–20689, https://doi.org/10.1073/pnas.0704716104 (2007).
4. Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. *Ecology* 85, 2630–2637 (2004).
5. Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. *Nature* 529, 390–393 (2016).
6. Mokany, K., Ash, J. & Roxburgh, S. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. *J. Ecol.* 96, 884–893 (2008).
7. Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. *Global Ecology and Biogeography* 20, 170–180 (2011).
8. Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. *J. Ecol.* 103, 191–201 (2015).
9. Prado-Junior, J. A. et al. Conservative species drive biomass productivity in tropical dry forests. *J. Ecol.* 104, 817–827 (2016).
10. Huston, M. A. General hypothesis of species diversity. *The American Naturalist* 113, 81–101 (1979).
11. Rosenzweig, M. L. & Abramsky, Z. How are diversity and productivity related? In *Species diversity in ecological communities* (eds. Rocklfs, R. & Schluter, D.) 52–65 (University of Chicago Press, 1993).
12. Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. *Science* 294, 843–845 (2001).
13. Van Ruijven, J. & Berendse, F. Positive effects of plant species diversity on productivity in the absence of legumes. *Ecol. Lett.* 6, 170–175 (2003).
14. Waide, R. B. et al. The relationship between productivity and species richness. *Ann. Rev. Ecol. Syst.* 30, 257–300 (1999).
15. Zhang, Q. et al. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community above-ground biomass in the Inner Mongolia grassland. *Ecol. Evol.* 7, 1605–1615, https://doi.org/10.1002/ece3.2778 (2017).
16. Violette, C. et al. Let the concept of trait be functional! *Osok* 116, 882–892, https://doi.org/10.1111/j.2007.0030-1299.15559.x (2007).
17. Roscher, C. et al. Using plant functional traits to explain diversity-productivity relationships. *PloS one* 7, e36760, https://doi.org/10.1371/journal.pone.0036760 (2012).
18. Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. *Global Change Biology* 14, 1125–1140, https://doi.org/10.1111/j.1365-2486.2008.01557.x (2008).
19. Khump, K. & Soussana, J. Using functional traits to predict grassland ecosystem change: a mathematical test of the response-and-effect trait approach. *Global Change Biology* 15, 2921–2934, https://doi.org/10.1111/j.1365-2486.2009.01905.x (2009).
20. Fox, J. W. Interpreting the ‘selection effect’ of biodiversity on ecosystem function. *Ecol. Lett.* 8, 846–856 (2005).
63. Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. *Journal of Vegetation Science* **16**, 533–540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x (2005).
64. Carol Adair, E., Hooper, D. U., Paquette, A. & Hungate, B. A. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. *Ecol. Lett.* **21**, 1604–1619 (2018).
65. Zuur, A., Ieno, E. N. & Smith, G. M. *Analyzing ecological data* (Springer Science & Business Media, 2007).
66. Burnham, K. P. & Anderson, D. R. *Model selection and multimodel inference: a practical information-theoretic approach* (Springer Science & Business Media, 2003).
67. Galipaud, M., Gillingham, M. A., David, M. & Dechaume-Moncharmont, F. X. Ecologists overestimate the importance of predictor variables in model averaging: a plea for cautious interpretations. *Methods Ecol. Evol.* **5**, 983–991 (2014).
68. Cade, B. S. Model averaging and muddled multimodel inferences. *Ecology* **96**, 2370–2382 (2015).
69. Galipaud, M., Gillingham, M. A. F., David, M. & Dechaume-Moncharmont, F. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. *Methods Ecol. Evol.* **8**, 1668–1678 (2017).
70. Barton, K. **MuMIn**: multi-model inference. *R package version 1.42.1* https://cran.r-project.org/package=MuMIn (2018).
71. Rosseel, Y. **Lavaan**: an R package for structural equation modeling. *Journal of Statistical Software* **48**, 1–36 (2012).
72. Kline, R. B. *Principles and practice of structural equation modeling* (Guilford publications, 2015).

Acknowledgements
We are grateful to Prof. Jian Liu for the early version of manuscript. Our study is supported by the Ministry of Science and Technology of China (No. 2015FY110300), National Natural Science Foundation of China (No. 31770361), National Key R&D Program of China (No. 2017YFC0505905), Forestry Science and Technology Innovation Program of Shandong Province (No. 2019LY010) and Natural Science Foundation of Shandong Province (No. ZR2017BC090).

Author contributions
S.Y. and W.G. designed this study; S.Y., P.W., X.P., F.B., Y.G., W.Z., N.D. and W.G. collected and measured data; S.Y. and P.W. analysed the data; S.Y. and W.G. wrote and drafted the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-62046-3.

Correspondence and requests for materials should be addressed to N.D. or W.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020