Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central $d+Au$ Collisions at $\sqrt{s_{NN}}=200$ GeV

A. Adare,13 C. Aidala,41, 42 N.N. Ajitanand,58 Y. Akiba,54, 55 H. Al-Bataineh,48 J. Alexander,58 A. Angerami,14 K. Aoki,33, 54 N. Apadula,59 Y. Aramaki,12, 54 E.T. Atomssa,34 R. Averbeck,59 T.C. Awes,50 B. Azmoun,7 V. Babintsev,23 M. Bai,6 G. Baksay,19 L. Baksy,19 K.N. Barish,8 B. Bassalleck,47 A.T. Basye,1 S. Bathe,5, 8, 55 V. Baublis,53 C. Baumann,43 A. Bazilevsky,7 S. Belikov,7 R. Belmont,63 R. Bennett,59 J.H. Bhom,67 D.S. Blau,32 J.S. Bok,67 K. Boyle,59 M.L. Brooks,37 H. Buesching,7 V. Bumazhnov,23 G. Bunce,7, 55 S. Butsyk,37 S. Campbell,59 A. Caringi,44 C.-H. Chen,59 C.Y. Chi,14 M. Chiu,7 L.J. Choi,67 B.J. Choi,10 R.K. Choudhury,4 P. Christiansen,39 T. Chujo,52 P. Chung,58 O. Chvala,8 V. Cianciolo,50 Z. Citron,59 B.A. Cole,14 Z. Conesa del Valle,34 M. Connors,59 M. Csanád,17 T. Csörgő,66 T. Dahms,59 S. Dairaku,33, 54 I. Danchev,63 K. Das,20 A. Datta,41 G. David,7 M.K. Dayananda,21 A. Denisov,23 A. Deshpande,55, 59 E.J. Desmond,7 K.V. Dharmawardane,48 O. Dietzsch,57 A. Dion,27, 59 M. Donadelli,7 O. Drapier,34 A. Drees,59 K.A. Drees,6 J.M. Durham,37, 59 A. Durum,59 D. Dutta,4 L. D’Orazio,40 S. Edwards,20 Y.V. Efremenko,50 F. Ellinghaus,13 T. Engelmore,14 A. Enokizono,50 H. En’yo,54, 55 S. Esumi,62 B. Fadem,44 D.E. Fields,17 M. Finger,9 M. Finger, Jr,9 F. Fleuret,34 S.L. Fokin,32 Z. Fraenkel,56, 37 J.E. Frantz,49, 59 A. Franz,7 A.D. Frawley,20 K. Fujiwara,54 Y. Fukao,54 T. Fusayasu,46 I. Garishvili,60 A. Glenn,36 H. Gong,59 M. Gonin,34 Y. Goto,54, 55 R. Granier de Cassagnac,34 N. Grau,21, 34 S.V. Greene,63 G. Grim,37 M. Grosse Perdekamp,24 T. Gunji,12 H.-Á. Gustafsson,39 J.S. Haggerty,7 K.I. Hahn,18 H. Hamagaki,12 J. Hamblen,60 R. Han,52 J. Hanks,14 E. Hashem,39 R. Hayano,12 X. He,21 M. Heffner,36 T.K. Hemmick,59 T. Hester,8 J.C. Hill,27 M. Hohlmann,19 W. Holzmann,14 K. Homma,22 B. Hong,31 T. Horaguchi,22 D. Hornback,60 S. Huang,63 T. Ichihara,59 R. Ichimura,54 Y. Ikeda,52 K. Imai,28, 33, 54 M. Inaba,62 D. Isehnower,1 M. Ishihara,54 M. Issah,63 D. Ivanishev,53 Y. Iwanaga,22 B.V. Jacak,59 J. Jia,7, 58 X. Jiaang,73 J. Jin,14 B.M. Johnson,7 T. Jones,1 K.S. Joo,45 D. Jouan,51 D.S. Jumper,4 F. Kajihara,12 J. Kann,59 J.H. Kang,67 J. Kapustinsky,37 K. Karatsu,33, 54 M. Kasai,54, 56 D. Kawall,45, 51 M. Kawashima,54, 56 A.V. Kazantsev,32 T. KempeI,27 A. Khanzadeev,53 K.M. Kijima,22 J. Kikuchi,64 A. Kim,18 B.I. Kim,31 D.J. Kim,29 E.-J. Kim,10 Y.-J. Kim,24 E. Kinney,13 A. Kiss,7 E. Kistenmacher,7 D. Kleinjan,8 L. Kochenda,53 B. Komok,53 M. Konno,62 J. Koster,24 A. Král,15 A. Kravitz,14 G.J. Kunde,37 K. Kurita,54, 56 M. Kurosawa,54 Y. Kwon,67 G.S. Kyle,48 R. Lacev,58 Y.S. Lai,14 J.G. Lajoie,27 A. Lebedev,27 D.M. Lee,47 J. Lee,18 K.B. Lee,31 K.S. Lee,31 M.J. Leitch,37 M.A.L. Leite,57 X. Li,11 P. Lichtenwalner,44 P. Liebing,53 L.A. Linden Levy,13 T. Liška,15 H. Liu,37 M.X. Liu,37 B. Love,63 D. Lynch,7 C.F. Maguire,63 Y.I. Makdisi,6 M.D. Malik,47 V.I. Manko,32 E. Mannel,14 Y. Mao,52, 54 H. Masui,62 F. Matathias,14 M. McCumber,59 P.L. McGaughey,37 D. McGlinchey,13, 20 N. Means,59 B. Meredith,24 Y. Miako,62 T. Mibe,30 A.C. Mignerey,40 K. Mikl,54, 62 A. Milov,7 J.T. Mitchell,7 A.K. Mohanty,4 H.J. Moon,24 Y. Morita,12 A. Morreale,12 D.P. Morrison,7 T.V. Moukhana,32 T. Murakami,33 J. Murata,54, 56 S. Nagamiya,30 J.L. Nagle,13 M. Naglis,55 M.I. Nagy,66 I. Nagakawa,54, 55 Y. Nakamukai,22 K.R. Nakamura,33 T. Nakamura,54 K. Nakano,54 S. Nam,18 J. Newby,36 M. Ngyuen,59 M. Nihashi,22 R. Nonier,7 A.S. Nyanin,32 C. Oakley,21 E. O’Brien,7 S.X. Oda,12 C.A. Ogilvie,27 M. Oka,62 K. Okada,55 Y. Onuki,54 A. Öskarsson,39 M. Ouchida,22, 54 K. Ozawa,12 R. Pak,7 V. Pantyev,25, 59 V. Papavassiliou,48 I.H. Park,18 S.K. Park,31 W.J. Park,31 S.F. Pate,48 H. Pei,27 J.-C. Peng,48 H. Pereira,16 D. Perrepticsia,14 D.Yu. Peressoukno,32 R. Petti,59 C. Pinkenburg,7 R.P. Pissani,50 M. Proissl,59 M.L. Purschke,7 H. Qu,21 J. Rak,29 I. Ravinovich,65 K.F. Read,60 S. Rembezki,19 K. Reygers,43 V. Riabov,53 Y. Riabov,53 E. Richardson,40 D. Roach,63 G. Roche,38 S.D. Rolnick,8 M. Rosati,27 C.A. Rosen,13 S.E.E. Rosendahl,39 P. Ruzička,26 B. Sahlmueller,43, 59 N. Saito,30 T. Sakaguchi,7 K. Sakashita,54, 61 V. Samsonov,53 S. Sano,12, 64 T. Sato,62 S. Sawada,50 K. Sedwick,8 J. Seele,13 R. Seidl,24, 55 R. Seto,8 D. Sharma,65 I. Shein,23 T.-A. Shibata,54, 61 K. Shigaki,22 M. Shimomura,62 K. Shoji,33, 54 P. Shukla,4 A. Sickles,7 C.L. Silva,27 D. Silvermyr,50 C. Silvestro,16 K.S. Sim,31 B.K. Singh,3 C.P. Singh,3 V. Singh,3 M. Slunečka,9 R.A. Soltz,36 W.E. Sondheim,37 S.P. Soresen,60 I.V. Sourikova,7 P.W. Stankus,50 E. Stenhall,39 S.P. Stoll,7 T. Sugitake,22 A. Sukhanov,7 J. Sziklai,66 E.M. Takagui,57 A. Taketani,54, 55 R. Tanabe,62 Y. Tanaka,46 S. Tanec,59 K. Tanida,53, 54, 55 M.J. Tannenbaum,7 S. Tarafdar,3 A. Taranenko,58 H. Themann,39 D. Thomas,27 T.L. Thomas,45 M. Togawa,55 A. Toia,59 L. Tomášek,39 H. Torii,22 R.S. Towell,1 I. Tseveeju,65 Y. Tsuchimoto,22 C. Vale,7 H. Valke,53 H.W. van Hecke,37 E. Vazquez-Zambrano,14 A. Veichi,24 J. Velkovská,53 R. Vértesi,66 M. Virius,15 V. Vrba,26 E. Vznuzdaev,53 X.R. Wang,48 D. Watanabe,22 K. Watanabe,62 Y. Watanabe,54, 55 F. Wei,27 R. Wei,58 J. Wessels,43 S.N. White,7 D. Winter,14 C.L. Woody,7
R.M. Wright, 1 M. Wysocki, 13 Y.L. Yamaguchi, 12, 54 K. Yamaura, 22 R. Yang, 24 A. Yanovich, 23 J. Ying, 21 S. Yokkaichi, 54, 55 Z. You, 52 G.R. Young, 50 I. Younus, 35, 47 I.E. Yushchansky, 32 W.A. Zajc, 14 and S. Zhou 11

(PHENIX Collaboration)

1 Abilene Christian University, Abilene, Texas 79699, USA
2 Department of Physics, Augustana College, Sioux Falls, South Dakota 57197, USA
3 Department of Physics, Banaras Hindu University, Varanasi 221005, India
4 Bhabha Atomic Research Centre, Bombay 400 085, India
5 Baruch College, City University of New York, New York, New York, 10010 USA
6 Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7 Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
8 University of California - Riverside, Riverside, California 92521, USA
9 Charles University, Ovocn trh 5, Praha 1, 116 36, Prague, Czech Republic
10Chonbuk National University, Jeonju, 561-765, Korea
11Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, P. R. China
12Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
13University of Colorado, Boulder, Colorado 80309, USA
14Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA
15Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic
16Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France
17ELTE, Eötvös Loránd University, H - 1117 Budapest, Püspöklőr P. s. 1/A, Hungary
18Ewha Womans University, Seoul 120-750, Korea
19Florida Institute of Technology, Melbourne, Florida 32901, USA
20Florida State University, Tallahassee, Florida 32306, USA
21Georgia State University, Atlanta, Georgia 30303, USA
22Hiroshima University, Kagamihara, Higashihiroshima 720-8526, Japan
23HEP Proton, State Research Center of Russian Federation, Institute for High Energy Physics, Proktyino, 142281, Russia
24University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
25Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
26Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
27Iowa State University, Ames, Iowa 50011, USA
28Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan
29Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland
30KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
31Korea University, Seoul, 136-701, Korea
32Russian Research Center “Kurchatov Institute”, Moscow, 123098 Russia
33Kyoto University, Kyoto 606-8502, Japan
34Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France
35Physics Department, Lahore University of Management Sciences, Lahore, Pakistan
36Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
38LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France
39Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
40University of Maryland, College Park, Maryland 20742, USA
41Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
42Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
43Institut fur Kernphysik, University of Muenster, D-48149 Muenster, Germany
44Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA
45Myongji University, Yongin, Kyonggido 449-728, Korea
46Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
47University of New Mexico, Albuquerque, New Mexico 87131, USA
48New Mexico State University, Las Cruces, New Mexico 88005, USA
49Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
50Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
51IPN-Orsay, Université Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France
52Peking University, Beijing 100871, P. R. China
53PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
54RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
55RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
56Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
57Univerisade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil
58Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
59Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in $d+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central $p+Pb$ collisions at $\sqrt{s_{NN}}=5.02$ TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in $d+Au$ collisions compared to those seen in $p+Pb$ collisions at the LHC. The larger extracted $v_2$ values in $d+Au$ collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from $p+Pb$ collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.

PACS numbers: 25.75.Dw

Proton- and deuteron-nucleus collisions at relativistic energies are studied to provide baseline measurements for heavy-ion collision measurements. In $p(d)+A$ collisions, initial-state nuclear effects are present; however, the formation of hot quark-gluon matter as created in heavy ion collisions is not commonly expected. Recently there has been significant interest in the physics of high-multiplicity events in small collision systems, motivated by the observation of a small azimuthal angle ($\Delta \phi$) large pseudorapidity ($\Delta \eta$) correlation of primarily low $p_T$ particles in very high multiplicity $p+p$ collisions at 7 TeV [1]. The correlation resembles the “near-side ridge” observed in $Au+Au$ [2, 3]. The initial $p+p$ result sparked considerable theoretical interest [4, 5]. Recently, a similar effect was observed in $p+Pb$ collisions at $\sqrt{s_{NN}}=5.02$ TeV [7]. Subsequent work from ALICE [8] and ATLAS [9] removed centrality independent correlations (largely from jet fragmentation) by looking at the difference in correlations between central and peripheral events and has additionally uncovered similar long-range $\Delta \eta$ correlations at $\Delta \phi \approx \pi$ beyond those expected from fragmentation of recoiling jets. The effect appears as a longitudinally extended azimuthal modulation with a predominantly quadrupole component [i.e. $\cos(2\Delta \phi)$] and bears a qualitative resemblance in both magnitude and $p_T$ dependence to elliptic flow measurements in heavy ion collisions, where the large quadrupole modulation is understood to be caused by the initial-state spatial anisotropy followed by a nearly inviscid hydrodynamic expansion [10]. A variety of physical mechanisms have been invoked to explain the observed anisotropies in $p+Pb$ including gluon saturation [6, 11–13], hydrodynamics [3, 14, 15], multiparton interactions [16], and final-state expansion effects [17].

Previous analyses involving two-particle correlations from $d+Au$ collisions at RHIC have not indicated any long-range features at small $\Delta \phi$ [2, 18–20]. However, these measurements involved $p_T$ selections that emphasize jetlike correlations, rather than the underlying event. Also, Refs. [19, 20] were based on $d+Au$ collisions recorded in 2003 with a small data sample, which limited the statistical significance of the results.

We present here the first analysis of very central $d+Au$ events to measure hadron correlations between midrapidity particles at $\sqrt{s_{NN}} = 200$ GeV. The center of mass energy per nucleon is a factor of 25 lower than at the LHC. Another potentially key difference is the use of a deuteron as the projectile nucleus rather than a proton. In Ref. [14], within the context of a Monte Carlo-Glauber (MC-Glauber) model, the calculated initial spatial eccentricity of the participating nucleons, $\varepsilon_2$, for central (large number of participants) $d+Pb$ is more than a factor of 2 larger than in central $p+Pb$ collisions at LHC energies. We find the initial spatial eccentricity $\varepsilon_2$ from the MC-Glauber model [21] for $d+Au$ at RHIC energies to be similar to the $d+Pb$ calculations at LHC energies.

The results presented here are based on 1.56 billion minimum-bias $d+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV recorded with the PHENIX [22] detector in 2008. The event centrality in $d+Au$ is determined from the integrated charge measured by a beam-beam counter facing the incoming $Au$ nucleus [23]. Here we isolate a more cen-
sample than previously analyzed, to compare more closely to the LHC results. We use central and peripheral event samples comprising the top 5% and 50%-88% of the total charge distributions, respectively.

This analysis considers charged hadrons measured within the two PHENIX central arm spectrometers. Each arm covers nominally $\pi/2$ in azimuth and has a pseudorapidity acceptance of $|\eta| < 0.35$. Charged tracks are reconstructed using drift chambers with a hit association requirement in two layers of multiwire proportional chambers with pad readout; the momentum resolution is $0.7\% \pm 1.1%p$ (GeV/c). Electrons are rejected with a veto in the ring-imaging Čerenkov counters.

All pairs satisfying the tracking cuts within an event are measured. The yield of pairs satisfying tracking and particle identification cuts is corrected for azimuthal acceptance through the use of mixed-event distributions. The conditional yield of pairs is determined by

$$\frac{1}{N^t} \frac{dN_{\text{pairs}}}{d\Delta \phi} \propto \frac{dN_{\text{pairs}}}{dN_{\text{mix}}} / d\Delta \phi$$

where $N^t$ is the number of trigger hadrons (trigger hadrons are those having the momenta required to begin the search for a pair of hadrons) and $N_{\text{pairs}}/N_{\text{mix}}$ is the number of pairs from the same (mixed) events. Mixed pairs are constructed with particles from different events within the same 5% centrality class and with event vertices within 5 cm of each other. Because the focus of this analysis is on the shape of the distributions, no correction is applied for the track reconstruction efficiency, which has a negligible dependence on centrality for $d+Au$ track multiplicities.

To make direct comparisons between our measurements and recent ATLAS $p+Pb$ results [3], we follow a similar analysis procedure. Charged hadrons with $0.5 < p_T < 3.5$ GeV/$c$ are used. For this analysis, each pair includes at least one particle at low $p_T$ ($0.5 < p_T < 0.75$ GeV/$c$), which enhances the sensitivity to the nonjet phenomena. To minimize the contribution from small-angle correlations arising from resonances, Bose-Einstein correlations, and jet fragmentation, pairs are restricted to pseudorapidity separations of $0.48 < |\Delta \eta| < 0.7$. This $\Delta \eta$ gap is chosen to be as large as possible within the tracking acceptance, while still preserving an adequate statistical sample size. Unlike measurements at the LHC, this method is not sensitive to the pseudorapidity extent of the correlations.

The conditional yield owing to azimuthally uncorrelated background is estimated by means of the zero-yield-at-minimum (ZYAM) procedure [24]. This background contribution is obtained for both the central and peripheral samples by performing fits to the conditional yields using a functional form composed of a constant pedestal and two Gaussian peaks, centered at $\Delta \phi = 0$ and $\pi$. The minimum of this function, $b_{\text{ZYAM}}$, is subtracted from the conditional yields, and the result is:

$$Y(\Delta \phi) \equiv \frac{1}{N^t} \frac{dN_{\text{pairs}}}{d\Delta \phi} - b_{\text{ZYAM}}$$

The conditional yields $Y_c(\Delta \phi)$ and $Y_p(\Delta \phi)$ (central and peripheral events, respectively) are shown in Fig. 1 along with their difference $\Delta Y(\Delta \phi) \equiv Y_c(\Delta \phi) - Y_p(\Delta \phi)$. As in Ref. [9], this subtraction removes any centrality independent correlations, such as effects from unmodified jet fragmentation, resonances and HBT. In the absence of any centrality dependence, $Y_c(\Delta \phi)$ and $Y_p(\Delta \phi)$ should be identical. It is notable that any signal in the peripheral events is subtracted from the central events. We see that $Y_c(\Delta \phi)$ is significantly larger than $Y_p(\Delta \phi)$ for $\Delta \phi$ near 0 and $\pi$.

We find that the difference with centrality is well described by the symmetric form: $\Delta Y(\Delta \phi) \approx a_0 + 2a_2 \cos(2\Delta \phi)$ as demonstrated in Fig. 1. The coefficients $a_{n}$ and their statistical uncertainties are computed from the $\Delta Y(\Delta \phi)$ distributions as: $a_{n} = \langle \Delta Y(\Delta \phi) \cos(n\Delta \phi) \rangle$. The $\cos(2\Delta \phi)$ modulation appears as the dominant component of the anisotropy for all $p_T$ combinations.

To quantify the relative amplitude of the azimuthal
The 0.36 selection has some contributions enhanced and 0.60 (where it is reduced). The nominal value of 0.48 to 0.36 (where sensitivity to jet remaining jet correlations and is applied symmetrically, this reflects the influence of possible τt uncertainties. This is a known feature of jet fragmentation, which leads to influence of any residual unmodified jet correlations, we data is also shown (open circles). A representative selection from Ref. [31] is shown as a dashed line.

To assess the dependence of the results on our selection of peripheral subtraction. This is potentially different from the implications of Ref. [20] where a difference in low pt hadron correlations between 40%–100% d+Au and p+p collisions is observed. We observe a similar magnitude signal in both 0%–5% and 0%–20% central events. Other sources of uncertainty, such as occupancy and acceptance corrections, were found to have negligible effect on these results.

In p+Pb collisions at the LHC the signal is seen in long-range Δη correlations. In this analysis, signal is measured at midrapidity, but it is natural to ask if previous PHENIX rapidity separated correlation measurements [18] would have been sensitive to a signal of this magnitude. The maximum c2 observed here is approximately a 1% modulation about the background level. Overlaying a modulation of this size on the conditional yields shown in Fig. 1 of Ref. [18] shows that the modulation on the near side is small compared with the statistical uncertainties. With the current method we cannot determine whether the signal observed here persists for η > 3.

To test effects of the centrality determination or known jet modifications on this observable, we have applied the identical analysis procedure (including the centrality selection) to HIJING (v1.383) d+Au events. As shown in Fig. 2, we find an average c2 value of (7.5±5.5)×10⁻⁴ for 0.5 < pt < 1.5 GeV/c with no significant pt dependence.

The c3 values, shown in Fig. 2, are small relative to c2. Fitting the c3 data to a constant yields (6±4)×10⁻⁴ with a χ² per degree of freedom of 8.4/7 (statistical uncertainties only); no significant c3 is observed.

A measure of the single-particle anisotropy, v2, can be obtained under the assumption of factorization [28, 30]: c2 (pT) = v2 (pT2). We have varied pT and recomputed v2 (pT) and find no significant deviation from the factorization hypothesis. The calculated single particle v2 is shown in Fig. 3 and also compared with the ATLAS [4] results, revealing qualitatively similar pT dependence with a significantly larger magnitude. We also compare the v2 results to a hydrodynamic calculation [14, 31] and find good agreement between the data and the calculation. The v2 reported here is the excess v2 beyond any which is present in peripheral d+Au collisions. While we cannot extract v2 from the current data, Fig. 2 shows that the measured c3 values are in agreement with the values expected from v2 as a function of pT in the same model as the v2 calculation [31]. The v2 data are also in qualitative agreement with another hydrodynamic calculation [32] both with the MC-Glauber model.
and with impact-parameter glasma initial conditions (note that these calculations are at a fixed $N_{\text{part}}$, not the exact centrality range as in the data). These calculations have very different assumptions about the initial geometry and yet are all in qualitative agreement with the data.

To further investigate the origin of this effect, we plot in Fig. 3 the PHENIX results for both $d+Au$ and $Au+Au$ scaled by the eccentricity ($\varepsilon_2$), as calculated in a MC-Glauber model, as a function of the charged-particle multiplicity at midrapidity. Due to the lack of available multiplicity data for the $d+Au$ centrality selection the $dN_{\text{ch}}/d\eta$ value is calculated from HIJING \cite{27}. The 0–5% $d+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV have a $dN_{\text{ch}}/d\eta$ similar to those of midcentral $p+Pb$ collisions at the LHC, while the $\varepsilon_2$ values for $d+Au$ collisions are about 50% larger than those calculated for the midcentral $p+Pb$ collisions. The key observation is that the ratio $v_2/\varepsilon_2$ is consistent between RHIC and the LHC, despite the factor of 25 difference in collision center of mass energy. A continuation of this trend is seen by also comparing to $v_2/\varepsilon_2$ as measured in $Au+Au$ \cite{34, 35} and $Pb+Pb$ \cite{37, 38} collisions. The $\varepsilon_2$ values calculated depend on the nucleon representation used in the MC-Glauber model. In large systems this uncertainty is small, but in small systems, such as $d+Au$, this uncertainty becomes much more significant. For illustration, $\varepsilon_2$ has been calculated using three different representations of the participating nucleons, pointlike centers, Gaussians with $\sigma = 0.4$ fm, and uniform disks with $R = 1$ fm for the PHENIX data. The scaling feature is robust against these geometric variations, which leads to an approximately 30% difference in the extracted $\varepsilon_2$ in $d+Au$ collisions (other models, e.g.

FIG. 3: Charged hadron second-order anisotropy, $v_2$, as a function transverse momentum for (filled [blue] circles) PHENIX and (open [black] squares) ATLAS \cite{39}. Also shown are hydrodynamic calculations from Bozek \cite{14, 31} (dotted [blue] curve) and Bzdak et al. \cite{32, 33} for impact parameter glasma initial conditions (solid curve) and the MC-Glauber model initial conditions (dashed curve).

Ref. \cite{32}, could produce larger variations).

In summary, a two-particle anisotropy at midrapidity in the 5% most central $d+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV is observed. The excess yield in central compared to peripheral events is well described by a quadrupole shape. The signal is qualitatively similar, but with a significantly larger amplitude than that observed in long-range correlations in $p+Pb$ collisions at much higher energies. While our acceptance does not allow us to exclude the possibility of centrality dependent modifications to the jet correlations, the subtraction of the peripheral jetlike correlations has been checked both by varying the $\Delta \eta$ cuts and exploiting the charge sign dependence of jet-induced correlations. The observed results are in agreement with a hydrodynamic calculation for $d+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.

We find that scaling the results from RHIC and the LHC by the initial second-order participant eccentricity from a MC-Glauber model \cite{14} may bring the results to a common trend as a function of $dN_{\text{ch}}/d\eta$. This may suggest that the phenomena observed here are sensitive to the initial state geometry and that the same underlying mechanism may be responsible in both $p+Pb$ collisions at the LHC and $d+Au$ collisions at RHIC. It may also imply a relationship to the hydrodynamical understanding of $v_2$ in heavy ion collisions. The observation of $v_2$ at both RHIC and the LHC provides important new information. Models intended to describe the data must be
capable of also explaining their persistence as the center of mass energy is varied by a factor of 25 from RHIC to the LHC.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation.

* Deceased
1 PHENIX Co-Spokesperson: morrison@bnl.gov
2 PHENIX Co-Spokesperson: jamie.nagle@colorado.edu

[1] V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys. 09 (2010) 091.
[2] B. Abelev et al. (STAR Collaboration), Phys. Rev. C 80, 064912 (2009).
[3] B. Alver et al. (PHOBOS Collaboration), Phys. Rev. Lett. 104, 062301 (2010).
[4] A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi, and R. Venugopalan, Phys. Lett. B 697, 21 (2011).
[5] K. Werner, I. Karpenko, and T. Pierog, Phys. Rev. Lett. 106, 122004 (2011).
[6] K. Dusling and R. Venugopalan, Phys. Rev. Lett. 108, 262001 (2012).
[7] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 718, 795 (2013).
[8] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719, 29 (2013).
[9] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 110, 182302 (2013).
[10] P. Huovinen and P. Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 163 (2006).
[11] L. McLerran, arXiv:0807.4095.
[12] K. Dusling and R. Venugopalan, Phys. Rev. D 87, 054014 (2013).
[13] K. Dusling and R. Venugopalan, Phys. Rev. D 87, 094034 (2013).
[14] P. Bozek, Phys. Rev. C 85, 014911 (2012).
[15] E. Shuryak and I. Zahed, arXiv:1301.4470 [Phys. Rev. C (to be published)].
[16] M. G. Ryskin, A. D. Martin, and V. A. Khoze, J. Phys. G 38, 085006 (2011).
[17] E. Avsar, C. Flensburg, Y. Hatta, J.-Y. Ollitrault, and T. Ueda, Phys. Lett. B 702, 394 (2011).
[18] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 107, 172301 (2011).
[19] S. Adler et al. (PHENIX Collaboration), Phys. Rev. C 73, 054903 (2006).
[20] S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 96, 222301 (2006).
[21] B. Alver, M. Baker, C. Loizides, and P. Steinberg, arXiv:0805.4411.
[22] K. Adcox et al. (PHENIX Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 499, 469 (2003).
[23] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 87, 034904 (2013).
[24] N. Ajitanand, J. Alexander, P. Chung, W. Holzmann, M. Issah, R. Lace, A. Shevel, A. Taranenko, and P. Danielewicz, Phys. Rev. C 72, 011902 (2005).
[25] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 90, 082302 (2003).
[26] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 014904 (2005).
[27] M. Gyulassy and X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994).
[28] M. Luzum, Phys. Lett. B 696, 499 (2011).
[29] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 82, 034913 (2010).
[30] K. Aamodt et al. (ALICE Collaboration), Phys. Lett. B 708, 249 (2012).
[31] P. Bozek, (private communication).
[32] A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. C 87, 064906 (2013).
[33] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012), 1202.6646.
[34] S. Adler et al., Phys. Rev. C 71, 034908 (2005).
[35] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 105, 062301 (2010).
[36] R. A. Lacey, A. Taranenko, R. Wei, N. N. Ajitanand, J. M. Alexander, J. Jia, R. Pak, D. H. Rischke, D. Teaney, and K. Dusling, Phys. Rev. C 82, 034910 (2010).
[37] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C 87, 014902 (2013).
[38] S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 08 (2011) 141.
[39] A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan, (private communication).