Learning-Based Distributionally Robust Model Predictive Control of Markovian Switching Systems with Guaranteed Stability and Recursive Feasibility

Mathijs Schuurmans and Panagiotis Patrinos

Abstract—We present a data-driven model predictive control scheme for chance-constrained Markovian switching systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated which include the true conditional probability distributions with high probability. These sets are updated online and used to formulate a time-varying, risk-averse optimal control problem. We prove recursive feasibility of the resulting MPC scheme and show that the original chance constraints remain satisfied at every time step. Furthermore, we show that under sufficient decrease of the confidence levels, the resulting MPC scheme renders the closed-loop system mean-square stable with respect to the true-but-unknown distributions, while remaining less conservative than a fully robust approach.

I. INTRODUCTION

Stochasticity is inherent to processes emerging in a multitude of applications. Nevertheless, we are often required to performantly control such systems, given the often limited information that is available. Over the past decades, the decreasing cost of data acquisition, transmission and storage has caused a surge in research interest in data-driven approaches towards control. More recently, as the focus in research is gradually shifting towards real-life, safety-critical applications, there has been an increasing concern for safe control. Research is gradually shifting towards real-life, safety-critical approaches towards control. More recently, as the focus in research is gradually shifting towards real-life, safety-critical applications, there has been an increasing concern for safe control. Nevertheless, we are often required to provide guarantees on the stability and constraint satisfaction.

Leveraging the framework of risk-averse model predictive control (MPC) [7]–[9] and its connection to distributionally robust optimization [10], we propose a learning-based distributionally robust MPC scheme, which is provably stable, recursively feasible and uses data gathered during operation to improve performance, rendering it less conservative than more traditional robust approaches [11]. Despite its growing popularity [9], [12]–[15], this approach has remained relatively unexplored for chance-constrained stochastic optimal control problems with ambiguity in the estimation of conditional distributions, and in particular for Markovian switching dynamics.

We summarize our contributions as follows. (i) We propose a general data-driven, distributionally robust MPC scheme for Markov switching systems with unknown transition probabilities, which is compatible with the recently developed framework of risk-averse MPC [7], [8]. The resulting closed-loop system satisfies the (chance) constraints of the original stochastic problem and allows for online improvement of performance based on observed data. (ii) We state the problem in terms of an augmented state vector of constant dimension, which summarizes the available information at every time. This allows us to formulate the otherwise time-varying optimal control problem as a dynamic programming recursion. (iii) We provide sufficient conditions for recursive feasibility and mean-square stability of the proposed MPC scheme, with respect to the true-but-unknown probability distributions.

A. Notation

Let \(\mathbb{N} \) denote the set of natural numbers and \(\mathbb{N}_{>0} := \mathbb{N} \setminus \{0\} \). For two naturals \(a, b \in \mathbb{N}, a \leq b \), we denote \(\mathbb{N}_{[a,b]} := \{ n \in \mathbb{N} \mid a \leq n \leq b \} \) and similarly, we introduce the shorthand \(w_{[a,b]} := (w_i)_{i=a}^{b} \) to denote a sequence of variables. We denote the extended real line by \(\mathbb{R} := \mathbb{R} \cup \{\pm \infty\} \) and the set of nonnegative (extended) real numbers by \(\mathbb{R}_+ \) (and \(\mathbb{R}_+ \)). The cardinality of a (finite) set \(W \) is denoted by \(|W| \). We write \(f : X \rightarrow Y \) to denote that \(f \) is a set-valued mapping from \(X \) to \(Y \). Given a matrix \(P \in \mathbb{R}^{n \times m} \), we denote its \((i,j)\)'th element by \(P_{ij} \) and its \(i \)'th row as \(P_i \in \mathbb{R}^m \). The \(i \)'th element of a vector \(x \) is denoted \(x^i \) whenever confusion with time indices is possible. \(\text{vec}(M) \) denotes the vertical concatenation of the columns of a matrix \(M \). We denote the vector in \(\mathbb{R}^k \) with all elements one as \(1_k := (1)_{k=1} \) and the probability simplex of dimension \(k \) as \(\Delta_k := \{ p \in \mathbb{R}_+^k \mid p^\top 1_k = 1 \} \). We define the indicator function as \(1_{x=y} = 1 \) if \(x = y \) and 0 otherwise. Similarly, the characteristic function \(\delta_X : \mathbb{R}^n \rightarrow \mathbb{R} \) of a set \(X \in \mathbb{R}^n \)
is defined by $\delta_X(x) = 0$ if $x \in X'$ and ∞ otherwise.

II. Problem Statement

We consider discrete time Markovian switching systems with dynamics of the form

$$x_{t+1} = f(x_t, u_t, w_{t+1}),$$

(1)

where $x_t \in \mathbb{R}^{n_x}$, $u_t \in \mathbb{R}^{n_u}$ are the state and control action at time t, respectively, and $w_{t+1} : \Omega \to W$ is a random variable drawn from a discrete-time, time-homogeneous Markov chain $w := (w_t)_{t \in \mathbb{N}}$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values on $W := \mathbb{N}_{[1, M]}$. We refer to w_t as the mode of the Markov chain at time t. The transition kernel governing the Markov chain is denoted by $P = (P_{ij})_{i,j \in W}$, where $P_{ij} = \mathbb{P}[w_t = j \mid w_{t-1} = i]$. We assume that the state x_t and mode w_t are observable at time t. For a given state-mode pair $(x, w) \in \mathbb{R}^{n_x} \times W$, we constrain the control action u to the set $U(x, w)$, defined as

$$U(x, w) := \{ u \in \mathbb{R}^{n_u} : \mathbb{P}[g_t(x, u, w, v) = 0 \mid x, v] < \alpha_i, \forall i \in [1, n_i] \},$$

(2)

where $v \sim P_w$ is randomly drawn from the Markov chain w in mode w, and $g_t : \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times W^2 \to \mathbb{R}$ are constraint functions with corresponding constraint violation rates α_i. By appropriate choices of α_i and g_t, constraint (2) can be used to encode robust constraints ($\alpha_i = 0$) or chance constraints ($0 < \alpha_i < 1$) on the state, the control action, or both. Note that the formulation (2) additionally covers chance constraints on the successor state $f(x, u, v)$ input u, conditioned on the current values x and w.

Ideally, our goal is to synthesize -- by means of a stochastic MPC scheme -- a stabilizing control law $\kappa_N : \mathbb{R}^{n_x} \times W \to \mathbb{R}^{n_u}$, such that for the closed loop system $x_{t+1} = f(x_t, \kappa_N(x_t, w_t), w_{t+1})$, it holds almost surely (a.s.) that $\kappa_N(x_t, w_t) \in U(x_t, w_t)$, for all $t \in \mathbb{N}$. Consider a sequence of N control laws $\pi = (\pi_k)_{k=0}^{N-1}$, referred to as a policy of length N. Given a stage cost $\ell : \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times W \to \mathbb{R}_+$, and a terminal cost $V_f : \mathbb{R}^{n_x} \times W \to \mathbb{R}_+$, and corresponding terminal set $\mathcal{X}_f : V_f(x, w) := V_f(x, w) + \delta_X(x)$, we can assign to each such policy π, a cost

$$V_N(x, w) := \mathbb{E} \left[\sum_{k=0}^{N-1} \ell(x_k, u_k, w_k) + V_f(x_N, w_N) \right],$$

(3)

where $x_{k+1} = f(x_k, u_k, w_{k+1})$, $u_k = \pi_k(x_k, w_k)$ and $(x_0, w_0) = (x, w)$, for $k \in [0, N-1]$. This defines the following stochastic optimal control problem (OCP).

Definition II.1 (Stochastic OCP). For a given state-mode pair (x, w), the optimal cost of the stochastic OCP is

$$V_N(x, w) = \min_{\pi} V_N^\pi(x, w)$$

(4a)

subject to

$$x_0 = x, w_0 = w, \pi = (\pi_k)_{k=0}^{N-1},$$

$$x_{k+1} = f(x_k, \pi_k(x_k, w_k), w_{k+1}),$$

$$\pi_k(x_k, w_k) \in U(x_k, w_k), \forall k \in [0, N-1].$$

(4b, 4c, 4d)

We denote by $\Pi_N(x, w)$ the corresponding set of minimizers.

Let $(\pi_k(x, w))_{k=0}^{N-1} \in \Pi_N(x, w)$, so that the stochastic MPC control law is given by $\kappa_N(x, w) = \pi_0(x, w)$. Sufficient conditions on the terminal cost V_f and its effective domain $\mathbb{dom} V_f = \mathcal{X}_f$ to ensure mean-square stability of the closed-loop system, have been studied for a similar problem set-up in [3], among others.

Both designing and computing such a stochastic MPC law requires knowledge of the probability distribution governing the state dynamics (1), or equivalently, of the transition kernel P. In reality, P is typically not known but rather estimated from a finitely-sized sequence w_0, \cdots, w_T of observed values. Therefore, they are subject to some level of misestimation, commonly referred to as ambiguity. The goal of the proposed MPC scheme is to model this ambiguity explicitly, in order to be resilient against it, without disregarding available statistical information. To do so, we introduce the notion of a learner state, which is very similar in spirit to the concept of a belief state, commonly used in control of partially observed Markov decision processes [16]. It can be regarded as an internal state of the controller that stores all the information required to build a set of possible conditional distributions over the next state, given the observed data. We formalize this in the following assumption.

Assumption II.2 (Learning system). Given a sequence w_0, \cdots, w_T sampled from the Markov chain w, we can compute (i) a statistic $s_t : W^{t+1} \to \mathcal{S} \subseteq \mathbb{R}^{n_s}$, accompanied by a vector of confidence parameters $\beta_t \in \mathbb{I} := [0, 1]^{n_s}$, which admit recursive update rules $s_{t+1} = \mathcal{L}(s_t, w_t, w_{t+1})$ and $\beta_{t+1} = C(\beta_t)$, $t \in \mathbb{N}$; and (ii) an ambiguity set $\mathcal{A} : \mathcal{S} \times W \times [0, 1] \to \mathcal{A}_M : (s, w, \beta) \mapsto \mathcal{A}_M(s, w, \beta)$, mapping s, w and an element β_t to a convex subset of the M-dimensional probability simplex \mathcal{A}_M such that for all $t \in \mathbb{N}$,

$$\mathbb{P}[P_{w_t} \in \mathcal{A}_M(s_t, w_t)] \geq 1 - \beta_t.$$

(5)

We will refer to s_t and β_t as the state of the learner and the confidence vector at time t, respectively.

Remark II.3 (confidence levels). Two points of clarification are in order. First, we consider a vector of confidence levels, rather than a single value. This is motivated by the fact that one would often wish to assign separate confidence levels to ambiguity sets corresponding to the n_s individual chance constraints as well as the cost function of the data-driven OCP (defined in Definition III.3 below). Accordingly, we will assume that $n_s = n_s + 1$.

Second, the confidence levels are completely exogenous to the system dynamics and can in principle be chosen to be any time-varying sequence satisfying the technical conditions discussed further (see Proposition III.1 and Assumption II.4).

The requirement that the sequence $(\beta_t)_{t \in \mathbb{N}}$ can be written as the trajectory of a time-invariant dynamical system serves to facilitate theoretical analysis of the proposed scheme through dynamic programming. Meanwhile, it covers a large class of sequences one may reasonably choose, as illustrated in Example II.5.

We will additionally invoke the following assumption on the confidence levels when appropriate.

Assumption II.4. The confidence dynamics $\beta_{t+1} = C(\beta_t)$ is chosen such that $\sum_{t=0}^{\infty} \beta_t \leq \infty, \forall i \in \mathbb{N}_{[1, n_a]}$.
In other words, we will assume that the probability of obtaining an ambiguity set that contains the true conditional distribution (expressed by (5)) increases sufficiently fast.

To fix ideas, consider the following example of a learning system satisfying the requirements of Assumption II.2.

Example II.5 (Transition counts and ℓ₁-ambiguity). A natural choice for the learner state is to take \(s_t = \text{vec}(m(t)) \), where \(m(t) = (m_{wv}(t))_{w,v \in W} \in \mathbb{N}^{M \times K} \) contains the mode transition counts at time \(t \). That is, \(m_{wv}(t) = \{ \tau \in \mathbb{N}_{[1,t]} : w_{\tau-1} = w, w_{\tau} = v \} \), for all \(w,v \in W \). It is clear that we can indeed write \(s_{t+1} = \mathcal{L}(s_t, w_t, w_{t+1}) \). Furthermore, following [17], we can uniquely obtain ambiguity sets parametrized as

\[
\mathcal{A}_{\beta}^i(s_t, w_t) := \{ p \in \mathcal{M} : \| p - \hat{p}_{w_t} \|_1 \leq r_{w_t}(s_t, \beta_i) \},
\]

for \(i \in \mathbb{N}_{[1,n_d]} \), where \(\hat{p}_{w_t} \) is the empirical estimate of the \(w_t \)-th row of the transition kernel (initialized to the uniform distribution if no transitions originating in mode \(w_t \) have been observed) and the radii \(r_{w_t}(s_t, \beta_i) \) are chosen to satisfy (5) by means of basic concentration inequalities. Finally, the sequence of the confidence levels \(\beta_i \) remains to be selected. One particular family of sequences satisfying the additional requirement of Assumption II.4 is \(\beta_i = b(1+t)^{-q} \), with parameters \(0 \leq b \leq 1, q > 1 \). This sequence can be described by the recursion \(\beta_{i+1} = b \beta_i (\beta_i^{-1} + b^{-1})^{-q}, \beta_0 = b \), satisfying the requirements of Assumption II.2.

Equipped with a generic learning system of this form, our aim is to find a data-driven approximation to the stochastic OCP defined by (4), which asymptotically attains the optimal cost while preserving stability and constraint satisfaction during closed-loop operation.

III. DATA-DRIVEN MODEL PREDICTIVE CONTROL

Given a learning system satisfying Assumption II.2, we define the augmented state \(z_t = (x_t, s_t, \beta_t, w_t) \in \mathcal{Z} := \mathbb{R}^{n_x} \times \mathcal{S} \times \mathcal{T} \times W \), which evolves over time according to the dynamics

\[
z_{t+1} = \tilde{f}(z_t, u_t, w_{t+1}) := f(x_t, u_t, w_{t+1}) + \mathcal{L}(s_t, w_t, w_{t+1}) C(\beta_t) w_{t+1}^{-1},
\]

with \(w_{t+1} \sim \mathcal{P}_{w_t} \) for \(t \in \mathbb{N} \). Consequently, our scheme will result in a feedback law \(\kappa : \mathcal{Z} \to \mathbb{R}^{n_u} \). To this end, we will formulate a distributionally robust counterpart to the stochastic OCP (4), in which the expectation operator in the cost and the conditional probabilities in the constraint will be replaced by operators that account for ambiguity in the involved distributions.

A. Ambiguity and risk

In order to reformulate the cost function (3), we first introduce an ambiguous conditional expectation operator, leading to a formulation akin to the Markovian risk measures utilized in [7], [18]. Consider a function \(\xi : \mathcal{Z} \times W \to \mathbb{R} \), defining a stochastic process \(\{\xi_t\}_{t \in \mathbb{N}} = \{\xi(z_t, w_{t+1})\}_{t \in \mathbb{N}} \) on \((\Omega, \mathcal{F}, \mathbb{P}) \), and suppose that the augmented state \(z_t = z = (x, s, \beta, w) \) is given. For simplicity, let us assume for the moment that \(\beta \in [0,1] \) is scalar; the following definition can be repeated for each component in the general case. The ambiguous conditional expectation of \(\xi(z, v) \), given \(z \) is defined as

\[
\rho^\beta_{s,w}[\xi(z, v)] := \max_{p \in \mathcal{A}_\beta(s, w)} \mathbb{E}_p[\xi(z, v) | z]
\]

\[
= \max_{p \in \mathcal{A}_\beta(s, w)} \sum_{v \in W} p_v \xi(z, v),
\]

Trivially, it holds that if the \(w \)-th row of the transition matrix lies in the corresponding ambiguity set: \(P_w \in A_\beta(s, w) \), then \(\rho^\beta_{s,w}[\xi(z, v)] \geq \mathbb{E}_{P_w}[\xi(z, v) | z] = \sum_{v \in W} P_{wv} \xi(z, v) \).

Note that the function \(\rho^\beta_{s,w} \) defines a coherent risk measure [19, Sec. 6.3]. We say that \(\rho^\beta_{s,w} \) is the risk measure induced by the ambiguity set \(A_\beta(s, w) \).

A similar construction can be carried out for the chance constraints (2). In their standard form, chance constraints lead to nonconvex, nonsmooth constraints. For this reason, they are commonly approximated using risk measures [20]. Particularly, the (conditional) average value-at-risk (at level \(\hat{\alpha} \in (0,1] \) and with reference distribution \(p \in \mathcal{M} \)) of \(\xi \) is the coherent risk measure

\[
\text{AVAR}^\beta_{\alpha}(\xi(z, v) | z) := \min_{\tau \in \mathbb{R}} \left(\tau + \alpha \mathbb{E} \left[\xi(z, v) - \tau | z \right] \right), \quad \hat{\alpha} \neq 0
\]

\[
\max_{\tau \in \mathbb{R}} \mathbb{E} \left[\xi(z, v) - \tau | z \right], \quad \hat{\alpha} = 0.
\]

It can be shown (e.g., [19, sec. 6.2.4]) that if \(p = P_w \), then the following implication holds tightly

\[
\text{AVAR}^\beta_{\alpha}(\xi(z, v) | z) \leq 0 \Rightarrow \mathbb{P}[\xi(z, v) < 0 | z] \geq 1 - \hat{\alpha}.
\]

By exploiting the dual risk representation [19, Thm 6.5], the left-hand inequality in (9) can be formulated in terms of only linear constraints [8]. As such, it can be used as a tractable surrogate for the original chance constraints, given perfect probabilistic information. Accounting also for the ambiguity in the knowledge of \(P_w \) through \(A_\beta(s, w) \), we define

\[
\rho^{\beta,\hat{\alpha}}_{s,w}[\xi(z, v)] := \max_{p \in A_\beta(s, w)} \text{AVAR}^\beta_{\alpha}(\xi(z, v) | z) \leq 0.
\]

The function \(\rho^{\beta,\hat{\alpha}}_{s,w} \) in turn defines a coherent risk measure.

We now present a condition on the choice of \(\hat{\alpha} \) under which a constraint of the form (10) can be used as a tractable and safe approximation of a chance constraint when there is ambiguity in the probability distribution.

Proposition III.1. Let \(\beta, \alpha \in [0,1] \), be given values with \(\beta < \alpha \). Consider the random variable \(s : \Omega \to \mathcal{S} \), denoting an (a priori unknown) learner state satisfying Assumption II.2, i.e., \(\mathbb{P}[P_w \in \mathcal{A}_\beta(s, w)] \geq 1 - \beta \). If the parameter \(\hat{\alpha} \) is chosen to satisfy \(0 \leq \hat{\alpha} \leq \frac{\alpha - \beta}{1 - \beta} \), then, for an arbitrary function \(g : \mathcal{Z} \times W \to \mathbb{R} \), the following implication holds:

\[
\rho^{\beta,\hat{\alpha}}_{s,w}[g(z, v)] \leq 0, \text{ a.s.} \Rightarrow \mathbb{P}[g(z, v) \leq 0 | x, w, P_w \in A_\beta(s, w)] \geq 1 - \hat{\alpha}, \text{ a.s.}
\]

Proof. If \(\rho^{\beta,\hat{\alpha}}_{s,w}[g(z, v)] \leq 0, \text{ a.s.} \), then by (9)-(10),

\[
\mathbb{P}[g(z, v) \leq 0 | x, w, P_w \in A_\beta(s, w)] \geq 1 - \hat{\alpha}, \text{ a.s.}
\]

Therefore,

\[
\mathbb{P}[g(z, v) \leq 0 | x, w, P_w \in A_\beta(s, w)] \geq 1 - \hat{\alpha} (1 - \beta).
\]
Requiring that \((1 - \hat{\alpha})(1 - \beta) \geq (1 - \alpha)\) then immediately yields the sought condition.

Notice that the implication (11) in Proposition III.1 provides an \textit{a priori} guarantee, since the learner state is considered to be random. In other words, the statement is made before the data is revealed. Indeed, for a given learner state \(s\) and mode \(w\), the ambiguity set \(\mathcal{A}_\beta(s, w)\) is fixed and therefore, the outcome of the event \(E = \{P_w \in \mathcal{A}_\beta(s, w)\}\) is determined. Whether (11) then holds for these fixed values depends on the outcome of \(E\). This is naturally reflected through the above condition on \(\hat{\alpha}\) which implies that \(\hat{\alpha} \leq \alpha\), and thus tightens the chance constraints that are imposed for a fixed \(s\). Hence, the possibility that for this particular \(s\), the ambiguity set may not include the conditional distribution, is accounted for. This effect can be mitigated by decreasing \(\beta\), at the cost of a larger ambiguity set. A more detailed study of this trade-off is left for future work.

B. Risk-averse optimal control

We are now ready to describe the distributionally robust counterpart to the OCP (4), which, when solved in receding horizon fashion, yields the proposed data-driven MPC scheme.

For a given augmented state \(z = (x, s, \beta, w) \in \mathcal{Z}\), we use (10) to define the distributionally robust set of feasible inputs \(\hat{U}(z)\) in correspondence to (2). Without loss of generality, let us assume that the \(i\)th entry \(\beta_i\) in the confidence vector \(\beta\) corresponds to the \(i\)th constraint, so that
\[
\hat{U}(z) = \{u \mid \hat{P}_{s,w}^{1,2,3}\hat{\alpha}_i \cdot g_i(x, u, w, v) \leq 0, \forall v \in [1, n_v]\}. \tag{12}
\]

Remark III.2. The parameters \(\hat{\alpha}_i\) remain to be chosen in relation to the confidence levels \(\beta\) and the original violation rates \(\alpha_i\). In light of Proposition III.1, \(\hat{\alpha}_i = \frac{\alpha_i - \beta_i}{1 - \beta_i}\) yields the least conservative choice. This choice is valid as long as it is ensured that \(\beta_i \leq \alpha_i\).

Let us denote the remaining element of the confidence vector \(\beta\) corresponding to the cost by \(\beta^0\). Using (7), we can then express the distributionally robust cost of a policy \(\pi = (\pi_k)_{k=0}^{N-1}\) as
\[
\hat{V}_N^\pi(z) := \ell(x_0, u_0, w_0) + \rho_{s_0,w_0} \left[\ell(x_1, u_1, w_1) + \rho_{s_1,w_1} \left[\cdots + \rho_{s_{N-2},w_{N-2}} \left[\ell(x_{N-1}, u_{N-1}, w_{N-1}) + \rho_{s_{N-1},w_{N-1}} \hat{V}_N(x_N, s_N, \beta, w) \right] \cdots \right] \right] \tag{13},
\]
where \(z_0 = z, z_{k+1} = \tilde{f}(z_k, u_k, w_{k+1})\) and \(u_k = \pi_k(z_k), \) for all \(k \in [0, N-1]\). In Section IV, conditions on the terminal cost \(\hat{V}_N(x_N, s_N, \beta, w) \rightarrow \mathbb{R}_{+}\) are provided in order to guarantee recursive feasibility and stability of the MPC scheme defined by the following OCP.

Definition III.3 (DR-OCP). Given an augmented state \(z \in \mathcal{Z}\), the optimal cost of the distributionally robust optimal control problem (DR-OCP) is
\[
\hat{V}_N(z) = \min_{\pi} \hat{V}_N^\pi(z) \tag{14a}
\]
subject to
\[
\begin{align*}
(x_0, s_0, \beta_0, u_0) &= z, \pi = (\pi_k)_{k=0}^{N-1}, \tag{14b} \\
z_{k+1} &= \tilde{f}(z_k, s_k, \beta_k), w_{k+1} = u_k), \tag{14c} \\
\pi_k(z_k) \in \hat{U}(z_k), \forall w \in [0, k] \in W_k, \tag{14d}
\end{align*}
\]
for all \(k \in \mathbb{N}_{[0, N-1]}\). We denote by \(\Pi(z)\) the corresponding set of minimizers.

We thus define the data-driven MPC law analogously to the stochastic case as
\[
\hat{\pi}_N(z) = \pi^0_N(z), \tag{15}
\]
where \((\hat{\pi}_N(z))_{k=0}^{N-1} \in \Pi_N(z)\). At every time \(t\), the data-driven MPC scheme thus consists of (i) computing a control action \(u_t = \hat{\pi}_N(z_t)\) and applying it to the system (1); (ii) observing the outcome of \(w_{t+1} \in W\) and the corresponding next state \(x_{t+1} = f(x_t, u_t, w_{t+1})\); and (iii) updating the learner state \(s_{t+1} = \mathcal{L}(s_t, w_{t+1})\) and the confidence levels \(\beta_{t+1} = C(\beta_t)\), gradually decreasing the size of the ambiguity sets.

Remark III.4 (Scenario tree representations). Since \(W\) is a finite set, the possible realizations of \(w\) can be enumerated such that the corresponding predicted states and controls can be represented on a scenario tree [21]. It therefore suffices to optimize over a finite number (equal to the number of nodes in the tree) of control actions instead of infinite-dimensional control laws.

When represented in this manner, it is apparent that (14) falls within the class of risk-averse, risk-constrained optimal control problems, described in [8]. In particular, the constraints (14d) at stage \(k\) can be represented in the framework of [8] as \textit{nested risk constraints} which are compositions of a set of conditional risk mappings. In this case, the composition consists of \(k - 1\) \textbf{max} operators over values on the nodes in the first stages and a conditional risk mapping based on (10) at stage \(k\). This is in line with the observations of [22, Sec. 7.1]. Consequently, if the risk measures employed in the definition of the DR-OCP (14) belong to the broad family of conic risk measures and the dynamics \(f\) is linear, then the reformulations in [8] can be applied to cast (14) as a convex conic optimization problem. This is the case for many commonly used coherent risk measures, including the risk measure induced by the \(\ell_1\)-ambiguity set discussed in Example II.5 (see [23] for a numerical case study). For nonlinear dynamics, the problem is no longer convex but can in practice still be solved effectively with standard NLP solvers.

IV. THEORETICAL ANALYSIS

A. Dynamic programming

To facilitate theoretical analysis of the proposed MPC scheme, we represent (14) as a dynamic programming recursion, similarly to [7]. We define the Bellman operator \(T\) as
\[
T(V)(z) := \min_{u \in \hat{U}(z)} \left[\ell(f(x, u, v) + \rho_{s,w}^0 \left[V(f(x, u, v)) \right) \right],
\]
where \(z \in (x, s, \beta, w) \in \mathcal{Z}\) are fixed quantities and \(v \sim P_w\). We denote by \(S(V)(z)\) the corresponding set of minimizers.
The optimal cost \hat{V}_N of (14) is obtained through the iteration,
\[\hat{V}_k = T \hat{V}_{k-1}, \quad \hat{V}_0 = \hat{V}_1, \quad k \in \mathbb{N}_{[1,N]} \tag{16} \]
Similarly, $\hat{X}_k := \text{dom} \hat{V}_k$ is given recursively by
\[\hat{X}_k = \left\{ z \mid \exists u \in \hat{U}(z) : f(z, u, v) \in \hat{X}_{k-1}, \forall v \in W \right\}. \]

Now consider the stochastic closed-loop system
\[z_{t+1} = \hat{f}^N(z_t, w_{t+1}) := (\hat{f}(z_t, \hat{\kappa}_N(z_t), w_{t+1}), \tag{17} \]
where $\hat{\kappa}_N(z_t) \in S(\hat{V}_{N-1})(z_t)$ is an optimal control law obtained by solving the data-driven DR-OCP of horizon N in receding horizon.

B. Constraint satisfaction and recursive feasibility

In order to show existence of $\hat{\kappa}_N \in S(\hat{V}_{N-1})$ at every time step, Proposition IV.2 will require that \hat{X}_t is a robust control invariant set. We define robust control invariance for the augmented system under consideration as follows.

Definition IV.1 (Robust invariance). A set $\mathcal{R} \subseteq \mathcal{Z}$ is a robust control invariant (RCI) set for the system (6) if for all $z \in \mathcal{R}$, $\exists u \in \hat{U}(z)$ such that $f(z, u, v) \in \mathcal{R}, \forall v \in W$. Similarly, \mathcal{R} is a robust positive invariance (RPI) set for the closed-loop system (17) if for all $z \in \mathcal{R}$, $\hat{f}^N(z, v) \in \mathcal{R}, \forall v \in W$.

Since \hat{U} consists of conditional risk constraints, our definition of robust invariance provides a distributionally robust counterpart to the notion of stochastic robust invariance in [24]. This makes it less conservative than the more classical notion of robust invariance for a set \mathcal{R}_x, obtained by imposing that $x \in \mathcal{R}_x \Rightarrow \exists u : g_t(x, u, w, v) \leq 0$, for all $t \in \mathbb{N}_{[1,n_u]}$, $w, v \in W$. In fact, $\mathcal{R}_x \subseteq X \times \bar{X} \times W$ is covered by Definition IV.1.

Proposition IV.2 (Recursive feasibility). If \hat{X}_t is an RCI set for (6), then (14) is recursively feasible. That is, feasibility of DR-OCP (14) for some $z \in \mathcal{Z}$, implies feasibility for $z^+ = \hat{f}^N(z, v)$, for all $v \in W, \mathcal{N} \in \text{dom} x_0$.\footnote{a.s., for all $i \in \mathbb{N}_{[1,n_u]}$, $t \in \mathbb{N}$.}

Proof. We first show that if \hat{X}_t is RCI, then so is \hat{X}_N. This is done by induction on the horizon N of the OCP.

Base case ($N = 0$). Trivial, since $\hat{X}_0 = \hat{X}_1$.

Induction step ($N \Rightarrow N+1$). Suppose that for some $N \in \mathbb{N}$, \hat{X}_N is RCI for (6). Then, by definition of \hat{X}_{N+1}, there exists for each $z \in \hat{X}_{N+1}$, a nonempty set \hat{U}_x^* such that for every $u \in \hat{U}_x^*(z)$ and for all $v \in W$, $z^+ = \hat{f}(z, u, v)$. Furthermore, the induction hypothesis (\hat{X}_N) implies that there also exists a $u^* \in \hat{U}(z^*)$ such that $f(z^+, u^+, v^+) \in \hat{X}_N(v^+), \forall v^+ \in W$. Therefore, z^+ satisfies the conditions defining \hat{X}_{N+1}. In other words, \hat{X}_{N+1} is RCI.

The claim follows from the fact that for any $N > 0$ and $z \in \hat{X}_N$, $\hat{\kappa}_N(z) \in S(\hat{V}_{N-1})(z) \subseteq \hat{U}_x^*(z)$, as any other choice of u would yield infinite cost in the definition of the Bellman operator.\qed

Corollary IV.3 (Chance constraint satisfaction). If Proposition IV.2 holds, then by Proposition III.1, the stochastic process $(z_t)_{t \in \mathbb{N}} = (x_t, s_t, \beta_t, w_t)_{t \in \mathbb{N}}$ satisfying dynamics (17) satisfies the nominal chance constraints
\[\mathbb{P}[g_t(x_t, \hat{\kappa}_N(z_t), w_{t+1}) > 0 \mid x_t, w_t] < \alpha_i, \]

We conclude this section by emphasizing that although the MPC scheme guarantees closed-loop constraint satisfaction, it does so while being less conservative than a fully robust approach, which neglects statistical information. Indeed, we recover a robust approach by taking $A_{s}(s, w) = \Delta_M$ for all s, w, β. It is apparent from (10) and (12), that for all other choices of the ambiguity set, the set of feasible control actions will be larger (in the sense of set inclusion).

C. Stability

In this section, we will provide sufficient conditions on the control setup under which the origin is mean-square stable (MSS) for (17), i.e., $\lim_{t \to \infty} \mathbb{E}[\|x_t\|] = 0$ for all x_0 in some specified compact set containing the origin.

Our main stability result, stated in Theorem IV.5, hinges in large on the following lemma, which relates risk-square stability [7, Lem. 5] of the origin for the autonomous system (17) to stability in the mean-square sense, based on the statistical properties of the ambiguity sets.

Lemma IV.4 (Distributionally robust MSS condition). Suppose that Assumption II.4 holds and that there exists a nonnegative, proper function $V : \mathcal{Z} \to \bar{\mathbb{R}}_+$, such that
\begin{itemize}
 \item [(i)] $\text{dom} V \subseteq \mathcal{X} \times \bar{\mathcal{X}} \times \mathcal{W}$, is RPI for system (17) and $\mathcal{X} \subseteq \bar{\mathbb{R}}^n_x$ is a compact set containing the origin;
 \item [(ii)] $\rho_{s,w}^g[V(\hat{f}^N(z, v), v)] - V(z) \leq -c\|x\|^2, \text{ for some } c > 0, \text{ for all } z \in \text{dom} V$.
\end{itemize}

Then $\mathbb{E}[\sum_{t=0}^{k-1}\|x_t\|^2]$ is uniformly bounded in k for all $z_0 \in \text{dom} V$, where $(z_t)_{t \in \mathbb{N}} = (x_t, s_t, \beta_t, w_t)_{t \in \mathbb{N}}$ is the stochastic process governed by dynamics (17).

Proof. See Section .\qed

Theorem IV.5 (MPC stability). Suppose that Assumption II.4 is satisfied and the following statements hold.
\begin{itemize}
 \item [(i)] $\mathbb{T} \hat{V}_t \leq \hat{V}_t$;
 \item [(ii)] $c\|x\|^2 \leq \ell(x, u, w)$ for some $c > 0$ for all $z = (x, w, \beta, s) \in \text{dom} \hat{V}_N$ and all $u \in \hat{U}(z)$.
\end{itemize}

Then, the origin is MSS for the MPC-controlled system (17), over all RPI sets $\bar{\mathcal{Z}} := \mathcal{X} \times \bar{\mathcal{X}} \times \mathcal{W} \subseteq \text{dom} \hat{V}_N$, where $\mathcal{X} \subseteq \bar{\mathbb{R}}^n_x$ is a compact set containing the origin.

Proof. The proof is along the lines of that of [7, thm. 6] and shows that \hat{V}_N satisfies the conditions of Lemma IV.4. Details are in the Section .\qed

V. CONCLUSIONS

We have presented a distributionally robust model predictive control strategy for Markovian switching systems with unknown transition probabilities subject to general chance constraints. Based on a data-driven ambiguity set, which includes the conditional probability vector over the next mode with high probability, we derive a distributionally robust counterpart to a nominal stochastic MPC scheme. We show that the resulting scheme provide a priori guarantees on closed-loop constraint satisfaction and mean-square stability of the true system, without requiring explicit knowledge of the transition probabilities.
Proof of Lemma IV.4.

Let \((z_t)_{t \in \mathbb{N}} = (x_t, s_t, \beta_t, w_t)_{t \in \mathbb{N}}\) denote the stochastic process satisfying dynamics (17), for some initial state \(z_0 \in \text{dom } V\). For ease of notation, let us define \(V_t := V(z_t), t \in \mathbb{N}\). Due to nonnegativity of \(V\),

\[
\mathbf{E}\left[\sum_{t=0}^{k-1} \mathbb{E}[c \|x_t\|^2]\right] \leq \mathbf{E}\left[V_k + \sum_{t=0}^{k-1} c \|x_t\|^2\right] = \mathbf{E}\left[V_k - V_0 + \sum_{t=0}^{k-1} c \|x_t\|^2\right] + V_0,
\]

where the second equality follows from the fact that \(V_0\) is deterministic. By linearity of the expectation, we can in turn write

\[
\mathbf{E}[V_k - V_0 + c \sum_{t=0}^{k-1} \|x_t\|^2] = \mathbf{E}\left[\sum_{t=0}^{k-1} V_{t+1} - V_t + c \|x_t\|^2\right] = \sum_{t=0}^{k-1} \mathbf{E}[V_{t+1} - V_t + c \|x_t\|^2].
\]

Therefore,

\[
\mathbf{E}[c \sum_{t=0}^{k-1} \|x_t\|^2] - V_0 \leq \sum_{t=0}^{k-1} \mathbf{E}[V_{t+1} - V_t] + c \mathbf{E}\left[\|x_t\|^2\right].
\]

Recall that \(\beta^0\) denotes the coordinate of \(\beta\) corresponding to the risk measures in the cost function (13). Defining the event \(E_t := \{\omega \in \Omega | P_{w_t}(\omega) \in A_{\beta^0}(s_t(\omega), w_t(\omega))\}\), and its complement \(\bar{E}_t = \Omega \setminus E_t\), we can use the law of total expectation to write

\[
\mathbf{E}[V_{t+1} - V_t] = \mathbf{E}[V_{t+1} - V_t | E_t] \mathbb{P}[E_t] + \mathbf{E}[V_{t+1} - V_t | \bar{E}_t] \mathbb{P}[\bar{E}_t].
\]

By condition (5), \(\mathbb{P}[\bar{E}_t] < \beta^0\). From condition (i), it follows that \(s_t \in \text{dom } V\), \(\forall t \in \mathbb{N}\) and that there exists a \(\bar{V} \geq 0\) such that \(V(z) \leq \bar{V}\), for all \(z \in \text{dom } V\). Therefore, \(\mathbf{E}[V_{t+1} - V_t | \bar{E}_t] \leq \bar{V}\). Finally, by condition (ii),

\[
\mathbf{E}[V_{t+1} - V_t] \leq \mathbb{E}\left[\|x_t\|^2 | E_t\right] \mathbb{P}[E_t] + \bar{V} \beta^0_t.
\]

This allows us to simplify expression (18) as

\[
\mathbf{E}\left[c \sum_{t=0}^{k-1} \|x_t\|^2 - V_0 \right] \leq \sum_{t=0}^{k-1} -c \mathbb{E}\left[\|x_t\|^2 | E_t\right] \mathbb{P}[E_t] + \bar{V} \beta^0_t + c \mathbb{E}\left[\|x_t\|^2 | \bar{E}_t\right] \mathbb{P}[\bar{E}_t] \leq \sum_{t=0}^{k-1} -c \mathbb{E}\left[\|x_t\|^2 | E_t\right] \mathbb{P}[E_t] + \bar{V} \beta^0_t + c \mathbb{E}\left[\|x_t\|^2 | \bar{E}_t\right] \mathbb{P}[\bar{E}_t] = \sum_{t=0}^{k-1} V \beta^0_t + c \mathbb{E}\left[\|x_t\|^2 | \bar{E}_t\right] \leq \sum_{t=0}^{k-1} \|x_t\|^2 - E_t \mathbb{P}[\bar{E}_t].
\]

Since \(\bar{x} \in \mathcal{X}, t \in \mathbb{N}\), and \(\mathcal{X}\) is a compact set containing the origin, there exists an \(r \geq 0\) such that \(\|x_t\|^2 \leq r\). Therefore,

\[
\sum_{t=0}^{k-1} \|x_t\|^2 = \sum_{t=0}^{k-1} \|x_t\|^2 \leq \frac{\|x_t\|^2 + (\bar{x} + r)}{r} \sum_{t=0}^{k-1} \beta^0_t,
\]

which remains finite as \(k \to \infty\), since \((\beta^0_t)_{t \in \mathbb{N}}\) is summable.
Proof of Theorem IV.5.
First, note that using the monotonicity of coherent risk measures [19, Sec. 6.3, (R2)], a straightforward inductive argument allows us to show that under Condition (i),
\[T \hat{V}_N \leq \hat{V}_N, \quad \forall N \in \mathbb{N}. \]
(19)
Since \(\hat{Z} \subseteq \text{dom} \hat{V}_N \), recall that by definition (16), we have for any \(z \in \hat{Z} \) that
\[\hat{V}_N(z) = \ell(x, \hat{\kappa}_N(z), w) + \rho^{\beta}_{w,s} [\hat{V}_{N-1}(\hat{f}_{\hat{\kappa}_N}(z, v))]. \]
Therefore, we may write
\[\rho^{\beta}_{w,s} [\hat{V}_N(\hat{f}_{\hat{\kappa}_N}(z, v))] - \hat{V}_N(z) \]
\[= \rho^{\beta}_{w,s} [\hat{V}_N(\hat{f}_{\hat{\kappa}_N}(z, v))] - \ell(x, \hat{\kappa}_N(z), w) \]
\[- \rho^{\beta}_{w,s} [\hat{V}_{N-1}(\hat{f}_{\hat{\kappa}_N}(z, v))] \leq -\ell(x, \hat{\kappa}_N(z), w) \leq -c\|x\|^2, \]
where the first inequality follows by (19) and monotonicity of coherent risk measures. The second inequality follows from Condition (ii). Therefore, \(V : z \rightarrow \hat{V}_N(z) + \delta_{\hat{Z}}(z) \) satisfies the conditions of Lemma IV.4 and the assertion follows. \(\square \)