Algorithmic Game Theory

Elias Koutsoupias

CERN 2014/05/08-09
Part I

Price of anarchy
Congestion games
Congestion games

- A network in which every edge has its own latency function.
- Traffic follows the optimal path

\[L(x) = 1 \]

\[L(x) = x \]

Figure 1: The Pigou network
A traffic of rate (slightly less than) 1
Every driver will follow the lower road
The expected latency is 1
But if the traffic splits, the expected latency is
$$\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$$
The Price of Anarchy is $4/3$!
Braess’ paradox

- Traffic of rate 1 will prefer the path (1, 3, 2, 4) with latency 2
- If the traffic splits equally between the upper and lower path, the expected latency drops to 3/2
- The Price of Anarchy is 4/3
- Notice the “paradox”: The removal of road (3, 2) improves the traffic conditions for everybody!
Nash (Wardrop) equilibria

- Fix a network with latency functions on its edges and traffic rates between its nodes.
- At a Wardrop or Nash equilibrium every bit of flow follows a path of minimum latency.
- Networks with continuous latency functions always have a Wardrop equilibrium.
Price of anarchy

The Price of Anarchy of a game is

\[
P_{oA} = \frac{\text{cost of worst Nash equilibrium}}{\text{socially-optimal cost}}
\]

Similar notion: Price of Stability in which we consider the best Nash equilibrium.

Theorem (Roughgarden, Tardos, 2001)

Every continuous congestion game with linear latency functions has Price of Anarchy at most 4/3.

Theorem (Roughgarden, Tardos)

For arbitrary continuous latency functions, the Nash equilibrium is no worse that the optimum of the traffic scaled by a factor of 2.
Finite vs continuous games

- Finite (atomic) games have a finite number of players.
- Continuous (non-atomic) games have infinitely many players.

Parallel issue: Games vs Markets

- Traffic conditions do not really change if one driver changes her behavior.
- Similarly, prices in markets do not change if one buyer changes her behavior.
Finite congestion games

- Each player has a source and destination and wants to establish a path between them.
- The cost of each edge depends on the number (instead of the set) of players who use it.
- In the example below, every edge has cost proportional to the number of players using it.
- Player 1 goes from 1 to 5; player 2 goes from 2 to 5; both have two strategies.
Finite congestion games

Figure 2: Prisoners’ dilemma as congestion game: D (top), C (bottom)

Figure 3: El Farol Bar as congestion game: Going (top), staying (bottom)
Finite congestion games

Theorem (Rosenthal, 1972)

Every finite congestion game with increasing linear costs has a pure Nash equilibrium.

Theorem

The Price of Anarchy of finite congestion games is 5/2.

- Finite games have much higher Price of Anarchy than infinite games
- Why? Because of the power of individual player to affect the values
Part II

Mechanisms
Mechanisms = Algorithms + Incentives

- Internet routing (interactions between ISPs)
- Sponsored search
- Online auctions (e.g. Ebay)
- P2P (e.g. free-riders)
- ...
Mechanism design

Mechanisms as algorithms
- Given an objective, design a **game** whose equilibrium optimizes the objective.

Objectives Usually we want to optimize one of the following:
- Revenue (sum of payments)
- Social welfare (sum of player values)
- Other (for example, minmax)
Setting:

- We want to sell an object to n bidders (buyers).
- Each bidder has a value v_i for the object, which is known only to him/her.
- **Objective:** Social welfare, equivalent to “give the item to the bidder with the highest value”.
Single-item auction

Setting:
- We want to sell an object to n bidders (buyers).
- Each bidder has a value v_i for the object, which is known only to him/her.
- **Objective:** Social welfare, equivalent to “give the item to the bidder with the highest value”.

Features:
- Incomplete information: only the bidders know their values
- Money may be used as an incentive. But, money may not be part of the objective.
- Direct revelation: The bidders declare all their values at the beginning.
Single-item auction

Auctions for maximizing welfare:

- Each bidder declares a value \tilde{v}_i, not necessarily equal to the true value v_i.

![Auction scene](image)
Auctions for maximizing welfare:

- Each bidder declares a value \tilde{v}_i, not necessarily equal to the true value v_i.
- The mechanism allocates the object to the bidder with the highest bid, $\max_i \tilde{v}_i$. This is the objective when the bidders are truthful.
Auctions for maximizing welfare:

- Each bidder declares a value \tilde{v}_i, not necessarily equal to the true value v_i.
- The mechanism allocates the object to the bidder with the highest bid, $\max_i \tilde{v}_i$. *This is the objective when the bidders are truthful.*
- **First-price auction:** The bidder pays her bid.
Auctions for maximizing welfare:

- Each bidder declares a value \tilde{v}_i, not necessarily equal to the true value v_i.

- The mechanism allocates the object to the bidder with the highest bid, $\max_i \tilde{v}_i$. This is the objective when the bidders are truthful.

- **First-price auction**: The bidder pays her bid.

- The first-price auction is not truthful.
Vickrey auction: The bidder pays only the second highest bid.
Single-item auction

Vickrey auction: The bidder pays only the second highest bid.

Proposition
The Vickrey auction is truthful (and maximizes welfare).
Vickrey auction: The bidder pays only the second highest bid.

Proposition
The Vickrey auction is truthful (and maximizes welfare).

Why is the Vickrey auction truthful?
- The payment depends only on the values of the other players
- The allocation is monotone: increasing the declared value makes it more likely to get the item
Sponsored search auctions

GSP: Generalized Second-Price auction

- Order the bids

\[v_1 \geq v_2 \geq \cdots \geq v_n \]
Sponsored search auctions

GSP: Generalized Second-Price auction

- Order the bids
 \[v_1 \geq v_2 \geq \cdots \geq v_n \]

- Give the top slot to first bidder for a price of \(p_1 = v_2 \)

GSP is not truthful! Its Price of Anarchy is \(\phi \approx 1.618 \).
GSP: Generalized Second-Price auction

- Order the bids

\[v_1 \geq v_2 \geq \cdots \geq v_n \]

- Give the top slot to first bidder for a price of \(p_1 = v_2 \)

- Give the second slot to second bidder for a price of \(p_2 = v_3 \), etc
GSP: Generalized Second-Price auction

- Order the bids
 \[v_1 \geq v_2 \geq \cdots \geq v_n \]

- Give the top slot to first bidder for a price of \(p_1 = v_2 \)

- Give the second slot to second bidder for a price of \(p_2 = v_3 \), etc

- GSP is not truthful!
Sponsored search auctions

GSP: Generalized Second-Price auction

- Order the bids

 \[v_1 \geq v_2 \geq \cdots \geq v_n \]

- Give the top slot to first bidder for a price of \(p_1 = v_2 \)

- Give the second slot to second bidder for a price of \(p_2 = v_3 \), etc

- GSP is not truthful!

- Its Price of Anarchy is \(\phi \approx 1.618 \)
Social choice - voting

Voting problem: Aggregating preferences

Mechanisms without money

Voter	Candidate 1	Candidate 2	Candidate 3
Voter 1	1	2	3
Voter 2	2	1	3
Voter 3	3	2	1
Voter 4	2	3	1
Gibbard-Shatterwaite theorem

Voter 1	Candidate 1	Candidate 2	Candidate 3
Voter 2	2	1	3
Voter 3	3	2	1
Voter 4	2	3	1

- Many voting schemes: Borda, plurality, ...
- All can be manipulated

Theorem (Gibbard-Shatterwaite, 1975)

Only *dictatorial* voting systems for three or more candidates are truthful.

Similar to Arrow’s impossibility theorem.
Mechanisms with payments for general domains

	Outcome 1	Outcome 2	Outcome 3
Bidder 1	1	5	10
Bidder 2	2	8	5
Bidder 3	4	6	4
Bidder 4	4	8	10

Setting: The numbers indicate how much bidders are willing to pay for the outcomes

Goal: Select the most desirable outcome (social welfare)

Main obstacle: Bidders may lie about their values
The VCG mechanism

- Selects the outcome which maximizes social welfare
- Each player pays her value, but she gets a discount equal to the increase of the global objective because of her participation.

In the example, Outcome 3 is selected
- The social welfare is $10 + 5 + 4 + 10 = 29$
- Without bidder 1, the social welfare becomes $8 + 6 + 8 = 22$
- Bidder 1 gets a discount of $29 - 22 = 7$ and pays only $10 - 7 = 3$

	Outcome 1	Outcome 2	Outcome 3
Bidder 1	1	5	10
Bidder 2	2	8	5
Bidder 3	4	6	4
Bidder 4	4	8	10
Truthfulness

Theorem

The VCG mechanism is truthful.

- VCG for a single item auction is the Vickrey (second-price) auction

	Outcome 1	Outcome 2	Outcome 3
Bidder 1	9	0	0
Bidder 2	0	12	0
Bidder 3	0	0	5

Player 2 gets the item and gets a discount of $12 - 9 = 3$. She pays, $12 - 3 = 9$, the second price.
VCG for the shortest-path problem

Buying edges to build a shortest path

- VCG selects a shortest path P: $P = (1, 2, 3, 4)$
- To compute the payment of an edge e on the path P:
 - We remove e and compute a shortest path P_e
 - The payment for edge e is
 \[p_e = v_e + \text{length of } P_e - \text{length of } P \]

For example,
- for edge $(1, 2)$, $P_e = (1, 3, 4)$. The payment is $1 + 7 - 6 = 2$
Roberts’ theorem

Theorem (Roberts, 1979)

For general domains with three or more outcomes, only the VCG and its variants (affine maximizers) are truthful.

- This is a devastating theorem, similar to the Gibbard-Shatterwaite theorem: No general mechanisms for objectives other than the social welfare.
- Major open problem: understanding the power of mechanisms for restricted domains. For example, combinatorial auctions (selling many items).
Minmax objective

- Scheduling problem: allocate a set of tasks to a set of selfish workers, each with its own skills
- How to allocate the tasks? how much to pay the workers?

Theorem

No mechanism can find an optimal solution; not even a 2.618-approximate solution.
Cake-cutting: How to cut a cake for \(n \) kids that have different preferences?

- Fairness for 2: I cut, you choose
- Fairness for many? Beautiful results, many open problems
HOMO SAPIENS?

Ultimatum Game: Two players will split $100 as follows: The first player proposes a split and the second player accepts or rejects. If he accepts, the players get the proposed shares, otherwise they both receive nothing.
Homo sapiens?

Ultimatum game: Two players will split $100 as follows: The first player proposes a split and the second player accepts or rejects. If he accepts, the players get the proposed shares, otherwise they both receive nothing.

Traveler’s dilemma: Each player proposes an amount between $2 and $100. If they agree, each player gets the proposed amount. If they disagree, they both get the minimum value, but the player who proposed the minimum value gets also a bonus of $2.
HOMO SAPIENS?

ULTIMATUM GAME: Two players will split $100 as follows: The first player proposes a split and the second player accepts or rejects. If he accepts, the players get the proposed shares, otherwise they both receive nothing.

TRAVELER’S DILEMMA: Each player proposes an amount between $2 and $100. If they agree, each player gets the proposed amount. If they disagree, they both get the minimum value, but the player who proposed the minimum value gets also a bonus of $2.

- Are we rational? Are we selfish?
- At what level?
 - at the level of genes, organisms, families, communities, species?
Tragedy of commons