Glucose Metabolism Disorder and Angioscopic Findings of Coronary Plaques

Osamu Kurihara, MD,1 Masamichi Takano, MD, PhD,1* Yasushi Miyauchi, MD, PhD,1 Yoshihiko Seino, MD, PhD,1 Kyoichi Mizuno, MD, PhD,2 and Wataru Shimizu, MD, PhD3

1Cardiovascular Center, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan.
2Mitsukoshi Health and Welfare Foundation, Tokyo, Japan.
3Division of Cardiology, Nippon Medical School, Tokyo, Japan.

Diabetes is characterized by hyperglycemia and certainly indicates various micro- and macro-vascular complications. Macro-vascular complications include ischemic coronary artery disease due to atherosclerosis, which is a leading cause of mortality in diabetic patients. Diabetic retinopathy (DR) is considered as a specific marker of micro-vascular complications and is included in the criteria for diagnosis of diabetes. The ultimate goal of diabetes treatment is to inhibit the progression of systemic atherosclerosis and prevent fatal cardiovascular events like acute coronary syndrome (ACS). Although diabetes involves both micro- and macro-vascular diseases, the relationship between DR and severity of coronary atherosclerosis, fundamental to ACS, is unclear. Moreover, the correlation of the degree of glucose metabolism disorder with coronary atherosclerosis remains unclear. The American Diabetes Association considers prediabetes as a high risk for diabetes and cardiovascular events in the future. However, coronary atherosclerosis in prediabetic patients has not been fully investigated.

Coronary angioscopy (CAS) is a useful intravascular imaging modality for assessing the characteristics of atherosclerotic plaques and its severity in vivo. Recently, CAS has shown the above relationships. Herein, we review the angioscopic findings and subsequent therapeutic implications in patients with glucose metabolism disorders.

Key words: coronary angioscopy, coronary artery disease, glucose metabolism disorder, yellow plaque

Introduction

Diabetes is a metabolic disorder characterized by fasting and/or post-prandial hyperglycemia resulting from a lack (or an absence) of insulin secretion and/or insulin action. Chronic hyperglycemia can cause dysfunction and damage or failure of systemic organs including eyes, kidneys, nerves, heart, and blood vessels as micro- and macro-vascular complications. The diagnosis of diabetes is based on the levels of hemoglobin A1c (HbA1c) or plasma glucose (PG) with the threshold defined by the prevalence of diabetic retinopathy (DR), which is one of the micro-vascular complications.1 Although DR is a major diabetic complication, DR itself does not cause a poor prognosis.

Diabetes is an intense risk factor of macro-vascular complications like coronary artery disease (CAD), which is a leading cause of mortality in diabetic patients.2, 3 In addition, there is accumulating evidence that not only diabetes but also impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) are correlated with a poor prognosis, owing to an increasing risk of cardiovascular events.4, 5

The final goal of the treatment for diabetes is prevention of the cardiovascular events like fatal acute coronary syndrome (ACS). ACS is caused by formation of a flow-limiting thrombus that adhered to the disrupted plaque in the coronary artery.6, 7 Previous clinical and histopathological studies reported that the majority of ACS originated from disrupted plaques, especially thin-cap fibroatheromas (TCFA) composed of a large lipid core under a thin fibrous cap.6-10 A vulnerable plaque represented by the TCFA is defined as a plaque with a potential risk of ACS in the near future. In recent years, new intracoronary imaging modalities have been developed and use for detecting vulnerable plaques in daily...
clinical practice. As one of the supplemental diagnostic methods of CAD, coronary angioscopy (CAS) has been utilized to discriminate plaque morphology and to identify vulnerable plaques and patients.

Classification or Definition of Glucose Metabolism

The American Diabetes Association defines diabetes as HbA1c (National Glycohemoglobin Standardization Program) ≥ 6.5%, or fasting PG ≥ 126 mg/dL, or 2-h PG ≥ 200 mg/dL during an oral glucose tolerance test (OGTT). Those diagnostic criteria of diabetes are based on the prevalence of DR with glycemic levels. In addition, the American Diabetes Association defines IFG as fasting PG level of 100–125 mg/dL and IGT as 2-h PG level of 140–199 mg/dL during an OGTT. Populations of IFG and/or IGT are thought that they frequently develop into diabetes in the future. HbA1c is commonly used to diagnose diabetes, and its value of 5.7–6.4% also indicates an increased risk of diabetes. Therefore, the American Diabetes Association advocates the concept of prediabetes as patients with HbA1c 5.7–6.4%, IFG, and IGT.

Glucose Metabolism and Atherosclerosis

Hyperglycemia, free fatty acids, and insulin resistance in diabetes alter the function and structure of blood vessels through molecular mechanisms. These mechanisms include increased oxidative stress, activation of protein kinase C, and activation of the receptor for advanced glycation end products. Consequently, they decrease the availability of nitric oxide, increase endothelin production, and activate transcription factors, such as nuclear factor kappa B and activator protein-1. These substances provoke vasoconstriction and atherosclerosis as we all as inflammation. Similar responses potentially arise in prediabetes characterized by disorders of glucose metabolism.

Angioscopic Findings of Coronary Plaque

In lumen observation by CAS, a normal coronary artery seems to be a milky white flat wall. On the contrary, an atherosclerotic plaque appears to be a protruding mass into the lumen with yellow or white color (yellow or white plaque, respectively). According to the surface color, the intensity (or grade) of the yellow plaque is semi-quantitatively classified as 0, white; 1, light yellow; 2, (medium) yellow; or 3, intense yellow (Fig. 1). The majority of yellow plaques contain lipid pool or necrotic core according to comparative validation using optical coherence tomography and intravascular ultrasonography. Moreover, the yellow grade is regulated by the thickness of fibrous cap covering the lipid pool, and the two indexes are conversely correlated with each other. Therefore, high-intensity yellow plaque identified by CAS is considered TCFA. Yellow plaque is frequently

Fig. 1 Classification of yellow plaques. (A) White plaque (yellow grade 0). (B) Light yellow plaque (grade 1). (C) Yellow plaque (grade 2). (D) Intense yellow plaque (grade 3).
observed in the culprit lesion of ACS. This is sometimes found not only in the culprit lesion but also in the non-culprit lesions. Prospective angioscopic studies demonstrated that the incidence of ACS was higher in patients with intense (or glinting) yellow plaque and multiple yellow plaques than in patients without them. These findings suggest that patients with intense yellow or multiple yellow plaques may be vulnerable. In other words, yellow plaque, especially intense yellow plaque itself, indicates vulnerability.

Angioscopic Findings in Glucose Metabolism Disorder

Diabetes is well known to promote atherosclerotic disease including coronary artery disease and increase mortality rate resulting from cardiovascular events. Previous CAS studies showed frequent ulcerated plaque, adhering thrombus, and delayed healing process of the plaque in diabetes. It is common that diabetic patients have no ischemia-related symptoms. The absence of typical chest symptoms, so-called silent myocardial ischemia, entails late diagnosis and therapeutic intervention, and they lead to worsened prognosis of diabetes. Another study using CAS showed that diabetes was an independent predictor of silent plaque disruption in the non-culprit lesion. With regard to the relationship between micro- and macro-vascular diseases in diabetes, patients with DR had larger number and higher grade of the yellow plaque than those without DR. As previously mentioned, the two indexes are angioscopically surrogate markers of patient or plaque vulnerability according to prospective studies. Therefore, the presence of DR indicates the prevalence of coronary atherosclerosis and advanced vulnerability of the plaque. This report suggested a direct link between micro- and macro-vascular complications such as DR and coronary atherosclerosis resulting into ACS. Catheter-based angioscopic procedure is relatively invasive, while an ophthalmoscope for the diagnosis of DR is less invasive and practical in the daily clinic. For diabetes management, it may be required to evaluate the presence of DR, to consider latent vulnerable plaque in the coronary artery, and to initiate early therapeutic intervention.

The present diagnosis of diabetes is based on DR, and the correlation between severity of glucose metabolism disorder and coronary atherosclerosis is still unclear. Prediabetes such as IFG and IGT has a poor prognosis following an increasing risk of cardiovascular events, according to recent evidence. We reported that the number and color grade of the yellow plaque in prediabetes were greater than those in non-diabetes. Moreover, they did not differ between prediabetes and diabetes. Therefore, both expansions of coronary atherosclerosis and plaque vulnerability were advanced in prediabetes as well as in diabetes. Three representative cases of non-diabetes, prediabetes, and DR are shown in Figs. 2–4.

![Fig. 2](image)

Fig. 2 Representative coronary angiographic and angioscopic images in non-diabetic patients. (A) A 75% stenosis is identified on angiography in the middle part of the left ascending artery. (B) According to angioscopic findings, this lesion is a grade 1 yellow plaque. (C) No angiographic stenosis is observed in the right coronary artery. (D) On angioscopy, 1 yellow plaque is identified with an intensity grade of 2. The left circumflex artery is too small to be observed using coronary angioscopy. In this case, the average number of yellow plaques is 1 (2 yellow plaques in two vessels), and the maximum yellow grade is 2.
Fig. 3 Representative coronary angiographic and angioscopic images in prediabetic patients. (A) No angiographic stenosis is observed in the right coronary artery. (B) An intramural red thrombus is observed at the proximal site. (C) and (D) On angioscopy, three yellow plaques are identified with intensity grades of 1, 2, and 1, respectively. (E) Significant stenosis was not observed in the left circumflex artery. (F) and (G) Identification of two yellow plaques with grades 1 and 2, respectively. (H) A 50% stenosis and a 90% stenosis are identified on angiography in the middle part of the left ascending artery. (I) and (J) According to angioscopic findings, both lesions are grade 3 yellow plaques. In this case, the average number of yellow plaques is 2.33 (7 yellow plaques in 3 vessels), and the maximum yellow grade is 3.

Fig. 4 Representative coronary angiographic and angioscopic images in patients with diabetic retinopathy. (A) No angiographic stenosis was observed in the right coronary artery. (B–D) On angioscopy, three yellow plaques are identified with intensity grades 2, 3, and 2, respectively. (C) An intramural red thrombus was observed at the middle site. (E) Significant stenosis was not observed in the left circumflex artery. (F and G) Identification of 2 yellow plaques grades 2 and 1, respectively. (H) A 90% stenosis was identified on angiography in the proximal part of the left ascending artery. (I and J) On angioscopy, two yellow plaques are identified in the proximal and middle parts of the left ascending artery with intensity grades of 2 and 3, respectively. In this case, the average number of yellow plaques is 2.33 (7 yellow plaques in 3 vessels) and the yellow grade is 3.
Management of Glucose Metabolism Disorder

Sodium-glucose cotransporter-2 (SGLT-2) inhibitor demonstrated a clear benefit in reducing cardiovascular events and death in diabetes. In addition, a recent observational study demonstrated that SGLT-2 inhibitor might decrease particular cardiovascular events, myocardial infarction, and stroke. Further studies are needed to estimate the effect of glucose lowering drugs including SGLT-2 inhibitor.

By contrast, lipid-lowering therapy with statin is certainly beneficial to decrease all-cause mortalities in diabetes as many large-scale clinical trials revealed. Furthermore, the American College of Cardiology and the American Heart Association proposed guidelines for the treatment of hyperlipidemia to reduce the risk of cardiovascular events. Both guidelines recommend aggressive statin therapy for primary and secondary preventions of cardiovascular events for diabetes. Serial angioscopic examinations demonstrated that low-density lipoprotein cholesterol lowering therapy with the strong statin reduced yellow grade and complexity of the plaque. The phenomenon of the changes of plaque morphology is believed to be plaque stabilization caused by statin therapy. The statin effects on plaque morphology in diabetes may be attenuated in mature plaques with large necrotic core. We found that the reduction rate in the number and grade of the yellow plaque in patients with statin were lower than in those without statin. Therefore, statin therapy played an important role in inhibiting atherosclerotic progression in prediabetes. Previous clinical studies showed that the residual risk of ACS in diabetes was not very low despite statin therapy. Aggressive therapy may be required in the early stages of glucose metabolism disorders like as prediabetes. Since coronary atherosclerosis development can be promoted in prediabetes as in diabetes, effective intervention may be recommended in the early stages of glucose metabolism disorder.

Further clinical investigations focusing on the prevention of cardiovascular events in patients with glucose metabolism disorders are necessary.

Disclosure Statement

None of the authors have any conflict of interest in relation to the work described herein. No financial support was received for the study, nor do any of the authors have a relevant relationship with the industry.

References

1) American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62–S69
2) Stamler J, Vaccaro O, Neaton JD, et al: Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993; 16: 434–444
3) Haffner SM, Lehto S, Ronnemaa T, et al: Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229–234
4) Unwin N, Shaw J, Zimmet P, et al: Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 2002; 19: 708–723
5) Barr EL, Zimmet PZ, Welborn TA, et al: Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation 2007; 116: 151–157
6) Fuster V, Badimon L, Badimon JJ, et al: The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 1992; 326: 242–250
7) Fuster V, Badimon L, Badimon JJ, et al: The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992; 326: 310–318
8) Naghavi M, Libby P, Falk E, et al: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664–1672
9) Naghavi M, Libby P, Falk E, et al: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003; 108: 1772–1778
10) Virmani R, Kolodgie FD, Burke AP, et al: Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005; 25: 2054–2061
11) International Expert Committee: International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009; 32: 1327–1334
12) Brownlee M: Advanced protein glycosylation in diabetes and aging. Annu Rev Med 1995; 46: 223–234
13) Inoguchi T, Battan R, Handler E, et al: Preferential elevation of protein kinase C isofrom beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci USA 1992; 89: 11059–11063
14) Baynes JW: Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405–412
15) Grundy SM: Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 2012; 59: 635–643
16) Ferrannini E, Gastaldelli A, Iozzo P: Pathophysiology of prediabetes. Med Clin North Am 2011; 95: 327–339
17) Miettinen H, Haffner SM, Lehto S, et al: Retinopathy predicts coronary heart disease events in NIDDM patients. Diabetes Care 1996; 19: 1445–1448
18) Cheung N, Wang JJ, Klein R, et al: Diabetic retinopathy and the risk of coronary heart disease: the Atherosclerosis Risk in Communities Study. Diabetes Care 2007; 30: 1742–1746
19) van Hecke MV, Dekker JM, Stehouwer CD, et al: Diabetic retinopathy is associated with mortality and cardiovascular disease
incidence: the EURODIAB prospective complications study. Diabetes Care 2005; 28: 1383–1389

20) Kawasaki M, Takatsu H, Noda T, et al: In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 2002; 105: 2487–2492

21) Takano M, Jang IK, Inami S, et al: In vivo comparison of optical coherence tomography and angioscopy for the evaluation of coronary plaque characteristics. Am J Cardiol 2008; 101: 471–476

22) Kubo T, Imanishi T, Takarada S, et al: Implication of plaque color classification for assessing plaque vulnerability: a coronary angiography and optical coherence tomography investigation. JACC Cardiovasc Interv 2008; 1: 74–80

23) Yamamoto M, Takano M, Okamatsu K, et al: Relationship between thin cap fibroatheroma identified by virtual histology and angioscopic yellow plaque in quantitative analysis with colorimetry. Circ J 2009; 73: 497–502

24) Sakai S, Mizuno K, Yokoyama S, et al: Morphologic changes in infarct-related plaque after coronary stent placement: a serial angioscopy study. J Am Coll Cardiol 2003; 42: 1558–1565

25) Okamatsu K, Takano M, Sakai S, et al: Elevated troponin T levels and lesion characteristics in non-ST-elevation acute coronary syndromes. Circulation 2004; 109: 465–470

26) Mizuno K, Satomura K, Miyamoto A, et al: Angioscopic evaluation of coronary-artery thrombus in acute coronary syndromes. N Engl J Med 1992; 326: 287–291

27) Mizuno K, Miyamoto A, Satomura K, et al: Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991; 337: 809–812

28) Takano M, Inami S, Ishibashi F, et al: Angioscopic follow-up study of coronary ruptured plaques in nonculprit lesions. J Am Coll Cardiol 2005; 45: 652–658

29) Uchida Y, Nakamura F, Tomaru T, et al: Prediction of acute coronary syndromes by percutaneous coronary angiography in patients with stable angina. Am Heart J 1995; 130: 195–203

30) Ohtani T, Ueda Y, Mizote I, et al: Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome: detection of vulnerable patients by angiography. J Am Coll Cardiol 2006; 47: 2194–2200

31) Silva JA, Escobar A, Collins TJ, et al: Unstable angina. A comparison of angioscopic findings between diabetic and nondiabetic patients. Circulation 1995; 92: 1731–1736

32) Ueda Y, Asakura M, Yamaguchi O, et al: The healing process of infarct-related plaques. Insights from 18 months of serial angioscopic follow-up. J Am Coll Cardiol 2001; 38: 1916–1922

33) Wingard DL, Barrett-Connor EL, Scheidt-Nave C, et al: Prevalence of cardiovascular and renal complications in older adults with normal or impaired glucose tolerance or NIDDM. A population-based study. Diabetes Care 1993; 16: 1022–1025

34) Grundy SM, Benjamin B, Burke GL, et al: Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 1999; 100: 1134–1146

35) Wang Z, Inami S, Kirinoki S, et al: Angioscopic study of silent plaque disruption in nonischemic related coronary artery in patients with stable ischemic heart disease. Int Heart J 2010; 51: 383–387

36) Kurihara O, Takano M, Mizuno K, et al: Impact of diabetic retinopathy on vulnerability of atherosclerotic coronary plaque and incidence of acute coronary syndrome. Am J Cardiol 2016; 118: 944–949

37) Kurihara O, Takano M, Yamamoto M, et al: Impact of prediabetic status on coronary atherosclerosis: a multivessel angioscopic study. Diabetes Care 2013; 36: 729–733

38) ZimSTAT; Lam CS, Kohsaka S, et al: Lower cardiovascular risk associated with SGLT-2 in > 400,000 patients: the CVD-REAL 2 study. JACC; Mar 2018, DOI: 10.1016/j.jacc.2018.03.009 [Epub ahead of print]

39) Stone NJ, Robinson JG, Lichtenstein AH, et al: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: 2889–2934

40) Kodama K, Komatsu S, Ueda Y, et al: Stabilization and regression of coronary plaques treated with pitavastatin proven by angioscopy and intravascular ultrasound—the TOGETHAR trial. Circ J 2010; 74: 1922–1928

41) Takano M, Mizuno K, Yokoyama S, et al: Changes in coronary plaque color and morphology by lipid-lowering therapy with atorvastatin: serial evaluation by coronary angioscopy. J Am Coll Cardiol 2003; 42: 680–686

42) Takayama T, Hiro T, Ueda Y, et al: Plaque stabilization by intensive LDL-cholesterol lowering therapy with atorvastatin is delayed in type 2 diabetic patients with coronary artery disease—Serial angioscopic and intravascular ultrasound analysis. J Cardiol 2013; 61: 381–386

43) Hiro T, Kimura T, Morimoto T, et al: Diabetes mellitus is a major negative determinant of coronary plaque regression during statin therapy in patients with acute coronary syndrome—serial intravascular ultrasound observations from the Japan Assessment of Pitavastatin and Atorvastatin in Acute Coronary Syndrome Trial (the JAPAN–ACS Trial). Circ J 2010; 74: 1165–1174

44) Kurihara O, Takano M, Munakata R, et al: Effect of statin therapy in pre-diabetic status evaluated by coronary angioscopy. Angiology 2015; 1: 26–31

45) Deedwania P, Barter P, Carmena R, et al: Reduction of low-density lipoprotein cholesterol in patients with coronary heart disease and metabolic syndrome: analysis of the Treating New Targets study. Lancet 2006; 368: 919–928