Direct L-moments for Type-I censored data with application to the Kumaraswamy distribution

Mahmoud Riad Mahmoud1, Fatma A. Khalil2, Ghada A. El-Kelany2 and Hager A. Ibrahim2*

Abstract: This paper suggests a modification of L-moments method to make it suitable for censored data directly (namely: Direct L-moments). This study concentrates on Type-I censored data. The modification is applied to estimate the unknown parameters of Kumaraswamy (Kw) distribution. The suggested modification is compared with L-moments via partial probability-weighted moments (PPWM) method and maximum likelihood (ML) method. The results are achieved using a comparative numerical study in terms of estimate of the unknown parameters, relative bias and root of mean square error (RMSE) using Monte Carlo simulation.

Subjects: Science; Mathematics & Statistics; Applied Mathematics

Keywords: censored data; estimation; conventional moments; L-moments; Kumaraswamy distribution

1. Introduction
Finding robust and reliable estimates of unknown parameters has a great importance to the practitioner, whether he does this repeatedly as in industrial and medical applications, or occasionally as in business applications. For estimating the unknown parameters, conventional moments method is considerable one of the most important methods of estimation. But it is often considerably less

ABOUT THE AUTHORS
Mahmoud Riad Mahmoud is an emeritus Professor of Statistics at Cairo University, Worked as Dean of the Institute of Statistical Studies and Research, interested in Theory of Statistics and Statistical Inference.
Fatma A. Khalil is an emeritus Associate Professor of Statistics in the Statistics department, Faculty of Commerce, AL-Azhar University (Girls’ Branch), Cairo, Egypt, interested in Theory of Statistics and Statistical Inference.
Ghada A. El-Kelany, Assistant Professor in the department of statistics, Faculty of Commerce, AL-Azhar University (Girls’ Branch), Cairo, Egypt. She received PhD in statistics in 2013 from AL-Azhar University (Girls’ Branch), Cairo, Egypt, interested in Theory of Statistics and Statistical Inference.
Hager A. Ibrahim is PhD student at Faculty of Commerce, AL-Azhar University (Girls’ Branch), Cairo, Egypt. She received MSc in Statistics 2014, Statistics department, Faculty of Commerce AL-Azhar University (Girls’ Branch), Cairo, Egypt, interested in Theory of Statistics and Statistical Inference.

PUBLIC INTEREST STATEMENT
The Kumaraswamy distribution is a very good alternative to the beta distribution for modeling random processes which values are bounded from below and above. It has been utilized to model certain measurements in genetics, hydrology and ecology. Fitting this model to a given dataset requires the estimation of the parameters of the distribution. Among the methods used for estimating the parameters we find, the method of moments is used frequently. The use of the L-moments has been suggested as an alternative to the method of moments. In this article, the L-moments are utilized to estimate the parameters of the Kumaraswamy distribution.
accurate than those obtained using other methods, especially in the case of small samples (Bílková, 2014). Recently, L-moments method has been noticed as appealing alternative method to the conventional moments. Hosking (1990) pointed out, compared to the conventional moments, L-moments have lower sample variances and are more robust against outliers, the method of L-moments is analogous way to the method of conventional moments, L-moments estimators computed by equating the sample moments with the corresponding population moments, also, the L-moments ratios (L-skewness and L-kurtosis) are analogous to conventional moment ratios. L-moments have certain theoretical advantages over conventional moments (Zafirakou-Koulouris, Vogel, Craig, and Habermeier, 1998).

L-moments was first introduced by Sillitto (1951) and formally defined as expectations of certain linear combinations of order statistics by Hosking (1990). Hosking (1990) unified the theory of L-moments and provided guidelines for the practical use of L-moments. The method of L-moments was discussed from various earlier studies by Hosking (1990) who provided guidelines for the practical use of L-moments. Hosking (1990, 1992, 1994, 2006), Hosking, and Wallis (1995), Sillitto (1969), Elamir and Seheult (2001, 2004), Jones (2004), Asquith (2007), Abdul-Moniem (2007), Karvanen (2006), Bílková (2014) and Dutang (2016) considered various theoretical aspects and applications of L-moments for complete data.

L-moments are defined as linear combination of the expectation of the order statistics. Let X be a continuous random variable distributed with the distribution function $F(x)$ and quantile function $x(F)$. Consider $X_{1n} \leq X_{2n} \leq \cdots \leq X_{nn}$ the order statistics of a random sample. L-moments of the rth order of the random variable X is defined by Hosking (1990) as

$$\lambda_r = \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} E(X_{r-k})$$

(1.1)

Now, the expectation of the order statistics are given by:

$$E(X_{i:n}) = \frac{r!}{(i-1)!(r-i)!} \int_0^1 x(F)^{i-1}(1-F)^{r-i} dF$$

(1.2)

The sample L-moments can be estimated unbiasedly from the sample order statistics by a formula suggested by Asquith (2007) as:

$$l_r = \frac{1}{r} \binom{n}{r} \sum_{i=0}^{r-1} \binom{r-1}{i} \left(\binom{r-1}{k} \left(\binom{i-1}{r-1-k} \right) \right) X_{i:n}$$

(1.3)

For censored data, Hosking (1995) defined two variants of L-moment which are used with right censored observations. Similarly, Zafirakou-Koulouris et al. (1998) extended the applicability of L-moments ratio diagrams to left censored data via introducing a new partial probability weighted moment (PPWM) based on L-moments definition. Wang (1990a, 1990b) extended the concept of PWM, suggested by Greenwood, Landwehr, Matalas, and Wallis (1979), to PPWM for the analysis of censored samples. The aim of this study is introduced a modification of L-moments method to make it suitable for Type-I censored data directly with application from Kumaraswamy distribution.

Kumaraswamy (1980) presented a distribution and called it the double bounded distribution to model hydrological random processes which are bounded at the lower and upper ends. The probability density function (pdf) of Kw distribution is

$$f(x; a, b) = abx^{a-1}(1-x^b)^{b-1}, \quad 0 < x < 1, \quad a, b > 0$$

(1.4)

and cumulative distribution function (cdf) is
\[F(x; a, b) = 1 - (1 - x^a)^b \]

(1.5)

This article is organized as follows; Section 2 is concerned with L-moments for Type-I censored data via PPWM. A modification of L-moments, direct L-moments, is introduced in Section 3. direct L-moments for Kw distribution is presented in Section 4. L-moments via PPWM for Censored Data for Kw distribution are introduced in Section 5. ML method for censored data for Kw distribution is presented in Section 6. Simulation study and concluding remarks are presented in Section 7.

2. L-moments for censored data via PPWM

Wang (1990a, b) introduced the concept of PPWM. Let \(X_1 \leq X_2 \leq \cdots \leq X_n \), the order statistics of a random sample of size \(n \) that comes from the distribution of the random variable \(X \). Wang (1990a) defined a lower censoring PPWM as follows:

\[\beta_r = \frac{1}{c} \int_c^1 x(F) F' dF, \quad r = 0, 1, 2, \ldots \]

(2.1)

where \(c = F(T) \) is the random fraction of observations that are uncensored, \(T \) being the lower bound censoring threshold. He showed that the following statistic is an unbiased estimator of \(\beta_r \):

\[b_r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i-1}{n-1} \right) x_{(i)}^r, \quad r = 0, 1, 2, \ldots \]

(2.2)

where,

\[x_{(i)}^r = \begin{cases} 0, & x_{(i)} \leq T \\ x_{(i)}, & x_{(i)} > T \end{cases} \]

Similar quantities for upper bound censoring are defined by Wang (1990b) as follows:

\[\beta_r^u = \frac{1}{c} \int_0^c x(F) F' dF, \quad r = 0, 1, 2, \ldots \]

(2.3)

where \(c = F(T), T \) now being the upper bound censoring threshold. Given a complete sample \(x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} \), the following statistic is an unbiased estimator of \(\beta_r^u \):

\[b_r^u = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i-1}{n-1} \right) x_{(i)}^{r'}, \quad r = 0, 1, 2, \ldots \]

(2.4)

where,

\[x_{(i)}^{r'} = \begin{cases} x_{(i)}, & x_{(i)} \leq T \\ 0, & x_{(i)} > T \end{cases} \]

Hosking (1995) introduced two different PPWM for using in L-moments with right censored data, Type-A PPWM and Type-B PPWM respectively.

- **Type-A PPWM**

\[\beta_r^A = \frac{1}{c^{r+1}} \int_0^c x(F) F' dF, \quad r = 0, 1, 2, \ldots \]

(2.5)
where, \(c = F(T) \). He derived Type-A PPWM estimator as follows: where \(m \) is observed (uncensored) data.

- **Type-B PPWM**

\[
\beta^B_c = \int_0^c x(F)F' dF + \frac{1 - c^{r+1}}{r+1} x(c), \quad r = 0, 1, 2, \ldots
\]

(2.6)

He derived Type-B PPWM estimator as follows:

\[
b^B_r = \frac{1}{n} \left[\sum_{i=1}^m \left(\frac{i-1}{r} \right) X_{i,n} + \sum_{i=m+1}^n \left(\frac{i-r}{n-1} \right) T \right], \quad r = 0, 1, 2, \ldots
\]

(2.7)

Zafirakou-Koulouris et al. (1998) derived PPWM for left censoring, following the same approach introduced by Hosking (1995) for right censoring. They derived Type-\(A' \) and Type-\(B' \) PPWM for left censoring respectively.

- **Type-\(A' \) PPWM**

\[
\beta^A'_r = \frac{1}{(1 - c^{r+1})} \int_c^1 x(F)(F - c)^r dF, \quad r = 0, 1, 2, \ldots
\]

(2.8)

They presented unbiased estimators of Type-\(A' \) PPWM for left censoring as follows:

\[
b^A'_s = \frac{1}{s} \sum_{i=1}^s \left(\frac{i-1}{s-r} \right) X_{n-s+1,n}, \quad r = 0, 1, 2, \ldots, \quad s = n - m + 1
\]

(2.9)

where \(s \) is censored data.

- **Type-\(B' \) PPWM**

\[
\beta^B'_r = x(c) \frac{c^{r+1}}{r+1} + \int_c^1 F' x(F) dF, \quad r = 0, 1, 2, \ldots
\]

(2.10)

They presented unbiased estimators of Type-\(B' \) PPWM for left censoring as follows:

\[
b^B'_r = \frac{1}{n} \left[\sum_{i=1}^{n-k} \left(\frac{i-1}{n-r} \right) T + \sum_{i=n-k+1}^n \left(\frac{i-r}{n-1} \right) X_{i,n} \right], \quad r = 0, 1, 2, \ldots
\]

(2.11)

For any distribution the \(r \)th L-moments is related to the \(r \)th PPWM, see Hosking (1990), via

\[
\lambda_{r+1} = \sum_{k=0}^r (-1)^{r-k} \binom{r}{k} \binom{r+k}{k} \beta_k, \quad r = 0, 1, 2, \ldots
\]

(2.12)

from which the first four L-moments in terms of PPWM are
\[\lambda_1 = \beta_0, \]
\[\lambda_2 = -\beta_0 + 2\beta_1, \]
\[\lambda_3 = \beta_0 - 6\beta_1 + 6\beta_2, \]
\[\lambda_4 = -\beta_0 + 12\beta_1 - 30\beta_2 + 20\beta_3. \]

(2.13)

3. Direct L-moments for censored data

All the research sighted above discussed L-moments method with censored data to estimate the parameters relied on using PPWM. The aim of this section is introducing a modification of L-moments (namely: Direct L-moments) method to make it suitable for censored data directly.

3.1. Direct L-moments for right censored data

Let \(x_1, x_2, \ldots, x_n \) be a Type-I censored random sample of size \(n \) from a distribution with distribution function \(F(x) \) and quantile function \(x(u) \). Let the threshold \(T \) satisfy \(F(T) = c \) and \(c \) is the fraction of observed data.

\[
\begin{align*}
&x_{1n} \leq x_{2n} \leq \cdots \leq x_{mn} \leq T \leq x_{m+1n} \leq \cdots \leq x_{n-1n} \leq x_{nn} \\
&\text{m(observed)} \\
&\text{n-m(censored)}
\end{align*}
\]

3.1.1. Direct L-moments for right censored data (Type-AD)

The quantile function of Type-AD L-moments is

\[y^A(u) = x(nc) \quad 0 < u < 1 \]

substitution into Equation (1.1) leads to the Type-AD L-moments where:

\[
\mu^A_i = \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \frac{r!}{(r-k-1)!k!} \int_0^c y^A(u)u^{r-k-1}(1-u)^k\,du
\]

\[= \frac{1}{rc^2} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \frac{r!}{(r-k-1)!k!} \int_0^c x(u)u^{r-k-1}(c-u)^k\,du
\]

(3.1)

The first four L-moments for Type-AD right censoring are calculated as follows:

\[
\begin{align*}
\mu^A_1 &= \frac{1}{c} \int_0^c x(u)du, \\
\mu^A_2 &= \frac{2}{c^2} \int_0^c ux(u)du - \mu^A_1, \tag{3.2} \\
\mu^A_3 &= \frac{6}{c^3} \int_0^c u^2x(u)du - \frac{6}{c^2} \int_0^c ux(u)du + \mu^A_2, \\
\mu^A_4 &= \frac{20}{c^4} \int_0^c u^3x(u)du - \frac{30}{c^3} \int_0^c u^2x(u)du + \frac{12}{c^2} \int_0^c ux(u)du - \mu^A_1.
\end{align*}
\]

The standard method to compute L-moments estimator is equating the sample L-moments (\(\mu^A_i \)) with the corresponding population L-moments (\(\mu^A_i \)). Type-AD L-moments estimators of the uncensored data of \(m \) observations are given by

\[
\hat{m}^A_i = \frac{1}{r} \left(\frac{m}{r} \right) \sum_{i=1}^{m} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{m-i}{k} x_{in}
\]

(3.3)
3.1.2. Direct L-moments for right censored data (Type-BD)

The quantile function of Type-BD L-moments is

\[y_B^\beta(u) = \begin{cases}
 x(u), & 0 < u < c \\
 x(c), & c \leq u < 1
\end{cases} \]

substitution into Equation (1.1) leads to the Type-BD L-moments where:

\[
\mu_r^B = \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r - 1}{k} \frac{r!}{(r - k - 1)!k!} \int_0^1 y_B^\beta(u) u^{r-k-1} (1-u)^k \, du
\]

(3.4)

The first four L-moments for Type-BD right censoring are calculated as follows:

\[
\mu_1^B = \int_0^c x(u) \, du + x(c)(1 - \beta(c, 1, 1)), \\
\mu_2^B = 2 \left(\int_0^c ux(u) \, du - \int_0^c x(u) \, du \right), \\
\mu_3^B = 6 \left(\int_0^c u^2 x(u) \, du - 6 \int_0^c x(u) \, du + \int_0^c 2x(c)[2\beta(c, 2, 2) - \beta(c, 3, 1)] \right), \\
\mu_4^B = 20 \left(\int_0^c u^3 x(u) \, du - 30 \int_0^c u^2 x(u) \, du + 12 \int_0^c ux(u) \, du - \int_0^c x(u) \, du \right).
\]

(3.5)

The standard method to compute L-moments estimator is equating the rth sample L-moments \(\hat{\mu}_r^B \) with the corresponding population L-moments \(\mu_r^B \). Type-BD L-moments estimators are computed from the complete sample, where \(n - m \) censored data are replaced by the censoring threshold \(T \) given by:
The first four L-moments for Type-

\[m_r^0 = \frac{1}{r} \left(\frac{n}{r} \right) \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-i}{k} x_{i,n} \]

\[+ \left(\sum_{m=1}^{n-r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-i}{k} \right) \]

(3.6)

3.2. Direct L-moments for left censored data

Let \(X_1, X_2, \ldots, X_n \) be a random sample of size \(n \). Type-I left censoring occurs when the observations below the fixed threshold \(T \) are censored:

\[x_{1:n} \leq x_{2:n} \leq \cdots \leq x_{n:n} \leq T \leq x_{s+1:n} \leq \cdots \leq x_{n-1:n} \leq x_{n:n} \]

s(censored)

Let the threshold \(T \) satisfy \(F(T) = h \) and \(h \) is the fraction of censored data.

3.2.1. Direct L-moments for left censored data (Type-A'D)

The quantile function of Type-A'D L-moments is

\[y^A(u) = x((1-h)u + h) \quad 0 < u < 1 \]

substitution into (1.1) leads to the Type-A'D L-moments where:

\[\mu_r^A = \frac{1}{h} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \frac{(-r)!}{(r-k-1)! k!} \int_0^1 y^A(u) u^{r-k-1} (1-u)^k \, du \]

(3.7)

The first four L-moments for Type-A'D left censoring are calculated as follows:

\[\mu_1^A = \frac{1}{1-h} \int_0^1 x(u) du, \]

\[\mu_2^A = \frac{1}{(1-h)^2} \left[2 \int_0^1 x(u) du - (h + 1) \int_0^1 x(u) du \right], \]

\[\mu_3^A = \frac{1}{(1-h)^3} \left[6 \int_0^1 u^2 x(u) du - 6(h + 1) \int_0^1 u x(u) du + (h^2 + 4h + 1) \int_0^1 x(u) du \right], \]

(3.8)

\[\mu_4^A = \frac{1}{(1-h)^4} \left[20 \int_0^1 u^2 x(u) du - 30(h + 1) \int_0^1 u^2 x(u) du \right. \]

\[+ 12(h^2 + 3h + 1) \int_0^1 u x(u) du - (h^3 + 9h^2 + 9h + 1) \int_0^1 x(u) du \right]. \]
The standard method to compute L-moments estimator is equating the sample L-moments (m_r^n) with the corresponding population L-moments (μ_r^n). Type-$A'D$ L-moments estimators for left censored data given by:

$$m_r^n = \frac{1}{r} \sum_{i=1}^{n-s} \sum_{k=0}^{n-s-i} (-1)^k \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-s-i}{k} x_{s+1,n}$$ \hspace{1cm} (3.9)

3.2.2. Direct L-moments for left censored data (Type-$B'D$)

The quantile function of Type-$B'D$ L-moments is

$$y^B_r(u) = \begin{cases}
 x(h), & 0 < u \leq h \\
 x(u), & h < u < 1
\end{cases}$$

substitution into Equation (1.1) leads to the Type-$B'D$ L-moments where:

$$\mu_r^B = \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \binom{1}{r-k-1} \int_0^1 y^B_r(u) u^{r-k-1}(1-u)^k \, du$$

$$= \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \binom{1}{r-k-1} \int_0^h x(h) u^{r-k-1}(1-u)^k \, du + \int_h^1 x(u) u^{r-k-1}(1-u)^k \, du$$ \hspace{1cm} (3.10)

$$= \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \binom{1}{r-k-1} \int_0^h x(h) \beta(h, r-k, k+1) + \int_h^1 x(u) u^{r-k-1}(1-u)^k \, du$$

The first four L-moments for Type-$B'D$ left censoring are calculated as follow:

$$\mu_1^B = x(h) \beta(h, 1, 1) + \int_h^1 x(u) \, du,$$

$$\mu_2^B = 2 \int_h^1 u x(u) \, du - \int_h^1 x(u) \, du,$$

$$\mu_3^B = 6 \int_h^1 u^2 x(u) \, du - 6 \int_h^1 u x(u) \, du + \int_h^1 x(u) \, du - 4x(h) \beta(h, 2, 2),$$

$$\mu_4^B = 20 \int_h^1 u^3 x(u) \, du - 30 \int_h^1 u^2 x(u) \, du + 12 \int_h^1 u x(u) \, du - \int_h^1 x(u) \, du.$$

The standard method to compute L-moments estimator is equating the sample L-moments (m_r^n) with the corresponding population L-moments (μ_r^n). Type-$B'D$ L-moments estimators for left censored data given by
From Equation (3.2), the first four L-moments for Type-I right censoring with Type-BD for Kw distribution are calculated as follows:

\[m_r^\theta = \frac{1}{r!} \left[\sum_{i=1}^{n} \sum_{k=0}^{r-1} (-1)^i \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-i}{k} T_{i,k} \right] + \sum_{i=r+1}^{n} \sum_{k=0}^{r-1} (-1)^i \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-i}{k} \chi_{i,n} \]

(3.12)

4. Direct L-moments for censored data for Kw distribution

In this section, the population L-moments of order \(r \) for Kw distribution is introduced.

- **Type-AD**

 From 0 (3.2), the first four L-moments for Type-I right censoring with Type-AD for Kw distribution are calculated as follows:

 \[\mu_r^A = \frac{1}{c} \int_0^c \{ 1 - (1 - u)^\frac{1}{c} \}^i du. \]

 Putting \(z = (1 - u)^\frac{1}{c} \), this led to \(du = -bz^{b-1} dz \); and, \(0 < u < c \) gives \(1 < z < (1 - c)^\frac{1}{c} \), then

 \[\mu_1^A = \frac{1}{c} \left[\int_0^1 z^{b-1}(1 - z)^\frac{1}{c} dz - \int_0^1 z^{b-1}(1 - z)^\frac{1}{c+1} dz \right] \]

 \[= \frac{b}{c} \left[\beta \left(b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, b, \frac{1}{c} + 1 \right) \right], \]

 \[\mu_2^A = \frac{(2 - c)b^2}{c^2} \left[\beta \left(b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, b, \frac{1}{c} + 1 \right) \right] - \frac{2b}{c^2} \left[\beta \left(2b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, 2b, \frac{1}{c} + 1 \right) \right], \]

 \[\mu_3^A = \frac{6b^3}{c^3} \left[\beta \left(3b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, 3b, \frac{1}{c} + 1 \right) - 2c \left[\beta \left(2b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, 2b, \frac{1}{c} + 1 \right) \right] \]

 \[+ \left(1 - c + c^2 \right) \left[\beta \left(b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, b, \frac{1}{c} + 1 \right) \right] \], \]

 \[\mu_4^A = \frac{(20 - 30c + 12c^2 - c^3)b^4}{c^4} \left[\beta \left(b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, b, \frac{1}{c} + 1 \right) \right] \]

 \[- \frac{(60 - 60c + 12c^2)b^5}{c^5} \left[\beta \left(2b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, 2b, \frac{1}{c} + 1 \right) \right] \]

 \[+ \frac{(60 - 30c)b^6}{c^6} \left[\beta \left(3b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, 3b, \frac{1}{c} + 1 \right) \right] \]

 \[- \frac{20b}{c^7} \left[\beta \left(4b, \frac{1}{c} + 1 \right) - \beta \left((1 - c)^\frac{1}{c}, 4b, \frac{1}{c} + 1 \right) \right]. \]

- **Type-BD**

 From Equation (3.2), the first four L-moments for Type-I right censoring with Type-BD for Kw distribution are calculated as follows:
From Equation (3.8), the first four L-moments for Type-I left censoring with Type-$2 = 3$

\[
\mu_1^* = b \left[\beta \left(b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, b, \frac{1}{a} + 1 \right) \right] + \left(1 - (1 - c)^i \right) \beta \left((1 - c, 1, 1) \right),
\]

\[
\mu_2^* = b \left[\beta \left(b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, b, \frac{1}{a} + 1 \right) \right] - 2b \left[\beta \left(2b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, 2b, \frac{1}{a} + 1 \right) \right],
\]

\[
\mu_3^* = 6b \left[\beta \left(3b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, 3b, \frac{1}{a} + 1 \right) \right] - 6b \left[\beta \left(2b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, 2b, \frac{1}{a} + 1 \right) \right] + b \left[\beta \left(b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, b, \frac{1}{a} + 1 \right) \right] - 2 \left(1 - (1 - c)^i \right) \beta \left((1 - c, 3, 1) - 2\beta(c, 2, 2) \right),
\]

\[
\mu_4^* = b \left[\beta \left(b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, b, \frac{1}{a} + 1 \right) \right] - 12b \left[\beta \left(2b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, 2b, \frac{1}{a} + 1 \right) \right] + 30b \left[\beta \left(3b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, 3b, \frac{1}{a} + 1 \right) \right] - 20b \left[\beta \left(4b, \frac{1}{a} + 1 \right) - \beta \left((1 - c)^i, 4b, \frac{1}{a} + 1 \right) \right].
\]

• Type-$A'D$

From Equation (3.8), the first four L-moments for Type-I left censoring with Type-$A'D$ for Kw distribution are calculated as follows:

\[
\mu_1^{A'} = \frac{b}{1 - (1 - h)^i} \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right),
\]

\[
\mu_2^{A'} = \frac{b}{(1 - h)^i} \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right) - \frac{2b}{(1 - h)^2} \beta \left((1 - h)^i, 2b, \frac{1}{a} + 1 \right),
\]

\[
\mu_3^{A'} = \frac{b}{(1 - h)^i} \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right) - \frac{6b}{(1 - h)^2} \beta \left((1 - h)^i, 2b, \frac{1}{a} + 1 \right) + \frac{6b}{(1 - h)^3} \beta \left((1 - h)^i, 3b, \frac{1}{a} + 1 \right),
\]

\[
\mu_4^{A'} = \frac{b}{(1 - h)^i} \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right) - \frac{12b}{(1 - h)^2} \beta \left((1 - h)^i, 2b, \frac{1}{a} + 1 \right) + \frac{30b}{(1 - h)^3} \beta \left((1 - h)^i, 3b, \frac{1}{a} + 1 \right) - \frac{20b}{(1 - h)^4} \beta \left((1 - h)^i, 4b, \frac{1}{a} + 1 \right).
\]

• Type-$B'D$

From Equation (3.11), the first four L-moments for Type-I left censoring with Type-$B'D$ for Kw distribution are calculated as follows:

\[
\mu_1^{B'} = \left(1 - (1 - h)^i \right) \beta \left((1 - h)^i, 1, 1 \right) + b \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right),
\]

\[
\mu_2^{B'} = b \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right) - 2b \beta \left((1 - h)^i, 2b, \frac{1}{a} + 1 \right),
\]

\[
\mu_3^{B'} = b \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right) - 6b \beta \left((1 - h)^i, 2b, \frac{1}{a} + 1 \right) + 6b \beta \left((1 - h)^i, 3b, \frac{1}{a} + 1 \right) - 4 \left(1 - (1 - h)^i \right) \beta \left((1 - h)^i, 2, 2 \right),
\]

\[
\mu_4^{B'} = b \beta \left((1 - h)^i, b, \frac{1}{a} + 1 \right) - 12b \beta \left((1 - h)^i, 2b, \frac{1}{a} + 1 \right) + 30b \beta \left((1 - h)^i, 3b, \frac{1}{a} + 1 \right) - 20b \beta \left((1 - h)^i, 4b, \frac{1}{a} + 1 \right).
\]
5. L-moments via PPWM for censored data for Kw distribution

In this section, different types PPWM of Kw distribution are introduced which we use in determining the L-moments of a Type-I censored data.

- **Type-A**
 From Equation (2.5), the first four PPWM for Type-I right censoring with Type-A for Kw distribution are calculated as follows:

\[
\begin{align*}
\beta_0^A &= \frac{b}{c} \left[\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right], \\
\beta_1^A &= \frac{b}{c^2} \left[\left(\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right) - \left(\beta(2b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 2b, \frac{1}{a} + 1) \right) \right], \\
\beta_2^A &= \frac{b}{c^3} \left[\left(\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right) - 2 \left(\beta(2b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 2b, \frac{1}{a} + 1) \right) \\
&\quad + \left(\beta(3b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 3b, \frac{1}{a} + 1) \right) \right], \\
\beta_3^A &= \frac{b}{c^4} \left[\left(\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right) - 3 \left(\beta(2b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 2b, \frac{1}{a} + 1) \right) \\
&\quad + 3 \left(\beta(3b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 3b, \frac{1}{a} + 1) \right) \right].
\end{align*}
\]

- **Type-B**
 From Equation (2.6), the first four PPWM for Type-I right censoring with Type-B for Kw distribution are calculated as follows:

\[
\begin{align*}
\beta_0^B &= b \left[\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right] + (1 - c) \left[\frac{1}{2} \right] ^\frac{1}{2}, \\
\beta_1^B &= b \left(\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right) - b \left(\beta(2b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 2b, \frac{1}{a} + 1) \right) \\
&\quad + \frac{1 - c^2}{2} \left[\frac{1}{2} \right] ^\frac{1}{2}, \\
\beta_2^B &= b \left(\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right) - 2b \left(\beta(2b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 2b, \frac{1}{a} + 1) \right) \\
&\quad + \left(\beta(3b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 3b, \frac{1}{a} + 1) \right) + \frac{1 - c^3}{3} \left[\frac{1}{2} \right] ^\frac{1}{2}, \\
\beta_3^B &= b \left(\beta(b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, b, \frac{1}{a} + 1) \right) - 3b \left(\beta(2b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 2b, \frac{1}{a} + 1) \right) \\
&\quad + 3b \left(\beta(3b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 3b, \frac{1}{a} + 1) \right) - b \left(\beta(4b, \frac{1}{a} + 1) - \beta((1 - c)^\frac{1}{b}, 4b, \frac{1}{a} + 1) \right) \\
&\quad + \frac{1 - c^4}{4} \left[\frac{1}{2} \right] ^\frac{1}{2}.
\end{align*}
\]

- **Type-A’**
 From Equation (2.8), the first four PPWM for Type-I right censoring with Type-A’ for Kw distribution are calculated as follows:
\[
\beta_1^\prime = \frac{b}{1-h} \beta((1-h)\hat{a}, b, \frac{1}{a} + 1),
\]
\[
\beta_2^\prime = \frac{b}{1-h} \beta((1-h)\hat{a}, b, \frac{1}{a} + 1) - \frac{b}{(1-h)^2} \beta((1-h)\hat{a}, 2b, \frac{1}{a} + 1),
\]
\[
\beta_3^\prime = \frac{b}{1-h} \beta((1-h)\hat{a}, b, \frac{1}{a} + 1) - \frac{2b}{(1-h)^2} \beta((1-h)\hat{a}, 2b, \frac{1}{a} + 1) + \frac{b}{(1-h)^3} \beta((1-h)\hat{a}, 3b, \frac{1}{a} + 1),
\]
\[
\beta_4^\prime = \frac{b}{1-h} \beta((1-h)\hat{a}, b, \frac{1}{a} + 1) - \frac{3b}{(1-h)^2} \beta((1-h)\hat{a}, 2b, \frac{1}{a} + 1) + \frac{b}{(1-h)^3} \beta((1-h)\hat{a}, 3b, \frac{1}{a} + 1). \tag{5.3}
\]

Type-B'

From Equation (2.10), the first four PPWM for Type-I right censoring with Type-B' for Kw distribution are calculated as follows:

\[
\beta_5^\prime = b \beta((1-h)\hat{a}, b, \frac{1}{a} + 1) + h(1 - (1-h)\hat{a})\hat{a},
\]
\[
\beta_6^\prime = b \beta((1-h)\hat{a}, b, \frac{1}{a} + 1) - b \beta((1-h)\hat{a}, 2b, \frac{1}{a} + 1) + \frac{h^2}{2} (1 - (1-h)\hat{a})\hat{a},
\]
\[
\beta_7^\prime = b \beta((1-h)\hat{a}, b, \frac{1}{a} + 1) - 2b \beta((1-h)\hat{a}, 2b, \frac{1}{a} + 1) + b \beta((1-h)\hat{a}, 3b, \frac{1}{a} + 1) + \frac{h^3}{3} (1 - (1-h)\hat{a})\hat{a},
\]
\[
\beta_8^\prime = b \beta((1-h)\hat{a}, b, \frac{1}{a} + 1) - 3b \beta((1-h)\hat{a}, 2b, \frac{1}{a} + 1) + 3b \beta((1-h)\hat{a}, 3b, \frac{1}{a} + 1)
\]
\[
- b \beta((1-h)\hat{a}, 4b, \frac{1}{a} + 1) + \frac{h^4}{4} (1 - (1-h)\hat{a})\hat{a}. \tag{5.4}
\]

6. Maximum likelihood method for censored data for Kw distribution

6.1. ML method for right censored data for Kw distribution

Let \(x_1, x_2, \ldots, x_n\) is a sample size of Kw distribution. The likelihood function of the parameters (\(a\) and \(b\)) of Kw distribution, based on Type-I right censoring, is given by:

\[
L(a, b; x) \propto \prod_{i=1}^{m} f(x_i) \times (1 - F(T))^{n-m} \tag{6.1}
\]

Therefore, the log-likelihood function is

\[
\ell = \log L(a, b; x) = \sum_{i=1}^{m} \log f(x_i) + (n - m) \log(1 - F(T)) \tag{6.2}
\]

To estimate the unknown parameters, \(a\) and \(b\), the first partial derivations of the log likelihood function, \(\ell\), with respect to \(a\) and \(b\) respectively is needed. Setting \(\frac{\partial \ell}{\partial a} = 0\) and \(\frac{\partial \ell}{\partial b} = 0\), we get the likelihood equations:

\[
\frac{m}{b} + \sum_{i=1}^{m} \log(1 - x_i^a) + (n - m) \log(1 - T^a) = 0 \tag{6.3}
\]
These equations constitute a system of two nonlinear equations must be solved in a and b to get the maximum likelihood estimator (MLEs) for right censored data of these parameters. It is obvious that the system of nonlinear equation has no closed form solution. So, a numerical technique is required to get the estimates of the unknown parameters.

6.2. ML method for left censored data for Kw distribution

Let x_1, x_2, \ldots, x_n is a sample size of Kw distribution. The likelihood function of the parameters (a and b) of Kw distribution, based on Type-I left censoring, is given by:

$$L(a, b; x) \propto [F(T)]^s \times \prod_{i=s+1}^{n} f(x_i)$$

(6.5)

Therefore, the log-likelihood function is

$$\ell' = \log L(a, b; x) = s \log(F(T)) + \sum_{j=s+1}^{n} \log f(x_j)$$

(6.6)

To estimate the unknown parameters, a and b, the first partial derivations of the log likelihood function, ℓ', with respect to a and b respectively is needed. Setting $\frac{\partial \ell'}{\partial a} = 0$ and $\frac{\partial \ell'}{\partial b} = 0$, we get the likelihood equations:

$$\frac{sbT^b(1 - T^a)^{b-1} \log T}{1 - (1 - T^a)^b} + \sum_{j=s+1}^{n} \left[1 - (b - 1)(1 - x_j^a)^{-1} x_j^a \log x_j + \frac{1}{a} \right] = 0$$

(6.7)

and,

$$-s(1 - T^a)^b \log(1 - T^a) \frac{\log(1 - x_j^a) + \frac{1}{b}}{1 - (1 - T^a)^b} + \sum_{j=s+1}^{n} \left[\log(1 - x_j^a) + \frac{1}{b} \right] = 0$$

(6.8)

These equations constitute a system of two nonlinear equations must be solved in a and b to get the MLEs for left censored data of these parameters. It is obvious that the system of nonlinear equation has no closed form solution. So, a numerical technique is required to get the estimates of the unknown parameters.

7. Simulation study and concluding remarks

This section is devoted to present the modification of L-moments method (namely: Direct L-moments) in estimation process using a comparative numerical study. The two unknown parameters of Kumaraswamy distribution are estimated using direct L-moments method, L-moments via PPWM method and ML method for Type-I censored data (right and left censoring). A comparative study based on relative bias (RB) and root of mean square errors. All computations are performed using Mathematica-10 programs. The simulation study is conducted according to the following steps:
Table 1. The estimates, relative bias (RB) and RMSE for two parameters of Kw distribution using Direct L-moments, L-moments and ML method based on right censoring ($a = 2$ and $b = 5$)

Type (A)	T	n	Par.	Direct L-moments (Type-AD)	L-moments (Type-A)	ML
				Estimate RB RMSE	Estimate RB RMSE	Estimate RB RMSE
0.7	50	a	2.0314 0.0157 2.0543	2.0315 0.0158 2.0544	2.0628 0.0314 2.0840	
		b	5.3562 0.0712 5.6187	5.3563 0.0713 5.6188	5.4893 0.0978 5.7344	
75	a	2.0163 0.0081 2.0313	2.0162 0.0081 2.0312	2.0364 0.0182 2.0500		
	b	5.2262 0.0452 5.3889	5.2263 0.0452 5.3887	5.3045 0.0609 5.4507		
100	a	2.0140 0.0070 2.0252	2.0141 0.0071 2.0253	2.0309 0.0154 2.0413		
	b	5.1694 0.0338 5.2868	5.1694 0.0339 5.2869	5.2413 0.0482 5.3504		
0.9	50	a	2.0182 0.0091 2.0398	2.0183 0.0092 2.0399	2.0640 0.0320 2.0844	
	b	5.2738 0.0036 5.5092	5.2739 0.0037 5.5093	5.5080 0.1016 5.7551		
75	a	2.0086 0.0042 2.0222	2.0087 0.0043 2.0223	2.0417 0.0320 2.0546		
	b	5.1813 0.0017 5.3273	5.1814 0.0017 5.3274	5.3502 0.1016 5.4921		
100	a	2.0083 0.0041 2.0187	2.0084 0.0042 2.0188	2.0317 0.0158 2.0413		
	b	5.1265 0.0016 5.2334	5.1266 0.0017 5.2335	5.2293 0.0458 5.3279		

Type (B)	T	n	Par.	Direct L-moments (Type-BD)	L-moments (Type-B)	ML
				Estimate RB RMSE	Estimate RB RMSE	Estimate RB RMSE
0.7	50	a	1.3786 −0.3106 1.4793	2.0116 0.0058 2.0335	2.0628 0.0314 2.0840	
		b	3.0822 −0.3835 3.6782	5.2201 0.4403 5.4657	5.4893 0.0978 5.7344	
75	a	1.3571 −0.3214 1.4241	2.0046 0.0023 2.0189	2.0364 0.0182 2.0500		
	b	2.8561 −0.4287 3.2269	5.1419 0.0283 5.2896	5.3045 0.0609 5.4507		
100	a	2.0044 0.0022 2.0149	1.3571 −0.3214 1.4098	2.0309 0.0154 2.0413		
	b	5.1199 0.0239 5.2288	2.7921 −0.4415 3.0766	5.2413 0.0482 5.3504		
0.9	50	a	2.0084 0.0042 2.0310	2.0144 0.0072 2.0359	2.0640 0.0320 2.0844	
	b	5.2291 0.0458 5.4864	5.2505 0.0501 5.5008	5.5080 0.1016 5.7551		
75	a	2.0027 0.0042 2.0170	2.0078 0.0072 2.0215	2.0417 0.0320 2.0546		
	b	5.1566 0.0458 5.3074	5.1768 0.0501 5.3228	5.3502 0.1016 5.4921		
100	a	1.9998 −0.0001 2.0107	2.0062 0.0030 2.0164	2.0317 0.0158 2.0413		
	b	5.0743 0.0148 5.1813	5.1008 0.0201 5.2028	5.2293 0.0458 5.3279		
Table 2. The estimates, relative bias (RB) and RMSE for two parameters of Kw distribution using Direct L-moments, L-moments and ML method based on right censoring ($a = 5$ and $b = 2$)

Type (A)	T	n	Par.	Direct L-moments (Type-AD)	L-moments (Type-A)	ML						
				Estimate	RB	RMSE	Estimate	RB	RMSE	Estimate	RB	RMSE
0.97	50	a	5.0712	0.0142	5.1476	0.0143	5.1477	5.1297	0.0259	5.2160		
			2.0880	0.0440	2.1564	0.0411	2.1565	2.1188	0.0594	2.1792		
75	a	5.0571	0.0114	5.1071	0.0107	5.1039	5.1105	0.0221	5.1574			
		2.0560	0.0280	2.1002	0.0303	2.1055	2.0838	0.0419	2.1208			
100	a	5.0537	0.0107	5.0938	0.0108	5.0956	5.0997	0.0199	5.1320			
		2.0457	0.0228	2.0761	0.0229	2.0762	2.0712	0.0356	2.0968			
0.99	50	a	5.0505	0.0108	5.0938	0.0107	5.0969	5.1297	0.0259	5.2160		
		2.0778	0.0389	2.1447	0.0389	2.1447	2.1132	0.0566	2.1775			
75	a	5.0905	0.0181	5.1644	0.0182	5.1645	5.1503	0.0300	5.2419			
		2.0778	0.0388	2.1447	0.0389	2.1448	2.1132	0.1132	2.1775			
100	a	5.0233	0.0046	5.0580	0.0047	5.0581	5.0793	0.0158	5.1109			
		2.0282	0.0141	2.0580	0.0142	2.0581	2.0612	0.0306	2.0864			

Type (B)	T	n	Par.	Direct L-moments (Type-BD)	L-moments (Type-B)	ML						
				Estimate	RB	RMSE	Estimate	RB	RMSE	Estimate	RB	RMSE
0.97	50	a	3.6948	-0.2610	4.0025	5.0909	0.0181	5.1659	5.1297	0.0259	5.2160	
			1.4093	-0.2953	1.6287	2.0792	0.0396	2.1467	2.1188	0.0594	2.1792	
	75	a	3.5680	-0.2863	3.7787	5.0380	0.0076	5.0868	5.1105	0.0221	5.1574	
			1.3030	-0.3484	1.4549	2.0463	0.0231	2.0892	2.0838	0.0419	2.1208	
	100	a	3.5166	-0.2966	3.8617	5.0280	0.0056	5.0639	5.0997	0.0199	5.1320	
			1.2488	-0.3755	1.3623	2.0307	0.0153	2.0613	2.0712	0.0356	2.0968	
0.99	50	a	4.8858	-0.0228	4.9998	5.0850	0.0170	5.1590	5.1503	0.0300	5.2419	
			1.9721	-0.0139	2.0681	2.0732	0.0366	2.1399	2.1132	0.0566	2.1775	
	75	a	4.8858	-0.0228	4.9998	5.0850	0.0170	5.1590	5.1503	0.0300	5.2419	
			1.9721	-0.0139	2.0681	2.0732	0.0366	2.1399	2.1132	0.1132	2.1775	
	100	a	4.8005	-0.0398	4.8564	5.0200	0.0040	5.0546	5.0793	0.0158	5.1109	
			1.9007	-0.0496	1.9506	2.0253	0.0126	2.0550	2.0612	0.0306	2.0864	
Table 3. The estimates, relative bias (RB) and RMSE for two parameters of Kw distribution using Direct L-moments, L-moments and ML method based on left censoring ($a = 0.75$ and $b = 5$)

Type (A)	T	n	Par.	Direct L-moments (Type-A’D)				L-moments (Type-A)			ML							
				Estimate	RB	RMSE	Estimate	RB	RMSE	Estimate	RB	RMSE						
				0.009	50	a	0.7575	0.0101	0.7683	0.7576	0.0102	0.7684	0.9154	0.2205	1.0295			
					b	5.3733	0.0746	5.6788	5.3734	0.0747	5.6789	5.5116	0.1023	5.6601				
				75	0.7555	0.0074	0.7624	0.7556	0.0075	0.7625	0.8823	0.1764	0.8829					
					b	5.2386	0.0477	5.4167	5.2387	0.0478	5.4168	5.1804	0.3639	5.9432				
				100	0.7543	0.0057	0.7597	0.7544	0.0058	0.7598	0.8492	0.1323	0.9402					
					b	5.1843	0.0368	5.3185	5.1844	0.0369	5.3186	5.3512	0.0702	5.4322				
				0.001	50	a	0.7531	0.0041	0.7626	0.7532	0.0042	0.7627	0.7759	0.0345	0.7836			
					b	5.3061	0.0612	5.5695	5.3062	0.0613	5.5696	5.5438	0.1087	5.7935				
				75	0.7528	0.0037	0.7592	0.7529	0.0038	0.7593	0.7740	0.0316	0.7813					
					b	5.1981	0.0396	5.3627	5.1982	0.0397	5.3628	5.5360	0.1022	5.8375				
				100	0.7524	0.0032	0.7571	0.7523	0.0033	0.7570	0.7624	0.0165	0.7660					
					b	5.1566	0.0313	5.2741	5.1565	0.0314	5.2740	5.5513	0.1102	5.9415				
Type (B)	T	n	Par.	Direct L-moments (Type-B’D)				L-moments (Type-B)			ML							
				Estimate	RB	RMSE	Estimate	RB	RMSE	Estimate	RB	RMSE						
				0.009	50	a	0.7836	0.0448	0.7932	0.7802	0.0402	0.7897	0.9154	0.2205	1.0295			
					b	5.7021	0.1404	6.0311	5.6536	0.1307	5.9709	5.5116	0.1023	5.6601				
				75	0.7834	0.0464	0.7896	0.7800	0.0400	0.7800	0.8823	0.1764	0.8829					
					b	5.5759	0.1151	5.7686	5.5693	0.1138	5.5694	5.1804	0.3639	5.9432				
				100	0.7832	0.0443	0.7880	0.7799	0.0399	0.7847	0.8492	0.1323	0.9402					
					b	5.5264	0.1052	5.6709	5.4850	0.0970	5.6253	5.3512	0.0702	5.4322				
				0.001	50	a	0.7507	0.0009	0.7604	0.7505	0.0006	0.7603	0.7759	0.0345	0.7836			
					b	5.2779	0.0555	5.5474	5.2760	0.0552	5.5448	5.5438	0.1087	5.7935				
				75	0.7527	0.0037	0.7591	0.7526	0.0035	0.7590	0.7740	0.0316	0.7813					
					b	5.1986	0.0397	5.3628	5.1971	0.0394	5.3610	5.5360	0.1022	5.8375				
				100	0.7539	0.0052	0.7638	0.7538	0.0050	0.7636	0.7624	0.0165	0.7660					
					b	5.3209	0.0641	5.5959	5.3189	0.0637	5.5934	5.5513	0.1102	5.9415				
Table 4. The estimates, relative bias (RB) and RMSE for two parameters of Kw distribution using Direct L-moments, L-moments and ML method based on left censoring \((a = 5\) and \(b = 0.75\))

\(T\)	\(n\)	Par.	Direct L-moments (Type-A’D)	L-moments (Type-A’)	ML						
			Estimate	RB	RMSE	Estimate	RB	RMSE	Estimate	RB	RMSE
0.4	50	\(a\)	5.1873	0.0374	5.3201	5.1874	0.0375	5.3202	5.2863	0.0572	5.3738
		\(b\)	0.7738	0.0317	0.7938	0.7739	0.0318	0.7939	1.9498	2.5998	5.9238
75		\(a\)	5.1055	0.0211	5.1917	5.1056	0.0212	5.1918	5.1784	0.0356	5.2530
		\(b\)	0.7608	0.0144	0.7732	0.7609	0.0145	0.7733	0.7739	0.0318	0.7827
100		\(a\)	5.0958	0.0191	5.1567	5.1125	0.0225	5.1103	5.1421	0.0284	5.1939
		\(b\)	0.7590	0.0121	0.7683	0.7648	0.0198	0.7683	0.7677	0.0237	0.7741
0.2	50	\(a\)	5.1193	0.0238	5.2424	5.1194	0.0239	5.2425	4.8815	0.0236	5.0052
		\(b\)	0.7687	0.0248	0.7880	0.7688	0.0249	0.7881	0.7462	0.0049	0.7599
75		\(a\)	5.0784	0.0156	5.1593	5.0785	0.0157	5.1594	5.1065	0.0213	5.1697
		\(b\)	0.7618	0.0158	0.7744	0.7619	0.0159	0.7745	0.7872	0.0497	0.7968
100		\(a\)	5.0638	0.0127	5.1268	5.0639	0.0128	5.1269	5.1254	0.0250	5.1910
		\(b\)	0.7568	0.0092	0.7658	0.7569	0.0093	0.7659	0.7662	0.0216	0.7721

Type (B)

\(T\)	\(n\)	Par.	Direct L-moments (Type-B’D)	L-moments (Type-B’)	ML						
			Estimate	RB	RMSE	Estimate	RB	RMSE	Estimate	RB	RMSE
0.4	50	\(a\)	5.8078	0.1615	5.9809	5.2321	0.0464	5.3460	5.2863	0.0572	5.3738
		\(b\)	0.9283	0.2378	0.9908	0.7867	0.0489	0.8039	1.9498	2.5998	5.9238
75		\(a\)	5.7013	0.1402	5.8025	5.1598	0.0319	5.2317	5.1784	0.0356	5.2530
		\(b\)	0.8969	0.1959	0.9291	0.7492	0.0323	0.7846	0.7739	0.0318	0.7827
100		\(a\)	5.6874	0.1374	5.7620	5.1516	0.0303	5.2015	5.1421	0.0284	5.1939
		\(b\)	0.8900	0.1867	0.9138	0.7724	0.0298	0.7801	0.7677	0.0237	0.7741
0.2	50	\(a\)	5.1285	0.0257	5.2510	5.1168	0.0233	5.2399	4.8815	0.0236	5.0052
		\(b\)	0.7711	0.0282	0.7907	0.7685	0.0247	0.7878	0.7462	0.0049	0.7599
75		\(a\)	5.0883	0.0176	5.1687	5.0756	0.0151	5.1566	5.1065	0.0213	5.1697
		\(b\)	0.7643	0.0191	0.7770	0.7617	0.0156	0.7742	0.7872	0.0497	0.7968
100		\(a\)	5.0734	0.0146	5.1362	5.0606	0.0121	5.1236	5.1254	0.0250	5.1910
		\(b\)	0.7593	0.0124	0.7684	0.7566	0.0088	0.7655	0.7662	0.0216	0.7721
(1) Generate \(n \) random sample size (25, 50, 75 and 100) drawn randomly from Kw distribution with some different values of parameters. However, the results were not impressive for small sample sizes (less than 50) and therefore it was not reported.

(2) The generated data is ordered.

(3) The point of censored data is fixed, namely threshold (7).

(4) Applying formulas mentioned in (3.3), (3.6), (3.9) and (3.12).

(5) Equate step (4) with the corresponding population moments to get the estimates \(\hat{a} \) and \(\hat{b} \).

(6) The simulation process repeated 5,000 times.

(7) The simulation results are reported from Tables 1 to 4.

7.1. Concluding remarks

Tables 1–4 reporting the estimates of the two unknown parameters of Kumaraswamy distribution and their characteristics, it is observed that:

- As expected, the relative bias and RMSE decreases as sample sizes increases with reasonable results obtained starting from \(n = 75 \).
- The results suggest that the direct L-moments method is better, in terms of accuracy and precision, than L-moments via PPWM and ML methods.
- In all results, relative bias and root mean square errors decrease as censoring levels increase.
- In the case of right and left censoring, the estimates of direct L-moments method with Type-AD estimates are very close to L-moments with Type-A estimates.
- In the case of right and left censoring, the estimates of direct L-moments method with Type-BD estimates are much more accurate than L-moments with Type-B estimates.
- In general the variance of estimates is small and this helps to obtain short confidence interval.
- It is recommended to use the direct L-moments method with Type-AD estimates in the case of right and left censoring.

Funding

The authors received no direct funding for this research.

Author details

Mahmoud Riad Mahmoud1
E-mail: mrmahmoud@cu.edu.eg
Fatma A. Khalil2
E-mail: dr_fkhalil@yahoo.com
Ghada A. El-Kelany2
E-mail: gh_elkelany@azhar.edu.eg
Hager A. Ibrahim2
E-mail: dr.hager_ahmad@azhar.edu.eg

1 Department of Mathematical Statistics, Institute of Statistics Studies and Research, Cairo University, Cairo, Egypt.
2 Faculty of Commerce, Department of Statistics, AL-Azhar University (Girls' Branch), Cairo, Egypt.

Citation information

Cite this article as: Direct L-moments for Type-I censored data with application to the Kumaraswamy distribution, Mahmoud Riad Mahmoud, Fatma A. Khalil, Ghada A. El-Kelany & Hager A. Ibrahim, Cogent Mathematics (2017), 4: 1357236.

References

Abdul-Moniem, I. B. (2007). L-moments and TL-moments estimation for the exponential distribution. Far East Journal of Theoretical Statistics, 23, 51–61.

Asquith, W. (2007). L-moments and TL-moments of the generalized Lambda distribution. Computational Statistics & Data Analysis, 51, 4484–4496.

Bilková, D. (2014). L-moments and TL-moments as an alternative tool of statistical data analysis. Journal of Applied Mathematics and Physics, 2, 919–929.

Dutang, C. (2016). Theoretical L-moments and TL-moments using combinatorial identities and finite operators. Communications in Statistics-Theory and Methods.

Elamir, E. A., & Seheult, A. H. (2001). Control charts based on linear combinations of order statistics. Journal of Applied Statistics, 28, 457–468.

Elamir, E. A., & Seheult, A. H. (2004). Exact variance structure of sample L-moments. Journal of Statistical Planning and Inference, 124, 337–359.

Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15, 1049–1054.

Hosking, J. (1990). L-moments: analysis and estimation of distributions using linear combinations of statistics. Journal of the Royal Statistical Society B, 52, 105–124.

Hosking, J. (1992). Moments or L-moments? An example comparing two measures of distributional shape. The American Statistician, 46, 186–189.

Hosking, J. (1996). Moments of order statistics of the Cantor distribution. Statistics & Probability Letters, 19, 161–165.

Hosking, J. (1995). The use of L-moments in the analysis of censored data. In N. Balakrishnan (Ed.), Recent Advances in Life-Testing and Reliability chapter 29 (pp. 546–560). Boca Raton, FL: CRC Press.

Hosking, J. (2006). On the characterization of distributions by their L-moments. Journal of Statistical Planning and Inference, 136, 193–198.
Hosking, J., & Wallis, J. (1995). A comparison of unbiased and plotting-position estimators of L moments. Water Resources Research, 31(8), 2019–2025.
Jones, M. (2004). On some expressions for variance, covariance, skewness and L-moments. Journal of Statistical Planning and Inference, 126, 97–106.
Karaosman, J. (2006). Estimation of quantile mixtures via L-moments and trimmed L-moments. Computational Statistics & Data Analysis, 51, 947–959.
Kumaraswamy, P. (1982). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 48, 79–88.
Sillitto, G. P. (1955). Interrelations between certain linear systematic of samples from any continuous population. Biometrika, 38, 377–382.
Sillitto, G. P. (1970). Derivation of approximants to the inverse distribution function of a continuous univariate population from the order statistics of a sample. Biometrika, 56, 641–650.
Wang, Q. (1990a). Estimation of the GEV distribution from censored samples by method of partial probability weighted moments. Journal of Hydrology, 120, 103–114.
Wang, Q. (1990b). Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution. Journal of Hydrology, 120, 112–124.
Zafirakou-Koulouris, A., Vogel, R. M., Craig, S. M., & Habermeier, J. (1998). L moment diagrams for censored observations. Water Resources Research, 34, 1241–1249.