Correlating elastic and plastic deformation with magnetic permeability values

S Papadopoulou
Dpt. of Electrical and Computer Engineering,
National Technical University of Athens, Zografou Campus, Athens, 15780, Greece

E-mail: sofiapapadopoulou.ece@gmail.com

Abstract. This paper investigates the utilization of magnetic permeability method in determining elastic and plastic deformation state of ferromagnetic steels. The results have shown a strong degradation of the magnetic values on plastically region due to the irreversible movements of the magnetic domain walls.

1. Introduction
Destructive testing (DT) includes methods where a material is broken down in order to determine its mechanical properties, such as strength, toughness and hardness. for this reason laboratories or industries focus on Non-destructive testing (NDT) techniques, in order to evaluate the properties of a material, without causing any damage. Common NDT methods include eddy currents, magnetic particles, magnetic leakage (MDL), hysteresis loops (B, M – H loops), magnetic permeability (μ – H loops), magnetoacoustic (MAE), Barkhausen noise (MBN) [1-9].

It is well known that the magnetic non-destructive methods are influenced by the microstructural features of the examined ferromagnetic materials [10-23]. It has been also verified that, when a ferromagnetic material is subjected to uniaxial tensile or compressive tests, it undergoes a reconfiguration of its structure [24-27]. A high-precision magnetic sensor was used to measure slight changes in the magnetic field strength. Thus, the deformation influence the final microstructure of the material, resulting in variations of the output magnetic signals.

In this paper, the effect of the elastic and plastic deformation on the magnetic properties of electrical steels has been investigated. The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses. It is known that during the tensile loading of a polycrystalline material, each grain experiences a different strain depending on its orientation and constraints inflicted by its neighboring grains [28-33]. The utilization of magnetic permeability method has verified such behavior. The resulting magnetic properties were further evaluated by examining the samples’ microstructure by using scanning electron microscopy[34]. Microstructural features can influence these domain processes to modify the energy balance and ease of domain realignment and hence affect the magnetic properties of ferromagnetic materials. More details on the domain theory and the effects of the microstructure in ferromagnetic materials on their magnetic domains and properties can be found elsewhere.

2. Experimental procedure

1 Phone number : +30 210 772 2183, E-mail : xvourna@metal.ntua.gr
The studied alloy was Non-Oriented Electrical Steel samples. The chemical composition, as given by the manufacturer, is given in Table 1.

Table 1. Chemical composition, in %wt, of the as-received NOES.

	Si	Mn	Al	P	S	C	Fe
	2.18	0.12	0.35	0.0009	0.0009	0.0018	Balanced

Dog-boned samples were cut from the as-received samples, according to the ASTM E8 Standard. These samples were subjected to uniaxial tensile strain at preselected deformation steps. The elastic region was divided into 6 deformation states, while the plastic one into 20 deformation states. Two strain values were defined around the yield point.

The magnetic permeability during the tensile tests were recorded. The permeability magnetic sensor consisted of a double U-shape electromagnet. In this apparatus the receiving coil was wound around the examined sample. The output voltage was proportional to the magnetic permeability of the examined sample.

3. Results

The optimization of NGO when the application includes applications rotating electrical machines, requires comprehensive considerations of spatial variations of magnetic properties in the sheet plane and careful awareness of occurring anisotropic effects. The magnetic permeability values were increased in the elastic deformation region (Fig. 1). During the uniaxial tensile test, the initial easy magnetization axis rotated, in order to become parallel to the direction of the applied stress, resulting in the increment of the 180° domain walls. Thus, the tensile stresses increase the magnetic responses [28-29].

However, in the plastic deformation region it is evident a strong decrease of the magnetic permeability. Thus, the demarcation between elastic and plastic region was evidenced by the drop of both magnetic output signals. Within the elastic region, mechanical stresses up to yield strength cause homogeneous elongation across the entire specimen by deviating atoms of the crystal lattice from their equilibrium position.

![Figure 1. Variations of the magnetic permeability during the uniaxial tensile test.](image)
As soon as the stress passes the yield strength, plastic deformation will start to occur inside the grains. In the polycrystalline material occurred an increment of the dislocation density, at the beginning of the plastic region[30-32]. After the slip system reaches the required critical resolved shear stress value, the dislocation start to slip[33]. Thus, the formation and movement of dislocations will play a crucial role in absorbing the plastic deformation. Moreover, the high density of dislocations formed as tangles for higher plastic strain rates. These tangles acted as strong pinning sites during the magnetization procedure and led to a slight but progressive deterioration of the magnetic behaviour. The magnetocrystalline anisotropy, its change as well as the effect of dislocation interactions and internal stresses are directly linked to the structure of the material and thus, primarily affect the hysteresis term of the losses, which can be affirmed from the results. The excess loss term is nearly not evident in the observed cases.

Study on microstructure revealed that electrical steel consisted of polygonal and equiaxed ferrite grains in the elastic region (Fig. 2). In the plastic region, the ferrite grains were elongated along the direction of the applied tensile stress (Fig. 3). The high dislocation density and the increment in the grain boundary area are pinning sites of higher energy, resulting in the pronounced reduction of the permeability responses.

4. Conclusions

Broadly, the examined samples of Non-Oriented Electrical Steels results verify the strong dependence between the magnetic properties and the elastic and plastic deformation behaviour, due to the variations of the output magnetic signal. Yet in the plastic deformation the formation and movement of dislocations are crucial, because the high dislocation density and the development of tangles deteriorated the magnetic properties. There is remarkable consistency in magnetic behaviours and properties such as initial/incremental permeability values between the measurements by different techniques. This behaviour has been ascribed to the similar underlying domain processes and hence similar selected microstructural features that are affecting the domain processes.

5. References

[1] Hubert O, 2017 Journal of Magnetism and Magnetic Materials 424 421–442
[2] Piotrowska L, Augustyniaka B, Chmielewska M, Labanowskib J and Lech-Gregac 2012 NDT & E International 47 157–162
[3] Hristoforou E, Reilly R E and Niarchos D 1993 IEEE Trans. Magn. 29 3171-3173
[4] Hristoforou E and Reilly RE, 1991 J. Appl. Phys. 69 5008-5010
[5] Hristoforou E, Chiriac H, Neagu M and Darie I 1994 J. Phys. D: Applied Physics 27 1595-1600
[6] Hristoforou E, Chiriac H and Nagacevschi V 1999 Sensors & Actuators A76 442 – 447
[7] Hristoforou E and Chiriac H 2000 Sensors & Actuators A81 158 – 161
[8] Youroudi I, Orfanidou C and Hristoforou E 2003 Sensors and Actuators A106 179-182
[9] Kepaptsoglou DM, Paluga M, Deanko M, Muller D, Conde CF, Hristoforou E, Janickovic D and Svec P 2006 J. of Microscopy – Oxford 223 288-291
[10] Grabiasa A and Oleszak D 2012 J. of Magn. and Magn. Mat. 324 2501–2505
[11] Piotrowski L, Augustyniak A, Chmielewski M, Hristoforou E and Kosmas K 2010 IEEE Trans. Magn. 46 239
[12] Makar JM, Tanner BK, 1998 Journal of Magnetism and Magnetic Materials 187 353–365
[13] Ktena A, Hristoforou E, Gerhardt GJJ, Missell FP, Landgraf FJG, Rodrigues Jr DL and Alberteris-Campos M 2014 Physica B: Coned Matter 435 109
[14] Piotrowski L, Chmielewski M and Augustyniak B 2012 J. of Magn. and Magn. Mat. 324 2496–2500
[15] Javorskyja I, Kravetsa I, Matskoi I and Yuzefovycha R 2017 Mechanical Systems and Signal Processing 83 406–438
[16] Ondraa V and Severb IA 2017 Mechanical Systems and Signal Processing 83 210–227
[17] Yuning Qiana and Ruqiang Yana 2017 Mechanical Systems and Signal Processing 83 549–567
[18] Hu B and Runqiao Yu 2016 NDT & E International 80 1–5
[19] Kepaptsoglou DM, Svec P, Janickovic D and Hristoforou E 2007 J. of All. and Comp. 434 211-214
[20] Giouroudi I, Ktena A and Hristoforou E 2004 J. Opt. Adv. Mat. 401 45-50
[21] Jiles D 1998 Introduction to Magnetism and Magnetic Materials
[22] Luo KY, Liu B, Wu LJ, Yan Z and Lu JZ 2016 Applied Surface Science 369 366–376
[23] Petch NJ 1953 The cleavage strength of polycrystals J. Iron Steel Inst 174 25–28
[24] Vourna P, Ktena A, Tsakiridis P E and Hristoforou E 2015 NDT & E Int. 71 33
[25] Vourna P, Hervoches C, Vrána M, Ktena A and Hristoforou E 2015 IEEE Trans 51
[26] Vourna P, Ktena A, Tsakiridis P E and Hristoforou E 2015 Measurements 71
[27] Vourna P, Ktena A and Hristoforou E 2014 IEEE Trans. Mag. 50 1
[28] Weissa HA Leuninbg N, Steentjes S, Hameyer K, Andorfera T, Jennera S and Volka W 2017 J. of Magn. and Magn. Mat. 421 250–259
[29] Gallaughera M and R Chromik J. of Magn. and Magn. Mat. 382 124–133
[30] Hristoforou E and Reilly R E 1990 Tran Mag 26 1563-1565
[31] Hristoforou E and Niarchos D 1992 IEEE Trans Mag 28 2190-2192
[32] Dimitropoulos P D, Avaritisiotis J N, Hristoforou E 2003 Sensors & Actuators A 107 238-247
[33] Deanko M, Kepaptsoglou DM, Muller D, Janickovic D, Korvanek IS, Hristoforou E and Svec P 2006 J. of Microscopy – Oxford 223 260-263
[34] Deanko M, Paluga M, Kepaptsoglou DM, Muller D, Mrafo P, Janickovic D, Hristoforou E, Skorvanek I and Svec P 2007J. of Alloys and Compounds 434 248-251