Supporting Information

Systematic dissection of the *Agrobacterium* type VI secretion system reveals machinery and secreted components for subcomplex formation

Jer-Sheng Lin¹, Lay-Sun Ma¹,²,³, and Erh-Min Lai¹,²,³*

¹ Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
² Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan.
³ Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan.

Key words: Type VI secretion system, Hemolysin-coregulated protein, phage tail-like structure, protein-protein interaction, *Agrobacterium tumefaciens*

Correspondence:

Dr. Erh-Min Lai

128, Sec. 2, Academia Road, Nankang
Taipei, Taiwan 11529
Tel: 886-2-27871158
Fax: 886-2-27827954
Email: emlai@gate.sinica.edu.tw
Information S1

Plasmid construction and generation of in-frame deletion mutants

The plasmid pJQ200KS-ΔtssF was created by ligating the SacI/BamHI-digested tssF PCR product 1 (~500 bp DNA fragment upstream of the tssF open reading frame [ORF]) and the BamHI/XmaI-digested tssF PCR product 2 (~500 bp DNA fragment downstream of the tssF ORF) into SacI/XmaI sites of pJQ200KS and used to generate the deletion mutant ΔtssF (EML1090). The rest of pJQ200KS derivatives (Supplementary Table S1) were created by ligating the XbaI/BamHI-digested PCR product 1 (~500 bp DNA fragments upstream of each target gene) and the BamHI/XmaI-digested PCR product 2 (~500 bp DNA fragments downstream of each target gene) into XbaI/XmaI sites of pJQ200KS and used to generate each of the deletion mutants (Supplementary Tables S1 and S2). For each in-frame deletion mutant confirmed by PCR, at least 2 independent colonies were selected to determine its ability in mediating Hcp secretion.

For complementation, the gene of interest containing its ribosomal-binding sequence (RBS) and ORF was cloned to be driven by a lac promoter on the broad host range vector pRL662 [1]. The PCR products of tssK and clpV genes were digested by HindIII/XbaI and cloned into the same sites of pRL662 to create the plasmids pTssK and pClpV. The PCR-amplified fha and tssE genes were digested by BamHI/XbaI and cloned into the same sites of pRL662 to create the plasmids pFha and pTssE. The remaining genes were amplified with primers described in Supplementary Table S2, and the PCR products were digested by XhoI/XbaI and cloned into the same sites of pRL662 to create the plasmids pTssG, pTssF, pTssC40, pTssC41, pTssB, pTssA, pHcp, pAtu4346, pAtu4347, pVgrG-1, and pVgrG-2.

To convert each of Δfha and ΔtssC41 back to the wild type (revertant), pJQ200KS derivatives harboring the fha and tssC41 genes, including their respective upstream and downstream regions, were used for double crossover. The PCR-amplified products were digested by XbaI/XmaI and cloned into the same sites of pJQ200KS to create the plasmids pJQ200KS-fha, and pJQ200KS-tssC41. The resulting revertants were designated as EML2137 & 2138 (fha R-1 and R-2), and EML2141 & 2142 (tssC41 R-1 and R-2), respectively.

The expression vector pET22b(+) was used to overexpress proteins driven by the T7 promoter via IPTG induction in E. coli BL21 (DE3). Each ORF (without stop codon) of ppkA, tssK, fha, tssE, tssC41, tssB, tssA, attu4346, attu4347, attu4349, vgrG-1, rpoA, and aopB was PCR-amplified with primers described in Supplementary Table S2 and cloned into the same sites of pET22b(+) with appropriate enzyme sites. The tssB-tssC41 fragment (without stop codon) was PCR-amplified with primers described in Supplementary Table S2 and cloned into the same sites of pET22b(+) with
Lin et al., Systematic dissection of the Agrobacterium T6SS

appropriate enzyme sites to create the plasmid pET-TssB-TssC41-His. The *pppA* and *clpV* ORFs (without stop codon) were PCR-amplified, digested by *Hind*III, and cloned into pET22b(+), which was first digested by *Ndel*, followed by Klenow repair, and finally digested by *Hind*III. To construct the pET-N-TssL-His for expressing the N terminus (residues 1 to 255) of TssL, the plasmid pAD-N-TssL [2] was digested by *Ndel/XhoI* and cloned into the same sites of pET22b(+).

To construct the plasmids for expressing proteins without tag, each DNA fragment containing the RBS and ORF (with stop codon) of *tssC41, hcp, atu4347, vgrG-I*, and *exoR-Strep* was PCR-amplified with primers described in Supplementary Table S2 and cloned into pTrc200 with appropriate enzyme sites to create the plasmids pTrc-TssC41, pTrc-Hcp, pTrc-Atu4347, pTrc-VgrG-1, and pTrc-ExoR-Strep.

The plasmid pTssB-Strep used in Strep-Tag pull down assay was created by PCR amplifying *tssB* ORF with primers described in Supplementary Table S2 and cloned into the *XhoI/XbaI* sites of pRL662.

For the constructs used for yeast two-hybrid, the *tssC41* and *tssB* ORFs (without stop codon) were PCR-amplified with primers described in Supplementary Table S2, digested by *Ndel/BamHI*, and cloned into the same sites of pGBK7 or pGADT7 to create the plasmids pGBK7-TssC41, pGBK7-TssB, pGADT7-TssC41, and pGADT7-TssB, respectively.

Biochemical fractionation

Isolation of *A. tumefaciens* cellular fractions was as described [2].
Table S1. Bacterial strains and plasmids
Strain /plasmid
Relevant characteristics
Source/ reference
A.tumefaciens
C58
Wild type virulent strain containing
nopaline-type Ti plasmid pTiC58
Eugene Nester
EML1213
Entire promoter region deletion mutant,
C58Δpro
This study
EML1218
Entire *imp* operon deletion mutant, C58Δ*imp*
This study
EML1060
ppkA(atu4330) in frame deletion mutant,
C58Δ*ppkA*
This study
EML1063
pppA *(atu4331)* in frame deletion mutant,
C58Δ*pppA*
This study
EML1068
tssM *(atu4332)* in frame deletion mutant,
C58Δ*icmF*
[2]
EML1073
tssL *(atu4333)* in-frame deletion mutant,
C58Δ*icmH*
[2]
EML1078
tssK *(atu4334)* in frame deletion mutant,
C58Δ*atu4334*
This study
EML1521
fha *(atu4335)* in frame deletion mutant,
C58Δ*fha*
This study
EML1086
tssG *(atu4336)* in-frame deletion mutant,
C58Δ*atu4336*
This study
EML1090
tssF *(atu4337)* in frame deletion mutant,
C58Δ*atu4337*
This study
EML1093
tssE *(atu4338)* in frame deletion mutant,
C58Δ*atu4338*
This study
EML1097
tagJ *(atu4339)* in frame deletion mutant,
C58Δ*atu4339*
This study
EML1100
tssC₄₀ *(atu4340)* in frame deletion mutant,
C58Δ*atu4340*
This study
EML1105
tssC₄₁ *(atu4341)* in frame deletion mutant,
C58Δ*vipB*
This study
EML1109
tssB *(atu4342)* in frame deletion mutant,
C58Δ*vipA*
This study
EML1113
tssA *(atu4343)* in-frame deletion mutant,
C58Δ*atu4343*
This study
EML1117
clpV *(atu4344)* in frame deletion mutant,
C58Δ*clpV*
This study
Lin et al., Systematic dissection of the Agrobacterium T6SS

EML1122	*hcp (atu4345)* in frame deletion mutant, C58Δhcp	This study
EML1127	*atu4346* in frame deletion mutant, C58Δatu4346	This study
EML1131	*atu4347* in frame deletion mutant, C58Δatu4347	This study
EML1134	*vgrG-1 (atu4348)* in frame deletion mutant, C58ΔvgrG-1	This study
EML1137	*atu4349* in frame deletion mutant, C58Δatu4349	This study
EML1142	*atu4350* in frame deletion mutant, C58Δatu4350	This study
EML1145	*atu4352* in frame deletion mutant, C58Δatu4352	This study
EML1166	*vgrG-2 (atu3642)* in frame deletion mutant, C58ΔvgrG-2	This study
EML1289	*vgrG-1* and *vgrG-2* double in frame deletion mutant, C58ΔvgrG-1/-2	This study
EML3553	*atu4346* and *atu4347* double in frame deletion mutant, C58Δatu4346atu4347	This study
EML3700	*aopB* in frame deletion mutant, C58ΔaopB	This study
EML2137	Complementation of *fha* gene to linear chromosome of Δfha strain, revertant strain of Δfha-1	This study
EML2138	Complementation of *fha* gene to linear chromosome of Δfha strain, revertant strain of Δfha-2	This study
EML2141	Complementation of *tssC*41 gene to linear chromosome of ΔtssC*41* strain, revertant strain of ΔtssC*41*-1	This study
EML2142	Complementation of *tssC*41 gene to linear chromosome of ΔtssC*41* strain, revertant strain of ΔtssC*41*-2	This study
EML829	ΔactCBA, deletion of actCBA in NT1RE	[4]

E. coli

| DH10B | Host for DNA cloning | Invitrogen |
| BL21(DE3) | Host for overexpressing proteins driven by T7 promoter | [5] |

S. cerevisiae

| AH109 | Host for yeast two-hybrid analysis | Clontech |

Plasmids

| pRL662 | Gm\(^r\), broad-host range vector derived from pBBR1MCS-2 | [1] |
Vector Name	Description	Supplier
pET22b(+)	Ap⁺, *E. coli* overexpression vector to generate C-terminal His-tagged protein	Novagen
pJQ200KS	Gm⁺, suicide plasmid containing Gm⁺ and sacB gene for selection of double crossover	[6]
pTrc200	Sp⁺, pVS1 origin *lacI⁰*, *trc* promoter expression vector	[7]
pGADT7	Ap⁺, AD vector used in yeast two-hybrid assay	Clontech
pGBKT7	Km⁺, DNA-BD vector used in yeast-two hybrid assay	Clontech
pTssM	Gm⁺, pRL662 expressing TssM driven by *lacZp*	[3]
pTssL	Gm⁺, pRL662 expressing TssL driven by *lacZp*	[2]
pTssK	Gm⁺, pRL662 expressing TssK driven by *lacZp*	This study
pFha	Gm⁺, pRL662 expressing Fha driven by *lacZp*	This study
pTssG	Gm⁺, pRL662 expressing TssG driven by *lacZp*	This study
pTssF	Gm⁺, pRL662 expressing TssF driven by *lacZp*	This study
pTssE	Gm⁺, pRL662 expressing TssE driven by *lacZp*	This study
pTssC₄₀	Gm⁺, pRL662 expressing TssC₄₀ driven by *lacZp*	This study
pTssC₄₁	Gm⁺, pRL662 expressing TssC₄₁ driven by *lacZp*	This study
pTssA	Gm⁺, pRL662 expressing TssA driven by *lacZp*	This study
pClpV	Gm⁺, pRL662 expressing ClpV driven by *lacZp*	This study
pHcp	Gm⁺, pRL662 expressing Hcp driven by *lacZp*	This study
pAtu4346	Gm⁺, pRL662 expressing Atu4346 driven by *lacZp*	This study
pAtu4347	Gm⁺, pRL662 expressing Atu4347 driven by *lacZp*	This study
pVgrG-1	Gm⁺, pRL662 expressing VgrG-1 driven by *lacZp*	This study
pVgrG-2	Gm⁺, pRL662 expressing VgrG-2 driven by *lacZp*	This study
pTssB-Strep	Gm⁺, pRL662 expressing TssB-Strep fusion protein driven by *lacZp*	This study
pET-PpkA-His	Ap⁺, pET22b overexpressing His-tagged PpkA in *E. coli*	This study
pET-PppA-His	Ap⁺, pET22b overexpressing His-tagged PppA in *E. coli*	This study
Lin et al., Systematic dissection of the *Agrobacterium* T6SS

Expression System	Description	Study	Notes
pET-N-TssL-His	Ap', pET22b overexpressing His-tagged N terminus of TssL (residues 1 to 255) in *E. coli*	This study	
pET-TssK-His	Ap', pET22b overexpressing His-tagged TssK in *E. coli*	This study	
pET-Fha-His	Ap', pET22b overexpressing His-tagged Fha in *E. coli*	This study	
pET-TssE-His	Ap', pET22b overexpressing His-tagged TssE in *E. coli*	This study	
pET-TssC41-His	Ap', pET22b overexpressing His-tagged TssC41 in *E. coli*	This study	
pET-TssB-His	Ap', pET22b overexpressing His-tagged TssB in *E. coli*	This study	
pET-TssA-His	Ap', pET22b overexpressing His-tagged TssA in *E. coli*	This study	
pET-ClpV-His	Ap', pET22b overexpressing His-tagged ClpV in *E. coli*	This study	
pET-Hcp-His	Ap', pET22b overexpressing His-tagged Hcp in *E. coli*	[3]	
pET-Atu4346-His	Ap', pET22b overexpressing His-tagged Atu4346 in *E. coli*	This study	
pET-Atu4347-His	Ap', pET22b overexpressing His-tagged Atu4347 in *E. coli*	This study	
pET-VgrG-1-His	Ap', pET22b overexpressing His-tagged VgrG-1 in *E. coli*	This study	
pET-TssB-TssC41-His	Ap', pET22b overexpressing TssB and His-tagged TssC41 in *E. coli*	This study	
pET-RpoA-His	Ap', pET22b overexpressing His-tagged Atu1923 (RpoA) in *E. coli*	This study	
pET-AopB-His	Ap', pET22b overexpressing His-tagged Atu1131 (AopB) in *E. coli*	This study	
pJQ200KS-Δpro	Gm', used in generating entire promoter region deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δimp	Gm', used in generating entire *imp* operon deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔppkA	Gm', used in generating *ppkA* in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔppA	Gm', used in generating *ppA* in-frame deletion mutant of *A. tumefaciens* C58	This study	
Construct	Description	Study	
------------------------	---	-----------	
pJQ200KS-ΔtssK	Gm^r, used in generating `tssK` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δfha	Gm^r, used in generating `fha` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtssG	Gm^r, used in generating `tssG` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtssF	Gm^r, used in generating `tssF` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtssE	Gm^r, used in generating `tssE` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtagJ	Gm^r, used in generating `tagJ` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtssC_{40}	Gm^r, used in generating `tssC_{40}` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtssC_{41}	Gm^r, used in generating `tssC_{41}` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtssB	Gm^r, used in generating `tssB` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔtssA	Gm^r, used in generating `tssA` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔclpV	Gm^r, used in generating `clpV` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δhcp	Gm^r, used in generating `hcp` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δatu4346	Gm^r, used in generating `atu4346` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δatu4347	Gm^r, used in generating `atu4347` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔvgrG-1	Gm^r, used in generating `vgrG-1` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δatu4349	Gm^r, used in generating `atu4349` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δatu4350	Gm^r, used in generating `atu4350` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δatu4352	Gm^r, used in generating `atu4352` in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔvgrG-2	Gm^r, used in generating `vgrG-2` in-frame deletion mutant of *A. tumefaciens* C58	This study	
Lin et al., Systematic dissection of the Agrobacterium T6SS

Vector	Description	Source	
pJQ200KS-Δ46Δ47	Gm⁺, used in generating *atu4346* and *atu4347* double in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-ΔaopB	Gm⁺, used in generating *aopB* in-frame deletion mutant of *A. tumefaciens* C58	This study	
pJQ200KS-Δfha	Gm⁺, used in generating revertant strain of Δ*fha*	This study	
pJQ200KS-ΔtssC41	Gm⁺, used in generating revertant strain of Δ*tssC*41	This study	
pTrc-TssC41	Sp^R, pTrc200 expressing TssC₄₁ without tag	This study	
pTrc-Hcp	Sp^R, pTrc200 expressing Hcp without tag	This study	
pTrc-Atu4347	Sp^R, pTrc200 expressing Atu4347 without tag	This study	
pTrc-VgrG-1	Sp^R, pTrc200 expressing VgrG-1 without tag	This study	
pTrc-ExoR-Strep	Sp^R, pTrc200 expressing ExoR-Strep fusion protein	This study	
pGBK7-TssC41	Km⁺, DNA-BD vector expressing TssC₄₁	This study	
pGBK7-TssB	Km⁺, DNA-BD vector expressing TssB	This study	
pGBK7-53	Km⁺, DNA-BD vector expressing murine p53	Clontech	
pGAD7-TssC41	AP⁺, AD vector expressing TssC₄₁	This study	
pGAD7-TssB	AP⁺, AD vector expressing TssB	This study	
pGAD7-T	AP⁺, AD vector expressing SV40 large T-antigen	Clontech	
Primer	Plasmids	Sequence (5' -3')	Source / reference
--------	------------------	-------------------	--------------------
1. Promoter deletion 1F-XbaI	pJQ200KS-Agpa	5'-GC TCTAGA GCCTCT CGAATTCGAGC-3'	This study
2. Promoter deletion 1R-BamHI		5'-CGGATCCATGGTCATGCTCGAATTCGAGC-3'	This study
3. Promoter deletion 2F-BamHI		5'-CGGATCCATGGTCATGCTCGAATTCGAGC-3'	This study
4. Promoter deletion 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
5. Imp deletion 1F-XbaI	pJQ200KS-Δimp	5'-GC TCTAGA GTCCGTCGAGGTTGTTGCAG-3'	This study
6. Imp deletion 1R-BamHI		5'-CGGATCC ATGGTCATGCTCGAATTCGAGC-3'	This study
7. Imp deletion 2F-BamHI		5'-CGGATCC ATGGTCATGCTCGAATTCGAGC-3'	This study
8. Imp deletion 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
9. PpkA 1F-XbaI	pJQ200KS-ΔppkA	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
10. PpkA 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
11. PpkA 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
12. PpkA 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
13. PppA 1F-XbaI	pJQ200KS-ΔpppA	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
14. PppA 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
15. PppA 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
16. PppA 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
17. Ts	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study	
18. TsK 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
19. TsK 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
20. TsK 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
21. Fha 1F-XbaI	pJQ200KS-Δfha	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
22. Fha 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
23. Fha 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
24. Fha 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
25. Tsq 1F-XbaI	pJQ200KS-ΔtsqG	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
26. Tsq 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
27. Tsq 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
28. Tsq 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
29. Tsf 1F-Sacl	pJQ200KS-ΔtsfE	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
30. Tsf 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
31. Tsf 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
32. Tsf 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
33. Tsse 1F-XbaI	pJQ200KS-ΔsseE	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
34. Tsse 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
35. Tsse 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
36. Tsse 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
37. Tag 1F-XbaI	pJQ200KS-ΔtagA	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
38. Tag 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
39. Tag 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
40. Tag 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
41. TssC 1F-XbaI	pJQ200KS-ΔsscC	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
42. TssC 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
43. TssC 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
44. TssC 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
45. TssC 1F-XbaI	pJQ200KS-ΔsscC	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
46. TssC 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
47. TssC 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
48. TssC 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
49. TssB 1F-XbaI	pJQ200KS-ΔsbsB	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
50. TssB 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
51. TssB 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
52. TssB 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
53. TssA 1F-XbaI	pJQ200KS-ΔsasA	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
54. TssA 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
55. TssA 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
56. TssA 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
57. ClpV 1F-XbaI	pJQ200KS-ΔclpV	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
58. ClpV 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
59. ClpV 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
60. ClpV 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
61. Hcp 1F-XbaI	pJQ200KS-Ahcp	5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
62. Hcp 1R-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
63. Hcp 2F-BamHI		5'-GCTCTAGA GGAGATGCTACGACAGAC-3'	This study
64. Hcp 2R-Xmnal		5'-TCCCCCAGGGGCATCTCGTGAGGTTGCAG-3'	This study
Entry	Description	Sequence/Comment	
-------	-------------	-----------------	
65.	Atu4346 1F-XbaI	pJQ200KS-Δatu434 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
66.	Atu4346 1R-BamHI	6'-CCGCAGCTTGGATATGAAAGCCGATAAGG-5' This study	
67.	Atu4346 2F-BamHI	5'-CCGCAGCTTGGATATGAAAGCCGATAAGG-3' This study	
68.	Atu4346 2R-XmaI	6'-CCGCAGCTTGGATATGAAAGCCGATAAGG-5' This study	
69.	Atu4347 1F-XbaI	pJQ200KS-Δatu434 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
70.	Atu4347 1R-BamHI	6'-CCGCAGCTTGGATATGAAAGCCGATAAGG-5' This study	
71.	Atu4347 2F-BamHI	5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
72.	Atu4347 2R-XmaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
73.	VgrG-1 1F-XbaI	pJQ200KS-ΔvgrG-1 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
74.	VgrG-1 1R-BamHI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
75.	VgrG-1 2F-BamHI	5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
76.	VgrG-1 2R-XmaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
77.	Atu4349 1F-XbaI	pJQ200KS-Δatu434 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
78.	Atu4349 1R-BamHI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
79.	Atu4349 2F-BamHI	5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
80.	Atu4349 2R-XmaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
81.	Atu4350 1F-XbaI	pJQ200KS-Δatu435 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
82.	Atu4350 1R-BamHI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
83.	Atu4350 2F-BamHI	5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
84.	Atu4350 2R-XmaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
85.	Atu4352 1F-XbaI	pJQ200KS-Δatu435 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
86.	Atu4352 1R-BamHI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
87.	Atu4352 2F-BamHI	5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
88.	Atu4352 2R-XmaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
89.	VgrG-2 1F-XbaI	pJQ200KS-ΔvgrG-2 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
90.	VgrG-2 1R-BamHI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
91.	VgrG-2 2F-BamHI	5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
92.	VgrG-2 2R-XmaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
93.	AopB 1F-XbaI	pJQ200KS-ΔaopB 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
94.	AopB 1R-BamHI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
95.	AopB 2F-BamHI	5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
96.	AopB 2R-XmaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
97.	TssK comN-HindIII	pTssK 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
98.	TssK comC-HindIII	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
99.	Fha comN-BamHI	pFha 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
100.	Fha comC-BamHI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
101.	TssG comN-Xhol	pTssG 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
102.	TssG comC-Xhol	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
103.	TssF comN-XhoI	pTssF 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
104.	TssF comC-XhoI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
105.	TssE	pTssE 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
106.	TssE comN-XbaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
107.	TssC6 comN-XhoI	pTssC6 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
108.	TssC6X comN-XbaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
109.	TssC6 comN-XhoI	pTssC6 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
110.	TssC6X comN-XbaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
111.	TssC6 comN-XhoI	pTssC6 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
112.	TssC6X comN-XbaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
113.	TssC6 comN-XhoI	pTssC6 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
114.	TssC6X comN-XbaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
115.	TssA comN-XhoI	pTssA 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
116.	TssA comC-XbaI	6'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-5' This study	
117.	ClpV	pClpV 5'-GCCTCAAGGTGTTATTGGAGCTACAGGACG-3' This study	
130. VgrG-2	pVgrG-2	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study
131. VgrG-2	pVgrG-2	5'-CTGTCAGAGTTCTGAAAGTTCCAAAGCT-3'	This study
132. PpaA F-Ndel	pET-PpaA-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
133. PpaA F-Nhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
134. PpaA F	pET-PpaA-His	5'-TGGCGATTACCGGATCAAGG-3'	This study
135. PpaA R-HindIII	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
136. TssK F-Ndel	pET-TssK-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
137. TssK R-HindIII	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
138. Fha F-Ndel	pET-Fha-His	5'-TGGCGATTACCGGATCAAGG-3'	This study
139. Fha R-Sall	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
140. TssE F-Ndel	pET-TssE-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
141. TssE R-Sall	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
142. TssC1 F-Ndel	pET-TssC1-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
143. TssC1 R-Xhol-a	pET-TssB-TssC1-a-H is (144&143)	5'-CCGCTCGAGCGATTTCCTGGAGAAATACG-3'	This study
144. TssB F-Ndel	pET-TssB-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
145. TssB R-Xhol	pET-TssB-TssC1-a-H is (144&143)	5'-CCGCTCGAGCGATTTCCTGGAGAAATACG-3'	This study
146. TssA F-Ndel	pET-TssA-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
147. TssA R-Xhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
148. ClpV F	pET-ClpV-His	5'-TGGCGATTACCGGATCAAGG-3'	This study
149. ClpV R-HindIII	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
150. Ato4346 F-Ndel	pET-Ato4346-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
151. Ato4346 R-Xhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
152. Ato4347 F-Ndel	pET-Ato4347-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
153. Ato4347 R-Xhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
154. Ato4349 F-Ndel	pET-Ato4349-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
155. Ato4349 R-Xhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
156. VgrG-1 F-Ndel	pET-VgrG-1-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
157. VgrG-1 R-Xhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
158. RpoA F-Ndel	pET-RpoA-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
159. RpoA R-Xhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
160. AopB F-Ndel	pET-AopB-His	5'-GAACATATTCGGAGAAGAAAGCCGATCAG-3'	This study
161. AopB R-Xhol	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
162. ExoR F (Xmal)	pTrC-ExoR-Strep	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study
163. ExoR C-Strep	5'-CCGCTCGAGAGGATTGATTTGACGCTGATAT-3'	This study	
164. TssC1 R-BamHI	pGBK7-TssC1 (142&164)	5'-CGGATCCCGGCTCGGCGCTCTCTTT-3'	This study
165. TssB-BamHI	pGBK7-TssB (144&165)	5'-CGGATCCCGGCTCGGCGCTCTCTTT-3'	This study
166. Ato4329 RT1	5'-GAAGACCGCTGAACTACACTACAC-3'	This study	
167. Ato4329	5'-CGGATCCGACGATGATAGATCACCGGC-3'	This study	
168. PpaA RT1	5'-AGGGATCCGATCTCTGATCTCTTT-3'	This study	
169. PpaA RT2-BamHI	5'-CCGCTCGAGCAGCTATCCTTTCTTT-3'	This study	
170. TssG RT1	5'-CCGCTCGAGCAGCTATCCTTTCTTT-3'	This study	
171. TssG-R2-BamHI	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
172. TssA RT1	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
173. TssA-R2-BamHI	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
174. ClpV RT1	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
175. ClpV RT2-BamHI	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
176. VgrG-1 RT1	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
177. VgrG-1 RT2-BamHI	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
178. Ato4352 RT1	5'-TGAGCTGAAAGGCTCATAGTC-3'	This study	
179. Ato4352	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
180. Ato4353 RT1	5'-TGAGCTGAAAGGCTCATAGTC-3'	This study	
181. Ato4353	5'-CGGATCCGCGATCCTTTCTTT-3'	This study	
182. RT2-BamHI	5'-TGAGCTGAAAGGCTCATAGTC-3'	This study	
183. RT2-BamHI	5'-TGAGCTGAAAGGCTCATAGTC-3'	This study	
184. 46/47 1F-Xmal	pQ200KS-Δ66Δ47	5'-TGCTAGAGCTATTTCCGTCATAGGAG-3'	This study
185. 46/47 1R-BamHI	5'-TGAGCTGAAAGGCTCATAGTC-3'	This study	
186. 46/47 2F-BamHI	5'-TGAGCTGAAAGGCTCATAGTC-3'	This study	
187. 46/47 2R-Xmal	5'-TGAGCTGAAAGGCTCATAGTC-3'	This study	

Restriction enzyme sites are underlined in bold face.
Table S3. Characteristics of proteins encoded by the imp cluster.

Gene name	Protein name	Conserved Ortholog^a	Molecular weight^b (Da) / pl	Essential for Hcp secretion^c	Predicted cellular localization^{d,e}	Predicted signal peptide^{f,g}	Predicted non-classically secreted protein^h
attu4330	PpkA	V	270 a.a.	−/+	1.ⁱ Unknown	1.ⁱ No SP	No
	TagE		29,472 / 6.71		2.ⁱ C (cytoplasmic)	2.ⁱ No SP	(0.08)
attu4331	PppA	V	471 a.a.	−	1. Cytoplasmic membrane	1. No SP	No
	TagF		51,714 / 6.39		2. C (cytoplasmic)	2. No SP	(0.14)
attu4332	TssM	V	1159 a.a.	+	1. Cytoplasmic membrane	1. No SP	No
			128,315 / 6.27		2. IM (inner membrane protein with 3 TM) (26-48, 57-79, 438-460)ⁱ	2. No SP	(0.12)
attu4333	TssL	V	501 a.a.	+	1. Cytoplasmic membrane	1. No SP	No
			55,188 / 5.85		2. IM (inner membrane protein with 1 TM) (254-276)ⁱ	2. No SP	(0.19)
attu4334	TssK	V	446 a. a.	+	1. Cytoplasmic	1. No SP	No
			49,659 / 5.51		2. C (cytoplasmic)	2. No SP	(0.10)
attu4335	Fha	V	399 a.a.	+	1. Cytoplasmic	1. No SP	No
	TagH		43,399 / 4.85		2. C (cytoplasmic)	2. No SP	(0.19)
attu4336	TssG	V	334 a.a.	+	1. Unknown	1. No SP	No
			36,123 / 9.35		2. C (cytoplasmic)	2. No SP	(0.20)
attu4337	TssF	V	593 a.a.	+	1. Unknown	1. No SP	No
			65,507 / 6.26		2. C (cytoplasmic)	2. No SP	(0.11)
attu4338	TssE	V	169 a.a.	+	1. Cytoplasmic	1. No SP	No
			19,002 / 5.93		2. C (cytoplasmic)	2. No SP	(0.29)
attu4339	TagJ	V	274 a.a.	−	1. Cytoplasmic	1. No SP	No
			29,813 / 4.88		2. C (cytoplasmic)	2. No SP	(0.09)
attu4340	TssC₄₁	V	464 a.a.	+	1. Cytoplasmic	1. No SP	No
			50,949 / 5.51		2. C (cytoplasmic)	2. No SP	(0.16)
Lin et al., Systematic dissection of the Agrobacterium T6SS

Gene	Description	a.a.	Mol. Wt. / pI	Cytoplasmic	Periplasmic	Outer Membrane	Essential for Hcp secretion
attu4341	V	493	55,032 / 5.44	+	1. Cytoplasmic	2. C (cytoplasmic)	No
TssC					1. No SP	2. No SP	(0.39)
attu4342	V	169	19,098 / 5	+	1. Cytoplasmic	2. C (cytoplasmic)	No
TssB					1. No SP	2. No SP	(0.10)
attu4343	V	351	38,491 / 5.14	+	1. Unknown	2. C (cytoplasmic)	No
TssA					1. No SP	2. No SP	(0.08)
attu4344	V	892	96,506 / 5.09	+	1. Cytoplasmic	2. C (cytoplasmic)	No
ClpV					1. No SP	2. No SP	(0.09)
TssH							
attu4345	V	158	17,316 / 5.12	+	1. Unknown	2. EC (extracellular)	Yes
Hcp					1. No SP	2. No SP	(Score 0.947)
TssD							
attu4346	V	129	13,737 / 4.93	−	1. Unknown	2. P (periplasm)	Yes
Atu4346					1. Yes(1-25)	2. Yes(1-25)	(Score 0.539)
attu4347	V	166	18,271 / 9.05	−	1. Unknown	2. OM (outer membrane)	Yes
Atu4347					1. No SP	2. No SP	(Score 0.941)
attu4348	V	816	88,523 / 5.98	(+)	1. Cytoplasmic	2. C (cytoplasmic)	Yes
VgrG-1					1. No SP	2. No SP	(Score 0.624)
TssI-1							
attu4349	V	318	34,604 / 5.24	−	1. Unknown	2. C (cytoplasmic)	Yes
Atu4349					1. No SP	2. No SP	(Score 0.733)
attu4350	V	278	29,511 / 5.17	−	1. Periplasmic	2. OM (outer membrane)	Yes
Atu4350					1. No SP	2. Yes(1-37)	(Score 0.923)
attu4351	V	224	24,945 / 7.74	NA	1. Unknown	2. C (cytoplasmic)	No
Atu4351					1. No SP	2. No SP	(0.11)
attu4352	V	101	10,371 / 7.79	−	1. Unknown	2. EC (extracellular)	Yes
Atu4352					1. No SP	2. No SP	(Score 0.878)
attu3642	V	754	81,764 / 5.8	(+)	1. Cytoplasmic	2. C (cytoplasmic)	Yes
VgrG-2					1. No SP	2. No SP	(Score 0.598)

a.a.: amino acid.
a: Conserved orthologs: These data have been reported elsewhere [10-12].
b: The molecular weight and isoelectric point (pI) are based on prediction by the software ExPASy (http://www.expasy.ch/tools/pi_tool.html).
c: Essential for Hcp secretion is based on experimental data presented in Fig. 2.
d: The cellular localization is based on prediction by the software PSORTb (http://www.psort.org/psortb/index.html).
e: The cellular localization is based on prediction by the software SOSUIGramN (http://bp.nuap.nagoya-u.ac.jp/sosui/sosuigramn/sosuigramn_submit.html).
f: The prediction of signal peptides was by use of the software SignalP (http://www.cbs.dtu.dk/services/SignalP/).
g: The prediction of signal peptides was by use of the software SOSUIsignal (http://bp.nuap.nagoya-u.ac.jp/sosui/sosuisignal/sosuisignal_submit.html).
h: The prediction was by use of the software SecretomeP (http://www.cbs.dtu.dk/services/SecretomeP/). Non-classically secreted proteins should obtain an NN-score exceeding the threshold of 0.5.

References
1. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CM, Regensburg-Tuink TJ, et al. (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979-982.
2. Ma LS, Lin JS, Lai EM (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191: 4316-4329.
3. Wu HY, Chung PC, Shih HW, Wen SR, Lai EM (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190: 2841-2850.
4. Liu AC, Shih HW, Hsu T, Lai EM (2008) A citrate-inducible gene, encoding a putative tricarboxylate transporter, is downregulated by the organic solvent DMSO in Agrobacterium tumefaciens. J Appl Microbiol 105: 1372-1383.
5. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185: 60-89.
6. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127: 15-21.
7. Schmidt-Eisenlohr H, Domke N, Baron C (1999) TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecular-weight structures in Escherichia coli. J Bacteriol 181: 5563-5571.
8. Wu CF, Lin JS, Shaw GC, Lai EM (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium
Lin et al., Systematic dissection of the Agrobacterium T6SS

tumefaciens. PLoS Pathog 8: e1002938.
9. Lai EM, Shih HW, Wen SR, Cheng MW, Hwang HH, et al. (2006) Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6: 4130-4136.
10. Cascales E (2008) The type VI secretion toolkit. EMBO Rep 9: 735-741.
11. Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66: 1192-1206.
12. Zheng J, Ho B, Mekalanos JJ (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 6: e23876.
Fig. S2

(A)

![Graph showing OD₄₅₀ nm values for ActC, TssC₄₁, and TssB.]

(B)

![Graph showing OD₄₅₀ nm values for AopB, Hcp, and ActC.]

(C)

![Western blot images for AopB, Hcp, and ActC.]

Legend:
- C58 (None)
- C58 (Lysozyme)
- ΔactCBA (None)
- ΔactCBA (Lysozyme)
Fig. S3

Protein	T	P	Sp	S	IS
TssC_{41}					
TssB					
Hcp					
47					
VgrGs					
TssM					
Fha					
ActC					

* Image of Western blot showing protein expression levels.
Fig. S4
Fig. S5

(A) Vector + Hcp
TssC₄₁-His + Hcp
TssB-His + Hcp
TssC₄₁-His + TssB + Hcp

(B) Vector + 47
TssC₄₁-His + 47
TssB-His + 47
TssC₄₁-His + TssB + 47

(C) Vector + VgrG
TssC₄₁-His + VgrG
TssB-His + VgrG
TssC₄₁-His + TssB + VgrG

(D) Vector + ExoR-Strep
TssC₄₁-His + ExoR-Strep
TssB-His + ExoR-Strep
TssC₄₁-His + TssB + ExoR-Strep