RECENT DEVELOPMENT OF CHAOS THEORY IN TOPOLOGICAL DYNAMICS

JIAN LI AND XIANGDONG YE

ABSTRACT. We give a summary on the recent development of chaos theory in topological dynamics, focusing on Li-Yorke chaos, Devaney chaos, distributional chaos, positive topological entropy, weakly mixing sets and so on, and their relationships.

1. INTRODUCTION

Topological dynamics is a branch of the theory of dynamical systems in which qualitative, asymptotic properties of dynamical systems are studied, where a dynamical system is a phase (or state) space \(X \) endowed with an evolution map \(T \) from \(X \) to itself. In this survey, we require that the phase space \(X \) is a compact metric space and the evolution map \(T : X \to X \) is continuous.

The mathematical term *chaos* was first introduced by Li and Yorke in 1975 [69], where the authors established a simple criterion on the existence of chaos for interval maps, known as “period three implies chaos”. Since then, the study of chaos theory has played a big role in dynamical systems, even in nonlinear science.

In common usage, “chaos” means “a state of disorder”. However, in chaos theory, the term is defined more precisely. Various alternative, but closely related definitions of chaos have been proposed after Li-Yorke chaos.

Although there is still no definitive, universally accepted mathematical definition of chaos (in our opinion it is also impossible), most definitions of chaos are based on one of the following aspects:

1. complex trajectory behavior of points, such as Li-Yorke chaos and distributional chaos;
2. sensitivity dependence on initial conditions, such as Devaney chaos, Auslander-Yorke chaos and Li-Yorke sensitivity;
3. fast growth of different orbits of length \(n \), such as having positive topological entropy, or its variants;
4. strong recurrence property, such as weakly mixing property and weakly mixing sets.

Since there are so many papers dealing with the chaos theory in topological dynamics, we are not able to give a survey on all of them. We only can select those which we are familiar with, and are closely related to our interest, knowledge and ability. As we said before it is impossible to give a universe definition of chaos which covers all the features of the complex behaviors of a dynamical system, it is thus important to know the relationships among the various definitions of chaos. So we will focus on Li-Yorke chaos, Devaney chaos, distributional chaos, positive topological entropy, weakly mixing sets, sensitivity and so on, and their relationships in this survey. See [14, 85] for related surveys.

Date: March 24, 2015.

2010 Mathematics Subject Classification. 54H20, 37B05, 37B40.

Key words and phrases. Li-Yorke chaos, Devaney chaos, sensitive dependence on initial conditions, distributional chaos, weak mixing, topological entropy, Furstenberg family.
Now we outline the development of chaos theory for general topological dynamical systems briefly. The notions of topological entropy and weak mixing were introduced by Adler et al [1] in 1965 and Furstenberg [25] in 1967 respectively. After the mathematical term of chaos by Li-Yorke appearing in 1975, Devaney [19] defined a kind of chaos, known as Devaney chaos today, in 1989 based on the notion of sensitivity introduced by Guckenheimer [35]. The implication among them has attracted a lot of attention. In 1991 Iwanik [50] showed that weak mixing implies Li-Yorke chaos. A breakthrough concerning the relationships among positive entropy, Li-Yorke chaos and Devaney chaos came in 2002. In that year, it was shown by Huang and Ye [46] that Devaney chaos implies Li-Yorke one by proving that a non-periodic transitive system with a periodic point is Li-Yorke chaotic; Blanchard, Glasner, Kolyada and Maass [15] proved that positive entropy also implies Li-Yorke chaos (we remark that the authors obtained this result using ergodic method, and for a combinatorial proof see [53]). Moreover, the result also holds for sofic group actions by Kerr and Li [54, Corollary 8.4].

In 1991, Xiong and Yang [109] showed that in a weakly mixing system there are considerably many points in the domain whose orbits display highly erratic time dependence. It is known that a dynamical system with positive entropy may not contain any weakly mixing subsystem. Capturing a common feature of positive entropy and weak mixing, Blanchard and Huang [17] in 2008 defined the notion of weakly mixing set and showed that positive entropy implies the existence of weakly mixing sets which also implies Li-Yorke chaos. A further discussion along the line will be appeared in a forthcoming paper by Huang, Li, Ye and Zhou [41].

Distributional chaos was introduced in 1994 by Schweizer and Smítal [92], and there are at least three versions of distributional chaos in the literature (DC1, DC2 and DC3). It is known that positive entropy does not imply DC1 chaos [86] and Smítal conjectured that positive entropy implies DC2 chaos. Observing that DC2 chaos is equivalent to so called mean Li-Yorke chaos, recently Downarowicz [21] proved that positive entropy indeed implies DC2 chaos. An alternative proof can be found in [40] by Huang, Li and Ye. We remark that both proofs use ergodic theory heavily and there is no combinatorial proof at this moment.

This survey will be organized as follows. In Section 2 we provide basic definitions in topological dynamics. Li-Yorke chaos, sensitivity and chaos in transitive systems will be discussed in Sections 3-5. In Section 6 we review the results on distributional chaos. In the following two sections we focus on weakly mixing sets and chaos in the induced spaces.

2. PRELIMINARIES

In this section, we provide some basic notations, definitions and results which will be used later in this survey.

Denote by \(\mathbb{N} \) (\(\mathbb{Z}_+ \), \(\mathbb{Z} \), respectively) the set of all positive integers (non-negative integers, integers, respectively). The cardinality of a set \(A \) is usually denoted by \(|A| \).

Let \(X \) be a compact metric space. A subset \(A \) of \(X \) is called a perfect set if it is a closed set with no isolated points; a Cantor set if it is homeomorphic to the standard middle third Cantor set; a Mycielski set if it is a union of countably many Cantor sets. For convenience we restate here a version of Mycielski’s theorem ([79, Theorem 1]) which we shall use.

Theorem 2.1 (Mycielski Theorem). Let \(X \) be a perfect compact metric space. If \(R \) is a dense \(G_δ \) subset of \(X^n \), then there exists a dense Mycielski set \(K \subset X \) such that for any distinct \(n \) points \(x_1, x_2, \ldots, x_n \in K \), the tuple \((x_1, x_2, \ldots, x_n) \) is in \(R \).
2.1. **Topological dynamics.** By a (topological) dynamical system, we mean a pair \((X, T)\), where \(X\) is a compact metric space and \(T: X \to X\) is a continuous map. The metric on \(X\) is usually denoted by \(d\). One can think of \(X\) as a state space for some system, and \(T\) as the evolution law of some discrete autonomous dynamics on \(X\): if \(x\) is a point in \(X\), denoting the current state of a system, then \(Tx\) can be interpreted as the state of the same system after one unit of time has elapsed. For every non-negative integer \(n\), we can define the iterates \(T^n: X \to X\) as \(T^0 = \text{id}\) the identity map on \(X\) and \(T^{n+1} = T^n \circ T\). One of the main topics of study in dynamical systems is the asymptotic behaviour of \(T^n\) as \(n \to \infty\).

Note that we always assume that the state space \(X\) is not empty. If the state space \(X\) contains only one point, then we say that the dynamical system on \(X\) is trivial, because in this case the unique map on \(X\) is the identity map.

For any \(n \geq 2\), the \(n\)-th fold product of \((X, T)\) is denoted by \((X^n, T^{(n)})\), where \(X^n = X \times X \times \cdots \times X\) (\(n\)-times) and \(T^{(n)} = T \times T \times \cdots \times T\) (\(n\)-times). We set the diagonal of \(X^n\) as \(\Delta_n = \{(x, x, \ldots, x) \in X^n: x \in X\}\), and set \(\Delta^{(n)} = \{(x_1, x_2, \ldots, x_n) \in X^n:\) there exist \(1 \leq i < j \leq n\) such that \(x_i = x_j\}\).

The orbit of a point \(x\) in \(X\) is the set \(\text{Orb}(x, T) = \{x, Tx, T^2x, \ldots\}\); the \(\omega\)-limit set of \(x\), denoted by \(\omega(x, T)\), is the limit set of the orbit of \(x\), that is

\[
\omega(x, T) = \bigcap_{n=1}^{\infty} \{T^n x: i \geq n\}.
\]

A point \(x \in X\) is called recurrent if there exists an increasing sequence \(\{p_i\} \in \mathbb{N}\) such that \(\lim_{i \to \infty} T^{p_i} x = x\). Clearly, \(x\) is recurrent if and only if \(x \in \omega(x, T)\).

If \(Y\) is a non-empty closed invariant (i.e. \(TY \subset Y\)) subset of \(X\), then \((Y, T)\) is also a dynamical system, we call it as a subsystem of \((X, T)\). A dynamical system \((X, T)\) is called minimal if it contains no proper subsystems. A subset \(A\) of \(X\) is minimal if \((A, T)\) forms a minimal subsystem of \((X, T)\). It is easy to see that a non-empty closed invariant set \(A \subset X\) is minimal if and only if the orbit of every point of \(A\) is dense in \(A\). A point \(x \in X\) is called minimal or almost periodic if it belongs to a minimal set.

A dynamical system \((X, T)\) is called transitive if for every two non-empty open subsets \(U\) and \(V\) of \(X\) there is a positive integer \(n\) such that \(T^n U \cap V \neq \emptyset\); totally transitive if \((X, T^n)\) is transitive for all \(n \in \mathbb{N}\); weakly mixing if the product system \((X \times X, T \times T)\) is transitive; strongly mixing if for every two non-empty open subsets \(U\) and \(V\) of \(X\) there is \(N > 0\) such that \(T^n U \cap V \neq \emptyset\) for all \(n \geq N\). Any point with dense orbit is called a transitive point. In a transitive system the set of all transitive points is a dense \(G_\delta\) subset of \(X\) and we denote it by \(\text{Trans}(X, T)\). For more details related to transitivity see [57].

Let \((X, T)\) be a dynamical system. A pair \((x, y)\) of points in \(X\) is called asymptotic if \(\lim_{n \to \infty} d(T^n x, T^n y) = 0\); proximal if \(\lim \inf \inf d(T^n x, T^n y) = 0\); distal if \(\lim \inf \inf d(T^n x, T^n y) > 0\). The system \((X, T)\) is called proximal if any two points in \(X\) form a proximal pair; distal if any two distinct points in \(X\) form a distal pair.

Let \((X, T)\) and \((Y, S)\) be two dynamical systems. If there is a continuous surjection \(\pi: X \to Y\) which intertwines the actions (i.e., \(\pi \circ T = S \circ \pi\)), then we say that \(\pi\) is a factor map, \((Y, S)\) is a factor of \((X, T)\) or \((X, T)\) is an extension of \((Y, S)\). The factor map \(\pi\) is almost one-to-one if there exists a residual subset \(G\) of \(X\) such that \(\pi^{-1}(\pi(x)) = \{x\}\) for any \(x \in G\).

In 1965, Adler, Konheim and McAndrew introduced topological entropy in topological dynamics [1]. Let \(C^\infty_X\) be the set of finite open covers of \(X\). Given two open covers \(\mathcal{U}\) and \(\mathcal{V}\), their join is the cover

\[
\{U \cap V: U \in \mathcal{U}, V \in \mathcal{V}\}.
\]
We define $N(\mathcal{U})$ as the minimum cardinality of subcovers of \mathcal{U}. The topological entropy of T with respect to \mathcal{U} is

$$h_{\text{top}}(T, \mathcal{U}) = \lim_{N \to \infty} \frac{1}{N} \log N \left(\bigvee_{i=0}^{N-1} T^{-i} \mathcal{U} \right).$$

The topological entropy of (X, T) is defined by

$$h_{\text{top}}(T) = \sup_{\mathcal{U} \in \mathcal{C}_x^X} h_{\text{top}}(T, \mathcal{U}).$$

We refer the reader to [103, 28] for more information on topological entropy, and [31] for a survey of local entropy theory.

2.2. Furstenberg family

The idea of using families of subsets of \mathbb{Z}_+ when dealing with dynamical properties of maps was first used by Gottschalk and Hedlund [34], and then further developed by Furstenberg [26]. For a systematic study and recent results, see [2, 43, 47, 59, 93, 108]. Here we recall some basic facts related to Furstenberg families.

A Furstenberg family (or just family) \mathcal{F} is a collection of subsets of \mathbb{Z}_+ which is upwards hereditary, that is, if $F_1 \in \mathcal{F}$ and $F_1 \subset F_2$ then $F_2 \in \mathcal{F}$. A family \mathcal{F} is proper if $\mathbb{N} \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$. If \mathcal{F}_1 and \mathcal{F}_2 are families, then we define

$$\mathcal{F}_1 \cdot \mathcal{F}_2 = \{ F_1 \cap F_2 : F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2 \}.$$

If \mathcal{F} is a family, the dual family of \mathcal{F}, denoted by \mathcal{F}^\perp, is the family

$$\{ F \subset \mathbb{N} : F \cap F' \neq \emptyset, \forall F' \in \mathcal{F} \}.$$

We denote by \mathcal{F}_{inf} the family of infinite subsets of \mathbb{N}. The dual family of \mathcal{F}_{inf} is just the collection of co-finite subsets of \mathbb{Z}_+, denoted by \mathcal{F}_{cf}. A family \mathcal{F} is called full if it is proper and $\mathcal{F} \cdot \mathcal{F}^\perp \subset \mathcal{F}_{\text{inf}}$.

For a sequence $\{p_i\}_{i=1}^\infty$ in \mathbb{N}, define the finite sums of $\{p_i\}_{i=1}^\infty$ as

$$FS\{p_i\}_{i=1}^\infty = \left\{ \sum_{i \in \alpha} p_i : \alpha \text{ is a non-empty finite subset of } \mathbb{N} \right\}.$$

A subset F of \mathbb{Z}_+ is called an IP-set if there exists a sequence $\{p_i\}_{i=1}^\infty$ in \mathbb{N} such that $FS\{p_i\}_{i=1}^\infty \subset F$. We denote by \mathcal{F}_{ip} the family of all IP-sets.

A subset F of \mathbb{Z}_+ is called thick if it contains arbitrarily long runs of positive integers, i.e., for every $n \in \mathbb{N}$ there exists some $a_n \in \mathbb{Z}_+$ such that $\{a_n, a_n + 1, \ldots, a_n + n\} \subset F$; syndetic if it has bounded gaps, i.e., there is $N \in \mathbb{N}$ such that $[n, n+N] \cap F \neq \emptyset$ for every $n \in \mathbb{Z}_+$. The families of all thick sets and syndetic sets are denoted by \mathcal{F}_t and \mathcal{F}_s, respectively. It is easy to see that $\mathcal{F}_s = \mathcal{F}_t$.

Let (X, T) be a dynamical system. For $x \in X$ and a non-empty subset U of X, we define the entering time set of x into U as

$$N(x, U) = \{ n \in \mathbb{Z}_+ : T^n x \in U \}.$$

If U is a neighborhood of x, then we usually call $N(x, U)$ the return time set of x into U. Clearly, a point x is recurrent if and only if for every open neighborhood U of x, the return time set $N(x, U)$ is infinite. In general, we can define recurrence with respect to a Furstenberg family.

Definition 2.2. Let (X, T) be a dynamical system and \mathcal{F} be a Furstenberg family. A point $x \in X$ is said to be \mathcal{F}-recurrent if for every open neighborhood U of x, $N(x, U) \in \mathcal{F}$.

It is well known that the following lemma holds (see, e.g., [2, 26]).

Lemma 2.3. Let (X, T) be a dynamical system and $x \in X$. Then
(1) \(x \) is a minimal point if and only if it is an \(\mathcal{F}_s \)-recurrent point;

(2) \(x \) is a recurrent point if and only if it is an \(\mathcal{F}_i \)-recurrent point.

For two non-empty subsets \(U \) and \(V \) of \(X \), we define the hitting time set of \(U \) and \(V \) as

\[
N(U,V) = \{ n \in \mathbb{Z}_+: T^n U \cap V \neq \emptyset \}.
\]

If \(U \) is a non-empty open subset of \(X \), then we usually call \(N(U,U) \) the return time set of \(U \). Clearly, a dynamical system \((X,T)\) is transitive (resp. strongly mixing) if and only if for any two non-empty open subsets \(U, V \) of \(X \), the hitting time set \(N(U,V) \) is infinite (resp. co-finite).

Definition 2.4. Let \((X,T)\) be a dynamical system and \(\mathcal{F} \) be a family. We say that \((X,T)\) is

1. \(\mathcal{F} \)-transitive if for any two non-empty open subsets \(U, V \) of \(X \), \(N(U,V) \in \mathcal{F} \);
2. \(\mathcal{F} \)-mixing if the product system \((X \times X, T \times T)\) is \(\mathcal{F} \)-transitive.

Theorem 2.5 ([25]). Let \((X,T)\) be a dynamical system. Then \((X,T)\) is weakly mixing if and only if it is \(\mathcal{F}_i \)-transitive.

3. Li-Yorke Chaos

The mathematical terminology “chaos” was first introduced in 1975 by Li and Yorke to describe the complex behavior of trajectories. It turns out that it is the common feature of all known definitions of chaos.

3.1. Li-Yorke Chaos and its Relation with Topological Entropy

Following the idea in [69], we usually define the Li-Yorke chaos as follows.

Definition 3.1. Let \((X,T)\) be a dynamical system. A pair \((x,y) \in X \times X \) is called scrambled if

\[
\liminf_{n \to \infty} d(T^n x, T^n y) = 0 \quad \text{and} \quad \limsup_{n \to \infty} d(T^n x, T^n y) > 0,
\]

that is, \((x,y) \) is proximal but not asymptotic. A subset \(C \) of \(X \) is called scrambled if any two distinct points \(x, y \in C \) form a scrambled pair. The dynamical system \((X,T)\) is called Li-Yorke chaotic if there is an uncountable scrambled set in \(X \).

It is worth to notice that the terminology “scrambled set” was introduced in 1983 by Sm"ita in [95]. Note that we should assume that a scrambled set contains at least two points. We will keep this convention throughout this paper.

In [69], Li and Yorke showed that

Theorem 3.2. If a continuous map \(f : [0,1] \to [0,1] \) has a periodic point of period 3, then it is Li-Yorke chaotic.

Definition 3.3. Let \((X,T)\) be a dynamical system. For a given positive number \(\delta > 0 \), a pair \((x,y) \in X \times X \) is called \(\delta \)-scrambled if

\[
\liminf_{n \to \infty} d(T^n x, T^n y) = 0 \quad \text{and} \quad \limsup_{n \to \infty} d(T^n x, T^n y) > \delta.
\]

A subset \(C \) of \(X \) is \(\delta \)-scrambled if any two distinct points \(x, y \) in \(C \) form a \(\delta \)-scrambled pair. The dynamical system \((X,T)\) is called Li-Yorke \(\delta \)-chaotic, if there exists an uncountable \(\delta \)-scrambled set in \(X \).

Note that the Auslander-Floyd system [7] is Li-Yorke chaotic, but for any \(\delta > 0 \) there is no uncountable \(\delta \)-scrambled sets.
In [51] Janková and Smítal showed that if a continuous map \(f : [0, 1] \to [0, 1] \) has positive topological entropy then there exists a perfect \(\delta \)-scrambled set for some \(\delta > 0 \). A natural question is that whether there exists a Li-Yorke chaotic map with zero topological entropy. This was shown, independently, by Xiong [106] and Smítal [96] in 1986.

Theorem 3.4. There exists a continuous map \(f : [0, 1] \to [0, 1] \), which is Li-Yorke chaotic but has zero topological entropy.

In 1991, using Mycielski Theorem 2.1, Iwanik [50] showed that every weakly mixing system is Li-Yorke chaotic.

Theorem 3.5 ([50]). If a non-trivial dynamical system \((X, T)\) is weakly mixing, then there exists a dense Mycielski \(\delta \)-scrambled subset of \(X \) for some \(\delta > 0 \).

As already mentioned above, for interval maps positive topological entropy implies Li-Yorke chaos. It used to be a long-standing open problem whether this also holds for general topological dynamical systems. In 2002, Blanchard, Glasner, Kolyada and Maass gave a positive answer by using ergodic theory method.

Theorem 3.6 ([15]). If a dynamical system \((X, T)\) has positive topological entropy, then there exists a Mycielski \(\delta \)-scrambled set for some \(\delta > 0 \).

In fact we know from the proof of Theorem 3.6 that if \((X, T)\) has an ergodic invariant measure which is not measurable distal then same conclusion holds. In 2007, Kerr and Li [53] gave a new proof of Theorem 3.6 by using combinatorial method. First we recall the definition of IE-tuples.

Definition 3.7. Let \((X, T)\) be a topological dynamical system and \(k \geq 2 \). For a tuple \(\tilde{A} = (A_1, \ldots, A_k) \) of subsets of \(X \), we say that a subset \(J \) of \(\mathbb{Z}_+ \) is an independence set for \(\tilde{A} \) if for any non-empty finite subset \(I \) of \(J \), we have

\[
\bigcap_{i \in I} T^{-i}A_{s(i)} \neq \emptyset
\]

for any \(s \in \{1, \ldots, k\}^I \).

A tuple \(\tilde{x} = (x_1, \ldots, x_k) \in X^k \) is called an IE-tuple if for every product neighborhood \(U_1 \times \cdots \times U_k \) of \(\tilde{x} \) the tuple \((U_1, \ldots, U_k)\) has an independence set of positive density.

The following theorem characterizes positive topological entropy and has many applications. It was first proved by Huang and Ye using the notion of interpolating sets [49], and we state it here using the notion of independence by Kerr and Li [53]. Recall for a dynamical system \((X, T)\), a tuple \((x_1, \ldots, x_k) \in X^k \) is an entropy tuple if \(x_i \neq x_j \) for \(i \neq j \) and for any disjoint closed neighborhoods \(V_j \) of \(x_j \), the open cover \(\{V_1^c, \ldots, V_k^c\} \) has positive entropy. When \(k = 2 \) we call it an entropy pair. A subset \(A \) of \(X \) is an entropy set if any tuple of points in \(A \) with pairwise different coordinates is an entropy tuple.

Theorem 3.8 ([49, 53]). Let \((X, T)\) be a dynamical system. Then a tuple on \(X \) is an entropy tuple if and only if it is a non-diagonal IE-tuple. In particular, the system \((X, T)\) has zero topological entropy if and only if every IE-pair is diagonal (i.e. all of its entries are equal).

By developing some deep combinatorial tools Kerr and Li showed

Theorem 3.9 ([53]). Let \((X, T)\) be a dynamical system. Suppose that \(k \geq 2 \) and \(\tilde{x} = (x_1, \ldots, x_k) \) is a non-diagonal IE-tuple. For each \(1 \leq j \leq k \), let \(A_j \) be a neighborhood of \(x_j \). Then there exists a Cantor set \(Z_j \subset A_j \) for each \(j = 1, \ldots, k \) such that the following hold:
(1) every tuple of finite points in $Z := \bigcup_j Z_j$ is an IE-tuple;
(2) for all $m \in \mathbb{N}$, distinct $y_1, \ldots, y_m \in Z$ and $y'_1, \ldots, y'_m \in Z$ one has
\[
\liminf_{n \to \infty} \max_{1 \leq i \leq m} d(T^n y_i, y'_i) = 0.
\]
In particular, Z is δ-scrambled for some $\delta > 0$.

Recently, Kerr and Li showed that Theorem 3.9 also holds for sofic group actions (see [54, Corollary 8.4]).

3.2. Completely scrambled systems and invariant scrambled sets.

Definition 3.10. We say that a dynamical system (X, T) is **completely scrambled** if the whole space X is scrambled.

It should be noticed that for any $\delta > 0$, the whole space can not be δ-scrambled [18].

Recall that a dynamical system (X, T) is proximal if any two points in X form a proximal pair. Clearly, every completely scrambled system is proximal. We have the following characterization of proximal systems.

Theorem 3.11 ([42, 6]). A dynamical system (X, T) is proximal if and only if it has a fixed point which is the unique minimal point in X.

In 1997, Mai [73] showed that there are some completely scrambled systems on non-compact spaces.

Theorem 3.12. Let X be a metric space uniformly homeomorphic to the n-dimensional open cube $I^n = (0, 1)^n$, $n \geq 2$. Then there exists a homeomorphism $f : X \to X$ such that the whole space X is a scrambled set of X.

In 2001, Huang and Ye [45] showed that on some compact spaces there are also some completely scrambled systems.

Theorem 3.13. There are “many” compacta admitting completely scrambled homeomorphisms, which include some countable compacta, the Cantor set and continua of arbitrary dimension.

Huang and Ye also mentioned in [45] that an example of completely scrambled transitive homeomorphism is a consequence of construction of uniformly rigid proximal systems by Katznelson and Weiss [52]. Recall that a dynamical system (X, T) is uniformly rigid if
\[
\liminf_{n \to \infty} \sup_{x \in X} d(T^n(x), x) = 0.
\]

Later in [46], they showed that every almost equicontinuous but not minimal system has a completely scrambled factor. These examples are not weakly mixing, so the existence of completely scrambled weakly mixing homeomorphism is left open in [45]. Recently, Forýs et al. in [24] constructed two kinds of completely scrambled systems which are weakly mixing, proximal and uniformly rigid. The first possible approach is derived from results of Akin and Glasner [4] by a combination of abstract arguments. The second method is obtained by modifying the construction of Katznelson and Weiss from [52]. More precisely, we have the following result.

Theorem 3.14 ([24]). There are completely scrambled systems which are weakly mixing, proximal and uniformly rigid.

On the other hand, Blanchard, Host and Ruette [16] proved that any positive topological entropy system can not be completely scrambled by showing that there are “many” non-diagonal asymptotic pairs in any dynamical system with positive topological entropy.
Theorem 3.15 ([16]). *Let \((X, T)\) be a dynamical system and \(\mu\) be an ergodic invariant measure on \((X, T)\) with positive entropy. Then for \(\mu\)-a.e. \(x \in X\) there exists a point \(y \in X \setminus \{x\}\) such that \((x, y)\) is asymptotic.*

Recently in [44], Huang, Xu and Yi generalized Theorem 3.15 to positive entropy \(G\)-systems for certain countable, discrete, infinite left-orderable amenable groups \(G\). We remark that the following question remains open.

Problem 1. *Let \(T\) be a homeomorphism on a compact metric space \(X\). If for any two distinct points \(x, y \in X\), \((x, y)\) is either Li-Yorke scrambled for \(T\) or Li-Yorke scrambled for \(T^{-1}\), does \(T\) have zero topological entropy?*

Let \(S\) be a scrambled set of a dynamical system \((X, T)\). It is easy to see that for any \(n \geq 1\), \(T^nS\) is also a scrambled set of \((X, T)\). It is interesting to consider that whether a scrambled set may be invariant under \(T\). Since the space \(X\) is compact, if \((x, f(x))\) is scrambled for some \(x \in X\), then there is a fixed point in \(X\). It is shown in [22] that

Theorem 3.16. *Let \(f : [0, 1] \to [0, 1]\) be a continuous map. Then \(f\) has positive topological entropy if and only if \(f^n\) has an uncountable invariant scrambled set for some \(n > 0\).*

In 2009, Yuan and Lü proved that

Theorem 3.17 ([112]). *Let \((X, T)\) be a non-trivial transitive system. If \((X, T)\) has a fixed point, then there exists a dense Mycielski subset \(K\) of \(X\) such that \(K\) is an invariant scrambled set.*

In 2010, Balibrea, Guirao and Oprocha studied invariant \(\delta\)-scrambled sets and showed that

Theorem 3.18 ([9]). *Let \((X, T)\) be a non-trivial strongly mixing system. If \((X, T)\) has a fixed point, then there exist \(\delta > 0\) and a dense Mycielski subset \(S\) of \(X\) such that \(S\) is an invariant \(\delta\)-scrambled set.*

They also conjectured in [9] that there exists a weakly mixing system which has a fixed point but without invariant \(\delta\)-scrambled sets. The authors in [24] found that the existence of invariant \(\delta\)-scrambled sets is relative to the property of uniform rigidity. It is shown in [24] that a necessary condition for a dynamical system possessing invariant \(\delta\)-scrambled sets for some \(\delta > 0\) is not uniformly rigid, and this condition (with a fixed point) is also sufficient for transitive systems.

Theorem 3.19 ([24]). *Let \((X, T)\) be a non-trivial transitive system. Then \((X, T)\) contains a dense Mycielski invariant \(\delta\)-scrambled set for some \(\delta > 0\) if and only if it has a fixed point and is not uniformly rigid.*

Combining Theorems 3.14 and 3.19, the above mentioned conjecture from [9] has an affirmative answer. This is because by Theorem 3.14 there exist weakly mixing, proximal and uniformly rigid systems which have a fixed point, but by Theorem 3.19 they do not have any invariant \(\delta\)-scrambled set.

As far as we know, whenever a dynamical system has been shown to be Li-Yorke chaotic the proof implies the existence of a Cantor or Mycielski scrambled set. This naturally arises the following problem:

Problem 2. *If a dynamical system is Li-Yorke chaotic, does there exist a Cantor scrambled set?*

Although we do not known the answer of Problem 2, there are severe restrictions on the Li-Yorke chaotic dynamical systems without a Cantor scrambled set, if they exist (see [18]). On the other hand, we have
Theorem 3.20 ([18]). If a dynamical system \((X, T)\) is Li-Yorke \(\delta\)-chaotic for some \(\delta > 0\), then it does have some Cantor \(\delta\)-scrambled set.

The key point is that the collection of \(\delta\)-scrambled pairs is a \(G_\delta\) subset of \(X \times X\), then one can apply the Mycielski Theorem to get a Cantor \(\delta\)-scrambled set. But in general the collection of scrambled pairs is a Borel set of \(X \times X\) but may be not \(G_\delta\). By [99, Example 3.6] there exists a dynamical system such that the collection of scrambled pairs is dense in \(X \times X\) but not residual.

4. Sensitive Dependence on Initial Conditions

We say that a dynamical system \((X, T)\) has sensitive dependence on initial conditions (or just sensitive) if there exists some \(\delta > 0\) such that for each \(x \in X\) and each \(\varepsilon > 0\) there is \(y \in X\) with \(d(x, y) < \varepsilon\) and \(n \in \mathbb{N}\) such that \(d(T^n x, T^n y) > \delta\). The initial idea goes back at least to Lorentz [72] and the phrase—sensitive dependence on initial conditions—was used by Ruelle [88] to indicate some exponential rate of divergence of orbits of nearby points. As far as we know the first to formulate the sensitivity was Guckenheimer, [35], in his study on maps of the interval (he required the condition to hold for a set of positive Lebesgue measure). The precise expression of sensitivity in the above form was introduced by Auslander and Yorke in [8].

4.1. Equicontinuity and Sensitivity. The opposite side of sensitivity is the notion of equicontinuity.

Definition 4.1. A dynamical system \((X, T)\) is called equicontinuous if for every \(\varepsilon > 0\) there exists some \(\delta > 0\) such that whenever \(x, y \in X\) with \(d(x, y) < \delta\), \(d(T^n x, T^n y) < \varepsilon\) for \(n = 0, 1, 2, \ldots\), that is the family of maps \(\{T^n: n \in \mathbb{Z}_+\}\) is uniformly equicontinuous.

Equicontinuous systems have simple dynamical behaviors. It is well known that a dynamical system \((X, T)\) with \(T\) being surjective is equicontinuous if and only if there exists a compatible metric \(\rho\) on \(X\) such that \(T\) acts on \(X\) as an isometry, i.e., \(\rho(Tx, Ty) = \rho(x, y)\) for any \(x, y \in X\). See [74] for the structure of equicontinuous systems.

We have the following dichotomy result for minimal systems.

Theorem 4.2 ([8]). A minimal system is either equicontinuous or sensitive.

Equicontinuity can be localized in an obvious way.

Definition 4.3. Let \((X, T)\) be a dynamical system. A point \(x \in X\) is called an equicontinuous point if for any \(\varepsilon > 0\), there exists some \(\delta > 0\) such that \(d(x, y) < \delta\) implies \(d(T^n x, T^n y) < \varepsilon\) for all \(n \in \mathbb{N}\). A transitive system is called almost equicontinuous if there exists some equicontinuous point.

We have the following dichotomy result for transitive systems.

Theorem 4.4 ([3, 29]). Let \((X, T)\) be a transitive system. Then either

1. \((X, T)\) is almost equicontinuous, in this case the collection of equicontinuous points coincides with the collection of transitive points; or
2. \((X, T)\) is sensitive.

It is interesting that almost equicontinuity is closely related to the uniform rigid property which was introduced by Glasner and Maon in [32] as a topological analogue of rigidity in ergodic theory.

Theorem 4.5 ([29]). Let \((X, T)\) be a transitive system. Then it is uniformly rigid if and only if it is a factor of an almost equicontinuous system. In particular, every almost equicontinuous system is uniformly rigid.
It is shown in [32] that every uniformly rigid system has zero topological entropy. Then by Theorem 4.5 every almost equicontinuous system also has zero topological entropy.

4.2. \textit{n}-sensitivity and sensitive sets. Among other things, Xiong [107] introduced a new notion called \textit{n}\textendash sensitivity, which says roughly that in each non-empty open subset there are \textit{n} distinct points whose trajectories are apart from (at least for one common moment) a given positive constant pairwise.

\textbf{Definition 4.6.} Let \((X,T)\) be a dynamical system and \(n \geq 2\). The system \((X,T)\) is called \textit{n}-sensitive, if there exists some \(\delta > 0\) such that for any \(x \in X\) and \(\varepsilon > 0\) there are \(x_1, x_2, \ldots, x_n \in B(x, \varepsilon)\) and \(k \in \mathbb{N}\) satisfying

\[
\min_{1 \leq i < j \leq n} d(T^k x_i, T^k x_j) > \delta.
\]

\textbf{Proposition 4.7 ([107]).} If a dynamical system \((X,T)\) is weakly mixing, then it is \textit{n}-sensitive for all \(n \geq 2\). Moreover, if a dynamical system \((X,T)\) on a locally connected space \(X\) is sensitive, then it is \textit{n}-sensitive for all \(n \geq 2\).

In [94], Shao, Ye and Zhang studied the properties of \textit{n}-sensitivity for minimal systems, and showed that \textit{n}-sensitivity and \((n+1)\)-sensitivity are essentially different.

\textbf{Theorem 4.8 ([94]).} For every \(n \geq 2\), there exists a minimal system \((X,T)\) which is \textit{n}-sensitive but not \((n+1)\)-sensitive.

Recently, using ideas and results from local entropy theory, Ye and Zhang [111] and Huang, Lu and Ye [42] developed a theory of sensitive sets, which measures the “degree” of sensitivity both in the topological and the measure-theoretical setting.

\textbf{Definition 4.9.} Let \((X,T)\) be a dynamical system. A subset \(A\) of \(X\) is sensitive if for any \(n \geq 2\), any \(n\) distinct points \(x_1, x_2, \ldots, x_n\) in \(A\), any neighborhood \(U_i\) of \(x_i\), \(i = 1, 2, \ldots, n\), and any non-empty open subset \(U\) of \(X\) there exist \(k \in \mathbb{N}\) and \(y_1 \in U\) such that \(T^k(y_1) \in U_i\) for \(i = 1, 2, \ldots, n\).

It is shown in [111] that a transitive system is \textit{n}-sensitive if and only if there exists a sensitive set with cardinality \(n\). Moreover, a dynamical system is weakly mixing if and only if the whole space \(X\) is sensitive.

\textbf{Theorem 4.10 ([111]).} If a dynamical system is transitive, then every entropy set is also a sensitive set. This implies that if a transitive system has positive topological entropy, then there exists an uncountable sensitive set.

The number of minimal subsets is related to the cardinality of sensitive sets. For example, it was shown in [111] that if a transitive system has a dense set of minimal points but is not minimal, then there exists an infinite sensitive set. Moreover, if there are uncountable pairwise disjoint minimal subsets, then there exists an uncountable sensitive set.

In 2011, Huang, Lu and Ye got a fine structure of sensitive sets in minimal systems.

\textbf{Theorem 4.11 ([42]).} Let \((X,T)\) be a minimal dynamical system and \(\pi : (X,T) \rightarrow (Y,S)\) be the factor map to the maximal equicontinuous factor of \((X,T)\). Then

(1) each sensitive set of \((X,T)\) is contained in some \(\pi^{-1}(y)\) for some \(y \in Y\);
(2) for each \(y \in Y\), \(\pi^{-1}(y)\) is a sensitive set of \((X,T)\).

Consequently, \((X,T)\) is \textit{n}-sensitive, not \((n+1)\)-sensitive, if and only if \(\max_{y \in Y} \#(\pi^{-1}(y)) = n\).
4.3. **Li-Yorke sensitivity.** A concept that combines sensitivity and Li-Yorke δ-scrambled pairs was proposed by Akin and Kolyada in [6], which is called Li-Yorke sensitivity.

Definition 4.12. A dynamical system (X, T) is called **Li-Yorke sensitive** if there exists some $\delta > 0$ such that for any $x \in X$ and $\epsilon > 0$, there is $y \in X$ satisfying $d(x, y) < \epsilon$ such that

$$\liminf_{n \to \infty} d(T^n x, T^n y) = 0 \quad \text{and} \quad \limsup_{n \to \infty} d(T^n x, T^n y) > \delta.$$

Let (X, T) be a dynamical system and $x \in X$. The **proximal cell** of x is the set $\{y \in X : (x, y) \text{is proximal}\}$. First, it was proved in [55] that for a weakly mixing (X, T) the set of points x at which the proximal cell is residual in X is itself residual in X. Later it was proved by Furstenberg in [26] that the proximal cell of every point is residual, provided that the system is minimal and weakly mixing. Finally, Akin and Kolyada proved in [6] that in any weakly mixing system the proximal cell of every point is residual. Note that the authors in [43] got more about the structure of the proximal cells of F-mixing systems, where F is an Furstenberg family.

In [6], Akin and Kolyada also proved that

Theorem 4.13 (6)). If a non-trivial dynamical system (X, T) is weakly mixing then it is Li-Yorke sensitive.

See a survey paper [56] for more results about Li-Yorke sensitivity and its relation to other concepts of chaos. But the following question remains open.

Problem 3. Are all Li-Yorke sensitive systems Li-Yorke chaotic?

4.4. **Mean equicontinuity and mean sensitivity.**

Definition 4.14. A dynamical system (X, T) is called **mean equicontinuous** if for every $\epsilon > 0$, there exists some $\delta > 0$ such that whenever $x, y \in X$ with $d(x, y) < \delta$,

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d(T^i x, T^i y) < \epsilon.$$

This definition is equivalent to the notion of mean-L-stability which was first introduced by Fomin [23]. It is an open question if every ergodic invariant measure on a mean-L-stable system has discrete spectrum [91]. The authors in [65] firstly gave an affirmative answer to this question. See [27] for another approach to this question.

Theorem 4.15 ([65]). If a dynamical system (X, T) is mean equicontinuous, then every ergodic invariant measure on (X, T) has discrete spectrum and hence the topological entropy of (X, T) is zero.

Similarly, we can define the local version and the opposite side of mean equicontinuity.

Definition 4.16. Let (X, T) be a dynamical system. A point $x \in X$ is called **mean equicontinuous** if for every $\epsilon > 0$, there exists some $\delta > 0$ such that for every $y \in X$ with $d(x, y) < \delta$,

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d(T^i x, T^i y) < \epsilon.$$

A transitive system is called **almost mean equicontinuous** if there is at least one mean equicontinuous point.
Definition 4.17. A dynamical system \((X, T)\) is called mean sensitive if there exists some \(\delta > 0\) such that for every \(x \in X\) and every neighborhood \(U\) of \(x\), there exists \(y \in U\) and \(n \in \mathbb{N}\) such that
\[
\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d(T^i x, T^i y) > \delta.
\]

We have the following dichotomy for transitive systems and minimal systems.

Theorem 4.18 \(([65])\). If a dynamical system \((X, T)\) is transitive, then \((X, T)\) is either almost mean equicontinuous or mean sensitive. In particular, if \((X, T)\) is a minimal system, then \((X, T)\) is either mean equicontinuous or mean sensitive.

Recall that an almost equicontinuous system is uniformly rigid and thus has zero topological entropy. The following Theorem 4.19 shows that an almost mean equicontinuous system behaves quite differently.

Theorem 4.19 \(([65])\). In the full shift \((\Sigma_2, \sigma)\), every minimal subshift \((Y, \sigma)\) is contained in an almost mean equicontinuous subshift \((X, \sigma)\).

Since it is well-known that there are many minimal subshifts of \((\Sigma_2, \sigma)\) with positive topological entropy, an immediate corollary of Theorem 4.19 is the following result.

Corollary 4.20. There exist many almost mean equicontinuous systems which have positive topological entropy.

Globally speaking a mean equicontinuous system is ‘simple’, since it is a Banach proximal extension of an equicontinuous system and each of its ergodic measures has discrete spectrum. Unfortunately, the local version does not behave so well, as Theorem 4.19 shows. We will introduce the notion of Banach mean equicontinuity, whose local version has the better behavior that we are looking for.

Let \((X, T)\) be a dynamical system. We say that \((X, T)\) is Banach mean equicontinuous if for every \(\varepsilon > 0\), there exists some \(\delta > 0\) such that whenever \(x, y \in X\) with \(d(x, y) < \delta\),
\[
\limsup_{M \to \infty} \frac{1}{M-N} \sum_{i=N}^{M-1} d(T^i x, T^i y) < \varepsilon.
\]

A point \(x \in X\) is called Banach mean equicontinuous if for every \(\varepsilon > 0\), there exists some \(\delta > 0\) such that for every \(y \in B(x, \delta)\),
\[
\limsup_{M \to \infty} \frac{1}{M-N} \sum_{i=N}^{M-1} d(T^i x, T^i y) < \varepsilon.
\]

We say that a transitive system \((X, T)\) is almost Banach mean equicontinuous if there exists a transitive point which is Banach mean equicontinuous.

A dynamical system \((X, T)\) is Banach mean sensitive if there exists some \(\delta > 0\) such that for every \(x \in X\) and every \(\varepsilon > 0\) there is \(y \in B(x, \varepsilon)\) satisfying
\[
\limsup_{M \to \infty} \frac{1}{M-N} \sum_{i=N}^{M-1} d(T^i x, T^i y) > \delta.
\]

We also have the following dichotomy for transitive systems and minimal systems.

Theorem 4.21 \(([65])\). If a dynamical system \((X, T)\) is transitive, then \((X, T)\) is either almost Banach mean equicontinuous or Banach mean sensitive. If \((X, T)\) is a minimal system, then \((X, T)\) is either Banach mean equicontinuous or Banach mean sensitive.

Theorem 4.22 \(([65])\). Let \((X, T)\) be a transitive system. If the topological entropy of \((X, T)\) is positive, then \((X, T)\) is Banach mean sensitive.
Combining Theorems 4.21 and 4.22, we have the following corollary.

Corollary 4.23. If \((X, T)\) is almost Banach mean equicontinuous then the topological entropy of \((X, T)\) is zero.

By Corollary 4.20, there are many almost mean equicontinuous systems which have positive entropy. Then by Corollary 4.23 they are not almost Banach mean equicontinuous. But the following question is still open.

Problem 4. Is there a minimal system which is mean equicontinuous but not Banach mean equicontinuous?

4.5. Other generalization of sensitivity.

Note that sensitivity can be generalized in other ways, see [76, 104, 38] for example.

Let \((X, T)\) be a dynamical system. For \(\delta > 0\) and a non-empty open subset \(U\), let

\[
N(\delta, U) = \{ n \in \mathbb{N} : \exists x, y \in U \text{ with } d(T^n x, T^n y) > \delta \} = \{ n \in \mathbb{N} : \text{diam}(T^n(U)) > \delta \}.
\]

Let \(\mathcal{F}\) be a Furstenberg family. According to Moothathu [76], we say that a dynamical system \((X, T)\) is \(\mathcal{F}\)-sensitive if there exists some \(\delta > 0\) such that for any non-empty open subset \(U\) of \(X\), \(N(\delta, U) \in \mathcal{F}\). \(\mathcal{F}\)-sensitivity for some special families were discussed in [102, 27, 71, 67].

A dynamical system \((X, T)\) is called multi-sensitive if there exists some \(\delta > 0\) such that for any finite open non-empty subsets \(U_1, \ldots, U_n\) of \(X\),

\[
\bigcap_{i=1}^{n} N(\delta, U_i) \neq \emptyset.
\]

In [38] among other things, Huang, Kolyada and Zhang proved that for a minimal system thick sensitivity is equivalent to multi-sensitivity. Moreover, they showed the following dichotomy for minimal systems.

Theorem 4.24. Let \((X, T)\) be a minimal system. Then \((X, T)\) is multi-sensitive if and only if it is not an almost one-to-one extension of its maximal equicontinuous factor.

Results similar to Theorem 4.24 for other families will be appeared in [110] by Ye and Yu.

5. Chaos in transitive systems

In this section, we discuss various kinds of chaos in transitive systems.

5.1. Auslander-Yorke chaos.

In [8] Auslander and Yorke defined a kind of chaos as “topological transitivity plus pointwise instability”. This leads to the following definition of Auslander-Yorke chaos.

Definition 5.1. A dynamical system \((X, T)\) is called Auslander-Yorke chaotic if it both transitive and sensitive.

Due to Ruelle and Takens’ work on turbulence [89], Auslander-Yorke chaos was also called Ruelle-Takens chaos (see [107] for example). It should be noticed that there is no implication relation between Li-Yorke chaos and Auslander-Yorke chaos. For example, any non-equicontinuous distal minimal system is sensitive, so it is Auslander-Yorke chaotic, but it has no Li-Yorke scrambled pairs. On the other hand, there are non-periodic transitive systems with a fixed point that are not sensitive [4]; by Theorem 5.6 they are Li-Yorke chaotic.

The work of Wiggins [105] leads to the following definition.
Definition 5.2. A dynamical system \((X, T)\) is called Wiggins chaotic if there exists a subsystem \((Y, T)\) of \((X, T)\) such that \((Y, T)\) is both transitive and sensitive.

In [90], Ruette investigated transitive and sensitive subsystems for interval maps. She showed that

Theorem 5.3.
(1) For a transitive map \(f : [0, 1] \to [0, 1]\), if it is Wiggins chaotic then it is also Li-Yorke chaotic.
(2) There exists a continuous map \(f : [0, 1] \to [0, 1]\) of zero topological entropy which is Wiggins chaotic.
(3) There exists a Li-Yorke chaotic continuous map \(f : [0, 1] \to [0, 1]\) which is not Wiggins chaotic.

5.2. **Devaney chaos.** In his book [19], Devaney proposed a new kind of chaos, which is usually called Devaney chaos.

Definition 5.4. A dynamical system \((X, T)\) is called Devaney chaotic if it satisfies the following three properties:

1. \((X, T)\) is transitive;
2. \((X, T)\) has sensitive dependence on initial conditions;
3. the set of periodic points of \((X, T)\) is dense in \(X\).

Sensitive dependence is widely understood as the central idea in Devaney chaos, but it is implied by transitivity and density of periodic points, see [11] or [29]. In 1993, S. Li [68] showed that

Theorem 5.5. Let \(f : [0, 1] \to [0, 1]\) be a continuous map. Then \(f\) has positive topological entropy if and only if there exists a Devaney chaotic subsystem.

In 1996, Akin, Auslander and Berg [3] discussed in details when a transitive map is sensitive. An important question is that: does Devaney chaos imply Li-Yorke chaos? In 2002, Huang and Ye gave a positive answer to this long-standing open problem.

Theorem 5.6 ([46]). Let \((X, T)\) be a non-periodic transitive system. If there exists a periodic point, then it is Li-Yorke chaos. Particularly, Devaney chaos implies Li-Yorke chaos.

A key result in the proof of Theorem 5.6 is called Huang-Ye equivalences in [6]. To state this result, we need some notations.

For every \(\varepsilon > 0\), let \(V_{\varepsilon} = \{(x, y) \in X \times X : d(x, y) \leq \varepsilon\}\) and

\[
\text{Asym}_{\varepsilon}(T) = \bigcup_{n=0}^{\infty} \left(\bigcap_{k=n}^{\infty} T^{-k} V_{\varepsilon} \right).
\]

For every \(x \in X\), let

\[
\text{Asym}_{\varepsilon}(T)(x) = \{y \in X : (x, y) \in \text{Asym}_{\varepsilon}(T)\}.
\]

Theorem 5.7 (Huang-Ye Equivalences). For a dynamical system \((X, T)\) the following conditions are equivalent.

1. \((X, T)\) is sensitive.
2. There exists \(\varepsilon > 0\) such that \(\text{Asym}_{\varepsilon}(T)\) is a first category subset of \(X \times X\).
3. There exists \(\varepsilon > 0\) such that for every \(x \in X\), \(\text{Asym}_{\varepsilon}(T)(x)\) is a first category subset of \(X\).
4. There exists \(\varepsilon > 0\) such that for every \(x \in X\), \(x \in X \setminus \text{Asym}_{\varepsilon}(T)(x)\).
(5) There exists $\varepsilon > 0$ such that the set
\[
\{(x, y) \in X \times X : \limsup_{n \to \infty} d(T^n x, T^n y) > \varepsilon\}
\]
is dense in $X \times X$.

Note that the first part of Theorem 5.6 does not involve the sensitive property directly. In 2004, Mai proved that Devaney chaos implies the existence of δ-scrambled sets for some $\delta > 0$. Using a method of direct construction, he showed that

Theorem 5.8 ([75]). Let (X, T) be a non-periodic transitive system. If there exists a periodic point of period p, then there exist Cantor sets $C_1 \subset C_2 \subset \cdots$ in X consisting of transitive points such that

1. each C_n is a synchronously proximal set, that is $\liminf_{k \to \infty} \text{diam}(T^k C_n) = 0$;
2. $S := \bigcup_n C_n$ is scrambled, and $\bigcup_{i=0}^{p-1} T^i S$ is dense in X;
3. furthermore, if (X, T) is sensitive, then S is δ-scrambled for some $\delta > 0$.

5.3. Multivariant Li-Yorke chaos.

The scrambled set in Li-Yorke chaos only compares the trajectories of two points. It is natural to consider the trajectories of finite points. In 2005, Xiong introduced the following multivariant chaos in the sense of Li-Yorke.

Definition 5.9 ([107]). Let (X, T) be a dynamical system and $n \geq 2$. A tuple $(x_1, x_2, \ldots, x_n) \in X^n$ is called n-scrambled if
\[
\liminf_{k \to \infty} \max_{1 \leq i < j \leq n} d(f^k(x_i), f^k(x_j)) = 0
\]
and
\[
\limsup_{k \to \infty} \min_{1 \leq i < j \leq n} d(f^k(x_i), f^k(x_j)) > \delta > 0.
\]
A subset C of X is called n-scrambled if any pairwise distinct n points in C form an n-scrambled tuple. The dynamical system (X, T) is called Li-Yorke n-chaotic if there exists an uncountable n-scrambled set.

Similarly, if the separated constant δ is uniform for all pairwise distinct n-tuples in C, we can define n-δ-scrambled sets and Li-Yorke n-δ-chaos.

Theorem 5.10 ([107]). Let (X, T) be a non-trivial transitive system. If (X, T) has a fixed point, then there exists a dense Mycielski subset C of X such that C is n-scrambled for all $n \geq 2$.

In 2011, Li proved that there is no 3-scrambled tuples for an interval map with zero topological entropy.

Theorem 5.11 ([58]). Let $f : [0, 1] \to [0, 1]$ be a continuous map. If f has zero topological entropy, then there is no 3-scrambled tuples.

Note that there exists a continuous map $f : [0, 1] \to [0, 1]$, which is Li-Yorke chaotic, but has zero topological entropy (see Theorem 3.4). Then we have the following result, which shows that Li-Yorke 2-chaos and 3-chaos are essentially different.

Corollary 5.12. There exists a Li-Yorke 2-chaotic system which has no 3-scrambled tuples.
5.4. Uniform chaos. Recall that a dynamical system \((X, T)\) is scattering if for any minimal system \((Y, S)\) the product system \((X \times Y, T \times S)\) is transitive. It is not hard to show that every weakly mixing system is scattering. In [46], Huang and Ye also proved that scattering implies Li-Yorke chaos.

Theorem 5.13. If a non-trivial dynamical system \((X, T)\) is scattering, then there is a dense Mycielski scrambled set.

Since every system has a minimal subsystem, for a scattering system \((X, T)\) there exists a subsystem \((Y, S)\) of \((X, T)\) such that \((X \times Y, T \times T)\) is transitive. In 2010, Akin et al. showed that a dynamical system satisfying this property is more complicated than Li-Yorke chaos, and proposed the concept of uniform chaos [5].

Definition 5.14. Let \((X, T)\) be a dynamical system. A subset \(K\) of \(X\) is said to be

1. uniformly recurrent if for every \(\varepsilon > 0\) there exists an \(n \in \mathbb{N}\) with \(d(T^n x, x) < \varepsilon\) for all \(x \in K\);
2. recurrent if every finite subset of \(K\) is uniformly recurrent;
3. uniformly proximal if for every \(\varepsilon > 0\) there exists an \(n \in \mathbb{N}\) with \(\text{diam}(T^n K) < \varepsilon\);
4. proximal if every finite subset of \(K\) is uniformly proximal.

Definition 5.15. Let \((X, T)\) be a dynamical system. A subset \(K \subset X\) is called a uniformly chaotic set if there are Cantor sets \(C_1 \subset C_2 \subset \cdots\) such that

1. for each \(N \in \mathbb{N}\), \(C_N\) is uniformly recurrent;
2. for each \(N \in \mathbb{N}\), \(C_N\) is uniformly proximal;
3. \(K := \bigcup_{n=1}^{\infty} C_n\) is a recurrent subset of \(X\) and also a proximal subset of \(X\).

The system \((X, T)\) is called (densely) uniformly chaotic if it has a (dense) uniformly chaotic subset of \(X\).

By the definition, any uniformly chaotic set is scrambled, then uniform chaos implies Li-Yorke chaos. The following is the main result of [5].

Theorem 5.16. Let \((X, T)\) be a non-trivial dynamical system. If there exists a subsystem \((Y, T)\) of \((X, T)\) such that \((X \times Y, T \times T)\) is transitive, then \((X, T)\) is densely uniformly chaotic.

As a corollary, we can show that many transitive systems are uniformly chaotic. Note that a dynamical system is weakly scattering if its product with any minimal equicontinuous system is transitive.

Corollary 5.17. If \((X, T)\) is a dynamical system without isolated points and satisfies one of the following properties, then it is densely uniformly chaotic:

1. \((X, T)\) is transitive and has a fixed point;
2. \((X, T)\) is totally transitive with a periodic point;
3. \((X, T)\) is scattering;
4. \((X, T)\) is weakly scattering with an equicontinuous minimal subsystem;
5. \((X, T)\) is weakly mixing.

Furthermore, if \((X, T)\) is transitive and has a periodic point of period \(p\), then there is a closed \(T^p\)-invariant subset \(X_0\) of \(X\), such that \((X_0, T^p)\) is densely uniformly chaotic and \(X = \bigcup_{j=0}^{p-1} T^j X_0\); In particular, \((X, T)\) is uniformly chaotic.

Remark 5.18. By Corollary 5.17, Devaney chaos implies uniform chaos.
6. Various types of distributional chaos and its generalization

6.1. Distributional chaos. In [92], Schweizer and Smítal used ideas from probability theory to develop a new definition of chaos, so called distributional chaos. Let \((X, T)\) be a dynamical system. For a pair of points \(x, y \in X\) and a positive integer \(n\), we define a function \(\Phi_{xy}^n\) on the real line by

\[
\Phi_{xy}^n(t) = \frac{1}{n} \# \left\{ 0 \leq i \leq n - 1 : d(T^i x, T^i y) < t \right\},
\]

where \(\#(\cdot)\) denotes the number of elements of a set. Clearly, the function \(\Phi_{xy}^n\) is non-decreasing, has minimal value 0 (since \(\Phi_{xy}^n(t) = 0\) for all \(t \leq 0\)), has maximum value 1 (since \(\Phi_{xy}^n(t) = 1\) for all \(t\) greater then the diameter of \(X\)), and is left continuous. Then \(\Phi_{xy}^n\) is a distribution function whose value at \(t\) may be interpreted as the probability that the distance between the initial segment of length \(n\) of the trajectories of \(x\) and \(y\) is less than \(t\).

We are interested in the asymptotic behavior of the function \(\Phi_{xy}^n\) as \(n\) gets large. To this end, we consider the functions \(\Phi_{xy}^*\) and \(\Phi_{xy}\) defined by

\[
\Phi_{xy}^*(t) = \limsup_{n \to \infty} \Phi_{xy}^n(t) \quad \text{and} \quad \Phi_{xy}(t) = \liminf_{n \to \infty} \Phi_{xy}^n(t).
\]

Then \(\Phi_{xy}^*\) and \(\Phi_{xy}\) are distribution functions with \(\Phi_{xy}(t) \leq \Phi_{xy}^*(t)\) for all \(t\). It follows that \(\Phi_{xy}^*\) is an asymptotic measure of how close \(x\) and \(y\) can come together, while \(\Phi_{xy}\) is an asymptotic measure of their maximum separation. We shall refer to \(\Phi_{xy}^*\) as the upper distribution, and to \(\Phi_{xy}\) as the lower distribution of \(x\) and \(y\).

Definition 6.1. Let \((X, T)\) be a dynamical system. A pair \((x, y) \in X \times X\) is called distributionally scrambled if

1. for every \(t > 0\), \(\Phi_{xy}^*(t) = 1\), and
2. there exists some \(\delta > 0\) such that \(\Phi_{xy}(\delta) = 0\).

A subset \(C\) of \(X\) is called distributionally scrambled if any two distinct points in \(C\) form a distributionally scrambled pair. The dynamical system \((X, T)\) is called distributionally chaotic if there exists an uncountable distributionally scrambled set.

Similarly, if the separated constant \(\delta\) is uniform for all non-diagonal pairs in \(C\), we can define distributionally \(\delta\)-scrambled sets and distributional \(\delta\)-chaos.

According to the definitions, it is clear that any distributionally scrambled pair is scrambled, and then distributional chaos is stronger than Li-Yorke chaos. In [92], Schweizer and Smítal showed that

Theorem 6.2 ([92]). Let \(f: [0, 1] \to [0, 1]\) be a continuous map. Then \(f\) is distributionally chaotic if and only if it has positive topological entropy.

In 1998, Liao and Fan [70] constructed a minimal system with zero topological entropy which is distributionally chaotic. In 2006, Oprocha [80] showed that weak mixing and Devaney chaos do not imply distributional chaos.

In Section 5.3, Li-Yorke chaos is extended to a multivariant version. In fact, it is clear that any kind of chaos defined by scrambled pairs can be extended to multivariant version.

In [100], Tan and Fu showed that distributionally \(n\)-chaotic and \((n + 1)\)-chaos are essentially different.

Theorem 6.3 ([100]). For every \(n \geq 2\), there exists a transitive system which is distributionally \(n\)-chaotic but without any distributionally \((n + 1)\)-scrambled tuples.

In 2013, Li and Oprocha showed that
Theorem 6.4 ([62]). For every \(n \geq 2 \), there exists a dynamical system which is distributionally \(n \)-chaotic but not Li-Yorke \((n+1)\)-chaotic.

Note that the example constructed in the proof of Theorem 6.4 contains \((n+1)\)-scrambled tuples. Then, a natural question is as following.

Problem 5. Is there a dynamical system \((X, T)\) with an uncountable distributionally \(2\)-scrambled set but without any \(3\)-scrambled tuples?

Recently, Doleželová made some progress on the Problem 5, but the original problem is still open. She showed that

Theorem 6.5 ([20]). There exists a dynamical system \(X\) with an infinite extremal distributionally scrambled set but without any scrambled triple.

Theorem 6.6 ([20]). There exists an invariant Mycielski (not closed) set \(X\) in the full shift with an uncountable extremal distributionally \(2\)-scrambled set but without any \(3\)-scrambled tuple.

6.2. The three versions of distributional chaos. Presently, we have at least three different definitions of distributionally scrambled pair (see [98] and [10]). The original distributionally scrambled pair is said to be distributionally scrambled of type 1.

Definition 6.7. A pair \((x, y) \in X \times X\) is called distributionally scrambled of type 2 if

1. for any \(t > 0 \), \(\Phi^{*}_{xy}(t) = 1 \), and
2. there exists some \(\delta > 0 \) such that \(\Phi_{xy}(\delta) < 1 \).

A pair \((x, y) \in X \times X\) is called distributionally scrambled of type 3 if there exists an interval \([a, b] \subset (0, \infty)\) such that \(\Phi_{xy}(t) < \Phi^{*}_{xy}(t) \) for all \(t \in [a, b] \).

A subset \(C\) of \(X\) is called distributionally scrambled of type \(i\) \((i = 1, 2, 3)\) if any two distinct points in \(C\) form a distributionally scrambled pair of type \(i\). The dynamical system \((X, T)\) is called distributionally chaotic of type \(i\) (\(DC_{i}\) for short) if there exists an uncountable distributionally scrambled set of type \(i\).

It should be noticed that in [98] and [10] \(DC_{i}\) chaos only requires the existence of one distributionally scrambled pair of type \(i\). It is not hard to see that any distributionally scrambled pair of type 1 or 2 is topological conjugacy invariant [98]. But a distributionally scrambled pair of type 3 may not be topological conjugacy invariant [10]. It is also not hard to construct a dynamical system has a distributionally scrambled pair of type 2, but no distributionally scrambled pairs of type 1. A really interesting example constructed in [101] shows that there exists a minimal subshift which is distributionally chaotic of type 2, while it does not contain any distributionally scrambled pair of type 1.

6.3. The relation between distributional chaos and positive topological entropy. It is known that in general there is no implication relation between \(DC_{1}\) and positive topological entropy (see [70] and [86]). In [97] Smítal conjectured that positive topological entropy does imply \(DC_{2}\). Oprocha showed that this conjecture is true for uniformly positive entropy minimal systems [81]. Finally, Downarowicz solved this problem by proving this conjecture in general case [21].

Theorem 6.8 ([21]). If a dynamical system \((X, T)\) has positive topological entropy, then there exists a Cantor distributional \(\delta\)-scrambled set of type 2 for some \(\delta > 0\).

It was observed in [21] that a pair \((x, y)\) is \(DC_{2}\)-scrambled if and only if it is mean scrambled in the Li-Yorke sense, that is

\[
\liminf_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} d(T^{k}x, T^{k}y) = 0
\]
and
\[
\limsup_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} d(T^k x, T^k y) > 0.
\]

Recently, Huang, Li and Ye showed that positive topological entropy implies a multivariate version of mean Li-Yorke chaos.

Theorem 6.9 ([40]). *If a dynamical system \((X, T)\) has positive topological entropy, then there exists a Mycielski multivariant mean Li-Yorke \((\delta_n)\)-scrambled subset \(K\) of \(X\), that is for every \(n \geq 2\) and every \(n\) pairwise distinct points \(x_1, \ldots, x_n \in K\), we have

\[
\liminf_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \max_{1 \leq i < j \leq n} d(T^k x_i, T^k x_j) = 0
\]

and

\[
\limsup_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \min_{1 \leq i < j \leq n} d(T^k x_i, T^k x_j) > \delta_n > 0.
\]

We remark that the key tool in the proof of Theorem 6.9 is the excellent partition constructed in [16, Lemma 4], which is different from the one used in [21]. So among other things for \(n = 2\) the authors also obtained a new proof of Theorem 6.8.

Note that in [16] Blanchard, Host and Ruette showed that the closure of the set of asymptotic pairs contains the set of entropy pairs. Kerr and Li [53] proved that the intersection of the set of scrambled pairs with the set of entropy pairs is dense in the set of entropy pairs. We extended the above mentioned results to the following result.

Theorem 6.10 ([40]). *If a dynamical system has positive topological entropy, then for any \(n \geq 2\),

1. the intersection of the set of asymptotic \(n\)-tuples with the set of topological entropy \(n\)-tuples is dense in the set of topological entropy \(n\)-tuples;

2. the intersection of the set of mean \(n\)-scrambled tuples with the set of topological entropy \(n\)-tuples is dense in the set of topological entropy \(n\)-tuples.*

6.4. Chaos via Furstenberg families.

In Section 2, we have shown that there is a powerful connection between topological dynamics and Furstenberg families. In 2007, Xiong, Lü and Tan introduced the notion of chaos via Furstenberg families. It turned out that the Li-Yorke chaos and some version of distributional chaos can be described as chaos in Furstenberg families sense.

Definition 6.11 ([108, 101]). Let \((X, T)\) be a dynamical system. Let \(\mathcal{F}_1\) and \(\mathcal{F}_2\) be two Furstenberg families. A pair \((x, y) \in X \times X\) is called \((\mathcal{F}_1, \mathcal{F}_2)\)-scrambled if it satisfies

1. for any \(t > 0\), \(\{n \in \mathbb{Z}_+: d(T^nx, T^ny) < t\} \in \mathcal{F}_1\), and
2. there exists some \(\delta > 0\) such that \(\{n \in \mathbb{Z}_+: d(T^nx, T^ny) > \delta\} \in \mathcal{F}_2\).

A subset \(C\) of \(X\) is called \((\mathcal{F}_1, \mathcal{F}_2)\)-scrambled pair if any two distinct points in \(C\) form a \((\mathcal{F}_1, \mathcal{F}_2)\)-scrambled pair. The dynamical system \((X, T)\) is called \((\mathcal{F}_1, \mathcal{F}_2)\)-chaotic if there is an uncountable \((\mathcal{F}_1, \mathcal{F}_2)\)-scrambled set in \(X\).

Similarly, if the separated constant \(\delta\) is uniform for all non-diagonal pairs in \(C\), we can define \((\mathcal{F}_1, \mathcal{F}_2)\)-\(\delta\)-scrambled sets and \((\mathcal{F}_1, \mathcal{F}_2)\)-\(\delta\)-chaos.

Let \(F\) be a subset of \(\mathbb{Z}_+\). The upper density of \(F\) is defined as

\[
\overline{d}(F) = \limsup_{n \to \infty} \frac{1}{n} \#(F \cap \{0, 1, \ldots, n-1\}).
\]

For any \(a \in [0, 1]\), let

\[
\overline{M}(a) = \{F \subset \mathbb{Z}_+: F \text{ is infinite and } \overline{d}(F) \geq a}\.
\]
Clearly, every $\overline{M}(a)$ is a Furstenberg family. The following proposition can be easily verified by the definitions, which shows that Li-Yorke chaos and distributional chaos can be characterized via Furstenberg families.

Proposition 6.12. Let (X, T) be a dynamical system and $(x, y) \in X \times X$. Then

1. (x, y) is scrambled if and only if it is $(\overline{M}(0), \overline{M}(0))$-scrambled.
2. (x, y) is distributionally scrambled of type 1 if and only if it is $(\overline{M}(1), \overline{M}(1))$-scrambled.
3. (x, y) is distributionally scrambled of type 2 if and only if it is $(\overline{M}(1), \overline{M}(t))$-scrambled with some $t > 0$.

A Furstenberg family \mathcal{F} is said to be compatible with the dynamical system (X, T), if for every non-empty open subset U of X the set $\{x \in X : \{n \in \mathbb{Z}: T^n x \in U\} \in \mathcal{F}\}$ is a G_δ subset of X.

Lemma 6.13 ([108]). If $\mathcal{F} = \overline{M}(t)$ for some $t \in [0, 1]$, then \mathcal{F} is compatible with any dynamical system (X, T).

We have the following criteria for chaos via compatible Furstenberg families.

Theorem 6.14 ([108, 101]). Let (X, T) be a dynamical system. Suppose that there exists a fixed point $p \in X$ such that the set $\bigcup_{i=1}^{\infty} T^{-i}(p)$ is dense in X, and a non-empty closed invariant subset A of X disjoint with the point p such that $\bigcup_{i=1}^{\infty} T^{-i}A$ is dense in X. Then for every two Furstenberg families \mathcal{F}_1 and \mathcal{F}_2 compatible with the system $(X \times X, T \times T)$, there exists a dense Mycielski $(\mathcal{F}_1, \mathcal{F}_2)$-$\delta$-scrambled set for some $\delta > 0$. In particular, the dynamical system (X, T) is $(\overline{M}(1), \overline{M}(1))$-$\delta$-chaotic for some $\delta > 0$.

There are two important Furstenberg families: the collections of all syndetic sets and all sets with Banach density one. They are so specific that we use terminologies: syndetically scrambled sets and Banach scrambled sets, when studying chaos via those two Furstenberg families.

Recall that a subset F of \mathbb{Z}_+ is syndetic if there is $N \in \mathbb{N}$ such that $[n, n+N] \cap F \neq \emptyset$ for every $n \in \mathbb{Z}_+$. Let (X, T) be a dynamical system. A pair of points $(x, y) \in X^2$ is called syndetically proximal if for every $\varepsilon > 0$ the set $\{n \in \mathbb{Z}_+ : d(T^n x, T^n y) < \varepsilon\}$ is syndetic. If (X, T) is proximal, that is every pair in X^2 is proximal, then every pair in X^2 is also syndetically proximal [77]. Moothathu studied the syndetically proximal relation, and identified certain sufficient conditions for the syndetically proximal cell of each point to be small [77]. A subset S of X is called syndetically scrambled if for any two distinct points $x, y \in S$, (x, y) is syndetically proximal but not asymptotic. In [78] Moothathu and Oprocha systematically studied the syndetically proximal relation and the possible existence of syndetically scrambled sets for many kinds of dynamical systems, including various classes of transitive subshifts, interval maps, and topologically Anosov maps.

A subset F of \mathbb{Z}_+ is said to have Banach density one if for every $\lambda < 1$ there exists $N \geq 1$ such that $\#(F \cap I) \geq \lambda \#(I)$ for every subinterval I of \mathbb{Z}_+ with $\#(I) \geq N$, where $\#(I)$ denotes the number of elements of I. A pair of points $(x, y) \in X^2$ is called Banach proximal if for every $\varepsilon > 0$ the set $\{n \in \mathbb{Z}_+ : d(T^n x, T^n y) < \varepsilon\}$ has Banach density one. Clearly, every set with Banach density one is syndetic, then a Banach proximal pair is syndetically proximal. In [64] Li and Tu studied the structure of the Banach proximal relation. Particularly, they showed that for a non-trivial minimal system the Banach proximal cell of every point is of first category.

A subset S of X is called Banach scrambled if for any two distinct points $x, y \in S$, (x, y) is Banach proximal but not asymptotic. Note that it was shown in [58] that for an interval map with zero topological entropy, every proximal pair is Banach proximal. Moreover we have
Theorem 6.15 ([64]). Let \(f : [0, 1] \to [0, 1] \) be a continuous map. If \(f \) is Li-Yorke chaotic, then it has a Cantor Banach scrambled set.

Theorem 6.16 ([64]). Let \(f : [0, 1] \to [0, 1] \) be a continuous map. Then \(f \) has positive topological entropy if and only if there is Cantor set \(S \subset [0, 1] \) such that \(S \) is a Banach scrambled set and \(f^n(S) \subset S \) for some \(n \geq 1 \).

There exists a dynamical system with the whole space being a scrambled set (see Theorems 3.13 and 3.14), and then every pair is syndetically proximal. It is shown in [64] that the whole space also can be a Banach scrambled set.

Theorem 6.17 ([64]). There exists a transitive system with the whole space being a Banach scrambled set.

7. Local Aspects of Mixing Properties

As we said before for a dynamical system with positive topological entropy, it is possible that there is no weakly mixing subsystem. The notion of weakly mixing sets captures some complicated subset of the system.

7.1. Weakly mixing sets. In 1991, Xiong and Yang [109] showed that for in a weakly mixing system there are considerably many points in the domain whose orbits display highly erratic time dependence. More specifically, they showed that

Theorem 7.1. Let \((X, T)\) be a non-trivial dynamical system. Then

1. \((X, T)\) is weakly mixing if and only if there exists a c-dense \(F_\sigma \) subset \(C \) of \(X \) satisfying for any subset \(D \) of \(C \) and any continuous map \(f : D \to X \), there exists an increasing sequence \(\{q_i\} \) of positive integers such that \(\lim_{i \to \infty} T^{q_i}x = f(x) \) for all \(x \in D \);
2. \((X, T)\) is strongly mixing if and only if for any increasing sequence \(\{q_i\} \) of positive integers there exists a c-dense \(F_\sigma \) subset \(C \) of \(X \) satisfying for any subset \(D \) of \(C \) and any continuous map \(f : D \to X \), there exists a subsequence \(\{p_{n_i}\} \) of \(\{q_i\} \) such that \(\lim_{i \to \infty} T^{p_{n_i}}x = f(x) \) for all \(x \in D \).

In particular, if \((X, T)\) is weakly mixing, then there exists some \(\delta > 0 \) such that \((X, T)\) is Li-Yorke \(\delta \)-chaotic.

Note that a subset \(C \) is called c-dense in \(X \) if for every non-empty open subset \(U \) of \(X \), the intersection \(C \cap U \) has the cardinality of the continuum \(c \).

Inspired by Xiong-Yang’s result (Theorem 7.1), in 2008 Blanchard and Huang [17] introduced the concept of weakly mixing sets, which can be regraded as a local version of weak mixing.

Definition 7.2. Let \((X, T)\) be a dynamical system. A closed subset \(A \) of \(X \) is said to be weakly mixing if there exists a dense Mycielski subset \(C \) of \(A \) such that for any subset \(D \) of \(C \) and any continuous map \(f : D \to A \), there exists an increasing sequence \(\{q_i\} \) of positive integers satisfying \(\lim_{i \to \infty} T^{q_i}x = f(x) \) for all \(x \in D \).

Blanchard and Huang showed that in any positive entropy system there are many weakly mixing sets. More precisely, let \(WM(X, T) \) be the set of weakly mixing sets of \((X, T)\) and \(H(X, T) \) be the closure of the set entropy sets in the hyperspace.

Theorem 7.3 ([17]). If a dynamical system \((X, T)\) has positive topological entropy, then the set \(H(X, T) \cap WM(X, T) \) is a dense \(G_\delta \) subset of \(H(X, T) \).
Moreover in [37], Huang showed that in any positive entropy system there is a measure-theoretically rather big set such that the closure of the stable set of any point from the set contains a weakly mixing set. Recall that the stable set of a point $x \in X$ for T is

$$W^s(X, T) = \{y \in X : \liminf_{n \to \infty} d(T^n x, T^n y) = 0\}.$$

Theorem 7.4 ([37]). Let (X, T) be a dynamical system and μ be an ergodic invariant measure on (X, T) with positive entropy. Then for μ-a.e. $x \in X$ the closure of the stable set $W^s(X, T)$ contains a weakly mixing set.

Recently in [44], Huang, Xu and Yi showed the existence of certain chaotic sets in the stable set of positive entropy G-systems for certain countable, discrete, infinite left-orderable amenable groups G. We restate [44, Theorem 1.2] in our setting as follows.

Theorem 7.5 ([44]). Let T be a homeomorphism on a compact metric space X. If μ is an ergodic invariant measure on (X, T) with positive entropy, then for μ-a.e. $x \in X$ the stable set $W^s(X, T)$ contains a Cantor δ-scrambled set for T^{-1}.

Remark 7.6. The authors in [17] also discussed the relation between weakly mixing sets and other chaotic properties.

1. Positive entropy is strictly stronger than the existence of weakly mixing sets, which in turn is strictly stronger than Li-Yorke chaos.
2. There exists a Devaney chaotic system without any weakly mixing sets.

The following result is the well known Furstenberg intersection lemma, which shows that weak mixing implies weak mixing of all finite orders.

Lemma 7.7 ([25]). If a dynamical system (X, T) is weakly mixing, then for any $k \in \mathbb{N}$ and any non-empty open subsets $U_1, \ldots, U_k, V_1, \ldots, V_k$ of X,

$$\bigcap_{i=1}^k N(U_i, V_i) \neq \emptyset.$$

Using the idea in Lemma 7.7 we can give the following alternative definition of weakly mixing sets.

Proposition 7.8 ([17]). Let (X, T) be a dynamical system and let A be a closed subset of X but not a singleton. Then A is weakly mixing if and only if for any $k \in \mathbb{N}$ and any choice of non-empty open subsets $U_1, \ldots, U_k, V_1, \ldots, V_k$ of X intersecting A (that is $A \cap U_i \neq \emptyset$, $A \cap V_i \neq \emptyset$ for $i = 1, \ldots, k$), one has

$$\bigcap_{i=1}^k N(U_i \cap A, V_i) \neq \emptyset.$$

Definition 7.9. Let (X, T) be a dynamical system, A be a closed subset of X but not a singleton and $k \geq 2$. The set A is said to be weakly mixing of order k if for any choice of non-empty open subsets $U_1, \ldots, U_k, V_1, \ldots, V_k$ of X intersecting A, one has

$$\bigcap_{i=1}^k N(U_i \cap A, V_i) \neq \emptyset.$$

Then A is weakly mixing if and only if it is weakly mixing of order k for all $k \geq 2$.

In 2011, Oprocha and Zhang [82] studied weakly mixing sets of finite order, and constructed an example showing that the concepts of weakly mixing sets of order 2 and of order 3 are different. They generalized this result to general weakly mixing sets of finite order in [84].
Theorem 7.10 ([84]). For every \(n \geq 2 \), there exists a minimal subshift on \(n \) symbols such that it contains a perfect weakly mixing set of order \(n \) but no non-trivial weakly mixing set of order \(n + 1 \).

Recall that it was shown in [6] that if \((X, T)\) is weakly mixing, then for every \(x \in X \), the proximal cell of \(x \) is residual in \(X \). In [83] Oprocha and Zhang proved that for every closed weakly mixing set \(A \) and every \(x \in A \), the proximal cell of \(x \) in \(A \) is residual in \(A \). In [63] Li, Oprocha and Zhang showed that the same is true if we consider proximal tuples instead of pairs. First recall that an \(n \)-tuple \((x_1, x_2, \ldots, x_n) \in X^n\) is proximal if

\[
\liminf_{k \to \infty} \max_{1 \leq i < j \leq n} d(T^k(x_i), T^k(x_j)) = 0.
\]

For \(x \in X \), define the \(n \)-proximal cell of \(x \) as

\[
P_n(x) = \{(x_1, \ldots, x_{n-1}) \in X^{n-1} : (x, x_1, \ldots, x_{n-1}) \text{ is proximal}\}.
\]

Theorem 7.11 ([63]). Let \((X, T)\) be a dynamical system and \(A \subset X \) be a weakly mixing set. Then for every \(x \in A \) and \(n \geq 2 \), the set \(P_n(x) \cap A^{n-1} \) is residual in \(A^{n-1} \).

In fact, they proved even more as presented in the following theorem, where \(LY_n(x) \) is the \(n \)-scrambled cell of \(x \) with modular \(\delta > 0 \).

Theorem 7.12 ([63]). Let \((X, T)\) be a dynamical system and \(A \subset X \) be a weakly mixing set. Then for every \(n \geq 2 \), there exists some \(\delta > 0 \) such that for every \(x \in A \), the set \(LY_n(x) \cap A^{n-1} \) is residual in \(A^{n-1} \).

The following result shows that, when we look only at separation of trajectories of tuples, weak mixing of order 2 is enough to obtain rich structure of such points.

Theorem 7.13 ([63]). Let \((X, T)\) be a dynamical system and \(A \subset X \) a weakly mixing set of order 2. Then \(A \) is a sensitive set in \(\left(\text{Orb}(A, T), T \right) \), where \(\text{Orb}(A, T) = \{T^n x : n \geq 0, x \in A\} \). In particular, the system \(\left(\text{Orb}(A, T), T \right) \) is \(n \)-sensitive for every \(n \geq 2 \).

Recall that we have given the definition of independent sets in Definition 3.7. Huang, Li and Ye in [39] studied independent sets via Furstenberg families. In particular, they showed the following connection between weak mixing and independent sets of open sets.

Theorem 7.14. Let \((X, T)\) be a dynamical system. Then the following conditions are equivalent:

1. \((X, T)\) is weakly mixing;
2. for any two non-empty open subsets \(U_1, U_2 \) of \(X \), \((U_1, U_2)\) has an infinite independent set;
3. for any \(n \in \mathbb{N} \) and non-empty open subsets \(U_1, U_2, \ldots, U_n \) of \(X \), \((U_1, U_2, \ldots, U_n)\) has an IP-independent set.

In the spirit of [39] we introduce a local version of independence sets as follows.

Definition 7.15. Let \((X, T)\) be a dynamical system and \(A \subset X \). Let \(U_1, U_2, \ldots, U_n \) be open subsets of \(X \) intersecting \(A \). We say that a non-empty subset \(F \) of \(\mathbb{Z}_+ \) is an independence set for \((U_1, U_2, \ldots, U_n)\) with respect to \(A \), if for every non-empty finite subset \(J \subset F \), and \(s \in \{1, 2, \ldots, n\}^J \),

\[
\bigcap_{j \in J} T^{-j}(U_{s(j)})
\]

is a non-empty open subset of \(X \) intersecting \(A \).

Now we can employ introduced notion, to state a theorem analogous to Theorem 7.14.
Theorem 7.16 ([63]). Let \((X, T)\) be a dynamical system and \(A \subset X\) a closed set. Then the following conditions are equivalent:

1. \(A\) is a weakly mixing set;
2. for every \(n \geq 2\) and every open subsets \(U_1, U_2, \ldots, U_n\) of \(X\) intersecting \(A\), there exists \(t \in \mathbb{N}\) such that \(\{0, t\}\) is an independence set for \((U_1, U_2, \ldots, U_n)\) with respect to \(A\);
3. for every \(n \geq 2\) and every open subsets \(U_1, U_2, \ldots, U_n\) of \(X\) intersecting \(A\), there exists a sequence \(\{t_j\}^\infty_{j=1}\) in \(\mathbb{N}\) such that \(\{0\} \cup FS(\{t_j\}^\infty_{j=1})\) is an independence set for \((U_1, U_2, \ldots, U_n)\) with respect to \(A\).

7.2. Weakly mixing sets via Furstenberg families. In 2004, Huang, Shao and Ye generalized Theorem 7.1 to \(\mathcal{F}\)-mixing systems. Let \(\mathcal{F}\) be a Furstenberg family. Recall that a dynamical system \((X, T)\) is called \(\mathcal{F}\)-mixing if it is weakly mixing and for any two non-empty open subsets \(U\) and \(V\) of \(X\), \(N(U, V) \in \mathcal{F}\).

Theorem 7.17 ([43]). Let \((X, T)\) be a non-trivial dynamical system and \(\mathcal{F}\) be a Furstenberg family. Then \((X, T)\) is \(\mathcal{F}\)-mixing if and only if for any \(S \in \kappa\mathcal{F}\), there exists a dense Mycielski subset \(C\) of \(X\) satisfying for any subset \(D\) of \(C\) and any continuous map \(f: D \to X\), there exists an increasing sequence \(\{q_i\}\) in \(S\) such that \(\lim_{i \to \infty} T^{q_i} x = f(x)\) for all \(x \in D\).

It is natural that weakly mixing sets can be also generalized via Furstenberg families.

Definition 7.18. Let \((X, T)\) be a dynamical system and \(\mathcal{F}\) be a Furstenberg family. Suppose that \(A\) is a closed subset of \(X\) with at least two points. The set \(A\) is said to be \(\mathcal{F}\)-mixing if for any \(k \in \mathbb{N}\), any open subsets \(U_1, U_2, \ldots, U_k, V_1, V_2, \ldots, V_k\) of \(X\) intersecting \(A\),

\[
\bigcap_{i=1}^{k} N(U_i \cap A, V_i) \in \mathcal{F}.
\]

Inspired by the proof of Theorem 7.17, we have the following characterization of \(\mathcal{F}\)-mixing sets.

Theorem 7.19 ([61]). Let \((X, T)\) be a dynamical system and \(\mathcal{F}\) be a Furstenberg family. Suppose that \(A\) is a closed subset of \(X\) with at least two points. Then \(A\) is an \(\mathcal{F}\)-mixing set if and only if for every \(S \in \kappa\mathcal{F}\) (the dual family of \(\mathcal{F}\)) there are Cantor subsets \(C_1 \subset C_2 \subset \ldots\) of \(A\) such that

1. \(K = \bigcup_{n=1}^{\infty} C_n\) is dense in \(A\);
2. for any \(n \in \mathbb{N}\) and any continuous function \(g: C_n \to A\) there exists a subsequence \(\{q_i\}\) of \(S\) such that \(\lim_{i \to \infty} T^{q_i}(x) = g(x)\) uniformly on \(x \in C_n\);
3. for any subset \(E\) of \(K\) and any continuous map \(g: E \to A\) there exists a subsequence \(\{q_i\}\) of \(S\) such that \(\lim_{i \to \infty} T^{q_i}(x) = g(x)\) for every \(x \in E\).

It is shown in [61] that two classes of important dynamical systems have weakly mixing sets via proper Furstenberg families.

Let \(F\) be a subset of \(\mathbb{Z}_+\). The upper Banach density of \(F\) is defined by

\[
BD^*(F) = \limsup_{|I| \to \infty} \frac{|F \cap I|}{|I|},
\]

where \(I\) is taken over all non-empty finite intervals of \(\mathbb{Z}_+\). The family of sets with positive upper Banach density is denoted by \(\mathcal{F}_{pubd} = \{F \subset \mathbb{Z}_+: BD^*(F) > 0\}\). We say that \(F\) is piecewise syndetic if it is the intersection of a thick set and a syndetic set. The family of piecewise syndetic sets is denoted by \(\mathcal{F}_{ps}\).

Theorem 7.20 ([61]). Let \((X, T)\) be a dynamical system.
8. Chaos in the induced spaces

A dynamical system \((X, T)\) induces two natural systems, one is \((K(X), T_K)\) on the hyperspace \(K(X)\) consisting of all closed non-empty subsets of \(X\) with the Hausdorff metric, and the other one is \((M(X), T_M)\) on the probability space \(M(X)\) consisting of all Borel probability measures with the weak*-topology. Bauer and Sigmund [13] first gave a systematic investigation on the connection of dynamical properties among \((X, T)\), \((K(X), T_K)\) and \((M(X), T_M)\). It was proved that \((X, T)\) is weakly mixing (resp. mildly mixing, strongly mixing) if and only if \((K(X), T_K)\) (resp. \((M(X), T_M)\)) has the same property. This leads to a natural question:

Problem 6. If one of the dynamical systems \((X, T)\), \((K(X), T_K)\) and \((M(X), T_M)\) is chaotic in some sense, how about the other two systems?

This question attracted a lot of attention, see, e.g., [87, 12, 36] and references therein, and many partial answers were obtained. We first show that when the induced system is weakly mixing.

Theorem 8.1 ([13, 12]). Let \((X, T)\) be a dynamical system. Then \((X, T)\) is weakly mixing if and only if \((K(X), T_K)\) is weakly mixing if and only if \((K(X), T_K)\) is transitive.

Theorem 8.2 ([13, 66]). Let \((X, T)\) be a dynamical system. Then \((X, T)\) is weakly mixing if and only if \((M(X), T_M)\) is weakly mixing if and only if \((M(X), T_M)\) is transitive.

In [30], Glasner and Weiss studied the topological entropy of \((K(X), T_K)\) and \((M(X), T_M)\). They proved that

Theorem 8.3. Let \((X, T)\) be a dynamical system.

1. The topological entropy of \((X, T)\) is zero if and only if the one of \((M(X), T_M)\) is also zero, and the topological entropy of \((X, T)\) is positive if and only if the one of \((M(X), T_M)\) is infinite.

2. If the topological entropy of \((X, T)\) is positive, then the topological entropy of \((K(X), T_K)\) is infinite, while there exists a minimal system \((X, T)\) of zero topological entropy and \((K(X), T_K)\) with positive topological entropy.

To show that when the dynamical system on the hyperspace is Devaney chaotic, we need to introduce some concepts firstly. We say that a dynamical system \((X, T)\) has **dense small periodic sets** [48] if for any non-empty open subset \(U\) of \(X\) there exists a non-empty closed subset \(Y\) of \(U\) and \(k \in \mathbb{N}\) such that \(T^kY \subset Y\). Clearly, if a dynamical system has a dense set of periodic points, then it also has dense small periodic sets. The dynamical system \((X, T)\) is called an **HY-system** if it is totally transitive and has dense small periodic sets. Note that there exists an HY-system without periodic points (see [48, Example 3.7]). Recently, Li showed in [60] that \((K(X), T_K)\) is Devaney chaotic is equivalent to the origin system \((X, T)\) is an HY-system.

Theorem 8.4 ([60]). Let \((X, T)\) be a dynamical system with \(X\) being infinite. Then the following conditions are equivalent:

1. \((K(X), T_K)\) is Devaney chaotic;
2. \((K(X), T_K)\) is an HY-system;
3. \((X, T)\) is an HY-system.
In order to characterize Devaney chaos on the space of probability measures, we need a notion of an almost HY-system. We say that \((X, T)\) has almost dense periodic sets if for each non-empty open subset \(U \subset X\) and \(\varepsilon > 0\), there are \(k \in \mathbb{N}\) and \(\mu \in M(X)\) with \(T^k \mu = \mu\) such that \(\mu(U^c) < \varepsilon\), where \(U^c = \{x \in X : x \notin U\}\). We say that \((X, T)\) is an almost HY-system if it is totally transitive and has almost dense periodic sets.

Theorem 8.5 ([66]). Let \((X, T)\) be a dynamical system with \(X\) being infinite. Then the following conditions are equivalent:

1. \((M(X), T_M)\) is Devaney chaotic;
2. \((M(X), T_M)\) is an almost HY-system;
3. \((X, T)\) is an almost HY-system.

It is clear that every HY-system is also an almost HY-system. There is a non-trivial minimal weakly mixing almost-HY-system (see [66, Theorem 4.11]), which is not an HY-system, since every minimal HY-system is trivial.

Recall that a dynamical system \((X, T)\) is proximal if any pair \((x, y) \in X^2\) is proximal. The following proposition shows that if \((K(X), T_K)\) is proximal then \((X, T)\) is “almost” trivial.

Proposition 8.6 ([64]). Let \((X, T)\) be a dynamical system. Then the following conditions are equivalent:

1. \((K(X), T_K)\) is proximal;
2. \(\bigcap_{n=1}^{\infty} T^n X\) is a singleton;
3. \(X\) is a uniformly proximal set.

If \((M(X), T_M)\) is proximal, then \((X, T)\) is called strongly proximal [33]. Note that if \((X, T)\) is strongly proximal, then it is proximal, since \((X, T)\) can be regarded as a subsystem of the proximal system \((M(X), T_M)\). We have the following characterization of strongly proximal systems.

Theorem 8.7 ([64]). Let \((X, T)\) be a dynamical system. Then the following conditions are equivalent:

1. \((X, T)\) is strongly proximal;
2. \((X, T)\) is proximal and unique ergodic;
3. every pair \((x, y) \in X^2\) is Banach proximal.

Acknowledgement: The authors would like to thank Wen Huang, Jie Li and Guohua Zhang for the careful reading, and thank the anonymous reviewer for his/her valuable comments and suggestions. The first author is partially supported by NNSF of China (11401362, 11471125) and NSF of Guangdong province (S2013040014084). The second author is partially supported by NNSF of China (11371339, 11431012).

REFERENCES

1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. 114 (1965), 309–319. [MR0175106]
2. Ethan Akin, *Recurrence in topological dynamics: Furstenberg families and Ellis actions*, The University Series in Mathematics, Plenum Press, New York, 1997. [MR1467479]
3. Ethan Akin, Joseph Auslander, and Kenneth Berg, *When is a transitive map chaotic?*, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 25–40. [MR1412595]
4. Ethan Akin and Eli Glasner, *Residual properties and almost equicontinuity*, J. Anal. Math. 84 (2001), 243–286. [MR1849204]
5. Ethan Akin, Eli Glasner, Wen Huang, Song Shao, and Xiangdong Ye, *Sufficient conditions under which a transitive system is chaotic*, Ergodic Theory Dynam. Systems 30 (2010), no. 5, 1277–1310. MR2718894
6. Ethan Akin and Sergi Kolyada, *Li-Yorke sensitivity*, Nonlinearity 16 (2003), no. 4, 1421–1433. MR1986303
7. Joseph Auslander, *Minimal flows and their extensions*, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. MR956049
8. Joseph Auslander and James A. Yorke, *Interval maps, factors of maps, and chaos*, Tôhoku Math. J. (2) 32 (1980), no. 2, 177–188. MR580273
9. Francisco Balibrea, Juan L. G. Guirao, and Piotr Oprocha, *On invariant ε-scrambled sets*, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20 (2010), no. 9, 2925–2935. MR2738744
10. Francisco Balibrea, J. Smítal, and M. Štefánková, *The three versions of distributional chaos*, Chaos Solitons Fractals 23 (2005), no. 5, 1581–1583. MR2101573
11. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, *On Devaney’s definition of chaos*, Amer. Math. Monthly 99 (1992), no. 4, 332–334. MR1157223
12. John Banks, *Chaos for induced hyperspace maps*, Chaos Solitons Fractals 25 (2005), no. 3, 681–685. MR2132366
13. Walter Bauer and Karl Sigmund, *Topological dynamics of transformations induced on the space of probability measures*, Monatsh. Math. 79 (1975), 81–92. MR0370540
14. François Blanchard, *Topological chaos: what may this mean?,* J. Difference Equ. Appl. 15 (2009), no. 1, 23–46. MR2484415
15. François Blanchard, Eli Glasner, Sergi Kolyada, and Alejandro Maass, *On Li-Yorke pairs*, J. Reine Angew. Math. 547 (2002), 51–68. MR1900136
16. François Blanchard, B. Host, and S. Ruette, *Asymptotic pairs in positive-entropy systems*, Ergodic Theory Dynam. Systems 22 (2002), no. 3, 671–686. MR1908549
17. François Blanchard and Wen Huang, *Entropy sets, weakly mixing sets and entropy capacity*, Discrete Contin. Dyn. Syst. 20 (2008), no. 2, 275–311. MR2358261
18. François Blanchard, Wen Huang, and L’ubomír Snoha, *Topological size of scrambled sets*, Colloq. Math. 110 (2008), no. 2, 293–361. MR2353910
19. Robert L. Devaney, *An introduction to chaotic dynamical systems*, second ed., Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. MR1046376
20. Jana Doleželová, *Scrambled and distributionally scrambled n-tuples*, J. Difference Equ. Appl. 20 (2014), no. 8, 1169–1177. MR3216892
21. Tomasz Downarowicz, *Positive topological entropy implies chaos DC2*, Proc. Amer. Math. Soc. 142 (2014), no. 1, 137–149. MR3191189
22. Bau-Sen Du, *On the invariance of Li-Yorke chaos of interval maps*, J. Difference Equ. Appl. 11 (2005), no. 9, 823–828. MR2159799
23. S. Fomin, *On dynamical systems with a purely point spectrum*, Doklady Akad. Nauk SSSR (N.S.) 77 (1951), 29–32. MR0043397
24. Magdalena Foryś, Wen Huang, Jian Li, and Piotr Oprocha, *Invariant scrambled sets, uniform rigidity and weak mixing*, to appear in Israel J. Math., arXiv:1410.7118.
25. Harry Furstenberg, *Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory 1 (1967), 1–49. MR0213508
26. *Recurrence in ergodic theory and combinatorial number theory*, Princeton University Press, Princeton, N.J., 1981, M. B. Porter Lectures. MR603625
27. Felipe García-Ramos, *Weak forms of topological and measure theoretical equicontinuity: relationships with discrete spectrum and sequence entropy*, preprint, arXiv:1402.7327.
28. Eli Glasner, *Ergodic theory via joinings*, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003. MR1958753
29. Eli Glasner and Benjamin Weiss, *Sensitive dependence on initial conditions*, Nonlinearity 6 (1993), no. 6, 1067–1075. MR1251259
30. *Quasi-factors of zero-entropy systems*, J. Amer. Math. Soc. 8 (1995), no. 3, 665–686. MR1270579
31. Eli Glasner and Xiangdong Ye, *Local entropy theory*, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 321–356. MR2486773
32. S. Glasner and D. Maon, *Rigidity in topological dynamics*, Ergodic Theory Dynam. Systems 8 (1989), no. 2, 309–320. MR1007412
33. Shmuel Glasner, *Proximal flows*, Lecture Notes in Mathematics, Vol. 517, Springer-Verlag, Berlin-New York, 1976. MR0474243

34. Walter Helbig Gottschalk and Gustav Arnold Hedlund, *Topological dynamics*, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R. I., 1955. MR0074810

35. John Guckenheimer, *Sensitive dependence to initial conditions for one-dimensional maps*, Comm. Math. Phys. 70 (1979), no. 2, 133–160. MR553966

36. Juan Luis García Guirao, Dominik Kwietniak, Marek Lampart, Piotr Oprocha, and Alfredo Peris, *Chaos on hyperspaces*, Nonlinear Anal. 71 (2009), no. 1-2, 1–8. MR2518006

37. Wen Huang, *Stable sets and ε-stable sets in positive-entropy systems*, Comm. Math. Phys. 279 (2008), no. 2, 535–557. MR2383598

38. Wen Huang, Sergií Kolyada, and Guohua Zhang, *Multi-sensitivity, Lyapunov numbers and almost automorphic maps*, preprint, 2014.

39. Wen Huang, Hanfeng Li, and Xiangdong Ye, *Family independence for topological and measurable dynamics*, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5209–5242. MR2931327

40. Wen Huang, Jian Li, and Xiangdong Ye, *Stable sets and mean Li–Yorke chaos in positive entropy systems*, J. Funct. Anal. 266 (2014), no. 6, 3377–3394. MR3165229

41. Wen Huang, Jian Li, Xiangdong Ye, and Xiaoyao Zhou, *Topological entropy and diagonal-weakly mixing sets*, preprint, 2014.

42. Wen Huang, Ping Lu, and Xiangdong Ye, *Measure-theoretical sensitivity and equicontinuity*, Israel J. Math. 183 (2011), 233–283. MR2811160

43. Wen Huang, Song Shao, and Xiangdong Ye, *Mixing and proximal cells along sequences*, Nonlinearity 17 (2004), no. 4, 1245–1260. MR2069703

44. Wen Huang, Leiye Xu, and Yingfei Yi, *Asymptotic pairs, stable sets and chaos in positive entropy systems*, J. Funct. Anal. 268 (2015), no. 4, 824–846. MR3296581

45. Wen Huang and Xiangdong Ye, *Homeomorphisms with the whole compacta being scrambled sets*, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 77–91. MR1826661

46. Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl. 117 (2002), no. 3, 259–272. MR1874089

47. Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 825–846. MR2062921

48. Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc. 357 (2005), no. 2, 669–694. MR2095626

49. A local variational relation and applications, Israel J. Math. 151 (2006), 237–279. MR2214126

50. Anzelm Iwanik, *Independence and scrambled sets for chaotic mappings*, The mathematical heritage of C. F. Gauss, World Sci. Publ., River Edge, NJ, 1991, pp. 372–378. MR1146241

51. Katarína Janková and Jaroslav Smítal, *A characterization of chaos*, Bull. Austral. Math. Soc. 34 (1986), no. 2, 283–292. MR854575

52. Yitzhak Katznelson and Benjamin Weiss, *When all points are recurrent/generic*, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser Boston, Mass., 1981, pp. 195–210. MR633765

53. David Kerr and Hanfeng Li, *Independence in topological and C∗-dynamics*, Math. Ann. 338 (2007), no. 4, 869–926. MR2317754

54. Combinatorial independence and sofic entropy, Commun. Math. Stat. 1 (2013), no. 2, 213–257. MR3197860

55. Harvey B. Keynes and James B. Robertson, *Eigenvalue theorems in topological transformation groups*, Trans. Amer. Math. Soc. 139 (1969), 359–369. MR0237748

56. Sergií Kolyada, *Li-Yorke sensitivity and other concepts of chaos*, Ukraïn. Mat. Zh. 56 (2004), no. 8, 1043–1061. MR2136308

57. Sergií Kolyada and Lubomír Snoha, *Some aspects of topological transitivity—a survey*, Iteration theory (ECIT 94) (Opava), Grazer Math. Ber., vol. 334, Karl-Franzens-Univ. Graz, Graz, 1997, pp. 3–35. MR1644768

58. Jian Li, *Chaos and entropy for interval maps*, J. Dynam. Differential Equations 23 (2011), no. 2, 333–352. MR2802890

59. Transitive points via Furstenberg family, Topology Appl. 158 (2011), no. 16, 2221–2231. MR2831911
60. Jian Li, Equivalent conditions of Devaney chaos on the hyperspace, J. Univ. Sci. Technol. China 44 (2014), no. 2, 93–95, 111. MR3236061
61. Jian Li, Localization of mixing property via Furstenberg families, Discrete Contin. Dyn. Syst. 35 (2015), no. 2, 725–740. MR3267420
62. Jian Li and Piotr Oprocha, On n-scrambled tuples and distributional chaos in a sequence, J. Difference Equ. Appl. 19 (2013), no. 6, 927–941. MR3173461
63. Jian Li, Piotr Oprocha, and Guohua Zhang, On recurrence over subsets and weak mixing, to appear in Pac. J. Math.
64. Jian Li and Siming Tu, On proximality with Banach density one, J. Math. Anal. Appl. 416 (2014), no. 1, 36–51. MR3182747
65. Jian Li, Siming Tu, and Xiangdong Ye, Mean equicontinuity and mean sensitivity, to appear in Ergodic Theory and Dynamical Systems, arXiv:1312.7663.
66. Jie Li, Kesong Yan, and Xiangdong Ye, Recurrence properties and disjointness on the induced spaces, Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 1059–1073. MR3277185
67. Risong Li and Yuming Shi, Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces, Abstr. Appl. Anal. (2014), Art. ID 769523, 10 pages. MR3208565
68. ShiHai Li, ω-chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), no. 1, 243–249. MR1108612
69. TienYien Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR0385028
70. Gongfu Liao and Qinjie Fan, Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy, Sci. China Ser. A 41 (1998), no. 1, 33–38. MR1612875
71. Edward N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20 (1963), no. 2, 130–148.
72. Jiehua Mai, Continuous maps with the whole space being a scrambled set, Chinese Sci. Bull. 42 (1997), no. 19, 1603–1606. MR1641013
73. The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4125–4136. MR1990578
74. Devaney’s chaos implies existence of s-scrambled sets, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2761–2767. MR2054803
75. T. K. Subrahmonian Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity 20 (2007), no. 9, 2115–2126. MR2351026
76. T. K. Subrahmonian Moothathu, Syndetically proximal pairs, J. Math. Anal. Appl. 379 (2011), no. 2, 656–663. MR2784349
77. T. K. Subrahmonian Moothathu and Piotr Oprocha, Syndetic proximity and scrambled sets, Topol. Methods Nonlinear Anal. 41 (2013), no. 2, 421–461. MR3114317
78. Jan Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147. MR0173645
79. Piotr Oprocha, Relations between distributional and Devaney chaos, Chaos 16 (2006), no. 3, 033112, 5. MR2265261
80. Minimal systems and distributionally scrambled sets, Bull. Soc. Math. France 140 (2012), no. 3, 401–439. MR3059120
81. On local aspects of topological weak mixing in dimension one and beyond, Studia Math. 202 (2011), no. 3, 261–288. MR2771654
82. On weak product recurrence and synchronization of return times, Adv. Math. 244 (2013), 395–412. MR3077877
83. On local aspects of topological weak mixing, sequence entropy and chaos, Ergodic Theory Dynam. Systems 34 (2014), no. 5, 1615–1639. MR3255435
84. Topological aspects of dynamics of pairs, tuples and sets, Recent progress in general topology. III, Atlantis Press, Paris, 2014, pp. 665–709. MR3205496
85. Rafał Pikuła, On some notions of chaos in dimension zero, Colloq. Math. 107 (2007), no. 2, 167–177. MR2284159
86. Heriberto Román-Flores, A note on transitivity in set-valued discrete systems, Chaos Solitons Fractals 17 (2003), no. 1, 99–104. MR1960765
87. David Ruelle, Dynamical systems with turbulent behavior, Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), Lecture Notes in Phys., vol. 80, Springer, Berlin, 1978, pp. 341–360. MR518445
89. David Ruelle and Floris Takens, *On the nature of turbulence*, Comm. Math. Phys. 20 (1971), 167–192. MR0284067
90. Sylvie Ruette, *Transitive sensitive subsystems for interval maps*, Studia Math. 169 (2005), no. 1, 81–104. MR2139644
91. Bruno Scarpellini, *Stability properties of flows with pure point spectrum*, J. London Math. Soc. (2) 26 (1982), no. 3, 451–464. MR684559
92. Berthold Schweizer and Jaroslav Smítal, *Measures of chaos and a spectral decomposition of dynamical systems on the interval*, Trans. Amer. Math. Soc. 344 (1994), no. 2, 737–754. MR1227094
93. Song Shao, *Proximity and distality via Furstenberg families*, Topology Appl. 153 (2006), no. 12, 2055–2072. MR2237597
94. Jaroslav Smítal, *A chaotic function with some extremal properties*, Proc. Amer. Math. Soc. 87 (1983), no. 1, 54–56. MR684559
95. Berthold Schweizer and Jaroslav Smítal, *Measures of chaos and a spectral decomposition of dynamical systems on the interval*, Trans. Amer. Math. Soc. 344 (1994), no. 2, 737–754. MR1227094
96. Song Shao, *Proximity and distality via Furstenberg families*, Topology Appl. 153 (2006), no. 12, 2055–2072. MR2237597
97. Song Shao, Xiangdong Ye, and Ruifeng Zhang, *Sensitivity and regionally proximal relation in minimal systems*, Sci. China Ser. A 51 (2008), no. 6, 987–994. MR2410978
98. Berthold Schweizer and Jaroslav Smítal, *Measures of chaos and a spectral decomposition of dynamical systems on the interval*, Trans. Amer. Math. Soc. 344 (1994), no. 2, 737–754. MR1227094
99. Song Shao, Xiangdong Ye, and Ruifeng Zhang, *Sensitivity and regionally proximal relation in minimal systems*, Sci. China Ser. A 51 (2008), no. 6, 987–994. MR2410978
100. Feng Tan and Heman Fu, *On distributional n-chaos*, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 5, 1473–1480. MR3244574
101. Feng Tan and Jincheng Xiong, *Chaos via Furstenberg family couple*, Topology Appl. 156 (2009), no. 3, 525–532. MR2492300
102. Feng Tan and Jincheng Xiong, *Chaos via Furstenberg family couple*, Topology Appl. 156 (2009), no. 3, 525–532. MR2492300
103. Peter Walters, *An introduction to ergodic theory*, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. MR648108
104. Huoyun Wang, Jincheng Xiong, and Feng Tan, *Furstenberg families and sensitivity*, Discrete Dyn. Nat. Soc. (2010), Art. ID 649348, 12 pages. MR2600324
105. Stephen Wiggins, *Introduction to applied nonlinear dynamical systems and chaos*, Texts in Applied Mathematics, vol. 2, Springer-Verlag, New York, 1990. MR1056699
106. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
107. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
108. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
109. Jincheng Xiong, Jie Lü, and Feng Tan, *Furstenberg families and sensitivity*, Discrete Dyn. Nat. Soc. (2010), Art. ID 649348, 12 pages. MR2600324
110. Stephen Wiggins, *Introduction to applied nonlinear dynamical systems and chaos*, Texts in Applied Mathematics, vol. 2, Springer-Verlag, New York, 1990. MR1056699
111. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
112. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
113. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
114. Jincheng Xiong, Jie Lü, and Feng Tan, *Furstenberg families and sensitivity*, Discrete Dyn. Nat. Soc. (2010), Art. ID 649348, 12 pages. MR2600324
115. Stephen Wiggins, *Introduction to applied nonlinear dynamical systems and chaos*, Texts in Applied Mathematics, vol. 2, Springer-Verlag, New York, 1990. MR1056699
116. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
117. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
118. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
119. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
120. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033
121. Jincheng Xiong, *A chaotic map with topological entropy*, Acta Math. Sci. (English Ed.) 6 (1986), no. 4, 439–443. MR924033