Dynamic Programming for Parsing and Estimation of Stochastic Unification-Based Grammars

Stuart Geman and Mark Johnson
Brown University

ACL’02, Philadelphia

Acknowledgements: Stefan Riezler (Parc)
NSF grants DMS 0074276 and ITR IIS 0085940
Talk outline

- Stochastic Unification-Based Grammars (SUBGs)
- Parsing and estimation of SUBGs
- **Avoiding enumerating all parses**
 - Maxwell and Kaplan (1995) packed parse representations
 - Feature locality
 - Parse weight is a *product of functions of parse fragment weights*
 - Graphical model calculation of argmax/sum

Related work: Miyao and Tsuji (2002) “Maximum Entropy Estimation for Feature Forests” HLT
Let us take the fifteenth Tuesday.
Stochastic Unification-based Grammars

• A unification-based grammar defines a set of possible parses $\mathcal{Y}(w)$ for each sentence w.

• Features f_1, \ldots, f_m are real-valued functions on parses
 – Attachment location (high, low, argument, adjunct, etc.)
 – Head-to-head dependencies

• Probability defined by conditional log-linear model
 \[W(y) = \exp\left(\sum_{j=1}^{m} \lambda_j f_j(y)\right) = \prod_{j=1}^{m} \theta_j^{f_j(y)} \]
 \[\Pr(y|w) = W(y)/Z(w) \]

 where $\theta_j = e^{\lambda_j} > 0$ are feature weights and
 $Z(w) = \sum_{y \in \mathcal{Y}(w)} W(y)$ is the partition function.

Johnson et al (1999) “Parsing and estimation for SUBGs”, Proc ACL
Estimating feature weights

- Several algorithms for maximum conditional likelihood estimation
 - Various iterative scaling algorithms
 - Conjugate gradient and other optimization algorithms

- These algorithms are iterative
 ⇒ repeated reparsing of training data

- All of these algorithms require conditional expectations
 \[E[f_j|w] = \sum_{y \in \mathcal{Y}(w)} f_j(y) \Pr(y|w) \]

- Can we calculate these statistics and find the most likely parse without enumerating all parses \(\mathcal{Y}(w) \)? \(YES * \)
Maxwell and Kaplan packed parses

- A parse y consists of set of fragments $\xi \in y$ (MK algorithm)
- A fragment is in a parse when its context function is true
- Context functions are functions of context variables X_1, X_2, \ldots
- The variable assignment must satisfy “not no-good” functions
- Each parse is identified by a unique context variable assignment

$$\xi = \text{“the cat on the mat”}$$
$$\xi_1 = \text{“with a hat”}$$

$X_1 \rightarrow \text{“attach } D \text{ to } B\text{”}$
$\neg X_1 \rightarrow \text{“attach } D \text{ to } A\text{”}$
Feature locality

- Features must be *local* to fragments: \(f_j(y) = \sum_{\xi \in y} f_j(\xi) \)
- May require changes to UBG to make all features local

\[
\begin{align*}
\xi &= "\text{the cat on the mat}" \\
\xi_1 &= "\text{with a hat}" \\
X_1 &\rightarrow "\text{attach } D \text{ to } B" \land (\xi_1 \ \text{ATTACH}) = \text{LOW} \\
\neg X_1 &\rightarrow "\text{attach } D \text{ to } A" \land (\xi_1 \ \text{ATTACH}) = \text{HIGH}
\end{align*}
\]
Feature locality decomposes $W(y)$

- Feature locality: the weight of a parse is the product of weights of its fragments

\[W(y) = \prod_{\xi \in y} W(\xi), \quad \text{where} \]

\[W(\xi) = \prod_{j=1}^{m} \theta_{f_j}^{f_j}(\xi) \]

\[W(\xi = "\text{the cat on the mat"}) \]
\[W(\xi_1 = "\text{with a hat"}) \]

\begin{align*}
X_1 & \rightarrow W("\text{attach } D \text{ to } B" \land (\xi_1 \text{ ATTACH}) = \text{LOW}) \\
\neg X_1 & \rightarrow W("\text{attach } D \text{ to } A" \land (\xi_1 \text{ ATTACH}) = \text{HIGH})
\end{align*}
Not No-goods

- “Not no-goods” identify the variable assignments that correspond to parses

\[\xi = \text{“I read a book”} \]
\[\xi_1 = \text{“on the table”} \]
\[X_1 \land X_2 \rightarrow \text{“attach } D \text{ to } B” \]
\[X_1 \land \neg X_2 \rightarrow \text{“attach } D \text{ to } A” \]
\[\neg X_1 \rightarrow \text{“attach } D \text{ to } C” \]
\[X_1 \lor X_2 \]
Identify parses with variable assignments

- Each variable assignment uniquely identifies a parse
- For a given sentence w, let $W'(x) = W(y)$ where y is the parse identified by x

\Rightarrow Argmax/sum/expectations over parses can be computed over context variables instead

Most likely parse: $\hat{x} = \arg\max_x W'(x)$

Partition function: $Z(w) = \sum_x W'(x)$

Expectation:* $E[f_j | w] = \sum_x f_j(x)W'(x)/Z(w)$
W' is a product of functions of X

- Then $W'(X) = \prod_{A \in A} A(X)$, where:
 - Each line $\alpha(X) \rightarrow \xi$ introduces a term $W(\xi)^{\alpha(X)}$
 - A “not no-good” $\eta(X)$ introduces a term $\eta(X)$

\[
\begin{align*}
\vdots \\
\alpha(X) & \rightarrow \xi & \times W(\xi)^{\alpha(X)} \\
\vdots \\
\eta(X) & \times \eta(X) \\
\vdots \\
\end{align*}
\]

\Rightarrow W' is a Markov Random Field over the context variables X
"W' is a product of functions of X

\[
W'(X_1) = W(\xi = \text{"the cat on the mat"}) \times W(\xi_1 = \text{"with a hat"}) \times W(\text{"attach D to B"} \land (\xi_1 \text{ ATTACH}) = \text{LOW})^{X_1} \times W(\text{"attach D to A"} \land (\xi_1 \text{ ATTACH}) = \text{HIGH})^{\neg X_1}
\]
Product expressions and graphical models

- MRFs are products of terms, each of which is a function of (a few) variables
- Graphical models provide *dynamic programming algorithms* for Markov Random Fields (MRF) (Pearl 1988)
- These algorithms implicitly *factorize the product*
- They generalize the Viterbi and Forward-Backward algorithms to arbitrary graphs (Smyth 1997)

⇒ Graphical models provide dynamic programming techniques for parsing and training Stochastic UBGs
Factorization example

\[
W'(X_1) = W(\xi = "\text{the cat on the mat"}) \\
\times W(\xi_1 = "with a hat") \\
\times W("attach D to B" \land (\xi_1 \text{ ATTACH}) = \text{LOW})^{X_1} \\
\times W("attach D to A" \land (\xi_1 \text{ ATTACH}) = \text{HIGH})^{\neg X_1}
\]

\[
\max_{X_1} W'(X_1) = W(\xi = "\text{the cat on the mat"}) \\
\times W(\xi_1 = "with a hat") \\
\times \max_{X_1} \left(\\
W("\text{attach D to B" } \land \text{(\xi_1 ATTACH) = LOW})^{X_1}, \\
W("\text{attach D to A" } \land \text{(\xi_1 ATTACH) = HIGH})^{\neg X_1} \right)
\]
Dependency structure graph G_A

$$Z(w) = \sum_x W'(x) = \sum_x \prod_{A \in A} A(x)$$

- G_A is the \textit{dependency graph} for A
 - context variables X are vertices of G_A
 - G_A has an edge (X_i, X_j) if both are arguments of some $A \in \mathcal{A}$

$$A(X) = a(X_1, X_3)b(X_2, X_4)c(X_3, X_4, X_5)d(X_4, X_5)e(X_6, X_7)$$
Graphical model computations

\[
Z = \sum_x a(x_1, x_3)b(x_2, x_4)c(x_3, x_4, x_5)d(x_4, x_5)e(x_6, x_7)
\]

\[
Z_1(x_3) = \sum_{x_1} a(x_1, x_3)
\]

\[
Z_2(x_4) = \sum_{x_2} b(x_2, x_4)
\]

\[
Z_3(x_4, x_5) = \sum_{x_3} c(x_3, x_4, x_5)Z_1(x_3)
\]

\[
Z_4(x_5) = \sum_{x_4} d(x_4, x_5)Z_2(x_4)Z_3(x_4, x_5)
\]

\[
Z_5 = \sum_{x_5} Z_4(x_5)
\]

\[
Z_6(x_7) = \sum_{x_6} e(x_6, x_7)
\]

\[
Z_7 = \sum_{x_7} Z_6(x_7)
\]

\[
Z = Z_5Z_7
\]

\[
= (\sum_{x_5} Z_4(x_5)) (\sum_{x_7} Z_6(x_7))
\]

See: Pearl (1988) *Probabilistic Reasoning in Intelligent Systems*
Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner plastic window and rollers.
Computational complexity

- Polynomial in $m = \text{the maximum number of variables in the dynamic programming functions} \geq \text{the number of variables in any function } A$

- m depends on the ordering of variables (and G)

- Finding the variable ordering that minimizes m is NP-complete, but there are good heuristics

\Rightarrow Worst case exponential (no better than enumerating the parses), but average case might be much better

- Much like UBG parsing complexity
Conclusion

- There are DP algorithms for parsing and estimation from packed parses that avoid enumerating parses
 - Generalizes to all Truth Maintenance Systems (not grammar specific)

- Features must be local to parse fragments
 - May require adding features to the grammar

- Worst-case exponential complexity; average case?

- Makes available techniques for graphical models to packed parse representations
 - MCMC and other sampling techniques
Future directions

- Reformulate “hard” grammatical constraints as “soft” stochastic features
 - Underlying grammar permits all possible structural combinations
 - Grammatical constraints reformulated as stochastic features
- Is this computation tractable?
- Comparison with Miyao and Tsujii (2002)