Emerging Nondopaminergic Medications for Parkinson's Disease: Focusing on A2A Receptor Antagonists and GLP1 Receptor Agonists

Pei Shang, Matthew Baker, Samantha Banks, Sa-Ik Hong, Doo-Sup Choi

Departments of Molecular Pharmacology and Experimental Therapeutics, Neurology, Psychiatry and Psychology, Neuroscience Program, Mayo Clinic, College of Medicine, Rochester, MN, USA

ABSTRACT

Parkinson’s disease (PD) is a severe neurodegenerative disease characterized by classic motor features associated with the loss of dopaminergic neurons and appearance of Lewy bodies in the substantia nigra. Due to the complexity of PD, a definitive diagnosis in the early stages and effective management of symptoms in later stages are difficult to achieve in clinical practice. Previous research has shown that colocalization of A2A receptors (A2AR) and dopamine D2 receptors (D2R) may induce an antagonistic interaction between adenosine and dopamine. Clinical trials have found that the A2AR antagonist istradefylline decreases dyskinesia in PD and could be used as an adjuvant to levodopa treatment. Meanwhile, the incretin hormone glucagon-like peptide 1 (GLP1) mainly facilitates glucose homeostasis and insulin signaling. Preclinical experiments and clinical trials of GLP1 receptor (GLP1R) agonists show that they may be effective in alleviating neuroinflammation and sustaining cellular functions in the central nervous system of patients with PD. In this review, we summarize up-to-date findings on the usefulness of A2AR antagonists and GLP1R agonists in PD management. We explain the molecular mechanisms of these medications and their interactions with other neurotransmitter receptors. Furthermore, we discuss the efficacy and limitations of A2AR antagonists and GLP1R agonists in clinical practice.

Keywords A2A receptor antagonist; GLP1 receptor agonist; Parkinson’s disease.

INTRODUCTION

Parkinson’s disease (PD) is a progressive and degenerative disorder characterized pathologically by a substantial loss of dopaminergic neurons in the substantia nigra. PD is a relatively well-characterized disorder, and objective clinical assessment provides accurate diagnosis and analysis of disease severity. To reverse the dopamine deficiency that drives symptoms in PD, levodopa (L-DOPA), a precursor of dopamine that readily crosses the blood-brain barrier (BBB), revolutionized PD treatment since its Food and Drug Administration (FDA) approval in 1962. Many additional therapeutic drugs used as combinatory treatments work through different mechanisms, such as inhibiting L-DOPA or dopamine metabolism or activating dopamine receptors. Although the efficacy of dopamine-based treatment for PD symptoms is broadly well accepted and tolerable, the fluctuation in dopamine levels in the brain may result in potential side effects, including levodopa-induced dyskinesia (LID), impulsivity, and sleep disturbance. Numerous novel drugs have been tested in clinical trials to mitigate dopamine-based treatment shortcomings or reverse or compensate for dopamine deficiency. In 2019, the FDA approved a novel nondopaminergic medication, istrade-
fylline, an adenosine A_{2A} receptor (A_{2A}R) antagonist, as an adjuvant drug to treat off-episodes of PD symptoms. Interestingly, the glucagon-like peptide-1 receptor (GLP1R) agonist exenatide is another emerging nondopaminergic receptor-based treatment option and shows promising preclinical and clinical outcomes. In this review, we discuss how these two G-protein coupled receptor (GPCR) ligands may improve L-DOPA-based treatment with minimized side effects or provide alternative nondopaminergic options for patients who would benefit from early treatment.

ADENOSINE A_{2A}R ANTAGONISTS

Adenosine and adenosine receptors in movement

Adenosine and its receptors have been considered important therapeutic targets for PD due to their neuromodulatory and homeostatic functions in the human brain. Generally, adenosine receptors have been divided into subtypes, including A₁, A_{2A}, A_{2B}, and A₃. As an endogenous purine nucleoside, adenosine modulates several physiological functions in the central and peripheral nervous systems. Under basal conditions, adenosine mainly acts on inhibitory A₁ receptors (A₁R) and excitatory A_{2A}Rs to integrate dopamine and glutamate signaling, which controls the synaptic plasticity associated with learning, memory, and cognition. Adenosine preferentially acts at A₁R because of its widespread distribution and high expression levels. The A_{2A}R is a GPCR that can activate adenylyl cyclase. Of note, A_{2A}R is always distributed and colocalized with dopamine D₂R and D₃R on striatopallidal neurons in the striatum. A_{2A}R can also interact with dopamine D₂R and reduce the expression of D₂R (Figure 1). Due to their localization in the basal ganglia, A_{2A}R modulates the indirect pathway by modulating gamma-aminobutyric acid (GABA) and glutamate release, both of which are highly involved in the control of voluntary movements.

![Figure 1](https://example.com/figure1.png)

Figure 1. Possible mechanisms of A_{2A}R antagonists on PD. A_{2A} receptors and dopamine D₂ receptors interact with each other, and A_{2A} receptor activation inhibits the function of the D₂ receptor under normal conditions. A_{2A} receptor antagonists can be adjuvants to D₂R agonists, diminishing the inhibition of the D₂ receptor by adenosine. Thus, A_{2A}R antagonists block the effects of adenosine and facilitate D₂R agonist effects on lowering cAMP levels and then dampens PKA activity, which may result in neuroprotective effects. Meanwhile, the combination of an A_{2A} receptor antagonist and mGluR5 antagonist also promotes neuroprotection and activates the indirect corticostriatal circuit while reducing PD-like symptoms. The synergistic effect of A_{2A}R antagonist, D₂R agonist, and 5-HT_{1A}/1BR agonist also prevents L-DOPA-related dyskinesia-like behaviors. Figure 1 was modified from Nazario et al. 5-HT: serotonin, A_{2A}R: adenosine A_{2A} receptor, cAMP: cyclic adenosine monophosphate, D₂R: dopamine receptor D₂, L-DOPA: levodopa, LTP: long-term potentiation, mGluR5: metabotropic glutamate receptor 5 receptor, PD: Parkinson’s disease, PKA: protein kinase A.
emerge after long-term utilization of dopaminergic agonists. Although surgical interventions such as deep brain stimulation (DBS) can effectively relieve bradykinesia, rigidity, and tremor in PD patients, DBS has several limitations, including the risk of surgical complications and affordability. Istradefylline, an A2AR antagonist, was approved by the FDA as an anti-PD drug in 2019. Importantly, istradefylline exhibited powerful increases in locomotor activity and potentiated dopaminergic agonist motor effects in animal models of PD (Table 1). Indeed, dysfunction in adenosinergic transduction is associated with neurological disorders ranging from epilepsy to neurodegenerative disorders. Not surprisingly, the adenosinergic system was identified to be dysregulated in patients with PD. Researchers also demonstrated increased A2AR density in the caudate-putamen from PD subjects in a postmortem study. Consistently, pharmacological inhibition by A2AR antagonists has been found to improve motor behavior deficits in PD and dyskinesia. Interestingly, a photoactive adenosine A2AR antagonist also showed potential to remotely control movement disorders such as PD.

A2AR antagonism was first identified for potential therapeutic effects in patients with PD with the antimalarial drug mefloquine, which contains an A2AR antagonist. Experimentally, periodically interrupted or long-lasting administration of an A2AR antagonist such as SCH58261 combined with L-DOPA may restore normal motor function in PD animal models. Interestingly, long-acting L-DOPA treatment also results in an enhanced biosynthesis of A2ARs in patients with PD-induced dyskinesias, especially in brain networks involving the striatum and substantia nigra.

Interactions between adenosine A2AR and other GPCRs in PD

The hypothesis for A2AR antagonist utilization in PD is based on adenosine-dopamine antagonism in the striatum, which has the highest expression of A2AR in the human body. Accumulated evidence has verified the functional relationships between A2AR and D2R in the basal ganglia (Figure 1). Researchers have also identified D/R/A2AR oligomers in the mouse and monkey striatum via proximity ligation assays, immunoelectron microscopy, and ligand fluorescence resonance energy transfer (FRET)-based approaches. In addition, D/R/A2AR oligomers in the striatum have been postulated to appear at the onset of PD and could interrupt selective dopaminergic denervation. Furthermore, A2AR mRNA has been detected in striatal cholinergic interneurons according to a previous study. Due to structural associations, A2AR activation can inhibit Gα protein (G protein α subunit), which inhibits adenyl cyclase activity and thereby decreases

Table 1. Summary of clinical trials of A2AR antagonists for PD with symptom improvements

Medication	Trial design	Subjects	Treatment doses	Outcomes	Reference
Istradefylline	A phase 2, double-blind, placebo-controlled study of istradefylline in PD patients on L-DOPA/carbidopa	790 PD patients with an average OFF time at least 2 h/day and approximately 3.2 years after diagnosis	20 (for 163 subjects) or 60 mg (for 155 subjects) per day	Significant reduction in the awake time per day spent in OFF state	119
Istradefylline	A phase 3, multicenter, open-label, long-term (52 w) study of istradefylline in PD patients experiencing wearing-off	313 PD patients approximately 7.5 years after onset and 3.3 years after showing motor complications	20 mg as starting dosage with/o adjustment to 40 mg	Significant OFF time reduction since the 2nd week	120
Istradefylline	Istradefylline as adjunctive treatment to levodopa for 12 weeks in a phase 3, double-blind manner in PD patients with motor complications	373 PD patients 3.3 years after showing motor complications	20 or 40 mg per day	Istradefylline markedly reduced daily OFF time and was well-tolerated in patients with motor complications	121
Istradefylline	A phase 3 randomized, 12-week, double-blind, placebo-controlled parallel-group study of istradefylline with different doses in patients on levodopa therapy	610 PD patients with an average OFF time at least 3 h/day, 9 years after diagnosis, and 3.6 years after motor fluctuations	10, 20, and 40 mg per day	Istradefylline did not impact daily OFF time but significantly improved motor scores at 40 mg per day	122
Tozadenant	A phase 2, double-blind, randomized, placebo-controlled study of tozadenant as adjunctive therapy in L-DOPA-treated PD subjects	337 PD patients with an average OFF time at least 6 h/day and 8.7 years after diagnosis	60 or 120 or 180 or 240 mg/BID	Tozadenant significantly reduced daily OFF time and improved motor signs without increasing dyskinesia	123
Preladenant	A phase 2, 36-week, open-label, follow-up safety study of SCH420814 in subjects with PD	140 PD patients with moderate to severe PD > 5 years	5 mg/BID	Long-term preladenant treatment are well-tolerated and sustained the OFF time reduction	124

A2AR: adenosine A2A receptor, BID: twice a day, L-DOPA: levodopa, PD: Parkinson’s disease.
cAMP levels) coupled with D2R, further validating the existence of the A2AR-D2R heteroreceptor complex.34,35

Meanwhile, D3R activation can lead to the formation of D3R-NMDAR heteroreceptor complexes and subsequent inhibition of NMDAR signaling.36 Overactivity of astroglial A3AR induces extrasynaptic and postsynaptic mGluR1 and mGluR5 coupling to Gq protein (G protein α subunit, which activates phospholipase β and thereby increases diacylglycerol and inositol-triphosphate levels) by enhancing astroglial glutamate release, which can further increase intracellular calcium levels and lead to inhibition of D1R signaling in A3AR-D2R and A3AR-mGluR5 complexes (Figure 1).37 The A3AR-D2R and A3AR-mGluR5 complexes may inhibit D2R promoter recognition and activate intracellular MAPK and CREB signaling pathways, mainly relying on antagonistic allosteric receptor-to-receptor interactions.38,39 Nonetheless, A2AR activation by adenosine may have an excitatory effect on striatopallidal neurons in a D2R-independent manner.40-41

During the early phase of PD, L-DOPA and D3R agonists can prevent D2R promoter inhibition induced by the basal A3AR promoter since more D2R homoreceptor complexes are expressed than A2AR-D2R complexes.42 5-HT1A/1B agonists combined with A2AR antagonists were also reported as an advanced therapy for PD with antidyskinetic effects, implicating a potential synergic effect between the two receptors (Figure 1).43

Adenosine A2AR antagonists on cognition

Cognitive impairment frequently occurs in patients with PD and usually reduces patient quality of life and comfort.44 Early cognitive deficits in PD were hypothesized to be associated with deficits in dopaminergic innervation of the cortex and alterations in striatum-thalamocortical loop function, which is difficult to manage using dopaminergic medications.45,46 Interestingly, A2AR antagonists improve cognitive functions, including memory. The A2AR antagonist SCH58261 improved memory performance and social recognition memory in rodent models with memory deficits.47 However, A2AR antagonist administration into the posterior cingulate cortex impaired the process of memory retrieval in rats,48 suggesting region-specific effects. In practice, donepezil, an acetylcholinesterase inhibitor, is commonly prescribed for patients with PD to manage cognitive impairment and memory loss and might be an adjuvant to A2AR antagonists to alleviate side effects.49

A2AR antagonists, including ZM241385 and istradefylline, may restore social recognition and cognitive deficits in rats.50,51 Similarly, A2AR antagonists or genetic deletion of A2AR were shown to improve short-term memory, working memory, reversal learning, goal-directed behavior, and fear conditioning in animal models used for different neurological diseases.52-56

Adenosine A2AR antagonists: efficacy and limitations

It has been clinically verified that A2AR antagonists can improve motor dysfunction in patients with PD as monotherapy or in combination with L-DOPA and other antiparkinsonian drugs (Table 1).57-63 Previous clinical trials have also shown that A2AR antagonists are effective in shortening the off-time without worsening troublesome dyskinesias and increasing on-time in patients with advanced stage PD and L-DOPA treatment.59 However, with the exception of istradefylline, almost all of the other clinical trials with novel therapeutics have failed in recent years, including preladenant, vipadenant, and the nonxanthine SCH58261.59,60 Clinical trials of the A2AR antagonist named preladenant were discontinued due to the lack of efficacy.61 Side effects induced by A2AR antagonists, including insomnia, headache, constipation, hallucinations, and cardiac failure, merit attention from caregivers.62 Targeting A2AR with classic pharmacology has shown some drawbacks, including slow and imprecise drug delivery and low specificity and efficacy.21 A2AR antagonists generally have higher molecular weights and are difficult to synthesize due to the complexity of structures, poor water solubility, and furan groups that preclude replacement by classic chemistry.63 Caffeine is an adenosine analog and has been shown to confer neuroprotection against dopaminergic neurodegeneration via modulation of A2AR pathways and neuroinflammation in PD models.64 Furthermore, caffeine was demonstrated to improve motor function in PD patients by targeting A2AR.65 Chronic caffeine treatment can largely attenuate α-synuclein-induced microglial activation and astrogliosis in mice, similar to A2AR antagonists.66,67 However, a clinical trial has shown that caffeine intake twice daily (200 mg) over 6 months did not produce significant symptomatic benefits for patients with PD.68 Therefore, further studies are required to clarify the benefits of caffeine for the prevention or improvement of early or moderate PD symptoms.

Interestingly, our preclinical experiment showed that A2AR inhibition increases alcohol-seeking behaviors69 through enhanced goal-directed cognitive function. Consistent with this finding, pharmacological activation of A2AR or optogenetic activation of A2AR-expressing neurons in the dorsomedial striatum (DMS) decreases alcohol-seeking behaviors.70 In corticostriatal circuits, A2AR-expressing neurons consist of indirect and inhibiting circuits, as discussed in the previous section. Adenosine is known to mediate the intoxicating effect of alcohol,71-73 and A2AR inhibition may increase reward-seeking behaviors when subjects are introduced to addictive substances or activities. As noted above, A2AR inhibition increases cognitive function through enhanced goal-directed behavior. Even though istradefylline was suspected to positively affect cognitive dysfunction and postural abnormalities in patients with PD, short-term clinical trials did not show benefits on cognition.74 Meanwhile, based on preclinical studies,
A2AR inhibition may increase the risk of addiction. Therefore, it is important to monitor the behavioral patterns of PD patients when A2AR antagonists are prescribed.

GLP1R AGONISTS

Glucagon-like peptide and GLP1R-mediated signaling in insulin regulation

Glucagon-like peptide-1 (7-36) amide (GLP1) is secreted from intestinal enteroendocrine L cells in response to food intake and controls systemic blood glucose homeostasis in the human body. The intestinal wall secretes GLP1 to activate enteroenic reflexes, control gastric motility, and slow gastric emptying. GLP1 also activates vagal sensory nerve terminals and initiates vagal-vagal autonomic reflexes by controlling the endocrine function of the pancreas. The islets of Langerhans in the pancreas can be stimulated by GLP1 and release insulin to inhibit glucagon production. GLP1Rs are usually expressed in hypothalamic neurons and vagal afferent ganglion neurons. Due to rapid degradation and short half-lives, only 10–15% of GLP1 reaches circulation after release. Peripheral injection of GLP1R antagonists facilitates food intake and diminishes the efficacy of circulating GLP1, suggesting that the feeding process induced by GLP1 relies on peripheral GLP1R, which activates vagal afferents after stimulation. Notably, the glucose-lowering function of GLP1 is highly dependent on the concentration of glucose. This property of GLP1 prevents it from lowering blood glucose after fasting. Therefore, GLP1R agonists are clinically used as a new class of glucose-controlling agents for treating type 2 diabetes (T2D) without introducing the side effects of hypoglycemia.

Based on previous findings, GLP1 may not influence the metabolome or directly interact with rodent β cells, and short-term exposure to GLP1 did not induce changes to glycolytic or TCA cycle intermediates [*in vitro*]. The binding between GLP1 and GLP1R on various cells can activate adenylate cyclase and increase cAMP levels, which further stimulates protein kinase A and cAMP-regulated guanine nucleotide exchange factor 2 pathways and insulin secretion. A previous study also found that GLP1 may stimulate the secretion of insulin in β cells and induce glucose metabolism via the mTOR-dependent HIF-1α activation pathway.
As a promising therapeutic strategy for the management of T2D, GLP1 efficacy has been compared with different insulin formulations, including glargine and detemir, in multiple clinical trials. Long-acting GLP1R agonists have shown better glycemic efficacy than basal insulin. For instance, a once-weekly regimen of semaglutide significantly decreased the HbA1c levels compared with glargine therapy.

GLP1R and dopaminergic neurons

While GLP1R plays an important peripheral role in glucose-dependent insulin secretion and gene expression, there is increasing evidence of its central role in feeding and satiety-related behaviors. GLP1R expression has been observed throughout the brain in both rodents and humans. In particular, GLP1R is highly expressed in mesolimbic reward pathways, including the hypothalamus, ventral tegmental area, lateral septum, nucleus of the solitary tract, and many others. GLP1 and other GLP1R agonists have been shown to cross the BBB. GLP1R is a G-protein-coupled GPCR that activates adenylyl cyclase, leading to increased intracellular cAMP levels (Figure 2). GLP1R activation has been shown to directly interact with the dopamine system by decreasing phasic dopamine release and facilitating a reduction in feeding and reward-seeking behaviors. Additionally, GLP1R stimulation has been shown to exert neuroprotective and neuroproliferative effects in response to stroke, neurodegeneration, and other neurologic injuries (Figure 2).

In particular, exenatide, a novel GLP1R agonist that was discovered in the saliva of the Gila monster (Heloderma suspectum), was shown to reduce dopaminergic cell loss in the substantia nigra in a methyl-phenyl tetrahydropyridine (MPTP)-induced mouse model of PD and restore normal dopamine levels and motor function. Similarly, exenatide treatment was shown to reduce dopaminergic cell loss and motor function in rats injected with 6-hydroxydopamine (6-OHDA), another toxin that selectively causes dopaminergic cell death. In addition to motor effects, GLP1R has been shown to have a neuroprotective role in cognitive function through enhanced synaptic plasticity. While GLP1R null mouse models have shown evidence of impaired long-term potentiation (LTP) and learning and memory deficits, GLP1R stimulation increases LTP and restores cognitive function in neurodegenerative mouse models.

The extended-release form of the protease-resistant and brain-penetrating exenatide was approved by the FDA for T2D in 2018. Following this, Dr. Foltynie’s group in England demonstrated that weekly administration of exenatide for 48 weeks significantly improved PD symptoms in a phase II clinical trial. Recently, improved extended-release forms of exenatide with increased brain penetration and longer bioavailability were developed. Since various forms of exenatide were comprehensively tested in humans through T2D clinical studies, the new application of exenatide in PD will be available for PD treatment in the near future.

GLP1R agonists: efficacy and limitations

GLP1 function is hypothesized to be a pivotal molecular pathway in glucose regulation via the gut-brain axis. Interestingly, GLP1R is expressed not only in peripheral organs such as the pancreas but also in the brain. In line with this theory, GLP1R agonists showed positive impacts on controlling cardiovascular diseases, especially in patients with diabetes. Liraglutide, a GLP1R agonist, has been implicated as an efficient weight-loss agent in patients with or without T2D. GLP1R agonists such as exenatide have also been demonstrated to exert neuroprotective and neurotrophic effects and have shown therapeutic efficacy in PD management in several clinical and preclinical trials (Table 2 and 3). Another GLP1R agonist, lixisenatide, can cross the BBB and increase cAMP levels at a low dose. GLP1R activation elicits neurite outgrowth of SH-SY5Y cells, similar to the function of nerve growth factors, further validating its potential role in neurogenesis and neurotrophism. Meanwhile, exenatide induces approximately twofold changes in doublecortin-positive cells in the medial striatum and bromodeoxyuridine-positive cells in the subventricular area in adult mice, both of which are highly involved in the process of neurogenesis. Exenatide also improves Mattis dementia rating scale scores in patients with PD. The follow-up study showed that the benefits lasted for 12 months after the cessation of exenatide. The neuroprotective mechanisms of GLP1R agonists have not been elucidated until now. The brain-penetrant long-acting GLP1R agonist NLY01 prevented the loss of dopaminergic neurons and improved behavioral deficits in an α-synuclein-treated fibril model mimicking sporadic PD. NLY01 prolonged life expectancy and alleviated neurodegeneration and neuropathological abnormalities in the human A53T α-synuclein (hA53T) transgenic mouse model. The neuroprotective effects of the GLP1R agonist are likely correlated with the MAPK (ERK) and PI3K/AKT pathways (Figure 2).

CONCLUSIONS

This review provides current perspectives on the recently approved istradefylline and the recently investigated exenatide as new treatment options for PD. Ongoing postmarketing clinical studies on istradefylline will reveal optimal dosing and treatment timing for PD symptom management. Regarding exenatide, as it is clinically used for T2D, additional trials will inform the potential benefits in PD and T2D. Furthermore, various suspended release forms of exenatide will be available for once weekly or every
other week treatment regimens. More user-friendly routes of administration (pencil-type syringe or oral form) will increase the accessibility of this novel medication. Importantly, we need to develop personalized treatment methods for PD based on more precise phenotyping and genotyping, which may correlate with the treatment outcomes associated with existing and novel medications. Big-data-driven artificial intelligence will eventually aid physicians' treatment strategies with improved symptom monitoring systems.

Conflicts of Interest

D.S.C. is a scientific advisory board member for Peptron Inc. Peptron had no role in the preparation, review, or approval of the manuscript or the decision to submit the manuscript for publication. All the other authors declare no biomedical financial interests or potential conflicts of interest.

Funding Statement

This work was supported by the Samuel C. Johnson for Genomics of Addiction Program at Mayo Clinic, the Uln Foundation, and National Institute on Alcohol Abuse and Alcoholism (K01 AA027773 to SK; R01 AA018779, R01 AA029258, and R01 AG072898 to DSC).

Table 2. Summary of preclinical trials of GLP1R agonists for PD

GLP1R agonist	PD models	Treatment details	Experimental results	Reference
Ex-4	6-OHDA/LPS-treated rat model	Ex-4 (0.1 and 0.5 µg/kg) was given 7 days after the intracerebral toxin injection, BID for 7 days	Circling behavior was attenuated in Ex-4 group; striatal tissue dopamine level increased in Ex-4 group	125
Ex-4	6-OHDA-treated rat model	Ex-4 (0.1 µg/kg) was given 5 weeks after the intracerebral toxin injection, BID for 21 days	Ex-4 protected dopaminergic neurons, preserved dopamine levels and improved motor functions	97
Ex-4	MPTP-treated mouse model	Ex-4 (20 nM, 0.25 µL/h) was given 7 days 2 hour before MPTP treatment via left ventricle administration	PT302 increased tyrosine hydroxylase levels in the lesioned substantia nigra and striatum; PT302 reduced the neurodegeneration of nigrostriatal dopaminergic neurons	126
Extended-release Ex-4 (PT302)	6-OHDA-treated rat model	Ex-4 (0.4 or 2 mg/kg) was given every 2 weeks for 10 weeks starting 16 days before the unilateral lesion induced by 6-OHDA		
Lixisenatide	MPTP-treated mouse model	Lixisenatide (10 nmol/kg) was given after the 7-day MPTP treatment, once a day for 14 days	Lixisenatide prevented MPTP-induced motor impairment, reduction in tyrosine hydroxylase levels in substantia nigra, and reduction in pro-apoptotic signaling	127

6-OHDA: 6-hydroxydopamine, BID: twice a day, Ex-4: Exendin-4, MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, PD: Parkinson’s disease, LPS: lipopolysaccharide, GLP1R: glucagon-like peptide-1 receptor.

Table 3. Summary of phase 2 clinical trials of GLP1R agonists for PD

GLP1R agonist	Treatment details	Subjects	Study design	Primary outcome measures	Conclusions	Reference
Ex-4	Self-administer twice-daily subcutaneous injections of 5 µg for 1 month and 10 µg for 11 months	45 patients: moderate PD approximately 7.5 years since disease onset	Single-blind, placebo-controlled. 21-Ex-4 and 24-placebo	MDS-UPDRS and nonmotor tests at baseline, 6 months, 12 months, and 14 months	MDS-UPDRS scores in the Ex-4 treated group improved 2.7 points compared with 2.2 in the control group; motor and cognitive functions also improved in Ex-4 treated group	108
Ex-4	Once-weekly subcutaneous injections of 2 mg for 48 weeks	62 patients: moderate PD with DAergic treatment with wearing-off effects	Single-center, randomized, double-blind, placebo-controlled. 32-Ex-4 and 30-placebo.	MDS-UPDRS motor subscale (part 3)	Ex-4 significantly improved MDS-UPDRS scores of patients in the OFF time	98
Ex-4	2 mg of once weekly or placebo for 48 weeks followed by a 12-week washout period	60 patients: moderate PD; patients were receiving dopaminergic treatment	Single-center, randomized, double-blind, placebo-controlled. 31-Ex-4 and 29-placebo	MDS-UPDRS and serum were collected after 12-week withdrawal; insulin and PKB-related pathways were tested	Ex-4 treated group showed increased phospho-IRS1 and elevated expression of total AKT and phospho-mTOR; improvement of MDS-UPDRS was correlated to total and phospho-mTOR level	113

Ex-4: exenatide-4, mTOR: mechanistic target of rapamycin, IRS1: insulin receptor substrate 1, MDS-UPDRS: Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale, PD: Parkinson’s disease, PKB: protein kinase B, DAergic: dopaminergic, GLP1R: glucagon-like peptide-1 receptor.
Acknowledgments

We thank all the Choi laboratory members for their discussions. Figure 1 and 2 were created with BioRender.com.

Author Contributions

Conceptualization: Pei Shang, Doo-Sup Choi. Funding acquisition: Doo-Sup Choi. Investigation: all authors. Project administration: Pei Shang, Doo-Sup Choi. Resources: Pei Shang, Matthew Baker, Samantha Banks, Doo-Sup Choi. Supervision: Doo-Sup Choi. Writing—original draft: all authors. Writing—review & editing: all authors.

ORCID IDs

Pei Shang https://orcid.org/0000-0003-4345-2165
Matthew Baker https://orcid.org/0000-0002-5901-598X
Samantha Banks https://orcid.org/0000-0002-5856-1367
Sa-Ik Hong https://orcid.org/0000-0003-4799-739X
Doo-Sup Choi https://orcid.org/0000-0002-6796-9938

REFERENCES

1. Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov 2018;17:844.
2. Bastide MF, Meissner WG, Picconi B, Fasano A, Fernagut PO, Fyeder M, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson disease. Prog Neurobiol 2015;132:96–168.
3. Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med 2014;174:1930–1933.
4. Chen JF, Cunha RA. The belated US FDA approval of the adenosine A3 receptor antagonist istradefylline for treatment of Parkinson disease. Purinergic Signal 2020;16:167–174.
5. Chen JF. Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol 2014;119:257–307.
6. Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001;38:107–125.
7. Zheng J, Zhang X, Zhen X. Development of adenosine A2A receptor antagonists for the treatment of Parkinson disease: a recent update and challenges. ACS Chem Neurosci 2019;10:783–791.
8. Morelli M, Blandini F, Simola N, Hauser RA. A(2A) receptor antagonism and dyskinesia in Parkinson disease. Parkinsons Dis 2012;2012:489853.
9. Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 2003;278:46741–46749.
10. Morelli M, Carta AR, Jenner P. Adenosine A3 receptors and Parkinson’s disease. Handb Exp Pharmacol 2009;589:615.
11. Jenner P. A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD. Neurology 2003;61:S32–S38.
12. Morelli M, Wardas J. Adenosine A2A receptor antagonists: potential therapeutic and neuroprotective effects in Parkinson disease. Neurotox Res 2001;3:545–556.
13. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson disease. Brain 2007;130:1596–1607.
14. Hussar DA. New drugs 2020, part I. Nursing 2020;50:31–38.
15. Bavian M, El-D J, Peterson PK, Castagnoli N Jr, Chen JF, Schwarzschild MA, et al. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson disease. Exp Neurol 2003;184:285–294.
16. Ribeiro JA, Sebastião AM, de Mendonça A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 2002;68:377–392.
17. McFarland NR, Burdett T, Desjardins CA, Frosh MP, Schwarzschild MA. Postmortem brain levels of urate and precursors in Parkinson disease and related disorders. Neurodegener Dis 2013;12:189–198.
18. Varani K, Vincenzi F, Toi A, Gessi S, Casetta I, Gramieri G, et al. A2A adenosine receptor overexpression and functionality, as well as TNF-α levels, correlate with motor symptoms in Parkinson disease. FASEB J 2010;24:587–598.
19. Villar-Menéndez I, Porta S, Buira SP, Pereira-Vega T, Díaz-Sánchez S, Albasanz JL, et al. Increased striatal adenosine A2A receptor levels is an early event in Parkinson disease-related pathology and it is potentially regulated by miR-34b. Neurobiol Dis 2014;69:206–214.
20. Pinna A, Serra M, Morelli M, Simola N. Role of adenosine A2A receptors in motor control: relevance to Parkinson’s disease and dyskinesia. J Neurol Transm (Vienna) 2018;125:1273–1286.
21. Taura J, Nolen EG, Cabré G, Hernandez J, Squarcialupi L, López-Canó M, et al. Remote control of movement disorders using a photoactive adenosine A2A receptor antagonist. J Control Release 2018;283:135–142.
22. Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lerpinier J, et al. Discovery of nonxanthine adenosine A3 receptor antagonists for the treatment of Parkinson disease. Neurology 2003;61:S101–S106.
23. Carta AR, Pinna A, Tronci E, Morelli M. Adenosine A2A and dopamine receptor interactions in basal ganglia of dopamine denervated rats. Neurology 2003;61:S39–S43.
24. Calon F, Driid M, Hornykiewicz O, Bédrard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinetic brain. Brain 2004;127(Pt 5):1075–1084.
25. Fuze K, Stromberg I, Popoli P, Rimondini-Giorgini R, Torvinsen M, Ogren SO, et al. Adenosine receptors and Parkinson’s disease. Relevance of antagonistic adenosine and dopamine receptor interactions in the striatum. Adv Neurol 2001;86:345–353.
26. Josselyn SA, Beninger RJ. Behavioral effects of intrastriatal caffeine mediated by adenosinergic modulation of dopamine. Pharmacol Biochem Behav 1991;39:97–103.
27. Agnati LF, Ferré S, Ilius C, Franco R, Fuze K. Molecular mechanisms and therapeutic implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatal topological GABA neurons. Pharmacol Rev 2003;55:509–550.
28. Ferré S, Fredholm BB, Morelli M, Popoli P, Fuze K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997;20:482–487.
29. Trifileff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Casstrillon J, et al. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine-d2 adenosine A2A receptor complexes in the striatum. Biotechniques 2011;51:111–118.
30. Bonaventura J, Rico AJ, Moreno E, Sierra S, Sánchez M, Luquin N, et al. L-DOPA-treatment in primates disrupts the expression of A(2A) adenosine-CB1(1) cannabinoid-D(2) dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 2014;79:90–100.
31. Fernández-Dueñas V, Taura J, Cottet M, Gómez-Soler M, López-Canó M, Ledent C, et al. Untangling dopamine-adenosine receptor-receptor interactions in experimental parkinsonism in rats. Dis Model Mech 2015;8:57–63.
32. Fuze K, Marcellino D, Borroto-Escuela DO, Guesci M, Fernández-Dueñas V, Tanganelli S, et al. Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010;16:e18–e42.
33. Dixon AK, Gubitz AK, Srinathnashiihj DJ, Richardson PJ, Freeman TC. Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 1996;118:1461–1468.
34. Borroto-Escuela DO, Marcellino D, Narvaez M, Flajolet M, Heintz N, Agnati L, et al. A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R. Biochem Biophys Res Commun 2010;394:222–227.
35. Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Nar-
A2AR and GLP1R for Parkinson’s Disease
Shang P, et al.

50. Kadowaki Horita T, Kobayashi M, Mori A, Jenner P, Kanda T. Effects of

49. Aarsland D, Laake K, Larsen JP, Janvin C. Donepezil for cognitive im-

47. Takahashi RN, Pamplona FA, Prediger RD. Adenosine receptor antago-

45. Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling

42. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

39. Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 2003;61:519-523.

38. Ferré S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueño J, Gutiérrez MA, et al. Synergistic interaction between adenosine A2A and glutamate mGlur5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A 2002;99:11940-11945.

36. Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuroreport 2006;17:897-899.

35. Cabello N, Gandia J, Bertarelli DC, Watanabe M, Lluis C, Franco R, et al. Metabolite glutamate type S, dopamine D2 and adenosine A2A receptors form higher-order oligomers in living cells. J Neurochem 2009;109:1497-1507.

34. Ferre S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueño J, Gutiérrez MA, et al. Synergistic interaction between adenosine A2A and glutamate mGlur5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A 2002;99:11940-11945.

33. Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 2003;61:519-523.

32. Svenningsson P, Le Moine C, Fisone G, Fredholm BB. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 1999;59:355-396.

31. Svenningsson P, Lindsog M, Rognoni F, Fredholm BB, Greengard P, Fisone G. Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neuroscience 1998;84:223-228.

30. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

29. Weidmann B, Muccioli GG, Hirrlinger J, Landis T, Striepens N, et al. The adenosine A1 receptor antagonist istradefylline on cognitive performance in early development and those already discontinued. CNS Drugs 2014; 28:455-474.

28. Vallano A, Fernandez-Dueñas V, Pedros C, Arnau JM, Ciruela F. An update on adenosine A2A receptors as drug target in Parkinson’s disease. CNS Neurosl Disord Drug Targets 2011;10:659-669.

27. Neustadt BR, Hao J, Lindo N, Greenlee WJ, Stanford AW, Tulsiani D, et al. Potent, selective, and orally active adenosine A2A receptor antagonists: arylyperazine derivatives of pyrazole[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidines. Bioorg Med Chem Lett 2007;17:1376-1380.

26. Dengu R, Deeks ED. Istradefylline: first global approval. Drugs 2013; 73:875-882.

25. Núñez F, Taura J, Camacho J, López-Cano M, Fernández-Dueñas V, Castro N, et al. PBFS09, an adenosine A2A receptor antagonist with ef-

24. Ren X, Chen JF. Caffeine and Parkinson’s disease: multiple benefits and ef-

23. Hall CB. Comment: caffeine and PD-time to consider other interven-

22. Núñez F, Taura J, Camacho J, López-Cano M, Fernández-Dueñas V, Castro N, et al. PBFS09, an adenosine A2A receptor antagonist with ef-

21. Svenningsson P, Westman E, Ballard C, Aarsland D. Cognitive impair-

20. Aarsland D, Laake K, Larsen JP, Janvin C. Donepezil for cognitive im-

19. Aarsland D, Laake K, Larsen JP, Janvin C. Donepezil for cognitive im-

18. Pereira GS, Rossato JJ, Sarkis JI, Cammarota M, Bonan CD, Izquierdo I. Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiol Learn Mem 2005;83:217-223.

17. Balsis S, Taira-Suzuki R, Hikosaka O, Ueda H, Sakai S. Activation of adenosine receptors in the cerebellum upregulates mGluR5 receptors and enhances cyclic GMP production. J Neurophysiol 2002;87:1631-1639.

16. Aarsland D, Laake K, Larsen JP, Janvin C. Donepezil for cognitive im-

15. Aarsland D, Laake K, Larsen JP, Janvin C. Donepezil for cognitive im-

14. Aarsland D, Laake K, Larsen JP, Janvin C. Donepezil for cognitive im-

13. Furlan L, Pinna A, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 2003;61:519-523.

12. Svenningsson P, Lindsog M, Rognoni F, Fredholm BB, Greengard P, Fisone G. Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neuroscience 1998;84:223-228.

11. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

10. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

9. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

8. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

7. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

6. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

5. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

4. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

3. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

2. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

1. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allo-

www.e-jmd.org
797-808.
75. Kang S, Choi DS. Astrocyte adenosine signaling and neural mechanisms of goal-directed and habitual reward-seeking behaviors. Neuropsychopharmacology 2021;46:227-228.
76. Torti M, Vacca L, Stocchi F. Istradefylline for the treatment of Parkinson's disease: is it a promising strategy? Expert Opin Pharmacother 2018;19:1821-1828.
77. Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev 1999; 20:676-913.
78. Drucker DJ. The biology of incretin hormones. Cell Metab 2006;3:153-165.
79. Burcelin R. The gut-brain axis: a major glucoregulatory player. Diabetes Metab 2010;36 Suppl 3:S54-S58.
80. Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 2014;63:1224-1233.
81. Tian L, Jin T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes 2016;8:753-765.
82. Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 2009;150:1680-1687.
83. Bohórquez DV, Shahid RA, Ermann A, Kreger AM, Wang Y, Calakos N, et al. Neuroepithelial circuit formed by innervation of sensory endo-eroendocrine cells. J Clin Invest 2015;125:782-786.
84. Nathan DM, Schreiber E, Fogel H, Moskov S, Habener JF. Insulinotropic action of glucagon-like peptide-1[7-37] in diabetic and nondiabetic subjects. Diabetes Care 1992;15:270-276.
85. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993;91:301-307.
86. Holz GG, Chepurny OG. Glucagon-like peptide-1: a synthetic analog: new therapeutic agents for use in the treatment of diabetes mellitus. Curr Med Chem 2003;10:2471-2483.
87. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 2009;5:262-269.
88. Ghemi G, Ogura M, Iwasaki M, Yoko N, Minami K, Nakayama Y, et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep 2014;8:661-673.
89. Peyot ML, Gray JP, Lamontagne J, Smith PJ, Holz GG, Madiraju SR, et al. Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic beta-cells. PLoS One 2009;4:e6221.
90. Baggio LL, Drucker DJ. Biology of incretin hormones. Cell Metab 2006;3:153-165.
91. Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways that affect motor function in patients with Parkinson disease: is it a promising strategy? Expert Opin Pharmacother 2017;18:1907-1913.
92. Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017;390:1664-1675.
93. Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A new treatment strategy for Parkinson's disease through the gut–brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant 2017;26:1560-1571.
94. Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 2002;300:958-966.
95. Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide–PD trial. JAMA Neurol 2019;76:420-429.
96. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012;338:949-953.
97. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci U S A 2009;106:1283-1290.
98. Athauda D, Maclagan K, Skene SS, Baijwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017;390:1664-1675.
99. Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A new treatment strategy for Parkinson's disease through the gut–brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant 2017;26:1560-1571.
100. Li Y, Vaughan KL, Tweedie D, Jung J, Kim HK, Choi HI, et al. Pharmacokinetics of Exenatide in nonhuman primates following its administrations in the form of sustained-release PT320 and Bydureon. Sci Rep 2019;9:17208.
101. Yu SJ, Chen S, Yang YF, Glotfelty EL, Jung J, Kim HK, et al. PT320, sust-ained release Exendin-4, mitigates L-DOPA-induced dyskinesia in a rat 6-hydroxydopamine model of Parkinson's disease. Front Neurosci 2020;14:785.
102. Muscogiuri G, Cignarelli A, Giorgino F, Prodam F, Santi D, Tirabassi G, et al. GLP-1: benefits beyond pancreas. J Endocrinol Invest 2014;37:1143-1153.
103. Heppner KM, Kirigiti M, Secher A, Paulsen SJ, Buckingham R, Pyke C, et al. Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology 2015;156:253-267.
104. Hölscher C. Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 2014;221:T31-T41.
105. Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab 2016;24:15-30.
106. Moro PF, Johnson EL. Cardiovascular outcome trials of the incretin-based therapies: what do we know so far? Endocr Pract 2017;23:89-99.
107. Manigault KR, Thurston MM. Liraglutide: a glucagon-like peptide-1 agonist for chronic weight management. Consult Pharm 2016;31:685-697.
108. Álvares-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, Soderlund T, et al. Exenatide and the treatment of patients with Parkinson's disease. J Clin Invest 2013;123:2730-2736.
109. Hunter K, Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogene-sis. BMC Neurosci 2012;13:33.
110. Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 2002;300:958-966.
111. Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson's disease. J Neurosci Res 2008;86:326-338.
112. Álvares-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, Ell P, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease. J Parkinsons Dis 2014;4:337-344.
113. Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide–PD trial. JAMA Neurol 2019;76:420-429.
114. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012;338:949-953.
115. Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 2016;353:aah3374.
116. Lee MK, Stirling W, Xu Y, Xu X, Qiu D, Mandir A, et al. Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala53 -> Thr mutation causes neurodegenerative disease with alpha-synuclein aggre-
A2AR and GLP1R for Parkinson’s Disease
Shang P, et al.

117. Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov Today 2016;21:802-818.

118. Nazario LR, da Silva RS, Bonan CD. Targeting adenosine signaling in Parkinson’s disease: from pharmacological to non-pharmacological approaches. Front Neurosci 2017;11:658.

119. Stacy M, Silver D, Mendis T, Sutton J, Mori A, Chaikin P, et al. A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 2008;70:2233-2240.

120. Kondo T, Mizuno Y; Japanese Istradefylline Study Group. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol 2015;38:41-46.

121. Mizuno Y, Kondo T; Japanese Istradefylline Study Group. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord 2013;28:1138-1141.

122. Pourcher E, Fernandez HH, Stacy M, Mori A, Ballerini R, Chaikin P. Istradefylline for Parkinson’s disease patients experiencing motor fluctuations: results of the KW-6002-US-018 study. Parkinsonism Relat Disord 2012;18:178-184.

123. Hauser RA, Olanow CW, Kieburtz KD, Neale A, Resburg C, Maya U, et al. A phase 2, placebo-controlled, randomized, double-blind trial of tozadenant (Syn-115) in patients with Parkinson’s disease with wearing-off fluctuations on levodopa. J Neurol Sci 2013;333:e119.

124. Factor SA, Wolski K, Togasaki DM, Huyck S, Cantillon M, Ho TW, et al. Long-term safety and efficacy of preladenant in subjects with fluctuating Parkinson’s disease. Mov Disord 2013;28:817-820.

125. Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whittton PS. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation 2008;5:19.

126. Chen S, Yu SJ, Li Y, Lecca D, Glotfelty E, Kim HK, et al. Post-treatment with PT302, a long-acting Exendin-4 sustained release formulation, reduces dopaminergic neurodegeneration in a 6-hydroxydopamine rat model of Parkinson’s disease. Sci Rep 2018;8:10722.

127. Liu W, Jalewa J, Sharma M, Li G, Li L, Hölscher C. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 2015;303:42-50.