Down-Regulation of GABAA Receptor via Promiscuity with the Vasoactive Peptide Urotensin II Receptor. Potential Involvement in Astrocyte Plasticity
Laurence Desrues, Thomas Lefebvre, Céline Lecointre, Marie-Thérèse Schouft, Jérôme Leprince, Vincent Compère, Fabrice Morin, François Proust, Pierrick Gandolfo, Marie-Christine Tonon, et al.

To cite this version:
Laurence Desrues, Thomas Lefebvre, Céline Lecointre, Marie-Thérèse Schouft, Jérôme Leprince, et al.. Down-Regulation of GABAA Receptor via Promiscuity with the Vasoactive Peptide Urotensin II Receptor. Potential Involvement in Astrocyte Plasticity. PLoS ONE, Public Library of Science, 2012, 7 (5), pp.e36319. 10.1371/journal.pone.0036319. hal-01962706

HAL Id: hal-01962706
https://hal-normandie-univ.archives-ouvertes.fr/hal-01962706
Submitted on 26 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Down-Regulation of GABA_A Receptor via Promiscuity with the Vasoactive Peptide Urotensin II Receptor. Potential Involvement in Astrocyte Plasticity

Laurence Desrues^{1,2}, Thomas Lefebvre^{1,2}, Céline Lecointre^{1,2}, Marie-Thérèse Schouft^{1,2}, Jérôme Leprince^{1,2}, Vincent Compère^{1,2,3}, Fabrice Morin^{1,2}, François Proust^{1,2,4}, Pierrick Gandolfo^{1,2}, Marie-Christine Tonon^{1,2}, Hélène Castel^{1,2}

1 INSERM U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France, 2 Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France, 3 Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France, 4 Department of Neurosurgery, Rouen University Hospital, Rouen, France

Abstract

GABA_A receptor (GABA_AR) expression level is inversely correlated with the proliferation rate of astrocytes after stroke or during malignancy of astrocytoma, leading to the hypothesis that GABA_AR expression/activity may work as a cell proliferation repressor. A number of vasoactive peptides exhibit the potential to modulate astrocyte proliferation, and the question whether these mechanisms may imply alteration in GABA_AR-mediated functions and/or plasma membrane densities is open. The peptide urotensin II (UII) activates a G protein-coupled receptor named UT, and mediates potent vasoconstriction or vasodilation in mammalian vasculature. We have previously demonstrated that UII activates a PLC/PIP₂/Ca²⁺ transduction pathway, via both G_q and G₁₁ proteins and stimulates astrocyte proliferation in culture. It was also shown that UT/G_q/IP₃ coupling is regulated by the GABA_AR in rat cultured astrocytes. Here we report that UT and GABA_AR are co-expressed in cerebellar glial cells from rat brain slices, in human native astrocytes and in glioma cell line, and that UII inhibited the GABAergic activity in rat cultured astrocytes. In CHO cell line co-expressing human UT and combinations of GABA_AR subunits, UII markedly depressed the GABA current (β₃/β₂:γ₂/γ₃:δ/ε). This effect, characterized by a fast short-term inhibition followed by drastic and irreversible run-down, is not relayed by G proteins. The run-down partially involves Ca²⁺ and phosphorylation processes, requires dynamic, and results from GABA_AR internalization. Thus, activation of the vasoactive G protein-coupled receptor UT triggers functional inhibition and endocytosis of GABA_AR in CHO and human astrocytes, via its receptor C-terminus. This UII-induced disappearance of the repressor activity of GABA_AR, may play a key role in the initiation of astrocyte proliferation.

Introduction

Integrated brain function and dysfunction arise from the complex interactions between a network of multiple cell types including neurons, c and the microvascular endothelial cells comprising the cerebral vasculature [1,2,3]. This micro-environment is a dynamic structure referred as neurovascular unit where polarized astrocytes have a pivotal role [4], rapidly transducing synaptic information [2,3,4,5]. In pathological conditions including stroke, the astroglial reactivity is characterized by proliferation, hypertrophy, process extension, increased synthesis of intermediate filaments, as well as expression of bioactive molecules and their receptors [6,7,8].

GABA_A receptors (GABA_AR) are believed to be pentameric heterooligomers mainly constructed from homologous subunit types α₁-6, β₁-3, γ₁-3, δ and ε [9,10,11]. The GABA_AR is expressed in neurons but also in glial cells in culture [12], brain slices [13], acutely isolated hippocampal slices [13], membrane fractions of the mature rodent brain [14] and also in vivo in healthy brain [15]. In pathological conditions, a significant decrease of benzodiazepine sites associated to the GABA_AR has been demonstrated in patients with ischemic cerebrovascular [15,16,17], Parkinson [18] and Alzheimer [19,20] diseases. It was also observed a reduced chloride conductance [21], a decrease in receptor mediated inhibitory post-synaptic potentials [22] and a marked down-regulation of the GABA_AR expression at the cell surface along with a fast time course [15,23,24]. In reactive and malignant astrocytes, mRNA levels of GABA_AR have been shown to remain constant before diminution of functional GABA_AR [15,25]. Thus, the disappearance of GABA_AR expression is correlated with higher glial proliferation rate after stroke or during malignancy of astrocytoma [15,25,26], leading to the hypothesis that GABA_AR expression/activation works as a repressor of cell proliferation. Investigations on alterations in GABA_AR-mediated
functions, receptor densities or modulation in astrocytes remain unchallenged. It has been demonstrated that simultaneous activation of different postsynaptic receptors induces cross-modulation of their activation properties and receptor membrane insertion/deletion. Thus, as many neurotransmitters and vasoactive peptides are released by endothelium and astrocytes, and their receptors are expressed by astrocytes, there is a potential for complex signaling within the neurovascular unit, involving receptor cross-talks.

Urotensin II (UII) and its paralog urotensin II-related peptide URP, are highly efficient vasoactive peptides, which share a fully conserved C-terminal cyclic CFKWYC core corresponding to the molecular pharmacophore [26,27,28]. The biological actions of UUI and URP are mediated through activation of a G protein-coupled receptor named UT. It is now clearly established that activation of native UII receptors or UT-transfected cell lines is associated with an increase in polyphosphoinositide (PIPs) turnover promoting a cytosolic calcium concentration ([Ca2+]i) rise [29,30,31]. UII and UT are expressed in the mammalian cardiovascular system namely in the myocardium, vascular smooth muscle cells and endothelial cells [32,33,34,35], affecting cell proliferation [35,36] or neangiogenesis [37], stimulating collagen synthesis and cardiac hypertrophy [34].

In the brain, UII mRNA is particularly abundant in motoneurones of the medulla oblongata and spinal cord [38,39] while UT mRNA is widely expressed in various regions of the central nervous system including the olfactory system, hippocampus, amygdala, hypothalamus, or cerebellum [27]. However, immunohistochemical studies revealed that UT is expressed in astroglial processes [41–3], while UT mRNA is widely expressed in various regions of the central nervous system including the olfactory system, hippocampus, amygdala, hypothalamus, or cerebellum [27]. However, immunohistochemical studies revealed that UT is expressed in astroglial processes [41]. In this cell type, we have previously demonstrated that UII activates a PLC/PiP2/Ca2+ transduction pathway, via both Gq and Gi/o proteins and stimulates cell proliferation [41,42]. Moreover, a functional interaction between GABAAR and UT suggested a cross-talk between these two receptors, involved in astrocyte activity [43]. In this study we demonstrate that activation of UT receptor induces a long-term inhibition of GABAAR-mediated chloride currents, a process potentially relevant for astrocyte proliferation.

Results

GABAAR and UT functional coupling in rat cerebellar astrocytes

We and others have previously demonstrated that astrocytes express in vitro and in vivo UT mRNA and/or protein [38,40,41]. As shown in Figure 1Aa and 1b, UT is extensively expressed in astroglial processes, but also in the sparse mature granule cells present in co-cultures. In order to investigate a potential cross-talk between GABAAR and UT in both astrocytes and neurons, patch-clamp recording of the GABAAR agonist isoguvacine (Iso, 10–4 M) responses was carried out on membrane potentials and currents of astrocytes in mono-culture, and astrocytes or neurons in co-culture (Figure 1B and 1C). We established that flat and proliferating astrocytes in mono-culture (n = 31) (Figure 1B) were rarely responding (only 12% of cells are responding to Iso). In contrast, astrocytes cultured with cerebellar granule neurons present a slowly proliferating stellate astrocytic morphology (n = 78) (Figure 1B) and are more responding to the GABAAR agonist (48% of tested cells). In co-cultured astrocytes, local perfusion of rat UII (rUII, 10–7 M, 40 s) provoked a marked inhibition of the amplitude of the depolarization and chloride current (voltage clamp; −60 mV) evoked by the GABAAR agonist isoguvacine by 24.2 ± 7.5% and 35 ± 8% (n = 5), respectively (Figure 1C). In contrast, rUII did not affect the Iso-evoked depolarization and current in cerebellar granule neurons (Figure 1C). In astrocytes, rUII induced a dose-dependent inhibition of the current with an EC50 value of 43.6 ± 23.7% PM (Figure 1D). It can be noticed that in some cells, UII tested at 10–6 M, activated a small inward current. These data indicate that in astrocytes, unlike in neurons, rUII efficiently and markedly down regulated the GABAergic activity when UT and GABAAR are co-expressed.

In postnatal day 7 (P7) cerebellar slices, we investigated the topographic cellular and subcellular distribution of UT in the different layers. UT protein immunoreactivity was specifically distributed in particular zones of the cerebellar cortex, in the Purkinje cell layer (PCL), on fibers irradiating from the thin molecular cell layer (ML) toward the external granule cell layer (EGL), and on isolated cells residing in the internal granule cell layer (IGL) (Figure 2). In particular, UT receptor staining was present on NeuN-positive mature granule cell bodies (Figure 2A and 2A′) and also in Purkinje neuronal cell bodies and dendrites, as revealed by the strong immunofluorescence of UT in calbindin-positive Purkinje cell soma and dendrites (Figure 2B and 2B′). Doublecortin (DCX) is a distinctive marker of granule cells during the period of radial descent along the Bergmann glia into the cerebellar layers [44]. The DCX immunoreactivity appeared as a diffuse labeling in the IGL and densely in the ML, contiguously associated to UT-positive components but not co-localized (Figure 2C and 2C′). Moreover, UT was strongly co-localized with GFAP expressed by astrocytes of the white matter (not shown), and on glial cells (Figure 2D) including Bergmann cells [45]. At higher magnification, the double immunofluorescence analysis revealed that Bergmann cell bodies and fibers were surrounded by yellow co-localizing signals of UT varicosities and of GFAP-positive filaments (Figure 2D′). In addition, immunohistochemical analysis showed labeling of the γ1 subunit in Purkinje cells, and faint staining in fibers of the ML and in granule cell bodies of the IGL, co-localizing with UT (Figure 2E and 2E′). The γ2 subunit immunoreactivity was also mainly detected in Purkinje cells and fibers of the EGL (Figure 2F and 2F′). Thus, it appears that UT and GABAAR subunits are colocalized in cerebellar Purkinje and glial cell fibers in situ.

UT mediates inhibition of γ-composed GABAAR complexes

The molecular basis for the observed directional decrease in GABAAR function has been investigated in CHO co-expressing human UT and γ2β and/or γ GABAAR subunits. GABAAR can be made from several different subunit families (α1–α6, β1–β3, γ1–γ3, δ, ε, π, and θ), which come together in various combinations to form the pentameric receptor [46]. Most receptors are thought to contain α, β and the third subunit type varying, being often the γ2. Expression of unitary subunits has produced conflicting results, but some subunits expressed alone [47,48] or as binary combinations, for instance α1γ2 or β2γ2, appear to be able to produce GABA- gated ions channels [49,50,51]. In order to establish a direct functional link between GABAAR and UT, the effect of graded concentrations of UUII was studied on the current evoked by Iso on CHO-UT, expressing different subunit combinations of GABAAR (Figure 3A). It is observed that UUII induced inhibition of GABAAR complexes which systematically contained γ1 or γ2 subunit (Figure 3A and 3B), and the normalized data fit yielded various EC50 values and efficacies summarized in supplementary information (Table S1). In particular, UUII was less effective on the α2β2γ1 and α2β2γ1 and totally ineffective on the α2β1 and α2β1 complexes (Figure 3A and 3B, Table S1).
Figure 1. UII-induced depression of GABA_AR in UT-expressing cerebellar astrocytes. (Aa, Ab) Double immunofluorescence labeling of UT (green) and the specific astrocyte marker GFAP (red, Aa), or the mature neuron marker NeuN (red, Ab) in astrocyte-neuron co-culture from P7 rat cerebellum. Astrocytes, recognized by strong GFAP staining show UT immunoreactivity (arrows), whereas few weaker UT-stained cells express NeuN (arrowheads), and were likely attributed to mature granule cells (arrowheads, Ab). Nuclei (blue) were counterstained with DAPI. Scale bars, 50 µm. (B) Phase contrast photomicrograph of astrocytes in mono-culture, or astrocytes and neurons in co-culture at 3 days in vitro. (C) Membrane depolarizations and currents evoked by the GABA_AR agonist isoguvacine (Iso, 10⁻⁵ M, 2 s for membrane potential and 5 s for chloride current) in astrocytes and cerebellar granule neurons before, during rUII (10⁻⁷ M, 40 s) application and after 2-min washout. Right, normalized amplitudes deduced by the mean Iso-evoked depolarization or current obtained before rUII application. (D) Concentration-response relationship of Iso-evoked
As a control, the effect of the GABA$_A$R allosteric inverse modulator DMCM, hUII and other urotensinergic modulators, were tested on the $\gamma_2\delta_3\alpha_2$ GABA$_A$R function in the absence of UT. Our data demonstrated that, as expected, DMCM induced inhibition of the current in most tested cells, and hUII and its paralog URP failed to affect the amplitude of the current from astrocytes yielding an EC$_{50}$ value of $43.6 \pm 23.7 \times 10^{-12}$ M. Data are mean ± SEM of 4 to 6 cells. *, $P < 0.05$; **, $P < 0.01$ compared with the corresponding control Iso-evoked current.

doi:10.1371/journal.pone.0036319.g001

Figure 2. Co-localization of UT with γ subunits in neuron and glial components in rat cerebellum. (A, A') Double-fluorescence staining for UT (green) and NeuN (red) showing the presence of UT in both mature (arrowhead, merge, A') and unidentified cells (arrows, merge, A') in the IGL. (B) Co-staining of UT and the marker of Purkinje cells, calbindin (red), in Purkinje cell soma and dendrites (arrowhead, B'). (C) Staining for UT and the marker of migrating neuroblasts doublecortin DCX (red) depicting a diffuse labeling in the ML. (C') UT immunopositive fibers contiguous to DCX-expressing migrating granule cells (merge, yellow, arrowhead). (D, D') Staining for UT and GFAP (red) in glial fibers (merge, yellow, arrowhead) of the ML. (E, F) Distribution of UT and the γ_1 (E) and γ_2 (F) GABA$_A$R subunits (red), in Purkinje cells (merge, arrowhead) and few extents of glia (merge, arrow) in the ML and IGL. Nuclei (blue) were counterstained with DAPI. Scale bars, 50 μm (A–F); 20 μm (A'–F'). EGL, external granule cell layer; IGL, internal granule cell layer; ML, molecular layer; PCL, Purkinje cell layer. (A'–F') Images of digitally zoomed regions corresponding to the white boxes in A–F.

doi:10.1371/journal.pone.0036319.g002
Figure 3. Effect of hUII on different GABA_αR subunit combinations. (A) Typical Iso-evoked currents at the holding potential of ~60 mV, in the whole-cell configuration, on CHO stably expressing human UT (CHO-UT) and transiently transfected with cDNAs encoding α₂β₃γ₂, α₂β₁γ₂, α₂β₃γ₁, α₂β₁γ₁, β₁γ₂, β₁γ₁ or α₂β₃γ₂ subunits of the GABA_αR. Iso (10⁻⁴ M) was repeatedly applied for 2 s at 2 min intervals and increasing concentrations of hUII (10⁻¹³ to 10⁻⁷ M) were bath perfused in the vicinity of cells. (B) Corresponding concentration-response curves for hUII on α₂β₁γ₂ and α₂β₃γ₂, α₂β₁γ₁ and α₂β₃γ₁, β₁γ₂ and β₁γ₁ receptor subunits. Data are normalized to the control Iso response immediately prior to lower hUII concentration application. Data are mean ± SEM of 3 to 23 cells.

doi:10.1371/journal.pone.0036319.g003
Figure 4. Pharmacological characterization of the UT-mediated inhibition of the GABA₄R currents. (A) Whole-cell current response to ISO (10⁻⁴ M, 2 s) recorded in the absence or presence of the benzodiazepine site inverse agonist DMCM (10⁻⁵ M), hUII and URP (10⁻⁶ M, each), or UT antagonists [Orn⁵]-URP and palosuran (10⁻⁶ M, each) in CHO expressing α₂, β₃ and γ₂ subunits. Below, summary of the various experimental conditions (n = 3–18). (B) Comparison of the inhibitory effect of hUII and DMCM on CHO-UT-GABA₄R_i as summarized in bar graphs (n = 25). Bottom row, plot of the positive correlation (r² = 0.8) of hUII-induced inhibition as function of the DMCM-evoked current decrease (n = 28). (C) Comparison of the inhibitory effect of hUII and URP on CHO-UT-GABA₄R as summarized in bar graphs (n = 12–54). (D, E) Effect of [Orn⁵]-URP and palosuran in the absence or presence of hUII versus the effect of hUII alone. Right, summary of the various experimental conditions (n = 3–18).
experimental conditions \((n = 7–54)\). Data are mean ± SEM from 3 to 54 cells. ns, non significant, *, \(P < 0.05\); ** \(P < 0.01\); *** \(P < 0.001\) compared with the corresponding control Iso-evoked current.

doi:10.1371/journal.pone.0036319.g004

(Figure 4A). The rapid development in recent years of several UT antagonists has led to the synthesis of \([\text{Orn}^5]\)-URP which has been previously characterized in our laboratory [52,53] and palosuran, with one such high affinity toward human UT [54,55]. Thus, the specific rat UT antagonist \([\text{Orn}^5]\)-URP \((10^{-6} \text{ M})\) and the primate UT specific antagonist palosuran \((10^{-6} \text{ M})\) did not modulate the Iso-evoked current.

To assess the role of \(\gamma\) subunit into 2\(\beta\) binary complexes in the UII-induced GABA\(_A\)R regulation, we tested the effect of DMCM, as this allosteric modulator exhibits negative effect on GABA current in cells expressing \(\gamma_2\) subunit [56,57] or null effect when \(\gamma\) is not present [56]. We analyzed the effect of \(\text{UII} (10^{-8} \text{ M})\) concomitantly to that of DMCM \((10^{-6} \text{ M})\) on CHO-UT co-expressing \(\beta_3\beta_5\gamma_2\) GABA\(_A\)R. The amplitude of the UII-induced inhibition was plotted as a function of the DMCM-induced inhibition of chloride currents recorded from twenty five CHO-UT-GABA\(_A\)R expressing cells. A linear regression analysis confirmed the significance of a correlation as represented on the scatter plot \((r^2 = 0.8, P < 0.001)\) (Figure 4B), suggesting that \(\gamma_2\) regulates the degree of UT-mediating inhibition of the GABAergic activity.

The effects of the different urotensinergic ligands were then tested on CHO-UT-GABA\(_A\)R\(_2\) composed of the \(\gamma_2\) subunit. We found that \(\text{UII} \text{ and URP} (10^{-8} \text{ M}, \text{each})\) induced a marked current inhibition by 29.24±1.90% \((n = 54)\) and 22.9±2.35% \((n = 12)\), respectively, that persisted during washout for UII, but slightly recovered during washout for URP (Figure 4C). In order to examine whether UT antagonists might counteract the UII-induced decrease of the GABAergic activity, \([\text{Orn}^5]\)-URP and palosuran were tested. \([\text{Orn}^5]\)-URP \((10^{-6} \text{ M})\) significantly, but weakly inhibited the ISO-evoked current, blocked the effect of the acute application of \(\text{UII}\), but failed to counteract the prolonged effect of the peptide on the same cell (Figure 4D). Surprisingly, palosuran mimicked the \(\text{UII}\)-induced inhibition of the iso-evoked current, but abolished the reverberating action of \(\text{UII}\) during washout (Figure 4E). This indicates that \([\text{Orn}^5]\)-URP or palosuran may keep their antagonist profile toward UT, but exhibit “agonistic activity” in regard to the GABA\(_A\)R function.

To test whether activation of the UT/[Ca\(^{2+}\)], signaling pathway may be closely linked to the modulation of GABA\(_A\)R\(_2\) changes in [Ca\(^{2+}\)], evoked by \(\text{UII}\), URP, \([\text{Orn}^5]\)-URP and palosuran were measured by continuous Ca\(^{2+}\) fluorescent imaging in CHO-UT. When applied to the bath solution, \(\text{UII}\) and URP evoked a significant and rapid increase of the amplitude of the baseline [Ca\(^{2+}\)], by 322% and 341%, respectively (Figure 5A and 5B). The effect of \(\text{UII}\) was irreversible, only partially recovering after 32-minute washout (Figure 5A), as compared with URP whose effect totally recovered after 16-minute washout (Figure 5B). It is also observed that \([\text{Orn}^5]\)-URP \((10^{-6} \text{ M})\) behaved as a partial agonist (263% of [Ca\(^{2+}\)], increase) but prevented the sustained effect of \(\text{UII}\) on [Ca\(^{2+}\)] (Figure 5C). In contrast, palosuran \((10^{-6} \text{ M})\) failed to evoke a [Ca\(^{2+}\)], rise and completely blocked the \(\text{UII}\)-induced [Ca\(^{2+}\)], increase (Figure 5D).

Effect of UT on GABA\(_A\)R pharmacology and gating properties

According to the action of UT on GABA\(_A\)R, we asked the question whether the pharmacology and gating properties of GABA\(_A\)R were affected by UT. Thus, we found that the specific positive allosteric GABA\(_A\)R modulator pentobarbital \((10^{-7} \text{ M})\) directly activated a chloride current, and reversibly potentiated the Iso-evoked current by 196.28±12.33% (Figure 5A). In addition, SR95531 \((10^{-5} \text{ M})\) and pacrotoxin \((10^{-4} \text{ M})\) induced attenuated current inhibition by 76.92±10.35%, and by 36.76±4.33%, respectively (Figure 5A). This indicates that pharmacological characteristics of the GABA\(_A\)R are not altered by the presence of UT. Next, to determine whether activation of UT might modify the conductance and selectivity of the GABA\(_A\)R-channel complex, the current-voltage (I-V) relationship was studied on CHO-UT co-expressing \(\beta_3\beta_5\gamma_2\) GABA\(_A\)R subunits. The voltage-dependence of the cell response to Iso \((10^{-7} \text{ M})\) was investigated in the absence or presence of \(\text{UII}\) and the amplitude of the current was measured at different holding potentials (Figure 5B1). Local perfusion of \(\text{UII} (10^{-8} \text{ M})\) decreased the slope of the I-V curve but did not significantly shift the chloride reversal potentials \((\text{EqCl}^\text{c})\), control, 4.84 mV; \(\text{UII}, 3.36 \text{ mV}\), closed to the theoretical \(\text{EqCl}^\text{c}\) value calculated from the Nernst equation, based on the external and internal chloride concentrations used during recording (see Materials and Methods section). It is observed that \(\text{UII}\)-induced inhibition of the Iso-evoked current recorded at −60 mV \((26.93±6.35\%\) and +60 mV \((37.06±11.25\%)\) was very similar and did not significantly depend on the holding potential (Figure 5B1).

The subunit composition determines the GABA sensitivity and the pharmacological properties of the GABA\(_A\)R [9] as well as the time course of the GABA response referred as desensitization and deactivation of chloride current [58,59,60]. To clearly assess the mechanism of UT-mediating inhibitions of the GABA current, \(\text{UII}\) was applied on CHO-UT-GABA\(_A\)R on the fast component of current desensitization. As shown in Figure 6, the current evoked by ISO showed a slow decay during continuous agonist ejection as observed by an apparent desensitization of 59% in control, and 77% under \(\text{UII}\) perfusion. We then followed the time-dependent recovery from desensitization in the absence or presence of \(\text{UII}\). Recovery of 50% receptors from this long exposure occurred with mean time constants of 16.2 s in control and 82.2 s in the presence of \(\text{UII}\), demonstrating that the progressive recovery is delayed in the presence of the peptide (Figure 6). Thus, when coexpressed with UT, the pharmacological profile of GABA\(_A\)R is not altered, but UII rather affects macroscopic \(\beta_3\beta_5\gamma_2\) receptor current desensitization, and markedly slow the recovering process. Since recovery from desensitization does not involve membrane voltage [60], it is suggested that UT-mediating GABA\(_A\)R desensitization is mainly due to conformational changes of the ligand-bound receptor chloride channel, paralleled to a mechanism known to develop from the closed but fully bound conducting state of the receptor [61].

Mechanisms promoting fast short-term and long-term UII-induced GABA\(_A\)R current inhibition

In CHO-UT-GABA\(_A\)R, the Iso-activated currents were measured during a 28-min recording period from the initial application of the GABA\(_A\)R agonist. A 1-min application of \(\text{UII} (10^{-6} \text{ M})\) provoked a fast and significant decrease of the current \((23.44±2.47\%, n = 10)\) followed by a progressive run-down, reaching 84.61±5.92% \((n = 4)\) inhibition after 24-min washout (Figure 7A). The second large intracellular loop of several GABA\(_A\)R subunits possesses numerous consensus phosphorylation sites [62] and effective phosphorylation mechanisms have been shown to be involved in either short- or long-term regulation of
Figure 5. Role of specific UT ligands on cytosolic calcium in CHO-UT. (A, B) hUTII (A) or URP (B) (10^{-8} M, each) provoked a robust increase of $[Ca^{2+}]_c$, which remained stable (A) or recovered to the basal line level (B) during washout. (C, D) Effect of the UT antagonists [Orn$_5$]-URP (10^{-6} M, C) or palosuran (10^{-6} M, D), before and during hUTII application. Right, bar graphs represent the percent increase of the $[Ca^{2+}]_c$ during drug perfusion or during the washout period. Percent values were obtained by normalizing signals evoked during and after treatments to the value measured before.
inhibitory synaptic transmission [63,64]. To further explore the mechanisms sustaining the hUII-induced current long-term depression, we hypothesized that various UT-couplings to G proteins, relay [Ca^{2+}], rise resulting in kinase or phosphatase activation, likely responsible for changes in GABA_{A}R subunits phosphorylation state. G-protein activation requires the exchange of bound GDP (resting state) with GTP (activated state). This is a common and necessary step of all G-protein mediated actions and is independent of G-protein type or the second messenger system involved. Therefore, blockade of this exchange will result in inability of the ligand-bound receptor to exert its action. Thus, G protein specific blockade with GDP_{S} (10^{-4} M) did not significantly prevent the fast and long-term inhibition of the current induced by hUII (Figure 7B). Intracellular dialysis with a cocktail of kinase and phosphatase inhibitors (KIC; phosphatase inhibitor cocktail, quercetin 10^{-5} M and staurosporine 10^{-5} M), failed to alter the fast hUII inhibitory effect but attenuated the rundown phenomenon (Figure 7C). It is also observed that hUII reduced the peak current amplitude after 5-s perfusion, but evoked a peak [Ca^{2+}]c increase only after a 10-s delay (Figure 7D). Consistent with this observation, intracellular BAPTA (10^{-4} M) dialysis reduced the long-term current inhibition by only 39.29 \pm 10.16\% (n = 9) (Figure 7E). Together, these observations tend to show that G proteins do not transduce UT-induced current inhibition and that calcium transient and phosphorylation mechanisms do not play a promoting role, but participate in the run-down of the GABA_{A}R current. To test a hypothetical role of UII in the dynamin-dependent GABA_{A}R endocytosis, the dynamin inhibitory peptide DIP, which competitively blocks binding of dynamin to amphiphysin [64], has been introduced in the intrapipette solution. As shown in Figure 7F, when cells were dialyzed with DIP (10^{-5} M), hUII retained its ability to induce a fast and highly reversible inhibition of the Iso-evoked current, but failed to reduce the current amplitude with time recording.

Inhibition of the GABAergic activity involves GABA_{A}R internalization and requires specific UT receptor domains in CHO and human astrocytes

To assess whether the C-terminus fragment of UT, corresponding to the cytoplasmic C-tail of the receptor contributes to the UII-induced run-down of the GABA_{A}R activity, we constructed four truncated mutants in which the last 19 (UTHA_370), 38 (UTHA_351), 57 (UTHA_332) or 70 (UTHA_319) residues were removed (Figure 8A). They are all present at the plasma membrane (Figure S2) and functionally expressed except the UTHA_319 truncated form of UT (Figure S3). When UTHA_370 is coexpressed with GABA_{A}R, the hUII-induced fast short-term inhibition was totally abolished, whereas the long-term inhibition was delayed, and significantly altered (Figure 8B). In the presence of shorter truncated forms, hUII totally failed to alter the GABA_{A}R activity, suggesting that the most distal C-terminus part of UT is involved in the functional cross-talk with GABA_{A}R (Figure 8B). Moreover, the peptidomi-
Figure 7. Intracellular mechanisms of UT-triggering GABAAR inhibition. (A) Traces of Iso (10^{-2} M, 2 s)-evoked current amplitude time-course on CHO-UT-GABAAR in control (above row) or during a 1-min application of hUII (10^{-8} M, bottom row). Corresponding average time course of the Iso-evoked current, in control or during and after hUII application. (B, C) Current traces before (1), during (2) a 1-min hUII application and after 20-min washout (3), in the absence or presence of GDPbS (10^{-4} M, 15 min of dialysis) or the cocktail of kinase and phosphatase inhibitors (C, KIC,
metric UT^{myc}-319–389 (Figure 8A) completely inhibited the fast and long-term effects of UII on the GABA~AR-exposed current (Figure 8C). Collectively, these results indicate that the C-terminus of UT relays the inhibition of the GABA~AR function, and may counteract a potential hUII-induced internalization process.

Our data thus suggest that UT activation likely regulates GABA~AR endocytosis. We first established the subcellular localization of both UT and GABA~AR in cultured CHO transiently transfected with cDNAs encoding recombinant human UT and the γ2β3~HA-γ2-tagged (γ2β3~HA-γ2) GABA~AR subunits and then, internalization of GABA~AR was followed by labeling the surface receptors with antibodies directed against the β3~HA co-expressed with γ2γ2 GABA~AR subunits and/or UT. In the absence of ligand, the immunoreactivity for β3~HA exhibited membrane localization (green) as enlightened by the intensity profiles (Figure 9Aa). In contrast, treatment with hUII (10^{-6} M), Iso (10^{-8} M) or the two agonists, drastically promoted GABA~AR endocytosis by 40.20±4.14%, 39.31±2.84% and 34.73±3.19%, respectively (Figure 9B), as seen by the increase of red punctuates in the cell soma (Figure 9Ab-8Ad). When GABA~AR was expressed alone, hUII failed to induce GABA~AR internalization whereas Iso or Iso combined with hUII remained able to provoke GABA~AR removal from the plasma membrane (Figure 9B).

In order to confirm the involvement of UII/UT in the internalization process of GABA~AR in CHO, we investigated the plasma membrane expression of the γ2~HA GABA~AR subunit, as well as UT^{myc} expression after exposure to hUII by measuring the amount of surface immunolabelled receptors by ELISA. Typical immunolinescence and fluorescence values obtained from CHO expressing either UT^{myc}-γ2~HA or UT^{myc}-γ2β3~HA, and UT^{myc} or UT^{myc}γ2β3~HA-UT^{myc}-γ2γ2 YFP, respectively, were shown in Figure 10A. In CHO-UT^{myc}-γ2β3~HA, a 30 min treatment with hUII (10^{-6} M) led to approximately 40% loss of γ2~HA subunit from the cell surface, without modifying cell membrane amount of UT^{myc} (Figure 10B). In CHO-UT^{myc}γ2β3~HA, we co-transfected with the cDNA encoding the UT^{319-380}YFP peptide domainic fragment, hUII incubation failed to remove the γ2~HA subunit from the cell membrane (Figure 10B), establishing that the C-terminus part of UT played a major role in the UII-induced GABA~AR internalization in a recombinant system. The physiological relevance of such mechanism was thus assessed in native human astrocytes and in the human glioma U87 cell line.

Flow cytometry analysis showed that normal and tumoral glial cells in culture expressed β3 subunit (Figure 11A) and UT (Figure 11B), and that one population (around 8%) of astrocytes and U87 exhibited both receptors at the plasma membrane (Figure 11). hUII (10^{-8} M, 30 min) provoked more than 65% GABA~AR disappearance from the surface, whereas UT internalized in native astrocytes (Figure 11A) but was still present at the cell surface in U87 (Figure 11B). We then examined the cell surface stability of GABA~AR following UT activation in the absence or presence of the coexpressed UT^{319-380}YFP on U87 glioma cell line. ELISA-based assay revealed that the UT^{319-380} fragment reduced the β3-associated GABA~AR subunit internalization from 20% to approximately 10% (Figure 11C), with an efficacy of transfection of around 32%, as controlled by flow cytometry (data not shown). As already shown in CHO, UT levels at the cell surface remained unchanged after exposition to hUII, in the absence or presence of the UT C-terminus (Figure 11C).

Discussion

The question of the regulation of the GABA~AR plasticity and cross-modulation in extrasynaptic glial cells by neurovascular factors, and its functional consequence were not explored. In rodent brain, mRNA encoding the vasoactive receptor UT are detected in the olfactory system, hippocampus, amygdala, septal nuclei, or cerebellum [27,65,66] and UII binding sites are restricted to few areas including the cerebellar cortex [39,67]. We and others have also shown that UT receptor expression may be specific to glial cells in vivo [40], and to astrocytes in culture [41], as well as to brain microvascular entities (unpublished data).

In the present study, to gain insight into the regulation of the GABAAergic activity by the vasoactive peptide UII in astrocyte, the cellular and subcellular distribution and feature of the UT receptor, have been investigated in the cerebellum in situ, and in astrocyte-neuron co-cultures. We showed intense UT labeling in Purkinje cell bodies and ramifications as well as in glial Bergmann-GFAP positive long processes where it co-localizes with γ1 and, to a lesser extent, with γ2 subunits of the GABA~AR, and in astrocytes co-cultured with granule neurons. Together, this corroborates previous studies establishing expression of γ1, γ2 and γ3 subunits in the PCL [68,69], and of γ1 mRNA in Bergmann glia [70,71].

We confirmed the coexpression of GABA~AR subunits with UT in native human astrocytes and in the U87 glioma cell line. It is interesting to note that a majority of glial cells express at least the β1 GABA~AR subunit and also UT in the cytosolic compartments, but that only around 10% of cells corresponding to a common subpopulation, show these receptors at the plasma membrane. This is in a good agreement with the 12% responding rat cultured astrocytes to isoguvacine in mono-culture. In fact, the existence of two populations of astrocytes, exhibiting depolarized membrane potentials (around -30 mV) in a majority of cells and hyperpolarized membrane potentials (around -80 mV) in a minority (data not shown) was observed in our study, as already shown in cultured astrocytes [72], independent on patch-clamp recording conditions. Here, we determined that this hyperpolarized subpopulation represents astrocytes specifically responding to the GABA~AR activation. Since it was suggested that GABA acts as an anti-proliferating neurotransmitter in ventricular and subventricular zones [73] and in cortical progenitor cells [74] and that down regulation of functional GABA~AR is correlated with the proliferation rate of reactive or malignant astrocytes [13,25], we propose that rat and human cell subpopulation expressing GABA~AR likely correspond to quiescent astrocytes in culture.

These colocalized features of UT and GABA~AR in astrocytes prompted us to investigate a potential functional cross regulation between the two receptors, likely involved in astrocyte plasticity. It has been shown that astrocytic GABA response is specific of early
culture period which is maintained by interaction with neurons [75]. We demonstrate that UII down regulates the Iso-evoked depolarization and chloride current amplitudes recorded from astrocytes co-cultured with granule neurons. This UII-induced GABAAR current inhibition is shown to be a very high affinity process, specific of astrocytes, which hardly recovered during washout. In CHO co-expressing human UT and αβ and/or γ GABAAR subunits, we found that UII was i) very potent on β1/γ1/αL GABAAR subunit complexes, ii) less potent on αββ1/γ1/αL complexes and iii) inactive on αβ binary complexes. These results

Figure 8. Receptor sequences involved in UT regulation of the GABAAR activity. (A) Schematic diagrams mixed with sequence alignments of the HA epitope-tagged human UT, C-terminus truncated UTHA370, UTHA351, UTHA332, UTHA319 mutants, and peptidomimetics corresponding to the entire C-terminus cytosolic fragment of UT (UTc-myc319–389). (B and C) Traces of Iso (10–4 M, 2 s)-evoked current before (1), during (2) a 1-min UII (10–8 M) application and after 22-min washout (3). (B) Currents recorded from CHO coexpressing GABAAR and UTHA (Control), UTHA370, UTHA351, UTHA332 or UTHA319. Corresponding average time course of the current, in the absence or presence of UT truncated mutants. (C) Current traces recorded from CHO-UT-GABAAR, in the absence or presence of UTc-myc319–389. Corresponding average time course of the Iso-evoked current, in the absence or presence of UTc-myc319–389. In B, significance was only annotated above the time course graph during UII perfusion and after 18-min washout for clarity. Data are mean ± SEM from 3 to 13 cells. ns, non significant; *, P<0.05; ** P<0.01 compared with the corresponding control Iso-evoked current.

doi:10.1371/journal.pone.0036319.g008
Figure 9. UT activation mediating GABA_{AR} internalization. (Aa–Ad) CHO-UT transiently transfected with cDNA encoding α₂β₃HA₂ GABA_{AR} subunits. Internalization was controlled through translocation of β₃HA subunit (red) in control (Aa) or after 60 min of hUII (10⁻⁸ M, Ab), Iso (10⁻⁴ M, Ac) or hUII-Iso (Ad) incubation. Fluorescence intensity plots of green and red fluorescences corresponding to the localization of GABA_{AR}(β₃HA₂) at the plasma membrane and in the cytosol, respectively, across the regions delimited by the white line scans. A.u., arbitrary unit; scale bars, 25 μm. (B) Bar graphs of the fraction of fluorescence at the plasma membrane on CHOT-UT-GABA_{AR} or CHO-GABA_{AR} in the different conditions. Each bar corresponds to mean ± SEM percent obtained from 3 to 18 cells. ns, non significant; ***, P<0.001 versus control in CHO-UT-GABA_{AR}; ###, P<0.001 versus control in CHO-GABA_{AR}. doi:10.1371/journal.pone.0036319.g009
thus establish that UII exhibits a very high affinity directional inhibition toward the GABAAR specifically composed of the γ subunit. This observation can be paralleled to the high affinity binding sites for UII determined on recombinant UT-expressing cells [76,77,78,79], and also on astrocytes [41]. The time course of the UT-evoked current inhibition can be distinguished by two phases, i.e. a short-term decrease detected immediately after and during UII administration, followed by a progressive run-down of

Figure 10. UII-induced GABAAR loss from the plasma membrane through the C-terminus fragment of UT in CHO. The effect of hUII on the proportion of GABAAR and UT at the cell surface of CHO was assessed by ELISA. (A) CHO transiently transfected with cDNA encoding UT-myc and $\alpha_2\beta_3$ or $\alpha_2\beta_3^{HA}$ GABAAR subunits (left), or UT-myc, and $\alpha_2\beta_3^{HA}$ GABAAR subunits cotransfected with the cDNA encoding UT$_{319-389}$YFP (right). Background bioluminescence (left) and fluorescence (right) were measured after anti-HA antibody and colorimetric alkaline phosphatase substrate incubation, in the absence or presence of 30 min of hUII (10$^{-8}$ M, left), or directly on a fluorescent plate reader (right). (B) CHO transiently transfected with cDNA encoding UT-myc and $\alpha_2\beta_3$ or $\alpha_2\beta_3^{HA}$ GABAAR subunits (left), or cotransfected with the cDNA encoding UT$_{319-389}$YFP, and immunodetected with anti-HA (left) or anti-c-myc (right) antibodies. Percentage of cell surface γ_2^{HA} GABAAR subunit (left) or UT-myc (right) are represented as the proportion of receptor at the plasma membrane (non permeabilized cells) to the total expressed receptor (permeabilized cells). One hundred percent correspond to values in the absence of 30 min treatment with hUII (10$^{-8}$ M, 37°C). Each bar corresponds to mean ± SEM percent obtained from 5 to 7 independent experiments, in triplicates. ns, non significant; *, P<0.05; ***, P<0.001.

doi:10.1371/journal.pone.0036319.g010
Figure 11. UII-evoked GABAAR internalization in native human astrocytes and glioma. (A, B) Flow cytometric analysis of the β3 GABAAR subunit and UT expression in native human astrocytes (A) and human U87 glioma cell line (B). Cells were stained with the anti-human β3 subunit or anti-human UT in permeabilized or non-permeabilized conditions (membrane receptor). The black lines depict results from control staining with only secondary antibodies. The β3 GABAAR subunit or UT cell surface expression was evaluated in the absence or presence of hUII (10^{-8} M, 30 min) by flow cytometry. Data obtained in A and B illustrate two representative experiments showing β3 (magenta line) and UT (yellow line) mean fluorescence in the cytosol and at the plasma membrane of a minority of non-permeabilized human astrocytes (A) or U87 (B) in culture. The exposure to hUII induced internalization of β3 in both cell types and of UT only in U87 glioma. (C) U87 glioma cell line expressing UT and GABAAR composed of β3 subunit, and transfected with the cDNA encoding UT319-389YFP, and immunodetected with anti-β3 (left) or anti-UT (right) antibodies. Percentage of
the current, leading to about 80% GABAAR current disappearance. However, URP which exhibits the same conserved biologically active cyclic sequence than UII, triggers a reversible inhibition. This is in accordance with the UII-induced long-lasting in the one hand, and the URP-evoked transient, on the other hand, increase in $[\text{Ca}^{2+}]_c$ in CHO-UT. The specific long-lasting phenomenon might be attributable to the slow dissociation rate of UII, as already described for rat and human UII on UT transfected cells, skeletal muscle myoblasts and astrocytes [41,54,79]. This could account for the sustained and washout-resistant contractile responses induced by UII on primate arteries, $[\text{Ca}^{2+}]_c$, increase in rat cortical astrocytes [42], and GABAAR current inhibition in our native and recombinant systems. We propose a mechanism whereby UII interacts reversibly with the classical binding site, but also with a secondary exosite in a wash resistant manner, resulting in persistent activation of UT and consequently, in a long-term inhibition of the GABAAR. Such process has already been demonstrated in vivo and cell culture, for exogenous agonists of M1 muscarinic and β2 adrenergic receptors [80,81]. Together, our previous work suggesting that GABA negatively controls UT-mediating signaling transduction in astrocytes [43], corroborated by the effect of benzodiazepines on UII-induced neurotransmitter release [82], supports at most the existence of a negative cross-talk between UT and the closely associated GABAAR, leading to a high affinity functional receptor complex in astrocytes. This functional complex may exhibit new pharmacological profile. Accordingly, we demonstrated that [Orn5]−URP acts as a partial agonist and competitive antagonist on both GABA currents and $[\text{Ca}^{2+}]_c$. Surprisingly, palosuran as a specific primate UT antagonist [55], counteracts the UII-evoked $[\text{Ca}^{2+}]_c$, increase but mimics the effect of UII by inhibiting the chloride current. Thus, palosuran behaving as an antagonist of the UT-mediating $[\text{Ca}^{2+}]_c$ transduction signaling can be considered as a partial UT “agonist” toward the GABAAR effector pathway, then suggesting a different UT pharmacology when co-expressed with GABAAR.

Here we found that initiation of UT and GABAAR functional interaction is independent on G protein, calcium and phosphorylation mechanisms, but that UII-induced current run-down partially requires calcium and kinase/phosphatase activities. In this context, the Ca^{2+}/calmodulin requirement for membrane fusion in endocytic pathways [83], as well as the clathrin-mediated internalization depending on kinase and phosphatase activities[84,85,86], support here a possible role of UT in a delayed calcium/kinase dependent GABAAR endocytosis. GABAAR internalization is primarily thought to occur via a clathrin- and dynamin-dependent mechanism [87]. Here DIP, known to block endocytosis by disrupting the interaction between dynamin and amphiphysin, did not interfere with the UII-induced fast short-term but totally abolished the long-term inhibition of the current, supporting a role of UT in the dynamin-dependent GABAAR internalization. We then show that the GABAAR agonist triggered removal of β3 or γ2 GABAAR subunit from CHO plasma membrane, or from native human astrocyte and glioma cell surface. Together, the interesting point resides in the ability of the UII/UT system in the promotion of the marked GABAAR internalization in the absence of co-activation of GABAAR. In addition, 30 min incubation with UII failed to internalize UT in CHO and U87, but led to UT loss from human astrocyte surface, a discrepancy unexplained but needing further investigations. Thus, a constitutive tight promiscuity between UT and GABAAR might be responsible for the high affinity effect of UII on GABAAR disappearance from the plasma membrane.

Here we produced and expressed truncated UT receptors in order to identify which specific receptor determinants are involved in the GABAAR modulation. The deletion of up to 57 residues of the UT C-terminus, did not affect the expression and ability of truncated mutants to stimulate the $[\text{Ca}^{2+}]_c$, as already observed for rat UT truncated mutants [88]. We demonstrate that the entire UT C-terminus totally abolished the UT-mediating current inhibition and that the most distal part likely relays the fast and long-term inhibitions of the GABAAR function. In rat, the last 19 residues of the C-terminus contain motifs that are not crucial for UT internalization [88]. In fact, the serine cluster localized upstream rather displays consensus motifs for PKC and casein kinase I important for rat UT internalization. In humans, the distal UT C-terminus (351–389) exhibits serine residues and a combination of two polyproline motifs (Figure 8A), the last one possibly interacts with SH3 domain proteins [89]. Our present data in CHO co-expressing human UT and β2γ3 and γ2 GABAAR and in U87 transfected with the cDNA encoding the UT319–389 peptidomimetic, indicate that the UII-induced internalization of GABAAR formed from γ2 or β3 subunit, requires at least in part, the C-terminus fragment of UT. Therefore, the question of whether UT and GABAAR physically associate directly or whether SH3 proteins relayed GABAAR down regulation, has to be elucidated. Together, the functional cross-modulation between UT and GABAAR is mediated through the most distal part of the UT C-terminus, which would directly interact with γ subunits, or recruit intermediate proteins implicated in GABAAR inhibitory transactivation.

Therefore, our observations suggest a model in which UT and GABAAR are closely associated to depress the GABAergic activity (Figure 12). When UT and β2γ7 GABAAR subunits are co-expressed, as in native and tumoral glial cells, UII efficiently activates its receptor, leading to a fast short-term decrease of the chloride current, independently of G proteins, calcium, phosphorylation and endocytosis processes, and involving the last 19 amino acids of the UT C-terminus. During washout, a long-term inhibition referred as run-down, develops via a dynamin-dependent internalization requiring the 351–370 sequence of UT, and calcium- and phosphorylation-dependent endocytic mechanisms. This directional cross-talk between UT and the GABAAR leads to the extinction of the GABAAR expression at the plasma membrane that would play a key role in the induction of cell proliferation (Figure 12).

Materials and Methods

Animals

Wistar rats (Depré, Saint-Doulchard, France) were kept in a temperature-controlled room (21 ± 1°C), under an established photoperiod (lights on 07.00–19.00 h) with free access to food and tap water. The work described in this article was carried out in accordance with the Directive 2010/63/EU of the European parliament and of the council of 22nd September 2010 on the...
protection of animals used for scientific purposes, published in the Official Journal of the European Union L276/33 (20.10.2010) and authorized by the French Ethical Committee. These experiments were conducted under the supervision of authorized investigators (H. Castel; authorization no. 76.98 from the Ministère de l’Alimentation, de l’Agriculture et de la Pêche) and were approved by the local animal ethic committee of Normandy, approval number N/02-09-03/09-12.

Primary Cell Culture of astrocytes and astrocyte-neurone co-culture

Primary cultures of astrocytes were prepared as previously described [90]. Briefly, cerebellum from 7-day-old (P7) Wistar rats were collected in DMEM/Ham-F12 (2:1, v/v) culture medium supplemented with 2 mM glutamine, 1% insulin, 5 mM HEPES, 0.4% D(+)-glucose and 1% of the antibiotic-antimycotic solution. The tissues were disaggregated mechanically with a syringe equipped with a 1-mm gauge needle, and filtered through a 100-μm pore size mesh filter (Falcon, Becton Dickinson, Grenoble, France). Dissociated cells were resuspended in culture medium supplemented with 10% heat-inactivated FBS and seeded in 150-cm² culture flasks (Falcon) at a density of 20×10⁶ cells/flask. Cells were incubated at 37°C in a humidified atmosphere (5% CO₂) and the medium was changed twice a week. When cultures were confluent, the flasks were gently shaken on an orbital shaker at 250 g for 2 h. Dislodged cells were discarded and a second step of purification was performed at 250 g for 14–16 h. Remaining adhesive cells were collected by trypsination, centrifuged (800 g, 10 min) and plated in 150-cm² flasks. Suspended astrocytes were harvested and seeded in 24-well poly-L-lysine-coated plates. The purity of the cultures was previously assessed by counting the percentage of astrocytes immunostained with GFAP antibodies. The enriched cultures contained >99% astrocytes [41].

For astrocyte-neuron co-culture, granule cell cultures were prepared from cerebella of P7 Wistar rats as described previously [91]. Isolated cells were plated on 14-mm culture dishes coated with poly-L-lysine (5 mM) at a density of 1.5×10⁶ cells/dish and incubated at 37°C in a humidified atmosphere (5% CO₂) for 1 to 10 days before use. Culture medium consisted of DMEM/Ham’s F12 (75%/25%) supplemented with 10% FBS, 2 mM glutamine, 5 μg/ml insulin, 25 mM KCl and 1% of antibiotic-antimycotic solution. Co-cultures are obtained by seeding granule cells (1.5×10⁶ cells/ml) on cerebellar astrocytes plated in 24-well plates after 12 hours. Co-cultures are maintained in the specific medium for neuron and incubated at 37°C in a humidified atmosphere (5% CO₂) for several days.

Human native astrocytes and glioma cell line

The human cell line from glioblastoma U87 was obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA). U87 cells were maintained in DMEM containing 10% FBS and 1% sodium pyruvate. NHA-Astrocytes (Lonza, Walkersville, MD, USA) were cultivated in DMEM culture medium supplemented with 2 mM glutamine, 25 mM KCl and 1% of antibiotic-antimycotic solution. For astrocyte-neuron co-culture, granule cell cultures were prepared from cerebella of P7 Wistar rats as described previously [91]. Isolated cells were plated on 14-mm culture dishes coated with poly-L-lysine (5 mM) at a density of 1.5×10⁶ cells/dish and incubated at 37°C in a humidified atmosphere (5% CO₂) for several days.
sterile sonicated salmon sperm DNA using the EasyJet One electroporation system (Equibio, Angleur, Belgium), followed by repetitive rounds of limiting dilution of cells in G-418 (400 μg/ml) for selection. Normal or stable CHO was grown in Ham-F12 medium supplemented with 10% FBS, 1% antibiotic-antimycotic solution and 2 mM glutamine, at 37°C in a humidified incubator with an atmosphere of 5% CO₂. The stable CHO-UT medium was supplemented with the antibiotic G-418 (40 μg/ml).

For transfection, cells were trypsinized (0.05%), trituated in HamF-12 containing 10% FBS media, pelleted by centrifugation, resuspended in 100 μl solution V for nucleofection by an Amaza Nucleofector Device (Koln, Germany; set to program U-016). Experiments were performed on normal CHO or on the stable CHO-UT cells and transiently transfected with combinations of cDNA encoding α₁β₂γ₂, α₂β₃γ₁, α₂β₃γ₂, α₂β₃γ₃ (4 μg of cDNA total/transfection) GABA_A R subunits. Cells were seeded on 14-mm poly-L-lysine-coated glass bottom insert dishes at 5x10⁵ cells in a volume of 0.5 ml/dish. Cells were incubated overnight at 37°C in a humidified incubator (5% CO₂) during 16 h before electrophysiological or immunocytochemical experiments.

Recombinant receptors

For UT epitope-tagged with HA (UTHA), or c-myc (UT-cmyc), human UT receptor cDNA inserted into pcDNA3.1 (Ressource Center, MI, USA) was amplified and PCR products were subcloned using the EcoRI and XhoI sites of pcMV-HA or pcMV-c-myc. Mutant UT receptor cDNAs were constructed by oligonucleotide-directed mutagenesis (Expand High Fidelity PCR System; Roche) using the human UT receptor cDNA inserted into pcDNA3.1 (Resource Center, MI, USA). PCR products were subcloned using the EcoRI and XhoI sites of pcMV-HA or pcMV-c-myc after digestion by the same restriction enzymes. Mutagenesis was confirmed by automated nucleotide sequencing.

GABA_A receptor cDNA clones; α₁, β₁, β₃, γ₁ and γ₂, engineered into the expression vector pCDM8 (α₁, β₁, γ₂) or pcDNA/Amp (β₁) were generously provided by Dr Wingrove (Merck Sharp and Dohme, Harlow, UK). To obtain β₂ HA or γ₂ HA epitope-tagged subunits, β₂ or γ₂ cDNA was amplified and the PCR product was subcloned using the SalI and NotI sites of pcMV-HA (Table S2) after digestion by the same restriction enzymes.

In order to generate mini-peptides corresponding to the C-terminus of UT, cDNA encoding the UT-cmyc (1319-1389) or UT-cmyc (319-389) YFP fragment was amplified by PCR. The 5’ and 3’ oligonucleotides incorporated SalI and NotI or EcoRI and BamHI sites, respectively, to facilitate subcloning into pcMV-c-myc or pEYFP-N1 (BD Biosciences Clontech, Mississauga, ON, Canada), and incorporated initiation and stop codons where appropriate (Table S2).

Immunocytochemistry on co-culture

Astrocyte-neuron co-cultured on glass coverslips were washed three times in PBS, fixed in 4% paraformaldehyde at 4°C for 20 min, and washed three times in PBS. Cells were permeabilized in PBS containing 0.1% Triton X-100 (10 min) and pre-incubated with normal goat and/or normal donkey antiserum (1:50, Santa-Cruz, Teybio, Le Perray en Yvelines, France) for 1 h. Then, cells were incubated at 20°C for 1 h with a goat anti-UT (1:200), a mouse anti-NeuN (1:200, Santa-Cruz) or a rabbit anti-GFP (1:1000, Dako, Trappes, France). Specificity of the UT immuno-labelling on astrocytes has already been demonstrated [40]. After several rinses in PBS, cells were incubated at 20°C for 2 h with Alexa 488-conjugated donkey anti-goat and anti-Alexa 594-conjugated donkey anti-rabbit IgGs diluted 1:300 (Invitrogen, Bouloune Billancourt, France).

Receptor cell surface internalization

For double-immunofluorescence, non-permeabilized living CHO cells expressing UT and/or α₁β₂γ₂, GABA_A receptors were washed two times in PBS, and incubated with monoclonal mouse anti-c-myc and rabbit polyclonal anti-HA (1:200, Santa-cruz) for 1 h on ice in DMEM. Excess antibody was removed and cells were incubated with the different receptor agonists for 30 min at RT. After several rinses in PBS, cells were fixed in 4% paraformaldehyde at 4°C for 20 min, washed three times in PBS and then incubated at RT for 2 h with appropriate secondary antibodies, i.e. Alexa-488- and 594-conjugated donkey anti-mouse IgGs diluted 1:300 (Invitrogen). After washing, coverslips were mounted in Eukitt (VWR International, Strasbourg, France).

All preparations were examined using a confocal laser-scanning microscope (Leica, Heidelberg, Germany) equipped with a Diaplana optical system, a UV laser (excitation wavelength 405 nm) and argon/krypton ion (excitation wavelengths 488/594 nm) laser.

Immunohistochemistry on cerebellar sections

Following decapsulation, the cerebellum of 7-day-old (P7) Wistar rats was extracted and immersed in iced PBS. Cerebella of P7 rats were sectioned transversely into 180 μm-thick slices on a vibrating blade microtome (VT1000S, Leica Instruments). The slices were subsequently washed in PBS (pH 7.4) and postfixed in a 4% PFA solution for 20 min. Thereafter, free-floating sections were rinsed and non-specific binding was blocked by 10% normal donkey serum, 0.1% BSA and 0.3% Triton X-100 in PBS for 1 h. The tissue sections were incubated overnight at 4°C with a goat antiserum directed against rat UT (1:200, Santa-Cruz), a mouse anti-calbindin (1:400, Sigma-Aldrich, Saint-Quentin Fallavier, France), a mouse anti-GFP (1:1000, Dako), a mouse anti-NeuN raised in mouse (1:200, Santa-Cruz), an anti-doublecortin (DCX) raised in goat (1:400, Santa-Cruz), or an anti-γ₁ and anti-γ₂ GABA_A R subunits (1:200, generous gift from Dr Sieghart, Brain Research Institute, Vienna, Austria). The sections were rinsed three times with PBS and incubated for 2 h at RT with Alexa 488- or 594-conjugated donkey anti-rabbit, donkey anti-goat or donkey anti-mouse (1:200, Invitrogen). After washing, slices were incubated with 4,6-diamidino-2-phenylindole (DAPI, 1:10000, Sigma-Aldrich) for 5 min to label nuclei. Finally, the sections were rinsed in PBS, and mounted with mowiol. To study the specificity of UT and other marker immunoreactivities, the following controls were performed (1) substitution of each antiserum by PBS, and evaluation of the level of fluorescence given by each type of secondary antibody, (2) systematic mono-immunolabeling of each protein marker. The preparations were examined on a Leica SP2 upright confocal laser scanning microscope (DM RXA-UV) equipped with Acousto-Optical Beam Splitter (AOBS) system. For confocal images, Alexa-488 and Alexa-594 were excited respectively at 488 and 594 nm.

Electrophysiology

The conventional whole-cell configuration of the patch-clamp technique was used to study the GABA-gated currents in astrocytes and granule neurons, UT stably transfected CHO, CHO-UT, and CHO transiently transfected with diverse variants of UT and GABA_A R subunits. After 24-h transfecion, cell culture coverslips were placed in a small chamber (1.5 ml) on a stage of a
The decrease of the chloride current (normalized current, I) was defined as \(I/I_{\text{UII}} \) where \(I_{\text{UII}} \) is the current response in the presence of various concentrations of UII and I-ISO is the control \(\text{GABA}_A \)R current. Concentration response curves were generated and the data were fitted by a non-linear regression analysis using Microcal Origin Software. Dose-response curves were fitted using a nonlinear square-fitting program to the equation:

\[
F(x) = \frac{B_{\text{max}}}{1 + \left(\frac{EC_{50}}{x}\right)^n}
\]

where \(x \) is the drug concentration, \(EC_{50} \) is the concentration of drug eliciting a half-maximal response and \(n \) is the Hill coefficient.

Cell calcium imaging

For cell calcium imaging, Fura-2 AM (5 mM, Molecular Probe; Fisher, Cergy-Pontoise, France) was dissolved in 20% plunge F-127 (w/v, DMSO) and then added to culture medium at final concentrations of 5 \(\mu M \) and 0.02%, with 2.5 \(\mu M \) probenecid (Sigma-Aldrich). After transfection of CHO cells with human \(\text{UT}^{\text{m,vc}} \) and \(\text{GABA}_A \)R subunits, or U97 glioma cell line before and after \#UII treatment, after quantification of HA, c-myc, \(\beta_3 \) subunit or UT immunoreactivity. Cells were plated at 50,000 cells/well in 96-well plates coated with 0.1 mg/ml poly-L-ornithine (Sigma-Aldrich). After transfection of CHO cells with human \(\text{UT}^{\text{m,vc}} \) and \(\text{GABA}_A \)R subunits, or U97 cDNA (Supplementary Table S2), cells were serum starved for 2 h before exposure to UII 10^{-12} M during 30 min at 37°C. Cells were fixed with 4% PFA in PBS for 5 min at RT, washed in PBS, and then permeabilized in 0.05% triton X100 (only for permeabilized cells) and non specific binding were blocked with PBS containing 1% FBS for 30 min at RT. The first anti-human monoclonal antibody (0.5 \(\mu g/ml \), 3F10 clone, Roche, Meylan, France or 1 \(\mu g/ml \), Santa-Cruz), mouse anti-c-myc monoclonal antibody (1.33 \(\mu g/ml \), 9E10 clone, Roche), rabbit anti-UT antibody (1 \(\mu g/ml \), TEBU, Santa Cruz) or rabbit anti-\(\beta_3 \) antibody (1:200, Abcam, Paris, France), were added for 1 h at 4°C. Incubation with goat anti-rat (Thermo scientific, Fisher, Brebières, France), goat anti-mouse (Santa Cruz) or goat anti-rabbit (Tebu, Santa Cruz) conjugated alkaline phosphatase diluted at 1:10000 in PBS/FBS was carried out for 30 min at RT. The cells were washed four times with PBS, a colorimetric alkaline phosphatase substrate was added (Super-Signal ELISA, Thermo scientific, Fisher) and the resulting color reaction was measured using a Victor multilabel plate reader (PerkinElmer, Courtaboeuf, France). Background absorbance from samples transfected with non-tagged receptors or from cells without first antibodies were systematically measured. Results are expressed as the percentage of membrane receptor corresponding to the proportion of receptor at the plasma membrane (non permeabilized cells) to the total receptor (permeabilized cells), and normalized to the values obtained in the absence of UII. All experiments were done at least three times in triplicates.

Receptor expression by Flow cytometry

Human astrocytes and glioma U87 grown in 75-cm² flasks until confluence were washed in PBS, detached and spun down at 4°C. The cell pellet was washed, re-suspended in PBS containing 1% BSA and incubated with 10 \(\mu g/ml \) non-immune rabbit IgGs for 30 min. For total receptor detection, cells were permeabilized in PBS containing 1% BSA and 0.1% saponin for 30 min. Then, cells were incubated with antibodies directed against rabbit anti-\(\beta_3 \) subunit (1:100, Abcam) or anti-UT (1:100, Santa Cruz), diluted in PBS containing 1% BSA and 0.1% saponin at RT (22°C) for 30 min. Non permeabilized cells were directly incubated with rabbit IgGs (10 \(\mu g/ml \), 30 min), and exposed to the first antibodies for 30 min at 4°C. In negative controls, the primary antibodies were omitted. Cells were incubated with an FITC- or PerCP-conjugated goat anti-rabbit secondary antibody (Santa Cruz) diluted 1:200 and measured in the FL1 (530 nm) or FL3 (670 nm) channel. Cells were analyzed on a FACScalibur flow cytometer (BD Biosciences) operated with the Cell Quest™ software.
Samples in which the primary antibodies were omitted were used as control to normalize mean fluorescence levels. Dead cells and debris were excluded from the analysis by gating living astrocytes or glioma cells from size/structure density plots. Data were displayed on a logarithmic scale in arbitrary units corresponding to the mean fluorescence intensity. Each histogram plot was recorded from at least 10,000 gated events.

Calcium mobilization assay

CHO cells stably transiently transfected with the human UT1\(^{HA}\) or their truncated forms were plated at a density of 4x10\(^4\) cells/well in flat clear bottom black 96-well plates. After 24 h in culture, cells were incubated at 37°C with 10 µl of 2 µM Fura-4 AM dye containing 20% pluronic acid for 40 min in a 5% CO\(_2\) atmosphere. Cells were washed twice with modified HBSS, and the effects of graded concentrations of UII on [Ca\(^{2+}\)]\(_i\) were measured with a fluorometric imaging plate reader FlexStation II (Molecular Devices, Sunnyvale, CA) during 150 s with an excitation wavelength of 480 nm and an emission wavelength of 525 nm. After 18 s recording in basal conditions, 50 µM [^32]c were used for the different UT and GABAAR subunit constructions.

Chemicals

Rat UII (rUII, pQHGTAPFECFWKYC), human UII (hUII, ETPDCKFWKYC), URp and [Orn\(^7\)]URP were synthesized by the solid phase methodology on a Pioneer PerSeptive Biosystem peptide synthesizer (Applera France, Courtaboeuf, France) using the standard manufacturer’s procedures as previously described [32]. All peptides were purified on a 2.2×25-cm Vydac C\(_{18}\) column (Alltech, Templemars, France) (>98% pure) and characterized by MALDI-TOF MS on a Voyager DE-PRO mass spectrometer (Applera France). B27, DMEM, glutamine, HEPES, non essential amino acids, sodium pyruvate and the antibiotic-antimycotic solution were purchased from Invitrogen (Fischer, Illkirch, France). EGF was obtained from Abcys (Les Ulis, France). ATP, GTP, guanosine 5’-[^32]triphosphate (GDP[^32]PS), the GABA\(_A\) receptor agonist isoguvacine, pentobarbital, poly-D-ornithine, methyl 6,7-dimethoxy-4-ethyl-carboline-3-carboxylate (DMCM), a phosphatase inhibitor cocktail 2 (sodium vanadate, sodium molybdate, sodium tartrate and imidazole), quercetin, staurosporine, picrotoxin, SR95531, Ham-F12, insulin, D(+)-glucose, Tri-reagent, probenicid, and bovine serum albumin (BSA) were obtained from Sigma. FBS was from Eurobio or Lonza (France). Phloridzin and Fura-2 pentapotassium (Fura-2 AM pentOK) salt and Fura-2 acetoxymethyl ester (Fura-2 AM) were from Molecular Probes (Leiden, Netherlands). The dynamin inhibitory peptide (DIP) was obtained from Tocris Bioscience (Ellisville, MI, USA).

Statistics

All data are presented as mean ± SEM. Statistical comparisons were assessed with One-way ANOVA followed by Mann and Whitney, Newman-Keuls or Friedmann post hoc tests, as relevant. P<0.05 was taken as significance.

Supporting Information

Figure S1 Pharmacological and gating properties of hUII-induced regulation of GABA\(_A\)R. (A) Iso-evoked current in the absence or presence of pentobarbital (10^-5 M), SR95531 (10^-5 M) and picrotoxin (10^-4 M, 2 s) in CHO-GABA\(_A\)R. Right, summary of the effects of modulators on the GABAergic activity. (B) Current-Voltage (I–V) relationship of the Iso-evoked current, in the absence or presence of hUII (10^-8 M). Data are mean ± SEM from 5 to 9 cells. *, P<0.05; **, P<0.01; ***, P<0.001 compared with the control Iso-evoked current. NS, non significant. (PPT)

Figure S2 Expression of the UT C-terminus truncated mutants. (A) Confocal microscope images of CHO expressing UT1\(^{HA}\), UT319\(^{HA}\), UT322\(^{HA}\), UT351\(^{HA}\), UT370\(^{HA}\) (green). (B) Expression of the different UT\(^{HA}\) mutants expressed as receptors in whole cells (permeabilized) or only at the cell plasma membrane (non-permeabilized) using anti-HA antibody. Data are mean ± SEM from a representative experiment in triplicate. *, P<0.05; **, P<0.01; ***, P<0.001 compared to control. Mock, empty pCMV-HA vector. (PPT)

Figure S3 Functional expression of the UT C-terminus truncated mutants. (A) Dose-response curves of the mean of maximum amplitude of [Ca\(^{2+}\)]\(_i\) transients induced by hUII in CHO expressing UT1\(^{HA}\), UT319\(^{HA}\), UT322\(^{HA}\), UT351\(^{HA}\), UT370\(^{HA}\). The results are expressed as percentages of the corresponding control values in the absence of hUII. (B) Corresponding table summarizing EC\(_{50}\) values and percentage of efficacy of the effect of hUII on each UT construction. Data are mean ± SEM from 3 independent experiments in duplicate. The Pearson coefficient r\(^2\) close to 1 is used for significance. (PPT)

Table S1 EC\(_{50}\) and maximum inhibitory effects of hUII on different GABA\(_A\)R subunit combinations. Data are mean ± SEM from 3 to 23 independent experiments. ND, not determined; r\(^2\), Pearson coefficient. (PPT)

Table S2 Primer sequences and restriction enzymes used for the different UT and GABA\(_A\)R subunit constructions. (PPT)

Acknowledgments

We thank Dr L. Prézeau for critical reading of the manuscript. We are grateful to Mrs Hugette Lemonnier and Mr Sébastien Arthaud for technical assistance.

Author Contributions

Conceived and designed the experiments: HC PG MCT VC. Performed the experiments: LD TL CL MTS JL FM. Analyzed the data: HC LD TL. Contributed reagents/materials/analysis tools: JL FP. Wrote the paper: HC LD.
60. Yoon KW (1994) Voltage-dependent modulation of GABAA receptor channel desensitization in rat hippocampal neurons. Journal of neurophysiology 71: 2151–2160.

61. Domínguez-Perrot C, Fernández P, Poulet MC (1996) Recombiant GABAA receptor desensitization: the role of the gamma 2 subunit and its physiological significance. The Journal of physiology 497(Pt 1): 145–159.

62. Moss SJ, Smart TG (1996) Modulation of amino acid-gated ion channels by protein phosphorylation. Int Rev Neurobiol 39: 1–52.

63. Brandon N, Jovanovic J, Moss S (2002) Multiple roles of protein kinases in the modulation of gamma-aminobutyric acid(A) receptor function and cell surface expression. Pharmacol Ther 94: 113–122.

64. Kieler JT, Moss SJ (2005) Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr Opin Neurobiol 15: 341–347.

65. Gartien R, Pardridge WC, Douglass SA, Ashmeade TE, et al. (2001) Central effects of urotensin-II following ICV administration in rats. Psychopharmacology (Berlin) 155: 426–433.

66. Jégou S, Cartier D, Dubessy C, Gonzalez BJ, Chatenet D, et al. (2006) Localization of the urotensin II receptor in the rat central nervous system. J Comp Neurol 495: 21–36.

67. Clark SD, Nohacker HP, Wang Z, Saito Y, Leidt FM, et al. (2001) The urotensin II receptor is expressed in the cholinergic mesopontine tegumentum of the rat. Brain Res 923: 120–127.

68. Pálmer S, Schwarzer C, Wiesiolhalter A, Segré W, Speck G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101: 815–850.

69. Fritschy JM, Panzanielli P (2006) Molecular and synaptic organization of GABAA receptors in the cerebellum: Effects of targeted subunit gene deletions. Cerebellum 5: 275–285.

70. Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in primary cultures of granule neurons and astrocytes from neonatal rat cerebella. Proc Natl Acad Sci USA 89: 9344–9348.

71. Bovolin P, Santi MR, Puia G, Costa E, Grayson D (1992) Expression patterns of GABAA receptors in the cerebellum: Effects of targeted subunit gene deletions. Cerebellum 5: 275–285.

72. McKhann GM, Doering R, Janigro D (1997) Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell recording of cultured neocortical and hippocampal neurons. J Neurosci 17: 6850–6863.

73. Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20: 5764–5774.

74. Le Fur P, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15: 1287–1298.

75. Mori M, Saito T, Abe M, Shimomura Y, Kuribara M, et al. (1999) Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SERN (GPR14). Biochem Biophys Res Commun 265: 123–129.

76. Nothacker HP, Wang Z, McNeill AM, Saito Y, Merten S, et al. (1999) Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasocostriction. Nat Cell Biol 1: 383–385.

77. Lin FT, Kruuger KM, Kendall HE, Daeka Y, Fredericks ZL, et al. (1997) Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/phosphorylation of beta-arrestin1. J Biol Chem 272: 31051–31057.

78. Herring D, Huang R, Singh M, Robinson LC, Dillon GH, et al. (2003) Constitutive GABAA receptor endocytosis is dynamin-mediated and dependent on a dileucine AP2 adaptin-binding motif within the beta 2 subunit of the receptor. J Biol Chem 278: 24046–24052.

79. Green SA, Spasoff AP, Coleman RA, Johnson M, Liggitt SB (1996) Sustained activation of a G protein-coupled receptor via “anchored” agonist binding. Molecular localization of the salmeterol exosite within the 2-adrenergic receptor. J Biol Chem 271: 24029–24035.

80. Ito T, Kawaguchi Y, Kudo M, Kushikata T, Hashiba E, et al. (2005) Urotensin II evokes neurotransmitter release from rat cerebrocortical slices. Neurosci Lett 440: 275–279.

81. Nayyar CD, Simaen M, Esher E, Laporte SA, Guillemette G, et al. (2005) Identification of the natural ligand of an orphan G-protein-coupled receptor, SENR (GPR14). Biochem Biophys Res Commun 265: 123–129.

82. Barnes EM, Jr. (2001) Assembly and intracellular trafficking of GABAA receptors. Int Rev Neurobiol 48: 1–29.

83. Leclercq B, Gonzalez BJ, Vaudrey D, Desrues L, Falluel-Morel A, et al. (2009) Paradoxical effect of ethanol on potassium channel currents and cell survival in cerebellar granule neurons. J Neurochem 110: 976–989.

84. Ono T, Kawai T, Ueda S, Kudo M, Kurihara M, et al. (1999) Urotensin II evokes neurotransmitter release from rat cerebrocortical slices. Neurosci Lett 440: 275–279.