KIDNEY RESEARCH AND CLINICAL PRACTICE

Korean Society of Nephrology 2022
Recommendations on controversial issues in diagnosis and management of hyponatremia
Aims and Scope

Kidney Research and Clinical Practice (KRCP; formerly The Korean Journal of Nephrology; ISSN 1975-9460, launched in 1982), the official journal of the Korean Society of Nephrology, is an international, peer-reviewed journal published in English. Its ISO abbreviation is Kidney Res Clin Pract.

The journal considers articles on all aspects of nephrology and hypertension as well as molecular genetics, anatomy, pathology, physiology, pharmacology, and immunology related to kidney disease. In particular, the journal focuses on translational renal research that helps bridging laboratory discovery with the diagnosis and treatment of human kidney disease. The journal publishes the topics covered basic science with possible clinical applicability and the papers on the pathophysiological basis of the kidney disease. Original studies from areas of diagnostic and interventional nephrology or dialysis access are also welcomed. Major article types considered for publication include original research and reviews on current topics of interest.

To provide an efficient venue for dissemination of knowledge and discussion of topics related to basic research, translational study and clinical practice in nephrology, the journal offers online only open access, in which all published articles are free for everyone to read and download.

The journal is currently indexed in Science Citation Index Expanded (SCIE), Scopus, ScienceDirect, PubMed, PubMed Central (PMC), Directory of Open Access Journals (DOAJ), DOI/Crossref, Google Scholar, KoMCI, KoreaMed, ScienceCentral, CAS, Current Content Clinical Medicine and Essential Science Indicators.

This journal was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government (Ministry of Education).

Open Access

Every peer-reviewed research article in this journal is freely available via our website (https://www.krcp-ksn.org). Articles published in KRCP are distributed under the terms of the Creative Commons Attribution Non-Commercial and No Derivatives License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits unrestricted non-commercial use, distribution of the material without any modifications, and reproduction in any medium, provided the original works properly cited. ANY USE of the open access version of this Journal in whole or in part must include the customary bibliographic citation, including author and publisher attribution, date, article title, Kidney Research and Clinical Practice (Kidney Res Clin Pract), and the URL https://www.krcp-ksn.org and MUST include a copy of the copyright notice. If an original work is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For any commercial use of material from the open access version of the journal, permission MUST be obtained from KRCP. If necessary, please contact the Editorial Board through our editorial office (registry@ksn.or.kr). Proprietary rights notice for KRCP online were available at: https://www.krcp-ksn.org/authors/permission.php.

Publisher The Korean Society of Nephrology

Editor-in-chief Tae-Hyun Yoo, MD, PhD

Editorial office
The Korean Society of Nephrology
#301, (Miseung Bldg.) 23, Apgujenog-ro 30-gil, Gangnam-gu, Seoul 06022, Korea
Tel: +82-2-3486-8736 Fax: +82-2-3486-8737 E-mail: registry@ksn.or.kr

Publishing office
M2PI
8th FL, DreamTower, 66 Seongsui-ro, Seongdong-gu, Seoul 04784, Korea
Tel: +82-2-6966-4930 Fax: +82-2-6966-4945 E-mail: support@m2-pi.com

Published on July 31, 2022

©This paper meets the requirements of KS X ISO9706, ISO 9706-1994 and ANSI/NISO Z39.48-1992 (Permanence of Paper).
Korean Society of Nephrology 2022 Recommendations on controversial issues in diagnosis and management of hyponatremia

Yeonhee Lee¹, Kyung Don Yoo², Seon Ha Baek³, Yang Gyun Kim⁴, Hyo Jin Kim⁶, Ji Young Ryu⁵, Jin Hyuk Paek⁶, Sang Heon Suh⁷, Se Won Oh⁸, Jeonghwan Lee⁹, Jong Hyun Jhee¹⁰, Jin-Soon Suh¹¹, Eun Mi Yang¹², Young Ho Park¹³, Yae Lim Kim¹⁴, Miyoung Choi¹⁵, Kook-Hwan Oh¹⁶, Sejoong Kim¹⁷, on behalf of the Hyponatremia Guideline Development Group

¹Division of Nephrology, Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Republic of Korea
²Division of Nephrology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
³Division of Nephrology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
⁴Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
⁵Division of Nephrology, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
⁶Division of Internal Medicine, Keimyeung University School of Medicine, Daegu, Republic of Korea
⁷Division of Nephrology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
⁸Division of Nephrology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
⁹Division of Nephrology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
¹⁰Division of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
¹¹Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
¹²Division of Pediatric Nephrology, Department of Pediatrics, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
¹³Division of Pediatric Nephrology, Department of Pediatrics, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
¹⁴Division of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
¹⁵Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
¹⁶Division for Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Republic of Korea
¹⁷Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea

Received: May 3, 2022; Accepted: June 23, 2022
Correspondence: Sejoong Kim
Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea. E-mail: sejoong2@snu.ac.kr
ORCID: https://orcid.org/0000-0002-7238-9962
Copyright © 2022 by The Korean Society of Nephrology
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial and No Derivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted non-commercial use, distribution of the material without any modifications, and reproduction in any medium, provided the original works properly cited.
Contents

Summary of recommendations ... S3

Introduction .. S3

Background and aims .. S3

Target populations and users .. S4

Methods .. S4

Organization and composition of the development committee S4

Patient perspective and preference .. S4

Methodology for clinical guideline development S4

Recommendations ... S8

Classification and differential diagnosis of hyponatremia S8

Treatment of hyponatremia ... S10

Key question 1. ... S13

Key question 2. ... S14

Key question 3. ... S15

Key question 4. ... S17

Key question 5. ... S18

Key question 6. ... S19

Key question 7. ... S21

Key question 8. ... S22

Key question 9. ... S22

Supplementary data .. S24

References .. S26
Summary of recommendations

Topic	Recommendation	Recommendation strength	Quality of evidence
Differential diagnosis of hyponatremia			
1.	For patients with hyponatremia, we consider additional measurement of fractional excretion of uric acid reasonable to differentiate likely causes of hyponatremia, such as SIAD or diuretic-induced hyponatremia.	Expert consensus	
2.	There are insufficient data to make a recommendation for using copeptin to urine sodium ratio to assess patient volume status.	Inconclusive (I)	Very low
Treatment of severe hyponatremia			
3.	We suggest rapid intermittent bolus administration of hypertonic saline in patients with symptomatic severe (Na < 125 mmol/L) hypotonic hyponatremia.	Conditional recommendation (B)	Low
Management of mild hyponatremia			
4.	We recommend rigorously evaluating the causes of mild hyponatremia and to manage causative diseases to improve the clinical outcomes.	Expert consensus	
Treatment of hypervolemic hyponatremia			
5-1.	We suggest vasopressin receptor antagonist (‘vaptan’) use in heart failure with hypervolemic hyponatremia in terms of rapid sodium correction.	Conditional recommendation (B)	Moderate
5-2.	We make no recommendation on the use of vaptans in liver cirrhosis with hypervolemic hyponatremia.		
SIAD			
6.	We suggest treatment with vaptans in SIAD patients with moderate to severe hyponatremia.	Conditional recommendation (B)	Low
Prevention of overcorrection in hyponatremia			
7.	We suggest that desmopressin should be applied individually according to risk factors affecting overcorrection, hypertonic saline therapeutic regimen, and whether to administer dextrose solution during overcorrection in patients with hyponatremia.	Conditional recommendation (B)	Very low
Special issues (1) Hyponatremia in patients with cerebral diseases			
8.	We consider it reasonable that treatment with hypertonic or isotonic saline infusion, oral sodium chloride, or fludrocortisone for the correction of hypoosmolar hyponatremia should be individualized among patients with cerebral diseases.	Expert consensus	
Special issues (2) Prevention of hyponatremia in pediatric patients under the age of 18 years			
9-1.	To prevent hyponatremia, we recommend the administration of isotonic fluids as maintenance fluid therapy in hospitalized pediatric patients over 1 month and under 18 years of age.	Strong recommendation (A)	High
9-2.	There are insufficient data to make a recommendation regarding administering isotonic fluids as maintenance fluid therapy to prevent hyponatremia in neonates because of the risk of hypernatremia.	Inconclusive (I)	Moderate

SIAD, syndrome of inappropriate antidiuresis.

Introduction

Background and aims

Hyponatremia is the most common electrolyte disturbance in clinical practice and occurs in 15% to 30% of hospitalized patients. Severe hyponatremia prolongs hospitalization and is related to neurological prognosis and mortality due to osmotic cerebral edema. Asymptomatic-mild hyponatremia has also been reported to be associated with activities of daily living, physical and cognitive function, bone density, falls, and fractures. In addition, rapid corrective treatment of hyponatremia can cause osmotic demyelination, leading to neurological sequelae and death.

Although international guidelines for hyponatremia were published in the United States and Europe in 2013 and 2014, controversy remains due to insufficient clinical evidence. In addition, treatment can be challenging due to differences in various pathophysiological mechanisms and complex clinical settings. Since 2014 when the previous
clinical practice guidelines (CPGs) were published, several studies, including randomized controlled trials (RCTs) and cohort studies, have been produced with the efforts of Korean researchers, and clinical evidence supporting treatment guidelines has been continuously added. As there is a growing need for reevaluation and updating of the related guidelines under domestic conditions, the Korean Society for Electrolyte and Blood Pressure Research (KSEBPR), in collaboration with the Korean Society of Nephrology (KSN) Clinical Practice Guideline Committee have jointly established a development committee for the process of planning, development, review, and dissemination of hyponatremia treatment guidelines in accordance with international standards. These guidelines aim to provide clinical support for shared decision-making to improve patient outcomes.

Target populations and users

This guideline applies to clinicians, patients, and subjects related to hyponatremia, and the target population includes all patients who visit medical institutions with hyponatremia. In this document, we have dealt with specific and practical contents related to diagnosis and treatment of hyponatremia. This CPG includes valuable clinical information for all medical staff, including specialists, residents, fellowships, and nurses at primary, secondary, and tertiary medical institutions managing hyponatremia in Korea. In addition, through this guideline, we also sought to provide specific and practical information to residents, fellows, nurses, and educators in leadership positions.

Methods

Organization and composition of the development committee

The KSEBPR organized the CPG development group in collaboration with the KSN, with a development working committee and a review committee consisting of nephrologists, pediatric nephrologists, and neurologists with recommendations from the KSN and its affiliated research groups (chairperson: Sejoong Kim, Seoul National University Bundang Hospital). The development working committee consisted of 18 members, including experts in the field of guideline development methodology and experienced experts in adult and pediatric nephrology who are treating patients with hyponatremia at various medical institutions. A methodology expert and a working member were included in establishing a methodology for systematic literature research and provided education on the development of clinical guidelines.

The development working group categorized the key questions into eight topics and a total of nine questions. One or two sub-chairpersons were selected for each question, and an operation meeting where all members participated was held at least once a month. Through the collaboration of members of the working-level committee, subjects to be covered in the guidelines were decided, and literature search, critical review, meta-analysis, and evidence level determination were carried out. The working committee reviewed the draft recommendation on particular topics prepared by each member. The final recommendation and its recommendation grade were determined with the consent of all members.

Patient perspective and preference

Each recommendation was reviewed by the working committee, who discussed problems that may arise in applying the recommendations to patients in the actual medical field, and who described patient values and preferences, obstacles, and facilitating factors in the text of the CPG. By presenting a plan to overcome these issues, efforts were made to balance the use of other resources with the field of diagnosis and treatment of hyponatremia in Korea.

Methodology for clinical guideline development

CPG development was carried out in four stages: planning, development, review, and dissemination. Among them, the main processes related to the development of actual recommendations can be divided into 1) selection of key questions, 2) literature search, 3) evaluation and synthesis of evidence, 4) determination of the recommendation grade and level of evidence, 5) preparation of recommendations, and 6) derivation of an agreement.

1) Review of existing international guidelines

To review domestic and international CPGs dealing with hyponatremia, we searched systematic guidelines in the Kidney Res Clin Pract 2022;41(4):S1-S30
last 10 years (January 2011 to December 2020) using a specific search formula (Table 1).

After reviewing the original text, the quality of the CPGs selected, including the key questions, was evaluated by two persons using the AGREE (The Appraisal of Guidelines for Research & Evaluation Instrument) II tool. The K-AGREE evaluation form developed by the Korean Medical Association was used to reduce variation among evaluators. When evaluating the quality of AGREE, to ensure the reproducibility and clarity of the evaluation result, the content that was the basis for assigning the score was written in the evaluation comment column. This underwent a revision process enabling correction (e.g., if there is a difference of 4 points or more between the reviewers). The evaluation result was derived using the scoring formula for each area. After evaluation, three treatment guidelines with a “development rigor” of >50 points among the scores for each area were selected as the CPGs for the recommendation to establish evidence.

2) Selection of key questions

The key questions were chosen by reviewing the existing CPGs from the United States and Europe, selecting detailed topics and clinical problems, reviewing the evidence for each topic, and selecting the final eight detailed topics and a total of nine questions after discussion among the working committee. Previous domestic and overseas guidelines have often been based on experience- or practice-centered recommendations. In order to compensate for the limitations of evidence-based approaches, we identified key questions based on topics that had published evidence or were relevant to recent issues. Key questions were concreted considering Population, Intervention, Comparator, and Outcome (PICO) factors and were presented in PICO format. A sentence-type key question was written, and the development possibility was reviewed and finally confirmed.

3) Preparation of a recommendation comparison table and evaluation of acceptance/applicability

After reviewing the selected CPGs, a comparison table of recommendations was made for each key question, and domestic acceptance and applicability were evaluated. The contents of the discussion were reflected in the recommendations, and a comparison table of recommendations and a table of acceptance and applicability were prepared for each key question.

4) Determining the development method

This CPG is mostly based on an adaptation of existing domestic and overseas guidelines as the primary method, and the latest research results are added. In cases where recommendations were not found in the existing guidelines, a de novo method was selectively reviewed. The adaptation development method was employed using existing CPGs as the most important source of evidence, and some systematic changes were applied to suit the medical situation in Korea.

5) Search and selection of evidence

The literature search involved major domestic and foreign literature search databases, such as Ovid MEDLINE, Ovid Embase, Cochrane library, and KMbase, among others, focusing on the keywords of each key question and an additional manual search by reviewers. The search year for the latest literature after the selected CPGs was set from 1 year before the publication of the existing evidence selected for adaptation (2012) to May 2021. A search strategy was systematically constructed with the help of a methodology expert, and a final recommendation was made by performing a search using domestic and foreign databases. The search formula is described in each recommendation’s “Search strategies” section (Supplement 1).

According to the key questions, the literature selection
criteria were prepared, and two persons per individual document independently performed the first selection/exclusion and the second selection/exclusion to increase objectivity. The title and abstract of the literature were reviewed for the first screening, and for the second screening, the original text of the first selected document was reviewed. The reason for exclusion was described in the case of exclusion. If there was any disagreement between reviewers during the two-stage screening process, a consensus was reached through the consensus process (Supplement 2).

6) Preparation of evidence tables
From the selected CPGs, supporting documents for the recommendations related to the key questions of this CPG were extracted and arranged in the form of a previously agreed-upon evidence table. In addition, the evidence table was completed by adding the latest literature found through additional literature search. All documents included in the evidence table were compiled in the “Summary evidence tables” in the recommendations for each key question (Supplement 3) by conducting a risk of bias assessment appropriate to each study design, creating a risk of bias graph.

7) Bias risk assessment
The risk of bias in the included studies was evaluated using various validated checklists as recommended by the Cochrane Collaboration (Supplement 4). These were the Cochrane Risk of Bias (RoB) tool 2.0 for RCTs, Risk of Bias Assessment tool for Non-randomized Studies (RoBANS), a measurement tool for assessment of multiple systematic reviews (AMSTAR) [1] for systematic reviews (SRs), and the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) [2] for diagnostic accuracy studies.

8) Synthesis of evidence
(1) Data extraction
Documents selected from the evidence table of existing CPGs and searched papers were classified by study design, and the necessity of topics was selected from the available data list to extract the relevant contents. Data extraction was performed according to a predetermined data extraction format (data values reported in forest plots, tables, etc. were reviewed and accepted), and in the case of a comparison between the two intervention methods, a data extraction format that could evaluate the comparability was considered.

(2) Data analysis and synthesis
Meta-analysis was performed when quantitative synthesis of the extracted data was possible after completing the final evidence table, including evidence from the existing CPGs and the additional searched literature, and qualitative descriptions were made if synthesis was not possible (Supplements 5 and 6).

When meta-analysis was possible, the heterogeneity of the data was evaluated, and when the heterogeneity was judged to be high, a random-effects model was applied and subgroup analysis was performed to search for the cause of heterogeneity. Publication bias was explored by applying Egger’s test and the Trim-and-Fill method when more than ten studies were included in the synthesis. Review Manager 5.4 was used as a meta-analysis statistics program.

9) Arrangement of evidence level and recommendation grade
The level of evidence was evaluated using the Grading of Recommendations Assessment Development and Evaluation (GRADE) methodology [1–9]. The importance of each result was evaluated first, and then the level of evidence for each result was determined as one of ‘high/moderate/low/very low’. Each evidence level definition is shown in Table 2.

The recommendation grade was divided into four levels: strong recommendation, conditional recommendation, against recommendation, and inconclusive (Table 2). As factors to consider for making recommendations, the level of evidence, benefits, risks, clinical applicability resource and cost, value, and preference were considered. Key questions that could not be adapted and developed directly due to poor existing research are expressed as an expert consensus.

10) Formulating recommendations
In formulating recommendations to improve the clinical implementation of the recommendations, the working members also reviewed the feasibility and suggestions to recommendations, such as obstacles, facilitating factors, and solutions to overcome obstacles, and then draft recommendations were made through discussion. After preparing the recommendation, it was revised through a review
process via E-mail and a wired meeting with experts in the relevant field. Through in-depth discussion, the content of the recommendations and the recommendation grade was adjusted. After reflecting on the members’ review and revised opinions, the working committee described and confirmed the final recommendation level. Twelve recommendations were developed in the final eight topics.

11) Independent external review
To collect external review opinions before the publication of the developed CPG, separate from the development committee, the KSN, the Korean Society of Heart Failure, the Korean Endocrine Society, the Korean Association for the Study of the Liver, and the Korean Neurological Association, an external advisory committee composed of clinical experts and methodology experts expected to be end users of the recommended practice guidelines was formed. The advisory committee did not prepare recommendations to be included in the CPG but served as an external reviewer who consulted at the consensus stage on the derived recommendations. As a method of external review, an expert questionnaire survey was conducted to investigate the degree of consent with the recommendations for each key question. The subject of the survey was an advisory committee (including one methodology expert), and a questionnaire evaluation table was used with responses within the range of 1 point (strongly disagree) to 5 points (strongly agree) to the degree of consent to the recommendation (Supplement 7). Through the convergence, feedback was obtained, and the revised opinion was reflected in the contents of the treatment guidelines.

12) Update plan for clinical practice guideline
In the future, we will continue to derive key questions, generate recommendations based on evidence, and update existing recommendations as evidence changes. The key questions of the evidence-based CPGs will be developed based on the opinions of patients, related workers, and experts in the clinical field. Since the CPGs produced in the acceptance and adaptation method are mainly based on research conducted abroad, it is necessary to develop an appropriate recommendation for key questions fitted to the domestic situation, which should be based on domestic research results. The committee will try to promote this goal to related academic societies and seek cooperation to accumulate data. Evidence for the developed recommendation will be updated by reviewing new evidence periodically every 3 to 5 years.

13) Declaration and management of conflicts of interest

Table 2. Strength of recommendations and quality of evidence

Category/grade	Definition
Strong recommendation (A)	Considering the benefits and risks of the treatment, the level of evidence, values and preferences, and resources, it is strongly recommended in most clinical situations.
Conditional recommendation (B)	The use of the treatment may vary depending on the clinical situation or patient/social value, so it is recommended to use it selectively or conditionally.
Against recommendation (C)	The risk of the treatment may outweigh the benefit and, taking into account the clinical situation or patient/social value, implementation is not recommended.
Inconclusive (I)	Considering the benefits and risks of the treatment, values and preferences, and resources, the level of evidence is too low, the scale of benefit/risk is too uncertain, or the variability is large, so the decision to implement the intervention is not made. This means that we cannot recommend or object to the use of treatment, so the decision is at the clinician’s discretion.
Expert consensus	Although clinical evidence is insufficient, use is recommended in accordance with clinical experience and expert consensus when considering the benefits and risks of the treatment, the level of evidence, values and preferences, and resources.
Quality of evidence	
High	We are confident that the estimate of the effect is close to the actual effect.
Moderate	The estimate of the effect appears to be close to the actual effect, but may vary considerably.
Low	The confidence in the estimate of the effect is limited. The actual effect may differ significantly from the estimated effect.
Very low	There is little confidence in the estimate of the effect. The actual effect will differ significantly from the estimated effect.
All members of the Development Committee completed a conflict-of-interest disclosure of financial or nonfinancial conflicts of interest before participating and when completing the CPG. Each member’s report of conflict of interest and management of evaluation are as shown in Supplement 8. This principle was applied from the beginning to the end of development.

Recommendations

Classification and differential diagnosis of hyponatremia

Hyponatremia is defined by less than 135 mmol/L of serum sodium (SNa) concentration [10]. Hyponatremia can be classified based on different parameters, including SNa concentration, timing of development, symptom severity, serum osmolality, and volume status. The criteria are described in Table 3 [11,12]. Because consistency and clarity of classification of hyponatremia are critical for diagnosis and management, we sought to compare the terminology used in the existing two guidelines (European and American guidelines) when discussing the classification of hyponatremia (Table 3). A practical diagnostic approach can progress step by step as follows (Fig. 1) [10].

1) Step 1
Check plasma osmolality for differentiating hypoosmolar hyponatremia from other causes of hyponatremia [10,12]. When plasma osmolality is reduced, you may require further steps of differential diagnosis. When plasma osmolality is above 275 mOsm/kg and hyponatremia is present, hyperglycemia should be checked. When serum glucose levels are increased, recheck the corrected sodium level according to the correction formula.

\[
\text{Corrected Na level (Hillier et al. [13])} = \text{Na} + 0.024 \times (\text{serum glucose [mg/dL]} - 100)
\]

Beyond hyperglycemia, hyperproteinemia, hyperlipidemia, and the use of mannitol or radiocontrast media can be a cause of hyper- or iso-osmolar hyponatremia [10–12].

2) Step 2
When hypoosmolar hyponatremia has been confirmed, the severity of clinical hyponatremic symptoms should be evaluated [1]. We have divided symptoms of hyponatremia into ‘asymptomatic-mild,’ ‘moderate,’ and ‘severe’ catego-

Table 3. Classification of hyponatremia
Classification in the Korean Society of Nephrology clinical practice guideline
SNa concentration
Mild
Moderate
Severe*
Severity of clinical symptoms
Asymptomatic-mild
Moderate
Severe*
Time of development
Acute
Chronic
Serum osmolality
Hypotonic
Isotonic
Hypertonic
Clinical assessment of volume status
Hypovolemic, euvolemic, hypervolemic

SNa, serum sodium.

*The term ‘severe’ is used for both classifications according to concentration and symptoms. We considered replacing ‘severe’ with a new term to avoid confusion, but no other terms seemed appropriate. According to several studies, symptoms become more common when SNa concentration drops below 125 mmol/L [12]. Therefore, the expression ‘severe’ is used interchangeably, but the type of classification is added in parentheses.
Symptomatic hyponatremia should be corrected immediately with acute management [10]. If acute management has been initiated or there are no symptoms of hyponatremia, go to the next step.

3) Step 3
Check urinary osmolality and discriminate excessive water intake.

When urinary osmolality is below 100 mOsm/kg, discriminate excessive water intake and excessive intake of hypotonic food or fluid (e.g., beer, rice wine, liquid diet) [10–12].

4) Step 4
Check urinary sodium to discriminate excessive renal excretion of sodium. When urinary sodium is above 30 mmol/L, discriminate the cause of hyponatremia according to volume status [10,12]. When volume status is decreased, check use of diuretics and cerebral salt wasting (CSW). When volume status is normal, check adrenal insufficiency, hypothyroidism, syndrome of inappropriate antidiuresis (SIAD), and other diseases or drugs that can cause SIAD.

When urinary sodium is below 30 mmol/L, recheck volume status and discriminate the causes. When volume status is decreased, check diarrhea or vomiting. When volume status is increased, discriminate congestive heart failure, liver cirrhosis, and nephrotic syndrome.

Volume status can be assessed through history-taking and physical examination. Symptoms of decreased volume status are usually nonspecific and may include thirst, fatigue, weakness, muscle cramps, and orthostatic dizziness. On physical examination, decreased skin turgor, low jugular vein pressure, orthostatic hypotension or postural
tachycardia may appear. When more body fluid is lost, findings suggestive of decreased organ perfusion due to decreased intravascular fluid (low consciousness, oliguria, and peripheral cyanosis) or compensatory mechanisms (tachycardia, tachypnea, and sweating) may appear as symptoms of shock. On laboratory findings, increased urine osmolality, decreased urine sodium (UNa), alkalosis due to decreased volume status, relatively increased hemoglobin and albumin concentration may also be seen. Symptoms of increased volume status may include dyspnea on exercise, orthopnea, and peripheral edema. After underlying causes are evaluated, take further steps for managing them [10,12].

The diagnostic criteria of SIAD are summarized in Table 4 [10,11,14]. In addition, fractional excretion of uric acid (FEUA) can be used for discrimination of SIAD and use of diuretics (Recommendation 1) [12]. Serum copeptin/UNa ratio may also be used for discrimination of volume status. However, practical applications are still limited since copeptin measurement is not widely used (Recommendation 2).

Diagnostic approaches should be performed step by step, including measuring plasma osmolality, urinary osmolality, and urinary sodium levels. Patient history and physical examination are also important to discriminate underlying causes of hyponatremia. Drug history should also be checked, as it can be associated with hyponatremia including SIAD [10].

For example, thiazide diuretics are a common cause in elderly women, and desmopressin in elderly men [15,16]. In patients with chronic pain, NSAID use should be checked. In patients with skin disorders or autoimmune diseases, adrenal insufficiency should be evaluated.

Treatment of hyponatremia

The first step treatment evaluation of hyponatremia is identifying clinical symptoms and duration of hyponatremia, as mentioned above [10]. Treatment can be approached step by step as follows (Fig. 2).

1) **Symptomatic acute/chronic hyponatremia**

Hypertonic saline should be administered for symptomatic hyponatremia as moderate or severe symptomatic hyponatremia reflects increased intracranial pressure. In terms of the infusion method of hypertonic saline, rapid intermittent bolus (RIB) regimens are suggested [10,11]. The treatment approach used for hypertonic saline in the American and European guidelines, and in a RCT performed in Korea is as follows (Table 5) [10–12,17]. A comparison of the efficacy and safety of hypertonic saline according to infusion methods (RIB vs. slow continuous infusion [SCI]) is discussed in Recommendation 3. In cases of severe symptomatic hyponatremia, RIB regimens of hypertonic saline should be promptly administered to increase SNa by 4 to 6 mmol/L to relieve cerebral edema, and then cause-specific treatment can be planned [10]. In cases of moderate symptomatic hyponatremia, RIB or SCI methods of hypertonic saline can be used and cause-specific treatment can be prioritized without administration of hypertonic saline [10]. We suggest checking SNa concentration 1 hour after first hypertonic saline administration, then rechecking SNa concentration every 6 hours to adjust the administration interval or infusion rate of hypertonic saline [10]. We recommend that the rate of sodium correction be reevaluated when symptoms improve or SNa concentration increases by 5 to 9 mmol/L [10,11]. If symptoms do not improve or SNa concentrations do not reach target correction, infusion of hypertonic saline may be repeated [10,11]. In patients with hypervolemic hyponatremia, hypertonic saline and

Table 4. Diagnostic criteria for syndrome of inappropriate antidiuresis

Essential criteria	Supplemental criteria
Decreased effective osmolality (serum osmolality of <275 mOsm/kg)	Serum uric acid, <4 mg/dL
Urine osmolality of >100 mOsm/kg at some level of serum hypoosmolality	Serum urea, <21.6 mg/dL
Clinical euvoiemia, as defined by the absence of signs of volume depletion	Failure to correct hyponatremia after 0.9% saline infusion
Elevated urine sodium concentration of >30 mmol/L with normal dietary salt and water intake	Correction of hyponatremia through fluid restriction
Absence of other potential causes of euvoiemic hypoosmolality: severe hypothyroidism, adrenal insufficiency	Fractional sodium excretion, >0.5%
Normal renal function and absence of diuretic intake (especially thiazide diuretics)	Fractional urea excretion, >55%
	Fractional excretion of uric acid, >12%

loop diuretics should be administered at the same time [12].

2) Asymptomatic acute hyponatremia
The absence of moderate or severe symptoms indicates that the clinically significant brain edema has not yet developed. Therefore, prompt diagnostic assessment of hyponatremia is suggested versus immediate infusion of hypertonic saline. Nonessential fluids and medications that can
contribute to or provoke hyponatremia should be stopped. If the acute decrease in SNa concentration exceeds 10 mmol/L, we suggest administering the same amount of hypertonic saline as in patients with moderate symptoms to prevent a further drop in SNa concentration [10].

3) Asymptomatic chronic hyponatremia

Asymptomatic chronic hyponatremia does not require prompt correction but may lead to localized neurologic impairment and increased mortality compared to normonatremia. Even patients with mild hyponatremia have a higher mortality rate compared to patients with normonatremia. As discussed in Recommendation 4, we found no evidence that treatment with the sole aim of correcting hyponatremia itself improves patient-relevant outcomes in mild hyponatremia. However, in this case, we should evaluate causes of hyponatremia (hypothyroidism, adrenal insufficiency, and SIAD), review medications, and recommend cause-specific treatment [10]. Hypervolemic hyponatremia is commonly seen in heart failure or liver cirrhosis. Restriction of sodium and free water intake (approximate <800–1,000 mL/day) is the first-line treatment. Additional pharmacologic therapies including loop diuretics and vasopressin receptor antagonists (‘vaptans’) can be used to increase renal free water excretion [10–12]. The possibility of using vaptans in patients with heart failure or liver cirrhosis is discussed greater detail in Recommendation 5. Fluid intake should not be restricted to prevent overcorrection when using vaptans [11].

In patients with SIAD, restricting fluid intake is the first-line treatment. The following can be considered second-line treatment: a combination of oral sodium chloride and loop diuretics or vaptans (Recommendation 6) [11,12]. NaCl causes an electrolyte diuresis by increasing urine solute load. However, its primary role is the restoration of urinary sodium losses and preventing negative sodium balance in hyponatremia [18]. NaCl is available as 1 g (17 mEq sodium and chloride) tablets. Usual doses for NaCl tablets are 6 to 9 g daily in divided doses (e.g., 2–3 g two or three times per day). Loop diuretics decrease the medullary osmotic gradient necessary for water reabsorption in the collecting duct by inhibiting the Na-K-2Cl cotransporter and therefore, increase free water excretion. The dose of furosemide is 20 to 40 mg per oral one time per day. They are not approved by the U.S. Food and Drug Administration (FDA) to treat hyponatremia. Daily intake of 0.25 to 0.50 g/kg urea or 600 to 1,200 mg demeclocycline can also be considered but has not been introduced in Korea.

In patients with hypovolemic hyponatremia, restoring extracellular fluid volume with intravenous isotonic fluid (0.9% saline) or balanced crystalloid will suppress vasopressin secretion causing electrolyte-free water excretion to increase [10–12]. After a 0.5- to 1.0-L infusion of isotonic fluid or balanced crystalloid, hyponatremia will begin to be corrected without signs of volume overload in patients with hypovolemic hyponatremia [11].

4) Overcorrection and re-lowering treatment of serum sodium

Target correction is achieving a SNa increase of 5 to 9 mmol/L within 24 hours and SNa of 10 to 17 mmol/L within 48 hours or reaching a SNa of 130 mmol/L within 48 hours [10]. SNa concentration should not be corrected by ≥10 mmol/L per day, with a more stringent limit of >8 mmol/L per day for patients at high risk of osmotic demyelination syndrome (ODS) (SNa concentration of ≤105 mmol/L, hypokalemia, alcoholism, malnutrition, and advanced liver disease) [11]. Overcorrection (defined as an increase in the SNa level by >12/18 mmol/L within 24/48 hours) may result in ODS [10–12]. ODS has no specific treatment and has a poor prognosis. Therefore, caution is required when correcting hyponatremia [10]. We recommend discontinuing ongoing treatment and prompt intervention to re-lower SNa concentration based on electrolyte-free water (5% glucose solutions) and/or desmopressin if overcorrection occurs (Table 5) [10–12]. Desmopressin use as a re-lowering treatment for SNa is discussed in Recommendation 7. Diuresis as a result of antagonizing vasopressin-mediated free water retention by volume repletion or discontinuing hyponatremia inducing medications often occurs when correcting hyponatremia and is a common reason for overcorrection. Therefore, urine output should be monitored during treatment.

In addition, we would like to introduce the treatment of hyponatremia in patients with brain lesions as a special situation (Recommendation 8) and selection of maintenance fluids to prevent hyponatremia in children aged ≤18 years (Recommendation 9) in this guideline.
Key question 1.

For patients with hyponatremia, is the additional measurement of FEUA superior to using either UNa concentration or fractional excretion of sodium (FENa) alone in differentiating SIAD?

Recommendation 1.
For patients with hyponatremia, we consider additional measurement of fractional excretion of uric acid (FEUA) reasonable to differentiate likely causes of hyponatremia, such as syndrome of inappropriate antidiuresis (SIAD) or diuretic-induced hyponatremia.

Expert consensus

Remarks:
1. FEUA was significantly higher in SIAD patients than in patients taking diuretics.
2. When patients taking diuretics were divided into thiazide and loop diuretics, SIAD- and thiazide-induced hyponatremia showed similar FEUA values.

Rationale
FEUA is a supplemental diagnostic criterion for SIAD [14]; in patients using diuretics, FEUA performed best among UNa, FENa, fractional urea excretion, and serum uric acid concentration (area under the curve, 0.96; 0.92–1.12) [19]. In the 2013 guideline published by the American Journal of Medicine, the measurement of FEUA in patients taking diuretics has been suggested to be helpful when trying to exclude hypovolemia [11]. According to the 2014 European guideline from the European Society of Endocrinology, European Society of Intensive Care Medicine, and European Renal Association European Dialysis and Transplant Association, FEUA using a threshold of >12% was most useful for distinguishing SIAD- from non-SIAD-related hyponatremia in patients on diuretics with a sensitivity of 0.86 and specificity of 1.00 [10]. However, the previous guidelines had no evidence derived from high-quality RCTs. Our literature search identified two new observational studies from 2014 when the previous guideline was published.

In an observational study of 298 patients admitted with profound hypoosmolar hyponatremia (Na of <125 mmol/L), FEUA was higher in patients with SIAD compared with other hyponatremia etiologies (p < 0.001) [20]. We identified direct evidence from five observational studies (387 patients) that interpreted FEUA and FENa in hyponatremia patients due to SIAD and on diuretics [19–23]. Of these, one study was conducted with only patients taking thiazide diuretics, and in the other four studies, the group of patients taking thiazide or loop diuretics was not separated in our meta-analysis. A meta-analysis of studies showed that FEUA was significantly higher in SIAD patients than in patients taking diuretics. Two of five observational studies identified FEUA cutoff values of 10% and 12% (with specificity of 100% and 96%, respectively) [20,23]. Our meta-analysis found no differences in FENa. Since uric acid transporters are mostly located in the proximal tubules of the kidney, in which diuretics do not work primarily, we consider it reasonable that FEUA be used as a diagnostic test for the differential diagnosis of hyponatremia. However, caution is needed in interpreting FEUA. When patients taking diuretics were divided into thiazide and loop diuretics, SIAD- and thiazide-induced hyponatremia showed similar FEUA values in one study [23]. Furthermore, hypouricemia with increased FEUA is also observed in CSW. FEUA can be normalized after correction of hyponatremia in SIAD despite the continued increase in FEUA in CSW [24]. Lastly, concurrent use of drugs such as antihypertensives that alter uric acid excretion may affect FEUA levels [25]. Further evidence is needed to address the role of FEUA in diuretic-induced hyponatremia.

(Supplement 1 | Search strategies—Key question 1.)
(Supplement 2 | Study selection flow diagrams—Key question 1.)
(Supplement 3 | Summary evidence tables—Key question 1.)
(Supplement 4 | Bias risk assessment—Key question 1.)
(Supplement 5 | Forest plots—Key question 1.)
(Supplement 6 | Clinical evidence profiles [GRADE tables]—Key question 1.)

Recommended considerations

1) **Benefits and risks**
Fifteen to thirty percent of all inpatients have various degrees of hyponatremia, defined as a SNa < 135 mmol/L, which is the most frequent body fluid and electrolyte balance disturbance encountered in clinical practice [26,27]. Based on volume status, hyponatremia is classified as hypovolemic, hypervolemic, or euvoletic hyponatremia; the latter is the most common [28]. The pathophysiological cause of euvoletic hyponatremia is mainly SIAD [29].
though most traditional diagnostic algorithms start with a clinical assessment of volume status, there are often clinical limitations in which the extracellular fluid volume status is ambiguous. In addition, the sensitivity and specificity of clinical evaluations of volume status on physical examination are low [30]. Urine osmolality and UNa concentration are prioritized over the assessment of volume status [31]. However, UNa and FENa have limited diagnostic utility in patients with complex clinical settings and varying treatment, especially on diuretics. In comparison with UNa and FENa, FEUA may be a more useful test for differentiating hyponatremia in these patients.

2) Patient values and preferences
Patients do not have a preference regarding additional measurement of FEUA. Because the choice of further laboratory measures depends mostly on medical decisions by the clinician, it is impractical to consider patient values and preferences.

3) Obstacles, facilitating factors, and measures
We expect few obstacles to accommodating these recommendations because serum and urine uric acid concentrations are not difficult to measure, and these laboratory tests are generally performed in the Republic of Korea. However, since hospitals that can provide 24-hour emergency testing for urine uric acid concentration are limited, the key is how quickly the test can be performed in clinical situations.

4) Resources
The measurement of FEUA is reimbursed under the National Health Insurance System and is already performed in most centers.

Other considerations
1) If the availability of urine uric acid concentration testing is limited, serum uric acid concentration may be performed for the diagnosis of SIAD [14].
2) Hypouricemia with increased FEUA is also observed in CSW. FEUA can be normalized after correction of hyponatremia in SIAD despite continued increase in FEUA in CSW [24]. Therefore, the value of FEUA as a specific tool for diagnosing SIAD is limited.

Key question 2.
In hyponatremic patients, does copeptin to UNa ratio improve differentiation of patient volume status compared with copeptin level?

Recommendation 2.
There are insufficient data to make a recommendation for using copeptin to urine sodium (UNa) ratio to assess patient volume status.
Inconclusive (I), very low-quality of evidence

Remarks:
1. Copeptin levels overlap widely in hyponatremic patients and are affected by non-osmotic stimuli.
2. The ratio of copeptin to UNa was higher in disorders with secondary arginine vasopressin (AVP) release than those with primary AVP secretion such as syndrome of inappropriate antidiuresis.

Rationale
Assessment of volume status in hyponatremic patients is important, but often challenging. Since the sensitivity and specificity of traditional clinical assessment of patient volume status are low, there have been efforts to identify novel biomarkers. Plasma arginine vasopressin (AVP) is a promising marker for the differentiation of volume disorders from a pathophysiological perspective. However, AVP is not routinely measured in clinical practice due to its instability. Copeptin has become a surrogate maker for AVP concentration and has advantages over AVP in aspects of stability and ease of measurement. Both American and European guidelines discussed copeptin briefly [10,11]. The American (2013) and European (2014) guidelines recommend that measurement of the copeptin to UNa ratio could distinguish hypovolemic hyponatremia from SIAD and that copeptin could discriminate euvoolemia from hypovolemia and hypervolemia. Both guidelines were developed based on the same observational study [32]. There were no RCTs or meta-analyses exploring the value of copeptin in patients with hyponatremia. In the present guideline, one observational study published after 2015 was added and discussed [33].

Since copeptin levels overlap widely in hyponatremic patients and are affected by non-osmotic stimuli, copeptin to UNa ratio can be useful. In a previous report of 106 German
hyponatremia patients, patients were classified into five categories: 1) normal volume with excessive water intake; 2) normal volume with SIAD; 3) decreased volume due to renal sodium loss; 4) decreased or normal volume due to non-renal sodium loss; and 5) increased volume [32]. A recent study of 100 Korean hyponatremic patients also classified patients into five categories: 1) normal volume with adrenal insufficiency; 2) normal volume with SIAD; 3) decreased volume due to renal sodium loss; 4) decreased volume due to non-renal sodium loss; and 5) increased volume [33]. Both observational studies revealed that copeptin to UNa ratio was superior to copeptin level for differentiating patient volume status. The ratio of copeptin to UNa was higher in disorders with secondary AVP release (decreased effective arterial volume) than conditions with primary AVP secretion such as SIAD.

4) Resources

Copeptin testing is not commercially available in Korea. To measure copeptin in Korea, specialized testing equipment (e.g., Thermo Scientific Kryptor) is required, and cost of the test is about 45,000 Korean won (KRW) per case. Cost-effectiveness is a remaining question regarding copeptin measurement in clinical practice.

Key question 3.

In patients with symptomatic severe hypotonic hyponatremia, are there any differences in symptom relief, correction of sodium, target correction rate, overcorrection, ODS, and mortality between RIB of hypertonic saline and SCI?

Recommendation 3.

We suggest rapid intermittent bolus (RIB) administration of hypertonic saline in patients with symptomatic severe hypotonic hyponatremia.

Conditional recommendation (B), low-quality of evidence

Remarks:

In the treatment of symptomatic severe hypotonic hyponatremia,
1. RIB administration of hypertonic saline can effectively relieve symptoms within 12 hours compared to slow continuous infusion (SCI).
2. RIB is more effective in increasing serum sodium (SNa) within 1 hour and reaching the target correction rate than SCI.
3. RIB can result in a lower incidence of therapeutic re-lowering of SNa than SCI.
4. RIB has similar overcorrection, osmotic demyelination syndrome, and mortality rates to SCI.

Rationale

Hypertonic saline has been used to treat symptomatic severe hypotonic hyponatremia. Overcorrection from indiscriminate prolonged use of hypertonic saline may result in irreversible neurologic sequelae from ODS, whereas under-correction of hyponatremia may insufficiently improve fatal complications of cerebral edema. Therefore, appropriate correction of SNa is needed. Although the Ameri-
can (2013) and European (2014) guidelines recommend administering hypertonic saline in small, fixed boluses (recommendation grade: expert opinion in the American guidelines, 1D in the European guidelines), they were not based on high-quality RCT evidence [10, 11, 17]. In order to examine whether RIB therapy of hypertonic saline has any benefit for symptom relief, correction of SNa, complications, and prognosis compared to SCI in patients with symptomatic severe hypotonic hyponatremia, we reviewed a prospective cohort study (24 hours of follow-up after treatment) and a RCT (48 hours of follow-up after treatment) published after the European guideline (2014).

A prospective cohort study reported that the RIB group had more rapid elevation of SNa and greater improvement in the Glasgow Coma Scale (GCS) at 6/12 hours than the SCI group. However, there was no difference between the two groups in GCS improvement at 24 hours [35].

A RCT demonstrated that the RIB group had the higher increment in SNa at 1 hour, a higher proportion meeting the target correction rate (achieving SNa of 5–9 mmol/L within 24 hours and SNa of 10–17 mmol/L or ≥130 mmol/L within 48 hours) at 1 hour, lower SNa at 12 hours, and a lower incidence of re-lowering treatment (5% dextrose infusion 10 mL/kg over 1 hour and/or intravenous desmopressin 2 µg if SNa level increase is ≥10 mmol/L within the first 24 hours or ≥18 mmol/L within 48 hours) than the SCI group [17].

In both studies, the target correction rate, the degree of SNa elevation at 24 hours, and overcorrection (increase in SNa by >12 mmol/L within the first 24 hours or increase in SNa by >18 mmol/L within 48 hours) did not differ between the two groups [17, 35]. ODS did not occur in either study [17, 35]. Death occurred in five patients in the RCT and four patients in the prospective cohort study, with no significant difference between the two groups [17, 35]. Only one RCT for hypertonic saline infusion in symptomatic severe hypotonic hyponatremia has been reported in Korea; thus, additional large-scale RCTs are needed.

Recommended considerations

1) **Benefits and risks**

RIB hypertonic saline treatment is a simple (user-friendly) method and has the advantage of SNa elevation within 1 hour and symptom relief within 12 hours; it also does not increase the risk of overcorrection, ODS, or death compared to SCI. The RIB group has a safety advantage, showing a reduced incidence of re-lowering treatment. There were no differences in volume overload or phlebitis caused by the infusion of hypertonic saline between RIB and SCI groups, so there is no additional risk according to the infusion method of hypertonic saline [17].

2) **Patient values and preferences**

From the patient’s point of view, patients do not have preferences regarding a specific method between RIB and SCI. The choice between RIB and SCI in symptomatic severe hypotonic hyponatremia depends mostly on medical decisions made by the physician. However, RIB administration might be more effective for improving the initial symptoms of hyponatremia.

3) **Obstacles, facilitating factors, and measures**

Education regarding the RIB method is required as domestic medical staff (doctors and nurses) are not yet familiar with RIB compared to SCI. The infusion equipment for RIB therapy is also needed. However, RIB regimens are simple and require a lower medical burden owing to the omission of the need for calculation from the physician’s perspective. They also have the advantage of shortening the careful observation time needed as the hypertonic saline infusion time is short, reducing the burden on nurses. Most domestic secondary and tertiary hospitals treating patients with severe hyponatremia already have infusion pump equipment.

4) **Resources**

In an RCT, the amounts of hypertonic saline required in both groups to reach an appropriate SNa concentration were similar. In a prospective cohort study, less volume of hypertonic saline was administered in the RIB group than in the SCI group. During the treatment of hyponatremia, re-lowering treatment of SNa may be needed to avoid overcorrection, which is based on infusion of electrolyte-free...
water and intravenous desmopressin. In an RCT, the RIB group exhibited reduced additional costs and labor because of a lower incidence of re-lowering therapy [17].

Key question 4.

For patients with mild hyponatremia (Na of 130–135 mmol/L), does the correction of SNa improve clinical outcomes, such as survival and complications, compared to untreated controls?

Recommendation 4.
We recommend rigorously evaluating the causes of mild hyponatremia and to managing causative diseases to improve clinical outcomes.

Expert consensus

Remarks:
1. Mild hyponatremia increases the risk of mortality compared with those with normonatremia.
2. There is no clear evidence that correcting hyponatremia itself improves patient-important outcomes.
3. There are insufficient data to make a recommendation regarding treating mild hyponatremia with hypertonic saline or oral sodium chloride solely to increase serum sodium concentration.

Rationale
In the case of mild hyponatremia, it is often unnoticed in clinical practice because it rarely presents with specific symptoms. Moreover, there is lack of evidence from RCTs that treatment of mild hyponatremia with fluid therapy or medication with the sole aim of correction to normal SNa concentration improves patient outcomes. The European guideline (2014) recommends against treatment simply to increase SNa concentration (grade of recommendation 2C). However, several observational studies have shown that mild hyponatremia increases the risk of mortality both in short-term and long-term follow-up. Waikar et al. [36] observed that mild hyponatremia defined as 130 to 135.9 mEq/L increased the risk of relatively long-term mortality (median follow-up duration of 5.5 years) in patients with chronic kidney disease with estimated glomerular filtration rate less than 60 mL/min/1.73 m². From a meta-analysis including above studies that compared the short-term (less than 90 days or in-hospital mortality) and long-term (more than 5 years mortality) mortality risk, mild hyponatremia increased both short-term (odds ratio [OR], 2.09; 95% confidence interval [CI], 1.90–2.30; p < 0.001) and long-term (OR, 1.46; 95% CI, 1.44–1.48; p < 0.001) mortality risk compared with normonatremia.

In a domestic retrospective study [39], improved SNa concentration at discharge had the strongest association with long-term mortality in acute myocardial infarction patients with hyponatremia. However, because mild hyponatremia patients were not distinguished from other study patients, and interventions such as hypertonic saline were not addressed in this study, these findings were not included in the rationale under the consensus of the Development Committee. Although there is insufficient data that the correction of mild hyponatremia with the sole aim of correcting SNa concentration has clinical benefit, it is reasonable to rigorously evaluate the causes of mild hyponatremia and to manage the diseases because mild hyponatremia increases the risk of mortality.

Recommended considerations

1) Benefits and risks
Since no RCTs have been published to date, correction of mild hyponatremia with hypertonic fluids is not recommended. However, as mentioned above, it is clear that mild hyponatremia is associated with poor clinical outcomes, as confirmed by previous observational studies and meta-analysis in this guideline. Therefore, we concluded that evaluation and management for causes of hyponatremia have benefits, versus treatment with the sole aim of correc-
tion of SNa concentration.

2) Patient values and preferences
Fluid therapy is usually prescribed based on the decision by the healthcare provider regarding medical necessity; thus, patient values and preferences are not a general consideration.

3) Obstacles, facilitating factors, and measures
Mild hyponatremia is often unnoticed in clinical practice due to its lack of specific symptoms. To overcome the poor prognosis associated with mild hyponatremia, we recommend to rigorously evaluating the causes of mild hyponatremia and to raise awareness of mild hyponatremia.

4) Resources
None.

Key question 5.
Do vaptans offer additional benefits compared with loop diuretics in terms of mortality, renal function, and SNa concentration in hypervolemic hyponatremia?

Recommendation 5.
1. We suggest vaptan use in heart failure with hypervolemic hyponatremia in terms of rapid sodium correction.
 Conditional recommendation (B), moderate-quality evidence
2. We make no recommendation on the use of vaptans in liver cirrhosis with hypervolemic hyponatremia.
 Expert consensus

Remarks:
1. We evaluated the efficacy of adding vaptans to loop diuretics since few studies compared vaptans versus loop diuretics in heart failure with hypervolemic hyponatremia.
2. The addition of vaptans to loop diuretics is more effective to elevate serum sodium concentration compared with loop diuretics alone.
3. The addition of vaptans to loop diuretics does not worsen renal function compared with loop diuretics alone.
4. The addition of vaptans to loop diuretics does not show survival benefit compared with loop diuretics alone.
5. The addition of vaptans has the potential to lead to hepatotoxicity in patients with liver cirrhosis.

Rationale
Although vaptans have shown effectiveness for correcting SNa in SIAD, heart failure, and liver cirrhosis, the U.S. FDA limited the use of vaptans in liver cirrhosis in 2013 due to hepatic toxicity concerns. The European guideline recommended against treating vaptans in hypervolemic hyponatremia (grade of recommendation 1C). Therefore, we accepted the previous guideline in hyponatremia in liver cirrhosis and did not seek further evidence. We reviewed only patients with heart failure, excluding studies on liver cirrhosis patients.

Including 11 RCTs, one observational study, and two SRs, the guideline found no clinical benefit to the use of vaptans in hypervolemic hyponatremia. However, the quality of the studies varied, the characteristics of enrolled patients were not similar, and most of the RCTs did not distinguish patients with hyponatremia from those with normal volume status. Also, two studies only included patients with liver cirrhosis, and three studies only enrolled patients with heart failure. Thus, it is difficult to conclude that vaptans are superior to loop diuretics. Although vaptans showed a clinical benefit compared with placebo in the two SRs, there was no comparison of vaptans with loop diuretics as a basic therapeutic agent in hypervolemic hyponatremia. Since 2015, various studies have investigated whether additional use of vaptans with loop diuretics could lead to clinical benefit in hyponatremia with heart failure. Only one study compared vaptans and loop diuretics [40], and nearly all studies sought to clarify the effectiveness of additional vaptan use on loop diuretics. Recent studies showed the efficacy of vaptans in patients with chronic kidney disease and heart failure [41,42].

Therefore, this guideline focused on the benefit of additional vaptan use with loop diuretics in hypervolemic hyponatremia with heart failure in terms of survival gain, sodium correction, and conservation of renal function. We reviewed nine RCTs [40–48], five SRs, and several observational studies. All RCTs were conducted in patients with hyponatremic heart failure prescribed tolvaptan 7.5 to 30 mg per day, and allowed furosemide intravenous or oral use. There was no survival benefit of adding tolvaptan on furosemide [40,42,43,46,48]. Renal function decline, which was defined as the increase of serum creatinine more than 0.3 mg/dL per week, was not different between the tolvaptan-added group and furosemide-alone group.
Sodium correction for 24 hours was higher when tolvaptan was added to furosemide [42–44].

1) Benefits and risks
The U.S. FDA approved tolvaptan as a therapeutic agent for euvolemic or hypervolemic hyponatremia, such as heart failure, liver cirrhosis, or SIAD, in September 2011. However, tolvaptan was found to induce hepatic toxicity in patients with autosomal dominant polycystic kidney disease (ADPKD) in the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) 3:4 clinical trial [49]. Since the TEMPO trial was conducted in ADPKD patients, the tolvaptan dose was higher (maximum of 120 mg), and the duration of drug use was longer than that in hyponatremia. The U.S. FDA did not set a criterion for tolvaptan dosage. In contrast, Japan was allowed to use low-dose tolvaptan (7.5–15 mg/day) with diuretics (spironolactone/furosemide) to control ascites in patients with liver cirrhosis in 2013. The CPGs for liver cirrhosis 2020 by the Japanese Society of Gastroenterology recommend using tolvaptan 3.75–7.5 mg/day for patients with intractable ascites [50]. The Korean Association for the Study of the Liver CPGs for liver cirrhosis in 2018 did not recommend vaptans with diuretics since the treatment was not effective for controlling ascites and somewhat increased mortality in liver cirrhosis with intractable ascites [51,52].

2) Patient values and preferences
Even though loop diuretics remove overloaded fluid, loop diuretics alone usually fail to correct hyponatremia; high-dose loop diuretics can cause renal insufficiency. Vaptans as a selective aquaretic can be effective to reduce expanded volume and increase SNa at the same time. Adding vaptans to loop diuretics was effective for SNa correction, and does not worsen renal function. This guideline is limited to patients with hyponatremic liver cirrhosis. Although water restriction and albumin could be used in liver cirrhosis with hypervolemic hyponatremia [51], there is a lack of research on whether the additional use of vaptans in patients without ascites will yield clinical benefit.

3) Obstacles, facilitating factors, and measures
Long-term use of vaptans is challenging unless covered by insurance. Korean insurance covers the drug price for limited cases of hyponatremia or patients with ADPKD. Since it is also impossible to prescribe for more than 1 month due to safety concerns such as hepatotoxicity, it is a hassle for patients to visit the hospital every month to receive these drugs. Insurance benefits need to be expanded for various diseases and prescription periods to improve the convenience of tolvaptan use in the clinical field. In addition, it will be necessary to clarify whether tolvaptan alleviates symptoms or reduces mortality when added to essential heart failure medicines.

4) Resource
Korea has two types of tolvaptan; 15 mg and 30 mg. However, the prices of the two drugs are similar, about 10,000 KRW (15 mg, 10,056 KRW and 30 mg, 10,080 KRW). The insurance standard is applied in clinically significant hypervolemic or euvolemic hyponatremia in patients who do not respond to the existing treatment (fluid restriction, hypertonic saline, or diuretics). The total prescription period is limited to 30 days.

Key question 6.
In SIAD patients with moderate to severe hyponatremia, do vaptans improve survival or clinical complications compared with water restriction or loop diuretics?

Recommendation 6.
We suggest treatment with vaptans in syndrome of inappropriate antidiuresis (SIAD) patients with moderate to severe hyponatremia.

Conditional recommendation (B), low-quality of evidence

Remarks:
1. There is no direct comparison of vasopressin receptor antagonists with loop diuretics in patients with SIAD. We compared the effects of vaptans with water restriction or placebo.
2. Vaptans have a beneficial effect on normalization of serum sodium in SIAD patients compared with water restriction or placebo.

3. Vaptans do not increase the risk of overcorrection of hyponatremia in SIAD patients compared with water restriction or placebo.

4. Vaptans do not improve survival in SIAD patients compared with water restriction or placebo.

Rationale

SIAD is a state of water retention due to a persistent increase in antidiuretic hormone, characterized by hypopomolar hyponatremia, euvolemia, and high urine osmolality. In patients with SIAD, the standard treatment is the restriction of free water because of water retention [53]. However, there is little evidence that water restriction can effectively treat hyponatremia or does not increase complications such as overcorrection of SNa concentration, ODS, or death. Vaptans correct hyponatremia, effectively causing urinary excretion of free water without increased sodium excretion [54]. However, the European guideline recommends against vasopressin receptor antagonists in SIAD patients without severe or moderately severe symptoms. They emphasized that the safety of vaptans should be considered. First, vaptans can lead to overcorrection of SNa concentration, especially in patients with severe hyponatremia. Second, hepatotoxicity was reported in ADPKD patients on high doses of tolvaptan [10].

Previous studies focused on short-term outcomes such as normalization of SNa or overcorrection. Few studies evaluated the effect of vaptans stratified by volume status: hypervolemia or euvolemia [55,56]. Aggravation of hyponatremia can cause severe symptoms such as poor oral intake, general weakness or altered consciousness, leading to hospitalization. Long-term outcomes were worse in patients who developed repeated symptoms of hyponatremia [36,57].

Placebo or water restriction was used as a control group for vaptans, as there were no studies comparing vaptans with loop diuretics in the previous guidelines or our literature search. Therefore, we reviewed 12 RCTs evaluating the effect of vaptans on sodium correction, survival or complications compared with water restriction or placebo [12,49,58–67]. All RCTs included euvolemic hyponatremia patients: three included only euvolemic hyponatremia, nine included euvoilemic or hypervolemic patients. In our meta-analysis, vaptans effectively normalized SNa in euvolemic hyponatremia. Vaptans did not decrease mortality in euvolemic hyponatremia. Although data on complications of vaptans are insufficient, vaptans did not increase the risk of overcorrection of hyponatremia compared with water restriction or placebo. There were few data regarding hepatotoxicity in euvolemic hyponatremia. In conclusion, vaptans can effectively normalize SNa concentration without increased risk of overcorrection or death.

The evidence was low quality and grade (B) in this recommendation because the included participants were not clearly defined as having SIAD, but instead as hypoosmolar hyponatremia with euvolemia or hypervolemia in the included RCTs. However, most euvolemic hyponatremia is SIAD and the diagnostic criteria for SIAD are not clearly defined [68]. Experts agreed that most of included participants might have SIAD. Therefore, we suggest using vaptans in SIAD patients with moderate to severe hyponatremia.

Recommended considerations

1) Benefits and risks

Tolvaptan induced hepatotoxicity in a study investigating the effectiveness and safety among ADPKD patients [69]. The U.S. FDA recommends against tolvaptan in liver disease such as liver cirrhosis. In addition, rapid correction of SNa concentration and the development of hypernatremia are concerns in using tolvaptan. In this study, vaptans did not increase overcorrection significantly compared with placebo or water restriction. Large-scale studies are needed to evaluate complications related to vaptans.

2) Patient values and preferences

SIAD patients with moderate to severe hyponatremia may complain of general weakness, nausea and vomiting, poor oral intake, altered consciousness, hospitalization,
and lower quality of life. If consciousness is altered, severe comorbidities such as falls, fractures, and aspiration pneumonia can develop [70]. Therefore, it is important to maintain SNa concentration in SIAD patients. Currently, the standard treatment is a restriction of water intake. It is challenging to maintain SNa concentration with water restriction alone because of low compliance. Vaptans, which lead to selective excretion of free water in urine, can maintain SNa without strict water restriction. However, as summarized in this recommendation, the use of vaptans did not improve mortality.

3) Obstacles, facilitating factors, and measures
The cost of vaptans is an obstacle. Long-term maintenance of vaptans is difficult if not covered by medical insurance. Currently, medical insurance covers vaptan use for 1 month with the diagnostic code for SIAD. After 1 month, medical insurance only covers the cost if additional hyponatremia is documented. Usually SIAD is chronic and requires long-term treatment of hyponatremia. Therefore, insurance coverage of long-term maintenance on vaptans is warranted. Further studies on vaptans and their potential cost reduction by reducing hospitalization, comorbidities, and long-term mortality are needed.

4) Resource
The oral formula of tolvaptan (15 mg, 30 mg) is used in Korea. The cost of one tablet is around 10,000 KRW (10 US dollars). Medical insurance covers tolvaptan for hyponatremia in SIAD if other treatments (water restriction, hypertonic saline, or diuretics) are not effective or not allowed. The total prescription period is limited to 30 days.

Key question 7.
In patients with hypoosmolar hyponatremia, is desmopressin to prevent overcorrection in the treatment of hyponatremia more effective in terms of overcorrection, complications (ODS), and prognosis (survival to discharge) compared with an untreated group?

Recommendation 7.
We suggest that desmopressin should be applied individually according to risk factors affecting overcorrection, hypertonic saline therapeutic regimen, and whether to administer dextrose solution during overcorrection in patients with hyponatremia.

Conditional recommendation (B), very low-quality of evidence

Remarks:
1. There is no evidence that administration of desmopressin as a proactive or reactive strategy is effective for preventing overcorrection.
2. Administration of desmopressin in patients with hyponatremia has the potential to increase the incidence of osmotic demyelination syndrome compared to no administration, but drawing a valid conclusion is difficult due to the low level of evidence.
3. Administration of desmopressin for the prevention of overcorrection in hyponatremic patients has the potential to improve survival compared to non-administration, but drawing a valid conclusion is difficult due to the low level of evidence.

Rationale
Overcorrection occurring during treatment of patients with hyponatremia is associated with side effects such as ODS. Desmopressin is an antidiuretic hormone that binds to the V2 receptor in the collecting duct and increases the expression of aquaporin channels to increase water reabsorption of urine passing through the collecting duct. A number of studies found that administration of desmopressin can prevent rapid correction of hyponatremia or stabilize SNa correction rate through water reabsorption if it has already been rapidly corrected. The European guideline recommended that 2 μg of intravenous desmopressin be given at intervals of 8 hours or more to prevent rapid correction (grade of recommendation 1D). In addition, they also recommend injecting 10 mL/kg of electrolyte-free water (dextrose solution) for 1 hour in consideration of urine volume and fluid balance (grade of recommendation 1D). However, there have been no prospective studies on this recommendation. In two retrospective observational studies cited in the guidelines, SNa concentration was corrected using desmopressin or electrolyte-free water to the target of 12 mmol/L within 24 hours and less than 18 mmol/L within 48 hours when overcorrection occurred [71]. In one of these retrospective studies, the proactive strategies in which hypertonic fluid and desmopressin were concurrently administered increased SNa concentration stably,
and SNa concentration was maintained within the target range for 24 and 48 hours [72]. However, the quality of the studies included in the guidelines varied, the criteria for classification of hyponatremia among the study subjects varied, and there was no comparative study in which patients not using desmopressin were included as a control group. Eighty patients using desmopressin were classified into three strategies in one SR of desmopressin use for hyponatremia in 2015 [73]. The proactive strategy was based on initial SNa concentration, with desmopressin administered before concentration changes of SNa. In the reactive strategy, desmopressin was administered according to an increase in the concentration of SNa or urine output. In the rescue strategy, desmopressin was administrated to re-low SNa concentration in case of overcorrection. However, final conclusions could not be drawn on the optimal strategy for administration of desmopressin for hyponatremia due to limitations of the study design and sample size.

In this guideline, we evaluated one SR study and three observational studies on whether the administration of desmopressin for hyponatremia has additional benefit in the prevention of overcorrection, complications (ODS), and prognosis (survival to discharge) compared to the non-administered group [71,73–75]. As a result of our analysis, overcorrection prevention did not differ significantly when comparing the group with and without use of desmopressin (proactive and reactive strategies). When the desmopressin use group and the non-desmopressin group were compared, including proactive, reactive, and rescue therapy, the incidence of ODS was higher in the group using desmopressin, but ODS occurred in only one or two cases, and there was a possibility of selection bias. When comparing the survival to discharge of the groups administered and not administered desmopressin (proactive, reactive, and rescue strategies), survival rate was significantly higher in the desmopressin use group. However, a larger sample size and prospective studies are needed to determine the optimal strategy for desmopressin administration in hyponatremia.

Recommended considerations

1) **Benefits and risks**

We analyzed the benefits of desmopressin with regard to overcorrection, ODS, and death. The risk of overcorrection is not equal among all patients, and there is an overcorrection risk group [11,76–79]. Data on ODS or death occurring during the correction of hyponatremia are extremely rare, so large-scale clinical trials are necessary to evaluate benefits and risks. There are many limitations to setting a ODS as an outcome, because ODS is diagnosed at a different rate depending on the severity of symptoms, and retrospective studies have the possibility of selection bias. Therefore, we judged that the evidence was insufficient to recommend the general use of desmopressin based data obtained up to the present point. However, there is no evidence to limit the use of desmopressin in some groups at risk of overcorrection, so we withheld judgment the use of desmopressin.

2) **Patient values and preferences**

High risk groups for overcorrection have been reported to include alcoholism, malnutrition, advanced liver disease, hypokalemia, and SNa of ≤105 mmol/L [11,76–79]. In these groups, not only overcorrection but also safety indicators such as ODS and death are highly likely to occur, so it is necessary to prepare for this. However, we recommend tailoring treatment to the patients since there are various factors affecting overcorrection such as patient risk factors, administration regimen or rate of hypertonic saline [17,80,81], and electrolyte-free water treatment.

3) **Obstacles, facilitating factors, and measures**

Although the risk of overcorrection in hyponatremia is well known, the level of evidence for this is very poor. More prospective clinical trials are needed to obtain evidence for a treatment regimen after its occurrence.

4) **Resource**

None.

Key question 8.

In hypoosmolar hyponatremia among patients with cere-
bral diseases, is saline infusion effective in correcting SNa concentration and preventing complications compared to placebo?

Recommendation 8.
We consider it reasonable that treatment with hypertonic or isotonic saline infusion, oral sodium chloride, or fludrocortisone for the correction of hypoosmolar hyponatremia should be individualized among patients with cerebral diseases.

Expert consensus

Remarks:
1. The causes of hypoosmolar hyponatremia among patients with cerebral diseases are diverse, and include syndrome of inappropriate antidiuresis, cerebral salt wasting, and insufficient cortisol secretion.
2. There is insufficient evidence that hypoosmolar hyponatremia in patients with cerebral diseases can be effectively corrected with a crystalloid solution, including normal saline.

Rationale

Hyponatremia occurs very frequently in patients with various cerebral diseases such as traumatic brain injury, intracranial or subarachnoid hemorrhage, brain tumor, brain surgery, cerebral infarction, and meningitis. The incidence of hyponatremia in traumatic brain injury patients has been reported to be 27% to 51% [82, 83], 40% to 45% in cerebral infarction patients [84], 14% to 63% in subarachnoid hemorrhage [84, 85], and 15% to 20% in brain tumor patients [86].

Various factors such as SIAD, CSW, and insufficient secretion of cortisol are major causes of hyponatremia in cerebral diseases. The most common cause of hyponatremia in patients with cerebral disease is SIAD, accounting for approximately 62%, and volume deficit or CSW accounted for about 30% [86].

Concomitant hyponatremia in patients with cerebral disease is closely related to the deterioration of patient condition. Therefore, appropriate treatment depending on the cause of hyponatremia is highly recommended [11]. However, in a clinical setting, it is not easy to accurately determine the cause based on patient volume status and it may require several hours or days to complete diagnostic tests and evaluations to determine the cause. Therefore, the CPG Committee sought to suggest appropriate treatment guidelines for hypoosmolar hyponatremia in patients with various cerebral diseases. We searched Ovid MEDLINE, Embase, Cochrane Library, and KMbase, and found a total of 72 research papers through additional manual searches. We selected 66 documents excluding duplicates and reviewed 13 original texts. We could not find any documents that suitably addressed this key question. Therefore, an expert consensus was made by organizing the results of related research with the existing CPGs.

The American guideline suggested that in the case of hyponatremia in patients with cerebral disease, treatment such as normal saline, oral salt supplementation, hypertonic saline, and fludrocortisone may be considered [11]. In general, treatment guidelines recommend water restriction or hypertonic saline depending on the severity of hyponatremia in SIAD. In addition, volume depletion is common in patients with various cerebral diseases [87]. In particular, volume deficit (body fluid deficiency) accompanying CSW can result in hyponatremia. The occurrence of cerebral infarction and other neurological complications increases when water restriction is implemented in patients with cerebral disease [88, 89]. Therefore, in the case of hyponatremia accompanying these cerebral diseases, clinicians should avoid volume depletion through water restriction [90].

Hyponatremia accompanied by neurological symptoms related to hyponatremia can be corrected through hypertonic saline to prevent the progression of neurological complications. However, it should be treated cautiously by controlling the rate of correction to avoid overcorrection in accordance with the general principles of hyponatremia correction rate. Asymptomatic hypoosmolar hyponatremia occurring in patients with cerebral diseases can be initially corrected by preferentially using isotonic crystalloid solution including normal saline, unless volume depletion is clearly excluded by clinical judgment. In the case of asymptomatic hypoosmolar hyponatremia that does not improve despite administering isotonic crystalloid solution, such as normal saline, evaluation and tests for differential diagnosis may be performed, and concomitant salt supplementation, such as hypertonic saline or oral salt may be considered. In the case of CSW, hyponatremia can be corrected with a mineralocorticoid such as fludrocortisone. Hasan et al. [91] demonstrated the effectiveness of fludrocortisone treatment for the prevention of renal salt excretion and volume status decrease in 91 patients with
subarachnoid hemorrhage, which is commonly accompanied by CSW, through a RCT. Misra et al. [92] conducted a RCT on 38 hyponatremic patients with tuberculous meningitis due to CSW and showed that fludrocortisone treatment can correct hyponatremia earlier than normal saline. Further evidence is needed for specific recommendations in hyponatremia patients with cerebral diseases. (Supplement 1 | Search strategies—Key question 8.) (Supplement 2 | Study selection flow diagrams—Key question 8.) (Supplement 3 | Summary evidence tables—Key question 8.) (Supplement 4 | Bias risk assessment—Key question 8.) (Supplement 5 | Forest plots—Key question 8.) (Supplement 6 | Clinical evidence profiles [GRADE tables]—Key question 8.)

■ Recommended considerations

1) Benefits and risks
Several observational studies have reported that a decrease in volume status increases the risk of complications such as cerebral infarction in patients with cerebral diseases [88,89]. There are few studies comparing the effects of normal saline with controls in hyponatremic patients with cerebral diseases. Administration of hypertonic or isotonic saline infusion, oral sodium chloride, or fludrocortisone to prevent deterioration of hyponatremia and other neurological complications including cerebral infarction might have more benefits than risks, such as exacerbation of hyponatremia.

2) Patient values and preferences
In the relevant clinical situation, it is inappropriate to make a treatment decision in consideration of patient preferences, as treatment according to medical judgment takes priority.

3) Obstacles, facilitating factors, and measures
There are no predictable obstacles that may arise when this recommendation is applied to clinical settings.

4) Resource
Treatment including hypertonic or isotonic saline infusion, oral sodium chloride, or fludrocortisone can be used without limitation in most domestic medical environments.

Key question 9.
In hospitalized pediatric patients under the age of 18 years, is the administration of isotonic fluids as maintenance fluids effective for preventing hyponatremia without increasing the risk of hypernatremia compared to hypotonic fluids?

Recommendation 9.
1. To prevent hyponatremia, we recommend the administration of isotonic fluids as maintenance fluid therapy in hospitalized pediatric patients over 1 month and under 18 years of age.
Strong recommendation (A), high-quality evidence
2. There are insufficient data to make a recommendation regarding administering isotonic fluids as maintenance fluid therapy to prevent hyponatremia in neonates because of the risk of hypernatremia.
Inconclusive (I), moderate-quality evidence

Remarks:
1. In maintenance fluid therapy for children and adolescents over 1 month and under 18 years of age, the administration of isotonic fluid is effective for preventing the development of hyponatremia and has similar risk of hypernatremia compared to the administration of hypotonic fluids.
2. In maintenance fluid therapy for neonates less than 1 month old, the administration of isotonic fluid is effective for preventing the development of hyponatremia and leads to a higher risk of developing hypernatremia compared to the administration of hypotonic fluids.

■ Rationale
Traditionally, hypotonic solutions based on the Holliday-Segar formula have been used as maintenance fluids in hospitalized pediatric patients under the age of 18 years. However, the development of hyponatremia associated with hypotonic solution administration and related neurologic complications and death have been continuously reported. In addition, children are more likely to develop severe symptoms associated with hyponatremia because the brain is relatively large compared to the skull in children. Consequently, there has been controversy over the composition of optimal maintenance fluid. In 2018, the American Academy of Pediatrics recommended an isotonic solution as a maintenance fluid for pediatric patients over 1 month old by integrating evidence from 17 RCTs and...
seven SRs (grade of recommendation 1A) [93]. In the 2020 revised NICE (National Institute for Health and Care Excellence) guidelines, isotonic solutions were recommended as maintenance fluids in children, including term neonates 8 days of age or older [94]. However, RCT studies have shown inconsistent results.

In this guideline, we performed a meta-analysis by synthesizing 18 RCTs (16 RCTs for children over 1 month and two RCTs for newborns) [95–112] and seven SRs [113–115]. We sought to examine whether the administration of isotonic fluid compared to hypotonic fluids reduced the incidence of hyponatremia without increasing the risk of hypernatremia during maintenance fluid therapy in pediatric patients including newborns. In 18 RCTs, normal saline or Ringer’s lactate solution as an isotonic solution and 0.20% to 0.45% saline as a hypotonic solution were administered to hospitalized pediatric patients. In most studies, 5% dextrose solution was added to the maintenance fluid. A total of 3,231 patients were included in 16 RCT studies of children 1 month and older, including patients who were hospitalized for surgery or were admitted to the intensive care unit, and those who were hospitalized for pneumonia or central nervous system infection. Of these, isotonic solutions were used in 1,608 patients and hypotonic solutions were used in 1,623 patients as maintenance fluid. The incidence of hyponatremia in patients using isotonic solution as maintenance treatment was significantly lower than in the group using hypotonic solution as maintenance treatment (OR, 0.32; 95% CI, 0.24–0.43; p < 0.001). Although hypernatremia was increased in patients administered isotonic solutions in some studies [95–98,101,105], there was no significant difference in a meta-analysis between isotonic fluid and hypotonic fluid (OR, 1.67; 95% CI, 0.92–3.04; p = 0.09). In two non-RCTs, the incidence of hyponatremia had a tendency to be low in patients administered isotonic fluids; however, this was not statistically significant (OR, 0.54; 95% CI, 0.28–1.02; p = 0.05), and the incidence of hypernatremia in patients receiving isotonic fluids was not significantly different from that in patients receiving hypotonic fluids (OR, 1.25; 95% CI, 0.73–2.13; p = 0.58). Two RCTs enrolled a total of 144 neonates, including premature babies aged 34 weeks or older and full-term neonates. Of these, 73 patients received isotonic fluid and 71 received 0.15% to 0.20% hypotonic fluid. These studies reported a significantly lower incidence of hyponatremia in patients receiving isotonic fluids (OR, 0.11; 95% CI, 0.03–0.35; p < 0.001) than in patients receiving hypotonic fluids. However, the incidence of hypernatremia was significantly higher in patients receiving isotonic fluids than in patients receiving hypotonic fluids (OR, 8.24; 95% CI, 1.84–36.91; p < 0.001) [100,104].

■ Recommended considerations

1) Benefits and risks

Overall, the use of isotonic fluids as a maintenance fluid for adolescents and children over 1 month and under 18 years of age has more benefits than risks. However, in neonates less than 1 month old, the incidence of hypernatremia was significantly higher in the isotonic fluid-treated group than in the hypotonic fluid-treated group. In the neonatal period, total body water and electrolyte distribution differs from that during infancy and childhood. In addition, the neonatal kidney is less efficient in excreting acute sodium or water load than the kidney of an infant or a child [116]. The urine concentrating ability is impaired in infants and newborns. There is insufficient evidence to draw conclusions on the use of isotonic fluids as a maintenance fluid in newborns less than 1 month old.

2) Patient values and preferences

Because doctors usually select maintenance fluids, it is impractical to consider patient values and preferences. Several pieces of evidence suggest that using an isotonic fluid as a maintenance fluid is beneficial.

3) Obstacles, facilitating factors, and measures

We expect no obstacles to accepting this recommendation. Therefore, doctors who treat children and adolescents should encourage the use of isotonic fluids as a maintenance fluid, through expanded education.
4) Resource
Fluid treatment is covered under medical insurance in Korea; thus, additional resources are not required.

Supplementary Materials
Supplementary data are available at Kidney Research and Clinical Practice online (https://doi.org/10.23876/j.krcp.33.666).

Conflict of interest
All authors have no conflicts of interest to declare.

ORCID
Yeonhee Lee, https://orcid.org/0000-0002-9216-420X
Kyung Don Yoo, https://orcid.org/0000-0001-6545-6517
Seon Ha Baek, https://orcid.org/0000-0002-4751-9817
Yang Gyun Kim, https://orcid.org/0000-0002-5205-4516
Hyo Jin Kim, https://orcid.org/0000-0001-9289-9073
Ji Young Ryu, https://orcid.org/0000-0003-4134-1007
Jin Hyuk Paek, https://orcid.org/0000-0001-8875-1260
Sang Heon Suh, https://orcid.org/0000-0003-3076-3466
Se Won Oh, https://orcid.org/0000-0003-3795-9322
Jeongghan Lee, https://orcid.org/0000-0003-3199-635X
Jong Hyun Jhee, https://orcid.org/0000-0002-1255-1323
Jin-Soon Suh, https://orcid.org/0000-0002-6566-6618
Eun Mi Yang, https://orcid.org/0000-0001-9410-5855
Young Ho Park, https://orcid.org/0000-0002-2756-1786
Yae Lim Kim, https://orcid.org/0000-0002-4316-9696
Miyoung Choi, https://orcid.org/0000-0002-2424-9965
Kook-Hwan Oh, https://orcid.org/0000-0001-9525-2179
Sejoong Kim, https://orcid.org/0000-0002-7238-9962

References
1. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64:401–406.
2. Guyatt G, Oxman AD, Akili EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64:383–394.
3. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 2011;64:395–400.
4. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence: imprecision. J Clin Epidemiol 2011;64:1283–1293.
5. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating the quality of evidence: indirectness. J Clin Epidemiol 2011;64:1303–1310.
6. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 7. Rating the quality of evidence: inconsistency. J Clin Epidemiol 2011;64:1294–1302.
7. Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence: publication bias. J Clin Epidemiol 2011;64:1277–1282.
8. Guyatt GH, Oxman AD, Sultan S, et al. GRADE guidelines: 9. Rating the quality of evidence. J Clin Epidemiol 2011;64:1311–1316.
9. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence: study limitations (risk of bias). J Clin Epidemiol 2011;64:407–415.
10. Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant 2014;29 Suppl 2:i1–i39.
11. Verbalis JG, Goldsmith SR, Greenberg A, et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 2013;126:S1–S42.
12. Hoorn EJ, Zietse R. Diagnosis and treatment of hyponatremia: compilation of the guidelines. J Am Soc Nephrol 2017;28:1340–1349.
13. Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med 1999;106:399–403.
14. Decaux G, Musch W. Clinical laboratory evaluation of the syndrome of inappropriate secretion of antidiuretic hormone. Clin J Am Soc Nephrol 2008;3:1175–1184.
15. Filippatos TD, Makri A, Elisaf MS, Liamis G. Hyponatremia in the elderly: challenges and solutions. Clin Interv Aging 2017;12:1957–1965.
16. Ebell MH, Radke T, Gardner J. A systematic review of the efficacy and safety of desmopressin for nocturia in adults. J Urol 2014;192:829–835.
17. Baek SH, Jo YH, Ahn S, et al. Risk of overcorrection in rapid intermittent bolus vs slow continuous infusion therapies of hypertonic saline for patients with symptomatic hyponatremia: the SALSA randomized clinical trial. JAMA Intern Med 2021;181:81–92.
18. Rondon-Berrios H, Berl T. Mild chronic hyponatremia in the ambulatory setting: significance and management. Clin J Am Soc Nephrol 2015;10:2268–2278.
19. Fenske W, Störk S, Koschker AC, et al. Value of fractional uric acid excretion in differential diagnosis of hyponatremic patients on diuretics. J Clin Endocrinol Metab 2008;93:2991–2997.
20. Nigro N, Winzeler B, Suter-Widmer I, et al. Copeptin levels and commonly used laboratory parameters in hospitalised patients with severe hyponatraemia - the “Co-MED study”. Crit Care 2018;22:33.
21. Musch W, Thimpong J, Vandervelde D, Verhaeverbeke I, Berghmans T, Decaux G. Combined fractional excretion of sodium and urea better predicts response to saline in hyponatremia than do usual clinical and biochemical parameters. Am J Med 1995;99:348–355.
22. Musch W, Decaux G. Utility and limitations of biochemical parameters in the evaluation of hyponatremia in the elderly. Int Urol Nephrol 2001;32:475–493.
23. Bassi V, Fattoruso O. The role of fractional excretion of uric acid in the differential diagnosis of hypotonic hyponatremia in patients with diuretic therapy. Curaeus 2020;12:e7762.
24. Maesaka JK, Imbriano LJ, Miyawaki N. Determining fractional urate excretion rates in hyponatremic conditions and improved methods to distinguish cerebral/renal salt wasting from the syndrome of inappropriate secretion of antidiuretic hormone. Front Med (Lausanne) 2018;5:319.
25. Choi HK, Soriano LC, Zhang Y, Rodríguez LA. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 2012;344:d8190.
26. Fenske W, Maier SK, Bleichschmidt A, Allolio B, Störk S. Utility and limitations of the traditional diagnostic approach to hyponatremia: a diagnostic study. Am J Med 2010;123:652–657.
27. Bae EH. Management of chronic asymptomatic hyponatremia. Korean J Med 2011;80:15–19.
28. Anderson RJ, Chung HM, Kluge R, Schrier RW. Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med 1985;102:164–168.
29. Anderson RJ. Hospital-associated hyponatremia. Kidney Int 1986;29:1237–1247.
30. McGee S, Abernethy WB 3rd, Simel DL. The rational clinical examination. Is this patient hypovolemic? JAMA 1999;281:1022–1029.
31. Kim GH. Diagnosis and treatment of sodium balance disorders. Korean J Med 2009;77:444–447.
32. Fenske W, Störk S, Bleichschmidt A, Maier SG, Morgenthaler NG, Allolio B. Copeptin in the differential diagnosis of hyponatremia. J Clin Endocrinol Metab 2009;94:123–129.
33. Go S, Kim S, Son HE, et al. Association between copeptin levels and treatment responses to hypertonic saline infusion in patients with symptomatic hyponatremia: a prospective cohort study. Kidney Res Clin Pract 2021;40:371–382.
34. Nickel CH, Bingisser R, Morgenthaler NG. The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med 2012;10:7.
35. Garrahy A, Dineen R, Hannon AM, et al. Continuous versus bolus infusion of hypertonic saline in the treatment of symptomatic hyponatremia caused by SIAD. J Clin Endocrinol Metab 2019;104:3595–3602.
36. Waiker SS, Mount DB, Curhan GC. Mortality after hospitalization with mild, moderate, and severe hyponatremia. Am J Med 2008;122:857–865.
37. Doshi SM, Shah P, Lei X, Lahoti A, Salahudeen AK. Hyponatremia in hospitalized cancer patients and its impact on clinical outcomes. Am J Kidney Dis 2012;59:222–228.
38. Kovesdy CP, Lott EH, Lu JL, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation 2012;125:677–684.
39. Choi JS, Kim CS, Bae EH, et al. Prognostic impact of hyponatremia occurring at various time points during hospitalization on mortality in patients with acute myocardial infarction. Medicine (Baltimore) 2017;96:e7023.
40. Juo K, Saito K, Ishida I, et al. Randomized pilot trial comparing tolvaptan with furosemide on renal and neurohumoral effects in acute heart failure. ESC Heart Fail 2016;3:177–188.
41. Tanaka T, Minatoguchi S, Yamada Y, et al. Addition of tolvaptan compared with increased dose of furosemide in heart failure patients with chronic kidney disease under furosemide treatment. Circ Rep 2018;1:35–41.
42. Tominaga N, Kida K, Inomata T, et al. Effects of tolvaptan addition to furosemide in normo- and hyponatremia patients with heart failure and chronic kidney disease stages G3b-5: a sub-analysis of the K-STAR study. Am J Nephrol 2017;46:417–426.
43. Felker GM, Mentz RJ, Cole RT, et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol 2017;69:1399–1406.
44. Kimura K, Momose T, Hasegawa T, et al. Early administration of tolvaptan preserves renal function in elderly patients with acute decompensated heart failure. J Cardiol 2016;67:399–405.
45. Kin H, Matsumura K, Yamamoto Y, et al. Renoprotective effect of tolvaptan in patients with new-onset acute heart failure. ESC
Kidney Res Clin Pract 2022;41(4):S1-S30

Heart Fail 2020;7:1764–1770.

46. Konstam MA, Kiernan M, Chandler A, et al. Short-term effects of tolvaptan in patients with acute heart failure and volume overload. J Am Coll Cardiol 2017;69:1409–1419.

47. Matsue Y, Suzuki M, Torii S, et al. Clinical effectiveness of tolvaptan in patients with acute heart failure and renal dysfunction. J Card Fail 2016;22:423–432.

48. Shanmugam E, Doss CR, George M, et al. Effect of tolvaptan on acute heart failure with hyponatremia: a randomized, double blind, controlled clinical trial. Indian Heart J 2016;68 Suppl 1:S15–S21.

49. Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2012;367:2407–2418.

50. Yoshiji H, Nagoshi S, Akahane T, et al. Evidence-based clinical practice guidelines for Liver Cirrhosis 2020. J Gastroenterol 2021;56:593–619.

51. Korean Association for the Study of the Liver (KASL). KASL clinical practice guidelines for liver cirrhosis: ascites and related complications. Clin Mol Hepatol 2018;24:230–277.

52. Wong F, Watson H, Gerbes A, et al. Satavaptan for the management of ascites in cirrhosis: efficacy and safety across the spectrum of ascites severity. Gut 2012;61:108–116.

53. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med 2007;356:2064–2072.

54. Berl T, Quittnat-Pelletier F, Verbalis JG, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol 2010;21:705–712.

55. Bhandari S, Peri A, Cranston I, et al. A systematic review of known interventions for the treatment of chronic nonhypovolemic hypotonic hyponatraemia and a meta-analysis of the vaptans. Clin Endocrinol (Oxf) 2017;86:761–771.

56. Nagler EV, Haller MC, Van Biesen W, Vanholder R, Craig JC, Webster AC. Interventions for chronic non-hypovolaemic hypotonic hyponatraemia. Cochrane Database Syst Rev 2018;6:CD010965.

57. Goldberg A, Hammerman H, Petcherski S, et al. Hyponatremia and long-term mortality in survivors of acute ST-elevation myocardial infarction. Arch Intern Med 2006;166:781–786.

58. Abraham WT, Decaux G, Josiassen RC, et al. Oral lixivaptan effectively increases serum sodium concentrations in outpatients with euvelomic hyponatremia. Kidney Int 2012;82:1215–1222.

59. Amann D, Decaux G, Smith N; Conivaptan Study Group. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvelomic or hypervolemic hyponatremia. Am J Med Sci 2009;337:28–36.

60. Ghali JK, Koren MJ, Taylor JR, et al. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvelmic or hypervolemic hyponatremia. J Clin Endocrinol Metab 2006;91:2145–2152.

61. Gheorghiade M, Gottlieb SS, Udelson JE, et al. Vasopressin v(2) receptor blockade with tolvaptan versus fluid restriction in the treatment of hyponatremia. Am J Cardiol 2006;97:1064–1067.

62. Abraham WT, Hensen J, Gross PA, et al. Lixivaptan safely and effectively corrects serum sodium concentrations in hospitalized patients with euvelomic hyponatremia. Kidney Int 2012;82:1223–1230.

63. Chen S, Zhao JJ, Tong NW, et al. Randomized, double blinded, placebo-controlled trial to evaluate the efficacy and safety of tolvaptan in Chinese patients with hyponatremia caused by SIADH. J Clin Pharmacol 2014;54:1362–1367.

64. Koren MJ, Hamad A, Klassen S, Abeyratne A, McNutt BE, Kalra S. Efficacy and safety of 30-minute infusions of conivaptan in euvelomic and hypervolemic hyponatremia. Am J Health Syst Pharm 2011;68:818–827.

65. Salahudeen AK, Ali N, George M, Lahoti A, Palla S. Tolvaptan in hospitalized cancer patients with hyponatremia: a double-blind, randomized, placebo-controlled clinical trial on efficacy and safety. Cancer 2014;120:744–751.

66. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 2006;355:2099–2112.

67. Soupart A, Gross P, Legros JJ, et al. Successful long-term treatment of hyponatremia in syndrome of inappropriate antidiuretic hormone secretion with satavaptan (SR121463B), an orally active nonpeptide vasopressin V2-receptor antagonist. Clin J Am Soc Nephrol 2006;1:1154–1160.

68. Wong F, Blei AT, Blendis LM, Thuluvath PJ. A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology 2003;37:182–191.

69. Verbalis JG, Zeltser D, Smith N, Barve A, Andoh M. Assessment of the efficacy and safety of intravenous conivaptan in patients with euvelomic hyponatremia: subgroup analysis of a randomized, controlled study. Clin Endocrinol (Oxf) 2008;69:159–168.

70. Peri A. Morbidity and mortality of hyponatremia. Front Horm Res 2019;52:36–48.

71. Perianayagam A, Sterns RH, Silver SM, et al. DDAVP is effective
in preventing and reversing inadvertent overcorrection of hyponatremia. Clin J Am Soc Nephrol 2008;3:331–336.
72. Sood L, Sterns RH, Hix JK, Silver SM, Chen L. Hypertonic saline and desmopressin: a simple strategy for safe correction of severe hyponatremia. Am J Kidney Dis 2013;61:571–578.
73. MacMillan TE, Tang T, Cavalcanti RB. Desmopressin to prevent rapid sodium correction in severe hyponatremia: a systematic review. Am J Med 2015;128:1362.e15–1362.e24.
74. MacMillan TE, Cavalcanti RB. Outcomes in severe hyponatremia treated with and without desmopressin. Am J Med 2018;131:317–318.
75. Ward FL, Tobe SW, Naimark DMJ. The role of desmopressin in the management of severe, hypovolemic hyponatremia: a single-center, comparative analysis. Can J Kidney Health Dis 2018;5:2054358118761051.
76. Beri T, Rastegar A. A patient with severe hyponatremia and hypokalemia: osmotic demyelination following potassium repletion. Am J Kidney Dis 2010;55:742–748.
77. Bhat S, Koulaouzidis A, Haris M, Tan C. Central pontine myelinolysis. Ann Hepatol 2006;5:291–292.
78. Dellabarca C, Servilla KS, Hart B, Murata GH, Tzamaloukas AH. Osmotic myelinolysis following chronic hyponatremia corrected at an overall rate consistent with current recommendations. Int Urol Nephrol 2005;37:171–173.
79. Adrogue HJ, Madia NE. The challenge of hyponatremia. J Am Soc Nephrol 2012;23:1140–1148.
80. Sjoblom E, Hojer J, Ludwigs U, Pirskanen R. Fatal hyponatraemic brain oedema due to common gastroenteritis with accidental water intoxication. Intensive Care Med 1997;23:348–350.
81. Verbalis JG. Brain volume regulation in response to changes in osmolality. Neuroscience 2010;168:862–870.
82. Lohani S, Devkota UP. Hyponatremia in patients with traumatic brain injury: etiology, incidence, and severity correlation. World Neurosurg 2011;76:355–360.
83. Yumoto T, Sato K, Ugawa T, Ichiba S, Ujike Y. Prevalence, risk factors, and short-term consequences of traumatic brain injury-associated hyponatremia. Acta Med Okayama 2015;69:213–218.
84. Barks F, Liasis G, Millionis H. Hyponatremia in acute stroke: to treat or not to treat? J Stroke Cerebrovasc Dis 2019;28:104421.
85. Mapa B, Taylor BE, Appelboom G, Bruce EM, Claassen J, Connolly ES Jr. Impact of hyponatremia on morbidity, mortality, and complications after aneurysmal subarachnoid hemorrhage: a systematic review. World Neurosurg 2016;85:305–314.
86. Sherlock M, O’Sullivan E, Agha A, et al. Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J 2009;85:171–175.
87. Sivakumar V, Rajshekhar V, Chandy MJ. Management of neurosurgical patients with hyponatremia and natriuresis. Neurosurgery 1994;34:269–274.
88. Hasan D, Vermeulen M, Wijdicks EF, Hijdra A, van Gijn J. Effect of fluid intake and antihypertensive treatment on cerebral ischemia after subarachnoid hemorrhage. Stroke 1989;20:1511–1515.
89. Wijdicks EF, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol 1985;17:137–140.
90. Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery 2009;65:925–935.
91. Hasan D, Lindsay KW, Wijdicks EF, et al. Effect of fludrocortisone acetate in patients with subarachnoid hemorrhage. Stroke 1989;20:1156–1161.
92. Misra UK, Kalita J, Kumar M. Safety and efficacy of fludrocortisone in the treatment of cerebral salt wasting in patients with tuberculous meningitis: a randomized clinical trial. JAMA Neurol 2018;75:1383–1391.
93. Feld LG, Neuspiel BR, Foster BA, et al. Clinical practice guideline: maintenance intravenous fluids in children. Pediatrics 2018;142:e20183083.
94. Neilson J, O’Neill F, Dawoud D, Crean P; Guideline Development Group. Intravenous fluids in children and young people: summary of NICE guidance. BMJ 2015;351:h6388.
95. Almeida HI, Mascarenhas MI, Loureiro HC, et al. The effect of NaCl 0.9% and NaCl 0.45% on sodium, chloride, and acid-base balance in a PICU population. J Pediatr (Rio J) 2015;91:499–505.
96. Bagri NK, Saurabh VK, Basu S, Kumar A. Isotonic versus hypotonic intravenous maintenance fluids in children: a randomized controlled trial. Indian J Pediatr 2019;86:1011–1016.
97. Balasubramanian K, Kumar P, Saini SS, Attrri SV, Dutta S. Isotonic versus hypotonic fluid supplementation in term neonates with severe hyperbilirubinemia - a double-blind, randomized, controlled trial. Acta Paediatr 2012;101:236–241.
98. Chooq K, Arora S, Cheng J, et al. Hypotonic versus isotonic maintenance fluids after surgery for children: a randomized controlled trial. Pediatrics 2011;128:857–866.
99. Coulthard MG, Long DA, Ullman AJ, Ware RS. A randomised controlled trial of Hartmann’s solution versus half normal saline in postoperative paediatric spinal instrumentation and craniootomy patients. Arch Dis Child 2012;97:491–496.

www.krcp-ksn.org S29
100. Dathan K, Sundaram M. Comparison of isotonic versus hypotonic intravenous fluid for maintenance fluid therapy in neonates more than or equal to 34 weeks of gestational age - a randomized clinical trial. *J Matern Fetal Neonatal Med* 2021 Apr 20 [Epub]. DOI: 10.1080/14767058.2021.1911998.

101. Friedman JN, Beck CE, DeGroot J, Geary DF, Sklansky DJ, Freedman SB. Comparison of isotonic and hypotonic intravenous maintenance fluids: a randomized clinical trial. *JAMA Pediatr* 2015;169:445–451.

102. Kannan L, Lodha R, Vivekanandhan S, Bagga A, Kabra SK, Kabra M. Intravenous fluid regimen and hyponatraemia among children: a randomized controlled trial. *Pediatr Nephrol* 2010;25:2303–2309.

103. Kumar M, Mitra K, Jain R. Isotonic versus hypotonic saline as maintenance intravenous fluid therapy in children under 5 years of age admitted to general paediatric wards: a randomised controlled trial. *Pediatr Int Child Health* 2020;40:44–49.

104. Lehtiranta S, Honkila M, Kallio M, et al. Risk of electrolyte disorders in acutely ill children receiving commercially available plasmalike isotonic fluids: a randomized clinical trial. *JAMA Pediatr* 2021;175:28–35.

105. McNab S, Duke T, South M, et al. 140 mmol/L of sodium versus 77 mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. *Lancet* 2015;385:1190–1197.

106. Montañana PA, Modesto i Alapont V, Ocón AP, López PO, López Prats JL, Toledo Parreño JD. The use of isotonic fluid as maintenance therapy prevents iatrogenic hyponatraemia in pediatrics: a randomized, controlled open study. *Pediatr Crit Care Med* 2008;9:589–597.

107. Neville KA, Sandeman DJ, Rubinstein A, Henry GM, McGlynn M, Walker JL. Prevention of hyponatraemia during maintenance intravenous fluid administration: a prospective randomized study of fluid type versus fluid rate. *J Pediatr* 2010;156:313–319.

108. Pemde HK, Dutta AK, Sodani R, Mishra K. Isotonic intravenous maintenance fluid reduces hospital acquired hyponatraemia in young children with central nervous system infections. *Indian J Pediatr* 2015;82:13–18.

109. Ramanathan S, Kumar P, Mishra K, Dutta AK. Isotonic versus hypotonic parenteral maintenance fluids in very severe pneumonia. *Indian J Pediatr* 2016;83:27–32.

110. Rey C, Los-Arcos M, Hernández A, Sánchez A, Díaz JJ, López-Herce J. Hypotonic versus isotonic maintenance fluids in critically ill children: a multicenter prospective randomized study. *Acta Paediatr* 2011;100:1138–1143.

111. Shamim A, Afzal K, Ali SM. Safety and efficacy of isotonic (0.9%) vs. hypotonic (0.18%) saline as maintenance intravenous fluids in children: a randomized controlled trial. *Indian Pediatr* 2014;51:969–974.

112. Torres SF, Iolster T, Schnitzler EJ, Siaba Serrate AJ, Sticco NA, Rocca Rivarola M. Hypotonic and isotonic intravenous maintenance fluids in hospitalised paediatric patients: a randomised controlled trial. *BMJ Paediatr Open* 2019;3:e000385.

113. Chromek M, Jungner Å, Rudolfson N, Ley D, Bockenhauer D, Hagander L. Hyponatraemia despite isotonic maintenance fluid therapy: a time series intervention study. *Arch Dis Child* 2020;106:491–495.

114. Velasco P, Alcaraz AJ, Oikonomopoulou N, Benito M, Moya R, Sánchez Á. Hospital-acquired hyponatraemia: does the type of fluid therapy affect children admitted to intensive care? *Rev Chil Pediatr* 2018;89:42–49.

115. Tuzun F, Akcura Y, Duman N, Ozkan H. Comparison of isotonic and hypotonic intravenous fluids in term newborns: is it time to quit hypotonic fluids. *J Matern Fetal Neonatal Med* 2022;35:356–361.

116. Rutledge A, Murphy HJ, Harer MW, Jetton JG. Fluid balance in the critically ill child section: “how bad is fluid in neonates?”. *Front Pediatr* 2021;9:651458.
1. Manuscript Submission

Manuscripts for *Kidney Research and Clinical Practice* (KRCP) should be submitted online at https://www.editorialmanager.com/krcp. All submissions to KRCP must conform to the International Committee of Medical Journal Editors (ICMJE) uniform requirements for manuscripts submitted to biomedical journals. Our requirements reflect those of the ICMJE, although we also have specific requirements for different types of article. For editorial questions, please contact us via e-mail (registry@ksn.or.kr), telephone (+82-2-3486-8736), or fax (+82-2-3486-8737).

Important information

Articles should be prepared in the simplest form and submitted in the format of Microsoft Word (*.doc or *.docx). Manuscripts must be typed in English and double-spaced. All pages must be numbered consecutively starting from the title page. You may use automatic page numbering, but do NOT use other kinds of automatic formatting such as footnotes. Place text, references, tables and legends in one file with each table on a new page.

Please ensure that the following submission documents are also included, where applicable:

1. A cover letter. It must include your name, address, telephone and fax numbers, e-mail address, and state that all authors have contributed to the paper and have never submitted the manuscript, in whole or in part, to other journals.
2. A conflict of interest disclosure statement (see relevant section 4.2 below).
3. All studies involving human subjects, human data or any material derived from human must be approved by the relevant review or ethics committee. Articles must include a statement on ethics approval, the name of the relevant committee that approved the study and the committee’s approval number. Manuscripts may be rejected at any time if the authors of the research fail to provide the approval number validated by the relevant committee (see relevant section 4.1 below).
4. Articles covering the use of animals in experiments must be approved by the relevant authorities.
5. Articles where human subjects can be identified in descriptions, photographs or pedigrees must be accompanied by a signed statement of informed consent to publish (in print and online) the descriptions, photographs and pedigrees from each subject who can be identified.
6. The terms sex (when reporting biological factors) and gender (identity, psychosocial or cultural factors) should be correctly used. The sex and/or gender of study participants, the sex of animals or cells should be reported, and the methods used to determine sex and gender should be described. If the study was done involving an exclusive population, for example in only one sex, authors should justify why, except in obvious cases (e.g., ovarian cancer).
7. Clinical trials should be registered at a primary national clinical trial registration site such as www.clinicaltrials.gov, https://cris.nih.go.kr/cris/index.jsp, or other sites accredited by the World Health Organization or the International Committee of Medical Journal Editors.
8. Where material has been reproduced from other copyrighted sources, letter(s) of permission from the copyright holder(s) to use the copyrighted sources must be supplied.
9. Articles should be written in English (using American English spelling) and meet the following basic criteria: the material is original; the information is important; the writing is clear, concise and grammatically correct; the study methods are appropriate; the data are valid; and the conclusions are reasonable and supported by the data. The articles should be readable to native English users, and we recommend using professional language editing service (e.g., American Journal Experts) prior to submission to avoid delays with the review processes.
10. All authors must register and update information about academic degree, affiliation, and position when they register or submit a journal online at https://www.editorialmanager.com/krcp.
11. The copyright transfer agreement has been incorporated into KRCP submission system to collect digital signatures from each author. Upon submission of a manuscript, an email will be sent to each author for electronic signature prior to starting review process. The manuscript will not be reviewed as planned until all signatures are received. The paper submitted without the signatures of all authors on all statements will be finally removed from the system without further notice.

2. Types of Articles

2.1. Original Articles

These are expected to present major advances and important
new research results. Section headings should include Abstract, Introduction, Methods, Results, Discussion, Conflicts of interest, Acknowledgments (if applicable), and References. The text should be limited to 4,000 words (excluding tables, figures and references) and 40 references.

2.2. Review Articles
These describe new developments of significance in the field of nephrology and highlight unresolved questions and future directions. Most reviews are solicited by the editors, but unsolicited submissions may also be considered for publication. Review articles should include Abstract, Introduction, brief main headings, and References. The text should be limited to 5,000 words (excluding tables, figures and references) and 100 references.

2.3. Special Articles
Articles in this section should provide insightful analysis and commentary about any important topic in medicine, research, ethics, or health policy. They may also address consensus statements, guidelines, statements from task forces, or recommendations. Most reviews are solicited by the editors, but unsolicited submissions may also be considered for publication. The text should be limited to 5,000 words (excluding tables, figures and references) and 50 references.

2.4. Correspondence
Correspondence generally takes one of the following forms: (1) Reader’s comment on an article previously published in KRCP and/or a reply from the authors; (2) An article that may not fit to the format of original or review article but suggest creative perspectives for medical issues; (3) A brief report of any kind that presents important research findings adequate for the journal’s scope and of particular interest to the readers. The submitted manuscript includes title page, main text, conflict of interest, acknowledgments (if applicable) and references. No abstract is included, and the text should be limited to 800 words (excluding tables, figures and references) and 8 references. A maximum of 2 figures or tables may be included.

2.5. Editorials
These are manuscripts that are related to materials within the current issue; they raise challenging questions or explore controversies. The editor solicits such opinion pieces. The order of the submitted manuscript includes title page, integrated discussion, conflict of interest, acknowledgments (if applicable) and references. The text should be limited to 1,500 words and 10 references. A maximum of 2 figures or tables may be included.

2.6. Images in Practice
These present classic or unique images of common medical conditions in clinical nephrology. Images are an important part of what we do and learn in clinical practice. The text should be limited to 400 words. There should be no more than two figures. No tables or references are included.

3. Manuscript Preparation

3.1. Title Page
The title page should include article title, each author’s first and last names, positions (associate professor, fellow, student, etc.), and ORCID identifiers, and the institutions with which they are affiliated, short running title not exceeding 50 characters, separate word count for abstract and text, and details of the corresponding author (name, address, phone, and e-mail information). Funding sources should be included, and the individual contribution of each co-author must also be detailed (see relevant section 4.3 below).

3.2. Abstract and Keywords
Abstract should not exceed 250 words in original, review or special articles. It must be written for easy reading with no abbreviations. The abstract of the original article should be divided into four subsections: Background, Methods, Results, and Conclusion. Four to six keywords should be listed alphabetically below the abstract. For selecting keywords, refer to the Index Medicus Medical Subject Headings (available from: http://www.ncbi.nlm.nih.gov/mesh).

3.3. Main Text
The text for original articles, for example, should include the following sections: Introduction, Methods, Results, and Discussion. The Introduction should be as concise as possible, without subheadings. The Methods section should be sufficiently detailed. Subheadings may be used to organize the Results and Discussion. Each section should begin on a new page.

3.4. Acknowledgments
General acknowledgments for consultations, statistical analysis and so on should be listed after main body of text, before the References section, including the names of the individuals involved. All financial and material support for the research
and the work should be stated here clearly and explicitly.

3.5. References

References should be cited with Arabic numerals in square brackets. References are numbered consecutively in order of appearance in text. References are limited to those cited in text and listed in numerical order. List all authors if there are less than or equal to six authors. List the first three authors followed by “et al” if there are more than six authors. If an article has been published online but has not yet been given an issue or pages, the digital object identifier (DOI) should be supplied. Journal titles should be abbreviated in the style used in Index Medicus. Other types of references not described below should follow The NLM Style Guide for Authors, Editors, and Publishers (https://locatorplus.gov/cgi-bin/Pwebrecon.cgi?DB=local&v1=1&ti=1,1&Search_Arg=101318441&Search_Code=0359&CNT=1&SID=1). The authors may format the citations and references using the KRCP EndNote style file, but we generally recommend the authors to type the citation numbers and references manually.

Journal articles:
Tomino Y. Diagnosis and treatment of patients with IgA nephropathy in Japan. Kidney Res Clin Pract 2016;35:197-203. Han SS, Park JY, Kang S, et al. Dialysis modality and mortality in the elderly: a meta-analysis. Clin J Am Soc Nephrol 2015;10:983-993. Corona G, Giuliani C, Verbalis JG, Forti G, Maggi M, Peri A. Hyponatremia improvement is associated with a reduced risk of mortality: evidence from a meta-analysis. PloS One 2015;10:e0124105. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2018 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2019;73(3 Suppl 1):A7-A8.

Online publication but not yet in print:
Cho A, Choi MJ, Lee YK, et al. Effects of aspirin resistance and mean platelet volume on vascular access failure in hemodialysis patients. Korean J Intern Med 2018 Jul 23 [Epub]. DOI: 10.3904/kjim.2018.111.

Entire Book:
Daugirdas JT, Blake PG, Ing TS. Handbook of dialysis. 5th ed. Philadelphia: Wolters Kluwer; 2015.

Book chapter:
Verbalis JG. Hyponatremia and hypoosmolar disorders. In: Gilbert SJ, Weiner DE, Bomback AS, et al, eds. Primer on kidney disease. 7th ed. Philadelphia: Elsevier; 2018. p. 68-76.

Website:
National Cancer Information Center. Cancer incidence [Internet]. Goyang (KR): National Cancer Information Center, c2009 [cited 2009 Oct 20]. Available from: http://www.cancer.go.kr/cms/statics.

3.6. Tables

Tables are numbered consecutively using Arabic numerals in the order of their citation in text. Table titles should be short and descriptive (e.g. Table 1. Demographic characteristics of patients). If numerical measurements are given, the unit of measurement should be included in the column heading. The statistical significance of observed differences in the data should be indicated by the appropriate statistical analysis. All nonstandard abbreviations should be defined in footnotes. Lower case letters in superscripts (`, ^`, ...) should be used for special remarks.

3.7. Figures

Figure legends should be submitted for all figures. They should be brief and specific, and placed on a separate sheet after the References section. Figures are numbered consecutively using Arabic numerals in the order of their citation in the text. Figures should be uploaded as separate files, not embedded in the manuscript file. Figures that are line drawing or photographs must be submitted separately in high-resolution EPS or TIF format (or alternatively in high-resolution JPEG format). Only high-resolution figure files (preferably 300 dpi for color figures and 1,200 dpi for line art and graphs) should be submitted. The files are to be named according to the figure number and format (e.g., Fig1.tif). Figures that are reproduced from other published sources require written permission from the authors and copyright holders.

3.8. Supplementary Digital Contents

Authors can submit supplementary digital contents to supplement the information provided in the print version of the manuscript. Supplementary materials will be published online-only. When uploading supplementary files through the online system, please use the “supplemental” file designation. Supplementary materials must be cited consecutively in the main body of the submitted manuscript and include the type of material submitted (e.g., “Supplementary Table 1”; “Supplementary Fig. 1”).
4. Ethical Considerations

4.1. Ethical Approval of Studies
For human or animal experimental investigations, appropriate institutional review board or ethics committee approval is required. Such approval and the approval number should be stated in the Methods section of the manuscript. For those investigators who do not have formal ethics review committees, the principles outlined in the Declaration of Helsinki as revised in 2013 should be followed (World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. Available at: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/). For all relevant clinical transplant articles, KRCP requires authors state in the Methods section their adherence to the Declaration of Istanbul (Available at: http://www.declarationofistanbul.org/). Copies of written informed consent and Institutional Review Board (IRB) approval for clinical research should be kept. If necessary, the editor or reviewers may request copies of these documents to resolve questions about IRB approval and study conduct.

4.2. Conflicts of Interest
The corresponding author must inform the editor of any potential conflicts of interest that could influence the authors’ interpretation of the data. Examples of potential conflicts of interest include financial support from or connections to pharmaceutical companies, political pressure from interest groups, and academically related issues. Conflict of interest statements will be published at the end of the text of the article, before the References section. Please consult the Committee on Publishing Ethics guidelines (http://www.publicationethics.org/) on conflict of interest. All sources of financial support for the study should be stated in Acknowledgments (see relevant section 3.4 above).

4.3. Authorship
Authorship credit should be based on 1) conception or design, or analysis and interpretation of data; 2) drafting the article or revising it; 3) providing intellectual content of critical importance to the work described; and 4) final approval of the version to be published. Authors should meet above four conditions. The title page should include a list of each author’s role for the submitted paper.

4.4. Redundant Publication or Duplicate Submission
Submitted manuscripts are considered with the understanding that they have not been published previously in print or electronic format (except in abstract or poster form) and are not under consideration in totality or in part by another publication or electronic medium. Authors must state that neither the manuscript nor any significant part of it is under consideration for publication elsewhere or has appeared elsewhere in a manner that could be construed as a prior or duplicate publication of the same, or very similar, work.

When malpractices are found in an article submitted to KRCP, we will follow the flowchart by the Committee on Publication Ethics (COPE, https://publicationethics.org/resources/flowcharts) for settlement of any misconduct. Although the editors and referees make every effort to ensure the validity of published manuscripts, the final responsibility rests with the authors, not with KRCP, its editors, or the Korean Society of Nephrology.

5. Review Process
All submissions are sent to peer reviewers. Authors will usually be notified within 4 weeks by e-mail of whether the submitted article is accepted for publication, rejected, or subject to revision before publication. Revised manuscripts must be submitted online by the corresponding author. Failure to resubmit the revised manuscript within 3 months of the editorial decision is regarded as a withdrawal.

6. Visual Abstract Guidelines
Visual Abstracts are brief graphical summaries of Original Articles published online. They serve to summarize the work for readers and may be used in social media postings. Authors do not need to include a Visual Abstract with their initial submission but will be required to submit one at the revision stage for all original research articles. The submitted visual abstract will be reviewed along with the revised manuscript. If the submission of visual abstract is delayed, there is inevitable delay in publication. Please submit it within the specified time.

6.1. Creating Your Visual Abstract
Select one of the visual abstract templates provided (https://www.krcp-ksn.org/file/KRCP_Visual_Abstracts_v1.0.pptx). There are multiple layouts to accommodate author preferences as well as graphical constraints. The visual abstract should
include a title, methods, outcome and a concluding sentence. Please fill in the template as it’s laid out and do not alter the basic components of the template.

Keep in mind the following:
• Avoid excessive detail and clutter and keep text to a minimum.
• Any descriptive text should be at least 12 pt font size.
• The visual abstract should be saved as an editable PowerPoint file as staff will add the article DOI and may edit the text for clarity.

6.2. Adding Visual Details
It is critical that you only use images for which you have permissions or rights. To avoid any potential problems, either use the copyright filter during an image search online or subscribe to an icon image bank. There are many image banks on the internet, which are free to use. The images used for visual abstract is recommended only open source, and the author is responsible for copyright issues of visual abstract. Researchers who frequently prepare visual abstracts may benefit from purchasing a subscription to access higher quality icons (e.g. Shutterstock, Getty Images, iStock, etc.).

Guiding principles:
• Select bold, solid color icons
• Avoid highly detailed icons as the intricacy may be lost in the small format
• Exclude trade names, logos, or images of trademarked items.
• Graphics should be 440 pixels wide by 350-365 pixels tall.

7. Peer Review
This journal operates blind review processes. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor’s decision is final. For more information, please refer to Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (Available at: http://www.icmje.org/icmje-recommendations.pdf).

8. Copyright
KRCP is the official peer-reviewed publication of the Korean Society of Nephrology. Manuscripts published in the Journal become the permanent property the Korean Society of Nephrology. All articles published in the Journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article, as well as translation rights. No KRCP article, in part or whole, cannot be reproduced, stored, or transmitted for commercial purposes, without prior written permission from the Korean Society of Nephrology.

9. Similarity Check
Similarity Check is a multi-publisher initiative to screen published and submitted content for originality. To find out more about Similarity Check, visit http://www.crossref.org/crosscheck/index.html. All manuscripts submitted to KRCP may be screened, using the iThenticate tool, for textual similarity to other previously published works.

10. Open Access Policy
Every peer-reviewed research article in this journal is freely available via our website (https://www.krcp-ksn.org). Articles published in KRCP are distributed under the terms of the Creative Commons Attribution Non-Commercial and No Derivatives License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits unrestricted non-commercial use, distribution of the material without any modifications, and reproduction in any medium, provided the original works properly cited. ANY USE of the open access version of this Journal in whole or in part must include the customary bibliographic citation, including author and publisher attribution, date, article title, Kidney Research and Clinical Practice (Kidney Res Clin Pract), and the URL https://www.krcp-ksn.org and MUST include a copy of the copyright notice. If an original work is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For any commercial use of material from the open access version of the journal, permission MUST be obtained from KRCP. If necessary, please contact the Editorial Board through our editorial office (registry@ksn.or.kr). Proprietary rights notice for KRCP online were available at: https://www.krcp-ksn.org/authors/permission.php
11. Data Sharing Policy

For clarification on data accuracy and reproducibility of the results, raw data or analysis data will be deposited to a public repository, for example, Harvard Dataverse (https://dataverse.harvard.edu/) after acceptance of the manuscript. Therefore, submission of the raw data or analysis data is mandatory when requested by reviewers. If the data is already a public one, its URL site or sources should be disclosed. If data cannot be publicized, it can be negotiated with the editor. If there are any inquiries on depositing data, authors should contact the editorial office.

12. After acceptance

12.1. Article-in-press publication

After the manuscript is finally accepted, it will be published online in PDF format through the English editing, author proofing and final editorial correction process. The corresponding author should promptly and appropriately respond to this editing process. Online publication will take place within several weeks depending on the proof process. A Digital Object Identifier (DOI) is allocated, making it fully citable and searchable by title, author name(s), and the full text. Since our journal is officially published every 3 months interval, the volume, issue, and page will be finally allocated sequentially according to the order of accepted articles.

12.2. Publication charges

In order to cover the costs of reviewing, copy editing, layout, and online hosting and archiving, KRCP charges an article processing fee upon acceptance of submitted papers as follows:

- Original Article, Review Article, Special Article, and Study Protocol: KRW 1,000,000 (Korea) / USD 1,000 (rest of world)
- Correspondence, Image in Practice: KRW 300,000 (Korea) / USD 300 (rest of world).

There are no additional charges based on color, length, figures or other elements. The publication costs for invited papers such as editorials, some reviews and special articles are covered by the Korean Society of Nephrology. Payments are processed by a department unconnected to KRCP’s editorial board.

- Publication charge waiver policy

Our mission is to share the achievements in the nephrology field with researchers worldwide including the scientists in the low-income countries. We continue to apply the publication charge waiver policy to encourage the academic activity and support the limited funding for their research. To request a publication charge waiver, please send an application to registry@ksn.or.kr. Corresponding author from low-income countries could be waived. Waiver application must contain the manuscript number and country of corresponding author.