Effects of substituting rare-earth ion R by non-magnetic impurities in $R_2\text{BaNiO}_5$ - theory and numerical DMRG results

T.-K. Ng
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong

Jizhong Lou, Zhao-Bin Su
Institute of Theoretical Physics, P. O. Box 2755, Beijing 100080, P. R. China
(February 22, 2017)

In this paper we study the effect of substituting R (rare-earth ion) by non-magnetic ions in the spin-1 chain material $R_2\text{BaNiO}_5$. Using a strong-coupling expansion and numerical density matrix renormalization group calculations, we show that spin-wave bound states are formed at the impurity site. Experimental consequences of the bound states are pointed out.

PACS Numbers: 75.10.-b, 75.10.Jm, 75.40.Mg

The antiferromagnetic Heisenberg spin chains has been a subject of immense interest since Haldane pointed out that the low energy physics of integer and half integer spin chains are fundamentally different. With advance in both experiments [2,3] and numerical techniques [4], the prediction by Haldane is now generally accepted. More recently, a series of experiments on the family of quasi-one-dimensional materials with a general formula $R_2\text{BaNiO}_5$ [3,5–11] where R is one of magnetic rare-earth elements substituting fully or partially Ni ions by non-magnetic impurities. In the case of pure Ni chain, and the topological character of the spin chain is unaffected. Therefore, topological $S = 1/2$ end excitations are not expected to be induced by the R-ion substitutions. Nevertheless, we shall show in the following that although topological end excitations are not induced by R-ion substitutions, $S = 1$ magnon bound states are formed around the impurity and give rise to observable effects on the system.

Our starting point is the effective Hamiltonian for the Ni chain of the $R_2\text{BaNiO}_5$ family at $T < T_N$,

$$H_{\text{bulk}} = J \sum_i \vec{S}_i \cdot \vec{S}_{i+1} + h \sum_i (-1)^i \vec{S}_i^z,$$ \hspace{1cm} (1)

in the following, where $h' = -h$ for non-magnetic impurity. We shall consider h' as an arbitrary parameter, and study it’s effect on the spin chain in the following. The Hamiltonian $H = H_{\text{bulk}} + H_{\text{imp}}$ will be studied using two different approaches. In the first approach, we replace H by the corresponding lattice non-linear-σ-model (or coupled-rotor model) [13,14], and shall study the problem in the strong-coupling limit when the Haldane gap m_H is much larger than the coupling between rotors. This approach provides a rather simple physical picture on the effects of staggered magnetic field and impurity on the Haldane chain. The results obtained from the strong-coupling theory is compared with results obtained directly from diagonalizing H with the numerical density matrix renormalization group (DMRG) method. Combining the results from the two methods we believe that our study provides a clear picture on the effect of substituting R by non-magnetic impurities in the $R_2\text{BaNiO}_5$ compound. First we consider the coupled-rotor model.
In this treatment the low energy physics of an integer Heisenberg spin chain in staggered magnetic field h is described by the Hamiltonian \[H_{\text{rot}} = \Delta \sum_i \vec{L}_i \cdot \vec{L}_i - J' \sum_i \vec{n}_i \cdot \vec{n}_{i+1} - h \sum_i n_i^z, \] (2)

where \vec{n}_i is a unit vector located at the link between site $i-1$ and site i, and \vec{L}_i is the angular momentum operator conjugate to \vec{n}_i. Δ and J' are parameters to be determined. In the strong-coupling expansion, we assume $\Delta \gg J'$ and treat J' as a small perturbation. In particular, to study the one-magnon excitations, we shall only keep the $l = 0, 1$ states (i.e., eigenstates of the angular momentum operator $\vec{L} \cdot \vec{L}$) and shall diagonalize the Hamiltonian H_{rot} approximately in this subspace. We shall neglect renormalization of ground state by two magnon processes in our theory. First we consider the limit when $h = 0$.

After some straightforward algebra, we obtain the effective Hamiltonian in the $l = 0, 1$ subspace,

\[H_{\text{eff}}^{(0)} = \Delta \sum_{i,m} l_i (l_i + 1) - \frac{J'}{3} \sum_{i,m} (a_{im}^+ a_{i+1,m} + a_{i+1,m}^+ a_{im}), \]

(3)

where we have set $h = 1$. $l(l+1) = 0, 2$ are the eigenvalues of $\vec{L} \cdot \vec{L}$ in the $l = 0, 1$ subspace. m is the eigenvalue of l_z, $a_{im}^+(a_{im})$ are raising and lowering operators with matrix elements $<1m|a_{im}^+|00> = <00|a_{im}|1m> = 1$, and with all other matrix elements equal to zero. $|lm>$ are the angular momentum eigenstates. The one-magnon eigenstates of (3) are triplets ($l = 1$, $m = 0, \pm 1$) with energy spectrum $\epsilon_k = 2 \Delta (\gamma(k)) = 2 \Delta (J'/3 \cos(k))$, and with Haldane gap $\Delta_H = 2(\Delta - J'/3)$.

We now consider the staggered magnetic field h. First we consider effects of an effective staggered magnetic field h_{eff} on a single rotor. The term $h_{\text{eff}} n_z$ couples the $|00>$ and $|10>$ states and the new eigenstates of a single rotor in the $l = 0, 1$ subspace are

\[|G > = |\beta|1, 0 > + \gamma|0, 0 >, \quad |0 > = -\alpha|1, 0 > + \beta|0, 0 >, \]
\[|1 > = |1, 1 >, \quad |\beta > = |1, -1 >, \]

(4)

where $|G >$ is the new ground state, and $|m >$ ($m = 0, \pm 1$) are the new excited states with $l_z = m$. The coefficients α and β are given by

\[\alpha^2 = \frac{1}{2} (1 + \gamma(h_{\text{eff}})^{-1}), \quad \beta^2 = \frac{1}{2} (1 - \gamma(h_{\text{eff}})^{-1}), \]

where $\gamma(h_{\text{eff}}) = \sqrt{1 + \frac{h^2}{h^2}}$, and with corresponding eigen-energies $E_G = \Delta (1 - \gamma(h_{\text{eff}}))$, $E_0 = E_E = 2 \Delta (\gamma(h_{\text{eff}}))$, and $E_{\pm 1} - E_G = \Delta (1 + \gamma(h_{\text{eff}}))$. Notice that the energies of the longitudinal ($m = 0$) and transverse ($m = \pm 1$) magnon modes are split by h_{eff}. The staggered magnetic field also induced a non-zero ground state expectation value of staggered magnetization, $<n_z > = (G^z |G> = \frac{\Delta}{\sqrt{2}} \alpha \beta$. To proceed further we replace the rotor Hamiltonian (3) by a mean-field rotor Hamiltonian,

\[H_{\text{rot}}^{(MF)} = \Delta \sum_i \vec{L}_i \cdot \vec{L}_i - J' \sum_i \vec{n}_i^0 \vec{n}_{i+1}^0 - h_{\text{eff}} \sum_i n_i^z, \]

(6)

where $\vec{n}_i < < n_z > + \vec{n}_i^0$ and $h_{\text{eff}} = h + 2J' < n_z >$. Treating the $J' n_i^0 \vec{n}_{i+1}^0$ term as perturbation in the $l = 0, 1$ subspace as before, we obtain after some straightforward algebra the mean-field equation

\[1 - \frac{h}{h_{\text{eff}}} = \frac{4J'}{3 \Delta} \gamma(h_{\text{eff}})^{-1}, \]

(7)

which determines h_{eff} for given h, and with corresponding eigenvalue spectrum for the one magnon states,

\[\epsilon_{\pm 1}(k) = \Delta (1 + \gamma(h_{\text{eff}})) - \frac{2J'}{3} \alpha^2 \cos(k), \]

(8)

\[\epsilon_0(k) = 2 \Delta \gamma(h_{\text{eff}}) - \frac{2J'}{3} (\alpha^2 + \beta^2) \cos(k), \]

for the transverse ($m = \pm 1$) and longitudinal ($m = 0$) magnons, respectively. At small h, it is easy to show from (6) that $h_{\text{eff}} = h/(1 - 2J'/3 \Delta)$, and the system is stable only when $3 \Delta > 2J'$, implying that our approximate mean-field treatment is only valid when $m_H > 2J'/3$. It is also easy to show from (4) and (6) that the Haldane gaps $m_H^0 (m = 0, \pm 1)$ increase as a function of h, with increase in Haldane gap $\Delta m_H^0 \sim 2 \Delta m_H^{(\pm 1)}$, in qualitative agreement with experiment and numerical DMRG results.

The impurity Hamiltonian H_{im} generate an extra term in the rotor Hamiltonian,

\[H_{\text{rot}}^{(im)} = \frac{(h' - h)}{2} (n_0^z + L_0^z + n_1^z - L_1^z), \]

(9)

As a result, the effective staggered magnetic field acting on the spin chain becomes position dependent, with $h(i) = h$ for $i \neq 0, 1$, and $h(i) = (h + h')/2$ for $i = 0, 1$. Applying mean-field analysis as before, we obtain new mean-field equations for every site i in the rotor model,

\[J'(<n_{i+1}^z > + <n_{i-1}^z >) = h_{\text{eff}}(i) - h(i), \]

(10)

\[<n_i^z > = \gamma(h_{\text{eff}}(i)) \frac{h_{\text{eff}}(i)}{3 \Delta}, \]

which can be solved numerically. In addition, the $h_{\text{im}}^2 L_z^2$ terms in (9) gives rise to shift in the energies of the $|m = \pm 1>$ states in the local rotors at sites $i = 0, 1$ with $E_{\pm 1} - E_G = \Delta (1 + \gamma(h_{\text{eff}}(i))) + \frac{(h' - h)}{2 \sqrt{3}}$.

The effects of impurity magnetic field on the one magnon spectrum can be understood quite easily. The mean-field equations (9) produce effective staggered magnetic field $h_{\text{eff}}(i)$’s smaller than h (assuming $h' \sim
−h) within a region of distance ~ ξ around the impurity perturbed sites i = 0, 1, where ξ is the spin-spin correlation length. As a result, the local magnitude of Haldane gap is reduced (see Eq. (3)) in both the longitudinal and transverse channels and induces an attractive potential well of depth ~ Δm_H^m(m) and range ~ ξ for the one magnon states. As a result bound states of magnon are formed around the impurity. The effective potential well formed around the impurity is stronger in the longitudinal channel than the transverse channel as the effect of h_{eff} on the Haldane gap is about two times larger in the longitudinal channel. Moreover, the energies of the m = −1 magnon states become lower than the m = 1 states because of the additional −(h−h)/L^2 coupling in H_{tot}^{imp}. In Fig. 1 we show the low energy spectrum obtained in our theory with Δ = 1, J’ = 1.47, h = 0.2 as a function of h’. Notice that in the presence of single impurity, the translational symmetry of the Hamiltonian is broken and the only symmetry left is the reflection symmetry upon the impurity site. As a result, the low-energy one-magnon spectrum of the system can be divided into six sectors labeled by (S_{tot}^{1/2} parity = 0^+, 0^−, 1^+, 1^−, (−1)^+, (−1)^−), respectively where S_{tot}^z = m is the z component of total spin, and + or − denotes the parity of the wavefunctions. We see from the energy spectrum that spinwave bound state develops when h’ < 0.2, and there is roughly one bound state (except the −1^+ magnons at intermediate value of h’) per sector.

To test our theory and to get more quantitative predictions of the impurity effect we also carry out explicit DMRG calculations for the low energy spectrum of Hamiltonian H = H_{bulk} + H_{imp}. We use the standard DMRG algorithm [4,20] by targeting four states and keeping 400 optimal states, and have studied chains with length up to L = 100. We have fixed h = 0.2(J) in our calculation, which seems to be an appropriate value for the R_2BaNiO_5 chains [13]. The value of h’ is varied to study the effect of impurity on the low energy spectrum. The numerical results of the low energy magnon spectrum in the six (S_{tot}^{1/2} parity sectors are shown in Fig. 2. Our results show that in the four sectors 1^+, 1^−, (−1)^+, (−1)^− corresponding to the transverse modes, one bound state is induced in each sector when h’ < 0.2, in agreement with our mean-field theory. The behavior of the bound state energy as a function of h’ is also qualitatively similar to those obtained in mean-field theory. In the 0^+ and 0^− sectors which correspond to longitudinal modes, the situation is more complicated. We find that more than one bound states emerge inside the Haldane gap in contrast to mean-field theory. Notice that although the number of bound states differs, the qualitative behavior of the lowest bound state energies as a function of h’ in the 0^+ and 0^− sectors are qualitatively similar to mean-field results.

The reason why there exists only one bound state in mean-field theory can be understood quite easily. Our mean-field theory is valid only when m_H > 2J’/3, corresponding to correlation length ξ ~ 1 lattice site whereas ξ ~ 6 lattice sites in real spin one chains. The size of the effective attractive potential well is of order ~ 2 lattice sites in our theory, which is much smaller than the size of the effective attractive potential well (~ 12 lattice sites) in real spin one chains. It is therefore not surprising that the number of bound states in real spin one chains is larger than one per sector but there exists only one bound state per sector in our mean-field theory.

To determine the number of the bound states in the longitudinal sectors, we carried out a more detailed calculation for 0^+ sector by targeting ten states and keeping 800 optimal states for h’ = −1.0 and h = 0.2, the chain length dependence of these states are shown in Fig. 3. We see from the figure that as the length of the chain increases, more in-gap bound states are formed. In fact, it is difficult to determine from our numerical result the exact number of bound states in this sector.

In the physical regime h’ = −0.2 which corresponds to non-magnetic impurity, we find that bound states exist in the 0^+, 0^−, 1^+ and (−1)^+ sectors. The bound state energies in the 0^+ and (−1)^+ sectors are larger and are roughly 0.1 × m_H, where m_H are the corresponding Haldane gap energies, whereas the bound state energies in the 0^− and 1^+ sectors are much smaller (~ 0.02 × m_H). The existence of bound states at h’ = −0.2 can be seen more clearly from the magnetization density difference < S_{tot}^z >_{l.e.} − < S_{tot}^z >_{g.s.} as a function of position i, which measures the magnetization carried by the lowest excited state at each sector. The results are shown in Fig. 4. We can see clearly from the figures that the first excited states of 0^+, 0^−, 1^+ and (−1)^+ sectors are bound magnon states whereas the first excited states of the 1^− and (−1)^− sectors are bulk states.

The bound states can be observed in neutron scattering experiments on high quality crystals as an effective reduction of Haldane gap by ~ 10 percent at T < T_N when non-magnetic impurities are introduced. They also show up as extra spectral weights with energy ~ 0.9m_H in dynamic structure factor S(q, ω) at wave vectors q away from π.

In summary, we have studied the effect of substituting R (rare-earth ion) by non-magnetic ions in the spin-1 chain material R_2BaNiO_5. We find in numerical DMRG calculation that magnon bound states appear at the impurity site. The bound states can be qualitatively understood by a mean-field strong-coupling expansion treatment of the spin chain and can be observed in neutron scattering experiments.

This work is supported by the HKUGC under RGC grant HKUST6143/97P and by Chinese Natural Science Foundation. J. Lou would like to thank Dr. Shaojin Qin and Dr. Tao Xiang for useful discussion.
[1] F. D. M. Haldane, Phys. Lett. 93A, 464 (1983); Phys. Rev. Lett. 50, 1153 (1983).
[2] M. Chiba et al., Phys. Rev. B 44, 2838 (1991); G. E. Granroth, M. W. Meisel, M. Chaparala, Th. Jolicoeur, B. H. Ward and D. R. Talham, Phys. Rev. Lett. 77, 1616 (1996).
[3] Guangyong Xu, J. F. DiTusa, T. Ito, K. Oka, H. Takagi, C. Broholm and G. Aeppli, Phys. Rev. B 54, R6827 (1996).
[4] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993); O. Golinelli, Th. Jolicoeur and R. Lacaze, Phys. Rev. B 50, 3037 (1994); S. Qin, X. Wang and Lu Yu, Phys. Rev. B 56, 14251 (1997); X. Wang, S. Qin and Lu Yu, Phys. Rev. B 60, 14529(1999).
[5] V. Sachan, D. J. Buttrey, J. M. Tranquada and G. Shirane, Phys. Rev. B 49, 9658 (1994).
[6] A. Zheludev, J. M. Tranquada, T. Vogt and D. J. Buttrey, Europhys. Lett. 35, 385 (1996); Phys. Rev. B 54, 6437 (1996).
[7] A. Zheludev, J. M. Tranquada, T. Vogt and D. J. Buttrey, Phys. Rev. B 54, 7210 (1996).
[8] A. Zheludev, J. P. Hill and D. J. Buttrey, Phys. Rev. B 54, 7216 (1996).
[9] T. Yokoo, A. Zheludev, M. Nakamura and J. Akimitsu, Phys. Rev. B 55, 11516 (1997).
[10] T. Yokoo, S. Raymond, A. Zheludev, S. Maslov, E. Ressouche, I. Zaliznyak, R. Erwin, M. Nakamura and J. Akimitsu, Phys. Rev. B 58, 14424 (1998).
[11] A. Zheludev, E. Ressouche, S. Maslov, T. Yokoo, S. Raymond and J. Akimitsu, Phys. Rev. Lett. 80, 3630 (1998).
[12] S. Raymond, T. Yokoo, A. Zheludev, S. E. Nagler, A. Wildes, and J. Akimitsu, Phys. Rev. Lett. 82, 2382 (1999).
[13] S. Maslov and A. Zheludev, Phys. Rev. B 57, 68 (1998).
[14] S. Maslov and A. Zheludev, Phys. Rev. Lett. 80, 5786 (1998).
[15] Jizhong Lou, Xi Dai, Shaojin Qin, Zhaobin Su and Lu Yu, Phys. Rev. B 60, 52 (1999).
[16] Indrani Bose and Emily Chattopadhyay, Phys. Rev. B 60, 12138 (1999).
[17] T.K. Ng, Phys. Rev. B 52, 555 (1994).
[18] S. Chakravarty, B.I. Halperin and D.R. Nelson, Phys. Rev. B 39, 2344 (1989).
[19] S. R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487 (1992); S. R. White, Phys. Rev. Lett. 69, 2863 (1992); S. R. White, Phys. Rev. B 48, 10345 (1993).
[20] For a review, see Density Matrix Renormalization, edited by I. Peschel, X. Wang, M. Kaulke and K. Hallberg, Springer series, Berlin, 1999.

FIG. 1. The low energy spectrum in the presence of single impurity as a function of h' obtained in our mean-field theory with $\Delta = 1$, $J' = 1.47$ and $h = 0.2$.

FIG. 2. Ng et al., PRB
FIG. 2. The low energy excitation states of the six sectors for staggered magnetic field \(h=0.2 \) and chain length \(L=100 \), the dotted line is the corresponding value of the Hal-dane gap for \(h=0.2 \) without impurity.

Fig. 3, Ng et. al, PRB

FIG. 3. The chain length dependence of the lowest nine energy levels for \(0^+ \) sector for \(h=0.2 \) and \(h'=-1.0 \), the dotted line is the gap value at the thermodynamical limit.

Fig. 4, Ng et. al, PRB

FIG. 4. The magnetization density difference of the lowest excitation state of each sector to the ground state, \(<S^z_i>_{l.e.} - <S^z_i>_{g.s.} \) at the physical regime \(h' = -0.2 \).