Lukas SPIEGELHOFER

Pseudorandomness of the Ostrowski sum-of-digits function
Tome 30, n° 2 (2018), p. 637-649.

<http://jtnb.cedram.org/item?id=JTNB_2018__30_2_637_0>
Pseudorandomness of the Ostrowski sum-of-digits function

par Lukas SPIEGELHOFER

Résumé. Pour un nombre irrationnel $\alpha \in (0, 1)$, nous étudions la fonction somme des chiffres d’Ostrowski σ_α. Étant donné un nombre α à quotients partiels bornés et un nombre $\vartheta \in \mathbb{R} \setminus \mathbb{Z}$, nous montrons que la fonction $g : n \mapsto e(\vartheta \sigma_\alpha(n))$, où $e(x) = e^{2\pi i x}$, est pseudo-à-léatoire dans le sens suivant : pour tout $r \in \mathbb{N}$ la limite

$$\gamma_r = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} g(n + r)\overline{g(n)}$$

existe et on a

$$\lim_{R \to \infty} \frac{1}{R} \sum_{0 \leq r < R} |\gamma_r|^2 = 0.$$

Abstract. For an irrational $\alpha \in (0, 1)$, we investigate the Ostrowski sum-of-digits function σ_α. For α having bounded partial quotients and $\vartheta \in \mathbb{R} \setminus \mathbb{Z}$, we prove that the function $g : n \mapsto e(\vartheta \sigma_\alpha(n))$, where $e(x) = e^{2\pi i x}$, is pseudorandom in the following sense: for all $r \in \mathbb{N}$ the limit

$$\gamma_r = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} g(n + r)\overline{g(n)}$$

exists and we have

$$\lim_{R \to \infty} \frac{1}{R} \sum_{0 \leq r < R} |\gamma_r|^2 = 0.$$

Manuscrit reçu le 11 2016, révisé le 27 avril 2017, accepté le 22 juin 2017.

2010 Mathematics Subject Classification. 11A55, 11A67.

Mots-clés. Ostrowski numeration, pseudorandomness, Fourier–Bohr spectrum.

The author acknowledges support by the Austrian Science Fund (FWF), project F5505-N26, which is a part of the Special Research Program “Quasi Monte Carlo Methods: Theory and Applications”, and by the project MuDeRa (Multiplicativity, Determinism and Randomness), which is a joint project between the ANR (Agence Nationale de la Recherche) and the FWF (Austrian Science Fund, grant I-1751-N26).
1. Introduction and main results

Let g be an arithmetical function. The set of $\beta \in [0, 1)$ satisfying

$$\limsup_{N \to \infty} \frac{1}{N} \left| \sum_{0 \leq n < N} g(n) e(-n\beta) \right| > 0$$

is called the Fourier–Bohr spectrum of g.

The function g is called pseudorandom in the sense of Bertrandias [4] or simply pseudorandom if the limit

$$\gamma_r = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} g(n + r) \overline{g(n)}$$

exists for all $r \geq 0$ and is zero in quadratic mean, that is,

$$\lim_{R \to \infty} \frac{1}{R} \sum_{0 \leq r < R} |\gamma_r|^2 = 0.$$

Pseudorandomness can be understood as a property of the spectral measure associated to g: Assume that the correlation γ_r of g exists for all $r \geq 0$. By the Bochner representation theorem there exists a unique measure μ on the Torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ such that

$$\gamma_r = \int_{\mathbb{T}} e(rx) \, d\mu(x)$$

for all r. Then g is pseudorandom if and only if the discrete component of μ vanishes. We refer to [9] for more details.

It is known that pseudorandomness of a bounded arithmetic function g implies that the spectrum of g is empty, which can be proved using van der Corput’s inequality. For the convenience of the reader, we give a proof of this fact in Section 2.

The converse of this statement does not always hold. However, it is true for q-multiplicative functions $g : \mathbb{N} \to \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, which has been proved by Coquet [5, 6, 7]. Here a function $g : \mathbb{N} \to \mathbb{C}$ is called q-multiplicative if $f(q^k n + b) = f(q^k n) f(b)$ for all integers $k, n > 0$ and $0 \leq b < q^k$.

The purpose of this paper is to prove an analogous statement for the Ostrowski numeration system, that is, for α-multiplicative functions. Assume that $\alpha \in (0, 1)$ is irrational. The Ostrowski numeration system has as its scale of numeration the sequence of denominators of the convergents of the regular continued fraction expansion of α. More precisely, let $\alpha = [0; a_1, a_2, \ldots]$ be the continued fraction expansion of α and $p_i/q_i = \ldots$
[0; \alpha_1, \ldots, \alpha_i]$ the i-th convergent to α, where $i \geq 0$. By the greedy algorithm, every nonnegative integer n has a representation

$$n = \sum_{k \geq 0} \varepsilon_k q_k$$

such that

$$\sum_{0 \leq k < K} \varepsilon_k q_k < q K$$

for all $K \geq 0$. This algorithm yields the unique expansion of the form (1.1) having the properties that $0 \leq \varepsilon_0 < \alpha_1$, $0 \leq \varepsilon_k \leq \alpha_{k+1}$ and $\varepsilon_k = \alpha_{k+1} \Rightarrow \varepsilon_{k-1} = 0$ for $k \geq 1$, the Ostrowski expansion of n.

For a nonnegative integer n let $(\varepsilon_k(n))_{k \geq 0}$ be its Ostrowski expansion. An arithmetic function f is α-additive resp. α-multiplicative if

$$f(n) = \sum_{k \geq 0} f(\varepsilon_k(n) q_k) \quad \text{resp.} \quad f(n) = \prod_{k \geq 0} f(\varepsilon_k(n) q_k)$$

for all n. Examples of α-additive functions are the functions $n \mapsto \beta n$ (for $\beta \in \mathbb{R}$) and the α-sum of digits of n [8]:

$$\sigma_\alpha(n) = \sum_{i \geq 0} \varepsilon_i(n).$$

We refer the reader to [3] for a survey on the Ostrowski numeration system. In particular, we want to note that the Ostrowski numeration system is a useful tool for studying the discrepancy modulo 1 of $n\alpha$-sequences, see for example the references contained in the aforementioned paper.

Moreover, see [2] for a dynamical viewpoint of the Ostrowski numeration system, see also [1, 12] for more general numeration systems.

Our main theorem establishes a connection between the Fourier–Bohr spectrum and pseudorandomness for α-multiplicative functions.

Theorem 1.1. Assume that g is a bounded α-multiplicative function. The Fourier–Bohr spectrum of g is empty if and only if g is pseudorandom.

Using a theorem by Coquet, Rhin and Toffin [11, Theorem 2], we obtain the following corollary.

Corollary 1.2. Assume that $\alpha \in (0, 1)$ is irrational and has bounded partial quotients and $\vartheta \in \mathbb{R} \setminus \mathbb{Z}$. Then $n \mapsto e(\vartheta \sigma_\alpha(n))$ is pseudorandom.

In particular, this holds for the Zeckendorf sum-of-digits function, which corresponds to the case $\alpha = (\sqrt{5} - 1)/2 = [0; 1, 1, \ldots]$. This special case can be found in the author’s thesis [14].

We first present a series of auxiliary results, and proceed to the proof of Theorem 1.1 in Section 3.
2. Lemmas

We begin with the well-known inequality of van der Corput.

Lemma 2.1 (Van der Corput’s inequality). Let \(I \) be a finite interval in \(\mathbb{Z} \) and let \(a_n \in \mathbb{C} \) for \(n \in I \). Then

\[
\left| \sum_{n \in I} a_n \right|^2 \leq \frac{|I| - 1 + R}{R} \sum_{0 \leq |r| < R} \left(1 - \frac{|r|}{R} \right) \sum_{n \in I} a_{n+r} \overline{a_n}
\]

for all integers \(R \geq 1 \).

In the definition of pseudorandomness for bounded arithmetic functions \(g \), we do not actually need the square.

Lemma 2.2. Let \(g \) be a bounded arithmetic function such that the correlation \(\gamma_r \) of \(g \) exists for all \(r \geq 0 \). The function \(g \) is pseudorandom if and only if

\[
\lim_{R \to \infty} \frac{1}{R} \sum_{0 \leq r < R} |\gamma_r| = 0.
\]

For the proof of sufficiency we note that we may without loss of generality assume that \(|g| \leq 1 \). The other direction is an application of the Cauchy-Schwarz inequality.

As we noted before, pseudorandomness of \(g \) implies that the spectrum of \(g \) is empty.

Lemma 2.3. Let \(g \) be a bounded arithmetic function. If \(g \) is pseudorandom, then the Fourier–Bohr spectrum of \(g \) is empty.

Proof. The proof is an application of van der Corput’s inequality (Lemma 2.1). We have for all \(R \in \{1, \ldots, N\} \)

\[
\left| \frac{1}{N} \sum_{0 \leq n < N} g(n) e(n \beta) \right|^2 \leq \frac{N - 1 + R}{RN^2} \sum_{0 \leq |r| < R} \left(1 - \frac{|r|}{R} \right) e(r \beta) \sum_{0 \leq n, n+r < N} g(n+r) \overline{g(n)}
\]

\[
\ll \frac{1}{R} \sum_{0 \leq r < R} \left| \frac{1}{N} \sum_{0 \leq n < N} g(n+r) \overline{g(n)} \right| + O \left(\frac{R}{N} \right).
\]

Let \(\varepsilon \in (0,1) \). By hypothesis and Lemma 2.2 we may choose \(R \) so large that

\[
\frac{1}{R} \sum_{0 \leq r < R} |\gamma_r| < \varepsilon^2.
\]
Moreover, we choose \(N_0 \) in such a way that \(R/N_0 < \varepsilon^2 \) and
\[
\left| \frac{1}{N} \sum_{0 \leq n < N} g(n + r) \overline{g(n)} - \gamma_r \right| < \varepsilon^2
\]
for all \(r < R \) and \(N \geq N_0 \). Then for \(N \geq N_0 \) we have
\[
\left| \frac{1}{N} \sum_{0 \leq n < N} g(n) e(n\beta) \right|^2 \\
\leq \frac{1}{R} \sum_{0 \leq r < R} \left| \frac{1}{N} \sum_{0 \leq n < N} g(n + r) \overline{g(n)} - \gamma_r \right| + \frac{1}{R} \sum_{0 \leq r < R} |\gamma_r| + O\left(\frac{R}{N_0} \right)
\leq \varepsilon^2. \quad \Box
\]

The following lemma is a generalization of Dini’s Theorem.

Lemma 2.4. Assume that \((f_i)_{i \geq 0}\) is a sequence of nonnegative continuous functions on \([0, 1]\) converging pointwise to the zero function. Assume that \(|f_{i+1}(x)| \leq \max\{|f_i(x)|, |f_{i-1}(x)|\} \) for \(x \in [0, 1] \). Then the convergence is uniform in \(x \).

Proof. For \(\varepsilon > 0 \) and nonnegative \(N \) we set
\[
A_N(\varepsilon) = \{x \in [0, 1] : f_N(x) < \varepsilon \text{ and } f_{N+1}(x) < \varepsilon\}.
\]
Note that this is an open set. By induction, using the property \(|f_{i+1}(x)| \leq \max\{|f_i(x)|, |f_{i-1}(x)|\} \), we obtain
\[
A_N(\varepsilon) = \{x \in [0, 1] : f_n(x) < \varepsilon \text{ for all } n \geq N\}.
\]
Trivially, we have \(A_N(\varepsilon) \subseteq A_{N+1}(\varepsilon) \). For each \(x \in [0, 1] \) there is an \(N(x) \) such that \(f_n(x) < \varepsilon \) for all \(n \geq N(x) \). Then \(x \in A_{N(x)}(\varepsilon) \), therefore \((A_{N(x)}(\varepsilon))_{x \in [0, 1]} \) is an open cover of the compact set \([0, 1]\). Choose \(x_1, \ldots, x_k \) such that \(A_{N(x_1)}(\varepsilon) \cup \cdots \cup A_{N(x_k)}(\varepsilon) \supseteq [0, 1] \) and set \(N = \max\{N(x_1), \ldots, N(x_k)\} \). By monotonicity of the sets \(A_N(\varepsilon) \), we obtain \(A_N(\varepsilon) \supseteq [0, 1] \), in other words, \(f_n(x) < \varepsilon \) for all \(x \in [0, 1] \) and all \(n \geq N \). \(\Box \)

Lemma 2.5. Assume that \(\lambda \geq 1 \) and let \((w_i)_{i}\) be the increasing enumeration of the integers \(n \) such that \(\varepsilon_0(n) = \cdots = \varepsilon_{\lambda-1}(n) = 0 \). The intervals \([w_i, w_{i+1})\) constitute a partition of the set \(\mathbb{N} \) into intervals of length \(q_\lambda \) and \(q_{\lambda-1} \), where \(w_{i+1} - w_i = q_{\lambda-1} \) if and only if \(\varepsilon_\lambda(w_i) = a_{\lambda+1} \).

Proof. Assume first that \(\varepsilon_\lambda(w_i) = a_{\lambda+1} \). We want to show that \(w_{i+1} = w_i + q_{\lambda-1} \). Assume that \(\lambda \geq 2 \) and let \(w_i < n < w_i + q_{\lambda-1} \). Then the Ostrowski expansion of \(n \) is obtained by superposition of the expansions of \(w_i \) and of \(n - w_i \). In particular, for \(w_i < n < w_i + q_{\lambda-1} \) we have \(\varepsilon_j(n) \neq 0 \).
for some \(j < \lambda - 1 \). (Trivially, this also holds for \(\lambda = 1 \).) Moreover, in the addition \(w_i + q_{\lambda-1} \) a carry occurs, producing \(\varepsilon_j(w_i + q_{\lambda-1}) = 0 \) for \(j \leq \lambda \), therefore \(w_{i+1} = w_i + q_{\lambda-1} \). The case \(\varepsilon_{\lambda}(w_i) < a_{\lambda+1} \) is similar, in which case \(w_{i+1} = w_i + q_{\lambda} \).

For an \(\alpha \)-multiplicative function \(g \) and an integer \(\lambda \geq 0 \) we define a function \(g_\lambda \) by truncating the digital expansion: we define \(\psi_\lambda(n) = \sum_{i<\lambda} \varepsilon_i(n)q_i \) and

\[
g_\lambda(n) = g(\psi_\lambda(n)).
\]

We will need the following carry propagation lemma for the Ostrowski numeration system.

Lemma 2.6. Let \(\lambda \geq 1 \) be an integer and \(N, r \geq 0 \). Assume that \(\alpha \in (0,1) \) is irrational and let \(g \) be an \(\alpha \)-multiplicative function. Then

\[
(2.1) \quad \left| \left\{ n < N : g(n + r)g(n) \neq g_\lambda(n + r)g_\lambda(n) \right\} \right| \leq N \frac{r}{q_{\lambda-1}}.
\]

Proof. The statement we want to prove is trivial for \(r \geq q_{\lambda-1} \), we assume therefore that \(r < q_{\lambda-1} \). Let \(w \) be the family from Lemma 2.5. For \(w_i \leq n < w_{i+1} - r \), we have \(\varepsilon_j(n + r) = \varepsilon_j(n) \) for \(j \geq \lambda \). It follows that

\[
\left| \left\{ n \in \{w_i, \ldots, w_{i+1} - 1\} : g(n + r)g(n) \neq g_\lambda(n + r)g_\lambda(n) \right\} \right| \leq r.
\]

By concatenating blocks, the statement follows therefore for the case that \(N = w_i \) for some \(i \). It remains to treat the case that \(w_i < N < w_{i+1} \) for some \(i \). To this end, we denote by \(L(N) \) resp. \(R(N) \) the left hand side resp. the right hand side of (2.1). For \(w_i \leq N \leq w_{i+1} \) we have

\[
L(N) = \begin{cases}
L(w_i), & N \leq w_{i+1} - r; \\
L(w_i) + N - (w_{i+1} - r), & N \geq w_{i+1} - r.
\end{cases}
\]

Note that \(L \) is a polygonal line that lies below \(R(N) \) for \(N \in \{w_i, w_{i+1} - r, w_{i+1}\} \) and therefore for all \(N \in [w_i, w_{i+1}] \). By concatenating blocks, the full statement follows.

We define Fourier coefficients for \(g \):

\[
G_\lambda(h) = \frac{1}{q_\lambda} \sum_{0 \leq u < q_\lambda} g(u) e(-huq_\lambda^{-1}).
\]

Lemma 2.7. Assume that \(i \) is such that \(w_{i+1} - w_i = q_\lambda \) and let \(r \geq 0 \). We have

\[
(2.2) \quad \sum_{h < q_\lambda} |G_\lambda(h)|^2 e(hrq_\lambda^{-1}) = \frac{1}{q_\lambda} \sum_{w_i \leq v < w_{i+1}} g_\lambda(v + r)g_\lambda(v) + O \left(\frac{r}{q_\lambda} \right).
\]
Proof.

\[
\sum_{0 \leq h < q} |G_{\lambda}(h)|^2 e(h r q^{-1})
\]

\[
= q^{-1} \sum_{0 \leq u, v < q} g_{\lambda}(u)g_{\lambda}(v) q^{-1} \sum_{0 \leq h < q} e\left(\frac{h}{q}(v + r - u)\right)
\]

\[
= \frac{1}{q} \sum_{0 \leq u, v < q} [v + r \equiv u \mod q] g_{\lambda}(u)\overline{g_{\lambda}(v)}
\]

\[
= \frac{1}{q} \sum_{w_1 \leq u, v < w_1 + 1} [v + r \equiv u \mod q] g_{\lambda}(u)\overline{g_{\lambda}(v)}
\]

\[
= \frac{1}{q} \sum_{w_1 \leq u < w_1 + 1 - r} g_{\lambda}(v + r)\overline{g_{\lambda}(v)} + O\left(\frac{r}{q}\right).
\]

Lemma 2.8. Let \(H \geq 1 \) be an integer and \(R \) a real number. For all real numbers \(t \) we have

\[
\sum_{h < H} \left| \frac{1}{R} \sum_{r < R} e(r(t + h/H)) \right|^2 \leq \frac{H + R - 1}{R}.
\]

This lemma is an immediate consequence of the analytic form of the large sieve, see [13, Theorem 3]. This form of the theorem, featuring the optimal constant \(N - 1 + \delta^{-1} \), is due to Selberg.

Lemma 2.9 (Selberg). Let \(N \geq 1, R \geq 1, M \) be integers, \(\alpha_1, \ldots, \alpha_R \in \mathbb{R} \) and \(a_{M+1}, \ldots, a_{M+N} \in \mathbb{C} \). Assume that \(\|\alpha_r - \alpha_s\| \geq \delta \) for \(r \neq s \). Then

\[
\sum_{r=1}^{R} \left| \sum_{n=M+1}^{M+N} a_n e(n \alpha_r) \right|^2 \leq (N - 1 + \delta^{-1}) \sum_{n=M+1}^{M+N} |a_n|^2.
\]

As an important first step in the proof of Theorem 1.1, we show that for the functions in question we have the following uniformity property.

Proposition 2.10. Let \(g \) be a bounded \(\alpha \)-multiplicative function. Assume that the Fourier–Bohr spectrum of \(g \) is empty, that is,

\[
\left| \sum_{0 \leq n < N} g(n) e(-n \beta) \right| = o(N)
\]

as \(N \to \infty \) for all \(\beta \in \mathbb{R} \). Then

\[
\sup_{\beta \in \mathbb{R}} \left| \sum_{0 \leq n < N} g(n) e(-n \beta) \right| = o(N).
\]
Proof of Proposition 2.10. Without loss of generality we may assume that \(|g| \leq 1\), since the full statement follows by scaling. We first prove the special case
\[
\lim_{i \to \infty} \sup_{\beta \in \mathbb{R}} \frac{1}{q_i} \left| \sum_{0 \leq n < q_i} g(n) e(-n\beta) \right| = 0.
\]
We set \(h(n) = g(n) e(-n\beta)\) and
\[
S_i = S_i(\beta) = \frac{1}{q_i} \sum_{0 \leq n < q_i} h(n).
\]
For all \(i \geq 1\) we have
\[
S_{i+1} = \frac{1}{q_{i+1}} \sum_{0 \leq b < a_{i+1}} \sum_{0 \leq u < q_i} h(u + bq_i) + \frac{1}{q_{i+1}} \sum_{0 \leq u < q_{i-1}} h(u + a_{i+1}q_i)
\]
\[
= \frac{q_i}{q_{i+1}} \left(\sum_{0 \leq b < a_{i+1}} h(bq_i) \right) \cdot S_i + \frac{q_i-1}{q_{i+1}} h(a_{i+1}q_i) S_{i-1}.
\]
Using the recurrence for \(q_i\), it follows that \(|S_{i+1}| \leq \max\{|S_i|, |S_{i-1}|\}\). By Lemma 2.4 we obtain the statement.

We proceed to the general case. We consider partial sums of \(g(n) e(n\beta)\) up to \(N\). Assume that \(w_i \leq N < w_{i+1}\). We have
\[
\left| \sum_{0 \leq n < w_i} g(n) e(n\beta) \right|^2 \leq \sum_{0 \leq n < w_i} g(n) e(n\beta) \leq q_\lambda^2 + 2Nq_\lambda.
\]
We apply the inequality of van der Corput (Lemma 2.1) to obtain
\[
\left| \sum_{0 \leq n < w_i} g(n) e(n\beta) \right|^2 \leq \frac{N + R - 1}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R} \right) e(r\beta) \sum_{0 \leq n, n+r < w_i} g(n+r) g(n).
\]
We adjust the summation range by omitting the condition \(0 \leq n + r < w_i\). This introduces an error term \(O(NR)\). Moreover, \(\alpha\)-multiplicative functions satisfy Lemma 2.6, therefore we may replace \(g\) by \(g_\lambda\) for the price of another error term, \(O(N^2 R q_{\lambda-1}^{-1})\). Using (2.2) we get
\[
\left| \sum_{0 \leq n < w_i} g(n) e(n\beta) \right|^2 \ll \frac{N}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R} \right) e(r\beta) \left(\sum_{0 \leq n < w_i} g_\lambda(n+r) g_\lambda(n) + O\left(R + \frac{NR}{q_{\lambda-1}} \right) \right)
\]
\[
\ll NR + \frac{N^2 R}{q_{\lambda-1}} + \frac{N}{R} w_i \sum_{h < q_\lambda} |G_\lambda(h)|^2 \sum_{|r| < R} \left(1 - \frac{|r|}{R} \right) e\left(r\left(\beta + \frac{h}{q_\lambda} \right) \right).
\]
Note that the sum over r is a nonnegative real number. This follows from
the identity
$$
\sum_{|r|<R} (R - |r|) e(rx) = \left| \sum_{0 \leq r < R} e(rx) \right|^2,
$$
which can be proved by an elementary combinatorial argument. We use
this equation and collect the error terms to get

$$
\left(1 - \frac{1}{N} \sum_{0 \leq n < N} g(n) e(n\beta) \right)^2 \leq \frac{q_\lambda^2}{N^2} + \frac{q_\lambda}{N} + \frac{R}{N} + \frac{R}{q_{\lambda-1}}
$$

which can be proved by an elementary combinatorial argument. We use
the special case proved before and choosing R and λ appropriately,
we obtain the statement.

In order to establish the existence of the correlation γ_r of g for all $r \geq 0$, we use the following theorem [10, Théorème 4]. (Note that we defined
$\psi_\lambda(n) = \sum_{0 \leq i < \lambda} \varepsilon_i(n)q_i$.)

Lemma 2.11 (Coquet–Rhin–Toffin). Let $\lambda \geq 1$ and $a < q_\lambda$. The set
$E(\lambda, a) = \{ n \in \mathbb{N} : \psi_\lambda(n) = a \}$ possesses an asymptotic density given
by
$$
\delta = (q_\lambda + q_{\lambda-1}[0; a_{\lambda+1}, \ldots])^{-1} \quad \text{if } a \geq q_{\lambda-1};
$$
$$
\delta' = \delta(1 + [0; a_{\lambda+1}, \ldots]) \quad \text{if } a < q_{\lambda-1}.
$$

Lemma 2.12. Let g be a bounded α-multiplicative function. Then for every
$r \geq 0$ the limit
$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n < N} g(n + r)g(n)
$$
exists.

We note that the existence of the correlation was established in [10] for
the special case that $g(n) = e(y\sigma_\alpha(n))$, where $e(x) = e^{2\pi ix}$ and $y \in \mathbb{R}$.
Proof. Let $\lambda, N \geq 0$ and $r \geq 1$ and set $k = \max\{j : w_j \leq N\}$. Moreover, let $a = a(N)$ be the number of indices $j < k$ such that $w_{j+1} - w_j = q\lambda$ and $b = b(N)$ be the number of indices $j < k$ such that $w_{j+1} - w_j = q\lambda - 1$. By Lemma 2.11 $a(N)/N$ and $b(N)/N$ converge, say to A and B respectively. Let λ be so large that $r/q\lambda - 1 < \varepsilon$. Moreover, choose N_0 so large that

$$
\left| A - \frac{a(N)}{N} \right| < \varepsilon q^{-1}\lambda - 1 \quad \text{and} \quad \left| B - \frac{b(N)}{N} \right| < \varepsilon q^{-1}\lambda - 1 \quad \text{and} \quad q\lambda/N < \varepsilon$$

for all $N \geq N_0$.

Then by Lemma 2.6 we get

$$\sum_{0 \leq n < N} g(n + r\lambda)g(n) = \sum_{0 \leq n < N} g(n + r)g(n) + O(Nrq^{-1})$$

therefore

$$\left| \frac{1}{N} \sum_{0 \leq n < N} g(n + r\lambda)g(n) - A \sum_{0 \leq n < q\lambda} g(n + r)g(n) - B \sum_{0 \leq n < q\lambda - 1} g(n + r)g(n) \right|$$

$$\ll \left| \frac{1}{N} \sum_{0 \leq n < N} g(n + r\lambda)g(n) - \frac{a}{N} \sum_{0 \leq n < q\lambda} g(n + r)g(n) \right| + 2\varepsilon$$

$$= \left| \frac{1}{N} \sum_{0 \leq n < N} g(n + r\lambda)g(n) - \frac{1}{N} \sum_{0 \leq n < w_k} g(n + r)g(n) \right| + 2\varepsilon$$

$$\ll \frac{q\lambda}{N} + \frac{r}{q\lambda - 1} + 2\varepsilon.$$

By the triangle inequality it follows that the values $\frac{1}{N} \sum_{n < N} g(n + r\lambda)g(n)$ form a Cauchy sequence and therefore a convergent sequence, which proves the existence of the correlation of g. □

3. Proof of the theorem

Now we are prepared to prove Theorem 1.1. If g is pseudorandom, then by Lemma 2.3 its spectrum is empty. We are therefore concerned with the converse. Let $\ell \geq 0$. We denote by a the number of $i < \ell$ such that $w_{i+1} - w_i = q\lambda$ and by b the number of $i < \ell$ such that $w_{i+1} - w_i = q\lambda - 1$.

Choose ε_r such that $|\varepsilon_r| = 1$ and

$$\varepsilon_r \sum_{0 \leq h < q\lambda} |G(\lambda(h))|^2 e(hrq^{-1})$$
is a nonnegative real number. Similarly choose ε'_r for $\lambda - 1$. We have

$$
\frac{1}{R} \sum_{0 \leq r < R} \frac{1}{w_\ell} \sum_{0 \leq n < w_\ell} g_\lambda(n + r)g_\lambda(n) = \left| \frac{a q_\lambda}{w_\ell} \frac{1}{R} \sum_{0 \leq r < R} \sum_{0 \leq h < q_\lambda} |G_\lambda(h)|^2 e\left(\frac{hr}{q_\lambda}\right) + \frac{b q_{\lambda-1}}{w_\ell} \sum_{0 \leq r < R} \sum_{0 \leq h < q_{\lambda-1}} |G_{\lambda-1}(h)|^2 e\left(\frac{hr}{q_{\lambda-1}}\right) \right| + O\left(\frac{a r + b r}{w_\ell} + \frac{b r}{w_\ell}\right)
$$

$$
= \frac{1}{R} \left| \frac{a q_\lambda}{w_\ell} \sum_{0 \leq h < q_\lambda} |G_\lambda(h)|^2 \sum_{0 \leq r < R} \varepsilon_r e\left(\frac{hr}{q_\lambda}\right) + \frac{b q_{\lambda-1}}{w_\ell} \sum_{0 \leq h < q_{\lambda-1}} |G_{\lambda-1}(h)|^2 \sum_{0 \leq r < R} \varepsilon'_r e\left(\frac{hr}{q_{\lambda-1}}\right) \right| + O\left(\frac{r}{q_{\lambda-1}}\right)
$$

By Cauchy-Schwarz we obtain

$$
\frac{1}{R^2} \left| \sum_{0 \leq h < q_\lambda} |G_\lambda(h)|^2 \sum_{0 \leq r < R} \varepsilon_r e\left(\frac{hr}{q_\lambda}\right) \right|^2 \leq \frac{1}{R^2} \sum_{0 \leq h < q_\lambda} |G_\lambda(h)|^4 \sum_{0 \leq r < R} \sum_{0 \leq h < q_\lambda} \varepsilon_r e\left(\frac{hr}{q_\lambda}\right) \leq \frac{1}{R^2} \sum_{0 \leq h < q_\lambda} |G_\lambda(h)|^4 \sum_{0 \leq r_1, r_2 < R} \sum_{0 \leq h < q_{\lambda-1}} \varepsilon_{r_1} \varepsilon_{r_2} e\left(\frac{hr_1 - r_2}{q_{\lambda-1}}\right)
$$

$$
= \frac{q_\lambda}{R^2} \sum_{0 \leq h < q_\lambda} |G_\lambda(h)|^4 \sum_{0 \leq r_1, r_2 < R} \varepsilon_{r_1} \varepsilon_{r_2} \delta_{r_1, r_2}
$$

$$
= \frac{q_\lambda}{R} \sum_{0 \leq h < q_\lambda} |G_\lambda(h)|^4,
$$
similarly for $\lambda - 1$. Using Lemma 2.6, we get

$$
\frac{1}{R} \sum_{0 \leq r < R} |\gamma_r|
= \lim_{\ell \to \infty} \frac{1}{R} \sum_{0 \leq r < R} \frac{1}{w_\ell} \sum_{0 \leq n < w_\ell} g(n + r)\overline{g(n)}
= \lim_{k \to \infty} \frac{1}{R} \sum_{0 \leq r < R} \frac{1}{w_\ell} \sum_{0 \leq n < w_\ell} g_\lambda(n + r)\overline{g_\lambda(n)} + O\left(\frac{R}{q_{\lambda - 1}}\right)
\leq \left[\left(\sum_{0 \leq h < q_{\lambda - 1}} |G_{\lambda - 1}(h)|^4 \right)^{1/2} + \left(\sum_{0 \leq h < q_{\lambda}} |G_\lambda(h)|^4 \right)^{1/2} \right] \left(\frac{q_\lambda}{R} \right)^{1/2} + O\left(\frac{R}{q_{\lambda - 1}}\right).
$$

Using the hypothesis and Proposition 2.10, we get $\sup_{h \in \mathbb{Z}} |G_\lambda(h)| = o(1)$ as $\lambda \to \infty$. By Parseval’s identity this implies

$$
\sum_{h < q_\lambda} |G_\lambda(h)|^4 = o(1).
$$

By a straightforward argument we conclude that

$$
\frac{1}{R} \sum_{0 \leq r < R} |\gamma_r| = o(1)
$$

as $R \to \infty$. Since g is bounded, an application of Lemma 2.2 completes the proof of Theorem 1.1.

References

[1] G. Barat, V. Berthé, P. Liardet & J. Thuswaldner, “Dynamical directions in numeration”, Ann. Inst. Fourier 56 (1987), no. 7, p. 1987-2092.
[2] G. Barat & P. Liardet, “Dynamical systems originated in the Ostrowski alpha-expansion”, Ann. Univ. Sci. Budapest Sect. Comput 24 (2004), p. 133-184.
[3] V. Berthé, “Autour du système de numération d’Ostrowski”, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), no. 2, p. 209-239.
[4] J.-P. Bertrandias, “Suites pseudo-aléatoires et critères d’équirépartition modulo un”, Compos. Math. 16 (1964), p. 23-28.
[5] J. Coquet, “Sur les fonctions q-multiplicatives pseudo-aléatoires”, C. R. Math. Acad. Sci. Paris 282 (1976), p. 175-178.
[6] ———, “Contribution à l’étude harmonique des suites arithmétiques”, 1978, Thèse d’Etat, Orsay (France).
[7] ———, “Répartition modulo 1 des suites q-additives”, Commentat. Math. 21 (1980), p. 23-42.
[8] ———, “Répartition de la somme des chiffres associée à une fraction continue”, Bull. Soc. R. Sci. Liège 51 (1982), no. 3-4, p. 161-165.
[9] J. Coquet, T. Kamae & M. Mendès France, “Sur la mesure spectrale de certaines suites arithmétiques”, Bull. Soc. Math. Fr. 105 (1977), no. 4, p. 369-384.
[10] J. Coquet, G. Rhin & P. Toffin, “Représentations des entiers naturels et indépendance statistique. II”, Ann. Inst. Fourier 31 (1981), no. 1, p. 1-15.
Lukas Spiegelhofer
Institute of Discrete Mathematics and Geometry,
Vienna University of Technology
Wiedner Hauptstrasse 8–10
1040 Vienna, Austria
E-mail: lukas.spiegelhofer@tuwien.ac.at
URL: http://dmg.tuwien.ac.at/spiegelhofer/