B cells response directed against Cut4 and CFP21 lipolytic enzymes in active and latent tuberculosis infections

Wendy Rénier, Arnaud Bourdin, Pierre-Alain Rubbo, Marianne Peries, Luc Dedieu, Sophie Bendriss, Laurent Kremer, Stéphane Canaan, Dominique Terru, Sylvain Godreuil, et al.

To cite this version:

Wendy Rénier, Arnaud Bourdin, Pierre-Alain Rubbo, Marianne Peries, Luc Dedieu, et al.. B cells response directed against Cut4 and CFP21 lipolytic enzymes in active and latent tuberculosis infections. PLoS ONE, Public Library of Science, 2018, 13 (4), pp.e0196470. 10.1371/journal.pone.0196470 . hal-01783443

HAL Id: hal-01783443
https://hal.umontpellier.fr/hal-01783443
Submitted on 25 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
B cells response directed against Cut4 and CFP21 lipolytic enzymes in active and latent tuberculosis infections

Wendy Rénier¹, Arnaud Bourdin², Pierre-Alain Rubbo¹, Marianne Peries¹, Luc Dedieu³, Sophie Bendriss¹, Laurent Kremer⁴, Stéphane Canaan³, Dominique Terru¹, Sylvain Godreuil¹, Nicolas Nagot¹, Philippe Van de Perre¹, Edouard Tuaillon¹*

¹ Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France, ² PhyMedExp, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France, ³ Laboratory of Enzymology at Interfaces and Physiology of Lipolysis, CNRS, Université Aix-Marseille, France, ⁴ Institute of Research on Infection of Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France

* e-tuaillon@chu-montpellier.fr

Abstract

Background
Better understanding of the immune response directed against Mycobacterium tuberculosis (Mtb) is critical for development of vaccine strategies and diagnosis tests. Previous studies suggested that Mtb enzymes involved in lipid metabolism, are associated with persistence and/or reactivation of dormant bacilli.

Methods
Circulating antibodies secreting cells (ASCs), memory B cells, and antibodies directed against Cut4 (Rv3452) and CFP21 (Rv1984c) antigens were explored in subjects with either active- or latent-tuberculosis (LTB), and in Mtb-uninfected individuals.

Results
Circulating anti-Cut4 ASCs were detected in 11/14 (78.6%) subjects from the active TB group vs. 4/17 (23.5%) from the LTB group (p = 0.001). Anti-CFP21 ASCs were found in 11/14 (78.6%) active TB vs. in 5/17 (29.4%) LTB cases (p = 0.01). Circulating anti-Cut4 and anti-CFP21 ASCs were not detected in 38 Mtb uninfected controls. Memory B cells directed against either Cut4 or CFP21 were identified in 8/11 (72.7%) and in 9/11 (81.8%) subjects with LTB infection, respectively, and in 2/6 Mtb uninfected individuals (33.3%). High level of anti-Cut4 and anti-CFP21 IgG were observed in active TB cases.

Conclusion
Circulating IgG SCs directed against Cut4 or CFP21 were mostly detected in patients presenting an active form of the disease, suggesting that TB reactivation triggers an immune response against these two antigens.
Introduction

With almost 8.6 million cases of tuberculosis (TB) and 1.6 million of deaths related to TB each year, TB remains a major burden worldwide [1]. However, among the estimated third of the world’s population infected by Mycobacterium tuberculosis (Mtb), most of individuals will never develop an active form of the disease in their lifetime. Immunological mechanisms involved in the bacterial control during the latent stage of the infection remain incompletely understood [2]. Better understanding of the immune response directed against TB is critical for development of vaccine strategies and diagnosis tests. Regarding immunodiagnostic of TB, interferon gamma released assays (IGRA) has improved the identification of asymptomatic latent TB (LTB) in low incidence countries [3–4] but were unable to distinguish active from latent TB infection [5–7], and commercial assays based on antibody detection failed to reach the expected performances for a diagnosis assay dedicated to TB diagnosis [8]. It is long known that cellular response is essential to maintain TB in the latent form of the infection, but the B-cell response against Mtb antigens has been less studied and there is still a controversy about whether humoral immunity contributes to host defense against TB [2, 9, 10]. The tuberculous granuloma may be viewed as a peripheral lymphoid follicle-like structure displaying features of B cell germinal center [11]. Cellular proliferation is observed in these B cell aggregates in the lungs of humans and mice with TB [12]. Recent evidence suggest that antibody response during TB infections in the latent form is distinct from the humoral response observed in active TB [13, 14].

In previous studies, Mtb lipolytic enzymes have been identified as targets of humoral response in active-TB [15, 16]. We have observed antibody directed against CUT4 in subjects with active TB [15]. T cell and B cell response directed against CFP21 has been reported in mice and human [17–20]. In addition, CFP21 has been used in multivalent vaccines and induced protective immunity against Mtb infection in mice [21]. These enzymes are involved in lipid metabolism and could take part in Mtb exit of dormancy [22–25]. During the dormancy phase, Mtb persists confined within lung granulomas, which are composed of several cellular types, including T cells, B cells, and macrophages [11, 12, 26, 27]. Mtb persists confined toward the center of the granuloma, in foamy macrophages, that are lipid-rich cells derived from normal macrophages [25, 28–30]. The pathogen itself accumulates the host lipids in the form of intra-cytoplasmic lipid inclusions. These lipidic inclusions, mainly composed of triacylglycerides, could be later used as energy substrate by the bacilli during dormancy or in case of reactivation [25, 28–30].

The analysis of B cell immune response directed against TB lipolytic enzymes such as Cut4 and CFP21 offers an opportunity to explore the host-pathogen interplay because these enzymes are immunogenic, secreted by the bacilli [31], and may be expressed during TB reactivation [15, 16]. Cutinases Cut4 and CFP21 are serine-esterases involved in the metabolism of lipidic substrates, together with other lipolytic enzymes [22, 23, 31]. During viral or bacterial infections, antigen exposure triggers the immune response through B cell activation with differentiation either into plasmablasts (CD20+, CD38+++), and plasma cells (CD20+, CD138+), or into resting memory B cells. The peaks of circulating plasmablasts and plasma cells can be detected by flow cytometry or by ELISpot techniques as early as seven days after vaccination or infection [32, 33], and remain detectable only as long as the pathogen is actively released from infected cells [34–36]. By contrast, specific memory B cells that play a key role in the long term maintenance of specific immune responses have an estimated half-life exceeding the life expectancy of individuals [37].

This study aimed to explore circulating antibody secreting cells (ASCs), memory B cells, and antibodies directed against two Mtb lipolytic enzymes belonging to the cutinase family:
Cut4 and CFP21 antigens, in subjects with either active TB disease or LTB infection or no Mtb infection.

Materials and methods

Study participants

Subjects were enrolled at the Montpellier University Hospital. The population consists of subjects diagnosed with active or latent TB and patients uninfected by Mtb but immunized against BCG in childhood. The French BCG vaccination program consisted of a mandatory BCG vaccine dose in children until 2007, and of re-vaccination of tuberculin-negative children. The status for TB was based on the results of Mtb cultures, IGRA assays, clinical symptoms presentation and/or chest X-Ray-thoracic CT scan. All the subjects were tested for Mtb infection using the T-Spot.\(\text{TM}\) TB assay (Oxford Immunotec, UK), an ELISpot assay based on the detection of IFN-\(\gamma\) SCs after stimulation with ESAT-6 and CFP10 peptides. Patients were included after approval of the local ethics committee (Sud Méditerranée III, France) and after providing a written informed consent, (Trial registration: NCT No. 02898623).

M. tuberculosis antigens preparation

Cut4 (Rv3452) and CFP21 (Rv1984c) were produced as N-terminal His-tag fusion proteins as previously described [6, 31]. Briefly, genes were amplified from cosmids MTCY13E12 and MTCY39, respectively (Pasteur Institute, Paris, France), and cloned into pDEST™14 expression vector allowing the expression of N-terminal His-tag fusion proteins. All proteins were produced in *E. coli* strains, refolded from inclusion bodies and purified using a Ni\(^{2+}\)-NTA column and gel filtration [31].

For CFP21, the His-tag was removed by enzymatic digestion with TEV and proteins without His-tag were purified by exclusion from a Ni\(^{2+}\)-NTA column and conserved in Tris 10 mM, NaCl 150 mM, pH 8. Due to its peculiar pH instability and NaCl sensitivity, the Cut4 His-tag was not removed and protein was conserved into 50 mM CHES buffer, pH 9 [31].

Tuberculin Purified Protein Derivative (PPD) was purchased from Statens Serum Institut (Denmark).

Cells preparation and ELISpot assay

Peripheral Blood Mononuclear Cells (PBMCs) were purified using lymphocytes separation medium (Eurobio, France, following the manufacturer’s indications) and cryopreserved. After thawing, cells were mixed with purified erythrocytes before the addition of the Rosette-Sep cocktail for enrichment of B cells (Stemcell Technologies, France).

Immunobilon-P flat bottomed 96-wells microtiter plates (Millipore, USA) were coated with either phosphate buffered saline (PBS; negative control; Eurobio, France), unlabelled human immunoglobulin G (IgG) (positive control; Rockland Inc, USA), PPD or Cut4 or CFP21 at a final concentration of 50 \(\mu\)g/ml. Plates were then blocked with complete RPMI culture medium (Eurobio) containing 10% FBS (Foetal Bovine Serum, Eurobio) and supplemented with penicillin (100 U/ml) and streptomycin (100 \(\mu\)g/ml) (Invitrogen, UK) for 2 hours at 37°C, in the presence of 5% CO\(_2\). One hundred thousand B cells/well were seeded, except for the IgG positive control where only five thousand B cells were used. Cells were then incubated with 200 \(\mu\)l of RPMI supplemented by 10% FBS/well for 22–24 hours at 37°C, in the presence of 5% CO\(_2\). After removal of the cells, 100 \(\mu\)l of secondary antibody directed against human IgG conjugated with alkaline phosphatase (Rockland Inc, USA) was added (1/1000 dilution in PBS, incubated over-night at 4°C). Finally, the immunospots were revealed using NBT-BCIP.
substrate (BioRad, USA). Enumeration of total IgG secreting cells was used as control of the
capacity of the cells to secrete IgG. ASCs were counted using an Axioplan 2 Imaging micro-
scope (Zeiss, Germany) at a magnification of 40×. Results were expressed as the number of
immunospots produced by 1×10^5 B lymphocytes after subtraction of the number of ASCs
found in the negative control.

In vitro memory B cells activation

Briefly, purified B cells were activated during a 5-day culture at 37˚C, in the presence of 5%
CO₂ using a polyclonal activator cocktail: Cpg oligonucleotide ODN 2006 (InvivoGen, CA,
USA; 10 μg/ml), IL2 (100 U/ml), IL10 (50 ng/ml), IL21 (0.1 μg/ml) (Peprotech Inc., USA), his-
tidine-tagged-CD40L (0.5 μg/ml), anti-His (R&D Systems, USA; 5 μg/ml), in RPMI with 10%
FBS. Enumeration of IgG secreting cells was used as a positive control to evaluate the capacity
of B cells to undergo the terminal differentiation into plasma cells under polyclonal stimula-
tion [28]. The positive controls have to display at least 5 spots without polyclonal activation
(5,000 B cells) and 7 spots with polyclonal activation (500 B cells). In other wells, 1×10^5 activ-
ated B cells have been needed for the rest of the ELISpot procedures described before.

**Enzyme-Linked ImmunoSorbent assay using Mtb lipolytic enzymes as
antigens**

The 96-wells microtiter plates (Nunc, Denmark) were coated overnight with 100 μl of either
tuberculin PPD or Cut4 or CFP21 at a final concentration of 5 μg/ml. Wells were blocked with
Dulbecco’s PBS pH 7.4 (Biowest, France), 2% BSA, 0.01% Tween 20 (Sigma-Aldrich, USA).
One hundred microliters of patient blood serum per well (dilution: 1/100 in buffer) were incu-
bated at 37˚C for one hour. After several washing steps with PBS-T and PBS, bound antibodies
were incubated with 100 μl of HRP-conjugated mouse anti-IgG secondary antibody (25 ng/
ml) (antibodies-online GmbH, Germany) for an additional 1 hour at 37˚C. After washing,
100 μl of enzymatic substrate tetramethylbenzidine (TMB; Bio-Rad, USA) and hydrogen per-
oxide were added and the reaction was stopped by adding 50 μl of 1 N phosphoric acid. The
intensity of the colorimetric signal was measured using a Bio-Rad plate reader at 450 nm.

Statistical analysis

Data analyses were performed using the SAS version 9.3 software package (SAS Institute,
USA). Due to the absence of normal distribution, continuous variables were described as
median and inter-quartile range (IQR) and were compared with Wilcoxon Mann-Whitney
tests and Chi-square test was used to compare percentages. The Spearman correlation coeffi-
cients were calculated to determine the relationship between continuous variables. The results
with corresponding P-values < 0.05 were considered to be statistically significant.

Results

Clinical and biological characteristics of the subjects

The population studied included 49 individuals negative for Mtb infection as defined by a neg-
ative IGRA, 27 subjects presenting a LTB infection (IGRA positive without evidence of active
TB), and 14 subjects with an active TB disease (Mtb culture positive). Subjects were untreated
for TB at time of sampling. Clinical characteristics are presented in Table 1. Among the 27
LTB patients, 5 had a history of active TB and were appropriately treated more than 10 years
before sampling and 8 had a clinical suspicion of active TB. Among the 14 patients presenting
an active form of the disease, nine were pulmonary cases, four presented both pulmonary and
extra-pulmonary localizations and one displayed a strictly gastro-intestinal localization. All active TB cases were confirmed by culture and *Mtb* specific probe utilization. A therapy against active TB was initiated after sampling for all the patients included in the active TB group.

Enumeration of spontaneous circulating ASCs directed against Cut4 and CFP21

Circulating cells secreting spontaneously IgG antibodies (Abs) directed against Cut4 or CFP21 were explored by ELISpot assays. Immunospots corresponding to the footprint of cells secreting Abs directed against Cut4 or CFP21 were enumerated after overnight culture without polyclonal activation ([Fig 1](#fig1) and [S1 Table](#s1table)). Anti-Cut4 and anti-CFP21 ASCs were observed in LTB and active TB patients but not in *Mtb*-uninfected controls ([Fig 1A](#fig1), [1B](#fig1) and [1C](#fig1)). Anti-Cut4 ASCs were detected in 11/14 subjects in the active TB group and in 4/17 patients of the LTB group, respectively (p = 0.004). Anti-CFP21 ASCs were detected in 11/14 patients of the active TB group vs. 5/17 subjects of the LTB group (p = 0.020) ([Fig 1B](#fig1) and [1C](#fig1)). The numbers of anti-Cut4 and anti-CFP21 ASCs displayed a moderate positive correlation (ρ = 0.597; p < 0.001, data not shown). No correlation was observed between T-spot. 1 TB results and anti-Cut4 or anti-CFP21 ASCs (ρ = 0.1; p = 0.8, data not shown).

Memory B cells directed against Cut4, CFP21 and PPD in LTB and *Mtb* uninfected individuals

Memory B cells response against Cut4 and CFP21 was explored in 11 LTB patients and six *Mtb* uninfected individuals in whom a second blood collection was performed ([Fig 2A](#fig2)). After 5 days of polyclonal activation, the ASCs directed against Cut4 and CFP21 were enumerated. Memory B cells secreting Abs directed against either Cut4 or CFP21 were present in 8/11 and in 9/11 patients with LTBI infection, respectively, and in two out of six *Mtb* uninfected individuals ([Fig 2B](#fig2) and [2C](#fig2)). The number of anti-Cut4 and anti-CFP21 memory B cells detected after polyclonal activation was not correlated (ρ = 0.286, p = 0.266, data not shown).

Memory B cell response against PPD was explored in parallel ([Fig 2D](#fig2)). No difference was observed for the number of anti-PPD IgG SCs between the two groups of patients (p = 1). As illustrated by [Fig 2D](#fig2), a number of anti-tuberculin PPD IgG SCs over 10 immunospots per 10^5

Table 1. Subjects characteristics.

Age; mean years (± SD)	TB negative n = 49	Latent TB n = 27	Active TB n = 14
52.1 (± 20.3)	58.0 (± 20.0)	41.6 (± 22.2)a	
Female (%)	57.1%	51.9%	21.4%b
TB localization; n (%): Pulmonary TB Pulmonary + extra-pulmonary TB Extra-pulmonary TB	Not applicable	Not applicable	9 (64.3%) 4 (28.7%) 1 (7%)
Sputum smear positive (%)	Not applicable	Not applicable	43.0%
T-spotTB; median (IQR) ESAT-6 INF-γ SCs CFP-10 INF-γ SCs	0 (0–0) 0 (0–1)	27 (14–69)c 30 (9–49)c	135 (23–200)d 115 (50–180)d

IQR: interquartile range.
Chi-Square and Mann-Whitney Wilcoxon tests
$p = 0.0101$ compared to LTB and $p = 0.05$ compared to TB negative
$p = 0.0184$ compared to TB negative
$p < 0.001$ compared to TB negative
$p < 0.001$ compared to negative TB and $p = 0.0074$ compared to LTB
$p < 0.001$ compared to negative TB and $p = 0.084$ compared to LTBI.

https://doi.org/10.1371/journal.pone.0196470.t001
B cells, was enumerated in subjects of TB negative and LTB groups. There was no correlation when comparing Cut4 IgG immunospots with PPD IgG immunospots results (\(\rho = -0.030; p = 0.909\)) but a weak positive correlation was found, between CFP21 IgG immunospots and PPD IgG immunospots (\(\rho = 0.457; p = 0.065\); data not shown).

Serum levels of IgG directed against Cut4, CFP21 and PPD

Levels of IgG anti-Cut4, anti-CFP21 and anti-PPD were explored by ELISA (Fig 3 and S2 Table). High index of anti-Cut4 IgG were only observed in the TB group but the mean value was not significantly higher than in the two other groups (\(p = 0.426\), and \(p = 0.319\), respectively), and no difference was observed between LTB and \(Mtb\) uninfected groups (\(p = 0.666\)).
(Fig 3A). High level of IgG anti-CFP21 were also observed in some subjects with TB (Fig 3B) and the antibodies levels tend to be higher in subjects with an TB than in LTB and Mtb
uninfected subjects (p = 0.146 and p = 0.121), respectively. No difference was observed between _Mtb_ uninfected and LTB groups (p = 0.321). Higher levels of IgG anti-PPD were observed in the TB group compared to LTB and _Mtb_ uninfected groups (p = 0.029, p = 0.012, respectively) (Fig 3C). A strong positive correlation between anti-CFP21 and anti-Cut4 IgG levels was found (ρ = 0.822, p < 0.001) whereas the correlations involving tuberculin PPD specific antibodies were only observed for anti-PPD and anti-CFP21 levels (anti-PPD and anti-

Fig 3. Serum antibody (IgG) levels against CFP21, Cut4 and PPD. The dot plots indicate level of antibodies directed against Cut4 (A), CFP21 (B), and PPD (C) in _Mtb_ uninfected subjects, LTB subjects, and TB subjects. Antibodies levels are indicated per index of the optical density (OD), corresponding to the ratio of sample OD450nm/blank OD450nm.

https://doi.org/10.1371/journal.pone.0196470.g003
CFP21 levels: $\rho = 0.531$, $p = 0.004$; anti-PPD IgG and anti-Cut4 levels: $\rho = 0.433$, $p = 0.021$; data not shown).

Discussion

Complex and dynamic interplay characterized interaction between bacilli and host immune response during *Mtb* infection. In this study we observed a special pattern of effector B cell response directed against CFP21 and Cut4 *Mtb* antigens and associated with the reactivation phase of TB.

Immunospots, that are the footprints of circulating anti-CFP21 and anti-Cut4 IgG SCs, were found in the majority of subjects with active TB, but only in a limited number of LTB subjects, and were not detected in the control group consisting of *Mtb*-uninfected individuals. Antigen-presentation and terminal differentiation in ASCs can occur in B cells of the granuloma. These cells form aggregates at the surface of the structure and are exposed to TB antigens produced by macrophages [10, 38, 39]. A study in nonhuman primates demonstrates that plasma cells are present in lung granulomas and thoracic lymph nodes and actively secret antibodies specific for *Mtb* antigens [40]. The generation of circulating plasma cells can be transiently observed in blood following antigen exposure. Hence, the detection of anti-CPF21 and anti-Cut4 IgG SCs can be regarded as an instant snapshot of the immune response to antigen at timing of blood collection. B cell response against others *Mtb* antigens have been previously reported during the different phases of TB. Hence, a higher number of circulating B cells directed against ESAT-6, CFP-10 and Ag85A were observed in patients with active TB compared to LTB and healthy controls [41]. Decay of ASCs directed against lipoarabinomannan and 38kDa antigen have been described during treatment of active TB [42]. Spontaneous release of TB antigen-specific Abs by in vitro-cultured, unstimulated PBMCs have been also reported in children with active TB [43].

In this study, the T-spot.®TB test was used to defined the TB status of the subjects. No correlations between anti-CFP21/Cut4 SCs and IFN-γ SCs directed against ESAT-6/CFP-10 were observed. This assay is based on the enumeration of IFN-γ secreting T cells directed against *Mtb* antigens. ESAT-6 and CFP-10 antigens are expressed in both the latent and active phase of the disease and encoded by the RD1 genetic locus absent from BCG vaccine strains [44]. The peptides used in the T-spot.®TB assay target CD4+ T cells. After short stimulation with ESAT-6 and CFP10 antigens the IFN-γ SCs displayed the CD4+ effector memory cell phenotype (CD45RA−, CCR7−) [45]. We identified subjects with LTB tested positive for ESAT-6 and CFP-10 IFN-γ SCs but negative or positive for anti-CFP21 and anti-Cut4 ASCs. This observation may be a consequence of different *Mtb* gene expression reflecting metabolic adaptation of the bacilli to different micro-environmental conditions at the distinct stages of LTB. During the entrance of the dormancy phase, mycobacteria have been shown to reside within infected foamy macrophages in granulomas, where they can acquire host lipids which accumulate in the form of intracellular lipid-loaded inclusion bodies [30, 46]. The massive accumulation of these lipids may constitute a source of carbon and energy required for bacilli survival during dormancy time-span [25, 26, 30, 47]. The degradation of fatty acids in the bacilli seems to occur during dormancy exit [26, 28]. It has been previously observed that in reactivated bacilli, a reduction in fatty acids levels coincides with an increased lipolytic enzymes activity [26, 48]. Whether Cut4 and CFP21 may be involved in the re-mobilization of the stored intracellular lipids represents an attractive hypothesis that still remains to be demonstrated. About 5–10% of the LTB will undergo a reactivation during their lifetime [48, 49]. A prospective study will need to be performed to establish if stratification of LTB according to anti-CFP2/Cut4 B cell response allows to identified individuals that are at highest risk of developing active TB.
The memory B cells response against Cut4 or CFP21 was also investigated in patients with LTB infection and in individuals uninfected by Mtb. Patients with active TB were not tested for memory B cells response because second blood sampling was not possible due to the rapid initiation of the therapy. *In vitro* polyclonal stimulation during a 5-day cell culture step induced the terminal differentiation of memory B cells into ASCs. Memory B cells specific to Cut4 and CFP21 were detected in subjects with a LTB infection whereas their corresponding serum antibodies were not detected. Memory B cells are remarkably long lived cells [37]. The presence of specific memory B cells against Cut4 and CFP21 provides evidence of a previous immune response against these antigens in LTB patients. Surprisingly, a memory B cells response against Cut4 and CFP21 was also observed in two Mtb uninfected individuals that were tested negative with the T-spot.® TB assay. This observation may be related to a prior Mtb infection followed by a spontaneous recovery. Memory B cell response against Cut4 may also result from past immunization with BCG vaccine CFP21 gene located in the RD2 region is deleted in most of BCG vaccine strains [50]. Since Cut4 and CFP21 amino acids sequences share 52% of identity and 66% of homology [25], the two proteins hold common epitopes and cross reaction may have occurred in BCG vaccinated subjects. Circulating memory B cells directed against tuberculin PPD were also detected in both LTB and Mtb uninfected subjects. Previous reports have shown that these cells remain detectable several years after BCG vaccine or anti-tuberculous treatment [51–52].

IgG Abs directed against Cut4 and CFP21 were assessed by ELISA. High levels of anti-Cut4 and CFP21 Abs were observed in some of the subjects with TB but the difference between Abs index in the TB group vs LTB or Mtb uninfected groups did not reach statistical significance. Previous reports have established that serum antibodies directed against CFP21 or Cut4 can be found in patients with active TB whereas low Abs titers were generally observed in LTB infected patients [8]. This discrepancy may be related to the small number of patients analyzed here and to the lower proportion of patients positive for Mtb in the sputum compared with the previous study. Indeed, we previously reported that smear positive individuals have highest levels of plasma anti-Cut4 and anti-CFP21 antibodies than smear negative subjects [8].

In conclusion, circulating B cells able to spontaneously generate specific antibodies directed against CFP21 and Cut4 were detected during active TB and in some LTB cases suggesting an ongoing exposure to these antigens. The possible roles of lipolytic enzymes in the physiology of Mtb dormancy and it reactivation, as well as their immunogenicity, highlight their possible usefulness as diagnostic and therapeutic targets.

Supporting information

S1 Table. Summary of results obtained with different tests. ‘.’: no test done. ‘+’: positive result for the corresponding test or done for the scan. ‘−’: negative result for the corresponding test. Status for TB: N: negative; L: latent TB; A: active TB. M: male; F: female. P: pulmonary TB; E-P: extra-pulmonary TB. Samples: f b: fresh blood; fz: frozen PBMCs; fz s: frozen serum. Without activation: #1 to # 69 included: population analyzed: Negative n = 38, Latent TB n = 17, Active TB n = 14. With polyclonal B cells activation: # 70 to # 86 included: population analyzed: Negative n = 6, Latent TB n = 11. Additional negative for ELISA assays: #87 to # 92 included: Negative: n = 6. A Lip B spot assay has been done on a fresh blood sample, PBMCs have been frozen prior to a polyclonal B cells activation and serum or plasma has been collected for ELISA analysis. Nota bene: ELISA thresholds have been established by analyzing a larger series of sera coming from Montpellier hospital collections (i.e. 286 sera in total). These thresholds correspond to a
biological cut-off and correspond to the mean of the negative ratios (OD450nm negative sample / OD450nm blank), plus one standard deviation.

(DOCX)

S2 Table. ELISA results obtained with the different antigens. Results are express as index of the optical density (OD), corresponding to the ratio of sample OD450nm/blank OD450nm. (DOCX)

Acknowledgments

We would like to thank Dr. Jean-Pierre Vendrell for all the enlightening conversations and for his advice.

Author Contributions

Conceptualization: Arnaud Bourdin, Pierre-Alain Rubbo, Laurent Kremer, Stéphane Canaan, Edouard Tuaillon.

Data curation: Wendy Rénier, Edouard Tuaillon.

Formal analysis: Wendy Rénier, Pierre-Alain Rubbo, Marianne Peries, Dominique Terru, Sylvain Godreuil, Edouard Tuaillon.

Funding acquisition: Edouard Tuaillon.

Investigation: Wendy Rénier, Pierre-Alain Rubbo, Luc Dedieu, Sophie Bendriss, Laurent Kremer, Stéphane Canaan, Dominique Terru, Edouard Tuaillon.

Methodology: Marianne Peries, Luc Dedieu, Nicolas Nagot, Edouard Tuaillon.

Project administration: Edouard Tuaillon.

Resources: Philippe Van de Perre, Edouard Tuaillon.

Supervision: Pierre-Alain Rubbo, Laurent Kremer, Stéphane Canaan, Sylvain Godreuil, Nicolas Nagot, Philippe Van de Perre, Edouard Tuaillon.

Validation: Wendy Rénier, Pierre-Alain Rubbo, Philippe Van de Perre, Edouard Tuaillon.

Visualization: Wendy Rénier.

Writing – original draft: Wendy Rénier, Pierre-Alain Rubbo, Philippe Van de Perre, Edouard Tuaillon.

Writing – review & editing: Wendy Rénier, Arnaud Bourdin, Pierre-Alain Rubbo, Marianne Peries, Luc Dedieu, Sophie Bendriss, Laurent Kremer, Stéphane Canaan, Dominique Terru, Sylvain Godreuil, Nicolas Nagot, Philippe Van de Perre, Edouard Tuaillon.

References

1. World-330 Health-Organization. Global Tuberculosis Report. 2017.

2. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, and Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013; 31: 475–527. https://doi.org/10.1146/annurev-immunol-032712-095939 PMID: 23516984

3. Pai M, Zwerling A, and Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med. 2008; 149: 177–184. PMID: 18593687

4. Hinks TS, Varsani N, Godsiiff DT, Bull TC, Nash KL, McLuckie L, et al. High background rates of positive tuberculosis-specific interferon-gamma release assays in a low prevalence region of UK: a surveillance study. BMC Infect Dis. 2012; 12: 339. https://doi.org/10.1186/1471-2334-12-339 PMID: 22316965
5. Carrère-Kremer S, Rubbo PA, Pisoni A, Bendriss S, Marin G, Peries M, et al. High IFN-γ Release and Impaired Capacity of Multi-Cytokine Secretion in IGRA Supernatants Are Associated with Active Tuberculosis. PLoS One. 2016; 11(9): e0162137. https://doi.org/10.1371/journal.pone.0162137 PMID: 27603919

6. Diei R, Loddenkemper R, and Nienhaus A. Evidence-based comparison of commercial interferon-gamma release assays for detecting active TB: a metaanalysis. Chest. 2010; 137: 952–968. https://doi.org/10.1378/chest.09-2350 PMID: 20022968

7. Abubakar I, Stagg H R, Whitworth H, and Lalvani A. How should I interpret an interferon gamma release assay result for tuberculosis infection? Thorax. 2013; 68: 298–301. https://doi.org/10.1136/thoraxjnl-2013-203247 PMID: 23400368

8. Steingart KR, Flores LL, Dendukuri N, Schiller I, Pradl L, Titukhina M, et al. Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an updated systematic review and meta-analysis. PLoS Med. 2011; 8: e1001062. https://doi.org/10.1371/journal.pmed.1001062 PMID: 21857806

9. Maglione PJ, and Chan J. How B cells shape the immune response against Mycobacterium tuberculosis. Eur J Immunol 2009; 39: 676–686. https://doi.org/10.1002/eji.200839148 PMID: 19283721

10. Kozakiewicz L, Phua J, Flynn J, and Chan J. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol. 2013; 783: 225–250. https://doi.org/10.1007/978-1-4614-6111-1_12 PMID: 23468112

11. Ulrichs T, Kosmiadi GA, Trusov V, Jorg S, Pradl L, Titukhina M, et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol. 2004; 204: 217–228. https://doi.org/10.1002/path.1628 PMID: 15376257

12. Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV, and Orme IM. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect Immun. 2001; 69: 1722–1728. https://doi.org/10.1128/IAI.69.6.1722-1728.2001 PMID: 11179349

13. Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS et al. A functional role for anti-Cut4 and CFP21 ASCs in active and latent tuberculosis. Cell 2016; 167(2): 433–443. https://doi.org/10.1016/j.cell.2016.08.072 PMID: 27667685

14. Zimmermann N, Thomann V, Hu B, Köhler AB, Imai-Matsushima A, Locht C et al. Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Mol Biol. 2016; 8: 1325–39. https://doi.org/10.15252/emmm.201606330 PMID: 27729386

15. Brust B, Lecoufle M, Tuaillon E, Dedieu L, Canaan S, Valverde V, and Kremer L. Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis. PLoS One. 2011; 6:e25078. https://doi.org/10.1371/journal.pone.0025078 PMID: 21666416

16. Mishra KC, de Chastellier C, Narayana Y, Bitani P, Brown AK, Besra GS, et al. Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY. Infect Immun. 2008; 76: 127–140. https://doi.org/10.1128/IAI.00410-07 PMID: 17938218

17. Weldingh K, Andersen P. Immunological evaluation of novel Mycobacterium tuberculosis culture filtrate proteins. FEMS Immunol Med Microbiol. 1999; 23: 159–64. PMID: 10076913

18. Sable SB, Kumar R, Kalra M, Verma I, Khuller GK, Dobos K, et al. Peripheral blood and pleural fluid mononuclear cell responses to low-molecular-mass secretory polypeptides of Mycobacterium tuberculosis in human models of immunity to tuberculosis. Infect Immun. 2005; 73: 3547–58. https://doi.org/10.1128/IAI.73.6.3547-3558.2005 PMID: 15908384

19. Wang BL, Xu Y, Li ZM, Xu YM, Wang HH. Antibody response to four secretory proteins from Mycobacterium tuberculosis and their complex antigen in TB patients. Int J Tuberc Lung Dis. 2005; 9: 1327–34. PMID: 16466054

20. Fu R, Wang C, Shi C, Lu M, Fang Z, Lu J, et al. An improved whole-blood gamma interferon assay based on the CFP21-MPT64 fusion protein. Clin Vaccine Immunol. 2009; 16: 686–81. https://doi.org/10.1128/CVI.00486-08 PMID: 19279170

21. Wang C, Chen Z, Fu R, Zhang Y, Chen L, Huang L, et al. A DNA vaccine expressing CFP21 and MPT64 fusion protein enhances BCG-induced protective immunity against Mycobacterium tuberculosis infection in mice. Med Microbiol Immunol. 2011; 200: 165–75. https://doi.org/10.1007/s00430-011-0188-z PMID: 21340709

22. West NP, Chow FM, Randall EJ, Wu J, Chen J, Ribeiro JM, et al. Cullinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification. Faseb J. 2009; 23: 1694–1704. https://doi.org/10.1096/fj.08-114421 PMID: 19225166

23. de Chastellier C. The many niches and strategies used by pathogenic mycobacteria for survival within host macrophages. Immunobiology. 2009; 214: 526–542. https://doi.org/10.1016/j.imbio.2008.12.005 PMID: 19261352
24. Delorme V, Diomande SV, Dedieu L, Cavalier JF, Carriere F, Kremer L, et al. MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth. PLoS One. 2012; 7: e46493. https://doi.org/10.1371/journal.pone.0046493
PMID: 23029536

25. Dedieu L, Serveau-Avesque C, Kremer L, and Canaan S. Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research. Biochimie. 2013; 95: 66–73. https://doi.org/10.1016/j.biochi.2012.07.006
PMID: 22819994

26. Kapoor N, Pawar S, Sirakova TD, Deb C, Warren WL, and Kolattukudy PE. Human Granuloma In Vitro Model, for TB Dormancy and Resuscitation. PLoS One. 2013; 8: e53657. https://doi.org/10.1371/journal.pone.0053657
PMID: 23308269

27. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol. 2006; 8: 218–232. https://doi.org/10.1111/j.1462-5822.2005.00612.x
PMID: 16441433

28. Peyron P, Vaubourgeois J, Poquet Y, Levillain F, Botanch C, Bardou F, et al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 2008; 4: e1000204. https://doi.org/10.1371/journal.ppat.1000204
PMID: 19002241

29. Daniel J, Maamar H, Deb C, Sirakova TD, and Kolattukudy PE. Mycobacterium tuberculos uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011; 7: e1002093. https://doi.org/10.1371/journal.ppat.1002093
PMID: 21731490

30. Caire-Brandli I, Papadopoulos A, Malaga W, Marais D, Canaan S, Thilo L., et al. Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis. Infect Immun. 2014; 82: 476–490. https://doi.org/10.1128/IAI.01196-13
PMID: 24478064

31. Jourdan M, Caraux A, Caron G, Robert N, Fiol G, Reme T, et al. Characterization of a transitional pre-plasmablast population in the process of human B cell to plasma cell differentiation. J Immunol. 2011; 187: 3931–3941. https://doi.org/10.4049/jimmunol.1100129
PMID: 21918187

32. Vendrell JP. Peripheral Blood Naive and Memory B Cells. Measuring Immunity: Basic Science and Clinical Practice. Academic Press. 2004; 277–292. ISBN: 9780080479330.

33. Jourdan M, Caraux A, Caron G, Robert N, Fiol G, Reme T, et al. Characterization of a transitional pre-plasmablast population in the process of human B cell to plasma cell differentiation. J Immunol. 2011; 187: 3931–3941. https://doi.org/10.4049/jimmunol.1100129
PMID: 21918187

34. Fournier AM, Baillat V, Alix-Panabieres C, Fondero JM, Merle C, Segondy M, et al. Dynamics of spontaneous HIV-1 specific and non-specific B-cell responses in patients receiving antiretroviral therapy. AIDS. 16: 1755–1760. PMID: 12218386

35. Lee FE, Falsey AR, Halliley JL, Sanz I, and Walsh EE. Circulating antibody-secreting cells during acute respiratory syncytial virus infection in adults. J Infect Dis. 2010; 202: 1659–1666. https://doi.org/10.1086/657158
PMID: 20979459

36. Tuaillon E, Valea D, Becquart P, Al Tabaa Y, Meda N, Bolloro K, et al. Human milk derived B cells: a highly activated switched memory cell population primed to secrete antibodies. J Immunol. 2009; 182: 7155–7162. https://doi.org/10.4049/jimmunol.0803107
PMID: 19454712

37. Amanna IJ, Carlson NE, and Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med. 2007; 357: 1903–1915. https://doi.org/10.1066/NEJMoa066092
PMID: 17989383

38. Kahnert A, Hopken UE, Stein M, Bandermann S, Lipp M, and Kaufmann SH. Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis. 2007; 195: 46–54. https://doi.org/10.1086/515208
PMID: 17520008

39. Phuah JY, Mattila JT, Lin PL, Flynn JL. Activated B cells in the granulomas of nonhuman primates infected with Mycobacterium tuberculosis. Am J Pathol. 2012; 181: 508–514. https://doi.org/10.1016/j.ajpath.2012.05.008
PMID: 22721647

40. Sebina I, Biraro IA, Dockrell HM, Elliott AM, Cose S. Circulating B-lymphocytes as potential biomarkers of tuberculosis infection activity. PLoS One. 2014; 5(9): e106796.

41. Sousa AO, Wargnier A, Poinsignon Y, Simonney N, Gerber F, Lavergne F, et al. Kinetics of circulating antibodies, immune complex and specific antibody-secreting cells in tuberculosis patients during 6 months of antimicrobial therapy. Tuber Lung Dis. 2000; 80: 27–33. PMID: 10967381

Anti-Cut4 and CFP21 ASCs in active and latent tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196470 April 30, 2018 13 / 14
43. Raqib R, Mondal D, Karim MA, Chowdhury F, Ahmed S, 426 Luby S, et al. Detection of antibodies secreted from circulating Mycobacterium tuberculosis-specific plasma cells in the diagnosis of pediatric tuberculosis. Clin Vaccine Immunol. 2009; 16: 521–527. https://doi.org/10.1128/CVI.00391-08 PMID: 19193833

44. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, and Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996; 178: 1274–1282. PMID: 8631702

45. Manz RA, Thiel A, and Radbruch A. Lifetime of plasma cells in the bone marrow. Nature. 1997; 388: 133–134. https://doi.org/10.1038/40540 PMID: 9217150

46. Garton NJ, Christensen H, Minnikin DE, Adegbola RA, and Barer MR. Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology. 2002; 148: 2951–2958. https://doi.org/10.1099/00221287-148-10-2951 PMID: 12368428

47. Neyrolles O, Hernandez-Pando R, Pietri-Roussel F, Fornes P, Tailleux L, Barrios JA, et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One. 2006; 1:e43. https://doi.org/10.1371/journal.pone.0000043 PMID: 17183672

48. Vynnycky E, and Fine PE. Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol. 2000; 152: 247–263. PMID: 10933272

49. Horsburgh CR Jr. Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med. 2004; 350:2060–2067. https://doi.org/10.1056/NEJMsa031667 PMID: 15141044

50. Orduña P, Cevallos MA, de León SP, Arvizu A, Hernández-González IL, Mendoza-Hernández G, López-Vidal Y. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC Genomics. 2011; 8: 12: 493. https://doi.org/10.1186/1471-2164-12-493 PMID: 21981907

51. Yang Y, Kulka K, Montelaro RC, Reinhart TA, Sissons J, Aderem A, et al. A Hydrolase of Trehalose Dimycolate Induces Nutrient Influx and Stress Sensitivity to Balance Intracellular Growth of Mycobacterium tuberculosis. Cell Host Microbe. 2014; 15:153–163. https://doi.org/10.1016/j.chom.2014.01.008 PMID: 24528862

52. Sebina I, Cliff JM, Smith SG, Nogaro S, Webb EL, Riley EM450, Dockrell H. M., Elliott A. M., Hafalla J. C., and Cose S. Long-Lived Memory B-Cell Responses following BCG Vaccination. PLoS One. 2012; 7: e51381. https://doi.org/10.1371/journal.pone.0051381 PMID: 23240017