On the importance of producing small impedance particles with prescribed boundary impedance

Alexander G. Ramm
Department of Mathematics, Kansas State University,
Manhattan, KS 66506, USA
ramm@math.ksu.edu
http://www.math.ksu.edu/~ramm

Abstract

The problem of practical preparing small impedance particles with a prescribed boundary impedance is formulated and its importance in physics and technology is discussed. It is shown that if this problem is solved then one can easily prepare materials with a desired refraction coefficient and materials with a desired radiation pattern.

1 Introduction

In this section the basic problem of practical preparing (producing, manufacturing) of small impedance particles is discussed. Wave scattering by many small impedance particles is developed in [3], where the basic physical assumption is \(a \ll d \ll \lambda \). Here \(a \) is the characteristic size of the small particles, \(d \) is the minimal distance between neighboring particles, and \(\lambda \) is the wave length in the medium. We refer for this theory to [3]. It is proved there that if one prepares many small particles with prescribed boundary impedance and embed these particles with a specified density in a given material, then one obtains a material whose refraction coefficient approximates any desired refraction coefficient with an arbitrary small error. In particular, one can create meta-materials. How to embed small particles into a given material physicists know. Therefore the basic practical problem of preparing many small impedance particles with prescribed boundary impedance is of great interest both technologically and physically.

In section 2 the basic definitions are given. It is explained what a small particle is, what an impedance particle is, what a boundary impedance is.

In section 3 a recipe for creating materials with a desired refraction coefficient is formulated. This recipe is taken from [3].
2 Basic definitions

Let $D_1 \subset \mathbb{R}^3$ be a bounded domain with a connected smooth boundary S_1, $D'_1 := \mathbb{R}^3 \setminus D_1$ be the unbounded exterior domain and S^2 be the unit sphere in \mathbb{R}^3.

Consider the scattering problem:

\[
(\nabla^2 + k^2 n_0^2)u = 0 \quad \text{in} \quad D'_1, \quad u_N = \zeta_1 u \quad \text{on} \quad S_1, \quad u = e^{ik\alpha \cdot x} + v, \tag{1}
\]

where $k > 0$ is the wave number, a constant, $\alpha \in S^2$ is a unit vector in the direction of the propagation of the incident plane wave $e^{ik\alpha \cdot x}$, N is the unit normal to S_1 pointing out of D_1, u_N is the normal derivative of u, ζ_1 is the boundary impedance, $\text{Im} \zeta_1 \leq 0$, $n_0 > 0$ is the refraction coefficient of the small impedance particle D, n_0 is a constant, the scattered field v satisfies the radiation condition

\[
v_r - ikv = o\left(\frac{1}{r}\right), \quad r := |x| \to \infty. \tag{2}
\]

The scattering amplitude $A(\beta, \alpha, k)$ is defined by the following formula:

\[
v = A(\beta, \alpha, k)\frac{e^{ikr}}{r} + o\left(\frac{1}{r}\right), \quad r := |x| \to \infty, \quad \frac{x}{r} = \beta, \tag{3}
\]

where $\alpha, \beta \in S^2$, β is the direction of the scattered wave, α is the direction of the incident wave. A particle of a characteristic size a is called small if it is much smaller than the wave length, $k n_0 a \ll 1$.

The function $A(\beta, \alpha, k)$ is called the scattering amplitude. It is known (see [1], p.25, or [2]) that the solution to the scattering problem (1)-(3) does exist and is unique.

If there are many small impedance particles D_j, embedded in a bounded domain D filled with material whose refraction coefficient is n_0, then the wave scattering problem can be formulated as follows:

\[
(\nabla^2 + k^2 n_0^2)u = 0 \quad \text{in} \quad D \tag{4}
\]

\[
u_N = \zeta_m u \quad \text{on} \quad S_m, \quad 1 \leq m \leq M, \tag{5}
\]

\[
u = u_0(x) + v, \tag{6}
\]

where the scattered field v satisfies the radiation condition, $\text{Im} \zeta_m \leq 0$, M is the total number of the embedded particles. The incident field u_0 is assumed known. It satisfies equation (1) in \mathbb{R}^3, and as was noted earlier, $n_0 = 1$ in D'. For simplicity we assume that all small particles are of the same characteristic size a.

Let G be the Green’s function of the scattering problem in the absence of the embedded particles. Outside D the refraction coefficient assume to be equal to 1. Assume that the distribution of small particles is given by the formula

\[
\mathcal{N}(\Delta) = \frac{1}{a^{2-\kappa}} \int_{\Delta} N(x)dx[1 + o(1)], \quad a \to 0, \tag{7}
\]

where $\mathcal{N}(\Delta)$ is the number of particles in an arbitrary open subset of D, $N(x) \geq 0$ is a given continuous function, $\kappa \in [0, 1)$ is a number, and the boundary impedance is defined as follows:

\[
\zeta_m = \frac{h_m}{a^\kappa}, \tag{8}
\]
where \(\text{Im}h_m \leq 0 \), \(h_m := h(x_m) \), \(x_m \in D_m \) is an arbitrary point and \(h(x) \) is a given continuous function in \(D \). This function, number \(\kappa \) and the function \(N(x) \) can be chosen by the experimenter. It is proved in \([3]\), p. 48, that the field \(u \) in \(D \) satisfies, as \(a \to 0 \), the following integral equation:

\[
 u(x) = u_0(x) - c_0 \int_D G(x, y)h(y)N(y)dy, \quad c_0 := \mathcal{S}/a^2, \tag{9}
\]

where \(\mathcal{S} \) is the surface area of a small particle, \(h(x) \) and \(N(x) \) are defined in \((7)-(8)\). For simplicity we assume here that \(\mathcal{S} \) is the same for all small particles. It follows from \((9)\) that the new refraction coefficient in \(D \), which one gets after embedding many small impedance particles, is

\[
 n(x) = [n_0^2 - c_0k^{-2}h(x)N(x)]^{1/2}. \tag{10}
\]

Since \(h(x) \) and \(N(x) \) are at our disposal, one can get by formula \((10)\) any desirable refraction coefficient, such that \(\text{Im}n^2(x) \geq 0 \).

Why the equation \((5)\) should make sense physically regardless of the size of the particle?

Because a problem whose solution exists and is unique must have sense physically.

Why the small impedance particles with a prescribed boundary impedance should exist?

Because the particles with \(\zeta = \infty \), acoustically hard particles, do exist; the particles with \(\zeta = 0 \), acoustically hard particles, do exist. Small particles with any "intermediate" value of the boundary impedance should also exist. The problem we raise is how to produce practically (fabricate) such particles.

3 Recipe for creating material with a desired refraction coefficient

Let us formulate the result in the following theorem:

Theorem 1. Given \(n_0^2(x) \) and a bounded domain \(\Omega \), one can create in \(\Omega \) a material with a desired refraction coefficient \(n(x) \), \(\text{Im}n^2(x) \geq 0 \), by embedding \(M = O\left(\frac{1}{\varepsilon^2}\right) \) small impedance particles according to the distribution law \((7)\). The refraction coefficient \(n_a(x) \), corresponding to a finite \(a \), approximates the desired refraction coefficient \(n(x) \) in the sense

\[
 \lim_{a \to 0} n_a(x) = n(x). \tag{11}
\]

The functions \(h(x) \) and \(N(x) \) defined in \((7)-(8)\) are found by the Steps 1, 2 of the Recipe formulated below; see also p. 53 in \([3]\).

Finally, let us discuss briefly the possibility to create material with negative refraction coefficient. By formulas \((3.1.1)\) and \((3.1.2)\) in \([3]\) one gets \(n(x) < 0 \) if the argument of \(n_0^2(x) - k^{-2}c_0N(x)h(x) \) is equal to \(2\pi \). Assume that \(n_0^2(x) > 0 \). We know that \(k^{-2}cN(x) \geq 0 \). Let us take \(h(x) = |h(x)|e^{i\varphi} \), where \(\varphi > 0 \) is very small, that is, \(\text{Im}h(x) \geq 0 \) and \(\text{Im}h(x) \) is very small. One proves (see also \([3]\), p.52) that equation \((9)\) is uniquely solvable for \(\text{Im} \geq 0 \) sufficiently small. For such \(h(x) \) one has \(\text{arg}(n_0^2(x) - k^{-2}c_0N(x)h(x)) \) is very close to \(2\pi \) and the square root in \((10)\) is negative, provided that \(\text{Re}(n_0^2(x) - k^{-2}c_0N(x)h(x)) > 0 \). This argument shows that it is possible to create materials with negative refraction coefficient.
n(x) by embedding in a given material many small particles with properly chosen boundary impedances.

A recipe for creating materials

Problem 1. Given a material with known \(n_0(x)\) in a bounded domain \(D\) and \(n_0(x) = 1\) in \(D'\), one wants to create in \(D\) a material with a desired \(n(x)\).

Step 1. Given \(n_0^2(x)\) and \(n^2(x)\), calculate \(p(x) := k^2[n_0^2(x) - n^2(x)]\). This is a trivial step.

Step 2. Given \(p(x)\) calculate \(h(x)\) and \(N(x)\) from the equation \(p(x) = c_0 h(c) N(x)\). The constant \(c_0\) one can take to be \(c_0 = 4\pi\) if the small particles are balls of radius \(a\). This we can assume without loss of generality if we are interested in creating materials with a desired refraction coefficient.

There are infinitely many solutions \(h\) and \(N\) to the above equation. For example, one can fix arbitrarily \(N(x) > 0\) in \(D\), \(N(x) = 0\) in \(D'\), and find \(h(x) = h_1(x) + ih_2(x)\) by the formulas \(h_1(x) = \frac{p_1(x)}{4\pi N(x)}\), \(h_2(x) = \frac{p_2(x)}{4\pi N(x)}\). Here \(p_1(x) = \text{Re}(p(x))\), \(p_2(x) = \text{Im}(p(x))\).

Note that \(\text{Im}n^2(x) \geq 0\) implies \(\text{Im}h(x) \leq 0\), so our assumption \(\text{Im}h(x) \leq 0\) is satisfied. For example, one may take \(N(x) = \text{const} > 0\).

Step 2 is also trivial.

Step 3. Given \(N(x)\) and \(h(x) = h_1(x) + ih_2(x)\), distribute \(M = O\left(\frac{1}{d^3}\right)\) small impedance balls of radius \(a\) in the bounded region \(D\) according to the distribution law (7), where \(\kappa \in [0, 1)\) is the number (parameter) that can be chosen by the experimenter.

Note that condition \(d \gg a\) is satisfied automatically for the distribution law (7). Indeed, if \(d\) is the minimal distance between neighboring particles, then there are at most \(\frac{1}{d^3}\) particles in a cube with the unit side, and since \(D\) is a bounded domain there are at most \(O\left(\frac{1}{d^3}\right)\) of small particles in \(D\). On the other hand, by the distribution law (7) one has \(N(D) = O\left(\frac{1}{d^3}\right)\).

Thus \(O\left(\frac{1}{d^2}\right) = O\left(\frac{1}{a^2}\right)\). Therefore \(d = O\left(a^{\frac{2}{3}}\right)\). Consequently, condition \(a \ll d \ll \lambda\) is satisfied, \(\lambda = \frac{2\pi}{kn_0}\). Moreover \(\lim_{a \to 0} \frac{a}{d(a)} = 0\).

References

[1] A.G.Ramm, *Scattering by obstacles*, D.Reidel, Dordrecht, 1986.

[2] A.G.Ramm, *Inverse problems*, Springer, New York, 2005.

[3] A.G.Ramm, *Scattering of acoustic and electromagnetic waves by small bodies of arbitrary shapes. Applications to creating new engineered materials*, Momentum Press, New York, 2013.