Genetics and Resistance

Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes

Meriem Aoun, James A. Kolmer, Matthew N. Rouse, Shiaoman Chao, Worku Denbel Bulbula, Elias M. Elias, and Maricelis Acevedo†

First author: Department of Plant Pathology, North Dakota State University, Fargo 58108; second and third authors: United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, and Department of Plant Pathology, University of Minnesota, St. Paul 55108; fourth author: USDA-ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, ND, 58102; fifth author: Ethiopian Institute of Agricultural Research, P.O. Box 32, Debre Zeit, Ethiopia; sixth author: Department of Plant Sciences, North Dakota State University; and seventh author: International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY. Accepted for publication 17 July 2017.

Leaf rust, caused by *Puccinia triticina*, and stem rust, caused by *P. graminis* f. sp. *tritici*, are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (*Lr*) genes to *P. triticina* race BBBBBQJ and stem rust resistance (*Sr*) genes to *P. graminis* f. sp. *tritici* race TTKSK in durum accessions. Eight leaf rust-resistant genotypes were used to develop biparental populations. Accessions PI 192051 and PI 534304 were also resistant to *P. graminis* f. sp. *tritici* race TTKSK. The resulting progenies were phenotyped for leaf rust and stem rust resistance at seedling stage. The *Lr* and *Sr* genes were mapped in five populations using single-nucleotide polymorphisms and bulked segregant analysis. Five leaf-rust-resistant genotypes carried single dominant *Lr* genes whereas, in the remaining accessions, there was deviation from the expected segregation ratio of a single dominant *Lr* gene. Seven genotypes carried *Sr* genes different from those previously characterized in durum. The single dominant *Lr* genes in PI 209274, PI 244061, PI 387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. The *Sr* gene in PI 534304 mapped to 6AL and is most likely *Sr13*, while the *Sr* gene in PI 209251 could be uncharacterized in durum.

ABSTRACT

Durum wheat (*Triticum turgidum* L. var. *durum* (Desf.)), an allotetraploid (2n = 4x = 28), is economically an important cereal crop used primarily for pasta production. Durum wheat is grown mainly in the Mediterranean countries, Canada, Mexico, the United States, and Ethiopia (Goyeau et al. 2012; Habash et al. 2009; Ordon˜ez and Kolmer 2007b; Vavilov 1951). North Dakota is the largest durum-producing state in the United States, accounting for more than 50% of the total U.S. production, which is worth more than $300 million per year (NASS 2016).

Wheat rust diseases have historically been a major constraint for wheat production, severely reducing yield and kernel quality. Durum wheat has traditionally been considered more resistant to leaf rust (caused by *Puccinia triticina* Eriks.) than common wheat (*T. aestivum* L.; 2n = 6x = 42). However, in recent years, *P. triticina* races highly virulent on resistant durum wheat cultivars are increasingly affecting durum production worldwide (Goyeau et al. 2006; Huerta-Espino et al. 2009; Singh et al. 2004). For instance, *P. triticina* race BBBBBQJ and its variants, with virulence to leaf rust (*Lr*) gene *Lr72*, overcame the resistance of the adapted CIMMYT durum wheat cultivars in northwestern Mexico, which resulted in severe yield losses (Huerta-Espino et al. 2011; Singh et al. 2004). Similarly, increased susceptibility of durum wheat cultivars to leaf rust occurred in other durum-producing areas, including the Mediterranean basin, the Middle East, and Chile (Goyeau et al. 2012; Martinez et al. 2005; Ordon˜ez and Kolmer 2007a; Singh et al. 2004). In the United States, a race with a virulence phenotype

†Corresponding author: M. Acevedo; E-mail: ma934@cornell.edu

*The e-Xtra logo stands for “electronic extra” and indicates that one supplementary table is published online.

This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 2017.
However, in recent years, *L. subsp. Sr13* associated with stem rust resistance are limited compared with those associated with the alien translocations carrying the genes is required before wheat from wild relatives, thus reducing the linkage drag associated with the resistance levels conferred by these *Sr* genes. For instance, only a few of these *Ug99*-effective *Sr* genes are effective to a broad spectrum of other *P. graminis* f. sp. *tritici* races (Singh et al. 2015; Yu et al. 2014). In addition, many of these *Sr* genes were transferred to wheat from wild relatives, thus reducing the linkage drag associated with the alleles translocated carrying the genes is required before using these resistance sources in breeding lines (Singh et al. 2011, 2015).

In durum wheat, the mapped *Sr* genes and quantitative trait loci associated with stem rust resistance are limited compared with those mapped in common wheat. The resistance to race TTKSK in durum wheat, particularly in the North American cultivars, is mainly due to the presence of *Sr13* originating from the emmer wheat (*T. turgidum*) subsp. *dicoccum* “Khalpi” (Jin et al. 2007; Klindworth et al. 2007). However, in recent years, *P. graminis* f. sp. *tritici* races different from the *Ug99* lineage group (TRTTF and JRCQ) have been identified in Ethiopia with combined virulence on *Sr13* and *Sr9e* (Olivera et al. 2012, 2015). Therefore, widening the global genetic diversity of stem rust resistance in durum wheat germplasm is urgently required for more durable resistance.

Whereas quantitative adult plant resistance, often based on several minor alleles or genes (Gustafson and Shaner 1982), is a very important objective in breeding programs, pyramiding several qualitative resistance genes that can be identified at the seedling stage is another approach to achieve durable resistance. Seedling tests allow for screening many lines in a short period of time and small space compared with adult-plant tests in field trials (Letta et al. 2014).

The use of biparental mapping populations has been the standard approach to identify the chromosomal locations of plant disease resistance loci. Bulked segregant analysis (BSA) is a quick and relatively inexpensive method to efficiently identify molecular markers associated with a trait response. The procedure consists of comparing two pooled DNA samples of individuals from a segregating population originating from a single cross. Within each bulk, the individuals are identical for the trait or gene of interest but are segregating randomly for all other genes. The two bulks that are contrasting for a trait such as response to a disease are analyzed to find molecular markers that differentiate them. Therefore, the markers that are polymorphic between the pools will be linked genetically to the locus that is associated with the trait used to make the bulk (Michelmore et al. 1991).

The objective of the current study was to determine the inheritance of leaf rust (*P. triticina* race *BBBJQ*) and stem rust (*P. graminis* f. sp. *tritici* race TTKSK) resistance at the seedling stage in eight durum wheat genotypes selected from the United States Department of Agriculture (USDA) National Small Grains Collection (NSGC), Aberdeen, ID. Genomic regions of the *Lr* and *Sr* genes were mapped in five biparental populations using high-density single-nucleotide polymorphism (SNP) markers and the BSA approach.

MATERIALS AND METHODS

Biparental crosses and characterization of leaf rust resistance inheritance. Eight resistant genotypes were selected from the USDA-NSGC for their low infection types to *P. triticina* race *BBBJQ* to develop biparental populations (Table 1). These genotypes were plant introduction (PI) 534304, PI 313096, PI 387263, PI 209274, PI 278379, PI 244061, PI 192051, and PI 195693. These genotypes were previously reported to carry resistance to several *P. triticina* races at the seedling stage in the greenhouse and at the adult-plant stage in the field in several locations worldwide (Aoun et al. 2016). These resistant parental lines were originally collected from Ethiopia, Portugal, Cyprus, Australia, Malta, and Yemen. All of these genotypes are landraces, except for PI 209274, which is a breeding line. The susceptible parents of the crosses were ‘Rusty’ or ‘Divide’. ‘Divide’ was released in 2005 by North Dakota State University (NDSU) and currently occupies approximately 30% of the total durum wheat acreage in North Dakota (NASS 2015). The rust-susceptible line Rusty (registration number GS-155, PI 639869) was released in 2004 by the USDA Agricultural Research Service (ARS) Northern Crops Science Laboratory, Fargo, ND and NDSU (Klindworth et al. 2006). Crosses between resistant and susceptible parents were made at the North Dakota Agricultural Experiment Station Greenhouse Complex, Fargo, during summer 2013. In all of the biparental populations, Rusty and Divide were the female parents of the crosses and the resistant genotypes were the pollen donors. Biparental crosses were advanced using the single-seed-descent method to generation *F₀*, except for the biparental crosses involving the resistant genotypes PI 192051, PI 244061, and PI 195693, which were advanced to generation *F₂*. The biparental populations were screened at the seedling stage with *P. triticina* race *BBBJQ* during winter months (December to February) in the biosafety level-two facility at the Agricultural Experiment Station Greenhouse Complex in Fargo, ND, in generations *F₁*, *F₂*, *F₃*, and *F₅*.

The single-pustule isolate CA1.2 of race *BBBJQ* was originally isolated from a sample collected from durum wheat fields in California. Its virulence/avirulence phenotype was given based on infection types (IT) at the seedling stage on the international differential sets of ‘Thatcher’ wheat near-isogenic lines, with each line carrying a single *Lr* resistance gene (Long and Kolmer 1989). The virulence/avirulence profile of race *BBBJQ* is *LrB*, 10, 14h, 20, and 39*Lr1*, 2a, 2c, 3a, 3ka, 3bg, 9, 11, 14a, 16, 17, 18, 24, 26, 28, and 30.

The inheritance of the gene or genes was determined in each of the biparental crosses. For the crosses that were evaluated at *F₂*, five to six seedlings were evaluated for response to race *BBBJQ*. For the crosses that were tested at the *F₂* stage, 118 to 342 plants were evaluated for disease response. At the *F₃* generation, approximately 18 to 30 seedlings from each *F₂* family (101 to 255 families/population) were screened. The *F₅* recombinant inbred lines (RIL) from each
tested population were evaluated in a randomized complete block design, with three replications with five to eight seeds from each RIL per replicate. For all tests, the seedlings were grown in the greenhouse as described by Kertho et al. (2015). The resistant and susceptible parents of each cross, the susceptible durum wheat genotype 'RL6089', and the susceptible common wheat Thatcher were included in each tray as checks. Two replicates of differentials of Thatcher near-isogenic lines were planted alongside each experiment to confirm the purity of the race BBBQJ. Urediniospore increase, inoculation, incubation, and greenhouse conditions were completed as previously described by Aoun et al. (2016).

Leaf rust IT were assessed on the second-leaf stage 12 days after inoculation using a 0-to-4 scale (Long and Kolmer 1989; McIntosh et al. 1995), where IT = 0 = no disease symptom, 1 = hypersensitive flecks, 2 = small uredinia surrounded by necrosis, 3 = medium-size uredinia with no chlorosis or necrosis, and 4 = large uredinia with no chlorosis or necrosis. The mesothetic reaction (X reaction) is a mixture of fleck and higher infection types evenly distributed on the leaf surface. The seedlings showing IT of 0 to 2+ and X were considered resistant, whereas the plants showing IT of 3 and 4 were considered susceptible (Long and Kolmer 1989; McIntosh et al. 1995).

Based on the IT, the F₂ plants were classified as resistant (R) or susceptible (S). The F₂ families and the RIL were classified as homozygous resistant (HR), segregating (Seg), and homozygous susceptible (HS). The number of genes that were involved in the inheritance of leaf rust resistance were estimated based on segregation ratios and χ^2 goodness-of-fit tests. The segregating F₂-derived RIL were excluded when computing the P values of the χ^2 test because only approximately 3% of the RIL were expected to be segregating.

Characterization of stem rust resistance inheritance in two biparental crosses. Two of the biparental populations that were described above, with Rusty × PI 534304 and Rusty × PI 192051, were also screened with P. graminis f. sp. tritici race TTKSK (isolate 04KEN156/04) at the seedling stage at generation F₂. The genotype PI 192051 was previously reported to be resistant to race TTKSK by Olivera et al. (2012), whereas PI 354304 was identified to be resistant to race TTKSK in the current study. Rusty was the susceptible parent to P. graminis f. sp. tritici race TTKSK. The avirulence/virulence profile of race TTKSK is Sr24, 36, Tmp5Sr5, 6, 7b, 8a, 9a, 9b, 9d, 9e, 9g, 10, 11, 17, 21, 30, 31, 35, McN.

The disease screenings were conducted in a biosafety level-three facility at the University of Minnesota, St. Paul. Twenty plants of each F₂ family were inoculated approximately 10 days after planting with P. graminis f. sp. tritici race TTKSK. Urediniospores, stored at −80°C, were heat shocked at 45°C for 15 min, then rehydrated at room temperature under a relative humidity of 80% created with a KOH solution (Rowell 1984). The plants were inoculated as previously described by Rouse et al. (2012). Thereafter, the plants were transferred to a greenhouse maintained at 18 ± 2°C with a 16-h photoperiod until evaluation of disease. Stem rust IT were assessed 14 days after inoculation using the 0-to-4 Stakman scale (Stakman et al. 1962). Seedlings showing IT of 0 to 2+ were considered resistant and those with IT of 3 to 4 were considered susceptible.

Based on the IT, the F₂ families were classified as HR, Seg, or HS. The segregation ratios were analyzed using χ^2 goodness-of-fit tests. This allowed for the estimation of the number of genes involved in the inheritance of stem rust resistance. The number of families evaluated for Rusty × PI 534304 and Rusty × PI 192051 were 131 and 118, respectively.

BSA. Based on the inheritance study, four biparental populations that carry single Lr genes and one population that carries a single Sr gene were chosen for BSA. Leaf tissues from each population were collected from the F₂ plants. This was done before the plants were advanced to the next generation.

The genomic regions associated with response to P. triticina race BBBQJ were identified in the biparental populations Divide × PI 313096, Rusty × PI 387263, Rusty × PI 209274, and Divide × PI 244061. For the populations derived from Rusty × PI 209274 and Divide × PI 244061, BSA was performed using DNA extracted from 10 HR and 10 HS F₂ plants. The homogenous F₂ plants were identified by phenotyping F₂₃ seedlings. For the remaining two populations, BSA was done using DNA extracted from 20 to 22 HR and 20 to 22 HS F₆ RIL.

The biparental cross Rusty × PI 534304 was used to locate the genomic region associated with response to P. graminis f. sp. tritici race TTKSK. The DNA of 16 HR and 16 HS RIL were used in the BSA. Because this population was screened with race TTKSK only at the F₃ generation, The HR and HS F₆ RIL were identified for BSA based on the phenotype of the corresponding F₂₃ families.

The DNA of HR and HS plants was extracted using a cetyltrimethylammonium bromide extraction method described by Riede and Anderson (1996) and modified by Liu et al. (2006). Additional modifications of lyophilizing and grinding the leaf tissue were as described by Rouse et al. (2012). The DNA was then diluted to 50 ng/μl and pooled in equal volumes to obtain resistant and susceptible bulks, as described by Michelmore et al. (1991). The HR and HS bulks and parents in each of the crosses were genotyped using Illumina’s custom wheat iSelect 9K SNP array (Cavanagh et al. 2013) at the USDA-ARS Small Grain Genotyping Laboratory in Fargo, ND. The data generated were scored using Illumina Genome Studio software.

Response of the resistant genotypes to P. triticina races virulent to known Lr genes mapped in durum wheat cultivars. In order to verify whether the resistant genotypes that were used to develop the biparental crosses carry previously characterized Lr genes in durum wheat cultivars, P. triticina races with virulence to Lr3a, Lr14a, Lr27+31, Lr61, and Lr72 were used to phenotype the parents of the crosses.

Eleven durum cultivars were also included in this test, including ‘Aired’ as a susceptible check, the susceptible parents of the crosses (Rusty and Divide), ‘Llareta INIA’ carrying Lr14a (Herrera-Foessel et al. 2008a), ‘Camayo’ carrying LrCamayo (Herrera-Foessel et al. 2007), ‘Jupar C2001’ carrying Lr27+31 (Singh and McIntosh 1984; Singh et al. 1993), ‘Guayacan INIA’ carrying Lr61 (Herrera-Foessel et al. 2008b), ‘Capelli’, ‘Mundum’, ‘Russello’, and ‘Mexicali75’. The P. triticina races used were BBBJ, CBBQS, and BBB/BN_Lr61 virus. Race BBBJ/BN_Lr61 virus is avirulent to Lr72, which is widely present in CIMMYT’s durum germplasm (Herrera-Foessel et al. 2014a) and virulent to Lr10, Lr23, and Lr61. The race BBBJ was collected from durum in Spain in 2014 and is virulent to LrB, Lr10, Lr14a, Lr14b, Lr20, Lr23, and Lr72. The race CBBQS (also called CBG1/BP based on the CIMMYT differential sets) was collected from durum fields in Mexico in 2008 and is virulent to LrB, Lr3a, Lr3g, Lr10, Lr14b, Lr14c, Lr23, Lr27+31, and Lr72 (Herrera-Espino et al. 2009) (J. Huerta-Espino, personal communication).

Mapping of Lr genes in PI 209274, PI 387263, and PI 244061. Based on the results of the BSA, we selected three biparental populations (Rusty × PI 209274, Rusty × PI 387263, and Divide × PI 244061) to complete linkage mapping of the Lr trait and molecular markers. These populations were chosen because they were thought to carry previously uncharacterized Lr genes in durum cultivars. F₆ RIL for populations Rusty × PI 209274 and Rusty × PI 387263 and F₂ plants of the cross Divide × PI 244061 were used for linkage mapping.

In total, 130 RIL of the cross Rusty × PI 209274 and 97 RIL derived from Rusty × PI 387263 that were phenotyped using P. triticina race BBBQJ were genotyped with their respective markers identified during the BSA and additional markers from the 90K tetraploid consensus map (Maccaferrì et al. 2015). In all, 11 SSR and 34 competitive allele-specific polymerase chain reaction (KASP) markers were used to genotype the susceptible parent (Rusty) and the resistant parent (PI 209274).

For the population Rusty × PI 387263, 23 KASP markers were used to genotype the susceptible parent (Rusty) and the resistant parent (PI 387263). Only the markers showing clear polymorphism between the parents were used to genotype the RIL.
For the population derived from Divide × PI 244061, 93 F₂ plants were used for mapping. The HR, Seg, and HS F₂ plants were identified based on the phenotype of the corresponding F₂ family. Thirty-four KASP markers identified during BSA, with additional markers from the 90K tetraploid consensus map, were used to differentiate the susceptible parent (Divide) and the resistant parent (PI 244061). Thereafter, the polymorphic markers were used to screen the 93 F₂ individuals derived from this cross. For the SSR markers that were used to genotype the parents and the RIL of the cross Rusty × PI 209274, the polymerase chain reactions (PCR) were accomplished in 25-µl volumes. Each reaction contained 1 µl of 10 µM forward primer, 1 µl of 10 µM reverse primer, 2.5 µl of 2.5 mM dNTP, 5 µl of 5x Green GoTaq Flexi buffer, 2.5 µl of 25 mM MgCl₂, 0.15 µl of GoTaq Flexi DNA (Promega Corp.) at 5 U/µl, 10.85 µl of H₂O, and 2 µl of DNA at 30 ng/µl. The PCR were performed in thermal cyclers programed to denature the DNA at 94°C for 5 min, followed by 35 cycles of 30 s of a 94°C denaturation step, 30 s of an annealing step (depending on the annealing temperatures of the respective SSR markers), and 45 s of a 72°C extension step. The program was then finished with a final 7-min extension step at 72°C and a 4°C permanent hold. The PCR products were separated on 3% agarose gels and DNA was visualized under UV light after staining with gel red nucleic acid gel stain (Biotium).

For the KASP markers, the primer sequences were obtained from the polymarker website (http://polymarker.tgac.ac.uk/). For each KASP marker, three primers were used in PCR. Two of them are allelic-specific forward primers which result in biallelic discrimination and one common reverse primer (Ramirez-Gonzalez et al. 2014, 2015). Oligos, carrying standard FAM or HEX compatible tails (FAM tail: 5’GAAGGTGACCAAGGTCTACG3’/ HEX tail: 5’GAAGTTCGAGCTCAACGGATT3’) were added to the forward primer sequences with the target SNP at the 3’ end (Ramirez-Gonzalez et al. 2014). The PCR were in 10-µl volumes and prepared as described by the manufacturer (LGC). Each reaction contained 0.25 µl of 10 µM each forward primer, 0.5 µl of 10 µM reverse primer, 5 µl of KASP 2x master mix (LGC), 1 µl of H₂O, and 3 µl of DNA at 30 ng/µl. PCR were placed in Multiplate 96-well unskirted PCR plates (MLP-9601; Bio-Rad) and sealed with an optical plate seal. The PCR were performed in a Bio-Rad CFX-96 real-time system thermal cycler programed as follows: hot-start activation at 94°C for 15 min followed by 10 touchdown cycles of denaturation at 94°C for 20 s and annealing or elongation (61 to 55°C) for 60 s, with a drop of 0.6°C per cycle. This was followed by 26 cycles of a denaturation step at 94°C for 20 s and an annealing or elongation step at 55°C for 60 s. The PCR plate was read at 37°C and fluorescent end-point genotyping was carried out. Data analysis was performed with the genotype cluster analysis software Bio-Rad CFX Manager 3.1 using the allelic discrimination option. If genotype clusters were not clearly defined after the initial KASP thermal cycle, the plate was thermally cycled for an additional three cycles of a denaturation step at 94°C for 20 s and an annealing or elongation step at 57°C for 60 s and the PCR plate was read at 37°C. In some cases, the latter cycling and reading was repeated until distinct genotyping clusters were obtained.

For linkage mapping, the phenotypic responses were converted into binary data based on classification as resistant or susceptible IT. Then, the phenotypic and genotypic data were combined to generate linkage maps using MapDisto.1.7.0.0.1 (Lorieux 2012), with minimum logarithm of odds (LODmin) = 7.0 and maximum recombination frequency of 0.3. The Kosambi mapping function was used to calculate genetic distance between markers (Kosambi 1943).

RESULTS

The inheritance of leaf rust resistance.

The number of genes conferring resistance against *P. triticina* race BBBQJ in the eight durum wheat genotypes was determined by evaluating the IT at seedling stage of F₁ plants and the segregation ratios of F₂, F₃, and F₆ progenies (Table 2). In six of the crosses (Rusty × PI 192051, Divide × PI 244061, Rusty × PI 387263, Rusty × PI 534304, and Divide × PI 313096), the F₁ plants showed resistant IT to *P. triticina* race BBBQJ, suggesting that the resistance was dominant. The F₁ plants of the cross Divide × PI 278379 were susceptible to BBBQJ, indicating that the resistance was recessive (Table 2).

Evaluation of 170 F₂ families derived from the cross Rusty × PI 192051 showed a segregation ratio of 1:2:1 HR/Seg/HS (P = 0.33), suggesting that the *P. triticina* race BBBQJ resistance in PI 192051 is conferred by a single dominant gene. Similarly, evaluation of 255 F₂ families and 98 F₃ RIL of the cross Divide × PI 313096 segregated as 1:2:1 HR/Seg/HS (P = 0.06) and 1:1 HR/HS (P = 0.05), respectively which also fit the expected Mendelian ratios for a single gene. Therefore, the *Lr* gene in PI 313096 is conferred by a single dominant gene (Table 2).

The segregation ratios of 311 F₂ plants generated from the cross Divide × PI 244061 fit 3:1 R/S (P = 0.77). Further screening of 117 F₂ families of the same cross showed a segregation of 1:2:1 HR/Seg/HS (P = 0.06) which suggests that a single dominant resistance gene confers resistance to *P. triticina* race, BBBQJ in PI 244061 (Table 2).

In the cross of Rusty × PI 387263, the 106 F₂ families and 140 RIL evaluated segregated as 1:2:1 HR/Seg/HS (P = 0.16) and 1:1 HR/HS (P = 0.10), respectively. This indicated that a single dominant

TABLE 2. Characterization of leaf rust resistance (*Puccinia triticina* race BBBQJ) inheritance at the seedling stage in eight resistant durum genotypes based on infection types of *F₃* plants and segregation ratios at *F₂*, *F₃*, and *F₆*

Populations	F₁	Segregation (n)	Expected ratio	P for χ²	F₂ segregation ratios	Expected ratio	P for χ²	F₃ segregation ratios	Expected ratio	P for χ²	F₆ segregation ratios	Expected ratio	P for χ²
Rusty × PI 534304	1+	–	–	–	–	–	–	–	–	–	–	–	–
Rusty × PI 192051	;1	–	–	–	–	–	–	–	–	–	–	–	–
Divide × PI 313096	1+	–	–	–	–	–	–	–	–	–	–	–	–
Rusty × PI387263	1+	–	–	–	–	–	–	–	–	–	–	–	–
Rusty × PI 209274	1+	253:89	3:1	0.66	39:78.37	1:2	0.78	62:8:60	1:1	0.05	–	–	–
Rusty × PI 278379	–	47:166	1:3/3:13	0.32	44:48.5	1:8	0.43	22:6:65	1:3	0.95	–	–	–
Divide × PI 278379	3	31:172	3:13	0.20	–	–	–	–	–	–	–	–	–
Rusty × PI 244061	1+	231:80	3:1	0.77	19:69.29	1:2	0.06	–	–	–	–	–	–
Rusty × PI 195693	–	36:82	1:3	0.38	–	–	–	–	–	–	–	–	–
Divide × PI 195693	–	88:125	7:9	0.48	18:52:31	1:8	0.18	–	–	–	–	–	–

Symbols: – indicates population was not evaluated at this generation and * indicates P value where the observed segregation ratio is significantly different from the expected segregation ratio at a 95% level of confidence.

* Number of resistant (R) and susceptible (S) F₂ progenies.

* Number of homozygous resistant (HR), segregating (Seg), and homozygous susceptible (HS) F₂ families.

* Number of homozygous resistant (HR), segregating (Seg), and homozygous susceptible (HS) recombinant inbred lines at F₆ generation.

* Observed segregation ratios could fit into two possible expected segregation ratios (1:3 R/S or 3:13 R/S).
resistance gene controls the resistance to *P. triticina* race BBBQJ in PI 387263 (Table 2).

The F_2 population (342 plants) of the cross Rusty × PI 209274 segregated as 3:1 R/HS (*P = 0.66*) whereas the segregation ratio of 154 F_2 families was 1:2:1 HR/Seg/HS (*P = 0.78*) and the F_2 RIL segregated as 1:1 HR/HS (*P = 0.86*). This suggests that a single dominant gene conferred the observed resistance in PI 209274 (Table 2).

All five F_1 plants derived from the cross *Rusty* × PI 534304 showed resistant IT, indicating that the resistance to *P. triticina* race BBBQJ is dominant. The subsequent screening of 129 F_2 and 177 F_3 RIL resulted in segregation of 17:79:33 H/Seg/HS and 144:2:61 HR/Seg/HS, respectively, which did not fit Mendelian inheritance for one or two genes, based on *P* values of the χ^2^ test (<0.05) at a 95% level of confidence (Table 2).

The segregation pattern of cross *Rusty* × PI 278379 showed that F_2 segregation ratios could fit two possible models. One of the models was 1:3 R/HS (*P = 0.32*), which suggests the presence of a single recessive gene controlling resistance to *P. triticina* race BBBQJ. The observed segregation at F_2 also fit a 3:13 R/HS ratio (*P = 0.22*), which indicates the involvement of two genes: one dominant gene suppressing the expression of another dominant resistance gene. The same segregation ratio (3:13 R/HS, *P = 0.20*) was obtained by crossing the same resistant parent PI 278379 with the susceptible parent Divide. Further evaluation of the population *Rusty* × PI 278379 showed fit to two ratios: 1:8:7 HR/Seg/HS (*P = 0.43*) and 1:3 HR/HS (*P = 0.95*) for F_3 families and F_2 RIL, respectively. These results suggest that two genes are most likely involved in this population (Table 2).

Two populations were developed for the resistant genotype PI 195693. Evaluation of each population suggested different modes of inheritance. The segregation ratio of 118 F_2 plants of the cross *Rusty* × PI 195693 fit 1:3 R/HS (*P = 0.38*), indicating that the resistance was conferred by a single recessive gene. However, the F_2 plants (213 individuals) of the cross Divide × PI 195693 segregated as 7:9 R/HS (*P = 0.48*), indicating the presence of two recessive genes. Further screening of the F_3 lines of Divide × PI 195693 were distributed in accordance with a 1:8:7 HR/Seg/HS ratio, indicating the presence of two genes (Table 2).

Stem rust resistance inheritance. The inheritance of stem rust resistance to *P. graminis* f. sp. *tritici* race TTKSK in the two populations *Rusty* × PI 534304 and Rusty × PI 192051 was determined based on the evaluation of F_3 progenies.

Table 3. Characterization of stem rust resistance (*Puccinia graminis* f. sp. *tritici* race TTKSK) inheritance at seedling stage in two resistant durum lines based on segregation ratios of F_3 progenies

Characterization	Rusty × PI 534304	Rusty × PI 192051
Homozygote resistant	27	31
Segregating	69	70
Homozygote susceptible	35	17
Expected segregation ratio	1:2:1 HR/Seg/HS	1:2:1 HR/Seg/HS
P value of χ^2	0.51	0.02*

^a HR = homozygous resistant, Seg = segregating, and HS = homozygous susceptible. An asterisk (*) indicates *P* value where the observed segregation ratio is significantly different from the expected segregation ratio at a 95% level of confidence.

The 131 F_3 families of the biparental cross Rusty × PI 534304 fit 1:2:1 HR/Seg/HS (*P = 0.51*), which suggested that PI 534304 carries a single *Sr* gene controlling the resistance to TTKSK. The segregation observed in the cross Rusty × PI 192051 was 31:70:17 HR/Seg/HS, which did not fit segregation for a single gene based on the *P* value of the χ^2^ test (*P = 0.02*). (Table 3).

BSA. Genomic regions associated with *Lr* and *Sr* genes were identified via BSA in five biparental populations in which the resistance appeared to be conferred by single dominant resistance genes. Four of these crosses were used to map the chromosomal regions associated with *Lr* resistance to *P. triticina* race BBBQJ, whereas one cross was used to identify the region associated with the *Sr* gene conferring resistance to *P. graminis* f. sp. *tritici* race TTKSK (Table 4).

Divide × PI 244061 population. Thirty-three SNP located on chromosome 2B were associated with leaf rust response in the cross involving Divide × PI 244061. The positions of the SNP markers were based on the hexaploid consensus map (Cavanagh et al. 2013). Based on the BLASTn of the SNP sequences against the Chinese Spring chromosome survey sequences (https://urgi.versailles.inra.fr/blast/?dbgroup=wheat_all&program=blastn), six markers were found on chromosome arm 2BL, while the rest of the markers were on 2BS (Table 4; Supplementary Table S1).

Rusty × PI 209274 and Divide × PI 313096 populations. The leaf rust resistance in the cross Rusty × PI 209274 was associated with 10 SNP on chromosome arm 6BS (Table 4).

Six SNP on chromosome arm 6BS were associated with leaf rust response in the population Divide × PI 313096. Even though the *Lr* genes in PI 209274 and PI 313096 were both located on 6BS, the BSA did not reveal any common SNP linked with response to *P. triticina* race BBBQJ between the two populations. However, the majority of the trait-associated SNP in both populations mapped to overlapping regions between 0.6 and 14.5 centimorgans (cM), based on the hexaploid consensus map of Cavanagh et al. (2013) (Table 4).

Rusty × PI 387263 population. Five SNP associated with leaf rust response were detected on chromosome arm 6BL in the cross Rusty × PI 387263.

Rusty × PI 534304 population. Thirty-two SNP on chromosome arm 6AL were associated with stem rust response to race *P. graminis* f. sp. *tritici* race TTKSK in the cross Rusty × PI 534304 (Table 4).

Response of the parental genotypes to *P. triticina* races virulent to known *Lr* genes in durum. The parents resistant to *P. triticina* race BBBQJ that were used to develop the biparental populations alongside other durum cultivars were screened using *P. triticina* races BBBQJ, CBBQS, and BBB/BN _Lr61_ vir. The IT indicated that race BBBQJ, which carries virulence to _LrB_, _Lr10_, _Lr14a_, _Lr14b_, _Lr23_, _Lr20_, and _Lr72_, was avirulent to all the resistant parents of the crosses and on Camayo and Juapare C2001 durum wheat. Race CBBQS, virulent to _LrB_, _Lr3a_, _Lr3b_, _Lr10_, _Lr14b_, _Lr23_, _Lr27+31_, and _Lr72_, was avirulent to the eight resistant parental genotypes used in the crosses and to Camayo and Llareta INIA. Race BBB/BN _Lr61_ vir, which carries virulence on _Lr10_, _Lr23_, and _Lr61_, was avirulent to all the eight genotypes and cultivars, except PI 313096, Alred, and Guayacan INIA. This suggests that the resistance in the eight genotypes used to develop the

Populations	Generation	Trait	Pathogen race	HS bulk (n)_a_	HR bulk (n)_b_	Chromosome	SNP (n)_c_	Possible gene
Divide × PI 313096	F_6	Leaf rust	BBBQJ	20	20	6BS	6	_Lr61_
Rusty × PI 387263	F_6	Leaf rust	BBBQJ	22	22	6BL	5	Possibly novel
Rusty × PI 209274	F_2	Leaf rust	BBBQJ	10	10	6BS	10	_Lr53_ or possibly novel
Divide × PI 244061	F_2	Leaf rust	BBBQJ	10	10	2B	33	_Lr13_ or possibly novel
Rusty × PI 534304	F_6	Stem rust	TTKSK	16	16	6AL	32	_Sr13_

^a Number of HS F_2 plants or recombinant inbred lines (RIL) included in the HS bulk.

^b Number of HR F_2 plants or RIL included in the HR bulk.

^c Number of associated single-nucleotide polymorphisms (SNP) with rust response. Markers linked with rust response in these populations are presented in Supplementary Table S1.

1500 PHYTOPATHOLOGY
biparental populations is conferred by different or additional genes than the previously characterized \(Lr \) genes in durum cultivars, including \(Lr9a, Lr14a, Lr27+31, Lr61, \) and \(Lr72, \) except PI 313096, which most likely carries \(Lr61 \) (Table 5).

Mapping of the \(Lr \) gene in PI 209274. The population Rusty \(\times \) PI 209274 was selected for linkage mapping using 130 \(F_2 \) RIL. The identified SNP on 6BS that were associated with leaf rust response in this population using BSA spanned a genomic region of 21.9 cM, based on the consensus map of Cavanagh et al. (2013) (Table 4).

The SNP markers identified in the biparental cross Rusty \(\times \) PI 209274 using BSA were used to develop KASP markers, as described by Ramirez-Gonzalez et al. (2014). Three KASP markers (\(KASP_{6BS_IAW7070}, KASP_{6BS_IAW3298}, \) and \(KASP_{6BS_IAW4290} \)) gave clear polymorphism between the resistant parent (PI 209274) and the susceptible parent (Rusty). Therefore, these KASP markers were used initially to genotype the RIL of this biparental population. The mapping of the \(Lr \) gene associated with leaf rust response to \(P. triticina \) race BBBQJ in PI 209274 showed that the gene was initially flanked by \(KASP_{6BS_IAW3298} \) and \(KASP_{6BS_IAW7070} \). Therefore, additional SNP and SSR markers located between these two markers, based on the tetraploid consensus map (Maccarelli et al. 2015), were used to genotype the parents of the cross. Five KASP assay SNP and one SSR (\(dupw217 \)) markers that were polymorphic between the parents were then used to genotype the \(F_2 \) RIL. The mapping identified two flanking markers (\(KASP_{6BS_IAW3298} \) and \(KASP_{6BS_IAWB39456} \)) that delineated the \(Lr \) gene resistant to race BBBQJ, here designated as \(LrPI209274 \) (Fig. 1).

The distance between the flanking markers was 4.7 cM. The marker \(KASP_{6BS_IAW3298} \) was the most closely linked to \(LrPI209274 \) at a distance of 1.0 cM whereas \(KASP_{6BS_IAWB39456} \) was located at 3.7 cM distal to \(LrPI209274 \). The rest of markers were located further away from the gene, with most of them distal to the gene (Fig. 1). All linked markers with \(LrPI209274 \) (Fig. 1) in this durum population conformed to the expected ratio of 1:1 at a 95% level of confidence (\(P \) values of \(\chi^2 \) tests ranged from 0.13 to 0.84 for the KASP markers and \(P = 0.05 \) for the SSR marker \(dupw217 \)). The primer sequences of the KASP markers used for mapping of \(LrPI209274 \) as well as the alleles associated with resistance are presented in Table 6.

Mapping of the \(Lr \) gene in PI 387263. For the population Rusty \(\times \) PI 387263, the BSA revealed 33 SNP on chromosome 2B that are associated with leaf rust response. Based on the 9K wheat consensus map (Cavanagh et al. 2013), these markers occupy a genomic region spanning 98.6 cM. The polymorphic KASP markers, derived from the identified SNP during the BSA, were used to genotype the \(F_2 \) progenies. Initial mapping indicated that the \(Lr \) gene in PI 244061 is located distal to \(KASP_{2BS_IAW5392} \). Subsequently, more KASP markers found distal to \(KASP_{2BS_IAW5392} \) based on the 90K tetraploid consensus map were developed. Application of the polymorphic markers on \(F_2 \) progenies mapped the \(Lr \) gene distal to \(KASP_{2BS_IAW6117} \) at a distance of 11.5 cM. This gene was hereby designated as \(LrPI244061 \) (Fig. 3).

Table 5. Infection types of the parental genotypes of the crosses and durum wheat cultivars to \(Puccinia triticina \) races BBBSJ, CBBQ5, and BBB/BN_\text{6L}vir at the seedling stage.

Entries	BBBSJ	CBBQ5	BBB/BN_\text{6L}vir
PI 534304	0	;	:1
PI 192051	;	:1	;
PI 313096	0	;	:3
PI 387263	1	:1	X
PI 209274	:1+	2+	3
PI 278379	2+	C	2+
PI 244061	;	;	;
PI 195693	;	:1	;
Rusty	3	3	...
Divide	2+3	3	...
Aleira	3	4	3+
Llareta INIA	3	13	X
Camayo	:1–	:1	:1
Jupare C 2001	:1	3	1
Capelli	2+3	3	3+
Mindum	3	3	3
Russello	3	3	3
Mexicoi 75	3	3	3
Guayanc INIA	3

* \(P. triticina \) race virulent to \(Lr9b, Lr10, Lr14a, Lr14b, Lr20, Lr23, \) and \(Lr72, \)

* \(P. triticina \) race virulent to \(Lr9b, Lr3a, Lr3b, Lr10, Lr14b, Lr23, Lr27+31, \) and \(Lr72, \)

* \(P. triticina \) race virulent to \(Lr10, Lr23, \) and \(Lr61 \).

Fig. 1. Distance in centimorgans (cM) between simple sequence repeat (SSR) and kompetitive allele-specific polymerase chain reaction (KASP) assay single-nucleotide polymorphism markers linked to the leaf rust (\(Puccinia triticina \) race BBBSJ) resistance gene (\(LrPI209274 \)) on chromosome arm 6BS using pheno-typic and genotypic data of the recombinant inbred lines of the cross Rusty \(\times \) PI 209274 at \(F_6 \) generation.
KASP markers used for mapping LrPI244061 conformed to the expected ratio of 1:1 at a 95% level of confidence based on χ² tests, except for KASP_2BS_JWB67561, KASP_2BS_JWA5392, KASP_2BS_JWA1763, and KASP_2BS_JWA837. The primer sequences of the KASP markers used for mapping of LrPI244061 as well as the alleles associated with resistance are shown in Table 6.

DISCUSSION

P. triticina race BBBQJ, highly virulent on tetraploid wheat, was recently found in the southern Great Plains region of the United States (Kolmer 2015). Therefore, the spread of this race to North Dakota, the major durum-producing region of the United States, is possible. Because most of the North Dakota durum cultivars are susceptible to this race and few effective *Lr* genes are available to the durum wheat breeding programs globally, we aimed to identify new *Lr* genes. In the present study, resistance to *P. triticina* race BBBQJ was conferred by single dominant genes in five of the durum populations. BSA showed that the genomic locations of the *Lr* genes in in PI 209274, PI 244061, PI 387263, and PI 313096 mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. This was a fast and relatively inexpensive method to identify that the resistance in these four genotypes was conferred by at least three different genes. This method assessed the genetic diversity of resistance in these genotypes and identified possible new *Lr* genes that can be used to broaden the genetic diversity of leaf rust resistance in durum wheat. Apart from being resistant to BBBQJ, the eight genotypes used to develop these populations showed a broad spectrum of resistance to several *P. triticina* races collected worldwide at the seedling stage in the greenhouse and at the adult-plant stage in field trials (Aoun et al. 2016). In addition, based on our results from the current study, these genotypes are resistant to *P. triticina* races virulent to commonly used *Lr* genes in durum breeding programs, including *Lr*3a, *Lr*14a, *Lr*27+31, *Lr*61, and *Lr*72, suggesting that new or underutilized *Lr* genes may be present in these genotypes. The genotypes utilized were collected from different countries and seven of eight were landraces. Wheat landraces are known types. The genotypes utilized were collected from different countries. Based on our results from the current study, these genotypes are resistant to *P. triticina* races virulent to commonly used *Lr* genes in durum breeding programs, including *Lr*3a, *Lr*14a, *Lr*27+31, *Lr*61, and *Lr*72, suggesting that new or underutilized *Lr* genes may be present in these genotypes. The genotypes utilized were collected from different countries and seven of eight were landraces. The spread of this race to North Dakota, the major durum-producing region of the United States, is possible. Because most of the North Dakota durum cultivars are susceptible to this race and few effective *Lr* genes are available to the durum wheat breeding programs globally, we aimed to identify new *Lr* genes. In the present study, resistance to *P. triticina* race BBBQJ was conferred by single dominant genes in five of the durum populations. BSA showed that the genomic locations of the *Lr* genes in PI 209274, PI 244061, PI 387263, and PI 313096 mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. This was a fast and relatively inexpensive method to identify that the resistance in these four genotypes was conferred by at least three different genes. This method assessed the genetic diversity of resistance in these genotypes and identified possible new *Lr* genes that can be used to broaden the genetic diversity of leaf rust resistance in durum wheat. Apart from being resistant to BBBQJ, the eight genotypes used to develop these populations showed a broad spectrum of resistance to several *P. triticina* races collected worldwide at the seedling stage in the greenhouse and at the adult-plant stage in field trials (Aoun et al. 2016). In addition, based on our results from the current study, these genotypes are resistant to *P. triticina* races virulent to commonly used *Lr* genes in durum breeding programs, including *Lr*3a, *Lr*14a, *Lr*27+31, *Lr*61, and *Lr*72, suggesting that new or underutilized *Lr* genes may be present in these genotypes. The genotypes utilized were collected from different countries and seven of eight were landraces. Wheat landraces are known types. The genotypes utilized were collected from different countries and seven of eight were landraces.

Table 6. Primers of kompetitive allele-specific polymerase chain reaction (KASP) assay single-nucleotide polymorphism markers linked to the leaf rust (*Puccinia triticina* race BBBQJ) resistance gene (LrPI387263) on chromosome arm 6BL, using phenotypic and genotypic data of the recombinant inbred lines of the cross Rusty × PI 387263 at F6 generation.

Markers for mapping	Allele1 primer sequencea	Allele2 primer sequencea	Reverse primer sequence
LrPI209274			
KASP_6BS_JWA7070	accagtcgagctgggtggtCAT	accagtcgagctgggtggtCAT	aggctgcgttttagggtgcc
KASP_6BS_JWA2732	tggatctcggtgcgggG	tggatctcggtgcgggG	gcagatcctacacagcagacag
KASP_6BS_JWA39456	cggattctgctgtcgCA	cggattctgctgtcgCA	agctgtctctgcgtcagacag
KASP_6BS_JSA3298	atggctggggtctactACTA	atggctggggtctactACTA	gcagctgcgttttagggtgcc
KASP_6BS_JWA42494	gagaatacatcataaggcaT	gagaatacatcataaggcaT	gcagctgcgttttagggtgcc
KASP_6BS_JWA4816	gcgtttgctcttgctgcG	gcgtttgctcttgctgcG	gcagctgcgttttagggtgcc
KASP_6BS_JWA39540	gctattcctctctctgctG	gctattcctctctctgctG	gcagctgcgttttagggtgcc
LrPI387263			
KASP_6BL_JWB73837	acctttctctcctctcctG	acctttctctcctctcctG	gcagctgcgttttagggtgcc
KASP_6BL_JWB2117	gcagatcctacaggagtctgCA	gcagatcctacaggagtctgCA	gcagctgcgttttagggtgcc
KASP_6BL_JWB28557	cctcgtctctgctgctG	cctcgtctctgctgctG	gcagctgcgttttagggtgcc
KASP_6BL_JWB72635	ggaatctcctactcaiggactAC	ggaatctcctactcaiggactAC	gcagctgcgttttagggtgcc
KASP_6BL_JWA12457	cttcagctgctcctgctgAC	cttcagctgctcctgctgAC	gcagctgcgttttagggtgcc
KASP_6BL_JWA44753	agggttctgctgctgctgAC	agggttctgctgctgctgAC	gcagctgcgttttagggtgcc
LrPI244061			
KASP_2BS_JWB6117	gatctctctctctcctgctG	gatctctctctctcctgctG	gcagctgcgttttagggtgcc
KASP_2BS_JWB72183	cccgctcctacgcgcaccacACT	cccgctcctacgcgcaccacACT	gcagctgcgttttagggtgcc
KASP_2BS_JWB67561	cggctcctacgcgcaccacACT	cggctcctacgcgcaccacACT	gcagctgcgttttagggtgcc
KASP_2BS_JWA5392	gctcctacgcgcaccacACT	gctcctacgcgcaccacACT	gcagctgcgttttagggtgcc
KASP_2BS_JWA1763	gctcctacgcgcaccacACT	gctcctacgcgcaccacACT	gcagctgcgttttagggtgcc
KASP_2BS_JWA837	gctcctacgcgcaccacACT	gctcctacgcgcaccacACT	gcagctgcgttttagggtgcc

* Single-nucleotide polymorphism alleles: Allele1 = HEX seq GAAGGTCGAGTCAACGGATT and Allele2 = FAM seq GAAGGTCGAGTCAACGGATT. Nucleotides in bold and uppercase are associated with the resistance.
not the gene of interest in PI 244061. Therefore, the \(Lr \) gene in PI 244061 is possibly \(Lr13 \) or a new \(Lr \) gene.

The \(Lr \) genes in PI 209274 and PI 313096 were both located on chromosome arm 6BS. \(Lr61 \) is the only known gene on 6BS in durum cultivars identified to date and was previously mapped in CIMMYT Guayancan INIA wheat (Herrera-Foessel et al. 2008a). The genotype PI 313096 was susceptible to \(P. triticina \) race BBB/NL_6vir, suggesting that the resistance in PI 313096 is most likely \(Lr61 \). The latter is effective against the \(P. triticina \) race used in this study (BBBQJ). PI 209274 was resistant to BBB/NL_6vir, indicating that the single dominant \(Lr \) gene in PI 209274 differs from \(Lr61 \).

Other \(Lr \) genes mapped on 6BS in wheat include \(Lr36 \) originating from \(Aegilops speltoides \) (Dvořák and Knott 1990), \(Lr53 \) from \(T. turgidum \) subsp. \(dicoccoides \) (Dadkhodaie et al. 2011; Marais et al. 2005), and \(Lr59 \) originating from \(A. peregrina \) (Marais et al. 2008; Pirseyedi et al. 2015). The genes \(Lr36 \) and \(Lr59 \) were transferred to hexaploid wheat from wild relatives, which makes them unlikely to be the \(Lr \) gene in PI 209274. Therefore, the \(Lr \) gene in PI 209274 is likely \(Lr53 \) or a previously uncharacterized gene.

The \(Lr \) genes in the population Rusty X PI 387263 were located on chromosome arm 6BL. Herrera-Foessel et al. (2007) identified two linked genes in repulsion on chromosome 6BL that were effective against \(P. triticina \) race BB/BN collected in Mexico: \(Lr3a \) and \(LrCamayo \). The gene \(Lr3a \) that cosegregated with \(Xmwg798 \) (Sacco et al. 1998) was confirmed to be present in ‘Storlom’ durum wheat (Herrera-Foessel et al. 2007). In the present study, PI 387263 is resistant to the \(P. triticina \) race CBBQJS which is virulent to \(Lr3a \), indicating that the resistance gene in PI 387263 is different from \(Lr3a \). Further screening of Camayo and PI 387263 with \(P. triticina \) isolate Eth-63-1 (race EEEEE, avirulent on Thatcher) to hexaploid wheat from wild relatives, which makes them unlikely to be the \(Lr \) gene in PI 209274. Therefore, the \(Lr \) gene in PI 209274 is likely \(Lr53 \) or a previously uncharacterized gene.

The genotype PI 195693 showed resistance to BBBSJ, CBBQJS, and BB/BN_6vir. Therefore, the resistance in PI 195693 is conferred by a different gene or a gene in addition to \(Lb \), \(Lr3a \), \(Lr3bg \), \(Lr10 \), \(Lr14a \), \(Lr14b \), \(Lr20 \), \(Lr23 \), \(Lr27+31 \), \(Lr61 \), and \(Lr72 \). The \(F_2 \) segregation ratio of 1:3 R/S in the cross Rusty × PI 195693 (one recessive gene) and 7:9 R/S in the cross Divide × PI 195693 (two recessive genes) could be due to the difference in the genetic background of the susceptible parents Divide and Rusty. Even though the segregation ratio of 1:8:7 \(Hr/\text{Seg}/\text{HS} \) at generation \(F_2 \) in Divide × PI 195693 could confirm the presence of two recessive genes, the same ratio could also suggest the involvement of two complementary dominant genes. Similar segregation patterns at the seedling stage (susceptible \(F_2 \), 7:9 R/S at \(F_2 \), and 1:8:7 HR/Seg/HS at \(F_3 \)) were observed previously in the cross ‘Atil C200’ × ‘Hualita’ to the Mexican \(P. triticina \) race BB/BN (Herrera-Foessel et al. 2005). However, Herrera-Foessel et al. (2005) reported that the resistance in the cross Atil C200 × Hualita was due to the presence of two dominant complementary genes rather than two recessive genes because the \(F_1 \) plants were resistant in the field. Only one single case of complementary genes with dominant interaction conditioning leaf rust resistance has been reported in durum wheat. Jupare C2001 and ‘Banamichi C2004’ durum wheat carry the complementary genes \(Lr27+31 \) on chromosome arms 3BS and 4BL, respectively (Herrera-Foessel et al. 2005, 2014b) that were originally characterized in common wheat (Singh and McIntosh 1984; Singh et al. 1993).

The \(F_1 \) plants of the cross Divide × PI 278379 were susceptible to \(P. triticina \) race BB/BQJ, indicating the presence of recessive resistance (dominant susceptibility) to leaf rust. The segregation of 3:13 R/S in generation \(F_2 \) of Rusty × PI 278379 and Divide × PI 278379 populations and the distribution of 1:8:7 HR/Seg/HS in the \(F_2 \) families and 1:3 HR/HS in the \(F_2 \) RIL of Rusty × PI 278379 could mean the involvement of one dominant resistance gene with one suppressor gene. A possible scenario for this ratio might be due to the presence of a dominant resistance gene in PI 278379 that is suppressed by a suppressor gene from the susceptible parent (Rusty or Divide). Cases of suppressor genes of rust resistance have been reported in wheat–rust pathosystems. For instance, a suppressor gene of \(Lr23 \) designated as \(SuLr23 \) on chromosome arm 2DS that was derived from \(A. tauschii \) was identified in synthetic hexaploid wheat (Nelson et al. 1997). In addition, suppressors of \(Lr \) genes have been identified in the A and B genomes in durum wheat (Assefa and Fehrman 2000). Knott (2000) also characterized suppressors of \(Sr \) genes in the A and B genomes in ‘Medea’ durum wheat.

The resistance to \(P. triticina \) race BBBQJ in the population Rusty × PI 534304 is dominant, whereas the segregation ratios at generations \(F_2 \) and \(F_3 \) did not fit expected segregation ratios for one or two genes. The same population was used to map an \(Sr \) gene effective to \(P. graminis \) f. sp. \(tritici \) race TTKSK. The resistance to race TTKSK in PI 534304 is conferred by a single resistance gene that is located on chromosome arm 6AL. Chromosome arm 6AL is also known to carry \(Sr13 \) (Jin et al. 2007; Klindworth et al. 2007), which is commonly found in durum wheat cultivars. However, a diagnostic marker of \(Sr13 \) is currently not available. The IT of PI 534304 and the segregating population to \(P. graminis \) f. sp. \(tritici \) race TTKSK were similar to that of \(Sr13 \). Therefore, the \(Sr \) resistance in PI 534304 is most probably \(Sr13 \). Unfortunately, this \(Sr \) gene is not effective against the select \(P. graminis \) f. sp. \(tritici \) races in Ethiopia such as JRCQC (Olivera et al. 2012).

PI 192051 carries a single dominant \(Lr \) gene effective to \(P. triticina \) race BB/BQJ. Interestingly, PI 192051 showed a broad spectrum of resistance to several \(P. triticina \) races tested in a previous study by Aoun et al. (2016). In addition, PI 192051 is resistant to \(P. graminis \) f. sp. \(tritici \) race TTKSK. The stem rust resistance in the cross Rusty × PI 192051 did not follow the segregation ratio of a single gene. PI 192051 was not only resistant to \(P. graminis \) f. sp. \(tritici \) race TTKSK but also to \(P. graminis \) f. sp. \(tritici \) race JRCQC, with virulence to \(Sr13 \) and \(Sr9e \), which are common in durum wheat.

![Fig. 3. Distance in centimorgans (cM) between competitive allele-specific polymerase chain reaction (KASP) assay single-nucleotide polymorphism markers linked to the leaf rust (\(Puccinia triticina \) race BB/BQJ) resistance gene (\(Lr244061 \)) on chromosome arm 2BS using phenotypic and genotypic data of \(F_2 \) plants of the cross Divide × PI 244061.](image-url)
wheat cultivars (Olivera et al. 2012). The genotype PI 192051 was also highly resistant in field trials in Debre Zeit, Ethiopia in 2009 (Olivera et al. 2012), 2014, and 2016 (unpublished data). Thus, PI 192051 is an effective source of resistance not only to race Ug99 but also to other _P. graminis_ f. sp. _tritici_ races recently observed in Ethiopia which are phylogenetically different from the Ug99 race group. Mapping of _Lr_ and _Sr_ genes in PI 192051 is ongoing because this genotype seems to carry previously uncharacterized genes in durum cultivars with a broad spectrum of resistance.

Conclusion. The objective of the current study was to identify new sources of resistance to leaf rust and stem rust that can be useful to broaden the rust resistant spectrum resistance in durum wheat. Eight durum genotypes from the USDA-NSGC that are mainly landraces and come from different geographical locations were used in the current study. The inheritance study revealed that five of the crosses (Rusty × PI 192051, Divide × PI 244061, Rusty × PI 387263, Rusty × PI 209274, and Divide × PI 313096) carried single dominant _Lr_ genes effective to _P. tritici_ race BBBQ1. In the remaining crosses (Rusty × PI 534304, Rusty × PI 278379, Rusty × PI 195693, and Divide × PI 195693), the inheritance of _Lr_ genes was more complex, involving recessive resistance, two genes, or deviation from simple Mendelian inheritance. The leaf rust resistance in seven genotypes used to develop the biparental populations was conferred, at least in part, by genes different from previously mapped genes in durum cultivars. The eight genotypes resistant to BBBQ1 have resistance to additional _P. triticina_ races tested at both the seedling stage in the greenhouse and at the adult stage in field trials. Therefore, more research is needed to verify whether the resistance to different races in each of these genotypes is conferred by the same or different genes. The BSA showed that the _Lr_ genes in PI 209274, PI 244061, PI 387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. Further mapping of the likely new or underutilized _Lr_ genes using KASP markers narrowed down the genomic regions of the _Lr_ genes in PI 244061, PI 387263, and PI 209274. _LrP13_87263 mapped to 2.8 cM distal to _KASP_ 6BL_JWB44753, _LrP12_44061 mapped to 11.5 cM distal to _KASP_ 2BS_JWB6117, and _LrP12_09274 was flanked by _KASP_ 6BS_JWB39456 and _KASP_ 6BS_JWA3298 to a 4.7-cM region. Two of the eight genotypes were also resistant to _P. graminis_ f. sp. _tritici_ race TTKSK. The resistance in PI 534304 was conferred by a single dominant gene on 6AL, which is most likely _Sr13_. PI 192051 possessed a wide spectrum of resistance to _P. graminis_ f. sp. _tritici_ races, which could be conferred by an uncharacterized resistance gene in durum germplasm.

Acknowledgments

We thank J. Huerta-Espino for kindly providing some of the _P. triticina_ races used in this study; and A. Swank, J. Glasgow, and the wheat personnel at the EFLAR-Debre Zeit Research Center for their technical support. This work was supported by the North Dakota Wheat Commission, the North Dakota State Board of Research and Education, and the Bill & Melinda Gates Foundation (OPP1133199).

Literature Cited

Aguilar-Rinchon, V. H., Singh, R. P., Castillo-Gonzalez, F., and Huerta-Espino, J. 2001. Genes of leaf rust resistance in a synthetic hexaploid wheat. Rev. Cientifico. Mex. 24:161-169.

Aoun, M., Breiland, M., Kathryn Turner, M., Loladze, A., Chao, S., Xu, S. S., Ammar, K., Anderson, J. A., Kolmer, J. A., and Acevedo, M. 2016. Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection. Plant Genome 9.

Assefa, S., and Fahrman, H. 2000. Resistance to wheat leaf rust in _Aegilops tauschii_ Coss. and inheritance of resistance in hexaploid wheat. Genet. Resour. Crop Evol. 47:135-140.

Bomman, J. M., Bockelman, H. E., Jin, Y., Hijmans, R. J., and Gironella, A. I. N. 2007. Geographic distribution of stem rust resistance in wheat landraces. Crop Sci. 47:1955-1963.
Huerta-Espino, J., Singh, R., Herrera-Foessel, S., Perez-Lopez, J., and Figueroa-Lopez, P. 2009. First detection of virulence in *Puccinia triticina* to resistance genes *Lr27* and *Lr31* present in durum wheat in Mexico. Plant Dis. 93:110.

Huerta-Espino, J., Singh, R. P., German, S., McCallum, B. D., Park, R. F., Chen, W. Q., Bhardwaj, S. C., and Gouyeau, H. 2011. Global status of wheat leaf rust caused by *Puccinia triticina*. Euphytica 179:143-160.

Jin, Y., Singh, R. P., Ward, R. W., Wanyera, R., Kinyua, M. G., Njau, P., Fetch, T., Pretorius, Z. A., and Yahyaoui, A. 2007. Characterization of seedling infection types and adult plant infection responses of monogenic *Sr* genes to race TTKKS of *Puccinia graminis f. sp. tritici*. Plant Dis. 91:1096-1100.

Jin, Y., Szabo, L. J., Pretorius, Z. A., Singh, R. P., Ward, R., and Fetch, T. 2008. Detection of virulence to resistance gene *Sr24* within race TTKKS of *Puccinia graminis f. sp. tritici*. Plant Dis. 92:923-926.

Kassa, M. T., You, F. M., Hiebert, C. W., Pozniak, C. J., Fobert, P. R., Sharpe, A. G., Mamidi, S., Bonman, J. M., McClean, P. E., and Acevedo, M. 2015. Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS One 10:e0129580.

Kolmer, J. A. 2013. Leaf rust of wheat: Pathogen biology, variation and host resistance. Forests 4:70-84.

Kolmer, J. A., Pinard, J., Yang, L., Chuang, Y., Chao, S., and Fetch, T. 2014. Races of *Puccinia recondita f. sp. tritici* with combined *Sr13* and *Sr16* virulence to *Sr13* and *Sr16* in a field stem rust screening nursery in Ethiopia. Plant Dis. 98:623-628.

Kolmer, J. A., McCallum, B., and Marais, A. S. 2005. Leaf rust of wheat: Pathogen biology, variation and host resistance. Forests 4:70-84.

Lorieux, M. 2012. MapDisto: Fast and efficient computation of genetic linkage maps. Mol. Breed. 30:1231-1235.

Long, D. L., and Kolmer, J. A. 1989. A North American system of nomenclature for *Puccinia graminis* f. sp. *tritici*. Euphytica 179:143-160.

McCallum, B. D., Miller, J. D., and Xu, S. S. 2006. Registration of rusty brown leaf spot race R of *Stemphylium herbarum* on *Triticum durum* Durum 6297. Crop Sci. 46:1012-1014.

McIntosh, R. A., and Dyck, P. L. 1975. Cytogenetical studies in wheat. VII Gene *Lr23* for reaction to *Puccinia recondita* in Gabo and related cultivars. Aust. J. Biol. Sci. 28:201-212.

McIntosh, R. A., Wellings, C. R., and Park, R. F., eds. 1995. *Wheat Rusts*: An Atlas of Resistance Genes. Springer Netherlands, Dordrecht, The Netherlands.

McIntosh, R. A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., and Xia, X. C. 2013. Catalogue of gene symbols for wheat. Online publication. Committee for the National BioResource Project (NBRP)/COMUGI, Japan. https://shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

Michelmore, R. W., Paran, I., and Kesseli, R. V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Nat. Acad. Sci. USA 88:9828-9832.

NASS. 2015. North Dakota 2015 Wheat Varieties. Online publication. United States Department of Agriculture–National Agricultural Statistics Service. http://www.nass.usda.gov/Charts_and_Maps/A_to_Z/ndwheat_durum.jsp

Nelson, J. C., Singh, R. P., Autrique, J. E., and Sorrells, M. E. 1997. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 37: 1931-1935.

Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., and Daniell, T. J. 2010. Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol. 18:365-373.

Nelson, J. C., Singh, R. P., Autrique, J. E., and Sorrells, M. E. 1997. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 37: 1931-1935.

Olivera, P., Newcomb, M., Szabo, L. J., Rouse, M., Johnson, J., Gale, S., Luster, D. G., Hodson, D., Cox, J. A., Burgin, L., and Hort, M. 2015. Phenotypic and genotypic characterization of race TTKTF of *Puccinia graminis f. sp. tritici* that caused a wheat stem rust epidemic in southern Ethiopia in 2013-14. Phytopathology 105:917-928.

Olivera, P. D., Jin, Y., Itooe, M., Badebo, A., Fetch, T., Singh, R. P., and Yahyaoui, A. 2012. Races of *Puccinia graminis f. sp. tritici* with combined virulence to *Sr13* and *Sr16* in a field stem rust screening nursery in Ethiopia. Plant Dis. 96:623-628.

OrdonŽez, M. E., and Kolmer, J. A. 2007a. Virulence phenotypes of a worldwide collection of *Puccinia graminis* from durum wheat. Phytopathology 97:344-351.

OrdonŽez, M. E., and Kolmer, J. A. 2007b. Simple sequence repeat diversity of a worldwide collection of *Puccinia graminis* from durum wheat. Phytopathology 97:574-583.

Purk, R. F., Mohler, V., Nazari, K., and Singh, D. 2014. Characterization and mapping of gene *Lr73* conferring seedling resistance to *Puccinia graminis* in a Canadian winter wheat. Theor. Appl. Genet. 127:2041-2049.

Pirtseyedi, S. M., Somo, M., Poudel, R. S., Cai, X., McCallum, B., Saville, B., Fetch, T., Chao, S., and Marais, F. 2015. Characterization of recombinants of the *Aegilops aegilops*-derived *Lr59* translocation of common wheat. Theor. Appl. Genet. 128:2403-2414.

Pretorius, Z. A., Bender, C. M., Visser, B., and Terfez, T. 2010. First report of *Puccinia graminis f. sp. tritici* race virulent to the *Sr24* and *Sr31* wheat stem rust resistance genes in South Africa. Plant Dis. 94:784.

Pretorius, Z. A., Singh, R. P., Wagoire, W. W., and Payne, T. S. 2000. Detection of virulence to wheat stem rust resistance gene *Sr31* in *Puccinia graminis* f. sp. *tritici* in Uganda. Plant Dis. 84:203.

Rahmatov, M., Rouse, M. N., Nirmala, J., Danilova, T., Friebe, B., Steffenson, B. J., and Johannsen, E. 2016. A new *2BS* *2RL* Robertsonian translocation transfers stem rust resistance gene *Sr59* into wheat. Theor. Appl. Genet. 129:1383-1392.

Ramirez-Gonzalez, R. H., Segovia, V., Bird, N., Fenwick, P., Holdgate, S., Berry, S., Jack, P., Caccamo, M., and Uauy, C. 2014. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol. J. 13:648-663.

Rahmatov, M., Rouse, M. N., Nirmala, J., Danilova, T., Friebe, B., Steffenson, B. J., and Johannsen, E. 2016. A new *2BS* *2RL* Robertsonian translocation transfers stem rust resistance gene *Sr59* into wheat. Theor. Appl. Genet. 129:1383-1392.

Reif, J. C., Zhang, P., Dreisigacker, S., Warburton, M. L., van Ginkel, M., Hoisington, D., Bohn, M., and Melchinger, A. E. 2005. Trends in genetic diversity during the history of wheat domestication and breeding. Theor. Appl. Genet. 112:859-864.

Reid, C. R., and Anderson, J. A. 1996. Linkage of RFLP markers to aluminum tolerance gene in wheat. Crop Sci. 36:905-909.

Rozas, M. N., Nava, I. C., Chao, S., Anderson, J. A., and Jin, Y. 2012. Identification of markers linked to the race Ug99 effective stem rust...
resistance gene Sr28 in wheat (Triticum aestivum L.). Theor. Appl. Genet. 125:877-885.

Rowell, J. B. 1984. Controlled infection by Puccinia graminis f. sp. tritici under artificial conditions. Pages 291-332 in: The Cereal Rusts, Origins, Specificity, Structure, and Physiology, Vol. I. W. R. Bushnell and A. P. Roelfs, eds. Academic Press, Gainesville, FL.

RustTracker.org. 2016. Pathotype Tracker – Where is Ug99? http://rusttracker.cimmyt.org/?page_id=22

Sacco, F., Suarez, E. Y., and Naranjo, T. 1998. Mapping of the leaf rust resistance gene Lr3 on chromosome 6B of Sinaloacho MA wheat. Genome 41:886-890.

Singh, B., Bansal, U. K., Forrest, K. L., Hayden, M. J., Hare, R. A., and Bariana, H. S. 2010. Inheritance and chromosome location of leaf rust resistance in durum wheat cultivar Wollaroi. Euphytica 175:351-355.

Singh, H., Dhaliwal, H. S., and Gill, K. S. 1992. Diversity for leaf rust resistance in Triticum durum germplasm. Cereal Rusts Powdery Mildews Bull. 20:62-67.

Singh, R. P. 1991. Pathogenicity variations of Puccinia recondita f. sp. tritici and P. graminis f. sp. tritici in wheat-growing areas of Mexico during 1988 and 1989. Plant Dis. 75:790-794.

Singh, R. P., Bechere, E., and Abdalla, O. 1993. Genetic analysis of resistance to leaf rust in nine durum wheats. Plant Dis. 77:460-463.

Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., Herrera-Foessel, S., Singh, P. K., Singh, S., and Govindan, V. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465-481.

Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayiliffe, M. A., Bhavani, S., Rouse, M. N., Pretorius, Z. A., Szabo, L. J., Huerta-Espino, J., Basnet, B. R., Lan, C., and Hovmøller, M. S. 2015. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology 105:872-884.

Singh, R. P., Huerta-Espino, J., Fuentes, G., Duvellier, E., Gilchrist, L., Henry, M., and Nicol, J. M. 2005. Resistance to diseases. Pages 291-328 in: Durum Wheat Breeding: Current Approaches and Future Strategies, Vol. 1. C. Royo, M. Miloudi, and N. di Fonzo, eds. Food Product Press, New York.

Singh, R. P., Huerta-Espino, J., Pfeiffer, W., and Figueroa-Lopez, P. 2004. Occurrence and impact of a new leaf rust race on durum wheat in Northwestern Mexico from 2001 to 2003. Plant Dis. 88:703-708.

Singh, R. P., and McIntosh, R. A. 1984. Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. II. Cytogenetic studies. Can. J. Genet. Cytol. 26:736-742.

Soleiman, N. H., Solis, I., Soliman, M. H., Sillero, J. C., Villegas, D., Alvaro, F., Royo, C., Serra, I., Ammar, K., and Martínez-Moreno, F. 2016. Short communication: Emergence of a new race of leaf rust with combined virulence to Lr14a and Lr72 genes on durum wheat. Span. J. Agric. Res. 14: e10SC02.

Stakman, E. C., Stewart, D. M., and Loegering, W. Q. 1962. Identification of physiologic races of Puccinia graminis var. tritici. U.S. Dep. Agric. Agric. Res. Serv. E-617.

Vavilov, N. I. 1951. Pages 37-39 in: The Origin, Variation, Immunity, and Breeding of Cultivated Plants: Selected Writings. K. S. Chester, ed. The Ronald Press Company, New York.

Watson, L. A., and Luig, N. H. 1961. Leaf rust on wheat in Australia: A systematic scheme for the classification of strains. Proc. Linn. Soc. N. S. W. 86:241-250.

Yu, G. T., Zhang, Q. J., Friesen, T. L., Rouse, M. N., Jin, Y., Zhong, S., Rasmussen, J. B., Lagudah, E. S., and Xu, S. S. 2015. Identification and mapping of Sr46 from Aegilops tauschii accession Clae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theor. Appl. Genet. 128:431-443.

Yu, L. X., Barbier, H., Rouse, M. N., Singh, S., Singh, R. P., Bhavani, S., Huerta-Espino, J., and Sorrells, M. E. 2014. A consensus map for Ug99 stem rust resistance loci in wheat. Theor. Appl. Genet. 127:1561-1581.

Zhang, H. T., and Knott, D. R. 1990. Inheritance of leaf rust resistance in durum wheat. Crop Sci. 30:1218-1222.