Title	Unraveling the molecular basis of temperature-dependent genetic regulation in Penicillium marneffei
Author(s)	Yang, E; Wang, G; Woo, PCY; Lau, SKP; Chow, WN; Chong, KTK; Tse, H; Kao, RYT; Chan, CM; Che, X; Yuen, KY; Cai, JJ
Citation	Eukaryotic Cell, 2013, v. 12 n. 9, p. 1214-1224
Issued Date	2013
URL	http://hdl.handle.net/10722/200746
Rights	Eukaryotic Cell. Copyright © American Society for Microbiology.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Unraveling the Molecular Basis of Temperature-Dependent Genetic Regulation in *Penicillium marneffei*

Ence Yang, Gang Wang, Patrick C. Y. Woo, Susanna K. P. Lau, Wang-Ngai Chow, Ken T. K. Chong, Herman Tse, Richard Y. T. Kao, Che-Man Chan, Xiaoyan Che, Kwok-Yung Yuen, James J. Cai

Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA; Department of Microbiology, University of Hong Kong, Hong Kong; Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China

Penicillium marneffei is an opportunistic fungal pathogen endemic in Southeast Asia, causing lethal systemic infections in immunocompromised patients. *P. marneffei* grows in a mycelial form at the ambient temperature of 25°C and transitions to a yeast form at 37°C. The ability to alternate between the mycelial and yeast forms at different temperatures, namely, thermal dimorphism, has long been considered critical for the pathogenicity of *P. marneffei*, yet the underlying genetic mechanisms remain elusive. Here we employed high-throughput sequencing to unravel global transcriptional profiles of *P. marneffei* PM1 grown at 25 and 37°C. Among ~11,000 protein-coding genes, 1,447 were overexpressed and 1,414 were underexpressed at 37°C. Counterintuitively, heat-responsive genes, predicted in *P. marneffei* through sequence comparison, did not tend to be overexpressed at 37°C. These results suggest that *P. marneffei* may take a distinct strategy of genetic regulation at the elevated temperature; the current knowledge concerning fungal heat response, based on studies of model fungal organisms, may not be applicable to *P. marneffei*. Our results further showed that the tandem repeat sequences (TRSs) are overrepresented in coding regions of *P. marneffei* genes, and TRS-containing genes tend to be overexpressed at 37°C. Furthermore, genomic sequences and expression data were integrated to characterize gene clusters, multigene families, and species-specific genes of *P. marneffei*. In sum, we present an integrated analysis and a comprehensive resource toward a better understanding of temperature-dependent genetic regulation in *P. marneffei*.

With over one million new infections every year and latent infections worldwide growing to the tens of millions, dimorphic fungal infection presents many significant public health challenges to date (1–3). As the only known dimorphic species in the *Penicillium* genus, *Penicillium marneffei* (recently renamed *Talaromyces marneffei*) is of particular concern. *P. marneffei* primarily infects immunocompromised individuals, causing lethal systemic infection, or penicillosis (4–6). Over the last 20 years, there has been a marked increase in the number of penicillosis cases, with a concurrent rise in immunosuppression due to the global spread of HIV infection (7–15). Penicillosis is the third most prevalent opportunistic infection among HIV patients in Southeast Asia (16). Thus, infection by *P. marneffei* has become an AIDS-defining illness (6, 17).

P. marneffei, *Blastomyces dermatitidis*, *Histoplasma capsulatum*, *Coccidioides immitis*, *Paracoccidioides brasiliensis*, and *Sporothrix schenckii*, are collectively regarded as thermally dimorphic fungi, which undergo temperature-dependent transition between two distinct growth forms: mycella and yeast. For instance, *P. marneffei* grows vegetatively as mycellia at 25°C, showing the typical multinuclear mold morphology; at 37°C, it undergoes the phase transition with concomitant coupling of nuclear and cellular division to form uninucleate, single-celled yeasts. The mycellium-to-yeast transition is considered to be a requisite for pathogenesis of *P. marneffei*, as the yeast cell is the *in vivo* form that capably evades the host immune system (18, 19). These features well place *P. marneffei* as a model experimental system for investigation of fungal growth processes and their contribution to pathogenicity (19).

Early dimorphic fungal studies were limited to morphological examination or clinical isolates and the cellular events accompanying the phase transition processes. Only in the past decade have studies focused on the molecular mechanisms of phase transition with the application of novel genetic approaches in *P. marneffei* (20–22). To date, more than 40 *P. marneffei* genes have been cloned or experimentally characterized (23–27). However, except for several transcriptional regulators and signal transduction factors, most of these genes are involved in vegetative growth and asexual differentiation (28). Thus, very little is known about genes responsible for phase-specific growth.

In a previous publication (29), we briefly announced the sequencing of the genome of *P. marneffei* strain PM1, without providing in-depth genomic and transcriptomic analyses. In the present study, we use comparative genomic and transcriptomic approaches to systematically characterize *P. marneffei* genomic sequences and global gene expression. We refine the annotation of protein-coding genes and then use high-throughput mRNA sequencing (RNA-seq) to measure gene expression in mycellia at 25°C and yeast cells at 37°C. Through comparative genomics between *P. marneffei* and several model fungal species, we gain new insights into the evolutionary history of the *P. marneffei* genome. Our transcriptomic analysis suggests the existence of uncharacter-
ized regulatory pathways that might be essential for thermal ad-
aptation in *P. marneffei*.

MATERIALS AND METHODS

DNA preparation, sequencing, and assembly. Genomic DNA was pre-
pared from the arthroconidia of *P. marneffei* PM1 grown at 37°C. A single
colony of the fungus grown on Sabouraud’s dextrose agar (SDA) at 37°C
was inoculated into yeast peptone broth and incubated in a shaker for 3
days. Cells were cooled in ice for 10 min, harvested by centrifugation at
2,000 × g for 10 min, washed twice, and resuspended in ice-cold 50 mM
EDTA buffer (pH 7.5). Novozyme 234 (20 mg/ml) was added, and the
mixture was incubated at 37°C for 1 h followed by digestion in a mixture
of 1 mg/ml proteinase K, 1% N-lauroylsarcosine, and 0.5 M EDTA (pH 9.5)
at 50°C for 2 h. Genomic DNA was then extracted by phenol and
phenol-chloroform and finally precipitated and washed in ethanol. After
digestion with RNase A, a second ethanol precipitation was followed by
washing with 70% ethanol, and then the DNA was air dried and dissolved
in 500 μl of Tris-EDTA (TE [pH 8.0]) (30). Two genomic DNA libraries
were made in pUC18 carrying insert sizes from 2.0 to 3.0 kb and from 7.5
to 8.0 kb, respectively. DNA inserts were prepared by physical shearing
using the sonication method (31). The genome sequence was assembled
from deep whole-genome shotgun (WGS) coverage obtained by paired-
end sequencing from a variety of clone types (i.e., all inserts were se-
quenced from both ends to generate paired reads). A total of 190.3 Mb of
sequence data, which is equivalent to ~6.6X coverage of the genome, was
generated by random shotgun sequencing. The Phred/Phrap/Consed
end sequencing from a variety of clone types (i.e., all inserts were se-
quenced from deep whole-genome shotgun (WGS) coverage obtained by paired-
end sequencing from a variety of clone types (i.e., all inserts were se-
quenced from both ends to generate paired reads). A total of 190.3 Mb of
sequence data, which is equivalent to ~6.6X coverage of the genome, was
generated by random shotgun sequencing. The Phred/Phrap/Consed
package was used for base calling, contig assem-
generated by random shotgun sequencing. The Phred/Phrap/Consed

RNA-seq analysis. At the beginning of the experiment, conidia of
strain PM1 were inoculated in SDA plates and cultured at 25 and 37°C for
a week. The germinated cells were transferred into new SDA plates every
week for 2 weeks to establish stable colonies in either the mycelial or yeast
growth form. One week before the extraction of total RNA, in order to
obtain fresh cells, the homogenous cells were cultured in new SDA plates.
The total RNAs were extracted from each condition for two independent
biological replicates using the E.Z.N.A. fungal RNA kit (Omega Bio-
Tek). The total RNAs were extracted from each condition for two independent
biological replicates using the E.Z.N.A. fungal RNA kit (Omega Bio-
Tek). The effect of global transcriptional amplification or suppression might
lead to erroneous interpretation of gene expression experiments (35). To
control for this effect, we adjusted the total RNA concentration according
to the DNA content before the standard poly(A)^+ RNA-seq was per-
duced. DNA was quantified using Qubit 2.0 fluorometer (Life Technol-
gogies, Grand Island, NY). We obtained ~13 million 90-bp paired-end
reads for each sample. The reads were trimmed basing on their qualities by
FastQC and fastx-trimmer. Filtered reads were mapped to the annotated
genes. In GO term enrichment tests, we grouped GO terms in
the resulting lists into major classes based on the hierarchical structure
between GO terms using REVIGO (46). Significance of functional enrich-
ment of GO terms in differentially expressed gene sets was assessed using
the chi-square test. All resulting P values were adjusted for multiple hy-
thesis testing using the method of Storey and Tibshirani (47), limiting
the FDR to 0.05.

Identification of coding tandem repeats. The intragenic tandem re-
peats in the *P. marneffei* genome and other fungal genomes were identified
by a previously described method (48) based on EMBoss ETANDEM
(49). The threshold score was set to 20. All genes were scanned for long
repeats (>40 nucleotides [nt]) or short repeats (3 to 39 nt). A sequence
was considered to be an intragenic repeat if it meet two conditions: (i)
repeat conservation was at least 85%, and (ii) the numbers of repeats were
at least 20 for trinucleotide repeats, 16 for repeats between 4 and 10 nt, 10
for repeats between 11 and 39 nt, and 3 for repeats of at least 40 nt.

Data sources for model fungal organisms. The genome and protein
sequences of model fungal organisms were obtained from the following
sources: AspGD (50) for *A. fumigatus* and *A. nidulans*, the Candida
Genome Database (CGD) (51) for *C. albicans*, the Neurospora crassa Da-
tabase (http://www.broadinstitute.org/annotation/genome/neurospora)
for *N. crassa*, and the Saccharomyces Genome Database (SGD) (52) for *S.
cerevisiae. The phenotypic information of single mutants, used to identify heat-responsive genes, was collected from AspGD (50) for A. fumigatus and A. nidulans, and PhenomeBLAST for S. cerevisiae.

Data accession number. Expression data have been submitted to the GEO database under accession number GSE48898.

RESULTS

Under controlled laboratory conditions, P. marneffei PM1 displayed two temperature-dependent morphologies: the mycelial form at 25°C and the yeast form at 37°C (Fig. 1). We took a systematic approach, coupling genome sequence and transcriptome analyses, to investigate the genetic regulation of thermal dimorphism in P. marneffei. The rest of the article is organized as follows. First we outline the basic features of the genome sequence of P. marneffei PM1 and present the global results of RNA-seq analysis defining its transcriptome. Subsequently, we describe the annotation of gene functions and detect P. marneffei genes expressed differentially between mycelial cells at 25°C and yeast cells at 37°C, emphasizing the expression of heat-responsive genes. Finally, we integrate the genome sequencing and expression data to describe gene clusters, genes with tandem repeat sequences in the coding region, and multigene families and species-specific genes in P. marneffei.

Genome sequences and transcriptome profile of P. marneffei. The draft genome of P. marneffei PM1 was obtained using the whole-genome shotgun (WGS) approach (29). A total of 311,029 WGS reads of an average length of 690 bp were assembled into 2,780 contigs, which were subsequently ordered into 273 supercontigs (Table 1). The assembly produces a 6.6× coverage of the P. marneffei genome of an estimated size of ~31 million bp. The genome size of P. marneffei is comparable to those of Aspergillus fumigatus, A. nidulans, and Penicillium chrysogenum (29.4, 30.5, and 32.2 Mb, respectively) (53–55). A total of 10,060 protein-coding genes were initially predicted in silico. The genic regions occupy 62.1% of the total genome sequences, while the protein-coding sequences occupy 51.2%. The average gene density is one gene per 2.8 kb, and the average gene length is 1.75 kb. A total of 28,180 introns were found in 91% of P. marneffei genes. The size of introns ranges from 15 to 1,617 bp, with a mean of 111 bp. The telomere tandem repeat TTAGGG, along with telomere-associated helicases, was identified at the end of 16 contigs, suggesting 8 chromosomes in P. marneffei, as in A. fumigatus and A. nidulans.

We precultured isogenic P. marneffei PM1 on solid media at 25 and 37°C. Mycelial and yeast cells were collected for RNA-seq analysis. Over 13 million paired-end reads 90 bp long for each sample were generated with two biological replicates. After short-read mapping and transcript calling, the expressed transcripts were obtained and compared against the predicted genes. Through the comparison, 982 novel transcripts, overlapping with at least a 50-bp open reading frame (ORF), were identified. Accordingly, the total number of predicted protein-coding genes was updated to 11,042. Among these genes, 26.34% (2,908 genes) are expressed into more than one isoform through alternative splicing, making a total of 15,567 unique transcripts. The expression level was estimated at the whole-gene level in fragments per kilobase of exon per million fragments mapped (FPKM) (37). In mycelial cells at 25°C, 95.2% of genes (10,508) and 89.8% of transcripts (13,993) were expressed (FPKM > 0.05); in yeast cells at 37°C, 97.2% of genes (10,730) and 91.6% of transcripts (14,256) were expressed. Jointly, 98.5% of genes (10,882) and 95.6% of transcripts (14,886) were expressed at either temperature.

To identify P. marneffei genes expressed at a significantly different level between mycelial cells at 25°C and yeast cells at 37°C, we conducted differential expression analysis with RNA-seq data. Here we followed the general practice of assuming that all samples placed into the analysis platform contain similar amounts of total RNA (cf. 35). We required that the differentially expressed (DE) genes be those detected as significant by all three commonly used algorithms—namely, edgeR (39), DESeq (40), and baySeq (41)—at the level of a false discovery rate (FDR) of <0.05 simultaneously. Using such conservative criteria, a total of 2,861 DE genes were identified, including 1,447 overexpressed and 1,414 underexpressed in yeast cells at 37°C, compared with mycelial cells at 25°C (see Table S1 in the supplemental material).

There are 32 P. marneffei genes whose expressions were previ-
OUSLY measured mostly by using microarrays at 25 and 37°C or in mycelial and yeast cells (Table 2). We made a comparison of gene expression measures between our RNA-seq results and these previously published results. We found that 26 of the 32 genes showed a consistent pattern in the direction of expression change, suggesting a high reproducibility of DE analysis across different measurement methods and *P. marneffei* strains.

Biological functions of 14 *P. marneffei* genes in the morphogenetic control for conidial germination, hyphal growth, asexual development, and yeast morphogenesis so far have been elucidated (as reviewed in reference 28). Among six genes known to play a role at 25°C exclusively, three (*brl1, gasC*, and *stuA*) were found to be expressed more abundantly at 25°C than at 37°C (Fig. 2). Among eight genes functioning at both 25°C and 37°C, *abaA* is required in asexual development and yeast growth and is known to be overexpressed at 25°C (27). Our RNA-seq data showed that *abaA* is indeed expressed significantly higher at 25°C, while the other seven genes are expressed at similar levels at the two temperatures (Fig. 2).

Functional annotation of *P. marneffei* genes. To predict the function of *P. marneffei* genes, we employed *in silico* annotation through comparative genomics across fungal species. For each *P. marneffei* gene, functional annotation information (e.g., GO terms) of orthologous genes in other model fungal species were transferred. The model fungal species included *Aspergillus fumigatus*, *Aspergillus nidulans*, *Candida albicans*, *Neurospora crassa*, and *Sacharomyces cerevisiae*. A total of 8,161 protein-coding genes of *P. marneffei* were annotated with at least one GO term. We found that 261 GO terms are overrepresented in *P. marneffei* genes overexpressed at 37°C (FDR < 0.05) (see Table S2 in the supplemental material). These terms include “RNA-directed DNA polymerase activity,” “misfolded RNA binding,” “group 1 intron splicing,” and “snoRNA localization” (Table 3). On the other hand, we found that 453 GO terms are overrepresented in *P. marneffei* genes underexpressed at 37°C (i.e., overexpressed at 25°C) (FDR < 0.05) (see Table S3 in the supplemental material). These terms include “α-1,4-glucan synthase activity,” “response to light stimulus,” and “secondary metabolic processes.”

Expression analysis of heat-responsive genes in *P. marneffei*. To study the expression regulation of the heat response, we compiled a list of 52 heat-responsive genes whose function has been characterized using gene knockout experiments in *A. fumigatus*, *A. nidulans*, or *S. cerevisiae*. Using this collection of genes, we identified 168 potential heat-responsive genes in *P. marneffei*. Our RNA-seq results showed that only 6 (3.6%) *P. marneffei* heat-responsive genes are overexpressed at 37°C, which is significantly fewer than expected (FDR < 0.05). We also collected another list of genes related to a broad sense of heat shock response identified by using two-dimensional (2D) fluorescence difference gel electrophoresis in *A. fumigatus* (56). Our RNA-seq results showed that only 6 (3.6%) *P. marneffei* heat-responsive genes are overexpressed at 37°C, which is significantly fewer than expected (FDR < 0.05). We also collected another list of genes related to a broad sense of heat shock response identified by using two-dimensional (2D) fluorescence difference gel electrophoresis in *A. fumigatus* (56). Our RNA-seq results showed that only 6 (3.6%) *P. marneffei* heat-responsive genes are overexpressed at 37°C, which is significantly fewer than expected (FDR < 0.05). We also collected another list of genes related to a broad sense of heat shock response identified by using two-dimensional (2D) fluorescence difference gel electrophoresis in *A. fumigatus* (56). Our RNA-seq results showed that only 6 (3.6%) *P. marneffei* heat-responsive genes are overexpressed at 37°C, which is significantly fewer than expected (FDR < 0.05).

Next we started from a list of 12 GO terms concerning heat

Table 2 Comparison of gene expression results from previously published studies with those from our RNA-seq study

Gene	Function	Expression change at 37°C	Reference	Gene expression change at 37°C	Reference	Gene expression change at 37°C	Reference	
abaA	Transcriptional regulator	↑	27	163.3	170.3	20.1	18.4	Yes
actA	Actin	—	79	1313.2	1350.2	688.8	890.4	—
acuD	Isocitrate lyase	↑	80	198.5	486.8	217.3	225.0	—
aroE	Transcriptional activator	—	81	30.1	44.3	37.1	50.6	—
brlA	Rho family GTPase	—	82	1407.6	1340.8	5.1	4.2	—
cflA	Rho family GTPase	↑	83	153.3	149.1	140.0	122.6	—
cflB	Rho family GTPase	—	84	110.4	116.0	45.2	73.0	—
cpeA	Catalase-peroxidase	—	85	595.3	934.8	329.8	105.9	—
dbkA	Two-component histidine kinase	—	86	72.5	73.5	40.1	46.8	—
gacA	G-protein complex a subunit	—	87	71.5	64.3	100.1	69.5	—
gacC	G-protein complex a subunit	—	88	102.3	108.9	39.2	41.8	—
gpdA	Glycerol-3-phosphate dehydrogenase	↓	89	23.2	23.2	2.0	2.0	—
hsp30	Heat shock protein	↑	90	177.4	170.3	7.1	7.1	—
hsp70	Heat shock protein	↑	91	2401.0	2503.0	1297.7	1757.3	—
mpt1	Antigenic mannoprotein	↑	92	1.6	3.1	1351.1	493.6	—
mplp6	Antigenic mannoprotein	—	93	0.0	0.0	1081.4	177.5	—
myoB	Type II myosin	↑	94	38.2	18.0	17.8	18.6	—
pkaA	p21-activated kinase	—	95	46.2	47.5	24.2	46.5	—
pkbA	p21-activated kinase	↑	96	68.1	82.3	44.9	38.1	—
hhk1	Histidine kinase	—	97	95	95	11.8	9.0	—
rns1	RAS small monomeric GTPase	↑	98	22.1	13.8	39.8	17.4	—
rasA	Ras GTPase	—	99	45.9	38.7	24.8	20.7	—
rfac	Transcriptional regulator	↑	100	82.3	68.1	52.1	65.7	—
sckA	Stress-activated protein kinase	—	101	203.3	215.8	156.5	103.9	—
skn7	Stress response transcription factor	—	102	72.0	80.6	47.5	35.8	—
slnA	Two-component histidine kinase	—	103	11.1	10.9	23.6	19.8	—
sodA	Cu, Zn superoxide dismutase	↑	104	409.1	674.6	500.5	785.9	—
stdA	Control of mating and yeast-hyphal transitions	—	105	43.3	55.9	30.6	49.9	—
stuA	APES transcription factor	↓	106	256.8	403.5	25.7	49.9	—
tbpA	RNA polymerase I and III transcription factor	—	107	379.0	674.6	507.5	532.7	—
tupa	Transcriptional repressor	—	108	76.2	49.9	41.8	38.9	—

Table 2 Comparison of gene expression results from previously published studies with those from our RNA-seq study.
response and found none of these GO terms are enriched in genes overexpressed at 37°C (Table 5). Notably, GO:0036168 (with the term “filamentous growth of a population of unicellular organisms in response to heat”) is underrepresented in genes overexpressed at 37°C and overrepresented in genes underexpressed at 37°C. Among 370 \(P. marneffei \) genes whose annotation is linked with any of the 12 heat response GO terms, 16 are overexpressed at 37°C, which is significantly fewer than 52 genes underexpressed at 37°C (\(P < 0.001 \), Fisher’s exact test).

Taken together, these results suggest the limited value of using the existing gene annotations available in other fungal species in annotating \(P. marneffei \) genes, especially for genes that might play a role in heat response. The reason for this might be that \(P. marneffei \) has an uncharacterized regulatory network and signaling pathways in response to heat, which differ considerably from those currently known in other fungal species.

Gene clusters in \(P. marneffei \) and other filamentous fungi. To identify gene clusters conserved across species, we compared the genome sequences of \(P. marneffei \) with those of \(A. nidulans \), \(A. fumigatus \), and \(N. crassa \). We revealed extensive regions of con-

TABLE 3 Top representatives of GO terms enriched in \(P. marneffei \) genes upregulated or downregulated at 37°C

Function	GO term in genes with responses at 37°C	
Cell components	Upregulated	Downregulated
GO:003686—90S preribosome	GO:000329—fungal-type vacuole membrane	GO:0016020—membrane
GO:005730—nucleolus	GO:0055114—oxidation-reduction process	
Biological processes	GO:0003964—RNA-directed DNA polymerase activity	GO:0004497—monooxygenase activity
GO:0000826—ATP-dependent helicase activity	GO:000036—acyl carrier activity	
GO:000293—ferric-chelate reductase activity	GO:0033201—\(\alpha,1,4 \)-glucan synthase activity	
GO:0034336—misfolded RNA binding	GO:0004553—hydrolyase activity, hydrolyzing O-glycosyl compounds	
Molecular	GO:0015116—sulfate transmembrane transporter activity	GO:0016208—AMP binding
GO:0042254—ribosome biogenesis	GO:004561—sterigmatocystin biosynthetic process	
GO:0003723—group I intron splicing	GO:0009416—response to light stimulus	
GO:0048254—snRNA localization	GO:0019748—secondary metabolic process	
GO:0040010—positive regulation of growth rate	GO:0055114—oxidation-reduction process	
GO:006675—mannosyl-inositol phosphorylceramide metabolic process	GO:0015707—nitrite transport	
served syntenies, as well as a considerable extent of genome reorganization between these fungal species. For example, there are 1,340 regions containing four or more genes colinear between *P. marneffei* and *A. nidulans* and 1,273 between *P. marneffei* and *A. fumigatus*. Totals of 3,188 and 3,716 *P. marneffei* genes were found to be involved in the two cases, respectively. The largest syntenic cluster contains 27 gene pairs, appearing in *P. marneffei* and *A. nidulans*.

Melanin is made in various pathogenic fungi and has been implicated in the pathogenesis of a number of fungal infections (57). Melanin may play a role in inhibiting cytokine production in the host cells (58) and apoptosis in macrophages (59). In *A. fumigatus*, the two kinds of melanin, dihydroxynaphthalene-melanin (*DHN*-melanin) and pyomelanin (60–63), are generated. Six genes related to the biosynthesis of *DHN*-melanin were clustered together (60, 61) and genetically regulated by the expression of *brlA* (64). Our previous study revealed the existence of this gene cluster in *P. marneffei* (22). RNA-seq data from this study showed that all six genes in the cluster are significantly downregulated at 37°C (Fig. 3).

Furthermore, we identified the pyomelanin biosynthesis gene cluster, which is also conserved between *P. marneffei* and *A. fumigatus*. Pyomelanin biosynthesis pathway is tightly linked with the pathway of tyrosine degradation: two genes, *hppD* and *hmgX*, known to be specifically involved in the pyomelanin biosynthesis pathway, are colocated in the same cluster with the other four genes in the tyrosine degradation pathway (62, 63) (Fig. 3). The identified cluster in *P. marneffei* spans a 17-kb genomic region in a single contig. Half of the genes in the cluster were found to be expressed significantly higher at 37°C. The *P. marneffei* cluster, 6 kb longer than that of *A. fumigatus*, contains a gene between *hmgR* and *maizA*, whose ortholog in *A. fumigatus* is relocated. The expressed "syntenic" clusters are conserved.

Table 4: Gene expression of putative heat shock proteins and heat shock factors in *P. marneffei*

Gene ID	Homolog(s)	FPKM at:				
		25°C	37°C			
		Replicate 1	Replicate 2	Replicate 1	Replicate 2	
pm1g_01498	*hsp12* of *S. cerevisiae*	1,594.7	1,015.9	17.5	12.1	↓
pm1g_02064	*hsp60* of *A. fumigatus*	262.2	215.8	199.9	476.7	↓
pm1g_03635	*ssx70* (mitochondrial *hsp70*) of *A. fumigatus*	392.4	389.7	591.2	1,225.2	↓
pm1g_05682	*hsp30* of *A. fumigatus*	988.1	825.0	2,520.4	3,467.3	↓
pm1g_06129	*hsp104* of *S. cerevisiae*	159.9	120.9	150.2	152.3	↓
pm1g_06571	*hsp72* of *A. fumigatus*	58.7	38.7	64.3	87.0	↓
pm1g_08006	*hsp70* of *A. fumigatus*	2,224.6	2,401.0	1,175.3	1,977.2	↓
pm1g_10441	*hsp90* of *A. fumigatus*	591.2	591.2	629.3	941.3	↓
pm1g_10905	*hsp88* of *A. fumigatus*	285.0	339.1	301.3	406.3	↓
pm1g_01128	*ahal* (*hsp82* cochaperone) of *S. cerevisiae*	138.1	156.6	221.9	283.0	↓
pm1g_05408	*hsf1* of *A. fumigatus*	51.0	55.5	52.1	37.1	↓
pm1g_05918	*st1* (*hsp90* cochaperone) of *S. cerevisiae*	138.1	150.2	167.9	316.4	↓
pm1g_08054	*sis1* (*hsp40* cochaperone) of *S. cerevisiae*	232.9	232.9	120.1	100.1	↓
pm1g_08850	*hdi1* (*hsp40* cochaperone) of *S. cerevisiae*	42.4	43.3	37.9	22.8	↓

Table 5: Enrichment analysis of GO terms related to heat response for *P. marneffei* genes

GO no.	GO term	No. of genes with GO term (FDR)	All genes (n = 8,161)	Genes overexpressed at 37°C (n = 1,447)	Genes underexpressed at 37°C (n = 1,414)
GO0009408	Response to heat	148	1 (1.96 × 10^{-4})	22 (0.292)	
GO0031072	Heat shock protein binding	44	3 (0.173)	4 (0.294)	
GO0031990	mRNA export from nucleus in response to heat stress	68	0 (6.52 × 10^{-3})	7 (0.279)	
GO0034605	Cellular response to heat	259	11 (5.33 × 10^{-4})	45 (8.52 × 10^{-2})	
GO0036165	Invasive growth in response to heat	3	0 (0.194)	2 (3.13 × 10^{-2})	
GO0036168	Filamentous growth of a population of unicellular organisms in response to heat	175	7 (3.21 × 10^{-3})	34 (3.57 × 10^{-2})	
GO0061408	Positive regulation of transcription from RNA polymerase II promoter in response to heat stress	13	1 (0.206)	1 (0.293)	
GO0070370	Cellular heat acclimation	83	0 (3.32 × 10^{-3})	13 (0.313)	
GO0070414	Trehalose metabolism in response to heat stress	2	0 (0.187)	0 (0.260)	
GO1900432	Negative regulation of filamentous growth of a population of unicellular organisms in response to heat	62	0 (8.51 × 10^{-3})	5 (0.301)	
GO1900433	Positive regulation of filamentous growth of a population of unicellular organisms in response to heat	60	1 (2.08 × 10^{-2})	11 (0.268)	
GO2000728	Regulation of mRNA export from nucleus in response to heat stress	5	0 (0.192)	0 (0.296)	

* Significant values where FDR is <0.05 are in boldface.
pression of the gene, with potential catalytic activity, is downregulated at 37°C.

A. fumigatus DHN-melanin biosynthesis genes are highly expressed at 37°C, suggesting that DHN-melanin is implicated in *A. fumigatus* infection (65–67). Our results showed that *P. marneffei* produces less DHN-melanin and more pyomelanin at 37°C, suggesting that pyomelanin, instead of DHN-melanin, plays a role in the pathogenicity of *P. marneffei*.

Abundant TRSs in coding regions of *P. marneffei* genes.

Tandem repeat sequences (TRSs) are two or more adjacent copies of the same sequence of nucleotides resulting from tandem duplication events. TRSs located in the coding region of genes produce repeated units of amino acids in the genes’ protein products. These protein polymorphisms may create quantitative alterations in fungal phenotypes, such as adhesion, flocculation, and biofilm formation (48). We compared the relative abundance of coding TRSs between *P. marneffei* and three other filamentous fungi (Table 6). *P. marneffei* shows the highest B/G ratio, where B represents the bases in coding TRSs and G represents the genome size. That is to say, *P. marneffei* accommodates more coding TRSs per unit of genome than other fungal species under consideration. We hypothesized that the presence of abundant coding TRSs in *P. marneffei* genes might allow the fungal cells to “disguise” themselves in order to evade the host immune system’s defenses. If true, the expression of TRS-containing genes should be upregulated at 37°C. Indeed, among 66 genes that contain coding TRSs, 15 were found to be overexpressed at 37°C (see Table S5 in the supplemental material). The number is significantly higher than expected ($P < 0.01$, Fisher’s exact test). No specific DNA sequence motif was identified in 5′ regulatory regions of these genes, suggesting that the upregulated expression of these genes may not be controlled by a master transcription factor.

Multigene families and species-specific genes in *P. marneffei*

Among protein-coding genes of *P. marneffei*, 2,283 of them belong to 665 multigene families (see Materials and Methods for details about gene family classification). The most expanded gene families include the following: the MFS multidrug transporter family (34 genes), the short-chain dehydrogenase or reductase family (31 genes), the hexose transporter family (27 genes), the pepsin-type protease family (24 genes), and the major facilitator superfamily (23 genes). Notably, the expansion of the MP1 domain protein (Mp1p, a cell wall antigen) has been proposed to be implicated in *P. marneffei* pathogenesis (68). Twelve genes containing the MP1 domain have been identified in *P. marneffei*; in contrast to that, only two MP1 domain genes have been identified in *A. fumigatus* (53, 69–71). Among these 12 genes, 7 were found to be overexpressed and one underexpressed at 37°C (Fig. 4A).

Table 6

Species	TRSs in coding region (kb)	Genome size (Mb)	B/G ratio
P. marneffei	23.8	30	0.79
A. fumigatus	12.7	28	0.45
A. nidulans	16.8	30	0.56
N. crassa	22.1	40	0.55
Using a motif-discovering tool, MEME (72), we identified conserved DNA sequence motifs in the 5′ regulatory regions of these MP1 domain genes (Fig. 4B). These motifs are the putative binding sites of subtypes of transcription factors: (i) MADS, (ii) NFY CCAAT binding, and (iii) fungal Zn cluster (73). These results indicate that these MP1 domain genes are likely to be regulated by shared transcription factors. Next, to confirm the cellular localization of Mp1p protein products, we performed the indirect fluorescent antibody (IFA) staining assay with antibodies for Mp1p (pm1g_08423) (see Materials and Methods). The results confirm that the Mp1p gene is expressed at 37°C and that the gene product is located on the cell wall of yeast cells (Fig. 4C). No expression and protein product were detected at 25°C. Furthermore, we used between-supercontig sequence comparison to search for conserved gene order. No evidence for large-genomic-segment duplication in *P. marneffei* was identified. Compared with *S. cerevisiae*, the *P. marneffei* genome contains relatively fewer recently duplicated gene pairs, as indicated by the small nonsynonymous-to-synonymous substitution ratio (Ks/Ka) between two copies of duplicate genes (*P < 0.01*, Fisher’s exact test) (74). These differences can be explained by the whole-genome duplication in *S. cerevisiae* (75).

Finally, we identified 1,009 *P. marneffei* genes whose protein sequences do not share any sequence similarity with other protein sequences in the NCBI nonredundant database (BLASTP E value cutoff of 1e−10). Among these orphan genes, 107 are not expressed at either 25 or 37°C. In the remaining 902 expressed ones, 117 (13.0%) are overexpressed at 37°C (FDR > 0.05) and only 63 (7.0%) are underexpressed at 37°C (FDR < 0.05). Thus, *P. marneffei*-specific genes are not likely to be overexpressed but are less likely to underexpressed in yeast cells at 37°C.

DISCUSSION

P. marneffei is an emerging model system for investigating fungal growth processes and their contribution to pathogenicity (28). To understand the genetics of *P. marneffei*, especially in response to elevated temperature, we jointly used genome sequences and transcriptomic profiles to unravel the molecular basis of genetic regulation in *P. marneffei*. Previous studies of *P. marneffei* transcriptome were based on microarrays (76, 77). The adaptation of the RNA-seq approach, which measures gene expression in a much higher dynamic range, allowed us to produce an unbiased, high-resolution-expression measurement of *P. marneffei* genes for the first time.

Globally, we identified 1,414 and 1,447 *P. marneffei* protein-coding genes as being up- or downregulated at 37°C, respectively, compared with at 25°C. That is, more than a quarter of genes in the *P. marneffei* genome are expressed at different levels at two temperatures. This figure is likely to be a lower bound of the estimation as we adapted highly stringent statistical criteria for asserting DE genes. Next the myriad of genes presented a great challenge to gene function annotation. We leveraged comparative genomics across fungal species and detected a variety of annotation features over- or underrepresented in heat-responsive genes in *P. marneffei*. Some of these discoveries seemed to fit our expectations well.

FIG 4 Expression levels of *P. marneffei* MP1 domain genes and their regulatory regions. (A) Expression levels of 12 MP1 domain genes. ***, significant difference in levels of expression of the gene at 25 versus 37°C (see Materials and Methods for details). (B) Putative transcription factor binding sites in 5′ regulatory regions. The positions of binding motifs are indicated with the blue and green bars and labeled with the subtype name of transcription factors: (i) MADS, (ii) NFY CCAAT binding, and (iii) fungal Zn cluster. The position of the TATA box is indicated by the red bar. (C) Indirect immunofluorescent staining with antibodies to Mp1p (pm1g_08423) at 37°C.
acknowledgments

we thank smitri shankar for assisting with data processing. we acknowledge the tamu supercomputing facility and the wsgi computer cluster for providing computing resources and systems administration support.

this study is supported by 2012 whole systems genomics initiative (wsgi) catalyst research grant 248307-12001 from texas a&m university (tamu) to j.j.c. e.y. is supported by tamu cvm postdoctoral trainee research grant 02-21039-00002. g.w. is supported by tamu cvm graduate trainee research grant 02-21039-00002.

references

1. klein bs, tebbets b. 2007. dimorphism and virulence in fungi. curr. opin. microbiol. 10:314–319.
2. rappleye ca, goldman we. 2006. defining virulence genes in the dimorphic fungi. annu. rev. microbiol. 60:281–303.
3. nemecek jc, wuthrich m, klein bs. 2006. global control of dimorphism and virulence in fungi. science 312:583–588.
4. supparatpinyo k, khamwan c, baosoung v, nelson ke, sirisantha t. 1994. disseminated penicillium marneffei infection in southeast asia. lancet 344:110–113.
5. hsu ly, wijaya l, ng est, gotuzzo e. 2012. tropical fungal infections. infect. dis. clin. north am. 26:497–512.
6. duong ta. 1996. infection due to penicillium marneffei, an emerging pathogen: review of 155 reported cases. infect. infect. dis. 23:125–130.
7. yap fb, thevarajah s, asmah j. 2010. penicillium marneffei infection in an african man. dermatol. online j. 16:2. http://escholarship.org/uc/item/69672f.
8. le t, wolbers m, chi nh, quang vm, chinh nt, lan np, lam ps, kozal mj, shikuma cm, day jn, farrar j. 2011. epidemiology, seasonality, and predictors of outcome of aids-associated penicillium marneffei infection in ho chi minh city, viet nam. clin. infect. dis. 52:945–952.
9. devi kr, singh lr, rajkumari r, usharani m, devi kh s, singh tb. 2007. penicillium marneffei—an indicator disease of aids: a case report. indian j. pathol. microbiol. 50:674–676.
10. nguyen k, taylor s, wanger a, ali a, rapini rp. 2006. a case of penicillium marneffei in a us hospital. j. am. acad. dermatol. 54:70–732.
11. deesomchok a, tanprawate s. 2006. a 12-case series of penicillium marneffei pneumonia. j. med. assoc. thai. 89:441–447.
12. mens h, hojlyng n, arendrup mc. 2004. disseminated penicillium marneffei sepsis in a hiv-positive thai woman in denmark. scand. j. infect. dis. 36:607–610.
13. hien tv, loc pp, hoa nt, duong nm, quang vm, mcneil mm, dng nt, ashford da. 2001. first cases of disseminated penicilliosis marneffei infection among patients with acquired immunodeficiency syndrome in vietnam. clin. infect. dis. 32:e78–e80.
14. depraetere k, coleunders m, irem m, de drooegh e, pelgrorn y, haubten e, van marck e, devroey c. 1998. two imported cases of penicillium marneffei infection in belgium. acta clin. belg. 53:255–258.
15. chang cc, liao st, huang ws, liu jd, shih ls. 1995. disseminated penicillium marneffei infection in a patient with acquired immunodeficiency syndrome in vietnam. clin. infect. dis. 32:e78–e80.
16. angus bj, schmid ml, dockrell dh, grant ad. 2011. travel-related opportunistic infections. hiv med. 12:88–101.
17. mcginnis mr. 1994. penicillium marneffei, dimorphic fungus of increasing importance. clin. microbiol. news. 16:29–31.
18. canovas d, andrianopoulos a. 2007. the biology of the thermally dimorphic fungal pathogen penicillium marneffei, p 213–226. in kavanagh k (ed), new insights in medical mycology. springer, dordrecht, netherlands.
19. kunnasook a, cooper cr, vanitanakom n. 2010. an improved agrobacterium-mediated transformation system for the functional genetic analysis of penicillium marneffei. med. mycol. 48:1066–1074.
20. bugeya he, hynes mj, andrianopoulos a. 2010. the rfx protein rfxa is an essential regulator of growth and morphogenesis in penicillium marneffei. eukaryot. cell 9:578–591.
21. woo pcy, tam etw, chong ttk, cai jj, tung etk, ngan ah, lau skp, yuen ky. 2010. high diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in penicillium marneffei. febs j. 277:3750–3758.
22. zuber s, hynes mj, andrianopoulos a. 2003. the g-protein alpha subunit gasc plays a major role in germination in the dimorphic fungus penicillium marneffei. genes 164:487–499.
23. borneman ar, hynes mj, andrianopoulos a. 2002. a basic helix-loop-helix protein with similarity to the fungal morphological regulators, phdlp, efg1p and stuα, controls conidiation but not dimorphic growth in penicillium marneffei. mol. microbiol. 44:621–631.
24. pongsunk s, andrianopoulos a, chaiyaroj sc. 2005. conditional lethal disruption of tata-binding protein gene in penicillium marneffei. fungal genet. biol. 42:893–903.
25. bovce kj, schreider l, andrianopoulos a. 2009. in vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen penicillium marneffei. plos pathog. 5:e1000678. doi:10.1371/journal.ppat.1000678.
26. borneman ar, hynes mj, andrianopoulos a. 2000. the abaα homologue of penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. mol. microbiol. 38:1034–1047.
dispensable for virulence. PLoS One 6:e26604. doi:10.1371/journal.pone.0026604.

64. Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, Sheppard DC. 2009. Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolism clusters in Aspergillus fumigatus. Eukaryot. Cell 8:104–115.

65. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38:143–158.

66. Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. 1998. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J. Bacteriol. 180:3031–3038.

67. Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA. 2002. Control of morphogenesis in the human fungus Penicillium marneffei. Fungal Biol. 91:85–94.

68. Boyce KJ, Hynes MJ, Andrianopoulos A. 2003. Control of morphogenesis and actin localization by the Penicillium marneffei RAC homologue, J. Cell Biol. 161:249–1266.

69. Pongpom P, Cooper CR, Vanitanakom N. 2005. Isolation and characterization of a catalase-peroxidase gene from the pathogenic fungus, Penicillium marneffei. Med. Mycol. 43:403–411.

70. Boyce KJ, Schreider L, Kirszbenblat L, Andrianopoulos A. 2011. The two-component histidine kinases DrkA and SlnA are required for in vivo growth in the human pathogen Penicillium marneffei. Mol. Microbiol. 79:1164–1184.

71. Samson RA, Hynes MJ, Andrianopoulos A. 2002. G-protein signaling mediates asexual development at 25°C but has no effect on yeast-like growth at 37°C in the dimorphic fungus Penicillium marneffei. Eukaryot. Cell 1:440–447.

72. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37:W102–W208.

73. Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC. 2011. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol. 69:1–26.

74. Peterson SW, Varga J, Frisvad JC. 2012. Evolutionary analysis of sequence divergence and diversity of duplicate genes in Aspergillus fumigatus. Bioinformatics Online 8:e63–e64.

75. Seoighe C, Wolfe KH. 1998. Extent of genomic rearrangement after genome duplication in yeast. Proc. Natl. Acad. Sci. U. S. A. 95:4447–4452.

76. Liu HF, Xi LY, Zhang JM, Li QX, Liu XY, Lu CM, Sun JF. 2007. Identifying differentially expressed genes in the dimorphic fungus Penicillium marneffei by suppression subtractive hybridization. FEMS Microbiol. Lett. 270:97–103.

77. Lin X, Ran Y, Gou L, He F, Zhang R, Wang P, Dai Y. 2012. Comprehensive transcription analysis of human pathogenic fungus Penicillium marneffei in mycelial and yeast cells. Med. Mycol. 50:835–842.

78. Qutob D, Patrick Chapman B, Gijzen M. 2009. Molecular analysis of the Penicillium marneffei glyceroldehyde-3-phosphate dehydrogenase-encoding gene (gpdA) and differential expression of gpdA and the isocitrate lyase-encoding gene (acdC) upon internalization by murine macrophages. J. Med. Microbiol. 58:1322–1328.

79. Vanitanakom N, Pongpom M, Praparatpanan J, Cooper CR, Siriananthan T. 2009. Isolation and expression of heat shock protein 30 gene from Penicillium marneffei. Med. Mycol. 47:521–526.

80. Kummasook A, Pongpom P, Vanitanakom N. 2007. Cloning, characterization and differential expression of an hsp70 gene from the pathogenic dimorphic fungus Penicillium marneffei. DNA Seq. 18:385–394.

81. Cao L, Chan CM, Lee C, Wong SSY, Yuen KY. 1998. MP1 encodes an abundant and highly antigenic cell wall mannanprotein in the pathogenic fungus Penicillium marneffei. Infect. Immun. 66:966–973.

82. Pongpom M, Vanitanakom N. 2011. Characterization of an MPLP6, a gene coding for a yeast phase specific antigen, mannoprotein in Penicillium marneffei. Med. Mycol. 49:3–39.

83. Canovas D, Boyce KJ, Andrianopoulos A. 2011. The fungal type II myosin in Penicillium marneffei, MyoB, is essential for chitin deposition at nascent septation sites but not actin localization. Eukaryot. Cell 10:302–312.

84. Boyce KJ, Andrianopoulos A. 2007. A p21-activated kinase is required for conidial germination in Penicillium marneffei. PLoS Pathog. 3:e162. doi:10.1371/journal.ppat.0030162.

85. Wang F, Tao JH, Qian Z, You S, Dong H, Shen H, Chen XX, Tang SR, Ren SX. 2009. A histidine kinase PmhHK1 regulates polar growth, apoptosis and cell wall composition in the dimorphic fungus Penicillium marneffei. Mycol. Res. 113:913–923.

86. Feng PY, Xie Z, Sun JF, Zhang JM, Li QX, Lu CM, Xi LY. 2010. Molecular cloning, characterization and expression of PmhRsr1, a Ras-related gene from yeast form of Penicillium marneffei. Mol. Biol. Rep. 37:3533–3540.

87. Boyce KJ, Hynes MJ, Andrianopoulos A. 2005. The Ras and Rho GTases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol. Microbiol. 55:1487–1501.

88. Nimmanee P, Vanitanakom N. 2012. Characterization of Penicillium marneffei sakA gene and the mutant generating by split-marker recombination. Abstracts of the 18th Congress of the International Society for Human and Animal MycologyPoster presentation, 11–15 June 2012. Med. Mycol. Series 55(Suppl 4):129.

89. Cao CW, Liu W, Li RY. 2009. Penicillium marneffei SKN7, a novel gene, could complement the hypersensitivity of S. cerevisiae skn7 disruptant strain to oxidative stress. Mycopathologia 168:23–30.

90. Thirach S, Cooper CR, Vanitanakom P, Vanitanakom N. 2007. The copper, zinc superoxide dismutase gene of Penicillium marneffei: cloning, characterization, and differential expression during phase transition and macrophage infection. Med. Mycol. 45:409–417.

91. Borneman AR, Hynes MJ, Andrianopoulos A. 2001. An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 157:1003–1014.

92. Todd RB, Greenhalgh JR, Hynes MJ, Andrianopoulos A. 2003. TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol. Microbiol. 48:85–94.

Downloaded from http://ec.asm.org on January 3, 2019 by guest