Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4⁺ and CD8⁺ T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we summarize mechanisms by which the immune system regulates HSCs and LSCs.

Cell Death and Differentiation (2015) 22, 187–198; doi:10.1038/cdd.2014.89; published online 4 July 2014

Facts

- Hematopoiesis and leukemia are both hierarchically organized processes originating from HSCs and LSCs, respectively.
- LSCs display many features of normal HSCs, including quiescence and self-renewal.
- HSCs and LSCs crucially depend on signals from the BM microenvironment, the so-called niche.
- The BM microenvironment contains innate and adaptive immune cells that regulate hematopoiesis during homeostasis, stress response and infections.
- In leukemia, activated immune cells paradoxically contribute to disease progression.

Open Questions

- What is the contribution of BM-infiltrating immune cells to the HSC and LSC niche?
- What are the molecular mechanisms of the interaction between immune cells, LSCs and niche cells?
- Do stress-induced alterations in hematopoiesis favor leukemia development and progression?
- How can the knowledge about BM-resident immune cells be exploited to improve immunotherapy for leukemia?

The concept that cancer develops in a hierarchical tree from disease-originating cancer stem cells (CSCs) that self-renew and give rise to more differentiated, non-cancer-initiating cells...
Regulation of HSCs and LSCs by the immune system
C Riether et al

by asymmetric division was first documented in leukemia two decades ago. The CSC hypothesis is now widely accepted and was extended and adapted to several solid tumors. Since the first description of leukemic stem cells (LSCs), our knowledge about their biology grew substantially and nowadays, LSCs are phenotypically well characterized in chronic myeloid leukemia (CML) and in some forms of acute myeloid leukemia (AML). From a clinical point of view, LSCs are of fundamental interest as they are resistant against most of our current cancer treatments such as irradiation and chemotherapy and probably also against more targeted therapies such as tyrosine kinase inhibitors and immunotherapy. Therefore, LSCs are the main reason for treatment failure and disease relapse. Different mechanisms may contribute to the resistance of LSCs to current therapies. LSCs express drug efflux proteins that lead to multidrug resistance. In addition, many cytokotoxic drugs and irradiation depend on cell division in order to induce cell death but LSCs are largely quiescent. Many stem cell characteristics including quiescence are determined by interactions with the niche. Growing evidence suggests that LSCs depend on similar niche signals as their normal counterpart, the hematopoietic stem cells (HSCs). Although HSCs are mobile and recirculate in the blood, most of them are found in the trabecular bone area of the bone marrow (BM), where they reside in close proximity to sinusoids and other blood vessels. Endothelial and perivascular cells produce C-X-C motif chemokine 12 (CXCL12) and stem cell factor that are necessary for HSC perivascular cells produce C-X-C motif chemokine 12 (CXCL12) and stem cell factor that are necessary for HSC perivascular stimulation and proliferation capacity that can be initiated in stress situations, such as after cytokotoxic chemotherapy, irradiation or during infections. Moreover, HSCs express receptors for cytokines, chemokines and danger-associated molecular patterns, allowing them to respond to signals from mature immune cells and to sense pathogens directly during inflammation or infection to adapt their cycling and differentiation behavior.

Leukemia is a paradigmatic disease of CSCs. According to the CSC hypothesis, tumors are composed of a bulk of cancer cells displaying marked morphological, genetic and functional heterogeneity. Within this bulk resides a small population of cells with stem cell characteristics that propagates the disease. In leukemia, LSCs are thought to reside at the top of the leukemic hierarchy, like HSCs in hematopoiesis (Figure 1). LSCs produce more differentiated, heterogeneous leukemic blasts that feature a high proliferative potential, a block in terminal differentiation and defective apoptosis or senescence mechanisms, leading to blast accumulation and clinical disease. Stem cell features, such as quiescence, the expression of high levels of ATP-binding cassette pumps and the localization in distinct niches, render CSCs resistant to all kinds of therapy. Thus, cure of cancer implies the elimination of CSCs and persisting CSCs are a main cause of disease relapse.

In contrast to differentiated hematopoietic cells that are removed after fulfilling their functions, self-renewing HSCs persist for long periods of time, allowing accumulation of genetic damage and malignant transformation. Therefore, it has been suggested that HSCs serve as the cancer-initiating cells (cell-of-origin) for LSCs (Figure 1). Experimental evidence supporting this theory came from seminal studies by John Dick and colleagues who first demonstrated in xenotransplants that all clonogenic capacity resided in lin^− CD34^+ CD38^− AML cells, whereas lin^− CD34^+ CD38^− or lin^− AML...
cells failed to induce leukemias. Furthermore, in CML, the break point cluster region/Abelson murine leukemia viral oncogene homolog 1 (BCR/ABL1) oncogene can be detected in several hematopoietic lineages, indicating that the cell-of-origin is an HSC with multilineage differentiation potential. In addition, DNA (cytosine-5)-methyltransferase 3A mutations have been found in HSCs, progenitor and mature cells of AML patients, but without coincident nucleophosmin 1 mutations present only in AML blasts. This indicates that AML evolves from pre-leukemic HSCs. However, the hypothesis that HSCs represent the cell-of-origin and undergo oncogenic transformation has been challenged by studies demonstrating that in some leukemias, more mature progenitor cell types or even cells expressing lineage markers can serve as cell-of-origin for LSCs as well. In a ‘pre-leukemic’ disease phase, genetically unstable, self-renewing LSCs clonally expand, facilitating the acquisition of further mutations and the development of different leukemic clones.

The HSC Niche

Many of the functional characteristics of HSCs and LSCs are driven by their surrounding microenvironment in the BM, the so-called HSC niche (Figure 2). The HSC niche has been initially defined as microenvironment that retains HSCs in their localization, avoids differentiation and ensures their stem cell phenotype. However, the hypothesis that HSCs represent the cell-of-origin and undergo oncogenic transformation has been challenged by studies demonstrating that in some leukemias, more mature progenitor cell types or even cells expressing lineage markers can serve as leukemia-initiating cells giving rise to LSCs (Figure 1). This raised the question of how—besides the oncogenic events that are required for leukemia development—these leukemia-initiating cells re-acquire self-renewal capability to fully establish their LSC functions.

Thus, although the cell-of-origin may not be identified for all types of leukemia yet, these cells have to exhibit the essential stem cell characteristics of self-renewal and indefinite proliferative potential to give rise to LSCs that initiate and maintain the disease.

Figure 1 The leukemic stem cell model. In normal hematopoiesis, rarely dividing hematopoietic stem cells (HSCs) with unlimited self-renewal capacity (indicated by circle arrow) give rise to transient-amplifying multipotent progenitors (MPPs) that have only limited self-renewal capacity. MPPs further differentiate toward oligopotent lineage-restricted progenitors (LRPs), such as common lymphoid and myeloid progenitors (CLPs, CMPs) and granulocyte-macrophage progenitors (GMPs) that have lost self-renewal capacity. LRPs proliferate intensely and produce all mature blood cell types required. The formation of a leukemic stem cell (LSC) in myeloid leukemia may result from mutations in cells in different stages of the hematopoietic hierarchy. (a) In chronic phase CML patients, the presence of BCR/ABL1 in all blood lineages suggests that the LSC is derived from an HSC or an early MPP with multilineage differentiation potential (HSC cell-of-origin). (b) In contrast, in blast crisis CML and AML patients, LSCs exhibited immunophenotypes of LRPs, such as lymphoid-primed MPPs (LMPPs) or GMPs. This supports the concept that other more differentiated cells can give rise to LSCs after re-acquisition of self-renewal (progenitor cell-of-origin). (c) In addition, the recent demonstration that some AML LSCs even express low amounts of lineage markers raised the question whether more differentiated hematopoietic cells may serve as cell-of-origin for LSCs as well. (d) In a ‘pre-leukemic’ disease phase, genetically unstable, self-renewing LSCs clonally expand, facilitating the acquisition of further mutations and (e) the development of different leukemic clones. B, B cell; CML, chronic myeloid leukemia; E, erythrocyte; G, granulocyte; NK, natural killer cell; M, monocyte; MEP, megakaryocyte-erythrocyte progenitor; P, platelet; T, T cell

Figure 2 Regulation of HSCs and LSCs by the immune system. In normal hematopoiesis, rarely dividing hematopoietic stem cells (HSCs) with unlimited self-renewal capacity give rise to transient-amplifying multipotent progenitors (MPPs) that have only limited self-renewal capacity. MPPs further differentiate toward oligopotent lineage-restricted progenitors (LRPs), such as common lymphoid and myeloid progenitors (CLPs, CMPs) and granulocyte-macrophage progenitors (GMPs) that have lost self-renewal capacity. LRPs proliferate intensely and produce all mature blood cell types required. The formation of a leukemic stem cell (LSC) in myeloid leukemia may result from mutations in cells in different stages of the hematopoietic hierarchy. (a) In chronic phase CML patients, the presence of BCR/ABL1 in all blood lineages suggests that the LSC is derived from an HSC or an early MPP with multilineage differentiation potential (HSC cell-of-origin). (b) In contrast, in blast crisis CML and AML patients, LSCs exhibited immunophenotypes of LRPs, such as lymphoid-primed MPPs (LMPPs) or GMPs. This supports the concept that other more differentiated cells can give rise to LSCs after re-acquisition of self-renewal (progenitor cell-of-origin). (c) In addition, the recent demonstration that some AML LSCs even express low amounts of lineage markers raised the question whether more differentiated hematopoietic cells may serve as cell-of-origin for LSCs as well. (d) In a ‘pre-leukemic’ disease phase, genetically unstable, self-renewing LSCs clonally expand, facilitating the acquisition of further mutations and (e) the development of different leukemic clones. B, B cell; CML, chronic myeloid leukemia; E, erythrocyte; G, granulocyte; NK, natural killer cell; M, monocyte; MEP, megakaryocyte-erythrocyte progenitor; P, platelet; T, T cell

Thus, although the cell-of-origin may not be identified for all types of leukemia yet, these cells have to exhibit the essential stem cell characteristics of self-renewal and indefinite proliferative potential to give rise to LSCs that initiate and maintain the disease.
depend on an intact vasculature for recovery after myeloablation or BM transplantation. More recently, perivascular nestin$^{+}$ mesenchymal stem cells (MSCs) have been defined as central components of the HSC niche that regulate HSCs via the expression of stem cell factor, CXCL12, angiopeptin-1 and vascular cell adhesion molecule-1 (VCAM-1). In addition, it was demonstrated that β-adrenergic signals from the sympathetic nervous system mobilize HSCs and regulate circadian HSC egress. These data suggested that at least two distinct HSC niches exist, an endosteal and a vascular niche (Figure 2). According to this hypothesis, the endosteal niche keeps HSCs quiescent and regulates their migration to the vascular niche, where differentiation occurs according to the organism’s demand. However, recent studies challenged the existence of an endosteal niche and a role of OBs in the maintenance of HSC quiescence. Transforming growth factor-β (TGF-β) is a niche factor that controls HSC dormancy. Nonmyelinating Schwann cells that are located around the blood vessels in the BM induce HSC dormancy by secreting TGF-β, suggesting that HSC quiescence is maintained in the vascular niche. Recently, these findings have been further elaborated by conditional deletion of CXCL12 in different cell types of the HSC niche. HSC maintenance and self-renewal in the BM was primarily regulated by CXCL12 secreted from immature mesenchymal stem and progenitor cells and to a lesser extent from ECs. In contrast, CXCL12 secreted from OBs was dispensable for HSC function. In addition, retention of HSPCs in the BM was mediated by perivascular sinusoidal stromal cells, including CXCL12-abundant reticular cells and osteolineage progenitors that express leptin receptor and osterix. Immuno-fluorescence imaging together with computational modeling revealed that quiescent HSCs associate with small arterioles in the endosteal BM. A rare subtype of pericytes (NG2$^{+}$ pericytes) ensheathed these arterioles and mediated HSC quiescence.

In summary, there is strong evidence that HSCs reside in the perivascular region of the BM and that MSCs, ECs and pericytes regulate HSC maintenance and differentiation through soluble factors and cell contact-dependent signals (Figure 2).

The LSC Niche

Although LSCs harbor genetic abnormalities that result in increased proliferation and resistance to apoptosis, they still depend on similar interactions with niche cells as described for HSCs. Therefore, during leukemogenesis, LSCs ‘hijack’ the niche and the signaling molecules from normal HSCs. Analogous to normal HSCs, transplanted leukemia cells preferentially migrate to CXCL12-expressing vascular niches. Moreover, the CXCL12 receptor C-X-C motif chemokine receptor 4 (CXCR4) regulates the migration of human AML cells in xenotransplant models. Signaling via CXCR4 leads to the upregulation of pro-survival signals and quiescence, both contributing to chemotherapy resistance. Importantly, CXCR4 is highly expressed on different types of...
human leukemia, including acute lymphoblastic leukemia and AML, and high CXCR4 expression on leukemia blasts correlates with poor outcome. Blocking CXCR4 in vitro using peptides resulted in reduced chemotaxis toward CXCL12-expressing cells and an inactivation of pro-survival signals. As a consequence, blocking CXCR4 increased the susceptibility of AML cells to chemotherapy. Similarly, preclinical studies demonstrate that the CXCL12-CXCR4 inhibitorplerixafor and novel monoclonal antibodies (mAbs) blocking CXCR4 increase the chemosensitivity of leukemia cells in vitro and in vivo. In contrast to AML blasts, CML cells have a decreased expression of CXCR4 and therefore an attenuated chemotaxis toward CXCL12. Treatment with imatinib restores CXCR4 expression and CXCL12-mediated pro-survival signals. Thereby, imatinib may contribute to CXCL12/CXCR4 signaling-mediated resistance of the few remaining LSCs in CML.

Similar to the role of quiescence induction in HSCs, TGF-β has been reported to induce quiescent G0 state of the cell cycle in AML cells. Blocking TGF-β by mAbs increased proliferation and susceptibility to cytarabine. In addition, TGF-β is a crucial regulator of protein kinase B (AKT/PKB) activation and controls forkhead-box protein O3a localization, thereby maintaining CML LSCs. Interestingly, it was shown that the effect of TGF-β on LSCs varies in different subtypes of leukemia. For instance, OB-specific transplantation models. Blocking CXCR4 expression and CXCL12-mediated pro-survival signals. Thereby, imatinib may contribute to CXCL12/CXCR4 signaling-mediated resistance of the few remaining LSCs in CML.

Niche cells not only interact with HSPCs via soluble factors but also via direct cell–cell interactions. For example, CD44, a transmembrane glycoprotein that exists in differently spliced isoforms mediates adhesion of LSCs through cell–cell and cell–extracellular matrix interactions by binding to hyaluronan that is concentrated at the endosteal region of the BM niche. In addition to its function as an adhesion molecule, CD44 also transduces intracellular signals that are involved in the regulation of cell proliferation and differentiation. Blocking CD44 in vivo prevented the migration of human AML and murine CML LSCs to the stem cell-supportive microenvironment in the BM and led to their eradication.

Tregs represent one-third of all CD4+ T cells in the BM. This proportion is substantially higher than in lymph nodes and spleen, where the frequency of Tregs is approximately 5–10%. Depletion experiments and co-transfer of BM with or without Tregs indicated that Tregs suppress colony formation and myeloid differentiation of HSPCs. High-resolution in vivo imaging demonstrated that Tregs colocalize with HSPCs in the endostium. Furthermore, Tregs provide an immune-privileged niche in the BM, protecting HSPCs from immune destruction.

In addition to cells of the adaptive immune system, mononuclear phagocytes contribute to the regulation of HSCs in the BM. Depletion of mononuclear phagocytes using clodronate liposomes increased the number of circulating HSCs. Similarly, conditional knockdown of DICER1, a gene that regulates microRNAs, in osteoblastic progenitors results in leukemia predisposition. More recently, Kode and colleagues showed that a single activating β-catenin mutation in OBs is sufficient to alter the differentiation of myeloid progenitors, leading to AML with common chromosomal aberrations and cell-autonomous progression.

Immune Cells Contributing to the Niche

Although recent evidence documents that MSCs and ECs are fundamental regulators of HSC maintenance and quiescence, many other cell types that are present in the BM contribute to the microenvironment. These include adipocytes, fibroblasts and immune cells (Figure 3). Besides its main function as a hematopoietic organ, the BM serves as a primary and secondary lymphoid organ, hosting various mature immune cells including T and B cells, plasma cells, dendritic cells (DCs), neutrophils and macrophages (reviewed in Mercier et al., Figure 4). These immune cells provide an ‘immune niche’ that is involved in the regulation of HSC homeostasis and emergency hematopoiesis.

Lymphocytes represent a major fraction of total BM mononuclear cells, are widely distributed throughout the BM parenchyma and are occasionally organized as small lymphoid aggregates, typically consisting of mature CD3+ T cells (Figure 3). Clinical and experimental approaches investigating engraftment after BM transplantation suggested a fundamental role of CD4+ T cells in hematopoiesis. T-cell-depleted allogeneic BM failed to engraft in a majority of the patients. In addition, HSC maintenance and successful long-term reconstitution depends on the expression of major histocompatibility complex class II, implying a role for CD4+ T cells in maintaining HSC function. The mouse BM contains ~1.5% of CD4+ T cells. Most of these cells have an activated memory phenotype and a diverse Vβ T-cell receptor repertoire. Observations in mice lacking the common gamma chain (γc−/−) indicated that hematopoiesis-promoting cytokines such as IL-3 and GM-CSF secreted by activated T cells in the BM modulate normal hematopoiesis. In addition, adoptive transfer of CD4+ T cells but not CD8+ T cells restored defective myeloid differentiation in T-cell-deficient mice, suggesting that especially antigen-activated CD4+ T cells maintain basal hematopoiesis in the BM.

Treg represent one-third of all CD4+ T cells in the BM. This proportion is substantially higher than in lymph nodes and spleen, where the frequency of Tregs is approximately 5–10%. Depletion experiments and co-transfer of BM with or without Tregs indicated that Tregs suppress colony formation and myeloid differentiation of HSPCs. High-resolution in vivo imaging demonstrated that Tregs colocalize with HSPCs in the endostium. Furthermore, Tregs provide an immune-privileged niche in the BM, protecting HSPCs from immune destruction.

In addition to cells of the adaptive immune system, mononuclear phagocytes contribute to the regulation of HSCs in the BM. Depletion of mononuclear phagocytes using clodronate liposomes increased the number of circulating HSCs. Similarly, conditional knockdown of DICER1, a gene that regulates microRNAs, in osteoblastic progenitors results in leukemia predisposition. More recently, Kode and colleagues showed that a single activating β-catenin mutation in OBs is sufficient to alter the differentiation of myeloid progenitors, leading to AML with common chromosomal aberrations and cell-autonomous progression. More recently, Kode and colleagues showed that a single activating β-catenin mutation in OBs is sufficient to alter the differentiation of myeloid progenitors, leading to AML with common chromosomal aberrations and cell-autonomous progression.
Furthermore, macrophages have been identified as central regulators of HSC egress from the BM after phagocytosis of aged neutrophils 79 (Figure 4).

The BM Microenvironment During Immune Activation

The BM not only assures the continuous supply of different blood lineages during homeostasis, it also responds to the organism’s increased demands during stress situations, such as infections or chemotherapy. Many of the mechanisms that regulate HSPCs during demand-adapted hematopoiesis may also regulate LSCs and leukemic progenitor cell function (Table 1, Figure 5).

During an infection, antigenic stimulation drives clonal expansion of naïve and memory lymphocytes to meet the increased demand for T and B cells. 80 In contrast, granulocytes are short-lived and do not have the capacity to undergo clonal expansion. Consequently, they must be continuously produced and recruited from the BM. Therefore, the BM must be capable of recognizing the increased demand for myeloid cells during an infection and immediately react with enhanced production, differentiation and mobilization of granulocytes and monocytes. The importance of this so-called ‘emergency myelopoiesis’ is best documented in bacterial infections. HSPCs sense the increased demand for myeloid cells by systemic and local danger and inflammatory signals. These include the recognition of conserved microbial products via Toll-like receptor (TLR) activation and of soluble factors such as type I and type II interferons (IFNs). 81,82 TLR signaling has been shown to induce cell cycling and myeloid differentiation in a MyD88-dependent manner in murine HSCs and in human CD34+ progenitor cells. 82,83 Although some TLRs interact with endogenous ligands, no effect of TLR signaling on LSCs has been reported so far.

HSPCs express cytokine receptors and respond to inflammatory signals produced by mature immune cells, such as IFNs. 17,84,85 IFNs are crucially involved in host protection against various infections and emerged as a major pathway of HSC regulation. 86 Type I IFNs (IFNα and β) are synthesized by various cell types, especially plasmacytoid DCs, in response to viral infection and prevent viral replication and thereby viral spread. 87 IFNα stimulates dormant HSCs to enter the cell cycle in a signal transducer and activator of transcription 1 (STAT-1)-dependent way. 88 In addition, IFN regulatory factor 2, a transcriptional repressor of IFNα signaling, preserves quiescence and multilineage reconstitution capacity of HSCs. 89 Thus, acute IFNα production stimulates HSCs to proliferate during viral infection. In contrast, chronic and excessive signaling through this pathway leads to HSC exhaustion. 88–90 A clinically relevant effect of IFNα on CML cells has been well documented. Before the era of the BCR/ABL1-targeting tyrosine kinase inhibitors, IFNα was a standard treatment in CML. 91 Clinical and experimental data suggest that IFNα can actually target CML LSCs. The mechanism of action of IFNα in CML is complex, including direct modulation of gene expression in LSCs, induction of apoptosis, anti-proliferative signals and immunomodulatory effects. 91 In addition, it has been proposed that IFNα, similar to its effect on HSCs, may induce proliferation of LSCs and render them more susceptible to chemotherapy. 92

IFNγ, a type II IFN, is secreted by activated innate and adaptive immune cells, mainly by macrophages and activated T cells. Similar to type I IFNs, IFNγ has activating and suppressive effects on hematopoiesis, probably depending...
on the timing, duration and amount of secretion. Initially, IFNγ was described as a suppressor of hematopoiesis. This was based on experiments indicating that IFNγ induces differentiation and apoptosis of human and murine HSCs and reduces their colony formation capacity in vitro.93,94 In analogy, infection of perforin-deficient mice with lymphocytic choriomeningitis virus (LCMV) induced lethal pancytopenia because of the persistence of the virus, leading to prolonged and increased secretion of tumor necrosis factor α (TNFα) and IFNγ by cytotoxic effector CD8+ T cells (CTLs).95 In contrast, accumulating evidence from more physiologic infection models indicates that IFNγ induces an expansion of HSCs and myeloid progenitors and modulates the production of mature myeloid cells.96–101 Baldridge et al. documented that IFNγ directly increases HSC proliferation through IFNγ receptor 1-STAT-1 signaling during infection with Mycobacterium avium.96 In contrast, we recently demonstrated that IFNγ secreted by activated CTLs during acute LCMV-infection stimulates the expansion of early MPPs and downstream myeloid precursors in the BM.102 Interestingly, IFNγ did not act directly on hematopoietic cells, but stimulated MSCs in the BM to secrete IL-6, which induced proliferation of MPPs and myeloid differentiation. This resulted in elevated myeloid cell counts in the circulation and an increased number of inflammatory monocytes in secondary lymphoid organs that contributed to pathogen clearance. Therefore, IFNγ has an important role in the demand-adapted response to infections and probably regulates HSPC proliferation via direct and indirect mechanisms. However, IFNγ may have comparable effects on LSCs. We found that CTL-secreted IFNγ induces proliferation of LSCs and leukemia progression in a murine CML model (Figure 5).103 Interestingly, this effect was dependent on the amount of secreted IFNγ. If adoptively transferred, activated leukemia-specific CTLs were re-stimulated in vivo by large amounts of antigen, CTL-secreted IFNγ induced LSC proliferation and expansion. The quantity of secreted IFNγ correlated with the leukemia load and with the antigen expression pattern that is, leukemia-specific expression versus expression in, healthy, non-malignant tissue. Similarly, IFNγ increased the colony formation capacity of lin− CD34+ stem/progenitor cells from CML patients in vitro.103

TFNα is another major pro-inflammatory cytokine that is released by activated macrophages, natural killer cells and T cells. Similar to IFNγ, TNFα has been shown to suppress the colony formation capacity of human lin− CD34+ stem/progenitor cells and of murine HSCs in vitro as well as their ability to reconstitute recipient mice.93,104 Rezzoug et al. documented contradictory results in that TNFα promoted...
engraftment and colony formation of HSCs resulting in increased numbers of HSPCs. A small fraction of CD8 T-cell receptor-negative cells in the BM was identified as a major source of TNFα in this process. Furthermore, mice deficient of the p55 TNF receptor 1 (TNFRSF1α−/−) have increased numbers of HSPCs and an increased BM cellularity compared with wild-type mice and mice lacking the p75 TNF receptor 1 (TNFRSF1β−/−). This increase in

Table 1 Shared molecular pathways in the regulation of HPSCs during infection and LSCs in leukemia

Effector molecule	Expression of receptor	Effect in demand-adapted myelopoiesis	Effect in leukemia
IFNα	HSCs, MPPs, LSCs	Dormant HSCs enter the cell cycle68,69 Permanent signaling leads to exhaustion of HSCs86-88	Modulation of gene expression (CML)143 Pro-apoptotic and anti-proliferative signals (CML)144 Adhesion to microenvironment (CML)145 Downregulation of BCR/ABL1 (CML)146 Immunomodulation (CML)147
IFNγ	HSCs, MPPs, CMPs, MEPs, GMPs LSCs	Apoptosis of HSCs in vitro24 Proliferation of HSCs and MPPs in vivo96,102 Increased myeloid differentiation in vivo105 Permanent signaling leads to suppression of HSCs106	Pro-apoptotic effects (CML) Proliferation of CD34+ cells (CML) Proliferation of LSCs and leukemia progression in vivo (CML)
TNFα	HSCs, LSCs	Reduced colony formation in vitro and reconstitution in vivo104,146 Increased colony formation capacity in vitro105 Suppression of HSC proliferation in vivo106	Promotes NF-κB activity, LSC survival and expansion (CML, AML)107,108
IL-1β	HSCs, LSCs	Increased granulocyte numbers in BM148	Inhibits self-renewal capacity of LSCs (AML)149
IL-6	MPPs, Leukemia MPPs	Reduced erythropoiesis115 Increased myelopoiesis102,115	Directs myeloid differentiation and sustains leukemia development (CML)116
CD70-CD27	HSCs, MPPs, CMPs, GMPs LSCs	Negative feedback signal to leukocyte differentiation122	Increased proliferation of LSCs and leukemia progression in CML123 and AML (unpublished results)

Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; CML, chronic myeloid leukemia; CMP, common myeloid progenitor; GMP, granulocyte-macrophage progenitor; HSCs, hematopoietic stem cells; HPSCs, hematopoietic stem- and progenitor cells; IFN, interferon; IL, interleukin; LSCs, leukemic stem cells; MPPs, multipotent progenitors; MEPs, megakaryocyte-erythrocyte progenitors; NF-κB, nuclear factor κB; TNF, tumor necrosis factor

Figure 5 The interaction of activated cytotoxic effector CD8+ T cells (CTLs) with CML leukemic stem cells (LSCs). In CML, the BM is infiltrated by activated leukemia antigen-specific CTLs. Specific CTLs can eliminate LSCs in vitro and donor-derived CTLs can eliminate LSCs after allogeneic HSC transplantation.103,104 Whether autologous CTLs can eliminate LSCs in vivo is currently unclear. B) LSCs express programmed death ligand 1 (PD-L1) that interacts with programmed death 1 (PD-1) on activated CTLs and leads to CTL inhibition and ultimately deletion. CTL-secreted IFNγ further leads to upregulation of PD-L1 on LSCs and therefore protection of LSCs from CTL attack.103 (C) LSCs express the IFNγ receptor and can directly respond to IFNγ resulting in proliferation of LSCs and leukemia progression. In addition, IFNγ activates mesenchymal stem/stromal cells (MSCs) to produce IL-6.102 IL-6 secretion induces myeloid differentiation at the level of MPPs. In CML, IL-6 is secreted by BCR/ABL1-expressing leukemic cells, leading to a paracrine feedback loop.116 (D) LSCs and leukemic progenitors express the TNFR molecule CD27. CD27 ligated by CD70 expressed on activated CTLs123 CD27 signaling leads to activation of the Wnt pathway, proliferation of LSCs and leukemia progression
HSPC numbers is accompanied with a decrease in HSC function. Competitive repopulation assays documented that TNFRSF1a−/− HSCs have an impaired self-renewal capacity. Therefore, TNFα is a major regulator of baseline and demand-adapted hematopoiesis via signaling through the p55 subunit of the TNF receptor (TNFR). However, in analogy to IFNs, prolonged and excessive TNFα signaling is associated with BM failure and myelodysplastic syndrome. Early in vitro experiments using AML blasts demonstrated that TNFα has the ability to either support or inhibit cell proliferation, depending on the growth factors present in the culture medium. Very recently, two studies highlighted the importance of TNFα for CML and AML stem cell survival and expansion. Autocrine TNFα production by LSCs increased nuclear factor κB pathway activation and leukemia progression.

IL-6 was originally identified as a T-cell-derived cytokine that induces B-cell maturation into antibody-producing cells. IL-6 is expressed by a variety of normal and transformed cells including T and B cells and has important functions in the regulation of HSCs and LSCs. IL-6 regulates hematopoiesis in response to Toxoplasma gondii infection in mice. BM stromal fibroblast-derived IL-6 blocked erythroid development but expanded granulocyte-macrophage progenitors. Similarly, as discussed above, LCVM infection increased IL-6 secretion by MSCs because of CTL-secreted IFNγ. IL-6 then expanded MPPs and myeloid progenitors leading to increased numbers of myeloid cells in the circulation and in lymphoid organs. Quite comparable to its function during an acute infection, IL-6 directs CML MPPs toward myeloid lineage. CML cells were the main source of IL-6 and BCR/ABL1 activity controlled IL-6 expression, establishing a feedback-loop that contributed to disease progression.

Although the immune system mainly interacts with HSPCs via soluble factors, direct cell–cell interactions are also involved in the regulation of HSCs and LSCs. CD27, a member of the TNFR superfamily, is expressed on lymphocytes and on subsets of DCs upon immune activation, mainly B cell, differentiation in vivo. As CD70 is only expressed on lymphocytes and on subsets of DCs upon immune activation, CD27 signaling on HSPCs reduces colony formation in vitro and lymphocyte, mainly B cell, differentiation in vivo. As CD70 is only expressed on lymphocytes and on subsets of DCs upon immune activation, CD27 signaling on HSPCs may represent an important regulatory mechanism during infection. We recently documented that CD27 is expressed on LSCs in CML and AML (unpublished results). In contrast to its inhibitory effect on HSCs, CD27 signaling on LSCs increased LSC proliferation and colony formation. Thus, the activated immune system contributes to leukemia progression by CD27 signaling on LSCs and leukemic progenitors (Figure 5). CD27 signaling in LSCs activated the Wnt pathway via the TRAF2- and NCK-interacting kinase. As the Wnt pathway is crucial for CML and AML stem cells, blocking CD27 signaling and reducing Wnt pathway activity resulted in a reduction of LSC numbers and delayed disease progression.

Immune Responses to Leukemia

It is assumed that HSCs reside in an immune-privileged environment, supported by BM-resident Treg cells. In addition, HSCs are resistant to most infectious pathogens with only few exceptions such as the human polyomavirus 2 (JC virus). Therefore, during homeostasis and infection, HSPCs are probably not direct targets of CTLs or antibodies. This situation may be different in leukemia. Leukemic cells express antigens that are immunogenic and can be recognized by CTLs. Some leukemia antigens originate directly from the oncogenic event and are therefore leukemia-specific, such as BCR/ABL1 in CML and DEK/nuceloporin 214, 129 promyelocytic leukemia/retinoic acid receptor-α, fms-like tyrosine kinase 3—internal tandem duplication (FLT3-ITD)133,134 and mutated nucleophosmin 1135 in AML. However, apart from BCR/ABL1 and FLT3-ITD, these leukemia-specific antigens are only expressed in a minority of patients. In addition, the vast majority of the more than 200 known leukemia-specific chromosomal translocations does not give rise to antigenic proteins. Other antigens are not leukemia specific but are overexpressed by leukemic cells (leukemia-associated antigens), such as Wilms tumor protein, proteinase 3, baculoviral IAP repeat-containing gene 5/ survivin, telomerase reverse transcriptase and others. Leukemic cells including LSCs express the molecular repertoire to interact with T cells, that is major histocompatibility molecules and co-stimulatory ligands. Clinical and experimental studies have documented immune responses to leukemia. CTLs directed against leukemia antigens have been detected in chronic phase CML and in AML patients. In an experimental model of CML, depletion of CD8⁺ T cells by mAbs led to rapid disease progression, documenting an important role of CTLs in the immunosurveillance of leukemia. The role of CD4⁺ T cells in leukemia is less clear and CD4⁺ T cells have been shown to be dysfunctional in vivo. Therefore, there is ample evidence that antigen-specific immune responses toward the leukemia are elicited. However, whether activated T cells can interact with and eliminate LSCs is under debate. It is reasonable to assume that similar to HSCs, LSCs are at least partially protected in an immune-suppressive environment because of the high frequency of Treg cells in the BM. In addition, we found in a murine CML model that LSCs express the inhibitory molecule programmed death 1 and its expression is further upregulated in response to IFNγ. In contrast, leukemia-specific effector CTLs were able to eliminate LSCs in vitro and in vivo in a setting with minimal leukemia load. Furthermore, allogeneic HSC transplantation can lead to cure of the leukemia, an effect that is mediated by allo-reactive CTLs that eliminate residual LSCs. This indicates that human LSCs may also be targeted by donor-derived allo-reactive CTLs in vivo.

Conclusions

Besides its main role as a hematopoietic organ, the BM executes functions of a primary and secondary lymphoid organ. Memory CD4⁺ and CD8⁺ T cells and antibody-secreting plasma cells are maintained long-term in the BM by cytokines such as IL-7 and IL-15. Up to one-third of all CD4⁺ T cells in the BM are Treg cells. During homeostasis, especially
Conflict of Interest

The authors declare no conflict of interest.

1. Lapidot T, Sideris C, Vormoor J, Murdoch B, Huang T, Caceres-Cortes J et al. A cell initiating human acute leukemia after transplantation into SCID mice. Nature 1994; 371: 645–648.

2. Hurny B, Gilling GD. Leukemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5: 311–321.

3. Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013; 4: 496.

4. Guzman ML, Allan JN. Leukemia stem cells in personalized medicine. Stem Cells 2013; 31: 844–851.

5. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 278–284.

6. Tabe Y, Konopleva M. Advances in understanding the leukaemia microenvironment. Nat Rev Cancer 2010; 10: 201–209.

7. Shuiu LL, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

8. Bogen D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

9. Martin PJ, Najfeld V, Hansen JA, Pentold GJ, Jacobson RJ, Flakow PJ. Involvement of the B-lymphoid system in chronic myelogenous leukemia. Nature 1990; 347: 49–50.

10. Jonas D, Lubbert M, Kawasaki ES, Henke M, Bross KJ, Mertelsmann R et al. Clonal analysis of bone marrow transplantation in T lymphocytes from patients with chronic myelogenous leukemia. Blood 1992; 79: 1017–1023.

11. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

12. Jameson CH, Ailles LE, Oyulya SJ, Muljans J, Jones C, Zeidner JL et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in blast-crisis CML. Nat Eng J Med 2004; 351: 657–667.

13. et al. 17. Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis et al.

14. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow niche. Cell 2012; 148: 1933–1936.

15. Shi et al. 19. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al. A primitive hematopoietic progenitor cell de-differentiates into a CD4+ T cell in bone marrow. Proc Natl Acad Sci USA 2011; 108: 20012–20017.
51. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE. Relation between CXCR4 expression, FI3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 2004; 104: 550–557.

52. Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E et al. Inhibition of CXCR4 with the novel RCPT168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 2005; 4: 3113–3121.

53. Neri B, Ramirez P, Rettig MP, Uly GL, Holt MS, Ritchey JK et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009; 113: 6206–6214.

54. Kunara MR, Munsey T, Belanger B, Chen S, Pan C, Chong C et al. BMS-936548/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res 2013; 19: 357–366.

55. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H et al. Unique patterns of surface expression in vivo. Blood 2009; 113: 4053–4063.

56. Tabe Y, Shi YX, Zeng Z, Jin L, Shikami M, Hatanaka Y et al. In vivo characterization of CD4
tCD25

57. Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP et al. Differential regulation of myeloid leukemia by the bone marrow microenvironment. Nat Med 2013; 19: 1513–1517.

58. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 erases human acute myeloid leukemia stem cells. Nat Med 2006; 12: 1167–1174.

59. Krause DS, Lazareides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engagement of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

60. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F et al. Soluble and membrane-bonded forms of signaling lymphocyte activation molecule (SLAM) induce proliferation and lig syntheses by activated human B lymphocytes. J Exp Med 1997; 185: 1175–1180.

61. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of hematopoietic progenitor cells. Mol Cancer Ther 2008; 7: 48–58.

62. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. PLoS One 2013; 8: e62785.

63. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 2002; 419: 620–626.

64. Kujawa LA, Talpaz M. The role of interferon-alpha in the treatment of chronic myeloid leukemia. J Exp Med 2011; 204: 1051–1056.

65. MacNamara KC, Oduro K, Martin O, Jones DD, McLaughlin M, Choi K et al. IFNα induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Biol 2006; 364: 945–954.

66. Ziegler MM, Khan ES, Goodell MA. In vivo characterization of hematopoietic stem cells. Trends Immunol 2011; 32: 57–65.

67. price PW, Cerny J. Characterization of CD4

68. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of hematopoietic progenitor cells. Mol Cancer Ther 2008; 7: 48–58.

69. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF monoclonal antibody 1D11 enhances cytarabine-induced apoptosis in AML cells in the bone marrow microenvironment. PLoS One 2013; 8: e62785.

70. Naka K, Hashi T, Muraguchi T, Tadokoro Y, Oosio T, Kondo Y et al. TGF-beta-FOXO signaling maintains leukemia-initiating cells in chronic myeloid leukemia. Nature 2010; 463: 670–678.

71. MacNamara KC, Oduro K, Martin O, Jones DD, McLaughlin M, Choi K et al. IFNα induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Biol 2006; 364: 945–954.
Regulation of HSCs and LSCs by the immune system

C Riether et al

104. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 2001; 98: 1782–1791.

105. Rezzaug F, Huang Y, Tanner MK, Wysoczynski M, Scharlie CL, Chilton PM et al. TNF-α is critical for facilitating hemopoietic stem cell engraftment and function. J Immunol 2008; 180: 49–57.

106. Rebel VI, Hartnett S, Hill GR, Lazo-Kallianian SB, Ferns JA, Sief C. Essential role for the p55 tumor necrosis factor receptor in regulating hematopoiesis at a stem cell level. J Exp Med 1999; 190: 1493–1504.

107. Kasuga M, Satomi J, Kiyotaka T, Yoshida S, Yamaguchi S, Takahashi M et al. Overexpression of tumor necrosis factor (TNF)-α and interferon (IFN)-γ by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997; 11: 2049–2054.

108. Huang T, Levy B, Onetto N, Hman A, Rodriguez-Cimadevilla JC. Tumor necrosis factor alpha (TNFα) downregulates c-KIT proto-oncogene product expression in normal and acute myeloid leukemia CD34+ cells via p55 TNF alpha receptors. Blood 1994; 84: 2506–2514.

109. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S et al. Human CD4 lymphocytes specifically recognize a peptide representing the fusion region of bcr-abl and bcr-abl, represent immunogenic HLA-DR-restricted epitopes recognized by fusion peptide-specific CD4+ T lymphocytes. Leukemia 2002; 16: 2400–2407.

110. Butt NM, Rojas JM, Wang L, Christmas SE, Abu-Eisheh HA, Clark RE. Circulating bcr-abl specific CD8+ T cells in chronic myeloid leukemia patients and healthy subjects. Haematologica 2005; 90: 1315–1323.

111. Gama-can-Pasini C, Giglari F, Arieti F, Pandolfo P, Pellico PG, Parmiani G. Human CD4 lymphocytes specifically recognize a peptide representing the fusion region of the hybrid protein pml-rar alpha present in acute promyelocytic leukemia cells. Blood 1993; 81: 1369–1375.

112. Osman Y, Takahashi M, Zhang Z, Toba K, Liu A, Furukawa T et al. Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for anti-leukemia immunotherapy. J Exp Clin Cancer Res 1999; 18: 485–492.

113. Scholl S, Saizmann S, Kaufmann M, Hoffken K. Fts-ITD mutations can generate leukemia specific neoepitopes: potential role for immunotherapeutic approaches. Leuk Lymphoma 2006; 47: 307–312.

114. Graf C, Heidel F, Tenzer S, Radsak MP, Solem FK, Britten CM et al. A neoepitope generated by an FLT3 internal tandem duplication (FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T cells. Blood 2007; 109: 2985–2988.

115. Greiner J, Ono Y, Hofmann S, Schmitt A, Mehring E, Gotz M et al. Mutated regions of nucleoplasmin 1 elicit both CD4+ (+) and CD8+ (+) T-cell responses in patients with acute myeloid leukemia. Blood 2012; 120: 1282–1289.

116. Whitehay A, Corbett T, Anderson R, Macdonald I, Prentice HG. Expression of co-stimulatory molecules on acute myeloid leukemia blasts may effect duration of first remission. Br J Haematol 2003; 120: 442–451.

117. Tamura H, Dan K, Yamada K, Nakamura K, Shioi Y, Hyodo H et al. Expression of functional B7-H2 and B7-2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin Cancer Res 2005; 11: 5708–5717.

118. Scheibenbogen C, Letsch A, Thiel E, Schmitt M, Maaiide V, Baenro S et al. CD8+ T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100: 2132–2137.

119. Mumprecht S, Schurich C, Scherzer S, Claus C, Ochsenbein AF. Chronic myelogenous leukemia mantains specific CD8(+) T cells through IL-7 signaling. Eur J Immunol 2010; 40: 2720–2730.

120. Kari A, Hahmbergen I, Schake K, Neubauer A, Rogge L, Ehringer N. Normal intrinsic Th1/Th2 balance in patients with chronic phase chronic myeloid leukemia not treated with interferon-alpha or imatinib. Haematologica 2003; 88: 754–761.

121. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

122. Weidem PL, Doney K, Storb R, Thomas ED. Antihuman thymocyte globulin for prophylaxis of graft-versus-host disease. A randomized trial in patients with leukemia treated with HLA-identical sibling marrow transplantation. Transplantation 1979; 27: 227–230.

123. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 1998; 95: 15623–15628.

124. Chawla-Sarkar M, Lindner D, Liu Y, Williams BR, Sen GC, Silverman RH et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003; 8: 239–247.

125. Bhatai R, Verfaillie CM. The effect of interferon-alpha on beta-1 integrin mediated adhesion and growth regulation in chronic myelogenous leukemia. Leuk Lymphoma 1998; 30: 241–254.

126. Pane F, Mostarda I, Selleri C, Salzano R, Raiola AM, Luciano L et al. BCR:ABL mRNA and the P210(BCR:ABL) protein are downregulated by interferon-alpha in chronic myeloid leukemia patients. Blood 1999; 94: 2200–2207.

127. Burchert A, Mostard I, Schiatter S, Schmittel A, Mailaender V, Baenro S et al. CD8+ T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100: 2132–2137.

128. Udya Y, Yang K, Foster SJ, Kondo M, Kelo G. Immunofluorescence controls B lymphopoiesis by regulating chemokine CXCL12 expression. J Exp Med 2004; 199: 47–58.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/