Engineering food crops to grow in harsh environments [version 1; peer review: 2 approved]

Damar López-Arredondo¹, Sandra Isabel González-Morales², Elohim Bello-Bello², Gerardo Alejo-Jacuinde², Luis Herrera²

¹StelaGenomics, Irapuato, Guanajuato, 36821, Mexico
²Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico

Abstract
Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.

Keywords
plant nutrition, abiotic stress, plant development, grain yield, gene overexpression, bacterial genes, biotechnology

Corresponding author: Luis Herrera (lherrera@langebio.cinvestav.mx)
Competing interests: The authors declare that they have no disclosures.
Grant information: The author(s) declared that no grants were involved in supporting this work.
Copyright: © 2015 López-Arredondo D et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: López-Arredondo D, González-Morales SI, Bello-Bello E et al. Engineering food crops to grow in harsh environments [version 1; peer review: 2 approved] F1000Research 2015, 4(F1000 Faculty Rev):651 (https://doi.org/10.12688/f1000research.6538.1)
First published: 02 Sep 2015, 4(F1000 Faculty Rev):651 (https://doi.org/10.12688/f1000research.6538.1)
Introduction

Current agricultural systems use numerous crop varieties that have been improved through traditional breeding, which has produced a substantial increase in the yields of many crops, particularly cereals. However, high input agriculture has been conducted with the excessive use of agrochemicals, including phosphorus (P)- and nitrogen (N)-fertilizers, herbicides, and insecticides. Moreover, the harsh conditions that crops face, such as drought, soil elemental toxicities, extreme temperatures, and high soil impedance, merit special attention because they drastically limit crop yields worldwide.

The predicted increase in the global population to over 9 billion by 2050 poses a critical challenge: how to develop effective stress-resistant/tolerant crops that are more competitive and can grow in marginal soils to ensure food production.

The development of efficient gene transfer systems, together with combined “omics” platforms (e.g. genomics, transcriptomics, proteomics and metabolomics), has facilitated the understanding of the physiology and biochemistry of plant adaptive responses to unfavorable environmental conditions and the identification of the key molecular players that control these responses. Several genes encoding transcription factors (TFs), transporters, and metabolic enzymes with a clear potential to improve crops have been identified. Agricultural schemes that use transgenic crops have proven to be effective and complementary alternatives because they provide multiple benefits for farmers (e.g. 37% less pesticide used, 22% higher yields, and 68% more profits); such crops are cultivated today on more than 180 million hectares globally.

The transgenic crops that are currently on the market address the crop yield per unit area by controlling insect attacks and weed competition; however, new transgenic crops that overcome the limitations caused by harsh environments are also starting to be deregulated for commercial use. In this review, we highlight some relevant transgenic approaches regarding nutrient use efficiency, abiotic stresses and soil physical degradation. These approaches have the potential to increase crop yields in marginal lands with poor soil fertility or low water availability and to expand cropping land into places in which the agro-climatic conditions are favourable but abiotic stress reduces yields and thereby discourages agricultural production.

The two most limiting nutrients for crop productivity: phosphorus and nitrogen

Among all of the nutrients required by plants, P and N are the most limiting factors for agricultural production in most soils; thus, large amounts of fertilizers are commonly applied to ensure high yields. Although plants are able to use different organic compounds as sources of nutrients, P can be assimilated only in the form of orthophosphate (HPO₄²⁻, Pi), whereas N is predominantly taken up as nitrate (NO₃⁻, Ni) or ammonia (NH₄⁺). Moreover, the availability of Pi in the soil solution is drastically affected by the biogeochemical properties of the soil, making P-fertilization efficiency highly variable and more dependent on external inputs. To ensure high yields, farmers usually apply excessive amounts of both P- and N-fertilizers. This practice is unsustainable because crops use only 20–40% of the applied nutrients; the remainder contributes to environmental pollution, toxic algal blooms, and global warming. Whereas N-fertilizers are synthesized from atmospheric N through a process that consumes at least 1% of global energy usage, P-fertilizers are produced from phosphate rock, a finite, non-renewable mineral resource. Consequently, both fertilizer and food prices will increase continuously. Therefore, searching for integrated strategies to increase P, N, and water use efficiency is an issue of food security and sustainability for all nations. The following paragraphs discuss the most relevant advances in engineering improved P and N uptake and use efficiency.

Manipulating key elements of phosphorus and nitrogen metabolism

How can we improve P and N uptake and/or use efficiency in crops? There is no simple answer. This issue is being addressed by attempting to identify the key genes that control the global adaptive responses that plants display to low availability of N and P and to investigate the possible contributions of these genes to enhancing nutrient uptake and use efficiencies. This set of responses includes profound morphological, physiological and metabolic changes, which rely on the induction and repression of numerous genes and allow plants to survive and reproduce under nutrient-deprived conditions. For instance, under limited-P regimens, plants optimize P use by activating metabolic pathways that require smaller amounts of P-containing compounds, reducing shoot growth and promoting root branching to enhance soil exploration.

The uptake of N and Pi from the soil is critical and requires specialized transporter proteins; therefore, overexpression of these transporters has been considered as a potential approach for plant improvement. However, overexpressing Pi transporters has either had little effect on Pi uptake or, in some cases, resulted in toxicity symptoms due to an excessive accumulation of Pi in the shoots. Interestingly, overexpression of the Phosphate Transporter Traffic Facilitator 1 (PHF1) in rice, responsible for regulating the localization of low- and high-affinity Pi transporters to the plasma membrane, results in enhanced low-Pi tolerance. Field data demonstrate that grain yield of PHF1-overexpressing plants in a low-Pi soil is higher than that of wild-type (WT) plants, suggesting that post-transcriptional regulation of Pi transporters could also be considered to improve crop performance in soils with low-Pi availability.

The generation of transgenic plants to improve the N use efficiency has also been attempted in a variety of crop plants by manipulating the flux-limiting enzymes involved in N assimilation. How, however, except in the case of alanine aminotransferase (AlaAT), as described below, the overexpression of enzymes has not provided reproducible or robust results to indicate that it could be an effective strategy for improving the efficiency of N use.

In addition to transporters and key enzymes, some TFs that play crucial roles as master regulators of P and N metabolism have been identified. PHR1 is a member of the MYB transcription family that activates the expression of a large set of the Pi-responsive genes that participate in the low-Pi rescue responses in Arabidopsis, and it is evolutionarily conserved from algae to vascular plants. Overexpressing Phosphate Starvation Response 1 (PHR1) and other TFs, such as Phosphate Starvation-Induced Transcription Factor 1 (PTF1) and OsMYB2P-1, in a variety of crops, such as wheat, rice, and maize, appear to confer low-Pi tolerance and improved grain yield in greenhouse or field trials. Field-testing in different
geographical locations and different soil types is required to confirm that the overexpression of these TFs is a robust strategy for improving plant performance under Pi-limiting conditions without affecting performance under optimal Pi availability. Recently, it was reported that in Arabidopsis and rice, SPX1 and SPX2 repress the activity of PHR1 as a transcriptional activator in a Pi-dependent manner. The data published in these reports strongly suggest that the PHR1-SPX1/SPX2 complex is one of the main sensors that regulate the plant response to low-Pi availability. Although no structure of the PHR1-Pi-SPX complex is available, regulation of the interaction between these proteins could become an important target for engineering plants with modulated responses to low-Pi availability. It could be possible to alter PHR1 or SPX1/SPX2 in such a way that the low-Pi response could be modulated to activate processes that enhance Pi uptake and assimilation while preventing the drastic reduction in shoot growth that is generally observed in Pi-starved plants (Figure 1).

In the case of N, overexpression of the TaNFYA-B1 TF in wheat improved the yield under different regimes of P and N inputs under field conditions. These results were attributed to enhanced root growth and the up-regulation of N- and Pi-transporters. In addition, the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) TF was recently identified as a key element in the systemic signaling pathway that directs N foraging in Arabidopsis roots, thus opening up the possibility of controlling root plasticity to improve soil exploration capacity in crops.

Overexpression of TF, transporters or enzymes generally used the CaMV35S promoter, which confers constitutive high expression levels, independently of nutrient availability in the soil, as well as in cells that normally do not express the overexpressed gene and lack the expression of other genes required for efficient nutrient assimilation. Therefore, these approaches must consider cell-specific expression and/or modulation of inter-connected biochemical or epigenetic mechanisms.
regulatory pathways to ensure an appropriate phenotype. Recently, enhancer elements that regulate the transcriptional activation of Pi-starvation responsive genes were reported. These enhancer elements could be designed to produce synthetic enhancers or could directly high levels of expression while maintaining cell specificity and responsiveness to Pi- or N-deprivation. An additional phase for the improvement of nutrient uptake and use efficiency will be the understanding of the regulatory networks that orchestrate plant responses to nutrient deficiency. The integration of this knowledge will serve to design strategies to direct the enhanced expression of two or more TFs simultaneously, leading to more robust improvements in the key traits to achieve a more sustainable agriculture (Figure 1). Altering expression of several TFs to have a higher level of induction upon the stress stimuli, or higher cell-specific constitutive expression, could be feasible by introducing enhancer elements by genome editing using the CRISPR/Cas9 system that allows the simultaneous modification of several genes at the same time.

Interestingly, TF-overexpressing plants that showed an increased yield under N- or Pi-limiting conditions generally developed a more robust root system. This finding corroborates the importance of the root system architecture in soil exploration and nutrient uptake. Therefore, the identification and molecular characterization of quantitative trait loci (QTL) and marker-assisted backcrossing of genes that regulate root traits that improve nutrient uptake and use efficiencies into modern varieties is of the highest importance. Genes that are responsible for these QTL as well as superior allelic variations in candidate genes, identified in GeneBank collections for instance, could provide powerful potential tools for engineering crops for higher nutrient uptake efficiency in the same or other species by gene transfer or genome editing technologies.

Improvements in P and N metabolism should come from enhanced nutrient uptake and assimilation and/or their subsequent remobilization to support seed or fruit production. Among reported efforts to improve Pi and N use efficiency, we identify the following three promising strategies to develop improved crops, which could make a real contribution to sustainable agriculture: the use of AlaAT to enhance N assimilation, the use of PHOSPHORUS-STARVATION TOLERANCE 1 (PSTOL1) to enhance P assimilation, and the development of a novel fertilization system based on the production of transgenic plants that are able to use phosphite (Phi) instead of Pi as a P source (Figure 1). Interestingly, each of these approaches is based on the manipulation of a single gene, but they have enormous potential to not only reduce Pi or N applications but also have a profound environmental impact. In the following paragraphs, these approaches and their implications are discussed.

Alanine aminotransferase. Alanine aminotransferase (AlaAT) plays an important role in carbon fixation and N metabolism because it catalyzes the reversible reaction between pyruvate and glutamate to produce alanine and oxoglutarate. The potential effectiveness of this approach relies on the facts that amino acids act as signals controlling N uptake and that alanine is the only amino acid whose biosynthesis is not inhibited by N deficiency. The development of the AlaAT technology started with the expression of barley AlaAT in canola using the btg26 root-specific promoter, which resulted in the production of increased biomass under low-N conditions.

Field evaluations showed that btg26:AlaAT canola plants exhibited a 42% increase in seed yield under suboptimal N fertilization (56 kg ha⁻¹). This yield increase correlated with lower levels of glutamine and glutamate in the shoot, increased N influx and higher levels of alanine in roots, and up-regulation of high-affinity N-transporters. The overexpression of barley AlaAT in rice, which was also driven using a root-specific promoter (OsAAT1), also resulted in increased biomass and grain yield. Recently, similar results have been reported for sugarcane.

Interestingly, the btg26 promoter is expressed mainly in the cortex and lateral roots of transgenic plants, which are fundamental for the uptake and loading of nutrients into the vascular system. It will be interesting to determine how robust the AlaAT-overexpressing phenotype is under different stress conditions and soil types.

Phosphorus-starvation tolerance 1. Because of the low mobility of Pi in the soil, a well-developed and highly branched root system is a determinant for soil exploration and Pi uptake in soils with a low availability of this nutrient. However, modern breeding programs have focused on developing high-yield crops by primarily selecting the above-ground phenotype and applying full fertilization during breeding processes, which probably selects against root traits that are important for nutrient uptake efficiency. The QTL Pup1 (Phosphorus Uptake1), which is responsible for low-Pi tolerance, was identified in a cross between a low-Pi-tolerant rice landrace with a low-Pi-intolerant modern rice variety. Pup1 was found to contribute to enhanced Pi uptake and grain yield by 170% and 250%, respectively, in low-Pi soils in the modern variety. Recently, it was found that the PSTOL1 gene, which encodes a protein kinase, is responsible for the effect of the Pup1 QTL on Pi uptake and assimilation. The overexpression of PSTOL1 under a constitutive promoter (CaMV35S) in two types of modern rice varieties (one indica and one japonica) that naturally lack the gene resulted in an increase of over 60% in grain yield in low-Pi soils.

Interestingly, the low-P tolerance phenotype conferred by PSTOL1 correlated with a more robust root system, as transgenic plants produced almost five times more root biomass than did the non-transgenic plants. A global expression analysis of the PSTOL1-overexpressing plants revealed a set of up-regulated genes that are related to root growth and stress responses, including a putative peptide transporter. Because peptide transporters are included in the set of N-transporters (PTR/NRT1) in plants, it would be interesting to determine whether PSTOL1-overexpression could also improve N uptake efficiency. Optimizing the cell-specific and regulated expression of PSTOL1 will probably have an even higher impact on grain yield.

The phosphite oxidoreductase/phosphite system. The high reactivity of Pi with soil components and the constant competition of microorganisms and weeds with cultivated plants make agriculture highly dependent on P-fertilizers and herbicides. Recently, a phosphite oxidoreductase (PTXD) from *Pseudomonas stutzeri* was used to propose a re-design of the currently used agricultural systems. PTXD oxidizes Phi using NAD⁺ as a cofactor and yields Pi and NADH as products. The expression of PTXD in *Arabidopsis* and tobacco produced transgenic plants that are capable of using Phi as a sole P source.
The importance of this approach relies on the fact that Phi has distinct chemical and biochemical properties compared with Pi, including higher solubility and lower reactivity with soil components[6]; in addition, plants and most microorganisms are unable to metabolize Phi as a P source[6]. Therefore, the system makes the PTXD-transgenic plants more competitive over other plants, including weeds, in low-Pi soils that are fertilized with Phi. PTXD-transgenic lines required 30–50% less P to achieve optimal productivity when they were fertilized with Phi instead of Pi[6] and reduced the requirement of herbicides because of the poor growth of weeds in soils fertilized with Phi.

This technology is still in its infancy, and several questions need to be addressed before its real potential is uncovered. The promising results obtained under greenhouse and field conditions suggest that a potential reduction in production costs and energy consumption could be achieved by replacing the independent application of fertilizer and herbicides with a single treatment and by reducing the cost of additional herbicides. It is important to consider that the PTXD/Phi system has the highest potential for use in acidic and alkaline soils that have very low-Pi availability and that, in spite of having appropriate climatic conditions and water availability to sustain high crop productivity, it has been used only as grassland for cattle. These areas are predominant in Brazil, China, Australia, India, and Russia, comprising over 350 million hectares that could be converted into highly productive cropping areas if the PTXD/Phi technology was incorporated into genotypes adapted to acidic and alkaline soils.

This technology provides sustainable management of P, and thus has the potential to prolong the lifetime of phosphate rock reserves and to reduce the environmental impact of eutrophication of lakes, seas, and oceans. Additionally, a paper published recently suggested that on the moon or other planets that lack oxygen in the atmosphere, on which P accumulates primarily as schreibersite mineral and that are rich in Phi, the PTXD/Phi technology could be an interesting alternative for establishing agriculture[6].

Element toxicities that limit crop productivity
There are other nutritionally related stresses that have an important impact on plant yield that deserve special attention, which we only briefly mention because they are outside the main scope of this review, namely aluminum (Al) and boron (B) toxicity. Al toxicity is a major constraint for plant yield on acidic soils, which comprise between 40 and 50% of the world’s potentially arable lands. At pH values below 5, Al³⁺ ions are dissolved from soil minerals and are highly toxic to plants, impairing root growth and function. Two main classes of Al resistance mechanisms have been reported: Al exclusion mechanisms, which prevent Al from entering the root apex, and Al tolerance mechanisms, in which Al enters the plant but is sequestered into the vacuole and detoxified. Since the root apex is the main site of Al toxicity, the most well-characterized exclusion mechanism involves the regulated release of organic acids (OAs) by the root tip, which chelate Al³⁺ ions forming non-toxic compounds that do not enter the root tip cells. Members of the Al-activated Malate Transporter (ALMT) family of anion channel transporters and the Multidrug and Toxic compound Extrusion (MATE) family of OA/H⁺ antiport transporters are responsible for plasma membrane malate and citrate efflux, respectively, from root cells into the rhizosphere in response to the presence of toxic concentrations of Al³⁺ ions (for a review see[55]). Several attempts have been made to show that overexpression of MATE and ALMT genes leads to enhanced Al tolerance[56]. However, the effectiveness of OA efflux transporters to confer an enhanced Al³⁺ tolerance remains to be demonstrated under field conditions and also to be agronomically relevant.

B is an essential micronutrient required for several physiological and developmental processes in plants, including meristem development, but that can also be present in toxic levels in the soil. Typical B toxicity symptoms include necrosis of marginal leaves and the inhibition of root growth (for a review see[57]). It has been revealed over the last 10 years that plants have B transporters that maintain B homeostasis. B tolerance loci have been identified in high B-tolerant barley and wheat genotypes, which encode B exporters to reduce B concentrations in roots and to alter cellular distribution of B in shoots that are absent in susceptible lines. In barley, tolerance to toxic levels of B is associated with four tandem copies of Bot1 (encoding a B efflux transporter), which is highly expressed in the tolerant landraces[58], whereas B tolerance in wheat is associated with a B transporter-like gene (Bot-B5b) that has high root expression levels in tolerant genotypes as compared to susceptible lines[59]. The finding that high expression of B exporters reduces B concentration in the plant, or that a decreased expression of the transporters that facilitate B uptake could lead to tolerance to toxic B levels, opens up the possibility of using transgenic approaches or genome editing technologies to improve the yield of different crops in soils containing toxic levels of B.

Engineering tolerance to drought, salinity, and high temperatures
Drought, saline soils, and extreme temperature are abiotic stresses that adversely affect the growth and productivity of most crops. Drought is the most aggressive form of osmotic stress and limits crop yield in approximately 50% of the total cultivated area worldwide[60]. Table 1 shows the numerous efforts to engineer crops for drought tolerance. Plants have evolved adaptive mechanisms to cope with abiotic stresses by remodeling morphological and physiological processes, mainly by altering their metabolism to reduce transpiration and promote osmotic adjustment through the interaction of multiple signaling pathways. Adaptive mechanisms that allow plants to cope with drought, salinity, and high temperatures include the production and accumulation of osmoprotectants, molecular chaperones, and antioxidants. Osmoprotectants are metabolites that protect cells by maintaining their water potential and by stabilizing membranes and scavenging reactive oxygen species (ROS)[61]. Heat shock proteins (HSPs) and late embryogenesis abundant (LEA) proteins also play crucial roles during seed desiccation and water stress by preventing protein denaturation and aggregation[62]. Additionally, several genes that encode TFs have been identified as key elements that possess the potential to improve crop performance under different abiotic stresses (Table 1). This section discusses the most promising approaches to engineering crops with enhanced tolerance to drought stress, extreme temperatures, and soil salinity.
Table 1. Transgenic approaches to improve tolerance to drought and other abiotic stresses. Numerous genes have been shown to improve drought-tolerance in transgenic crops. In addition, some of these approaches have improved productivity and tolerance to other abiotic stresses, such as cold, heat, and high salinity. The gene source and the type of expression system—constitutive (C), inducible (I) or tissue specific (TS)—are indicated in each case. Positive and negative phenotypic alterations are also specified when data are available (GR, growth retardation; IB, increase biomass; PE, pleiotropic effect; SA, sensitivity to ABA; SOx, increased sensitivity to oxidative stress).

Functional category	Gene family	Gene	Transformed crop	Tolerance	Genetic source	Expression	Productivity	Field evaluation	Phenotypic alterations	Reference
Transcription factor	AP2/ERF	DREB1A	Wheat	Salt	At	I				109
		CBF3/	Rice		At	C				110
		DREB1A	Rice		Os	C	GR			111
		OsDREB1	Rice		Os	I				113
		AtDREB1A	Peanut		At	I				112
		OsDREB2A	Rice		Os	I				113
		TDREB2	Wheat		Ta	I				77
		TDREB2	Barley		Ta	C				77
		TDREB3	Wheat		Ta	I				77
		TDREB3	Barley		Ta	C	GR			77
		HvCBF4	Rice		Hv	C				114
		TaERF3	Wheat		Ta	C				115
		OsERF4a	Rice		Os	C, I	SA			116
		SIERF5	Tomato		Sl	C				117
		AP37	Rice		Os	C	✓			118
		AP59	Rice		Os	C	✓			118
		TSRF1	Rice		Sl	C				119
		JERF1	Rice		Sl	C				120
bZIP		SIAREB1	Tomato		Sl	C				121
		AtAREB1	Soybean		At	C				122
		ABF3	Rice		At	C				110
		GmbZIP1	Wheat		Gm	C				123
		OsbZIP16	Rice		Os	C	SA			124
		OsbZIP23	Rice		Os	C	SA			125
		OsbZIP46	Rice		Os	C	SA			126
		OsbZIP72	Rice		Os	C	SA			127

Gene sources: Arabidopsis thaliana (At), Arthrobacter globiformis (Ag), Bacillus subtilis (Bs), Cynodon dactylon x C. transvaalensis (Cd), Escherichia coli (Ec), Glycine max (Gm), Gossypium arboreum (Ga), Hordeum vulgare (Hv), Macrotyloma uniflorum (Mu), Malus domestica (Md), Medicago truncatula (Mt), Nicotiana tabacum (Nt), Oryza sativa (Os), Pismum sativum (Ps), Solanum habrochaites (Sh), Solanum lycopersicum (Sl), Solanum tuberosum (St), Thellungiella halophile (Th), Triticum aestivum (Ta), Vigna aconitifolia (Va). ND, not data.
Functional category	Gene family	Gene	Transformed crop	Tolerance	Salt	Cold	Heat	Other	Genetic source	Expression	Productivity	Field evaluation	Phenotypic alterations	Reference
NAC	SNAC1	Rice	✔	Os, C	✔									71
	SNAC1	Wheat	✔	Os, C	✔									128
	SNAC1	Cotton	✔	Os, C	✔									129
	MuNAC4	Peanut		Mu	C									130
	OsNAC5	Rice	Os, C, TS	Os, C	✔	✔								131
	OsNAC6	Rice	Os, C, TS	Os, C	✔	✔								132
	OsNAC9	Rice	Os, C, TS	Os, C	✔	✔								133
	OsNAC10	Rice	Os, C, TS	Os, C	✔	✔								75
	ONAC045	Rice	Os, C	Os, C	✔									134
	TaNAC69	Wheat	✔	Ta	I	✔								135
NF-Y	ZmNF-YB2	Maize	Zm	C	✔	✔								72
	CdtNF-YC1	Rice	Cdt	C	✔									136
MYB	StMYB1R-1	Potato	St	C	✔									137
	OsMYB2	Rice	Os, C	Os, C	✔									138
	OsMYB48-1	Rice	Os, C	Os, C	✔									139
	MdoMYB121	Tomato and apple	Mdo	C	✔									140
WRKY	OsWRKY11	Rice	Os, I	Os, I	✔									142
	OsWRKY30	Rice	Os, C	Os, C	✔									143
Zinc finger	ZFP252	Rice	Os, C	Os, C	✔									144
	ZAT10	Rice	ND	Os, C	✔	✔	✔							145
Combination of different TFs	AtDREB2A, AtHB7 and AtABF3	Peanut	At	At	C	✔	✔							146
Other transcription factors	OsiSAP8	Rice	Os, C	Os, C	✔	✔								147
	WXP1	Alfalfa	Mt	Mt	C	✔								148
Protein kinases	MAPKs	OsMAPK5	Rice	Os, C	✔	✔								149
		NPK1	Maize	Nt	C	✔	✔							150
		DSM1	Rice	Os, C	✔									151
	CIPK	MdCIPK6L	Tomato	Md	C	✔	✔							152
		OsCIPK12	Rice	Os, C	✔									153
	CDPK	OsCDPK1	Rice	Os, C	✔									154
		OsCDPK7	Rice	Os, C	✔	✔								155
		OsCPK4	Rice	Os, C	✔	✔								156
		OsCPK9	Rice	Os, C	✔	✔	✔							157
Other protein kinases	OsSIK1	Rice	Os, C	Os, C	✔									158
Functional category	Gene family	Gene	Transformed crop	Tolerance	Salt	Cold	Heat	Others	Genetic source	Expression	Productivity	Field evaluation	Phenotypic alterations	Reference
---------------------	-------------	------	------------------	-----------	------	------	------	--------	---------------	------------	-------------	----------------	---------------------	-----------
Metabolism of hormones	ABA	DSM2	Rice	✔	Os	C								159
		LOSS5	Rice		ND	C	I	✔	✔					145
		AtLOS5	Cotton		At	C	✔							160
		LOSS5	Soybean		At	C	✔	✔						161
		LOSS5	Maize		At	C								162
Citokinin		IPT	Peanut		ND	I								163
		IPT	Rice		ND	I								164
		IPT	Cotton		ND	I								165
Auxin		OsPIN3t	Rice	Os	C									166
Osmolytes	Trehalose	OsTPS1	Rice	✔	✔	Os	C							161
		osA and osB	Rice	✔	✔	Ec	I, TS							68
		TPS and TPP	Rice	✔	✔	Ec	C							69
	Proline	P5CS	Wheat	Va	I									167
	Mannitol	mtID	Wheat											168
	Glycine betaine	betA	Maize	Ec	ND									169
		codA	Potato											170
		codA	Tomato											171
Responsive stress proteins	LEA proteins	OsLEA3-1	Rice	Os	C	I								63
		OsLEA3-2	Rice		Os	C								172
		HVA1	Rice		Hv	C								65
		HWA1	Wheat		Hv	C								173
		HVA1	Wheat		Hv	C								64
	Dehydrin	TAS14	Tomato											174
		ShDHN	Tomato											175
	HSP	GHSP26	Cotton											66
	Cold shock proteins	CspA and CspB	Maize	Ec, Bs	C									67
		CspA or CspB	Rice											67
Transporters		NHX1	Rice	ND	C	I								145
		betA and TsVP	Maize		Ec, Th	C								176
		AVP1	Cotton											177
Antioxidant enzymes/compounds		OsSRO1c	Rice	Os	C							SOx		178
		MnSOD	Rice		Ps	I								179
Manipulation of LEA and HSP genes

HSPs and LEA proteins from plants have been clearly shown to be involved in abiotic stress responses; however, as shown in Table 1, only limited attempts have been made to use the genes that encode these proteins to engineer abiotic stress tolerance in crops. Nevertheless, there are some examples that show the potential of overexpressing LEA proteins in vegetative tissues. For instance, the constitutive expression of OsLEA3-1 in rice in wheat and rice resulted in improved yields under drought stress without impairing yield under control conditions. Similarly, overexpressing GHSP26 resulted in improved drought and osmotic stress tolerance in cotton plants. However, although transgenic plants that constitutively express LEA- and HSP-encoding genes have shown improved abiotic stress tolerance under both in vitro and greenhouse conditions, their efficacy under field conditions remains to be demonstrated (Table 1). Interestingly, the best results were obtained in transgenic plants expressing the cold shock protein A (CspA) and CspB genes from Escherichia coli and Bacillus subtilis, respectively. These genes encode RNA-binding proteins with chaperone activity that confer drought tolerance in maize and rice under field conditions. In fact, CspB-expressing maize is the first genetically modified (GM) crop with enhanced water use efficiency that has been deregulated for commercial use in the USA.

The multiple pathways involved in plant adaptations to osmotic and water stress and the complexity of their interactions can explain, to some extent, the limited success under field conditions of manipulating individual genes encoding chaperones or enzymes involved in the synthesis of osmoprotectants. To develop crops with higher yields under drought, it will most likely be necessary to engineer metabolic pathways through the simultaneous manipulation of multiple critical genes. In addition, it would be interesting to explore the mechanisms that regulate desiccation tolerance in seeds to obtain new insights into the adaptive stress response pathways and to identify new candidate genes for crop improvement.

Manipulation of regulatory genes

Manipulating proteins that regulate gene expression or the signal transduction of multiple metabolic pathways involved in abiotic stresses has proven to be useful for improving the stress tolerance of crops (Table 1). TFs that belong to the Dehydration-Responsive Element-Binding/C-repeat Binding Factor (DREBs/CBF) and NAM-ATAF and CUC (NAC) and Nuclear Factor Y (NF-Y) families have been used to develop transgenic plants and study their performance under stress conditions. The expression of some of these TFs under drought-inducible or root-specific promoters has resulted in improved tolerance to drought, salinity, and temperature stress and a higher yield under water-limited conditions in rice, wheat, canola, and maize.

Genomic resources for breeding crops with enhanced abiotic stress tolerance

As observed for N and P improvement, hundreds of QTLs related to drought and heat tolerance traits have been identified. However, only a few of them have been implemented in appropriate breeding programs for improving crop abiotic stress tolerance. Efforts have been made to improve drought tolerance in rice by using marker-assisted (MAS) breeding to identify and characterize the Deeper Rooting 1 (DRO1) QTL that controls the root growth angle. Higher expression of DRO1 causes a more vertical root growth. Breeding DRO1 into a shallow-rooting rice line enables these plants to avoid drought by increasing the depth of their roots, resulting in a higher grain yield. The DRO1 gene is the first drought tolerance QTL that was cloned, and its beneficial effects on plant growth further confirmed that the root system architecture plays a crucial role in abiotic stress tolerance. Interestingly, DRO1 has no homology to known proteins, which suggests that cloning genes associated with QTLs could provide completely novel genes for plant breeding. This example shows that a considerable improvement in drought tolerance can be achieved by altering root growth patterns and opens up the possibility of introducing DRO1 in shallow-rooting crops other than rice through the use of genetic engineering (Figure 1).

The phytohormone abscisic acid (ABA) regulates numerous processes in plants including seed dormancy and the plant responses to low water availability. ABA is perceived by soluble PYR/PYL/RCAR (pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor) receptors that belong to the START superfamily of ligand-binding proteins (for a review see 81). It has been shown that constitutive overexpression of ABA receptors improves drought tolerance; however, it negatively affects yield under non-stress conditions. This suggests that the precise regulation of the activity of individual or multiple receptors will be required to achieve enhanced drought tolerance without a yield penalty. A novel alternative to actively control tolerance to abiotic stress is the use of chemicals that can activate or repress the receptors that sense the stress or the signaling pathways activated by hormones that mediate the corresponding stress responses. Recently it was shown that it is feasible for the case of drought tolerance. Drought tolerance in Arabidopsis was achieved using an engineered PYR1 ABA-receptor that can be activated by an existing non-herbicidal agrochemical that is not a natural inducer of ABA responses. This example opens up a new avenue of crop improvement to regulate abiotic or biotic stress responses at the beginning of, or prior to, the presence of the stress in a timely and quantitative manner by the application of a non-toxic compound, reducing potential yield reductions.

The hidden enemy in the soil: mechanical impedance

Among the different types of soil physical degradation, soil compaction is considered one of the most serious problems in agricultural fields because it directly alters the soil structure and modifies intrinsic soil properties, such as porosity, aeration, water potential, and soil strength. Soil compaction increases soil impedance and thereby affects crop yield by decreasing the capacity of the root system to explore new soil horizons and absorb water and essential nutrients to sustain active growth and development. Several studies have shown that continuous mechanical impedance affects root system architecture by altering root diameter, total root length, and lateral root initiation. Despite the increasing importance of soil compaction resulting from the mechanization of agriculture, this abiotic stress is the least studied to date.

Studying the genetic diversity of root penetration ability could permit the identification and characterization of genes that allow roots to penetrate soils with high impedance. Genotypic variation in root penetration ability has been found in soybean, rice, and wheat.
Our group has found that, among *Arabidopsis* ecotypes, there is wide variation in the capacity of the root system to penetrate substrates with high mechanical impedance (Figure 2). At the molecular level, some studies have attempted to elucidate the detailed mechanosensing and mechanotransduction processes in roots by studying early signaling events during physical stimuli and the role of putative mechanoreceptors. Although important advances have been made in this field, the precise mechanisms and specific root traits that enable roots to penetrate into hard soils remain largely unknown. Several interesting questions still need to be answered with regard to root penetration. Why can some plant species more efficiently penetrate compact soil layers? Which genes are involved in the adaptive root traits that permit some plant species or genotypes to effectively cope with soil compaction problems? And what hormonal changes occur when a plant encounters a below-ground obstacle?

The use of image analysis techniques based on transparent substrates and 3D imaging using X-ray and neutron tomography technologies or fluorescent and luminescent proteins in conjunction with specifically designed devices should improve our understanding of how roots respond to high mechanical impedance with much better resolution, compared with that previously possible at the macroscopic level.

The plant cell wall consists primarily of polysaccharides that can be broadly classified as cellulose, cellulose-binding hemicelluloses, pectins, and lignins, which confer mechanical stability and allow adequate cell expansion through the regulation of turgor pressure generated inside plant cells. Enzymes, such as endoglucanases, xyloglucan-endotransglycosylases and expansins, play crucial roles in mediating the rearrangement of the cell wall structure. Modulating the expression of the genes involved in the synthesis and remodeling of cell wall components could allow the modification of root mechanical properties to produce stronger root systems that have a better capacity to penetrate compacted soils (Figure 1). In *Arabidopsis*, specific TFs, such as MYB58 and MYB63, have been found to activate lignin biosynthetic genes during secondary wall formation. Therefore, the overexpression of these TFs under root-specific or stress-inducible promoters could result in plant roots that have strengthened cell walls with enhanced tolerance of mechanical restriction (Figure 1).

It is essential to consider root responses to soil compaction in current and future breeding programs. In conjunction with genetic engineering and genome editing technologies, this approach will accelerate the development of crop varieties with enhanced performance in soils degraded by compaction.

Concluding remarks

As discussed above, engineering for tolerance to abiotic stress by manipulating key genes and using multiple tools has allowed the generation of crop plants that are tolerant to drought, extreme temperatures, and salinity, or that have a higher nutrient uptake and use efficiency. A remarkable contribution has resulted from studies with tolerant crop varieties to certain stresses instead of using model genotypes, such as the case of the PSTOL1, suggesting that we must encourage the use of tolerant genotypes in our research.

The pursuit of master regulators that control abiotic stress and determination of the best way to modulate their expression has been the most important challenge in engineering plant genetics to enhance abiotic stress tolerance. However, rapid advances in genomic technologies for the characterization of QTLs and performing genome-wide association studies should facilitate the identification of

Figure 2. Natural variation of Arabidopsis ecotypes in root penetration ability.

A) Col-0, Kz-9 and Ler *Arabidopsis* ecotypes show a wide variation in penetrating hard agar layers. Screening test was carried out using a double-phase agar system, which mimics soil compaction condition. B) Quantitative analysis of the root penetration ability expressed as the root penetration percentage (%) in reference to that of Col-0, showed by nine different *Arabidopsis* ecotypes. (*) indicates statistically significant differences: *P*<0.05, **P*<0.01, and ***P*<0.001 level; n=120 seedlings per ecotype (one-way ANOVA).
novel genes for engineering abiotic stress tolerance in crops. The use of systems biology that integrates “omics” data and generates mathematical models to achieve a more complete view of the interactions between plant responses to abiotic stress should also facilitate the design of effective strategies to engineer plants with enhanced performance under harsh conditions.

Epigenetic processes, such as DNA methylation, histone modifications, generation of small RNAs (sRNA), and transposable element activity, play essential roles in modulating gene activity in response to environmental stimuli. Indeed, it has been shown that drought adaptive-responses in plants can be transgenerationally transmitted through the action of these processes on specific genes. Moreover, epigenetic processes are also involved in the switch from C3 to CAM photosynthesis and contribute to adaptation to salt stress in the halophyte *Mesembryanthemum crystallinum*. In wheat, the use of the methylation inhibitor 5-azacytidine resulted in increased tolerance to salt stress at the seedling stage. Therefore, understanding the epigenetic mechanisms that control gene expression in response to environmental cues could also become an important avenue for developing improved crops. However, more information is needed to clarify the complex interaction between abiotic stress responses and epigenetic changes and to identify potential stress-responsive epigenetic modifiers.

We believe that the most exciting transgenic approaches for producing plant varieties and hybrids that are much less dependent on the application of agrochemicals, including fertilizers and pesticides, have yet to be discovered. The engineering of crops for harsh environments is evolving and will rapidly incorporate new breeding technologies, including genome editing, which has already produced its first commercial product (herbicide-resistant canola). The development of effective approaches for specifically and visibly monitoring certain environmental stresses, such as P deficiency, and timely indicating the degree of the stress is also emerging and providing additional tools for improving crops. Furthermore, the possibility of activating or repressing the expression of specific genes by introducing site-specific epigenetic changes, such as DNA methylation or histone modifications using a modified version of the CRISPR/Cas9 system, will drastically modify how agriculture is developed by creating an integral, effective, and sustainable global agriculture. However, translating these approaches from the laboratory or the greenhouse to the field remains challenging. In our opinion, more interdisciplinary research and the active involvement of breeders and agronomists in project planning is necessary to better define project goals and align the interests of researchers with that of crop producers.

Competing interests

The authors declare that they have no disclosures.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

1. United States Department of Agriculture: P. S. a. D. 2015. Reference Source
2. Bengough AG, McKenzie BM, Hallet PD, et al.: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot. 2011; 62(1): 59–68. Published Abstract | Publisher Full Text
3. Mittler R, Blumwald E: Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol. 2010; 61: 443–462. Published Abstract | Publisher Full Text
4. Alexandatos N, Bruinsma J: World agriculture towards 2030/2050. The 2012 revision. Reference Source
5. James C: Global Status of Commercialized Biotech/GM Crops: 2014. Ithaca, NY, 2014. Reference Source
6. Krapp A, David LC, Chardin C, et al.: Nitrate transport and signalling in Arabidopsis. J Exp Bot. 2014; 65(3): 789–798. Published Abstract | Publisher Full Text
7. López-Arredondo DL, Leyva-González MA, González-Morales SI, et al.: Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol. 2014; 65: 96–123. Published Abstract | Publisher Full Text
8. Xu G, Fan X, Miller AJ: Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol. 2012; 63: 153–182. Published Abstract | Publisher Full Text
9. Gifford ML, Dean A, Gutierrez RA, et al.: Cell-specific nutrient responses mediate developmental plasticity. Proc Natl Acad Sci U S A. 2008; 105(2): 803–808. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
10. Li L, Liu C, Lian X: Gene expression profiles in rice roots under low phosphorus stress. Plant Mol Biol. 2010; 72(4–5): 432–432. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
11. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, et al.: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 2002; 129(1): 244–256. Published Abstract | Publisher Full Text | Free Full Text
12. Cruz-Ramírez A, Oropesa-Aburto A, Raaz-Hernández F, et al.: Phospholipase D2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci U S A. 2006; 103(17): 6765–6770. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
13. Kiba T, Feria-Boureilier AB, Lafouge F, et al.: The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell. 2012; 24(1): 245–258. Published Abstract | Publisher Full Text | Free Full Text
14. Wang YY, Tsay YF: Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell. 2011; 23(5): 1945–1957. Published Abstract | Publisher Full Text | Free Full Text
15. Sun S, Gu M, Cao Y, et al.: A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol. 2012; 159(4): 1571–1581. Published Abstract | Publisher Full Text | Free Full Text
16. Remy E, Cabrito TR, Batista RA, et al.: The Phl F1:9 and Phl F1:8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphate starvation. New Phytol. 2012; 196(2): 356–371. Published Abstract | Publisher Full Text | Free Full Text
17. Versaw WK, Harrison MJ: A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell. 2002; 14(8): 1751–1766. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
18. Nagarajan VK, Jain A, Poling MD, et al.: Arabidopsis pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol. 2011; 156(3): 1149–1163. Published Abstract | Publisher Full Text | Free Full Text
27. Good A, Johnson SJ, De Pauw M, et al.: Molecular genetic analysis of phosphite and hypophosphate oxidation by Pseudomonas stutzeri WM8B. J Bacteriol. 1998; 180(21): 5547–5558.

28. Morton SC, Gindermann D, Wang X, et al.: Analysis of reduced phosphorus deficiency in samples of environmental stress. Plant and Soil Sci Technol. 2005; 39(12): 4369–4376.

29. Multani AK, Carroll RT, DePaue M, et al.: Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J. 2008; 6(7): 722–732.

30. Hand SC, Menze MA, Toner M, et al.: The phosphate transporter gene OsPtH1 is involved in phosphate homeostasis in rice. Plant Physiol. 2011; 156(4): 1164–1175.

31. Jia H, Ren H, Gu M, et al.: The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol. 2001; 138(1): 83–89.

32. Dejenays S, Chauvin JE, Quilleré I, et al.: Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers. Transgenic Res. 2002; 11(2): 175–184.

33. Lynch JP, Brown KM: Evolutionary genomics of phosphorus homeostasis in rice and the potential for its exploitation in rice improvement. Plant Breed. 2001; 120(1): 43–48.

34. Wang YY, Hou PK, Tao YF: Uptake, allocation and signalling of nitrate. Trends Plant Sci. 2012; 17(8): 458–467.

35. Morrison AT, Hager W, Matt MP, et al.: Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep. 2015; 34(6): 667–689.

36. Liu G, Zuo Q, Liu Y, et al.: Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta. 2011; 233(6): 1129–1134.

37. Lefebvre B, Dufourcq M, Vezin H, et al.: Effect of phosphite on barley yield and grain quality. Annals of Appl. Biol. 2013; 162(1): 571–598.

38. Bhattarai AV, Khan HE, Khan IA, et al.: Phosphate deficiency alters the expression of phosphorus starvation response genes in rice. PLoS ONE. 2012; 7(7): e41959.

39. Fink G, Roberts RJ, Kustu S, et al.: The role of plant hormones in stress signaling. Cold Spring Harb. Symp Quant. Biol. 2004; 69(1): 179–190.

40. Xu Y, Wang R, Tong Y, et al.: Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet. 2013; 127(11): 59–72.

41. Guymoño R, Chinn JH, Paricas-Tanaka J, et al.: The protein kinase Patol1 from traditional rice confers tolerance of phosphorus deficiency. Nature. 2012; 488(7412): 530–539.

42. Guymoño R, Chinn JH, Paricas-Tanaka J, et al.: The protein kinase Patol1 from traditional rice confers tolerance of phosphorus deficiency. Nature. 2012; 488(7412): 530–539.

43. López-Arredondo D, Herrera-Estrella L: Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nat Biotechnol. 2012; 30(9): 889–893.

44. Wang YY, Hou PK, Tao YF: Uptake, allocation and signalling of nitrate. Trends Plant Sci. 2012; 17(8): 458–467.

45. Arpat AB, Magliano P, Wege S, et al.: Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J. 2012; 71(3): 479–491.

46. Good A, Johnson SJ, De Pauw M, et al.: Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nat Biotechnol. 2012; 30(9): 889–893.

47. López-Arredondo D, Herrera-Estrella L: Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nat Biotechnol. 2012; 30(9): 889–893.

48. Shrawat AK, Carroll RT, DePauw M, et al.: Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J. 2008; 6(7): 722–732.

49. Stryjan SJ, Hajes E, Watt MP, et al.: Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep. 2015; 34(6): 667–689.

50. Miller AJ, Fan X, Shan Q, et al.: Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot. 2008; 59(1): 111–119.

51. Wang YY, Hou PK, Tao YF: Uptake, allocation and signalling of nitrate. Trends Plant Sci. 2012; 17(8): 458–467.

52. Varadarajan D, Karthikeyan A, Matilda P, et al.: Phosphate, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol. 2002; 129(3): 1233–40.

53. McNair A, Ansell D, Kreuzig R, et al.: Effects of phosphate on phosphorus supply and growth of corn (Zea mays). Landbouworforsch. Voksl. 2006; 56(3–4): 87–95.

54. Reference Source

55. Passek M: Phosphorus as a lunar volatile. Icarus. 2015; 256: 18–23.

56. Koobanian A, Piñeros M, Liu J, et al.: Plant adaptation to Acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 2015; 66: 571–598.

57. Zheng Z, Peng S, Ding H, et al.: Enhancing the aluminum tolerance of barley by expressing the citrate transporter gene SbMAT1 and FDR1. J Exp Bot. 2014; 65(9): 2381–2390.

58. Nable R, Barinews G, Paul J, et al.: Boron toxicity. Plant Soil. 1997; 193(1–2): 181–198.

59. Sutton T, Baumann U, Hayes J, et al.: Boron toxicity in barley arising from efflux transporter amplification. Science. 2007; 318(5850): 1446–1449.

60. Pailotta M, Schnurbusch T, Hayes J, et al.: Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature. 2014; 514(7520): 88–91.

61. Abreu AF, Sarmiento A, Tomassetti C, et al.: Environmental factors on maize yield and grain yield in response to aluminum stress. J Agric Sci. 2011; 149(2): 169–179.

62. Gao J, Wang G, Ma S, et al.: CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol. 2015; 87(1–2): 99–110.

63. Zhao G, Wang M, Ma S, et al.: QTL mapping for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet. 2013; 127(11): 59–72.

64. Venuprasad R, Lalitha H, Allin G: Response to direct selection for grain yield under drought stress in rice. Crop Sci. 2006; 46(7): 285–293.

65. Reguera M, Peleg Z, Brumwald E: Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta. 2012; 1819(2): 186–194.

66. Hand SC, Menze MA, Toner M, et al.: LEA proteins during water stress: not just for plants anymore. Ann Rev Physiol. 2011; 73: 115–134.

67. Stryjan SJ, Hajes E, Watt MP, et al.: Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep. 2015; 34(6): 667–689.

68. Shrawat AK, Carroll RT, DePauw M, et al.: Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J. 2008; 6(7): 722–732.

69. Stryjan SJ, Hajes E, Watt MP, et al.: Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep. 2015; 34(6): 667–689.

70. Wang YY, Hou PK, Tao YF: Uptake, allocation and signalling of nitrate. Trends Plant Sci. 2012; 17(8): 458–467.

71. Pailotta M, Schnurbusch T, Hayes J, et al.: Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature. 2014; 514(7520): 88–91.

72. Almeida-Silva R, Kreuzig R, et al.: Effects of phosphate on phosphorus supply and growth of corn (Zea mays). Landbouworforsch. Voksl. 2006; 56(3–4): 87–95.

73. Reference Source
76. Yang S, Vanderbeld B, Wan J, et al.: Over-expression of a LEA gene in rice improves drought resistance under field conditions. Theor Appl Genet. 2007; 115(1): 35–46. Published Abstract | Publisher Full Text | F1000 Recommendation

64. Baheldin A, Mahouz HT, Eisaa HF, et al.: Field evaluation of transgenic wheat plants stably expressing the HWA1 gene for drought tolerance. Physiol Plantarum. 2005; 123(4): 421–427. Publisher Full Text

63. Xu D, Duan X, Wang B, et al.: Expression of a Late Embryogenesis Abundant Protein (QWA1) from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol. 1996; 110(1): 249–257. Published Abstract | Free Full Text | F1000 Recommendation

62. Medford A, Ates K, W. Rao AO, et al.: Gossypium hirsutum HGS26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog. 2010; 26(1): 21–25. Published Abstract | Publisher Full Text | F1000 Recommendation

61. Castiglioni P, Warner D, Benson RJ, et al.: Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 2008; 147(2): 446–455. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

60. Agarwal P, Reddy M, et al.: Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 2003; 131(2): 516–524. Published Abstract | Publisher Full Text | Free Full Text

59. Garg AK, Kim JK, Owens TG, et al.: Improvement of stress tolerance in G. hirsutum. J Exp Bot. 2010; 61(21): 359–371. Published Abstract | Publisher Full Text | Free Full Text

58. Jiang IC, Oh SJ, Lee K, et al.: Overexpressing a NAM, ATAF, and CUC (NAC) domain protein: an avirulence determinant of X. campestris pv. phaseoli. Proc Natl Acad Sci U S A. 1998; 95(15): 8455–8460. Published Abstract | Publisher Full Text | F1000 Recommendation

57. Park SY, Peterson FC, Mosquera A, et al.: Agronomic control of plant water use using engineered abscisic acid receptors. Nature. 2015; 520(7548): 545–548. Published Abstract | Publisher Full Text | F1000 Recommendation

56. Rovira SY, Petersen FC, Mosquera A, et al.: Agronomic control of plant water use using engineered abscisic acid receptors. Nature. 2015; 520(7548): 545–548. Published Abstract | Publisher Full Text | F1000 Recommendation

55. Tracy SR, Black CR, Roberts JA, et al.: Soil compaction: a review of past and present techniques for investigating effects on root growth. J Soil Sci Agric. 2011; 91(9): 1528–1537. Published Abstract | Publisher Full Text

54. Angus AG, McKenzie BM: Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L) root growth. J Exp Bot. 1997; 48(4): 885–893. Publisher Full Text

53. Deying X, Wei X, Xiang T, et al. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun. 2012; 3: 740. Published Abstract | Publisher Full Text | F1000 Recommendation

52. Dyachenko OV, Zharkenchko NS, Shchukov TV, et al. Effect of hypermethylation of CCGWG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Moscow). 2006; 71(4): 461–465. Published Abstract | Publisher Full Text

51. Elmer R, Duke SO: A network perspective on nitrogen metabolism from model to crop plants using integrated ‘omics’ approaches. J Exp Bot. 2014; 65(19): 5619–5630. Published Abstract | Publisher Full Text | F1000 Recommendation
107. Zhang L, Xu Y, Wang J: The effect of 5-azacytidine on wheat seedlings responses to drought. Plant Biology 2010; 12(4): 763–766. Publisher Full Text

108. Li Y, Gu M, Zhang X, et al.: Engineering a sensitive visual-tracking reporter system for monitoring phosphorus deficiency in tobacco. Plant Biotechnol J. 2014; 12(6): 674–682. Publisher Abstract | Publisher Full Text | F1000 Recommendation

109. Pellegrineschi A, Reynolds M, Pacheco M, et al.: Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays stress symptoms under greenhouse conditions. Genome. 2004; 47(3): 493–500. Publisher Abstract | Publisher Full Text

110. Oh SJ, Song SL, Kim YS, et al.: Arabidopsis CBF3/DREB1A and AFB3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005; 138(1): 341–51. Publisher Abstract | Publisher Full Text | Free Full Text

111. Ito Y, Katsura K, Maruyama K, et al.: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-sensitive gene expression in transgenic rice. Plant Cell Physiol. 2006; 47(1): 141–53. Publisher Abstract | Publisher Full Text

112. Sarkar T, Thankappan R, Kumar A, et al.: Heterologous expression of the AIdREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One. 2014; 9(12): e110507. Publisher Abstract | Publisher Full Text

113. Gut M, Zhang W, Zhang G, et al.: Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem. 2011; 49(12): 1386–95. Publisher Abstract | Publisher Full Text

114. Oh SJ, Kwon CW, Choi DW, et al.: Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J. 2007; 5(5): 646–56. Publisher Abstract | Publisher Full Text

115. Rong W, Qi L, Wang A, et al.: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J. 2014; 12(4): 468–79. Publisher Abstract | Publisher Full Text | Free Full Text

116. Guo Y, Li Y, Guo M, Zhang X, et al.: Characterization of OsbZIP, a member of stress-induced protein (SAP) gene family of rice confers tolerance to salt, drought and salinity stresses. Mol Biotechnol. 2013; 5(8): 758–69. Publisher Abstract | Publisher Full Text

117. Zhang L, Xu Y, Wang J: Osmocare enhances multiple abiotic stress tolerances in transgenic plants. Mol Plant. 2011; 4(12): e111152. Publisher Abstract | Publisher Full Text | Free Full Text

118. Xu DQ, Huang J, Guo SQ, et al.: Overexpression of OsWRKY15, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. Plant J. 2010; 64(4): 629–41. Publisher Abstract | Publisher Full Text

119. Zhang L, Xu Y, Wang J: Osmocare improves grain yield under drought conditions. Plant J. 2010; 64(4): 617–30. Publisher Abstract | Publisher Full Text | Free Full Text

120. Liu G, Li X, Jin S, et al.: Overexpression of rice NAC gene SNA11 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One. 2014; 9(1): e88695. Publisher Abstract | Publisher Full Text | Free Full Text

121. Pruthvi V, Narasimhan R, Nataraja KN: Stress-induced expression of OsbZIP16 positively regulates drought resistance in rice. Plant J. 2009; 56(4): 579–88. Publisher Abstract | Publisher Full Text | Free Full Text

122. Pellegrineschi A, Reynolds M, Gudhekarbubu O, et al.: Overexpression of horsemelon (Macrolybra uniflorum Lam. Verdc.) NAC transcriptional factor (MoaNAC) in groundnut confers enhanced drought tolerance. Mol Biotechnol. 2014; 56(5): 758–69. Publisher Abstract | Publisher Full Text | Free Full Text

123. Shen H, Liu C, Zhang Y, et al.: Overexpression of OsDREB2A gene in transgenic peanut confers tolerance to drought and salinity stresses. Mol Biotechnol. 2014; 56(5): 758–69. Publisher Abstract | Publisher Full Text | Free Full Text

124. Xiong L, Yang Y: Disease resistance and abiotic stress tolerance in rice are
inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell. 2003; 15(3): 745–69. PubMed Abstract | Publisher Full Text | Free Full Text

150. Shou H, Bordallo P, Wang K: Expression of the Nicotiana protein kinase (NPK1) enhances drought tolerance in transgenic maize. J Exp Bot. 2004; 55(399): 1013–9. PubMed Abstract | Publisher Full Text

151. Ning J, Li X, Hicks LM, et al.: A Raf-like MAPKKK gene DSK1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol. 2010; 152(2): 876–90. PubMed Abstract | Publisher Full Text | Free Full Text

152. Wang RK, Li LL, Cao ZH, et al.: Molecular cloning and functional characterization of a novel apple MdCIPK6 gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol. 2012; 78(1-2): 123–35. PubMed Abstract | Publisher Full Text

153. Xiang Y, Huang Y, Xiong L: Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 2007; 144(3): 1416–28. PubMed Abstract | Publisher Full Text | Free Full Text

154. Hu SL, Huang LF, Lu CA, et al.: Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol Biol. 2013; 81(4–5): 347–61. PubMed Abstract | Publisher Full Text

155. Saio Y, Hata S, Koyuzuka J, et al.: Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2000; 23(3): 318–27. PubMed Abstract | Publisher Full Text | Free Full Text

156. Campo S, Baldrich P, Messeguer J, et al.: The pyramid of transgenes: a network of transgenes involved in the drought stress response and drought tolerance. J Plant Physiol. 2011; 168(11): 1286–94. PubMed Abstract | Publisher Full Text | Free Full Text

157. Quan R, Shang M, Zhang H, et al.: Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J. 2004; 2(6): 477–86. PubMed Abstract | Publisher Full Text | Free Full Text

158. Ouyang SQ, Liu YF, Liu P, et al.: Engineering of enhanced glycine betaine synthesis improves drought tolerance in rice. Plant Physiol. 2003; 131(4): 1748–55. PubMed Abstract | Publisher Full Text | Free Full Text

159. Campo S, Baldrich P, Messeguer J, et al.: Over-expression of an isopentenyltransferase gene (IPT) in tomato. J Exp Bot. 2010; 61(10): 3741–8. PubMed Abstract | Publisher Full Text | Free Full Text

160. Yue Y, Zhang M, Zhang J, et al.: Overexpression of the ALLOSO5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Plant Physiol. 2012; 169(5): 459–68. PubMed Abstract | Publisher Full Text

161. Ho SL, Huang LF, Lu CA, et al.: Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol Biol. 2013; 81(4–5): 347–61. PubMed Abstract | Publisher Full Text

162. Li HW, Zang BS, Deng XW, et al.: Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abscisic stress tolerance in rice. Plants. 2011; 234(5): 1007–18. PubMed Abstract | Publisher Full Text | Free Full Text

163. Quan R, Shang M, Zhang H, et al.: Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J. 2004; 2(6): 477–86. PubMed Abstract | Publisher Full Text | Free Full Text

164. Reflected expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol. 2011; 52(11): 1904–14. PubMed Abstract | Publisher Full Text | Free Full Text

165. Reguera M, Peleg Z, Abdel-Tawali YM, et al.: Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol. 2013; 163(4): 1609–22. PubMed Abstract | Publisher Full Text | Free Full Text

166. Kuppu S, Mishra N, Hu R, et al.: Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One. 2012; 7(6): e46419. PubMed Abstract | Publisher Full Text | Free Full Text

167. Zhang Q, Li J, Zhang W, et al.: The putative auxin efflux carrier OsPIN1c is involved in the drought stress response and drought tolerance. Plant J. 2012; 72(5): 805–16. PubMed Abstract | Publisher Full Text | Free Full Text

168. Vendruscolo EC, Schuster I, Pileggi M, et al.: Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol. 2007; 164(10): 1367–76. PubMed Abstract | Publisher Full Text | Free Full Text

169. Abebe T, Guenzi AC, Martin B, et al.: Tolerance of manitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003; 131(4): 1748–55. PubMed Abstract | Publisher Full Text | Free Full Text

170. Ahmad R, Kim MD, Back KH, et al.: Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep. 2008; 27(4): 687–98. PubMed Abstract | Publisher Full Text

171. Good D, Singh AK, Yadav V, et al.: Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol. 2011; 168(11): 1286–94. PubMed Abstract | Publisher Full Text | Free Full Text

172. Duan J, Cai W: OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One. 2012; 7(9):e45117. PubMed Abstract | Publisher Full Text | Free Full Text

173. Sivamani E, Bahledin A, Wrath J, et al.: Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HvA1 gene. Plant Sci. 2000; 155(1): 1–9. PubMed Abstract | Publisher Full Text

174. Muñoz-Mayor A, Pineda B, Garcia-Arellano JO, et al.: Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol. 2012; 169(5): 459–68. PubMed Abstract | Publisher Full Text

175. Liu H, Yu C, Li H, et al.: Overexpression of SnDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 2015; 231: 198–211. PubMed Abstract | Publisher Full Text

176. Wei A, He C, Li B, et al.: The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J. 2011; 9(2): 216–25. PubMed Abstract | Publisher Full Text | Free Full Text

177. Pasapula V, Shen G, Kuppu S, et al.: Expression of an Arabidopsis vacuolar H+–pyrophosphatase gene (4VP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J. 2011; 9(1): 88–99. PubMed Abstract | Publisher Full Text

178. You J, Zong W, Li X, et al.: The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot. 2013; 64(2): 569–83. PubMed Abstract | Publisher Full Text | Free Full Text

179. Wang FZ, Wang QB, Kwon SY, et al.: Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol. 2005; 162(4): 466–72. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 1

Reviewer Report 02 September 2015

https://doi.org/10.5256/f1000research.7021.r10205

© 2015 Heuer S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔ Sigrid Heuer
Australian Centre for Plant Functional Genomics (ACPFG), Glen Osmond, SA 5064, Australia

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 02 September 2015

https://doi.org/10.5256/f1000research.7021.r10204

© 2015 Xu G. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔ Guohua Xu
State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com