A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants

Eva Lenassi¹,², Ajoy Vincent³, Zheng Li¹,⁴, Zubin Saian¹, Alison J Coffey⁵, Heather B Steele-Stallard⁶, Anthony T Moore¹, Karen P Steel³, Linda M Luxon⁷,⁸, Elise Héon³, Maria Bitner-Glindzicz⁶ and Andrew R Webster*¹,⁴

Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration (‘retinal disease-specific’); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one ‘retinal disease-specific’ USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype-phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.

European Journal of Human Genetics (2015) 23, 1318–1327; doi:10.1038/ejhg.2014.283; published online 4 February 2015
no complaint of childhood hearing loss to gain insights into nonsyndromic USH2A-related disease. Detailed phenotyping, including fundus autofluorescence imaging and audiological assessment, was performed in individuals found to harbour two likely disease-causing variants. The effect of three splice site changes on nasal mRNA was investigated and multiplex ligation-dependent probe amplification (MLPA) was performed in selected patients with the aim of detecting deletions and duplications in USH2A. Additionally, we have investigated whether nonsyndromic versus syndromic disease can be explained by the presence of an allelic hierarchy of USH2A disease-causing variants, and have addressed this by studying USH2A allelic heterogeneity in the discovery (\(n=186\)) and two additional (\(n=84\) and \(n=187\)) cohorts.

MATERIALS AND METHODS

Study subjects

A total of 186 unrelated individuals with recessive retinal degeneration and no hearing complaint in childhood were ascertained from the clinics of Moorfields Eye Hospital (London, UK; discovery cohort). Of these, 168 patients were affected with rod–cone dystrophy (i.e., retinitis pigmentosa), 12 with cone–rod dystrophy and 6 with childhood-onset retinal dystrophy. Further to this discovery cohort, 84 additional probands with recessive retinal degeneration (62 with nonsyndromic disease and 22 with Usher syndrome) were recruited at the Hospital for Sick Children (Toronto, ON, Canada); both cohorts underwent full sequencing of USH2A (see below). A third cohort of 187 unrelated patients with nonsyndromic, adult-onset, retinitis pigmentosa was also ascertained from the Moorfields Eye Hospital. This cohort was only used to test for selected variants in exons 13, 51, 57 and 63. A complete eye examination was performed and a detailed clinical history was obtained in all patients. Only patients with a family history compatible with autosomal recessive inheritance (i.e., no evidence of dominant inheritance) were studied. For the purposes of this study, we define the phenotype observed in retinitis pigmentosa patients without prelingual/childhood-onset hearing loss as nonsyndromic disease. Subjects with Usher syndrome were not tested for common genetic causes of nonsyndromic hearing impairment.

After informed consent was obtained, blood samples were collected and genomic DNA was extracted from peripheral blood leucocytes. Control DNA and mRNA were obtained from consented unrelated healthy individuals. All investigations were conducted in accordance with the Declaration of Helsinki principles. Institutional Review Board (IRB)/Ethics Committee approval was obtained from the Moorfields Eye Hospital and the Hospital for Sick Children local ethics committees.

USH2A screening and method used to distinguish disease-causing variants

The 186 probands with recessive retinal degeneration and no hearing complaint in childhood and the 84 probands with recessive retinal degeneration underwent bidirectional DNA sequencing of the 72 exons of the USH2A gene. Primers were designed for all exons and intron–exon boundaries of the transcript with accession number NM_206933.2 (a total of 105 primer pairs; genomic reference sequence NG_008212.3). The additional panel of 187 unrelated individuals with nonsyndromic, adult-onset, recessive retinitis pigmentosa underwent bidirectional DNA sequencing of exons 13, 51, 57 and 63 of the USH2A gene; these exons were the location of presumed ‘retinal disease-specific’ variants. In 24 patients from the discovery cohort, only one likely disease-causing USH2A variant was identified. These patients were: (i) sequenced for the USH2A c.7595-2144A>G, p.Lys2532Thrfs*56 change, which causes inclusion of a pseudoexon; (ii) screened using MLPA to detect deletions and duplications in the USH2A gene. The SALSA MLPA FAM-labelled reagent kit with probe mixes P361-A1/P362-A2 developed by MRC-Holland (MRC-Holland, Amsterdam, The Netherlands) was used and reactions were performed according to the manufacturer’s instructions. Two subjects with previously identified heterozygous deletions were included to act as positive controls and confirm the validity of the method.

Sequence alterations were classified as ‘likely disease-causing variants’ if they (i) were either nonsynonymous (including missense) or coding insertions/deletions or splice site (positions \(\pm 3\)) or large duplications/deletions and (ii) have a minor allele frequency (MAF) of 0.15% or less in the NHLBI ESP database.

Figure 1 Schematic of the usherin protein and localisation of the likely disease-causing variants detected in the discovery cohort of patients \((n=186)\); mutations previously reported in individuals with Usher syndrome type II are shown below the schematic. Presumed ‘retinal disease disease-specific’ alleles are shown in red.
Table 1 Clinical characteristics and genotype of the patients with USH2A-related disease without early-onset hearing loss (discovery cohort)

Subject; family ID	Age *; gender	VA (LogMAR)	Presenting symptom (age)	Hearing loss	USH2A sequencing results b	FAF	Comments	Ethnicity
D1; gc4627	34; M	0.00	0.18	No	NA	NA	—	European
D2; gc16390	35; M	0.00	- 0.10	No	Group 3	Ring BE	—	European
D3; gc15522	41; M	0.18	0.18	No	Group 1A	Ring BE	—	European
D4; gc5134	42; F	2.20	0.48	No	Group 1A	Atrophy BE	—	South Asian
D5; gc17134	42; F	0.24	0.10	No	Group 1A	Ring BE	—	European
D6; gc16520	42; F	0.30	0.18	Yes	NA	Ring BE	—	European
D7; gc17055	43; M	0.48	0.60	Yes	NA	Ring BE	—	European
D8; gc16966	47; F	0.00	0.00	No	Group 1A	Ring BE	—	European
D8a; gc16986	48; F	0.18	0.18	No	Group 2	Ring BE	—	European
D8b; gc16986	58; F	0.60	0.60	Yes	Group 1B	Ring BE	CMO, IOL LE	European
D9; gc16172	48; M	-0.10	0.00	Yes	Group 1B	Ring BE	—	African
D14a; gc5204	50; M	0.48	0.60	No	NA	Ring BE	CMO	European
D14b; gc5204	55; F	0.22	0.40	Yes	Group 1B	Ring BE	CMO	European
D11a; gc1985	50; M	0.20	0.22	No	Group 2	Small ring BE	—	European
D11b; gc1985	52; F	0.28	0.42	No	Group 2	Small ring BE	CMO, IOL BE	European
D12; gc15971	52; M	0.22	0.08	No	Group 2	Small ring BE	IOL BE	European
D13; gc3860	54; M	0.18	0.18	Yes	Group 1B	Ring BE	CMO	European
D15; gc4654	55; M	0.18	0.18	Yes	NA	Ring BE	—	South Asian
D16; gc16801	55; M	0.18	0.00	No	NA	NA	—	South Asian
D17; gc16524	56; F	0.78	0.78	No	Group 1A	Central hyperAF BE	IOL BE	European
D18; gc5399	58; M	0.36	0.20	No	Group 1A	Small ring BE	CMO	European
D19; gc5396	63; F	1.30	0.60	Yes	Group 1B	Atrophy BE; Central hyperAF LE	CMO	European
D20; gc1802	66; F	0.50	1.30	No	NA	Central hyperAF BE	—	European
D21; gc2053	68; M	2.20	2.20	No	Group 1A	Atrophy BE	—	European

Allelic hierarchy in USH2A retinopathy

E Lenassi et al. 1320
European Journal of Human Genetics
set (accessed 15 June 2014); this is the MAF of c.2276 G>T, the most common change identified in patients with recessive retinitis pigmentosa. The effect of synonymous variants on splicing was not assessed in the present study. All relevant data (variants and associated phenotypes) were submitted to the appropriate LOVD-USHBase, which can be accessed in http://www.LOVD.nl/USH2A (submission IDs: 00004400–00004452).

Nasal epithelial mRNA analysis
Nasal epithelial mRNA analysis was performed in individuals carrying the variants c.12295-3 T>A (subject D13), c.9056-2 A>G (subject D10) or c.5776 +1 G>A (subject D10). Nasal epithelial cell samples were obtained by gently brushing the lateral inferior turbinate with bronchial cytology brush (Diagmed Ltd, Northwich, UK) and RNA was extracted from these samples using the NucleoSpin RNA II Extraction Kit (Macherey-Nagel, Duren, Germany) according to the manufacturer’s guidelines. cDNA was reverse transcribed using a cDNA Synthesis Kit (BioLine, London, UK) with a random hexamer primer mix. For a reverse transcriptase (RT)-PCR reactions, USH2A was amplified between exons 27 and 32, exons 45 and 49, exons 58 and 64 and exons 62 and 66. The housekeeping gene β-actin was amplified as a positive control. The identity of USH2A RT-PCR products was established by direct sequencing using standard procedures (primer sequences and conditions are available on request).

Ophthalmological and audiological assessment
Detailed ophthalmological evaluation was performed in 23 probands with two likely disease-causing variants in USH2A (all from the discovery cohort); 4 affected siblings of the 23 probands were also assessed. Ophthalmological examination included best-corrected visual acuity testing, dilated fundus examination, colour fundus photography (TRC-50IA; Topcon, Tokyo, Japan), spectral domain optical coherence tomography (OCT) and fundus autofluorescence imaging. The Spectralis HRA+OCT with viewing module version 5.1.2.0 (Heidelberg Engineering, Heidelberg, Germany) was used to acquire tomographs in 24 patients; fundus autofluorescence images were acquired in 24 patients using the HRA2 and Spectralis HRA+OCT (over a 30° × 30° and/or a 55° × 55° field; Heidelberg Engineering) instruments.

Pure tone audiometry was conducted, in a sound-treated booth, using a calibrated GSI 61 audiometer with TDH 49 headphones to assess hearing thresholds in 19 patients with no complaint of hearing loss, who were found to have two disease-associated variants in USH2A (all from the discovery cohort); the method has been described previously. 4 The audiometry thresholds (0.25–8 kHz) were reviewed for right and left ear separately and compared with age- and gender-matched percentile bands of normative data. Patients were classified into three groups: Group 1 with normal hearing thresholds falling in the interquartile normative range for age and gender across all frequencies (1 A if all thresholds <40th percentile; 1B if thresholds fall in the 50–60th percentile band); Group 2 with high-frequency hearing thresholds (3–8 kHz) >75th percentile and markedly greater than low-frequency threshold (0.25–2 kHz) percentiles (ie, 30–70 percentile bands difference); and Group 3 with atypical/abnormal audiometric configurations and without other aetiological explanation.

RESULTS
USH2A retinopathy is a major cause of adult-onset recessive retinal degeneration
In the discovery cohort (n=186), a total of 206 different sequence alterations were recorded in the exons and intron–exon boundaries of USH2A; 88 variants were nonsense, coding insertions/deletions or splice site changes. Of these, 52 were rare with an MAF <0.15% and thus were classified as likely disease-causing (21 were novel to this study and 31 were previously reported). Notably, 22 patients were found to harbour two of these likely disease-causing variants, whereas 24 were found to carry one likely disease-causing variant. In the latter group, one proband was found on MLPA testing to harbour a heterozygous duplication of exons 57–60. None of them was found
to carry the c.7595-2144 A > G change, which causes inclusion of a pseudogene.11 All 23 patients with two likely disease-causing variants were affected with adult-onset retinitis pigmentosa (Table 1). Therefore, 14% of patients with adult-onset recessive retinitis pigmentosa (23/168) were found to harbour two likely disease-causing variants in USH2A.

In the replication cohort of 84 patients with recessive retinal degeneration (syndromic and nonsyndromic), 25 additional probands with two likely disease-causing USH2A variants were identified. All 25 had a retinal phenotype consistent with retinitis pigmentosa; 11 of these had Usher syndrome type II and the remaining 14 reported no hearing complaint in childhood (Table 2).

When the third panel of 187 patients with nonsyndromic, adult-onset, recessive retinitis pigmentosa was sequenced for exons 13, 51, 57 and 63, the following variants were identified: c.2276 G > T (5 alleles); c.2299delG (3 alleles); c.2633 G > A, p.(Arg878His) (1 allele); c.10073 G > A, p.(Cys3358Tyr) (8 alleles); c.11156 G > A, p.(Arg3719Leu) (2 alleles); c.12575 G > A, p.(Arg4192His) (2 alleles); and c.12574C>T, p.(Arg4192Cys) (1 allele). One subject harboured the c.2276 G > T variant in homozygous state, a second subject had c.2276 G > T and c.12575 G > A; a third subject had biallelic c.2276 G > T and c.2299delG and two unrelated subjects carried the same pair of changes: c.2299delG and c.10073 G > A.

Some USH2A alleles are only associated with nonsyndromic retinal disease

We define as ‘retinal disease-specific’ variants or alleles that (i) were present in more than one patient with nonsyndromic retinal degeneration (in our discovery cohort and/or the literature) and (ii) have not been clearly associated with Usher syndrome type II to date (Table 3). On this basis, the following variants were categorised as likely ‘retinal disease-specific’: c.2802 T > G, p.(Cys934Trp); c.10073 G > A; c.11156 G > A; c.12295-3 T > C; and c.12575 G > A. The c.2276 G > T variant that has been previously associated mainly with disease confined to the eye9,10 was also included in this group. Notably, the most prevalent c.2276 G > T and c.10073 G > A variants were statistically significantly enriched in nonsyndromic cases compared with Usher syndrome type II cases (P = 0.0060 and P = 0.047, respectively (Fisher’s exact test); the data on Usher syndrome type II were obtained from the UK National Collaborative Usher Study3). All ‘retinal disease-specific’ variants were located in laminin-type EGF-like domains or fibronectin type 3 domains (Figure 1).

On examining our data, it was rare for nonsyndromic cases to have two ‘null’ variants (ie, variants that are not missense and predicted to cause nonsense-mediated decay and/or significant truncation of the protein if translated), whereas this was common in those with Usher syndrome. Of 47 probands with nonsyndromic USH2A-related retinal degeneration (all three cohorts), only 5 had apparent biallelic ‘null’ variants (this is the exception due to c.12295-3 T > C; see Table 1). This is significantly different to 39 out of 71 patients with USH2A-associated Usher syndrome8 (P = 0.0001 (Fisher’s exact test)). These data support the model that Usher syndrome represents the null phenotype consequent upon USH2A defects, and that ‘retinal disease-specific’ alleles are partly functional, allowing them to contribute to normal cochlea development.

Assuming our model of allelic hierarchy is correct, further rare ‘retinal disease-specific’ alleles can be sought. In those probands with nonsyndromic retinal disease, an allele is likely to be ‘retinal disease-specific’ if either (i) it is homozygous or (ii) it is paired with an allele that has previously and consistently been reported to be associated with Usher syndrome or (iii) it is paired with an allele that has previously and consistently been reported to be associated with nonsyndromic retinitis pigmentosa. On examining our discovery and replication cohorts in this way, the following alleles are likely to be ‘retinal disease-specific’: c.2332 G > T, p.(Asp778Tyr); c.3724 C > T, p.(Pro1242Ser); c.4378 G > A, p.(Gly1460Arg); c.8546 G > T, p.(Gly2849Val); c.6904_6920dup17, p.(Gln2307Hisfs*25); c.12580 T > C, p.(Cys4194Arg) and c.15178 T > G, p.(Ser5060Pro). Further data from other cohorts of nonsyndromic patients are needed to confirm the ‘retinal disease-specific’ nature of these alleles.

The c.12295-3 T > A, c.9056-2 A > G and c.5776+1 G > A variants result in abnormal USH2A pre-mRNA splicing

The effect of c.12295-3 T > A, one of the probably ‘retinal disease-specific’ changes, on splicing was investigated in subject D13. Primers were used to amplify a 2550 bp fragment between exons 58 and 64. PCR products of the expected size were amplified for the control sample, whereas a much smaller band was observed in the patient sample. Further cDNA analysis (Figure 2a) revealed the presence of an abnormal transcript (1033 bp) associated with an out-of-frame skipping of exon 63; this would result in a premature termination codon. Amplification of a 2371 bp fragment between exons 62 and 66 combined with direct sequencing of the RT-PCR product confirmed the above findings. Notably, direct sequencing of the RT-PCR product demonstrated a normal sequence at position c.12093, where the sequencing of the genomic DNA identified a c.12093C > A, p.(Tyr4031*) change in heterozygous state. This suggests that the two likely disease-causing variants identified in this patient (c.12295-3 T > A and c.12093C > A) reside on two different alleles (Figure 2b). The non-amplification of the allele with c.12093C > A could be due to nonsense-mediated decay or preferential amplification of the smaller, exon-skipped PCR product from the other allele.

The effect of the c.9056-2 A > G (likely ‘retinal disease-specific’) and c.5776+1 G > A (previously associated with Usher syndrome type II (LOVD-USHBase)) changes on splicing were investigated in subject D10; the c.9056-2 A > G variant led to part of exon 46 being missed in the mRNA, while the c.5776+1 G > A variant was associated with skipping of exon 28. These results are summarised in Supplementary Figure S1.

Defects in USH2A consistently cause retinitis pigmentosa

The clinical features of 27 individuals with two likely disease-causing variants in USH2A (23 from discovery cohort plus 4 of their affected family members) are summarised in Table 1. All 27 patients were noted to have typical features of retinitis pigmentosa such as pigmentedary changes in the midperipheral retina and vessel attenuation. Patients usually presented with nystagmus (median age of 24.5 years; range 12–42 years). The median visual acuity at last visit was 0.24 logMAR (range –0.10 to 2.2). Six patients (22%) underwent cataract surgery at a median age of 47 (range 34–58) years. Central macular oedema was noted in 10 patients (37%) at a median age of 50 (range 35–59) years.

Fundus autofluorescence imaging is a clinically useful test for USH2A-related disease

From the fundus autofluorescence images of 24 patients (48 eyes) three patterns were observed (Figure 3). Most patients (n = 39 eye; 81.3%) showed preserved central autofluorescence surrounded by a variable diameter ring of high density (‘hyperautofluorescent ring’; Figure 3, top row). Five (10.4%) eyes had an abnormally increased signal in the fovea with no obvious hyperautofluorescent ring (‘central
Table 2 Genotype and clinical characteristics of patients with USH2A-related disease (replication cohort)

Subject	USH2A sequencing results	Likely effect of allele	Diagnosis			
	Variant 1	Variant 2		Variant 1	Variant 2	
R1	c.2276G>T, p.(Cys759Phe)	c.2276G>T, p.(Cys759Phe)	Retina-specific	Retina-specific	Nonsyndromic retinitis pigmentosa	
R2	c.2276G>T, p.(Cys759Phe)	c.1225T>C, p.(Trp409Arg)	Retina-specific	Unknown (novel)	Nonsyndromic retinitis pigmentosa	
R3	c.2276G>T, p.(Cys759Phe)	c.9912dup, p.(Glu3305Afs*11)	Retina-specific	Unknown	Nonsyndromic retinitis pigmentosa	
R4	c.2276G>T, p.(Cys759Phe)	c.2299delG, p.(Glu767Serfs*21)	Retina-specific	Usher	Nonsyndromic retinitis pigmentosa	
R5	c.99,100insT, p.(Arg334Serfs*41)	c.2802T>G, p.(Cys934Trp)	Unknown	Retina-specific	Nonsyndromic retinitis pigmentosa	
R6	c.5776G>A, p.(Glu1926Lys)	c.10073G>A, p.(Cys3358Trp)	Usher	Retina-specific	Nonsyndromic retinitis pigmentosa	
R7	c.5776G>A, p.(Glu1926Lys)	c.10073G>A, p.(Cys3358Trp)	Usher	Retina-specific	Nonsyndromic retinitis pigmentosa	
R8	c.1256G>T, p.(Arg419Phe)	c.11156G>A, p.(Arg3719His)	Usher	Retina-specific	Nonsyndromic retinitis pigmentosa	
R9	c.1256G>T, p.(Arg419Phe)	c.11156G>A, p.(Arg3719His)	Usher	Retina-specific	Nonsyndromic retinitis pigmentosa	
R10	c.11864G>A, p.(Trp3955*)	c.12580T>G, p.(Cys4194Arg)	Usher	Unknown (novel)	Nonsyndromic retinitis pigmentosa	
R11	c.8254G>A, p.(Gly2752Arg)	c.15178T>C, p.(Ser506Phe)	Usher	Unknown (novel)	Nonsyndromic retinitis pigmentosa	
R12	c.4378G>A, p.(Gly1460Arg)	c.9424G>T, p.(Gly3142*)	Unknown (novel)	Usher	Nonsyndromic retinitis pigmentosa	
R13	c.6904_6920dup17	c.12877G>A, p.(Gly4293Ser)	Unknown (novel)	Unknown (novel)	Nonsyndromic retinitis pigmentosa	
R14	c.9611A>G, p.(His3204Arg)	c.13768G>A, p.(Gly4500Ser)	Unknown (novel)	Unknown (novel)	Nonsyndromic retinitis pigmentosa	
R15	c.1876C>T, p.(Arg626*)	c.1876C>T, p.(Arg626*)	Usher	Usher	Usher syndrome	
R16	c.1256G>T, p.(Arg419Phe)	c.2299delG, p.(Glu767Serfs*21)	Usher	Usher	Usher syndrome	
R17	c.2299delG, p.(Glu767Serfs*21)	c.14287G>A, p.(Gly4763Arg)	Usher	Usher	Usher syndrome	
R18	c.2299delG, p.(Glu767Serfs*21)	c.14287G>A, p.(Gly4763Arg)	Usher	Usher	Usher syndrome	
R19	c.2299delG, p.(Glu767Serfs*21)	c.14180G>A, p.(Trp4727*)	Usher	Unknown (novel)	Usher syndrome	
R20	c.2299delG, p.(Glu767Serfs*21)	c.5168-2A>G	Usher	Unknown (novel)	Usher syndrome	
R21	c.2299delG, p.(Glu767Serfs*21)	c.5858-1G>A	Usher	Unknown (novel)	Usher syndrome	
R22	c.2299delG, p.(Glu767Serfs*21)	c.14180G>A, p.(Trp4727*)	Usher	Unknown (novel)	Usher syndrome	
R23	c.1679delC, p.(Pro560Leufs*31)	c.11549-1G>A	Unknown (novel)	Unknown (novel)	Nonsyndromic retinitis pigmentosa	
R24	c.854T>C, p.(Ile285Thr)	c.10724G>T, p.(Gly3142*)	Unknown (novel)	Usher	Usher syndrome	
R25	c.2081G>C, p.(Cys694Ser)	c.10612C>T, p.(Arg3538*)	Unknown (novel)	Unknown (novel)	Usher syndrome	

Retina-specific corresponds to likely ‘retinal disease-specific’ alleles (shown in bold).
Usher syndrome type III corresponds to likely ‘Usher syndrome type III’-specific alleles.
Novel corresponds to alleles that are novel to this study. Of these novel changes, the following are found in the Exome Aggregation Consortium (ExAC) browser (accessed 31 December 2014): c.12580T>G (2/122952 alleles), c.14287G>A (3/122140 alleles) and c.9424G>T (4/122140 alleles). Segregation analysis was performed in subjects R12, R20 and R22 and has confirmed that the reported variants are in trans.
Numbering of USH2A variants has been assigned in accordance with NCBI Reference Sequence NM_206933.2.

Table 3 Summary of phenotypes associated with the previously reported USH2A variants that were identified in the present series

Change in USH2A	Number of previously reported cases	References					
Non-syndromic	Nonsyndromic retinitis pigmentosa						
retinitis	Usher type II						
pigmentosa	Atypical Usher						
Usher, type I	Usher, type III	Asymptomatic					
c.2276G>T, p.(Cys759Phe)	96 (12 hom)	14	5	1a	1 (hom)	8,15-26	
c.2299delG, p.(Glu767Serfs*21)	58	327 (46 hom)	6 (3 hom)	—	1	—	8-11, 15-17,19,22,24,25,27,29-33
c.2332G>T, p.(Asp778Tyr)	—	1	—	—	—	44	
c.2802T>G, p.(Cys934Trp)	1	—	—	—	—	40	
c.3902G>T, p.(Gly1301Val)	—	1	—	1b	—	40	
c.5776+1G>A	—	4	—	—	1	—	21,24,25,40
7595-3C>G, p.Pro2533Asns*5	—	5	—	—	—	8,20,45	
c.9371+1G>C	—	1	—	—	—	8	
c.10073G>A, p.(Cys3358Trp)	5	—	1	—	—	5,8,23,26,41	
c.11156G>A, p.(Arg3719His)	1	—	—	—	—	5	
c.12295-3T>A	—	—	1b	—	—	8	
c.12575G>A, p.(Arg4192His)	4 (1 hom)	—	1c (hom)	—	—	5,8,23,26	
c.13010C>T, p.(Thr337Met)	—	2	—	—	—	5,35	
c.13136C>T, p.(Thr439Ile)	—	5	—	—	—	8,21,46	
c.14426C>T, p.(Thr480Ile)	—	3	—	—	—	8,36	

Numbering of USH2A variants has been assigned in accordance with NCBI Reference Sequence NM_206933.2. The complete list of references can be found in LOVD-USHBase.

* A single heterozygous variant, p. M704A was also reported in this patient. ** A homozygous (hom) variant in M704A was also reported in this patient.

A After reviewing the clinical data, the patient was categorised as atypical due to adult onset of hearing loss (45 years old) and normal speech.

A After reviewing the clinical data, the patient was categorised as atypical due to very mild, progressive hearing loss.

European Journal of Human Genetics

Allelic hierarchy in USH2A retinopathy
E Lenassi et al
hyperautofluorescence'; Figure 3, middle row). Four (8.3%) eyes were characterised by widespread hypoautofluorescence corresponding to retinal pigment epithelial atrophy ('severely decreased autofluorescence'; Figure 3, bottom row). The findings were concordant between the eyes in all but two patients. Overlaying of fundus autofluorescence and OCT images suggested that the

Figure 2 (a) RT-PCR analysis of the c.12295-3T>A mutation. RT-PCR was performed on RNA extracted from nasal epithelial cells of subject D13 and an unrelated control individual, using primers located in exons 58 and 64 of USH2A. In subject D13, RT-PCR produced a shorter product of 1033 bp corresponding to skipping of USH2A exon 63 (partial sequence chromatogram of this transcript is shown in the box; the dashed line indicates the splice junction between exons 62 and 64). The other allele of subject D13 harbouring a c.12093C>A, p.(Tyr4031*) mutation did not amplify. Amplification on control template produced a band of 2550 bp, corresponding to wild-type sequence. (b) Partial sequence chromatogram of genomic DNA from subject D13 showing a heterozygous c.12093C>A variant in exon 62. Sequence analysis of the corresponding RT-PCR product (1033 bp, see above) revealed a normal sequence at c.12093; this implies that the c.12295-3T>A and c.12093C>A variants reside on different alleles. NTC stands for no template control.

Figure 3 Fundus autofluorescence (FAF) imaging and foveal OCT scans of three patients with USH2A retinopathy. Three patterns were observed: (i) a hyperautofluorescent ring on FAF and preserved photoreceptor inner segment ellipsoid line in the area within the hyperautofluorescent ring on OCT (subject D8a; top row); (ii) central hyperautofluorescence on FAF and absent photoreceptor inner segment ellipsoid line on OCT (subject D17; middle row), and (iii) severely decreased autofluorescence on FAF and absent outer retina layers with thinning of the retinal pigment epithelium/Bruch's membrane complex band (subject D19; bottom row). Y.o., years old.
hyperautofluorescent ring represents a border between relatively preserved and diseased retinal tissue (Figure 3), and future structure–function correlation studies are expected to provide important insights into the clinical utility of this imaging modality.

Audiological phenotype in USH2A retinopathy is variable

The 23 patients with two likely disease-causing variants from the discovery cohort and their four affected relatives reported no hearing loss in childhood, with 9 (33%) of these reporting subjective adult-onset hearing loss. Audiological assessment was conducted in 19 of these patients. In 14 (74%) patients, it was consistent with a Group 1 phenotype (ie, thresholds within normal limits); of those, 9 (47%) were classified in Group 1A and 5 (26%) in Group 1B. Three (16%) patients were classified in Group 2 and 2 (10%) in Group 3 (Supplementary Figure S2). Qualitative analysis revealed the c.12295-3T>A variant to be correlated with a more severe audiological phenotype (Groups 2 and 3). There seems to be no obvious correlation between the severity of visual and audiological phenotypes (Table 1, Figure 4 and Supplementary Figure S2).

DISCUSSION

In the present study, we confirm that recessive variants affecting USH2A function are a common cause of retinitis pigmentosa with disease-causing variants being spread throughout the gene. When allelic heterogeneity was studied and compared with that reported in Usher syndrome, the concept of ‘retinal disease-specific’ USH2A alleles (ie, alleles associated with retinal degeneration and no hearing complaint in childhood) became apparent. The presence of at least one such allele in a patient with USH2A-related retinal degeneration results in relative preservation of hearing (Figure 5). Five likely ‘retinal disease-specific’ variants (c.2802T>G; c.10073G>A; c.11156G>A; c.12295-3T>A and c.12575G>A) that are novel to this study were identified in addition to c.2276G>T, a relatively common sequence alteration previously associated with retinitis pigmentosa without hearing impairment.9,10

Defects in the USH2A gene have been previously reported to account for 12–25% of all retinitis pigmentosa cases, dominant, recessive or X-linked; syndromic or nonsyndromic.5 McGee et al5 reported that among 80 patients with nonsyndromic recessive retinitis pigmentosa, 23% had one or two likely disease-causing variants in USH2A. This result was consistent with our findings: 24.7% (46/186) of patients with recessive retinal degeneration and no reported hearing loss in childhood harboured one or two likely disease-causing changes. Many variants in USH2A can be overlooked when only coding regions and intron–exon boundaries are sequenced. In previous studies, it was found that screening for duplications, deletions and a common deep-intronic sequence alteration (c.7595-2144A>G) detected a second disease-causing variant in 35% of cases with Usher syndrome type II that had only one variant affecting function on conventional Sanger sequencing of all USH2A exons.11,47 In the present cohort,
Figure 5 Schematic showing the proposed allelic hierarchy of USH2A mutations; the presence of at least one retinal disease-specific (‘retina-specific’) USH2A allele in a patient with USH2A-related disease results in normal hearing at least in childhood.

Audiometric findings were within normal limits for most patients with two likely disease-causing USH2A variants and no hearing complaint in childhood (14 of 19 tested; Table 1). Notably, the severity of the retinal phenotype did not obviously correlate with the severity of the hearing impairment (Figure 4); this is in keeping with previous reports.23 Interestingly, the eldest subject D23 in the present study reported adult-onset hearing loss and had a hearing defect consistent with Usher syndrome type II at age 75 years. This is in keeping with the notion that recessive variants in USH2A cause a spectrum of hearing defects that range from an early-onset phenotype consistent with Usher syndrome type II to completely normal hearing.

We have shown that an allelic hierarchy of variants affecting USH2A function is likely with ‘retinal disease-specific’ alleles being phenotypically dominant to ‘Usher syndrome type II’ alleles. Although this finding has implications for counselling, the fact that USH2A disease-causing variants are often private makes prediction of the fully evolved phenotype challenging. In any case, the audiological phenotype in USH2A-related disease is highly variable and a multidisciplinary approach is often relevant even to cases without hearing complaints in childhood.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We acknowledge the help provided by the family members in this study and the colleagues who referred patients to us. The work was partially funded by the National Institute for Health Research UK (Moorfields Eye Hospital and Institute of Ophthalmology Biomedical Research Centre; Great Ormond Street Hospital and Institute of Child Health Biomedical Research Centre; University College London Hospitals NHS Foundation Trust and University College London Biomedical Research Centre), RP Fighting Blindness (formerly British Retinitis Pigmentosa Society) and the Wellcome Trust (Grant No. 098051).

1 Buch H, Vinding T, La Cour M, Appleyard M, Jensen GB, Nielsen NV. Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults: the Copenhagen City Eye Study. Ophthalmology 2004; 111: 53–61.
2 Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010; 11: 273–284.
3 den Hollander AI, Black A, Bennett J, Cremers FP. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 2010; 120: 3042–3053.
4 Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368: 1795–1809.
5 McGee TL, Seyedahmadi BJ, Sweeney MD, Dryja TP, Berson EL. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J Med Genet 2010; 47: 499–506.
et al

18 Seyedahmadi BJ, Rivolta C, Keene JA, Berson EL, Dryja TP: Comprehensive screening of nine Usher syndrome genes in the UK National Collaborative Usher Study. J Med Genet 2012;49:27–36.

19 Rivolta C, Swelho EA, Berson EL, Dryja TP: Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss. Am J Hum Genet 2000; 66:1975–1978.

20 Bernal S, Ayuso C, Antinolo G, et al: Allelic hierarchy in Usher syndrome type II. J Med Genet 2004; 41:104–108.

21 Dreyer B, Tranebjaerg L, Rosenberg T, Weston MD, Kimberling WJ, Nilssen O: Identification of novel USH2A mutations: implications for diagnosis and therapy. Hum Mutat 2012;33:104–108.

22 British Society of Audiology: Recommended Procedure: Pure-Tone Air-conduction and Bone-Conduction Threshold Audiometry With and Without Masking. British Society of Audiology, Reading, Berkshire, UK, 2011.

23 Avila-Fernandez A, Cantalapiedra D, Aller E et al: Mutation analysis of the long isoform of USH2A in Spanish patients with autosomal recessive retinitis pigmentosa: high prevalence and phenotypic variation. J Med Genet 2003;40:e8.

24 Sandberg MA, Rosner B, Weigel-DiFranco C, McGee TL, Berson EL, Dryja TP: Comprehensive screening of the USH2A gene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa. Exp Eye Res 2004; 79:167–173.

25 Nájera C, Beneyto M, Blanca J et al: Identification of novel USH2A mutations: implications for the structure of USH2A protein. Eur J Hum Genet 2000; 8:500–506.

26 Nájera C, Beneyto M, Blanca J et al: Mutations in myosin VIIA (MYO7A) and usherin, the gene responsible for Usher syndrome type IIa. J Med Genet 2003;40:76–77.

27 Eudy JD, Weston MD, Yao S et al: Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type Ila. Science 1999; 280:1753–1757.

28 Liu XZ, Hope C, Liang CY et al: A mutation in the USH2A gene: high prevalence and phenotypic variation. Am J Hum Genet 1999; 64:1221–1225.

29 Weston MD, Eudy JD, Fujita S et al: Genomic structure and identification of novel mutations in usherin, the gene responsible for Usher syndrome type Ila. Am J Hum Genet 2000; 66:1199–1210.

30 Levy BP, Aragon-Martín JA, Weston MD et al: Spectrum of mutations in USH2A in British patients with Usher syndrome type II. Exp Eye Res 2001; 72:503–509.

31 Ouyang XM, Hejtmancik JF, Jacobson SG et al: Mutational spectrum in Usher syndrome type II. Clin Genet 2004; 65:288–293.

32 Ebermann I, Koenekoop RK, Lopez I, Bou-Khzam L, Pigeon R, Boiz HJ: An USH2A founder mutation is the major cause of Usher syndrome type II in Canadians of French origin and confirms common roots of Quebecois and Acadians. Eur J Hum Genet 2009; 17:80–84.

33 Lejeuneckers JM, Pennings RJ, Snik AF, Bosman AJ, Demeers CW: Audiometric characteristics of USH2A patients. Audiol Neurootol 2009; 14:223–231.

34 Van D, Ouyang X, Patterson DM, Du LL, Jacobson SG, Liu XZ: Mutation analysis in the long isoform of USH2A in American patients with Usher syndrome type II. J Hum Genet 2009; 54:732–738.

35 Le Guédard-Méreuze S, Vaché C, Baux D et al: Identification of new Usher syndrome type II in two pediatric populations: Implications for genetic screening of deaf and hard of hearing children. Genet Med 2010; 12:512–516.

36 Bonnet C, Grati M, Martin S et al: Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis. Orphanet J Rare Dis 2011; 6:21.

37 García-Garcia G, Aparisi MJ, Jaipo T et al: Mutation analysis of USH2A gene in Spanish Usher patients reveals 23 novel pathogenic mutations. Orphanet J Rare Dis 2011; 6:65.

38 Vozi D, Assoulli A, Athanassakis E et al: Molecular epidemiology of Usher syndrome II in Italy. Mol Vis 2011; 17:1662–1668.

39 Domanico D, Fragiotta S, Trabucco P, Nebbiioso M, Vingolo EM: Genetic analysis for two Italian siblings with usher syndrome and schizophrenia. Case Rep Ophthalmol Med 2012; 2012:39263.

40 Xu W, Dai H, Lu T, Zhang X, Dong B, Li Y: Seven novel mutations in the long isoform of the USH2A gene in Chinese families with nonsyndromic retinitis pigmentosa and Usher syndrome type II. Mol Vis 2011; 17:1537–1552.

41 Le Guédard-Méreuze S, Vaché C, Baux D et al: Ex vivo splicing assays of mutations at noncanonical positions of splice sites in UsherH genes. Hum Mutat 2010; 31:347–355.

42 Ebermann I, Phillips JB, Liebau MC et al: PDDZT is a modifier of relapsing and a contributor to digenic Usher syndrome. J Clin Invest 2010; 120:1812–1823.

43 Steele-Stallard HB, Le Quesne Stabej P, Lenassi E et al: Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with UHSA2A monoallelic mutations on Sanger sequencing. Orphanet J Rare Dis 2013; 8:122.

44 Schultz JM, Bhatti R, Mace AC et al: Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes. J Med Genet 2011; 48:767–775.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/