Transgenerational plasticity of inducible defenses: combined effects of grand-parental, parental and current environments

Juliette Tariel¹, Sandrine Plénet¹, Émilien Luquet¹

¹ Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France

ABSTRACT
While an increasing number of studies highlights that parental environment shapes offspring phenotype (transgenerational plasticity TGP), TGP beyond the parental generation has received less attention. Studies suggest that TGP impacts population dynamics and evolution of phenotype, but these impacts will depend on how long an environmental effect can persist across generations and whether multigenerational effects are cumulative. Here we tested the impact of both grand-parental and parental environments on offspring anti-predator reaction norm in a prey-predator system. We exposed three generations of *Physa acuta* snails without and with predator-cues according to a full factorial design and measured offspring inducible defenses. We found that both grand-parental and parental exposure to predator cues impacted offspring anti-predator defenses, but their effects were not cumulative and depended on the defenses considered. We also highlighted that grand-parental environment could alter reaction norm of offspring shell thickness, demonstrating an interaction between the grand-parental TGP and the within-generational WGP plasticity. We called for more studies covering the combine effects of multigenerational environments.

Keywords: transgenerational plasticity; grand-parental effect; inducible defenses; predator-prey interactions; *Physa acuta*
Introduction

Organisms may respond to fluctuating environments by adapting through genetic evolution over generations or through phenotypic plasticity. This last is traditionally defined as the capacity of a given genotype to render alternative phenotypes under different environmental conditions (within-generational plasticity, WGP) (West-Eberhard 2003; Pigliucci 2005). Plasticity may also occur across generations (transgenerational plasticity, TGP), when the phenotype of offspring is influenced by carry-over effects of past environments experienced by the previous generation(s) (Agrawal et al. 1999; Galloway and Ettersson 2007; Salinas et al. 2013). Ancestors can alter the phenotype of their offspring without involving genetic changes through a range of non-genetic processes as parental effects, e.g. transmission of nutrients, hormones, proteins (Mousseau 1998; Crean and Bonduriansky 2014), or by any form of epigenetic inheritance, e.g. DNA methylation marks, histone protein modifications, non-coding small RNAs (Holeski et al. 2012; Schlichting and Wund 2014). TGP has been shown for diverse organisms and traits in response to various environments (Bonduriansky and Day 2009; Salinas et al. 2013; Donelson et al. 2018). When past environmental cues provide reliable proxies about future offspring conditions, TGP may enable organisms to cope with fast-changing environments because it refines offspring phenotypes in anticipation of the environmental conditions they are likely to experience (Bonduriansky and Day 2009; Herman and Sultan 2011; Donelson et al. 2018).

Most studies on TGP focused on the effect of parental environment on offspring phenotype (e.g. Mousseau 1998; Wolf and Wade 2009; Herman and Sultan 2011; Donelson et al. 2018) and on offspring reaction norm (interaction TGP x WGP; Salinas et al. 2013). But transgenerational effects are not confined to the parental generation. A few examples have shown that TGP can persist for multiple successive generations (Plaistow et al. 2006; Remy 2010; Sarker and Peleg-Raibstein 2019), even though the majority is restrained to three generations (i.e. grand-parental effect) (e.g. Hafer et al. 2011; Herman and Sultan 2011; Kou et al. 2011; Lock 2012; Shama et al. 2014; Walsh et al. 2014). However, it is unclear how multigenerational effects can interact (Prizak et al. 2014) and experimental works controlling for combination of multigenerational effects always showed complex patterns of phenotypic offspring responses. For example, Hafer et al. (2011) and Walsh et al. (2014) in collembolan (Folsomia candida) and cladoceran (Daphnia ambiguа) respectively, demonstrated that some life-history traits were affected by an interactive effect between grandparental and parental environment, leading to phenotypic landscapes that do not fit simple adaptive scenarios. Moreover, such complex patterns of phenotypic responses can depend on
the offspring context. Plaistow et al. (2006), for instance, showed in the soil mite Sancassania berlesei that the persistence of past environments (across four generations) differed between high- and low-food offspring contexts. Consequently, understanding how multigenerational combined environments interact to shape the offspring phenotype is still limited and challenging.

Predator-induced plasticity is a well-known model in WGP study (e.g. Harvell 1990; Relyea 2001; Hoverman et al. 2005) and allows an individual to fine-tune its phenotype facing predation risk (Lima 1998; Tollrian and Harvell 1999; Benard 2004). Predator-induced defenses are also widely used to investigate TGP over two generations (parental and offspring generations) (e.g. Agrawal et al. 1999; Bell and Stein 2017; Colicchio 2017). However, to our knowledge, only two studies have been interested in TGP of predator-induced traits beyond two consecutives generations (Walsh et al. 2015; Sentis et al. 2018).

We focused on a hermaphroditic gastropod Physa acuta. Physidae are well-known to develop adaptive phenotypes in response to predation risk (DeWitt et al. 1999; Auld and Relyea 2008, 2011; Gustafson et al. 2014; Auld and Houser 2015; Beaty et al. 2016). Predator (crayfish) cues induce WGP of Physa sp. life-history traits (larger age and size at first reproduction; Auld and Relyea 2008), shell thickness (thicker shell; Auld and Relyea 2011), shell size (narrower shape; DeWitt 1998), and behavior (crawling-out the water; Alexander and Covich 1991; DeWitt et al. 1999). We exposed three successive generations of snails from hatching to sexual maturity according to a full factorial design to environments without and with predator-cues. The results concerning the first two generations have demonstrated a predator-induced TGP in P. acuta (Luquet and Tariel 2016) that has been confirmed in a concomitant study (Beaty et al. 2016). Here, we focused on the F3 generation to investigate how the effects of grand-parental, parental and offspring environments combine to influence behavior, shell thickness and shell morphology.

Methods

Animal collection and experimental design

Adult P. acuta snails were collected (the experimental design represented on Appendix 1) on March 2015 in a lentic backwater of the Rhône river (45° 48'6"N, 4° 55'33"E) in Lyon, France. Physa acuta is a freshwater and simultaneous hermaphroditic snail, invasive from North America (Lydeard et al. 2016). The wild-caught adult snails constituted our F0 generation. We pooled them overnight in a 10L-aquarium to ensure that offspring result from outcrossing (P. acuta is a preferential outcrosser; Jarne et al. 2001).
2010). Then, we individually isolated all F₀ snails in 70 mL plastic vials filled with reconstituted water (2.4 g NaHCO₃, 3 g CaSO₄, 1.5 g MgSO₄, 0.1 g KCl to 25 L deionized water) in a 25°C experimental room with 12h light-dark photoperiod. After 24 hours, we removed the F₀ adults from the vials and we randomly choose 15 vials with one egg capsule each. These 15 egg capsules constituted our 15 maternal families (hereafter called only “families”) of the F₁ generation and developed until hatching (~ 7 days). Two days after hatching, we randomly sampled 12 siblings per family and split them into two environments: 6 snails remained in a no-predator environment (control environment) while 6 others were moved in a predator-cue environment. These F₁ snails were reared in 70 mL plastic vials with their siblings until 28 days-old where they were isolated in the same type of plastic vials until the end of the experiment (35 days after hatching). We then generated the second F₂ generation in merging F₁ snails into copulation groups of 15 individuals (one snail from each of the 15 families). At this step, the snail identity was not recorded and thus the pedigree could not be further assessed. We made 6 copulation groups per treatment and each reproduced in a 5L-aquarium for 24h in no-predator water to ensure embryos are not exposed to predator environment. Then, individuals were isolated, and we randomly selected 18 F₁ snails that had laid eggs from each treatment. We then followed the same protocol as previously to rear F₂ snails in control and predator-cue environments according to a full factorial design until 49 days after hatching. The F₃ generation was then generated and reared using the procedure described above. As growth rate was slowing down every generation under our laboratory conditions and we wanted snails in a reasonably sufficient size, we reared the F₂ generation at a later age (74 days after hatching). This F₃ generation was represented by eight combinations of grand-parental (E₁), parental (E₂) and offspring (E₃) environments: CCC, CPC, PCC, PPC, CCP, CPP, PCP and PPP with each time “C” for control environment and “P” for predator-cue environment (Figure 1). The number of individuals and families per combination of environments are reported on Figure 1.

Water and food (ad libitum, chopped and boiled lettuce) were renewed for all experimental snails twice a week. Predator-conditioned water with predator cues was obtained by individually rearing crayfishes (Procambarus clarkii) in 4L reconstituted water and feeding with one P. acuta adult one day before water change (Auld and Relyea 2011). This crayfish-conditioned water was used for the predator-cue treatment while only reconstituted water was used for the control treatment. This crayfish species coexists with P. acuta in its native location in North America.
Figure 1. Number of individuals (N) and families (Family) at each generation and in the two treatments with "C" for control environment and "P" for predator-cue environment. For the 3rd generation, two number of individuals are reported, one for behavioral measurements (first position) and one for other measurements (second position).

Measuring phenotypes

We assessed anti-predator behavior three times in 70-day-old F3 snails through three consecutive days starting one day after the water change. We measured anti-predator behavior by recording the position above/on or below the water surface in the rearing boxes with predator cues present or absent according to the treatment. Crawling-out of the water (position above water surface) is considered as allowing to escape from benthic predators like crayfishes (DeWitt et al. 1999).

At 74 days old, we gently dried snails with paper towel and measured the snail total wet weight (body and shell) with an electronic scale at the nearest 0.001mg. A photograph of each snail aperture upwards was taken with an Olympus SC50 camera installed on an Olympus SZX9 binocular and its Olympus DF PLAPO 1X-2 objective at a x8 magnification. Shell and aperture length and width (shell morphology) were measured on these photographs with the software ImageJ (Schneider et al. 2012). Shell thickness was measured with an electronic caliper at the nearest 0.01mm at the edge of the aperture. Shorter and narrower shell and aperture dimensions (after adjusting for mass) and thicker shell are adaptive anti-predator responses (Auld and Relyea 2011).
Statistical analysis

The multigenerational effect of predator cues on anti-predator behavior (i.e. snail position above/on or below the water surface) was analyzed using generalized linear mixed models (GLMM) assuming a binomial distribution (logit link function). Shell and aperture length and width were analyzed with a principal component analysis (PCA) with the package FactoMineR (Lê et al. 2008) to assess shell morphology. They were highly correlated and the first component (PC1) explained most of variance in shell morphology (95.8%; Appendix 2): a high value of PC1 was associated with a longer and wider shell and aperture, whereas a low value was associated with a smaller and narrower shell and aperture. PC1 was then used as a proxy for shell morphology and response variable in linear mixed model. The multigenerational effect of predator cues on weight, shell thickness and shell morphology was analyzed using linear mixed models (LMM) with restricted maximum likelihood estimation and Kenward and Roger’s approximation for degrees of freedom. These response variables were scaled prior to statistical analysis. In all linear mixed models, grand-parental (E1), parental (E2), offspring (E3) environments, and all interactions were considered as fixed effects. Because shell thickness and shell morphology were significantly correlated with weight, weight (cube root transformed and then scaled) was added as a continuous fixed effect (analyses of covariance) in these models. Family was considered as a random intercept effect in all models. Individual identity was added as a random intercept model in the GLMM model (anti-predator behavior analysis) to account for repeated measures on the same individual. We used type 2 F-tests for significance of fixed effects in the LMM and likelihood ratio tests in the GLMM (lmerTest package; Kuznetsova et al. 2017). We tested significance of random effects with likelihood ratio tests comparing models with or without the tested random effect in the full fixed effect structure. All statistical analyses were performed with R 3.4.1 (R Core Team 2017) and the glmer() and lmer() functions from the lme4 package (Bates et al. 2015 p. 4).

Results

Anti-predator behavior

The offspring exposure to predator cues (E3) significantly increased by 105% the proportion of snails crawling-out the water (Table 1a; Fig. 2a). The parental environment (E2) did not affect the proportion of crawling-out behavior (Table 1a; Fig. 2a). However, grand-parental exposure to predator cues (E1) significantly increased by 28 % the proportion of crawling-out behavior (Table 1; Fig. 2a). Family and individual random effects were significant (Table 1a).
Snail weight

The offspring exposure to predator cues significantly decreased by 18% the snail weight (Table 1b; Fig. 2b). Neither the parental environment nor the grand-parental environment influenced snail weight (Table 1b; Fig. 2b). Family random effect was significant (Table 1b).

Shell thickness

After accounting for snail weight, grand-parental and parental environments interacted both with the offspring environment (Table 1c; Fig. 2c), demonstrating that both could affect the offspring response to predator cues. In the offspring control environment, the grand-parental exposure to predator cues increased by 4% the offspring shell thickness whereas the parental exposure to predator cues decreased by 9% the offspring shell thickness. And in the offspring predator-cue environment, the grand-parental exposure to predator cues decreased by 11% the offspring shell thickness whereas the parental exposure to predator cues increased by 14% the offspring shell thickness. Regarding the direct effect of offspring environment, offspring from predator-cue environment had a thicker shell than those from current control environment (Table 1c; Fig. 2c). Family random effect was not significant (Table 1c).

Shell morphology

After accounting for snail weight, the offspring exposure to predator cues impacted the shell morphology and induced a shorter and narrower shell and aperture (Table 1d; Fig. 2d). Neither the parental environment (interaction parental and offspring environments almost significant $P < 0.10$) nor the grand-parental environment influenced the shell morphology (Table 1d; Fig. 2d). Family random effect was not significant (Table 1d).
Figure 2. The effect of multi-generational exposure to predator-cues on offspring a crawling-out behavior (proportion of snails out the water in %), b total weight, c and d least-mean squares of shell thickness and shell morphology in the model accounting for weight described in Table 1. CCC, PCC, CPC, PCC, CCP, PCP, CPP and PPP represent the eight combinations of grand-parental (E₁), parental (E₂) and offspring (E₃) environments with "C" for control environment and "P" for predator-cue environment for every generation. The vertical dashed line separates the two offspring treatment groups. White shapes are for grand-parental control environment and black shapes for grand-parental predator-cue environment. Circles are for parental control environment and squares for parental predator-cue environment.

Data are means ± SE.
Table 1. Results of generalized mixed model (a) and linear mixed model (b, c and d) analysis on offspring predator-induced traits. Bold values indicate significant P-values (P < 0.05).

a. Crawling-out	Fixed effects	Estimate (SE)	Df	Chisq	P
	Grand-parental env. (E₁)	0.848 (0.6812)	1	8.29	0.0040
	Parental env. (E₂)	-0.090 (0.3864)	1	0.4	0.5274
	Offspring env. (E₃)	1.738 (0.3544)	1	114.46	<0.0001
	E₁ x E₂	-0.389 (0.7696)	1	0.01	0.9315
	E₁ x E₃	-0.168 (0.7882)	1	1.89	0.1687
	E₂ x E₃	-0.146 (0.4242)	1	0.01	0.9072
	E₁ x E₂ x E₃	0.855 (0.8915)	1	0.91	0.3395
Random effects	Variance				
	Family	0.391	1	14.98	0.0001
	Individual	0.489	1	8.26	0.0040

b. Weight	Fixed effects	Estimate (SE)	Numdf, Dendf	F	P
	Grand-parental env. (E₁)	-0.047 (0.1656)	1, 42.44	0.18	0.6766
	Parental env. (E₂)	-0.116 (0.1656)	1, 48.70	0.57	0.4545
	Offspring env. (E₃)	-0.366 (0.1329)	1, 354.26	14.76	0.0001
	E₁ x E₂	-0.041 (0.3312)	1, 55.77	0.01	0.9105
	E₁ x E₃	-0.027 (0.2659)	1, 348.77	0.001	0.9737
	E₂ x E₃	-0.104 (0.2659)	1, 362.32	0.30	0.5836
	E₁ x E₂ x E₃	0.069 (0.5318)	1, 358.29	0.02	0.8969
Random effects	Variance				
	Family	0.085	1	6.6	0.0102

c. Shell thickness	Fixed effects	Estimate (SE)	Numdf, Dendf	F	P
	cuberoot(Weight)	0.656 (0.0404)	1, 364.6	257.77	<0.0001
	Grand-parental env. (E₁)	-0.092 (0.1152)	1, 40.41	0.19	0.6650
	Parental env. (E₂)	0.057 (0.1153)	1, 49.59	0.04	0.8446
	Offspring env. (E₃)	0.258 (0.1054)	1, 356.90	28.15	<0.0001
	E₁ x E₂	0.180 (0.2305)	1, 59.10	0.62	0.4329
	E₁ x E₃	-0.350 (0.2088)	1, 350.26	4.01	0.0461
	E₂ x E₃	0.497 (0.2088)	1, 363.53	7.68	0.0059
	E₁ x E₂ x E₃	0.033 (0.4176)	1, 359.10	0.01	0.9366
Random effects	Variance				
	Family	0.020	1	0.78	0.3780

d. Shell morphology	Fixed effects	Estimate (SE)	Numdf, Dendf	F	P
	cuberoot(Weight)	1.901 (0.0167)	1, 366.61	12842.53	<0.0001
	Grand-parental env. (E₁)	-0.034 (0.0496)	1, 41.10	0.19	0.6613
	Parental env. (E₂)	-0.014 (0.0497)	1, 49.12	0.33	0.5677
	Offspring env. (E₃)	-0.287 (0.0433)	1, 355.56	73.25	<0.0001
	E₁ x E₂	-0.044 (0.0992)	1, 57.48	0.12	0.7288
	E₁ x E₃	0.053 (0.0858)	1, 349.39	0.02	0.8943
	E₂ x E₃	0.080 (0.0859)	1, 362.82	3.68	0.0558
	E₁ x E₂ x E₃	-0.215 (0.1717)	1, 358.51	1.57	0.2114
Random effects	Variance				
	Family	0.005	1	1.88	0.1704
Discussion

We first confirm that the exposure to predator cues induces well-known defenses against crayfish predation in *P. acuta*. Our key finding is that predator cues alter also offspring defenses two generations later but depending on the offspring environment (WGP x TGP) and the defensive traits considered. Our experimental work highlights that TGP effects can be complex beyond the parental generation and that the offspring phenotype results from a combination of multigenerational effects.

Corroborating several studies on anti-predator defenses of *Physa sp.* (DeWitt et al. 1999, 2000; Turner et al. 1999; Dalesman et al. 2009; Auld and Relyea 2011), the offspring exposure to predator cues induced higher crawling-out behavior, shell-crushing resistance (thicker shell) and entry-resistant shell (narrower shell and aperture). Moreover, offspring exposed to predator cues were lighter, suggesting a trade-off, *i.e.* a lower energetic investment in growth due to a potential cost to produce these defenses (as showed in other gastropod species: Brönmark et al. 2012). This result stresses the fitness advantage of WGP which allow the production of costly defenses only in case of predation (Harvell 1990).

Grand-parental and parental effects on anti-predator defenses

TGP is expected to evolve when the ancestral environment is a good proxy of offspring environment (Harvell 1990; Uller 2008; Bonduriansky and Day 2009; English et al. 2015; Leimar and McNamara 2015; Dey et al. 2016), allowing a pre-adaptation of offspring to predation risk (Agrawal et al. 1999). In our predator-prey system, crayfish has a long lifespan (*ca.* 3 years) compared to the generation time of *P. acuta* (*ca.* 50 days) and a relatively sedentary lifestyle (Vioque-Fernández et al. 2009). This suggests that generational cues of crayfish presence can be a good proxy of predation risk across several snail generations and thus that TGP could have long-lasting effects on the anti-predator defenses. Consistently, in *P. acuta*, parental exposure to predator cues induces a more crush-resistant shell and an higher escape behavior in offspring (Beaty et al. 2016; Luquet and Tariel 2016). In this study, as expected, TGP went further than the parental generation: the grand-parental environment also influenced the anti-predator behavior and the shell thickness of offspring.

How long can persist transgenerational effects on anti-predator responses is a remaining open question. To our knowledge, the study of Sentis et al. (2018) on the pea aphid (*Acyrthosiphon pisum*) is the only one to investigate predator-induced TGP over a large number of generations (> 25). They found that the defensive phenotype – a high frequency of winged aphids in the population – persists for one generation after removing predators whatever the induction time is, *i.e.* the previous number of
successive generations experiencing the novel environment (predator presence). However, three generations are needed after removing predators for the frequency of winged phenotypes to come back to the control level, and this number of generations increases with the induction time. Together, these results suggest that multigenerational environmental effects on inducible defenses are broader than just a parental effect and could persist for many generations.

Combination of multigenerational effects on anti-predator defenses

We showed that the offspring phenotype results from a combination of multigenerational effects (grand-parents, parents and offspring), similar to theoretical and other experimental studies (Hafer et al. 2011; Kou et al. 2011; Lock 2012; Prizak et al. 2014; Shama and Wegner 2014; Walsh et al. 2014). However, in our study, grand-parental and parental effects acted independently (no significant interaction between grand-parental and parental environmental effects): either only one affected the offspring environment (behavior), or in interaction with the offspring environment (WGP x TGP) and in opposite directions (shell thickness). This results in complex offspring phenotypic patterns that do not fit with simple anti-predator scenarios. The adaptive relevance of such combinations of multigenerational effects is far to be evident even studying, as in our study, fitness-related traits. It would be thus interesting to compare the survival of snails from different past environmental histories exposed to lethal predation challenges. The offspring crawling-out behavior increased with offspring and grand-parental exposure to predator cues while the parental environment did not alter this behavior. Shell thickness was influenced by both grand-parental and parental environments, but in opposing directions and depending on the offspring environment (grand-parental and parental WGP x TGP interactions). In offspring control environment, grand-parental exposure to predator cues increased the offspring shell thickness whereas parental exposure reduced the shell thickness. The effects were opposite in the offspring predator-cue environment.

Firstly, these results confirm that offspring reaction norms can be altered by parental environment (shell thickness; Salinas et al. 2013; Luquet and Tariel 2016; Donelson et al. 2018) but expand for the first time the WGP x TGP interaction to grand-parental environmental cues. Secondly, opposing directions of grand-parental and parental effects found on shell thickness are not rare in empirical studies (Magiafoglou and Hoffmann 2003; Shama and Wegner 2014) and illustrate the complexity to determine the adaptive significance of multigenerational effects. Such opposing effects may reflect different mechanisms underlying the transfer of environmental information (Shea et al. 2011). This complex opposing relationship between grand-parental and parental environmental effects could be also theoretically beneficial by reducing the phenotypic variance which allow the population to stay closer to the
target phenotype (Prizak et al. 2014). Moreover, focusing on few generations in short-term experiments artificially focuses the interpretations of such effects while they could only be transient over larger timescales in a population dynamic framework. For example, Sentis et al. (2018), after removing predators, observed that the frequency of winged aphids remained high for one generation before dropping abruptly below the control levels (grand-parental effect), and then converging with the winged aphid frequencies of the control lines (great-grand-parental effect). Consequently, in focusing on only three consecutive generations as in our study, these results could be interpreted as a negative grand-parental effect (decrease of winged aphid frequency) opposing to a positive parental effect (increase of winged individual frequency) on the offspring phenotype. These findings highlight the need to develop empirical studies on larger timescales and controlling for the combination of multigenerational effects.

Trait-dependence of transgenerational plasticity

Our results show that the pattern of TGP depends on the traits (anti-predator behavior, shell thickness and shell morphology). Behavioral traits, which are often labile and exhibiting reversible WGP within developmental or adult stages, are predicted to be influenced by current environment rather than by past environmental experience (Piersma and Drent 2003; Dingemanse and Wolf 2013). Behavioral WGP in response to current environmental cues should rapidly by-pass the behavioral TGP (Beaman et al. 2016). By contrast, the traits that are more constrained during the development and exhibiting irreversible variations, as morphological traits, are predicted to be relatively more influenced by past environments (Kuijper and Hoyle 2015). TGP on morphological traits could irreversibly engage the offspring on developmental trajectories and could not be compensated by WGP. In *P. acuta*, crawling-out behavior is indeed very flexible and reversible at a time scale of hours while a thicker shell and a narrower shell shape are irreversible changes in the developmental trajectory (DeWitt et al. 1999; Relyea 2003). Surprisingly in our study, the escape behavior of offspring is influenced by the grand-parental environment while shell morphology was not influenced by parental or grand-parental environments. This highlights that transgenerational effects on morphological traits may have a short persistence over generations while behavioral TGP may be much more prevalent than currently realized. Parental TGP on behavioral traits has been sometimes observed (e.g. Storm and Lima 2010; Giesing et al. 2011; Bestion et al. 2014; Donelan and Trussell 2015) and few times with long-lasting effects over generations (Dias and Ressler, 2014; Remy, 2010).
Conclusion

In our study, we demonstrated that the effects of multigenerational (grand-parental, parental and offspring) exposure to predator cues on a variety of offspring defensive traits (escape behavior, shell thickness and shape) do not fit simple anti-predator scenarios. The multigenerational effects combined, sometimes in opposing directions and depending on the traits, to shape the offspring anti-predator defenses. We also call for more theoretical and empirical studies integrating the combined effects of multigenerational environments on larger number of generations, investigating the underlying mechanisms (epigenetic inheritance) and evaluating their evolutionary importance.

Data and code accessibility

Data and R script are available from the Zenodo repository (https://doi.org/10.5281/zenodo.2687257).

Acknowledgements

Thanks to P. Gibert for advice on the manuscript. We thank L. Bensousoussan for help on data analysis. We are grateful to the PCI recommender Troy Day as well as two reviewers (Stewart Plaistow and an anonymous reviewer) for their useful and high-quality reviews based on a previous version of the manuscript. This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (https://doi.org/10.24072/pci.evolbiol.100076).

Conflict of interest disclosure

The authors of this preprint declare that they have no financial conflict of interest with the content of this article.

References

Agrawal, A. A., C. Laforsch, and R. Tollrian. 1999. Transgenerational induction of defences in animals and plants. Nature 401:60–63. https://doi.org/10.1038/43425

Alexander, J. E., and A. P. Covich. 1991. Predator avoidance by the freshwater snail Physella virgata in response to the crayfish Procambarus simulans. Oecologia 87:435–442. https://doi.org/10.1007/BF00634603
Auld, J. R., and R. Houser. 2015. Age-dependent effects of predation risk on reproductive success in a freshwater snail. Evolution 69:2793–2798. https://doi.org/10.1111/evo.12769

Auld, J. R., and R. A. Relyea. 2011. Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol. Ecol. 25:189–202. https://doi.org/10.1007/s10682-010-9394-1

Auld, J. R., and R. A. Relyea. 2008. Are there interactive effects of mate availability and predation risk on life history and defence in a simultaneous hermaphrodite? J. Evolution. Biol. 21:1371–1378. https://doi.org/10.1111/j.1420-9101.2008.01562.x

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1–48. https://doi.org/10.18637/jss.v067.i01

Beaman, J. E., C. R. White, and F. Seebacher. 2016. Evolution of plasticity: mechanistic link between development and reversible acclimation. Trends Ecol. Evol. 31:237–249. https://doi.org/10.1016/j.tree.2016.01.004

Beaty, L. E., J. D. Wormington, B. J. Kensinger, K. N. Bayley, S. R. Goeppner, K. D. Gustafson, and B. Luttbeg. 2016. Shaped by the past, acting in the present: transgenerational plasticity of antipredatory traits. Oikos 125:1570–1576. https://doi.org/10.1111/oik.03114

Bell, A. M., and L. R. Stein. 2017. Transgenerational and developmental plasticity at the molecular level: lessons from Daphnia. Mol. Ecol. 26:4859–4861. https://doi.org/10.1111/mec.14327

Benard, M. F. 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. S. 35:651–673. https://doi.org/10.1146/annurev.ecolsys.35.021004.112426

Bestion, E., A. Teyssier, F. Aubret, J. Clobert, and J. Cote. 2014. Maternal exposure to predator scents: offspring phenotypic adjustment and dispersal. Proc. R. Soc. B-Biol. Sci. 281:20140701. https://doi.org/10.1098/rspb.2014.0701

Bonduriansky, R., and T. Day. 2009. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. S. 40:103–125. https://doi.org/10.1146/annurev.ecolsys.39.110707.173441

Brönmark, C., T. Lakowitz, P. A. Nilsson, J. Aihgren, C. Lennartsdotter, and J. Hollander. 2012. Costs of inducible defence along a resource gradient. PLoS One 7:e30467. https://doi.org/10.1371/journal.pone.0030467

Colicchio, J. 2017. Transgenerational effects alter plant defence and resistance in nature. J. Evolution. Biol. 30:664–680. https://doi.org/10.1111/jeb.13042

Crean, A. J., and R. Bonduriansky. 2014. What is a paternal effect? Trends Ecol. Evol. 29:554–559. https://doi.org/10.1016/j.tree.2014.07.009

Dalesman, S., S. D. Rundle, and P. A. Cotton. 2009. Crawl-out behaviour in response to predation cues in an aquatic gastropod: insights from artificial selection. Evol. Ecol. 23:907–918. https://doi.org/10.1007/s10682-008-9280-2

DeWitt, T. J. 1998. Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life history in a freshwater snail. J. Evolution. Biol. 11:465–480. https://doi.org/10.1046/j.1420-9101.1998.11040465.x

DeWitt, T. J., B. W. Robinson, and D. S. Wilson. 2000. Functional diversity among predators of a freshwater snail imposes an adaptive trade-off for shell morphology. Evol. Ecol. Res. 2:129–148

DeWitt, T. J., A. Sih, and J. A. Hucko. 1999. Trait compensation and cospecialization in a freshwater snail: size, shape and antipredator behaviour. Anim. Behav. 58:397–407. https://doi.org/10.1006/anbe.1999.1158
Dey, S., S. R. Proulx, and H. Teotónio. 2016. Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLOS Biol. 14:e1002388. https://doi.org/10.1371/journal.pbio.1002388

Dingemanse, N. J., and M. Wolf. 2013. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85:1031–1039. https://doi.org/10.1016/j.anbehav.2012.12.032

Donelan, S. C., and G. C. Trussell. 2015. Parental effects enhance risk tolerance and performance in offspring. Ecology 96:2049–2055. https://doi.org/10.1890/14-1773.1

Donelson, J. M., S. Salinas, P. L. Munday, and L. N. S. Shama. 2018. Transgenerational plasticity and climate change experiments: where do we go from here? Glob. Change Biol. 24:13–34. https://doi.org/10.1111/gcb.13903

English, S., I. Pen, N. Shea, and T. Uller. 2015. The information value of non-genetic inheritance in plants and animals. Plos One 10:e0116996. https://doi.org/10.1371/journal.pone.0116996

Galloway, L. F., and J. R. Etterson. 2007. Transgenerational plasticity is adaptive in the wild. Science 318:1134–1136. https://doi.org/10.1126/science.1148766

Giesing, E. R., C. D. Suski, R. E. Warner, and A. M. Bell. 2011. Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring. P. Roy. Soc. B-Biol. Sci. 278:1753–1759. https://doi.org/10.1098/rspb.2010.1819

Gustafson, K., B. Kensinger, M. Bolek, and B. Luttbeg. 2014. Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions. Evol. Ecol. Res. 16:77–89

Hafer, N., S. Ebil, T. Uller, and N. Pike. 2011. Transgenerational effects of food availability on age at maturity and reproductive output in an asexual collembolan species. Biol. Lett. 7:755–758. https://doi.org/10.1098/rsbl.2011.0139

Harvell, C. D. 1990. The ecology and evolution of inducible defenses. Q. Rev. Biol. 65:323–340

Herman, J. J., and S. E. Sultan. 2011. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Front. Plant Sci. 2:102. https://doi.org/10.3389/fpls.2011.00102

Holeski, L. M., G. Jander, and A. A. Agrawal. 2012. Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27:618–626. https://doi.org/10.1016/j.tree.2012.07.011

Hoverman, J. T., J. R. Auld, and R. A. Relyea. 2005. Putting prey back together again: integrating predator-induced behavior, morphology, and life history. Oecologia 144:481–491. https://doi.org/10.1007/s00442-005-0082-8

Jarne, P., J. P. Pointier, P. David, and J. M. Koene. 2010. Basommatophoran gastropods. The evolution of primary sexual characters in animals 173–196. Oxford University Press Oxford

Kou, H. P., Y. Li, X. X. Song, X. F. Ou, S. C. Xing, J. Ma, D. Von Wettstein, and B. Liu. 2011. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J. Plant Physiol. 168:1685–1693. https://doi.org/10.1016/j.jplph.2011.03.017

Kuijper, B., and R. B. Hoyle. 2015. When to rely on maternal effects and when on phenotypic plasticity? Evolution 69:950–968. https://doi.org/10.1111/evo.12635

Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. ImerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82:1–26. https://doi.org/10.18637/jss.v082.i13

Lê, S., J. Josse, and F. Husson. 2008. FactoMiner: A Package for Multivariate Analysis. Journal of Statistical Software 25:1–18. https://doi.org/10.18637/jss.v025.i01
Leimar, O., and J. M. McNamara. 2015. The evolution of transgenerational integration of information in heterogeneous environments. Am. Nat. 185:E55–E69. https://doi.org/10.1086/679575

Lima, S. L. 1998. Nonlethal effects in the ecology of predator-prey interactions. What are the ecological effects of anti-predator decision-making? BioScience 48:25–34. https://doi.org/10.2307/1313225

Lock, J. E. 2012. Transgenerational effects of parent and grandparent gender on offspring development in a biparental beetle species. Biol. Lett. 8:408–411. https://doi.org/10.1098/rsbl.2011.0920

Luquet, E., and J. Tariel. 2016. Offspring reaction norms shaped by parental environment: interaction between within- and trans-generational plasticity of inducible defenses. BMC Evol. Biol. 16:209. https://doi.org/10.1186/s12862-016-0795-9

Lydeard, C., D. Campbell, and M. Golz. 2016. Physa acuta Draparnaud, 1805 Should be Treated as a Native of North America, Not Europe. Malacologia 59:347–350. https://doi.org/10.4002/040.059.0795-9

Magiafoglou, A., and A. A. Hoffmann. 2003. Cross-generation effects due to cold exposure in Drosophila serrata. Funct. Ecol. 17:664–672. https://doi.org/10.1046/j.1365-2435.2003.00774.x

Mousseau, T. 1998. The adaptive significance of maternal effects. Trends Ecol. Evol. 13:403–407. https://doi.org/10.1016/S0169-5347(98)01472-4

Piersma, T., and J. Drent. 2003. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 18:228–233. https://doi.org/10.1016/S0169-5347(03)0036-3

Pigliucci, M. 2005. Evolution of phenotypic plasticity: where are we going now? Trends Ecol. Evol. 20:481–486. https://doi.org/10.1016/j.tree.2005.06.001

Plaistow, S. J., C. T. Lapsley, and T. G. Benton. 2006. Context-dependent intergenerational effects: the interaction between past and present environments and its effect on population dynamics. Am. Nat. 167:206–215. https://doi.org/10.1086/499380

Prizak, R., T. H. G. Ezard, and R. B. Hoyle. 2014. Fitness consequences of maternal and grandmaternal effects. Ecol. Evol. 4:3139–3145. https://doi.org/10.1002/ece3.1150

R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

Relyea, R. A. 2001. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82:523–540. https://doi.org/10.1890/0012-9658(2001)082[0523:MBPOL]2.0.CO;2

Relyea, R. A. 2003. Predators come and predators go: the reversibility of predator-induced traits. Ecology 84:1840–1848. https://doi.org/10.1890/0012-9658(2003)084[1840:PCAGT]2.0.CO;2

Remy, J.-J. 2010. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20:R877–R878. https://doi.org/10.1016/j.cub.2010.08.013

Salinas, S., S. C. Brown, M. Mangel, and S. B. Munch. 2013. Non-genetic inheritance and changing environments. Non-Genetic Inheritance 1:38–50. https://doi.org/10.2478/ngi-2013-0005

Sarker, G., and D. Peleg-Raibstein. 2019. Maternal overnutrition induces long-term cognitive deficits across several generations. Nutrients 11:7. https://doi.org/10.3390/nu11010007

Schlichting, C. D., and M. A. Wund. 2014. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68:656–672. https://doi.org/10.1111/evo.12348

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of Image Analysis. Nat Methods 9:671–675
Sentis, A., R. Bertram, N. Dardenne, F. Ramon-Portugal, G. Espinasse, I. Louit, L. Negri, E. Haeler, T. Ashkar, T. Pannetier, J. L. Cunningham, C. Grunau, G. L. Trionnaire, J.-C. Simon, A. Magro, B. Pujol, J.-L. Hemptinne, and E. Danchin. 2018. Evolution without standing genetic variation: change in transgenerational plastic response under persistent predation pressure. Heredity 121:266. https://doi.org/10.1038/s41437-018-0108-8

Shama, L. N. S., A. Strobel, F. C. Mark, and K. M. Wegner. 2014. Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean. Funct. Ecol. 28:1482–1493. https://doi.org/10.1111/1365-2435.12280

Shama, L. N. S., and K. M. Wegner. 2014. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. J. Evolution. Biol. 27:2297–2307. https://doi.org/10.1111/jeb.12490

Shea, N., I. Pen, and T. Uller. 2011. Three epigenetic information channels and their different roles in evolution: epigenetic mechanisms and evolution. J. Evolution. Biol. 24:1178–1187. https://doi.org/10.1111/j.1420-9101.2011.02235.x

Storm, J. J., and S. L. Lima. 2010. Mothers forewarn offspring about predators: a transgenerational maternal effect on behavior. Am. Nat. 175:382–390. https://doi.org/10.1086/650443

Tollrian, R., and C. D. Harvell. 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press

Turner, A. M., S. A. Fetterolf, and R. J. Bernot. 1999. Predator identity and consumer behavior: differential effects of fish and crayfish on the habitat use of a freshwater snail. Oecologia 118:242–247. https://doi.org/10.1007/s004420050724

Uller, T. 2008. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 23:432–438. https://doi.org/10.1016/j.tree.2008.04.005

Vioque-Fernández, A., E. Alves de Almeida, and J. López-Barea. 2009. Assessment of Doñana National Park contamination in Procamburus clarkii: integration of conventional biomarkers and proteomic approaches. Sci. Total Env. 407:1784–1797. https://doi.org/10.1016/j.scitotenv.2008.11.051

Walsh, M. R., F. Cooley, K. Biles, and S. B. Munch. 2015. Predator-induced phenotypic plasticity within- and across-generations: a challenge for theory? P. Roy. Soc. B-Biol. Sci. 282:20142205. https://doi.org/10.1098/rspb.2014.2205

Walsh, M. R., D. Whittington, and C. Funkhouser. 2014. Thermal transgenerational plasticity in natural populations of Daphnia. Integr. Comp. Biol. 54:822–829. https://doi.org/10.1093/icb/icu078

West-Eberhard, M. J. 2003. Developmental plasticity and evolution. Oxford University Press

Wolf, J. B., and M. J. Wade. 2009. What are maternal effects (and what are they not)? Phil. Trans. R. Soc. Lond. B 364:1107–1115. https://doi.org/10.1098/rstb.2008.0238
Appendix

Appendix 1. Experimental design

Reproduction 24h

- Isolation

Laying eggs 24h

- Removal of snails
- Random selection of boxes

Egg development 7 days

- Hatching

Snail development 2 days

- Split into two developmental environments

Snail development 26 days

- Isolation
- Morphological & behavioral measurements

Snail development 7 days (F1), 21 days (F2), 35 days (F3)

- Reproduction

C = control P = predator-cue

- x15 adult F1 from a natural population
- x15 F1 families
- x6 families
- x15 F1 families
- x6 families
- x6 copulation groups
- x6 copulation groups

one snail of each family
Appendix 2. Principal component analysis for shell morphology

Bivariate plot of the first two principal components (PC1 and PC2) axes on shell and aperture length and width of offspring F3 snails.