Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits

Ruidong Xiang, Irene van den Berg, Iona M. MacLeod, Benjamin J. Hayes, Claire P. Prowse-Wilkins, Min Wang, Sundulmij Bolormaa, Zhiquan Liu, Simone J. Rochfort, Coralie M. Reich, Brett A. Mason, Christy J. Vander Jagt, Hans D. Daetwyler, Mogens S. Lund, Amanda J. Chamberlain, and Michael E. Goddard

Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC 3052, Australia; Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia; Centre for Animal Science, The University of Queensland, St. Lucia, QLD 4067, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; and Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark.

Edited by Harris A. Lewin, University of California, Davis, and approved August 20, 2019 (received for review March 10, 2019)

Many genome variants shaping mammalian phenotype are hypothesized to regulate gene transcription and/or to be under selection. However, most of the evidence to support this hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary signals contributing to complex traits in a different mammalian model is needed. Sequence variants associated with gene expression (expression quantitative trait loci [eQTLs]) and concentration of metabolites (metabolic quantitative trait loci [mQTLs]) and under histone-modification marks in several tissues were discovered from multiomics data of over 400 cattle. Variants under selection and evolutionary constraint were identified using genome databases of multiple species. These analyses defined 30 sets of variants, and for each set, we estimated the genetic variance the set explained across 34 complex traits in 11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait heritability of these sets across traits was highly consistent (r > 0.94) between bulls and cows. Based on the per-variant heritability, conserved sites across 100 vertebrate species and mQTLs ranked the highest, followed by eQTLs, young variants, those under histone-modification marks, and selection signatures. From these results, we defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted heritability of each variant. In additional 7,551 cattle, the high FAETH-ranking variants had significantly increased genetic variances and genomic prediction accuracies in 3 production traits compared to the low FAETH-ranking variants. The FAETH framework combines the information of gene regulation, evolution, and trait heritability to rank variants, and the publicly available FAETH data provide a set of biological priors for cattle genomic selection worldwide.

Author contributions: R.X., I.M.M., and M.E.G. designed research; R.X., I.v.d.B., and I.M.M. performed research; R.X., I.M.M., B.J.H., C.P.P.-W., M.W., S.B., Z.L., S.J.R., C.M.R., B.A.M., C.J.V.J., H.D.D., M.S.L., and A.I.C. contributed new reagents/analytic tools; R.X., I.v.d.B., I.M.M., B.J.H., C.P.P.-W., M.W., S.B., Z.L., S.J.R., C.J.V.J., A.I.C., and M.E.G. analyzed data; and R.X. and M.E.G. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The Functional-And-Evolutionary Trait Heritability (FAETH) score with its user guide are publicly available at https://doi.org/10.26188/5c5617c01383b1388.

To whom correspondence may be addressed. Email: ruidong.xiang@unimelb.edu.au.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1904159116/-/DCSupplemental.

First published September 9, 2019.
that change an amino acid are more likely to affect phenotype than synonymous mutations.

Many mutations affecting complex traits regulate gene transcription-related activities. This has been demonstrated in many studies of human genomes, including but not limited to the analysis of intermediate trait quantitative trait loci (QTLs), such as metabolic QTLs (mQTLs) (7) and expression QTLs (eQTLs) (8) and analysis of regulatory elements, such as promoters (9) and enhancers (10), which can be identified with chromatin immunoprecipitation sequencing (ChIP-seq). In animals, the Functional Annotation of Animal Genomes (FAANG) project has started (11), and animal functional data have been accumulating (12–14). However, it is unclear which types of functional information improve the identification of causal mutations.

Mutations affecting complex traits may be subject to natural or artificial selection, which leaves a “signature” in the genome (15, 16). Given the unique evolutionary path of cattle, which has been significantly shaped by human domestication (17), it is attractive to test whether variants showing signatures of selection contribute to variation in complex traits. Mutations within genomic sites that are conserved across species may also affect complex traits. A previous study in humans showed that among a number of functional annotations, conserved sites across 29 mammals had the strongest enrichment of heritability in 17 complex traits (18).

We aim to determine which of several possible indicators of function are most useful for predicting sequence variants that are most likely to affect 34 traits in B. taurus dairy cattle. The indicators considered fall into 3 groups: 1) functional annotations of the bovine genome based, for instance, on ChIP-seq experiments; 2) evolutionary data, such as a site being under selection; and 3) GWAS data from traits that are relatively close to the primary action of the mutation, such as gene expression. Using these indicators of function, we define 30 sets of variants and estimate the variance explained by each set across 34 traits in 44,270 cattle. We then combine the estimates of heritability per variant across traits and across functional and evolutionary categories to define a Functional-And-Evolutionary Trait Heritability (FAETH) score that ranks variants on variance explained in complex traits. We validate the FAETH score in an independent dataset of 7,551 Danish cattle. The FAETH score of over 17 million variants with detailed user instructions is publicly available at https://doi.org/10.26188/5c5617c01383b (19). A tutorial demonstrating the calculation of the FAETH score along with demo data and R scripts can be found at https://ruidongxiang.com/2019/07/19/calculation-of-faeth-score-2/.

Results

Analysis Overview. Our approach was to estimate the trait variance explained by a set of variants defined by some external data, such as the mapping of the gene expression QTLs (geQTLs), RNA splicing QTLs (sQTLs), or genome annotation, for 34 traits measured in dairy cattle. Sequence variants available to this study included over 17 million SNPs and indels. Any large set of variants can explain almost all of the genetic variance due to the LD between surrounding and causal variants. Therefore, we fitted each externally defined set of variants in a model together with a standard set of 630,002 SNPs from the bovine high-density (HD) SNP array. We combined the results from all 34 traits and all sets of variants to derive a score for each variant based on its expected contribution to the genetic variance in these 34 traits and tested the validity of this score in an independent cattle dataset.

Our analysis had 4 major steps (Fig. 1).

1) The 17 million sequence variants (1000 Bull Genomes Run6) (20) were classified according to external information from the discovery analysis of the function and evolution of each genomic site. The basis for this classification was either publicly available data or our own data as described in Materials and Methods. The genome was partitioned 15 different ways as listed in Table 1. For example, the category of geQTL partitioned the genome variants into a set of targeted variants with

geQTL P value < 0.0001 and a set of remaining variants (i.e., the “rest” of the variants). Another partition, e.g., variant annotation, based on a publicly available annotation of the bovine genome, divided variants into several nonoverlapping sets, such as “intergenic,” “intron,” and “splice sites.”

2) For each set of variants in each partition of the genome, separate genomic relationship matrices (GRMs) were calculated among the 11,923 bulls or 32,347 cows. Where a partition included only 2 sets (e.g., geQTL and the rest), a GRM was calculated only for the targeted set (e.g., geQTL).

3) For each of the 34 traits, the variance explained by random effects described by each GRM was estimated using restricted maximum likelihood (this analysis is referred to as a genomic REML or GREML). Each GREML analysis fitted a random effect described by the targeted GRM and a random effect described by the GRM calculated from the HD SNP chip (630,002 SNPs). Each GREML analysis estimated the proportion of genetic variance, h², explained by the targeted GRM in each of the 34 decorrelated traits (Cholesky orthogonalization) (ref. 21 and Materials and Methods) in each sex. The h² explained by each targeted set of variants was divided by the number of variants in the set to calculate the h² per variant, i.e., per-variant h²; and this was averaged for each variant across the 34 decorrelated traits.

4) The FAETH score of all variants was calculated by averaging the per-variant h² across traits and informative partitions (13 out of 15). Two partitions determined as not informative were not included in the FAETH score computation. Variance explained and the accuracy of genomic predictions (using an independent dataset of 7,551 Danish cattle with 3 milk production traits) was compared between variants of high and low FAETH score.

Characteristics of Variant Sets with Regulatory and Evolutionary Significance. Based on the 15 partitions of the genome in Table 1, we defined 30 sets of variants. The details of the discovery analysis defining these sets can be found in Materials and Methods. Briefly, regulatory variant sets including geQTLs, sQTLs, and allele-specific expression QTLs (aseQTLs) were discovered from multiple tissues, including white blood and milk cells, liver, and muscle. The milk cells were dominated by immune cells. However, they also contained mammary epithelial cells and had high transcriptomic similarity to the mammary gland tissue (13, 22). The polar lipid metabolites mQTLs were discovered using a multitrait metaanalysis (23) of 19 metabolite profiles, such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine (24), from bovine milk fat. The ChIP-seq data used in our analysis contained previously published H3K27Ac and H3K4me3 marks in liver and muscle tissues (25, 26) and newly generated H3K4me3 marks from the mammary gland.

Fig. 2 illustrates some of the properties of these variant sets. Many sQTLs with strong effects on the intron excision ratio (27) were discovered in a metaanalysis of sQTLs mapped in white blood and milk cells, liver, and muscle (15) (Fig. 2A). Many significant aseQTLs were discovered using a gene-wise metaanalysis of the effects of the driver variant (dVariant) on the transcript variant (tVariant) at exonic heterozygous sites (28) from white blood and milk cells (Fig. 2B). Fig. 2C shows that variants tagged by the marks of H3K4me3, a marker for promoters, were closer to the transcription start site than other variants.

The variant annotation partition had 7 merged sets (Table 1 and SI Appendix, Table S1) based on the Variant Effect Prediction of Ensembl (29) and NGS-SNP (30). Additional information of variant function annotation was obtained from the Human Projection of Regulatory Regions (HPRRS) as published in ref. 31 and predicted CCCTC-binding factor (CTCF) sites as published in ref. 32.

The evolutionary variant sets were discovered from across- and within-species genome analyses. Variants within cross-species conserved sites were lifted over from human genome sites (hg38), Xi et al.
those with the PhastCon score >0.9 calculated using genome sequences of 100 vertebrate species. The LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) rate from human conserved sites to bovine was 92.3%, which was higher than the LiftOver rate using the human sites with the PhastCon score >0.9 across 29 mammalian species (33, 34). Detailed results of the analysis of conserved sites can be found in SI Appendix, Note S1.

The within-species evolutionary analysis used the whole-genome sequence variants from Run 6 of the 1000 Bull Genomes project (35). Those variants with higher frequency in dairy than in beef breeds (“selection signature”; Table 1, Fig. 2D, and SI Appendix, Fig. S1) were detected from a GWAS where the breed type was modeled as a binary phenotype in the linear mixed model (36). With the 1000 Bull Genomes data, we used a statistic to identify variants possibly subject to recent artificial and/or natural selection, PPRR (the proportion of positive correlations r with rare variants). SI Appendix, Fig. S2 illustrates a coalescence where a mutation has been positively selected, i.e., is relatively young and has increased in frequency rapidly. In this coalescence, the selected mutation was seldom on the same branch as rare mutations, and so the LD r between the selected mutation and rare alleles was typically negative. This was similar to the logic employed by ref. 37. In this partition of the genome, the 1% of variants with the lowest PPRR, after correcting for the variants’ own allele frequency (SI Appendix, Fig. S2 and Materials and Methods), were defined as young variants.

The quartile categories partitioned the genome variants into 4 sets of variants of similar size based on either their LD score (sum of LD r^2 between a variant and all of the variants in the surrounding 50-kb region, GCTA-LDS) (38) or the number of variants within a 50-kb window (variant density) or their minor allele frequency (MAF) (38) (Table 1). Note that the fourth quartile had the highest value, and the first quartile had the lowest value for LD score, MAF, and SNP density.

The Proportion of the Genetic Variance for 34 Traits Explained by Each Set of Variants. In the test datasets of 11,923 bulls and 32,347 cows, common variants (MAF ≥ 0.001) of the sets described above were used to make GRMs (36). Each of these GRMs was then fitted together with the high-density SNP chip GRM (gG_{HD}) for each of the 34 traits ($Y_j = f_1..34 gG_i$). Once the heritability, h^2_{set} of each gG$_i$ was calculated, it was averaged across traits and adjusted for the number of variants used to build the gG$_i$ to calculate the per-variant h^2_{set}. The FAETH scoring of each variant was derived based on their memberships to differentially partitioned sets and the per-variant h^2_{set}. In the validation analysis, variants with high and low FAETH ranking were tested in a Danish cattle dataset for GREML and genomic prediction of 3 production traits. The Australian test dataset contained 9,739 bulls and 22,899 cows of Holstein breed, 2,059 bulls and 6,174 cows of Jersey, 2,850 cows of mixed breeds, and 125 bulls and 424 cows of Australian Red. The Danish reference set contained 4,911 Holstein, 957 Jersey, and 745 Danish Red bulls, and the Danish validation population contained 500 Holstein, 517 Jersey, and 192 Danish Red bulls.
intergenic variants, were higher for bull traits than cow traits, consistent with the higher heritability of phenotypic records in bulls than in cows (39) because bull phenotypes are actually the average of many daughter phenotypes of the bull. When the HD variants were fitted alone, they explained on average 17.8% (±2.7%) of the variance in bulls and 4.7% (±1.4%) in cows (SI Appendix, Table S2). The \(h_{\text{set}}^2 \) estimates of mQTLs and the conserved sites across 100 species (termed as “conserved 100 species” Table 2 and the following text) were much larger than their genome fractions in both sexes (Table 2). For other variant sets, the \(h_{\text{set}}^2 \) estimates generally increased with the number of variants in the set. For example, eQTLs, including exon expression QTLs (ecQTLs), sQTLs, and asQTLs, which included around 5% of the total variants, explained 11 to ~15% of trait variance in bulls and 2.5 to ~4% of trait variance in cows. The young variants inferred by the statistic PPRR, which accounted for 0.54% of the total number of variants, explained 0.78% of the trait variance in bulls and 0.12% of the trait variance in cows. The \(h_{\text{set}}^2 \) increased greatly from MAF quartiles 1 to 4. However, the dramatically low \(h_{\text{set}}^2 \) estimates for the first MAF quartile may be associated with the reduced imputation accuracy for low MAF variants. By contrast, \(h_{\text{set}}^2 \) increased only slightly with LD score and even less with variant density.

Estimates of \(h_{\text{set}}^2 \) were divided by the number of variants in the set to calculate the per-variant \(h_{\text{set}}^2 \), allowing comparison of the genetic importance of variant sets made with a varied number of variants. Since the per-variant \(h_{\text{set}}^2 \) was estimated independently in bulls and cows and yet showed high consistency between sexes (SI Appendix, Fig. S1), the average per-variant \(h_{\text{set}}^2 \) across sexes was used to rank each variant set (Fig. 3). Conserved 100 species and mQTLs made the top of the rankings (Fig. 3), due to their highly concentrated \(h_{\text{set}}^2 \) (41.4% in bulls and 17.4% in cows for conserved 100 species, and 0.71% in bulls and 0.12% in cows for mQTLs; Table 2) in a relatively small genome fraction (2.2% and 0.03%, respectively; Table 2). These 2 top sets were followed by several expression QTL sets, including ecQTLs, sQTLs, geQTLs, and asQTLs (Fig. 3). Similar rankings were achieved by the “non-coding related” set (0.03% of genome variants) that included variants annotated as “non_coding_transcript_exon_variant” and “mature_miRNA_variant” (SI Appendix, Table S1), the “splice.site” set (0.06% of genome variants, including all of the variants annotated as associated with splicing functions), and the set of young variants (0.54% of genome variants). The “UTR” set, which included variants annotated as within 3′ and 5′ untranslated regions of genes, and the “geneend” set, which included variants annotated as downstream and upstream of genes, both had modest rankings along with the ChIP-seq and selection signatures sets. The “coding.related” set, dominated by variants annotated as synonymous and missense (SI Appendix, Table S1), ranked higher than the top 1% HPRS, intergenic variants, and predicted CTCF sites. Intron and the first quartile MAF set had the lowest per variant \(h_{\text{set}}^2 \).

The impact of MAF on the ranking of variant sets was examined by calculating, for each set, the per-variant \(h_{\text{set}}^2 \) expected from the number of variants in a set belonging to each MAF quartile. This MAF expected per-variant \(h_{\text{set}}^2 \) was then subtracted from the observed per-variant \(h_{\text{set}}^2 \) to calculate the MAF adjusted per-variant \(h_{\text{set}}^2 \) (SI Appendix, Note S2). Excluding the sets based on MAF quartiles, the ranking of the unadjusted per-variant \(h_{\text{set}}^2 \) was well correlated (\(r = 0.9 \)) with their ranking on the MAF adjusted per-variant \(h_{\text{set}}^2 \). These results suggested an overall small impact of MAF on the variant set ranking of per-variant \(h_{\text{set}}^2 \).

Variants from sets highly ranked for per-variant \(h_{\text{set}}^2 \) were highlighted in important QTL regions with the multitrait GWAS results (Fig. 4). In the expanded region of beta-casein (CSN2), a major but complex QTL for milk protein due to the existence of multiple QTLs with strong LD, different high-ranking variant sets tended to tag variants with strong effects from multiple locations (Fig. 4/4). Many variants with the strongest effects and close to CSN2 were tagged by sQTLs. Several clusters of variants from up- and downstream of CSN2 with slightly weaker effects were tagged by sets of ChIP-seq marks, young variant, and mQTLs. Conversely, for the expanded

Table 1. Variant sets selected from functional and evolutionary partitions

Partitions	Targeted variant sets (no. of variants)	Animal no.
Gene expression QTLs	geQTLs with metaanalysis \(P < 10^{-4} \) from blood and milk cells, liver, and muscle (110,200)	209
Exon expression QTLs	eeQTLs with metaanalysis \(P < 10^{-4} \) from blood and milk cells, liver, and muscle (945,832)	209
Splicing QTLs	sQTLs with metaanalysis \(P < 10^{-4} \) from blood and milk cells, liver, and muscle (1,112,324)	209
Allele specific expression QTLs	aseQTLs with metaanalysis \(P < 10^{-4} \) from blood and milk cells, liver, and muscle (1,112,324)	209
Polar lipid metabolite QTLs	mQTLs with metaanalysis \(P < 10^{-4} \) from 19 types of milk metabolites (5,365)	338
ChIP-seq peaks	Under H3K4Me3 and H3K27Ac peaks from liver, muscle, and mammary gland (1,166,795)	15
Selection signature	GWAS \(P < 10^{-4} \) between 7 beef and 8 dairy breeds, 1000 Bull Genome (6,218)	1,370
Young variants	Ranked within the bottom 1% of the proportion of positive correlations (PPRR) with rare variants, 1000 Bull Genome (893,986)	2,330
LD score quartiles	First quartile (4,417,033/4,416,205), second quartile (4,418,731/4,419,930), third quartile (4,415,633/4,415,481), and fourth quartile (4,417,975/4,417,756)	44,270
Variant density quartiles	First quartile (4,429,833), second quartile (4,414,956), third quartile (4,427,220), and fourth quartile (4,397,323)	1,370
MAF quartiles	First quartile (4,414,292/4,417,036), second quartile (4,421,093/4,417,428), third quartile (4,416,834/4,418,157), and fourth quartile (4,417,153/4,418,157)	1,370

For the 3 categories of quartiles, the numbers of variants on the left and right side of the slash were for the bulls and cows, respectively. LD score indicates the sum of linkage disequilibrium correlation between a variant and all variants in the surrounding 50-kb region, GCTA-LDS (38). The details of the variant annotations can be found in SI Appendix, Table S1. The animal numbers are the sample size in each discovery analysis. Fourth quartile scores > third quartile > second quartile > first quartile. na, not applicable.
region of microsomal GST 1 (MGST1), a major QTL for milk fat, variants from high-ranking sets were more enriched in 2 major locations (Fig. 4B). The top variant within the MGST1 gene was again a sQTL, confirming previous results that regulatory variants are enriched in this region (13). Although not enriched in the MGST1 peak region, conserved sites tagged many variants that were not tagged by other top sets. The young variant sets appear to have tagged a different variant cluster around 0.7 Mb downstream from MGST1 (Fig. 4B).

The FAETH Score of Sequence Variants. To quantify the relative importance of variants using a combination of functionality, evolutionary significance as well as their trait heritability, a framework was introduced to score variants based on their memberships to the sets of variants. Each time the genome variants were partitioned into nonoverlapping sets, each variant was a member of only one set and was assigned the per-variant h^2_{set} of that variant. Therefore, all variants were assigned the same number (13 partitions) of per-variant h^2_{set}, and the average of these 13 partitions was calculated for each variant and called the FAETH score. A criterion of per-variant $h^2_{set} >$ per-variant h^2_{rest} was also imposed to determine whether the variant set was informative. This criterion determined that 2 variant sets (HPRS and predicted CTCF sites) were not informative, and they were not included in the FAETH scoring (Materials and Methods). The FAETH score of 17,669,372 sequence variants for their genetic contribution to complex traits has been made publicly available at https://doi.org/10.26188/5c5617c01383b (19). A tutorial of the calculation of FAETH scores after h^2_{set} was obtained can be found at https://ruidongxiang.com/2019/07/19/calculation-of-faeth-score-2/.

Variants with High FAETH Score Have Consistent Effects. In the above analyses, the effect of a variant was estimated across all breeds. However, it is possible to fit a nested model in which both the main effect and an effect of the variant nested within a breed are included. If a variant is causal or in high LD with a causal variant, we might expect the effect to be similar in all breeds. Whereas if the variant is merely in LD with the causal variant, the effect might vary between breeds. Based on the FAETH score, the top 1/3 and bottom 1/3 ranked sequence variants in the Australian data were selected as “high” and “low” ranking variants, respectively. Fig. 5A shows the estimates of across-breed and within-breed variances for both high- and low-ranking variants. In both cases, the within-breed variance was small, but the high-ranking variants had a larger across-breed variance and a smaller within-breed variance than the low-ranking variants. This implied that the FAETH score identified variants with consistent phenotypic effects across breeds.

Additional data were obtained to test the FAETH score. Table 3 highlights the FAETH annotation of several causal or putative causal mutations where all of them were categorized as high FAETH

![Fig. 2](https://example.com/figure2.png)

Fig. 2. Examples of regulatory and evolutionary signals from the discovery analysis. (A) A Manhattan plot of the metaanalysis of sQTLs from white blood and milk cells and liver and muscle tissues. (B) A Manhattan plot of the metaanalysis of aseQTLs in the white blood cells. (C) A distribution density plot of variants tagged by H3K4Me3 ChIP-seq mark from mammary gland within 2 Mb of gene transcription start site. (D) Artificial selection signatures between 8 dairy and 7 beef cattle breeds with the linear mixed-model approach using the 1000 Bull Genome database. The blue line indicates $-\log_{10}(P\text{ value}) = 4$.

![A](https://example.com/figureA.png)
A Splicing sQTLs
![B](https://example.com/figureB.png)
B Allele specific expression aseQTLs
![C](https://example.com/figureC.png)
C ChIP-Seq signals
![D](https://example.com/figureD.png)
D Selection signatures
showed that the high-ranking variants had significantly higher heritability estimates than the low-ranking variants across different traits, breeds, and subspecies. The genomic best linear unbiased prediction (gBLUP) of production traits in bulls and cows, as well as in different species, was enriched for trait heritability.

Validation of the FAETH Score in Danish Cattle. An independent dataset of 7,551 Danish cattle of multiple breeds was used to test the FAETH score. The Australian high- and low-ranking variants were mapped in the Danish data. In the GREML analysis of Danish data, the high-ranking variants had significantly higher heritability than the low-ranking variants across three production traits (Z-score test: \(P < 0.0001 \)) for fat yield, body length, and rump length (original traits, not the Cholesky-transformed traits) that were not part of the Australian dairy 34 traits used to calculate the FAETH score. Also, as a proof of concept, high FAETH-ranking variants had significant enrichment (\(P = 4.5e^{-38} \)), with pleiotropic SNPs significantly associated with 32 traits in beef cattle containing \(B. taurus \) and \(B. indicus \) subspecies (SI Appendix, Fig. S4). The enrichment of the low FAETH-ranking variants in these significant beef cattle pleiotropic SNPs was different from random (SI Appendix, Fig. S4). These results supported the generality of the FAETH ranking in different breeds, traits, and subspecies.

Discussion

GWASs have been very successful in finding variants associated with complex traits, but they have been less successful in identifying the causal variants because often there are a large group of variants in high LD with each other (particularly in livestock) that are all associated with the trait. To distinguish among these variants, it would be useful to have information, external to the traits being analyzed, that points to variants that are likely to have an effect on phenotype. In this paper, we have evaluated 30 sources of external information based on genome annotation, evolutionary data, and intermediate traits such as gene expression and milk metabolites. Then, we assessed the variance that each set of variants explained when they were included in a statistical model that also included a constant set of 600,000 SNPs from the bovine HD SNP array. The purpose of this method is to find sets of variants that add to the variance explained by the HD SNPs, presumably because they are in higher LD with the causal variants than the HD SNPs are. Since the causal variants themselves are likely to be among the sequence variants analyzed, this method is a filter for classes of variants that are enriched for causal variants or variants in high LD with them. Although developed in cattle, the general framework of estimating FAETH score by combining the information of functionality, evolution, and complex trait heritability can be directly applied to other species. Additional tests of FAETH outside of the analyzed 34 traits and multiple beef cattle traits and the positive validation results in the Danish data support the across-breed, across-subspecies, and across-country usage of the FAETH score. Further, FAETH score not only contains a ranking of millions of variants that can be used as biological priors for genomic prediction (e.g., BayesRC) (40) but also includes the information of the variant membership to different functional and evolutionary categories. This additional information can be used by other researchers to annotate their variants of interests (e.g., Table 3).

Our results agreed with the report in humans (18) that the conserved sites had very strong enrichment of trait heritability.

Table 2. The relative proportion of selected variant in sets compared to the total number of variants analyzed (genome fraction) and their averaged heritability (\(\hat{h}^2 \)) in bulls and cows, across 34 traits

Category	Genome fraction, %	\(\hat{h}^2 \) in bulls, %	\(\hat{h}^2 \) in cows, %
eeQTLs	4.77	14.52 (2.2)	3.96 (1.2)
sQTLs	5.57	15.08 (2.5)	3.88 (1.2)
aseQTLs	5.21	11.0 (2.0)	2.47 (0.7)
mQTLs	0.03	0.71 (0.2)	0.12 (0.04)
geQTLs	0.53	1.54 (0.4)	0.19 (0.06)
Chip-seq	6.60	4.21 (0.8)	0.90 (0.3)
Noncoding.related	0.03	0.06 (0.2)	0.013 (0.004)
Splice.sites	0.06	0.08 (0.02)	0.02 (0.005)
UTR	0.24	0.18 (0.03)	0.03 (0.01)
Coding.related	0.60	0.26 (0.06)	0.04 (0.012)
Geneend	5.70	3.76 (0.8)	0.80 (0.2)
Intron	26.2	5.56 (0.7)	1.53 (0.3)
Intergenic	67.2	10.3 (1.3)	17.3 (2.2)
Predicted CTCF sites	1.43	0.36 (0.08)	0.046 (0.02)
HPRS	0.96	0.31 (0.08)	0.045 (0.02)
Conserved 100 species	2.1	41.4 (2.6)	17.4 (2.3)
Selection signatures	0.02	0.011 (0.004)	0.002 (0.0008)
Young variants	0.54	0.78 (0.2)	0.12 (0.05)
LD score q1	25	4.57 (0.6)	1.18 (0.3)
LD score q2	25	5.56 (0.7)	1.45 (0.3)
LD score q3	25	6.38 (0.8)	1.75 (0.4)
LD score q4	25	6.94 (0.9)	2.01 (0.5)
Variant density q1	25	5.59 (0.7)	1.49 (0.3)
Variant density q2	25	5.42 (0.7)	1.45 (0.3)
Variant density q3	25	5.72 (0.7)	1.55 (0.3)
Variant density q4	25	5.99 (0.7)	1.65 (0.4)
MAF q1	25	1.36 (0.2)	0.35 (0.08)
MAF q2	25	11.5 (1.3)	3.51 (0.7)
MAF q3	25	29.2 (2.4)	10.3 (1.8)
MAF q4	25	40.5 (2.8)	15.6 (2.4)

SEs are in parenthesis. q1 ~ q4 were the genome partitions based on the first, second, third, and fourth quartiles of MAF, LD score, and the number of variants (variant density) per 50-kb windows. Fourth quartile > third quartile > second quartile > first quartile.
Interestingly, our analysis showed that genomic sites with conservation across a larger number of species appeared to have tagged variants with stronger enrichment of heritability, compared to the sites conserved across a smaller number of species (SI Appendix, Note S1). It may be worth studying the impact of the extent of the cross-species conservation on the amount of trait variation explained by the tagged variants in the future.

Our analysis also highlights the importance of intermediate trait QTL, including QTLs for metabolic traits and gene expression (mQTLs, geQTLs, ecQTLs, sQTLs, and aseQTLs). This is not a...
The surprising result as the significant contribution of different intermediate trait QTLs to complex trait variations have been reported in humans (7, 27, 41–43) and cattle (13, 44–46). An advantage of these intermediate traits over conventional phenotypes is that individual QTLs explain a larger proportion of the variance. For instance, cis eQTL tend to have a large effect on gene expression. This increases the signal-to-noise ratio and so increases power to distinguish causal variants from variants in partial LD with them. However, an intermediate QTL mapping study requires a large number of resources, especially when considering different metabolic profiles and tissues with large sample size. In the current analysis, we utilized several methods to combine results from individual studies of intermediate QTL mapping (21, 23, 28) (Materials and Methods and SI Appendix, Exp. 1, 2, 3, and 5 and Note S3). This could reduce the noise from individual analyses and this is likely to increase the chance of finding causal mutations.

To our knowledge, no study has systematically compared the genetic importance of mQTLs with eQTLs. The high ranking of mQTLs over eQTLs in our study might be related to the fact that the mQTLs were discovered from the milk fat, and the analyzed phenotype in the test data contained several milk-production traits. However, out of the 5,365 chosen mQTL variants, 961 variants were from the ±2 Mb region of DGAT1, while no mQTLs were from chromosome 5, which harbors MGST1 (SI Appendix, Table S3 and Fig. 4B), both of which are known major milk fat QTL. This suggests that many variants from the mQTL set not only influence milk fat production but may have other functions, including contributing to variation in the general process of fat synthesis, which is active in many mammalian tissues. Several large-scale human studies have highlighted the importance of mQTLs in various complex traits (7, 47).

Consistent with previous studies in cattle and humans (13, 27, 43), splicing sQTLs and the related ecQTLs ranked slightly higher than other eQTLs (Fig. 3). Cattle aseQTLs and geQTLs were found to have a similar magnitude of enrichment with trait QTL (28) and this is consistent with the current observation.

We proposed a method to identify variants that are young but at a moderate frequency and found this set was enriched for effects on quantitative traits (Figs. 3 and 4). However, Kemper et al. (48) showed that variants identified by selection signatures using traditional methods, such as fixation index (49) and integrated haplotype score (50) had little contribution to complex traits in cattle. In the current study, the selection signatures between beef and dairy cattle (“selection signature” set as shown in Table 1) explained some genetic variation in complex traits, although its contribution is relatively small (Table 2 and Fig. 3). It is possible that the inclusion of many nonproduction traits in the current study increased the chance of finding the trait-related sequence variants that are under artificial selection. Also, the use of sequence variants in the current study may have increased power compared to the study conducted by Kemper et al. (48), which used HD chip variants.

The set of variants with low PPRR (“young variants”) had a higher ranking of genetic importance to the complex traits than the other artificial selection signatures (Fig. 3). The identification of relatively young variants is based on the theory that very recent selection will increase the frequency of the favored alleles (37). Thus, the young variant set could contain variants that were either under artificial selection and/or recently appeared, and this may be the reason that it explained more trait variation than the artificial

Loci	Causal candidates	Annotation	Tagging variant sets	FAETH ranking
SLCT3A1	Chr:1:144377960 (45)	Intron	aseQTL	High
DGAT1	Chr:14:1802266 (41)	Coding-related	mQTL, eeQTL, sQTL, geQTL, ChIP-seq	High
FASN	Chr:19:51386735 (71)	Intron	mQTL, eeQTL, sQTL, ChIP-seq	High
GHR	Chr:20:31909478 (71)	Coding-related	Conserved 100 species	High

“High” means that the variant was ranked within the top 1/3 of the FAETH score.
such as finding conserved sites that are also eQTLs. For example, we used FAETH data to annotate some causal or potential causal mutations for dairy cattle complex traits (Table 3). These results could improve our understanding of the biology behind the variant contribution to complex traits.

The FAETH score was further tested using Australian data. By building the within-breed GRM and comparing it with the multibreed GRM in the Australian data (Fig. 5A) using a method proposed by Khranefid et al. (59), our analysis implied that the variants with the high FAETH ranking contained variants with consistent effects across different breeds. Although estimated using 34 traits, our results show that FAETH ranking of variants can distinguish informative and uninformative variants beyond these 34 traits (Fig. 5B). Also, FAETH ranking of variants showed signs of being able to identify informative genetic markers for multiple traits in beef cattle including B. indicus subspecies (SI Appendix, Fig. S4). All of these results support the general use of FAETH variant scoring across different traits and breeds.

The FAETH score based on GREML using multiple Australian breeds was first tested with GREML using multiple Danish breeds (Fig. 5C). In this test, variants with high FAETH ranking explained significantly more genetic variance in protein, fat, and milk yield than the low-ranking variants. When the genomic predictors were trained in multiple Danish breeds and used to predict into single breeds, we observed significant increases in prediction accuracies for the high-FAETH variants that were mostly seen in the Holstein breed, and the increases for the Jersey breed were not significant. Several reasons contributed to this, including the most noticeable fact that the Holstein breed, which is genetically distant from the Jersey (60, 61), and the Herald Red) reduced the power of Z-score test of significance of difference between correlations (i.e., prediction accuracies) of high- and low-FAETH variants. Also, since the Jersey breed is the smallest and has the lowest population size (62), it is expected that the advantage of a dense set of selected sequence variants is lowest (or absent) in that breed (63). Future tests in larger populations with increased breed diversities will provide better evaluation of the performance of the FAETH-ranked variants in multibreed analyses. Increasing the breed diversity, sample size, and tissues types in the functional genomic data may also improve the genomic prediction performances of FAETH ranking in specific cattle breeds. Nevertheless, the test results of the FAETH score on additional dairy traits and in beef cattle GWAS support that the FAETH ranking can prioritize informative variants in different populations.

In humans, Finucane et al. (18) combined many sources of data to calculate a prior probability that a variant affects a phenotype. Our approach is different from theirs in some respects. They used GWAS summary data and stratified LD score regression, whereas we used raw data and GREML. They fitted all sources of information simultaneously, whereas we fitted one variant set at a time in competition with the HD variants. We were unable to fit all sources at once with GREML for computational reasons but also because the extensive LD in cattle makes it harder than in humans to separate the effects of multiple variant sets. On the other hand, GREML is more powerful than LD score regression (64).

Our study demonstrates that the increasing amount of genomic and phenotypic data makes the cattle model a robust and critical resource for testing genetic hypotheses for large mammals. A recent large-scale study for cattle stature also supports the general utility of the cattle model in GWASs (5). In the current study, we highlighted the contribution of the variants associated with intermediate QTLs and noncoding RNAs to complex traits, and this is consistent with additional observations in human studies (8, 9, 27). However, we also provide contrasting evidence to results from humans. We found LD property of variants (e.g., variants from genomic regions with high LD) had negligible influences on trait heritability, contrasting with the recent evidence for the strong influence of LD property on human complex traits (55). In addition, variants under artificial selection had limited contributions to bovine complex traits, while in humans (where artificial selection is absent), natural selection clearly operates on complex traits (65). While the reasons for these contrasting results are yet to be studied, our findings from cattle add valuable insights into the ongoing discussions of the genetics of complex traits.

Our study has limitations. While some discovery analyses of the intermediate QTLs used relatively large sample size, the number of tissues and/or types of “omics” data included for discovering expression QTLs and mQTLs is yet to be increased. Also, in the discovery analysis, the selection criteria for informative variants to be included for building GRMs were relatively simple. In the test analysis, the heritability estimation for different GRMs used the GREML approach, which has been shown under some circumstances to produce bias (56, 66). Analysis of functional categories by the genomic feature models with BLUP has been previously tested (67), although this method can be computationally intensive. We aimed to treat each discovery dataset as equal as possible, and all GRMs were analyzed in the test dataset in the same systematic way. The positive results from the validation analysis suggest that informative variants have been well captured in the discovery and test analyses. The current version of FAETH score is based on included functional and evolutionary datasets. The FAETH score will be updated as more functional and evolutionary datasets become available.

Conclusions

We provide an extensive evaluation of the contribution of sequence variants with functional and evolutionary significance to multiple bovine complex traits. While developed using genomic and phenotypic data in the cattle model, the analytical approaches for the functional and evolutionary datasets and the FAETH framework of variant ranking can be applied equally well in other species. With their utility demonstrated, the publicly available FAETH score will provide functional and evolutionary annotation for sequence variants and effective and simple-to-implement biological priors for advanced genome-wide mapping and prediction.

Materials and Methods

Discovery Analysis. Discovery data availability is detailed in SI Appendix, Table S4. A total of 360 cows from a 3-y experiment at the Ellinbank research facility of Agriculture Victoria in Victoria, Australia, were used to generate RNA-seq and milk fat metabolite datasets. Animal use was approved by Agriculture Victoria Animal Ethics Committee Application 2013-23.

The geQTLs, eeQTLs, and sQTLs in white blood and milk cells in a total of 131 Holstein and Jersey cows previously published (13) were used. The geQTLs, eeQTLs, and sQTLs in liver and semitendinosus muscle samples from Angus steers were also used (13). The aseQTLs were discovered using RNA-seq data from white blood and milk cells in a total of 112 Holstein cows (5). The metaanalysis of these 4 types of eQTLs, including SI Appendix, Eqs. 1–3 (published in refs. 13 and 68), are detailed in SI Appendix, Note S3.

The discovery of polar lipid metabolite mQTLs in bovine milk fat was based on the mass spectrometry-quantified concentration of 19 polar lipids from 338 Holstein cows. The lipid extraction description and the multivariate metaanalysis of single-trait GWASs including SI Appendix, Eqs. 4 and 5 (23) can be found in SI Appendix, Note S3.

ChIP-seq marks indicative of enhancers and promoters were discovered from a combination of experimental and published datasets. ChIP-seq peak data of tri-methylated lysine 4 of histone 3 (H3K4me3) from 9 bovine muscle samples (26) and H3K4me3 at acetylation at lysine 27 of histone 3 (H3K27ac) from 4 bovine liver samples (25) were downloaded. The generation of mammary H3K4me3 ChIP-seq peaks from 2 lactating Holstein cows (collected with the approval of Agriculture Victoria Animal Ethics Committee Application 2014-23) is detailed in SI Appendix, Note S3.

The discovery of variant sets with evolutionary significance was based on the whole-genome sequences of Run 6 of the 1000 Bull Genomes project (35).

The analysis used a subset of 1,370 cattle of 15 dairy and beef breeds with a linear mixed-model method (SI Appendix, Eq. 6 and Note S3). To fully utilize the 1000 Bull Genomes data, the metric PPRR (MAF <0.01) was developed to infer the variant age. PPRR was then calculated as $p_{i,j} = \frac{N_{i,j} - c_0}{N_{i,j} - c_0 + N_{i,j} - c_1}$ (Eq. 7), where c_0 was the PPRR; $N_{i,j} = \frac{N_{i,j}}{N_{i,j} + N_{i,j}}$ was the count (N) of all of the positive correlations (r) between the genotypes of
common variants (\(w_v\)) and the genotypes of rare variants (\(w_{rare}\)) in a given window with a size of \(k\) (\(k = 50\) kb for this study for computational efficiency). \(N(G_i, \{w_{rare}\}) = \sum C(k)\) was the count of all correlations regardless of the sign. The calculation of \(\sigma_\epsilon\) can be easily and effectively performed using plink1.9 (www.cog-genomics.org/plink/1.9). The rationale of PRRR computation is detailed in SI Appendix, Note S3.

Conserved genome sites in cattle were based on the lifted over (https://genome.ucsc.edu/cgi-bin/hgLiftOver) human sites with PhastCon score (34) > 0.9 computed across 100 vertebrate species. The analysis is detailed in SI Appendix, Note S3.

The variant annotation category was based on Ensembl variant Effect Predictor (29) and NGS-variant (30). Several variant annotations were merged from the original annotations to achieve reasonable sizes for GREML (SI Appendix, Table S1). The gkm SVM score of predicted regulatory potential for bovine genome sites was obtained from the HPR5 (31). Variants in our study that overlapped with and in the top 1% of the SVM score (169,773 variants) were selected. The predicted CTF sites were obtained from Wang et al. (32) and variants that overlapped these predicted bovine CTF sites from ref. 32 were selected (252,234 variants).

Variant sets based on their distribution of LD score, density, and MAF were created using the GCTA-LDS method (38) based on imputed genome sequences of the individuals in the reference set, each trait of protein, milk, and fat yield was analyzed with the GREML model \(\hat{\omega}_{GAM} = \hat{x}' + \hat{Z}'\hat{\omega}_{GAM} + \epsilon\) (Eq. 10) using GCTA (36), where \(\hat{\omega}_{GAM}\) was the vector of DRP of analyzed Danish individuals; \(\hat{x}\) was the vector of fixed effects (breeds); \(\hat{Z}\) was a design matrix relating phenotypes to their fixed effects; \(\epsilon\) was the vector of animal effects where \(\hat{\omega}_{GAM} = N(0, \hat{\omega}_{GAM}'\hat{\omega}_{GAM})\), \(\hat{\omega}_{GAM}\) was the genomic relationship matrix between Danish individuals, \(\hat{\omega}_{GAM}\) was the incidence matrix, and \(\epsilon\) was the vector of residual. This allowed the estimate of \(h^2\) of high- and low-ranking variants in the Danish data.

To test the variant ranking, genomic prediction with gBLUP was performed by dividing the Danish individuals into reference and validation datasets. The -blup variant option in GCTA (36) was used to obtain variant effects from the GREML analysis for which were used to assess the genomic prediction accuracy for milk yield and fat yield in the validation population. Prediction accuracies were computed for each of the breeds in the validation population, as the correlation between GEBV and DRP. More tests of the FAETH score using additional Australian dairy and beef cattle data are detailed in SI Appendix, Note S3.

Test Analysis. The test analysis with Australian data, including model SI Appendix, Eqs. 8 and 9, are detailed in SI Appendix, Note S3. Briefly, a total of 11,923 bulls (data provided by DataGene, http://www.datagene.com.au/) and CRV, https://www.crv4all-international.com.au) and 32,347 cows (detailed below). Over 17.6 million genome variants were used in 46 QTLs (1,250,000 variants per region with a window size = 50 kb), the number of variants per window (window size = 50 kb), and MAF sets of variants that were used to make GRMs. The quartile partitioning of sequence variants followed the default setting of the GCTA-LDS. As a byproduct of GCTA LD score calculation, the number of variants per 50 kb window was computed, and the quantiles of the value of variant number per region for each variant was used to generate the variant density sets.

Validation Analysis. The validation used variants within the top 1/3 (high) and bottom 1/3 (low) ranking from the Australian analysis to make GRMs in a total of 7,551 Danish Holstein bulls (approximately 11,203), and Danish Red (937), with a total of \(8,949,635\) imputed sequence variants in common between the Danish and Australian datasets, with a MAF \(\geq 0.002\) and imputation accuracy measured by the info score provide by IMPUTE2 \(\geq 0.9\) in the Danish data (62). Deregressed proofs (DRPs) were available for all animals in the Danish dataset for milk, fat, and protein yield. The Danish dataset was divided into a reference and validation set, where the reference set included 4,911 Holstein, 957 Jersey, and 745 Danish Red bulls, and the candidate set included 500 Holstein, 517 Jersey, and 192 Danish Red bulls. Over 1.25 million high-ranking variants and over 1.25 million low-ranking variants were used to make the high- and low-ranking GRMs. Genotypes of the individuals in the reference set, each trait of protein, milk, and fat yield was analyzed with the GREML model \(\hat{\omega}_{GAM} = \hat{x}' + \hat{Z}'\hat{\omega}_{GAM} + \epsilon\) (Eq. 10) using GCTA (36), where \(\hat{\omega}_{GAM}\) was the vector of DRP of analyzed Danish individuals; \(\hat{x}\) was the vector of fixed effects (breeds); \(\hat{Z}\) was a design matrix relating phenotypes to their fixed effects; \(\epsilon\) was the vector of animal effects where \(\hat{\omega}_{GAM} = N(0, \hat{\omega}_{GAM}'\hat{\omega}_{GAM})\), \(\hat{\omega}_{GAM}\) was the genomic relationship matrix between Danish individuals, \(\hat{\omega}_{GAM}\) was the incidence matrix, and \(\epsilon\) was the vector of residual. This allowed the estimate of \(h^2\) of high- and low-ranking variants in the Danish data.

ACKNOWLEDGMENTS. Australian Research Council’s Discovery Projects (DP160101056) supported R.X. and M.E.G. Dairy Futures Cooperative Research Centre supported the generation of the Holstein and Jersey transcriptome data. DairyBio (a joint venture project between Agriculture Victoria and Dairy Australia) funded the generation of the mammary ChiP-seq data. I.d.B. was supported by the Center for Genomic Selection in Animals and Plants, funded by Innovation Fund Denmark Grant 0603-00519B. No funding bodies participated in the design of the study, nor in the collection, analysis, or interpretation of data; nor in the writing of the manuscript. We thank DataGene and CRV for access to data used in this study and Gert Nieuwhof, Kon Konstantinov, Timothy P. Hancock (Datagene) and Chris Schroten (CRV) for preparation and provision of data. We thank partners in the 1000 Bull Genome projects for the data access. We thank Dr. Majid Khansefid for the discussion of aseQTL analysis.

1. P. M. Vischer et al., 10 years of GWAS discovery: Biology, function, and translation. Annu. Rev. Genet. 51, 191–216 (2017).
2. J. E. Nielsen et al., Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet. 50, 1234–1239 (2018).
3. Food and Agriculture Organisation of the United Nations, FAOSTAT. http://www.fao.org/faostat/en/#data/Ca l/ Accessed 31 August 2018.
4. J. T. Taylor, K. H., T. E. Decker, Holsteins are the genomic selection poster cow. Proc. Natl. Acad. Sci. U.S.A. 113, 7690–7692 (2016).
5. A. C. Bouman et al., Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet. 50, 362–367 (2018).
6. D. E. MacHugh, M. D. Shriver, R. T. Loftus, P. Cunningham, D. G. Bradley, Microsatellite DNA variation and the evolution, domestication and phylogeny of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146, 1071–1086 (1997).
7. N. A. Youssi et al., Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nat. Commun. 9, 3313 (2018).
8. A. Battle, C. D. Brown, B. E. Engelhardt, S. B. Montgomery, GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDAC) — Analysis Working Group; Statistical Methods group — Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NHGRI; NIH/NIH; NIH/NIAMS; Biobiospecimen Collection Source Site—NDR; Biobiospecimen Collection Site—RCP; Biobiospecimen Core Resource—VARR; Brain Bank Repository—University of Miami Brain Endowment Bank; Leidos Biomedical—Project Management; ELSI Study; Genome Browser Data Integration &Visualization—EBI; Genome Browser Data Integration &Visualization—UCSC Genomics Institute, University of California Santa Cruz; Lead analysts; Laboratory, Data Analysis &Coordinating Center (LDAC); NIH program management; Biobiospecimen collection; Pathology; eQTL manuscript working group, Genetic effects on gene expression across human tissues. Nature 500, 204–213 (2017).
9. M. Lizio et al.; FANTOM consortium, Gateways to the FANTOMS promoter level mammalian expression atlas. Genome Biol. 16, 22 (2015).
10. R. Andersson et al., An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
11. L. A. Robinson et al.; eQTL consortium, Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol. 16, 57 (2015).
27. Y. I. Li et al., Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).
28. M. Khansefid et al., Comparing allele specific expression and local expression quantification trait loci and the influence of gene expression on complex trait variation in cattle. BMC Genomics 19, 793 (2018).
29. W. McLaren et al., The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
30. J. R. Grant, A. S. Arantes, X. Liao, P. Stothard, In-depth annotation of SNPs arising from resequencing projects using NGS-SNP. Bioinformatics 27, 2300–2301 (2011).
31. Q. H. Nguyen et al., Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics, and epigenetics data. Gigascience 7, 1–17 (2018).
32. M. Wang et al., Putative bovine topological association domains and CTCF binding motifs can reduce the search space for causative regulatory variants of complex traits. BMC Genomics 19, 395 (2018).
33. K. S. Pollard, M. J. Hubisz, K. R. Rosenberglomb, A. Siepel, Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–120 (2010).
34. A. Siepel et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).
35. H. D. Daetwyler et al., Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858–865 (2014).
36. J. Yang, S. H. Lee, M. E. Goddard, P. M. Visscher, GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
37. Y. Field et al., Detection of human adaptation during the past 2000 years. Science 354, 760–764 (2016).
38. J. Yang et al.; LifeLines Cohort Study, Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1116–1120 (2015).
39. K. E. Kemper et al., Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Nat. Genet. 47, 29 (2015).
40. I. M. MacLeod et al., Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics 17, 144 (2016).
41. H. Oneng et al.; GTEx Consortium, Estimating the causal tissues for complex traits and diseases. Nat. Genet. 49, 1676–1683 (2017).
42. G. Consortium; GTEx Consortium, Human genomics: The genotype-tissue expression (GTEx) pilot analysis Multitissue gene regulation in humans. Science 348, 648–660 (2015).
43. D. V. Zhermakova et al., Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).
44. K. E. Kemper et al., Leveraging genetically simple traits to identify small-effect variants for complex phenotypes. BMC Genomics 17, 858 (2016).
45. M.-P. Sanchez et al., Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet. Sel. Evol. 49, 68 (2017).
46. M. D. Little et al., Sequence-based association analysis reveals an MGST1 eQTL with pleiotropic effects on bovine milk composition. Sci. Rep. 6, 25376 (2016).
47. S.-Y. Shin et al.; Multiple Tissue Human Expression Resource (MuTHER) Consortium, An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).
48. K. E. Kemper, S. J. Saxton, S. Bolormaa, B. J. Hayes, M. E. Goddard, Selection for complex traits leaves little or no classic signatures of selection. BMC Genomics 15, 246 (2014).
49. F. Deapulis, M. Veuille, Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol. Biol. Evol. 15, 1788–1790 (1998).
50. B. F. Voight, S. Kudaravalli, X. Wen, J.K. Pritchard, A map of recent positive selection in the human genome. PLoS Biol 4(3):e27 (2006).
51. A. K. Tehranchi et al., Pooled ChiP-seq links variation in transcription factor binding to complex disease risk. Cell 165, 730–741 (2016).
52. L. T. Kouskriotis, Y.-P. P. Chen, P. Stothard, B. J. Hayes, Variance explained by whole genome sequence variants in coding and regulatory genome annotations for six dairy traits. BMC Genomics 19, 237 (2018).
53. J. Y. Tan et al., Co-acting complex-trait-associated lincRNA expression correlates with modulation of chromosomal architecture. Cell Rep. 18, 2280–2288 (2017).
54. W. Cai et al., Genome wide identification of novel long non-coding RNAs and their potential associations with milk proteins in Chinese Holstein cows. Front. Genet. 9, 281 (2018).
55. D. Speed, N. Cai, M. R. Johnson, S. Nejentsev, D. J. Balding; UCLEB Consortium, Reevaluation of SNP heritability in complex human traits. Nat. Genet. 49, 986–992 (2017).
56. J. Yang, J. Zeng, M. E. Goddard, N. R. Wray, P. M. Visscher, Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49, 1304–1310 (2017).
57. L. M. Evans et al.; HaploType Reference Consortium, Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).
58. J. Yang et al.; Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).
59. M. Khansefid et al., Estimation of genomic breeding values for residual feed intake in a multibreed cattle population. J. Anim. Sci. 92, 3270–3283 (2014).
60. M. S. Lund, G. Su, L. Janss, B. Guldbrandtsen, R. F. Brandum, Genomic evaluation of cattle in a multibreed context. Livest. Sci. 166, 101–110 (2014).
61. I. van den Berg, D. Boichard, M. S. Lund, Sequence variants selected from a multibreed GWAS can improve the reliability of genomic predictions in dairy cattle. Genet. Sel. Evol. 48, 83 (2016).
62. R. A. Gibbs et al.; Bovine HapMap Consortium, Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324, 528–532 (2009).
63. I. M. MacLeod, B. J. Hayes, M. E. Goddard, The effects of demography and long-term selection on the accuracy of genomic prediction with sequence data. Genetics 198, 1671–1684 (2014).
64. G. Ni, G. Moser, N. R. Wray, S. H. Lee; Schizophrenia Working Group of the Psychiatric Genomics Consortium, Estimation of genetic correlation via linkage disequilibrium score regression and genomic restricted maximum likelihood. Am. J. Hum. Genet. 102, 1185–1194 (2018).
65. J. Guo et al.; Global genetic differentiation of complex traits shaped by natural selection in humans. Nat. Commun. 9, 1865 (2018).
66. S. Krishna Kumar, M. W. Feldman, D. H. Rehkopf, S. Tuljapurkar, Limitations of GCTA as a solution to the missing heritability problem. Proc. Natl. Acad. Sci. U.S.A. 113, E61–E70 (2016).
67. L. Fang et al.; Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds. BMC Genomics 18, 604 (2017).
68. M. Khansefid et al., Gene expression analysis of blood, liver, and muscle in cattle divergently selected for high and low residual feed intake. J. Anim. Sci. 95, 4764–4775 (2017).
69. S. Das et al.; Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
70. S. H. Lee, J. H. van der Werf, MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic information. Bioinformatics 32, 1420–1422 (2016).
71. H. Paush et al.; Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution. BMC Genomics 18, 853 (2017).
Author/s:
Xiang, R; van den Berg, I; MacLeod, IM; Hayes, BJ; Prowse-Wilkins, CP; Wang, M; Bolormaa, S; Liu, Z; Rochfort, SJ; Reich, CM; Mason, BA; Vander Jagt, CJ; Daetwyler, HD; Lund, MS; Chamberlain, AJ; Goddard, ME

Title:
Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits

Date:
2019-09-24

Citation:
Xiang, R., van den Berg, I., MacLeod, I. M., Hayes, B. J., Prowse-Wilkins, C. P., Wang, M., Bolormaa, S., Liu, Z., Rochfort, S. J., Reich, C. M., Mason, B. A., Vander Jagt, C. J., Daetwyler, H. D., Lund, M. S., Chamberlain, A. J. & Goddard, M. E. (2019). Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116 (39), pp.19398-19408. https://doi.org/10.1073/pnas.1904159116.

Persistent Link:
http://hdl.handle.net/11343/250249

File Description:
published version

License:
CC BY-NC-ND