Dynamic Metal-Thiolate Cluster Structure of Metallothioneins

by Milan Vašák*

113Cd-NMR studies have established that vertebrate and invertebrate metallothioneins contain two unique metal–thiolate clusters. However, it proved to be difficult to account theoretically for all features of the 113Cd-NMR spectra. In a reinvestigation of these features using chromatographically homogeneous 113Cd7-metallothionein we have identified a total of seven 113Cd resonances and have confirmed the massive intensity difference among these signals. From the effects of variations in temperature, ionic strength, and magnetic field on one-dimensional 113Cd-NMR spectra and from two-dimensional J-resolved 113Cd-NMR spectrum it was concluded that the seven 113Cd signals are composed of several overlapping multiplets and indicative of a dynamic organization of the metal–thiolate clusters.

The same nonrigid structure is also indicated individually by recent two-dimensional correlated (COSY) 1H-NMR studies of 113Cd7-metallothionein. While showing 113Cd–H coupling for 19 of the 20 cysteine residues, these studies have evidence for only two “bridging” cysteine ligands of the clusters instead of the expected eight suggesting interferences by metal–thiolate exchange process at the 1H-NMR time scale. Analogous indirect evidence for structural mobility of the clusters comes from EXAFS measurements of Zn7-metallothionein and from measurements of the perturbed angular correlation of γ-rays (PAC) emission of 111mCd7-metallothionein. Thus, while the EXAFS spectra revealed back-scattering from the thiolate ligands, lattice movements within the cluster is believed to preclude back-scattering from neighboring metals. Similarly, in the PAC time spectra the damping of the major oscillatory component was attributed to inordinately large charge fluctuation in the immediate environment of the 111mCd nucleus. These results are consistent with a nonrigid cluster model in which many of the sulfur–metal bonds are temporary broken and reformed, thus giving rise to a number of interchanging cluster substrates of comparable stability and overall structure.

It is now well accepted that metallothioneins are widely occurring proteins that play a fundamental role in detoxification and in the metabolism of d10-metals (1–4). Sequencing studies have also established that metallothioneins from organism as different as mammals, anthropods, and molds are evolutionally related proteins, their principal features being the abundance of metal-chelating Cys-X-Cys sequences where X stands for an amino acid other than Cys (5). The occurrence and distribution of these sequences in the chain condition the formation of oligonuclear metal–thiolate clusters unique for these proteins (6–9).

Recently, 113Cd-NMR studies (6) and limited proteolysis data (10) have led to the suggestion that metallothioneins from vertebrates and invertebrates are built up of two separate domains composed of the NH2- and the COOH-terminal half of the polypeptide chain, respectively, which enclose in their three-dimensional folding an oligonuclear metal-thiolate cluster each. In crab metallothionein both clusters are thought to be made up of three group 2B metal ions and nine thiolate ligands of Cys (11). In mammalian metallothionein, the NH2-terminal domain is believed to contain also a cluster of three metal ions and nine thiolate ligands of Cys, and the COOH-terminal domain, a cluster made up of four metal ions and 11 Cys side chains. In independent studies, these clusters were shown to have an adamantanelike structure in which each metal ion is surrounded in tetrahedral geometry by four thiolate ligands (7–9).

While the spectroscopic evidence for this two-domain structure is impressive, it has proven difficult to account quantitatively for all of the features. In particular, the number and the intensities of the 113Cd-NMR resonances of mammalian Cd(II)-metallothionein are not completely understood (6). Some of these difficulties have been blamed tentatively on the heterogeneity of the protein preparations employed and on incomplete metal complexation (6).

Since we have succeeded recently in developing a method of isolating isoforms of rabbit liver metallothionein in high purity and of preparing homogeneously reconstituted 113Cd7-metallothionein, such trivial explanations can now be ruled out effectively. Hence, we decided to re-examine the 113Cd-NMR spectra using such well-defined material (12). The present review highlights our major findings and makes correlations with data from recent two-dimensional 113Cd-NMR studies on 113Cd7-metallothionein (12), two-dimensional correlated (COSY) 1H-NMR studies on 113Cd7-metallothionein-2

*Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
(13), from the extended X-ray absorption fine structure (EXAFS) (14,15), and from the perturbed angular correlation of γ-ray (PAC) (16) measurements. The inference drawn from these studies is that some of the problems and inconsistencies encountered in the interpretation of the spectroscopic features arise from a strong inherent nonrigidity of the metal-thiolate clusters.

113Cd-NMR Studies of de Novo-Reconstituted 113Cd-Metallothionein

The typical one-dimensional 113Cd spectrum of the de novo-reconstituted 113Cd-metallothionein-2 obtained in collaboration with P. J. Sadler (London) is shown in Figure 1 (12). The spectrum is similar to that obtained previously by Otvos and Armitage (6) on 113Cd-substituted rabbit liver metallothionein-2 but differs from it by containing only seven instead of eight resonances. This simplification of the spectrum does not seem to be a preparation artifact, since the material employed was homogeneous (> 90%) by HPLC criteria and was documented to contain the full complement of seven 113Cd ions (12). The material was also shown by two-dimensional 1H-NMR spectroscopy to have nearly the same structure as native rabbit liver Zn-metallothionein-2 (M. Vašák, G. Wagner, J. H. R. Kági, and K. Wüthrich, unpublished observations). An important finding is that the 113Cd-NMR spectrum still displays the massive differences in intensity of the individual 113Cd resonances noted also by Otvos and Armitage (6). Hence, this as yet unexplained feature cannot be attributed to deficiencies of the sample but must be more complex in origin. This complexity is in fact revealed by the effects of changes in temperature, ionic strength, and magnetic field on the 113Cd-NMR spectra of 113Cd-metallothionein-2 which yielded additional resonances, resonance broadening, and field-dependent resonance fine structure indicative of the existence of substantial resonance overlaps and dynamic processes (12). The composite nature of all seven resonances was also documented by two-dimensional J-resolved 113Cd-NMR spectroscopy (Fig. 2) (12). As exemplified for the 610 to 635 ppm region, the peaks in the one-dimensional spectrum (Fig. 1) result from the superposition of a number of multiplets not previously recognized (Fig. 2). In some of the one-dimensional 113Cd signals, as many as eight distinct multiplets can be resolved in two-dimensional J-resolved spectra. This multitude of resonances and their susceptibility to perturbation are strongly suggestive of a dynamic, nonrigid organization of the metal–thiolate clusters in metallothionein in which several interchangeable structural isoforms may coexist and in which the most intense subsets of resonances arise from the most stable cluster substates.

![Figure 1](image1.png)

FIGURE 1. 88 MHz proton-decoupled 113Cd-NMR spectrum of rabbit liver 113Cd(II)-metallothionein-2 at 298°K in 50 mM Tris-HCl buffer, pH 8.6 (100 Hz, 3 sec total delay, line-broadening 10 Hz). From Vašák et al. (12).

![Figure 2](image2.png)

FIGURE 2. 88 MHz 2D J-resolved 113Cd-NMR spectrum of 113Cd-MT-2 (50 mM Tris-HCl buffer, pH 8.6) in the regions of 113Cd peaks at 630.6, 624.7, and 611.9 ppm (see Fig. 1). Coupled multiplets lie on diagonal lines and the proton-decoupled 113Cd-NMR spectra (middle) is the projection on the chemical shift (ωy) axis. The bottom spectrum shows the same peaks from a typical 1D experiment. Note the extensive overlap of several multiplets in the various signals. From Vašák et al. (12).
Two-Dimensional Correlated (COSY) 1H-NMR Studies of 113Cd-Metallothionein-2

Indirect support for a nonrigid model of the Cd-thiolate clusters in metallothionein comes also from recent homonuclear two-dimensional COSY 1H-NMR spectra of 113Cd-metallothionein-2 (13). In these studies, conducted in conjunction with Dr. K. Wüthrich's group in Zürich, comparison of 1H chemical shift correlated spectroscopy (COSY) maps of 113Cd- and 112Cd-substituted rabbit liver metallothionein-2 allowed the unambiguous identification of Cα- and Cγ-proton resonances for 19 out of the total of 20 cysteine residues of the polypeptide chain (Table 1). The assignments became possible since the cysteine Cγ protons could be monitored specifically by their heteronuclear interaction with the vicinal 113Cd nuclei yielding the heteronuclear spin–spin coupling constants 3J 113Cd,1H (Table 1).

As shown by the contour plot in Figure 3 (right) there is also evidence in some instances for coupling of a Cα proton to two different 113Cd nuclei as characterized by different pairs of coupling constants. As to be anticipated, these features are absent when 113Cd (I = 1/2) is replaced by the NMR-inactive 112Cd (I = 0) (Fig. 3, left) (13). These 1H-NMR features constitute independent confirmation of the existence of bridging-cysteine ligands in metal–thiolate clusters inferred from the occurrence of extensive 113Cd,113Cd coupling (6,12) and the antiferromagnetic coupling observed in electron spin resonance (ESR) measurements of Co(II)-substituted metallothionein (7,8). However, instead of the expected total of eight bridging cysteine ligands, the 1H-NMR data indicate only two such cysteines (Table 1). The failure to observe the remaining bridging ligands is not necessarily contradictory but might be accounted for by the different time scales inherent to these spectroscopic techniques. Such problems will manifest themselves especially with systems undergoing rapid time-dependent structural changes. The difficulty of observing multiple heteronuclear couplings of cysteine protons may thus be explained tentatively by the occurrence of structural interconversion within the metal–thiolate clusters. Such processes might be visualized as involving breaking and forming of metal–thiolate bonds. Such dynamic process would be in agreement with the known kinetic lability of the Cd-S bond as derived from 113Cd-NMR measurements of model complexes (17). Thus, with Cd12(SCH2CH2OH)164+, a well-studied cluster model, 113Cd ions undergo a rapid intramolecular exchange of Cd between CdS4 and CdS3O sites at the temperatures between 233 and 333°C in dimethylformamide solution (18) but not in solid state (19). Very comparable structural fluctuations leading to intramolecular ligand exchange have recently been observed in synthetic clusters of Cd(II)-, Zn(II)-, and Co(II)-thiolates with adamantane type of stereochemistry (23).

Extended X-Ray Absorption Fine Structure (EXAFS) of Zn-Metallothionein

Support for a nonrigid structure of the metal–thiolate clusters comes also from EXAFS studies of rabbit liver Zn and (Zn,Cd)-metallothionein (14). In these measurements conducted at the Synchrotron facilities at Daresbury, England, Zn(II)-metallothionein was irradiated with the intense monochromatic radiation in the K-edge region of Zn and the back-scattering profile recorded

Table 1. Chemical shifts of Cα and Cγ proton resonances and 1H-113Cd coupling constants for 19 cysteines in 114Cd-metallothionein-2 at 24°C, pH 7.0.*

Cysteine spin systema	Chemical shift, ppm	1H-113Cd coupling constants				
	Hα	Hβ	Jαβ 113Cd1	Jαβ 113Cd2	Jαβ 113Cd3	Jαβ 113Cd4
1	4.05jg4c10	3.11	3.23	10	c	
2	4.16	2.99	3.64	10	5	
3	4.23	2.88	3.10	37	5	
4	4.27	3.01	3.25	17	5	
5	4.84	2.95	3.05	16	5	
6	4.39	2.91	3.01	48	5	
7	4.43	2.86	3.08	12	13	
8	4.44	2.63	3.14	37		
9	4.49	3.11	3.44	15	15	15
10	4.49	2.75	3.18	76	15	15
11	4.55	3.24	3.14	48	10	
12	4.58	2.89	3.14	5	25	
13	4.63	3.21	3.28	70	c	
14	4.73	2.61	3.80	25	40	0
15	5.06	2.66	3.11	15	40	
16	5.14	3.53	3.59	30	20	
17	5.18	2.98	3.08	20	c	
18	5.36	3.53	3.63	20	c	
19	2.88	3.27		53	5	

* Data from Neuhaus et al. (19).

a Numbering of cysteine residues is arbitrary in the order of increasing chemical shift for the Hα resonances.

b Second order Hα-Hβ multiple pattern; information on coupling constants is difficult to obtain.
The EXAFS lie from the tetrahedral metallothionein evidence for ligands.

Figure 3. Enlarged plot of the (H₁⁰, H₁⁸) cross peak of the cysteine spin system 14 in ¹¹²Cd-MT-2 (left) and ¹¹³Cd-MT-2 (right). The H₁⁰ chemical shift is along ω₂, the chemical shift along ω₁; + and − indicate positive and negative contour levels. From Neuhaus et al. (18).

The results from Fourier transform analysis of the EXAFS spectra (Fig. 4, bottom) gave unambiguous evidence for coordination of Zn(II) to four cysteine sulfur ligands at a distance of 2.28 Å (14,15) compatible with a tetrahedral symmetry of the sites. There was, however, somewhat surprisingly no indication for back-scattering from the neighboring zinc atoms which are expected to lie at an average distance of 3.85 Å in the proposed adamantane type of cluster geometry (20). Since temperature studies also showed an amplitude increase (20%) upon lowering from 298 to 77° K with no alteration in EXAFS profile and periodicity (14), this failure to detect metal-metal back-scattering is thought to be caused by substantial dynamic disorder within the cluster giving rise to a large dynamic part of the Debye-Waller factor (δ,νb). It is of interest that similar difficulties in assessing metal-metal interactions were also encountered in EXAFS spectra of an Fe-S cluster protein and have been attributed to an inordinately large Debye-Waller factor as compared to low molecular weight model compounds (21).

Perturbed Angular Correlation of γ-Rays (PAC) Studies of ¹¹¹mCd-Metallothionein

Fluctuations in cluster structure are also held responsible for the pronounced frequency broadening (damping) (ca. 20%) observed in PAC measurements of rabbit liver Cd(II)-metallothionein (16). In these nuclear spectroscopic studies which were conducted in collaboration with R. Bauer (Copenhagen), metallothionein was labeled with accelerator-produced metastable ¹¹¹Cd(II) which decays by a γ-γ cascade to the nuclear ground state depending on the chemical environment of the nucleus. Perturbations caused by a distorted coordination sphere give rise to oscillation in the directionality of emission of the two γ-quanta of the cascade. As shown in Figure 5, two oscillatory components can be resolved in the spectrum of ¹¹¹mCd-labeled Cd–metallothionein (ω₁ = 120 MHz; ω₂ = 580 MHz). The predominant one was attributed to the distorted tetrahedral sulfur coordination (ω₁ = 120 MHz) in the metal–thiolate clusters and its damping is believed to be caused by dynamic charge fluctuation in the immediate vicinity of ¹¹¹mCd (16).

Figure 5. (Top) Perturbed angular correlation of γ-ray (PAC) spectra of rabbit-liver ¹¹¹mCd(II)-metallothionein in 65% (weight) sucrose, 0° C. W(180°)/W(90°) is plotted versus delay time. The fully drawn curve represents least-squares fit to the spectrum. The bars indicate ±1 standard deviation. The viscosity of the sucrose solution immobilized the protein within the time scale of the experiment. Fully reconstituted ¹¹¹mCd(II)-metallothionein, pH 8.0. (Bottom) Resolution of the least-square fit of the spectrum into a low frequency, ω₁ = 116 MHz (dashed line) and a high frequency component; ω₂ = 579 MHz (stippled line). From Vašák and Bauer (16).
Besides providing independent support for the existence of metal–thiolate cluster structures in metallothioneins and for their tetrahedral geometry this collection of data adds a novel perspective to the study of metallothioneins. Just as proteins are now considered to be dynamic entities undergoing continuous fluctuations in terms of statistical physics (22) we infer from these results that the inorganic domains in metal–thiolate cluster proteins have also an appreciable degree of dynamic freedom. Constrained by the structural organization of the polypeptide chain and the limits imposed by the preferred coordination stoichiometry and geometry of the inorganic components, such a system can be thought as interchanging between a number of related substates of comparable thermodynamic stability. In metal–thiolate cluster systems such interconversion can be visualized as involving temporary breaking and forming of coordination bonds without causing gross changes in the overall spatial organization. It remains to be seen to what extent such process relates to the still elusive function of metallothionein.

The author is indebted to Professor J. H. R. Kägi for valuable discussions.

This work was supported by the Swiss National Science Foundation, Grant No. 3.164–0.85.

REFERENCES

1. Richards, M. P., and Cousins, R. J. Influence of parenteral zinc and actinomycin D on tissue zinc uptake and the synthesis of a zinc-binding protein. Bioinorg. Chem. 4: 215–254 (1975).
2. Webb, M., and Magos, L. Cadmium-thionein and the protection by cadmium against the nephrotoxicity of mercury. Chem. Biol. Interact. 14: 357–369 (1976).
3. Kojima, Y., and Kägi, J. H. R. Metallothionein. Trends Biochem. Sci. 3: 90–93 (1978).
4. Kojima, Y., Berger, C., Vallee, B. L., and Kägi, J. H. R. Amino-acid sequence of equine renal metallothionein-1B. Proc. Natl. Acad. Sci. (U.S.) 73: 3413–3417 (1976).
5. Nordberg, M., and Kojima, Y. Metallothionein and other low molecular weight metal-binding proteins. In: Metallothionein (J. H. R. Kägi and M. Nordberg, Eds.), Birkhäuser Verlag, Basel, 1979, pp. 41–124.
6. Otov, J. D., and Armitage, I. M. Structure of the metal clusters in rabbit liver metallothionein. Proc. Natl. Acad. Sci. (U.S.) 77: 7094–7098 (1980).
7. Važak, M., and Kägi, J. H. R. Metal thiolate clusters in cobalt (II)-metallothionein. Proc. Natl. Acad. Sci. (U.S.) 78: 6709–6713 (1981).
8. Važak, M., and Kägi, J. H. R. Spectroscopic properties of metallothionein. In: Metal Ions in Biological Systems, Vol. 15 (H. Sigel, Ed.), Marcel Dekker Inc., New York, 1985, pp. 213–273.
9. Važak, M. Spectroscopic studies on cobalt(II) metallothionein: evidence for pseudotetrahedral metal coordination. J. Am. Chem. Soc. 102: 3953–3955 (1980).
10. Winge, D. R., and Miklosy, K.-A. Domain nature of metallothionein. J. Biol. Chem. 257: 3471–3476 (1982).
11. Otov, J. D., Olafson, R. W., and Armitage, I. M. Structure of an invertebrate metallothionein from Scylla serrata. J. Biol. Chem. 257: 2427–2431 (1982).
12. Važak, M., Hawkes, G. E., Nicholson, J. K., and Sadler, P. J. 113Cd NMR studies of reconstituted seven-cadmium metallothionein: evidence for structural flexibility. Biochemistry 24: 740–747 (1985).
13. Neuhaus, D., Wagner, G., Važak, M., Kägi, J. H. R., and Winter, K. 113Cd–1H spin–spin couplings in homonuclear 1H correlated spectroscopy of metallothionein. Eur. J. Biochem. 149: 459–467 (1984).
14. Ross, I., Binstead, N., Blackburn, N. J., Bremner, I., Diakun, G. P., Hasnain, S. S., Knowles, F. P., Važak, M., and Garner, C. D. EXAFS studies of zinc and copper in chemical and biochemical systems. In: EXAFS and Near-Edge Structure (A. Bianconi, L. Inoccia, and S. Stipech, Eds.), Springer-Verlag, Berlin, 1983, pp. 337–341.
15. Garner, C. D., Hasnain, S. S., Bremner, I., and Bordas, J. An EXAFS study of the zinc sites in sheep liver metallothionein. J. Inorg. Biochem. 16: 253–256 (1982).
16. Važak, M., and Bauer, R. Evidence for two types of binding sites in cadmium metallothionein determined by perturbed angular correlation of gamma-rays. J. Am. Chem. Soc. 104: 3236–3238 (1982).
17. Ellis, P. D. Cadmium-113 magnetic resonance spectroscopy. Science 221: 1141–1146 (1983).
18. Haberkorn, R. A., Que, L., Jr., Gillum, W. O., Holm, R. H., Liu, C. S., and Lord, R. C. Cadmium-113 Fourier transform nuclear magnetic resonance and Raman spectroscopic studies of cadmium(II)–sulfur complexes, including [Cd6(SCH2CH2OH)6]4+ and [Cd4(SCH2CH2OH)4]4+. Inorg. Chem. 15: 2408 (1976).
19. DuBois Murphy, P., Stevens, W. C., Cheung, T. T. P., Lacelle, S., Gerstein, B. C., and Kurtz, D. M., Jr. High-resolution 109Cd NMR of solids. Correlation of spectra with the molecular structure of a decanuclear cadmium(II) complex. J. Am. Chem. Soc. 103: 4400–4405 (1981).
20. Dance, I. G. Formation, crystal structure, and reactions of catena (µ–2SPh) (µ–2SPh)8Zn9(CH3OH)(2SPh), a model for zinc thiolate metalloenzymes. J. Am. Chem. Soc. 102: 3445–3451 (1980).
21. Lindahl, P. A., Kojima, N., Hausinger, R. P., Fox, J. A., Teo, B. K., Walsh, C. T., and Orme-Johnson, W. H. Nickel and iron EXAFS of Fe2+-reducing hydrogenase from Methanobacterium thermautotrophicum. J. Am. Chem. Soc. 106: 3062–3064 (1984).
22. Frauenfelder, H., Petsko, A., and Tsernoglou, D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 298: 558–563 (1979).
23. Hagen, K. S., Stephan, D. W., and Holm, R. H. Metal ion exchange reactions in cage molecules: the systems [M, = M(2SCH2CH3)6]8– (M,M’ = Fe(II), Co(II), Zn(II), Cd(II)) with adamantane-like stereochemistry and the structure of [Fe8(2SCH2CH3)6]126–. Inorg. Chem. 21: 3928–3936 (1982).