Surge explicit nonlinear model predictive control using extended Greitzer model for a CCV supported compressor

Hashem Imani, Hamid Malekizade, Hamid Asadi Bagal & Hasan Hosseinzadeh

To cite this article: Hashem Imani, Hamid Malekizade, Hamid Asadi Bagal & Hasan Hosseinzadeh (2018) Surge explicit nonlinear model predictive control using extended Greitzer model for a CCV supported compressor, Automatika, 59:1, 43-50, DOI: 10.1080/00051144.2018.1498204

To link to this article: https://doi.org/10.1080/00051144.2018.1498204

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 19 Jul 2018.

Submit your article to this journal

Article views: 172

View related articles

View Crossmark data
Surge explicit nonlinear model predictive control using extended Greitzer model for a CCV supported compressor

Hashem Imani a, Hamid Malekizade b, Hamid Asadi Bagal a and Hasan Hosseinzadeh c

a Young Researchers and Elite Club, Islamic Azad University, Ardabil, Iran; b Department of Electrical Engineering, Imam Khomeini University of Maritime Sciences, Noshahr, Mazandaran, Iran; c Department of Mathematics, Islamic Azad University, Ardabil, Iran

1. Introduction

Compressors are essential machines in modern industrial processes for the pressing and transportation of gases and fluids. They are vital to the operation of key energy sectors, such as the oil and gas, nuclear, and hydroelectric. In addition, compressors are central components in the heating, ventilation, and air conditioning systems for homes and commercial buildings. With the current focus on improving the efficiency of energy usage in buildings and manufacturing systems, the compressor is an important link in the energy generation/consumption chain in our modern society that needs to be carefully studied. Surge is one of the main dynamic instability limiting the operation of centrifugal compressors [1] and it is an asymmetrical oscillation of the flow through the compressor and is characterized by a limit cycle in the compressor characteristic. This event forces the flow back toward the compressor inlet and initiates the surge limit cycle that affects the entire system. Surge can cause extensive structural damage in the machine because of the violent vibration and high thermal loads that generally accompany the instability [2].

Furthermore, any flow unsteadiness or periodic excitation in a centrifugal compressor station piping system can significantly decrease the compressor’s surge margin. Both acoustic resonance and system impedance are functions of the entire piping system connected to the compressor, including pipe friction, interface connections, valve/elbow locations, pipe diameter, valve coefficients and etc. can move the centrifugal compressor operating point into a surge or stonewall condition.

It is critically important to consider the impact of the station’s piping system on the compressor dynamic behaviour. According to the findings of Brun and Spark [3,4], the entire piping system connected to the compressor will have the following effects on the compressor system:

1. operating point variation
2. amplification and speed up of surge occurrence
3. fluctuations transfer in the system
4. limit the stability range of compressor

Thus, a careful evaluation of acoustic and impedance effects over compression system should be performed to avoid impacting the operating range of the machine and to properly design the surge control system.

Having an appropriate model from a compressor system is the first step in studying the mentioned effects
over surge instability and its controlling. There are several mathematical models developed over the years to describe the dynamics of the flow in compression systems, and extensive reviews of these models can be found in references [5,6]. Among these models, the most frequently referenced is the lumped parameter model introduced by Greitzer [7,8] for axial compressors, and later demonstrated to be applicable to centrifugal compressors by Hansen et al. [9].

Furthermore, as pointed out in reference [10], the Greitzer model alone is not adequate to predict the dynamics associated with fluid flow in distributed systems, such as acoustic waves and flow pulsations in pipelines. Because the Greitzer model only covers the slow poles of the compressor system, it is unable to capture fast transient modes and analysing the behaviour of the compression system. Consequently, the model does not capture the fast dynamics of the system and therefore it is not suitable for fast control.

The dynamics of compression systems for different configurations of the inlet and the exhaust piping were studied in Refs [4,11,12]. Van Helvoirt and de Jager [10] proposed to implement a transmission line model, first introduced by Krus et al. [13] for modelling hydraulic and pneumatic line systems, to describe the effects of the pipeline dynamics between the compressor and the plenum volume in the pressure oscillations during the deep surge.

The mathematical model for the compression system that captures the effect of the piping acoustics during both the stable and unstable operating conditions, along with the dynamics in transition between these two states is expanded in [14]. Reference [14] also has the problem of using active magnetic bearings (AMBs) to control the compression system, while most compressor systems are already equipped with a CCV actuator.

Motivated by the potential benefits of controlling the surge, various measures have been introduced during the last few decades [15]. A surge avoidance system is a widely used passive method, which possesses good reliability. In the system, a surge avoidance line is defined, which is located on the right of the surge line in the compressor map.

Compressors are not allowed to operate in the region between the surge line and the surge control line. One reason of interest to study the surge phenomenon is that high efficiency operating points are usually around the surge line.

The reliability of surge avoidance systems is obtained through the sacrifice of efficiency and operating range [5,16]. Especially, the distance between the surge line and the surge control line is always conservative due to various and severe working conditions.

A totally different solution to the surge problem is called active surge control, which was first presented by Epstein et al in 1989 [17]. Active surge control systems do not attempt to avoid surge by limiting the operating range of the compressor but by feedback control stabilize surge itself. Several types of actuators could be used in active control systems. An air injector [18], drive torque [19], closed-coupled control valve [20], movable plenum wall (including piston) [21], and bleed valve [22] are reported frequently in the literature. Both the linear and nonlinear methods can be used to design active surge controllers [23–26].

In nearly all cases, a compression system dynamic model is needed to develop an active surge controller. Although some achievements have been acquired by employing advanced algorithms like LQR, the Lyapunov method, sliding mode variable structure control, and model predictive control [27,28], however, none of these controllers have considered the effects of pipe that is a negative point in model accuracy for the stability of active controller. Based on a recently presented enhanced compression system model with variable impeller tip clearance and pipeline acoustics, a surge controller is designed [29], but there are two objections in this case including the linear controller is not capable in capturing strongly nonlinear dynamics of compression system and also common actuators are the close-coupled valve [30] and the throttle valve [31]. Considering optimization of control signal, as well as restrictions on actuators and states are another important topics that should be considered in the subject of controller design.

Overcoming the problems, we present new numerical results in the compressor surge explicit NMPC using the CCV as an actuator in the compression system. A surge controller is designed for a centrifugal compressor system based on the enhanced compression system model recently presented in [14], that supports fast and slow transients, also captures the effects of pipe. In addition, it allows high-speed control of the compressor system using the CCV actuator. In addition, explicit NMPC is used to control the compressor system in the presence of disturbances that provide real-time control.

Both the avoiding and active control of surge considered in the simulation and the ability of the proposed controller is shown in the stabilization of compressors operation. Therefore, this article is classified as follows. In the second part, the compressor system model taking into consideration the effects of pipeline and CCV actuator will be detailed. Reservations about an explicit nonlinear predictive control and the simulation results for various cases will be discussed in third part.

2. System model

The dynamic model of the compression system considered here was presented in details in [14] and [32]. The compression system in the study of surge consists of three main components.
This are the compressor/plenum adding and storing the energy in the system, the throttle valve controlling the average flow rate, and the piping transporting the compressed gas/liquid. The nondimensional pressure rise \(\psi \) and mass flow rate \(\Phi \) are defined as the following functions of the mass flow rate \(m \) and the absolute pressure \(P \):

\[
\Phi = \frac{m}{\rho_{o1} U A_c}, \\
\psi = \left(\frac{P - P_{o1}}{\frac{1}{2} \rho_{o1} U^2} \right)
\]

The constants in (1) are the impeller velocity \(U \), the cross-sectional area of the compressor duct \(A_c \), the inlet absolute pressure \(P_{o1} \), and the density at the inlet \(\rho_{o1} \).

The Greitzer model captures the surge limit cycle as a function of the compressor characteristic curve. As described in [14], the acoustic resonance from the compressor pipeline is added to the model. The resulting block diagram for the compressor system with pipeline dynamics is shown in Figure 1.

2.1. Compressor and plenum

The basis of the equations describing the flow in the compressor and the plenum volume comes from the Greitzer model in [7,8]. Assumptions for this model are low compressor inlet match number, low-pressure rise compared with ambient pressure, isentropic compression process in the plenum with uniform pressure distribution, and negligible fluid velocities in the plenum. The use of a close-coupled valve for surge control was accurately modelled and presented in [5,33]. The approach introduces a valve close to the plenum volume in the compressor. CCV means that there is no mass storage of gas between the compressor outlet and the valve, as can be seen from Figure 2.

Based on the mentioned statement, the pressure increase in the compressor and the pressure drop across the valve can be combined into an equivalent compressor. This is needed in order to enable the valve for controlling the characteristic of the equivalent compressor.

The outlet mass flow from the compressor through a close-coupled valve is given as follows:

\[
\Phi_r = c_r u_r \sqrt{\left(\Psi_p - \Psi_r \right)}
\]

where \(c_r \) is valve constant, \(u_r \) is the CCV opening percentage and \(\Psi_p, \Psi_r \) are plenum pressure rise and compressor pressure rise, respectively. The range value of \(u_r \) is from 0 to 100%.

Finally, according to [5,33], equations for describing the pressure and mass flow in the constant speed centrifugal compressor can now be formulated as follows:

\[
\begin{align*}
\Phi_c &= B_0 H (\Psi_c, ss - \Psi_p) \\
\Psi_p &= \frac{\omega_H}{B} (\Phi_c - \Phi_p - \Phi_r)
\end{align*}
\]

where \(B \) is the Greitzer stability parameter and \(\omega_H \) is the Helmholtz frequency [7].

The state variables of the model are the compressor mass flow rate \(\Phi_c \) and the plenum pressure rise \(\Psi_p \), which are nondimensionalized as shown in (1). The value of the plenum mass flow rate \(\Psi_p \) is dependent on the dynamics of the piping. Finally, the steady-state compressor pressure rise \(\Psi_{c,ss} \) is obtained from the compressor characteristic curve as a function of the compressor mass flow rate:

\[
\Psi_{c,ss}(\Phi_c) = \begin{cases} A_1 \Phi_c^3 + B_1 \Phi_c^2 + D_1, & \text{if } \Phi_c > \Phi_s \\ A_2 \Phi_c^3 + B_2 \Phi_c^2 + D_2, & \text{if } \Phi_c \leq \Phi_s \end{cases}
\]

The characteristic curve \(\Psi_{c,ss} \) is divided into the stable and unstable part by the surge point at \(\Phi_s \). The coefficients \(A_1, B_1, \) and \(D_1 \) of the characteristic curve correspond to the stable flow region of the compressor, whereas the coefficients \(A_2, B_2, \) and \(D_2 \) meet unstable flow region, as [29].

2.2. Piping

To describe the dynamics of the piping system, a modal approximation of the transmission line dynamics [34] has been included in the compression system equations [14]. The single-mode state space representation of the piping equations can be expressed in the following form:

\[
\begin{bmatrix} P_{th} \\ Q_p \end{bmatrix} = \begin{bmatrix} 0 & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} P_{th} \\ Q_p \end{bmatrix} + \begin{bmatrix} 0 & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} P_p \\ Q_{th} \end{bmatrix}
\]

for some matrix coefficients \(A_{ij} \in \mathbb{R} \) and \(B_{ij} \in \mathbb{R} \), where \(P_p \) and \(Q_p \) are the upstream (plenum) pressure and volumetric flow rate, respectively. In the same way, \(P_{th} \) and
Q_{th} are the downstream (throttle duct) pressure and flow rate.

The above piping model represents the system in terms of the absolute pressure and volumetric flow rate. With the assumption that the change of density ρ of gas in the pipeline because of the pressure and temperature fluctuation caused by the piping acoustics is small, the states of the piping model can be nondimensionalized as described in (1). After the coordinate transformation, the resulting piping equation with nondimensional states is expressed as follows:

$$
\begin{bmatrix}
\Psi_{th} \\
\Phi_p
\end{bmatrix} =
\begin{bmatrix}
0 & \frac{2A_{12}A_c}{\rho U} \\
A_{21} \rho U & A_{22}
\end{bmatrix}
\begin{bmatrix}
\Psi_{th} \\
\Phi_p
\end{bmatrix}
$$

$$
+
\begin{bmatrix}
\frac{2B_{12}A_c}{\rho U} & 0 \\
B_{21} \rho U & 0
\end{bmatrix}
\begin{bmatrix}
\Psi_{th} \\
\Phi_p
\end{bmatrix}
+
\begin{bmatrix}
0 \\
\rho P_{o1} \frac{U A_c}{\rho U} (A_{21} + B_{21})
\end{bmatrix}
$$

$$
\text{(6)}
$$

2.3. Throttle valve

The flow rate through the throttle valve is a function of the pressure drop across the valve. Here, it is assumed the dynamics at the throttle duct section are much faster than the rest of the system, and only the steady-state behaviour is captured. The relationship between the pressure and the mass flow rate in the throttle valve section is given by

$$
\Phi_{th} = c_{th} u_{th} \sqrt{\Psi_p}
$$

(7)

where c_{th} is the valve constant and u_{th} is the throttle valve opening percentage.

2.4. Equations set

The equations for the dynamics of the complete compression system are obtained by combining (3), (6), and (7). The resulting nonlinear system has the compressor mass flow, the plenum pressure rise, the throttle section pressure rise, and the plenum mass flow rate as state variables. The state space equations of the assembled system are as follows:

$$
\begin{bmatrix}
\dot{\Phi}_c \\
\dot{\Psi}_{th} \\
\dot{\Phi}_p
\end{bmatrix} =
\begin{bmatrix}
0 & -B_{oH} & 0 \\
0 & 0 & -B \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Phi_c \\
\Psi_{th} \\
\Phi_p
\end{bmatrix}
$$

$$
+
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
B_{oH}(\Psi_c, ss) \\
\rho P_{o1} \frac{U A_c}{P_{o1} U A_c} (A_{21} + B_{21})
\end{bmatrix}
+
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
\frac{2B_{12}A_c}{\rho U} B_{22}
\end{bmatrix}
$$

(8)

The parameters of the theoretical model are summarized in Table 1. Also, the coefficients of the characteristic curve correspond to the stable and unstable operating regions of the compressor are given in this table. The corresponding matrix coefficients of the piping equation in (5) are found to be $A_{12} = 3.7 \times 10^6$, $A_{21} = -1.92 \times 10^{-3}$, $A_{22} = -8$, $B_{12} = -3.7 \times 10^6$, $B_{21} = 1.92 \times 10^{-3}$, and $B_{22} = 7.98$.

3. Explicit NMPC

In the compressor system control problem, we encounter with nonlinear system subject to physical and operational constraints on the input and state. Well-known systematic nonlinear control methods such as feedback linearization [35-37] and constructive Lyapunov-based methods [38,39] lead to very elegant solutions, but they depend on complicated design procedures that do not scale well to large systems and they are not developed in order to handle constraints in a systematic manner. Although the control signal of the
MPC controller is restricted, the MPC controller does not take the saturation in the compression system into account and cannot optimally predict therefore [28].

It is required that nonlinearities and constraints are explicitly considered in the controller for satisfying environmental and safety considerations, rewarding physical and operational constraints, and operating compressor system on the tighter performance specifications. Nonlinear predictive control, the extension of well-established linear predictive control to the nonlinear world, appears to be a well-suited approach for this kind of problem.

However, the solution of an on-line nonlinear optimization problem is often computationally complex and time-consuming and the real-time NMPC implementation is usually limited to slow processes where the sampling time is sufficient to support the computational needs. The on-line computational complexity can be circumvented with an explicit approach to NMPC, where an explicit approximate representation of the solution is computed using multi-parametric Nonlinear Programming (mp-NLP). The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation (which is an essential issue in safety-critical applications) and the possibility for designing embedded control systems with low software and hardware complexity. For nonlinear MPC, the prospects of explicit solutions are even higher than linear MPC, since the benefits of computational efficiency and verifiability are even more important. This may lead to a significant reduction in the requirements to real-time embedded computer hardware and formal software verification being a feasible practical tool. Therefore, we use the explicit NMPC [40] for surge control in the compression system.

3.1. Explicit NMPC formulation

Consider the 4nd-order state space equations of compressor system in (8), as mentioned above, with \(\Phi_c \) as compressor mass flow rate, the plenum pressure rise \(\Psi_p \), the throttle section pressure rise \(\Psi_{th} \), the plenum mass flow rate \(\Phi_p \) as state variables and \(\Phi_r \) is mass flow through a close-coupled valve in series with the compressor. The coefficients of the characteristic curve are given in Table 1.

The control objective is to avoid surge, i.e. stabilize the system. This may be formulated as

\[
\begin{align*}
J(u[0, T], x[0, T]) & = \int_0^T l(x(t), u(t), t) dt \\
& + S(x(T), T) + Rv^2
\end{align*}
\]

where

\[
l(x, u) = \alpha(x - x^*)^T(x - x^*) + \kappa u^2
\]

\[
S(x) = \beta(x - x^*)^T(x - x^*)
\]

with \(\alpha, \beta, \kappa \geq 0 \) and the set point \(x^* \) corresponds to an unstable equilibrium point, subject to the inequality constraints for \(t \in [0, T] \)

\[
\begin{align*}
u_{\min} & \leq u(t) \leq u_{\max} \\
-x_2 + 0.6 & \leq v \\
-v & \leq 0
\end{align*}
\]

and the ordinary differential equation (ODE) given by

\[
\frac{d}{dt}x(t) = f(x(t), u(t))
\]

that initial condition \(x(0) \in X \subset R^n \). Valve capacity requires the constraint \(0 \leq u(t) \leq 0.4 \) to hold, and the pressure constraint \(x_2 \geq 0.6 - v \) avoids operation too far left of the operating point. The variable \(v \geq 0 \) is introduced in order to avoid infeasibility and \(R = 10 \) is a large weight. The input signal \(u[0, T] \) is assumed to be piecewise constant and parameterized by a vector \(U \in R^p \) such that \(u(t) = \mu(t, U) \in R^p \) is piecewise constant.

3.2. Simulation results

The operation of closed-loop system under suggested controller is simulated with sampling time \(T_s = 1 \text{ ms.} \) In this simulation, \(\alpha = 1, \beta = 0 \), and \(\kappa = 0.08 \) are considered and Euler integration with \(T_s \) (size of every step) is applied to solve the ordinary differential equation. It should be remarked that the constraints on \(u \) and \(v \) are linear, such that any quadratic programming solution is feasible for the nonlinear programming.

Two operating scenarios are used to demonstrate the ability of the controller. In the first scenario, simulation of compression system equipped with CCV by using of parameters in Table 1 is given as follows. A compressor initially operates in a steady state where the throttle valve openings equal to 20%. At time \(t = 8 \text{ s}, \) the throttle is closed to 10%, such that the compressor is interred into surge if the controller had not activated, as shown in the Figure 3.

In this case, the compressor will experience the deep surge limit cycle. When the CCV and controller are activated, the CCV is opening at the time of closing throttle, therefore plenum fluid is recycled to the inlet that decreases the plenum pressure and accelerate the compressor mass flow. Finally, the operating point acquires the stable area as shown in Figure 4.

The control signal is also shown in Figure 5. In the second scenario, initially compressor is interred to the deep surge instability, and this situation continues until \(t = 8 \text{ s} \). In this time, the controller is allowed to operate and the CCV starts to move, as shown in Figure 6. Therefore, plenum fluid is returned to the inlet that
causes reduction of plenum pressure and growth of the compressor mass flow. Finally, compressor stable operating point is achieved instead of initial unstable states. The transient response of the compressor system is also shown in Figure 7.

The first scenario shows controller capability to comprehend the effects of pipe, throttle and the whole of the compressor system, and the latter is after the surge occurrence to demonstrate the ability of controller.

Using of an explicit nonlinear predictive control and taking into account nonlinear dynamics of pipe, we will be able to stabilize the compressor system under different conditions to prevent from the surge occurrence and also enlarging the range of compressor by the CCV as actuator.

For enhancing efficiency in the safe operation of the compressor, the different working conditions can be covered by using the controller.
4. Conclusion

The design of a CCV-based surge controller for centrifugal compressors was discussed. Many solutions for surge control have been proposed in the literature, but their effectiveness has been rare because of not considering the effects of the pipe. In this paper, based on the model of the compression system with piping acoustics, we derived the model that supports close-coupled valve as the most common actuator, and presented the application of explicit nonlinear model predictive control to perform stabilization of surge limit cycle. Proposed nonlinear model predictive control covers all of limitations over the states and CCV actuator. The controller was tested with the extended proposed model in different types of simulation scenarios at different conditions and its capability in rejection the flow disturbances related to surge instability and stabilizing the compressor system was shown. Robust model predictive control against system uncertainties and other disturbances can be investigated in the future studies.

Notes on contributors

Hashem Imani is a graduated Ph.D. in Control and System Engineering in Science and Research branch, Islamic Azad University, Tehran, Iran. His research interests include Nonlinear Control, MPC and Nonlinear Fiber Optics. Institutions addresses: Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran. Email: Imani.hashem@gmail.com

Hamid Malekizade is an assistant professor at the Department of Electrical Engineering, Imam Khomeini Maritime University, Nowshahr, Iran. He got the B.Sc. degree in Electrical Engineering from Imam Hossein University, Tehran, Iran in 1998. He also achieved M.Sc.in Control Engineering from Iran University of Science and Technology, Tehran, Iran in 2001. Now, he is the graduate Ph.D. in Control Engineering. He graduated from Science and Research branch, Islamic Azad University, Tehran, Iran in 2016. His main fields of interest are stabilizing marine systems and robust model predictive control. He was born in Kerman, Iran on June 21, 1975. Institutions addresses: Assistant Professor of Control Engineering Department of Electrical Engineering Imam Khomeini University of Maritime Sciences, Noshahr, Mazandaran, Iran. Email: h.malekizadeh@yahoo.com

Hamid Asadi Bagal was born in Ardabil, Iran. He received the B.Sc. and M.Sc. degrees with honors in electrical engineering, power systems, from Islamic Azad University, Science and Research Branch, Tehran, Iran, in 2004 and 2011, respectively. His research interests include optimizations in planning and operation of smart grids, load modelling and power quality, Power electronic and Power system reliability. Institutions addresses: Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran. Email: hamidasadi.b@gmail.com

Hasan Hosseinzadeh was born in 1979 in Ardabil, Iran. He received his BSc in 2003 University in Payam Noor University Ardabil and received his MSc in Sistine and Baluchistan University in 2006 and he received Ph.D. in Karaj Azad University in 2013. His thesis title is some fixed point theorems in complete metric space and Banach algebra. His research interests are Mathematical analysis and its applications, differential equations, image processing and other related mathematical fields. Institutions addresses: Department of mathematics, Ardabil Branch, Islamic Azad University, Ardabil, Iran. Email: h.hosseinzadeh@iauardabil.ac.ir

References

[1] de Jager B. Rotating stall and surge control: a survey. Proc. 34th IEEE Conf. Decision Control; New Orleans, LA; 1995.
[2] Pampreen RC. Compressor surge and stall. Manchester (VT): Concepts ETI; 1993.
[3] Brun K, Kurz R. Impact of piping impedance and acoustic characteristics on centrifugal compressor surge and operating range. Proceedings of the Turbo Machinery Symposium; Texas A&M University; 2013.
[4] Sparks CR. On the transient interaction of centrifugal compressors and their piping systems. ASME. 1983;105: 891–901.
[5] Gravdahl JT, Egeland O. Compressor surge and rotating stall: modeling and control. London: Springer-Verlag; 1999.
[6] Longley JP. A review of nonsteady flow models for compressor stability. ASME J Turbomach. 1994;116(2): 202–215.
[7] Greitzer EM. Surge and rotating stall in axial flow compressors – Part I: theoretical compression system model. ASME J Eng Power. 1976;98:190–198.

[8] Greitzer EM. Surge and rotating stall in axial flow compressors – Part II: experimental results and comparison with theory. ASME J Eng Power. 1976;98:199–217.

[9] Hansen KE, Jørgensen P, Larsen PS. Experimental and theoretical study of surge in a small centrifugal compressor. ASME J Fluids Eng. 1981;103:391–395.

[10] Van Helvoirt J, de Jager B. Dynamic model including piping acoustics of a centrifugal compression system. J Sound Vib. 2007;302:361–378.

[11] Hagino N, Kashiwabara Y, Uda K. Prediction and active control of surge inception in centrifugal compressor system without plenum. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; Tucson, AZ; 2005.

[12] Jungowski WM, Price GR. Pressure oscillations occurring in a centrifugal compressor system with and without passive and active surge control. ASME J Turbomach. 1996;118:29–40.

[13] Krus P, Weddelh K, Palmberg J. Fast pipeline models for simulation of hydraulic systems. ASME J Dyn Syst Meas Control. 1994;116:132–136.

[14] Yoon SY, Lin Z, Goyne C, et al. An enhanced Greitzer compressor model including pipeline dynamics and surge. J Vibrat Acoust. 2011;133:051005-1–051005-14.

[15] Staroselsky N, Ladin L. Improved surge control for centrifugal compressors. Chem Eng. 1979;86:175–184.

[16] Willems F, de Jager B. Modeling and control of compressor flow instabilities. IEEE Control Syst Mag. 1999;19(5):8–18.

[17] Epstein AH, Williams JEF, Greitzer EM. Active suppression of aerodynamic instabilities in turbomachines. J Propul Power. 1989;5(2):204–211.

[18] Spakowsky ZS, Van Schalkwyk CM, Suder KL, et al. Rotating stall control in a high-speed stage with inlet distortion: Part I – radial distortion. ASME J Turbomach. 1999;121(3):510–516.

[19] Gravdahl JT, Egeland O, Vatland SO. Drive torque actuation in active surge control of centrifugal compressors. Automatic. 2002;38(11):1881–1893.

[20] Bartolini G, Muntoni A, Pisano A, et al. Compressor surge active control via throttle and CCV actuators. a second-order sliding-mode approach. International Workshop on Variable Structure Systems (VSS’08); Antalya, Turkey; 2008.

[21] Uddin N, Gravdahl JT. Piston-actuated active surge control of centrifugal compressor including integral action. 11th International Conference on Control Automation and System (ICCAS), Gyeonggi-do; 2011.

[22] Willems F, de Jager B. Active compressor surge control using a one-sided controlled bleed/recycle valve. 37th IEEE Conference on Decision and Control; Tampa, FL; 1998.

[23] Weigl HJ, Bright MM, Strazisar AJ, et al. Active stabilization of rotating stall and surge in a transonic single stage axial compressor. ASME J Turbomach. 1998;120(4):625–636.

[24] Abed EH, Houpt PK. Bifurcation analysis of surge and rotating stall in axial flow compressors. American Control Conference; San Diego. 1990.

[25] Nayfeh MA, Abed EH. High-gain feedback control of rotating stall in axial flow compressors. Automatica. 2002;38(6):995–1001.

[26] Moghaddam JJ, Farahani MH, Ananifard N. A neural network-based sliding-mode control for rotating stall and surge in axial compressors. Appl Soft Comput. 2011;11(1):1036–1043.

[27] Cortinovis A, Paeschi D, Mercangoez M, et al. Model predictive anti-surge control of centrifugal compressors with variable-speed drives. IFAC Proceedings. 2012;45(8):251–256.

[28] Molenaar PZ. Model predictive compressor surge control [Master thesis]. Eindhoven: Technical University Eindhoven, Department Mechanical Engineering, Dynamics and Control Technology Group; 2007.

[29] Yoon SY, Lin Z, Allaire PE. Experimental evaluation of a surge controller for an AMB supported compressor in the presence of piping acoustics. IEEE Trans Control Syst Technol. 2014;22:1215–1223.

[30] Gravdahl JT, Egeland O. Centrifugal compressor surge and speed control. IEEE Trans Control Syst Technol. 1999;7(5):567–579.

[31] Krstic M, Fontaine D, Kokotovic PV, et al. Useful nonlinearities and global stabilization of bifurcations in a model of jet engine surge and stall. IEEE Trans Autom Control. 1998;43(12):1739–1745.

[32] Yoon SY, Lin Z, Goyne C, et al. An enhanced Greitzer compressor model with pipeline dynamics included. In: Proceedings of the 2011 American Control Conference; San Francisco, CA. IEEE; 2011. p. 4446–4451.

[33] Uddin N, Gravdahl JT. Bond graph modeling of centrifugal compression systems. Transactions of The Society for Modeling and Simulation International. 2015;91:998–1013.

[34] Yang WC, Tobler WE. Dissipative modal approximation of fluid transmission lines using linear friction model. J Dyn Sys Meas Control. 1991;113:152–162.

[35] Isidori A. Nonlinear control systems. 2nd Ed. Berlin: Springer–Verlag; 1995.

[36] Marino R, Tomei P. Nonlinear control design. New York: Springer–Verlag; 1995.

[37] Johansen TA. Approximate explicit receding horizon control of constrained nonlinear systems. Automatica. 2004;40:293–300.