Timing of the pre-transplant workup for renal transplantation: Is there room for improvement?

Marie Dirix¹; Ester Philipse¹,³; Rowena Vleut¹,³; Vera Hartman²; Bart Bracke²; Thierry Chapelle²; Geert Roeyen²; Dirk Ysebaert²; Gerda Van Beeumen¹,²; Erik Snelders¹,³; Annick Massart¹,³; Katrien Leyssens¹; Marie M Couttenye¹,³; Daniel Abramowicz¹,³; Rachel Hellemans¹,³

¹ Department of Nephrology and ² Hepatobiliary, Transplantation and Endocrine Surgery; Antwerp University Hospital; ³ Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium

Correspondence to: Marie Dirix; E-mail: marie.dirix@hotmail.com
Abbreviations

ADPKD, autosomal dominant polycystic kidney disease

BMI, body mass index

CKD, chronic kidney disease

CKD5, chronic kidney disease stage 5 (eGFR < 15 ml/min/1.73m²)

eGFR, estimated glomerular filtration rate

ERBP, European Renal Best Practice

RRT, renal replacement therapy

USRDS, United States Renal Data System
ABSTRACT

Background. Since patient survival after kidney transplantation is significantly improved with a shorter time on dialysis, it is recommended to start the transplant workup in a timely fashion.

Methods. This retrospective study analyses the chronology of actions taken during the care for patients with CKD stage 5 who were waitlisted for a first kidney transplant at the Antwerp University Hospital between 2016 and 2019. We aimed to identify risk factors for a delayed start of the transplant workup (i.e. after dialysis initiation) and factors that prolong its duration.

Results. Of the 161 patients included, only 43% started the transplant workup before starting dialysis. We identified the number of hospitalization days (OR 0.79, 95%CI: 0.69-0.89, p < 0.001), language barriers (OR 0.20, 95%CI: 0.06-0.61, p=0.005) and a shorter nephrology follow-up before CKD stage 5 (OR 0.99, 95%CI: 1.0-0.98, p=0.034) as factors having a significant negative impact on the probability of starting the transplant screening before dialysis. The workup took a median of 8.6 months (IQR 5-14) to complete. The number of hospitalization days significantly prolonged its duration.

Conclusion. The transplant workup was often started too late and the time needed to complete it was surprisingly long. By starting the transplant workup in a timely fashion and reducing the time spent on the screening examinations, we should be able to register patients on the waiting list before or at least at the start of dialysis. We believe that such an internal audit could be of value for every transplant center.

Keywords: chronic renal failure, CKD, dialysis, ESRD, kidney transplantation, predialysis.
INTRODUCTION

Renal transplantation is the preferred treatment for patients with renal failure as it increases survival\(^1\)-\(^3\) and improves quality of life.\(^4\) The time spent on dialysis before transplantation appears to have a directly proportional negative effect on patient survival and possibly also graft survival.\(^5\)-\(^12\) Therefore it is increasingly recommended to aim for pre-emptive transplantation, either with a living donor or by timely registration on the waiting list for deceased donor transplantation.\(^13\),\(^14\)

Although pre-emptive registration on the transplant waiting list occurs more often in recent years, it is still only performed in a minority of patients.\(^15\)-\(^17\) Furthermore, a variability in the timing of referral to a transplant center persists with some patients spending months to years on dialysis before starting their pre-transplant evaluation.\(^16\),\(^18\),\(^19\) The recently updated KDIGO guidelines specifically recommend referral of potential kidney transplant candidates for evaluation at least 6 to 12 months before anticipated dialysis initiation in order to facilitate the identification and workup of living donors and to plan for possible pre-emptive transplantation.\(^13\) Data about the timing of the transplant workup and the time required to complete it, are scarce however.

MATERIALS AND METHODS

Study design

This study is a multi-centric retrospective analysis evaluating the chronology of actions taken during the care for patients waitlisted for a first kidney transplantation at the Antwerp University Hospital in Belgium. (Pre-)dialysis care of these patients was either performed at the Antwerp University Hospital or one of its referring centers in the province of Antwerp (16 hospitals in total). The transplant workup was
performed in the referring center, and the patient was referred to the transplant center after finalizing the workup to proceed to registration on the waiting list. All physicians (both in the academic center as in the referring hospitals) used a guidance document for the pre-transplant workup that was developed by the academic center and is largely based on the ERBP guidelines.20

Population
Two hundred and one patients were registered on the Antwerp renal transplant deceased donor waiting list between 1/1/2016 and 12/11/2019. Patients were excluded if they were younger than 18 years old (n=9), if they had received a previous renal allograft (n=24), if they were transferred from a different transplant center (n=4), or if there were no data available on the pre-transplant care period (n=3). This led to a total number of 161 patients included for analysis (for exclusion process, see Figure 1). Although this study only includes patients originally waitlisted for a deceased donor transplant, five patients who went through the standard workup for deceased donor renal transplant were eventually transplanted with a living donor later on. Patients were followed up until 31/01/2020.

Data collected
Based on the available literature, we collected a set of patient-derived variables that might influence the timing of pre-transplant care (for details of the definitions used, see table S1 of the supplementary appendix). We examined whether supplementary medical examinations were performed on top of the recommended screening examinations (ERBP guidelines).20 We specifically recorded invasive urologic examinations, colonoscopy, gastroscopy and ultrasound of the carotid arteries and
assessed whether there was a medical indication for these procedures, or as recommended by the aforementioned ERBP guideline or the national cancer screening guidelines.

We recorded the following key moments during pre-transplant nephrology care:

- The date of the first nephrology visit;
- The date of the nephrology visit when the eGFR was < 15 ml/min/1.73m² for the first time (i.e. the start of CKD stage 5);
- The date of the first medical examination performed to screen patients for eligibility for transplantation (i.e. the start of workup);
- The date of the first access procedure for dialysis;
- The date of the first dialysis session;
- The date of registration on the renal transplant waiting list;
- The date of renal transplantation for those who were transplanted during the study period.

Statistical analysis

All statistical analyses were performed with the use of SPSS statistics software. Differences between groups were analyzed using Mann-Whitney U test for continuous variables and Chi square test for categorical variables with Yates’ Correction for Continuity. When the examined numbers were too small, Fisher’s exact test was used. Multiple logistic regression analysis was performed to explore the influence of patient-derived factors on the probability of starting transplant workup before the start of dialysis. To this end, we initially included all clinically relevant parameters. To avoid over-fitting of the model, we selected a final model...
based on clinical relevance and statistical significance in univariable analysis. We ultimately included seven variables in our model.

We subsequently calculated the workup time for every patient as the number of days between the first transplant screening examination and the ultimate registration on the waiting list. For the multiple linear regression analysis we selected the variables based on clinical relevance and statistical significance in the simple linear regression analysis. We calculated R^2 to assess to what extent the combination of independent variables could explain the variance in workup time. In order to fulfil the assumption of normal distribution, we used a logarithmic transformation (\log_{10}) of the workup time in both the simple and multiple regression models. All listed p-values are two-tailed. Our study was exempt from institutional review board approval.

RESULTS

Patients

Baseline characteristics at the time of waitlisting are shown in table 1. The median age was 53 years and 62% were male. Patients with autosomal dominant polycystic kidney disease (ADPKD) or glomerular disease comprised almost half of the population. Fifty seven per cent of patients (57%) were treated with hemodialysis and 29% with peritoneal dialysis at the time of registration on the waiting list. The remaining 14% of patients were pre-emptively registered. Nearly one fourth of patients had cardiovascular disease and one in three patients experienced one or more infectious episodes between the start of CKD stage 5 and the moment of registration on the waiting list. One third of patients mentioned some degree of financial difficulties and more than 20% were late referrals. The median time
between the first nephrology contact and the start of CKD stage 5 was 41 months (3.4 years).

Timing of the pre-transplant workup

Only 43% (69/161) of patients started their transplant evaluation before the start of dialysis, and 32% (51/161) started the evaluation before they had their first dialysis access created. Of the 69 patients who started the transplant workup before the start of dialysis, 23 (33%) were waitlisted before the start of dialysis. This corresponds to 14.2% of the total population. Five of them (5/69 or 7%) were preemptively transplanted, amongst whom 3 received a kidney from a living donor (Figure 2). Compared to patients who started the transplant workup before the start of dialysis, those who started the transplant workup after dialysis were more often male (71 vs. 51%, p=0.01), were more likely to have hypertensive nephropathy and less likely to have ADPKD as primary renal disease (18 vs. 4%, p=0.0075 and 10 vs. 32%, p<0.001, respectively) (Table 1). They had significantly more cardiovascular disease (32 vs. 13%, p=0.008) and were more often hospitalized between the start of CKD stage 5 and the start of the workup (9 vs. 0 days, p<0.001). As for dialysis modality, they were more often treated with hemodialysis than peritoneal dialysis (82 vs. 18%). As for non-medical factors, having some degree of language barrier or financial struggle was more frequent in the group of patients who started the workup after dialysis (39 vs.12%, p<0.001 and 40 vs. 23%, p=0.023, respectively). They also had a significantly shorter time in nephrology care prior to CKD stage 5 (21 vs. 62 months, p<0.001) and were more often late referrals (33 vs. 7%, p<0.001). The time interval between the start of CKD stage 5 and the start of dialysis was significantly
shorter (3 vs. 10 months, \(p<0.001 \)) but this difference lost statistical significance after exclusion of late referrals (data not shown). Furthermore, patients were less likely to start their transplant workup before starting dialysis when they were cared for in one of the referring centers instead of the transplant center (14 vs. 33%, \(p=0.007 \)).

Multiple logistic regression analysis was performed to assess the relative impact of different patient-derived factors on the likelihood of starting the transplant workup before the start of dialysis (Table 2). Three variables appear to make a statistically significant contribution to the model. The most important predictor was the number of hospitalization days with an odds ratio of 0.79 (95%CI: 0.69-0.89). Patients with language difficulties were also less likely to pre-emptively start their pre-transplant workup (OR 0.20; 95%CI: 0.06-0.61). The amount of time in nephrology care before the start of CKD stage 5 was the third contributor with an odds ratio of 1.01 (95%CI: 1.00-1.02).

Duration of the transplant workup

After starting the transplant workup, it took a median of 8.6 months (IQR 5-14) to finalize the workup and be registered on the waiting list. There was no significant difference between the patients that started the transplant evaluation before or after starting dialysis with a median duration of 10 versus 8 months (\(p=0.46 \)) (Table 3).

For the patients who started the workup after they started dialysis (n=91), there was a median delay of 4.2 months (IQR 1.6-12) between the start of dialysis and the start of the transplant evaluation. This additional delay led to a median of 11.2 months (IQR 5.7-19.8) spent on dialysis before being registered on the transplant waiting list (n=138, after exclusion of the 23 patients who were registered prior to the start of dialysis) with a significant difference between the patients that started the transplant
evaluation before versus after dialysis: 4.6 months (IQR 2.3-10.9) vs. 15.4 months (IQR 8.7-25.2), p<0.001.

Because the workup time might have been artificially prolonged in the patients that were pre-emptively wait-listed (because the physician had more time), a separate analysis was performed after exclusion of these patients but this failed to show any improvement (Table 3). Furthermore, when selecting the ‘healthiest’ subgroup of patients (i.e. without cardiovascular disease, diabetes or infections and with a maximum of 5 hospitalization days during the workup period), the median workup time was only marginally shorter. There was no significant difference in time spent on the transplant evaluation between patients cared for in the transplant center compared to the referring centers.

Thirty-one per cent of patients had at least one extra medical examination beyond the recommended workup that had no clear medical indication traceable in the patient file. This was predominantly the case for gastroscopy and ultrasound of the carotid arteries (Table 4).

After multiple linear regression analysis, only the number of hospitalization days appeared significantly related with the time needed to complete the transplant workup (Table 5). However, this model explained only 16% of the total variance in the time spent on the transplant workup, indicating that other unknown factors probably play a major role in its delay.
DISCUSSION

We performed an in-depth retrospective analysis of the chronology of actions taken during the care for transplant-eligible patients with renal failure in our center and our network of referring hospitals in Antwerp, Belgium. Our key conclusion is that less than half (43%) of patients started the transplant evaluation before dialysis initiation and only 14% were pre-emptively waitlisted. These findings are comparable to reports from the United States and Europe. In a single-center analysis from the United States analyzing data from 2004 to 2007 (n=695), Waterman et al observed that between 83% and 60% of patients had been on dialysis for 2 years or more at the time of presentation for transplant evaluation19. In a multi-center analysis of all transplant centers in Georgia, USA (n=1580), Gander et al observed that only 20% of referrals for transplant evaluation were pre-emptive referrals.15 Data from Europe concerning the rate of pre-emptive registration are also in line with our findings, ranging from 6% in the 2018 French REIN registry report21, 7.3% in the 2016 Eurotransplant annual report22 to 26% in the French North-West network from 2008 to 2012.17

Multivariable analysis identified three variables that were significantly associated with a delayed start of the transplant workup (i.e. after dialysis initiation), which could be addressed to some extent (Table 6). The most important risk factor was the number of hospitalization days from CKD stage 5 to the start of screening, probably representing poorer general health. Medical complications are frequent and not always preventable in patients with kidney failure. Nevertheless, prompt initiation of the workup should be encouraged even in more vulnerable patients because complications tend to accumulate with time spent on dialysis. The second risk factor was the presence of a language barrier. Informing and preparing patients for dialysis...
and transplantation requires extensive patient-tailored communication and is obviously more challenging in case of a language difference. Particularly in this setting, early information on transplantation, preferably before or together with dialysis preparation, could promote timely waitlisting. The third risk factor for a delayed start of the transplant workup was a shorter duration of pre-CKD 5 nephrology care. This was mainly driven by late referrals. Although this subgroup is difficult to target with preventive measures, extra efforts should aim at minimizing the time between dialysis initiation and the start of the transplant workup.16, 23, 24

Studies addressing the timing of the transplant evaluation are scarce. A French study on 1725 patients that started RRT between 1997 and 2003 in the region of Lorraine identified only older age and treatment in a center that does not perform renal transplantation as significant factors reducing the likelihood of being waitlisted before the start of dialysis.25 The difference in identified risk factors illustrates the between-center variability in pre-transplant care and highlights the importance for every center to audit its own performance.

We observed a median duration of 8.6 months between the start of the transplant workup and registration on the waiting list, which is similar compared to the limited data available. Single-center data from France (n=50) from 2013-2014 reported a median of 8.1 ± 4.7 months to complete the transplant evaluation26 and in a 2015 study from the USA, Monson et al observed that 23.4\% of patients did not complete the transplant workup within 1 year after their first pre-transplant visit.27

In our study the time spent on the transplant workup did not differ between patients that started the transplant evaluation before vs. after the start of dialysis. However, we observed an additional median delay of 4.2 months between the start of dialysis and the start of the transplant workup in the last group. This had a dramatic impact
on the total waiting time spent on dialysis before being waitlisted (15.4 vs. 4.6 months). The delay between the start of dialysis and the start of the transplant workup could have had many potential explanations such as access-related complications, late referrals and hope of recovery of renal function among many others. It is however significantly shorter than the time observed in the Southeastern USA by Patzer et al who observed a median delay of 245 days or 8 months between the start of dialysis and referral for transplant evaluation in 11,862 incident dialysis patients between 2016 and 2018.16 Despite our elaborate collection of medical and socioeconomic variables, multivariable analysis could only identify the number of hospitalization days as a significantly prolonging factor of the time needed to finalize the transplant workup. Monson et al performed a similar analysis in 256 patients referred for transplant evaluation between 2009 and 2010 in the university hospital of Chicago and observed that needing >1 hospitalization was associated with slower rates of transplant evaluation completion. Contrary to our findings, they observed that needing a greater number of medical tests was associated with longer completion times.27 Our model could only explain 16% of the total variance in the time spent on the transplant workup. We therefore presume that significant time is lost during the workup period without a clear explanation and that there is room for improvement. Furthermore, the observation that excellent transplant candidates without comorbidities still need a median of seven months to perform a minimal workup, suggests that the physician’s role is considerable. It is likely that physicians’ and patient’s inertia, and administrative, practical and logistic hurdles all combine to prolong the duration of the transplant workup beyond reasonable limits for many patients.
Our study provides a detailed analysis of the timing and duration of the transplant workup. Nevertheless, it has several limitations. Firstly, due to the limited sample size our analysis is prone to overestimation of the differences between groups and our regression models risk over-fitting of the data. It is possible that other variables which are known to be associated with a lower access to renal transplantation, notably comorbidities such as lung disease²⁸, ²⁹, cardiovascular disease¹⁶, ²⁸ or diabetes¹⁶, ²⁸, might gain significance in a larger sample. Secondly, despite our elaborate collection of variables, we lacked several items that could also have influenced the delay in the transplant workup (e.g. the time lost on prerequisites such as smoking cessation, or the waiting times for different screening examinations in the various hospitals, amongst many others). Thirdly, despite the fact that our population was similar to other large transplant registries with regards to comorbidities such as cardiovascular disease, diabetes and intercurrent infections³⁰, it only lends a very detailed insight into Belgium nephrology care, and might not be generalizable. In fact, the workup time probably even varied between the 16 centers involved in this study, as illustrated by the observation that the workup was more often started before dialysis in the academic center than in the referring centers. However, our cohort was too small to perform an inter-center comparative statistical analysis. Nevertheless, all centers used a guidance document provided by the academic center in order to harmonize the workup between centers and avoid unnecessary examinations as much as possible.

We conclude that, despite international recommendations, patients often start the transplant evaluation too late and the workup takes a relatively long time to finish. We presume that room for improvement exists on all different levels in pre-transplant renal care (Table 6). Education about transplantation, prior or simultaneously with
preparation for dialysis should be a top priority to promote pre-emptive (living-donor) kidney transplantation and to minimize the time spent on dialysis waiting for deceased-donor kidney transplantation. Innovative research has been done regarding more engaging and effective ways of patient education.31 Technological tools providing accessible multilingual education and the organization of a specific CKD5-clinic could also be of interest.26 Implementation of an external quality control measure assessing center-specific transplant education32 and referral rates33 have also been proposed together with modifications of payment strategies of dialysis facilities.34, 35

The transplant workup should also be limited to the recommended guidelines and extra examinations should only be performed if there is a clear clinical indication. A recent ERA-EDTA expert opinion paper suggests restricting the transplant workup even further for younger patients (<40 years old) without comorbidities.36

We would also like to stress that the objective to register patients pre-emptively or at the latest at the start of dialysis is not a futile action. Although it is true that time on dialysis is an important factor affecting an individual’s ranking on the waiting list for deceased donor transplantation and hence his or her chance to be transplanted, there is still a significant chance of being pre-emptively transplanted. Indeed, data from the 2016 Eurotransplant annual report show that 7% of patients were pre-emptively registered and 4.3% were pre-emptively transplanted with a deceased donor.22 These statistics are consistent across the years, which means that about 30-50\% of the pre-emptively registered patients also received a deceased-donor kidney pre-emptively. In other words, striving for pre-emptive registration has clear advantages for our patients and is not outweighed by the impact of waiting time on a patient’s ranking on the waiting list.
In summary, we feel that analyzing the timing of the start and the duration of the transplant workup could be of value for every transplant center and that these data should be collected in national or international registries in order to further improve the care we give to our patients with renal failure.

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable request to the corresponding author.

CONFLICT OF INTEREST STATEMENT

The authors report no conflicts of interest. The results presented in this paper have not been published previously in whole or part, except in abstract format.

REFERENCES

1. Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. *N Engl J Med*. Dec 2 1999;341(23):1725-30. doi:10.1056/NEJM199912023412303
2. Rabbat CG, Thorpe KE, Russell JD, Churchill DN. Comparison of mortality risk for dialysis patients and cadaveric first renal transplant recipients in Ontario, Canada. *J Am Soc Nephrol*. May 2000;11(5):917-22.
3. McDonald SP, Russ GR. Survival of recipients of cadaveric kidney transplants compared with those receiving dialysis treatment in Australia and New Zealand, 1991-2001. *Nephrol Dial Transplant*: Dec 2002;17(12):2212-9. doi:10.1093/ndt/17.12.2212
4. Laupacis A, Keown P, Pus N, et al. A study of the quality of life and cost-utility of renal transplantation. *Kidney Int*. Jul 1996;50(1):235-42. doi:10.1038/ki.1996.307
5. Mange KC, Joffe MM, Feldman HI. Effect of the use or nonuse of long-term dialysis on the subsequent survival of renal transplant recipients from living donors. *N Engl J Med*. Mar 8 2001;344(10):726-31. doi:10.1056/NEJM200103083441004
6. Goldfarb-Rumyantsev AS, Hurdle JF, Scandling JD, Baird BC, Cheung AK. The role of pretransplantation renal replacement therapy modality in kidney allograft and recipient survival. *Am J Kidney Dis*. Sep 2005;46(3):537-49. doi:10.1053/j.ajkd.2005.05.013
7. Cosio FG, Alamir A, Yim S, et al. Patient survival after renal transplantation: I. The impact of dialysis pre-transplant. *Kidney Int*. Mar 1998;53(3):767-72. doi:10.1046/j.1523-1755.1998.00787.x
8. Kasiske BL, Snyder JJ, Matas AJ, Ellison MD, Gill JS, Kausz AT. Preemptive kidney transplantation: the advantage and the advantaged. *J Am Soc Nephrol*. May 2002;13(5):1358-64. doi:10.1097/01asn.0000013295.11876.c9
9. Meier-Kriesche HU, Port FK, Ojo AO, et al. Effect of waiting time on renal transplant outcome. *Kidney Int*. Sep 2000;58(3):1311-7. doi:10.1046/j.1523-1755.2000.00287.x
10. Meier-Kriesche HU, Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. *Transplantation*. Nov 27 2002;74(10):1377-81. doi:10.1097/00007890-200211270-00005
11. Haller MC, Kainz A, Baer H, Oberbauer R. Dialysis Vintage and Outcomes after Kidney Transplantation: A Retrospective Cohort Study. *Clin J Am Soc Nephrol*. Jan 6 2017;12(1):122-130. doi:10.2215/CJN.04120416
12. Haller MC, Kammer M, Oberbauer R. Dialysis vintage and outcomes in renal transplantation. *Nephrol Dial Transplant*. Apr 1 2019;34(4):555-560. doi:10.1093/ndt/gfy099
13. Chadban SJ, Ahn C, Axelrod DA, et al. Summary of the Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. *Transplantation*. Apr 2020;104(4):708-714. doi:10.1097/TP.0000000000003137
14. Abramowicz D, Hazzan M, Maggiore U, et al. Does pre-emptive transplantation versus post start of dialysis transplantation with a kidney from a living donor improve outcomes after transplantation? A systematic literature review and position statement by the Descartes Working Group and ERBP. *Nephrol Dial Transplant*. May 2016;31(5):691-7. doi:10.1093/ndt/gfv378
15. Gander JC ZX, Plantinga L, et al. Racial disparities in preemptive referral for kidney transplantation in Georgia. *Clin Transplant*. 2018;32(9):e133380.
16. Patzer RE, McPherson L, Wang Z, et al. Dialysis facility referral and start of evaluation for kidney transplantation among patients treated with dialysis in the Southeastern United States. *Am J Transplant*. Aug 2020;20(8):2113-2125. doi:10.1111/ajt.15791
17. Riffaut N, Lobbedez T, Hazzan M, et al. Access to preemptive registration on the waiting list for renal transplantation: a hierarchical modeling approach. *Transpl Int*. Sep 2015;28(9):1066-73. doi:10.1111/tri.12592
18. Kim SJ GJ, Knoll G, Campbell P, Cantarovich M, Cole E, Kiberd B. Referral for Kidney Transplantation in Canadian Provinces. *J Am Soc Nephrol*. 2019;30(9):1708-1721. doi:10.1681/ASN.2019020127
19. Waterman AD PJ, Hyland SS, McCabe MS, Schenk EA, Liu J. Modifiable patient characteristics and racial disparities in evaluation completion and living donor transplant. *Clin J Am Soc Nephrol*. 2013;Jun; 8(6):995-1002. doi:10.2215/CJN.08880812.
20. Abramowicz D, Cochat P, Claas FH, et al. European Renal Best Practice Guideline on kidney donor and recipient evaluation and perioperative care. *Nephrol Dial Transplant*. Nov 2015;30(11):1790-7. doi:10.1093/ndt/gfu216
21. *Rapport annuel 2018 de la Réseau Épidémiologie et Information en Néphrologie (REIN).*
22. Eurotransplant. Annual report 2016.
23. Pradel FG, Jain R, Mullins CD, Vassalotti JA, Bartlett ST. A survey of nephrologists’ views on preemptive transplantation. *Clin J Am Soc Nephrol*. Nov 2008;3(6):1837-45. doi:10.2215/CJN.00150108
24. Pladys A MC, Couchoud C, Jacquelinet C, Laurain E, Merle S, Vigneau C, Bayat S; REIN registry. Outcome-dependent geographic and individual variations in the access to
renal transplantation in incident dialysed patients: a French nationwide cohort study. Transpl Int 2019;Apr; 32(4):369-386. doi:10.1111/tri.13376.

25. Bayat S, Frimat L, Thilly N, Loos C, Briancon S, Kessler M. Medical and non-medical determinants of access to renal transplant waiting list in a French community-based network of care. Nephrol Dial Transplant. Oct 2006;21(10):2900-7. doi:10.1093/ndt/gfl329

26. Citarda S GR, Poux JM, Guerraoui A, Hallonet P, Lino-Daniel M, Thivend P, Caillette-Beaudoin A. Accès à la liste d’attente de transplantation rénale : mise en place d’un chemin clinique [Access to kidney transplantation’s waiting list: Setting up a clinical pathway]. Nephrol Ther 2016;Dec; 12(7):525-529. doi:10.1016/j.nephro.2016.05.009

27. Monson RS KP, Walczak D, Benedetti E, Oberholzer J, Danielson KK. Disparities in completion rates of the medical prerenal transplant evaluation by race or ethnicity and gender. Transplantation. 2015;Jan;99(1):236-42. doi:10.1097/TP.0000000000000271

28. Bayat S MM, Couchoud C, Bayer F, Lassalle M, Villar E, Caillé Y, Mercier S, Joyeux V, Noel C, Kessler M, Jacquelinet C; REIN registry. Individual and regional factors of access to the renal transplant waiting list in france in a cohort of dialyzed patients. Am J Transplant 2015;Apr; 15(4):1050–60.

29. Tandon A WM, Roe KC, Patel S, Ghahramani N. Nephrologists’ likelihood of referring patients for kidney transplant based on hypothetical patient scenarios. Clin Kidney J. Aug 2016;9(4):611-5. doi:10.1093/ckj/sfw031

30. ABM. Agence de la biomédecine: Le rapport médical et scientifique du prélèvement et de la greffe en France - Greffe rénale. 2018;

31. Wood EH WA, Pines R. Storytelling to Inspire Dialysis Patients to Learn about Living Donor Kidney Transplant. Blood Purif. 2021;Epub ahead of print:1-7. doi:doi: 10.1159/000512651.

32. Patzer RE PS. Policies to promote timely referral for kidney transplantation. Semin Dial. Jan 2020;33(1):58-67. doi:10.1111/sdi.12860

33. Paul S PL, Pastan SO, Gander JC, Mohan S, Patzer RE. Standardized Transplantation Referral Ratio to Assess Performance of Transplant Referral among Dialysis Facilities. Clin J Am Soc Nephrol. Feb 7 2018;13(2):282-289.

34. KJ F. Accountability of Dialysis Facilities in Transplant Referral: CMS Needs to Collect National Data on Dialysis Facility Kidney Transplant Referrals. Clin J Am Soc Nephrol. Feb 7 2018;13(2):193-194.

35. System CfMaMSESRDPP. https://www.federalregister.gov/documents/2018/11/14/2018-24238/medicare-program-end-stage-renal-disease-prospective-payment-system-payment-for-renal-dialysis. Updated 2018,

36. Maggiore U, Abramowicz D, Budde K, et al. Standard work-up of the low-risk kidney transplant candidate: a European expert survey of the ERA-EDTA Developing Education Science and Care for Renal Transplantation in European States Working Group. Nephrol Dial Transplant. Sep 1 2019;34(9):1605-1611. doi:10.1093/ndt/gly391

37. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1-150.
Table 1. Descriptive statistics

	Total population (n=161)	Start of transplant workup Before start of dialysis (n=69)	After start of dialysis (n=92)	P-value
Median age – years (IQR)	53 (43-64)	52 (39-61)	53.5 (45-65)	p = 0.16
Male - no. (%)	100 (62.1)	35 (50.7)	65 (70.7)	p = 0.01
BMI - kg/m2 (IQR)	26.3 (23.4-29.5)	25.7 (23-29)	27 (24.5-30)	p = 0.065
Smoking - no. (%)	14 (8.7)	5 (7.2)	9 (9.8)	p = 0.78
Primary renal disease				
ADPKD - no. (%)	31 (19.2)	22 (32.0)	9 (9.8)	p = 0.001
Diabetic nephropathy - no. (%)	26 (16.15)	8 (11.6)	18 (19.6)	p = 0.17
Glomerular disease - no. (%)	35 (21.7)	14 (20.3)	21 (22.8)	p = 0.7
Hypertensive nephropathy - no. (%)	20 (12.4)	3 (4.35)	17 (18.5)	p = 0.0075
Tubulointerstitial disease - no. (%)	17 (10.6)	8 (11.6)	9 (9.8)	p = 0.80
CAKUT - no. (%)	12 (7.4)	7 (10.1)	5 (5.4)	p = 0.36
Other - no. (%)	6 (3.7)	2 (2.9)	4 (4.3)	p = 0.70
Unknown - no. (%)	14 (8.7)	5 (7.25)	9 (9.8)	p = 0.78
Dialysis modality at waitlisting				
Hemodialysis - no. (%)	92 (57.1)	17 (24.6)	75 (81.5)	p = 0.001
Peritoneal dialysis - no. (%)	46 (28.6)	29 (42.0)	17 (18.5)	p = 0.001
Not yet treated with dialysis - no.	23 (14.2)	23 (33.3)	NA	
Comorbidities				
Diabetes mellitus - no. (%)	38 (23.6)	11 (15.9)	27 (29.3)	p = 0.05
Cardiovascular disease - no. (%)	38 (23.6)	9 (13.0)	29 (31.5)	p = 0.006
Lung disease - no. (%)	36 (22.4)	12 (17.4)	24 (26.1)	p = 0.19
Liver disease - no. (%)	8 (5.0)	2 (2.9)	6 (6.5)	p = 0.47
Psychiatric disease - no. (%)	25 (15.5)	8 (11.6)	17 (18.5)	p = 0.23
Infection - no. (%)	54 (33.5)	17 (24.6)	37 (40.2)	p = 0.057
History of malignancy - no. (%)	9 (5.6)	2 (2.9)	7 (7.6)	p = 0.30
Hospitalization days between start of CKD stage 5 and start of transplant workup - days (IQR)	2 (0-11)	0.00 (0-0)	9.00 (2-20)	p = 0.001
Psychosocial				
Financial issues - no. (%)	33 (20.9)	16 (23.2)	37 (40.2)	p = 0.023
Insufficient health insurance - no.	12 (7.4)	2 (2.9)	10 (10.9)	p = 0.07
Language difficulties - no. (%)	44 (27.3)	8 (11.6)	36 (39.1)	p = 0.001
Complete language barrier - no. (%)	24 (14.9)	5 (7.2)	19 (20.6)	p = 0.024
Non-adherence - no. (%)	29 (18.0)	9 (13.0)	20 (21.7)	p = 0.15
Timing of nephrology care				
Median time between first nephrology contact and start of CKD stage 5 - months (IQR)	41.2 (4.3-87)	61.9 (26.8-133.6)	20.9 (0-65.2)	p = 0.001
Late referral - no. (%)	35 (21.7)	5 (7.3)	30 (32.6)	p = 0.001
Start of workup before first access procedure - no. (%)	51 (31.7)	51 (74.0)	NA	p = 0.001
Median time between start of CKD stage 5 and start of dialysis - months (IQR)	4.8 (0.6-12)	9.6 (3.4-13)	2.7 (0.1-10.4)	p = 0.001
Treating center is renal transplant center - no. (%)	36 (22.4)	23 (33.3)	13 (14.1)	p = 0.007

Descriptive statistics of the total population and the two subgroups (those who started the transplant workup before the start of dialysis and those who started after the start of dialysis). All percentages are column percentages. Univariate analysis p-values are presented.

NA = Not applicable.
Table 2. Multiple logistic regression model

	Odds ratio	95% CI for odds ratio	P-value
Age at registration on waiting list	1.0	0.97 - 1.04	0.979
Sex (1 = male)	0.42	0.16 - 1.05	0.063
Cardiovascular disease	0.44	0.13 - 1.46	0.179
Diabetes mellitus	0.53	0.17 - 1.68	0.277
Language difficulties	0.20	0.06 - 0.61	0.005
Months between first nephrology contact and CKD 5	1.01	1.00 - 1.02	0.034
Hospitalisation days between CKD 5 and start workup	0.79	0.69 - 0.89	<0.001

Multiple logistic regression model predicting the likelihood of starting the transplant workup before the start of dialysis (dependent variable = starting the transplant workup before starting dialysis). The model classified 81% of cases correctly. The Nagelkerke pseudo R squared was 59%.
Table 3. Descriptive statistics of the workup time in the total population and certain subpopulations

Description	Screening time (months)	P-value
Total population (n=160) - months (IQR)	8.6 (5-14)	
Excluding pre-emptive waitlisting (n = 137) - months (IQR)	8.7 (5-14)	
Excluding cardiovascular disease, diabetes, infections and more than 5		
hospitalization days during the workup period (n=58) - months (IQR)	7.2 (4-11.6)	
Timing of the transplant workup		
• Before start of dialysis (n= 69) - months (IQR)	10 (5-15)	p = 0.46
• After start of dialysis (n=91) - months (IQR)	8 (5-14)	
Transplant centre		
• Transplant centre (n=36) - months (IQR)	10 (6 - 19)	p = 0.211
• Non-transplant centre (n = 124) - months (IQR)	8.3 (5-13.4)	

Workup time is calculated as the time between the start of workup and the ultimate registration on the waiting list.
Table 4. Supplementary medical examinations included in the pre-transplant workup

Examination	Total (n=161)	Clear indication	No clear indication
Invasive urologic examination - no. (%)	45 (28)	30 (67)	15 (33)
Gastroscopy - no. (%)	88 (55)	55 (63)	33 (38)
Colonoscopy - no. (%)	109 (68)	105 (96)	4 (4)
Ultrasound of the carotid arteries - no. (%)	14 (9)	5 (36)	9 (64)
At least one examination without clear indication - no. (%)	50 (31)		

Frequency of certain pre-transplant examinations and whether or not a clear indication was found (medical or based on screening guidelines 20). First column: percentages of total. Second and third column: percentages of value in first column (horizontal percentage).
Simple and multiple regression analysis for a variety of patient-derived independent variables and the logarithmically transformed workup time. Our multiple regression model included sex, age, infections, hospitalisation days and lung disease and explained 16.5% of the total variance in workup time, $F (5,151)=5.962$, $p<0.001$. After conversion of the logarithmic scale to the original time value, we can conclude that for every extra hospitalisation day, the workup time increased with 3% or 0.9 days.

$B =$ unstandardized regression coefficient. $SE =$ Standard error. $Exp(B)$ indicates the exponentiation of B (10^B) to reverse the logarithmic scale into the original time measured in months.

Comorbidities	Simple linear regression	Multiple linear regression							
	B	SE	p-value	Exp(B)	B	SE	Beta	p-value	Exp(B)
Age	0.001	0.002	0.436	1.0	0.001	0.002	0.058	0.467	1.0
Sex (1=male)	0.063	0.050	0.204	1.16	0.062	0.050	0.099	0.219	1.15
Body Mass Index	0.010	0.006	0.092	1.02					
Comorbidities									
Cardiovascular disease	0.040	0.057	0.480	1.1					
Diabetes mellitus	-0.011	0.057	0.845	0.97					
Lung disease	0.119	0.057	0.041	1.32	0.087	0.055	0.119	0.120	1.22
Liver disease	0.180	0.110	0.105	1.51					
History of malignancy	-0.170	0.104	0.105	0.68					
Psychiatric disease	0.014	0.067	0.840	1.03					
Infection between start of CKD 5 and registration on the waiting list	0.153	0.050	0.003	1.42	0.087	0.051	0.134	0.090	1.22
Non-adherence	0.073	0.063	0.247	1.18					
Language difficulties	0.057	0.054	0.295	1.14					
Financial issues	0.095	0.051	0.066	1.24					
Number of extra exams	0.034	0.024	0.157	1.08					
Hospitalisation days between start of workup and registration	0.015	0.003	<0.001	1.04	0.013	0.004	0.390	<0.001	1.03
Haemodialysis (vs. PD or not yet on dialysis)	0.037	0.050	0.465	1.09					

Simple and multiple regression analysis for a variety of patient-derived independent variables and the logarithmically transformed workup time. Our multiple regression model included sex, age, infections, hospitalisation days and lung disease and explained 16.5% of the total variance in workup time, $F (5,151)=5.962$, $p<0.001$. After conversion of the logarithmic scale to the original time value, we can conclude that for every extra hospitalisation day, the workup time increased with 3% or 0.9 days. $B =$ unstandardized regression coefficient. $SE =$ Standard error. $Exp(B)$ indicates the exponentiation of B (10^B) to reverse the logarithmic scale into the original time measured in months.
Table 6. Summary of the variables that were independently associated with a delayed start of the workup or a prolonged workup

Variables delaying the start of the workup	Modifiable?	Suggested actions
Language difficulties	Yes	Stimulate patients to learn the local language
		Have interpreters readily available during the pre-transplant process.
		Use technological tools providing accessible multilingual education
Months between first nephrology contact and start of CKD stage 5	No	Timely referral of CKD patients to the nephrologist as according to published guidelines
Hospitalization days between start of CKD stage 5 and start of the workup	No	Timely start of the transplant workup (minimum of 6 months before estimated start of dialysis) to avoid delay of workup initiation due to kidney failure-related complications.

Variables prolonging the workup
Hospitalization days between start of workup and registration
201 patients registered on the renal transplant waiting list between 1 Jan 2016 and 12 Nov 2019

- Patients with a previous renal allograft (n=24)
- Younger than 18 years old (n=9)
- Patients transferred from a different transplant centre (n=4)
- Insufficient data (n=3)

161 patients were included for analysis

Figure 1. Exclusion process
Figure 2. Proportion of patients that started the transplant workup and were registered on the waiting list before the start of dialysis.