On the Parameterized Intractability of Determinant Maximization

Naoto Ohsaka

CyberAgent AI Lab

Slides available https://todo314.github.io/
What is **Determinant Maximization**?

- **Input:** $n \times n$ positive semi-definite A in $\mathbb{Q}^{n \times n}$ & $k \in [n]$
- **Output:** $S \in \binom{[n]}{k}$
- **Goal:** maximize principal minor $\det(A_S)$

A is typically given as Gram matrix for n vectors v_1, \ldots, v_n in \mathbb{Q}^d

$$A \overset{\text{def}}{=} [v_1, \ldots, v_n]^T [v_1, \ldots, v_n], \text{ or } A_{i,j} \overset{\text{def}}{=} \langle v_i, v_j \rangle$$
Example 1: Independent set

- \(Q_3 = (V = [8], E) \): Hypercube graph
- \(v_i \in \{0,1\}^E: v_i(e) \overset{\text{def}}{=} [i \text{ is incident to } e] \)
Example 1: Independent set

- $Q_3 = (V = [8], E)$: Hypercube graph
- $v_i \in \{0, 1\}^E$: $v_i(e) \overset{\text{def}}{=} \left[i \text{ is incident to } e \right]$
Example 1: Independent set

- $Q_3 = (V = [8], E)$: Hypercube graph
- $v_i \in \{0,1\}^E$: $v_i(e) \overset{\text{def}}{=} \left[i \text{ is incident to } e \right]$
Example 1: Independent set

- $Q_3 = (V = [8], E)$: Hypercube graph
- $v_i \in \{0,1\}^E$: $v_i(e) \overset{\text{def}}{=} \left[i \text{ is incident to } e \right]$

$\det(A_S) = 3^{|S|} \Rightarrow S \text{ is independent!}$

e.g., $S = \{1,4,6,7\}$
Example 2: Selecting dispersed points

- \(p_1, \ldots, p_n \): (random) points on \(\mathbb{R}^2 \)
- Let \(A_{i,j} \overset{\text{def}}{=} \exp(|p_i - p_j|^2) \)
 - Known as Gaussian/RBF kernel
 - \(A \) is positive semi-definite

Q. What happens if \(\det(A_S) \) is max?

Example of \(n=24 \) & \(k=12 \)
Example 2: Selecting dispersed points

- p_1, \ldots, p_n: (random) points on \mathbb{R}^2
- Let $A_{i,j} \overset{\text{def}}{=} \exp(|p_i - p_j|^2)$
 - Known as Gaussian/RBF kernel
 - A is positive semi-definite

Q. What happens if $\det(A_S)$ is max?
A. Select “dispersed” points
Why study **DETERMINANT MAXIMIZATION**?

Various interpretations and applications

- **Parallelepiped volume**
- **Diversity promotion in Machine Learning ... many applications!** [Kulesza-Taskar. *Found. Trends Mach. Learn.* '12]
- **Simplex volume** [Nikolov. *STOC*’15]
- **Maximum-entropy sampling** [Ko-Lee-Queyranne. *Oper. Res.* ’95]
One interpretation: Parallelepiped volume

Gram matrix $A \overset{\text{def}}{=} [v_1, ..., v_n]^T [v_1, ..., v_n]$

$$\det(A_S) = \text{vol}^2\{v_i : i \in S\}$$

Determinant Maximization = Volume Maximization
Known results in polynomial-time regime

- NP-hard [Ko-Lee-Queyranne. Oper. Res.'95]
- Greedy is $k!$-approx. [Çivril & Magdon-Ismail. Theor. Comput. Sci.'09]

- NP-hard to $2^{O(k)}$-approx.
 \[\uparrow \downarrow \text{nearly tight} \]
 [Çivril & Magdon-Ismail. Algorithmica'13]
 [Di Summa-Eisenbrand-Faenza-Moldenhauer. SODA'14]

- Can find e^k-approx. [Nikolov. STOC'15]
 \[k=|S| \text{ is the output size} \]
Known results in parameterized regime

Measure complexity w.r.t. input size n & parameter k

- **Fixed-parameter tractable (FPT):** Solvable in $f(k)n^{O(1)}$ time

- $n^{O(k)}$-time brute-force alg. \Rightarrow said to be **XP** w.r.t. k (very natural param.)

- 😞 But **W[1]-hard** w.r.t k
 [Ko-Lee-Queyranne. Oper. Res. ’95]
 [Koutis. Inf. Process. Lett. ’06]
 \Rightarrow No FPT alg. unless Exponential Time Hypothesis is false (unlikely!)

Q. How can we make DETERMINANT MAXIMIZATION tractable?
Three possible scenarios (we expect)

1. **Structural restriction**
 - (Underlying graph of) A is very sparse
 - e.g., PERMANENT is $\#P$-hard in general, but FPT w.r.t. treewidth

 Courcelle-Makowsky-Rotics. *Discrete Appl. Math. '01* [Cifuentes-Parrilo. *Linear Algebra Appl. '16*]

2. **Strong parameter**
 - $\text{rank}(A) \geq$ output size k (always!)
 - Room for consideration of $f(\text{rank})n^{O(1)}$-time FPT alg.

3. **FPT approximation** [Feldmann-Karthik-Lee-Manurangsi. *Algorithms'20*]
 - Some $W[1]$-hard problems are approximable in FPT time
 - e.g., $\text{PARTIAL VERTEX COVER} \& \text{MINIMUM k-MEDIAN}$

 Har-Peled & Soham Mazumdar. *STOC'04*
Three possible scenarios (we expect)

1. **Structural restriction**
 - (Underlying graph of) A is very sparse
 - e.g., **PERMANENT** is \mathbb{P}-hard in general, but **FPT** w.r.t. treewidth
 - [Courcelle-Makowsky-Rotics. Discrete Appl. Math.'01; Cifuentes-Parrilo. Linear Algebra Appl.'16]

2. **Strong parameter**
 - rank(A) ≥ Ω(output size k) (always!)
 - Room for consideration of $f(\text{rank})n^{\omega(1)}$-time FPT alg.
 - 😭 *All hopes are dashed!* 😭

3. **FPT approximation** [Feldmann-Karthik-Lee-Manurangsi. Algorithms'20]
 - Some W[1]-hard problems are approximable in FPT time
 - e.g., **PARTIAL VERTEX COVER** & **MINIMUM k-MEDIAN**
 - [Har-Peled & Soham Mazumdar. STOC'04]
Our first result:

Hardness on arrowhead matrices

Arrowhead = Star graph

- W[1]-hard & NP-hard
- Treewidth & pathwidth = 1
- Vertex cover number = 1

Tridiagonal = Path graph

- Polytime solvable
 - [Al-Thani & Lee. LAGOS’21]

Structural sparsity is NOT very helpful
Our second & third results

- **W[1]-hard** when parameterized by rank of A
- **W[1]-hard** w.r.t. output size k even if rank only depends on k

- **W[1]-hard** to $2^{O(\sqrt{k})}$-approx. w.r.t. k under Parameterized Inapproximability Hypothesis

[{
Lokshtanov-Ramanujan-Saurab-Zehavi. SODA'20][Lokshtanov-Ramanujan-Saurab-Zehavi. SODA'20]

Binary Constraint Satisfaction Problem is **W[1]-hard** to approx. w.r.t. # variables
Proof overview
(1) Proof overview on arrowhead matrices

(Thm) Determinant Maximization on arrowhead matrices is W[1]-hard

- k-Sum: Parameterized version of Subset Sum [Abboud-Lewi-Williams. ESA’14]

⚠️ Sophisticated construction of arrowhead matrix

- Determinant Maximization on arrowhead matrices
Proof overview on $W[1]$-hardness on arrowhead matrices k-SUM [Abboud-Lewi-Williams. ESA'14] & reduction strategy

- **Input:** n integers x_1, \ldots, x_n, $t \in [0, n^{2k}]$, $k \in [n]$
- **Find:** $S \in \binom{[n]}{k}$ s.t. $\sum_{i \in S} x_i = t$

- $W[1]$-complete w.r.t. k [Downey-Fellows. Theor. Comput. Sci.'95] [Abboud-Lewi-Williams. ESA'14]

- Construct $n+1$ vectors v_0, v_1, \ldots, v_n s.t.
- Gram matrix in $\mathbb{R}^{[0..n] \times [0..n]}$ is arrowhead
- $\det(A_S)$ s.t. $S \in \binom{[n]}{k+1}$ is maximum when $\sum_{i \in S-\{0\}} x_i = t$ (if exists)
 i.e., v_i corresponds to x_i
(1) Proof overview on \(W[1]\)-hardness on arrowhead matrices

Key finding on arrowhead matrices

- If \(A \) in \(\mathbb{R}^{[0..n] \times [0..n]} \) is arrowhead and \(0 \in S \):

\[
\det(A_S) = \prod_{i \in S \setminus \{0\}} A_{i,i} \cdot \left(A_{0,0} - \sum_{i \in S \setminus \{0\}} \frac{A_{0,i} \cdot A_{0,i}}{A_{i,i}} \right)
\]

(Lem) Carefully choose \(v_0, v_1, ..., v_n \in \mathbb{R}^{+2n} \) s.t. for \(0 \in S \in \binom{[n]}{k} \)

\[
\det(A_S) \propto \exp\left(\sum_{i \in S \setminus \{0\}} x_i \right) \cdot \left(Z - \sum_{i \in S \setminus \{0\}} x_i \right)
\]

Maximized at \(\sum_{i \in S \setminus \{0\}} x_i = Z - 1 \) - set \(t \)!
(1) Proof overview on $W[1]$-hardness on arrowhead matrices

Sketch of construction

	1	...	i	...	n	$n+1$...	$n+i$...	$n+n$
v_0	$\gamma \sqrt{x_1}$	$\gamma \sqrt{x_i}$	$\gamma \sqrt{x_n}$							
v_1	$\sqrt{a \ e^{x_1}}$					$\sqrt{\beta \ e^{x_1}}$				
v_i	$\sqrt{a \ e^{x_i}}$		$\sqrt{\beta \ e^{x_i}}$							
v_n	$\sqrt{a \ e^{x_n}}$					$\sqrt{\beta \ e^{x_n}}$				

Parameterized by α, β, γ (to be determined appropriately)

Omitted details: We have to...

- efficiently approximate v_0, v_1, \ldots, v_n using rationals
- ensure that any optimal solution includes v_0
(2) Proof overview on $W[1]$-hardness by rank

(Thm) $\text{Determinant Maximization}$ is $W[1]$-hard w.r.t. rank of A

- **Grid Tiling**: $W[1]$-complete [Marx. *FOCS'07*]

⚠️ Can use only $f(k)$-dimensional vectors / $f(k)$-rank matrices

e.g., vectors in \mathbb{Q}^n are not allowed

- $\text{Determinant Maximization}$ parameterized by rank of A
(2) Proof overview on W[1]-hardness by rank

GRID TILING [Marx. FOCS’07]

- **Input:** \(S = (S_{i,j} \subseteq [n]^2 : i,j \in [k]) \)
- **Find:** Select \((x,y)\) in \(S_{i,j}\) for all \((i,j)\) s.t.
 - Vertical neighbors agree in 1\(^{st}\) coordinate
 - Horizontal neighbors agree in 2\(^{nd}\) coordinate

- Equality constraints are **SIMPLE 😊**
- Cells \((i,j)\) are adjacent to **FOUR** cells 😊

\(S_{1,1} \)	\(S_{1,2} \)	\(S_{1,3} \)
(1,1)	(5,1)	(1,1)
(3,1)	(1,4)	(2,4)
(2,4)	(5,3)	(3,3)

\(S_{2,1} \)	\(S_{2,2} \)	\(S_{2,3} \)
(2,2)	(3,1)	(2,2)
(1,4)	(1,2)	(2,2)

\(S_{3,1} \)	\(S_{3,2} \)	\(S_{3,3} \)
(1,3)	(1,1)	(2,3)
(2,3)	(1,3)	(3,3)
(3,3)	(5,3)	

Example of \(k=3\) & \(n=5\)

Taken from Fig. 14.2 of

[Cygan-Fomin-Kowalik-Lokshtanov-Marx-Pilipczuk-Pilipczuk-Saurabh]
(2) Proof overview on $W[1]$-hardness by rank

GRID TILING [Marx. *FOCS'07*]

	$S_{1,1}$	$S_{1,2}$	$S_{1,3}$	$S_{1,1}$
1	(1,1)	(5,1)	(1,1)	(1,1)
2	(3,1)	(1,4)	(2,4)	(3,1)
3	(2,4)	(5,3)	(3,3)	(2,4)

	$S_{2,1}$	$S_{2,2}$	$S_{2,3}$	$S_{2,1}$
1	(2,2)	(3,1)	(2,2)	(2,2)
2	(1,4)	(1,2)	(2,3)	(1,4)
3	(2,3)	(2,3)	(2,3)	(2,3)

	$S_{3,1}$	$S_{3,2}$	$S_{3,3}$	$S_{3,1}$
1	(1,3)	(1,1)	(1,3)	(1,3)
2	(2,3)	(2,3)	(2,3)	(2,3)
3	(3,3)	(5,3)	(3,3)	(3,3)

Perfect consistency 😊

4 neighbors are inconsistent 😖

	$S_{1,1}$	$S_{1,2}$	$S_{1,3}$	$S_{1,1}$
1	(1,1)	(5,1)	(1,1)	(1,1)
2	(3,1)	(1,4)	(2,4)	(3,1)
3	(2,4)	(5,3)	(3,3)	(2,4)

	$S_{2,1}$	$S_{2,2}$	$S_{2,3}$	$S_{2,1}$
1	(2,2)	(3,1)	(2,2)	(2,2)
2	(1,4)	(1,2)	(2,3)	(1,4)
3	(2,3)	(2,3)	(2,3)	(2,3)

	$S_{3,1}$	$S_{3,2}$	$S_{3,2}$	$S_{3,1}$
1	(1,3)	(1,1)	(1,1)	(1,3)
2	(2,3)	(2,3)	(2,3)	(2,3)
3	(3,3)	(5,3)	(3,3)	(3,3)

	$S_{1,1}$	$S_{1,2}$	$S_{1,3}$	$S_{1,1}$
1	(1,1)	(5,1)	(1,1)	(1,1)
2	(3,1)	(1,4)	(2,4)	(3,1)
3	(2,4)	(5,3)	(3,3)	(2,4)

	$S_{2,1}$	$S_{2,2}$	$S_{2,3}$	$S_{2,1}$
1	(2,2)	(3,1)	(2,2)	(2,2)
2	(1,4)	(1,2)	(2,3)	(1,4)
3	(2,3)	(2,3)	(2,3)	(2,3)

	$S_{3,1}$	$S_{3,2}$	$S_{3,3}$	$S_{3,1}$
1	(1,3)	(1,1)	(1,3)	(1,3)
2	(2,3)	(2,3)	(2,3)	(2,3)
3	(3,3)	(5,3)	(3,3)	(3,3)
(2) Proof overview on W[1]-hardness by rank

Reduction from GRID TILING

- **Input:** $S = (S_{i,j} \subseteq [n]^2 : i,j \in [k])$
- **Find:** Select (x,y) in $S_{i,j}$ for all (i,j) s.t.
 - Vertical neighbors agree in 1st coordinate
 - Horizontal neighbors agree in 2nd coordinate

\mathcal{G}: $f(k)$-dim. $v^{(i,j)}_{x,y}$ for (x,y) in $S_{i,j}$ describing "consistency":

Conditions about "consistency"
(2) Proof overview on $W[1]$-hardness by rank

Reduction from GRID TILING

- **Input:** $S = (S_{i,j} \subseteq [n]^2 : i,j \in [k])$
- **Find:** Select (x,y) in $S_{i,j}$ for all (i,j) s.t.
 - Vertical neighbors agree in 1st coordinate
 - Horizontal neighbors agree in 2nd coordinate

$\mathsf{f(k)}$-dim. $v_{x,y}^{(i,j)}$ for (x,y) in $S_{i,j}$ describing “consistency”:
- Vertical nbr. $\langle v_{x,y}^{(i,j)}, v_{x',y'}^{(i+1,j)} \rangle = 0$ iff $x = x'$
- Horizontal nbr. $\langle v_{x,y}^{(i,j)}, v_{x',y'}^{(i,j+1)} \rangle = 0$ iff $y = y'$
- Same cell $\langle v_{x,y}^{(i,j)}, v_{x',y'}^{(i,j)} \rangle \neq 0$

Gram matrix $A_{x,y,i,j,i',j',x',y'} \stackrel{\text{def}}{=} \langle v_{x,y}^{(i,j)}, v_{x,y'}^{(i',j')} \rangle$ satisfies...

- S is YES $\Rightarrow \exists k^2 \times k^2$ diagonal submatrix... select CORRECT $v_{x,y}^{(i,j)}$ for each $(i,j) \in [k]^2$
- S is NO $\Rightarrow \forall k^2 \times k^2$ submatrix is NOT diagonal
Proof overview on W[1]-hardness by rank

Represent "consistency" at lower dimensions?

- Want \(v_1, \ldots, v_n, w_1, \ldots, w_n \) in \(\mathbb{Q}^{O(1)} \) s.t. \(\langle v_i, w_j \rangle = 0 \) iff \(i=j \)
 😊 How to construct?

🚫 One-hot vectors require \(n \)-dimension \([0,\ldots,0,1,0,\ldots,0]\)

😊 Use points on the unit circle:
 - \(v_i \overset{\text{def}}{=} (\cos\left(\frac{\pi i}{2n}\right), \sin\left(\frac{\pi i}{2n}\right)) \)
 - \(w_j \overset{\text{def}}{=} (\sin\left(\frac{\pi j}{2n}\right), -\cos\left(\frac{\pi j}{2n}\right)) \)

Use Pythagorean triples to get rational vectors
(3) Proof overview on inapproximability

(Thm) Under PIH, $\exists \delta$, \textsc{Determinant Maximization} is $W[1]$-hard w.r.t. output size k to approx. within $0.999^\delta \sqrt{k}$-factor

- Parameterized Inapproximability Hypothesis (PIH)
 \textit{[Lokshtanov-Ramanujan-Saurab-Zehavi. SODA'20]} I don't go into details in this talk

- Optimization version of \textsc{Grid Tiling}: $W[1]$-hard to approx. w.r.t. k
 \textit{⚠️ Gap-preserving reduction (different from the last one)}

- \textsc{Determinant Maximization} parameterized by k
(3) Proof overview on inapproximability

Optimization version of GRID TILING

- **Input:** \(S \overset{\text{def}}{=} (S_{i,j} \subseteq [n]^2 : 1 \leq i,j \leq k) \)
- **Output:** Select \((x,y)\) in \(S_{i,j}\) for all \((i,j)\)
- **Goal:** maximize (\# vertical nbr. agreeing in 1\(^{\text{st}}\) coordinate)
 + (\# horizontal nbr. agreeing in 2\(^{\text{nd}}\) coordinate)

\[\text{opt}(S) \overset{\text{def}}{=} \max \text{ of } \]

(Lem) Under PIH, \(\exists \delta \), it is \(W[1]\)-hard to distinguish between

- **Completeness:** \(\text{opt}(S) = 2k^2 \) \(\ldots \) \(S \) is YES
- **Soundness:** \(\text{opt}(S) \leq 2k^2 - \delta k \) \(\ldots \) \(S \) is much worse than YES
(3) Proof overview on inapproximability

Sketch of reduction from GRID TILING

Construct $v^{(i,j)}_{x,y}$ in $\mathbb{Q}^{O(k^2n^2)}$ for each (x,y) of $S_{i,j}$ s.t. $|v^{(i,j)}_{x,y}|^2 = 4$,

Undesirable cases impose **const.** penalty
(3) Proof overview on inapproximability

Sketch of reduction from GRID TILING

Construct \(v^{(i,j)}_{x,y} \) in \(\mathbb{Q}^{O(k^2n^2)} \) for each \((x,y)\) of \(S_{i,j} \) s.t. \(|v^{(i,j)}_{x,y}|^2 = 4 \),

- Same cell
 \[\langle v^{(i,j)}_{x,y}, v^{(i,j)}_{x',y'} \rangle \] is \(\geq 2 \)

- Vertical nbr.
 \[\langle v^{(i,j)}_{x,y}, v^{(i+1,j)}_{x',y'} \rangle \] is \(\begin{cases} 0 & \text{if } x=x' \\ 1/2 & \text{otherwise} \end{cases} \)

- Horizontal nbr.
 \[\langle v^{(i,j)}_{x,y}, v^{(i,j+1)}_{x',y'} \rangle \] is \(\begin{cases} 0 & \text{if } y=y' \\ 1/2 & \text{otherwise} \end{cases} \)

KEY: Gadget of \([Çivril & Magdon-Ismail. Algorithmica'13]\)

(Lem) \(\det(A_S) \) exponentially decays in \# duplicates & \(2k^2-\text{opt}(S) \); so,

- Completeness: \(\text{opt}(S) = 2k^2 \) \(\Rightarrow \) \(\max_{|S|=k \times k} \det(A_S) = 4^{k \times k} \)

- Soundness: \(\text{opt}(S) \leq 2k^2-\delta k \) \(\Rightarrow \) \(\max_{|S|=k \times k} \det(A_S) \leq 4^{k \times k \cdot 0.999^{\delta k}} \)
Some tractable cases (see the paper)

1. Polytime solvable on **tridiagonal** matrices [Al-Thani & Lee. *LAGOS'21*]
 • Dynamic programming

2. Orthogonal vectors in \mathbb{Q}^d is FPT w.r.t. d for **nonnegative** vectors
 • Reduce to **SET PACKING**

3. ε-additive approximation (bounded entries) is FPT w.r.t. **rank**
 • Use standard rounding technique
Conclusion and future work

- Study parameterized hardness of \textsc{Determinant Maximization}

1. Boundary between P vs. NP (or FPT vs. W[1])
 - Tridiagonal & spider of bounded legs ... Polytime
 - \cite{Al-Thani & Lee. LAGOS'21}
 - Tree of bounded degree ...
 - Arrowhead ... NP-hard & W[1]-hard

2. Further strong parameters?

3. Strengthening inapprox. factor
 - W[1]-hardness of $2^{O(k)}$-approx.
