Research Article

Fekete–Szegő Inequality for Bi-Univalent Functions Subordinate to Horadam Polynomials

Amnah E. Shammary, Basem Aref Frasin, and Sondekola Rudra Swamy

1Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia
2Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan
3Department of Computer Science and Engineering, RV College of Engineering, Bengaluru 560059, Karnataka, India

Correspondence should be addressed to Basem Aref Frasin; bafrasin@yahoo.com

Received 24 October 2021; Accepted 3 January 2022; Published 27 January 2022

1. Preliminaries

Let \(\mathbb{R} \) and \(\mathbb{N} := \{1, 2, 3, \ldots\} = \mathbb{N}_0\setminus\{0\} \) be the sets of real numbers and positive integers, respectively. Let \(\mathbb{C} \) be the set of all complex numbers, and let \(\mathfrak{D} \) denote the disc \(\{z \in \mathbb{C} : |z| < 1\} \). We denote by \(\mathcal{A} \), the set of all regular functions in \(\mathfrak{D} \) that has the series of the form

\[
g(z) = z + \sum_{j=2}^{\infty} d_j z^j, \tag{1}
\]

and \(\mathcal{S} \) be the set of all members of \(\mathcal{A} \) that are univalent in \(\mathfrak{D} \). According to the well-known Koebe theorem (see [1]), every univalent function \(g \) has an inverse defined by

\[
g^{-1}(\omega) = f(\omega) = \omega - d_2 \omega^2 + \frac{(2d_2^2 - d_3)\omega^3}{2d_2^3 - 5d_2d_3 + d_4} \omega^4 + \cdots, \tag{2}
\]

satisfying \(z = g^{-1}(g(z)) \) and \(\omega = g(g^{-1}(\omega)) \), \(|\omega| < r_0(g) \), \(r_0(g) \geq 1/4 \), \(z, \omega \in \mathfrak{D} \).

A function \(g \) of \(\mathcal{A} \) is said to be bi-univalent (or bi-schlicht) in \(\mathfrak{D} \) if both \(g \) and \(g^{-1} \) are univalent in \(\mathfrak{D} \). Let \(\Sigma \) stand for the set of bi-univalent functions having form (1).

Lewin [2] investigated the family \(\Sigma \) and proved that \(|d_2| < 1.51 \). Brannan and Clunie [3] claimed that \(|d_2| < \sqrt{2} \).

Later, Tan [4] obtained initial coefficient estimates for bi-univalent functions. Subsequently, Brannan and Taha [5] examined certain well-known subfamilies of \(\Sigma \) in \(\mathfrak{D} \). The momentum on the study of bi-univalent function family was gained recently, which is due to the work of Srivastava et al. [6]. This article has revived the topic apparently, and many researchers have investigated several interesting special families of \(\Sigma \) (see [7–10]).

Recently, Hörçum and Koçer [11] (see also Horadam and Mahon [12]) examined the Horadam polynomials \(\mathcal{H}_j(x) \) (or \(\mathcal{H}_j(x, a, b; p, q) \)), which is defined by the recurrence relation

\[
\mathcal{H}_j(x) = px\mathcal{H}_{j-1}(x) + q\mathcal{H}_{j-2}(x),
\]

\[
\mathcal{H}_1(x) = a,
\]

\[
\mathcal{H}_2(x) = bx,
\]

where \(j \in \mathbb{N}\setminus\{1, 2\} \), \(x \in \mathbb{R} \), \(p, q, a, \) and \(b \) are real constants. It is seen from (3) that \(\mathcal{H}_3(x) = ppx^3 + qa \). The generating function of the sequence \(\mathcal{H}_j(x) \), \(j \in \mathbb{N} \), is as follows (see [11]):
\[G(x, z) = \sum_{j=1}^{\infty} H_j(x)z^{j-1} = \frac{(b - ap)xz + a}{1 - pxz - qz^2}, \quad (4) \]

where \(z \in \mathbb{C} \) is such that \(R(z) \neq x, x \in \mathbb{R} \).

Few particular cases of \(H_j(x, a, b; p, q) \) are

1. The Fibonacci polynomials, \(F_j(x) = H_j(x, 1, 1, 1) \)
2. The second type Chebyshev polynomials, \(U_j(x) = H_j(x, 1, 2, 2, -1) \)
3. The first type Chebyshev polynomials, \(T_j(x) = H_j(x, 1, 1, 2, -1) \)
4. The Lucas polynomials, \(L_j(x) = H_j(x, 2, 1, 1) \)
5. The Pell – Lucas polynomials, \(Q_j(x) = H_j(x, 2, 2, 2, 1) \)
6. The Pell polynomials, \(P_j(x) = H_j(x, 1, 2, 2, 1) \)

The estimates on \(|d_2| \) and \(|d_4| \) and the very popular Fekete–Szegő functional were determined for bi-univalent functions linked with certain polynomials like Lucas polynomials, Fibonacci polynomials, Chebyshev polynomials, Horadam polynomials, and Gegenbauer polynomials. It is well-known that these polynomials play a potentially important role in architecture, approximation theory, physics, statistics, mathematical, and engineering sciences.

The recent research trend is the study of functions in \(\Sigma \) linked with any of the abovementioned polynomials. Generally, interest was shown to obtain the initial coefficient bounds and the celebrated inequality of Fekete–Szegő for the special subfamilies of \(\Sigma \). Recently, the Horadam polynomial was used by Abirami et al. [13] to find coefficient estimates for the families of bi-Bazilevic and \(\lambda \)-bi-starlike function, Frasin et al. [14] obtained coefficient estimates and Fekete–Szegő inequalities for certain subfamilies of Al-Oboudi-type bi-univalent functions related to \(k \)-Fibonacci numbers involving modified activation function, initial coefficient bounds for certain subsets of bi-univalent functions family subordinate to Horadam polynomials were obtained in [15, 16], Shaba and Wanas [17] obtained coefficient bounds which are sharp, for a family of bi-univalent functions using \((U, V) \)-Lucas polynomials, Srivastava et al. [18] have proposed a methodology to estimate coefficient bounds and Fekete–Szegő problem for certain subsets of bi-univalent function family linked with Horadam polynomials, and Swamy [19] and Swamy et al. [20, 21] have initiated the study of some subfamilies of bi-univalent function family subordinate to Horadam polynomials involving modified activation function. Swamy and Sailaja [22] have used Horadam polynomials to investigate coefficient estimates for two families of bi-univalent functions, Swamy et al. [23] have introduced some subfamilies of Sălăgean type bi-univalent functions subordinate to \((m, n) \)-Lucas polynomials and found initial coefficients, and Wanas and Alina [24] have fixed the Fekete–Szegő problem for Bazilevic bi-univalent function class linked with Horadam polynomials.

For functions \(g \) and \(f \) holomorphic in \(\mathcal{D} \), \(g \) is said to subordinate \(f \), if there is a Schwarz function \(\psi \) in \(\mathcal{D} \), such that \(\psi(0) = 0, |\psi(z)| < 1, \) and \(g(z) = f(\psi(z)), z \in \mathcal{D} \). This subordination is indicated as \(g < f \). In particular, if \(f \in \mathcal{S} \), then \(g(z) < f(z) \) is equivalent to \(g(0) = f(0) \) and \(g(\mathcal{D}) \subset f(\mathcal{D}) \).

Inspired by the article [25] and the recent trends on functions in \(\Sigma \), we present a comprehensive family of \(\Sigma \) associated with Horadam polynomials \(H_j(x) \) as in (3) having the generating function (4).

Throughout this paper, the inverse function \(g^{-1}(\omega) = f(\omega) \) as in (2) and \(G(x, z) \) is as in (4).

Definition 1. A function \(g \) in \(\Sigma \) having the power series (1) is said to be in the set \(\mathcal{S}\mathcal{E}_x^2(\chi, \gamma, \mu), \) is as (4) and \(G(x, z) \) is as in (4).

\[z(g'(z))^\gamma + \mu z^2 g''(z) < 1 - a + G(x, z), \quad z \in \mathcal{D}, \]
\[\frac{\omega(f'(\omega))}{\gamma f(\omega)} + \mu \omega^2 f''(\omega) < 1 - a + G(x, \omega), \quad \omega \in \mathcal{D}. \]

(5)

The family \(\mathcal{S}\mathcal{E}_x^2(\chi, \gamma, \mu) \) is of interest as it contains many existing as well as new subfamilies of \(\Sigma \) for particular choices of \(\gamma, \tau, \) and \(\mu, \) as illustrated as follows:

1. \(\mathcal{J}_1^x(\chi, \mu, \mu, 0) \equiv \mathcal{S}\mathcal{E}_x^2(\chi, 0, \mu, \mu, 0) \) and \(x \in \mathbb{R} \), is the collection of functions \(g \in \Sigma \) satisfying
\[z(g'(z))^\gamma + \mu z^2 g''(z) < 1 - a + G(x, z), \quad z \in \mathcal{D}, \]
\[(6) \]
2. \(\mathcal{J}_2^x(\chi, \mu, \mu, 0) \equiv \mathcal{S}\mathcal{E}_x^2(\chi, 1, \mu, \mu, 0) \) and \(x \in \mathbb{R} \), is the collection of functions \(g \in \Sigma \) satisfying
\[z(g'(z))^\gamma + \mu z^2 g''(z) < 1 - a + G(x, z), \quad z \in \mathcal{D}, \]
\[(7) \]
3. \(\mathcal{J}_3^x(\gamma, \mu, \mu, 0) \equiv \mathcal{S}\mathcal{E}_x^2(\chi, \gamma, 1, \mu, \mu, 0) \) and \(x \in \mathbb{R} \), is the collection of functions \(g \in \Sigma \) satisfying
\[z(g'(z))^\gamma + \mu z^2 g''(z) < 1 - a + G(x, z), \quad z \in \mathcal{D}, \]
\[(8) \]
4. The function classes \(\mathcal{S}\mathcal{E}_x^2(\chi, \gamma, \mu) \) \((0 \leq \gamma \leq 1, \mu \geq 0) \) and \(x \in \mathbb{R} \) were investigated by the author in [19].

Remark 1. We note that

(i) \(\mathcal{J}_1^x(\chi, 1, \mu, \mu, 0) \equiv \mathcal{S}\mathcal{E}_x^2(\chi, 0, 1, \mu, \mu, 0) \) and \(x \in \mathbb{R} \)
(ii) \(\mathcal{J}_2^x(\chi, 1, \mu, \mu, 0) \equiv \mathcal{S}\mathcal{E}_x^2(\chi, 1, 1, \mu, \mu, 0) \) and \(x \in \mathbb{R} \)
Remark 2.

(i) For $\tau = 1$, the family $S_1^l(x, \mu)$ was investigated by Swamy and Sailaja [22]
(ii) $S_2^l(x, 1, 0) \equiv S_2(x, 0)$ was due to Abirami et al. [13]
(iii) $S_3^l(x, 1, \mu) \equiv R_2(x, \mu)$ was introduced by Magesh et al. [16]

Remark 3.

(i) For $\mu = 0$ and $\tau = 1$, the class $S_1^l(x, 0) \equiv S_2(x)$ was studied by Alamush [15]
(ii) For $S_1^l(x, 0) \equiv S_3(x)$ and $\tau = 1$, the family $R_2(x, 0) \equiv S_3(x)$ was introduced by Srivastava et al. [6]

In Section 2, we derive the estimates for $|d_2|$ and $|d_3|$ and the inequality of Fekete and Szegö [26] for functions in the class $S_2^l(x, \gamma, \mu)$. In Section 3, relevant connections to the existing results and few interesting consequences of the main result are presented.

2. Bi-Univalent Function Class $S_2^l(x, \gamma, \mu)$

We determine the initial coefficient bounds and the inequality of Fekete–Szegö for functions in $S_2^l(x, \gamma, \mu)$, in the following theorem.

Theorem 1. Let the function $g(z)$ defined by (1) be in the family $S_2^l(x, \gamma, \mu)$ and let $0 \leq \gamma \leq 1, \mu \geq 0, \tau \geq 1$ and $x \in \mathbb{R}$. Then,

\begin{equation}
|d_2| \leq \frac{|bx| \sqrt{|b|}}{\sqrt{\left(y^2 + (\tau - y)(2\tau + 1) + 2\mu(3 - y) \right) \left(bx \right)^2 - (2(\mu + \tau) - y)\left(pbx^2 + qa \right) }}
\end{equation}

\begin{equation}
|d_3| \leq \frac{(bx)^2}{(2(\mu + \tau) - y)z + \frac{|bx|}{(2\mu + \tau) - y}}
\end{equation}

and for $\delta \in \mathbb{R}$,

\begin{equation}
|d_3 - \delta d_2^2| \leq \begin{cases}
\frac{|bx|}{3(2\mu + \tau) - y} & |1 - \delta| \leq J, \\
\frac{|bx|^3 |1 - \delta|}{\left[y^2 + (\tau - y)(2\tau + 1) + 2\mu(3 - y) \right] (bx)^2 - (2(\mu + \tau) - y)\left(pbx^2 + qa \right) ^2} & |1 - \delta| \geq J,
\end{cases}
\end{equation}

where

\begin{equation}
J = \frac{1}{(3(2\mu + \tau) - y)} \left[y^2 + (\tau - y)(2\tau + 1) + 2\mu(3 - y) \right] (bx)^2 - (2(\mu + \tau) - y)\left(\frac{pbx^2 + qa}{b^2 x^2} \right)
\end{equation}

Proof. Let $g \in S_2^l(x, \gamma, \mu)$. Then, on account of Definition 1, we get

\begin{equation}
\frac{z (g'(z))^2 + \mu z^2 g''(z)}{yg(z) + (1 - y)z} = 1 - a + G(x, \mathfrak{M}(z)),
\end{equation}

\begin{equation}
\frac{\omega (f'(\omega))^2 + \mu \omega^2 f''(\omega)}{yf(\omega) + (1 - y)\omega} = 1 - a + G(x, \mathfrak{N}(\omega)),
\end{equation}

are some regular functions in \mathfrak{D} with $\mathfrak{M}(0) = 0, |\mathfrak{M}(z)| < 1, \mathfrak{N}(0) = 0$, and $|\mathfrak{M}(\omega)| < 1, z, \omega \in \mathfrak{D}$. It follows from (13)–(16) with (4) that
\[
\frac{z(g'(z))^2 + \mu z^2 g''(z)}{y g(z) + (1 - y)z} = 1 - a + \mathcal{H}_1(x) + \mathcal{H}_2(x)m(z) + \mathcal{H}_3(x)m^2(z) + \cdots,
\]

\[
\frac{\omega(f'(\omega))^2 + \mu \omega^2 f''(\omega)}{y f(\omega) + (1 - y)\omega} = 1 - a + \mathcal{H}_1(x) + \mathcal{H}_2(x)n(\omega) + \mathcal{H}_3(x)n^2(\omega) + \cdots.
\]

From (17) and (18), in view of (3), we find
\[
\frac{z(g'(z))^2 + \mu z^2 g''(z)}{y g(z) + (1 - y)z} = 1 + \mathcal{H}_2(x)m_1z + \left[\mathcal{H}_2(x)m_2 + \mathcal{H}_3(x)m_1^2\right]z^2 + \cdots,
\]

\[
\frac{\omega(f'(\omega))^2 + \mu \omega^2 f''(\omega)}{y f(\omega) + (1 - y)\omega} = 1 + \mathcal{H}_2(x)n_1\omega + \left[\mathcal{H}_2(x)n_2 + \mathcal{H}_3(x)n_1^2\right]\omega^2 + \cdots.
\]

It is known that if \(|\Re(z)| = |m_1z + m_2z^2 + m_3z^3 + \cdots| < 1, \ z \in \mathcal{D}, \) then
\[
|m_i| \leq 1, \quad (i \in \mathbb{N}).\]

(20)

Similarly, if \(|\Re(\omega)| = |n_1\omega + n_2\omega^2 + n_3\omega^3 + \cdots| < 1, \ \omega \in \mathcal{D}, \) then

\[
\mathcal{H}_2(x)(m_2 + n_2) + \mathcal{H}_3(x)(m_1^2 + n_1^2),
\]

which yields (10) on using (21) and (22).

After subtracting (26) from (24) and then using (27), we obtain
\[
d_3 = d_2^2 + \frac{\mathcal{H}_2(x)(m_2 - n_2)}{2(3(\mu + \tau) - \gamma)}.
\]

(31)

Then, in view of (28), (31) becomes
\[
|d_3 - \delta d_2^2| = |\mathcal{H}_2(x)|\left(\mathcal{B}(\delta, x) + \frac{1}{2(3(\mu + \tau) - \gamma)}m_2 + \left(\mathcal{B}(\delta, x) - \frac{1}{2(3(\mu + \tau) - \gamma)}\right)n_2\right),
\]

where
\[
\mathcal{B}(\delta, x) = \frac{(1 - \delta)\mathcal{H}_2(x)}{2\left[\left(y^2 + (\tau - \gamma)(2\tau + 1) + 2\mu(3 - \gamma)\mathcal{H}_2(x) - (2(\mu + \tau) - \gamma)^2\mathcal{H}_3(x)\right]\right],
\]

(34)
Clearly,

\[
|d_3 - \delta d_2^2| \leq \begin{cases} \frac{|\mathcal{H}_2(x)|}{3(2\mu + \tau) - \gamma}, \\
2|\mathcal{H}_2(x)| |\mathcal{B}(\delta, x)|,
\end{cases}
\]

from which we conclude (9) with \(J \) as in (12). Thus, Theorem 1 is proved.

Remark 4. By taking \(\tau = 1 \) in Theorem 1, we get a result of the author (Corollary 2.4 [19]), and by letting \(\mu = 0 \) in Theorem 1, we obtain another result of the author (Corollary 3.3 in [19]).

3. Outcome of the Main Result

Theorem 1 would yield the following outcome when \(\gamma = 0 \).

\[
|d_3 - \delta d_2^2| \leq \begin{cases} \frac{|bx|}{3(2\mu + \tau)}, \\
|bx|^3|1 - \delta| \\
\frac{|bx|}{\sqrt{(\tau(2\tau + 1) + 6\mu)(bx)^2 - 4(\mu + \tau)^2(pb^2x^2 + qa)}} \\
|1 - \delta| \leq J_1,
\end{cases}
\]

where

\[
J_1 = \frac{1}{3(2\mu + \tau)} \left| \tau(2\tau + 1) + 6\mu - 4(\mu + \tau)^2\left(\frac{pbx^2 + qa}{b^2x^2}\right) \right|
\]

(35)

Corollary 1. Let the function \(g(z) \) defined by (1) be in the family \(\mathcal{S}_2^t(x, \mu) \equiv \mathcal{S}_2^t(x, 0, \mu) \), and let \(\mu \geq 0, \tau \geq 1 \) and \(x \in \mathbb{R} \). Then,

\[
|d_3| \leq \frac{|bx|\sqrt{|bx|}}{\sqrt{\left(\tau(2\tau + 1) + 6\mu)(bx)^2 - 4(\mu + \tau)^2(pb^2x^2 + qa)\right)}} \\
|d_3| \leq \frac{b^2x^2}{4(\mu + \tau)^2} + \frac{|bx|}{3(2\mu + \tau)}, \quad (36)
\]

and for some \(\delta \in \mathbb{R} \).

Corollary 2. Let the function \(g(z) \) defined by (1) be in the set \(\mathcal{S}_2^t(x, \mu) \equiv \mathcal{S}_2^t(x, 1, \mu) \), and let \(\mu \geq 0, \tau \geq 1 \) and \(x \in \mathbb{R} \). Then,

\[
|d_3| \leq \frac{|bx|\sqrt{|bx|}}{\sqrt{\left(\tau(2\tau - 1) + 4\mu)(bx)^2 - 2(\mu + \tau - 1)^2(pb^2x^2 + qa)\right)}} \\
|d_3| \leq \frac{(bx)^2}{(2(\mu + \tau) - 1)^2} + \frac{|bx|}{3(2\mu + \tau - 1)}, \quad (39)
\]

and for \(\delta \in \mathbb{R} \).

Remark 5. For \(\tau = 1 \), Corollary 1 reduces to Corollary 2.1 of Swamy and Sailaja [22]. Also, we obtain Theorem 2.2 of Alamoush [15] from Corollary 1 when \(\mu = 0 \) and \(\tau = 1 \).

Allowing \(\gamma = 1 \) in Theorem 1, we obtain the following.

\[
|d_3 - \delta d_2^2| \leq \begin{cases} \frac{|bx|}{3(2\mu + \tau) - 1}, \\
|bx|^3|1 - \delta| \\
\frac{|bx|}{\sqrt{\left(\tau(2\tau + 1) + 4\mu)(bx)^2 - 2(\mu + \tau - 1)^2(pb^2x^2 + qa)\right)}} \\
|1 - \delta| \leq J_2,
\end{cases}
\]

(38)

(37)}
where

\[J_2 = \frac{1}{(3(2\mu + \tau) - 1)} \tau(2\tau - 1) + 4\mu - (2(\mu + \tau) - 1)^2 \left(\frac{pbx^2 + qa}{b^2x^2} \right) \]

Remark 6.
(i) Corollary 2 coincides with Theorem 2.1 of Abirami et al. [13] when \(\mu = 0 \)
(ii) Corollary 2 further coincides with Theorem 2.1 of Magesh et al. [16] when \(\tau = 1 \)
(iii) We obtain Corollary 1 and Corollary 3 of Srivastava et al. [18] from Corollary 1 when \(\mu = 0 \) and \(\tau = 1 \).

Setting \(\mu = 1 \) in Theorem 1, we have the following.

Corollary 3. Let the function \(g(z) \) defined by (1) be in the class \(\mathcal{K}(x, y, 1) = S\mathcal{T}_x(x, y, 1) \) and let \(0 \leq y \leq 1, \tau \geq 1, \) and \(x \in \mathbb{R} \). Then,

\[|d_2| \leq \frac{|bx|\sqrt{|bx|}}{\sqrt{(1 - \gamma)^2 + (\tau - \gamma)(2\tau + 1) + 5 - \gamma}\left(bx\right)^2 - (2(1 + \tau) - \gamma)^2\left(\frac{pbx^2 + qa}{b^2x^2}\right)} \]

\[|d_3| \leq \frac{(bx)^2}{2(1 + \tau) - \gamma^2} + \frac{|bx|}{3(2 + \tau) - \gamma} \]

and for \(\delta \in \mathbb{R} \),

\[|d_3 - \delta d_2| \leq \begin{cases} \frac{|bx|}{3(2\mu + \tau) - \gamma} & |1 - \delta| \leq J_3, \\ \frac{|bx|}{(1 - \gamma)^2 + (\tau - \gamma)(2\tau + 1) + 5 - \gamma}\left(bx\right)^2 - (2(1 + \tau) - \gamma)^2\left(\frac{pbx^2 + qa}{b^2x^2}\right) & |1 - \delta| \geq J_3, \end{cases} \]

where

\[J_3 = \frac{1}{(3(2 + \tau) - \gamma)} \left((1 - \gamma)^2 + (\tau - \gamma)(2\tau + 1) + 5 - \gamma \right) - (2(1 + \tau) - \gamma)^2 \left(\frac{pbx^2 + qa}{b^2x^2} \right). \]

4. Conclusion

A subfamily of bi-univalent (or bi-schlicht) functions is examined by using Horadam polynomial. Bounds of the first two coefficients \(|d_2|\) and \(|d_3|\) and the Fekete–Szegö functional have been fixed for this subfamily. We have presented relevant connections to the existing results and few interesting consequences of the main result.

A subfamily examined in this article could inspire researchers to focus on other aspects such as a family bi-univalent functions using \(q \)-derivative operator [27, 28], a family using \(q \)-integral operator [29], meromorphic bi-univalent function family based on Al-Oboudi differential operator [30], regular bi-univalent function family based on Frasin operator [31], and a family using integro-differential operator [32].
Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

References
[1] P. L. Duren, *Univalent Functions, Grundlehren der Mathematischen Wissenschaften*, Springer-Verlag, Berlin, Germany, 1983.
[2] M. Lewin, "On a coefficient problem for bi-univalent functions," *Proceedings of the American Mathematical Society*, vol. 18, no. 1, pp. 63–68, 1967.
[3] D. A. Brannan and J. G. Clunie, *Aspects of Contemporary Complex Analysis*, Academic Press, Cambridge, MA, USA, 1979.
[4] D. L. Tan, "Coefficient estimates for bi-univalent functions," *Chinese Annals of Mathematics, Series A*, vol. 5, pp. 559–568, 1984.
[5] D. A. Brannan and T. S. Taha, "On some classes of bi-univalent functions," *Studia Universitatis Babeș-Bolyai Mathematica*, vol. 31, no. 2, pp. 70–77, 1986.
[6] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, "Certain subclasses of analytic and bi-univalent functions," *Applied Mathematics Letters*, vol. 23, no. 10, pp. 1188–1192, 2010.
[7] S. Bulut, "Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions," *Comptes Rendus Mathematique*, vol. 352, no. 6, pp. 479–484, 2014.
[8] B. A. Frasin, "Coefficient bounds for certain classes of bi-univalent functions," *Hacettepe Journal of Mathematics and Statistics*, vol. 43, no. 3, pp. 383–389, 2014.
[9] B. A. Frasin and M. K. Aouf, "New subclasses of bi-univalent functions," *Applied Mathematics Letters*, vol. 24, no. 9, pp. 1569–1573, 2011.
[10] A. B. Patil and T. G. Shaba, "On sharp chebyshev polynomial bounds for a general subclass of bi-univalent functions," *Applied Sciences*, vol. 23, pp. 109–117, 2021.
[11] T. Hörzum and E. Gökcen Koçer, "On some properties of horadam polynomials," *International Mathematical Forum*, vol. 4, pp. 1243–1252, 2009.
[12] A. F. Horadam and J. M. Mahon, "Pell and pell-lucas polynomials," *Fibonacci Quarterly*, vol. 23, pp. 7–20, 1985.
[13] C. Ahirami, N. Magesh, J. Yamini, and N. B. Gatti, "Horadam polynomial coefficient estimates for the classes of λ-bi-starlike and bi-bazilevic function," *The Journal of Analysis*, vol. 28, no. 4, pp. 951–960, 2020.
[14] B. A. Frasin, S. R. Swamy, and J. Nirmala, "Some special families of holomorphic and Al-oboudi type bi-univalent functions related to k-fibonacci numbers involving modified sigmoid activation function," *Afrika Matematika*, vol. 32, no. 3, pp. 631–643, 2021.
[15] A. G. Alamoum, "Coefficient estimates for certain subclass of bi-univalent functions associated the horadam polynomials," 2018, https://arxiv.org/abs/1812.10589v1.
[16] N. Magesh, J. Yamini, and C. Ahirami, "Initial bounds for certain classes of bi-univalent funtions defined by horadam polynomials," 2018, https://arxiv.org/abs/1812.04464v1.
[17] T. G. Shaba and A. K. Wanas, "Coefficient bounds for a new family of bi-univalent functions associated with (U, V)-lucas polynomial," *International Journal of Nonlinear Analysis and Applications*, vol. 13, no. 1, pp. 615–626, 2021.
[18] H. M. Srivastava, Ş. Altunkaya, and S. Yalçın, "Certain subclasses of bi-univalent functions associated with the horadam polynomials," *Iranian Journal of Science and Technology, Transactions A: Science*, vol. 43, no. 4, pp. 1873–1879, 2019.
[19] S. R. Swamy, "Coefficient bounds for Al-oboudi type bi-univalent functions based on a modified sigmoid activation function and horadam polynomials," *Earthline Journal of Mathematical Sciences*, vol. 7, no. 2, pp. 251–270, 2021.
[20] S. R. Swamy, S. Bulut, and Y. Sairaj, "Some special families of holomorphic and sâlågean type bi-univalent functions associated with horadam polynomials involving modified sigmoid activation function," *Hacettepe Journal of Mathematics and Statistics*, vol. 50, no. 3, pp. 710–720, 2021.
[21] S. R. Swamy, J. Nirmala, and Y. Sairaj, "Some special families of holomorphic and Al-oboudi type bi-univalent functions associated with horadam polynomials involving modified sigmoid activation function," *Electronic Journal of Mathematical Analysis and Applications*, vol. 10, no. 1, pp. 29–41, 2022.
[22] S. R. Swamy and Y. Sairaj, "Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions," *International Journal of Mathematics Trends and Technology*, vol. 66, no. 8, pp. 131–138, 2020.
[23] S. R. Swamy, A. K. Wanas, and Y. Sairaj, "Some special families of holomorphic and sâlågean type bi-univalent functions associated with (m, n)-lucas polynomials," *Communications in Mathematics and Applications*, vol. 11, no. 4, pp. 563–574, 2020.
[24] A. Kareem Wanas and A. Lupas Alina, "Applications of horadam polynomials on bazilevic bi-univalent function satisfying subordinate conditions," *Journal of Physics: Conference Series*, vol. 1294, no. 3, Article ID 032003, 2019.
[25] B. A. Frasin, S. R. Swamy, and A. Aldawish, "A comprehensive family of bi-univalent functions define by k-fibonacci numbers," *Journal of Function Spaces*, vol. 2021, Article ID 4249509, 8 pages, 2021.
[26] M. Fekete and G. Szegő, "Eine bemerkung über ungerade schlichte funktionen," *Journal of the London Mathematical Society*, vol. s1-8, no. 2, pp. 85–89, 1933.
[27] S. M. El-Deeb, T. Bulboac˘a, and B. M. El-Matary, "Maclaurin coefficient estimates for bi-univalent functions related to the subclasses of analytic and bi-univalent functions," *Palestine Journal of Mathematics*, vol. 6, no. 1, pp. 1024–1039, 2020.
[28] H. M. Srivastava, S. Altınkaya, and S. Yalçın, "Certain subclasses of meromorphic bi-univalent functions satisfying subordinate conditions," *International Journal of Mathematics and Mathematical Sciences*, vol. 2021, Article ID 8928437, 10 pages, 2021.
[29] B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmed, and N. Khan, "Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions," *AIMS Mathematics*, vol. 6, no. 1, pp. 1024–1039, 2020.
[30] T. G. Shaba, M. G. Khan, and B. Ahmed, "Coefficient bounds for certain subclasses of meromorphic bi-univalent functions associated with Al-oboudi differential operator," *Palestine Journal of Mathematics*, vol. 11, no. 1, pp. 572–582, 2021.
[31] B. A. Frasin, "A new differential operator of analytic functions involving binomial series," *Boletim da Sociedade Paranaense de Matematica*, vol. 38, pp. 205–213, 2020.
[32] A. O. Pall-Szabo and G. I. Oroz, "Coefficient related studies for new classes of bi-univalent functions," *Mathematics*, vol. 8, no. 1110, pp. 1–13, 2020.