Scoping Review: Ultrasonographic evidence of intraabdominal manifestations of COVID-19 infection

Sirine Dehmani1*, Nadine Penkalla1*, Ernst Michael Jung2, Chiara De Molo3, Carla Serra3, Beatrice Hoffmann4, Cheng Fang5, Christoph F. Dietrich1

*the authors share the first authorship

1Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland, 2Department of Radiology, University Medical Center Regensburg, Germany, 3Interventional, Diagnostic and Therapeutic Ultrasound Unit, Department of Medical and Surgical Sciences, IRCCS, Azienda Ospedaliero-Universitaria Sant’Orsola Malpighi Hospital, Bologna, Italy, 4Beth Israel Deaconess Medical Center Boston, Harvard Medical School, Boston MA, USA, 5Department of Radiology, King’s College Hospital, London, United Kingdom

Introduction

We are confronted with a global pandemic caused by the novel SARS-CoV-2 coronavirus that in the majority of patients will only cause mild symptoms. The most common serious complication is COVID-19 pneumonia, however, gastrointestinal (GI) COVID-19 is also a frequent presentation and likely due to the high expression of the ACE2 receptor in the GI tract. As diagnostic ultrasound has been frequently used in the management of this patient cohort, we conducted a literature search with the aim to present and review the currently published evidence of using ultrasound examinations in the management of intraabdominal manifestations of COVID-19. Our analysis showed that sonographic abnormalities of the hepatobiliary system are the most commonly reported findings in adults, while gastrointestinal abnormalities are the most common findings in children. The most severe complications are related to thromboembolic complications in the intensive care unit.

Keywords: SARS-COV-2; COVID-19; gastrointestinal; liver; spleen; kidney

Abstract

COVID-19 is an infectious disease caused by the novel SARS-CoV-2 coronavirus that in the majority of patients will only cause mild symptoms. The most common serious complication is COVID-19 pneumonia, however, gastrointestinal (GI) COVID-19 is also a frequent presentation and likely due to the high expression of the ACE2 receptor in the GI tract. As diagnostic ultrasound has been frequently used in the management of this patient cohort, we conducted a literature search with the aim to present and review the currently published evidence of using ultrasound examinations in the management of intraabdominal manifestations of COVID-19. Our analysis showed that sonographic abnormalities of the hepatobiliary system are the most commonly reported findings in adults, while gastrointestinal abnormalities are the most common findings in children. The most severe complications are related to thromboembolic complications in the intensive care unit.

Keywords: SARS-COV-2; COVID-19; gastrointestinal; liver; spleen; kidney

Received 29.09.2021 Accepted 11.11.2021
Med Ultrason 2021:0 Online first, 1-11

Corresponding author: Prof. Dr. med. Christoph F. Dietrich
Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau-Site, Salem und Permanence, Bern, Switzerland
Phone: +41 76 440 81 50
E-mail: c.f.dietrich@googlemail.com

been infected and over 3 million people have died from COVID-19 by the end of 2021 [2]. Typical symptoms of the disease include dry cough and dyspnea, as well as fever and fatigue [3-5]. Severe infection of the lungs, which progresses to ARDS, occurs in up to 12% of hospitalized patients and most cases require intensive care [6]. In this population, lung ultrasound (US) has been frequently used because it is readily available at bedside, and has high diagnostic accuracy for a number of conditions without the use of intravenous iodinated contrast agent [5,7-13]. Typical US signs of pneumonia and acute respiratory distress syndrome (ARDS) in the course of COVID-19 were described. These included thickened and irregular pleural lines, B-lines as well as sub pleural consolidations with or without air bronchogram [7,14,15]. Pathophysiological mechanisms of COVID-19 appear to involve immunological, vascular and prothrombotic factors which lead to endothelial damage and thrombosis in the context of a cytokine storm, accompanied by remod-
eling of the vascular tissue and resulting hypoperfusion play a crucial role [16-18].

However, COVID-19 is not limited to the respiratory tract with emerging evidences suggest it rather represents a systemic disease with a variety of clinical manifestations [19]. Up to 50% of children as well as adults have been shown to experience gastrointestinal (GI) symptoms, which include diarrhea, nausea, vomiting, anorexia, and abdominal pain [20]. GI symptoms might precede other symptoms or even be the only manifestation of the disease, and thus can complicate the diagnostic process [21-23]. Involvement of the hepatobiliary system in COVID-19 may lead to abnormal liver function testing in up to 76% of hospitalized patients, regardless of preexisting hepatic conditions. It can be accompanied by symptoms of hepatitis or acute hepatic failure, especially during intensive care therapy [24,25]. Furthermore, involvement of the pancreas has been reported in up to 17% of cases ranging from asymptomatic elevation of serum amylase to fulminant pancreatitis [26,27]. Moreover, acute or chronic failure of renal function was observed in both children and adults in up to 46% of cases [28,29]. Symptoms comprise hematuria, proteinuria, but also oliguria and anuria and are most likely the result of immunological and micro thrombotic phenomena [29]. Finally, the lymphatic tissue and spleen may also be affected causing unspecific abdominal complaints and has been detected in children diagnosed with COVID-19 [30,31].

While US is usually a well-established imaging method for abdominal complaints, data concerning abdominal manifestation of COVID-19 appear scarce [7,32]. Therefore, our aim is to review and summarize the results of existing published data and to identify specific sonographic findings facilitating the diagnosis of abdominal COVID-19.

Methods

The Electronic Databases PubMed, Cochrane library and Google scholar were systematically searched. The MeSH key words used were “SARS-COV-2”, “COVID-19”, “ultrasound”, “ultrasonography”, “extrapulmonary”, “abdominal”, “gastrointestinal”, “hepatic”, “biliary”, “pancreatic”, “spleenic” and “renal” to identify publications related to gastrointestinal and abdominal (extra pulmonary) ultrasonographic findings of COVID-19. We included all types of clinical prospective and retrospective studies and single or multiple case studies. There was no restriction on age or gender for the search. Clinical symptoms and results of US had to be stated in the article; otherwise we excluded the publication from the analysis (table 1).

Results

The review comprised a total of 39 publications including two prospective and four retrospective studies, as well as several single or multiple case reports. In total, data of 175 patients were analyzed. The diagnosis of COVID-19 was confirmed in all patients with reverse-transcription polymerase chain reaction (RT-PCT). The mean age was 27 years (range: 2 months - 78 years) and about 90% of patients were male. All patients received an abdominal US. Out of 138 patients with available information, 96 patients (70%) showed abdominal symptoms. Notably, multiple patients experienced these prior to any respiratory complaints. In single and multiple case studies, there was a correlation of symptoms and US findings. In the prospective and retrospective trials, a clear correlation between US and clinical findings was not as clearly found.

Gastrointestinal tract

Overall we found that unspecific GI abnormalities detected by US were frequently reported, especially for children. We found 8 cases of ileocolic intussusception in infants up to ten months of age, hereof one with necrosis of the intestine. US examinations showing ileocolic intussusception reported typical findings such as “telescoping of bowl into bowl”, “doughnut sign” or a “swirl” of the intestines with layers of different echogenicity (fig 1). One case of pediatric intestinal necrosis presented with a significant amount of free intraperitoneal fluid on examination [40].

A single center study enrolling 44 patients with multisystem inflammatory syndrome in children (MIS-C) related to COVID-19 described US findings of thickened...
Overview of ultrasonographic and clinical findings concerning abdominal manifestation of COVID-19

Publication	N	Age	Results of ultrasonography	Clinical symptoms	Diagnosis
Gastrointestinal tract					
Ahtamnah [33]	1	2 mo	Target sign of bowel	Yes	Ileocolic intussusception
Bazuaeye-Ekwuyasi [38]	1	9 mo	Concentric alternating echogenic and hypoechoic bands (target sign)	Yes, Yes	Ileocolic intussusception
Cabrero-Hernández [45]	3	9-12 y	Signs of ileitis and colitis, intestinal inflammation	Yes	PIMS-TS
Cai [40]	1	10 mo	Free intraperitoneal liquid	Yes	Ileocolic intussusception with necrosis
Carducci [44]	2	13 y	Widespread thickening of distal small intestine, small amount of ascites	Yes	PIMS-TS
Ekbatani [41]	2	10 y	Acute appendicitis, multiple reactive mesenteric lymph nodes	Yes	Acute appendicitis
Gutierrez-Jimeno [42]	1	13 y	Thickened appendix with destructured layers	Yes, No	MIS-C with acute appendicitis
Hameed [31]	18	1-17y	37% echogenic expanded mesenteric fat, 21% bowl wall thickening	Yes	MIS-C
Ibrahim [47]	1	33 y	Dilatated fluid-filled intestinal loops in left lower quadrant	Yes	Paralytic Ileus of large intestine
Kangas-Dick [46]	1	74 y	Free intraperitoneal liquid	Yes	Upper gastrointestinal perforation
Makrinioti [35]	2	10 mo	Signs of ileocolic intussusception not further specified	Yes	Ileocolic intussusception
Martinez-Castano [36]	1	8 mo	“Swirl” of intestines with alternating hyper- and hypoechogetic layers	Yes	Ileocolic intussusception
Miller [30]	12	NA	16.7% thickened intestine in right upper quadrant, 8.3% prominent appendix vermiformis	Yes	MIS-C
Moazzam [37]	1	4 mo	Telescoping of bowel into bowl with doughnut sign in right upper quadrant	Yes	Ileocolic intussusception
Morparia [43]	1	11 y	Non-compressible, dilated appendix	Yes, No	MIS-C with acute appendicitis
Rajalakshmi [39]	1	6 mo	Signs of ileocolic intussusception not further specified	Yes, No	Ileocolic intussusception
Hepatobiliary tract					
Abeysekera [60]	1	42 y	No flow detectable in portal vein	Yes	Thrombosis of portal vein
Bhayana [58]	37	NA	54% dilatation of gallbladder with sludge, 5.4% thickening of gallbladder wall, 2.7% liquid in gallbladder base, 2.7% gas in portal vein	NA, NA	NA
Blumfield [49]	8	1-20y	75% Hepatomegaly, ascites	Yes	MIS-C
Culver [51]	1	71 y	Massive amount of free intraperitoneal liquid	Yes, Yes	Acute hepatic decompensation, Ascites Sars-CoV-2-positive
Dane [39]	1	NA	Thrombosis of portal vein tree	NA, NA	Hypercoagulability
Effenberger [54]	32	NA	50% increased liver stiffness in elastography	Yes	Acute hepatitis
Hameed [31]	18	1-17y	16% periportal echogenicity, pericholecystic edema, mild gallbladder wall thickening and gallbladder sludge, 11% mild hepatomegaly	Yes	MIS-C
Hassani [57]	1	65 y	Increased gallbladder wall thickness	Yes	Acute cholecystitis
Lamazou [53]	1	35 y	Sludge in gallbladder with no signs of inflammation	Yes	Liver cytolysis
Mieczkowska [52]	1	43 y	Hepatomegaly, hepatic steatosis and trace pericholecystic fluid	Yes	Multisystemic inflammation syndrome
Publication	N	Age	Results of ultrasonography	Clinical symptoms	Diagnosis
Miller [30]	12	NA	25% thickened gallbladder wall		
25% sludge in gallbladder					
25% ascites					
8.3% heterogenous coarse parenchyma of liver without focal lesion					
8.3% hepatomegaly with normal parenchyma and vascularity	Yes	Yes	MIS-C		
Paz [62]	1	14 y	Biliary sludge, distended gallbladder with diffuse wall thickening, surrounding free fluid, meteorism	Yes	No
Tirumani [55]	4	NA	50% signs of hepatitis not further specified		
25% sludge in gallbladder	NA	NA	NA		
Ying [56]	1	68 y	Ultrasound-guided percutaneous transhepatic gallbladder drainage	Yes	Yes
Alloway [63]	1	7 y	Diffuse pancreatic enlargement and heterogeneous pancreatic echogenicity	Yes	No

Pancreas

Publication	N	Age	Results of ultrasonography	Clinical symptoms	Diagnosis	
Dietrich [21]	1	72 y	Cholecystolithiasis without signs of obstruction, inhomogeneous pancreas	Yes	Yes	Acute pancreatitis
Hadi [64]	2	47 y	Diffuse increase in pancreatic volume without focal lesions or gallstones	Yes	Yes	Acute pancreatitis
Samies [61]	1	16 y	Mild hepatomegaly, one gallstone, prominent pancreatic head, tail and duct	Yes	No	Acute pancreatitis

Renal and urinary tract

Publication	N	Age	Results of ultrasonography	Clinical symptoms	Diagnosis	
Berteloot [65]	7	3-17 y	Spectral Doppler: stenosis of renal artery, increased peak systolic velocity	No	No	Immune postviral vasculitis in renal graft after transplant
Blumfield [49]	8	1-20 y	63% hyperechogenic kidneys			
13% urinary bladder wall thickening	Yes	Yes	MIS-C			
Fogagnolo [66]	15	55-69 y	Doppler: increased renal resistance index,			
71% not continuous venous flow	Yes	Yes	Acute kidney injury in 53%			
Gopalakrishna [70]	1	49 y	Slightly echogenic kidneys	Yes	Yes	Acute kidney injury
Jung [67]	5	51-74 y	Color Doppler: increased renal resistance index			
CEUS: segmental infarction 20%, partially reduced cortical microcirculation	Yes	Yes	Acute or acute on chronic kidney disease			
Hameed [31]	18	1-17 y	5.5% echogenic kidneys	Yes	Yes	MIS-C
Tancredi [69]	1	38 y	Increased renal parenchymal echogenicity			
Color Doppler: decreased global signal, elevated resistance indices	Yes	Yes	Acute kidney injury			
Harwood [71]	2	14 y	25% increased renal cortical echogenicity			
Echo-dense and enlarged kidneys with high resistance indices (>0.8)						
CEUS: delayed renal perfusion	Yes	Yes	NA			
Miller [30]	12	NA	16.7% mesenterial lymphadenopathy in right hemiabdomen	Yes	Yes	MIS-C

Spleen and lymphatic system

Publication	N	Age	Results of ultrasonography	Clinical symptoms	Diagnosis
Blumfield [30]	8	1-20 y	13% splenomegaly		
11% borderline splenomegaly, subcortical and hypoechoic splenic lesions	Yes	Yes	MIS-C		
Hameed [31]	18	1-17 y	47% enlarged lymph nodes		
11% borderline splenomegaly, subcortical and hypoechoic splenic lesions	Yes	Yes	MIS-C		
Harwood [71]	2	14 y	Mesenteric adenitis	Yes	Yes

N: Number of cases; Abd.: Abdominal; Resp.: Respiratory; PIMS-TS: Pediatric Inflammatory Multisystem Syndrome temporally associated with SARS-CoV-2-infection; MIS-C: Multisystemic inflammatory syndrome in children; NA: not available
intestinal walls within the right upper quadrant in 16.7% and a prominent appendix vermiformis in 8.3% of their participants [30] (fig 2). US evidence of appendicitis in three more cases was reported in children with non-specific malaise due to COVID-19 [41-43].

More general signs of inflammation concerning the small and large intestines, such as bowel wall thickening or fluid surrounding the loops were reported in children presenting with generalized illness, abdominal symptoms or acute abdomen as a part of the Pediatric Inflammatory Multisystem Syndrome temporally associated with SARS-CoV-2 infection (PIMS-TS) [31,44,45]. Two case reports showed US findings of gastrointestinal involvement in critically ill adult males with COVID-19. One case showed a significant amount of free intraperitoneal fluid that was later identified as enteric content due to upper GI perforation [46]. The other case showed signs of an ileus such as dilatation of multiple fluid-filled bowel loops in a patient requiring intensive care [47].

Hepatobiliary tract

Hepatic laboratory anomalies are often observed in SARS-CoV-2 infection [48]. Hepatobiliary abnormalities on US of children were so far only described in MIS-C. According to Miller et al, 25% of children with MIS-C presented with a thickened gallbladder wall and sludge on US. Another 8.3% showed either parenchymatous abnormalities of the liver without specific lesions or liver enlargement with normal liver echo texture and vasculature. Presence of any abdominal symptoms was documented in 84% of the included cases [30]. Hameed et al revealed significant ascites in 53% of the included children with MIS-C and 16% were reported to have biliary abnormalities such as gallbladder sludge or wall thickening, pericholecystic edema and increased portal echogenicity. In 11% of the cases, the liver was enlarged on US [31]. A retrospective study of the same population reported even higher odds of hepatobiliary involvement, with up to 75% of patients showing hepatomegaly and ascites and 38% presenting with a thickened gallbladder wall [49]. Meanwhile, evidence of hepatobiliary manifestation of COVID-19 is frequently reported in adult patients. A retrospective study of 30 ICU patients revealed solitary hepatomegaly in 56% of their patients [50]. Acute hepatic decompensation was found to be diagnosed in cases with and without preexisting liver conditions. However, one single case study of an elderly male patient with liver cirrhosis Child-Pugh-B showed massive new ascites and RT-PCR of the fluid was positive for Sars-CoV-2 [51]. Particularly in cases of severe COVID-19, the risk of acute liver injury appears to be increased [52,53]. As acute liver injury is associated with increasing liver stiffness and elevated liver enzymes, an association between these two measures and disease severity could be found in COVID-19 [54]. Moreover, several investigators reported patients with US signs of hepatobiliary tract inflammation. A retrospective study on 73 patients with COVID-19 described non-specific signs of hepatitis in 50% and gallbladder sludge in 25% of the patients. Interestingly, the bowel abnormalities were the most frequent finding in the abdomen, but the majority of patients had no abdominal complaints. GI findings appeared independent of the severity of pulmonary involvement or laboratory markers [55]. Two other case reports of US findings of acute cholecystitis showed increased gallbladder wall thickness and one required percutaneous transhepatic gallbladder drainage with US guidance [56,57]. Gallbladder dilatation and sludge were further reported in 54% of patients of a retrospective cross-sectional study of 134 patients. Within the same population, 27% of participants presented with a fatty liver and 2.7% revealed a thickened gallbladder wall or fluid surrounding the gallbladder, or signs of gas in the portal vein [58]. Venous thrombosis of abdominal vasculature, such as thrombosis of the portal vein, has also been reported [59,60]. One patient was a middle-aged man with both abdominal and respiratory symptoms, while the other
case was described as part of a larger retrospective trial without additional information.

Pancreas

Three cases of acute pancreatitis associated with COVID-19 in children and two cases in adults were identified. In a 14 year old boy, US revealed prominence of the whole pancreas as well as its duct, associated with mild hepatomegaly and a solitary gallstone [61]. In the other case, an adolescent male patient had a distended gallbladder with thickened walls, biliary sludge and a small amount of free fluid, but no pancreatic abnormalities [62]. In another young and otherwise healthy 7 year old girl, US revealed diffuse pancreatic enlargement and heterogeneous pancreatic echogenicity [63]. Moreover, the three children with COVID-19 associated pancreatitis did not present with any respiratory manifestation of the disease [62,63].

In adult patients, a case series reported acute pancreatitis in two of three family members with severe COVID-19. Here, US revealed an increased pancreatic volume without signs of necrosis, focal lesions, or gallstones [64].

Kidneys and urinary tract

US renal abnormalities in children and adults were mostly related to disturbances of the renal perfusion going along with acute or acute on chronic kidney disease. In children with MIS-C, the main US findings were echogenic kidneys in up to 63% in one study, but only reported in 5% in another [31,49]. Berteloot et al performed US in children after kidney transplantation, which were diagnosed with immune post viral graft vasculitis related to COVID-19. They found stenosis of the renal artery with increased peak systolic velocity using spectral Doppler US [65]. Furthermore, a thickened wall of the urinary bladder was described in a child with MIS-C [49]. Similar results were obtained in adult patients with COVID-19. A prospective study found an increased renal resistance index measured with Doppler US in all their patients and additionally a not continuous pattern of venous flow in 71% of their study sample of 15 patients [66]. The same result was reported by Jung et al, who also performed contrast enhanced US (CEUS) in 5 COVID-19 patients, which additionally revealed a segmental renal infarction with reduced cortical microcirculation in one patient [67]. Elevated resistance indices were also reported in one case where US discovered decreased global perfusion of the enlarged and echogenic kidney on CEUS [68,69]. Echogenic kidneys on US were found in one retrospective study of 73 patients and one case report described a previous healthy young adult male progressing to acute kidney injury in the setting of worsening COVID-19 [55,70]. Acute kidney injury due to COVID-19 is thought to be multifactorial, including from micro thrombi formation leading to tissue ischemia, virus-mediated cytokine storm and direct viral effects on renal parenchyma as ACE-2 expression in urinary organs are nearly 100-fold higher than in respiratory organs [68].

Spleen and lymphatic system

Splenic manifestations detected on US were reported in children with MIS-C due to COVID-19. Two studies of 35 and 16 pediatric patients found an enlarged spleen in 11–13% of the included patients, in one case even with focal hypoechoic splenic lesions [31,49]. Lymphadenopathy was frequently described on abdominal US of children with COVID-19. Miller et al found prominent lymphatic tissue in the right hemi abdomen in 16.7% of their 40 included patients [30]. Mesenterial lymphadenitis was further reported in two girls with PIMS-TS [71]. Moreover, Hameed et al revealed enlarged intraabdominal lymph nodes in 47% of their patients, with 37% showing echogenic expansion of the mesenteric tissue [31].

CEUS for abdominal imaging of COVID-19 infection

CEUS offers the possibility to analyze dynamic microcirculatory disturbances in real time dynamically without any risk for kidneys and thyroid gland even in severe progressing disease bedside. Based on severe COVID-19 infections, first experiences with abdominal CEUS examinations are presented. In the stage of an imminent organ failure with significantly reduced kidney and liver function, CEUS can be used to show a narrowing of the organ-supplying arteries, as well as a delayed capillary filling of vessels near the capsule, a regional reduced parenchymal perfusion or an inflammatory hyperemia with capillary hyper circulation. It is possible to quickly rule out organ infarction and to dynamically record the mesenterial arterial and venous blood flow [67]. The first results on abdominal diagnostics confirm the assessment that CEUS can also detect peripheral reduced blood flow, embolisms in the context of pulmonary artery embolism, micro infarctions and reactive hyperemia in the case of consolidations and pleural irritation in the periphery of the lungs. In this way, CEUS can contribute to improving follow-up checks in the event of severe infection constellations and embolisms in the case of COVID-19 infections [9,12,13,72] (fig 3).

In the case of COVID-19, CEUS is restricted in the event of severe disease progression by the fact that the use of Sulfur hexafluoride Microbubbles (SonoVue®) as US contrast agent can lead to right heart stress with pulmonary hypertension. A restricted right heart function is often part of the serious course of the disease with COVID-19 infections. For a seriously ill COVID-19 patient, examinations with computed tomography (CT) also meant complex repositioning and transport with a
high level of personnel care. In addition, the contrast agent used in CT imaging can pose a not inconsiderable risk for the kidneys, which are often already functionally impaired. This would be one of the starting points for CEUS, since the use of SonoVue® does not impair kidney function. In preliminary investigations, the potential of CEUS for dynamic recording of organ micro perfusion in the case of a severe course of a COVID-19 infection with regard to abdominal US could be shown. Our initial experience indicate reactive changes with hyperemia, peripheral mosaic perfusion, peripheral micro embolism, infarcts and vascular thrombosis (fig 4-6). This enables a targeted control with CEUS in correlation to the CT. In addition, CEUS also enables the dynamic assessment of organ micro perfusion, especially of the liver, spleen and kidneys. Here, hypoperfusions are common in severe infectious to septic clinical pictures and, as with COVID-19 patients, may require the use of an ECMO treatment.

The use of CEUS for lung diagnostics is reserved for individual cases. However, especially in the stage of increasing kidney function restriction, CEUS can open up new diagnostic possibilities with regard to changes in microvascularisation. These must be examined multicentrically before a final assessment is possible. Acute kidney injury (AKI) is a common complication of COVID-19 critical illness but the pathophysiology is uncertain. CEUS-derived parameters were reduced in COVID-19 associated AKI compared with healthy controls (perfusion index 3.415 vs. 548, p=0.001; renal blood volume 7.794 vs. 3.338, p=0.04). Renal arterial flow quantified using time averaged peak velocity was also reduced compared with healthy controls (36.6 cm/s vs. 20.9 cm/s, p=0.004) despite cardiac index being similar between groups (2.8 l/min/m² vs. 3.7 l/min/m², p=0.07). Patients with septic shock had more heterogeneous perfusion variables. Both large and small vessel blood flow was reduced in patients with COVID-19 associated AKI compared with healthy controls, which does not appear to be a consequence of right or left heart dysfunction. A reno-vascular pathogenesis of COVID-19 AKI seems likely [73].

Point of care US

Due to its easy application and its high diagnostic reliability, point-of-care US systems of the latest generation represent a valuable imaging method for the primary

Fig 4. A 69 years old patient with severe symptoms of a COVID-19 infection: thrombosis of the inferior caval vein with echo-inhomogeneous material inside of the lumen without contrast enhancement (arrow).

Fig 5. A 65 years old patient with severe symptoms of a COVID-19 infection: echo-inhomogeneous parenchymal kidney structures, partial edema, local inflammatory reaction by micro-embolic changes (arrow).
assessments of abdominal and thoracic findings, especially in patients on geriatric and intensive care units or in emergency situations [74-77].

Discussion

This review identified 39 studies reporting US findings of intraabdominal manifestations of COVID-19. We structured these findings according to the corresponding anatomy of GI, hepatobiliary, kidneys, and the lymphatic system. If available, additional clinical information was provided. Although according to the current literature, children and adults suffer similarly from GI symptoms due to COVID-19, we found more results were reported concerning children. Pathologies such as intussusception in infants seem to be of great clinical relevance and can readily be detected using US. Avoidance of ionizing radiation and potentially harmful contrast agents are important factors to consider in this population [32]. On the contrary, hepatic and biliary abnormalities appear to be more common findings in adults. However, the clinical importance of findings such as gallbladder sludge is not clear, as it may not necessarily be linked to COVID-19. Remarkably, many hepatobiliary pathologies were detected in clinically severe cases of both children and adults [30,49,53]. A possible explanation might be virally induced decompensation of a preexisting condition [51]. Similar results were found concerning acute pancreatitis and AKI [21,31,49,61,63,64,66]. The latter can also be observed in the context of acute on chronic failure of renal function. Here, renal perfusion appears compromised and thus limiting the functional capacity of the organ [66,67]. This might be due to hyper inflammation promoting a prothrombotic state not only affecting the kidneys but also other organ systems [16]. Hypercoagulability might eventually lead to end organ ischemia due to the resulting micro- and macroangiopathy, as well as manifest as thrombosis and embolism [17,18]. Although similar phenomena are known in sepsis, the mechanisms involved in COVID-19 might be particular because of their linkage to the ACE-2 receptor, which contributes to the widespread endothelial dysfunction [18]. These mechanisms might also have an impact on changes in the lymphatic organs and the spleen. However, due to their role in immune response, they might also experience unspecific alterations linked to the state of infection in general [49].

While rather specific signs of pneumonia and ARDS due to COVID-19 could be identified using lung US, the results concerning the abdomen do not appear to offer the same specificity [7,14,15]. Nevertheless, they often reflect the general clinical state and correspond to certain symptoms, e.g. an edematous pancreas in Sars-CoV-2-induced pancreatitis [61]. Hence, US provided valuable information for the clinician, often relevant for further therapy and course of the disease. To determine potentially more specific intraabdominal US findings linked to COVID-19, larger cohort studies are required.

Conclusion

Intraabdominal manifestations of COVID-19 are common and end organ abnormalities can be readily diagnosed on multiparametric US examinations at bedside. COVID-19 specific US findings within the abdomen have not yet been reported, but the reported results often correlated with the clinical presentation. Thus, US has the potential to impact a patient’s clinical course and therapy, and is therefore of great value.

Conflict of interest: none

Acknowledgements: The work was kindly supported by Bad Mergentheimer Leberzentrum e.V.

References

1. Hasoksuz M, Kilic S, Sarac F. Coronaviruses and SARS-COV-2. Turk J Med Sci 2020;50:549-556.
2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;20:533-534.
3. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, et al. Clinical, laboratory and imaging features of
COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020;34:101623.
4. Jiang M, Li C, Zheng L, et al. A biomarker-based age, biomarkers, clinical history, sex (ABCS)-mortality risk score for patients with coronavirus disease 2019. Ann Transl Med 2021;9:230.
5. Piscaglia F, Stefanini F, Cantisani V, et al. Benefits, Open questions and Challenges of the use of Ultrasound in the COVID-19 pandemic era. The views of a panel of worldwide experts. Ultraschall Med 2020;41:228-236.
6. Tomazini BM, Maia IS, Cavalcanti AB, et al; COALITION Ultrasound Study Group (CCUSG). Findings of lung ultrasound during the COVID-19 pandemic: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5:667-678.
7. Allinovi M, Parise A, Giacalone M, et al. Lung Ultrasound May Support Diagnosis and Monitoring of COVID-19 Pneumonia. Ultrasound Med Biol 2020;46:2908-2917.
8. Dietrich CF, Buda N, Ciua IM, et al. Lung ultrasound in children, WFUMB review paper (part 2). Med Ultrasound 2021 Mar 3. doi:10.11152/nu-3059.
9. Safai Zadeh E, Beutel B, Dietrich CF, et al. Perfusion Patterns of Peripheral Pulmonary Lesions in COVID-19 Patients Using Contrast-Enhanced Ultrasound (CEUS): A Case Series. J Ultrasound Med 2021;40:2403-2411.
10. Jaworska J, Buda N, Ciua IM, et al. Ultrasound of the pleura in children, WFUMB review paper. Med Ultrasound 2021;23:339-347.
11. Mathis G, Horn R, Morf S, et al. WFUMB position paper on reverberation artefacts in lung ultrasound: B-lines or comet-tails? Med Ultrasound 2021;23:70-73.
12. Safai Zadeh E, Gorg C, Dietrich CF, Gorlach J, Alhyari A, Trenker C. Contrast-Enhanced Ultrasound for Evaluation of Pleural Effusion: A Pictorial Essay. J Ultrasound Med 2021 Mar 29. doi:10.1002/jum.15705.
13. Safai Zadeh E, Keber CU, Dietrich CF, et al. Perfusion Patterns of Peripheral Pulmonary Granulomatous Lesions Using Contrast-Enhanced Ultrasound (CEUS) and Their Correlation with Immunohistochemically Detected Vascularization Patterns. J Ultrasound Med 2021 May 6. doi:10.1002/jum.15730.
14. Peng QY, Wang XT, Zhang LN; Chinese Critical Care Ultrasound Study Group (CCUSc). Findings of lung ultrasoundography of novel corona virus pneumonia during the 2019-2020 epidemic. Intensive Care Med 2020;46:849-850.
15. Xing C, Li Q, Du H, Kang W, Lian J, Yuan L. Lung ultrasound findings in patients with COVID-19 pneumonia. Crit Care 2020;24:174.
16. Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta 2020;507:167-173.
17. Becker RC. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 2020;50:499-511.
18. McFadyen JD, Stevens H, Peter K. The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circ Res 2020;127:571-587.
19. Shi Y, Wang G, Cai XP, et al. An overview of COVID-19. J Zhejiang Univ Sci B 2020;21:343-360.
20. Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5:667-678.
21. Dietrich CG, Hubner D, Marx G, Bickenbach J, Boots-veld A. Primary presentation of COVID-19 solely with gastrointestinal symptoms: a problem for the containment of the disease. Eur J Gastroenterol Hepatol 2020;32:1475-1478.
22. Pan L, Mu M, Yang P, et al. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. Am J Gastroenterol 2020;115:766-773.
23. Song Y, Liu P, Shi XL, et al. SARS-CoV-2 induced diarrhea as onset symptom in patient with COVID-19. Gut 2020;69:1143-1144.
24. Perisetti A, Gajendran M, Mann R, Elhanafi S, Goyal H. COVID-19 extrapulmonary illness - special gastrointestinal and hepatic considerations. Dis Mon 2020;66:101064.
25. Cai Q, Huang D, Yu H, et al. COVID-19: Abnormal liver function tests. J Hepatol 2020;73:566-574.
26. Wang F, Wang H, Fan J, Zhang Y, Wang H, Zhao Q. Pancreatic Injury Patterns in Patients With Coronavirus Disease 19 Pneumonia. Gastroenterology 2020;159:367-370.
27. Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol 2020;18:2128-2130.e2.
28. Farouk SS, Fiaccadori E, Cravedi P, Campbell KN. COVID-19 and the kidney: what we think we know so far and what we don’t. J Nephrol 2020;33:1213-1218.
29. Nadim MK, Forni LG, Mehta RL, et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol 2020;16:747-764.
30. Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis KG. Gastrointestinal Symptoms as a Major Presenting Component of a Novel Multisystem Inflammatory Syndrome in Children That Is Related to Coronavirus Disease 2019: A Single Center Experience of 44 Cases. Gastroenterology 2020;159:1571-1574.e2.
31. Hameed S, Elbaaly H, Reid CEL, et al. Spectrum of Imaging Findings at Chest Radiography, US, CT, and MRI in Multisystem Inflammatory Syndrome in Children Associated with COVID-19. Radiology 2021;298:E1-E10.
32. Gans SL, Pols MA, Stoker J, Boermester MA; expert steering group. Guideline for the diagnostic pathway in patients with acute abdominal pain. Dig Surg 2015;32:23-31.
33. Althannah MN, Masade S, Hamdallah H, et al. COVID-19 presenting as intussusception in infants: A case report with literature review. J Pediatr Surg Case Rep 2021;66:101779.
34. Klinger C, Riecken B, Dietrich CF, Dirks K, Caca K, Frohlich E. Use of Ultrasound in the Diagnostic Work-Up of Adult Intussusception - A Multicenter Retrospective Analysis. Ultraschall Med 2020;41:418-427.

35. Makrinioti H, MacDonald A, Lu X, et al. Intussusception in 2 Children With Severe Acute Respiratory Syndrome Coronavirus-2 Infection. J Pediatric Infect Dis Soc 2020;9:504-506.

36. Martinez-Castano I, Calabuig-Barbero E, Gonzalez-Pinera J, Lopez-Ayal JM. COVID-19 Infection Is a Diagnostic Challenge in Infants With Ileocecal Intussusception. Pediatr Emerg Care 2020;36:e368.

37. Moazzam Z, Salim A, Ashraf A, Jehan F, Arshad M. Intussusception in an infant as a manifestation of COVID-19. J Pediatr Surg Case Rep 2020;59:101533.

38. Bazuaye-Ekwuyasi EA, Camacho AC, Saenz Rios F, et al. Intussusception in a child with COVID-19 in the USA. Emerg Radiol 2020;27:761-764.

39. Rajalakshmi L, Satish L, Nandhini G, Ezhilarasi S. Unusual presentation of COVID-19 as intussusception. Indian J Pract Pediatr 2020;22:237-238.

40. Cai X, Ma Y, Li S, Chen Y, Rong Z, Li W. Clinical Characteristics of 5 COVID-19 Cases With Non-respiratory Symptoms as the First Manifestation in Children. Front Pediatr 2020;8:258.

41. Ekbatani MS, Hassan SA, Tahernia L, et al. Atypical and novel presentations of Coronavirus Disease 2019: a case series of three children. Br J Biomed Sci 2021;78:47-52.

42. Gutierrez-Jimeno M, Ibanez Sada A, Gavira JJ, et al. Severe Cardiac and Abdominal Manifestations Without Lung Involvement in a Child With COVID-19. Int J Clin Pediatr 2020;9:92-97.

43. Morparia K, Park MJ, Kalyanaraman M, McQueen D, Bergel M, Phatak T. Abdominal Imaging Findings in Critically Ill Children With Multisystem Inflammatory Syndrome Associated With COVID-19. Pediatr Infect Dis J 2021;40:e82-e83.

44. Calo Carducci Fl, De Ioris MA, Agrati C, et al. Hyperinflammation in Two Severe Acute Respiratory Syndrome Coronavirus 2-Infected Adolescents Successfully Treated With the Interleukin-1 Inhibitor Anakinra and Glucocorticoids. Front Pediatr 2020;8:576412.

45. Cabrero-Hernandez M, Garcia-Salido A, Leoz-Gordillo I, et al. Severe SARS-CoV-2 Infection in Children With Suspected Acute Abdomen: A Case Series From a Tertiary Hospital in Spain. Pediatr Infect Dis J 2020;39:e195-e198.

46. Kangas-Dick A, Prien C, Rojas K, et al. Gastrointestinal perforation in a critically ill patient with COVID-19 pneumonia. SAGE Open Med Case Rep 2020;8:2050313X20940570.

47. Ibrahim YS, Karuppasamy G, Parambil JV, Alsoub H, Al-Shokri SD. Case Report: Paralytic Ileus: A Potential Extrapulmonary Manifestation of Severe COVID-19. Am J Trop Med Hyg 2020;103:1600-1603.

48. Yip TC, Lui GC, Wong VW, et al. Liver injury is independently associated with adverse clinical outcomes in patients with COVID-19. Gut 2021;70:733-742.

49. Blumfield E, Levin TL, Kurian J, Lee EY, Liszewski MC. Imaging Findings in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated With Coronavirus Disease (COVID-19). AJR Am J Roentgenol 2021;216:507-517.

50. Abdelmohsen MA, Alkandari BM, Gupta VK, Elbeheiry AA. Diagnostic value of abdominal sonography in confirmed COVID-19 intensive care patients. Egypt J Radiol Nucl Med 2020;51:198.

51. Culver A, Arbelot C, Bechis C, Cassir N, Leone M. First description of SARS-CoV-2 in ascites. IDCases 2020;21:e00836.

52. Mieczkowska K, Zhu TH, Hoffmann L, et al. Two adult cases of multisystem inflammatory syndrome associated with SARS-CoV-2. JAAAD Case Rep 2021;10:113-115.

53. Lamazou F, Oger P, Dieli-Crimi R, et al. COVID-19 infection in first trimester of pregnancy marked by a liver cytolysis in a woman previously treated by hydroxychloroquine for repeated implantation failure: a case report. BMC Infect Dis 2020;20:845.

54. Effenberger M, Grander C, Fritsche G, et al. Liver stiffness by transient elastography accompanies illness severity in COVID-19. BMJ Open Gastroenterol 2020;7:e00445.

55. Tirumani SH, Rahemnia-Azar AA, Pierce JD, et al. Are asymptomatic gastrointestinal findings on imaging more common in COVID-19 infection? Study to determine frequency of abdominal findings of COVID-19 infection in patients with and without abdominal symptoms and in patients with chest-only CT scans. Abdom Radiol (NY) 2021;46:2407-2414.

56. Ying M, Lu B, Pan J, et al. COVID-19 with acute cholecystitis: a case report. BMC Infect Dis 2020;20:437.

57. Hassani AH, Beheshiti A, Almasi F, Ketabi Moghadam P, Azizi M, Shahrokhi S. Unusual gastrointestinal manifestations of COVID-19: two case reports. Gastroenterol Hepatol Bed Bench 2020;13:410-414.

58. Bhayana R, Som A, Li MD, et al. Abdominal Imaging Findings in COVID-19: Preliminary Observations. Radiology 2020;297:E207-E215.

59. Dane B, Smereka P, Wain R, Kim D, Katz DS. Hypercoagulability in Patients With Coronavirus Disease (COVID-19): Identification of Arterial and Venous Thromboembolism in the Abdomen, Pelvis, and Lower Extremities. AJR Am J Roentgenol 2021;216:104-105.

60. Abeyesekera KW, Kartesz H, Clark A, Gordon FH. Spontaneous portomesenteric thrombosis in a non-cirrhotic patient with SARS-CoV-2 infection. BMJ Case Rep 2020;13:e238906.

61. Samies NL, Yarbrough A, Boppana S. Pancreatitis in Pediatric Patients With COVID-19. J Pediatric Infect Dis Soc 2020;10:e238906.

62. Abdelmohsen MA, Alkandari BM, Gupta VK, Elbeheiry AA. Diagnostic value of abdominal sonography in confirmed COVID-19 intensive care patients. Egypt J Radiol Nucl Med 2020;51:198.

63. Culver A, Arbelot C, Bechis C, Cassir N, Leone M. First description of SARS-CoV-2 in ascites. IDCases 2020;21:e00836.

64. Mieczkowska K, Zhu TH, Hoffmann L, et al. Two adult cases of multisystem inflammatory syndrome associated with SARS-CoV-2. JAAAD Case Rep 2021;10:113-115.

65. Lamazou F, Oger P, Dieli-Crimi R, et al. COVID-19 infection in first trimester of pregnancy marked by a liver cytolysis in a woman previously treated by hydroxychloroquine for repeated implantation failure: a case report. BMC Infect Dis 2020;20:845.

66. Effenberger M, Grander C, Fritsche G, et al. Liver stiffness by transient elastography accompanies illness severity in COVID-19. BMJ Open Gastroenterol 2020;7:e00445.

67. Tirumani SH, Rahemnia-Azar AA, Pierce JD, et al. Are asymptomatic gastrointestinal findings on imaging more common in COVID-19 infection? Study to determine frequency of abdominal findings of COVID-19 infection in patients with and without abdominal symptoms and in patients with chest-only CT scans. Abdom Radiol (NY) 2021;46:2407-2414.

68. Ying M, Lu B, Pan J, et al. COVID-19 with acute cholecystitis: a case report. BMC Infect Dis 2020;20:437.

69. Hassani AH, Beheshiti A, Almasi F, Ketabi Moghadam P, Azizi M, Shahrokhi S. Unusual gastrointestinal manifestations of COVID-19: two case reports. Gastroenterol Hepatol Bed Bench 2020;13:410-414.

70. Bhayana R, Som A, Li MD, et al. Abdominal Imaging Findings in COVID-19: Preliminary Observations. Radiology 2020;297:E207-E215.

71. Dane B, Smereka P, Wain R, Kim D, Katz DS. Hypercoagulability in Patients With Coronavirus Disease (COVID-19): Identification of Arterial and Venous Thromboembolism in the Abdomen, Pelvis, and Lower Extremities. AJR Am J Roentgenol 2021;216:104-105.
65. Berteloot L, Berthaud R, Temmam S, et al. Arterial abnormalities identified in kidneys transplanted into children during the COVID-19 pandemic. Am J Transplant 2021;21:1937-1943.

66. Fogagnolo A, Grasso S, Dres M, et al. Focus on renal blood flow in mechanically ventilated patients with SARS-CoV-2: a prospective pilot study. J Clin Monit Comput 2021 Jan 1. doi:10.1007/s10877-020-00633-5.

67. Jung EM, Stroszczyński C, Jung F. Contrast enhanced ultrasonography (CEUS) to detect abdominal microcirculatory disorders in severe cases of COVID-19 infection: First experience. Clin Hemorheol Microcirc 2020;74:353-361.

68. Tuma J, Neugebauer F, Rohacek M, Serra A. Renal Monomorphy in COVID-19 with Acute Renal Insufficiency. Praxis (Bern 1994) 2020;109:731-735.

69. Tancredi T, DeWaters A, McGillen KL. Renal ultrasound findings secondary to COVID-19 related collapsing focal segmental glomerulosclerosis - A case report. Clin Imaging 2021;71:34-38.

70. Gopalakrishnan A, Mossaid A, Lo KB, Vasudevan V, McCullough PA, Rangaswami J. Fulminant Acute Kidney Injury in a Young Patient with Novel Coronavirus 2019. Cardiorenal Med 2020;10:217-222.

71. Harwood R, Sinha I. Diagnosis of COVID-19 in children: the story evolves. BMC Med 2020;18:158.

72. Safai Zadeh E, Huber KP, Dietrich CF, et al. The Value of Lung Ultrasound to Detect the Early Pleural and Pulmonary Pathologies in Nonhospitalized COVID-19-Suspected Cases in a Population with a Low Prevalence of COVID-19 Infection: A Prospective Study in 297 Subjects. J Ultrasound Med 2021. doi:10.1002/jum.15822.

73. Watchorn J, Huang DY, Joslin J, Bramham K, Hutchings SD. Critically Ill COVID-19 Patients With Acute Kidney Injury Have Reduced Renal Blood Flow and Perfusion Despite Preserved Cardiac Function: A Case-Control Study Using Contrast-Enhanced Ultrasound. Shock 2021;55:479-487.

74. Jung EM, Dinkel J, Verloh N, et al. Wireless point-of-care ultrasound: First experiences with a new generation handheld device. Clin Hemorheol Microcirc 2021. doi:10.3233/CH-211197.

75. Frohlich E, Beller K, Muller R, et al. Point of Care Ultrasound in Geriatric Patients: Prospective Evaluation of a Portable Handheld Ultrasound Device. Ultraschall Med 2020;41:308-316.

76. Barreiros AP, Dong Y, Ignee A, Wastl D, Dietrich CF. EchoScopy in scanning abdominal diseases; a prospective single center study. Med Ultrason 2019;21:8-15.

77. Barreiros AP, Cui XW, Ignee A, De Molo C, Pirri C, Dietrich CF. EchoScopy in scanning abdominal diseases: initial clinical experience. Z Gastroenterol 2014;52:269-275.