Floristic Composition and Biological Spectrum of Hazarnoe Forest of District Malakand, Khyber Pakhtunkhwa

ASGHAR KHAN*1, NASRULLAH KHAN2

1Degree College Totakan, District Malakand, Khyber Pakhtunkhwa, Pakistan
2Department of Botany University of Malakand, Pakistan

*Corresponding author: Email: asgharmkd35@gmail.com

Article Published on: 23 September 2019

Abstract:

The plant species of Hazarnoe Forest of District Malakand, Khyber Pakhtunkhwa, were evaluated floristically from April 2016 to November 2017. Of the total 240 reported plant species, 38 were monocots, 196 dicots which belongs to 85 families and 188 genera respectively. Poaceae was the leading family contributed 20 species. Family Asteraceae contributed (14 spp.), Lamiaceae (13 spp.) while Papilionaceae and Solanaceae each with 10 species. Of the total plant taxa perennials were 161 species compared to annuals (73 spp.) and biennials (06 spp.). The dominant growth form was herbs that contributed (108 spp.) followed by trees (50 spp.) and shrubs (45 spp.) respectively. Phanerophytes were the dominant life-form (92 spp.) whereas leaf size spectrum of microphyll was reported as abundant in the overall floristic. Phanerophytes and microphyll leaf size was the dominant life forms which show typical climate of subtropical region governing the area. Conclusion of study was that the vegetation of the area is under heavy biotic pressure and need proper conservation.

Keywords— Floristic composition; Life form; Leaf size spectrum
INTRODUCTION

Floristic composition is reflection of diversity of vegetation of a specific geographic location and provides a platform to plant species for their correct identification and sustainable utilization (Rafay et al., 2013). For the study of biodiversity, knowledge of floristics of any region play an important role in understanding of the local environment of the area (Thakur et., 2012). A floristic inventory is a good source of botanical information and provides an appropriate starting point for further comprehensive studies of a specific geographic area (Keith, 1988). So, floristic inventories reflect taxonomic study of a major division of flora in a given area (Panda et al., 2014). Biological spectrum is an index for comparison of widely geographically separated plant communities indicates biotic interaction, habitat and climate deterioration and is used to express the percent distribution of life-forms of a given flora (Raina and Sharma, 2010). The term biological spectrum was proposed by Raunkiaer (1934) which also determine stratification pattern, nature of phytoclimmate and layering of a community (Gaza and Raina, 2015). In different regions of the globe, occurrences of similar biological spectrum indicate similar environmental conditions as well as micro and macro climate which govern over the area (Hussain., et al., 2015). Based on similarities in structure, function and ecological conditions plants are classified into life-forms which is the sum of adaptation responses to the pre-dominant climatic conditions. Life forms are important physiognomic attributes that expresses the harmony among plants with its surroundings and used in vegetation studies, after floristic composition (Shimwell, 1971; Warming, 1909). Likewise, leaf size spectrum of a region is useful, for exploring the plant associations with relation to various prevailing climatic factors. Thus, leaf size provides an idea of floristic adaptation and can be helpful in studying vegetation at regional level (Rashid et al., 2011). The aim of this paper is to provide a complete checklist of plant species of the forest area. The study is based on basic aspects of ecology which provides baseline information for conservationists, herbalists and plant biologists.

This paper is organized into the following sections as; Section I explains introductory part of floristic, life form and leaf size spectrum. Section II represents previously related work done and Raunkiaer system of classification. Section III contains field visits, data collection, data analysis and classification of plant species. Section IV describes results and discussion followed by conclusion.

II REVIEW OF LITERATURE AND RAUNKIAER 1934 CLASSIFICATION SYSTEM

Few studies were previously carried out only on ethno-botanical aspects of plant taxa of the Hazarnoe forest by (Murad et al., 2011) who reported the folk medicinal uses of 75 plant species against various
human ailments. (Zabihullah et al., 2006) recorded 82 plant species for different purposes. (Murad et al., 2012) conducted another study on traditional uses of the forest flora, reported 90 plant species of local importance. (Barakat et al., 2011) carried a similar study in nearby hills of forest and recorded a total of 169 plant species used traditionally in preparing medicine, furniture, vegetables and fodder. Zeb et al. [17] al. carried a phytosociological study of the forest and reported 24 weed plants forming various communities.

The Raunkiaer (1934) system is most popular and widely accepted, for classification and description of plant life forms. This system of classification is based, on the position, degree of protection of the perennating buds (Abusaief and Dakhil, 2013). Under this system all types of plants species, can be classified into five major groups. I. Phanerophytes; plants whose perennating buds are near or above 25 cm of the soil surface. II. Therophytes; mostly annuals which complete their life cycle during one season. III. Cryptophytes; plants whose perennating buds are subterranean mostly. IV. Hemicryptophytes; perennating buds of such plant species are at the ground surface and protected bysoil and leaves. V. Chamaephytes; perennating buds are below the height of 25 cm and located close to the ground surface (Asad et al., 2015). The forest area lacks such a comprehensive ecological study. Therefore, keeping in mind an inventory of plant species was carried out to report plant species with taxonomic characters.

III FIELD VISIT, DATA COLLECTION AND CLASSIFICATION

A florist survey was carried out during flowering seasons from April 2016 to November 2017 in Hazar Nao forest. The forest is floristically diverse and located almost an altitude of 2727 m above mean sea level between Kot, Agra and Pir Khel village of Distrit Malakand (Zeb et al., 2016) (Fig 1). Collection of plants were carried out from open sites in foot hills, in understory vegetation at mid and top hills using field instruments like hand pruner. Photographs of plant species were also taken on the spot using a digital camera. Global position system (GPS) was used to record latitude, longitude and aspects of plant species. The plant specimens were sorted, press-dried, preserved, and identified with the help of available literature developed by (Ali and Qaiser, 2007; Nasir, 1994). The specimens of plants were deposited in Herbarium of University of Malakand.

Checklist of the collected plant species were prepared and alphabetically arranged with complete taxonomic description. The plant species were grouped into different life-forms, leaf-size classes followed (Raunkiaer , 1934; Hussain, 1889). Biological spectrum, of the flora was calculated by applying the following formulas.

Life-form spectrum =
Number of species falling in a particular life-form classes \[\frac{\text{Leaf-size spectrum}}{\text{Total number of all the species for that community/stand}} \times 100 \]

Percentiles and Chi-square test was used to interpret the tabulated data. Comparison was made to the life-form spectrum of study area flora with Raunkiaer’s Normal spectrum. For the result of Chi-square, the following formula was applied following (Zar, 1999).

\[\chi^2 = \frac{\sum (E - O)^2}{E} \]

E represents the expected values whereas O is the observed values. The sign of sigma denotes that everything that follows is summed.

Figure 1: Show map of study area; (Hazar Noe forest District Malakand).

IV RESULTS AND DISCUSSION

In the current study the total reported plant species were 240 which belong to 118 genera, and 85 families respectively (Table 2). Of them, 196 species were dicotyledons, 38 monocotyledons, one gymnosperm and 05 Pteridophytes respectively. The dominating group was Dicotyledonous plants which were reported by 72 families. Monocotyledons were represented by 09 families followed by Pteridophytes with 03 families whereas Gymnosperms was with 01 family only (Table 1).
Table 1: Taxonomic diversity of plants of Hazarnoe Forest, District Malaknd.

Plants Group	Dicot	Monocot	Pteridophytes	Gymnosperm	Total
No. of plant species	196	38	5	1	240
%	82	14	3	1	100
No. of plants Family	72	9	3	1	85
%	85	10	4	1	100

Poaceae was reported being the dominant family in the study area comprised of 20 species. The other plants families such as Asteraceae contributed (14 spp.) followed by Lamiaceae (13 spp.), Papilionaceae and Solanaceae (each with 10 spp.) whereas Rosaceae with (09 spp.) only. In addition, Euphobiaceae and Moraceae contributed, each with (08 spp.) respectively (Fig 2).

![Figure 2: Contribution of Plant taxa with five or more than five plant species.](image)

The contribution of families with 05 plant species was Amaranthaceae and Boraginaceae, Cucurbitaceae and Liliaceae, Polygonaceae and Rhamnaceae. The results indicated that Apocynaceae and Brassicaceae, Chenopodiaceae and Convolvulaceae, Cyperaceae and Mimosaceae, Oleaceae and Papaveraceae, Ranunculaceae and Urticaceae, contributed (each 03 spp.) to the overall floristics of the study area whereas Zygophyllaceae shared 04 species only. The remaining families shared either (02 or 01 plant spp.) to the forest flora (Table 2).
S#	Family/Species Name	Local Name	Habit	Life Span	Life-form	Leaf size	Taxonomic category	
1	Acanthaceae							
	Justicia adhatoda L.	Baikar	Shrub	P	NP	Mic	D	
2	Alliaceae							
	Allium cepa L.	Piaz	Herb	B	Cr	Mic	M	
	Allium sativum L.	Oga	Herb	B	Cr	Mic	M	
3	Adiantaceae							
	Adiantum capillus-veneris L.	Sunnbal	Herb	P	Cr	Na	Pt	
	Adiantum incisum Forsk,	Sunnbal	Herb	P	Cr	Na	Pt	
4	Aizoaceae							
	Portulaca oleracea Linn.	Warkhary	Herb	A	Th	Le	D	
5	Amaranthaceae							
	Aerva javanica (Bum.f.)Juss.ex Schult.	Kharboti	Herb	P	Ch	Mic	D	
	Achyranthes aspera L.	Speyboti	Herb	P	Th	Mic	D	
	Amaranthus caudatus L.	Chalwai	Herb	A	Th	Mes	D	
	Amaranthus spinosus L.	Ghano chalwai	Herb	A	Th	Mic	D	
	Amaranthus viridis L	Ghanher	Herb	A	Th	Mic	D	
6	Amarillidiaceae							
	Narcissus tazetza L.	Gul-e-nargis	Herb	P	Cr	Mic	M	
7	Anacardiaceae							
	Pistacia chinensis Bunge	Shnai	Tree	P	MP	Mic	D	
8	Apiceae							
	Ammi visnaga (L.)Lam	Spaikai	Herb	A	Th	Le	D	
9	Apocyanaceae							
	Caralluma fimbriata Wall	Pamankai	Herb	P	He	Na	D	
	Nerium indicum L.	Gandari	Shrub	P	NP	Mic	D	
	Rhaza stricta Decne	Ghandairi	Shrub	P	NP	Mic	D	
10	Araceae							
	Acorus calamus L.	Skhawaja	Herb	P	Cr	Mes	M	
	Arisaemajacquemontii Blume, Rumphia.	Marjarai	Herb	A	Cr	Mes	M	
11	Arallaceae							
	Hedera nepalensis K. Koch, Hort.	Prewatai	Liana	P	NP	Mes	D	
	Dendrol							
12	Areaceae							
	Phoenix dactylifera L.	Kajoor	Tree	P	MP	Mes	M	
	Nannorrhops ritchiana Griff	Mayzarai	Shrub	P	NP	Mes	M	
13	Asclepiadaceae							
	Calotropis procera (Willd.) R.Br.	Spalmai	Shrub	P	Ch	Mes	D	
	Periploca aphylla L.	Barara	Shrub	P	NP	Le	D	
14	Asteraceae							
	Artemisia scoparia Waldst & Ket	Jaukai	Herb	P	Ch	Le	D	
	Calendula arvensis L.	Ziar gulai	Herb	A	Th	Mic	D	
	Carthamus lanatus L.	Kariza	Herb	A	Th	Mic	D	
	Carthamus oxyacantha Bieb	Kariza	Herb	A	Th	Na	D	
	Cichorium intybus L.	Shengulai	Herb	A	Th	Mic	D	
	Conyza bonariensis L.	Dhanayobotai	Herb	A	Th	Mic	D	
	Echinops echinatus Roxb.	Oantkatara	Herb	A	Ch	Mic	D	
	Eringium biebersteinianum Nervski ex Bobrov	Manzari panja	Shrub	P	Th	Na	D	
15	Berberidaceae							
	Berberis lycoicus Royke.	Kwarai	Shrub	P	NP	Mic	D	
16	Betulaceae							
	Alnus nitida (Spach)Endl	Geyrai	Tree	P	MP	Mes	D	
17	Bombacaceae							
	Bombax ceiba L.	Sumbal	Tree	P	MP	Mes	D	
18	Boraginaceae							
----	-------------							
Ehretia obtusifolia Hoehes	Ghatabotai	Shrub	P	NP	Mic	D		
Ehretia serrata Roxb.	Puran	Tree	P	MP	Mes	D		
Cordia myxa L.	Laswara	Tree	P	MP	Mes	D		
Onosma hispida Wall. Ex G. Don.	Ratanjot	Herb	P	He	Na	D		
Trichodesma indica (L.) R.Br.	Ghwajabai	Herb	A	Ch	Na	D		
19	Brassicaceae							
Lepidium sativum L.	Halam	Herb	A	Th	Na	D		
Capsella bursa pastoris (L). Medig.	Bimpaisa	Herb	A	Th	Mic	D		
Nasturtium officinale R.Br.	Tarmera	Herb	P	Th	Na	D		
20	Buxaceae							
Buxus wallichiana Baill	Shamshad	Shrub	P	NP	Mic	D		
Sarcoococca saligna (D. Don) Mueell	Ladda	Shrub	P	NP	Mic	D		
21	Cactaceae							
Opuntia dilleni(Ker Gawl.) Haw.	Kamala	Herb	P	NP	Ap	D		
Opuntia monacantha (Wild.) Haw.	Zuqam	Shrub	P	NP	Ap	D		
22	Caesalpinaceae							
Bauhinia variegata L.	Kolyar	Tree	P	MP	Mes	D		
23	Canabaceae							
Cannabis sativa L.	Bhang	Herb	B	Th	Mic	D		
24	Caryophyllaceae							
Silene conoidea L.	Mangotai	Herb	A	Th	Na	D		
Stellaria media (L.) Vill	Teghstargai	Herb	A	Th	Le	D		
25	Celastraceae							
Gymnosporia royleana Wall.exLawson	Sorazghai	Shrub	P	NP	Mic	D		
26	Chenopodiaceae							
Chenopodium album L.	Saarmai	Herb	A	Th	Mic	D		
Chenopodium botrys L.	Skhabotai	Herb	P	Hem	Na	D		
Chenopodium amphibloides L.	Skhabotai	Shrub	B	Th	Mic	D		
27	Convolvulaceae							
Convolvulus arvensis L.	Prewatai	Climber	A	Th	Mic	D		
Ipomea hederaea L.	Prewatai	Climber	A	Th	Mes	D		
Ipomea pulpurea L.	Prewatai	Climber	A	Th	Mes	D		
28	Cucurbitaceae							
Citrullus colocynthis (L.)Schrad	Khro Hindwana	Climber	P	Th	Mes	D		
Cucurbita maxima Duch. ex Lam	Kado	Climber	A	Th	Mic	D		
Momordica charantia Linn.	Karela	Climber	A	Th	Mes	D		
Luffa Cylindrica (Linn.) Roem	Torai	Climber	A	Th	Mes	D		
Solena amplexicaulis (Lam.) Gandhi	Kakora	Climber	P	Th	Mic	D		
29	Cuscataea							
Cuscata reflexa Roxb.	Marazbotai	Climber	P	Ph	Le	D		
30	Cyperaceae							
Cyperus rotundusL	Dela	Sedge	P	Cr	Le	M		
Filbristylis squarrosa Vahl	Barwaz	Sedge	A	Cr	Mic	M		
Heteropogon contortus (L.)	Sormal	Sedge	P	Hem	Mic	M		
31	Dryopteridaceae							
Dryopteris crenata (Forssk.)Kuntz.	Sumbal	Herb	P	Cr	Mic	Pt		
Dryopteris jasmapodiata Christ.	Sumbal	Herb	P	Cr	Mic	Pt		
32	Ebenaceae							
Diospyros lotus Linn.	Tor amlook	Tree	P	MP	Mic	D		
Diospyros kakiLinn.	Ziar amlook	Tree	P	MP	Mes	D		
33	Euphorbiaceae							
Andracne cordifolia (Wall. exDecne.)	Krachai	Shrub	P	NP	Mic	D		
Euphorbia granulata Forssk	Warmaga	Herb	P	Hem	Na	D		
Euphorbia helioscopia L.	Mandarro	Herb	A	Th	Na	D		
Euphorbia hirta L.	Pabotai	Herb	A	Th	Na	D		
Euphorbia prostrata L.	Warmaga	Herb	P	Th	Le	D		
Mallotus philippensis (Lam.) Mucll.	Kambaila	Tree	P	MP	Mes	D		
Phyllanthus emblica L. .	Aamla	Tree	P	Ph	Le	D		
Ricinus communis L.	Aranda	Shrub	P	NP	Mes	D		
34	Equisetaceae							
Equisetum arvensis L.	Bandakai	Herb	P	Cr	Le	Pt		
35	Fagaceae							
Quercus incana Roxb.	Spin banj	Tree	P	MP	Mic	D		
	Family	Species Name	Common Name	Type	P	NP	Mic	D
---	----------------	--	-------------	----------	---	----	-----	---
36	Flacourtiaeae	*Flacouria indica* (Berm.) Merill.	Katali	Tree			NP	
37	Fumariaceae	*Fumaria indica* (Hausskn.) H.N.	Papra	Herb	A		Th	Le
38	Geraniaceae	*Geranium Wallichianum* D. Don Ex Sweet	Sra zaila	Herb	P		Th	Mic
39	Hyperiaceae	*Hypericum perforatum* L.	Shin chai	Herb	P		Th	Le
40	Juglandaeae	*Juglans regia* L.	Ghwaz	Tree			MP	Mes
41	Lamiaeae	*Ajuga bracteosa* Wall. ex Benth.	Gutey	Herb	P		Th	Mic
		Ajuga purpurea Benth.	Botey	Herb	P		Th	Mic
		Colebrokia oppositifolia Smith.	Banda	Shrub	P		NP	Mic
		Micromeria biflora (Buch.-Ham. ex D. Don) Benth.	Nari shakamai	Herb	P		Ch	Le
		Meniga longifolia (L.)Huds.	Venalai	Herb	P		Cr	Mic
		Meniga spicata L.	Podina	Herb	P		Cr	Mic
		Oriyanum vulgare L.	Shamakai	Herb	P		Ch	Mic
		Otostegia limbata (Benth.) Bioss	Spin azghai	Shrub	P		Np	Mic
		Plectranthus rosogus Wall.ex Benth.	Spakai	Shrub	P		Np	Mic
		Salvia lanata Roxb.	Matarjari	Herb	P		Th	Mic
		Salvia moorecroftiana Wall.	Khardag	Herb	P		Ch	Mes
		Salvia plebeia R.Br.	Gwarmai	Herb	A		Th	Mic
		Teucrium stockstanum Bioss	Khamdabota	Herb	P		Th	Mic
42	Liliaceae	*Aloe barbadensis* Mill.	Kamala	Herb	P		Ch	Mac
		Asparagus adscendens L.	Tendonai	Shrub	P		Cr	Le
		*Asparagus plumosus*Baker.	Tendonai	Climber	P		Cr	Le
		Asphodelus tenuifolius Cavan	Piazakai	Herb	A		Cr	Mic
		Tulipa stellata Hk.f.	Ghantol	Herb	A		Cr	Le
43	Lythraceae	*Woodfordia fruticosa* (L.) S. Kurz	Zangalianar	Shrub	P		NP	Mic
44	Malvaeae	*Malva neglecta* Wallr.	Panerak	Herb	A		Th	Mic
		Abelmoschus esculentus(Linn.)	Bindai	Herb	A		Th	Mic
		Moench, Meht						
45	Meliaeae	*Melia azedarach* L.	Bakrana	Tree	P		MP	Mic
46	Menispermacae	*Tinospora cordifolia* Miers	Praiwatai	Shrub	P		Ph	Mes
47	Mimosaceae	*Acacia modesta* Wall	Palusa	Tree	P		MP	Le
		Acacia nilotica L.	Kikar	Tree	P		MP	Le
		Albizia lebbeck (L.)Benth.	Srikh	Tree	P		MP	Le
48	Moraceae	*Ficus benghalensis* L.	Rabbarotai	Tree	P		MP	Mes
		Ficus carica L.	Inzar	Tree	P		MP	Mac
		Ficus palma Forrsk.	Inzar	Tree	P		MP	Mes
		Ficus recemosa L.	Ormal	Tree	P		MP	Mac
		Ficus religiosa L.	Peepal	Tree	P		MP	Mes
		Ficus foveolata Wall. Ex Miq.	Inzarbotai	Climber	P		He	Mic
		Morus alba L.	Spaintoot	Tree	P		MP	Mes
		Morus nigra L.	Tortoot	Tree	P		MP	Mes
49	Myrsinaceae	*Myrsine africana* L.	Tartara	Shrub	P		NP	Na
50	Myrtaceae	*Eucalyptus camadulensis* L.	Lachi	Tree	P		MP	Mic
		Myrtus communis L.	Manro	Shrub	P		NP	Mic
51	Nyctaginaceae	*Boerhavia diffusa* L.	Ensat	Herb	A		Th	Mic
52	Oleaceae							
53 Oxalidaceae
- Oxalis corniculata L.: Tarokai, Herb, A, Th, Na, D

54 Papaveraceae
- Papaver somniferum L.: Quashkash, Herb, A, Th, Mic, D

55 Papaveraceae
- Papaver paeoniflorum Schenk., Enum.: Soreghulai, Herb, A, Th, Na, D
- Papaver rhoas L.: Redaigulai, Herb, A, Th, Mic, D

56 Papilionaceae
- Butea monosperma (Lam.) P. Kuntra: Palai, Tree, P, MP, Mes, D
- Daucus carota L.: Shawa, Tree, P, MP, Mic, D
- Indigofera heterantha L.: Gharwarija, Shrub, P, NP, Le, D
- Lathyrus aphanes L.: Karkunanai, Climber, A, Th, Na, D
- Lathyrus cicera L.: Marghaikpa, Climber, A, Th, Na, D
- Lathyrus sativus L.: Chiloe, Climber, A, He, Mic, D
- Lotus corniculatus Linn.: Kasnai, Herb, P, Th, Na, D
- Medicago minima (L.) Gurb: Peshtarai, H, A, He, Na, D
- Robinia pseudoacacia L.: Kaikar, Tree, P, MP, Mic, D
- Viciea sativa L.: Marghaikpa, Climber, A, Th, Na, D

57 Pinaceae
- Pinus roxburghii Sergent: Nakhtar, Tree, P, MP, Le, GM

58 Plantaginaceae
- Plantago lanceolata L.: Jabai, Herb, A, Th, Mic, D
- Plantago major Linn.: Jabai, Herb, A, Th, Mes, D

59 Platanaceae
- Platanus orientalis L.: Chinar, Tree, P, MP, Mac, D

60 Poaceae
- Apluda mutica L.: Spenwakhai, Grass, P, Hem, Le, M
- Aristida cymosana Nees ex Steud.: Mashkeza, Grass, P, Hem, Mic, M
- Arundo donax L.: Nalaan, Herb, P, NP, Mac, M
- Avena sativa L.: Jamdar, Grass, A, Th, Na, M
- Bracharia ramose (L.) Stapf.: Shamokha, Grass, A, Th, Na, M
- Bromus japonicus Thomas ex murr: Jaukai, Grass, A, Hem, Le, M
- Chenopodium ciliaris L.: Barwaza, Grass, P, Th, Na, M
- Cynodon dactylon (L.) pers.: Srinagar, Grass, P, He, Le, M
- Desmostachya bipinnata(L.L)Stapf: Drab, Grass, P, He, Mes, M
- Hordeum murinum L.: Warbashkai, Herb, A, Th, Na, M
- Hordeum vulgare L.: Warbasha, Herb, A, Th, Na, M
- Imperata cylindrica (L.) Beauv.: Pesholakai, Grass, P, He, Le, M
- Dicotylis annulatum(Forsk.)Stapf: Wakha, Grass, P, He, Na, M
- Poa annua L.: Wakha, Grass, A, Th, Na, M
- Saccharum bengalense Retz.: Shargashe, Grass, P, He, Mes, M
- Saccharum griffithii Munro.Ex Bios.: Bogara, Grass, P, He, Mic, M
- Saccharum spontaneum L.: Kahai, Grass, P, He, Mic, M
- Sorghum helipense (L.)Persoon: Dadum, Grass, P, He, Mic, M

61 Polygonaceae
- Bistorta amplexicaulis (D.Don) Greenep: Anajabar, Herb, P, Th, Mes, D
- Polygonum aviculare L.: Bandakai, Herb, A, Th, Mic, D
- Polygonum barbatum L.: Pulpohak, Herb, A, Ch, Mic, D
- Rumex dentatus L.: Shalkhai, Herb, A, Th, Mes, D
- Rumex hastatus D.Don: Tarokai, Herb, A, Th, Na, D

62 Primulaceae
- Anagallis arvensis L.: Gulbotai, Herb, A, Th, Na, D

63 Punicaceae
- Punica granatum L.: Anangorai, Tree, P, MP, Na, D

64 Ranunculaceae
Genus	Scientific Name	Common Name	Type	Part Used	Medicinal Properties	
Ranunculus arvensis L.	Ziaargulai	Herb	A	Th	Na	D
Ranunculus muricatus L.	Ziaargulai	Herb	A	Th	Mic	D
Clematus grata Wall.	Zialai	Shrub	P	Cr	Mic	D
65 **Rhamnaceae**						
Sageretia thea (Osbeck) M.C. Johnston.	Mumanara	Shrub	P	NP	Na	D
Ziziphus mauritian Lam.	Baira	Tree	P	MP	Na	D
Ziziphus numularia (Burn.f) W.&A	Karkanara	Shrub	P	NP	Na	D
Ziziphus sativa Gaerth.	Markhanai	Tree	P	MP	Na	D
Ziziphus oxyphylla Edgew.	Enalai	Tree	P	MP	Na	D
66 **Rosaceae**						
Cotoneaster numularia Fischer & C.A. Meyer	Kharawa	Shrub	P	NP	Mic	D
Duchesnea indica (Andr.) Focke	Zmakitoor	Herb	P	Th	Mic	D
Fragaria nubicola (Hook.f.) Lindl. ex Lacaita	Mazkitoot	Herb	P	He	Mic	D
Pruus persica (L.) Batch.	Shaltala	Tree	P	MP	Mic	D
Pyrus pashia Hom. Ex.D.	Tango	Tree	P	MP	Mic	D
Rosa moschatula Herm.	Zangali gulab	Shrub	P	NP	Mic	D
Rosa Webbiana Wall ex Royle	Pirwarrai	Shrub	P	NP	Mic	D
Rubus ellipticus Smith.	Karwara	Shrub	P	NP	Mic	D
Rubus fruticosus L.	Karwara	Shrub	P	NP	Mic	D
67 **Rutaceae**						
Zanthoxylum armatum DC. Prodr.	Dambara	Small tree	P	NP	Mic	D
Skimnia laureola (DC.) Sieb. & Zucc. Ex Walp.	Nazar Panra	Shrub	P	NP	Mic	D
68 **Salicaceae**						
Populus nigra L.	Spaidha	Tree	P	MP	Mes	D
Salix babylonica L.	Wala	Tree	P	MP	Mes	D
Salix alba L.	Wala	Tree	P	MP	Mic	D
Salix tetrasperma Roxb.	Wala	Tree	P	MP	Mic	D
Salix acmophylla Boiss.	Wala	Tree	P	MP	Mic	D
69 **Sapindaceae**						
Dodonea viscosa (L.) Jacqa	Ghwaraskai	Shrub	P	NP	Mic	D
70 **Sapotaceae**						
Monotheca buxifolia (Falc.) A.D.C.	Gurgura	Tree	P	MP	Mic	D
71 **Scrophulariaceae**						
Verbascum thapsus L.	Kharghwag	Herb	A	Th	Mes	D
72 **Simarubaceae**						
Allanthus altissima (Mill) swingle.	Shandai	Tree	P	MP	Mic	D
73 **Solanaeae**						
Datura innoxia Miller	Bathora	Shrub	P	NP	Mes	D
Hyoscyamus niger L.	Bargag	Herb	A	B	Th	Na
Lycopersicon esculentum Miller, L.	Tamatar	Herb	A	Th	Na	D
Solanum nigrum L.	Kachmachu	Herb	A	Th	Mic	D
Nicotiana tabacum L.	Cigarette tamakui	Herb	A	Th	Mes	D
Nicotiana rustica L.	Naswar Tamakui	Herb	A	Th	Mes	D
Solanum surrattense Burm. F	Maraghonai	Herb	B	Th	Mic	D
Solanum incanum L.	Shrubb	Ch	Mes			
Withania coagulans (Stocks) Dunal	Spaiara botai	Shrub	P	Ch	Mic	D
Withania somnifera (L.Dunal)	Kotilaal	Herb	P	Ch	Mes	D
74 **Sterculiaceae**						
Helicteres isora L.	Chamyarai	Shrub	P	NP	Mes	D
75 **Tamaricaceae**						
Tamarix apiflora (L.) Karst.,Deutsche	Ghaz	Tree	P	MP	Le	D
76 **Tiliaceae**						
Grewia optiva J.R. Drum.	Pastawoonai	Tree	P	MP	Mic	D
77 **Thymelaeaceae**						
Daphne macronata Royle	Laighonai	Shrub	P	NP	Mic	D
78 **Typhaceae**						
Typha angustifolia L.	Lokha	Herb	P	Cr	Mes	M
79 **Ulmaceae**						
Celtis australis L.	Tagha	Tree	P	NP	Mic	D
Celtis tetrandra Roxb.	Tawan	Tree	P	NP	Mic	D
80 **Urticaceae**						
Recently a study conducted by (Hussain et al., 2013) suggested Poaceae being the dominant family was followed by Asteraceae, and Lamiaceae. In another study carried out by (Yemeni and Sher, 2010) reported that Asteraceae, the leading family followed by Poaceae, and Lamiaceae strongly support our present results. Several other researchers (Qureshi et al., 2014; Ilyas et al., 2013; Qureshi et al., 2011) also reported Poaceae as the leading family contributed about 22 and 30 plant species respectively. Therefore, closely support our findings. Perennial growth form was reported the leading life span shared 67% species followed by annuals (37 %.) Conversely, the biennials growth forms were found to be lesser than 10% of the total flora (Fig 3).

![Figure 3: Shows relative proportions of plant species of the study area.](image)

Based on habit herbs were reported the common class comprised of 45% species followed by 21% species of trees and 19% species of shrubs respectively. Additionally, climbers and grasses were found to be contributed 7% species each as compared to sedges with 1% species only (Fig 4).
Figure 4: Morphological diversity of plants of Hazano forest.

According to (Cain, 1950) life form is an important part of vegetation studies next to floristic composition which is characterized by adaptation of plants to certain environmental conditions. Moreover, the spectrum of life-form indicates climatic and human disturbances, in a particular area and also shows the ecological amplitude, and tolerance of the species (Cain, 1959; Durrani, et al., 2010). Based on composition of life forms and biological spectrum, Phanerophytes were reported as the leading life form class comprised of (38% spp.). Out of them Meso-phanerophytes contributed (20% spp.) followed by Nano-phanerophytes (18% spp). After Phanerophytes, the second largest life form class was Therophytes which contributed 34% plant species. However, the contribution of Hemicryptophyte was 12% and Cryptophyte 10% which were comparatively higher than Chamaephytes 6% plant species (Table 3).

Table 3: Comparison of observed life-form spectrum of forest flora with Raunkiear (1934) spectrum.

Raunkiear spectrum (1934) for 400 species	Observed life-form spectrum of Hazano forest for 240 plant Species	χ²
Therophytes 13%	Therophytes 34%	34
Phanerophytes 46%	Phanerophytes 39%	1.06
Chamaephytes 9%	Chamaephytes 6%	1.00
Hemicryptophytes 26%	Hemicryptophytes 12%	7.5
Cryptophytes 6%	Cryptophytes 10%	2.6
Total 100		46.19

In addition, comparisons were made between the life form spectrums of plant species of study sites with normal Raunkiaers (1934) spectrum. This technique was developed for the world flora, which accounts for similar climatic conditions. The χ² test showed significant differences between the Raunkiaer’s spectrums
(χ^2 = 46.19, p ≤ 0.001) to the forest flora. Therophytes were reported with the highest individual values (34%) obtained from χ^2 test and showed high deviation from the Raunkiaers spectrum (Table 3).

The findings of (Mendes et al., 2010) suggested somewhat similar result of χ^2 test for the flora of Brazil, who also reported significantly a difference of (45.20%) between Raunkiaers spectrum to the study area flora with high proportion of Phanerophyte. Consequently, support strongly our present results. However, deviations from Raunkiaers spectrum were due to difference in phyto-geographical and climatic region. An according to (Homji, 1964) life form reveals the phyto-climate of an area, in intensively cultivated and arid region the phyto-climate is of therophytic type while in humid regions the climate is Phanerophytic type, in temperate, high altitudinal arctic regions the climate is Chamaephytic type. In studies carried out by (Kambhar and Kotresha, 2012), they reported therophyte as prevailing life form followed by Phenerophyte and crytophyte, which suggested that the climate was of Thero-Phanerophytic and indicated dry and hot climate. Such environmental conditions emerged as a response to the harsh climate, overgrazing and deforestation (Sher et al., 2014). Likewise, therophyte dominance in area under study suggested high biotic and anthropogenic pressure. However, Phanerophytes contributed as second largest dominant species suggest us that the forest area has immense potential to grow indigenous medicinal plant species i.e. Butea monosperma, Pistachia integerrima, Phyrus pashia, Ficus sarmentosa, Pinus roxburghii and Olea ferruginea.

According to (Floret et al., 1990) the relationship between leaf size and ecological factors not only play an important role but also helpful in vegetation studies at regional level. The leaf size spectrum of forest plant species was analyzed, microphyll was found to be the leading leaf size class consisted of (112 spp.) followed by mesophyll (48 spp.), and nanophyll (44 spp.) respectively. Whereas lepto-phyll contributed (28 spp.), macro-phyll (05 spp.) and A-phyllous (03 spp.) (Fig 5). The studies conducted by [36] suggested that leaf size increases with increasing soil fertility, precipitation and humidity and but tend to decrease with increase in elevation and irradiance. The mid-elevation area of forest was dominated by meso-phyll and notophylls, while the tree-line forest area was dominated by micro-phylls. The plant species with smaller leaf size in our study area were Acacia modesta, Artemisia scoparia, Monothecabuxifolia, Euphorbia prostrata, Otoestigia limbita, Bioss, Rumex hastatus, Cmyhobogen jwarancusa, showed that the slope is dry; its precipitation retention is in lesser amounts and is characteristics of subtropical climate (Tareen, 1993). Conversely the presence of meso-phyll plant species like Bauhinia variegata, Hedera nepalensis, Mallotus philipensis, Ficus spp, Butea monosperma, Quercus incana, Tinospora cordifolia suggested humid to pre-humid moisture regimes of the forest. In addition, the foothills of the forest were
afforested with Eucalyptus species which add oil rich litter and consequently affect germination of indigenous medicinal plant species (Hussain, 2002).

CONCLUSION

In our current studies microphyll and mesophyll being the prevailing leaf size class suggested that the forest receives a significant amount of precipitation, hold highest individual value for Phanero-phytes. Likewise, therophyte being the leading life form revealed that the ecological condition of forest is disturbing, due to anthropogenic pressure which is high and need proper management. Moreover, the study in question embraces with rich florist diversity and is under heavy biotic and anthropogenic pressure i.e. deforestation, overgrazing and forest fire. Factors like excessive uprooting of medicinally important plant species by inexperienced, untrained local people results extinction of the rich floristic diversity. There is a dire need for proper identification of local taxa to conserve the biodiversity of the forest area.

REFERENCES

Abusaief, H. M. A., Dakhil, A. H. 2013. The floristic composition of Rocky habitat of Al Mansora in Al-Jabal Al-Akhdar- Libya”, *New York Science Journal* 6(5), 34-45, 2013.

Ali, S. I., Qaiser, M. 2007. Flora of Pakistan. Fascicles, Department of Botany University of Karachi, Karachi”.

Barkatullah. (2011). Plants profile of Malakand Pass Hills, District Malakand, Pakistan. *African Journal of Biotechnology*, 10(73). doi:10.5897/ajb11.1258

Cain, S.A. 1950. Life-forms and phytoclimate. *Botanical Review* Claredon press, Oxford”, 16(1), pp: 132.

Cain, S.A., Castro, G. D. M. 1959. Manual of Vegetation Analysis” Harper and Brothers Publication, New York, pp: 355.

E. Nasir, S.I. Ali “Flora of Pakistan, PARC, Islamabad”, 1971-1994.

Floret, C., Galan, M.J., Lefloch, E., Orshan, G., Romane, F. 1990. Growth forms and pheno- morphological traits along an environmental gradient: tools for studying vegetation”, *Journal of Vegetation Science* 1: 71-80.

Gazal, S., A.K Raina, A. K. (2015). Life-form composition and biological spectrum of Ramnagar wildlife sanctuary, Jammu and Kashmir, India. *International Journal of Science and Research* 4(4), 161-164, 2015.

Homji, M. 1964. Life-forms and biological spectra as ephaphoric criteria of aridity”, *Journal of Indian Botanical Society* 43, pp: 42430.
Hussain, F., Shah, S. M., Badshah, L., Durrani, M. J. 2015. Diversity and ecological characteristics offlora of Mastuj valley, district Chitral, Hindukush range, Pakistan”, Pakistan Journal of Botany 47(2), 495-510.

Hussain, F.1889. Field and laboratory manual of plant ecology. NAHE, University grants commission, Islamabad”, pp. 50-80.

Hussain, M. 2002. The Impact of Eucalyptus plantations on the environment under the social forestry project Malakand –Dir”, pp. 2-14.

Ilyas, M., Qureshi, R., Shinwari, Z.K., Arshad, M., Mirza, S. N., Haq, Z. 2013. Some ethno-ecological aspects of the plants of Qalagai Hills, Kabal Valley, Swat, Pakistan”, International Journal of Agriculture and Biology 15(5), 801–810.

Kambhar, S., Kotresha, K. 2012. Life-forms and biological spectrum of a dry deciduous forest in Gadag District, Karnataka, India”, Research and Review Journal of Botany 1(1), 1-28.

Keith, D. A., (1988) “Floristic lists of New South Wales (III)” Cunninghamia 2, 39-73.

Mendes, K., Gomes, P., Alves, M. 2010. Floristic inventory of a zone of ecological tension in the Atlantic forest of Northeastern Brazil”, Journal of the Botanical Garden 61(4), 669-676.

Murad, W., Ahmad, A., Ishaq, G., Khan, M. S., Khan, A. M, Khan, I. 2012. “Ethnobotanical studies on plant resources of Hazar nao forest, District Malakand, Pakistan”, Pakistan Journal of Weed Sciences 18(4), 509-527, 2012.

Murad, W., Ahmad, A., Gilani, S. A., Khan, M. A. 2011. Indigenous knowledge and folk use of medicinal plants by the tribal communities of Hazar nao forest, Malakand District, North Pakistan. Journal of Medicinal Plants Research 5(7), 1072-108.

Panda, S. S., Dhal, N. K., Dash, A., Panda. S. C., (2014). Floristic diversity of Khandapara forest ranges of Nayagarh District Odisha, India. Indian Journal of Plant Sciences 3 (1), 1-10.

Qureshi, R., Bhatti, G. R., Shabbir, G. 2011. Floristic inventory of Pir Mehr Ali Shah Arid Agricultural University research farm at Koont and its surrounding areas”, Pakistan Journal of Botany 43(3), 1679-1684.

Qureshi, R., Shaheen, H., Ilyas, M., Ahmad, W., Munir, M. 2014. Phytodiversity and plant life of Khanpur Dam, Khyber Pakhtunkhwa, Pakistan”, Pakistan Journal of Botany 46(3), 841-849.

Rafay, M., Khan, R. A., Yaqoob, S., & Ahmad, M. (2013). Nutritional Evaluation of Major Range Grasses from Cholistan Desert. Pakistan Journal of Nutrition, 12(1), 23-29. doi:10.3923/pjn.2013.23.29

Raina, A. K., Sharma, N. (2010). Floristic composition, lifeform classification and biological spectrum of District Jammu, Jammu and Kashmir, North-Western Himalayas”, Environment Conservation Journal, 11(3) 49-57.
Rashid, A., Swati, M. F., Sher, H., & Al-Yemeni, M. N. (2011). Phytoecological evaluation with detail floristic appraisal of the vegetation arround Malam Jabba, Swat, Pakistan. *Asian Pacific Journal of Tropical Biomedicine, 1*(6), 461-467. doi:10.1016/s2221-1691(11)60101-9

Raunkiaer, C. 1934. The life-forms of plants and statistical plant geography. Clarendon Press Oxford”, pp.50-80.

Shah, M., Hussain, F., Shah, S. N., Ahmad, I., Wasila, H. 2103. Life-form and floristic characteristics along altitudinal gradient of humid temperate forests located in remote area of Pakistan”, *Global Journal of Biodiversity Science and Management, 3*(2), 276-281.

Sher, Z., Hussain, F., Badshah, L. 2014. Biodiversity and ecological characterization of the flora of Gadoon rangeland, District Swabi, Khyber Pakhtunkhwa, Pakistan”, *Iran Journal of Botany 20*(1), 96-108.

Shimwell, D. W. (1971). The Description and Classification of Vegetation Sedgwick and Jackson, London” pp. 322.

Tareen, R. B., Qadir, S.A. 1993. Life form and leaf size spectra of the plant communities of diverse areas ranging from Harani, Sinjawi to Duki regions of Pakistan”, *Pakistan Journal of Botany 25*: 83–92.

Thakur, K., & Puri, S. (2016). ETHNOBOTANICAL PLANTS OF BANDLI WILDLIFE SANCTUARY, MANDI, HIMACHAL PRADESH. *International Journal of Advanced Research, 4*(6), 106-108. doi:10.21474/ijar01/620

Ullah, A. (2015). Diversity of Life Form And Leaf Size Classes at Sheikh Buddin National Park, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan. *South Asian Journal of Life Sciences, 1*(1), 6-13. doi:10.14737/journal.sajls/2015/3.1.6.13

Warming, E. 1909. “Oecology of plants. Clarendon Press, Oxford” pp. 30-50.

Yemeni, M., Sher, H. 2010. Biological spectrum with some other ecological attributes of the flora and vegetation of the Asir Mountain of South West, Saudi Arabia”, *African Journal of Biotechnology 9*(34), 5550-5559.

Zabihullah, Q., Rashid, A., Akhtar, N. 2006. Ethnobotinical survey in Kot Manzaray Baba Valley Malakand Agency, Pakaistan”, *Pakistan Journal of Plant Sciences 12*(2), 115-121.

Zar, J. H.1999. Biostatistical analysis. Prentice Hall, New Jersey”, pp: 663.

Zeb, U., Gul, B., Khan, H., Khan, W. M. 2016. Floristic composition and phytosociological studies of Hazarnao hills, District Malakand, Khyber Pakhtunkhwa, Pakistan” *Pak. J. Weed Sci. Res., 22*(2), 295-315.