The Link between HLA-B Alleles and Causative Drugs in Vietnamese Patients with Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis

Tran Thi Huyen1,2, Pham Dinh Hoa1,2, Trinh Minh Trang2, Nguyen Ba Khanh1, Tran Ngoc Que3, Nguyen Hoang Phuong1, Nguyen Minh Hoang1, Riihiro Abe3, Nguyen Van Thuong2, Pham Thi Lan2, Tirant Michael1

1Department of Dermatology and Venereology, Hanoi Medical University, Hanoi, Vietnam; 2Department of Skin diseases of Women and Children, National Hospital of Dermatology and Venereology, Hanoi, Vietnam; 3Department of Stem cells, National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam; 4Center of Allergy and Clinical Immunology, Bach Mai Hospital, Hanoi, Vietnam; 5Department of Dermatology, Niigata University, Japan

Abstract

BACKGROUND: Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse drug reactions. Human leukocyte antigens (HLA) may play an important role in the pathogenesis of SJS/TEN.

AIMS: This study aims to identify HLA-B alleles in Vietnamese patients with SJS/TEN and to investigate the possible link between HLA-B alleles and causative drugs.

MATERIALS AND METHODS: Sixty patients including SJS (30 patients) and TEN (30 patients) were enrolled in a cross-sectional descriptive study at two hospitals in Hanoi, Vietnam, from July 2018 to July 2019. Clinical features and laboratory findings were noted, HLA-B alleles were analyzed by the polymerase chain reaction (PCR)-sequence-specific oligonucleotide assay and LumineXTM Multiplex Technology.

RESULTS: The most common HLA-B allele was HLA-B*15:02 (41.7%) followed by HLA-B*58:01 (25%) and HLA-B*46:01 (15%). Of the 25 patients possessing HLA-B*15:02 allele, culprit medicines were carbamazepine (13 patients; 52%), traditional medicine (seven patients; 28%), and unknown drugs (seven patients; 28%). Of the 15 patients carrying HLA-B*58:01 allele, there were 13 patients whose offending medicine was allopurinol. Of the eight patients whose culprit drug was traditional medicine, there were 6 patients (75%) carrying HLA-B*51:02. Patients who carry HLA-B*15:02 were found to have 4 times higher risk of developing carbamazepine-induced SJS/TEN as compared with the tolerant control group (OR=4.17; 95% CI=2.07–8.37; p < 0.001).

CONCLUSION: HLA-B*15:02 was the most common HLA-B allele in Vietnamese patients with SJS/TEN. In traditional medicine-induced SJS/TEN patients, HLA-B*51:02 allele might play an important role. The link between the HLA-B genotypes and causative drugs may suggest physicians to avoid risk medications for certain patients.

Introduction

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse drug reactions (SCARs) [1]. Although their incidence is of 2 per million per year, they are life threatening with a mortality rate of 5–30% [2, 3]. The common culprit drugs are allopurinol, carbamazepine, phenytoin, phenobarbital, lamotrigine, abacavir, and others [2, 3, 4, 5]. The time between the date of taking medicine and the onset of symptoms ranges from some days to 2 months [2, 4].

The main manifestations of SJS/TEN are apoptosis [6] and/or necroptosis [7] of epidermal keratinocytes that are initiated by cytotoxic T lymphocytes with the presence of culprit drugs [1, 6, 8]. Based on the percentage of necrotic skin area, SJS and TEN are classified by Bastuji-Garin as follows: (1) SJS is defined as epidermal detachment <10% body surface area (BSA) plus widespread purpuric macules or flat atypical targets; (2) overlap SJS/TEN is defined as detachment of 10–30% BSA plus widespread purpuric macules or flat atypical targets; (3) TEN with spots (detachment >30% BSA) plus widespread purpuric macules or flat atypical targets; and (4) TEN without spots (detachment >30% BSA with loss of large epidermal sheets without purpuric macules or target lesions) [9].

Many studies have indicated associations between the human leukocyte antigens (HLA) and SCARs [1, 10, 11, 12, 13]. In Han Chinese population, there is a strong association between HLA-B*15:02 allele with SJS/TEN due to some aromatic antiepileptic drugs such as carbamazepine, phenytoin, phenobarbital, and lamotrigine [14], and between HLA-B*58:01 allele and allopurinol-induced
Materials and Methods

Subjects

The study was conducted at National Hospital of Dermato-venereology and Bach Mai Hospital in Hanoi, Vietnam, from July 2018 to July 2019. In total, 60 patients including 30 SJS and 30 TEN were enrolled in our study. Clinical features and laboratory findings were recorded for each patient. We investigated all medicines, including the over the counter, that the patients took over a period of 2 months before the onset of the conditions. Other pieces of information were also obtained (reasons for using drugs, ethnicity, and allergy history). The patients were examined as regards their general condition, cutaneous, and mucous membrane lesions.

SJS and TEN were diagnosed and classified based on Bastuji-Garin criteria [9]. Calculation of necrotic skin and epithelial sloughing areas was based on burn area estimation (Lund-Browder formula) [21]. We determined the most culprit drugs using ALDEN algorithm [5].

DNA isolation and HLA-B typing

DNA extraction (MagNA Pure Compact nucleic acid purification kit, Roche Diagnostics Ltd., USA) was performed based on magnetic bead technology. DNA was aliquoted and stored at −20°C before HLA typing. Polymerase chain reaction (PCR)-sequence-specific oligonucleotide assay and Luminex™ Multiplex Technology were used to analyze HLA-B alleles. To summarize, PCR products were hybridized against a panel of oligonucleotide probes coated on polystyrene microspheres that have sequences which complement stretches of polymorphic sequence within the target HLA-B alleles. Using a colorimetric reaction and fluorescence detection technology, we were able to see the amplicon probe complex. Data analysis for the HLA-B assays was performed with HLA fusion TM2.0 software. This typing was conducted at National Institute of Hematology and Blood Transfusion in Hanoi, Vietnam.

Ethical clearance

The study was approved by the Ethical Review Committee on Research Involving Human Subjects, Hanoi Medical University, Hanoi, Vietnam (Number 04NCS17, dated February 8, 2018). Written consent was obtained from all participants.

Results

There were 30 patients with SJS and 30 patients with TEN, no patients with overlapping SJS/TEN. All patients were Kinh ethnicity. The patient’s characteristics are shown in Table 1. The mean age was 52 years (range 19–77). The most common age group was over 50 years old (65%). The sex distribution was equal (male: 53.3%; female: 46.7%). Reasons for using culprit drugs were gout disease (21.7%), arthralgia (18.3%), epilepsy (15%), headache (5%), other reasons (20%), and unknown (20%). The most frequent culprit drugs used were allopurinol (13 patients; 21.7%), carbamazepine (13 patients; 21.7%), and traditional medicine (eight patients; 13.2%). Other medications were less common, such as nonsteroidal anti-inflammatory drugs (diclofenac, phenylbutazone, and piroxicam), lamotrigine, thalidomide, and antibiotics (zidocin). There were 33.2% of patients with unknown culprit drugs.

Table 1: Characteristics of patients with SJS/TEN (n=60)

Characteristics	SJS (n=30)	TEN (n=30)	SJS/TEN (n=60)
Age, year	51.2 ± 16.7	52.8 ± 15.5	52 ± 16
Group of age, n (%)			
<30	3 (10)	3 (10)	6 (10)
30–39	5 (16.7)	3 (10)	8 (13.3)
40–50	4 (13.3)	3 (10)	7 (11.7)
>50	18 (60)	21 (70)	39 (65)
Sex, n (%)			
Male	16 (53.3)	16 (53.3)	32 (53.3)
Female	14 (46.7)	14 (46.7)	28 (46.7)
Indications of culprit drugs, n (%)			
Gout disease	9 (30)	4 (13.3)	13 (21.7)
Arthralgia	5 (16.7)	6 (20)	11 (18.3)
Epilepsy	4 (13.3)	5 (16.7)	9 (15)
Headache	2 (6.7)	1 (3.3)	3 (5)
Other reasons	4 (13.3)	8 (26.7)	12 (20)
Unknown cause	6 (20)	6 (20)	12 (20)
Causative drugs, n (%)			
Allopurinol	9 (30)	4 (13.3)	13 (21.7)
Carbamazepine	7 (23.4)	6 (20)	13 (21.7)
Traditional medicine	0 (0)	8 (26.7)	8 (13.3)
NSAIDs (diclofenac, phenylbutazone, and piroxicam)	1* (3.3)	2 (6.7)	3 (5.1)
Others (lamotrigine, thalidomide, and zidocin)	1** (3.3)	2 (6.7)	3 (5.1)
Unknown drugs	12 (40)	8 (26.5)	20 (33.2)

SJS: Stevens-Johnson syndrome, TEN: Toxic epidermal necrolysis, NSAIDs: Nonsteroidal anti-inflammatory drugs. *phenylbutazone; **zidocin.

A total of 60 patients were underwent HLA-B typing. The results (as shown in Table 2) demonstrated...
that the most common HLA-B allele was HLA-B*15:02 (25/60 patients; 41.7%) followed by HLA-B*58:01 (15/60 patients; 25%) and HLA-B*46:01 (9/60 patients; 15%). Other less common alleles were HLA-B*51:01 (eight patients; 13.2%); HLA-B*13:01 (eight patients; 13.2%); and HLA-B*07:05 (four patients; 6.6%).

We compared the risk of carbamazepine-induced SJS/TEN between the 13 carbamazepine-induced SJS/TEN patients carrying HLA-B*15:02 with the control group (epilepsy tolerating carbamazepine) from a previous study in Vietnam [18]. A significant association between carbamazepine-induced SJS/TEN and HLA-B*15:02 was found when compared with the tolerant control group (OR=4.17; 95% CI=2.07–8.37; p < 0.001). However, there was no significant association between carbamazepine-induced SJS/TEN and HLA-B*46:01 (OR=0.32; 95% CI=0.06–1.8; p=0.184), as shown in Table 3.

Table 3: Correlation between HLA-B*15:02, HLA-B*46:01, and phenotypes (carbamazepine-induced SJS/TEN)

Allele positive SJS/TEN (n=13)	Control* (n=25)	OR (95% CI)	p-value	
HLA-B*15:02	13	6	4.17 (2.07–8.37)	<0.001
HLA-B*46:01	2	9	0.32 (0.06–1.8)	0.184

SJS: Stevens-Johnson syndrome; TEN: Toxic epidermal necrolysis; HLA-B: Human leukocyte antigen-B; OR: Odds ratio; CI: Confidence interval; *Following the study of Nguyen et al. [18].

Discussion

Among 60 SJS/TEN patients, HLA-B*15:02 was the most common allele which is higher than that in general Kinh population [20]. This finding might be due to the fact that all participants in our study were SJS/TEN patients, whose the most frequent culprit drug was carbamazepine. Of the 25 HLA-B*15:02 carriers in this study, there were 13 carbamazepine-induced SJS/TEN patients (52%). Studies in Asian countries have demonstrated the strong association between carbamazepine-induced SJS/TEN and HLA-B*15:02 [14],[15],[22]. A previous study in Vietnam shows the most common HLA-B allele among general population is HLA-B*15:02 [20]. While, a study in Korean population shows that HLA-B*44:03 is the most frequent type in HLA-B genes; allele frequency of HLA-B*15:02 is 0.3% [23]. Among Thai population, the most common HLA-B alleles observed is HLA-B*46:01 (11.5%), while the HLA-B*15:02 allele frequency is 8.2% [24]. These results show the diversity of HLA-B polymorphisms in different ethnicities. The high frequency of HLA-B pharmacogenomic markers in population emphasizes the importance of such screening to predict and avoid SCARs [13],[24],[25].

Of the 25 patients possessing HLA-B*15:02 allele, the culprit drugs were carbamazepine among 13 patients (52%), traditional medicine 2 patients (8%), allopurinol 1 patient (4%) (who had HLA-B 2 phenotype that was 15:02 and 58:01), piroxicam 1 patient (4%), zidovin (metronidazole and spiramycin) 1 patient (4%), and unknown drugs 7 patients (28%). Of the 15 patients with HLA-B*58:01, there were 13 patients with allopurinol-induced SJS/TEN and two patients with unknown causative drugs. Among eight patients with traditional medicine-induced SJS/TEN, there were six HLA-B*51:02 allele carriers (75%).
Interleukin-15 is associated with HLA-B*58:01 in the carbamazepine-induced SCARs group was significantly lower than that in the carbamazepine-tolerant epilepsy patient group [18]. This allele may be considered as a protective factor against the development of carbamazepine-induced SCARs in Vietnamese [18]. However, in our study, HLA-B*46:01 allele did not reveal the association with carbamazepine-induced SJS/TEN. Therefore, the role of HLA-B*46:01 in SCARS needs to be investigated further.

We also observed an allopurinol-induced SJS patient possessing HLA-B*15:02. In fact, this patient's HLA-B genotype was 15:02 and 58:01. He was at high risk of being allergic to both carbamazepine and allopurinol. In addition, there were two traditional-induced SJS/TEN patients and seven unknown drug-induced SJS/TEN patients all carrying HLA-B*15:02; two patients with unknown causative drugs carrying HLA-B*58:01. Typing of HLA-B alleles in these patients could be significant to avoid the high risk of drug-induced SCARs.

In our study, traditional medicine was the third most common culprit drug of SJS/TEN (13.3%), which is similar to the finding from a previous study in Hanoi [27]. Interestingly, among these patients, there were six patients with HLA-B*51:02 allele (75%). HLA-B*51:02 allele belongs to B5101 serotype. There has been no study indicating its role in SJS/TEN so far.

In Vietnam, the use of medications without prescriptions is rather common, even mixing of western medicines in some traditional medicines intentionally done by traditional healers, is not rare. Consequently, it is more difficult to identify the offending drugs. Therefore, the possible association between HLA-B*51:02 allele and traditional medicine-induced SJS/TEN needs to be investigated further, and, studies about HLA-B genotypes in SCARS are crucial and may provide evidences for advising certain patients to avoid using certain medications.

We found a significant association between carbamazepine-induced SJS/TEN and HLA-B*15:02 allele. This is consistent with those of other studies in Asia [14], [18]. Hence, screening this allele is very essential before indicating carbamazepine as well as other aromatic anticonvulsant agents because among these drugs, cross-reactivity exists frequently [28], [29], [30], [31]. In our study, there was one patient with lamotrigine-induced TEN who took lamotrigine to treat her depressed condition. This patient possessed HLA-B*15:21 and HLA-B*46:01 genotype. In a study among Thai population, the prevalence of HLA-B*15:02 and HLA-A*02:07 alleles has been shown higher in the lamotrigine-induced SCARs than in the lamotrigine-tolerant control group [32]. HLA-B*15:21 allele is an HLA-B75 serotype marker similar to HLA-B*15:02, -B*15:11, and -B*15:08, they have the same carbamazepine binding sites in silico analysis [11]. There was a case report of a Filipino carbamazepine-induced SJS/TEN overlap patient without HLA-B*15:02 allele but with positive HLA-B75 serotype [33]. A study in Korean population reveals that three out of five lamotrigine-induced SJS/TEN patients carry HLA-B*44:03 allele [23]. Out of 60 patients, we observed one patient with carbamazepine-induced TEN carrying this allele. This may be due to the fact that there is a difference in HLA-B*44:03 allele frequencies between Korean [23] and Vietnamese population [20].

There were some limitations in our study. First, the sample size was of 60 SJS/TEN patients but the causative drugs varied. Accordingly, we could not focus on analyzing a big sample of SJS/TEN patients due to a special drug. Second, using the control group of the previous study [18] might not be ideal for comparison. Third, we typed only HLA-B alleles, but not other HLA genes associated with SJS/TEN and SCARs, such as HLA-A, HLA-C, or some metabolic genes beyond HLA genes.

Conclusion

HLA-B*15:02 was the most common HLA-B allele in Vietnamese patients with SJS/TEN. HLA-B*51:02 allele may play an important role in the pathogenesis of the traditional medicine-induced SJS/TEN. There may be a link between HLA-B alleles and causative drugs of SJS/TEN. The HLA-B genotypes may be useful for suggesting the causative drugs in some cases and preventing SCARs.

References

1. Chung WH, Wang CW, Dao RL. Severe cutaneous adverse drug reactions. J Dermatol 2016;43(7):758-66. https://doi.org/10.1111/1346-8138.13430
PMid:27154258

2. Schwartz RA, McDonough PH, Lee BW. Toxic epidermal necrolysis: Part I. Introduction, history, classification, clinical features, systemic manifestations, etiology, and immunopathogenesis. J Am Acad Dermatol 2013;69(2):173.e1-13; quiz 185-6.
PMid:23866878

3. Su SC, Mockenhaupt M, Wolkenstein P, Dunant A, Le Gouvello S, Chen CB, et al. Interleukin-15 is associated with severity and mortality in Stevens-Johnson syndrome/toxic epidermal necrolysis. J Invest Dermatol 2017;137(5):1065-73. https://doi.org/10.1016/j.jid.2016.11.034
PMid:28011147

4. Creamer D, Walsh SA, Dziewulski P, Exton LS, Lee HY, Dart JK, et al. U.K. guidelines for the management of Stevens-Johnson syndrome/toxic epidermal necrolysis in adults 2016. Br J
Huyen et al. The Link between HLA-B Alleles and Causative Drugs in Vietnamese Patients with Stevens-Johnson Syndrome. HLA-B*1511 is a risk factor for carbamazepine-induced. HLA-B*57:01 screening and HLA-B*57:01 allele prevalence. HLA-B*1502 and carbamazepine-induced. HLA-B*5801 allele as a genetic marker for severe. Clinical Association between HLA-B*1502 allele and.

15. Fricke-Galindo I, LLerena A, López-López M. An update on. PMid:17509004
14. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, PMid:30651100
13. Mounzer K, Hsu R, Kurose K, PMid:28358139
12. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, PMid:29921043
11. Jaruthamsophon K, Tipmanee V, Sangiemchoey A, Sukasem C, PMid:25938071
10. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, PMid:21204807
9. Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, PMid:21354503
8. Pichler WJ, Naisbitt DJ, Park BK. Immune pathomechanism PMid:25031270
7. Saito N, Qiao H, Yanagi T, Shinkuma S, Nishimura K, Su, SC, PMid:19029983
6. Chung WH, Hung SI, Yang JY, Su SC, Huang SP, Wei CY, PMid:15743917
5. Sassolas B, Haddad C, Mockenhaupt M. ALDEN, an algorthm PMid:12981-019-0217-3
4. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epioccult 2017;51(12):2461-5. doi: 10.1001/jaci.2017.06.2017
3. Park HJ, Kim YJ, Kim DH, Kim J, Park KH, Park JW, et al. HLA allele frequencies in 5802 Koreans: Varied allele types associated with SJ/TEN according to culprit drugs. Yousei Med J. 2016;57(1):118-26. 10.3349/yjm.2016.57.1.118. PMid:26632391
2. Puangpetch A, Koomdee N, Chammanphol M, Jantararoungtong T, Santon S, Prommas S, et al. HLA-B allele and haplotype diversity among Thai patients identified by PCR-SSOP: Evidence for high risk of drug-induced hypersensitivity. Front Genet 2014;5:478. doi: 10.3389/fgen.2014.00478 PMid:26567566
1. Phillips EJ, Sukasem C, Whirl-Carrillo M, Müller DJ, Dunnenberger HM, Chantratita W, et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther 2018;103(4):574-81. doi: 10.1002/cpt.1004 PMid:29392710

5. Mouneer Z, Hsu R, Fusco JS, Brunet L, Henegar CE, Vannappagari V, et al. HLA-B*57:01 screening and hypersensitivity reaction to abacavir between 1999 and 2016 in the OPERA® observational database: A cohort study. AIDS Res Ther 2019;16(1):1. doi: 10.1186/s12981-019-0217-3 PMid:30651100
4. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 2017;58(5):1015-8. doi: 10.1111/epi.13667. PMid:17509004
3. Park HJ, Kim YJ, Kim DH, Kim J, Park KH, Park JW, et al. HLA allele frequencies in 5802 Koreans: Varied allele types associated with SJ/TEN according to culprit drugs. Yousei Med J. 2016;57(1):118-26. 10.3349/yjm.2016.57.1.118. PMid:26632391
2. Puangpetch A, Koomdee N, Chammanphol M, Jantararoungtong T, Santon S, Prommas S, et al. HLA-B allele and haplotype diversity among Thai patients identified by PCR-SSOP: Evidence for high risk of drug-induced hypersensitivity. Front Genet 2014;5:478. doi: 10.3389/fgen.2014.00478 PMid:26567566
1. Phillips EJ, Sukasem C, Whirl-Carrillo M, Müller DJ, Dunnenberger HM, Chantratita W, et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther 2018;103(4):574-81. doi: 10.1002/cpt.1004 PMid:29392710

5. Fricke-Galindo I, Llerena A, López-López M. An update on HLA alleles associated with adverse drug reactions. Drug Metab Pers Ther 2017;32(2):73-87. https://doi.org/10.1515/dmpt-2016-0026. PMid:28315856
4. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 2007;48(5):1015-8. doi: 10.1111/j.1528-1167.2007.01022.x PMid:17509004
3. Park HJ, Kim YJ, Kim DH, Kim J, Park KH, Park JW, et al. HLA allele frequencies in 5802 Koreans: Varied allele types associated with SJ/TEN according to culprit drugs. Yousei Med J. 2016;57(1):118-26. 10.3349/yjm.2016.57.1.118. PMid:26632391
2. Puangpetch A, Koomdee N, Chammanphol M, Jantararoungtong T, Santon S, Prommas S, et al. HLA-B allele and haplotype diversity among Thai patients identified by PCR-SSOP: Evidence for high risk of drug-induced hypersensitivity. Front Genet 2014;5:478. doi: 10.3389/fgen.2014.00478 PMid:26567566
1. Phillips EJ, Sukasem C, Whirl-Carrillo M, Müller DJ, Dunnenberger HM, Chantratita W, et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther 2018;103(4):574-81. doi: 10.1002/cpt.1004 PMid:29392710

Dermatol 2016;174(6):1194-227. PMid:27216885
5. Sassolas B, Haddad C, Mockenhaupt M. ALDEN, an algorithm for assessment of drug causality in Stevens-Johnson syndrome and toxic epidermal necrolysis: Comparison with case-control analysis. Clin Pharmacol Ther. 2010;88(1):60-8. https://doi. org/10.1038/clpt.2009.252 PMid:20375998
6. Chung WH, Hung SI, Yang JY, Su SC, Huang SP, Wei CY, et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med 2008;14(12):1343-50. https://doi.org/10.1038/nm.1884 PMid:19029983
7. Saito N, Qiao H, Yanagi T, Shinkuma S, Nishimura K, Suto A, et al. An annexin A1-FPR1 interaction contributes to necroptosis of keratinocytes in severe cutaneous adverse drug reactions. Sci Transl Med 2014;6(245):245ra85. https://doi.org/10.1126/scitranslmed.3008227 PMid:25031270
8. Pichler WJ, Naisbitt DJ, Park BK. Immune pathomechanism of drug hypersensitivity reactions. J Allergy Clin Immunol 2011;127(3 Suppl):S74-81. https://doi.org/10.1016/j.jaci.2010.11.048 PMid:21354503
28. Alvestad S, Lydersen S, Brodtkorb E. Cross-reactivity pattern of rash from current aromatic antiepileptic drugs. Epilepsy Res 2008;80(2-3):194-200. https://doi.org/10.1016/j.eplepsyres.2008.04.003
PMid:18490142

29. Seitz CS, Pfeuffer P, Raith P, Bröcker EB, Trautmann A. Anticonvulsant hypersensitivity syndrome: Cross-reactivity with tricyclic antidepressant agents. Ann Allergy Asthma Immunol 2006;97(5):698-702. https://doi.org/10.1016/s1081-1206(10)61103-9
PMid:17165282

30. Sierra NM, García B, Marco J, Plaza S, Hidalgo F, Bermejo T. Cross hypersensitivity syndrome between phenytoin and carbamazepine. Pharm World Sci PWS 2005;27(3):170-4. https://doi.org/10.1007/s11096-004-1736-z
PMid:16096883

31. Wang X, Lang S, Shi X, Tian H, Wang R, Yang F. Cross-reactivity of skin rashes with current antiepileptic drugs in Chinese population. Seizure 2010;19(9):562-6. https://doi.org/10.1016/j.seizure.2010.09.003
PMid:20888266

32. Koomdee N, Pratoomwun J, Jantararoungtong T, Theeramoke V, Tassaneeyakul W, Klaewsongkram J, et al. Association of HLA-A and HLA-B alleles with lamotrigine-induced cutaneous adverse drug reactions in the Thai population. Front Pharmacol 2018;9:479. https://doi.org/10.3389/fphar.2017.00879
PMid:29238301

33. Capule F, Tragulpiankit P, Mahasirimongkol S, Wichukchinda N, Jittikoon J, Alentajan-Aleta LT, et al. Carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis overlap in a Filipino with positive HLA-B75 serotype. BMJ Case Rep 2018;2018:bcr201825028. https://doi.org/10.1136/bcr-2018-225028
PMid:30018035