An accelerated inexact dampened augmented Lagrangian method for linearly-constrained nonconvex composite optimization problems

Weiwei Kong1 · Renato D. C. Monteiro2

Received: 23 October 2021 / Accepted: 10 February 2023 / Published online: 1 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper proposes and analyzes an accelerated inexact dampened augmented Lagrangian (AIDAL) method for solving linearly-constrained nonconvex composite optimization problems. Each iteration of the AIDAL method consists of: (i) inexactly solving a dampened proximal augmented Lagrangian (AL) subproblem by calling an accelerated composite gradient (ACG) subroutine; (ii) applying a dampened and under-relaxed Lagrange multiplier update; and (iii) using a novel test to check whether the penalty parameter of the AL function should be increased. Under several mild assumptions involving the dampening factor and the under-relaxation constant, it is shown that the AIDAL method generates an approximate stationary point of the constrained problem in $O(\epsilon^{-5/2} \log \epsilon^{-1})$ iterations of the ACG subroutine, for a given tolerance $\epsilon > 0$. Numerical experiments are also given to show the computational efficiency of the proposed method.

The Weiwei Kong has been supported by (i) the US Department of Energy (DOE) and UT-Battelle, LLC, under contract DE-AC05-00OR22725, (ii) the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration, and (iii) the IDEaS-TRIAD Fellowship (NSF Grant CCF-1740776). The Renato D. C. Monteiro was partially supported by ONR Grant N00014-18-1-2077 and AFOSR Grant FA9550-22-1-0088.

Weiwei Kong
wwkong92@gmail.com

Renato D. C. Monteiro
monteiro@isye.gatech.edu

1 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, USA
Keywords Inexact proximal augmented Lagrangian method · Linearly constrained smooth nonconvex composite programs · Inner accelerated first-order methods · Iteration complexity

1 Introduction

This paper presents an accelerated inexact dampened augmented Lagrangian (AIDAL) method for finding approximate stationary points of the linearly constrained nonconvex composite optimization (NCO) problem

\[
\min_z \{ \phi(u) := f(z) + h(z) : Az = b \},
\]

where \(A \) is a linear operator, \(h \) is a proper closed convex and Lipschitz continuous function with compact domain, and \(f \) is a (possibly) nonconvex differentiable function on the domain of \(h \) with a Lipschitz continuous gradient. More specifically, the AIDAL method is based on the \(\theta \)-dampened augmented Lagrangian (AL) function

\[
L^\theta_c(z; p) := \phi(z) + (1 - \theta) \langle p, Az - b \rangle + \frac{c}{2} \| Az - b \|^2 \quad \forall c > 0, \quad \forall \theta \in (0, 1),
\]

and it performs the following updates to generate its \(k \)th iterate: given \((z_{k-1}, p_{k-1})\) and \((\lambda, c_k)\), compute

\[
z_k \approx \arg\min_u \left\{ \lambda L^\theta_{c_k}(u; p_{k-1}) + \frac{1}{2} \| u - z_{k-1} \|^2 \right\},
\]

\[
p_k = (1 - \theta)p_{k-1} + \chi c_k(Az_k - b),
\]

where \(\chi \) is an under-relaxation parameter in \((0, 1)\) and \(z_k \) is a suitably chosen approximate solution of the composite problem underlying (3). In addition, the AIDAL method introduces a novel approach for updating the penalty parameter \(c_k \) between iterations and uses an accelerated composite gradient (ACG) method applied to (3) obtain the aforementioned point \(z_k \).

Under a suitable choice of \(\lambda \) and the following Slater-like assumption:

\[
\exists \hat{z} \in \text{int}(\text{dom} h) \text{ such that } A\hat{z} = b,
\]

where \(\text{int}(\text{dom} h) \) denotes the interior of the domain of \(h \), it is shown that, for any tolerance pair \((\rho, \eta) \in \mathbb{R}_+^2\), the AIDAL method obtains a triple \((\hat{z}, \hat{\rho}, \hat{v})\) satisfying

\[
\hat{v} \in \nabla f(\hat{z}) + \partial h(\hat{z}) + A^* \hat{\rho}, \quad \| \hat{v} \| \leq \rho, \quad \| A\hat{z} - b \| \leq \eta.
\]

in \(\mathcal{O}(\eta^{-5/2} + \eta^{-1/2} \rho^{-2}) \log \eta^{-1} \) ACG iterations. Moreover, this iteration complexity is obtained without requiring that the initial point \(z_0 \) (in the domain of \(h \)) be feasible with respect to the linear constraint, i.e., \(Az_0 = b \). Another contribution from this
analysis is that the sequence of Lagrange multipliers is shown to be bounded by a constant independent of ρ and η.

Related Works To condense our discussion, we let $\varepsilon = \rho = \eta$ denote a common tolerance parameter and restrict our attention to works that establish iteration complexity bounds for obtaining approximate stationary points of (1). For an overview of papers that focus on asymptotic convergence of a proposed method, see the excellent discussion in [19, Section 2].

One popular class of methods for obtaining stationary points of (1) is the penalty method, which consists of solving a sequence of unconstrained subproblems containing an objective function that penalizes a violation of the constraints through a positively weighted penalty term. Papers [10, 14] present an $O(\varepsilon^{-3})$ iteration complexity of a quadratic penalty method without any regularity assumptions on the linear constraint. In a follow-up work, paper [11] presents an $O(\varepsilon^{-3} \log \varepsilon^{-1})$ iteration complexity of a similar quadratic penalty method in which its parameters are chosen in an adaptive and numerically efficient manner. Paper [19] is the first to present a penalty-based method with an improved complexity of $O(\varepsilon^{-5/2} \log \varepsilon^{-1})$ under the assumption that the domain of h is compact and assumption (5) holds.

Another popular class of methods is the proximal AL (PAL) method, which primarily consists of the updates in (3) and (4). The analysis of AL/PAL-based methods for the case where ϕ is convex is already well-established (see, for example, [1, 2, 15, 16, 20, 21, 24, 25, 29]), so we make no more mention of it here. Instead, we review papers that present an iteration complexity of an AL/PAL-based method for the case where ϕ is nonconvex. Paper [6] presents an $O(\varepsilon^{-4})$ iteration complexity1 of an unaccelerated PAL method under the strong assumption that the initial point z_0 is feasible, i.e., $Az_0 = b$, as well as $\theta \in (0, 1]$ and $\chi = 1$. Paper [22] presents $O(\varepsilon^{-3} \log \varepsilon^{-1})$ and $O(\varepsilon^{-5/2} \log \varepsilon^{-1})$ iteration complexities of an accelerated inexact PAL method for the general case and the case where (5) holds, respectively, and removes the requirement that the initial point be feasible. Papers [12, 13] present an $O(\varepsilon^{-3} \log \varepsilon^{-1})$ iteration complexity for the special case of $(\chi, \theta) = (1, 0)$, which corresponds to a full multiplier update under the classical AL function. Finally, papers [17, 27] respectively establish $O(\varepsilon^{-3} \log \varepsilon^{-1})$ and $O(\varepsilon^{-5/2} \log \varepsilon^{-1})$ iteration complexities for nonproximal AL-based methods that perform under-relaxed Lagrange multiplier updates only when the penalty parameter is updated.

Aside from penalty and AL/PAL-based methods, we mention few others that are of interest. Paper [3] presents an $O(\varepsilon^{-3})$ iteration complexity of a primal-dual proximal point scheme for generating a point near an approximate stationary point under some strong conditions on the initial point. Papers [30, 31] present an $O(\varepsilon^{-2})$ iteration complexity of a primal-dual first-order algorithm for solving (1) when h is the indicator function of a box (in [31]), or more generally, a polyhedron (in [30]). Paper [7] presents an $O(\varepsilon^{-6})$ iteration complexity of a penalty-ADMM method that solves an equivalent reformulation of (1), under the assumption that the initial point z_0 is feasible, the tolerance ε is sufficiently small, and A has full row rank. Paper [18] presents an inexact proximal point method applied to the function defined as $\phi(z)$ if z is feasible

1 This method generates prox subproblems of the form argmin$_{x \in X} [\lambda h(x) + c \|Ax - b\|^2/2 + \|x - x_0\|^2/2]$ and the analysis of [6] makes the strong assumption that they can be solved exactly for any x_0, c, and λ.

© Springer
and $+\infty$ otherwise. It can be viewed as an extension to the nonconvex setting of the proximal point method (PPM) applied to \(\text{(1)}\) and it obtains an $O(\varepsilon^{-5/2} \log \varepsilon^{-1})$ complexity bound.

Contributions We now emphasize how the proposed AIDAL method improves on other state-of-the-art AL-based works. First, it improves upon the $O(\varepsilon^{-3} \log \varepsilon^{-1})$ classic PAL method in [13] by a $O(\varepsilon^{-1/2})$ factor through only a small perturbation of the classical multiplier update and the classical AL function. Second, AIDAL chooses its prox stepsize λ independent of the perturbation parameter θ. This is in contrast to the PAL method in [22] which has the undesirable property that its prox stepsize λ becomes arbitrarily small as θ approaches zero. Finally, it differs from the nonproximal AL-based method in [17] in two significant ways: (i) it performs the multiplier update \(\text{(4)}\) after every inexact prox update as opposed to only when the penalty parameter is updated; and (ii) it chooses a constant under-relaxation parameter χ for the update \(\text{(4)}\) as opposed to [17], which chooses an under-relaxation parameter that (linearly) tends to zero as the number of penalty parameter updates increases.

Organization of the Paper Section 1.1 provides some basic definitions and notation. Section 2 contains two subsections. The first one describes the main problem of interest and the assumptions made on it, while the second one presents the AIDAL method and states its iteration complexity. Section 3 is divided into four subsections. The first one presents some preliminary technical results, the second one presents a bound on an important stationarity residual, the third one proves a bound on the generated Lagrange multipliers, and fourth one one gives the proof of a key proposition in Sect. 2. Section 4 presents numerical experiments that demonstrate the efficiency of the AIDAL method. Section 5 gives some concluding remarks. Finally, the end of the paper contains several important technical appendices.

1.1 Basic notations and definitions

This subsection presents notation and basic definitions used in this paper.

Let \mathbb{R}_+ and \mathbb{R}_{++} denote the set of nonnegative and positive real numbers, respectively, and let \mathbb{R}^n denote the n-dimensional Hilbert space with inner product and associated norm denoted by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$, respectively. The smallest positive singular value of a nonzero linear operator $Q : \mathbb{R}^n \to \mathbb{R}^l$ is denoted by σ^+_Q. For a given closed convex set $X \subset \mathbb{R}^n$, its boundary is denoted by ∂X and the distance of a point $x \in \mathbb{R}^n$ to X is denoted by $\text{dist}_X(x)$. For any $t > 0$, we let $\log^+_1(t) := \max\{\log t, 1\}$ and denote $O_1 = O(\cdot + 1)$.

The domain of a function $h : \mathbb{R}^n \to (-\infty, \infty]$ is the set $\text{dom} h := \{x \in \mathbb{R}^n : h(x) < +\infty\}$. Moreover, h is said to be proper if $\text{dom} h \neq \emptyset$. The set of all lower semi-continuous proper convex functions defined in \mathbb{R}^n is denoted by $\overline{\text{Conv}} \mathbb{R}^n$. The subdifferential of a proper convex function $h : \mathbb{R}^n \to (-\infty, \infty]$ is defined by

$$\partial h(z) := \{u \in \mathbb{R}^n : h(z') \geq h(z) + \langle u, z' - z \rangle, \quad \forall z' \in \mathbb{R}^n\} \quad (7)$$
An accelerated inexact dampened augmented Lagrangian for every $z \in \mathbb{R}^n$. The normal cone of a closed convex set C at $z \in C$ is defined as

$$N_C(z) := \{\xi \in \mathbb{R}^n : \langle \xi, u - z \rangle \leq 0, \quad \forall u \in C\}.$$

If $\psi : \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable at $\bar{z} \in \mathbb{R}^n$, then its affine approximation at \bar{z} is given by

$$\ell_\psi(z; \bar{z}) := \psi(\bar{z}) + \langle \nabla \psi(\bar{z}), z - \bar{z} \rangle \quad \forall z \in \mathbb{R}^n. \quad (8)$$

2 Augmented Lagrangian method

This section contains two subsections. The first one precisely describes the problem of interest and the assumptions underlying it, while the second one presents the AIDAL method and its corresponding iteration complexity.

2.1 Problem of interest

This subsection presents the main problem of interest and the assumptions underlying it.

Our problem of interest is precisely (1) where $f, h, A,$ and b are assumed to satisfy the following assumptions:

(A1) $h \in \text{Conv} \mathbb{R}^n$ is K_h-Lipschitz continuous and $\mathcal{H} := \text{dom} h$ is compact with diameter $D_h := \sup_{u, z \in \mathcal{H}} \|u - z\| < \infty$.

(A2) f is differentiable function on \mathcal{H}, and there exists $(m, M) \in \mathbb{R}^2_+$ satisfying $m \leq M$, such that for every $u, z \in \mathcal{H}$, we have

$$\langle \nabla f(u) - \nabla f(z), u - z \rangle \leq M\|u - z\|; \quad (10)$$

(A3) there exists $\tilde{z} \in \text{int}\mathcal{H}$ such that $A\tilde{z} = b$;

(A4) $A \neq 0$, $\mathcal{F} := \{z \in \mathcal{H} : A z = b\} \neq \emptyset$, and $\inf_{z \in \mathbb{R}^n} \phi(z) > -\infty$.

We now make four remarks about the above assumptions. First, it is well-known that (10) implies that $|f(u) - \ell_f(u; z)| \leq M\|u - z\|^2/2$ for every $u, z \in \mathcal{H}$ and hence that (9) holds with $m = M$. However, we show that better iteration complexities can be derived when a scalar $m \ll M$ satisfying (9) is available [see Theorem 2.3 and (23)].

Second, (9) implies that the function $f + m\|\cdot\|^2/2$ is convex on \mathcal{H}. Third, since \mathcal{H} is compact by (A1), the image of any continuous \mathbb{R}^k-valued function, e.g., $u \mapsto \nabla f(u)$, is bounded. Finally, in “Appendix C”, we show that if \tilde{z} is a local minimum of (1), then there exists a multiplier \hat{p} such that

$$0 \in \nabla f(\tilde{z}) + \partial h(\tilde{z}) + A^*\hat{p}, \quad A\tilde{z} = b. \quad (11)$$

In view of the last remark, we say that a triple $(\tilde{z}, \hat{p}, \hat{v})$ is a (ρ, η)-stationary point of (1) if it satisfies condition (6), which is clearly a relaxation of (11) for any $(\rho, \eta) \in \mathbb{R}^2_{++}$.
2.2 AIDAL method

This section presents the AIDAL method and its corresponding iteration complexity. We first state the AIDAL method in Algorithm 2.1. Its main steps are: (i) invoking an ACG algorithm (specifically, Algorithm B.1) to implement the update in (3); (ii) computing a “refined” pair \((\hat{\rho}, \hat{v}) = (\hat{\rho}_k, \hat{v}_k)\) and point \(z\) satisfying the inclusion and (possibly) the inequality in (6); (iii) applying the update in (4); and (iv) performing a novel test to determine the next penalty parameter \(c_{k+1}\).

Algorithm 2.1: Accelerated Inexact Damened Augmented Lagrangian (AIDAL) Method

```
Function AIDAL \((m, M), (\sigma, \chi, \theta), (c_1, z_0, p_0), (\rho, \eta)\):
    λ ← 1/(2m)
    for \(k ← 1, 2, \ldots\) do
        STEP 0 (initialization):
            \(L_k ← \lambda(M + c_k\|A\|^2) + 1\)
        STEP 1 (inexact prox update):
            \(\psi_k(\cdot) ← \lambda \left[ L^\theta_{ck}(\cdot; p_{k-1}) - h(\cdot) \right] + \frac{1}{2}\|\cdot - z_{k-1}\|^2 \)
        \((z_k, v_k) ← \text{ACG}(\{\psi_k, \lambda h\}, \{L_k, \frac{1}{2}\}, \sigma, z_{k-1})\)
        STEP 2 (termination check):
            \(\hat{v}_k ← \frac{1}{\lambda} [v_k + z_k - z_k - 1] \)
            \(\hat{p}_k ← (1 - \theta)p_{k-1} + c_k(Az_k - b)\)
        if \(\|\hat{v}_k\| ≤ \rho\) and \(\|Az_k - b\| ≤ \eta\) then
            return \((z_k, \hat{p}_k, \hat{v}_k)\)
        STEP 3 (multiplier update):
            \(p_k ← (1 - \theta)p_{k-1} + \chi c_k(Az_k - b)\)
        STEP 4 (penalty parameter update):
            \(c_{k+1} ← \begin{cases} 2c_k, & \text{if } \|\hat{v}_k\| ≤ \rho, \\
                              c_k, & \text{otherwise} \end{cases}\)
```

Some remarks about Algorithm 2.1 are in order. First, its input \(z_0\) can be any element in \(\mathcal{H}\) and does not necessarily need to be a feasible point, i.e., one satisfying \(Az_0 = b\). Second, its steps 1 and 3 are respectively the updates (3) and (4), while its step 4 consists of a test to determine whether the penalty parameter \(c_k\) should be increased. In particular, the update for (3) is obtained by applying the ACG algorithm in Algorithm B.1 to the (convex) proximal subproblem

\[
\min_{u \in \mathbb{R}^n} \left\{ \lambda L^\theta_{ck}(\cdot; p_{k-1}) + \frac{1}{2}\|\cdot - z_{k-1}\|^2 \right\}
\]
with an inexactness criterion [see (45)] that is a variant of the one considered by the authors in [9, 10, 12, 14]. Third, it performs two kinds of iterations: (i) the ones indexed by k; and (ii) the ones performed by the ACG algorithm every time it is called in its step 1. To be concise, the former will be referred to as “outer” iterations and the latter as “inner” (or ACG) iterations. Finally, it is shown in Lemma 3.2(d) that the triple $(\hat{z}, \hat{p}, \hat{v}) = (z_k, \hat{p}_k, \hat{v}_k)$ satisfies the inclusion in (6) for every $k \geq 1$. Hence, if the termination condition in step 3 is satisfied, then AIDAL outputs a (ρ, η)-stationary point of (1) (whose definition is given at the end of Sect. 2.1).

We now present the key properties of the method. To be concise, we introduce the constants

\begin{align}
\bar{d} &:= \text{dist}_{\mathcal{H}}(\bar{z}), \quad G_f := \sup_{u \in \mathcal{H}} \|\nabla f(u)\|, \quad \phi_* := \inf_{u \in \mathbb{R}^n} \phi(u), \quad \phi^* := \inf_{u \in \mathcal{F}} \phi(u), \\
\beta_\lambda &:= (\bar{d} + D_h) \left[K_h + G_f + \frac{(1 + \sigma) D_h}{\lambda} \right].
\end{align}

(13)

where $(D_h, K_h, \mathcal{H}), \bar{z},$ and \mathcal{F} are as in (A1), (A3), and (A4), respectively. Moreover, we let

\begin{align}
\mathcal{C}_\ell &:= \left\{ k \in \mathbb{N} : c_k = c_1 2^{\ell-1} \right\}
\end{align}

(14)
denote the ℓth cycle of AIDAL and, for simplicity, if the AIDAL terminates at iteration k then the indices of the last cycle do not extend past k.

The first result presents a bound on the sequence of Lagrange multipliers $\{p_k\}_{k \geq 0}$ computed in step 3 of AIDAL. Its proof, which is given in Sect. 3.3, is a generalization of [13, Proposition 3.12], which considers the case where $(\theta, \chi) = (0, 1)$.

Proposition 2.1 Let $\{p_i\}_{i \geq 1}$ be generated by the AIDAL method. Then,

\begin{align}
\|p_k\| \leq \|p_0\| + \frac{\beta_\lambda}{d \sigma_A^+} =: B_p \quad \forall k \geq 1,
\end{align}

(15)

where \bar{d} and β_λ are as in (13).

The next result, whose proof is the topic of Sect. 3.4, describes several properties of AIDAL, including a bound on the number of inner (or ACG) iterations performed in each outer iteration, a uniform bound on the size of all cycles, and its successful termination with the required approximate stationary point of (1).

Proposition 2.2 Let $(\lambda, c_1, \chi, \theta, \rho, \eta)$ be as in AIDAL, and define the nonnegative scalars

\begin{align}
B_\psi &:= \phi^* - \phi_* + \frac{D_h^2}{\lambda} + \left(\frac{2 - \theta + 2(2 - \theta)[1 - \theta]}{2\chi^2 c_1} \right) B_p^2, \\
\bar{c}_\eta &:= \frac{2 B_p}{\chi \eta}, \quad T_\rho := \left[1 + \frac{9 B_\psi}{\lambda \rho^2} \right].
\end{align}

(16)
where $B_{p}, D_{h},$ and (ϕ_{*}, ϕ^{*}) are as in Proposition 2.1, assumption (A1), and (13), respectively. Then, the following statements hold about AIDAL:

(a) its kth outer iteration performs a number of inner (or ACG) iterations bounded above by

\[
1 + 6\sqrt{L_k \log_1^+ \frac{4L_k}{\sigma}},
\]

where L_k is given by step 1 of AIDAL;

(b) for every $\ell \geq 1$, it holds that $|C_{\ell}| \leq T_\rho$, and the residual \hat{v}_k for the last index k of C_{ℓ} satisfies $\|\hat{v}_k\| \leq \rho$;

(c) the last cycle ℓ outputs a (ρ, η)-stationary point of (1) and satisfies $c_k \leq \max\{c_1, 2\bar{c}_\eta\}$ for every $k \in C_{\ell}$; as a consequence, $\bar{\ell} \leq \max\{1, \log_2(2\bar{c}_\eta/c_1)\}$.

We give some remarks about the above results. First, Proposition 2.1 states that the sequence of Lagrange multipliers $\{p_k\}_{k \geq 1}$ generated by the AIDAL method is bounded by a constant that is independent of the tolerances ρ and η. Second, Proposition 2.2(c) states that the number of times that the penalty constant c_k is doubled during an invocation of the AIDAL method is finite. Finally, Proposition 2.2(a) shows that the number of the inner (or ACG) iterations at each outer iteration of AIDAL is independent of the tolerances ρ and η.

Using Proposition 2.2, the next result establishes an $O(\eta^{-1/2} \rho^{-2} \log \eta^{-1})$ total inner (or ACG) iteration complexity for the AIDAL method.

Theorem 2.3 AIDAL stops with a (ρ, η)-stationary point of (1) in a number of inner (or ACG) iterations bounded above by

\[
O_1 \left(T_\rho \sqrt{\bar{c}_\eta L_1 \log_1^+ \frac{\bar{c}_\eta L_1}{\sigma}}\right),
\]

where (\bar{c}_η, T_ρ) are as (16), L_1 is as in step 1 of AIDAL at $k = 1$, and σ is the inexactness parameter given to the ACG algorithm (Algorithm B.1).

Proof For ease of notation, let $(\hat{c}, T) = (\bar{c}_\eta, T_\rho)$. In view of Proposition 2.2(a) and (c), the total number of inner (or ACG) iterations performed by the method is on the order of

\[
O_1 \left(\left\lceil \log_2 \hat{c} \right\rceil \sum_{\ell=1}^{\left\lceil \log_2 \hat{c} \right\rceil} \sum_{j \in C_{\ell}} \sqrt{L_j \log_1^+ \frac{L_j}{\sigma}}\right).
\]

To simplify this sum, we first note that if $j \in C_{\ell}$, then the relations $\lambda = 1/(2m)$ (from AIDAL) and $m \leq M$ (from assumption (A2)) imply that

\[
L_j = \lambda \left(M + 2^{\ell-1} c_1 \|A\|^2 + \lambda^{-1}\right) \leq \lambda \left(2M + 2^{\ell-1} c_1 \|A\|^2\right) \leq 2^\ell L_1.
\]

Springer
Combining (20) with Proposition 2.2(b), it holds that

\[
\sum_{\ell=1}^{\log_2 \bar{c}} \sum_{j \in C_\ell} \sqrt{L_j} \leq T \sqrt{L_1} \sum_{\ell=1}^{\log_2 \bar{c}} 2^{\ell/2} = T \sqrt{L_1} \cdot \sqrt{2} \left(1 + \sqrt{2} \right) \left(2^{\log_2 \bar{c}}/2 - 1 \right) \\
\leq 4T \sqrt{L_1} \left(2^{\log_2 \bar{c} \cdot 2^{1/2}} \right) = O \left(T \sqrt{\bar{c} L_1} \right). \tag{21}
\]

Moreover, denoting \(\bar{\ell} = \log_2 \bar{c} \), it follows from (20) that

\[
\max_{1 \leq \ell \leq \log_2 \bar{c}} \max_{j \in C_\ell} \left\{ \log^{+} L_j \right\} = \log^{+} \left[\lambda \left(M + c_{\bar{\ell}} \|A\|^2 \right) + 1 \right] = O \left(\log^{+} \bar{c} L_1 \right). \tag{22}
\]

The complexity bound in (18) now follows from (21), (22), and (19). The fact that AIDAL stops with a \((\rho, \eta)\)-stationary point of (1) follows from Proposition 2.2(c).

We now analyze how the complexity bound in (18) depends on the stepsize \(\lambda \) and the tolerances \(\rho \) and \(\eta \). Throughout our discussion, we make the reasonable assumption that the parameter \(\chi \) and the initial penalty parameter \(c_1 \) are not too small in the sense that \(\max \{ c_1^{-1}, \chi^{-1} \} = O(1) \). In this case, it is easy to see that the quantities \(B_p, B_\psi, L_1, \bar{c}_\eta, T_\rho \) in (15), (16), and step 1 of Algorithm 2.1 satisfy \(B_p = O(1 + \lambda^{-1}) \), \(B_\psi = O((1 + \lambda^{-1})^2) \), \(L_1 = O(1 + \lambda) \), \(\bar{c}_\eta = O((1 + \lambda^{-1})/\eta) \), and \(T_\rho = O(1 + (1 + \lambda^{-1})^2/\lambda \rho^2) \). Consequently, the bound (18) is

\[
O \left(\left[1 + \frac{(1 + \lambda^{-1})^2}{\lambda \rho^2} \right] \sqrt{\frac{1 + \lambda + \lambda^{-1}}{\eta}} \log^{+} \left[\frac{1 + \lambda + \lambda^{-1}}{\eta} \right] \right). \tag{23}
\]

Since \(\lambda^{-1} = O(1) \), the above complexity consists of the sum of two components: \(S_1 = O(\lambda^{1/2} \eta^{-1/2}) \) and \(S_2 = O(\lambda^{-1/2} \eta^{-1/2} \rho^{-2}) \) (ignoring logarithmic terms). In general, if the tolerances \(\rho \) and \(\eta \) are small, then \(S_2 \ll S_1 \) and choosing larger values of \(\lambda \) improves the complexity bound in (23). Under the assumption that there exists a constant \(m \ll M \) satisfying (9), this observation justifies the claim made in the paragraph following assumptions (A1)–(A4), namely, that AIDAL can benefit if such \(m \) is known; otherwise, the only option available would be to be set \(\lambda \) to the much smaller quantity \(1/(2M) \).

It is also worth mentioning that, the number of resolvent (or proximal) evaluations of \(h \) in AIDAL is on the same order of magnitude as in (18) due to the fact that the ACG algorithm in “Appendix B” performs exactly one resolvent evaluation per ACG iteration.

3 Convergence analysis of the AIDAL method

This section establishes the key properties of the AIDAL method and contains four subsections. The first one establishes some properties of the ACG call of AIDAL,
the second one gives a useful technical bound on the stationarity residuals \(\{\hat{v}_i\} \), the third one gives the proof of Proposition 2.1, and the fourth one gives the proof of Proposition 2.2.

To avoid repetition, we let
\[
\{(z_i, p_i, v_i, \hat{p}_i, \hat{v}_i, \psi_i, c_i, L_i)\}_{i \geq 1},
\]
denote the sequence of iterates generated by the AIDAL method. Moreover, for every \(i \geq 1 \) and any \((\chi, \theta) \in \mathbb{R}^2_++ \), we make use of the following useful constants
\[
a_\theta = \theta(1 - \theta), \quad b_\theta := (2 - \theta)(1 - \theta), \quad \alpha_{\chi, \theta} := \frac{(1 - 2\chi b_\theta) - (1 - \theta)^2}{2\chi},
\]
(24)

3.1 Preliminary results

This subsection establishes two preliminary technical results about the residuals \(v_i, \hat{v}_i, \) and \(f_i \). It also establishes the iteration-complexity of each ACG call in step 1 of AIDAL using the general results derived for this method in “Appendix B”.

Lemma 3.1 For every \(i \geq 1 \):
(a) \(f_i = \left[p_i - (1 - \theta)p_{i-1} \right]/(\chi c_i) \);
(b) if \(i \geq 2 \), then \(\chi(c_i f_i - c_{i-1} f_{i-1}) = \Delta p_i - (1 - \theta)\Delta p_{i-1} \);
(c) \(\| f_i \| \leq (\| p_i \| + (1 - \theta)\| p_{i-1} \|)/\chi c_i \).

Proof (a) This follows from the definition of \(f_i \) in (24), and step 3 of the AIDAL method.
(b) This follows from part (a) and the definition of \(\Delta p_i \) in (24).
(c) Using part (a), the fact that \(1 - \theta \in [0, 1] \), and the triangle inequality, we have
\[
\| f_i \| = \frac{\| p_i - (1 - \theta)p_{i-1} \|}{\chi c_i} \leq \frac{\| p_i \| + (1 - \theta)\| p_{i-1} \|}{\chi c_i}.
\]
\[\square\]

Note that the inequality of Lemma 3.1(c) implies the feasibility residual \(\| f_i \| \) can be made small by making the penalty parameter sufficiently large and ensuring that the multipliers \(\{p_i\}_{i \geq 1} \) are bounded.

Lemma 3.2 For every \(i \geq 1 \):
(a) \(\psi_i'(\cdot) - \| \cdot \|^2_{Q_i}/2 \) is convex and \(\nabla \psi_i'(\cdot) \) is \(L_i \)-Lipschitz continuous, where \(L_i \) is as in step 1 of Algorithm 2.1 and
\[
Q_i := \frac{I}{2} + c_i \lambda A^* A, \quad \| \cdot \|^2_{Q_i} := \langle \cdot, Q_i(\cdot) \rangle,
\]
(25)
(b) the ith call to Algorithm B.1 in step 1 of Algorithm 2.1 stops in a number of ACG iterations bounded above by (17);

(c) it holds that

$$v_i \in \partial (\psi_i^\lambda + \lambda h)(z_i) = \partial \left(\lambda L_i^\theta (\cdot; p_{i-1}) + \frac{1}{2} \| - z_{i-1} \|^2 \right) (z_i), \quad \|v_i\| \leq \sigma \|\Delta z_i\|;$$

(d) $\hat{v}_i \in \nabla f(z_i) + \partial h(z_i) + A^* \hat{p}_i$ and $\|\hat{v}_i\| \leq \frac{1}{(1 + \sigma)} \|\Delta z_i\| / \lambda$.

Proof (a) First note that inequality (9) in Assumption (A2) and the choice of $\lambda = 1/(2m)$ in Algorithm 2.1 implies that $\lambda f(\cdot) + \| - z_{i-1} \|^2 / 2$ is $1/2$-strongly convex on \mathcal{H}. Hence, the convexity assertion follows from this observation, the definition of ψ_i^λ, and the definitions of Q_i and $\|\cdot\|_{Q_i}$ in (25). On the other hand, the assertion about Lipschitz continuity follows from the definition of ψ_i^λ and (10).

(b) Using the fact that $L_i \geq 1$ and $\sigma \in (0, 1)$, we first observe that for $\mu = 1/2$ we have

$$\frac{4L_i(L_i + \mu)}{\mu \sigma^2} \leq \frac{8L_i(L_i + L_i)^2}{\sigma^2} \leq \left[\frac{4L_i}{\sigma} \right]^3.$$

Then, note that part (a) implies $(\psi_s, \psi_n) = (\psi_i^\lambda, \lambda h)$ and therefore (B1)–(B2) in “Appendix B” with $(L, \mu) = (L_i, 1/2)$. The conclusion now follows from step 1 of Algorithm 2.1, assumption (A2), Proposition B.1(b) with $(L, \mu) = (L_i, 1/2)$, and the above observations.

(c) Recall that step 1 of AIDAL calls ACG with $(\psi_s, \psi_n) = (\psi_i^\lambda, \lambda h)$ and $x_0 = z_i$. It then follows from Proposition B.1(b) that (45) holds with $(z, v, x_0) = (z_i, v_i, z_{i-1})$ and $(\psi_s, \psi_n) = (\psi_i^\lambda, \lambda h)$ and $x_0 = z_{i-1}$. The inclusion and first inequality now follow from the previous observation, the definition of ψ_i^λ, and the fact that $\psi_i^\lambda + \lambda h$ is convex (see the choice of λ and assumption (A2)) and, hence, that $\nabla \psi_i^\lambda (\cdot) + \lambda \partial h(\cdot) = \partial (\psi_i^\lambda \lambda h)(\cdot)$.

(d) Using part (c) and the definitions of \hat{v}_i, \hat{p}_i, and ψ_i^λ, it holds that

$$\hat{v}_i = \frac{v_i + z_{i-1} - z_i}{\lambda} \in \nabla \psi_i^\lambda (z_i) \lambda + \partial h(z_i) + \frac{z_{i-1} - z_i}{\lambda}$$

$$= \nabla f(z_i) + \partial h(z_i) + (1 - \theta) A^* p_{i-1} + c A^*(Az_i - b)$$

$$= \nabla f(z_i) + \partial h(z_i) + A^* \hat{p}_i,$$

which is the desired inclusion. For the desired inequality, we use part (c), the triangle inequality, and the definition of \hat{v}_i to obtain

$$\|\hat{v}_i\| \leq \frac{1}{\lambda} \|v_i + z_{i-1} - z_i\| \leq \frac{1}{\lambda} \|v_i\| + \frac{1}{\lambda} \|\Delta z_i\| \leq \frac{1 + \sigma}{\lambda} \|\Delta z_i\|. \quad \square$$

We now make three comments about the above result. First, statements (a) and (b) of Lemma 3.2 justify the choice of $\lambda = 1/(2m)$. Second, λ could actually have been
set to any value \((0, 1/m)\) at the expense of more complicated bounds in the resulting analysis. Third, in view of the inclusion of Lemma 3.2(d) and the definition \(f_i\) in (24), it follows that \((\hat{z}_i, \hat{p}_i, \hat{v}_i)\) is a \((\rho, \eta)\)-stationary point of (1) if and only if \(\|\hat{v}_i\| \leq \rho\) and \(\|f_i\| \leq \eta\).

In the next subsection, we establish an important bound on the residuals \(\{\hat{v}_i\}\) that will be used to show that they tend to zero.

3.2 Bounds on the stationarity residuals

This subsection focuses on establishing the following bound on the residuals \(\{\hat{v}_i\}\) within cycle \(C_\ell\) for any \(\ell \geq 1\). Note that the value of \(c_i\) is constant within \(C_\ell\), i.e., there exists \(\tilde{c}_\ell > 0\) such that

\[
c_i = \tilde{c}_\ell \quad \forall i \in C_\ell.
\]

(26)

Proposition 3.3 For every \(\ell \geq 1\) and \(j, k \in C_\ell\) such that \(k \geq j + 1\), we have

\[
\lambda \sum_{i=j+1}^{k} \|\hat{v}_i\|^2 \leq 9[\Psi_j^\theta - \Psi_k^\theta],
\]

(27)

where the potential \(\Psi_i^\theta\) is given by

\[
\Psi_i^\theta := \mathcal{L}^\theta_c(z_i; p_i) - \frac{a_\theta}{2\chi \tilde{c}_\ell} \|p_i\|^2 + \frac{a_\theta}{4\chi \tilde{c}_\ell} \|\Delta p_i\|^2.
\]

(28)

We start with a technical bound on \(\|\hat{v}_i\|^2\).

Lemma 3.4 For every \(i \geq 1\), it holds that

\[
\frac{\lambda}{9} \|\hat{v}_i\|^2 \leq \left[\mathcal{L}^\theta_c(z_{i-1}; p_{i-1}) - \mathcal{L}^\theta_c(z_i; p_i) + \frac{a_\theta}{2\chi c_i} \left(\|p_i\|^2 - \|p_{i-1}\|^2\right)\right] + \frac{b_\theta}{2\chi c_i} \|\Delta p_i\|^2 - \frac{c_i}{2} \|A \Delta z_i\|^2,
\]

(29)

where \(a_\theta\) and \(b_\theta\) are as in (24).

Proof Let \(i \geq 1\) be fixed. We first derive a relationship for \(\mathcal{L}^\theta_c(z_i, p_i) - \mathcal{L}^\theta_c(z_{i-1}, p_{i-1})\). Using the definition of \(\mathcal{L}^\theta_c\) in (2), the definitions of \(\Delta p_i\) and \(f_i\) in (24), and
Lemma 3.1(a), we have that

\[
\mathcal{L}^\theta_{c_i}(z_i, p_i) - \mathcal{L}^\theta_{c_i}(z_i, p_{i-1}) = (1 - \theta) \langle \Delta p_i, f_i \rangle = \left(1 - \frac{1}{1 - \theta}\right) \| \Delta p_i \|^2 + \frac{(1 - \theta)\theta}{\chi c_i} \langle \Delta p_i, p_{i-1} \rangle
\]

\[
= \left(1 - \frac{1}{\chi c_i}\right) \| \Delta p_i \|^2 + \frac{(1 - \theta)\theta}{\chi c_i} \left(p_i, p_{i-1}\right) - \| p_{i-1} \|^2
\]

\[
= \left(1 - \frac{1}{\chi c_i}\right) \| \Delta p_i \|^2 + \frac{(1 - \theta)\theta}{\chi c_i} \left(-\frac{1}{2} \| \Delta p_i \|^2 + \frac{1}{2} \| p_i \|^2 - \frac{1}{2} \| p_{i-1} \|^2\right)
\]

\[
= \frac{b_\theta}{2\chi c_i} \| \Delta p_i \|^2 + \frac{\alpha \chi_\theta}{2\chi c_i} \left(\| p_i \|^2 - \| p_{i-1} \|^2\right). \tag{30}
\]

We next derive a bound for \(\mathcal{L}^\theta_{c_i}(z_i, p_{i-1}) - \mathcal{L}^\theta_{c_i}(z_{i-1}, p_{i-1})\). In view of Lemma 3.2(a) and (c), we first observe that (i) \(\lambda \mathcal{L}^\theta_{c_i}(\cdot, p_{i-1}) + \| \cdot - z_{i-1} \|^2 / 2 = \psi^i_1(\cdot) + \lambda h(\cdot)\) is 1-strongly convex with respect to the \(\| \cdot \|_{Q_i}\) norm given in (25), and (ii) \(z_i\) is an optimal solution of the function \(\psi^i_1(\cdot) + \lambda h(\cdot) - \langle v_i, \cdot \rangle\). Combining facts (i–(ii) above, the definition of \(\| \cdot \|_{Q_i}\) in (25), the bound on \(\| v_i \|\) in Lemma 3.2(c), the fact that \(\sigma \in (0, 1/2)\), and the Cauchy-Schwarz inequality, we conclude that

\[
\mathcal{L}^\theta_{c_i}(z_i, p_{i-1}) - \mathcal{L}^\theta_{c_i}(z_{i-1}, p_{i-1}) \leq -\frac{1}{2\lambda} \| \Delta z_i \|^2_{Q_i} - \frac{1}{2\lambda} \| \Delta z_i \|^2 + \frac{1}{\lambda} \langle v_i, \Delta z_i \rangle
\]

\[
\leq -\frac{3 - 4\sigma}{4\lambda} \| \Delta z_i \|^2 - \frac{c_i}{2} \| A \Delta z_i \|^2 \leq -\frac{1}{4\lambda} \| \Delta z_i \|^2 - \frac{c_i}{2} \| A \Delta z_i \|^2 \tag{31}
\]

The conclusion now follows by summing (30) and (31), isolating the \(\| \Delta z_i \|^2\) term to one side, and using the inequality on \(\| \hat{v}_i \|\) in Lemma 3.2(d) with the fact that \((1 + \sigma)^2 \leq 9/4\).

Note that within a cycle, where the penalty parameters remain constant, the term within the square bracket of the right-hand side of (29) is telescopic. Interestingly, the next result shows that the other term on the right-hand side of (29) can be telescopically bounded within a fixed cycle. It is worth mentioning that the relationship between \(\chi\) and \(\theta\) in (12) plays an important role in proving this fact.

Lemma 3.5 For every \(i \geq 2\) such that \(c_i = c_{i-1}\), it holds that

\[
\frac{b_\theta}{2\chi c_i} \| \Delta p_i \|^2 - \frac{c_i}{2} \| A \Delta z_i \|^2 \leq \frac{\alpha_{\chi, \theta}}{2\chi c_i} \left(\| \Delta p_{i-1} \|^2 - \| \Delta p_i \|^2\right), \tag{32}
\]

where \(b_\theta\) and \(\alpha_{\chi, \theta}\) are as in (24).
Proof} Let $i \geq 2$ be an index where $c_i = c_{i-1}$ and observe that (12) implies $2\chi b_\theta \leq \theta^2$. Moreover, define
\[
\hat{\Delta} p_i := \Delta p_i - (1 - \theta)\Delta p_{i-1}
\]
and observe that Lemma A.1 with $(\tau, a, b) = (\chi b_\theta, \Delta p_i, \Delta p_{i-1})$ implies that
\[
\frac{1}{\chi} \|\hat{\Delta} p_i\|^2 \geq 2b_\theta \|\Delta p_i\|^2 + \alpha \chi \theta \left(\|\Delta p_i\|^2 - \|\Delta p_{i-1}\|^2 \right).
\] (33)

Using Lemma 3.1(b), the fact that $c_i = c_{i-1}$, and (33), we then have
\[
\frac{c_i}{2} \|A \Delta z_i\|^2 = \frac{\|\chi c_i A \Delta z_i\|^2}{2\chi^2 c_i} = \frac{\|\chi (c_i f_i - c_{i-1} f_{i-1})\|^2}{2\chi^2 c_i} = \frac{1}{2\chi c_i} \left[\frac{1}{\chi} \|\hat{\Delta} p_i\|^2 \right]
\]
\[
\geq \frac{1}{2\chi c_i} \left[b_\theta \|\Delta p_i\|^2 + \alpha \chi \theta \left(\|\Delta p_i\|^2 - \|\Delta p_{i-1}\|^2 \right) \right],
\]
from which (32) immediately follows.
\[\square\]

Combining (29) and (32), it is easy to see that the sum of the residuals $\{\|\hat{v}_i\|^2\}_{i \geq 1}$ residuals is bounded above by a telescopic sum when the indices are in a cycle. Let us now use this fact to prove Proposition 3.3.

Proof of Proposition 3.3 Let $\ell \geq 1$ and $j, k \in C_\ell$ be given and assume that $i \in \{j + 1, \ldots, k\}$. Then, it follows from (26) that $c_i - 1 = c_i = c_\ell$. This observation together Lemmas 3.4 and 3.5 then imply that
\[
\frac{\lambda}{2} \|\hat{v}_i\|^2 \leq \mathcal{L}_{c_{i-1}}^\theta (z_{i-1}; p_{i-1}) - \mathcal{L}_{c_i}^\theta (z_i; p_i) + \frac{a_\theta}{2\chi c_i} \left(\|p_i\|^2 - \|p_{i-1}\|^2 \right)
\]
\[
+ \frac{\alpha \chi \theta}{4 \chi c_i} \left(\|\Delta p_{i-1}\|^2 - \|\Delta p_i\|^2 \right)
\]
\[
= \mathcal{L}_{c_{i-1}}^\theta (z_{i-1}; p_{i-1}) - \mathcal{L}_{c_\ell}^\theta (z_i; p_i) + \frac{a_\theta}{2\chi c_\ell} \left(\|p_i\|^2 - \|p_{i-1}\|^2 \right)
\]
\[
+ \frac{\alpha \chi \theta}{4 \chi c_\ell} \left(\|\Delta p_{i-1}\|^2 - \|\Delta p_i\|^2 \right)
\]
\[
= \Psi_{i-1}^\theta - \Psi_i^\theta,
\]
where the second identity is due to the definition of Ψ_i^θ in (28). The conclusion now follows by summing the above inequality from $i = j + 1$ to k.
\[\square\]

One of the goals of the following two subsections is to show that the potential Ψ_i^θ in (28) can be bounded by a constant that does not depend on c_i. A key step in this direction is given by Proposition 2.1 which states that the Lagrange multiplier p_i can also be bounded by a constant that does not depend on c_i. The goal of the next subsection is to prove this proposition.
3.3 Proof of Proposition 2.1

We start by presenting two well-known technical results. The proof of the first one can be found, for example, in [4, Lemma 1.2].

Lemma 3.6 For every $S \in \mathbb{R}^{m \times n}$ and $u \in \text{Im } S$, we have $\sigma_S^+ \|u\| \leq \|Su\|$.

The proof of the next result can be found in [13, Lemma 3.10].

Lemma 3.7 Suppose $\psi \in \text{Conv } \mathbb{R}^n$ is K_ψ-Lipschitz continuous with finite diameter D_ψ. Then, for every $y, \bar{y} \in \text{dom } h$ and $\xi \in \partial \psi(y)$, we have

$$
\|\xi\| \text{dist} \partial(\text{dom } \psi)(\bar{y}) \leq \left[\text{dist} \partial(\text{dom } \psi)(\bar{y}) + \|y - \bar{y}\|\right] K_\psi + \langle \xi, y - \bar{y} \rangle.
$$

The next two results closely follow the ones in [13, Section 3].

Lemma 3.8 Define the scalars

$$
\xi_k := \hat{v}_k - \nabla f(z_k) - A^* \hat{p}_k \quad \forall k \geq 1.
$$

Then, the following statements hold for every $k \geq 1$:

(a) $\xi_k \in \partial h(z_k)$;
(b) it holds that

$$
\|\hat{p}_k\| \leq \frac{1}{\sigma_A^+} \left[\|\xi_k\| + G_f + \frac{(1 + \sigma)D_h}{\lambda} \right],
$$

where G_f and D_h are as in (13) and assumption (A1), respectively.

Proof (a) This follows immediately from Lemma 3.2(d) and the definition of ξ_i.

(b) Using the definitions of ξ_i and G_f, the triangle inequality, part (a), and Lemma 3.6 with $S = A^*$ and $u = \hat{p}_k$ yields

$$
\|\hat{p}_k\| \leq \frac{\|A^* \hat{p}_k\|}{\sigma_A^+} = \frac{\|\hat{v}_k - \nabla f(z_k) - \xi_k\|}{\sigma_A^+} \leq \frac{\|\xi_k\| + \|\nabla f(z_k)\| + \|\hat{v}_k\|}{\sigma_A^+}
$$

$$
\leq \frac{1}{\sigma_A^+} \left[\|\xi_k\| + \|\nabla f(z_k)\| + \frac{(1 + \sigma)\|\Delta z_k\|}{\lambda} \right]
$$

$$
\leq \frac{1}{\sigma_A^+} \left[\|\xi_k\| + G_f + \frac{(1 + \sigma)D_h}{\lambda} \right].
$$

Lemma 3.9 Let (β_λ, \bar{d}) be as in (13). Then, the following statements hold for every $(\chi, \theta) \in (0, 1)^2$ and $k \geq 1$:

(a) $\|p_k\| \leq \chi \|\hat{p}_k\| + (1 - \chi)(1 - \theta)\|p_{k-1}\|$;
(b) $c_k^{-1}\|\hat{p}_k\|^2 + d \sigma_A^+ \|\hat{p}_k\| \leq c_k^{-1} (1 - \theta) \{\hat{p}_k, p_{k-1}\} + \beta_\lambda$.

Springer
Proof (a) Using the definitions of p_k and \hat{p}_k with the triangle inequality yields

$$\|p_k\| = \|\chi \hat{p}_k + (1 - \chi)(1 - \theta)p_{k-1}\| \leq \chi \|\hat{p}_k\| + (1 - \chi)(1 - \theta)\|p_{k-1}\|. $$

(b) Let ξ_k, (G_f, \bar{d}), and D_h be as in (34), (13), and assumption (A1), respectively. Using Lemma 3.8(a), the definition of \bar{d}, and Lemma 3.7 with $(\psi, K_{\psi}, D_{\psi}) = (h, K_h, D_h)$ and $(y, \bar{y}, \varepsilon) = (z_k, \bar{z}, \delta_k)$, we have that

$$\bar{d} \|\xi_k\| \leq (\bar{d} + D_h)K_h + \langle \xi_k, z_k - \bar{z} \rangle. $$

Moreover, the definitions of \hat{p}_k and ξ_k, the fact that $z_k, \bar{z} \in \mathcal{H}$ and $A\bar{z} = b$, and the Cauchy-Schwarz inequality imply that

$$\langle \xi_k, z_k - \bar{z} \rangle = \langle \hat{v}_k - \nabla f(z_k) - A^*\hat{p}_k, z_k - \bar{z} \rangle
\leq (\|\hat{v}_k\| + \|\nabla f(z_k)\|) \|z_k - \bar{z}\| - \langle \hat{p}_k, Az_k - b \rangle
\leq \left[\frac{(1 + \sigma)D_h}{\lambda} + G_f \right] D_h + \left(\frac{1 - \theta}{c_k} \right) \langle \hat{p}_k, p_{k-1} \rangle - \frac{1}{c_k} \|\hat{p}_k\|^2. $$

Using Lemma 3.8(b), (35), (36), and the definition of β_{λ} in (13), we thus conclude that

$$\frac{1}{c_k} \|\hat{p}_k\|^2 + \bar{d} \sigma_{\lambda} \|\hat{p}_k\| \leq \frac{1}{c_k} \|\hat{p}_k\|^2 + \bar{d} \|\xi_k\| + \left[G_f + \frac{(1 + \sigma)D_h}{\lambda} \right] \bar{d}
\leq \frac{1}{c_k} \|\hat{p}_k\|^2 + \langle \bar{d} + D_h \rangle K_h + \langle \xi_k, z_k - \bar{z} \rangle + \left[G_f + \frac{(1 + \sigma)D_h}{\lambda} \right] \bar{d}
\leq \left(\frac{1 - \theta}{c_k} \right) \langle \hat{p}_k, p_{k-1} \rangle + \left[K_h + G_f + \frac{(1 + \sigma)D_h}{\lambda} \right] (\bar{d} + D_h)
= \left(\frac{1 - \theta}{c_k} \right) \langle \hat{p}_k, p_{k-1} \rangle + \beta_{\lambda}. $$

We are now ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1 We proceed by induction on k. Since $B_p \geq \|p_0\|$, the desired bound trivially holds for $k = 0$. Assume now that $\|p_k\| \leq B_p$ holds for some $k \geq 0$. If $\|\hat{p}_{k+1}\| = 0$, then clearly

$$\|p_{k+1}\| \leq \chi \|\hat{p}_{k+1}\| + (1 - \chi)(1 - \theta)\|p_k\| = (1 - \chi)(1 - \theta)B_p \leq B_p, $$

\[Springer \]
so suppose that \(\| \hat{p}_{k+1} \| > 0 \). Using Lemma 3.9(b), the Cauchy-Schwarz inequality, and the induction hypothesis we have that

\[
\left[\tilde{d} + \frac{1}{c_{k+1} \sigma_A^+} \| \hat{p}_{k+1} \| \right] \| \hat{p}_{k+1} \| \leq \frac{1}{\sigma_A^+} \left[\left(\frac{1 - \theta}{c_{k+1}} \right) \langle \hat{p}_{k+1}, p_k \rangle + \beta_k \right]
\]

\[
\leq \frac{\beta_k}{\sigma_A^+} + \frac{(1 - \theta) \| p_k \| \cdot \| \hat{p}_{k+1} \|}{c_{k+1} \sigma_A^+} \leq \frac{\beta_k}{\sigma_A^+} + \frac{\| \hat{p}_{k+1} \| B_p}{c_{k+1} \sigma_A^+} \leq \left[\tilde{d} + \frac{1}{c_{k+1} \sigma_A^+} \| \hat{p}_{k+1} \| \right] B_p,
\]

and, hence, that \(\| \hat{p}_{k+1} \| \leq B_p \). Combining this bound with the induction hypothesis, we finally conclude that

\[
\| p_{k+1} \| \leq \chi \| \hat{p}_{k+1} \| + (1 - \chi)(1 - \theta) \| p_k \| \leq B_p.
\]

\(\Box \)

3.4 Proof of Proposition 2.2

Recall that Proposition 3.3 in Sect. 3.2 gives a bound on \(\sum_{i=j+1}^k \| \hat{v}_i \|^2 \) in (27). The first part of this subsection further refines (27) to show that its right-hand side is bounded by a constant that does not depend on the constant \(\tilde{c}_l \) in (26). The following result provides a key step in this direction.

Lemma 3.10 For every \(i \geq 1 \), it holds that

\[
\phi_* - \left(\frac{1 - \theta}{2 \chi c_1} \right) B_p^2 \leq \psi_i^\theta \leq \phi_* + \frac{D_h^2}{\lambda} + \left(\frac{1 + 2b_\theta}{2 \chi^2 c_1} \right) B_p^2,
\]

where \((\phi_*, \phi^*), b_\theta, \) and \(D_h \) are as in (13), (24), and assumption (A1), respectively.

Proof Let \(i \geq 1 \). Using Proposition 2.1, the definitions of \(\mathcal{L}_c^\theta(\cdot, \cdot), \psi_j^\theta, \phi_*, \) and \(B_p \), and the fact that \(\chi \in (0, 1) \), we have

\[
\psi_i^\theta \geq \mathcal{L}_c^\theta(z_i; p_i) - \frac{a_\theta}{2 \chi c_i} \| p_i \|^2 = \phi(z_i) + (1 - \theta) \langle p_i, A z_i - b \rangle
\]

\[
+ \frac{c_i}{2} \| A z_i - b \|^2 \geq \phi_* + \frac{1}{2} \left(\frac{1 - \theta}{\sqrt{c_i}} \right) p_i + \sqrt{c_i}(A z_i - b) \| p_i \|^2 - \frac{(1 - \theta)^2}{2 c_i} \| p_i \|^2 - \frac{a_\theta}{2 \chi c_i} \| p_i \|^2
\]

\[
\geq \phi_* - \left[\frac{(1 - \theta)^2 + a_\theta}{2 \chi c_i} \right] B_p^2 \geq \phi_* - \left(\frac{1 - \theta}{2 \chi c_1} \right) B_p^2,
\]
which is the desired lower bound in (37). For the upper bound, let an arbitrary \(u \in \mathcal{F} \) be given. Using the fact that \(Au = b \) and \(u \in \mathcal{H} \), the definitions of \(\mathcal{L}_c^\theta (\cdot, \cdot) \) and \(D_h \), Lemma 3.2(c), and the Cauchy–Schwarz inequality, we conclude that

\[
\begin{align*}
\lambda \mathcal{L}_c^\theta (z_i; p_{i-1}) & \leq \lambda \mathcal{L}_c^\theta (u; p_{i-1}) + \frac{1}{2} \| u - z_{i-1} \|^2 - \frac{1}{2} \| \Delta z_i \|^2 - \langle v_i, u - z_i \rangle \\
& \leq \lambda \phi (u) + \frac{1}{2} D_h^2 + \| v_i \| D_h \leq \lambda \phi (u) + \left(\frac{1}{2} + \sigma \right) D_h^2.
\end{align*}
\]

Taking the infimum of the above bound over \(u \in \mathcal{F} \) and using the fact that \(\sigma \in (0, 1/2] \), we thus have \(\mathcal{L}_c^\theta (z_i; p_{i-1}) \leq \phi^* + D_h^2/\lambda \). This inequality, (30), the fact that \(\chi \in (0, 1) \), Proposition 2.1, and the relation \((a + b)^2 \leq 2a^2 + 2b^2 \) for every \(a, b \in \mathbb{R} \), then imply that

\[
\begin{align*}
\lambda \| \hat{v}_i \|^2 & \leq \frac{9B_\Psi}{k - j},
\end{align*}
\]

where \(B_\Psi \) is as in (16).

The result below follows as a consequence of Proposition 3.3 and Lemma 3.10.

Lemma 3.11 For every \(\ell \geq 1 \) and \(j, k \in C_\ell \) such that \(j < k \), there exists \(i \in \{ j + 1, \ldots, k \} \) satisfying

\[
\lambda \| \hat{v}_i \|^2 \leq \frac{9B_\Psi}{k - j},
\]

where \(B_\Psi \) is as in (16).

Proof Using the first bound of (37) with \(i = k \) and the second bound of (37) with \(i = j \), we first have that

\[
\begin{align*}
\Psi_j^\theta - \Psi_k^\theta & \leq \phi^* - \phi_* + \frac{D_h^2}{\lambda} + \left(\frac{2b_\theta + \alpha \chi}{2\chi c_1} \right) B_p^2 = B_\Psi, \nonumber
\end{align*}
\]

where \(B_\Psi \) is as in (16). Using the above bound and Proposition 3.3, it follows that

\[
\begin{align*}
\lambda(k - j) \min_{j + 1 \leq i \leq k} \| \hat{v}_i \|^2 \leq \lambda \sum_{i = j}^k \| \hat{v}_i \|^2 \leq 9 \left(\Psi_j^\theta - \Psi_k^\theta \right) \leq 9B_\Psi,
\end{align*}
\]

which implies the existence of some \(i \in \{ j + 1, \ldots, k \} \) satisfying the bound on \(\| \hat{v}_i \| \) in (38). \(\square \)

We are now ready to give the proof of Proposition 2.2.
Proof. (a) This follows immediately from Lemma 3.2(b).

(b) The fact that the last index \(k\) of a cycle \(C_\ell\) satisfies \(\|\hat{v}_k\| \leq \rho\) follows immediately from steps 2–3 of AIDAL. Now, let \(\ell \geq 1\) be fixed and define \(j := \inf\{i : i \in C_\ell\}\) and \(k := j + T_\rho - 1\). If \(k \not\in C_\ell\) then \(|C_\ell| \leq k - j + 1 = T_\rho\). On the other hand, if \(k \in C_\ell\) then Lemma 3.11 and the definition of \(T_\rho\) in (16) imply that there exists \(i \in \{j + 1, \ldots, k\}\) such that

\[
\|\hat{v}_i\|^2 \leq \frac{9B\psi}{\lambda(T_\rho - 1)} \leq \rho^2.
\]

Since every cycle stops when \(\|\hat{v}_i\| \leq \rho\), we conclude that \(i = k = \sup\{i : i \in C_\ell\}\) and, hence, \(|C_\ell| = k - j + 1 = T_\rho\).

(c) Let \(\bar{c} = \tilde{c}\eta\). We first establish the bound on \(c_k\). If AIDAL stops in the first cycle, then the bound on \(c_k\) follows immediately. Assume now that there is more than one cycle and suppose, for the sake of contradiction, that there exists a cycle \(\ell \geq 2\) such that \(c_k > 2\bar{c}\) for every \(k \in C_\ell\), and let \(k'\) denote the last index in \(C_{\ell - 1}\). In view steps 3 of AIDAL, we then have \(c_k' > \bar{c}\). Using the previous bound, the definition of \(\bar{c} = \tilde{c}\eta\) in (16), Lemma 3.1(c), and Proposition 2.1, we also have

\[
\|Ax_k' - b\| = \|f_k'\| \leq \frac{\|p_k'\| + (1 - \theta)\|p_{k' - 1}\|}{\chi c_k'} \leq \frac{2B\rho}{\chi \bar{c}} \leq \frac{2B\rho}{\chi \bar{c}} \leq \eta.
\]

However, since \(\|\hat{v}_k'\| \leq \rho\) from part (b), this is impossible because termination would have occurred at the end of cycle \(\ell - 1\). Hence, \(c_k \leq \max\{c_1, 2\bar{c}\}\). Since \(c_k = 2\tilde{c} - 1^{\ell}c_1\) for every \(k \in C_{\ell}\), the bound on \(\tilde{c}\) is immediate. Moreover, it follows from parts (a)–(b) and the fact that \(\tilde{c}\) is finite that AIDAL always stops in step 2. Hence, using the termination condition in step 2 and the inclusion in Lemma 3.2(d), we conclude that the output of AIDAL is a \((\rho, \eta)\)-stationary point of (1). \(\square\)

4 Numerical experiments

This section examines the performance of the AIDAL method for solving problems of the form given in (1). It contains four subsections. The first three contain the following problem classes: (i) a class of linearly-constrained quadratic programming problems considered in [10]; (ii) the sparse principal component analysis (PCA) problem in [5]; and (iii) a class of linearly-constrained quadratic matrix problems considered in [11, 12]. The last subsection gives a few comments about the results.

Before proceeding with the results, we describe the implementation details of our algorithms and the setup of our experiments. These include specific parameter choices, special modifications, and added heuristics.

We first discuss the three implementation of the AIDAL method, labeled \(rADL0\), \(rADL1\), and \(tADL1\) considered in this section. Broadly speaking, \(tADL1\) is an implementation of the theoretical version of AIDAL in Algorithm 2.1, while \(rADL0\) and \(rADL1\) are implementations of an adaptive/relaxed version of AIDAL in Algorithm D.1. In particular, the adaptive version of AIDAL introduces a novel line search.
scheme for adaptively choosing the prox parameter λ in AIDAL (for further details, see the discussion in “Appendix D”). In terms of parameters, each AIDAL implementation uses $p_0 = 0$, $c_1 = \max\{1, M/\|A\|^2\}$, and $\sigma = 0.3$ for every outer iteration of the method. However, rADL0 chooses $(\chi, \theta, \lambda_0) = (1, 0, 10)$ with a heuristic choice of $\alpha_{\chi, \theta} = 0$ and $a_\theta = 1$ in the definition of Ψ_i^θ, while rADL1 and tADL1 choose $(\chi, \theta) = (1/6, 1/2)$ and $\lambda_0 = 10$ for rADL. Note that rADL0 uses parameters that do not satisfy (12), but work well in practice.

Besides the above AIDAL implementations, we also use four other methods as benchmarks. The first one, named iALM, is an implementation of the inexact proximal augmented Lagrangian method of [17] in which: (i) its key parameters are

$$\sigma = 5, \quad \beta_0 = \max\left\{1, \frac{\max\{m, M\}}{\|A\|^2}\right\},$$

$$w_0 = 1, \quad y^0 = 0, \quad \gamma_k = \frac{\log 2 \cdot \|Ax_k\|}{(k+1) [\log (k+2)]^2},$$

for every $k \geq 1$; and (ii) the starting point given to the kth APG call is set to be x^{k-1}, which is the prox center for the kth prox subproblem. The second one, named IPL, is an implementation of the inexact proximal augmented Lagrangian method of [12, Section 5] where: (i) c_k is doubled in its step 4 rather than quintupled; and (ii) $\sigma = 0.3$.

The third one, named QP, is a practical modification of the quadratic penalty method of [10] in which: (i) each ACG subproblem in step 1 of the AIPP method is stopped when the condition

$$\|u_j\| + 2\eta_j \leq \sigma \|x_0 - x_j + u_j\|^2$$

holds; and (ii) it uses the parameters $\sigma = 0.3$ and $c = \max\{1, M/\|A\|^2\}$.

The fourth and last one, named RQP, is an instance of the relaxed quadratic penalty method of [11] in which: (i) it uses the AIPPv1 variant described in [11, Section 6] with the parameters $(\theta, \tau) = (4, 10[\lambda_0 M + 1])$ and $\lambda_0 = 10$; and (ii) it uses the initial penalty parameter $c_1 = \max\{1, M/\|A\|^2\}$. It is also worth mentioning that every method except the iALM replaces its ACG prox subproblem solver by a more practical FISTA variant whose key iterates are as described in [23] and whose main steps parameter is adaptively estimated by a line search subroutine described in [8, Algorithm 5.2.1].

We now give some comments about the benchmark algorithms. First, iALM differs from the other tested methods in that it uses an ACG variant with a termination criterion that is different from the one in (45) and/or its relaxation. Second, the main difference between the AIDAL variants and IAIPAL methods is in how they decide when to double c_k, i.e., step 4 of Algorithm 2.1. In particular, the condition used in the IAIPAL method depends on both σ and k whereas the condition in the AIDAL variants do not. Finally, QP-AIPP is the only method that can be run without requiring any regularity conditions on the linear constraint and without assuming $D_h < \infty$. In Table 1, we summarize the adaptivity of the above methods in terms of the adaptivity of the curvature constants M and m in assumption (A2). In particular, we consider the adaptivity of m to be equivalent to the adaptivity of the prox stepsize λ.

\[\text{Springer} \]
An accelerated inexact dampened augmented Lagrangian

Table 1 The first (resp. second) row indicates whether a line search is used to estimate the curvature constant M (resp. m) in assumption (A2) for a prox subproblem

Properties	rADL0	rADL1	tADL1	iALM	IPL	QP	RQP
Estimates M	✓ ✓	✓	✓	❌	✓	✓	✓
Estimates m	✓ ✓	❌	❌	✓	❌	❌	✓

Note that estimation of m is equivalent to estimation of the prox stepsize λ.

For a linear operator A, a proper lower semicontinuous convex function h, a function f satisfying assumptions (A2)–(A4), a tolerance pair $(\rho, \eta) \in \mathbb{R}^2_+$, and an initial point $z_0 \in \text{dom} h$, each of the methods of this section seeks a pair $([\hat{z}, \hat{p}], [\hat{v}])$ satisfying

$$
\hat{v} \in \nabla f(\hat{z}) + \partial h(\hat{z}) + A^* \hat{p}, \quad \frac{\|\hat{v}\|}{\|\nabla f(z_0)\| + 1} \leq \rho, \quad \frac{\|Az_0 - b\|}{\|Az_0 - b\| + 1} \leq \eta. \quad (39)
$$

In particular, the quadratic programming and matrix problem experiments consider $(\rho, \eta) = (10^{-3}, 10^{-3})$, while the sparse PCA experiments consider $(\rho, \eta) = (10^{-4}, 10^{-4})$. Moreover, defining c_0 to be the initial penalty parameter and n_i to be the number of outer iterations with $c = c_0 2^i$, we also report the following metrics:

$$
c_{\text{wavg}} := \frac{\sum_{i \geq 0} n_i \cdot c_0 2^i}{\sum_{i \geq 0} n_i}, \quad c_{\text{max}} := \text{final penalty parameter } c.
$$

All experiments are implemented in MATLAB 2020b and are run on Linux 64-bit machines, each containing Xeon E5520 processors and at least 8 GB of memory. Furthermore, the bold numbers in each of the tables of this section indicate the method that performed the most efficiently for a given benchmark, e.g., runtime or (innermost) iteration count. Finally, it is worth mentioning that the code for replicating these experiments is freely available online.\(^2\)

4.1 Linearly-constrained quadratic programming

Given a pair of dimensions $(l, n) \in \mathbb{N}^2$, scalar pair $(\alpha_1, \alpha_2) \in \mathbb{R}^2_+$, matrices $A, B, C \in \mathbb{R}^{l \times n}$, positive diagonal matrix $D \in \mathbb{R}^{n \times n}$, and vector pair $(b, d) \in \mathbb{R}^l \times \mathbb{R}^l$, this subsection considers the following linearly-constrained quadratic programming (LCQP) problem:

$$\min \quad \frac{\alpha_1}{2} \|Cz - d\|^2 - \frac{\alpha_2}{2} \|DBz\|^2$$

s.t. $Az = b$, $z \in \Delta_n$,

where $\Delta_n = \{z \in \mathbb{R}^n_+ : \sum_{i=1}^n z_i = 1\}$ denotes the n-dimensional simplex.

We now describe the experiment parameters for the instances considered. First, the dimensions are set to $(l, n) = (10, 50)$ and all of the entries in $A, B,$ and C are nonzero.

\(^2\) See https://github.com/wwkong/nc_opt/tree/master/tests/papers/aidal.
Second, the entries of A, B, C, b, and d (resp., D) are generated by sampling from the uniform distribution $\mathcal{U}[0, 1]$ (resp., $\mathcal{U}[1, 1000]$). Third, the initial starting point z_0 is generated by sampling a random vector \tilde{z}_0 from $\mathcal{U}^2[0, 1]$ and setting $z_0 = \tilde{z}_0/\|\tilde{z}_0\|$.

Fourth, using the well-known fact that $\|z\| \leq 1$ for every $z \in \Delta_n$, the auxiliary parameters for the iALM are $B_i = \|a_i\|$, $L_i = 0$, and $\rho_i = 0$, for every i, where a_i is the ith row of A. Finally, the composite form of the problem is

$$f(z) = \frac{\alpha_1}{2} \|Cz - d\|^2 - \frac{\alpha_2}{2} \|DBz\|^2, \quad h(z) = \delta_{\Delta_n}(z),$$

and each problem instance uses a scalar pair $(\alpha_1, \alpha_2) \in \mathbb{R}^2_{++}$ so that $M = \lambda_{\text{max}}(\nabla^2 f)$ is a particular value given in the table below and $m = -M/3$.

We now present the numerical results for this set of problem instances in Tables 2 and 3.

It is worth mentioning that we also attempted to add the sProxALM method of [30, 31] to our list of benchmark methods with its penalty parameter set to $\Gamma = 10$ and all other parameters set as in [30, Algorithm 2]. However, for every problem instance, sProxALM failed to obtain a solution as in (39) under a generous time limit of 3600 s, so we have excluded its addition to the results above. Note that we did not test sProxALM on the other numerical experiments because their settings did not fall into settings considered by [30, 31] (i.e., where the composite function h needs to be the indicator function for a polyhedral set). Also, contrary to our AIDAL implementations, [30, 31] does not provide a concrete way of choosing the parameters (adaptively or otherwise) of sProxALM to ensure its convergence.

4.2 Sparse PCA

Given integer k, positive scalar pair $(\nu, b) \in \mathbb{R}_+^2$, and matrix $\Sigma \in \mathbb{S}^n_+$, this subsection considers the following sparse principal component analysis (SPCA) problem:

$$\min_{\Pi, \Phi} \langle \Sigma, \Pi \rangle_F + \sum_{i,j=1}^n q_{\nu}(\Phi_{ij}) + \nu \sum_{i,j=1}^n |\Phi_{ij}|$$

$$\text{s.t. } \Pi - \Phi = 0, \quad (\Pi, \Phi) \in \mathcal{F}^k \times \mathbb{R}^{n \times n},$$

where $\mathcal{F}^k = \{z \in S^n_+ : 0 \leq z \leq I, \text{tr}M = k\}$ denotes the k–Fantope and $q_{\nu}(\cdot) + \nu|\cdot|$ is the minimax concave penalty (MCP) function given by

$$q_{\nu}(t) := \begin{cases}
-t^2/(2b), & \text{if } |t| \leq b\nu, \\
bv^2/2 - \nu|t|, & \text{if } |t| > b\nu,
\end{cases} \forall t \in \mathbb{R}.$$

Note that the effective domain of this problem is unbounded, and hence, only the QP method is guaranteed to converge to an approximate stationary point in general.

We now describe the experiment parameters for the instances considered. First, the scalar parameters are chosen to be $(\nu, b) = (100, 0.005)$. Second, the matrix
M	10^2	10^3	10^4	10^5	10^6									
	rADL0	rADL1	tADL1	iALM	IPL	QP	RQP							
	958	1196	6910	11,498	26,256	20,473	2455	2.0	2.5	14.0	13.8	53.4	37.9	4.6
	2538	2807	7307	12,669	25,846	20,354	2261	5.2	5.7	15.8	17.1	53.9	38.2	4.2
	856	2624	7307	12,729	25,846	20,497	2710	1.7	5.4	15.2	15.8	53.0	38.4	5.0
	908	2649	7322	12,743	25,846	20,311	4571	1.8	5.3	14.7	15.0	52.6	38.5	8.8
	1045	2514	7322	12,744	25,846	20,313	7889	2.1	5.2	15.2	15.8	60.0	39.9	14.8
Table 3 Penalty parameter statistics for LCQP problems

M	c_{max}	rADL0	rADL1	tADL1	iALM	IPL	QP	RQP	$c_{\text{avg}}/c_{\text{max}}$	rADL0	rADL1	tADL1	iALM	IPL	QP	RQP
10^2	6E+1	2E+3	2E+3	3E+3	3E+5	4E+3	4E+3	0.10	0.15	0.02	0.02	0.75	0.20	0.08		
10^3	2E+3	4E+4	4E+4	3E+4	3E+6	4E+4	4E+4	0.12	0.14	0.01	0.02	0.75	0.19	0.10		
10^4	2E+4	4E+5	4E+5	3E+5	3E+7	4E+5	4E+5	0.18	0.13	0.01	0.02	0.75	0.20	0.13		
10^5	2E+5	4E+6	4E+6	3E+6	3E+8	4E+6	4E+6	0.18	0.13	0.01	0.02	0.75	0.19	0.14		
10^6	2E+6	4E+7	4E+7	3E+7	3E+9	4E+7	4E+7	0.18	0.13	0.01	0.02	0.75	0.19	0.15		
An accelerated inexact dampened augmented Lagrangian

Table 4 Innermost iteration counts and runtimes for SPCA problems

s	Iteration count	r_{ADL0}	iALM	IPL	QP	RQP	Runtime (s)	r_{ADL0}	iALM	IPL	QP	RQP
5	394	44,952	2779	22,559	2990	3.0	139.2	17.0	118.1	16.6		
10	403	47,373	2646	19,984	2983	2.7	143.1	14.8	103.8	15.8		
15	398	45,552	2628	20,126	2996	2.4	138.2	15.1	103.8	16.6		

Table 5 Penalty parameter statistics for SPCA problems

s	c_{max}	r_{ADL0}	iALM	IPL	QP	RQP	c_{avg}	r_{ADL0}	iALM	IPL	QP	RQP
5	6E+3	4E+6	3E+5	4E+6	2E+6	0.57	0.03	0.33	0.04	0.09		
10	6E+3	4E+6	3E+5	4E+6	2E+6	0.57	0.03	0.28	0.03	0.09		
15	6E+3	4E+6	3E+5	4E+6	2E+6	0.57	0.03	0.35	0.03	0.09		

Σ is generated according to an eigenvalue decomposition $\Sigma = P \Lambda P^T$, based on a parameter pair (s, k), where k is as in the problem description and s is a positive integer. In particular, we choose $\Lambda = (100, 1, \ldots, 1)$, the first column of P to be a sparse vector whose first s entries are $1/\sqrt{s}$, and the other entries of P to be sampled randomly from the standard Gaussian distribution. Third, the initial starting point is $(\Pi_0, \Phi_0) = (D_k, 0)$ where D_k is a diagonal matrix whose first k entries are 1 and whose remaining entries are 0. Fourth, the curvature parameters for each problem instance are $m = M = 1/b$ and k is fixed at $k = 1$. Fifth, for the iALM, we make the following parameter choices based on a relaxed (but unverified) assumption that its generated iterates lie in $F_k \times F_k$: $B_i = 1$, $L_i = 0$, and $\rho_i = 0$ for all i. Sixth, the composite form of the problem is

$$f(\Pi, \Phi) = (\Sigma, \Pi)_F + \sum_{i,j=1}^{n} q_{ij}(\Phi_{ij}), \quad h(\Pi, \Phi) = \delta_{F_k}(\Pi) + v \sum_{i,j=1}^{n} |\Phi_{ij}|,$$

$$A(\Pi, \Phi) = \Pi - \Phi, \quad b = 0,$$

and each problem instance considers a different value of s.

We now present the numerical results for this set of problem instances in Tables 4 and 5.
4.3 Linearly-constrained quadratic matrix problem

Given a pair of dimensions \((l, n) \in \mathbb{N}^2\), scalar pair \((\alpha_1, \alpha_2) \in \mathbb{R}_{++}^2\), linear operators \(A : S_n^+ \mapsto \mathbb{R}^l\), \(B : S_n^+ \mapsto \mathbb{R}^n\), and \(C : S_n^+ \mapsto \mathbb{R}^l\) defined by

\[
[A(z)]_i = \langle A_i, z \rangle, \quad [B(z)]_j = \langle B_j, z \rangle, \quad [C(z)]_i = \langle C_i, z \rangle,
\]

for matrices \(\{A_i\}_{i=1}^n, \{B_j\}_{j=1}^n, \{C_i\}_{i=1}^n \subseteq \mathbb{R}^{n \times n}\), positive diagonal matrix \(D \in \mathbb{R}^{n \times n}\), and vector pair \((b, d) \in \mathbb{R}^l \times \mathbb{R}^l\), this subsection considers the following linearly-constrained quadratic matrix (LCQM) problem:

\[
\min_z \frac{\alpha_1}{2} \| C(z) - d \|^2 - \frac{\alpha_2}{2} \| DB(z) \|^2
\]

s.t. \(A(z) = b, \quad z \in P_n,\)

where \(P_n = \{ z \in S_n^+ : \text{tr} z = 1 \}\) denotes the \(n\)-dimensional spectraplex.

We now describe the experiment parameters for the instances considered. First, the dimensions are set to \((l, n) = (20, 100)\) and only 1.0\% of the entries of the submatrices \(A_i, B_j, C_i\) are nonzero. Second, the entries of \(A_i, B_j, C_i, b,\) and \(d\) (resp., \(D\)) are generated by sampling from the uniform distribution \(U[0, 1]\) (resp., \(U[1, 1000]\)). Third, the initial starting point \(z_0\) is a random point in \(S_n^+\). More specifically, three unit vectors \(v_1, v_2, v_3 \in \mathbb{R}^n\) and three scalars \(e_1, e_2, e_3 \in \mathbb{R}_+\) are first generated by sampling vectors \(\tilde{v}_i \sim U^n[0, 1]\) and scalars \(\tilde{d}_i \sim U[0, 1]\) and setting \(v_i = \tilde{v}_i / \| \tilde{v}_i \|\) and \(e_i = \tilde{d}_i / (\sum_{i=1}^3 \tilde{d}_i)\) for \(i = 1, 2, 3\). The initial iterate for the first subproblem is then set to \(z_0 = \sum_{i=1}^3 e_i v_i v_i^T\). Fourth, using the well-known fact that \(\| z \|_F \leq 1\) for every \(z \in P_n\), the auxiliary parameters for the iALM are

\[
B_i = \| A_i \|_F, \quad L_i = 0, \quad \rho_i = 0 \quad \forall i \geq 1.
\]

Finally, the composite form of the problem is

\[
f(z) = \frac{\alpha_1}{2} \| C(z) - d \|^2 - \frac{\alpha_2}{2} \| DB(z) \|^2, \quad h(z) = \delta_{P_n}(z), \quad A(z) = A(z),
\]

and each problem instance uses a scalar pair \((\alpha_1, \alpha_2) \in \mathbb{R}_{++}^2\) so that \(M = \lambda_{\max}(\nabla^2 f)\) is a particular value given in the table below and \(m = -M/4\).

We now present the numerical results for this set of problem instances in Tables 6 and 7.

4.4 Comments about numerical experiments

Algorithm rADL0 is generally the most efficient in terms of total inner (or ACG) iterations, runtime, and final penalty parameter used. Moreover, the experiments in Sect. 4.1 demonstrate that the adaptivity of \(m\) (or equivalently \(\lambda\)) substantially improves AIDAL in terms of both inner (or ACG) iteration count and runtime. Finally, while
An accelerated inexact dampened augmented Lagrangian

Table 6 Innermost iteration counts and runtimes for LCQM problems

M	Iteration count	Runtime (s)								
	rADL0	iALM	IPL	QP	RQP	rADL0	iALM	IPL	QP	RQP
100	388	66,000	6863	37,470	8293	4.4	323.3	68.7	344.6	85.6
200	486	70,551	6902	37,696	1475	5.6	334.9	66.9	335.4	13.4
400	674	72,760	6902	37,972	1562	7.6	347.5	67.9	339.0	14.2
1600	1090	74,200	6921	38,203	1309	12.6	361.4	68.9	346.3	12.1
3200	1400	74,568	6921	38,243	1327	16.0	369.8	74.1	352.3	12.1

Table 7 Penalty parameter statistics for LCQM problems

M	c_{\text{max}}	c_{\text{wavg}}	c_{\text{wavg}}/c_{\text{max}}	rADL0	iALM	IPL	QP	RQP	rADL0	iALM	IPL	QP	RQP
100	4E+1	2E+3	6E+2	1E+3	1E+3	0.27	0.08	0.96	0.30	0.01			
200	8E+1	3E+3	1E+3	3E+3	3E+3	0.29	0.08	0.97	0.30	0.08			
400	2E+2	6E+3	3E+3	5E+3	5E+3	0.33	0.08	0.97	0.31	0.11			
1600	6E+2	2E+4	1E+4	2E+4	2E+4	0.39	0.08	0.97	0.31	0.12			
3200	1E+3	5E+4	2E+4	4E+4	4E+4	0.39	0.08	0.97	0.31	0.13			

the penalty ratio $c_{\text{wavg}}/c_{\text{max}}$ is generally the lowest for iALM, the performance for iALM in terms of the number of innermost iterations and runtime is generally the worst among the tested methods.

5 Concluding remarks

Similar to the analyses in [17, 19], the analysis of the AIDAL method strongly makes use of assumption (A3) and the assumption that $D_{h} < \infty$ to obtain its competitive $O(\varepsilon^{-5/2} \log \varepsilon^{-1})$ iteration complexity when $\varepsilon = \rho = \eta$. However, we conjecture that these two assumptions may be removed using the more complicated analysis in [22] to obtain a slightly worse $O(\varepsilon^{-3} \log \varepsilon^{-1})$ iteration complexity (like in [22]).

Like the adaptive prox-stepsize AIDAL in “Appendix D”, another possible extension of AIDAL is one in which λ, χ, and θ are simultaneously chosen in an adaptive manner. Moreover, it would be interesting to develop such an adaptive AIDAL and show that it has the same iteration complexity bound as the nonadaptive AIDAL in Algorithm 2.1.

Data Availability The data and code generated, used, and/or analyzed during the current study are publicly available in the NC-OPT GitHub repository (See https://github.com/wwkong/nc_opt.) under the directory .//tests/papers/aidal/.

Declaration

Conflict of interest The authors declare that they have no conflict of interest.
A Key technical bounds

The appendix presents a key technical bound that is used in the analysis of AIDAL.

Lemma A.1 For every \((\tau, \theta) \in [0, 1]^2\) satisfying \(\tau \leq \theta^2\) and every \(a, b \in \mathbb{R}^n\), we have that

\[
\|a - (1 - \theta)b\|^2 - \tau \|a\|^2 \geq \left(\frac{1 - \tau}{2} - (1 - \theta)^2\right) \left(\|a\|^2 - \|b\|^2\right).
\] (40)

Proof Let \(a, b \in \mathbb{R}^n\) be fixed and define

\[
z = \left[\frac{\|a\|}{\|b\|}\right], \quad M = \begin{bmatrix}
(1 - \tau) + (1 - \theta)^2 & -2(1 - \theta) \\
-2(1 - \theta) & (1 - \tau) + (1 - \theta)^2
\end{bmatrix}.
\] (41)

Moreover, using our assumption of \(\tau \leq \theta^2 \leq 1\), observe that

\[
det M = \left[(1 - \tau) + (1 - \theta)^2 - 2(1 - \theta)\right] \left[(1 - \tau) + (1 - \theta)^2 + 2(1 - \theta)\right]
\]

\[
= \left[\theta^2 - \tau\right] \left[(1 - \tau) + (1 - \theta)^2 + 2(1 - \theta)\right] \geq 0,
\]

and hence, by Sylvester’s criterion, it follows that \(M \succeq 0\). Combining this fact with the Cauchy–Schwarz inequality and (41), we thus have that

\[
\|a - (1 - \theta)b\|^2 - \tau \|a\|^2 \geq \left(\frac{1 - \tau}{2} - (1 - \theta)^2\right) \left(\|a\|^2 - \|b\|^2\right)
\]

\[
= \frac{1}{2} z^T M z + \left(\frac{1 - \tau}{2} - (1 - \theta)^2\right) \left(\|a\|^2 - \|b\|^2\right)
\]

\[
\geq \left(\frac{1 - \tau}{2} - (1 - \theta)^2\right) \left(\|a\|^2 - \|b\|^2\right).
\]

\(\square\)

B Statement and analysis of the ACG algorithm

Recall from Sect. 1 that our interest is in solving (1) by inexactly solving NCO subproblems of the form in (3). This subsection presents an ACG algorithm for inexactly solving latter type of problem and it considers the more general class of NCO problems

\[
\min_{u \in \mathbb{R}^n} \{\psi(u) := \psi_s(u) + \psi_n(u)\},
\] (42)

where the functions \(\psi_s\) and \(\psi_n\) are assumed to satisfy the following assumptions:

\begin{enumerate}
\item[(B1)] \(\psi_n : \mathbb{R}^n \mapsto (-\infty, \infty]\) is a proper closed convex function.
\item[(B2)] \(\psi_s\) is \(\mu\)-strongly convex and continuously differentiable on \(\mathbb{R}^n\) and satisfies
\[
\|\nabla \psi_s(z) - \nabla \psi_s(z')\| \leq L \|z - z'\|
\] (43)
\end{enumerate}
for every $z', z \in \mathbb{R}^n$ and some $L > 0$ and $\mu \in (0, L)$. Clearly, problem (3) is a special case of (42), and hence, any result that is stated in the context of (42) also applies to (3). It is also well-known that assumption (B2) implies

$$\frac{\mu}{2} \|z' - z\|^2 \leq \psi_s(z') - \ell \psi_s(z'; z) \leq \frac{L}{2} \|z' - z\|^2,$$

for every $z, z' \in \mathbb{R}^n$.

The pseudocode for the ACG algorithm is stated in Algorithm B.1 which, for a given a pair $(\sigma, x_0) \in \mathbb{R}^+ \times \text{dom} \psi_n$, inexactly solves (42) by obtaining a pair (z, v) satisfying

$$v \in \nabla \psi_s(z) + \partial \psi_n(z), \quad \|v\| \leq \sigma \|z - x_0\|.$$

(45)

Note that if ACG algorithm obtains the aforementioned triple with $\sigma = 0$ then the first component of the triple is, in fact, a global solution of (42). Indeed, if $\sigma = 0$ then the above inequality implies that $v = 0$, and the above inclusion reduces to $0 \in \partial (\psi_s + \psi_n)(z)$, which in view of (7) clearly implies that z is a global solution of (42).

Algorithm B.1: Accelerated Composite Gradient (ACG) Algorithm

Input : $(\sigma, x_0) \in \mathbb{R}^+ \times \text{dom} \psi_n$.
Output : a pair $(z, v) \in \text{dom} \psi_n \times \mathbb{R}^n$ satisfying (45).

1 Function $\text{ACG} (\{\psi_s, \psi_n\}, \{L, \mu\}, \sigma, x_0) :$

2 \hspace{1cm} \text{STEP 0 (initialization)}:
3 \hspace{1cm} \text{Set } y_0 \leftarrow x_0, A_0 \leftarrow 0.
4 \hspace{1cm} \text{for } j \leftarrow 0, 1, \ldots \text{ do}
5 \hspace{1cm} \text{STEP 1 (main iterates)}:
6 \hspace{1.5cm} \text{find the positive scalar } a_j \text{ satisfying } a_j^2 = \frac{(1 + \mu A_j)(a_j - a_j)}{L}.
7 \hspace{1.5cm} A_{j+1} \leftarrow A_j + a_j
8 \hspace{1.5cm} \tilde{x}_j \leftarrow \frac{A_j}{A_{j+1}} x_j + \frac{A_{j+1} - A_j}{A_{j+1}} y_j
9 \hspace{1.5cm} x_{j+1} \leftarrow \argmin_{y \in \mathbb{R}^n} \left\{ \ell \psi_s(y, \tilde{x}_j) + \psi_n(y) + \frac{L + \mu}{2} \|y - \tilde{x}_j\|^2 \right\}
10 \hspace{1.5cm} y_{j+1} \leftarrow y_j + \frac{a_j}{1 + \mu A_{j+1}} [L(x_{j+1} - \tilde{x}_j) + \mu (x_{j+1} - y_j)]
11 \hspace{1cm} \text{STEP 2 (termination check)}:
12 \hspace{1.5cm} u_{j+1} \leftarrow \nabla \psi_s(x_{j+1}) - \nabla \psi_s(\tilde{x}_j) + (L + \mu)(\tilde{x}_j - x_{j+1})
13 \hspace{1.5cm} \text{if } \|u_{j+1}\| \leq \sigma \|x_{j+1} - x_0\| \text{ then}
14 \hspace{1.5cm} \text{return } (z, v)$
15 \hspace{1cm} \text{return } (z, v)$

We now devote the remainder of the section to proving the following properties about the ACG algorithm. Variations of the arguments that follow can also be found in [9, 28].

Proposition B.1 The following properties hold about the ACG algorithm:
(a) for every \(j \geq 0 \), it holds that
\[
\nabla \psi_s(x_{j+1}) + \partial \psi_n(x_{j+1}) = \partial (\psi_s + \psi_n)(x_{j+1});
\]

(b) it stops in a number of iterations bounded above by
\[
\left\lfloor \frac{1 + \sqrt{\mu/(2 \sqrt{L})}}{2^j} \frac{2^j}{L} \right\rfloor,
\]
and its output \((z, v)\) satisfies (45).

We first present some technical properties about the generated iterates of Algorithm B.1.

Lemma B.2 Define the quantities
\[
\tau_j := 1 + \mu A_j,
\]
\[
\tilde{q}_j(x_{j+1}) := \ell \psi_s(\cdot; \tilde{x}_j) + \psi_n(\cdot) + \mu/2 \| \cdot - \tilde{x}_j \|^2,
\]
\[
q_j(x_{j+1}) := \tilde{q}_j(x_{j+1}) + L(\tilde{x}_j - x_{j+1}, \cdot - x_{j+1}) + \mu/2 \| \cdot - x_{j+1} \|^2,
\]
for every \(j \geq 0 \). Then, for every \(j \geq 1 \), the following statements hold:

(a) \(A_{j+1} \geq \left[1 + \sqrt{\mu/(2 \sqrt{L})} \right] 2^j / L \);

(b) \(x_{j+1} = \arg\min_x \{ q_{j+1}(x) + L\|x - \tilde{x}_j\|^2/2 \} \);

(c) \(y_{j+1} = \arg\min_y \{ a_j q_{j+1}(y) + \tau_j \|y - y_j\|^2/2 \} \);

(d) \(q_{j+1}(\cdot) \leq \psi(\cdot) \).

Proof

(a) See, for example, [23, Lemma 4].

(b) Since \(\nabla q_{j+1}(x_{j+1}) = L(\tilde{x}_j - x_{j+1}) \), it follows that \(x_{j+1} \) satisfies the optimality condition of the given minimization problem. Hence, the desired identity follows.

(c) It follows from the definition of \(\tilde{q}_{j+1}(\cdot) \) and the update rule of \(y_{j+1} \) that \(a_j \nabla q_{j+1}(y_{j+1}) = \tau_{j+1}(y_{j+1} - y_j) \). The conclusion now follows from the optimality condition for the desired identity.

(d) In view of (44) and the definition of \(\tilde{q}_{j+1} \), we first have that \(\tilde{q}_{j+1}(\cdot) \leq \psi(\cdot) \).

On the other hand, it follows from the optimality condition of \(\tilde{x}_{j+1} \) in Algorithm B.1, the convexity of \(\psi_n \), and the definition of \(q_j(\cdot) \) that \(L(\tilde{x}_j - x_{j+1}) \in \partial \tilde{q}_{j+1}(x_{j+1}) \).

Furthermore, since \(\tilde{q}_{j+1} \) is \(\mu \)-strongly convex, we also have \(L(\tilde{x}_j - x_{j+1}) \in \partial (\tilde{q}_{j+1} - \mu \| \cdot - x_{j+1} \|^2/2)(x_{j+1}) \). Combining all these facts with the definition of the subdifferential, we thus conclude that
\[
\psi(\cdot) \geq \tilde{q}_{j+1}(\cdot) \geq \tilde{q}_{j+1}(x_{j+1}) + L(\tilde{x}_j - x_{j+1}, \cdot - x_{j+1}) + \mu / 2 \| \cdot - x_{j+1} \|^2 = q_{j+1}(\cdot).
\]

\(\square \)

The next result establishes an important technical bound.
Lemma B.3 For every $j \geq 0$ and $y \in \mathbb{R}^n$, it holds that

$$A_j q_{j+1}(x_j) + a_j q_{j+1}(y) + \frac{\tau_j}{2} \|y_j - y\|^2 - \frac{\tau_{j+1}}{2} \|y_{j+1} - y\|^2 \geq A_{j+1} \left[\psi(x_{j+1}) + \frac{\mu}{2} \|x_{j+1} - \tilde{x}_j\|^2 \right],$$

(50)

where τ_j and $q_j(\cdot)$ are as in (47) and (49), respectively.

Proof Using the update rule for A_{j+1} we first note that $\tau_{j+1} = \tau_j + \mu a_j$. Combining this fact, the optimality condition in Lemma B.2(c) and the fact that $a_j q_{j+1}(\cdot) + \tau_j \|\cdot - y_j\|^2/2$ is τ_{j+1}-strongly convex, we then have that

$$a_j q_{j+1}(y) + \frac{\tau_j}{2} \|y - y_j\|^2 - \frac{\tau_{j+1}}{2} \|y - y_{j+1}\|^2 \geq a_j q_{j+1}(y_{j+1}) + \frac{\tau_j}{2} \|y_{j+1} - y_j\|^2$$

(51)

for every $y \in \mathbb{R}^n$. On the other hand, using the convexity of $q_{j+1}(\cdot)$, the second bound in (44), Lemma B.2(b), and the quadratic subproblem associated with a_j, we have

$$A_j q_{j+1}(x_j) + a_j q_{j+1}(y_{j+1}) + \frac{\tau_j}{2} \|y_{j+1} - y_j\|^2$$

$$\geq A_{j+1} q_{j+1} \left(\frac{A_j x_j + a_j y_{j+1}}{A_{j+1}} \right) + \frac{\tau_j A_{j+1}^2}{2a_j^2} \left\| A_j x_j + a_j y_{j+1} - A_{j+1} \right\|^2$$

$$\geq A_{j+1} \min_{x \in \mathbb{R}^n} \left\{ q_{j+1}(x) + \frac{\tau_j A_{j+1}^2}{2a_j^2} \|x - \tilde{x}_j\|^2 \right\} = A_{j+1} \min_{x \in \mathbb{R}^n} \left\{ q_{j+1}(x) + \frac{L}{2} \|x - \tilde{x}_j\|^2 \right\}$$

$$= A_{j+1} \left[q_{j+1}(x_{j+1}) + \frac{L}{2} \|x_{j+1} - \tilde{x}_j\|^2 \right] \geq A_{j+1} \left[\psi(x_{j+1}) + \frac{\mu}{2} \|x_{j+1} - \tilde{x}_j\|^2 \right].$$

(52)

The conclusion follows from combining (51) and (52).

We now derive a general telescopic bound on the quantity $\|x_{j+1} - \tilde{x}_j\|^2$.

Lemma B.4 For every $j \geq 0$ and $x \in \mathbb{R}^n$, it holds that

$$\frac{\mu A_{j+1}}{2} \|x_{j+1} - \tilde{x}_j\|^2 \leq \eta_j(x) - \eta_{j+1}(x),$$

(53)

where the potential $\eta_i(\cdot)$ is given by

$$\eta_i(\cdot) := A_i [\psi(x_i) - \psi(\cdot)] + \frac{\tau_i}{2} \|\cdot - y_i\|^2 \quad \forall i \geq 0.$$
Proof Subtracting $A_{j+1}^+\psi(y)$ from (50) and using Lemma B.2(d), we have that

\[
\frac{A_{j+1}}{2}\|x_{j+1} - \tilde{x}_j\|^2 + A_{j+1}^+ \left[\psi(x_{j+1}) - \psi(y) \right]
\leq A_j q_{j+1}(x_j) + a_j q_{j+1}(y) - A_{j+1}^+ \psi(y) + \frac{\tau_j}{2} \|y_j - y\|^2 - \frac{\tau_{j+1}}{2} \|y_{j+1} - y\|^2
\]

\[
\leq A_j \psi(x_j) + a_j \psi(y) - A_{j+1}^+ \psi(y) + \frac{\tau_j}{2} \|y_j - y\|^2 - \frac{\tau_{j+1}}{2} \|y_{j+1} - y\|^2.
\]

The conclusion follows by re-arranging the above bound and using the update rule for A_{j+1} and the definition of $\eta_i(\cdot)$.

Specializing the above result, we establish a bound for the residuals \(\{u_{j+1}\}_{j \geq 0}\) in terms of the prox residual $\|x_{j+1} - x_0\|^2$.

Lemma B.5 For every $j \geq 0$, it holds that

\[
\|u_{j+1}\|^2 \leq \frac{4(L + \mu)^2}{\mu A_{j+1}} \|x_{j+1} - x_0\|^2.
\] (55)

Proof Using assumption (B2), the definition of u_{j+1}, the bound $(a + b)^2 \leq 2a^2 + 2b^2$ for $a, b \in \mathbb{R}$, (53) at $x = x_j$, and the fact that $(A_0, \tau_0) = (0, 1)$, we have that

\[
\frac{\mu A_{j+1} \|u_{j+1}\|^2}{2} \leq \mu \sum_{i=0}^j A_{i+1} \|u_{i+1}\|^2 \leq \mu \sum_{i=0}^j A_{i+1} \|\nabla \psi_s(x_{i+1}) - \nabla \psi_s(\tilde{x}_i) + (L + \mu)(\tilde{x}_i - x_{i+1})\|^2
\]

\[
= \mu \sum_{i=0}^j A_{i+1} \left[\|\nabla \psi_s(x_{i+1}) - \nabla \psi_s(\tilde{x}_i)\|^2 + (L + \mu)^2 \|\tilde{x}_i - x_{i+1}\|^2 \right]
\]

\[
\leq \mu \sum_{i=0}^j A_{i+1} \left[\|\nabla \psi_s(x_{i+1}) - \nabla \psi_s(\tilde{x}_i)\|^2 + (L + \mu)^2 \|\tilde{x}_i - x_{i+1}\|^2 \right]
\]

\[
\leq 2\mu (L + \mu)^2 \sum_{i=0}^j A_{i+1} \|\tilde{x}_i - x_{i+1}\|^2 \leq 4(L + \mu)^2 \left[\eta_0(x_{j+1}) - \eta_{k+1}(x_{j+1}) \right]
\]

\[
\equiv (A_0, \tau_0) = (0, 1)
\]

\[
\leq 2(L + \mu)^2 \|x_0 - x_{j+1}\|^2.
\]

We are now ready to prove Proposition B.1.
Proof of Proposition B.1 (a) Using the optimality of x_{j+1} the definition of u_{j+1} in Algorithm B.1, we have that

$$0 \in \nabla \psi_s(\tilde{x}_j) + \partial \psi_n(x_{j+1}) + (L + \mu)(x_{j+1} - \tilde{x}_j)$$

$$= -u_{j+1} + \nabla \psi_s(x_{j+1}) + \partial \psi_n(x_{j+1})$$

where the last identity follows from the fact that ψ_s and ψ_n are convex (see (B1)–(B2)).

(b) Let J denote the quantity in (46). Using Lemma B.2(a) and the bound $\log(1 + t) \geq t/2$ for $t \in [0, 1]$, it is straightforward to verify that

$$\frac{4(L + \mu)^2}{\mu A_{J+1}} \leq \sigma^2.$$

Consequently, it follows from the above bound, part (a), and the termination condition of Algorithm B.1 that the ACG algorithm stops in a number of iterations bounded above by J.

\[\square\]

C Necessary optimality conditions

This appendix shows that if \hat{z} local minimum of (1) then condition (11) holds. Throughout this appendix, we denote

$$\psi'(x; d) = \lim_{t \downarrow 0} \frac{\psi(x + td) - \psi(x)}{t}$$

as the directional derivative of a function ψ at x in the direction d.

The first useful result presents a relationship between directional derivatives of composite functions and the usual first-order necessary conditions.

Lemma C.1 Let $g : \mathbb{R}^n \mapsto (-\infty, \infty]$ be a proper convex function, and let f be a differentiable function on $\text{dom} g$. Then, for every $x \in \text{dom} g$, the following statements hold:

(a) $\inf_{\|d\| \leq 1} (f + g)'(x; d) = -\inf_{u \in \mathbb{R}^n} \{ \|u\| : u \in \nabla f(x) + \partial g(x) \}$;

(b) if x is a local minimum of $f + h$ then $0 \in \nabla f(x) + \partial h(x)$.

Proof (a) See [14, Lemma 15] with $(\mathcal{X}, h) = (\mathbb{R}^n, g)$.

(b) This follows immediately from (a) and the fact that $(f + h)'(x; d) \geq 0$ for every $d \in \mathbb{R}^n$.

We now establish the aforementioned necessary condition.

Proposition C.2 Let (f, h, A, b) be as in (A1)-(A4). If \hat{z} is a local minimum of (1), then there exists a multiplier \hat{p} such that (11) holds.
Proof We first establish an important technical identity. Let $S = \{z \in \mathbb{R}^n : Az = b\}$, let δ_S denote the indicator function of S, i.e., the function that takes value 0 if its input is in S and $+\infty$ otherwise, and let $ri X$ denote the relative interior of a set X. Since assumptions (A3)–(A4) imply that $ri \mathcal{H} \cap ri S = \text{int} \mathcal{H} \cap S \neq \emptyset$, it follows from [26, Theorem 23.8] that for every $x \in \mathcal{H} \cap S$ we have

$$\partial(\delta_S + h)(x) = \partial\delta_S(x) + \partial h(x) = N_S(x) + \partial h(x) = \{\xi + A^* p : \xi \in \partial h(x)\}. \tag{56}$$

The conclusion follows from the above identity and Lemma C.1(b) with $g = h + \delta_S$.

D Adaptive AIDAL

This appendix presents an adaptive version of AIDAL where we choose the prox stepsize adaptively.

Before presenting the algorithm, we first motivate its construction under the assumption that the reader is familiar with the notation and results of Sect. 3. To begin, the careful reader may notice that the special choice of $\lambda = 1/(2m)$ in AIDAL (Algorithm 2.1) is only needed to ensure that the function $\lambda \mathcal{L}_c^0(\cdot; p) + \|\cdot\|^2$ is strongly convex with respect to the norm $\|x\|_Q = \langle x, [(1-\lambda m)I + c\lambda A^* A]x \rangle$ for every $c > 0$ and $p \in A(\mathbb{R}^n)$. Moreover, this global property is only needed to show that:

(i) the kth ACG call of AIDAL stops with a pair (z_k, v_k) satisfying $\|v_k\| \leq \sigma \|z_k - z_{k-1}\|$

(ii) $\lambda \|\hat{v}_i\| \lesssim \Psi_{k-1}^\theta - \Psi_k^\theta$.

The other technical details of Sect. 3, such as the boundedness of Ψ_i^θ, are straightforward to show as long as the prox stepsize is bounded. As a consequence, a natural relaxation of AIDAL is to employ a line search at its kth outer iteration for the largest λ within a bounded range satisfying conditions (i) and (ii) above.

In Algorithm D.1, we present one possible relaxation. Specifically, the kth prox stepsize λ_k is chosen from a set of candidates in the range $(0, \lambda_{k-1}]$.

We now make a few remarks about Algorithm D.1. First, the candidate search space for the kth prox stepsize forms a geometrically decreasing sequence and $\lambda_k \leq \lambda_{k-1}$. Second, the first condition of (57) corresponds to condition (i), while the second condition corresponds to condition (ii). Moreover, the second condition of (57) always holds when $\lambda = 1/(2m)$ due to Lemma 3.4, Lemma 3.5, and the definition of $\hat{\theta}$ which imply (cf. the proof of Proposition 3.3) that

$$\|v_k + z_{k-1} - z_k\|^2 = \lambda^2 \|\hat{v}_k\|^2 \leq 9\lambda(\Psi_{k-1}^\theta - \Psi_k^\theta).$$

Third, in view of the previous remark, since conditions (i) and (ii) are always satisfied whenever $\lambda \leq 1/(2m)$, we also have that $\lambda_k \in [1/(2\gamma m), \lambda_0]$ and, hence, the sequence $\{\lambda_k\}_{k \geq 1}$ is bounded.

Notice that it is not immediately clear how one obtains β_k at the kth outer iteration. One possible approach is to apply an adaptive ACG variant to the stepsize sequence $\{\lambda_k - \beta^{-j}\}_{j \geq 0}$ in which the variant has a mechanism to determine if at least one of
Algorithm D.1: Adaptive AIDAL Method

Input: Same as in Algorithm 2.1 but with additional parameters $\gamma > 1$ and $\lambda_0 > 0$.

Output: Same as in Algorithm 2.1.

1. **Function** $\text{AdapAIDAL}(M, \{\sigma, \chi, \theta, \lambda_0\}, \{c_1, z_0, p_0\}, \{\rho, \eta\}, \gamma)$:
 2. $\lambda_0 \leftarrow \lambda$
 3. for $k \leftarrow 1, 2, \ldots$ do
 4. find the smallest nonnegative integer β_k such that the ACG call in step 1 of Algorithm 2.1 with $\lambda = \gamma^{-\beta_k}\lambda_{k-1}$ stops with a pair (z_k, v_k) satisfying
 \[
 \begin{align*}
 \|v_k\| &\leq \sigma \|z_k - z_{k-1}\| & \text{if } k \geq 1, \text{ and} \\
 \|v_k + z_{k-1} - z_k\|^2 &\leq 9\lambda(\Psi^\theta_{k-1} - \Psi^\theta_k) & \text{if } k \geq 2,
 \end{align*}
 \] (57)
 where Ψ^θ_k is given in (28)
 5. set $\lambda_k \leftarrow \gamma^{-\beta_k}\lambda_{k-1}$
 6. execute steps 1–4 of Algorithm 2.1 with $\lambda = \lambda_k$

the conditions in (57) is reachable. This is so that if none of the conditions in (57) are reachable for some candidate λ, then the variant can be called again with a smaller stepsize. One example is the adaptive ACG variant in [9], which contains a mechanism for determining the reachability of the first condition in (57) and can even adaptively choose its other curvature parameters, such as L in Algorithm B.1. Note that if the ACG has already been called with the β_k satisfying (57) during the β_k line search, then it does not need to be called again when executing the steps of Algorithm 2.1.

Before closing this section, we briefly discuss the convergence and iteration complexity of the method. Convergence of the method is straightforward to establish using the same techniques of Sect. 3 and the fact that λ_k is bounded (see the remarks above). On the other hand, it can be shown that the iteration complexity of the method is on the same order of complexity as in Theorem 2.3. Without going through the cumbersome technical details, we assert that this follows from the boundedness of the stepsizes λ_k, the fact that the search for the next stepsize is done geometrically, and arguments similar to other adaptive augmented Lagrangian/penalty methods such as the one in [11].

References

1. Aybat, N.S., Iyengar, G.: A first-order smoothed penalty method for compressed sensing. SIAM J. Optim. 21(1), 287–313 (2011)
2. Aybat, N.S., Iyengar, G.: A first-order augmented Lagrangian method for compressed sensing. SIAM J. Optim. 22(2), 429–459 (2012)
3. Boob, D., Deng, Q., Lan, G.: Stochastic first-order methods for convex and nonconvex functional constrained optimization. Math. Program. 1–65 (2022)
4. Goncalves, M.L.N., Melo, J.G., Monteiro, R.D.C.: Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems. Pac. J. Optim. 15(3), 379–398 (2019)
5. Gu, Q., Wang, Z., Liu, H.: Sparse PCA with oracle property. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Adv. Neural Inf. Process. Syst., vol. 27, pp. 1529–1537. Curran Associates, Inc. (2014)

6. Hajinezhad, D., Hong, M.: Perturbed proximal primal-dual algorithm for nonconvex nonsmooth optimization. Math. Program. 176, 207–245 (2019)

7. Jiang, B., Lin, T., Ma, S., Zhang, S.: Structured nonconvex and nonsmooth optimization algorithms and iteration complexity analysis. Comput. Optim. Appl. 72(3), 115–157 (2019)

8. Kong, W.: Accelerated inexact first-order methods for solving nonconvex composite optimization problems. arXiv:2104.09683 (2021)

9. Kong, W.: Complexity-optimal and curvature-free first-order methods for finding stationary points of composite optimization problems. arXiv:2205.13055 (2022)

10. Kong, W., Melo, J.G., Monteiro, R.D.C.: Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. SIAM J. Optim. 29(4), 2566–2593 (2019)

11. Kong, W., Melo, J.G., Monteiro, R.D.C.: An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems. Comput. Optim. Appl. 76(2), 305–346 (2020)

12. Kong, W., Melo, J.G., Monteiro, R.D.C.: Iteration-complexity of a proximal augmented Lagrangian method for solving nonconvex composite optimization problems with nonlinear convex constraints. arXiv:2008.07080 (2020)

13. Kong, W., Melo, J.G., Monteiro, R.D.C.: Iteration complexity of an inner accelerated inexact proximal augmented Lagrangian method based on the classical Lagrangian function. SIAM J. Optim. 33(1), 181–210 (2023)

14. Kong, W., Monteiro, R.D.C.: An accelerated inexact proximal point method for solving nonconvex-concave min–max problems. SIAM J. Optim. 31(4), 2558–2585 (2021)

15. Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order penalty methods for convex programming. Math. Program. 138(1), 115–139 (2013)

16. Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order augmented Lagrangian methods for convex programming. Math. Program. 155(1), 511–547 (2016)

17. Li, Z., Chen, P.-Y., Liu, S., Lu, S., Xu, Y.: Rate-improved inexact augmented Lagrangian method for constrained nonconvex optimization. In: Int. Conf. Artif. Intell. Stat., pp. 2170–2178 (2021)

18. Li, Z., Xu, Y.: Augmented Lagrangian-based first-order methods for convex-constrained programs with weakly convex objective. INFORMS J. Optim. 3(4), 373–397 (2021)

19. Lin, Q., Ma, R., Xu, Y.: Inexact proximal-point penalty methods for constrained non-convex optimization. arXiv:1908.11518 (2019)

20. Liu, Y.-F., Liu, X., Ma, S.: On the nonergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming. Math. Oper. Res. 44(2), 632–650 (2019)

21. Lu, Z., Zhou, Z.: Iteration-complexity of first-order augmented Lagrangian methods for convex conic programming. arXiv:1803.09941 (2018)

22. Melo, J.G., Monteiro, R.D.C., Wang, H.: Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems. arXiv:2006.08048 (2020)

23. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: An adaptive accelerated first-order method for convex optimization. Comput. Optim. Appl. 64, 31–73 (2016)

24. Necoara, I., Patrascu, A., Glineur, F.: Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming. Optim. Methods Softw. 1–31 (2017)

25. Patrascu, A., Necoara, I., Tran-Dinh, Q.: Adaptive inexact fast augmented Lagrangian methods for constrained convex optimization. Optim. Lett. 11(3), 609–626 (2017)

26. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

27. Sahin, M., Eftekhari, A., Alacaoglu, A., Latorre, F., Cevher, V.: An inexact augmented Lagrangian framework for nonconvex optimization with nonlinear constraints. Adv. Neural Inf. Process. Syst. 32 (2019)

28. Sujanani, A., Monteiro, R.D.C.: An adaptive superfast inexact proximal augmented Lagrangian method for smooth nonconvex composite optimization problems. arXiv:2207.11905 (2022)

29. Xu, Y.: Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming. Math. Program. 185, 199–244 (2019)
30. Zhang, J., Luo, Z.-Q.: A global dual error bound and its application to the analysis of linearly constrained nonconvex optimization. arXiv:2006.16440 (2020)

31. Zhang, J., Luo, Z.-Q.: A proximal alternating direction method of multiplier for linearly constrained nonconvex minimization. SIAM J. Optim. 30(3), 2272–2302 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.