Throughout this paper, \(S \) will be a ring (not necessarily commutative) with an identity element \(1_s \neq 0_s \). We shall use \(R \) to denote a second ring, and \(\phi: S \to R \) will be a fixed ring homomorphism for which \(\phi 1_s = 1_R \).

1. Introduction. In (7), Higman generalized the Casimir operator of classical theory and used his generalization to characterize relatively projective and injective modules. As a special case, he obtained a theorem which contains results of Eckmann (3) and of Higman himself (5), and which also includes Gaschütz’s generalization (4) of Maschke’s theorem. (For a discussion of some of the developments of Maschke’s idea of averaging over a finite group, we refer the reader to (2, Chapter IX).) In the present paper, we define the Casimir operator of a family of \(S \)-homomorphisms of one \(R \)-module into another, and we again use this operator to characterize relatively projective and injective modules. In § 4, we give some special cases, the first of which covers the result of Higman (7) referred to above.

In § 5, we extend (7, Theorem 6) for a special class of pairs \(R, S \). Our result contains a theorem of Popescu (9, Proposition 1.3) which in turn generalizes a result of Cartan and Eilenberg (1, Chapter IV, Proposition 2.3) on the ring of dual numbers.

2. Relatively projective and injective modules. An abelian group \(M \) which is both a left and a right \(S \)-module and for which

\[(su)s' = s(us'), \quad s, s' \in S, \quad u \in M,
\]

will be referred to as an \(S \)-bimodule.

A left \(R \)-module \(M \) may be treated as a left \(S \)-module by putting

\[su = (\phi s)u, \quad s \in S, \quad u \in M,
\]

and similarly for right modules. In particular, \(R \) itself may be regarded as a left or right \(S \)-module.

When \(M \) is a left \(S \)-module and \(X \) is an \(S \)-bimodule, the tensor product \(X \otimes_S M \) may be considered as a left \(S \)-module by taking

\[s(x \otimes u) = sx \otimes u, \quad s \in S, \quad x \in X, \quad u \in M.
\]
Furthermore, the abelian group $\text{Hom}_S(X, M)$ of S-homomorphisms of X into M may be regarded as a left S-module by putting

$$(sf)x = f(xs), \quad s \in S, f \in \text{Hom}_S(X, M), \quad x \in X.$$

Suppose now that M is a left S-module; it follows from what we said above that $R \otimes_S M$ may be considered as a left S-module. In fact, it may be regarded as a left R-module by taking, in addition,

$$r_1(r_2 \otimes u) = r_1 r_2 \otimes u, \quad r_1, r_2 \in R, \quad u \in M.$$

When M is a left R-module, the mapping

$$t: R \otimes_S M \rightarrow M$$

given by the relation

$$t(r \otimes u) = ru$$

is easily checked to be an R-homomorphism. If $\kappa: M \rightarrow R \otimes_S M$ is the S-homomorphism under which $u \rightarrow 1_R \otimes u$, then the composition

$$\kappa t: M \rightarrow R \otimes_S M \rightarrow M$$

is the identity mapping, which proves that $\ker t$ is an S-direct summand of $R \otimes_S M$.

Definition. The left R-module M will be said to be ϕ-projective if $\ker t$ is an R-direct summand of $R \otimes_S M$. Clearly, if M is R-projective, then it is ϕ-projective. Our first result forms part of (1, Chapter II, Proposition 6.3).

(1) **Theorem.** For any left S-module M, $R \otimes_S M$ is ϕ-projective.

If M is a left S-module, then the left S-module $\text{Hom}_S(R, M)$ may be regarded as a left R-module by setting

$$(r_1f)r_2 = f(r_2r_1), \quad r_1, r_2 \in R, \quad f \in \text{Hom}_S(R, M).$$

When M is a left R-module, the mapping $t': M \rightarrow \text{Hom}_S(R, M)$ for which $(t'u)r = ru$ is an R-homomorphism, and if $\kappa': \text{Hom}_S(R, M) \rightarrow M$ is the S-homomorphism under which $f \rightarrow f1_R$, then the composition

$$t' \text{Hom}_S(R, M) \rightarrow M$$

is the identity mapping, which proves that $\text{Im} t'$ is an S-direct summand of $\text{Hom}_S(R, M)$.

Definition. The left R-module M is said to be ϕ-injective if $\text{Im} t'$ is an R-direct summand of $\text{Hom}_S(R, M)$.

If M is R-injective, then it is obviously ϕ-injective. Dual to (1) we have the following result.
(1') Theorem. For any left S-module M, $\text{Hom}_S(R, M)$ is ϕ-injective.

If M is a left R-module and there exists an R-isomorphism $\text{Hom}_S(R, M) \cong R \otimes_S M$, then M is ϕ-projective if and only if it is ϕ-injective.

3. Casimir operators. Throughout this paper, I will denote an indexing set and $\{R_i\}_{i \in I}, \{R'_i\}_{i \in I}$ will be families of S-bimodules which are contained in R.

Definition. Let M and H be left S-modules and R-modules, respectively. For each $i \in I$, an S-homomorphism $\delta_i: R_i \otimes_S M \rightarrow H$ will be said to be quasi-R-linear if

$$\delta_i(rr' \otimes u) = r\delta_i(r' \otimes u)$$

whenever $r \in R, r', rr' \in R_i$, and $u \in M$.

Dually, an S-homomorphism $\bar{\epsilon}_i: H \rightarrow \text{Hom}_S(R'_i, M)$ will also be said to be quasi-R-linear if

$$(\bar{\epsilon}_i h)r' = (\bar{\epsilon}_i h)(r'r)$$

whenever $r \in R, h \in H, r', r'r' \in R'_i$.

For each $i \in I$, we suppose that to every left S-module M there corresponds an S-homomorphism

$$\kappa_i: M \rightarrow R_i \otimes_S M$$

which is such that, if H is a left R-module and $\delta_i: M \rightarrow H$ is an S-homomorphism, then there exists a unique quasi-R-linear homomorphism $\delta_i: R_i \otimes_S M \rightarrow H$ for which $\delta_i = \delta_i \kappa_i$, i.e. for which the diagram

\[
\begin{array}{ccc}
R_i \otimes_S M & \xrightarrow{\kappa_i} & M \\
\downarrow{\delta_i} & & \downarrow{\delta_i} \\
M & \xrightarrow{\delta_i} & H
\end{array}
\]

is commutative.

We shall also suppose that, for each $i \in I$, there corresponds to every M an S-homomorphism

$$\kappa'_i: \text{Hom}_S(R'_i, M) \rightarrow M$$

which is such that, if H is a left R-module and $\epsilon_i: H \rightarrow M$ is an S-homomorphism, then there exists a unique quasi-R-linear homomorphism $\bar{\epsilon}_i: H \rightarrow \text{Hom}_S(R'_i, M)$ for which $\epsilon_i = \kappa'_i \bar{\epsilon}_i$, i.e. for which the diagram

\[
\begin{array}{ccc}
\text{Hom}_S(R'_i, M) & \xrightarrow{\kappa'_i} & M \\
\downarrow{\bar{\epsilon}_i} & & \downarrow{\epsilon_i} \\
M & \xleftarrow{\epsilon_i} & H
\end{array}
\]

is commutative.
Let M be a fixed left R-module, and, for each $i \in I$, let

$$\rho_i: R_i \otimes_S M \to R \otimes_S M, \quad \rho'_i: \text{Hom}_S(R, M) \to \text{Hom}_S(R'_i, M)$$

be the S-homomorphisms induced by the inclusion mappings

$$R_i \to R, \quad R'_i \to R,$$

respectively.

We shall suppose that, for each $i \in I$, there exists an S-homomorphism

$$\lambda_i: \text{Hom}_S(R'_i, M) \to R_i \otimes_S M.$$

Definitions. Let M and N be left R-modules and let $\{\alpha_i\}_{i \in I}$ be a family of S-homomorphisms of N into M. If, for each $v \in N$, $\rho_i \lambda_i \alpha_i \theta = 0$ for almost all i, then the S-homomorphism

$$\sum_{i \in I} \rho_i \lambda_i \alpha_i: N \to M,$$

is called a *first Casimir operator* of the family $\{\alpha_i\}_{i \in I}$ and is denoted by $c(\alpha_i)$.

Again, let $\{\beta_i\}_{i \in I}$ be a family of S-homomorphisms of M into N; if, for each $u \in M$, $\beta_i \lambda_i \rho_i \theta' u = 0$ for nearly all i, then the S-homomorphism

$$\sum_{i \in I} \beta_i \lambda_i \rho_i \theta': M \to N$$

is called a *second Casimir operator* of $\{\beta_i\}_{i \in I}$ and is denoted by $c'(\beta_i)$. (The terminology is that used in (8, § 8); for a justification of the use of “Casimir operator”, see the Remark following (4) in § 4.)

Note. The sets $\{\alpha_i\}_{i \in I}$ and $\{\beta_i\}_{i \in I}$ possess first and second Casimir operators, respectively, whenever the indexing set I is finite.

(2) **Theorem.** Suppose that, as an S-bimodule, $R = \sum_{i \in I} R_i$ (direct sum) and let M be a left R-module. If

(a) M possesses a family $\{\alpha_i\}_{i \in I}$ of S-endomorphisms such that

$$\sum_{i \in I} \rho_i \lambda_i \alpha_i: M \to R \otimes_S M$$

is an R-homomorphism and $c(\alpha_i) = \text{id}_M$, the identity mapping of M,

then

(b) M is ϕ-projective.

For each $i \in I$, let σ_i be the S-homomorphism $R \otimes_S M \to R_i \otimes_S M$ induced by the projection mapping $R \to R_i$. If each λ_i is an S-isomorphism and each $\lambda_i^{-1} \sigma_i$ is quasi-R-linear, then (a) and (b) are equivalent.

Proof. (a) implies (b) at once. Suppose then that each λ_i is an S-isomorphism, that each $\lambda_i^{-1} \sigma_i$ is quasi-R-linear, and that M is ϕ-projective. There exists an R-homomorphism $g: M \to R \otimes_S M$ such that $tg = \text{id}_M$. Let $\alpha_i = \kappa_i \lambda_i^{-1} \sigma_i g$; since $\lambda_i^{-1} \sigma_i$ is quasi-R-linear, then so is $\lambda_i^{-1} \sigma_i g$, and it follows that $\lambda_i = \lambda_i^{-1} \sigma_i g$.

Hence
\[\sum_{i \in I} \rho_i \lambda_i \alpha_i = \sum_{i \in I} \rho_i \sigma_i g = g, \]
since \(\sum_{i \in I} \rho_i \sigma_i = \text{id}_{R \otimes_S M} \). Also,
\[c[\alpha_i] = \sum_{i \in I} t \rho_i \lambda_i \alpha_i = \sum_{i \in I} t \rho_i \sigma_i g = tg = \text{id}_M. \]

Dual to (2), we have the following result.

(2') Theorem. Let the indexing set \(I \) be finite. Suppose also that, as an \(S \)-bimodule, \(R = \sum_{i \in I} R'_i \) (direct sum), and that \(M \) is a left \(R \)-module. If
\((a') \) \(M \) possesses a family \(\{ \beta_i \}_{i \in I} \) of \(S \)-endomorphisms such that
\[\sum_{i \in I} \beta_i \lambda_i \rho'_i : \text{Hom}_S(R, M) \to M \]
is an \(R \)-homomorphism and \(c'[\beta_i] = \text{id}_M \), then
\((b') \) \(M \) is \(\phi \)-injective.

For each \(i \in I \), let \(\sigma'_i : \text{Hom}_S(R'_i, M) \to \text{Hom}_S(R, M) \) be the \(S \)-homomorphism induced by the projection \(R \to R'_i \). If each \(\lambda_i \) is an \(S \)-isomorphism and each \(\sigma'_i \lambda_i^{-1} \) is quasi-\(R \)-linear, then \((a') \) and \((b') \) are equivalent.

4. Examples.

Example 1. We suppose that the indexing set \(I \) consists of a single element, and we take \(R_i = R_i' = R \). If \(M \) is a left \(S \)-module, \(H \) is a left \(R \)-module and \(\delta : M \to H \), \(\epsilon : H \to M \) are \(S \)-homomorphisms, then there exist unique \(R \)-homomorphisms \(\delta : R \otimes_S M \to H \), \(\epsilon : H \to \text{Hom}_S(R, M) \) such that \(\delta = \delta \kappa \), \(\epsilon = \kappa' \epsilon \), namely the mappings under which \(r \otimes u \to r(\delta u) \) and \(h \to f \), where \(fr = \epsilon(\delta h) \).
We shall assume that, when \(M \) is a left \(R \)-module, there exists an \(R \)-homomorphism
\[\lambda : \text{Hom}_S(R, M) \to R \otimes_S M. \]
From (2) and (2') we have the following results.

(3) Corollary. Let \(M \) be a left \(R \)-module. If
\((a) \) \(M \) possesses an \(S \)-endomorphism \(\alpha \) such that \(c[\alpha] = \text{id}_M \),
then
\((b) \) \(M \) is \(\phi \)-projective.
If \(\lambda \) is an \(R \)-isomorphism, then \((a) \) and \((b) \) are equivalent.

(3') Corollary. Let \(M \) be a left \(R \)-module. If
\((a') \) \(M \) possesses an \(S \)-endomorphism \(\beta \) such that \(c'[\beta] = \text{id}_M \),
then
\((b') \) \(M \) is \(\phi \)-injective.
If \(\lambda \) is an \(R \)-isomorphism, then \((a') \) and \((b') \) are equivalent.

Note. When \(\lambda \) is an \(R \)-isomorphism, it follows from the remark at the end of § 2 that the conditions \((a) \), \((b) \), \((a') \), \((b') \) are equivalent.
The results (3) and (3') above were proved by Higman (7, Theorem 5) for a situation similar to the present one. As an application, he considered the situation in which \(S \) is a subring of \(R \) and \(R \) possesses a right \(S \)-basis \(\{r_1, \ldots, r_n\} \) and a set \(\{r'_1, \ldots, r'_n\} \) of elements such that

\[(i) \quad rr_j = \sum_{k=1}^n r_k s_{jk} \quad (r \in R, s_{jk} \in S) \text{ implies that } r'_j r = \sum_{k=1}^n s_{jk} r'_k.\]

In this case, for any left \(R \)-module \(M \), the mapping

\[\lambda: \text{Hom}_S(R, M) \to R \otimes_S M,\]

under which

\[f \to \sum_{j=1}^n r_j \otimes f r'_j,\]

is an \(R \)-homomorphism. If \(N \) is a second \(R \)-module and \(\alpha: N \to M \) is an \(S \)-homomorphism, then it is easily checked that

\[c(\alpha) = c'(\alpha) = \sum_{j=1}^n r_j \alpha r'_j.\]

Furthermore, when \(\{r'_1, \ldots, r'_n\} \) is a left \(S \)-basis of \(R \), \(\lambda \) is an \(R \)-isomorphism.

The following result is then an immediate consequence of (3) and (3').

(4) Corollary. Suppose that \(S \) is a subring of \(R \) and let \(\phi: S \to R \) be the inclusion mapping. Let \(\{r_1, \ldots, r_n\} \) be a right \(S \)-basis of \(R \) and let \(\{r'_1, \ldots, r'_n\} \) be a set of elements of \(R \) which satisfy (i). Suppose also that \(M \) is a left \(R \)-module. The condition (a) \(M \) possesses an \(S \)-endomorphism \(\alpha \) such that

\[\sum_{j=1}^n r_j \alpha r'_j = \text{id}_M\]

implies (3)(b) and (3')(b'). If \(\{r'_1, \ldots, r'_n\} \) is a left \(S \)-basis of \(R \), then each of these conditions is equivalent to (a).

Remark. Let \(R \) be a separable algebra over a field \(S \), and suppose that \(\{r_1, \ldots, r_n\} \) is a basis of \(R \) and that \(\{r'_1, \ldots, r'_n\} \) is a dual basis of \(R \) with respect to some discriminant matrix. If \(\alpha \) is a linear transformation of a representation module for \(R \) over \(S \), then \(c(\alpha) \) is the Casimir operator of classical theory; see (6).

For applications of (4) to algebras, separable algebras, and groups, the reader is referred to (7, Part III).

In § 5 we extend (4) for a special class of pairs \(R, S \).

Example 2. Let \(J \) be an indexing set which is partitioned into a family \(\{J_i\}_{i \in I} \) of finite subsets. Suppose also that \(\{r_j\}_{j \in J} \) is a right \(S \)-basis of \(R \) and that \(\{r'_j\}_{j \in J} \) is a family of elements of \(R \), the members of which are not necessarily distinct, such that

\[r_j(\phi s) = (\phi s)r_j, \quad r'_j(\phi s) = (\phi s)r'_j, \quad j \in J, s \in S.\]
For each $i \in I$, let R_i be the right S-submodule of R generated by the set $\{r_j\}_{j \in J_i}$; we note that R_i is an S-bimodule and that $R = \sum_{i \in I} R_i$ (direct sum). Also, for each i, let R'_i be an S-bimodule which is contained in R and which contains the set $\{r'_j\}_{j \in J_i}$. Finally, we assume that, for each left S-module M and each $i \in I$, there exists an S-homomorphism

$$\kappa'_i: \text{Hom}_S(R'_i, M) \to M$$

with the properties specified in § 3. For each $i \in I$, we define an S-homomorphism

$$\lambda_i: \text{Hom}_S(R'_i, M) \to R_i \otimes_S M$$

by

$$\lambda_i f = \sum_{j \in J_i} r_j \otimes f r'_j.$$

(5) Lemma. Let M be a left R-module and let $\{\alpha_i\}_{i \in I}$ be a family of S-endomorphisms of M such that

(ii) for each $u \in M$, $\alpha_i u = 0$ for almost all $i \in I$.

A necessary and sufficient condition for $\sum_{i \in I} \rho_i \lambda_i \alpha_i: M \to R \otimes_S M$ to be an R-homomorphism is the following:

if $r \in R$ and if, for all $j \in J_i$, $rr_j = \sum_{k \in J} r_k s_{jk}$, where $s_{jk} \in S$, then, for $k \in J_i$,

(iii) $\sum_{i \in I} (\alpha_i u) \left(\sum_{j \in J_i} s_{jk} r'_j \right) = (\alpha_i r u) r'_k, \quad u \in M$.

Proof. Suppose that $r \in R$, that $rr_j = \sum_{k \in J} r_k s_{jk}$ for all $j \in J$, and that (iii) holds; then

$$r \left(\sum_{i \in I} \rho_i \lambda_i \alpha_i \right) u = \sum_{i \in I} r \rho_i \lambda_i \alpha_i u = \sum_{i \in I} r \sum_{j \in J_i} r_j (\alpha_i u) r'_j$$

$$= \sum_{i \in I} \sum_{j \in J_i} \left(\sum_{k \in J} r_k s_{jk} \right) (\alpha_i u) r'_j = \sum_{i \in I} \sum_{j \in J_i} \left(\sum_{k \in J} r_k \otimes (\alpha_i u) (s_{jk} r'_j) \right)$$

$$= \sum_{i \in I} \sum_{j \in J_i} r_k \otimes (\alpha_i u) (s_{jk} r'_j) = \sum_{i \in I} \sum_{j \in J_i} (\alpha_i u) \left(\sum_{j \in J_i} s_{jk} r'_j \right)$$

$$= \sum_{i \in I} \sum_{k \in J_i} \rho_i \lambda_i \alpha_i u = \left(\sum_{i \in I} \rho_i \lambda_i \alpha_i \right) (ru),$$

and thus $\sum_{i \in I} \rho_i \lambda_i \alpha_i$ is an R-homomorphism.

Since $\{r_j\}_{j \in J}$ is a right S-basis of R, each element of $R \otimes_S M$ can be expressed uniquely in the form $\sum_{j \in J} r_j \otimes v_j$, where the v_j belong to M. That (iii) is a necessary condition for $\sum_{i \in I} \rho_i \lambda_i \alpha_i$ to be an R-homomorphism can be seen from the first part of this proof.

The next result follows from (2) and (5).
6. **Theorem.** Let M be a left R-module. If
 (a) M possesses a family $\{\alpha_i\}_{i \in I}$ of S-endomorphisms which satisfy conditions (ii) and (iii) and such that $c[\alpha_i] = \text{id}_M$,
then
 (b) M is ϕ-projective.

 For each $i \in I$ let $\sigma_i: R \otimes_S M \to R_i \otimes_S M$ be the mapping induced by the projection $R \to R_i$. If each λ_i is an isomorphism and each $\lambda_i^{-1}\sigma_i$ is quasi-R-linear, then (a) and (b) are equivalent.

5. Throughout this section, S will be a subring of R and $\phi: S \to R$ will be the inclusion mapping. We shall suppose that the elements $r_1, \ldots, r_n, r_1', \ldots, r_n'$ of R commute with every member of S, and that $\{r_1, \ldots, r_n\}, \{r_1', \ldots, r_n'\}$ are S-bases of R which satisfy condition (i). We assume also that
 \[r_1'r_1 = r_2'r_2 = \ldots = r_n'r_n = a, \] say,
and that
 (iv) $r_j'r_k = 0$ when $j < k$.

7. **Theorem.** For any left R-module M, the following conditions are equivalent:
 (a) M is ϕ-projective;
 (a') M is ϕ-injective;
 (b) M possesses an S-endomorphism α such that

 (v) $\sum_{j=1}^{n} r_j \alpha r_j' = \text{id}_M$;
 (c) $M \cong^h R \otimes_S aM$;
 (c') $M \cong^b \text{Hom}_S(R, aM)$.

Proof. The equivalence of (a), (a'), and (b) follows from (4).

(b) \implies (c). Multiplying both sides of (v) on the left by r_k' and using (iv), we see that
 (vi) $\sum_{j=1}^{k} r_j' r_j \alpha r_j' = r_k'$.

The relation
 \[\psi u = \sum_{j=1}^{n} r_j \otimes a\alpha r_j' u \]
defines a mapping, namely
 \[\psi: M \to R \otimes_S aM. \]

If $r \in R$ and $rr_j = \sum_{k=1}^{n} r_k s_{jk}$ ($j = 1, \ldots, n$), then
 \[r(\psi u) = \sum_{j=1}^{n} rr_j \otimes a\alpha r_j' u = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} r_k s_{jk} \right) \otimes a\alpha r_j' u \]
 \[= \sum_{k=1}^{n} r_k \otimes a\alpha \left(\sum_{j=1}^{n} s_{jk} r_j' \right) u = \sum_{k=1}^{n} r_k \otimes a\alpha (r_k r) u, \]

since condition (i) is satisfied, and hence
\[r(\psi u) = \sum_{j=1}^{n} r_{j} \otimes a_{\alpha r_{j}}'(ru) = \psi(ru), \]
thus proving that \(\psi \) is an \(R \)-homomorphism. If \(\psi u = 0 \), then, since \(\{r_1, \ldots, r_n\} \) is an \(S \)-base for \(R \), we can infer that \(a_{\alpha r_{j}}'(u) = 0 \) for each \(j \). Replacing \(k \) in (vi) by \(1, \ldots, n \) in succession, we see that \(r_{j}'u = 0 \) for each \(j \). It follows from (v) that \(u = 0 \). Thus \(\psi \) is injective.

We next show that \(\psi \) is surjective. Multiplying both sides of (vi) on the right by \(r_{k} \) and using (iv), we have
\[(vii) \quad a_{\alpha a}a = a. \]
Suppose now that \(v \in aM \). We can put \(v = au \), where \(u \in M \), and then
\[a_{\alpha r_{k}}'(r_{k}a_{\alpha}) = a_{\alpha a}a_{\alpha}u = au, \quad \text{by (vii)}, \]
and hence
\[a_{\alpha r_{k}}'(r_{k}a_{\alpha}) = v. \]
In addition, when \(j < k \), \(a_{\alpha r_{j}}'(r_{j}a_{\alpha}) = 0 \). Thus, \(\psi \) is surjective, and hence is an \(R \)-isomorphism.

The implication (b) \(\Rightarrow \) (c') follows at once once \(\text{Hom}_S(R, aM) \cong^R R \otimes_S aM \); cf. Example 1.

The implications (c) \(\Rightarrow \) (a), (c') \(\Rightarrow \) (a') were cited in (1) and (1').

(8) **Theorem.** The \(R \)-module \(M \) is projective if and only if there exists a projective \(S \)-module \(N \) such that \(M \cong^R R \otimes_S aM \). Dually, \(M \) is injective if and only if there exists an injective \(S \)-module \(N \) such that \(M \cong^R \text{Hom}_S(R, N) \).

Proof. If \(M \) is \(R \)-projective, then it is also \(\phi \)-projective, and hence it follows from (7) that there exists an \(S \)-module \(N \) such that \(M \cong^R R \otimes_S N \). Since \(R \) is \(S \)-free, it follows that \(M \) is \(S \)-projective; and thus \(N \), being \(S \)-isomorphic to a direct summand of \(M \), is \(S \)-projective. The converse follows from (1, Chapter II, Proposition 6.1).

6. **Examples.**

Example 3. Let \(R \) be the free left \(S \)-module on the set \(\{1, s, d, \ldots, d^{n-1}\} \). We make \(R \) into a ring by means of the identity
\[
(s_01_s + s_1d + \ldots + s_{n-1}d^{n-1})(s_0'1_s + s_1'd + \ldots + s_{n-1}'d^{n-1}) \\
= s_0s_0'1_s + (s_0s_1' + s_1s_0')d + \ldots + (s_0s_{n-1}' + s_{n-1}s_0')d^{n-1} \\
(s_0, \ldots, s_{n-1}, s_0', \ldots, s_{n-1}') \in S,
\]
so that \(d^n = 0 \). We may regard \(S \) as a subring of \(R \) by identifying \(s \) and \(1_s \) for every \(s \in S \), in which case \(d \) commutes with every member of \(S \). It is clear that
if M is a left S-module having an S-endomorphism d for which $d^n = 0$, then M is a left R-module. In (7), we can take
\[r_1 = 1_S, r_2 = d, \ldots, r_n = d^{n-1}, \quad r_1' = d^{n-1}, \quad r_2' = d^{n-2}, \ldots, r_n' = 1_S, \]
the identity in (7) (b) then becomes
\[1_S \alpha d^{n-1} + d \alpha d^{n-2} + \ldots + d^{n-2} \alpha d + d^{n-1} \alpha 1_S = \text{id}_M, \]
and we have (9, Proposition 1.3). Taking $n = 2$ yields (1, Chapter IV, Proposition 2.3). We remark that, in the former case, $a = d^{n-1}$.

Example 4. Let R be the free left S-module on the set $\{1_S, d_1, d_2, d_1d_2\}$. We make R into a ring by means of the identity
\[
(s_01_S + s_1d_1 + s_2d_2 + s_3d_1d_2)(s_0'1_S + s_1'd_1 + s_2'd_2 + s_3'd_1d_2) = s_0s_0'1_S + (s_0s'_1 + s_1s'_2 + s_2s'_3)d_1 + (s_0s'_2 + s_2s'_1)d_2 \\
+ (s_0s'_3 + s_1s'_2 + s_2s'_1 + s_3s'_0)d_1d_2
\]
so that
\[d_1d_1 = d_2d_2 = 0 \quad \text{and} \quad d_3d_1 = d_1d_2, \]
and, when we identify $s1_S$ and s for each $s \in S$, it follows that
\[d_1s = sd_1, \quad d_2s = sd_2. \]
In (7) we can put
\[r_1 = 1_S, r_2 = d_1, r_3 = d_2, r_4 = d_1d_2, \quad r_1' = d_2d_2, r_2' = d_2, r_3' = d_1, r_4' = 1_S. \]
The identity in (7) (b) then becomes
\[1_S \alpha d_1d_2 + d_1 \alpha d_2 + d_2 \alpha d_1 + d_1d_2 \alpha 1_S = \text{id}_M, \]
and $a = d_1d_2$.

References

1. H. Cartan and S. Eilenberg, *Homological algebra* (Princeton Univ. Press, Princeton, N.J., 1956).
2. C. W. Curtis and I. Reiner, *Representation theory of finite groups and associative algebras* (Interscience, New York, 1962).
3. B. Eckmann, *On complexes with operators*, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 35-42.
4. W. Gaschütz, *Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen*, Math. Z. 68 (1952), 376-387.
5. D. G. Higman, *On modules with a group of operators*, Duke Math. J. 21 (1954), 369-376.
6. ——— *Indecomposable representations of characteristic p*, Duke Math. J. 21 (1954), 377-382.
7. ——— *Induced and produced modules*, Can. J. Math. 7 (1955), 490-508.
8. ——— *Relative cohomology*, Can. J. Math. 9 (1957), 19-34.
9. N. Popescu, *Modules à différentielle généralisée*, Rev. Roumaine Math. Pures Appl. 9 (1964), 549-559.

The University, Sheffield, England