Original Research Article

Quantitative analysis of diffusion weighted imaging in rectal cancer during radiotherapy using a magnetic resonance imaging integrated linear accelerator

Manasi Inglea,b,*, Matthew Blackledgeb, Ingrid Whitec, Andreas Wetscherekb, Susan Lalondrellea,b, Shaista Hafeeza,b, Shreerang Bhidea,b

a The Royal Marsden Hospital NHS Trust, 203 Fulham Road, London SW3 6JJ, UK
b The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
c Guys and St Thomas NHS Trust, Great Maze Pond, London SE1 9RT, UK

1. Introduction

Management of locally advanced rectal adenocarcinoma includes neo-adjuvant chemoradiotherapy (nCRT) to rectum and pelvic nodes followed by surgery [1,2]. Pathological complete response (pCR) is seen in 15–25\% [3] following nCRT, which improves 5-year overall survival (OS) in these patients to >87\% [4] compared to 50–60\% in those who do not achieve pCR [5,6]. Achieving pCR or tumour regression grade (TRG) 0–2 [7] in rectal cancer is an independent prognostic factor for OS, local recurrence, and disease free survival [4,5,8–10], and a ‘watch and wait’ policy of delaying surgery until the first signs of recurrence is advocated in these patients [11–13] under strict imaging surveillance [14].

To improve pathological response to nCRT dose escalated treatment at >60 Gy to gross tumour volume (GTV) is required [15]. However, increasing dose to tumour comes with worsening toxicity to normal tissue [16], and consequently a fine balancing act is required between improving tumour response and limiting long-term morbidity. Image guided radiotherapy (IGRT) and intensity modulated radiotherapy (IMRT) reduces dose delivered to organs at risk (OARs) such as small bowel [17,18]. Using magnetic resonance imaging integrated linear accelerator (MR-Linac) platforms online adaptations to treatment can be made based on anatomy of the day further improving dose delivery to tumour whilst sparing normal tissue [19].
Magnetic resonance imaging (MRI) also provides the added benefit of giving functional information about tumour biology in the form of diffusion weighted imaging (DWI). High intensity signal on DWI corresponds to malignant tissue [20] and reduction of signal relates to disruption of cell membrane integrity thus suggesting regression of tumour caused by treatment [21]. Several studies have been published demonstrating ability to stratify rectal cancer patients into good and poor responders using pre-treatment DWI and apparent diffusion coefficient (ADC) [22–26], with good responders exhibiting an earlier response to treatment compared to the poor responders [27]. Recognising poor responders early in treatment could potentially allow for treatment adaptation with dose escalation in order to achieve pCR [28].

However, these findings are not successfully reproduced in the majority of studies and DWI is yet to be validated as an imaging biomarker in this setting [29]. Furthermore, reproducing the methodology of DWI across studies is difficult due to use of different diagnostic MRI scanners and varying sequencing protocols [30]. Acquiring multiple MRI scans during treatment is also not feasible in a busy clinical department [21], therefore simultaneously scanning and treating the patient on an MR-Linac overcomes this hurdle [31] providing a means of investigating real time biological changes in tumour [32].

The design of one such MR-Linac differs from diagnostic MRI scanners [31] and causes technical difficulties in obtaining DWI at higher b-values [33]. As such, the quality of images obtained on this MR-Linac in rectal cancer longitudinally throughout treatment is not known and requires assessment. The aim of this study was to demonstrate feasibility and clinical relevance of DWI obtained in rectal cancer patients treated on an MR-Linac.

2. Material and methods

2.1. Patients and treatment

Patients with a locally advanced rectal cancer (stage ≥T3, nodal involvement, circumferential margin (CRM) involvement, presence of extramural vascular invasion (EMVI) or threatened levators) [2], tumour size <12 cm, suitable for nCRT and with no contraindications to MRI and suitable for MR-Linac treatment or imaging were recruited to research and ethics committee approved institutional based studies for treatment and imaging (PERMIT trial (NCT03727698) and PRIMER trial (NCT02973828)). Staging investigations such as CT and MRI, colonoscopy and biopsy were undertaken in local hospitals prior to referral to our unit. All patients’ treatment pathways were discussed in central multidisciplinary meeting. Patients were treated with nCRT with concurrent Capecitabine 825 mg/m² BD or Raltitrexed 3 mg/m² day 1 every 21 days if Capecitabine was contraindicated. A two-phase radiotherapy protocol was delivered; Phase 1 boost to gross tumour volume (GTV) and nodes delivering 9 Gy/S# on MR-Linac (delivered first due to longer duration of daily treatment on MR-Linac which symptomatic patients may not tolerate in last week of radiotherapy) followed by Phase 2 treatment to pelvis via C-arm Linac delivering 45 Gy/25# to GTV plus mesorectum and pelvic nodes. Response to treatment was assessed 8–12 weeks post-treatment with follow-up diagnostic MRI and/or histopathology following surgery using TRG response [7].

2.2. Pre-treatment planning

Patients treated on MR-Linac underwent a planning CT scan (Phillips, Big Bore CT) and MR simulation scan either on diagnostic MRI (Siemens, Aera 1.5T) or MR-Linac (Elekta Unity, 1.5 T). Bladder filling protocol on MR simulation required patients to empty bladder and drink 700 mls of water 1 h prior to scanning. Scanning was performed in treatment position, ideally with an empty rectum. If rectum ≥5 cm on initial planning scan patients were re-scanned following bowel preparation. Radiotherapy planning was performed on Monaco® v5.40.01 (Elekta AB, Stockholm, Sweden) for Phase 1 and Raystation® v10.0.1.52 (RaySearch Laboratories AB, Stockholm, Sweden) for Phase 2.

2.3. Imaging acquisition on MR-Linac

Imaging on MR-Linac included T2 weighted 2 min scans utilised for online adaptation as described previously [34,35], followed by research imaging including DWI sequences. DWI acquisition was in keeping with consensus guidelines [33] and included diffusion weightings b = 0, 30, 150, 500 s/mm² combined to make 4D DWI (Fig. 1). Table 1 demonstrates scanning parameters for acquisition of rectal DWI on MR-Linac. DWI was acquired daily during phase 1 and weekly during phase 2.

2.4. Quantitative analysis

Between Jan 2018 and Dec 2020, nine patients were consecutively recruited for nCRT on MR-Linac. DWI was not obtained in the first two patients therefore these patients were excluded from the analysis. Demographics of the remaining seven are shown in Table 2. All patients demonstrated a TRG 1–3 response following treatment as assessed by MRI or histopathology following surgery.

For each patient, ten DWI were acquired during treatment. 7/70 DWI were excluded from analysis as either DWI was not performed or not centred on tumour; thus 63 DWI were analysed in total.

DICOM images were imported into an open-source medical image viewer (Horos, GNU Lesser General Public License, Version 3 (LGPL-3.0)) where DWI were evaluated and GTV delineation on DWI was performed by a single experienced observer to minimise intra-observer delineation variability.

Utilising an in-house plug in tool (pyOsirix® [36,37]) ADC maps were created from b-values 150 and 500 s/mm². Contours for GTV and normal tissue (ovary for female, seminal vesicles for male), delineated on b = 500 s/mm² image, were transposed from DWI onto ADC map. Ovary and seminal vesicles chosen as normal tissue example as these organs were within planning tumour volume (PTV) and received same dose as GTV. ADC median for region of interest (ROI) at each fraction was calculated using in house-tool. Statistical analyses and graph modelling was performed using GraphPad Prism v9.1.2.

3. Results

An area of low ADC value was present on ADC maps corresponding to region of signal on b = 500 s/mm² which can be considered to demonstrate presence of tumour (Fig. 2a). All patients demonstrated a trend of increasing ADC median from fraction 1 (1.15 × 10⁻³ mm²/s interquartile range (IQ): 1.05–1.17) to fraction 30 (1.60 × 10⁻³ mm²/s IQ: 1.37–1.64) (Fig. 2b). Using Wilcoxon t-test the difference in ADC median between fraction 1 and 30 was found to be statistically significant (p = 0.0156). In comparison ADC median calculated in normal tissue showed no difference between first and last fraction (1.61 × 10⁻³ mm²/s IQ: 1.56–1.71 vs 1.67 × 10⁻³ mm²/s IQ: 1.37–2.00; p = 0.9375) (Fig. 2c). %ΔADC median calculated at weekly intervals demonstrates 3 patients (patients 4, 5 and 6) experiencing a >50% ΔADC from baseline by week 3, whilst 2 patients (patients 2 and 7) remain < 50%ΔADC from baseline throughout treatment (Fig. 3). There was no histopathological correlation to these trends.

4. Discussion

The findings from this study hold promise for utilisation of DWI signal and ADC metrics for adaptation of treatment according to treatment response on MR-Linac. Preliminary work on the longitudinal analysis of DWI and ADC median in rectal cancer on the MR-Linac demonstrated that an increase in ADC median in GTV is seen in all patients, whereas ADC median in normal tissue remains at similar value. ADC median of GTV also increases to a value comparable to normal
Given that all patients demonstrated a pathological response TRG 1–3 to treatment, we suggest that Median ADC measured on MR-Linac appears to correlate to treatment response, which is in keeping with published literature [24,38]. These results are similar to a study performed on 0.35 T MR integrated platform looking at DWI in 3 patients [39].

Based on published evidence in rectal cancer, the principal parameter that predicts treatment response is \(\% \Delta ADC \) (which compares post-treatment ADC metrics to pre-treatment ADC metrics calculated 6–8 weeks after completion of treatment) where patients with pCR demonstrate a \(>50\% \Delta ADC \) compared to patients who do not achieve pCR [25,26,40,41]. However, we have observed that in five out of seven patients \(\% \Delta ADC \) is \(<50\% \) by the last fraction. One explanation is that the final DWI that we analyzed was obtained during the final week of RT as opposed to 6–8 weeks post-treatment as stated in the published studies. It is well known that tumour regression can continue following completion of CRT [42]. In addition, the signal intensity in the tumour is reduced by the end of treatment, leading to smaller volume of ROI for ADC calculations which can result in inaccuracies in ADC measurements [41].

Sun et al demonstrated a significant increase in ADC metrics and \(\% \Delta ADC \) during treatment where down-staged patients (TRG 1–3) had an earlier increase in ADC metrics by end of week 1 (1.07 \(\times 10^{-3} \) mm/s\(^2 \) ± SD 0.13 pre-treatment to 1.32 \(\times 10^{-3} \) mm/s\(^2 \) ± SD 0.16; \(p < 0.001 \)) at end of week 1 and larger change in \(\% \Delta ADC \) by end of week 2 (28.2% vs 9.8%; \(p < 0.01 \)) compared to non-downstaged patients (TRG 4–5) [27]. Our results demonstrated three out of seven patients exhibit similar early rises in Median ADC and large \(\% \Delta ADC \) by week 3 (fig. 2c and 3). However on further analysis based on TRG stratification, it was difficult to demonstrate a difference in trend between good (TRG 1–2) and poor responders (TRG 3–5).

Our study is limited by small patient numbers; therefore, further studies with larger patient numbers are required to demonstrate correlation between DWI measurements and pathological outcome in order to establish DWI as an imaging biomarker in clinical practice. We also recognise that combining ovary and seminal vesicles within normal tissue ROI may not give true representation of median ADC within normal tissue; however as these organs are included in the PTV and receive same dose as GTV it was deemed that this comparison was the most similar. Furthermore, assessing repeatability is also required if utilising DWI for patient stratification in order to ensure that ADC metric changes are due to treatment related changes in tumour biology, and not machine or other patient related factors [32].

Previous analysis of our data included b-values <100 s/mm\(^2\) in ADC.

Table 1
| MRI sequencing parameters for DWI acquisition on Elekta Unity MR-Linac. |
|-----------------|-----------------|
| Parameters | Rectal DWI sequencing |
| Field of view (mm) | AP = 420 |
| | RL = 420 |
| | FH = 120 |
| Recon. Voxel (mm) | AP = 1.75 |
| | RL = 1.75 |
| | TR (ms) = 4483 |
| | TE (ms) = 81 |
| DELTA/delta (ms) | 40.7/20.3 |
| Fat Suppression | STIR |
| EPI factor | 55 |
| Parallel imaging factor | 2.2 |
| Section thickness (mm) | 4 |
| Direction of motion probing gradients | Isotropic |
| b-factors (s/mm\(^2\)) | 0, 30, 150, 500 |
| b-factor averages | b = 0: 8 |
| | b = 30: 8 |
| | b = 150: 8 |
| | b = 500: 16 |

Table 2
| Patient and tumour characteristics. |
|-----------------|-----------------|
| N = 7 |
Gender	Male 6 (86%)
	Female 1 (14%)
Age	61.3 yrs (Range 37–74)
T stage	T3a 1 (14%)
	T3b 1 (14%)
	T3c 3 (43%)
	T4 2 (29%)
N Stage	N1 5 (71%)
	N2 2 (29%)
M Stage	M0 7 (100%)
CRM involved	Yes 5 (71%)
EMVI present	Yes 7 (100%)
Mandard response post treatment	TRG 1 3 (43%)
	TRG 2 2 (29%)
	TRG 3 2 (29%)
calculations where we demonstrated one patient with a decreasing trend of ADC metrics [43]. Excluding b-values <100 s/mm\(^2\) reversed this trend, indicating that lower b-values make ADC a more sensitive biomarker, especially to perfusion [33]. Intra-voxel incoherent motion (IVIM) analysis may provide more accurate assessment of tumour response to treatment by separating perfusion and diffusion factors [44], giving a more robust picture of tumour microcellularity during treatment.

In conclusion, DWI signal change and ADC metrics can be measured on MR-Linac in rectal cancer, demonstrating promise in its ability to determine response to treatment. Integration of DWI in adaptive radiotherapy planning may increase confidence in delivering dose escalated radiotherapy to GTV with the aim of improving treatment related outcomes in rectal cancer patients.

Fig. 2. a. Example of b = 500 s/mm\(^2\) images and corresponding ADC maps from week 1, 3 and 6 of patient with an upper rectal tumour (orange contour) and ovary (pink contour). An area of low ADC value is seen in week 1 corresponding to area of high signal seen on DWI in GTV. b. Median ADC of tumour between first and last fraction, with an increasing trend seen. c. Median ADC of normal tissue between first and last fraction, with no change seen.

Fig. 3. Graph indicating relative ΔADC median (%) from baseline at weekly intervals.
Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: SL reports travel and educational grants from Elekta (Elekta AB, Stockholm, Sweden). SH reports non-financial support from Elekta (Elekta AB, Stockholm, Sweden), non-financial support from Merck Sharp & Dohme (MSD), personal fees and non-financial support from Roche outside the submitted work. SB reports travel and educational grants from Elekta (Elekta AB, Stockholm, Sweden).

Acknowledgements

This study represents independent research supported by the National Institute for Health Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. This work was supported by The Institute of Cancer Research and Cancer Research UK (CRUK) grant number C33589/A28284 and the Cancer Research UK (CRUK) grant number C33589/A28284 and the Care. This work was supported by The Institute of Cancer Research and London. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. This work was supported by The Institute of Cancer Research and Cancer Research UK (CRUK) grant number C33589/A28284 and the Cancer Research UK (CRUK) grant number C33589/A28284 and the Care. This work was supported by The Institute of Cancer Research and London. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. This work was supported by The Institute of Cancer Research and Cancer Research UK (CRUK) grant number C33589/A28284 and the Cancer Research UK (CRUK) grant number C33589/A28284 and the Care.

References

[1] Glynn-Jones R, Wyrwicz L, Tietz E, Brown G, Rödel C, Cervantes A, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28: https://doi.org/10.1093/annonc/mdx224, iv22–40.
[2] Glynn-Jones R, Wyrwicz L, Tietz E, Brown G, Rödel C, Cervantes A, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28: https://doi.org/10.1093/annonc/mdx224, iv22–40.
[3] Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U, Sousa SE, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 2004; http://dx.doi.org/10.1097/01.sla.0000079442.27992.32.
[4] Maas M, Nelemans PJ, Valentini V, Das P, Kuo L-J, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 2010;11:835–44. https://doi.org/10.1016/s1470-2045(10)70172-8.
[5] Zorcolo L, Rosman AS, Restivo A, Pisanos M, Nigris GR, Fancellu A, et al. Complete pathologic response after combined modality treatment for rectal cancer and long-term survival: a meta-analysis. Ann Surg Oncol 2012;19:2822–32. https://doi.org/10.1245/s10434-011-1209-y.
[6] van Gijn W, Marjinen CAM, Nagtegaal ID, Krabbe PHM, Eijkerk H, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol 2011;12:575–82. https://doi.org/10.1016/s1470-2045(11)70097-3.
[7] Standard A, Dalbier M, Fandec J-C, Marnay J, Henry-Amor M, Petit J-F, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinopathologic correlations. Cancer 1994;73:2680–6. https://doi.org/10.1002/1097-0248(19940601)73:11<2680::aid-cncr28207311105>.3.0.co;2-c.
[8] Vecchio FM, Valentini V, Yin X, Di Vittorio P, Paulson ES, et al. Diffusion-weighted MRI in locally advanced rectal cancer: Pathological response prediction after neo-adjuvant radiochemotherapy. J Clin Oncol 2010;28:152–60. https://doi.org/10.1200/jco.2009.26.7031.
[9] Pham TT, Liney GP, Wong K, Barton MB. Functional MRI for quantitative treatment response prediction in locally advanced rectal cancer: a systematic review and meta-analysis. Br J Radiol 2017;90. https://doi.org/10.1259/bjr.20160303.
[10] Kim SH, Lee JY, Lee JH, Kim JK, Choi BL. Apparent diffusion coefficient predicts pathology complete response of rectal cancer treated with neoadjuvant chemoradiotherapy. PLoS ONE 2016;11:1–12. https://doi.org/10.1371/journal.pone.0151944.
[11] Kim SH, Lee JY, Lee JH, Kim JK, Choi BL. Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Eur Radiol 2011;21:987–95. https://doi.org/10.1007/s00330-010-1099-y.
[12] Sun YS, Zhang XP, Tang L, Ji JF, Gu J, Cai Y, et al. Locally advanced rectal carcinoma treated with preoperative chemoradiotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downgrading. Radiology 2016;254:170–8. https://doi.org/10.1148/radiol.254015239.
[13] Chan AKP, Wong AO, Langewin J, Jenken D, Heine J, Buie D, et al. Preoperative chemoradiation and pelvic radiation for tethered or fixed rectal cancer: a phase II dose escalation study. Int J Radiat Oncol Biol Phys 2000;48:843–6. https://doi.org/10.1016/s0360-3016(00)00692-1.
[14] Xie H, Sun T, Chen M, Wang H, Zhou X, Zhang Y, et al. Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer: a systematic review and meta-analysis. Medicine (Baltimore) 2015;94:e517.
[15] Pham TT, Liney GP, Wong K, Barton MB. Functional MRI for quantitative treatment response prediction in locally advanced rectal cancer. Br J Radiol 2017;90. https://doi.org/10.1259/bjr.20151078.
[16] Røymakers BW, Leggendijk JW, Overweg J, Kok JGM, Raaijmakers AJ, Kerkhof EM, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 2009;54:n229. https://doi.org/10.1088/0033-0603/54/12/n01.
[17] Røymakers BW, Leggendijk JW, Overweg J, Kok JGM, Raaijmakers AJ, Kerkhof EM, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 2009;54:n229. https://doi.org/10.1088/0033-0603/54/12/n01.
[18] Røymakers BW, Leggendijk JW, Overweg J, Kok JGM, Raaijmakers AJ, Kerkhof EM, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 2009;54:n229. https://doi.org/10.1088/0033-0603/54/12/n01.
[19] Røymakers BW, Leggendijk JW, Overweg J, Kok JGM, Raaijmakers AJ, Kerkhof EM, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 2009;54:n229. https://doi.org/10.1088/0033-0603/54/12/n01.
[20] Røymakers BW, Leggendijk JW, Overweg J, Kok JGM, Raaijmakers AJ, Kerkhof EM, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 2009;54:n229. https://doi.org/10.1088/0033-0603/54/12/n01.
[37] Blackledge MD, Collins DJ, Koh DM, Leach MO. Rapid development of image analysis research tools: bridging the gap between researcher and clinician with pyOsiriX. Comput Biol Med 2016;69:203–12. https://doi.org/10.1016/j.compbiomed.2015.12.002.

[38] Fu ZZ, Peng Y, Cao LY, Chen YS, Li K, Fu BH. Value of apparent diffusion coefficient (ADC) in assessing radiotherapy and chemotherapy success in cervical cancer. Magn Reson Imaging 2015;33:516–24. https://doi.org/10.1016/j.mri.2015.02.002.

[39] Shaverdian N, Yang Y, Hu P, Hart S, Sheng K, Lamb J, et al. Feasibility evaluation of diffusion-weighted imaging using an integrated MRI-radiotherapy system for response assessment to neoadjuvant therapy in rectal cancer. Br J Radiol 2017;90:20160739. https://doi.org/10.1259/bjr.20160739.

[40] Intven M, Reerink O, Philippens MEP. Repeatability of diffusion-weighted imaging in rectal cancer. J Magn Reson Imaging 2014;40:146–50. https://doi.org/10.1002/jmri.24937.

[41] Blazic I, Lilic G, Gajic M. Gastrointestinal imaging: quantitative assessment of rectal cancer response to neoadjuvant CRT Blazic et al. Radiology 2017;282:418–28.

[42] Petrelli F, Sgroi G, Sarti E, Barni S. Increasing the Interval Between Neoadjuvant Chemoradiotherapy and Surgery in Rectal Cancer: A Meta-analysis of Published Studies. Ann Surg 2016;263(7):458–64.

[43] Ingle M, Blackledge MD, White IM, Lalandrelle S, Hafeez S, Bhide S. OC - 0397 Quantitative Analysis of diffusion weighted imaging in rectal cancer during MR-Linac radiotherapy. Radiat Oncol 2021;161. S293-4.

[44] Yang L, Xia C, Zhao J, Zhou X, Wu B. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Eur J Radiol 2021;136:109504. https://doi.org/10.1016/j.ejrad.2020.109504.