Nuclear spin relaxation induced by a mechanical resonator

C. L. Degen1* and M. Poggio1,2, H. J. Mamin1, and D. Rugar1
1 IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose CA, 95120, USA.
2 Center for Probing the Nanoscale, Stanford University, 476 Lomita Hall, Stanford CA, 94305, USA.
(Dated: February 2, 2008)

We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.

PACS numbers: 76.60.-k, 85.85.+j, 05.40.Jc

Sensitive detection of nuclear spin signals requires a sensor that can couple strongly to the weak nuclear magnetic moment. For inductively detected nuclear magnetic resonance (NMR), where a resonant coil picks up the rf signal of the precessing spins, this is achieved by scaling down the coil size so as to improve the current-per-flux ratio [1]. Optimized inductive detectors are currently able to observe ensembles containing roughly 10^{12} proton spins, equivalent to about 10^{8} net magnetic moments [2]. Stronger couplings enabling higher spin sensitivity have been shown with magnetic force sensors, such as used in magnetic resonance force microscopy (MRFM) [3, 4], which recently measured the net moment of about 10^{3} nuclei [5].

In order to detect spins with still higher sensitivity, the detector must be coupled even more tightly to the nuclear magnetic moment. For a mechanical detector sensitive to forces in the x-direction, this is achieved by increasing the magnetic field gradient $\frac{\partial B_z}{\partial x}$, which generates the magnetic force $F_x = \mu \cdot \frac{\partial B_z}{\partial x}$, where μ is the total magnetic moment of the spin ensemble. Present MRFM technology employs gradients up to 10^6 T/m [5]. If the gradient can be successfully pushed into the range of 10^8 T/m, force detection of single nuclear spins may become feasible.

The strong interaction between spins and sensor, however, also increases the “back action” of the sensor on the spins and makes them more susceptible to detector noise. Here we are concerned with magnetic noise generated by the thermally vibrating cantilever, but similar effects can be expected in any real-world detector, as for example in an inductively-coupled rf circuit. The interaction between a mechanical resonator and spins has been the subject of a number of theoretical studies, and is predicted to lead to a host of intriguing effects. These range from shortening of spin lifetimes [6, 7], to spin alignment by specific mechanical modes either at the Larmor frequency or in the rotating frame [8, 9], to resonant amplification of mechanical oscillations [10].

In this letter, we report direct experimental evidence for accelerated nuclear spin relaxation induced by a single, low-frequency mechanical mode. The observed relaxation has its origin in the random magnetic field $\mathbf{B}(t) = \frac{\partial B_z}{\partial x} x(t)$ created by the thermal (Brownian) motion $x(t)$ of the cantilever in a large field gradient. The nuclear spin and mechanical oscillator degrees of freedom are well decoupled in strong static fields, since the spin precession frequency is orders of magnitude higher than typical cantilever frequencies. However, when an on-resonance transverse rf magnetic field B_1 is present, kHz frequency noise that overlaps with the Rabi frequency of the spin will induce spin relaxation. The rate of nuclear spin transitions may be described by the rotating-frame relaxation time T_{1p},

$$T_{1p}^{-1} = \frac{\gamma^2}{2} S_{Bz}(\omega_1),$$

where $\omega_1 = \gamma B_1$ is the Rabi frequency of the spin, γ is the gyromagnetic ratio, and $S_{Bz}(\omega_1)$ is the (double-sided) power spectral density of the z-component of $\mathbf{B}(t)$ [6, 11].

For a transversely oscillating cantilever as shown in Fig. 1, $S_{Bz}(\omega_1)$ is related to the spectrum of cantilever tip motion by $S_{Bz}(\omega_1) = \left(\frac{\partial B_z}{\partial x}\right)^2 S_x(\omega_1)$, and will — if $S_x(\omega_1)$ has thermal origin — be proportional to $k_B T$. Hence, in a strong coupling regime where the spin lifetime is dominated by noise from the mechanical resonator, we expect an explicit dependence on the field gradient, the Rabi frequency, the temperature, and the mechanical mode spectrum.

We find evidence for mechanically induced spin relaxation while measuring nuclear spin correlation times for small ensembles of statistically polarized 19F spins in a CaF$_2$ single-crystal sample [12, 13]. The setup for these experiments, shown in Fig. 1(a), combines three components: (1) an ultra-sensitive cantilever, (2) a nanoscale ferromagnetic tip, and (3) a micron-scale rf circuit for rf field generation. Experiments are carried out with
two different arrangements: setup A uses a 90-μm-long single-crystal Si cantilever [14] together with a FeCo thin-film conical tip and an external rf microcoil [5]. Setup B employs a slightly longer cantilever (120 μm) combined with a FeCo cylindrical pillar integrated onto a lithographically patterned rf microwire [15]. The CaF₂ samples, a few μm³ in size, are glued to the end of the cantilevers.

For spin detection we rely on the “rf frequency sweep” method to drive adiabatic spin inversions, thereby modulating the z-component of the nuclear polarization at the fundamental cantilever frequency [15, 16]. Here, the rf center frequency ω_{rf}/2π is 114 MHz with peak frequency deviation of the rf sweep Δω/2π in the range of 400 to 1000 kHz. We measure the correlation time τ_m of the cantilever tip oscillation amplitude, which reflects the correlation time of the nuclear polarization [13]. τ_m can be determined in several ways, for example by calculating the autocorrelation function [13], by measuring the linewidth of the associated power spectral density, or by using a bank of filters of different noise bandwidths [4]. τ_m is very closely related to the rotating frame relaxation time T_{1p}, as will be discussed below.

In a first set of experiments we observe that spin relaxation depends strongly on the distance between spins and magnetic tip. We attribute this observation to an associated variation of the magnetic field gradient. Figure 2(a) plots the relaxation rate τ_m⁻¹ as a function of applied external field B_{ext}. Since the external field sets the region of space where the resonance condition is met — indicated by the “resonant slice” in Fig. 1 — changing B_{ext} is equivalent to changing the region in the sample where we probe the spins. Spins located closer to the tip require less external field to satisfy the Larmor condition, γ|B_{ext} + B_{tip}| = ω_{rf}. For these spins, the resonance appears on the low end of the B_{ext} scan [Fig. 2(a)]. Likewise, spins far away from the tip experience the smallest B_{tip} and require the highest B_{ext}.

In order to relate τ_m⁻¹ to the magnetic field gradient, we first calculate the tip field B_{tip}(r) as a function of position r. A good model for the tip can be obtained by inferring the tip size from a scanning electron micrograph, and combining it with MRFM data for the tip moment [5]. To estimate the effective lateral field gradient G_{eff}(B_{ext}) = ∂B_{eff}/∂x for each resonant slice, we then derive the gradient from B_{tip}(r) and average it over the resonant slice volume [17]. As a result, we can relate the gradient to the external field and use this knowledge to plot τ_m⁻¹ as a function of G_{eff}, shown in Fig. 2(b) and (c).

We find that spin relaxation increases with the gradient as τ_m⁻¹ ∝ G_{eff}^{1.23±0.16}. Since the gradient is the main pa-

FIG. 1: (a) Experimental arrangement (setup A). A CaF₂ single crystal containing 19F nuclei is attached to the end of the cantilever and placed in a fixed position ~100 nm above a nanoscale FeCo magnetic tip. An rf magnetic field induces magnetic resonance in a thin “resonant slice” of spins where the Larmor resonance condition is fulfilled. Raising or lowering the external field B_{ext} shifts the resonant slice position up or down, allowing spins further from or closer to the tip to be selectively addressed, respectively.

FIG. 2: (a) Spin correlation time τ_m as a function of external field B_{ext}. Data points (dots) represent experimental values, measured with setup A. Spins are resonant at a total field of |B_{ext} + B_{tip}| = 2.85 T. (b) Effective field gradient G_{eff}(B_{ext}) as a function of B_{ext} calculated from tip model. (c) Relaxation rate τ_m⁻¹ as a function of field gradient G_{eff} obtained by combining (a) and (b). Solid line is a best fit with the lowest point excluded. Dashed line is a guide to the eye.
parameter describing the coupling between spins and oscillator, a stronger gradient is equivalent to a stronger coupling — hence the same mechanical noise creates more magnetic noise. While gradient-induced spin relaxation is the dominant relaxation mechanism in Fig. 2, other (intrinsic) processes will eventually dominate in the limit of small gradient. In Fig. 2, this may be the case for gradients $G_{\text{eff}} < 0.3 \, \text{G/mm}$.

In a second set of experiments we investigate the spin relaxation rate as a function of rf field magnitude $\omega_1 = \gamma B_1$. Here we are able to measure τ_m^{-1} for $\omega_1/2\pi$ between 60 and 170 kHz. The rf field magnitude is calibrated by a spin nutation experiment [60 and 170 kHz. The rf field magnitude is calibrated by a new dissipation channel is added. At low fields τ_m is presumably limited by the adiabatic condition (dashed line, Ref. [21]). (b) Spin relaxation rate τ_m^{-1} as a function of mode temperature T_{mode}, here for the third cantilever mode. The thermal motion of the mode is found to affect spin relaxation when $\omega_1/2\pi < f_3$ (upper figure), but not when $\omega_1/2\pi > f_3$ (lower figure). Solid line is a best fit.

The measured relaxation rates are shown in Fig. 3(a). We find that the spin relaxation rate decreases rapidly until reaching a distinct knee at $\omega_1/2\pi \approx 125$ kHz. We believe that this feature is directly related to the thermal vibration of the third cantilever mode, having a resonance frequency of $f_3 = 122$ kHz [see Fig. 4].

To further explore the role of the third mode we can modify its effective temperature, denoted by T_{mode}. For that purpose we excite the mode with bandwidth-limited noise using a piezoelectric actuator mechanically coupled to the cantilever. At the same time as we measure τ_m, we also monitor the mean-squared motion x_{rms} of the cantilever tip in that mode. We can assign an equivalent mode temperature $T_{\text{mode}} = k_i x_{\text{rms}}^2/k_B$, where k_i is the effective spring constant of mode i and k_B is Boltzmann’s constant. Note that while T_{mode} can become very large for strong mechanical actuation, the actual (or bath) temperature of the cantilever remains at $T = 4.5 \, \text{K}$, as the heat capacity of the single mode is much smaller than the heat capacity of the cantilever’s phonon bath and the modes are only very weakly coupled.

We investigate the dependence of τ_m^{-1} on T_{mode} at several different B_1 fields and find the two different behaviors shown in Fig. 3(b): If $\omega_1/2\pi$ lies above f_3, no change in spin relaxation is observed even for strong actuation. On the other hand, for $\omega_1/2\pi$ below f_3, relaxation is greatly enhanced. We can fit the dependence of the relaxation rate on the mode temperature and find $\tau_m^{-1} \propto (T_{\text{mode}})^{0.43 \pm 0.07}$. Because the slope does not level off even for low T_{mode}, the spin relaxation rate is set by the thermal fluctuations of the third cantilever mode over the entire investigated mode temperature range, in particular at thermal equilibrium where $T_{\text{mode}} = T$. At $\omega_1/2\pi = 98$ kHz, we can also try to enhance spin relaxation by actuating the second mode. No influence is observed, as expected, because $\omega_1/2\pi > f_2$.

In order to better understand the dependence of the spin correlation time on field gradient, rf field magnitude, and temperature, it is worthwhile to connect τ_m to the cantilever’s mode spectrum. We calculate the transition rate following the analysis of Mozyrsky et al. [6]. To obtain an expression for τ_m similar to Eq. (1), taking into account the time-dependence of the rf field frequency $\omega_1(t)$ during cyclic spin inversion, we assume that τ_m can be described as the average relaxation rate over a

FIG. 3: (a) Spin relaxation rate τ_m^{-1} as a function of rf field magnitude $\omega_1 = \gamma B_1$, measured with setup B. Each time ω_1 falls below a cantilever mode, indicated by dotted vertical lines, a new dissipation channel is added. At low fields τ_m is presumably limited by the adiabatic condition (dashed line, Ref. [21]). (b) Spin relaxation rate τ_m^{-1} as a function of mode temperature T_{mode}, here for the third cantilever mode. The thermal motion of the mode is found to affect spin relaxation when $\omega_1/2\pi < f_3$ (upper figure), but not when $\omega_1/2\pi > f_3$ (lower figure). Solid line is a best fit.

FIG. 4: Power spectral density of the thermomechanical noise at $T = 4.5 \, \text{K}$, showing the first three vibrational modes of cantilever B. Sketches illustrate the bending of the cantilever beam. Frequency, spring constant and quality factor of the lowest mode are $f_1 = 2.57 \, \text{kHz}$, $k_1 = 86 \, \mu\text{N/m}$ and $Q_1 = 17,000$.
frequency sweep,

$$\tau_{m}^{-1} = \frac{1}{T_{e}} \int_{0}^{T_{e}/2} dt \frac{\omega_{0}^{2}}{\omega_{\text{eff}}^{2}(t)} \gamma^{2} S_{Bz}(\omega_{\text{eff}}(t)).$$ (2)

(See also Ref. [6], Eq. (7)). Here, $T_{e} = 1/f_{e}$ is the oscillation period of the fundamental cantilever mode, $\omega_{\text{eff}}(t) = \{\omega_{1}(t) - \omega_{0}^{2} + \omega_{1}^{2}\}^{1/2}$ is the effective magnetic field [18], and $\omega_{1}(t)$ is modulated from $\omega_{0} - \Delta \omega$ to $\omega_{0} + \Delta \omega$. Note that because $\Delta \omega \gg \omega_{1}$, the Rabi frequency ω_{eff} traverses a broad range of frequencies during the sweep. A key difference between τ_{m} and $T_{1,\rho}$ is therefore that τ_{m} is sensitive to noise in a frequency band set by $\omega_{1} \leq \omega_{\text{eff}}(t) \leq \Delta \omega$, while $T_{1,\rho}$ is influenced by noise in the vicinity of ω_{1} only.

The magnetic noise spectrum $S_{Bz}(\omega)$ is given by

$$S_{Bz}(\omega) = G_{\text{eff}}^{2} \sum_{i=1}^{n} \frac{k_{B} T}{\pi k_{B} Q_{i}} \frac{(2\pi f_{i})^{4}}{((2\pi f_{i})^{2} - \omega^{2})^{2} + (2\pi f_{i}/\omega/Q_{i})^{2}},$$ (3)

where n is the number of modes with a significant noise contribution. Because of the high quality factors Q_{i}, $S_{Bz}(\omega)$ exhibits a discrete set of sharp peaks at the mode frequencies f_{i}. We can facilitate the analysis of Eq. (2) by treating the peaks as δ-functions, and find that

$$\tau_{m}^{-1} \approx \frac{\gamma^{2}G_{\text{eff}}^{2}k_{B} T}{2\Delta \omega} \sum_{i=n'} \frac{\omega_{i}^{2}}{2\pi k_{B} Q_{i}} \sqrt{(2\pi f_{i})^{4} - \omega_{i}^{4}},$$ (4)

where n' is the lowest mode whose resonance frequency $f_{n'}$ is above $\omega_{1}/2\pi$. In other words, when ω_{1} is reduced a new relaxation channel is added each time $\omega_{1}/2\pi$ becomes less than a cantilever resonance f_{i}. While n can be large, the lowest mode n' will dominate (4) because it has the lowest effective spring constant and hence the largest thermal vibration amplitude.

As a result, we find that Eq. (4) describes both the kink in Fig. 3(a) at the frequency of the third mode and produces the correct trends in G_{eff} and T_{mode}. Eq. (4) and Refs. [6, 19], however, predict that $\tau_{m}^{-1} \propto G_{\text{eff}}^{-2}T_{\text{mode}}$ — a significantly stronger dependence on G_{eff} and T_{mode} than our experimental observation, $\tau_{m}^{-1} \propto G_{\text{eff}}^{-1,23\pm0.16\sigma^{0.43\pm0.07}}$. We are aware of two possible reasons for this discrepancy: First, the analysis of the spin transition rate [Eq. (2)] is based on the Bloch-Redfield approximation, where the magnetic noise is assumed to be uncorrelated [20]. This assumption may be violated because the correlation time of the noise, $\tau_{c,i} = Q_{i}/\pi f_{i}$, can be significant, possibly even longer than τ_{m}. Furthermore, we assume that spins are non-interacting, which will not necessarily be valid, especially at low rf fields where local fields can easily exceed B_{1}.

In conclusion, we find that nuclear spin relaxation can be induced by a single, low-frequency mode of a micromechanical resonator. The spin relaxation rate is observed to increase both with the gradient and the effective mode temperature. We also find that long spin lifetimes are recovered when increasing the magnitude of the rf field to raise the Rabi frequency above the lowest mechanical mode frequencies.

We thank C. Rettner, M. Hart and M. Farinelli for fabrication of microwire and magnetic tip, B. W. Chui for cantilever fabrication, D. Pearson and B. Melior for technical support, and M. Ernst for helpful discussions. We acknowledge support from the DARPA QUIST program administered through the US Army Research Office, and the Stanford-IBM Center for Probing the Nanoscale, a NSF Nanoscale Science and Engineering Center. C. L. D. acknowledges funding from the Swiss National Science Foundation.

* Electronic address: degenc@gmail.com

[1] D. I. Hoult, and R. E. Richards, J. Magn. Res. 24, 71 (1976).
[2] D. A. Seeber, R. L. Cooper, L. Ciobanu, and C. H. Pennington, Rev. Sci. Instr. 72, 2171 (2001).
[3] J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).
[4] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature 430, 329 (2004).
[5] H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nature Nanotechnology 2, 301 (2007).
[6] D. Mozurysky, I. Martin, D. Pelekhov and P. C. Hammel, Appl. Phys. Lett. 82, 1278 (2003).
[7] G. P. Berman, V. N. Gorskikh, D. Rugar, and V. I. Tsifrinovich, Phys. Rev. B 68, 094402 (2003).
[8] P. C. M. Magusin, and W. S. Veeman, J. Magn. Res. 143, 243 (2000).
[9] M. C. Butler, V. A. Norton, and D. P. Weitekamp, Abstractions of papers of the American Chemical Society 229, U735-U735 217-PHYS, 2005; D. P. Weitekamp, Patent US 6,841,995 B2, 2005.
[10] I. Bargatin, and M. L. Roukes, Phys. Rev. Lett. 91, 138302 (2003).
[11] C. P. Slichter, Principles of Magnetic Resonance, 3rd edition, (Springer, Berlin, 1990), p. 206 ff and p. 242 ff.
[12] F. Bloch, Phys. Rev. 70, 460 (1946).
[13] C. L. Degen, M. Poggio, H. J. Mamin, and D. Rugar, Phys. Rev. Lett. 99, 250601 (2007).
[14] B. W. Chui et al., Technical Digest of the 12th International Conference on Solid-State Sensors and Actuators (Transducers ‘03), (IEEE Boston MA, USA, 2003), p. 1120.
[15] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 90, 263111 (2007).
[16] L. A. Madsen, G. M. Leskowitz, and D. P. Weitekamp, Proc. Nat. Acad. Sci. 101, 12804 (2004).
[17] The introduction of an effective gradient G_{eff} is necessary because not all spins in the resonant slice experience the same $\frac{\partial B_{z}}{\partial z}$. We believe that an appropriate definition for G_{eff} is the weighted-rms value $G_{\text{eff}}(B_{\text{ext}}) = \left\{ \sum_{k=1}^{n} \left[\frac{\partial B_{z}}{\partial z}(r_{k}) \right]^{2} \right\}^{1/2} / \sum_{k=1}^{n} \left[\frac{\partial B_{z}}{\partial z}(r_{k}) \right]^{2}$, because it gives more weight to spins contributing large
magnetic forces $F^2 = \mu^2 \left[\frac{\partial B}{\partial z}(r_k) \right]^2$ to the signal. \{r_k\}_{k=1..n} are the positions of the spins for which $|\gamma B_{tip}(r_k) - \omega_0| < \Delta \omega$.

[18] Ref. [11], p. 20-24.

[19] J. A. Sidles, J. L. Garbini, and G. P. Drobny, Rev. Sci. Instr. 63, 3881 (1992).

[20] Ref. [11], p. 199.

[21] By simulations of the Bloch equations one can show that the adiabaticity parameter A [see J. Baum, R. Tycko, and A. Pines, Phys. Rev. A 32, 3435 (1985)] relates to the maximum possible τ_m as $\tau_m^{-1} \approx 2f10^{-0.68A}$, where f is the cantilever frequency.