LOGARITHMIC VECTOR FIELDS FOR QUASIHOMOGENEOUS CURVE CONFIGURATIONS IN \mathbb{P}^2

HAL SCHENCK, HIROAKI TERAO, AND MASAHIKO YOSHINAGA

Abstract. Let $\mathcal{A} = \bigcup_{i=1}^{r} C_i \subseteq \mathbb{P}^2$ be a collection of smooth plane curves, such that each singular point is quasihomogeneous. We prove that if C is a smooth curve such that each singular point of $\mathcal{A} \cup C$ is also quasihomogeneous, then there is an elementary modification of rank two bundles, which relates the $\mathcal{O}_{\mathbb{P}^2}$-module $\text{Der}(\log \mathcal{A})$ of vector fields on \mathbb{P}^2 tangent to \mathcal{A} to the module $\text{Der}(\log (\mathcal{A} \cup C))$. This yields an inductive tool for studying the splitting of the bundles $\text{Der}(\log \mathcal{A})$ and $\text{Der}(\log (\mathcal{A} \cup C))$, depending on the geometry of the divisor $\mathcal{A}|_C$ on C.

1. Introduction

For a divisor Y in a complex manifold X, Saito [10] introduced the sheaves of logarithmic vector fields and logarithmic one forms with pole along Y:

Definition 1.1. The module of logarithmic vector fields is the sheaf of \mathcal{O}_X-modules

$$\text{Der}(\log Y)_p = \{ \theta \in \text{Der}_\mathbb{C}(X) | \theta(f) \in \langle f \rangle \},$$

where $f \in \mathcal{O}_{X,p}$ is a local defining equation for Y at p.

Saito’s work generalized earlier work of Deligne [4], where the situation was studied for Y a normal crossing divisor. If $\{x_1, \ldots, x_d\}$ are local coordinates at a point $p \in X$ and Y has local equation f, then $\text{Der}(\log Y)_p$ is the kernel of the evaluation map $\theta \mapsto \theta(f) \in \mathcal{O}_{Y,p}$, so there is a short exact sequence

$$0 \rightarrow \text{Der}(\log Y) \rightarrow T_X \rightarrow J_Y(Y) \rightarrow 0,$$

where J_Y is the Jacobian scheme, defined locally at p by $\{\partial f/\partial x_1, \ldots, \partial f/\partial x_d\}$. Saito shows that $\text{Der}(\log Y)_p$ is a free $\mathcal{O}_{X,p}$ module iff there exist d elements

$$\theta_i = \sum_{j=1}^{d} f_{ij} \frac{\partial}{\partial x_j} \in \text{Der}(\log Y)_p$$

such that the determinant of the matrix $[f_{ij}]$ is a nonzero constant multiple of the local defining equation for Y; this is basically a consequence of the Hilbert-Burch theorem. A much studied version of this construction occurs when $Y = V(F) \subseteq \mathbb{P}^d$ is a reduced hypersurface; $V(F)$ may also be studied as a hypersurface in \mathbb{C}^{d+1}. In particular, if $X = \mathbb{C}^{d+1}$ and $F \in S = \mathbb{C}[x_0, \ldots, x_d]$ is homogeneous, we write

Definition 1.2. $D(V(F)) = \{ \theta \in \text{Der}_\mathbb{C}(S) | \theta(F) \in \langle F \rangle \}$.

2000 Mathematics Subject Classification. Primary 52C35; Secondary 14J60.

Key words and phrases. curve arrangement, logarithmic forms.

Schenck supported by NSF 1068754, NSA H98230-11-1-0170.
Since F is homogeneous, $D(V(F))$ is a graded S–module, hence gives rise to an associated sheaf on \mathbb{P}^d. The kernel of the evaluation map $\theta \mapsto \theta(F)$

$$D(V(F)) \to S$$

consists of the syzygies on the Jacobian ideal of F, which we denote $D_0(V(F))$. Since the Euler vector field $\sum x_i \partial/\partial x_i$ gives a surjection

$$D(V(F)) \to \langle F \rangle \to 0,$$

we can split the map, hence

$$D(V(F)) \simeq D_0(V(F)) \oplus S(-1).$$

In particular, if F has degree n, then there is an exact sequence

$$0 \to D_0(V(F)) \to S^{d+1} \to S(n-1) \to S(n-1)/J_F \to 0.$$

This shows that $D(V(F))$ and the associated sheaf are second syzygies, so when $d = 2$, $D(V(F))$ is a vector bundle on \mathbb{P}^2. Since the depth of $D(V(F))$ is at least two, $D(V(F))$ is Γ_* of the associated sheaf; we use $D(V(F))$ to denote both the S–module and associated sheaf. Tensoring $D(V(F))$ with $\mathcal{O}_{\mathbb{P}^d}(1)$ yields the commutative diagram

\[
\begin{array}{ccccccccc}
0 & \to & \mathcal{O}_{\mathbb{P}^d} & \to & \mathcal{O}_{\mathbb{P}^d} & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & D(V(F))(1) & \to & \mathcal{O}_{\mathbb{P}^d}^{d+1}(1) & \to & \mathcal{O}_{V(F)} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & D(V(F))/E(1) & \to & \mathcal{I}_{\mathbb{P}^d} & \to & \mathcal{O}_{V(F)} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0 & & 0.
\end{array}
\]

The map γ sends $\theta = \sum f_i \partial/\partial x_i$ to $\theta(F)$, so γ surjects onto $J_F(n)$. Hence,

$$\text{Der}(\log V(F)) \simeq D(V(F))/E(1) \simeq D_0(V(F))(1).$$

In the case of generic hyperplane arrangements this is noted in [8], we include it here to make precise the relationship. A major impetus in studying $D(V(F))$ comes from the setting of hyperplane arrangements. If F is a product of distinct linear forms, then write $V(F) = \mathcal{A}$. Terao’s theorem [14] shows that in this setting, if $D(\mathcal{A})$ is a free S–module, with $D(\mathcal{A}) \simeq \oplus S(-a_i)$, then

$$\sum h^i((\mathbb{C}^{d+1} \setminus \mathcal{A}, \mathbb{Q}) \mathcal{O}^i = \prod (1 + a_i t).$$
1.1. Addition-Deletion theorems. A central tool in the study of hyperplane arrangements is an inductive method due to Terao. For a hyperplane arrangement \(\mathcal{A} \) and choice of \(H \in \mathcal{A} \), set

\[
\mathcal{A}' = \mathcal{A} \setminus H \quad \text{and} \quad \mathcal{A}'' = \mathcal{A}|_H.
\]

The collection \((\mathcal{A}', \mathcal{A}, \mathcal{A}'') \) is called a triple, and yields a left exact sequence

\[
0 \rightarrow D(\mathcal{A}')(\mathcal{A})(-1) \rightarrow H \rightarrow D(\mathcal{A}) \rightarrow D(\mathcal{A}'').
\]

Freeness of a triple is related via:

Theorem 1.3. [Terao, [15]] Let \((\mathcal{A}', \mathcal{A}, \mathcal{A}'') \) be a triple. Then any two of the following imply the third

- \(D(\mathcal{A}) \cong \bigoplus_{i=1}^n S(-b_i) \)
- \(D(\mathcal{A}') \cong S(-b_n + 1) \oplus \bigoplus_{i=1}^{n-1} S(-b_i) \)
- \(D(\mathcal{A}'') \cong \bigoplus_{i=1}^{n-1} S(-b_i) \)

For a triple with \(\mathcal{A} \subseteq \mathbb{P}^2 \), [12] shows that after pruning the Euler derivations and sheafifying, there is an exact sequence

\[
0 \rightarrow \mathcal{D}_0'(\mathcal{A})(-1) \rightarrow \mathcal{D}_0 \rightarrow i_* \mathcal{D}_0'' \rightarrow 0,
\]

where \(i : H \hookrightarrow \mathbb{P}^2 \); \(i_* \mathcal{D}_0'' \cong \mathcal{O}_H(1 - |\mathcal{A}'|) \). In [13], a version of this exact sequence (and associated addition-deletion theorem) is shown to hold for arrangements of lines and conics in \(\mathbb{P}^2 \) having all singularities quasihomogeneous. In related work, Dimca-Sticlaru study the Milnor algebra of nodal curves in [3].

1.2. Statement of results. This paper is motivated by the following example:

Example 1.4. The braid arrangement \(A_3 \) is depicted below; \(D(A_3) \) is free and is isomorphic to \(S(-1) \oplus S(-2) \oplus S(-3) \). There is a three dimensional family of cubics passing through the seven singular points of \(A_3 \). A generic member \(C \) of this family is smooth, and \(D(A_3 \cup C) \cong S(-1) \oplus S(-4) \oplus S(-4) \). Our main result is Theorem 1.5 which combined with Proposition 1.6 explains this example.

Theorem 1.5. Let \(\mathcal{A} = \bigcup_{i=1}^r C_i \) and \(\mathcal{A} \cup C \) be collections of smooth curves in \(\mathbb{P}^2 \), such that all singular points of \(\mathcal{A} \) and \(\mathcal{A} \cup C \) are quasihomogeneous. Then

\[
0 \rightarrow \text{Der}(\log \mathcal{A})(-n) \rightarrow \text{Der}(\log \mathcal{A} \cup C) \rightarrow \mathcal{O}_C(-K_C - R) \rightarrow 0
\]

is exact, where \(R = (\mathcal{A} \cap C)_{\text{red}} \) is the reduced scheme of \(C \cap \mathcal{A} \) and \(\text{deg}(C) = n \).
We prove the theorem in §3. For addition-deletion arguments, we will need

Proposition 1.6. Suppose $0 \to A \to B \to C \to 0$ is an exact sequence of graded $S = k[x_0, \ldots, x_n]$–modules, with A and B of rank two and projective dimension at most one. Then any two of the following imply the third

1. A is free with generators in degrees $\{a, b\}$.
2. B is free with generators in degrees $\{c, d\}$.
3. C has Hilbert series $\frac{e^t + e^d}{(1-t)^n}$.

Proof. That (1) and (2) imply (3) is trivial. If (1) and (3) hold and B is not free, then $\text{pdim}(B) = 1$, so B has a minimal free resolution of the form

$$0 \to F_1 \to F_0 \to B \to 0.$$

Note that $F_1 = \oplus S(-e_i)$ and $F_0 = \oplus S(-c) \oplus S(-d)$, since by additivity the Hilbert series of B is $\frac{e^t + e^d}{(1-t)^n}$. Without loss of generality suppose $d \geq c$. If the largest $e_i > d$, then since the resolution is minimal, no term of F_1 can map to the generator in degree e_i, which forces B to have a free summand of rank one. Since B has rank two this forces B to be free. Next suppose the largest $e_i = d$. Since the Hilbert series of B is $\frac{e^t + e^d}{(1-t)^n}$, B has a minimal generator of degree d. But then no element of F_1 can be a relation involving that generator, and again B has a free summand. This obviously also works when the largest e_i is less than d, and shows that (1) and (3) imply (2). The argument that (2) and (3) imply (1) is similar. □

If a bundle of the form $\text{Der}(\log A)$ splits as a sum of line bundles (is free), then applying Γ, to the short exact sequence of Theorem 1.5 yields a short exact sequence of modules, since $H^1(\oplus O_{\mathbb{P}^2}(a_i)) = 0$. Then by Proposition 1.6 on \mathbb{P}^2 the freeness of $\text{Der}(\log A \cup C)$ follows if appropriate numerical conditions hold. In contrast to arrangements of rational curves (where the Hilbert series of $\Gamma_*(\mathcal{O}_C(-K_C - R))$ depends only on the degree of R, since $C \simeq \mathbb{P}^1$), for curves of positive genus the Hilbert series of $\Gamma_*(\mathcal{O}_C(-K_C - R))$ depends on subtle geometry.

2. **Quasihomogeneous plane curves**

Let $C = V(Q)$ be a reduced (but not necessarily irreducible) curve in \mathbb{C}^2, let $(0, 0) \in C$, and let $\mathbb{C}[x, y]$ denote the ring of convergent power series.

Definition 2.1. The Milnor number of C at $(0, 0)$ is

$$\mu_{(0, 0)}(C) = \dim_{\mathbb{C}} \mathbb{C}[x, y]/(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

To define μ_p for an arbitrary point p, we translate so that p is the origin.

Definition 2.2. The Tjurina number of C at $(0, 0)$ is

$$\tau_{(0, 0)}(C) = \dim_{\mathbb{C}} \mathbb{C}[x, y]/(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, f).$$

Definition 2.3. A singularity is quasihomogeneous iff there exists a holomorphic change of variables so the defining equation becomes weighted homogeneous; $f(x, y) = \sum c_{ij} x^i y^j$ is weighted homogeneous if there exist rational numbers α, β such that $\sum c_{ij} x^{i \alpha} y^{j \beta}$ is homogeneous.
In [11], Saito shows that if f is a convergent power series with isolated singularity at the origin, then f is in the ideal generated by the partial derivatives if and only if f is quasihomogeneous. As noted in §1.3 of [13], if all the singular points of $V(Q) \subseteq \mathbb{P}^2$ are quasihomogeneous, then

$$\deg(J_Q) = \sum_{p \in \text{Sing}(V(Q))} \mu_p(Q).$$

Lemma 2.4. [17, Theorem 6.5.1] Let X and Y be two reduced plane curves with no common component, meeting at a point p. Then

$$\mu_p(X \cup Y) = \mu_p(X) + \mu_p(Y) + 2(X \cdot Y)_p - 1,$$

where $(X \cdot Y)_p$ is the intersection number of X and Y at p.

Proposition 2.5. Let A and $A \cup C$ be quasihomogeneous, with $C = V(f)$ of degree n and $A = V(Q)$ with Q of degree m. Then the Hilbert polynomial $HP(\text{coker}(f), t)$ of the cokernel of the multiplication map

$$0 \rightarrow D(A)(-n)/E \xrightarrow{f} D(A \cup C)/E$$

is $nt + 3(1 - g_C) - n - k$, where $k = |C \cap A|$.

Proof. By Equation [11] and the exact sequences

$$0 \rightarrow D_0(A \cup C) \rightarrow S^3 \rightarrow S(m + n - 1) \rightarrow S(m + n - 1)/J_{A \cup C} \rightarrow 0,$$

$$0 \rightarrow D_0(A)(-n) \rightarrow S^3(-n) \rightarrow S(m - n - 1) \rightarrow S(m - n - 1)/J_A \rightarrow 0,$$

it follows that

$$HP(D_0(A \cup C), t) = 3\left(\frac{t+2}{2}\right) - \left(\frac{t+1+m+n}{2}\right) + \deg(J_{A \cup C}),$$

$$HP(D_0(A)(-n), t) = 3\left(\frac{t+2-n}{2}\right) - \left(\frac{t+1+m-n}{2}\right) + \deg(J_A),$$

so that $HP(D_0(A \cup C), t) - HP(D_0(A)(-n), t)$ is equal to

$$\deg(J_{A \cup C}) - \deg(J_A) = nt - n(2m + 1) + \frac{3}{2}(3 - n)(n).$$

Since C is smooth of degree n, $\frac{3}{2}(3 - n)(n) = 3(1 - g_C)$. To compute $\deg(J_{A \cup C}) - \deg(J_A)$, note that since all singularities of A and $A \cup C$ are quasihomogeneous,

$$\deg(J_{A \cup C}) = \sum_{p \in \text{Sing}(A \cup C)} \mu_p(A \cup C) \quad \text{and} \quad \deg(J_A) = \sum_{p \in \text{Sing}(A)} \mu_p(A).$$

Let α be the sum of Milnor numbers of points off C, so

$$\deg(J_{A \cup C}) = \alpha + \sum_{p \in C \setminus A} \mu_p(A \cup C).$$

Since $\mu_p(C) = 0$, by Lemma 2.4, the previous quantity equals

$$\alpha + \sum_{p \in C \setminus A} (\mu_p(A) + 2(C \cdot A)_p - 1).$$

As $\deg(J_A) = \alpha + \sum_{p \in C \setminus A} \mu_p(A)$ and $|C \cap A| = k$, we obtain:

$$\deg(J_{A \cup C}) - \deg(J_A) = 2 \sum_{p \in C \setminus A} (C \cdot A)_p - k.$$
By Bezout’s theorem,
\[\sum_{p \in C \cap A} (C \cdot A) = mn, \text{ so } \deg(J_{A \cup C}) - \deg(J_A) = 2mn - k, \]

hence the Hilbert polynomial of the cokernel is
\[nt - n(2m + 1) + 3(1 - g_C) + 2mn - k = nt - n - k + 3(1 - g_C). \]

\[\square \]

3. Main Theorem

We now prove Theorem 1.5. First we show that the sheaf associated to the cokernel of the multiplication map
\[0 \to \text{Der}(\log A)(-n) \xrightarrow{f} \text{Der}(\log A \cup C) \]
is isomorphic to \(\mathcal{O}_C(D) \), where \(D \) is a divisor of degree \(3n - n^2 - k \). Consider the commuting diagram below

\[
\begin{array}{ccc}
0 & \to & \text{Der}(\log A)(-n) \\
\downarrow & & \downarrow \\
0 & \to & T_{\mathcal{P}_2}(\mathcal{P}) \\
\downarrow & & \downarrow \quad f \\
0 & \to & J_A(-n) \\
\downarrow & & \downarrow \\
0 & \to & J_{A \cup C} \\
\downarrow & & \downarrow \\
0 & \to & \text{coker}(f) \\
\downarrow & & \downarrow \\
0 & \to & T_{\mathcal{P}_2}/f \cdot T_{\mathcal{P}_2} \\
\downarrow & & \downarrow \\
0 & \to & J_{A \cup C}/J_A(-n) \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array}
\]

Exactness of the top two rows follows from the definition, and since all the modules are torsion free, multiplication by \(f \) gives an inclusion. Exactness of the bottom row then follows from the snake lemma. The exact sequence
\[0 \to S \to S^3(1) \to \Gamma_* (T_{\mathcal{P}_2}) \to 0, \]
shows that the Hilbert polynomial of \(\Gamma_* (T_{\mathcal{P}_2}/f \cdot T_{\mathcal{P}_2}) \) is \(2nt + 6n - n^2 \). Since \(T_{\mathcal{P}_2}/f \cdot T_{\mathcal{P}_2} \simeq T_{\mathcal{P}_2} \otimes \mathcal{O}_C, \) and \(T_{\mathcal{P}_2} \otimes \mathcal{O}_C \) is a locally free rank two \(\mathcal{O}_C \)-module, \(\text{coker}(f) \) is a torsion free submodule of \(T_{\mathcal{P}_2} \otimes \mathcal{O}_C \), hence locally free on \(C \), of rank one or two. Since
\[\text{Der}(\log A \cup C) \simeq D_0(A \cup C)(1), \]
by Proposition 2.3, the Hilbert polynomial of \(\Gamma_* (\text{coker}(f)) \) is \(nt - k + 3(1 - g_C) \), so \(\text{coker}(f) \simeq \mathcal{O}_C(D) \). To determine the degree of \(D \), we compute
\[
\text{HP}(\Gamma_* (\text{coker}(f)), t) = h^0(\mathcal{O}_C(D + tH)), \ t \gg 0 \\
= \deg(D + tH) + 1 - g_C \\
= \deg(D) + nt + 1 - g_C.
\]
Equating this with the previous expression shows that $\deg(D) = 2 - 2g_C - k$. By adjunction,

$$2g_C - 2 = C(C + K_{\mathbb{P}^2}) = nH(nH - 3H) = n^2 - 3n,$$

so $\deg(D) = 3n - n^2 - k$. Notice this shows the left hand column is an elementary modification of bundles. To conclude, consider the short exact sequence

$$0 \rightarrow \mathcal{T}_C \rightarrow \mathcal{T}_{\mathbb{P}^2} \otimes \mathcal{O}_C \rightarrow N_{C/\mathbb{P}^2} \rightarrow 0.$$

Since $\mathcal{O}_C(D)$ comes from the restriction of Der(log $\mathcal{A} \cup C$) to C, it must actually be a subbundle of \mathcal{T}_C, which by adjunction is isomorphic to $\mathcal{O}_C((3-n)H)$. For the same reason, sections must vanish at points of $\mathcal{A} \cap \mathcal{C}$, so that $\mathcal{O}_C(D) \subseteq \mathcal{O}_C((3-n)H - R)$. But the degree of this last bundle is $3n - n^2 - k$, so we have equality, which concludes the proof. \square

3.1. Castelnuovo-Mumford regularity. Theorem 1.5 yields bounds on the Castelnuovo-Mumford regularity of logarithmic vector bundles and, by dualizing, for logarithmic one forms for quasihomogeneous curve arrangements.

Definition 3.1. A coherent sheaf \mathcal{F} on \mathbb{P}^d is j-regular iff $H^i\mathcal{F}(j - i) = 0$ for every $i \geq 1$. The smallest number j such that \mathcal{F} is j-regular is $\text{reg}(\mathcal{F})$.

Lemma 3.2. With the hypotheses of Theorem 1.5

$$\text{reg}(\mathcal{D}_0(\mathcal{A} \cup C)) \leq \max\{\text{reg}(\mathcal{D}_0(\mathcal{A})) + n, 2n - 4 + \frac{k}{n}\}.$$

Proof. The short exact sequence

$$0 \rightarrow \mathcal{D}_0(\mathcal{A})(-n) \rightarrow \mathcal{D}_0(\mathcal{A} \cup C) \rightarrow \mathcal{O}_C(-K_{C} - H - R) \rightarrow 0$$

gives a long exact sequence in cohomology, so if $\mathcal{D}_0(\mathcal{A})$ is a-regular, then

$$h^1(\mathcal{D}_0(\mathcal{A})(a - 1)) = 0 = h^2(\mathcal{D}_0(\mathcal{A})(a - 2)).$$

So if $t - n - 1 \geq a - 1$ and $t - n - 2 \geq a - 2$ we have that

$$h^1(\mathcal{D}_0(\mathcal{A})(t - n - 1)) = 0 = h^2(\mathcal{D}_0(\mathcal{A})(t - n - 2)).$$

This gives vanishings if $t - n \geq a$, that is, if $t \geq \text{reg} \mathcal{D}_0(\mathcal{A}) + n$. The result will follow if

$$h^1\mathcal{O}_C((t-2)H - K_{C} - R) = h^0\mathcal{O}_C((2-t)H + 2K_{C} + R) = 0.$$

Using that $K_{C} = (n-3)H$, this holds if $\text{deg}((t-2)H + 2K_{C} + R) < 0$, that is, when

$$t > 2n - 4 + \frac{k}{n}.$$

The result follows. \square

The previous proof shows that the Hilbert function of $\Gamma_*\mathcal{O}_C(-K_{C} - H - R)$ is equal to the Hilbert polynomial when $t > 2n - 4 + \frac{k}{n}$.

Proposition 3.3. With the hypotheses of Theorem 1.5, the Hilbert function of $\Gamma_*\mathcal{O}_C(-K_{C} - H - R)$ is $nt + 3(1 - g_C) - n - k$ for

$$t < n - 2 + \frac{k}{n} \text{ or } t > 2n - 4 + \frac{k}{n}.$$

Proof. If $t < n - 2 + \frac{k}{n}$, then the degree of $(t-1)H - K_{C} - R$ is negative, so there can be no sections. \square
4. Examples

Example 4.1. We analyze Example 1.4 in more detail. Since C is a cubic curve, $g_C = 1$ and $K_C \simeq O_C$. Since C meets every line of A in three points, $k = |C \cap A| = 7$. By Proposition 3.3, the Hilbert polynomial and Hilbert function of $\Gamma_* O_C(-K_C - H - R)$ agree for $t < \frac{40}{3}$ and $t > \frac{12}{3}$, and so applying Proposition 2.5 and Theorem 1.5 we have

t	0	1	2	3	4	5	6	7
$h^0((t-1)H - K_C - R)$	0	0	0	0	?	5	8	11

Now, $H^0((4-1)H - R)$ consists of cubics through the seven singular points of A, and this space has dimension 2, since C is itself one of the three cubics, so is not counted. Thus, in this example the Hilbert polynomial $3t - 10$ agrees with the Hilbert function for all t, and

$$HS(\Gamma_* O_C(-K_C - H - R), t) = \frac{2t^4 + t^5}{(1-t)^2} = \frac{2t^4 - t^5 - t^6}{(1-t)^3}.$$

Terao’s result [16] on reflection arrangements shows that $D(A_3) \simeq S(-1) \oplus S(-2) \oplus S(-3)$, so

$$\text{Der}(\log A_3(-3)) \simeq S(-5) \oplus S(-6).$$

Taking global sections in Theorem 1.5 and applying Proposition 1.6, we find that $\text{Der}(\log A_3 \cup C)$ is free, with

$$HS(\text{Der}(\log A_3 \cup C)) = \frac{t^5 + t^6}{(1-t)^2} + \frac{2t^4 - t^5 - t^6}{(1-t)^3} = \frac{2t^4}{(1-t)^3}.$$

Example 4.2. The reflection arrangement B_3 consists of the nine planes of symmetry of a cube in \mathbb{R}^3. The intersection of B_3 with the affine chart U_z is depicted below (this does not show the line at infinity $z = 0$). By [16]

$$D(B_3) \simeq S(-1) \oplus S(-3) \oplus S(-5).$$

This configuration has 13 singular points, so if the singularities were in general position there would only be a two-dimensional space of quartics passing through the points. However, there are three quadruple points, and each set of lines through one of these points is a quartic vanishing on the singularities. A computation shows...
that a generic quartic \(C \) in this three dimensional space is smooth, and that \(B_3 \cup C \) is quasihomogeneous.

By Proposition 3.3 the Hilbert polynomial and Hilbert function of the module \(\Gamma_\ast \mathcal{O}_C(-K_C - H - R) \) agree for \(t < \frac{24}{4} \) and \(t > \frac{29}{4} \), and so applying Proposition 2.5 and Theorem 1.5 we have

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{t} & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
h^0((t - 1)H - K_C - R) & 0 & 0 & ? & 9 & 13 & 17 & 21 \\
\hline
\end{array}
\]

It remains to determine \(H^0((t - 2)H - R) \) for \(t \in \{6,7\} \). The space \(H^0(AH - R) \) consists of quartics through the thirteen singular points of \(B_3 \). As observed above, this space has dimension 3, but \(C \) itself is one of the quartics, so \(h^0(AH - R) = 2 \). A direct calculation shows that \(h^0(5H - R) = 5 \), so

\[
\text{HS}(\Gamma_\ast \mathcal{O}_C(-K_C - H - R), t) = \frac{2t^6 + t^7 + t^8}{(1 - t)^2} = \frac{2t^6 - t^7 - t^9}{(1 - t)^3}.
\]

Since \(\text{Der}(\log B_3)(-4) \simeq S(-7) \oplus S(-9) \), taking global sections in Theorem 1.5 and applying Proposition 1.6 shows \(\text{Der}(\log B_3 \cup C) \) is free, with

\[
\text{HS}(\text{Der}(\log B_3 \cup C), t) = \frac{t^5 + t^6}{(1 - t)^2} + \frac{2t^6 - t^7 - t^9}{(1 - t)^3} = \frac{2t^6 - t^7 - t^9}{(1 - t)^3}.
\]

Example 2.2 of [13] shows in general that \(\text{sing}(A) \neq \text{sing}(A \cup C) \).

Concluding remarks Our work raises a number of questions:

(1) Does this generalize to other surfaces? For the Hilbert polynomial arguments to work, the surface should possess an ample line bundle. More generally, does this generalize to higher dimensions? Note that [13] shows the quasihomogeneous property will be necessary.

(2) The Hilbert series of \(\Gamma_\ast \mathcal{O}_C(-K_C - H - R) \) depends solely on a set of reduced points on a plane curve. If \(A = \bigcup_{i=1}^r Y_i \) with \(Y_i \) reduced and irreducible, can an iterated construction using linkage yield the Hilbert series?

(3) In [7], Liao gives a formula relating Chern classes of logarithmic vector fields to the Chern-Schwartz-MacPherson class of the complement, showing that on a surface the two are equal exactly when the singularities are quasihomogeneous, and in [1], Aluffi gives an explicit relation between the characteristic polynomial of an arrangement and the Segre class of the Jacobian scheme. Can one prove Theorem 1.5 using these methods?

Acknowledgments: Macaulay2 computations were essential to our work. Our collaboration began at the Mathematical Society of Japan summer school on arrangements; Terao and Yoshinaga were organizers and Schenck a participant, and we thank the Mathematical Society of Japan for their generous support.
References

[1] P. Aluffi, Grothendieck classes and Chern classes of hyperplane arrangements, IMRN, to appear.
[2] P. Deligne, Theorie de Hodge II, Inst. Hautes Etudes Sci. Publ. Math. 40 (1971), 5-58.
[3] I. Dolgachev, M. Kapranov, Arrangements of hyperplanes and vector bundles on \mathbb{P}^n, Duke Mathematical Journal 71 (1993), 633-664.
[4] I. Dolgachev, Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ. 47 (2007), 35-64.
[5] A. Dimca, G. Sticlaru, Chebyshev curves, free resolutions and rational curve arrangements, Math. Proc. Cambridge Philos. Soc. 153 (2012), 385–397.
[6] D. Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, Berlin-Heidelberg-New York, 1995.
[7] X. Liao, Chern classes of logarithmic vector fields, J. Singul. 5 (2012), 109–114.
[8] M. Mustaţă, H. Schenck, The module of logarithmic p-forms of a locally free arrangement, J. Algebra, 241 (2001), 699-719.
[9] P. Orlik, H. Terao, Arrangements of Hyperplanes, Grundlehren Math. Wiss., Bd. 300, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[10] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265–291.
[11] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Inventiones Mathematiscae 14 (1971), 123-142.
[12] H. Schenck, Elementary modifications and line configurations in \mathbb{P}^2, Commentarii Mathematici Helvetici, 78 (2003), 447-462.
[13] H. Schenck, S. Tohaneanu, Freeness of conic-line arrangements in \mathbb{P}^2, Commentarii Mathematici Helvetici, 84 (2009), 235-258.
[14] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd-Brieskorn formula, Inventiones Mathematicae 63 (1981), 159–179.
[15] H. Terao, Arrangements of hyperplanes and their freeness I, J. Fac. Sci. Univ. Tokyo 27 (1980), 293–312.
[16] H. Terao, Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A 56 (1980), 389–392.
[17] C.T.C. Wall, Singular points of plane curves, Cambridge University Press, (2004).
[18] M. Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. Soc. 37 (2005), no. 1, 126–134.

SCHENCK: Mathematics Department, University of Illinois, Urbana, IL 61801, USA
E-mail address: schenck@math.uiuc.edu

TERAO: Department of Mathematics, Hokkaido University, Sapporo, 060-0310, Japan
E-mail address: htera00@za3.so-net.ne.jp

YOSHINAGA: Department of Mathematics, Hokkaido University, Sapporo, 060-0310, Japan
E-mail address: yoshinaga@math.sci.hokudai.ac.jp