ENVIRONMENTAL STUDIES

The intensification of the water footprint of hydraulic fracturing

Andrew J. Kondash, Nancy E. Lauer, Avner Vengosh*

Unconventional oil and gas exploration in the United States has experienced a period of rapid growth, followed by several years of limited production due to falling and low natural gas and oil prices. Throughout this transition, the water use for hydraulic fracturing and wastewater production in major shale gas and oil production regions has increased; from 2011 to 2016, the water use per well increased up to 770%, while flowback and produced water volumes generated within the first year of production increased up to 550%. The water-use intensity (that is, normalized to the energy production) increased in all U.S. shale basins except the Marcellus basin during this transition period. The steady increase of the water footprint of hydraulic fracturing with time implies that future unconventional oil and gas operations will require larger volumes of water for hydraulic fracturing, which will result in larger produced oil and gas wastewater volumes.

INTRODUCTION

The environmental impacts of a fossil fuel–powered economy have led many nations across the world to begin developing greener energy and transportation solutions. In particular, the water footprint of fossil fuel exploration and electricity production has been projected to have major environmental impacts. It has been estimated that global water withdrawal for energy production constitutes 15% of the world’s total water consumption (1). Rapidly diminishing global water resources due to population growth and climate change have further exacerbated energy dependence on water availability, particularly in water-scarce regions (2–5). The beginning of the 21st century marks a special era with respect to global energy and water resources. The development of new drilling technologies and production strategies such as horizontal drilling and hydraulic fracturing has significantly improved the production of natural gas and oil by stimulating fluid flow from impermeable shale rocks previously not considered viable energy sources. Since the mid-2000s, these developments have spurred exponential growth of unconventional gas and oil well drilling across the United States and are spreading now to other parts of the world (Figs. 1 and 2) (4, 6–10). The rise of unconventional energy development has generated public debate on its environmental implications (11–16), especially with respect to both water availability and quality (2, 4, 8, 17–21).

The process of hydraulic fracturing uses large volumes of water mixed with chemicals and proppant (sand) to fracture and hold open fractures in low-permeability shale and tight oil rocks to allow extraction of hydrocarbons. Despite higher water intensity (the amount of water used to produce a unit of energy; for example, liters per gigajoules) of hydraulic fracturing compared to conventional vertical oil and gas wells, it has been shown that the overall water withdrawal for hydraulic fracturing is negligible compared to other industrial water uses on a national level (6, 7, 22, 23). On a local scale, however, water use for hydraulic fracturing can cause conflicts over water availability, especially in arid regions such as western United States, where water supplies are limited (2, 20, 24, 25).

The wastewater generated from hydraulic fracturing is composed of a blend of returned injected hydraulic fracturing water and typically high saline formation water that flows back out of the well after hydraulic fracturing to generate flowback and produced (FP) waters. Over time, the contribution of the saline formation water increases, which results in an increase in the salinity of the FP water. The salts, toxic elements, organic matter, and naturally occurring radioactive material in the FP water pose contamination risks to local ecosystems from spills (14, 26) and mismanagement (6, 27–29). In addition to these risks, treatment of the FP water to safely return and release to the environment is energy-intensive and expensive; thus, many operators are forced to either recycle the FP water onsite for future hydraulic fracturing operations or reinject it into deep-injection wells.

Current technological limitations to the efficiency of hydraulic fracturing include a rapid decrease (20 to 50% of total production after the first year) in unconventional gas and oil production through time after initial production, and the fact that a significant portion of the gas in the shale formations is left unproduced (22, 30). Despite these limitations, advancements in hydraulic fracturing and horizontal drilling technology have increased production of gas and oil from shale regions; between 2007 and 2016, the shale gas production has increased by eightfold in the United States (1). Two recent studies have suggested that intensification of the hydraulic fracturing process through drilling longer horizontal laterals has resulted in increased water use and hydrocarbon production (20, 25). Given the relatively long history of hydraulic fracturing in United States, understanding how the water footprint of hydraulic fracturing has evolved through time with technological advancements and shifting economic conditions is critical (22, 23). Lessons learned from U.S. production development can directly influence planning and implementation of hydraulic fracturing practices, as other countries such as China bring their natural gas reserves online.

For the first time, this study presents systematic temporal data on water use, unconventional shale gas and tight oil production rates, and volume of FP water from major shale-producing regions in the United States. In addition, we combine several databases to estimate the efficiency of production from both hydrocarbons and water perspective on a year-by-year basis, showing that the water footprint of hydraulic fracturing has been steadily increasing through time.
RESULTS
In each of the six regions studied in this report, water use per well is increasing (Fig. 2 and tables S1 and S2). The Marcellus region (Pennsylvania and West Virginia) had the lowest increase in water use (20%), from a median value of 23,400 m3 per well in 2011 to 27,950 m3 per well in 2016, while the Permian Basin (Texas and New Mexico) had the largest increase in water use (770%), from 4900 m3 per well in 2011 up to 42,500 m3 per well in 2016. Median water-use volumes varied largely among regions, with the Bakken region using the least water (21,100 m3 per well in 2016) and the Permian basin using the most water (42,500 m3 per well in 2016). Horizontal drilling requires producers to drill vertically to a target depth and then curve the well horizontally through shale formations, maximizing the surface area producing oil and gas. The length of the portion of the well that was drilled horizontally is referred to as the lateral length, with hydraulic fracturing events occurring in stages as a well is drilled further horizontally. Over the period of 2011–2016, the median length of lateral section of horizontal wells also increased (tables S1 and S2), most likely due to technological development and economic considerations to increase the extraction yields from individual wells. We show below that the hydrocarbon extraction intensity has similarly increased during this period. Parallel to the increase in lateral lengths of the horizontal wells and hydrocarbon extraction yields through time, the water use has also increased. The relative increase in lateral length (4 to 60%) was, however, significantly lower than the increase in water use (14 to 770%). When water use per well is normalized to the length of lateral section of the horizontal well, in almost every case among oil producing regions, we observed an increase in water use per length of the horizontal well. This pattern is most evident in the Permian region, where water use increased from 4.4 m3 per meter in 2011 to 29.3 m3 per meter in 2016 for gas-producing wells, and from 3.9 m3 per meter in 2011 to 21.1 m3 per meter in oil-producing wells (tables S1 and S2). The smallest observed changes were in the Marcellus and Eagle Ford gas regions, where water use per horizontal length has been relatively consistent through time.
In all cases with the exception of Marcellus in 2016, the FP water generation was also increasing through time, with particularly higher rates after 2014 (Fig. 3 and tables S1 and S2). Both the gas- and oil-producing portions of the Eagle Ford region showed large increases through time, with a 550% increase in FP water in the oil-bearing section (from 2302 m³ per well in 2011 to 15,119 m³ per well in 2016) and a 390% increase in the gas-bearing section (from 1414 m³ per well in 2011 to 6940 m³ per well in 2016). The smallest increase in FP water occurred in the Niobrara region, where production increased from 1980 m³ per well in 2011 to 3080 m³ per well in 2016.

Coupled with the increase in water use and FP water production rates, unconventional natural gas production shows an upward trend in production, with volumes increasing through time among the regions. Year 1 shale gas production in the Permian region increased from 10.0 × 10⁶ m³ per well in 2011 to 15,119 m³ per well in 2016 before falling to 11.6 × 10⁶ m³ per well in 2016 (Fig. 3). Similarly, year 1 shale gas production in the Marcellus formation increased through time, from 23.4 × 10⁶ m³ per well in 2011 to 46.9 × 10⁶ m³ per well in 2016. In contrast, in the Eagle Ford formation, year 1 production remained relatively constant from 2011 through 2016.

Unconventional oil production shows a consistent increase in year 1 oil production volume per well through time, with values falling only in the Bakken region from 2011 to 2012. The largest increase was in the Permian region, where oil production increased from 2176 m³ per well in 2011 to 26,788 m³ per well in 2016, a 290% increase (Fig. 3). When comparing our estimate of total year 1 hydrocarbon production (year 1 estimate multiplied by well count estimate) to total hydrocarbon production reported by the Energy Information Administration (EIA) (fig. S1) (31), we see that year 1 production parallels total oil production in most regions in the United States.

We define the water-use intensity for hydraulic fracturing as the amount of water used for hydraulic fracturing to generate a unit of energy from the produced gas and oil (see Materials and Methods) (19, 23, 32). In gas-producing regions, water-use intensity (for the first 12 months of production) ranges from 9.2 liters/GJ (Haynesville) to 20.3 liters/GJ (Marcellus) in 2011 and grew to between 11.5 liters/GJ (Haynesville) and 56.8 liters/GJ (Permian) in 2016 (Fig. 4 and tables S1 and S2). In the Marcellus region, water use intensity decreased through time. Unconventional oil regions also have increasing water-use intensities, increasing from 14.3 liters/GJ (Bakken) in 2011 to 46 liters/GJ (Permian) in 2016. For comparison, the average water intensity of conventional natural gas is only 4 liters/GJ for drilling and extraction, while coal mining constitutes a mean value of 43 liters/GJ (fig. S4) (33). Water-use intensity is also calculated as the ratio between the volume of water used and the volume of hydrocarbon produced (tables S1 and S2 and fig. S2). The increase of the water use to hydrocarbon production ratios with time seen in many regions indicates that the intensification of the hydraulic fracturing process to increase hydrocarbon production rates involves net addition of water, and thus, the water intensity has increased with time.

When comparing the volume of FP water production rates to the water used for hydraulic fracturing, we show that, in many cases, more water is used for hydraulic fracturing than returns as FP water over the first year (Fig. 4; FP water/water use ratio < 1). In shale gas-producing regions, we see an increase in the ratio until 2014, followed by a decrease in the ratio through 2016. The Permian region is unique as the FP water/water use ratios for both unconventional...
oil and gas wells are consistently higher than 1. Unconventional oil-producing regions follow the same trend as the gas-producing regions in the FP water/water use ratio (Fig. 4 and table S2).

DISCUSSION

Much of the controversy surrounding hydraulic fracturing revolves around the use of large volumes of water to hydraulically fracture wells. Concern is especially high in semiarid regions (Fig. 1), where water withdrawals for hydraulic fracturing can account for a significant portion of consumptive water use within a given region, even contributing to groundwater resource depletion (2). Overall, there have been calls to increase the use of alternative water sources such as brackish water or recycling FP water, minimizing the strain on local freshwater resources (2, 25).

Previous studies have suggested that hydraulic fracturing does not use significantly more water for exploration and production than other energy sources (fig. S4) and, at the same time, indicated that water use for hydraulic fracturing makes up only a small fraction of the industrial water utilization in the United States (7, 22, 23, 33). These evaluations were based on aggregated water footprint data during the early years (2011–2014) of hydraulic fracturing in the United States. Here, we show, however, steadily increasing volumes of water use with time in all the major unconventional gas and oil regions (Fig. 2 and tables S1 and S2). Parallel to the increase of shale gas and tight oil production intensity, we also show that the water intensity of hydraulic fracturing is increasing for most unconventional gas and oil regions (Fig. 4 and tables S3 and S4). In addition, the water used for hydraulic fracturing is retained within the shale formation; only a small fraction of the fresh water injected into the ground returns as flowback water, while the greater volume of FP water returning to the surface is highly saline, is difficult to treat, and is often disposed through deep-injection wells. This means that despite lower water intensity compared to other energy resources (fig. S4), the permanent loss of water use for hydraulic fracturing from the hydrosphere could outweigh its relatively lower water intensity.

The period of 2014–2015 marks a turning point, where water use and FP water production began to increase at higher rates. During this period, gas and oil prices dropped significantly, causing producers to scale back the number of new installed wells (Fig. 5 and tables S1 and S2). In each of the oil-producing regions, the water use/oil production ratio increased, suggesting that the increase in water use for...
hydraulic fracturing outpaces the increasing oil production on a per-well basis (Fig. 4, fig. S2, and table S2). In the shale gas–producing regions, this trend is also present in each region except the Marcellus (Fig. 4, fig. S2, and table S1). Consequently, (excluding the Marcellus) while increasing lateral length of horizontal drilling and water use for hydraulic fracturing (Fig. 2) have resulted in increasing oil production (per well), the net water-use efficiency, particularly for unconventional oil production, has decreased (that is, higher water intensity).

By combining the increasing trends in both water use and FP water production with the increasing FP water/water use ratios in some regions, we can see that the overall water footprint of hydraulic fracturing is increasing through time; more water is being used for hydraulic fracturing operations, while, at the same time, comparatively more FP water is being generated. We observed increasing total water use (water use per well multiplied by well count; fig. S3) in oil-producing regions despite the recent slowdown in oil production rates (Fig. 5). Assuming that the recent economic downturn eventually subsides and the drilling of new wells again reaches levels seen during the heyday of hydraulic fracturing in the early 2010s, the total water impact of hydraulic fracturing is poised to increase markedly in both shale gas– and oil-producing regions. On the basis of modeling future hydraulic fracturing operations in the United States in two scenarios of drilling rates, we project cumulative water use and FP water volumes to increase by up to 20-fold in unconventional gas-producing regions and up to 13-fold in unconventional oil-producing regions from 2018 to 2030, assuming that the growth of water use matches current growth rates and the drilling of new wells again matches peak production (fig. S5 and tables S3 and S4). Even if future drilling rates will stay at 2016 levels (that is, low oil gas prices), we predict a large increase of the total water use for both unconventional oil and shale gas basins (fig. S5). Likewise, we predict a large increase in the FP water volume for the two scenarios, with particularly high total FP water production in the Permian basin (fig. S5).
demands, and resulting in increasing FP water burdens that will have to be managed into the future. The predicted increasing water use and FP water production in the Permian and Eagle Ford basins are alarming given the extreme water scarcity in these regions (Fig. 1). The results presented in this study are consistent with previous studies in the Permian (19) and Eagle Ford (25) basins that have shown that local water resources could be affected by increasing water demands for hydraulic fracturing. At the same time, other studies have shown that water use for hydraulic fracturing in water-rich areas such as the Sichuan basin in China (8, 34) will constitute only a small fraction of the available local water resources. The water intensity during the early stages of hydraulic fracturing (<30 liters/GJ in many cases) was comparable and even lower than that of coal mining (43 liters/GJ; fig. S4), the recent (2014–2016) intensification of hydraulic fracturing has increased the water intensity, particularly for unconventional oil (up to 46 liters/GJ; fig. S4). Additional studies are needed to analyze the local impacts of hydraulic fracturing on water resource depletion in light of increasing water demand for hydraulic fracturing and the increasing volumes of FP water that need to be managed, particularly in areas vulnerable to induced seismicity from injection of large volumes of oil and gas wastewater. As unconventional gas and oil exploration is expanding globally and other countries begin to follow the U.S. shale revolution (for example, China) (34), the results of this study should be as a guidance for the expected water footprint of hydraulic fracturing at different stages of energy development.

MATERIALS AND METHODS
Experimental design

The goal of this study was to synthesize and collate production volumes for unconventional gas and oil production, associated FP water, and water use for hydraulic fracturing per shale gas/oil well. We downloaded production data for each of these components from the major shale gas and tight oil regions identified in this study using multiple sources and separated by year of initial production. Once organized, data were reported based on the first 12 months of the well lifetime to see how production and water-use values compared on a year-by-year basis.

Data acquisition

Production volumes for gas, oil, and FP water for each reporting well in our target regions were downloaded using the DrillingInfo Desktop application (35). Data were downloaded by primary well production type (gas or oil). FP water data were not available from the Marcellus region, and thus, data from the Marcellus Formation were downloaded from the gas and oil reporting website of the Pennsylvania Department of Environmental Protection (PA DEP) (36). Water-use data were downloaded from the FracFocus Chemical Disclosure Registry (37). Well counts from 2014 to 2016 were taken from the EIA Drilling Productivity Report (DPR) (31), while well counts from 2012 to 2014 were taken from Baker Hughes’ onshore well counts (38). The well counts provided did not indicate if they were taken from conventional or unconventional oil-producing wells or in regions producing both gas and oil, and whether the well was classified as an oil well or gas well. Consequently, we used DrillingInfo to find the ratio of conventional to unconventional wells and the ratio of oil to gas wells for each region for each year and multiplied that by the number of wells reported by Baker Hughes and in the DPR. In addition, wells drilled in the Bakken formation were not reported by the Baker Hughes report. As a result, Bakken Formation well counts from 2012 to 2013 were taken from the North Dakota Oil and Gas Division (39). Combining data from several resources can introduce bias and error into results using these values. Values reported in this study were found to be comparable to those reported in previous studies. Natural gas and oil historical prices were taken from the EIA (1).

Statistical methods

Data from over 39,000 individual wells were organized by producing region, American Petroleum Institute (API) number, first production year, and cumulative production over the first 12 months. The median values among all API numbers reporting data within a given year were calculated for each region and year included in this study (22, 23). A similar analysis was done with the PA DEP Marcellus data. The region for each water-use data point was determined spatially using the latitude and longitude provided by FracFocus to locate points within unconventional gas and oil plays (shapefile provided by the U.S. EIA) (31). Water-use data were then sorted by region, and the median water-use value was calculated for each spud year.
Consequently, the same water use data from the Permian region was used for both oil and gas wells.

Energy intensities were calculated by converting production volumes of gas and oil to energy production using their energy content. Energy content for natural gas was assumed to be 0.038 and 38.18 GJ/m³ for oil (2). Calculations for gas-producing wells also included associated oil production with an energy content of 85% that of crude oil, or 32.45 GJ/m³, as well as the shrinkage of 25% of the wet gas stream to natural gas liquids with an energy content of 25.54 GJ/m³ (2, 23, 32). For oil wells, associated gas production with an energy content of 0.038 GJ/m³ was added.

Bootstrap confidence intervals were used to estimate variation in water use, gas production, oil production, and FP water production (22, 40). For each data set, 95% bootstrap confidence intervals of the median for each year of production were calculated. We drew bootstrap resamples with replacement from each year’s empirical distribution. This was repeated 1000 times, and distributions were drawn from the 0.025 and 0.975 percentile values (22). In cases where data with errors were used to calculate new terms, error was propagated through the calculation.

Production predictions
Cumulative future water use (and year 1 production) was defined as the number of wells drilled in a given year and region, multiplied by the water use per well (plus year 1 FP water production). We outlined two scenarios to predict cumulative future water use and year 1 production. The first was a business-as-usual scenario, where we assumed that the number of new wells drilled each year remained constant from 2018 to 2030 and was equal to the number of new wells drilled in 2016 in each formation. We then multiplied this well count by an estimate of the future water use per well (or year 1 FP water per well). Future water use per well and future year 1 FP water predictions were made using the maximum respective increases from 1 year to another for each formation (Figs. 2 and 3 and tables S1 to S4). This calculation yielded a linear increase in cumulative water use and year 1 FP water through time (figs. S5 and S6). A second scenario was created to predict the results of a return to previously high drilling rates (that is, high oil prices). Our calculation for future water use per well and future year 1 FP water remained the same. To estimate the number of new wells drilled each year, we calculated the slope of the largest increase in well count from 1 year to another for each region and added that slope to 2016 well counts, resulting in a linear increase in the number of new wells drilled each year. This resulted in a parabolic increase in cumulative future water use through time (figs. S5 and S6).

REFERENCES AND NOTES

1. U.S. Energy Information Administration, Annual Energy Outlook (U.S. Energy Information Administration, 2017); www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf [accessed 20 July 2017].

2. B. R. Scanlon, R. C. Reedy, J.-P. Nicot, Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays? Environ. Res. Lett. 9, 124011 (2014).

3. J. L. Schnoor, Water–energy nexus. Environ. Sci. Technol. 45, 5065 (2011).

4. M. Freyman, Hydraulic Fracturing & Water Stress: Water Demand by the Numbers (Ceres, 2014).

5. M. Luck, M. Landis, F. Gassett, Aqueduct Water Stress Projections: Decadal Projections of Water Supply and Demand Using CMIP5 GCMs (World Resources Institute, 2015; http://wri.org/publication/aqueduct-water-stress-projections [accessed December 2017].

6. A. Vengosh, R. B. Jackson, N. R. Warner, T. H. Darrah, A. Kondash, A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334–8348 (2014).

7. R. B. Jackson, A. Vengosh, J. W. Carey, R. J. Davies, T. H. Darrah, F. O’Sullivan, G. Pétron, The environmental costs and benefits of fracking. Annu. Rev. Environ. Resour. 39, 327–362 (2014).

8. M. Yu, E. Weintenthal, D. Patiño-Echeverri, M. A. Deshusses, C. Zou, Y. Ni, A. Vengosh, Water availability for shale gas development in Sichuan Basin, China. Environ. Sci. Technol. 50, 2837–2845 (2016).

9. Y. Qin, R. Edwards, F. Tong, D. L. Mauzerall, Can switching from coal to shale gas bring net carbon reductions to China? Environ. Sci. Technol. 51, 2554–2562 (2017).

10. U.S. Energy Information Administration, Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States (U.S. Energy Information Administration, 2017); www.eia.gov [accessed December 2017].

11. E. E. Yost, J. Stanek, R. S. DeWoskin, L. D. Burgoon, Overflow of chronic oral toxicity values for chemicals present in hydraulic fracturing fluids, flowback, and produced waters. Environ. Sci. Technol. 50, 4788–4797 (2016).

12. E. E. Yost, J. Stanek, R. S. DeWoskin, L. D. Burgoon, Estimating the potential toxicity of chemicals associated with hydraulic fracturing operations using quantitative structure–activity relationship modeling. Environ. Sci. Technol. 50, 7732–7742 (2016).

13. M. S. Mauter, P. J. J. Alvarez, A. Burton, D. C. Cafaro, W. Chen, K. B. Gregory, G. Jiang, Q. Li, J. Pittock, D. Reible, J. L. Schnoor, Regional variation in water-related impacts of shale gas development and implications for emerging international plays. Environ. Sci. Technol. 48, 8298–8306 (2014).

14. N. E. Lauer, J. S. Harkness, A. Vengosh, Brine spills associated with unconventional oil development in North Dakota. Environ. Sci. Technol. 50, 5389–5397 (2016).

15. G. A. Kahrlas, J. Blot evogel, P. S. Stewart, T. Borch, Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity. Environ. Sci. Technol. 49, 16–32 (2015).

16. D. M. Akob, A. C. Mumford, W. Orem, M. A. Engle, J. G. Klinges, D. B. Kent, J. M. Cozzarelli, Wastewater disposal from unconventional oil and gas development degrades stream quality at a West Virginia injection facility. Environ. Sci. Technol. 50, 5517–5525 (2016).

17. R. Wilkins, A. H. Meneeef, A. F. Clarens, Environmental life cycle analysis of water and CO2-based fracturing fluids used in unconventional gas production. Environ. Sci. Technol. 50, 13134–13141 (2016).

18. J. Veil, U.S. Produced Water Volumes and Management Practices in 2012 (Veil Environmental, LLC, 2015).

19. B. R. Scanlon, R. C. Reedy, J.-P. Nicot, Comparison of water use for hydraulic fracturing for unconventional oil and gas versus conventional oil. Environ. Sci. Technol. 48, 12386–12393 (2014).

20. B. R. Scanlon, R. C. Reedy, F. Male, M. Walsh, Water issues related to transitioning from conventional to unconventional oil production in the Permian Basin. Environ. Sci. Technol. 51, 10903–10912 (2017).

21. L. Muenhelenbaches, S. Olmstead, Hydraulic fracturing and water resources. Choices 29, 1–5 (2014).

22. A. J. Kondash, E. Albright, A. Vengosh, Quantity of flowback and produced waters from unconventional oil and gas exploration. Sci. Total Environ. 574, 314–321 (2017).

23. A. Kondash, A. Vengosh, Water footprint of hydraulic fracturing. Environ. Sci. Technol. Lett. 2, 276–280 (2015).

24. J.-P. Nicot, B. R. Scanlon, Water use for shale-gas production in Texas, U.S. Environ. Sci. Technol. 46, 3580–3586 (2012).

25. S. A. Ikonnikova, F. Male, B. R. Scanlon, R. C. Reedy, G. McDaid, Projecting the water footprint associated with shale resource production: Eagle Ford shale case study. Environ. Sci. Technol. 51, 14453–14461 (2017).

26. M. C. McLaughlin, T. Borch, J. Blot evogel, Spills of hydraulic fracturing chemicals on agricultural topsoil: Biodegradation, sorption, and co-contaminant interactions. Environ. Sci. Technol. 50, 6071–6078 (2016).

27. N. R. Warner, C. A. Christie, R. B. Jackson, A. Vengosh, Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ. Sci. Technol. 47, 11849–11857 (2013).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/4/8/eaar5982/DC1

Fig. S1. Cumulative production comparison.

Fig. S2. Volumetric water-use intensity.

Fig. S3. Total water use for hydraulic fracturing.

Fig. S4. Water-use intensity for other energy-producing materials.

Fig. S5. Projected water use for future hydraulic fracturing operations in the United States.

Fig. S6. Projected first year FP water derived from future hydraulic fracturing operations in the United States.

Table S1. Production volumes in unconventional gas-producing formations.

Table S2. Production volumes in unconventional oil-producing formations.

Table S3. Example calculation for future production estimate, business-as-usual scenario.

Table S4. Example calculation for future production estimate, future-growth scenario.
28. W. D. Burgos, L. Castillo-Meza, T. L. Tasker, T. J. Geeza, P. J. Drohan, X. Liu, J. D. Landis, J. Bloevegel, M. McLaughlin, T. Borch, N. R. Warner, Watershed-scale impacts from surface water disposal of oil and gas wastewater in western Pennsylvania. *Environ. Sci. Technol.* **51**, 8851–8860 (2017).
29. W. L. Ellsworth, Injection-induced earthquakes. *Science* **341**, 1225942 (2013).
30. A. Striolo, D. R. Cole, Understanding shale gas: Recent progress and remaining challenges. *Energy Fuels* **31**, 10300–10310 (2017).
31. U.S. Energy Information Administration, *Drilling Productivity Report* (U.S. Energy Information Administration, 2017); https://www.eia.gov/petroleum/drilling/ [accessed October 2017].
32. A. Troner, *Natural Gas Liquids in the Shale Revolution* (James A. Baker III Institute for Public Policy Rice University, 2013).
33. E. S. Spang, W. R. Moosaw, K. S. Gallagher, P. H. Kirshen, D. H. Marks, The water consumption of energy production: An international comparison. *Environ. Res. Lett.* **9**, 105002 (2014).
34. C. Zou, Y. Ni, J. Li, A. Kondash, R. Coyte, N. Lauer, H. Cui, F. Liao, A. Vengosh, The water footprint of hydraulic fracturing in Sichuan Basin, China. *Sci. Total Environ.* **630**, 349–356 (2018).
35. DrillingInfo, *DrillingInfo Desktop Application* (DrillingInfo, 2017); www.didesktop.com/ [accessed October 2017].
36. Pennsylvania Department of Environmental Protection, *Oil and Gas Reporting—Electronic (OGRE) Public Reporting Data* (Pennsylvania Department of Environmental Protection, 2017); www.paoilandgasreporting.state.pa.us/public reports [accessed October 2017].
37. FracFocus Chemical Disclosure Registry (2017); https://www.fracfocusdata.org/ [accessed October 2017].
38. Baker Hughes, U.S. Onshore Well Count (Baker Hughes, 2015).
39. North Dakota Department of Mineral Resources, *Oil and Gas Division, Monthly Statistical Update* (North Dakota Department of Mineral Resources, Oil and Gas Division, 2017); https://www.dmr.nd.gov/oilgas/ [accessed November 2017].
40. B. D. Lutz, A. N. Lewis, M. W. Doyle, Generation, transport, and disposal of wastewater associated with Marcellus Shale gas development. *Water Resour. Res.* **49**, 647–656 (2013).

Acknowledgments

Funding: This work was supported by the NSF (EAR-1441497).

Author contributions:

A.V. designed the study. A.J.K. generated and acquired the data. A.J.K. and N.E.L. conducted statistical analysis and model prediction. All authors wrote the manuscript.

Competing interests:

The authors declare that they have no competing interests.

Data and materials availability:

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 27 November 2017
Accepted 26 June 2018
Published 15 August 2018

10.1126/sciadv.aar5982

Citation:

A. J. Kondash, N. E. Lauer, A. Vengosh, The intensification of the water footprint of hydraulic fracturing. *Sci. Adv.* **4**, eaar5982 (2018).
The intensification of the water footprint of hydraulic fracturing

Andrew J. Kondash, Nancy E. Lauer and Avner Vengosh

Sci Adv 4 (8), eaar5982
DOI: 10.1126/sciadv.aar5982 originally published online August 15, 2018