Helicobacter pylori infection, gastrin and cyclooxygenase-2 in gastric carcinogenesis

Yun Shao, Kun Sun, Wei Xu, Xiao-Lin Li, Hong Shen, Wei-Hao Sun

Abstract

Gastric cancer is one of the most frequent neoplasms and a main cause of death worldwide, especially in China and Japan. Numerous epidemiological, animal and experimental studies support a positive association between chronic Helicobacter pylori (H. pylori) infection and the development of gastric cancer. However, the exact mechanism whereby H. pylori causes gastric carcinogenesis remains unclear. It has been demonstrated that expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and cyclooxygenase-2 in H. pylori-infected patients and their possible association with gastric cancer risk.

Key words: Helicobacter pylori; Gastrin; Cyclooxygenase-2; Gastric cancer

Core tip: Helicobacter pylori (H. pylori) is one of the most common pathogens, infecting approximately half of the world's population. It is well known that H. pylori infection has been associated with an elevated risk of developing gastric carcinoma. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and cyclooxygenase-2 in H. pylori-infected patients and their possible association with gastric cancer risk.

INTRODUCTION

Helicobacter pylori (H. pylori) is one of the most common pathogens, infecting approximately half of the world's population. It is well known that H. pylori infection has been associated with an elevated risk of developing gastric carcinoma[1-3], and this bacterium has been classified as a class I biological carcinogen by the World Health Organization[4]. However, the exact mechanism responsible for the development of gastric cancer in H. pylori-infected patients remains unclear.

Numerous studies suggested a positive association between hypergastrinemia (caused by H. pylori infection) and gastric cancer in humans and mice[5-10]. Hypergastrinemia and H. pylori infection synergistically promoted gastric carcinogenesis in transgenic mice that overexpress amidated gastrin (INS-GAS)[11-13]. The role of H. pylori in-
fection and hypergastrinemia in the development of gastric carcinogenesis has been a matter of scientific debate. Cyclooxygenase (COX) is a key enzyme that catalyses the formation of prostaglandins (PGs) and other eicosanoids from arachidonic acid. Two isoforms of COX have been identified: constitutively expressed COX-1 and mitogen-inducible COX-2 [12,13]. Increased expression of COX-2 has been linked to gastric carcinogenesis [14-17]. Furthermore, enhanced COX-2 expression in human stomach has been linked to *H. pylori* infection [16,17,22]. However, the molecular mechanisms underlying the aberrant expression of COX-2 in gastric cancer patients infected with *H. pylori* remain unclear. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and COX-2 in *H. pylori*-infected patients and their possible association with gastric cancer risk.

EVIDENCE FOR THE CARCINOGENICITY OF H. PYLORI FROM EPIDEMIOLOGICAL STUDIES

Infection with *H. pylori* and the resulting chronic inflammation are a major step in the initiation and development of gastric cancer. Early epidemiological studies linking *H. pylori* infection with gastric cancer include a plethora of case-control [23] and prospective cohort studies [24], and the evidence is now available as pooled estimates from meta-analyses [28]. To clarify the association between gastric cancer and prior infection with *H. pylori*, three nested case-control studies were performed in 1991 and the results showed that the relative risk of *H. pylori* antibody was higher in the patients with gastric cancer than that in the control group [26-28]. A prospective study confirmed that gastric cancer developed in 2.9% of the *H. pylori*-infected group but none of the uninfected patients [29].

In a review of 5 meta-analyses concerning the association of *H. pylori* seropositivity with gastric cancer, Eslick [25] reported a pooled estimate of the relative risk ranging from 1.92-2.56 (mean 2.28), and confidence interval ranging from 1.35-3.55. Despite some differences in the number, type, and design of the included studies, the strength of association from each of the meta-analyses was consistent in size and precision, supporting the validity of the pooled estimate and conclusions regarding the association. Six meta-analyses of cohort studies, case-controlled and nested case-controlled studies revealed a positive odds ratio between *H. pylori* seropositivity and gastric cancer [23,24,30-33]. All these meta-analyses showed that *H. pylori* infection is associated with approximately a two-fold increased risk of developing gastric cancer.

In addition, a multicentre epidemiological study was designed to look at the relation between the prevalence of *H. pylori* infection and the incidence of gastric cancer in 17 populations from 13 countries, chosen to reflect the global range of gastric cancer incidence. The results indicated an approximately six-fold increased risk of gastric cancer in populations with 100% *H. pylori* infection compared with populations that have no infection [34]. The main carcinogenic effect of *H. pylori* is dependent on the presence of the cytotoxix associated gene A (cagA) and vacuolating cytotoxin A (vacA) [35,36]. A meta-analysis conducted by Huang et al. [37] showed that the risk of gastric cancer was twice as high in people who were positive for antibodies against CagA in sera.

Nevertheless, a later meta-analysis conducted by Wang et al. [38] showed a protective role for *H. pylori* infection in the prognosis of gastric cancer. Several studies have also examined the relationship between *H. pylori* infection and prognosis of patients with gastric cancer, providing evidence of a better prognosis in patients with *H. pylori* infection compared with patients without *H. pylori* infection [39,40]. The underlying mechanisms need to be further elucidated, which could provide new therapeutic approaches for gastric cancer.

EVIDENCE FOR EFFICACY OF H. PYLORI ERADICATION THERAPY IN THE PREVENTION OF GASTRIC CANCER

In experimental research, gastric cancer was induced in Mongolian gerbils through *H. pylori* inoculation plus administration of low-dose chemical carcinogens, and *H. pylori* eradication suppressed the incidence of gastric cancer [42]. The animal experiment also suggested that eradication at an earlier period was effective in reducing gastric carcinogenesis compared with that at the middle or late period [43]. The strong association of *H. pylori* with gastric cancer has spurred a large number of randomized controlled trials to investigate the effects of *H. pylori* eradication on gastric carcinogenesis. According to Correa’s model, gastric cancer develops in a multistep process from chronic active gastritis, gastric glandular atrophy, intestinal metaplasia, dysplasia (currently distinguished into low-grade and high-grade intraepithelial neoplasia), and finally to gastric cancer [44]. In studies of precancerous gastric lesions, *H. pylori* eradication generally reduced the rate of progression [45]. To clarify the effects of *H. pylori* eradication on prevention of gastric cancer development in patients with chronic gastritis, Uemura et al. [46] conducted a nonrandomized *H. pylori* eradication trial in cases whose gastric cancer was removed by endoscopic resection, and suggested that *H. pylori* eradication might improve neutrophil infiltration and intestinal metaplasia in the gastric mucosa and inhibit the development of new carcinomas. A multi-centre, open-label, randomized controlled trial demonstrated that patients in whom *H. pylori* had been successfully eradicated following their initial gastric cancer resection had a highly significantly reduced risk of developing a second gastric cancer (hazard ratio 0.35 at 3 years of follow-up) [47].

However, a double-blind randomized study in China showed that gastric cancer still occurred after successful eradication of *H. pylori* and that *H. pylori* eradication did not lead to a significant decrease in the incidence of
gastric cancer\cite{49}. Sub-analysis of previous papers showed that the preventive effect of \textit{H. pylori} eradication for gastric cancer incidence was limited to patients without atrophy and metaplasia\cite{48,49}. Randomized prospective studies demonstrated that eradication significantly reduced the presence of premalignant lesions, providing additional evidence that \textit{H. pylori} had an effect on early stages of gastric carcinoma\cite{49,48}. It is speculated that eradication of \textit{H. pylori} significantly decreases the risk of gastric cancer in infected individuals without premalignant lesions. In meta-analysis, the relative risk of gastric cancer following \textit{H. pylori} eradication was calculated to be 0.65 overall (95\%CI: 0.43-0.98)\cite{50}. Taken together, these studies support an unequivocal role for \textit{H. pylori} in the development of gastric cancer and indicate that anti-\textit{H. pylori} therapy may be an effective means of gastric cancer prevention.

GASTRIN AND DNA METHYLATION POTENTIATE THE CARCINOGENIC EFFECTS OF \textit{H. PYLORI} INFECTION

The role of \textit{H. pylori} infection and hypergastrinemia in the development of gastric carcinogenesis has been a matter of scientific debate. A possible pathogenetic mechanism involves the persistent \textit{H. pylori} colonization and inflammation of the gastric mucosa, particularly when the \textit{H. pylori} strains express CagA which often results in the development of chronic atrophic gastritis and subsequently hypergastrinemia, through a reverse-feedback mechanism\cite{51}. To clarify whether \textit{H. pylori} CagA can induce gastrin expression, Zhou et al\cite{52} constructed a eukaryotic expression vector pcDNA3.1/cagA and a luciferase reporter vector pGL/gastrin promoter, and then co-transfected them into gastric cancer cells, and suggested that CagA could activate the gastrin promoter and up-regulate gastrin mRNA expression in AGS and SGC-7901 cells. It has been widely reported that the number of G cells and the release of gastrin increase during \textit{H. pylori} infection in human subjects and various animal models\cite{53-55}. As \textit{H. pylori} infection inhibits acid secretion\cite{56}, the observed hypergastrinemia might be in response to the hypochlorhydria. Indeed, direct inhibition of acid secretion by omeprazole is sufficient to stimulate gastrin gene expression in vivo\cite{57}. Previous studies suggested that \textit{H. pylori} colonizing the gastric antrum might create an alkaline pH sufficient to stimulate G cells through its production of urease and conversion of urea to ammonia\cite{58}. However, this mechanism was subsequently disproven by studies showing that \textit{H. pylori} produces rather than the live organism can stimulate gastrin release from cultured G cells\cite{59,60}. Furthermore, \textit{H. pylori}-induced inflammatory cytokines stimulate antral G cells to release gastrin\cite{61}.

Several previous studies have shown that \textit{H. pylori} can increase circulating gastrin levels in the blood\cite{62,63}. \textit{H. pylori} has been reported to induce G-cell hyperfunction in antral gastric tissue, which could contribute to the onset of hypergastrinemia\cite{64}. Gibbons et al\cite{65} showed that patients infected with \textit{H. pylori} had increased gastrin mRNA levels, whereas Sumii et al\cite{67} reported no change in gastrin mRNA expression. Buchan and coworkers reported that \textit{H. pylori} increases basal levels of gastrin in primary G-cell cultures, but did not induce secretion, suggesting that \textit{H. pylori} increased gastrin synthesis and possibly gene expression\cite{68}. \textit{H. pylori} also activates gastrin releasing peptide and regulates the gastrin modulator somatostatin to increase gastrin expression\cite{53,66}. Taken together, it is unclear whether the hypergastrinemia that occurs in \textit{H. pylori}-infected individuals is attributable to hypochlorhydria, suppression of somatostatin, chronic gastritis, gastric atrophy or the direct induction of gastrin gene expression by the bacterium itself.

Asymptomatic patients with \textit{H. pylori} colonisation have been shown to have elevated serum gastrin concentrations relative to a control population, despite similar gastric acid output\cite{69}, while Levi et al\cite{70} demonstrated that following \textit{H. pylori} eradication, there was a reduction in fasting serum gastrin concentration. It has also been demonstrated that following eradication of \textit{H. pylori}, there was an increase in somatostatin mRNA and a concomitant decrease in gastrin mRNA in patients with duodenal ulcers\cite{71}. This was associated with increased numbers of D-cells in the gastric corpus\cite{71}, suggesting that the hypergastrinemia caused by \textit{H. pylori} infection may result from a loss of somatostatin control over gastrin secretion.

Clinical and experimental evidence indicates that gastrin can potentiate the carcinogenic effects of \textit{H. pylori} infection on the gastric mucosa\cite{72}. Our prior studies suggested that the proliferation of MKN-45 cells, which were derived from a poorly differentiated gastric carcinoma and had been reported to express CCK2/gastrin receptor (CCK2R), decreased when treated with the CCK2R antagonists\cite{73-76}. It also has been demonstrated that long-term treatment with CCK2R antagonist YF476 prevented the development of \textit{H. pylori}-associated gastric cancer in INS-GAS mice\cite{77,78}. Taken together, these results indicate that the gastrin signaling pathway provides a potential target for cancer chemoprevention.

On the other hand, aberrant DNA methylation in gastric biopsies from \textit{H. pylori}-infected patients was found to be correlated with a greater gastric cancer risk\cite{79,80}. Previous studies have reported that infection with \textit{H. pylori} is associated with promoter methylation of various gastric cancer-associated genes\cite{72,73,74} and eradication of the bacteria was able to reverse the process in patients with gastritis, but not in patients with intestinal metaplasia\cite{75,81}. Recently, Niwa et al\cite{82} demonstrated that treatment with the DNA demethylation agent 5-aza-2‘-deoxycytidine decreases the incidence of gastric cancers in an animal model of \textit{H. pylori}-promoted gastric cancer. This study also showed that induction of aberrant methylation is an important mechanism for gastric carcinogenesis by \textit{H. pylori} infection.
September 28, 2014 | Volume 20 | Issue 36 |

COX-2 IN HUMAN GASTRIC CARCINOGENESIS

It is well known that *H. pylori* infection causes inflammation, and COX-2 is involved in inflammatory responses [1]. However, in *H. pylori* associated gastritis, COX-2 protein mainly localizes to the lamina propria [10,21,85-96], with variable levels in the epithelium [10,21,85-96]; but in gastric cancer, COX-2 is most strongly expressed in the epithelium of malignant and dysplastic glands [10,21,85-96]. Romano et al. [97] reported that *H. pylori* up-regulates COX-2 mRNA expression and stimulates the release of PGE2 in MKN 28 gastric mucosal cells *in vitro*, and this effect was independent of VacA, CagA, or urease-generated ammonia. However, other *in vitro* studies have demonstrated that *H. pylori* up-regulates COX-2 expression in human gastric cancer cells; and this effect is specifically related to VacA toxin [10,98].

Our previous study using rat gastric epithelial cells treated with *H. pylori* water extract (only containing bacterial proteins but not bacterial cells) led to an increase in COX-2 expression (Figure 1) and PGE2 levels (Figure 2) that peaked 24 h after treatment and declined at 48 h [99]. These results indicate that development of gastric carcinoma associated with *H. pylori* infection may depend on COX-2 expression. The expression of COX-2 results in the induction of the proinflammatory prostaglandin, PGE2 [100,101]. PGs play an important role in the growth and stimulation of the inflammation-associated gastric carcinogenesis [102-104]. In addition, *H. pylori*-induced chronic gastritis is associated with overexpression of COX-2 and increased production of eicosanoids, especially PGE2 [105].

Noteworthy, successful eradication of *H. pylori* infection leads to a significant reduction in COX-2 expression [106].

Figure 2 Effect of *Helicobacter pylori* water extracts on PGE2 synthesis in rat gastric mucosa cells. Rat gastric mucosa (RGM1) cells were incubated for 0, 6, 12, 24, or 48 h with 10 μg/mL *Helicobacter pylori* water extracts. PGE2 levels in the media of RGM1 cells were measured by enzyme-linked immunosorbent assay and expressed as pg/mg protein. Data are shown as mean ± SD, n = 5 per group, and analyzed using ANOVA with Dunnett’s multiple comparison test of the means. *P* < 0.01 vs the control or 0 h. Reproduced from Ref [90] with permission.

MECHANISMS OF COX-2 UPREGULATION IN H. PYLORI-ASSOCIATED GASTRIC CANCER

Gastrin has been shown to mediate the induction of
COX-2 in gastrointestinal cells\cite{10,106}, indicating that there is a direct mechanistic link between gastrin and inflammation (Figure 4). Chronic atrophic gastritis caused by *H. pylori* activates synthesis of growth factors, cytokines, and gastrin leading to elevated COX-2 expression\cite{107}. Recent studies have demonstrated that hypergastrinemia induced by *H. pylori* infection is often associated with increased COX-2 expression in chronic atrophic gastritis and gastric cancer\cite{6,55}. Some studies have shown that COX-2 is co-expressed with gastrin in gastric ulcers and gastric cancer\cite{6,96}. On the other hand, an *in vitro* study indicates that gastrin stimulates COX-2 gene and protein expression in human gastric cancer cells\cite{108}. Our recent study demonstrated that gastrin up-regulates COX-2 expression in gastric cancer cell lines and this occurs through CCK-2R-mediated JAK2/STAT3 and subsequent PI3K/Akt activation\cite{74} (Figure 5). Additionally, Subramaniam *et al.*\cite{109} reported that gastrin induced COX-2 expression in human gastric cancer cell line AGS stably expressing CCK2R. Gastrin not only increased the stability of COX-2 mRNA in a p38-dependent manner but also enhanced COX-2 gene transcription through the activator protein-1 (AP-1) transcription factor\cite{109,110}.

In another study using AGS gastric cancer cells, *H. pylori* promoted COX-2 transcription through TLR2/TRL9 that activated the MAPK pathways (ERK1/2, p38, JNK) and resulted in the activation of CRE and AP-1 in the COX-2 promoter\cite{110}. In MKN-45 gastric cancer cells the p38MAPK/ATF-2 pathway was necessary for increased COX-2 expression after *H. pylori* infection\cite{111}. Thus, *H. pylori* clearly induces COX-2, but the mechanism seems to be dependent on the *H. pylori* strain properties and the

Table 1 Expression of cyclooxygenase-2 in gastric mucosa with various lesions *n* (%)

Pathological diagnosis	COX-2 expression	
Chronic superficial gastritis	30 (10.0)	
Gastric glandular atrophy	28 (35.7)*	
Intestinal metaplasia	45 (37.8)*	
Dysplasia	12 (41.7)*	
Gastric cancer	23 (69.5)	

*P < 0.05, *P < 0.01 vs chronic superficial gastritis; *P < 0.05 vs gastric glandular atrophy. Data adapted from Sun *et al.*\cite{21}. COX-2: Cyclooxygenase-2.

Table 2 Correlation of clinicopathological parameters with cyclooxygenase-2 expression in gastric cancer

Clinicopathological parameter	n	COX-2 expression		
Age (yr)				
< 60	35	7 9 9 10	80.0%	0.5261
≥ 60	61	12 15 26 8	80.3%	0.9692
Gender				
Male	67	10 17 27 13	85.1%	0.1563
Female	29	9 7 8 5	69.0%	0.0693
Tumor site				
Cardia	30	9 7 9 5	70.0%	0.4274
Corpus	26	5 6 9 6	80.8%	0.1915
Stages				
I + II	38	14 9 10 5	63.2%	0.0043
III + IV	58	5 25 13	91.4%	0.0013
Histological type				
Tubular	54	13 20 9	77.8%	0.1076
Papillary	30	6 9 6	80.0%	0.6333
Mucinous	6	1 2 3	83.3%	
Signet ring cell	6	0 3 3	100.0%	
Histological grading				
Well and moderately	65	11 26 11	83.1%	0.7357
Poorly	31	8 9 7	74.2%	0.3078
Lymph node metastasis				
Present	58	7 13 26 12	87.9%	0.0189
Absent	38	12 11 9 6	68.4%	0.0192

1Result from grade comparisons of cyclooxygenase-2 (COX-2) expression among the patients with different clinicopathological characteristics using Wilcoxon test or Kruskal-Wallis non-parametric test. 2Result from percentage comparisons of COX-2 expression among the patients with different clinicopathological characteristics using χ2-test. Data adapted from Sun *et al.*\cite{21}. Specimens with a grade of > 1 were regarded as positive expression, whereas grades 2 and 3 were defined as overexpression.
In recent years dysregulated microRNAs (miRNAs) have also been found in gastric cancer, and they are linked to many processes, such as cell proliferation, apoptosis, and invasion\cite{112}. Recently, we characterized miRNA-101 (miR-101) expression and its role in COX-2 expression regulation, and the results showed that miR-101 levels in gastric cancer tissues were significantly lower than those in the matched normal tissue\cite{14}. We also found an inverse correlation between miR-101 and COX-2 expression in both gastric cancer specimens and cell lines. Significant decreases in COX-2 mRNA and protein levels were observed in the pre-miR-101 infected gastric cancer cells. These results collectively indicate that miR-101 may function as a tumor suppressor in gastric cancer, with COX-2 as a direct target\cite{14,113}.

NON-Steroidal ANTI-INFLAMMATORY DRUGS IN THE PREVENTION OF GASTRIC CANCER

A lower risk of gastric cancer has been associated with non-steroidal anti-inflammatory drugs (NSAIDs) in a dose-dependent manner\cite{115}. There is also evidence from animal studies showing a reduced gastric cancer incidence under suppression of COX-2 using specific COX-2 inhibitors\cite{116,117}. Considering the association between COX-2/PGE\textsubscript{2} pathway and H. pylori-associated gastric carcinogenesis, NSAIDs have been proposed as candidates for chemoprevention of gastric cancer. COX-2 selective inhibitors such as etodolac and celecoxib may have chemopreventive effects not only suppressing inflammation, but also causing regression of early-stage tumors\cite{118,119}. Therefore, there is a possibility that COX-2 inhibitors could be useful drugs for regression of remaining pre-cancerous lesion and prevention of gastric cancer occurrence after H. pylori eradication.

The chemopreventive effect of NSAIDs on the development of gastric cancer among H. pylori infected...
Shao Y et al. Helicobacter pylori infection

A

SGC-7901

p-STAT3

t-STAT3

p-Akt

t-Akt

MKN-45

p-STAT3

t-STAT3

p-Akt

t-Akt

B

SGC-7901

p-STAT3

t-STAT3

p-Akt

t-Akt

MKN-45

p-STAT3

t-STAT3

p-Akt

t-Akt

C

SGC-7901

p-STAT3

t-STAT3

p-Akt

t-Akt

MKN-45

p-STAT3

t-STAT3

p-Akt

t-Akt

D

SGC-7901

p-STAT3

t-STAT3

MKN-45

p-STAT3

t-STAT3

Relative p-STAT3 expression

3.0

2.5

2.0

1.5

1.0

0.5

0.0

SGC-7901

MKN-45

Control

G17

YM022

YM022 + G17

Relative p-Akt expression

3.0

2.5

2.0

1.5

1.0

0.5

0.0

SGC-7901

MKN-45

Control

G17

AG490

AG490 + G17

Relative p-STAT3 expression

5

4

3

2

1

0

SGC-7901

MKN-45

Control

G17

AG490

AG490 + G17
Shao Y et al. Helicobacter pylori infection
Figure 5 Mature amidated gastrin (G17) induces STAT3 and Akt phosphorylation in gastric cancer cells. SGC-7901 and MKN-45 cells were treated for 30 min with increasing concentrations of G17 (A), or with G17 (10 nmol/L) for the indicated time points (B), as well as pre-treated as indicated with 10 nmol/L CCK2R antagonist YM022 (C) or 40 μmol/L JAK2 inhibitor AG490 (D) or 25 μmol/L PI3K inhibitor LY294002 (E) for 1 h and then incubated with G17 (10 nmol/L) for 30 min to evaluate STAT3 and Akt phosphorylation or for 6 h to evaluate cyclooxygenase-2 (COX-2) expression. SGC-7901 and MKN-45 cells were transfected with either CCK2R-siRNA (F) or CCK2R-pCMV6 (G), followed by G17 (10 nmol/L) treatment for 30 min. Protein extracts were prepared and analyzed for total and phosphorylated forms of STAT3 or Akt by Western blot analysis using corresponding antibodies. The top panels show a representative immunoblot of six separate experiments undertaken. The histograms at the bottom represent the relative expression of phospho-STAT3 (p-STAT3) or phospho-Akt (p-Akt) or COX-2 compared with total STAT3 (t-STAT3) or total Akt (t-Akt) or tubulin, respectively. All data represent the mean ± SD of six independent experiments. *P < 0.05, **P < 0.01 vs control or NC-siRNA or pCMV6; *P < 0.05, **P < 0.01 vs G17. Reproduced from Ref [74] with permission.
individuals has not been conclusively shown in human clinical trials. In patients who underwent *H. pylori* eradication therapy, chronic use of celecoxib was associated with a higher regression rate of gastric precancerous intestinal metaplasia. However, in patients who had received *H. pylori* eradication therapy, treatment with another selective COX-2 inhibitor, rofecoxib, for 2 years did not reduce intestinal metaplasia. Considering that cancer chemoprevention by NSAIDs is modulated by both COX-2-dependent and -independent pathways, NSAIDs may have variable efficacy in their abilities to prevent gastric cancer.

CONCLUSION

H. pylori infection is considered a major risk factor for the development of gastric cancer. Hypergastrinemia associated with *H. pylori* infection induces COX-2 expression, which appears to be related to the carcinogenesis and progression of gastric cancer.

REFERENCES

1. Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett 2014; 345: 196-202 [PMID: 23981572 DOI: 10.1016/j.canlet.2013.08.016]

2. Greenfield KL, Jones NL. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol 2013; 21: 602-612 [PMID: 24156875 DOI: 10.1016/j.tim.2013.09.004]

3. Long M, Luo J, Li Y, Zeng FY, Li M. Detection and evaluation of antibodies against neutrophil-activating protein of Helicobacter pylori in patients with gastric cancer. World J Gastroenterol 2009; 15: 2381-2388 [PMID: 19452583 DOI: 10.3748/wjg.v15.i15.2381]

4. Sepulveda AR. Helicobacter, Inflammation, and Gastric Cancer. Curr Pathol 2013; 1: 9-18 [PMID: 23687623 DOI: 10.1007/s40139-013-0009-8]

5. Infection with Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum 1994; 61: 177-240 [PMID: 7718070]

6. Konturek PC, Hartwich A, Zuchowicz M, Labza H, Pierzchalski P, Karczewska E, Bielanski W, Hahn EG, Konturek PC. Ultrastructural features of Helicobacter pylori gastritis. Am J Pathol 2000; 151: 737-749 [PMID: 11192946]

7. Miyaji M, Ogoshi K, Tajima T, Mitomi T. Association between serum gastrin levels, gastric acid secretion and age in early gastric cancer. Tumour Biol 1997; 18: 311-320 [PMID: 9276031]

8. Takashii S, Mutlu C, Koybasilgu F. Cyclooxygenase-2 expression and associated premalignant and malignant gastric lesions. J Prp 2008; 2: 205-212 [PMID: 1749-6632.1994.tb12037.x]

9. Fox JG, Wang TC, Rogers AB, Lertkowit N, Varro A, Fox JG. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J 2012; 279: 4201-4212 [PMID: 23201349 DOI: 10.1111/j.1439-6434.2012.00546.x]

10. Wang TC, Dangler CA, Chen D, Goldenring JR, Koh T, Raychowdhury R, Coffey RJ, Ito S, Varro A, Dockray GJ, Fox JG. Synergistic interaction between hypergastrinemia and Helicobacter pylori infection in a mouse model of gastrin-related cancer. Gastroenterology 2000; 118: 36-47 [PMID: 10611552]

11. Smith WL, Meade EA, DeWitt DL. Pharmacology of prostaglandin endoperoxide synthase isoforms-1 and -2. Ann N Y Acad Sci 1994; 714: 136-142 [PMID: 8017762 DOI: 10.1111/j.1749-6632.1994.tb12037.x]

12. Rodrigues NL, Doré M, Doucet MY. Expression of cyclooxygenase isoforms in ulcerated tissues of the nonglandular portion of the stomach in horses. Am J Vet Res 2010; 71: 592-596 [PMID: 20433387 DOI: 10.2460/ajv.71.5.592]

13. He XP, Shao Y, Li XL, Xu W, Chen GS, Sun HH, Xu HC, Xu X, Tang D, Zheng XF, Xue YP, Huang GC, Sun WH. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J 2012; 279: 4201-4212 [PMID: 23201349 DOI: 10.1111/j.1439-6434.2012.00546.x]

14. Yamac D, Ayvildiz T, Coskun U, Akyurek N, Dursun A, Seckin S, Koybasilgu F. Cyclooxygenase-2 expression and its association with angiogenesis, Helicobacter pylori infection, and clinicopathologic characteristics of gastric carcinoma. Pathol Res Pract 2008; 204: 527-536 [PMID: 18462890 DOI: 10.1016/j.prrp.2008.01.002]

15. Sung JJ, Leung WK, Go MY, To KP, Cheng AS, Ng EK, Chan FK. Cyclooxygenase-2 expression in Helicobacter pylori-associated premalignant and malignant gastric lesions. Am J Pathol 2010; 175: 729-735 [PMID: 19980112 DOI: 10.1016/j.ajpath.2009.08.012]

16. Tseng YC, Tsai YH, Tseng MJ, Hsu KW, Yang MC, Huang KH, Li AF, Chi CW, Hsieh RH, Ku HH, Yeh TS. Notch2-induced COX-2 expression enhancing gastric cancer progression. Mol Carcino 2012; 51: 939-951 [PMID: 21976414 DOI: 10.1002/mc.20665]

17. Forones NM, Kawamura KY, Segretho HR, Artigiani Neto R, Fochi GR, Oshima CT. Expression of COX-2 in stomach carcinogenesis. J Gastrointest Cancer 2008; 39: 4-10 [PMID: 19107602 DOI: 10.1007/s10202-008-0093-6]

18. Yamac D, Ayvildiz T, Coskun U, Akyurek N, Dursun A, Seckin S, Koybasilgu F. Cyclooxygenase-2 expression and associated premalignant and malignant gastric lesions. Am J Pathol 2010; 175: 729-735 [PMID: 19980112 DOI: 10.1016/j.ajpath.2009.08.012]

19. Tatsuguchi A, Sakamoto C, Wada K, Akamatsu T, Tsukui T, Miyake K, Futagami S, Kishida T, Fukuda Y, Yamanaka N, Kobayashi M. Localisation of cyclooxygenase 1 and cyclooxygenase 2 in Helicobacter pylori infected gastric mucosa and vascular endothelial growth factor in gastric mucosa in patients with active Helicobacter pylori infection and the expression of cyclooxygenase-2 in Helicobacter pylori infection. Life Sci 2004; 10: 2809-2813 [PMID: 1534673]

20. Liu D, He Q, Liu C. Correlations among Helicobacter pylori infection and the expression of cyclooxygenase-2 and vascular endothelial growth factor in gastric mucosa with intestinal metaplasia or dysplasia. J Gastroenterol Hepatol 2010; 25: 795-799 [PMID: 20492336 DOI: 10.1111/j.1441-4404.2009.01618.x]

21. Sun WH, Yu Q, Shen H, Ou XL, Cao DZ, Yu T, Qian C, Zhu F, Sun YL, Fu XL, Su H. Roles of Helicobacter pylori infection and cyclooxygenase-2 expression in gastric carcinogenesis. World J Gastroenterol 2004; 10: 2809-2813 [PMID: 1534673]

22. Liu D, He Q, Liu C. Synergistic effects of COX-2 on gastric cancer chemoprevention by NSAIDs is modulated by both COX-2-dependent and -independent pathways. Inflammation and Gastric Cancer. Gastroenterology 2005; 128: 1965-1983 [PMID: 15940630]
Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 1992; 52: 673-674 [PMID: 1458460]

Mera R, Fontham ET, Bravo LE, Bravo JC, Piazuelo MB, Camargo MC, Correa P. Long term follow up of patients treated for Helicobacter pylori infection. Gut 2005; 54: 1536-1540 [PMID: 15985559 DOI: 10.1136/gut.2005.072009]

Uemura N, Mukai T, Okamoto S, Yamaguchi S, Mashiba H, Taniyama K, Sasaki N, Haruma K, Sumii K, Kajiyama G. Effect of Helicobacter pylori eradication on subsequent development of gastric cancer after endoscopic resection of early gastric cancer. Cancer Epidemiol Biomarkers Prev 1997; 6: 639-642 [PMID: 9264278]

Fukase K, Kato M, Kikuchi S, Inoue K, Uemura N, Okamoto S, Terao S, Amagai K, Hayashi S, Asaka M. Effect of eradication of Helicobacter pylori on incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer: a randomized controlled trial. Lancet 2008; 372: 392-397 [PMID: 18657689 DOI: 10.1016/S0140-6736(08)61159-9]
cell cultures: effect on gastrin cell function. *Am J Physiol* 1998; 275: C393-C401 [PMID: 9724240]

- **Brzozowski** T, Konturek PC, Mierzwa M, Drozdowicz D, Bielsanski W, Kwiecien S, Konturek SJ, Stachura J, Pawlik WW, Hahn ECG. Effect of antibiotics and triple eradication therapy on the cycloxygenase (COX)-2 expression, apoptosis, and functional gastric mucosal impairment in Helicobacter pylori-infected Mongolian gerbils. *Helicobacter* 2006; 11: 10-20 [PMID: 16423085 DOI: 10.1111/j.1387-9530.2006.00373.x]

- **Levi** S, Beardshall K, Swift I, Foukles W, Playford R, Ghosh P, Calam J. Antral Helicobacter pylori, hypergastrinaemia, and duodenal ulcers: effect of eradicating the organism. *BMJ* 1989; 299: 1504-1515 [PMID: 2514864]

- **Moss SF**, Legon S, Bishop AE, Polak JM, Calam J. Effect of Helicobacter pylori on gastric somatostatin in duodenal ulcer disease. *Lancet* 1992; 340: 930-932 [PMID: 1353743] DOI: 10.1016/0140-6736(92)92816-X

- **Chao** C, Hellmich MR. Gastrin, inflammation, and carcinogenesis. *Curr Opin Endocrinol Diabetes Obes* 2010; 17: 33-39 [PMID: 19907321 DOI: 10.1097/MED.0b013e32833a8f8]

- **Sun WH**, Zhu F, Chen GS, Su H, Luo C, Zhao QS, Zhang Y, Shao Y, Sun J, Zhou SM, Ding GX, Cheng YL. Blockade of cholecystokinin-2 receptor and cyclooxygenase-2 synergistically induces cell apoptosis, and inhibits the proliferation of human gastric cancer cells in vitro. *Cancer Lett* 2008; 263: 302-311 [PMID: 18258354 DOI: 10.1016/j.canlet.2008.01.012]

- **Xu W**, Chen GS, Shao Y, Li XL, Xu HC, Zhang H, Zhu QG, Zhong YC, He XP, Sun WH. Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/Akt pathway in human gastric cancer cells. *Cancer Lett* 2013; 332: 11-18 [PMID: 23376640 DOI: 10.1016/j.canlet.2012.12.030]

- **Semple** G, Ryder H, Rooker DP, Batt AR, Kendrick DA, Szelke M, Ohta M, Satoh M, Nishida A, Akuzawa S, Miyata K. (3R)-(1-{[3-(tert-butylcarboxy)methyl]-2,3-dihydro-2-oxo-5-(2-pyridyl)-1H-1,4-benzodiazepin-3-yl}-N-(3-(methylamino)phenyl)urea (YF476): a potent and orally active gastrin/CCK-B antagonist. *J Med Chem* 2007; 40: 331-341 [PMID: 9022799 DOI: 10.1021/jm060669f]

- **Niwa T**, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita E, Ichinose M, Tamate M, Ushijima T. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. *Cancer Res* 2010; 70: 1450-1440 [PMID: 20124475 DOI: 10.1158/0008-5472.CAN-09-2755]

- **Nakajima** T, Enomoto S, Yamashita S, Ando T, Nakashisi Y, Nakazawa K, Oda I, Gotoda T, Ushijima T. Persistence of a component of DNA methylation in gastric mucosa after Helicobacter pylori eradication. *J Gastroenterol* 2010; 45: 37-44 [PMID: 19820105 DOI: 10.1007/s00506-009-4142-7]

- **Maekita** T, Nakazawa K, Mihara M, Nakajima T, Yanaka K, Iguchi M, Arii K, Kaneda A, Tsukamoto T, Tamate M, Tamura G, Saito D, Sugimura T, Ichinose M, Ushijima T. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosa and its possible association with gastric cancer risk. *Cancer Res* 2006; 66: 299-905 [PMID: 16467114 DOI: 10.1158/0008-5472.CCR-05-2096]

- **Yoshida** T, Kato J, Maekita T, Yamashita S, Enomoto S, Ando T, Niwa T, Deguchi H, Ueda K, Inoue I, Iguchi M, Tamai H, Ushijima T. Impaired DNA methylation and epigenetic processes triggered by Helicobacter pylori infection. *J Gastroenterol* 2010; 45: 1007-12 [PMID: 20476546 DOI: 10.1007/s00506-009-4142-7]

- **Gibbons AH**, Legon S, Walker MM, Ghatei M, Calam J. The effect of gastrin-releasing peptide on gastric and somatostatin messenger RNAs in humans infected with Helicobacter pylori. *Gastroenterology* 1997; 112: 1940-1947 [PMID: 9178686 DOI: 10.1016/s0016-5085(97)83021-1]

- **Sokic-Milutinovic** A, Todorovic V, Milosavljevic T, Micic M, Drndarevic N, Mitrovic O. Gastrin and antral G cells in course of Helicobacter pylori eradication: six months follow up study. *World J Gastroenterol* 2005; 11: 4140-4147 [PMID: 16015680]

- **Gibbons AH**, Legon S, Walker MM, Ghatei M, Calam J. The effect of gastrin-releasing peptide on gastric and somatostatin messenger RNAs in humans infected with Helicobacter pylori. *Gastroenterology* 1997; 112: 1940-1947 [PMID: 9178686 DOI: 10.1016/s0016-5085(97)83021-1]

- **Shao Y et al.**, Helicobacter pylori infection
ZG, Yu YY. Helicobacter pylori induces promoter hyper-methylation and downregulates gene expression of IRX1 transcription factor on human gastric mucosa. *J Gastroenterol Hepatol* 2011; 26: 1685-1690 [PMID: 21649733 DOI: 10.1111/j.1440-1746.2011.06888.x]

Niwa T, Toyota T, Tsukamoto T, Mori A, Tatematsu M, Ushijima T. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent. *Cancer Prev Res* (Phila) 2013; 6: 263-270 [PMID: 23559452 DOI: 10.1158/1940-6207.CAPR-12-0369]

Fu S, Ramanujam KS, Wong A, Fantry GT, Drachenberg CB, James SP, Meltzer SJ, Wilson KT. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. *Gastroenterology* 1999; 116: 1319-1329 [PMID: 10438815 DOI: 10.1016/S0016-5085(99)70496-8]

Sawaoa H, Kawanou S, Tsuji S, Tsuji M, Sun W, Gunawan ES, Hori M. Helicobacter pylori infection induces cyclooxygenase-2-expression in human gastric mucosa. *Prostaglandin Leukot Essent Fatty Acids* 1998; 69: 313-316 [PMID: 9888205 DOI: 10.1016/S0094-270X(98)00103-7]

Ristimäki A, Honkanen N, Jänkälä H, Sipponen P, Härkönen M. Expression of cyclooxygenase-2 in human gastric carcinoma. *Cancer Res* 1997; 57: 1276-1280 [PMID: 9102213]

Uefuji K, Ichikura T, Mochizuki H, Shinomiya N. Expression of cyclooxygenase-2 protein in gastric adenocarcinoma. *J Surg Oncol* 1998; 69: 168-172 [PMID: 9846304 DOI: 10.1002/(SICI)1097-4652(199811)69:2<168::AID-JSO9>3.0.CO;2-D]

Romano M, Ricci V, Memoli A, Tuccillo C, Di Popolo A, Sommi P, Acquaviva AM, Del Vecchio Bianco C, Bruni CB, Zarrilli R. Helicobacter pylori up-regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro. *J Biol Chem* 1998; 273: 28560-28563 [PMID: 9786845]

Hisatsune J, Yamasaki E, Nakayama M, Shirasaka D, Kura zono H, Katagata Y, Inoue H, Han J, Sap J, Yahiro K, Mass J, Hirayama T. Helicobacter pylori vacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells. *Infect Immun* 2007; 75: 4472-4481 [PMID: 17591977 DOI: 10.1128/IAI.00500-07]

Caputo R, Tuccillo C, Manzo BA, Zarrilli R, Tortora G, Bianco Cdel V, Ricci V, Ciardiello F, Romano M. Helicobacter pylori vacA toxin up-regulates vascular endothelial growth factor expression in MKN 28 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism. *Cancer Res* 2003; 63: 12970-12975 [PMID: 12976363]

Shen H, Sun WH, Xue QP, Wu J, Cheng YL, Ding GX, Fu HY, Tsuji S, Kawano S. Influences of Helicobacter pylori on cyclooxygenase-2-expression and prostaglandinE2 synthesis in rat gastric epithelial cells in vitro. *J Gastroenterol Hepatol* 2006; 21: 754-758 [PMID: 16677165 DOI: 10.1111/j.1440-1746.2006.04290.x]

Oshima H, Popivanova BK, Oguma K, Kong D, Ishikawa TO, Oshima M. Activation of epidermal growth factor receptor signaling by the prostaglandin E2 receptor EP4 pathway during gastric tumorigenesis. *Cancer Sci* 2011; 102: 713-719 [PMID: 21205091 DOI: 10.1111/j.1349-7006.2011.01847.x]

Wong BC, Zhang L, Ma JL, Pan KF, Li JY, Shen L, Liu WD, Feng GS, Zhang XD, Li J, Lu AP, Xia HH, Lam S, You WC. Effects of selective COX-2 inhibitor and Helicobacter pylori eradication on precancerous gastric lesions. *Gut* 2012; 61: 812-818 [PMID: 21917649 DOI: 10.1136/gutjnl-2011-300154]

Wang D, Dubois RN. Prostaglandins and cancer. *Gut* 2006; 55: 115-122 [PMID: 16181353 DOI: 10.1136/gut.2004.047100]

Oshima H, Hioki K, Popivanova BK, Oguma K, Van Rooijen N, Ishikawa TO, Oshima M. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. *Gastroenterology* 2011; 140: 99-607:e1
109 **Subramaniam D**, Ramalingam S, May R, Dieckgraefe BK, Berg DE, Pothoulakis C, Houchen CW, Wang TC, Anant S. Gastrin-mediated interleukin-8 and cyclooxygenase-2 gene expression: differential transcriptional and posttranscriptional mechanisms. *Gastroenterology* 2008; 134: 1070-1082 [PMID: 18395088 DOI: 10.1053/j.gastro.2008.01.040]

110 **Chang YJ**, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H, Chen CC. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. *Mol Pharmacol* 2004; 66: 1465-1477 [PMID: 15456896 DOI: 10.1124/mol.104.05199]

111 **Li Q**, Liu N, Shen B, Zhou L, Wang Y, Wang Y, Sun J, Fan Z, Liu RH. Helicobacter pylori enhances cyclooxygenase 2 expression via p38MAPK/ATF-2 signaling pathway in MKN45 cells. *Cancer Lett* 2009; 278: 97-103 [PMID: 19201083 DOI: 10.1016/j.canlet.2008.12.032]

112 **Wu WK**, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ. MicroRNA dysregulation in gastric cancer: a new player enters the game. *Oncogene* 2010; 29: 5761-5771 [PMID: 20802530 DOI: 10.1038/onc.2010.352]

113 **Wang HJ**, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. *Eur J Cancer* 2010; 46: 2295-2303 [PMID: 20712078 DOI: 10.1016/j.ejca.2010.05.012]

114 **Matsushima K**, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, Nakao K, Hirayama T, Kohno S. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. *Int J Cancer* 2011; 128: 361-370 [PMID: 20333692 DOI: 10.1002/ijc.25348]

115 **Wang WH**, Huang JQ, Zheng GF, Lam SK, Karlberg J, Wong BC. Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. *J Natl Cancer Inst* 2005, 97: 1784-1791 [PMID: 14652240 DOI: 10.1093/jnci/dij106]

116 **Hu PJ**, Yu J, Zeng ZR, Leung WK, Lin HL, Tang BD, Bai AH, Sung JJ. Chemoprevention of gastric cancer by celecoxib in rats. *Gut* 2004; 53: 195-200 [PMID: 14724149 DOI: 10.1136/gut.2003.021477]

117 **Saikkonen K**, Tomasetto C, Narko K, Rio MC, Ristimäki A. Cyclooxygenase-2 expression and effect of celecoxib in gastric adenomas of trefoil factor 1-deficient mice. *Cancer Res* 2003; 63: 3032-3036 [PMID: 12810622]

118 **Futagami S**, Suzuki K, Hiratsuka T, Shindo T, Hamamoto T, Tatsuuchi A, Ueki N, Shinya Y, Kusunoki M, Wada K, Miyake K, Gudis K, Tsukui T, Sakamoto C. Celecoxib inhibits CdX2 expression and prevents gastric cancer in Helicobacter pylori-infected Mongolian gerbils. *Digestion* 2006; 74: 187-198 [PMID: 17341852 DOI: 10.1159/000100503]

119 **Magari H**, Shimizu Y, Inada K, Enomoto S, Tomoki T, Yanoaka K, Tamai H, Ariti K, Nakata H, Oka M, Utsunomiya-H, Tsutsumi Y, Tsukamoto T, Tatematsu M, Ikinose M. Inhibitory effect of etodolac, a selective cyclooxygenase-2 inhibitor, on stomach carcinogenesis in Helicobacter pylori-infected Mongolian gerbils. *Biochem Biophys Res Commun* 2005; 334: 606-612 [PMID: 16009342 DOI: 10.1016/j.bbrc.2005.06.132]

120 **Chiu CH**, McIntee MF, Whelan J, Sulindac causes rapid regression of preexisting tumors in Min/+ mice independent of prostaglandin biosynthesis. *Cancer Res* 1997; 57: 4267-4273 [PMID: 9331087]

121 **Reddy BS**, Maruyama H, Kelly G. Dose-related inhibition of colon carcinogenesis by dietary piroxicam, a nonsteroidal antiinflammatory drug, during different stages of rat colon tumor development. *Cancer Res* 1987; 47: 5340-5346 [PMID: 3652039]

122 **Yang HB**, Cheng HC, Sheu BS, Hung KH, Liou MF, Wu J. Chronic celecoxib users more often show regression of gastric intestinal metaplasia after Helicobacter pylori eradication. *Aliment Pharmacol Ther* 2007; 25: 455-461 [PMID: 17270001 DOI: 10.1111/j.1365-2036.2006.03224.x]

123 **Leung WK**, Ng EK, Chan FK, Chan WY, Chan KF, Auyeung AC, Lam CC, Lau JY, Sung JJ. Effects of long-term rofecoxib on gastric intestinal metaplasia: results of a randomized controlled trial. *Clin Cancer Res* 2006; 12: 4766-4772 [PMID: 16899628 DOI: 10.1158/1078-0432.CCR-06-0693]

124 **Grösch S**, Maier TJ, Schiffmann S, Geisslinger G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. *J Natl Cancer Inst* 2006; 98: 736-747 [PMID: 16757698 DOI: 10.1093/jnci/dji206]

P- Reviewer: Ding SG, Tong Q S- Editor: Gou SX L- Editor: Wang TQ E- Editor: Ma S
