Diversity of Indian Barnacles in Marine Provinces and Ecoregions of the Indian Ocean

Jigneshkumar Trivedi¹, Krupal Patel², Benny K. K. Chan³*, Mahima Doshi¹ and Vinay Padate⁴

¹ Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India, ² Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India, ³ Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ⁴ Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Government of India, Kochi, India

The present study is the first completed and taxonomically validated literature review of the biodiversity of barnacles (Cirripedia) in India. A total of 144 species in 75 genera and 19 families have been recorded in India. The highest number of species has been recorded from the Bay of Bengal province, located on the eastern side of the Indian Peninsula, comprising the Eastern India ecoregion (76 species) and Northern Bay of Bengal ecoregion (34 species). The West and South India Shelf province has fewer species (Western India ecoregion: 29 species; South India and Sri Lanka ecoregion: 40 species; and Maldives ecoregion: 10 species) compared to the Bay of Bengal province. The Andaman province is composed of the Andaman and Nicobar Islands, and contains 65 species. Most of the coral-associated barnacles (family Pyrgomatidae) have been recorded in the coral reefs of the Andaman and Nicobar Islands (7 species), Eastern India (6 species), and Northern Bay of Bengal ecoregions (5 species). Sponge-associated barnacles (mostly in the subfamily Acastinae) were recorded in the Eastern India ecoregion, Southern India and Sri Lanka, and Andaman and Nicobar Islands ecoregions. Deepwater species were recorded the most extensively in the Andaman and Nicobar Islands ecoregion (21 species), followed by the South India and Sri Lanka ecoregion (9 species) and Eastern India ecoregion (7 species). Six Atlantic/boreal cold water species previously reported in India were removed due to incorrect identification, and some incorrectly identified species were validated and corrected.

Keywords: India, checklist, cirripedia, barnacles, biodiversity

INTRODUCTION

India is one of the 12 mega-biodiversity countries and has 25 biodiversity hotspots, containing a considerable number of endangered species (Myers et al., 2000; Venkataraman and Wafar, 2005; Venkataraman and Raghunathan, 2015). India supports a rich diversity of marine habitats and invertebrate fauna (Aneesh et al., 2018; Trivedi et al., 2018; Kotutarathil et al., 2019; Shih et al., 2019; Aneesh and Kappalli, 2020). India contains 7516.6 km of coastline—5422.6 km in the Indian Peninsula and 2094 km in islands (Andaman and Nicobar Islands: 1962 km; Lakshadweep Islands: 132 km) (Ahmad, 1972; Kumar et al., 2006; Trivedi et al., 2018).
More than 1400 species of barnacle were recorded from different oceanic regions across the world (Innocenti, 2006; Chan et al., 2009). Barnacles occur in almost all marine environments, from intertidal zones to the deepest parts of the oceans (Chan and Hoeg, 2015). The greatest diversity of barnacles is observed in the tropical Indo-Pacific region (Newman and Abbott, 1980). Taxonomic studies of barnacles date back to the 16th century, when barnacles were identified as eggs of barnacle geese (Anderson, 1994). Burmeister (1834) was the first naturalist to classify barnacles into cirripedes which later attracted the attention of numerous taxonomists (Anderson, 1994). Darwin (1851, 1854) monographs on barnacles, written shortly after Darwin's publication, became one of the major contributions to barnacle taxonomy.

Taxonomic studies on Indian barnacle fauna came out of the systemic work from one of these Darwin (1854) monographs, which included several species of barnacles from the Indian waters. Thomas Nelson Annandale, the first Director of the Zoological Survey of India, published a series of taxonomy papers (Annandale, 1905, 1906a,b, 1907, 1909, 1910a,b, 1911, 1913, 1914, 1916, 1924) based on the barnacle specimens deposited into the Indian Museum. Annandale (1906a) examined stalked barnacles collected from the R.I.M.S. (Royal India Marine Survey Ship) “Investigator” and described 11 new species. Later, Annandale (1909); (Annandale, 1910a,b) described eight new species and one new family (Poecilasmatidae; Annandale, 1909) of barnacles from Indian waters. Annandale (1924) published a list of cirripedia associated with Indian corals and described two new species. Sundararaj (1927) recorded five species of barnacles from the Krusadas Islands (Tamil Nadu). Nilsson-Cantell (1938) carried out a taxonomic study on barnacles of the Bay of Bengal, Arabian Sea and Indian Ocean, and listed a total of 139 species, 36 of which had a wide distribution beyond these three regions. Augustine Daniel of the Zoological Survey of India studied barnacle diversity of the Tamil Nadu state and recorded 42 species (Daniel, 1956). Daniel (1981) listed 15 species of barnacles collected from estuaries in both the east and south-west coasts of India. Fernando (2006) later published a monograph on Indian barnacles that contained more extensive records and listed 70 species.

Scientists at institutes and universities across Indian have contributed to our understanding of the taxonomy, diversity and biology of barnacles occurring in Indian waters (Gray, 1831; Gruvel, 1907; Hoek, 1913; Kemp, 1915; Pillai, 1958; Bhatt and Bal, 1960; Karande and Palekar, 1963, 1966; Daniel and Chakraborath, 1967; Prem-Kumar and Daniel, 1968; Balakrishnan, 1969; Wagh and Bal, 1969, 1974; Devaraj and Bennet, 1974; Karande, 1974; Desai and Senthilkumar, 1975; Fernando, 1978; Venkateswaran and Fernando, 1982; Wagh and Sawant, 1982; Newman and Killingley, 1984; Sudakaran and Fernando, 1987; Rao and Balaji, 1988; Frazier, 1989; Nandakumar, 1990; Rajaguru and Shantha, 1992; Ramakrishna and Talukdar, 2003; Karuppiah et al., 2004; Singh et al., 2004; Mitra and Misra, 2006; Sanjeeva Raj, 2006; Krishnamoorthy, 2007; Kumaravel et al., 2009; Pari et al., 2009; Mitra et al., 2010; Swami et al., 2011; Namboothri and Fernando, 2012; Patro, 2012; Ramamoorthy et al., 2012; Trivedi et al., 2015; Sahadevan, 2016; Roy and Rath, 2017; Desai et al., 2018; Parmar et al., 2018; Mondal et al., 2019). In addition to diversity research, there are a considerable number of studies focusing on the larval biology and settlement ecology of the common Indian intertidal barnacle Amphibalanus amphitrite (Gaonkar and Anil, 2010, 2012, 2013a,b; Gaonkar et al., 2012). In Goa and Kochi, on the west coast of India, settlement of cypris larvae have been investigated for their responses to diatom exopolymers (Patil and Anil, 2005), conspecific cues (Khandeparker and Anil, 2011), specific bacteria associating with the barnacle shells (De Gregoris et al., 2012), and sponge extracts (Mol et al., 2010). The reproductive cycle and population dynamics of A. amphitrite in Goa, India is affected by the interactions among monsoons, temperature and chlorophyll a concentration in seawater (Desai and Anil, 2005; Desai et al., 2006). The breeding and settlement patterns of A. amphitrite in Tamil Nadu, southeast coast of India are affected by tidal patterns, temperature and phytoplankton abundance (Karuppaiyan and Raja, 2007; Satheesh and Wesley, 2009). To date, there has not been a complete literature review on those extensive records of barnacle diversity in India or their accuracy. The objective of the present study is to provide the most taxonomically updated, validated and complete diversity records on barnacles in India. Species identities were validated based on morphological identifications using relevant taxonomic references, and supported by recent results of molecular taxonomic studies of barnacles in the Indo-Pacific waters.

MATERIALS AND METHODS

Provinces and Ecoregions in India

According to the definitions in Spalding et al. (2007), the coastline of India is comprised of four marine biogeographical provinces and six ecoregions (Figure 1). The West and South Indian Shelf province comprises the Western India ecoregion (from Kachchh district of Gujarat state to Ashtamudi Lake of Kerala state) and the South India ecoregion (Ashtamudi Lake of Kerala state to Karityal, Pondicherry of Tamil Nadu state) (Figure 1). The Central Indian Ocean Islands province includes the Maldives ecoregion, comprising Lakshadweep Islands and Minicoy. The Bay of Bengal province in India covers the Eastern India ecoregion (from Karityal, Pondicherry of Tamil Nadu state to Konark of Odisha state) and the Northern Bay of Bengal ecoregion (Konark of Odisha state to Bidayadhari River Delta of West Bengal state). The Andaman province in India includes Andaman and Nicobar Islands ecoregion, which covers the Andaman and Nicobar Islands (Figure 1; Spalding et al., 2007).

Literature Review

The data on the barnacle fauna of India in the present study are based on peer-reviewed published literature and/or deposited material in marine collections. Only species present in Indian waters were recorded in the present study.

The collection site of each species is classified based on the Indian state and relevant marine provinces and ecoregions from Spalding et al. (2007). Species reported from adjacent
Multivariate Analysis of Species Assemblages

Based on what is present and absent in the list of all recorded barnacle species, multivariate analysis (using species as variables) was performed using the PRIMER package (v6, Plymouth Routine in Multivariate Analysis, PRIMER-E Ltd; Clarke and Gorley, 2006) to examine variations in species assemblages among the ecoregions in India. Similarities among the ecoregions based on species data were calculated using the Sorensen similarity index. Non-metric Multidimensional Scaling (nMDS; Clarke, 1993) was conducted to generate two-dimensional plots on the species composition in all the ecoregions.

RESULTS

Diversity Patterns

A total of 155 barnacle species belonging to 75 genera and 19 families were reported from India (Supplementary Appendix Table 1). Of these, 40 species were described from Indian waters, of which 35 are valid species (Table 1) and five were synonymized: Platylepas multidecorata Daniel, 1962—described from Little Andaman, Andaman and Nicobar Islands—is now treated as a synonym of Platylepas decorata (Darwin, 1854). Balanus longirostrum var. krusadaiensis Daniel (1956), described from Tamil Nadu, is now treated as a synonym of Membranobalanus longirostrum (Hoek, 1913). Balanus (Membranobalanus) roonwali Prem-Kumar and Daniel (1968)—described from Chennai, Tamil Nadu—is now treated as a synonym of M. longirostrum. Balanus amphitrite var. cochinensis Nilsson-Cantell (1938)—described from Ernakulam, Cochin, Kerala—is now treated as a synonym of Amphibalanus amphitrite (Darwin, 1854). Pollicipes polymerus madrasensis Daniel, 1953—described from Royapuram, Chennai, Tamil Nadu—is now treated as a synonym of Pollicipes polymerus Sowerby (1833).
TABLE 1 | Barnacle species described from India.

Taxon name	Current identity	Type locality	World distribution
Lepas anatifera indica Annandale, 1909	Lepas indica Annandale, 1909	Off Ganjam coast, Orissa	India; Indian Ocean; Madagascar; South China Sea; East China Sea; China Jones and Hosie, 2016
Lepas bengalensis Daniel, 1952	Lepas bengalensis Daniel, 1952	Madras (Chennai), Tamil Nadu	India Fernando, 2006
Conchoderma indicum Daniel, 1953	Conchoderma indicum Daniel, 1953	Kursad Islands, Tamil Nadu	India Fernando, 2006
Lepas guanamuthui Daniel, 1971	Dosima guanamuthui Daniel, 1971	Great Nicobar, Andaman and Nicobar Islands	India; Northern Indian Ocean González et al., 2014
Oxynaspis celata indica Annandale, 1910	Oxynaspis indica Annandale, 1910	Odisha	India; Indo-Pacific; Off Mauritius; Philippines to southwest Pacific; off New Zealand Rosell, 1991
Dichelaspis grayi var. permuda Annandale, 1909	Octolasmis grayi var. permuda Annandale, 1909	Chennai, Tamil Nadu	India Fernando, 2006
Platylepas indicus Daniel, 1958	Platylepas indicus Daniel, 1958	Chennai, Tamil Nadu	India Fernando, 2006
Tetractitella karandei Ross, 1971	Tetractitella karandei Ross, 1971	Machh Islands, Maharashtra	India; Taiwan; Philippines Chan et al., 2009
Acasta sulcata var. spinosa Daniel, 1956	Acasta sulcata akhantosa Daniel, 1956	Royapuram, Chennai, Tamil Nadu	India Fernando, 2006
Balanus (Semibalanus) madrasensis Daniel, 1958	Semibalanus madrasensis Daniel, 1958	Chennai, Tamil Nadu	India Daniel, 1972
Balanus (Semibalanus) sinnurensis Daniel, 1962	Semibalanus sinnurensis Daniel, 1962	Chennai, Tamil Nadu	India Fernando, 2006
Dichelaspis rhinoceros Annandale, 1906	Octolasmis rhinoceros Annandale, 1906	Bay of Bengal	India Nilsson-Cantell, 1938
Dichelaspis stella Annandale, 1909	Octolasmis stella Annandale, 1909	Bay of Bengal	Indian Ocean Zevina, 1982
Heteralepas (Heteralepas) nicobanica Annandale, 1909	Heteralepas nicobanica Annandale, 1909	Nicobar Island, Andaman and Nicobar Islands	India Buhl-Mortensen and Newman, 2004
Scalpellum lambda Annandale, 1910	Annandaleum lambda Annandale, 1910	Bay of Bengal near Andaman and Nicobar Islands (13°54'15"N 94°02'15"E)	India; Indo-west Pacific; Indian Ocean; Zanzibar; Sumbawa; Indonesia; Malay Archipelago; South-West of Calatagan Pt; Philippines; South Japan; South-West Pacific Jones and Hosie, 2016
Scalpellum bengalens Annandale, 1906	Scalpellum (Smilium) bengalens Annandale, 1906	Ganjam coast, Odisha	India Annandale, 1906b
Scalpellum Atcockianum Annandale, 1906	Alcockianum atcockianum Annandale, 1906	Gulf of Mannar, Tamil Nadu	India; Indian Ocean; Mozambique Channel; Indonesia; Malay Archipelago; Australia; New Zealand; South-West Pacific and mid-Pacific guyots Jones and Hosie, 2016
Scalpellum laccadivicum Annandale, 1906	Annandaleum laccadivicum Annandale, 1906	Laccadive sea	India; Gulf of Oman; Sri Lanka; Indonesia; Japan; Taiwan Chan et al., 2009
Scalpellum subflavum Annandale, 1905	Annandaleum laccadivicum Annandale, 1906	Cochin, Kerala and Gulf of Mannar, Tamil Nadu	India; Indian Ocean; Sumbawa; Indonesia; Malay Archipelago; South-West of Calatagan Pt; Taiwan; Philippines; South Japan (South of Honda Island); South-West Pacific Jones and Hosie, 2016
Alaepas xenophorae Annandale, 1906	Paraepas xenophorae Annandale, 1906	Kerala	India; Japan Utinomi, 1958
Megalasma striatum minus Annandale, 1906	Megalasma minus Annandale, 1906	Andaman Sea	Cosmopolitan; India; Atlantic Ocean; Indo-west Pacific; East coast of Africa (Zanzibar); Indian Ocean; Indonesia; Malay Archipelago; Philippines; Taiwan; S Japan; Pacific Ocean Jones and Hosie, 2016
Scalpellum gruvelii Annandale, 1906	Annandaleum gruvelii Annandale, 1906	Gulf of Mannar, Tamil Nadu and between Lakshadweep and mainland	India; Atlantic Ocean; Indo-west Pacific; Indian Ocean; South China Sea; Pacific Ocean Jones and Hosie, 2016
Annandaleum gruvelii var. quadratum Annandale, 1906	Annandaleum gruvelii quadratum Annandale, 1906	Gulf of Mannar, Tamil Nadu	India Annandale, 1906b
Creusia spinulosa forma transversalis Nilsson-Cantell, 1938	Cantellus transversalis Nilsson-Cantell, 1938	North Bay, Port Blair, Andaman and Nicobar Islands	Indo-west Pacific; India; Indian Ocean; Malay Archipelago; Taiwan; Philippines Jones and Hosie, 2016
Balanus cymbiformis Darwin, 1854	Conopea cymbiformis Darwin, 1854	Tuticorin, near Chennai, Tamil Nadu	India; Indian Ocean; Gulf of Aden; Indonesia; North Australia; Malay Archipelago; China; Philippines; South Japan; Fiji Island Jones and Hosie, 2016
Pyrgopsis annandalei Gruvel, 1907	Pyrgopsella annandalei Gruvel, 1906	Andaman Islands, Andaman and Nicobar Islands	India; Israel Achituv and Simon-Blecher, 2006, 2014

(Continued)
At the family level, the highest number of species were reported from the family Poecilasmatidae Annandale (1909) (mostly epibiotic on crustaceans; 27 species, 8 genera), followed by Archaeobalanidae Newman and Ross (1976) (epibiotic in various organisms; 25 species, 12 genera); Balanidae Lach (1817) (mostly intertidal and subtidal; 21 species, 12 genera); Pyrgomatidae Gruvel (1905) (epibiotic on turtles; 5 species, 2 genera); Chelonibiidae Pilsbry (1916) (epibiotic on turtles; 2 species, 1 genus); and Oxynaspididae Pilsbry (1907) (epibiotic on corals; 2 species, 1 genus). The following families each contain only one species in one genus: Coronulidae Leach (1817) (on cetaceans); Iblidae Leach (1825) (intertidal); Lithotryidae Gruvel (1905) (intertidal); Pollicipedidae Leach (1825) (intertidal); and Succulinidae Lilljeborg (1861) (parasitic).

State-wide data revealed that the highest number of species were reported from Tamil Nadu (77 species, 39 genera, 15 families) followed by Andaman and Nicobar Islands (62 species, 40 genera, 15 families), Odisha (42 species, 26 genera, 12 families), Maharashtra (18 species, 12 genera, 8 families), West

TABLE 1 | Continued

Taxon name	Current identity	Type locality	World distribution
Verruca plana Gruvel, 1907	Atvverruca plana Gruvel, 1907	Andaman and Nicobar Islands	Andaman and Nicobar Islands
Verruca cristallina Gruvel, 1907	Cristallinaverruca cristallina Gruvel, 1907	Andaman and Nicobar Islands	Andaman and Nicobar Islands
Verruca multicostata Gruvel, 1907	Newmanvverruca multicostata Gruvel, 1907	Andaman and Nicobar Islands	Andaman and Nicobar Islands
Pyrgoma indicum Annandale, 1924	Gaikinus indica Annandale, 1924	Bay of Bengal	India; Indian Ocean; Malay Archipelago Jones and Hosie, 2016
Creussia spinulosa forma transversalis Nilsson-Cantell, 1938	Cantellus transversalis Nilsson-Cantell, 1938	Andaman and Nicobar Islands	India; Indian Ocean; Malay Archipelago Jones and Hosie, 2016
Acasta tunicorum Annandale, 1906	Eoastia tunicorum Annandale, 1906	Tamil Nadu	Gulf of Mannar Van Syoc and Newman, 2010
Balanus (Megabalanus) squillae Daniel and Ghosh, 1963	Notomegalanus squillae Daniel and Ghosh, 1963	Tamil Nadu	Tamil Nadu, India Daniel and Ghosh, 1963
Lithotrya nicobarica Reinhartd, 1850	Lithotrya nicobarica Reinhartd, 1850	Andaman and Nicobar Islands	India; Indian Ocean; Australia; Timor; Malay Archipelago; Ream and Darna Islands (Cambodia); Gulf of Thailand; Vietnam; Condor Islands; South China Sea; Philippines; Taiwan; South Japan; Tumotu, Caroline Islands; Fiji; Pauomotu Islands; Pacific Ocean Jones and Hosie, 2016
Balanus patelliformis Bruguère, 1792	Fistulobalanus patelliformis Bruguère, 1792	South coast of India Henry and McLaughlin, 1975	India; Malacca; Java Sea, Malay Archipelago; Philippine Archipelago Jones and Hosie, 2016
Platyplepsmultidecorata Daniel, 1962	Platypleps decorata Darwin, 1854	Little Andaman, Andaman and Nicobar Islands	India; West Australia; South China Sea; China; Pacific Ocean, Galapagos Islands Jones and Hosie, 2016
Balanus longirostrum var. krusadaiensis Daniel, 1924	Membranobalanus longirostrum Hoek, 1913	Tamil Nadu	India; Indian Ocean; Australia; Timor; Malay Archipelago; Ream and Darna Islands (Cambodia); Gulf of Thailand; Vietnam; Condor Islands; South China Sea; Philippines; Taiwan; South Japan; Tumotu, Caroline Islands; Fiji; Pauomotu Islands; Pacific Ocean Jones and Hosie, 2016
Balanus (Membranobalanus) roonwalli Prem-Kumar and Daniel, 1968	Membranobalanus longirostrum Hoek, 1913	Chennai, Tamil Nadu	India; Indian Ocean; Singapore; Malay Archipelago; Fu Kuo Islands, Cambodia; Gulf of Siam; Vietnam; Condor Island; Lien Chien, Tourane; Bay of Along; China Jones and Hosie, 2016
Pollicipes polymerus madrasensis Daniel, 1953	Pollicipespolymerus Sowerby, 1833	Royapuram, Chennai, Tamil Nadu	India; Mexico, Baja California; North American coast; North Pacific; Aleutian Islands; Russia Van Syoc et al., 2010
Balanus amphitrite var. cochinensis Nilsson-Cantell, 1938	Amphibalanus amphitrite	Ermakulam, Cochin, Kerala	Cosmopolitan in tropical and subtropical waters: India; Bermuda and southeast United States to Brazil; England and W Europe to S coast of Africa Red, Black and Mediterranean Seas; Suez Canal; southeast Africa; Indian Ocean; Australia; Indonesia; Singapore; Malaysia; Ream (Cambodia); Gulf of Siam; Vietnam; Condor Islands; Tung Chien (South Annam); Cauda Nhatrang; Hongay, Tonkin; South China Sea; Hong Kong; China; Bohai Sea; Taiwan; Philippines; Japan; South Honshu, Kyusu and Ryuku Islands; Vladivostok, Hawaii; central California to southeast Mexico Jones and Hosie, 2016
Bengal (18 species, 11 genera, 6 families), Gujarat (17 species, 11 genera, 7 families), Andhra Pradesh (14 species, 8 genera, 5 families), Lakshadweep Islands (12 species, 8 genera, 7 families), Kerala (11 species, 9 genera, 7 families), Goa (5 species, 4 genera, 3 families), and Karnataka (3 species, 3 genera, 2 families) (Figure 1 and Supplementary Appendix Table 2).

The Eastern India ecoregion has the highest number of species (76 species), followed by Andaman and Nicobar Islands ecoregion (65), South India and Sri Lanka ecoregion (40), Northern Bay of Bengal ecoregion (34), Western India ecoregion (29), and Maldives ecoregion (11) (Figure 2A and Supplementary Appendix Table 1). The low number of species recorded in the Maldives ecoregion is probably due to the low number of studies conducted there.

Most of the coral-associated barnacles (family Pyrgomatidae) were recorded in the Andaman and Nicobar Islands ecoregion (7 species), Eastern India ecoregion (6 species) and Northern Bay of Bengal ecoregion (5 species), which contain a great diversity of coral reefs (Venkataraman and Wafar, 2005; Venkataraman and Raghunathan, 2015; Figure 2A). The Maldives ecoregion covers the Lakshadweep Islands, which have extensive coral reefs; however, due to a lack of studies conducted in this ecoregion, only two coral barnacle species were recorded here. No coral-associated barnacles were recorded in the Western India ecoregion, the coastlines of which are characterized by mangroves and soft-bottomed shores and rocky shores in the urbanized Mumbai. There are, however, coral reefs in the Gulf of Kachchh of Gujarat state, but no detailed coral barnacle studies have been conducted there so far. Sponge-associated barnacles (mostly in the subfamily Acastinae) were recorded in the Eastern India, Southern India and Sri Lanka, and Andaman and Nicobar Islands ecoregions. Sponge diversity appears to be high in these three regions, supporting such diversity in barnacles (Ubare and Mohan, 2018; Figure 2A).

The deepwater scalpellid, calanticid and verrucid species were relatively extensively recorded in the Andaman and Nicobar Islands ecoregion (Figure 2A and Supplementary Appendix Table 1), followed by the Eastern India ecoregion (21 species) and the South India and Sri Lanka ecoregion (9 species). These three ecoregions contain deep-sea ecosystems and are often reported to contain deepwater crustaceans (Macpherson et al., 2020; Padate et al., 2020).

Multivariate Analysis of Species Assemblages

Based on the multivariate analysis, the distribution of the ecoregion clusters does not reflect clear separations among the provinces (Figure 2B). The Eastern India, Western India, and Northern Bay of Bengal ecoregions were located in the same cluster with 40% similarity (Figure 2C). The Andaman ecoregion is closer to the South India ecoregion. The Maldives ecoregion is separate from the other ecoregions (Figures 2B, C).

DISCUSSION

Diagnostic Species in Ecoregions

Some species are specific to certain ecoregions. *Chthamalus barnesi*, *Tetraclita ehsani* are Arabian species and are only recorded in the Western India ecoregion. The stalked barnacle *Lithotrya nicobarica*, which lives in the burrows of calcareous rocks, is only recorded in the Andaman and Nicobar Islands ecoregion, where the intertidal rocks are mostly coral formations and calcareous (Bandopadhyay and Carter, 2017). *Tetraclita squamosa*, which has green shells, is only recorded in the mid intertidal shore of the Eastern India ecoregion and Andaman and Nicobar Islands ecoregion; it is absent from the Western India ecoregion, the mid intertidal shore of which instead...
harbors Tetractita ehasani and Tetractitella karandei. These two species were only reported in the Gujarat state in the Western India ecoregion (Trivedi et al., 2021). Differences in diagnostic species between the South India Shelf province (Western India ecoregion) and the Northern Bay of Bengal provinces may be a result of differences in major oceanographic currents between these two provinces. The Bay of Bengal is affected by monsoon gyres. Large anti-cyclonical gyres are generated in the Bay of Bengal during the winter months and weaken in summer (Potemra et al., 1991). On the other hand, the western coast of India faces the Arabian Sea, where the hydrography is affected by the counter flows of the northeast Monsoon Current and the Indian Monsoon Current during different seasons. This resulted in Northern Bay of Bengal province is different from South India Shelf province from the cluster analysis (Figures 2B,C).

Validating Incorrect Species Identification

There are several records of Atlantic cold-water species reported in India that are apparently misidentifications or have taxonomic ambiguities. Daniel (1956) and Krishnamoorthy (2007) recorded Semibalanus balanoides (Linnaeus, 1767) in Tamil Nadu. This species is a boreal intertidal barnacle in the Atlantic and Arctic waters (Southward, 2008), and therefore cannot live in the tropical Indian waters. Subsequently, Daniel (1958, 1962) described two new species from Tamil Nadu, namely Semibalanus madrasensis (Daniel, 1958) and S. sinnurensis (Daniel, 1962), and it is suggested that S. balanoides might be either one of these species. Ramamooorthy et al. (2007) identified Balanus balanus (Linnaeus, 1758), a boreal-arctic subtidal barnacle in the northern Atlantic (Southward, 2008), from a coral reef invertebrate survey on Pirotan Island, Gujarat, western India. This record, too, may be a misidentification, and hence was not considered as a valid record.

Daniel (1956) identified Perforatus perforatus (Bruguière, 1792), another Atlantic species, in Tamil Nadu, but its presence in the Indian waters has not been confirmed. A recent survey in Korea reported this to be an invader in southern Korean waters, probably through ballast water, that has established itself as an ecologically important species (Cho et al., 2013; Kim et al., 2020a,b). Another doubtful record is that of Balanus glandula Darwin (1854) from shrimp ponds in Odisha (Nayak and Berkes, 2014; Nayak, 2017); the species is an inhabitant of the temperate waters, probably through ballast water, that has established itself in Korea reported this to be an invader in southern Korean waters (Shahdadi and Sari, 2011). The record of P. perforatus from Gujarat should be C. barnesi (Supplementary Appendix Table 1). Similarly, records of Chthamalus malayensis in Maharashtra, Gujarat (Karande and Palekar, 1963; Daniel, 1972; Wagh and Bal, 1974) should also be C. barnesi (Supplementary Appendix Table 1).

The stalked barnacle Pollicipes polymerus Sowerby (1833) is common in the intertidal regions of the northeast Pacific coast (Newman and Abbott, 1980). However, Daniel (1953b) recorded eight specimens of this temperate species attached to floating wood in Tamil Nadu as Pollicipes polymerus madrasensis. Newman and Abbott (1980) tried to investigate why such a temperate species is present in India by analyzing variations in the oxygen-18 stable isotope at different positions on its shell plates relative to the basal margin of the type specimen of P. polymerus madrasensis. Oxygen-18 stable isotope on shells can reflect the growth pattern of barnacle shells from different climatic environments. Results of the isotope analysis found that the type specimens of Pollicipes polymerus madrasensis found in India grew up in cold temperate waters, meaning that this species is not native to India. The present study did not consider this record to be an Indian record.

Tetractita Schumacher (1817) is a common acorn barnacle on mid-intertidal shores of tropical and subtropical regions (Chan et al., 2007a). In India, several species of Tetractita have been reported, but a few of these records need clarification. In the Eastern India ecoregion, the green Tetractita squamosa (Bruguière, 1792) was identified by Bruguière (1792) from Tranquebar, east coast of India (Figures 3C,D), which was a Danish colony in the 17th century. The illustration of T. squamosa in Bruguière (1792) shows an empty external shell without opercular plates. Bruguière (1792) probably collected an empty shell of Tetractita that had washed onshore. The identification of Tetractita could not be confirmed based on the external shell as identification requires the shapes of the scutum and tergum, and cirral morphology (Chan et al., 2007a). The third author (BKKC) visited several seashores in Tamil Nadu, including Pondicherry and Tranquebar, in 2007 (Figures 3A-D) and attempted to collect specimens of Tetractita squamosa from its type locality for comparative studies, but he did not find any. Fernando (2006, 77) commented that T. squamosa "occurs
not so commonly in Tranquebar and it takes about an hour to locate a single specimen,” thereby suggesting that it occurs in very low abundance and is not common on the Eastern coast of India. The above on-field observations and published reports suggest that the species identity of *T. squamosa* in eastern India is still uncertain.

In the Western Indian ecoregion, the pink *T. rufotincta* Pilsbry (1916) was recorded in Gujarat (Wagh and Bal, 1969; Daniel, 1972; Fernando, 2006; Parmar et al., 2018). However, a detailed revision of *Tetraclita* in the West Indian Ocean using a molecular approach revealed that *T. rufotincta* is distributed in the Red Sea and the Persian Gulf, *Tetraclita ehans* Chan et al., 2011 is common in the Gulf of Oman and Arabian Sea (Shahdadi et al., 2011; Tsang et al., 2012). In India, *T. ehans* and *T. karandei* are only present in Gujarat, and absent south of Gujarat (Trivedi et al., 2021; Figures 3G–I).
In the Andaman and Nicobar Islands ecoregion, the pink *Tetraclita japonica formosana* (Hiro, 1939) was recorded in the Andaman and Nicobar Islands (Malakar et al., 2015). *Tetraclita japonica formosana* is only common along the east coast of Taiwan and the Pacific coast of Japan (Chan et al., 2007b; Tsang et al., 2007). The records from Andaman and Nicobar Islands need further investigation and clarification.

Suggestions for Further Studies

The present study revealed that most of the species reported from India are intertidal and epibiotic species of crustaceans and common fishery catches in India. More specialized species, including coral-associated barnacles, remain understudied. Previous coral barnacle records in India were mainly from old publications dating back as much as from 48 to 96 years ago (Annandale, 1924; Nilsson-Cantell, 1938; Daniel, 1972). No coral-associated barnacles were collected from the extensive corals in the Lakshadweep Islands and Minicoy or the Gulf of Kachchh of Gujarat state. The diversity of coral-associated barnacles in Indian waters is clearly a knowledge gap that requires more attention. There are presently no records of barnacles in the superorder Acrothoracica, and only one in the parasitic superorder Rhizocephala (Supplementary Appendix Table 1). More research is needed to understand the species diversity of these two superorders.

The Indian Exclusive Economic Zone (EEZ) is characterized by deepwater basins, including the Bay of Bengal to the east and the Arabian Basin to the west. The deepwater barnacle fauna of the Indian EEZ and the Indian Ocean are less studied than their Pacific counterparts. Recent deep-sea sampling in the Indian Ocean revealed the first deep-sea hydrothermal vent barnacles from the region (Watanabe et al., 2018; Chan et al., 2020). Long-term dedicated exploration of the deepwater basins in the Indian EEZ waters would certainly offer a richer perspective on the species composition of deep-sea barnacles in the region.

AUTHOR CONTRIBUTIONS

JT, KP, BKKC, and VP wrote the manuscript. All authors involved in collection of barnacle specimens and literature review.

FUNDING

BKKC was supported by the Academia Sinica Career Development Award and Senior Investigator Award.

ACKNOWLEDGMENTS

The authors are thankful to Mr. Dhaval Bhatt, Ms. Pooja Patel, and Ms. Dimple Thacker for their technical support. Thanks to Noah Last, the Third Draft Editing for editing the English of the present manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2021.657651/full#supplementary-material

REFERENCES

Achituv, Y., and Safriel, U. N. (1980). A new Chthamalus (CRUSTACEA: CIRRIPEDIA) from intertidal rocks of the red sea. *Isr. J. Zool.* 29, 99–109. doi: 10.1080/00222930608562544

Achituv, Y., and Simon-Blecher, N. (2014). The Rise and Fall of Anderson, D. T. (1994). *Barnacles: Structure, Function, Development and Evolution*. Berlin: Springer.

Achituv, Y., and Simon-Blecher, N. (2006). *Pyrgopelta* (Cirripedia: Balanomorpha: Pyrgomatidae) is not a sponge-inhabiting barnacle. *Zootaxa* 1319, 29–42. doi: 10.11646/zootaxa.1319.1.3

Achituv, Y., and Simon-Blecher, N. (2014). The Rise and Fall of *Pyrgopelta youngi*: Rediscovery of a Lost Species. *J. Crust. Biol.* 34, 663–670. doi: 10.1163/1937240X-00002257

Ahmad, E. (1972). *Coastal Geomorphology of India*. New Delhi: Orient Longman.

Anderson, D. T. (1994). *Barnacles: Structure, Function, Development and Evolution*. Berlin: Springer.

Anneesh, P. T., Sudha, K., Helna, A. K., and Anilkumar, G. (2018). *Agarna malayi* Tiwari 1952 (Crustacea: Isopoda: Cymothoidae) parasitizing the marine fish, *Temulastosatol* (Clupeidae) from India: re-description/description of parasite life cycle and patterns of occurrence. *Zool. Stud.* 59:61. doi: 10.6620/ZS.2020.59-61

Anneesh, P. T., Sudha, K., Helna, A. K., and Anilkumar, G. (2018). *Agarna malayi* Tiwari 1952 (Crustacea: Isopoda: Cymothoidae) parasitizing the marine fish, *Temulastosatol* (Clupeidae) from India: re-description/description of parasite life cycle and patterns of occurrence. *Zool. Stud.* 59:61. doi: 10.6620/ZS.2020.59-61

Annandale, N. (1906a). Natural history notes from the R.I.M.S. INVESTIGATOR, Captain T. H. Heming, R. N., commanding. Series III, No. 12. Preliminary report on the Indian Stalked Barnacles. *Ann. Mag. Nat. Hist.* 7, 389–400. doi: 10.1080/00222930608562544

Annandale, N. (1906b). Report on the Cirripedia collected by Professor Herdman, at Ceylon, in 1902. *Rep. Gov. Ceylon Pearl Oyster Fish. Gulf Mannar.* 5, 137–150.

Annandale, N. (1907). Two barnacles new to Indian Seas. *Rec. Indian Mus. Calcutta* 1:81.

Annandale, N. (1909). An account of the Indian Cirripedia Pedunculata. Part I: Family Lepadidae (s. str.). *Mem. Indian Mus.* 2, 51–137. doi: 10.1086/bblv230n1p137

Annandale, N. (1910a). Description of a new species of *Scalpellum* from the Andaman sea. *Rec. Ind. Mus. 5*, 115–116.

Annandale, N. (1910b). The Indian barnacles of the subgenus *Smilium*, with remarks on the classification of the genus *Scalpellum*. *Rec. Ind. Mus.* 5, 145–155.

Annandale, N. (1911). Note on a rhizocephalous crustacean from fresh water and on some specimens of the order from Indian Seas. *Rec. Indian Mus.* 6, 1–4. doi: 10.5962/bhl.part.21325

Annandale, N. (1913). The Indian Barnacles of the subgenus *Scalpellum*. *Rec. Ind. Mus.* 9, 227–236.

Annandale, N. (1914). New and interesting *Pedunculare cirripedes* from Indian seas. *Rec. Indian Mus.* 10, 273–280. doi: 10.5962/bhl.part.5628

Annandale, N. (1916). Three plates to illustrate the Scapellidae and Iibidae of Indian Seas with synonymy and notes. *Mem. Indian Mus.* 6, 127–131.

Annandale, N. (1924). *Astraidae and Fungidae*. Mem. *Ind. Mus.* 8, 61–68.
Aurivillius, C. W. S. (1892). Neue Cirripeden aus dem Atlantischen, Indischen und Stillen Ocean. Offversrgr. Kongl. Vet. Aka. Forh. 3, 123–135.

Aurivillius, C. W. S. (1894). Studien über Cirripeden. Kun. Svensk. Vet Akad. Handl. 26, 1–107. doi: 10.1077/978-3-662-40029-6_1

Balakrishnan, K. P. (1969). Observations on the occurrence of Conchoedera virgatum (Spengler) (Cirripedia) on Diadon hystrix Linnaeus (Pisces). Crustaceaena 16, 101–103. doi: 10.1163/156854068X00269

Bandopadhyay, P. C., and Carter, A. (2017). “Introduction to the geography and geomorphology of the Andaman-Nicobar Islands,” in The Andaman-Nicobar Accretionary Ridge: Geology, Tectonics and Hazards, Vol. 47, eds P. C. Bandopadhyay and A. Carter (London: Geological Society), 9–18. doi: 10.1144/M472

Bhatt, Y. M., and Bal, D. V. (1960). New records of barnacles from Bombay shores. Curr. Sci. 29, 439–440.

Borradaile, L. A. (1903). “Marine crustaceans. Part VII. The barnacles (Cirripedia),” in The Fauna and Geography of the Malvide and Laccadive Archipelages, Vol. 2, ed. J. S. Gardiner (Cambridge: The University Press), 440–443.

Broch, H. (1922). Studies on Pacific Cirripedes. Paper Presented at the Dr Th. Mortensen’s Pacific Expedition 1914-1916 (10). Videnskabelige. Meddelesser. Fra Dansk. Naturhistorisk. Forening. Vol. 73, København, 215–358.

Broch, H. (1927). Report on the Crustacea Cirripedia. Cambridge expedition to the Suez Canal, 1924. Trans. Zool. Soc. 2, 133–138.

Broch, H. (1931). Indomalayan Cirripedia. Papers from Dr Th. Mortensen’s Pacific Expedition 1914-1916, LVI. Vidensk. Medd. Naturhist. Køben. 91, 1–146.

Bruguère, M. (1792). Encyclopédie Méthodique; Histoire Naturelle des Vers, de Larmer, Continuées par GP Deshayes, Vol. 1, Paris: Chez Panchoucque.

Buhl-Mortensen, L., and Newman, W. A. (2004). A new pedunculate barnacle (Cirripedia: Heteralepadidae) from the Northwest Atlantic. Proc. Biol. Soc. Wash. 117, 385–397.

Burmeister, H. (1834). Beiträge zur Naturgeschichte der Rankenfuss (Cirripedia). Berlin: G. Reimer.

Chan, B. K. K., and Høeg, J. T. (2015). “Diversity of lifestyles, sexual systems, and larval development patterns in sessile crustaceans,” in Life Styles and Feeding Biology, The Natural History of the Crustacea, Vol. 2, eds M. Thiel and L. Walling (Oxford: Oxford University Press), 14–34.

Chan, B. K. K., Ju, S. J., Kim, D. S., and Kim, S. J. (2020). First discovery of the sessile barnacle Eoeschionelasmus (Cirripedia: Balanomorpha) from a hydrothermal vent field in the Indian Ocean. J. Mar. Biol. Assoc. 100, 1–9. doi: 10.1017/S0025315420004466

Chan, B. K. K., Prabowo, R. E., and Lee, K. S. (2009). Crustacean Fauna of Taiwan: barnacles, Volume I-Cirripedia: Thoracica excluding the Pyrgomatidae and Acavatinae. Keelung: National Taiwan Ocean University.

Chan, B. K. K., Tsang, L. M., and Chu, K. H. (2007a). “Morphological and genetic differentiation of the acorn barnacle Tetracta squamosa (Cirripedia, Crustacea) in East Asia and description of a new species of Tetracta. Zool. Scr. 36, 79–91. doi: 10.1111/j.1463-6409.2007.00260.x

Chan, B. K. K., Tsang, L. M., Ma, K. Y., Hsu, C. H., and Chu, K. H. (2007b). Taxonomic revision of the acorn barnacles (Crustacea, Cirripedia) in East Asia based on molecular and morphological analyses. Bull. Mar. Sci. 81, 101–113.

Choi, K. H., Choi, H. W., Kim, I. H., and Hong, J. S. (2013). Predicting the invasion pathway of Balanus amphitrite, shell and their role in gregarious settlement of cypris larvae. J. Exp. Mar. Biol. Ecol. 413, 7–12. doi: 10.1016/j.jembe.2011.11.014

Desai, D. V., and Anil, A. C. (2005). Recruitment of the barnacle Balanus amphitrite in a tropical estuary: implications of environmental perturbation, reproduction and larval ecology. J. Mar. Biol. Assoc. UK 85, 909–920. doi: 10.1017/S0025315405011884

Desai, D. V., Anil, A. C., and Venkat, K. (2006). Reproduction in Balanus amphitrite Darwin (Cirripedia: Thoracica): influence of temperature and food concentration. Mar. Biol. 149, 1431–1441. doi: 10.1007/s00227-006-0315-3

Desai, D. V., Krishnamurthy, V., and Anil, A. C. (2018). Biofouling Community Structure in a Tropical Estuary of Goa on the West Coast of India. AJSTD 35, 37–42. doi: 10.29037/ajstd.471

Desai, K. M., and Senthilkumar, S. A. (1975). The neurosecretory control over spawning in the barnacles of the Veraval coast. Ann. Zool. 11, 27–40.

Devaraj, M., and Bennet, S. P. (1974). Occurrence of Xenobalanus globicipitis (Steinstrup) on the finless black porpoise, Nemerosiph oceonoides in Indian seas. Ind. J. Fish. 21, 575–579.

Dhondapani, K., and Fernando, S. A. (1994). “Fecundity of some sessile barnacles with emphasis on Sutton’s forms from Porto Novo, South India,” in Recent Developments in Biofouling Control, eds M. F. Thompson, R. Nagabhushanam, R. Sarojini, and M. Fingerman (India: Oxford and IBH), 133–140.

Dinamani, P. (1964). Variation in form, orientation and mode of attachment of the cyprid, Octolasmus stella (Annn.), symbiotic on the gills of lobster. J. Anim. Ecol. 33, 357–362. doi: 10.2307/2636

Ellis, J. (1758). An account of several rare species of barnacles. Philos. Trans. R. Soc. London 50, 845–855. doi: 10.1098/rstl.1757.0114

Fabricius, J. C. (1798). Tillaeg til Conchyliae-Slaegterne Lepas, Pholas, Mya og Solen. Skr. Naturhist. Selsk. Kjob. 4, 34–51.

Fernando, S. A. (1978). Studies on the Biology of Barnacles (Cirripedia: Cirripedia) of Porto-Novo region, South India. Ph. D. thesis. Chidambaram: Annamalai University.

Fernando, S. A. (2006). Monograph on Indian Barnacles. Kochi: Ocean Sciences and Technology Cell, Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology.
MacDonald, J. D. (1869). On an apparently new genus of minute parasitic cirripede between Lepas and Dichelaspis. Proc. Zool. Soc. Lond. 1869, 440–444. doi: 10.1111/j.1469-7998.1869.tb07353.x

Macpherson, E., Chan, T.-Y., Kumar, A. B., and Rodriguez-Flores, P. C. (2020). On some squat lobsters from India (Decapoda, Anomura, Munididae), with description of a new species of Paramunida Baba, 1988. Zootaxa 965, 17–36. doi: 10.3863/zootaxa.965.55213

Malakar, B., Venu, S., Ram, B. S., and Prabhakaran, M. P. (2015). A study on the biodiversity of a sand island in south Andaman. J. Biodivers. Environ. Sci. 6, 205–214.

Mitra, S., Misra, A., and Pattanayak, J. G. (2010). Intertidal macrofauna of Balasore (Orissa). Rec. Zool. Surv. India 106, 131–141.

Mitra, S., Misra, A., and Pattanayak, J. G. (2010). Intertidal macrofauna of Subarnarekha Estuary (Balasore: Orissa). Rec. Zool. Surv. India. Occ. Paper 313, 1–135.

Mol, V. P. L., Raveendran, T. V., Abilash, K. R., and Parameswaran, P. S. (2010). Inhibitory effect of Indian sponge extracts on bacterial strains and larval settlement of the barnacle, Balanus amphitrite. Int. Biodeter. Biodegrad. 64, 506–510. doi: 10.1016/j.ibiod.2010.06.003

Mondal, S., Maitra, A., Bose, K., Goswami, P., Bardhan, S., and Mallick, S. (2019). Histological study of marine foulers along the southeast coast of Tamilnadu, India. J. Thr. Taxa 1, 1–23.

Nilsson-Cantell, C. A. (1938). Cirripedes from the Indian ocean in the collection of Acasta. Bull. U.S. Natl. Mus. 1904.291

Newman, W. A., and Killingley, J. S. (1984). The north-east Pacific intertidal barnacle Lepas between Conchoderma virgatum and Pennella instructa. J. Ent. Zool. Stud. 4, 1208–1210.

Nilsson-Cantell, C. A. (1939). Barnicel and some recommendations on their conservation. Rec. Zool. Surv. India 101, 1–23.

Padate, V. P., Cubelio, S. S., and Jayachandran, K. V. (2020). Description of a new species of deep-water crab of the genus Homolodromia A. Milne-Edwards, 1880 from the northern Indian Ocean (Crustacea: Decapoda: Brachyura: Homolodromiidae). Mar. Biol. Res. 16, 1–10. doi: 10.1080/17451000.2020.1735641

Parmar, H. H., Joshi, D. M., Salvi, H., and Kamboj, R. D. (2018). Diversity and distribution of Cirripedia from Gujarat Coast, India. JIRBS 5, 25–29. doi: 10.2648/jirbs/v5i5.2529

Pati, S. K., Mahapatro, D., Singhshamant, B., and Panigrahi, R. C. (2009). Intertidal benthic fauna of Gopalpur, east coast of India. Flora Fauna 15, 310–316.

Patil, J., and Anil, A. C. (2005). Influence of diatom exopolymers and biofilms on metamorphosis in the barnacle Balanus amphitrite. Mar. Ecol. Prog. Ser. 301, 231–245. doi: 10.3354/meps301231

Pattor, S. (2012). Studies on larval Settlement Process of the Barnacle, Balanus amphitrite and their Inhibition Mechanism. Ph. D. Thesis. Andaman and Nicobar Islands: Pondicherry University.

Pilgrim, G. R. (1930). Catalogue of the contents of the Museum of the Royal College of Surgeons Part IV. Fasciculus I. Comprehending the first division of the subgenus Membranobalanus (Cirripedia, Thoracica) from sponges in the Indian seas. Crustaceana 14, 147–150. doi: 10.1136/jnns.f080520

Prem-Kumar, V. K., and Daniel, A. (1968). A new species of opecucal barnacle of the subgenus Membranobalanus (Cirripedia, Thoracica) from sponges in the Indian seas. Crustaceana 14, 147–150. doi: 10.1136/jnns.f080520

Prajapati, S. K., and Talukdar, S. (2003). Marine invertebrates of Digha coast of West Bengal, India. J. Mar. Biol. Ass. India 44, 37–45.

Rajaguru, A., and Shantha, G. (1992). Association between the sessile barnacle Xenobalanus globicipitus (Coronulidae) and the bottlenose dolphin Tursiops truncatus (Delphinidae) from the Bay of Bengal, India, with a summary of previous records from cetaceans. Fish Bull 90, 197–202.

Ramakrishna, S. J., and Talukdar, S. (2003). Marine invertebrates of Digha coast and some recommendations on their conservation. Rec. Zool. Surv. India 101, 1–23.
Barnacles. Keys and Notes for the Identification of Singh, H. S., Pandey, C. N., Yennawar, P., Asari, R. J., Patel, B. H., Tatu, K., et al. Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection Rosell, N. C. (1991). Crustacea Cirripedia Thoracica: MUSORSTOM 3 Philippines Reinhardt, J. T. (1850). Om Slaegten Sowerby, G. B. (1823). The Genera of Recent and Fossil Shells, for the Use Schumacher, C. F. (1817). Satheesh, S., and Wesley, S. G. (2009). Breeding biology of the barnacle Shahdadi, A., Chan, B. K. K., and Sari, A. (2011). Ross, A. (1971). Studies on the Tetraclitidae (Cirripedia: Thoracica). A new Sahadevan, P. (2016). Diversity of fishes, crustaceans and molluscs of Puthuvypeen Pollicipes ruber Sowerby, G. B. (1833). Sowerby, G. B. (1825).}. Gandhinagar: Comprehensive Study on biodiversity and management issues) Satheesh, S., and Wesley, S. G. (2009). Breeding biology of the barnacle Shahdadi, A., Chan, B. K. K., and Sari, A. (2011). Tetraclitidae sp. n. (Cirripedia, Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803 Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection of Gelasma variegatus Heller, 1862, a fiddler crab closely related to Austraca bengali (Crane, 1975) and A. triangularis (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803 Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection of Gelasma variegatus Heller, 1862, a fiddler crab closely related to Austraca bengali (Crane, 1975) and A. triangularis (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., Chan, B. K. K., and Sari, A. (2011). Tetraclitidae sp. n. (Cirripedia, Triaractidae, a common intertidal barnacle from the Gulf of Oman, Iran. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803 Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection of Gelasma variegatus Heller, 1862, a fiddler crab closely related to Austraca bengali (Crane, 1975) and A. triangularis (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803 Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection of Gelasma variegatus Heller, 1862, a fiddler crab closely related to Austraca bengali (Crane, 1975) and A. triangularis (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., Chan, B. K. K., and Sari, A. (2011). Tetraclitidae sp. n. (Cirripedia, Triaractidae, a common intertidal barnacle from the Gulf of Oman, Iran. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803 Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection of Gelasma variegatus Heller, 1862, a fiddler crab closely related to Austraca bengali (Crane, 1975) and A. triangularis (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803 Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection of Gelasma variegatus Heller, 1862, a fiddler crab closely related to Austraca bengali (Crane, 1975) and A. triangularis (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803 Shih, H. T., Ng, P. K. L., Ravichandran, S., and Prema, M. (2019). Resurrection of Gelasma variegatus Heller, 1862, a fiddler crab closely related to Austraca bengali (Crane, 1975) and A. triangularis (A. Milne-Edwards, 1873) (Decapoda, Brachyura, Ocypodidae), from the Bay of Bengal, Indian Ocean. ZooKeys 136, 1–12. doi: 10.3897/zookeys.136.1772 Shahadadi, A., and Sari, A. (2011). Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman. Iran. J. Mar. Biol. Ass. U.K. 91, 745–753. doi: 10.5096/20023515410001803
Wagh, A. B., and Bal, D. V. (1969). New records of intertidal barnacles from India. *Curr. Sci.* 38, 344–345.

Wagh, A. B., and Bal, D. V. (1974). Observation on systematics of sessile barnacles from West Coast of India. *J. Bombay Nat. Hist. Soc.* 71, 109–123.

Wagh, A. B., and Sawant, S. S. (1982). Observations on marine biofouling on electroplated metallic surfaces in Goa waters. *Mahasagar* 15, 183–188.

Watanabe, H. K., Chen, C., Marie, D. P., Takai, K., Fujikura, K., and Chan, B. K. K. (2018). Phylogeography of hydrothermal vent stalked barnacles: a new speciesfills a gap in the Indian Ocean ‘dispersal corridor’ hypothesis. *R. Soc. Open. Sci.* 5:172408. doi: 10.1098/rsos.172408

Weltner, W. (1894). *Zwei neu Cirripedien aus dem Indischen Ozean (Scalpellum, Megalasma).* Berlin: Sitzungber. Ges Naturf. Freunde, 80–87.

Withers, T. H. (1935). *Catalogue of Fossil Cirripedia in the Department of Geology: British Museum (Natural History)*: Cretaceous. London: British Museum.

Wood, W. (1815). *General Conchology; or a Description of Shells Arranged According to the Linnean System.* London: John Booth.

Zevina, G. B. (1978). A new classification of the family Scalpellidae Pilsbry (Cirripedia, Thoracica). 1. Subfamilies Lithotryinae, Calanticinae, Pollicipinae, Scalpellinae, Brochiinae and Scalpellopsinae. *Zool. Zhurnal.* 57, 998–1007.

Zevina, G. B. (1982). Barnacles of the suborder Lepadomorpha (Cirripedia, Thoracica) of the World Ocean. *Opredeliteli Faune SSSR* 133, 1–221.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Trivedi, Patel, Chan, Doshi and Padate. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.