Soy Protein is an Efficacious Alternative to Whey Protein in Sorghum–Soy Fortified Blended Foods in Rats

Erin J Ward,1 Hafiz AR Suleria,1 Michael Joseph,2 Edgar Chambers, IV,1 Sajid Alavi,2 and Brian L Lindshield1

1Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS, USA and 2Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA

ABSTRACT

Background: Previously we found that extruded corn–soy blend (CSB) and sorghum–soy blend (SSB) fortified blended foods (FBFs) containing whey protein concentrate (WPC) were equally nutritious food aid products. WPC provides high-quality protein; however, it is the most expensive ingredient in these FBFs.

Objectives: The primary objective of this study was to determine if soy protein can serve as an alternative to WPC and the secondary objective was to evaluate different sucrose amounts in the FBFs.

Methods: Nine extruded FBFs were formulated: 1 CSB and 1 SSB, both containing 9.5% WPC and 15% sucrose, served as comparison FBFs. Three additional CSB and 4 SSB FBFs were formulated containing no WPC, but with increased soy flour to meet protein requirements and varying sucrose concentrations. The sucrose content ranged from 0% to 10% for the CSBs and 0% to 15% for the SSBs. Male weanling Sprague Dawley rats were individually housed and divided into 10 diet groups (n = 9–10) which consumed either AIN-93G or a dry FBF for 28 d. At study conclusion, blood, livers, and body composition data were collected. Results were analyzed using 1-factor ANOVA with Tukey’s test.

Results: Outcomes were not significantly different between the SSB groups, with the exception of significantly higher protein efficiency for the WPC-containing group. Among the CSB groups, caloric and protein efficiencies were significantly higher for the WPC-containing CSB group. There were no significant differences in hemoglobin or hepatic iron concentrations between FBF groups, but hepatic iron concentrations were significantly higher in all FBF groups than in the AIN-93G group. Groups consuming diets with ≤10% sucrose had significantly higher bone mineral density than groups consuming diets with 15% sucrose.

Conclusions: These results suggest that extruded SSB, but not necessarily CSB, FBFs with soy protein and 5%–10% added sucrose are efficacious and cost-effective alternatives to WPC-containing FBFs. Curr Dev Nutr 2020;4:nzaa115.

Keywords: fortified blended foods, soy, sorghum, corn, sucrose, iron, rats, growth, protein quality, bone mineral density

Introduction

Fortified blended foods (FBFs) are food aid used for treatment and prevention of undernutrition and micronutrient deficiencies, including that of iron, the most prevalent micronutrient deficiency (1–3). Consumed primarily as complementary foods, FBFs are distributed as partially cooked, energy-dense, grain-legume dry blends fortified with micronutrients and may also contain sugar, oil, and additional protein. Recipients typically cook FBF powders with water to form a porridge for consumption. Corn–soy blend (CSB) FBFs, including CSB+ made with corn, soybeans, and micronutrients, were the only FBFs provided as food aid by the United States Agency for International Development and partnering organizations in 2017 (4–6).

The 2011 Food Aid Quality Report (FAQR) recommended reformulation of FBFs to provide increased protein, fat, and total calories (7). Sorghum was recommended as an alternative, nongenetically modified cereal crop for use in FBFs. In addition, sorghum can be cultivated in hot, dry regions which experience low rainfall and is a familiar staple crop of many food aid–recipient countries in sub-Saharan Africa (7–9). Extruded FBFs made with sorghum, corn, soy, and/or
cowpea, formulated based on FAQR recommendations, improved iron bioavailability and protein digestibility compared with CSB+, a nonextruded FBF made with corn, soy, and micronutrients, in animal models (10, 11). Extrusion was selected for processing these FBFs in part because it utilizes heat, pressure, and mechanical stress to process and cook foods, reducing preparation time (12–14). These novel, extruded FBFs included 9.5% whey or soy protein, 9% vegetable oil, 3.2% micronutrients, and 15% sucrose (10). In Tanzanian children, significant improvements were observed from baseline in hemoglobin concentrations, anemia, and vitamin A deficiency in the novel, extruded FBF groups; however, these findings were not significantly different for the CSB+ group (15).

Whey protein concentrate (WPC) was included in the novel FBFs as a source of high-quality, animal-source protein based on the FAQR recommendation (7). However, 3% addition of WPC, as recommended in the FAQR, increases the total cost of FBFs by ∼18% (16). Available research has led some to question whether the increased cost is justified to obtain desired growth improvements in children (16–18). Soy protein, which is approximately half the cost of whey protein, may serve as an alternative, plant-based, high-quality protein in FBFs (18).

In support of this possibility, we found that soy protein isolate (SPI) was a viable, cheaper alternative to WPC in sorghum–cowpea FBFs in broiler chicks (11). In addition to testing the efficacy of SPI, alterations in extrusion processing parameters allowed sorghum-based FBFs to meet viscosity requirements without the addition of sugar. This additional reformulated, “overprocessed” sorghum–cowpea blend resulted in similar outcomes to the blends with 15% added sugar (11).

In the present study with male, weanling Sprague Dawley rats, 2 previously developed WPC-containing FBFs were prepared with sorghum–soy or corn–soy and 15% sucrose. Based on an interest to test whether cheaper preparations may be equally efficacious and previous results from blends with SPI replacing WPC, 7 new sorghum–soy or corn–soy FBFs were formulated. These new blends aligned with FAQR nutrient recommendations and contained increased soy flour compared with the WPC-containing blends and varying amounts of sucrose (7).

The primary objective of this study was to determine if soy protein provided by soy flour is an efficacious, similarly perceived, and cheaper alternative to WPC in extruded corn–soy and sorghum–soy FBFs at several different sucrose concentrations as determined by evaluation of iron and protein outcomes. Secondary objectives were to evaluate feeding behaviors and outcomes as a result of different sucrose amounts, from 0% to 15%, in the FBFs and further compare sorghum–soy and corn–soy blends. A post hoc objective was to compare bone mineral density (BMD) of groups consuming FBFs with ≤10% sucrose with those consuming FBFs with 15% sucrose. We hypothesized that there would not be a difference between FBFs, and different sucrose concentrations.

Methods

Ethical standards

Animal procedures were approved by the Institutional Animal Care and Use Committee at Kansas State University (protocol 4016). Animals were assessed for well-being before and throughout the study for the duration of the experiment.

FBFs

Corn–soy blend and sorghum–soy blend FBFs were developed based on recommendations in the FAQR (7) and previous studies (10, 11). Corn–soy and sorghum–soy flour blends were extruded, milled, and mixed with the additional ingredients as detailed previously (10–12). Nine FBFs were formulated with different sucrose amounts and either WPC or adjusted amounts of soy flour to provide a similar amount of protein (Table 1). Four CSB FBFs were developed: 1 contained WPC and 15% sucrose (CSB-15WPC); 3 contained no WPC and varying amounts of sucrose: 0% (CSB-0), 5% (CSB-5), and 10% (CSB-10). A fourth non-WPC CSB FBF with 15% sucrose was planned; however, because of flow issues inside the extrusion barrel which locked the screw, it failed to extrude, and therefore was unable to be included in this study. Five SSB FBFs were developed: 1 contained WPC and 15% sucrose (SSB-15WPC); 4 contained no WPC and varying amounts of sucrose: 0% (SSB-0), 5% (SSB-5), 10% (SSB-10), and 15% (SSB-15). FBFs were evaluated for compliance with viscosity requirements for a previous USDA CSB FBF following procedures previously described (11, 12, 19). Vitamin and mineral contents of the FBFs have been described previously (10, 20).

Nutritional analyses

FBF iron concentrations were measured in duplicate by AIB International and macronutrient proximate analyses, amino acid profiles, and available lysine were assessed by the University of Missouri–Columbia Agricultural Experiment Station Chemical Laboratories as described previously (10, 11, 21).

Study design

The study duration was based on the preventative prophylactic (22) and protein efficiency ratio (PER) (23) methods that we had utilized previously (10). Male, weanling Sprague Dawley rats (Charles River) were randomly assigned into 10 diet groups (n = 10, 100 total), a group size following the United Nations University recommendation for the PER model. A control group was fed AIN-93G diet (Research Diets, Inc.) and the additional 9 groups were assigned to consume 1 of the dry FBFs. Because the diets varied in caloric content, caloric efficiency was also calculated. One rat (CSB-5 group) died and another (SSB-15 group) was euthanized; both deaths were attributed to pre-existing health conditions. A rat in the CSB-10 group acutely lost weight at study midpoint, never recovered, and as a result was excluded from analyses. Two additional animals, 1 from the SSB-0 group and 1 from the SSB-10 group, were excluded out of concern that FBFs may have been consumed beyond those assigned. Animals were individually housed in wire-bottom cages and were provided with a resting board, enrichment products, and ad libitum access to food and water for the 28-d study. The environment was temperature-controlled with 12-h alternating light- and dark cycles. Feedings occurred every other day where remaining food was weighed and fresh food was provided. The rats were weighed upon arrival and weekly thereafter.

Data and sample collection

At study conclusion, animals were euthanized as described previously (10). Blood was drawn via cardiac puncture and collected in K2 EDTA-coated vacutette tubes for hemoglobin analysis. Tubes were held on ice and later transferred to a 4°C refrigerator where they were stored for

Downloaded from https://academic.oup.com/cdn/article/4/8/nzaa115/5868815 by guest on 01 April 2021
TABLE 1 Fortified blended food formulations 1

	CSB-15WPC	CSB-0	CSB-5	CSB-10	SSB-15WPC	SSB-0	SSB-5	SSB-10	SSB-15
Low-fat soy flour	15.2	32.0	33.0	34.0	16.0	32.0	33.0	34.0	35.0
Degemred coarse corn flour	48.1	55.8	49.8	43.8	—	—	—	—	—
Decorticated white sorghum flour	—	—	—	—	47.8	56.3	50.3	44.3	38.3
Whey protein concentrate	9.5	—	—	—	9.5	—	—	—	—
Sucrose	15.0	—	5.0	10.0	15.0	—	5.0	10.0	15.0
Vegetable oil	9.0	9.0	9.0	9.0	8.5	8.5	8.5	8.5	8.5
Vitamin and mineral premix	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2

1Values are percentages. CSB, corn–soy blend; CSB-0, corn–soy blend with 0% sucrose; CSB-5, corn–soy blend with 5% sucrose; CSB-10, corn–soy blend with 10% sucrose; CSB-15WPC, corn–soy blend with whey protein concentrate and 15% sucrose; SSB, sorghum–soy blend; SSB-0, sorghum–soy blend with 0% sucrose; SSB-5, sorghum–soy blend with 5% sucrose; SSB-10, sorghum–soy blend with 10% sucrose; SSB-15, sorghum–soy blend with 15% sucrose; SSB-15WPC, sorghum–soy blend with whey protein concentrate and 15% sucrose; WPC, whey protein concentrate.

36 h before hemoglobin analysis. After blood collection, liver tissues were collected, weighed, and flash-frozen in liquid nitrogen. After flash-freezing, liver tissues were stored in a −80°C freezer until wet ashing. After tissue removal, body scans were performed on a DXA PIXIImus to determine body composition and BMD as described previously (10).

Iron analysis

Hemoglobin.

A QuantiChrom Whole Blood Hb Kit (DWHB-250, BioAssay Systems) was used to determine hemoglobin concentrations. Samples were analyzed in duplicate according to the manufacturer's procedure. Duplicates for 11 samples had >15% variance and were assessed an additional time (triplicate).

Hepatic iron.

Samples were prepared as previously described (10) and analyzed at the Kansas State University Soil Testing Lab by inductively coupled plasma optical emission spectrometry (Varian 720-ES, Agilent Technologies). Duplicates for 14 samples had >15% variance and were assessed an additional time (triplicate).

Descriptive sensory analysis

FBFs were evaluated via descriptive sensory analysis by 6 highly trained panelists at the Center for Sensory Analysis and Consumer Behavior, Manhattan, KS. Similar panels have been used and described for analysis of novel FBFs in previous studies (24, 25). A total of 27 sensory attributes were analyzed including 1 for appearance, 6 for aroma, 13 for flavor, and 7 for texture/mouthfeel (see Supplemental Table 1 for attributes, descriptions, and references). Samples were prepared with 1 part FBF and 2 parts water which were boiled and stirred continuously for 15 min. Porridges were cooled to 60°C and dished into Styrofoam containers for flavor and texture/mouthfeel analysis and medium sniffer glasses for evaluation of appearance and aroma. Samples were served on heated trays to preserve the temperature between 55 and 60°C. Panelists were provided with water, mozzarella cheese, and cucumber palate cleansers. All FBFs were evaluated in triplicate and samples were evaluated in randomly assigned groups of 4/d.

Cost analysis

Ingredient and production costs were estimated for cost of ingredient sourcing and production in the United States based on updated data and methods described previously (18).

Statistical analysis

Animal study data.

Results were assessed for normality using the Shapiro–Wilks test and for homogeneity of variance with Levene's test. Ln or square root transformations were used if assumptions for normality were not met. Group differences were assessed using 1-factor ANOVA with Tukey's test and significance at P < 0.05. Differences in BMD between groups based on the percentage of sucrose in the formulation (<10% and 15% sucrose) were assessed with a t test and significance at P < 0.05. Data are reported as group means with SDs. Statistical analyses were performed in SAS Studio version 3.71 (SAS Institute Inc.).

Descriptive sensory analysis data.

A mixed-model ANOVA with treatments and replicates (fixed effects) as the main plots and panelists (random effects) as the subplots was used to determine significant differences for each attribute between the treatments. Tukey's test, significance at P < 0.05, was used to identify differences between treatments.

Results

Diet characteristics

On average, the FBFs provided 5.1% more energy, 3.7% more protein, and 26.2% more fat than AIN-93G (Table 2). The total energy and macronutrients were similar across all FBFs. The FBFs with increased soy protein contained on average 2.1% more protein, 53.2% more fiber, 16.9% less available lysine, and 21.8% less cysteine + methionine than the FBFs with WPC. Iron content of the FBF diets was on average 75.1% greater than that of the AIN-93G diet. The FBFs without WPC contained on average 8.1% more iron than the FBFs with WPC. The SSB FBF diets contained on average 7.4% more iron than the CSB diets.

All SSB FBFs had greater prepared porridge Bostwick viscosity flow rates (thinner) than the CSB FBFs (Supplemental Table 2) (12). CSB-15WPC, CSB-10, SSB-0, SSB-5, and SSB-10 were the only FBFs in this study that met the USDA preferred consistency quality specifications (9.0–21.0 cm/min Bostwick value) (19). The CSB-0 and CSB-5 were thicker whereas SSB-15WPC and SSB-15 were thinner than preferred.

Food intake and efficiencies

No significant differences were observed between FBF groups for food intake, with the exception of the SSB-0 group. The SSB-0 group
had significantly higher food intake than the CSB-15WPC group (Table 3, Figure 1). Both WPC-containing FBF groups had significantly increased caloric efficiency compared with all non-WPC-containing CSB FBF groups and significantly increased protein efficiency compared with all other diet groups (AIN-93G, non-WPC SSBs, and non-WPC CSBs). The CSB-5 group’s calorific efficiency was significantly decreased compared with the AIN-93G, SSAB-0, and SSAB-5 groups, and protein efficiency was significantly decreased compared with the AIN-93G group.

Body weight, lean mass, and BMD

No significant differences were observed between FBF groups for total weight gain and final body weight, with the exception of the SSB-0 group. The SSAB-0 group had significantly higher total weight gain and final body weight, with the exception of the SSB-0 group. The SSB-0 group had significantly higher total weight gain and final body weight, with the exception of the SSB-10 group.

Iron outcomes

No significant differences were observed in hemoglobin concentrations (Table 4). Hepatic iron concentrations were significantly higher in all of the FBF groups than in the AIN-93G group. No other differences were observed except the CSB-5 group had a significantly higher hepatic iron concentration than the SSAB-15 group.

Descriptive sensory analysis

Of the 27 sensory attributes measured, 20 were found to be statistically different for ≥ 1 of the FBFs (Supplemental Table 3). No differences were detected for musty/dusty aroma; grain complex, soy, toasted, brown, and sour flavors; or oily mouthfeel. For the other attributes, the range of scores tended to be rather low (< 2.0 points difference on the 15-point scale). Only lightness/darkness of color and adhesiveness varied by ≥ 5.0 points. More importantly, there were few differences between the comparison FBFs with WPC and the corresponding FBFs without WPC except for color, which was darker in FBFs without WPC. Where other differences existed, they typically were small (< 1.0 on a 15-point scale), especially for the SSAB FBFs. With CSB FBFs, some larger differences were noted in textural attributes such as stickiness, particle size uniformity, adhesiveness, and gumminess where the FBFs without WPC had less uniform particle size, and were thicker, more adhesive, and gummerier.

Cost

Ingredient costs for all FBFs without WPC were much lower than for the FBFs with WPC (Supplemental Tables 4–6). The 0% sucrose FBF groups were the least expensive and increased sucrose concentrations increased costs. Ingredient costs were similar for CSB and SSAB FBFs with respect to sucrose content (e.g., CSB-5 and SSAB-5 cost approximately the same per kilogram of FBF).

Discussion

CSB and SSAB group comparisons

We hypothesized that protein provided from increased soy flour may serve as a suitable alternative to WPC in novel, extruded FBFs. In the present study, all SSAB FBFs resulted in similar outcomes in weaning male rats. The only significant difference between SSAB groups was a

Table 2: Fortified blended food caloric, macronutrient, selected amino acid, and iron content

Ingredient	CSB-15WPC	CSB-0	CSB-5	CSB-10	SSAB-15WPC	SSAB-0	SSAB-5	SSAB-10	SSAB-15
Total energy, kcal/100 g	417.1	414.0	414.8	415.5	410.6	398.3	407.1	408.3	408.7
Carbohydrate									
g/100 g	62.5	60.8	61.0	60.8	62.7	59.3	60.1	60.4	60.0
% energy	60.0	58.8	58.8	58.6	61.1	59.6	59.0	59.1	58.8
Protein									
g/100 g	20.4	21.0	21.0	20.6	19.7	20.6	21.2	21.0	21.2
% energy	19.5	20.3	20.2	19.8	19.2	20.7	20.8	20.6	20.8
Fat									
g/100 g	9.5	9.6	9.7	10.0	9.0	8.7	9.1	9.2	9.3
% energy	9.9	10.3	10.2	10.6	10.1	9.9	10.2	10.3	10.5
Crude fiber, g/100 g	0.4	0.9	0.9	0.7	0.4	0.6	0.8	0.7	0.7
Ash, g/100 g	3.6	4.2	4.2	4.3	3.6	4.3	4.3	4.4	4.4
Moisture, g/100 g	4.0	4.3	4.2	4.3	5.0	7.1	5.3	5.1	5.0
Lysine, mg/g	13.8	11.0	11.1	11.3	13.3	10.9	11.6	12.0	12.2
Available lysine, mg/g	13.2	9.9	10.0	10.4	12.9	10.5	11.0	11.4	11.8
Cysteine and methionine, mg/g	7.6	5.9	5.8	6.0	7.4	6.0	6.2	6.2	6.1
Iron, mg/100 g	13.5	13.4	13.9	15.0	13.8	15.2	15.4	15.2	15.5

1 AIN-93G provides 390 kcal/100 g energy, 64.0 g/100 g carbohydrate, 20.0 g/100 g protein, 7.0 g/100 g fat, and 6.6 mg Fe/100 g. CSB, corn-soy blend; CSB-0, corn-soy blend with 0% sucrose; CSB-5, corn-soy blend with 5% sucrose; CSB-10, corn-soy blend with 10% sucrose; SSAB-0, sorghum–soy blend with 0% sucrose; SSAB-5, sorghum-soy blend with 5% sucrose; SSAB-10, sorghum-soy blend with 10% sucrose; SSAB-15, sorghum-soy blend with 15% sucrose; SSAB-15WPC, sorghum-soy blend with whey protein concentrate and 15% sucrose; WPC, whey protein concentrate.
Table 3

	CSB-0	CSB-5	CSB-10*	SSB-5	SSB-10*	SSB-15WPC	CSB-15WPC
Total food intake, g	424.5 ± 35.9ab	436.0 ± 69.2ab	472.8 ± 33.5ab	447.0 ± 42.1ab	475.0 ± 62.2a	472.8 ± 30.6a	442.7 ± 42.0ab
Caloric efficiency, g/100 kcal	11.5 ± 0.7c	12.3 ± 0.6bc	12.1 ± 0.5bc	11.8 ± 0.6c	12.7 ± 0.3c	13.2 ± 0.7c	12.7 ± 0.3c
Protein efficiency, g/g	2.7 ± 0.3bc	2.3 ± 0.2bc	2.5 ± 0.1c	2.2 ± 0.3c	2.8 ± 0.4b	2.8 ± 0.4c	2.4 ± 0.3bc

Notes:
- Values are means ± SDs.
- n = 10, except for CSB-15WPC (n = 9).
- Values with different letters are significantly different (P < 0.05) determined via 1-factor ANOVA with Tukey’s test.
- Food intake: measured every other day by subtracting food remaining from food given.
- Caloric efficiency: total weight gained (g) divided by total energy (kcal) consumed.
- Protein efficiency: total weight gained (g) divided by total protein consumed (g).

Protein outcomes

The increased protein efficiency for both SSB-15WPC and CSB-15WPC groups compared with the respective non-WPC groups may in part be explained by similar growth and food intake among all groups combined with overall less protein consumed by the WPC groups. The SSB-15WPC FBF contained ~6.4% less protein, 1.3 g protein less per 100 g FBF, than the SSB FBGs with increased soy flour. Because PER is calculated based on total protein consumed, slightly more or less protein can magnify changes in protein efficiency. PER is also not a proportional measure of protein intake and corresponding growth because it does not account for protein used for maintenance (13, 26). The soy-based FBGs also contained limiting amounts of essential amino acids (lysine, cysteine + methionine), which were present at greater quantities in the WPC FBGs.

Another consideration is that soy protein is generally less digestible than protein from animal sources (27). Significantly lower body weight gain and protein energy efficiency for a soy-based group than for a whey-based group were observed in 5-wk-old male Sprague Dawley rats (28). In another study with Wistar rats, the soy group had significantly lower protein efficiency, body weight, total weight gain, and fat and lean mass gain than the whey group (29).

Although PER in rat models is an important outcome for evaluating the quality of FBGs, there are a few key differences between human and rat protein requirements that may further support the efficacy of soy flour–based SSB FBGs for humans. Protein used by weanling rats is predominantly for growth; in humans, even during phases of rapid growth, a higher proportion of protein is required for body maintenance (26, 30). Rats in addition require 50% more of the sulfur-containing amino acids, cysteine and methionine, to support fur growth (30). These were the most limiting amino acids in our soy flour–based FBGs. Differences in amino acid requirements result in lower protein digestibility–corrected amino acid scores for rats than for humans (SPE: 64 in rats, 100 in humans; skim milk powder: 74 in rats, 100 in humans) (23) and an overestimation of the quality of animal-source proteins compared with plant-source proteins for human growth (26).

In our 20-wk trial with Tanzanian children, we observed that our novel, extruded FBGs with WPC performed similarly to CSB+. However, this study was too short and underpowered to critically assess anthropometric outcomes (15). Despite limitations of also being underpowered and early termination, in unadjusted analyses, a 10-wk study did not find a significant difference in the proportion of Sierra Leone children who recovered from moderate-acute malnutrition with a CSB FBF (similar to CSB+), which contained no animal-source foods, compared with a CSB FBF with WPC (31, 32). Additional trials have demonstrated that animal-source protein in ready-to-use food aid products does not necessarily result in better anthropometric outcomes in malnourished children (33, 34). Furthermore, a recent systematic literature review was unable to identify a relation between animal-source foods and improved growth outcomes. This review was limited by a large
FIGURE 1 Mean weekly food intake (n = 9–10). *Total food intake for AIN-93G and SSB-0 significantly higher (P < 0.05) than for the CSB-15WPC group (P < 0.05) with no other significant differences between groups. CSB, corn–soy blend; CSB-0, corn–soy blend with 0% sucrose; CSB-5, corn–soy blend with 5% sucrose; CSB-10, corn–soy blend with 10% sucrose; CSB-15WPC, corn–soy blend with whey protein concentrate and 15% sucrose; SSB, sorghum–soy blend; SSB-0, sorghum–soy blend with 0% sucrose; SSB-5, sorghum–soy blend with 5% sucrose; SSB-10, sorghum–soy blend with 10% sucrose; SSB-15, sorghum–soy blend with 15% sucrose; SSB-15WPC, sorghum–soy blend with whey protein concentrate and 15% sucrose; WPC, whey protein concentrate.

Iron outcomes

Our other main outcome of interest, in addition to protein performance, was iron status. Hepatic iron concentrations were significantly higher in all of the FBFs than in the AIN-93G group. This difference is most likely explained by the nearly doubled iron content of the FBFs compared with AIN-93G and differences in the iron fortificant used. Although AIN-93G is fortified with ferric citrate, which is less bioavailable than ferrous fumarate and NaFeEDTA, iron fortificants added to the FBFs, this is not likely the reason for the differences in iron outcomes (36). The hepatic iron concentration of the CSB-5 group was marginally higher than those of all the other FBF groups, and statistically higher than only that of the SSB-15 group. The CSB-5 group was on average smaller than all the other groups at the study conclusion. Lower growth and a likely lower blood volume of the rats in the CSB-5 group may have resulted in decreased demand for circulating iron, which allowed those animals to store more iron than the other groups (10).

We did not observe any differences in hepatic iron concentrations with increased sorghum content, unlike our previous FBF rat study (10). Soy has also been shown to inhibit iron absorption in humans (37), but no significant impacts on the iron outcomes were observed with the increased soy content of FBFs developed for this study.

Sucrose and sensory perceptions

In the previous extruded FBF rat study, the CSB+, which contains 0% sucrose, was poorly consumed. It was hypothesized that the 15% sucrose content, which was added in part to meet viscosity requirements, may have contributed to animal feeding behaviors (10). Addition of sugar, either from sucrose or fruit, has been observed to reduce or mask certain potentially unappealing flavors such as soy, grain, and bitter in cereals and porridges made from FBFs (24, 38). Rats have been observed to prefer the taste of sucrose (39), although there are differences in rat and human taste perceptions so it is unclear if rats perceive sucrose similarly to humans (40). As a result of changes in extrusion processing parameters, we were able to test formulations in the present study with varying amounts of sucrose. Although we cannot be certain how the rats perceived the FBFs, it does not appear that sucrose content affected feeding behaviors because both the CSB and SSB FBFs without sucrose were consumed equally compared with FBFs with sucrose at varying amounts. A 2018 study observed that children preferred SSB FBFs with 15% added sucrose over CSB+ and hypothesized it was due to their preference for sweeter foods and familiarity with sorghum (41). Perception of sweetness was minimal among SSB FBFs with the exception of SSB-0, which was perceived as significantly less sweet. SSB-0 was also perceived as significantly more bitter and sorghum-flavored than the other SSB FBFs.

The FBFs with added sucrose had thinner Bostwick viscosities than the respective blends without added sucrose, and each 5% increase in sucrose resulted in a slight thinning of the porridge.
FIGURE 2. Mean weekly body weights (n = 9–10). *Mean final body weight and total weight gain significantly higher (P < 0.05) for SSB-0 than for CSB-5 with no other significant differences in total weight gain or final body weights between groups. CSB, corn–soy blend; CSB-0, corn–soy blend with 0% sucrose; CSB-5, corn–soy blend with 5% sucrose; CSB-10, corn–soy blend with 10% sucrose; CSB-15WPC, corn–soy blend with whey protein concentrate and 15% sucrose; SSB, sorghum–soy blend; SSB-0, sorghum–soy blend with 0% sucrose; SSB-5, sorghum–soy blend with 5% sucrose; SSB-10, sorghum–soy blend with 10% sucrose; SSB-15, sorghum–soy blend with 15% sucrose; SSB-15WPC, sorghum–soy blend with whey protein concentrate and 15% sucrose; WPC, whey protein concentrate.

compared with the previous blend. Notably, the SSB FBFs, including the blend with 0% sucrose, were all thinner than all the CSB FBFs, which may be a result of less starch accessibility and more protein interference from sorghum than from corn (12). With the exception of SSB-5, the trained panelists rated all texture attributes of the SSB FBFs similarly and, in general, found them to be thinner than the CSB FBFs, similarly to the Bostwick results. The thinner prepared viscosities of the SSB FBFs are advantageous. Caregivers have been observed to thin porridges to their desired flow for infant feeding, which can result in insufficient caloric density of prepared FBFs (24, 42). The thinner nature of the SSB FBFs offers more nutrient density per volume of food consumed than CSB FBFs when thinned to similar viscosities, which is advantageous in ensuring adequate nutrient intake by recipient populations.

Sucrose and bone

In the present rat study, we observed similar BMDs for extruded FBFs compared with the formulations from our previous rat study, all of which contained 15% sucrose. The differences in BMD related to sucrose content were an interesting and unexpected finding. However, the BMD for the control group was higher in this study than in the previous rat study (95.4 compared with 87.4 g/cm²). The higher control group BMD in this study than in our previous study may

TABLE 4	Lean mass, BMD, and iron outcomes1					
Lean mass, %	89.8 ± 1.4	89.7 ± 1.4	88.0 ± 1.6	88.7 ± 1.6	87.7 ± 1.6	86.4 ± 1.2
BMD, g/cm² × 1000	95.4 ± 12.6	95.0 ± 12.8	94.2 ± 10.3	83.2 ± 8.6	82.2 ± 10.3	82.4 ± 12.9
Hematocrit, %	36.7 ± 1.0	36.8 ± 1.0	37.4 ± 1.3	38.1 ± 1.1	38.1 ± 1.1	38.0 ± 1.1
Hepatic iron, μg/g	9.5 ± 1.3	9.5 ± 1.3	9.5 ± 1.3	9.5 ± 1.3	9.5 ± 1.3	9.5 ± 1.3

1 Values are means ± SDs. n = 10, except for iron: n = 5. Hemoglobin (g/dL) and hematocrit (%) were significantly different (P < 0.05) determined via 1-factor ANOVA with Tukey’s test. Lean mass (total weight minus fat mass) divided by total weight × 100. Liver weight per body weight: liver weight divided by body weight × 100. BMD, bone mineral density; CSB, corn–soy blend; CSB-0, corn–soy blend with 0% sucrose; CSB-5, corn–soy blend with 5% sucrose; CSB-10, corn–soy blend with 10% sucrose; CSB-15WPC, corn–soy blend with whey protein concentrate and 15% sucrose; SSB, sorghum–soy blend; SSB-0, sorghum–soy blend with 0% sucrose; SSB-5, sorghum–soy blend with 5% sucrose; SSB-10, sorghum–soy blend with 10% sucrose; SSB-15, sorghum–soy blend with 15% sucrose; SSB-15WPC, sorghum–soy blend with whey protein concentrate and 15% sucrose; WPC, whey protein concentrate.
explain why there were no significant differences comparing the extruded FBFs with 15% sucrose with the AIN-93G group previously (10).

Previously, we noted unexpected gait issues in broiler chickens consuming different prepared FBFs that were difficult to explain. In light of findings from the present study, 1 trend noted in our current findings is that the 4 FBF groups (including the same CSB-WPC and SSB-WPC FBFs as used in the present study) with significant gait issues all consumed 15% sucrose FBFs. However, a group consuming a sorghum–cowpea with SPI 15% sucrose FBF did not have these issues. BMD was not consistently significantly decreased in the groups affected (11). There has not been much research on the impact of sucrose and other caloric sweeteners on bone outcomes. AIN-93G is formulated with 10% sucrose (43) and it is possible that, in weanling rats, BMD is negatively affected by a sucrose content of >10% in the diet. This is consistent with findings of no significant difference in BMD in 2-mo-old Sprague Dawley rats fed diets with <10% sucrose (44). In weanling Wistar rats, a 43% sucrose diet resulted in tibia/femur densities and breaking strengths that were significantly decreased compared with the control diet with potato starch in place of sucrose (45). In weanling male rats fed either a 68% corn starch or a 68% sucrose diet, there were no differences in bone composition or mechanical properties. However, BMD, total intake, and weight gain for animals were not reported and it is unclear if the diets were fortified with micronutrients (46). Ad libitum access to AIN-93G and 1 solution—deionized distilled water or deionized distilled water with 13% sugar [from glucose, sucrose, fructose, or high-fructose corn syrup (HFCS)—in 35-d-old female Sprague Dawley rats resulted in the sugar-solution groups’ whole-femur BMDs not being significantly different compared with the control, but the glucose group had significantly reduced BMD compared with the sucrose, fructose, and HFCS groups (47).

Cost

Compared with CSB+, we believe our SSB FBFs without WPC offer superior protein quality, in part due to extrusion processing and because they offer more lysine and cysteine + methionine. Compared with Super Cereal Plus, which additionally includes skim milk powder, sugar, and oil compared with CSB+, we estimated total production costs were reduced for both SSB-5 and SSB-10. In addition, total estimated costs were decreased for the SSB-5 and SSB-10 FBFs compared with Super Cereal Plus, even if more were to be consumed by recipients to achieve similar anticipated outcomes. Considering all findings from this animal model and human food aid studies, SSB FBFs without WPC are an efficacious alternative to SSB-15WP and likely Super Cereal Plus and may lead to similar anthropometric improvements in children.

Limitations

Several limitations for this study included the relatively short duration of 4 wk which took place during the rats’ rapid growth period and the poor health of some of the animals, which resulted in the loss of 2 rats. In addition, the dry FBFs that the rats consumed were not typical of how humans consume the FBFs, as boiled porridges. We identified an interesting outcome of sucrose content related to BMD; however, owing to not anticipating this difference, we did not gather additional data or samples that could have been used to better understand this outcome.

Conclusions

Evaluation of novel, extruded corn–soy and sorghum–soy FBFs was conducted including an animal study along with cost and sensory analyses. Similar outcomes were observed comparing the non-WPC-containing sorghum–soy FBF groups with both WPC-containing FBF groups. Despite differences observed in protein efficiencies, the sorghum–soy FBFs with increased soy flour may be a suitable, less expensive alternative to FBFs with WPC considering the overall similarities in all outcomes evaluated, including the sensory results that showed only minimal flavor and texture differences. Although protein quality is important and served as a main outcome of interest for this study, the observed differences in PER do not necessarily suggest that the FBFs without WPC will be inadequate to address the protein needs of food aid recipients.

In addition, ≤10% sucrose did not result in significantly different outcomes between SSB FBF groups. This study alone does not provide enough evidence to dismiss 15% added sucrose FBFs, but the negative impact on growing rat BMD observed is concerning. Further research on potential negative effects of high sucrose consumption on bone health is warranted. Collectively, results from this study support that SSB FBFs with 5%–10% added sucrose, to increase acceptability, and increased soy flour are efficacious and cost-effective alternatives to FBFs with animal-source protein.

Acknowledgments

We acknowledge Gregory K Regier and Nina K Lilja who provided updated cost analysis data. The authors’ responsibilities were as follows—BLL, SA, and HARS: designed the research; SA and MJ: produced the FBFs, produced the viscosity data, and contributed processing knowledge; BLL and EJW: conducted the research and analyzed the data; EJW: analyzed the samples and wrote the paper; EC: designed sensory studies, conducted them, analyzed results, and wrote the text for the sensory analysis; BLL: revised, finalized, and had primary responsibility for the final content; and all authors: read and approved the final manuscript.

References

1. Lopez A, Cacoub P, Macdougall JC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet 2016;387(10021):907–16.
2. WHO. The global prevalence of anaemia in 2011 [Internet]. Geneva: WHO; 2015. (Accessed July 21, 2020.) Available from: https://www.who.int/nutrition/publications/micronutrients/global-prevalence_anaemia_2011/en/.
3. USAID. Interventions for addressing vitamin and mineral inadequacies [Internet]. Washington (DC): USAID; 2019 [updated 2 June, 2019; cited 29 August, 2019]. Available from: https://www.usaid.gov/global-health/health-areas/nutrition/technical-areas/micronutrients-brief.
4. USAID. Corn soy blend/plus commodity fact sheet [Internet]. Washington (DC): USAID; 2016. (Accessed July 21, 2020.) Available from: https://2012-2017.usaid.gov/what-we-do/agriculture-and-food-security/food-assistance/resources/implementaion-tools/corn-soy.
5. USAID. Food aid product information guide [Internet]. Washington (DC): USAID; 2018. (Accessed July 21, 2020.) Available from: https://www.usaid.gov/food-assistance/resources/food-aid-product-info.
Soy protein is efficacious in food aid

6. USAID, USDA. U.S. international food assistance report: fiscal year 2017 [Internet]. Washington (DC): USDA; 2019. (Accessed July 21, 2020.) Available from: https://www.fas.usda.gov/newscroom/us-international-food-assistance-report-2017.

7. Webb P, Rogers B, Schlossman N, Wanke C, Bagriansky J, Johnson Q, Tilahun J, Reese Masterson A, Naryan A. Delivering improved nutrition: recommendations for changes to U.S. food aid products and programs. Boston, MA: USAID; 2011.

8. FAO. Sorghum and millets in human nutrition [Internet]. Rome, Italy: FAO; 1995. (Accessed July 21, 2020.) Available from: http://www.fao.org/3/0T818e/0T818E00.htm.

9. FAO, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). The world sorghum and millet economies: facts, trends and outlook. Andhra Pradesh, India and Rome, Italy: FAO and ICRISAT; 1996.

10. Delimont NM, Fiorentino NM, Opoku-Acheampong AB, Joseph MV, Guo Q, Alavi S, Lindshield BL. Newly formulated, protein quality-enhanced, extruded sorghum-, cowpea-, corn-, soya-, sugar- and oil-containing fortified-blended foods lead to adequate vitamin A and iron outcomes and improved growth compared with non-extruded CSB+ in rats. J Nutr Sci 2017;6(18):e18.

11. Fiorentino NM, Kimmel KA, Suleria HAR, Joseph MV, Alavi S, Beyer RS, Lindshield BL. Novel formulated fortified blended foods result in improved protein efficiency and hepatic iron concentrations compared with corn-soy blend plus broiler chickens. Curr Dev Nutr 2018;2(12):nzy073.

12. Alavi S, Ruan S, Adapa SS, Joseph M, Lindshield B, Chilukuri S. Use of grain sorghum in extruded products developed for gluten-free and food aid applications. In: Ciampitti IA, Vara Prasad PV, editors. Sorghum: a state of the art and future perspectives, Madison, WI: American Society of Agronomy and Crop Science Society of America, Inc.; 2019. p. 425–40.

13. Boye J, Wijesinha-Bettoni R, Burlingame B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr 2012;108(S2):S183–211.

14. Singh S, Gamilath S, Waking L. Nutritional aspects of food extrusion: a review. Int J Food Sci Technol 2007;42(8):916–29.

15. Delimont NM, Vahl CI, Kayanda R, Msuya W, Mulford M, Alberghine P, Prayog G, Mjinga J, Alavi S, Lindshield BL. Complementary feeding of sorghum-based and corn-based fortified blended foods results in similar iron, vitamin A, and anthropometric outcomes in the MFAPP Tanzania efficacy study. Curr Dev Nutr 2019;3(6):nzz077.

16. Zimmer JP. More evidence is needed for reformulation of fortified blended foods with whey protein concentrate. J Nutr 2012;142(4):647–8.

17. Noriega KE, Lindshield BL. Is the inclusion of animal source foods in fortified blended foods justified? Nutrients 2014;6(9):3516–35.

18. Regier GK, Lindshield BL, Lilja NK. Nutrient cost-effectiveness of fortified blended food aid products. Food Nutr Bull 2019;40(3):326–39.

19. USDA. USDA commodity requirements: CSB13: corn-soy blend for use in export programs [Internet]. Washington, DC: USDA; 2007. (Accessed July 21, 2020.) Available from: https://www.fsa.usda.gov/Internet/FSA_File/csb13_110507.pdf.

20. Penugonda K, Fiorentino NM, Alavi S, Lindshield BL. Bioavailable iron and vitamin A in newly formulated, extruded corn, soybean, sorghum, and cowpea fortified-blended foods in the in vitro digestion/Caco-2 cell model. Curr Dev Nutr 2018;2(7):nzy021.

21. Delimont NM, Chanadang S, Joseph MV, Rockler BE, Guo Q, Regier GK, Mulford MR, Kayanda R, Range M, Mizray Z, et al. The MFAPP Tanzania efficacy study protocol: newly formulated, extruded, fortified blended foods for food aid. Curr Dev Nutr 2017;1(5):e000315.

22. Fritz JC, Pla GW, Harrison BN, Clark GA, Smith EA. Measurement of the bioavailability of iron, using the rat hemoglobin repletion test. J Assoc Off Anal Chem 1978;61(3):709–14.

23. Sarwar G. The protein digestibility–corrected amino acid score method overestimates quality of proteins containing antinutritional factors and of poorly digestible proteins supplemented with limiting amino acids in rats. J Nutr 1997;127(5):758–64.

24. Chanadang S, Chambers E, IV, Alavi S. Tolerance testing for cooked porridge made from a sorghum based fortified blended food. J Food Sci 2016;81(5):S1210–21.

25. Chanadang S, Chambers E, IV. Determination of the sensory characteristics of traditional and novel fortified blended foods used in supplementary feeding programs. Foods 2019;8(7):261.

26. WHO, FAO. Protein quality evaluation: report of the joint FAO/WHO expert consultation, Bethesda, Md., USA, 4–8 December 1989 FAO food and nutrition paper 51. Rome, Italy: FAO; 1991.

27. Gilani GS, Cockett KA, Sepehri E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 2005;88(3):967–84.

28. Han S, Chee K, Cho S. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem 2015;172:766–9.

29. Wróblewska B, Juśkiewicz J, Kroplewski B, Asawleswa E, Złotkowska D, Markiewicz L. The effects of whey and soy proteins on growth performance, gastrointestinal digestion, and selected physiological responses in rats. Food Funct 2018;9:1500–9.

30. Schaafsma G. The protein digestibility-corrected amino acid score (PDCAAS)—a concept for describing protein quality in foods and food ingredients: a critical review. J AOAC Int 2005;88(3):988–94.

31. Koroma A, Manary M, Marron B, Green J, Rogers B, Walton S, Chui KHK, Suri D, Langlois B, Jayson L, et al. Comparison of four supplementary foods in treating moderate acute malnutrition in Sierra Leone: an Ebola-constrained cluster-randomized, controlled clinical–based effectiveness trial. A report from the Food Aid Quality Review to USAID. Report No. 32. Boston, MA: USAID; 2015.

32. Langlois B, Griswold S, Suri D, Shen Y, Chui K, Walton S, Manary M, Rosenberg J, Webb P, Rogers B. Comparative effectiveness of four specialized nutritious food products for treatment of moderate acute malnutrition in Sierra Leone (P10-140-19). Curr Dev Nutr 2019;3(Supplement 1):nzz034.P10–140-19.

33. Bisimwa G, Owino VO, Bahwere P, Damaix M, Donnen P, DiBari F, Collins S. Randomized controlled trial of the effectiveness of a soybean–maize–sorghum–based ready-to-use complementary food paste on infant growth in South Kivu, Democratic Republic of Congo. Am J Clin Nutr 2012;95(5):1157–64.

34. Manary M, Chang CY. Comparing milk fortified corn-soy blend (CSB+), soy ready-to-use supplementary food (RUSF), and soy/whey RUSF (Supplementary Plumpy®) in the treatment of moderate acute malnutrition. Washington, DC: Food and Nutrition Technical Assistance II Project (FANTA-2) Bridge; 2012.

35. Shapiro MJ, Swartz HJ, Parker M, Quelhas D, Kreis K, Kraemer K, West KP, Fanzo J. A systematic review investigating the relation between animal-source food consumption and stunting in children aged 6–60 months in low and middle-income countries. Adv Nutr 2019;10(5):827–47.

36. Hurrell R. Nonelemental sources. In: Clydesdale FM, Wiemer KL, editors. Iron fortification of foods. Orlando, FL: Academic Press; 1985. p. 39–53.

37. Hurrell RF, Juillerat MA, Reddy BL, Lynch SR, Dassenko SA, Cook JD. Soy protein, phytate, and iron absorption in humans. Am J Clin Nutr 1992;56(3):573–8.

38. Faller JF, Faller JT, Klein BB. Physical and sensory characteristics of extruded corn/soy breakfast cereals. J Food Quality 2000;23(3):87–102.

39. Tordoff MG, Alarcón LK, Lawler MP. Preferences of 14 rat strains for 17 taste compounds. Physiol Behav 2008;95(3):308–32.

40. Lemon C. Perceptual and neural responses to sweet taste in humans and rodents. Chem Senses 2015;8(2):46–52.

41. Chanadang S, Chambers E, IV, Kayanda R, Alavi S, Msuya W. Novel fortified blended foods: preference testing with infants and young children in Tanzania and descriptive sensory analysis. J Food Sci 2018;83(9):2343–50.

42. Fleige LE, Moore WR, Garlick PJ, Murphy SP, Turner EH, Dunn ML, van Lengerich B, Orthofer FT, Schafer SE. Recommendations for optimization of fortified and blended food aid products from the United States. Nutr Rev 2010;68(5):290–315.

43. Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing group.
committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993;123(11):1939–51.
44. Chepulis L, Starkey N. The long-term effects of feeding honey compared with sucrose and a sugar-free diet on weight gain, lipid profiles, and DEXA measurements in rats. J Food Sci 2007;73(1):H1–7.
45. Tjäderhane L, Larmas M. A high sucrose diet decreases the mechanical strength of bones in growing rats. J Nutr 1998;128(10):1807–10.
46. Smith EE, Ferguson VL, Simske SJ, Gayles EC, Pagliassotti MJ. Effects of high fat or high sucrose diets on rat femora mechanical and compositional properties. Biomed Sci Instrum 2000;36:385–90.
47. Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages to growing female Sprague–Dawley rats on bone mass and strength. Bone 2008;42(5):960–8.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Ward, EJ; Suleria, HAR; Joseph, M; Chambers, E; Alavi, S; Lindshield, BL

Title:
Soy protein is an efficacious alternative to whey protein in sorghum-soy fortified blended foods in rats

Date:
2020-08-01

Citation:
Ward, E. J., Suleria, H. A. R., Joseph, M., Chambers, E., Alavi, S. & Lindshield, B. L. (2020). Soy protein is an efficacious alternative to whey protein in sorghum-soy fortified blended foods in rats. Current Developments in Nutrition, 4 (8), https://doi.org/10.1093/cdn/nzaa115.

Persistent Link:
http://hdl.handle.net/11343/268085

File Description:
Published version

License:
CC BY-NC