Data Article

Dataset of allele, genotype and haplotype frequencies of five polymorphisms CDKN2B-AS1 gene in Russian patients with primary open-angle glaucoma

Natalya Eliseevaa, Irina Ponomarenkoa, Evgeny Reshetnikova,\ast, Alexey Polonikovb, Irina Batlutskayaa, Inna Aristovaa, Anna Elykovaa, Natalya Rudykha, Mikhail Churnosova

a Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
b Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia

\textbf{ARTICLE INFO}

Article history:
Received 16 February 2020
Revised 8 May 2020
Accepted 12 May 2020
Available online 18 May 2020

\textbf{Keywords:}
Single nucleotide polymorphism
Primary open-angle glaucoma
Female
Male
CDKN2B-AS gene

\textbf{ABSTRACT}

Data on the allele, genotype and haplotype frequencies of the five single nucleotide polymorphisms (SNPs) such as rs1063192, rs7865618, rs2157719, rs944800 and rs4977756 of the CDKN2B-AS gene in Russian patients with primary open-angle glaucoma (POAG) are provided. These SNPs are found to be associated with the risk of POAG by genome-wide association studies (GWAS). The frequencies of alleles, genotypes and haplotypes of CDKN2B-AS gene were present separately for entire group of patients, females and males, and may be used as reference data of Russian population.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

\ast Corresponding author: Evgeny Reshetnikov.
E-mail address: reshetnikov@bsu.edu.ru (E. Reshetnikov).

https://doi.org/10.1016/j.dib.2020.105722
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Biology
Specific subject area	Genetics
Type of data	Table
How data were acquired	MALDI/TOF mass spectrometry using Sequenom MassARRAY 4.0 platform (Agena Bioscience™)
Data format	Raw and analyzed data
Parameters for data collection	About 5 ml of whole blood was collected from each study subject into a plastic vial (Vacutainer®) with 0.5M EDTA (pH=8.0). Genomic DNA was isolated using standard method of phenol-chloroform extraction and purification. DNA samples of good quality (concentration 10-15 ng/mL, purity A260/A280=1.7-2.0) were included for genotyping. About 5% of blind replicate samples were included for quality control of genotyping, and the repeatability test resulted in a 100% concordance rate.
Description of data collection	The quality of isolated DNA was assessed by Nanodrop-2000 spectrophotometer. DNA samples were genotyped using Sequenom MassARRAY® iPLEX platform using a method of MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. Assay Design Suite 1.0 was used to design a multiplex genotyping assay (http://agenabio.com/assay-design-suite-10-software).
Data source location	Belgorod, Russia
Data accessibility	The data is available with this article

Value of the Data

- The frequencies of alleles, genotypes and haplotypes for five SNPs such as rs1063192, rs7865618, rs2157719, rs944800 and rs4977756 of the CDKN2B-AS1 gene are presented separately for entire sample, males and females with POAG from Russian population.
- The data on the allele, genotype and haplotypes frequencies represent a resource for conducting meta-analyses of genetic studies on POAG.
- Allele, genotype and haplotype frequencies of the CDKN2B-AS1 gene polymorphisms and linkage disequilibrium values can be used as reference data for further population and genetic association studies of common diseases.

1. Data Description

The dataset represents the raw data (supplementary Table), frequencies of alleles, genotypes (Table 1) and haplotypes (Table 2) for five SNPs (rs1063192, rs7865618, rs2157719, rs944800 and rs4977756) of the CDKN2B-AS gene in Russian patients with POAG. These SNPs are found to be associated with the risk of POAG in previously published GWAS (Table 3) [1-10]. These SNPs possess the regulatory potential (Table 4), as demonstrated by several eQTLs (Table 5) and splicing QTLs (Table 6). The frequencies of alleles, genotypes and haplotypes for the SNPs are provided separately for three groups: entire sample, females and males. No significant differences in the allele, genotype and haplotype frequencies were found between the males and females groups.

2. Experimental Design, Materials, and Methods

2.1. Study subjects

A study sample was comprised of 536 patients with POAG, including 290 females and 246 males. The study participants were examined at the Division of Eye Microsurgery of Saint Joasaph’s Belgorod Regional Clinical Hospital. The patients with POAG were unrelated Russians, residents of the Central Russia [11]. The subjects were enrolled for the study according to criteria described elsewhere [12]. All study participants signed a written informed consent in accordance with the principles of the Helsinki Declaration.
Table 1
The frequencies of alleles and genotypes for SNPs rs1063192, rs7865618, rs2157719, rs944800 and rs4977756 CDKN2B-AS1 gene in Russian patients with POAG.

SNP genotype or allele	All (n=536) n frequency	Female (n=290) n frequency	Male (n=246) n frequency
rs1063192 GG	104 0.1940	59 0.2034	45 0.1829
rs1063192 AG	256 0.4776	134 0.4621	122 0.4959
rs1063192 AA	176 0.3264	97 0.3345	79 0.3212
rs1063192 G	464 0.4328	252 0.4345	212 0.4309
rs1063192 A	608 0.5672	328 0.5655	280 0.5691
rs7865618 GG	94 0.1753	52 0.1793	42 0.1707
rs7865618 AG	263 0.4907	139 0.4793	124 0.5041
rs7865618 AA	179 0.3340	99 0.3414	80 0.3252
rs7865618 G	451 0.4207	243 0.4190	208 0.4228
rs7865618 A	621 0.5793	337 0.5810	284 0.5772
rs2157719 GG	85 0.1585	45 0.1552	40 0.1626
rs2157719 AG	249 0.4646	135 0.4655	114 0.4634
rs2157719 AA	202 0.3769	110 0.3793	92 0.3740
rs2157719 G	419 0.3909	225 0.3879	11 0.3943
rs2157719 A	653 0.6091	355 0.6121	215 0.6057
rs944800 GG	64 0.1194	32 0.1103	32 0.1301
rs944800 AG	241 0.4496	130 0.4483	111 0.4512
rs944800 AA	202 0.3769	110 0.3793	92 0.3740
rs944800 G	419 0.3909	225 0.3879	11 0.3943
rs944800 A	653 0.6091	355 0.6121	215 0.6057
rs4977756 GG	100 0.1866	61 0.2104	39 0.1585
rs4977756 AG	286 0.5336	154 0.5310	132 0.5366
rs4977756 AA	150 0.2798	75 0.2586	75 0.3049
rs4977756 G	486 0.4534	276 0.4759	210 0.4268
rs4977756 A	586 0.5466	304 0.5241	282 0.5732

Table 2
The frequencies of haplotypes for SNPs rs1063192, rs7865618, rs2157719, rs944800 and rs4977756 CDKN2B-AS1 gene in Russian patients with POAG.

Haplotype (rs1063192-rs7865618-rs2157719-rs944800-rs4977756)	All (n=536), frequency	Female (n=290), frequency	Male (n=246), frequency
GGGAG	0.2221	0.2197	0.2304
AGGAG	0.0127	0.0125	0.0130
GAGAG	0.0220	0.0189	0.0272
AAGAG	0.0101	0.0137	0.0068
GGAG	0.0120	0.0185	0.0054
GGAGG	0.0505	0.0628	0.0434
GGAGG	0.0373	0.0361	0.0397
AAAG	0.0713	0.0859	0.0641
GGGGA	0.0262	0.0211	0.0359
AAAA	0.0299	0.0265	0.0377
AGGAA	0.0133	0.0178	0.0096
AAGGA	0.0141	0.0155	0.0136
GGAGA	0.0154	0.0117	0.0208
AGAGA	0.0191	0.0189	0.0198
GAAGA	0.0318	0.0424	0.0217
AAAGA	0.3890	0.3779	0.4110
Table 3
The literature data about associations of the studied polymorphisms CDKN2B-AS1 gene with POAG and optic disc characteristics (GWAS data).

SNP	Position (hg38)	Phenotype	Association (significance)/(associated allele)	Reference
rs1063192	22003368	POAG Vertical cup-disc ratio	OR= 0.79 (p=5 × 10^{-11}) (T) β=-0.01 mm^2 (p=4 × 10^{-15}) (G)	[1][2]
rs7865618	22031006	POAG Vertical cup-disc ratio	OR= 1.78 (p=9 × 10^{-11}) (A) β=-0.013 unit (p=5 × 10^{-24}) (G) β=-0.023 unit (p=1 × 10^{-21}) (G)	[3][4][5]
rs2157719	22033367	POAG Vertical cup-disc ratio	OR= 1.45 (p=2 × 10^{-18}) OR= 1.41 (p= 3 × 10^{-33}) β=-0.013 unit (p=4 × 10^{-35})	[6][7][8]
rs944800	22050899	POAG	OR= 1.33 (p=4 × 10^{-14}) (G) OR= 1.48 (p= 7 × 10^{-30}) (A)	[9]
rs4977756	22068653	POAG	OR= 1.45 (p=2 × 10^{-18}) OR= 1.41 (p= 3 × 10^{-33}) β=-0.013 unit (p=4 × 10^{-35})	[10]

2.2. DNA analysis

Whole blood sample (5 ml) from each participant was drawn by a certified nurse into a plastic vial (Vacutainer®) with 0.5M EDTA (pH=8.0). Total DNA was isolated from buffy coat using standard phenol-chloroform extraction method [13]. DNA quality was assessed by Nanodrop-2000 spectrophotometer (Thermo Scientific, Inc.). DNA samples of good quality (concentration 10-15 ng/mL, purity A260/A280=1.7-2.0) were included for genotyping.

Five SNPs such as rs1063192, rs7865618, rs2157719, rs944800 and rs4977756 of the CDKN2B-AS1 gene were selected for the study according to the following criteria [14,15]: 1) SNP showed an association with POAG by GWAS, 2) SNP possesses the regulatory potential, 3) SNP has eQTLs and/or sQTLs, 4) minor allele frequency, MAF > 5%.

All selected SNPs were associated with POAG in previously published GWAS (Table 3). These SNPs have the regulatory potential (Table 4), eQTLs (Table 5) and sQTLs (Table 6), as assessed by the HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and GT-Exportal recourses (http://www.gtexportal.org).

DNA samples were genotyped using the MALDI-TOF mass spectrometry iPLEX platform (Agena Bioscience Inc, San Diego, CA). Concentration of DNA varied from 10 to 15 ng/mL. Assay Design Suite 1.0 (http://agenabio.com/assay-design-suite-10-software) was used to design a multiplex genotyping assay. About 5% of blind replicate samples were included for quality control of genotyping, and the repeatability test resulted in a 100% concordance rate.

2.3. Statistical analysis

Allele frequencies were estimated by the gene counting method, and the chi-square test was applied to identify significant departures from Hardy–Weinberg equilibrium (HWE). Differences in allele, genotype and haplotype frequencies between the study groups (females and males) were analyzed by the Kruskal-Wallis test. The haplotypes for the SNPs of the CDKN2B-AS1 gene were constructed using an algorithm implemented in the PLINK software, v. 2.050 [16] (http://zzz.bwh.harvard.edu/plink/).
Table 4
Regulatory effects of the 5 SNPs of the CDKN2B-AS1 gene (HaploReg, v4.1, update 05.11.2015) (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.ph)

chr	pos (hg38)	variant	Ref	Alt	AFR	AMR	ASN	EUR	SiPhy	Promoter	Enhancer	DNAse	Proteins	Motifs	NHGRI/EBI	GRASP	QTL	Selected eQTL	GENCODE	dbSNP	
			freq	freq	freq	freq	cons	histone marks	histone marks	bound	changed	GWAS hits	GRASP hits	QTL hits	Selected eQTL hits	genes	func annot				
9	22003368	rs1063192	G	A	0.99	0.79	0.82	0.57		SKIN	AIRE,GATA,Tgif1	2 hits	3 hits							CDKN2B	3'-UTR
9	22031006	rs7865618	G	A	0.99	0.8	0.9	0.58		BLD, SKIN			3 hits	4 hits					RP11-145E5.5	intronic	
9	22033367	rs2157719	C	T	0.99	0.8	0.9	0.58		BRST, SKIN			3 hits	4 hits					CDKN2B-AS1	intronic	
9	22050899	rs944800	A	G	0.99	0.86	0.9	0.68		12 tissues									CDKN2B-AS1	intronic	
9	22068653	rs4977756	G	A	0.67	0.78	0.79	0.6		BRN			4 hits	2 hits					CDKN2B-AS1	intronic	
Table 5
The cis-eQTL values of the 4 SNPs of the CDKN2B-AS1 gene, (according to Genotype-Tissue Expression (GTEx) (http://www.gtexportal.org/)).

SNP	Gene expression	Reference allele	Alternative allele	Effect Size (β)	P-Value	Tissue
rs1063192	CDKN2A	G	A	0.33	0.000031	Brain - Cortex
rs7865618	CDKN2B	G	A	-0.14	0.000051	Muscle - Skeletal
rs2157719	CDKN2A	C	T	0.33	0.000045	Brain - Cortex
rs944800	CDKN2B-AS1	A	G	0.26	0.0000026	Cells - Transformed fibroblasts

Table 6
The sQTL values of the 5 SNPs of the CDKN2B-AS1 gene (according to Genotype-Tissue Expression (GTEx) (http://www.gtexportal.org/)).

SNP	Gene Symbol	Reference allele	Alternative allele	Intron Id	Effect Size (β)	P-Value	Tissue
rs1063192	CDKN2B-AS1	G	A	21995161:22046751:clu_55270	0.47	7.9e-9	Pituitary
rs7865618	CDKN2B-AS1	G	A	21995161:22046751:clu_55270	0.47	7.9e-9	Pituitary
rs2157719	CDKN2B-AS1	C	T	21995161:22046751:clu_55270	0.47	1.2e-8	Pituitary
rs944800	CDKN2B-AS1	A	G	21995161:22046751:clu_55270	0.4	0.0000004	Pituitary
rs4977756	CDKN2B-AS1	G	A	21995161:22046751:clu_55270	0.4	9.3e-8	Pituitary

Declaration of Competing Interest

The authors declare that they have no competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgements

The study was supported by grant of President of the Russian Federation (NS-2609.2020.7).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jdb.2020.105722.

References

[1] W. Osman, S.K. Low, A. Takahashi, M. Kubo, Y. Nakamura, genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma, Hum. Mol. Genet. 21 (2012) 2836–2842. doi: 10.1093/hmg/dd103.

[2] W.D. Ramdas, L.M. van Koolwijk, M.K. Ikram, N.M. Jansonius, P.T. de Jong, A.A. Bergen, A. Isaacs, N. Amin, Y.S. Aulchenko, R.C. Wolfs, A. Hofman, F. Rivadeneira, B.A. Oostra, A.G. Uitterlinden, P. Hysi, C.J. Hammond, H.G. Lemij, J.R. Vingerling, C.C. Klaver, C.M. van Duijn, A genome-wide association study of optic disc parameters, PLoS Genet. 6 (2010) e1000978, doi: 10.1371/journal.pgen.1000978.
[3] M. Nakano, Y. Ikeda, Y. Tokuda, M. Fuwa, N. Omi, M. Ueno, K. Imai, H. Adachi, M. Kageyama, K. Mori, S. Kinoshita, K. Tashiro, Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS One 7 (2012) e33389, doi:10.1371/journal.pone.0033389.

[4] H. Springelkamp, R. Höhn, A. Mishra, P.G. Hysi, C.C. Khor, S.J. Loomis, et al., Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process, Nat. Commun. 5 (2014) 4883, doi:10.1038/ncomms5883.

[5] H. Springelkamp, A. Mishra, P.G. Hysi, P. Gharahkhani, R. Höhn, C.C. Khor, Meta-analysis of genome-wide association studies identifies novel loci associated with optic disc morphology, Genet. Epidemiol. 39 (2015) 207–216, doi:10.1002/gepi.21886.

[6] J.L. Wiggs, B.L. YSPAN, M.A. Hauser, J.H. Kang, R.R. Allingham, L.M. Olson, et al., Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma, PLoS Genet. 8 (2012) e1002654, doi:10.1371/journal.pgen.1002654.

[7] Z Li, RR Allingham, M Nakano, L. Jia, Y. Chen, Y. Ikeda, et al., A common variant near TGFBR3 is associated with primary open angle glaucoma, Hum. Mol. Genet. 24 (2015) 3880–3892, doi:10.1093/hmg/ddv128.

[8] H. Springelkamp, A.I. Iglesias, A. Mishra, R. Höhn, R. Wojciechowski, A.P. Khawaja, et al., New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics, Hum. Mol. Genet. 26 (2017) 438–453, doi:10.1093/hmg/ddw399.

[9] Y. Shiga, M. Akiyama, K.M. Nishiguchi, K. Sato, N. Shimozawa, A. Takahashi, et al., Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma, Hum. Mol. Genet. 27 (2018) 1486–1496, doi:10.1093/hmg/ddy053.

[10] P. Gharahkhani, K.P. Burdon, R. Fogarty, S. Sharma, A.W. Hewitt, S. Martin, et al., Common variants near ABCA1, AFAP1 and CMDs confer risk of primary open-angle glaucoma, Nat. Genet. 46 (2014) 1120–1125, doi:10.1038/ng.3079.

[11] I.N. Sorokina, N.A. Rudyk, I.N. Bezmanova, I.S. Polyakova, Population genetic characteristics and genetic epidemiological research of candidate genes associations with multifactorial diseases, Research Results in Biomedicine 4 (2018) 20–30 (in Russian), doi:10.18413/2313-8955-2018-4-4-0-3.

[12] E. Tikunova, V. Ovtcharova, E. Reshetnikov, V. Dvornyk, A. Polonikov, O. Bushueva, M. Churnosov, Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of Central Russia, Int. J. Ophthalmol. 10 (2017) 1490–1494, doi:10.18240/ijo.2017.10.02.

[13] S.A. Miller, D.D. Dykes, H.F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res 3 (1988) 1215, doi:10.1093/nar/16.3.1215.

[14] I. Ponomarenko, E. Reshetnikov, O. Altuchova, A. Polonikov, I. Sorokina, A. Yermachenko, V. Dvornyk, M. Churnosov, Association of genetic polymorphisms with age at menarche in Russian women, Gene 686 (2019) 228–236.

[15] I.V. Ponomarenko, Selection of polymorphic loci for association analysis in genetic-epidemiological studies, Research Result. Medicine and Pharmacy 4 (2018) 40–54 (in Russian), doi:10.18413/2313-8955-2018-4-2-0-5.

[16] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. Maller, P. Sklar, P.I. de Bakker, M.J. Daly, P.C. Sham, PLINK, a tool set for wholegenome association and population-based linkage analyses, Am. J. Hum. Genet. 8 (2007) 559–575.