Long-Term Outcomes and Genetic Predictors of Response to Metastasis-Directed Therapy Versus Observation in Oligometastatic Prostate Cancer: Analysis of STOMP and ORIOLE Trials

Matthew P. Deek, MD1,2; Kim Van der Eecken, MD, PhD3; Philip Sutera, MD2; Rebecca A. Deek, MS4; Valérie Fonteyne, MD, PhD5; Adrianna A. Mendes, MD2; Karel Decaestecker, MD, PhD5; Ana Ponce Kiess, MD, PhD2; Nicolaas Lumen, MD, PhD2; Ryan Phillips, MD, PhD3; Aurélie De Bruycker, MD2; Mark Mishra, MD4; Zaker Rana, MD4; Jason Molitoris, MD, PhD4; Bieke Lambert, MD10; Louke Delrue, MD11; Hai Lun Wang, Ph.D2; Kathryn Lowe, BS3; Sofie Verbeke, MD, PhD2; Jo Van Dorpe, MD, PhD2; Renée Bultijnck, PhD2; Geert Vlleirs, MD2; Kathia De Man, MD3; Filip Ameye, MD4; Daniel Y. Song, MD2; Theodore DeWeese, MD3; Channing J. Paller, MD3; Felix Y. Feng, MD4; Alexander Wyatt, PhD2; Kenneth J. Pienta, MD5; Maximillian Diehn, MD, PhD19; Soren M. Bentzen, PhD, DMsc9,20; Steven Joniau, MD, PhD3; Friedl Vanhaverbeke, MD2; Gert De Meerleer, MD2; Emmanuel S. Antonarakis, MD24; Tamara L. Lotan, MD6; Alejandro Berlin, MD25; Shankar Siva, MD, PhD26; Piet Ost, MD, PhD7,27; and Phuoc T. Tran, MD, PhD2,9,18

INTRODUCTION

The use of metastasis-directed therapy (MDT) is rapidly increasing in the setting of oligometastasis. STOMP and ORIOLE, the only two prospective trials of stereotactic ablative radiation versus observation in metachronous oligometastatic castration-sensitive prostate cancer (omCSPC), demonstrated that MDT, as compared with observation, prolong androgen deprivation–free survival1 and progression-free survival (PFS).2 Although MDT appears to be effective in omCSPC, little is known regarding the utility of biomarkers to guide treatment for these patients.3,4 Thus, the goal of this study was to report long-term outcomes of STOMP and ORIOLE and assess the ability of genomics to stratify treatment response after MDT.

METHODS

Comprehensive details regarding STOMP and ORIOLE have been reported previously.1,2 Both were prospective phase II trials enrolling individuals with omCSPC, defined as ≤ three metastases, with random assignment to observation or MDT. Active systemic therapies were not allowed with MDT. Both had institutional review board approval, and all participants provided informed consent.
Next-generation sequencing was performed on primary prostate tumor or blood from patients enrolled. A high-risk mutational signature was defined as pathogenic somatic mutations within ATM, BRCA1/2, Rb1, and TP53 on the basis of their strong association with prostate cancer outcomes.2-8 Pathogenic mutations were defined by commercial tests and the publicly available COSMIC tumor variant database.3

The primary end point of interest was PFS as defined previously.2 Additional end points included radiographic progression-free survival (rPFS) defined as development of new nodal lesions, intrapelvic or distant, bone, or visceral lesions or death. Time-to-event analysis was performed to detect differences in end points of interest using the Kaplan-Meier method, stratified by treatment (MDT vs observation) or high-risk mutational status. All analyses were conducted using R version 4.1.1.9

RESULTS

Clinical Outcomes After MDT

One hundred and sixteen patients in total were included for analysis—62 from STOMP and 54 patients from ORIOLE. The CONSORT diagram is shown in Figure 1. Baseline characteristics were well balanced between groups (Table 1). The median follow-up was 52.5 months (range, 5.8-92.0 months). PFS was prolonged with MDT in both trials (Data Supplement, online only). The median PFS for the pooled cohort was 11.9 months (95% CI, 8.0 to 18.3) with MDT compared with 5.9 months (95% CI, 3.2 to 7.1) with observation. This corresponded with a pooled hazard ratio (HR) of 0.44 (95% CI, 0.29 to 0.66; P value < .001, Fig 2). The pooled HR for rPFS, time to castration-resistant prostate cancer, and overall survival did not differ between treatment groups (Fig 2 and Data Supplement).

Genetic Features and Impact on Outcomes

A total of 103 patients (89%) had tissue available for sequencing, and 70 patients (60%) had tissue that was successfully subjected to somatic next-generation sequencing (Fig 1). Clinical characteristics of these 70 patients are given in the Data Supplement and are similar to the entire cohort. In the entire population, the median PFS in those without a high-risk mutation was 11.9 months (95% CI, 7.0 to 16.3) compared with 5.9 months (95% CI, 5.8 to 11.1) in those with a high-risk mutation (HR, 0.57; 95% CI, 0.32 to

![CONSORT diagram](https://example.com/fig1.png)

FIG 1. CONSORT diagram demonstrating screening, inclusion, and sequenced sample breakdown. MDT, metastasis-directed therapy; NGS, next-generation sequencing.
In those without a high-risk mutation, the median rPFS was 22.6 months (95% CI, 18.1 to 36) compared with 10.0 months (95% CI, 5.9 to 17.1) in those with a high-risk mutation (HR, 0.38; 95% CI, 0.20 to 0.17; \(P < .01 \), Data Supplement).

We then stratified patients by both treatment arms and separately on the basis of high-risk mutational status to assess differential magnitude of benefit of MDT. Both those with and without a high-risk mutation benefited from MDT; however, a potential larger magnitude of benefit was experienced in those with a high-risk mutation. Tumors harboring a high-risk mutation treated with MDT experienced a median PFS of 7.5 months (95% CI, 5.9 to not reached [NR]) compared with a PFS of 2.8 months (95% CI, 0.01 to 0.28; \(P < .01 \), Fig 3A). In tumors without a high-risk mutation, the median PFS with MDT was 13.4 months (95% CI, 7.0 to 36) compared with 7.0 months (95% CI, 4.0 to 15.4) with observation (HR, 0.42; 95% CI, 0.23 to 0.77; \(P = .01 \), Fig 3B) with a p-interaction of 0.12 (Data Supplement). Differences in rPFS were not seen (high-risk mutation: HR, 0.83; \(P = .74 \); no high-risk mutation: HR, 0.82, \(P = .58 \); interaction: .40).

Within the MDT cohort alone (Fig 3C), the PFS was 13.4 months (95% CI, 7.0 to 36.0) without a high-risk mutation, compared with 7.5 months (95% CI, 5.9 to NR) with a high-risk mutation (HR, 0.53; 95% CI, 0.25 to 1.11; \(P = .09 \)). The median rPFS after MDT was 25.3 months (95% CI, 17.0 to NR) without a high-risk mutation, compared with 8.0 months (95% CI, 5.9 to NR) with a high-risk mutation (HR, 0.43; 95% CI, 0.20 to 0.95; \(P = .04 \), Fig 3D).

DISCUSSION

MDT is rapidly emerging as a therapy in omCSPC, and this study presents long-term outcomes and genomic predictors of response to MDT in omCSPC. We report that with long-term follow-up, STOMP and ORIOLE MDT remains associated with improved PFS. Of note, the PFS beyond four years continued to diverge between MDT and observation, with the median PFS not reached (NR) in the MDT arm compared with 36 months in the observation arm (HR, 0.38; 95% CI, 0.20 to 0.17; \(P < .01 \), Data Supplement).

TABLE 1. Baseline Characteristics Stratified by Treatment Group

Characteristic	MDT (%)	Observation (%)	\(P \)
T stage			
T1	4 (6)	2 (4.1)	.83
T2	24 (35.8)	21 (42.9)	
T3	37 (55.2)	24 (49)	
T4	2 (3)	2 (4.1)	
N stage			.43
N0	54 (80.6)	38 (77.6)	
N1	8 (11.9)	4 (8.2)	
Nx	5 (7.5)	7 (14.3)	
Gleason			.22
6	6 (9)	5 (10.2)	
7	38 (56.7)	22 (44.9)	
8	9 (13.4)	4 (8.2)	
9	14 (20.9)	16 (32.7)	
10	0 (0)	2 (4.1)	
No. of metastases			.73
1	28 (41.8)	18 (36.7)	
2	20 (29.9)	18 (36.7)	
3	19 (28.4)	13 (26.5)	
Imaging			.10
Enhanced	31 (46.3)	31 (63.3)	
Conventional	36 (53.7)	18 (36.7)	
PSA at oligometastasis	5.0 (1.9-11.1)	5.93 (1.1-10.1)	.97
Metastasis location			.94
Non-nodal	29 (43.3)	20 (40.8)	
Nodal	38 (56.7)	29 (59.2)	
PSA DT, months			1.0
> 3	50 (74.6)	36 (73.5)	
\(\leq 3 \)	17 (25.4)	13 (26.5)	

Abbreviations: MDT, metastasis-directed therapy; N, node; PSA DT, prostate-specific antigen doubling time; T, tumor.

FIG 2. Time-to-event outcomes of MDT versus observation. Time-to-event outcomes demonstrate improvements in PFS with MDT over observation, but no differences in rPFS, time to CRPC, or OS. CRPC, castration-resistant prostate cancer; HR, hazard ratio; MDT, metastasis-directed therapy; NR, not reached; OS, overall survival; PFS, progression-free survival; rPFS, radiographic progression-free survival.
years was 15%-20% with MDT regardless of mutation status, and thus, a sizable proportion of patients will experience durable response to therapy. Although more follow-up is needed, the encouraging PFS report here suggests that in appropriately selected patients, MDT without systemic therapy might be a reasonable option upfront in well-informed patients wishing to avoid side effects of androgen deprivation. However, future trials, which are planned or underway, will more rigorously study this question.

In the quest for treatment personalization in omCSPC, genetic biomarkers are likely to play a critical role. Within our cohort, those treated with MDT without a high-risk mutation experienced the best outcomes (median PFS 13.4 months), whereas observation in those with a high-risk mutation experienced the poorest outcomes (median PFS 2.8 months). This suggests that individuals with omCSPC without a high-risk mutation might initially be treated with MDT alone and conversely highlights the need for novel treatment paradigms in those with a high-risk mutation. Importantly, although, those both with and without a high-risk mutation appeared to benefit from MDT, thus suggesting that this therapy should be offered...

FIG 3. PFS stratified by treatment arm for those (A) with and (B) without a high-risk mutation stratified by treatment arm. MDT resulted in improvements in PFS in those both with and without a high-risk mutation, however, with a potential differential benefit resulting in relatively larger improvements in PFS in those with a high-risk mutation treated with MDT. (C) PFS and (D) rPFS in those treated with MDT stratified by high-risk mutation status. High-risk mutational status was prognostic for both PFS and rPFS in those treated with MDT, with longer times to events in those without a high-risk mutation. HiRi, high-risk; MDT, metastasis-directed therapy; OS, overall survival; PFS, progression-free survival; rPFS, radiographic progression-free survival.
to most, if not all, omCSPC. Ongoing trials combining systemic therapy (DART trial: ClinicalTrials.gov identifier: NCT04641078) or radiopharmaceuticals (RAVENS trial: ClinicalTrials.gov identifier: NCT04037358) might help define novel paradigms and hopefully further elucidate the role of genetic biomarkers within this population.

There are several limitations to this report. First, the genomic analysis did not have an a priori end point and was based on small sample size. Thus, prospective validation is needed. Second, differing imaging modalities were used (conventional in ORIOLE and choline in STOMP) and with the introduction of PSMA, how we define omCSPC might change in the future. Nevertheless, these data provide a framework to investigate such questions in the future.

In conclusion, long-term outcomes of STOMP and ORIOLE demonstrate sustained benefit to MDT over observation in omCSPC. Genomic alterations appear to have prognostic value in this patient population, suggesting that biomarkers should be evaluated in future studies to optimize patient selection.

AFFILIATIONS

1. Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
2. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
3. Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
4. Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
5. Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
6. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
7. Department of Urology, Ghent University Hospital, Ghent, Belgium
8. Department of Radiation Oncology, Mayo Clinic, Rochester, MN
9. Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
10. Department of Radiology and Nuclear Medicine, Ghent University, and Department of Nuclear Medicine, AZ Maria-Middelares Ghent, Belgium
11. Department of Radiology, Ghent University Hospital, Ghent, Belgium
12. Department of Pathology, Ghent University Hospital, Ghent, Belgium
13. Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
14. Department of Urology, AZ Maria-Middelares Ghent, Ghent, Belgium
15. Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
16. Departments of Medicine, Radiology, and Radiation Oncology, UCSF, San Francisco, CA
17. Department of Urologic Sciences, University of British Columbia, and Vancouver Prostate Centre, Vancouver, Canada
18. James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
19. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
20. Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD
21. Department of Urology, Catholic University Leuven, Leuven, Belgium
22. Department of Urology, AZ Nikolaas, Sint-Niklaas, Belgium
23. Department of Radiation Oncology, Catholic University Leuven, Leuven, Belgium
24. Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN
25. Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, Canada
26. Department of Radiation Oncology, Peter MacCallum Cancer Center, Melbourne Australia
27. Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
28. Department of Human Structure and Repair, Ghent University, Ghent, Belgium

CORRESPONDING AUTHOR

Phuoc T. Tran, MD, PhD, Department of Radiation Oncology, University of Maryland School of Medicine, 850 W. Baltimore St, Baltimore, MD 21201; e-mail: phuoc.tran@som.umaryland.edu.

EQUAL CONTRIBUTION

M.P.D., K.V.d.E., P.O., and P.T.T. contributed equally to this work. P.O. and P.T.T. are co-senior authors.

SUPPORT

P.T.T. was funded by an Anonymous Foundation, Movember Foundation-Distinguished Gentleman’s Ride-Prostate Cancer Foundation, Barbara’s Fund, National Capitol Cancer Research Fund and the NIH/NCI (U01CA212007, U01CA231776, and U54CA273956), and DoD (W81XWH-21-1-0296); H.W. was funded by the Hopkins-Allegheny Health Network (AHN) Cancer Research Fund; P.O. was supported by Kom op tegen Kanker, a Belgian nonprofit organization, for the STOMP trial.

CLINICAL TRIAL INFORMATION

NCT02680587
NCT01558427

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.22.00644.

DATA SHARING STATEMENT

Individual deidentified participant data that underlie the results reported in this article will be shared as will the individual study protocols. The data will become available beginning 1 year and for 3 years following publication to researchers with a methodologically sound proposal to achieve aims in the previously said sound proposal. Proposals should be directed toward the corresponding authors Drs Piet Ost and Phuoc T. Tran. Data will be available in our university’s data warehouse but without researcher support other than deposited metadata.
AUTHOR CONTRIBUTIONS

Conception and design: Matthew P. Deek, Kim Van der Eecken, Piet Ost, Phuoc T. Tran

Financial support: Piet Ost, Phuoc T. Tran

Administrative support: Matthew P. Deek, Kim Van der Eecken, Philip Sutera, Piet Ost, Phuoc T. Tran

 provision of study materials or patients: Matthew P. Deek, Kim Van der Eecken, Philip Sutera, Adrianna A. Mendes, Tamara L. Lotan, Piet Ost, Phuoc T. Tran

Collection and assembly of data: Matthew P. Deek, Kim Van der Eecken, Philip Sutera, Adrianna A. Mendes, Nicolaas Lumen, Aurelie De Bruycker, Bieke Lambert, Hailun Wang, Kathryn Lowe, Sofie Verbeke, Renée Bultynck, Filip Ameye, Maximilian Diehn, Steven Joniau, Friedl Vanhaverbeke, Gert De Meerleer, Tamara L. Lotan, Piet Ost, Phuoc T. Tran

Data analysis and interpretation: Matthew P. Deek, Kim Van der Eecken, Philip Sutera, Rebecca A. Deek, Valérie Fonteyne, Karel Decaestecker, Ana Ponce Kiess, Ryan Phillips, Mark Mishra, Zaker Rana, Jason Molitoris, Louke Delrue, Jo Van Dorpe, Geert Villeirs, Kathia De Man, Daniel Y. Song, Theodore DeWeese, Channing J. Paller, Felix Y. Feng, Alexander Wyatt, Kenneth J. Pienta, Soren M. Bentzen, Emmanuel S. Antonarakis, Alejandro Berlin, Shankar Siva, Piet Ost, Phuoc T. Tran

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

REFERENCES

1. Ost P, Reynders D, Decaestecker K, et al: Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: A prospective, randomized, multicenter phase II trial. J Clin Oncol 36:446-453, 2018

2. Phillips R, Shi WY, Deek M, et al: Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: The ORIOLE phase 2 randomized clinical trial. JAMA Oncol 6:650-659, 2020

3. Deek MP, Van der Eecken K, Phillips R, et al: The mutational landscape of metastatic castration-sensitive prostate cancer: The spectrum theory revisited. Eur Urol 80:632-640, 2021

4. Van der Eecken K, Vanwelkenhuyzen J, Deek MP, et al: Tissue- and blood-derived genomic biomarkers for metastatic hormone-sensitive prostate cancer: A systematic review. Eur Urol Oncol 4:914-923, 2021

5. Abida W, Cyrta J, Heller G, et al: Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA 116:11428-11436, 2019

6. Castro E, Goh C, Olmos D, et al: Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31:1748-1757, 2013

7. Gallagher DJ, Gaudet MM, Pal P, et al: Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 16:2115-2121, 2010

8. Karlsson Q, Brook MN, Dadaev T, et al: Rare germline variants in ATM predispose to prostate cancer: A PRACTICAL Consortium Study. Eur Urol Oncol 4:570-579, 2021

9. R: A Language and Environment for Statistical Computing. Vienna, Austria. R Foundation for Statistical Computing. 2021. https://www.R-project.org/

10. Onderdonk BE, Gutintonov SI, Chmura SJ: The evolution (and future) of stereotactic body radiotherapy in the treatment of oligometastatic disease. Hematol Oncol Clin North Am 34:307-320, 2020

11. Pitroda SP, Weichselbaum RR: Integrated molecular and clinical staging defines the spectrum of metastatic cancer. Nat Rev Clin Oncol 16:581-588, 2019

12. Lussier YA, Khodarev NN, Regan K, et al: Oligo- and polymetastatic progression in lung metastasis(es) patients is associated with specific microRNAs. PLoS One 7:e50141, 2012

13. Lussier YA, Xing HR, Salama JK, et al: MicroRNA expression characterizes oligometastasis(es). PLoS One 6:e66265, 2011

14. Pitroda SP, Khodarev NN, Huang L, et al: Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis. Nat Commun 9:1793, 2018

15. Wong AC, Watson SP, Pitroda SP, et al: Clinical and molecular markers of long-term survival after oligometastasis-directed stereotactic body radiotherapy (SBRT). Cancer 122:2242-2250, 2016

16. Hasan H, Deek MP, Phillips R, et al: A phase II randomized trial of RAdium-223 dichloride and SABR versus SABR for oligometastatic prostate caNcerS (RAVENS). BMC Cancer 20:492, 2020
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Long-Term Outcomes and Genetic Predictors of Response to Metastasis-Directed Therapy Versus Observation in Oligometastatic Prostate Cancer: Analysis of STOMP and ORIOLE Trials

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/wc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Philip Sutera
Employment: Catalent
Stock and Other Ownership Interests: Pfizer, Merck, Catalent

Valérie Fontayne
Travel, Accommodations, Expenses: Ipsen (Inst)

Karel Decaestecker
Consulting or Advisory Role: Medtronic, Intuitive Surgical
Research Funding: Ipsen (Inst)
Travel, Accommodations, Expenses: Ipsen, Astellas Pharma, Ferring

Ana Ponce Kiess
Research Funding: Advanced Accelerator Applications (Novartis) (Inst), Merck (Inst), Bayer (Inst)
Uncompensated Relationships: POINT Biopharma

Nicolaas Lumen
Research Funding: Bayer (Inst), Janssen (Inst)
Travel, Accommodations, Expenses: Ipsen (Inst)

Ryan Phillips
Uncompensated Relationships: Veracyte

Mark Mishra
Employment: Orthofix
Stock and Other Ownership Interests: Adverum

Daniel Y. Song
Consulting or Advisory Role: Isoray, BioProtect
Research Funding: Candel Therapeutics, BioProtect

Theodore DeWeese
Patents, Royalties, Other Intellectual Property: patent pending on computer algorithm in radiation therapy planning

Channing J. Paller
Consulting or Advisory Role: Dendreon, Omnintura, Exelixis
Research Funding: Lilly (Inst)

Felix Y. Feng
Stock and Other Ownership Interests: Artera
Consulting or Advisory Role: Janssen Biotech, Myovant Sciences, Astellas Pharma, Serimmune, Foundation Medicine,Exact Sciences, Bristol-Myers Squibb, Varian Medical Systems, Novartis, Roivant, Bayer, Blue Star Genomics
Research Funding: Zenith Epigenetics

Alexander Wyatt
Honorary: Janssen, Astellas Pharma, AstraZeneca, Merck, AstraZeneca
Consulting or Advisory Role: AstraZeneca
Research Funding: ESSA (Inst)

Kenneth J. Pienta
Leadership: CUE Biopharma, Keystone Biopharma
Stock and Other Ownership Interests: CUE Biopharma, Medsyn Biopharma, Oncopia Therapeutics, Keystone Biopharma
Consulting or Advisory Role: CUE Biopharma, Glorious Med Technology, Akrevia Therapeutics
Research Funding: Progenesis
Travel, Accommodations, Expenses: CUE Biopharma

Maximillian Diehn
Leadership: Foresight Diagnostics
Stock and Other Ownership Interests: CiberMed, Foresight Diagnostics
Consulting or Advisory Role: Roche, AstraZeneca, Illumina, Gritstone Bio, BioNTech, Novartis, Genentech, Boehringer Ingelheim
Research Funding: Varian Medical Systems (Inst), Illumina (Inst), AstraZeneca (Inst), Genentech (Inst)

Patents, Royalties, Other Intellectual Property: Patent filings on ctDNA detection assigned to Stanford University (Inst), Patent filings on tumor treatment resistance mechanisms assigned to Stanford University (Inst)
Open Payments Link: https://openpaymentsdata.cms.gov/physician/037688

Steven Joniau
Consulting or Advisory Role: Janssen, AstraZeneca, Bayer, Astellas Pharma
Speakers’ Bureau: Astellas Pharma, Janssen, Ipsen
Research Funding: Janssen (Inst), Astellas Pharma (Inst), Ipsen (Inst), Bayer (Inst), Ferring (Inst)
Travel, Accommodations, Expenses: Janssen, Ipsen, Astellas Pharma, Ferring

Gert De Meerleer
Honorary: Bayer, Janssen, Astellas Pharma, Ferring
Consulting or Advisory Role: Janssen (Inst), Astellas Pharma (Inst)
Research Funding: Astellas Pharma (Inst)
Travel, Accommodations, Expenses: Janssen, Astellas Pharma, Ipsen (Inst)

Emmanuel S. Antonarakis
Honorary: Sanofi, Dendreon, Medivation, Janssen Biotech, ESA, Astellas Pharma, Merck, AstraZeneca, Clovis Oncology, Amgen, Bayer, Blue Earth Diagnostics, Bristol Myers Squibb/Celgene, Celgene, Constellation Pharmaceuticals, Curium Pharma, Lilly, Exact Sciences, Foundation Medicine, Glaxo SmithKline, Invitae, ISMAR Health Care, Tempus, Oncon, Alkido Pharma
Consulting or Advisory Role: Sanofi, Dendreon, Janssen Biotech, ESA, Merck, AstraZeneca, Clovis Oncology, Lilly, Bayer, Amgen, Astellas Pharma, Blue Earth Diagnostics, Bristol Myers Squibb/Celgene, Constellation Pharmaceuticals, Curium Pharma, Exact Sciences, Foundation Medicine, GlaxoSmithKline, Invitae, ISMAR Health Care, Medivation, Tempus, Oncon, Alkido Pharma
Research Funding: Janssen Biotech (Inst), Johnson & Johnson (Inst), Sanofi (Inst), Dendreon (Inst), Aragon Pharmaceuticals (Inst), Exelixis (Inst), Millennium (Inst), Genentech (Inst), Novartis (Inst), Astellas Pharma (Inst), Tokai Pharmaceuticals (Inst), Merck (Inst), AstraZeneca (Inst), Clovis Oncology (Inst), Constellation Pharmaceuticals (Inst), Celgene, Clovis Oncology

Patents, Royalties, Other Intellectual Property: Coinventor of a biomarker technology that has been licensed to Qigian
Travel, Accommodations, Expenses: Sanofi, Dendreon, Medivation

Tamara L. Lotan
Consulting or Advisory Role: Janssen Oncology
Research Funding: Ventana Medical Systems, DeepBio, AIRA Matrix (Inst)

Alejandro Berlin
Consulting or Advisory Role: AbbVie, Ferring, Astellas Pharma
Research Funding: AbbVie

Shankar Siva
Honorary: AstraZeneca, Varian Medical Systems (Inst), Roche (Inst), Bristol Meyers Squibb (Inst)
Consulting or Advisory Role: AstraZeneca, Janssen (Inst)
Travel, Accommodations, Expenses: AstraZeneca (Inst)

Piet Ost
Consulting or Advisory Role: Janssen-Cilag, Bayer, Astellas Pharma, Curium Pharma, Telix Pharmaceuticals, Novartis
Research Funding: Varian Medical Systems (Inst), Bayer (Inst)
Travel, Accommodations, Expenses: Ferring

Phuoc T. Tran
This author is a member of the Journal of Clinical Oncology Editorial Board. Journal policy recused the author from having any role in the peer review of this manuscript.
Honorary: Reflexion Medical
Consulting or Advisory Role: Astellas Pharma, Regeneron, GenomeDX, Reflexion Medical, Dendreon, Ninoxpharm, Janssen, Myovant Sciences, AstraZeneca
Research Funding: Astellas Pharma (Inst), Reflexion Medical (Inst), Bayer Health (Inst)

Patents, Royalties, Other Intellectual Property: Compounds and Methods of Use in Ablative Radiotherapy. Patent filed March 9, 2012. PCT/US2012/028475. PCT/WO/2012/123471
Travel, Accommodations, Expenses: Reflexion Medical
No other potential conflicts of interest were reported.