Characterization of the IncFII-IncFIB(pB171) Plasmid Carrying \(\text{bla}_{\text{NDM}-5} \) in \textit{Escherichia coli} ST405 Clinical Isolate in Japan

Yoko Takayama\(^1\), Tsuyoshi Sekizuka\(^3\), Hidehito Matsui\(^4\), Yuzuru Adachi\(^*\), Ryotaro Eda\(^5\), Shin Nihonyanagi\(^2\), Tatsuhiko Wada\(^2\), Mari Matsui\(^6\), Satowa Suzuki\(^6\), Masashi Takaso\(^7\), Hidero Kitasato\(^8\), Makoto Kuroda\(^3\), Hideaki Hanaki\(^4\)

\(^{1}\)Department of Infection Control and Infectious Diseases, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kanagawa, Japan; \(^{2}\)Department of Infection Control and Prevention, Kitasato University Hospital, Kanagawa, Japan; \(^{3}\)Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan; \(^{4}\)Infection Control Research Center, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan; \(^{5}\)Department of Microbiology, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan; \(^{6}\)Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan; \(^{7}\)Department of Orthopaedic Surgery, Kitasato University School of Medicine, Kanagawa, Japan

Correspondence: Yoko Takayama
1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
Tel/Fax +81-42-778-9119
Email yoko@med.kitasato-u.ac.jp

Purpose: New Delhi metallo-\(\beta \)-lactamase 5 (NDM-5) shows stronger resistance to carbapenems and broad-spectrum cephalosporins than NDM-1 because NDM-5 differs from NDM-1 by two amino acid substitutions. In this study, our aim was to characterize a NDM-5-producing \textit{Escherichia coli} isolate KY1497 from a patient with urinary tract infection in Japan, who had no recent history of overseas travel.

Patients and Methods: NDM-5-producing \textit{E. coli} isolate KY1497 was detected in the urine sample of a patient hospitalized in a tertiary hospital in Japan. The complete genome sequence of isolate KY1497 was determined by short- and long-read sequencing with hybrid assembly, followed by multilocus sequence typing (MLST), core-genome phylogeny analysis, plasmid analysis, and transconjugation experiments.

Results: KY1497 was classified as ST405 by MLST, and core-genome phylogeny exhibited the closest lineage to the clinical isolates in Nepal (IOMTU605) and Canada (FDAARGOS_448). KY1497 harbors \(\text{bla}_{\text{NDM}-5} \) in the IncFII-IncFIB(pB171) replicon plasmid (pKY1497\(_1\), 123,767 base pairs). Plasmid analysis suggested that the cognate plasmids of pKY1497\(_1\) have a minor plasmid background, rather than the globally disseminated IncX3 plasmid carrying \(\text{bla}_{\text{NDM}-5} \). Transconjugation analysis revealed that pKY1497\(_1\) is transmissible to the recipient \textit{E. coli} 353 strain.

Conclusion: We characterized a novel Inc replicon plasmid (IncFII-IncFIB(pB171)) carrying \(\text{bla}_{\text{NDM}-5} \) and its host \textit{E. coli} strain. NDMs are associated with a high risk of infection worldwide because of their antibiotic resistance and untreatable and hard-to-treat infections. Other patients in the hospital showed negative results for carbapenem-resistant Enterobacteriaceae. As NDM-producing strains are only sporadically detected in Japan, attention should be provided to the community prevalence of NDM-producing \textit{E. coli} strains to prevent nosocomial infections.

Keywords: \(\text{bla}_{\text{NDM}-5} \), \textit{Escherichia coli}, sequence type 405, IncFII, IncFIB

Introduction

Bacterial resistance due to \(\beta \)-lactamase is increasingly associated with carbapenemases encoded by various plasmids. Among these newly emerging carbapenemases, New Delhi metallo-\(\beta \)-lactamase 1 (NDM-1) was first reported in 2009.\(^1\) NDMs can hydrolyze all \(\beta \)-lactams, but not monobactams, and are associated with a high risk of causing a global health crisis.

NDM-5 is a variant that differs from other NDM enzymes because it contains two substitutions (Val188Leu and Met154Leu) and shows increased resistance to carbapenems and broad-spectrum cephalosporins.\(^2\) In 2011, NDM-5 was first
identified in the UK in a strain of *Escherichia coli* isolated from a patient with a recent history of hospitalization in India. Escherichia coli strains possessing NDM-5 were subsequently reported to be prevalent in Denmark, France, and Algeria. In Japan, detection of an NDM-5-producing clinical isolate of *E. coli* was first reported in 2014; this isolate belonged to sequence type (ST) 540, and the patient had traveled to Bangladesh. Herein, we report the first detection of an NDM-5-producing *E. coli* strain belonging to ST405 in Japan.

Materials and Methods

Bacterial Isolates

In October 2015, a 79-year-old man was admitted to Kitasato University Hospital with cervical spinal cord injury causing respiratory muscle paralysis and upper and lower limb weakness. The patient developed pneumonia on day 5 of hospitalization; therefore, empirical antimicrobial treatment with vancomycin (VCM) (1 g twice daily) and tazobactam/piperacillin (TAZ/PIPC) (3.5 g three times daily) was initiated. Notable pathogens including gram-positive pathogenic bacteria such as methicillin-resistant *Staphylococcus aureus* were not cultured from the blood, sputum, and pleural effusion specimens. Therefore, VCM treatment was discontinued after 6 days, while TAZ/PIPC treatment was continued to manage the patient’s condition for 29 days. On hospital day 52, the patient developed a urinary tract infection, and a strain of carbapenem-resistant *E. coli* (KY1497 strain) was isolated from a urine specimen, although the other patients in the hospital showed negative results for carbapenem-resistant *Enterobacteriaceae*. The carbapenem-resistant *E. coli* was continuously isolated from the patient’s stool and urine specimens as colonies. The cardiopulmonary function of the patient gradually weakened, respiratory failure progressed, and the patient died on day 149. He had been admitted directly to our hospital without a history of international travel.

Antimicrobial Susceptibility Testing

Antimicrobial susceptibility of the isolate was determined by microdilution according to the Clinical and Laboratory Standards Institute (CLSI) reference methods, except that European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints were used to evaluate tigecycline and polymyxin B. Two disks of ceftazidime and sodium mercaptoacetic acid (Eiken Chemical Co., Ltd., Tokyo, Japan) were used as indicators of metallo-β-lactamase production.

Antimicrobial Resistance Gene Screening and Molecular Typing

Polymerase chain reaction (PCR) was performed to detect the *bla*_{IMP}, *bla*_{VIM}, *bla*_{NDM}, *bla*_{OXA-48}, and CTX-M-1 group genes in the isolate. The bacterial PFGE plug was digested with S1 nuclease, followed by PFGE using a previously reported method with some modifications, and visible DNA bands, which were possible plasmids, were excised to extract DNA.

Whole-Genome Sequencing

DNA libraries were constructed using the Nextera XT sample prep kit according to the manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA), followed by next-generation sequencing (Miseq, Illumina, Inc.). We performed long-read sequencing with PacBio RSII and obtained the resulting unitigs with HGAP v. 4.0 de novo assembler, followed by error-correction and complete genome sequence determination by Illumina short-read sequencing. Genome annotation was carried out using DFAST. Strain genotyping was determined in silico by MLST (http://cge.cbs.dtu.dk/services/MLST).

Plasmid Conjugation

Plasmid conjugation using the broth method was carried out between the *bla*_{NDM-5}-positive isolate KY1497 and sodium azide-resistant *E. coli* J53 as the recipient strain. Transconjugants were selected on selection plates supplemented with a combination of ceftriaxone (8 mg/L) and sodium azide (100 mg/L), and the presence of the NDM-5 gene was confirmed by PCR.

Ethics Statement

This study was approved by the research ethics committee of Kitasato University Hospital (approval no. B17-123) and complied with the Declaration of Helsinki. Written informed consent was obtained from the patient for publication of this case report.

Results and Discussion

Comparative Analysis of the IncFII- IncFIB Plasmids Harboring Carbapenemases

The complete genome sequence of KY1497 suggested that it belongs to ST405 and O102: H6 (Figure 1A) and carries...
Figure 1 Comparative genomic analysis among 19 strains of blaNDM-5-positive E. coli ST405. (A) Core-genome SNV analysis and pan-genome analysis. Detected SNVs in the repeat and prophage regions were excluded. Recombination regions of the chromosome were predicted using Gubbins v. 2.3.4, followed by masking SNVs in the recombination regions. A maximum likelihood phylogenetic tree was constructed from 8,857 SNV sites in the core genome region. Pan-genomic analysis was performed using Roary v. 3.12.0. The recombination region and pan-genomic data were visualized using Phandango. The red and light blue bars indicate recombination regions of the ancestral type and single isolate, respectively. The blue bars in pan-genomic data indicate the presence of a gene cluster. (B) Comparative representation of complete blaNDM-5-positive plasmid sequences among five E. coli strains. The plasmid sequences were aligned using BLASTN, followed by visualization using Easyfig. Similarity of homologous and inversion blocks is indicated in red and blue, respectively. The backbone of the IncFII-IncFIB(pB171) plasmids is highly conserved among the different ST types. (C) S1-PFGE analysis of E. coli KY1497.
three plasmids. blaNDM-5 is located on the 123.7-kb plasmid pKY1497_1, which is an IncFII-IncFIB(pB171) replicon type (Figure 1B). S1-PFGE revealed three plasmid bands with lengths corresponding to those of the complete genome sequences (Figure 1C). Core-genome phylogeny of blaNDM-5-positive E. coli ST405 (19 strains in total) suggested that KY1497 had the most similar lineage to clinical isolate IOMTU605 in Nepal and FDARGOS_448 in Canada, with 38 and 39 single nucleotide variants (SNVs), respectively (Figure 1A). These two strains carry the homologous blaNDM-5-positive plasmid (Figure 1B). Pair-wise alignment of pKY1467_1 displayed homologous regions with other IncFII-IncFIB(pB171) plasmids except for the qepA4 quinolone-resistance gene (Figure 1B). Regarding the IncFII-IncFIB(pB171) background, pKY1497_1 shares most of its plasmid backbone, whereas pJJ1887-5 in E. coli JJ1887 (ST131) carries other antimicrobial resistance genes rather than blaNDM-5, indicating that pJJ1887-5 is one of the most common ancestral plasmids for blaNDM-5 acquisition.14 We detected blaNDM variants on plasmids >100-kb in size, with IncF, IncA/C, and untypeable replicons. Previous reports have indicated that the IncX3-type plasmid plays a major role in the global dissemination of NDM-producing Enterobacteriaceae.11,15,16 In this study, molecular characterization of KY1497 revealed that it carried blaNDM-5 in a 123.7-kb plasmid harboring IncFII-IncFIB(pB171), suggesting that IncF has a similar role of dissemination as IncX3.

Transferability of blaNDM-5
KY1497 was resistant to fluoroquinolones and all β-lactams, including broad-spectrum cephalosporins and carbapenems, whereas it remained susceptible to tigecycline. The antimicrobial susceptibilities of transconjugants derived from E. coli J53 were similar to those of the donor KY1497 strain, particularly for penicillin, cephalosporin, and tigecycline (Table 1). The KY1497 strain successfully transferred the resistance plasmid at a frequency of 8.3 × 10−6, creating E. coli J53 KY1497T, suggesting the horizontal transfer of blaNDM-5 in the IncFII-IncFIB(pB171) plasmid. The IncF type plasmids were conjugatable, which may explain the rapid spread of the NDM-carrying isolates. Therefore, effective and feasible measures must be taken immediately to control the dissemination of these resistant plasmids.

How Does blaNDM-5 Spread?
Travelers contribute significantly to the global spread of microbes and resistance genes. KY1497 was isolated from a non-traveler, suggesting that it is caused by an autochthonous strain or transmission by undetected carriers. In this case, TAZ/PIPC was prescribed for 29 days before detecting KY1497. Long-term broad-spectrum antibiotics may enable the detection of carbapenem-resistant strains.20,21 As the patient stayed in a private room, environmental

Table 1 Antimicrobial Susceptibility Profile of E. coli Isolate with the blaNDM-5 Gene and Its Transconjugant

Antimicrobial Agent	KY1497 MIC (mg/L)	E. coli J53 (Transconjugant of E. coli J53)	E. coli J53
Ampicillin	>128	>128	8
Amoxicillin/clavulanate	>64/32	>64/32	8/4
Piperacillin	>128	>128	4
Tazobactam/piperacillin	>4/128	>4/128	4/2
Cefotixin	>128	>128	4
Cefotaxime	>128	128	0.25
Cefazidime	>64	>64	0.5
Cefepime	>128	16	≤0.06
Flomoxef	>128	16	0.12
Imipenem	16	4	0.12
Meropenem	64	4	≤0.06
Aztreonam	64	0.12	0.12
Levofloxacin	64	0.25	≤0.06
Gentamicin	2	0.3	1
Amikacin	4	2	4
Fosfomycin	4	2	0.5
Tigecycline	0.25	0.25	0.25

Abbreviation: MIC, minimum inhibitory concentration.
investigation was performed after his death. Swab samples from a shelf close to the bed, hand-wash sink, drain ditch, inside of bedpan, and toilet-cleaning apparatus were tested by cultivation as possible sources of NDM-5 transmission; however, NDM-5-producing bacteria were not isolated. There have been previous reports of community-acquired NDM-producing isolates, indicating the existence of an undetected reservoir and potential transmission among colonized carriers in hospitals.22,23

One limitation of this study was that the undetected reservoirs formed by NDM-5-producing isolates were not investigated. Our results strongly emphasize that while strains producing NDM enzymes are rarely reported among hospitalized patients in Japan, attention should be paid to the community prevalence of such strains to monitor future trends and prevent further horizontal spread.

Conclusion

In this study, a self-transmissible IncFII-IncFIB plasmid carrying \textit{bla}_{NDM-5} was detected in ST405 \textit{E. coli}, which is a novel Inc replicon plasmid. We highlighted the dissemination potential of the IncFII-IncFIB plasmids harboring \textit{bla}_{NDM-5}: Effective infection control steps should be taken to prevent nosocomial infections.

Abbreviations

MLST, multilocus sequence typing; NDM-5, New Delhi metallo-\(\beta\)-lactamase 5; PCR, polymerase chain reaction; ST, sequence type; TAZ/PIP, tazobactam/piperacillin; VCM, vancomycin.

Data Sharing Statement

The complete, annotated genome sequence of \textit{E. coli} KY1497 has been deposited in a public database (chromosome, AP019803; pKY1497_1, AP019804; pKY1497_2, AP019805; and pKY1497_3: AP019806). The short- and long-read sequences for DNA-Seq have been deposited in the DNA Data Bank of Japan (DRA accession DRA008639; BioProject PRJDB8512; BioSample SAMD001 78070; DRR accession DRR184076-DRR184080).

Acknowledgments

This work was supported by the Research Program on Emerging and Re-emerging Infectious Diseases from the Japan Agency for Medical Research and Development, AMED (grant numbers JP19fk0108048 and JP19fk010 8103).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, \textit{bla}(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in \textit{Klebsiella pneumoniae} sequence type 14 from India. \textit{Antimicrob Agents Chemother}. 2009;53:5046–5054.

2. Hormsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-\(\beta\)-lactamase in a multidrug-resistant \textit{Escherichia coli} ST648 isolate recovered from a patient in the United Kingdom. \textit{Antimicrob Agents Chemother}. 2011;55:5952–5954. doi:10.1128/AAC.05108-11

3. Uchida H, Tada T, Sugahara Y, et al. A clinical isolate of \textit{Escherichia coli} co-harbouring \textit{mer-c} and \textit{bla}NDM-5 in Japan. \textit{J Med Microbiol}. 2018;67:1047–1049. doi:10.1099/jmm.0.00793

4. Nakano R, Nakano A, Hikosaka K, et al. First report of metallo-\(\beta\)-lactamase NDM-5-producing \textit{Escherichia coli} in Japan. \textit{Antimicrob Agents Chemother}. 2014;58:7611–7612. doi:10.1128/AAC.04265-14

5. Clinical and Laboratory Standards Institute. \textit{Performance Standards for Antimicrobial Susceptibility Testing}. 25th Informational Supplement. M 100-S25. Wayne, PA: CLSI; 2015.

6. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters Version 9.0, valid from 2019-01-01. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0/Breakpoint_Tables.pdf. Accessed January 1st, 2019.

7. Takayama Y, Adachi Y, Nihonyanagi S, et al. Modified Hodge test using Mueller-Hinton agar supplemented with clocaxillin improves screening for carbapenemase-producing clinical isolates of Enterobacteraeae. \textit{J Med Microbiol}. 2015;64:774–777. doi:10.1099/jmm.0.000068

8. Shibata N, Kurokawa H, Doi Y, et al. PCR classification of CTX-M-type beta-lactamase genes identified in clinically isolated gram-negative bacilli in Japan. \textit{Antimicrob Agents Chemother}. 2006;50:791–795. doi:10.1128/AAC.50.2.791-795.2006

9. Poirel L, Héritier C, Tolün V, et al. Emergence of oxacillinase-mediated resistance to imipenem in \textit{Klebsiella pneumoniae}. \textit{Antimicrob Agents Chemother}. 2004;48:15–22. doi:10.1128/AAC.48.1.15-22.2004

10. Bender JB, Hedberg CW, Besser JM, et al. Surveillance for \textit{Escherichia coli} O157:H7 infections in Minnesota by molecular subtyping. \textit{N Engl J Med}. 1999;337:388–394. doi:10.1056/NEJM19990707337330604

11. Zhang F, Xie L, Wang X, et al. Further spread of \textit{bla}NDM-5 in Enterobacteraeae via \textit{Inc}X3 plasmids in Shanghai, China. \textit{Front Microbiol}. 2016;30:e424.

12. Tanizawa Y, Fujisawa T, Kaminuma E, et al. DFAST and DAGA: web-based integrated genome annotation tools and resources. \textit{Biosci Microbiota Food Health}. 2016;35:173–184. doi:10.12938/bmfh.16-003

13. Nakano R, Okamoto R, Nakano Y, et al. CFE-1, a novel plasmid-encoded AmpC-lactamase with an \textit{ampR} gene originating from \textit{Citrobacter freundii}. \textit{Antimicrob Agents Chemother}. 2004;48:1151–1158. doi:10.1128/AAC.48.4.1151-1158.2004

14. Rahman M, Shukla SK, Prasad KN, et al. Prevalence and molecular characterisation of New Delhi metallo-\(\beta\)-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteraeae from India. \textit{Int J Antimicrob Agents}. 2014;44:30–37. doi:10.1016/j.ijantimicag.2014.03.003

15. Zhang Q, Lv L, Huang X, et al. Rapid increase in carbapenemase-producing \textit{Enterobacteraeae} in retail meat driven by the spread of the \textit{bla}NDM-5-carrying \textit{Inc}X3 plasmid in China from 2016 to 2018. \textit{Antimicrob Agents Chemother}. 2019;63:e00573-19. doi:10.1128/AAC.00573-19
16. Li X, Fu Y, Shen M, et al. Dissemination of \textit{bla} \textit{NDM-5} gene via an IncX3-type plasmid among non-clonal \textit{Escherichia coli} in China. \textit{Antimicrob Resist Infect Control}. 2018;7:59. doi:10.1186/s13756-018-0349-6

17. Barrado L, Pérez-Vázquez M, Del Pozo JL, et al. Clonal transmission of NDM-5-producing \textit{Escherichia coli} belonging to high-risk sequence type ST405. \textit{Int J Antimicrob Agents}. 2018;52:123–124. doi:10.1016/j.ijantimicag.2018.05.018

18. Roy Chowdhury P, McKinnon J, Liu M, Djordjevic SP. Multidrug resistant uropathogenic \textit{Escherichia coli} ST405 with a novel, composite IS26 transposon in a unique chromosomal location. \textit{Front Microbiol}. 2019;9:3212. doi:10.3389/fmicb.2018.03212

19. Dadashi M, Yaslianifard S, Hajikhani B, et al. Frequency distribution, genotypes and the most prevalent sequence types of New Delhi metallo-beta-lactamase-producing \textit{Escherichia coli} among clinical isolates around the world: a review. \textit{J Glob Antimicrob Resist}. 2019;19:284–293. doi:10.1016/j.jgar.2019.06.008

20. Cendejas E, Gómez-Gil R, Gómez-Sánchez P, Mingorance J. Detection and characterization of \textit{Enterobacteriaceae} producing metallo-beta-lactamases in a tertiary-care hospital in Spain. \textit{Clin Microbiol Infect}. 2010;16:181–183. doi:10.1111/j.1469-0691.2009.02888.x

21. Chusri S, Silpapojakul K, McNeil E, Singkhamanan K, Chongsuvivatwong V. Impact of antibiotic exposure on occurrence of nosocomial carbapenem-resistant \textit{Acinetobacter baumannii} infection: a case control study. \textit{J Infect Chemother}. 2015;21:90–95. doi:10.1016/j.jiac.2014.10.002

22. Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. \textit{J Med Microbiol}. 2013;62:499–513. doi:10.1099/jmm.0.052555-0

23. Poirel L, Hervé V, Hombrouck-Alet C, Nordmann P. Long-term carriage of NDM-1-producing \textit{Escherichia coli}. \textit{J Antimicrob Chemother}. 2011;66:2185–2186. doi:10.1093/jac/dkr236

Infection and Drug Resistance

Publish your work in this journal

Infection and Drug Resistance is an international, peer-reviewed open-access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventive strategies to minimize the development and spread of resistance. The journal is specifically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and the community. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/infection-and-drug-resistance-journal