Helminth fauna of the invasive American red-eared slider *Trachemys scripta* in eastern Spain: potential implications for the conservation of native terrapins

Francesc Domènech\(^a\), Rafael Marquina\(^b\), Lydia Soler\(^c\), Luis Valls\(^d\), Francisco Javier Aznar\(^{a,b}\), Mercedes Fernández\(^{a,b}\), Pilar Navarro\(^b\) and Javier Lluch\(^b\)

\(^a\)Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain; \(^b\)Department of Zoology, University of Valencia, Valencia, Spain; \(^c\)Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; \(^d\)Ecology and Biogeography of Aquatic Systems Group, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain

ABSTRACT
In this study we report on the helminth fauna of the invasive American red-eared slider *Trachemys scripta* in five localities from eastern Spain where this species co-occurs with two native, endangered freshwater turtles, i.e. *Emys orbicularis* and *Mauremys leprosa*. In total, 46 individuals of *T. scripta* were analysed for parasites. Adult individuals of three helminth species were found: the monogenean *Neopolystoma orbiculare*, the digenean *Telorchis solivagus* and the nematode *Serpinema microcephalus*. *Telorchis solivagus* and *S. microcephalus* are trophically transmitted parasites of native turtles that probably infected *T. scripta* through shared infected prey. *Neopolystoma orbiculare* infects *T. scripta* in its native Nearctic range and probably survived the overseas shipping of hosts due to the combination of a direct life cycle, long lifespan in turtles and crowding conditions that allowed frequent (re)infections. These findings entail potentially significant conservation consequences that deserve further attention. First, there was a successful spill-back of *Telorchis solivagus* and *S. microcephalus* to large invasive populations of *T. scripta* in the study area, which could eventually increase infection levels in native turtles. Second, the possibility of spill-over of *N. orbiculare* to native turtles should not be underestimated as this phenomenon has recently been reported in France. Given the pathogenic potential of *N. orbiculare*, its transference to native turtles could be troublesome.

ARTICLE HISTORY
Received 27 October 2014
Accepted 12 June 2015
Online 7 August 2015

KEYWORDS
Trachemys scripta; *Emys orbicularis*; *Mauremys leprosa*; parasitic invasions; spill-over effect; *Neopolystoma orbiculare*

Introduction
Over recent decades, most of the biogeographic barriers that had isolated continental biotas for millions of years have been erased due to increased human global trade. As a consequence, exchange of alien species among biogeographic regions has accelerated greatly (Hulme 2009). Nonetheless, only a small fraction (1%) of alien species become
invaders that are able to alter the delicate balance of an ecosystem and become a threat to native biota (Williamson and Fitter 1996; Mooney and Cleland 2001). However, invasive species are currently considered a major cause of animal extinctions (Clavero and Garcia-Berthou 2005).

The American red-eared slider, *Trachemys scripta* (Thunberg in Schoepff, 1792), is considered one of the 100 most harmful invasive alien species in the world (Lowe et al. 2000). This species has been marketed as a pet since the 1950s, and around 52 million individuals were exported from the USA between 1989 and 1997 (Telecky 2001). Since then, red-eared sliders have become naturalized and breed successfully in wetlands of western Europe and Asia (Cadi et al. 2004; Ramsay et al. 2007; GISD 2010; Alarcos-Izquierdo et al. 2010; references therein).

In the Iberian Peninsula, the red-eared slider has been reported to prey on carp *Cyprinus carpio* (Linnaeus, 1758) (Martínez-Silvestre and Soler 2009) and on tadpoles of two native amphibians, the Iberian water frog, *Pelophylax perezi* (Seoane, 1885) and the Iberian spade-foot toad, *Pelobates cultripes* (Cuvier, 1829), which do not recognize the red-eared slider as a potential predator (Polo-Cavia et al. 2010). In addition, the red-eared slider competes directly with two native freshwater turtles – the European pond turtle, *Emys orbicularis* (Linnaeus, 1758), and the Spanish pond turtle, *Mauremys leprosa* (Schweigger, 1812) – for food, and basking and nesting sites (Cadi and Joly 2003, 2004; Polo-Cavia et al. 2009). It is currently considered a significant negative factor for the conservation of both native species (Keller and Andreu 2002; Da Silva 2002; Cadi and Joly 2004; Polo-Cavia et al. 2011). *Emys orbicularis* is listed as ‘Near Threatened’ in the Red List of Threatened Species of the IUCN (Tortoise & Freshwater Turtle Specialist Group 1996) and ‘Vulnerable’ in the Red Book of Amphibians and Reptiles of Spain (Keller and Andreu 2002), whereas *M. leprosa* is included as ‘Vulnerable’ in the Red Book of Amphibians and Reptiles of Spain (Da Silva 2002). Both species are included in Annex II and IV of the Habitats Directive of the European Union (Species protected under the Habitats Directive 2015).

A neglected element in the interaction between invader and native species is parasitism. Invaders could bring exotic parasite species into their new habitats, infecting native species as long as the latter are competent hosts; this would represent a ‘spill-over’ effect (Kelly et al. 2009). Likewise, the invader could be a competent host for native parasites, thus being capable of disseminating infective stages to native hosts; this would produce a ‘spill-back’ effect (Kelly et al. 2009). However, if the invader were a non-competent host for native parasites, it could act as a ‘sink’, reducing infection levels in the native fauna and generating a ‘dilution effect’ (Heimpel et al. 2003; Keesing et al. 2006). Spill-over, spill-back and dilution effects could bring about significant conservation consequences depending on the pathogenic potential of both exotic and native parasites for invasive and native hosts in a community context (Prenter et al. 2004; Poulin et al. 2011; Telfer and Bown 2012). For instance, the invader could boost or alleviate detrimental effects of parasites that are highly pathogenic to the native host population through spill-back and dilution effects, respectively. Or, native parasites could be detrimental only for the invader, so having a net beneficial effect by hampering the invasive process.

The parasite fauna of *T. scripta* has been studied widely in its native range (Rosen and Marquardt 1978; Baker 1979; Esch et al. 1993; Moravec and Vargas-Vázquez 1998).
but surveys in its areas of invasion are relatively scarce. In Japan, red-eared sliders have been reported to harbour native parasites of the freshwater turtles *Mauremys japonica* (Temminck and Schlegel, 1835) and *Chinemys reevesii* (Gray, 1831), but also exotic parasites typically found in North America (Asakawa 2005; Oie et al. 2012). In southwestern Spain, Hidalgo-Vila et al. (2009) reported four parasite species typically infecting the native freshwater turtles *E. orbicularis* and *M. leprosa*. Interest in the conservation consequences associated with parasite exchange between *T. scripta* and native turtles has been shown recently (Hidalgo-Vila et al. 2011; Verneau et al. 2011).

In this study we examine the parasitic fauna of introduced *T. scripta* in eastern Spain, an area where a large population of this species co-exists with two species of native freshwater turtles (Martínez-Silvestre et al. 2011) and information about parasite fauna of any of these species is scarce (Aparicio et al. 2008). Our study is particularly aimed at providing a reliable diagnosis of potentially exotic parasite taxa. We also provide a preliminary assessment on the conservation consequences of parasitological findings for native freshwater turtles.

Material and methods

This study was conducted in 2011 within the framework of the ‘LIFE-Trachemys’ Programme for the control of exotic turtles. We examined the helminth fauna of 46 individuals of *T. scripta* captured in five localities of eastern Spain (Figure 1). In all localities, *T. scripta* coexisted with *E. orbicularis* and *M. leprosa*. Based on Pérez-Santigosa et al. (2008), individuals of *T. scripta* were classified as juveniles \[n = 20; \text{mean curved carapace length} \pm \text{SD (range)} = 9.7 \pm 1.9 \text{ cm (7.7–15.1)}\] and adults \[n = 26; 16.2 \pm 3.8 \text{ cm (11.9–26.5)}\]. The adult sample comprised nine females \[20.5 \pm 2.7 \text{ cm (17.2–26.5)}\] and 17 males \[14.0 \pm 2.0 \text{ cm (11.9–16.5)}\].

Turtles were humanely killed using a thiopental sodium injection (Tiobarbital; Braun Medical). The mouth, oesophagus, stomach, intestine, liver, kidney, lung and urinary bladder were examined for helminths. Each organ was dissected and visually examined for helminths, then washed with Ringer’s solution over a 200-µm mesh sieve, solid contents were collected and examined under a stereomicroscope (×20). Parasites were counted and preserved in 70% ethanol for later identification. Digeneans and monogeneans were stained with Mayer’s acid carmine, dehydrated, fixed in dimethyl phthalate and mounted in Canada balsam. Nematodes were cleared in Amman’s lactophenol solution, put on a glass slide for identification and then returned to the preservative. Species were identified and described according to Price (1939), López-Román (1974), Baker (1979), Font and Lotz (2008) and Morrison (2010). Voucher specimens are deposited at the Natural History Museum, London [Accession Nos. NHMUK 2015.3.6.12 (*Neopolystoma orbiculare*) and NHMUK 2015.3.6.3-4 (*Telorchis solivagus*)].

The 95% confidence interval (95% CI) for prevalence was calculated with Sterne’s exact method (Reiczigel 2003), and for mean values of intensity and abundance with the bias-corrected and accelerated bootstrap method using 20,000 replications (Rózsa et al. 2000). Calculations were performed using the free software Quantitative Parasitology v. 3 (Reiczigel and Rózsa 2005).
Figure 1. Sampling localities of the American red-eared slider, *Trachemys scripta* in eastern Spain. (A) Protected wetland ‘Marjal de Peñíscola’; (B) ‘Cabanes-Torreblanca’ Natural Park; (C) Protected Landscape ‘Desembocadura del Mijares’; (D) Protected wetland ‘Marjal de Gandía’; (E) Site of Community Importance ‘Marjal de La Safor’.
Results

Three helminth species were found (Table 1). The digenean *Telorchis solivagus* (Odhner, 1902) (Figure 2A) was collected from the digestive tract of 14 hosts from all localities. All individuals were gravid and contained a large number of eggs in the uterus. A single adult female of the nematode *Serpinema microcephalus* (Dujardin, 1845) (Figure 2B) was collected from the digestive tract of one host in the protected wetland ‘Marjal de Peñíscola’ (Figure 1). The monogenean *N. orbiculare* (Stunkard 1916) (Figure 2C, D) was collected from the urinary bladder and cloaca of five hosts from the protected wetland ‘Marjal de Gandía’ (Figure 1).

Given that *N. orbiculare* is a putative exotic species, a detailed description of specimens follows. Morphometric measurements are based on five individuals and given as mean ± SD with range in parentheses (in µm unless otherwise stated).

Table 1. Infection parameters of helminth species found in 46 red-eared sliders, *Trachemys scripta* collected in five localities from eastern Spain.

	Prevalence (%) (95% CI)	Mean intensity ± SD (95% CI) [Range]	Mean abundance ± SD (95% CI)	Microhabitat
PLATYHELMINTHES				
Monogenea (Polystomatidae)				
Neopolystoma orbiculare	10.9 (4.3–23.0)	1.4 ± 0.9 (1.0–1.8) [1–3]	0.2 ± 0.5 (0.0–0.4)	Urinary bladder and cloaca
Trematoda (Telorchidae)				
Telorchis solivagus	30.4 (18.0–45.0)	10.3 ± 11.6 (5.6–17.5) [1–38]	3.1 ± 7.9 (1.5–6.4)	Intestine
Nematoda Chromadorea (Camallanidae)				
Serpinema microcephalus	2.2 (0.0–11.6)	1.0	0.02 ± 0.15 (0.0–0.07)	Small intestine

Identification of Neopolystoma orbiculare

Body oval-shaped and elongated [length: 2.93 ± 1.10 mm (2.16–4.32 mm); maximum width: 1.05 ± 0.31 mm (0.65–1.44 mm)]. Oral sucker diameter 433 ± 111 (330–570). Pharynx 192 ± 51 (120–220) long and 237 ± 62 (140–260) wide. Oesophagus not seen due to overlap with vitelline follicles. Intestine branches not convergent posteriorly. Genital pore ventral [diameter: 7.5 ± 2.6 (5–11)], posterior to intestinal bifurcation, with 16 genital spines [length: 3 ± 0.4 (0.3–3.8)]. Oval testis, in medial zone of the body 229 ± 108 (130–380) long and 206 ± 64 (120–270) wide. Vaginal pores ventral, posterior to ovary [separated by 1.07 ± 0.2 mm (1.01–1.33 mm)]. Vitelline follicles extending from posterior part of pharynx to haptor. One individual bearing one pear-shaped egg (Figure 2D), 183 long and 108 wide. Haptor slightly circular, 0.84 ± 0.27 mm (0.56–1.13 mm) long and 1.00 ± 0.40 mm (0.67–1.61 mm) wide. Six suckers distributed radially and equidistant from each other, 303 ± 96 (190–410) in diameter. Sixteen larval hooks 17 ± 2 (14–20) long and 9 ± 1 (7–10) wide situated as follows: six between the two anterior suckers, four between posterior suckers and one in each sucker.
Figure 2. Parasites found in the American red-eared slider, *Trachemys scripta* in eastern Spain. (A) *Telorchis solivagus*; (B) *Serpinema microcephalus* (anterior part detail); (C) *Neopolystoma orbiculare* (immature); (D) *Neopolystoma orbiculare* (adult). Scale bars: A, B, D, 1 mm; C, 0.5 mm.
Remarks

Species of *Neopolystoma* (Price, 1939) are distinguished from those of allied genera, i.e. *Polystomoides* (Ward, 1917) and *Polystomoidella* (Price, 1939), by the lack of hamuli (Morrison 2010). Other diagnostic traits are the presence of one testis, short uterus and ovary in the anterior part of the body. Also, ovarian follicles extend into the posterior part of the body and vaginas are present.

The genus *Neopolystoma* currently contains 21 species that are distributed worldwide except in the Afro-tropical region, and usually occur in the urinary bladder, cloaca and, occasionally, nasal mucosa and conjunctival sac of freshwater turtles (Price 1939). *Neopolystoma orbiculare* was described in *T. scripta* and *Chrysemys picta* (Schneider, 1783) in North America (Morrison 2010). Diagnostic traits of *N. orbiculare* found in the present study agree with the measurements and other features provided for the holotype established by Stunkard (1916) and with re-descriptions by Price (1939) and Lamothe-Argumedo (1972). The species can be separated from the four other sympatric species of *Neopolystoma* from the Nearctic region as follows (Stunkard 1916; Caballero 1938). *Neopolystoma domitilae* (Caballero, 1938) infects the urinary bladder and cloaca of *Trachemys ornata* (Gray, 1831) and has 19–21 genital spines and a larger body size (4.04–4.06 by 1.32–1.72 mm). *Neopolystoma elizabethae* (Platt, 2000) infects the conjunctival sac of the eye of *Chrysemys picta bellii* (Gray, 1831) and has eight genital spines. *Neopolystoma terrapenis* (Harwood, 1932) infects the urinary bladder and cloaca of *Terrapene carolina* (Linnaeus, 1758); Price (1939) considered that this species was very similar to *N. orbiculare*, but Harwood (1932) stated that *N. terrapenis* has a smaller body size than *N. orbiculare* (1.90–2.50 by 0.72–0.82 mm), the vitellaria do not crowd into the intercaecal area posterior to the testis, and the pharynx and cirrus sac are also smaller. *Neopolystoma chelodinae* (MacCallum, 1918) infects the urinary bladder and cloaca of *Chelodina longicollis* (Shaw, 1794); this species is very similar to *N. orbiculare* but differs from all other species of *Neopolystoma* in that it has a testis with irregular margin, and vitelline follicles with irregular shape and variable size (Price 1939; Pichelin 1995) and more variability in the number of genital spines (12–16; Morrison 2010).

In the Palaearctic region, three species of *Neopolystoma* have been described. *Neopolystoma exhamatum* (Ozaki, 1935) is found in the urinary bladder and cloaca of *Mauremys japonica* from Japan, but it was recently reported from *T. scripta* in the same region (Oi et al. 2012). This species resembles *N. orbiculare* regarding haptor shape, but its testis has different morphology and size (1.20–1.60 by 0.70–1.30); *N. exhamatum* also has more genital spines (16–18; Morrison 2010). *Neopolystoma palpebrae* Strelkov, 1950, which occurs on the lower eyelid of *Pelodiscus sinensis* (Wiegmann, 1834), is very similar to *N. orbiculare* but differs in the shape and size of genital spines (Morrison 2010). Finally, *Neopolystoma euzeti* Combes and Katari, 1976 infects the urinary bladder and cloaca of the Spanish pond turtle, *Mauremys leprosa* in North Africa (Combes and Katari 1976). However, compared with the specimens examined in the present study, *N. euzeti* has more hooks in the genitalia (33–36) with a larger size (length: 48–57 µm); body (4.54 ± 0.75 × 1.51 ± 0.08) and haptor (1.20 ± 0.17 × 1.67 ± 0.32) are also larger, and vitelline follicles are more widely extended.
Based on the above evidence, we conclude that our material is conspecific with *N. orbiculare*.

Discussion

There are few studies on the helminth fauna of *T. scripta* outside its natural range, and they all indicate that this species can acquire parasites in the area of invasion, mainly from native turtles. In Japan, Asawaka (2005) reported the digeneans *Telorchis clemmydis* Yamaguti, 1933 and *Telorchis geoclemmydis* Yamaguti, 1933, and the nematodes *S. microcephalus* and *Falcaustra* sp. In other localities from Japan, Oi et al. (2012) found *Telorchis clemmydis*, *S. microcephalus* and the monogeneans *Neopolystomoides exhamatum* and *Polystomoides japonicum* Ozaki, 1935. In southwestern Spain, Hidalgo-Vila et al. (2009) reported four nematode species including *S. microcephalus*, *Falcaustra donanaensis* Hidalgo-Vila et al., 2006, *Falcaustra* sp. and *Physaloptera* sp. Interestingly, all these species were shared with the syntopic native turtles *E. orbicularis* and *M. leprosa* (Hidalgo-Vila et al. 2009). Recently, Martínez-Silvestre et al. (2013) found *S. microcephalus* in *T. scripta* from northeastern Spain, and Yamauchi et al. (2012) recorded the leech *Ozobranchus jantseanus* Oka, 1912 in Japan. Overall, these observations suggest that the specific composition of native elements of the parasite community in invasive individuals of *T. scripta* depends on both geographic factors and the local pool of available parasite species provided by native turtles.

In the present study, *T. scripta* was also observed to be infected with two species presumably acquired from native turtles. The digenean *Telorchis solivagus* is a common parasite infecting freshwater turtles in Europe, Africa and Asia (Roca et al. 2005 and references therein). *Serpinema microcephalus* naturally infects freshwater turtles throughout the Palaearctic region (Baker 1979); in Spain, the most common definitive host is *M. leprosa* (Hidalgo-Vila et al. 2009). Recently, Martínez-Silvestre et al. (2013) found *S. microcephalus* in *T. scripta* from northeastern Spain, and Yamauchi et al. (2012) recorded the leech *Ozobranchus jantseanus* Oka, 1912 in Japan. Overall, these observations suggest that the specific composition of native elements of the parasite community in invasive individuals of *T. scripta* depends on both geographic factors and the local pool of available parasite species provided by native turtles.

In the present study, *T. scripta* was also observed to be infected with two species presumably acquired from native turtles. The digenean *Telorchis solivagus* is a common parasite infecting freshwater turtles in Europe, Africa and Asia (Roca et al. 2005 and references therein). *Serpinema microcephalus* naturally infects freshwater turtles throughout the Palaearctic region (Baker 1979); in Spain, the most common definitive host is *M. leprosa* (Hidalgo-Vila et al. 2009). Species of *Telorchis* use turtles, snakes and salamanders as definitive hosts, aquatic snails as first intermediate hosts, and tadpoles and snails as second intermediate hosts (Font and Lotz 2008). The life cycle of species of *Serpinema* include copepods and aquatic snails as first intermediate hosts, fish, anurans and aquatic insects (damselflies) as paratenic hosts and turtles as definitive hosts (Moravec and Vargas-Vázquez 1998; Moravec et al. 1998; Wiles and Bolek 2015). Therefore, we suspect that, in the study area, individuals of *T. scripta* became infected with both *Telorchis solivagus* and *S. microcephalus* through consumption of infected intermediate hosts. In support of this, the stomach contents of the turtles analysed in this study included mainly vegetal matter but also invertebrates (gastropods and crustaceans). There is an ontogenetic shift in diet from carnivory to herbivory in *T. scripta* (Bouchard and Bjorndal 2006), but adult turtles can still acquire parasites through accidental infection of infected intermediate or paratenic hosts (Hidalgo-Vila et al. 2009).

Oi et al. (2012) first reported on exotic parasites from *T. scripta* in invaded areas; in particular, two vascular digeneans, *Spororchis artericola* (Ward, 1921) and *Spororchis elegans* Stunkard, 1923, and the nematode *Falcaustra wardi* (Mackin, 1936) in Japan. In our study area, a previous survey reported a digenean preliminarily identified as *Telorchis attenuata* Goldberger, 1911 (Aparicio et al. 2008). If this identification were to be confirmed, this would represent the first report in Spain.
of an exotic species typical from *Trachemys scripta*. With regard to the monogenean *N. orbiculare*, Verneau et al. (2011) identified eggs of this species in individuals of *T. scripta* from a turtle farm in southern France using molecular methods. Recently, Meyer et al. (2015) also detected eggs of *N. orbiculare* in naturalized populations of *T. scripta* from the same area. In the present study, we report for the first time adults of *N. orbiculare* in wild individuals of *T. scripta* outside its natural range. The presence of this species in the region does not seem to be anecdotal as there are preliminary records of putative *N. orbiculare* in *T. scripta* from localities close to those sampled in the present study (F. Domènech unpub. data). The occurrence of *N. orbiculare* in non-native areas could have resulted from the interplay of three factors. First, *N. orbiculare* seems to be a common parasite of individuals of *T. scripta* sold as pets by some commercial suppliers in the native area. For instance, Henke et al. (1990) reported prevalences over 40% in commercial samples of *T. scripta* from Wisconsin (USA). Second, polystomatid monogeneans have a long lifespan (up to 3 years in extreme conditions, see Tinsley 1999), which could allow survival of the parasite during the overseas shipping of hosts. Third, *N. orbiculare* has a direct life cycle that includes a free-living oncomiracidium and *T. scripta* as the single host (Verneau 2004). Therefore, transport of overcrowded loads of *T. scripta* could have increased probabilities of host–parasite encounter (Verneau et al. 2011) allowing the completion of the life cycle of *N. orbiculare* first in captivity and later in the wild.

The finding of both native and exotic parasites in invasive populations of *T. scripta* from eastern Spain could entail potential conservation consequences that would deserve attention in the future. First, there is clear evidence of spill-back effects. Both *Telorchis solivagus* and *S. microcephalus* are generalist parasites of freshwater turtles that are able to reproduce in *T. scripta*, as shown in this study. In fact, the prevalence of *Telorchis solivagus* found in the present study (30.4%) is close to the upper range of prevalence of this species in *M. leprosa*, i.e. from 2.8 to 42.9% (López-Román 1974; Mishra and González 1978; Roca et al. 2005). In contrast, the prevalence of *S. microcephalus* in *E. orbicularis* and *M. leprosa* is generally higher (i.e. > 30%) than that found in the present study (Yildirimhan and Sahin 2004; Roca et al. 2005; Hidalgo-Vila et al. 2009). However, Kirin (2001) found *S. microcephalus* with a prevalence of just 1% in a sample of *E. orbicularis* from south Bulgaria (n = 69), suggesting that local factors strongly influence infection levels in native turtles. Overall, evidence suggests that *T. scripta* appears to be a competent host for at least some parasites of native turtles. However, the ecological impact of this phenomenon would depend on both the ability of *T. scripta* to produce infective stages, and the pathogenic potential of parasites. The red-eared slider has large populations in coastal wetlands from eastern Spain where both *E. orbicularis* and *M. leprosa* co-occur (LIFE-Trachemys 2011). Therefore, the possibility that *T. scripta* could help to significantly increase populations of native parasites cannot be ruled out. However, it is unclear whether this putative increase of parasite populations could have a pathogenic impact on native turtles, invasive turtles, or both. Interestingly, Hidalgo-Vila et al. (2011) suggested that *S. microcephalus* appears to be especially pathogenic to *T. scripta*, in contrast to the species of *Serpinema* that naturally infect this turtle in its native area. These authors hypothesized that the exotic population of *T. scripta* in southern Spain was immunosuppressed due to maladaptation to the
newly colonized area and, therefore, they were prone to the pathogenic effects of native parasites.

On the other hand, the possibility of spill-over effects should not be underestimated. Verneau et al. (2011) and Meyer et al. (2015) demonstrated by DNA barcoding analysis of parasite eggs that host-switching of *N. orbiculare* from *T. scripta* to *E. orbicularis* and *M. leprosa* were successful under both captive and natural conditions. In the present study, the prevalence of *N. orbiculare* was lower (10.9%) than that reported in their natural range (20–74%; Everhart 1957). However, this monogenean exhibits low specificity among freshwater turtles (Harwood 1932; Price 1939; Zerecero 1948; Barus and Moravec 1966; Lamothe-Argumedo 1972) and, therefore, the possibility exists that the parasite can easily be transmitted in areas of high turtle density. Henke et al. (1990) reported that putative eggs of *N. orbiculare* provoked inflammatory lesions in the urinary bladder of *T. scripta*. If this is true, then this species could be of potential pathogenic significance, at least for invasive turtles.

In summary, whether or not potential spill-over and spill-back events have a population impact on native and non-native turtles is difficult to predict and cannot easily be assumed. However, parasites are an integral part of ecosystems, and this study highlights the need to monitor the complex effects of parasite exchanges between native and invasive species, as emphasized in recent reviews on the subject (e.g. Torchin et al. 2002; Heimpel et al. 2003; Keesing et al. 2006; Kelly et al. 2009).

Acknowledgements

We thank the Centro de Recuperación de Fauna La Granja (Valencia, Spain), which made available the specimens of *T. scripta*. Thanks are also due to members of the project LIFE-Trachemys for assistance, and to the Marine Zoology Unit (ICBiBE) at the University of Valencia for allowing us to use their facilities. The constructive criticism of two anonymous referees is greatly appreciated.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Alarcos-Izquierdo G, del Cueto F, Rodríguez-Pereira A, Lizana-Avia M. 2010. Distribution records of non-native terrapins in Castilla and León region (Central Spain). Aquat Invasions. 5:303–308.

Aparicio F, Cardells J, Corpa JM, Ferre I, Gil M, Guerrero J, Vega S. 2008. Estudio de enfermedades infectocontagiosas que afectan a fauna salvaje amenazada e invasora - *Trachemys scripta elegans* [Study of infectious diseases affecting threatened and invasive wildlife - *Trachemys scripta elegans*]. Valencia (Spain): Universidad Cardenal Herrera and Generalitat Valenciana (Conselleria Medi Ambient, Urbanisme i Habitatge). Spanish.

Asakawa M. 2005. The host-parasite relationships between alien terrestrial vertebrates and their parasitic helminths in Japan. Jpn J Conserv Ecol. 10:173–183.

Baker MR. 1979. *Serpinema* spp. (Nematoda: Camallanidae) from turtles of North America and Europe. Can J Zool. 57:934–939.
Barus V, Moravec F. 1966. A survey of helminths from the cuban turtle - *Pseudemys decussata* Gray (Emydidae). Vestn českoslov Spol Zool. 4:313–324.

Bouchard SS, Bjornal KA. 2006. Ontogenetic diet shifts and digestive constraints in the omnivorous freshwater turtle *Trachemys scripta*. Physiol Biochem Zool. 79:150–158.

Caballero CE. 1938. Algunos trematodos de reptiles de México [Some trematodes of reptiles of Mexico]. Ann Inst Biol Univ Nac Autón Méx. 9:103–120. Spanish.

Cadi A, Delmas V, Prévol-Julliard A-C, Joly P, Pieau C, Girondot M. 2004. Successful reproduction of the introduced slider turtle (*Trachemys scripta elegans*) in the South of France. Aquat Conserv. 14:237–246.

Cadi A, Joly P. 2003. Competition for basking places between the endangered European pond turtle (*Emys orbicularis galloitalica*) and the introduced red-eared slider (*Trachemys scripta elegans*). Can J Zool. 81:1392–1398.

Cadi A, Joly P. 2004. Impact of the introduction of the red-eared slider (*Trachemys scripta elegans*) on survival rates of the European pond turtle (*Emys orbicularis*). Biodivers Conserv. 13:2511–2518.

Clavero M, García-Berthou E. 2005. Invasive species are a leading cause of animal extinctions. Trends Ecol Evol. 20:110.

Combes C, Katari MH. 1976. *Neopolystoma euzeti* n. sp. (Monogenea, Polystomatidae) Premier représentant du genre *Neopolystoma* Price, 1936 en Afrique [Neopolystoma euzeti n. sp. (Monogenea, Polystomatidae) First representative of the genus Neopolystoma Price, 1936 in Africa]. Ann Parasitol. 2:221–225. French.

Da Silva E. 2002. *Mauremys leprosa* (Schweiger, 1812), Galápago Leproso [Mauremys leprosa (Schweiger, 1812), Spanish pond turtle]. In: Pleguezuelos JM, Márquez R, Lizana M, editors. Atlas y libro rojo de los anfibios y reptiles de España [Atlas and red book of amphibians and reptiles of Spain]. Madrid: Dirección General de Conservación de la Naturaleza and Asociación Herpetológica Española; p. 143–146. Spanish.

Esch GW, Marcogliese DJ, Goater TM, Jacobson KC. 1993. Aspects of the evolution and ecology of helminth parasites in turtles: a review. In: Gibbons JW, editor. Life history and ecology of the Slider turtle. Washington DC: Smithsonian Institution Press; p. 299–307.

Everhart BA. 1957. Notes on the helminths of *Pseudemys scripta elegans* (Wied, 1838) in areas of Texas and Oklahoma. Proc Okla Acad Sci. 38:38–43. Available from: http://ojs.library.okstate.edu/osu/index.php/OAS/article/viewFile/3963/3637

Font WF, Lotz JM. 2008. Family Telorchidae Looss, 1899. In: Bray RA, Gibson DI, Jones A, editors. Keys to the Trematoda. Vol. 3. London: CAB International and Natural History Museum; p. 425–436.

GISD - Global Invasive Species Database. 2010. *Trachemys scripta elegans*. Invasive Species Specialist Group (ISSG) of the IUCN Species Survival Commission; [cited 2014 Oct 27]. http://www.issg.org/database/species/ecology.asp?si=71&fr=1&stss=tss&lang=EN. Accessed 27 October 2014.

Goldberger J. 1911. On some new parasitic trematodes of the genus *Telorchis*. Hyg Lab Bull. 71:36–48.

Gray JE. 1831. A synopsis of the species of Class Reptilia. In: Griffith E, Pidgeon E, editors. The animal kingdom arranged in conformity with its organisation by the Baron Cuvier with additional descriptions of all the species hither named, and of many before noticed. London: V Whittaker, Treacher and Co.; p. 481–591.

Harwood PD. 1932. The helminths parasitic in the Amphibia and Reptilia of Houston, Texas and vicinity. Proc US Nat Mus. 81:1–71.

Heimpel GE, Neuhauser C, Hoogendoorn M. 2003. Effects of parasitoid fecundity and host resistance on indirect interactions among hosts sharing a parasitoid. Ecol Lett. 6:556–566.

Henke SE, Pence DB, Rue Manh T. 1990. Urinary bladders of freshwater turtles as a renal physiology model potentially biased by monogenean infections. Lab Anim Sci. 40:172–177.

Hidalgo-Vila J, Díaz-Paniagua C, Ribas A, Florencio M, Pérez-Santigosa N, Casanova JC. 2009. Helminth communities of the exotic introduced turtle, *Trachemys scripta elegans* in southwestern Spain: transmission from native turtles. Res Vet Sci. 86:463–465.
Hidalgo-Vila J, Martínez-Silvestre A, Ribas A, Casanova JC, Pérez-Santigosa N, Díaz-Paniagua C. 2011. Pancreatitis associated with the helminth Serpinema microcephalus (Nematoda: Camallanidae) in exotic red-eared slider turtles (Trachemys scripta elegans). J Wildl Dis. 47:201–205.

Hidalgo-Vila J, Ribas A, Florencio M, Pérez-Santigosa N, Casanova JC. 2006. Falcaustra donanaensis sp. nov. (Nematoda: Kathlaniidae) a parasite of Mauremys leprosa (Testudines, Bataguridae) in Spain. Parasitol Res. 99:410–413.

Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol. 46:10–18.

Keesing F, Holt RD, Ostfeld RS. 2006. Effects of species diversity on disease risk. Ecol Lett. 9:485–498.

Keller C, Andreu AC. 2002. Emys orbicularis (Linneaus, 1758), Galápagos europeo [Emys orbicularis (Linneaus, 1758), European pond turtle]. In: Pleguezuelos JM, Márquez R, Lizana M, editors. Atlas y libro rojo de los anfibios y reptiles de España [Atlas and red book of amphibians and reptiles of Spain]. Madrid: Dirección General de Conservación de la Naturaleza and Asociación Herpetológica Española; p. 181–186. Spanish.

Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM. 2009. Parasite spillback: a neglected concept in invasion ecology? Ecology. 90:2047–2056.

Kirin AD. 2001. New data on the helminth fauna of Emys orbicularis (L., 1758) (Reptilia, Emydidae) in South Bulgaria. C. R. Acad. Bulg. Sci. 54:95.

Lamothe-Argumedo R. 1972. Monogeneos de reptiles I. Redescripción de cuatro especies de Monogenea (Polystomatidae) parásitos de la vejiga urinaria de tortugas de México [Monogenea of reptiles I. Redescription of four monogenean species (Polystomatidae) parasites of the urinary bladder of turtles from Mexico]. An Inst Biol Univ Nac Autón Méx. 43:1–16.

LIFE-Trachemys. 2011. Resultados de la campaña de erradicación de galápagos exóticos. Informes LIFE-Trachemys nº2 [Results of the campaign to eradicate exotic freshwater turtles. LIFE-Trachemys report number 2]. Valencia (Spain): Conselleria d'infrastructures, Territori i Medi Ambient and Direcció General de Medio Natural. Spanish.

Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (Tomus I) [System of nature through the three kingdoms of nature, according to the classes, orders, genera, species, with the characters, the differences, synonyms and areas (Volume I)]. Holmiae [Stockholm]: Laurentii Salvii. Latin.

Lowe S, Browne M, Boudjelas S, De Poorter M. 2000. 100 of the world's worst invasive alien species: a selection from the global invasive species database. Auckland (New Zealand): Species Survival Commission, World Conservation Union (IUCN).

MacCallum GA. 1918. Notes on the genus Camallanus and other nematodes from various hosts. Zoopathologica. 1:125–134.

Mackin JG. 1936. Studies on the morphology and life history of nematodes in the genus Spironoura. Ill Biol Monogr. 14:1–62.

Martínez-Silvestre A, Guine A, Soler J, Ferrer D. 2013. Presencia del parásito autóctono Serpinema microcephalus (Nematoda: camallanidae) en las tortugas Trachemys scripta y Pseudemys concinna asilvestradas en Barcelona [Presence of native parasite Serpinema microcephalus (Nematoda: camallanidae) in wild turtles Trachemys scripta and Pseudemys concinna from Barcelona]. Bol Asoc Herpetol Esp. 24:1–3. Spanish

Martínez-Silvestre A, Hidalgo-Vila J, Pérez-Santigosa N, Díaz-Paniagua C. 2011. Galápago de Florida – Trachemys scripta [American red-eared slider – Trachemys scripta]. In: Salvador A, Marco A, editors. Enciclopedia Virtual de los Vertebrados Españoles [Virtual encyclopedia of Spanish
vertebrates]. Madrid: Museo Nacional de Ciencias Naturales; Available from: http://www.vertebradosibericos.org/. Spanish.

Martínez-Silvestre A, Soler J. 2009. Depredación del galápago americano (Trachemys scripta) sobre puestas de carpa (Cyprinus carpio) en Cataluña [Predation of red-eared sliders (Trachemys scripta) on carp eggs (Cyprinus carpio) in Catalonia]. Bol Asoc Herpetol Esp. 20:105–107. Spanish.

Meyer L, Du Preez L, Bonneau E, Héritier L, Quintana MF, Valdeón A, Sadaoui A, Kechemir-Issad N, Palacios C, Verneau O. 2015. Parasite host-switching from the invasive American red-eared slider, Trachemys scripta elegans, to the native Mediterranean pond turtle, Mauremys leprosa, in natural environments. Aquat Invasions. 10:79–91.

Mishra GS, González JP. 1978. Parasites of fresh water turtles in Tunisia. Arch Inst Pasteur Tunis. 55:303–326.

Mooney HA, Cleland EE. 2001. The evolutionary impact of invasive species. P Natl Acad Sci USA. 98:5446–5451.

Moravec F, Mendoza-Franco E, Vivas-Rodríguez C. 1998. Fish as paratenic hosts of Serpinema trispinosum (Leidy, 1852) (Nematoda: Camallanidae). J Parasitol. 84:454–456.

Moravec F, Vargas-Vázquez J. 1998. Some endohelminths from the freshwater turtle Trachemys scripta from Yucatan, Mexico. J Nat Hist. 32:455–468.

Morrison C. 2010. An appraisal of the problems related to species identity and species diversity within chelonian polystomes (Polystomatidae: Monogenea) [dissertation]. Potchefstroom (South Africa): North-West University.

Odhner T. 1902. Trematoden aus Reptilien nebst allgemeinen systematischen Bemerkungen [Trematodes from reptiles with general systematic observations]. K. Sven. Vetensk-Akad. Förh. 59:19–45. German.

Oi M, Araki J, Matsumoto J, Nogamia S. 2012. Helminth fauna of a turtle species introduced in Japan, the red-eared slider turtle (Trachemys scripta elegans). Res Vet Sci. 93:826–830.

Oka A. 1912. Eine neue Ozobranchus—Art aus China (Oz. jantseanus n. sp.) [A new Ozobranchus art from China (Oz. jantseanus n. sp)]. Annot Zool Jpn. 8:1–4. German.

Ozaki Y. 1935. Studies on the frog trematodes Diplorchis ranae. I. Morphology of the adult form with a review of the family Polystomatidae. J Sci Hiroshima Univ S B Div 1 Zool. 3:193–225.

Pérez-Santigosa N, Díaz-Paniagua C, Hidalgo-Vila J. 2008. The reproductive ecology of exotic Trachemys scripta elegans in an invaded area of southern Europe. Aquat Conserv. 18:1302–1310.

Pichelin S. 1995. The taxonomy and biology of the Polystomatidae (Monogenea) in Australian freshwater turtles (Chelidae, Pleurodira). J Nat Hist. 29:1345–1381.

Platt TR. 2000. Helminth parasites of the Western painted turtle, Chrysemys picta bellii (Gray), including Neopolyxoma elizabethae n. sp. (Monogenea: Polystomatidae), a parasite of the conjunctival sac. J Parasitol. 86:815–818.

Polo-Cavia N, Gonzalo A, López P, Martín J. 2010. Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Anim Behav. 80:461–466.

Polo-Cavia N, López P, Martín J. 2009. Interspecific differences in heat exchange rates may affect competition between introduced and native freshwater turtles. Biol Invasions. 11:1755–1765.

Polo-Cavia N, López P, Martín J. 2011. Aggressive interactions during feeding between native and invasive freshwater turtles. Biol Invasions. 13:1387–1396.

Poulin R, Paterson RA, Townsend CR, Tompkins DM, Kelly DW. 2011. Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. Freshw Biol. 56:676–688.

Prenter J, McNeil C, Dick JTA, Dunn AM. 2004. Roles of parasites in animal invasions. Trends Ecol Evol. 19:385–390.

Price EW. 1939. North American monogenetic trematodes. IV. The family Polystomatidae (Polystomatoida). Proc Helminthol Soc Wash. 6:80–92.

Ramsay NF, Ng PKA, O’Riordan RM, Chou LM. 2007. The red-eared slider (Trachemys scripta elegans) in Asia: a review. In: Gherardi F, editor. Biological invaders in inland waters: profiles, distribution, and threat. Dordrecht (Holand): Springer; p. 161–174.

Reiczigel J. 2003. Confidence intervals for the binomial parameter: some new considerations. Stat Med. 22:611–621.
Reiczigel J, Rózsa L. 2005. Quantitative Parasitology 3.0. Budapest, distributed by the authors. Available from: http://www.zoologia.hu/qp/qp.html

Roca V, Sánchez-Torres N, Martin JE. 2005. Intestinal helminths parasitizing Mauremys leprosa (Chelonia: Bataguridae) from Extremadura (western Spain). Rev Esp Herp. 19:47–55.

Rosen R, Marquardt WC. 1978. Helminth parasites of the red-eared turtle (Pseudemys scripta elegans) in Central Arkansas. J Parasitol. 64:1148–1149.

Rózsa L, Reiczigel J, Majoros G. 2000. Quantifying parasites in samples of hosts. J Parasitol. 86:228–232.

Schneider JG. 1783. Allgemeine Naturgeschichte der Schildkröten: nebst einem systematischen Verzeichnisse der einzelnen Arten [General natural history of turtles: systematic list of each species]. Leipzig: Müller. German.

Shaw G. 1794. Zoology of New Holland: Volume I. London: J. Sowerby.

Species Protected Under the Habitats Directive [Internet]. 2015. European Commission. [updated 2015 Apr 22; cited 2015 Jun 30]. Available from: http://ec.europa.eu/environment/nature/conservation/species/habitats_dir_en.htm

Strelkov YA. 1950. New species of monogenetic trematode from the Far East tortoise Amyda sinensis. Dokl Akad Nauk SSSR. 74:159–162.

Stunkard HW. 1916. On the anatomy and relationships of some North American trematodes. J Parasitol. 3:21–27.

Stunkard HW. 1923. Article VII. Studies on North American blood flukes. Bull Am Mus Nat Hist. 48:165–247.

Telecky TM. 2001. United States import and export of live turtles and tortoises. Turt Tortoise Newsl. 4:8–13.

Telfer S, Bown K. 2012. The effects of invasion on parasite dynamics and communities. Funct Ecol. 26:1288–1299.

Temminck CJ, Schlegel H. 1835. Reptilia. Chellonii. In: De Siebold PF, editor. Fauna Japonica. Amsterdam: J. Müller; p. 1–80.

Tinsley RC. 1999. Parasite adaptation to extreme conditions in a desert environment. Parasitology. 119:531–556.

Torchin ME, Orchin KD, LaPerty KD, Kuris AM. 2002. Parasites and marine invasions. Parasitology. 124:137–151.

Tortoise & Freshwater Turtle Specialist Group [Internet]. 1996. Emys orbicularis. The IUCN Red List of Threatened Species. Version 2015.2. [cited 2015 Jun 30]. Available from: www.iucnredlist.org/

Verneau O. 2004. Origine et évolution des monogènes Polystomatidae, parasites d’amphibiens et de chéloniens d’eau douce [Origin and evolution of monogenic Polystomatidae, parasites of amphibians and freshwater chelonians; dissertation]. Perpignan (France): Université de Perpignan. French.

Verneau O, Palacios C, Platt T, Alday M, Billard E, Allienne J-F, Basso C, Du Preez LH. 2011. Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles. Parasitology. 138:1778–1792.

Villarán A, Domínguez J. 2009. Infestación múltiple de Mauremys leprosa por nematodos [Multiple infection of Mauremys leprosa by nematodes]. Bol Asoc Herpetol Esp. 20:37–40.

Ward HB. 1917. On the structure and classification of North American parasitic worms. J Parasitol. 4:1–12.

Ward HB. 1921. A New blood fluke from turtles. J Parasitol. 7:114–128.

Wiegmann AFA. 1834. Herpetologia Mexicana, seu descriptio amphibiorum Novae Hispaniae [Mexican Herpetology, or description of amphibians of New Spain]. Berolini: Dr. Arend Fridericus Augustus Wiegmann. Latin.

Wiles CM, Bolek MG. 2015. Damsel flies (Zygoptera) as paratenic hosts for Serpinema trispinosum and its report from turtle hosts from Oklahoma, USA. Folia Parasit. 62:019.

Williamson M, Fitter A. 1996. The varying success of invaders. Ecology. 77:1661–1666.

Yamaguti S. 1933. Studies on the helminth fauna of Japan. Pt. 1. Trematodes of birds, reptiles and mammals. Jpn J Zool. 5:1–134.
Yamauchi T, Nishibori T, Suzuki D. 2012. First report of *Ozobranchus jantseanus* (Hirudinida: Ozobranchidae) parasitizing the exotic Red-eared slider *Trachemys scripta elegans* in Japan. Comp Parasitol. 79:348–349.

Yildirimhan HS, Sahin R. 2004. The helminth fauna of *Emys orbicularis* (European pond turtle) (Linnaeus, 1758) living in freshwater. Turkiye Parazitol Derg. 29:56–62.

Zerecero MC. 1948. Un trematodo de la vejiga urinaria de *Kinosternon leucostomum* A. Dum., de la cuenca del Papaloapan, Ver [A trematode of the urinary bladder of *Kinosternon leucostomum* A. Dum., Papaloapan Basin, Ver]. Ann Inst Biol Univ Nac Autón México. 19:163–168.