Molecular characterization of KPC-2–positive Klebsiella pneumoniae isolates from a neurosurgical centre in Argentina

S. Montaña1, M. Hernandez1, J. S. Fernandez1, M. Pennini1, D. Centrón1, A. Sucari3, A. Iriarte4 and M. S. Ramírez2
1) Instituto de Microbiología y Parasitología Médica (IMPaM, UBACONICET), Facultad de Medicina, Universidad de Buenos Aires, Argentina. 2) Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA. 3) Unidad Microbiología, Stamboulian, Buenos Aires, Argentina and 4) Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Uruguay

Abstract

Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide. Klebsiella pneumoniae is an important nosocomial pathogen with a high capacity for nosocomial spread. We described the occurrence of plasmid-encoded KPC-2–harbouring K. pneumoniae isolates recovered from a neurosurgical centre in Argentina. The blaKPC-2 gene was surrounded by ISkp6 and ISkp7.

Keywords: bla, carbapenem resistance, Klebsiella pneumoniae, neurosurgical centre

Original Submission: 15 March 2018; Revised Submission: 10 April 2018; Accepted: 14 April 2018

Article published online: 21 April 2018

Corresponding author: M.S. Ramirez, Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA 92831, USA
E-mail: msramirez@fullerton.edu

Klebsiella pneumoniae is an important nosocomial pathogen involved in urinary tract infections, hospital-acquired pneumonia, ventilator-associated pneumonia, surgical-wound infection, bacteraemia and septicaemia [1,2]. It is well known that carbapenem-resistant Enterobacteriaceae (CRE) is a growing concern worldwide [3]. In recent years, the ongoing emergence of CRE in Argentina has increased and among them, K. pneumoniae harbouring K. pneumoniae carbapenemase (KPC) are prevalent [4]. KPCs are the most frequent carbapenemases found in K. pneumoniae and in many other members of the Enterobacteriaceae family such as Escherichia coli, Enterobacter spp., Salmonella enterica, Proteus mirabilis and Citrobacter freundii [5].

Because the blaKPC-2 gene is mostly plasmid encoded [6–8] and is typically in a Tn3-based transposon, Tn4401, the capacity of disseminating among K. pneumoniae and in Gram-negative genera is a major concern [2,3]. K. pneumoniae sequence type (ST) 258 is largely responsible for KPC dissemination throughout North America and other parts of the world. No information describing K. pneumoniae KPC-positive isolates or KPC outbreaks in neurosurgical centres can be found in the literature. Only one report describing a KPC-2–producing Klebsiella pneumoniae outbreak in patients admitted to a neurosurgery department in a South Korean has been published [9].

The aim of this study was to perform the molecular characterization of the genetic surroundings of the blaKPC-2 gene among K. pneumoniae (KPC-2 positive) clinical isolates recovered from 70 subjects tested in a neurosurgical centre in Argentina.

During 2014–2016, a total of 22 nonrepeated carbapenem-resistant K. pneumoniae KPC-positive isolates were recovered from a variety of samples including blood, urine and respiratory tract. Antibiotic susceptibility was determined using the VITEK 2 System (bioMérieux, Marcy l’Étoile, France) using the panel AST-082 (GNS susceptibility card) and interpreted using the Clinical and Laboratory Standards Institute (CLSI) categories, with the exception of colistin and tigecycline, where the European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations was used. The blaKPC gene was identified by PCR amplification and subsequently sequenced to confirm the variant present in the isolates. The absence of other carbapenemases (blaVIM, blaNDM-1 and blaOXA-48) was confirmed by PCR.

Conjugation assays were performed to determine the genetic location of the gene [10]. All the strains possessed similar antibiotic susceptibility profiles and harboured blaKPC-2 in conjugative plasmids (Table 1).

To further characterize in detail the genetic context of blaKPC-2, one strain was randomly selected (Kpn8). Plasmid extraction was performed using the QIAfilter Midi prep Kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. Whole-plasmid shotgun sequencing was...
performed using Illumina MiSeq-I, with Nextera XT libraries for sample preparation (Illumina, San Diego, CA, USA). Assemblies were annotated by means of the RAST Server [11] and the SEED source for plasmid annotations [12].

The genetic analysis of the \textit{bla}_{KPC-2} gene revealed the presence of IS\textit{kpn6} and IS\textit{kpn7} flanking this gene (Fig. 1). This structure was disrupting the transposon Tn\textit{4401}. Moreover, an incomplete copy of IS\textit{kpn31} and a part of Tn\textit{5403} were present downstream of the later context (Fig. 1). The association between IS\textit{kpn31} and Tn\textit{4401} has been previously described [13].

The prevalence of CRE has increased substantially during the last decade. An increased prevalence of \textit{K. pneumoniae} ST258 harbouring KPC was observed Argentina [14]. In addition, a KPC-producing \textit{K. pneumoniae} isolate that belonged to a different ST, ST23, was also reported in the region [15]. The rapid increase and dissemination of the KPC carbapenemases in centres where major surgeries take place is of great concern.

In this study we described the spread of \textit{K. pneumoniae} \textit{bla}_{KPC-2}-positive strains in a neurosurgical centre. The genetic context and plasmid location of this carbapenemase has been determined. Because in all cases \textit{bla}_{KPC-2} was plasmid located, we highlight the importance of searching for this gene and installing control measures to stop its dissemination.

Acknowledgements

Supported in part by grants from the ‘Secretaría de Ciencia y Técnica de la Universidad de Buenos Aires’ (UBACyT) to MSR and PICT 1881 (2014) to DC. SM has a doctoral fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas.

Conflict of interest

None declared.

References

[1] Paczosa MK, Mecsas J. \textit{Klebsiella pneumoniae}: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016;80:629–61.

[2] Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing \textit{Klebsiella pneumoniae}, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015;59:5873–84.

[3] Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing \textit{Enterobacteriaceae}. Emerg Infect Dis 2011;17:1791–8.
[4] Pasteran FG, Otaegui L, Guerriero L, Radice G, Maggiora R, Rapoport M, et al. Klebsiella pneumoniae carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis 2008;14:1178–80.

[5] Shen P, Wei Z, Jiang Y, Du X, Ji S, Yu Y, et al. Novel genetic environment of the carbapenem-hydrolyzing β-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother 2009;53:4333–8.

[6] Conlan S, Park M, Deming C, Thomas PJ, Young AC, Coleman H, et al. Plasmid dynamics in KPC-positive Klebsiella pneumoniae during long-term patient colonization. mBio 2016;7:e00742-16.

[7] Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother 2008;52:1257–63.

[8] Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440–58.

[9] Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother 2008;52:1257–63.

[10] Gomez SA, Pasteran FG, Faccone D, Tijet N, Rapoport M, Lucero C, et al. Clonal dissemination of Klebsiella pneumoniae sequence type 258 in Argentina. Clin Microbiol Infect 2011;17:1520–4.

[11] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.

[12] Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42(Database issue):D206–14.

[13] Partridge SR. Tn4401 carrying bla(KPC) is inserted within another insertion in pKpQIL and related plasmids. J Clin Microbiol 2014;52:4448–9.

[14] Gomez SA, Pasteran FG, Faccone D, Tijet N, Rapoport M, Lucero C, et al. Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clin Microbiol Infect 2011;17:1520–4.

[15] Cejas D, Fernandez Canigia L, Rincon Cruz G, Elena AX, Maldonado I, Gutkind GO, et al. First isolate of KPC-2–producing Klebsiella pneumoniae sequence type 23 from the Americas. J Clin Microbiol 2014;52:3483–5.