Toxoplasmosis in HIV infection: An overview

Anuradha Basavaraju
Department of Microbiology, Mamata Medical College, Khammam, Telangana, India

INTRODUCTION

Toxoplasma gondii is a protozoan parasite present world-wide and causes major opportunistic infections in HIV infected people. Cell-mediated immunity (CMI) will be developed after acute infection with T. gondii and infection is controlled but not eradicated. In this chronic or latent phase of infection, the organisms persist in the tissues of infected individuals such as brain, skeletal muscle, and heart. In HIV infection, symptomatic disease most often occurs as a result of reactivation of latent infection. Toxoplasmosis has been reported as the most common opportunistic infection in HIV/AIDS in developed countries and most common cause of focal brain lesions, coma and death. It commonly causes encephalitis in HIV-infected patients.

KEY WORDS
CD4 counts, HIV infection, toxoplasmosis

ABSTRACT

Toxoplasma gondii is an obligate intracellular protozoan parasite presenting as a zoonotic infection distributed worldwide. In HIV-positive individuals, it causes severe opportunistic infections, which is of major public health concern as it results in physical and psychological disabilities. In healthy immunocompetent individuals, it causes asymptomatic chronic persistent infections, but in immunosuppressed patients, there is reactivation of the parasite if the CD4 counts fall below 200 cells/µl. The seroprevalence rates are variable in different geographic areas. The tissue cyst or oocyst is the infective form which enters by ingestion of contaminated meat and transform into tachyzoites and disseminate into blood stream. In immunocompetent persons due to cell-mediated immunity the parasite is transformed into tissue cyst resulting in life long chronic infection. In HIV-infected people opportunistic infection by T. gondii occurs due to depletion of CD4 cells, decreased production of cytokines and interferon gamma and impaired cytoxic T-lymphocyte activity resulting in reactivation of latent infection. The diagnosis can be done by clinical, serological, radiological, histological or molecular methods, or by the combination of these. There is various treatment regimen including acute treatment, maintenance therapy should be given as the current anti T. gondii therapy cannot eradicate tissue cysts. In HIV patients, CD4 counts <100; cotrimoxazole, alternately dapsone + pyrimethamine can be given for 6 months. Hence, early diagnosis of T. gondii antibodies is important in all HIV-positive individuals to prevent complications of cerebral toxoplasmosis.

KEY WORDS
CD4 counts, HIV infection, toxoplasmosis

ABSTRACT

Toxoplasma gondii is an obligate intracellular protozoan parasite presenting as a zoonotic infection distributed worldwide. In HIV-positive individuals, it causes severe opportunistic infections, which is of major public health concern as it results in physical and psychological disabilities. In healthy immunocompetent individuals, it causes asymptomatic chronic persistent infections, but in immunosuppressed patients, there is reactivation of the parasite if the CD4 counts fall below 200 cells/µl. The seroprevalence rates are variable in different geographic areas. The tissue cyst or oocyst is the infective form which enters by ingestion of contaminated meat and transform into tachyzoites and disseminate into blood stream. In immunocompetent persons due to cell-mediated immunity the parasite is transformed into tissue cyst resulting in life long chronic infection. In HIV-infected people opportunistic infection by T. gondii occurs due to depletion of CD4 cells, decreased production of cytokines and interferon gamma and impaired cytoxic T-lymphocyte activity resulting in reactivation of latent infection. The diagnosis can be done by clinical, serological, radiological, histological or molecular methods, or by the combination of these. There is various treatment regimen including acute treatment, maintenance therapy should be given as the current anti T. gondii therapy cannot eradicate tissue cysts. In HIV patients, CD4 counts <100; cotrimoxazole, alternately dapsone + pyrimethamine can be given for 6 months. Hence, early diagnosis of T. gondii antibodies is important in all HIV-positive individuals to prevent complications of cerebral toxoplasmosis.
Infection occurs by ingestion of contaminated water, food from oocysts excreted by cats, or infected meat which is improperly cooked.\[^{[14-16]}\] Toxoplasma pneumonia occurs by respiratory route, transplacental route responsible for abortion and neonatal pathology, nosocomial through blood-transfusion, organ transplants, and laboratory accidents.\[^{[7-9]}\]

MORPHOLOGY

T. gondii has three morphological forms - oocyst, tachyzoites, and tissue cysts containing bradyzoites. Cats act as the definitive hosts and bring oocyst which are infective forms. Following ingestion by humans, the sporozoites present in the oocyst develop into tachyzoites, and enter into the nucleated cells of the host. These tachyzoites are invasive forms, multiply rapidly, lead to cell rupture and invade nearby cells and transported to other parts of the body via blood and lymphatic circulation. As a result of inflammatory response, tachyzoites are transformed into tissue cysts, which are dormant form containing numerous bradyzoites. The sites of cyst formation are brain, skeletal muscle, and cardiac muscle. In immuno-compromised persons, bradyzoites can be released from the cysts and transformed into tachyzoites.

In HIV/AIDS patients, toxoplasma encephalitis is one of the most common opportunistic infections. Central nervous system (CNS) disease occurs when CD4 cell count is \(<200\) cells/µl. The greatest risk is in patients with CD4 count \(<50\) cells/µl. Patients with cerebral toxoplasmosis presented with higher titres of anti-*T. gondii* IgG antibodies than patients with other diseases.\[^{[13]}\]

PATHOGENESIS

Following ingestion of contaminated food, tachyzoites disseminate throughout the body, infect all nucleated cells, leading to production of necrotic focus surrounded by inflammation. As a result of CMI, tachyzoites are transformed into tissue cysts resulting in life-long infection. Cellular immunity mediated by T-cells, macrophages, and activity of Type-1 cytokines (interleukin-12 [IL-12] and interferon [INF] gamma) is necessary for maintaining the quiescence of chronic *T. gondii* infection.\[^{[14]}\] The production of IL-12 and INF gamma is stimulated by CD154 (also known as CD40 ligand) in human models of *T. gondii* infection. CD154 acts by triggering dendritic cells and macrophages to secrete IL-12, which in turn enhances the production of INF gamma by T-cells.\[^{[15]}\]

In HIV infection due to immunosuppression, opportunistic infection occurs with *T. gondii* due to depletion of CD4 T-cells, impaired production of IL-12 and INF gamma and impaired cytotoxic T-lymphocyte activity.\[^{[16]}\] There is decreased *in vitro* production of IL-12, INF gamma, and decreased expression of CD154 in response to *T. gondii*.\[^{[17-19]}\]

CLINICAL MANIFESTATIONS

Toxoplasmosis in HIV-infected patients manifests mainly as encephalitis, chorioretinitis, and pneumonitis or disseminated infection depending upon the immune status of the host. It is sub-acute in onset with focal neurological signs associated with fever, altered sensorium, and headache. Cerebellar, sub-cortical, or cortical lesions can be present in over 50% of infected cases resulting in hemiparesis, ambulatory gait, and speech abnormalities.\[^{[20]}\] Some people with encephalitis can also present with neuropsychiatric disorders including psychosis, dementia, anxiety, and personality disorders.\[^{[21]}\]

In HIV-infected patients, toxoplasmosis may present extracerebrally with or without encephalitis. The most common presentations can be ocular and pulmonary disease.\[^{[22]}\] Patients with chorioretinitis presents with blurred vision, scotoma, pain, or photophobia. Pulmonary manifestations are similar to pneumocystis jiroveci pneumonia. In HIV-infected patients, a disseminated toxoplasmosis may occur with fever, sepsis-like syndrome with hypotension, disseminated intravascular coagulation, elevated lactate dehydrogenase, and pulmonary dehydrogenase.\[^{[23-24]}\]

EPIDEMIOLOGY

The prevalence of toxoplasma infection varies depending on the geographical area and population groups and also with the age. In Europe and other tropical countries, the prevalence is over 50%.\[^{[25]}\] In Hong Kong, it was 9.8%.\[^{[21]}\] In US, about 1/3rd of HIV-infected patients have antibodies against *T. gondii* and seroprevalence data of HIV-infected patients come from small, predominantly male cohorts in which the range of prevalence is 3–22%.\[^{[26,27]}\]

The prevalence in Nigeria is 75.4%,\[^{[28]}\] 58.4% in Tunisia,\[^{[29]}\] 28.5% in HIV-infected women in Benin,\[^{[30]}\] 40.2% in Senegal.\[^{[31]}\] Spalding et al.\[^{[32]}\] reported 74.5% in South Brazil, Jeannel et al.\[^{[33]}\] reported 63.7% in Paris, Kodym et al.\[^{[34]}\] reported 30% in Chezech republic, Xiao et al.\[^{[35]}\] reported 12.5% of Toxoplasma seropositivity in HIV-positive patients in China.

In India, one study by Anuradha and Preethi, observed seroprevalence of 34.78% among HIV-positive patients.\[^{[36]}\] In one study by Sucilathangam et al. observed 15% of Toxoplasma seropositivity in HIV-positive people.\[^{[37]}\] In one study by Meisher et al.,\[^{[38]}\] seropositivity was 67.8% in HIV-infected people when compared to
immunocompetent adults (30.9%). The variation in prevalence rates could be due to differences within the geographical areas, infection is more common in tropical conditions and at lower altitudes than in cold and mountainous region. Another reason could be due to the recruited subjects, using different assay and the year of study.

The two largest toxoplasma seroprevalence studies of HIV-infected US women included 169 and 139 women and reported seroprevalence is 22% and 20%, respectively. In one study by Falusi et al. observed 15.3% seropositivity in HIV-infected women and 14.3% positivity in uninfected women. In one study, conducted by Anuradha and Preethi showed the seropositivity in HIV patients was 34.78% with 28.95% in males and 38.89% in females and the most common age group affected was 31–40 years. In one study by Meisheri et al. showed that highest prevalence at third and fourth decade of life. The increase in prevalence rate with increase in age may be due to the increase risk of exposure with infection with increase in age.

ASSOCIATION WITH CD4 COUNTS

There is an association between CD4 count and prevalence of toxoplasmosis. In a study conducted by Anuradha and Preethi in patients with CD4 count 51–100 cells/mm³ without any neurological symptoms, toxoplasma IgG antibodies are present in 75% of cases. In one study by Osunkalu et al. reported that 79.4% of HIV-positive patients without neurological symptoms has CD4 count <100 cells/mm³. In one study by Eliaszewicz M et al., in France, showed that 79% of patients with neurological symptoms had CD4 counts <150 cells/mm³. In one study by Suciithangam et al., CD4 counts were <100 cells/mcl in toxoplasma seropositive patients. These findings are also correlating with other studies.

DIFFERENTIAL DIAGNOSIS OF TOXOPLASMOSIS IN HIV PATIENTS

Differential diagnosis of toxoplasma encephalitis may be lymphoma of CNS, progressive multifocal encephalopathy, tuberculosis including tuberculoma, focal CNS lesions caused by fungi such as Cryptococcus neoformans, Aspergillus spp., Nocardia spp., cytomegalovirus and herpes simplex encephalitis, and bacterial brain abscess.

DIAGNOSIS

Cerebral toxoplasmosis is common in HIV/AIDS positive patients and causes more serious manifestations. Hence, definitive diagnosis for cerebral toxoplasmosis is important. Presumptive diagnosis can be made by clinical presentation, radiological findings, molecular studies, serological tests, and also response to therapy. The clinical diagnosis can be made in HIV positive patients with CD4 count <100 cells/µL presenting with compatible focal neurological lesions. In case of cerebral toxoplasmosis, there is an improvement of clinical and radiological features after 2-3 weeks of empirical therapy and outcome will be good.

SEROLOGICAL DIAGNOSIS

Anti T. gondii IgG antibodies start increasing after 1–2 weeks of infection and reaches peak in 6–8 weeks. They decline gradually over next 1–2 years but they can persist for life time in some cases. Demonstration of high titers of anti-T. gondii IgG antibodies with high IgG avidity gives serological evidence of infection and also indicates the secondary reactivation of latent or chronic toxoplasma infection. Hence, it is important to detect toxoplasma seropositivity status in all HIV-infected patients to estimate the risk for cerebral toxoplasmosis.

RADIOLOGICAL DIAGNOSIS

Computed tomography (CT) or MRI gives presumptive diagnosis of cerebral toxoplasmosis. The findings are observed as hypodense lesions with ring enhancing and peri-lesional edema, which are seen in majority of patients. In 20% of patients, the findings will be hypodense lesions without contrast enhancing and without focal lesions. An unusual and highly suggestive imaging of cerebral toxoplasmosis is the eccentric target sign in which small asymmetric nodule along the wall of enhancing ring is seen. A computerized axial tomography scan is sensitive diagnostic method for focal neurological deficits but it may not diagnose the minimal inflammatory response seen in early stages. Magnetic resonance imaging is more sensitive than computed tomography scan in diagnosing toxoplasmosis from brain lesions. However, newer imaging techniques such as signal photon emission CT or positron emission tomography can enhance the specificity to rule out other CNS lesions such as lymphoma.

BRAIN BIOPSY

For the demonstration of tachyzoites and tissue cysts, it gives definitive diagnosis but it is not considered because the empirical therapy of suspected toxoplasmosis can usually confirm the diagnosis.

MOLECULAR DIAGNOSIS

Direct detection of T. gondii DNA in biological samples by polymerase chain reaction has provided a breakthrough for the diagnosis of toxoplasmosis. For cerebrospinal fluid and blood samples, it gives poor results and variable sensitivity.
PREVENTION OF TOXOPLASMOsis IN HIV/AIDS

All HIV-infected individuals should be tested for baseline IgG antibodies to toxoplasma to detect latent infection. All HIV-infected individuals should be counseled regarding the exposure to toxoplasma infections.[54] Eating of raw or undercooked meat must be avoided. Proper hand washing should be done after contact with raw meat, gardening or contact with soil. Fruits and vegetables should be washed well before eating them raw. Handling cat’s litter is to be avoided. Pet animals such as cats should be fed with canned or dried commercial food or well cooked food but not raw, undercooked meat.

Diagnostic management, treatment and prophylaxis of toxoplasmosis are shown in Figure 1 and Tables 1-3.[52,55]

NEWER APPROACHES

Further studies can be done for the prevention not only by giving chemoprophylaxis but also by immunization. In one study by Meng et al.[56] worked on animal models and compared the protective efficacy of different immunization strategies in BALB/c mice. They suggested that vaccination regimens can trigger significantly high levels of CMI and humoral immune response than the control groups injected with phosphate buffer saline or pEGFP (eukaryotic expression vector). DNA vaccines followed by peptide boosting significantly increased the levels of IgG, IgG2a, and INF-gamma. Cytokines play an important role in the host resistance against T. gondii and gives protection in the early infection and controls the replication of the protozoa.[57] They also estimated the levels of cytokine production in mouse. INF-gamma is important in restricting the growth of T. gondii in acute infections and preventing the reactivation of parasites from dormant cysts.[58] In their study high levels of TNF-gamma production was induced in experimental animals and compared to controls.

A study by Maggi et al. suggested that INF-gamma correlates with the differentiation of TH1 cells and INF4 cells.[59] Hence, INF-gamma is also an important marker for the protective immunity against T. gondii.

Further studies can be done and systemic evaluation of immune response can be generated by different experimental parameters.

Table 1: Treatment of crebral toxoplasmosis

Treatment regimens	Drugs and dosage
First choice	Sulphadiazine oral 1000 (260 kg) to 1500 mg (260 kg) 6h + pyrimethamine oral 200 mg loading dose, then 50 (<60 kg) to 75 (≥60 kg) mg PO qd + folinic acid (leucovorin) oral, IV, or IM, 10-20 mg qd (≤50 mg qd)
	Clindamycin oral or IV 600 mg 6h (IV≤1200 mg 6h) + pyrimethamine oral 200 mg loading dose, then 50 (<60 kg) to 75 (≥60 kg) PO qd + folinic acid (leucovorin) oral, IV, IM, 10-20 mg qd (≤50 mg qd)
Alternative	Pyrimethamine + folinic acid+one of the following
	Atovaquone oral 100 mg q12h
	Clarithromycin oral 500 mg q12h
	Azithromycin oral 900-1200 mg qd
	Dapsone oral 100 mg qd
	Co-trimoxazole oral or IV 5 mg/kg (trimethoprim component) q12h

Table 2: Maintenance treatment for toxoplasmosis

Maintenance regimen	Drugs and dosage
First choice	Same as treatment regime but half doses, discontinue if >200 CD4 cells/μl for >6 months (asymptomatic with normal MRI or without contrast enhancement in MRI)
Possibly	Co-trimoxazole 2 tablet or 960 mg qd

MRI: Magnetic resonance imaging

Table 3: Primary prophylaxis regimen for toxoplasmosis

Primary prophylaxis regimen	Drugs and dosage
Standard	Co-trimoxazole 1-2 tablet or 480-960 mg qd
Alternative	Dapsone 50 mg qd
	Dapsone 50 mg qd + pyrimethamine 50 mg/week + folinic 25 mg/week

CNS s/s, e.g. headache

Brain imaging

Mass lesions

Yes

Additional investigation e.g. LP, rerepeat

Empiric treatment for Toxoplasticencephalitis

Ant-toxoplasma serology

+ve

Definitive diagnosis and Treat accordingly

Yes

Clinical or radiological Improvement in 2 weeks

Presumptive diagnosis of TE and continue treatment followed By maintenance therapy

Figure 1: Management of toxoplasmosis in HIV patients
CONCLUSIONS

T. gondii, coccidian protozoan intracellular parasite, is one of the most causative agents of opportunistic infections in HIV/AIDS patients. Their epidemiological and clinical aspect in association with HIV-infected patients was reported worldwide. In HIV infection due to immunosuppression, there is reactivation of chronic latent infection resulting in Toxoplasma encephalitis. The prevalence rates of toxoplasma infection in HIV-positive patients are variable across different geographical areas. The prevalence rates are increasing with age. The risk of infection is more when the CD4 counts are <100 cells/µL. Diagnosis can be made by clinical, serological, radiological, histological, and molecular methods. Due to the high rate of reactivation in HIV-positive patients and complications of cerebral toxoplasmosis, all HIV-positive patients must be tested for the presence of *T. gondii* antibodies. Those who tested positive for anti *T. gondii* antibodies should be considered for chemoprophylaxis. Proper treatment and prophylaxis with maintenance therapy will control the infection. However, proper preventive measures and counseling regarding the exposure to toxoplasma infection can also help in prophylaxis. Further research can be done on the immunization methods, which will enhance the CMI.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Porter SB, Sande MA. Toxoplasmosis of the central nervous system in the acquired immunodeficiency syndrome. N Engl J Med 1992;327:1643-8.
2. Winstanley P. Drug treatment of toxoplasmic encephalitis in acquired immunodeficiency syndrome. Postgrad Med J 1995;71:404-8.
3. McCabe R, Chirurgi V. Issues in toxoplasmosis. Infect Dis Clin North Am 1993;7:587-604.
4. Baril L, Ancelle T, Goulet V, Thulliez P, Tirard-Fleury V, Carme B. Risk factors for toxoplasma infection in pregnancy: A case-control study in France. Scand J Infect Dis 1999;31:305-9.
5. Kapperud G, Jenum PA, Skjeld A, Eng J. Risk factors for Toxoplasma gondii infection in pregnancy: Results of a prospective case-control study in Norway. Am J Epidemiol 1996;144:405-12.
6. Cook AJ, Gilbert RE, Buffolano W, Zufferey J, Petersen E, Jenum PA, *et al*. Sources of toxoplasma infection in pregnant women: European multicentre case-control study. European Research Network on Congenital Toxoplasmosis. BMJ 2000;321:142-7.
7. Kimball AC, Kean BH, Kellner A. The risk of transmitting toxoplasmosis by blood transfusion. Transfusion 1965;5:447-51.
8. Segall L, Moal MC, Doucet L, Kergoat N, Bourbigot B. Toxoplasmosis-associated hemophagocytic syndrome in renal transplantation. Transpl Int 2006;19:78-80.
9. Rawal BD. Laboratory infection with toxoplasma. J Clin Pathol 1959;12:59-61.
10. Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H; Centers for Disease Control and Prevention (CDC); National Institutes of Health; HIV Medicine Association of the Infectious Diseases Society of America. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: Recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 2009;58:1-207.
11. Leport C, Chêne G, Morlat P, Luft BJ, Rousseau F, Pueyo S, *et al*. Pyrimethamine for primary prophylaxis of toxoplasmic encephalitis in patients with human immunodeficiency virus infection: A double-blind, randomized trial. ANRS 005-AGT 154 Group Members. Agence Nationale de Recherche sur le SIDA. AIDS Clinical Trial Group. J Infect Dis 1996;173:91-7.
12. Luft BJ, Brooks RG, Conley FK, McCabe RE, Remington JS. Toxoplasmic encephalitis in patients with acquired immune deficiency syndrome. JAMA 1984;252:913-7.
13. Colombo FA, Vidal JE, de Oliveira AC, Hernandez AV, Bonassar-Filho F, Nogueira RS. Diagnosis of cerebral toxoplasmosis in AIDS patients in Brazil: Importance of molecular and immunological methods using peripheral blood samples J Clin Microbiol 2005;43:5044-7.
14. Subauste CS, Remington JS. Immunity to Toxoplasma gondii. Curr Opin Immunol 1993;5:532-7.
15. Subauste CS. CD154 and type-1 cytokine response: From hyper IgM syndrome to human immunodeficiency virus infection 2002;185 Suppl 1:S83-9.
16. Cohen O, Weissman D, Fauci KS. The immune pathogenesis of HIV infection. In: Paul WE, editor. Fundamental Immunology. Philadelphia: Lippincott-Raven; 1999. p. 1455-509.
17. Murray HW, Rubin BY, Masur H, Roberts RB. Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med 1984;310:883-9.
18. Subauste CS, Wessendarp M, Smulian AG, Frame PT. Role of CD40 ligand signaling in defective type 1 cytokine response in human immunodeficiency virus infection. J Infect Dis 2001;183:1722-31.
19. Subauste CS, Wessendarp M, Portillo JA, Andrade RM, Hinds LM, Gomez FJ, *et al*. Pathogen-specific induction of CD154 is impaired in CD4+ T cells from human immunodeficiency virus-infected patients. J Infect Dis 2004;189:61-70.
20. Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS. Clin Infect Dis 1992;15:211-22.
21. Ko RC, Wong FW, Todd D, Lam KC. Prevalence of *Toxoplasma gondii* antibodies in the Chinese population of Hong Kong. Trans R Soc Trop Med Hyg 1980;74:351-4.
22. Rabaud C, May T, Amiel C, Katlama C, Leport C, Ambroise-Thomas P, *et al*. Extracerebral toxoplasmosis in patients infected with HIV. A French National Survey. Medicine (Baltimore) 1994;73:306-14.
23. Okshenruder E, Duarte M, Soulier J, Cacoub P, Welker Y, Cadranel J, *et al*. Multicentric Castleman's disease in HIV infection: A clinical and pathological study of 20 patients. AIDS 1996;10:61-7.
24. Huang L, Schnapp LM, Gruden JF, Hopewell PC, Stanessell JD. Presentation of AIDS-related pulmonary
Kapovi’s sarcoma diagnosed by bronchoscopy. Am J Respir Crit Care Med 1996;153 (4 Pt 1):1385-90.

25. Tenter AM, Heckerath AR, Weiss LM. Toxoplasma gondii: From animals to humans. Int J Parasitol 2000;30:1217-58.

26. Grant IH, Gold JW, Rosenblum M, Niedzwiecki D, Armstrong D. Toxoplasma gondii serology in HIV-infected patients: The development of central nervous system toxoplasmosis in AIDS. AIDS 1990;4:19-21.

27. Wong B, Gold JW, Brown AE, Lange M, Fried R, Greco M, et al. Central-nervous-system toxoplasmosis in homosexual men and parenteral drug abusers. Ann Intern Med 1984;100:36-42.

28. Onadeko MO, Joyonson DH, Payne RA, Francis J. The prevalence of toxoplasma antibodies in pregnant Nigerian women and the occurrence of stillbirth and congenital malformation. Afr J Med Sci 1996;25:331-4.

29. Bourathbine A, Saia E, Chahed MK, Anou K, Bismail R. Seroepidemiological profile of toxoplasmosis in Northern Tunisia. Parasite Immunol 2001;8:61-6.

30. Rodier MH, Berthonneau J, Bourgoin A, Giraudoueau G, Agius G, Burucoa C, et al. Seroprevalences of Toxoplasma, malaria, rubella, cytomegalovirus, HIV and treponemal infections among pregnant women in Cotonou, Republic of Benin. Acta Trop 1995;59:271-7.

31. Assob JC, Njunda AL, Nsagha DS, Kamga HL, Weledji PE, Che VB. Toxoplasma antibodies amongst HIV/AIDS patients attending the university teaching hospital Yaounde, in Cameroon. Afr J Clin Exp Microbiol 2011;12:1119-23.

32. Spalding SM, Amendoeira MR, Klein CH, Ribeiro LC. Serological screening and toxoplasmosis exposure factors among pregnant women in South of Brazil. Rev Soc Bras Med Trop 2003;38:173-7.

33. Jeannel D, Niel G, Costagliola D, Danis M, Traore BM, Gentilini M. Epidemiology of toxoplasmosis among pregnant women in the Paris area. Int J Epidemiol 1988;17:595-602.

34. Kodym P, Hrdà S, Machala L, Rozsypal H, Stankovà M, MaV M. Prevalence and incidence of toxoplasmosis infection in HIV-positive patients in the Czech Republic. J Eukaryot Microbiol 2006;53 Suppl 1:S160-1.

35. Xiao Y, Yin J, Jiang N, Xiang M, Hao L, Lu H, et al. Seroepidemiology of human Toxoplasma gondii infection in China. BMC Infect Dis 2010;10:4.

36. Anuradha B, Preethi C. Seroprevalence of toxoplasma IgG antibodies in HIV positive patients in and around Khammam, Telangana State. J Clin Diag Res 2014;8:DL01-2.

37. Sucilathangam G, Palaniappan N, Sreekumar C, Anna T. Serological survey of toxoplasmosis in a district in Tamil Nadu: Hospital-based study. Indian J Med Res 2013;137:560-3.

38. Meisher YV, Mehta S, Patel U. A prospective study of seroprevalence of toxoplasmosis in general population, and in HIV/AIDS patients in Bombay, India. J Postgrad Med 1997;43:93-7.

39. Nissapatorn V, Lee CK, Cho SM, Rohela M, Anuar AK, Quek KF, et al. Toxoplasmosis in HIV/AIDS patients in Malaysia. Southeast Asian J Trop Med Public Health 2003;34 Suppl 2:80-5.

40. Kelesidis T, Tozzi S, Mitty R, Worthington M, Fleisher J. Cytomegalovirus pseudotumor of the duodenum in a patient with AIDS: An unrecognized and potentially treatable clinical entity. Int J Infect Dis 2010;14:e274-82.

41. Mostafavi SN, Ataie B, Nokhodian Z, Yaran M, Babak A. Seroepidemiology of Toxoplasma gondii infection in Isfahan province, central Iran: A population based study. J Res Med Sci 2011;16:496-501.

42. Shimelis T, Tebeje M, Tadesse E, Tegbaru B, Terefe A. Prevalence of latent Toxoplasma gondii infection among HIV-infected and HIV-uninfected people in Addis Ababa, Ethiopia: A comparative cross-sectional study. BMC Res Notes 2009;2:213.

43. Ruiz R, Cu-U Vin S, Fiore T, Flanigan TP. Toxoplasmosis in HIV-positive women: Seroprevalence and the role of prophylaxis in preventing disease. AIDS 1997;11:119-20.

44. Minkoff H, Remington JS, Holman S, Ramirez R, Goodwin S, Landesman S. Vertical transmission of toxoplasma by human immunodeficiency virus-infected women. Am J Obstet Gynecol 1997;176:555-9.

45. Falusi O, French AL, Seaberg EC, Tien PC, Watts DH, Minkoff H, et al. Prevalence and predictors of toxoplasma seropositivity in women with and at risk for human immunodeficiency virus infection. Clin Infect Dis 2002;35:1414-7.

46. Osunkolu VO, Akamnu SA, Ofomah NJ, Onyiorah IV, Adediran AA, Akinde RO, et al. Seroprevalence of Toxoplasma gondii IgG antibody in HIV-infected patients at the Lagos University Teaching Hospital. HIV AIDS (Auckl) 2011;3:101-5.

47. Eliaszewicz M, Lecomte I, Da SA. Relation between decreasing series CD4 lymphocyte count and outcome of toxoplasmosis in AIDS patients: A basis for primary prophylaxis. Int Conf AIDS 1990;6:20-3.

48. Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL. Toxoplasmosis Infection. Harrisons Principles of Internal Medicine. 16th ed., Vol.2, New York: Mc Graw Hill Inc;2005:1243-8.

49. Kumaranaymy N, Solomon S, Flanigan TP, Hemalatha R, Thyagarajan SP, Mayer KH. Natural history of human immunodeficiency virus disease in Southern India. Clin Infect Dis 2003;36:79-85.

50. Montoya JG, Kovacs JA, Remington JS. Toxoplasma gondii. In: Mandell GL, Bennett JE, Dolin R 6th, editors. Principles and Practice of Infectious Diseases. Philadelphia: Churchill Livingstone; 2005. p. 3170-98.

51. Colombo FA, Vidal JE, Penalva de Oliveira AG, Hernandez AV, Bonasser-Filho F, Nogueira RS, et al. Diagnosis of cerebral toxoplasmosis in AIDS patients in Brazil: Importance of molecular and immunological methods using peripheral blood samples. J Clin Microbiol 2005;43:5044-7.

52. Reischl U, Bretagne S, Krüger D, Ernault P, Costa JM. Comparison of two DNA targets for the diagnosis of toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis 2003;3:7.

53. Parrnley SF, Goebel FD, Remington JS. Detection of Toxoplasma gondii in cerebrospinal fluid from AIDS patients by polymerase chain reaction. J Clin Microbiol 1992;30:3000-2.

54. 1999 USPHS/IDSA guidelines for the prevention of opportunistic infections in persons infected with human immunodeficiency virus. U.S. Public Health Service (USPHS) and Infectious Diseases Society of America (IDSA). MMWR Recomm Rep 1999;48:1-59, 61-6.

55. Chan K, Wong KH, Lee SS. HIV manual 2001. Department of Health, Red Ribbon Centre 2002;193-8.

56. Meng M, Zhou A, Lu G, Wang L, Zhao G, Han Y, et al. DNA prime and peptide boost immunization protocol encoding
the *Toxoplasma gondii* GRA4 induces strong protective immunity in BALB/c mice. BMC Infect Dis 2013;13:494.

57. Sher A, Denkers EY, Gazzinelli RT. Induction and regulation of host cell-mediated immunity by *Toxoplasma gondii*. Ciba Found Symp 1995;195:95-104.

58. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: The major mediator of resistance against *Toxoplasma gondii*. Science 1988;240:516-8.

59. Maggi E, Parronchi P, Manetti R, Simonelli C, Piccinni MP, Rugiu FS, *et al.* Reciprocal regulatory effects of IFN-gamma and IL-4 on the *in vitro* development of human Th1 and Th2 clones. J Immunol 1992;148:2142-7.

Staying in touch with the journal

1) **Table of Contents (TOC) email alert**

 Receive an email alert containing the TOC when a new complete issue of the journal is made available online. To register for TOC alerts go to www.tropicalparasitology.org/signup.asp.

2) **RSS feeds**

 Really Simple Syndication (RSS) helps you to get alerts on new publication right on your desktop without going to the journal’s website. You need a software (e.g. RSSReader, Feed Demon, FeedReader, My Yahoo!, NewsGator and NewsCrawler) to get advantage of this tool. RSS feeds can also be read through FireFox or Microsoft Outlook 2007. Once any of these small (and mostly free) software is installed, add www.tropicalparasitology.org/rssfeed.asp as one of the feeds.