Elevated Fibroblast Growth Factor 23 Levels Are Associated With Greater Diastolic Dysfunction in ESRD

Shilpa Sharma¹,²,³, Mark R. Hanudel⁴, Joachim H. Ix⁵,⁶, Isidro B. Salusky⁴, Tomas Ganz³,⁷ and Kim-Lien Nguyen²,⁸

¹Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; ²Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, California, USA; ³Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; ⁴Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; ⁵Division of Nephrology-Hypertension, University of California San Diego, San Diego, California, USA; ⁶Veterans Affairs, San Diego Healthcare System, San Diego, California, USA; ⁷Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; and ⁸Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

Correspondence: Shilpa Sharma, Department of Medicine, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA 90073. E-mail: shilpasharma@mednet.ucla.edu

Received 13 June 2019; accepted 25 July 2019; published online 9 August 2019

Kidney Int Rep (2019) 4, 1748–1751; https://doi.org/10.1016/j.ekir.2019.07.022

Published by Elsevier Inc. on behalf of the International Society of Nephrology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ife expectancy in individuals with chronic kidney disease (CKD) is unacceptably low, and cardiovascular disease remains the leading cause of death. Above and beyond established cardiovascular disease risk factors that are highly prevalent in CKD patients, unique risk factors such as abnormal mineral metabolism are widely hypothesized to contribute to the pathogenesis of cardiovascular disease in CKD.

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced mainly by osteocytes. As kidney function declines in CKD, FGF23 rises early and counteracts phosphate accumulation. Elevated FGF23 levels are independently associated with increased risk of cardiovascular disease and mortality in different populations, including among those with CKD. In animal models and in vitro, FGF23 has a direct pathogenic effect, causing left ventricular (LV) hypertrophy by activating fibroblast growth factor receptor 4 on cardiac myocytes. In prior human observational studies, higher FGF23 has been associated with arrhythmias, and decreased LV systolic function. Given animal data suggesting that FGF23 may induce LV hypertrophy, and human data demonstrating associations of elevated FGF23 with LV hypertrophy—one potential pathologic driver of diastolic dysfunction—we hypothesized that higher FGF23 levels may be associated with diastolic dysfunction, a common complication of CKD.

METHODS

Please see Supplementary Material.

RESULTS

Baseline characteristics of the study cohort are shown in Table 1, stratified by quartiles of intact (i) FGF23. Seventy percent of the 47 participants were men, and 62% had preserved LV ejection fraction (EF). The mean (±SD) age was 61 (±20) years, mean phosphate was 5.0 (±1.4) mg/dl; mean LVEF was 51 (±13) %, mean left atrial volume was 58 (±27) ml, mean tricuspid velocity was 2.6 (±0.5) m/sec, and the mean E (transmitral early filling velocity)/A (transmitral late filling velocity) ratio was 1.4 (±0.5). A total of 94% (44 of 47) of patients had LV diastolic dysfunction, and 53% (25 of 47) had LV hypertrophy (LVH).

Median iFGF23 was elevated at 1135 (interquartile range: 361, 3195) pg/ml, which is comparable to values observed in end-stage kidney disease cohorts. The strongest association was between higher levels of iFGF23 and grades of diastolic dysfunction (r_s = 0.75; P < 0.001), followed by serum phosphate and iFGF23 (r_s = 0.51; P < 0.001). In the univariate model, elevated levels of natural log–transformed iFGF23 were significantly associated with a higher grade of LV diastolic dysfunction (R^2 = 0.51; 95% confidence interval for slope, 1.7–3.4; P < 0.001). In a multivariate model, this relationship remained significant and was essentially unaltered after adjusting for age, phosphate, and LVEF (R^2 = 0.5; 95% confidence interval for slope, 1.01–1.5; P < 0.001; Figure 1).

DISCUSSION

In this study of 47 patients with end-stage kidney disease treated with hemodialysis, we found that higher levels of iFGF23 were associated with LV diastolic dysfunction. The association appeared to have a step-wise linear relationship with grades of severity of diastolic dysfunction, independently of LVEF. Although observational data reported here cannot prove causality, these data parallel observations made...
In contrast, in a nondialysis CKD patients where high FGF23 and low Klotho levels were strongly and longitudinally associated with a higher grade of left ventricular diastolic dysfunction ($R^2 = 0.51$; 95% confidence interval for slope, 1.7–3.4; $P < 0.001$).

Figure 1. Box plots showing the relationship between the grading of diastolic dysfunction and the natural logarithm of intact fibroblast growth factor 23 (FGF23) in 47 hemodialysis patients. Elevated levels of natural log-transformed intact FGF23 were significantly associated with a higher grade of left ventricular diastolic dysfunction ($R^2 = 0.51$; 95% confidence interval for slope, 1.7–3.4; $P < 0.001$).

In conclusion, this study is the first to our knowledge to report an association between higher iFGF23 levels and severity of LV diastolic dysfunction in end-stage renal disease patients receiving hemodialysis. FGF23 has multiple adverse effects on the cardiovascular system, and understanding of the complex interplay of these effects in CKD patients is evolving. Future larger studies examining the relationship between FGF23 and the progression of diastolic dysfunction are warranted in patients with CKD, and ultimately, studies that target FGF23 lowering should be conducted to evaluate the effects on cardiac function.

DISCLOSURE

All the authors declared no competing interests.

ACKNOWLEDGMENTS

This work is supported in part by the American Heart Association (AHA18TPA3420049 to KLN), the Veterans Health Administration (VA-MERIT I01CX001901 to KLN), and the National Institute of Diabetes, Digestive, and Kidney Diseases (K08DK111980 to MRH, K24DK110427 to JHI).

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

Supplementary Methods.

Supplementary References.
Molecular Genetic Diagnosis of Omani Patients With Inherited Cystic Kidney Disease

Intisar Al Alawi1,2, Issa Al Salmi3, Fatma Al Rahbi3, Mohamed Al Riyami4, Naifain Al Kalbani4, Badria Al Ghaithi4, Adhra Al Mawali5 and John A. Sayer1,6,7

1Institute of Genetic Medicine, International Centre for Life, University of Newcastle, Newcastle upon Tyne, Tyne and Wear, UK; 2National Genetic Center, Ministry of Health, Muscat, Oman; 3Renal Medicine Department, Ministry of Health, Royal Hospital, Muscat, Oman; 4Pediatric Nephrology Unit, Department of Child Health, Ministry of Health, Royal Hospital, Muscat, Oman; 5Center of Studies and Research, Ministry of Health, Muscat, Oman; 6Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, Tyne and Wear, UK; and 7National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, Tyne and Wear, UK

Correspondence: John A. Sayer, Professor of Renal Medicine, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, Tyne and Wear, NE1 3BZ, UK. E-mail: john.sayer@newcastle.ac.uk

Received 16 July 2019; revised 13 August 2019; accepted 19 August 2019; published online 30 August 2019

Kidney Int Rep (2019) 4, 1751–1759; https://doi.org/10.1016/j.ekir.2019.08.012
© 2019 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Chronic kidney disease (CKD) is defined as abnormalities in the structure or function of the kidney that are present for more than 3 months and have implications for health. Inherited kidney diseases are a major cause of CKD and often lead to progressive CKD resulting in end-stage renal disease (ESRD). Cystic kidney diseases are common inherited causes of ESRD in both children and adults, accounting for 6%–12% of cases.1,2

Inherited forms of cystic kidney have been associated with dysfunction of the primary cilia.3 These diseases are often termed renal ciliopathies and are part of a growing number of inherited diseases that include autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD),4 tuberous sclerosis complex (TSC),5 autosomal dominant tubulointerstitial kidney disease (ADTKD),6 nephronophthisis-related ciliopathies (NPHP-RC),7 Bardet-Biedl syndrome, Senior-Löken syndrome, Meckel Gruber syndrome, Joubert syndrome, and others.8

ADPKD is the most common autosomal dominant inherited ciliopathy, accounting for 10% of all patients with ESRD requiring renal replacement therapy.9 It is characterized by bilateral renal cysts, leading to enlarged kidneys and kidney failure. Extrarenal manifestations such as liver cysts, intracranial aneurysms, and mitral valve prolapse are also frequently noted. Most cases of ADPKD are caused by mutations in PKD1 (85%) and PKD2 (15%), although recently mutations in GANAB,9 and DNAJB11 have been associated with similar phenotypes in genetically unresolved