Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data

Bryan A. Killingsworth
Louisiana State University

Huiming Bao
Louisiana State University

Issaku E. Kohl
Louisiana State University

Follow this and additional works at: https://digitalcommons.lsu.edu/geo_pubs

Recommended Citation
Killingsworth, B., Bao, H., & Kohl, I. (2018). Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data. Environmental Science and Technology, 52 (11), 6126-6136. https://doi.org/10.1021/acs.est.7b05792

This Article is brought to you for free and open access by the Department of Geology and Geophysics at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
This is the accepted peer-reviewed manuscript (postprint) of "Assessing pyrite-derived sulfate in the Mississippi River with four years of sulfur and triple-oxygen isotope data" by Bryan Killingsworth (bryan.a.killingsworth(at)gmail.com), Huiming Bao, and Issaku Kohl

The final, copy-edited, version was published in Environmental Science & Technology and can be found at https://doi.org/10.1021/acs.est.7b05792

This postprint was provided by the publisher as a courtesy for the fulfillment of funder open access requirements and is submitted to EarthArXiv by the authors.
Assessing pyrite-derived sulfate in the Mississippi River with four years of sulfur and triple-oxygen isotope data

Bryan A. Killingswortha,b,*, Huiming Baoa, and Issaku E. Kohla,5

aDepartment of Geology & Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, United States; bIUEM, Laboratoire Géosciences Océan, Université de Bretagne Occidentale, UMR 6538, Plouzané 29280, France; 5Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles 90095, California, United States

Abstract

Riverine dissolved sulfate (SO\textsubscript{4}2−) sulfur and oxygen isotope variations reflect their controls such as SO\textsubscript{4}2− reduction and re-oxidation, and source mixing. However, unconstrained temporal variability of riverine SO\textsubscript{4}2− isotope compositions due to short sampling durations may lead to mischaracterization of SO\textsubscript{4}2− sources, particularly for the pyrite-derived sulfate load. We measured the sulfur and triple-oxygen isotopes (δ34S, δ18O, and Δ17O) of Mississippi River SO\textsubscript{4}2− with biweekly sampling between 2009-2013 to test isotopic variability and constrain sources. Sulfate δ34S and δ18O ranged from −6.3‰ to −0.2‰ and −3.6‰ to +8.8‰, respectively. Our sampling period captured the most severe flooding and drought in the Mississippi River basin since 1927 and 1956, respectively, and a first year of sampling that was unrepresentative of long-term average SO\textsubscript{4}2−. The δ34S\textsubscript{SO4} data indicate pyrite-derived SO\textsubscript{4}2− sources are 74 ±10% of the Mississippi River sulfate budget. Furthermore, pyrite oxidation is implicated as the dominant process supplying SO\textsubscript{4}2− to the Mississippi River, whereas the Δ17O\textsubscript{SO4} data shows 18 ±9% of oxygen in this sulfate is sourced from air O\textsubscript{2}.

N. America Mississippi Basin conditions wetter drier δ34S δ18O δ17O Sulfate (SO\textsubscript{4}2−) 2009 2010 2011 2012
Introduction

The characterization of riverine chemical fluxes today is important for establishing natural baselines for understanding the magnitude of human impact on chemical cycles and interpreting the rock record of biogeochemical changes in Earth’s past. For the surface sulfur cycle, which is closely linked to the carbon and oxygen cycles over long time scales, its most significant flux is riverine sulfate input to the ocean1. Natural variations in the magnitude and isotopic composition of the sulfate flux reflects the exposures and weathering rates of sulfide and sulfate minerals in rocks2. Meanwhile, human activities, such as the mining and burning of fossil fuels like coal, can increase riverine sulfate fluxes four-fold and alter sulfate’s sulfur isotope composition on a large scale, such as in the Mississippi River3. Thus, studies of the continental sulfur cycle have made efforts to constrain riverine SO\textsubscript{4}2− fluxes and isotope compositions globally4-7 and in large8-10 and small11-14 rivers. Riverine studies have suggested that global sulfate budgets may underrepresent the pyrite-derived sulfate flux, which is particularly important for sulfur and carbon weathering budgets9,15.

An advantage of riverine chemical studies is their integration of spatial and temporal scales. Depending on the research focus, sampling campaigns of different durations can be designed according to the basin size and its assumed variability, to constrain temporal variation with multi-year sampling, or to reveal spatial variations. However, a lack of temporal constraints on SO\textsubscript{4}2− isotopes may result in biased conclusions about sulfate sources and processes. For example, the average isotope compositions of inputs are needed to construct stable isotope mixing models to constrain sulfate sources in individual rivers and in models of the global surface sulfur cycle. A low frequency or short duration of sampling may bias model results towards one season or an anomalous year. Only some riverine sulfate isotope studies last a year8.
or longer19-26, and out of the rivers that were monitored for \(\geq 1\) year, just the Yangtze, Indus, Oldman, and Kalix are \(>5,000\) km\(^2\). For these long-term studies, the average ranges for \(\delta^{34}\)S and \(\delta^{18}\)O are \(~5\)‰ and have no correlation with catchment size. Thus there are insufficient temporal constraints on riverine SO\(_4^{2-}\) isotope variability over large, and continental, spatial scales. For example, significant variability was shown within one year of Yangtze River sulfate data where the ranges of \(\delta^{34}\)S\(_{SO_4}\) and \(\delta^{18}\)O\(_{SO_4}\) were respectively 9.5‰ and 8.9‰10. In another example from a highly cited study, 85\% ±5\% of sulfate flux in the relatively pristine Mackenzie River in Canada was attributed to pyrite oxidation9. This assessment was based on stable isotope (\(\delta^{34}\)S and \(\delta^{18}\)O) mixing of sulfate sources for 20 samples taken throughout the basin at one time, with only one sample recovered from the river mouth that could represent the output to the ocean. The respective \(\delta^{34}\)S and \(\delta^{18}\)O had significant spatial variation of 28.3‰ and 12.6‰, respectively, and the temporal variability was undetermined. While the conclusion appears robust that most of the sulfate in the Mackenzie is pyrite-derived, it remains difficult to know if the estimate of pyrite-derived sulfate flux is applicable to the long term. Regardless, the estimation of pyrite-derived sulfate loads, and its natural and anthropogenic partitioning, is not a trivial task due to large \(\delta^{34}\)S and \(\delta^{18}\)O ranges and their overlaps with other sulfate sources. High loadings of pyrite-derived sulfate may result in large ranges of \(\delta^{34}\)S\(_{SO_4}\) and \(\delta^{18}\)O\(_{SO_4}\), which are commonly used as sulfate source tracers. Regardless, a lack of significant temporal variability, and a coupled response related to sources, are implicitly assumed for \(\delta^{34}\)S\(_{SO_4}\) and \(\delta^{18}\)O\(_{SO_4}\).
To test SO_4^{2-} isotopic variability over time and constrain sources, we target the Mississippi River. The Mississippi, Yangtze, and Amazon Rivers are the top three rivers for sulfate flux to the ocean worldwide. The Mississippi River basin (Figure 1) covers ~37% of the contiguous United States and is the largest river system in North America. The Mississippi River basin has been heavily altered by human activities such as agriculture (65% by area), dams and reservoirs in the semi-arid west, and levee systems prevalent in the lower Mississippi River. Bedrock sources of sulfate within the Mississippi River include abundant pyrite-bearing shales in its western reaches, evaporite exposures, and mine drainage from coalbeds within sub-basins in the west (Missouri River) and east (Ohio River). The Mississippi River $\delta^{34}\text{S}_{\text{SO}_4}$ average was previously used in a stable isotope mixing model to characterize sulfate sources, whereas the full time series $\delta^{34}\text{S}_{\text{SO}_4}$, $\delta^{18}\text{O}_{\text{SO}_4}$, and $\Delta'^{17}\text{O}_{\text{SO}_4}$ data from 2009-2013 are reported here. In the previous study, it was estimated that human activities account for 75% of the Mississippi River SO_4^{2-} flux and have increased the average Mississippi River $\delta^{34}\text{S}_{\text{SO}_4}$ from -5% to -2.7%, and it...
was concluded that the more typical scenario should be the opposite – where most rivers should
instead display decreasing δ^{34}S$_{SO_4}$ due to human influence. The distinctly low δ^{34}S$_{SO_4}$ of the
Mississippi River was interpreted as the result of a high input of sulfate from the weathering of
pyrite. Mississippi River sulfate was partitioned into sources from coalmine drainage (47%),
natural and anthropogenic rock weathering (37%), atmospheric sulfur (15%), and fertilizer (1%).
In the present study, Mississippi River SO$_4^{2-}$ isotope compositions are compared to ion
concentrations, discharge, and temperature from the USGS31 and discharge from the USACE32.
While average Mississippi River δ^{34}S$_{SO_4}$ made the previous source partitioning possible, four
years of data from 2009-2013 permits us to examine the full variability and controls on δ^{34}S$_{SO_4}$,
δ^{18}O$_{SO_4}$, and Δ^{17}O$_{SO_4}$ and attempt to more finely resolve the pyrite-derived sulfate load here.

Materials and Methods

Mississippi River water was collected biweekly or at greater frequency during the period
03/11/09 to 01/17/13 for δ^{34}S$_{SO_4}$, δ^{18}O$_{SO_4}$, and Δ^{17}O$_{SO_4}$ measurements. River water samples
were collected at the east bank of the Mississippi River at Baton Rouge or St. Francisville,
Louisiana, USA and immediately processed or refrigerated for later processing. Our sampling
locations near Baton Rouge, Louisiana integrate the main sub-basins of the Mississippi River
except for the Red and Ouachita Rivers, and thus here the SO$_4^{2-}$ flux to the ocean for ~37% of
the contiguous United States is accounted for.29 A few additional samples were collected from
the sub-basin upper Ohio River at Tell City, Indiana to compare against the main Mississippi
River. All samples were treated with the DDARP method, yielding purified BaSO$_4^{33}$.
The riverine dissolved sulfates were analyzed for their isotope $\delta^{34}\text{S}_{\text{SO}_4}$, $\delta^{18}\text{O}_{\text{SO}_4}$, and $\Delta^{17}\text{O}_{\text{SO}_4}$ per the methods here with additional details in the supporting information (chapter 1).

The classical isotope notation is used here:

$$\delta \equiv R_{\text{sample}}/R_{\text{standard}} - 1$$ \hspace{1cm} (1)

Where R is the mole ratio of $^{18}\text{O}/^{16}\text{O}$, $^{17}\text{O}/^{16}\text{O}$, or $^{34}\text{O}/^{32}\text{O}$ and reported in units per mille ($\times 1000\%$) with respect to the international isotope standards VSMOW or VCDT for $\delta^{18}\text{O}$ and $\delta^{34}\text{S}$, respectively. We note that the linear “capital delta” definition is

$$\Delta^{17}\text{O} \equiv \delta^{17}\text{O} - C \times \delta^{18}\text{O}$$ \hspace{1cm} (2)

where C is an arbitrary reference slope34. Here we use a logarithmic definition,

$$\Delta^{17}\text{O} \equiv \delta^{17}\text{O} - C \times \delta^{18}\text{O}, \text{ where }$$ \hspace{1cm} (3)

$$\delta^{1x}\text{O} = \ln(\delta^{1x}\text{O} + 1) = \ln(R_{\text{sample}}/R_{\text{standard}}).$$ \hspace{1cm} (4)

The ^{1x}O in equation (4) refers to the isotope ^{18}O or ^{17}O, and $\Delta^{17}\text{O}$ is reported in $\%$ with respect to the standard VSMOW (Fig. S1). The choice of the reference slope C in equation (3) is 0.5305, which benefits inter-species comparison34. All measurements for $\Delta^{17}\text{O}$ were done on samples converted to O_2 and run on a Thermo Finnigan MAT 253 isotope ratio mass spectrometer (IRMS) at Louisiana State University (LSU). The raw average of replicate $\delta^{17}\text{O}_{\text{SO}_4}$ and $\delta^{18}\text{O}_{\text{SO}_4}$ values (in $\%$) are available in Tables S1 and S2 for re-normalization to other reference frames of choice. The $\delta^{34}\text{S}_{\text{SO}_4}$ measurements were conducted at the University of Maryland and Indiana University using an Elemental Analyzer coupled to an IRMS. For $\delta^{18}\text{O}_{\text{SO}_4}$, analysis was done at LSU using a high temperature conversion Elemental Analyzer (TCEA) coupled to a Thermo Finnigan MAT 253 IRMS in continuous flow mode. Analytical errors for standards and sample duplicates for $\delta^{34}\text{S}_{\text{SO}_4}$, $\delta^{18}\text{O}_{\text{SO}_4}$, and $\Delta^{17}\text{O}_{\text{SO}_4}$ are $\pm 0.3\%$, $\pm 0.5\%$, and $\pm 0.05\%$ respectively.
To determine trends and seasonality of sulfate, monthly averages of the isotope data were used for time series decomposition in the software "R" (Figs. S2 and S3), and sulfate fluxes for the main Mississippi River and sub-basins were compared. Additional available data is used from continuously monitored water discharge, ion concentration, temperature, and other parameters at St. Francisville, Louisiana, where for that location the main stem water discharge of the Mississippi is represented by the Tarbert Landing, MS and Knox Landing, LA sites monitored by the USACE. Mississippi River sub-basin sulfate concentration and river discharge data is used from the Missouri River at Hermann, MO, Upper Mississippi below Grafton, IL, and Ohio River at Metropolis, IL, which are monitored by the USGS.

Sulfate flux estimates for the Mississippi River and its sub-basins use the daily river discharge data with sulfate concentrations reported by the USGS for the respective sites given above. To estimate daily sulfate fluxes for the purposes of matching datasets and making mixing models, sulfate concentrations are interpolated from the approximately once-monthly measurements from the USGS, and matched with daily water discharge reported by the USACE and USGS. Sulfate flux estimates should be considered to have lower resolution than the isotope data due to interpolation from approximate once-monthly concentration measurements.

Results

Mississippi River SO\textsubscript{4}2− varies from −6.3 to −0.2‰ and averages −2.7‰ for δ34S\textsubscript{SO\textsubscript{4}}, from −3.6 to 8.8‰ and averages 3.4‰ for δ18O\textsubscript{SO\textsubscript{4}}, and ranges −0.19 to −0.01‰ with an average of −0.09‰ for Δ17O\textsubscript{SO\textsubscript{4}} (Figure 2, Table S1). Time series decomposition reveals seasonality in δ34S\textsubscript{SO\textsubscript{4}} with an amplitude of 3‰, with minima in late summer, and a δ18O\textsubscript{SO\textsubscript{4}} decrease of 5‰.
from 2009 to 2013 (Figure S2), with $\Delta^{17}O_{SO_4}$ exhibiting more secular variation. Histograms of $\delta^{34}S_{SO_4}$ and $\delta^{18}O_{SO_4}$ are shown in the supporting information (Fig. S3).

Sulfate for the period 01/27/11 to 06/01/11 from the Upper Ohio River sub-basin ranged from -0.3 to 1.6% and averaged 0.3% for $\delta^{34}S_{SO_4}$ and ranged 1.4 to 2.9% and averaged 2.1% for $\delta^{18}O_{SO_4}$ (Table S2).
Figure 2. Mississippi River sulfate isotope $\delta^{34}\text{SO}_4$, $\delta^{18}\text{O}_{\text{SO}_4}$, and $\Delta^{17}\text{O}_{\text{SO}_4}$ data from this study plotted with available data for surface temperature, temperature anomaly (based on monthly averages from 1901-2000), and Palmer Hydrological Drought Index (PHDI) for the contiguous United States, river basin discharge data, and sulfate concentration. Sulfate flux is calculated from discharge data and sulfate concentration. Analytical errors for isotope data are shown as error bars and envelopes. Significant events are noted: 1) the Kingston Fossil Plant coal fly ash slurry spill on 12/22/08, 2) historical flooding (the most intense since 1927) in the spring of 2011, and 3) historical drought (strongest since 1956) in the summer to fall of 2012.

Discussion

Constraining temporal variability

Mississippi River sulfate had higher average $\delta^{34}\text{SO}_4$ and an attenuated seasonality in 2009 that appear unrepresentative of the long term. The year 2009 may be atypical for two reasons: one of the largest coal fly ash spills in United States history occurred in December 2008 where 4.1 million cubic meters of coal ash was released within a tributary of the Mississippi River, and the summer of 2009 was wetter than average (see PHDI in Fig. 2). Mississippi River sulfate concentrations did not increase due to the coal ash spill although there were modest increases in the tributary where the spill occurred. The lack of a clear sulfate signal in the Mississippi River from such a spill suggests that widespread coal ash impoundments leaking in the humid southeastern United States may contribute diffuse but large fluxes of sulfate that are difficult to quantify. The mixing model used in the previous study was based on the 4-year Mississippi River $\delta^{34}\text{SO}_4$ average of -2.7% and gave a solution of -5% for the $\delta^{34}\text{SO}_4$ of natural (pre-anthropogenic) sulfate. Natural Mississippi River $\delta^{34}\text{SO}_4$ would be -0.8% from the same model if the 2009 Mississippi River $\delta^{34}\text{SO}_4$ average of -1% is used. And again, a solution based on the lowest Mississippi River $\delta^{34}\text{SO}_4$ of -6.3% from 08/26/2010 would imply that natural Mississippi River $\delta^{34}\text{SO}_4$ was -14.0%. This exercise shows how source estimates can
significantly differ from the long term when based on an unrepresentative year or a one-time
“snapshot”.

Low δ\(^{34}\)S values of Mississippi River sulfate

The likely source of Mississippi River sulfate with low δ\(^{34}\)S\(_{SO_4}\) indicated from the
Missouri River sub-basin is the weathering of pyrite in rocks deposited during the transgression
of a Cretaceous-age epicontinental seaway\(^{3}\) which are now exposed in western and upper reaches
of the Mississippi River basin\(^{39}\). The δ\(^{34}\)S of pyrites in Cretaceous shales can span a wide range,
with reported values between +16.7‰ to −34.7‰ but mostly negative with a mean at −19.7‰\(^{40}\). The implication for respectively lower and higher δ\(^{34}\)S\(_{SO_4}\) of the Missouri River and Ohio River
is consistent with the seasonal and spatial patterns in δ\(^{34}\)S from zebra mussels across the
Mississippi River basin during 1997-1998\(^{41}\). The zebra mussel sulfur is sourced from riverine
sulfate but slightly fractionated, for example at Baton Rouge the reported mussel δ\(^{34}\)S was near
−4‰ versus the average δ\(^{34}\)S\(_{SO_4}\) around −3‰ from our study, with their comparison suggesting
that Mississippi River sulfate end members have not changed significantly over the past ~20
years.

Mass balance of pyrite-derived sulfate

Here we provide a more detailed Mississippi River sulfate mass balance that expands on
the previous work using the δ\(^{34}\)S\(_{SO_4}\) average\(^{3}\). The δ\(^{34}\)S of sulfate from rock weathering of shale
pyrite and evaporite (excluding mine drainage), which here we will call δ\(^{34}\)S\(_{RW}\), was previously
estimated as −6.5‰, where the sulfate from natural and anthropogenically enhanced rock
weathering were assumed to have the same δ\(^{34}\)S value\(^{3}\). We adopt δ\(^{34}\)S values of 20‰ for
evaporite and −17‰ for pyrite from marine shales, for δ\(^{34}\)S\(_{E}\) and δ\(^{34}\)S\(_{Py}\) respectively. Despite a typically wide range in pyrite sulfur isotope compositions, such as a ~50‰ range in Cretaceous pyrite δ\(^{34}\)S data, the strong δ\(^{34}\)S difference between average marine evaporite and pyrite is forgiving when using estimated values to partition their mass balance. With the given constraints, the mixing equation becomes:

\[\delta^{34}\text{S}_{RW} = f_{Py} \times \delta^{34}\text{S}_{Py} + (1 - f_{Py}) \times \delta^{34}\text{S}_{E} \] (5)

The mass balance of pyrite and evaporite can then be solved for the unknown fraction of pyrite, \(f_{Py}\), which is determined as 0.72 with evaporite being the remainder. Thus, the sulfate load from rock weathering in the Mississippi River is 72% pyrite-derived sulfate and 28% evaporite sulfate, or a respective 26.5% and 11% of the total Mississippi River sulfate budget (Table S3). A scaling of coal production to riverine sulfate load was previously used to estimate the contribution of mine drainage pyrite-derived sulfate. The result was, out of a total flux of 27.8 Tg SO\(_4^{2-}\) yr\(^{-1}\) from the Mississippi River, sulfate from mine drainage accounted for 47% and its average δ\(^{34}\)S value was estimated as −1.8‰. Thus, the sulfate load from natural and anthropogenically enhanced weathering of shale pyrite and pyrite weathering in mine drainage is 74 ±10%, or 20.6 Tg SO\(_4^{2-}\) yr\(^{-1}\). Under such heavy loads of pyrite-derived sulfate, the oxygen isotopes of Mississippi River sulfate should strongly reflect variations in the ambient water oxygen source and the pathway of pyrite oxidation.

Seasonal variations

The differences in sulfur isotope compositions of average bedrocks in Mississippi River sub-basins, and the dominance of pyrite-derived sulfate, may explain the δ\(^{34}\)S\(_{SO_4}\) seasonality as well as the lack of the same in δ\(^{18}\)O\(_{SO_4}\) (Figs. 2 and 3), all despite a heavy anthropogenic
overprint. A global comparison of riverine sulfate reveals smaller ranges of average $\delta^{18}O_{SO_4}$ with high contributions from evaporite sulfate and a larger range of average $\delta^{18}O_{SO_4}$ in rivers with higher amounts of pyrite-derived sulfate (shale pyrite and mine drainage sources) (Fig. 3a). Also observed in figure 3a, rivers with high pyrite-derived sulfate loads have $\delta^{18}O_{SO_4}$ corresponding to local meteoric water differences, whereas sulfate from the North American Mackenzie, Oldman, and Mississippi Rivers plot with respectively lower to higher $\delta^{18}O_{SO_4}$ values that reflect the correlation of lower $\delta^{18}O_{water}$ with higher latitudes. The Mississippi River $\delta^{34}S_{SO_4}$ and $\delta^{18}O_{SO_4}$ data indicate the strong signature of pyrite-derived sulfate as compared to evaporite sulfate, and mixing of two sources that are significantly different in their $\delta^{34}S_{SO_4}$ but not in their $\delta^{18}O_{SO_4}$ (Fig. 3b). The Ohio and Missouri River sub-basins contribute a respective 33% and 41% of average Mississippi River sulfate flux during the study period. The average Mississippi River $\delta^{34}S_{SO_4}$ and $\delta^{18}O_{SO_4}$ for the upper ranges of Ohio and Missouri sulfate flux contributions are plotted in figure 3b and indicate that the most important source of ^{34}S-depleted sulfate in the Mississippi River comes from the Missouri River sub-basin. Source mixing in the Mississippi River is also apparent in a bimodal distribution of $\delta^{34}S_{SO_4}$ data with modes at around -1% and -5% (Fig. S3). During the periods of seasonally low $\delta^{34}S_{SO_4}$ the Missouri River accounts for up to ~80% of total Mississippi River sulfate flux (Fig. S4). Sulfate measurements from 01/27/11 to 06/01/11 from the upper Ohio River at Tell City, Indiana (Table S2) show that the Ohio has higher average $\delta^{34}S_{SO_4}$ (0.3%) compared to the Mississippi River (~3.2%) during the same interval. Meanwhile, from figure 3b we estimate that the difference in $\delta^{18}O_{SO_4}$ between Ohio and Missouri river sulfate is less than 1%.
Figure 3. Sulfate δ^{34}S is plotted against δ^{18}O for this study, selected rivers, and expected ranges of riverine sulfate sources. In plot (a), sulfate data for the Mississippi River from this study (filled circles) are shown along with previously published river averages and their ranges (open circles and error bars for ranges) $^9, 10, 22, 24, 43-45$, and the important rock sources of sulfate of evaporites9, shale pyrite42, mine drainage3, with their averages (open squares) and respective ranges (shaded boxes). Note that the Mackenzie River average is from spatial data while all other riverine sulfate averages are from time series. The average δ^{18}O$_{SO_4}$ of sulfate derived from oxidation of pyrite in shales and mine drainage in (a), are estimated from oxygen sources of average Mississippi River water (-6.6‰46) and air O$_2$ (23.5‰47), with a typical fractionation between sulfate and water of 9‰48, and the resulting sulfate oxygen having a source ratio $\frac{3}{4}$ water and $\frac{1}{4}$ air O$_2$.49 The estimated δ^{18}O$_{SO_4}$ ranges (-20‰ to 11‰) for sulfate from pyrite oxidation and mine drainage assume that such sulfate can approach a 100% water oxygen end member (-20‰ at its lowest for US river waters50); and on the high end, with US river waters up to -2‰50, sulfate could reach up to 11‰ with the aforementioned sulfate-water fractionation factor and oxygen source ratio. Plot (b) shows an expanded view of the Mississippi River sulfate data and its averages (large symbols) for the upper 25% of flux contributions from the Ohio and Missouri Mississippi River sub-basins with respect to the Mississippi River sulfate total.

Differential response of δ^{34}S$_{SO_4}$ and δ^{18}O$_{SO_4}$ to sulfate origin

Riverine sulfate oxygen isotope δ^{18}O has been used previously to help constrain the sources of SO$_4^{2-}$ in river systems$^{8-10, 51}$, however the interpretation of δ^{18}O$_{SO_4}$ is not as straightforward as δ^{34}S$_{SO_4}$ because δ^{34}S$_{SO_4}$ is able to more faithfully retain source compositions.
while $\delta^{18}O_{SO_4}$ is prone to variable kinetic isotope effects and replacement of its original oxygen. The oxygen isotopes of SO_4^{2-} reflect a combination of its sources that are mainly water and air O_2 (where $\delta^{18}O_{O_2} = 23.5\%$ and US surface waters range $\sim 20\%$ to -2% in $\delta^{18}O_{H_2O}$), oxygen isotope fractionation factors, the net effect of bacterial sulfate reduction, and the pathways of oxidation from sulfide to sulfate. Sulfate generated from the abiotic or biological oxidation of pyrite have $\delta^{34}S_{SO_4}$ compositions that are very similar to their pyrite source and $\delta^{18}O_{SO_4}$ compositions linked to the $\delta^{18}O$ of the ambient water source and the oxidation pathway. Similarly, during the mineralization of biomass the re-oxidation of sulfur will affect the resulting $\delta^{18}O_{SO_4}$ and leave $\delta^{34}S$ relatively unchanged between its sulfur source and the resulting sulfate. Biological sulfur cycling via bacterial sulfate reduction (BSR) and subsequent re-oxidation of the product sulfide to sulfate (for example, in marine environments to 90% is re-oxidized) is one of the most significant controls on the mix of oxygen sources in SO_4^{2-} in freshwater and marine environments. Due to BSR, the concentration of remaining SO_4^{2-} decreases and becomes more enriched in ^{18}O and ^{34}S. During so-called cryptic sulfur cycling, however, BSR can operate without affecting sulfate concentration or $\delta^{34}S_{SO_4}$ but a quantitative re-oxidation of sulfide to sulfate results in replacement of sulfate oxygen and thus an effect on $\delta^{18}O_{SO_4}$. The comparison of sulfate concentrations, $\delta^{18}O_{SO_4}$, and $\delta^{34}S_{SO_4}$ in the Mississippi River, where pyrite-derived sulfate composes $74 \pm 10\%$ of the budget, may not show conclusive evidence of BSR in the sense of residual sulfate decreasing in concentration and increasing in $\delta^{18}O_{SO_4}$ and $\delta^{34}S_{SO_4}$. Indeed, the Mississippi River sulfate concentration changes appear related to dilution effects, where spring snowmelt and precipitation result in lower sulfate concentration without a clear signal in $\delta^{18}O_{SO_4}$ and $\delta^{34}S_{SO_4}$ (Fig. 2).
During 2009-2013, Mississippi River δ^{18}O$_{SO_4}$, in contrast to its δ^{34}S$_{SO_4}$, does not respond seasonally. The δ^{18}O$_{SO_4}$ shows a general decreasing trend concomitant with increasing drought (Figs. 2 and 4) and a strong peak in the beginning of 2010. The δ^{18}O$_{SO_4}$ response appears to be basin-wide behavior across the Mississippi River, as compared to the seasonal control on sub-basin sulfate input reflected in δ^{34}S$_{SO_4}$ variations. First, although it composes just 15% of the Mississippi River sulfate budget, the oxygen isotope composition of atmospheric sulfate input is probably replaced, as consistent with results from a 36-year study in Hubbard Brook where internal cycling of atmospheric sulfate occurred during a residence time of 9 years57,58. Furthermore, there are significant variations in the oxygen isotopes of river water between Mississippi River sub-basins50 and this should register in the Mississippi River that has significant pyrite-derived sulfate that takes most of its oxygen from water. However, water data for the Ohio and Upper Mississippi59, and Missouri60 Rivers, indicates respective average δ^{18}O$_{water}$ for these rivers of -7.5%, -8.2%, and -9%. The average oxygen isotope differences are a maximum of 1.5% between Mississippi River sub-basin river waters and this will be reflected in their pyrite-derived sulfate. Thus, while the δ^{34}S$_{SO_4}$ response is strong, the δ^{18}O$_{SO_4}$ responds weakly to the geographic origin of sulfate sources in the Mississippi River (Fig. 3b).
Figure 4. Monthly averages of Mississippi River sulfate $\delta^{18}O$, from this study, cross-plotted against monthly Palmer Hydrological Drought Index (PHDI) for the contiguous United States. Palmer drought indices indicate moisture conditions, with negative and positive values indicating dry and wet anomalies, respectively. In this case, Mississippi River sulfate $\delta^{18}O$ has a positive correlation with the PHDI, where lower and higher $\delta^{18}O_{SO_4}$ correspond to increasing drought and wetter conditions, respectively.

Implications of the trend in $\delta^{18}O_{SO_4}$

The trend of decreasing Mississippi River $\delta^{18}O_{SO_4}$ over 2009-2013 occurs with increasing average drought and surface temperature in the contiguous United States and this suggests possible mechanisms for the $\delta^{18}O_{SO_4}$ response. Monthly averages of Mississippi River sulfate $\delta^{18}O$ correlate strongly ($R^2 = 0.82$, linear regression) with the Palmer Hydrological Drought Index (PHDI) (Fig. 4). A “hydrological drought” condition is where surface and ground water availability is lower than average due to meteorological drought, as caused by anomalously low precipitation that can in turn be caused by temperature anomalies. The PHDI can be considered an indicator of environmental response to precipitation input, and as such the PHDI changes more slowly than precipitation. The strong correlation between Mississippi River $\delta^{18}O_{SO_4}$ and PHDI, but lack of correlations between $\delta^{18}O_{SO_4}$ and changes in sulfate flux between Mississippi River sub-basins or other chemical parameters (e.g., USGS-monitored concentration of redox-sensitive elements such as As and V, water temperature, and dissolved oxygen) suggests that it is a balance between sulfate from more recent surface runoff versus sulfate from groundwater that controls Mississippi River $\delta^{18}O_{SO_4}$. It is possible that oxygen source for low $\delta^{18}O_{SO_4}$ could be from the northwestern region of the Mississippi River basin, as streamwaters in the upper Missouri River area can range down to a $\delta^{18}O_{H_2O}$ of -18%. However, Mississippi River sulfate should also show the low $\delta^{34}S_{SO_4}$ values expected from Missouri River sulfate input if it was more significant during drought but this does not occur (Fig. 2). As reviewed by Van Stempvoort
and Krouse48, with few exceptions sulfate oxygen isotopes are more 18O-enriched than the ambient water in which the sulfate originates due to fractionation between sulfate and water (δ^{18}O $\approx +9\%$) and the variably kinetic incorporation of 18O-enriched oxygen from air O\textsubscript{2} (δ^{18}O = 23.5\%47). The 18O-enrichment of sulfate relative to water is due to rapid oxygen exchange between sulfite and water, where sulfite is an intermediate during sulfide oxidation to sulfate, and sulfite is shown to be 9.5 ±0.8\% 18O-enriched versus water under typical experimental conditions64. While there is some correlation between δ^{18}O\textsubscript{SO4} and δ^{34}S\textsubscript{SO4} during wetter conditions (wet PHDI, Fig. S6), during dry conditions there is no such correlation despite nearly the same range of δ^{34}S\textsubscript{SO4} as during wetter conditions in the Mississippi River. Here we suspect a difference in oxidation pathways for pyrite-derived sulfate in surface versus groundwater environments, where more extensive weathering of pyrites in groundwater results in a greater proportion of water oxygen in sulfate as compared to pyrite oxidation in more surficial environments. Thus, a greater proportion of groundwater sulfate sources, attended by lower δ^{18}O\textsubscript{SO4}, may be represented in the river during drought conditions as compared to normal or high flow periods. As summarized by Taylor and Wheeler, 199365, two reactions are typically used to describe pyrite oxidation to sulfate:

\begin{align*}
\text{FeS}_2 + 7/2\text{O}_2 + \text{H}_2\text{O} & \rightarrow \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 2\text{H}^+ \quad (6) \\
\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} & \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+ \quad (7)
\end{align*}

Where reaction (7) is rate-limited by the oxidation of Fe2+ by O\textsubscript{2} in the reaction:

\begin{align*}
\text{Fe}^{2+} + 1/4\text{O}_2 + \text{H}^+ & \rightarrow \text{Fe}^{3+} + 1/2\text{H}_2\text{O} \quad (8)
\end{align*}

In experiments53, and in natural systems65, it has been observed that the oxidation of pyrite under submersed and alternating wet/dry conditions results in sulfate with δ^{18}O\textsubscript{SO4} that is around 2\%\textsubscript{o} to 18\%\textsubscript{o} higher than that of ambient water δ^{18}O\textsubscript{water}, a scenario that was used to estimate the ranges
of pyrite-derived sulfate for the Mississippi River shown in figure 3a. This $\delta^{18}O$ offset between pyrite-derived sulfate and water can tend towards a more restricted range of about 5% to 12% in neutral waters and goes towards smaller offsets (down to -4%) under submersed, sterile, and anaerobic conditions and larger offsets (up to -18%) under wet/dry, with sulfide-oxidizing bacteria present, and aerobic conditions 65. Mississippi River sulfate during drier PHDI conditions may have an even greater proportion of oxygen from water because it is derived from pyrite preferentially oxidized under reaction (7). Alternatively, changing Mississippi River hydrologic conditions may exert a control on an expression of cryptic sulfur cycling within the basin, and thus characteristically affect $\delta^{18}O_{SO_4}$ and not $\delta^{34}S_{SO_4}$ 56, with $\delta^{18}O_{SO_4}$ possibly shifting to lower values in accordance with a changing locus of sulfide oxidation from more to less aerated environments, however the mechanisms behind cryptic sulfur cycling are still poorly understood.

$\Delta^{17}O_{SO_4}$ constraints on sulfate oxygen sources

Variations in $\Delta^{17}O_{SO_4}$ can help to differentiate sources, formation pathways, and processes affecting riverine sulfate. However, $\Delta^{17}O_{SO_4}$ in surface waters is an underdeveloped tracer, with presently only one riverine $\Delta^{17}O_{SO_4}$ study available 66. Here we note that $\Delta^{17}O$ (eq. 2) is used to describe triple oxygen isotopes in general, but we report the logarithmic form $\Delta'^{17}O$ (eq. 3). The difference between $\Delta^{17}O$ and $\Delta^{17}O$ is very small for measurements not far from the origin, for example within error of each other for the Mississippi River sulfate data (Fig. S1).

Generally, sulfate has positive $\Delta^{17}O$ values when originated as secondary atmospheric sulfate, and slightly negative values when formed via oxidation of reduced sulfur 67. The positive $\Delta^{17}O$ range of atmospheric sulfate, 0.14$\%$ to 1.43$\%$ in northern hemisphere precipitation 68,69, is inherited from ozone and/or hydrogen peroxide 70. This ^{17}O-enrichment from atmospheric SO_4^{2-}...
input, which is ~15% of the Mississippi River sulfate budget, is likely lost via replacement with oxygen from ambient water and/or air O$_2$ during sulfate reduction and sulfide re-oxidation within biologically active surface environments. Likewise, the sulfate generated during oxidative weathering of sulfides, such as pyrite and organic sulfur, will incorporate its oxygen from ambient water ($\Delta^{17}O = -0.03$ to +0.11‰ in the Northern Hemisphere and air O$_2$ ($\Delta^{17}O = -0.47‰$) with effects from associated fractionation factors.

Figure 5. Plot of triple oxygen isotopes reported in ‰ VSMOW. The $\Delta^{17}O$ uses a 0.5305 reference slope and is cross-plotted against $\delta^{18}O$. All sulfate data are from the Mississippi River from this study and are shown with values of its potential oxygen sources meteoric water ($\delta^{18}O_{water}$ is $-6.6‰$ from the lower Mississippi and here its $\Delta^{17}O$ is inferred. The sulfate data is divided according to wet or dry conditions in the Mississippi River basin (wet or dry PHDI). The dashed lines schematically represent possible mixing paths between Mississippi River sulfate oxygen end members, average Mississippi River
water and air O$_2$. The boundaries of this mixing path are based on previous work on δ^{18}O fractionations between sulfate and water and sulfate and air O$_2$ during pyrite oxidation53,65. The location and direction of the arrows indicates starting points for mixing between oxygen end members when the fractionation factors between sulfate and water and sulfate and air O$_2$ are considered.

A very simplified view of the triple oxygen isotope composition of Mississippi River sulfate is linear mixing between average Mississippi River water and air O$_2$. It is tempting to use the δ^{18}O difference between sulfate and ambient water to assess the relative contributions of water and air O$_2$ oxygen to sulfate, but the evidence cautions against this. The oxidation of sulfide to sulfate involves multiple kinetic steps that can result in sulfate with a δ^{18}O value even lower than that of ambient water48,49,72. Therefore using δ^{18}O to estimate water and air O$_2$ oxygen contributions to sulfate may be unreliable, particularly when the sample populations are small. In the case of Δ^{17}O$_{SO_4}$, it is less prone to the same kinetic effects observed in δ^{18}O$_{SO_4}$. The use of Δ^{17}O$_{SO_4}$ to assess air O$_2$ is relevant for understanding the ancient Earth atmosphere in the geological past via sulfate in rocks67 and thus characterizing the Δ^{17}O tracer in modern riverine sulfates is a necessary calibration step. Under the reference frame we use for Δ^{17}O (where the slope $C = 0.5305$ in eq. 3), sulfate Δ^{17}O versus δ^{18}O will normally show negative correlation when the oxygen sources are water and air O$_2$ (Fig. 5). As shown in figure 5, the oxygen isotope offset between pyrite-derived sulfate and water that was observed in δ^{18}O$_{SO_4}$ from submersed (closer to water values) and alternating wet/dry experiments (further from water values)53 and in natural settings65 appears to also be expressed in the added triple oxygen isotope dimension of Δ^{17}O. Previous pyrite oxidation experiments using Δ^{17}O revealed that a stoichiometric average $\frac{1}{4}$ of oxygen in pyrite-derived SO$_4^{2-}$ came from air O$_2$ with the remaining $\frac{3}{4}$ oxygen coming from ambient water49. The triple oxygen isotope compositions of water follow a predictable array due to Rayleigh distillation71. We can use this meteoric water array and the relatively large Δ^{17}O
difference between it and air O_2 to our advantage and estimate if a given sulfate oxygen isotope composition has an almost entirely water oxygen source by simply checking its closeness to meteoric water in triple oxygen isotope space (Fig. 5). We assume that the highest Mississippi River $\Delta^{17}O_{SO4} (-0.01\%, \text{Fig. 5})$ closely represents the sulfate end member with 100% water oxygen source because its location in triple oxygen isotope space matches well with the sulfate predicted from pyrite oxidation, and its attendant oxygen sulfate-water $\delta^{18}O$ offset, with 100% water oxygen sourced from average Mississippi River water. The 100% air O_2 sulfate end member is represented by the value of modern air O_2, $\Delta^{17}O = -0.47\%$. With these Mississippi River sulfate oxygen water and air O_2 end members, a mixing equation can be constructed as follows:

$$\Delta^{17}O_{SO4} = f_{airO2} \times \Delta^{17}O_{airO2} + (1 - f_{airO2}) \times \Delta^{17}O_{water} \quad (9)$$

Between these end members, the fraction of air O_2 in Mississippi River sulfate (f_{airO2}) is 0.18. Thus, with respect to $\Delta^{17}O$ and including 1 standard deviation error, 18 ±9% of Mississippi River sulfate oxygen is shown to be sourced from air O_2 (Fig. S7). This result is consistent with 74% of Mississippi River sulfate being from pyrite-derived sulfate. With the assumptions that an average of 25% of oxygen from air O_2 is in pyrite-derived sulfate49, and that all other sulfate sources sum to $\Delta^{17}O = 0.00\%$, then $0.74 \times 0.25 = 0.19$, nearly identical, though perhaps coincidentally so, to the ratio of air O_2 oxygen in Mississippi River sulfate determined via $\Delta^{17}O$.

Modeling the Mississippi River sulfate $\delta^{34}S$, $\delta^{18}O$, and $\Delta^{17}O$ time series

Finally, the Mississippi River sulfate isotope time series were modeled with mixing of sulfate fluxes between three sub-basins and an input term for PHDI and respectively assigned isotope values. Twelve inputs are reduced to four variables that are further constrained with our
sulfate measurements from the Ohio River, published freshwater mussel sulfur isotopes from within the Mississippi River basin, published water oxygen isotope data, and our updated Mississippi River sulfate source partitioning. The mixing model is as follows:

\[\delta^{xx}Z_{\text{Model}} = f_{\text{Flux}}(f_{\text{MSR}} \delta^{xx}Z_{\text{MSR}} + f_{\text{OR}} \delta^{xx}Z_{\text{OR}} + f_{\text{UMR}} \delta^{xx}Z_{\text{UMR}}) + f_{\text{PHDI}}(f_{\text{Wet}} \delta^{xx}Z_{\text{Wet}} + f_{\text{Dry}} \delta^{xx}Z_{\text{Dry}}) \]

(10)

Here, \(\delta^{xx}Z \) refers to the isotope parameter \(\delta^{34}S, \delta^{18}O, \) or \(\Delta^{17}O \); and \(\delta^{xx}Z_{\text{Model}} \) is the daily modeled output for Mississippi River \(\delta^{34}S_{SO_4}, \delta^{18}O_{SO_4}, \) or \(\Delta^{17}O_{SO_4} \) during the measured study period (03/11/09 to 01/01/13). The proportion of influence from the mixing of sulfate fluxes from Mississippi River sub-basins versus the continental-scale forcing due to overall hydrological conditions is balanced between \(f_{\text{Flux}} \) and \(f_{\text{PHDI}} \), where \(f_{\text{PHDI}} = 1 - f_{\text{Flux}} \). For the mix of sub-basin sulfate fluxes, \(f_{\text{MSR}}, f_{\text{OR}}, \) and \(f_{\text{UMR}} \) are the respective sulfate flux ratios and \(\delta^{xx}Z_{\text{MSR}}, \delta^{xx}Z_{\text{OR}}, \) and \(\delta^{xx}Z_{\text{UMR}} \) are the respective isotope values (\(\delta^{34}S_{SO_4}, \delta^{18}O_{SO_4}, \) or \(\Delta^{17}O_{SO_4} \)) for the Missouri, Ohio, and Upper Mississippi river sub-basins of the Mississippi River. The sub-basin fluxes were determined by taking daily water discharge data and matching them with sulfate concentrations that were interpolated, from measurements taken approximately monthly, to give daily values. Then, the ratios for sub-basin sulfate fluxes were each sub-basin’s sulfate flux versus their combined sum, here using the mix of sulfate flux between three sub-basins to represent the whole Mississippi River. The difference in sulfate flux between the averages determined from the lower Mississippi River and the summed three sub-basins was 6% during the study period, and thus the flux contribution from the middle Mississippi River is neglected in the model. The influence of hydrological conditions represented by the Palmer Hydrological Drought Index is split into “wet” and “dry” components in order to assign different respective “wet” and “dry” isotope values (\(\delta^{xx}Z_{\text{Wet}} \) and \(\delta^{xx}Z_{\text{Dry}} \)). The PHDI \(f_{\text{Wet}} \) and \(f_{\text{Dry}} \) components use
reported monthly PHDI interpolated to give daily PHDI, which is then scaled to make a ratio
where maximum dry PHDI during the study period is equal to 1, and wet PHDI is the difference,
where \(f_{\text{wet}} = 1 - f_{\text{dry}} \). The model input variables are then \(\delta^{xx}Z_{\text{MSR}}, \delta^{xx}Z_{\text{OR}}, \delta^{xx}Z_{\text{UMR}} \) and \(f_{\text{flux}} \). The
input values are explored for feasible Mississippi River \(\delta^{34}S_{\text{SO}_4}, \delta^{18}O_{\text{SO}_4}, \) or \(\Delta^{17}O_{\text{SO}_4} \) by testing
for the average of sum daily modeled outputs against the average of sum measured values, the
correlation between daily model outputs and measured values, and good agreement between the
curves of measured and modeled time series data. The best-fitting model outputs are shown in
figure 6 and the global values for model parameters are in the supporting information (Table S4).
The Mississippi River \(\delta^{34}S_{\text{SO}_4} \) time series model is feasible if the Ohio River has higher \(\delta^{34}S_{\text{SO}_4} \)
than the Missouri River and it is almost entirely controlled by their balance of sulfate flux input
as compared to influence from basinwide wetter or drier conditions, as modeled via PHDI.
Mississippi River \(\delta^{18}O_{\text{SO}_4} \) is described well in our model with our estimated contribution of 74%
pyrite-derived sulfate dominating sulfate flux and thus resulting in \(\delta^{18}O_{\text{SO}_4} \) that is dominated by a
water oxygen source best represented by the average ambient Mississippi River river water \(\delta^{18}O \)
and a changing oxidation pathway that can be simulated by the PHDI term in the model, whereas
only 26% of the Mississippi River \(\delta^{18}O_{\text{SO}_4} \) is due to the balance of sulfate fluxes from the three
sub-basins used in the model. The Mississippi River \(\Delta^{17}O_{\text{SO}_4} \) modeling follows the same
forcings as \(\delta^{18}O_{\text{SO}_4} \) but there is an additional transient component in the real data which our
model is unable to recreate.
Figure 6. Time series of modeled Mississippi River $\delta^{34}S_{SO_4}$, $\delta^{18}O_{SO_4}$, and $\Delta^{17}O_{SO_4}$ are shown with measured data. Measured data error bars are shown or are smaller than symbols. The flux-only model uses a mix of sulfate flux from three Mississippi River sub-basins, the PHDI-only model simulates forcing from overall hydrological conditions for the contiguous United States, and the mixed model incorporates both flux-only and PHDI-only models with further details and discussion given in the main text.

Implications for riverine sulfate

Mississippi River $\Delta^{17}O_{SO_4}$, $\delta^{18}O_{SO_4}$, and $\delta^{34}S_{SO_4}$ each reveal their own different perspectives on the Mississippi River system and its response to seasonal changes or year-to-year...
weather patterns. Although our Mississippi River study reveals characteristics of riverine sulfate that might be widespread, each river should be considered as a more-or-less unique case, with its own set of processes and sulfur sources dictated by climate, hydrology, and geology. Moreover, in other rivers, anthropogenic influence on sulfate may be expressed by isotopic shifts in the opposite direction, to lower $\delta^{34}S_{SO_4}$ for example, as compared to what is inferred from the Mississippi River. Although not done for this study, measurement of the triple oxygen isotope composition ($\delta^{18}O$ and $\Delta'^{17}O$) of not only the dissolved sulfate, but also the river water from the same sample, could enable high resolution sulfate oxygen isotope mass balance calculations, further assist in tracing river water sources such as runoff versus groundwater, and aid interpretations of the sources of sulfate oxygen and sulfate oxidation pathways. Prime targets for follow-up sulfate sulfur and oxygen isotope studies would be the Missouri and Ohio river sub-basins to characterize the loadings of pyrite-derived sulfate from natural and anthropogenic bedrock weathering and mine drainage. Our results add to the calls for reassessing the contribution of pyrite-derived sulfate to global sulfur budgets9, especially pyrite-derived sulfate from coal mining15, and suggest that the important estimates of natural and anthropogenic global riverine sulfate flux5,73 are due for an update.

Acknowledgements

Thanks to Bill Alvey and Tell City High School in Indiana for Ohio River water sampling, Justin Hayles, Stefan Lalonde, Manuel Bellanger, Pierre Sans-Jofre, and the members of Bao group past and present for helpful discussions, and the anonymous reviewers whose constructive comments greatly improved this manuscript. National Science Foundation (EAR-1251824, EAR-1312284 to HB) provided part of the research fund, and indirect support was received during the
preparation of this manuscript from the European Union Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant agreement No 708117 to BK).

Supporting Information Available

Supporting Information includes additional details on methods, modeling, oxygen isotope discussion, and tables of sulfate isotope data, an updated Mississippi River sulfate budget, and model inputs.

References

1. Canfield, D. E., Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle. *Proc. Nat. Acad. Sci. U.S.A.* 2013, 110, (21), 8443-6.
2. Halevy, I.; Peters, S. E.; Fischer, W. W., Sulfate burial constraints on the Phanerozoic sulfur cycle. *Science* 2012, 337, (6092), 331-334.
3. Killingsworth, B. A.; Bao, H., Significant Human Impact on the Flux and δ34S of Sulfate from the Largest River in North America. *Environ. Sci. Technol.* 2015, 49, (8), 6051-60.
4. Berner, R. A., Worldwide sulfur pollution of rivers. *J. Geophys. Res.* 1971, 76, (27), 6597-6600.
5. Meybeck, M., Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans. *Rev. Geol. Dyn. Geogr. Phys* 1979, 21, (3), 215-246.
6. Ivanov, M.; Grinenko, V.; Rabinovich, A., Sulphur flux from continents to oceans. In *The Global Biogeochemical Sulphur Cycle*, Ivanov, M. V.; Freney, J. R., Eds. John Wiley & Sons, Chichester: 1983; pp 331-356.
7. Turchyn, A. V.; Schrag, D. P., Oxygen isotope constraints on the sulfur cycle over the past 10 million years. *Science* 2004, 303, (5666).
8. Karim, A.; Veizer, J., Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. *Chem. Geol.* 2000, 170, (1), 153-177.
9. Calmels, D.; Gaillardet, J.; Brenot, A.; France-Lanord, C., Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. *Geology* 2007, 35, (11), 1003-1006.
10. Li, X.; Gan, Y.; Zhou, A.; Liu, Y., Relationship between water discharge and sulfate sources of the Yangtze River inferred from seasonal variations of sulfur and oxygen isotopic compositions. *J. Geochem. Explor.* 2015, 153, 30-39.
11. Robinson, B. W.; Bottrell, S. H., Discrimination of sulfur sources in pristine and polluted New Zealand river catchments using stable isotopes. *Appl. Geochem.* 1997, 12, (3), 305-319.
12. Nakano, T.; Tayasu, I.; Wada, E.; Igeta, A.; Hyodo, F.; Miura, Y., Sulfur and strontium isotope geochemistry of tributary rivers of Lake Biwa: implications for human impact on the decadal change of lake water quality. *Sci. Tot. Environ.* 2005, 345, (1), 1-12.
13. Das, A.; Chung, C. H.; You, C. F., Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. *Geophys. Res. Lett.* 2012, 39, (12).

14. Torres, M. A.; West, A. J.; Clark, K. E.; Paris, G.; Bouchez, J.; Ponton, C.; Feakins, S. J.; Galy, V.; Adkins, J. F., The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles. *Earth Planet. Sci. Lett.* 2016, 450, 381-391.

15. Raymond, P. A.; Oh, N.-H., Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets. *Earth Planet. Sci. Lett.* 2009, 284, (1), 50-56.

16. Ingri, J.; Torssander, P.; Andersson, P.; Mörrth, C.-M.; Kusakabe, M., Hydrogeochemistry of sulfur isotopes in the Kalix River catchment, northern Sweden. *Appl. Geochem.* 1997, 12, (4), 483-496.

17. Fitzhugh, R. D.; Furman, T.; Korsak, A. K., Sources of stream sulphate in headwater catchments in Otter Creek Wilderness, West Virginia, USA. *Hydrol. Processes* 2001, 15, (4), 541-556.

18. Björkvald, L.; Giesler, R.; Laudon, H.; Humborg, C.; Mörrth, C.-M., Landscape variations in stream water SO4²⁻ and δ34S SO4 in a boreal stream network. *Geochim. Cosmochim. Acta* 2009, 73, (16), 4648-4660.

19. Stam, A.; Mitchell, M.; Krouse, H.; Kahl, J., Stable sulfur isotopes of sulfate in precipitation and stream solutions in a northern hardwood watershed. *Water Resour. Res.* 1992, 28, (1), 231-236.

20. Alewell, C.; Mitchell, M.; Likens, G.; Krouse, H., Sources of stream sulfate at the Hubbard Brook Experimental Forest: Long-term analyses using stable isotopes. *Biogeochemistry* 1999, 44, (3), 281-299.

21. Novák, M.; Kirchner, J. W.; Groscheová, H.; Havel, M.; Černý, J.; Krejčí, R.; Buzek, F., Sulfur isotope dynamics in two central European watersheds affected by high atmospheric deposition of SOx. *Geochim. Cosmochim. Acta* 2000, 64, (3), 367-383.

22. Otero, N.; Canals, À.; Soler, A., Using dual-isotope data to trace the origin and processes of dissolved sulphate: a case study in Calders stream (Llobregat basin, Spain). *Aquat. Geochem.* 2007, 13, (2), 109-126.

23. Otero, N.; Soler, A.; Canals, À., Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain). *Appl. Geochem.* 2008, 23, (5), 1166-1185.

24. Rock, L.; Mayer, B., Identifying the influence of geology, land use, and anthropogenic activities on riverine sulfate on a watershed scale by combining hydrometric, chemical and isotopic approaches. *Chem. Geol.* 2009, 262, (3), 121-130.

25. Böhleke, J. K.; Michel, R. L., Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA. *Sci. Tot. Environ.* 2009, 407, (14), 4363-4377.

26. Tichomirowa, M.; Heidel, C.; Junghans, M.; Haubrich, F.; Matschullat, J., Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997–2008) in the region of Freiberg, central-eastern Germany. *Chem. Geol.* 2010, 276, (1-2), 104-118.

27. NASA/JPL Shaded Relief with Height as Color, North America.

http://photojournal.jpl.nasa.gov/catalog/PIA03377
28. Meybeck, M.; Ragu, A. GEMS/GLORI world river discharge database.
http://doi.pangaea.de/10.1594/PANGAEA.804574
29. Goolsby, D. A.; Battaglin, W. A.; Lawrence, G. B.; Artz, R. S.; Aulenbach, B. T.;
Hooper, R. P.; Keeney, D. R.; Stensland, G. J. Flux and sources of nutrients in the Mississippi-
Atchafalaya River Basin; National Oceanic and Atmospheric Administration National Ocean
Service Coastal Ocean Program: 1999.
30. Turner, R. E.; Rabalais, N. N., Linking landscape and water quality in the Mississippi
River Basin for 200 years. BioScience 2003, 53, (6), 563-572.
31. U.S. Geological Survey National Water Information System data available on the World
Wide Web (Water Data for the Nation). http://waterdata.usgs.gov/nwis/
32. U.S. Army Corps of Engineers Mississippi River Basin: Stage Data.
http://www2.mvn.usace.army.mil/eng/edhd/wcontrol/miss.asp
33. Bao, H., Purifying barite for oxygen isotope measurement by dissolution and
reprecipitation in a chelating solution. Anal. Chem. 2006, 78, (1), 304-309.
34. Bao, H.; Cao, X.; Hayles, J. A., Triple Oxygen Isotopes: Fundamental Relationships and
Applications. Annu. Rev. Earth Planet. Sci. 2016, 44, (1).
35. R Core Team R: A language and environment for statistical computing. R package
version 3.1.1, Vienna, 2013.
36. National Oceanic and Atmospheric Administration (NOAA) National Centers for
Environmental Information Climate at a Glance. http://www.ncdc.noaa.gov/cag/time-series/us/
37. Ruhl, L.; Vengosh, A.; Dwyer, G. S.; Hsu-Kim, H.; Deonarine, A.; Bergin, M.;
Kravchenko, J., Survey of the Potential Environmental and Health Impacts in the Immediate
Aftermath of the Coal Ash Spill in Kingston, Tennessee. Environ. Sci. Technol. 2009, 43, (16),
6326-6333.
38. Harkness, J. S.; Sulkin, B.; Vengosh, A., Evidence for Coal Ash Ponds Leaking in the
Southeastern United States. Environ. Sci. Technol. 2016.
39. Garrity, C. P., Database of the Geologic Map of North America-Adapted from the Map
by JC Reed, Jr. and others (2005). 2009.
40. Gautier, D. L., Cretaceous shales from the western interior of North America:
Sulfur/carbon ratios and sulfur-isotope composition. Geology 1986, 14, (3), 225-228.
41. Fry, B.; Allen, Y. C., Stable isotopes in zebra mussels as bioindicators of river-watershed
linkages. River Res. Appl. 2003, 19, (7), 683-696.
42. Wortmann, U. G.; Paytan, A., Rapid variability of seawater chemistry over the past 130
million years. Science 2012, 337, (6092), 334-336.
43. Longinelli, A.; Edmond, J., Isotope geochemistry of the Amazon basin: a reconnaissance.
J. Geophys. Res.: Oceans 1983, 88, (C6), 3703-3717.
44. Berndt, M.; Bavin, T., On the Cycling of Sulfur and Mercury in the St. Louis River
Watershed, Northeastern Minnesota. 2012.
45. Brenot, A.; Carignan, J.; France-Lanord, C.; Benoît, M., Geological and land use control
on δ34S and δ18O of river dissolved sulfate: The Moselle river basin, France. Chem. Geol. 2007,
244, (1), 25-41.
46. Global Network of Isotopes in Rivers (GNIR) Mississippi River 18O data measured by
the USGS Reston laboratory, 1984-1987. http://www-
naweb.iaea.org/napc/ih/IHS_resources_gnir.html
47. Young, E. D.; Yeung, L. Y.; Kohl, I. E., On the Δ17O budget of atmospheric O2.
Geochim. Cosmochim. Acta 2014, 135, 102-125.
48. Van Stempvoort, D.; Krouse, H. In Controls of $\delta^{18}O$ in sulfate, Environmental geochemistry of Sulfide Oxidation. Washington DC, American Chemical Society, Symposium Series, 1994; ACS Publications: 1994; pp 446-480.

49. Kohl, I.; Bao, H. M., Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH=2-11). Geochim. Cosmochim. Acta 2011, 75, (7), 1785-1798.

50. Kendall, C.; Coplen, T. B., Distribution of oxygen-18 and deuterium in river waters across the United States. HydroL Processes 2001, 15, (7), 1363-1393.

51. Turchyn, A. V.; Tipper, E. T.; Galy, A.; Lo, J.-K.; Bickle, M. J., Isotope evidence for secondary sulfide precipitation along the Marsyandi River, Nepal, Himalayas. Earth Planet. Sci. Lett. 2013, 374, 36-46.

52. Mayer, B., Assessing sources and transformations of sulphate and nitrate in the hydrosphere using isotope techniques. In Isotopes in the Water Cycle, Springer: 2005; pp 67-89.

53. Taylor, B. E.; Wheeler, M. C.; Nordstrom, D. K., Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation. Nature 1984, 308, (5959), 538.

54. Balci, N.; Shanks, W. C.; Mayer, B.; Mandernack, K. W., Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 2007, 71, (15), 3796-3811.

55. Antler, G.; Turchyn, A. V.; Ono, S.; Sivan, O.; Bosak, T., Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim. Cosmochim. Acta 2017, 203, 364-380.

56. Mills, J. V.; Antler, G.; Turchyn, A. V., Geochemical evidence for cryptic sulfur cycling in salt marsh sediments. Earth Planet. Sci. Lett. 2016, 453, 23-32.

57. Likens, G.; Driscoll, C.; Buso, D.; Mitchell, M.; Lovett, G.; Bailey, S.; Siccama, T.; Reiners, W.; Alewell, C., The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 2002, 60, (3), 235-316.

58. Miles, G. R.; Mitchell, M. J.; Mayer, B.; Likens, G.; Welker, J., Long-term analysis of Hubbard Brook stable oxygen isotope ratios of streamwater and precipitation sulfate. Biogeochemistry 2011, 111, (1-3), 443-454.

59. Coplen, T. B.; Kendall, C. Stable hydrogen and oxygen isotope ratios for selected sites of the US Geological Survey's NASQAN and benchmark surface-water networks; GEOLOGICAL SURVEY RESTON VA: 2000.

60. Winston, W.; Criss, R., Oxygen isotope and geochemical variations in the Missouri River. Environ. Geol. 2003, 43, (5), 546-556.

61. Palmer, W. C., Meteorological drought. US Department of Commerce, Weather Bureau Washington, DC, USA: 1965; Vol. 30.

62. Van Loon, A. F., Hydrological drought explained. Wiley Interdiscip. Rev.: Water 2015, 2, (4), 359-392.

63. Heim Jr, R. R., A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, (8), 1149.

64. Wankel, S. D.; Bradley, A. S.; Eldridge, D. L.; Johnston, D. T., Determination and application of the equilibrium oxygen isotope effect between water and sulfite. Geochim. Cosmochim. Acta 2014, 125, 694-711.

65. Taylor, B. E.; Wheeler, M. C., Sulfur- and Oxygen-Isotope Geochemistry of Acid Mine Drainage in the Western United States. In Environmental Geochemistry of Sulfide Oxidation, American Chemical Society: 1993; Vol. 550, pp 481-514.
66. Johnson, C. A.; Mast, M. A.; Kester, C. L., Use of $^{18}O/^{16}O$ to trace atmospherically deposited sulfate in surface waters: A case study in Alpine watersheds in the Rocky Mountains. *Geophys. Res. Lett.* **2001**, *28*(23), 4483-4486.

67. Bao, H., Sulfate: A time capsule for Earth's O2, O3, and H2O. *Chem. Geol.* **2015**, *395*, 108-118.

68. Jenkins, K. A.; Bao, H., Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA. *Atmos. Environ.* **2006**, *40*(24), 4528-4537.

69. Li, X.; Bao, H.; Gan, Y.; Zhou, A.; Liu, Y., Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in a mega-city in central China. *Atmos. Environ.* **2013**, *81*, 591-599.

70. Savarino, J.; Lee, C. C.; Thiemens, M. H., Laboratory oxygen isotopic study of sulfur (IV) oxidation: Origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth. *J. Geophys. Res.: Atmos.* **2000**, *105*(D23), 29079-29088.

71. Luz, B.; Barkan, E., Variations of $^{17}O/^{16}O$ and $^{18}O/^{16}O$ in meteoric waters. *Geochim. Cosmochim. Acta* **2010**, *74*(22), 6276-6286.

72. Tichomirowa, M.; Junghans, M., Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments. *Appl. Geochem.* **2009**, *24*(11), 2072-2092.

73. Berner, E. K.; Berner, R. A., *Global environment: water, air, and geochemical cycles*. Princeton University Press: 2012.
