β-Glucan Synthase Gene Overexpression and β-Glucans Overproduction in *Pleurotus ostreatus* Using Promoter Swapping

Ran Chai¹,²,³, Cuiwei Qiu¹,²,³, Dongren Liu¹,², Yuancheng Qi¹,², Yuqian Gao¹,², Jinwen Shen¹,², Liyou Qiu¹,²

1 College of Life Sciences, Henan Agricultural University, Zhengzhou, People’s Republic of China, 2 Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, People’s Republic of China

Abstract

Mushroom β-glucans are potent immunological stimulators in medicine, but their productivities are very low. In this study, we successfully improved its production by promoter engineering in *Pleurotus ostreatus*. The promoter for β-1,3-glucan synthase gene (GLS) was replaced by the promoter of glyceraldehyde-3-phosphate dehydrogenase gene of *Aspergillus nidulans*. The homologous recombination fragment for swapping GLS promoter comprised five segments, which were fused by two rounds of combined touchdown PCR and overlap extension PCR (TD-OE PCR), and was introduced into *P. ostreatus* through PEG/CaCl₂-mediated protoplast transformation. The transformants exhibited one to three fold higher transcription of GLS gene and produced 32% to 131% higher yield of β-glucans than the wild type. The polysaccharide yields had a significant positive correlation to the GLS gene expression. The infrared spectra of the polysaccharides all displayed the typical absorption peaks of β-glucans. This is the first report of successful swapping of promoters in filamentous fungi.

Introduction

Mushroom β-glucans are the major structural constituents of the mushroom cell wall. They also provide antioxidant activity [1,2] and can be used as immunological stimulators in medicine, such as antitumor, immunomodulating, antioxidant, radical scavenging, cardiovascular, antihypercholesterolemia, antiviral, antibacterial, antiparasitic, antifungal, detoxification, hepatoprotective, and antidiabetic effects [3]. Therefore, there has been growing popularity in developing mushroom β-glucans as drugs or dietary supplements and scientifically investigating their functions [4]. However, controlled by metabolic regulation, the production of β-glucans in mushroom is low. Furthermore, due to enzymatic degradation by glucanase activity during storage, the production from fruiting body or submerged fermentation liquid is only 20–50 mg/100 g dry matter of fruiting body [5] or 0.15–5.3 g/l fermented broth [6,7]. Accordingly, it is of great value to improve β-glucans productivity in mushrooms by genetic engineering.

Most mushroom β-glucans with immunological stimulation are β-(1→6)-branched β-(1→3)-linked [8], and are synthesized by β-1,3-glucan synthase (GLS) (UDP-glucose 1,3-β-D-glucan 3-β-D-glucosyl transferase, EC 2.4.1.34). The GLS complex is composed of a catalytic subunit FKS and a regulatory subunit RHO. FKS is activated by RHO, a G protein, through GTP-dephosphorylation, and synthesizes the polymer of glucose monomers. RHO activity is regulated by a wall GDP-GTP exchange factor protein [9]. In fungi genomes, FKS and RHO genes are highly conserved and usually have only one or two copies [10,11]. The information about the transcriptional regulation of GLS has been scant [11].

In yeast, GLS activity, both at transcriptional and enzymatic level, is stimulated by stress-inducing compounds present in the media [12]. A similar mechanism is also present in *Leptinula edodes* [13–15]. Nevertheless, the expression of the GLS genes in *Ustilago maydis*, a fungus causing smut disease on maize, was constitutive during its infection in maize and in response to ionic and osmotic stress [11].

Oyster mushroom *Pleurotus ostreatus* is a widely cultivated edible and medicinal mushroom in China and East Asia due to its short growth time, high adaptability and productivity. Its β-glucans demonstrated efficacy in promoting the survival of mice susceptible to bacterial infections [16], high SOD-like activity and antitumor activity [17]. In this study, we obtained the sequences of its only GLS gene and the promoter from *P. ostreatus* PC15 v2.0 in JGI Genome Portal (http://genome.jgi-psf.org). Using homologous recombination, the GLS gene promoter of *P. ostreatus* was replaced by the promoter of glyceraldehyde-3-phosphate dehydrogenase (*gpd*) gene of *Aspergillus nidulans*; the transformants displayed high expression of GLS gene and high production of β-glucans.
Materials and Methods

Strains and DNAs

Pleurotus ostreatus TD300, often used as a commercial cultivation strain in China, was obtained from Zhongzhou Composite Experiment station, China Edible Fungi Research System (Zhengzhou, China), and cultivated on PDA medium at 28°C for six days as described elsewhere [18].

The homologous recombination fragment for the GLS promoter swap comprised five segments: UH, Pgpd1035, hph, Pgphb and GLS1025 (Fig. 1).

The 1,015 bp UH was the upstream homologous sequence which matched to the 3’ end partial sequence preceding the GLS promoter of *P. ostreatus*. It was cloned from the genomic DNA of *P. ostreatus* by PCR using primers UH-F and UH-R (Table 1), and its accession number was JX889617. The primers were designed based on the genome sequence of *P. ostreatus* PC15 v2.0 in JGI Genome Portal (http://genome.jgi-psf.org). In the primer UP-R sequence, the last 15 nts (highlighted with underline) were complementary to the 5’ end sequence of Pgd1035.

The 1,035 bp Pgpd1035 served as the upstream FLP recognition target (FRT) sequence; it was the partial 5’ end sequence of Pgd which the promoter of gpd gene in *Aspergillus nidulans*. Pgd1035 was generated from plasmid PAN7-1 by PCR using primers Pgd1048-F and Pgd1048-R (Table 1). The first 15 nts of Pgd1048-F and last 16 nts (with underline) of Pgd1048-R were complementary to the 3’ end sequence of UH and 5’ end sequence of hph, respectively. The plasmid pAN7-1 (kindly provided by Prof. van den Hondel, Leiden University, Netherlands) contains the hygromycin B resistance gene of *E. coli* and the transcription termination signal of tryptophan synthetase, respectively. It was cloned from the genomic DNA of *P. ostreatus* by PCR using primers Pgd1048-F and Pgd1048-R (Table 1). The first 14 nts of Pgd1048-F and last 17 nts (with underline) of Pgd1048-R were complementary to the 3’-end sequence of hph and 5’-end sequence of GLS1025, respectively.

The 2,822 bp hph was hygromycin B resistance gene of *E. coli* expression cassette, and was amplified from plasmid PAN7-1 by PCR using primers hph-F and hph-R (Table 1). The first 16 nts of hph-F and last 14 nts (with underline) of hph-R were complementary to the 3’ end sequence of Pgd1035, and 5’ end sequence of Pgpdh respectively.

The 2,206 bp Pgd was also amplified from plasmid PAN7-1 by PCR using primers Pgd-F and Pgd-R (Table 1). The first 14 nts of Pgd-F and last 17 nts (with underline) of Pgd-R were complementary to the 3’-end sequence of hph and 5’-end sequence of GLS1025, respectively.

The 1,025 bp GLS1025 was the downstream homologous sequence in the 5’ end partial sequence of *P. ostreatus* GLS. It was cloned from the genomic DNA of *P. ostreatus* by PCR using primers GLS1025-F and GLS1025-R (Table 1), and its accession number in GeneBank was JX889617. The primers were designed

![Diagram](https://example.com/diagram.png)

Figure 1. The outline of homologous recombination for promoter swapping. The homologous recombination fragment consisting of five DNA segments (A): the integration of the fragment into *P. ostreatus* chromosome via homologous recombination (B); the intramolecular homologous replacement of Pgd1035 by Pgpd (C); the deletion of selection marker hph (D). UH: upstream homology sequence; Pgd1035: the partial 5’ end sequence of the gpd promoter in *Aspergillus nidulans*; hph: hygromycin B resistance gene (hph) of *E. coli* expression cassette; Pgd: the gpd promoter; GLS1025: the downstream homologous sequence to the 5’ end partial sequence of GLS.

Table 1. Primers used in this study.

Primers	Nucleotide sequence
UH-F	5'-TCCTCCCCGGACCGTGTATTGATTTAC-3'
UH-R	5'-CAGCGTGTATTGATTTACATTACATAC-3'
Pgd 1048-F	5'-GATATGGAAACTGGCGGAATTTCCCTTGTATCT-3'
Pgd 1048-R	5'-GAATGCCGTAAGGTTCTGCAACGACTA-3'
hph-F	5'-CACTCATGCACTCATGACATCCACACAGC-3'
hph-R	5'-AGATCAAGGATGGAAATCACCACGCTTACCC-3'
Pgph-F	5'-GCTGTGATGCACTTTGAGTATGATGATGAG-3'
Pgph-R	5'-CTACATCCATACCTCATTGGACTCACACAGC-3'
GLS-F	5'-CTACATCCATACCTCATTGGACTCACACAGC-3'
GLS-R	5'-CCCGGATCTAGTGTCAGAAGAAA-3'
GLS-F	5'-CTACATCCATACCTCATTGGACTCACACAGC-3'
GLS-R	5'-ATTTGGACTGATGGGAAGGT-3'
AC-1	5'-ATTTGGACTGATGGGAAGGT-3'
AC-2	5'-CTACATCCATACCTCATTGGACTCACACAGC-3'

doi:10.1371/journal.pone.0061693.t001

The homologous recombination fragment consisting of five DNA segments (A): the integration of the fragment into *P. ostreatus* chromosome via homologous recombination (B); the intramolecular homologous replacement of Pgd1035 by Pgpd (C); the deletion of selection marker hph (D). UH: upstream homology sequence; Pgd1035: the partial 5’ end sequence of the gpd promoter in *Aspergillus nidulans*; hph: hygromycin B resistance gene (hph) of *E. coli* expression cassette; Pgd: the gpd promoter; GLS1025: the downstream homologous sequence to the 5’ end partial sequence of GLS.

doi:10.1371/journal.pone.0061693.g001
based on the only GLS gene sequence of *P. ostreatus* PC15 v2.0 collected by visual inspection using JGI Genome Portal (http://genome.jgi-psf.org). In the primer GLS$_{1025}$-F sequence, the first 15 nts (with underline) was complementary to the 3' end sequence of *P. ostreatus* TD900 was 99.6% and 56.3% identical to that of *P. ostreatus* PC15 v2.0 and *Laccaria bicolor* S238N-H82, and the GLS amino acid sequences from *P. ostreatus* PC15 v2.0 and *Laccaria bicolor* S238N-H82 shared 89.3% identity (Fig. 2).

Touchdown-overlap extension PCR

Two rounds of combined touchdown PCR and overlap extension PCR (TD-OE PCR) were performed to fuse the above five long DNA segments.

The first round of TD-OE PCR was carried out for the fusion of the three segments: *hph*, *P*$_{gpd}$, and GLS$_{1025}$; it produced a long fusion segment hPG. This round includes two steps. In step I, 47 mL reaction solution contains 1 mL of each DNA segment at 0.5 mM, 5 mL of 10× PCR buffer, 8.0 mL of 2.5 mM of dNTP, and 0.5 mL of 5 U/mL LA Taq. Amplification started at 94°C for 40 sec; the annealing temperature of the reaction decreased from 61.5°C to a touchdown 57.5°C at the cooling rate of 0.5°C every cycle, followed by five cycles at 57.5°C, 4 min at 68°C, and 10 min at 72°C. In step II, the reaction solution from Step I was added to 1.0 mL of 0.1 mM hph-F and GLS$_{1025}$-R separately, and 0.5 mL of 5 U/mL LA Taq. PCR conditions are similar to that of step I amplification: 94°C for 40 sec; annealation: 60°C to 35°C by 0.5°C per cycle, then 20 cycles at 56°C, 7 min at 68°C, and 10 min at 72°C. After completion, 5 mL of the PCR reaction aliquots were analyzed on 1% agarose gels stained with ethidium bromide.

The second round of TD-OE PCR was carried out to fuse the three segments, i.e., UH, *P*$_{gpd}$, and hPG, to generate the homologous recombination fragment. The PCR procedure was similar to that in the first round except for the annealing temperature and primers. In step I, the annealing temperature decreased from 62°C to a touchdown 58°C; in step II, added primers were UH-F and GLS$_{1025}$-R, the annealing temperature decreased from 58°C to 35°C.

Figure 2. Comparison of predicted GLS amino acid sequences among *P. ostreatus* TD300, *Laccaria bicolor* S238N-H82, and *P. ostreatus* PC15 v2.0. Lb: GLS from *Laccaria bicolor* S238N-H82, GeneBank accession numbers is XM_001875351. Po PC: GLS from *P. ostreatus* PC15 v2.0, collected by visual inspection using the JGI Genome Portal for the *P. ostreatus* PC15 v2.0 genome (http://genome.jgi-psf.org); Po TD: GLS from *P. ostreatus* TD300, GeneBank accession numbers is JX889617. doi:10.1371/journal.pone.0061693.g002

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e61693
PEG/CaCl₂-mediated protoplast transformation and transformant identification

Protoplasts preparation and PEG/CaCl₂-mediated transformation of *P. ostreatus* TD 300 were performed as described previously [20,21]. The introduced foreign DNA was the homologous recombination fragment for swapping GLS promoter. Protoplasts of *P. ostreatus* were suspended in MTC buffer at 10⁶ protoplasts/mL, and 100 μL suspensions were mixed with 10 μg the DNA fragment. Transformants were subcultured on PDA with or without hygromycin B. A full description of this method is given in the Extended Methods S1. To verify the replacement of GLS promoter by the introduced fragment, two PCR reactions were performed using the genomic DNA of the transformants as template, primers hph-1 and hph-2 for the amplification of the *hph* gene, and primers P₁₀₂₅-1 and GLS-1 (Table 1) for amplifying the combination of P₁₀₂₅ and GLS. Both PCR conditions were 94°C for 1 min, 56°C for 1 min, and 72°C for 1 min in 30 cycles. 5 μL of the PCR reaction aliquots were analyzed on 1% agarose gels stained with ethidium bromide.

Semi-quantitative RT-PCR

To analyze the GLS expression in transformants, semi-quantitative RT-PCR was carried out as described elsewhere [21] with slight modifications. Total RNA was extracted from transformants. Primers were GLS-F and GLS-R for reverse transcription and amplification of GLS, and AC-1 and AC-2 for reverse transcription and amplification of housekeeping gene β-actin. Reverse transcription of the mRNA was carried out at 42°C for 60 mins by using MMLV Reverse Transcriptase 1st-Strand cDNA Synthesis Kit (Epicentre, Madison, WI, USA). The PCR conditions were 94°C for 40 sec, 49°C for 40 sec, and 72°C for 1 min in 30 cycles.

5 μL of the PCR reaction aliquots was analyzed on 1% agarose gels stained with ethidium bromide. The electrophoresis bands of RT-PCR reaction were photographed and the density of each band was quantified using image analysis software, UVI band V. 97 (UVI Tech, Cambridge, UK).

Analysis of β-glucan content and infrared spectrum

To measure the β-glucan yield of the transformants, the transformants were cultivated in PD broth (150 mL in a 500 mL flask) at 25°C for 12 d under 150 rpm shaking. The culture broth was extracted in 98°C water bath for 3 h and then filtered; the supernatant was concentrated 10-fold via evaporation. Four volume 95% ethanol was added and placed overnight, centrifuged at 5,000-g for 15 min. The precipitate was washed 2 times with 85% ethanol, then dissolved in hot water, and de-proteinized by Sevag method [22]. Equal volume of Sevag reagent (chloroform/butanol 4:1, v/v) was added, vigorously shaken for 30 min, the mixture was centrifuged at 5,000-g for 10 min. The upper layer was separated and Sevag reagent was again added. This process was repeated 3 times. The polysaccharide content was measured using phenol-sulfuric acid method [23]. The polysaccharide characteristic was determined by infrared spectroscopy (Tensor 37, Bruker, Ettlingen, Germany).

Results

Construction of the homologous recombination fragment for swapping GLS promoter

The three segments of *hph*, P₁₀₂₅, and GLS₁₀₂₅ were fused successfully, and the expected fusion product hPG (5,873 bp) was produced by only one round TD-OE PCR (Fig. 3A); hPG was subsequently fused with the two upstream segments UH and P₁₀₂₅ in the second round of TD-OE PCR (Fig. 3B), and produced the homologous recombination fragment for swapping GLS promoter (8,103 bp). The sequencing result of the fusion product confirmed that all of the five segments were fused correctly in accordance with the design order.

Identification of homologous recombination transformant by PCR

The integration and the promoter swapping in the transformants were verified by PCR. Six transformants, A1, A4, A9, A15, A17, and A21, were randomly selected. The expected PCR amplifications were obtained from all the DNA samples of the second generation transformants using the primer pair hph-1 and hph-2, but not from the untransformed original strain (wild type) and the next generation transformants (Fig. 4A). The segment could be amplified from the DNA samples of the transformants from generation three to five by using the primer pair P₁₀₂₅-1 and GLS-1, which was 1,320 bp in length and spanned the 3’ end of P₁₀₂₅ and the downstream of the 5’ end of GLS₁₀₂₅ (Fig. 4B). The result revealed that *hph* gene in the homologous recombination fragment was deleted by the homologous recombination between P₁₀₂₅-1 and P₁₀₂₅ from the third generation of the transformants. In addition, the introduced P₁₀₂₅ replaced the GLS promoter and remained genetically stable.

GLS gene overexpression and β-glucan overproduction of the transformants

To determine whether GLS gene over-expressed after the swap of its promoter by P₁₀₂₅ its mRNA expression level in the transformants was measured by semi-quantitative RT-PCR and was found to be two to four folds higher than that of wild type (Fig. 5).

The polysaccharide yields of the six transformants were determined and they were 32% to 131% higher than that of wild type (Fig. 6); including the wild type, the yield had positive correlation to the GLS gene expression (*p*<0.05). The result indicated that the GLS gene expression may correspond with its enzymatic activity and protein level.

[Figure 3. Agarose gel analysis of TD-OE PCR products for the construction of the homologous recombination fragment for promoter swapping. hPG: the fusion product of *hph*, P₁₀₂₅, and GLS₁₀₂₅; HRF: the homologous recombination fragment which was the fusion product of UH, P₁₀₂₅, and hPG. doi:10.1371/journal.pone.0061693.g003]
Discussion

Promoter engineering is the principal strategy for metabolic engineering. It employs mutagenic endogenous promoters or introduced heterologous promoters to increase the expression of key pathway genes and maximize target production, and has been successfully applied to bacteria and yeast [27–30]. Nevertheless, the application of promoter engineering in filamentous fungi has not been reported. In this study, we introduced a heterologous promoter to increase the GLS expression and significantly improved β-glucan production.

In previous studies, the promoters for replacing native promoters could be constitutive or inducible [28]. Compared with constitutive promoters, inducible promoters tightly control their downstream gene to achieve high level expression, maximize protein production and reduce toxicity during growth phase [31]; but it is limited in practice due to inducer cost and cell hypersensitivity to inducer concentration [32].

P_{gpd} is a constitutive promoter used across fungal species and provides high levels of constitutive gene expression [33,34]; for example, the expression of genes under the control of P_{gpd} was significantly higher than that by the commonly used alcohol oxidase 1 promoter (P_{AOX}) in methanol-grown cells of Pichia pastoris [33]. In this study, we employed P_{gpd} from A. nidulans to swap the native promoter of GLS in P. ostreatus, and consequently GLS expression was improved by up to two folds and β-glucan production increased by up to 32% compared to the wild type strain. CaMV 35S is another constitutive promoter often used in filamentous fungi, which is considerably weaker than P_{gpd} in P. ostreatus [21].

Conclusions

By our knowledge, this is the first report of successful swapping of promoters using TD-OE PCR in filamentous fungi through constitutive promoters used in filamentous fungi included adhA, gdhA, bC, pgkA, etc [36], but the comparison among them has not been reported.

Construction of the homologous recombination fragment for swapping promoter requires five to six segments fusion [29,37]. Multiple segments fusion is usually performed by overlap extension PCR (OE-PCR) [38,39]. However, OE-PCR cannot fuse more than two DNA segments simultaneously [40]. Several modified OE-PCR procedures can fuse multiple segments at the same time, but require chimeric primers and high and close annealing temperatures in order to minimize mispriming [41,42]. Touchdown PCR (TD-PCR) is an efficacious solution to reduce mispriming and rapidly optimize PCR to increase specificity, sensitivity, and yield [43,44]. In this study, we combined TD-PCR and OE-PCR and used only two rounds to fuse the five segments. Our technique produced the homologous recombination fragment for swapping GLS promoter without sedulously adjusting the annealing temperature of primers. It showed that touchdown-overlap extension PCR (TD-OE PCR) was a fast and highly efficient method for promoter swapping and metabolic engineering.

Figure 4. PCR for the identification of the recombinant hph and P_{gpd} sequences in the transformants of P. ostreatus. PCR amplification on total DNA from the second generation transformants using primers hph-1 and hph-2 which defined a 750 bp sequence across the hph gene (A), PCR amplification on total DNA from the fifth generation transformants using primers P_{gpd}-1 and GLS-1 which defined a 1,320 bp sequence spanning the P_{gpd} and GLS gene located far from GLS$_{5q2s}$ (B). Lane 1: WT; Lane 2–7: transformant A1, A4, A9, A15, A17, and A21.

doi:10.1371/journal.pone.0061693.g004

Figure 5. Semi-quantitative RT-PCR analysis of GLS mRNA in the fifth generation transformants. The amount of GLS mRNA, expressed as the ratio of densitometric measurement of the sample to the corresponding internal standard (β-actin), is shown in the upper panels. * $p<0.05$ comparing to WT; ** $p<0.01$ comparing to WT.

doi:10.1371/journal.pone.0061693.g005

Figure 6. The polysaccharide yield of the fifth generation transformants. * $p<0.05$ comparing to WT; ** $p<0.01$ comparing to WT.

doi:10.1371/journal.pone.0061693.g006
rapid construction of homologous recombination fragment. The polysaccharide yields of the transformants were 32% to 131% higher than that of wild type, and had significantly positive correlation to the GLS gene expression levels. TD-OE PCR, a novel procedure combining touchdown and overlap extension PCR, was carried out for the fusion of five segments to construct the homologous recombination fragment for swapping GLS promoter. Our study supports that TD-OE PCR was a fast and highly efficient method for promoter swapping and metabolic engineering.

Supporting Information
Methods S1 Extended Methods.

References

1. Popov I, Lewin G (1999) Antioxidant homeostasis: characterization by means of chemiluminescent technique. Methods Enzymol 300: 437–456.
2. Chen J, Sevior R (2007) Medicinal importance of fungal beta-(1→3), (1→6)-glucans. Mycel Res 111: 653–632.
3. Wasser SP (2010) Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushr 12: 1–16.
4. De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD (2012) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and purative mechanisms of action. Fungal Divers 55: 1–35.
5. Popov I, Liu J, Jurikova T (2009) Beta-glucans in higher fungi and their health effects. Nutr Rev 67: 624–631.
6. Tang YJ, Zhu LW, Li HM, Li DS (2007) Submerged culture of mushrooms in bioreactor-challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol 45: 221–229.
7. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12: 197–214.
8. Borchers AT, Keen CL, Gershwin ME (2004) Mushrooms, tumors, and immunity: an update. Exp Biol Med 229: 393–406.
9. Reverberi M, Di Mario F, Tomati U (2004) Beta-Glucan synthase induction in mushrooms grown on olive mill wastewaters. Appl Microbiol Biotechnol 66: 217–225.
10. Bresolin SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28: 799–808.
11. Roldado-Briones M, Ruiz-Herrera J (2012) Transcriptional regulation of the genes encoding chitin and beta-1,3-glucan synthases from Ustilago maydis. Curr Microbiol 65: 85–90.
12. Smith GJ, Van der Enke H, Klas FM (2001) Differential regulation of cell wall biosynthesis during growth and development in yeast. Microbiology 147: 781–794.
13. Schultz TP, Hubbard TF, Jin L, Fisher TH, Nicholas DD (1999) Role of stilbenes in the natural durability of wood: fungidal structure-activity relationships. Phytochemistry 29: 1501–1507.
14. Giovannozzi-Sermanni G, Perani C, Porri A, De Angelis F, Barbaruts MV, et al. (1999) Plant cell wall degradation by means of L. odor and chemical characterization of produced soluble lignocellulose. Agrochimica 35: 174–189.
15. Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzym Microb Technol 30: 445–453.
16. Karácsonyi Š, Kuniaš E (1994) Polysaccharides of Phanerotus subtrusus isolation and structure of pellizar, an alkali-insoluble beta-glucan. Carbohydr Polym 24: 107–111.
17. Silva S, Martins S, Karmali A, Rosa E (2012) Production, purification and characterisation of polysaccharides from Phanerotus subtrusus with antitumour activity. J Sci Food Agric 92: 1826–1832.
18. Wang L, Li Y, Liu D, Zhang C, Qi Y, et al. (2011) Immobilization of mycelial pellets from liquid spawn of oyster mushroom based on carrier adsorption. Hortotechnology 21: 82–86.
19. Punt PJ, Oliver RF, Diamantmane MA, Powels PH, van den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin-B resistance gene from Escherichia coli. Gene 56: 117–124.
20. Qin I, Li Y, Liu Y, Gao Y, Qi Y, et al. (2010) Particle and naked RNA mycofungicides in industrially cultivated mushroom Pleurotus ostreatus in China. Fungal Biol 114: 507–513.
21. Dong X, Zhang K, Gao Y, Qi Y, Shen J, et al. (2012) Expression of hygromycin B resistance in oyster culinary-medicinal mushroom, Pleurotus ostreatus [Jacq. Fr.]. Kurn. using three gene expression systems. Int J Med Mushr 14: 21–26.
22. Staab AM (1965) Removal of proteins: Sevag method. In: Methods in carbohydrate chemistry, vol. 5. Whistler RL, editors. New York: Academic Press Inc, 5–6 p.
23. Kochert G (1978) Carbohydrate determination by the phenol-sulphuric acid method. In: Handbook of Physiological Methods, Physiological and Biochemical Methods. Hellebust JA, Craigie, JS, editors. Cambridge: Cambridge University Press, 95–97 p.

24. Ge Y, Duan Y, Fang G, Wang S (2009) Polysaccharides from fruit calyx of *Physalis alkekengi* var. *Francheti*. Carbohydr Polym 77: 188–193.

25. Zhao G, Kan J, Li Z, Chen Z (2005) Structural features and immunological activity of a polysaccharide from *Dioscorea opposita* Thumb roots. Carbohydr Polym 61: 125–131.

26. Kiho T, Sakashima M, Wang SR, Nagai K, Ukai S (1991) Polysaccharides in fungi. XXVI. Two branched (1→3)-beta-D-glucans from hot water extract of *Yu r* c. Chem Pharm Bull (Tokyo) 39: 798–800.

27. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102: 12678–12683.

28. Blazeck J, Alper HS (2013) Promoter engineering: Recent advances in controlling transcription at the most fundamental level. Biotechnol J 8: 46–58.

29. McCleary WR (2009) Application of promoter swapping techniques to control expression of chromosomal genes. Appl Microbiol Biotechnol 84: 641–648.

30. Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14: 233–241.

31. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72: 211–222.

32. Hahn S, Young ET (2011) Transcriptional regulation in *Saccharomyces cerevisiae*: Transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189: 705–736.

33. Punt PJ, Zegers ND, Busscher M, Pouweels PH, van den Hondel CA (1991) Intracellular and extracellular production of proteins in *Aspergillus* under the control of expression signals of the highly expressed *Aspergillus nidulans gpdA* gene. J Biotechnol 17: 19–33.

34. Jensen DF, Schulz A (2003) Exploitation of GFP-technology with filamentous fungi. In: Handboo of Fungal Biotechnology 2nd edition. Arora, DK, Bridge PD, Bhatnagar D, Bharat R, Mukerji KG, editors. New York: Marcel Dekker, 441–451 p.

35. Waterham HR, Digan ME, Koutz PJ, Lair SV, Gregg JM (1997) Isolation of the *Pichia pastoris* glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186: 37–44.

36. Fleusner A, Dersch P (2010) Expression and export: recombinant protein production systems for *Aspergillus*. Appl Microbiol Biotechnol 87: 1255–1270.

37. Gu P, Yang F, Kang J, Wang Q, Qi Q (2012) One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in *Escherichia coli*. Microb Cell Fact 11: 38.

38. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61–68.

39. Dilbon PJ, Rosen CA (1990) A rapid method for the construction of synthetic genes using the polymerase chain reaction. BioTechniques 9: 298–299.

40. Horton RM, Pease LR (1991) Recombination and mutagenesis of DNA sequences using PCR. In: Directed Mutagenesis: A Practical Approach. McPherson MJ, editors. Oxford: IRL Press, 217–247 p.

41. Shevchuk NA, Brykvin AV, Nosimovich YA, Cabello FC, Sutherland M, et al. (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res 32: e19.

42. Heckman KI, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2: 924–932.

43. Don RJ, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19: 4008.

44. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3: 1452–1456.