Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Sartorius B, Cano J, Simpson H, et al. Prevalence and intensity of soil-transmitted helminth infections of children in sub-Saharan Africa, 2000–18: a geospatial analysis. Lancet Glob Health 2021; 9: e52–60.
Supplementary Material

Section A: Country specific STH profiles

A1: Key STH indicators by country in 2018

ISO 3	Total number of IU's	National STH prevalence, 2018	National moderate-to-heavy intensity STH prevalence, 2018	Number of IU's with STH prevalence ≥ 20%, 2018	Proportion of IU's with STH prevalence ≥ 20%, 2018	Number of IU's above elimination target of 2% prevalence for moderate-to-heavy intensity, 2018	Proportion of IU's above elimination target of 2% prevalence for moderate-to-heavy intensity, 2018	Proportion of IU's in lowest 10 percentile i, for cumulative effective PC rounds, 2018	Proportion of IU's in lowest 10 percentile i for improved sanitation, 2018	Proportion of IU's in lowest 10 percentile i for slum-like living conditions, 2018	Proportion of IU's in lowest 10 percentile i for GDP PPP, 2018																		
AGO	164	20.4%	2.2%	88	53.7%	80	48.8%	62.8%	0.0%	51.2%	6.7%																		
BDI	46	15.8%	1.5%	15	32.6%	14	30.4%	0.0%	0.0%	0.0%	0.0%																		
BEN	77	15.4%	1.4%	15	19.5%	14	18.2%	7.8%	0.0%	0.0%	0.0%																		
BFA	70	1.4%	0.0%	0	0.0%	0	0.0%	0.0%	0.0%	0.0%	0.0%																		
BWA	24	6.5%	0.4%	0	0.0%	0	0.0%	91.7%	0.0%	0.0%	8.3%																		
CAF	17	13.3%	1.1%	1	5.9%	1	5.9%	52.9%	0.0%	11.8%	94.1%																		
CIV	83	8.0%	0.5%	1	1.2%	0	0.0%	8.4%	0.0%	0.0%	0.0%																		
CMR	189	20.6%	2.8%	112	59.3%	109	57.7%	0.5%	0.0%	0.0%	2.6%																		
COD	516	19.8%	2.2%	241	46.7%	234	45.3%	29.5%	0.0%	39.9%	36.4%																		
COG	43	29.4%	3.9%	31	72.1%	31	72.1%	4.7%	0.0%	0.0%	9.3%																		
DJI	5	3.2%	0.1%	0	0.0%	0	0.0%	100.0%	0.0%	20.0%	40.0%																		
ERI	58	0.3%	0.0%	0	0.0%	0	0.0%	79.3%	0.0%	0.0%	8.6%																		
ETH	744	14.9%	1.4%	132	17.7%	123	16.3%	26.5%	58.9%	14.8%	3.5%																		
GAB	51	43.0%	7.0%	51	100.0%	50	98.0%	90.2%	0.0%	0.0%	0.0%																		
GHA	216	4.4%	0.2%	0	0.0%	0	0.0%	6.0%	0.0%	0.0%	0.0%																		
GIN	38	11.0%	0.9%	4	10.5%	4	10.5%	28.9%	0.0%	0.0%	26.3%																		
GMB	44	7.9%	0.6%	2	4.5%	2	4.5%	100.0%	0.0%	0.0%	0.0%																		
GNB	118	18.4%	2.2%	55	46.6%	55	46.6%	15.3%	0.0%	0.8%	0.0%																		
GNQ	17	72.9%	26.9%	17	100.0%	17	100.0%	100.0%	0.0%	0.0%	0.0%																		
KEN	290	9.0%	0.7%	28	9.7%	23	7.9%	57.2%	0.3%	0.3%	5.2%																		
LBR	15	24.8%	4.0%	11	73.3%	10	66.7%	6.7%	0.0%	0.0%	53.3%																		
LSO	10	54.7%	11.3%	10	100.0%	10	100.0%	50.0%	0.0%	0.0%	0.0%																		
MDG	114	30.9%	5.3%	68	59.6%	67	58.8%	19.3%	23.7%	36.0%	7.0%																		
MLI	66	1.6%	0.0%	0	0.0%	0	0.0%	1.5%	0.0%	1.5%	36.4%																		
MOZ	159	18.9%	1.9%	72	45.3%	70	44.0%	1.3%	0.6%	6.9%	39.6%																		
MRT	42	9.2%	0.7%	0	0.0%	0	0.0%	100.0%	0.0%	0.0%	4.8%																		
MWI	29	5.0%	0.3%	0	0.0%	0	0.0%	0.0%	0.0%	0.0%	0.0%																		
NAM	34	7.1%	0.5%	4	11.8%	4	11.8%	100.0%	20.6%	0.0%	11.8%																		
NER	39	1.2%	0.0%	0	0.0%	0	0.0%	0.0%	0.0%	5.1%	41.0%																		
NGA	774	15.6%	1.8%	247	31.9%	238	30.7%	15.6%	0.0%	0.0%	0.0%																		
RWA	30	21.0%	2.8%	13	43.3%	13	43.3%	0.0%	0.0%	0.0%	0.0%																		
SDN	157	1.2%	0.0%	0	0.0%	0	0.0%	100.0%	0.0%	0.0%	7.6%																		
Country	Code	Prevalence	IU with 1 IU	IU with 2 IU	IU with 3 IU	IU with 4 IU	IU with 5 IU	IU with 6 IU	IU with 7 IU	IU with 8 IU	IU with 9 IU	IU with 10 IU	IU with 11 IU	IU with 12 IU	IU with 13 IU	IU with 14 IU	IU with 15 IU	IU with 16 IU	IU with 17 IU	IU with 18 IU	IU with 19 IU	IU with 20 IU	IU with 21 IU	IU with 22 IU	IU with 23 IU	IU with 24 IU	IU with 25 IU	IU with 26 IU	IU with 27 IU
---------	------	------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------		
SEN	76	5.9%	1	1.3%	1	1.3%	1	1.3%	0.%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
SLE	14	13.6%	3	21.4%	3	21.4%	0.%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
SOM	18	8.8%	0	0.0%	0	0.0%	100.0%	0.0%	0.0%	0.0%	94.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%				
SSD	80	4.8%	2	2.5%	2	2.5%	91.3%	11.3%	0.0%	0.0%	2.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%				
SWZ	55	10.4%	4	7.3%	3	5.5%	52.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%				
TCD	91	3.7%	0	0.0%	0	0.0%	58.2%	30.8%	29.7%	19.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
TGO	40	16.6%	11	27.5%	11	27.5%	12.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
TZA	186	13.8%	36	19.4%	34	18.3%	0.5%	0.0%	0.0%	0.0%	0.0%	19.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
TZZ	11	18.6%	5	45.5%	2	18.2%	0.0%	0.0%	0.0%	0.0%	9.1%	9.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
UGA	116	13.0%	15	12.9%	14	12.1%	13.8%	5.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
ZAF	52	27.7%	31	59.6%	30	57.7%	28.8%	0.0%	0.0%	5.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
ZMB	103	14.7%	33	32.0%	32	31.1%	17.5%	0.0%	14.6%	8.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					
ZWE	62	5.9%	0	0.0%	0	0.0%	58.1%	0.0%	0.0%	8.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%					

i: based on centile values for SSA in 2018
ii: Only IU's with estimated baseline STH prevalence ≥20%
A2: High burden IU’s (estimated prevalence exceeding $\geq 10\%$) and in the lowest 10 percentile range for key intervention/development indicators (red) in 2018.

Lowest cumulative PC, 2018

Poor sanitation, 2018
A3. Moderate-to-heavy intensity infection by country and exceedance probability uncertainty associated with this threshold, 2018. Note: list of country names and ISO3 codes provided below the table.

ISO3	STH prevalence (any and moderate-to-heavy intensity) by year showing range across IU’s using a box plot. Key provided below to aid interpretation:
	Prevalence of moderate-to-heavy intensity infection in 2018 at IU level
	Probability that a given IU is below the target 2% elimination threshold in 2018 (areas towards red spectrum significantly more likely to exceed the threshold and include solid black outline while those areas towards blue spectrum and in black outline were significantly less likely to exceed aforementioned threshold)

<2%	0.00 - 0.04
2-4.9%	0.05 - 0.09
5-9.9%	0.10 - 0.19
10-14.9%	0.20 - 0.34
15+%	0.35 - 0.49
	0.50 - 0.64
	0.65 - 0.79
	0.80 - 0.89
	0.90 - 0.94
	0.95 - 1.00
The diagram shows the distribution of a particular indicator across various countries over several years. The countries mentioned in the document include Congo, DRC, Gabon, Cameroon, Angola, Central African Republic, Nigeria, Equatorial Guinea, South Sudan, and Sao Tome & Principe. The graph on the left appears to represent statistical data with bars indicating variations over time, while the map on the right illustrates spatial patterns with color coding.

The document seems to focus on data visualization, possibly related to a study or report on cross-border indicators in Central Africa.
NAM

South Africa
Namibia
Angola
Zambia
Botswana
Mozambique
Madagascar
Zimbabwe
Malawi
Lesotho
Congo, DRC
Swaziland
Tanzania (Mainland)
ISO3	Full Country Name	ISO3	Full Country Name
AGO	Angola	MLI	Mali
BDI	Burundi	MOZ	Mozambique
BEN	Benin	MRT	Mauritania
BFA	Burkina Faso	MWI	Malawi
BWA	Botswana	NAM	Namibia
CAF	Central African Republic	NER	Niger
CIV	Cote d'Ivoire	NGA	Nigeria
CMR	Cameroon	RWA	Rwanda
COD	Congo, DRC	SDN	Sudan
COG	Congo	SEN	Senegal
DJI	Djibouti	SLE	Sierra Leone
ERI	Eritrea	SOM	Somalia
ETH	Ethiopia	SSD	South Sudan
GAB	Gabon	SWZ	Swaziland
GHA	Ghana	TCD	Chad
GIN	Guinea	TGO	Togo
GMB	The Gambia	TZA	Tanzania (Mainland)
GNBQ	Guinea-Bissau	TZZ	Tanzania (Zanzibar)
GNQ	Equatorial Guinea	UGA	Uganda
KEN	Kenya	ZAF	South Africa
LBR	Liberia	ZMB	Zambia
LSO	Lesotho	ZWE	Zimbabwe
MDG	Madagascar		
Section B: Additional data descriptions, methodological information and results

B1. Gather checklist of information that should be included in new reports of global health estimates

Item #	Checklist item	Reported on page #
	Objectives and funding	
1	Define the indicator(s), populations (including age, sex, and geographic entities), and time period(s) for which estimates were made.	6-7
2	List the funding sources for the work.	3
	Data Inputs	
3	For all data inputs from multiple sources that are synthesized as part of the study: Describe how the data were identified and how the data were accessed.	6-7
4	Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.	6-8 Supplementary B2, B4
5	Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant.	6-7 Supplementary B2, B4
6	Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5).	8 Supplementary B6
	For data inputs that contribute to the analysis but were not synthesized as part of the study: Describe and give sources for any other data inputs.	6-7 Supplementary B2, B4
7	For all data inputs: Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet rather than a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared because of ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.	Supplementary B4
8	Provide a conceptual overview of the data analysis method. A diagram may be helpful.	7-8 Supplementary B10
9	Provide a detailed description of all steps of the analysis, including mathematical formulae. This description should cover, as relevant, data cleaning, data pre-processing, data adjustments and weighting of data sources, and mathematical or statistical model(s).	7-9 Supplementary B10
10	Describe how candidate models were evaluated and how the final model(s) were selected.	8-9 Supplementary B14
11	Provide the results of an evaluation of model performance, if done, as well as the results of any relevant sensitivity analysis.	9 Supplementary B14
12	Describe methods for calculating uncertainty of the estimates. State which sources of uncertainty were, and were not, accounted for in the uncertainty analysis.	8-9
---	---	---
14	State how analytic or statistical source code used to generate estimates can be accessed.	Supplementary B11
15	Provide published estimates in a file format from which data can be efficiently extracted.	
16	Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals).	10-13 Figures 1,2,4
17	Interpret results in light of existing evidence. If updating a previous set of estimates, describe the reasons for changes in estimates.	12-14
18	Discuss limitations of the estimates. Include a discussion of any modelling assumptions or data limitations that affect interpretation of the estimates.	14-15
Distribution and quality of programmatic or survey data points, 1975-2019

- Initial input data points or surveys: 30,732
 - 2,236 surveys without year
 - 13,253 surveys prior to 2000
 - 867 surveys which could not be IU located

- Final input data points or surveys used in analyses: 26,304
| Georeliability | No of data points | % |
|--|-------------------|-------|
| Reliable: Exact location identified on Google Maps | 8,121 | 30.9% |
| Reliable: Approx. location identified on Google Maps | 237 | 0.9% |
| Reliable: Coordinates located within the correct ADM1 boundary | 15,814 | 60.1% |
| Unreliable: Coordinates not within the correct ADM1 boundary/Not found | 2,132 | 8.1% |
| Overall | 26,304 | 100.0%|

Grading quality by site from 1998 to 2018	No of data points	%
1. Good Quality: Survey conducted since 2005, reporting prevalence of all three species using Kato Katz)	24,496	93.1%
2. Middle Quality: Insufficient information on prevalence, numbers tested or non-standard diagnostic, since 2000;	1,762	6.7%
3. Poor quality: Old data (pre-2000), or insufficient information available on survey details	46	0.2%
Overall	26,304	100.0%
B3: Age profile of survey data points, 2000 to 2018

Age_start	Freq.	Percent	Cum.
57	392	1.49	1.49
58	75	0.29	1.78
59	18	0.07	1.84
60	24	0.09	1.94
61	47	0.18	2.11
62	1,444	5.49	7.60
63	1,779	6.76	14.37
64	897	3.41	17.78
65	1,245	4.73	22.51
66	940	3.57	26.08
67	4,864	18.49	44.57
68	648	2.46	47.04
69	352	1.34	48.38
70	122	0.46	48.84
71	6	0.02	48.86
72	3	0.01	48.87
73	1	0.00	48.88
74	1	0.00	48.88
75	6	0.02	48.91
76	2	0.01	48.91
77	1	0.00	48.92
78	1	0.00	48.92
79	1	0.00	48.92
80	1	0.00	48.92
81	1	0.00	48.93
82	1	0.00	48.93
83	3	0.01	48.94
84	1	0.00	48.95
85	1	0.00	48.95
86	1	0.00	48.95
87	1	0.00	48.96
88	1	0.00	48.96
89	13,425	51.04	100.00
Total	26,304	100.00	
Year	0	1	Total
------	-----	-----	-------
2000	18	28	46
2001	39	12	51
2002	86	45	131
2003	58	10	68
2004	131	590	721
2005	226	201	427
2006	79	160	239
2007	47	304	351
2008	358	503	861
2009	350	1,532	1,882
2010	81	956	1,037
2011	114	1,217	1,331
2012	1,308	1,909	3,217
2013	2,517	2,343	4,860
2014	2,943	1,337	4,280
2015	2,539	1,914	4,453
2016	138	103	241
2017	1,102	0	1,102
2018	745	261	1,006
Total	12,879	13,425	26,304

Total: 12,879 13,425 26,304
. xtmixed Cum_Prevalence missing_age || ISO3: || idlim2:, vce(robust)

Mixed-effects regression Number of obs = 26,304

Group Variable	No. of Groups	Observations per Group
ISO3	46	Minimum: 1 Average: 571.6 Maximum: 3,045
idlim2	3,594	Minimum: 1 Average: 7.3 Maximum: 411

Wald chi2(1) = 1.01
Prob > chi2 = 0.3152

(Std. Err. adjusted for 46 clusters in ISO3)

| Cum_Prevalence | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|-------|-----------|---|-----|-------------------|
| missing_age | .0438275 | .0436352 | 1.00 | 0.315 | -0.0416959 .1293508 |
| _cons | .1840767 | .0344213 | 5.35 | 0.000 | .1166122 .2515413 |

Random-effects Parameters	Estimate	Std. Err.	[95% Conf. Interval]	
ISO3: Identity	sd(_cons)	.154399	.0162615	.1256016 .1897991
idlim2: Identity	sd(_cons)	.144734	.009942	.1265029 .1655925
sd(Residual)	.1577436	.0105519	.1383607 .1798419	
. logit Cum_Prevalence missing_age, cluster(idlim2)

Logistic regression
Number of obs = 26,304
Wald chi2(1) = 0.28
Prob > chi2 = 0.5994
Log pseudolikelihood = -14655.754
Pseudo R2 = 0.0001
(Std. Err. adjusted for 3,545 clusters in idlim2)

| Robust |
|-----------------|-----------------|-----------------|-----------------|
| Cum_Prevalence | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
| missing_age | -.0388108 | .0738784 | -.53 | 0.599 | -.1836099, .1059883 |
| _cons | 1.142296 | .0712945 | 16.02| 0.000 | 1.002561, 1.28203 |

59
A detailed summary of the covariates, source as well as temporal and spatial resolution can be found in the table below.

Climatic data by year for 2000 to 2017 were derived using high-resolution satellite and meteorological data from the WorldClim database at 1 km spatial resolution (1). Aridity was calculated using mean annual precipitation divided by mean annual Potential Evapo-Transpiration (PET). Soil porosity, using sand fraction of the top-soil as a proxy, and top-soil pH data were extracted from SoilGrids system at a 250 m resolution available at https://soilgrids.org/ with a published description (2).

Data for living in a house that has dirt or earth floors and living in slum conditions were extracted from high-resolution, standardized estimates of housing conditions across SSA for 2000 to 2015 recently published (3) and available at https://map.ox.ac.uk/research-project/housing_in_africa/.

As a further marker for poverty, we utilised annual gridded dataset predictions for GDP at purchasing power parity (GDP PPP) at 5 arc-min resolution available for 1990 to 2015 (4).

Treatment data at the IU level were provided by national programmes to ESPEN as part of routine reporting. Only LF MDA rounds that exceeded 65% population coverage were included.

Environmental, climatic and socio-economic/development raster data were imported into ArcGIS 10.5 (ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute) and linked by geographical location (IU) and year (if TV) to the parasitological survey data.

For IUs without parasitological data points we took the median value of a given covariate (and by year if TV) as the value for inclusion in the model. For IUs with parasitological cluster data (with latitude/longitude) the value of the covariate at the location (or closest to it) was utilised.

Table B4: Summary of explanatory covariates tested and/or utilised in the model:
Grouping	Variable	Source	Temporal resolution	Spatial resolution
Climatic/terrain	Max temperature	WorldClim (1, 5)	Monthly, 2000 to 2016	1km
	Aridity index (ratio of the annual precipitation and potential evapotranspiration (PET) totals)	WorldClim (1)	Period, 1970-2000	~1km
	Soil type (texture fraction)	SoilGrids250m (2)	Updated 2016, static	250m
	Soil pH	SoilGrids250m (2)	Updated 2016, static	250m
Socio-economic/living conditions	Lack of access to safe drinking water	Local Burden of Disease (LBD) project (The Lancet Global Health, In press)	Annual, 1990-2017	5km
	Lack of access to sanitation facilities	Local Burden of Disease (LBD) project (The Lancet Global Health, In press)	Annual, 1990-2017	5km
	Night lights	Earth observatory (NASA)	Annual, 2012, 2016	3km
	GDP at purchasing power parity (GDP PPP)	Gridded global datasets for Gross Domestic Product and Human Development Index (4)	Annual, 1990-2015	5arc-minutes or ~10 km at
Population count (overall and school aged between 5 to 14 years)	Gridded Population of the World (GPW), version 4, SEDAC https://sedac.ciesin.columbia.edu/data/collection/gpw-v4	Annual 2000-2017	1km	
---	---	---	---	
Slum to non-slum living conditions	Mapping changes in housing in sub-Saharan Africa from 2000 to 2015 (3)	Annual, 2000-2015	5x5km	
Programmatic Cumulative number of effective mass drug administrations for LF (>75% coverage) and school based deworming for STH	ESPEN http://espen.afro.who.int/	Annual, 1990-2018	IU level	
B5.1 Fitted relationship between prevalence of infection for a given STH subtype (red= *Ascaris lumbricoides*, blue=hookworm, grey= *Trichuris trichiura*) and intensity of infection (moderate to heavy) prior to mass drug administration.

Note: dashed lines provide uncertainty intervals for these estimates.
B5.2 Validation of fitted relationship between intensity and prevalence compared to independent data from the Tumikia cluster randomised trial in Kenya, both at baseline (circles) and post (squares) PC treatment. Note relationship for *Ascaris lumbricoides* not displayed due to small sample size of moderate-to-heavy intensity infections in trial setting.

Hookworm

Trichuris trichiura

1. Brooker SJ, Mwandawiro CS, Halliday KE, Njenga SM, McHaro C, Gichuki PM, et al. Interrupting transmission of soil-transmitted helminths: a study protocol for cluster randomised trials evaluating alternative treatment strategies and delivery systems in Kenya. BMJ open. 2015;5(10):e008950. pmid:26482774
2. Halliday KE, Oswald WE, Mcharo C, Beaumont E, Gichuki PM, Kepha S, et al. (2019) Community-level epidemiology of soil-transmitted helminths in the context of school-based deworming: Baseline results of a cluster randomised trial on the coast of Kenya. PLoS Negl Trop Dis 13(8): e0007427. https://doi.org/10.1371/journal.pntd.0007427
B6: Relationships between STH prevalence and selected covariates plus outlier identification (in red)
B7. a) Summary of data points by country for the period 2000-2018 and b) comparison to resultant Bayesian credibility interval uncertainty

Country	Data points (2000-2018)	Total cumulative sample size (2000-2018)
Central African Republic	0	0
Congo	0	0
Djibouti	0	0
Equatorial Guinea	0	0
Somalia	0	0
Sudan	1	0
Seychelles	6	201
Cape Verde	16	1661
Guinea-Bissau	36	1279
Mauritius	49	1495
Lesotho	50	2517
Sao Tome & Principe	75	2551
Namibia	80	4833
Guinea	85	4249
Ghana	90	743
Burkina Faso	113	8666
Sierra Leone	114	6730
Senegal	135	1356
Mauritania	140	12791
Angola	160	3585
Botswana	161	7302
Mozambique	162	7900
South Africa	211	8494
Mali	221	17480
Swaziland	276	13834
Gabon	280	13513
Zimbabwe	283	12368
Cameroon	298	13192
Madagascar	353	18385
Eritrea	368	17462
Chad	409	20469
The Gambia	431	21194
South Sudan	434	18810
Rwanda	445	16778
Benin	448	22797
Burundi	529	62365
Country	Mean uncertainty interval width (2018)	
---------------	--------------------------------------	
Equatorial Guinea	0.870	
Lesotho	0.856	
Gabon	0.853	
Congo	0.818	
Madagascar	0.756	
Cameroon	0.749	
Angola	0.719	
South Africa	0.694	
Tanzania (Zanzibar)	0.685	
Congo, DRC	0.681	
Liberia	0.676	
Mozambique	0.666	
Togo	0.620	
Rwanda	0.616	
Benin	0.594	
Burundi	0.590	
Zambia	0.587	
Guinea-Bissau	0.573	
Tanzania (Mainland)	0.561	
Nigeria	0.552	
Ethiopia	0.532	
Uganda	0.515	
Sierra Leone	0.507	
Country	Value	
-----------------	-------	
Central African	0.475	
Guinea	0.463	
Somalia	0.463	
Swaziland	0.392	
Cote d'Ivoire	0.362	
Mauritania	0.337	
Kenya	0.336	
Botswana	0.309	
Zimbabwe	0.274	
Ghana	0.229	
Chad	0.187	
Djibouti	0.186	
Namibia	0.177	
Senegal	0.176	
The Gambia	0.149	
Malawi	0.139	
South Sudan	0.128	
Sudan	0.076	
Mali	0.068	
Burkina Faso	0.060	
Niger	0.029	
Eritrea	0.013	
B8. Classification of implementation units (n=5183) within STH spatial limits (6) according to any STH infection prevalence thresholds (7) by year (a), by country in 2018 (b), exceeding 20% in 2018 and without reported preventative chemotherapy rounds (c), estimated number of children aged 5 to 14 by prevalence category in 2018 (d), and number of IU’s above/below the target 10% prevalence threshold after implementation of ≥5 years of preventive chemotherapy (e).

a)

Year	StH prevalence category			
	<2%	2-19.9%	20-49.9%	≥50%
2000	30 (1%)	883 (17%)	2022 (39%)	2248 (43%)
2001	47 (1%)	1142 (22%)	2299 (44%)	1695 (33%)
2002	111 (2%)	1707 (33%)	2516 (49%)	849 (16%)
2003	64 (1%)	1374 (27%)	2479 (48%)	1266 (24%)
2004	177 (3%)	1676 (32%)	2526 (49%)	804 (16%)
2005	116 (2%)	1561 (30%)	2516 (49%)	990 (19%)
2006	130 (3%)	1784 (34%)	2500 (48%)	769 (15%)
2007	103 (2%)	1658 (32%)	2496 (48%)	926 (18%)
2008	146 (3%)	1720 (33%)	2464 (48%)	853 (16%)
2009	204 (4%)	2030 (39%)	2348 (45%)	601 (12%)
2010	354 (7%)	2471 (48%)	2042 (39%)	316 (6%)
2011	414 (8%)	2686 (52%)	1853 (36%)	230 (4%)
2012	347 (7%)	2400 (46%)	2066 (40%)	370 (7%)
2013	391 (8%)	2259 (44%)	2115 (41%)	418 (8%)
2014	243 (5%)	2217 (43%)	2203 (43%)	520 (10%)
2015	592 (11%)	2790 (54%)	1623 (31%)	178 (3%)
2016	733 (14%)	3257 (63%)	1103 (21%)	90 (2%)
2017	779 (15%)	3301 (64%)	1017 (20%)	86 (2%)
2018	602 (12%)	3222 (62%)	1233 (24%)	126 (2%)

b)

Country	StH prevalence category	Total IU's			
	<2%	2-19.9%	20-49.9%	≥50%	
AGO	0 (0%)	76 (46%)	85 (52%)	3 (2%)	164
BDI	0 (0%)	31 (67%)	15 (33%)	0 (0%)	46
BEN	1 (1%)	61 (79%)	15 (19%)	0 (0%)	77
BFA	52 (74%)	18 (26%)	0 (0%)	0 (0%)	70
BWA	0 (0%)	24 (100%)	0 (0%)	0 (0%)	24
Country	0 (0%)	16 (94%)	1 (6%)	0 (0%)	17
---------	--------	----------	--------	--------	----
CAF	0 (0%)	82 (99%)	1 (1%)	0 (0%)	83
CIV	33 (17%)	102 (54%)	10 (5%)	189	
CMR	12 (2%)	263 (51%)	13 (3%)	516	
COD	0 (0%)	12 (28%)	1 (2%)	43	
COG	2 (40%)	3 (60%)	0 (0%)	5	
ERI	58 (100%)	0 (0%)	0 (0%)	58	
ETH	20 (3%)	121 (16%)	11 (1%)	744	
GAB	0 (0%)	33 (65%)	18 (35%)	51	
GHA	35 (16%)	0 (0%)	0 (0%)	216	
GIN	0 (0%)	34 (89%)	4 (11%)	38	
GMG	18 (41%)	24 (55%)	0 (0%)	44	
GNB	3 (3%)	60 (51%)	49 (42%)	118	
GNQ	0 (0%)	1 (6%)	16 (94%)	17	
KEN	34 (12%)	228 (79%)	0 (0%)	290	
LBR	1 (7%)	7 (47%)	4 (27%)	15	
LSO	0 (0%)	4 (40%)	6 (60%)	10	
MDG	0 (0%)	46 (40%)	17 (15%)	114	
MLI	50 (76%)	16 (24%)	0 (0%)	66	
MOZ	0 (0%)	87 (55%)	72 (45%)	159	
MRT	1 (2%)	41 (98%)	0 (0%)	42	
MWI	2 (7%)	27 (93%)	0 (0%)	29	
NAM	13 (38%)	17 (50%)	4 (12%)	34	
NER	32 (82%)	7 (18%)	0 (0%)	39	
NGA	26 (3%)	501 (65%)	13 (2%)	774	
RWA	0 (0%)	17 (57%)	3 (10%)	30	
SDN	123 (78%)	34 (22%)	0 (0%)	157	
SEN	23 (30%)	52 (68%)	1 (1%)	76	
SLE	0 (0%)	11 (79%)	3 (21%)	14	
SOM	1 (6%)	17 (94%)	0 (0%)	18	
SSD	33 (41%)	45 (56%)	5 (7%)	80	
SWZ	0 (0%)	51 (93%)	0 (0%)	55	
TCD	17 (19%)	74 (81%)	0 (0%)	91	
TGO	0 (0%)	29 (73%)	11 (28%)	40	
TZA	7 (4%)	143 (77%)	2 (1%)	186	
TZZ	0 (0%)	6 (55%)	5 (45%)	11	
UGA	4 (3%)	97 (84%)	15 (13%)	116	
ZAF	0 (0%)	21 (40%)	3 (6%)	52	
ZMB	0 (0%)	70 (68%)	0 (0%)	103	
ZWE	1 (2%)	61 (98%)	0 (0%)	62	
Total	602 (12%)	3222 (62%)	1233 (24%)	5183	
c) IU’s by country in 2018 with estimated STH prevalence exceeding 20% and with no reported preventative chemotherapy rounds

Country	Freq.	Percent
AGO	55	17.8
BEN	1	0.32
CMR	1	0.32
COD	60	19.42
COG	2	0.65
ETH	7	2.27
GAB	46	14.89
GIN	4	1.29
GMB	2	0.65
GNB	10	3.24
GNQ	17	5.5
KEN	5	1.62
LBR	1	0.32
LSO	5	1.62
MDG	17	5.5
MOZ	1	0.32
NAM	4	1.29
NGA	52	16.83
SSD	2	0.65
TZA	1	0.32
UGA	2	0.65
ZAF	8	2.59
ZMB	6	1.94
Total	309	100

d)

Year	STH prevalence	Estimated population of children 5to14 in 2018 residing in category
2018	<2%	33,716,500
2018	>2-19.9%	169,720,524
2018	>20-49.9%	60,554,912
2018	≥50%	4,923,187
Number of IU’s by country having implemented ≥5 years of preventive chemotherapy and attained a STH prevalence under 10% (N=331):

ADMINISO3	Freq.	Percent	Cum.
BDI	13	3.93	3.93
BEN	7	2.11	6.04
BFA	126	38.07	44.11
CMR	6	1.81	45.92
ETH	12	3.63	49.55
GHA	94	28.40	77.95
MLI	28	8.46	86.40
MWI	6	1.81	88.22
NER	6	1.81	90.03
Number of IU’s by country having implemented ≥5 years of preventive chemotherapy and NOT attained a STH prevalence under 10% (N=399):

ADMINISO3	Freq.	Percent	Cum.
BDI	31	7.77	7.77
BEN	55	13.78	21.55
BFA	14	3.51	25.06
CMR	25	6.27	31.33
ETH	50	12.53	43.86
GHA	25	6.27	50.13
MDG	15	3.76	53.88
MWI	2	0.50	54.39
NGA	86	21.55	75.94
RWA	21	5.26	81.20
SLE	12	3.01	84.21
TGO	31	7.77	91.98
TZA	14	3.51	95.49
TZZ	18	4.51	100.00
Total	399	100.00	
B9. Classification of implementation units (n=5183) within STH spatial limits (6) according to moderate-to-heavy intensity STH infection prevalence thresholds (7) by year (a) by country in 2018 (b) and change in estimated number of school aged children by STH moderate-to-heavy intensity STH infection prevalence thresholds from 2000 to 2018

Year	STH moderate-to-heavy intensity prevalence category				
	<2%	2-4.9%	5-9.9%	10-14.9%	≥15%
2000	946 (18%)	1048 (20%)	1196 (23%)	841 (16%)	1152 (22%)
2001	1218 (23%)	1171 (23%)	1348 (26%)	671 (13%)	775 (15%)
2002	1873 (36%)	1424 (27%)	1183 (23%)	378 (7%)	325 (6%)
2003	1485 (29%)	1260 (24%)	1371 (26%)	538 (10%)	529 (10%)
2004	1898 (37%)	1478 (29%)	1147 (22%)	360 (7%)	300 (6%)
2005	1730 (33%)	1339 (26%)	1283 (25%)	429 (8%)	402 (8%)
2006	1972 (38%)	1451 (28%)	1133 (22%)	334 (6%)	293 (6%)
2007	1814 (35%)	1401 (27%)	1199 (23%)	394 (8%)	375 (7%)
2008	1485 (29%)	1260 (24%)	1147 (22%)	360 (7%)	300 (6%)
2009	1972 (38%)	1451 (28%)	1133 (22%)	334 (6%)	293 (6%)
2010	1814 (35%)	1401 (27%)	1199 (23%)	394 (8%)	375 (7%)
2011	1485 (29%)	1260 (24%)	1147 (22%)	360 (7%)	300 (6%)
2012	1972 (38%)	1451 (28%)	1133 (22%)	334 (6%)	293 (6%)
2013	1814 (35%)	1401 (27%)	1199 (23%)	394 (8%)	375 (7%)
2014	1485 (29%)	1260 (24%)	1147 (22%)	360 (7%)	300 (6%)
2015	1972 (38%)	1451 (28%)	1133 (22%)	334 (6%)	293 (6%)
2016	1814 (35%)	1401 (27%)	1199 (23%)	394 (8%)	375 (7%)
2017	1485 (29%)	1260 (24%)	1147 (22%)	360 (7%)	300 (6%)
2018	1972 (38%)	1451 (28%)	1133 (22%)	334 (6%)	293 (6%)

Country	STH moderate-to-heavy intensity prevalence category				
	<2%	2-4.9%	5-9.9%	10-14.9%	≥15%
AGO	84 (51), (2)	68 (41), (7)	9 (5), (4)	1 (1), (2)	2 (1), (6)
BDI	32 (70), (1)	14 (30), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)
BEN	63 (82), (2)	14 (18), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)
BFA	70 (100), (2)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)
BWA	24 (100), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)
CAF	16 (94), (0)	1 (6), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)
CIV	83 (100), (2)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)
CMR	80 (42), (2)	79 (42), (8)	22 (12), (9)	7 (4), (12)	1 (1), (3)

Total | 164 (100), (3) | 46 (100), (1) | 77 (100), (1) | 70 (100), (1) | 24 (100), (0) | 17 (100), (0) | 83 (100), (2) | 189 (100), (4)
Country	2000 (55), (7)	2005 (36), (19)	2010 (8), (17)	2015 (1), (12)	2020 (0), (0)	2025 (100), (10)
COG	12 (28), (0)	17 (40), (2)	14 (33), (6)	0 (0), (0)	0 (0), (0)	43 (100), (1)
DJI	5 (100), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	5 (100), (0)
ERI	58 (100), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	58 (100), (1)
ETH	621 (83), (16)	97 (13), (10)	18 (2), (7)	8 (1), (13)	0 (0), (0)	744 (100), (14)
GAB	1 (2), (0)	7 (14), (1)	32 (63), (13)	8 (16), (13)	3 (6), (9)	51 (100), (1)
GHA	216 (100), (6)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	216 (100), (4)
GIN	34 (89), (1)	4 (11), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	38 (100), (1)
GMB	42 (95), (1)	2 (5), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	44 (100), (1)
GNB	63 (53), (2)	36 (31), (4)	16 (14), (6)	1 (1), (2)	2 (2), (6)	118 (100), (2)
GNQ	0 (0), (0)	0 (0), (0)	1 (6), (0)	7 (41), (12)	9 (53), (26)	17 (100), (0)
KEN	267 (92), (7)	23 (8), (2)	0 (0), (0)	0 (0), (0)	0 (0), (0)	290 (100), (6)
LBR	5 (33), (0)	4 (27), (0)	3 (20), (1)	0 (0), (0)	3 (20), (9)	15 (100), (0)
LSO	0 (0), (0)	0 (0), (0)	4 (40), (2)	5 (50), (8)	1 (10), (3)	10 (100), (0)
MDG	47 (41), (1)	34 (30), (4)	18 (16), (7)	7 (6), (12)	8 (7), (24)	114 (100), (2)
MLI	66 (100), (2)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	66 (100), (1)
MOZ	89 (56), (2)	70 (44), (7)	0 (0), (0)	0 (0), (0)	0 (0), (0)	159 (100), (3)
MRT	42 (100), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	42 (100), (1)
MWI	29 (100), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	29 (100), (1)
NAM	30 (88), (1)	4 (12), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	34 (100), (1)
NER	39 (100), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	39 (100), (1)
NGA	536 (69), (14)	176 (23), (18)	52 (7), (21)	6 (1), (10)	4 (1), (12)	774 (100), (15)
RWA	17 (57), (0)	10 (33), (1)	0 (0), (0)	2 (7), (3)	1 (3), (3)	30 (100), (1)
SDN	157 (100), (4)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	157 (100), (3)
SEN	75 (99), (2)	1 (1), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	76 (100), (1)
SLE	11 (79), (0)	3 (21), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	14 (100), (0)
SOM	18 (100), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	18 (100), (0)
SSD	78 (98), (2)	2 (3), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	80 (100), (2)
SWZ	52 (95), (1)	3 (5), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	55 (100), (1)
TCD	91 (100), (2)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	91 (100), (2)
TGO	29 (73), (1)	11 (28), (1)	0 (0), (0)	0 (0), (0)	0 (0), (0)	40 (100), (1)
TZA	152 (82), (4)	27 (15), (3)	7 (4), (3)	0 (0), (0)	0 (0), (0)	186 (100), (4)
TZZ	9 (82), (0)	1 (9), (0)	1 (9), (0)	0 (0), (0)	0 (0), (0)	11 (100), (0)
UGA	102 (88), (3)	13 (11), (1)	1 (1), (0)	0 (0), (0)	0 (0), (0)	116 (100), (2)
ZAF	22 (42), (1)	19 (37), (2)	10 (19), (4)	1 (2), (2)	0 (0), (0)	52 (100), (1)
ZMB	71 (69), (2)	32 (31), (3)	0 (0), (0)	0 (0), (0)	0 (0), (0)	103 (100), (2)
ZWE	62 (100), (2)	0 (0), (0)	0 (0), (0)	0 (0), (0)	0 (0), (0)	62 (100), (1)

Total population of children 5-14 years by change in intensity infection category from 2000 to 2018:

STH cat	Total population	Total population	Sum, 2018	Proportion, 2018	
2000:2018					
3882 (75), (100)	956 (18), (100)	251 (5), (100)	60 (1), (100)	34 (1), (100)	5183 (100), (100)

332

c) Estimated child population counts (5-14 years) by change in intensity infection category from 2000 to 2018

75
Time	(5 to 14), 2000	(5 to 14), 2018	Total 206,204,822	% 76.7%
01:01	32,849,816	50,816,069		
02:01	35,181,375	54,414,795		
03:01	42,574,678	65,862,106		
04:01	18,846,441	29,154,094		
05:01	3,851,143	5,957,758		
02:02	27	42	62,710,301	23.3%
03:02	1,118,003	1,729,219		
04:02	8,786,572	13,591,188		
05:02	20,578,010	31,830,726		
04:03	13,330	20,621		
05:03	7,662,719	11,854,222		
05:04	1,529,323	2,366,044		
05:05	851,367	1,318,239		
Total	173,842,804	268,915,123		

i STH cat: 1: <2% moderate-to-heavy intensity; 2: 2-4.9%; 3: 5-9.9%; 4: 10-14.9%; 5: 15+%
The input data were as follows: \(O_{1ij}, O_{2ij} \) and \(n_{1ij}, n_{2ij} \) and \(n_{3ij} \) represent the observed number of cases of and number tested for HK, ASC and TT respectively, for implementation unit (IU) \(i = 1, ..., 5183 \) and year \(j = 2000, ..., 2018 \). Specifically, the observed numbers of positives (\(O_1 = \text{HK}, O_2 = \text{ASC}, O_3 = \text{TT} \)) scaled by the total number tested (\(n_1, n_2, n_3 \)) in each unit \(i \) in year \(j \) is assumed to follow a binomial distribution with prevalence proportions \(\rho_{1ij}, \rho_{2ij}, \rho_{3ij} \).

\[
\begin{align*}
O_{1ij} &\sim \text{Binomial} (\rho_{1ij}, n_{1ij}) \\
O_{2ij} &\sim \text{Binomial} (\rho_{2ij}, n_{2ij}) \\
O_{3ij} &\sim \text{Binomial} (\rho_{3ij}, n_{3ij})
\end{align*}
\]

where \(\rho_{1-3ij} \) corresponds to the prevalence rate for a given STH and \(n_{1-3ij} \) is the total number of tested individuals in area \(i \) in year \(j \), \(\alpha \)'s are the disease-specific intercepts, \(X_i \) and \(X_t \) are the time in varying and time varying covariates respectively and \(\beta_{1-3} \) are the vector of regression coefficients for each STH species. The space–time structure is introduced on the logit scale through the terms:

\[
\begin{align*}
\mu_{1ij} &= \lambda_{1i} \delta_1 + \lambda_{2i} \gamma_k + \xi_{1j} \kappa_1 + \xi_{2j} \kappa_2 + v_{ij} \\
\mu_{2ij} &= \lambda_{1i} \delta_2 + \lambda_{3i} \gamma_k + \xi_{1j} \kappa_1 + \xi_{3j} \kappa_3 + v_{ij} \\
\mu_{3ij} &= \lambda_{1i} \delta_3 + \lambda_{4i} \gamma_k + \xi_{1j} \kappa_1 + \xi_{4j} \kappa_4 + v_{ij}
\end{align*}
\]

where \(\lambda_{1-4i} \) and \(\xi_{1j} \) represent the shared spatial and temporal patterns respectively; \(\lambda_{2-3i}, \lambda_{4i} \) represent the differential spatial pattern from the shared spatial pattern for each STH respectively;

\(\xi_{2j}, \xi_{3j}, \xi_{4j} \) represent the differential temporal pattern from the shared temporal pattern for each STH respectively and \(v_{ij} \) is the space–time order 2 interaction term. The spatial structure (\(\lambda \)) was modelled using a conditional autoregressive Gaussian distribution (CAR) i.e. the conditional.
distribution of each λ_i given all λ’s is a normal distribution with mean equal to the average of the λ’s of its neighbouring polygons, and precision proportional to the number of ‘neighbours’. A first order queen contingency (i.e. all surrounding IU’s which share or touch the boundary of a given IU) neighbourhood structure was utilised and utilised in the CAR via matrix W. We assumed a first order random walk for the temporal effects (ξ) or one dimensional versions of the CAR spatial priors, with weight matrices Q that define the temporal neighbours of year j as years $j - 1$ and $j + 1$ (with a single neighbour in the first and last year in the series namely years $j = 2000$ and $j = 2018$).

The scaling parameters (δ and κ) represent the relative contribution of the shared terms to the risk of given STH species to the overall STH spatial and temporal effects respectively. We implemented a sum to zero constraint for $\delta_{1:3}$ and $\kappa_{1:3}$ to ensure model identifiability (10).

Lastly, we assumed an exchangeable (unstructured) hierarchical structure for the shared interaction terms ν_{ij}.

For the regression coefficients (β), we choose non-informative normal prior distributions. We followed previous recommendations for the precision parameters of the spatial and temporal CAR priors (11) namely:

\[
\alpha's \propto 1 \text{ (for identifiability)}
\]

\[
\lambda's \sim \text{CARNormal}(W, \tau\lambda)
\]

\[
\xi's \sim \text{CARNormal}(Q, \tau\xi)
\]

\[
\nu_{ij} \sim \text{Normal}(0, \tau\nu)
\]

\[
\tau s \sim \text{Gamma}(0.5, 0.0005)
\]

\[
\log \delta, \log \kappa \sim \text{Normal}(0, 5.9)
\]
WinBUGS code for model implementation

```winbugs
model
{
    for (i in 1:N) {
        for (j in 1:T) {
            #Binomial likelihood
            Y1b[i,j]~dbin(p1[i,j],Y1m_tot[i,j])
            Y2b[i,j]~dbin(p2[i,j],Y2m_tot[i,j])
            Y3b[i,j]~dbin(p3[i,j],Y3m_tot[i,j])
            Y4b[i,j]~dbin(p4[i,j],Y4m_tot[i,j])

            #Risk factor model
            logit(p1[i,j])<-
                b1[1]*x1s[i]+b2[1]*x2s[i]+b3[1]*x3s[i,j]+b4[1]*x4s[i,j]+b5[1]*x5s[i,j]+mu[i,j,1]
            logit(p2[i,j])<-
                b1[2]*x1s[i]+b2[2]*x2s[i]+b3[2]*x3s[i,j]+b4[2]*x4s[i,j]+b5[2]*x5s[i,j]+mu[i,j,2]
            logit(p3[i,j])<-
                b1[3]*x1s[i]+b2[3]*x2s[i]+b3[3]*x3s[i,j]+b4[3]*x4s[i,j]+b5[3]*x5s[i,j]+mu[i,j,3]
            logit(p4[i,j])<-
                b1.4*x1s[i]+b2.4*x2s[i]+b3.4*x3s[i,j]+b4.4*x4s[i,j]+b5.4*x5s[i,j]+mu[i,j,4]

            mu[i,j,1:4]~dmnorm(eta[i,j,],Sigma.inv[,])

            #Joint modelling
            eta[i,j,1]<-phi1[i]*delta[1]+gamma1[j]*kappa[1]+nu1[i,j]
            eta[i,j,2]<-phi2[i]*delta[2]+gamma2[j]*kappa[2]+nu2[i,j]
            eta[i,j,3]<-phi3[i]*delta[3]+gamma3[j]*kappa[3]+nu3[i,j]
            eta[i,j,4]<-phi1[i]/delta[1]+ phi2[i]/delta[2]+ phi3[i]/delta[3] +gamma1[j]/kappa[1] +gamma2[j]/kappa[2] +gamma3[j]/kappa[3]+nu4[i,j]

            #Baseline and endline prevalence and exceedance probability posteriors
            sth2000[i]<p4[i,1]
            sth2018[i]<p4[i,19]
            hk2000[i]<p1[i,1]
            hk2018[i]<p1[i,19]
            asc2000[i]<p2[i,1]
            asc2018[i]<p2[i,19]
            tt2000[i]<p3[i,1]
            tt2018[i]<p3[i,19]
            exc_p_low_2000[i]<-step(0.1-p4[i,1])
            exc_p_low_2018[i]<-step(0.1-p4[i,19])
            exc_p_high_2000[i]<-step(0.2-p4[i,1])
            exc_p_high_2018[i]<-step(0.2-p4[i,19])

            #Spatial Modelling (priors)
            phi1[1:N]~car.normal(adj[],weights[],num[],tau.phi[1])
            phi2[1:N]~car.normal(adj[],weights[],num[],tau.phi[2])
            phi3[1:N]~car.normal(adj[],weights[],num[],tau.phi[3])

            #Weights for adjacency matrices in space
            for(k in 1:sumNumNeigh) {
                weights[k]<-1
            }
        }
    }
}
```
Temporal Modelling (priors)

\[
\begin{align*}
\gamma_1[1:T] & \sim \text{car.normal(adj.t[, weights.t[, num.t[, tau.gamma[1]]])} \\
\gamma_2[1:T] & \sim \text{car.normal(adj.t[, weights.t[, num.t[, tau.gamma[2]]])} \\
\gamma_3[1:T] & \sim \text{car.normal(adj.t[, weights.t[, num.t[, tau.gamma[3]]])}
\end{align*}
\]

\[
\text{for}(t \in 1:1) \{
\begin{align*}
\text{weights.t}[t] & \gets 1; \\
\text{adj.t}[t] & \gets t+1; \\
\text{num.t}[t] & \gets 1
\end{align*}
\}
\]

\[
\text{for}(t \in 2:(T-1)) \{
\begin{align*}
\text{weights.t}[2+(t-2)*2] & \gets 1; \\
\text{adj.t}[2+(t-2)*2] & \gets t+1 \\
\text{weights.t}[3+(t-2)*2] & \gets 1; \\
\text{adj.t}[3+(t-2)*2] & \gets t+1; \\
\text{num.t}[t] & \gets 2
\end{align*}
\}
\]

\[
\text{for}(t \in T:T) \{
\begin{align*}
\text{weights.t}[(T-2)*2 + 2] & \gets 1; \\
\text{adj.t}[(T-2)*2 + 2] & \gets t+1; \\
\text{num.t}[t] & \gets 1
\end{align*}
\}
\]

Spatial-time Interaction Modelling (priors)

\[
\begin{align*}
\nu_1[i,j] & \sim \text{dnorm(alpha1, tau.nu[1])} \\
\nu_2[i,j] & \sim \text{dnorm(alpha2, tau.nu[2])} \\
\nu_3[i,j] & \sim \text{dnorm(alpha3, tau.nu[3])} \\
\nu_4[i,j] & \sim \text{dnorm(alpha4, tau.nu[4])}
\end{align*}
\]

Hyperprior specification

\[
\begin{align*}
\tau_{\phi[1]} & \sim \text{dgamma(0.5, 0.005)} \\
\tau_{\phi[2]} & \sim \text{dgamma(0.5, 0.005)} \\
\tau_{\phi[3]} & \sim \text{dgamma(0.5, 0.005)} \\
\tau_{\gamma[1]} & \sim \text{dgamma(0.5, 0.005)} \\
\tau_{\gamma[2]} & \sim \text{dgamma(0.5, 0.005)} \\
\tau_{\gamma[3]} & \sim \text{dgamma(0.5, 0.005)} \\
\delta[1] & \sim \text{dunif(0.575, 1.675)} \\
\kappa[1] & \sim \text{dunif(0.575, 1.675)} \\
\kappa[2] & \sim \text{dunif(0.575, 1.675)} \\
\kappa[3] & \sim \text{dunif(0.575, 1.675)} \\
\alpha_1 & \sim \text{dflat()} \\
\alpha_2 & \sim \text{dflat()} \\
\alpha_3 & \sim \text{dflat()} \\
\alpha_4 & \sim \text{dflat()}
\end{align*}
\]
Sigma.inv[1:4, 1:4] ~ dwish(\(B\), 4)

503

504 \(B[1, 1] < -0.01\)

505 \(B[2, 2] < -0.01\)

506 \(B[3, 3] < -0.01\)

507 \(B[4, 4] < -0.01\)

508 \(B[1, 2] < 0\)

509 \(B[1, 3] < 0\)

510 \(B[1, 4] < 0\)

511 \(B[2, 1] < 0\)

512 \(B[2, 3] < 0\)

513 \(B[2, 4] < 0\)

514 \(B[3, 1] < 0\)

515 \(B[3, 2] < 0\)

516 \(B[3, 4] < 0\)

517 \(B[4, 1] < 0\)

518 \(B[4, 2] < 0\)

519 \(B[4, 3] < 0\)

520

521 # Coefficient for covariates

522

523 for (k in 1:3) {

524 b1[k] ~ dnorm(0, 0.01)

525 b2[k] ~ dnorm(0, 0.01)

526 b3[k] ~ dnorm(0, 0.01)

527 b4[k] ~ dnorm(0, 0.01)

528 b5[k] ~ dnorm(0, 0.01)

529 }

530

531 b1.4 <- (b1[1] + b1[2] + b1[3])/3

532 b2.4 <- (b2[1] + b2[2] + b2[3])/3

533 b3.4 <- (b3[1] + b3[2] + b3[3])/3

534 b4.4 <- (b4[1] + b4[2] + b4[3])/3

535 b5.4 <- (b5[1] + b5[2] + b5[3])/3

536

537 for (i in 1:N) {

538 for (j in 1:T) {

539 HKtot[i, j] <- p1[i, j] * pop[i, j]

540 ASCtot[i, j] <- p2[i, j] * pop[i, j]

541 TTtot[i, j] <- p3[i, j] * pop[i, j]

542 STHtot[i, j] <- p4[i, j] * pop[i, j]

543 }

544 }

545

546 for (j in 1 : T) {

547 HKprev[j] <- sum(HKtot[, j])/sum(pop[, j])

548 ASCprev[j] <- sum(ASCtot[, j])/sum(pop[, j])

549 TTprev[j] <- sum(TTtot[, j])/sum(pop[, j])

550 STHprev[j] <- sum(STHtot[, j])/sum(pop[, j])

551 }

552

553

554
B12. Gelman-Rubin convergence plots for key model parameters

Model convergence was assessed by visual inspection of the series plot of each parameter, and using Gelman-Rubin statistics (12). Furthermore, the final posterior samples were also assessed to check if the Monte Carlo error for each parameter was less than 5% of the sample standard deviation. An assessment of model convergence using Gelman-Rubin statistics/plots (Figure B12) are presented below. An inspection of these plots suggested convergence/stabilisation of the full multivariable space-time model after approximately 25,000 iterations.

Figure B12: Gelman-Rubin statistics plots for key model parameters as confirmation of convergence
A comparison of observed versus fitted STH prevalence overall and by sub-species (see scatter plots below, Figure B13) from the full model suggested a very high degree of correlation (STH: spearman rho=0.995, P<0.001; hookworm: spearman rho=0.967, P<0.001; Ascaris: spearman rho=0.951, P<0.001; Trichuris: spearman rho=0.995, P<0.001) with a few notable differences e.g. many data points with observed prevalence of zero were corrected upwards by the model and/or smoothed towards local areal mean based on contiguity matrix in space and time.

We also compared agreement between the observed and model fitted prevalence using the Bland-Altman method (Figure B13.2). This method suggests a high concordance (Lin’s Concordance Correlation coeff. of Absolute Agreement = 0.9979) with only 5.5% of observations outside the limits of agreement. This agreement was similar for the predictions for the individual species (please see below).
Figure B13.2: Bland-Altman plots for observed versus model fitted prevalence by species with limits of agreement (LoA).

STH

Bland-Altman: Absolute values of Bias & Limits of Agreement (LoA)

Parameter	Estimate	Std. Dev.	Std. Err.	[95% Conf. Interval]
Diff. (Y-X): Bias	-.0003533	.0139362	.0002165	-.0007778 - .0000711
Lower LoA	.027678	.000375	.000375	-.0276678 - .0276963
Upper LoA	.0269611	.000375	.000375	-.0269327 - .0269611

Cases over limit = 138 (3.33%)
Cases under limit = 92 (2.22%)
Spearman correlation between (Y-X) and (X+Y)/2: r = 0.1949 (p = 0.0000)
Lin's Concordance Correlation coeff. of Absolute Agreement = 0.9979

HK

Bland-Altman: Absolute values of Bias & Limits of Agreement (LoA)

Parameter	Estimate	Std. Dev.	Std. Err.	[95% Conf. Interval]
Diff. (Y-X): Bias	-.0000311	.0116327	.000186	-.0003958 - .0000336
Lower LoA	.0228308	.0003222	.0003222	-.0221369 - .0221369
Upper LoA	.0227686	.0003222	.0003222	-.0221369 - .0221369

Cases over limit = 116 (2.97%)
Cases under limit = 80 (2.05%)
Spearman correlation between (Y-X) and (X+Y)/2: r = 0.3465 (p = 0.0000)
Lin's Concordance Correlation coeff. of Absolute Agreement = 0.9966

ASC

Bland-Altman: Absolute values of Bias & Limits of Agreement (LoA)
Parameter Estimate Std. Dev. Std. Err. [95% Conf. Interval]

Diff. (Y-X): Bias .0002786 .0115271 .0001841 -.0000824 -.0006396
Lower LoA -.022314 .0003189 -.0229393 -.0216888
Upper LoA .0228713 .0003189 .022246 .0234966

Cases over limit = 74 (1.89%)
Cases under limit = 37 (0.94%)
Spearman correlation between (Y-X) and (X+Y)/2: r = 0.4013 (p = 0.0000)
Lin's Concordance Correlation coeff. of Absolute Agreement = 0.9970

Bland-Altman: Absolute values of Bias & Limits of Agreement (LoA)

Parameter Estimate Std. Dev. Std. Err. [95% Conf. Interval]

Diff. (Y-X): Bias .000109 .0063809 .0001033 -.0000935 -.0003114
Lower LoA -.0123974 .0001788 -.0127481 -.0120468
Upper LoA .0126153 .0001788 .0122647 .012966

Cases over limit = 77 (2.02%)
Cases under limit = 42 (1.10%)
Spearman correlation between (Y-X) and (X+Y)/2: r = 0.4308 (p = 0.0000)
Lin's Concordance Correlation coeff. of Absolute Agreement = 0.9979
Out of sample validation

A random 20% of observed data points were drawn for STH overall and for each sub-species separately from the space-time cube. The data with these points removed were then re-inputted into WinBUGS. The posterior distributions for the predicted prevalence for these 20% of removed data points were then compared against the observed values to ascertain the predictive power of the model (i.e. out of sample validation). The percentage of observed prevalence values that were contained within the credibility interval of the posterior distribution for the predicted prevalence were calculated. Of note is that 742/752 (or 99%) of the observed prevalence values were contained in the 95% credible interval (CI) for its posterior distribution while 507/752 or 67% were contained within the 50% credible interval (i.e. 25% to 75% centile). The scatter plot comparing observed versus model fitted prevalence for validation sample suggests highly significant moderate strength correlation (Spearman rank correlation coefficient +0.67, p-value <0.001) (please see Figure B14 below).

Figure B14: Scatter plot comparing observed versus model predicted for the out of sample validation
B15. World Health Organization preventive chemotherapy guidelines to control soil-transmitted helminth infections (reduce worm burden and thus morbidity) in at-risk population groups (13)

Preventive chemotherapy (or deworming), using annual or biannual (biannual administration recommended where the baseline prevalence is over 50%) single-dose albendazole (400 mg) or mebendazole (500 mg) (half-dose of albendazole (i.e. 200 mg) is recommended for children under 2 years of age) is recommended as a public health intervention for all young children (12-23 months of age), preschool (24-59 months of age) and school-age children (5 and 12 years of age) living in areas where the baseline prevalence of any soil-transmitted infection is 20% or higher among children (strong recommendation, low-quality evidence).

Preventive chemotherapy using annual or biannual (biannual administration recommended where the baseline prevalence is over 50%) single-dose albendazole (400 mg) or mebendazole (500 mg), is recommended for all non-pregnant adolescent girls (10–19 years of age) and non-pregnant women of reproductive age (15–49 years of age) residing in areas where the baseline prevalence of any soil-transmitted helminth infection is 20% or higher among non-pregnant adolescent girls and/or non-pregnant women of reproductive age (strong recommendation, moderate-quality evidence).

Preventive chemotherapy (deworming), using single-dose albendazole (400 mg) or mebendazole (500 mg), is recommended for pregnant women, after the first trimester, living in areas where the baseline prevalence of hookworm and/or T. trichiura infection is 20% or higher among pregnant women, AND where anaemia is a severe public health problem, with a prevalence of 40% or higher among pregnant women (conditional recommendation, moderate-quality evidence).
1. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society. 2005;25(15):1965-78.

2. Hengl T, de Jesus JM, Heuvelink GB, Gonzalez MR, Kilibarda M, Blagotić A, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS one. 2017;12(2):e0169748.

3. Tusting LS, Bisanzio D, Alabaster G, Cameron E, Cibulskis R, Davies M, et al. Mapping changes in housing in sub-Saharan Africa from 2000 to 2015. Nature. 2019:1.

4. Kummu M, Taka M, Guillaume JH. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Scientific data. 2018;5:180004.

5. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International journal of climatology. 2017;37(12):4302-15.

6. Pullan RL, Brooker SJ. The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasites & vectors. 2012;5(1):81.

7. Organization WH. Soil-transmitted helminthiases: eliminating as public health problem soil-transmitted helminthiases in children: progress report 2001-2010 and strategic plan 2011-2020. 2012.

8. Knorr-Held L, Best NG. A shared component model for detecting joint and selective clustering of two diseases. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2001;164(1):73-85.

9. Richardson S, Abellan JJ, Best N. Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK). Statistical methods in medical research. 2006;15(4):385-407.

10. MacNab YC. On Bayesian shared component disease mapping and ecological regression with errors in covariates. Statistics in medicine. 2010;29(11):1239-49.

11. Elliott P, Wakefield JC, Best NG, Briggs DJ. Spatial epidemiology: methods and applications: Oxford University Press Oxford; 2000.

12. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Statistical science. 1992;7(4):457-72.

13. World Health Organization. Guideline: preventive chemotherapy to control soil-transmitted helminth infections in at-risk population groups: World Health Organization; 2017.