Invasive Alien Plants in Sub-Saharan Africa: A Review and Synthesis of Their Insecticidal Activities

Osariyekemwen Uyi1,2*, Ludzula Mukwevho3†, Afure J. Ejomah1 and Michael Toews2

1 Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria, 2 Department of Entomology, University of Georgia, Tifton, GA, United States, 3 School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela, South Africa

Despite the cornucopia of agricultural, economic and ecological ramifications of invasive plant species (IAPs) in sub-Saharan Africa, studies on their potential use as bio-insecticides have not received adequate attention compared to the burgeoning plethora of literature on their use in ethnomedicine. In the current study, we review the existing, but scattered literature on the insecticidal activity of different parts of some IAPs; specifically those invasive in sub-Saharan Africa but with published literature from Africa and elsewhere. From our literature survey, we found that 69 studies from four continents (Africa, Asia, North America and South America) reported the insecticidal activity of 23 plant species from 13 families (Asteraceae = 6 species; Solanaceae = 3 species; Apocynaceae, Fabaceae and Euphorbiaceae 2 species each; Araceae, Bignoniaceae, Chenopodiaceae, Meliaceae, Mimosaceae, Myrtaceae, Papaveraceae, and Verbenaceae = 1 species each) that are invasive in, and alien to Africa. The highest number of published case studies were from India (n = 19) and Nigeria (n = 15). We found that varying concentrations of extracts or powders from different plant parts caused 50–100% mortality against a myriad of insect pests of agricultural and environmental importance. Our review discussed the prospects for exploiting IAPs as pesticidal plants in African countries especially among resource-poor small-holder farmers and locals to improve agricultural productivity and livelihoods. Finally, we highlighted safety concerns and challenges of using IAPs as bio-insecticides in Africa and formulates appropriate recommendations for future research.

Keywords: invasive alien plant species, Africa, botanical insecticide, insect pest control, resource poor farmers

INTRODUCTION

Invasive alien plant species (IAPs) are among species whose naturalization threatens the biological biodiversity and functions of the ecosystem in their new geographic region (Richardson and Pyšek, 2012; Mostert et al., 2017; O’Connor and van Wilgen, 2020). These plants are among significant ecosystem drivers that degrades the quality of grazing, agricultural and natural lands (Richardson and van Wilgen, 2004; Davis, 2006). Due to the immense ecological and social pressures exerted by these plants, governments have announced the management of IAPs and millions of dollars are invested toward the management of these plants in South Africa and elsewhere in the world (McConnachie et al., 2010; Van Wilgen and Lange, 2011; Hoffmann and Broadhurst, 2016; Morokong et al., 2016; Hanley and Roberts, 2019).

Regardless of the efforts made toward minimizing the densities of invasion and the spread of these IAPs, follow-up treatments may be required to keep the populations of these non-native...
species at a level that prevents spread and harm to human health or the environment (Marais et al., 2004; Klein, 2011; Mukwevo and Mphephu, 2020). Although manual clearing of IAPs yields temporal relief on the intensity of invasion, continuous clearing alone favors the expansion of the invasion by species that are propagated vegetatively (Radtke et al., 2013). To minimize the further spread of IAPs through plant propagules, the cut plant materials from the above- and below-ground may be further processed to be used for socio-economic and ecological benefits in sub-Saharan Africa (Shackleton et al., 2007, 2018; Ngorima and Shackleton, 2019; Mugwedi, 2020).

The potential use of IAPs in ethnomedicine and various aspects of ethnobotany in Africa have received a great deal of attention (e.g., Omokhua et al., 2016, 2018a,b) however, studies on the use and potential of invasive alien plants as pesticidal plants to manage agricultural and environmental pests is only beginning to gain recognition (e.g., Midega et al., 2016; Mkindi et al., 2017; Stevensona et al., 2017; Uyi et al., 2018a,b). Since some IAP’s contain some novel secondary phytochemicals, the harvested materials may be processed to be used against microorganisms, insects and weeds and other undesired plants (Deressa et al., 2015; Amir et al., 2017; Mkindi et al., 2017; Das et al., 2018; Zerihun and Ele, 2018; Mugwedi, 2020). Like other pesticides, biopesticides may repel insect pests, disrupt their development, affect reproduction or kill live organisms on contact (Mogg et al., 2008; Litt et al., 2014; Uyi and Adetimehin, 2018). Although different scientists consider IAPs as a threat to agriculture and biodiversity, dozens of IAPs have pesticidal properties that have been rigorously screened toward major pests, pollinators and wasps (including some parasitoids) around the globe (Isman, 2008; Mkenda et al., 2015; Mkindi et al., 2017; Stevensona et al., 2017).

Due to the cost of synthetic chemicals (Dougoud et al., 2019), impacts on non-target species (Theiling and Croft, 1988; Mulé et al., 2017), target pest’s genetic drift (REX consortium, 2010; Khayatnezhad and Nasehi, 2021) and ecotoxicological impacts (Pimentel, 1995; Kankam, 2021), the United Nations (UN) promotes the use of environmentally safe products, such as aqueous extracts to minimize the impact of pests on crops (Phillips and Throne, 2010; Bommarco et al., 2013; Oliveira et al., 2014). Sustainable and eco-friendly biopesticides may be easily accessible by the resource-poor small-holder farmers and locals in countries where there is greater food insecurity, particularly in Africa (Sasson, 2012). Further processing of plant propagules also curbs the further distribution of IAPs through vegetative materials, hence also benefiting the livelihoods though reducing pressures by the agricultural pests on various crops. In this paper, we review the existing, but scattered literature on the insecticidal activity of different parts of some IAPs; specifically, those that are invasive in the sub-Saharan Africa. We discuss the prospects and opportunities for using IAPs as bio-insecticides and formulates appropriate recommendations for future research.

METHODS

The information presented in this review was obtained from journal articles that are relevant to the topic. Only literature on insecticidal (not repellence) properties of IAPs that are invasive in Africa were included. Plant like *Azadirachta indica* A. Juss (Miliaceae) that have wide usage and is already well-established for over 100 years were not considered in this review. The scientific papers analyzed were obtained from different sources such as Google Scholar, Science-Direct, PubMed, SciFinder, and Scopus. Systematically used keywords include invasive alien plants, insecticidal, pesticidal, insect pest, efficacy, mortality, with the scientific name of each plant reported to possess insecticidal properties in journal articles. We used Boolean operators (and, or, not or and not) to combine or exclude keywords in our search to obtain a more focused and productive results. The literature search was conducted between June 2019 and April 2020, and more than 120 published papers were identified. Among the excluded research papers were those that assessed the insecticidal properties of forest trees, plants that have not been declared as invasive in Africa and studies that did not include control treatments. The mean percentage of insect mortality reported here was recorded from either of the text, tables, graphs and/figures. Among the information derived from the research papers was the country in which different studies were conducted, name of the IAP’s, the harvested/used plant part(s), the formulations, the target insect, developmental stages at which the formulation was applied, and the percentage mortality reported after application of the formulation. Only articles that reported data with means, sample size and a measurement of variance (standard deviation, standard error or confidence intervals) for all treatments with a clear indication of replication were considered. The scoring system of 0–4 was used to rate the insecticidal properties of IAPs against insects in Africa. The percentage mortality of 1–25, 26–50, 51–75, and 76–100% were ranked as 1, 2, 3, and 4, respectively, but the formulation that recorded zero percent mortality was ranked as 0.

RESULTS AND DISCUSSION

Impact and Distribution of Invasive Alien Plant Species in Africa

Invasive alien plant species are identified as the plants that are intentionally or accidentally introduced to the regions beyond their native ranges (Richardson and Pyšek, 2012). Naturalized alien plant species are among significant ecosystem drivers that pose major threats to the native communities (e.g., plants and arthropods) in natural and agricultural ecosystems (Van Hengstum et al., 2013; Litt et al., 2014). The increase in the intensity of invasion aggravates the degree of threat to biodiversity and ecosystem function (Valone and Weyers, 2019). The distribution and problems of the IAPs reviewed in this paper are detailed in Tables 1A–E. Among the common impacts of the IAPs is the degradation of grazing land, competition with native species and cultivated crops for natural resources, supporting agricultural pests between cropping seasons, presenting health hazard to humans and poisoning of livestock.
Although there is sufficient literature that documents the impacts of these plants, the global efforts on mapping the distribution of the plants in their non-native ranges is insufficient (Witt et al., 2018).

The current distribution of invasive alien plants has been recorded for various plants invading the landscapes of different countries in Africa (Henderson, 2001; Shackleton et al., 2017; Witt and Luke, 2017; Witt et al., 2018, 2019; Catarino et al., 2019), whilst other studies also predicted the future distribution of these weeds (McConnachie et al., 2010; Taylor et al., 2012; Tererai and Wood, 2014; Obiakara and Fourcade, 2018). Further, surveys on the distribution of agents associated with these IAPs contribute to the continuous update on the change of the invasion intensities (Mukwevho et al., 2018). Despite the remarkable efforts by the Centre for Agriculture and Bioscience International (CABI, sometimes also referred to as CAB International) to describe the international distribution of IAPs, insufficient records of plant distribution in other African countries result in fragmented distribution maps.

Invasive Alien Plants in Africa With Reported Insecticidal Properties

From the literature survey, we found 69 studies across the globe that reported insecticidal activities of 23 plant species that are invasive in, and alien to Africa. The identified species were from 13 plant families and comprised six species from Asteraceae, three species from Solanaceae, two species from Apocynaceae, Fabaceae and Euphorbiaceae, and one species each from Araceae, Bignoniaceae, Chenopodiaceae, Meliaceae, Mimosaceae, Myrtaceae, Papaveraceae, and Verbenaceae (Tables 2A–I). These reports showing the insecticidal activities of alien plants that are problematic in Africa originated from Africa, Asia, North America and South America. The highest number of published case studies were from India and Nigeria with 19 and 15, respectively, whilst countries such as Algeria, Argentina, Brazil, Colombia, Chile, China, Egypt, Ethiopia, Ghana, Kenya, Malawi, Mexico, Pakistan, Sudan, Tanzania, Togo, Tunisia, Turkey, and the United States of America have less than 6 reports each. We hypothesized that the large number of research papers from India, Nigeria and other developing countries may be due to the fact that scientists in these countries are aware of the limited availability of synthetic insecticides by the resource-poor small-holder farmers; locals in these countries are keen on identifying IAPs to control and manage insect pests of agricultural, environmental and medical importance. Due the ecotoxicological effects and high cost of synthetic insecticides, the use of plants with pesticidal properties to control insect pests in agro-ecosystems among resource-poor small-holder farmers has been historically widespread and adopted in Africa (Belmain and Stevenson, 2001; Midega et al., 2016). Despite the widespread use of these bioreational methods, pest control in some ecosystems in Africa continues to rely on the use of synthetic insecticides when alternative biopesticides are unavailable (Isman, 2006, 2015; Isman and Grieneisen, 2014). Although a plethora of empirical research has demonstrated the insecticidal properties of weeds in general, our literature found evidence that some invasive alien plants in Africa possessed insecticidal properties against a range of insect pests.

Several biological assays have been conducted to ascertain the efficacy of invasive alien plants against a myriad of insect pests with varying levels of insect mortality (Tables 2A–I). The survey demonstrated that leaf extracts were frequently used for bioassays, compared to other parts (i.e., roots, stems, inflorescences, fruits or seeds) of the plant (Figure 1). A majority of studies were conducted on members of the Asteraceae which represented 25 out of 69 studies and accounted for 38% of the total studies recorded in this review (Figure 2). Mean mortality rank of insect pests caused by the Asteraceae ranged from 50 to 100% (Figure 3).

Asteraceae Species With Insecticidal Properties

Six species in the family Asteraceae were reported effective against a number of insect pest species. In a laboratory and field study conducted by Xu et al. (2009), the acetone leaf extract of *Ageratina adenophora* caused up to 73% mortality in *Brevicoryne brassicae* after a 3-day exposure. Although the use of the essential oils of *A. adenophora* has been suggested for controlling aphids, ants and weevils in stored grains, there are no reports on the insecticidal use of this plant in invaded areas in Africa. Jaya et al. (2014) observed that essential oils from *Ageratum conyzoides* leaves caused 100% mortality against *Tribolium castenum*. Moreira et al. (2007a,b) isolated compounds including (5,6,7,8,3′,4′,5′-heptamethoxyflavone, 5,6,7,8,3′-pentamethoxy-4′, 5′-methylenedioxyflavone and coumarin) from the hexane extract of *A. conyzoides* leaves and tested the efficacy of the compounds against *Rhyzopertha dominica* and *Diaphania hyalinata*. Following a 24-h exposure, varying concentrations of the isolated compounds caused between 76 and 87% mortality in adults of *R. dominica* and 100% mortality in the larvae of *D. hyalinata* (Moreira et al., 2004, 2007a,b). The leaf extracts of *A. conyzoides* have also been reported to possess strong insecticidal activities (100% mortality) against the larvae of *Acanthoscelides obtectus, Musca domestica* and *Epidelachna vigintioctopunctata* (Calle et al., 1990; Saxena and Sharma, 2005). Liu and Liu (2014) evaluated the larvicidal activity of the essential oil of *A. conyzoides* aerial parts against *Aedes albopictus*. The authors identified the principal constituents of the essential oils of *A. conyzoides* and concluded that the oils have insecticidal and larvicidal activities. Despite the burgeoning plethora of papers on the pesticidal activity of *A. conyzoides* against a myriad of arthropod pests (see Rioba and Stevenson, 2017), studies on the indigenous use of this plant in the control and management of insect pests are scarce. The increasing reports of the use of *A. conyzoides* in ethnomedicine for the treatment of a wide range of diseases in Africa (e.g., Nwauzoma and Dappa, 2013) suggest that the locals are exploiting the potential of the plant. Whether or not the plant has found use among the locals in its invasive range in Africa remains to be documented.

In a bioassay where *Cimex lectularius* adults were exposed to 2.0 g of *Chromolaena odorata* leaf powder, 70% mortality...
TABLE 1A | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species	Growth form	Native range	Distribution ranges in Africa*	Impact of the weed	Reference(s)
Apocynaceae					
Catharanthus roseus	Shrub/herb	Madagascar	BE, BO, BF, CA, CD, ET, GAB, GIU, KE, MA, MO, NA, RW, SE, SL, SA, SW, TZ, TOGO, UG, ZA, ZM	Adapts to a wider range of ecological conditions such as watercourses, rocky outcrops, grazing lands, and along plantations. The milky sap contained on the vegetative parts of the plant makes the plant to be toxic	Henderson, 2001
Nerium oleander	Shrub	Europe, Asia	EG, KE, MO, NG, SA, ZM	The plant is toxic to humans and other mammals. The modes of toxicity/poisoning include direct ingestion or of the smoked food products, and inhalation	Henderson, 2001

| **Amaranthaceae** | Shrub | South America | NJ, NG, NZ, SA, UG, ZA, ZM | The water weed covers water bodies and thereby affects the lives of organisms inhibiting the waters. The weed clogs waterways and thus prevents movement of boats, blocks irrigation canals, disrupts fishing grounds and hydro-electricity production | Henderson and Cilliers, 2002; Macdonald et al., 2003; Witt et al., 2018 |
| Parthenium hysterocephorus | Shrub | South America | NJ, NG, NZ, SA, UG, ZA, ZM | The water weed covers water bodies and thereby affects the lives of organisms inhibiting the waters. The weed clogs waterways and thus prevents movement of boats, blocks irrigation canals, disrupts fishing grounds and hydro-electricity production | Henderson and Cilliers, 2002; Macdonald et al., 2003; Witt et al., 2018 |

was reported after 5 days (Uyi et al., 2018a). Depending on concentrations, the leaf, stem and root powders of *C. odorata* were reported to cause between 16 and 100% mortality against adults of the *Callosobruchus maculatus* (Uyi and Ighinoba, 2016; Uyi and Obi, 2017; Uyi and Adetimehin, 2018). In Nigeria, Lawal et al. (2015) reported that the leaf extracts of *C. odorata* displayed a strong insecticidal activity by causing between 33 and 93% mortality in *Sitophilus zeamais*. In a field experiment in Ghana, Ezena et al. (2016) reported that varying concentrations of the leaf extract caused between 36 and 77% mortality in nymphs and adults of the *Brevicoryne brassicae* and *Hellula undalis* and *Plutella xylostella*. Udebuani et al. (2015) tested the efficacy of *C. odorata* leaf extract against *Periplaneta americana* by exposing the adults to different concentrations of the leaf extract and reported 12 to 69% mortality. Sukhthankar et al. (2014) investigated the insecticidal activity of different concentrations of methanolic leaf extract of *C. odorata* against the larvae of *Anoplophora stephensi*, *Culex quinquefasciatus* and *Aedes aegypti* and found up to 100% mortality in these larvae after 24 h of exposure. Similar to *A. conyzoides*, studies documenting the indigenous use of *C. odorata* are scarce (but see Cobbinah et al., 1999). The authors conducted ethnobotanical surveys on plants used for the protection of stored cereals in Ghana and reported that copea treated with *C. odorata* leaf powder were free of insect infestation for 4 months and that the locals attributed this to the insecticidal or repellent activities of *C. odorata*.

Tesfu and Emana (2013) studied the insecticidal properties of different parts of *Parthenium hysterophorus* powders against *Callosobruchus chinensis* over 48 h and found that the highest dose (2/50 g seeds) of inflorescence, leaf and stem powder caused 77, 73, and 57% mortality, respectively. The leaf, stem and root extracts of *P. hysterophorus* have been reported to be effective against *Ae. aegypti*; larval mortality of 40 to 100% was recorded after exposure to the aqueous leaf extracts of *P. hysterophorus* (Kumar S. et al., 2012; Amir et al., 2017). In an investigation of the insecticidal efficacy of the leaf extract of *P. hysterophorus* against the larvae of the rice moth, *Corcyra cephalonica*, Khan and Qamar (2015a) reported 81% mortality of larvae. In another experiment, Khan and Qamar (2015b) recorded 14.4% adult mortality in *P. americana*. Reddy et al. (2018) investigated the insecticidal activity of *P. hysterophorus* against *P. xylostella* and *Aphis craccivora* in a field experiment and found that *P. hysterophorus* leaf extract showed promising toxicity (LC50 = 1140.68 mg L^{-1}) to larvae of *P. xylostella* and *A. craccivora* (LC50 = 839 mg L^{-1}) after 96 h of treatment. The authors did not report any specific mortality rates. Although several studies (see references in Tables 2A–1) have recommended the use of *P. hysterophorus* as a pesticidal plant in its invasive ranges in Asia and Africa, there is no evidence to show that the locals especially the resource-poor small-holder farmers are exploiting it as yet.

In Nigeria and Tanzania, the leaf and stem bark extracts of *Tithonia diversifolia* have been reported to cause 100% mortality of adult *C. maculatus* (Obembe and Kayode, 2013; Green et al., 2017). Similarly, studies on the insecticidal activity of the leaf...
extract of *T. diversifolia* against *S. zeamais* showed 43% mortality in adults (Obembe and Kayode, 2013). Babarinde et al. (2008) and Adedire and Akinneye (2004) demonstrated that the leaf powder of *T. diversifolia* caused 90 and 99% mortality of *S. zeamais* and *C. maculatus*, respectively. In a field experiment, Mkenda et al. (2015) showed that the leaf extracts of *T. diversifolia* significantly reduced the population of the nymph/larvae and adults of *Aphis fabae*, *Oothesca mutabilis*, *O. bennigseni*, *Epicauda albivittata* and *E. limbatispennis*. The authors further showed that the control offered by the leaf extracts were comparable to lambda-cyhalothrin, a commonly used synthetic pyrethroid. Although without mortality figures, Mkindi et al. (2017) reported some insecticidal activity of *T. diversifolia* leaf extract against some important pests (*Aphis fabae*, *Oothesca mutabilis* and *O. bennigseni*, *Epicauda albivittata* and *E. limbatispennis*, *Clavigralla tomentosicollis*, *C. schadabi*, and *C. hystricodes*) of beans in Tanzania and Malawi. The authors reported that *T. diversifolia* offered effective control of key pest species that was comparable in terms of harvested bean yield to a synthetic pyrethroid. The leaf extract of another species of Asteraceae, *Xanthium strumarium* caused more than 82% mortality in green peach aphid, *Myzus persicae* (Erdogan and Yildirim, 2016). In Uganda, farmers used the leaf extract and powder of *T. diversifolia* for the management of field and stored product pests (Mugisha-Kamatenesi et al., 2008; Mwine et al., 2011). *Tithonia diversifolia* is known to contain sesquiterpene lactones and diterpenoids (Chagas-Paula et al., 2012), some of which have biological activities against insects such as termites (Adoyo et al., 1997). However, there is no specific information about which compounds are responsible for its insecticidal effect. Despite the traditional use of *Xanthium strumarium* in ethnomedicine for treating a variety of diseases (Pan et al., 2019), its use by locals to control pests appears to have been overlooked.

Solanaceae Species With Insecticidal Properties

Three species in the family, Solanaceae were reported effective against a number of important field and stored product insect pests. Zapata et al. (2006) investigated the insecticidal efficacy of the leaf extract of *Cestrum parqui* against the Mediterranean fruit fly, *Ceratitis capitata* and recorded 55% mortality in the adults of this pest. Investigations on the insecticidal activity of *Solanum elaeagnifolium* showed that the leaf and seed extracts of this plant accounted for 88 and 84% mortality, respectively against the larvae of *T. castenum* in Tunisia (Ben Hamouda et al., 2015a). The leaf and seed extracts of *S. elaeagnifolium* offered effective control against the Spodoptera littoralis* (Ben Hamouda et al., 2015b). The authors found that leaf and seed extracts, respectively caused 80 and 100% mortality in the larvae of *S. littoralis*. Ben Hamouda et al. (2015c) reported the mortality

TABLE 1B | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species	Growth form	Native range	Distribution ranges in Africa	Impact of the weed	Reference(s)
Asteraceae					
Ageratum conyzoides	Herb	Americas	AN, BE, BO, BF, BU, CV, CA, CAR, CO, CD, EQ, ET, GA, GAB, GH, GU, KE, Lh, MA, MALI, MO, MGR, NG, RW, SE, SL, SA, SU, SW, TZ, TOGO, UG, ZA, ZM	Alternate host to a number of economically important pests, namely pathogens (e.g., Tomato Yellow Leaf Curl Virus and the Ageratum Yellow Vein Virus) and nematodes (Meloidogyne javanica, Radopholus similis and Helicotylenchus multicinctus). The plant releases the allelochemicals that inhibits the seed germination and growth of other species	Witt et al., 2018
Chromolaena odorata	Shrub	Central and South America	BE, CA, CAR, CD, CO, GH, GU, KE, LiB, MO, NG, SA, TZ, TOGO, UG, ZM	Displaces native plant species and alters the fuel loads which may increase proneness to wildfires. Reduces the productivity of rangelands and may cause serious health problems to livestock and people	Muniappan et al., 2005; Witt et al., 2018; Catarino et al., 2019; Mugwedi, 2020
Parthenium hysteronorphus	Herb		BO, EG, ET, KE, MO, RW, SA, SO, SW, TZ, UG, ZM	The plant is alelopathic and suppresses the natural vegetation of the invaded landscapes. Severe reduction in the productivity of rangelands and has serious health hazards (dermatitis, hay fever, and asthma) to people, livestock, and wildlife	McConnachie et al., 2010; Witt et al., 2018
Tithonia diversifolia	Shrub	Mexico and Central America	AN, BU, CA, CAR, CO, CD, EG, ET, GU, KE, MA, MO, NG, RW, SA, SW, TZ, TOGO, UG, ZA, ZM	The plant is alelopathic and has a significant impact on native vegetation. The evergreen plant releases species diversity and the productivity of rangelands. Intensive invasions may contribute to the local extinction of valued native species	Obiakara and Fourcade, 2018; Witt et al., 2018
Xanthium strumarium	Herb	Central and South America	BO, BU, EG, ET, KE, LE, MA, RW, SA, TZ, UG, ZA	Rapidly forms large stands, displacing other plant species. Toxic to livestock and can lead to death if eaten	Witt et al., 2018

Angola (AO); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroon (CA); Central African Republic (CAR); Côte d’Ivoire (CD); Congo (CO); Cabo Verde (CV); Egypt (EG); Equatorial Guinea (EG); Ethiopia (ET); Gambia (GA); Gabon (GAB); Ghana (GH); Guinea (GU); Kenya (KE); Lesotho (LE); Liberia (LIB); Malawi (MA); Mali (MALI); Mozambique (MO); Morocco (MOR); Nigeria (NG); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan (SU); Swaziland (SW); Togo (TG); Tanzania (TZ); Uganda (UG); Zambia (ZA); Zimbabwe (ZM).
rate of up to 5 and 43% caused by the leaf and seed aqueous extract of *Solanium elaeagnifolium* against *M. persicae*. In an investigation into the insecticidal activity of *S. sisymbriifolium* leaf extract against *T. castenam*, Padin et al. (2013) reported 22% mortality in adult beetles. The traditional use of the leaf extract of *C. parqui*, *S. sisymbriifolium*, and *S. elaeagnifolium* for the control and management of insect pests in their invasive ranges in Africa have not been documented and therefore requires some ethnobotanical studies.

Apocynaceae, Euphorbiaceae, and Fabaceae Species With Insecticidal Properties

Two species each in the family, Apocynaceae, Euphorbiaceae, and Fabaceae were reported effective against some insect pests, medical, environmental and agricultural importance. Remia and Logaswamy (2010) studied the insecticidal activity of the leaf extract of *Catharanthus roseus* against *Ae. aegypti* and reported over 71% mortality in the larvae and pupae of this mosquito species. Khan and Qamar (2015a, b) investigated the efficacy of *Nerium oleander* against the larvae of a rice moth, *Corcyra cephalonica* and *P. americana* and found up to 83% mortality in the larvae of the rice moth and *P. americana*. Despite the usage of Apocynaceae species in ethnomedicine (CABI, 2020a), their use as pesticides by locals is yet to be reported.

The leaf, seed, stem bark and root extracts of *Jatropha curcas* have been found effective (i.e., with 40 to 100% mortality) against the nymphs and larvae of *P. xylostella*, *Helicoverpa armigera*, *P. xylostella* in *A. gossypii* aphid, *Prosopis juliflora*, and *J. curcas* leaf and stem bark powders of *C. maculatus* mortality in *R. rosea* reported 22% mortality in adult beetles. The traditional use of the leaf extract of *C. parqui*, *S. sisymbriifolium*, and *S. elaeagnifolium* for the control and management of insect pests in their invasive ranges in Africa have not been documented and therefore requires some ethnobotanical studies.

TABLE 1C | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species	Growth form	Native range	Distribution ranges in Africa	Impact of the weed	Reference(s)
Bignoniaceae	Tree	South America	AN, BO, CV, CA, CAR, EG, ET, QAB, GH, KE, MA, MOR, MO, NC, QW, SA, SW, TQ, UQ, ZA, ZM	The dense foliage it produces tends to shade out native plants and prevent their regeneration. Deep rooted and may thrive conditions/overcome some species	Henderson, 2001
Jacaranda mimosifolia	Tree	Mexico	BO, CA, EG, QAB, GH, KE, LE, MA, NA, NG, SA, SE, TA, UQ, ZA, ZM	Common weed of agricultural, pastural and natural ecosystems. Inter-seasonal host for *Erysiphe betae* (powdery mildew) of sugar beet. The plant can smother native plants and may outcompete them in the disturbed areas	Foxcroft et al., 2003
Chenopodiaceae	Herb	Mexico	AN, BE, BF, CVCA, CAR, CH, CD, EG, ET, GA, QAB, GH, GL, KE, LI, MA, MALI, MO, NI, NG, QW, SA, SE, SL, SO, SU, TQ, TOGO, UQ, ZA, ZM	The plant is poisonous to grazing stock of animals and may contribute to significant modifications of the ecosystems that they are invading. It cause significant shift of biodiversity.	Negussie et al., 2014
Chenopodium ambrosioides	Shrub	Americas	AN, BE, BF, CV, CH, EG, ER, ET, GA, GH, GU, KE, LIB, MALI, MOR, MO, NA, NG, NI, SE, SO, SA, SU, TZ, TUN, UQ, ZM	The leaf extract caused 100% mortality on the larvae of a rice moth, *Corcyra cephalonica* and Logaswamy (2010) reported 22% mortality in adult beetles. The traditional use of the leaf extract of *C. parqui*, *S. sisymbriifolium*, and *S. elaeagnifolium* for the control and management of insect pests in their invasive ranges in Africa have not been documented and therefore requires some ethnobotanical studies.	Henderson, 2001; Zachariades et al., 2011a,b; Abdulahi et al., 2017
Euphorbiaceae	Shrub	Americas	AN, BE, BF, CV, CH, EG, ER, ET, GA, GH, GU, KE, LIB, MALI, MOR, MO, NA, NG, NI, SE, SO, SA, SU, TZ, TUN, UQ, ZM	The plant is poisonous to grazing stock of animals and may contribute to significant modifications of the ecosystems that they are invading. It cause significant shift of biodiversity.	Negussie et al., 2014
Jatropha curcas	Shrub	Americas	AN, BE, BF, CV, CH, EG, ER, ET, GA, GH, GU, KE, LIB, MALI, MOR, MO, NA, NG, NI, SE, SO, SA, SU, TZ, TUN, UQ, ZM	The plant is poisonous to grazing stock of animals and may contribute to significant modifications of the ecosystems that they are invading. It cause significant shift of biodiversity.	Negussie et al., 2014
Prosopis juliflora	Tree	Caribbean	AL, BO, BF, CV, CH, EG, ER, ET, GA, GH, GU, KE, LIB, MALI, MOR, MO, NA, NG, NI, SE, SO, SA, SU, TZ, TUN, UQ, ZM	Reduces grazing capacity, eliminates many species from invaded ecosystems and depletes groundwater resources. Despite some benefits in the form of firewood and edible pods, the overall net economic contribution is negative, and set to worsen as the species continues to spread	Henderson, 2007; Zachariades et al., 2011a,b; Abdulahi et al., 2017
Sesbania grandiflora	Tree	Asia	BO, CV, CH, ET, QAB, GH, MA, NI, NG, SA, SE, SL, SO, SU, TZ	It has allelopathic effects on crop seed germination	Gillett, 1963

Algeria (AL); Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroon (CA); Central African Republic (CAR); Côte d’Ivoire (CD); Chad (CH); Congo (CO); Cabo Verde (CV); Egypt (EG); Equatorial Guinea (EQ); Ethiopia (ET); Ghana (GA); Gabon (GAB); Guinea (GU); Guinea (GK); Kenya (KE); Lesotho (LE); Libya (LI); Malawi (MA); Mali (MALI); Mozambique (MO); Morocco (MOR); Namibia (NA); Nigeria (NG); Niger (NI); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan (SU); Swaziland (SW); Togo (TOGO); Tunisia (TUN); Tanzania (TZ); Uganda (UG); Zambia (ZN); Zimbabwe (ZM).
Investigated the insecticidal activity

Uyi et al. (2018b)

Chiffelle Khan and Qamar (2015a,b)

reported 100% mortality in

CABI, 2020b),

Selvaraj and Mosses

reported

Guzzo et al. (2006)

reported over 88% larval mortality in

Nia et al. (2015)

documented 86% mortality when the adults of the

A. obtectus

30% mortality in adults of

Jacaranda mimosifolia

also found that the leaf powder of

Insecticidal activity of at least one species from the following

families: Araceae, Bignoniaceae, Chenopodiaceae, Meliaceae,

Mimosaceae, Myrtaceae, Papaveraceae, and Verbenaceae was

investigated.

Other Species With Insecticidal Properties

Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species	Growth form	Native range	Distribution ranges in Africa	Impact of the weed	Reference(s)
Euphorbiaceae					
Ricinus communis	Shrub	AL, AN, BE, BO, BU, CV, CAR, CH, CO, EG, ET, GAB, GA, GH, GU, KE, LI, MA, MALI, MOR, MO, NA, RW, SE, SO, SA, TZ, TOGO, TUN, UG, ZA, ZM	Pollen causes respiratory allergies for animals. R. communis is extremely poisonous to animals and humans and pollen causes respiratory allergies in humans	Henderson, 2001; Kiran and Prasad, 2017	
Meliaceae					
Melia azedarach	Tree	Asia	AN, BO, BFC, CA, CH, CO, CD, EG, ET, GH, KE, LE, MA, MALI, MO, MOR, NA, NI, NG, SE, SO, SA, SU, SW, TZ, TUN, UG, ZA, ZM	The dense monospecific stands suppress the regenerating native plants. It alters soil chemistry, and can act as respiratory irritants	Henderson, 2001, 2007
Mimosaceae					
Mimosa diplotricha	Shrub	BU, CA, CO, CD, ET, GH, GU, MA, MO, NG, RW, SA, TZ, TOGO, UG, ZM	Dry thickets are prone to fires and density of the plant restricts movement of mammals, including people. It suppresses the shaded species and thus prevents regression of other plants	Echhator et al., 2013; Uyi, 2020	
Myrtaceae					
Eucalyptus camaldulensis	Tree	AL, AN, BE, BF, BO, BU, CA, CD, CH, CO, CV, EG, EQ, ER, ET, GA, GH, KE, LE, LI, MA, MALI, MO, MOR, NA, NG, NI, RW, SA, SE, SL, SO, SU, SW, TUN, TZ, UG, ZA, ZM	The plant suppresses native plants, improves the fuel loads, depletes nutrients and excessive water use	Henderson, 2001	

Algeria (AL); Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BU); Cameroun (CA); Central African Republic (CAR); Côte d’Ivoire (CD); Chad (CH); Congo (CO); Cabo Verde (CV); Egypt (EG); Equatorial Guinea (EQ); Eritrea (ER); Ethiopia (ET); Gabon (GA); Gabon (GAB); Ghana (GH); Ghana (GUA); Kenya (KE); Lesotho (LE); Libya (LI); Malawi (MA); Mali (MALI); Mozambique (MO); Morocco (MOR); Namibia (NA); Nigeria (NG); Niger (NI); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan (SU); Swaziland (SW); Togo (TOGO); Tunisia (TUN); Tanzania (TZ); Uganda (UG); Zambia (ZA); Zimbabwe (ZM).

and S. grandiflora is yet to be documented and therefore warrant some ethnobotanical investigation.

Other Species With Insecticidal Properties

Insecticidal activity of at least one species from the following families: Araceae, Bignonieae, Chenopodiaceae, Meliaceae, Mimosaceae, Myrtaceae, Papaveraceae, and Verbenaceae was investigated. Ito et al. (2015) investigated the insecticidal activity of Piptia striatipes and found that the leaf powder of this aquatic weed reduced the population of Ae. aegypti by 80%. Our survey also found that the leaf powder of Jacaranda mimosafoia caused 30% mortality in adults of A. obectus (Waueru et al., 2017), while the leaf extract caused 49% mortality in adults of T. castenun (Padin et al., 2013). Guzzo et al. (2006) reported that the leaf and fruit extracts of Dysphania ambrosioides only caused low adult mortality (<5%) in R. dominica. The fruit extract of Melia azedarach has been reported to be effective in the control of several pests. For example, the fruit extract of this weed caused 44% larval mortality in Liriomyza huidobrensis and 100% larval mortality in S. frugiperda and S. littoralis (Hammad and McAulane, 2010; Scapinello et al., 2014). Chiffelle et al. (2011) documented 86% mortality when the adults of the Elm leaf beetle, Xanthogaleruca luteola were treated with the fruit extract of M. azedarach. Similarly, Selvaraj and Mosses (2011) reported over 88% larval mortality in An. stephensi, Cx. quinquefasciatus and Ae. aegypti when larvae were treated with the fruit extracts. Although we found no traditional usage of the Araceae, Bignonieae, Chenopodiaceae species as pesticidal plants, we found that in Ghana, the leaves of M. azedarach were used as a bioinsecticide to minimize the impact of Ephesia cautella on cocoa beans (CABI, 2020b).

In a laboratory experiment on the efficacy of the root extract of Mimosa diplotricha, Uyi et al. (2018b) reported 100% mortality in worker termites, Macrotermes species when exposed to different concentrations for 12 h. In a different experiment on the efficacy of the leaf and root powders of M. diplotricha against C. lectularius and C. maculatus, Uyi et al. (2018a, 2020) reported more than 67% mortality for both insects. Nia et al. (2015) reported 53% mortality in the nymphs and adults of M. persicae when the leaf extract of Eucalyptus camaldulensis was used to treat infestations of this pest. Khan and Qamar (2015a, b) found significant mortalities (15–76%) in C. cephalonica and P. americana when the larvae of the moth and nymphs of the cockroach were exposed to the leaf extracts of Argenone mexicana. We found no reports on the ethnepesticidal usage of M. diplotricha and E. camaldulensis, but for A. mexicana,
vom Weizsäckerl (1995) reported that the leaf extract is used in parts of India to prepare antifeedant sprays for the management of insect pests.

From the Verbenaceae family, Lantana camara was reported active against some mosquito species and major pests of crops due to the insecticidal potential of the plant. Remia and Logaswamy (2010) investigated the efficacy of the leaf extract of L. camara against Ae. aegypti in the laboratory and found more than 65% larval and pupal mortality. The essential oils from the leaves of L. camara caused between 93 and 100% in Ae. aegypti, Cx. quinquefasciatus, An. culicifacies, An. fluviatilis and An. Stephens when adults were exposed for 24 h (Dua et al., 2010). Leaf powders and extracts of L. camara were also reported effective against a number of stored product pests (S. zeamais, S. oryzae, S. granaries, C. chinensis, T. castenum) where it caused 9–100% mortality depending on the concentration of the extract/powder and period of exposure (Sexana et al., 1992; Zoubiri and Baaliouamer, 2012; Rajashekar et al., 2014; Taye et al., 2014). In a laboratory experiment in China, the leaf extract of L. camara caused 90% mortality in the subterranean termite, Reticulitermes flavipes, when the workers were exposed for 24 h. The leaf extract of L. camara was reported to possess some insecticidal activities against some field pests (e.g., A. fabae, Ootheca mutabilis, O. bennigseni, Epicauta albiovittata, E. limbatipennis, Clavigralla tomentosicollis, C. schadabi, and C. hystricodes) of beans in Tanzania and Malawi (Mkindi et al., 2017). Despite the ethnomedicinal uses of L. camara in Africa and the numerous studies on its pesticidal properties, there is surprisingly only one report (Mugisha-Kamatenesi et al., 2008) on the use of the plant for the management of insect pest species in the invasive range of the plant in Africa.

Prospects, Challenges, and Safety of Using IAPs as Bio-Insecticides

Prospects for Exploiting IAPs for Insect Pest Control

Due to the associated non-target effects and cost of synthetic insecticides in Africa, many resource-poor small-holder farmers on the continent rely on the use of crude plant-based materials collected from the wild and locally prepared (using the available technology or crude methods) to control and manage insect pests problems in subsistence farming, which is wide spread on the continent (Cobbina et al., 1999; Belmain and Stevenson, 2001; Isman, 2008; Nyirenda et al., 2011; Kamanula et al., 2017). Despite the demonstrated laboratory and field efficacy of botanicals from many invasive alien plants against

TABLE 1E | Published reports on the impact of some invasive alien plants in sub-Saharan Africa.

Family/Species	Growth form	Native range	Distribution ranges in Africa	Impact of the weed	Reference(s)
Papaveraceae					
Argemone mexicana	Herb	Mexico	AN, BE, BO, BF, CV, CA, CD, EQ, EO, ER, ET, GA, GH, GI, KE, LIB, MA, MALI, MO, NA, NG, NI, SE, SL, SO, SA, SU, SW, TZ, TOGO, UG, ZA, ZM	It is a toxic plant, which is also toxic to feeding animals. The allelopathic effects result on suppression of plants in the ecosystem	Van der Westhuizen and Mpecl, 2011
Solanaceae					
Cestrum parqui	Shrub	Argentina, Brazil, Bolivia, Chile, Peru, Paraguay and Uruguay	KE, SA	The plant out-competes and disrupt regeneration of native plants. Thickets along waterways blocks access by to streams. Toxic to feeding herbivores, causes skin irritation (e.g., rashes)	Henderson, 2001; Witt and Luke, 2017
Solanum elaeagnifolium	Herb	Mexico	AL, EG, LE, LI, MOR, SA, TUN, ZM	The plant acts as a vector for the Lettuce chlorosis virus between cropping seasons. Competes for natural resources with cultivated crops and reduce production on agricultural lands. The berries are toxic to livestock	EPPO, 2007
Solanum sisymbriifolium	Tree	South America	CO, NA, SA, SW	Competes with native vegetation for space and natural resources. Acts as a trap crop for the potato and tobacco cyst nematodes, though it affects their reproduction	Dandurand et al., 2019
Verbenaceae					
Lantana camara	Tree or shrub	Mexico	AN, BA, CO, CD, CV, ET, GA, GAQ, GH, GI, KE, LIB, MA, MO, NA, NG, RW, RA, SE, SW, SU, TZ, UG, ZA, ZM	Displaces natural vegetation and impacting negatively on plant and arthropod biodiversity. Toxic to livestock, causing animal deaths, reduced productivity, and allelopathic effects causes loss of pasture	Henderson, 2007; Taylor et al., 2012; Shackleton et al., 2017; Witt et al., 2018

Impact of the weed Reference(s)

Algeria (AL); Angola (AN); Benin (BE); Burkina Faso (BF); Botswana (BO); Burundi (BL); Cameroon (CA); Côte d’Ivoire (CD); Congo (CO); Cabo Verde (CV); Egypt (EG); Equatorial Guinea (EQ); Eritrea (ER); Ethiopia (ET); Gabon (GA); Ghana (GH); Guinea (GI); Kenya (KE); Lesotho (LE); Libya (LI); Liberia (LIB); Malawi (MA); Mali (MALI); Mozambique (MO); Morocco (MOR); Namibia (NA); Nigeria (NG); Niger (NI); Rwanda (RW); South Africa (SA); Senegal (SE); Sierra Leone (SL); Somalia (SO); Sudan (SU); Swaziland (SW); Togo (TOGO); Tunisia (TUN); Tanzania (TZ); Uganda (UG); Zambia (ZA); Zimbabwe (ZM).
TABLE 2A | Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference(s)
Apocynaceae	Catharanthus roseus	Leaf	Acetone extract/spray	Mosquito (Aedes aegypti)	Larvae and pupae	Pest of medical importance	>71	India	Remia and Logaswamy, 2010
	Nerium oleander	Leaf	Methanol extract/spray	Rice moth (Corcyra cephalonica), Cockroach (Periplaneta americana)	Larvae	Rice and household pests	17.4-83	India	Khan and Qamar, 2015a,b
Araceae	Pistia stratiotes	Leaf	Aqueous extract/spray	Aedes aegypti (L.)	Larvae	Vector of some parasitic diseases	80.1	Nigeria	Ito et al., 2015
Asteraceae	Ageratina adenophora	Leaf	Acetone extract/spray	Cabbage aphid (Brevicoryne brassicae)	Adults and nymphs	Pest of cabbage and other brassicae species	73	China	Xu et al., 2009
	Ageratum coryzoides	Leaf	Essential oils/fumigant	Storage grain beetle (Tribolium castaneum)	Adults	Stored grains	100	India	Jaya et al., 2014
		Leaf	Hexane extract/filter paper impregnation	Lesser grain borer (Rhizophagus dominica)	Adults	Stored grains	76-87	Brazil	Moreira et al., 2007a,b
		Leaf	Hexane extract/filter paper impregnation	Melanworm moth, Diaphania hyalinata, Tuta absoluta	Larvae	Pest of various plants in the cucumber family	100	Brazil	Moreira et al., 2004
		Leaf	Petroleum ether extract/filter paper impregnation	Acanthoscelides obtectus, Musca domestica	Larvae	Bean weevil	100	Colombia	Calle et al., 1990
		Leaf	Petroleum ether extract/ingestion	Epilachna vigintioctopunctata	Larvae	Agricultural pest (eggplant)	100	India	Saxena and Sharma, 2005
Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference(s)
--------------	--------------------------------	------------------------------	---	---	-----------------	----------------------	---------------	---------	-------------------------
Asteraceae	Ageratum conyzoides	Leaf	Essential oils/addition of extract to water	Asian tiger mosquito, Aedes albopictus.	Larvae	–	–	China	Liu and Liu, 2014
	Chromolaena odorata	Leaf and root	Powder/Dust	Bed bugs (Cimex lectularius)	Adults	Pest of humans and animals	>70	Nigeria	Uyi et al., 2018a
		Leaf and root	Aqueous extract/filter paper impregnation	Termites (Macrotermes species)	Adults	Pest of crops	100	Nigeria	Uyi et al. (2018b)
		Leaf, stem and root	Powder/Dust	Cowpea beetle (Callosobruchus maculatus)	Adults	Pest of cowpea	16–100	Nigeria	Uyi and Iginoba, 2016; Uyi and Obi, 2017; Uyi and Adetunji, 2018
		Leaf extracts	Methanol extract/filter paper impregnation	Maize weevil (Sitophilus zeamais)	Adults	Pest of maize, and cowpea	33–93	Nigeria	Lawal et al., 2015
		Leaf extract	Aqueous extract/spray	Cabbage aphid (Brevicoryne brassicae), cabbage webworm (Hellula undalis), Diamondback moth (Plutella xylostella)	Adults	Pest of cabbage and other brassicae species	36–74	Ghana	Ezefa et al., 2016
		Leaf extract	Aqueous extract/filter paper impregnation	Cockroach (Periplaneta americana)	Adults	Household pest and vector of parasitic diseases	12–69	Nigeria	Udebuani et al., 2015
		Leaf extract	Methanol extract/addition of extract to water	Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti	Larvae	Vector of parasitic diseases	20–100	India	Sukhthankar et al., 2014
Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference(s)
-------------	------------------------	---------------------------	--------------------------------	--------------------------------	-----------------	----------------------	---------------	---------	----------------------------
Asteraceae	Parthenium hysterophorus	Flowers, leaf and stem	Powder/dust	Bean weevil (Callosobruchus chinensis)	Adults	Cowpea and chickpea	>56.6	Ethiopia	Tesfu and Emana, 2013
		Leaf and stem	Aqueous extract/addition of extract to water	Aedes aegypti;	Larvae	Vector of some parasitic diseases	>80	Pakistan	Amir et al., 2017
		Leaf, stem and root	Acetone and hexane extract/addition to water	Aedes aegypti;	Larvae	Vector of some parasitic diseases	40–100	India	Kumar S. et al., 2012
		Leaf	Methanol extract/ingestion	Rice moth (Corcyra cephalonica)	Larvae	Pest of rice	81	India	Khan and Qamar, 2015a
		Leaf	Methanol extract/ingestion	American cockroach (Periplaneta americana)	Adults	Household pest	14.4	India	Khan and Qamar, 2015b
		Leaf	Methanol extract/ingestion	Plutella xylostella, Aphis craccivora	Larvae and adults	Agricultural pests	good toxicity	India	Reddy et al., 2018
Tithonia diversifolia	Stem bark	Aqueous extract/spray		Cowpea beetle (Callosobruchus maculatus)	Adults	Pest of beans	100	Nigeria	Obembe and Kayode, 2013
		Leaf	Methanol extract/fumigant	Cowpea beetle (Callosobruchus maculatus)	Adults	Pest of beans	100	Tanzania	Green et al., 2017
		Leaf	Aqueous extract/spray	Maize weevil (Sitophilus zeamais)	Adults	Pest of maize, rice	43	Nigeria	Obembe and Kayode, 2013
		Leaf	Powder/dust	Maize weevil (Sitophilus zeamais)	Adults	Pest of maize, rice	90	Nigeria	Babarinde et al., 2008
Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference (s)
------------	-----------------------	-------------	--------------------------------	---	----------------	----------------------	---------------	------------	-----------------------------------
Asteraceae	Tithonia diversifolia	Leaf	Aqueous extract and powder/spray and dust	Cowpea beetle (Callosobruchus maculatus)	Adults	Pest of beans	98.3	Nigeria	Adedire and Akinneye, 2004
		Leaf	Aqueous extract/spray	Aphids (Aphis fabae), Bean foliage beetle (Ootheca mutabilis and O. bennigsen), and flower beetle (Epicauta albovittata and E. limbipennis)	Nymphs, larvae and adults	Pest of beans		Tanzania	Mkenda et al., 2015
		Leaf	Aqueous extract/spray	Aphids (Aphis fabae), bean foliage beetle (Ootheca mutabilis and O. bennigsen), flower beetle (Epicauta albovittata and E. limbipennis) and pod suckers (Clavigralla tormentosicollis, C. schadabi and C. hystricodes)	Nymphs, larvae and adults	Pest of beans		Tanzania and Malawi	Mkindi et al., 2017
	Xanthium strumarium	Leaf	Ethanol extract/spray	Green peach aphid (Myzus persicae)	Adults	Pest of peach	>-82	Turkey	Erdogan and Yldirim, 2016
Bignoniaceae	Jacaranda mimosifolia	Leaf	Powder/dust	Acanthoscelides obtectus	Adults	Pest of cowpea	>-31%	Kenya	Waweru et al., 2017
		Leaf	Methanol extracts/topical	Tribolium castaneum	Adults	Pest of stored grains	49%	Argentina	Padin et al., 2013
Chenopodiaceae	Dysphania ambrosioides	Leaf and fruit	Aqueous extract/spray	Lesser grain borer (Phyzopera dominica)	Adults	Pest of stored grains	0.5–2.9	Brazil	Guzzo et al., 2006
Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference(s)
-----------------	---------------	----------------------	---------------------------------	--------------------------------------	-----------------	--	---------------	-----------	----------------------
Euphorbiaceae	Jatropha curcas	Leaf, seed, bark, root	Methanol extract/leaf dip method	Diamondback moth (Plutella xylostella)	Larvae	Pest of cabbage and other brassicace species	40–100%	India	Ingle et al., 2017
		Leaf, root and seed coat	Methanol extract/leaf dip method	Helicoverpa armigera	Larvae		60%	India	Ingle et al., 2017
		Leaf	Methanol extract/leaf dip method	Fall army worm (Spodoptera frugiperda)	Larvae	Agricultural pest	3–60%	Brazil	Ribeiro et al., 2012
		Seed	Hexane extract/spray	Desert locust (Schistocerca gregaria)	Nymphs	Agricultural pest	20–59%	Sudan	Bashir and El Shafie, 2013
		Leaf and Stem	Powder/dust	Callosobratus maculatus	Adults	Agricultural pest	100%	Nigeria	Adetimehin et al., 2018; Opuba et al., 2018
R. communis	Leaf	Aqueous extract/ topical and ingestion	Methanol extract/leaf dip method	Diamondback moth (Plutella xylostella)	Larvae	Agricultural pest	100%	Togo	Tounou et al., 2011
Fabaceae	Prosopis juliflora	Leaf	Methanol extract/spray	Cotton aphid (Aphis Gossypii)	Adults	Pest of cotton	73.3	Ethiopia	Zerihun and Ele, 2018
		Seed	Methanol extract/spray	Cotton aphid (Aphis Gossypii)	Adults	Pest of cotton	70	Ethiopia	Zerihun and Ele, 2018
		Leaf extract	Aqueous extract/spray	Diamondback moth (Plutella xylostella)	Larvae	Pest of cabbage and other brassicace species	96%	India	Sangavi and Johnson Thangaraj Edward, 2017
Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference (s)
--------------	---------------	-------------	--------------------------------	---------------	----------------	---------------------	---------------	---------	-----------------------
Fabaceae	Sesbania grandiflora	Leaf	Aqueous extract/spray	Diamondback moth (Plutella xylostella)	Larvae	Pest of cabbage and other brassicae species	73	India	Sangavi and Johnson Thangaraj Edward, 2017
Meliaceae	Melia azedarach	Fruit	Aqueous extract/spray	Vegetable leaf miner (Liriomyza huidobrensis)	Larvae	Agricultural pest	44	USA	Hammad and McAuslane, 2010
		Fruit	Essential oil and methanol extract/ingestion	Fall armyworm (Spodoptera frugiperda)	Larvae	Pest of maize	100	Brazil	Scapinello et al., 2014
		Fruit	Acetone extract/leaf dipping technique	African Cotton leafworm (Spodoptera littoralis)	Larvae	Pest of cotton	100	Egypt	Farag et al., 2011
		Fruit	Ethanol extract/filter paper impregnation	Elm leaf beetle (Xanthogaleruca luteola)	Adults	Environmental pest	86	Chile	Chiffelle et al., 2011
		Fruit	Methanol extract/addition to water	Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti	Larvae	Vectors of some parasitic diseases	>88	India	Selvaraj and Mosses, 2011
Mimosaceae	Mimosa diplotricha	Leaf	Powder/dust	Bed bugs (Cimex lectularius)	Adults	Pest of medical importance	>70	Nigeria	Uyi et al., 2018a
		Leaf	Powder/dust	Macrotomus species	Adults	Pest of crops	100	Nigeria	Uyi et al., 2018b
		Root	Powder/dust	Callosobruchus maculatus	Adults	Agricultural pest	67	Nigeria	Uyi et al., 2020
Myrtaceae	Eucalyptus camaldulensis	Leaf	Ethanol extract/leaf dipping technique	Green peach aphid (Myzus persicae)	Nymphs and adults	Agricultural pest	53	Algeria	Nia et al., 2015; Erdogan and Yildirim, 2016
Table 2G: Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference(s)
Papaveraceae	*Argemone mexicana*	Leaf extract,	Methanol extract/ingestion	Rice moth, (*Corcyra cephalonica*) and Cockroach (*Periplaneta americana*)	Larvae, adults	Agricultural and household pests	15.4–76	India	Khan and Qamar, 2015a,b
Solanaceae	*Cestrum parqui*	Leaf extract	Aqueous extract/leaf dipping and ingestion	Mediterranean fruit fly (*Ceratitis capitata*)	Adults	Fruits	55	Chile	Zapata et al., 2006
Solanum elaeagnifolium	Leaf extract	Methanol extract/seed treatment	Red flour beetle (*Tribolium castaneum*)	Larvae	Pest of stored grains	88	Tunisia	Ben Hamouda et al., 2015a	
Solanum elaeagnifolium	Seed extract	Methanol extract/seed treatment	Red flour beetle (*Tribolium castaneum*)	Larvae	Pest of stored grains	84	Tunisia	Ben Hamouda et al., 2015a	
Solanum elaeagnifolium	Leaf extract	Methanol extract/leaf treatment and ingestion	African cotton leafworm (*Spodoptera littoralis*)	Larvae	Agricultural pest	80	Tunisia	Ben Hamouda et al., 2015b	
Solanum elaeagnifolium	Seed extract	Ethanol and methanol extract/leaf treatment and ingestion	African cotton leafworm (*Spodoptera littoralis*)	Larvae	Agricultural pest	100	Tunisia	Ben Hamouda et al., 2015b	
Solanum elaeagnifolium	Leaf and seed extracts	Ethanol and methanol extract/leaf treatment and ingestion	Green peach aphid (*Myzus persicae*)	Adults	Agricultural pest	5–43	Tunisia	Ben Hamouda et al., 2015c	
Published reports on the insecticidal activities of some plant species with invasive potentials in sub-Saharan Africa.

Family	Plant species	Plant parts	Formulation/application method	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference(s)
Solanaceae	Solanum sisymbriifolium Leaf	Methanol extract/filter paper impregnation	Red flour beetle (Tribolium castaneum)	Adults	Pest of stored grains	22%	Argentina	Padin et al., 2013	
Verbenaceae	Lantana camara Leaf	Acetone extract/addition to water	Mosquito (Aedes aegypti)	Larvae and pupae	Vector of some parasitic diseases	>-65	India	Remia and Logaswamy, 2010	
	Leaf and stem	Methanol extract/fumigant	Bean weevil (Callosobruchus chinensis)	Adults	Pest of pulse	9- 23%	India	Sexana et al., 1992	
		Leaf	Chloroform extract/filter paper impregnation	subterranean termite, Reticulitermes flavipes	Adults	Agricultural pest	90	China	Yuan and Hu, 2012
		Leaf	Essential oil/spray	Aedes aegypti, Culex quinquefasciatus, Anopheles culicifacies, Anopheles fluviatilis and Anopheles stephensi	Adults	Vector of parasitic diseases	93–100	India	Dua et al., 2010
		Leaf and flower	Powder/dust	Maize weevil (Sitophilus zeamais)	Adults	Pest of maize and rice	>-45	Nigeria	Taye et al., 2014
		Leaf extracts	Acetone and methanol/direct contact application	Sitophilus oryzae (L.) Callosobruchus chinensis (Fab.) and Tribolium castaneum	Adults	Pests of stored grains	>-92	India	Rajashekar et al., 2014
TABLE 2 | Published reports on the insecticidal activities of some invasive alien plants in Africa.

Family	Plant species	Plant parts	Formulation/application	Insect target	Stage of insect	Importance of insect	Mortality (%)	Country	Reference(s)
Verbenaceae	Lantana camara	Leaf and stem	Essential oil/fumigant	Grain weevil (Sitophilus granarius)	Adults	Pest of stored grains	100	Algeria	Zoubiri and Baaliouamer, 2012
		Leaf extract	Aqueous extract/spray	Diamondback moth (Plutella xylostella)	Larvae	Pest of cabbage and other brassicae species	3.3–6.7	India	Sangavi and Johnson Thangaraj Edward, 2017
		Leaf extract	Aqueous extract/spray	Aphids (Aphis fabae), bean foliage beetle (Ootheca mutabilis and O. bennigseni), flower beetle (Epicauta albovittata and E. limbatipennis), and pod suckers (Clavigralla tomentosicollis, C. schadabi and C. hystricodes)	Nymphs, larvae and adults	Pest of beans	NA	Tanzania and Malawi	Mkindi et al., 2017

a myriad of agricultural, medical and environmental insect pests (Tables 2A–I), only a few studies have documented the indigenous use of these IAPs as botanical pesticides by the locals and small-holder farmers in Africa (e.g., Cobbina et al., 1999; Mugisha-Kamatenesi et al., 2008). Therefore, there is an urgent need to conduct ethno-botanical surveys to identify and document the IAPs used for the control and management of insect pest by locals and small-holder farmers in Africa. Although, assessing efficacy under field condition remains a serious challenge in the use of botanicals to control insect pests of crops, recent field trials on bean and cabbage pests suggest that some plant extracts are as effective as synthetic pesticides; however, botanicals tend to be much less harmful to natural enemies (Amoabeng et al., 2013; Mkenda et al., 2015). Such findings are crucial in convincing the policy makers and other relevant stakeholders to support the use of botanicals to control pests. Therefore, field studies on the insecticidal efficacy of IAPs with botanical pesticides should be prioritized and such study may receive generous funding from stakeholders in the agricultural sector because of the direct impact of such research.

Despite their efficacy against pests, botanical pesticides are often less harmful to beneficial insects and are therefore more compatible with other pest management strategies (Stevenson et al., 2017). For example, Mkenda et al. (2015) showed that *Tithonia diversifolia* (an invasive alien plant species) and other three pesticidal plant species were able to control a several of agricultural pests attacking *Phaseolus vulgaris* (common beans), but were also less harmful to beneficial insects (i.e., lady beetle and spider mites) compared to a synthetic pesticide. In similar field study, Ezena et al. (2016) investigated the insecticidal potential of three concentrations (10, 20, and 30 g/L) of the invasive *C. odorata* in the management of the major pests of cabbage (*B. brassicae* and *P. xylostella*) and their natural enemies in southern Ghana. The authors found that the three concentrations of *C. odorata* significantly reduced (by more than 30%) the number of *B. brassicae* and *P. xylostella* than tap water and conventional insecticide, lambda-cyhalothrin. The authors also found that plots sprayed with 20 g/L of *C. odorata* extract supported the highest number of insect natural enemies (*Diaretiell rapae*, *Cotesia plutellae* (Hymenoptera: Braconidae) and hoverflies compared to plots treated with lambda-cyhalothrin. Research to demonstrating compatibility of botanical pesticides with other pest management strategies is needed. Such research should also focus on determination of the underlying mechanisms that reduce the impact of pesticidal IAPs on beneficial insects and understands if this is due to selective toxicity or lower persistence. Due to their high efficacy and low toxicity to beneficial insects (e.g., Mkenda et al., 2015), there is the prospect to inform locals, small-holder farmers, and other relevant stakeholders of the potential usage of the IAPs listed in Tables 2A–I. This will allow for the exploitation of IAPs by harvesting and using them to control insect pests and alternately minimizing the invasion intensities and impact of IAPs in ecosystems. This will give the small-holder farmers and locals who are typically resource poor access to technologies and information to control insect pests and
diseases that limit crop production and successful storage of agricultural produce.

Safety and Exposure Concerns of Using Botanical Pesticides From IAPs

A key priority in the widely popular subsistence farming system in Africa is to prevent stored product insects from reducing the market and nutritional values of the harvested produce. Many small-holder farmers (peasants) in Africa use botanical pesticides, locally derived from either indigenous or IAPs to protect stored commodities (Cobbinah et al., 1999; Belmain and Stevenson, 2001; Isman, 2008; Nyirenda et al., 2011; Midega et al., 2016; Kamanula et al., 2017). The use of botanical pesticides to protect stored products may directly or indirectly expose
farmers and/or consumers to potentially toxic chemicals from the plant materials used. It is important to note that naturally occurring plant chemicals are not necessarily safe. For example, some compounds (e.g., Aconitum, aconitine, nicotine, rotenone, and strychnine) of plant origin are known to be highly poisonous to mammals and fish (Kolev et al., 1996; Neuwinger, 2004).

Although the use of pesticidal plants to control pests in agro-ecosystems and other modified ecosystems is perceived to be safer than conventional pesticides, care must be exercised in the use of some of plants (especially invasive alien plants with novel biochemicals) for pest management. Invasive alien plants with potential toxicity to aquatic fauna or mammals should be restricted and discouraged. Plant scientists and entomologists should conduct special bioassays not only to show the efficacy of botanical pesticides from alien invasive plants but also to demonstrate the safety of these locally manufactured pesticides on mammals and aquatic fauna. The results of such safety and risk assessment studies should be communicated to various stakeholders including small-holder farmers who rely heavily on exploring new plant species for various purposes including to manage pests and for ethnomedicinal purpose. Although the likelihood of acute toxicity from handling plants is substantially lower than the risk from handling synthetic pesticides (Coats, 1994; Isman, 2006), the use of appropriate personal protective equipment should be encouraged when processing and handling powders and extracts from invasive alien plant materials.

Challenges of Using IAPs as Bio-Insecticides and Future Research Focus

Despite the acceptance and increasing usage of the biopesticides by the global communities, the lack of government published regulatory framework impedes the rigorous research processes...
and hampers the adoption of the compounds [Gahukar, 2011; AATF (African Agricultural Technology Foundation), 2013; Ivase et al., 2017; Damalas and Koutroubas, 2018]. Like synthetic insecticides, the international and national regulations should be developed to govern the development of bio-insecticides and alternately protect the consumers and the natural ecosystems from the hazardous compounds (Chandler et al., 2011). Although the natural resources extracted from nature are generally regarded as safe to humans and the environment, risk assessment protocols and registration portfolio of bio-insecticides follow conventional insecticides (Damalas and Koutroubas, 2018; Marrone, 2019). The procedures are somewhat time-consuming and expensive for the bio-insecticide development companies. Furthermore, the costs of production of these natural compounds decelerate the commercialization processes of the products and once commercialized, the prices are inflated (Marrone, 2014; Ivase et al., 2017; Damalas and Koutroubas, 2018). The prospects of developing biopesticides include the distinct development of legislations that govern the screening and commercialization of the products (AATF, 2013; Seiber et al., 2014; Kumar and Singh, 2015; Ivase et al., 2017; Damalas and Koutroubas, 2018). Government’s ability to subsidize the research on the development of compounds that are safer to use may accelerate the bio-insecticide development and commercialization processes (Marrone, 2014). Furthermore, the efficiency of bioinsecticides with limited efficacy may be integrated with compatible pest management practices to optimize the efficiency of the pest management program (Chandler et al., 2011). Further investigations on the persistence and efficiency of biopesticides derived from IAPs need to be prioritized to measure the overall cost of the benefit of the pest management products. Public and private sectors should also be encouraged to participate (i.e., technically or financially) on the development and production of this economical and environmentally friendly alternative, especially in the developing countries.

CONCLUSIONS

The diversity of invasive alien plant species (in Africa) with numerous examples of their insecticidal efficacy against important pests listed in this paper suggest that opportunity exist for using invasive alien plants in Africa as pesticides in agro-ecosystems and other managed ecosystems. This will result in small-holders spending less on synthetic insecticides, substantially reduction in crop production or pest management costs and increase productivity and quality of life. Despite the rise of research interest in plant pesticides from native plants and IAPs over the last decade in Africa (Isman and Grieneisen, 2014; Isman, 2015), surprisingly little time is invested in assessing efficacy under field conditions. The lack of meaningful chemical data (i.e., elucidation of bioactive compounds) reported alongside efficacy trials remains a major concern. Some of the published works on the effects of pesticides from native plants or IAPs are not repeatable for various reasons and adds little to our knowledge about mechanisms, efficacy or scope to use plant materials in pest management. Although the efficacy of the botanical pesticides from 23 invasive alien plant species in this study have been documented, further investigations on; (1) their efficacy under field conditions, mode of action and chemical data, (2) their compatibility with other pest management strategies, (3) the economic benefits of using pesticidal plants over synthetic products and (4) how to effectively commercialize the production of botanical insecticides from IAPs. For the first time, our review elucidates the insecticidal efficacy of the invasive alien plants in Africa and highlights the prospects for the use of these IAPs as pesticidal plants in African countries especially among resource-limited small-holder farmers and locals. It remains to be seen whether stakeholders (governments, research institutions, scientists, agriculturists, farmers, locals, extension workers, etc.) can effectively explore the safe use of botanically based insecticides (extracts, powders or other formulations) from IAPs in their regions for the control and management of insect pests in agro-ecosystems and other modified environments. This paper serves as a veritable reference for researchers and stakeholders who are interested in advancing, the science, technology or our understanding of the use of invasive alien plant to control and manage insect pests of agricultural, environmental medical importance.

AUTHOR CONTRIBUTIONS

OU and LM conceptualized the study and wrote the manuscript. OU, LM, AE, and MT interpreted the results and critically reviewed and amended the manuscript. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We thank our respective institutions for availing us the needed time to write this review. We also thank Glory Dickson for providing some of the literature used in this review.

REFERENCES

AATF (African Agricultural Technology Foundation). (2013). A Guide to the Development of Regulatory Frameworks for Microbial Biopesticides in Sub-Saharan Africa. Nairobi: African Agricultural Technology Foundation. Available online at: https://www.aatf-africa.org/wp-content/uploads/2018/11/Microbial-biopesticide/penalty/136091.pdf

Abdulahi, M. M., Ute, J. A., and Regasa, T. (2017). Prosopis juliflora L: distribution, impacts and available control methods in Ethiopia. Trop. Subtrop. Agroecosyst. 20, 75–89.

Adedire, C. O., and Akinmeye, J. O. (2004). Biological activity of tree marigold, Tithonia diversifolia, on cowpea bruchid, Callosobruchus maculatus (Coleoptera: Bruchidae). Ann. Appl. Biol. 144, 185–189. doi: 10.1111/j.1744-7348.2004.tb00322.x

Adetimohin, A. D., Opuba, S. K., Iloba, B. N., and Uyi, O. O. (2018). Insecticidal and anti-ovipositional activities of the stem-bark powder of Jatropha curcas (L.) (Euphorbiaceae) against Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae). Adv. Sci. Technol. 12, 27–34.

Adoyo, F., Mukulama, J. R., and Enyola, M. (1997). Using Tithonia concoctions for termite control in Busia District, Kenya. Ileia Newslett. 13, 24–25.
Insecticidal Activities of Alien Plants

Uyi et al. Insecticidal Activities of Alien Plants

Alagesaboopathi, C., and Deivanai, M. (2011). Allelopathic potential of Amaranthus retroflexus L. on seed germination. J. Sem. Sci. Res. 1, 1–2.

Amaro, A. L., and Verma, S. E. (2017). Evaluation of larvicidal activity of Ageratum conyzoides L. against Aedes aegypti. J. Int. Mosquito Res. 4, 1–4.

Amoabeng, B. W., Gurr, G. M., Gitau, C. W., Nicol, H. I., Munyakazi, C., and Stevenson, P. C. (2013). Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS ONE 8:e78651. doi: 10.1371/journal.pone.0078651

Barbirine, S. A., Olabode, O. S., Akanbi, M. O., and Adeniran, O. A. (2008). Potentiality of Tithonia diversifolia with piperimiphos methyl in control of Sitophilus zeamais (Coleoptera: Curculionidae). Afr. J. Plant Sci. Biotechnol. 2, 77–80.

Bashir, E., and El Shafei, H. (2013). Insecticidal and antifeedent efficacy of Jatropha curcas extract against the Desert Locust, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). J. Insect. Res. 4, 260–267. doi: 10.5251/jinja.2013.4.260.267

Belmain, S. R., and Stevenson, P. C. (2001). Ethnobotanicals in Ghana: reviving and modernising an age-old practise. Pesticide Outlook 6, 233–238. doi: 10.1039/b10542f

Ben Hamouda, A., Boussadla, O., Bedis, K., Laarif, A., and Braham, M. (2015c). Studies on insecticidal and deterrent effects of olive leaf extracts we Myzus persicae and Phthorimaea operculella. J. Entomol. Zool. Stud. 3, 294–297.

Ben Hamouda, A., Chaieb, K., Zarrad, K., Chaieb, K., and Laarif, A. (2015a). Insecticidal activity of methanolic extract of Silverleaf nightshade against Tribolium castaneum. Int. J. Entomol. Res. 3, 23–28.

Ben Hamouda, A., Zarrad, K., Chaieb, K., and Laarif, A. (2015b). Antifeedant and insecticidal properties of Solanum elaegnifolium extracts on the African Cotton Leafworm. Azarian J. Agric. 2, 71–74.

Bommarco, R., Kleijn, D., and Potts, S. G. (2013). Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238. doi: 10.1016/j.tree.2012.10.012

CABI (2020a). Nerium oleander (Oleander). Invasive Species Compendium. Available online at: https://www.cabi.org/isc/datasheet/33144 (accessed December 23, 2020).

CABI (2020b). Melia azedarach (Chinaberry). Invasive Species Compendium. Available online at: https://www.cabi.org/isc/datasheet/33144 (accessed November 2, 2020).

Calle, J., Rivera, A., Luis, G. J., Agular, Z. E., Niemeyer, H. M., and Joseph-Nathan, C. (2011). Potential of potential of Colletotrichum capsici to control Colletotrichum cerealis in maize. J. Entomol. Res. Soc. 4, 866–877. doi: 10.1007/s13593-015-0583-1

Chagas-Paula, D. A., Oliveira, R. B., Rocha, B. A., and Da Costa, F. B. (2012). Antifeedant and insecticide properties of aqueous and ethanolic fruit extracts on the African cotton leafworm, Ageratum conyzoides L. Rev. Bras. Inst. Meio Ambiente 66, 129–135. doi: 10.1515/znc-2011-3-406

Chang, W.-H., Chen, Y. L., and Huang, C. H. (2017). Insecticidal activity of aqueous extracts of Chinese mistletoe against the rice paddy insect, Oryzaephilus surinamensis. J. Entomol. Zool. Stud. 5, 239–245. doi: 10.21307/jezs-2017-013

Chiffelle, I., Huerta, A., Azua, F., Puga, K., and Araya, J. E. (2011). Potential of Tithonia diversifolia with piperimiphos methyl in control of Sitophilus zeamais (Coleoptera: Curculionidae). Afr. J. Plant Sci. Biotechnol. 2, 1–5.

Cobbinah, J. R., Moss, C., Golob, P., and Belmain, S. R. (1999). Conducting Ethnobotanical Surveys: An Example From Ghana on Plants Used for the Protection of Stored Grains and Pulses (NRI Bulletin 77).

Dougoud, J., Toepfer, S., Bateman, M., and Jenner, W. H. (2019). Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 39, 1–22. doi: 10.1007/s13593-019-0583-1

Dua, V. K., Pandey, A. C., and Dash, A. P. (2010). Antidotal activity of essential oil of Lantana camara leaves against mosquitoes. Indian J. Med. Res. 131, 434–439.

Ehler, F., Uyi, O. O., Ikuenobe, C. E., and Okeke, C. E. (2013). The distribution and problems of the invasive alien plant, Mimosa diplotocha C. Wright ex Sauer (Mimosaceae) in Nigeria. Ann. J. Plant Sci. 4, 866–877. doi: 10.1080/09670874.2013.14107

EPPO (2007). Solanum elaegnifolium. EPPO Bull. 37, 236–245. doi: 10.1111/j.1365-2338.2007.01112.x

Erdogan, P., and Yildirim, A. (2016). Insecticidal activity of three different plant extracts on the green peach aphid (Myzus persicae Sulz (Hemiptera: Aphididae)). J. Entomol. Res. Soc. 18, 27–35.

Ezeta, G. N., Akotsen-Mensah, C., and Fening, K. O. (2016). Exploiting the insecticidal potential of the invasive siam weed, Chromolaena odorata L. (Asteraceae) in the management of the major pests of cabbage and their natural enemies in southern Ghana. Adv. Crop Sci. Technol. 4:1000230. doi: 10.4172/2329-8863.1000230

Fan, W., Fan, L., Peng, C., Zhang, Q., Wang, L., Li, L., et al. (2019). Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of xanthium strumarium L: a review. Molecules 24:3539. doi: 10.3390/molecules2420359

Farag, M., Ahmed, M. H. M., Yousef, H., and Abdel-Rahman, A. A. H. (2011). Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Zeitschrift fur Naturforschung. J. Biosci. 66, 129–135. doi: 10.1515/znc-2011-3-406

Foxcroft, L. C., Henderson, L., Nichols, G. R., and Martin, B. W. (2003). A revised list of alien plants for the Kruger National Park. Koedoe 26, 21–44. doi: 10.4102/koedoe.v26i2.642.54

Gahukar, R. T. (2011). Use of neem and plant-based biopesticides in floriculture: current challenges and perspectives – a review. J. Horticult. Sci. Biotechnol. 86, 203–209. doi: 10.1080/146603611.2011.11512748

Gillett, J. B. (1963). Sesbania in Africa (excluding Madagascar) and southern Arabia. Kew Bull. 17, 91–157. doi: 10.2307/4187170

Green, P. W. C., Belmain, S. R., Ndikidemi, P. A., Farrell, I. W., and Stevenson, P. C. (2017). Insecticidal activity of Tithonia diversifolia and Vernonina amygdalina. Indus. Crop. Prod. 110, 15–21. doi: 10.1016/j.indcrop.2017.08.021

Guzzo, E. G., Tavares, M. A. G. C., and Vendramim, J. D. (2006). “Evaluation of insecticidal activity of aqueous extracts of Chenopodium spp. in relation to Rhysopertha dominica (Fabr.) (Coleoptera: Bostrichidae),” in 9th International Working Conference on Stored Product Protection PS7–37 – 6333 (São Paulo).

Hammad, E. A. F., and McAuslane, H. (2010). Effect of Melia azedarach L. extract on Liriomyza sativa (Diptera: Agromyzidae) and its biocontrol agent Dicyphus isaea (Hymenoptera: Euploidae). J. Food Agric. Environ. 8, 1247–1252.

Hanley, N., and Roberts, M. (2019). The economic benefits of invasive species management. People Nat. 1, 124–137. doi: 10.1002/pan.31

Henderson, L. (2001). Alien Weeds and Invasive Plants: A Complete Guide to Declared Weeds and Invaders in South Africa Handbook No. 12. Pretoria: ARC-PPRI.
Mukwevho, L., and Mphephu, T. E. (2020). The role of the flower-galling mite, Acrasia lanatae, in integrated control of the light pink 16LP variety of Lantana camara (L) in South Africa. Biol. Control 49:104309. doi: 10.1016/j.biocontrol.2020.104309

Mukwevho, L., Ockers, T., and Simelane, D. O. (2018). Occurrence of different Lantana camara varieties across four South African provinces and their susceptibility to a biotype of the gall-forming mite Acrasia lanatae. Biocontrol Sci. Technol. 28, 377–387. doi: 10.1080/09583157.2018.1450490

Mulé, R., Sabella, G., Robba, L., and Manachini, B. (2017). A systematic review of the effects of chemical insecticides on four common butterfly families. Front. Environ. Sci. 5:32. doi: 10.3389/fenvs.2017.00032

Munipanna, R., Reddy, G., and Lai, P. Y. (2005). "Distribution and biological control of Chromolaena odorata," In "Invasive Plants: Ecological and Agricultural Aspects," ed Inderjit (Basel: Birkhäuser), 223–233.

Mwine, J., Pvan, D., Kamoga, G., Kudamba, P., Nasuuna, M., and Jumba, F. (2011). Ethnobotanical survey of pectidal plants used in South Uganda: case study of Masaka district. J. Med. Plants Res. 5, 1155–1163.

Negussie, A., Nacro, S., Achten, W. J., Norgrove, L., Kenis, M., Hadgu, K., et al. (2014). Insufficient evidence of Jatropha curcas L. Invasiveness: experimental observations in Burkina Faso, West Africa. BioEnergy Res. 8, 1–11. doi: 10.12151/s12155-014-9454-3

Neuwenhuis, H. D. (2004). Plants used for poison fishing in tropical Africa. Toxicon 44, 417–430. doi: 10.1016/toxicon.2004.05.014

Ngorma, A., and Shackleton, C. M. (2019). Livelihood benefits and costs from an invasive alien tree (Acacia dealbata) to rural communities in the Eastern Cape, South Africa. J. Environ. Manage. 229, 158–165. doi: 10.1016/j.jenvman.2018.05.077

Nia, B., Frash, A., and Azou, I. (2015). Insecticidal activity of three plants extracts against Myzus persicae (Sulzer, 1776) and their phytochemical screening. Acta Agric. Slov. 105, 261–267. doi: 10.14720/aas.2015.105.2.09

Nwauzoma, A. B., and Dappa, M. S. (2013). Ethnobotanical studies of Port Harcourt metropolis, Nigeria. ISRN Bot. 2013:829424. doi: 10.1155/2013/829424

Nyirenda, S. P. N., Sileshi, G., Belmain, S. R., Kamala, J. F., Mvumi, B., Sola, P., et al. (2011). Farmers’ ethno-Ecological knowledge of vegetable pests and their management using pectidal plants in northern Malawi and eastern Zambia. Afr. J. Agric. Res. 6, 1525–1537.

Obembe, O. M., and Kayode, J. (2013). Insecticidal activity of the aqueous extract of Chromolaena odorata (L.) in South Africa. J. Agric. Environ. Ethics 5, 1155–1163.

Obiakara, M. C., and Fourcey, C. (2018). Climatic niche and potential distribution of Tithonia diversifolia (Hems) A. Gray in Africa. PLoS ONE 13:6020241. doi: 10.1371/journal.pone.0202421

O’Connor, T. G., and van Wilgen, B. W. (2020). “The impact of invasive alien plants on rangelands in South Africa,” in Biological Invasions in South Africa. Invading Nature - Springer Series in Invasion Ecology 4, 37, 161–165. doi: 10.1007/978-3-030-41995-2

O’Connor, T. G., and van Wilgen, B. W. (2020). “The impact of invasive alien plants on rangelands in South Africa,” in Biological Invasions in South Africa. Invading Nature - Springer Series in Invasion Ecology 4, 37, 161–165. doi: 10.1007/978-3-030-41995-2

Oembe, O. M., and Kayode, J. (2013). Insecticidal activity of the aqueous extracts of four under-utilized tropical plants as protectant of cowpea seeds from Calllosobruchus maculatus infestation. Pakistan J. Biol. Sci. 16, 175–179. doi: 10.3923/pjbs.2013.175.179

Obiakara, M. C., and Fourcey, C. (2018). Climatic niche and potential distribution of Tithonia diversifolia (Hems) A. Gray in Africa. PLoS ONE 13:6020241. doi: 10.1371/journal.pone.0202421

O’Connor, T. G., and van Wilgen, B. W. (2020). “The impact of invasive alien plants on rangelands in South Africa,” in Biological Invasions in South Africa. Invading Nature - Springer Series in Invasion Ecology 4, 37, 161–165. doi: 10.1007/978-3-030-41995-2

Oembe, O. M., and Kayode, J. (2013). Insecticidal activity of the aqueous extracts of four under-utilized tropical plants as protectant of cowpea seeds from Calllosobruchus maculatus infestation. Pakistan J. Biol. Sci. 16, 175–179. doi: 10.3923/pjbs.2013.175.179

Obiakara, M. C., and Fourcey, C. (2018). Climatic niche and potential distribution of Tithonia diversifolia (Hems) A. Gray in Africa. PLoS ONE 13:6020241. doi: 10.1371/journal.pone.0202421

Oembe, O. M., and Kayode, J. (2013). Insecticidal activity of the aqueous extracts of four under-utilized tropical plants as protectant of cowpea seeds from Calllosobruchus maculatus infestation. Pakistan J. Biol. Sci. 16, 175–179. doi: 10.3923/pjbs.2013.175.179

Obiakara, M. C., and Fourcey, C. (2018). Climatic niche and potential distribution of Tithonia diversifolia (Hems) A. Gray in Africa. PLoS ONE 13:6020241. doi: 10.1371/journal.pone.0202421

Oembe, O. M., and Kayode, J. (2013). Insecticidal activity of the aqueous extracts of four under-utilized tropical plants as protectant of cowpea seeds from Calllosobruchus maculatus infestation. Pakistan J. Biol. Sci. 16, 175–179. doi: 10.3923/pjbs.2013.175.179
case examples and a framework from South Africa. *Hum. Ecol.* 35, 113–127. doi: 10.1007/s10745-006-9095-0

Shackleton, R. T., Shackleton, C. M., and Kull, C. A. (2018). The role of invasive alien species in shaping local livelihoods and human well-being: a review. *J. Environ. Manage.* 229, 145–157. doi: 10.1016/j.jenvman.2018.05.007

Shackleton, R. T., Witt, A. B., Aool, W., and Pratt, C. F. (2017). Distribution of the invasive weed, *Lantana camara*, and its ecological and livelihood impacts in eastern Africa. *Afr. J. Range Forage Sci.* 34, 1–11. doi: 10.2989/10220119.2017.1301551

Stevenson, P. C., Iman, M. B., and Belmain, S. R. (2017). Pesticidal plants in Africa: a global vision of new biological control products from local uses. *Ind. Crops Prod.* 110, 2–9. doi: 10.1016/j.indcrop.2017.08.034

Sukhithanikar, J. H., Kumar, H., Godinho, M. H. S., and Ashwani, K. (2014). Larvicidal activity of methanolic leaf extracts of plant, *Chromolaena odorata* L. (Asteraceae) against vector mosquitoes. *Int. J. Mosquito Res.* 1, 33–38.

Taye, W., Asea, W., and Woldu, M. (2014). Insecticidal activity of *Lantana camara* on maize weevils (*Sitophilus zeamais* Motsch.). *Int. J. Res. Agric. Sci.* 3, 43–46.

Taylor, S., Kumar, L., Reid, N., and Kriticos, D. J. (2012). Climate change and the potential distribution of an invasive shrub, *Lantana camara* L. *PLoS ONE* 7:e35565. doi: 10.1371/journal.pone.0035565

Terefar, I., and Wood, A. R. (2014). On the present and potential distribution of *Ageratina adenophora* (Asteraceae) in South Africa. *South Afr. J. Bot.* 95, 152–158. doi: 10.1016/j.sajb.2014.09.001

Tesfu, F., and Emana, G. (2013). Evaluation of *Parthenium hysterophorus* L. powder against *Callosobruchus chinensis* L. (Coleoptera: Bruchidae) on chickpea under laboratory conditions. *J. Agric. Res. Educ. 8*, 5405–5410.

Theiling, K. M., and Croft, B. A. (1988). Pesticide side-effects on arthropod natural enemies: a database summary. *Agric. Ecosyst. Environ.* 21, 191–218. doi: 10.1016/0167-8809(88)90088-6

Tounou, A. K., Mawussi, G., and Amadou, S. (2011). Bio-insecticidal effects of plant extracts and oil emulsions of *Ricinus communis* L. (Malpighiales: Euphorbiaceae) on the diamondback, *Plutella xylostella* (L.) (Coleoptera: Bruchidae). *J. Appl. Biol.* 43, 2899–2914.

Udebuani, A. C., Abara, P. C., Obasi, K. O., and Okuh, S. U. (2015). Studies on the insecticidal properties of *Chromolaena odorata* L. *J. Appl. Sci. Environ. Manage.* 24, 645–652. doi: 10.4001/jasem.v24i4.110, 2–9. doi: 10.1016/j.indcrop.2017.08.034

Van der Westhuizen, L., and Mpedi, P. (2011). The Initiation of a biological control programme Against *Argemone mexicana* L. and *Argemone ochroleuca* Sweet subsp. ochroleuca (Papaveraceae) in South Africa. *Afr. Entomol.* 19, 223–229. doi: 10.4001/003.019.0228

Van Hengstum, T., Hoofman, D. A. P., Oostermeijer, J. G. B., and van Tienderen, P. H. (2015). Impact of plant invasions on local arthropod communities: a meta-analysis. *J. Ecol.* 102, 4–11. doi: 10.1111/1365-2745.12176

Van Wilgen, B. W., and Lange, W. J. D. (2011). The costs and benefits of biological control of invasive alien plants in South Africa. *Afr. Entomol.* 19, 504–514. doi: 10.4001/003.019.0288

Witt, A., Beale, T., and van Wilgen, B. W. (2018). An assessment of the distribution and potential ecological impacts of invasive alien plant species in eastern Africa. *Transac. R. Soc. South Afr.* 73, 217–236. doi: 10.1080/0359391X.2018.1529003

Witt, A., and Luke, Q. (Eds.). (2017). *Guide to the Naturalized and Invasive Plants of Eastern Africa*. Wallingford: CABI. Available online at: http://www.cabi.org/cabbooks/ebkelbooks/20173158959

Witt, A. B. R., Shackleton, R. T., Beale, T., Nunda, W., and Van Wilgen, B. W. (2019). Distribution of invasive alien *Tithonia* (Asteraceae) species in eastern and southern Africa and the socio-ecological impacts of *Tithonia diversifolia* in Zambia. *Afr. J. Agric. Res.* 14, 202–415. doi: 10.4001/003.019.0230

Xu, R., Wu, D., Zhang, W. D., Yin, F., and Kuang, R. P. (2009). Efficacy of *Ageratina adenophora* extract and biogas fermentation residue against the cabbage aphid, *Brevicoryne brassicae* and an assessment of the risk to the parasitoid *Diaeretella rapae*. *Int. J. Pest Manage.* 55, 151–156. doi: 10.1080/09670870802604062

Yuan, Z., and Hu, X. P. (2012). Repellent, antifeedant, and toxic activities of *Lantana camara* leaf extract against *Reticulitermes flavipes* (Isoptera: Rhinotermitidae). *J. Econ. Entomol.* 105, 2115–2122 doi: 10.1603/EC12026

Zachariades, C., Hoffmann, J. H., and Roberts, A. P. (2011a). Biological control of Mesquite (*Prosopis* species) (Fabaceae) in South Africa. *Afr. Entomol.* 19, 402–415. doi: 10.4001/003.019.0230

Zachariades, C., Strathie, L. W., Retief, E., and Dube, N. (2011b). Progress towards the biological control of *Chromolaena odorata* (L.) R.M.King and H.Rob. (Asteraceae) in South Africa. *Afr. Entomol.* 19, 282–302. doi: 10.4001/003.019.0229

Zapata, N., Budia, F., Vinuela, E., and Medina, P. (2006). Insecticidal effects of various concentrations of selected extractions of *Cestrum parqui* adult and immature *Ceratitis capitata*. *J. Econ. Entomol.* 99, 359–365. doi: 10.1093/ice/99.2.359

Zerihun, M., and Ele, E. (2018). Insecticidal activities of leaf, seed and stem bark extracts of *Ageratina adenophora* against *Callosobruchus maculatus* (Faboideae) on the cotton aphid (*Aphis gossypii*). *Acad. Res. J. Agric. Sci.* 6, 202–221.

Zoubiri, S., and Baaliouamer, A. (2012). Chemical composition and insecticidal properties of *Lantana camara* L. leaf essential oils from Algeria. *J. Essential Oil Res.* 24, 377–383. doi: 10.1080/10412905.2012.692910

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Uyi, Mukwevho, Ejomah and Toews. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.