Simulated vertical electric field data: An estimation from an improved coupling model for the lithosphere-atmosphere-ionosphere system

Boris E. Prokhorov a, Oleg V. Zolotov b, c, *, Maria A. Knyazeva b, Yulia V. Romanovskaya c

a Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Potsdam, Germany
b Near-Earth Environment Computer Modeling Laboratory, Murmansk Arctic State University, Murmansk, Russia
c Chair of Mathematics, Information Systems and Software Engineering, Murmansk State Technical University, Murmansk, Russia

ARTICLE INFO

Article history:
Received 14 May 2019
Received in revised form 12 August 2019
Accepted 5 September 2019
Available online 17 September 2019

Keywords:
Electric fields
Seismogenic electric currents
Simulations

ABSTRACT

Researches in the field of the lithosphere-atmosphere-ionosphere (LAI) coupling involve discussions on the physical mechanisms that might be responsible for that coupling. Hypotheses that are based on an electromagnetic physical mechanism of seismo-ionosphere disturbances generation trigger discussions on the required electric fields. Kuo and Lee [doi: 10.1002/2016JA023441] proposed and discussed an improved coupling model for the lithosphere-atmosphere-ionosphere system but did not provide any electric fields values (E_z tables, figures or datasets). In this paper we fill this shortage and present corresponding numerical estimations (dataset) of the required vertical electric fields values E_z. Our dataset is valuable for comparison of the LAI-models with the electric fields observations and to contrast different LAI-coupling models with each other.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The proposed dataset contains numerically evaluated 3D distributions of the vertical electric fields E_z (in units of V/m) that are attributed to the simulated by Kuo and Lee [2] seismogenic electric currents floating between the Earth's surface (i.e., the ground) and the ionosphere. In our dataset the spatial data domain and numerical grid are chosen the same as in paper [2]: 1000 km ... 1000 km along the X axis (201 grid nodes), 1000 km ... 1000 km along the Y axis (201 grid nodes), and 0 ... 130 km along the Z axis (132 grid nodes), i.e. the altitude over the Earth's surface. Zero (0 km) altitude corresponds to the Earth's surface (i.e., the lower boundary), and 130 km corresponds to the upper boundary of the domain. The dataset NumPy npz-file contains x-coordinates (labeled as ‘x’), y-coordinates (labeled as ‘y’), z-coordinates (labeled as ‘altitudes’), and 3D E_z spatial distribution (labeled as ‘ez’).

The proposed dataset is a modelled dataset that is not linked to any specific Earth's locations. Fig. 1 displays altitudinal variation of the electric conductivity profile used to recalculate vertical electric fields E_z data. Required seismogenic electric currents data are taken according to Ref. [3]. Fig. 2 describes corresponding E_z variations for a characteristic cross-section plane (top panel) and at specific altitudes (bottom plane).

2. Experimental design, materials, and methods

Unresolved strong earthquakes prediction problem triggered multiple interdisciplinary attempts to build self-consistent models that describe lithosphere-atmosphere-ionosphere (LAI) coupling. Those relying on an electromagnetic LAI-coupling usually require either (1) significantly enhanced electric conductivity values near the ground at the bottom part of the electric conductivity profile or (2) very intense electric field. To consistently explain the items above or to provide a complete qualitative model that does not rely on significant electric conductivity or electric fields modifications is a

Specification table
Subject area
More specific subject area
Type of data
How data was acquired
Data format
Experimental factors
Experimental features
Data source location
Data accessibility
Related research article
Value of the data

1. Data

The proposed dataset contains numerically evaluated 3D distributions of the vertical electric fields E_z (in units of V/m) that are attributed to the simulated by Kuo and Lee [2] seismogenic electric currents floating between the Earth's surface (i.e., the ground) and the ionosphere. In our dataset the spatial data domain and numerical grid are chosen the same as in paper [2]: 1000 km ... 1000 km along the X axis (201 grid nodes), 1000 km ... 1000 km along the Y axis (201 grid nodes), and 0 ... 130 km along the Z axis (132 grid nodes), i.e. the altitude over the Earth's surface. Zero (0 km) altitude corresponds to the Earth's surface (i.e., the lower boundary), and 130 km corresponds to the upper boundary of the domain. The dataset NumPy npz-file contains x-coordinates (labeled as ‘x’), y-coordinates (labeled as ‘y’), z-coordinates (labeled as ‘altitudes’), and 3D E_z spatial distribution (labeled as ‘ez’).

The proposed dataset is a modelled dataset that is not linked to any specific Earth's locations. Fig. 1 displays altitudinal variation of the electric conductivity profile used to recalculate vertical electric fields E_z data. Required seismogenic electric currents data are taken according to Ref. [3]. Fig. 2 describes corresponding E_z variations for a characteristic cross-section plane (top panel) and at specific altitudes (bottom plane).

2. Experimental design, materials, and methods

Unresolved strong earthquakes prediction problem triggered multiple interdisciplinary attempts to build self-consistent models that describe lithosphere-atmosphere-ionosphere (LAI) coupling. Those relying on an electromagnetic LAI-coupling usually require either (1) significantly enhanced electric conductivity values near the ground at the bottom part of the electric conductivity profile or (2) very intense electric field. To consistently explain the items above or to provide a complete qualitative model that does not rely on significant electric conductivity or electric fields modifications is a
Fig. 1. Altitudinal variation of the electric conductivity (S/m) profile calculated for the considered grid nodes. Each value on the plot is represented with a filled dot. X-axis values are scaled by the factor 10^{-11}, thus, label 1.5 denotes $1.5 \cdot 10^{-11}$ S/m.

Fig. 2. Illustration of vertical electric fields E_z (V/m) spatial distributions. Top panel presents the map of the vertical electric fields E_z distribution in the X-Z plane (cross-section for the $y = 0$ km). Bottom panel presents vertical electric fields E_z variations along the x axis at the specified altitudes (i.e., z-values, see the legend) in the given above X-Z plane.
challenge nowadays for the electromagnetic LAI-coupling (see a discussion in, e.g. Ref. [1], vs [2]). It is a must for understanding of the underlying physical processes and to assess the possibility of the LAI-based strong earthquakes’ forecasting. To validate an electromagnetic LAI-coupling model, it is important to have the electric conductivity, electric fields and electric currents data simultaneously to be able to contrast all of them with available observations or reference data. Among the named pre-earthquake ground-to-ionosphere in-situ seismogenic electric currents are the worst known ones. The representation of those data is expected to facilitate the analysis and is desirable to be unambiguous and explicit.

Unfortunately, researchers [2] provide nothing on the electric fields data (i.e., any discussion or E_z values, tables or figures, etc.) that correspond to their simulated data on ground-to-ionosphere electric currents of seismic origin. In the supporting information file only [4] they state that “due to limit of max data size 100M on website, the grid numbers in Figure 3 are reduced by half. Since the conductivity modeling the atmosphere is given analytically, the electric fields can be easily obtained from the current data with the Ohm’s law”. Here we note, that a few previous papers by Kuo and coauthors [5,6] suffered from a lack of formulations or data required to reproduce their results quantitatively. Despite the denoted ease of E_z data recalculation, paper [2] requires the reader to perform extra efforts to obtain estimates of corresponding E_z values. We must note that E_z data are among the first ones to validate when deal with electromagnetic LAI-coupling models. A validation usually includes E_z data comparison with a few known reference entities (so called “fair-weather” electric fields, thunderstorm electric fields, derived in laboratory experiments electric fields, possibly, a few in-situ measurements, etc.). A contrast with other electromagnetic LAI-coupling models often reveal principal similarities and divergences, thus, allowing to highlight model’s advances and to reveal principle challenges to solve.

To facilitate the aforementioned opportunities, we re-calculate vertical electric fields from (1) the original electric currents data [3] and (2) the analytical formulation for the electric conductivity variation. To avoid any interpolation errors and to allow direct intercomparison of our data, we use the same spatial domain and numerical grid as in the original electric currents dataset.

In this paper we utilize as input the dataset [3] which is originally provided in the proprietary MATLAB file format. According to the description [4] it includes three numerically simulated components j_x, j_y, j_z of electric currents densities (in units of A/km2), position (x, y and z in units of km) and corresponding grid number (nx, ny and nz).

To calculate vertical electric field values E_z, we utilize the following analytical formulation of the electric conductivity profile according to the equation 8 in paper [2]:

$$\sigma(z) = \sigma_0 \exp(z/h_z),$$ \hspace{1cm} (1)

where σ_0 is the conductivity at $z = 0$ km (i.e., on the ground), $\sigma_0 = 2 \cdot 10^{-14}$ S/m, and $h_z = 6$ km is the conductivity scale height.

It is clear that in the formulation 1 the electric conductivity σ is a scalar function. It is also clear that the given conductivity formula does not depend on the x or y co-ordinates. Corresponding altitudinal variation of the electric conductivity profile is illustrated in Fig. 1.

To calculate the vertical electric fields E_z dataset, we use the Ohm’s law which, given the conductivity is a scalar and electric currents are curl-free, has the following form:

$$J_z = \sigma E_z$$ \hspace{1cm} (2)

where σ is the electric conductivity defined according to equation (1), and J_z is the vertical electric current density.

Described in this paper vertical electric fields E_z dataset is obtained according to the equation (2) where the electric conductivity is taken according to the equation (1) and vertical electric currents values are taken directly from the dataset [3]. Features of the vertical electric fields E_z spatial distribution are illustrated in Fig. 2.

We published the vertical electric fields E_z dataset and the source code as Jupyter (formerly known as IPython) notebooks at gitlab public repository (see URL in the specification table) to make our results reproducible by other researchers and to facilitate further analysis and discussions. To re-use the notebooks one will need Jupyter with Python3 and SciPy, NumPy, and matplotlib packages installed. It
allows data investigation with opensource and free software without the need for a proprietary data formats and software preventing the so called "vendor lock-in", thus, facilitating scientific collaboration and making the data easier to find, re-use and validate. Our data representation is suitable for use as input parameters to other models that require electric fields values in the considered spatial domain. It is also suitable for cross-comparison with other models’ data and observations (e.g., “fair-weather” electric fields, thunderstorm electric fields, empirical, analytical or numerical estimations, etc.).

2.1. Limitations

To re-calculate ground-to-ionosphere vertical electric fields E_z we assume that all the following conditions are met:

- Electric currents are purely conductivity currents, i.e. they are due to the conduction only;
- All transitional processes have passed, i.e. the currents are steady-state currents;
- Vertical profile of the electric conductivity is a scalar function of an altitude.

Due to the above, it is reasonable to analyze the calculated this way vertical electric fields E_z data from the Earth’s ground (0 km) up to the 40–50 km above the Earth’s surface although the dataset upper boundary is 130 km to meet the data domain in Ref. [2]. It is not reasonable to analyze the proposed E_z data in the ionosphere (i.e. at altitudes >60–80 km) where the electric conductivity becomes a tensor.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] B.E. Prokhorov, O.V. Zolotov, Comments on “An improved coupling model for the lithosphere-atmosphere-ionosphere system” by Kuo et al. [2014], J. Geophys. Res. Space Phys. 122 (2017) 4865–4868, https://doi.org/10.1002/2016JA023441.
[2] C.-L. Kuo, L.-C. Lee, Reply to comment by B. E. Prokhorov and O. V. Zolotov on “An improved coupling model for the lithosphere-atmosphere-ionosphere system”, J. Geophys. Res. 122 (2017) 4869–4874, https://doi.org/10.1002/2016JA023579.
[3] C.-L. Kuo, L.-C. Lee, Data set S2. https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2F2016JA023579&file=jgra53413-sup-0003-DataSetS2.mat. (Accessed 23 April 2019).
[4] C.-L. Kuo, L.-C. Lee, Supporting Information for Reply to comment by B. E. Prokhorov and O. V. Zolotov on “An improved coupling model for the lithosphere-atmosphere-ionosphere system”, https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2F2016JA023579&file=jgra53413-sup-0001-Supplementary.docx, 2017. (Accessed 23 April 2019).
[5] C.L. Kuo, J.D. Huba, G. Joyce, L.C. Lee, Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges, J. Geophys. Res. 116 (2011) A10317, https://doi.org/10.1029/2011JA016628.
[6] C.L. Kuo, L.C. Lee, J.D. Huba, An improved coupling model for the lithosphere-atmosphere-ionosphere system, J. Geophys. Res. 119 (2014) 3189–3205, https://doi.org/10.1002/2013JA019392.