Elsevier has created a Monkeypox Information Center in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.
Monkeypox virus (MPXV), a type of orthopoxvirus that was previously thought to have a high fatality rate, has recently been reported in many countries and regions [1]. Monkeypox is a zoonotic viral disease that was first detected in research monkeys and is epidemic in West and Central Africa. In general, rodents and small mammals are considered to be the natural hosts of MPXV [2]. According to the global epidemiological situation presented by the World Health Organization (WHO) Secretariat, more than 14,000 probable and laboratory-confirmed cases were reported from 72 countries between January 2022 and July 2022. In the past 2 mo, confirmed cases of monkeypox have increased rapidly and spread in many countries. The WHO Director-General has designated the multicountry outbreak of monkeypox a public health emergency of international concern [3].

Unlike the sudden onset of the COVID-19 outbreak, monkeypox cases occurred as early as 1970 [4]. MPXV is comparable to smallpox virus, which has been studied by researchers for many years. There are two distinct MPXV clades, the West African clade and the Congo Basin clade, and the mortality rate for the Congo Basin clade is as high as 10% [5,6]. In contrast to COVID-19, transmission of MPXV is not easy and the chief modes of human-to-human spread are direct contact and sexual intercourse. Interestingly, a high rate of male homosexual infection is one of the characteristics of this monkeypox epidemic [7]. Therefore, in addition to dermatologists, urologists and andrologists have encountered many monkeypox cases in sexually transmitted infection clinics; these patients present with genital lesions, which greatly increases the risk of monkeypox infection for clinicians [8]. We conducted a big data analysis that revealed severe neglect of monkeypox research [9], with a lack of studies on monkeypox-related genitourinary symptoms and protective measures.

Identification of the early symptoms of monkeypox infection and improvements in awareness of protection measures are essential to reduce the risk of occupational exposure and transmission for health care workers. Monkeypox is characterized by fever, headache, cervical lymphadenopathy, and other flu-like symptoms in the early stage. At 1–3 d after disease onset, a rash appears, progressing from a maculopapular rash to herpes (including blisters and pustules), and then scabs or crusts. Most monkeypox lesions are distributed on the face and limbs, but can also appear in anogenital areas, the mouth, and the conjunctiva. Monkeypox lesions are well circumscribed and the exudate is highly contagious. Monkeypox infection is a self-limiting disease for most patients, with recovery usually taking 2–4 wk [10,11]. However, individuals with poor immunity, such as children, pregnant women, and the elderly, are prone to serious complications and even death [12,13].

In addition to the typical symptoms (prominent cervical and axillary lymphadenopathy), diagnosis of monkeypox depends on laboratory assays involving pathogenic detection in body fluids (including rash exudate, whole blood, urine) and throat swabs. Viral DNA is isolated and identified using methods such as electron microscopy, real-time polymerase chain reaction, and serological testing for specific antibodies. It should be noted that since smallpox, chickenpox, measles, shingles, and herpes simplex may have the same symptoms, monkeypox needs to be differentiated from these diseases [14,15]. We have summarized the differences among six common sexually transmitted diseases in Table 1.

The rash associated with monkeypox can also be observed in the genitourinary system. Urologist and andrologists who encounter the following symptoms in the genitourinary system accompanied by fever and cervical/
Table 1 – Differences between the six most common sexually transmitted diseases and monkeypox

Disease	Pathogen	Genitourinary symptoms	Incubation period	Diagnosis
Genital warts	Human papillomavirus	Warts in the genital or anal area causing itching and redness	1–8 mo	Symptoms and biopsy result
NGU	Mycoplasma, chlamydia, fungus,	Pain/burning on urination; discharge from the penis/vagina	7–21 d	DNA tests for the NGU pathogen
	trichomonad			
Gonorrhrea	Neisseria gonorrhoeae	Burning on urination; discharge from the penis/vagina; pelvic or testicular pain	1–10 d	Symptoms and PCR-based tests of urine, urethral swabs, or cervical/vaginal swabs
Syphilis	Treponema pallidum	Primary: Chancre		Symptoms, blood tests, and dark-field microscopy of infected fluid
	Secondary: nonitchy rash	Secondary: 4–10 wk		
	Latent: asymptomatic	Tertiary: gummatous syphilis		
	Scabies	Early: 2–4 wk		Symptoms and blood tests (antibody test, p24 antigen test)
	Latency: asymptomatic	Late: 3–20 yr		
	Monkeys	Early: 2–4 wk		Symptoms and laboratory testing of body fluids (electron microscopy, real-time PCR, serological testing)
	virus	Late: large lymph nodes, fever, weight loss		
AIDS	Human immunodeficiency virus	Early: genital sores	Early: 2–4 wk	Symptoms and blood tests (antibody test, p24 antigen test)
		Latency: asymptomatic	Later: 3–20 yr	
		Later: large lymph nodes, fever, weight loss		
Monkeypox	Monkeypox virus	Pustular lesions/vesicles on the dorsal penis	5–21 d	Symptoms and laboratory testing of body fluids (electron microscopy, real-time PCR, serological testing)
		Scab/whitish lesions on the (glans) penis		
		Scrotal lesions with a purulent exudate		

AIDS = acquired immunodeficiency syndrome; NGU = nongonococcal urethritis; PCR = polymerase chain reaction.

In summary, monkeypox spreads rapidly and is another important global public health concern besides COVID-19 that needs special attention. At present, direct contact with a patient’s body fluids is the main transmission route, with respiratory transmission another potential mode. Antiviral therapy and supportive and symptomatic treatment are the main approaches for monkeypox at present, and vaccines are under development. Urologists and andrologists are likely to be exposed to patients with monkeypox in the clinic and need to be vigilant and take appropriate precautions to avoid occupational exposure.

Conflicts of interest: The authors have nothing to disclose.
References

[1] Zaucha GM, Jahrling PB, Geisbert TW, Swearengen JR, Hensley L. The pathology of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca fascicularis). Lab Invest 2001;81:1581–600.

[2] Doty JR, Malekani JM, Kalemba LN, et al. Assessing monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo. Viruses 2017;9:283.

[3] World Health Organization. WHO Director-General declares the ongoing monkeypox outbreak a Public Health Emergency of International Concern. Geneva, Switzerland: WHO; 2022. https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern.

[4] Marennikova SS, Seluhina EM, Mal’ceva NN, Cimiskjan KL, Macevic GR. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull World Health Organ 1972;46:599–611.

[5] Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox—a potential threat? A systematic review. PLoS Negl Trop Dis 2022;16:e0010141.

[6] Al-Musa A, Chou J, LaBere B. The resurgence of a neglected orthopoxvirus: Immunologic and clinical aspects of monkeypox virus infections over the past six decades. Clin Immunol 2022;243:109108.

[7] Hammerschlag Y, MacLeod G, Papadakis G, et al. Monkeypox infection presenting as genital rash, Australia, May 2022. Euro Surveill 2022;27:2200411.

[8] Gomez-Garberi M, Sarrio-Sanz P, Martinez-Cayuelas L, et al. Global research trends on four orthopoxviruses threatening human health: monkeypox is a neglected branch which deserves more attention. Int J Surg 2022;105:106846.

[9] Cheng K, Guo Q, Shen Z, et al. Recent outbreak of monkeypox: overview of signs, symptoms, preventive measures, and guideline for supportive management. Int J Surg 2022;105:106877.

[10] McCarthy MW. Recent advances in the diagnosis monkeypox: implications for public health. Expert Rev Mol Diagnost 2022;22:739–44.

[11] Adler H, Gould S, Hine P, et al. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis 2022;22:1153–62.

[12] Centers for Disease Control and Prevention. 2022 monkeypox outbreak global map. https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html.

[13] Brown K, Leggat PA. Human monkeypox: current state of knowledge and implications for the future. Trop Med Infect Dis 2016;1:8.

[14] Benites-Zapata VA, Ullloque-Badaracco JR, Alarcon-Braga EA, et al. Clinical features, hospitalisation and deaths associated with monkeypox: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrobials 2022;21:36.

[15] World Health Organization. Clinical management and infection prevention and control for monkeypox. Geneva, Switzerland: WHO; 2022. https://apps.who.int/iris/rest/bitstreams/1432076/retrieve.