Evolution of Immunosuppressive Agents in Renal Transplantation: An Updated Review

Kumar A, Shrestha BM

Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Trust, Herries Road, Sheffield, S5 7AU, UK.

Abstract

Suppression of allograft rejection is the central issue in renal transplantation (RT). Thus, development of immunosuppressive agents is the key for successful allograft function. Immunosuppression agents in RT have evolved over the last six decades beginning with total lymphoid irradiation to the currently available immunosuppressive strategies, which have significantly reduced the incidence of acute rejection episodes and improved short-term graft and patient outcomes. However their use is associated with long-term graft dysfunction, hypertension, hyperlipidaemia, diabetes mellitus, infections and malignancies. Chronic antibody-mediated rejection and chronic allograft dysfunction still remain the major problems, often leading to graft loss and shortened long-term graft survival.

Immunosuppressive agents are used for induction, maintenance and reversal of established rejection. The use of multidrug regimen tailored to the immunological risk of patient and adverse-effect profile of the drug provides the optimum outcome. This review focuses on the evolution of immunosuppression agents used in RT over last six decades and highlights the newer agents under investigation.

Keywords: Immunosuppressive Agents; Renal Transplantation; Immunology; Rejection; Side-effects; Outcomes.

Introduction

Renal transplantation (RT) is the best modality of renal replacement therapy for most patients with stage-5 chronic kidney disease, as this improves the quality of life, patient survival and is cost-effective [1]. Since the first successful RT performed between the identical twins in the Peter Brent Brigham Hospital, Boston on 23rd December 1954 by Murray et al, RT has become a routine [2]. According to the World Health Organisation, in 2013, a total of 78950 kidney transplants were performed in 104 countries worldwide [3]. When a kidney is transplanted from a human leucocyte antigen (HLA) non-identical donor, the recipient mounts an alloimmune response, that leads to T lymphocyte activation, antibody production, complement activation, allograft rejection and transplant failure [4]. Immunosuppressive agents are used to prevent acute cellular and antibody-mediated rejections (AMR), both early and late, which lead to chronic allograft injury (CAI) in long-term. Significant advances have been made in the immunosuppressive strategies over the past three decades to reduce the incidence of allograft rejection and side-effects of the drugs, and to improve long-term graft and patient survivals. Introduction of cyclosporine revolutionised the practice of RT by reducing acute rejection rate and improved the short-term graft survival, which was further improved by tacrolimus, mycophenolate mofetil (MMF) and induction immunosuppressive agents. Despite these advances, there is lack of clear evidence of improvement of long-term graft survival because CAI continues to cause late renal allografts losses [5].

Immunosuppressive agents used in RT are classified into three groups: induction, maintenance and rescue agents (Table 1). Induction agents comprise of polyclonal antibodies (rabbit antithymocyte globulin (rATG)) and interleukin-2 receptor antagonist (IL-2RA) (basiliximab and daclizumab). The anti-CD3 monoclonal antibody (OKT3) is no longer used because of severe adverse side-effects. Newer induction agents include alemtuzumab and rituximab. The maintenance agents comprise of calcineurin inhibitors (CNIs) (cyclosporine and tacrolimus), antiproliferative
humoral component in hyperacute rejection was emphasised by the development of hybridoma technology [8]. The importance of a lymphocytic component was demonstrated experimentally by Sir Peter Medawar, the father of transplantation, introduced the concept of transplantation immunology from his pioneering experimental works done between 1943 and 1944. He demonstrated that the second skin graft in the same animal was rejected more readily than the first skin graft, which was due to active immunity [6, 7]. The role of lymphocytes in cellular rejection is typically treated with ATG. Allorecognition and T cell activation

Both innate (dendritic cells, macrophages, neutrophils, mast cells and natural killer cells) and adaptive (T and B cells) immune systems are implicated in the allograft rejection process. The innate immune system is activated by damage-associated molecular patterns (heat-shock proteins, adenosine triphosphate, uric acid, ribonucleic acid (RNA), deoxyribonucleic acid (DNA)), proteins derived from extracellular matrix (hyaluronan fragments and heparin sulphate), and cytokines and chemokines released due to ischaemia-perfusion injury and microbial products. The activated innate immune system triggers the adaptive immune system leading to cellular rejection. In addition, recognition and presentation of the alloantigens leads to activation of the adaptive immune system [10].

Allorecognition can occur by direct or indirect pathways [11, 12]. After establishment of the vascular connection between donor and recipient, the activated dendritic cells migrate out of the graft to the T-cell rich regions of the recipient lymph nodes where they encounter naive recipient T cells [13]. The donor dendritic cells and recipient T cells engage each other using cell surface receptors, the major histocompatibility complex (MHC) molecules on the dendritic cell and the T cell receptor (TCR), the junction is called an “immunological synapse”, thereby generating antigen-specific intracellular signal (signal 1) [14, 15]. Simultaneously, additional molecules coalesce in the synapse to generate second signal called co-stimulation signal (signal 2), which is essential for complete T cell activation. Lack of signal 2 leads to either anergy or apoptosis [11, 14].

The receptor-ligand interaction between T-cells and the antigen presenting cells (APCs), which are involved in generation of co-stimulatory signals are CD28-B7 and CD154-CD40. CD28 and its ligand (B7-1/CD80 and B7-2/CD86) are expressed on APCs. T cells express CD28 and its co-stimulatory molecules (CTLA-4 and 4-1BB) which results in co-stimulation of T cells [14].

The literature search was carried out in PubMed and relevant websites by using the search terms “kidney transplantation”, “immunosuppressive agents”, “immunology” and “outcomes”. Relevant references were compiled by using EndNote software (Version X 7.4; Thomson Reuters, Philadelphia, PA, USA).

Literature Search Strategy

The literature search was carried out in PubMed and relevant websites by using the search terms “kidney transplantation”, “immunosuppressive agents”, “immunology” and “outcomes”. Relevant references were compiled by using EndNote software (Version X 7.4; Thomson Reuters, Philadelphia, PA, USA).

Immunology in Renal Transplantation

Sir Peter Medawar, the father of transplantation, introduced the concept of transplantation immunology from his pioneering experimental works done between 1943 and 1944. He demonstrated that the second skin graft in the same animal was rejected more readily than the first skin graft, which was due to active immunisation from the first graft [6, 7]. The role of lymphocytes in the rejection process was demonstrated much later after the development of hybridoma technology [8]. The importance of a humoral component in hyperacute rejection was emphasised by Kissmeyer-Nielsen in 1966 who described the destructive effects of preformed antibodies on the allograft [9].

Table 1. Classification of immunosuppressive agents according to clinical applications.

Induction agents	Maintenance agents	Rescue agents
Polyclonal and monoclonal antibodies: ATG OKT3 Alemtuzumab Rituximab	Calcineurin inhibitors: Cyclosporine Tacrolimus	Mild to moderate cellular rejection: Corticosteroids
Interleukin-2 receptor antagonists: Basiliximab Daclizumab	Anti-metabolites: Azathioprine Mycophenolate mofetil	Moderate to severe cellular rejection: Polyclonal and monoclonal antibodies: ATG OKT3
Methylprednisolone	m-TOR inhibitors: Sirolimus Everolimus	Acute antibody-mediated rejection: Immunoglobulins Rituximab Bortezomib Eculizumab
Newer agents: Co-stimulation blocker: Belatacept Protein kinase C inhibitor: Sotrastaurin JAK 3 inhibitor: Tofacitinib		

agents (azathioprine and MMF), mammalian target of rapamycin inhibitors (mTOR-I) (sirolimus and everolimus) and corticosteroids. Three newer maintenance agents include belatacept, a costimulation blocker; sotrastaurin, a protein kinase C inhibitor; and tofacitinib, a JAK 3 inhibitor. Transplant rejection can be acute cellular and acute AMR. Mild cellular rejection can be treated with corticosteroids, whereas moderate and severe acute cellular rejection is typically treated with ATG. AMR is treated with plasmapheresis, intravenous immunoglobulin (IVlg) and rituximab. Refractory AMR is treated with proteasome inhibitor bortezomib and C5 inhibitor, eculizumab. This review will focus on the stepwise evolution of immunosuppressive agents in RT over the last six decades, their safety and efficacy, outcomes of pivotal trials and newer drugs under investigation. It is essential to understand the principles of immunology involved in RT for the interpretation of the mechanism of action of these drugs, hence a section on immunology is included.

Literature Search Strategy

The literature search was carried out in PubMed and relevant websites by using the search terms “kidney transplantation”, “immunosuppressive agents”, “immunology” and “outcomes”. Relevant references were compiled by using EndNote software (Version X 7.4; Thomson Reuters, Philadelphia, PA, USA).

Immunology in Renal Transplantation

Sir Peter Medawar, the father of transplantation, introduced the concept of transplantation immunology from his pioneering experimental works done between 1943 and 1944. He demonstrated that the second skin graft in the same animal was rejected more readily than the first skin graft, which was due to active immunisation from the first graft [6, 7]. The role of lymphocytes in the rejection process was demonstrated much later after the development of hybridoma technology [8]. The importance of a humoral component in hyperacute rejection was emphasised by Kissmeyer-Nielsen in 1966 who described the destructive effects of preformed antibodies on the allograft [9].

Allorecognition and T cell activation

Both innate (dendritic cells, macrophages, neutrophils, mast cells and natural killer cells) and adaptive (T and B cells) immune systems are implicated in the allograft rejection process. The innate immune system is activated by damage-associated molecular patterns (heat-shock proteins, adenosine triphosphate, uric acid, ribonucleic acid (RNA), deoxyribonucleic acid (DNA)), proteins derived from extracellular matrix (hyaluronan fragments and heparin sulphate), and cytokines and chemokines released due to ischaemia-perfusion injury and microbial products. The activated innate immune system triggers the adaptive immune system leading to cellular rejection. In addition, recognition and presentation of the alloantigens leads to activation of the adaptive immune system [10].

Allorecognition can occur by direct or indirect pathways [11, 12]. After establishment of the vascular connection between donor and recipient, the activated dendritic cells migrate out of the graft to the T-cell rich regions of the recipient lymph nodes where they encounter naive recipient T cells [13]. The donor dendritic cells and recipient T cells engage each other using cell surface receptors, the major histocompatibility complex (MHC) molecules on the dendritic cell and the T cell receptor (TCR), the junction is called an “immunological synapse”, thereby generating antigen-specific intracellular signal (signal 1) [14, 15]. Simultaneously, additional molecules coalesce in the synapse to generate second signal called co-stimulation signal (signal 2), which is essential for complete T cell activation. Lack of signal 2 leads to either anergy or apoptosis [11, 14].

The receptor-ligand interaction between T-cells and the antigen presenting cells (APCs), which are involved in generation of co-stimulatory signals are CD28-B7 and CD154-CD40. CD28 and its ligand (B7-1/CD80 and B7-2/CD86) are expressed on APCs. T cells express CD28 and its co-stimulatory molecules (CTLA-4 and 4-1BB) which results in co-stimulation of T cells [14].
CD154 are expressed on T cells and their ligands B7 and CD40 are expressed on APCs. CD28 consists of two ligands, B7-1 (CD80) and B7-2 (CD86). T cells also express cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), which is homologous to CD28, but has a higher affinity than CD28 to bind B7. Binding of CTLA-4 to B7 (both CD80 CD86) leads to generation of inhibitory signal to terminate T cell response [16, 17].

Following assembly of immunological synapses, the combination of signal 1 and 2 activates three downstream signal transduction pathways within the cytoplasm of the T cell: the calcium-calciueminulin pathway, the Ras-mitogen activated protein kinase pathway, and the IKK-nuclear factor kB (NF- kB) pathway [18-20]. The signals reach the nucleus and activates gene transcription factors including the nuclear factor of activated T cells (NFAT), activated protein-1, and NF- kB, respectively. As a result of gene transcription, several new molecules and cytokines including CD25, CD154, interleukin-2 (IL-2) and interferon-γ (IFN-γ) are secreted and their receptors expressed [21].

IL-2 binds to its own receptor on the surface of T cell in auto-immune fashion (signal 3), which, activates the mammalian target of rapamycin (mTOR) pathway, phosphoinositide-3-kinase (PI3K) pathway and Janus kinase/signal transducers and activators of transcription protein pathway (JAK/STAT), which allow the activated T cells to progress through the cell division cycle and clonal expansion of donor HLA/peptide-specific effector (CD8+ cytotoxic T cells) T cells [22, 23]. These cells produce CD8+ T-cell mediated cytotoxicity, help macrophage-induced delayed type hypersensitivity response (CD4+Th1) and help B cells for antibody production (CD4+Th2) [24, 25]. A subset of activated T cells (CD4+ or CD8+) survive in an inactive state for a long period, called the memory T cells, but will quickly expand and mount an aggressive immune when re-exposed to the same alloantigen [26].

B Lymphocytes

In addition to production of donor-specific anti-HLA antibodies, B cells play an important role in processing transplant alloantigen and presentation to the alloreactive T cells, thereby amplifying T cell-mediated allograft damage. B cells recognise transplant antigens in their native forms without requirement of processing and presentation to MHC molecules [27]. B cells also internalise antigens, process them and present to the T cells through the indirect pathway of allore cognition. They receive signals from T cells via CD40 by binding to the T cell CD40L, which upregulate expression of B7 molecules on B cells and facilitate antigen presentation and T cell co-stimulation [28]. Cross-linking of unprocessed antigen to the antigen-specific surface antibodies stimulates B cell activation, proliferation, and differentiation in to a plasma cell. Some of the activated B cells become memory B cells. The anti-HLA antibodies produced by plasma cells bind alloantigen and cause graft injury either by activating the complement cascade known as complement-dependent cytotoxicity (CDC) or via Fc receptor (CD16) in the natural killer cells, the antibody-dependent cellular cytotoxicity (ADCC) [29].

The potential role of regulatory B cells in induction of tolerance is under investigation. More recently, a subset of B cells, so called transitional B cells (TrB) with surface markers of CD27-CD24-CD38+, have been recognised, which exhibit suppressive function conducive to induction of tolerance. The IL-10 secreting TrB cells can suppress T helper cells and effector T cell responses. The concomitant production of TNF-α by B cells overrides this inhibitory function. Thus the effects of intervention on the subsets of these two types of TrB cells to induce tolerance in RT, requires further investigation [30, 31].

Donor-specific antibodies

Plasma cells can produce antibodies against both HLA and non-HLA antigens. Non-HLA antibodies directed against donor endothelial antigens such as MHC class I polypeptide-related sequence A or B (MICA and MICB), smooth muscle antigen (vimentin), collagen-V and cell surface receptor such a type I angiotensin II receptor are reliably detected by currently available techniques [32]. Several studies have suggested that DSA to HLA antigens and endothelial antigens may be a driver for both acute and chronic AMR [33].

Immunosuppressive Agents in Renal Transplantation

Total lymphoid irradiation

Total lymphoid irradiation (TLI) has been the first method of immunosuppression in human RT based on the principle of the destruction of blood cells in bone marrow and lymphoid tissue responsible for rejection [34]. In a prospective randomised trial, which compared pre-operative TLI with post-operative cyclosporine therapy, Waer et al. observed significantly high incidence of acute rejection rate in the TLI group, although the infectious complications were identical [35]. Zhu et al. successfully desensitised and rescued highly sensitised and RT recipients with AMR using a combination of TLI, low-dose IVIG and ATG and plasmapheresis [36]. The side-effects of TLI, such as nausea, vomiting, diarrhea, hair loss, bone marrow suppression and infections made this form of treatment less favourable. It is more effective if given prior to transplantation. Local graft irradiation was in routine practice for some time for prevention and treatment of refractory acute rejection, but with the availability of better alternatives, TLI has fallen out of favour [37, 38].

Corticosteroids

Zukoski and Lee of Texas documented the benefit of corticosteroid therapy, first in a canine model, followed by in man [39]. From 1966 to 1978 conventional therapy consisted of azathioprine and high-dose prednisolone, which was associated with complications such as bone marrow aplasia, gastrointestinal perforation, weight gain, hyperlipidemia, diabetes, hypertension, and bone disease. Steroids act by blocking IL-2 gene expression on the T-cells and APCs. Non-specific immunosuppressive effects like lymphopenia and chemokine inhibition leading to migration of monocytes in the area of inflammation, may also contribute to its action [40].

Several trials compared the efficacy and safety of low-dose versus high-dose steroids and concluded that low-dose steroids were as effective as high dose steroids in preventing rejections and steroid-related complications, but a large dose of azathioprine (at least 2mg/kg/day) was recommended [41, 42]. High dose steroid therapy is the first line approach to the treatment of acute rejec-
tion. High dose oral steroid versus high- and lower intravenous doses of steroid have been examined in randomised trials. Low dose intravenous steroids (3mg/kg IV bolus) is found to be as effective as high dose steroid (15-30 mg/kg IV bolus) and this was not associated with increased incidence of steroid-resistant rejection [43, 44].

The detrimental effect of steroids on the metabolic profile begins in the early post-transplantation period. The outcome of complete avoidance of steroids was examined in randomised trial using IL-2RA induction. CNIs and maintenance with cyclosporine and MMF, where steroid withdrawal after 1 week was not associated with rise in acute rejection rate or graft failure [45-47].

The pharmacokinetic interaction of steroid with MMF and tacrolimus leads to alteration in the bioavailability of these drugs. Induction of uridine diphosphate glucuronosyltransferase activity by the steroids, increases the clearance of mycophenolic acid, thereby reducing the exposure to MMF. Tapering of steroid in the post-transplant period leads to increased trough, peak and 12 hours area under the concentration curve of MMF [48]. Steroids induce both cytochrome P450 3A (CYP3A) enzymes and P-glycoprotein (P-gp) in the liver and intestine. Tacrolimus is a substrate for these enzymes, thus leads to increased bioavailability of tacrolimus when steroid is tapered or stopped (as high as 25%) after RT, which may cause nephrotoxicity [49].

Azathioprine

The modern era of pharmacological immunosuppression was initiated by Schwartz and Dameshek in 1959 by documenting that the antiproliferative drug 6-mercaptopurine (6-MP) dampened antibody production and prolonged rabbit skin allograft survival [50]. The imidazole derivative of 6-MP, azathioprine, was used by Sir Roy Calne in 1960 demonstrating the prolonged survival of canine renal transplants from 7.5 to 23.7 days [51]. Azathioprine is metabolised in liver by thiopurine methyl transferase (TPMT) to 6-MP, the active metabolite, but other pathways also exist and explain individual variation in its metabolism. It interferes with purine metabolism and RNA synthesis, thus inhibiting gene replication and T cell activation. Individuals with deficiency of TPMT are more sensitive to its myelosuppressive effects [52].

The three pivotal trials, the U.S Renal Transplant Study, the Tri-Continental Study and the European Mycophenolate Mofetil Study compared MMF versus azathioprine or placebo in patients on baseline cyclosporine-prednisolone regimen. All trials demonstrated significant reduction in the incidence of acute rejection in MMF group at 6 months (19.8% vs. 38%; 19.7% vs. 35.5% and 17.5 vs. 46.4%, respectively) [53-55], although graft and patient survivals were not different at 1 year. The cost differential between MMF and azathioprine was 10 fold to 15 fold. An analysis of 49666 primary renal allograft recipients reported to the US renal database system suggested that continued therapy with MMF was associated with protective effect against declining renal function at 1 year compared with azathioprine [56].

Conversion to azathioprine in patients on cyclosporine was examined in several trials, which showed increased risk of rejection (up to 25%), but there was no difference in the graft and patient survivals at 15 years of follow-up [57-59]. In patients receiving CNI together with azathioprine who developed CAI, switching to MMF and reduction of CNI dosage, was associated with either stabilisation or an improvement in renal function [60]. In an European randomised study involving 500 patients, addition of azathioprine to tacrolimus based regimen did not show any difference in the graft survival, patient survival, and acute or chronic rejection [61]. Gradually azathioprine has been replaced with MMF in modern immunosuppressive protocols, but used during pregnancy due to reduced association with foetal malformations [62].

Cyclosporine

Cyclosporine was isolated in 1969 from a soil fungus Tolypocladium inflatum (Gams) and its immunosuppressive action in transplantation elucidated by Jean F. Borel [63, 64]. Cyclosporine combines with cyclophilin, and the complex thus formed, binds to calcium-dependent and calmodulin-dependent phosphatase, the calcineurin, thereby blocks the dephosphorylation of cytosolic form of the nuclear factor of activated T-cells (NFATc) and prevents it from translocating into the nucleus (NFATn) and to the DNA promoter region, thereby inhibits IL-2 synthesis. Blockade of IL2 gene transcription leads to failure of T cell clonal expansion and differentiation of precursor to mature cytotoxic T cells [64]. Clinical trials of cyclosporine in renal transplantation began in Cambridge in 1978 and cyclosporine was introduced into immunosuppression regimen protocols world-wide in 1982 [65, 66].

The original, oil-based formulation of cyclosporine (Sandimmune®; Novartis Basel, Switzerland) was introduced in 1983, which showed significant interpatient and intrapatient variability due to slow absorption. This made dosing difficult and increased the risk of chronic rejection. In 1995, a microemulsion formulation of cyclosporine, Neoral (Sandimmune Neoral®, Novartis Basel, Switzerland) was introduced, which has better absorption leading to improved bioavailability with less variability in denovo and stable transplant patients. Neoral reduced the acute rejection rate significantly although there was no difference in the long-term graft and patient survival [67-69]. In recent years several generic preparation of microemulsion formulations are available; however the results are variable due to variable absorption profile leading to change of dosage in about 20% patients and also increase in the incidence of acute rejection. An analysis of data from Collaborative Transplant Study showed significantly worse 1 year graft survival in patient who had received generic formulation of cyclosporine. It is mandatory to monitor patients more closely when generic formulation is used [58, 70, 71].

The value of monitoring cyclosporine level 2 hours (C2) after administration has been examined in several studies, which have shown variable results, although majority of them have shown that dosing of cyclosporine based on C2 levels (>1500 µg/L in first 2 weeks after RT) reduced acute rejection significantly. However, trough level (C0) remains the standard despite inherent poor correlation with the outcomes [72-74].

The introduction of cyclosporine significantly improved graft survival at 1 year compared to azathioprine and steroid group (89.5% vs. 50%) [75]. Several studies conducted in Europe, Canada, Minneapolis, Milan, Pittsburgh, Sydney and data from Collaborative Transplant Study have confirmed the improved graft survival with the use of cyclosporine [75-77, 78, 57, 79, 80]. In order to reduce

Kumar A, Shrestha BM (2016) Evolution of Immunosuppressive Agents in Renal Transplantation: An Updated Review. Int J Stem Cell Res Transplant. 04(3), 158-172.
the side-effects such as infections, nephrotoxicity and B-cell lymphoma; low dose cyclosporine was combined with azathioprine and low dose steroid, termed as ‘triple therapy’. A randomised trial comparing double therapy (cyclosporine and azathioprine) with triple therapy (low dose cyclosporine, azathioprine and prednisolone) in cadaveric RT showed no difference in the incidence of acute rejection, infection, graft survival (54.4% vs. 59.6%) and patient survivals (79.8% vs. 82.3%) at 5 years [81]. Similar results were reported in other studies using triple therapy [59].

A randomised controlled trial from Milan comparing triple therapy versus and high dose cyclosporine and steroids showed similar graft and patient survival between the two groups, but there were more rejection episodes in the triple therapy group with evidence of greater renal impairment and infection in the high-dose cyclosporine group [82]. Triple therapy replacing azathioprine with MMF has resulted in significant reduction in the incidence of acute rejection episodes (44% versus 31%; P<0.01), although there was no difference in the graft or patient survival rate [83]. ATG, OKT3 or more recently, IL-2RA monoclonal antibodies (basiliximab and daclizumab) are routinely added to triple therapy in patients with delayed graft function and sensitisation. This quadruple therapy or sequential therapy allows one to either delay the introduction of CNI or to use in reduced dose, respectively, while the kidney recovers from acute tubular necrosis [84, 85].

Acute nephrotoxicity is largely reversible but chronic nephrotoxicity is mostly irreversible with non-specific histological damage to glomeruli, blood vessels and interstitium [86]. In the Symphony study, in the first year post-transplantation, cyclosporine was associated with higher blood levels of uric acid, systolic and diastolic pressure in comparison to tacrolimus and sirolimus [87]. Over the last two decades, tacrolimus has gradually replaced cyclosporine because of superior results yielded by it.

Tacrolimus

Like cyclosporine, tacrolimus is a CNI, which was introduced in 1987. Tacrolimus was isolated from a soil fungus, Streptomyces tsukubaensis and was found to be 100 times more potent than cyclosporine. Structurally both are different, but have similar mode of action. Tacrolimus binds to FK binding protein, calcium, calcineurin and calcineurin which inhibits the phosphatase activity of calcineurin and thereby blocks translocation of cytosolic NFAT into the nucleus, leading to inhibition of IL-2 gene transcription and T-cell activation [88, 89].

The phase III U.S. multicentre trial compared the efficacy and safety of tacrolimus with that of Sandimmune cyclosporine. At 1 year, there was significantly low incidence of acute rejection in tacrolimus group (30.7% vs. 46.4%; P=0.001), low incidence of moderate-severe rejection (10.8% vs. 26.5%), at 5 years patients with serum creatinine value greater than 150µg/L was lower in tacrolimus group (40.4% vs. 62%; P=0.0017), but tremor and paraesthesia were more common in tacrolimus group. There was no difference in the 1 year patient (95.6% vs. 96.6%) and graft survival (91.2% vs. 87.9%) between the two groups. The incidence of post-transplant diabetes mellitus (PTDM) was 19.9% in the tacrolimus group and 4.0% in the cyclosporine group (P<0.001), and was reversible in some patients [90].

A randomised prospective trial comparing tacrolimus/azathioprine, cyclosporine Neoral /MMF, and tacrolimus/MMF showed no difference in the acute rejection episodes, but there was a significant difference in the number of patient requiring ATG (4.2% in tacrolimus/MMF arm compared with 10.7% in the cyclosporine/MMF arm and 11.8% in the tacrolimus/azathioprine arm; P=0.05). There was no difference in the patient and graft survival at 1, 2 or 3 years [91]. Combination of sirolimus or MMF with tacrolimus based regimens did not show any difference in the incidence of acute rejection, patient or graft survival [92]. Comparison of dual therapy (tacrolimus/prednisolone) with triple therapy (tacrolimus/MMF/prednisolone) showed significantly low incidence of acute rejection in the triple therapy group (44% vs. 27%; P=0.014). There was no difference in the patient and graft survival, incidence of delayed graft function, CMV and PTDM between the two groups [93].

A meta-analysis of 30 trials (4102 patients) comparing tacrolimus with cyclosporine showed significant reduction of graft loss in tacrolimus treated recipients (RR=0.56), less acute rejection (RR=0.69), less steroid-resistant rejection (RR=0.49), but more diabetes mellitus requiring insulin (RR = 1.86), tremor, headache, diarrhoea, dyspepsia, and vomiting. Cyclosporine treated recipients had significantly more constipation and cosmetic side effects. No differences were seen in infection or malignancy [94]. Several trials have confirmed better renal function associated with tacrolimus compared to cyclosporine [95-97].

Tacrolimus has been proven effective as rescue therapy in cyclosporine-treated patients with steroid-resistant acute rejection episodes [98, 99]. In Pittsburgh, 5-year follow-up of 169 patients, who were converted from cyclosporine to tacrolimus for refractory rejection, showed 74% success rate and a mean serum creatinine of 202µmol/L. Steroid withdrawal was achieved in 22% of cases after conversion to tacrolimus [100].

In a large European study on tacrolimus conversion for cyclosporine-induced toxicities, successful outcomes were achieved in resolving gingival hyperplasia, hypertrichosis, hyperlipidaemia and hypertension [101]. With the use of tacrolimus, nephrotoxicity leading to CAI and metabolic side-effects, particularly PTDM have generated major concerns. Several CNI minimising or sparing protocols have been examined to assess the efficacy of low dose CNIs in combination with other agents, which have shown to reduce premature graft loss. In the ELITE (Efficacy Limiting Toxicity Elimination) Symphony study, a regimen of daclizumab, mycophenolate mofetil, and corticosteroids in combination with low-dose tacrolimus was superior to regimens involving daclizumab induction plus either low-dose cyclosporine, low-dose sirolimus, or standard-dose cyclosporine without induction, in improving renal function, allograft survival, and acute rejection rates [102, 103].

Prolonged-release tacrolimus

Non-adherence is a common and major cause of RT failure and amounts to seven-fold risk of graft failure in non-adherent group compared to adherent group (OR=7.1; P<0.001) [104]. To address the non-adherence issue, a once-a-day (QD) formulation of tacrolimus (Advagraf®) has been approved in several countries since 2007. Several prospective studies have assessed the efficacy,
Mycophenolate mofetil (MMF)

MMF has been used extensively in all organ transplant recipients due to its good safety profile, efficacy, and ease of administration without need of mandatory monitoring. The active metabolite is mycophenolic acid, which inhibits the enzyme inosine monophosphate dehydrogenase and thereby purine nucleotide synthesis, blocks both T and B lymphocyte proliferation [108].

The three pivotal trials, the US Renal Transplant Study, the Tri-Continental Study and European Mycophenolate Mofetil Study compared MMF versus azathioprine or placebo in patients on baseline cyclosporine-prednisolone regimen (see section on azathioprine) suggested a lack of nephrotoxicity, neurotoxicity, or hepatotoxicity. Significant incidence of myelotoxicity and gastrointestinal (GI) side-effects were reported. The GI side-effect was significantly reduced with the use of enteric-coated mycophenolate sodium (Myfortic®, Novartis) [109]. There was also consistent increase in the incidence of cytomegalovirus (CMV) infection in the MMF group. The US Pivotal trial showed significant benefit of MMF to the higher immunological risk patients in reducing the risk of rejection, particularly for African-Americans [110].

A meta-analysis of 19 trials involving 3143 patients has shown that MMF used with a CNI confers a clinical benefit over azathioprine by reducing the risk of acute rejection (RR=0.62) and graft loss (RR=0.76), with no difference in other adverse events except diarrhoea [111]. A single centre trial evaluated the combination of MMF and tacrolimus plus steroids versus last two agents and observed a decreased risk of acute rejection episodes from 44% to 27% at 1 year [112]. Tacrolimus in combination with MMF provided better renal function, less hypertension and reduced hyperlipidaemia than in combination with sirolimus [92].

Administration of MMF for the treatment of acute rejection episodes has failed to show any benefit. However, a multicentre study has suggested that MMF reduced the incidence of steroid-resistant acute rejection episodes [113]. The use of MMF has allowed reduction of CNI exposure after 3 months (cyclosporine C0 100 to 150 ng/mL; tacrolimus C0 5 to 7 ng/mL) leading to improved creatinine clearance, urea acid, blood pressure and triglyceride values [114]. Several studies have examined elimination of CNIs to avert chronic nephrotoxicity. Withdrawal of cyclosporine and continuation of MMF plus steroid at 3 months was associated with a fold increase in acute rejection episodes, although better creatinine clearance, reduced blood pressure and favourable lipid profile was observed [115].

For avoidance of CNIs, MMF and steroids has been used in combination with sirolimus [116], basiliximab/sirolimus [117], or belatacept/basiliximab [118]. An excessive occurrence of acute rejection episodes have been observed in studies where CNI was not used. In a Spanish study, 65% of MMF-treated patients remained on CNI free regimen at 12 months, but only 36% remained CNI free at 5 years [119].

A meta-analysis of nine RCTs (1820 participants) assessed the effect of steroid withdrawal between 3 and 6 months of RT in patients on CNI plus MMF. Use of cyclosporine was associated with an increased incidence of biopsy-proven acute rejection (BPAR) (RR=1.61). Contrarily, tacrolimus allowed steroid withdrawal without increased incidence of BPAR [120]. MMF is also shown to reduce the incidence of chronic allograft nephropathy (CAN) and benefit those patients with evidence of early CAN [121]. In summary, MMF has become a component of several immunosuppressive regimens resulting in better outcomes compared to azathioprine and has been successful in reducing CNI-induced nephrotoxicity.

mTOR Inhibitors: Sirolimus and Everolimus

Sirolimus is a macrocyclic lactone, a fermentation product isolated from Streptomyces hygroscopicus [122]. Everolimus was synthesised from sirolimus by substitution at position 40 at its structure by 2-hydroethyl chain, which has improved oral bioavailability. mTOR is serine-threonine kinase that acts as a scaffold for binding of proteins, which and a key component in cell cycle regulatory signalling pathway. Sirolimus and everolimus act by inhibiting the mTOR and inhibit T-cell proliferation. After entering the cells, mTOR-I bind with FK binding proteins, which further binds with mTOR and blocks its action resulting in inactivation of S6K1 and 4EBP and inhibition of CD28-mediated downregulation of ICαβ, a regulatory protein that upregulates IL-2 transcription [123]. This leads to cell cycle arrest in late G1 phase [124]. Sirolimus has no nephrotoxicity but in addition to its immunosuppressive effects it inhibits proliferation of fibroblasts, endothelial cells, hepatocytes and smooth muscle cells [125, 126].

mTOR-I have been evaluated in RT as an addition to CNI-based therapy, as de novo immunosuppression from the time of RT, as a later addition to CNI to enhance immunosuppression in response to acute rejection, and as a substitution for CNIs in the presence of nephrotoxicity or CAI in the maintenance phase. When sirolimus was compared with Sandimmune cyclosporine in combination with azathioprine and prednisolone, there was no difference in the incidence of acute rejection (41% versus 31% at 12 months) [127]. Similar results were observed when azathioprine

Kumar A, Shrestha BM (2016) Evolution of Immunosuppressive Agents in Renal Transplantation: An Updated Review. Int J Stem Cell Res Transplant. 04(3), 158-172.
was substituted with MMF (27% versus 18.5%) [116]. A registry analysis suggested higher incidence of acute rejection, higher rate of delayed graft function and reduced allograft survival in RT recipients, when combination of sirolimus and MMF was compared with tacrolimus/MMF or cyclosporine/MMF regimens [128]. Two large randomised trials ORION [129] and SYMPHONY [102] suggest that combination of sirolimus and MMF is inferior to low-dose tacrolimus and MMF-based triple therapy.

In a systematic review by Webster et al. (33 trials: sirolimus (27); everolimus (5) and head-to-head (1)) [130]; when mTOR-I replaced CNI there was no difference in acute rejection, but serum creatinine was lower, and bone marrow more suppressed (leukopenia: RR 2.02; thrombocytopenia: RR 6.97; anaemia: RR 1.67). When mTOR-I replaced antimetabolites, acute rejection (RR 0.84) and CMV infection (RR 0.49) were reduced, but hypercholesterolaemia was increased (RR 1.65). There was no significant difference in mortality, graft loss or malignancy risk for mTOR-I in any comparison. The use of mTOR-I immediately after RT is limited due to adverse effects on wound healing and lymphocele. However, replacement of CNI with sirolimus as maintenance therapy before structural changes have occurred in cases of early CAI has shown to improve renal function [131].

The efficacy of everolimus with reduced CNI in comparison to conventional MMF and standard CNI in de novo RT have been addressed in two large randomised trials; namely, the A2309 trial [134]; and the EVEREST study [135]; and third TRANSFORM study [136] is in recruitment stage. The available data indicate that everolimus targeting 3-8 ng/ml can achieve at least 60% reduction in maintenance concentration of CNI without loss of efficacy in de novo RT recipients at low to moderate immunological risk. The benefit in terms of renal function was achieved when very low CNI exposure was achieved. Early withdrawal of steroids in everolimus with reduced CNI have shown an increased risk of acute rejection [137].

Several randomised trials have investigated the effect of introducing everolimus and withdrawing CNI in RT recipients, where the time of CNI withdrawal varied from seven weeks to seven years. Studies of early switch at seven weeks or halving of CNI dose from two weeks onwards followed by full withdrawal at 2 months was associated with high rate of BPAR at 12 month (27.5% and 31%, respectively)[138-140]. Two large studies have demonstrated improved renal function when the switch was initiated at months 3-4, although ZEUS study showed high incidence of mild BPAR after CNI withdrawal compared to CNI continuation (13.6% versus 7.6%) [141, 142]. Two studies of late conversion (APOLLO [mean seven years] [143] and ASCERTAIN [mean >5 years] [144] showed no loss of efficacy after switch. Data regarding development of de novo DSA in patients receiving everolimus is inadequate. Patients on CNI with declining renal function, malignant neoplasms or non-melanoma skin cancers have benefitted when switched to everolimus [145].

Antibodies

In the early 1950s, lymphocytes were recognised as the predominant effector in rejection and by the mid-1960s, lymphocyte depleting antibodies such as antilymphocyte serum (ALS), antilymphocyte globulin (ALG) and rabbit antithymocyte globulin (rATG) were isolated from animal experiments, which were composed of many undefined specificities, hence collectively known as polyclonal preparations. In 1975, Kohler and Milstein, developed monoclonal antibodies by the hybridoma technology, which has genetically defined monoclonal specificity and overcome the shortcomings of polyclonal preparations, particularly specificity and variability. Anti-CD3 monoclonal antibody (OKT3, Muromonab) was the first monoclonal antibody specific for CD3, which very rapidly cleared T-cells from peripheral circulation and was found to be very effective in prevention and treatment of rejection. Subsequently, with the advances in genetic engineering, several monoclonal antibodies were developed, whose efficacy and safety and clinical applications are described below. There are currently three antibodies which are used for induction therapy: IL-2 receptor antagonist (basiliximab and daclizumab), rATG and alemtuzumab.

Rabbit antithymocyte globulin (rATG): Rabbit ATG is commonly used for induction and treatment of steroid-resistant cellular and antibody mediated rejections. In 1960s and 1970s, ALS and ALG were used to reduce the acute rejection, which delayed the onset of acute rejection, but did not alter the long-term survival [146, 147]. The use of polyclonal antibodies declined after introduction of cyclosporine because of the increased incidence of infections and malignancies. However, ATG has been investigated in combinations with CNIs, MMF and steroids in higher immunological risk patients, recipients of donation after circulatory death and extended criteria donors, delayed graft function, particularly where avoidance of prolonged calcineurin inhibitor is desired [148-152]. With better viral prophylaxis and improved understanding of the infectious aetiology of post-transplant lymphoproliferative disorder (PTLD), ATG is being used in a variety of situations with confidence. It causes T-cell depletion through complement activation. It also modulates cell surface and adhesion molecules [153]. Side-effects include early acute cytokine release syndrome, delayed serum sickness and higher infections with CMV and other infections.

Pilch et al. compared the efficacy and safety of rATG and IL-2 receptor antagonists (basiliximab and daclizumab) in a prospective randomised controlled trial (RCT) in combination with tacrolimus, MMF and steroid, and showed no difference in the incidence of acute rejection, renal function and graft survival between the two groups. There was increased incidence of BK virus infection in the rATG group [154]. In a meta-analysis by Liu et al. including 6 studies (853 patients), there was no difference between rATG and basiliximab in terms of BPAR, delayed graft function, graft loss and patient death. But basiliximab group had lower incidence of infection and neoplasm. Basiliximab is considered as effective as rATG, therefore, is safer and preferable option for induction therapy in RT [155].
Recent evidence suggests that de novo DSA is associated with AMR and graft failure after RT. The effects of induction immunosuppression with rATG and basiliximab on DSA was assessed by Brokhof et al. in 114 consecutive moderately sensitized (positive DSA and negative flow crossmatch) recipients who received deceased donor RT with a follow-up of 36 months. The incidence of DSA (HR=0.33) and AMR (HR=0.9) were significantly lower in the ATG group [156].

In a comprehensive systematic review, Webster et al. examined the safety and efficacy of ATG, OKT3 and steroids in the treatment of acute rejection episodes. In treating the first rejection episodes, antibodies were better than steroids in reversing rejection episodes and preventing graft loss, but there was no difference in preventing subsequent rejection or death at 1 year. For the treatment of steroid-resistant rejection, there was no benefit of OKT3 over ATG in reversing rejection, preventing subsequent rejection, preventing graft loss or death [157].

Muromonab (OKT3): Orthoclone OKT3 is a murine IgG2a antibody that was first introduced in the early 1980s as an induction agent in sensitised patients, for the treatment of steroid-resistant rejections and in patients with delayed graft function to facilitate delay of CNI administration [158, 159]. OKT3 binds to epsilon chain of the CD3 protein in association with the T cell receptor complex, and mediates complement-dependent cell lysis and ADCC, thereby clears all T-cells from peripheral circulation. Binding of OKT3 to CD3 leads to TCR-CD3 internalisation, thus T cells without TCR are incapable of receiving primary antigen signal and are immunologically inactive [160]. Lysis of T cells leads to release of cytokines causing severe systemic manifestations including pulmonary oedema and aseptic meningitis [158].

All trials in the past have shown OKT3 as an efficacious agent in the prevention and successful reversal of 80% of severe rejections, particularly those associated with vasculitis (Banff grade 2 or 3 rejection). OKT3 together with tacrolimus, MMF and prednisolone improved the graft survival and renal function in patients with steroid-resistant rejection [161]. Low doses OKT3 and low dose ATG were found to be equally effective in the treatment of steroid-resistant rejection [162]. However, the use of OKT3 in RT has been abandoned due to its severe side-effects and the availability of safer agents.

Interleukin-2 receptor (CD25) monoclonal antibody: Basiliximab and daclizumab are anti-CD25 monoclonal antibodies, which inhibit IL-2 binding to α-chain of the CD25 molecule and deprive T cells of this cytokine thereby preventing T cell activation and proliferation without causing cell lysis [163]. Therefore, they are also known as non-depleting antibodies. Daclizumab is a humanized anti-CD25 IgG1, while basiliximab is a chimeric anti-CD25 IgG1. Daclizumab and basiliximab have been shown to reduce modestly the incidence of acute cellular rejection compared with methylprednisolone induction when used with triple or dual immunosuppressive agents, with no side-effects [164]. There was no difference in the efficacy and safety between basiliximab and daclizumab in terms of BPAR, renal function, graft and patient survival [165].

In a phase III study, Nashan et al assessed the ability of basiliximab to prevent acute-rejection episodes in renal allograft recipi-
withdrawal was done at day 5. In low risk-group (alemtuzumab vs.
basiliximab induction), there was low incidence of BPAR (3% vs.
15% at 3 months; 5% vs. 17% at 12 months; and 10% vs. 22% at
3 years). But among high-risk patients (alemtuzumab and rATG),
no significant difference was seen in the incidence of BPAR (18%
vs. 15%). The risk of cancer (5% vs. 1%) and serious infection
(22% vs. 35%) were significantly high in the low risk group [175].

Rituximab: Rituximab is a chimeric monoclonal antibody specif-
cic for CD20, which is expressed on the majority of B cells,
leads to depletion of these cells. Rituximab is used as an induction
agent for desensitisation in ABO-incompatible donor recipient
pairs or transplant across a positive crossmatch following anti-
obody removal and in the treatment of AMR [176, 177]. In a dou-
ble-blind, placebo-controlled study, van den Hoogen, et al. evaluated
the efficacy and safety of rituximab as induction therapy in RT
patients receiving either single dose of rituximab or placebo.
Maintenance immunosuppression consisted of tacrolimus, MMF
and steroids. Immunologically high-risk patients (PRA > 6% or
retransplant) not receiving rituximab had a significantly higher in-
cidence of rejection (38.2%) compared to other treatment groups
(rituximab-treated immunologically high-risk patients, and rituxi-
mb or placebo-treated immunologically low-risk (PRA </= 6%
or first transplant) patients 17.9%, 16.4% and 15.7%, respectively;
P = 0.004). Thus rituximab induction was beneficial to the high-
risk patients [178].

Fuchinoue et al. have reported their 5 year outcome of ABO-in-
compatible RT using rituximab induction and showed better out-
come in terms of graft survival (100%, 96.8% and 99.2%, respec-
tively), renal function, AMR (4%, 15.95 and 2.5%, respectively),
and acute cellular rejection (4%, 9.5%, and 14.3%, respectively)
in the rituximab treated ABO-incompatible RT compared to the
ABO-incompatible RT who did not receive rituximab and ABO-
compatible RT [179].

RT in the presence of DSA and positive CDC crossmatch carry
significant risk of AMR and mortality. The desensitisation proto-
col consisting of rituximab, plasmapheresis and low dose IVIG
was assessed by Riella at al. and showed 84% graft survival and
86% patient survival at 5 years. 61% of the graft experienced
AMR and 1 graft was lost from hyperacute rejection. The mean
serum creatinine was 170µmol/L at 5 years. Thus, desensitisation
using rituximab induction provided acceptable results in living
donor RT [180]. Rituximab is used effectively in the treatment of
PTLD in combination with chemotherapy and reduction of im-
unosuppression, where renal function has been well preserved
[181, 182].

Belatacept

Belatacept, a fusion protein composed of the Fc fragment of
human IgG1 linked to the extracellular domain of CTLA-4, se-
lectively inhibits T-cell activation through costimulation blockade
[183]. Belatacept has been in use since 2006 in two phase III stud-
ies, Belatacept Evaluation of Nephroprotection and Efficacy as
First-line Immunosuppression Trial (BENEFIT) and BENEFIT–
Extended Criteria Donors (BENEFIT-EXT) trial [184, 185].

The phase III BENEFIT study assessed a more intensive (MI) or
less intensive (LI) regimens of belatacept, versus cyclosporine in
adults receiving a kidney transplant from living or standard criteria
deceased donors. At 1 year, the belatacept groups and cyclo-
sporine groups had similar graft and patient survivals (MI: 95%,
LI: 97% and cyclosporine: 93%) better renal function (eGFR 65,
63 and 50 mL/min for MI, LI and cyclosporine, respectively),
but belatacept patients experienced a higher incidence (MI: 22%,
LI: 17% and cyclosporine: 7%) and grade of acute rejection epi-
isodes. Safety was generally similar between groups, but PTLD
was more common in the belatacept groups [118]. The phase III
BENEFIT-EXT study evaluated similar drug regimens in extend-
ed criteria deceased donor RTs and showed better renal function
(4.7 mls/min higher mean eGFR in the belatacept group), but
the acute rejection rate, graft and patient survivals and infections
were similar. The incidence of PTLD was high in the belatacept
group [186]. The 7 years follow-up result of the BENEFIT study
has been published recently, showed a 43% reduction in death or
graft loss for both MI and LI belatacept regimens compared with
cyclosporine regimen. The mean eGFR increased over the 7 year
period with belatacept and decreased with cyclosporine regimen.
The cumulative frequency of serious adverse events at month 84
were similar across treatment groups [187]. One limitation of the
trial is that cyclosporine, a less contemporary immunosuppressive
agent was utilised.

Bortezomib

Bortezomib is a proteasome inhibitor which causes phosphoryla-
tion of the Be2 family of proteins and the cleavage product in-
duced G2-M cell arrest and apoptosis of the plasma cells and
thereby inhibits antibody production. Several case series have
shown successful reversal of severe AMR refractory to conven-
tional therapy and preoperative desensitisation of highly sensi-
tised positive crossmatch living donor RT [188-190]. In order
to assess the efficacy of bortezomib in RT patients with positive
DSA and biopsy-proven AMR, a prospective randomised trial
(BORTEJECT) is underway in Vienna, which aims to assess
the renal function, proteinuria, patient and graft survivals at 24
months [191].

Eculizumab

Eculizumab is a humanised monoclonal anti-C5 IgG antibody
that binds to complement protein C5, preventing cleavage into
C5a and C5b, and subsequent formation of C5b-9 or membrane
attack complex. There are several case series reporting successful
treatment of severe AMR refractory to conventional treatment
and thrombotic microangiopathy post-RT [192, 193]. Stegall et
al. from Mayo Clinic studied the efficacy of eculizumab in 26 re-
ipients of highly sensitised recipients of living donor RT during
(51 sensitised patients treated with similar plasma exchange-based
protocol without eculizumab. The incidence of BPAR at 3 months
was 7.7% in the eculizumab group compared with 41.2% in the
control group. With eculizumab, AMR episodes were easily treated
with plasma exchange, thus reducing the need for splenectomy.
On 1-year protocol biopsy, transplant glomerulopathy was found
to be present in 6.7% of eculizumab-treated recipients and in
35.7% of control patients [194]. More research needs to be
undertaken in order to determine indications and the length of treat-
ment for patients DSA and at risk of recurrence of haemolytic-uraemic syndrome [195].
C1 inhibitor in AMR

The safety and efficacy of C1 inhibitor (C1-INH, Berinert®), which inhibits the classical and lectin pathways of complement activation, is under evaluation in highly sensitised RT patients who are at risk of developing AMR. The plasma derived C1 inhibitor was given in addition to IVIg, plasmapheresis and rituximab and compared using placebo. In the study group there was significant reduction in the incidence of AMR, reduced C1q and DSA. C1-INH was also tested in AAMR, which showed favourable outcomes. However, the efficacy of this agent needs to be evaluated in prospective randomised trials [196, 197].

Agents Investigated in the Past

FTY-720

FTY-720 is a sphingosine-1-phosphate analogue which interferes with cell traffic between lymphoid organs and blood without impairing T- and B-cell activation, proliferation and effector function. Its efficacy and safety was tested in clinical trials, but further investigation was discontinued due to adverse effects on visual function [198].

Sotrasatuirin

Sotrasatuirin is a protein kinase C signalling inhibitor, blocks IL-2 production and T-cell activation independent of the CNI pathway. In a phase II randomised study, de novo RTs received sotrasatuirin was given to two groups of patients; standard exposure of tacrolimus (SET), reduced exposure of tacrolimus (RET) and control (SET + MMF). After 3 months, tacrolimus was omitted in the sotrasatuirin group and MMF given. There was significantly high rate acute rejection, infections, GI side-effects in the sotrasatuirin group leading to discontinuation of the study [199].

Tofacitinib

Tofacitinib is a small molecule agent which inhibits JAK3 and thereby inactivates JAK/STAT dependent IL-2 induced T-cell proliferation [200]. In a phase II study, Tofacitinib was compared with CNI-free regimens, where the incidence of acute rejection and graft function were comparable between the two groups. But the incidence of serious infection, anaemia, neutropenia and PTLD were significantly high in the Tofacitinib group. Further investigation of this agent has been abandoned [201].

Generic Formulations

There has been growing interest in promoting generic conversion from brand medications in clinical RT for cost-containment measures. However, due to drug variability, issues with bioequivalence, increased risk of rejection, graft loss and increased hospitalisation, concerns have been raised on conversion to generic formulations. Several studies have reported differences between the two formulations. Cmax, time to Cmax and trough levels are paramount to compare the two formulations [203]. A systematic review and meta-analysis has evaluated the clinical efficacy and bioequivalence of generic immunosuppressive drugs Neoral (cyclosporine) (32 studies), Prograf® (tacrolimus) (12 studies), and Cellcept® (mycophenolate mofetil) (six studies) in solid organ transplantation, with reference to the outcomes including patient survival, allograft survival, acute rejection, adverse events and bioequivalence. Pooled analysis of RCTs in patients with RT that reported bioequivalence criteria showed that Neoral (two studies) and Prograf® (three studies) were not bioequivalent with generic preparations. The single Cellcept® trial also did not meet bioequivalence. Acute rejection was rare but did not differ between groups. High quality data showing bioequivalence and clinical efficacy of generic immunosuppressive drugs in patients with transplants were lacking, hence need for well-designed studies was recommended [204].

Conclusion

The pinnacle of success achieved in RT has evolved over the past century by passing through various milestones in the field of immunology and immunosuppressive drugs, which has become possible through relentless research, both in experimental animal models and human volunteers. Since the early years of TLI to the current stage of evaluation of costimulation blockade, significant reduction in the incidence of acute rejection has been achieved, but chronic AMR, side-effects of the drugs and their cost have been the target of intervention. Further development in both induction and maintenance immunosuppressive strategies is required to achieve an ideal regimen, which would prolong allograft survival with minimal complications.

References

[1]. Shrestha A, Shrestha B, Babarab-Horwath C, McKane W, Shrestha B, et al. (2010) Quality of life following live donor renal transplantation: a centre experience. Ann Transplant 15(2): 5-10.
[2]. Merrill JP, Murray JE, Harrison JH, Guild WR (1984) Landmark article Jan 28, 1956: Successful homotransplantation of the human kidney between identical twins. JAMA 251(19): 2566-2571.
[3]. Kidney Transplant Activity in 2013 in 104 Countries. World Health Organisation.
[4]. Halloran PF (2004) Immunosuppressive drugs for kidney transplantation. N Engl J Med 351(26): 2715-2729.
[5]. Stiegall MD, Gaston RS, Cosio FG, Matas A (2015) Through a glass darkly: seeking clarity in preventing late kidney transplant failure. J Am Soc Nephrol 26(1): 20-29.
[6]. Medawar PB (1944) The behaviour and fate of skin autografts and skin homografts in rabbits: A report to the War Wounds Committee of the Medical Research Council. J Anat 78(Pt 5): 176-199.
[7]. Medawar PB (1945) A second study of the behaviour and fate of skin homografts in rabbits: A Report to the War Wounds Committee of the Medical Research Council. J Anat 79(Pt 4): 157-176.
[8]. Kohler G, Hengartner H, Shulman M (1978) Immunoglobulin production by lymphocyte hybridomas. Eur J Immunol 8(2): 82-88.
[9]. Kissmeyer-Nielsen E, Olsen S, Petersen VP, Fjeldborg O (1966) Hyperacute rejection of kidney allografts, associated with pre-existing humoral antibodies against donor cells. Lancet 2(7465): 662-665.
[10]. He H, Stone JR, Perkins DL (2003) Analysis of differential immune responses induced by innate and adaptive immunity following transplantation. Immunology 109(2): 185-196.
[11]. Game DS, Lefler RI (2002) Pathways of allore cognition: implications for transplantation tolerance. Transpl Immunol 10(2-3): 101-108.
[12]. Vardal D, Thorsby E (1999) Transplantation immunology—the role of human leucocyte antigen in allore cognition. Curr Top Pathol 92: 1-18.
[13]. Pontecelli C (2014) Ischaemia-reperfusion injury: a major protagonist in kidney transplantation. Nephrol Dial Transplant 29(6): 1134-1140.
[14]. Halloran PF (1999) T-cell activation pathways: a transplantation perspec-
tive. Transplant Proc 31(1-2): 769-771.

15. Sim GK, Yague J, Nelson J, Marrack P, Palmer E, et al. (1984) Primary structure of human T-cell receptor alpha-chain. Nature 312(5996): 771-775.

16. Snoudari R, Zuber J, Legendre C (2010) Co-stimulation blockade as a new strategy in kidney transplantation: benefits and limits. Drugs 70(16): 2121-2138.

17. Poizner N, Blanchet G, Vanhove B (2010) Alternatives to calcineurin inhibition in renal transplantation: belatacept, the first co-stimulation blocker. Immunotherapy 2(5): 625-636.

18. StrehlaU, Pavlikis M, Lipman M, Maslinski W, Shapiro M, et al. (1996) The intragraft gene activation of markers reflecting T-cell-activation and -cytotoxicity analyzed by quantitative RT-PCR in renal transplantation. Clin Nephrol 46(1): 30-35.

19. Huang GN, Huo DS, Bouyain S, Tu J, McCorkell KA, et al. (2008) NFAT binding and regulation of T cell activation by the cytotoxic scaffolding Homer proteins. Science 319(5862): 476-481.

20. Zhao Z, Wang L, Yang C, Zhao T, Li L, et al. (2013) Soluble FGL2 induced by tumor necrosis factor-alpha and interferon-gamma in CD4+ T cells through MAPK pathway in human renal allograft acute rejection. J Surg Res 184(2): 1114-1122.

21. Young-Fadok TM, Simpson MA, Madras PN, Dempsey RA, O’Connor K, et al. (1993) Predictive value of pretransplant IL-2 levels in kidney transplant recipients. Transplant Proc 25(1 Pt 2): 1295-1296.

22. Taniguchi T, Minami Y (1993) The IL-2/IL-2 receptor system: a current overview. Cell 73(3): 5-8.

23. Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, et al. (1992) The IL-2/IL-2 receptor system: a current overview. Cell 73(3): 5-8.

24. Zhao Z, Wang L, Yang C, Zhao T, Li L, et al. (2013) Soluble FGL2 induced by tumor necrosis factor-alpha and interferon-gamma in CD4+ T cells through MAPK pathway in human renal allograft acute rejection. J Surg Res 184(2): 1114-1122.

25. Nickerson P, Steuer W, Steiger J, Zheng X, Steele AW, et al. (1994) Cytokines and the Th1/Th2 paradigm in transplantation. Curr Opin Immunol 6(5): 757-764.

26. Bingaman AW, Farber DL (2004) Memory T cells in transplantation: generation, function, and potential role in rejection. Am J Transplant 4(6): 846-852.

27. Cambier JC, Pleiman CM, Clark MR (1994) Signal transduction by the B cell antigen receptor and its coreceptors. Annu Rev Immunol 12: 457-486.

28. Lederman S, Yellin MJ, Inghirami G, Lee JJ, Knowles DM, et al. (1992) Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles. Roles of T cell-B cell-activating molecule (58 antigen) and CD40 in contact-dependent help. J Immunol 149(12): 3817-3826.

29. Muro M, Llorente S, Marin L, Moya-Quiles MR, Gonzalez-Soriano MJ, et al. (1995) Predictive value of pretransplant IL-2 levels in kidney transplantation. Kidney Int 47(5): 1575-1585.

30. Talaulikar GS, Gallagher MP, Carney GM, Jadeer AA, Falk MC, et al. (2005) Acute vascular rejection mediated by HLA antibodies in a cadaveric kidney transplant recipient. Kidney Int 67(5-6): 1060-1067.

31. Morris PJ, Chapman JR, Allen RD, Ting A, Thompson JF, et al. (2004) Switchover to generic cyclosporine in stable renal transplant recipients: a single unit experience. Nephrology (Carlton) 9(6): 418-421.

32. StrehlaU, Pavlikis M, Lipman M, Maslinski W, Shapiro M, et al. (1996) Fractionated total lymphoid irradiation as preparative immunosuppression in renal transplantation: belatacept, the first co-stimulation blocker. Immunotherapy 2(5): 625-636.
[86] Naesens M, Kuypers DR, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4(2): 169-176.

[87] Sollinger HW, Sundberg AK, Leverson G, Voss BJ, Pirsch JD (2010) Mycophenolate mofetil, in de novo kidney transplant patients: a prospective randomized single-center pilot study. Transplantation 89(5): 621-627.

[88] Ekberg H, Tedesco-Silva H, Demirbas A, Virko S, Nashan B, et al. (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357(25): 2565-2575.

[89] Ekberg H, Bernasco C, Tedesco-Silva H, Virko S, Hugo C, et al. (2009) Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. Am J Transplant 9(8): 1878-1885.

[90] Butler JA, Roderick P, Mullee M, Mason JC, Peveler RC (2004) Frequency and impact of nonadherence to immunosuppressants after renal transplantation: a systematic review. Transplantation 77(5): 769-776.

[91] McCormack PL (2014) Extended-release tacrolimus: a review of its use in clinical practice. Drugs 74(17): 2053-2064.

[92] Caillard S, Moulin B, Buron F, Mariat C, Audard V, et al. (2015) Advagraf®, in de novo kidney transplant recipients: a 5-year follow-up study. Br J Clin Pharmacol 80(5): 1170-1177.

[93] Sollinger HW, Sundberg AK, Leverson G, Voss BJ, Pirsch JD (2010) Mycophenolate mofetil versus enteric-coated mycophenolate sodium: a large, single-center comparative trial. Transplantation 89(4): 466-461.

[94] Schrama YC, Joles JA, van Tol A, Boer P, Koomans HA, et al. (2000) Conversion to mycophenolate mofetil in conjunction with stepwise withdrawal of cyclosporine in stable renal transplant recipients. Transplantation 69(3): 385-391.
Kumar A, Shrestha BM (2016) Evolution of Immunosuppressive Agents in Renal Transplantation: An Updated Review. Int J Stem Cell Res Transplant. 04(3), 158-172.

Flechner SM, Glyda M, Cockfield S, Grinyo J, Legendre C, et al. (2011) Siroliimus for primary immunosuppression for pediatric renal transplant recipients. J Am Soc Nephrol 22(9): 1758-1768.

Srinivas TR, Schold JD, Guerra G, Eagan A, Bucci CM, et al. (2007) Everolimus with very low-exposure cyclosporine a in de novo kidney transplantation: a multicenter, randomized, controlled trial. Transplantation 88(10): 1194-1202.

Glicklich D, Gupta B, Schurter-Frey G, Greenstein SM, Schechner RS, et al. (1998) Chronic renal allograft rejection: no response to mycophenolate mofetil. Transplantation 66(3): 398-399.

Morales JM, Wramner L, Kreis H, Durand D, Campistol JM, et al. (2002) Siroliimus does not exhibit nephrotoxicity compared to cyclosporin in renal allograft recipients. Transplant J 2(5): 436-442.

Lai JH, Tan TH (1994) CD28 signaling causes a sustained down-regulation of I kappa B alpha which can be prevented by the immunosuppressant rapamycin. J Biol Chem 269(48): 30077-30080.

Terada N, Lucas JJ, Szepesi A, Franklin RA, Domenico J, et al. (1993) Rapamycin blockade of cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cycle. J Cell Physiol 154(1): 7-15.

Gregory CR, Huie P, Billingham ME, Morris RE (1993) Rapamycin inhibits its arterial intimal thickening caused by both alloimmune and mechanical injury. Its effect on cellular, growth factor, and cytokine response in injured vessels. Transplantation 55(6): 1409-1418.

Cao W, Mohacsi P, Shorthouse R, Pratt R, Morris RE (1995) Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. Transplantation 59(3): 390-395.

Groth CG, Backman L, Morales JM, Calne R, Kreis H, et al. (1999) Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and toxicity compared to cyclosporin. Sirolimus European Renal Transplant Study Group. Transplantation 67(4): 1036-1042.

Srinivas TR, Schold JD, Guerra G, Eagan A, Bucci CM, et al. (2007) Mycophenolate mofetil/sirolimus compared to other common immunosuppressive regimens in kidney transplantation. Am J Transplant 7(3): 386-394.

Webster AC, Lee VW, Chapman JR, Craig JC (2006) Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev (2): CD004290.

Watson CJ, Firth J, Williams PE, Bradley JR, Prichard N, et al. (2005) A randomized controlled trial of late conversion from CNI-based to sirolimus-based immunosuppression following renal transplantation. Am J Transplant 5(10): 2406-2503.

Schena FP, Pascoe MD, Alberu J, del Carmen Rial M, Oberbauer R, et al. (2009) Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 87(2): 233-242.

Guerra G, Ciancio G, Gaynor JJ, Zarak A, Brown R, et al. (2011) Randomized trial of immunosuppressive regimens in renal transplantation. J Am Soc Nephrol 22(9): 1758-1768.

Shaffer D, Langone A, Nylander WA, Goral S, Kizilisik AT, et al. (2003) A randomized clinical trial of antithymocyte globulins (ALG and OKT3) improve renal transplant survival in recipient with posttransplantation malignancies. Transplant Proc 35(1 Pt): 548-549.

Cosimi AB, Worts HH, Delmonico FL, Russell PS (1976) Randomized clinical trial of antithymocyte globulin in cadaver renal allograft recipients: importance of T cell monitoring. Surgery 80(2): 155-163.

Streem SB, Novick AC, Braun WE, Steimuller D, Greenstreet R (1983) Low-dose maintenance prednisone and antilymphoblast globulin for the treatment of acute rejection. A steroid-sparing approach to immunosuppression therapy. Transplantation 35(4): 420-424.

Chadban SJ, Eris JM, Kanellos J, Pilmore H, Lee PC, et al. (2014) A randomized, controlled trial of everolimus-based dual immunosuppression versus standard of care in de novo kidney transplant recipients. Transplant Int 27(5): 302-311.

Budde K, Becker T, Arns W, Sommerer C, Reinke P, et al. (2011) Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am J Transplant 11(1): 119-128.

Budde K, Becker T, Arns W, Sommerer C, Reinke P, et al. (2011) Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet 377(9768): 837-847.

Budde K, Rath T, Sommerer C, Hailer H, Reinke P, et al. (2015) Renal efficacy and safety outcomes following late conversion of kidney transplant patients from calcineurin inhibitor therapy to everolimus: the randomized APOLO study. Clin Nephrol 83(1): 11-21.

Holldas H, Rostaing L, Seron D, Cole E, Chapman J, et al. (2011) Conversion of long-term kidney transplant recipients from calcineurin inhibitor therapy to everolimus: a randomized, multicenter, 24-month study. Transplantation 92(4): 410-418.

Ciurichiu C, Carreno CA, Schiavelli R, Petrone H, Balaguer C, et al. (2010) Results of the conversion to everolimus in renal transplant recipients with posttransplantation malignancies. Transplant Proc 42(1): 277-279.

Groggins WC, Pascual MA, Powellson JA, Magee C, Toikof-Rubin N, et al. (2003) A prospective, randomized, clinical trial of intraoperative versus postoperative Thymoglobulin in adult cadaveric renal transplant recipients. Transplantation 76(5): 420-424.

Vilalta R, Lara E, Madrid A, Chocron S, Vazquez A, et al. (2002) A novel study to design an evaluation of everolimus on long-term outcomes after kidney transplantation. Open Access J Clin Trials 6: 45-54.

Montagnino G, Sandritti S, Iorio B, Schena FP, Carmellini M, et al. (2008) A randomized exploratory trial of steroid avoidance in renal transplant patients treated with everolimus and low-dose cyclophosphorin. Nephrol Dial Transplant 23(2): 707-714.

Mjornstedt L, Sorenssen SS, von Zur Muhlen B, Jespersen B, Hansen JM, et al. (2015) Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation. Transpl Int 28(1): 42-51.

Mjornstedt L, Sorenssen SS, von Zur Muhlen B, Jespersen B, Hansen JM, et al. (2012) Improved renal function after early conversion from a calcineurin inhibitor to everolimus: a randomized trial in kidney transplantation. Am J Transplant 12(10): 2744-2753.

Chadban SJ, Eris JM, Kanellos J, Pilmore H, Lee PC, et al. (2014) A randomized, controlled trial of everolimus-based dual immunosuppression versus standard of care in de novo kidney transplant recipients. Transplant Int 27(5): 302-311.

Budde K, Lehner F, Sommerer C, Reinke P, Arns W, et al. (2015) Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am J Transplant 15(1): 119-128.

Budde K, Becker T, Arns W, Sommerer C, Reinke P, et al. (2011) Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet 377(9768): 837-847.

Ciancio G, Burke GW, Gaynor JJ, Mattiazzi A, Roth D, et al. (2004) Randomized comparison of two sirolimus-based regimens versus tacrolimus and sirolimus mofetil in renal allograft recipients. Am J Transplant 11(8): 1635-1644.

Webster AC, Lee VW, Chapman JR, Craig JC (2006) Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev (2): CD004290.

Chadban SJ, Eris JM, Williams PE, Bradley JR, Prichard N, et al. (2005) A randomized controlled trial of late conversion from CNI-based to sirolimus-based immunosuppression following renal transplantation. Am J Transplant 5(10): 2406-2503.

Schena FP, Pascoe MD, Alberu J, del Carmen Rial M, Oberbauer R, et al. (2009) Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 87(2): 233-242.

Guerra G, Ciancio G, Gaynor JJ, Zarak A, Brown R, et al. (2011) Randomized trial of immunosuppressive regimens in renal transplantation. J Am Soc Nephrol 22(9): 1758-1768.

Shaffer D, Langone A, Nylander WA, Goral S, Kizilisik AT, et al. (2003) A pilot protocol of a calcineurin-inhibitor free regimen for kidney transplant recipients of marginal donor kidneys or with delayed graft function. Clin Nephrol 57(6): 399-405.
Kumar A, Shrestha BM (2016) Evolution of Immunosuppressive Agents in Renal Transplantation: An Updated Review. Int J Stem Cell Res Transplant. 04(3), 158-172.

[152]. Sumnani N, Hong JH, DiBenedetto A, Clayton R, Miles AM, et al. (1996) Comparison between three different antilymphocyte induction protocols in renal transplant recipients with delayed graft function. Transplant Proc 28(1): 400-401.

[153]. Thiyagarajan UM, Ponnuwamy A, Bagul A (2013) Thymoglobulin and its role in renal transplantation: a review. Am J Nephrol 37(6): 586-601.

[154]. Pitil NA, Taber DJ, Mousa O, Thomas B, Denmark S, et al. (2014) Prospective randomized controlled trial of rabbit antithymocyte globulin compared with IL-2 receptor antagonist induction therapy in kidney transplantation. Ann Surg 259(5): 888-893.

[155]. Liu Y, Zhou P, Han M, Xue CB, Hu XF, et al. (2010) basiliximab or antithymocyte globulin induction for kidney transplantation: a meta-analysis. Transplant Proc 42(5): 1667-1670.

[156]. Brokholff MM, Sollinger HW, Hager DR, Muth BL, Pirsch JD, et al. (2014) Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibodies in moderately sensitized renal transplant recipients. Transplantation 97(6): 612-617.

[157]. Webster AC, Pankhurst T, Rinaldi F, Chapman JR, Craig JC (2006) Monoclonal and polyclonal antibody therapy for treating acute rejection in kidney transplant recipients: a systemic review of randomized trial data. Transplantation 81(7): 953-965.

[158]. Vigeral P, Chkoff N, Chatenoud L, Campos H, Lacombe M, et al. (1986) Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibodies in moderately sensitized renal transplant recipients. Transplantation 97(6): 1247-1252.

[159]. Frappe R, Hintichs C, Appel U, Babel N, Reinke P, et al. (2009) Treatment of PTLD with rituximab and CHOP reduces the risk of renal graft impairment after reduction of immunosuppression. Am J Transplant 9(10): 2351-2357.

[160]. Said-Conti V, Amrolia PJ, Gaze MN, Stoneham S, Sabrine N, et al. (2013) Successful treatment of a central nervous system PTL with rituximab and cranial radiotherapy. Pediatr Nephrol 28(10): 2053-2056.

[161]. Fuchinoue S, Ishii Y, Sawada T, Murakami T, Iwadoh K, et al. (2010) The 5-year outcome of ABO-incompatible kidney transplantation with rituximab induction. Transplantation 91(8): 853-857.

[162]. Riella LV, Safa K, Yagan J, Lee B, Azzi J, et al. (2014) Long-term outcomes of kidney transplantation across a positive complement-dependent cytotoxicity crossmatch. Transplantation 97(12): 1247-1252.

[163]. Webster AC, Pankhurst T, Rinaldi F, Chapman JR, Craig JC (2006) Monoclonal and polyclonal antibody therapy for treating acute rejection in kidney transplant recipients: a systemic review of randomized trial data. Transplantation 81(7): 953-965.

[164]. Durrbach A, Pestana JM, Pearson T, Vincenti F, Garcia VD, et al. (2010) A phase III study of belatacept versus cyclosporine in kidney transplant recipients from extended criteria donors (BENEFIT-EXT study). Am J Transplant 10(3): 547-557.

[165]. Vincenti F, Lansen CP, Albreu J, Bresnahan B, Garcia VD, et al. (2012) Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant 12(1): 210-217.

[166]. Charpentier B, Medina Pestana JO, Del CRM, Rostaing L, Grinyo J, et al. (2013) Long-term exposure to belatacept in recipients of extended criteria donor kidneys. Am J Transplant 13(11): 2884-2891.

[167]. Said-Conti V, Amrolia PJ, Gaze MN, Stoneham S, Sabrine N, et al. (2013) Successful treatment of a central nervous system PTL with rituximab and cranial radiotherapy. Pediatr Nephrol 28(10): 2053-2056.

[168]. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, et al. (2005) Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 5(3): 443-453.

[169]. Fuchinoue S, Ishii Y, Sawada T, Murakami T, Iwadoh K, et al. (2010) The 5-year outcome of ABO-incompatible kidney transplantation with rituximab induction. Transplantation 91(8): 853-857.

[170]. Riella LV, Safa K, Yagan J, Lee B, Azzi J, et al. (2014) Long-term outcomes of kidney transplantation across a positive complement-dependent cytotoxicity crossmatch. Transplantation 97(12): 1247-1252.
renal transplant patients. J Am Soc Nephrol 13(4): 1073-1083.
[199]. Budde K, Sommerer C, Becker T, Aderakis A, Pietruck F, et al. (2010) Sotrastaurin, a novel small molecule inhibiting protein kinase C: first clinical results in renal-transplant recipients. Am J Transplant 10(3): 571-581.
[200]. Wojciechowski D, Vincenti F (2011) Targeting JAK3 in kidney transplantation: current status and future options. Curr Opin Organ Transplant 16(6): 614-619.
[201]. Vincenti F, Tedesco Silva H, Busque S, O’Connell P, Friedewald J, et al. (2012) Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am J Transplant 12(9): 2446-2456.
[202]. Heavner MS, Tichy EM, Yazdi M, Formica RN Jr, Kulkarni S, et al. (2013) Clinical outcomes associated with conversion from brand-name to generic tacrolimus in hospitalized kidney transplant recipients. Am J Health Syst Pharm 70(17): 1507-1512.
[203]. Farney AC, Doares W, Kaczmarski S, Rogers J, Stratta RJ (2010) Cost-effective immunosuppressive options for solid organ transplantation: a guide to lower cost for the renal transplant recipient in the USA. Immunotherapy 2(6): 879-888.
[204]. Molnar AO, Fergusson D, Tsampalieros AK, Bennett A, Fergusson N, et al. (2015) Generic immunosuppression in solid organ transplantation: systematic review and meta-analysis. BMJ 350: h3163.