ON WEAKLY LOCALLY UNIFORMLY ROTUND NORMS WHICH ARE NOT LOCALLY UNIFORMLY ROTUND

SZYMON DRAGA

Abstract. We show that every infinite-dimensional Banach space with separable dual admits an equivalent norm which is weakly locally uniformly rotund but not locally uniformly rotund.

1. Introduction

Recall that a norm in a Banach space is called strictly convex (SC) if for arbitrary points x, y from the unit sphere the equality $\|x + y\| = 2$ implies that $x = y$. The norm is called weakly locally uniformly rotund (wLUR) if for arbitrary points $x_n (n = 1, 2, \ldots)$ and x from the unit sphere the equality $\lim_{n \to \infty} \|x_n + x\| = 2$ implies the weak convergence of the sequence $(x_n)_{n=1}^{\infty}$ to x; if the last convergence is strong, then the norm is called locally uniformly rotund (LUR). In the preceding definitions it is sufficient to require that $\lim_{n \to \infty} \|x_n\| = \|x\|$ and $\lim_{n \to \infty} \|x_n + x\| = 2 \|x\|$. It is clear that $wLUR \implies SC$ and $LUR \implies wLUR$; it is also well-known that none of these implications reverses. Indeed, the space ℓ_∞ can be renormed in a strictly convex manner, but it does not admit an equivalent $wLUR$ norm (cf. [2, §4.5]). M.A. Smith [5, Example 2] gave an example of a $wLUR$ norm on ℓ_2 which is not LUR, however, in the next section we shall present a somewhat simpler example (which is a particular case of our main result, but slightly different).

D. Yost [7, Theorem 2.1] showed that the implication $wLUR \implies SC$ does not reverse in the strong sense, namely, that every infinite-dimensional separable Banach space admits an equivalent strictly convex norm which is not $wLUR$. Of course, the analogous theorem does not hold for the implication $LUR \implies wLUR$, because of the Schur property, e.g., of the space ℓ_1. However, it is true when assuming that the dual of the underlying space is separable; this is what our main result states:

Theorem 1. Every infinite-dimensional Banach space with separable dual admits an equivalent $wLUR$ norm which is not LUR.

Remark 2. It is worth mentioning that the class of Banach spaces having a $wLUR$ renorming coincides with the class of Banach spaces having a LUR renorming [3, Theorem 1.11]. However, Theorem 1 (and, all the more, Corollary 6) suggests that in a large class of Banach spaces with a $wLUR$ renorming not every $wLUR$ norm is automatically LUR.

2010 Mathematics Subject Classification. 46B03, 46B20.

Key words and phrases. Asplund spaces, locally uniformly rotund norms, renormings.
2. AN EXAMPLE OF A wLUR NORM WHICH IS NOT LUR

The norm

\[
\|x\| = \|x\|_\infty + \left(\sum_{n=1}^{\infty} 2^{-n} |x(n)|^2 \right)^{1/2}
\]

for \(x \in c_0 \),

where \(\|\cdot\|_\infty \) stands for the standard supremum norm, was given in \([3, p. 1]\) as an example of a strictly convex norm which is not LUR. Nonetheless, we shall show that this norm is wLUR.

Lemma 3. Suppose that \((x_n)_{n=1}^\infty \subset c_0\) is pointwise convergent to \(\alpha x\), where \(\alpha \in [0, \infty)\) and \(x \in c_0 \setminus \{0\}\). If

\[
\lim_{n \to \infty} (\|x_n + x\|_\infty - \|x_n\|_\infty) = \|x\|_\infty
\]

and the limit \(\lim_{n \to \infty} \|x_n\|_\infty\) exists, then \(\lim_{n \to \infty} \|x_n\|_\infty = \alpha \|x\|_\infty\).

Proof. We shall show that the sequence \((\|x_n\|_\infty)_{n=1}^\infty\) has a subsequence which is convergent to \(\alpha \|x\|_\infty\).

Let

\[K = \{k: |x(k)| = \|x\|_\infty\}; \]

by our assumptions \(K\) is a non-empty finite set. Furthermore, if \(n\) and \(k\) are positive integers such that \(k \notin K\), then

\[
|x_n + x|(k) - \|x_n\|_\infty \leq |x_n(k)| + |x(k)| - \|x_n\|_\infty \leq |x(k)|
\]

\[
\leq \max\{|x(l)|: l \notin K\} < \|x\|_\infty.
\]

It means that there is a \(k_0 \in K\) such that \(|x_n + x|(k_0) = \|x_n + x\|_\infty\) for infinitely many \(n\). Let \((n_l)_{l=1}^\infty\) be a strictly increasing sequence of positive integers such that

\[
|(x_{n_l} + x)(k_0)| = \|x_{n_l} + x\|_\infty \quad \text{for } l = 1, 2, \ldots.
\]

Passing with \(l\) to infinity we obtain

\[
(1 + \alpha|x(k_0)|) = \lim_{l \to \infty} \|x_{n_l} + x\|_\infty = \lim_{l \to \infty} \|x_{n_l}\|_\infty + \|x\|_\infty,
\]

which completes the proof. \(\square\)

Proposition 4. The norm given by \((1)\) is wLUR.

Proof. Fix a sequence \((x_n)_{n=1}^\infty\) in the unit sphere of \((c_0, \|\cdot\|)\) and a point \(x\) from this sphere such that \(\lim_{n \to \infty} \|x_n + x\| = 2\). We shall show that each subsequence of \((x_n)_{n=1}^\infty\) has a subsequence which is weakly convergent to \(x\). To this end fix an arbitrary subsequence of \((x_n)_{n=1}^\infty\) which for convenience will be still denoted by \((x_n)_{n=1}^\infty\).

Set

\[y_n = (2^{-k/2}x_n(k))_{k=1}^\infty \quad \text{for } n = 1, 2, \ldots \quad \text{and} \quad y = (2^{-k/2}x(k))_{k=1}^\infty. \]

The equality

\[
2 - \|x_n + x\| = \|x_n\| + \|x\| - \|x_n + x\|
\]

\[
= \|x_n\|_\infty + \|x\|_\infty - \|x_n + x\|_\infty + \|y_n\|_2 + \|y\|_2 - \|y_n + y\|_2,
\]

implies
where \(\| \cdot \|_2 \) stands for the norm in \(\ell_2 \), implies the existence and the equality of the following limits:

\[
\lim_{n \to \infty} (\|x_n\|_\infty + \|x\| - \|x_n + x\|_\infty) = 0
\]

and

\[
\lim_{n \to \infty} (\|y_n\|_2 + \|y\|_2 - \|y_n + y\|_2) = 0.
\]

Passing to a further subsequence of \((x_n)^\infty_{n=1}\) (still denoted by \((x_n)^\infty_{n=1}\)) we may assume that the limits \(\lim_{n \to \infty} \|x_n\|_\infty\) and \(\lim_{n \to \infty} \|y_n\|_2\) exist. Using the equality (3) we obtain

\[
\lim_{n \to \infty} (\|y_n\|_2 + \|y\|_2)^2 = \lim_{n \to \infty} \|y_n + y\|_2^2 = \lim_{n \to \infty} (\|y_n\|_2^2 + 2(y_n|y) + \|y\|_2^2),
\]

where \((\cdot, \cdot)_\ell\) stands for the real inner product. Whence

\[
\lim_{n \to \infty} (y_n|y) = \lim_{n \to \infty} \|y_n\|_2 \cdot \|y\|_2 = \alpha \|y\|_2^2,
\]

where \(\alpha = \lim_{n \to \infty} \|y_n\|_2 / \|y\|_2\). Thus

\[
\lim_{n \to \infty} \|y_n - \alpha y\|_2^2 = \lim_{n \to \infty} (\|y_n\|_2^2 - 2\alpha(y_n|y) + \alpha^2 \|y\|_2^2)
= \alpha^2 \|y\|_2^2 - 2\alpha^2 \|y\|_2^2 + \alpha^2 \|y\|_2^2 = 0,
\]

which means that the sequence \((y_n)^\infty_{n=1}\) is convergent (in the space \(\ell_2\)) to \(\alpha y\). In particular, the sequence \((y_n)^\infty_{n=1}\) is pointwise convergent to \(\alpha y\), therefore the sequence \((x_n)^\infty_{n=1}\) is pointwise convergent to \(\alpha x\). By the equality (2) and Lemma 3 \(\lim_{n \to \infty} \|x_n\|_\infty = \alpha \|x\|_\infty\). Therefore

\[
1 = \lim_{n \to \infty} \|x_n\| = \lim_{n \to \infty} \|x_n\|_\infty + \lim_{n \to \infty} \|y_n\|_2
= \alpha \|x\|_\infty + \alpha \|y\|_2 = \alpha \|x\| = \alpha.
\]

Finally, the sequence \((x_n)^\infty_{n=1}\) is weakly convergent to \(x\) as it is bounded and converges pointwise to this point. \(\square\)

3. The Proof of the Main Result

Throughout this section \(X\) denotes an infinite-dimensional Banach space. We shall need a simple lemma about the weak convergence (a trivial proof will be omitted).

Lemma 5. Assume that \((x_n)^\infty_{n=1}\) is a bounded sequence in \(X\), \(\Gamma\) is a set and \(\{x_\gamma^* : \gamma \in \Gamma\} \subset X^*\). If the space \(\text{span}\{x_\gamma^* : \gamma \in \Gamma\}\) is dense in \(X^*\) and

\[
\lim_{n \to \infty} x_\gamma^*(x_n) = 0 \quad \text{for each } \gamma \in \Gamma,
\]

then the sequence \((x_n)^\infty_{n=1}\) is weakly null.

Proof of Theorem 7 Assume that \(X^*\) is separable. According to the result of A. Pełczyński [4] Remark A] there exists an \(M\)-basis \((e_n, e_n^*)^\infty_{n=1}\) of the space \(X\) which is both bounded and shrinking. It means that

\[
\sup\{\|e_n\| : n = 1, 2, \ldots\} < \infty
\]
and the functionals e_n^* are linearly dense in X^*.

Without loss of generality we may assume that $\|e_n\| = 1$ for $n = 1, 2, \ldots$. Define a functional $\|\cdot\|_0 : X \to [0, \infty)$ by

$$\|x\|_0 = \max \left\{ \frac{1}{2} \|x\|, \sup_n |e_n^*(x)| \right\} \text{ for } x \in X.$$

One can easily see that $\|\cdot\|_0$ is a norm on X and by the boundedness of the M-basis $(e_n, e_n^*)_{n=1}^{\infty}$ this norm is equivalent to the original one.

Define a functional $\|\cdot\| : X \to [0, \infty)$ by

$$\|x\|^2 = \|x\|_0^2 + \sum_{n=1}^{\infty} 4^{-n} |e_n^*(x)|^2 \text{ for } x \in X.$$

One can easily observe that $\|\cdot\|$ is an equivalent norm on X. We shall show that it is wLUR but not LUR.

For the proof of the first part consider a sequence $(x_n)_{n=1}^{\infty}$ and a point x in the unit sphere of $(X, \|\cdot\|)$ such that $\lim_{n \to \infty} \|x_n + x\| = 2$. Set

$$y_n = (\|x_n\|_0, 2^{-1}e_1^*(x_n), 2^{-2}e_2^*(x_n), \ldots) \text{ for } n = 1, 2, \ldots$$

and

$$y = (\|x\|_0, 2^{-1}e_1^*(x), 2^{-2}e_2^*(x), \ldots).$$

We have

$$\|y_n + y\|^2 = (\|x_n\|_0 + \|x\|_0)^2 + \sum_{m=1}^{\infty} 4^{-m} |e_m^*(x_n + x)|^2 \geq \|x_n + x\|_0^2 + \sum_{m=1}^{\infty} 4^{-m} |e_m^*(x_n + x)|^2 = \|x_n + x\|^2 \xrightarrow{n \to \infty} 4,$$

and by the local uniform rotundity of the norm in the (Hilbert) space ℓ_2, we obtain $\lim_{n \to \infty} \|y_n - y\|_2 = 0$. In particular,

$$\lim_{n \to \infty} e_m^*(x_n) = e_m^*(x) \quad \text{for } m = 1, 2, \ldots.$$

Lemma 5 and the fact that the M-basis $(e_n, e_n^*)_{n=1}^{\infty}$ is shrinking give the weak convergence of the sequence $(x_n)_{n=1}^{\infty}$ to x.

To see that the norm $\|\cdot\|$ is not LUR consider the sequence $(e_1 + e_n)_{n=1}^{\infty}$ and the point e_1. One can easily verify that

$$\lim_{n \to \infty} \|e_1 + e_n\| = \frac{1}{2} \sqrt{5} = \|e_1\|$$

and

$$\lim_{n \to \infty} \|2e_1 + e_n\| = \sqrt{5},$$

while $\|e_n\| \geq 1$ for $n = 1, 2, \ldots$.

Corollary 6. Every Banach space which admits an equivalent LUR norm, in particular every separable Banach space, and has an infinite-dimensional subspace with separable dual admits an equivalent wLUR norm which is not LUR.

Proof. Suppose that Y is an infinite-dimensional subspace of X with separable dual. By Theorem 1 the space Y admits an equivalent wLUR norm which is not LUR. According to Tang’s Theorem [6, Theorem 1.1] it extends to an equivalent wLUR norm on the whole X. Obviously, this extension fails to be LUR. □

Remark 7. The statement of Tang’s Theorem does not include the case of wLUR norm literally, however, the theorem is also valid in this case (cf. [6, Remark 1.1]). Indeed, one can easily verify that the proof works without major changes.

Remark 8. Corollary 6 implies that every Banach space which admits an equivalent LUR norm, in particular every separable Banach space, and enjoys the Schur property has no infinite-dimensional subspace with separable dual. Of course, it is not a new result, as it is well-known that every Banach space having the Schur property is ℓ_1-saturated. However, this fact follows from Rosenthal’s ℓ_1-Theorem (cf. [11, §10.2]), so its proof is much less elementary than the one given in this paper.

Acknowledgement. This research was supported by University of Silesia Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

[1] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. 233, Springer, 2006.
[2] J. Diestel, Geometry of Banach Spaces—Selected Topics, Springer–Verlag, 1975.
[3] A. Moltó, J. Orihuela, S. Troyanski, M. Valdivia, A Nonlinear Transfer Technique for Renorming, Lecture Notes in Math. 1951, Springer, Berlin, 2009.
[4] A. Pelszynski, All separable Banach spaces admit for every $\varepsilon > 0$ fundamental total and bounded by $1 + \varepsilon$ biorthogonal sequences, Studia Math. 55 (1976), 295–304.
[5] M.A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155–161.
[6] W.-K. Tang, On the extension of rotund norms, Manuscripta Math. 91 (1996), 73–82.
[7] D. Yost, M-ideals, the strong 2-ball property and some renorming theorems, Proc. Amer. Math. Soc. 81 (1981), 299–303.

E-mail address: szymon.draga@gmail.com

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
E-mail address: szymon.draga@gmail.com