ANTASID: A Novel Temporal Adjustment to Shannon’s Index of Difficulty for Quantifying the Perceived Difficulty of Uncontrolled Pointing Tasks

MOHAMMAD RIDWAN KABIR, MOHAMMAD ISHRAK ABEDIN, RIZVI AHMED, HASAN MAHMUD, AND MD. KAMRUL HASAN

1 Systems and Software Laboratory (SSL), Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
2 Department of Computer Science and Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
3 Network and Data Analysis Group (NDAG), Islamic University of Technology (IUT), Gazipur 1704, Bangladesh

Corresponding author: Mohammad Ridwan Kabir (ridwankabir@iut-dhaka.edu)

This work was supported by the Islamic University of Technology Research Seed Grant (RSG) under Grant REASP/IUT-RSG/2021/OL/07/012.

ABSTRACT Shannon’s Index of Difficulty (ID), reputable for quantifying the perceived difficulty of pointing tasks as a logarithmic relationship between movement-amplitude (A) and target-width (W), is used for modeling the corresponding observed movement-times (MTO) in such tasks in controlled experimental setup. However, real-life pointing tasks are both spatially and temporally uncontrolled, being influenced by factors, such as – human aspects, subjective behavior, the context of interaction, the inherent speed-accuracy trade-off, where, emphasizing accuracy compromises speed of interaction and vice versa. Effective target-width (We) is considered as spatial adjustment for compensating accuracy. However, no significant adjustment exists in the literature for compensating speed in different contexts of interaction in these tasks. As a result, without any temporal adjustment, the true difficulty of an uncontrolled pointing task may be inaccurately quantified using Shannon’s ID. To verify this, we propose ANTASID (A Novel Temporal Adjustment to Shannon’s ID) formulation with detailed performance analysis. We hypothesized a temporal adjustment factor (t) as a binary logarithm of MTO, compensating for speed due to contextual differences and minimizing the non-linearity between movement-amplitude and target-width. Considering spatial and/or temporal adjustments to ID, we conducted regression analysis using our own and Benchmark datasets in both controlled and uncontrolled scenarios of pointing tasks with a generic mouse. ANTASID formulation showed significantly superior fitness values and throughput in all the scenarios while reducing the standard error. Furthermore, the quantification of ID with ANTASID varied significantly compared to the classical formulations of Shannon’s ID, validating the purpose of this study.

INDEX TERMS Pointing tasks, Fitts’s law, index of difficulty, speed-accuracy trade-off, contextual interaction, uncontrolled experiment, temporal adjustment.

I. INTRODUCTION

In the domain of Human-Computer Interaction (HCI), a pointing task is considered as the user interaction for selecting any element on a user interface with any pointing device, such as – mouse, stylus, trackpad, finger, or any other wearable devices. Shannon’s Index of Difficulty (ID) [1], as shown in (1), is reputable for quantifying the perceived difficulty of such a task. It is expressed as a logarithmic relation between movement-amplitude (A) and target-width (W), where A is defined as the distance between the starting location of the cursor and the target’s center. Applying Fitts’s law, the movement-time (MT) of any pointing task can be modeled as a linear function of ID, as shown in (2), where the constants a and b are empirically defined from a regression analysis of experimental data. The ideology of ID is that
the difficulty of a task increases, as A increases and/or W decreases. However, it fails to address the speed-accuracy trade-off in pointing tasks [2]. The basic idea of this trade-off is that if users prefer to be efficient in terms of speed, the observed movement-time (MT_0) will be shorter and if the focus is shifted to accuracy, it will be longer. To account for the variability in accuracy, researchers have formulated a Spatially Adjusted (SA) variant of ID, as shown in (3), by replacing the nominal target-width, W with the effective target-width, W_e [1], [3], [4]. W_e can be calculated either using the standard deviation method, as shown in (4), given that the endpoint coordinates are recorded, where SD_x is the standard deviation of the abscissa of the screen coordinates, or using the discrete-error method given that the error-rates of pointing are recorded [1].

$$ID = \log_2 \left(\frac{A}{W} + 1 \right)$$ \hspace{1cm} (1)

$$MT = a + b \times ID$$ \hspace{1cm} (2)

$$ID_{SA} = \log_2 \left(\frac{A}{W_e} + 1 \right)$$ \hspace{1cm} (3)

$$W_e = 4.133 \times SD_x$$ \hspace{1cm} (4)

The index of performance, also known as throughput (TP), as shown in (5), is defined as the average of the ratio of ID and MT_0 over n pointing tasks [1], [5], where TP increases proportionally with ID.

$$TP = \frac{1}{n} \sum_{i=1}^{n} \frac{ID_i}{MT_{i0}}$$ \hspace{1cm} (5)

In most studies related to Fitts’s law, [2], [5]–[11], controlled experiments are conducted in a lab setup with either subjective or parametric (manipulating A or W), or operational constraints (extremely accurate, accurate, neutral, fast, and extremely fast). However, no such constraints are imposed in uncontrolled experiments. The objective of controlled experiments is to understand the effect of manipulating a variable on other variables of interest. This is often preferred while exploring new aspects of HCI. As stated in literature [12], although these studies may have high internal validity, they are at a risk of low external validity. In other words, findings of these studies may not hold for a different experimental setup. Moreover, factors that are difficult to manipulate in controlled experiments, make this issue even more complex [2]. Therefore, it is imperative to conduct uncontrolled experiments to understand the extent of validity of any theory or formulation. It is logical to consider pointing tasks in real-life as part of uncontrolled experiments, as they are both spatially and temporally unconstrained and biased due to human factors, such as—physical inability, distraction, fatigue, excitement, cognition time etc., introducing context of interaction.

To comprehend the speed-accuracy trade-off in real-life pointing tasks, let us consider a user in two different contexts of submitting an online exam script: 1) well ahead of deadline and 2) on the verge of deadline, with the click of a “Submit” button. In the first scenario, the person will be in a relaxed state of mind. Naturally, s/he will not emphasize speed of interaction over accuracy. However, in the second scenario, the person will feel tensed, emphasizing speed of interaction over accuracy to meet the submission deadline. Therefore, the time taken to complete similar pointing tasks using the same interface may vary depending on the context.

Moreover, interaction with two similar graphical interfaces of two different applications might be different based on the context and use cases of the applications. For example, Facebook being a “Social Media” platform and Google Classroom being an “Educational” platform, have a “Post” and a “Submit” button, respectively, doing similar tasks, i.e., uploading contents to the platforms. However, while posting on Facebook, users are generally in a relaxed state of mind. On the contrary, while using Google Classroom as an exam script submission system, drawing from the previous example of submitting a script on the verge of deadline, the users are generally in a tensed state of mind. Therefore, in the case of Facebook, while a user will focus more on clicking the “Post” button accurately taking adequate time, in the other case, a user will focus more on clicking the “Submit” button quickly, minimizing the interaction time while emphasizing speed of interaction due to contextual differences.

It is evident from these discussions that the context of any pointing task affects the inherent speed-accuracy trade-off along with the corresponding task-completion time. In such scenarios of uncontrolled pointing tasks, where context of interaction and subjective behavior [2] are of concern, Shannon’s ID may fail to quantify the perceived difficulty of these tasks with or without spatial adjustment, justifying the need for a temporal adjustment factor (t). Although prior studies on Fitts’s law conducted controlled experiments [2], [5]–[11] and uncontrolled experiments [13]–[17] with various adjustments to Shannon’s ID, no significant evidence was found regarding temporal adjustments to account for the context and speed-accuracy trade-off of interaction.

In this work, we present a novel formulation of a temporal adjustment factor (t) as the binary logarithm of observed movement-time (MT_0) of pointing tasks, to quantify the contextual information of the task in bits. We have augmented the unadjusted and the spatially adjusted formulations of Shannon’s ID, as shown in (1) and (3), respectively, with t as a power factor of W to form ANTASID (A Novel Temporal Adjustment to Shannon’s ID) formulation for quantifying ID of such tasks. We hypothesized that Shannon’s ID may not be able to accurately quantify the perceived difficulty of pointing tasks due to subjective and contextual behavior and speed-accuracy trade-off with or without spatial adjustment. Hence, augmenting it with t may resolve these issues and ensure a reliable quantification of ID.

To comprehend the significance of the temporal adjustment factor (t) in the cases mentioned above, we have
conducted an uncontrolled experiment through a pointing-task-based game (developed in-house) using an optical mouse as a pointing device. We have defined uncontrolled pointing tasks as those, where – 1) no operational constraints are imposed and 2) no manipulation of A occurs. We have constructed an Internal Dataset with the uncontrolled user-interaction data from this game. The authors in [13] proposed a new derivation of Fitts’s Law and conducted both controlled and uncontrolled experiments on pointing tasks. Datasets of both their experiments [14] are publicly available. In addition to the data from the uncontrolled experiments of the Benchmark [14] and the Internal Datasets, we have leveraged the data from the controlled experiments of the Benchmark Dataset as well, to verify the external validity of ANTASID formulation in controlled scenarios of pointing tasks as well. To summarize, all the formulations of Shannon’s ID considered in this study were analyzed on – 1) two experimental datasets (Internal (6163 pointing tasks) and Benchmark (39050 pointing tasks)) featuring uncontrolled experiments and 2) one experimental dataset (Benchmark (8345 pointing tasks)) featuring controlled experiments.

To validate the significance of \(t \) in quantifying ID of pointing tasks in both controlled and uncontrolled scenarios and to verify how accurately the classical formulation of Shannon’s ID can quantify the perceived difficulty of these tasks, we analyzed MT using four different regression models, considering spatial and/or temporal adjustments to Shannon’s ID, such as – neither spatial nor temporally adjusted (\(ID_{NA} \)), only temporally adjusted (\(ID_{TA} \)), only spatially adjusted (\(ID_{SA} \)), and both temporally and spatially adjusted (\(ID_{TSA} \)). We state our null hypothesis as, \(H_0 \): “Temporally adjusted Shannon’s ID might not accurately quantify the perceived difficulty of pointing tasks in both controlled and uncontrolled scenarios.” To be able to reject \(H_0 \), we need to verify whether \(ID_{TA} \) and \(ID_{TSA} \) provide a better model fit and are statistically significant over \(ID_{NA} \) and \(ID_{SA} \) in both controlled and uncontrolled scenarios. From the statistical analyses of data using one-way ANOVA, one-way F-test followed by a post-hoc test, we have found that ANTASID formulation significantly enhances the performance of the regression models in both scenarios of pointing tasks, validating the significance of \(t \) in addressing the speed-accuracy trade-off in such tasks, considering subjective behavior and context of interaction using Fitts’s law. The level of significance (\(\alpha \)) for the statistical analyses was considered as, \(\alpha = 0.05 \).

To summarize our contributions: 1) We have formulated a temporal adjustment factor (\(t \)) for better quantification of ID of real-life uncontrolled pointing tasks. 2) We have generated a dataset, containing the parameters required for quantifying ID of uncontrolled pointing tasks using Fitts’s law with a generic mouse. 3) We have analyzed the statistical significance of ANTASID as well as the classical formulation of Shannon’s ID and verified that the classical ones might not accurately quantify ID for uncontrolled pointing tasks based on the context of interaction.

In the next sections, we present the literature review followed by an explanation of the proposed ANTASID formulation in details. We then elaborate on the user study followed by the result analysis section and a discussion on the properties of ANTASID formulation. Finally, we summarize our observations and give a direction on future works.

II. RELATED WORKS

Researchers have been trying to understand the impact of speed-accuracy trade-off in pointing tasks on Fitts’s law for quite a while. The correct formulation of ID, given the nature and constraints of pointing tasks is still an active research area.

Having analyzed the impact of speed-accuracy trade-off in pointing tasks in [2], the authors have proposed a modified spatial adjustment factor, \(W_m \), as in (6), where \(\alpha \) is a power factor expressing a nonlinear relation between \(A \) and \(W_m \). ID was formulated using this modified spatial adjustment factor \(W_m \), as in (7). The value of \(\alpha \) was empirically determined and cannot be generalized for other datasets. The authors imposed five operational constraints (extremely accurate, accurate, neutral, fast, and extremely fast) in their experiment. In our experiment, however, we did not impose any operational constraints of such sort to get an understanding of how Fitts’s law performs in uncontrolled experiments using the classical as well as the proposed formulations of ID.

\[
W_m = W \star \left(\frac{4.133 \times SD_x}{W} \right) ^\alpha
\]

\[
ID = \log_2 \left(\frac{A}{W_m} + 1 \right)
\]

A human motor behavioral model in distal pointing tasks [6] has been explored that formulates ID as a function of angular amplitude (\(\alpha \)), angular target width (\(\omega \)) and an empirically defined constant (\(k \)), as in (8). The authors considered \(k \) as a power of \(\omega \) due to the nonlinear relationship between \(\alpha \) and \(\omega \). However, they did not provide any mathematical derivation of \(k \). As a result, \(R^2 \) value of the regression model varied for different values of \(k \). Using their proposed formulation of ID, they achieved an \(R^2 \) value of 0.961 for \(k = 3 \) in a controlled study.

\[
ID = \left[\log_2 \left(\frac{\alpha}{\omega^k} + 1 \right) \right]^2
\]

Researchers have also studied the effect of screen size variations on ID in controlled experimental conditions [7]. Their findings revealed that the ratio of \(A \) and \(W \) in ID fails to capture the true perceived difficulty in pointing tasks. They proposed modifications in the formulation of ID for larger and smaller screen sizes, as shown in (9) and (10), respectively. The terms \(\alpha \) and \(\beta \) were empirically determined. Motivated by their work, we have defined the temporal adjustment factor (\(t \)) as a power of \(W \). However, rather than quantifying an experiment-specific value of \(t \), we have defined it as a function of \(MT/O \) of each pointing task for better quantification of
In any experimental setup.

\[ID = \log_2 \left(\frac{A^\alpha}{W} + 1 \right), \quad \alpha > 1 \] \hspace{1cm} (9)

\[ID = \log_2 \left(\frac{A}{W^\beta} + 1 \right), \quad \beta > 1 \] \hspace{1cm} (10)

A predictive error model was derived in [8] by manipulating parameters of Fitts’s law, such as \(W, A, \) and \(MT_O \). The authors reported that \(W \) has a greater influence on error-rate than \(A \). They also reported a logarithmic speed-accuracy trade-off described by Fitts’s law. In [9], the authors have analyzed the speed-accuracy trade-off phenomenon of Fitts’s law in trajectory-based tasks with temporal constraints. They reported that in spatially constrained tasks, lateral deviation of the trajectory was affected by \(W \) and subjective bias. On the other hand, in temporally constrained tasks, it was affected by \(W \) and average steering speed.

Researchers in [10] reported that temporal constraint influences the speed-accuracy trade-off in aimed hand movements. Furthermore, the SH-model for pointing tasks was introduced based on the temporal distribution of successful hits and general principles of information theory [11]. The performance of this model was validated with the help of AIC (Akaike’s Information Criterion) [18].

A new derivation of Fitts’s law was also proposed based on velocity profile in pointing tasks [13]. The authors have compared their model’s performance against widely accepted formulations on the experimental data.

Considering maximum entropy, researchers have also explored an Exponentially Modified Gaussian (EMG) model to estimate a linear bound of linear regression in the presence of outliers [15]. According to their work, data from such tasks have high variance and positive skewness, resulting in a very poor fit of the classical linear regression models. Considering their observations, we conducted experiments involving uncontrolled pointing tasks and analyzed the performance of various \(ID \) formulations on the experimental data.

Furthermore, a real-life “in the wild” or in other words, an uncontrolled scenario of pointing tasks was analyzed by logging mouse cursor trajectories without imposing any constraints on user interaction for uncontrolled aimed movements in Graphical User Interfaces (GUI), [17]. The authors have introduced a spatial adjustment factor Length Distance Index (LDI), as in (11), in the formulation of \(ID \), where \(L \) is the amplitude of movement and \(D \) is the straight-line distance between the starting and the end points of the movement. Apart from the studies mentioned above, a formal information theoretic approach of resolving speed-accuracy trade-off has also been explored [16].

\[LDI = \left(\frac{L}{D} - 1 \right)^{\frac{1}{2}} \] \hspace{1cm} (11)

It is evident from the literature review that the relative weights of movement-amplitude \(A \) and target-width \(W \) have been adjusted by a power factor while quantifying \(ID \), minimizing the inherent non-linearity between the two parameters. However, all these factors were empirically defined, and cannot be generalized for other experiments. In the next section, we discuss about the proposed ANTASID formulation, where we define the temporal adjustment factor \(t \) for analyzing the perceived difficulty of real-life pointing tasks applying Fitts’s law.

III. PROPOSED APPROACH

ANTASID formulation introduces a temporal adjustment factor \(t \) to \(ID \) as a power factor of \(W \). The Path Efficiency (PE) of a pointing task is defined as the ratio of the Straight Line Distance (SLD) between the cursor position at the beginning of a task and the target’s center to the movement-amplitude \(A \) [19], quantifying the corresponding spatial efficiency. Analogous to PE, our proposed adjustment factor, \(t \), for a particular pointing task is based on the Temporal Efficiency (TE) of that task.

Taking the influence of external factors, such as – context of interaction, biased human behavior, speed-accuracy trade-off, human factors, and so on [2], [5]–[14] into account, if there are \(n \) pointing tasks in an experiment, we define the \(TE \) of the \(i \)th pointing task \((TE_i) \) as a ratio of the average observed movement-time \((MT_O) \) over the \(n \) pointing tasks to the observed movement-time \((MT_O^i) \) of that task, as shown in (12). From the data of our uncontrolled pointing task experiment and that of the controlled and uncontrolled pointing experiments in the Benchmark Dataset [14], the values of \(MT_O^i \) were found to be 0.8282, 0.7628, and 0.8618 seconds for \(n = 6163, n = 8345, \) and \(n = 39050 \) pointing tasks, respectively. Based on this empirical data, we considered the value of \(MT_O^i \) as 1 second for mathematical convenience. However, in case of different experiments, for instance, analysis of Fitts’s law in pointing tasks using wearable pointing devices, if the value of \(MT_O^i \) deviates far from 1 second, the actual value of \(MT_O^i \) might produce better quantification of \(ID \), subject to further investigation. Since \(ID \) is expressed in \(bits \), we defined \(t_i \) of the \(i \)th pointing task as the binary logarithm of \(TE_i \), as shown in (13), quantifying the temporal information of that task in \(bits \). As \(MT_O = 1 \) and, \(log_2 1 = 0 \), the expression \(t_i \) reduces to the negative binary logarithm of \(MT_O^i \), as shown in (14).

\[TE_i = \frac{MT_O^i}{MT_O}, \quad 1 \leq i \leq n \] \hspace{1cm} (12)

\[t_i = \log_2 \left(\frac{MT_O^i}{MT_O} \right), \begin{cases} MT_O = 1 \text{ second} \\ 1 \leq i \leq n \end{cases} \] \hspace{1cm} (13)

\[t_i = -\log_2 (MT_O^i) \] \hspace{1cm} (14)

Shannon’s \(ID \) in its original form, as shown in (1), is neither spatially nor temporally adjusted. From this point onward, we will refer to it as \(ID_{NA} \), as in (15). The spatially adjusted...
ID, as shown in (3), will be referred to as ID_{SA}, as in (16). To address the nonlinear relationship between A and W, most studies have adjusted W with a power factor [2], [6]. Furthermore, as the movement time for any pointing task depends on two sub-movements [8], [9]: 1) Initial Ballistic Phase and 2) Optional Correction Phase, it is intuitive that for a target with smaller W, more time will be spent on the latter. Based on this intuition and evidence from the literature, our proposed ANTASID formulation augments ID_{NA} and ID_{SA} with t as a power factor of W to formulate ID_{TA} and ID_{TSA}, as shown in (17) and (18), respectively. ID_{TA} is only temporally adjusted while ID_{TSA} is both temporally and spatially adjusted.

$$ID_{NA} = \log_2 \left(\frac{A}{W} + 1 \right)$$
$$ID_{SA} = \log_2 \left(\frac{A}{W_e} + 1 \right)$$
$$ID_{TA} = \log_2 \left(\frac{A}{W^t} + 1 \right)$$
$$ID_{TSA} = \log_2 \left(\frac{A}{W^t_e} + 1 \right)$$

Due to the speed-accuracy trade-off phenomenon accompanied by context of interaction and subjective behavior, by definition, the value of t will be different for each of the $i \in n$ tasks and participants, resulting in a realistic value of ID. In the next section, we discuss about our experimental design and data analysis to investigate the validity of our formulation.

IV. USER STUDY
To investigate the significance of ANTASID formulation in accurately quantifying ID, in both controlled and uncontrolled pointing tasks, we conducted an uncontrolled within-subject experiment, featuring a balloon popping game, “Popper” (implemented in-house using Python) with an optical mouse as a pointing device.

We have constructed an Internal Dataset by compiling the user-interaction data from this game followed by data analysis. We also analyzed the data from the controlled and the uncontrolled experiments of the Benchmark Dataset [14] for this purpose. After analyzing all the associated datasets, we have gained valuable insights into the performance of ANTASID formulation in both scenarios of pointing tasks.

A. PARTICIPANTS
25 right-handed volunteers [16 males (64%), 9 females (36%); Mean age: 23.20±2.14 years] participated in our study. All of them had adequate experience of operating a computer with a mouse. They were recruited through known acquaintances and provided a verbal consent prior to their participation.

Target Width, w_i in W (pixels)	Total targets	Target Distribution (%)
128	15	
96	15	66.67%
64	15	
32	15	
[32/64/96/128]	30	33.33%

Total Targets 90 100%

B. EXPERIMENTAL SETUP
The participants were asked to play the entire game 3 times on a laptop with a screen resolution of 1920 × 1080 pixels using a generic computer mouse as a pointing device. We allotted 15 minutes per participant during which they were briefed about the semantics of the game, had a few trial runs followed by actual experiment. Data for each play of the game were automatically uploaded to our server. The participants were notified about the automated data collection prior to their participation and were assured of no invasion of privacy from our part.

C. EXPERIMENTAL DESIGN
Since, in this work, we are focusing on uncontrolled pointing tasks, unlike the authors in [2], we did not impose any constraints, such as – extremely accurate, accurate, neutral, fast, and extremely fast on their interaction with the game. The participants had to pop a total of 90 balloons of 4 different widths, W (32 px, 64 px, 96 px, and 128 px) as targets, only one at a time, appearing at random locations on the screen. The game was designed to be run in full-screen mode, ensuring full utilization of the screen resolution. The game featured 2 types of levels, homogeneous level, having a group of targets of similar width, and heterogeneous level, having a group of targets of randomized widths. There was a total of 5 levels in our game, 4 homogeneous levels, each with 15 targets of same W and only one heterogeneous level with 30 targets of randomized W. Therefore, a total of 60 sequential homogeneous targets and 30 sequential heterogeneous targets were presented to a participant. A quantitative summary of the game levels is provided in Table 1. A brief resting period was allocated after each level in the form of a reward screen to reduce fatigue. The game ended when all the targets had been popped by a participant and the data was uploaded to our server for further analysis.

In our experiment, we define the popping of a target as a trial. A trial began with the appearance of a target and ended when a participant clicked inside a target. Clicks outside the target boundary were recorded as miss-clicks. Trials with miss-clicks were not rejected as artifacts. The screen coordinate of the cursor at the beginning and at the end of a trial were considered as the starting and the ending coordinates, respectively. However, a participant could move the cursor
around the screen freely, before a target appeared and after it was clicked. Therefore, there was no fixed starting coordinate for the mouse cursor in any trial, rather the cursor coordinates at the time of appearance of a new target was considered as the starting coordinate. Due to this arrangement, it is intuitive that the movement-amplitude, A will vary, ensuring no spatial constraint is imposed. The movement-amplitude (A) was calculated as the sum of the Euclidean Distances (EDs) between two consecutive coordinates in the cursor trajectory and the observed movement-time (MT_O) was recorded as the duration of a trial. From 25 participants after 3 plays of the game “Popper”, about 6750 trials (4500 homogeneous (66.67%), 2250 heterogeneous (33.33%)) were registered. A descriptive summary of the parameters that were recorded per trial is summarized in Table 2.

D. DATA PREPROCESSING

Data analysis was carried out using Python. Prior to analysis, trials with erroneous parameter values (e.g., $MT_O = 0$ seconds) due to system issues were removed from the Internal Dataset. This cleanup is required to avoid erroneous calculation of t_i. For example, for any trial i, if $MT_O = 0$ (due to system error), then $t_i = -\log_2{0}$ is undefined. Furthermore, trials having MT_O beyond 3 Standard Deviations (SD) of the mean observed movement-time (MT_O) were recorded as the duration of a trial. From 25 participants after 3 plays of the game “Popper”, about 6750 trials [4500 homogeneous (66.67%), 2250 heterogeneous (33.33%)] were registered. A descriptive summary of the parameters that were recorded per trial is summarized in Table 2.

TABLE 2. Descriptive summary of parameters, recorded per trial, for the game “Popper.”

Parameter	Value(s) / Representation/ Unit	Interpretation
Level Number	x	Level Number ($1 \rightarrow 5$)
Target-Width (W)	32, 64, 96, and 128 (pixels)	Target-width (W) in pixels.
Starting Coordinate	(x, y)	Coordinate of the cursor at the time of target appearance.
Ending Coordinate	(x, y)	Coordinate of the cursor at the time of clicking inside the target.
Target Center	(x, y)	Coordinate of the center of a target.
Movement Time (MT_O)	Seconds	Time required to click on a target from the moment it appeared on the screen.
Number of miss-clicks	x	Number of clicks outside the target boundary.
Coordinates of cursor trajectory	$[(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)]$	List of coordinates in the cursor trajectory from the Starting Coordinate to the Ending Coordinate. Used in the calculation of movement-amplitude (A).

TABLE 3. Distribution summary of trials in the internal dataset at different levels of cleanup.

Nature of Experiment	Cleanup Type	Number of Trials Before Cleanup	Accept/Reject Ratio of Trials after Cleanup	Homogeneous	Heterogeneous
			N %		
Uncontrolled	Removal of Erroneous Data	6750	6505 96.37 245 3.63 4319 66.40 2186 33.60		
	L_1	6505	6469 99.45 36 0.55 4291 66.33 2178 33.67		

*Trials having MT_O within 3 SD of MT_O were accepted.

As mentioned earlier, the Benchmark Dataset [14] contained data from both controlled and uncontrolled experiments, featuring homogeneous and heterogeneous targets. However, in the experiments with homogeneous targets, the authors manipulated both the movement-amplitude and the target-width which goes against our experimental design. Therefore, in our analysis, we considered data from both experiments featuring heterogeneous targets only. Although the authors had already removed trial data with MT_O beyond 3 SD of MT_O from this dataset [8350 controlled and 39050 uncontrolled trials post-cleanup], we further removed trials with erroneous parameter values (e.g., $MT_O = 0$ seconds) from this dataset, obtaining 8345 controlled and 39050 uncontrolled trials.

For the Internal Dataset, we calculated W_e following the standard deviation method [1], as in (4). However, one shortcoming of the Benchmark Dataset is that neither the coordinates of target selection and its center nor the percentage of errors were recorded. Therefore, W_e cannot be calculated using the standard deviation method. However, the

TABLE 4. Comparison of average effective target-width (W_e) at the approximated error-rate (ε) and the average target-width (W) in the benchmark dataset.

Nature of Experiment	W (pixels)	W_e (pixels) at ε (3.883%*)
Controlled	30.1780	30.1782
Uncontrolled	30.2105	30.2108

*E is the approximated error-rate.
FIGURE 1. Regression analysis of the internal dataset (uncontrolled experiment) using – (a) ID_{NA}, (b) ID_{TA}, (c) ID_{SA}, (d) ID_{TSA}.

TABLE 5. Regression model fitness, TP and anova test results.

Dataset (Experiment type)	Formulation Type	ID Formulation	R^2 value	Std. Error (SE)	$TP \pm 95\% CI$	ANOVA
Internal Dataset (Uncontrolled)	Classical	ID_{NA}	0.1130	0.0042	4.15±(0.03)	(1, 6467) 824.12 <0.001
		ID_{IA}	0.0275	0.0055	4.34±(0.04)	(1, 6467) 182.78 <0.001
		ID_{TA}	0.8177	0.0006	8.19±(0.05)	(1, 6467) 29010.66 <0.001
		ID_{TSA}	0.8405	0.0006	8.44±(0.05)	(1, 6467) 34087.95 <0.001
Benchmark Dataset (Uncontrolled) ($\in=3.883\%$)	Classical	ID_{SA}	0.3100	0.0011	3.85±(0.01)	(1, 39048) 17541.32 <0.001
		ID_{TA}	0.1206	0.0025	3.68±(0.01)	(1, 39048) 5356.10 <0.001
		ID_{TSA}	0.8308	0.0002	6.95±(0.02)	(1, 39048) 191728.50 <0.001
Benchmark Dataset (Uncontrolled) ($\in=3.883\%$)	Classical	ID_{NA}	0.4545	0.0018	4.25±(0.02)	(1, 8343) 6950.55 <0.001
		ID_{IA}	0.2141	0.0043	4.09±(0.02)	(1, 8343) 2273.19 <0.001
		ID_{TA}	0.8521	0.0004	6.77±(0.04)	(1, 8343) 48051.61 <0.001
		ID_{TSA}	0.9095	0.0003	6.94±(0.03)	(1, 8343) 83876.01 <0.001

* p-values were computed at a significance level of, $\alpha=0.05$.
* \in is the approximated error-rate.

A discrete-error method of determining W_e [1] can be applied by approximating a reasonable error-rate $\in \%$, where for error-rates less than $\in \%$, $W_e < W$ and vice versa and for error-rates equal to $\in \%$, $W_e = W$. Therefore, for the Benchmark Dataset, we approximated $\in=3.883\%$ and calculated the average effective target-width (\overline{W}_e), such that...
We=\overline{W}, as in (19), where \(n \) is the number of trials, \(W_i \) is the target-width for trial \(i \), and \(z \) is the Z-score at the corresponding error-rate. \(IDSA \) and \(IDTSA \) were calculated for this dataset using the values of \(We \), as shown in Table 4.

\[
W_e = \frac{1}{n} \sum_{i=1}^{n} \frac{2.066}{z} \times W_i \tag{19}
\]

V. RESULT ANALYSIS

Using regression analysis, we predicted \(MT \) using the different formulations of \(ID \) mentioned earlier (\(IDNA, IDSA, IDTA, \) and \(IDTSA \)). We conducted a one-way ANOVA followed by a paired F-test for analyzing the corresponding statistical significance of the quantification of \(ID \) using classical and ANTASID formulations. Furthermore, to avoid the risk of Type-I errors, we conducted the Tukey’s HSD posthoc test [20] on our formulations. We did not perform any comparative performance analysis of our models with that of the Benchmark Dataset [14] because of the differences in the formulation of \(ID \). We have used Shannon’s \(ID \) and proposed adjustments to it while they have used the Square-Root Variant of Fitts’s law.

From the regression analysis of the Internal Dataset (Fig. 1), it is evident that ANTASID formulation provides a reasonable fit (\(R^2 \)-value) of the model with \(R^2_{TSA} = 0.8405 \) (Fig. 1d) or without \(R^2_{TA} = 0.8177 \) (Fig. 1b) spatial adjustment. Similar results were observed for both the controlled \(R^2_{TSA} = 0.8953, R^2_{TA} = 0.8308 \) (Fig. 3d and Fig. 3b, respectively) and the uncontrolled \(R^2_{TSA} = 0.8953, R^2_{TA} = 0.8308 \) (Fig. 3d and Fig. 3b, respectively) experiments of the Benchmark Dataset at the approximated error-rate, \(e=3.88\% \). Evidently, \(IDTSA \) consistently follows a normal distribution (Fig. 4d, Fig. 4h, and Fig. 4l). From one-way ANOVA, it was observed that ANTASID formulations had significantly higher F-statistics at \(p<0.001 \) in all the datasets compared to \(IDNA \) and \(IDSA \). The parameters of regression analysis of the four models on different datasets along with corresponding results of ANOVA test are summarized in Table 5.

Given all the datasets, \(IDTSA \) has the best average model fit \((\overline{R^2} = 0.8818) \) along with the least average standard error, \(\overline{SE} = 0.0004 \). Summary of the average performance of the models across all the datasets, as shown in Table 6, suggests that the mean throughput, \(TP \) almost doubles with
FIGURE 3. Regression analysis of the benchmark dataset (uncontrolled experiment) using – (a) \(ID_{NA} \), (b) \(ID_{TA} \), (c) \(ID_{SA} \), (d) \(ID_{TSA} \).

ANTASID formulations compared to the classical ones. This is because, \(TP \) increases continuously and proportionally with \(ID_{TSA} \) and \(ID_{TA} \), which can be visualized from the scatterplots of \(TP \) vs \(ID \) (Fig. 5) of the Internal Dataset. Pairwise F-test, as shown in Table 7, revealed the superiority of ANTASID formulation over both \(ID_{NA} \) and \(ID_{SA} \) at the desired level of significance, \(\alpha = 0.05 \) with a \(p \)-value <0.001, in all the datasets considered in this study. The post-hoc test using Tukey’s HSD [20] method also validated the same, having an adjusted \(p \)-value of 0.001.

These analyses imply that we can reject the null hypothesis, \(H_0 \) and accept the alternative hypothesis \(H_1 \) : “Temporally adjusted Shannon’s ID may better quantify the perceived difficulty of pointing tasks in both controlled and uncontrolled scenarios.” The spatial adjustment along with the temporal one, makes the formulation even more robust and provides a normally distributed \(ID \) along with enhanced \(TP \).

VI. DISCUSSIONS

Extensive studies have been carried out on Fitts’s law over the years for understanding human performance in pointing tasks. These studies have proposed several variants of \(ID \) with the aim to develop an enhanced human interaction model.

However, the perfect formulation of \(ID \) is still an active research area. In this work, we have proposed ANTASID formulation utilizing the temporal efficiency of pointing tasks, which quantifies the variation of perceived difficulty of such tasks in different contexts of interaction and analyzed its effect alone or combined with spatial adjustment in the quantification of \(ID \) using an optical mouse. We have analyzed two separate datasets – 1) Internal dataset generated from our uncontrolled experiment of the game “Popper” and 2) Benchmark dataset featuring controlled and uncontrolled scenarios of pointing tasks. We have also statistically analyzed the performance of our formulation compared to the classical ones on these datasets at a significance level of \(\alpha = 0.05 \).

With respect to the experimental datasets considered in this study, the perceived difficulty of pointing tasks, quantified using ANTASID formulation (\(ID_{TA} \), \(ID_{TSA} \)), has an enhanced inter-quartile range compared to the classical formulations of Shannon’s \(ID \) (\(ID_{NA} \), \(ID_{SA} \)) (Fig. 6). The mean predicted movement-times using ANTASID (\(MT_{TA} \), \(MT_{TSA} \)) and the classical formulations of Shannon’s \(ID \) (\(MT_{NA} \), \(MT_{SA} \)) are almost constant for both the Internal (Fig. 7a) and the Benchmark (Fig. 7b and Fig. 7c) datasets. Both \(MT_{TA} \) and \(MT_{TSA} \) exhibit interquartile ranges closer to the observed...
movement-time \((MT_o)\), compared to both \(MT_{NA}\) and \(MT_{SA}\) (Fig. 7). From this analysis, we can infer that the temporal adjustment factor \((t)\) is able to capture the speed-accuracy trade-off phenomena of pointing tasks by adjusting the relative weights of \(W\) and \(A\) through ANTASID formulations \((ID_{TA}, ID_{TSA})\), exploiting the temporal efficiency of the user to reflect context-based deviation of perceived difficulty of the tasks. We have found this inference to be consistent across all the datasets.

A major observation from our analyses is that even in both controlled and uncontrolled scenarios of pointing tasks, ANTASID formulation significantly improved the fitness value of the regression model as well as \(TP\) compared to its classical counterparts, as seen from Table 6. This proves the robustness of ANTASID formulation in handling the context of interaction and the speed-accuracy trade-off in real-life pointing tasks. Evidently, ANTASID formulation is versatile and significantly overcomes the risk of low external validity.

![FIGURE 4. Distribution of different formulations of ID – (a, b, c, d) uncontrolled experiment of the internal dataset. (e, f, g, h) controlled experiment of the benchmark dataset. (i, j, k, l) uncontrolled experiment of the benchmark dataset.](image)

TABLE 6. Average performance of the regression models across all the datasets.

Formulation Type	ID Formulation	\(R^2\) (\(\pm\)95% CI)	\(SE\) (\(\pm\)95% CI)	\(TP\) (\(\pm\)95% CI) (bits/s)
Classical	\(ID_{NA}\)	0.2925 (\(\pm\)0.1227)	0.0024 (\(\pm\)0.0012)	4.08 (\(\pm\)0.15)
	\(ID_{SA}\)	0.1207 (\(\pm\)0.0668)	0.0041 (\(\pm\)0.0011)	3.03 (\(\pm\)0.24)
	\(ID_{TA}\)	0.8335 (\(\pm\)0.0124)	0.0004 (\(\pm\)0.0001)	7.30 (\(\pm\)0.55)
	\(ID_{TSA}\)	0.8818 (\(\pm\)0.0261)	0.0004 (\(\pm\)0.0001)	7.50 (\(\pm\)0.48)

CI: Confidence Interval
TABLE 7. Pairwise F-test results.

ID Formulation (σ²_i > σ²_j)	Internal Dataset (Uncontrolled Experiment)	Benchmark Dataset (Uncontrolled Experiment) (E=3.883 %)³	Benchmark Dataset (Controlled Experiment) (E=3.883 %)³
A	B	p-value⁵	p-value⁵
ID_TA	ID_SA	7.4409	<0.001
ID_TA	ID_SA	30.6092	<0.001
ID_TA	ID_SA	7.2310	<0.001
ID_TA	ID_SA	29.7458	<0.001
ID_TA	ID_SA	2.8881	<0.001
ID_TA	ID_SA	7.4203	<0.001
ID_TA	ID_SA	2.6807	<0.001
ID_TA	ID_SA	6.8873	<0.001
ID_TA	ID_SA	4.2527	<0.001
ID_TA	ID_SA	1.8744	<0.001
ID_TA	ID_SA	3.9807	<0.001

³ Variance (σ²_i) of ID, where i ∈ {A, B}.
⁴ E is the approximated error-rate.
⁵ p-values were computed at a level of significance, α=0.05.

FIGURE 5. Analysis of the throughput, TP corresponding to (a, c) the classical and (b, d) ANTASID formulations of Shannon’s index of difficulty, ID for the uncontrolled experiment of the internal dataset.

We plan to extend the performance evaluation of ANTASID formulation to wearable pointing devices in both controlled and uncontrolled experimental procedures as part of our future work. This will help us identify the major factors that directly or indirectly influence the interaction of people with special needs with a computer using such devices. Furthermore, UIs of applications specific to certain contexts may be designed to meet specific index of difficulty (ID). Based on the desired ID, general context of interaction, and temporal efficiency of a specific pointing task, a possible practical significance of our study is the determination of a lower bound on the width (W) of targets (windows, icons,
FIGURE 6. Boxplot analysis of the perceived difficulty of pointing tasks (ID_{NA}, ID_{TA}, ID_{SA}, ID_{TSA}) using ANTASID and the classical formulations of Shannon’s index of difficulty considering – (a) the uncontrolled experiment of the internal dataset, (b) the controlled and (c) the uncontrolled experiment of the benchmark dataset.

FIGURE 7. Boxplot analysis of the predicted movement-times (MT_{NA}, MT_{TA}, MT_{SA}, MT_{TSA}) using ANTASID and the classical formulations of Shannon’s index of difficulty compared to the observed movement-time (MT_O) considering – (a) the Uncontrolled experiment of the internal dataset, (b) the controlled and (c) the uncontrolled experiment of the benchmark dataset.

menus, and navigation bars) in the design of application UIs. This may not only help the UI designers in designing aesthetic UIs, but also enhance the throughput and efficiency of user interaction. Our proposed ANTASID formulation may be further used in testing the same UI in different circumstances. Taking context of interaction into account, the need for introducing a temporal adjustment factor (t) while quantifying the perceived difficulty of uncontrolled pointing task using Shannon’s ID cannot be over-emphasized, facilitating better comprehension of the efficiency of an interface with respect to its intended use case. In a click based real-time competitive game, though the UI remains same, considering different scenarios, a player might want to quickly perform certain interactions. For instance, in the beginning of real-time strategy games, generally the contention remains lesser than the middle or end portion of the game, where the players focus more towards quick decisions, actions and clicks. The proposed model can also be utilized in such scenarios to evaluate the perceived difficulty of real-time interaction under different context. We plan to carry out such research in the future, exploring the practical implications of the proposed formulation.

ACKNOWLEDGMENT

The authors express their heartfelt gratitude to the participants for their valuable time and effort for making this study possible. The authors do not declare any conflict of interest that may alter the outcomes of the study in any manner and approve this version of the manuscript for publication.

REFERENCES

[1] F. Law and I. S. Mackenzie, “Input/output,” in The Wiley Handbook of Human Computer Interaction, vol. 1, K. L. Norman and J. Kirakowski, Eds., 1st ed. Hoboken, NJ, USA: Wiley, 2018.
[2] S. Zhai, J. Kong, and X. Ren, “Speed–accuracy tradeoff in Fitts’ law tasks—On the equivalence of actual and nominal pointing precision,” Int. J. Hum.-Comput. Stud., vol. 61, no. 6, pp. 823–856, Dec. 2004, doi: 10.1016/j.ijhcs.2004.09.007.
[3] P. M. Fitts and J. R. Peterson, “Information capacity of discrete motor responses,” J. Exp. Psychol., vol. 67, no. 2, pp. 103–112, 1964, doi: 10.1037/h0045689.
[4] A. Welford. (1968). Fundamentals of Skill. Accessed: Dec. 28, 2021. [Online]. Available: https://psycnet.apa.org/record/1968-35018-000
[5] S. Zhai, “Characterizing computer input with Fitts’ law parameters—The information and non-information aspects of pointing,” Int. J. Hum.-Comput. Stud., vol. 61, no. 6, pp. 791–809, Dec. 2004, doi: 10.1016/j.ijhcs.2004.09.006.
[6] R. Kopper, D. A. Bowman, M. G. Silva, and R. P. McMahan, “A human motor behavior model for distal pointing tasks,” Int. J. Hum.-Comput. Stud., vol. 68, no. 10, pp. 603–615, Oct. 2010, doi: 10.1016/j.ijhcs.2010.05.001.
[7] H. Okada and T. Akiba, “Evaluation of Fitts ‘law index of difficulty formulation for screen size variations,” Int. J. Comput. Inf. Eng., vol. 8, no. 1, pp. 198–203, 2014, Accessed: Dec. 28, 2021. [Online]. Available: https://www.zenodo.net/record/1091304/files/9997694.pdf
[8] I. O. Wobbrock, E. Cutrell, S. Harada, and I. S. MacKenzie, “An error model for pointing based on Fitts’ law,” in Proc. 26th Annu. CHI Conf. Hum. Factors Comput. Syst. (CHI), 2008, pp. 1613–1622, doi: 10.1145/1357054.1357306.
[9] X. Zhou, X. Cao, and X. Ren, “Speed-accuracy tradeoff in trajectory-based tasks with temporal constraint,” in Proc. IFIP Conf. Hum.-Comput. Interact. in Lecture Notes in Computer Science, vol. 5726, 2009, pp. 906–919, doi: 10.1007/978-3-642-03655-2_99.
MOHAMMAD RIDWAN KABIR received the B.Sc. Engg. degree in computer science and engineering from the Islamic University of Technology (IUT), Boardbazar, Gazipur, Bangladesh, in 2017, where he is currently pursuing the M.Sc. Engg. degree in computer science engineering.

Since 2018, he has been working as a Lecturer with the Department of Computer Science and Engineering, IUT. He worked as a Lecturer with the Department of Computer Science Engineering, BRAC University, Dhaka, Bangladesh. His research interests include human–computer interaction, computer vision, assistive technology, machine learning, data analysis and visualization, embedded system development, and wearable devices.

Mr. Kabir and his team received the Runners Up title (Project Showcasing) at the National ICT Fest, in 2016, the Champions title (Project Showcasing) at Esonance, in 2017, the Top 5 Innovative Projects awards at BASIS Soft Expo, Bangladesh, in 2020, and the BASIS National ICT Awards, Bangladesh, in 2021. Furthermore, he has received the WINNERS title (Research and Development) in the prestigious APICTA Awards 2020–2021 (host country: Malaysia) from Bangladesh.

MOHAMMAD ISHRAK ABEDIN received the B.Sc. Engg. degree in computer science and engineering from the Islamic University of Technology (IUT), Boardbazar, Gazipur, Bangladesh, in 2020.

Since 2020, he has been working as a Lecturer with the Department of Computer Science and Engineering, IUT. His research interests include human–computer interaction, assistive technology, data analysis and visualization, wearable devices, computer graphics, computer games, and game engines.

Mr. Abedin and his team received the Top 5 Innovative Projects awards at BASIS Soft Expo, Bangladesh, in 2020, and the WINNERS title (Research and Development) in the prestigious APICTA Awards 2020–2021 (host country: Malaysia) from Bangladesh.

RIZVI AHMED received the B.Sc. Engg. degree in computer science and engineering from the Islamic University of Technology (IUT), Boardbazar, Gazipur, Bangladesh, in 2020.

His research interests include human–computer interaction, data mining, assistive technology, data analysis and visualization, embedded system development, and wearable devices.

Mr. Ahmed and his team received the Top 5 Innovative Projects awards at BASIS Soft Expo, Bangladesh, in 2020, and the WINNERS title (Research and Development) in the prestigious APICTA Awards 2020–2021 (host country: Malaysia) from Bangladesh.

HASAN MAHMUD received the B.Sc. degree in computer information and technology from the Islamic University of Technology (IUT), Boardbazar, Gazipur, Bangladesh, in 2003, the M.Sc. degree in computer science from the University of Trento (UniTN), Italy, in 2009, and the Ph.D. degree in computer science from the IUT, in 2021.

He is currently working as an Assistant Professor with the Department of Computer Science and Engineering, IUT. He has been involved in HCI research since 2009. He specializes in gesture-based interaction through machine learning approaches, affective computing, and assistive technology for the physically impaired.

MD. KAMRUL HASAN received the Ph.D. degree from Kyung Hee University, South Korea, in 2010.

He is currently working as a Professor with the Department of Computer Science and Engineering, Islamic University of Technology (IUT), Boardbazar, Gazipur, Bangladesh. He is the Founding Director of the Systems and Software Laboratory (SSL), IUT. He has expertise in intelligent systems, software engineering, social network analysis, and data mining.