Effect of White Button Mushroom (Agaricus bisporus) on Immunity and Haematological Parameters of Oreochromis niloticus

Syed Sikandar Habib¹*, Saira Naz², Sehar Khalid³, Rimsha Kanwal³, Iqra Ameer³, Sadia Nawaz³ Aamir Khan⁴, Abid Ur Rehman⁵, Muqaddas Kousar⁶, Shafa Ullah Khan⁷ and Nadia Nazir⁷

¹Department of Zoology, University of Sargodha, Sargodha
²Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus
³Department of Zoosciences, COMSATS University, Islamabad
⁴Department of Zoology, Kohat University of Science and Technology, Kohat-26000
⁵Department of Zoology, Government Post Graduate College, Bannu
⁶Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi
⁷Department of Zoology, Government College University, Lahore

ABSTRACT

Nowadays, many challenges are facing by the fish farmer like infections (viral, bacterial and fungal) and environmental stress. Different drugs have been used against several infections, but sometimes they produce toxic effect in fish body and deteriorate the water quality, which in turn decrease the output of the aquaculture. To overcome these issues, herbal products are used in aquaculture and these are the perfect immune stimulator, antibiotic alternative and growth promoter. The current research was conducted to assess the effect of variant level of Agaricus bisporus on immunity and haematological parameters of Oreochromis niloticus. A total of 120 healthy fishes with average weight 24.0 ± 12.5g were distributed randomly into four fiber glass tanks in triplicates (each tank contains 10 fishes). The experimental diet was prepared with variant concentration of mushroom such as 0% (control group) and 2%, 4% and 6% of extractions for the other three groups. Duration of the experimental work was six weeks. Water quality parameters including temperature was 29 ± 0.5, DO: 5.7 ± 0.04 and pH: 7.5. Results revealed that the 6% Agaricus bisporus has shown higher lysozyme activity and ACH50 level, while no significant enhancement was observed in Ig. Beside this all the haematological parameters including WBC, RBC, Hb, Hct and differential leucocyte was observed higher in all the groups as compared to control group. It was concluded that 6% Agaricus bisporus can be use as immune-stimulant, and can help the farmers to overcome the emerging aquaculture problems.

INTRODUCTION

Fish is considered as one of the best economical sources of protein. Their meat is rich in omega-3 fatty acid (Sarvenaz and Sabine, 2017). Worldwide, different fish species have been cultured including Nile tilapia which is famous for fast growth and high tolerance range (environmental stress). In Pakistan it was introduced as a farm fish since 2016, and its demand is increasing day by day (Prabu et al., 2019). Fish farmers worldwide are facing many challenges regarding health, disease and mortality rate of fish, hence decreasing the output of the aquaculture (Sahoo et al., 2020). To overcome these situations many antimicrobial and disinfectants are used but no satisfactory result is achieved so far. Besides this, over use of these drugs can result in development of multi drugs resistance strains of the pathogens, which can pass their resistance genes to the next generation. It not only promotes a drug resistant pathogen but even can harm the consumer health and causes serious environmental hazards (Lúcia and Fernando, 2018; Parrino et al., 2020). Therefore, demand for a better alternative to control or prevent fish disease is increased. One of the best method is to use ecofriendly and bio-compatible methods that is using natural immune-stimulants (mostly medicinal herb derivatives). Many researchers successfully use the natural herbal products in aquaculture which can enhance the immune system or can improve the blood parameters for example, pomegranate
MATERIALS AND METHODS

Study site

The experiment was performed in the laboratory of University of Sargodha Sub campus Mianwali located in District Mianwali Punjab, Pakistan and the fish were fed for six weeks.

Feed formulation

The mushroom (Agaricus bisporus) commonly known as white button mushroom was purchased from the local super market. The supplemented (control) diet contains crude protein 38%, crude lipids 18%, crude cellulose 1.3%, ashes 8.7%, calcium 1.62%, total phosphorous 1.7% with mineral ash content and vitamin. The mushroom was ground into powder form and added into the basal diet with variant level of 0%, 2%, 4% and 6%. By using vacuum freeze drier the experimental diet was dried for 15 h and was filtered by using 2mm mesh. For further use the prepared feed was stored at -4°C. The diet was formulated according to the Harikrishnan et al. (2018), in which A. bisporus replaced maize powder of 1%, 5% and 10% of control diet in groups 1, 2 and 3, respectively and the proximate composition was analyzed for its nutrient content by using the method of Horwitz and Latimer (2005).

Fish sampling and experimental design

A total number of 120 Nile tilapia fish (Oreochromis niloticus) of mean body weight 24.0±12.5g were purchased from the Tawakkal fish hatchery (located in district Muzaffar Garh Punjab, Pakistan). All the fishes were healthy and to prevent infection the fishes were treated with 0.2% of KMnO4 solution. The fishes were acclimatized for a period of 14 days with normal L13/D11 and were divided into four groups such as group 1 (control group) fed on control diet with 0% of white button mushroom while group 2, 3 and 4 fed on basal diet with 2%, 4% and 6% of mushroom extract, respectively. Ten fishes in each group were stocked in triplicates in 12 fiber glass tanks (water holding capacity 180 L). During that period basal feed was provided twice a day and water quality parameters were measured on daily basis. The mean water quality parameters including temperature 29±0.5 °C, DO 5.7±0.04 (Hanna Instrument HI9132) and pH 7.5 (Hanna Instrument HI221). The fresh water was added after every three days and the aerator was fixed in each tank. After adaptation the fishes were treated with experimental diet. The feed was provided twice a day of about 3-5% of their body weight.

Blood sampling and haematological parameters

At the end of the experimental diet the blood samples of 0.4 cc were collected from the caudal vein of the healthy randomly selected 4 fishes by using sterile syringe with needle (22 gauges) and stored at 4 °C in plastic tubes containing EDTA (anticoagulant) and transport it to the laboratory where they were immediately analyzed. During blood sampling fishes were not anesthetized because it may influence the blood indices (Torrecillas et al., 2011). Total red blood cell count and white blood cell count was measured with the help of the Neubauer hemocytometer.
as described by Goldenfarb et al. (1971). In this method 0.02cc of blood (non-clotted) was taken and diluted with Drabkin solution (5cc) and stored at room temperature for ten minutes. After that the Hb concentration was calculated by the absorbance at 540 nm. Besides this Wright-Giemsa stains was used for the determination of the differential leukocytes count while determination of percentage composition of leukocytes was based on the identification character (Ivanova, 1983). Besides this, on the basis of blood sedimentation the value of hematocrit (Hct) was estimated. In this process 50µL of heparinized blood in micro-heparinized capillary and spun at 12000 rpm for 5 minutes in micro-hematocrit centrifuge (RM-12C, REMI India). Hct values were obtained using hematocrit reader. Findings are presented in percentage (Natt and Herrick, 1952).

Lysozyme activity
To determine the lysozyme activity a slight modification was made in the lysoplate method described by the (Siwicki and Anderson, 1993). In this procedure, 2 ml of suspension comprises of Micrococcus lysodeikticus (Sigma, USA: 0.375 mg ml⁻¹, 0.05 M sodium phosphate buffer, pH 6.2) and 50 ml of serum were mix thoroughly and then concentration was measured in spectrophotometer at 450 nm (Biochorm Libra S12, UK). Optical density was measured at different interval of time i.e. 15, 30 and 270s. Lysozyme activity was measured by the reduction in absorbance. Value obtain from the experiment was expressed in the unit of time (min⁻¹).

Serum Ig level
To determine the Ig level, we have to precipitate it from the serum, for this 100 ml of 12% polyethylene glycol was mixed well with the 100 ml of plasma sample and stored at room temperature for 10 minutes. After that the Ig concentration was calculated by the absorbance at 540 nm. Besides this Wright-Giemsa stains was used for the determination of the differential leukocytes count while determination of percentage composition of leukocytes was based on the identification character (Ivanova, 1983). Besides this, on the basis of blood sedimentation the value of hematocrit (Hct) was estimated. In this process 50µL of heparinized blood in micro-heparinized capillary and spun at 12000 rpm for 5 minutes in micro-hematocrit centrifuge (RM-12C, REMI India). Hct values were obtained using hematocrit reader. Findings are presented in percentage (Natt and Herrick, 1952).

Alternative complement activity (ACH50)
For this, procedure proposed by the Ortuño et al. (2002) was followed. In this method the 500 µl of test sample was serially diluted with the Hank’s buffer to achieve the final concentration of the 10-0.078%, then 500 µl of SRBS was added. And incubate for 1 hour at 22°C. After that it was centrifuge at 800rpm for 5 min. Then the supernatant was discarded and level of Ig was determined by difference between remaining and total concentration of the serum.

DISCUSSION
The present study was conducted to investigate the effect of the basal diet with various level of white button mushroom (Agaricus bisporus) on immune response and haematological parameters of Oreochromis niloticus. The result showed that the fish fed on 6% of white button mushroom is effective than other treatments of the diet especially lysozyme and ACH50. Lysozyme is involved in phagocytic activity, increases fish immune response and causes the destruction of bacteria cell wall. Chitsaz et al. (2018) carried out study on juvenile of great sturgeon and study the effect of Lentinula edodes on fish immune response and they observed that the lysozyme activity and SOD (superoxide dismutase) was significantly higher in fish fed on 2% of mushroom. Another study revealed that the Pleurotus eryngii and Lactobacillus plantarum enhance the Pangasius catfish lysozyme activity, respiratory burst activity and phagocytosis (Van et al., 2016). Besides this Akrami et al. (2015) reported that in beluga the basal diet with onion powder of 1% increased the lysozyme activity. According to Uluköy et al. (2016) the rainbow trout fed on extract of 1 and 2% of Pleurotus ostreatus which significantly increase the fish lysozyme activity, phagocytic activities, but no significant increase was observed in Ig (total serum immunoglobulin). Similar findings were observed in our study in which the Ig level was not significantly increased.
Table I. Effect of *Agaricus bisporus* for six weeks on immunological and haematological parameters of *Oreochromis niloticus*.

Parameters	Control group (0%)	Group 1 (2%)	Group 2 (4%)	Group 3 (6%)
Immunological parameters				
Lysozyme activity (u mL⁻¹)	24.2 ± 1.13ᵇ	27.6 ± 2.47ᵇ	28.7 ± 3.48ᵇ	32.9 ± 1.25ᵃ
ACH50 (u mL⁻¹)	141.4 ± 13.25ᵇ	142.5 ± 13.51ᵇ	143.7 ± 14.31ᵇ	150.6 ± 13.07ᵇ
Ig (mg / L)	31.4 ± 2.34ᵃ	32.3 ± 4.02ᵃ	34.5 ± 3.07ᵇ	36.9 ± 2.51ᵇ
Haematological parameters				
WBC (10⁵ ml⁻¹)	10.9 ± 0.7ᵃ	11.30 ± 1.3ᵃ	12.5 ± 1.4ᵇ	13.2 ± 0.1ᵇ
RBC (10⁶ ml⁻¹)	00.9 ± 0.08ᵇ	00.10 ± 0.07ᵇ	00.12 ± 0.06ᵇ	00.16 ± 0.06ᵇ
Hct (%)	32.7 ± 1.16ᵃ	34.4 ± 1.6ᵃ	36.4 ± 1.9ᵇ	38.5 ± 1.3ᵇ
Hb (g dl⁻¹)	03.8 ± 0.73ᵇ	04.5 ± 0.76ᵇ	04.9 ± 0.71ᵇ	05.4 ± 0.51ᵇ
Lymphocyte (%)	62.2 ± 1.3ᵃ	63.8 ± 3.1ᵃ	64.3 ± 1.5ᵇ	66.7 ± 3.21ᵇ
Neutrophil (%)	22.3 ± 1.1¹ᵃ	22.8 ± 1.2ᵃ	23.1 ± 2.1ᵇ	25.6 ± 4.4ᵃ
Monocyte (%)	10.7 ± 0.4	12.3 ± 0.6ᵃ	13.7 ± 2.0ᵇ	14.9 ± 1.4ᵃ

Values are shown as mean ± SD. Values of the different superscripts in the same rows are significantly (P < 0.05) different. *Abbreviations: ACH50* (Alternative complement activity), Ig (serum total immunoglobulin); WBC (white blood cell), RBC (red blood cell), Hct (hematocrit), Hb (hemoglobin).

Harikrishnan et al. (2011) reported the higher level of ACH50 when fish was treated with experimental diet contains prickly ash extract, pyrethrum and pomegranate. According to Bazari et al. (2017) the 1.5% of *Aloe vera* extract can boost the immunity of Siberian sturgeon such as lysozyme activity and ACH50 than control group. Awad et al. (2013) study the effect of *Managifera indica, Lupinus perennis and Urtica dioica* on rainbow trout and they reported that the extract of 1% and 2% of these plants are effective in fish complement activity (ACH50). In several studies the haematological indices have been used as they are important to identify the nutrients and pathogenic condition of the animal body (Jahanbakhshi et al., 2013). In the current study the haematological parameters such as WBC, RBC, Hct, Hb, Lymphocytes, monocytes and neutrophils are significantly higher in *Oreochromis niloticus* which fed on variant concentration of *Agaricus bisporus*. Chitsaz et al. (2018) reported that the effect of 2% of *Lentinula edodes* can enhance the RBC, Hct and Hb value in sturgeon juvenile which is similar to our study, but WBC and differential cells were significantly decrease than control group which is contrary to our study. According to Ndong and Fall (2007) the WBC counts was higher in hybrid tilapia which fed on basil diet with garlic at 0.5% and 1%. Another study reported that the *G. cambogia* extract can enhance the WBC counts (Dada and Ikuerowo, 2009). According to Bazari et al. (2017) who conducted study on Siberian sturgeon (*Acipenser baerii*) by introducing alovera extract to evaluate the haematological parameters and concluded that the WBC, RBC and MCV showed significant increased. According to Nwabueze (2012) the effect of garlic increases the WBC counts, Hb, packed cell volume (PCV) and RBC in the fingerlings of *Clarias gariepinus* fed on 0.5% of garlic extract. Sahu et al. (2007) described that the fingerlings of *Labeo rohita* which fed on *Magnifera indica* kernel, their RBC counts were increased and this intensification of RBC is sign of higher cellular immunity. Binaii et al. (2014) reported that the differential leukocytes were observed increased in beluga body on treatment with *Urtica dioica*.

CONCLUSION

Current study concluded that the 6% of white button mushroom (*Agaricus bisporus*) has shown progressive increase in fish immunity and hematology. Hence their use can be effective in order to reduce the mortality rate and to maintain the healthy aquaculture environment. Many mushrooms possess therapeutic properties. Therefore, these are the best alternative to the antibiotics used in aquaculture. So, result of current research open a new perspective of the mushrooms use in the aquaculture and further studies are needed to evaluate cost-benefits and molecular pathways.

Statement of conflict of interest

The authors have declared no conflict of interest.

REFERENCES

Acar, Ü., Parrison, V., Kesbic, S.O., Paro, G.L., Saoca, C., Abbate, F., Yilmaz, S. and Fazio, F., 2018. Effects
of different levels of pomegranate seed oil on some blood parameters and disease resistance against Yersinia ruckeri in rainbow trout. Front. Physiol., 9: 596. https://doi.org/10.3389/fphys.2018.00596

Ahmed, I., Reshi, Q., Mushraq and Fazio, F., 2020. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: A review. Aquacul. Int., 28: 869-899. https://doi.org/10.1007/s10499-019-00501-3

Akrami, R., Gharaei, A., Mansour, M.R. and Galeshi, A.A. and Ikuerowo, M., 2009. Effects of Monterey cypress (Aculus sativa) powder on growth, innate immune response and hemat–biochemical parameters of beluga (Huso huso Linnaeus, 1754) juvenile. Fish Shellf. Immunol., 45: 828-834. https://doi.org/10.1016/j.fsi.2015.06.005

Awad, E., Austin, D. and Lyndon, A., 2013. Effect of black cumin seed oil (Nigella sativa) and nettle extract (Quercetin) on enhancement of immunity in rainbow trout. Oncorhynchus mykiss (Walbaum). Aquaculture, 388: 193-197. https://doi.org/10.1016/j.aquaculture.2013.01.008

Bazari, M.S., Hamidi, M. and Ghasemi, M., 2017. The effects of different levels of Aloe vera extract on some of the hematological and non-specific immune parameters in Siberian sturgeon (Acipenser baerii). Iran. J. Fish. Sci., 16: 1234-1247.

Binaï, M., Ghiasi, M., Farabi, S.M.V., Pourgholam, R., Fazli, H., Safari, R., Alavi, E.S., Tghavi, J.M. and Bankhefsaz, Z., 2014. Biochemical and hemat–immunological parameters in juvenile beluga (Huso huso) following the diet supplemented with nettle (Urtica dioica). Fish Shellf. Immunol., 36: 46-51. https://doi.org/10.1016/j.fsi.2013.10.001

Chitsaz, H., Akrami, R. and Ahmadi, Z., 2018. Effects of mushroom (Lentinula edodes) extract on growth performance, immune response and hemat–biochemical parameters of great sturgeon juvenile (Huso huso Linnaeus, 1754). Iran. J. Aquat. Anim. Hlth., 4: 29-48. https://doi.org/10.29252/ijaah.4.1.29

Dada, A.A. and Ikuerowo, M., 2009. Effects of ethanolic extracts of Garcinia kola seeds on growth and haematology of catfish (Clarias gariepinus) broodstock. Afr. J. agric. Res., 4: 344-347.

Fazio, F., Ferrantelli, V., Piccione, G., Saoca, C., Levanti, M. and Mucciarri, M., 2018. Biochemical and hematological parameters in European sea bass (Dicentrarchus labrax Linnaeus, 1758) and Gilthead sea bream (Sparus aurata Linnaeus, 1758) in relation to temperature. Vet. Arhiv., 88: 397-411. https://doi.org/10.24099/vet.arhiv.170406c

Goldenfarb, P.B., Bowyer, F.P., Hall, T. and Brosious, E., 1971. Reproducibility in the hematology laboratory: the microhematocrit determination. Am. J. clin. Pathol., 56: 35-39. https://doi.org/10.1093/ajcp/56.1.35

Harikrishnan, R., Balasundaram, C. and Heo, M., 2011. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture, 317: 1-15. https://doi.org/10.1016/j.aquaculture.2011.03.039

Harikrishnan, R., Naafar, A., Musthafa, S.M., Ahamed, A., Arif, I. A. and Balasundaram, C., 2018. Effect of Agaricus bisporus enriched diet on growth, hematology, and immune protection in Clarias gariepinus against Flavobacterium columnare. Fish Shellf. Immunol., 73: 245-251. https://doi.org/10.1016/j.fsi.2017.12.024

Horwitz, W. and Latimer, G.W., 2005. Official methods of analysis of AOAC International, 16th ed., AOAC International, AOAC, Washington.

Ivanova, N.T., 1983. Atlas of fish blood cells. LPP Moscow, Russia, pp. 80.

Jahanbakhshi, A., Imanpoor, M., Taghizadeh, V. and Shabani, A., 2013. Hematological and serum biochemical indices changes induced by replacing fish meal with plant protein (sesame oil cake and corn gluten) in the Great sturgeon (Huso huso). Comp. Clin. Path., 22: 1087-1092. https://doi.org/10.1007/s00580-012-1532-4

Kesbic, S.O., Parrino, V., Acar, U., Yılmaz, S., Paro, G.L. and Fazio, F., 2020. Effects of Monterey cypress (Cupressus macrocarpa Hartw) leaf essential oil as a dietary supplement on growth performance and haematological and biochemical parameters of common carp (Cyprinus carpio L.) Annls Anim. Sci., 20: 1411-1426. https://doi.org/10.2478/aos-2020-0041

Lúcia, S. and Fernando, R., 2018. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents, 52: 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010

Natt, M.P. and Herrick, C.A., 1952. A new blood diluent and alternatives to tackle the problem Yersinia ruckeri in rainbow trout. Front. Physiol., 1-9.

Natt, M.P. and Herrick, C.A., 1952. A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult. Sci., 31: 735-738. https://doi.org/10.3382/ps.0310735

Ndong, D. and Fall, J., 2007. The effect of garlic (Allium sativum) on growth and immune responses of hybrid tilapia (Oreochromis niloticus and Oreochromis aureus). J. Clin. Immunol. Immunopathol. Res., 3: 1-9.
Nwabueze, A.A., 2012. The Effect of Garlic (*Allium sativum*) on Growth and Haematological Parameters of *Clarias gariepinus* (Burchell, 1822). *J. Sustain. Agirc.*, **1**: 222-228. https://doi.org/10.5539/sar.v1n2p222

Ortuño, J., Cuesta, A., Rodríguez, A., Esteban, M.A. and Meseguer, J., 2002. Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gillhead seabream (*Sparus aurata* L.). *Vet. Immunol. Immunopathol.*, **85**: 41-50. https://doi.org/10.1016/S0165-2427(01)00406-8

Parrino, V., Cappello, T., Costa, G., Cannava, C., Sanfilippo, M., Fazio, F. and Fasulo, S., 2018. Comparative study of haematology of two teleost fish (*Mugil cephalus* and *Carassius auratus*) from different environments and feeding habits. *Eur. Zool.*, **85**: 194-200. https://doi.org/10.1080/24750263.2018.1460964

Parrino, V., Kesbic, S.O., Acar, U. and Fazio, F., 2019. Hot pepper (*Capsicum* sp.) oil and its effects on growth performance and blood parameters in rainbow trout (*Oncorhynchus mykiss*). *Nat. Prod. Res.* **34**: 3226-3230. https://doi.org/10.1080/14786419.2018.1550769

Parrino, V., Minutoli, R., Paro, L.G., Surfaro, D. and Fazio, F., 2020. Environmental assessment of the pesticides in *Parablennius sanguinolentus* along the Western Calabrian coast (Italy). *Reg. Stud. Mar. Sci.*, **36**: 101297. https://doi.org/10.1016/j.rsma.2020.101297

Prabu, E., Rajagopalsamy, C.B.T., Ahilan, B., Jegam, M.A.J. and Renuhadevi, M., 2019. Tilapia an excellent candidate species for world aquaculture: A review. *Annu. Rev. Res.*, **31**: 1-14. https://doi.org/10.9734/arrb/2019/v31i330052

Rajni, G., Grewal, R.B. and Goya, R.K., 2006. Nutritional attributes of *Agaricus hisporus* and *Pleurotus* major caju mushrooms. *Nutr. Hlth.*, **18**: 179-184. https://doi.org/10.1177/02601060060601800209

Reverter, M., Tapissier-Bontemps, N., Sasal, P. and Saulnier, D., 2017. Use of medicinal plants in aquaculture, diagnosis and control of diseases of fish and shellfish. In: *Diagnosis and control of diseases of fish and shellfish* (eds. B. Austin and A. Newaj-Fyzul). Wiley Online Library. https://doi.org/10.1002/9781119152125.ch9

Sahoo, P.K., Paul, A., Sahoo, M.K., Pattanayak, S., Rajesh-Kumar, P. and Das, B.K., 2020. Incidences of infectious diseases in freshwater aquaculture farms of eastern India: A passive surveillance based study from 2014-2018. *J. Aquacul. Res. Dev.*, **11**: 579. https://doi.org/10.35248/2155-9546.20.11.579

Sahu, S., Das, B.K., Pradhan, J., Mohapatra, B.C., Mishra, B.K. and Sarangi. N., 2007. Effect of *Mangifera indica* Kernel as a food additive on immunity and resistance to *Aeromonas hydrophila* in *Labeo rohita* fingerlings. *Fish Shellf. Immunol.*, **23**: 109-118. https://doi.org/10.1016/j.fsi.2006.09.009

Sarvenaz, K.T. and Sabine, S., 2017. Nutritional value of fish: Lipids, proteins, vitamins and minerals. *Rev. Fish. Sci. Aquac.*, **2**: 243-253. https://doi.org/10.1080/23308249.2017.1399104

Siwicki, A. and Anderson, D., 1993. Nonspecific defense mechanisms assay in fish II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum, Olsztyn, Poland. In: *Fish Disease Diagnosis Preventive Methods*, pp. 105-111.

Torreillas, S., Makol, A., Caballero, M.J., Montero, D., Gines, R., Sweetman, J. and Izquierdo, S.M., 2011. Improved feed utilization, intestinal mucus production and immune parameters in sea bass (*Dicentrarchus labrax*) fed mannan oligosaccharides (MOS). *Aquacul. Nutr.*, **17**: 223-233. https://doi.org/10.1111/j.1365-2095.2009.00730.x

Uluköy, G., Baba, E. and Öntas, E., 2016. Effect of oyster mushroom, *Pleurotus ostreatus*, extract on hemato-immunological parameters of rainbow trout, *Oncorhynchus mykiss.* *J. World Aquacul. Soc.*, **47**: 676-684. https://doi.org/10.1111/jwas.12318

Van, D.H., Doolgindachbaporn, S. and Sukri, A., 2016. Effects of Eryngii mushroom (*Pleurotus eryngii*) and *Lactobacillus plantarum* on growth performance, immunity and disease resistance of Pangasius catfish (*Pangasius bocourti*), Sauvage 1880). *Fish Physiol. Biochem.*, **42**: 1427-1440. https://doi.org/10.1007/s10695-016-0230-6

Zargar, Z., Rahimi-Afzal, Z., Soltani, E., Mirghaed, T.A., Ebrahimzadeh-Mousavi, A.H., Soltani, M. and Yuosefi, P., 2019. Growth performance, immune response and disease resistance of rainbow trout (*Oncorhynchus mykiss*) fed *Thymus vulgaris* essential oils. *Aquacul. Res.*, **50**: 3097-3106. https://doi.org/10.1111/are.14243