Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions

Maéva Angélique Techer¹,²*, Johanna Clémencet¹, Christophe Simiand², Patrick Turpin², Lionel Garnery³, Bernard Reynaud¹,², Hélène Delatte²*

¹ Université de La Réunion, UMR PVBMT, La Réunion, France, ² CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France, ³ Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France

* helene.delatte@cirad.fr (HD); maeva.techer@oist.jp (MAT)

Abstract

With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic “subspecies.” If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. \(F_{ST} \) levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis helped to better
depict the colonization and introduction pattern of honey bee populations in these archipelagos.

Introduction

Islands are rich reservoirs of biodiversity with high endemism across diverse taxonomic groups [1–3]. Often referred as nature’s test tubes [4], these isolated environments are less complex than continents, and unique [5–7]. Island populations are often characterized by relatively low genetic diversity, possibly resulting from i) founder effect and bottleneck, ii) small effective population sizes, iii) geographic isolation [8], and/or progressive archipelago colonization [9]. Among the 35 revised worldwide vulnerable hotspots of biodiversity [10], Madagascar and the southwest Indian Ocean (SWIO) islands shelter high rates of endemism [2, 10]. The islands surrounding Madagascar are part of the Mascarenes Archipelago (La Réunion, Mauritius, and Rodrigues) in the East, the Seychelles Archipelago (Mahe, Praslin, La Digue main islands) in the Northeast and the Comoros Archipelago (Grand Comore, Mohéli, Anjouan, and Mayotte) in the Northwest.

In these rich endemic ecosystems, species such as the Western honey bee, *Apis mellifera*, a generalist pollinator, deserve particular attention. The honey bee is established in all three SWIO archipelagos and, has the particularity to occur both in wild and domesticated states. If multiple livestock species are known to be exotic and deliberately brought to all these islands by human [11], the case of *A. mellifera* is not as obvious. Genomic analysis suggested that *A. mellifera* originated and colonized its native geographic range—Africa, Europe, the Middle East, and some regions in Asia—at least 300,000 years ago [12]. Following multiples colonization waves and glaciation events, *A. mellifera* diverged into five evolutionary lineages [13–18]. Apart from the European M and C, Oriental O, and Yemenite Y lineages, the largest African lineage subdivided into A_I, A_II, A_III and Z sub-lineages [19] with a split estimated at 32,700 to 23,000 years ago between African subspecies [12]. Prehistoric pottery analysis revealed that Human started to interact with *A. mellifera* for beeswax for almost 9,000 years [20, 21]. Semi-domestication of honey bee has surely influence its genetic diversity via global movements and artificial selection [22, 23]. Among the 31 subspecies commonly used in the *Apis* literature [24–31], *A. m. unicolor* has been described as endemic to Madagascar [13]. Intra-species divergence and human colonization dating (first evidence of human settlement was dated ~4380–4940 years ago [32]) suggest that *A. m. unicolor* colonized Madagascar well before human arrival. Nevertheless, the hypothesis of natural colonization by *A. mellifera* into the nearby SWIO archipelagos is still questioned, especially regarding to botanical studies that consider it to be introduced from Madagascar into the nearby SWIO archipelagos (based on divergent historical records [33–36]).

Recent combined analysis of both the ND2 gene and the tRNA\textsubscript{Leu}-cox2 intergenic region from mtDNA supported an insular African sub-group in the SWIO islands, distinct from continental sub-lineages [37]. The presence of *A. m. unicolor* in the Mascarenes (except Rodrigues), Comoros, and Seychelles archipelagos was shown by shared haplotypes with Madagascar [37]. Hints of ancient colonization and diversification within the SWIO region was supported by private tRNA\textsubscript{Leu}-cox2 diversity on each island. Despite mtDNA similarities, using microsatellite markers, honey bee populations between the Seychelles Archipelago and Madagascar (separated by 1,100 km of ocean) were found to be genetically differentiated [38]. In the Mascarenes, proportions of mtDNA haplotypes from the European lineage drastically
varied from an island to another [37] reaching an exclusive level in the eastern Rodrigues population [39]. These findings confirmed that multiples introductions occurred in the Mascarenes but their effect on La Réunion and Mauritius populations have never been characterized using nuclear markers. Therefore, it is unknown whether these populations are undergoing hybridization. Mitochondrial DNA sequencing indicated that Comoros Archipelago might act as a contact area between the Africa coast and Madagascar, and require to be carefully examined using nuclear markers.

The present study characterizes for the first time, the nuclear genetic diversity of honey bee populations within La Réunion and Mauritius (Mascarenes Archipelago) and populations found in Grande Comore, Mohéli, Anjouan, and Mayotte Islands (Comoros Archipelago). We compared the mtDNA polymorphism with nuclear diversity and structuration help in the detection of ongoing hybridization between subspecies on La Réunion and Mauritius. Since multiples lineages coexist in these islands, processes shaping the genetic diversity are hard to disentangle without a large and diverse dataset, capable of discerning between African and European populations. For that reason, we implemented additional sampling from continental native populations and previous datasets from Madagascar [40], Seychelles [38], and Rodrigues [39], to assess the relationship among insular and continental populations. Using the most comprehensive genetic dataset of *A. mellifera* in the SWIO, we propose an interpretation of the intraspecific phylogeographic patterns in the three archipelagos.

Material and methods

Honey bee population sampling

Genetic diversity in *A. mellifera* populations from the SWIO islands was assessed by *de novo* genotyping of worker honey bees from 2,860 colonies from both insular and continental areas. In order to have a comprehensive understanding of SWIO honey bee phylogeography, a dataset containing 1,528 individuals formerly described in Madagascar, Seychelles, Rodrigues, South Africa, and Italy was also employed [37] (Table 1). The sample (N = 4,388) covered honey bee populations in the SWIO islands and different habitats throughout Africa and Europe (Fig 1, S1 and S2 Figs).

Sampling efforts focused on previously undescribed populations using nuclear markers from La Réunion, Mauritius, Grande Comore, Mohéli, Anjouan, and Mayotte Islands. To increase the probability of obtaining samples representative of these populations, to the extent possible, colonies were collected in different habitats across each island. For La Réunion and Mauritius, collection sites encompassed urban areas as well as virgin tropical forest in National Parks (Parc National de La Réunion and Black River Gorges National Park, respectively). 15.8% of the known managed honey bee populations in La Réunion (13,000 managed colonies; GDS, 2014 *personal communication*) and 13.6% of those in Mauritius (2,700 colonies; Jhumun [41]) were sampled. Beekeeping is poorly developed in the Comoros Archipelago, so that honey bee foragers were collected every 5 km, whenever it was possible. For each managed or wild colony, workers were collected at the entrance or inside each colony. Immersion in 95% ethanol immediately killed workers, and they were stored at -20˚C until laboratory processing.

Sampling of honey bee colonies in continental Africa and Europe provided reference native populations for comparison. A total of 113 colonies were sampled at 28 locations in the known ranges of continental African subspecies, *A. m. adansonii*, *A. m. lamarckii*, *A. m. scutellata*, *A. m. capensis*, *A. m. monticola*, and *A. m. litorea*. In Europe, 138 colonies were sampled at 22 locations covering known habitats of the two M lineage subspecies (*A. m. iberiensis* and *A. m. mellifera*) and three C lineage subspecies (*A. m. carnica*, *A. m. ligustica*, *A. m. ceceopria*). Finally, 12 colonies to a strictly known introduced insular population from Tahiti were collected.
Table 1. Location details for populations sampled in islands of the southwest Indian Ocean, Africa, and Europe. *N de novo* the number of honey bee colonies newly sampled, dataset *μ*sat & tRNA_{Leu}-cox2: number of colonies for which microsatellites and mtDNA tRNA_{Leu}-cox2 dataset were previously described, with associated references in brackets, dataset tRNA_{Leu}-cox2: number of colonies for which only mtDNA (tRNA_{Leu}-cox2 dataset) was previously described, but microsatellites were analyzed only in this study.

Site	# of sites	Sampling date	N de novo	Dataset *μ*sat & tRNA_{Leu}-cox2	Dataset tRNA_{Leu}-cox2	Total
Southwest Indian Ocean islands						
Madagascar	MDG01-76	76	2011–2013	748 [40]	748	748
	MDG77	1	2014	7	5 [37]	12
	MDG78-81	4	1996–1998	78	17 [37]	95
Mascarenes Archipelago						
La Réunion	REU001-127	127	2011–2012	1920	130 [37]	2050
Mauritius	MUS01-31	31	2012–2014	128	239 [37]	367
Rodrigues	ROD01-20	20	2013	524 [39]	524	524
Seychelles Archipelago						
Mahé	SYC01-17	17	2013	71 [38]	71	71
	SYC33-37	5	2015	10		10
Praslin	SYC18-30	13	2013	71 [38]	71	71
	SYC38-40	3	2015	6	2 [37]	8
La Digue	SYC31-32	2	2013	43 [38]	43	43
	SYC41-44	4	2015	6		6
Comoros Archipelago						
Grande Comore	GCO01-10	10	2013	29 [37]	29	29
Mohéli	MOH01-03	3	2013	1	10 [37]	11
Anjouan	ANJ01-15	15	2013–2015	18	27 [37]	45
Mayotte	MYT01-16	16	2012	11	24 [37]	35
African populations						
Egypt	EGY01	1	1997	1	1 [37]	2
Senegal	SEN01	1	2015		2 [37]	2
São Tomé Island	STP01	1	1998	3	9 [37]	12
Chad	TCD01-02	2	2015	1	3 [37]	4
Central African Republic	CAF01-05	5	2013–2015	11 [37]	11	11
Cameroon	CMR01	1	2015	6		6
Gabon	GAB01-02	2	2014	3 [37]	3	3
Uganda	UGA01	1	2015	1	1 [37]	1
Malawi	MWI01-04	4	1995	4	4 [37]	8
Tanzania	TZA01-03	3	2015	4	10 [37]	14
Tanzania Zanzibar	ZAN01	1	2015	3		3
Zimbabwe	ZWE01	1	1995		5 [37]	5
	ZWE02	1	2014		9 [37]	9
Mozambique	MOZ01	1	2015		2 [37]	2
South Africa	ZAF01-03	3	2013–2015	9	22 [40]	31
European populations						
Switzerland	CHE01	1	2013	1	2 [37]	3
Germany	DEU01	1	1998	4	2 [37]	6
	DEU02	1	2013	2	1 [37]	3
Italy	ITA01-08	8	1997	7	49 [38]	56
Greece	GRC01	1	2015		6 [37]	6
France	FRA01-03	3	2013	20	28 [37]	48
Spain	ESP01	1	2013		3 [37]	3
Portugal	PRT01-06	6	2013	1	12 [37]	13

(Continued)
All maps depicting sampling locations were generated and used QGIS software [42] and derived from open source layers OSM and the world border country polygon shapefile freely available from https://github.com/petewarden/openheatmap/tree/master/mapfileprocess/test_data/TM_WORLD_BORDERS-0.3.

Maternal lineage identification using mtDNA tRNA\textsubscript{Leu}-cox2 PCR-RFLP

Total DNA was extracted from legs of one honey bee per colony as described in [37]. Ancestral evolutionary lineage was determined using the rapid and standardized PCR-RFLP on the tRNA\textsubscript{Leu}-cox2 intergenic region [43]. Amplification employed E2 and H2 primers [14]. Then enzymatic digestion using DraI was performed following manufacturer recommendations (Promega). tRNA\textsubscript{Leu}-cox2 amplified, and restriction fragments were visualized on 4% agarose gels and recorded. All restriction profiles detected were already described in \textit{A. mellifera} populations, easing their identification.

Table 1. (Continued)

Pacific insular population	Site	# of sites	Sampling date	\(N \) de novo	Dataset \(\mu \)sat & tRNA\textsubscript{Leu}-cox2	Dataset tRNA\textsubscript{Leu}-cox2	Total
Tahiti	TAH01	1	2013	12	2,263	1,528	398
							12

https://doi.org/10.1371/journal.pone.0189234.t001

Fig 1. A) Geographical distribution of honey bee sampling sites in Africa, Europe, and islands of the southwest Indian Ocean (SWIO) and B) Geographic location of the Mascarene, Seychelles, and Comoros Archipelagos with respect to Madagascar. Sample locations are represented by circles. Approximate distributions of five evolutionary lineages of the Western honey bee (A, C, M, O and Y) are delimited by dashed lines. White stars showed the location of the two far-eastern subspecies, \textit{A. m. pomonella} [24] and \textit{A. m. sinisxinyuan} [27]. Map layer from the open source, OpenStreetMap.

https://doi.org/10.1371/journal.pone.0189234.g001
Genotyping of workers using microsatellites

All DNA samples were amplified using multiplex PCR reactions with 14 microsatellite loci: A113, A24, AP55, A88, A28, A29, AP289, AP273, (A)B124, A8, A35, AP33, AP66, and AP43 [44–47]. Multiplex composition, PCR reactions, and genotype scoring employed the same conditions used for the comparative microsatellite dataset from the Rodrigues [39], Madagascar [40] and Seychelles populations [38]. An individual was considered adequately genotyped when ≥ 60% of multilocus genotyping was successful. Potential genotyping errors were checked using MICRO-CHECKER 2.2.3 [48].

Population genetic analysis

Genetic diversity was analyzed at both fine and coarse scales by considering different population levels with at least five individuals per apiary. Intra-island/country genetic variation was estimated using each site as a population unit (398 sites) while inter-insular/continental analysis considered all sites from the same island/country (11 islands and 21 countries). Null allele frequency per locus (A\textsubscript{null}) was estimated for each population unit with FREENA [49]. The mean number of alleles (N\textsubscript{all}), observed heterozygosity (H\textsubscript{obs}), unbiased expected heterozygosity (H\textsubscript{ub}), and F\textsubscript{IS} per population unit were estimated using GENETIX 4.05 [50]. Distributions of alleles within and among insular and continental populations was calculated using ADZE [51]. Allelic richness was computed and tested with R and the PopGenReport package [52] using the rarefaction method (for each island/country with a minimum of 6 diploid individuals). Population unit pairwise F\textsubscript{ST}S were estimated using FSTAT 2.9.3.2 software [53]. GENEPOP 3.4 was used to test deviation from Hardy-Weinberg (HW) equilibrium and genetic differentiation between population pairs [54]. Regarding comparisons among pairs of insular and continental populations, only French sites were kept as separated populations due i) to divergence of mtDNA and ii) the nuclear background shown by significant F\textsubscript{ST} values.

Principal Component Analysis (PCA) was used to further explore genetic differentiation between populations, using R 3.0.2 software [55] and adegenet 1.3–9.2 package [56]. Genetic structure among populations was additionally investigated using STRUCTURE 2.3.3 [57]. A total of 106 simulations using 105 burn-in steps and MCMC (Markov Chain Monte Carlo algorithm) steps were run for all samples (N = 4,388) simultaneously, considering a K interval [1–30] with ten iterations each. The optimal number of clusters was estimated using the ΔK method of Evanno [58]. In parallel, INSTRUCT software [59], which takes into account inbreeding, was run with the same parameters to confirm results from STRUCTURE. Discriminant Principal Components Analysis (DAPC) was also used to support population structure results [60]. Subsequent runs were performed to evaluate intra-island structure in i) La Réunion sites (N = 2,050), ii) Mauritius (N = 367), iii) islands of the Comoros Archipelago (N = 120) and iv) continental populations (N = 263). STRUCTURE HARVESTER [61], CLUMPP [62] and DISTRUCT 1.1 [63] were used to develop the graphical output.

Results

Full sample details including sampling geo-coordinates, multilocus genotypes using the mtDNA tRNALeu-cox2 intergenic region, and 14 loci microsatellites are available in S1 Table.

Distribution of mitochondrial evolutionary lineages

Successful analysis of the tRNALeu-cox2 intergenic region identified 19 restriction profiles in 4,252 colonies from SWIO, Africa, Europe, and Tahiti honey bee populations. The African
lineage was characterized by A1, A4, A6, A11, A14, A16, A48, A49, A50, A51, Z2 and Z7 profiles while the European M lineage was distinguished by M3, M4, M6, M7, M7’ and M65. On gels, C1 and C2 profiles were difficult to discriminate (1bp difference), so those were coded as C1/C2, but both indicated the European C lineage.

In the SWIO, the distributions and proportions of honey bee mtDNA evolutionary lineages were similar to those reported previously based upon smaller sampling [37]. In Madagascar, Mahé, Praslin, La Digue, Grande Comore, Mohéli, Anjouan and Mayotte, all colonies had tRNA^{Leu}-cox2 DraI profiles characteristic of the African lineage. The Mascarenes Archipelago was the only region in the SWIO to exhibit three different lineages: i) in La Réunion, 95.5% lineage A, 4.3% C, and 0.3% M; ii) in Mauritius, 54.2% A, 44.7% C and 1.1% M; iii) in Rodrigues, 100% C. Proportions of evolutionary lineages formerly reported for the Mascarenes using tRNA^{Leu}-cox2 sequencing (N = 130 for La Réunion and N = 239 for Mauritius [37]) was largely confirmed, despite a massive difference in sample size (N = 2,050 for La Réunion and N = 367 for Mauritius). As for continental populations, distribution of tRNA^{Leu}-cox2 restriction profiles shifted from A maternal lineages in African colonies to M and C maternal lineages in European colonies (Table 2).

Nuclear genetic diversity in insular and continental honey bee populations

All samples (N = 4,388) were considered successfully genotyped (with less than 40% missing data). Preliminary analysis showed negligible low null allele frequencies for all insular and continental populations listed in Table 2 (site details are given in S2 Table). The asymptotic trend observed in allele accumulation curves may indicate that the majority of alleles at the 14 studied microsatellites loci were captured in the La Réunion and Mauritius populations (S3 Fig). The mean number of alleles per site (n ≥ 5) showed that African and Mascarenes honey bees have the highest genetic diversity of the populations tested (Fig 2A). However, when looking more closely at La Réunion and Mauritius populations, the mean number of alleles seems to be related to site sampling size (S4 Fig). Allelic richness using rarefaction was more appropriate to confirm this pattern due to the sample size difference. The SWIO insular population allelic richness was not significantly different from continental European populations, but was significantly lower than continental African ones. This lower allelic richness was likewise observed for another insular population in São Tomé (Ar = 2.94 ± 0.71). In the Mascarenes Archipelago, only La Réunion (Ar = 3.18 ± 0.71) and Rodrigues (Ar = 3.09 ± 0.67) displayed allelic richness levels comparable to those of the Cameroon and Malawi populations (Fig 3).

Heterozygosity levels in the SWIO islands were heterogeneous regardless of sample size (Fig 2B, S2 Table). Compared to Madagascar (41.4% heterozygosity), La Réunion (66.7%) and Rodrigues (64.8%) possessed the highest levels of heterozygosity in the SWIO area. Among the three archipelagos, the Comoros Archipelago displayed lower heterozygosity (Table 2). F_{IS} ranged from -0.082 to 0.110 at La Réunion sites and from -0.118 to 0.059 on Mauritius. Only 21 sites among the 127 for La Réunion and two of the 31 for Mauritius showed significant departures from Hardy-Weinberg equilibrium. When considering island- or nationwide populations, significant disequilibrium was detected for La Réunion (F_{IS} = 0.015), Mauritius (F_{IS} = 0.067), Madagascar (F_{IS} = 0.055), Zimbabwe (F_{IS} = 0.056), and South Africa (F_{IS} = 0.015). Significant departures from Hardy-Weinberg equilibrium were detected in France (F_{IS} = 0.126) and Germany (F_{IS} = 0.107) (see Fig 1 for relative geographic distance).
Table 2. Evolutionary lineage occurrence and microsatellite genetic diversity indices in each insular and continental honey bee population. For each DraI restriction profile of the mtDNA tRNA-Leu-cox2 amplified fragment (P₀Q, P₀QQ, P₁QQQ, PQ, PQQ and Q length), corresponding evolutionary lineages (A, M, C) are detailed. \(N_{\mu} \text{sat} \): number of successfully genotyped workers; \(N_{\mu} \text{all} \): number of individuals with tRNA-Leu-cox2 region missing data, \(H_{\text{obs}} \): mean number of alleles; \(A_{\text{null}} \): mean null allele frequency.

	A				B																				
	A1	A48	A49	Z7	A4	A6	A50	A51	Z2	A11	A14	A16	M3	M6	M4	M65	M7	M7'	C1/C2	NA	tRNALeu-ccox2	\(N_{\mu} \)sat	\(N_{\mu} \)all	\(H_{\text{obs}} \)	\(A_{\text{null}} \)
SWIO islands:																									
Madagascar		850	2	3																					
La Réunion		1886	5																						
Mauritius		196	2	1																					
Rodrigues						468	56																		
Mahé		81																							
Praslin		75	4																						
La Digue		45	4																						
Grande Comore		29																							
Mohéli		11																							
Anjouan		45																							
Mayotte		35																							
Africa:																									
Egypt		2																							
Senegal		2																							
São Tomé Island		10	1																						
Chad		2	1																						
CAF		6	5																						
Cameroon		3	2																						
Gabon		2	1																						
Uganda		1																							
Malawi		5																							
Mozambique		2																							
Tanzania		10	4																						
Zanzibar		3																							
Zimbabwe		14																							
South Africa		2	25	1																					
Europe:																									
Switzerland		2	1	3																					
Germany		9																							
Italy		6	19	1	30																				
Greece		6																							
France		6	20	3	4	15																			
Spain		2																							
Portugal		2																							
Pacific island:		7	1	3																					
Tahiti		7																							
Total	3,288	2	2	2	74	1	2	1	8	9	1	3	6	6	25	3	30	6	783	136	4,388				

https://doi.org/10.1371/journal.pone.0189234.t002
Microsatellites detected population structure in the native continental range

Preliminary pairwise F_{ST} analysis between sites from the same continental countries are shown in S3 Table. Significant population differentiation was detected among African and European populations, but also among European pairs. The independent STRUCTURE analysis carried only on continental individuals suggested that the best model was $K = 3$ genetic clusters (S5A Fig) with a $\Delta K = 1959.5$ (S5B and S5C Fig). Observed population structure within Africa and Europe matched earlier descriptions [12, 16, 64, 65] and expected distribution lineages (Fig 1).

One genetic cluster exists in La Réunion, but Mauritius has two

In La Réunion, low pairwise F_{ST} values between sites (from 0.004 to 0.034) were detected, but only 48 pairs out of 3,655 (considering $n \geq 5$) were significantly different ($P < 0.00037$). Among these significant pairs, 25 involved two sites from remote environments located in a geological cirque (REU126 and 124). Bayesian clustering (STRUCTURE and INSTRUCT) and multivariate methods detected no genetic structuration among honey bee samples from La Réunion. Low pairwise F_{ST} values were also detected in Mauritius, but it had two genetic clusters. 48 pairs out of 3,625 (considering $n \geq 5$) were significantly different ($P < 0.00037$). These significant pairs were also detected using Bayesian clustering (STRUCTURE and INSTRUCT) and multivariate methods.
Réunion (N = 2,050) (Fig 4A). Indeed when increasing the number of assumed genetic clusters (K), an individual had similar probability of being assigned to any group (S6 Fig).

On the other hand, pairwise F_{ST} values reached much higher levels in Mauritius (-0.022 to 0.201) and 32 pairs out of the 120 were significant, including 19 involving MUS20 and 21 (same beekeeper) paired with other apiaries ($P < 0.00048$) (more details in S4 Table). The STRUCTURE model considering two clusters was the most likely ($\Delta K = 753.2$) [58] (S7 Fig). When comparing nuclear diversity to mtDNA and location data, one might see that structure was most likely linked to the presence of African or European lineage in each sampling site from Mauritius (Fig 4B). The pattern also indicated presence of “hybrid” as some individuals presenting African lineage mtDNA haplotypes were assigned (through a gradient of probabilities) to the same nuclear cluster as European C lineage individuals. The reciprocal situation was also true. Considering a probability threshold of 50%, 70.3% of the colonies from Mauritius were assigned to cluster 1 and the rest of cluster 2 (Fig 4B). Among the 109 colonies assigned to cluster 2, i) 105 showed mtDNA tRNALeu-cox2 characteristic of the European C lineage and ii) 83 of these colonies belonged to sites MUS20 and 21 (same beekeeper, Fig 4B).

Honey bee populations from the Comoros Archipelago are structured by island

Pairwise differentiation test using F_{ST} values within Grande Comore, Mohéli, Anjouan, and Mayotte islands could not be performed due to limited sample sizes. Nonetheless, differentiation indices among islands of the archipelago were low, but significantly differentiated (Table 3). Mohéli was not significantly differentiated from all other populations, which might reflect the smaller sample size in the SWIO (N = 11) associated with the highest null allele frequency ($A_{null} = 8.3\%$). Genetic differentiation among the Comoros islands was even visible with the distinction of four groups on PCA (Fig 5) supported by best model estimated by Bayesian clustering method ($\Delta K4 = 532.1$, Fig 4C). At K = 2, individuals from Grande Comore...
and Mohéli were clustered together while Anjouan and Mayotte were assigned to the same genetic group (except one individual in Anjouan) (S8 Fig). At K = 3, individuals sampled from Anjouan were all assigned to a distinct genetic cluster. Finally, at K = 4, an intra-archipelago structure emerged as each of the four islands possessed a private genetic cluster with an exception for one individual from Anjouan (60.7% to cluster Mohéli and 36.7% to cluster Anjouan).

Fig 4. Different structuration patterns at A) La Réunion, B) Mauritius, and C) Comoros Archipelago populations in regard to maternal origin. STRUCTURE bar plots based on 14 microsatellite loci. For each optimal K model, individual probability of assignment to a genetic cluster is indicated by the height of the bar. In La Réunion and Mauritius, sites are separated by black lines and are ordered from REU001 to REU127, and MUS01 to MUS31. For the Comoros Archipelago, only islands are delimited by black lines. Individual evolutionary lineage identification based on trNALeu-cox2 intergenic region DraI test is presented at the top.

https://doi.org/10.1371/journal.pone.0189234.g004
Global dataset structure analysis showed genetic distinction between SWIO and outgroup populations

The complexity of honey bee phylogeography in the SWIO was represented in the Fig 6 by STRUCTURE bar plots and distribution of the detected genetic clusters. For the Bayesian method, the uppermost value of K (K = 2) was not coherent with results of other analyses such as PCA (Fig 5B), DAPC, or with STRUCTURE runs computed on each island. To avoid interpretation problems, the choice of K followed recommendation for such case [66] by considering the Ln(K) standard deviation (S9 Fig). DAPC method gave similar results that are available in supplemental S10 and S11 Figs. Here, we concluded that K = 5 is the most appropriate model based upon the present sampling.

Considering a probability threshold of 70%, at K = 5, colonies sharing same African mtDNA haplotypes in Madagascar, La Réunion, Mauritius, and Seychelles were assigned to different genetic clusters (Fig 6B). At K = 5, Mascarenes Archipelago colonies were grouped by island i) 84.0% of La Réunion in red cluster 3, ii) 54.8% of Mauritius in green cluster 5 and iii) 99.6% of Rodrigues colonies assigned to blue cluster 1. As SWIO reference, 99.4% of Madagascar colonies clustered to yellow cluster 2. Mauritius shared a nuclear genetic diversity (alleles) with Seychelles colonies mostly assigned to the same cluster (96.4% to green cluster 5 for Mahé, Praslin, La Digue confounded). Compared to all other populations, Mauritius presented the most mixed population with four clusters (Fig 6). Global STRUCTURE analysis showed
Fig 6. Western honey bee populations from southwest Indian Ocean islands are genetically structured both at global and local scales. A) Geographic distribution of the five genetic clusters (K = 5) using an assignment probability threshold ≥ 70%. B) Global STRUCTURE bar plots are presented for K = 2 to 8, based on 4,388 honey bees. No prior location information was given to the Bayesian clustering analysis. SWIO islands are separated by black lines and delimitation for continental outgroups is by country. Maternal origin of each individual (evolutionary lineage A, C, or M) as determined by the tRNA^Leu^−cox2 DraI test is presented in the upper bar plots.

https://doi.org/10.1371/journal.pone.0189234.g006
that one Mauritius cluster is highly similar to individuals from Europe and Rodrigues. Finally, the Comoros Archipelago presented an interesting mixture of cluster 4 (pink) derived mainly from continental Africa and cluster 2 mainly found in Madagascar. A geographic paradox appeared as 100% of the colonies from the most distant island to Madagascar, Grande Comore, was assigned to the same cluster. This SWIO island structure was also supported by significant differentiation estimated by pairwise significant F_{ST} values, but still lower than those of the continents (Table 3). In addition, PCA (Fig 5) showed that SWIO island point scatters were all distinct apart for the case of Mauritius overlapping with several populations.

The global population structure view and the progressive increment of K allow to show multiple conclusions: i) Madagascar honey bees were genetically distinct from continental African colonies, ii) La Réunion bees differentiated early from Madagascar genetic group, iii) Mauritius and Seychelles bees share a genetic background with La Réunion, but were still differentiated, iv) the second intra-cluster found on Mauritius was associated to one European cluster, v) Comoros Archipelago bees share a genetic background with continental African populations and Madagascar, but still formed a different population, and vi) Rodrigues shares a genetic background with European populations, yet formed a new population, unlike Tahiti.

Discussion

This study shows that honey bee (*A. mellifera*) populations established in the Mascarenes and Comoros archipelagos present high nuclear microsatellite polymorphism for insular populations. Despite having generally similar African mtDNA backgrounds, different levels of nuclear genetic differentiation were apparent within and between archipelagos. No genetic structure was found at La Réunion, while in Mauritius, genetic data indicated the coexistence of two clusters. Both populations have a close relationship to Madagascar honey bees rather than to native African continental populations. Ongoing hybridization between African and European lineages was evident in Mauritius.

In the SWIO, several insular populations occur, and each one possesses a singular genetic pattern in terms of evolutionary lineages and nuclear genetic diversity and structure. Such a complex evolutionary pattern will need to be broken down for each island, in the future.

The Comoros Archipelago as a contact area between Africa and Madagascar

Comoros Archipelago honey bee colonies analyzed are exclusively descended from African lineages, and more particularly the mitochondrial A1 sub-lineage observed both in Madagascar and the main part of Africa [15, 37, 40]. The previous sequencing of two mtDNA non-coding and coding regions showed that Comoros honey bees mainly share a common haplotype with *A. m. unicolor* in Madagascar, but also exhibit a private haplotype [37]. These colonies also display shared nuclear alleles with Madagascar and African continental populations, putting them in an intermediate position. The Comoros Archipelago is equidistant between Africa and Madagascar (300 km) and could represent an exchange pathway between landmasses.

Each island possesses specific genetic clusters clearly differentiated from the closest neighboring island. Such a pattern is not surprising for insular honey bee populations, as it has been previously reported for the Seychelles [38] and other archipelagos, such as the Canary Islands [67], Madeira Islands, and the Azores [68, 69]. The four Comoros islands are separated by an oceanic barrier of approximately 40 km (Grande Comore—Mohéli) to 190 km (Grande Comore—Mayotte), which may have been sufficient to restrict gene flow among the islands. Genetic structure within the archipelago also suggests no recent human-mediated introductions of honey bees from neighboring islands. Unlike the Seychelles Archipelago, beekeeping
Table 3. Pairwise F_{ST} values among SWIO islands, and populations of African and European countries ($N > 5$), based on 14 microsatellites. For each island or country, individuals from all sample sites were pooled, except for the three sites in France. Non-significant F_{ST} values are indicated in bold (after Bonferroni corrections with $P < 0.000084$).

| | MDG | REU | MUS | ROD | MAH | PRA | DIG | GCO | MOH | ANJ | MYT | STP | CAF | CMR | MWI | TZA | ZWE | ZAF | DEU | ITA | GRC | FRA01 | FRA02 | FRA03 | PRT |
|--------|
| MDG | 0.14| |
| REU | 0.11| 0.04| |
| MUS | 0.36| 0.11| 0.19| |
| ROD | 0.16| 0.04| 0.03| 0.18| |
| MAH | 0.16| 0.07| 0.05| 0.20| 0.05| |
| PRA | 0.14| 0.07| 0.04| 0.23| 0.05| 0.01| | | | | | | | | | | | | | | | | | | |
| DIG | 0.12| 0.16| 0.15| 0.30| 0.20| 0.21| 0.22| | | | | | | | | | | | | | | | | | |
| GCO | 0.25| 0.15| 0.18| 0.25| 0.19| 0.24| 0.25| 0.17| | | | | | | | | | | | | | | | | |
| MOH | 0.25| 0.19| 0.22| 0.30| 0.22| 0.26| 0.17| 0.14| 0.30| 0.34| 0.38| | | | | | | | | | | | | | |
| ANJ | 0.36| 0.25| 0.33| 0.34| 0.36| 0.37| 0.37| 0.30| 0.34| 0.35| 0.36| | | | | | | | | | | | | | |
| MYT | 0.46| 0.27| 0.29| 0.34| 0.36| 0.37| 0.37| 0.30| 0.34| 0.35| 0.36| | | | | | | | | | | | | | |
| STP | 0.38| 0.17| 0.25| 0.20| 0.25| 0.29| 0.29| 0.14| 0.27| 0.31| 0.12| | | | | | | | | | | | | | |
| CAF | 0.33| 0.16| 0.22| 0.19| 0.22| 0.25| 0.26| 0.13| 0.22| 0.27| 0.12| | | | | | | | | | | | | | |
| CMR | 0.38| 0.19| 0.22| 0.20| 0.26| 0.29| 0.28| 0.16| 0.26| 0.29| 0.11| | | | | | | | | | | | | | |
| MWI | 0.34| 0.16| 0.21| 0.20| 0.22| 0.24| 0.25| 0.13| 0.22| 0.25| 0.14| | | | | | | | | | | | | | |
| TZA | 0.34| 0.16| 0.22| 0.18| 0.22| 0.24| 0.24| 0.14| 0.22| 0.24| 0.12| | | | | | | | | | | | | | |
| DEU | 0.46| 0.13| 0.27| 0.07| 0.24| 0.28| 0.32| 0.30| 0.38| 0.43| 0.33| | | | | | | | | | | | | | |
| ITA | 0.49| 0.17| 0.30| 0.29| 0.32| 0.36| 0.47| 0.39| 0.44| 0.48| 0.42| | | | | | | | | | | | | | |
| GRC | 0.49| 0.17| 0.32| 0.14| 0.28| 0.34| 0.37| 0.47| 0.35| 0.41| 0.47| | | | | | | | | | | | | | |
| FRA01 | 0.48| 0.30| 0.34| 0.27| 0.37| 0.39| 0.41| 0.43| 0.38| 0.40| 0.45| | | | | | | | | | | | | | |
| FRA02 | 0.46| 0.27| 0.31| 0.24| 0.36| 0.37| 0.38| 0.33| 0.36| 0.40| 0.28| | | | | | | | | | | | | | |
| FRA03 | 0.41| 0.12| 0.23| 0.09| 0.23| 0.30| 0.36| 0.24| 0.32| 0.37| 0.25| | | | | | | | | | | | | | |
| PRT | 0.52| 0.33| 0.38| 0.30| 0.41| 0.42| 0.44| 0.46| 0.40| 0.43| 0.46| | | | | | | | | | | | | | |
| TAH | 0.51| 0.19| 0.32| 0.10| 0.30| 0.34| 0.38| 0.51| 0.42| 0.46| 0.51| | | | | | | | | | | | | | |

MDG: Madagascar, REU: La Réunion, MUS: Mauritius, ROD: Rodrigues, MAH: Mahé, PRA: Praslin, DIG: La Digue, GCO: Grande Comore, MOH: Mohéli, ANJ: Anjouan, MYT: Mayotte, STP: São Tomé, CAF: Central African Republic, CMR: Cameroon, MWI: Malawi, TZA: Tanzania, ZWE: Zimbabwe, ZAF: South Africa, DEU: Germany, ITA: Italy, GRC: Greece, FRA01-03: France and PRT: Portugal.
is not developed in the Comoros Archipelago, so human-mediated exchanges are unlikely to have occurred among the four islands.

Paradoxically, Grande Comore, the closest island to the East African coast, was the most genetically similar to Madagascar. The other three islands indicate progressive colonization and gene flow from the African coast and Madagascar, likely via island hopping, as observed for chameleons [70]. On Grande Comore, the unexpected highest proportion of individuals assigned to the Madagascar cluster, probably indicates a recent unreported human introduction.

The African honey bee genetic background predominates in La Réunion. La Réunion was dominated by *A. m. unicolor* colonies (95.2%), but mtDNA sequences characteristic of *A. m. mellifera*, *A. m. carnica*, and *A. m. ligustica* were also found. However, if multivariate analysis indicated that this population was similar to, but distinct from Madagascar, it also showed a certain proximity to European colonies. The presence of European honey bee colonies confirmed previous reports stating that introduction of exotic subspecies occurred before import prohibitions established in 1982 [71]. Unlike Rodrigues or Mauritius, from the same archipelago, no honey bees with European mtDNA differed from African colonies in their nuclear identities. Conversely no individual with African mtDNA clustered with European colonies on the basis of nuclear genetic diversity. Such patterns could result from low importation levels compared to the large African pool preexistent in La Réunion. In addition, asymmetric introgression in favor of African over European lineages is a known phenomenon in honey bees defined as Africanized [72–76]. Differences in sperm-related genes were proposed to explain this reproductive advantage of African vs. European honey bees [12].

Despite the topology of La Réunion, reaching an elevation of 3069 m [77], no genetic structure was observed across the island. This indicated that gene flow is sufficient to maintain genetic homogeneity. Exchanges between distant locations may have been facilitated by intraisland beekeeping movements following resource cycles. Beekeepers from La Réunion move their hives two or three times per year from the lowlands to the highlands, and from the humid east coast to the drier west coast, following the availability of flowering plants. Homogenization of the genetic pool by such practices has already been described in continental honey bee populations [78].

Interestingly, La Réunion has the highest proportions of African colonies and undegraded native forest habitats, estimated at 25% of the original cover [77]. This difference in environmental conditions compared to Mauritius (2% original forest cover) and Rodrigues (0%) has undoubtedly influenced the established populations. Natural selective pressures exerted on La Réunion colonies may be advantageous to tropically adapted subspecies, such as *A. m. unicolor*, more than to temperate, introduced subspecies. However, it would be interesting to investigate this in wider genomic and coding regions to determine whether this adaptation is due only to the African genome. As an example, it has recently been shown that a positive selection signal appeared in Chromosome 11 with an excess of European over African ancestry which may confer an adaptive advantage to Africanized honey bee populations found in Brazil [79].

Admixed population and recent hybridization undergoing in Mauritius. For Mauritius, the genetic composition of honey bee populations was the most complex case among all the SWIO islands, highlighting the impact of human honey bee importation. In our sampling, similar proportions of local and exotic lineages were detected. However, one apiary highly contributed to the European frequency as a beekeeper imported a huge batch of *A. m. ligustica*-like queens [41]. As in La Réunion, European lineages present on Mauritius corroborates records stating that regular introductions were carried out [41, 80]. Nuclear analysis uncovered on-going hybridization on this island between African and European genetic groups. Mixing of these two divergent lineages was revealed by cytoplasmic disequilibrium as several
individuals with *A. m. unicolor* mtDNA haplotypes were poorly differentiated and were assigned to the same genetic cluster as native European colonies, and the reverse occurred. In both mtDNA African and European colonies found in Mauritius, a continuum in nuclear assignment toward the opposite cluster suggested ongoing introgression in both directions. Such phenomena have already been reported on other European islands and between the African and European C lineage in *A. m. iberiensis* [69] and *A. m. siciliana* [81].

As at Rodrigues, C and M colonies were genetically similar to continental populations of *A. m. ligustica* and *carnica*. In Mauritius, two apiaries (MUS20 and 21) showed “pure” European colonies due to relatively recent introductions confirmed by field investigation and government reports [41]. Whether these colonies originated directly from native continental areas in Europe or were introduced from another exotic population could only be determined with wider sampling. Heavy deforestation, leaving only relicital native vegetation in Mauritius, and replacement with high proportions of exotic plants may have also influenced survival of European colonies [82, 83].

Genetic diversity and structure in the SWIO reflects island effects and influences of beekeeping practices. Geographic and climatic barriers have played an important role in the evolution of the Western honey bee (*A. mellifera*) into five lineages with up to 31 subspecies [13, 84, 85]. The divergence signal can be weak in the case of landscape continuum as for *A. m. iberiensis* [86, 87] or sharper, as in the genetic differentiation of *A. m. unicolor* from Madagascar [40]. However, a comprehensive picture of indigenous *A. mellifera* population histories may be difficult to develop due to the long relationship with humans and modern global transport of honey bee colonies [20, 21]. The occurrence of a novel mitochondrial SWIO African sub-group and private haplotypes in the Mascarenes (except Rodrigues), Comoros and Seychelles suggested ancient colonization events [37]. The larger screening of the tRNALeu–cox2 intergenic region done here in the SWIO populations confirmed that these insular populations are mainly of African origin. Since mtDNA indicates only maternal lineage, the nuclear genetic diversity observed confirmed that the SWIO islands (except Rodrigues) are more closely related to Madagascar than to any African populations. Nevertheless, the differentiation index (*F*_{ST}) values among populations (0.04–0.27 [88]) were of the same order of magnitude as in the Mascarenes (*F*_{ST} = 0.04 to 0.19) or the Comoros (*F*_{ST} = 0.14 to 0.29). Evidence of gene flow between La Réunion, Mauritius, and the Seychelles Archipelago is highlighted by global Bayesian clustering analysis. This may have resulted from past connections via the exchange of colonies, possibly during the colonial period through the route to India in the XVIII century.

Secondly, genetic differentiation among islands could be due to divergent lineages assembly. Nevertheless, in native continental areas, *F*_{ST} values among populations were ≥2x higher than among SWIO islands with different evolutionary lineages coexistence. In comparison, Rodrigues, which is likely from a European genetic background (mtDNA and microsatellites), showed differentiation values higher than the admixed population of Mauritius, La Réunion, or any other islands from the Seychelles or Comoros archipelagos. This could mean that the genetic diversity pool created by European colonies brought to La Réunion and
Mauritius might not fully explain their differentiation from other local populations. If not European, the genetic differentiation may have resulted from colonization by or introduction of African lineages. However, Madagascar was the closest native African population the SWIO islands and none of the continental African populations showed similar proximity (congruence of all analyses: PCA, STRUCTURE, and genetic differentiation test).

At the time when *A. mellifera* started to diverge throughout its native range, all islands of the SWIO were completely formed, and the Mascarenes were already colonized by angiosperms. For example, the Dombeyoideae family (∼ 25 to 35 Ma [89]) and the *Acacia heterophylla* species, visited by honey bees now, are believed to have reached the island around 1.4 Ma ago [90] from Hawaii. Consequently, these islands already possessed habitats suitable for generalist pollinators that require pollen and nectar for survival. Madagascar has been identified several times as a base for colonization and radiation into neighboring archipelagos, whether for flora [91–93] or fauna [94–97]. The relatively lower genetic diversity observed in the 11 islands of the SWIO compared to African continental populations suggested progressive colonization [9]. A loss of genetic diversity could be associated with founder events where only a sub-sample of African diversity reached Madagascar. After diversification on that island, a similar evolutionary process likely occurred in the Mascarene, Seychelles, and Comoros archipelagos. Despite being the potential source population for SWIO islands, Madagascar had lower levels of heterozygosity and alleles per locus than any other island. One hypothesis is that Madagascar colonies experienced bottleneck events, possibly due to loss and fragmentation of original habitats caused by deforestation [98]. A similar observation was made on African honey bee colonies, deforestation being identified as the major threat to wild African colonies [99]. A second possible explanation is that part of the high genetic diversity observed in the SWIO archipelago in regard to Madagascar is the result of admixture, which reduces the negative effects of a bottleneck [100] and has been shown to increase diversity levels in honey bee populations [23]. In all the SWIO archipelagos, hybridization occurred or is ongoing with dissimilar assemblies African A1-Malagasy in Comoros, African Z-Malagasy in Seychelles [38], and African-European in the Mascarenes. All these elements, combined with significant population differentiation among SWIO insular honey bee populations, seem consistent with “natural” colonization. Yet, this requires further investigation, as several factors are unknown for each of these populations, complicating interpretation.

Conclusions

Genetic diversity and structure of honey bee populations of SWIO islands suggests ancient colonization events of *A. m. unicolor* from Madagascar to the Mascarenes and Seychelles archipelagos, old enough to detect population differentiation within the sub-lineage. The use of nuclear and mitochondrial markers uncovered the presence of exotic subspecies and different levels of hybridization with indigenous populations in the archipelagos. The numerous interactions recorded between *A. mellifera* and endemic species [33, 34, 36, 101–105] with some remarkably benefits [106], stress the importance of preserving this species.

Apart from its ecological role, these populations with singular genetic diversity deserve particular attention, especially against the global loss of honey bee colonies [107–109]. Now that whole-genome sequencing has become more affordable, it would be interesting to investigate the effects of hybridization between African and European lineages in the SWIO islands using a genomic approach. Such data could offer better resolution for estimating times of divergence and would allow us to better retrace the demographic history of these insular populations.
Supporting information

S1 Fig. Distribution of honey bee colony sampling sites in Madagascar, and the Seychelles and Mascarenes archipelagos. First line and from left to right: Geographic positions of 127 sampling sites from La Réunion, 31 from Mauritius, and 20 from Rodrigues in the Mascarenes Archipelago. Second line and from left to right: Geographic positions of the 81 sampling sites from Madagascar, 43 sites in the Seychelles Archipelago with 22 sites from Mahé, 16 from Praslin, and 5 sites from La Digue. N = Number of honey bee colonies sampled by island. Layer used for QGIS map is Open Street Map. Sampling † from (39), * (40), ** (38).

(TIF)

S2 Fig. Distribution of honey bee colony sampling sites in the four islands of the Comoros Archipelago.

(TIF)

S3 Fig. Sampling effort represented by allele accumulation curves for 14 microsatellite loci in La Réunion, Mauritius, and the Comoros Islands, compared to other insular and continental populations. (A) Overall sampling size scale and (B) comparative lower scale. Only the three largest continental populations of Italy, France, and South Africa are represented to increase readability.

(TIF)

S4 Fig. Mean number of alleles per locus (14 microsatellites) within La Réunion and Mauritius (sites with \(n \geq 5 \)).

(TIF)

S5 Fig. European and African samples are good representative outgroups for native honey bee populations structured using the distribution of mtDNA lineages. A) STRUCTURE bar plots (K = 2 to 5) for 263 honey bee colonies sampled in Africa and Europe, inferred from 14 microsatellite loci. Each vertical line represents the posterior assignment probability of a single individual to one or more genetic clusters (one color). Sites are separated by black lines. Maternal origin for each individual (evolutionary lineage A, C or M) defined by the DraI test on the COI-COII intergenic region is presented at the top. B) Average likelihood of runs in STRUCTURE L(K) along with number of K clusters for African and European sites. C) \(\Delta K \), estimator of the optimal number of clusters (K) according to Evanno et al. (58). The two graphs were created using Structure Harvester (61).

(TIF)

S6 Fig. Absence of population structure in the 2,050 honey bee colonies sampled from 127 sites at La Réunion, based on 14 microsatellite loci. A) STRUCTURE bar plots at K = 2, B) Average likelihood of runs in STRUCTURE L(K) along with number of clusters (K) for La Réunion. C) \(\Delta K \), estimator of the optimal number of clusters (K) according to Evanno et al. (58).

(TIF)

S7 Fig. Coexistence of two genetic clusters and hybrid honey bees in Mauritius (N = 367), based on 14 microsatellite loci. A) STRUCTURE bar plots at K = 2 and 3. Sites are separated by black lines and are ordered from MUS01 to 31. Maternal origin (top) for each individual (evolutionary lineage, A, C, or M) defined by the DraI test on the COI-COII intergenic region. B) Average likelihood of runs in STRUCTURE L(K) with the number of K clusters for Mauritius. C) \(\Delta K \), estimator of the optimal number of clusters (K) according to Evanno et al. (58).

(TIF)
S8 Fig. Genetic structure of honey bee populations from islands in the Comoros Archipelago, inferred from 14 loci microsatellites. A) STRUCTURE bar plots from $K = 2$ to 5. All colonies had haplotypes from the COI-COII intergenic region characteristic of the African evolutionary lineage. B) Average likelihood of runs in STRUCTURE $L(K)$ along with number of K clusters for Comoros Archipelago. C) ΔK, estimator of the optimal number of clusters (K) according to Evanno et al. (58).

(TIF)

S9 Fig. A) Average likelihood of runs in STRUCTURE $L(K)$ along with number of K clusters for global STRUCTURE based on 4,388 honey bees Comoros Archipelago (Fig 6). B) ΔK, estimator of the optimal number of clusters (K) according to Evanno et al. (58).

(TIF)

S10 Fig. DAPC barplots of the Western honey bee populations from southwest Indian Ocean islands at global scale. DAPC bar plots are presented for $K = 3$ to 8, based on 4,388 honey bees.

(TIF)

S11 Fig. Relationship among the different genetic clusters computed using DAPC approach on 4,388 samples of the Western honey bee. Colors of the different clusters correspond to the S10 Fig.

(TIF)

S1 Table. Complete sample database, including sample IDs, location coordinates, mtDNA COI-COII DraI profiles, and multi-locus genotypes determined at 14 microsatellite loci.

(XLSX)

S2 Table. Mitochondrial COI-COII intergenic region diversity (based on DraI restriction profiles) and nuclear diversity indices for each SWIO, African, and European sampling site. N: number of colonies per site; $N_{COI-COII}$: number of individuals with missing COI-COII data; N_{all}: mean number of alleles; H_{obs} and H_{nev}: unbiased expected and observed heterozygosity, respectively; F_{IS} (* significant at $P < 0.05$) and A_{null}: mean allele null frequency.

(DOCX)

S3 Table. Pairwise F_{ST} values among sites from Zimbabwe (ZWE), France (FRA), and Italy (ITA) with $N \geq 5$, based on 14 microsatellites. After Bonferroni corrections, permutations tests were only significant among French sites (in bold $P < 0.000549$). Colors as in Table 3.

(DOCX)

S4 Table. Pairwise F_{ST} values among sites at Mauritius Island with $N \geq 5$ based on 14 microsatellites. Statistical significance for the permutation tests after Bonferroni corrections is indicated in bold ($P < 0.000476$). Colors as in Table 3.

(DOCX)

Acknowledgments

We thank Thomas François for his help in sampling at La Réunion. We also greatly thank Rémy Baudin of the ADARA, Pascal Rousse, Brice Tocko, Maulid W. Mwatawala, Fabian Pilet, Nicolas Odaglia, Yves Leconte, Pierre Franck, Jérémy Bouyer, Fani Hatjina, Leila Beilhe and the beekeeper of Bemilevei for providing African and European samples. Great thanks to Hamza Abdou Azali for collecting Comoros samples, Antoine Franck for several samples in Mayotte, and Olivier Esnault for additional samples from Mauritius and the Seychelles. We are also grateful to the beekeepers of southwest Indian Ocean islands for their participation in this
study. We warmly thank both entomological teams of Mauritius and Rodrigues and the Seychelles Agricultural Agency for helping in sampling in the Seychelles archipelago. We wish to thank Steve D. Aird, OIST technical editor, for his time and detailed comments on an earlier version of the manuscript. We thank the editor and two reviewers for their thorough review and constructive comments, which helped us to improve the manuscript.

Author Contributions

Conceptualization: Johanna Clémencet, Hélène Delatte.

Data curation: Maéva Angélique Techer, Christophe Simiand, Patrick Turpin, Bernard Reynaud, Hélène Delatte.

Formal analysis: Maéva Angélique Techer, Hélène Delatte.

Funding acquisition: Johanna Clémencet, Bernard Reynaud, Hélène Delatte.

Investigation: Maéva Angélique Techer, Johanna Clémencet, Christophe Simiand, Patrick Turpin, Lionel Garnery, Hélène Delatte.

Methodology: Maéva Angélique Techer, Johanna Clémencet, Lionel Garnery, Hélène Delatte.

Project administration: Bernard Reynaud, Hélène Delatte.

Resources: Bernard Reynaud, Hélène Delatte.

Supervision: Johanna Clémencet, Lionel Garnery, Bernard Reynaud, Hélène Delatte.

Validation: Maéva Angélique Techer, Johanna Clémencet, Christophe Simiand, Patrick Turpin, Lionel Garnery, Hélène Delatte.

Visualization: Maéva Angélique Techer, Hélène Delatte.

Writing – original draft: Maéva Angélique Techer, Johanna Clémencet, Christophe Simiand, Patrick Turpin, Lionel Garnery, Bernard Reynaud, Hélène Delatte.

Writing – review & editing: Maéva Angélique Techer, Johanna Clémencet, Christophe Simiand, Patrick Turpin, Lionel Garnery, Bernard Reynaud, Hélène Delatte.

References

1. Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, et al. A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences. 2009; 106(23):9322–7.

2. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000; 403(6772):853–8. https://doi.org/10.1038/35002501 PMID: 10706275

3. Triantis KA, Economo EP, Guilhaumon F, Ricklefs RE. Diversity regulation at macro-scales: species richness on oceanic archipelagos. Global Ecology and Biogeography. 2015; 24(5):594–605.

4. Losos JB, Ricklefs RE. Adaptation and diversification on islands. Nature. 2009; 457(7231):830–6. https://doi.org/10.1038/nature07893 PMID: 19212401

5. Warren BH, Simberloff D, Ricklefs RE, Aguillé R, Condamine FL, Gravel D, et al. Islands as model systems in ecology and evolution: prospects fifty years after MacArthur—Wilson. Ecology Letters. 2015; 18(2):200–17. https://doi.org/10.1111/ele.12398 PMID: 25560682

6. Emerson B. Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Molecular Ecology. 2002; 11(6):951–66. PMID: 12030975

7. Latter BDH. THE ISLAND MODEL OF POPULATION DIFFERENTIATION: A GENERAL SOLUTION. Genetics. 1973; 73(1):147–57. PMID: 4687659

8. Frankham R. Do island populations have less genetic variation than mainland populations? Heredity. 1997; 78(3):311–27.
9. Shaw KL, Gillespie RG. Comparative phylogeography of oceanic archipelagos: Hotspots for inferences of evolutionary process. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113(29):7986–93. https://doi.org/10.1073/pnas.1601078113 PMID: 27432948
10. Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. Global biodiversity conservation: the critical role of hotspots. Biodiversity hotspots: Springer; 2011. p. 3–22.
11. Cheke A. The timing of arrival of humans and their commensal animals on Western Indian Ocean oceanic islands. Phelsuma. 2010; 18:38–69.
12. Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, et al. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics. 2014; 46(10):1081–8. https://doi.org/10.1038/ng.3077 PMID: 25151355
13. Ruttner F. Biogeography and taxonomy of honeybees. Verlag: Springer; 1988. 284 p.
14. Garnery L, Cornuet J-M, Solignac M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Molecular Ecology. 1992; 1(3):145–54. PMID: 1364272
15. Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, et al. Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity. 2001; 86(Pt 4):420–30. PMID: 11520342
16. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, et al. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science. 2006; 314(5799):642–5. https://doi.org/10.1126/science.1132772 PMID: 17068261
17. Han F, Wallberg A, Webster MT. From where did the Western honeybee (Apis mellifera) originate? Ecology and Evolution. 2012; 2(8):1949–57. https://doi.org/10.1002/eev3.312 PMID: 22957185
18. Cridland JM, Tsutsui ND, Ramirez SR. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera. Genome Biology and Evolution. 2017; 9(2):457–72. https://doi.org/10.1093/gbe/evx009 PMID: 28164223
19. Alburaki M, Bertrand B, Legout H, Moulin S, Alburaki A, Sheppard WS, et al. A fifth major genetic group among honeybees revealed in Syria. BMC Genetics. 2013; 14(1):10 p.
20. Bloch G, Francoy TM, Wachtel I, Panitz-Cohen N, Fuchs S, Mazar A. Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107(25):11240–4. https://doi.org/10.1073/pnas.1003265107 PMID: 20534519
21. Roffet-Salque M, Regert M, Evershed RP, Outram AK, Cramp LJE, Decavallas O, et al. Widespread exploitation of the honeybee by early Neolithic farmers. Nature. 2015; 527(7577):226–30. https://doi.org/10.1038/nature15757 PMID: 26560301
22. Meixner MD, Costa C, Kryger P, Hatjina F, Bouga M, Ivanova EN, et al. Conserving diversity and vitality for honey bee breeding. Journal of Apicultural Research. 2010; 49(1):85–92.
23. Harpur BA, Minasi S, Kent CF, Zayed A. Management increases genetic diversity of honey bees via admixture. Molecular Ecology. 2012; 21(18):4414–21. https://doi.org/10.1111/j.1365-294X.2012.05614.x PMID: 22564213
24. Sheppard WS, Meixner MD. Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie. 2003; 34(4):367–75.
25. Sheppard WS, Arias MC, Grech A, Meixner MD. Apis mellifera ruttneri, a new honey bee subspecies from Malta. Apidologie. 1997; 28(5):287–93.
26. Meixner MD, Pinto MA, Bouga M, Kryger P, Ivanova E, Fuchs S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. Journal of Apicultural Research. 2013; 52(4):1–27.
27. Chen C, Liu Z, Pan Q, Chen X, Wang H, Guo H, et al. Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisinixyuan n. ssp. Molecular Biology and Evolution. 2016; 33(5):1337–48. https://doi.org/10.1093/molbev/msw017 PMID: 26823447
28. Meixner MD, Leta MA, Koeniger N, Fuchs S. The honey bees of Ethiopia represent a new subspecies of Apis mellifera—Apis mellifera simensis n. ssp. Apidologie. 2011; 42(3):425–37.
29. Engel MS. The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). Journal of Hymenoptera Research. 1999; 8(2):165–96.
30. Ilyasov RA, Poskryakov AV, Nikolenko AG. New SNP markers of the honeybee vitellogenin gene (Vg) used for identification of subspecies Apis mellifera mellifera L. Russian Journal of Genetics. 2015; 51(2):163–8.
31. Alqarni AS, Hannan MA, Oways AA, Engel MS. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttn): Their natural history and role in beekeeping. ZooKeys. 2011; 134:83–98.
32. Douglass K, Zinke J. Forging ahead by land and by sea: Archaeology and paleoclimate reconstruction in Madagascar. African Archaeological Review. 2015; 32(2):267–99.

33. Pailler T, Maurice S, Thompson JD. Pollen transfer patterns in a distylous plant with overlapping pollen—size distributions. OIKOS. 2002; 99(2):308–16.

34. Hansen DM, Olesen JM, Jones CG. Trees, birds and bees in Mauritius: exploitative competition between introduced honey bees and endemic nectarivorous birds? Journal of Biogeography. 2002; 29(5–6):721–34.

35. Kaiser-Bunbury CN, Traveset A, Hansen DM. Conservation and restoration of plant–animal mutualisms on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics. 2010; 12(2):131–43.

36. Finger A, Kettle CJ, Kaiser-Bunbury CN, Valentín T, Doudee D, Matatiken D, et al. Back from the brink: potential for genetic rescue in a critically endangered tree. Molecular Ecology. 2011; 20(18):3773–84. https://doi.org/10.1111/j.1365-294X.2011.05228.x PMID: 21883581

37. Techer MA, Clémencet J, Simiand C, Sookar P, Hamza AA, Reynaud B, et al. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genetics. 2017; 18(1):53. https://doi.org/10.1186/s12863-017-0520-8 PMID: 28577537

38. Techer MA, Clémencet J, Simiand C, Portlouis G, Reynaud B, Delatte H. Genetic diversity of the honeybee (Apis mellifera L.) populations in the Seychelles archipelago. Insect Conservation and Diversity. 2016; 9(1):13–26.

39. Techer MA, Clémencet J, Turpin P, Volbert N, Reynaud B, Delatte H. Genetic characterization of the honeybee (Apis mellifera L.) population of Rodrigues Island, based on microsatellite and mitochondrial DNA. Apidologie. 2015; 46(4):445–54.

40. Rasolofoarivao H, Clémencet J, Techer M, Ravaomanarivo L, Reynaud B, Delatte H. Genetic diversity of the endemic honeybee: Apis mellifera unicolor (Hymenoptera: Apidae) in Madagascar. Apidologie. 2015; 46(6):735–47.

41. Jhumun G. Report on Honey bees from Mauritius for OIE conference (Regional Training Seminar on Diseases of Honey Bees for OIE National Focal Points for Animal Disease Notification). In: Ministry of Agro Industry & Food Security M, editor. OIE Ezulwini; Swaziland. Mauritius: Ministry of Agro Industry & Food Security; 2011. p. 7.

42. QGIS D. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2015.

43. Garnery L, Solignac M, Celebrano G, Cornuet J-M. A simple test using restricted PCR-Amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia. 1993; 49(11):1016–21.

44. Estoup A, Solignac M, Cornuet J-M. Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proceedings of the Royal Society B: Biological Sciences. 1994; 258(1351):1–7.

45. Estoup A, Garnery L, Solignac M, Cornuet J-M. Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics. 1995; 140(2):679–95. PMID: 7498746

46. Franck P, Garnery L, Solignac M, Cornuet J-M. The origin of West European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution. 1998; 52(4):1119–34. https://doi.org/10.1111/j.1558-5646.1998.tb01839.x PMID: 28565209

47. Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, et al. Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Molecular Ecology Notes. 2003; 3(2):307–11.

48. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes. 2004; 4(3):535–8.

49. Chapuis M-P, Estoup A. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution. 2007; 24(3):621–31. https://doi.org/10.1093/molbev/msl191 PMID: 17150975

50. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la génotique des populations. Laboratoire génome, populations, interctions, CNRS UMR. 1996; 5000:1996–2004.

51. Szpiech ZA, Jakobsson M, Rosenberg NA. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics. 2008; 24(21):2498–504. https://doi.org/10.1093/bioinformatics/btn478 PMID: 18779233

52. Adamack AT, Gruber B. PopGenReport: simplifying basic population genetic analyses in R. Methods in Ecology and Evolution. 2014; 5(4):384–7.
53. Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9. 3.2, updated from Goudet 1995. 2001.

54. Raymond M, Rousset F. GENEPOP version 3.4. Population genetics software for exact tests and ecumenicism Montpellier, France, Laboratoire de Genetique et Environment. 2004.

55. Team RDC. R: A language and environment for statistical computing. ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna, Austria, 2013. url: http://www.R-project.org; 2005.

56. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008; 24(11):1403–5. https://doi.org/10.1093/bioinformatics/btn129 PMID: 18397895

57. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155(2):945 –59. PMID: 10835412

58. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology. 2005; 14(8):2611 –20. https://doi.org/10.1111/j.1365-294X.2005.02553.x PMID: 15969739

59. Gao H, Williamson S, Bustamante CD. A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics. 2007; 176 (3):1635–51. https://doi.org/10.1534/genetics.107.072371 PMID: 17483417

60. Jombart T, Ahmed I. adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011; 27(21):3070–1. https://doi.org/10.1093/bioinformatics/btr521 PMID: 21926124

61. Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23 (14):1801–6. https://doi.org/10.1093/bioinformatics/btm233 PMID: 17485429

62. Jakobsson M, Rosenberg NA. DISTRACT: a program for the graphical display of population structure. Molecular Ecology Notes. 2004; 4(1):137–8.

63. Pinto MA, Henriches D, Chávez-Galarza J, Kryger P, Garnery L, van der Zee R, et al. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. Journal of Apicultural Research. 2014; 53 (2):269–78.

64. Garnery L, Franck P, Baudry E, Vautrin D, Cornuet J-M, Solignac M. Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). II. Microsatellite loci. Genetics Selection Evolution. 1998; 30:S49–S74.

65. Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, et al. The K = 2 conundrum. Molecular Ecology. 2002; 56(7):1462 –74. PMID: 12206246

66. Muñoz I, Pinto MA, De la Rúa P. Effects of queen importation on the genetic diversity of Macaronesian island honey bee populations (Apis mellifera Linneaus 1758). Journal of Apicultural Research. 2014; 53(2):296–302.
76. Rangel J, Giresi M, Pinto MA, Baum KA, Rubink WL, Coulson RN, et al. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference? Ecology and Evolution. 2016; 6(7):2158–69. https://doi.org/10.1002/ece3.1974 PMID: 27069571

77. Strasberg D, Rouget M, Richardson DM, Baret S, Dupont J, Cowling RM. An Assessment of Habitat Diversity and Transformation on La Réunion Island (Mascarene Islands, Indian Ocean) as a Basis for Identifying Broad-scale Conservation Priorities. Biodiversity and Conservation. 2005; 14(12):3015–32.

78. Canovas F, De la Rúa P, Serrano J, Galián J. Microsatellite variability reveals beekeeping influences on Iberian honeybee populations. Apidologie. 2011; 42(3):235–51.

79. Nelson RM, Wallberg A, Simões ZLP, Lawson DJ, Webster MT. Genome—wide analysis of admixture and adaptation in the Africanized honeybee. Molecular Ecology. 2017.

80. Bappoo DR, Ramanah D, editors. The state of beekeeping in Mauritius and other Mascarene Islands. 80.

81. Muñoz I, Lodesani M, De la Rúa P. Estimating introgression in Apis mellifera siciliana populations: are the conservation islands really effective? Insect Conservation and Diversity. 2014; 7(6):563–71.

82. Thébaut C, Warren BH, Strasberg D, Cheke A. Mascarene islands, biology. Atoll Research Bulletin. 2009; 127:1–216.

83. Florens FBV, Baider C, Martin GN, Strasberg D. Surviving 370 years of human impact: what remains of tree diversity and structure of the lowland wet forests of oceanic island Mauritius? Biodiversity and Conservation. 2012; 21(8):2139–67.

84. Miguel I, Iriondo M, Gernery L, Sheppard WS, Estomba A. Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe. Apidologie. 2007; 38(2):141–55.

85. Corolian CO, Muñoz I, Schlüns EA, Paniti-Teleky OR, Erler S, Furdui EM, et al. Climate rather than geography separates two European honeybee subspecies. Molecular Ecology. 2014; 23(9):2353–61. https://doi.org/10.1111/mec.12731 PMID: 24650190

86. Chávez—Galarza J, Henríquez D, Johnston JS, Carneiro M, Rufino J, Patton JC, et al. Revisiting the Iberian honey bee (Apis meliifera iberiensis) contact zone: maternal and genome—wide nuclear variation provides support for secondary contact from historical refugia. Molecular ecology. 2015; 24(12):2973–92. https://doi.org/10.1111/mec.13223 PMID: 25930679

87. Chávez—Galarza J, Gernery L, Henríquez D, Neves CJ, Loucif-Ayad W, Jonhston JS, et al. Mitochondrial DNA variation of Apis mellifera iberiensis: further insights from a large-scale study using sequence data of the IRNAeu-cox2 intergenic region. Apidologie. 2017:1–12.

88. De la Rúa P, Galián J, Serrano J, Moritz RFA. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism. Genetics Selection Evolution. 2003; 35(3):339–50.

89. Péchon TL, Dai Q, Zhang L-B, Gao X-F, Sauquet H. Diversification of Dombeyoideae (Malvaceae) in the Mascarenes: Old Taxa on Young Islands? International Journal of Plant Sciences. 2015; 176(3):211–21.

90. Le Roux JJ, Strasberg D, Rouget M, Morden CW, Koordom M, Richardson DM. Relatedness defies biogeography: the tale of two island endemics (Acacia heterophylla and A. koa). New Phytologist. 2014; 204(1):230–42. https://doi.org/10.1111/nph.12900 PMID: 24942529

91. Le Péchon T, Dubuisson J-Y, Haevermans T, Cruaud C, Couloux A, Gigord LD. Multiple colonizations from Madagascar and converged acquisition of dioecy in the Mascarene Dombeyoideae (Malvaceae) as inferred from chloroplast and nuclear DNA sequence analyses. Annals of Botany. 2010; 106(2):343–57. https://doi.org/10.1093/aob/mcq116 PMID: 20562131

92. Micheneau C, Carlsward BS, Fay MF, Bytebier B, Pailler T, Chase MW. Phylogenetics and biogeography of Mascarene angraecoid orchids (Vandeae, Orchidaceae). Molecular Phylogenetics and Evolution. 2008; 46(3):908–22. https://doi.org/10.1016/j.ympev.2007.12.001 PMID: 18272406

93. Jaros U, Fischer GA, Pailler T, Comes HP. Spatial patterns of AFLP diversity in Bulbophyllum occul- tum (Orchidaceae) indicate long-term refugial isolation in Madagascar and long-distance colonization effects in La Réunion. Heredity. 2016; 116(5):434–46. https://doi.org/10.1038/hdy.2016.1 PMID: 26883184

94. Weyeneth N, Goodman SM, Appleton B, Wood R, Ruedi M. Wings or winds: inferring bat migration in a stepping-stone archipelago. Journal of Evolutionary Biology. 2011; 24(6):1298–306. https://doi.org/10.1111/j.1420-9101.2011.02262.x PMID: 21443643

95. Rocha S, Carretero MA, Vences M, Glaw F, James Harris D. Deciphering patterns of transoceanic dispersal: the evolutionary origin and biogeography of coastal lizards (Cryptoblepharus) in the Western Indian Ocean region. Journal of Biogeography. 2006; 33(1):13–22.
96. Warren BH, Bermingham E, Prys-Jones RP, Thebaud C. Tracking island colonization history and phenotypic shifts in Indian Ocean bulbuls (Hypsipetes: Pycnonotidae). Biological Journal of the Linnean Society. 2005; 85(3):271–87.

97. Agnarsson I, Kuntner M. The generation of a biodiversity hotspot: biogeography and phylogeography of the western Indian Ocean islands. Current topics in phylogenetics and phylogeography of terrestrial and aquatic systems. Rijeka: In Tech Publishers. 2012:33–82.

98. Harper GJ, Steininger MK, Tucker CJ, John D, Hawkins F. Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation. 2007; 34(04):325–33.

99. Dietemann V, Pirk CWW, Crewe R. Is there a need for conservation of honeybees in Africa? Apidologie. 2009; 40(3):285–95.

100. Rius M, Darling JA. How important is intraspecific genetic admixture to the success of colonising populations? Trends in Ecology & Evolution. 2014; 29(4):233–42.

101. Kaiser-Bunbury CN, Valentin T, Mougal J, Matatiken D, Ghazoul J. The tolerance of island plant-pollinator networks to alien plants. Journal of Ecology. 2011; 99(1):202-13.

102. Pailler T, Thompson JD. Distyly and variation in heteromorphic incompatibility in Gaertnera vaginata (Rubiaceae) endemic to La Reunion Island. American Journal of Botany. 1997; 84(3):315–2.

103. Meeus S, Jacqueyn H, Honnay O, Pailler T. Self-incompatibility and pollen limitation in the rare tristyloous endemic Hugonia serrata on La Réunion Island. Plant Systematics and Evolution. 2011; 292(3–4):143–51.

104. Le Péchon T, Sanchez M, Humeau L, Gigord LD, Zhang L-B. Vertebrate pollination of the endemic Trochetia granulata (Malvaceae) on Réunion. Journal of tropical Ecology. 2013; 29(04):353–6.

105. Kaiser CN. Functional integrity of plant–pollinator communities in restored habitats in Mauritius: Universität Zürich; 2006.

106. Clémencel J, Aubert C, Blottière D, Sanchez M. Kleptoparasitism in the endemic gecko Phelsuma inexpectata: pollen theft from foraging honeybees on Réunion. Journal of tropical Ecology. 2013; 29 (03):251–4.

107. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution. 2010; 25(6):345–53.

108. Seitz N, Traynor KS, Steinhauser N, Rennich K, Wilson ME, Ellis JD, et al. A national survey of managed honey bee 2014–2015 annual colony losses in the USA. Journal of Apicultural Research. 2015; 54(4):292–304.

109. Jacques A, Laurent M, Consortium E, Ribière-Chabert M, Saussac M, Bougeard S, et al. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLOS ONE. 2017; 12(3):e0172591. https://doi.org/10.1371/journal.pone.0172591 PMID: 28279259