Causes of death in female patients with bladder cancer after local tumor excision and radical cystectomy: a contemporary, US population-based analysis

Qian Lyu, Yu Nie, Jiazheng Yuan and Dong Wang*

Abstract
Surgery is one of the most important treatments for bladder cancer, including local tumor excision and radical cystectomy. At present, studies on the causes of death for contemporary survivors, especially women, who have received different surgical treatments are limited. Therefore, the study used a population-based cohort study in the United States from 2000 to 2017 to analyze causes of death for women who underwent local tumor excision or radical cystectomy stratified by demographics and tumor stage. Standardized mortality ratios (SMRs) were calculated based on general population data. In total, 24,040 female patients who underwent surgical treatments were assessed. Of those 20,780 patients undergoing local tumor excision, 36.6% died of bladder cancer, while 63.4% died of other causes. The risk of death from all causes increased in comparison with the general population (SMR 1.85; 95% CI 1.82–1.87), and the most common non-tumor cause of death was from heart diseases (16.2%; SMR 1.13; 95% CI 1.09–1.16). Among women who receive radical cystectomy, 82.3% of deaths occurred within 5 years after surgery. 66.9% deaths resulted from bladder cancer, and the risk of death from all causes significantly higher than that in the general people (SMR 4.67; 95% CI 4.51–4.84). Moreover, the risk of death from non-bladder cancer causes also increased, in particular, such as septicemia (SMR 3.09; 95% CI 2.13–4.34). Causes of death during bladder cancer survivorship after surgery vary by patient and tumor characteristics, and these data provide information regarding primary care for women during postoperative cancer survivorship.

Keywords: Bladder cancer, Women, Population-based, Local tumor excision, Radical cystectomy, Prognosis

Introduction
Bladder cancer is one of the most common malignant tumors and the incidence increases steadily worldwide. More than 500,000 new cases have been confirmed, which accounts for about 3% of all new cancer diagnoses each year, and 200,000 deaths worldwide [1]. Previous study has suggested a positive association between the bladder cancer incidence and human development index and gross domestic product [2]. Metabolic syndrome (MS), a non-negligible public health problem, is characterized by lipid disorders, abnormal glucose tolerance, high blood pressure, and a high mortality rate. The disorder has been reported to be associated with the development and the risk of death of bladder cancer. A retrospective study [3] that involved 169 patients suggested that patients with MS had a higher histological grade of bladder cancer, as well as the low high-density lipoprotein levels. The high body mass index (BMI) has also been considered to be associated with the risk of bladder cancer [4]. In the American population, more
than 80,000 new cases are diagnosed each year, representing 4.6% of all cancer diagnoses, which is greater than global average. Statistics showed that about 17,900 US patients died of bladder cancer in 2019 [5]. Across the world, the number of men diagnosed with bladder cancer is about four times that of women, and the mortality rate is similar [6]. However, studies have shown that for patients with the same stage of bladder cancer, the prognosis of women is worse than that of men [7]. The occurrence of bladder cancer is a complex, multifactorial and multi-step pathological process, which is affected by both internal genetic factors and external environmental factors. Hence, bladder cancer contains of various pathological types and complex treatment modalities. However, for the majority of patients, surgery is still the main means of treatment, including transurethral resection of bladder tumor, partial cystectomy and radical cystectomy etc. [8]. Different surgical methods should be rigorously determined according to the pathological results and the grading and staging of the disease, because of significant differences of the quality of life and prognosis of patients. Hence, understanding the actual causes of death in contemporary bladder cancer cases undergoing different surgical methods can help with a more rigorous surgical plan and proper health care during survivorship.

Several previous studies have illustrated the causes of bladder cancer-specific mortality [9–11], however, the information about causes of death in patients with bladder cancer after local tumor excision and radical cystectomy are limited. Simultaneously, most studies concentrate on patients of all genders, and few studies pay attention to specific gender, especially female patients. Factors such as hormone level, lifestyle, occupational exposure vary widely in male and female population, which may result in differences on causes of death. Hence, understanding the information could guiding the long-term follow-up and therapeutic strategies, and we evaluated contemporary, female population-based data for causes of death during bladder cancer after local tumor excision or radical cystectomy survivorship in the United States using SEER database.

Materials and methods

Data source

The data were acquired from Surveillance, Epidemiology, and End Results (SEER) program which is conducted by National Cancer Institute covering approximately 48% of the US population, and the database SEER 18 registries were accessed from 2000 to 2017 using the SEER*Stat software 8.3.8. The data used are publicly available and our study did not require a declaration or approval of local ethics.

Study population

We included all female patients with a diagnosis of bladder cancer between January 1, 2000, and December 31, 2017 in US, and only first malignant neoplasm was selected. Simultaneously, we excluded data without surgical treatment. We also exclude patients diagnosed only through death certificate and autopsy, patients with unknown follow-up time, survival status, and reasons of death, and patients without general information including age and race.

SMR

The number of deaths in different variables was measured for patients with bladder cancer from the SEER database. Patients were mainly assessed by different surgical methods including local tumor excision and radical cystectomy, and then, stratified by age, year of diagnosis, race, tumor differentiation, and pathological type. All causes of deaths were considered in our study, we divided the causes into malignant cancer group, non-tumor group. Under diseases of the malignant cancer, we included the most common malignant diseases of digestive system, respiratory system, female genital system, urinary system, and lymphatic system. In the non-tumor group, simultaneously, we included virus systematic disorders, such as septicemia, other Infectious and Parasitic Diseases including HIV, diabetes mellitus, Alzheimer’s, diseases of heart, hypertension without heart disease, cerebrovascular diseases, other diseases of arteries, arterioles, capillaries, pneumonia and Influenza, and chronic obstructive pulmonary disease and allied cond. We counted the numbers of deaths in different subgroups at each follow-up stage, and calculated SMR, the ratio of observed-to-expected, with 95% confidence intervals for each cause of death after bladder cancer diagnosis undergoing different surgical treatments. From 2000 to 2016, female patients diagnosed with bladder cancer and underwent surgical treatment. We also exclude patients diagnosed only through death certificate and autopsy, patients with unknown follow-up time, survival status, and reasons of death, and patients without general information including age and race.

Statistical analysis

We calculated SMRs with 95% confidence intervals using the SEER*Stat software 8.3.8 (https://seer.cancer.gov/seerstat/software/). The higher number of deaths with bladder cancer than the expected number in the general population was regarded as a significantly increased risk. p-value<0.05 was considered to be statistically significant.
Results
Baseline characteristics
24,040 female patients with bladder cancer undergoing surgical treatments were collected in our study, in which 20,780 patients received local tumor excision, and 3260 underwent radical cystectomy. Table 1 details the number and SMR with 95% CI of patients by age, year of diagnosis, race, tumor differentiation, pathological type and time period for all deaths by each grouping. The total excess risk of local tumor excision group was 353.65 per 10,000, while 1137.11 in the radical cystectomy group.

Causes of death for female patients undergoing local tumor excision
The majority of deaths for women undergoing local tumor excision occurred in 12 to 59 months after surgery (n=8096 [39%]), Table 1. In this group, as shown in Table 2 and Fig. 1, deaths from bladder cancer accounted for 36.6% of the all deaths (n=20,780), which maintained a relative stable over the different follow-up periods. Deaths from other malignant cancers and non-tumor factors were 2933 and 10,239, respectively. In this study, the most common non tumor cause of death was diseases of heart, and the number of which was 3359, accounting 16.2% of all deaths, while in the malignant cancer group, cancers of lung and bronchus composed the majority, and the number was 1102, which accounted 5.3% of all deaths. Although the risk of death significantly decreased after 2–11 month follow-up (SMR 4.18; 95% CI 4.07–4.29), the risk was higher than that of general population over the follow-up months (SMR 1.77; 95% CI 1.73–1.81 over 12–59 months, SMR 1.35; 95% CI 1.31–1.39 over 12–59 months and SMR 1.34; 95% CI 1.28–1.39 over 60 months).

Data in Table 1 showed subgroup information of female patients undergoing local tumor excision. Most of the deaths were aged 75–84 years, however, compared with the general population, the risk of death was the lowest (SMR 1.53; 95% CI 1.49–1.56). With the decrease of age, the risk level gradually increased, and in the age group of 15–54 years, the risk level was the highest (SMR 3.85; 95% CI 3.58–4.13). White patients compose the majority of deaths, and the risk of death was relatively lower with respect to that of the other three races (n=18,245, SMR 1.77; 95% CI 1.74–1.8). Simultaneously, compared with general population, poorly differentiated and undifferentiated types increased the risk of death by 2.6 and 3.04 times, respectively. The most common pathological types were papillary transitional cell carcinoma and Transitional cell carcinoma (NOS), however, the types that were higher contribution to the risk of death were adenocarcinoma (NOS), small cell carcinoma (NOS), and squamous cell carcinoma (keratinizing, NOS). All year of diagnosis increased the death risk.

Causes of death for female patients undergoing radical cystectomy
Most deaths for female patients underwent radical cystectomy occurred either 2–11 months (n=1152) or 12–59 months (n=1522) after surgery. Deaths from bladder cancer in this group accounted for 66.9% of all deaths, which composed the majority, while other cancer and non-tumor disease accounted for 10% and 23.1%, respectively (Table 3, Fig. 1). In comparison with the general population, the risk of death in female patients undergoing radical cystectomy significantly increased by 4.67 times over all follow-up months (SMR 4.67; 95% CI 4.51–4.84), which was approximately 2.5 times higher compared with local tumor excision group. Over all follow-up months, the risk of death from bladder cancer was the highest (SMR 832.50; 95% CI 797.86–868.26), and was about 4.4 times higher than that of the local tumor excision group. Simultaneously, several other causes of death were elevated in comparison with the general population, including both other malignant cancers and non-tumor causes. Of all the non-tumor deaths, the most common cause was diseases of heart (n=195), which account for 25.9% of all non-tumor deaths. The non-tumor cause of death with the highest increased risk of death was septicemia (SMR 3.09; 95% CI 2.13–4.34), and the lowest was Alzheimer’s (SMR 0.64; 95% CI 0.42–0.94).

Data for subgroups of female patients undergoing radical cystectomy can be found in Table 1. The most common death was the 65–74 age group (n=1089), while compared with the general population, the highest risk of death was the 15–54 age group (SMR 19.11; 95% CI 17.22–21.15). Simultaneously, the risk of death obviously increased in all races, and notably, the risk was most elevated in the American Indian/Alaska native group (SMR 19.42; 95% CI 9.69–34.74). The risk of death was similar among different differentiation groups in comparison with the general population, and in different pathological type groups, the transitional cell carcinoma (NOS) composed the majority (n=1813), however, the highest risk was transitional cell carcinoma (spindle cell) (SMR 10.05; 95% CI 7.8–12.74).

Discussion
In United States, more than 80,500 cases were diagnosed as bladder cancer in 2019 year, which accounted for 4.6% of all cancer diagnoses [12]. Simultaneously, although women are at lower risk of bladder cancer than men, they should be taken seriously. At present, most studies focus on the overall prognosis after diagnosis of bladder cancer, however, reports on the prognosis and
Table 1 Baseline characteristics of patients with bladder cancer after local tumor excision and radical cystectomy

Variables	2–11 months	12–59 months	60–119 months	120+ months	
	Observed	Persons	Excess Risk	SMR (95%CI)	
	Observed	Persons	Excess Risk	SMR (95%CI)	
	Observed	Persons	Excess Risk	SMR (95%CI)	
	Observed	Persons	Excess Risk	SMR (95%CI)	
	Observed	Persons	Excess Risk	SMR (95%CI)	
	Observed	Persons	Excess Risk	SMR (95%CI)	
	Observed	Persons	Excess Risk	SMR (95%CI)	
	Observed	Persons	Excess Risk	SMR (95%CI)	
Local tumor excision	All	20,780	45,655	353.65	1.85 (1.82–1.87)
Age, year	15–54 years	782	4997	133.31	3.85 (3.58–4.13)
	55–64 years	1987	8405	198.84	2.66 (2.54–2.77)
	65–74 years	4684	12,338	289.68	1.95 (1.89–2)
	75–84 years	8018	13,035	427.11	1.53 (1.49–1.56)
	85+ years	5306	6806	1332.18	2.00 (1.95–2.06)
Year of diagnosis	2000–2007	11,960	19,150	288.4	1.67 (1.64–1.7)
	2008–2012	5426	12,194	367.15	1.92 (1.87–1.97)
	2013-2017	3233	12,273	628.45	2.66 (2.56–2.75)
Race	White	18,245	40,410	325.72	1.74 (1.74–1.8)
	Black	1810	3254	792.24	2.83 (2.72–2.96)
	American	48	107	710.02	4.71 (3.47–6.25)

Variables	Total	2–11 months	12–59 months	60–119 months	120+ months								
	Obser ved Persons	Excess Risk	SMR (95% CI)	Observed Persons	Excess Risk	SMR (95% CI)	Observed Persons	Excess Risk	SMR (95% CI)	Observed Persons	Excess Risk	SMR (95% CI)	
Asian or Pacific Islander	677	1884	367.07 (2.26)	178	1884	995.92 (4.89)	279	1576	335.5 (2.24)	144	833	187.63 (1.61)	
Observed Persons Excess Risk			SMR (95% CI)										
SMR (95% CI)													
Differentiation	2425	6461	75.08 (1.20)	214	6461	91.32 (1.29)	864	6205	54.71 (1.16)	801	4596	74.27 (1.19)	
Well-differentiated	5288	13,790	117.98 (1.30)	639	13,790	248.61 (1.76)	1850	13,009	81.56 (1.23)	1695	8245	105.66 (1.25)	
Moderately differentiated	4902	7,892	26.00 (1.69)	1693	7,892	2836.00 (6.96)	1882	5479	691.45 (2.46)	878	3119	285.37 (1.57)	
Poorly differentiated	5682	10,018	1,003.81 (3.04)	2216	10,018	2634.29 (6.64)	2465	7717	824.37 (2.74)	745	2857	307.42 (1.59)	
Undifferentiated	2322	6,190	263.09 (1.69)	530	6,190	740.43 (3.11)	1035	5614	216.31 (1.59)	575	3462	149.68 (1.36)	
Unknown	2322	6,190	263.09 (1.69)	530	6,190	740.43 (3.11)	1035	5614	216.31 (1.59)	575	3462	149.68 (1.36)	
Pathological type			SMR (95% CI)										
8130/3: papillary transitional cell carcinoma	8130/3: papillary transitional cell carcinoma, NOS	13,058	34,058	171.44 (1.42)	1888	34,058	161.19 (1.42)	5254	30,448	127.75 (1.30)			
8120/3: transitional cell carcinoma, NOS	4089	9599.88	3.51 (3.42-3.6)	2660	9599.88	3.51 (3.42-3.6)	2328	6243	960.35 (3.17)	775	2870	301.13 (1.60)	
8070/3: squamous cell carcinoma, NOS	421	475	5377.79 (1.33)	296	475	13,208.44 (7.56)	100	168	2778.97 (7.56)	21	47	1160.00 (4.02)	
8010/3: carcinoma, NOS	166	262	959.88	3.13 (2.68-3.65)	78	262	4175.02 (2.73)	55	172	700.93 (2.73)	23	96	128.36 (1.26)
8140/3: adenocarcinoma, NOS	162	250	1436.30	6.02 (5.13-7.02)	74	250	3645.14 (12.89)	15	73	321.54 (2.07)	8	27	369.81 (2.07)
Table 1 (continued)

Variables	Total	2–11 months	12–59 months	60–119 months	120+ months														
	Observed Persons	Excess Risk	SMR (95%CI)	Observed Persons	Excess Risk	SMR (95%CI)	Observed Persons	Excess Risk	SMR (95%CI)	Observed Persons	Excess Risk	SMR (95%CI)							
8041/3: small cell carcinoma, NOS	124	2688.94	6.60f (5.49–7.87)	74	169	7167.6/ (12.99–20.77)	40	84	1758.03	4.96f (3.55–6.76)	7	29	236.32	1.44f (0.59–2.97)					
8071/3: squamous cell carcinoma, keratinizing, NOS	117	6735.71	15.67f (12.96–18.78)	94	129	17566.75 (28.71–43.47)	16	33	206.21f	5.26f (3–8.53)	6	12	139.84	3.91f (1.44–8.52)					
8051/3: papillary carcinoma, NOS	106	214	1.48f (1.21–1.79)	20	214	8186.66 (1.97–4.99)	36	194	192.87f	1.53f (1.07–2.11)	26	133	59.45	1.14f (0.75–1.68)					
Radical cystectomy	3260	5385	1137.11 (4.52–4.84)	1155	5385	2777.1 (1.32–1.84)	1526	3957	1259.28	5.68f (5.4–5.97)	376	1730	264.95	1.75f (1.56–1.91)					
Age, year	375	766	854.88 (17.2–21.15)	125	766	2152.25 (59.39–85.01)	201	605	1196.48	23.69f (29.19–38.68)	34	305	231.88	5.55f (3.85–7.76)					
55–64 years	669	1,281	1009.47 (9.19–10.71)	216	1,281	2232.86 (26.82–35.18)	352	994	1282.28	15.40f (13.84–17.1)	66	457	271.16	3.14f (2.43–3.99)					
65–74 years	1089	1,801	1215.98 (9.43–9.56)	372	1,801	2695.54 (14.75–18.12)	523	1328	1395.16	7.56f (6.95–8.24)	116	549	304.66	1.95f (1.61–2.34)					
75–84 years	965	1,337	1337.07 (2.67–3.03)	365	1,337	3544.89 (8.81–9.87)	389	913	1103.31	2.80f (2.52–3.09)	144	384	221.93	1.22f (1.03–1.44)					
85+ years	160	196	2044.26 (2.16–2.97)	77	196	5197.02 (3.82–6.05)	59	113	1152.30	1.80f (1.42–2.4)	16	34	315.24	1.24f (0.71–2.02)					
Year of diagnosis	1758	2275	985.27 (3.62–4.03)	543	2275	3056.31 (12.15–14.46)	748	1727	1261.04	5.39f (4.97–5.74)	266	965	272.26	1.72f (1.52–1.94)					
2008–2012	887	1434	1200.85 (5.06–5.77)	328	1434	2905.97 (12.54–15.62)	453	1098	1211.21	5.79f (5.25–6.31)	104	627	237.05	1.72f (1.41–2.08)					
Variables	Total	2–11 months	12–59 months	60–119 months	120+ months														
---------------------------------	-------	-------------	--------------	---------------	-------------														
	Observed	Persons	Excess Risk	SMR (95%CI)	Observed	Persons	Excess Risk	SMR (95%CI)	Observed	Persons	Excess Risk	SMR (95%CI)	Observed	Persons	Excess Risk	SMR (95%CI)			
2013–2017	596	1424	1631.79 (7.37–8.67)	265	1124	2293.54 (10.46–13.36)	3.25	1132	1326.86 (5.81–7.24)	6	138	591.62 (1.04–6.14)	2.82	0	0	0 (0–0)			
Race																			
White	2750	4541	1108.75 (4.26–4.6)	956	4541	2707.18 (11.6–13.18)	1282	3361	1222.55 (5.08–5.68)	330	1481	261.54 (1.04–6.14)	168	658	316.37 (1.04–6.14)	182	71	150.01 (0.78–2.29)	1.39
Black	365	557	1464.79 (5.75–7.08)	139	557	3365.11 (13.64–19.16)	178	389	1724.63 (6.83–9.22)	33	155	331.37 (1.04–6.14)	2.14	71	150.01 (0.78–2.29)	1.39			
American Indian/Alaska Native	11	21	1554.96 (9.69–34.74)	7	21	4314.66 (16.59–83.01)	3	14	718.68 (1.60–10.62)	0	5	-81.03 (0–34.78)	0	0	1 (0–34.78)	150.01			
Asian or Pacific Islander	134	266	989.52 (6.08–8.59)	53	266	2665.39 (16.83–29.4)	63	193	1089.87 (6.33–10.54)	13	89	223.1 (1.17–3.76)	2.20	43	160.87 (0.63–4.56)	1.95			
Differentiation																			
Well-differentiated	39	58	9.30.35 (2.94–5.65)	12	58	2578.68 (8.62–23.06)	1.5	46	822.44 (2.33–8.64)	11	27	786.27 (1.17–3.76)	3.21	9	-125.31 (0.02–3.72)	0.67			
Moderately differentiated	245	382	1095.83 (4.67–6.02)	87	382	2963.45 (13.2–20.32)	111	294	1183.86 (6.16–7.63)	33	145	375.09 (1.60–10.62)	2.34	74	194.28 (0.63–2.55)	1.52			
Poorly differentiated	1245	1731	1235.17 (4.55–5.09)	445	1731	3367.21 (13.72–16.55)	565	1275	1446.01 (5.64–6.67)	143	607	275.36 (1.48–2.06)	1.75	318	291.88 (1.34–2.04)	1.66			
Undifferentiated	1560	2692	1088.28 (4.2–6.64)	540	2692	2467.14 (10.47–12.41)	764	2126	1192.41 (4.97–7.54)	172	851	220.4 (1.34–1.82)	1.54	84	289.44 (1.26–1.95)	1.58			
Unknown	152	270	988.55 (4.59–6.34)	52	270	2425.40 (13.81–18.11)	71	216	1012.22 (4.38–7.08)	17	100	255.57 (1.18–3.24)	2.03	43	677.04 (1.89–6.4)	3.67			
Pathological type	8120/3 transitional cell carcinoma, NOS	2906	1222.50 (4.52–4.96)	637	2906	2846.27 (11.9–13.92)	873	2127	1393.34 (5.36–6.35)	195	885	249.03 (1.42–1.89)	1.64	398	296.68 (1.32–1.94)	1.90			
Variables	Total	2–11 months	12–59 months	60–119 months	120+ months														
-----------	-------	-------------	--------------	--------------	-------------														
	Observed Persons Excess Risk SMR (95%CI)																		
8130/3: papillary transitional cell carcinoma	767 1449	780.42 3.45# (3.21–3.7)	212 1449	172.86 8.35# (7.26–9.53)	369 1154	903.2 4.27# (3.84–4.73)	122 561	268.95 1.73# (1.44–2.06)	64 246	277.35 1.60# (1.23–2.05)									
8070/3: squamous cell carcinoma, NOS	219 324	1475.83 6.55# (5.7–7.53)	116 324	5319.09 7.79# (3.04–33.44)	74 200	1186.43 5.96# (4.68–7.48)	17 98	182.44 1.59 (0.93–2.53)	12 45	330.84 2.01# (1.04–3.51)									
8071/3: squamous cell carcinoma, keratinizing, NOS	73 118	1335.20 5.65# (4.4–7.12)	42 118	5275.67 24.35# (17.55–32.91)	22 72	869.1 4.19# (2.63–6.35)	5 37	119.05 1.41 (0.46–3.29)	4 14	274.06 1.68 (0.46–4.31)									
8122/3: transitional cell carcinoma, spindle cell	68 104	2379.77 10.05# (7.8–12.74)	43 104	6400.21 32.04# (23.19–43.16)	19 53	1383.53 6.40# (3.9–10.12)	5 19	464.74 2.5 (0.81–1.584)	6 4	440.6 2.02 (0.05–11.27)									
8140/3: Adenocarcinoma, NOS	61 89	1301.96 7.40# (5.66–9.5)	17 89	2396.29 15.22# (8.87–24.37)	30 65	1526.49 10.34# (6.98–14.76)	8 29	543.81 3.72# (1.61–7.34)	6 16	728.82 2.88# (1.06–6.27)									

SMR: standardized mortality ratio, CI: confidence interval, NOS: not otherwise specified

Excess risk is per 10,000

Statistical significance with $P < 0.05$
	Total	2–11 months	12–59 months	60–119 months	120 + months							
	Observed	Expected	SMR (95%CI)									
All causes of death	20,780	11,255.35	1.85#(1.82–1.87)	5453	1305.87	1.85#(1.82–1.87)	8096	4569.39	1.77#(1.73–1.81)	4694	3479.86	1.35#(1.31–1.39)
All malignant cancers	10,541	1953.59	5.40#(5.29–5.5)	4031	238.49	4.18#(4.07–4.29)	4311	822.82	5.24#(5.08–5.4)	1540	589.96	2.61#(2.48–2.74)
Digestive system	473	478.56	0.99(0.9–1.08)	59	58.4	1.01(0.77–1.3)	164	200.81	0.82#(0.7–0.95)	160	144.63	1.11(0.94–1.29)
Stomach	42	32.58	1.29(0.93–1.74)	8	4.21	1.9(0.82–3.74)	16	14.03	1.14(0.65–1.85)	11	9.63	1.14(0.57–2.04)
Colon and rectum	141	195.19	0.72#(0.61–0.85)	12	24.6	0.49#(0.25–0.85)	49	83.18	0.59#(0.44–0.78)	47	58.29	0.81(0.59–1.07)
Liver and intrahepatic bile duct	55	50.64	1.09(0.82–1.41)	9	5.85	1.54(0.7–2.92)	19	20.67	0.92(0.55–1.44)	15	15.6	0.96(0.54–1.59)
Liver	36	32.91	1.09(0.77–1.51)	9	3.86	2.33#(1.07–4.43)	11	13.35	0.81(0.41–1.46)	9	10.09	0.89(0.41–1.69)
Pancreas	167	143.47	1.16(0.99–1.35)	22	16.92	1.3(0.81–1.97)	60	59.31	1.01(0.77–1.3)	63	43.95	1.43#(1.1–1.83)
Respiratory system	1010	500.79	2.02#(1.89–2.15)	62	61.7	1.0(0.77–1.29)	443	213.38	2.08#(1.89–2.28)	332	150.75	2.20#(1.97–2.45)
Lung and bronchus	1002	493.47	2.03#(1.91–2.16)	60	60.79	0.99(0.75–1.27)	438	210.25	2.08#(1.89–2.29)	332	148.57	2.23#(2–2.49)
Breast	130	251.34	0.52#(0.43–0.61)	10	31.04	0.32#(0.15–0.59)	37	106.3	0.35#(0.25–0.48)	52	75.44	0.69#(0.51–0.89)
Female genital system	188	181.49	1.04(0.89–1.2)	31	22.31	1.39(0.94–1.97)	66	76.83	0.86(0.66–1.09)	59	54.57	1.08(0.82–1.39)
Ovary	103	94.25	1.09(0.89–1.33)	15	11.82	1.27(0.71–2.09)	35	40.51	0.86(0.6–1.2)	34	28.16	1.21(0.84–1.69)
Table 2 (continued)

	Total	Observed	Expected	SMR (95%CI)	2–11 months	Observed	Expected	SMR (95%CI)	12–59 months	Observed	Expected	SMR (95%CI)	60–119 months	Observed	Expected	SMR (95%CI)	120+ months	Observed	Expected	SMR (95%CI)
Urinary system	7876	79.66	98.87a	(96.7–101.08)	3663	9.36	391.55a	(378.97–404.44)	3253	32.77	90.26a	(95.88–102.73)	730	24.47	29.84a	(27.71–32.08)	230	13.07	17.60a	(15.4–20.03)
Urinary bladder	7608	40.22	189.17a	(184.94–193.47)	3578	4.64	770.87a	(745.81–796.55)	3138	16.35	191.98a	(185.32–198.81)	683	12.44	54.89a	(50.85–59.16)	209	6.79	30.80a	(26.76–35.27)
Kidney and renal pelvis	153	36.45	4.20a	(3.56–4.92)	42	4.37	961.6	(9.92–1298)	60	15.21	3.94a	(3.01–5.08)	37	11.09	3.34a	(2.35–4.6)	14	5.77	24.2a	(1.33–40.7)
Ureter	37	1.6	23.09a	(16.26–31.82)	12	0.18	6630.6	(34.26–115.81)	21	0.65	32.34a	(20.02–49.44)	3	0.5	6.02a	(1.24–17.58)	1	0.27	366 (0.09–20.37)	
Other urinary organs	78	1.39	56.04a	(44.3–69.94)	31	0.16	193.65a	(131.58–274.87)	34	0.57	6.00a	(4.15–83.84)	7	0.43	16.24a	(6.53–33.47)	6	0.23	25.62a	(9.4–55.76)
Lymphoma	56	81.42	0.69a	(0.52–0.89)	5	9.96	0.5	(0.16–1.17)	20	34.26	0.58a	(0.36–0.9)	21	24.58	0.85	(0.53–1.31)	10	12.62	0.79 (0.38–1.46)	
Non-Hodgkin lymphoma	55	78.42	0.70a	(0.53–0.91)	5	9.58	0.52	(0.17–122)	20	32.98	0.61a	(0.37–0.94)	20	23.69	0.84	(0.52–1.3)	10	12.17	0.82 (0.39–1.51)	
Leukemia	75	76.48	0.98	(0.77–1.23)	3	9.06	0.33a	(0.07–0.97)	30	31.64	0.95	(0.64–1.35)	28	23.45	1.19	(0.79–1.73)	14	12.34	1.13 (0.62–1.9)	
Miscellaneous malignant cancer	592	153.5	3.86a	(3.55–4.18)	180	18.71	962.6	(8.27–1113)	258	64.33	4.01a	(3.54–4.53)	106	46.35	2.29a	(1.87–2.77)	48	24.11	199a (1.47–264)	

Non-tumor deaths

Septicemia | 231 | 162.89 | 1.42a | (1.24–1.61) | 48 | 19.34 | 248.4 | (1.83–3.29) | 73 | 67.06 | 1.09 | (0.85–1.37) | 74 | 49.92 | 1.48a | (1.16–1.86) | 36 | 26.57 | 136 (0.95–188) |

Other infectious and parasitic diseases including HIV | 119 | 74.41 | 1.60a | (1.32–1.91) | 30 | 8.37 | 358.6 | (2.42–511) | 50 | 30.43 | 1.64a | (1.22–2.17) | 29 | 23.59 | 1.22 | (0.82–1.77) | 10 | 12.02 | 0.83 (0.14–1.53) |
Table 2 (continued)

Category	Total	Expected	SMR (95%CI)	2–11 months	Expected	SMR (95%CI)	12–59 months	Expected	SMR (95%CI)	60–119 months	Expected	SMR (95%CI)	120+ months	Expected	SMR (95%CI)
Diabetes mellitus	307	280.55	1.09 (0.98–1.22)	59	35.03	1.68 (1.28–2.17)	104	118.62	0.88 (0.72–1.06)	85	84.16	1.01 (0.81–1.25)	59	42.75	1.38 (1.05–1.78)
Alzheimer’s	598	754.66	0.79* (0.73–0.86)	40	76.55	0.52* (0.37–0.71)	167	284.08	0.59 (0.5–0.68)	204	242.72	0.84 (0.73–0.96)	187	151.31	1.24 (1.07–1.43)
Diseases of heart	3359	2984.53	1.13 (1.09–1.16)	529	360.23	1.47 (1.35–1.6)	1289	1231.38	1.05 (0.99–1.11)	995	909.16	1.09 (1.03–1.16)	546	483.77	1.13 (1.04–1.23)
Hypertension without heart disease	189	166.51	1.14 (0.98–1.31)	29	18.19	1.59 (1.07–2.29)	63	65.34	0.96 (0.74–1.23)	59	52.87	1.12 (0.85–1.44)	38	30.12	1.26 (0.89–1.73)
Cerebrovascular diseases	796	824.92	0.96 (0.9–1.03)	114	99.72	1.14 (0.94–1.37)	318	338.98	0.94 (0.84–1.05)	235	249.67	0.94 (0.82–1.07)	129	136.56	0.94 (0.79–1.12)
Other diseases of arteries, arterioles, capillaries	71	48.48	1.46 (1.14–1.85)	6	5.85	1.03 (0.38–2.23)	34	20.01	1.70 (1.18–2.37)	20	14.76	1.35 (0.83–2.09)	11	7.85	1.4 (0.7–2.51)
Pneumonia and influenza	290	297.66	0.97 (0.87–1.09)	39	36.46	1.07 (0.76–1.46)	122	123.74	0.99 (0.82–1.18)	76	90.15	0.84 (0.66–1.06)	53	47.31	1.12 (0.84–1.47)
Chronic obstructive pulmonary disease and allied Cond	1360	689.95	1.97 (1.87–2.08)	157	78.38	2.00 (1.7–2.34)	549	279.31	1.97 (1.8–2.14)	426	214.41	1.99 (1.8–2.18)	228	117.85	1.93 (1.69–2.22)
Nephritis, nephrotic syndrome and nephrosis	268	213.48	1.26 (1.11–1.42)	40	24.9	1.61 (1.15–2.19)	93	87.41	1.06 (0.86–1.3)	88	66.26	1.33 (1.07–1.64)	47	34.9	1.35 (0.99–1.79)
	Total	2–11 months	12–59 months	60–119 months	120+ months										
--------------------------	---------------------------	-------------	--------------	---------------	-------------										
	Observed	Expected	SMR (95%CI)												
Symp-toms, signs and ill-defined conditions	176	174.85	1.01 (0.86–1.17)	26	19.13	1.36 (0.89–1.99)	62	69.68	0.89 (0.68–1.14)	60	56.92	1.05 (0.8–1.36)			
Accidents and adverse effects	275	263.02	1.05 (0.93–1.18)	32	28.7	1.11 (0.76–1.57)	89	103.48	0.86 (0.69–1.06)	97	82.89	1.17 (0.95–1.43)			
Suicide and self-inflicted injury	12	15.04	0.8 (0.41–1.39)	4	1.88	2.13 (0.58–5.44)	7	6.48	1.08 (0.43–2.23)	0	4.45	0.00 (0–0.83)			
Other cause of death	1879	2111.31	0.89 (0.85–0.93)	216	224.53	0.96 (0.84–1.1)	644	819.02	0.79 (0.73–0.85)	620	676.59	0.92 (0.85–0.99)			

SMR: standardized mortality ratio, CI: confidence interval

* Statistical significance with \(P < 0.05 \)
cause of death of patients who have undergone different surgical treatment were limited. There are significant differences between radical cystectomy and local tumor excision, including operative area and operative procedures [13]. For radical cystectomy, three options are available, including open radical cystectomy, traditional and robotic laparoscopy. Open radical cystectomy is considered to be the gold standard because of
Table 3 Main causes of death for patients with bladder cancer after radical cystectomy

Cause	Total	2–11 months	12–59 months	60–119 months	120 + months										
	Observed	Expected	SMR (95%CI)												
All causes of death	3250	695.3	4.67# (4.51/4.84)	1152	88.18	13.06# (12.32/13.84)	1522	268.25	5.67# (5.39/5.97)	375	216.59	1.73# (1.56/1.92)	201	122.27	1.64# (1.42/1.89)
All malignant cancers	2498	142.64	17.51# (16.83/18.21)	973	21.56	45.12# (42.33/48.05)	1291	59.89	21.56# (20.4/22.77)	172	40.77	4.22# (3.61/4.9)	62	20.41	3.04# (2.33/3.81)
Digestive system	38	3.9	1.12 (0.78/1.54)	1	4.97	0.2 (0.01/1.12)	25	14.04	1.78# (1.15/2.63)	8	9.85	0.81 (0.35/1.6)	4	5.05	0.79 (0.22/2.03)
Colon and rectum	16	13.31	1.2 (0.69/1.95)	1	1.97	0.51 (0.01/2.83)	7	5.54	1.26 (0.51/2.6)	5	3.86	1.3 (0.42/3.02)	3	1.94	1.55 (0.32/4.52)
Respiratory system	71	38.46	1.85# (1.44/2.33)	4	6.08	0.66 (0.18/1.68)	30	16.55	1.81# (1.22/2.59)	15	10.73	1.4 (0.78/2.31)	22	5.09	4.32# (2.71/6.54)
Lung and bronchus	70	37.9	1.85# (1.44/2.33)	4	5.99	0.67 (0.18/1.71)	29	16.31	1.78# (1.19/2.55)	15	10.58	1.42 (0.79/2.34)	22	5.02	4.39# (2.75/6.64)
Urinary system	2208	5.4	408.57# (391.7/425.97)	902	0.75	1200.55# (1123.4/1281.5)	1157	2.18	5.30.82# (500.6/562.3)	125	1.61	77.5# (64.54/92.3)	24	0.86	27.8# (17.86/41.47)
Urinary bladder	2173	2.61	832.50# (797.86/968.26)	887	0.34	2594.47# (2426.5/2770.94)	1143	1.02	1.116.02# (1052.2/1182.6)	119	0.8	148.70# (123.18/177.94)	24	0.44	54.07# (34.64/80.45)
Kidney and renal pelvis	15	2.59	5.79# (3.24/9.54)	7	0.38	18.30# (7.36/37.71)	4	1.08	3.72# (1.01/9.52)	4	0.75	5.33# (1.45/13.64)	0	0.38	0.09 (0.61)
Miscellaneous malignant cancer	138	10.67	12.93# (10.86/15.28)	59	1.56	37.73# (28.72/48.67)	62	4.41	14.07# (10.79/18.04)	12	3.1	3.87# (2.56/7.6)	5	1.6	3.12# (1.01/7.29)
Non-tumor deaths															
Septicemia	33	10.69	3.09# (2.13/4.34)	18	1.43	12.60# (7.47/19.92)	7	4.23	1.65 (0.66/3.41)	4	3.24	1.23 (0.34/3.16)	4	1.78	2.24 (0.61/5.74)
Diabetes mellitus	20	19.37	1.03 (0.63/1.59)	9	2.83	3.18# (1.46/6.04)	3	7.97	0.38 (0.08/1.1)	5	5.64	0.89 (0.29/2.07)	3	2.94	10.2 (0.21/2.99)
Alzheimer's	26	40.33	0.64# (0.42/0.94)	3	3.68	0.81 (0.17/2.38)	7	13.37	0.52 (0.21/1.08)	8	13.85	0.58 (0.25/1.14)	8	9.41	0.85 (0.37/1.68)
Diseases of heart	195	173.52	1.12 (0.97/1.29)	39	21.6	1.81# (1.28/2.47)	70	66.59	1.05 (0.82/1.33)	49	54.56	0.9 (0.66/1.19)	37	30.77	1.2 (0.85/1.66)
Cerebrovascular diseases	44	48.14	0.91 (0.66/1.23)	11	5.97	1.84 (0.92/3.3)	10	18.38	0.54 (0.26/1)	18	15.06	1.2 (0.71/1.89)	5	8.72	0.57 (0.19/3.34)
Pneumonia and influenza	25	16.82	1.49 (0.96/2.19)	7	2.04	3.43# (1.38/7.06)	8	6.47	1.24 (0.53/2.44)	6	5.35	1.12 (0.41/2.44)	4	2.96	1.35 (0.37/3.46)
Table 3 (continued)

Condition/Condition	Total	2–11 months	12–59 months	60–119 months	120+ months							
	Observed	Expected	SMR (95%CI)									
Chronic obstructive pulmonary disease and allied Cond	77	45.98	1.67# (1.32/2.09)	5	6.15	0.81 (0.26/1.9)	28	18.26	1.53# (1.02/2.22)	28	13.98	2.00# (1.33/2.9)
Nephritis, nephrotic syndrome and nephrosis	27	13.57	1.99# (1.31/2.89)	4	1.73	2.31 (0.63/5.92)	9	5.28	1.71 (0.78/3.24)	8	4.22	1.9 (0.82/3.74)
Symptoms, signs and ill-defined conditions	18	9.52	1.89# (1.12/2.99)	4	1	4.02# (1.1/10.29)	4	3.43	1.17 (0.32/2.98)	6	3.3	1.82 (0.67/3.96)
Accidents and adverse effects	23	16.29	1.41 (0.92/2.12)	5	1.99	2.51 (0.82/5.87)	8	6.13	1.3 (0.56/2.57)	3	5.15	0.58 (0.12/1.7)
Other cause of death	188	123.69	1.52# (1.31/1.75)	49	13.57	3.56# (2.67/4.77)	55	44.51	1.24 (0.93/1.61)	46	40.86	1.13 (0.82/1.5)

SMR: standardized mortality ratio, CI: confidence interval

* Statistical significance with $P < 0.05$
the stably long-term oncological outcomes, however, the characteristics of long time consuming, more blood loss, greater trauma, slow postoperative recovery and high complication rate make people strive for a more minimally invasive surgical method. Traditional laparoscopy can effectively decrease these perioperative risks because of minimally invasive approaches, nevertheless, four degrees of freedom of movement and poor ergonomics caused problems for surgeons. Compared with traditional laparoscopy, robotic surgery is characterized by the wider and clearer vision and more accurate and flexible control capability, but the high surgical cost and long learning curve make it controversial. The long-term oncological outcomes of the minimally invasive surgical methods are still under study [14–17]. A previous study [16] that involved 60 patients suggested that minimally invasive approaches could reach similar oncological outcomes to the open radical cystectomy by comparing the five-year recurrence-free survival, cancer-specific survival and overall survival of patients with bladder cancer who underwent different surgical methods. Moreover, the pathological types of bladder cancer are complex. These factors directly affect the economic burden, spiritual stress, quality of life and prognosis of patients. Hence, this emphasizes the requirements to optimize the selection of surgical methods and health management during survivorship. In our study, we assessed the cause of death after two surgical treatments of bladder cancer stratified by patient and tumor characteristics using representative population-based data from the United States. In female patients undergoing local tumor excision, approximately 50% death from non-tumor causes and 13.8% death from other malignant cancers, however, these women were overall less likely to die of most non-bladder cancer causes in comparison with the general population. In women undergoing radical cystectomy, nearly 82.2% of deaths occurred in 5 years after surgery, and compared with general population, the death of risk caused by non-bladder cancer significantly increased.

Patients with cancer usually have various comorbidities, and the status can directly affect the treatment decision-making, prognosis, and survival outcomes. It is reported that the severity of comorbidity status has a strong impact on the survival of patients in a dose-dependent fashion independent of cancer stage. Coexisting diseases can significantly increase the risk of the mortality of bladder cancer, and the influence degree of individual comorbidities and combined comorbidity is different. Simultaneously, the frequency and severity of perioperative complications increase with comorbidity rates increasing [18–20]. In our study, although the risk of death from heart diseases in all female patients who underwent surgery was slightly higher than that in the general population, it was the most common cause of death. Simultaneously, the ratio of cardiac death was continuously higher than the general population over all follow-up years after the surgery. According to the National Vital Statistics System statistics, 23.4% of the total United States population died of heart diseases in 2015 [21]. Considering these results, death caused by cardiovascular events should be concerned and relative risk factors should be monitored early, such as hyperlipidemia, cigarette smoking, and diabetes mellitus [22]. In patients who underwent radical cystectomy, the risk of death from septicemia was significantly increased in comparison with general population over all follow-up years. Nearly 2/3 of patients occur complications within 90 days after radical cystectomy, and the mortality rate ranges between 1.5% and 2% at 30 days postoperatively [20, 23]. Approximately 25% of the complications are infection, and obstruction caused by ureteral mesenteric anastomosis stenosis and urinary retention can lead to hydronephrosis, renal insufficiency and recurrent urinary tract infection [20]. Therefore, in the management of patients undergoing cystectomy, many long-term sequelae of urinary diversion should be considered, and the nursing of fistula, electrolyte balance and vitamin B12 should be monitored regularly [13]. The choice of the type of urinary diversion is crucial to the quality of life and prognosis of patients undergoing radical cystectomy. Failure of the urinary diversion may lead to the above-mentioned multiple complications and ultimately threaten the life of patients. The ideal urinary diversion should optimally maintain renal function, control urinary outflow, and minimize the incidence rate of patients. Among three types of urinary diversion, including orthotopic neobladders, cutaneous diversions and Ileal conduits, ileal conduits are considered to be the fastest, easiest, least complication-prone urinary diversion [24].

For patients with bladder cancer, age is considered to be an important prognostic factor. Compared with young patients, the mortality rate of elderly patients is higher because of poor histologies, higher recurrence rate, long-term accumulation of the molecular and genetic aberrations, accompanied by comorbidities and decreased immunity [25]. However, for patients undergoing radical cystectomy, it is reported that age is an important prognostic factor but is not irreplaceable, and tumor stage, grade and comorbidity status play decisive roles [26]. Our study showed that the risk of postoperative death in the 15–54 and 55–64 age groups, especially in the 15–54 age group, was significantly higher than that both in the other age groups and in the general population. This result seems different from previous studies, which believe that in contrast to those that occur in older patients, individuals under the age of 40 tend to express
smoking, which has been proved to be a risk factor for bladder cancer prognosis [34]. In addition, this study was based on the classification of surgical methods, which enables us to understand the role of surgical modality in the long-term survival of bladder cancer. However, the non-surgical treatment of bladder cancer is also important for the prognosis of patients. Moreover, different surgeons may have respective treatment strategies for bladder tumors of the same grade. The option of treatment and follow-up methods based on the surgeon’s judgment of the final results and the choice of the type of technique proposed will directly affect the prognosis of patients. Finally, the retrospective nature of the SEER database used in the study may have, to an extent, weaken the conclusion.

In summary, this study provides contemporary and comprehensive evaluation of causes of death for female patients of bladder cancer who have undergone radical cystectomy or local tumor excision. We found that the overall risk of death significantly increased for female patients undergoing radical cystectomy or local tumor excision in comparison to the general population, and especially in patients undergoing radical cystectomy. Simultaneously, bladder cancer remains the leading cause of death after surgery, but the death caused by heart diseases could not be ignored, and for patients undergoing radical cystectomy, the death of risk caused by non-bladder cancer significantly increased compared with patients undergoing local tumor excision, such as sepsisemia. These data highlight the need for general primary care for these female patients during postoperative cancer survivorship.

Acknowledgements
The authors would like to thank all contributors to the Surveillance, Epidemiology, and End Results (SEER) program data that were used in this analysis.

Author contributions
Study concept and design by QL; data acquisition by YN; data analysis by QL and YN; data interpretation by JY; manuscript drafting by QL; critical revision of the manuscript for important intellectual content by QL and JY; study supervision by DW. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The data sets generated during and analyzed during the current study are available in the SEER repository (https://seercancer.gov/).

Declarations
Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no actual or potential competing interests.
1. Richters A, Aben KKH, Kienmeney L. The global burden of urinary bladder cancer: an update. World J Urol. 2020;38(8):1895–904.

2. Wong MCS, et al. The global epidemiology of bladder cancer: a jointpoint regression analysis of its incidence and mortality trends and projection. Sci Rep. 2018;8(1):1129.

3. Nagase K, Tobu S, Kusano T, Takahara K, Udo K, Noguchi M. The association between metabolic syndrome and high-stage primary urothelial carcinoma of the bladder. Curr Urol. 2018;12:39–42.

4. Crocetto F, et al. A comparative study of the triglycerides/HDL ratio and pseudocholinesterase levels in patients with bladder cancer. Diagnostics (Basel). 2022;12(2):431.

5. Siegel RL, Miller KD, Jemal A. Cancer statistics. 2019. CA Cancer J Clin. 2019;69(1):7–34.

6. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

7. Burger M, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234–41.

8. Lenis AT, Lee PM, Chambie K. Bladder cancer: a review. JAMA. 2020;324(19):1980–91. https://doi.org/10.1001/jama.2020.17598.

9. Abel EJ, et al. Perioperative blood transfusion and radical cystectomy: does timing of transfusion affect bladder cancer mortality? Eur Urol. 2014;66(6):139–47.

10. Froehner M, et al. Decreased overall and bladder cancer-specific mortality with adjuvant chemotherapy after radical cystectomy: multivariable competing risk analysis. Eur Urol. 2016;69(6):984–7.

11. Kong J, et al. Causes of death in long-term bladder cancer survivors: a population-based study. Asia Pac J Clin Oncol. 2019;15(5):e167–74.

12. Mossanen M. The epidemiology of bladder cancer. Hematol Oncol Clin North Am. 2021;35(3):445–55.

13. Gerharz EW, et al. Metabolic and functional consequences of urinary reconstruction with bowel. BJU Int. 2003;91(2):143–9.

14. Roghmann F, et al. Standardized assessment of complications in a contemporary series of European patients undergoing radical cystectomy. Int J Urol. 2014;21(2):143–9.

15. Lanfranco AR, et al. Robotic surgery: a current perspective. Ann Surg. 2004;239(1):14–21.

16. Khan MS, et al. Long-term oncological outcomes from an early phase randomised controlled three-arm trial of open, robotic, and laparoscopic radical cystectomy (CORAL). Eur Urol. 2020;77(1):110–8.

17. Bada M, et al. Laparoscopic radical cystectomy with extracorporeal urinary diversion: an Italian single-center experience with 10-year outcomes. Minerva Urol Nefrol. 2020;72(5):641–3.

18. Piccirillo JF, et al. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA. 2004;291(20):2441–7.

19. Noon AP, et al. Competing mortality in patients diagnosed with bladder cancer: evidence of undertreatment in the elderly and female patients. Br J Cancer. 2013;108(7):1534–40.

20. Shabsigh A, et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur Urol. 2009;55(1):164–74.

21. Murphy SL, et al. Deaths: final data for 2015. Natl Vital Stat Rep. 2017;66(6):1–75.

22. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276–89.

23. Quek ML, et al. A critical analysis of perioperative mortality from radical cystectomy. J Urol. 2006;175(3 Pt 1):886–9.

24. Lee RK, et al. Urinary diversion after radical cystectomy for bladder cancer: options, patient selection, and outcomes. BJU Int. 2014;113(1):11–23.

25. Madeb R, Messing EM. Gender, racial and age differences in bladder cancer incidence and mortality. Urol Oncol. 2004;22(2):86–92.

26. Yamakawa K, et al. Significance of radical cystectomy for bladder cancer in patients over 80 years old. Int Urol Nephrol. 2007;39(1):209–14.

27. Benson RC Jr, Tomera KM, Kelalis PP. Transitional cell carcinoma of the bladder in children and adolescents. J Urol. 1983;130(1):54–5.

28. Fitzpatrick JM, Reda M. Bladder carcinoma in patients 40 years old or less. J Urol. 1986;135(1):53–4.

29. Hu M, et al. Sharpening the focus on causes and timing of readmission after radical cystectomy for bladder cancer. Cancer. 2014;120(9):1409–16.

30. Freshwater T, et al. Systematic literature review and meta-analysis of response to first-line therapies for advanced/metastatic urothelial cancer patients who are cisplatin ineligible. Ann J Clin Oncol. 2019;42(10):802–9.

31. Donin NM, et al. Immunotherapy for the treatment of urothelial carcinoma. J Urol. 2017;197(1):14–22.

32. Gakis G. Management of muscle-invasive bladder cancer in the 2020s: challenges and perspectives. Eur Urol Focus. 2020;6(4):632–8.

33. Dobruch J, et al. Gender and bladder cancer: a collaborative review of etiology, biology, and outcomes. Eur Urol. 2016;69(2):300–10.

34. Gratz AR, Demark-Wahnefried W. Health behaviors influence cancer survival. J Clin Oncol. 2009;27(12):1930–2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.