Identities for the k–generalized Fibonacci sequence with negative indices and its zero–multiplicity

Jonathan García * Carlos A. Gómez † Florian Luca ‡

November 2, 2022

Abstract

In this paper, we prove identities for members of the k–generalized Fibonacci sequence with negative indices and we apply these identities to deduce an exact formula for its zero–multiplicity.

Key words and phrases: k–generalized Fibonacci sequence, zero–multiplicity of linear recurrences.

Mathematics Subject Classification 2020: 11B39, 11J86

1 Introduction

One of the most famous and curious numerical sequence, due to the large number of properties and relationships with other areas [8], is the Fibonacci sequence, denoted by $F := (F_n)_{n \geq 0}$. Its initial values are $F_0 = 0$, $F_1 = 1$ and obeys the recurrence $F_n = F_{n-1} + F_{n-2}$ for all $n \geq 2$. This sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In general, a sequence $(u_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}$ is a linear recurrence sequence of order $k \in \mathbb{Z}^+$ if it satisfies the recurrence relation $u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \cdots + a_k u_n$ for all $n \geq 0$ with coefficients $a_1, \ldots, a_k \in \mathbb{C}$ and $a_k \neq 0$. We assume that k is minimal with the above property. Such a sequence $(u_n)_{n \in \mathbb{Z}}$ has an associated characteristic
Our identities are similar to the given by Ferguson [3], Gabai [4] or Cooper and Howard [1] for the Theorem 1.

2 The main results

H deduce an exact formula for the zero–multiplicity of $F_{n,k}$. We denote $H_{n,k}$ the term is the sum of the previous ones $F_{n,k} = F_{n-1,k} + F_{n-2,k} + \cdots + F_{n-k}$, for all $n, k \geq 2$. This sequence can be extended to all integer indices n. Since $F_{n,k} > 0$ for $n > 0$, all zeros of $F^{(k)}$ correspond to non–positive indices n. We denote $H^{(k)} := (H_{n,k}^{(k)})_{n \geq 0}$, where $H_{n,k}^{(k)} = F_{-n,k}^{(k)}$. This sequence obeys the recurrence relation

$$H_{n,k}^{(k)} = H_{n-k}^{(k)} - H_{n-(k-1)}^{(k)} - \cdots - H_{n-1}^{(k)} \quad \text{for all} \quad n \geq k, \quad (1)$$

with initial values $H_{i,k}^{(k)} = 0$ for $0 \leq i \leq k-2$ and $H_{k-1,k}^{(k)} = 1$.

In this paper, we find identities for members of $H^{(k)}$ and apply them to deduce an exact formula for the zero–multiplicity of $H^{(k)}$.

2.1 Identities for $H^{(k)}$

Our identities are similar to the given by Ferguson [3], Gabai [4] or Cooper and Howard [1] for the k–generalized Fibonacci sequence with positive indices.

Theorem 1. For all $k \geq 2$, the sequence $H^{(k)}$ satisfies

(i) For all $0 \leq m \leq r \leq k-2$, we have $H_{mk+r}^{(k)} = 0$.

(ii) For all $m \in [1, k-1]$, we have $H_{mk-1}^{(k)} = 2^{m-1}$.

(iii) For all $0 \leq r < m \leq k-1$,

$$H_{mk+r}^{(k)} = (-1)^{r+1} \left[\binom{m-1}{r} + \binom{m}{r+1} \right] 2^{m-r-2}.$$

(iv) For all $r \in [-1, k-2]$ and $m \geq k-1$,

$$H_{mk+r}^{(k)} = \sum_{i=0}^{\lfloor l \rfloor} (-1)^{ik+r+1} \left[\binom{m-i-1}{ik+r} + \binom{m-i}{ik+r+1} \right] 2^{m-i-(k+1)-r-2},$$

where $l = m-1$ if $k = 2$, and $l = \lfloor m/(k-1) \rfloor$ if $k > 2$.

2.2 Zero–multiplicity for $H^{(k)}$

One of the classical problems in the theory of linear recurrence sequences is the Skolem problem: Given the linear recurrence sequence $u := (u_n)_{n \in \mathbb{Z}}$, one wants to find $\mathcal{Z}(u) = \{n \in \mathbb{Z} : u_n = 0\}$. The cardinality of $\mathcal{Z}(u)$ (when this is finite) is called the zero–multiplicity of u. There is no known algorithm to find $\mathcal{Z}(u)$ in general. One of the more important results here is due to Skolem [11, 10]: If the coefficients a_1, \ldots, a_k of the linear recurrence sequence u are rational, then the set $\mathcal{Z}(u)$ is a union of finitely many arithmetical progressions together with a finite set. Hagedorn [7] showed that if the roots of $\Psi_k(z)$ are real then $\#\mathcal{Z}(u) \leq 2k - 3$.

Our current research is motivated by our previous work [5]. There we obtained that

$$\mathcal{A} := \bigcup_{m=0}^{k-2} [m(k+1), (m+1)k - 2] \subseteq \mathcal{Z}(H^{(k)}).$$

Thus, $\#\mathcal{Z}(H^{(k)}) \geq k(k-1)/2$. Furthermore, we checked that

$$\#\mathcal{Z}(H^{(2)}) = 1, \quad \#\mathcal{Z}(H^{(3)}) = 4 \quad \text{and} \quad \#\mathcal{Z}(H^{(k)}) = k(k-1)/2,$$

for $k \in [4, 500]$. Based on the above results, we proposed in [5] the following conjecture.

Conjecture 1. The zero–multiplicity $\#\mathcal{Z}(H^{(k)})$ of the k–generalized Fibonacci sequence with non-positive indices $H^{(k)}$ for $k \geq 4$ is the $(k-1)$st triangular number; i.e.

$$\#\mathcal{Z}(H^{(k)}) = k(k-1)/2.$$

Recently, relating the 2–adic valuation of $F^{(k)}$ with the Diophantine equation $H^{(k)}_n = 0$, Young [12] showed that for all $k > 500$,

$$\#\mathcal{Z}(H^{(k)}) \leq k(k+1)/2 + \lfloor k/2 \rfloor.$$

In this paper, we confirm the above conjecture. As a consequence of this, we get that $\mathcal{Z}(F^{(k)})$ is exactly \mathcal{A}.

3 Preliminary results

To simplify the notation, from now on we denote $H^{(k)}_n := H_n$, where k is fixed. From the recurrence relation (1), it is easy to see that

$$H_n = 2H_{n-k} - (H_{n-k} + H_{n-(k-1)} + \cdots + H_{n-2} + H_{n-1})$$

$$= 2H_{n-k} - H_{n-k-1} \quad \text{for all} \quad n \geq k + 1. \quad (3)$$
The containment (2) is a direct consequence of the initial values of H_n and the identity (3). Indeed, inductively we see that $H_n = 0$ for all $0 \leq n \leq k-2$. Further

$$H_n = 2H_{n-k} - H_{n-k-1} = 0 \quad \text{for all} \quad m(k+1) \leq n \leq mk + (k-2),$$

with $1 \leq m \leq k-2$. Moreover, the length of these intervals is given by the decreasing quantity

$$mk + (k-2) - m(k+1) = k - (m+2),$$

which becomes 0 at $m = k-2$.

So far, we have only summarized what we obtained in [5]. This is fundamental for what follows, since we note that the sequence H_n can be represented as lists matrices, starting with a rectangular matrix of size $(k - 1) \times (k + 1)$ and continuing with square matrices of size $k \times k$. Then, we observed interesting patterns in H_n that we were able to formulate and prove.

We start by ordering the first k^2-1 elements of the sequence H_n in matrix form $(H_{(i-1)(k+1)+(j-1)})_{ij}$ with $1 \leq i \leq k-1$ and $1 \leq j \leq k+1$. This is

$$
\begin{pmatrix}
H_0 & \cdots & H_{k-2} & H_{k-1} & H_k \\
H_{(k+1)+0} & \cdots & H_{(k+1)+k-2} & H_{(k+1)+k-1} & H_{(k+1)+k} \\
H_{2(k+1)+0} & \cdots & H_{2(k+1)+k-2} & H_{2(k+1)+k-1} & H_{2(k+1)+k} \\
& \ddots & \ddots & \ddots & \ddots \\
H_{(k-2)(k+1)+0} & \cdots & H_{(k-2)(k+1)+k-2} & H_{(k-2)(k+1)+k-1} & H_{(k-2)(k+1)+k}
\end{pmatrix}
$$

and we notice that the “upper triangular” part, which is in bold, is composed of zeros. We can also write this matrix as

$$
\begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & H_{k-1} & H_k \\
0 & 0 & \cdots & 0 & H_{2k} & H_{2k-1} & H_{2k+1} \\
0 & 0 & \cdots & H_{3k-1} & H_{3k} & H_{3k+1} & H_{3k+2} \\
& \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & H_{(k-1)k-1} & \cdots & H_{(k-1)k+k-5} & H_{(k-1)k+k-4} & H_{(k-1)k+k-3} & H_{(k-1)k+k-2}
\end{pmatrix},
$$

and we observe the following behavior in the non-zero diagonals.

Lemma 1.

(a) For all $m \in [1, k-1]$, we have $H_{mk-1} = 2^{m-1}$.

(b) For all $m \in [1, k-1]$, we have $H_{mk} = -(m+1)2^{m-2}$.

(c) For all $1 \leq r < m \leq k-1$,

$$H_{mk+r} = -\sum_{j=r}^{m-1} 2^{m-1-j} H_{jk+r-1}.$$
Proof. To show that the items of this lemma are fulfilled, we proceed by induction on \(m \), taking into account that the upper bound for \(m \) is \(k - 1 \geq 1 \).

(a) If \(m = 1 \), given the initial values, we have \(H_{k-1} = 1 = 2^0 \). Suppose that \(H_{(m-1)k-1} = 2^{m-2} \) for \(m \in [2, k-1] \). Then, using identity \((3)\), it follows that

\[
H_{mk-1} = 2H_{(m-1)k-1} - H_{(m-1)k-2} = 2^{m-1},
\]

since \(0 \leq m - 2 \leq k - 3 \) and therefore \(H_{((m-2)+1)k-2} = 0 \) (see \((2)\)).

(b) When \(m = 1 \), we have

\[
H_k = H_0 - H_1 - \cdots - H_{k-1} = -1 = -2 \times 2^{-1}.
\]

Assume \(H_{(m-1)k} = -m2^{m-3} \) and we obtain from identity \((3)\) and item (a), that

\[
H_{mk} = 2H_{(m-1)k} - H_{(m-1)k-1} = -m2^{m-2} - 2^{m-2} = -(m + 1)2^{m-2}.
\]

(c) Assume \(m = r + 1 \). We have by identity \((3)\) that

\[
H_{(r+1)k+r} = 2H_{rk+r} - H_{rk+r-1} = -H_{rk+r-1} = -\sum_{j=r}^{r} 2^{r-j} H_{jk+r-1},
\]

because \(H_{rk+r} = H_{r(k+1)} = 0 \) with \(1 \leq r \leq k - 2 \) (see \((2)\)). We take

\[
H_{(m-1)k+r} = -\sum_{j=r}^{m-2} 2^{m-2-j} H_{jkr-1}
\]

as the inductive hypothesis. Then

\[
H_{mk+r} = 2H_{(m-1)k+r} - H_{(m-1)k+r-1}
\]

\[
= -\left(\sum_{j=r}^{m-2} 2^{m-1-j} H_{jkr-1} \right) - H_{(m-1)k+r-1}
\]

\[
= -\sum_{j=r}^{m-1} 2^{m-1-j} H_{jkr-1}.
\]

Matrix \((4)\) is the first element of the list of matrices that we use to organize all the elements of \(H_n \), as we mentioned before. It is rectangular of size \((k - 1) \times (k + 1)\). The matrix that follows is of size \(k \times k \) and includes all the non-zero elements of the last row of matrix \((4)\), this is

\[
\begin{pmatrix}
H_{(k^2-k-1)+0} & H_{(k^2-k-1)+1} & \cdots & H_{(k^2-k-1)+k-1} \\
H_{(k^2-k-1)+1} & H_{(k^2-k-1)+k+1} & \cdots & H_{(k^2-k-1)+k+(k-1)} \\
\vdots & \vdots & \ddots & \vdots \\
H_{(k^2-k-1)+(k-1)k} & H_{(k^2-k-1)+(k-1)k+1} & \cdots & H_{(k^2-k-1)+(k-1)k+(k-1)}
\end{pmatrix}.
\]

\((5)\)
In general, all square matrices after matrix \(\mathbf{M} \) form the sequence \(\{M_b\}_{b \in \mathbb{Z}^+} \), where

\[
M_b := \begin{pmatrix}
H_{(bk^2-bk-1)+0} & H_{(bk^2-bk-1)+1} & \cdots & H_{(bk^2-bk-1)+k-1} \\
H_{(bk^2-bk-1)+k} & H_{(bk^2-bk-1)+k+1} & \cdots & H_{(bk^2-bk-1)+(k-1)} \\
\vdots & \vdots & \ddots & \vdots \\
H_{(bk^2-bk-1)+(k-1)k} & H_{(bk^2-bk-1)+(k-1)k+1} & \cdots & H_{(bk^2-bk-1)+(k-1)k+(k-1)}
\end{pmatrix}.
\]

Furthermore, by calling \(M_0 \) the matrix \(\mathbf{M} \), we have arrived at

\[
(H^{(k)}_n)_{n \geq 0} = \bigcup_{b \geq 0} \{h : h \text{ is an entry of } M_b\}.
\]

From now on, we simplify the notation by setting

\[
H_{b,jk+r} := H_{(bk^2-bk-1)+jk+r} \text{ for all } b \geq 0.
\]

Note that matrix \(\mathbf{M} \) is exactly \(M_1 \). In fact, these matrices satisfy that their first row is exactly the last row of the immediately preceding matrix. Indeed,

\[
H_{b,r} = H_{b-1,(k-1)k+r} \text{ for all } 0 \leq r \leq k-1 \text{ and } b \geq 1. \tag{6}
\]

Also,

\[
H_{b,1} = H_{b-1,(k-2)k+(k-1)} \text{ for all } b \geq 1 \tag{7}
\]

and in particular, by containment \(\mathbf{2} \),

\[
H_{1,1} = H_{0,(k-2)k+(k-1)} = H_{(k-2)(k+1)} = 0.
\]

Moreover, we observe that identity \(\mathbf{3} \) is still satisfied with this notation

\[
H_{b,n} = 2H_{b,n-k} - H_{b,n-k-1} \tag{8}
\]

for all \(b \geq 1 \) and \(n \geq 2 \), or for \(b = 0 \) and \(n \geq k + 2 \).

Next, we find the following patterns in all entries below the main diagonal of \(M_b \) with \(b \geq 1 \).

Lemma 2. Let \(b \geq 1 \), then

(I) \(H_{b,jk} = \begin{cases}
2H_{b,0} - H_{b-1,(k-2)k+(k-1)} & \text{if } j = 1, \\
2^{j-1}H_{b,k} - \sum_{i=0}^{j-2}2^{j-1-2}H_{b,(i+1)k-1} & \text{if } 2 \leq j \leq k-1.
\end{cases} \)

(II) For all \(r, j \in [1, k-1] \), it holds that

\[
H_{b,jk+r} = 2^{j-1}H_{b,k+r} - \sum_{i=1}^{j-1}2^{j-1-i}H_{b,ik+r-1}.
\]
Let $r, j \in [0, k - 1]$ be fixed. Then

\[H_{b,jk+r} = \sum_{i=0}^{t} (-1)^i \binom{t}{i} 2^{t-i} H_{b,(j-t)k+r-i}, \]

for all $t \in \left[0, \left\lfloor \frac{bk^2 - bk - 1 + jk + r}{k+1} \right\rfloor \right]$.

Proof. We consider each item separately.

(I) The case $j = 1$, follows from identities (7) and (8). Let $2 \leq j \leq k - 1$. We argue by induction on j. If $j = 2$, item (I) is immediate by identity (8). Suppose it is satisfied for $j - 1$; i.e.,

\[H_{b,(j-1)k} = 2^{j-2} H_{b,k} - \sum_{i=0}^{j-3} 2^{j-i-3} H_{b,(i+1)k-1}. \]

(9)

Then, by (8) and (9),

\[H_{b,jk} = 2H_{b,(j-1)k} - H_{b,(j-1)k-1} \]

\[= \left(2^{j-1} H_{b,k} - \sum_{i=0}^{j-3} 2^{j-i-2} H_{b,(i+1)k-1} \right) - H_{b,(j-1)k-1} \]

\[= 2^{j-1} H_{b,k} - \sum_{i=0}^{j-2} 2^{j-i-2} H_{b,(i+1)k-1}, \]

and thus we conclude item (I) for j.

(II) If $j = 1$, the identity is trivial. For $j \geq 2$, we apply recursively, $j - 1$ times, identity (8) on $H_{b,jk+r}$. That is,

\[H_{b,jk+r} = 2H_{b,(j-1)k+r} - H_{b,(j-1)k+r-1} \]

\[= 2^2 H_{b,(j-2)k+r} - 2H_{b,(j-2)k+r-1} - H_{b,(j-1)k+r-1} \]

\[= 2^3 H_{b,(j-3)k+r} - 2^2 H_{b,(j-3)k+r-1} - 2H_{b,(j-2)k+r-1} - H_{b,(j-1)k+r-1} \]

\[\vdots \]

\[= 2^{j-1} H_{b,(j-(j-1))k+r} - 2^{j-2} H_{b,(j-(j-1))k+r-1} - \cdots - H_{b,(j-1)k+r-1}. \]

(III) We proceed by induction on t. If $t = 0$, the identity is trivial. Suppose it is satisfied for $t - 1 \geq 0$; i.e.,

\[H_{b,jk+r} = \sum_{i=0}^{t-1} (-1)^i \binom{t-1}{i} 2^{t-i-1} H_{b,(j-t+1)k+r-i}. \]
Then, by the inductive hypothesis and identity (8), it follows that

\[H_{b,j+rk} = \sum_{i=0}^{t-1} (-1)^i \binom{t-1}{i} 2^{t-i-1} (2H_{b,(j-t)k+i} - H_{b,(j-t)k+i-1}) \]

\[= (-1)^0 \binom{t-1}{0} 2^t H_{b,(j-t)k+r} + \sum_{i=1}^{t-1} (-1)^i \binom{t-1}{i} 2^{t-i} H_{b,(j-t)k+r-i} \]

\[+ \sum_{i=1}^{t} (-1)^i \binom{t-1}{i-1} 2^{t-i} H_{b,(j-t)k+r-i} \]

\[= 2^t H_{b,(j-t)k+r} + \sum_{i=1}^{t-1} (-1)^i \left(\binom{t-1}{i} + \binom{t-1}{i-1} \right) 2^{t-i} H_{b,(j-t)k+r-i} \]

\[+ (-1)^t \binom{t-1}{t-1} 2^{t-t} H_{b,(j-t)k+r-t} \]

\[= 2^t H_{b,(j-t)k+r} + \sum_{i=1}^{t-1} (-1)^i \binom{t}{i} 2^{t-i} H_{b,(j-t)k+r-i} + (-1)^t H_{b,(j-t)k+r-t} \]

\[= \sum_{i=0}^{t} (-1)^i \binom{t}{i} 2^{t-i} H_{b,(j-t)k+r-i}, \]

and the identity is satisfied for \(t \). We must assume that \(t \leq \left\lfloor \frac{bk^2-bk+1+jk+r}{k+1} \right\rfloor \),

because in this case

\[bk^2 - bk - 1 + (j - t)k + r - i \geq bk^2 - bk - 1 + (j - t)k + r - t \geq 0, \]

for all \(0 \leq i \leq t \). Therefore, \(H_{b,(j-t)k+r-i} \) is well defined for all \(0 \leq i \leq t \).

This completes the proof of this lemma. \(\square \)

The above lemmas will allow us, in Section 4, to characterize all entries of the matrices \(M_b \) and therefore all elements of \(H_n \). For this purpose we introduce the following notation:

\[\psi(v,w) := \binom{v}{w} + \binom{v+1}{w+1}. \] (10)

Note that

\[\psi(v,-1) = 1 \text{ for all } v \neq -1 \quad \text{and} \quad \psi(v,w) = 0 \text{ for all } w > v \geq 0. \] (11)

We prove the following properties of \(\psi(v,w) \).

Lemma 3. The function \(\psi \) satisfies:

1. \(\psi(v,w) + \psi(v,w+1) = \psi(v+1,w+1) \).
2. \(\sum_{i=0}^{n} \psi(v+i,v) = \psi(v+n+1,v+1) \).
(3) $\sum_{i=1}^{n} \psi(v + i, i) = \psi(v + n + 1, n)$.

(4) $\sum_{i=w}^{v} \psi(i - 1, w - 1) = \psi(v, w)$.

(5) $\sum_{i=0}^{w} \binom{u}{i} \psi(v, w - i - 1) = \psi(u + v, w - 1)$.

Proof. To show that all items are satisfied, we use basic properties of binomial coefficients. Item (1) is immediate.

(2) We know that

$$\sum_{i=0}^{n} \psi(v + i, v) = \sum_{i=v}^{v+n} \binom{i}{v} + \sum_{i=v+1}^{v+n+1} \binom{i}{v+1} = \psi(v + n + 1, v + 1).$$

(3) It is clear that

$$\sum_{i=-1}^{n} \psi(v + i, i) = \sum_{i=0}^{n} \binom{v+i}{v} + \sum_{i=-1}^{n} \binom{v+i+1}{i+1}$$

$$= \sum_{i=v}^{v+n} \binom{i}{v} + \sum_{i=v}^{v+n+1} \binom{i}{v}$$

$$= \psi(v + n + 1, n).$$

(4) We have

$$\sum_{i=w}^{v} \psi(i - 1, w - 1) = \sum_{i=w-1}^{v-1} \binom{i}{w-1} + \sum_{i=w}^{v} \binom{i}{w} = \psi(v, w).$$

(5) We obtain

$$\sum_{i=0}^{w} \binom{u}{i} \psi(v, w - i - 1) = \sum_{i=0}^{w-1} \binom{u}{i} \binom{v}{w - i - 1} + \sum_{i=0}^{w} \binom{u}{i} \binom{v+1}{w - i}$$

$$= \psi(u + v, w - 1).$$

4 Proof of Theorem \[\square \]

For items (i) and (ii), see containment \[\square \] and Lemma \[\square \] item (a), respectively. The remaining items are shown below.

4.1 Item (iii)

With notation \[\square \], we must prove that

$$H_{mk+r} = (-1)^{r+1} \psi(m - 1, r)2^{m-r-2} \quad \text{for all} \quad 0 \leq r < m \leq k - 1. \quad (12)$$
For this, we apply induction on r. If $r = 0$, by Lemma [1] item (b), we get that identity (12) is satisfied. Indeed,
\[H_{mk} = -(m + 1)2^{m-2} = (-1)^1\psi(m - 1, 0)2^{m-2} \quad \text{for all} \quad 1 \leq m \leq k - 1. \]
We assume by the inductive hypothesis that identity (12) is satisfied for $r - 1$ and therefore $0 \leq r - 1 < m \leq k - 1$; i.e.,
\[H_{mk+r-1} = (-1)^r\psi(m - 1, r - 1)2^{m-r-1} \quad \text{for all} \quad r \leq m \leq k - 1. \]
In particular,
\[H_{jk+r-1} = (-1)^r\psi(j - 1, r - 1)2^{j-r-1} \quad \text{for all} \quad r \leq j \leq m - 1. \quad (13) \]
Then, by Lemma [1] item (c), Lemma [3] item (4) and identity (13), we obtain
\[
H_{mk+r} = -\sum_{j=r}^{m-1} 2^{m-1-j}((-1)^r\psi(j - 1, r - 1)2^{j-r-1})
= (-1)^{r+1}(\sum_{j=r}^{m-1}\psi(j - 1, r - 1))2^{m-r-1}
= (-1)^r\psi(m - 1, r)2^{m-r-1} \quad \text{for all} \quad 1 \leq r < m \leq k - 1.
\]
This completes the proof of item (iii).

4.2 Item (iv)

4.2.1 Case $k = 2$:

Here we must prove that for all $m \geq 1$,
\[
H_{2m+r} = \begin{cases}
\sum_{i=0}^{m-1}\psi(m - i - 1, 2i - 1)2^{m-3i-1}, & \text{if } r = -1, \\
-\sum_{i=0}^{m-1}\psi(m - i - 1, 2i)2^{m-3i-2}, & \text{if } r = 0.
\end{cases} \quad (14)
\]
For this we proceed by induction on m. Suppose that identity (14) is satisfied up to $m - 1 \geq 2$ (the cases $m = 1$ and $m = 2$ are easily verified). Then using (3), (11), Lemma [3] and the fact that $\psi(0, 2m - 2) = \psi(0, 2m - 3) = 0$ (since $m \geq 2$), we obtain
\[
H_{2m-1} = 2H_{2(m-1)-1} - H_{2(m-2)}
= \sum_{i=0}^{m-2}\psi(m - i - 2, 2i - 1)2^{m-3i-1} + \sum_{i=0}^{m-3}\psi(m - i - 3, 2i)2^{m-3i-4}
= \psi(m - 2, -1)2^{m-1} + \sum_{i=1}^{m-2}(\psi(m - i - 2, 2i - 1) + \psi(m - i - 2, 2i - 2))2^{m-3i-1}
= \psi(m - 1, -1)2^{m-1} + \sum_{i=1}^{m-2}\psi(m - i - 1, 2i - 1)2^{m-3i-1} + \psi(0, 2m - 3)2^{-2(m-1)}
= \sum_{i=0}^{m-1}\psi(m - i - 1, 2i - 1)2^{m-3i-1},
\]
and

\[H_{2m} = 2H_{2(m-1)} - H_{2(m-1)-1} \]

\[= - \sum_{i=0}^{m-2} \psi(m - i - 2, 2i)2^{m-3i-2} - \sum_{i=0}^{m-2} \psi(m - i - 2, 2i - 1)2^{m-3i-2} \]

\[= -\psi(0, 2m - 2)2^{-2m+1} - \sum_{i=0}^{m-2} (\psi(m - i - 2, 2i) + \psi(m - i - 2, 2i - 1))2^{m-3i-2} \]

\[= - \sum_{i=0}^{m-1} \psi(m - i - 1, 2i)2^{m-3i-2}. \]

4.2.2 Case \(k > 2 \):

To treat this case, we present the following two lemmas.

Lemma 4. For all \(k > 2 \) and \(j, r \in [0, k - 1] \), it holds that

\[H_{1, jk+r} = (-1)^r 2^{k+j-r-2} \psi(k + j - 2, r - 1) \]

\[+ (-1)^{k+r} 2^{j-r-3} \psi(k + j - 3, k + r - 1). \] \(\text{(15)} \)

Proof. We apply double induction on \(j, r \in [0, k - 1] \).

(A) Let \(j = r = 0 \). Since \(k > 2 \), by observation (11), it follows that

\[\psi(k - 2, -1) = 1 \quad \text{and} \quad \psi(k - 3, k - 1) = 0. \]

Then, using item \((ii)\), we obtain

\[H_{1,0} = H_{(k-1)k-1} = 2^{k-2} = 2^{k-2} \psi(k - 2, -1) + (-1)^{k+2} 2^{k-3} \psi(k - 3, k - 1) \]

fulfilling identity \((15)\).

(B) Let \(j = 0 \) and \(r \in [1, k - 1] \). Then, by item \((iii)\), we get that

\[H_{1,r} = H_{k(k-1)+r-1} = (-1)^r \psi(k - 2, r - 1) 2^{k-r-2} \]

and by observation (11) it follows that

\[H_{1,r} = (-1)^r 2^{k-r-2} \psi(k - 2, r - 1) \]

\[= (-1)^r 2^{k-r-2} \psi(k - 2, r - 1) + (-1)^{k+r} 2^{-r-3} \psi(k - 3, k + r - 1). \] \(\text{(16)} \)

Thus, identity \((15)\) is satisfied.

(C) Let \(r = 0 \) and \(j \in [1, k - 1] \). If \(j = 1 \), by Lemma 2, item \((I)\) and observation (11), we have that identity \((15)\) is satisfied. In fact,

\[H_{1,k} = 2H_{1,0} - H_{0,(k-2)k+(k-1)} = 2H_{1,0} = 2^{k-1} \]

\[= 2^{k-1} \psi(k - 1, -1) + (-1)^k 2^{-2} \psi(k - 2, k - 1). \] \(\text{(17)} \)
If \(j \in [2, k - 1] \), we note that by Lemma 2, item (I), combined with item (III) of this same Lemma and items (A), (B) above, we get

\[
H_{1,jk} = 2^{j-1}H_{1,k} - \sum_{i=0}^{j-2} 2^{j-i-2}H_{1,jk+i+1}
\]

\[
= 2^{j-1}H_{1,k} + \sum_{i=0}^{j-2} (-1)^{\ell+1} \binom{\ell+1}{\ell} 2^{j-\ell}H_{1,k-\ell}
\]

\[
= 2^{j-1}H_{1,k} + \sum_{i=0}^{j-2} (-1)^{\ell+1} \left(\sum_{\ell=0}^{j-2} \binom{j-1}{\ell+1} 2^{j-\ell}H_{1,k-\ell} \right)
\]

\[
= 2^{j-1}H_{1,k} + (-1)^{k-2} \sum_{\ell=1}^{j-1} \binom{j-1}{\ell} \psi(k-2, k-1-\ell).
\] (18)

In addition,

\[
\psi(k-2, k-1) = 0 \quad \text{and} \quad \binom{j-1}{\ell} = 0 \quad \text{for} \quad j \leq \ell \leq k.
\] (19)

Then, by identities (17), (18), (19), observation (11) and Lemma 3 (item 5), we obtain

\[
H_{1,jk} = 2^{k+j-2} + (-1)^{k-2} \sum_{\ell=1}^{j-1} \binom{j-1}{\ell} \psi(k-2, k-1-\ell)
\]

\[
= 2^{k+j-2} \psi(k+j-2, -1) + (-1)^{k} 2^{j-3} \psi(k+j-3, k-1).
\]

Thus, identity (15) is satisfied.

(D) Let \(r \in [1, k - 1] \) be fixed and assume as inductive hypothesis that identity (15) is satisfied up to \(j - 1 \geq 0 \). Then replacing \(r \) by \(r - 1 \) in the inductive hypothesis, we have

\[
H_{1,i,k+r-1} = (-1)^{r-1} 2^{k+i-r-1} \psi(k + i - 2, r - 2)
\]

\[
+ (-1)^{k+r-1} 2^{i-r-2} \psi(k + i - 3, k + r - 2),
\]

for all \(1 \leq i \leq j - 1 \) and \(r - 1 \in [0, k - 2] \) fixed. In particular, this also implies (see (11)) that

\[
H_{1,k+r} = (-1)^{r} 2^{k-r-1} \psi(k-1, r-1) + (-1)^{k+r-1} 2^{r-2} \psi(k-2, k+r-1)
\]

\[
= (-1)^{r} 2^{k-r-1} \psi(k-1, r-1)
\]

*This item is used with \(j = i, r = k - 1 \) and \(t = i \) for the elements \(H_{1,i,k+i} \).

†The case \(r - 1 = 0 \) is obtained from Item (C) above.
for $r \in [1, k - 1]$ fixed. Thus, by the above two identities and Lemma 2, item (II), we get

$$H_{b,jk+r} = 2^{j-1}H_{b,k+r} - \sum_{i=1}^{j-1}2^{j-1-i}H_{b,ik+r}$$

$$= (-1)^r2^{k+j-r-2}\psi(k-1, r-1)$$

$$+ (-1)^r2^{k+j-r-2}\sum_{i=1}^{j-1}\psi(k+i-2, r-2)$$

$$+ (-1)^{k+r}2^{j-r-3}\sum_{i=1}^{j-1}\psi(k+i-3, k+r-2) \quad (20)$$

for all $r, j \in [1, k - 1]$, with r fixed. We note that using the identity (1) of Lemma 3, it follows that

$$\psi(k - 1, r - 1) + \sum_{i=1}^{j-1}\psi(k+i-2, r-2)$$

$$= \psi(k, r - 1) + \sum_{i=2}^{j-1}\psi(k+i-2, r-2)$$

$$= \psi(k+1, r - 1) + \sum_{i=3}^{j-1}\psi(k+i-2, r-2)$$

$$\vdots$$

$$\psi(k + j - 3, r - 1) + \sum_{i=j-1}^{j-1}\psi(k+i-2, r-2)$$

$$= \psi(k + j - 2, r - 1). \quad (21)$$

Furthermore, by observation (11),

$$\psi(k + i - 3, k + r - 2) = 0 \quad \text{for} \quad i < r + 1. \quad (22)$$

Then, by the identities (20), (21), (22) and Lemma 3 item (2), we obtain

$$H_{b,jk+r} = (-1)^r2^{k+j-r-2}\left(\psi(k-1, r-1) + \sum_{i=1}^{j-1}\psi(k+i-2, r-2)\right)$$

$$+ (-1)^{k+r}2^{j-r-3}\sum_{i=1}^{j-1}\psi(k+i-3, k+r-2)$$

$$= (-1)^r2^{k+j-r-2}\psi(k+j-2, r-1)$$

$$+ (-1)^{k+r}2^{j-r-3}\psi(k+j-3, k+r-1).$$

Therefore, identity (15) is satisfied.
(E) We fix \(j \in [1,k-1] \) and take as inductive hypothesis the identity (15) for \(r-1 \geq 0 \). In items (A), (C) and (D) above, we proved that identity (15) is satisfied on \(H_{ik+r-1} \), for fixed \(r-1 \geq 0 \) and all \(i \in [0,k-1] \). Then

\[
H_{1,ik+r-1} = (-1)^{r-1}2^{k+i-r-1}\psi(k+i-2,r-2)
+ (-1)^{k+r-1}2^{i-r-2}\psi(k+i-3,k+r-2)
\]

holds for all \(0 \leq i \leq j-1 \). Thus, by the above identity, identity (16) and Lemma 2, item (II), it follows that

\[
H_{1,jk+r} = 2^j H_{1,r} - \sum_{i=0}^{j-1} 2^{j-1-i}H_{1,ik+r-1}
= (-1)^{2}2^{k+j-r-2}\psi(k-2,r-1) + (-1)^{r}2^{k+j-r-2}\sum_{i=0}^{j-1}\psi(k+i-2,r-2)
+ (-1)^{k+r}2^{j-r-3}\sum_{i=0}^{j-1}\psi(k+i-3,k+r-2)
\]

holds for all \(r, j \in [1,k-1] \), with \(j \) fixed. Now, by identity (1) of Lemma 3 and identity (21), we deduce that

\[
\psi(k-2,r-1) + \sum_{i=0}^{j-1}\psi(k+i-2,r-2)
= \psi(k-1,r-1) + \sum_{i=1}^{j-1}\psi(k+i-2,r-2) = \psi(k+j-2,r-1).
\]

Therefore, identities (22), (23), (24) and Lemma 3 item (2), lead us to

\[
H_{1,jk+r} = (-1)^{r}2^{k+j-r-2}\psi(k+j-2,r-1)
+ (-1)^{k+r}2^{j-r-3}\sum_{i=r+1}^{j-1}\psi(k+i-3,k+r-2)
= (-1)^{r}2^{k+j-r-2}\psi(k+j-2,r-1)
+ (-1)^{k+r}2^{j-r-3}\sum_{i=0}^{j-r-2}\psi(k+r-2+i,k+r-2)
= (-1)^{r}2^{k+j-r-2}\psi(k+j-2,r-1)
+ (-1)^{k+r}2^{j-r-3}\psi(k+j-3,k+r-1),
\]

thus satisfying identity (15).

Finally, items (A), (B), (C), (D) and (E) above prove the lemma.

The following result generalizes the previous one.
Lemma 5. For all $k > 2; j, r \in [0, k - 1]$ and $b \in \mathbb{Z}^+$, it holds that

$$H_{b,jk+r} = \sum_{i=0}^{b} (-1)^i 2^{b-i} \psi((bk + j - b - i - 1, ik + r - 1)).$$

(25)

Proof. Here, we proceed by induction in b. The case $b = 1$ follows from Lemma [4]. We state as inductive hypothesis that

$$H_{b-1,jk+r} = \sum_{i=0}^{b-1} (-1)^i 2^{b-i} \psi((b-1)k + j - b - i - 1, ik + r - 1),$$

(26)

for $b - 1 \geq 1$, $k > 2$ and $j, r \in [0, k - 1]$. Next, we consider the following cases.

(A′) Let $j \leq r$. Then, by Lemma [2] (item III) with $t = j$ and the identities (26), (6), we have that

$$H_{b,jk+r} = \sum_{\ell=0}^{j} (-1)^\ell \binom{j}{\ell} 2^{j-\ell} H_{b-1,(k-1)k+r-\ell}$$

$$= \sum_{i=0}^{b-1} (-1)^i 2^{b-i} \psi((b-1)k + j - b - i - 1, ik + r - j).$$

(27)

We note that $j \leq r < ik + r$ for all $i \geq 0$, and

$$\binom{j}{\ell} = 0 \quad \text{for } j + 1 \leq \ell \leq ik + r.$$

(28)

We use the identities (27), (28) and Lemma [3], item (5), to obtain

$$H_{b,jk+r} = \sum_{i=0}^{b-1} (-1)^i 2^{b-i} \psi((bk - b - i - 1, ik + r - j).$$

(29)

In fact, $b(k-2) + j - 1 < bk + r - 1$ and therefore (see (11))

$$\psi(b(k-2) + j - 1, bk + r - 1) = 0.$$

So, the sum in identity (29) can be extended to b, fulfilling identity (25) in this case.

(B′) Let $r < j$. Here, we proceed by induction on r.

15
• For \(r = 0 \), we apply induction on \(j > 0 \). If \(j = 1 \), by the identities (6), (7) and (26) we obtain that

\[
H_{b,k} = 2H_{b,0} - H_{b,-1} = 2H_{b-1,(k-1)k} - H_{b-1,(k-2)k+(k-1)}
= \sum_{i=0}^{b-1} (-1)^{ik}2^{(b-i)k-b-i}\psi(bk - b - i - 1, ik - 1)
- \sum_{i=0}^{b-1} (-1)^{ik+k-1}2^{(b-i-1)k-b-i-1}\psi(bk - b - i - 2, ik + k - 2).
\]

In addition,

\[
\psi(bk - b - b - 1, bk - 1) = 0,
\psi(bk - b - 1, -1) = \psi(bk - b, -1) = 1
\]
(see (11)) and by Lemma 3, item (1) we obtain

\[
H_{b,k} = \sum_{i=0}^{b-1} (-1)^{ik}2^{(b-i)k-b-i}\psi(bk - b - i - 1, ik - 1)
+ \sum_{i=1}^{b} (-1)^{ik}2^{(b-i)k-b-i}\psi(bk - b - i - 1, ik - 2)
= 2^{bk-b}\psi(bk - b - 1, -1)
+ \sum_{i=1}^{b} (-1)^{ik}2^{(b-i)k-b-i} (\psi(bk - b - i - 1, ik - 1) + \psi(bk - b - i - 1, ik - 2))
= \sum_{i=0}^{b} (-1)^{ik}2^{(b-i)k-b-i}\psi(bk - b - i, ik - 1)
\]

satisfying identity (25).

• Now, we assume that identity (25) is satisfied for \(j - 1 \), when \(r = 0 \). We obtain that

\[
H_{b,jk} = 2H_{b,(j-1)k} - H_{b,(j-1)k-1} = 2H_{b,(j-1)k} - H_{b,(j-2)k+k-1}
= -H_{b,(j-2)k+k-1} + \sum_{i=0}^{b} (-1)^{ik}2^{(b-i)k+j-b-i-1}\psi(bk + j - b - i - 2, ik - 1).
\]

We also note that \(j - 2 < k - 1 \), so item (A') above implies that

\[
H_{b,(j-2)k+k-1} = \sum_{i=0}^{b} (-1)^{ik+k-1}2^{(b-i-1)k+j-b-i-2}\psi(bk+j-b-i-3, ik+k-2).
\]

Then, since

\[
\psi(bk + j - 2b - 3, bk + k - 2) = 0
\psi(bk + j - b - 2, -1) = \psi(bk + j - b - 1, -1) = 1
\]
(see (11)), we use identities (31), (32) and Lemma 3, item (1) to obtain

\[H_{b,jk} = 2^{bk+j-b-1} \psi(bk + j - b - 2, -1) \]

\[+ \sum_{i=1}^{b} (-1)^i 2^{(b-i)k+j-b-i-1} \psi(bk + j - b - i - 2, ik - 2) \]

\[+ \sum_{i=1}^{b} (-1)^i 2^{(b-i)k+j-b-i-1} \psi(bk + j - b - i - 2, ik - 1) \]

\[= \sum_{i=0}^{b} (-1)^i 2^{(b-i)k+j-b-i-1} \psi(bk + j - b - i - 1, ik - 1). \]

Therefore identity (25) holds in this case. This concludes the induction on \(j \) when \(r = 0 \). Thus, the base case of induction on \(r \) is done.

- Let \(j = r + 1 \). Item \((A') \) above implies that

\[H_{b,k+\ell} = \sum_{i=0}^{b} (-1)^i 2^{(b-i)k-k-b-i} \psi(bk - b - i, ik + \ell - 1) \]

for \(1 \leq \ell \leq r \). By Lemma 2, item (III) with \(t = r \), and the identities (30), (33), we obtain

\[H_{b,(r+1)k+r} = \sum_{\ell=0}^{r} (-1)^{r-\ell} \binom{r}{r-\ell} 2^\ell H_{b,k+\ell} \]

\[= \sum_{\ell=0}^{r} \binom{r}{\ell} \left(\sum_{i=0}^{b} (-1)^i 2^{(b-i)k-k-b-i} \psi(bk - b - i, ik + \ell - 1) \right) \]

\[= \sum_{i=0}^{b} (-1)^i 2^{(b-i)k-k-i} \sum_{\ell=0}^{r} \binom{r}{r-\ell} \psi(bk - b - i, ik + r - \ell - 1). \]

Furthermore, \(r \leq ik + r \) for \(i \geq 0 \) and

\[\binom{r}{r-\ell} = 0, \quad \text{for } r+1 \leq \ell \leq ik + r \quad \text{when } i \geq 1. \]

Then, by identities (34), (35) and Lemma 3, item (5), we arrive at

\[H_{b,(r+1)k+r} = \sum_{i=0}^{b} (-1)^i 2^{(b-i)k-k-i} \sum_{\ell=0}^{r} \binom{r}{r-\ell} \psi(bk - b - i, ik + r - \ell - 1) \]

\[= \sum_{i=0}^{b} (-1)^i 2^{(b-i)k-k-i} \psi(bk - b - i + r, ik + r - 1). \]

The above identity verifies identity (25) in this case, and we finish the base step of induction on \(j \) and on \(r \).
• We assume by the inductive hypothesis that identity (25) is fulfilled for \(r - 1 \) and up to \(j - 1 \); i.e.,

\[
H_{b,\ell k + r - 1} = \sum_{i=0}^{b} (-1)^{ik + r - 1} 2^{(b-i)k + \ell - r - b - i} \psi(bk + \ell - b - i - 1, ik + r - 2)
\]

for \(r \leq \ell \leq j - 1 \). Also, by item \((A')\) above, we obtain that identity (36) holds for \(0 \leq \ell \leq r - 1 \). In fact, it implies that

\[
H_{b,r} = \sum_{i=0}^{b} (-1)^{ik + r} 2^{(b-i)k - r - b - i - 1} \psi(b - b - i - 1, ik + r - 1).
\]

Then, by Lemma \(2\) item \((II)\) and identity (36), we arrive at

\[
H_{b,jk + r} = 2^j H_{b,r} - \sum_{\ell=0}^{j-1} 2^{j-1-\ell} H_{b,\ell k + r - 1}
\]

\[
= \sum_{i=0}^{b} (-1)^{ik + r} 2^{(b-i)k + j - r - b - i - 1} \psi(b - b - i - 1, ik + r - 1)
\]

\[
+ \sum_{i=0}^{b} (-1)^{ik + r} 2^{(b-i)k + j - r - b - i - 1} \sum_{\ell=0}^{j-1} \psi(bk + \ell - b - i - 1, ik + r - 2)
\]

for all \(r, j \in [1, k - 1] \). We observe, by Lemma \(3\), item \((1)\), that

\[
\psi(bk - b - i - 1, ik + r - 1) + \sum_{\ell=0}^{j-1} \psi(bk + \ell - b - i - 1, ik + r - 2)
\]

\[
= \psi(bk - b - i, ik + r - 1) + \sum_{\ell=1}^{j-1} \psi(bk + \ell - b - i - 1, ik + r - 2)
\]

\[
= \psi(bk - b - i + 1, ik + r - 1) + \sum_{\ell=2}^{j-1} \psi(bk + \ell - b - i - 1, ik + r - 2)
\]

\[
\vdots
\]

\[
= \psi(bk - b - i + j - 2, ik + r - 1) + \psi(bk + j - b - i - 2, ik + r - 2)
\]

\[
= \psi(bk - b - i + j - 1, ik + r - 1).
\]

\(^{\dagger}\)The case \(r = 0 \) is made in the first item of this item \((B')\).
Then, by the identities (37) and (38), we obtain

\[
H_{b,j+k+r} = \sum_{i=0}^{b} (-1)^{ik+r+2(b-i)k+j+r-b-i-1} \left(\psi(bk - b - i - 1, ik + r - 1) + \sum_{\ell=0}^{j-1} \psi(bk + \ell - b - i - 1, ik + r - 2) \right) \\
= \sum_{i=0}^{b} (-1)^{ik+r+2(b-i)k+j+r-b-i-1} \psi(bk - b - i + j - 1, ik + r - 1)
\]

and identity (25) is satisfied. This finishes the induction on both \(j\) and \(r\) thus completing the proof of this lemma.

\[\square\]

Now we return to the proof of item \((iv)\). Replacing \(b(k - 1) + j\) by \(m\) and \(r - 1\) by \(r\) in Lemma 5, we obtain that

\[
H_{mk+r} = H_{b(k-1)+j+k+r} = H_{b,j+k+r+1}
\]

(39)

\[
= \sum_{i=0}^{b} (-1)^{ik+r+1} \psi(m - i - 1, ik + r) 2^{m-i(k+1)-r-2},
\]

(40)

for all \(k > 2, j \in [0, k - 1], r \in [-1, k - 2]\) and \(b \in \mathbb{Z}^+\). By identity (6), we have

\[H_{b,r+1} = H_{b-1,(k-1)k+r+1} \quad \text{for all} \quad -1 \leq r \leq k - 2 \quad \text{and} \quad b \in \mathbb{Z}^+,
\]

so we can assume that \(j \in [0, k - 1)\) (in order not to repeat elements of the sequence in (39)). Then

\[
\frac{m}{k-1} - 1 < \frac{m-j}{k-1} \leq \frac{m}{k-1} \quad \text{for} \quad k - 1 > 1,
\]

therefore \(\left\lfloor \frac{m}{k-1} \right\rfloor - 1 < b \leq \left\lfloor \frac{m}{k-1} \right\rfloor\) and \(b = \left\lfloor \frac{m}{k-1} \right\rfloor\). In conclusion, item \((iv)\) follows from replacing \(b\) by \(\left\lfloor \frac{m}{k-1} \right\rfloor\) in identity (40)\(^8\).

This completes the proof of Theorem 1.

5 Proof of Conjecture 1

We distinguish two cases according to the parity of \(k\). Furthermore, since item \((i)\) of Theorem 1 determines the set of zeros of \(H^{(k)}\) in (2) and items \((ii)\)–\((iii)\) don’t provide zeros for \(H^{(k)}\), we can assume that \(m \geq k - 1\).

\(^8\)Note that \(m = b(k - 1) + j \geq k - 1\).
5.1 Case \(k \) even

In this case, by item (iv) in Theorem 1, we get that for all \(r \in [-1, k - 2] \) and \(m \geq k - 1 \),

\[
H_{mk + r} = (-1)^{r+1} \sum_{i=0}^{l} \left[\left(\frac{m - i - 1}{ik + r} \right) + \left(\frac{m - i}{ik + r + 1} \right) \right] 2^{m-i(k+1)-r-2},
\]

where \(l = m - 1 \) if \(k = 2 \), and \(l = \lfloor m/(k-1) \rfloor \) if \(k > 2 \). So, for \(n = mk + r \geq k^2 - k - 1 \), we have \(H_n < 0 \) if \(n \) is even, while \(H_n > 0 \) if \(n \) is odd, given that \(n \) and \(r \) have same parity because \(k \) is even.

Thus, item (i) of Theorem 1 implies that in this case the zero–multiplicity of \(H^{(k)} \) is exactly \(k(k - 1)/2 \), confirming Conjecture 1 in this case.

5.2 Case \(k \) odd

Since we verified in our previous work \([5]\) that \(\#Z(H^{(k)}) = k(k - 1)/2 \) for \(k \in [4, 500] \), we will assume that \(H_n = 0 \), for \(n = mk + r \), with \(m \geq k - 1 \), \(r \in [-1, k - 2] \) and \(k > 500 \) odd.

5.2.1 A lower bound for \(n \) in terms of \(k \)

By item (iv) of Theorem 1, we have after simplifying a factor of \(2^{m-r-2} \), that

\[
\sum_{i=0}^{l} (-1)^i \psi(m - i - 1, ik + r) 2^{-i(k+1)} = 0, \quad \text{for } l = \lfloor m/(k-1) \rfloor. \tag{41}
\]

We note that in the sum of equation (41), the term for \(i = 0 \) is non–zero since \(r \leq k - 2 < k - 1 \leq m \), which implies that \(r \leq m - 1 \) and therefore \(\psi(m-1, r) \neq 0 \). If the case \(i = 0 \) were the only for which \(\psi(m-i-1, ik+r) \) is non–zero, we would have that equation (41) has no solution and our problem of zero multiplicity for the odd \(k \) case would be solved. So, we must assume that at least two terms of the above sum (the first with \(i = 0 \) and the second with \(i \) odd) are non–zero.

Next, we take \(l' \) to be the largest index \(i > 0 \) for which the \(i \)-th term of the sum in equation (41) is non–zero and see that equation (41) takes the form

\[
\sum_{i=0}^{l'} (-1)^i \psi(m - i - 1, ik + r) 2^{-i(k+1)} = 0, \quad \text{for } 0 < l' \leq \lfloor m/(k-1) \rfloor,
\]

where \(\psi(m - l' - 1, l'k + r) \) is non–zero.

Separating the case \(i = l' \), we get

\[
\psi(m - l' - 1, l'k + r) = 2^{k+1} \sum_{i=0}^{l'-1} (-1)^{i+l'} \psi(m - i - 1, ik + r) 2^{(l'-i-1)(k+1)},
\]

where \(l' = m - 1 \) if \(k = 2 \), and \(l' = \lfloor m/(k-1) \rfloor \) if \(k > 2 \).
with \(l' - i - 1 \geq 0 \) for all \(i = 0, \ldots, l' - 1 \). Hence,
\[
2^{k+1} \mid \psi(m' - l - 1, l'k + r), \quad \text{where} \quad l' \leq \lfloor m/(k - 1) \rfloor.
\]

Now,
\[
\psi(v, w) = \binom{v}{w} + \binom{v + 1}{w + 1} = \binom{v}{w} \left(1 + \frac{v + 1}{w + 1} \right).
\]

Kummer [9] proved that \(\nu \left(\binom{v}{w} \right) \) equals the number of carries when adding \(w \) with \(v - w \) in base 2. Here, for a nonzero integer \(m \), \(\nu(m) \) is the exponent of 2 in the factorization of \(m \). In particular,
\[
\nu \left(\binom{v}{w} \right) \leq \frac{\log v}{\log 2} + 1.
\]

Hence,
\[
\nu_2(\psi(v, w)) \leq \nu_2 \left(\binom{v}{w} \right) + \nu_2(v + w + 2) \leq \frac{\log v}{\log 2} + 1 + \frac{\log(v + w + 2)}{\log 2} \leq 2 \frac{\log v}{\log 2} + 2,
\]

where for the last inequality we used the fact that we may assume that \(w \leq v - 2 \) (indeed, if \(w = v \), then \(\psi(v, w) = 2 \), so the above bound holds while if \(w = v - 1 \), then \(\psi(v, w) = 2v + 1 \) is odd so the above bound again holds). Since
\[
2^{k+1} \mid \psi(v, w), \quad \text{for} \quad (v, w) = (m' - l - 1, l'k + r),
\]
we get \(\nu_2(\psi(v, w)) \geq k + 1 \). Hence,
\[
k + 1 \leq 2 \frac{\log v}{\log 2} + 2, \quad \text{therefore} \quad v \geq 2^{(k-1)/2}.
\]

Since \(m - l' - 1 \leq n \), we get that
\[
2^{(k-1)/2} \leq n. \quad (42)
\]

5.2.2 An upper bound for \(n \) in terms of \(k \)

We now review the preliminary work [5] on zero–multiplicity of \(H^{(k)} \), to obtain a better upper bound for \(n \) on \(k \), which we then combine with the above lower bound (42). In [5], we used a Binet–type formula of \(H_n \), namely
\[
H_n = f_k(\alpha_1^{-(n+1)}) + \cdots + f_k(\alpha_{k-1}^{-(n+1)}) + f_k(\alpha_k)^{-(n+1)}
\]
where \(\alpha_1, \ldots, \alpha_{k-1}, \alpha_k \) are all the roots of the characteristic polynomial of \(F^{(k)} \), with \(\alpha_1 > 1 \) being the only real root and the remaining \(k - 1 \) roots lie inside the unit disk. Furthermore,
\[
\alpha_1 > |\alpha_2| \geq \cdots \geq |\alpha_{k-1}| \geq |\alpha_k| \quad \text{and} \quad f_k(z) := (z-1) / (2 + (k + 1)(z - 2)).
\]
Thus, if $H_n = 0$, then

$$\left| \Lambda \right| = \left| 1 + \left(\frac{f_k(\alpha_{k-1})}{f_k(\alpha_k)} \right) \left(\frac{\alpha_k}{\alpha_{k-1}} \right)^{n+1} \right| = \sum_{i=1}^{k-2} \left| \frac{f_k(\alpha_i)}{f_k(\alpha_k)} \right| \left| \frac{\alpha_i}{\alpha_k} \right|^{n+1}$$

$$< \frac{3(k - 2)(k - 1)}{\alpha_{k-2}/\alpha_k^{n+1}} \left| \frac{1}{f_k(\alpha_k)} \right|$$

$$< 13(k(3k + 1)}{\alpha_{k-2}/\alpha_k^{n+1}}.$$

Using an argument involving lower bounds for nonzero linear forms in logarithms of complex algebraic numbers, we found

$$\left| \Lambda \right| > \exp(-5 \cdot 10^{13} \times k^7 \log(n + 1)(\log k)^2). \quad (44)$$

The following result will be fundamental to combine inequalities (43) and (44), in order to find a better upper bound for n on k that one given in [5]. The next lemma is Theorem 1 in [6] and represents an improvement over the analogous inequality in [2].

Lemma 6. The inequality

$$\frac{|\alpha_i|}{|\alpha_j|} > 1 + \frac{1}{10k^{9.6}(\pi/e)^k} \quad \text{holds for all} \quad 1 \leq i < j \leq (k - 1)/2$$

and all $k \geq 4$.

Hence, by inequalities (43), (44) and Lemma 6

$$n < 3 \cdot 10^{14}k^{1.76}(\log k)^3(\pi/e)^k. \quad (45)$$

5.2.3 Absolute bounds for n, k and final conclusion

Combining (42) and (45), we get

$$\left(\frac{\sqrt{2}}{(\pi/e)} \right)^k < 3\sqrt{2} \cdot 10^{14}k^{1.76}(\log k)^3,$$

showing that $k \leq 790$.

By (43) and (44), we have

$$5 \cdot 10^{13} \times k^7 \log(n + 1)(\log k)^2 > \log \left| \frac{f_k(\alpha_k)}{3} \right| + (n + 1) \log \left| \frac{\alpha_{k-2}}{\alpha_k} \right|. \quad (46)$$

Thus, using the fact that $k \in [501, 789]$, we obtain computationally an upper bound on n in each case:

If $H_n = 0$ and $k \in [501, 789]$, then $n \in 2.5 \cdot 10^{45}$.
Returning to inequality (42), we have \(2^{(k-1)/2} < n < 2.5 \cdot 10^{45}\) which leads to \(k \leq 517\). Finally, we return once again to (46) where now we get \(n < 3.5 \cdot 10^{43}\) for all odd \(k \in [501, 517]\). Then, by (42), we conclude that \(k < 500\), contradicting our initial assumption about \(k\).

This completes the proof of Conjecture 1 for the case of \(k\) odd.

Acknowledgement. J. G. thanks the Universidad del Valle for support during his master’s studies. C.A.G. was supported in part by Project 71327 (Universidad del Valle).

References

[1] C. Cooper and F. T. Howard, Some identities for \(r\)–Fibonacci numbers, \textit{The Fibonacci Quarterly} \textbf{49} (2011) 231–243.

[2] A. Dubickas, On then distance between two algebraic numbers, \textit{Bulletin of the Malaysian Mathematical Science Society} \textbf{43} (2020), 3049–3064.

[3] D. E. Ferguson, An expression for generalized Fibonacci numbers, \textit{The Fibonacci Quarterly} \textbf{4} (1966), 270–273.

[4] H. Gabai, Generalized Fibonacci \(k\)–sequences, \textit{The Fibonacci Quarterly} \textbf{8} (1970), 31–38.

[5] J. García, C. A. Gómez, and F. Luca, On the zero–multiplicity of the \(k\)–generalized Fibonacci sequence, \textit{Journal of Difference Equations and Applications} \textbf{26} (2020), 1564–1578.

[6] J. García, C. A. Gómez and F. Luca, On the separation of the roots of the generalized Fibonacci polynomial, \textit{arXiv:2210.16717v1} (2022), 1–15.

[7] T. R. Hagedorn, Zeros of a real linear recurrence of degree \(n \geq 4\), \textit{C. R. Math. Rep. Acad. Sci. Canada} \textbf{27} (2005), 41–47.

[8] T. Koshy, Fibonacci and Lucas Numbers with Applications, \textit{John Wiley \\& Sons, Inc.}, New York, 2001.

[9] E. Kummer, Über die Ergänzungssatze zu den allgemeinen Reciprocitätsgesetzen, \textit{J. Reine Angew. Math.} \textbf{44} (1852), 93–146.

[10] T.N. Shorey and R. Tijdeman, Exponential Diophantine equations, \textit{Cambridge University Press}, 1986; reprinted 2008.

[11] T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen, \textit{Proceedings of the 8th Congress of Scandinavian Mathematicians}, Stockholm (1934), 163–188.

[12] P. T. Young, On the \(2\)–adic valuation of generalized Fibonacci sequences, \textit{Integers} \textbf{22} (2022), Article 68.