Performance and Return to Sport After Meniscal Repair in Professional Baseball Players

Brandon J. Erickson,*† MD, Peter N. Chalmers,‡ MD, John D’Angelo,§ BA, Kevin Ma,§ BA, Dana Rowe,§ BA, Steven B. Cohen,† MD, and Jeffrey R. Dugas,§ MD

Investigation performed at the Rothman Orthopaedic Institute, New York, New York, USA

Background: Meniscal repair is an effective treatment option for certain meniscal injuries to preserve meniscal function and limit the progression of knee osteoarthritis. Outcomes after meniscal repair in professional baseball players are not well documented.

Purposes/Hypothesis: The purposes of this study were to determine performance and return to sport (RTS) in professional baseball players after meniscal repair and compare the results of medial versus lateral meniscal repair. It was hypothesized that there would be a high RTS rate, with no difference in the rate or timing of RTS between players who underwent medial versus lateral meniscal repair.

Study Design: Cohort study; Level of evidence, 3.

Methods: All professional baseball players who underwent meniscal repair between 2010 and 2017 were identified using the Major League Baseball Health and Injury Tracking System database. Descriptive information and performance data (before and after injury) for each player were recorded. The rate and timing of RTS were then compared between players who underwent medial versus lateral meniscal repair.

Results: Included were 31 patients (mean age, 24 ± 3 years). There were 6 players (19%) who had failed repair, underwent subsequent meniscectomy within 2 years of meniscal repair, and were thus excluded from the performance analysis. Of the remaining 31 players, 68% returned to the same or a higher level of play, and 6% of players returned to a lower level of play. Most repair procedures (60%) were performed using the all-inside technique, and 72% of players underwent lateral meniscal repair. The mean time missed was 187 ± 67 days, and the mean time to RTS at full competitive play was 209 ± 84 days. There were no significant differences in the rate or timing of RTS between players who underwent medial versus lateral meniscal repair (%P/C²1.999 and %P = .574, respectively). Pitchers saw a decrease in usage but no change in performance after meniscal repair. For batters, most metrics were unchanged, but there was a significant decrease in base stealing and on-base percentage after surgery.

Conclusion: The RTS rate after meniscal repair in Major League Baseball players was 74% at a mean of 209 days; 19% of players had failed repair and underwent subsequent meniscectomy within 2 years of repair. No difference in the rate or timing of RTS was observed between players who underwent medial versus lateral meniscal repair.

Keywords: knee; baseball; meniscal repair; return to sport; surgery; outcome

The medial and lateral menisci have several functions in the knee including load transmission, lubrication, proprioception, stability, and protection of cartilage surfaces.8,15,19 Partial or complete loss of the meniscus promotes the early development of chondromalacia and osteoarthritis. Although >700,000 meniscectomy procedures are performed each year in the United States, there are far fewer meniscal repair procedures performed.3,21 While meniscal tears commonly occur in the setting of anterior cruciate ligament (ACL) tears, there are a substantial number of meniscal tears that occur in isolation.

While meniscal repair commonly involves a longer and more intense rehabilitation period as well as a higher risk of reoperations, studies have demonstrated improved long-term results after meniscal repair compared with meniscectomy.17 Furthermore, the progression to knee arthritis is decreased with meniscal repair compared with meniscectomy.17 As such, in the setting of a repairable tear, most surgeons recommend meniscal repair over meniscectomy.20 However, the results after meniscal repair in isolation (without concomitant ACL reconstruction) are somewhat limited, especially as they relate to return to sport (RTS). No study to date has evaluated the rate and
The timing of RTS after meniscal repair in baseball players. As such, it is difficult to set expectations for these athletes before a surgical intervention.

The primary purpose of this study was to determine the performance and RTS rate in professional baseball players after meniscal repair. A secondary purpose was to compare the rate and timing of RTS in players who underwent medial versus lateral meniscal repair. We hypothesized that there would be a high RTS rate in professional baseball players after meniscal repair, with no significant decline in performance. We also hypothesized that there would be no significant difference in the rate or timing of RTS between players who underwent medial versus lateral meniscal repair.

METHODS

This study was performed with the approval of the Major League Baseball (MLB) Research Committee. All male professional baseball players who underwent meniscal repair between 2010 and 2017 were eligible for inclusion. All players had a minimum 2-year follow-up. Players were included if they underwent concomitant partial meniscectomy, plica excision, or chondroplasty. Players were excluded if they underwent any other concomitant surgical procedure outside of partial meniscectomy, chondroplasty, or plica excision (ACL reconstruction, collateral ligament repair, microfracture, etc); if they were collegiate (National Collegiate Athletic Association) players at the time of surgery; or if they never participated in a professional baseball game before surgery. Data were analyzed from the MLB Health and Injury Tracking System (HITS) database (Figure 1).

The HITS is a centralized database that contains de-identified player information and was developed as a league-wide injury surveillance system in 2010 to record player injuries and injury time. The HITS has been used in several prior studies and has been found to be a reliable source of information. One author (B.J.E.) reviewed all operative reports for each player to confirm that the player underwent meniscal repair. Surgical variables including technique (all-inside, inside-out, outside-in, root repair), number of anchors/sutures used, whether plica excision was performed, whether chondroplasty was performed, and location of chondral injury were recorded for each player. All players identified were included in this study in relation to the RTS rate. A player was deemed to

---

Figure 1. Screening criteria for players included in this study.

*Address correspondence to Brandon J. Erickson, MD, Rothman Orthopaedic Institute, 176 3rd Avenue, New York, NY 10003, USA (email: brandon.erickson@rothmanortho.com).

†Rothman Orthopaedic Institute, New York, New York, USA.

‡Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.

§Major League Baseball Commissioner’s Office, New York, New York, USA.

Andrews Sports Medicine & Orthopaedic Center, Birmingham, Alabama, USA.

Final revision submitted February 8, 2022; accepted March 23, 2022.

One or more of the authors has declared the following potential conflict of interest or source of funding: B.J.E. has received education payments from Arthrex and Smith & Nephew and consulting fees from Arthrex. P.N.C. has received education payments from Active Medical, consulting fees from DePuy/ Medical Device Business Services, and nonconsulting fees from Arthrex. S.B.C. has received education payments from Liberty Surgical and consulting fees from Zimmer Biomet. J.R.D. has received consulting fees from Arthrex and DJO, nonconsulting fees from Arthrex, and royalties from Arthrex and In2Bones. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.

Ethical approval for this study was waived by University of Utah (No. 00114699).
have returned to sport if he played in any professional game after surgery. The time to RTS was defined as the time between surgery and when the athlete played in his first game after surgery. An athlete was deemed to have returned to the same level of play if he was able to compete in a game at the same or a higher level as before surgery. Players who underwent repeat surgery, either on the contralateral knee or because of revision surgery on the same knee, were excluded from the analysis of performance statistics, as their data could not be clearly categorized.

Statistical Analysis

All analyses were performed using Excel X (Microsoft Corp) and SPSS Version 21 (IBM Corp). As this is a retrospective study of an uncommon procedure in a specific population cohort, no a priori power analysis was conducted, and all available patients were included. Descriptive statistics were calculated. Data were analyzed for normality using the Kolmogorov-Smirnov test, and parametric and non-parametric tests were used as appropriate. Performance outcomes were averaged before the injury and postoperatively/after the injury. To do so, performance data were categorized as either ≥1 year before the injury or ≥1 year postoperatively; data within 1 year of surgery were discarded because of potential variations in injury chronicity and rehabilitation. Performance data were analyzed as previously described.10,11

Preoperative and postoperative data were compared using the paired Student t test and related-samples Wilcoxon signed rank test as appropriate based on data normality. For each player, maximum preoperative and postoperative levels of play were determined, and each player was then determined to have returned to the same or a higher level of play, returned but to a lower level, or not returned. Preoperative and postoperative performance as well as RTS rates were also compared between players who underwent medial versus lateral meniscal repair using the chi-square test.

RESULTS

A total of 34 knees in 33 patients underwent meniscal repair during the study period. At the time of surgery, 8 patients played in the major leagues, and 25 played in the minor leagues (3 AAA, 6 AA, and 16 A). One patient underwent bilateral meniscal repair 1 year apart from one another, and this patient was excluded from the performance and return-to-play analyses, as it was not believed that this case could be easily categorized. One patient underwent meniscal repair on one side and meniscectomy on the contralateral knee a year later. This patient was also excluded from the performance and return-to-play analyses, as it was not believed that this case could be easily categorized. Therefore, 31 knees in 31 patients were included.

Overall, 6 knees in 6 patients (19%) had failed repair and underwent subsequent meniscectomy on the same knee within 2 years of the primary meniscal repair procedure, leaving 25 knees in 25 patients available for performance analysis. The 6 players who had failed repair were placed in the failed-to-RTS category. Thus, 21 of 31 players (68%) returned to the same or a higher level of play, 2 of 31 players (6%) returned to a lower level of play, and 8 of 31 players (26%) did not return. Of note, of the 6 players who had failed repair and underwent subsequent meniscectomy, 5 (83%) were able to return to the same level after meniscectomy.

While players encompassed a variety of positions, catchers and pitchers represented the majority of the cohort (Table 1). The most common mechanism of injury was fielding in the infield, and most injuries occurred on natural grass. All injuries were listed in the database as “acute” injuries, with none listed as “overuse” injuries. Intraoperatively, more lateral than medial menisci were repaired (Table 2). Most menisci were repaired using an all-inside technique, and concomitant cartilage damage was an infrequent finding (Table 3). No patients received a concomitant injection of stem cells or bone marrow aspirate concentrate at the time of surgery, while 20% received a concomitant injection of platelet-rich plasma. Of the 6 players who had failed repair and went on to future meniscectomy, 4 players underwent medial meniscal repair, and 2 players underwent lateral meniscal repair; 2 players underwent repair via the inside-out technique, and 4 players underwent repair via the all-inside technique; 3 were catchers, 2 were center fielders, and 1 was a pitcher; and 2 received an injection of platelet-rich plasma at the time of meniscal repair.

Among pitchers, 7 of 10 (70%) returned to the same or a higher level of play, and 3 of 10 (30%) did not return to play. When examining pitching performance, players saw a
decrease in usage but no change in performance after meniscal repair (Table 4).

Among fielders, 15 of 23 (65%) returned to the same or a higher level of play, 2 of 23 (9%) returned to a lower level of play, and 6 of 23 (26%) did not return to play. One player who was both a pitcher and a fielder returned to the same level of pitching but did not return to batting. Examining batting performance, there was a significant decrease in base stealing and on-base percentage postoperatively (Table 5).

On average, the number of days missed from participation in practice was 187 ± 67 days, while the mean time to return to full competitive play was 209 ± 84 days. There was no significant difference in RTS rates between players with meniscal repair procedures that involved the medial meniscus (7/11 [64%]) and those with procedures that involved the lateral meniscus (18/20 [90%]) (P ≥ .999). There were no significant differences in the time to RTS between players with repair procedures that involved the medial meniscus (183 ± 63 days) and those with procedures that involved the lateral meniscus (207 ± 104 days) (P = .574).

DISCUSSION

Meniscal repair has become a well-accepted treatment method for certain meniscal tears in an effort to preserve knee function and prevent the progression to arthritis. Our hypotheses were partly confirmed, as there was a high RTS rate in professional baseball players after meniscal repair. However, with the low incidence of meniscal repair procedures during the interval studied, there was no significant difference in the rate or timing of RTS between players who underwent medial versus lateral meniscal repair. However, there was a decline in several performance variables, including on-base percentage, after meniscal repair.

While many meniscal tears are not amenable to repair, it is the preference of many surgeons to repair tears that could potentially heal in an attempt to protect the knee from future degeneration. There are several techniques for meniscal repair including inside-out, outside-in, and all-inside. The majority of patients in this study (60%) underwent meniscal repair via an all-inside technique. While the inside-out technique was previously considered the criterion standard, many surgeons have adopted the all-inside technique when possible to minimize the morbidity associated with the inside-out technique. Fillingham et al performed a systematic review of 27 studies and compared the results of inside-out (676 patients) versus all-inside (548 patients) meniscal repair. The authors found no significant difference in the clinical or anatomic failure rate or complication rate between the 2 techniques, indicating that the all-inside technique is a viable option for meniscal repair. In the current study, 27% of the all-inside repair procedures failed, while 67% of the inside-out repair procedures failed. Tear size was not documented, so it is unclear if larger tears were treated more commonly with the inside-out technique and if the all-inside technique was used for smaller tears. Our sample size was not large enough to make a comparison between the techniques.

There have been few studies on the outcomes after meniscal repair in isolation without concomitant ACL reconstruction. DePhillipo et al reported the healing rates of 64 patients who underwent meniscal repair at the

| Variable | n (%) |
|----------|-------|
| Laterality |       |
| Medial | 7 (28) |
| Lateral | 18 (72) |
| Repair type |       |
| All-inside | 15 (60) |
| Inside-out | 3 (12) |
| Outside-in | 3 (12) |
| Root | 1 (4) |
| Combined all-inside and inside-out | 3 (12) |
| No. of repair devices placed |       |
| 1 | 4 (16) |
| 2 | 6 (24) |
| 3 | 6 (24) |
| 4 | 3 (12) |
| 10 | 1 (4) |
| Not available | 5 (20) |
| Plica excision | 2 (8) |
| Cartilage damage | 8 (32) |
| Concomitant chondroplasty | 4 (16) |
| Concomitant platelet-rich plasma injection | 5 (20) |

| Region | Damage |
|--------|--------|
| 0 | 1 | 2 | 3 | 4 |
| Trochlea | 2 (8) | 23 (92) | 0 (0) | 2 (8) | 0 (0) | 0 (0) |
| Patella | 3 (12) | 22 (88) | 2 (8) | 0 (0) | 1 (4) | 0 (0) |
| Lateral femoral condyle | 2 (8) | 23 (92) | 0 (0) | 2 (8) | 0 (0) | 0 (0) |
| Medial femoral condyle | 1 (4) | 24 (96) | 0 (0) | 1 (4) | 0 (0) | 0 (0) |
| Medial tibial plateau | 0 (0) | 0 (0) | 0 (0) | 2 (8) | 0 (0) | 0 (0) |
| Lateral tibial plateau | 4 (16) | 21 (84) | 0 (0) | 2 (8) | 2 (8) | 0 (0) |

*Data are reported as n (%).
The Orthopaedic Journal of Sports Medicine  
Performance and RTS After Meniscal Repair  

### Table 4

**Pitching Performance Statistics**<sup>a</sup>

| Variable                        | Preoperative | Postoperative | Mean Difference (95% CI) | P   |
|---------------------------------|--------------|---------------|--------------------------|-----|
| Wins per year                   | 4 ± 3        | 2 ± 1         | -2 (-6 to 1)             | .127|
| Losses per year                 | 5 ± 2        | 2 ± 1         | -2 (-5 to 1)             | .085|
| Games per year                  | 27 ± 9       | 17 ± 14       | -11 (-36 to 15)          | .274|
| Games started per year          | 11 ± 8       | 5 ± 3         | -7 (-18 to 5)            | .162|
| Games finished per year         | 7 ± 7        | 4 ± 4         | -3 (-18 to 13)           | .590|
| Complete games per year         | 0.0 ± 0.0    | 0.1 ± 0.2     | 0.1 (-0.2 to 0.0)        | .391|
| Shutouts per year               | 0 ± 0        | 0 ± 0         | 0 (0 to 0)               | NA  |
| Saves per year                  | 1.3 ± 2.3    | 0.6 ± 0.7     | -0.7 (-5.1 to 4.0)       | .643|
| Innings pitched per year        | 84 ± 30      | 36 ± 26       | -47 (-88 to -6)          | .035|
| Hits per year                   | 82 ± 26      | 38 ± 25       | -44 (-75 to -14)         | .019|
| Runs per year                   | 40 ± 16      | 22 ± 14       | -19 (-34 to -4)          | .029|
| Earned runs per year            | 34 ± 13      | 20 ± 13       | -14 (-29 to -1)          | .058|
| Home runs per year              | 6 ± 4        | 4 ± 3         | -2 (-7 to 3)             | .309|
| Balls batted per year           | 26 ± 14      | 17 ± 13       | -9 (-18 to 0)            | .051|
| Intentional walks per year      | 0.59 ± 0.67  | 0.08 ± 0.17   | -0.51 (-1.70 to 1.00)    | .267|
| Strikeouts per year             | 73 ± 18      | 33 ± 23       | -41 (-63 to -18)         | .011|
| Hit batters per year            | 3.5 ± 2.7    | 2.5 ± 2.6     | -1.0 (-2.3 to 0.0)       | .099|
| Walks per year                  | 0.38 ± 0.48  | 0.08 ± 0.17   | -0.29 (-0.84 to 0.00)    | .188|
| Wild pitches per year           | 5 ± 1        | 3 ± 2         | -2 (-6 to 1)             | .132|
| Batters faced per year          | 355 ± 126    | 165 ± 114     | -190 (-345 to -36)       | .030|
| Win-loss percentage             | 0.47 ± 0.21  | 0.38 ± 0.26   | -0.09 (-0.69 to 1.00)    | .652|
| Earned run average              | 3.72 ± 0.69  | 20.25 ± 31.51 | 16.53 (-34.24 to 67.00)  | .376|
| Runs allowed per 9 innings      | 4.47 ± 1.00  | 20.46 ± 31.37 | 15.99 (-34.95 to 67.00)  | .391|
| Walks plus hits per inning pitched | 1.31 ± 0.06   | 3.33 ± 3.79  | 2.02 (-4.10 to 8.00)    | .370|
| Hits per 9 innings              | 8.88 ± 0.55  | 23.44 ± 29.40 | 14.56 (-32.09 to 61.00)  | .394|
| Home runs per 9 innings         | 0.59 ± 0.27  | 4.06 ± 6.30   | 3.47 (-6.44 to 13.00)    | .346|
| Walks allowed per 9 innings     | 2.92 ± 0.81  | 6.58 ± 4.77   | 3.65 (-8.13 to 12.00)    | .264|
| Strikeouts per 9 innings        | 8.37 ± 1.73  | 9.56 ± 2.70   | 1.18 (-1.89 to 7.00)     | .579|
| Strikeouts per walk             | 3.31 ± 1.08  | 1.84 ± 0.66   | -1.46 (-3.43 to 1.00)    | .098|
| Fielding independent pitching   | NA           | NA            | NA                       | NA  |
| Wins above replacement          | NA           | NA            | NA                       | NA  |

<a>Data are reported as mean ± SD unless otherwise stated. Boldface P values denote a significant difference between preoperative and postoperative measurements (P < .05). NA, not available/not applicable.</a>

...time of bone grafting (first stage) for 2-stage ACL reconstruction. On second-look arthroscopic examination at the time of revision ACL reconstruction, the authors noted that 82% of the meniscal repair procedures had healed. This study did not evaluate the clinical success long term but simply the ability of the meniscus to heal before the patient tried to RTS and test the knee. Hagmeijer et al<sup>11</sup> reported the results of 29 competitive soccer players who underwent lateral meniscal repair for bucket-handle tears and found an overall failure rate of 30%. This failure rate is consistent with that of the current study. This is important information to relay to patients, as setting proper preoperative expectations is critical to achieving a successful outcome.

Although no studies in the literature have focused on the success of meniscal repair in baseball players, Alvarez-Diaz et al<sup>1</sup> reported the results of 29 competitive soccer players after meniscal repair at a follow-up of 6 years. The authors noted that 2 patients (6.9%) required revision arthroscopic surgery with partial meniscectomy before RTS. They reported that 90% of players returned to the same level of play after meniscal repair. However, at their final follow-up, only 28% were still playing soccer at the same or higher level. Compared to our study, the study of Alvarez-Diaz et al<sup>1</sup> showed a much higher RTS rate and a much lower failure rate initially, but these results deteriorated over time. It is unclear exactly why the revision and RTS rates were different between the 2 studies, as soccer players place a significant amount of stress on their menisci during practice and competition.

One of the more interesting findings of this study was the number of patients who underwent lateral meniscal...
repair (72%) compared with medial meniscal repair (28%). While the exact reason for this is unknown, it could be that surgeons were more aggressive in attempting lateral meniscal repair, as the lateral meniscus plays a more significant role in maintaining joint congruity, given the convex shape of the lateral tibial plateau compared with the concave shape of the medial tibial plateau. Krych et al16 reviewed 141 patients with meniscus root tears and noted that 100% of those with lateral meniscus root tears underwent surgical repair while only 27% of those with medial meniscus root tears underwent repair. This is a similar finding to that of the current study. Krych et al16 also noted that the outcomes after lateral meniscus root repair were better than those after medial meniscus root repair. Meniscal repair in professional baseball players is a viable treatment option and appears to be a more common choice for lateral meniscal tears than medial meniscal tears.

Limitations

This study utilized the MLB HITS database and was therefore subject to data entry errors. The cause of meniscal injuries was broadly classified, but while club athletic trainers do an outstanding job of entering information on all of these athletes, it is possible that some of this information was entered incorrectly. This was a retrospective study with a small number of patients. This study did not examine when it was safe to allow a baseball player to RTS after meniscal repair; rather, it reported when these players were able to return based on previously recorded data. As such, a recommendation on when it is safe to allow RTS after meniscal repair is beyond the scope of this study and is something to be explored in future studies. Players with a chondral injury could not be separated out into a separate group and compared to those without a cartilage injury, as the type and severity of cartilage injury varied too much to form 1 homogeneous group.

CONCLUSION

The RTS rate after meniscal repair in professional baseball players was 74% at a mean of 209 days. With the numbers available for analysis, no difference in the rate or timing of RTS was observed between players who underwent medial versus lateral meniscal repair. Additionally, 19% of players...
had failed repair and underwent subsequent meniscectomy within 2 years of repair.

ACKNOWLEDGMENT

The authors acknowledge the Professional Baseball Athletic Trainers Society for its continued efforts in updating the MLB injury database and the care of these athletes.

REFERENCES

1. Alvarez-Diaz P, Alentorn-Geli E, Llobet F, Granados N, Steinbacher G, Cugat R. Return to play after all-inside meniscal repair in competitive football players: a minimum 5-year follow-up. Knee Surg Sports Traumatol Arthrosoc. 2016;24(6):1997-2001.
2. Ardizzone CA, Houck DA, McCartney DW, Vidal AF, Frank RM. All-inside repair of bucket-handle meniscal tears: clinical outcomes and prognostic factors. Am J Sports Med. 2020;48(13):3386-3393.
3. Brophy RH, Matava MJ. Surgical options for meniscal replacement. J Am Acad Orthop Surg. 2012;20(5):265-272.
4. Camp CL, Conte S, D’Angelo J, Fealy SA. Epidemiology of ulnar collateral ligament reconstruction in Major and Minor League Baseball pitchers: comprehensive report of 1429 cases. J Shoulder Elbow Surg. 2018;27(5):871-878.
5. Camp CL, Dines JS, van der List JP, et al. Summative report on time out of play for Major and Minor League Baseball: an analysis of 49,955 injuries from 2011 through 2016. Am J Sports Med. 2018;46(7):1727-1732.
6. Chauhan A, McQueen P, Chalmers PN, et al. Nonoperative treatment of elbow ulnar collateral ligament injuries with and without platelet-rich plasma in professional baseball players: a comparative and matched cohort analysis. Am J Sports Med. 2019;47(13):3107-3119.
7. DePhillipo NN, Dekker TJ, Aman ZS, Bernholt D, Grantham WJ, LaPrade RF. Incidence and healing rates of meniscal tears in patients undergoing repair during the first stage of 2-stage revision anterior cruciate ligament reconstruction. Am J Sports Med. 2019;47(14):3389-3395.
8. Erickson BJ, Campbell K, Cvetanovich GL, Harris JD, Bach BR Jr, Sherman SL. Nonligamentous soft tissue pathology about the knee: a review. Orthopedics. 2016;39(1):32-42.
9. Erickson BJ, Chalmers PN, D’Angelo J, et al. Side of hamstring harvest does not affect performance, return-to-sport rate, or future hamstring injuries after ulnar collateral ligament reconstruction among professional baseball pitchers. Am J Sports Med. 2019;47(5):1111-1116.
10. Erickson BJ, Chalmers PN, D’Angelo J, Ma K, Dines JS, Romeo AA. Do outcomes or subsequent injuries differ after ulnar collateral ligament reconstruction with palmaris versus hamstring autograft? Am J Sports Med. 2019;47(6):1473-1479.
11. Erickson BJ, Chalmers PN, D’Angelo J, Ma K, Romeo AA. Performance and return to sport after latissimus dorsi and teres major tears among professional baseball pitchers. Am J Sports Med. 2019;47(5):1090-1095.
12. Feeley BT, Lau BC. Biomechanics and clinical outcomes of partial meniscectomy. J Am Acad Orthop Surg. 2018;26(4):853-863.
13. Fillingham YA, Riboh JC, Erickson BJ, et al. Inside-out versus all-inside repair of isolated meniscal tears: An updated systematic review. Am J Sports Med. 2017;45(1):234-242.
14. Hagmeijer MH, Kennedy NJ, Taglieri AJ, et al. Long-term results after repair of isolated meniscal tears among patients aged 18 years and younger: an 18-year follow-up study. Am J Sports Med. 2019;47(4):799-806.
15. Krause WR, Pope MH, Johnson RJ, Wilder DG. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am. 1976;58(5):599-604.
16. Krych AJ, Bernard CD, Kennedy NJ, et al. Medial versus lateral meniscus root tears: is there a difference in injury presentation, treatment decisions, and surgical repair outcomes? Arthroscopy. 2020;36(4):1135-1141.
17. Lutz C, Dalmay F, Ekhirch FP, et al. Meniscectomy versus meniscal repair: 10 years radiological and clinical results in vertical lesions in stable knee. Orthop Traumatol Surg Res. 2015;101(Suppl 1):S327-S331.
18. Pollack KM, D’Angelo J, Green G, et al. Developing and implementing Major League Baseball’s Health and Injury Tracking System. Am J Epidemiol. 2016;183(5):490-496.
19. Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC. Material properties of the normal medial bovine meniscus. J Orthop Res. 1989;7(6):771-782.
20. Rao AJ, Erickson BJ, Cvetanovich GL, Yanke AB, Bach BR Jr, Cole BJ. The meniscus-deficient knee: biomechanics, evaluation, and treatment options. Orthop J Sports Med. 2015;3(10):2325967115611386.
21. Sihvonen R, Paavola M, Malmivaara A, et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med. 2013;369(26):2515-2524.