Review Article

Olabisi Flora Davies-Bolorunduro, Abraham Ajayi, Isaac Adeyemi Adeleye, Alfilda Novi Kristanti, Nanik Siti Aminah*

Bioprospecting for antituberculosis natural products – A review

https://doi.org/10.1515/chem-2021-0095
received July 26, 2021; accepted September 24, 2021

Abstract: There has been an increase in the reported cases of tuberculosis, a disease caused by Mycobacterium tuberculosis, which is still currently affecting most of the world’s population, especially in resource-limited countries. The search for novel antitubercular chemotherapeutics from underexplored natural sources is of paramount importance. The renewed interest in studies related to natural products, driven partly by the growing incidence of MDR-TB, has increased the prospects of discovering new antitubercular drug leads. This is because most of the currently available chemotherapeutics such as rifampicin and capreomycin used in the treatment of TB were derived from natural products, which are proven to be an abundant source of novel drugs used to treat many diseases. To meet the global need for novel antibiotics from natural sources, various strategies for high-throughput screening have been designed and implemented. This review highlights the current antitubercular drug discovery strategies from natural sources.

Keywords: Mycobacterium tuberculosis, diseases, chemotherapeutics, natural products, high-throughput screening

1 Introduction

Tuberculosis (TB), an infectious bacterial disease caused by Mycobacterium tuberculosis, has afflicted humans since ancient times. Although significant amounts of efforts have been made in the control of this disease at global and national levels, approximately one-third of the world’s population is still infected with M. tuberculosis [1,2]. The global resurgence of TB and the development of drug resistance, multidrug-resistant (MDR), and extensively drug-resistant (XDR) strains present significant challenges to the management and control of TB. The alarming increase of MDR-TB cases requires the urgent development of new, more effective, and safer TB chemotherapeutics, which should be several months shorter than the currently adopted regimen [3].

Essentially, natural products constitute an important source of novel chemotherapeutics [4–7]. A huge amount of valuable antibiotics and metabolites of microbial sources have been derived from the soil. There has been a reduction in the considerable efforts made in this area since the late 1980s due to the perception that this resource has been extensively studied [8]. Subsequently, the research focus was switched to unexplored environments such as arid deserts, hot springs, and other unusual habitats for novel chemotherapeutic compounds against human pathogens [9]. Over the
past few decades, there have been reports of about 23,000 bioactive metabolic compounds produced by microbes with over 10,000 of these compounds synthesized by actinomycetes [10–12]. However, only a few plants from over 400,000 plant species with proven biological activity have been reported worldwide [13]. This makes it imperative to identify the unexplored plants' species for drug discovery research. Plant selection, which is the first and most crucial step for such studies, is based on several approaches such as random, ethnopharmacological, ethnobotanical, and traditional uses [14].

However, the need for novel chemotherapeutics still remains of prime concern due to the issue of resistance to multiple chemotherapeutics commonly exhibited by \(M. \) \(\text{tuberculosis} \). It is therefore imperative to continue the search for novel natural products derived from plants as well as microbes from underexplored habitats including marine, estuarine, and even deep seas. Researchers have hypothesized that since these microorganisms could grow optimally in such unusual environments, some of these species produce new bioactive compounds, which apart from aiding their survival, could serve as new drugs [15].

2 Tuberculosis and current anti-TB chemotherapeutics

2.1 Tuberculosis

Tuberculosis is an ancient disease of humans caused by the \(M. \) \(\text{tuberculosis} \) complex [16]. The disease is known to be associated with immunosuppression, malnutrition, poverty, and overcrowding and results in the death of more than 1 million people annually around the world [17,18]. The genus \(M. \) \(\text{Myobacterium} \) consists of several species, some of which are adapted to humans and various animals as shown in Figure 1. Those that cause human tuberculosis (\(M. \) \(\text{tuberculosis} \) sensu stricto and \(M. \) \(\text{africanum} \)) are obligate human pathogens. Although \(M. \) \(\text{bovis} \) and \(M. \) \(\text{caprae} \) have been found in several animals and humans, there is rarely human-to-human transmission [16].

\(M. \) \(\text{tuberculosis} \) is a very fastidious bacterium with a typical generation time of 12–24 h when growth conditions are optimal [19]. The bacterium is about 0.8–4 \(\mu \)m in size, acid-fast, non-motile, and aerobic [17]. A sizeable number of individuals will develop latent tuberculosis, which may be well contained in some persons and not progress to TB immediately. However, 5–15% of this group of individuals with latent tuberculosis will progress to active TB [20,21].

Tuberculosis is spread through the inhalation of infectious droplet nuclei that contain viable \(M. \) \(\text{tuberculosis} \) [22]. Churchyard et al. [23] gave a simple pathway by which tuberculosis is transmitted. This pathway entails a source case of tuberculosis, generation of infectious particles, survival of particles in the air, inhalation by susceptible individuals, and ultimately potential to develop tuberculosis.

Clinical manifestation of TB is presented in various forms. TB could manifest with mild and non-specific symptoms as observed in primary tuberculosis, which is

\[\text{Figure 1: Species of Mycobacterium and their various adapted hosts. Some might infect multiple hosts but M. africanum and M. tuberculosis sensu stricto are known to infect only humans.}\]
most often self-resolving. In pulmonary tuberculosis, patients present with night sweats, fever, and weight loss, and about 95% of individuals have non-remitting cough that may be accompanied by chest pain in patients with dyspnoea or subpleural involvement [22]. Besides pulmonary tuberculosis, extrapulmonary TB (EPTB), which is tuberculosis outside the lungs, also occurs. It is characterized by possible weight loss and fever and could manifest as lymphatic TB that involves any regional lymph node, meningeal TB that presents with headache and altered mental status or neurologic defects in advance, and TB of the joints and bones with swelling and persistent localized pain [24].

The paucibacillary nature of EPTB largely contributes to a setback in diagnosis due to lack of highly sensitive and specific testing kits, the emergence of multi- and extensively drug-resistant strains, limited vaccine efficacy, and HIV have exacerbated cases of tuberculosis globally and tend to stall eradication efforts [25].

2.2 Antituberculosis chemotherapies

Although the treatment strategy and guidelines of drug-sensitive TB (DS-TB) have not obviously evolved over the past 35 years, which requires a minimum of six months of treatment with a combination of four basic treatment regimens comprising isoniazid (INH) (1), rifampin (RIF) (2), pyrazinamide (PZA) (3), streptomycin (4) as well as ethambutol (EMB) (5), which are first-line antituberculosis drugs as shown in Table 1. While second-line drugs consist of fluoroquinolones (ofloxacin (6), moxifloxacin (7), levofloxacin (8), and ciprofloxacin (9)), injectable (capreomycin (10), kanamycin (11), and amikacin (12)) and p-aminosalicyclic acid (13), ethionamide (14) prothionamide (15) and cycloserine (16) terizidone (17) [26]. Bedaquiline (18) a diarylquinoline, linezolid (19) an oxazolidinoline, delamanid (20) and pretomanid (21), which belong to the nitroimidazole class of antibiotics, and clofazimine (22) are newer and repurposed drugs used for tuberculosis treatment some of which are components of shorter-course regimen [27,28]. The treatment of multidrug resistance (MDR) and extensively drug-resistant (XDR) tuberculosis has, however, changed over time in repurposed and new drugs being introduced into the treatment regimens with treatment duration of up to 24 months [29,30]. The treatment of tuberculosis is in phases that consist of the initial phase that kills most of the actively growing bacteria with eradication of clinical symptoms and rapid sputum conversion. This is followed by the continuation phase of treatment that takes care of slow-growing strains or persistent tubercle bacilli [26]. All structures of antituberculosis chemotherapies are shown in Figure 2.

| Table 1: Characteristics of first-line antituberculosis drugs |

Drug	General information	Effect on *M. tuberculosis*	Administration
Isoniazid (1)	Hydrazide of isonicotinic acid	It is greatly bactericidal and used against replicating *M. tuberculosis*	It can be given orally, intramuscularly, or intravenously
Rifampicin (2)	Semisynthetic derivative of rifamycin	It is bactericidal both to actively growing and slow metabolizing *M. tuberculosis*	It can be administered orally or intravenously. It is always administered to patients along with other effective antimycobacterial agents because resistance to it can be easily developed.
Pyrazinamide (3)	Synthetic analogue of nicotinamide	It is weakly bactericidal in the mode of action	It is administered orally. For adults, it is usually administered for the first 2–3 months of treatment.
Streptomycin (4)	Aminoglycoside	It is bactericidal in the mode of action	It can be administered intramuscularly or intravenously.
Ethambutol (5)	Synthetic congener of 1,2-ethenediamine	Ethambutol is bacteriostatic	It is administered orally together with other antimycobacterial drugs to forestall or delay resistance

Information in table adapted from ref. [31].
Figure 2: Structure of antituberculosis chemotherapies.
and total drug resistance exhibited by the pathogen. MDR-tuberculosis implies tuberculosis that is caused by *M. tuberculosis* strain that is resistant to at least both isoniazid (1) and rifampicin (2). While XDR-tuberculosis is caused by strains of *M. tuberculosis* resistant to rifampicin (2), isoniazid (2), one second-line injectable-like amikacin (12), capreomycin (10), or kanamycin (11), and a fluoroquinolone [32]. Drug-resistant *M. tuberculosis* is widespread globally with a continual rise in treatment failures. There are various targets of antituberculosis drugs but a seemingly uniform factor that mediates antimicrobial resistance in *M. tuberculosis* is mutation. Mutations noted in various genes that encode key enzymes, which in some cases transform pro-drugs to active forms as in the case of pyrazinamide (3) and isoniazid (1), contribute to the synthesis of components of the cell wall as with ethambutol (5) or transcription, as shown in Table 2, have been associated with resistance. Besides mutation, possession of active efflux pumps has also been attributed as a factor that mediates antimicrobial resistance in tuberculosis. Drugs including isoniazid (1) and fluoroquinolones group, streptomycin (4), bedaquiline (18), ethambutol (5), clofazimine (22), and rifampicin (2) are extruded by Mycobacterial efflux pumps.

4 Antituberculosis natural product drug discovery

The need to explore nature (Figure 3) in the quest for newer antituberculosis drugs is imperative since available

Drug	Mechanism of action	Mechanism of resistance	Reference
Isoniazid (1)	Inhibits mycolic acid synthesis, thereby making *Mycobacterium* lose its acid-fast nature	Mutation in katG, inhA, kasA, ndh, and oxyR-ahPC have been identified as mediators of isoniazid resistance. Principally, a mutation in the katG gene that encodes catalase and peroxidase results in the loss of ability to convert the pro-drug into the active form	[33]
Rifampicin (2)	Binds to the β-subunit of RNA polymerase, resulting in inhibition of transcription	Mutation in the rpoB gene (81 bp region) results in the amino acid alteration of codons within this region most, especially codon 526 or 531 causes high-level resistance	[34,35]
Pyrazinamide (3)	Pyrazinamide is a pro-drug that is enzymatically transformed to pyrazinoic acid which in turn disrupts membrane energetics and inhibits the membrane transport function	Mutation in the gene pncA that codes for Pzase (pyrazinamidase/nicotinamidase) results in the loss of Pzase activity with concomitant ineffectiveness of the drug	[26,36–38]
Ethambutol (5)	Ethambutol exerts its effect on the cell of *M. tuberculosis* by interfering with the biosynthesis of the cell wall arabinogalactan	Mutation in genes of the embCAB operon majorly embB and sometimes embC that encodes arabinosyltransferase results in loss of efficacy of the drug	[26,39]
Streptomycin (4)	Streptomycin acts by binding to the 16S rRNA gene where it inhibits protein synthesis	Mutation identified in genes that encodes ribosomal protein S12 (rpsL) and 16S rRNA (rrs) have been linked with streptomycin resistance	[40,41]
Fluoroquinolones group	Fluoroquinolones act by inhibiting bacterial topoisomerase IV and DNA gyrase	Resistance to fluoroquinolones is mediated by point mutations in gyrA and gyrB genes that encode the two subunits of DNA gyrase, consequently, blocking DNA replication	[39,42–44]
p-Aminosalicylic acid (13)	*p*-Aminosalicylic acid acts majorly against *M. tuberculosis* through poisoning of folate metabolism	Mutations in thya, folC, dfra, and ribD that in turn result in the disruption of the folate pathway have been linked to *p*-aminosalicylic acid Resistance in *M. tuberculosis*. Also, possession of an active efflux pump has been indicated in mediating *p*-aminosalicylic acid resistance	[45,46]
Ethionamide (14)	Ethionamide interferes with mycolic acid synthesis by inhibiting the enoyl-acyl carrier protein reductase enzyme	Mutation in inhA gene mediates resistance to ethionamide	[27]
drugs are plagued with resistance coupled with associated side effects suffered by patients that use them [47,48]. A few compounds such as bedaquiline (18) and delamanid (20) are new antituberculosis drugs that have been introduced after decades of dependence on older drugs [4].

4.1 Plant-derived antimycobacterial natural products

In many regions of the world, plant-derived anti-TB recipes are well known in folklore medicaments. Plants are an important source of natural products with diverse bioactivities and have the enormous therapeutic potential [14]. Numerous structurally unique bioactive compounds have been isolated from plant extracts [49]. This has driven a lot of drug-discovery research on plants that have previously been known to be used traditionally for the treatment of infections. Infusions of leaves from Lippia javanica (Verbenaceae), an aromatic plant, are used in Mozambique as a decoction to treat several ailments like flu symptoms, cough, stomach aches, and many others [48].

Triterpene euscaphic acid was obtained from this herb and found to exhibit antimycobacterial bioactivity against M. tuberculosis with a minimum inhibitory concentration recorded as 50 μg/mL [50]. Some compounds such as diospyrin (23), shinanolone (24), and 7-methyljuglone (25) were isolated from the roots of the plant Euclea natalensis (Ebenaceae) and displayed significant activity against drug-sensitive and -resistant strains of M. tuberculosis [51]. This plant has been known historically to treat infections associated with chest conditions, toothache amongst other uses, and lends credence to its ethnomedicinal use [52]. A. afrawas was also reported to exhibit several biological activities such as antidepressant, antioxidant, cardiovascular, and antimycobacterial, in vitro [53]. This plant is commonly available in Eastern and Southern Africa and has been used traditionally to treat respiratory and oro-pharyngeal illnesses such as colds, coughs, asthmatic conditions, to mention a few [54]. Ursolic acid (26) and hydroquinone (27), which were isolated from Artemisia capillaris Thunb. (Asteraceae), a plant that was traditionally known for the treatment of malaria, was assessed for its antimycobacterial activity against MDR-TB strains and was found to have MIC values ranging from 0.0125 to 0.025 mg/mL [55]. Another plant, Curcuma longa L. (Zingiberaceae), which has been traditionally associated with the treatment of whooping cough, was assessed for its antimycobacterial potentials. Isoxazole analogues of curcuminoids were isolated from this plant and were found to have bioactivity against MDR-TB at MIC values ranging from 0.0019 to 0.00312 mg/mL [56].

Knowltonia vesicatoria (Ranunculaceae), a plant commonly available in South Africa, has been traditionally known for the treatment of tuberculosis. Antimycobacterial drug discovery efforts led to the isolation of 2 compounds, 5-(hydroxymethyl)dihydropyran-2(3H)-one (28) and 5-(hydroxymethyl)furan-2(5H)-one (29), with a minimum inhibition concentration of 50.0 mg/mL. Crude extracts of this plant were also used together with isoniazid (INH) (1) to determine
whether there would be improved antmycobacterial activity
due to probable synergistic effect, thus validating its tradi-
tional use in the treatment of tuberculosis [52,57].

4.2 Microbes as sources of
antimycobacterial natural products

Microorganisms have been recognized as robust sources
of chemotherapeutics. However, their potentials as a
repertoire of useful antibiotics have not been fully exploited
as only a very limited number of microbial diversities is
known globally [58]. The discovery of the compound strepto-
mycin several decades ago (4) by Selman Waksman was a
major breakthrough in drug discovery as the first effective
antibiotic against tuberculosis [59]. Selman Waksman’s
commitment to the isolation and screening of soil bacteria
in the search for bioactive small molecules, which could be
potential antibiotics, was validated by the discovery of
streptomycin [60].

Fungi have been implicated to exhibit antmycobac-
terial potentials. The fungus Mortierella alpine FKI-4905
isolated from Japanese soil was found to have antmyco-
bacterial activity against M. tuberculosis and M. smegmati-
is with MIC values of 12.5 and 0.78 μg/mL [61]. Another
natural anthraquinone compound, 4-deoxybostrycin (30),
was obtained from the mangrove endophytic fungus
Nigrospora sp., which was isolated from the South China
Sea. This compound showed good anti-TB activity in vitro.
Further studies on the mechanisms of action on M. tuber-
culosis H37Rv showed that 4-deoxybostrycin (30) could
affect the expression of its genes that are involved in coen-
zymes, lipids, nucleotides, and energy to mention a few
[62]. However, some other researchers [63] explored the
antimycobacterial potentials of freshwater actinobacteria
isolated from Lake Michigan through screening of a library
of compounds derived from aquatic bacteria. A fraction
from one of the bacteria (Micromonospora sp.) exhibited
significant inhibitory activity in vitro in comparison to
clinically used anti-TB agents. From this strain, two
new secondary metabolites, diazaquinomycins H (DAQH)
(31) and J (DAQJ) (32), were isolated and characterized
with MIC values of 0.04 and 0.07 μg/mL, respectively,
against M. tuberculosis. Manikkam et al. [64] also iso-
lated actinomycetes from diverse Indian soil ecosystems
with a significant number exhibiting antmycobacterial
activity.

5 Dereplication strategies for novel
anti-TB natural products

Identification of previously isolated or screened microor-
ganisms and their bioactive metabolites, also known as
dereplication, remains a major challenge for drug dis-
covery studies. This method provides speedy identification
of known bioactive metabolites in complex mixtures
using very minimal amounts of crude metabolites, thereby
limiting time-consuming isolation procedures that are
related to the characterization and screening of an exten-
sive array of known strains [65]. This is usually carried out
following preliminary screening in the process of dis-
covering new pharmacologically active substances from
natural product mixtures. For this reason, systematic dere-
plication methods, such as LC-UV-(MS), and combined
with high-throughput screening (HTS) for crude extract
samples were developed [66]. However, the process of
dereplication is not limited to the use of analytical chem-
istry tools alone. Currently, different strain dereplication
strategies such as single-strand conformation polymor-
phism, rep-PCR, colour grouping including analytical
chemistry tools (LC-MS, pyrolysis, MALDI-TOF) have been
developed by natural products scientists to assess and
thus evaluate the diversity of novel and already known
strains. A combination of microbiological assessments,
such as identifying producer microbes by morphology
and gene analysis, are sometimes used exhaustively
together with different bioinformatics techniques [65,67].
Pyrolysis mass spectrometry that involves the use of the
whole-cell fingerprinting technique is also used as a dere-
plication strategy by enabling the rapid and reproducible
categorization of microbes by utilizing limited samples in a
completely automated system [68]. This method has been
successfully adopted previously to securate nitrile-hydro-
lysing strains of actinomycetes, thus revealing a signifi-
cant variation within pyrogroups containing strains with
identical genotypic characteristics, thereby establishing its
discriminatory capacity at the intraspecies level [69]

Other analytical methods such as MALDI-TOF mass
spectrometry utilizing intact cells have been adapted for
rapid screening for strain dereplication. Dieckmann et al.
[70] used this rapid screening method for dereplication of
bacterial isolates from marine sponges resulting in the
efficient clustering of 456 strains hinged on their pro-
tomes, allowing rapid dereplication and identification of
unique species.
5.1 Uncultured microbes and novel anti-TB natural products

The number of microorganisms that have been isolated using traditional culturing techniques is less than 1% of microorganisms as well as their biochemical metabolic pathways unavailable [71–73]. The metagenomics approach remains promising in drug discovery from uncultured microorganisms. These microorganisms have proven an important source of novel antibiotics through analysis of their DNA isolated from environmental samples [65]. The advent of metagenomic procedures as a culture-independent technique has therefore made various tools available to evaluate the level of the uncultured microbial diversity in full, consequently, enabling access to the biochemical metabolic pathways in these uncultured microbes [74,75]. Culture-independent molecular approach has however confirmed the presence of indigenous actinobacteria through different studies [76–78]. These approaches focus on nucleic acids directly extracted from the samples [79] and typically involve the amplification of DNA from RNA extracted from environmental samples by PCR followed by further analysis of the diversity of the amplified molecules (community fingerprinting) [9]. These amplicons could otherwise be cloned, sequenced, and the rare/novel actinobacteria available in the sample identified and enumerated [80,81]. Monciardini et al. [76] developed selective primer sets for PCR amplification of the 16S rDNA obtained from Actinomycetales families Thermomonosporaceae, Streptosporangiaceae, Streptomycetaceae, and Micromonosporaceae as well as from Dactylosporangium sp. Each designed primer, evaluated on the basis of genomic DNA from reference strains, indicated high specificity and sensitivity. However, the use of the primers to process environmental samples indicated the discovery of these groups of actinomycetes in high frequency and also showed sequences that could be ascribed to novel actinobacterial groups [76]. Other molecular approaches such as terminal restriction fragment length polymorphism (T-RFLP) analysis, evaluates the terminal restriction fragments from a PCR-amplified marker based on the size polymorphism [82] and the method links at the minimum, three technologies such as comparative genomics/RFLP, PCR, and electrophoresis. Electrophoresis techniques such as the denaturing gradient gel electrophoresis (DGGE) as well as TGGE (thermal-GGE) are also procedures by which short segments of DNA of different sequences but the same length can be resolved electrophoretically [82]. In this case, separation of DNA fragments leverages on the decreased electrophoretic movement of a double-stranded DNA, which is partially denatured either by a denaturing reagent or increased temperature and resolved on polyacrylamide gels. The PCR-DGGE/TGGE method was extensively utilized to determine the abundance and diversity of actinomycetes in environmental samples [73,77,82,83].

Metaproteomic and metagenomic technologies enable newer techniques towards gene, genome, protein as well as the discovery of metabolic pathways [72]. The number of yet-to-be-cultured marine microbiota that synthesizes secondary metabolites has greatly reduced accessibility to a vast genetic diversity linked to untapped chemical resources required in therapeutic and other industrial applications [9,84]. This includes complex marine (e.g. sponge, dinoflagellates, tunicates) also terrestrial (e.g. human gut, biofilm, plant-microbe) microbial consortia in which case the presence of huge populations of varying microbiota as well as related genomes that constitute natural product gene clusters yet are unexplored [72,73]. This novel chemical and metabolic diversity resource will help increase fundamental knowledge and make a contribution to current drug discovery efforts against several diseases.

6 Bioassays for evaluating anti-TB compounds

6.1 Agar diffusion method

The agar diffusion test of natural products is typically done on the agar medium surface by placing the filter paper disks previously immersed in extracts on the plate inoculated with the test organism and incubated at 37°C. This enables the test compounds to diffuse into the agar consequently inhibiting the growth of the inoculum. After incubation, the mean diameters of inhibition zones of the test compounds against the inoculum are recorded. The model strain, M. marinum, has been used for antimycobacterial natural products screening due to its ubiquitous nature. Diffusion assay is an ideal technique of choice for mixtures of compounds such as essential oils or polar molecules [85]. This method ensures rapid screening of crude extracts using M. marinum as a model strain [86,87].

6.2 Agar microdilution assay

This method developed by Golus et al. [88] involves the screening of natural products with different concentrations
against pathogenic test strains in a 96-well microplate containing the agar medium. The assay enables the easy, fast, and cost-efficient sample preparation including the provision of a stable and uniform dispersion of test samples without differentiation of the coloured plant extracts into oil–water phases, which is a frequent occurrence in methods involving liquid media. The agar microdilution method also enables the easy, reliable, and cost-efficient MIC determination of such agents.

6.3 LJ proportion method

This proportion method uses the Löwenstein–Jensen medium (LJ), which is an egg-based medium supplemented with malachite green dye. Incorporation of the antimycobacterial drugs in the LJ medium is done at varying concentrations before the medium is solidified by a process known as inspissation. The solid medium is later inoculated with 100 µL of the inoculum of up to 1.0 MacFarland Standard and incubated at 37°C for 42 weeks. Natural products are generally not heat-stable, hence this method could serve as a disadvantage if the crude extracts are incorporated into the medium prior to inspissation, which requires heat of up to 80°C. Alternatively, the natural product could be added to the surface of the solid medium after inspissation and cooling. Although the advantage of using this method is its cost efficiency, particularly in resource-limited laboratories that are unable to afford more expensive culture media, the disadvantage of using this method is the long period of incubation to assess the resistance or susceptibility of the strain to the compounds through growth detection [86].

6.4 Micro-broth dilution assay

Bioactivity screening of natural products with the use of a 96-well microplate offers the advantage of minimal sample requirements, reduced cost, and high-throughput processes, including the potential for automation [89–92]. This method involves the growth of mycobacteria in growth media such as Middlebrook 7H9 broth supplemented with growth supplements including oleic acid, albumin, dextrose, and catalase. The growth of several mycobacterial strains could be determined quantitatively in a liquid medium by turbidity but a major drawback in this test is the possibility of mycobacteria clumping together. The metabolic compounds or extracts derived from natural products may also confer some turbidity on the culture medium thereby serving as a challenge in the determination of results. The use of an indicator dye that works with the principle of oxidation–reduction such as Alamar blue, resazurin, tetrazolium, malachite green, and crystal violet, makes the micro-broth dilution a technique of choice for speed and sensitivity [93,94].

6.5 Radiometric BACTEC 460 assay

This assay determines the inhibition or growth of M. tuberculosis through the measurement of 14CO2 generated by M. tuberculosis cultivated in broth containing 14C-labeled palmitic acid. This liquid growth medium is Middlebrook 7H12 medium, and mycobacterial growth is measured using the BACTEC 460 instrument for HTS assay and the results can be observed in less than 2 weeks [95]. The percentage inhibition of 14CO2 production relative to drug-free controls could be extrapolated, or large numbers of extract concentrations could be screened and their MIC values determined [92,96,97]. Results are recorded usually at 24 h intervals, thus, enabling accurate evaluation of growth kinetics or inhibition of the test mycobacterial. The main disadvantage of this assay is the cost such as in disposal of the isotope in certain countries as well as the substantial amount of growth medium required, which consequently utilizes a large quantity of samples for the assay [86].

6.6 BACTEC MGIT 960 assay

This assay requires the use of modified Middlebrook 7H9 broth containing a fluorescent sensor ruthenium chloride pentahydrate as a growth medium in a non-radiometric automated system. The method is an excellent, high-throughput procedure, which is advantageous in terms of provision of very fast and reliable results in less than 2 weeks. [55]. However, a major disadvantage to this method is the high costs as well as large volumes of the medium required to run the assay, which consequently requires a large amount of the test sample (metabolic extract) to be screened.

6.7 Reporter gene assays

These assays are generally centred on the use of reporter genes associated with the red fluorescent protein, luciferase, and green fluorescent protein. The proteins are typically derived from different species of insects (fireflies), crustaceans, beetles, and bacteria (Vibro harveyi)
and allow the rapid determination of bacterial viability, which is extrapolated by expressing a luminescent or a fluorescent protein [92,98]. The assay can be applied in a multiwell format, which brings about improved high-throughput detection. A major advantage in the use of the reporter gene assays is its cost-effectiveness as it is inexpensive for routine use in the HTS of antitubercular compounds with minimal commercial applications [99,100]. The major disadvantage of using this method is that its use for commercial applications is usually restricted by patent challenges; hence, limiting the number of mycobacteriology laboratories adopting this method for susceptibility screening of natural products against *M. tuberculosis* [92,98].

6.8 Wayne’s hypoxia model

For decades, latent tubercle bacilli of *M. tuberculosis* have continued to challenge TB therapy efforts, which has become a cause for concern thereby resulting in prolonged treatment of active TB. The currently available anti-TB drugs are ineffective against the dormant forms of *M. tuberculosis* and the fact that there was no screening bioassay for chemical molecules that have activity against dormant tubercle bacilli has been an impediment to the development of novel chemotherapeutics against latent TB [92]. A model was therefore developed by Wayne and Sramek [101] as the first *in vitro* model for *Mycobacterium tuberculosis* for a specific time frame (usually 24 days), thereby inducing hypoxic conditions thus leading to the sensitivity of hypoxia-induced latent bacilli for metronidazole with the introduction of a single stress factor.

6.9 The rapid anaerobic model

Some other modified versions of the Wayne model that are aimed to yield more consistent and accurate results have been developed such as the rapid anaerobic model [102,103]. The major difference between this model and the Wayne model is the size of stir bars, which are larger, as well as the much faster stirring rate in others to increase the homogeneous population of bacilli, and oxygen distribution within the culture. The available oxygen is depleted rapidly ensuring anaerobiosis within a limited period in comparison with the Wayne model [104].

6.10 Betts starvation model

A nutrient starvation model, which involves the simulation of *M. tuberculosis* in physiologically dormant states and the introduction of one stress factor, was developed by Betts et al. [105]. The procedures require the transfer of bacilli into a nutrient-deficient medium followed by incubation at 37°C for 6 weeks [105]. In this model, the rate of respiration is used to inhibit the growth of the test strain. Ultimately, this model provides evidence for deceleration of the energy metabolism, transcription apparatus, lipid biosynthesis, and cell division including induction of the stringent response and many other genes that may lead to long-term survival within the host.

6.11 Low-oxygen recovery assay (LORA)

The search for novel antimicrobials through screening for bioactivity is usually carried out using microbes that are actively replicating. It has however been established that antimicrobial tolerance in various bacterial infections is a result of a physiological state of non-replicating persistent (NRP) dormant forms of *M. tuberculosis*. For the treatment of tuberculosis, the possibility of shortening the typical 6-month regimen is highly dependent on the NRP subpopulation. LORA is an assay developed for the bioactivity of compounds against non-replicating *M. tuberculosis* utilizing an *M. tuberculosis* pFCAluxAB strain. This luminescence-based assay uses high-throughput measures to screen test bioactive compounds against NRP forms of *M. tuberculosis* [106,107]. In this assay, the MICs of antimicrobial agents are evaluated using the microplate method [106]. This is a multiple stress model that works by applying a combination of stress factors including high CO₂ (10%), low oxygen (5%), low acidic pH (5.0), and nutrients. The advantage of adopting this model is its efficiency in generating bacilli that meet all criteria of dormancy, and this multiple stress method is easily applicable to HTS of natural products [108,14].

6.12 A low pH and nutrient stress assay

The need for easy and more rapid assessment of novel anti-tubercular agents against non-replicating bacilli facilitated the development of a method for the detection of the bactericidal activity of new bioactive natural compounds
within 7 days by Early et al. [109]. This method utilized the incubation of *M. tuberculosis* strains at sub-optimal pH, bringing about induction of a non-replicating state. Antimicrobial susceptibility testing of bacteria against compounds is determined by the evaluation of luminescence. The advantages of this simple assay are that it does not require an outgrowth period, and results are easily extrapolated with minimal manipulations, which could be adapted for bactericidal activity screening of natural products against non-replicating *M. tuberculosis*.

6.13 Anti-TB ex vivo assays

This procedure involves the use of mouse/human macrophages (usually THP-1 cells, J774 cells), which evaluates the intracellular *M. tuberculosis* killing or sterilizing activity of test compounds [14]. In most cases, macrophages are infected with *M. tuberculosis* with a multiplicity of infection (MOI) of 10, and intracellular anti-TB activity is determined by exposure to test compounds for 3–7 days. The antimycobacterial effects of the test compounds are typically monitored by determining the bacterial load within macrophages by lysing them with hypotonic buffer (1.5 mM MgCl₂, 10 mM HEPES, and 10 mM KCl). The samples are spread on Dubos agar plates at varying time intervals and colonies are enumerated after incubation for 21 days. The bacterial viability is determined by the enumeration of colony-forming units [110–112].

7 Current approaches to the discovery of novel natural products

Application of natural products in the drug development pipeline for eventual use typically undergoes many challenges including (1) lack of elucidation of biological mechanisms, (2) difficulty in isolation of purified chemical compounds, (3) limited standardization procedures, and (4) documented clinical trials [113]. A combinatorial approach with the aid of modern technologies such as computational biology techniques, quantum computing, big data, profiling techniques, and artificial intelligence have been currently adopted to exploit the therapeutic properties of natural products [113,114]. Due to the complex nature of crude metabolic extracts of natural products, it is imperative to utilize some efficient strategies towards the removal of impurities that interfere with screening processes [115]. These extraction and fractionation methods have aided the drug discovery process leading to optimum yield for hit drug leads [116]. The technologies adopted include microwave-assisted and molecular distillation methods [117], ultrasonic- and enzyme-assisted extraction, semi-bionic extraction [118], and supercritical fluid extraction [113].

8 Future prospects and conclusions

Natural products continue to remain a major resource for chemotherapeutic agents aimed to combat tuberculosis. Only recently have researchers considered them a source with diverse chemical structures whose structural compositions could be used as scaffolds for replication in synthetic chemistry. However, the minimal success rate of novel drug discovery from natural products requires a fundamental change of innovative drug development strategies. Several techniques have been refined and adopted as high-throughput strategies for efficient screening and dereplication to ensure isolation of novel drug leads and undoubtedly contribute to the supply of novel compound libraries through well-developed high-throughput screening programs. However, the continuous development of cost-efficient, sensitive and rapid assay materials has become imperative and this would consequently encourage scientists globally to contribute to the development of natural product resources. Therefore, to address global health challenges in the fight against drug-resistant tuberculosis, there is a need to channel more efforts in the search for novel antitubercular drugs from unique natural sources in order to achieve sustainable development goals on health.

Acknowledgement: The authors are grateful to Universitas Airlangga for awarding a postdoctoral fellowship to Olabisi Flora Davies-Bolorunduro.

Funding information: This work was supported by the Postdoctoral Program and Hibah Research Group Universitas Airlangga 2020.

Author contributions: O.F.D. – conceptualization, data curation & writing (original draft); A.A. – data curation & writing (original draft); I.A.A. – writing (review and editing); N.K.A. – writing (review and editing); N.S.A. – writing (review and editing) & supervision.

Conflict of interest: The authors declare no conflict of interest.
Ethical approval: The conducted research is not related to either human or animal use.

Data availability statement: Data sharing is not applicable for this article as no datasets were generated or analysed during the current study.

References

[1] Askun T, Tekwu EM, Satil F, Modanlioglu S, Aydeniz H. Preliminary antimycobacterial study on selected Turkish plants (Lamiaceae) against *Mycobacterium tuberculosis* and search for some phenolic constituents. BMC Compl Altern Med. 2013;13:365.

[2] Davies-Bolorunduro OF, Nduaga SJ, Abiodun AT, Amuda BO, Osuolale KA, Ateo K, et al. Prevalence of rifampicin resistance among presumptive pulmonary tuberculosis patients within Lagos and its environs in South-Western Nigeria. Nig J Microbiol. 2020;34(1):5188–96.

[3] Abuzeid N, Kalsum S, Larsson M, Glader M, Andersson H, Davies D. Antibacterial activity of selected medicinal plants traditionally used in Sudan to treat infectious diseases. J Ethnopharmacol. 2014;157:134–9.

[4] Quan D, Nagalingam G, Paynek R, Triccas JA. New tuberculosis drug leads from naturally occurring compounds. Inter J Infect Dis. 2017;56:212–20.

[5] Salomon CE, Schmidt LE. Natural products as leads for tuberculosis drug development. Curr Top Med Chem. 2012;12:735–65.

[6] Guzman JD, Gupta A, Bucar F. Antimycobacterials from natural sources: ancient times, antibiotic era and novel scaffolds. Front Biosci (Landmark Ed). 2012;17:1861–81.

[7] Kirst HA. Developing new antibacterials through natural product research. Expert Opin Drug Discov. 2013;8:479–93.

[8] Zahner H, Fiedler HP. Fifty years of antimicrobials: past perspectives and future trends. SGM Symposium 53. Cambridge: Cambridge University Press; 1995. p. 67–85.

[9] Bull AT. *Actinobacteria* of the extremobiosphere. Extremophiles handbook. Tokyo: Springer; 2011. p. 1203–40.

[10] Berdy J. Bioactive microbial metabolites. J Antibiot (Tokyo). 2005;58:1–26.

[11] Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495–548.

[12] McCarthy AJ, Williams ST. Actinomycetes as agents of biodegradation in the environment-a review. Gene. 1992;115:189–92.

[13] Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, et al. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Compl Alternat Med. 2013;2013:627375.

[14] Gupta VK, Kumar MM, Bisht D, Kaushik A. Plants in our combating strategies against *Mycobacterium tuberculosis*: progress made and obstacles met. Pharm Bio. 2017;55(1):536–44.

[15] Davies-Bolorunduro OF, Adeleye IA, Akinleye MO, Wang PG. Anticancer activity of metabolites from marine actinomycetes isolated from Lagos lagoon sediment. J Pharm Anal. 2019;9(3):201–8.

[16] Gagneux S. Ecology and evolution of *Mycobacterium tuberculosis*. Nat Rev Microbiol. 2018;16(4):202–13.

[17] Orcau A, Cayla JA, Martinez JA. Present epidemiology of tuberculosis. Prevention and control programs. Enferm Infecc Microbiol Clin. 2011;29(1):2–7.

[18] Wang WF, Lu MY, Cheng TJ, Tang YC, Teng YC, Hwa TY, et al. Genomic analysis of mycobacterium tuberculosis isolates and construction of a Beijing lineage reference genome. Genome Biol Evol. 2020;12(2):3890–905.

[19] Delogu G, Sali M, Fadda G. The biology of mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis. 2013;5(1):e2013070.

[20] Möller M, Kinnear CJ, Oriolva M, Kroon EE, van Helden PD, Schurr E, et al. Genetic resistance to mycobacterium tuberculosis infection and disease. Front Immunol. 2018;9:2219.

[21] Behr MA, Edelstein PH, Ramakrishnan L. Is *Mycobacterium tuberculosis* infection lifelong. BMJ. 2019;367:35770.

[22] Heemskerk D, Caws M, Marais B, Farrar J. Clinical manifestations. Tuberculosis in adults and children. Switzerland: Springer International Publishing AG; 2015. p. 17–20.

[23] Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, et al. What we know about tuberculosis transmission: an overview. J Infect Dis. 2017;216(S6):S629–35.

[24] Sanford CA, Pottinger PS, Jong EC. Tuberculosis in travelers and immigrants. The travel and tropical medicine manual. 5th edn. Philadelphia: Elsevier Inc; 2017. p. 356–9.

[25] Venketaraman V, Kaushal D, Saviola B. Mycobacterium tuberculosis. J Immunol Res. 2015;857598:1–2. doi: 10.1155/2015/857598.

[26] Jnawali HN, Ryoo S. First and second-line drugs and drug resistance. Tuberculosis-current issues in diagnosis and management. London: InTech Open; 2013. p. 163–72.

[27] Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in *Mycobacterium tuberculosis*: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. 2018;73:1138–51.

[28] Seung K, Hewison C. Now is the time for shorter all-oral regimens for multidrug resistant tuberculosis. Lancet. 2019;7:706.

[29] Schito M, Migliori GB, Fletcher HA, McNerney R, Centis R, D’Ambrosio L, et al. Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin Infect Dis. 2015;61(5S):S102–118.

[30] Lee A, Xie YL, Barry CE, Chen RY. Current and future treatments for tuberculosis. BMJ. 2020;368:216.

[31] WHO. Treatment of tuberculosis: guidelines. 4th edn. Geneva, Switzerland: World Health Organization; 2010. p. 103–13.

[32] Garcia-Prats AJ, Donald PR, Hesseling AC, Schaaf HS. Second line antituberculosis drugs in children: a commissioned review for the world health organization 19th expert committee on the selection and use of essential medicines. World Health Organization; 2013.

[33] Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in
Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(2):893–900.

Zhang Y, Shi W, Zhang W, Mitchison D. Mechanism of pyrazinamide action and resistance. Microbiol Spectr. 2013;2(4):1–12.

McDermott W, Tompsett R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc. 1954;70:748–54.

Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinolate. J Antimicrob Chemother. 2003;52:790–5.

Mdluli K, Kaneko T, Upton A. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med. 2015;5:1–24.

Cuebas-Córdoba B, Cuellar-Sánchez A, Pasissi-Crivelli A, Santana-Alvarez CA, Hernández-Illézzcas J, Zenteno-Cuevas R. rrs and rpsL mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J Microbiol Immun Infect. 2013;46:30–40.

Me N. Streptomycin. Tuberculosis. 2008;88:162–3.

Miotto P, Cirillo DM, Migliori GB. Drug resistance in Mycobacterium tuberculosis molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest. 2015;147(4):1135–43.

Oudghiri A, Karimi H, Chetioui F, Zakham F, Bourkadi JE, Elmessaoudi MD, et al. Molecular characterization of mutations associated with resistance to second-line tuberculosis drug among multidrug-resistant tuberculosis patients from high prevalence tuberculosis city in Morocco. BMC Infect Dis. 2018;18:98.

Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, et al. The RNA polymerase “switch region” is a target for inhibitors. Cell. 2008;135:295–307.

Minato Y, Thiede JM, Kordus SL, McKeen EJ, Turman BJ, Baughn AD. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother. 2015;59:5097–106.

Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol. 2016;90(7):1585–604.

Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev. 2013;12:388–404.

Mitra PP. Drug discovery in tuberculosis: a molecular approach. Indian J Tuberc. 2012;59:194–206.

Khazir J, Mir BA, Mir SA, Cowan D. Natural products as lead compounds in drug discovery. J Asian Nat Prod Res. 2013;15(7):764–88.

Mohamad S, Zin NM, Wahab HA, Ibrahim P, Sulaiman SF, et al. Antituberculosis potential of some ethnobotanically selected Malaysian plants. J Ethnopharmacol. 2011;133:1021–6.
screening of bioactive materials from natural sources. J Biomol Screen. 1997;3(1):145.

[67] Ibrahim A, Yang L, Johnston C. Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery. Proc Natl Acad J Biomol Screen. 2012;2:145–52.

[68] Ayuso A, Clark D, González I, Salazar O, Anderson A, Genilloud O. A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Appl Microbiol Biotechnol. 2005;67:795–806.

[69] Brandao PF, Torimura M, Kurane R, Bull AT. Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl Microbiol Biotechnol. 2002;58:77–83.

[70] Dieckmann R, Graeber I, Kaesler I, Szweczyk U, von Dohren H. Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (iCM-MS). Appl Microbiol Biotechnol. 2005;67:539–48.

[71] Kennedy J, Flemer B, Jackson SA, Lejon DPH, Morrissey JP, O’Gara F, et al. Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drug. 2010;8:608–28.

[72] Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hillier L, et al. Metamorphic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol. 2011;6(11):1244–56.

[73] Manivasagan P, Venkatesan J, Sivakumar K, Se-Kwon K. Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res. 2013;168(6):311–32.

[74] Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Genetics. 2004;38:525–52.

[75] Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso-sea. Science. 2004;304:66–74.

[76] Monciardini P, Soros M, Cavalletti L, Chiciocchi C, Donadio S. New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiol Ecol. 2002;42:419–29.

[77] Das M, Royer TV, Leff LG. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol. 2007;73(3):756–67.

[78] Sun W, Zhang F, He L, Karthik L, Li Z. Actinomycetes from the South China Sea sponges: isolation, diversity and potential for aromatic polyketides discovery. Front Microbiol. 2010;6:1048.

[79] Mincer TJ, Fenical W, Jensen PR. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol. 2005;71(11):7019–28.

[80] Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT. New primers for the class actinobacteria: application to marine and terrestrial environments. Environ Microbiol. 2003;5(10):828–41.

[81] Riedlinger J, Reike A, Zähner H, Krismer B, Bull AT, Maldonado LA, et al. Abyssomincins, inhibitors of the paraaminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot. 2004;57(4):271.

[82] Wawrik B, Kerkhof L, Zylstra GJ, Kokur JJ. Identification of unique type II polyketide synthase genes in soil. Appl Environ Microbiol. 2005;71(5):2232–8.

[83] Nimnoi P, Pongsilp N, Lumyong S. Genetic diversity and community of endophytic actinomycetes within the roots of Aquilaria crassna Pierre ex Lex assessed by Actinomycetes-specific PCR and PCR-DGGE of 16S rRNA gene. Biochem Syst Ecol. 2010;38(4):595–601.

[84] Fenical W, Jensen PR. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol. 2006;2(12):666–73.

[85] Lahlou M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res. 2004;18:435–48.

[86] Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM, et al. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res. 2010;131:809–13.

[87] Singh SB, Young K, Miesel L. Screening strategies for discovery of antibacterial natural products. Expert Rev Anti Infect Ther. 2011;9:589–613.

[88] Golus J, Sawicki R, Wielak D, Ginalska G. The agar microdilution method – a new method for antimicrobial susceptibility testing for essential oils and plant extracts. J Appl Microbiol. 2016;121:1291–9.

[89] Martin A, Camacho M, Portaels F, Palomino JC. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob agent chem. 2003;47(11):3616–9.

[90] Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Compl Altern Med. 2013;13:120.

[91] Newman D. Screening and identification of novel biologically active natural compounds. P1000Research. 2017;6:783.

[92] Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PGA. Current perspectives in drug discovery against tuberculosis from natural products. Int J Mycobacteriol. 2015;4:165–83.

[93] Farnia P, Masjedi MR, Mohammadi F, Tabarsey P, Farnia P, Mohammadzadeh AR, et al. Colorimetric detection of multi-drug-resistant or extensively drug-resistant Tuberculosis by use of malachite green indicator dye. J Clin Microbiol. 2008;46(2):796–9.

[94] Coban AY, Akbal AI, Uzun M, Cayci YT, Birinci A, Durupinar B. Evaluation of crystal violet decolorization assay for minimal inhibitory concentration detection of primary antituberculous drugs against Mycobacterium tuberculosis isolates. Mem Inst Oswaldo Cruz. 2016;110:7.

[95] Collins L, Franzblau S. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. J Antimicrob Agents Chemother. 1997;41:1004–9.

[96] Cantrell CL, Fischer NH, Urbatsch L, McGuire M, Franzblau SG. Franzblau Antimycobacterial crude plant extracts from South, Central, and North America. Phytochemistry. 1998;5:139–47.

[97] Rajab MS, Cantrell CL, Franzblau SG, Fischer NH. Antimycobacterial activity of (E)-phytol and derivatives:
a preliminary structure activity study. Planta Med. 1998;64:2–4.

[98] Bueno JG, Sa’ncchez Kouvnetsov VV. Antimycobacterial susceptibility testing methods for natural products research. Braz J Microbiol. 2010;41:270–7.

[99] Collins LA, Torrero MN, Franzblau SG. Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1998;42:344–7.

[100] Songsri S, Nuntawong N. Cytotoxic labdane diterpenes from Hedychium ellipticum Buch.-Ham. ex Sm. Molecules. 2016;21:749.

[101] Wayne LG, Sramek HA. Dormancy of Mycobacterium tuberculosis and latency of disease. Antimicrob Agents Chemother. 1994;38:2054–8.

[102] Honaker RW, Leistikow RLI, Bartek L, Voskuil MI. Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect Immun. 2009;77:3258–63. doi: 10.1128/IAI.01449-08.

[103] Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol. 2010;192:1662–70.

[104] Magombo de G, Dowdy D, Mulder N. Latent tuberculosis: models, computational efforts and the pathogen’s regulatory mechanisms during dormancy. Front Bioeng Biotechnol. 2013;1(1):1–15.

[105] Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002;43:717–31.

[106] Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51:1380–5.

[107] Elkington BG, Sydara K, Newsome A, Hwang CH, Lankin DC, Simmler C, et al. New finding of an anti-TB compound in the genus Marsysopetalum (Annonaceae) from a traditional remedy of Laos. J Ethnopharmacol. 2014;151:903–11.

[108] Deb C, Lee CM, Dubey VS, Daniel J, AbomoeIabk, Sirakova TD, et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 2009;4:e6077.

[109] Early IV, Mullen S, Parish T. A rapid, low pH, nutrient stress, assay to determine the bactericidal activity of compounds against nonreplicating Mycobacterium tuberculosis. PLoS One. 2019;14(10):e0222970.

[110] Khan A, Sakhar DA. simple whole cell based high throughput screening protocol using M. bovis BCG for inhibitors against dormant and active tubercle bacilli. J Microbiol Methods. 2008;73(1):62–8.

[111] Jiménez-Arellanes A, Luna-Herrera J, Cornejo-Garrido J, López-García S, Castro-Mussot ME, Meckes-Fischer M, et al. Ursolic and oleanolic acids as antimicrobial and immuno-modulatory compounds for tuberculosis treatment. BMC Compl Altern Med. 2013;13:258.

[112] Luo X, Pires D, Ainsa JA, Gracia B, Duarte N, Mulhovo S, et al. Zanthoxylium capense constituents with antimycobacterial activity against Mycobacterium tuberculosis in vitro and ex vivo within human macrophages. J Ethnopharmacol. 2013;146:417–22.

[113] Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19:1578.

[114] Özdemir V, Hekim N. Birth of industry 5.0: making sense of big data with artificial intelligence, “the internet of things” and next-generation technology policy. Omics. 2018;22:65–76.

[115] Wall ME, Wani MC, Brown DM, Fullas F, Olwald JB, Josephson FF, et al. Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytochemistry. 1996;3(3):281–5.

[116] Eldridge GR, Vervoort HC, Lee CM, Cremin PA, Williams CT, Hart SM, et al. High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem. 2002;74:3963–71.

[117] Gan Z, Liang Z, Chen X, Wen X, Wang Y, Li M, et al. Separation and preparation of 6-gingerol from molecular distillation residue of Yunnan ginger rhizomes by high-speed counter-current chromatography and the antioxidant activity of ginger oils in vitro. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1011:99–107.

[118] He G, Yin Y, Yan X, Wang Y. Semi-bionic extraction of effective ingredient from fishbone by high intensity pulsed electric fields. J Food Pro Engr. 2016;40:1–9. doi: 10.1111/jfpe.12392.