Using polysaccharides for the enhancement of functionality of foods: a review

Xu Lu, Jinghao Chen, Zebin Guo, Yafeng Zheng, Mary C. Rea, Han Su, Xiuhua Zheng, Baodong Zheng, Song Miao

PII: S0924-2244(18)30262-0
DOI: https://doi.org/10.1016/j.tifs.2019.02.024
Reference: TIFS 2430

To appear in: Trends in Food Science & Technology

Received Date: 18 April 2018
Revised Date: 30 October 2018
Accepted Date: 6 February 2019

Please cite this article as: Lu, X., Chen, J., Guo, Z., Zheng, Y., Rea, M.C, Su, H., Zheng, X., Zheng, B., Miao, S., Using polysaccharides for the enhancement of functionality of foods: a review, Trends in Food Science & Technology, https://doi.org/10.1016/j.tifs.2019.02.024.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Using polysaccharides for the enhancement of functionality of foods: a review

Xu Lua,b,c,d,e, Jinghao Chena,d, Zebin Guoa,c,e, Yafeng Zhenga,c,e, Mary C Reab, Han Sua, Xiuhua Zhenga, Baodong Zhenga,c,d,e,*, Song Miaob,a,d,*

a College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
b Teagasc Food Research Centre, Moorepark, Fermoy, Co.Cork, Ireland
c Institute of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
d China-Ireland International Cooperation Centre for Foods Material Science and Structure Design, 15 Upper and Lower Store Road, 350002, People’s Republic of China
e Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China

*Corresponding author.
\textit{E-mail address:} zbdfst@163.com (B. D. Zheng) and song.miao@teagasc.ie (S. Miao).
Abstract

Background: Flavor, taste and functional ingredients are important ingredients of food, but they are easily lost or react during heating and are not stable. Carbohydrate-carbohydrate interactions (CCIs) and carbohydrate-protein interactions (CPIs) are involved in a variety of regulatory biological processes in nature, including cell differentiation, proliferation, adhesion, inflammation and immune responses. Polysaccharides have high molecular weights and many intramolecular hydrogen bonds, can be easily modified chemically and biochemically to enhance bioadhesive and biostability of tissues. Therefore, polysaccharides are the foundation for building complex and stable biosystems that are non-toxic with high hydrophilicity and easily biodegradable.

Scope and approach: In this review, we summarize the principles and applications of polysaccharide delivery systems in a variety of foods.

Key findings and conclusions: This review focuses on the self-assembly of carbohydrates with complex structures and discusses the latest advances in self-assembly systems. The host-guest complexes formed by polyvalent sugar conjugates have the potential to provide, control or target delivery or release systems. They can also extend the shelf life of food and prevent oxidation and isomerization during food storage. Moreover, very few studies have outlined a comprehensive overview of the use of various types of food polysaccharide matrixes for the assembly and protection of food ingredients, which is a very important area for further study.

Keywords: Polysaccharide, self-assembled, food functional ingredients, nanoparticles, directional delivery, bioavailability
1. Introduction

Nanostructured carbohydrates with self-assembly capabilities are used in both drug delivery and functional foods due to their good biocompatibility (Santiago & Castro, 2016). Carbohydrates with different shapes, sizes and structures can achieve different self-assembly strategies, resulting in food with a broad range of applications and functions. One of the methods utilizing interactions between bioactive molecules and carbohydrates is the creation of a larger functional unit by multiplexing multiple components under a variety of weaker (non-covalent) interactions. However, the weaker chemical bonds may also be destroyed under thermal or mechanical stress, so the chemical bonds are sometimes reinforced by covalent bonding to enhance the nanostructures. Most bioactive molecules in food are often water-soluble with poor bioavailability, reactivity, and stability after processing, storage and digestion through the human gastrointestinal tract. It is therefore important to provide an appropriate protective carrier and targeted transport material for the food active ingredient. The carrier matrix should first be food grade, biodegradable and have the ability to withstand harsh processing, storage and directional distribution. Carbohydrate is an important component of food, providing energy and remaining the function integrality of organs. Most carbohydrates are biocompatible within the human body and have good biodegradability, and they can meet the required carrier functional properties using only specific treatments (Fathi, Martin, & McClements, 2014).

Polysaccharides usually alter the food matrix to cause changes in rheological properties, which increases water retention and gel formation, leading to thickening of the food matrix. Other applications include the stabilization of foam, emulsion and
suspended particulate materials, improving palatability, preventing or reducing the
formation of ice crystals in frozen foods and interacting with other biomolecules. The
viscosity of food has a strong correlation with flavor perception. Highly sticky foods
delay the release of food flavor and taste compounds. Thus, the appropriate
polysaccharide-binding emulsifier formulation can effectively solve the problem of flavor
loss. Currently, many food flavor manufacturers are also seeking polysaccharide-based
formulations to improve the product’s flavor quality and sensory experience.
Biocompatibility and biodegradability are key factors for the polymer in the product
design when used as a bioactive compound carrier. Natural polysaccharides, such as
non-toxic and biodegradable polymer materials, have been widely used in the preparation
of biological nano-carriers. The wide range of sources, good biocompatibility,
non-immunogenicity, and the large number of modifiable functional groups render natural
polysaccharides a good choice as bioactive nano-carriers. Moreover, natural
polysaccharides degrade into oligosaccharides and can easily be absorbed without
inducing inflammation. Because the structures of polysaccharides in whole grains,
whole-wheat bread/pasta, brown rice, fruits and vegetables are complex and resistant to
digestive enzymes, they require long digestion and absorption times. Therefore, it is
necessary to alter the carbohydrate carrier’s structure to control its solubility, digestion,
absorption, specific release, and even targeted delivery to protect nutrients and bioactive
compounds (Shibakami, Tsubouchi, Sohma, & Hayashi, 2015). Self-assembly is not a
new concept in food sciences; thickened polysaccharides or gelation in sauces and
puddings are good examples. The assembly can be performed by adjusting the
environmental conditions (i.e., temperature, pH, ionic strength, specific substances or ions), processing conditions (i.e., different external forces), or the concentration of molecules/particles in the system. The assembled structure depends on the physical and chemical properties as well as the nutrients and quality of the final products. A high-molecular-weight carbohydrate complex has a chain structure, and its diameter is at the nano-level. Such a complex can interact with other food compounds to initiate self-assembly in the presence or absence of external forces to minimize the Gibbs free energy of the mixture. This process requires a balance between repulsive and attractive forces to achieve thermodynamic equilibrium. The uniqueness of carbohydrates, due to their various polarities and charged groups, can therefore be used as carriers to bind or capture a large number of bioactive molecules with targeted delivery properties.

Most bioactive compounds are limited by poor solubility (e.g., curcumin extracted from turmeric), but some complex polysaccharides can be soluble in water. Polysaccharide carbohydrates can interact with most bioactive compounds through their functional groups, thereby retaining various hydrophilic and hydrophobic bioactive ingredients and increasing their bioavailability and solubility. The bioactivity of a nutrient is easily destroyed during passage through the GIT digestion, resulting in failure to achieve the effective concentration in the plasma and tissue. However, polysaccharides have a uniquely slow intestinal digestion rate, which is beneficial for the release of bioactive compounds. More interestingly, the protective effect can be significantly enhanced by a cascaded polysaccharide self-assembled package. Moreover, the stability of carbohydrates at high temperatures is beneficial for the protection of bioactive
components (Azuma, et al., 2014).

2. Carbohydrate-based self-assembled nanostructures

Chemical complementarity, structural compatibility and weak or covalent interactions create bonds between the self-assembly building blocks to form a hierarchical structure with different specific functions. The self-assembled structures and nanostructures can be subdivided according to their size and phase. Nanoparticles are usually divided by size into zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanoparticles; according to phase, they can be divided into single-phase, multi-phase and complex-phase nanoparticles. Most carbohydrates in food are one-dimensional. One-dimensional nanostructure with a higher surface area can be self-assembled by electrostatic spinning, which in turn contributes to higher embedding rates (Rezaei, Nasirpour, & Fathi, 2015). A hydrogel is another means of forming an assembled structure. Hydrogels can form strong gels via physical cross-linking at the appropriate pH or temperature. Adding bioactive molecules (such as polyphenols or flavor compounds) to a three-dimensional network can help solve the problem of delivery of the bioactive to a specific location within the body (Shewan & Stokes, 2013). The combination of xanthan gum-based hydrogels and multifunctional carbohydrate colloidal nanofibers is an example of this type of structure (Gökmen, et al., 2015).

Two-dimensional self-assembled nanostructures include thin film coatings, laminates, and nanocomposites, which can be easily formed by interactions based on the local self-assembly of carbohydrate three-dimensional micelles. Micelles are invisible molecularly ordered aggregates in a solution formed by a number of solute molecules or
ions with hydrophobic groups as the core and hydrophilic groups as the shell. Amphiphilic polymers are macromolecules with both hydrophilic and hydrophobic chains in the same molecular chain of polymers. Amphiphilic polymers are usually copolymers formed by blocking, grafting or other methods. The hydrophilic and hydrophobic groups are mutually incompatible with each other and prone to micro-phase separation; thus, they reduce the surface tension of the solution. The formation of amphiphilic polymer micelles is a spontaneous process of minimizing the contact area between the hydrophobic chains and the aqueous solution. Due to intermolecular forces, such as hydrophobic interactions, electrostatic interactions, hydrogen bonding, and the solvent hydrophobic accumulation effect, the hydrophobic region forms a core, and the shell is wrapped by the hydrophilic chains formed outside the core, which stabilizes the micelles in solution. The main driving force of micellar formation is the free energy reduction of the system due to the attraction between the hydrophobic chains and the repulsive force between the hydrophilic chains to hydrophobic chains. Polymer micelles are prepared by a molecular self-assembly method. This method does not involve any organic solvents, such as emulsifiers or surfactants, and thus reduces the toxicity of the carrier. Moreover, the self-assembly method is a simple and spontaneous process in which molecules or subunits form a supramolecular structure without additional energy input. This type of method includes direct hydrolysis, ultra sonication, dialysis methods and solvent evaporation. The method chosen for a specific case depends on the dissolution and swelling ability of the polymer in water. Direct hydrolysis and ultrasonic methods are usually applied to water-soluble polymers or polymers with good swelling properties; dialysis or solvent
evaporation methods are usually applied to polymers with poor water solubility, such as nano-bio complexes composed of chitosan and cellulose with covalent bonds. Layer-by-layer assembly is an important technique for the development of nanoscale three-dimensional structures. Negatively charged polyanions and positively charged polycations are assembled layer by layer by electrostatic attraction. This is an emerging technology in the food industry and can effectively encapsulation to protect color and flavor substances and prevent the collapse of food structures. For example, biopolymers composed of xanthan gum and galactomannan through non-ionic interactions can extend epidermal growth factor (EGF) release time by 5-fold (Kaminski, Sierakowski, Pontarolo, dos Santos, & de Freitas, 2016). The following sections summarize the advances in delivery systems based on carbohydrates from variable biosources (Fathi, Martín, & McClements, 2014).

3. Plant-based carbohydrates

3.1. Starch

Starch and its derivatives have become the most studied and most popular polymer materials for use as active carriers. The size of natural-origin starch varies between 1 and 100 µm. Amylose consists of glucose units with α-1,4 glycosidic bonds while amylopectin consists of main chains linked by α-1,4 glycosidic bonds and side chains linked by α-1,6 glycosidic bonds. The process of spherulite formation in starch is the result of self-assembly, which produces starch nanoparticles. One assembly method involves inducing the encapsulation of fatty acids by amylose or other surfactants, followed by a combination of both to produce a supramolecular amylose spiral complex.
Sodium dodecyl sulfate (SDS), polysorbate 80 (Tween 80) and sorbitan monooleate (Span 80) can be used to control the size and surface morphology of starch nanoparticles to ensure the production of ultrafine nanoparticles with great thermal stability and dispersion. This process can be generated by mechanically assisted processing, such as ultrasonic, extrusion, autoclaving, or enzymatic treatment and acid hydrolysis (Xiaojing Li, et al., 2016). The starch nanoparticle complex can help self-assemble the insoluble small molecules together with the soluble protein through electrostatic interactions to form a nanoparticle carrier delivery system for loading the insoluble functional food ingredients (Bhopatkar, et al., 2015). The starch and its derivatives of the polymer micelles are generally formed by ultrasound and dialysis methods. Initially, an ultrasonic method is used to dissolve a starch-based polymer in an aqueous solution, followed by an ultrasonic method to disperse it evenly in the aqueous solution and to form micelles through intermolecular hydrophobic interactions. The size of the micelles can be controlled by the duration of the ultrasonic treatment. While this method is simple, the stability of the micelles is unsatisfactory. The dialysis method involves first dissolving hydrophobically modified starch in a solvent that is mutually soluble with water, such as dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) or tetrahydrofuran (THF), followed by dialysis in water. Polymer micelles self-assemble to form micelles as the organic solvent is dialyzed away. The size, dispersibility and yield of the polymer micelles are related to the organic solvents. Micelles formed by this method are usually of small size and great dispersibility.

3.1.1. Formation of starch crystals
Another avenue with good prospects is targeting the release and delivery of bioactive molecules with starch as the matrix under specific controlled conditions. In particular, amylase can also form clathrates with various molecules, such as volatile flavor compounds or fatty acids. Amylose spikes can also be formed by amylase and guest molecules through non-covalent interactions. These amylose spikes have a strong tendency to self-assemble into supramolecular structures via helix-helix synergism.

Other spherulites are mainly composed of amylose and lightly branched starch polymers formed by "high-temperature regeneration". The long-chain amylose is concentrated along the radial direction of the spherulites, and the short-chain amylose is concentrated along the tangential direction of the spherulites. These two types of prepared starch can decrease the digestion rate or increase resistance to enzymatic digestion. The digestion rate depends on the self-assembly morphology and surface characteristics: a dense and smooth surface is not conducive to decomposition by digestive enzymes (Fig. 1) (Kiatponglarp, Rugmai, Rolland-Sabaté, Buléon, & Tongta, 2016).

3.1.2. Chemical modification

Starch molecules contain large numbers of hydroxyl groups, which makes them hydrophilic. However, the solubility of starch in cold water is quite poor, mainly due to the easy formation of hydrogen bonds among hydroxyl groups. Therefore, the physical and chemical properties of natural starch limit the application of starch in many foods. Chemical modification linking hydrophobic and hydrophilic groups can adjust the self-assembly of starch and thus overcome these limitations. Hydrophobic modification is mainly achieved through an esterification reaction, which not only destroys the
intermolecular hydrogen bonds to improve the solubility but also makes the starch amphiphilic. Because starch exhibits bioactivities, including anti-inflammatory, anti-viral, nontoxigenic and non immunogenic, with very good biocompatibility, and biodegradability, starch and its derivatives are now considered ideal materials for the preparation of biological nano-carriers and are commonly used to encapsulate insoluble bioactive molecules. Modifications mainly improve the physical and chemical properties of the hydroxyl, hydrophilic or hydrophobic groups of starch through grafting, esterification and etherification. Self-assembly in an aqueous solution can easily form micelles and polymer vesicles (Fig. 2) (Marefati, Sjöö, Timgren, Dejmek, & Rayner, 2015).

For example, hydrophobically modified octenyl succinic anhydride (OSA) starch derivatives are most widely used for encapsulating volatile perfumes. The function of OSA starch is primarily based on steric hindrance, which preferentially moves to the gas/water interface when dissolved in water. The hydrophilic carboxyl groups extend into the aqueous phase, while the lipophilic octenyl chains extend into the oil phase; the interface tension of the OSA starch in the oil/water interface through the hydrophobic octenyl action is lower compared to other starch derivatives, which helps form a continuous boundary layer and greatly enhances intermolecular cohesion (Wang, Yuan, & Yue, 2015). The increase in the degree of substitution (DS) and the decrease in the critical concentration at the time of embedding contribute to the decrease in the size of the starch nanospheres and the formation of nanospheres with spherical and/or sharp edges encapsulating the hydrophobic substance resulting in strong stability (Gu, Li, Xia,
There are two types of grafted polymers: one consists of a hydrophobic backbone and hydrophilic side chains, and the other consists of a hydrophilic backbone and hydrophobic side chains. Both grafted polymers can more easily form a core-shell structure micelle with one chain directed inwards and the other chains directed outwards in the aqueous solution through self-assembly compared to the block polymer. The size, structure and properties of the grafted polymer micelles can be effectively controlled by the configuration of the polymer, the length and number of side chains and the grafting points. Therefore, it is usually easier to synthesize amphiphilic grafted polymers than block polymers. The grafted starch-based polymer micelles are mostly chemically modified by esterification and etherification. Hydrophobically modified starch can be used as a self-assembled biopolymer for the protection of insoluble bioactive substances.

Two or more polymers of different compositions and properties are linked by chemical bonds to form a block polymer, and the large number of reactive hydroxyl groups in starch molecules contributes to the introduction of a block polymer. The amphiphilic starch-based polymer has both hydrophilic and hydrophobic chains. When it is placed in a solvent with different dissolution abilities for each type of chain, the polymer can be self-assembled in an aqueous solution due to a large difference in solubility, forming a polymer core with a unique core-shell structure, and the hydrophobic groups in the aqueous environment can aggregate into the core and are surrounded by the...
Currently, the methods for making amylose-derivative block polymers mainly include the enzymatic polymerization method, the coupling method and the active/controlled polymerization method. The latter two methods are research hotspots. Enzymatic polymerization utilizes maltoligosaccharide as a substrate and phosphorylase to catalyze the polymerization of the glucose-1-phosphate monomer to make amylose block polymers. This method, while it can control the molecular weight of the starch chain very well is complicated. The coupling method requires the protection of hydroxyl groups in the high-molecular-weight starch, followed by degradation to obtain low-molecular-weight amylose derivatives with reactive functional groups. Finally, coupling reactions among the functional groups result in block polymers, which are biodegradable and can be degraded by α-amylase. However, this coupling method is still cumbersome.

The active/controlled polymerization method is the most efficient and simplest method for the synthesis of amphiphilic block polymers. In this method, click chemistry is the main reaction, including the metal ion-catalyzed cycloaddition of azides and alkynes and a condensation reaction between aldehyde and aminooxy groups. In the presence of an active hydrogen compound, ε-caprolactone is prone to polymerization. The poly ({ε}-caprolactone) (PCL) is then grafted to the backbone of maltose by click chemistry. The size of the nanoparticles can be reduced with a decrease in the molecular weight of PCL or an increase in the number of hydrophilic groups (Isono, et al., 2016).

3.1.2.3. Polyelectrolyte starch polymer micelles
Micelles that are formed in water-soluble block polymers in an aqueous solution by electrostatic interactions, hydrogen bonding or metal coordination are usually defined as polyelectrolyte micelles. In this process, hydrophilic polymer chains self-assemble to form a tether-like fence and wrap around the outer layer to maintain the spatial stability of the micelles. The core is formed by the aggregation of part of the polymer blocks, which is the result of intermolecular forces (hydrophobic interactions, electrostatic interactions, metal complexation and hydrogen bonding between block copolymers). For example, hydrophobic apogossypolone (ApoG2) and hydrophilic adriamycin (doxorubicin, DOX) both have good anti-tumor activity; if they are loaded into nanoparticles made of different suitable materials, they can be absorbed by human cells or tissues due to their different sustained-release characteristics to achieve the best combination of treatments. Starch first grafts to stearic acid, which is catalyzed by glycidyltrimethylammonium chloride (GTAC) to synthesize cationic stearic acid-grafted starch (CSaSt). This CSaSt amphiphilic conjugate can easily encapsulate ApoG2 to form amphiphilic starch micelles (AAST MCs) during self-assembly. Subsequently, DOX is adsorbed to excess hyaluronic acid (HA) nanoparticles (DHA NPs) through electrostatic interactions. Finally, DHA NPs with 8-9 negative charge units, assemble with AAST MCs a positively charged unit by electrostatic interactions to produce mulberry-like bicomponent nano-carriers (MLDC NCs). The therapeutic dose of this two-component delivery system in vitro and in vivo is only one-fifth that of the non-carrier two-component combination and can be used for targeted therapy to the tumor (K. Li, et al., 2015).
Cyclodextrin (CD) is an enzymatic product of amylase and is included in the US Food and Drug Administration's (USDA) list of products generally recognized as safe (GRAS). The most common natural α-, β- and γ-CD contain 6, 7 and 8 D-(+)-glucopyranose units, respectively, bound by α(1-4) glycosidic bonds. CD with more than eight glucose units also exists; however, it is extremely difficult to generate and purify in the real environment. CD contains a relatively hydrophobic internal cavity structure, which can form complexes with a variety of molecules, including fat, flavor substances and pigments, through molecular self-assembly. The appropriate complex molecular size can result in greater connection strength. Therefore, CD is widely used to protect fragrance or unstable flavour compounds of food formulations in harsh environments during food processing, storage and delivery.

Because CD contains primary and secondary hydroxyl groups, the surface of CD is hydrophilic, which can effectively promote the conversion of complexed volatile matter from gas or liquid phase into powder. The encapsulation of CD and guest molecules is affected by many factors, including size, geometry and electrical properties. Size refers to the match between the CD cavity and the corresponding guest molecule. The geometry and the stereogenic effect of the guest molecule can also affect the complex, and furthermore, due to the highly hydrophilic effect of ionic guest molecules, they can only form a weak complex with CD, while weakly polar guest molecules can complex with CD more strongly (Jahed, Zarrabi, Bordbar, & Hafezi, 2014). Because of these unique structures and properties, CD can be widely used in the construction and regulation of aggregates in supramolecular self-assembly.
CD can also be used to protect against oxidative degradation and heat- and light-caused decomposition of edible flavors and bioactive substances. β-cyclodextrin has been found to be an effective aromatic compound retention agent during the heat treatment process due to its relatively suitable cavity volume (Kfoury, Auezova, Greige-Gerges, & Fourmentin, 2015). β-cyclodextrin is also widely used because it is reasonably priced (Celebioglu, Kayaci-Senirmak, Đpek, Durgun, & Uyar, 2016). In addition, cyclodextrin can effectively prevent enzymatic oxidation caused by polyphenol oxidase or phenolic compounds in fruit juices by non-covalent interactions with polyphenol oxidases (Aguilera, et al., 2016).

CD preserves food aromas and flavors and controls their release during storage and consumption, improving the solubility and retention of these insoluble substances. The encapsulation of cyclodextrins also enhances the stability of fragrance and taste, prolongs the shelf life of products, protects products from isomerization and oxidation during storage, and creates a controlled release system for active substances. Cyclodextrin inclusions are also used to change food flavors; eliminate food bitterness and odors, such as the deodorization of soy milk, soy protein and some fish and rice; and the unpleasant spicy or bitter (Preis, Grother, Axe, & Breitkreutz, 2015) effects of curcumin in food and medicine. β-cyclodextrin is also used as a cholesterol chelator for livestock products (such as egg yolk, milk, butter, lard, cream, and cheese), which can reduce cholesterol by 87.54% (Lamas, et al., 2016) in β-cyclodextrin-egg cross-linking derivatives to improve its quality (Y. Li, Chen, & Li, 2017). β-cyclodextrin can also be used to replace egg yolk in bread to maintain its physico-chemical and sensory properties during storage (Marcet,
Paredes, & Diaz, 2015). Another application of CD is in the design of nano-bioactive food packaging materials. CD can be incorporated as a fragrant seasoning, a bacteriostatic substance or a bioactive agent, which allows it to be gradually released into food to maintain the sensory nature and to prevent the growth of microorganisms. The slow release of carvacrol in packaging is a good example (Lavoine, et al., 2014).

Emulsions are highly valuable because they are widely used in food, pharmaceuticals and cosmetics. Stabilized emulsions are usually obtained by adsorbing surfactants, polymers, or particles at the liquid-liquid interface to inhibit emulsion delamination, flocculation and coalescence. Recently, CD has been used as a substitute for traditional surfactants in emulsion stabilization. In contact with oil components, CD can form amphiphilic supramolecules at the oil/water interface with oil molecules via self-assembly. This supramolecule has a surface activity that can significantly reduce oil/water interfacial tension. Oil-CD inclusion complexes (ICs) are connected to the surface of the emulsion droplets by means of CDs in the aqueous phase. The particles formed by CD and oil are distributed on the surface of the oil droplets. These ICs can further grow into microcrystals and produce dense layers that adhere to the surface of emulsion droplets, similar to Pickering emulsions (solid particle-stabilized emulsion), which can stabilize emulsions. Compared to surfactant-stabilized emulsion, the stability of Pickering emulsions is less affected by pH, salt and temperature and results in none of the environmental pollution or toxicity problems associated with other surfactants. Sometimes, CD and a surfactant are added together through interfacial diffusion, adsorption and rearrangement to form more stable emulsions with various configurations.
(Fig. 3) (H. Xu, Liu, & Zhang, 2015). However, not all surfactants can stabilize emulsions as the type, amount, and initial position of a surfactant can all affect their stability (Xue Li, et al., 2014).

Natural cyclodextrin has limited bonding capacity and is even unstable in certain circumstances (i.e., a strongly acidic environment). In particular, the solubility of β-cyclodextrin in water and other solvents is not high, which limits the application of cyclodextrin. Therefore, it is necessary to modify the structure of cyclodextrin and synthesize cyclodextrin derivatives that can effectively overcome these challenges.

Common cyclodextrin derivatization methods include alkylation, acylation, amination, silylation and azide. Cyclodextrin contains three different types of hydroxyl groups, located at C2, C3 and C6, pointing to two different directions of the cyclodextrin molecular ring structure. The reactivity of each hydroxyl group varies under different reaction conditions and results in distinct substitution products. Table 1 lists the assembly objects and methods, basic properties of common starch and cyclodextrin and its derivatives, and their recent applications in food science.

3.3. Inulin

Inulin is a fructose polymer linked by β-(1-2)-D-fructofuran, and the length of the fructose chain varies from 2 to 60 monomers. The main function of inulin is the storage of carbohydrates in most plants (Apolinario, et al., 2014). Inulin has a variety of nutritional functions, including immune activity, hypolipidemic effects, prebiotic effects (affecting intestinal microbiota), and stimulation of the absorption of minerals (calcium and magnesium). The self assembly of inulin particles has been widely studied in comparison
to glucan and fructans and it has been shown that the functionality of inulin has great potential for further study. The precipitation of inulin initiates from interactions among hydrogen bonds between adjacent chains and assembly from random coils to a helical one-dimensional conformation. The helical conformation grows into a secondary structure due to the interaction between glucose at one end of the inulin chain and fructose on the adjacent chain. Subsequently, the tertiary structure of inulin is formed via cross-linking of every five hydrogen bonds and two-dimensional semi-nano crystal layers (Fig. 4) (Barclay, et al., 2016). Both the degree of polymerization and the process have a large impact on the physical and chemical properties of inulin. The furanosyl content of inulin is smaller and more flexible than that of glucan dextran, and the backbone structure has higher molecular elasticity and hydrophobicity and, therefore, relatively low glass transition and melting points relative to other oligosaccharides and polysaccharides. However, unlike the other sugars described above, inulin cannot be metabolized by the human body, which favors it for some unique and positive attributes, such as metabolic utilization by the kidney and beneficial colonic bacteria such as lactobacill and bifidobacteria. Inulin is more suitable as a food adhesive than glucose or lactose due to its reduction groups (Mensink, Frijlink, van der Voort Maarschalk, & Hinrichs, 2015). With an increase in inulin polymerization, the glass transition temperature (T_g) of inulin also increases, but the degree of polymerization of the self-assembled natural inulin active compound does not have an impact on T_g or the retention of embedded substances. The particles formed by embedded substances with high DP after drying are of low moisture and can help improve the stability of emulsions after re-dissolution (Silva, Zabot, Bargas,
However, the ability of natural inulin as a single packaging material for self-assembling hydrophobic active compounds is limited. Therefore, it is important to combine natural inulin with other low-calorie biopolymers (such as maltodextrin, modified starch, chitosan, protein or gum) to improve the rate of interfacial adsorption; thus, the wall material can have the dual function of prebiotic functional characteristics and self-assembling embedding ability (Dima, Pătraşcu, Cantaragiu, Alexe, & Dima, 2016). In addition, inulin can be self-assembled after hydrophobic modifications and provide a more useful function. The resulting derivatives can be used as suitable aggregators and stabilizers of emulsions, and they can effectively encapsulate and deliver water-insoluble active compounds in food, pharmaceutical or cosmetic products. Table 1 lists common inulin assembly objects, the basic nature of the method and recent applications in food science.

3.4. Cellulose

Cellulose is the most abundant polysaccharide in nature and includes hundreds to thousands of straight-chain β-(1→4)-linked D-glucose units. Although the amount of cellulose is vast, humans consume only a small amount of it because it is difficult to digest, making it mainly a nutritional source for animals. Nevertheless, due to the wide range of sources of cellulose, scientists are still working on developing products utilizing cellulose that are acceptable for both ruminant and non-ruminant animals.

At present, the most widely used cellulosics in the food industry are microcrystalline cellulose and bacterial cellulose. They are non-toxic, tasteless, and safe and have unique physical and chemical properties which do not affect product quality, and they can be
used as food additives, such as emulsifiers, thickening agents, foam stabilizers, or nutritional fortifiers or food packaging materials to make cellulose films. Microcrystalline cellulose is used in dairy products for thickening and gelling the water phase in an oil-water emulsion, to prevent the aggregation and combination of oil droplets and thus stabilize the suspension. Cellulose is a dietary fiber, and the cellulose self-assembly strategy is harnessed mainly to improve its functional applications. However, the rigid molecular chain structure and the formation of hydrogen bonds result in insolubility in common solvents. Therefore, there are relatively few studies on the direct hydrophobic modification of cellulose as a hydrophilic skeleton. However, recent studies have shown that interactions between amphiphilic and hydrophobic parts of unmodified cellulose play an important role in determining the crystal structure and solubility of cellulose, which allows hydrophobic modifications at low temperatures in organic, acidic, or alkaline solvents. The hydrophobic modification of cellulose in food is usually a necessary condition for maintaining the stability of the emulsion, which produces amphiphilic cellulose or cellulose derivative-based polymers. These amphiphilic polymers can self-assemble into nanoparticles, which is one type of grafting method. The factors that can impact on self-assembly include the cellulose skeleton length, hydrophobic chain length and density, concentration, polarity, temperature and pH of the solution. Nanocrystalline cellulose is usually used to stabilize emulsions; the amphiphilicity of cellulose crystallization allows it to assemble layer by layer and stabilize the emulsion through the Pickering mechanism. Over the past few decades, dissolvable and regeneratable forms of cellulose have been extensively studied to improve the enzymatic
hydrolysis rate of cellulose. In the regeneration step, phosphoric acid is often used to
remove the solvent (water) from the cellulose molecule allowing cellulose to
self-assemble into nanostructured cellulose. Moreover, some species of bacteria can also
biosynthesize cellulose nanocrystals using glucose as the substrate (Dayal & Catchmark,
2016), but the method has proven difficult to commercialize thus far. Nanostructured
cellulose plays an important role in flavor delivery (Hao, et al., 2015). Electrostatic
technology can also effectively assist cellulose in assembling functional substances
(Rezaei, et al., 2015). Table 1 lists the basic properties of cellulose, methods for its
assembly and recent developments in its application in food science and industry.

3.5. Pectin

Pectin is an important food gelation agent that is most commonly found in the cell
wall of terrestrial plants. Pectin is composed of a number of α-D-(1→4) galacturonic acid
residues through linear linkage. DE (degree of esterification) is an important factor in
characterizing the esterification of the carboxyl and methanol groups of pectin. DE is the
ratio of the esterified GalA groups to the total GalA groups, and the DE value of pectin in
general ranges from 60% to 90%. Pectins with a DE value greater than 50% are known as
high-methoxy pectins (HM pectins), and pectins with DE value less than 50% are known
as low-methoxy pectins (LM pectins). LM pectin can be further subdivided into two
categories: amidated LM and conventional LM pectin. LM pectin has the characteristics
of anti-hydrolysis on oral, gastric and intestinal microbial-specific enzymolysis. Therefore,
it can be used as an effective carrier for bioactive substances that are sensitive to acids.
However, as a protective carrier, its solubility is often high.
The hydrogen bonding and hydrophobic interactions are the main forces driving the aggregation of pectin molecules. For pectin molecules in the neutral or slightly acidic, most of the unesterified carboxyl groups are present in the form of ionized salts and this causes repulsion between negative charges preventing pectin from forming a network. This scenario also reduces the attractive forces between pectin and water molecules and the repulsive forces between pectin molecules. However, LM pectin requires calcium (or other polyvalent cations) for proper gel formation. The affinity and the capability of divalent cations to form a gel can be ranked as follows: barium > strontium > calcium. The mechanism of LM pectin gelation is well known as the "egg box" model. GalA monomers in a specific sequence of galacturonic acid in adjacent chains are interlinked by electrostatic and ionic bonding through carboxyl groups. A large amount of sugar (i.e., 60% or higher) forms hydrogen bonds by dehydration to reduce gel formation. Many studies have added calcium salts and LM pectin (to increase the binding capacity of pectin to calcium) to matrix tablets to delay the release of embedded substances (Fig. 5a and 5b) (Sriamornsak, 2011). Gel beads are formed by LM pectin with calcium, which can cross-link to form a poly-Gal chain. Pectin beads are produced by ionic gel preparation and often perform as a delivery system for the sustained release of active materials. However, their release in vitro is usually accelerated. By changing the LM pectin DE, the calcium pectin gel beads can be changed and the release mode can be modified.

Therefore, scientists often follow several strategies to develop pectin-derivative carriers. First, pectin needs to be biodegradable by bacteria and highly soluble. An
alternative is to allow interactions between functional components and pectin molecules to modify the local structure, for example, electrostatic interactions with proteins (such as lactoglobulin) to form 150-500 nm nanoparticles and then become a delivery system for active substances, including ω-3 unsaturated fatty acids and others (Jones & McClements, 2010; Zimet & Livney, 2009). A polyelectrolyte complex (PEC) is formed by electrostatic interactions between the polymer electrolytes and their counterparts with opposite charges in aqueous solution. The structure of pectin contains many carboxyl groups, thus allowing pectin to interact with the oppositely charged membrane or liposome. Self-assembled pectin-liposomal nanocomposites (PLNS) can be prepared by simple mixing of a pectin solution with cationic liposomes. The carboxyl group in galacturonic acid in pectin can be methyl esterified or reacted with an ammonia group to form an amide group. The esterification degree (DE) and amidation degree (DA) are important methods of pectin classification. High-methoxylated pectin (CU201, 70% DE, 200 kDa), low-methoxylated pectin (CU201, 38% DE, 80 kDa) and low-methoxylated amide pectin (CU020, 29% DE, 20% DA, 150 kDa) can interact with amine groups of liposomes (SA). AFM images show a small amount of branched pectin and spherical liposomes (Fig. 5c) (Sriamornsak, et al., 2008).

Changes in zeta potential and particle size are important factors for verifying the success of liposome coating. The high charge density on the surface of liposomes promotes the adsorption of pectin. Moreover, a high concentration of pectin with an increase in the coated liposome size results in better coverage of liposomes. The increase in the high-fat pectin ratio may be due to bridging flocculation. The appropriate ratio of
pectin can help produce stable monolayered liposomes and prevent bridging flocculation (Fig. 5d) (Alund, Smistad, & Hiorth, 2013).

Moreover, the interactions between pectin and a cationic solution environment can be used to change the gel properties to improve the embedding rate of functional substances. With an increase in the salt ion content, unlike the alginate gel, the number of bar-like interfaces decreases, while the number of dot-like crosslinks increases, and semi-flexible chains are also present (Fig. 5e and 5f) (Ventura, Jammal, & Bianco-Peled, 2013). Table 1 lists pectin assembly objects, the basic properties of the method and recent developments in the food industry.

3.6. Animal polysaccharides

3.6.1. Chitosan

Chitosan is mainly found in shells of shrimp and other crustaceans. Chitosan essentially consists of a large number of (1-4)-glycosidic bonds linking N-acetyl-2-amino-2-deoxy-d-glucopyranose (glucosamine) and 2-amino-2-deoxy-d-glucopyranose. Chitosan is widely used in the food industry for its antibacterial, clarification, and deacidification properties and its mouth-feel. Moreover, chitosan can be used as a controlled release medium for antioxidants, nutrients, spices and drugs.

Chitosan’s cations and hydrophobic sites make it a polyelectrolyte and amphiphilic compound. In acidic media, chitosan is highly protonated due to the positively charged amino chitosan groups. Moreover, both intramolecular and intermolecular hydrogen bonds (due to the presence of -OH single bonds and NH$_2$ single-bond groups in the chitosan backbone) contribute to self-assembly. The cationicity of chitosan is
advantageous for its incorporation into the surface of the anionic species by electrostatic forces and hydrogen bonding. Biopolymers with the opposite charge, such as alginates, pectins, xanthan gum, carrageenan, acacia and anionic lipids, can provide interesting nanostructures in delivery systems for various components. For example, the NH₃ groups of chitosan and the phosphate groups of modified lecithin can assemble via electrostatic interactions to deliver hydrophilic compounds. Nanoparticles show excellent stability at certain pH (3-6) and ionic strength ranges, and nanoparticles can be easily made into freeze-dried powders (Chuah, Kuroiwa, Ichikawa, Kobayashi, & Nakajima, 2009). A self-assembled complex of chitosan with α-lactalbumin or with β-lactoglobulin can also be used as potential delivery vehicles (Lee & Hong, 2009). Moreover, since the chitosan backbone has many functional groups, it can assemble better into nanomaterials after chemical modification to assemble active ingredients in food or drugs (Y. Yang, et al., 2014). The specific methods include the following: (1) the ionic cross-linking method. In an acidic medium, the amino group in the chitosan chain is easily protonated, so that it has a certain positive charge. Under certain conditions, chitosan with positive charges is mixed with anionic cross-linking agents (such as carboxylic acid or tripolyphosphate (TPP)) in aqueous solution, and the protonated amino group can interact with the anionic cross-linking agents to wrap the core materials to form chitosan-based nano-capsules. Cross-linking between TPP and low-molecular-weight chitosan can produce nano-capsules with an average particle size of 138 nm. Nano-capsules made using this method do not require organic solvents, and the cross-linking agent is of low toxicity. Therefore, this process is widely used to make sustained-release capsules, but the disadvantage is
that the particle size distribution is wide and the stability is poor (Fan, Yan, Xu, & Ni, 2012). (2) Layer-by-layer self-assembly method. This method is suitable for the preparation of double- or multi-layer nano-capsules. The main principle is to use easy-to-remove or need-to-be-covered nano-particles as a template and to alternately deposit polyelectrolytes with different charges on the surface of nanoparticle. Finally, the particles are removed to obtain nano-capsules. Liposomes are an artificial membrane with targeted drug delivery properties. They have good biocompatibility, but their structure is unstable and can be easily damaged by changes in external temperature and pH. To improve the stability of liposomes, nano-lipid particles are wrapped in layers of chitosan and alginate capsules by the layer-by-layer method, which not only improves the stability of liposomes but also enhances their sustained release to a certain extent. This method not only effectively controls the thickness of capsule shells but can also impart the directional release properties of capsules through the introduction of various capsule wall materials (W. Liu, Liu, Liu, Li, & Liu, 2013). (3) Re-coagulation method. In this method, core materials are distributed into two or more packaging materials with different charges, followed by interactions among packaging materials by the adjusting pH, temperature, and concentration of the system, which results in a low-solubility complex that precipitates to form nano-capsules. The nano-capsules are prepared on the surface of carbon nanotubes by the re-coagulation method between chitosan and ethylenediaminetetra-carboxylic acid. This nano-capsule not only achieves the effective coating of enzymes and some proteins but can also be used as a biosensor or bioresponder (Fig. 6) (H. Liu, et al., 2013). Table 1 lists the assembly objects and methods of chitosan
and its recent applications in the food industry.

3.7. Algae polysaccharides

Acid polysaccharides are another specially constructed type of polysaccharide found in seaweed, including fucoidans and laminarans in brown algae (Phaeophyceae), carrageenans in red algae (Rhodophyceae), and ulvans in green algae (Chlorophyceae) (Wrigstedt, et al., 2010). Research into the delivery of active substances using acid polysaccharides is ongoing (Venkatesan, Anil, Kim, & Shim, 2016). These polysaccharides have a stronger ability to bind to proteins in self-assembly and therefore are used in dairy and meat products. For example, the interaction between fucoidan and bovine serum albumin at pH 4.0 through $-\text{SO}_3^-$ and NH_3^+ favours the formation of complexes with very dense and intimate internal structures; the complex can dissociate into the soluble state in the presence of 0.01 M NaCl at pH 4.5 (D.-Y. Kim & Shin, 2015).

Moreover, the thermostability, solubility and emulsification around PI of complexes prepared at high temperature can be improved (D.-Y. Kim & Shin, 2016). Moreover, chitosan and fucoidan can form multilayered hydrated nanocomposites via electrostatic attraction, which can further embed bioactive compounds. Carrageenan is another polysaccharide gel widely used in the food industry, which can thicken and stabilize liquids. Carrageenan can also bind strongly to food proteins. In an in vitro model, carrageenan could bind to protamine to form carrageenan/protamine polyelectrolyte nanocomposites (Dul, et al., 2015). Carrageenan can also interact with surfactants, the cationic glycine betaine amide, of different concentrations to form multiscale nanoparticle complexes, which can significantly reduce the electrostatic interactions between the...
surfactant and the polymer and gradually dissociate the polymer nanostructures (Gaillard, et al., 2017). Alginate is another brown anionic acidic polysaccharide and is widely distributed in the cell wall of brown algae. Alginate is mainly composed of α-l-guluronic acid and β-D-mannuronic acid residues linked by 1,4-glycosidic linkages. Alginate can be combined with 200-300 times its own weight of water to form a sticky gel. The formed gel does not provide any nutrients, but it can stabilize the emulsion system. In the self-assembly process, alginate is often used as a base carrier and complexes with chitosan to carry flavors, such as capsaicin and other flavor substances. Chitosan/alginate self-assembles layer by layer to form a biofilm with an anti-fungal or anti-bacterial coating (F. Jiang, Yeh, Wen, & Sun, 2015). Table 1 lists the algae polysaccharide assembly objects, the basic methods and its applications in the food industry.

3.8 Applications in Biomedicine and Environment

Polysaccharides and their derivatives are superior to synthetic polymers because of their non-toxicity, biodegradability, compatibility and low cost. They are also widely used in biomedical and environmental fields, such as tissue engineering, biological imaging or environmental utilization.

Polysaccharides and their derivatives, applied in tissue engineering, are often used in biological signal transduction, cell adhesion, cell proliferation, cell differentiation, cell responsive degradation, re-modeling, regeneration or planning of the shape and structure of cell growth, etc. Sugar as a biological scaffold in tissue engineering can meet the requirements of bio-compatibility, non-toxicity, biodegradable rate, appropriate porosity and structural integrity (Khan & Ahmad, 2013).
Biological imaging is an important tool for understanding key physiological information and pathological processes, such as cancer detection and treatment, stem cell transplantation, immunogenicity and tissue engineering. Biological imaging has advantages in using fluorescence as signal output. Compared with small organic dyes, fluorescent nanomaterials exhibit excellent light stability, adjustable size emission, multi-functional potential and ideal pharmacokinetic behavior. An alternative luminescent nanometer material of (FONs) fluorescent organic nanoparticles type appeared recently.

Chitosan is used to prepare ultra-small cross-linked chitosan nanoparticles by "one-pot" multi-component reaction or atom transfer radical polymerization (ATRP), the particles can show strong yellow or red color and have better water dispersibility (Wan, et al., 2016). β-cyclodextrin can be used to prepare red fluorescent organic nanoparticles with aggregation-induced emission (AIE) characteristics (FON) (D. Xu, et al., 2017), or preparing an amphiphilic AIE active copolymer with strong green fluorescence through host-guest interaction (H. Huang, et al., 2017). Starch produces AIE active polymer nanoparticles with strong blue-green or green-yellow fluorescence through a "one-pot" strategy with pH and glucose responsiveness and good biocompatibility (internalization within 3 hours) (M. Liu, et al., 2015; Shi, et al., 2018). Oxidized sodium alginate (OSA) can be used to prepare probes with red fluorescent AIE activity (Wan, et al., 2017).

The pollution of heavy metal ions in the environment has become a serious environmental problem and can exist in the natural environment for a long time, thus creating long-term risks to ecosystems and human. Copper ion is the most typical of heavy metal ions because it is involved in electroplating, paint, electricity, fertilizers,
wood manufacturing and pigments. Many adsorbents with small size and high specific surface area, including carbon nanotubes (CNT), magnetic nanoparticles, graphene oxide, silica nanoparticles, etc. have been used. Chitosan is rich in amino, carboxyl and hydroxyl functional groups and can be used as a coordination site. Carboxymethyl chitosan was immobilized on CNT to form CNT-based chitosan nanocomposites by the combination of mussel adsorption chemistry and Michael addition reaction, which could overcome the shortcomings of traditional CNT (Zeng, et al., 2016).

4. Summary and future trends

Recent developments in healthcare products require the integration of new technologies into customized functional food, which poses new challenges to food scientists. The self-assembly strategy is an effective technique for the design and manufacture of delivery agents for bioactive substances to effectively control interactions among food ingredients. Self-assembly technology plays a vital role in nutritional and functional foods because of the great variation in structural, functional and physical and chemical properties. Self-assembly technology can be used to assemble existing micro-components to form larger structural units, which requires the manipulation or control of structures. The appropriate substrates, environmental conditions and chemical or physiological functions must be identified in advance. Carbohydrates, especially polysaccharides, are a very suitable base matrix due to their structure and special functions. Self-assembly has proven to be an attractive technology for the delivery of food nutrients and functional components. Additionally, the application of nano-technology combined with self-assembly is the key to the manipulation of food
polymers to improve their functional structure, which can effectively improve the quality,
feel, functional ingredients and shelf life of food. However, different monosaccharide
structures are used as building units, including isomeric stereoisomers, sequence changes,
side chain connection, branching and distribution, and modified functional groups leading
to wide structural diversity of polysaccharides. More studies are needed to address the
problem of assembly and stability to improve the functions of assembled complexes.
Parallel to developments in the laboratory, computer simulation and theoretical modeling
technology can also help solve key issues in the assembly process. More work on the
biomedical applications of carbohydrates/polysaccharides and their biological
behavior in vivo, including adsorption, distribution, metabolism and excretion is
esential. This review explained recent developments in self-assembly strategies,
behaviors and methods, which can provide a useful reference for further studies of
carbohydrate carrier delivery systems. When designing a delivery system, more
consideration needs be given to the requirements of the human body's internal
environment, in order to adjust the system more intelligently. This may be an area for the
future direction of development in this field.

5. Acknowledgments

This project was supported by the Research Fund for the National Natural Science
Foundation of China (No. 31601473), the China-Ireland International Cooperation Centre
for Food Material Science and Structure Design (No. KXGH17001), the Doctoral
Program of Higher Education (No. 108/k41mke02a), the Natural Science Foundation of
Fujian Province (No. 2018J01697), Spark Plan (No. 2017S0008), High Level
Construction Projects of Fujian Agriculture and Forestry University (No. 612014042), Projects for Scientific and Technological Development of Fujian Agriculture and Forestry University (No. KF2015099), the Program for Innovative Research Team in Science and Technology in Fujian Province University (No. 2012-03), and the Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University (No. cxtdl2009).

References

Abbas, S., Karangwa, E., Bashari, M., Hayat, K., Hong, X., Sharif, H. R., & Zhang, X. (2015). Fabrication of polymeric nanocapsules from curcumin-loaded nanoemulsion templates by self-assembly. Ultrasonics sonochemistry, 23, 81-92.

Aguilera, Y., Mojica, L., Rebollo-Hernanz, M., Berhow, M., de Mejía, E. G., & Martín-Cabrejas, M. A. (2016). Black bean coats: new source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage. Food chemistry, 212, 561-570.

Alund, S. J., Smistad, G., & Hiorth, M. (2013). A multivariate analysis investigating different factors important for the interaction between liposomes and pectin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 420, 1-9.

Apolinario, A. C., de Lima Damasceno, B. P. G., de Macêdo Beltrão, N. E., Pessoa, A., Converti, A., & da Silva, J. A. (2014). Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate polymers, 101, 368-378.

Auriemma, G., Mencherini, T., Russo, P., Stigliani, M., Aquino, R. P., & Del Gaudio, P.
(2013). Prilling for the development of multi-particulate colon drug delivery systems: Pectin vs. pectin–alginate beads. *Carbohydrate polymers, 92*, 367-373.

Azuma, K., Osaki, T., Ifuku, S., Saimoto, H., Morimoto, M., Takashima, O., Tsuka, T., Imagawa, T., Okamoto, Y., & Minami, S. (2014). Anti-inflammatory effects of cellulose nanofiber made from pear in inflammatory bowel disease model. *Bioactive Carbohydrates and Dietary Fibre, 3*, 1-10.

Barclay, T. G., Rajapaksha, H., Thilagam, A., Qian, G., Ginic-Markovic, M., Cooper, P. D., Gerson, A., & Petrovsky, N. (2016). Physical characterization and in silico modeling of inulin polymer conformation during vaccine adjuvant particle formation. *Carbohydrate polymers, 143*, 108-115.

Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., Tabatabaei, M., & Mohsenifar, A. (2014). Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against *Aspergillus flavus*. *Industrial Crops and Products, 54*, 310-319.

Bhopatkar, D., Feng, T., Chen, F., Zhang, G., Carignano, M., Park, S. H., Zhuang, H., Campanella, O. H., & Hamaker, B. R. (2015). Self-Assembled Nanoparticle of Common Food Constituents That Carries a Sparingly Soluble Small Molecule. *Journal of agricultural and food chemistry, 63*, 4312-4319.

Celebioglu, A., Kayaci-Senirmak, F., İpek, S., Durgun, E., & Uyar, T. (2016). Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. *Food & Function, 7*, 3141-3153.
Chen, M., Gao, C., Lü, S., Chen, Y., & Liu, M. (2016). Dual redox-triggered shell-sheddable micelles self-assembled from mPEGylated starch conjugates for rapid drug release. *RSC Advances, 6*, 9164-9174.

Cheong, A. M., & Nyam, K. (2016). Improvement of physical stability of kenaf seed oil-in-water nanoemulsions by addition of β-cyclodextrin to primary emulsion containing sodium caseinate and Tween 20. *Journal of Food Engineering, 183*, 24-31.

Chopra, M., Kaur, P., Bernela, M., & Thakur, R. (2014). Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. *Food Control, 37*, 158-164.

Chuah, A. M., Kuroiwa, T., Ichikawa, S., Kobayashi, I., & Nakajima, M. (2009). Formation of Biocompatible Nanoparticles via the Self-Assembly of Chitosan and Modified Lecithin. *Journal of food science, 74*, N1-N8.

Chun, J., Jo, Y., Bjrpha, P., Choi, M., & Min, S. (2015). Antimicrobial Effect of α- or β-Cyclodextrin Complexes with Trans-Cinnamaldehyde Against Staphylococcus aureus and Escherichia coli. *Drying Technology, 33*, 377-383.

Dayal, M. S., & Catchmark, J. M. (2016). Mechanical and structural property analysis of bacterial cellulose composites. *Carbohydrate polymers, 144*, 447-453.

Dey, S., & Sreenivasan, K. (2014). Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. *Carbohydrate polymers, 99*, 499-507.

Dima, C., Pătrașcu, L., Cantaragiu, A., Alexe, P., & Dima, Ş. (2016). The kinetics of the
swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. *Food chemistry, 195*, 39-48.

Dul, M., Paluch, K. J., Kelly, H., Healy, A. M., Sasse, A., & Tajber, L. (2015). Self-assembled carrageenan/protamine polyelectrolyte nanoplexes-Investigation of critical parameters governing their formation and characteristics. *Carbohydrate polymers, 123*, 339-349.

Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. *Colloids and Surfaces B: Biointerfaces, 90*, 21-27.

Fathi, M., Martín, Á., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. *Trends in Food Science & Technology, 39*, 18-39.

Fathi, M., Martin, A., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. *Trends in Food Science & Technology, 39*, 18-39.

Fioramonti, S. A., Perez, A. A., Aringoli, E. E., Rubiolo, A. C., & Santiago, L. G. (2014). Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate. *Food Hydrocolloids, 35*, 129-136.

Fuenzalida, J. P., Nareddy, P. K., Moreno-Villoslada, I., Moerschbacher, B. M., Swamy, M. J., Pan, S., Ostermeier, M., & Goycoolea, F. M. (2016). On the role of alginate structure in complexing with lysozyme and application for enzyme delivery. *Food
Hydrocolloids, 53, 239-248.

Gökmen, F. Ö., Rzayev, Z. M., Salimi, K., Bunyatova, U., Acar, S., Salamov, B., & Türk, M. (2015). Novel multifunctional colloidal carbohydrate nanofiber electrolytes with excellent conductivity and responses to bone cancer cells. *Carbohydrate polymers, 133*, 624-636.

Gaillard, C., Wang, Y., Covis, R., Vives, T., Benoît, M., & Benvegnu, T. (2017). Monitoring the architecture of anionic κ-carrageenan/cationic glycine betaine amide surfactant assemblies by dilution: A multiscale approach. *Carbohydrate polymers, 155*, 49-60.

Ge, W., Li, D., Chen, M., Wang, X., Liu, S., & Sun, R. (2015). Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly (lactide) nanomicelles. *Carbohydrate polymers, 117*, 169-176.

Gu, F., Li, B., Xia, H., Adhikari, B., & Gao, Q. (2015). Preparation of starch nanospheres through hydrophobic modification followed by initial water dialysis. *Carbohydrate polymers, 115*, 605-612.

Han, L., Ratcliffe, I., & Williams, P. A. (2015). Self-Assembly and Emulsification Properties of Hydrophobically Modified Inulin. *Journal of agricultural and food chemistry, 63*, 3709-3715.

Hao, X., Shen, W., Chen, Z., Zhu, J., Feng, L., Wu, Z., Wang, P., Zeng, X., & Wu, T. (2015). Self-assembled nanostructured cellulose prepared by a dissolution and regeneration process using phosphoric acid as a solvent. *Carbohydrate polymers, 123*, 297-304.
Higueras, L., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2016). Effect of hydroxypropyl-β-cyclodextrin and coadjuvants on the sorption capacity of hydrophilic polymer films for monoterpene alcohols. *Carbohydrate polymers, 151*, 1193-1202.

Hu, H., Xing, L., Hu, Y., Qiao, C., Wu, T., Zhou, G., & Zhang, W. (2016). Effects of regenerated cellulose on oil-in-water emulsions stabilized by sodium caseinate. *Food Hydrocolloids, 52*, 38-46.

Hu, Y., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., & Guo, Z. (2014). Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. *International journal of biological macromolecules, 70*, 44-49.

Huang, H., Xu, D., Liu, M., Jiang, R., Mao, L., Huang, Q., Wan, Q., Wen, Y., Zhang, X., & Wei, Y. (2017). Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging. *Materials Science and Engineering: C, 78*, 862-867.

Huang, Y. C., & Kuo, T. H. (2016). O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. *Food Hydrocolloids, 53*, 261-269.

Hundre, S. Y., Karthik, P., & Anandharamakrishnan, C. (2015). Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. *Food chemistry, 174*, 16-24.

Isono, T., Miyachi, K., Satoh, Y., Nakamura, R., Zhang, Y., Otsuka, I., Tajima, K., Kakuchi, T., Borsali, R., & Satoh, T. (2016). Self-Assembly of
Maltoheptaose-block-polycaprolactone Copolymers: Carbohydrate-Decorated Nanoparticles with Tunable Morphology and Size in Aqueous Media.

Macromolecules.

Jahed, V., Zarrabi, A., Bordbar, A. K., & Hafezi, M. S. (2014). NMR (1 H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. *Food chemistry, 165*, 241-246.

Jiang, F., Yeh, C. K., Wen, J., & Sun, Y. (2015). N-trimethylchitosan/Alginate Layer-by-Layer Self Assembly Coatings Act as “Fungal Repellents” to Prevent Biofilm Formation on Healthcare Materials. *Advanced healthcare materials, 4*, 469-475.

Jiang, J., Chen, Y., Wang, W., Cui, B., & Wan, N. (2016). Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immobilizing α-amylase. *Carbohydrate polymers, 151*, 600-605.

Jones, O. G., & McClements, D. J. (2010). Biopolymer Nanoparticles from Heat-Treated Electrostatic Protein-Poly saccharide Complexes: Factors Affecting Particle Characteristics. *Journal of food science, 75*, N36-N43.

Kaminski, G. A., Sierakowski, M. R., Pontarolo, R., dos Santos, L. A., & de Freitas, R. A. (2016). Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor. *Carbohydrate polymers, 140*, 129-135.

Kfoury, M., Auezova, L., Greige-Gerges, H., & Fourmentin, S. (2015). Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. *Carbohydrate polymers, 131*, 264-272.
Kfoury, M., Auezova, L., Ruellan, S., Greige-Gerges, H., & Fourmentin, S. (2015). Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. *Carbohydrate Polymers, 118*, 156-164.

Khalili, S. T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-Cherati, T., Abdollahi, A., Bayat, M., & Tabatabaei, M. (2015). Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against *Aspergillus flavus*. *LWT-Food Science and Technology, 60*, 502-508.

Khan, F., & Ahmad, S. R. (2013). Polysaccharides and their derivatives for versatile tissue engineering application. *Macromolecular Bioscience, 13*, 395-421.

Kiatponglarp, W., Rugmai, S., Rolland-Sabaté, A., Buléon, A., & Tongta, S. (2016). Spherulitic self-assembly of debranched starch from aqueous solution and its effect on enzyme digestibility. *Food Hydrocolloids, 55*, 235-243.

Kim, D. Y., & Shin, W. S. (2015). Unique characteristics of self-assembly of bovine serum albumin and fucoidan, an anionic sulfated polysaccharide, under various aqueous environments. *Food Hydrocolloids, 44*, 471-477.

Kim, D. Y., & Shin, W. S. (2016). Functional improvements in bovine serum albumin–fucoidan conjugate through the Maillard reaction. *Food Chemistry, 190*, 974-981.

Kim, E. S., Lee, J. S., & Lee, H. G. (2016). Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. *Journal of Agricultural and Food Chemistry, 64*, 4765-4771.

Kokubun, S., Ratcliffe, I., & Williams, P. A. (2015). The emulsification properties of
octenyl- and dodecenyl-succinylated inulins. *Food Hydrocolloids, 50*, 145-149.

Lamas, A., Anton, X., Miranda, J. M., Roca-Saavedra, P., Cardelle-Cobas, A., Ibarra, I., Franco, C., & Cepeda, A. (2016). Technological strategies for the development of egg-derived products with reduced content of cholesterol. *Food and Bioprocess Technology, 9*, 81-90.

Lavoine, N., Givord, C., Tabary, N., Desloges, I., Martel, B., & Bras, J. (2014). Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. *Innovative Food Science & Emerging Technologies, 26*, 330-340.

Lavoine, N., Guillard, V., Desloges, I., Gontard, N., & Bras, J. (2016). Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. *Carbohydrate polymers, 149*, 40-50.

Lee, A. C., & Hong, Y. H. (2009). Coacervate formation of α-lactalbumin–chitosan and β-lactoglobulin–chitosan complexes. *Food Research International, 42*, 733-738.

Li, H., & Peng, L. (2015). Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. *Carbohydrate polymers, 124*, 35-42.

Li, K., Liu, H., Gao, W., Chen, M., Zeng, Y., Liu, J., Xu, L., & Wu, D. (2015). Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy. *Biomaterials, 39*, 145-149.
Li, X., Li, H., Xiao, Q., Wang, L., Wang, M., Lu, X., York, P., Shi, S., & Zhang, J. (2014). Two-way effects of surfactants on Pickering emulsions stabilized by the self-assembled microcrystals of α-cyclodextrin and oil. *Physical Chemistry Chemical Physics*, **16**, 14059-14069.

Li, X., Qin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. (2016). Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance. *Food chemistry*, **199**, 356-363.

Li, Y., Chen, Y., & Li, H. (2017). Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction. *Ultrasonics sonochemistry*, **34**, 281-288.

Liu, H., Cui, Y., Li, P., Zhou, Y., Chen, Y., Tang, Y., & Lu, T. (2013). Polyphosphonate induced coacervation of chitosan: encapsulation of proteins/enzymes and their biosensing. *Analytica chimica acta*, **776**, 24-30.

Liu, M., Zhang, X., Yang, B., Li, Z., Deng, F., Yang, Y., Zhang, X., & Wei, Y. (2015). Fluorescent nanoparticles from starch: Facile preparation, tunable luminescence and bioimaging. *Carbohydrate polymers*, **121**, 49-55.

Liu, W., Liu, J., Liu, W., Li, T., & Liu, C. (2013). Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate–chitosan-coated nanoliposomes. *Journal of agricultural and food chemistry*, **61**, 4133-4144.

Liu, W., Liu, W., Ye, A., Peng, S., Wei, F., Liu, C., & Han, J. (2016). Environmental stress
stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. *Food chemistry, 196*, 396-404.

Liu, W., Tian, M., Kong, Y., Lu, J., Li, N., & Han, J. (2017). Multilayered vitamin C nanoliposomes by self-assembly of alginate and chitosan: Long-term stability and feasibility application in mandarin juice. *LWT-Food Science and Technology, 75*, 608-615.

Liu, Y., Liang, J., Wei, S., Liu, L., & Liao, M. (2015). Nanoparticles based on β-conglycinin and chitosan: Self-assembly, characterization, and drug delivery. *Journal of Applied Polymer Science, 132*.

Lu, K. Y., Li, R., Hsu, C. H., Lin, C. W., Chou, S. C., Tsai, M. L., & Mi, F. L. (2017). Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. *Carbohydrate polymers, 165*, 410-420.

Marcet, I., Paredes, B., & Diaz, M. (2015). Egg yolk granules as low-cholesterol replacer of whole egg yolk in the preparation of gluten-free muffins. *LWT-Food Science and Technology, 62*, 613-619.

Marefati, A., Sjöö, M., Timgren, A., Dejmek, P., & Rayner, M. (2015). Fabrication of encapsulated oil powders from starch granule stabilized W/O/W Pickering emulsions by freeze-drying. *Food Hydrocolloids, 51*, 261-271.

Marras-Marquez, T., Peña, J., & Veiga-Ochoa, M. (2015). Robust and versatile pectin-based drug delivery systems. *International journal of pharmaceutics, 479*, 265-276.

Mauro, N., Campora, S., Scialabba, C., Adamo, G., Licciardi, M., Gherzi, G., &
Giammona, G. (2015). Self-organized environment-sensitive inulin–doxorubicin conjugate with a selective cytotoxic effect towards cancer cells. *RSC Advances, 5*, 32421-32430.

Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K., & Hinrichs, W. L. (2015). Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. *Carbohydrate polymers, 130*, 405-419.

Muley, P., Kumar, S., El Kourati, F., Kesharwani, S. S., & Tummala, H. (2016). Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. *International journal of pharmaceutics, 500*, 32-41.

Nguyen, A. T. B., Winckler, P., Loison, P., Wache, Y., & Chambin, O. (2014). Physico-chemical state influences in vitro release profile of curcumin from pectin beads. *Colloids and Surfaces B: Biointerfaces, 121*, 290-298.

Pan, Y., Huang, X., Shi, X., Zhan, Y., Fan, G., Pan, S., Tian, J., Deng, H., & Du, Y. (2015). Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. *Carbohydrate polymers, 133*, 229-235.

Peng, H., Chen, S., Luo, M., Ning, F., Zhu, X., & Xiong, H. (2016). Preparation and Self-Assembly Mechanism of Bovine Serum Albumin-Citrus Peel Pectin Conjugated Hydrogel: A Potential Delivery System for Vitamin C. *Journal of agricultural and food chemistry, 64*, 7377-7384.

Phunpee, S., Saesoo, S., Sramala, I., Jarussophon, S., Sajomsang, W., Puttipipatkhajorn, S., Soottitantawat, A., & Ruktanonchai, U. R. (2016). A comparison of eugenol
and menthol on encapsulation characteristics with water-soluble quaternized β-cyclodextrin grafted chitosan. *International journal of biological macromolecules, 84*, 472-480.

Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Maricato, É., Nunes, C., Coimbra, M. A., & Vicente, A. A. (2015). Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. *Carbohydrate polymers, 115*, 1-9.

Preis, M., Grother, L., Axe, P., & Breitkreutz, J. (2015). In-vitro and in-vivo evaluation of taste-masked cetirizine hydrochloride formulated in oral lyophilisates. *International journal of pharmaceutics, 491*, 8-16.

Rezaei, A., Nasirpour, A., & Fathi, M. (2015). Application of cellulosic nanofibers in food science using electrospinning and its potential risk. *Comprehensive Reviews in Food Science and Food Safety, 14*, 269-284.

Santiago, L. G., & Castro, G. R. (2016). Novel technologies for the encapsulation of bioactive food compounds. *Current Opinion in Food Science, 7*, 78-85.

Sathuvan, M., Thangam, R., Gajendiran, M., Vivek, R., Balasubramanian, S., Nagaraj, S., Gunasekaran, P., Madhan, B., & Rengasamy, R. (2016). κ-Carrageenan: An effective drug carrier to deliver Curcumin in Cancer cells and to Induce Apoptosis. *Carbohydrate polymers*.

Shah, B. R., Li, Y., Jin, W., An, Y., He, L., Li, Z., Xu, W., & Li, B. (2016). Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. *Food Hydrocolloids, 52*, 369-377.
Shewan, H. M., & Stokes, J. R. (2013). Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. *Journal of Food Engineering, 119*, 781-792.

Shi, Y., Xu, D., Liu, M., Fu, L., Wan, Q., Mao, L., Dai, Y., Wen, Y., Zhang, X., & Wei, Y. (2018). Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications. *Materials Science and Engineering: C, 82*, 204-209.

Shibakami, M., Tsubouchi, G., Sohma, M., & Hayashi, M. (2015). Preparation of transparent self-standing thin films made from acetylated euglenoid β-1,3-glucans. *Carbohydrate polymers, 133*, 421-428.

Silva, E. K., Zabot, G. L., Bargas, M. A., & Meireles, M. A. A. (2016). Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization. *Carbohydrate polymers, 152*, 775-783.

Smistad, G., Bøyum, S., Alund, S. J., Samuelsen, A. B. C., & Hiorth, M. (2012). The potential of pectin as a stabilizer for liposomal drug delivery systems. *Carbohydrate polymers, 90*, 1337-1344.

Sriamornsak, P. (2011). Application of pectin in oral drug delivery. *Expert opinion on drug delivery, 8*, 1009-1023.

Sriamornsak, P., Thirawong, N., Nunthanid, J., Puttipipatkhachorn, S., Thongborisute, J., & Takeuchi, H. (2008). Atomic force microscopy imaging of novel self-assembling pectin–liposome nanocomplexes. *Carbohydrate polymers, 71*,
Tan, C., Feng, B., Zhang, X., Xia, W., & Xia, S. (2016). Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. *Food Hydrocolloids, 52*, 774-784.

Tang, D. W., Yu, S. H., Ho, Y. C., Huang, B. Q., Tsai, G. J., Hsieh, H. Y., Sung, H. W., & Mi, F. L. (2013). Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. *Food Hydrocolloids, 30*, 33-41.

Tedeschi, C., Leuenberger, B., & Ubbink, J. (2016). Amorphous–amorphous phase separation in hydrophobically-modified starch–sucrose blends I. Phase behavior and thermodynamic characterization. *Food Hydrocolloids, 58*, 75-88.

Thirawong, N., Thongborisute, J., Takeuchi, H., & Sriamornsak, P. (2008). Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin–liposome nanocomplexes. *Journal of controlled release, 125*, 236-245.

Tian, J., Tu, H., Shi, X., Wang, X., Deng, H., Li, B., & Du, Y. (2016). Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate. *Colloids and Surfaces B: Biointerfaces, 145*, 643-652.

Venkatesan, J., Anil, S., Kim, S.-K., & Shim, M. S. (2016). Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. *Polymers, 8*, 30.

Ventura, I., Jammal, J., & Bianco-Peled, H. (2013). Insights into the nanostructure of low-methoxyl pectin-calcium gels. *Carbohydrate polymers, 97*, 650-658.

Wan, Q., Jiang, R., Guo, L., Yu, S., Liu, M., Tian, J., Liu, G., Deng, F., Zhang, X., & Wei,
Y. (2017). Novel Strategy toward AIE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides: Preparation and Cell Imaging. ACS Sustainable Chemistry & Engineering, 5, 9955-9964.

Wan, Q., Liu, M., Xu, D., Mao, L., Tian, J., Huang, H., Gao, P., Deng, F., Zhang, X., & Wei, Y. (2016). Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a “one-pot” multicomponent reaction. Carbohydrate polymers, 152, 189-195.

Wang, X., Yuan, Y., & Yue, T. (2015). The application of starch-based ingredients in flavor encapsulation. Starch, 67, 225-236.

Wen, C., Yuan, Q., Liang, H., & Vriesекoop, F. (2014). Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals. Carbohydrate polymers, 112, 695-700.

Wen, P., Zhu, D., Feng, K., Liu, F., Lou, W., Li, N., Zong, M., & Wu, H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food chemistry, 196, 996-1004.

Wrigstedt, P., Kylli, P., Pitkanen, L., Nousiainen, P., Tenkanen, M., & Sipilä, J. (2010). Synthesis and antioxidant activity of hydroxycinnamic acid xylan esters. Journal of agricultural and food chemistry, 58, 6937-6943.

Wu, L., Liao, Z., Liu, M., Yin, X., Li, X., Wang, M., Lu, X., Lv, N., Singh, V., & He, Z. (2016). Fabrication of non-spherical Pickering emulsion droplets by cyclodextrins mediated molecular self-assembly. Colloids and Surfaces A: Physicochemical and
Xu, D., Liu, M., Zou, H., Huang, Q., Huang, H., Tian, J., Jiang, R., Wen, Y., Zhang, X., & Wei, Y. (2017). Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. *Journal of the Taiwan Institute of Chemical Engineers, 78*, 455-461.

Xu, H., Liu, H., & Zhang, L. (2015). Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface. *Langmuir, 31*, 9061-9069.

Xu, W., Jin, W., Zhang, C., Li, Z., Lin, L., Huang, Q., Ye, S., & Li, B. (2014). Curcumin loaded and protective system based on complex of κ-carrageenan and lysozyme. *Food Research International, 59*, 61-66.

Yang, J., Gao, C., Lü, S., Zhang, X., Yu, C., & Liu, M. (2014). Physicochemical characterization of amphiphilic nanoparticles based on the novel starch–deoxycholic acid conjugates and self-aggregates. *Carbohydrate polymers, 102*, 838-845.

Yang, Y., Wang, S., Wang, Y., Wang, X., Wang, Q., & Chen, M. (2014). Advances in self-assembled chitosan nanomaterials for drug delivery. *Biotechnology advances, 32*, 1301-1316.

Zeng, G., Liu, X., Liu, M., Huang, Q., Xu, D., Wan, Q., Huang, H., Deng, F., Zhang, X., & Wei, Y. (2016). Facile preparation of carbon nanotubes based carboxymethyl chitosan nanocomposites through combination of mussel inspired chemistry and Michael addition reaction: Characterization and improved Cu²⁺ removal capability.

Engineering Aspects, 490, 163-172.
Zhang, T., Zhou, P., Zhan, Y., Shi, X., Lin, J., Du, Y., Li, X., & Deng, H. (2015). Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. *Carbohydrate polymers, 117*, 687-693.

Zhang, W., Li, X., Yu, T., Yuan, L., Rao, G., Li, D., & Mu, C. (2015). Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin. *Food Research International, 74*, 55-62.

Zhang, X., Zhang, Y., Zhang, H., Yang, Q., Wang, H., & Zhang, G. (2015). Preparation, characterization and antibacterial activity of octenyl succinic anhydride modified inulin. *International journal of biological macromolecules, 78*, 79-86.

Zhao, D., Wei, W., Zhu, Y., Sun, J., Hu, Q., & Liu, X. (2015). Stable Emulsions Prepared by Self-assembly of Hyaluronic Acid and Chitosan for Papain Loading. *Macromolecular bioscience, 15*, 558-567.

Zimet, P., & Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. *Food Hydrocolloids, 23*, 1120-1126.
Biopolymers	Modified solvent and assembly method	Potential objects	Main results	References
Starch	Octenyl succinic anhydride (OSA)	Highly moisture-sensitive substances	The encapsulation of bioactive compounds was achieved using a glass transition temperature of different amorphous phases in a phase separation array (hydrophobically modified starch and sucrose binary blend system).	(Tedeschi, Leuenberger, & Ubbink, 2016)
	OSA	Shea oil with liquid and solid	Powder filled with shea oil was prepared via the freeze-drying method using water-in-oil-in-water (W/O/W) double emulsions (Fig. 2). The stability after freeze-drying was enhanced by OSA-modified starch Pickering emulsions. Layer-by-layer (LBL) self-assembly: ultrasonic-aided chitosan (poylation) and Na-CMC (polyanionic) materials were continuously adsorbed onto the starch surface to form a stable curcumin nanoemulsion polymer multi-shell.	(Marefati, et al., 2015)
	OSA	Curcumin	Novel spherical nanoparticles with amphiphatic properties; the average size of the aggregates ranged from 182 to 247 nm, with a good response to pH.	(Abbas, et al., 2015)
	Deoxycholic acid	Antitumor active drugs	Grafted; diselenium bonds instead of disulfur bonds were used to cross-link and synthesize new compounds, which had a better embedding load rate, stability and glutathione (GSH) response capability. This could help accelerate the release of embedded substances at the targeted site.	(J. Yang, et al., 2014)
	Poly (ethylene glycol) (mPEG) capped with a primary amino group	Adriamycin		(Chen, Gao, Lü, Chen, & Liu, 2016)
β-CD	Co-precipitation and freeze-drying	Trans-anethole (AT)	The obtained β-cyclodextrin solid complex had good thermal stability while controlling the slow evaporation of AT. First, the CEO/β-CD-IC complex was prepared using co-precipitation, followed by the preparation of the PLA/CEO/β-CD-IC nanofilm using electrostatic spinning technology. This film was used for pork packaging, which had very good antibacterial effects against E. coli and Staphylococcus aureus.	(W. Zhang, et al., 2015)
β-CD	Co-precipitation method	Antibacterial polylactic acid (PLA) and cinnamon essential oil (CEO)	Preparation of microcapsule complexes using SFD exhibited better thermal stability than spray drying and freeze-drying techniques.	(P. Wen, et al., 2016)
β-CD	Non-thermal spraying - freeze-drying (SFD)	Vanillin	Preparation of microcapsule complexes using SFD exhibited better thermal stability than spray drying and freeze-drying techniques.	(Hundre, Karthik, & Anandharamakrishnan, 2015)
β-CD	High-pressure homogenization method	Kenaf (Hibiscus cannabinus L.) seed oil	Sodium caseinate (SC), Tween 20 (T20) and β-cyclodextrin (β-CD) were used as emulsifiers for preparing stable nano-emulsions. Substances embedded in β-CD exhibited better antibacterial activity against Staphylococcus aureus and Escherichia coli than substances embedded in α-CD.	(Cheong & Nym, 2016)
α-CD, β-CD	Freeze-drying Method	Trans-cinnamaldehyde against	Changing the ratio of oil to CD produced non-spherical Pickering emulsion droplets, such as disc-shaped, oval and rod-shaped	(Chun, Jo, Bjrapha, Choi, & Min, 2015)
α-CD, β-CD	High-speed cutting method	Wheat germ oil (WO), olive oil, coconut oil, rice		(Wu, et al., 2016)
Compound Type	Method	Description		
---------------	--------	-------------		
Bran oil, rapeseed oil and castor oil (CO) droplets. Excessive microcrystals led to more stable non-spherical, rather than spherical, droplets.	Freeze-drying method	Estragole (ES) and tarragon essential oils (EOs) The obtained β-cyclodextrin solid complex was light insensitive and antioxidant active, and its release was controllable.		
α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), Hydroxypropyl β-cyclodextrin (HP-β-CD), Random methylated β-cyclodextrin (RAMEB), Low-methylation-β-cyclodextrin (CRYSMEB) and γ-cyclodextrin (γ-CD)		Chitosan infiltrated HP-β-CD and glycerol-encapsulated (carvacrol or monoterpene alcohols) to produce antibacterial films that acted on Staphylococcus aureus and Escherichia coli. The relative humidity of the environment controlled the rate of release of antimicrobial substances.		
Hydroxypropyl β-cyclodextrin (HP-β-CD)	Hydroxyalkylated cyclodextrins Carvacrol or monoterpene alcohols	Eugenol and (-)-menthol could self-assemble with QCD-g-CS; eugenol had a slower sustained release rate than (-)-menthol.		
Water-soluble quaternized β-CD grafted with chitosan (QCD-g-CS)	Ionized cyclodextrin	Alkenyl chrysanthemums with different degrees of polymerization were synthesized by alkenyl succinic anhydride with different olefinic lengths in aqueous solution via hydrophobic modifications. The critical aggregation concentration (CAC) and hydrodynamic diameter of the derivatives were proportional and inversely proportional to the chain length, respectively. All derivatives were capable of producing micellar aggregates and oil-in-water emulsions that provided good storage stability in the presence of Tween 20.		
Inulin	2-octen-1-yl-succinic anhydride and 2-dodecen-1-yl-succinic anhydride (DDSA) Medium-chain triglycerides (MCT)	DDSA-inulin in the resulting emulsion gave a smaller droplet size than OSA-inulin and had higher storage stability. The self-assembly force was mainly achieved by the electrostatic repulsion of the carboxylate ion of the derivatives.		
OSA	No	The antibacterial activity of octenyl succinic anhydride-modified inulin (In-OSA) against Staphylococcus aureus and Escherichia coli was mainly caused by In-OSA damaging proteins and nucleic acids on the surface of bacteria, which resulted in the leakage of these two bacteria through the cell membrane and cell wall.		
Lauryl carbamate	Paclitaxel (PTX)	Modified inulin and PTX (amphiphilic compounds) could self-assemble to form micelles to improve their blood compatibility and stability, reducing cytotoxicity and		

(Kfoury, Auezova, Ruellan, Greige-Gerges, & Fourmentin, 2015) (Higueras, López-Carballo, Gavara, & Hernández-Muñoz, 2016) (Phunpee, et al., 2016) (Han, Ratcliffe, & Williams, 2015) (Kokubun, Ratcliffe, & Williams, 2015) (X. Zhang, et al., 2015) (Muley, Kumar, El Kourati, Kesharwani, &
Component	Result	Reference
Ethylenediamine (EDA) and pentoic acid (P)	Doxorubicin (Doxo) maintaining an effective dose of PTX for a longer period. Adriamycin and pentoic acid inulin could assemble to form a polymerizable amphiphilic complex with pH sensitivity. The net charge of the complex changed from negative to positive at 5.5 < pH < 6.4, which allowed changes in its conformation and biological behaviors and released free doxorubicin. Inulin derivatives had better oxidation resistance and water solubility than inulin. Their capability for cleaning was related to the position of the pyridine amino groups grafted to the inulin derivatives.	Tummala, 2016
Amino-pyridines	No	Mauro, 2015
Ethylenediamine (EDA) and pentoic acid (P)	Ethylenediamine (EDA) and pentoic acid (P) D-Limonene (4-isopropenyl-1-methylcyclohexene) Ultrasonic homogenization was used to form a highly stable Pickering emulsion consisting of nano-microcrystalline cellulose and D-limonene. Sodium caseinate together with regenerated cellulose nanoparticles functioned as emulsifiers to stabilize emulsions. Proteins combined with polysaccharides could reduce interfacial tension and enhance the thickness of the adsorbed layer of the surrounding fat globules to improve the stability of the emulsion system. In O/W emulsions, regenerated cellulose could improve the adsorption of the droplet onto the surface and reduce the interactions among droplets. The effect was better than microcrystalline cellulose. Electrospinning allowed positively charged lysozyme and negatively charged pectin to be alternately deposited onto the surface of the cellulose nanofiber pad via layer-by-layer self-assembly. This fiber (the outermost layer is lysozyme) had a strong inhibitory effect on Escherichia coli and Staphylococcus aureus. Chitosan and lignosulfonate were superimposed on the surface of the fiber via layer-by-layer self-assembly. The anticoagulant activity of Escherichia coli was best when the outermost layer was chitosan, and the antioxidant activity was also improved. Caffeine and chlorhexidine digluconate underwent controlled release in the carrier of cellulose nanofibers (CNFs). Interactions among CNF nanoporous networks, embedded molecules and nanofibers slowed the release of molecules.	Wen, Yuan, Liang, & Vrieskoop, 2014
Ammonium persulfate	D-Limonene (4-isopropenyl-1-methylcyclohexene) Ultrasonic homogenization was used to form a highly stable Pickering emulsion consisting of nano-microcrystalline cellulose and D-limonene. Sodium caseinate together with regenerated cellulose nanoparticles functioned as emulsifiers to stabilize emulsions. Proteins combined with polysaccharides could reduce interfacial tension and enhance the thickness of the adsorbed layer of the surrounding fat globules to improve the stability of the emulsion system. In O/W emulsions, regenerated cellulose could improve the adsorption of the droplet onto the surface and reduce the interactions among droplets. The effect was better than microcrystalline cellulose. Electrospinning allowed positively charged lysozyme and negatively charged pectin to be alternately deposited onto the surface of the cellulose nanofiber pad via layer-by-layer self-assembly. This fiber (the outermost layer is lysozyme) had a strong inhibitory effect on Escherichia coli and Staphylococcus aureus. Chitosan and lignosulfonate were superimposed on the surface of the fiber via layer-by-layer self-assembly. The anticoagulant activity of Escherichia coli was best when the outermost layer was chitosan, and the antioxidant activity was also improved. Caffeine and chlorhexidine digluconate underwent controlled release in the carrier of cellulose nanofibers (CNFs). Interactions among CNF nanoporous networks, embedded molecules and nanofibers slowed the release of molecules.	C. Wen, Yuan, Liang, & Vrieskoop, 2014
Cold phosphoric acid	Soybean oil	Hu, et al., 2014
Cellulose	No Lysozyme (LZ) and pectin	Zhang, et al., 2015
Cellulose	No Chitosan (CS) and lignin sulfonate (LS)	Li & Peng, 2015
Cellulose	No Caffeine and chlorhexidine digluconate (CHX)	Marras-Marquez, Peña, & Veiga-Ochoa, 2015
Pectin	Natural agitation or freeze-drying Tolbutamide	Marras-Marquez, Peña, & Veiga-Ochoa, 2015
A gel network. Freeze-drying produced a porous structure that accelerated the immersion of water, and the freshly prepared blend had a slower release rate. Among LM, HM and AM pectin, LM and HM pectin were the best choices for stabilizing liposomal systems. HM pectin, due to having the greatest hydrophobicity, lowest charge density and more branched structure, could encapsulate liposomes in the form of long tails and/or rings to form a larger adsorbent layer. The interaction between liposomes coated with HM pectin and mucin was the most pronounced, which could improve the adhesion to intestinal mucosa. Pectin-liposomal nanocomposites (PLNS) could increase calcitonin absorption in the intestine (ECT). Highly esterified PLNS with a highly negative charge ratio exhibited lower DE. Low-DE pectin PLNS showed strong mucoadhesive properties. Low-DE pectin PLNS remained at the site of mucosal adhesion after 6 hours of administration. Pectin adhered to the mucus layer and to the intestinal mucosa to extend calcitonin retention at the mucosa, especially in the duodenum and jejunum. Curcumin encapsulated by low-ester pectin beads prepared by SOLUTOL was rapidly released in an amorphous form. Curcumin encapsulated by low-ester pectin beads prepared by sodium caseinate could not be dissolved during the encapsulation process, which was related to its casein micelles. Transcrackers prepared by Transcutol exhibited pH-dependent release in simulated gastric fluid, simulating slower intestinal fluid. Chitosan nano-capsules loaded with nisin and its antibacterial activity in tomato juice was studied. Through the observation of bacterial activity in tomato juice for 6 months, it was found that chitosan nano-capsules loaded with nisin could effectively inhibit the biological activity of Pseudomonas aeruginosa and, to a certain extent, extend food’s shelf life. Positive chitosan (CH) and negative sodium alginate (AL) were added to the surface of anionic nanoliposomes (NLs). After 90 days of storage, this self-assembled compound

Method	Delivery System	Gelation Method	Components
Agitation and mixing method	Liposome	Ionic gelation method	Curcumin
Co-precipitation method	Calciton (eCT)	Ionic gelation method	Curcumin
Ionic gelation method	Curcumin	Polyelectrolyte self-assembly method	The functional agent vitamin C (Vc)
Granulation method and an enteric coating	Piroxicam	Polyelectrolyte self-assembly method	The functional agent vitamin C (Vc)
Polyelectrolyte self-assembly method	The functional agent vitamin C (Vc)	Polyelectrolyte self-assembly method	The functional agent vitamin C (Vc)
Chitosan	Nisin	Ionic gelation method	Nisin
Thin-layer dispersion method combined with micro-fluidization	Vitamin C	Thin-layer dispersion method combined with micro-fluidization	Vitamin C

(Thirawong, Thongborisute, Takeuchi, & Srimornsak, 2008)

(Auriemma, et al., 2013)

(Peng, et al., 2016)

(W. Liu, et al., 2017)

(Chopra, Kaur, Bernela, & Thakur, 2014)
could delay lipid peroxidation and vitamin C release at 4°C.

A stable complex was made through electrostatic interactions among hyaluronic acid (HA)/chitosan (CS) and papain, which have been shown to be a suitable enzyme delivery system in emulsions. 5-fluorouracil (5-FU) nanoparticles were provided based on β-glycinin (7S) and chitosan (CS). Nanoparticles were mainly formed by electrostatic interactions between amine groups (interacting NH$^+$) of CS and 7S carboxyl groups (-COO- and intermolecular hydrogen bonds). 5-FU release was pH-dependent, which is in accordance with the Fick diffusivity of the Ritger-Peppas model. CS and catechin (EGCG) double-layer composites or CS-rectorite (REC) composites (CS-REC) and EGCG double-layer composites can be self-assembled through layer-by-layer (LBL) self-assembly manufacturing technology. CS and EGCG can increase the contact time on the surface of adsorbent materials to inhibit Staphylococcus aureus and extend the EGCG release time. Nanoparticles were assembled by pH-responsive chitosan and poly (γ-glutamic acid) (γ-PGA) for delivery of tea catechins. These nanoparticles improved the delivery capacity of EGCG in the cell monolayer due to their ability to tightly connect to Caco-2 cells.

Positively charged N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) and negatively charged soy protein isolate (SPI) were self-assembled via a layer-by-layer mechanism on cellulose acetate (CA). The antibacterial effect of nanofiber mats was positively correlated with the number of double-layers on CA, which had a good antibacterial effect against Escherichia coli and Staphylococcus aureus (mainly by HTCC).

Amphiphilic chitosan-graft-poly (lactide) (CS-g-PLA) copolymer was synthesized via homogeneous ring-opening polymerization (ROP) in ionic liquid. This significantly improved the stability of β-carotene and antioxidant activity. Chitosan was adsorbed onto the surface of liposomes by electrostatic and hydrophobic forces, maintaining the spherical shape, inducing a charge reversal, enhancing the orderly distribution of the polysaccharides in the polar region and the hydrophobic core of lipid, and limiting the free movement of lipid molecules. This enhanced the stability of carotenoids under heating, gastrointestinal stress and centrifugal sedimentation conditions. The protective effects of β-carotene and lutein were best.
Method	Material(s)	Details	References			
Freeze-drying method	Mentha piperita essential oils	Chitosan-cinnamic acid could embed *Mentha piperita* essential oil to enhance its stability and antimicrobial activity against *Aspergillus flavus*. Moreover, 1000 ppm nano-gel on the surface of fruit could inhibit the growth of bacteria on the tomato surface.	(Beyki, et al., 2014)			
Ultrasonic method	Thyme essential oils	Chitosan and benzoic acid nanogel (CS-BA) could embed thyme essential oil to enhance its stability and antimicrobial activity against *Aspergillus flavus*. Moreover, 700 mg/L nano-gel on the surface of fruit could inhibit bacterial growth on the tomato surface.	(Khalili, et al., 2015)			
High-speed cutting method	Curcumin and Medium-chain triglyceride (MCT)	Curcumin was successfully encapsulated in CS-TPP nanoparticles and had good stability and sustained release in the Pickering emulsion system over a long period of time.	(Shah, et al., 2016)			
Ionic gelation method	Red ginseng extract (RG)	Fucoidan itself had anticoagulant activity, and a nanoparticle in the form of an ionic gel composed of fucoidan and chitosan helped enhance the anti-thrombotic activity of red ginseng extract in mice while improving the poor bioavailability of oral ginsenosides. O-carboxymethyl chitosan (O-CMC) and fucoidan formed a pH-sensitive nanoparticle, which then encapsulated curcumin. This nanoparticle had a 92.8% encapsulation degree, and the complex was stable under acidic conditions. Under alkaline conditions, the complex could reduce cytotoxicity after release and enhanced the uptake capability of cells.	(E. S. Kim, Lee, & Lee, 2016)			
Ion cross-linking method and freeze-drying method	Curcumin	Fucoidan alone had anticoagulant activity, and a nanoparticle in the form of an ionic gel composed of fucoidan and chitosan helped enhance the anti-thrombotic activity of red ginseng extract in mice while improving the poor bioavailability of oral ginsenosides. O-carboxymethyl chitosan (O-CMC) and fucoidan formed a pH-sensitive nanoparticle, which then encapsulated curcumin. This nanoparticle had a 92.8% encapsulation degree, and the complex was stable under acidic conditions. Under alkaline conditions, the complex could reduce cytotoxicity after release and enhanced the uptake capability of cells.	(Y.-C. Huang & Kuo, 2016)			
Agitation and mixing method	Doxorubicin	Nanoparticles formed by fucoidan and a cationic polypeptide (protamine) could be released by enzymatic digestion in an acidic intracellular microenvironment (pH 4.5-5.5). P-selectin-induced endocytosis could improve a metastatic breast cancer cell line system. Hollow multilayered nano-capsules were formed by chitosan and fucoidan in a layer-by-layer manner. The encapsulated poly-l-lysine was released in accordance with Fick’s diffusion law at pH 7. The cumulative release of curcumin in a κ-carrageenan vector was 78% at pH 5.0, which thereby induced a decline in the mitochondrial membrane potential of cancer cells and eventually resulted in apoptosis. κ-carrageenan and lysozyme self-assembled to form a micro-complex and embed curcumin. The solubility of the complex increased significantly, and the stability increased by approximately 2.7-fold, 2-fold and 1.7-fold compared to un-self-assembled curcumin, respectively, which could maintain its biological activity after Pasteurization and ultraviolet radiation. The prepared alginate-curcumin (Alg-Ccm) conjugate had great solubility and stabilization in water at pH 7.4, and the cytotoxicity remained.	(Lu, et al., 2017)	(Sathuvan, et al., 2016)	(W. Xu, et al., 2014)	(Dey & Sreenivasan, 2014)
Ultrasonic method	Poly-l-lysine	Nanoparticles formed by fucoidan and a cationic polypeptide (protamine) could be released by enzymatic digestion in an acidic intracellular microenvironment (pH 4.5-5.5). P-selectin-induced endocytosis could improve a metastatic breast cancer cell line system. Hollow multilayered nano-capsules were formed by chitosan and fucoidan in a layer-by-layer manner. The encapsulated poly-l-lysine was released in accordance with Fick’s diffusion law at pH 7. The cumulative release of curcumin in a κ-carrageenan vector was 78% at pH 5.0, which thereby induced a decline in the mitochondrial membrane potential of cancer cells and eventually resulted in apoptosis. κ-carrageenan and lysozyme self-assembled to form a micro-complex and embed curcumin. The solubility of the complex increased significantly, and the stability increased by approximately 2.7-fold, 2-fold and 1.7-fold compared to un-self-assembled curcumin, respectively, which could maintain its biological activity after Pasteurization and ultraviolet radiation. The prepared alginate-curcumin (Alg-Ccm) conjugate had great solubility and stabilization in water at pH 7.4, and the cytotoxicity remained.	(Pinheiro, et al., 2015)	(Dey & Sreenivasan, 2014)		
Solvent evaporation method	Curcumin	Nanoparticles formed by fucoidan and a cationic polypeptide (protamine) could be released by enzymatic digestion in an acidic intracellular microenvironment (pH 4.5-5.5). P-selectin-induced endocytosis could improve a metastatic breast cancer cell line system. Hollow multilayered nano-capsules were formed by chitosan and fucoidan in a layer-by-layer manner. The encapsulated poly-l-lysine was released in accordance with Fick’s diffusion law at pH 7. The cumulative release of curcumin in a κ-carrageenan vector was 78% at pH 5.0, which thereby induced a decline in the mitochondrial membrane potential of cancer cells and eventually resulted in apoptosis. κ-carrageenan and lysozyme self-assembled to form a micro-complex and embed curcumin. The solubility of the complex increased significantly, and the stability increased by approximately 2.7-fold, 2-fold and 1.7-fold compared to un-self-assembled curcumin, respectively, which could maintain its biological activity after Pasteurization and ultraviolet radiation. The prepared alginate-curcumin (Alg-Ccm) conjugate had great solubility and stabilization in water at pH 7.4, and the cytotoxicity remained.	(Sathuvan, et al., 2016)	(W. Xu, et al., 2014)	(Dey & Sreenivasan, 2014)	(Fuenzalida, et al., 2015)
Method	Enzyme/Agent	Notes				
---	--	---				
Dynamic high-pressure microfluidization (DHPM)	Nanoliposomes	A polyelectrolyte delivery system (PDS) based on sodium alginate (AL) and chitosan (CH) coated on the surface of nanoliposomes (NLs) was prepared, which could resist lipolytic degradation under simulated gastrointestinal conditions. Superparamagnetic carboxymethyl chitosan/sodium alginate nanoparticles (SM/CMC/SA) could fix α-amylase and increase enzymatic activity by 4.67-fold as well as its stability against acid, alkali, heat and storage conditions. A polymer of liposomes (LPs), chitosan (CH) and sodium alginate (AL) had the ability to reduce the release of vitamin C from simulated intestinal fluid. The release rate was highest after mixing with pancreatic and bile salts. Sodium alginate and whey protein isolate (WPI) self-assembled to form a soluble biopolymer complex. At high temperature, more hydrophobic groups were exposed on the surface of the whey protein isolate, which benefited the interactions between the complex and potential lipophilic bioactive agents.				
Ultrasonic method	α-amylase	(W. Liu, et al., 2016)				
Agitation and mixing method	Vitamin C	(J. Jiang, Chen, Wang, Cui, & Wan, 2016)				
Sodium alginate		(W. Liu, et al., 2016)				
Agitation and mixing method	Potential lipophilic agents	(Fioramonti, Perez, Aringoli, Rubiolo, & Santiago, 2014)				
List of Figures:

Fig. 1. Schematic model of the radial positive organization of debranched waxy rice starch (DNRS) spherulites. The arrows indicate the radial direction of the spherulite.

Fig. 2. Schematic representation of different types of emulsions: (a) surfactant-stabilized emulsion, (b) particle-stabilized emulsion, (c) starch granule-stabilized double emulsion and (d) heat-treated starch granule-stabilized double emulsion.

Fig. 3. Schematic representation of the assembly model for the β-CD (used as solid colloidal particles)/SC (sodium caseinate, used as an emulsifier)/TG (triglyceride) system at the oil/water interface (H. Xu, et al., 2015)

Fig. 4. Schematic representation of inulin particle formation: (a) inulin chains with random coils; (b) formation of glucose–fructose links; (c) antiparallel arrangement of inulin helices in ribbons (arrow indicates the long axis of the ribbon); (d) inulin ribbons combined, likely through spherulite.

Fig. 5. Schematic representation of (a) calcium binding to polygalacturonate sequences of LM pectin (‘egg box’ dimer and ‘egg-box’ cavity) and (b) a model for the gelation of amidated LM pectin; (c) topographical (left) and equivalent processed (right) images from atomic force microscopy (AFM) of pectin–liposome nanocomplexes (PLNs) using pectins; (d) different proportions of liposomes and pectin interactions; (e) calcium–pectin gel with low calcium concentration; (f) calcium–pectin gel with high calcium concentration.

Fig. 6. Schematic illustration of the synthetic process and mechanism of EDTMP–Hb–chitosan–MWCNT composites. Key points: (i) The interaction between chitosan and MWCNTs results in the dispersion of MWCNTs. (ii) The strong electrostatic and/or
hydrogen bonding interactions between EDTMP and chitosan result in the coacervation of chitosan. (iii) The coacervation of chitosan results in the in situ encapsulation of Hb. (iv) The interaction between EDTMP and Hb facilitates the encapsulation of Hb.
Fig. 1. Schematic model of the radial positive organization of debranched waxy rice starch (DNRS) spherulites. The arrows indicate the radial direction of the spherulite.
Fig. 2. Schematic representation of different types of emulsions: (a) surfactant-stabilized emulsion, (b) particle-stabilized emulsion, (c) starch granule-stabilized double emulsion and (d) heat-treated starch granule-stabilized double emulsion.
Fig. 3. Schematic representation of the assembly model for the β-CD (used as solid colloidal particles)/SC (sodium caseinate, used as an emulsifier)/TG (triglyceride) system at the oil/water interface (H. Xu, et al., 2015).
Fig. 4. Schematic representation of inulin particle formation: (a) inulin chains with random coils; (b) formation of glucose–fructose links; (c) antiparallel arrangement of inulin helices in ribbons (arrow indicates the long axis of the ribbon); (d) inulin ribbons combined, likely through spherulite intermediates, forming semicrystalline particles; (e) inulin ribbons lying flat on a surface (rings accentuate inulin helices).
Fig. 5. Schematic representation of (a) calcium binding to polygalacturonate sequences of LM pectin (‘egg box’ dimer and ‘egg-box’ cavity) and (b) a model for the gelation of amidated LM pectin; (c) topographical (left) and equivalent processed (right) images from atomic force microscopy (AFM) of pectin–liposome nanocomplexes (PLNs) using pectins; (d) different proportions of liposomes and pectin interactions; (e) calcium–pectin gel with low calcium concentration; (f) calcium–pectin gel with high calcium concentration.
Fig. 6. Schematic illustration of the synthetic process and mechanism of EDTMP–Hb–chitosan–MWCNT composites. Key points: (i) The interaction between chitosan and MWCNTs results in the dispersion of MWCNTs. (ii) The strong electrostatic and/or hydrogen bonding interactions between EDTMP and chitosan result in the coacervation of chitosan. (iii) The coacervation of chitosan results in the in situ encapsulation of Hb. (iv) The interaction between EDTMP and Hb facilitates the encapsulation of Hb.
Highlights

• The activity of bioactive compounds is limited due to their instability.

• An overview of delivery systems based on various carbohydrates is provided.

• The assembling food ingredients using carbohydrate biopolymers is reviewed.

• The protective effects of the corresponding delivery systems are highlighted.
Highlights

1. The activity of bioactive compounds is limited due to their instability.
2. An overview of delivery systems based on various carbohydrates is provided.
3. The assembling food ingredients using carbohydrate biopolymers is reviewed.
4. The protective effects of the corresponding delivery systems are highlighted.