High-resolution spectroscopy of QY Sge – An obscured RV Tauri variable?

N. Kameswara Rao, Aruna Goswami, David L. Lambert

1 Indian Institute of Astrophysics, Bangalore 560034, India
2 Department of Astronomy, University of Texas, Austin, TX 78712-1083, USA

Accepted . Received ; in original form 2001

ABSTRACT

The first high-resolution optical spectra of QY Sge are presented and discussed. Menzies & Whitelock (1988) on the basis of photometry and low-resolution spectra suggested that this G0I supergiant was obscured by dust and seen only by scattered light from a circumstellar reflection nebula. The new spectra confirm and extend this picture. Photospheric lines are unusually broad indicating scattering of photons from dust in the stellar wind. Presence of very broad Na D emission lines is confirmed. Sharp emission lines from low levels of abundant neutral metal atoms are reported for the first time. An abundance analysis of photospheric lines shows that the stellar atmosphere is of approximately solar composition but with highly condensable (e.g., Sc and Ti) elements depleted by factors of 5 to 10.

Key words: Star: individual: QY Sge: variables: RV Tauri

1 INTRODUCTION

Our investigation of QY Sge (IRAS 20056+1834) was prompted by Menzies & Whitelock’s (1988) report of broad Na D emission lines in the spectrum of this G0 supergiant with a strong infrared excess. Broad Na D (and other) emission lines are seen in spectra of R Coronae Borealis stars taken at minimum light. Questions abound about the location of the broad-line emitting gas with respect to the R CrB star, and about the excitation mechanism for these lines. Insights into the formation of the broad lines may possibly be obtainable by observing other stars exhibiting similar lines, particularly, targets like QY Sge where the emission lines seem to be a permanent feature of the spectrum. It was in this spirit that we observed QY Sge at high spectral resolution.

Menzies & Whitelock observed QY Sge at 3.5Å resolution at several epochs in the late 1980s. The Na D lines were seen strongly in emission with a width of 140 km s\(^{-1}\) (FWHM) and at a velocity equal to the stellar absorption line velocity to within the errors of measurement (± 15 km s\(^{-1}\)). Other evidence for emission was offered: Ca ii H and K showed emission cores, Ca i 4226Å was weakly in emission, and H\(\alpha\) was filled in by emission. Consideration of the absorption lines led to a spectral type of about G0I.

QY Sge’s infrared excess signals the presence of a thick dust cloud for which Menzies & Whitelock estimated a blackbody temperature of about 600 K. Polarimetry at optical (Trammell, Dinerstein, & Goodrich 1994) and infrared (Gledhill et al. 2001) wavelengths showed significant polarization with the degree of polarization increasing from the visual to a maximum of about 14 % in the J band and then decreasing to about 7 % in the H band and 3 % in the K band. Optical polarimetry provides an important clue to the location of the gas emitting the broad lines; the broad NaD emission lines are unpolarized although the local continuum is polarized (Trammell et al. 1994). At about the H band and to longer wavelengths, the flux is principally emission from the dust, but at wavelengths shorter than H band, the flux is photospheric radiation scattered off the surrounding dust (Menzies & Whitelock 1988). The source has not been spatially resolved.

The parallels with the R CrB stars are several – yellow supergiant, dusty circumstellar cloud, and broad emission lines – but incomplete in that QY Sge is not obviously H-deficient. The R CrB stars’ broad emission lines are seen only after a star has faded by several magnitudes. Yet, QY Sge shows the broad lines at ‘maximum’ light. This happy circumstance arises because dust dims the star but not the region emitting the broad lines. While there may be similarities of geometry and excitation between QY Sge and the R CrB stars, their evolution is likely to have differed greatly. Menzies & Whitelock (1988) discussed several possible histories for QY Sge but were unable to decide whether the star was an evolved massive star or a low mass post-AGB star. Others (Trammell et al. 1994; Gledhill et al. 2001) have
assumed that QY Sge should be listed with post-AGB stars and protoplanetary nebulae.

2 OBSERVATIONS

QY Sge was observed with the McDonald Observatory’s 2.7m Harlan J. Smith telescope and its ‘2dcoudé’ cross-dispersed echelle spectrograph (Tull et al. 1995) on 1999 August 17 and 18, and 2000 June 14. The observed bandpass ran from about 3900 Å to 10000 Å with gaps beyond about 5600 Å where the echelle orders were incompletely captured on the Tektronix 2048 × 2048 CCD. An additional observation was obtained on 2001 July 13 using the Sandiford Cassegrain echelle spectrograph on the McDonald 2.1m Otto Struve reflector (McCarthy et al. 1993). This spectrum recorded with a Reticon CCD provided complete coverage of the interval 4500 Å to 5170 Å. Observations of a Th-Ar hollow cathode lamp provided the wavelength calibration. All spectra were obtained at a nominal spectral resolving power of 60 000. Data were reduced in the standard fashion using the IRAF software package.

Spectra of γ Cyg, and 89 Her were obtained also with the ‘2dcoudé’ spectrograph. Gamma Cyg is a normal F8Iab star. The spectrum of 89 Her, a warmer supergiant (spectral type F2Ib), includes sharp emission lines from low excitation levels of abundant atoms, but lacks broad emission lines.

3 THE ABSORPTION AND EMISSION LINE SPECTRUM

Inspection of QY Sge’s spectra shows three obvious components: absorption lines representative of a late-F to early-G supergiant, sharp emission lines from resonance and low excitation transitions of abundant neutral atoms, and a few broad emission lines (e.g., Na D and K I 7665 Å and 7699 Å lines).

3.1 The Absorption Lines

The absorption line spectrum broadly resembles that of γ Cyg. A striking difference is that QY Sge’s lines are much broader. A few lines are clearly stronger in QY Sge than in γ Cyg. Among these are the C I lines (Figure 1). Low excitation lines of neutral metals are also stronger in QY Sge. A spectacular example is shown in Figure 2: the Fe I at 5060.1 Å from the resonance multiplet. This and similar lines are slightly red-shifted relative to higher excitation lines (see below). A few lines are greatly weaker in QY Sge. These are lines of singly-ionized atoms such as Sc ii, Ti ii, Y ii, and Nd ii. Three examples are given in Figure 2. Line weakening does not appear to be due to overlying emission.

By inspection, γ Cyg’s lines are sharper than those in QY Sge. To facilitate a direct comparison of the spectra, we have broadened γ Cyg’s spectrum to match that of QY Sge. Assuming that a standard profile for a rigidly rotating star suffices, we find that a projected velocity v sin i = 30 ± 5 km s⁻¹ equals the line widths in the two spectra. This exercise should not be taken to imply that rotational line broadening is necessarily responsible for QY Sge’s broader lines. The difference cannot be attributed to a higher microturbulence in QY Sge’s atmosphere (see below). Alternatively, if macroturbulence is invoked, the motions in QY Sge are highly supersonic, an improbable scenario. As we discuss below, the broadening is plausibly attributed to the receipt of photons not directly from the star but after scattering off moving dust grains in the stellar wind.

The radial velocity was measured from a set of unblended absorption lines. For the ‘2dcoudé’ spectra about 150 lines were measured. Fewer lines - about 30 - were selected from the Sandiford spectrum. The radial velocities are -21 ± 1.5 km s⁻¹ for 1999 August 17 and 18, -23 ± 1.5 km s⁻¹ for 2000 June 14, and -9.1 ± 2.2 km s⁻¹ for 2001 July 13. The star is obviously a velocity variable which is not surprising for such a luminous star. At this time, the systemic velocity is unknown.

Low excitation Fe I and other lines show a more positive velocity by about 7 to 9 km s⁻¹. While the equivalent widths of the higher excitation lines agree well with those of the lines in γ Cyg, the low excitation lines with the more positive velocity are stronger in QY Sge than in γ Cyg. This difference rules out emission line contamination of QY Sge’s low excitation lines. These measurements refer to spectra taken in 1999 and 2000.

3.2 Sharp Emission Lines

The most prominent of the sharp emission lines are the Na D and K I resonance lines (Figure 3). Weaker lines are scattered across the bandpass. These low excitation lines are less common than in the spectrum of 89 Her, and also broader than...
Figure 2. The spectrum of QY Sge (upper panel) from 5025 Å to 5095 Å with the spectrum of γ Cyg (lower panel). The dotted line in the upper panel is the spectrum of γ Cyg broadened by 30 km s\(^{-1}\) (see text). Many lines in the broadened spectrum match well the strengths of the same lines in QY Sge. Notable exceptions are the Fe\(^{i}\) RMT1 resonance line, which is much stronger in QY Sge, and lines of Sc\(^{ii}\), Y\(^{ii}\), and Nd\(^{ii}\), which are weaker in QY Sge.

Figure 3. Spectra of QY Sge in 1999 August and 2000 June showing the emission profiles of the Na D lines (upper panel) and the K\(^{i}\) resonance lines (lower panel). Note the presence of sharp and broad components for these resonance lines. The sharp absorption lines, especially prominent in the lower panel, are of telluric origin.

Figure 4. Spectra of 89 Her, QY Sge, and γ Cyg from 7970 Å to 8060 Å. The prominent emission line of Fe\(^{i}\) from RMT12 is seen in QY Sge and 89 Her.

3.3 Broad Emission Lines

What drew us to study QY Sge was the report of broad emission lines. The most prominent are the Na D lines which include a sharp line (Figure 3). This Figure also shows the K\(^{i}\) resonance lines where the broad component is present but less prominent relative to the sharp emission component.
than in the Na D lines. Broad emission is weakly present in the Ca\u2105\textsc{ii} H line. Figure 5 compares the Na D profiles of QY Sge with profiles for three other stars: R CrB at minimum light, 89 Her, and the normal supergiant \gamma\ Cyg. Gamma Cyg shows the photospheric Na D profile with two weak blue-shifted absorption lines in the line cores; these are possibly interstellar components. For 89 Her, the photospheric Na D absorption lines appear partly filled in with emission, and complex blue-shifted absorption present at about 2 \AA\ from the deep absorption core is probably of circumstellar origin. Very weak emission may be present in the red wing of the D2 line. Broad emission in addition to sharp emission is seen in QY Sge and R CrB. For R CrB the broad emission of the red wing of D2 overlaps the blue wing of D1, but D1 and D2 are well resolved for QY Sge. The intrinsic profile of the broad lines in QY Sge is probably that of a single peak, but the superposition of the sharp emission and accompanying absorption creates the appearance of a broad emission split into a blue and red component of approximately equal intensity. A part of the central absorption may be contributed by the photospheric line. The D1/D2 flux ratio is slightly less than the value of two expected for optically thin lines.

QY Sge’s broad emissions are approximately centred on the stellar velocity. Average velocity of the blue and red peaks is -24 km s−1 for the Ca\textsc{ii} K line, and -27 km s−1 for D2, and -29 km s−1 for D1 from the 1999 August spectrum for which the systemic velocity was -21 km s−1. The separation of the blue and red peaks is about 130 km s−1. The base widths of the lines are about 270 km s−1. Emission in H\alpha may be related to these broad emissions: the P Cygni profile at H\alpha has red emission extending to -100 km s−1 from the photospheric velocity.

![Figure 5](image_url) The Na D lines in R CrB at minimum light, QY Sge, 89 Her, and \gamma\ Cyg. Some of the sharp absorption lines in these spectra are telluric H\textsubscript{2}O lines.

Table 1. Chemical composition of QY Sge

Element	Z	log \(\epsilon \)	Na	log \(\epsilon \)	[X/H]	[X/Fe]
C\textsc{i}	6	8.85±0.06	9	8.52	+0.33	+0.59
N\textsc{i}	7	8.83±0.15	4	7.92	+0.91	+1.15
O\textsc{i}	8	9.15	1	8.83	+0.32	+0.59
Na\textsc{i}	11	6.80±0.21	4	6.33	+0.47	+0.73
Mg\textsc{i}	12	7.44±0.28	2	7.58	-0.14	+0.12
Mg\textsc{ii}	12	7.52	1	7.58	-0.06	+0.24
Al\textsc{i}	13	5.93	1	6.48	-0.55	-0.29
Si\textsc{i}	14	7.56±0.20	10	7.55	+0.01	+0.27
Si\textsc{ii}	16	7.47±0.10	3	7.26	+0.21	+0.47
Ca\textsc{i}	20	5.97±0.14	11	6.36	-0.39	-0.13
Ca\textsc{ii}	20	6.18±0.06	2	6.36	-0.18	+0.08
Sc\textsc{ii}	21	2.47±0.22	5	3.13	-0.66	-0.40
Ti\textsc{ii}	22	3.98±0.04	3	4.98	-1.00	-0.74
Cr\textsc{i}	24	5.93±0.25	4	5.68	+0.25	+0.51
Cr\textsc{ii}	24	5.80±0.20	7	5.68	+0.12	+0.38
Fe\textsc{i}	26	7.26±0.22	76	7.50	-0.24	...
Fe\textsc{ii}	26	7.22±0.11	12	7.50	-0.28	...
Ni\textsc{i}	28	6.01±0.12	8	6.25	-0.24	+0.02
Zn\textsc{i}	30	4.46	1	4.63	-0.17	+0.09
Y\textsc{ii}	39	1.03±0.12	4	2.24	-1.21	-0.95
Zr\textsc{ii}	40	1.50	1	2.60	-1.10	-0.84
Ba\textsc{i}	56	2.07	1	2.17	-0.10	+0.16
Ce\textsc{ii}	58	0.61	1	1.61	-1.00	-0.74
Eu\textsc{ii}	63	0.34±0.08	2	0.53	-0.19	+0.07

\(^{a}\) Number of lines

\(^{b}\) Solar system abundance from Grevesse \& Sauval (1998).}

4 AN ABUNDANCE ANALYSIS

Although it is recognized that QY Sge’s photosphere may have an unusual construction, it is useful to search for large abundance anomalies. Quite obviously, the low excitation lines and lines contaminated by overlying emission should be excluded from the abundance analysis. In particular, we excluded resonance lines and lines which appear in emission in 89 Her. A standard LTE model atmosphere-based analysis was undertaken. Models were taken from Kurucz’s grid (http://cfaku5.harvard.edu), and the current version of MOOG (Sneden 1973) was used to predict equivalent widths.

Usual procedures were used to determine the defining parameters: the effective temperature \(T_{\text{eff}} \), the surface gravity \(\log g \), the iron abundance \([\text{Fe/H}]\), and the microturbulence \(\xi \). A collection of unblended Fe\textsc{i} lines was used to determine \(T_{\text{eff}} \) and \(\xi \). Then, a set of Fe\textsc{i} lines with the Fe\textsc{i} lines and the assumption of ionization equilibrium gave \(\log g \). We obtained \(T_{\text{eff}} = 5850 \pm 200 \) K, \(\log g = 0.7 \pm 0.25 \) in cgs units, \(\xi = 4.5 \pm 0.5 \) km s−1, and \([\text{Fe/H}] = -0.4 \pm 0.1 \). These values are quite similar to those found for \gamma\ Cyg by Luck \& Lambert (1981): \(T_{\text{eff}} = 6100 \) K, \(\log g = 0.5, \xi = 3.5 \) km s−1, and \([\text{Fe/H}] = +0.1 \), which is not a surprise given the similarity in the spectra of the two supergiants.

There is no evidence that QY Sge is hydrogen deficient. Paschen lines appear in QY Sge with strengths similar to those of the lines in \gamma\ Cyg. The H\alpha profile has a central absorption strength comparable to that of the photospheric line in \gamma\ Cyg. Furthermore, as noted below, the C\textsc{i} and CH lines return the same carbon abundance.
Derived abundances are given in Table 1 as log \(\epsilon(X) \) on the scale log \(\epsilon(H) = 12 \), [X/H], and [X/Fe]. The tabulated uncertainties are derived from the line-to-line scatter; standard error is smaller by \(\sqrt{N} \). Uncertainties arising from the errors in the model atmosphere parameters are less than about \(\pm 0.2 \) dex. The fact that the absorption lines are broad introduces an above average uncertainty in measurements of the equivalent widths.

Carbon and nitrogen are overabundant. The selection of C I and N I lines avoids very strong lines. As a check on our analysis, we analysed the C I lines in our spectrum of \(\gamma \) Cyg obtaining the same abundance as Luck & Lambert (1981). There are CH lines in the spectrum of QY Sge. Analysis of these lines returned the carbon abundance in Table 1. The oxygen abundance is best determined from the [O I] lines; the 6363 Å line is present and useful despite mild contamination from the telluric emission line. The star’s photosphere is O-rich not C-rich. Sodium’s overabundance is based on four excitation lines. The Na I lines are clearly stronger than in \(\gamma \) Cyg. This is also the case for the high-excitation Si I lines.

For the underabundant elements (Sc, Ti, Y, Zr, and Ce), the lines are obviously weaker than their counterparts in \(\gamma \) Cyg. The selected lines do not appear in emission in 89 Her where emission lines are more numerous. It is striking that the heavy elements have unusual relative abundances: Y, Zr, and Ce represented by weak lines are underabundant by about 1 dex but Ba and Eu show approximately solar abundances. This anomaly we explain below. Although the Ba abundance is derived from the weakest of the observed lines, namely the 5853 Å line with an equivalent width of 288 m\(\AA \), the Ba abundance is quite sensitive to the assumed microturbulence. The Y, Zr, Ce, and Eu abundances are insensitive to the microturbulence.

These abundance anomalies are reminiscent of a pattern exhibited by the warmer RV Tauri variables whose photospheres are depleted in those elements which are the first to condense into grains as gas cools. Giridhar, Lambert, & Gonzalez (2000), who discuss abundances derived for a sample of RV Tauri variables, show that the abundance anomalies are present only in the warmer stars. QY Sge’s \(T_{\text{eff}} \) and log \(g \) place it among the affected variables, as Figure 6 shows. One may suppose that the report of photometric variations on a characteristic time-scale of 50 days (Menzies & Whitelock 1988) is a sign that QY Sge is a RV Tauri variable. The infrared excess of QY Sge is only slightly more extreme than that of the extreme case - AR Pup - included by Giridhar et al. in their discussion of infrared excesses: QY Sge has the infrared colours \(J-K = 2.9 \) and \(K-L = 2.6 \) (Menzies & Whitelock 1988) compared to AR Pup’s \(J-K = 2.6 \) and \(K-L = 2.1 \). Abundance anomalies are more severe for AR Pup than for QY Sge but Giridhar et al. note that these anomalies do not correlate well with the infrared excesses.

Abundance anomalies among the warm RV Tauri variables (Preston types RV B) are fairly well correlated with the condensation temperature \((T_{\text{cond}}) \) computed for equilibrium cooling of a solar composition gas at low pressure; the severest underabundances are found for those elements expected to condense out at the highest temperatures. The temperature \(T_{\text{cond}} \) is that at which 50 % of the element has condensed into solids. We take estimates of \(T_{\text{cond}} \) from Lodders & Fegley (1998) and Wasson (1985). For several elements, the former reference gives the temperature at which a compound starts forming. In such cases, we have referred to Wasson for the temperature at a pressure of \(10^{-4} \) bar at which 50 % of the element is in solid compounds. Of course, QY Sge’s present atmosphere has a decidedly non-solar composition but a key influence on condensation of solids is where the C/O ratio is placed with respect to the critical value C/O = 1. QY Sge has and presumably has had a C/O ratio of less than one, and, therefore, the assumption of a solar mix is likely to be a valid approximation. Figure 7 shows QY Sge’s [X/H] from Table 1 plotted against \(T_{\text{cond}} \). There is a clear tendency for the elements of highest \(T_{\text{cond}} \) to be underabundant relative to those of low \(T_{\text{cond}} \). Carbon and nitrogen should be discounted because they may have been altered in the course of the star’s evolution. Oxygen and sodium may also have been enriched. The initial metallicity of the star as indicated by sulphur and zinc is close to solar. It is notable that, in this case and unlike a majority of the RV B variables, iron and other elements are only slightly, if at all, depleted. The severe depletions are restricted to Sc, Ti, and three heavy elements. The scatter at a fixed \(T_{\text{cond}} \) is similar to that for well observed RV Tauri RV B variables. There is a reasonable correlation between the abundances [X/H] and the depletions measured for the cold interstellar diffuse clouds projected in front of \(\zeta \) Oph. This is shown in Figure 8 where the data for \(\zeta \) Oph are taken from Savage & Sembach (1996).

As noted above, nitrogen should be discounted because it may be enriched in QY Sge. Scandium and the heavy elements are not plotted for lack of estimates for \(\zeta \) Oph. Aluminium probably falls on the general trend:...
Figure 7. The abundance $[X/H]$ versus the condensation temperature T_{cond}. Elements are identified by their chemical symbols. Our estimate is consistent with Morton’s (1985) result for ζ Oph of $[X/H]$ of -3.1 to -3.4. For QY Sge, the heavy elements Y to Eu fit the trend with T_{cond} quite well: Ba and Eu with $T_{\text{cond}} \approx 1200$ K have approximately solar abundances but Y, Zr, and Ce with higher T_{cond} are underabundant. There is no evidence from Figure 7 that QY Sge is enriched in the s-process elements but this too is a common property of the RV Tauri variables.

Given the abundance anomalies, we suppose that, as in the warmer RV Tauri variables, dust condenses in QY Sge’s environs and is expelled by radiation pressure. Not all the remaining gas is dragged away with the grains. Some of the gas is able to return to the star. If this winnowing of dust from gas is maintained for a long period, and if mixing between the photosphere and the envelope is suppressed, the photosphere assumes the composition of the returning gas. QY Sge which certainly now maintains a nearby reservoir of dust appears to have a photosphere reduced in condensible elements. At the same time, the photosphere has approximately normal abundances of elements like Si, Mg, and Fe which should be principal constituents of the circumstellar dust. From Figure 7 we infer a dust temperature of about 1400 K for the regions of effective winnowing. This temperature is considerably hotter than the 600 K inferred from the infrared excess so that the effective regions are probably interior to the exterior of the thick dusty layers obscuring our direct view of the star.

Figure 8. The abundance $[X/H]$ for QY Sge versus $[X/H]$ for the cold interstellar diffuse gas in front of ζ Oph. Elements are identified by their chemical symbols.

Figure 9. Sketch of a possible geometry for QY Sge and its circumstellar environment. Starlight reaches the observer after scattering off the inner edge (region a) of the dusty rotating torus. A bipolar wind off the star is the site for the formation of the sharp emission lines near the star (for example, the path length a to b) and broad emission lines farther from the star (region c).

5 THE CIRCUMSTELLAR ENVIRONMENT

Our observations provide several novel results to complement those presented by Menzies & Whitelock (1988) from low resolution spectra and photometry. Their data led them to propose a model of ‘an extremely non-uniform circumstellar shell’ heated by starlight. In extending this idea, we must account for the characteristics of the three distinct spectroscopic components:
○ The unusually broad photospheric absorption lines. The breadth is presumed to arise from Doppler shifts imposed by scattering off moving dust grains.

○ The sharp emission lines and the absorption lines of the pumping resonance lines. The fact that absorption and emission lines occur at the same radial velocity would suggest that the emitting and absorbing volumes are coincident and along the line of sight from the scattering surface to the observer.

○ The broad emission in the resonance lines of Na D, KI, Ca I and II. Lack of polarization of the broad Na D emission lines implies that the emitted photons are not scattered from the surface contributing the photospheric spectrum. Trammell et al. (1994) in their polarization measurements did not resolve the Na D emission into its broad and sharp components, but we assume that because the lion’s share of the equivalent width was most probably contributed by the broad component that it is unpolarized; the sharp component may also be unpolarized. We assume too that the weaker broad lines are also unpolarized.

Adapting a geometry now recognized as not uncommon for the outer regions of post-AGB stars and planetary nebulae, we place the bulk of the dust in an equatorial torus with its inner edge close to the star, a requirement set by the derived black body dust temperature. Along the line of sight to the star, the dust is so very optically thick that directly transmitted photospheric light contributes a negligible fraction to the observed optical spectrum. If the line of sight is inclined slightly to the plane of the torus, the rear of the torus’ inner edge will be visible but not the star (Figure 9). In our picture, there is bipolar flow of gas from the star. It seems likely that the present wind from the 6000 K star contains little or no dust. The dusty torus may be leftover from the star’s earlier life as a mass-losing AGB star. There is evidence that even more evolved (i.e., hotter) post-AGB stars with strong infrared excesses are members of binary systems, e.g., 89 Her (Walters et al. 1993), and HR 4049 (Bakker et al. 1998). The geometry recalls that proposed for VY CMa, a mass-losing M supergiant, by Herbig (1969, 1970).

Qualitatively, the origins of the three distinct spectroscopic features may be placed as follows:

○ The rear of the inner edge of the dusty torus is assumed primarily responsible for scattering the photospheric spectrum toward the observer. On the assumption that the dust is approximately in Keplerian motion, the line broadening will result from the Doppler shifts imposed by scattering over an extended part of the inner edge. The net Doppler shift should be close to zero.

○ Gas near the star between the observer and the torus’ inner edge is exposed to starlight. This gas should be at a low density such that most atoms and ions will be in their ground states. These atoms may be excited to give the sharp emission lines by photons received directly from the star or indirectly by photons scattered off the torus. Presumably the former are more numerous. In this case, the profile of the sharp emission line is set by the wind velocity (assumed radial), the opening angle of the bipolar flow, and the angle of inclination of the torus to the line of sight. A resonance line seen in absorption in the spectrum of the scattered light from the torus’ inner edge will show the same spread in Doppler shifts as a sharp emission line. To within the measurement errors, the sharp emission and their exciting absorption lines do have the same width. Additional absorption in resonance lines may occur in the path between the star and the point of scattering off the torus. This absorption component will be Doppler-shifted to the blue relative to the scattered stellar light, and the accompanying emission, if visible to the observer, will be red-shifted.

○ Broad resonance emission lines are assigned to resonance fluorescence by stellar photons interacting with atoms in the bipolar flow. If the torus is of large radius, the emission from the receding half of the bipolar flow will be occulted, and the observed emission line will show a small net blue-shift with a magnitude dependent on the wind velocity, and the tilt between the axis of the bipolar flow and the line of sight. According to Figure 9, an emission line’s width will depend on the same factors; emitting gas far from the torus will have line of sight velocities from approximately $-v_w \cos \theta$ to $+v_w \cos \theta$, where v_w is the velocity of the gas at that radial distance from the star, and 29 is the angle subtended at the star by the inner edge of the torus. The observed line width implies a wind velocity of about 100 - 150 km s$^{-1}$. Since the torus is here considered to be the polarizing source for the scattered photospheric spectrum, the Na D and other broad emission lines will be polarized differently and probably to a significantly smaller degree.

The model makes qualitative predictions about velocity shifts relative to the systemic stellar velocity. At this time, too few observations of the stellar absorption lines are available to determine the systemic velocity. Measured velocities are also affected by possible changes in the net velocity imposed by the scattering surface. It should be noted that the model does not explain readily why the emission lines are either sharp or broad. This is particularly an issue for the broad lines which are obviously accompanied by a sharp line (Figure 3). Our model supposes both lines are formed in the bipolar flow. It seems necessary to invoke a sharp transition from a slow to a high velocity wind but this should occur without a large change in physical conditions of the gas; the sharp lines are formed below the transition point and the broad lines above.

6 CONCLUDING REMARKS

QY Sge is here identified as descended from a luminous red giant on either the higher reaches of the red giant branch (RGB) prior to helium ignition or the AGB. Assuming a mass of about 1M$_{\odot}$, QY Sge’s T$_{eff}$ and log g correspond to a luminosity $L \approx 10^4 L_{\odot}$. This is achieved by a star near the tip of the RGB or at a quite advanced along the AGB (Figure 6). Carbon enrichment of the surface following the expected depletion resulting from the first dredge-up early on the RGB could possibly have occurred during the He-core flash at the tip of the RGB but more likely is a result of the third dredge-up early on the AGB; the star evolved away from the AGB before the s-process manufactured heavy elements in large quantities in the He-shell.

QY Sge is likely quite distant from the Sun. Menzies & Whitelock used the apparent bolometric magnitude from the flux curve in combination with assumed absolute bolometric magnitudes to arrive at a distance. For example, adopting
their $m_{bol} \sim 8.5$ and including a small bolometric correction, our luminosity estimate puts the distance to QY Sge at about 3 kpc. This is an upper limit because the dust cannot block all of the stellar radiation, and, furthermore, the optical fluxes depend on the efficiency of the scattering of light by the less dusty regions. Interstellar absorption is small. Menzies & Whitelock estimated $A_V \sim 1.2$ mag from the B - V and the intrinsic colours of a G0I star, and noted that reddening maps suggest $A_V \sim 2$ for distances greater than about 600 pc. An independent estimate of reddening is possible from our detection of the diffuse interstellar band at 6284 Å. The band’s equivalent width of 461 mA with a calibration offered by Somerville (1995) gives $E(B - V) \simeq 0.40$, or $A_V \simeq 1.2$. Circumstellar absorption for the direct light from the star is substantial; we estimate about 6 magnitudes for the visual from comparison of the infrared (L,J,H) colours with the colours of unreddened G supergiants.

QY Sge, as noted above, shares T eff, log g, and abundance anomalies with the RV Tauri variables. This association suggests that stars may commonly depart the AGB due to severe mass loss and that QY Sge is not the result of freak circumstances. A link with the RV Tauri variables recalls the suggestion that all RV Tauri variables belong to binary systems with substantial circumbinary dusty disks (Van Winckel et al. 1999). In addition, QY Sge has many similarities with 89 Her, a spectroscopic binary with a very low mass companion to the post-AGB primary: similar Hα profiles, similar sharp low excitation emission lines of neutral metals, and a considerable infrared excess (Walters et al. 1993). There is one prominent difference between the pair: 89 Her shows a blue-shifted high velocity absorption at Na D in place of QY Sge’s broad emission lines, but, according to our model, QY Sge would show such absorption if seen pole-on.

Further photometric and spectroscopic observations are desirable to investigate whether QY Sge is a RV Tauri variable and/or a spectroscopic binary. At present, we cannot guess the systemic velocity. Higher quality spectra would be useful in order to effect line profile comparisons of emission and absorption lines for the low excitation transitions. Inflow of gas onto the star may be occurring in order to sustain the abundance anomalies (Figure 7). Is gas from the inner edge of the torus falling onto the star? If so, high-resolution high S/N spectra around key resonance lines may reveal the infalling gas in the spectrum of the light scattered off the torus’ inner edge. This would be the first detection of such a gas stream in stars affected by windowing of gas from dust.

Our attention was drawn to QY Sge by the report of broad Na D emission lines. Very few stars show such lines in their spectra. Apart from the R CrB stars observed in deep minimum, QY Sge may have very few cousins; we noted VY CMa and Lloyd Evans (1997) mentions IRAS 13258-8103 as having strong Na D emission. The geometry of the circumstellar material suggested for QY Sge may be a common one. Menzies & Whitelock point out that, if viewed from another angle, QY Sge would be observed as a normal supergiant with a relatively weak infrared excess. ‘Perspective effects’ give QY Sge its prominent infrared excess and strong broad emission lines. This geometry would in principle account for the lines in the R CrB stars but they also show high-excitation Hα1 (and other) lines.

7 ACKNOWLEDGEMENTS

We thank Gajendra Pandey, Eswar Reddy, and David Yong for observing QY Sge at our request, Sunetra Giridhar for providing Figure 6, and Melody Lambert for designing Figure 9. This research has been supported in part by the US National Science Foundation (grant AST 9618414).

REFERENCES

Bakker, E.J., Lambert, D.L., Van Winckel, H., McCarthy, J.K., Waclenska, C., & Gonzalez, G. 1998, A&A, 336, 263
Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., Nasi, E. 1994, A&AS, 106, 275
Giridhar, S., Lambert, D.L., & Gonzalez, G. 2000, ApJ, 531, 521
Gledhill, T.M., Chrysostomou, A., Hough, J.H., & Yates, J.A. 2001, MNRAS, 322, 321
Grevesse, N., & Sauval, A.J. 1998, Space Sci. Rev., 85, 161
Herbig, G.H. 1969, Mém. Soc. Roy. Liège, XIX, 13
Herbig, G.H. 1970, ApJ, 162, 557
Lodders, K., & Fegley, B. 1998, in The Planetary Scientists’ Companion (New York: Oxford Univ. Press)
Lloyd Evans, T. 1997, ApSS, 251, 239
Luck, R.E., & Lambert, D.L. 1981, ApJ, 245, 1018
McCarthy, J.K., Sandiford, B.A., Boyd, D., & Booth, J. 1993, PASP, 105, 881
Menzies, J.W., & Whitelock, P.A. 1988, MNRAS, 233, 697
Morton, D.C. 1985, ApJ, 197, 85
Rao, N.K., Lambert, D.L., Adams, M.T., Doss, D.R., Gonzalez, G., Hatzes, A.P., James, C.R., Johns-Krull, C.M., Luck, R.E., Pandey, G., Reinsch, K., Tomkin, J., & Woof, V. M. 1999, MNRAS, 310, 717
Savage, B.D., & Sembach, K.R. 1996, ARAA, 34, 279
Sneden, C. 1973, Ph.D. Thesis, University of Texas at Austin
Somerville, W.B. 1995, in The Diffuse Interstellar Bands, eds. A.G.G.M. Tielens & T.P.Snow, (Dordrecht:Kluwer), 83 Symposium
Trammell, S.R., Dinerstein, H.L., & Goodrich, R.W. 1994, AJ, 108, 984
Tull R.G., MacQueen P.J., Sneden C., & Lambert D.L., 1995, PASP, 107, 251
Van Winckel, H., Waclenska, C., Fernie, J.D., & Waters, L.B.F.M. 1999, A&A, 343, 202
Walters, L.B.F.M., Waclenska, C., Mayor, M., & Trams, N.R. 1993, A&A, 269, 242
Wasson, J.T., 1985, Meteorites, (Berlin: Springer-Verlag)