On Pre-γ-I-Open Sets In Ideal Topological Spaces

HARIWAN ZIKRI IBRAHIM
Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan Region-Iraq

(Accepted for publication: June 9, 2013)

ABSTRACT
In this paper, the author introduce and study the notion of pre-γ-I-open sets in ideal topological space.

Keywords: γ-open, pre-γ-I-open sets.

1. INTRODUCTION
In 1992, Jankovic and Hamlett introduced the notion of I-open sets in topological spaces via ideals. Dontchevich 1999 introduced pre-I-open sets, Kasaharain 1979 defined an operation α on a topological space to introduce α-closed graphs. Following the same technique, Ogata in 1991 defined an operation γ on a topological space and introduced γ-open sets. In this paper, some relationships of pre-γ-I-open, pre-I-open, preopen, pre-γ-open, γ-p-open, γ-preopen, I-open, δ-open, R-I-open, α-I-open, semi-I-open, b-I-open and weakly I-local closed sets in ideal topological spaces are discussed.

2. PRELIMINARIES
Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. Let (X, τ) be a topological space and A a subset of X. A subset A of a space (X, τ) is said to be regular open [N. V. Velicko, 1968] if A is the union of all regular open sets containing A. The closure of A and the interior of A are called $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. Let A be the value of $\text{Int}(A)$ and defined to be the set of all γ-closed sets containing A. A topological space (X, τ) with an operation γ on τ is said to be γ-regular [H. Ogata, 1991] if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)$ contained in V. It is also to be noted that $\tau = \tau_\gamma$ if and only if X is a γ-regular space [H. Ogata, 1991].

An ideal is defined as a nonempty collection I of subsets X satisfying the following two conditions:
1. If $A \in I$ and $B \subseteq A$, then $B \in I$.
2. If $A \in I$ and $B \in I$, then $A \cup B \in I$.

For an ideal I on (X, τ), (X, τ, I) is called an ideal topological space or simply an ideal space. Given a topological space (X, τ) with an ideal I on X and if $P(X)$ is the set of all subsets of X, a set operator $(.)^*:P(X) \rightarrow P(X)$ called a local function [E. Hayashi, 1964], [K. Kuratowski, 1966] of A with respect to τ and I is defined as follows for a subset A of X, $A^*(I, \tau) = \{x \in X: U \cap A \in I \text{ for each neighborhood } U \text{ of } x\}$. A Kuratowski closure operator $\text{Cl}(\gamma)$ for a topology $\tau_\gamma(I, \tau)$, called the γ-topology, finer than τ, is defined by $\text{Cl}(\gamma) = AU A^*(I, \tau)$ [D. Jankovic and T. R. Hamlett, 1990]. We will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau_\gamma(I, \tau)$.

Recall that $A \subseteq (X, \tau, I)$ is called γ-dense-in-itself [E. Hayashi, 1964] (resp. τ^*-closed [D. Jankovic and T. R. Hamlett, 1990] and γ-perfect [E. Hayashi, 1964]) if $A \subseteq A^*$ (resp. $A \subseteq A^*$ and $A = A^*$).

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be
1. preopen [A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, 1982] if $A \subseteq \text{Int}(\tau_\gamma(I, \tau))$.
2. pre-γ-open [H. Z. Ibrahim, 2012] if $A \subseteq \tau_\gamma(I, \tau) \subseteq \text{Int}(\tau_\gamma(I, \tau))$.
3. γ-preopen [G. S. S. Krishnan and K. Balachandran, 2006] if $A \subseteq \tau_\gamma(I, \tau) \subseteq \text{Int}(\gamma(I, \tau) \subseteq \text{Cl}(I))$.
4. γ-p-open [A. B. Khalaf and H. Z. Ibrahim, 2011] if $A \subseteq \text{Int}(\tau_\gamma(I, \tau) \subseteq \text{Cl}(I))$.
5. I-open [D. Jankovic and T. R. Hamlett, 1992] if $A \subseteq \text{Int}(A^*)$.

349
6. R-I-open [S. Yuksel, A. Acikgoz and T. Noiri, 2005] if $A = \text{Int}(\text{Cl}^*(A))$.
7. pre-I-open [J. Dontchev, 1999] if $A \subseteq \text{Int}(\text{Cl}^*(A))$.
8. semi-I-open [E. Hatir and T. Noiri, 2002] if $A \subseteq \text{Cl}^*(\text{Int}(A))$.
9. α-I-open [E. Hatir and T. Noiri, 2002] if $A \subseteq \text{Int}(\text{Cl}^*(\text{Int}(A)))$.
10. b-I-open [A. C. Guler and G. Aslim, 2005] if $A \subseteq \text{Int}(\text{Cl}^*(A)) \cup \text{Cl}^*(\text{Int}(A))$.
11. Weakly I-local closed [A. Keskin, T. Noiri and S. Yuksel, 2004] if $A = U \cap K$, where U is an open set and K is a $*$-closed set in X.
12. Locally closed [N. Bourbaki, 1966] if $A = U \cap K$, where U is an open set and K is a closed set in X.

Definition 2.2. [S. Yuksel, A. Acikgoz and T. Noiri, 2005] A point x in an ideal space (X, τ, I) is called a δ_I-cluster point of A if $\text{Int}(\text{Cl}^*(U)) \cap A \neq \emptyset$ for each neighborhood U of x. The set of all δ_I-cluster points of A is called the δ_I-closure of A and will be denoted by $\text{Cl}^I(A)$. A set is said to be δ_I-closed if $\text{Cl}^I(A) = A$. The complement of a δ_I-closed set is called a δ_I-open set.

Lemma 2.3. [E. G. Yang, 2008] A subset V of an ideal space (X, τ, I) is a weakly I-local closed set if and only if there exists $K \in \tau$ such that $V = K \cap \text{Cl}^*(V)$.

Definition 2.4. [E. Ekici and T. Noiri, 2009] An ideal topological space (X, τ, I) is said to be \ast-extremally disconnected if the \ast-closure of every open subset V of X is open.

Theorem 2.5. [E. Ekici and T. Noiri, 2009] For an ideal topological space (X, τ, I), the following properties are equivalent:
1. X is \ast-extremally disconnected.
2. $\text{Cl}^I(\text{Int}(V)) \subseteq \text{Cl}^I(\text{Cl}^*(V))$ for every subset V of X.

Lemma 2.6. [D. Jankovic and T. R. Hamlett, 1990] Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then
1. If $A \subseteq B$, then $A^* \subseteq B^*$.
2. If $U \in \tau$, then $U \cap A^* \subseteq (U \cap A)^*$.
3. A^* is closed in (X, τ).

Recall that (X, τ) is called submaximal if every dense subset of X is open.

Lemma 2.7. [R. A. Mahmoud and D. A. Rose, 1993] If (X, τ) is submaximal, then $P(O)(X, \tau) = \tau$.

Corollary 2.8. [J. Dontchev, 1999] If (X, τ) is submaximal, then for any ideal I on X, $P(O)(X) = \tau$.

Where $P(O)(X)$ is the family of all pre-I-open subsets of (X, τ, I).

Proposition 2.9. [H. Ogata, 1991] Let $\gamma : \tau \rightarrow \rho(X)$ be a regular operation on τ. If A and B are γ-open, then $A \cap B$ is γ-open.

3. Pre-γ-I-Open Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, I) with an operation γ on τ is called pre-γ-I-open if $A \subseteq \tau(I, \text{Int}(\text{Cl}^*(A)))$.

We denote by $P(I)(X, \tau, I)$ the family of all pre-γ-I-open subsets of (X, τ, I) or simply write $P(I)(X, \tau)$ or $P(I)(X)$ when there is no chance for confusion with the ideal.

Theorem 3.2. Every γ-open set is pre-γ-I-open.

Proof. Let (X, τ, I) be an ideal topological space and A a γ-open set of X. Then $A = \tau(I, \text{Int}(\text{Int}(\tau A))) = \tau(I, \text{Int}(\text{Cl}^*(A)))$.

The converse of the above theorem is not true in general as shown in the following example.

Example 3.3. Consider $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a, c\}\}$ and $I = \{\{a\}, \{b\}\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then $A = \{a, b\}$ is a pre-γ-I-open set which is not γ-open.

Theorem 3.4. Every pre-γ-I-open set is pre-γ-open.

Proof. Let (X, τ, I) be an ideal topological space and A a pre-γ-I-open set of X. Then, $A \subseteq \tau(I, \text{Int}(\text{Cl}^*(A))) \subseteq \tau(I, \text{Int}(\text{Cl}^*(A)))$.

The converse of the above theorem is not true in general as shown in the following example.

Example 3.5. Consider $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a, c\}\}$ and $I = \{\{a\}, \{c\}\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Set $A = \{c\}$, since $A^* = \emptyset$ and $\text{Cl}^*(A) = A$, then A is a pre-γ-I-open set which is not pre-γ-I-open.

Theorem 3.6. Every pre-γ-I-open set is pre-γ-open.

Proof. Let (X, τ, I) be an ideal topological space and A a pre-γ-I-open set of X. Then, $A \subseteq \tau(I, \text{Int}(\text{Cl}^*(A))) \subseteq \tau(I, \text{Int}(\text{Cl}^*(A)))$.

The converse of the above theorem is not true in general as shown in the following example.

Example 3.7. Consider $X = \{a, b, c\}$ with $\tau = \{\emptyset, X, \{a, c\}\}$ and $I = \{\{a\}, \{c\}\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then $A = \{a\}$ is a pre-γ-I-open set which is not pre-γ-I-open.
Example 3.9. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a, b\}, \{a\}\}$ and $I = \{\phi, \{b\}\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then $A = \{b, c\}$ is a γ-preopen set which is not pre-γ-I-open.

Theorem 3.10. Every pre-γ-I-open set is γ-p-open.

Proof. Let (X, τ, I) be an ideal topological space and A a pre-γ-I-open set of X. Then, $A \subseteq \tau_\gamma$-Int$(Cl^*(A)) \subseteq \tau_\gamma$-Int$(Cl(A)) \subseteq Int(\tau_\gamma$-Int$(Cl(A)))$.

The converse of the above theorem is not true in general as shown in the following example.

Example 3.11. Consider $X = \{a, b, c, d\}$ with $\tau = P(X)$ and $I = \{\phi\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then $A = \{c, d\}$ is a γ-p-open set which is not pre-γ-I-open.

Remark 3.12. We have the following implications but none of these implications are reversible.

The intersection of two pre-γ-I-open sets need not be pre-γ-I-open as shown in the following example.

Example 3.13. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a, c\}\}$ and $I = \{\phi, \{b\}\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Set $A = \{a, b\}$ and $B = \{b, c\}$. Since $A^* = B^* = X$, then both A and B are pre-γ-I-open. But on the other hand $A \cap B = \{b\} \not\subseteq \gamma P_\gamma IO(X, \tau)$.

Theorem 3.14. Let (X, τ, I) be an ideal topological space and $\{A_\alpha : \alpha \in \Delta\}$ a family of subsets of X, where Δ is an arbitrary index set. Then,

1. If $A_\alpha \in \gamma P_\gamma IO(X, \tau)$ for all $\alpha \in \Delta$, then $U_{\alpha \in \Delta} A_\alpha \in \gamma P_\gamma IO(X, \tau)$.
2. If $A \in \gamma P_\gamma IO(X, \tau)$ and $U \in \tau_\gamma$, then $A \cap U \in \gamma P_\gamma IO(X, \tau)$. Where γ is a regular operation on τ.

Proof. 1. Since $\{A_\alpha : \alpha \in \Delta\} \subseteq \gamma P_\gamma IO(X, \tau)$, then $A_\alpha \subseteq \tau_\gamma$-Int$(Cl^*(A_\alpha))$ for each $\alpha \in \Delta$. Then we have $U_{\alpha \in \Delta} A_\alpha \subseteq U_{\alpha \in \Delta} \tau_\gamma$-Int$(Cl^*(A_\alpha)) \subseteq \tau_\gamma$-Int$(U_{\alpha \in \Delta} Cl^*(A_\alpha)) \subseteq \tau_\gamma$-Int$(Cl^*(U_{\alpha \in \Delta} A_\alpha))$. This shows that $U_{\alpha \in \Delta} A_\alpha \in \gamma P_\gamma IO(X, \tau)$.

2. By the assumption, $A \subseteq \tau_\gamma$-Int$(Cl^*(A))$ and $U = \tau_\gamma$-Int(U). Thus using Lemma 2.6, we have $A \cap U \subseteq \tau_\gamma$-Int$(Cl^*(A)) \cap \tau_\gamma$-$Int(U) = \tau_\gamma$-$Int(Cl^*(U)) \cap (A \cap U)$ $= \tau_\gamma$-$Int((A \cup (A \cap U)) \subseteq \tau_\gamma$-$Int(Cl^*(A) \cup (A \cap U)) \subseteq \tau_\gamma$-$Int(Cl^*(A \cap U))$. This shows that $A \cap U \in \gamma P_\gamma IO(X, \tau)$.

Proposition 3.15. For an ideal topological space (X, τ, I) with an operation γ on τ and $A \subseteq X$ we have:

1. If $I = \{\phi\}$, then A is pre-γ-I-open if and only if A is pre-γ-open.
2. If $I = P(X)$, then $P_\gamma IO(X) = \tau_\gamma$.

Proof. 1. By Theorem 3.4, we need to show only sufficiency. Let $I = \{\phi\}$, then $A^* = Cl(A)$ for every subset A of X. Let A be pre-γ-open, then $A \subseteq \tau_\gamma$-$Int(Cl(A)) = \tau_\gamma$-$Int(A^*) \subseteq \tau_\gamma$-$Int(A \cup A^*) = \tau_\gamma$-$Int(Cl^*(A))$ and hence A is pre-γ-I-open.2. Let $I = P(X)$, then $A^* = \phi$ for every subset A of X. Let A be any pre-γ-I-open set, then $A \subseteq \tau_\gamma$-$Int(Cl^*(A)) = \tau_\gamma$-$Int(A \cup A^*) = \tau_\gamma$-$Int(A \cup \phi) = \tau_\gamma$-$Int(A)$ and hence A is γ-open. By Theorem 3.2, we obtain $P_\gamma IO(X) = \tau_\gamma$.

Remark 3.16. 1. If a subset A of a γ-regular space (X, I, τ) is open then A is pre-γ-I-open.
2. If a subset A of a submaximal space (X, I, τ) is pre-γ-I-open then A is open.
3. If (X, I, τ) is γ-regular space and $I = P(X)$, then A is pre-γ-I-open if and only if A is open.

Remark 3.17. Let (X, I, τ) be a γ-regular space and $I = P(X)$. Then

1. If A is R-I-open then A is pre-γ-I-open.
2. If \(A \) is \(\delta \)-open then \(A \) is pre-\(\gamma \)-I-open.
3. If \(A \) is regular open then \(A \) is pre-\(\gamma \)-I-open.
4. If \(A \) is \(\delta \)-open then \(A \) is pre-\(\gamma \)-I-open.

Remark 3.18. For an ideal topological space \((X, \tau, I)\) with an operation \(\gamma \) on \(\tau \) and \(I = P(X) \) we have:
1. If \(A \) is pre-\(\gamma \)-I-open then \(A \) is open.
2. If \(A \) is pre-\(\gamma \)-I-open then \(A \) is \(\alpha \)-I-open.
3. If \(A \) is pre-\(\gamma \)-I-open then \(A \) is semi-I-open.

Proposition 3.19. Let \((X, \tau, I)\) be an ideal topological space and \(A\) a subset of \(X\). If \(A \) is closed and pre-\(\gamma \)-I-open, then \(A \) is R-I-open.

Proof. Let \(A \) be pre-\(\gamma \)-I-open, then we have \(A \subseteq \tau_{\gamma} (\mathit{Cl}(A)) \subseteq \mathit{Cl}(A) \subseteq \mathit{Int}(A) \), hence \(A \) is I-open.

Remark 3.20. Let \((X, \tau, I)\) be a \(\gamma \)-regular space. If \(A \subseteq (X, \tau, I) \) is R-I-open, then \(A \) is pre-\(\gamma \)-I-open.

Remark 3.21. If \((X, \tau, I)\) is \(\gamma \)-regular space and \(I = \{ \phi \} \), then
1. \(A \) is pre-\(\gamma \)-I-open if and only if \(A \) is pre-open.
2. \(A \) is pre-\(\gamma \)-I-open if and only if \(A \) is \(\gamma \)-pre-open.
3. \(A \) is \(\gamma \)-pre-open if and only if \(A \) is p-pre-open.

Proposition 3.22. Let \((X, \tau, I)\) be an ideal topological space and \(A\) a subset of \(X\). If \(I = \{ \phi \} \) and \(A \) is pre-\(\gamma \)-I-open, then \(A \) is I-open.

Proof. Let \(A \) be pre-\(\gamma \)-I-open, then we have \(A \subseteq \tau_{\gamma} (\mathit{Cl}(A)) \subseteq \mathit{Cl}(A) \subseteq \mathit{Int}(A) \), hence \(A \) is I-open.

Remark 3.23. If \((X, \tau, I)\) is a \(\gamma \)-regular space and \(I = \delta \), then \(A \) is \(\delta \)-open if \(A \) is pre-\(\gamma \)-I-open.

Remark 3.24. If \((X, \tau, I)\) is \(\gamma \)-regular then \(A \) is pre-\(\gamma \)-I-open if and only if \(A \) is \(\gamma \)-pre-open.

Proposition 3.25. If \(A \subseteq (X, \tau, I) \) is \(* \)-perfect and pre-\(\gamma \)-I-open, then \(A \) is \(\gamma \)-open.

Proof. Let \(A \) be \(* \)-perfect, then \(A = A^* \) and \(\mathit{Cl}(A) = \tau_{\gamma} (\mathit{Int}(A)) \subseteq \mathit{Int}(A) \), hence \(A \) is \(\gamma \)-open.

Remark 3.26. If \(A \subseteq (X, \tau, I) \) is \(* \)-perfect and pre-\(\gamma \)-I-open, then \(A \) is open.

Proposition 3.27. If \(A \) is \(* \)-closed in \((X, \tau, I)\) and pre-\(\gamma \)-I-open, then \(A \) is \(\gamma \)-open.

Proof. Let \(A \) be pre-\(\gamma \)-I-open, then \(A \subseteq \mathit{Cl}(A) \subseteq \tau_{\gamma} (\mathit{Int}(A)) \subseteq \mathit{Int}(A) \), hence \(A \) is \(\gamma \)-open.

Remark 3.28. If \(A \) is \(* \)-closed in \((X, \tau, I)\) and pre-\(\gamma \)-I-open, then \(A \) is open.

Proposition 3.29. If \(A \) is \(* \)-perfect in \((X, \tau, I)\) and pre-\(\gamma \)-I-open, then \(A \) is I-open.

Proof. Let \(A \) be pre-\(\gamma \)-I-open, then \(A \subseteq \mathit{Cl}(A) \subseteq \tau_{\gamma} (\mathit{Int}(A)) \subseteq \mathit{Int}(A) \), hence \(A \) is I-open.

Proposition 3.30. If \(A \) is \(* \)-dense-in-itself in \((X, \tau, I)\) and pre-\(\gamma \)-I-open, then \(A \) is I-open.

Proof. Let \(A \) be pre-\(\gamma \)-I-open, then \(A \subseteq \mathit{Cl}(A) \subseteq \tau_{\gamma} (\mathit{Int}(A)) \subseteq \mathit{Int}(A) \) and hence \(A \) is I-open.

Proposition 3.33. If \(A \) is \(* \)-extremally disconnected \(\gamma \)-regular space \((X, \tau, I)\) is semi-I-open then \(A \) is pre-\(\gamma \)-I-open.

Proof. Let \(A \) be semi-I-open, then \(A \subseteq (\mathit{Cl}(A)) = \tau_{\gamma} (\mathit{Int}(A)) \subseteq \mathit{Int}(A) \), hence \(A \) is pre-\(\gamma \)-I-open.

Proposition 3.34. If \(A \) is \(* \)-extremally disconnected \(\gamma \)-regular space \((X, \tau, I)\) is b-I-open and \(I = P(X) \), then \(A \) is pre-\(\gamma \)-I-open.

Proof. Let \(A \) be b-I-open, then \(A \subseteq (\mathit{Cl}(A)) = \tau_{\gamma} (\mathit{Int}(A)) \subseteq \mathit{Int}(A) \subseteq \mathit{Cl}(A) \subseteq (\mathit{Cl}(A)) \subseteq \mathit{Int}(A) \), hence \(A \) is pre-\(\gamma \)-I-open.

Theorem 3.35. Let \((X, \tau, I)\) be an \(* \)-extremally disconnected \(\gamma \)-regular ideal space and \(V \subseteq X \), the following properties are equivalent:
1. \(V \) is a \(\gamma \)-open set.
2. \(V \) is \(\alpha \)-I-open and weakly \(I \)-local closed.
3. \(V \) is pre-\(\gamma \)-I-open and weakly \(I \)-local closed.
4. \(V \) is pre-\(\gamma \)-I-open and weakly \(I \)-local closed.
5. \(V \) is semi-I-open and weakly \(I \)-local closed.
6. \(V \) is b-I-open and weakly \(I \)-local closed.

Proof. (1) \(\Rightarrow \) (2): It follows from the fact that every \(\gamma \)-open set is open and every open set is \(\alpha \)-I-open and weakly \(I \)-local closed.

(2) \(\Rightarrow \) (3): It follows from Proposition 3.31.

(3) \(\Rightarrow \) (4), (4) \(\Rightarrow \) (5) and (5) \(\Rightarrow \) (6): Obvious.

(6) \(\Rightarrow \) (1): Suppose that \(V \) is a b-I-open set and a weakly \(I \)-local closed set in \(X \). It follows that \(V \subseteq (\mathit{Cl}(V)) \subseteq \mathit{Int}(V) \), since \(V \) is a weakly \(I \)-local closed set, then there exists an open set \(G \) such that \(V = G \cap \mathit{Cl}(V) \). It follows from Theorem 2.5 that \(V \subseteq (\mathit{Cl}(V)) \subseteq (\mathit{Int}(V)) \subseteq (G \cap \mathit{Cl}(V)) \subseteq (\mathit{Int}(V)) \subseteq (G \cap \mathit{Cl}(V)) \subseteq (\mathit{Int}(V)) \subseteq (V) \).

Thus, \(V \subseteq (\mathit{Int}(V)) \) and hence \(V \) is a \(\gamma \)-open set in \(X \).
Theorem 3.35. Let \((X, I, \tau)\) be a \(*\)-extremely disconnected \(\gamma\)-regular ideal space and \(V \subseteq X\), the following properties are equivalent:

1. \(V\) is a \(\gamma\)-open set.
2. \(V\) is \(\alpha-I\)-open and a locally closed set.
3. \(V\) is \(\pre\gamma-I\)-open and a locally closed set.
4. \(V\) is \(\pre\gamma\)-I-open and a locally closed set.
5. \(V\) is semi-\(I\)-open and a locally closed set.
6. \(V\) is \(b-I\)-open and a locally closed set.

Proof. By Theorem 3.34, it follows from the fact that every open set is locally closed and every locally closed set is weakly \(I\)-local closed.

Definition 3.36. A subset \(F\) of a space \((X, \tau, I)\) is said to be \(\pre\gamma-I\)-closed if its complement is \(\pre\gamma-I\)-open.

Theorem 3.37. A subset \(A\) of a space \((X, \tau, I)\) is \(\pre\gamma-I\)-closed if and only if \(\tau_\gamma Cl(\tau_\gamma Int(A)) \subseteq A\).

Proof. Let \(A\) be a \(\pre\gamma-I\)-closed set of \((X, \tau, I)\). Then \(X-A\) is \(\pre\gamma-I\)-open and hence \(X-A \subseteq \tau_\gamma Int(Cl(\tau_\gamma Int(A))) = X-\tau_\gamma Cl(\tau_\gamma Int(A))\). Therefore, we have \(\tau_\gamma Cl(\tau_\gamma Int(A)) \subseteq A\).

Conversely, let \(\tau_\gamma Cl(\tau_\gamma Int(A)) \subseteq A\). Then \(X-A \subseteq \tau_\gamma Int(Cl(\tau_\gamma Int(A))) \subseteq X\) is \(\pre\gamma-I\)-open. Therefore, \(A\) is \(\pre\gamma-I\)-closed.

Theorem 3.38. If a subset \(A\) of a space \((X, \tau, I)\) is \(\pre\gamma-I\)-closed, then \(Cl(\tau_\gamma Int(A)) \subseteq A\).

Proof. Let \(A\) be any \(\pre\gamma-I\)-closed set of \((X, \tau, I)\). Since \(\tau_\gamma(I)\) is finer than \(\tau\) and \(\tau\) is finer than \(\tau_\gamma\), we have \(Cl(\tau_\gamma Int(A)) \subseteq \tau_\gamma Cl(\tau_\gamma Int(A)) \subseteq \tau_\gamma Cl(\tau_\gamma Int(A)) \subseteq \tau_\gamma Cl(\tau_\gamma Int(A)) \subseteq A\). Therefore, by Theorem 3.37, we obtain \(Cl(\tau_\gamma Int(A)) \subseteq A\).

REFERENCES

A. B. Khalaf and H. Z. Ibrahim, Some applications of \(\gamma\)-P-open sets in topological spaces, *Indian J. Pure Appl. Math.*, 5 (2011), 81-96.

A. C. Guler and G. Aslim, \(b-I\)-open sets and decomposition of continuity via idealization, *Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb.*, 22 (2005), 27-32.

A. Keskin, T. Noiri and S. Yuksel, Decompositions of \(I\)-continuity and continuity, *Commun. Fac. Sci. Univ. Ankara Series A1*, 53 (2004), 67-75.

A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, Onprecontinuous and weak precontinuous functions, *Proc. Math. Phys. Soc. Egypt*, 51 (1982), 47-53.

D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, *Boll. Un. Mat. Ital.*, (7) 6 (3) (1992), 453-465.

D. Jankovic and T. R. Hamlett, New topologies from old via ideals, *Amer. Math. Monthly*, 97 (1990), 295-310.

E. Ekcici and T. Noiri, *-extremely disconnected ideal topological spaces, Acta Math. Hungar.*, 122 (1-2) (2009), 81-90.

E. G. Yang, Around decompositions of continuity via idealization, *Q. and A. in General Topology*, 26 (2008), 131-138.

E. Hatir and T. Noiri, On decompositions of continuity via idealization, *Acta Math. Hungar.*, 96 (2002), 341-349.

E. Hayashi, Topologies defined by local properties, *Math. Ann.*, 156 (1964), 205-215.

G. SaiSundara Krishnan, A new class of semi open sets in a topological space, *Proc. NCMCM, Allied Publishers, New Delhi*, (2003) 305-311.

G. S. S. Krishnan and K. Balachandran, On a class of \(\gamma\)-preopen sets in a topological space, *East Asian Math. J.*, 22 (2) (2006), 131-149.

H. Ogata, Operation on topological spaces and associated topology, *Math. Japonica*, 36 (1991) 175-184.

H. Z. Ibrahim, Weak forms of \(\gamma\)-open sets and new separation axioms, *Int. J. of Scientific and Engineering Research*, 3 (4), April (2012).

J. Dontchev, Idealization of Gaaster-Reilly decomposition theorems, arxiv:math.GN/9901017v1 (1999).

K. Kuratowski, Topology, *Vol. I, Academic Press, NewYork*, (1966).

N. Bourbaki, General Topology, *Part I, Addison Wesley, Reading, Mass* (1966).

N. V. Velicko, H-closed topological spaces, *Amer. Math. Soc. Transl.*, 78 (1968), 103-118.

R. A. Mahmound and D. A. Rose, A note on spaces via dense sets, *Tamkang J. Math.*, 24 (3) (1993), 333-339.

S. Kasahara, Operation-compact spaces, *Math. Japonica*, 24 (1979), 97-105.

S. Yuksel, A. Acikgoz and T. Noiri, On\(\delta-I\)-continuous functions, *Turk. J. Math.*, 29 (2005), 39-51.