Injeções intradetrusoras de onabotulinumtoxinA são significativamente mais eficazes que oxibutinina oral para tratamento da hiperatividade detrusora neurogênica: resultados de estudo randomizado e controlado de 24 semanas

Intradetrusor onabotulinumtoxinA injections are significantly more efficacious than oral oxybutynin for treatment of neurogenic detrusor overactivity: results of a randomized, controlled, 24-week trial

Rúiter Silva Ferreira¹, Carlos Arturo Levi D’Ancona², Matthias Oelke³, Maurício Rassi Carneiro⁴

¹ Universidade Estadual de Campinas, Campinas, SP, Brasil; Centro de Reabilitação e Readaptação Dr. Henrique Santillo, Goiânia, GO, Brasil.
² Universidade Estadual de Campinas, Campinas, SP, Brasil.
³ Department of Urology, Academic Hospital Maastricht, University of Maastricht, Maastricht, The Netherlands.
⁴ Centro de Reabilitação e Readaptação Dr. Henrique Santillo, Goiânia, GO, Brasil.

DOI: 10.1590/S1679-45082018A04207

RESUMO

Objetivo: Comparar prospectivamente os resultados de injeções intradetrusoras de onabotulinumtoxinA e oxibutinina oral em pacientes com hiperatividade neurogênica do detrusor devido à lesão da medula espinhal, para avaliar a continência urinária, os parâmetros urodinâmicos e a qualidade de vida. Métodos: Pacientes adultos em cateterismo intermitente foram randomizados 1:1 para tratamento com uma injeção de onabotulinumtoxinA 300U ou oxibutinina 5mg via oral, três vezes por dia. O desfecho primário foi alteração nos episódios de incontinência urinária em 24 horas, e os secundários foram capacidade cistométrica máxima, pressão máxima do detrusor, complacência vesical e qualidade de vida antes da randomização e na 24ª semana. Resultados: Participaram do estudo 68 pacientes. Observou-se melhora significativa na incontinência urinária por 24 horas em todos os parâmetros urodinâmicos investigados e na qualidade de vida em ambos os grupos. Em comparação com a oxibutinina oral, a onabotulinumtoxinA foi significativamente mais eficaz para todos os parâmetros investigados. A falha no tratamento foi maior para oxibutinina oral em 23,5% em comparação com onabotulinumtoxinA (11,8%). A boca seca foi o efeito adverso mais comum em pacientes tratados com oxibutinina oral (72%), e a hematuria macroscópica transitória naqueles tratados com onabotulinumtoxinA (28%). Apenas um paciente tratado com oxibutinina oral interrompeu o estudo por conta dos efeitos adversos. Conclusão: A comparação dos dois fármacos do estudo mostrou que onabotulinumtoxinA foi significativamente mais eficaz que oxibutinina oral em relação a continência, parâmetros urodinâmicos e qualidade de vida.

Descritores: Ácidos mandélicos; Toxinas botulínicas Tipo A; Bexiga urinária neurogênica; Traumatismos da medula espinhal; Urodinâmica; Qualidade de vida
INTRODUÇÃO

A lesão da medula espinhal (LME) está associada à disfunção neurogênica da bexiga e à hiperatividade neurogênica do detrusor (HND). O principal objetivo do tratamento é a preservação da função renal. Os principais critérios de inclusão foram: idade >18 anos, LME durante pelo menos 12 meses e cateterismo vesical intermitente limpo. Os critérios de exclusão foram: gravidez, desejo de engravidar durante o período do estudo, aleitamento materno, uso de antiagulhantes ou distúrbios de coagulação conhecidos, transtorno de transmissão neuromuscular, uso de qualquer droga.

Os antimuscarínicos orais, como a oxibutinina (Oxi), são amplamente utilizados no tratamento de primeira linha para HND. No entanto, a Oxi, ou outros antimuscarínicos, podem ser ineficazes em alguns pacientes e causar eventos adversos, como boca seca, constipação e incontinência urinária, que pode afetar intensamente a qualidade de vida. Os antimuscarínicos orais com as injeções intradetrusoras de toxina onabotulinumA foram usadas como tratamento de segunda linha para pacientes que não toleram ou não respondem de modo adequado aos antimuscarínicos. Os efeitos da OnabotA na junção neuromuscular foram muito investigados e consistem em inibição da liberação de acetilcolina e relaxamento muscular. A OnabotA também inibe outros neurotransmissores (por exemplo: trifosfato de adenosina) e neuropeptídeos (por exemplo: substância P), e regula a expressão de receptores purinérgicos e do receptor de potencial transcitante vaniloiode 1 (TRPV1) em neurônios aferentes da parede vesical. O tratamento com OnabotA intradetrusora para HND melhora os parâmetros urodinâmicos, como a capacidade cistométrica máxima (CCM), a pressão máxima do detrusor (Pdet max) e a complacência vesical, além da qualidade de vida.

Até esta data, nenhum estudo randomizado comparou os antimuscarínicos orais com as injeções intradetrusoras de OnabotA para o tratamento da HND.

MÉTODOS

DEFINICIONAMENTO DO ESTUDO E SELEÇÃO DOS PACIENTES

Este estudo clínico prospectivo, randomizado e controlado foi realizado em pacientes adultos com LME e HND, em dois centros. O estudo foi iniciado em 2010, após a aprovação pelo Comitê de Ética da Faculdade de Ciências Médicas da Universidade Estadual de Campinas, sob número 118/2010, CAAE: 0098.0.146.000-10, e endosso pelo Conselho do Centro de Reabilitação e Readaptação Dr. Henrique Santillo (CRER). Cada paciente leu e assinou o Termo de Consentimento Livre e Esclarecido antes da inscrição.

Os pacientes foram randomizados 1:1, usando-se envelopes lacrados, opacos, numerados sequencialmente e, posteriormente, receberam 5mg de Oxi oral de liberação imediata, três vezes por dia, ou uma injeção intradetrusora de 300U de OnabotA. O defecho primário foi determinar o número de episódios de incontinência por período de 24 horas, em um diário miccional de 3 dias; o defecho secundário foi avaliar as alterações nos parâmetros urodinâmicos (CCM, Pdet max e complacência vesical) e também na qualidade de vida, segundo os escores do questionário Qualiveen, entre o início do estudo e a semana 24.

Os principais critérios de inclusão foram: idade >18 anos, LME durante pelo menos 12 meses e cateterismo vesical intermitente limpo. Os critérios de exclusão foram: gravidez, desejo de engravidar durante o período do estudo, aleitamento materno, uso de anticoagulantes ou distúrbios de coagulação conhecidos, transtorno de transmissão neuromuscular, uso de qualquer droga.
intravesical ou uso prévio de OnabotA. Todos os pacientes suspenderam o uso de antimuscarínicos orais 7 dias antes da avaliação inicial e receberam antibióticos antes do tratamento. A continência urinária foi definida como a ausência de incontinência urinária nos intervalos entre os cateterismos.\(^{(1)}\)

Todos os pacientes foram primeiro avaliados clínicamente, de acordo com escala neurológica desenvolvida pela *American Spinal Injury Association* (ASIA).\(^{(11)}\)

Os exames laboratoriais incluíram dosagem de ureia e creatinina séricas, exame de urina e, se indicados, urocultura e exames de diagnóstico por imagem. Foi solicitado aos pacientes que mantivessem um diário miccional de 3 dias, com documentação da frequência, horário e episódios de incontinência entre cateterismos.\(^{(1)}\)

Todos os pacientes também preencheram o questionário Qualiveen, uma ferramenta específica para a doença, desenvolvida para avaliação do impacto geral e urinário na qualidade de vida em pacientes com LME. O questionário validado foi submetido a uma adaptação transcultural bem-sucedida para inglês, sendo posteriormente traduzido para português.\(^{(12)}\)

Os estudos urodinâmicos foram realizados de acordo com as recomendações da *International Continence Society* (ICS).\(^{(13,14)}\)

Tratamento e acompanhamento dos pacientes

As injeções intradetrusoras foram aplicadas no terceiro dia do curso do antibiótico, em ambiente cirúrgico, quando o paciente foi sedado com 2mg/kg de propofol intravenoso. Trezentas unidades de OnabotA (Botox®, Allergan, São Paulo, SP, Brasil) foram injetadas no detrusor com baixo enchimento da bexiga, conforme descrito por Schurch et al.\(^{(8)}\) A dose de 300U foi escolhida porque, no momento do recrutamento, era mais frequentemente utilizada e recomendada para o tratamento da HND.

O diário miccional, o teste urodinâmico com determinação dos parâmetros urodinâmicos basais e a avaliação da qualidade de vida foram realizados antes da randomização, repetidos na semana 4 e no final do período de acompanhamento, na semana 24. Foi pedido aos pacientes que informassem quaisquer eventos adversos nas consultas de retorno. A não resposta ao tratamento foi definida quando os parâmetros urodinâmicos não melhoraram, e a incontinência urinária não foi reduzida. Os pacientes não responsivos foram tratados com uma injeção de OnabotA após 12 semanas (Grupo OnabotA) ou 24 semanas (Grupo Oxi).

Análise estatística

O estudo foi planejado para aceitar um erro de 5% e um poder estatístico de 80%. O tamanho da amostra foi determinado utilizando-se a quantificação do efeito dos parâmetros urodinâmicos (parâmetros de eficácia primários) de estudos prévios, ao passo que a pontuação da qualidade de vida foi determinada como parâmetro de eficácia secundária. O teste \(\chi^2\) e o teste exato de Fisher foram usados para comparar as variáveis categóricas entre os dois grupos. Para comparação dos parâmetros iniciais dos dois grupos de tratamento, as variáveis contínuas foram analisadas pelo teste Mann-Whitney, porque os grupos e parâmetros não estavam normalmente distribuídos. O teste Wilcoxon foi aplicado para comparar quaisquer variações intra-grupo nas variáveis numéricas, entre as avaliações iniciais e do final do estudo. O nível de significância para os testes estatísticos foi de 5%. O programa SAS, (SAS Institute, EUA), versão 9.1.3, foi empregado para todas as análises estatísticas.

RESULTADOS

Um total de 73 pacientes aceitaram participar deste estudo; no entanto, 5 foram excluídos por não cumprirem os critérios de inclusão ou por desistência. Assim, 68 pacientes participaram do estudo e foram aleatoriamente selecionados para receber Oxi ou OnabotA (Figura 1). Sete pacientes (10,3%) saíram prematuramente do estudo. Dos 61 pacientes remanescentes que concluíram o estudo, 49 (80,3%) eram do sexo masculino. Os dados demográficos e iniciais dos pacientes que concluíram o estudo estão resumidos na tabela 1. Nenhuma diferença estatisticamente significativa foi encontrada entre os dois grupos.

Figura 1. Fluxograma do estudo para demonstrar o número de pacientes incluídos, atribuídos para oxibutinina ou onabotulinumtoxinA, seguidos e analisados
Pacientes não responsivos e tratamento de segunda linha
Oito pacientes (23,5%) do Grupo Oxi e quatro (11,8%) do Grupo OnabotA não responderam ao tratamento. Os não responsivos ao Oxi receberam injeções de 300U de OnabotA, e todos apresentaram boa resposta. Os não responsivos ao OnabotA foram tratados com uma segunda injeção de 300U de OnabotA, e dois pacientes (50%) apresentaram uma boa resposta. Dois pacientes não responsivos (50%) foram submetidos à enterocistoplastia.

Efeitos adversos
Oito (28%) pacientes tratados com OnabotA apresentaram hematuria macroscópica durante as primeiras 24 horas. Boca seca foi o evento adverso mais comumente relatado no Grupo Oxi (72%), mas apenas um (2,9%) paciente saiu do estudo por esse motivo. Oito (23,5%) pacientes relataram piora da constipação. Nenhum evento adverso sistêmico foi relatado com a OnabotA.

Parâmetros de eficácia
Ambos os tratamentos, com Oxi ou OnabotA, resultaram em melhora significativa no número de episódios de incontinência em 24 horas (Tabela 2). A capacidade cistométrica máxima e a complacência vesical aumentaram significativamente, ao passo que o Pdetmax diminuiu. Os dois tratamentos tiveram impacto significativo na qualidade de vida. Os efeitos adversos da OnabotA foram menores que os da Oxi.

DISCUSSÃO
Este é o primeiro estudo a ter pacientes com HND randomizados e tratados com Oxi oral ou injeções de OnabotA. O estudo atendeu a todos os critérios de qualidade de um ensaio randomizado e controlado, tendo poder estatístico adequado para comparação dos grupos.

Tabela 1. Parâmetros basais dos grupos de tratamento com oxibutinina e com onabotulinumtoxinA

Parâmetro	Oxi (n=33)	OnabotA (n=28)	Valor de p
Masculino/feminino	26/7	23/5	0,743*
Média de idade (±DP)	31±8	33±11	0,839#
Variação	(22-52)	(19-61)	
Tempo médio de LME (meses, ±DP)	25±10	23±8	0,533*
Variação	(12-61)	(12-47)	

Parâmetros de eficácia

Parâmetros	Oxi (n=24)	OnabotA (n=24)	Variação
Média de episódios de incontinência/24h (±DP)	8±1	7±1	0,773*

Parâmetros	Oxi (n=24)	OnabotA (n=24)	Variação	
Episódios de incontinência em 24 hs†	8±1	5±2	-2,3±1,9	<0,001
CCM	167±36	293±69	126±62	<0,001
Pdetmax	79±21	56±19	-12±20	<0,001
Complacência vesical	14±4	21±4	7±5	<0,001
Qualiveen, SIUP	3,2±0,4	3,0±0,5	-0,3±0,3	<0,001
Qualiveen, índice	-1,0±0,6	-0,9±0,6	0,1±0,3	<0,001

Tabela 2. Comparação do número de episódios de incontinência em 24 horas, parâmetros urodinâmicos, e escores de qualidade de vida nos grupos de tratamento com oxibutinina e onabotulinumtoxinA, entre o início do estudo e a 24ª semana

Parâmetros	Tratamento	Grupo Oxibutinina	Média±DP	Variação	
		Início	Semana 24	Diferença intra-grupo	Valor de p*
Episódios de incontinência em 24 hs†	8±1	5±2	-2,3±1,9	<0,001	
CCM	167±36	293±69	126±62	<0,001	
Pdetmax	79±21	56±19	-12±20	<0,001	
Complacência vesical	14±4	21±4	7±5	<0,001	
Qualiveen, SIUP	3,2±0,4	3,0±0,5	-0,3±0,3	<0,001	
Qualiveen, índice	-1,0±0,6	-0,9±0,6	0,1±0,3	<0,001	

† Objetivo primário do estudo; * teste de Wilcoxon; † teste de Mann-Whitney; DP: desvio padrão; CCM: capacidade cistométrica máxima; Pdetmax: pressão máxima do detrusor; Oxi: oxibutinina; OnabotA: onabotulinumtoxinA; SIUP: impacto específico de problemas urinários.
Injeções de onabotulinumtoxinA são significativamente mais eficazes que oxibutinina oral

pos. Nossa pesquisa prospectiva mostrou que os parâmetros urodinâmicos (CCM, Pdet_{\text{max}} e complacência vesical), clínicos (episódios de incontinência/24 horas) e de qualidade de vida melhoraram de forma significativa do início até o final do estudo (24 semanas), tanto com Oxi quanto com OnabotA. Porém a melhora foi significativamente maior com as injeções intradetrusoras de OnabotA. O índice de responsividade também foi mais alto com a OnabotA (88,2%) em comparação com a Oxi (76,5%). Os dois tratamentos foram seguros, mas o perfil de eventos adversos pareceu favorecer a OnabotA. A hematúria macroscópica de curto prazo após injeções de OnabotA em 28% dos pacientes teve que ser contraposta ao efeito adverso de longo prazo de boca seca, em 72%, e de constipação, em 23,5%, dos pacientes tratados com Oxi.

São raros os estudos urodinâmicos, com ou sem tratamento ativo, em pacientes com HND devido a LME. Stöhrer et al.,(15) investigaram 131 pacientes com HND (122 com LME) tratados com 15mg/dia de Oxi por 3 semanas. De modo semelhante ao presente estudo, os pesquisadores relataram melhora significativa de incontinência urinária, CCM, complacência vesical, Pdet_{\text{max}} e qualidade de vida. Homma et al.,(16) relataram que, embora a tolterodina tivesse um índice menor de eventos adversos, a Oxi foi superior ao placebo na melhora da qualidade de vida. No presente estudo, 2,9% dos pacientes tratados com Oxi não conseguiram tolerar o efeito adverso de boca seca. Yarker et al.,(17) relataram índice de desistência de 25% causado pelos eventos adversos devido à Oxi de liberação imediata administrada por via oral.

A Oxi de liberação imediata foi escolhida como comparador para a OnabotA, pois vários estudos controlados mostraram que o medicamento é eficaz no tratamento da HND(18) e, além disso, a Oxi é o único medicamento antimuscarínico reembolsado pelo sistema público de saúde brasileiro. A Oxi oral é também o único medicamento disponível para essa indicação na maioria dos países, ao passo que outros antimuscarínicos são bastante caros ou não foram aprovados globalmente. Em contraste, as injeções intradetrusoras de OnabotA são reembolsadas no Brasil como tratamento de segunda linha da HND. A dose de 300U de OnabotA foi escolhida por ser frequentemente utilizada para tratamento da HND à época do recrutamento dos participantes. Os pacientes alocados no grupo de 300U de OnabotA demonstraram melhora significativa de todos os parâmetros urodinâmicos avaliados; portanto, nossos resultados são comparáveis aos publicados por Reitz et al.,(19) No entanto, Cruz et al.,(20) e Ginsberg et al.,(21) relataram posteriormente que não existe benefício clinicamente relevante para a dose de 300U sobre a de 200U de OnabotA quanto à eficácia ou à duração dos efeitos.

Também observamos redução significativa no número de episódios de incontinência urinária em 24 horas no grupo tratado com OnabotA. Podemos confirmar os resultados dos dois maiores estudos controlados e randomizados publicados.(19,20) Os pacientes de nosso estudo tratados com OnabotA também tiveram melhora significativa na qualidade de vida. Schuch et al.,(22) relataram melhora na QV de 59 pacientes que foram alocados em três grupos e tratados com 300U ou 200U de OnabotA ou com placebo e, depois, acompanhados por 24 semanas. Este estudo mostrou melhora significativa dos escores de qualidade de vida nos pacientes tratados com OnabotA, em comparação com o placebo.

A comparação das diferenças médias entre os dois grupos nos parâmetros urodinâmicos, do início até 24 semanas, demonstrou que o tratamento com injeção de OnabotA foi superior ao tratamento com Oxi no tocante a todos os parâmetros analisados. Os parâmetros urodinâmicos melhorados resultaram em um índice de continência urinária mais elevado e, também, em um maior impacto na qualidade de vida. De acordo com Pannek et al.,(23) os regimes de tratamento que produzem melhores resultados urodinâmicos e continência urinária estão associados com melhor qualidade de vida.

Acreditamos que, em nosso estudo, outro fator contribuiu para uma melhor qualidade de vida no grupo tratado com OnabotA: o melhor perfil de tolerabilidade, uma vez que não foram relatados eventos adversos de longo prazo. O efeito adverso de boca seca foi o mais descrito pelos pacientes tratados com Oxi (72%) em nosso estudo, comparado a 17 a 97% dos pacientes que receberam Oxi oral de liberação imediata na literatura.(24) Observou-se discreta hematúria macroscópica durante as primeiras 24 horas, após injeção intradetrusora de OnabotA em oito pacientes (28%), em comparação com o índice de incidência de 2 a 21% relatado por Karsenty et al.,(3) A disreflexia autonômica durante a investigação urodinâmica ou o enchimento da bexiga nos pacientes submetidos a injeções de OnabotA podem ser ameaças em potencial, particularmente para os pacientes com LME completa acima de T6.(25)

Os índices de continência urinária em nosso estudo foram significativamente mais elevados nos pacientes tratados com OnabotA (60%), em comparação aqueles que foram tratados com Oxi (6%). Karsenty et al.,(3) encontraram continência urinária em 40 a 80% dos casos; portanto, nossos resultados estão de acordo com os publicados anteriormente. Os especialistas em LME concordam que a obtenção de continência e a diminuição da Pdet_{\text{max}} (<40cmH₂O) são dois componentes fundamentais do tratamento da HND.
Em quatro pacientes (14%) tratados com OnabotA, não foram encontradas alterações nos parâmetros urodinâmicos e nem nas pontuações de qualidade de vida; um paciente apresentou redução na complacência da bexiga. Reitz et al.,[19] identificaram 9 em 200 pacientes (4,5%) que não tiveram nenhum benefício clínico ou urodinâmico após as injeções com OnabotA. As razões da ausência de resposta nesses pacientes permanecem desconhecidas, mas erros cometidos durante a diluição ou a injeção intradetrusora de OnabotA não podem ser excluídos.

Embora o nosso estudo tenha contado com os mais elevados padrões de qualidade, também houve limitações. A Oxi de liberação imediata está associada aos mais elevados índices de eventos adversos de todos os antimuscarínicos, embora o efeito adverso de boca seca também tenha sido relatado como o mais frequente com o uso de qualquer outro antimuscarínico. Além disso, a Oxi de liberação imediata é o único medicamento oral para o tratamento de HND disponível no sistema público de saúde brasileiro e também em muitos outros países. Comparamos apenas duas modalidades diferentes para o tratamento da HND, mas é preciso que estudos futuros comparem as injeções de OnabotA com o uso de outros medicamentos antimuscarínicos. Teria sido desejável cegar os pacientes tratados com placebo (no Grupo Oxi) ou que receberam tratamento simulado (no Grupo OnabotA), porém isso não foi permitido pelo comitê local de ética, para evitar o risco de lesões no trato urinário superior e garantir o tratamento ativo.

CONCLUSÃO

Na comparação dos parâmetros objetivos (diário miccional e dados urodinâmicos) e subjetivos (questionário de qualidade de vida), as injeções de toxina onabotulinica A foram significativamente mais eficazes que a oxibutinina oral. Devido aos melhores resultados da toxina onabotulinicaA devemos considerá-la como opção de primeira linha nos pacientes com hiperatividade neurogênica do detrusor quando somente for possível o uso da oxibutinina.

AGRADECIMENTOS

Este estudo foi realizado pela cooperação e pelos esforços coletivos de Adriana Soares Adorno, Elcione Lisboa Cardoso, Suely Chaves, Alice Adelaide da Silva, Iris Domenico, Paula Lea F da Costa Ferreira, Juliana Rampazzo, Edel Maria da Silva e Lima, Thiago Souza Oliveira, Eduardo José de Castro, Rogério Alves Moreira e Reagan Fernandes Rosa.
15. Stöhrer M, Mürtz G, Kramer G, Schnabel F, Arnold EP, Wyndaele JJ; Propiverine Investigator Group. Propiverine compared to oxybutynin in neurogenic detrusor overactivity--results of a randomized, double-blind, multicenter clinical study. Eur Urol. 2007;51(1):235-42.

16. Homma Y, Paick JS, Lee JG, Kawabe K; Japanese and Korean Tolterodine Study Group. Clinical efficacy and tolerability of extended-release tolterodine and immediate-release oxybutynin in Japanese and Korean patients with an overactive bladder: a randomized, placebo-controlled trial. BJU Int. 2003;92(7):741-7. Erratum in: BJU Int. 2004;93(7):1135.

17. Yarker YE, Goa KL, Fitton A. Oxybutynin. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic use in detrusor instability. Drugs Aging. 1995;6(3):243-62. Review.

18. Andersson KE, Chapple CR. Oxybutynin and the overactive bladder. World J Urol. 2001;19(5):319-23. Review.

19. Reitz A, Stöhrer M, Kramer G, Del Popolo G, Chartier-Kastler E, Pannek J, et al. European experience of 200 cases treated with botulinum-A toxin injections into the detrusor muscle for urinary incontinence due to neurogenic detrusor overactivity. Eur Urol. 2004;45(4):510-5.

20. Cruz F, Herschorn S, Aliotta P, Brin M, Thompson C, Lam W, et al. Efficacy and safety of onabotulinumtoxinA in patients with urinary incontinence due to neurogenic detrusor overactivity: a randomised, double-blind, placebo-controlled trial. Eur Urol. 2011;60(4):742-50.

21. Ginsberg D, Gousse A, Keppenne V, Sievert KD, Thompson C, Lam W, et al. Phase 3 efficacy and tolerability study of onabotulinumtoxinA for urinary incontinence from neurogenic detrusor overactivity. J Urol. 2012;187(6):2131-9.

22. Schurch B, Denys P, Kozma CM, Reese PR, Slaton T, Barron RL. Botulinum toxin A improves the quality of life of patients with neurogenic urinary incontinence. Eur Urol. 2007;52(3):850-8.

23. Pannek J, Kullik B. Does optimizing bladder management equal optimizing quality of life? Correlation between health-related quality of life and urodynamic parameters in patients with spinal cord lesions. Urology. 2009;74(2):263-6.

24. Abrams P, Andersson KE. Muscarinic receptor antagonists for overactive bladder. BJU Int. 2007;100(5):987-1006. Review.

25. Curt A, Nitsche B, Rodic B, Schurch B, Dietz V. Assessment of autonomic dysreflexia in patients with spinal cord injury. J Neurol Neurosurg Psychiatry. 1997;62(5):473-7.