Resveratrol improves human umbilical cord-derived mesenchymal stem cells repair for cisplatin-induced acute kidney injury

Rongxue Zhang1,2, Lei Yin1, Bin Zhang1, Hui Shi1, Xiaoxiang Sun1, Cheng Ji1, Jingyan Chen1, Peipei Wu1, Leilei Zhang1, Wenrong Xu1 and Hui Qian1,3

Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are a promising tool for damaged tissues repair, especially for the kidney. However, their efficacy requires improvement. In order to optimize the clinical utility of hucMSCs, we adopted a strategy of treating hucMSCs with 20 μmol/L of resveratrol (Res-hucMSCs), applying it in a cisplatin-induced acute kidney injury model. Interestingly, we found that Res-hucMSCs exhibited a more efficient repairing effect than did hucMSCs. Resveratrol-promoted hucMSCs secreted platelet-derived growth factor-DD (PDGF-DD) into renal tubular cells resulting in downstream phosphorylation of extracellular signal-regulated kinase (ERK), which inhibited renal tubular cells apoptosis. In contrast, PDGF-DD knockdown impaired the renal protection of Res-hucMSCs. In addition, angiogenesis induced by PDGF-DD in endothelial cells was also involved in the renal protection of Res-hucMSCs. The conditioned medium of Res-hucMSCs accelerated proliferation and migration of vascular endothelial cells in vitro and CD31 was in a high-level expression in Res-hucMSCs group in vivo. Nevertheless, the angiogenesis was abrogated when Res-hucMSCs were treated with PDGF-DD siRNA. In conclusion, our findings showed that resveratrol-modified hucMSCs activated ERK pathway in renal tubular cells and promoted angiogenesis in endothelial cells via paracrine PDGF-DD, which could be a novel strategy for enhancing the therapy efficacy of hucMSCs in cisplatin-induced kidney injury.

Introduction
Acute kidney injury (AKI) is a frequent clinical syndrome, which is characterized by a sudden loss of the kidney function1. AKI is caused by a variety of factors, including surgery, hypoxia, drugs, mechanical trauma, inflammation, cardiopulmonary bypass, and hemodynamic instability2. At present, although remarkable progress has been made in dialysis and renal replacement therapy, the morbidity and mortality of patients with AKI remain high3,4. Therefore, patients with AKI urgently need a new therapy strategy.

Mesenchymal stem cells (MSCs) are a promising tool for the treatment of kidney injury5,6. MSCs can be isolated from the bone marrow, umbilical cord, adipose tissues, and other adult tissues. Lower immunogenicity and easier availability turn hucMSCs into a favorable candidate for injured tissue repair7. Although previous studies showed that hucMSCs can alleviate AKI or...
chronic kidney injury⁴,⁹, the efficacy of stem cell-based therapy can be further improved. Small-molecule drugs have an important role in regulating stem cell fate and function, and facilitate the development of cell-based therapies¹⁰. For example, resveratrol (Res, 3,5,4′-trihydroxy-trans-stilbene)-modified cardiac stem cells exerted an improved impairing effect on infarcted myocardium by increasing the survival and engraftment of implanted cardiac stem cells¹¹.

Res, a natural polyphenolic compound, is derived from several plants such as grapes, peanuts, and mulberries. Res is reported to have various biologic functions including anti-inflammatory, antioxidant, anti-aging, and so on¹². Based on these biologic functions, Res has been widely investigated in regenerative medicine. It was reported that Res alleviated multiple organs damage, particularly in the kidney¹³,¹⁴. In addition, Res could protect MSCs against inflammation and oxidative injury¹⁵,¹⁶. However, the effect of Res on MSCs-based therapy has not been investigated. It remains unknown whether Res-modified hucMSCs can show a more efficient repairing ability than did hucMSCs in tissue injury.

Here we investigated the effect of Res-hucMSCs on cisplatin-induced AKI. Our findings demonstrated that hucMSCs primed with Res activated ERK signal pathway in renal tubular cells and promoted angiogenesis in endothelial cells via paracrine platelet-derived growth factor-DD (PDGF-DD), which preferably inhibited renal tubular cell apoptosis. Res-hucMSCs have a higher efficiency than did hucMSCs in the repair of cisplatin-induced AKI.

Materials and methods

Cell culture

All experiment protocols were approved by the medical ethics committee of Jiangsu University (20122258). Fresh human umbilical cords were obtained from consenting mothers in the affiliated hospital of Jiangsu University. HucMSCs were isolated as described previously¹⁷ and cultured in MEM Alpha basic (α-MEM, Gibco) with 10% fetal bovine serum (FBS, Excell), penicillin and streptomycin (Gibco). The cells in passages 3–6 were used for additional experiments. Rat renal tubular epithelial cell lines (NRK-52E) and human umbilical vein endothelial cell (HUVEC) were purchased from Cell Bank (Chinese Academy of Sciences, Shanghai, China) and maintained in high-glucose Dulbecco’s modified Eagle’s medium (DMEM, Gibco) containing 10% FBS.

Preparation of Res-hucMSCs

Res (Sigma) was dissolved in dimethyl sulfoxide (DMSO) to prepare a 20 mmol/L stock solution. In the following experiments, the concentration and time of Res treating hucMSCs were 20 μmol/L and 12 h. HucMSCs treated with 0.1% DMSO (DMSO-hucMSCs) acted as the control. The conditioned medium (CdM) referred to the cell supernatant of culturing hucMSCs for 24 h after with or without Res treatment.

Animal model of AKI

Adult female Sprague–Dawley rats weighing 180–220 g were purchased from the Laboratory Animal Center of Jiangsu University and randomly divided into several groups (n = 6/group). The AKI rat model was established as described previously¹⁸. After 6 mg/kg cisplatin intraperitoneal injection for 24 h, 1 × 10⁶ hucMSCs (with or without Res treatment) were transplanted via tail vein. Phosphate-buffered saline (PBS)-injected rats served as a control. All animals were killed at Day 5 after cisplatin injection. Renal function, histological changes, and tubular apoptosis were evaluated.

Cell labeling and tracing

HucMSCs (1 × 10⁶/mL) with or without Res treatment were incubated with 5 μL of the membrane dye DiR (Thermo Fisher Scientific) at 37 °C for 1 h. The unbound DiR was removed by washing with PBS and the labeled cells were resuspended in PBS and transplanted into AKI rats via tail vein. In-Vivo Imaging System (IVIS Spectrum, PE) was used to observe the engraftment of infused hucMSCs (with and without Res treatment) in renal tissues at 24 h or 96 h after hucMSCs injection.

In vitro experiments

Rat renal tubular epithelial cell line NRK-52E was used to do experiments in vitro. Experiments were divided in four groups: control (without cisplatin treatment), cisplatin (7.5 μmol/L cisplatin treatment for 12 h), DMSO-hucMSCs (7.5 μmol/L cisplatin treatment for 12 h and DMSO-hucMSCs co-culturing for 36 h), and Res-hucMSCs (7.5 μmol/L cisplatin treatment for 12 h and Res-hucMSCs co-culturing for 36 h).

Western blotting

Kidney tissues or cells were lysed in a radioimmunoprecipitation assay buffer containing protease inhibitors (phenylmethylsulfonil fluoride, Pierce). Protein samples were separated by SDS-polyacrylamide gel electrophoresis, transferred to the polyvinylidene difluoride membrane (Millipore), blocked in 5% skim milk, and incubated with primary antibodies and horseradish peroxidase-conjugated secondary antibodies (Invitrogen). Primary antibodies used in this study were as following: c-IAP1 (CST), Bcl-xl (SAB), Bax (Bioworld), Activated-caspase3 (Bioworld), p-ERK (CST), ERK (CST), PDGF-DD (Santa Cruz), PDGFR-β (Bioworld), and β-actin (Bioworld).
Quantitative reverse-transcriptase PCR

Total RNA of kidney tissues and cells was extracted by using the Trizol reagent (Invitrogen). One microgram of RNA was reverse transcribed to synthesized cDNA according to the manufacturer’s instructions (Vazyme). PCR was performed using QuantiTect SYBR Green PCR kit (CWBIO). The primer sequences of genes are listed in Table 1.

TUNEL and immunohistochemistry staining

We detected apoptosis cells by employing terminal deoxyadenosine-dNTP-mediated dUTP nick end-labeling (TUNEL) staining according to the manufacturer’s protocol (Vazyme). To detect the expression level of activated-caspase3 in kidney tissues and NRK-52E cells, we performed immunohistochemistry staining assay. After inactivating endogenous enzymes by 3% H2O2, the slices of kidney tissues and cells were incubated with activated-caspase3 antibody (1:50, Bioworld) overnight at 4 °C, then incubated with biotinylated sheep anti-rabbit IgG. The signal was developed by DAB staining and hematoxylin counterstaining.

PDGF-DD enzyme-linked immunosorbent assay

PDGF-DD ELISA kit was purchased from Donglin Sci&Tech Development (China). PDGF-DD in the CdM was detected according to the operating instructions. The absorbance at 450 nm was measured and the corresponding concentration was calculated according to the standard curve.
PDGF-DD siRNA transfection

PDGF-DD small interfering RNA (siRNA) and the matching scramble control siRNA (N.C) were purchased from GenePharma (Suzhou, China). We used Lipofectamine 2000 (Invitrogen) to transfect siRNA into hucMSCs according to the manufacturer’s instructions. The efficiency of PDGF-DD knockdown was evaluated through quantitative reverse-transcriptase PCR (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay (ELISA). Experiments of PDGF-DD knockdown were divided in four groups: DMSO N.C (DMSO-hucMSCs treatment with N.C), Res N.C (Res-hucMSCs treatment with N.C), DMSO siRNA (DMSO-hucMSCs treatment with PDGF-DD siRNA), and Res siRNA (Res-hucMSCs treatment with PDGF-DD siRNA).

Colony formation assay

hucMSCs (1 × 10^4; with or without Res treatment) were seeded into six-well plates and incubated in 5% CO2 at 37 °C. The cells were replaced with fresh medium every 2 days. After incubation for 10 days, the cells were fixed with 4% paraformaldehyde for 30 min, then stained with 1% crystal violet for 10 min.

Cell-counting assay

HUVEC cells were seeded at a density of 2 × 10^3 cells/well in 96-well plates for 24 h and replaced the medium with the CdM of hucMSCs (with or without Res treatment). Cells were counted at 24, 48, and 72 h, respectively, and each sample were repeated in triplicate. HUVEC cell proliferation could also be measured using a real-time cellular analysis system. HUVEC cells were seeded at a density of 2 × 10^3 cells/well in a 16-well plate with electrodes, the CdM of DMSO-hucMSCs or Res-hucMSCs (100 μL) were added into the wells after cells culturing for 20 h, and continue to monitor for up to 65 h.

Cell migration assay

HUVEC cells (5 × 10^4) were suspended in serum-free high-glucose DMEM and seeded in the upper chamber, and the CdM of hucMSCs (with or without Res treatment) was placed in lower chamber. After incubation for 8 h, the cells that migrated through the membrane were fixed with 4% paraformaldehyde for 30 min, then stained with crystal violet for 10 min. The cells were observed by using a microscope (Nikon) and at least six fields of cells were assayed for each group.

Immunofluorescence analysis

The previous steps were same as the immunohistochemistry staining assay. Primary antibody CD31 (1:50, Bioworld) were incubated overnight, followed by incubation with Cy3-labeled anti-rabbit IgG secondary antibody (1: 500, Invitrogen) at 37 °C for 30 min. The nuclei were counterstained with Hoechst 33342 (1:200; Sigma-Aldrich).

Statistical analysis

All data were shown as mean ± SD. Statistical analysis between groups was performed by GraphPad Prism 5.0 software (San Diego, USA). Statistical differences in multiple groups were determined by one-way analysis of variance followed by Tukey’s post tests. Statistical differences between two groups were determined by two-tailed paired Student’s t-test. The P-value < 0.05 was considered statistically significant.

Results

Res-hucMSCs exerted an improved repairing effect on kidney injury

To define whether Res-hucMSCs exert an improved repairing effect on kidney injury, we established cisplatin-induced AKI models and evaluated the repairing ability of Res-hucMSCs in AKI models. Results showed that serum Cr and BUN levels increased markedly at Day 3 and remained at a high level until Day 5 after cisplatin injection. Transplanting Res-hucMSCs significantly reduced serum Cr and BUN levels compared with DMSO-hucMSCs (Fig. 1a). Hematoxylin and eosin (H&E) staining of kidney tissues slices revealed that treating with DMSO-hucMSCs or Res-hucMSCs alleviated cisplatin-induced kidney injury as identified by fewer necrotic renal tubules and protein casts, and Res-hucMSCs was more effective than DMSO-hucMSCs in alleviating pathological injury (Fig. 1b). In addition, histological injury score was obviously reduced in the DMSO-hucMSCs or the Res-hucMSCs group compared with the cisplatin group, and the injury score was lowest in the Res-hucMSCs group (Fig. 1c). Western blotting detected the expression of apoptosis-associated proteins. Results showed that transplanting DMSO-hucMSCs or Res-hucMSCs decreased the expression of Bax and actived-caspase3, increased the expression of c-IAP1 and the anti-apoptosis effect of Res-hucMSCs was more obvious than did DMSO-hucMSCs (Fig. 1d). Immunohistochemical staining further confirmed the expression of actived-caspase3, and the average percent of actived-caspase3-positive cells in control, cisplatin, DMSO-hucMSCs, and Res-hucMSCs groups was 32.6%, 94%, 83.8%, and 21.2% (Fig. 1e), respectively. Furthermore, TUNEL assay indicated that a reduced number of apoptotic cells in both DMSO-hucMSCs and Res-hucMSCs groups, and the Res-hucMSCs group had fewer apoptotic cells than did DMSO-hucMSCs group. The average percent of TUNEL-positive cells in control, cisplatin, DMSO-hucMSCs, and Res-hucMSCs groups was 1%, 76.6%, 20%, and 2.5% (Fig. 1f), respectively. Altogether, Res-hucMSCs showed a more efficient repair
ability than did hucMSCs in cisplatin-induced kidney injury.

Effect of Res-hucMSCs on NRK-52E cells apoptosis

To confirm the effect of Res-hucMSCs in vitro, we used 7.5 μmol/L of cisplatin-treated NRK-52E cells. After treating with cisplatin for 12 h, there was a significantly increased number of apoptotic NRK-52E cells. By contrast, treatment with DMSO-hucMSCs or Res-hucMSCs could effectively reverse cisplatin-induced apoptosis and the number of apoptotic NRK-52E cells was least in the Res-hucMSCs group (Fig. 2a). The expression of apoptosis-associated proteins was tested by western blotting. Results showed that the expression of Bax and activated-caspase3 significantly increased, whereas...
the expression of c-IAP1 significantly decreased after cisplatin treatment. Nevertheless, changes in the expression of apoptosis-associated proteins could be rescued in DMSO-hucMSCs or Res-hucMSCs group. In the Res-hucMSCs group, the expression levels of Bax and activated-caspase3 were lowest and the expression level of c-IAP1 was highest (Fig. 2c). Immunohistochemical staining further confirmed the expression of activated-caspase3 and the result was consistent with that by western blotting. The average percent of activated-caspase3-positive cells in control, cisplatin, DMSO-hucMSCs, and Res-hucMSCs groups was 3.8%, 86.7%, 62.2%, and 14.3% (Fig. 2d), respectively. Furthermore, TUNEL assay showed that the number of TUNEL-positive cells obviously increased after cisplatin treatment, whereas the number of TUNEL-positive cells decreased in both DMSO-hucMSCs and Res-hucMSCs groups. Res-hucMSCs group had fewer TUNEL-positive cells than did DMSO-hucMSCs group.

The average percent of TUNEL-positive cells in control, cisplatin, DMSO-hucMSCs, and Res-hucMSCs groups was 9.2%, 93.2%, 77%, and 40.9% (Fig. 2e), respectively. In summary, Res-hucMSCs could significantly inhibit cisplatin-induced NRK-52E cells apoptosis compared with hucMSCs.

Res regulated hucMSCs proliferation and apoptosis via promoting PDGF-DD autocrine in hucMSCs

A hostile microenvironment of the injured tissues including oxidative stress, inflammatory response, and development of pro-apoptotic factors induces implanted hucMSCs apoptosis, which blur the efficacy of hucMSCs-based therapy. Therefore, we tested the protective effect of Res on hucMSCs. Results showed that Res decreased activated-caspase3 and Bax protein levels, increased c-IAP1 and Bcl-xl protein levels in hucMSCs, and enhanced the colony-forming ability of hucMSCs.
qRT-PCR assay showed that Res had no effect on the expression of inflammatory factors in hucMSCs (Figure S1). Next, we investigated the underlying mechanisms about the protective effect of Res on hucMSCs from the perspective of stemness or paracrine of hucMSCs. Results showed that Res had no effect on the expression of stemness transcription factors and majority of cytokines in hucMSCs (Figure S2), whereas it increased the expression and secretion of PDGF-DD in hucMSCs (Fig. 3c). Meanwhile, the PDGF receptor-β and PDGF-
DD/PDGFR downstream p-ERK levels were higher in Res-hucMSCs than in DMSO-hucMSCs (Fig. 3d). To confirm the role of PDGF-DD in the effect of Res on hucMSCs, we used the PDGF-DD siRNA to knock down the PDGF-DD expression in hucMSCs and verified the efficiency by using both mRNA and protein levels (Fig. 3e). Res did not rescue the decrease of PDGF-DD levels induced by the PDGF-DD siRNA (Fig. 3f). PDGF-DD knockdown decreased the expression of PDGFR-β in Res-hucMSCs, correlating with inhibiting ERK signal pathway, which increased the level of Bax and activated-caspase3, decreased the level of c-IAP1 and Bcl-xl in Res-hucMSCs, and weakened the colony formation ability of Res-hucMSCs (Fig. 3g, h). In addition, nude mice injected subcutaneously with Res-hucMSCs for 4 weeks did not form tumors (Figure S3), which ensured the safety of Res pre-treatment. Collectively, Res regulated hucMSCs proliferation and apoptosis via promoting PDGF-DD autocrine in hucMSCs.

Res-hucMSCs exerted an improved renal protective effect via paracrine PDGF-DD

As shown in Figure S4, the ability of Res-hucMSCs homing to kidney tissues was significantly superior to that of DMSO-hucMSCs. Moreover, the number of Res-hucMSCs homing in kidney tissues was still a lot at 96 h, whereas DMSO-hucMSCs homing in kidney tissues was almost absent at 96 h. These results showed that Res pre-treatment promoted the engraftment of infused hucMSCs in kidney tissues and protected infused hucMSCs against a hostile microenvironment. The protective effect of Res on hucMSCs increased the survival rate of hucMSCs and may encourage hucMSCs to secrete more PDGF-DD in vivo. Thus, we detected the level of PDGF-DD in kidney tissues after different treatment. Results showed that when compared the DMSO-hucMSCs or Res-hucMSCs group with the cisplatin group, the PDGF-DD level obviously increased and the PDGF-DD level was highest in the Res-hucMSCs group. The average percent of PDGF-DD-positive cells in control, cisplatin, DMSO-hucMSCs, and Res-hucMSCs groups was 53.3%, 9.5%, 20.3%, and 85% (Fig. 4a), respectively. The level of PDGFR-β in the Res-hucMSCs group was higher than in the DMSO-hucMSCs group. The average percent of PDGFR-β-positive cells in control, cisplatin, DMSO-hucMSCs, and Res-hucMSCs groups was 55.4%, 32%, 53%, and 76.3% (Fig. 4b), respectively. Furthermore, Res-hucMSCs more effectively activated the ERK pathway in renal tubular cells than did DMSO-hucMSCs (Fig. 4c). To assess the role of PDGF-DD in the renal protection of Res-hucMSCs, we injected Res-hucMSCs with N.C or PDGF-DD siRNA into cisplatin-induced AKI rat models. As expected, Res-hucMSCs with N.C exhibited a decent recovery, whereas Res-hucMSCs with PDGF-DD siRNA remained incompletely repaired. Compared with the Res N.C group, we observed a significant rise in serum Cr and BUN levels in the Res siRNA group (Fig. 4d). H&E staining of kidney tissue slices indicated that the Res N.C group had fewer necrotic renal tubules and protein casts than did the Res siRNA group (Fig. 4e). Moreover, histological injure score was markedly higher in the Res siRNA group than in the Res N.C group (Fig. 4f). In addition, the Res N.C group had fewer apoptotic cells than did the Res siRNA group. The average percent of TUNEL-positive cells in DMSO N.C, Res N.C, DMSO siRNA, and Res siRNA groups was 15%, 3%, 71.4%, and 51% (Fig. 4g), respectively. Moreover, compared with the Res N.C group, the Bax and activated-caspase3 level significantly increased, whereas the c-IAP1 level significantly decreased in Res siRNA group. Western blotting further indicated a significant decrease of the PDGF-DD and PDGFR-β levels in the Res siRNA group, which inhibited the ERK signal pathway in renal tubular cells (Fig. 4h). In brief, Res-hucMSCs exerted a more effective renal protective effect than hucMSCs via promoting PDGF-DD paracrine.

Res-hucMSCs promoted angiogenesis via paracrine PDGF-DD

Besides regulating cell progression, PDGF-DD has an important role in angiogenesis

Angiogenesis is a crucial mechanism in injured tissues repair. Therefore, we came up with a hypothesis: angiogenesis may participate in the renal protective effects of Res-hucMSCs. Collect the CdM of hucMSCs with or without Res treatment and observe their effects on HUVEC cells functions. The CdM of Res-hucMSCs enhanced the HUVEC cells migration and proliferation ability compared with the CdM of DMSO-hucMSCs (Fig. 5a–c). Meanwhile, immunofluorescence staining assay showed that the expression of CD31, a marker of vascular endothelial cell highly increased in the Res-hucMSCs group compared with that in the DMSO-hucMSCs group in vivo (Fig. 5d). To verify whether PDGF-DD was involved in angiogenesis, we collected the CdM of Res-hucMSCs with or without PDGF-DD siRNA treatment and evaluated the effect of those CdM on HUVEC functions. Not unexpectedly, the CdM of Res-hucMSCs with PDGF-DD siRNA inhibited the migration and proliferation of HUVEC cells compared with the CdM of Res-hucMSCs with N.C (Fig. 5e–g). Furthermore, the results of immunofluorescence staining showed that PDGF-DD knockdown reduced the expression of CD31 in vivo (Fig. 5h). The above results displayed that angiogenesis induced by PDGF-DD was involved in renal protective effects of Res-hucMSCs.

Discussion

MSCs are a promising therapeutic tool in regenerative medicine due to their self-renewal and multi-directional
Fig. 4 (See legend on next page.)
differentiation potency. A large number of studies showed that MSCs could repair cisplatin-induced AKI24, ischemia/reperfusion-induced acute renal failure25, and unilateral ureteral obstruction-induced renal fibrosis26. Nevertheless, the vast majority of transplanted MSCs do not survive for a long time and only a very small number of survived MSCs home to damaged kidney in vivo. The limited survival and engraftment of transplanted MSCs blur the effectiveness of MSCs-based therapy27. Therefore, to maximize the clinical utility of MSCs, strategies must be employed to improve their therapy efficacy.

One of the common strategies that improve the therapeutic effects of stem cell transplantation is pre-treatment stem cells with small molecules drugs. Compared with genetic manipulation, small-molecule drugs have a prominent advantage: their effects can be fine-tuned by altering their working concentration, duration time, and compositions28. Melatonin efficiently prevented the stemness loss of bone marrow mesenchymal stem cells (BMMSCs) and improved their therapeutic efficacy in bone repair and immunological colitis29. Osthole30 enhanced the osteogenic ability of periodontal ligament stem cells derived from periodontitis tissues, which could be a potential strategy to treat periodontitis. These studies indicate that small-molecule drugs are potential candidates for stem cell manipulation in regenerative medicine.

Res, a natural small-molecule compound, is a phytochemical that has antitumor and anti-inflammatory properties31. Res generally acknowledged as anti-aging or stem cell-protection substances, which promoted MSCs proliferation, maintained differentiation potential of MSCs, and delayed MSCs senescence32,33. Co-administration of Res and MSCs could augment therapeutic efficiency of MSCs in autoimmune encephalomyelitis34 and cardiomyopathy35, suggesting improving effects of Res infusion on MSCs-based therapy. However, the role of Res pre-treatment in MSCs-based therapy has not been characterized. In this study, we found that Res-hucMSCs improved renal function compared with DMSO-hucMSCs, as demonstrated by the decrease of serum Cr and BUN levels, as well as the decrease of histological injury score and apoptotic kidney tubular cells. HucMSCs primed with Res exhibited more effective repair effects than untreated hucMSCs in cisplatin-induced AKI models. Res pre-treatment is safe, efficient and low cost, which is expected to emerge as a promising strategy to improve MSCs-based therapy.

Protection of the implanted cells from the adverse environment of the injured tissues is of utmost importance for a successful cell therapy. Administration of Res together with MSCs positively contributes to the number of living MSCs in injured liver36. Here we confirmed that Res enhanced the proliferation and anti-apoptosis ability of hucMSCs via promoting PDGF-DD autocrine in hucMSCs, which protected hucMSCs against a hostile microenvironment to survive for a long time. PDGF-DD, a recently discoverable member of the PDGF family, binds to PDGF receptor-β with high affinity. PDGF-DD binds and activates PDGFR-β resulting in downstream phosphorylation of ERK37. The ERK signal pathway is involved in regulating proliferation and apoptosis process of cells. Our previous study indicated that exosomes derived from hucMSCs protected against cisplatin-induced renal tubular cells apoptosis by activating ERK signal pathway18. In this study, Res-hucMSCs secreted more PDGF-DD into renal tubular cells, which activated ERK pathway and inhibited renal tubular cells apoptosis, eventually exerted a more effective repair ability than did hucMSCs in AKI.

Increasing evidences support the idea that MSCs exert a therapeutic effect via promoting angiogenesis40–42. PDGF-DD, an important angiogenic factor, can promote angiogenesis43. Angiogenesis involves a series of coordinated events, including degradation of the extracellular matrix around the vessel, proliferation, and migration of vascular endothelial cells and mural cells to assemble the new vessel, lumen formation, and pericytes and smooth muscle cells to construct the mural cell layer of the vessel wall44. Here, although it had no significant effect on tube-like structure formation of HUVEC cells, the CdM of Res-hucMSCs effectively stimulated proliferation and
Fig. 5 (See legend on next page.)
migration of HUVEC cells. Proliferation and migration of endothelial cells are an important link for angiogenesis. Furthermore, CD31 was in a high-level expression in the Res-hucMSCs group compared with that in the DMSO-hucMSCs group in vivo. In contrast, angiogenesis induced by Res-hucMSCs were abolished when Res-hucMSCs were treated with the PDGF-DD siRNA. All of these findings suggested that angiogenesis induced by PDGF-DD was involved in the renal protective effect of Res-hucMSCs.

We can roughly conclude from results of the present study that Res-hucMSCs protected against kidney injury by secreting PDGF-DD to activate ERK pathway in renal tubular cells and promote angiogenesis in endothelial cells. The mechanism of how Res increase PDGF-DD secretion in hucMSCs, however, is not clear. Nuclear factor E2-related factor 2 (Nrf2) is a master transcriptional regulator of cellular defenses against oxidative stress. Res significantly increased the Nrf2 expression in hucMSCs (Figure S5), which suggest that Res-hucMSCs is more resistant to cisplatin-induced oxidative stress microenvironment than hucMSCs. Furthermore, Malhotra et al.45 found that PDGF-C was a direct transcriptional target of Nrf2. In addition, BMMSCs stimulated by pro-inflammatory cytokines increased the expression of PDGF via the Nrf2-HIF-1α pathway and promoted prostate cancer growth 46. Based on Figure S5, we suggest that Res promote the PDGF-DD expression of hucMSCs possibly through regulating Nrf2. On the other hand, Res is a known activator of sirtuin1 (SIRT1). Our study also confirmed that the SIRT1 level in hucMSCs obviously increased after Res treatment (Figure S5). Although the studies of SIRT1 regulating PDGF have not been reported yet, the studies of SIRT1 regulating other growth factors such as vascular endothelial growth factor and insulin-like growth factor have been endless 47-49. Hence, SIRT1 may be involved in Res enhancing hucMSCs PDGF-DD secretion. Exosomes derived from hucMSCs act as transporters in cell—cell communication to deliver bioactive molecules from original cells to the recipient cells. PDGF-DD secreted by hucMSCs or Res-hucMSCs was transported through exosomes, which is unclear. All these assumptions need to be confirmed by further studies.

Conclusion
Our results have clearly demonstrated that Res-modified hucMSCs secrete PDGF-DD to activate ERK pathway in renal tubular cells and promote angiogenesis in endothelial cells, which eventually have a higher efficiency than hucMSCs in the repair of cisplatin-induced kidney injury (Pattern diagram). This study provides a new therapeutic strategy to improve kidney function for patients with AKI.

Acknowledgements
The study was supported by the National Natural Science Foundation of China (Grant 81272481, 81871496), the Major Research Plan of Jiangsu Higher Education (Grant 15KJA320001), Jiangsu Province’s Major Project in Research and Development (Grant BE2016171), the opening project of the Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering(Grant KF201601), and the Innovation Project for Graduate Student Research of Jiangsu Province (Grant KYCX17_1819).

Author details
1Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China. 2Huairan maternity and child health care hospital, Huairan, Jiangsu, People’s Republic of China. 3Key Laboratory of Embryo Molecular Biology, Ministry of Health and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, People’s Republic of China

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/10.1038/s41419-018-0959-1).

Received: 21 March 2018 Revised: 6 July 2018 Accepted: 1 August 2018
Published online: 20 September 2018

References
1. Schrier, R. W., Wang, W., Poole, B. & Mitra, A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest. 114, 5–14 (2004).
2. Thiele, R. H., Isbell, J. M. & Rosner, M. H. AKI associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 10, 500–514 (2015).

3. Ananthanam, S. & Lewington, A. J. Acute kidney injury. J. R. Coll. Phys. Edinb. 43, 523–528 (2013) quiz 329.

4. Morigi, M., Rota, C. & Remuzzi, G. Mesenchymal stem cells in kidney repair. Methods Mol. Biol. 1416, 109–107 (2016).

5. Qian, H. et al. Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int. J. Mol. Med. 22, 325–332 (2008).

6. Yuan, X., Wang, X., Chen, C., Zhou, J. & Han, M. Bone mesenchymal stem cells ameliorate ischemia/reperfusion-induced damage in renal epithelial cells via microRNA-223. Stem Cell Res. Ther. 8, 146 (2017).

7. Weiss, M. L. et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26, 2865–2874 (2008).

8. Peng, X. et al. Human umbilical cord mesenchymal stem cells attenuate cisplatin-induced acute and chronic renal injury. Exp. Biol. Med. 238, 960–970 (2013).

9. Swainathan, M. et al. Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J. Am. Soc. Nephrol. 29, 260–267 (2018).

10. Schugar, R. C., Robbins, P. D. & Deasy, B. M. Small molecules in stem cell self-renewal and differentiation. Gene Ther. 15, 126–138 (2008).

11. Gorbunov, N. et al. Regeneration of injured myocardium with resveratrol-modified cardiac stem cells. J. Cell. Mol. Med. 16, 174–184 (2012).

12. Rauf, A. et al. A comprehensive review of the health perspectives of resveratrol. Food Funct. 8, 4284–4305 (2017).

13. Xiao, Z., Chen, C., Meng, T., Zhang, W. & Zhou, Q. Resveratrol attenuates renal injury and fibrosis by inhibiting transforming growth factor-beta pathway on matrix metalloproteinase 7. Exp. Biol Med. 241, 140–146 (2016).

14. Chen, L. et al. Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol. Nutr. Food Res. 59, 853–866 (2015).

15. Fu, Y. et al. Resveratrol inhibits ionizing irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP3 inflammasome activation. Int. J. Mol. Sci. 14, 14105–14118 (2013).

16. Zhang, A. et al. Resveratrol rescued the TNF-alpha-induced impairments of osteogenesis of bone-marrow-derived mesenchymal stem cells and inhibited the TNF-alpha-activated NF-kB, C/EBPdelta signaling pathway. Int. Immunopharmacol. 26, 409–415 (2015).

17. Qiao, C. et al. Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol. Int. 32, 8–15 (2008).

18. Zhou, Y. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 4, 34 (2013).

19. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J. & Kessler, P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

20. Roche, E. T. et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 35, 6850–6858 (2014).

21. Lutela, M. et al. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 104, 3198–3204 (2004).

22. Zhang, B. et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Vimentin/beta-catenin pathway. Stem Cells Transl. Med. 4, 513–522 (2015).

23. Ma, J. et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl. Med. 6, 51–59 (2017).

24. Zhu, Y. et al. MicroRNA-146b, a sensitive indicator of mesenchymal stem cell repair of acute renal injury. Stem Cells Transl. Med. 5, 1406–1415 (2016).

25. Li, W. et al. Macrophages are involved in the protective role of human umbilical cord-derived stromal cells in renal ischemia/reperfusion injury. Stem Cell Res. 10, 405–416 (2013).

26. Matsu, F. et al. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT5 activation and STAT5-dependent MIF-9 production. Am. J. Physiol. Ren. Physiol. 312, F25–F32 (2017).