Characterization of colibactin-associated mutational signature in an Asian oral squamous cell carcinoma and in other mucosal tumor types

Arnoud Boot,1,2 Alvin W.T. Ng,2,3 Fui Teen Chong,4 Szu-Chi Ho,1 Willie Yu,1,2 Daniel S.W. Tan,4 N. Gopalakrishna Iyer,1,4 and Steven G. Rozen1,2,3

1Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore; 2Center for Computational Biology, Duke-NUS Medical School, 169857, Singapore; 3NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore; 4Cancer Therapeutics Research Laboratory, Division of Medical Science, National Cancer Centre Singapore, 169610, Singapore

Mutational signatures can reveal the history of mutagenic processes that cells were exposed to before and during tumorigenesis. We expect that as-yet-undiscovered mutational processes will shed further light on mutagenesis leading to carcinogenesis. With this in mind, we analyzed the mutational spectra of 36 Asian oral squamous cell carcinomas. The mutational spectra of two samples from patients with presented with oral bacterial infections showed novel mutational signatures. One of these novel signatures, SBS_A^rT, is characterized by a preponderance of thymine mutations, strong transcriptional strand bias, and enrichment for adenines in the 4 bp 5’ of mutation sites. The mutational signature described in this manuscript was shown to be caused by colibactin, a bacterial mutagen produced by E. coli carrying the pks-island. Examination of publicly available sequencing data revealed SBS_A^rT in 25 tumors from several mucosal tissue types, expanding the list of tissues in which this mutational signature is observed.

[Supplemental material is available for this article.]

Results

Bacterial infection–associated OSCCs show novel mutational signatures

We analyzed whole-exome sequencing data from 36 OSCCs treated in Singapore, including 18 previously published OSCCs (Vettore et al. 2015). Clinical information on these tumors is included in Supplemental Table S1. These tumors had significantly fewer somatic SBSs than did the OSCCs and HNSCCs analyzed by The Cancer Genome Atlas (TCGA) consortium (median 1.02 vs. 1.66 and 2.44 mutations per megabase; \(P = 4.11 \times 10^{-5} \) and \(4.85 \times 10^{-10} \), respectively, Wilcoxon rank-sum tests) (Ellrott et al. 2018; Alexandrov et al. 2020). No difference in tumor mutation.
burden was observed between smokers and nonsmokers. The two tumors from patients that presented with strong bacterial infection (62074759 and TC1) showed a higher mutation burden, although not statistically significant (average mutation burden of 2.6 and 1.14 mutations per megabase, respectively; \(P=0.078 \), Wilcoxon rank-sum test). Experience has shown that mutational signature assignment to tumors with extremely low numbers of mutations is unreliable. Therefore, we excluded six tumors that had fewer than 10 SBSs from further analysis. The mutational spectra of the remaining 30 tumors are shown in Supplemental Figure S1.

We computationally reconstructed the mutational spectra of the 30 tumors using the mutational signatures previously observed in HNSCCs and OSCCs (Supplemental Fig. S2A; Alexandrov et al. 2020). The spectra of 62074759 and TC1 were poorly reconstructed (Fig. 1A, B; Supplemental Fig. S2B). Examination of the pathology reports revealed that both 62074759 and TC1 had presented with strong oral bacterial infections, whereas none of the other 34 had mentions of bacterial infection \((P=0.0016, \text{ Fisher’s exact test}) \) (Supplemental Table S1). Both of these poorly reconstructed spectra showed unique distinctive mutation patterns. Clustering of the mutational spectra of the OSCC cohort together with the TCGA HNSCCs showed 62074759 and TC1 clustering apart, supporting these mutational spectra being distinct (Supplemental Fig. S3). This led us to hypothesize that each was caused predominantly by a single, novel, mutational process, which in the case of TC1 appeared to be combined with APOBEC-associated mutagenesis (Alexandrov et al. 2020). Both spectra showed \(T>A \) and \(T>C \) peaks with strong transcriptional strand bias but were clearly distinct.

The SBS mutational spectrum in 62074759

During routine visual inspection of the read alignments supporting the somatic variants in 62074759, we noticed that 51 out of the 84 \(T>C \) mutations were directly preceded by at least three adenines (three adenines directly \(5’ \) of the \(T>C \) mutation). In addition, most of the \(TTT > TNT \) mutations were located within \(TTTT \) homopolymers. Because of the high risk of sequencing errors in and near homopolymers, we performed Sanger sequencing to validate 96 somatic SBSs detected in 62074759, all of which were confirmed.

We next sequenced the whole genome of 62074759, identifying 34,905 somatic SBSs and 4037 small insertions and deletions (indels). The whole-genome SBS mutation spectrum confirmed the spectrum observed in the exome (Fig. 2A; Supplemental Fig. S1). The spectrum was dominated by \(\text{AT} > \text{AA} \) and \(\text{AT} > \text{AC} \) mutations, with a main peak at \(\text{ATTT} > \text{ACTT} \), and by \(\text{TTT} > \text{TAT} \), \(\text{TCT} > \text{TCT} \), and \(\text{TGT} > \text{TGT} \) mutations. Similar to the exome data, the genome data showed an enrichment for adenines \(5’ \) of \(T>C \) mutations. Among all SBSs, 79.5% had an adenine 3 bp \(5’ \) of the mutation sites, and 65.3% had an adenine 4 bp \(5’ \) of the mutation (Fig. 2B). Thymine mutations predominantly occurred in \(\text{AAWWW} \) motifs, with 93.5% and 75.2% having adenines 3 bp and 4 bp \(5’ \) of the mutation, respectively. \(\text{AT} > \text{ACT} \) SBSs mainly occurred in \(\text{AAWAT} \) motifs, with 98.2% having an adenine 3 bp \(5’ \) of the mutation. More broadly, we also observed strong enrichment for \(\text{AAAA} \) immediately \(5’ \) of thymine SBSs (Fig. 2C). No enrichment of adenines \(5’ \) of mutated cytosines was observed (Supplemental Fig. S4).

In 62074759, the mutational spectra of SBSs in trinucleotide context were essentially identical at a wide range of variant allele frequencies (VAFs) (Supplemental Fig. S5). The presence of this signature in mutations with high VAFs as well as lower VAFs suggests that the underlying mutational process continued for a considerable period of time, which included both tumor initiation and tumor expansion.

Mutational processes associated with large adducts are known to generate more mutations on the nontranscribed strands of genes than on the transcribed strands, owing to transcription-coupled nucleotide excision repair (TC-NER) of the adducts on transcribed strands (Mugal et al. 2009). Therefore, to investigate whether this novel signature might have been caused by large adducts, we examined its transcriptional strand bias. We observed very strong enrichment of mutations when thymine is on the transcribed strand (and adenine is on the nontranscribed strand), which is indicative of adduct formation on adenines. Consistent with the activity of TC-NER, the bias of \(T>A, T>C, \) and \(T>G \) mutations correlated strongly with transcriptional activity \((P=9.50 \times 10^{-41}, 6.33 \times 10^{-91}, \) and \(5.69 \times 10^{-33} \), respectively, chi-squared tests) (Fig. 2D). This, plus the absence of enrichment for adenines \(5’ \) of cytosine mutations, suggests that the cytosine mutations in this sample were not caused by the same mutational process as the thymine mutations. In light of the preference for adenines \(5’ \) of mutations from thymines in 62074759, we call this signature \(\text{SBS_A^{PT}} \).
Insertions, deletions, and dinucleotide substitutions associated with SBS_AnT

The vast majority of indels were deletions (98.6%), mainly of single thymines (Fig. 3A). The indel spectrum did not resemble any of the previously published indel signatures (Alexandrov et al. 2020). Like the SBSs, deletions of thymines in thymine mono- and dinucleotides showed strong enrichment for three preceding adenines (Fig. 3B,C). Thymine deletions in thymine tri- to octo-nucleotides had very strong enrichment for single adenines immediately 5' of the thymine repeat, but enrichment for adenines further 5' decreased rapidly for longer repeats (Supplemental Fig. S6). For thymine deletions outside of thymine repeats, we observed strand bias consistent with adenine adducts ($P=0.01$, binomial test) (Supplemental Fig. S7). Contrastingly, thymine deletions in thymine tetranucleotides showed transcriptional strand bias in the

Figure 2. In-depth characterization of SBS_AnT in the whole-genome data from tumor 62074759. (A) SBS spectrum. (B) SBS sequence context preferences, revealing strong preference for adenosines 3 bp 3' of mutated thymines. Thymine mutations predominantly occurred in AAWTTW motifs. (C) Permutation view of sequence context preferences of mutations from thymines. Each row represents one mutation, with bases indicated by color as in panel B. (D) Transcriptional strand bias as a function of gene expression level.
opposite direction ($P = 0.01$, binomial test). Thymine deletions in thymine homopolymers of other lengths lacked transcriptional strand bias. We call this indel signature ID_AnT.

We detected 171 double-base substitutions (DBSs) in tumor 62074759, most of which were CC \rightarrow NN and TC \rightarrow NN substitutions (Supplemental Fig. S8). As the predominant mutational process in 62074759 caused almost exclusively thymine mutations, it is unlikely that these DBSs were caused by the same mutational process. The DBS spectrum best resembles the DBS spectrum observed in cisplatin exposed cell lines (cosine similarity of 0.859) (Boot et al. 2018). In concordance with cisplatin-associated mutagenesis (SBS10a), before the development of the tumor that we sequenced, which was a recurrence, the initial tumor had been treated with several chemotherapeutic drugs, including cisplatin.

SBS_A^nT in publicly available sequencing data

To investigate whether SBS_A^nT was also present in other tumors, we investigated 4645 tumor genomes and 19,184 tumor exomes compiled for the PCAWG Mutational Signatures Working Group (Alexandrov et al. 2020). We searched for tumors that both show strong enrichment of adenines 3 and 4 bp 5′ of mutated thymines, as well as clear presence of the SBS_A^nT mutational signature in the trinucleotide mutation spectrum. We found statistically significant enrichment for adenines 3 and 4 bp 5′ of thymine mutations in 39 whole-exome and 16 whole-genome samples (Supplemental Data S1). These included tumors of the bladder, colon, rectum, and prostate. Visual inspection of the mutation spectra showed POLE-associated mutagenesis (SBS10a) in 25 tumors, suggesting POLE-associated mutagenesis sometimes shows sequence context specificity similar to SBS_A^nT (Supplemental Fig. S9).

To further increase confidence in the selection of tumors showing SBS_A^nT we used the mSigAct signature presence test to assess whether SBS_A^nT (interpreted as a SBS signature in trinucleotide context) was needed to explain candidate observed spectra (Supplemental Data S2; Ng et al. 2017). By using the signature assignments previously reported for these tumors (Alexandrov et al. 2020), we compared reconstruction of the mutational spectra with and without SBS_A^nT. We identified 25 tumors that were reconstructed significantly better when including SBS_A^nT (Table 1). Example spectra of these tumors are shown in Figure 4. In these
Table 1. Whole-exome and whole-genome sequenced tumors found to have significant evidence of SBS_AnT exposure using mSigAct

Sample	Tissue	Data	1	5	10a+b	17a+b	28	Othera	A'T	Qval	
BD182T	Bile-duct	WES	0	349	NA	NA	879	NA	877	1.8 × 10^{-69}	
BD173T	Bile-duct	WES	0	0	NA	NA	377	846	6.5 × 10^{-39}		
BD121T	Bile-duct	WES	117	145	1952	NA	NA	NA	80	182	2.4 × 10^{-16}
TCGA-G2-AA38	Bladder	WES	0	101	NA	NA	790	45	3.2 × 10^{-3}		
TCGA-GC-A613	Bladder	WES	12	105	NA	NA	161	32	3.9 × 10^{-3}		
TCGA-FU-A3HZ	Cervix	WES	0	107	2421	NA	655	0	71	1.6 × 10^{-3}	
TCGA-AV-4071	Col	WES	0	45	NA	NA	79	40	7.7 × 10^{-5}		
Sysucc-311T	Colon	WGS	0	745	11,319	NA	1864	NA	231	8.0 × 10^{-4}	
TCGA-AG-3902	Rectum	WES	0	107	2421	NA	655	0	71	1.6 × 10^{-3}	
TCGA-AV-4071	Colon	WGS	0	745	11,319	NA	1864	NA	231	8.0 × 10^{-4}	
TCGA-AG-3902	Rectum	WES	0	107	2421	NA	655	0	71	1.6 × 10^{-3}	
SP80615	Rectum	WGS	2305	2948	NA	NA	206	2097	3653	6.5 × 10^{-12}	
TCGA-AG-3902	Rectum	WES	42	41	NA	NA	28	65	1.6 × 10^{-7}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		
TCGA-AG-3902	Rectum	WGS	2341	12,182	NA	NA	10,097	2148	7.2 × 10^{-4}		

This table displays only mutational signatures present in at least five tumors; the full table is included in Supplemental Data S2. (NA) not analyzed; this indicates that this mutational signature was not previously identified in this tumor and therefore was not included in the mSigAct analysis.

aTotal number of SBSs assigned to other mutational signatures.

Figure 4. Discovery of SBS_A’T in publicly available mutation data. Example spectra of tumors positive for SBS_A’T. The right panel shows the transcriptional strand bias; for the whole-genome samples, only SBSs in transcribed regions were included. The bile duct, bladder, and HNSCC tumors are whole-exome data; the prostate and rectal tumors are whole-genome data. (U) Untranscribed strand; (T) transcribed strand.
25 tumors, we identified 53 somatic SBSs that were likely caused by SBS_A^T and that affected known oncogenes or tumor suppressor genes (Supplemental Table S2). Affected genes included TP53, PTEN, KMT2A, KMT2C, and EZH2. Among the 25 tumors with likely SBS_A^T mutations, indel information was only available for the six PCAWG whole genomes (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 2020). Five of these had thymine deletions with the expected sequence contexts (Supplemental Figs. S10, S11).

Exploring the etiology of SBS_A^T

DNA repair defects can affect mutational signatures (Volkova et al. 2020). Therefore, we first checked for defects in DNA repair genes that could have transformed the appearance of a known mutational process to the mutational signature we observed. We observed MSH6 p.V878A and ATR p.L1483X substitutions (Supplemental Table S2). However, MSH6 p.V878A is predicted to be benign and ATR p.L1483X was only present at 7.4% VAF and therefore could not have accounted for the vast majority of SBS_A^T mutations that had higher VAFs. We therefore concluded that these variants did not play a role in shaping the SBS_A^T mutational signature. Moreover, none of the other 25 SBS_A^T-positive tumors showed mutations in these genes, nor did we observe any other recurrently affected DNA repair genes in these tumors (Supplemental Table S2). We next sought to identify the etiology of SBS_A^T. The enrichment of mutations of T>S>A on the transcribed strand is indicative of a large molecule that adducts on adenines. Additionally, it is also expected to be an exceptionally large adduct, large enough to reach to 4 bp 5' of the mutated site. Through literature study, we identified a class of minor-groove binding compounds called duocarmycins, which are produced by several species of Streptomyces, a common class of bacteria that are known human symbionts (Hurley and Rokem 1983; Ichimura et al. 1991; Seipke et al. 2012). The molecular structure of duocarmycin SA (duoSA), a naturally occurring duocarmycin, is shown in Figure 5A. Figure 5B shows duoSA intercalated in the minor groove of the DNA helix (source: PDB ID: 1DSM) (Smith et al. 2000; Rose et al. 2018). Duocarmycins bind specifically to adenines in A/T-rich regions, which matches SBS_A^T’s sequence context (Reynolds et al. 1985; Baraldi et al. 1999; Woynarowski 2002).
To investigate whether duocarmycins could be causing SBS_A_T_T, we sequenced four duoSA-exposed HepG2 clones. The mutational spectra of duoSA-exposed HepG2 clones are shown in Figure S5C and Supplemental Figure S12. The mutational signature of duoSA is characterized by strong peaks of T > A mutations with always either an adenine directly 3' or a thymine directly 5' of the mutation site. DuoSA-associated mutagenesis showed strong transcriptional strand bias and showed extended sequence context preference of thymines 3' of mutated thymines (Fig. 5D,E). Indels caused by duoSA treatment mainly comprised indels of single thymines (Fig. 5E; Supplemental Fig. S13). Insertions were mainly found either not next to thymines or in 2-bp thymine repeats. Deletions occurred in any length of thymine repeats. In additional, we also observed TA > AT, CT > AA, and TT > AA DBSs in all clones (Supplemental Fig. S14). From these results, we concluded that SBS_A_T is not caused by duoSA. While this manuscript was under review, the mutational signature of colibactin was published (Pleguezuelos-Manzano et al. 2020). Colibactin is a mutagen produced by Escherichia coli carrying the pks-island. The SBS_A_T and ID_A_T signatures reported here are similar to the SBS and ID signatures caused by colibactin, including the extended sequence context.

Characterization of the mutational signature in TCI

We also sequenced the whole genome of TC1, identifying 5402 SBSs and 67 indels. Besides APOBEC-associated mutations, we observed prominent TG > AG peaks and a strong GTG > GCG peak, all with strong transcriptional strand bias (Supplemental Fig. S15). No extended sequence context preference was observed (Supplemental Fig. S15E). As only the signature of SBS mutations in trinucleotide context was distinctive, we screened for cosine similarity between the thymine (T > N) mutations and screened for T > A mutations specifically for all 23,829 tumors. We found no tumors in which presence of the TC1 mutational signature was visible in the mutation spectrum (Supplemental Fig. S16).

Identification of bacteria causing SBS_A_T and the TCI mutational spectrum

To identify the bacterial species associated with SBS_A_T and the mutational spectrum observed in TCI, we extracted all reads from the WGS data that did not align to the human genome and mapped them to bacterial reference genomes. Fewer than 0.1% of reads from both normal samples as well as tumor 62074759 were nonhuman, opposed to 1.5% from tumor TC1. Of the nonhuman reads, only a small proportion aligned to any of the bacterial genomes (Supplemental Fig. S17). In the sequencing data of the adjacent normal tissue of 62074759, we observed a small proportion of reads aligning to the E. coli genome. By focusing on tumor TC1, we identified several genera of bacteria, including Lachnospiraceae bacterium, Prevotella, Anaerococcus, and Streptococcus (Supplemental Fig. S17). All these bacterial genera are common oral symbionts (Downes et al. 2008; Labutti et al. 2009; Hedberg et al. 2012; Abranches et al. 2018). Because of the rarity of the mutational signatures discovered in this study, it is unlikely that such common oral bacteria would be causal. To explore whether other microorganisms (such as fungi) could be present, we also performed a nucleotide-BLAST on some of the nonhuman reads from all samples, but no high-confidence alignments were found.

Discussion

We analyzed the mutational signatures of 36 Asian OSCCs, hypothesizing that there were still rare mutational processes to be discovered. We identified two novel mutational signatures. These two OSCCs were also the only tumors from our cohort of OSCCs with pathology reports that mentioned high levels of bacterial infection. The rarity of these signatures was illustrated by the fact that we only found 25 additional tumors with SBS_A_T and no additional tumors with the TC1 signature after examining a total of 23,829 tumors. In tumors from tissue types in which we discovered SBS_A_T, only 0.4% showed SBS_A_T. All tumors in which SBS_A_T was detected were from mucosal tissues that harbor bacterial symbionts or that are in direct contact with tissues that harbor symbionts.

Since the initial publication of this manuscript on bioRxiv, SBS_A_T has also been reported in normal colonic crypts from healthy individuals (Lee-Six 2019). SBS_A_T was found to be predominantly active early in life, and different patterns of SBS_A_T activity distribution over the colon were observed. These results are consistent with the hypothesis that bacterial compounds could be causing this signature. "Patchy" exposure patterns are unlikely if there had been dietary or occupational exposure to chemicals, and occupational exposure is also improbable because SBS_A_T was found to be mostly active early in life. We postulate that early in life, while the microbiome is still being established, bacterial infections might have occurred in these patients. Later in life, microbiome homeostasis may have been established, preventing SBS_A_T mutagenesis later in life. For patient 62074759, we propose that the unusual initial treatment of the OSCC before surgery, which included three kinds of chemotherapy and radiotherapy, could have opened a window for bacterial infection after the oral microbiome had been disrupted by the treatments. The tumor sample we sequenced was a recurrence 9 mo after treatment. We can exclude the possibility of the treatments causing SBS_A_T, as the mutational signatures associated with 5-fluorouracil, cisplatin, and radiotherapy have already been published, and gemcitabine, a cytosine analog, would unlikely to cause thymine mutations (Sherborne et al. 2015; Boot et al. 2018; Christensen et al. 2019).

SBS_A_T shows strong transcriptional strand bias, which is commonly observed for mutational processes associated with bulky adducts (Huang et al. 2017; Ng et al. 2017; Boot et al. 2018). The depletion of adenosine mutations on the transcribed strand (which corresponds to depletion of thymine mutations on the untranscribed strand) suggests that the mutational process causing SBS_A_T involves formation of a bulky adduct on adenosine.

Figure 6, A and B, shows a proposed model for adduct formation leading to SBS_A_T. The model assumes two independent adducts, which have been published in the literature, leading to SBS_AnT. However, if this were the case, we would expect to observe multiple pairs of SBSs separated by two unaffected bases, which we did not.
Based on literature research for compounds that could induce mutagenesis with the characteristics of SBS\textsubscript{ATT}, we experimentally established the mutational signature of duoSA. DuoSA is a naturally occurring minor-groove binding DNA alkylating agent produced by a subset of 	extit{Streptomyces} species. As reported, duoSA was highly mutagenic, causing T \textgreater A transversions in A/T-rich regions (Woynarowski 2002). However, the mutational spectrum was clearly distinct from that of SBS\textsubscript{ATT}. In addition, in contrast to SBS\textsubscript{ATT}, duoSA-associated mutagenesis showed sequence context enrichment 3′ of the mutated site. Indels induced by duoSA were dominated by insertions of thymines, whereas SBS\textsubscript{ATT} showed exclusively thymine deletions. We concluded that SBS\textsubscript{ATT} was not caused by duoSA. After the initial submission of our manuscript, a study of a large set of metastatic solid tumors was published that detected the mutational signature of duoSA in two patients (Pristley et al. 2019). These patients had been treated with SYD985, a duocarmycin-based antibody–drug conjugate.

To identify the bacteria associated with SBS\textsubscript{ATT} and the mutational spectrum observed in TC1, we examined the whole-genome sequencing data for reads that map to bacterial genomes. The TC1 tumor data had a very high number of nonhuman sequencing reads. However, alignment to a set of 209 bacterial genomes failed to identify the bacteria associated with the mutational spectrum observed in TC1. Possibly a different genus of bacteria is present in this patient, for which the reference genome sequence is yet to be elucidated. In the 62074759 tumor data, we also observed a low number of reads aligning to the same genera of bacteria also observed in tumor TC1. The absence of large numbers of nonhuman reads in tumor 62074759 is likely because of sampling; if the DNA we sequenced was from the center of the tumor mass opposed to the edge, less contamination would be expected. Ideally, we would have tested the saliva of patients 62074759 and TC1 to identify the bacteria that cause SBS\textsubscript{ATT} and SBS\textsubscript{ATT} leave little doubt that these reflect the same mutational process. Beyond the clear similarities of the 96-channel mutational signature together with strong transcriptional strand bias, the colibactin mutational signature also reports enrichment of adenines 5′ of mutated thymines.
Additionally, the indels reported with both signatures are also highly similar. In particular, we point to the similarity between the Supplementary Figure 4 by Pleguezuelos-Manzano et al. (2020) and our Supplemental Figures S6 and S11.

Bacteria have long been known to be associated with cancer. However, for most associations, such as the association between Salmonella and gallbladder and colon cancer and the association between Chlamydia and cervical carcinoma, only epidemiological evidence exists (van Elsland and Neefjes 2018). The only bacterium for which experimental evidence exists that it causes cancer is Helibacter pylori, which has been shown to cause gastric cancer in gerbils (Watanabe et al. 1998). H. pylori, as well as most other cancer-associated bacteria, is thought to stimulate carcinogenesis through the inflammation associated with the infection (van Elsland and Neefjes 2018). However, some bacteria have been reported to produce toxins able to induce double-strand DNA breaks (van Elsland and Neefjes 2018). For OSCC, the association with bacterial infection is well known, but no mutagenic compounds have been reported to be produced by these bacteria (Karpinski 2019).

Because mutations from ATN > ACN are prominent in both SBS_A^T and Signature 16, which is associated with ethanol exposure in several cancer types, we considered whether ethanol might also contribute to SBS_A^T, possibly via bacteria that metabolize ethanol to acetaldehyde (Yokoi et al. 2015; Letouzé et al. 2017; Li et al. 2018; Tagaino et al. 2019). However, the resemblance between SBS_A^T and Signature 16 is superficial: Signature 16 lacks the extended sequence context and the associated deletion signature of SBS_A^T. Furthermore, we are not aware of any evidence that acetaldehyde elevates T:A > C:G mutations. Thus, it seems highly unlikely that ethanol, either directly or via bacterially metabolized acetaldehyde, contributes to SBS_A^T. This is especially the case given the strong evidence linking SBS_A^T to colibactin.

In summary, we identified two novel mutational signatures in Asian OSCCs that had presented with strong oral bacterial infections. In the other 34 Asian OSCCs, of which none had presented with strong bacterial infections, no novel mutational signatures were discovered. While our manuscript was in revision, a preprint was released that described the sequence context specificity of double-strand breaks induced by the bacterial toxin colibactin (Dziubanska-Kusibab et al. 2020). Colibactin adduct–induced double-strand breaks were strongly enriched in AT-rich regions, with the AAWWT motif to be the most enriched at colibactin-induced double-strand breaks, which fits exactly with the sequence context specificity we observed for the thymine mutations in 62074759 as shown in Figure 2B, panel 2, positions −4 to +1 relative to the mutation site. Subsequently, experimental evidence was published confirming that SBS_A^T is caused by colibactin (Pleguezuelos-Manzano et al. 2020). Our pan-cancer analysis identified several additional tumor types in which SBS_A^T is observed that were not previously detected. Additionally, owing to the high load of SBS_A^T mutations in 62074759, we were able to perform more precise quantification of the sequence context specificity of this mutagenic process, especially with respect of the sequence context specificity of deletions of single thymines.

Methods

Samples

Deidentified fresh-frozen tissue samples and matching whole blood were collected from OSCC patients operated on between 2012 and 2016 at the National Cancer Centre Singapore. In accordance with the Helsinki Declaration of 1975, written consent for research use of clinical material and clinicopathologic data was obtained at the time of surgery. This study was approved by the SingHealth Centralized Institutional Review Board (CIRB 2007/438/B).

Whole-exome and whole-genome sequencing

Whole-exome sequencing was performed at Novogene on a HiSeq X Ten instrument with 150-bp paired-end reads. Whole-genome sequencing was performed at BGI (Hong Kong) on the BGIseq500 platform, generating 100-bp paired-end reads.

Alignment and variant calling

Sequencing reads were trimmed by Trimmomatic (Bolger et al. 2014). Alignment and variant calling and filtering were performed as described previously (Boot et al. 2018). Reads were aligned to GRCh37. We are confident that mapping reads to GRCh38 would not alter the conclusions of this manuscript, as the trinucleotide frequencies are essentially the same in GRCh37 and GRCh38, and the analysis presented does not depend on any particular regions of the human genome or genome annotations that were updated between GRCh37 and GRCh38. Annotation of somatic variants was performed using ANNOVAR (Wang et al. 2010). Sequencing reads that did not align to the human genome were subsequently aligned to 209 bacterial reference genomes from Ensembl (ftp://ftp.ensemblgenomes.org/pub/bacteria/release-35/fasta/bacteria_183_collection/). To detect the presence of reads aligning to the pks-island (AM229678.1), sequencing data were aligned to the human reference genome with the pks-island sequence (AM229678.1) added as a separate contig. For driver gene analysis, only variants inside Tier 1 genes of the cancer gene census were considered (Sondka et al. 2018).

Validation of SBSs by Sanger sequencing

We performed Sanger sequencing to validate 96 variants detected in the whole-exome sequencing of sample 62074759. We selected variants with >15% allele frequency to avoid variants below the detection limit of Sanger sequencing and excluded variants immediately adjacent to a homopolymer of ≥9 bp. PCR product purification and Sanger sequencing were performed at GeneWiz.

Signature assignment

We assigned mutational signatures to the mutational spectra of the 30 OSCCs with 10 or more mutations using SigProfiler and the SigProfiler reference mutational signatures (Alexandrov et al. 2020). As OSCC is a subset of HNSCC, all mutational signatures that were identified in HNSCCs and OSCCs in the International Cancer Genome Consortium’s Pan Cancer Analysis Working Group (PCAWG) analysis were included for reconstruction (Alexandrov et al. 2020). As the PCAWG mutational signatures are based on the trinucleotide abundance of the human genome, when analyzing whole-exome sequencing data, we adjusted to the mutational signatures for exome trinucleotide frequency.

Gene expression data

Single-cell gene expression data for OSCC were downloaded from NCBI GSE103322 (Puram et al. 2017). We took the median gene expression for all tumor cells as the representative expression level of OSCCs.
Identification of additional tumors with the signature in 62074759

Previously compiled whole-exome (N=19,184) and whole-genome (N=4645) sequencing data were screened for presence of the signature in 62074759 (Alexandrov et al. 2020). This included 2780 whole genomes from the Pan Cancer of Whole Genomes Consortium (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 2020) and 9493 whole exomes from the TCGA Consortium (Ellrott et al. 2018). We examined tumors with 50 or more (exomes) or with 500 or more (genomes) thymine mutations to identify enrichment for mutations with the 5′ sequence context characteristic of the signature in 62074759 (Supplemental Data S1).

We then used the mSigAct signature presence test to test for the signature in 62074759 among the candidate tumors identified in the previous step (Supplemental Data S2; Ng et al. 2017; Boot et al. 2018). This test provides a P-value for the null hypothesis that a signature is not needed to explain an observed spectrum compared with the alternative hypothesis that the signature is needed.

In vitro duoSA exposure

Exposure of HepG2 cells to duoSA was performed as described previously (Boot et al. 2018). In short, HepG2 cells were exposed to 100 PM and 250 PM duoSA for 2 mo followed by single-cell cloning. For each concentration, two clones were whole-genome sequenced. duoSA (CAS 130288-24-3) was obtained from BOC Sciences.

Data access

Sanger sequencing results validating 96 variants observed in tumor 62074759 are included in Supplemental Data S3. The sequencing FASTQ files generated in this study have been submitted to the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena/browser/) under accession number ERP116345 (duoSA-treated HepG2 clones) and the European Genome-phenome Archive (EGA; https://ega-archive.org/) under accession number EGAS00001003131 (patient data).

Competing interest statement

The authors declare no competing interests.

Acknowledgments

The results here are partly based on data generated by the TCGA Research Network (http://cancergenome.nih.gov/) and data assembled by the International Cancer Genome Consortium Pan Cancer Analysis Working Groups. This study was funded by the National Medical Research Council, NMRC/CIRG/1422/2015 to S.G.R.

Author contributions: A.B. and S.G.R. designed the study, drafted the manuscript, and prepared figures. A.B., A.W.T.N., and W.Y. performed bioinformatics analyses. S.-C.H. performed cell line experiments. F.T.C., D.S.W.T., and N.G.I. contributed materials. All authors read and approved the manuscript.

References

Abranches J, Zeng L, Kajfaz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady LJ, Lemos JA. 2018. Biology of oral Streptococci. Microbiol Spectr 6. doi:10.1128/microbiolspec.GPS2-0042-2018

Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578: 94–101. doi:10.1038/s41586-020-1943-3

Baraldi PG, Cacciari B, Guiotto R, Bonmagni R, Zaid AN, Spalluto G, 1999. DNA minor-groove binders: results and design of new antitumor agents. Farmaco 54: 15–25. doi:10.1007/s00142-98900102-5

Bolger AM, Lohse M, Usadel B. 2014. Trimomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. doi:10.1093/bioinformatics/btu170

Boot A, Huang MN, Ng AW, Ho SC, Lim JQ, Kawakami Y, Chayama K, Teh BT, Nakagawa H, Rozen SG. 2018. In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res 28: 654–665. doi:10.1101/gr.20219.117

Christensen S, Van der Roest B, Besselink N, Janssen R, Boymans S, Martens JWM, Aspo ML, Priestley P, Kuijk E, Cuppen E, et al. 2019. 5-Fluorouracil treatment induces characteristic T > G mutations in human cancer. Nat Commun 10: 4571. doi:10.1038/s41467-019-12594-8

Downes J, Hooper SJ, Wilson MJ, Wade WG. 2008. Prevotella histicola sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 58: 1788–1791. doi:10.1099/ijs.0.065666-0

Dzubienska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A, Kainainen R, Cajuso T, Crosetto N, Orozco M, Aalten LA, et al. 2020. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 26: 2090–2098. doi:10.1038/s41591-020-0908-2

Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotte K, McLellan M, et al. 2018. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst 6: 271–281.e7. doi:10.1016/j.cels.2018.03.002

Feldman M, Sorejornotaram J, Dwek RA, Eser S, Mathew C, Rebelsky M, Parkin DM, Forman D, Bray F. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136: E359–E386. doi:10.1002/ijc.29210

Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al. 2017. COSMIC: somatic cancer genomics at high-resolution. Nucleic Acids Res 45: D777–D783. doi:10.1093/nar/gkw1121

Hedberg ME, Moore ER, Svensson-Stadler I, Hörstedt P, Baranov V, Hernell O, Wai SN, Hammarström S, Hammarström ML. 2012. Lachnosaerobaculum gen. nov., a new genus in the Lachnospiraceae: characterization of Lachnosaerobaculum uncangense gen. nov., sp. nov., isolated from the human small intestine, and Lachnosaerobaculum orale sp. nov., isolated from saliva, and reclassification of Eubacterium salubreum (Prévot 1966) Holdeman and Moore 1970 as Lachnosaerobaculum salubreum comb. nov. Int J Syst Evol Microbiol 62: 2685–2690. doi:10.1099/ijs.0.03613-0

Huang MN, Yu W, Teoh WW, Ardin M, Jusakul A, Ng AW, Boot A, Abedi-Ardekani B, Villar S, Myint SS, et al. 2017. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res 27: 1475–1486. doi:10.1101/gr.220038.116

Hurlburt HE, Rokem JS. 1983. Biosynthesis of the antitumor antibiotic CC-1065 by Streptomyces zellenis. J Antibiot (Tokyo) 36: 383–390. doi:10.7164/antibiotics.36.383

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. 2020. Pan-cancer analysis of whole genomes. Nature 578: 82–93. doi:10.1038/s41586-020-1969-6

Ichimura M, Ogawa T, Katsumata S, Takahashi K, Nakano H. 1991. Duocarmycins, new antitumor antibiotics produced by Streptomyces; producing organisms and improved production. J Antibiot (Tokyo) 44: 1045–1053. doi:10.7164/antibiotics.44.1045

Karpinski TM. 2019. Role of oral microbiota in cancer development. Microorganisms 7: 20. doi:10.3390/microorganisms7010020

Labutti K, Pukall R, Steinblock K, Glavini Del Rio T, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolam M, et al. 2009. Complete genome sequence of Anaerococcus prevoti type strain (PCT1). Stand Genomic Sci 1: 159–165. doi:10.4549/sigs.24194

Lee-Six H. 2019. “Somatic evolution in human blood and colon.” Ph.D. thesis, University of Cambridge, Cambridge.

Letouzé E, Shinde J, Renault V, Couchy G, Blanc JF, Tubacher E, Bayard Q, Bacz D, Meyer V, Semhoujn J, et al. 2017. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat Commun 8: 1315. doi:10.1038/ncomms13158

Li XC, Wang MY, Yang M, Dai HJ, Zhang BF, Wang W, Chu XL, Wang X, Zheng H, Niu RF, et al. 2018. A mutational signature associated with alcohol consumption and prognostically significantly mutated driver genes in esophageal squamous cell carcinoma. Ann Oncol 29: 938–944. doi:10.1016/j.annonc/mdy011

Mimaki S, Totsuka Y, Suzuki Y, Nakai C, Goto M, Kojima M, Arakawa H, Takemura S, Tanaka S, Maruhashi S, et al. 2016. Hypermutation and unique mutational signatures of occupational cholangiocarcinoma in
printing workers exposed to haloalkanes. *Carcinogenesis* **37**: 817–826. doi:10.1093/carcin/bgw066

Mugal CF, von Grunberg HH, Peifer M. 2009. Transcription-induced mutational strand bias and its effect on substitution rates in human genes. *Mol Biol Evol* **26**: 151–142. doi:10.1093/molbev/msn245

Ng AWT, Poon SL, Huang MN, Lim JQ, Boot A, Yu W, Suzuki Y, Thangaraju S, Ng CCY, Tan P, et al. 2017. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. *Sci Transl Med* **9**: eaan6446. doi:10.1126/scitranslmed.aan6446

Pleguezuelos-Manzano C, Puschhof J, Huber AR, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, et al. 2020. Mutational signature in colorectal cancer caused by genotoxic *E. coli*. *Nature* **580**: 269–273. doi:10.1038/s41586-020-2080-8.

Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, Duyvesteyn K, van Hoeck A, Onstenk W, et al. 2019. Pan-cancer whole-genome analyses of metastatic solid tumours. *Nature* **575**: 210–216. doi:10.1038/s41586-019-1689-y.

Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, et al. 2017. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. *Cell* **171**: 1611–1624.e24. doi:10.1016/j.cell.2017.10.044

Reynolds VL, Molineux IJ, Kaplan DJ, Swenson DH, Hurley LH. 1985. Reaction of the antitumor antibiotic CC-1065 with DNA: location of the site of thermally induced strand breakage and analysis of DNA sequence specificity. *Biochemistry* **24**: 6228–6237. doi:10.1021/bi00343a029

Volkova NV, Meier B, González-Huici V, Bertolini S, Gonzalez S, Voehringer H, Abascal F, Martincorena I, Campbell PJ, Gartner A, et al. 2020. Mutational signatures are jointly shaped by DNA damage and repair. *Nat Commun* **11**: 2169. doi:10.1038/s41467-020-15912-7

Woynarowski JM. 2002. Targeting critical regions in genomic DNA with AT-specific anticancer drugs. *Biochim Biophys Acta* **1587**: 300–308. doi:10.1016/S0925-4439(02)00095-9

Yokoi A, Maruyama T, Yamanaka R, Ekumi D, Tomofuji T, Kashiwazaki H, Yamazaki Y, Morita M. 2015. Relationship between acetaldehyde concentration in mouth air and tongue coating volume. *J Appl Oral Sci* **23**: 64–70. doi:10.1590/1678-775720140223

Received August 6, 2019; accepted in revised form June 4, 2020.