Orbital-anisotropic electronic structure in the nonmagnetic state of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ superconductors

T. Sonobe1, T. Shimojima1,2, A. Nakamura3, M. Nakajima3, S. Uchida4, K. Kihou5, C. H. Lee5, A. Iyo5, H. Eisaki5, K. Ohgushi6 & K. Ishizaka1,2

High-temperature superconductivity in iron-pnictides/chalcogenides arises in balance with several electronic and lattice instabilities. Beside the antiferromagnetic order, the orbital anisotropy between Fe 3d_{xy} and 3d_{yz} occurs near the orthorhombic structural transition in several parent compounds. However, the extent of the survival of orbital anisotropy against the ion-substitution remains to be established. Here we report the composition (x) and temperature (T) dependences of the orbital anisotropy in the electronic structure of a BaFe$_2$(As$_{1-x}$P$_x$)$_2$ system by using angle-resolved photoemission spectroscopy. In the low-x regime, the orbital anisotropy starts to evolve on cooling from high temperatures above both antiferromagnetic and orthorhombic transitions. By increasing x, it is gradually suppressed and survives in the optimally doped regime. We find that the in-plane orbital anisotropy persists in a large area of the nonmagnetic phase, including the superconducting dome. These results suggest that the rotational symmetry-broken electronic state acts as the stage for superconductivity in BaFe$_2$(As$_{1-x}$P$_x$)$_2$.

High-temperature superconductivity (T_c) emerges from the multi-band electronic structure near the Fermi level (E_F) composed of the five Fe 3d orbitals. Most of the parent compounds exhibit an antiferromagnetic (AF) order at T_N and tetragonal-to-orthorhombic structural transitions just at or slightly above T_N (T_c). In addition, the lifting of degeneracy in Fe 3d_{xy}/3d_{yz} (xz/yz) orbitals, the so-called orbital anisotropy, was observed by angle-resolved photoemission spectroscopy (ARPES), for various materials, such as the BaFe$_2$As$_2$ family$^{2-7}$, NaFeAs8 and FeSe9,10. The orbital anisotropy is a possible explanation for the origin of the electronic nematicity$^{8,10-13}$ which has been intensively studied in terms of magnetic origin14,15. It is theoretically suggested that the orbital fluctuation evolves near the orbital-ordered state16,17. This results in a sign-preserved s_{++}-wave superconductivity, whereas a sign-changing s_{--}-wave superconductivity is induced by the spin fluctuation18,19. The nature of the orbital order, in particular, the extent of the persistence of the orbital anisotropy against the ion-substitution, can help understand the mechanism of high-T_c superconducting (SC) transition in iron-based materials.

The persistence of the orbital-anisotropic state, however, has only been investigated for some shallow-doped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ materials20. For an accurate tracking of the intrinsic orbital anisotropy beyond the SC dome, both materials and methods need to be selected carefully. The application of ARPES on strain-free crystals enables the avoidance of an extrinsic anisotropy which increases the onset T_s of the orbital anisotropy (T_c)14. In addition, the isovalent-ion substituted system is the most suitable for the thorough investigation of the degeneracy lifting in the xz/yz orbitals, without the influence of the chemical potential shift induced by carrier doping. Thus, we used ARPES on strain-free BaFe$_2$(As$_{1-x}$P$_x$)$_2$ (AsP122) crystals with $0.00 \leq x \leq 0.87$ for the study of the $x-T$ region showing an orbital-anisotropic electronic structure.
Results

The \(x\)-dependence of the \(E-k\) images around the \(X/Y\) point. The electronic structure of \(\text{BaFe}_2\text{As}_2\) is highly two-dimensional as indicated by the calculated Fermi surfaces (FSs) in Fig. 1a. Figure 1b shows the FS image for \(x = 0.61\) from the ARPES with \(h\nu = 40.8\) eV. The energy–momentum (\(E-k\)) image along (0,0) and (\(\pi,\pi\)) and the image of its second \(E\) derivative are shown in Fig. 1c and d, respectively. They exhibit two hole bands at the Brillouin zone (BZ) center (\(\alpha\) and \(\beta\) bands), and an electron band and a hole band at the BZ corner (\(\gamma\) and \(\delta\) bands). According to the band calculation, the \(\delta\) band reaching the \(\gamma\) band at 50 meV below \(E_F\) is composed of \(xz/yz\) orbital characters. Previous ARPES on \(\text{BaFe}_2\text{As}_2\) demonstrated that degeneracy lifting in the \(xz/yz\) orbitals appears in the \(\delta\) band in the orthorhombic AF state\(^6\).

Here, we focus on the \(\delta\) band at the BZ corner at low \(T\), for the strain-free (twinned) crystals, to determine the orbital anisotropy \(\Phi = E_{yz} - E_{xz}\). Figures 1e1–k1 and e2–k2 show the \(E-k\) images and their second \(E\) derivative image for \(0.00 \leq x \leq 0.74\). The second \(E\) derivative \(E-k\) images of \(0.00 \leq x \leq 0.74\), (e3–k3) Schematic band dispersions obtained from (e2) to (k2). Blue and red curves correspond to the band dispersions of \(yz\) and \(xz\) orbitals, respectively. Broken curve in (e3) shows the degenerate \(xz/yz\) band at higher \(T\).

The \(x\)-dependence of the second \(E\) derivative of the energy distribution curves. The schematics of the band dispersions around \(X/Y\) points shown in Fig. 1e3–k3 were obtained from the spectral dips of the second \(E\) derivative of the energy distribution curves (EDCs), which represents the energy levels of the \(\delta\) band at each \(k\). Figure 2a–i show the second \(E\) derivative of the EDCs near the \(X/Y\) point in an interval of 0.025 Å\(^{-1}\) at 30 K for \(x = 0.00\) and 0.07, at 20 K for \(x = 0.52, 0.74, 0.87\), and at 10 K for \(x = 0.30, 0.45,\) and 0.61, respectively. The
Figure 2. (a-i) x dependence of second E derivative EDCs in an interval of 0.025 Å⁻¹ near X/Y point at 30 K for x = 0.00 and 0.07, 20 K for x = 0.52, 0.74 and 0.87, 10 K for x = 0.24, 0.30, 0.45 and 0.61, respectively. Black open circles represent dip positions in the spectra corresponding to the energy position of the δ hole bands.

systematic parallel shift of the double dip feature as a function of k suggests a clear degeneracy lifting in the xz/yz orbitals in the δ bands for 0.0 ≤ x ≤ 0.30. For higher x values, the orbital anisotropy becomes unclear and, eventually, a single δ band was observed for x = 0.74 and 0.87 down to 20 K. These observations indicate that an orbital anisotropy persists in the optimally doped regime and possibly higher doping level where static orthorhombicity and antiferromagnetism no longer exist.

E-k images around X and Y points of the detwinned single crystals for x = 0.3. It is worth mentioning that the signature of orbital anisotropy was found even in the tetragonal SC state (Fig. 1h3 and i3). To investigate the degeneracy lifting in the xz/yz orbitals in the SC state, we performed ARPES on the de-twinned crystals at x = 0.30. As schematically shown in Fig. 3a and b, a uniaxial pressure was applied to the single crystals along the [1 1 0] direction in the tetragonal notation. This direction is denoted by the γ-axis, corresponding to the shorter b-axis in the orthorhombic notation. The x-axis corresponds to the a-axis in the orthorhombic notation. In the ARPES experiments, the crystals were rotated around [0 0 1] in situ by 90°, for the separate detection of the δ bands along the k₁ and k₂-directions (Fig. 3c).

Figure 3d₁ and d₂ show the band dispersions symmetrised with respect to the X and Y points, respectively, obtained for the SC state at x = 0.30. The peak positions of the EDCs and momentum distribution curves (MDCs), plotted in Fig. 3d₁ and d₂, indicate that the δ band attains higher energy at δX (||k₁) than at δY (||k₂), thus confirming the existence of orbital anisotropy in the SC state. The first-principles band calculation for BaFe₂As₂ indicates that the δ band at X (||k₁) Y (||k₂) is composed of xz (yz) orbital; these orbitals are marked with red (blue) in Fig. 3d₁ and d₂. The orbital anisotropy, δE₂ = δEₓ − δEᵧ, is determined to be ~30 meV at a momentum cut of ~0.3 Å⁻¹ away from the X/Y point, which is comparable to that of the twinned crystals [Fig. 1b3]. These results indicate that the lifting of the xz/yz orbital degeneracy in the SC state is not quantitatively affected by the de-twinning procedure. A similar ARPES measurement at 30 K (T ≈ T₁) demonstrates a comparable magnitude of orbital non-equivalency, suggesting that the superconductivity onset has negligible effect on it (Fig. 3c1 and c2). At 150 K (T > T₁), the δ bands composed of xz and yz orbitals become equivalent (Fig. 3f₁ and f₂), thus recovering the C₄ symmetry of the tetragonal lattice in the high T region. To emphasise the separation between the xz and yz orbital bands, we present images showing the difference of intensities between the E–k image at X (||k₁) and that at Y (||k₂), recorded at 12 K (Fig. 3d₃), 30 K (Fig. 3e₃), and 150 K (Fig. 3f₃).

Dependence of the orbital anisotropy on x and T. To determine the orbital-anisotropic region in the phase diagram, we performed ARPES on an AsP₁2₂ system for a wide range of x and T. Twinned crystals were used as the de-twinning procedure may extrinsically increase T₁ [21]. Figures 4a₁–a₃ show E–k images around the X/Y point for x = 0.24 obtained at 130 K, 70 K, and 10 K, respectively. While a single δ band was observed at 130 K, it split into two at 70 K and 10 K, as indicated by the green curves. To see the T-dependence in detail, Fig. 4b shows the second E derivative of the EDCs at the momentum indicated by the dotted white lines in Fig. 4a₁–a₃, plotted for several T values. As can be seen in Fig. 4b, a single dip gradually splits into two with the decrease of T, indicating the evolution of the orbital anisotropy. The T value where the two-dip structure appears, corresponding to Tm, was determined to be ~110 K for x = 0.24. Similarly, Tm was determined to be ~90 K for x = 0.30, ~70 K for x = 0.45, and ~30 K for x = 0.61, respectively (Fig. 4d₁, d₂, and h₁). It should be noted that the error bars of Tm are particularly large for 0.45 ≤ x ≤ 0.61 as the noise level is in the range of the intrinsic signal. At x = 0.74 and 0.87, down to 20 K the double-dip feature can no longer be observed, as shown in Fig. 4j and l. These findings are summarised in Fig. 5. (a) and (b). (In this work, we find that the relation of Tm < To holds in both as-grown and annealed crystals. The annealed crystals are considered to be of high purity and more homogeneous than the as-grown samples. The present result confirms that the inhomogeneity and/or fluctuations in the sample quality have no serious effect on the determination of Tm in the present ARPES).
Figure 3. (a,b) Geometry 1 and 2 for the ARPES on de-twinned crystals, respectively. (c) Momentum cut corresponding to the Geometry 1 (2) as indicated by a red (blue) line. Photons of $h\nu = 40.8$ eV probe the BZ center near the Γ plane and the BZ corner near the Z plane, respectively. (d1,d2) ARPES images of de-twinned BaFe$_2$(As$_{0.7}$P$_{0.3}$)$_2$ at 12 K ($T < T_c$) by around X along k_y and Y along k_x, respectively. The peak positions from EDCs and MDCs of ARPES images are superimposed by red (xz) and blue (yz) markers, respectively. (d3) Differences between APRES images around X($||k_y$) and Y($||k_x$) at 12 K. Red and blue intensities represent δ bands of xz and yz orbitals, respectively. (e1–e3) Similar to (d1–d3) recorded at 30 K ($T \sim T_c$). (f1–f3) Similar to (d1–d3) recorded at 150 K ($T \gg T_c$).
Discussion

As can be seen in Fig. 5b, T_s and Φ_o of the orbital anisotropy are monotonically suppressed toward the high-x region. Considering that both orthorhombic and AF phases show a similar sudden drop immediately below $x \approx 0.30$, the orbital anisotropy seems to be decoupled from these two orders. Nevertheless, the $x-T$ area where the orbital anisotropy appears is nearly equivalent to the electronic nematic region above T_s and T_N, determined by the torque magnetometry and X-ray diffraction (XRD) measurements22. This coincidence suggests that the

Figure 4. (a1-a3) Second E derivative of the E-k images for $x = 0.24$ taken at 130 K, 70 K and 10 K, respectively. Green curves are the guides to the eyes. (b) T dependence of the second E derivative EDCs of twinned samples of $x = 0.24$ taken at the momentum indicated by the broken lines in (a1-a3). Black open circles represent the spectral dips corresponding to the energy position of δ hole bands. (c1-c3) The same as (a1-a3) but for $x = 0.30$. (d) The same as (b) but for $x = 0.30$. (e1–e3) The same as (a1–a3) but for $x = 0.45$. (f) The same as (b) but for $x = 0.45$. (g1–g3) The same as (a1–a3) but for $x = 0.61$. (h) The same as (b) but for $x = 0.61$. (i1-i3) The same as (a1–a3) but for $x = 0.74$. (j) The same as (b) but for $x = 0.74$. (k1-k3) The same as (a1–a3) but for $x = 0.87$. (l) The same as (b) but for $x = 0.87$.

www.nature.com/scientificreports/
loss of rotational symmetry in the lattice and magnetism cooperatively evolve with the orbital anisotropy from the high-T region. Theoretical studies13 suggest that the imbalance of the xz/yz orbitals in the order of 10 meV resolves the magnetic frustration between (π, π) and $(\pi, -\pi)$, resulting in the enhancement of spin fluctuations. Nuclear magnetic resonance studies23 on AsP\textsubscript{122} reported the spin fluctuations evolving around T_0 in a wide range of x, which possibly supports the above scenario.

For an optimally doped sample at $x = 0.3$, we observed the orbital anisotropy appearing below ~ 90 K, which is not suppressed by the onset of superconductivity (Fig. 3). While the orthorhombic structural phase has not been reported from XRD measurements24 at any T for $x = 0.30$, the present ARPES study may suggest the existence of some form of orthorhombicity, e.g. the local variation or fluctuation of the orthorhombicity, as detected for BaFe$_2$As$_2$ by neutron powder diffraction25. Nevertheless, recent polarized ultrafast optical measurements26 revealed a two-fold symmetric optical response occurring approximately at 40–60 K for an optimally doped AsP\textsubscript{122} ($x = 0.31$), which can be explained by the orbital anisotropy in the present ARPES study. Scanning Laue microdiffraction measurements26 further suggested that such electronic anisotropy was decoupled from the strain anisotropy on the crystal surface. These results imply that the orbital anisotropy in the present ARPES study may not necessarily correspond to the presence of the lattice distortion.

The orbital anisotropy observed by the ARPES can also be interpreted as a dynamical ferro-orbital order, when the photoexcitation process is much faster than the time scale of the dynamical fluctuations. In the case of FeSe11 and NaFeAs8, the orbital anisotropy rapidly increases below T_σ which suggests an instantaneous evolution of the ferro-orbital order at the orthorhombic structural transition. Regarding AsP\textsubscript{122}, there is a possibility that the anomalous normal state is characterised by the dynamical ferro-orbital order fluctuation extended in a wide range of the phase diagram. Another possibility is that the orbital anisotropy observed in the present ARPES study indicates the presence of an antiferro-type orbital order13. A recent ARPES study27 on Ba,KFe$_2$As$_2$ (BaK\textsubscript{122}) suggested that an antiferroic electronic structure is realised in a large portion of the non-magnetic state including the SC phase. The antiferroic electronic instability in BaK\textsubscript{122} does not compete with the onset of superconductivity similarly to that observed for the orbital anisotropy in AsP\textsubscript{122} (Fig. 3). It should be noted that the x–T region where the orbital anisotropy appears overlaps with the pseudo-gap (PG) region reported by an ARPES experiment8 and optical measurements28. Theoretical studies29,30 predict that spin-nematicity induces the PG in the density of states significantly above T_σ. While the origin of the electronic nematicity in AsP\textsubscript{122} needs to be further investigated, these results suggest that superconductivity in AsP\textsubscript{122} emerges at the PG state where the C_4 rotational symmetry is broken in lattice, magnetism, and orbital degrees of freedom. The different x- and T-dependences of the orbital anisotropy might be the key components for the systematic understanding of the diverse phase diagrams and SC gap symmetries in the iron- pnictide/chalcogenide superconductors.

Figure 5. (a) Summary of x and T dependence of the orbital anisotropic parameter $\Phi_0 = E_{yz} - E_{xz}$ estimated from the second E derivative EDCs. (b) Contour plot of Φ_0 in the x-T phase diagram of AsP\textsubscript{122} system. The measurement points were indicated by black dots.
In conclusion, we investigated the orbital anisotropy in the AsP122 system by using ARPES. We found that orbital anisotropy widely exists in the non-magnetic state, including the SC phase. It is monotonically suppressed toward the optimally doped regime and not observed around the over-doped regime. The orbital anisotropy, which possibly accompanies the anisotropic lattice and magnetism, is probably a crucial phenomenon to understand the anomalous normal state with PG and spin fluctuations, as realised in AsP122.

Methods

Sample growth and characterisation. Single crystals of AsP122 with \(x = 0.00 \) (\(T_N = 136 \) K), \(x = 0.07 \) (\(T_N = 114 \) K), \(x = 0.24 \) (\(T_N = 55 \) K, \(T_c = 16 \) K), \(x = 0.30 \) (\(T_N = 30 \) K), \(x = 0.45 \) (\(T_c = 22 \) K), \(x = 0.52 \) (\(T_c = 15 \) K), \(x = 0.61 \) (\(T_c = 9 \) K), \(x = 0.74 \), and \(x = 0.87 \) were grown by a self-flux method as described in refs\(^{34,35}\). Resistivity measurements\(^{35}\) suggest the high quality of the crystals with a residual resistivity ratio of \(\leq 30 \).

Photoemission measurements. The ARPES measurements were performed using a VG Scienta R4000 WAL electron analyzer and a helium discharge lamp of \(h\nu = 40.8 \) eV. The energy resolution was set to 10 meV. The single crystals were cleaved at 200 K in ultrahigh vacuum of \(5 \times 10^{-11} \) Torr. The magnitude of the unidirectional strain applied by the detwinnig device was in the order of 10 MPa\(^{33}\). The spectra were reproducible over 24-h measurement cycles. The \(E_F \) of the samples was referenced to that of a gold film evaporated onto the sample holder.

References

1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-Based Layered Superconductor La[O\(_{1-x}\)F\(_x\)]FeAs (\(x = 0.05\)–0.12) with \(T_c = 26 \) K. J. Am. Chem. Soc. 130, 3296 (2008).
2. Kruger, F., Kumar, S., Zaane, J. & Brink, J. V. Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).
3. Li, W., Wu, J. & Phillips, P. Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides. Phys. Rev. B 80, 224506 (2009).
4. Lee, C.-C., Yin, W.-G. & Ku, W. Ferro-Orbital Order and Strong Magnetic Anisotropy in the Parent Compounds of Iron-Pnictide Superconductors. Phys. Rev. Lett. 103, 267001 (2009).
5. Shimojima, T. et al. Orbital-Dependent Modifications of Electronic Structure across the Magnetostuctural Transition in BaFe\(_2\)As\(_2\). Phys. Rev. Lett. 104, 057002 (2010).
6. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) above the spin density wave transition. Proc. Natl. Acad. Sci. USA 108, 6878–6883 (2011).
7. Shimojima, T. et al. Pseudogap formation above the superconducting dome in iron pnictides. Phys. Rev. B 89, 045101 (2014).
8. Yi, M. et al. Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs. New J. Phys. 14, 073019 (2012).
9. Niedziela, J. L., McGuire, M. A. & Egami, T. Local structural variation as source of magnetic moment reduction in BaFe\(_2\)As\(_2\). Phys. Rev. B 85, 085121 (2012).
10. Nakayama, K. et al. Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor. Phys. Rev. Lett. 113, 237001 (2014).
11. Shimojima, T. et al. Lifting of xy/yz orbital degeneracy at the structural transition in detwinned FeSe. Phys. Rev. B 90, 121111 (2014).
12. Baek, S.-H. et al. Orbital-driven nematicity in FeSe. Nature Materials 14, 210–214 (2015).
13. Kontani, H., Saito, T. & Onari, S. Origin of orthorhombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: Analysis based on the orbital fluctuations theory. Phys. Rev. B 84, 024528 (2011).
14. Qi, Y. & Xu, C. Global phase diagram for magnetism and lattice distortion of iron-pnictide materials. Phys. Rev. B 80, 094502 (2009).
15. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nature Physics 10, 97–104 (2014).
16. Kontani, H. & Onari, S. Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Phys. Rev. Lett. 104, 157001 (2010).
17. Yanagi, Y., Yamakawa, Y. & Ono, Y. Two types of s-wave pairing due to magnetic and orbital fluctuations in the two-dimensional 16-band \(d-\sigma \) model for iron-based superconductors. Phys. Rev. B 81, 054518 (2010).
18. Arita, M., I. J., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAs\(_1-x\)F\(_x\). Phys. Lett. 101, 057001 (2008).
19. Kuroki, K. et al. Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAs\(_{1-x}\)F\(_x\). Phys. Rev. Lett. 101, 087004 (2008).
20. Kim, Y. K. et al. Existence of Orbital Order and its Fluctuation in Superconducting Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\). Single Crystals Revealed by X-ray Absorption Spectroscopy. Phys. Rev. Lett. 111, 217001 (2013).
21. Fisher, I. R., Degiorgi, L. & Shen, Z.-X. In-plane electronic anisotropy of underdoped ‘122’ Fe arsenide superconductors revealed by measurements of detwinned single crystals. Prog. Prog. Phys. 74, 124506 (2011).
22. Kasahara, S. et al. Electronic nematicity above the structural and superconducting transition in BaFe\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\). Nature 486, 382–385 (2012).
23. Nakai, Y. et al. Normal-state spin dynamics in the iron-pnictide superconductors BaFe\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\) and Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) probed with NMR measurements. Phys. Rev. B 87, 174507 (2013).
24. Hase, D. et al. Structural and Magnetic Phase Transitions near Optimal Superconductivity in BaFe\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\). Phys. Rev. Lett. 114, 157002 (2015).
25. Niedziela, J. L., McGuire, M. A. & Egami, T. Local structural variation as source of magnetic moment reduction in BaFe\(_2\)As\(_2\). Phys. Rev. B 86, 174113 (2012).
26. Thewalt, E. et al. Imaging anomalous nematic order and strain in optimally doped BaFe\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\). arXiv:1709.04462.
27. Shimojima, T. et al. Antiferroelectric electronic structure in the nonmagnetic superconducting state of the iron-based superconductors. Sci. Adv. 3, e1700466 (2017).
28. Moon, S. et al. Infrared Measurement of the Pseudogap of P-Doped and Co-Doped High-Temperature BaFe\(_2\)As\(_2\) Superconductors. Phys. Rev. Lett. 109, 027006 (2012).
29. Fernandes, R. M. et al. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012).
30. Liang, S. et al. Diverging nematic susceptibility, physical meaning of \(T^* \) scale, and pseudogap in the spin fermion model for the pnictides. Phys. Rev. B 90, 184507 (2014).
31. Ogushi, K. & Kiyuchi, Y. Doping dependence of Hall coefficient and evolution of coherent electronic state in the normal state of the Fe-based superconductor Ba\(_{1-x}\)K\(_x\)Fe\(_2\)As\(_2\). Phys. Rev. B 85, 064522 (2012).
32. Nakajima, M. et al. Growth of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ Single Crystals ($0 \leq x \leq 1$) by Ba$_2$As$_3$/Ba$_2$P$_3$-Flux Method. J. Phys. Soc. Jpn. 81, 104710 (2012).
33. Nakajima, M. et al. Unprecedented anisotropic metallic state in undoped iron arsenide BaFe$_2$As$_2$ revealed by optical spectroscopy. Proc. Natl. Acad. Sci. USA 108, 12238 (2011).

Acknowledgements
We thank Y. Matsuda, T. Shibauchi, S. Kasahara and H. Kontani for valuable discussions. We acknowledge H. Ikeda for valuable discussions and first-principles band calculations. This research was supported by Toray Science Foundation; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency; the Photon Frontier Network Program of the MEXT, Japan; and Research Hub for Advanced Nano Characterization, The University of Tokyo, supported by MEXT, Japan; Grant-in-Aid for Scientific Research from JSPS, Japan (KAKENHI Grant No. 15H03687).

Author Contributions
T. Sonobe, T. Shimojima and A.N. performed photoemission measurements and analyzed the data. M.N., S.U., K.K., C.H.L., A.I., H.E. and K.O. grew the single crystals. T. Shimojima and K.I. conceived and designed the project. T. Sonobe, T. Shimojima and K.I. wrote the manuscript with input from all authors.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018