Algorithmic correspondence and canonicity for possibility semantics

Kentaro Yamamoto1 and Zhiguang Zhao2

UC Berkeley, USA
TU Delft, the Netherlands

TACL, Prague, 26/06/2017
Possibility semantics
- a variant of standard Kripke semantics for modal logic
- motivation: partial possibilities vs total worlds
- constructive study of classical (modal) logic:
 - intuitionistic-style semantics: refinement relation
 - constructive completeness proofs
 - relation to constructive canonical extension

Existing works
- Duality: Holliday 2016
- Correspondence: Yamamoto 2016
- Canonicity: Holliday 2016
Possibility semantics

- possibility frame: $\mathcal{F} = (W, R, \sqsubseteq, \text{RO}(W, \sqsubseteq))$
- possibility model: $\mathbb{M} = (\mathcal{F}, V)$ where $V : \text{Prop} \rightarrow \text{RO}(W, \sqsubseteq)$
- refinement relation \sqsubseteq: partial order on W
- accessibility relation R: binary relation on W
- $\text{RO}(W, \sqsubseteq)$: set of admissible valuations
- intuition behind $\text{RO}(W, \sqsubseteq)$: subsets equal to their “double negation”
Possibility semantics

Satisfaction relation

1. \(F, V, w \models p \iff w \in V(p); \)
2. \(F, V, w \models \varphi \land \psi \iff F, V, w \models \varphi \text{ and } F, V, w \models \psi; \)
3. \(F, V, w \models \varphi \lor \psi \iff (\forall v \sqsubseteq w)(\exists u \sqsubseteq v)(F, V, u \models \varphi \text{ or } F, V, u \models \psi); \)
4. \(F, V, w \models \varphi \rightarrow \psi \iff (\forall v \sqsubseteq w)(F, V, v \models \varphi \Rightarrow F, V, v \models \psi); \)
5. \(F, V, w \models \neg \varphi \iff (\forall v \sqsubseteq w)(F, V, v \not\models \varphi); \)
6. \(F, V, w \models \Box \varphi \iff \forall v(Rwv \Rightarrow F, V, v \models \varphi). \)
$\mathbb{B} \models \forall \vec{p}(\varphi(\vec{p})) \iff F \models \varphi(\vec{p})$

\upharpoonleft

$\mathbb{B} \models \forall \vec{i}\text{Pure}(\varphi(\vec{p})) \iff F \models \text{FO(Pure}(\varphi(\vec{p}))\text{))}$

- In the dual BAO of Kripke frames, nominals are interpreted as atoms.
- How about possibility semantics?
Given $\mathcal{F} = (W, \sqsubseteq, R, \text{RO}(W, \sqsubseteq))$, the regular open dual BAO \mathcal{B}_{RO}

- \mathcal{B}_{RO} is a complete and completely additive BAO, but not necessarily atomic.
- lack of atomicity: what is the consequence in correspondence theory?
Nominals and their interpretations

Algebraic setting	Interpretation for nominals	Dually corresponding to
perfect Boolean algebras	atoms	singletons
perfect distributive lattices	complete join-primes	$w \uparrow$
perfect general lattices	complete join-irreducibles	Galois closure of singletons
constructive canonical extensions	closed elements	N.A.
complex algebras of possibility frames		regular open closures of singletons
Our results

- Correspondence results for inductive formulas over full possibility frames
- Correspondence results for inductive formulas over filter-descriptive possibility frames
- Constructive canonicity-via-correspondence