Word maps with small image in simple groups

MATTHEW LEVY
Imperial College London

Abstract

We construct non-power words which have small image in $\text{SL}(2, 2^n)$ for each n. In particular, the corresponding word maps are non-surjective. We also use this to construct word maps whose values are precisely the identity and a single equivalence class of elements of order 17.

In the second part we construct words which have image consisting of the identity and a single equivalence class of elements in $\text{Alt}(n)$ for all n for any equivalence class with support size at most 10.

1 Introduction

Let w be a word in the free group of rank k. For a group G, let G_w denote the set of word values, i.e. $G_w := \{w(g_1, ..., g_k)^\pm | g_i \in G\}$. There has recently been much interest and progress in the study of the images of word maps over finite groups though the topic has grown from work first begun by P. Hall, see [6] for a modern exposition. Given a finite group a natural question to ask is which subsets can be obtained as images of word maps. Clearly, any image of a word map includes the identity and must be closed under the action of the automorphism group, i.e. it must be a union of equivalence classes including the equivalence class of the identity. Here, an equivalence class is a union of conjugacy classes under the action of the automorphism group. It is not clear at first glance whether or not any such subset can be obtained as the image of a word map, though the answer in general is no.

In [4] it is shown that for any alternating group $\text{Alt}(n)$ with $n \geq 5$ and $n \neq 6$ there exists a word w such that $\text{Alt}(n)_w$ consists of the identity and all 3-cycles. For $n \neq 13$ the words they construct are in two variables, for $n = 13$ they need three variables. This result also holds for $\text{Sym}(n)$. They also construct words whose image over $\text{Alt}(n)$ is the identity and all p-cycles for any prime $3 < p < n$ and $n \geq 5$. Note that the exception of $\text{Alt}(6)$ arises due to the outer automorphism which swaps the conjugacy class of 3-cycles with the $(3,3)$-cycles. As a result it is possible to construct a word with image consisting of the identity, the 3-cycles and the $(3,3)$-cycles over $\text{Alt}(6)$. They also give a simple argument to show that it is impossible to construct a word whose values in $\text{Sym}(n)$ are either the identity or a transposition which shows that not any subset closed under the action of the automorphism group can be obtained as the image of a word map, though the answer in general is no.

In [4] it is shown that for any alternating group $\text{Alt}(n)$ with $n \geq 5$ and $n \neq 6$ there exists a word w such that $\text{Alt}(n)_w$ consists of the identity and all 3-cycles. For $n \neq 13$ the words they construct are in two variables, for $n = 13$ they need three variables. This result also holds for $\text{Sym}(n)$. They also construct words whose image over $\text{Alt}(n)$ is the identity and all p-cycles for any prime $3 < p < n$ and $n \geq 5$. Note that the exception of $\text{Alt}(6)$ arises due to the outer automorphism which swaps the conjugacy class of 3-cycles with the $(3,3)$-cycles. As a result it is possible to construct a word with image consisting of the identity, the 3-cycles and the $(3,3)$-cycles over $\text{Alt}(6)$. They also give a simple argument to show that it is impossible to construct a word whose values in $\text{Sym}(n)$ are either the identity or a transposition which shows that not any subset closed under the action of the automorphism group can be obtained as the image of a word map.

Their second main result concerns special linear groups. With the possible exception of $\text{SL}_4(2)$ they show that for every $n, q \geq 2$ there is a word w in two variables such that $\text{SL}_n(q)_w$ consists of the identity and the conjugacy class of all transpositions. For $n \neq 3, 4$ their result also holds for $\text{GL}_n(q)$. This paper aims to partially answer whether or not there exists a word w_C such that $G_{w_C} = \{e\} \cup C$ for any equivalence class C where G is either $\text{Alt}(n)$ or $\text{SL}_n(q)$ for $n, q \geq 4$, though the question is open for when G is any non-abelian finite simple group.

A conjecture of Shalev (see [1]) says that if w is not a proper power of a non-trivial word then the corresponding word map is surjective on $\text{PSL}_2(q)$ for sufficiently large q. The first counterexamples to Shalev’s conjecture are provided in [3]. In both [1] and [3] the authors make use of the trace polynomial of a word, this is introduced later. We also go via the trace polynomial to obtain our first main result.

Theorem 1.1. For every $\text{SL}_2(q)$ with $q = 2^n$ and $n \geq 2$ there exists a word w in F_2 such that $\text{SL}_2(q)_w$ contains the identity and four conjugacy classes of elements of order 17 and no other conjugacy class consisting of elements of order 17.
Since there are eight conjugacy classes of elements of order 17 in $\text{SL}_2(q)$ which split into two equivalence classes two immediate corollaries are:

Corollary 1.2. For every $\text{SL}_2(q)$ with $q = 2^m$ and $n \geq 2$ there exists a word w in F_2 such that the corresponding word map is non-surjective. Moreover, w is a non-power word.

Corollary 1.3. For every $\text{SL}_2(q)$ with $q = 2^m$ and $n \geq 2$ there exists a word w in F_2 such that $\text{SL}_2(q)_w$ consists of the identity and a single equivalence class of elements of order 17.

The second corollary is obtained by taking the word constructed in Theorem 1.1 and raising to an appropriate power.

We will use the results from [4] and construct new words to obtain our second main result:

Theorem 1.4. Let $n \in \mathbb{N}$ and let C denote any equivalence class in $\text{Alt}(n)$ with support size at most 10. Then there exists a word w_C such that $\text{Alt}(n)_{w_C} = \{e\} \cup C$.

For an equivalence class C in $\text{Alt}(n)$ its support is the subset \{m $\in \mathbb{N}|m^a \neq m$ for some $a \in \text{Alt}(n)\}$ where $\text{Alt}(n)$ acts in the normal way on $[1, n] \subseteq \mathbb{N}$.

2 Proof of Theorem 1.1

2.1 Background

Let $q = p^n$ where p is any prime and $n \geq 1$, then $\text{SL}_2(q)$ has order $q(q-1)(q+1)$ and exponent $e = \frac{1}{2}p(q^2 - 1)$ where $d = \gcd(2, q - 1)$. The elements of $\text{SL}_2(q)$ can be classified according to their Jordan forms. For any matrix A, its characteristic polynomial is of the form $x^2 - tx + 1$ where $t = \text{tr}(A)$ is the sum of the eigenvalues. This can have 1, 2 or none distinct roots (or eigenvalues) in \mathbb{F}_q and in each case, for $A \neq \pm I_2$, the elements are called unipotent, semisimple (split) and semisimple (non-split) respectively. The conjugacy classes of semisimple elements are uniquely determined by their trace. Note that this is not true in general without knowing the order of an element since for example an element of trace 2 may be the identity or a unipotent element. The table below lists the different classes of elements and gives some information about them. It shows that there is a deep connection between elements in $\text{SL}_2(q)$, in terms of their order and trace, and their conjugacy class.

Type	Eigenvalues	Order	No. conjugacy classes	Size
id	1	1	1	1
-id	-1	d	1	1
unipotent	1	p	d	$\frac{q^2-1}{q-1}$
unipotent (non-split)	-1	dp	d	$\frac{q^2-1}{q-1}$
semisimple (split)	r, r^q	r^d	d	$q(q+1)$
semisimple (split)	r, $1/r$	$r\in\mathbb{F}_q\setminus\{0, \pm 1\}$	$q+1$	$\frac{q^d-1}{q-1}$

The number of distinct conjugacy classes consisting of elements of order m where m divides $q \pm 1$ is $\phi(m)/2$ where ϕ is Euler’s phi function. To see this, note that there are $\phi(m)$ elements of order m in a cyclic group of order $q \pm 1$. We divide by two because a semisimple matrix of a given order is determined, up to conjugacy, by its pair of eigenvalues and in particular such matrices are conjugate to their inverse, indeed they have equal trace. The number of equivalence classes (under the action of the automorphism group) consisting of elements of order m is $\phi(m)/2k$ where k is the smallest integer such that $p^k \equiv \pm 1 \pmod q$, this is the order of the field automorphism $x \mapsto x^p$ modulo inversion.

Remark 2.1. There are a few things to note. An element of $\text{SL}_2(q)$ has order 3 if and only if $\text{tr}(x) = -1$. Note also that in $\text{SL}_2(q)$ where q is as in Theorem 1.1 there exists $\phi(17)/2 = 8$ conjugacy classes of elements of order 17 and under the action of the automorphism group there are two equivalence classes of elements of order 17 each consisting of four conjugacy classes.

The following theorem is from [2] which is in turn based on a classical theorem of Fricke and Klein.

Theorem 2.2. Let $F_2 = \langle x, y \rangle$ denote the free group of rank two, $G = \text{SL}_2(q)$ and let $\text{tr}(M)$ be the trace of a matrix M. Then for every element $w \in F_2$ there is a unique polynomial $P_w(s, t, u) \in \mathbb{Z}[s, t, u]$ such that $\text{tr}(w(A, B)) = P_w(\text{tr}(A), \text{tr}(B), \text{tr}(AB))$.

We will call the polynomial P_w in the theorem above the trace polynomial of w and will sometimes write $\text{tr}(w)$. This theorem provides us with a powerful tool for studying the images of word maps, we can instead study the image of the corresponding trace polynomial. The following identities for traces of 2×2 matrices A and B of determinant 1 will be used throughout without mention and can be used to find the trace polynomial for specific words:

$$
\text{Tr}(A) = \text{Tr}(A^{-1});
\text{Tr}(AB) = \text{Tr}(BA);
\text{Tr}(AB) + \text{Tr}(AB^{-1}) = \text{Tr}(A)\text{Tr}(B).
$$

Using the identities above it is easy to see that the $\text{tr}([x, y]) = s^2 + t^2 + u^2 - ust - 2$, where $\text{tr}(x) = s, \text{tr}(y) = t$ and $\text{tr}(xy) = u$. The following lemma makes use of these identities and will be needed in the next section.

Lemma 2.3. Let v denote a group word and let $w = [[v, x], x]$, another group word. Suppose that $\text{tr}(x) = s$ and let $\text{tr}([v, x]) = t$. Then $\text{tr}(w) = t^2 + ts^2$. In particular, if $\text{tr}(x) = 1$ we have that $\text{tr}(w) = t^2 + t$.

Proof. First note that $\text{tr}([v, x]x) = \text{tr}([v, x]x^{-1}) + \text{tr}([v, x])\text{tr}(x) = s(t + 1)$. It then follows that $\text{tr}(w) = t^2 + s^2 + s^2(t + 1)^2 + ts^2(t + 1) = t^2 + ts^2$.

The following is a classical theorem and can be found in [5].

Theorem 2.4. (Hilbert’s Additive Theorem 90) Let k be a field and K/k a cyclic extension of degree n with Galois group G. Let σ be a generator for G. Let $\beta \in K$. The trace $\text{Tr}_K^G(\beta) = 0$ if and only if there exists an element $\alpha \in K$ such that $\beta = \alpha - \alpha^2$.

Here, $\text{Tr}_K^G(\beta) = \sum_{\sigma} \alpha^2$, where the sum is over all the Galois conjugates of α.

2.2 Proof of Theorem 1.1

Let q be as in the statement of the theorem and let M denote a fixed element of order 17 in $\text{SL}_2(q)$ with trace polynomial for specific words:

Theorem 1.1 will follow immediately from the next lemma.

Lemma 2.5. Let w_m be as above. Then $\text{tr}(w_m) = f^{m+1}(u)$.

The next lemma is an easy induction.

Lemma 2.6. For each i, $f^{2^i}(u) = u2^{2^i} + u$.

Theorem 1.1 will follow immediately from the next lemma.

Lemma 2.7. For $q = 2^{2^k}$, f^{m+1} has t in its image but not t^3 where $m = 2^{2^k} - 2^2$. Hence, the image of w_m contains C_1 but not C_2.

3
Proof. First let \(k = 0 \), so \(q = 2^4 \) and \(m = 0 \). Then \(w_m \) has trace polynomial \(f(u) = u^2 + u \). Suppose \(t \) generates \(\mathbb{F}_q^* \) then an easy calculation in \(\mathbb{F}_q \) shows that \(\text{Tr}_{\mathbb{F}_q^2}(t) = 0 \) whilst \(\text{Tr}_{\mathbb{F}_q^2}(t^3) = 1 \). The first case then follows from Hilbert’s Theorem 90.

For general \(k \) let \(q \) and \(m \) be as stated in the theorem. Then \(f^{m+1} = f \circ f^m \). From lemma 26 it is immediate that the image of \(f^m \) over \(\mathbb{F}_q \) is precisely \(\mathbb{F}_{2^4} \) since \(m = \sum_{i=0}^{k-1} 2^{2+i} \). The general case then follows from the case above.

The word \(w_m^{e/17} \) where \(e \) is the exponent of \(\text{SL}(2, q) \) completes the proof of Corollary 13 since the image of the trace polynomial has size 8 it is not hard to see that the image of the word map \(w_m \) consists of 8 different conjugacy classes one of which is the identity and four of which makes up \(C_1 \). A more detailed inspection reveals that the three remaining conjugacy classes must make up the single equivalence class consisting of elements of order 5. The word \(w_m^{e/17} \) suffices to complete the proof of Corollary 13.

3 Proof of Theorem 1.4

The proof of our main result is obtained using MAGMA and we will present the results below but first we will explain the general approach. Let \(C \) denote an equivalence class in \(\text{Alt}(n) \) and denote by \(w_C \) the word such that \(\text{Alt}(n)_{w_C} = \{ e \} \cup C \). We will use the words constructed in [4] to build the new words that have the image we want, the words we are going to construct follow a general form. Let \(C_1 \) and \(C_2 \) be two equivalent classes in \(\text{Alt}(n) \) and suppose that we have words \(w_{C_1} \) and \(w_{C_2} \) with images \(\{ e \} \cup C_1 \) and \(\{ e \} \cup C_2 \) respectively. Consider now the group word \(w_{C_1,C_2,e_0} = [w_{C_1}, w_{C_2}]_{e_0} = [...[[w_{C_1}, w_{C_2}]^{e(1)}, w_{C_2}]^{e(2)}, ...]^{e(k)} \) for some \(k, e(i) \in \mathbb{N} \) where we write \(e_k \) for the vector \((e(i)) \). Suppose we want to find a word with image \(\{ e \} \cup C \) for some equivalence class \(C \) in \(\text{Alt}(n) \) where \(C \) has support size \(m \). The idea to pick \(C_1 \) and \(C_2 \) and to fix \(k \) ‘large’ enough so that the image of \(w_{C_1,C_2,(i)} \) contains \(C \). We then choose ‘appropriate’ \(e(i) \) to kill any unwanted equivalence classes, whilst still retaining \(C \), in the image. Also note that if \(C_1 \) has support size \(m_1 \) and \(C_2 \) has support size \(m_2 \) then we need only check our word maps in \(\text{Alt}(n) \) for \(m \leq n \leq m_1 + m_2 - 1 \).

We will now present the required words to obtain each equivalence class to complete the proof of Theorem 1.4.

1. (2, 2)-cycles: Take \(C_1 = 3 \)-cycles, \(C_2 = 3 \)-cycles and \(e_1 = (3) \).
2. (4, 2)-cycles: Take \(C_1 = 5 \)-cycles, \(C_2 = 5 \)-cycles and \(e_2 = (3.5.7, 3.5.7) \).
3. (3, 3)-cycles (for \(n \neq 6 \)): Take \(C_1 = 5 \)-cycles, \(C_2 = 5 \)-cycles and \(e_2 = (3.5.7, 4.5.7) \).
4. (3, 2, 2)-cycles: Take \(C_1 = 7 \)-cycles, \(C_2 = 5 \)-cycles and \(e_3 = (3.5.7, 4.5.7) \).
5. (2, 2, 2, 2)-cycles: Take \(C_1 = (3, 3) \)-cycles, \(C_2 = (3, 3) \)-cycles and \(e_1 = (2.3.5.7) \).
6. (6, 2)-cycles: Take \(C_1 = (4, 2) \)-cycles, \(C_2 = 7 \)-cycles and \(e_5 = (4.3, 2.5.7, 4.3.7, 4.9.5, 5.7) \).
7. (5, 3)-cycles: Take \(C_1 = 7 \)-cycles, \(C_2 = 7 \)-cycles and \(e_6 = (2.3, 7, 4.3.7, 4.9.5, 4.9.5, 4.7) \).
8. (4, 4)-cycles: Take \(C_1 = 7 \)-cycles, \(C_2 = 7 \)-cycles and \(e_5 = (4.5.7, 4.5.7, 5.7, 4.3.5.7, 9.5.7) \).
9. 9-cycles: Take \(C_1 = 7 \)-cycles, \(C_2 = 7 \)-cycles and \(e_4 = (2.9, 4.3.5.7, 2.9.7, 4.5.7) \).
10. (5, 2, 2)-cycles: Take \(C_1 = 7 \)-cycles, \(C_2 = 7 \)-cycles and \(e_6 = (4.7, 1, 4.5.7, 2.5, 4.3.5.7, 9.7) \).
11. (4, 3, 2)-cycles: Take \(C_1 = 5 \)-cycles, \(C_2 = 7 \)-cycles and \(e_7 = (8.5.7, 3.5.7, 4.25, 81, 4.25, 4.5.7) \).
12. (3, 3, 3)-cycles: Take \(C_1 = 7 \)-cycles, \(C_2 = 7 \)-cycles and \(e_1 = (4.3.5.7) \).
13. (4, 2, 2, 2)-cycles: Take \(C_1 = 5 \)-cycles, \(C_2 = 9 \)-cycles and \(e_6 = (9.5.7, 16.7.5, 7.5, 8.9.5.11, 8.5.7, 9.5.7.11) \).
14. (8, 2)-cycles: Take \(C_1 = 5 \)-cycles, \(C_2 = 9 \)-cycles and \(e_7 = (1, 9, 1024.9.5, 4.9.5, 9.5.7, 4.9.5.11, 9.5.7.11) \).
15. (3, 3, 2, 2)-cycles: Take \(C_1 = 5 \)-cycles, \(C_2 = (3, 3) \)-cycles and \(e_7 = (1, 5, 9.5.7, 9.25.7, 81, 5.7.11) \).
16. (7, 3)-cycles: Take \(C_1 = 5 \)-cycles, \(C_2 = (3, 3, 3) \)-cycles and \(e_7 = (2.2.5, 1, 1, 8.7, 7^4, 8.5.11) \).
17. (6, 4)-cycles: Take \(C_1 = 5 \)-cycles, \(C_2 = 9 \)-cycles and \(e_7 = (1, 8.3.5, 25.7, 64.9.7.11, 8.5.7, 8.81.7.11, 5.7.11) \).
18. (5,5)-cycles: Take $C_1 = 5$-cycles, $C_2 = 9$-cycles and $e_7 = (4,3,9,5,7,1,4,9,5,7,11,8,9,7,11)$.

Remark 3.1. As already stated, MAGMA was used to carry out the computations to check that the words above have the required image. However, some of the cases are easy to check without the use of MAGMA. For example, to get the (2,2)-cycles you need only check that there exists two 3-cycles, x and y, whose commutator, $[x,y]$, is a (2,2)-cycle. Then since the commutator of two 3-cycles lies in Alt(5) and the only elements of order two in Alt(5) are the (2,2)-cycles the result follows easily. Similar arguments can be used to obtain the (2,2,2,2)-cycles and the (3,3,3) cycles.

Remark 3.2. Together with the results from [4], the above shows that any equivalence class with support size at most 11 can be obtained as the image of a word map in any alternating group.

Remark 3.3. In [4], the authors prove that for every $n, q \geq 2$ with the possible exception of SL$_4(2)$ there is a word w in F_2 such that SL$_n(q)_w$ consists of the identity and the conjugacy class of all transpositions. Note that SL$_4(2)$ is isomorphic to Alt(8) and the conjugacy class of transpositions in SL$_4(2)$ corresponds to the conjugacy class of (2,2,2,2)-cycles in Alt(8). Hence, Theorem 1.4 deals with this exceptional case.

References

[1] T. Bandman, S. Garion, and F. Grunewald. On the surjectivity of engel words on PSL(2, q). Groups, Geometry and Dynamics, to appear.

[2] T. Bandman, F. Grunewald, and B. Kunyavskii. Geometry and arithmetic of verbal dynamical systems on simple groups. arXiv, (0809.0369).

[3] S. Jambor, M. W. Liebeck, and E. A. O’Brien. Some word maps that are non-surjective on infinitely many finite simple groups. arXiv, (1205.1952v1).

[4] M. Kassabov and N. Nikolov. Words with few values in finite simple groups. arXiv, (1112.5484v1).

[5] S. Lang. Algebra. Graduate Texts in Mathematics. Springer, revised third edition edition, 2005.

[6] D. Segal. Words: notes on verbal width in groups. Cambridge University Press, 2009.