The Highest Redshift Relativistic Jets

C. C. Cheung1, L. Stawarz

\textit{Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305}

A. Siemiginowska, D. E Harris, D. A. Schwartz

\textit{Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138}

J. F. C. Wardle, D. Gobeille

\textit{Physics Department, Brandeis University, Waltham, MA 02454}

N. P. Lee

\textit{Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215}

\textbf{Abstract.} We describe our efforts to understand large-scale (10’s–100’s kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in ∼30 z>3.4 quasars are described along with new Chandra observations of 4 selected targets.

1. Why High-redshift Jets?

It is now well established that X-ray emission is a common feature of kiloparsec-scale radio jets (see [Harris & Krawczynski 2006], for a recent review and the associated website, http://hea-www.harvard.edu/XJET/). The spectral energy distributions (SEDs) of the powerful quasar jets are predominantly characterized as “optically faint”, with the spectra rising between the optical and X-ray bands. Current models for this ‘excess’ X-ray emission posit either inverse Compton (IC) scattering off CMB photons in a (still) relativistic kpc-scale jet or an additional high-energy synchrotron emitting component.

In the simplest scenario, such models have diverging predictions at high redshift. Specifically, we expect a strong redshift dependence in the monochromatic flux ratio, $f_X/f_r \propto U_{\text{CMB}} \propto (1 + z)^4$ for IC/CMB, whereas in synchrotron models, we expect no such dependence, $f_X/f_r \propto (1 + z)^0$. As a first order test of this simple idea, our approach is to study the highest-redshift relativistic jets. Such jets probe the physics of the earliest (first ∼1 Gyr of the Universe in the quasars studied) actively accreting supermassive black hole systems and...
are interesting for other reasons. For instance, the ambient medium in these high-redshift galaxies is probably different (e.g., De Young 2006) and this may manifest in jets with different morphologies, increased dissipation, and slower than their lower-redshift counterparts.

Figure 1. Examples of newly discovered arcsecond-scale radio jets from our VLA observations (§ 2.1). Clockwise from upper left, the sources are J0624+3856 ($z=3.469$; Xu et al. 1995), J2042–2223 ($z=3.630$; Hook et al. 2002), J2220–3336 ($z=3.691$; Hook et al. 2002), and J2219–2719 ($z=3.634$; Hook et al. 2002). The J2219–2719 image is at 1.4 GHz while the rest are at 5 GHz. The beam-sizes are $0.41'' \times 0.41''$ at PA=-8.2°, $1.13'' \times 0.39''$ at PA=10.2°, and $0.75'' \times 0.75''$ (super-resolved), respectively. The lowest contour levels begin at 0.125 mJy/bm for all images except for J2219–2719 where it is 0.2 mJy/bm, and increase by factors of $\sqrt{2}$.

Most Chandra studies of quasar jets have so far targeted known arcsecond-scale radio jets (e.g., Sambruna et al. 2004; Marshall et al. 2005), as most known examples are at $z \lesssim 2$ (Liu & Zhang 2002). There are currently only two high-z quasars with well-established kpc-scale X-ray jet detections: GB 1508+5714 at $z=4.3$ (Siemiginowska et al. 2003; Yuan et al. 2003; Cheung 2004) and 1745+624 at $z=3.9$ (Cheung et al. 2006). They are observed to have large f_X/f_r values as expected in the IC/CMB model (Schwartz 2002; Cheung 2004), although the
small number of high-z detections preclude any definitive statements (Kataoka & Stawarz 2005; Cheung et al. 2006).

We have therefore carried out a VLA survey in search of new radio jets in a sample of high-z quasars (§ 2.1) and new Chandra observations of a small subset (§ 2.2). This contribution presents some results from these observations. For the redshifts considered, $z=3.4$ to 4.7, $1''$ corresponds to 7.4 to 6.5 kpc ($H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_M = 0.3$ and $\Omega_\Lambda = 0.7$).

2. Observations of a High-Redshift Quasar Sample

2.1. VLA Imaging Survey

Using NED, we assembled a sample of $z>3.4$ flat-spectrum radio quasars for imaging with the VLA. We did not aim for our sample to be a complete one as current samples of lower-z X-ray jets are inhomogenous also. With archival (Lee 2005) and new VLA observations, we find that radio jets in this redshift range are common with a $\sim 50\%$ detection rate (Cheung et al. 2005, and in preparation). Examples of new radio jets detected from our observations are shown in Figure 1.

2.2. Chandra Observations

A small percentage of the radio jets from our radio study (§ 2.1) are extended enough ($>2.5''$ long) to study with Chandra. We observed four of them with short snapshot Chandra observations (Figure 2). We detected bright X-ray counterparts to the jets in the quasars J1421–0643 ($z=3.689$; Ellison et al. 2001) and GB 1428+4217 ($z=4.72$; Hook & McMahon 1998); the latter detection is currently the highest-redshift kpc-scale radio and X-ray jet known. We did not detect the X-ray counterparts to the radio jets in 1239+376 ($z=3.819$; Vermeulen et al. 1996) and J1754+6737 ($z=3.6$; Villani & di Serego Alighieri 1999). The 2/4 X-ray jet detection rate of our high-z sample is comparable to that of lower-z samples (Sambruna et al. 2004; Marshall et al. 2005).

3. Discussion and Summary

Previous Chandra imaging studies of a number of $z>4$ radio loud quasars do not reveal significant extended X-ray emission (Bassett et al. 2004; Lopez et al. 2006). However, in these studies, there were no pre-existing information on possible radio structures in the target objects and any definitive statements regarding the nature of the X-ray emission mechanism in jets at high-redshifts may be premature. In fact, in one case where there was evidence of an extended X-ray structure (J2219–2719; Lopez et al. 2006), our VLA observation revealed a radio counterpart (Figure 1).

In our approach, we began with a VLA survey of a sample of $z>3.4$ quasars and found radio jets to be relatively common ($\sim 50\%$ detection rate). These jets are quite luminous; with a confident detection of a 1 mJy knot at 1.4 GHz, this corresponds to luminosities of $1.5 \times 10^{42} \text{ erg s}^{-1}$ ($z=3.4$) to $3.1 \times 10^{42} \text{ erg s}^{-1}$ ($z=4.7$).
Figure 2. *Chandra* X-ray images (colorscale) with VLA contours overlaid of the four high-\(z\) radio jets observed. There are X-ray detections of the top two objects but not of the bottom two (\S\ 2.2).

With the radio survey results, we found only a few radio jets to have sufficient angular extent to be imaged with *Chandra*. The detection rate of X-ray counterparts of the high-\(z\) radio jets (2/4) is similar to that of lower-\(z\) radio jet samples (Sambruna et al. 2004; Marshall et al. 2005). The implications of these observations for models of X-ray emission from large-scale jets will be described in forthcoming publications.

Acknowledgments. The National Radio Astronomy Observatory is operated by Associated Universities, Inc. under a cooperative agreement with the National Science Foundation. This research was funded in part by NASA through contract NAS8-39073 (A. S., D. E. H., D. A. S.) and *Chandra* Award Numbers GO7-8114 (C. C. C., L. S., J. F. C. W., D. G.) issued by the *Chandra* X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-39073. Radio astronomy at Brandeis University is supported by the NSF and NASA. L. S. is supported by MEiN through research project 1-P03D-003-29 from 2005-2008.
References

Bassett, L. C., et al. 2004, AJ, 128, 523
Cheung, C.C. 2004, ApJ, 600, L23
Cheung, C.C., Wardle, J.F.C., & Lee, N.P. 2005, in 22nd Texas Symposium on Relativistic Astrophysics, Eds. P. Chen et al., (Palo Alto: SLAC) 1613
Cheung, C.C., Stawarz, L., & Siemiginowska, A. 2006, ApJ, 650, 679
De Young, D. 2006, Astron. Nachr., 327, 231
Ellison, S. L., Yan, L., Hook, I. M., Pettini, M., Wall, J. V., & Shaver, P. 2001, A&A, 379, 393
Harris, D.E., Krawczynski, H. 2006, ARAA, 44, 463
Hook, I.M., & McMahon, R.G. 1998, MNRAS, 294, L7
Hook, I.M., McMahon, R.G., Shaver, P.A., & Snellen, I.A.G. 2002, A&A, 391, 509
Kataoka, J., & Stawarz, L. 2005, ApJ, 622, 797
Lee, N. P. 2005, Undergraduate Honors Thesis, Brandeis University
Liu, F. K., & Zhang, Y. H. 2002, A&A, 381, 757
Lopez, L. A., Brandt, W. N., Vignali, C., Schneider, D. P., Chartas, G., & Garmire, G. P. 2006, AJ, 131, 1914
Marshall, H. L., et al. 2005, ApJS, 156, 13
Sambruna, R. M., Gambill, J. K., Maraschi, L., Tavecchio, F., Cerutti, R., Cheung, C. C., Urry, C. M., & Chartas, G. 2004, ApJ, 608, 698
Schwartz, D.A. 2002, ApJ, 569, L23
Siemiginowska, A., Smith, R.K., Aldcroft, T.L., Schwartz, D.A., Paerels, F., & Petric, A.O. 2003, ApJL, 598, L15
Vermeulen, R. C., Taylor, G. B., Readhead, A. C. S., & Browne, I. W. A. 1996, AJ, 111, 1013
Villani, D., & di Serego Alighieri, S. 1999, A&AS, 135, 299
Xu, W., Readhead, A.C.S., Pearson, T.J., Polatidis, A.G., & Wilkinson, P.N. 1995, ApJS, 99, 297
Yuan, W., Fabian, A.C., Celotti, A., & Jonker, P.G. 2003, MNRAS, 346, L7