Missingness as Stability: Understanding the Structure of Missingness in Longitudinal EHR data and its Impact on Reinforcement Learning in Healthcare

Scott L. Fleming1, Kuhan Jeyapragasan2, Tony Duan2, Daisy Ding1, Saurabh Gombar1, Nigam Shah1, Emma Brunskill2

1Stanford School of Medicine
2Department of Computer Science, Stanford University
scottyf@stanford.edu

Abstract

There is an emerging trend in the reinforcement learning for healthcare literature. In order to prepare longitudinal, irregularly sampled, clinical datasets for reinforcement learning algorithms, many researchers will resample the time series data to short, regular intervals and use last-observation-carried-forward (LOCF) imputation to fill in these gaps. Typically, they will not maintain any explicit information about which values were imputed. In this work, we (1) call attention to this practice and discuss its potential implications; (2) propose an alternative representation of the patient state that addresses some of these issues; and (3) demonstrate in a novel but representative clinical data set that our alternative representation yields consistently better results for achieving optimal control, as measured by off-policy policy evaluation, compared to representations that do not incorporate missingness information.

1 Introduction

Recent work in reinforcement learning (RL) for health-related problems has highlighted some of the promises and pitfalls of the RL approach for clinical data \cite{16, 22, 24, 33, 39, 45}. An important but perhaps understated fact throughout this literature is that how one models the patient health state matters: policies learned under one patient state representation may differ dramatically from another, even though the two policies are ultimately learned from the same underlying raw data \cite{17}. An added difficulty is that traditional methods in reinforcement learning are not well-adapted to missingness and the irregular sampling frequencies so commonly observed in clinical data \cite{34, 41}. RL methods offer a promising framework for optimizing sequences of treatment decisions in the clinic, but these methods will only succeed if they have access to adequate representations of the patient state.

One emerging trend in the recent offline reinforcement learning for healthcare literature is to preprocess the clinical data by discretizing and resampling observations into regular time intervals using “Last-Observation-Carried-Forward” (LOCF) imputation \cite{10}. In this regime, one substitutes a missing value (e.g. heart rate) with the last observed value for that variable \cite{15}. However, few of the reinforcement learning for healthcare papers which utilize LOCF imputation mention any use of methods to leverage missingness information \cite{21, 26, 37, 55}. Here, we explore the impact of this choice and potential alternatives. Our results suggest that (1) dynamics of the patient health state differ significantly between periods of more frequent missingness and less frequent missingness, and (2) incorporating missingness information into the patient state representation can improve policy performance, as measured by off-policy policy evaluation (OPPE).
2 Background and Related Work

While researchers have rigorously analyzed the theory of missing data and its implications [37, 38], missingness in electronic health record (EHR) data specifically is less well studied. Early indications suggest, however, that missingness information is a critical component of any adequate patient time series representation. This may be because missingness can provide insight into the true (but unobserved) value of the missing entity itself as well as more general information about the patient’s health state. Supporting this idea, [5] explored patterns of missingness in an EHR dataset and found that a substantial portion of common laboratory values appeared not to be Missing Completely at Random (where observed/missing data would have the same distribution), but rather Missing at Random (where systematic differences between the missing and observed values can occur when considered in isolation, but these differences are fully explained by other observed variables). This has important implications. [9] found that rates of missingness for many variables in the MIMIC-III dataset were highly correlated with ICD-9 and diagnosis categories. [1] found that patients with higher rates of missingness in variables related to an Acute Physiology Score (APS) experienced lower mortality rates compared to those with lower rates of missingness, even after controlling for patients’ severity of illness.

Why might missing values appear in a patient time series extracted from the EHR, and how might they give rise to the above phenomena? We suggest at least two potential mechanisms for missingness, each informative in its own way. The first essentially arises as an artifact of binning a multidimensional time series into discrete windows: if one laboratory test is administered every 24 hours, another every 6 hours, and we bin the patient time series into 4-hour windows, then inevitably some windows will have missing entries for the two tests. Note, however, that if a laboratory test is administered more frequently in sick individuals than in healthy individuals, then rates of missingness for the test will be higher in healthy (less frequently tested) individuals under a fixed binning scheme. Missingness in this context may therefore be a proxy for testing frequency, which in turn can be informative of a patient’s overall health. An illustrative example where more frequent sampling (and, consequently, lower rates of missingness in the medical record) is associated with poorer health is given by [11].

A second mechanism of missingness arises when a particular laboratory test is only administered (or not administered) if the ordering physician has a suspicion about some aspect of the patient’s health. For example, ICU doctors will often order an erythrocyte sedimentation rate (ESR) test on a patient for whom they suspect inflammation or infection [6, 13]. The absence of an ESR value in the EHR, then, could indicate that the clinician did not suspect infection or inflammation. This gives additional information about the patient’s health state. Illustrating how broad and systematic this mechanism of missingness can be in the EHR, [2] found that just the presence of a laboratory test in a patient’s EHR - completely ignoring its actual value - was significantly associated with odds of survival for 86% of the 272 common clinical laboratory tests they analyzed.

In aggregate, current literature supports the notion of “informative missingness” [3, 38], i.e. that missingness itself carries important information about both the value of the missing entity and the patient state. Given the recent attention on reinforcement learning methods as an approach for analyzing longitudinal EHR data, an important lingering question concerns how exactly one should handle missing values in these types of studies. Several approaches from the non-RL literature deserve consideration. [3] developed a unique LSTM structure that incorporates information about a variable’s missingness and time since last observation and demonstrated that their model improves predictive performance. [3], [40], and [25] all demonstrate that even just the simple practice of including in the feature set an indicator to identify when imputed variables were originally missing can significantly improve performance of predictive models for critical patient outcomes. In this paper, for the sake of illustration and to encourage adoption in practice, we lean toward simple methods over relatively complex ones for incorporating missingness information into the patient state representation and therefore take the latter approach. To the best of our knowledge, ours is the first work to evaluate the impact of including a post-imputation indicator for missingness in the representation of the patient state for applications of reinforcement learning to healthcare data.
Table 1: Mann-Whitney U Test evaluating whether aPTT dynamics are significantly different under concurrent laboratory test missingness vs. non-missingness. **bold**: significant after family-wise error rate control. Only significant results are shown here; see Table 3 in Appendix for full results.

Concurrent Lab, \(L\)	Median \(X_{L,\text{missing}}\)	Median \(X_{L,\text{not missing}}\)	\(p\)-value
Prothrombin Time (PT)	27.10	35.44	**1.61e-10**
International Normalized Ratio (INR)	27.10	35.44	**1.61e-10**
Total Bilirubin (TBILI)	32.71	36.21	**2.01e-4**
Aspartate Aminotransferase (AST)	32.67	36.24	**2.12e-4**
Alanine Aminotransferase (ALT)	32.71	36.23	**2.57e-4**
Erythrocyte Sedimentation Rate (ESR)	34.99	39.13	**2.20e-5**

3 Dataset

We extracted EHR data from the STRIDE database \[27\] for 8,983 ICU patients who underwent unfractionated heparin (UFH) anticoagulation therapy between 2012 and 2018. UFH is an important anticoagulant delivered to ICU patients who are at risk of developing venous thromboembolism (VTE) – blood clots that can form in a patient’s veins and block the flow of blood to critical organs. In consultation with a clinical care team, all laboratory values deemed relevant to optimal UFH dosing decisions were included in our analysis. Observations in the dataset were defined based on the times at which a physician simultaneously requested an anti-Xa chromogenic assay (anti-Xa) and activated partial thromboplastin time (aPTT) laboratory tests, as these two tests are the standard protocol for UFH monitoring at Stanford Hospital. These orders are frequently made concurrently with a suite of other laboratory tests relevant to the task of UFH dosing, including those listed in Table 1.

The example of UFH dosing is representative of a broader class of optimal control problems often encountered in clinical settings. If a doctor gives a patient too much UFH, they can put the patient at risk of excessive and dangerous bleeding. If the doctor does not give the patient enough UFH, they may increase the patient’s risk of developing a VTE \[20\]. For this reason, doctors typically try to titrate a patient’s UFH dosage so as to maintain the values of laboratory tests which measure clotting tendency, namely aPTT and anti-Xa, within target therapeutic ranges \[4\]. Abnormalities in liver function, however, as measured by tests like ALT, AST, and TBILI (see Table 1) may alter metabolism of UFH. This can lead to deceptive or unstable aPTT values \[43\] as well as other more serious complications \[36\]. For this reason, the presence of a lab value like TBILI in a patient’s EHR may suggest that the patient is unstable or that the doctor is concerned about more serious underlying physiological issues. Vice versa, the absence of such a lab value may indicate relative stability.

4 Models and Methods

Statistical testing. Given that aPTT values in particular are known to be susceptible to aberrations in liver function, we first tested the hypothesis of whether the dynamics of aPTT, one of the lab values that clinicians would like to keep in control, are significantly different when one of the concurrently-measured laboratory tests is missing vs. not missing. In order to do this, we computed:

\[
X_{L,\text{missing}} = \{ |aPTT_{t+1} - aPTT_{t-1} : L_t \text{ missing} \} \\
X_{L,\text{not missing}} = \{ |aPTT_{t+1} - aPTT_{t-1} : L_t \text{ not missing} \}
\]

where \(L_t\) represents the value of laboratory test \(L\) (e.g. total bilirubin) corresponding to an observation taken at time \(t\), \(aPTT_{t-1}\) represents the observed aPTT value one observation before this time point, and \(aPTT_{t+1}\) represents the observed aPTT value one observation after. We then performed a one-sided Mann-Whitney U test \[28\], testing against the null hypothesis that a randomly drawn observation from \(X_{L,\text{missing}}\) is equally likely to be less than or greater than a randomly drawn observation from \(X_{L,\text{not missing}}\). Significant findings from this analysis (after controlling for multiple hypothesis tests with Bonferroni correction) can be found in Table 1, with full results in the Appendix (Table 3).
Table 2: Impact of Including Missingness Information in Patient State Representation on Off-Policy Policy Optimization (OPPO) and Off-Policy Policy Evaluation (OPPE). Numbers reported are the average ± 1 standard deviation of OPPE estimates over the validation folds from 5-fold CV.

Missingness Information Used?	OPPO	OPPE	Standard IS	Standard WIS	Stepwise IS	Stepwise WIS
No	No		-0.547 ± 0.074	-2.159 ± 0.236	-1.137 ± 0.097	-3.843 ± 0.156
No	Yes		-0.538 ± 0.076	-2.155 ± 0.246	-1.118 ± 0.100	-3.838 ± 0.178
Yes	Yes		-0.504 ± 0.086	-2.049 ± 0.253	-1.046 ± 0.108	-3.710 ± 0.232

Reinforcement learning. We assessed the impact of including missingness information in the patient state representation on the performance of both Off-Policy Policy Optimization (OPPO) with Fitted Q-Iteration and Off-Policy Policy Evaluation (OPPE) with several Inverse Propensity Scoring (IPS) methods. We defined a reward at each step of the trajectory based on whether or not a patient’s aPTT and anti-Xa values fell within what is considered to be a “therapeutic range”. Both aPTT and anti-Xa measure the patient’s blood’s propensity to coagulate inappropriately (e.g. too slowly or too quickly). Clinical guidelines suggest that therapeutic ranges are 40 to 80 seconds for aPTT and 0.3 to 0.7 IU/mL for anti-Xa. In each step of a trajectory we define the reward as a sum of -1 for every observation irrespective of the control region (to penalize staying in the ICU), -1 if the patient was not in the therapeutic range for anti-Xa, and -1 if the patient was not in the therapeutic range for aPTT.

We split our dataset into 5 folds (randomized by patient ID so that all of a patient’s visits in the clinic were in the same fold) and performed cross-validation on our entire imputation, OPPO, and OPPE pipeline for each fold [14, 19]. Thus, for each of the 5 splits of the dataset into training and validation folds, we performed the following steps: (1) for every variable that exhibited missingness in the raw dataset, we added a binary indicator to the patient state representation whose value took on 1 if the corresponding variable was originally missing and 0 otherwise; (2) we performed LOCF imputation on all missing values in the dataset for which a prior value in the patient’s trajectory imputation on all missing values in the dataset for which a prior value in the patient’s trajectory was available; (3) for missing values with no prior value available, we used iterative multivariate imputation, learning the imputation model from the training folds and applying that model to the heldout validation fold [7, 8, 32]: (4) we learned an optimal policy from the training folds using Fitted Q-Iteration with an Extra-Trees regressor [12]; (5) we evaluated that policy on the held-out validation fold using standard importance sampling (IS), standard weighted importance sampling (WIS), step-wise IS, and step-wise WIS methods [23]. We used these Inverse Propensity Scoring (IPS) methods for OPPE because they have theoretical guarantees of consistency under assumptions of coverage and nonconfounding and are popular in OPPE literature [44]. For each split of the dataset, we performed OPPO with and without the missingness information indicator followed by OPPE with and without the missingness indicator. We do not, however, report evaluation metrics for OPPO with a missingness indicator followed by OPPE without a missingness indicator because of potential confounding [29].

5 Results and Discussion

Table 1 shows the results of our test for whether the dynamics of aPTT differs under missingness of concurrent laboratory values. For six laboratory tests we found that the absolute difference between aPTT values measured just before and just after an aPTT/anti-Xa observation was significantly less, on average, when the the concurrent lab test was missing compared to when it was not missing. Notably, half of the concurrent labs found to have this significant effect (namely TBILI, AST, ALT) are typically used to assess liver damage [31], which is known to disrupt normal aPTT dynamics [18]. These findings suggest that missingness may be a proxy for aPTT test stability over time, and could thus be important when learning to make optimal treatment decisions based on patient state dynamics.

Table 2 shows the effect of including missingness information into the patient state space for OPPO and OPPE. As a comparison, the average discounted rewards under the clinician’s data-generating policy was -7.656 ± 0.268. On average, incorporating missingness into the patient state space for both OPPO and OPPE improved the estimated reward under every IPS method analyzed. The ef-
ffects appear to be additive in the sense that incorporating missingness into the state representation for OPPE improved estimated performance, and additionally incorporating missingness into OPPO increased estimated performance even further. Although these findings were provocatively consistent across IPS methods, they were not significant, likely due to known issues of high variance in OPPE estimators [42]. In accordance with our discussion in Section 2 about "informative missingness", our results suggest that missingness in our dataset may carry important information about the patient’s health state, and that leveraging this missingness information can potentially improve estimated reward under OPPO and OPPE. Researchers applying reinforcement learning to healthcare datasets may benefit from this simple augmentation to the patient state representation. The code used to run our analyses can be found at github.com/scottfleming/rl-missingness.

References

[1] Bekele Afessa, Mark T Keegan, Ognjen Gajic, Rolf D Hubmayr, and Steve G Peters. The influence of missing components of the acute physiology score of apache iii on the measurement of icu performance. *Intensive care medicine*, 31(11):1537–1543, 2005.

[2] Denis Agniel, Isaac S Kohane, and Griffin M Weber. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. *Bmj*, 361: k1479, 2018.

[3] Joseph Agor, Osman Y Özaltın, Julie S Ivy, Muge Capan, Ryan Arnold, and Santiago Romero. The value of missing information in severity of illness score development. *Journal of biomedical informatics*, 97:103255, 2019.

[4] T Baglin, TW Barrowcliffe, A Cohen, Michael Greaves, and British Committee for Standards in Haematology. Guidelines on the use and monitoring of heparin. *British journal of haematology*, 133(1):19–34, 2006.

[5] Brett K Beaulieu-Jones, Daniel R Lavage, John W Snyder, Jason H Moore, Sarah A Pendergrass, and Christopher R Bauer. Characterizing and managing missing structured data in electronic health records: data analysis. *JMIR medical informatics*, 6(1):e11, 2018.

[6] Malcolm L Brigden. Clinical utility of the erythrocyte sedimentation rate. *American family physician*, 60(5):1443–1450, 1999.

[7] Samuel F Buck. A method of estimation of missing values in multivariate data suitable for use with an electronic computer. *Journal of the Royal Statistical Society: Series B (Methodological)*, 22(2):302–306, 1960.

[8] S van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r. *Journal of statistical software*, pages 1–68, 2010.

[9] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural networks for multivariate time series with missing values. *Scientific reports*, 8(1):6085, 2018.

[10] MIT Critical Data. *Secondary Analysis of Electronic Health Records*. Springer International Publishing, 2016.

[11] Christopher J Duff, Ivonne Solis-Trapala, Owen J Driskell, David Holland, Helen Wright, Jenna L Waldrong, Clare Ford, Jonathan J Scargill, Martin Tran, Fahmy WF Hanna, et al. The frequency of testing for glycated haemoglobin, hba1c, is linked to the probability of achieving target levels in patients with suboptimally controlled diabetes mellitus. *Clinical Chemistry and Laboratory Medicine (CCLM)*, 57(2):296–304, 2018.

[12] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. *Journal of Machine Learning Research*, 6(Apr):503–556, 2005.

[13] Ruth-Marie E Fincher and Malcolm I Page. Clinical significance of extreme elevation of the erythrocyte sedimentation rate. *Archives of internal medicine*, 146(8):1581–1583, 1986.
[14] Tadayoshi Fushiki. Estimation of prediction error by using k-fold cross-validation. *Statistics and Computing*, 21(2):137–146, 2011.

[15] Andrew Gelman and Jennifer Hill. *Data analysis using regression and multilevel/hierarchical models*. Cambridge university press, 2006.

[16] Omer Gottesman, Fredrik Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srinivasan, Linying Zhang, Yi Ding, David Whil, Xuefeng Peng, et al. Evaluating reinforcement learning algorithms in observational health settings. *arXiv preprint arXiv:1805.12298*, 2018.

[17] Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. *Nat Med*, 25(1):16–18, 2019.

[18] Nghi B Ha and Randolph E Regal. Anticoagulation in patients with cirrhosis: caught between a rock-liver and a hard place. *Annals of Pharmacotherapy*, 50(5):402–409, 2016.

[19] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of statistical learning: data mining, inference and prediction. *The Mathematical Intelligencer*, 27(2):83–85, 2005.

[20] Elaine M Hylek, Susan Regan, Lori E Henault, Margaret Gardner, Andrew T Chan, Daniel E Singer, and Michael J Barry. Challenges to the effective use of unfractionated heparin in the hospitalized management of acute thrombosis. *Archives of internal medicine*, 163(5):621–627, 2003.

[21] Abhyuday Jagannatha, Philip Thomas, and Hong Yu. Towards high confidence off-policy reinforcement learning for clinical applications. *CausalML workshop, ICML 2018*, 2018. URL http://www-all.cs.umass.edu/pubs/2018/Jagannathaetal-TowardsHighConfidence.pdf

[22] Russell Jeter, Christopher Josef, Supreeth Shashikumar, and Shamim Nemati. Does the “artificial intelligence clinician” learn optimal treatment strategies for sepsis in intensive care? *arXiv preprint arXiv:1902.03271*, 2019.

[23] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. *arXiv preprint arXiv:1511.03722*, 2015.

[24] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. *Nature Medicine*, 24(11):1716, 2018.

[25] Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data in sequences with rnns: Improved classification of clinical time series. In *Machine Learning for Healthcare Conference*, pages 253–270, 2016.

[26] Daniel Lopez-Martinez, Patrick Eschenfeldt, Sassan Ostvar, Myles Ingram, Chin Hur, and Rosalind Picard. Deep reinforcement learning for optimal critical care pain management with morphine using dueling double-deep q networks. *arXiv preprint arXiv:1904.11115*, 2019.

[27] Henry J Lowe, Todd A Ferris, Penni M Hernandez, and Susan C Weber. Stride—an integrated standards-based translational research informatics platform. In *AMIA Annual Symposium Proceedings*, volume 2009, page 391. American Medical Informatics Association, 2009.

[28] Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is stochastically larger than the other. *The annals of mathematical statistics*, pages 50–60, 1947.

[29] Olli Miettinen. Confounding and effect-modification. *American Journal of Epidemiology*, 100(5):350–353, 1974.

[30] Shamim Nemati, Mohammad M Ghassemi, and Gari D Clifford. Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. In *2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, pages 2978–2981. IEEE, 2016.
[31] Philip N Newsome, Rob Cramb, Suzanne M Davison, John F Dillon, Mark Foulerton, Edmund M Godfrey, Richard Hall, Ulrike Harrower, Mark Hudson, Andrew Langford, et al. Guidelines on the management of abnormal liver blood tests. *Gut*, 67(1):6–19, 2018.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

[33] Xuefeng Peng, Yi Ding, David Wihl, Omer Gottesman, Matthieu Komorowski, Li-wei H Lehman, Andrew Ross, Aldo Faisal, and Finale Doshi-Velez. Improving sepsis treatment strategies by combining deep and kernel-based reinforcement learning. In *AMIA Annual Symposium Proceedings*, volume 2018, page 887. American Medical Informatics Association, 2018.

[34] Rimma Pivovarov, David J Albers, Jorge L Sepulveda, and Noémie Elhadad. Identifying and mitigating biases in ehr laboratory tests. *Journal of biomedical informatics*, 51:24–34, 2014.

[35] Niranjani Prasad, Li-Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E Engelhardt. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. *arXiv preprint arXiv:1704.06300*, 2017.

[36] Elizabeth A Price, Jing Jin, Huong Marie Nguyen, Gomathi Krishnan, Raffick Bowen, and James L Zehnder. Discordant aptt and anti-xa values and outcomes in hospitalized patients treated with intravenous unfractionated heparin. *Annals of Pharmacotherapy*, 47(2):151–158, 2013.

[37] J Roderick, A Little, and Donald B Rubin. *Statistical analysis with missing data*. J. Wiley, 2002.

[38] Donald B Rubin. Inference and missing data. *Biometrika*, 63(3):581–592, 1976.

[39] Suchi Saria. Individualized sepsis treatment using reinforcement learning. *Nature medicine*, 24(11):1641, 2018.

[40] Anis Sharafoddini, Joel A Dubin, David M Maslove, and Joon Lee. A new insight into missing data in intensive care unit patient profiles: Observational study. *JMIR medical informatics*, 7(1):e11605, 2019.

[41] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

[42] Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence off-policy evaluation. In *Twenty-Ninth AAAI Conference on Artificial Intelligence*, 2015.

[43] Jeremy W Vandiver and Thomas G Vondracek. Antifactor xa levels versus activated partial thromboplastin time for monitoring unfractionated heparin. *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy*, 32(6):546–558, 2012.

[44] Cameron Voloshin, Hoang M Le, and Yisong Yue. Empirical analysis of off-policy policy evaluation for reinforcement learning. *Real-world Sequential Decision Making workshop at ICML 2019*, 2019. URL: https://realworld-sdm.github.io/paper/34.pdf

[45] Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in healthcare: A survey. *arXiv preprint arXiv:1908.08796*, 2019.
6 Appendix

Table 3: Mann-Whitney U Test evaluating whether aPTT dynamics are significantly different under concurrent laboratory test missingness vs. non-missingness. (bold: significant after Bonferroni correction for controlling the family-wise error rate)

Concurrent Lab, L	Median $X_{L,\text{missing}}$	Median $X_{L,\text{not missing}}$	p-value
Prothrombin Time (PT)	27.10	35.44	1.61e-10
International Normalized Ratio (INR)	27.10	35.44	1.61e-10
Total Bilirubin (TBILI)	32.71	36.21	2.01e-4
Creatinine (CR)	27.49	35.27	2.22e-2
Aspartate Aminotransferase (AST)	32.67	36.24	2.12e-4
Alanine Aminotransferase (ALT)	32.71	36.23	2.57e-4
Platelet Count (PLT)	42.48	35.18	0.988
C-reactive Protein (CRP)	35.15	35.53	0.965
Red Cell Distribution Width (RDW)	33.67	35.19	0.561
Hemoglobin (HGB)	40.14	35.18	0.372
White Blood Cell Count (WBC)	33.67	35.19	0.561
Fibrinogen (FBN)	34.27	39.84	0.324
Erythrocyte Sedimentation Rate (ESR)	34.99	39.13	2.20e-5