Review

Peripheral action of kisspeptin at reproductive tissues—role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review

Michael J. D’Occhio1, Giuseppe Campanile2 and Pietro S. Baruselli3,*

1School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia, 2Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy and 3Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil

*Correspondence: Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil. Tel: +551130917674; Email: barusell@usp.br

Received 8 April 2020; Revised 23 July 2020; Accepted 7 August 2020

Abstract

Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.

Summary Sentence

Kisspeptin acts within the brain to influence GnRH secretion, and there is now strong evidence that it also acts at peripheral reproductive tissues to directly influence ovarian function, embryo development, implantation and pregnancy.

Key words: kisspeptin, GnRH secretion, ovary, embryo, implantation, pregnancy.
Introduction

The peptide kisspeptin (KISS1) is encoded by the KISS1 gene and is a major regulator of reproductive function. The role of KISS1 within the brain to regulate gonadotropin releasing hormone (GnRH) secretion has been well characterized [1–13] (Figure 1). KISS1 also acts outside the brain at peripheral reproductive tissues (e.g. ovary, uterus) [14–16]. The aim of the present review was to bring together information on the emerging roles of KISS1 beyond the brain. A number of previous reviews have looked at different stages in the history of KISS1. It was considered important in the present review to first consolidate, into a single source, work that led to the discovery and characterization of KISS1. This approach will provide readers with the background of how discovery of the KISS1 gene and KISS1 protein quickly led to an understanding of the fundamental role of KISS1 in GnRH release [3, 17].

In 1996, the expression of the KISS1 gene was demonstrated in human nonmetastatic melanoma cells [18] (Table 1). This finding led to the suggestion that the expression of KISS1 conferred the nonmalignant phenotype in melanoma cells [18]. Within 1 year, it was reported that the expression of KISS1 did indeed suppress metastasis in human breast carcinoma cells [19]. The peptide encoded by KISS1 was first isolated in 2001 from human placenta. It was named metastin by one research group to reflect its metastasis-suppressing properties [20]. A second research group named the peptide KISS1 as it belonged to the kisspeptins [21]. G protein-coupled receptor 54 (GPR54; renamed KISS1 receptor, KISS1R) had been discovered in 1999 as an orphan receptor in the rat brain [22]. In 2001, KISS1 was shown to bind to KISS1R (Table 1). Two years later in 2003, natural mutations in the KISS1R gene were found to be associated with idiopathic hypothalamic hypogonadism and impaired puberty in humans (Table 1). At the same time, targeted mutations of the KISS1R gene disrupted puberty in mice [23, 24]. The findings for KISS1R in humans and mice focused attention on the role of KISS1 in reproduction. Within a short period, it was established for rodents, ruminants, and primates that KISS1 induced the secretion of GnRH [25] and it had been shown that GnRH neurons expressed KISS1R [11, 26, 27] (Figure 1). The latter led to the concept that KISS1 acts as a mediator in brain pathways that link metabolic status to reproductive function [29–39]. KISS1 neurons also express estrogen receptor α, further linking KISS1 to the reproductive neuroendocrine axis [40, 41] (Figure 1).

There is evidence that leptin can influence KISS1 neurons by indirect pathways that do not involve classical binding to the KISS1R. For example, selective deletion of KISS1R from hypothalamic KISS1 neurons had no apparent deleterious effect on puberty or fertility in female mice [42]. Also, intracellular signal transduction from the KISS1R typically involves the transcription factor, signal transducer and activator of transcription 3 (STAT3) [43], and STAT3 was shown...
Peripheral action of kisspeptin, 2020, Vol. 103, No. 6

1159

Table 1. Chronology of the discovery of kisspeptin (KISS1) and G protein-coupled receptor 54 (GPR54, renamed KISS1R).

Year	Event	Reference
1996	KISS1 gene expression demonstrated in human nonmetastatic melanoma cells, suggesting that KISS1 expression conferred the nonmalignant phenotype in melanoma cells	[18]
1997	KISS1 expression shown to suppress metastasis in human breast carcinoma cells	[19]
1998	Discovery of orphan receptor GPR54 in rat brain	[20]
2001	Metastin/KISS1 isolated from human placenta as products of the KISS1 gene	[21, 210–212]
2002	KISS1 shown to bind to orphan receptor GPR54	[20, 21]
2003	Natural mutations in GPR54 shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty in humans	[213–217]
2003	Targeted mutation of GPR54 gene disrupted puberty in mice	[23, 24]
2004	KISS1R expression demonstrated on GnRH neurons	[11, 26, 27]
2004	KISS1 expression demonstrated in trophoblast giant cells in rats	[157]
2004	KISS1 shown to act as trophoblast repressor in women	[147]
2005	KISS1 shown to stimulate GnRH release through GPR54	[218]
2005	KISS1 shown to have a fundamental role in the onset of puberty in mice, subsequently shown in other species	[14, 27, 219]

Distribution and function of KISS1 and KISS1R in the brain and reproductive tissues

Studies on the localization of KISS1 and KISS1R protein using immunohistochemistry, and KISS1 and KISS1R mRNA using in situ hybridization, have predominantly utilized antibodies and PCR primers, respectively, generated against human, mouse, and rat proteins and DNA sequences. The reader should consult specific articles for details on the methodology employed in studies where antibodies and PCR primers have been used for comparative studies in species other than humans and rodents. This level of detail is outside the scope of the review, but it may explain some of the apparent discrepancies across studies on KISS1 and KISS1R localization [95].
Brain
The localization of KISS1 neurons within the brain has been extensively reviewed for rodents, primates, and production animals [25, 96, 97] (Figure 1). KISS1 neurons are concentrated in the ARC, anteroventral periventricular nucleus (AVPV), and preoptic area (POA) [98–103] (Figure 1). There are species differences in where KISS1 neuron cell bodies are concentrated [25]. In mice, KISS1 neuron cell bodies are located primarily in the ARC and AVPV [104–107]. In cattle [82, 108], buffalo [109–112], sheep [7, 23, 99, 100, 113–118], and primates [119], KISS1 cell bodies are found in the ARC and POA (Figure 1). In a recent report, KISS1 mRNA expression was found in the amygdala in female rats and was shown to be associated with puberty [78, see also 120]. Axonal projections of KISS1 neuron cell bodies have synaptic terminals in the vicinity of GnRH neuron cell bodies in the hypothalamus [73, 108, 121] and GnRH neuron axons in the vicinity of the median eminence [115, 122, 123] (Figure 1). KISS1 is released at synaptic terminals and binds to KISS1R on GnRH neurons [121] (Figure 1).

Ovaries
The expression of KISS1 and KISS1R genes, and the presence of KISS1 and KISS1R protein, has been demonstrated in follicles, oocytes, and corpora lutea in the rat [124–126], mouse [127], Siberian hamster [128], rabbit [16], cat [129], dog [130], goat [131], sow [132, 133], and human and nonhuman primates [134, 135]. In rats, KISS1 and KISS1R expression was low in prepubertal animals and expression increased in the theca cells of follicles and luteal tissue in response to treatment with gonadotropin [124, 125]. In dogs, KISS1R protein, but not KISS1 protein, was present in ovaries of prepubertal animals [130]. In rats, ovarian KISS1 and KISS1R showed constant expression, whereas KISS1R protein increased during the preovulatory period, suggesting a role for KISS1 in ovulation [124]. Similarly, in the Siberian hamster, KISS1 and KISS1R protein levels were highest at proestrus and estrus [128]. The Siberian hamster is a photoperiodic long-day breeder, and ovarian KISS1 and KISS1R levels were higher during long days than in short days [128]. Follicular KISS1 and KISS1R mRNA have been localized in both granulosa cells (dog [130]; cat [129]; human [135]) and theca cells (rat [124]; human and marmoset [134]; cat [129]). The expression of KISS1 and KISS1R in follicles (granulosa, theca, oocyte and corpora lutea, together with the presence of KISS1 and KISS1R proteins, provides strong evidence that local KISS1 has important autocrine and paracrine actions in ovarian function [138] (Figure 3). In support of this, KISS1 mRNA increased around 80-fold during the attainment of meiotic competence in mouse oocytes [137]. Also, oocyte-specific KISS1R knockout mice failed to ovulate, suggesting an important role for KISS1 action on oocytes in ovulation [138]. Furthermore, KISS1R–/– mutant mice showed arrested follicular development, even with normal gonadotrophin secretion [139]. In addition, KISS1 increased both the basal and human chorionic gonadotropin-induced progesterone production when added to cultured rat luteal cells [125]. It is feasible that ovarian KISS1 may have an endocrine action, particularly at the ipsilateral uterus through counter current transfer in the ovarian–uterine vasculature. The latter could potentially complement trophoblastic KISS1 in preparing the uterine endometrial epithelium for trophoblast attachment and implantation.

There is evidence that the receptor, neurotrophic receptor tyrosine kinase 2 (NTRK2), and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in rodent follicles and interact with KISS1R to influence follicular development [140–143] (Figure 3). Oocyte-specific deletion of NTRK2 was associated with disorganized follicles and oocyte death in mice [142]. BDNF mRNA and BDNF protein were also reported in buffalo follicles and influenced both oocyte maturation and early embryonic development [144]. The putative interaction between NTRK2 and KISS1R in follicular function and embryo development provides yet another example of the emerging complexity in molecular mechanisms associated with embryo survival, implantation, and pregnancy. As argued earlier in this review, this complexity requires a deeper understanding before the next step change can be achieved in embryo survival and the efficiency of assisted reproductive technology.
Peripheral action of kisspeptin, 2020, Vol. 103, No. 6

Figure 3. Diagrammatic representation of the putative autocrine and paracrine actions of kisspeptin (KISS1) in ovarian follicles and corpus luteum. KISS1 and KISS1 receptor (KISS1R) proteins are found in granulosa cells, theca cells, oocytes, and corpus luteum. Granulosa KISS1 is thought to influence thecal cells, the oocyte, and corpus luteum, while theca KISS1 is thought to influence the oocyte. Oocytes also have NTRK2 receptors that appear to act cooperatively with KISS1R. In response to luteinizing hormone (LH), granulosa cells produce BDNF, which stimulates receptor NTRK2 on oocytes, and BDNF may be a mechanism associated with puberty. Oocytes that lack NTRK2 do not respond to gonadotropin to activate PI3K/AKT, which is required for oocyte survival and the acquisition of oocyte developmental competency and the ability to form a blastocyst [141, 142, 220]. These putative actions of KISS1 may not be universal and species differences are likely to exist.

Trophoblast and placenta

As noted above, KISS1 gene expression and KISS1 protein were first demonstrated in human placenta [18]. It was subsequently shown that the expression of KISS1 and KISS1R was highest early in placentation in women, and this led to the suggestion that KISS1 was involved in early trophoblast implantation [145]. It was also shown that KISS1 expression was localized to villous trophoblast tissue while KISS1R expression occurred in both villous trophoblast and extravillous trophoblast [145–147]. The latter finding led to the suggestion that trophoblast-derived KISS1 may have both autocrine and paracrine actions during early implantation [146–148] (Figure 4). There is now strong evidence in women that KISS1 produced by the trophoblast regulates the infiltration of the uterine epithelium by the syncytiotrophoblast early in implantation [91, 94, 148–153] (Figure 4). Systemic levels of KISS1 were related to the likelihood of implantation in women undergoing assisted reproduction and embryo transfer [154]. In a seminal paper on KISS1 [20], it was proposed that KISS1 influences trophoblast implantation through interaction with cell–cell adhesion molecules and extracellular matrix proteins (see also 155). The fundamental importance of adhesion molecules in trophoblast attachment to the uterine epithelium was reviewed recently [84]. KISS1R expression by the uterus in pregnant rats and mice coincided with the period of implantation, suggesting a role for trophoblast KISS1 in rodents that is similar to the role in women [92, 147, 156–158]. A role for KISS10 and KISS1R in the interaction between the trophoblast and uterus has also been proposed in dogs [159]. The functional role of KISS1 during implantation is to regulate the rate of syncytiotrophoblast cell invasion and angiogenesis, which helps to ensure that early placentation is a sequential and controlled process [146, 147, 160]. KISS1, therefore, has an analogous role in the repression of cell migration both in early pregnancy and tumor metastasis [147]. In contrast to the information in humans, mice with mutant KISS1 and KISS1R developed an apparently normal placenta and supported implantation and pregnancy [161]. Further studies are required to elucidate what would appear to be species differences in the absolute requirement for KISS1 signaling in reproductive tissues in females.

The role of the KISS1-KISS1R system during implantation has received less attention in livestock compared with rodents and humans. The interaction of the trophoblast with the uterine endometrial epithelium, implantation, and placentation is notably different events across species [162–165]. In rodents and humans, the trophoblast aggressively infiltrates [166] the endometrial epithelial cells to achieve implantation (hemochorial placentation), whereas, in livestock, implantation is a less invasive process (epitheliolarchorial placentation—pig; synepithelialchorial placentation—cow, goat, and sheep) [167–169] (Figure 4). Also, implantation appears to have a narrower window in rodents and humans compared with livestock [170]. These differences in type of placentation could mean that, while the KISS1-KISS1R system has an important role in implantation in rodents and humans, the same system may have a lesser role in livestock. Notwithstanding, cultures of bovine cotyledon epithelial cells derived from first-trimester pregnant cows expressed KISS1R [171]. The addition of KISS-10 to the cultures both stimulated and suppressed epithelial cell proliferation in two separate cell lines [171]. Stimulation of cell proliferation occurred in the cell line that...
Figure 4. Diagrammatic representation of trophoblast attachment and implantation. In syncytiotrophoblastic placenta in ruminants, (A) the trophoblast does not penetrate the basal lamina and uterine stroma but forms villi-like projections into the uterine endometrial epithelium that include binucleate cells [167–169]. In hemochorial placenta in rodents and humans, (B) the syncytiotrophoblast infiltrates the uterine endometrial stroma [166; see also 163]. Illustrated are proposed autocrine and paracrine actions of trophoblast KISS 1 at the trophoblast and uterus, respectively. The different types of placentation could be associated with different actions for trophoblast-derived KISS1 at the uterine KISS1R. Trophoblast KISS1 may influence the initial attachment of the trophoblast to the uterine endometrial epithelium (A and B) by interaction with cell–cell adhesion molecules and extracellular matrix proteins [20, 155].

showed upregulation of KISS1R mRNA [171]. A strong case can be made that the KISS1–KISS1R system should be further investigated in livestock, given that the failure of embryo implantation remains the major cause of reproductive wastage, particularly in ruminants [39, 83, 84].

Application of KISS1 in assisted reproduction in livestock

Control of GnRH secretion
The most common use of KISS1 in assisted reproduction is to control GnRH and gonadotropin secretion in order to influence gonadal function, particularly in livestock [13, 73, 81, 172–183]. Treatment with either human or mouse KISS-10 was associated with LH secretion and better synchronization of ovulation compared with GnRH in crossbred dairy heifers [175] and crossbred Hereford beef heifers and cows [82]. Bovine KISS-53 likewise induced LH section and growth of the dominant follicle in Japanese Black beef cows [184]. KISS1 administered by osmotic minipump for 48 h during proestrus improved follicle growth and ovulation rate in anestrous Nelore (Bos indicus) cows [179]. However, single treatment with mouse KISS1 (3 mg, i.m.) at the time of fixed-time artificial insemination (AI) did not improve the fertility outcome in prepubertal Nelore heifers [185]. The KISS-10 agonist C6 induced fertile ovulations in ewes that had been pretreated with progesterone [79]. The same agonist advanced puberty in female mice when administered daily for
5 days [73, see also 27]. The latter finding led to the suggestion that KISS1 agonists may have potential in the management of puberty in livestock. In this regard, KISS-10 induced gonadotropin secretion and influenced ovarian function in prepubertal buffalo [183], cattle [180], sheep [186, 187], and pigs [177, 188]. KISS-10 also induced gonadotropin secretion and ovulation in seasonally anestrous ewes [189, 190] and synchronized ovulation in goats [79]. KISS-10 (10 μg/kg live weight) additionally stimulated LH secretion in both the breeding and nonbreeding seasons in buffalo cows [181] and ewes [117]. Hence, treatment with KISS1 can stimulate quiescent GnRH neurons in both prepubertal and seasonally anestrous females. While KISS1 has mainly been used in vivo to influence hypothalamic GnRH neurons, human KISS-10 was reported to stimulate LH secretion in cultured anterior pituitary cells derived from prepubertal male Holstein calves [191]. The action of KISS1 at the pituitary is outside the scope of this review but needs to be considered within the broader biology of KISS1 in reproduction in rodents, primates, and livestock [192–196].

Control of ovarian function

The local role of KISS1 in ovarian function is less well researched compared with the effects on GnRH secretion. As noted above, KISS1 and KISS1R have been localized in granulosa, theca, and oocytes, and KISS1 is present in follicular fluid. These findings have led to the suggestion that follicular KISS1 has autocrine and paracrine actions within follicles, including the effects on the oocyte (Figure 3). KISS1 is expressed by the cumulus–oocyte complex (COC) in mice [127] and was reported to be necessary for ovulation in this species [138].

A role for KISS1 in oocyte maturation has been inferred by IVF studies. In sheep, the proportion of oocytes that showed cumulus expansion and extrusion of the first polar body at the end of in vitro culture (IVC) was highest when KISS1 was included in the culture media [197]. In cattle, the addition of KISS1 during IVC and IVF increased the proportion of blastocysts relative to gonadotropins [198]. Similar beneficial effects of KISS1 on IVF oocyte maturation and developmental competence have been reported in buffalo [199] and pigs [132, 200]. The addition of KISS1 to cultured pig COCs improved oocyte maturation and increased the blastocyst formation rate [132]. After hatching, however, blastocysts had reduced trophoblast outgrowths in the presence of KISS1 [132]. Also in the pig, KISS1 enhanced embryo development in parthenogenetically activated oocytes [200]. In women, systemic injection of KISS-54 induced oocyte maturation [201].

KISS1 and KISS1R single-nucleotide polymorphisms and fertility

Single-nucleotide polymorphisms (SNPs) occur in the KISS1 and KISS1R genes, and in some studies, these SNPs have been linked with fertility in livestock. In goats, KISS1R SNPs were associated with differences in prolificacy between Boer, Guanzhong, and Saanen breeds [202]. However, KISS1 and KISS1R SNPs were not associated with prolificacy between prolific Jintang and nonprolific Tibetan goat breeds [131]. In the latter study, KISS1 expression in the pituitary was greater for Jintang goats, and it was suggested that this could be linked with prolificacy. KISS1 SNPs were associated with acrosome integrity and fertility in Holstein Friesian (Bos taurus) and Khilari (B. indicus) bulls [203]. Given the peripheral action of KISS1 at reproductive tissues, the discovery and validation of KISS1 and KISS1R SNPs have potential for their inclusion in genomic selection indices for fertility in livestock. Other SNPs have been associated with the function of the endometrium and capacity to support embryo development and pregnancy in crossbred beef cows [89], and future studies may discover relationships between these SNPs and KISS1 and KISS1R.

Integration of KISS1–KISS1R in follicular function and embryo development

The basic and applied literature reviewed above makes a strong case that KISS1 and KISS1R are fundamentally involved in the peripheral regulation of ovarian function, early embryo development, implantation, and placentation (Figure 5). The interaction of KISS1–KISS1R with NTRK2 [140–143] and cell–cell adhesion molecules [20] shows that KISS1 does not act in isolation at reproductive tissues. Rather, KISS1 is integrated with other molecular mechanisms that influence ovarian function and embryo development. The largest body of literature supporting peripheral KISS1–KISS1R action is for women and rodents. While not as voluminous, there is sufficient evidence to conclude that the local action of KISS1–KISS1R at reproductive tissues is also important in livestock [91, 93]. The failure of assisted reproductive technology to make any meaningful advance in the proportion of embryos that survive and establish a pregnancy has led to a renewed focus on the biology of early embryo development, implantation, and pregnancy establishment. Recent reviews have considered the role of the transforming growth factor-beta (TGFβ) superfamily and interferon tau [83], cell–cell adhesion molecules [84], and melatonin [204]. These and other recent reviews have highlighted the complexity of local molecular mechanisms [205–208]. The present review has sought to further embed KISS1–KISS1R in this area of biology. The argument is made that a deeper understanding of local mechanisms is needed in order to better inform the next phase of assisted reproductive technology, which seeks to improve embryo survival and pregnancy. Further research is required during the periods of proestrus/estrous, early embryo development, and trophoblast attachment and implantation (Figure 5).

Conclusions

There is compelling evidence that the KISS1–KISS1R receptor system participates in the local regulation of ovarian function, early embryo development, implantation, and placentation. While the evidence is strongest for humans and rodents, there is sufficient information for livestock to conclude that the peripheral KISS1–KISS1R system is also important in production animals. Interesting features of KISS1 are as follows: (1) it acts within the brain and at the periphery and (2) it is associated with metastasis and reproduction. KISS1 shares these features with melatonin (brain and periphery [204]) and cell–cell adhesion molecules (metastasis and reproduction [84]). This review has made the case that both the brain and peripheral actions of KISS1 need to be considered when KISS1 is utilized in assisted reproduction. It is possible that when KISS1 is used to regulate GnRH and gonadotropin secretion to control follicular growth and ovulation, it may also impact oocyte maturation and early embryo development. The control of ovulation with KISS1 typically involves acute treatment to cause an immediate release of GnRH and LH. It is likely that chronic treatment with KISS1 will be required for beneficial effects on follicles and oocytes, and early embryo development and implantation. These processes occur over a longer time than the release of GnRH and LH. Longer-term...
Figure 5. Diagrammatic representation of windows during which longer-term treatment with kisspeptin (KISS1) may be beneficial to follicle and oocyte maturation (Window 1), early embryo development (Window 2), and trophoblast development, attachment, and implantation (Window 3). KISS1 and KISS1 receptor (KISS1R) gene expression and KISS1 and KISS1R proteins occur in the respective reproductive tissues in each window. The days relative to ovulation and fertilization are for cattle.

treatments with KISS1 will utilize agonists that have an extended half-life in circulation and high biological potency. The potential to downregulate KISS1R with longer-term use of KISS1 agonists will need to be studied. As noted above, a deeper understanding of the biology of early embryo development and implantation is necessary for the next step change improvement in embryo survival and pregnancy in assisted reproduction. The interesting path taken by the field of KISS1 research is that it started with the placenta and cancer, it moved to the brain and reproduction, and then it returned to the placenta and reproduction.

Acknowledgments

The authors thank the many postgraduate students who contributed generously to research and thinking that is included in this article. We also sincerely
thank Dr Fabio de Moraes Francisco (ReproScience, http://reproscience.info/) for producing the figures.

Conflict of interest

The authors have declared that no conflict of interest exists.

References

1. Aparicio SAJR. Kisspeptins and GPR54 - the new biology of the mammalian GnRH axis. *Cell Metab* 2005;1:293–296.

2. Dungan HM, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. *Endocrinology* 2006;147:1154–1158.

3. Tena-Sempere M. GPR54 and kisspeptin in reproduction. *Hum Reprod Update* 2006;12:631–639.

4. Kauffman AS, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. *Endocrinology* 2006;147:1154–1158.

5. Popa SM, Clifton DK, Steiner RA. The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. *Annu Rev Physiol* 2008;70:213–238.

6. Roa J, Tena-Sempere M. KiSS-1 system and reproduction: comparative aspects and roles in the control of female gonadotropic axis in mammals. *Gen Comp Endocrinol* 2007;153:132–140.

7. Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. *Endocr Rev* 2009;30:713–743.

8. Roa J, Navarro VM, Tena-Sempere M. Kisspeptins in reproductive biology: consensus knowledge and recent developments. *Reprod Biol Reprod* 2011;85:650–660.

9. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. *Physiol Rev* 2010;92:1235–1316.

10. Abbara A, Ratnasabapathy R, Jayasena CN, Dhillo WS. The effects of kisspeptin on gonadotropin release in non-human primates. *Adv Exp Med Biol* 2013;784:63–87.

11. Kirilov M, Clarkson J, Liu X, Roa J, Campos P, Porteous R, Schutz G, Herbison AE. Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. *Nat Commun* 2013;4:2492.

12. Clarke H, Dhillo WS, Jayasena CN. Comprehensive review on kisspeptin and its role in reproductive disorders. *Endocrin Metab (Seoul)* 2015;30:124–141.

13. Priyanka B, Kumari GA, Raju J, Shankaraiah P. Role of kisspeptin in livestock reproduction. *Pharm Innov* 2018;7:728–731.

14. Uneoyma Y, Inoue N, Nakamura S, Tsukamura H. Central mechanisms controlling puberty onset in mammals: a triggering role for kisspeptin. *Front Endocrinol* 2019;10:312.

15. Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/kisspeptin receptor system in the ovary. *Front Endocrinol* 2018;8:363.

16. Maranesi M, Petrucci L, Leonardi L, Butalar A, Parillo F, Boti C, Zerani M. Kisspeptin/kisspeptin receptor system in pseudopregnant rabbit corpora lutea: presence and function. *Nat Sci Rep* 2019;9:5044.

17. Gottsch ML, Clifton DK, Steiner RA. From KISS1 to kisspeptins: an historical perspective and suggested nomenclature. *Peptides* 2009;30:4–9.

18. Lee JH, Mele ME, Hicks DJ, Phillips KK, Trent JM, Weissoon BE, Welch DR. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. *J Natl Cancer Inst* 1996;88:1731–1737.

19. Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. *Cancer Res* 1997;57:2384–2387.

20. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kaneko H, Terao Y, Kumanou S, Takatsu Y, Masuda Y, Ishihashi Y, Watanabe T et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. *Nature* 2001;411:613–617.

21. Kotani M, Delheus M, Vandenbogaerde A, Communi D, Vanderwiden JM, Le Poul E, Bresslou S, Tyldesley R, Suarez-Huerta N, Vanpeut F, Blanpain C, Schicemann SN et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. *J Biol Chem* 2001;276:34631–34636.

22. Lee DK, Nguyen T, O’Neill GP, Cheng R, Liu Y, Howard AD, Coulombe N, Tan CP, Tang-Nguyen AT, George SR, O’Dowd BF. Discovery of a receptor relayed to the galanin receptors. *FEBS Lett* 1999;446:103–107.

23. Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monksa FJ, Gustafson EL. The KiS-1 receptor GPR54 is essential for the development of the murine reproductive system. *Biochem Biophys Res Commun* 2003;312:1357–1363.

24. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acieno JS, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J et al. The GPR54 gene as a regulator of puberty. New *Engl J Med* 2003;349:1614–1627.

25. Goodman RL, Lehman MN. Kisspeptin neurons from mice to men: similarities and differences. *Endocrinology* 2012;153:5105–5118.

26. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KISS-1 mRNA in the male rat. *Neuroendocrinology* 2004;80:264–272.

27. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakszewick SK, Clifton DK, Steiner RA, Herbison AE. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. *J Neurosci* 2005;25:11349–11356.

28. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurons are direct targets for leptin in ob/ob mouse. *J Neuroendocrinol* 2006;18:298–303.

29. Backholer K, Smith JT, Rao A, Pereira A, Iqbal J, Ogawa S, Li Q, Clarke IJ. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. *Endocrinology* 2010;151:2233–2244.

30. Castellano JM, Roa J, Luque RM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. KiS-1/kisspeptins and the metabolic control of reproduction: physiologic roles and putative physiopathological implications. *Peptides* 2009;30:139–145.

31. Castellano JM, Bentzen AH, Mikkelson JD, Tena-Sempere M. Kisspeptins: bridging energy homeostasis and reproduction. *Brain Res* 2010;1364:129–138.

32. Whitlock BK, Daniel JA, Wilborn RR, Maxwell HS, Steele BP, Sartin JL. Interaction of kisspeptin and the somatotrophic axis. *Neuroendocrinology* 2010;92:178–188.

33. De Bond JAP, Smith JT. Kisspeptin and energy balance in reproduction. *Reproduction* 2014;147:R53–R63.

34. Padilla SL, Qiu J, Nestor CC, Zhang C, Smith AW, Whidden BR, Roneskleiv OK, Kelly MJ, Palmiter RD. AgRP to Kiss1 neuron signaling links nutritional state and fertility. *Proc Natl Acad Sci U S A* 2011;104:2413–2418.

35. Hill JW, Elias CF. Neuroanatomical framework of the metabolic control of reproduction. *Physiol Rev* 2018;98:2349–2380.

36. Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. *Front Neuroendocrinol* 2018;48:37–49.

37. Walab F, Anka B, Ullah F, Shahab M, Behr R. Metabolic impact on the hypothalamic kisspeptin-kiss1r signaling pathway. *Front Endocrinol* 2018;9:123.

38. Wolfe A, Hussain MA. The merging role(s) for kisspeptin in metabolism in mammals. *Front Endocrinol* 2018;9:184.

39. D’Occhio MJ, Baruselli PS, Campanile A. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: a review. *Theriogenology* 2019;125:277–284.

40. Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. *Neurosci Lett* 2006;401:225–230.

41. Dubois SL, Acosta-Martinez M, DeJoseph MR, Wolfe A, Radovich S, Boehm U, Urban JH, Levine JE. Positive, but not negative feedback...
actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology 2015;156:1111–1120.

42. Donato J, Cravo RM, Frazao R, Gastror L, Scott MM, Lachey J, Castro IA, Margatho LO, Lee S, Lee C, Richardson JA, Friedman JM et al. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 2011;121:355–368.

43. Park HK, Ahima RS. Leptin signaling. F1000 Prime Rep 2014;6:73.

44. Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Herbison AE, Grattan DR, Anderson GM. Leptin indirectly regulates gonadotrophin-releasing hormone neuronal function. Endocrinology 2009;150:2805–2812.

45. Quennell JH, Howell CS, Roa J, Augustine RA, Grattan DR, Anderson GM. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology 2011;152:1541–1550.

46. True C, Kirigini MA, Kievit P, Grove KL, Smith MS. Leptin is not the critical signal for kisspeptin or luteinizing hormone restoration during exit from negative energy balance. J Neuroendocrinol 2011;23:1099–1112.

47. Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers MG. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 2011;152:2302–2310.

48. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AWK, Wang Y, Banks AS, Lavey HJ, Haq AK, Maratos-Flor E, Neel BG, Schartz MW et al. STAT3 signaling is required for leptin regulation of energy balance but not reproduction. Nature 2003;421:856–859.

49. Bates SH, Dundon TA, Seifert M, Carlson M, Maratos-Flor E, Myers MG. LRB-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes 2004;53:3067–3075.

50. Singiredy AV, Inglis MA, Zuree WA, Kim JS, Anderson GM. Neither signal transducer and activator of transcription # (STAT3) or STAT5 signaling pathways are required for the effect of Kiss1 on fertility in mice. Endocrinology 2013;154:2434–2445.

51. Patterson CM, Lashan RL, Jones JC, Myers MG. Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res 2011;1378:18–28.

52. Egan OK, Inglis MA, Anderson GM. Leptin signaling in AgRP neurons regulates puberty onset and adult fertility in mice. J Neurosci 2017;37:3875–3886.

53. Navarro VM. New insights into the control of pulsatile GnRH release: the role of Kiss1/neurokinin B neurons. Front Endocrinol 2012;3:48.

54. Navarro VM. Interactions between kisspeptin and neurokinin B. Adv Exp Biol Med 2013;794:1–4.

55. Oishi S, Fujii N. Neuropeptide derivatives to regulate the reproductive axis: kisspeptin receptor (KISS1R) ligands and neurokinin-3 receptor (NK3R) ligands. Biopolymer 2016;106:588–597.

56. Yeo SH, Colledge H. The role of kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic-pituitary-gonadal axis. Front Endocrinol 2018;9:188.

57. Navarro VM, Castellano JM, McConkey SM, Pineda R, Ruiz-Pino F, Pinilla L, Clifton DK, Tena-Sempere M, Steiner RA. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab 2011;300:E202–E210.

58. Navarro VM, Gottsch ML, Wu M, Garcia-Galiano D, Hobbis J, Bosch MA, Pinilla L, Clifton DK, Dearth A, Ronnekleiv OK, Braun RE, Oalimiter RD et al. Regulation of NK3B pathways in the arcuate nucleus of the male mouse. Endocrinology 2011;152:4265–4275.

59. Goodman RL, Hileman SM, Nestor CC, Porter KL, Connors JM, Hardy SL, Millar RP, Cernea M, Coolen LM, Lehman MN. Kisspeptin, neurokinin B and dynorphin an arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology 2013;154:4239–4269.

60. Merkley CM, Coolen LM, Goodman RL, Lehman MN. Evidence for changes in numbers of synaptic inputs onto KNDy and GnRH neurons during the preovulatory LH surge in the ewe. J Neuroendocrinol 2015;27:624–635.

61. Hassaneen AS, Nanwai Y, Sueto M, Matsuysama S, Kimura K, Ieda N, Inoue N, Uenoyma Y, Tsukamura H, Maeda K, Matsuda F, Ohkura S. Immunohistochemical characterization of the arcuate kisspeptin/neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers. J Reprod Fert 2016;62471–477.

62. Dudek M, Ziaugn AC, Silbowwska JH. Kisspeptin and metabolism: the brain and beyond. Front Endocrinol 2018;9:145.

63. Talbi R, Navarro V. Novel insights into the metabolic action of kiss1 neurons. Endocr Rev 2010;9R124–R133.

64. Findelsen M, Rathmann D, Beck-Sickinger AG. Riamide peptides: structure, function, and pharmaceutical potential. Pharmaceutical 2011;4:1248–1280.

65. Rousseau K, Dufour S, Vaudry H. Editorial: a comparative survey of the RF-amide peptide superfamily. Front Endocrinol 2015;6:120.

66. Calley JL, Dhillon WS. Effects of the hormone kisspeptin on reproductive hormone release in humans. Adv Biol 2014;65:12650.

67. Tomikawa J, Homma T, Tajima S, Shihata T, Inamoto Y, Takase K, Inoue N, Ohkura S, Uenotama Y, Maeda K. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol Reprod 2010;82:313–319.

68. Pasquier J, Kamech N, Lafont AG, Vaudry H, Rousseau K, Dufour S. Molecular evolution of GPCRs: kisspeptin/kisspeptin receptors. J Mol Endocrinol 2014;52:T101–T117.

69. Tresvisan CM, Montagna E, de Oliveira R, Christofolini DM, Barbosa CP, Crandall KA, Bianco B. Kisspeptin/GPR54 system: what we know about its role in human reproduction? Cell Physiol Biochem 2018;49:1259–1276.

70. Harms JF, Welch DR, Miele ME. KISS1 metastasis suppression and emergent pathways. Clin Exp Metastasis 2003;20:11–18.

71. Kirby HR, Maguire JJ, Colledge WH, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function. Pharmacol Rev 2010;62:565–578.

72. Matsui H, Asami T. Effects and therapeutic potentials of kisspeptin analogs: regulation of the hypothalamic-pituitary-gonadal axis. Neuroendocrinology 2014;99:49–60.

73. Decourt C, Robert V, Anger K, Galibert M, Madinier JB, Liu X, Dardente H, Lomet D, Delmas AF, Caraty A, Herbison AE, Anderson GM et al. A synthetic kisspeptin analog that triggers ovulation and advances puberty. Nat Sci Rep 2016;6:26908.

74. Beltramo M, Decourt C. Towards new strategies to manage live-stock reproduction using kisspeptin analogs. Theriogenology 2018;112:2–10.

75. Clarkson J, Herbison AE. Oestrogen, kisspeptin, GPR54 and the pre-ovulatory luteinizing hormone surge. J Neuroendocrinol 2009;21:305–311.

76. Rosewe AK, Kauffman AS, Smith JT, Gueriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Lema-Sempere M, Moenter SM, Terasawa E, Clarke IJ et al. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci 2009;29:3920–3929.

77. Millar RP, Rosewe AK, Tello JA, Anderson RA, George JT, Morgan K, Lawson AJ. Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology. Brain Res 2010;1364:81–89.

78. Adekunbi DA, Li XF, Li S, Adegoke OA, Iranloye BO, Morakinyo AO, Lightman SL, Taylor PD, Poston L, O’Brien KT. Role of amygdala kisspeptin in pubertal timing in female rats. PLoS One 2017;12:e0183596.

79. Decourt C, Robert V, Lomet D, Anger K, Geogelin M, Possenot K, Pellicer-Rubio MT, Uaucagne V, Beltramo M. The kisspeptin analog C6 is a possible alternative to PMSG (pregnant mare serum gonadotropin) for triggering synchronized and fertile ovulations in the Alpine goat. PLoS One 2019;14:e0214424.

80. Beltramo M, Robert V, Decourt C. The Kisspeptin system in domestic animals: what we know and what we still need to understand of its role
in reproduction. *Domest Anim Endocrinol* 2020 (Online 5 March ahead of print), doi: 10.1016/j.domaniend.2020.106466.

81. Carrasco RA, Leonardi CE, Hutt KD, Singh J, Adams GP. Induction of ovulation by kisspeptin in llamas. *Reprod Fert Develop* 2018;31:127–127.

82. Leonardi CE. Kisspeptin function in female bovine reproduction. 2018. PhD Thesis. University of Saskatchewan, Saskatoon, Canada; https://haversal.usask.ca/handle/103889/9597

83. D’Occhio MJ, Campanile G, Baruselli PS. Transforming growth factor-β superfamily and interferon τ in ovarian function and embryo development in female cattle: review of biology and application. *Reprod Fert Develop* 2020;32:539–552.

84. D’Occhio MJ, Campanile G, Zacarelli L, Visentin J, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation – role in establishing a pregnancy in cattle: a review. *Mol Reprod Dev* 2020;87:206–222.

85. Sponchiado M, Gonella-Diazza AM, Rocha CC, Lo Turco EG, Pugliesi G, Leroy JLMR, Binelli M. The pre-hatching bovine embryo transforms the uterine luminal metabolic composition in vivo. *Nat Sci Rep* 2019;9:8354.

86. Spencer TE. Early pregnancy: concepts, challenges, and potential solutions. *Aim Anim Front* 2013;3:48–55.

87. Gleicher N, Kushnir VA, Barad DH. Worldwide decline in IVF birth rates 2019; *Fertil Steril* 2018;109:29073.

88. McMillan WH, Donnison MJ. Understanding maternal contributions of fertility on gene expression and function of the bovine endometrium. *Plos One* 2013;8:e69444.

89. Peterson AJ, Lee RSE. Improving successful pregnancies after embryo transfer. *Theriogenology* 2003;59:687–697.

90. Bhattacharya M, Babwah AV. Kisspeptin: beyond the brain. *Endocrinol* 2015;156:1218–1227.

91. Leon S, Fernandois D, Sull A, Sull J, Calder M, Hayashi K, Bhattacharya M, Power S, Vilos GA, Vilos AG, Tena-Sempere M, Babwah AV. Beyond the brain-peripheral kisspeptin signaling is essential for promoting endometrial gland development and function. *Nat Sci Rep* 2016;6:29073.

92. Uenoyama Y, Pheng V, Tsukamura H, Maeda KI. The roles of kisspeptin revisited: inside and outside the hypothalamus. *J Reprod Dev* 2016;62:537–545.

93. Cao Y, Li Z, Jiang W, Ling Y, Kuang H. Reproductive functions of kisspeptin/KISSIR system in the periphery. *Reprod Biol Dev* 2019;17:65.

94. Iijima N, Takumi K, Sawai N, Ozawa H. An immunohistochemical study on the expression dynamics of kisspeptin neurons relevant to GnRH neurons using a newly developed anti-kisspeptin antibody. *J Mol Neurosci* 2011;43:146–154.

95. Gottsch ML, Cifton DK, Steiner RA. Kisspeptin-GPR54 signaling in the neuroendocrine axis. *Mol Cell Endocrinol* 2006;254:235–91–96.

96. Gottsch ML, Cifton DK, Steiner RA. Kisspeptin-GPR54 signaling in the neuroendocrine axis. *Mol Cell Endocrinol* 2006;254:235–91–96.

97. Plant TM. The neurobiological mechanism underlying hypothalamic GnRH pulse generation: the role of kisspeptin neurons in the arcuate nucleus. *F1000Research* 2019:9:982.

98. Smith JT. Kisspeptin signaling in the brain: steroid regulation in the kisspeptin neural network in mammals. *Adv Exp Med Biol* 2013;84:221–232.

99. Lehman MN, Hileman SM, Goodman RL. Anatomy of the kisspeptin neural network in mammals: comparative and developmental aspects. *Adv Exp Med Biol* 2013;784:27–62.

100. Hameed S, Jayasena CN, Dhillo WS. Kisspeptin and fertility. *J Endocrinol* 2011;208:97–105.

101. Beale KE, Kinsey-Jones JS, Gardiner JV, Harrison EK, Thompson EL, Hu MM, Sleeth ML, Sam AH, Greenwood HC, McGavigan AK, Dhillo WS, Mora JM et al. The physiological role of arcuate kisspeptin neurons in the control of reproductive function in female rats. *Endocrinol* 2014;155:1091–1098.

102. Hu MH, Li XF, McAusland B, Li SY, Gresham R, Kinsey-Jones JS, Gardiner JV, Sam AH, Bloom SR, Poston L, Lightman SL, Murphy KG et al. Relative importance of the arcuate and anteroventral periventricular kisspeptin neurons in control of puberty and reproductive function in female rats. *Endocrinol* 2015;156:2619–2631.

103. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. *Endocrinol* 2006;145:4073–4077.

104. Li XJ, Kinsey-Jones JS, Cheng Y, Knox AMI, Lin Y, Petrou NA, Roseweir A, Lightman SL, Milligan SR, Miller RP, O’Byrne KT. Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. *Plos One* 2009;4:e3334.

105. Carter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. *J Endocrinol* 2018;238:R173–R183.

106. Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: comparative aspects in rodents and non-rodent mammals. *J Obesность Gynecol Nat Sci Rep* 2019;45:2318–2329.

107. Scott CJ, Rose JL, Gunn AJ, McGrath BM. Kisspeptin and the regulation of the reproductive axis in domestic animals. *J Endocrinol* 2019;240:R1–R16.

108. Chaiikun-Marcou T, Sonthibhandu P, Kyle V, Yeo SH, Colledge WH, Suadsong S. Evidence of kisspeptin receptor expression in GnRH neurons in the preoptic area and arcuate hypothalamic nuclei in cycling buffaloes. *Thai J Vet Med* 2016;46:381–390.

109. Chaiikun, T, Yantraprasai C, Sonthibhandu P, Suadsong S. Kiss1 mRNA/kisspeptin distribution in preoptic and arcuate nuclei of cycling buffalos (Bubalus bubalis) hypothalamic. *Pak Vet J* 2016;36:93–97.

110. Chaiikun-Marcou T, Sonthibhandu P, Yantraprasai C, Pavasurthipaisit S, Suadsong S. Kiss1 mRNA and its protein distribution in preoptic and arcuate hypothalamic nuclei in pre-pubertal female swamp buffaloes. *Pak Vet J* 2018;38:137–142.

111. Mishra GK, Patra MK, Singh LK, Sheikh PA, Upmanyu V, Chakravarti S, Karikalan M, Somwane A, Singh SK, Das GK, Kumar H, Krishnaswam N. Expression of kisspeptin and its receptor in the hypothalamus of cyclic and acyclic buffalo (Bubalus bubalis) hypothalamus. *Acta Vet* 2019;45:167–177.

112. Semaan SJ, Tolson KP, Kaufman AS. The development of kisspeptin circuits in the mammalian brain. *Adv Exp Med Biol* 2013;784:221–232.

113. Smith JT, Li Q, Pereira A, Clarke JI. Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge. *Endocrinol* 2009;150:5530–5538.

114. Smith JT, Li Q, Yap KS, Shahab M, Roseweir AK, Millar RP, Clarke JI. Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. *Endocrinol* 2011;152:1001–1012.

115. Smith JT. Sex steroid regulation of kisspeptin circuits. *Adv Exp Med Biol* 2013;784:275–295.

116. Smith JT, Hawken PAR, Lehman MN, Martin GB. The role of kisspeptin in reproductive function in the ewe. In: JL Juergel, A Miyamoto, C Price, LP Reynolds, MF Smith & R Webb (Eds.), *Reproduction in Domestic Ruminants VIII: Proceedings of the Ninth International Symposium on Reproduction in Domestic Ruminants*, August 25–29, 2014, Hokkaido, Japan. Leicestershire, UK: Context Publishing 2014; pp. 105–116. https://www.biosciproceedings.org/bp/0008/pdf/bp0008rd8r.pdf

117. Nestor CC, Bedenbaugh MN, Hileman SM, Cooled LM, Lehman MN, Goodman RL. Regulation of GnRH pulsatility in ewes. *Reproduction* 2018;156:R83–R99.

118. Trujillo MV, Kalib B, Ramaswamy S, Plant TM. Estradiol upregulates kisspeptin expression in the preoptic area of both the male and female rhesus monkey (Macaca mulatta): implications for the hypothalamic control of ovulation in highly evolved primates. *Neuroendocrinology* 2017;105:77–89.
120. Mills EGA, O’Byrne KT, Comminos AN. The roles of the amygda lispinept system. Semin Reprod Med 2019;37:64–70.
121. Ronnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. Adv Exp Med Biol 2013;784:113–131.
122. Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology 2008;149:4387–4395.
123. de Tassogni XA, Collidge WH. The role of kisspeptin signaling in reproduction. Phys Tver 2010;25:207–217.
124. Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C, Dieguez C, Aguilar E, Sanchez-Criado JE, Pellicer A, Pinilla I, Gaytan F et al. Expression of KISS-1 in rat ovary: putative local regulator of ovulation? Endocrinology 2006;147:4852–4862.
125. Peng J, Tang M, Zhang BP, Zhang P, Zhong T, Gong T, Yang B, Kuang NB. Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. Fertil Steril 2013;99:1436–1443.
126. Fernandos D, Na E, Cuevas F, Cruz G, Lara HE, Paredes AH. Kisspeptin is involved in ovarian follicular development during aging in rats. J Endocrinol 2016;228:161–170.
127. Hsu MC, Wang JY, Lee YJ, Tsai KH, Chu CH. Kisspeptin modulates fertility capacity of mouse spermatozoa. Reproduction 2014;147:835–846.
128. Shahed A, Young KA. Differential ovarian expression of Kiss1 and GPR54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus). Mol Reprod Dev 2009;76:444–452.
129. Tanyapanyachon P, Amelkina O, Chatdarong K. The expression of kisspeptin/KISS1 and GPR54 receptor are expressed in mouse oocytes and participate in meiosis resumption. Fertil Steril 2012;98:S22.
130. Rocha AM, Ding J, Lehman M, Smith GD. Kisspeptin and kisspeptin receptor are expressed in mouse oocytes and participate in meiosis resumption. Fertil Steril 2012;98:S22.
131. Roohoenen ST, Gaytan F, Gaudo AU, Fransen D, Ohlsson C, Poutanen M, Tena-Sempere M. Kisspeptin signaling in oocytes is compulsory for ovulation in adult mice. FASEB J 2019;33:580.5–580.5.
132. Gaytan F, Garcia-Galiano D, Dorfman MD, Manfredi-Lozano M, Castellano JM, Dissen GA, Ojeda SR, Tena-Sempere M. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology 2014;155:3088–3097.
133. Kang JT, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Oh HJ, Jang G, Lee BC. Paradoxical effects of kisspeptin: it enhances and inhibits progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. PLoS One 2014;9:e97647.
134. Bayazit M, Calder M, Bhattacharya M, Vilos GA, Power S, Bavabah AV. The pregnant mouse uterus exhibits a functional kisspeptin/KISS1R signaling system on the day of embryo implantation. Reprod Biol Endocrinol 2015;13:105.
Peripheral action of kisspeptin, 2020, Vol. 103, No. 6

159. Schafer-Somi S, Ay SS, Kaya D, Sozmen M, Becerkiliyis HY, Agaoğlu A, Findik M, van Haefen T, Aslan S. Kisspeptin-10 and the G protein-coupled receptor 54 are differentially expressed in the canine pregnant uterus and trophoblast cells. *Reprod Domest Anim* 2017;52:123–129.

160. Francis VA, Abera AB, Matjila M, Millar RP, Katz AA. Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells. *PLoS One* 2014;9:e96680.

161. Herreboudt AM, Kyle VRL, Lawrence J, Doran J, Colledge WH. Kiss1 mutant placenta show normal structure and function in the mouse. *Placenta* 2015;36:52–58.

162. Denker HW. Trophoblast - endometrial interactions at embryo implantation: a cell biological paradox. In: Denker HW & Aplin JD (Eds) *Trophoblast Invasion and Endometrial Receptivity*. *Trophoblast Research*, Vol 4. Springer, Boston, MA 1990; pp: 3–29. doi: 10.1007/978-1-4613-0615-3_1

163. Hoffman LH, Wooding FB. Giant and binucleate cells of mammals. *J Exp Zool* 1993;266:559–577.

164. Furukawa S, Kuroda Y, Sugiyama A. A comparison of the histological structure of the placenta in experimental animals. *J Toxicol Pathol* 2014;27:11–15.

165. Hafez S. Comparative placentation anatomy: divergent structures serving a common purpose. *Prog Mol Biol Transl Sci* 2017;145:1–28.

166. Bentin-Ley U, Horn T, Spogren A, Sorensen S, Falck LJ, Hamburger L. Ultrasound of human blastocyst-endometrial interactions in vitro. *J Reprod Fert* 2000;120:337–350.

167. Bowen JA, Burghardt RC. Cellular mechanisms of implantation in domestic farm animals. *Cell Dev Biol* 2000;11:93–104.

168. Aplin JD, Kimber SJ. Trophoblast-uterine interactions at implantation. *Reprod Biol Endocrinol* 2004;2:48.

169. Spencer TE, Johnson GA, Razer FW, Burghardt RC, Palmarini M. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. *Reprod Fert Dev* 2007;19:65–78.

170. Singh M, Chaudhry P, Asselin E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. *J Endocrinol* 2011;210:5–14.

171. Martino NA, Rizzo A, Pizzi F, Dell’Aquila ME, Sciosci RL. Effects of kisspeptin-10 on *in vitro* proliferation and kisspeptin receptor expression in primary epithelial cell cultures isolated from bovine placental cotyledons at fetuses at the first trimester of pregnancy. *Placentalology* 2015;8:97–99.

172. Schert ME, Lomet D, Said SN, Monger P, Briant C, Scaramuzzi RJ, Caraty A. Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. *Domest Anim Endocrinol* 2010;38:289–298.

173. Okamura H, Yamamura T, Wakabayashi Y. Kisspeptin as a master player in the central control of reproduction in mammals: an overview of kisspeptin research in domestic animals. *Anim Sci* 2013;84:369–381.

174. Daniel JA, Foradori CD, Whitlock BK, Sartini JL. Reproduction and beyond, kisspeptin in ruminants. *J Anim Sci Biotech* 2015;6:23.

175. Mondal M, Baruah KK, Karukamaran M, Ghosh MK, Dutta TK. Development of a new kisspeptin based method of ovulation synchronization for crossbred dairy heifers. Research and reviews. *J Dairy Sci Tech* 2015;4:12–16.

176. Mondal M, Baruah KK, Ghosh MK, Karukamaran M, Dutta TK. Kisspeptin modulates reproduction in ruminants. *J Vet Sci Tech* 2016;5:7–12.

177. Lents CA, Heidorn NL, Barb CR, Ford JJ. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. *Reproduction* 2008;135:879–887.

178. Lents CA. Review: kisspeptin and reproduction in the pig. *Animal* 2019;13:2986–2999.

179. Macedo GG, Sala RV, Martins LF, Baruselli PS. Kisspeptin slowly administered during proestrus improves follicle growth and ovulation in anestrous cows. *Reprod Fert Develop* 2015;28:133–133.

180. Macedo GG, Mingoti RD, Batista EOS, Monteiro BM, Vieira LM, Barletta RV, Wiltbank MC, Nogueira GP, Renno FP, Maio JR, Baruselli PS. Profile of LH release in response to intramuscular treatment with kisspeptin in Bos indicus and Bos taurus prepubertal heifers. *Theriogenology* 2019;125:64–70.

181. Macedo GG, Carvalho NAT, Soares JG, Santos RM, Jacomini JO, Baruselli PS. Kisspeptin stimulates LH release in buffalo cows in the breeding and nonbreeding season. *Anim Reprod 2014;11*:460–460. https://www.animal-reproduction.org/article/5b5a60417783717068a4663/pdf/animal-reprod-11-3-447.pdf.

182. Northup SL, Coffman EA, Strickland LG, Maio JRG, Freitas BG, Macedo GG, Baruselli PS. Effects of single treatment with kisspeptin or buserelin acetate at fixed time artificial insemination on: dynamics of ovulatory dispersion, ovulation rate and pregnancy rate of prepubertal Nellore heifers. *Anim Reprod 2015*:348–348.

183. Decourt C, Beltranino M. New insights on the neuroendocrine control of puberty and seasonal breeding in female sheep. *Anim Reprod 2018*:1585–866.

184. Redmond JS, Macedo GG, Velez I, Caraty A, Williams GL, Amstalden M. Kisspeptin activates the hypothalamic-adenohypophyseal-gonadal axis in prepubertal ewe lambs. *Reproduction* 2011;141:541–548.

185. Jolitz ES. Evaluation of the hypothalamic kisspeptin system throughout the estrous cycle and during the attainment of puberty in gilts. Theses and Dissertations. South Dakota State University, Brookings, SD, U.S.A. 2016; Paper 1004. https://openprairie.sdstate.edu/etd/1004/.

186. Caraty A, Decourt C, Briant C, Beltrano M. Kisspeptins and the reproductive axis: potential applications to manage reproduction in farm animals. *Domest Anim Endocrinol* 2012;43:95–102.

187. Caraty A, Smith JT, Lomet D, Said SB, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory cycles in surgical ewes and causes ovulation in seasonally acyclic ewes. *Endocrinology* 2007;148:5258–5267.

188. Ezzat AA, Saito H, Sawada T, Yaegashi T, Goto Y, Nakajima Y, Jin J, Yamashita T, Sawai K, Hashizume T. The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells. *Anim Reprod Sci* 2010;121:267–272.

189. Murphy KG. Kisspeptins: regulators of metabolism and the hypothalamic-pituitary-gonadal axis. *J Neuroendocrinol* 2005;17:519–525.

190. Gutierrez-Pascual E, Martinez-Fuentes AJ, Pinilla L, Tena-Sempere M, Malagon MM, Castano JP. Direct pituitary effects of kisspeptin: activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion. *J Neuroendocrinol* 2007;19:521–530.

191. Ramaswamy S, Gibbs RB, Plant TM. Studies of the localisation of kisspeptin within the pituitary of the rhesus monkey (*Macaca mulatta*) and the effect of kisspeptin on the release of non-gonadotrophic pituitary hormones. *J Neuroendocrinol* 2009;21:795–804.

192. Richard N, Galimeche G, Covinassier S, Caraty A, Kotter ML, KGSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone. *J Neuroendocrinol* 2008;20:381–393.
