The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H$_2$O$_2$ through Regulating PI3K/Akt Signal Pathway

Zhen-Dong Zhang, Ya-Jun Yang, Xi-Wang Liu, Zhe Qin, Shi-Hong Li, Li-Xia Bai, and Jian-Yong Li

Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China

Correspondence should be addressed to Jian-Yong Li; lijy1971@163.com

Received 20 January 2021; Accepted 28 May 2021; Published 24 June 2021

Academic Editor: Patricia Morales

Copyright © 2021 Zhen-Dong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H$_2$O$_2$-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H$_2$O$_2$, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H$_2$O$_2$ group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H$_2$O$_2$-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H$_2$O$_2$ via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H$_2$O$_2$ group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H$_2$O$_2$. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H$_2$O$_2$-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.

1. Introduction

There are growing evidences that oxidative stress is closely related to human neurodegenerative diseases, including Alzheimer’s disease (AD) and Huntington’s disease (HD) [1–5]. Excessive production of reactive oxygen species (ROS) is one of the main causes of oxidative stress [6–9]. ROS in the body mainly includes hydroxyl radicals, superoxide anions, and singlet oxygen [10–12]. The normal level of ROS helps to maintain normal cell function. However, excessive ROS stimulates cells not only to cause structural damage and promotes oxidative stress but also destroy the redox balance and lead to cell damage and apoptosis [13–15]. There are many closely related antioxidant systems in the body. The main role of antioxidant systems is to prevent oxidative damage to the body by removing excess ROS from cells [16–18]. In fact, the dynamic balance of oxidants and antioxidants in the body is very important for neuroprotection [19–21]. The key antioxidant enzymes in cells are SOD, CAT, and GSH-Px [22–24]. ROS-mediated oxidative stress mainly activates the inherent apoptosis pathway by releasing a variety of prodeath factors into the cytoplasm of damaged cells.
mitochondria [25–27]. Among them, the PI3K/Akt pathway is an important signal pathway to promote neuronal survival. Studies have shown that it can affect cell survival by inhibiting the expression of proapoptotic protein and inducing the expression of antiapoptotic protein of Bcl-2 family [28–30].

As a new compound, AEE plays an active role in many aspects [31–40]. AEE can prevent tail thrombosis induced by kappa-carrageenan in rats [39]. At the same time, AEE can attenuate thrombus induced with high-fat diet in rats by regulating hemorheology and blood biochemistry [37]. With a further study, a rat model of blood stasis was established and it was observed that AEE could alleviate the symptoms of blood stasis in rats [41]. It was also found that AEE can inhibit agonist-induced platelet aggregation in rats by regulating PI3K/Akt signal pathways [33]. AEE has not only the effects of anti-inflammation, antithrombosis, and anti-blood stasis but also the effect of antiatherosclerosis and other cardiovascular diseases. The previous studies proved that AEE had an antioxidant effect and could reduce H$_2$O$_2$-induced mitochondrial dysfunction by regulating Bcl-2 and Nrf2 [32, 34]. It is not clear whether AEE can play a neuroprotective role in neurodegenerative diseases. The purpose of this study was to explore whether AEE can attenuate H$_2$O$_2$-induced oxidative damage in PC12 cells and its possible mechanism.

2. Materials and Methods

2.1. Chemicals. 3% H$_2$O$_2$ solution and dimethyl sulfoxide were obtained from Sigma (St. Louis, MO). RPMI-1640 culture medium, 0.05%Trypsin-EDTA, and fetal bovine serum (FBS) were from Gibco (Grand Island, NY, USA). One step TUNEL apoptosis assay kit, puromycin dihydrochloride, bicinchoninic acid assay kit, glutathione peroxidase kit, catalase assay kit, DAPI staining solution, DAF-FM diacetate kit, dihydroethidium, superoxide dismutase, and malondialdehyde assay kit, DAPI staining solution, DAF-FM diacetate kit, dihydroethidium, superoxide dismutase, and malondialdehyde assay kit were obtained from Beyotime (Shanghai, China). Anti-Bax, anti-Bcl-2, and anti-Caspase-3 were from Abcam (Cambridge, MA, USA). Anti-PI3K, anti-Akt, anti-phosphorylation-PI3K, and antiphosphorylation-Akt were purchased from Cell Signaling Technology, Inc. (Beverly, MA, USA). Immobilon-PSQ transfer membrane was obtained from Millipore (Billerica, MA, USA). An Annexin V/FITC apoptosis detection kit was from BD Biosciences (San Diego, CA, USA). PI3-kine LY 294002 was purchased from MedChemExpress LLC (New Jersey, USA). Lipofectamine™ 3000 transfection reagent was purchased from Thermo Fisher Scientific, Inc. (Invitrogen, USA). Lentivirus control and PI3K shRNA (U6-MCS-Ubiquitin Cherry-IRES-puromycin) were purchased from Genechem (Shanghai, China).

2.2. Cell Cultures and Cell Treatment. PC12 cells were routinely maintained in RPMI-1640 medium containing 10% FBS (v/v) at 37°C in a humidified atmosphere of 5% CO$_2$ and then randomly divided into the control group, H$_2$O$_2$ group, and AEE pretreatment group.

2.3. Cell Viability. Cell viability was determined via CCK-8 assay. Briefly, PC12 cells (1 × 104 cells/well) were plated on a 96-well culture plate and incubated for 24 h. 10 µL CCK-8 solution was added to each well. The number of viable cells was assessed by the measurement of the absorbance at 450 nm.

2.4. TUNEL Staining. PC12 cells (5 × 104 cells/well) were seeded into 12-well culture plates. After treatment, cells were washed with PBS and fixed with 4% paraformaldehyde in PBS at 25°C for 30 min. After the cells were washed with PBS twice, 0.3% Triton X-100 PBS was added and incubated at 25°C for 5 min. The wells were washed twice with PBS, and TUNEL detection solution was added. After incubation of cells at 37°C for 1 h, DAPI staining solution was added and incubated at room temperature for 20 min. The cells were washed with PBS. Images were captured using a scanning laser confocal microscope (LSM800, Carl Zeiss, Germany).

2.5. Flow Cytometric Analysis. PC12 cells were seeded into a 6-well plate. After treatment, PC12 cells were assessed using the corresponding commercial kit according to the manufacturer’s protocols [34]. PC12 cells were sorted by a flow cytometer (BD FACSVersa, CA, USA), and the data were analyzed with FlowJo 7.6.

2.6. Mitochondrial Membrane Potential (ΔΨm) Assays. The ΔΨm was determined using MitoTracker® Red CMXRos (Invitrogen; Thermo Fisher Scientific, Inc.). Briefly, the cells were seeded in 12-well plates. MitoTracker® Red probe was directly added into the culture media and incubated for 30 min at 37°C in the dark. Images were captured using a scanning laser confocal microscope (LSM800; Carl Zeiss, Germany).

2.7. Measurement of Intracellular Superoxide Anion and Total Intracellular and Mitochondrial ROS Generation. Intracellular and mitochondrial ROS generation and superoxide anion were measured using a DCFH-DA or MitoSOX™ red probe or Dihydroethidium (DHE) as previously described [42].

2.8. Determination of MDA, SOD, GSH-Px, and CAT. The activities of MDA, SOD, GSH-Px, and CAT in PC12 cells were assessed using the corresponding commercial kits according to the manufacturer’s protocols [43, 44].

2.9. Protein Expression Analysis. The expression of Bcl-2, Bax, Caspase-3, PI3K, Akt, phospho-PI3K, and phospho-Akt was assessed by western blot analysis. Cell samples were lysed on ice with lysis buffer containing cocktail proteinase inhibitors and protein phosphatase inhibitors (Thermo Fisher Scientific, Inc., Rockford, USA). The protein concentration was quantified using a bicinchoninic acid (BCA) assay kit (Beyotime, Shanghai, China). Protein samples were separated by SDS-PAGE using 4-20% precast gradient polyacrylamide gels (Shanghai Suolaibao Bio-Technology Co., Ltd., Shanghai, China). After separation by SDS-PAGE, proteins were transferred to a PVDF membrane. The blots were then incubated with primary antibodies and subsequently
incubated with horseradish peroxidase- (HRP-) conjugated secondary antibodies. The results were detected using G:Box Chemi XRQ imaging system (Cambridge, Britain).

2.10. Cell Transfection. Lentiviral vectors expressing PI3K shRNA or control shRNA were obtained from GeneChem (Shanghai, China). Following the manufacturer’s protocol, PC12 cells were cotransfected with lentivirus and packaging vectors using Lipofectamine 3000. Lentiviruses were harvested 48 h after transfection, centrifuged, and filtered through 0.45 μm membrane filters (Millipore). Lentiviruses were transduced in 50% confluent PC12 cells. Stable cells were selected by selected in 1 μg/mL puromycin.

2.11. Determination of Apoptosis after Inhibition of Signal Pathway. The PI3K/Akt signaling pathways in the PC12 cells were inhibited by short hairpin RNA (shRNA) and inhibitor LY 294002 against PI3K. In this part, it was divided into eleven groups. These PC12 cells were treated with 4.0 μM AEE and H₂O₂ according to the protocol described in Section 2.2.

2.12. Statistical Analysis. The statistical analysis was performed using SAS 9.2 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was defined as P value < 0.05. The statistical analyses were applied to selected pairs.

3. Results

3.1. AEE Protects the Cell Viability of H₂O₂-Stimulated PC12 Cells. As shown in Figure 1(a), the different concentrations of AEE had no significant effect on PC12 cell viability. Compared with the control group, 100 μM H₂O₂ treatment for 12 h could significantly decrease the viability of PC12 cells.
Figure 2: Continued.
The results showed that AEE could significantly alleviate the mitochondrial dysfunction of PC12 cells via inhibiting intracellular ROS, mtROS, and superoxide anion levels.

3.4. AEE Enhances the Enzymatic Activities of ROS-Scavenging Enzymes in H\textsubscript{2}O\textsubscript{2}-Stimulated PC12 Cells. The activities of MDA, SOD, GSH-Px, and CAT in cells were detected to explore the possible mechanism of AEE attenuating H\textsubscript{2}O\textsubscript{2}-induced injury in PC12 cells. H\textsubscript{2}O\textsubscript{2} could significantly increase the activity of MDA and decrease the activity of SOD, GSH-Px, and CAT, compared with the control group. However, AEE pretreatment could significantly increase the activities of SOD, GSH-Px, and CAT and decrease the activity of MDA (Figures 4(a)–4(d)). These results suggest that AEE pretreatment may attenuate H\textsubscript{2}O\textsubscript{2}-induced oxidative damage in PC12 cells by increasing the enzymatic activities of ROS-scavenging enzymes.

3.5. AEE Regulates the Expression of Apoptosis-Related Proteins in H\textsubscript{2}O\textsubscript{2}-Stimulated PC12 Cells. To further explore the molecular mechanism of AEE attenuating H\textsubscript{2}O\textsubscript{2}-induced apoptosis in PC12 cells, we used western blotting to detect the expression of Caspase-3, Bcl-2, and Bax. As shown in Figures 5(a) and 5(b), compared with the control group, H\textsubscript{2}O\textsubscript{2} could significantly increase the expression of Bax and decrease the expression of Bcl-2. Compared with the H\textsubscript{2}O\textsubscript{2} group, AEE could significantly reverse the above changes.

3.6. Effect of AEE on the PI3K/Akt Signal Pathway in PC12 Cells Stimulated by H\textsubscript{2}O\textsubscript{2}. The PI3K/Akt signaling pathway plays an important role in regulating neuronal apoptosis [45, 46]. As shown in Figure 5, H\textsubscript{2}O\textsubscript{2} significantly decreased the expression of p-Akt and p-PI3K but had no significant effect on the expression of Akt and PI3K, compared with the control group. Compared with the H\textsubscript{2}O\textsubscript{2} group, AEE pretreatment could significantly upregulate the expression of p-Akt and p-PI3K in PC12 cells (Figures 5(a) and 5(b)). Interestingly, AEE also had no significant effect on the expression
Figure 3: Continued.
of Akt and PI3K in PC12 cells. These results showed that AEE may have a protective effect on \(\text{H}_2\text{O}_2 \)-induced PC12 cells via the PI3K/Akt pathway.

PI3K inhibitors LY294002 and shRNA were used to inhibit the expression of PI3K (Figure 6(a)). The results of flow cytometry showed that compared with the control group, the apoptosis rate of PC12 cells in the \(\text{H}_2\text{O}_2 \) group increased significantly, while the AEE+LY294002 treatment group and AEE+PI3K shRNA group could not inhibit the apoptosis of PC12 cells induced by \(\text{H}_2\text{O}_2 \) (Figures 6(b) and
6(c)). The above results suggested that AEE can alleviate the oxidative damage of PC12 cells induced by H\textsubscript{2}O\textsubscript{2} via the PI3K/Akt pathway.

4. Discussion

The above studies suggested that AEE attenuates H\textsubscript{2}O\textsubscript{2}-induced oxidative damage in PC12 cells via inhibiting oxidative stress. It is mainly manifested in inhibiting the production of superoxide anion, MDA, intracellular ROS, and mtROS and increasing the activity of CAT, SOD, and GSH-Px.

PC12 cell line is derived from rat pheochromocytoma [18, 47, 48]. Because of the high permeability of the plasma membrane to H\textsubscript{2}O\textsubscript{2}, H\textsubscript{2}O\textsubscript{2}-induced PC12 cells are generally considered to be an ideal cell model for studying neurodegenerative diseases [49–51]. Studies showed that the imbalance between free radical accumulation and antioxidant defense seems to be a link between cell death and the progression of neurodegenerative diseases [1, 9, 52]. ROS and the resulting oxidative stresses play an important role in apoptosis. H\textsubscript{2}O\textsubscript{2} is an important source of intracellular ROS, because it can penetrate the cell membrane and can be converted into other free radicals, such as superoxide anions and hydroxyl radicals [53, 54]. H\textsubscript{2}O\textsubscript{2} can also cause serious damage to cells by attacking biomolecule membranes and eventually lead to apoptosis [55, 56]. The results of cell viability showed that the viability of PC12 cells decreased with approximately 50% after 12 h of 100 \textmu M H\textsubscript{2}O\textsubscript{2} stimulation. AEE pretreatment could significantly increase the viability of PC12 cells induced by H\textsubscript{2}O\textsubscript{2}.

Excessive ROS can lead to cell dysfunction and apoptosis, especially in neurodegenerative diseases [57–59]. Previous studies found that H\textsubscript{2}O\textsubscript{2} could cause excessive accumulation of intracellular ROS, mtROS, and superoxide anion in PC12 cells. AEE pretreatment could reduce the increase of...
Figure 6: Intervention of PI3K with an inhibitor and shRNA reduced the effect of AEE on H$_2$O$_2$-induced apoptosis. (a) The expression of p-PI3K and PI3K in the control-shRNA treatment groups and PI3K-shRNA treatment groups. (b, c) Apoptotic assay by flow cytometry. *P < 0.05, compared with the control group; #P < 0.05, compared with the H$_2$O$_2$ group.
intracellular ROS, mtROS, and DHE in PC12 cells induced by H$_2$O$_2$. MDA can cause damage to the cell membrane [60–62]. It is also an important biomarker to evaluate the level of oxidative stress in cells [61, 63, 64]. In addition, there are a variety of scavenging active oxygen enzymes in organisms, such as SOD, CAT, and GSH-Px [65–67]. Under normal physiological conditions, these antioxidant enzymes work together to maintain the redox balance of the body [68]. SOD catalyzes the conversion of superoxide radicals to O$_2$ and H$_2$O$_2$, while CAT catalyzes dismutation reactions of H$_2$O$_2$ into H$_2$O [69, 70]. GSH-PX prevents the formation of toxic hydroxyl and peroxyl radicals via providing electrons to H$_2$O$_2$ and lipid peroxides [71]. Studies showed that H$_2$O$_2$ induced PC12 cells could produce excessive MDA, intracellular ROS, and mtROS and significantly reduce the activities of SOD, GSH-Px, and CAT. AEE pretreatment not only decreased the levels of MDA, intracellular ROS, and mtROS of PC12 cells but also increased the activities of SOD, GSH-Px, and CAT. AEE pretreatment not only decreased the levels of MDA, intracellular ROS, and mtROS of PC12 cells but also increased the activities of SOD, GSH-Px, and CAT. As previously reported, the accumulation of ROS can lead to mitochondrial dysfunction by depolarizing mitochondrial membrane potential [72, 73]. Mitochondrial membrane potential ($\Delta \psi$ m) is a sensitive index to measure the function of mitochondria [74, 75]. The results showed that there was an obvious apoptosis in PC12 cells after H$_2$O$_2$ stimulation, and the cell viability and $\Delta \psi$m decreased. As expected, AEE pretreatment could reduce H$_2$O$_2$-induced apoptosis. These results suggested that AEE may reduce the apoptosis of PC12 cells induced by H$_2$O$_2$ via inhibiting the excessive production of ROS.

The PI3K/Akt signaling pathway plays an important role in cell survival, differentiation, proliferation, and apoptosis [76–78]. Phosphatidylinositol 3 kinase (PI3Ks) belongs to the lipid kinase family, which phosphorylates inositol phosphate at the D-3 position of the inositol head group, resulting in the production of the D-3 phosphate. PI3K mediates extracellular signal transduction and regulates a variety of cellular events, including cell mitosis, cell survival, and membrane transport. According to the enzyme domain structure and substrate specificity of PI3K, it can be divided into three categories in mammals (I–III). Among them, the class I subfamily is the most widely studied. The class I subfamily consists of four catalytic subunits, including three IA subunits (p110α, p110β, and p110δ) and one IB subunit (p110γ). When phosphorylation of PI3K increases, it transduces signals through inositol 3-phosphate-dependent protein kinase-1 (PDK1), a serine/threonine kinase. PDK1 is recruited to the cell membrane after PI3K activation, where it phosphorylates and activates Akt, the main medium of the PI3K signal

Figure 7: The molecular mechanism of AEE inhibiting H$_2$O$_2$-induced apoptosis in PC12 cells.
transduction pathway. Akt, a serine/threonine kinase, is pivotal in cellular metabolism, growth, and survival [79, 80]. When Akt is activated, it plays a key role in PI3K-mediated signal transduction [81–83]. The phosphorylation of AKT can increase the expression of Bcl-2 and inhibit the expression of Bax in mitochondria. LY294002 is not only a competitive DNA-PK inhibitor but also a commonly used PI3K drug inhibitor, which acts on the ATP binding site of PI3K enzyme, thus selectively inhibiting PI3K-Akt connection. Pretreatment with LY294002 for 2 h significantly counteracted the protective effect of AEE. Consistent with this, using shRNA to knock down PI3K has a similar result. H2O2 treatment of PC12 cells resulted in excessive production of intracellular ROS. The phosphorylation of PI3K can be inhibited by excessive production of ROS. However, AEE pretreatment could inhibit the decrease of PI3K phosphorylation induced by H2O2. With the recovery of mitochondrial membrane potential, mitochondria will reduce the release of cytochrome c and inhibit the activation of caspase family. At the same time, the enzyme activity of CAT, SOD, and GSH-Px was changed by AEE pretreatment, which further eliminated the excess ROS in the PC12 cells (Figure 7). The results showed that AEE can alleviate H2O2-induced apoptosis of PC12 cells via upregulating the expression of p-PI3K, p-Akt, and Bcl-2 and downregulating the expression of Caspase-3 and Bax.

5. Conclusion

AEE may inhibit oxidative stress by regulating the PI3K/Akt signal pathway, thus protecting PC12 cells from apoptosis induced by H2O2. It is suggested that AEE may be a new potential drug to treat neurodegenerative diseases caused by oxidative stress.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

J-Y Li conceived and designed the experiments. Z-D Zhang performed the experiments and analyzed the data. X-W Liu synthesized and purified AEE. S-H Li, Y-J Yang, Z-Qin, and L-X Bai supplied the reagents.

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (No. 31872518).

References

[1] D. S. Lee, T. G. Nam, B. S. Jeong, and G. S. Jeong, “The amino-pyridinol derivative BJ-1201 protects murine hippocampal cells against glutamate-induced neurotoxicity via heme oxygenase-1,” Molecules, vol. 21, no. 5, p. 594, 2016.
[2] H. R. Jeong, Y. N. Jo, J. H. Jeong et al., “Antiinamnesic effects of ethyl acetate fraction from chestnut (Castanea crenatavar.dulcis) inner skin on Aβ25–35-induced cognitive deficits in mice,” Journal of Medicinal Food, vol. 15, no. 12, pp. 1051–1056, 2012.
[3] D. Nuzzo, M. Contardi, D. Kossyvaki et al., “Heat-resistant Aphanizomenon flos-aquae (AFA) extract (Klamin®) as a functional ingredient in food strategy for prevention of oxidative stress,” Oxidative Medicine and Cellular Longevity, vol. 2019, 15 pages, 2019.
[4] E. Carboni, J. D. Nicolas, M. Topperwien, C. Stadelmann-Nessler, P. Lingor, and T. Salditt, “Imaging of neuronal tissues by x-ray diffraction and x-ray fluorescence microscopy: evaluation of contrast and biomarkers for neurodegenerative diseases,” Biomedical Optics Express, vol. 8, no. 10, pp. 4331–4347, 2017.
[5] N. Xu, Y. Lu, J. M. Hou, C. Liu, and Y. H. Sun, “A polysaccharide purified from Morchella conica Pers. prevents oxidative stress induced by H2O2 in human embryonic kidney (HEK) 293T cells,” International Journal of Molecular Sciences, vol. 19, no. 12, p. 4027, 2018.
[6] T. Li, B. Chen, M. Du et al., “Casein glycomacropeptide hydrolysates exert cytoprotective effect against cellular oxidative stress by up-regulating HO-1 expression in HepG2 cells,” Nutrients, vol. 9, no. 1, p. 31, 2017.
[7] S. Ponist, F. Drafi, V. Kuncirova et al., “Effect of carnosine in experimental arthritis and on primary culture chondrocytes,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 8470589, 11 pages, 2016.
[8] Y. Liu, P. Chen, M. Zhou et al., “Geographic variation in the chemical composition and antioxidant properties of phenolic compounds from Cyclocarya paliurus (Batal) Iljinskaja leaves,” Molecules, vol. 23, no. 10, p. 2440, 2018.
[9] J. M. Lu, J. Jiang, M. S. Jamaluddin, Z. D. Liang, Q. Z. Yao, and C. Y. Chen, “Ginsenoside Rb1 blocks ritonavir-induced oxidative stress and eNOS downregulation through activation of estrogen receptor-beta and upregulation of SOD in human endothelial cells,” International Journal of Molecular Sciences, vol. 20, 2019.
[10] Z. Zhang, L. Rong, and Y. P. Li, “Flaviviridae viruses and oxidative stress: implications for viral pathogenesis,” Oxidative Medicine and Cellular Longevity, vol. 2019, Article ID 1409582, 17 pages, 2019.
[11] T. F. de Brum, M. Zadora, M. Piana et al., “HPLC analysis of phenolics compounds and antioxidant capacity of leaves of Vitex megapotamica (Sprengel) Moldenke,” Molecules, vol. 18, no. 7, pp. 8342–8357, 2013.
[12] A. Sharaf, R. De Michele, A. Sharma, S. Fakhari, and M. Obornik, “Transcriptomic analysis reveals the roles of detoxification systems in response to mercury in Chromera velia,” Biomolecules, vol. 9, no. 11, pp. 647, 2019.
[13] M. Yamada, J. Watanabe, T. Ueno, T. Ogawa, and H. Egusa, “Cytoprotective preconditioning of osteoblast-like cells with N-acetyl-L-cysteine for bone regeneration in cell therapy,” International Journal of Molecular Sciences, vol. 20, no. 20, p. 5199, 2019.
[14] Y. Chen, H. Q. Luo, L. L. Sun et al., “Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway...
enhancement,” International Journal of Molecular Sciences, vol. 19, no. 9, p. 2592, 2018.

[15] Y. J. Lee, D. M. Lee, and S. H. Lee, “Nrf2 expression and apoptosis in quercetin-treated malignant mesothelioma cells,” Molecules and Cells, vol. 38, no. 5, pp. 416–425, 2015.

[16] Y. S. Ho, J. Y. Wu, and C. Y. Chang, “A new natural antioxidant biomaterial from Cinnamomum osmophloeum Kanehira leaves represses melanogenesis and protects against DNA damage,” Antioxidants, vol. 8, no. 10, p. 474, 2019.

[17] D. Brea, J. Roquer, J. Serena, T. Segura, J. Castillo, and A. Study, “Oxidative stress markers are associated to vascular recurrence in non-cardioembolic stroke patients non-treated with statins,” BMC Neurology, vol. 12, no. 1, p. 12, 2012.

[18] J. Jia, L. Zhang, X. L. Shi et al., “SOD2 mediates amifostine-induced protection against glutamate in PC12 cells,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 4202437, 11 pages, 2016.

[19] K. P. Poulianiti, A. Karioti, A. Kaltisatou et al., “Evidence of blood and muscle redox status imbalance in experimentally induced renal insufficiency in a rabbit model,” Oxidative Medicine and Cellular Longevity, vol. 2019, Article ID 8219283, 14 pages, 2019.

[20] M. Rottner, J. M. Freyssinet, and M. C. Martinez, “Mechanisms of the noxious inflammatory cycle in cystic fibrosis,” Respiratory Research, vol. 10, no. 1, 2009.

[21] A. M. Fustinoni-Reis, S. F. Arruda, L. P. S. Dourado, M. S. B. da Cunha, and E. M. A. Siqueira, “Tucum-doa-cerrado (Bactris setosa Mart.) consumption modulates iron homeostasis and prevents iron-induced oxidative stress in the rat liver,” Nutrients, vol. 8, no. 2, p. 38, 2016.

[22] B. K. Maurya and S. K. Trigun, “Fisetin modulates antioxidant enzymes and inflammatory factors to inhibit aflatoxin-B1 induced hepatocellular carcinoma in rats,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 1972793, 9 pages, 2016.

[23] Y. Tan, Y. Jin, Q. Wang, J. Huang, X. Wu, and Z. Ren, “Perlilipin 5 protects against cellular oxidative stress by enhancing mitochondrial function in HepG2 cells,” Cell, vol. 8, no. 10, p. 1241, 2019.

[24] Z. Liu, Y. Liu, Z. Xiong, Y. Feng, and W. Tang, “Total soy saponins improve the antioxidant capacity of the myocardium and exercise ability in exhausted rats,” Journal of Sport and Health Science, vol. 5, no. 4, pp. 424–429, 2016.

[25] J. Y. Jeong, H. J. Cha, E. O. Choi et al., “Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells,” International Journal of Medical Sciences, vol. 16, no. 1, pp. 145–155, 2019.

[26] X. Chi, D. Nguyen, J. M. Pemberton et al., “The carboxyterminal sequence of bin enables bac activation and killing of unprimed cells,” eLife, vol. 9, 2020.

[27] H. Fan, Z. He, H. Huang et al., “Mitochondrial quality control in cardiomyocytes: a critical role in the progression of cardiovascular diseases,” Frontiers in Physiology, vol. 11, p. 252, 2020.

[28] K. I. Park, H. Park, A. Nagappan et al., “Polyphenolic compounds from Korean Loniceria japonica Thunb. induces apoptosis via AKT and caspase cascade activation in A549 cells,” Oncology Letters, vol. 13, no. 4, pp. 2521–2530, 2017.

[29] S. Tian, Y. Bai, L. Yang et al., “Shear stress inhibits apoptosis of ischemic brain microvascular endothelial cells,” International Journal of Molecular Sciences, vol. 14, no. 1, pp. 1412–1427, 2013.

[30] D. Chu and Z. Zhang, “Trichosanthis pericarpium aqueous extract protects H9c2 cardiomyocytes from hypoxia/reoxygenation injury by regulating PI3K/Akt/NO pathway,” Molecules, vol. 23, no. 10, p. 2409, 2018.

[31] J. Li, Y. Yu, Y. Yang et al., “A 15-day oral dose toxicity study of aspirin eugenol ester in Wistar rats,” Food and Chemical Toxicology, vol. 50, no. 6, pp. 1980–1985, 2012.

[32] M. Z. Huang, Y. J. Yang, X. W. Liu, Z. Qin, and J. Y. Li, “Aspirin eugenol ester attenuates oxidative injury of vascular endothelial cells by regulating NOS and Nrf2 signalling pathways,” British Journal of Pharmacology, vol. 176, no. 7, pp. 906–918, 2019.

[33] D. S. Shen, Y. J. Yang, X. J. Kong et al., “Aspirin eugenol ester inhibits agonist-induced platelet aggregation _in vitro_ by regulating PI3K/Akt, MAPK and Src 1/CD40L pathways,” European Journal of Pharmacology, vol. 852, pp. 1–13, 2019.

[34] M. Z. Huang, Y. J. Yang, X. W. Liu, Z. Qin, and J. Y. Li. “Aspirin eugenol ester reduces H2O2-, oxidized oxidative stress of HUVECs via mitochondria-lysosome axis,” Oxidative Medicine and Cellular Longevity, vol. 2019, Article ID 8098135, 11 pages, 2019.

[35] N. Ma, X. W. Liu, X. J. Kong et al., “Aspirin eugenol ester regulates cecal contents metabolomic profile and microbiota in an animal model of hyperlipidemia,” BMC Veterinary Research, vol. 14, no. 1, p. 405, 2018.

[36] M. Z. Huang, X. R. Lu, Y. J. Yang, X. W. Liu, Z. Qin, and J. Y. Li, “Cellular metabolomics reveal the mechanism underlying the anti-atherosclerotic effects of aspirin eugenol ester on vascular endothelial dysfunction,” International Journal of Molecular Sciences, vol. 20, no. 13, p. 3165, 2019.

[37] N. Ma, X. W. Liu, Y. J. Yang et al., “Evaluation on antithrombotic effect of aspirin eugenol ester from the view of platelet aggregation, hemorheology, TXB2/6-keto-PGF1α and blood biochemistry in rat model,” BMC Veterinary Research, vol. 12, no. 1, p. 108, 2016.

[38] N. Ma, G. Z. Yang, X. W. Liu et al., “Impact of aspirin eugenol ester on cyclooxygenase-1, cyclooxygenase-2, C-reactive protein, prothrombin and arachidonate 5-lipoxygenase in healthy rats,” Iranian Journal of Pharmaceutical Research, vol. 16, no. 4, pp. 1443–1451, 2017.

[39] N. Ma, X. W. Liu, Y. J. Yang et al., “Preventive effect of aspirin eugenol ester on thrombosis in x-carragenan-induced rat tail thrombosis model,” PLoS One, vol. 10, no. 7, article e0133125, 2015.

[40] J. Y. Li, Y. G. Yu, Q. W. Wang et al., “Synthesis of aspirin eugenol ester and its biological activity,” Medicinal Chemistry Research, vol. 21, no. 7, pp. 995–999, 2012.

[41] D. Shen, N. Ma, Y. Yang et al., “UPLC-Q-TOF/MS-based plasma metabolomics to evaluate the effects of aspirin eugenol ester on blood stasis in rats,” Molecules, vol. 24, no. 13, p. 2380, 2019.

[42] Y. H. Zuo, Q. B. Han, G. T. Dong et al., “Panax ginseng polysaccharide protected H9c2 cardiomyocyte from hypoxia/reoxygenation injury through regulating mitochondrial metabolism and RISK pathway,” Frontiers in Physiology, vol. 9, 2018.

[43] L. Y. Chen, T. Y. Renn, W. C. Liao et al., “Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-
ARE signaling activity,” *Journal of Pineal Research*, vol. 63, no. 2, 2017.

[44] H. Zhou, S. Hu, Q. Jin et al., “Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvascular-lature ischemia/reperfusion injury via induction of mROS-mediated cardiopin oxidation and HK2/VDAC1 disassociation-involved mPTP opening,” *Journal of the American Heart Association*, vol. 6, no. 3, 2017.

[45] Y. Y. Wu and H. C. Kuo, “Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases,” *Journal of Biomedical Science*, vol. 27, no. 1, p. 49, 2020.

[46] L. Zheng, J. Zhang, S. Yu et al., “Lanthanum chloride causes neurotoxicity in rats by upregulating miR-124 expression and targeting PIK3CA to regulate the PI3K/Akt signaling pathway,” *Biomed Research International*, vol. 2020, article 5205142, 10 pages, 2020.

[47] M. Yoshizumi, T. Kogame, Y. Suzuki et al., “Ebselen attenuates oxidative stress-induced apoptosis via the inhibition of the c-Jun N-terminal kinase and activator protein-1 signalling pathway in PC12 cells,” *British Journal of Pharmacology*, vol. 136, no. 7, pp. 1023–1032, 2002.

[48] S. Patranabis and S. N. Bhattacharyya, “Phosphorylation of Ago2 and subsequent inactivation of let-7a RNP-specific microRNAs control differentiation of mammalian sympathetic neurons,” *Molecular and Cellular Biology*, vol. 36, no. 8, pp. 1260–1271, 2016.

[49] A. Orłowska, P. T. Perera, M. al Kobaisi et al., “The effect of coatings and nerve growth factor on attachment and differentiation of pheochromocytoma cells,” *Materials*, vol. 11, no. 1, p. 60, 2018.

[50] L. Y. He, M. B. Hu, R. L. Li et al., “The effect of protein-rich extract from Bombyx Batryticas against glutamate-damaged PC12 cells via regulating γ-aminobutyric acid signaling pathway,” *Molecules*, vol. 25, no. 3, p. 553, 2020.

[51] M. Li, T. Xu, F. Zhou et al., “Neuroprotective effects of four phenylethanoid glycosides on H2O2-Induced apoptosis on PC12 cells via the Nrf2/ARE pathway,” *International Journal of Molecular Sciences*, vol. 19, no. 4, p. 1135, 2018.

[52] H. J. Zhao, H. P. Li, Y. B. Feng et al., “Myelium polysaccharides from Termitomyces albuminosus attenuate CCI4-induced chronic liver injury via inhibiting TGFB1/Smad3 and NF-κB signal pathways,” *International Journal of Molecular Sciences*, vol. 20, no. 19, p. 4872, 2019.

[53] K. B. Kim, S. Lee, I. Kang, and J. H. Kim, “Mommorica charantia ethanol extract attenuates H2O2-induced cell death by its antioxidant and anti-apoptotic properties in human neuroblastoma SK-N-MC cells,” *Nutrients*, vol. 10, no. 10, p. 1368, 2018.

[54] M. J. McCarthy, J. Baumber, P. H. Kass, and S. A. Meyers, “Osmotic stress induces oxidative cell death to rhesus macaque spermatozoa,” *Biology of Reproduction*, vol. 82, no. 3, pp. 644–651, 2010.

[55] X. Liu, L. Wang, J. Cai et al., “N-acetylcycteine alleviates H2O2-induced damage via regulating the redox status of intracellular antioxidants in H9c2 cells,” *International Journal of Molecular Medicine*, vol. 43, no. 1, pp. 199–208, 2019.

[56] N. He, J. J. Jia, J. H. Li et al., “Remote ischemic perconditioning prevents liver transplantation-induced ischemia/reperfusion injury in rats: role of ROS/RNS and eNOS,” *World Journal of Gastroenterology*, vol. 23, no. 5, pp. 830–841, 2017.

[57] D. K. Jang, I. S. Lee, H. S. Shin, and H. M. Yoo, “2α-Hydroxyeudesma-4,11(13)-diene-8β,12-olide isolated from Inula britannica induces apoptosis in diffuse large B-cell lymphoma cells,” *Biomolecules*, vol. 10, no. 2, p. 324, 2020.
[72] L. Chen, M. W. Gong, Z. F. Peng et al., “The marine fungal metabolite, dicitrinone B, induces A375 cell apoptosis through the ROS-related caspase pathway,” *Marine Drugs*, vol. 12, no. 4, pp. 1939–1958, 2014.

[73] Y. Zhao, Z. C. Wang, D. C. Feng et al., “p66Shc contributes to liver fibrosis through the regulation of mitochondrial reactive oxygen species,” *Theranostics.*, vol. 9, no. 5, pp. 1510–1522, 2019.

[74] S. C. Nunes, C. Ramos, F. Lopes-Coelho et al., “Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity,” *Scientific Reports*, vol. 8, no. 1, p. 9513, 2018.

[75] L. Yang, P. Xie, J. Wu et al., “Deferoxamine treatment combined with sevoflurane postconditioning attenuates myocardial ischemia-reperfusion injury by restoring HIF-1/BNIP3-mediated mitochondrial autophagy in GK rats,” *Frontiers in Pharmacology*, vol. 11, p. 6, 2020.

[76] N. Y. Wen, B. F. Guo, H. W. Zheng et al., “Bromodomain inhibitor jq1 induces cell cycle arrest and apoptosis of glioma stem cells through the VEGF/Pi3K/AKT signaling pathway,” *International Journal of Oncology*, vol. 55, no. 4, pp. 879–895, 2019.

[77] E. H. Kim, M. S. Kim, A. Takahashi et al., “Carbon-ion beam irradiation alone or in combination with zoledronic acid effectively kills osteosarcoma cells,” *Cancers*, vol. 12, no. 3, p. 698, 2020.

[78] D. T. Wang, H. X. Ba, C. G. Li, Q. M. Zhao, and C. Y. Li, “Proteomic analysis of plasma membrane proteins of antler stem cells using label-free LC-MS/MS,” *International Journal of Molecular Sciences*, vol. 19, no. 11, p. 3477, 2018.

[79] S. L. Liu, H. C. Tang, J. J. Zhu et al., “High expression of copine 1 promotes cell growth and metastasis in human lung adenocarcinoma,” *International Journal of Oncology*, vol. 53, no. 6, pp. 2369–2378, 2018.

[80] Y. Xia, X. J. Song, D. L. Li et al., “YLT192, a novel, orally active bioavailable inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy in preclinical models,” *Scientific Reports*, vol. 4, no. 1, 2015.

[81] M. X. Chen, R. Yan, K. X. Zhou et al., “Akt-mediated platelet apoptosis and its therapeutic implications in immune thrombocytopenia,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 115, no. 45, pp. E10682–E10691, 2018.

[82] Y. B. Tang, J. C. Pan, S. Huang et al., “Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT signaling,” *Journal of Experimental & Clinical Cancer Research*, vol. 37, no. 1, p. 160, 2018.

[83] Y. Y. Li, Z. Z. Zhang, X. J. Zhang et al., “A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma,” *American Journal of Translational Research*, vol. 8, no. 2, pp. 719–731, 2016.