MDP Playground: A Design and Debug Testbed for Reinforcement Learning

Raghu Rajan¹, Jessica Lizeth Borja Diaz¹, Suresh Guttikonda¹, Fabio Ferreira¹, André Biedenkapp¹, Jan Ole von Hartz¹ & Frank Hutter¹,²
¹ University of Freiburg ² Bosch Center for Artificial Intelligence
rajanr@cs.uni-freiburg.de

Abstract

We present MDP Playground, an efficient testbed for Reinforcement Learning (RL) agents with orthogonal dimensions that can be controlled independently to challenge agents in different ways and obtain varying degrees of hardness in generated environments. We consider and allow control over a wide variety of dimensions, including delayed rewards, rewardable sequences, density of rewards, stochasticity, image representations, irrelevant features, time unit, action range and more. We define a parameterised collection of fast-to-run toy environments in OpenAI Gym by varying these dimensions and propose to use these for the initial design and development of agents. We also provide wrappers that inject these dimensions into complex environments from Atari and Mujoco to allow for evaluating agent robustness. We further provide various example use-cases and instructions on how to use MDP Playground to design and debug agents. We believe that MDP Playground is a valuable testbed for researchers designing new, adaptive and intelligent RL agents and those wanting to unit test their agents.

1 Introduction

RL has succeeded at many disparate tasks, such as helicopter aerobatics, game-playing and continuous control [2, 38, 49, 10, 14, 17]. However, a lot of the insights obtained are on very complex and in many instances blackbox environments.

There are many different types of standard environments, as many as there are different kinds of tasks in RL [e.g. 57, 6, 11]. They specialise in specific kinds of tasks. The underlying assumptions in many of these environments are that of a Markov Decision Process (MDP) [see, e.g., 44, 52] or a Partially Observable MDP (POMDP) [see, e.g., 22, 25]. However, there is a lack of simple and general MDPs which capture common difficulties seen in RL and let researchers experiment with them in a fine-grained manner. Many researchers design their own toy problems which capture the key aspect of their problem and then try to gain whitebox insights because the standard complex environments, such as Atari and Mujoco, are too expensive or too opaque for the initial design and development of their agent. To standardise this initial design and debug phase of the development pipeline, we propose a platform which distils difficulties for MDPs that can be generalised across RL problems and allows to independently inject these difficulties.

Disadvantages of complex environments when considered from a point of view of a design and debug testbed include: 1) They are very expensive to evaluate. For example, a DQN [38] run on Atari [6] took us 4 CPU days and 64GB of memory to run. 2) The environment structure itself is so complex that it leads to “lucky” agents performing better (e.g., in [18]). Furthermore, different implementations even using the same libraries can lead to very different results [18]. 3) Many difficulties are concurrently present in the environments and do not allow us to independently test...
their impact on agents’ performance. During the design phase, we need environments to encapsulate, preferably orthogonally, the different difficulties present. For instance, MNIST \([32]\) captured some key difficulties required for computer vision (CV) which made it a good testbed for designing and debugging CV algorithms, even though it cannot be used to directly learn models for much more specific CV applications such as classification of plants or medical image analysis.

The main contributions of this paper are:

- We identify and discuss dimensions of MDPs that can have a significant effect on agent performance, both for discrete and continuous environments;
- We discuss how to use MDP Playground to design and debug agents with various experiments; toy experiments can be run in as few as 30 seconds on a single core of a laptop;
- We discuss insights that can be gained with the various considered dimensions; transferring insights from toy to complex environments for some under-studied dimensions led to significant improvements in performances on complex environments.

2 Dimensions of MDPs

We try to exhaustively identify orthogonal dimensions of hardness in RL by going over the many components of a (PO)MDP. By orthogonal, we mean that these dimensions are present independent of each other in environments. This was tried exhaustively to allow as many dimensions as possible for researchers to systematically study them and gain new insights.

We define an MDP as a 7-tuple \((S, A, P, R, \rho_\text{O}, \gamma, T)\), where \(S\) is the set of states, \(A\) is the set of actions, \(P : S \times A \rightarrow S\) describes the transition dynamics, \(R : S \times A \times S \rightarrow \mathbb{R}\) describes the reward dynamics, \(\rho_\text{O} : S \rightarrow \mathbb{R}^+\) is the initial state distribution, \(\gamma\) is the discount factor and \(T\) is the set of terminal states. We define a POMDP with two additional components - \(O\) represents the set of observations and \(\Omega : S \times A \times O \rightarrow \mathbb{R}^+\) describes the probability density function of an observation given a state and action. To clarify terminology, following \([51]\) we will use information state to mean the state representation used by the agent and belief state as the posterior belief of the unobserved state given the full observation history. If the belief state were to be used as the information state by an agent, this would be sufficient to compute an optimal policy. However, since the full observation history is not tractable to store for many environments, agents in practice use the last few observations as their information state which renders it only partially observable. This is important because many of the motivated dimensions are actually due to the information state being non-Markov.

2.1 MDPs in MDP Playground

Toy Environments The toy environments are cheap and encapsulate all the identified dimensions. The components of the MDP can be automatically generated according to the dimensions or can be user-defined. Any dimension not specified is set to a vanilla default value. Further, the underlying MDP state is exposed in an augmented state variable, which allows users to design agents that may try to identify the true underlying MDP state given the observations. We now briefly describe the auto-generated discrete and continuous environments, since we use these for the experiments section and expect that these will cover the majority of the use-cases. This is followed by implementation details of selected dimensions; details for all dimensions can be found in Algorithm 1 in Appendix C.

Discrete Environments In the discrete case, \(S\) and \(A\) contain categorical elements, and random instantiations of \(P\) and \(R\) are generated after the remaining dimensions have been set. The generated \(P\) and \(R\) are deterministic and held fixed for the environment. We keep \(\rho_\text{O}\) to be uniform over the non-terminal states, and \(T\) is fixed to be a subset of \(S\) based on a chosen terminal state density.

Continuous Environments In the continuous case, environments correspond to the simplest real world task we could find: moving a rigid body to a target point, similar to \([16]\) and \([28]\). \(P\) is formulated such that each action dimension affects the corresponding space dimension - \(s\) is set to be equal to the action applied for time unit seconds on a rigid body. This is integrated over time to yield the next state. \(R\) is designed such that the reward for the current time step is the distance travelled towards the target since the last step.

Both, the discrete and continuous environments, in MDP Playground can be described as graphical POMDPs.
2.2 Motivations of Dimensions and Implementations

We now describe many of the dimensions from a general point of view and their implementations in MDP Playground. For clarity, we describe only the dimensions with experiments in the main paper here in greater detail and refer the reader to Appendix [2] and the documentation for more detailed descriptions of all the dimensions.

Reward Delay For many environments, in many situations, agents perform an action that is consequential to receiving a reward but the agent is only rewarded in a delayed manner [see e.g. 3] (see Figure [14]). For example, shooting at an enemy ship in Space Invaders leads to rewards much later than the action of shooting. Any action taken after that is inconsequential to obtaining the reward for destroying that enemy ship. In MDP Playground, the reward is artificially delayed by a non-negative integer number of timesteps, d.

Reward Density Environments can also be characterised by their reward density. When an environment has denser rewards (see Figure [1a]), one is more likely to obtain a supervisory reward signal. In sparse reward settings [15], the reward is 0 more frequently, especially, for example, in continuous control environments where a long trajectory is followed and then a single non-zero reward is received at its end. In MDP Playground, for discrete environments, the reward density, rd, is defined as the fraction of possible sequences of length n that are actually rewarded by the environment, given that n is constant. If num_r sequences are rewarded, we define the reward density to be $rd = num_r / (\lvert S \rvert - 1)!$ and the sparsity as $1 - rd$. For continuous environments, density is controlled by having a sparse or dense environment using a make_denser configuration option.

Stochasticity Another characteristic of environments that can significantly impact performance of agents is stochasticity. The environment, i.e., dynamics P and R, may be stochastic or may seem stochastic to the agent due to partial observability or sensor noise (see Figure [1b][1c]). A robot equipped with a rangefinder, for example, has to deal with various sources of noise in its sensors [55]. In MDP Playground, for discrete environments, transition noise $t_n \in [0, 1]$; with probability t_n, an environment transitions uniformly at random to a state that is not the true next state given by P. For discrete environments, reward noise $r_n \in \mathbb{R}$; a normal random variable distributed according to $\mathcal{N}(0, \sigma^2_{r,n})$ is added to the true reward. For continuous environments, both p_n and r_n are normally distributed and directly added to the states and rewards.

Irrelevant Features Environments also tend to have a lot of irrelevant features [45] that one need not focus on. This holds for both table-based learners and approximators like Neural Networks (NNs). NNs additionally can even fit random noise [64] and having irrelevant features is likely to degrade performance. For example, in certain racing car games, though the whole screen is visible, concentrating on only the road would be more efficient without loss in performance. In MDP Playground, for discrete environments, a new discrete dimension with its own transition function P_{ir}, which is independent of P, is introduced. However, only the discrete dimension corresponding to P is relevant to calculate the reward function. Similarly, in continuous environments, dimensions of S and A are labelled as irrelevant and not considered in the reward calculation.

Representations Another aspect is that of representations. The same underlying state may have many different external representations/observations, e.g., feature space vs pixel space. Mujoco tasks may be learnt in feature space vs directly from pixels, and Atari games can use the underlying RAM state or images. For images, various image transformations [shift, scale, rotate, flip and others] may manifest as observations of the same underlying state and can pose a challenge to learning. In MDP Playground, for discrete environments, when this aspect is enabled, each categorical state is associated with an image of a regular polygon which becomes the externally visible observation o to the agent. This image can further be transformed by shifting, scaling, rotating or flipping, which are applied at random to the polygon whenever an observation is generated. For continuous environments, image observations can be rendered for 2D environments. Examples of some generated states can be seen in Figures [10][11] in Appendix [1].

Time Unit and Action Range For continuous control problems, we describe 2 additional dimensions here: action range [26], a weight penalising actions; and time unit, the discretisation of time (see Figure [1d]).

We now summarise the dimensions identified above (with the (PO)MDP component they impact in brackets):
Figure 1: We depict some of the dimensions visually following [59]. Not all states and actions are depicted to focus on the dimension of interest. Rewarding actions are shown as a+ while actions shown as a- are not rewarding. Reward is shown as R and time unit as t.

- Reward Delay (R)
- Reward Density (R)
- Transition Noise (P)
- Reward Noise (R)
- Irrelevant Features (O)
- Representations (O)
- Action Range (A)
- Time Unit (P)

Only selected dimensions are included here, to aid in understanding and to show use-cases for MDP Playground. Trying to exhaustively identify dimensions has led to a very flexible platform and Appendix [B] lists all the dimensions of MDP Playground. We would like to point out that it largely depends on the domain which dimensions are important. For instance, in a video game domain, a practitioner may not want to inject any kind of noise into the environment, if their only aim is to obtain high scores, whereas in a domain like robotics adding such noise to a deterministic simulator could be crucial in order to obtain generalisable policies [56].

3 MDP Playground

Code samples An environment instance is created as easily as passing a Python dict:

```python
from mdp_playground.envs import RLToyEnv
cfg = {
    'state_space_type': 'discrete',
    'action_space_size': 8,
    'delay': 1,
    'sequence_length': 3,
    'reward_density': 0.25,
}
env = RLToyEnv(**cfg)
```

Very low-cost execution Experiments with MDP Playground are cheap, allowing academics without special hardware to perform insightful experiments. Wall-clock times depend a lot on the agent, network size (in case of NNs) and the dimensions used. Nevertheless, to give the reader an idea of the runtimes involved, DQN experiments (with a network with 2 hidden layers of 256 units each) took on average 35s for a complete run of DQN
We hope our toy environments will help identify inductive biases needed for designing new RL agents without getting confounded by other sources of "noise" in the evaluation. What is important for doing so is relative to the defaults). Figure 2: AUC of episodic reward at the end of training for the different agents when varying representation. 's' denotes shift (quantisation of 1), 'S' scale, 'f' flip and 'r' rotate in the labels in the first three subfigures and image_sh_quant represents quantisation of the shifts in the DQN experiment for this. Error bars represent 1 standard deviation. Note the different reward scales.

Figure 3: a and b: DDPG with time unit on toy and complex (HalfCheetah) environment at the end of training (time unit is relative to the defaults). c: DDPG with irrelevant dimensions injected on the toy environment. d: DQN on qbert. Error bars represent 1 standard deviation. Note the different y-axis scales.

Complex Environment Wrappers We further provide wrappers for Atari and Mujoco which can be used to inject some of the dimensions also into complex environments.

Design decisions While many dimensions can seem challenging at first, it is also the nature of RL that different dimensions tend to be important in different specific applications. The video game domain was provided as an example of this in Section 2.2. Another example is of reward scale. The agents we tested here re-scale or clip rewards already and the effects of this dimension are not as important as they would be otherwise. To maintain the flexibility of having as many dimensions as possible and yet keep the platform easy to use, default values are set for dimensions that are not configured. This effectively turns off those dimensions. Thus, as in the code example, users only need to provide dimensions they are interested in.

Further design decisions are discussed in detail in Appendix C

4 Using MDP Playground

We discuss in detail various experiments along with how they may be used to design new agents and to debug existing agents. For the experiments, we set $|S|$ and $|A|$ to 8 and the terminal state density to 0.25. The reward scale is set to 1.0 whenever a reward is given by the environment. We evaluated Rlilb implementations of DQN, Rainbow DQN, A3C on discrete environments and DDPG, TD3 and SAC on continuous environments over grids of values for the dimensions. Hyperparameters and the tuning procedure used are available in Appendix C. We used fully connected networks except for pixel-based representations where we used Convolutional Neural Networks (CNNs).

4.1 Designing New Agents

We hope our toy environments will help identify inductive biases needed for designing new RL agents without getting confounded by other sources of "noise" in the evaluation. What is important for doing so is relative to the defaults.)
We believe this is due to correlations within the multiple degrees of freedom as opposed to a rigid
when designing agents.

We tested the trends of the dimensions on more complex Atari and Mujoco tasks. For Atari, we ran
the agents on beam_rider, breakout, qbert and space_invaders when varying the dimensions delay
and transition noise. For Mujoco, we ran the agents on HalfCheetah, Pusher and Reacher using
mujoco-py when varying the dimensions time unit and action range. We evaluated 5 seeds for 500k
steps for Pusher and Reacher, 3M for HalfCheetah and 10M (40M frames) for Atari. The values
shown for action range and time unit are relative to the ones used in Mujoco.

Varying representations We turned on image representations for discrete environments and applied
various transforms (shift, scale, rotate and flip) one at a time and also all at once. We observed that
the more transforms are applied to the images, the harder it is for agents to learn, as can be seen in
Figures 2a-c. This was to be expected since there are many more combinations to generalise over for
the agent.

It is important to note, from the point of view of a design platform, that our platform allows us to
identify the inductive bias of CNNs being good for image observations without having to conduct
such experiments on complex and expensive environments. This is because the toy environments
capture many key features of image representations and thus the image classification capabilities of
CNNs can help identify the underlying MDP state. In a similar manner, we have captured key features
of other dimensions. If one were to design a new inductive bias which helps the agent identify the
underlying MDP state in the presence of the other dimensions, this could be tested in a coarse and
quick manner on our platform.

Varying time unit We observed that the time unit has an optimal value which has significant impact
on performance in the toy continuous environment (Figure 3a), i.e., that it can be neither too small
nor too large. We decided to tune the time unit also for complex environments (Figures 3b-1 and 3k).
The insight from the toy environment transferred to the complex case and there were gains of even
100% in some cases over the default value of the time units used in the "expert-tuned" environments.
A further insight to be had is that for simpler environments like the toy, Pusher and Reacher, the
effect of the selection of the time unit was not as pronounced as for a more complex environment like
HalfCheetah. This makes intuitive sense as one can expect a narrower range of values to work for
more complex environments. This shows that it is even more important to tune such dimensions for
more complex environments.

The basic agent design we showed above does this once and sets its optimal time unit statically. An
ideal adaptive agent design would even set the time unit in an online manner. Since the trends from
the toy environment coarsely transfer to the complex environments, coarse and quick insights can be
gained on the toy environments.

Varying action range We observed similar trends as for time unit, in that there was an optimal
value of action range, i.e., that it can be neither too small nor too large. Figure 9 shows this for all
considered agents on HalfCheetah (for SAC and DDPG, runs for action range values >= 2 and >= 4
crashed and are absent from the plot). This supports the insight gained on our simpler environment
that tuning this value may lead to significant gains for an agent. For already tuned environments, such
as the ones in Gym, this dimension is easily overlooked but when faced with new environments setting
it appropriately can lead to substantial gains. In fact, even in the tuned environment setting of Gym,
we found that all three algorithms performed best for an action range 0.25 times the value found in
Gym for Reacher (Figures 5c, 8k and 9k in Appendix H). Moreover, the learning curves in Appendix
N further show that for increasing action range the training gets more variant. The difference in
performances across the different values of action range is much greater in the complex environments.
We believe this is due to correlations within the multiple degrees of freedom as opposed to a rigid
object in the toy environment.

To the best of our knowledge, the impact of time unit and action range is under-researched while
developing agents because the standard environments have been pre-configured by experts. However,
it’s clear from Figure 3b, that pre-configured values were not optimal and even basic tuning improves
performance significantly in even known environments. In a completely unknown environment, if we
want agents to perform optimally, these dimensions would need to be taken into account even more
when designing agents.
We have shown similar trends for SAC on HalfCheetah in Figure 9a in Appendix H.

Varying Multiple Dimensions

In MDP Playground, it is possible to vary multiple dimensions at the same time in the same base environment. For instance, Figure 4d shows the interaction effect (an inversely proportional relationship) between the action range and the time unit in the continuous toy environment with DDPG. This insight allows us to design an adaptive agent which sets its action range depending on the time unit and vice versa. Since many real-world systems can be described in terms of a simple rigid body moving towards a target point, the toy continuous environment is a useful testbed for this.

More such experiments can be found in Appendix I, including varying both P and R noises together in discrete environments and more. Further design ideas for new agents can be found in Appendix E.

4.2 Insights into Existing Agents

Apart from the insights gained for designing agents above, we discuss more insights for existing agents explicitly here.
The experiment for varying representations on toy environments discussed above (Figures 2a-c) further showed that the degradation in performance is much stronger for DQN compared to A3C which are known to perform better than DQN in complex environments.

This led us to another interesting insight regarding the inductive bias of CNNs. It was unexpected for us that the most problematic transform for the agents to deal with was shift. Despite the spatial invariance learned in CNNs, our results imply that that seems to be the hardest one to adapt to. As these trends were strongest in DQN, we evaluated further ranges for the individual transforms for DQN. Here, shifts had the most possible different combinations that could be applied to the images. Therefore, we quantised the shifts to have fewer possible values. Figure 2c shows that DQN’s performance improved with increasing quantisation (i.e., fewer possible values) of shift. We noticed similar trends for the other transforms as well, although not as strong as they do not have as many different values as shift (see Figures 29b-c in Appendix I). We emphasize that in a more complex setting, we would have easily attributed some of these results to luck but in the setting where we had individual control over the dimensions, our platform allowed us to dig deeper in a controlled manner.

Another insight we gain is from the time unit experiment (see Figures 2a and 3b), which indicates time unit should not be infinitesimally small to achieve too fine-grained control since there is an optimal time unit for which we should repeat the same action.

In Figure 3, where we varied delay on qbert, we show how a dimension induces hardness in an environment. This result is representative of the experiments on toy and complex environments which are included in Appendix H and I with the difference that results are noisier in complex environments since the dimensions are already present there in varying degrees. We, thus, studied what kinds of failure modes can occur when an agent is faced with such dimensions and even obtained noisy learning curves typically associated with RL on the toy environments as can be seen in Appendix M.

At the same time, the experiment in Figure 3d also shows how the complex environment wrappers allow researchers, who are curious, to study the robustness of their agents to these dimensions on complex environments, without having to fiddle with lower-level code. This is a typical use-case further down the agent development pipeline, i.e., close to deployment.

Design and Analyse Experiments We allow the user the power to inject dimensions into toy or complex environments in a fine-grained manner. This can be used to define custom experiments with the dimensions. The results can be analysed in an accompanying Jupyter notebook using the 1D plots. There are also radar plots inspired by bsuite, but with more flexibility in choosing the dimensions, and these can even be applied to complex environment experiments. Since, different users might be interested in different dimensions, these are loaded dynamically from the data. For instance, radar plots for the dimensions we varied in our toy experiments can be seen as in Figures 4a and b.

4.3 Debugging Agents

Analysing how an agent performs under the effect of various dimensions can reveal unexpected aspects of an agent. For instance, when using bsuite agents, we noticed that when we varied our environment’s reward density, the performance of the bsuite Sonnet DQN agent would go up in proportion to the density (see Figure 4c). This did not occur for other bsuite agents. This seemed to suggest something different for the DQN agent and when we looked at DQN’s hyperparameters we realised that it had a fixed ε schedule while the other agents had decaying schedules. Such insights
can easily go unnoticed if the environments used are too complex. The high bias nature of our toy environments helps debug such cases.

In another example, in one of the Ray versions we used, we observed that DQN was performing well on the \textit{varying representations} environment while Rainbow was performing poorly. We were quickly able to ablate additional Rainbow hyperparameters on the toy environments and found that their noisy nets \cite{rainbow} implementation was broken (see Figure 5 in Appendix). We then tested and observed the same on more complex environments. This shows how easily and quickly agents can be debugged to see if something major is broken. This, in combination with their low computational cost, also makes a case to use the toy environments in Continuous Integration (CI) tests on repositories.

Further, we believe the same structured nature of \textit{MDP Playground} also makes it a valuable tool for theoretical research. We evaluated tabular baselines Q-learning \cite{q-learning}, Double Q-learning \cite{double-q-learning} and SARSA \cite{sarsa} on the discrete non-image based environments with similar qualitative results to those for deep agents. These can be found in Appendix[K]. This makes our platform a bridge between theory and practice where both kinds of agents can be tested.

The experiments here are only a glimpse into the power and flexibility of \textit{MDP Playground}. Users can even upload custom \textit{Ps} and \textit{Rs} and custom images for representations \textit{O} and our platform takes care of injecting the other dimensions for them (wherever possible). This allows users to control different dimensions in the same base environment and gain further insights.

5 Discussion and Related Work

The \textit{Behaviour Suite for RL} \cite{bsuite} is the closest related work to \textit{MDP Playground}. \cite{bsuite} collect known (toy) environments from the literature and use these to characterise agents based on their performance on these environments. Most environments in \textit{bsuite} can be seen as an intermediate step between our MDPs and more complex environments. This is because \textit{bsuite}’s environments are already more specific and complex than the toy environments in \textit{MDP Playground}. This makes \textit{bsuite}’s dimensions not orthogonal and \textit{atomic} like ours and thus not individually controllable. Fine-grained control is a feature that sets our platform apart. \textit{bsuite} has a collection of \textit{presets} chosen by experts which work well but would be much harder to play around with. While \textit{MDP Playground} also has good presets through default values defined for experiments, it is much easier to configure. Further, it also means that \textit{bsuite} experiments are much more expensive than ours. While \textit{bsuite} itself is quite cheap to run, \textit{MDP Playground} experiments are an order of magnitude cheaper. In contrast to \textit{bsuite}, we demonstrate how the identified trends on the toy and complex environments can be used to design and debug agents. Further, \textit{bsuite} currently has no toy environment for Hierarchical RL (HRL) agents while \textit{MDP Playground}’s rewardable sequences fits very well with HRL. Finally, \textit{bsuite} offers no \textit{continuous control environments}, whereas \textit{MDP Playground} provides both discrete and continuous environments. This is important because several agents like DDPG, TD3, SAC are designed for continuous control. A more detailed comparison with \textit{bsuite} and other related work can be found in Appendix[D].

Toybox \cite{toybox} and Minatar \cite{minatar} are also cheap platforms like ours with similar goals of gaining deeper insights into RL agents. However, their games target the specific \textit{Atari} domain and are, like \textit{bsuite}, more specific and complementary to our approach.

We found \cite{3} the most similar work to ours in spirit. They propose that current deep RL research has been increasing the complexity of the dynamics \textit{P} but has not paid much attention to the state distributions and reward distribution over which RL policies work and that this has made RL agents brittle. This also raises concerns about the narrow scope of these so-called “complex” environments and we aim to remedy that with our dimensions. We agree with them in this regard. However, they only target continuous environments. We capture their dimensions in a different manner and offer many more dimensions with fine-grained control. Furthermore, their code is not open-source.

Further research includes \textit{Procgen} \cite{procgen}, \textit{Obstacle Tower} \cite{obstacle-tower} and \textit{Atari} \cite{atari}. \textit{Procgen} adds various heterogeneous environments and tries to quantify generalisation in RL. In a similar vein, \textit{Obstacle Tower} provides a generalization challenge for problems in vision, control, and planning. These benchmarks do not capture orthogonal dimensions of difficulty and as a result, they do not have the same type of fine-grained control over their environments’ difficulty and neither can each dimension be controlled independently. We view this as a crucial aspect when testing new agents. \cite{12} provides
some overlapping dimensions with our platform but it consists of only continuous environments, and
doesn’t target the toy domain.

6 Limitations of the Approach and its Ethical and Societal Implications

The toy environments are meant to be design and debug testbeds and not for engineering/tuning the
final agent HPs. As such, they are extremely cheap compared to complex environments and (as one
would expect), they can only be used to draw high-level insights that transfer and are likely not as
discriminating as complex environments for many of the finer changes between RL agents. They
also cannot be used directly to determine the values of hyperparameters (HPs) to use on complex
environments. For example, just as complex environments require bigger NNs, they would need
correspondingly different HPs, such as bigger replay buffers. Even the performance of agents in bsuite
(which has more complex environments than our benchmark) do not transfer to the more complex
environments (https://github.com/deepmind/bsuite/issues/14). In a similar vein, to the
best of our knowledge, MNIST hyperparameters do not transfer to ImageNet and it is only used for
testing out initial design ideas.

Further, high-dimensional control problems where there are interaction effects between degrees of
freedom are not captured in the toy rigid body control problem as this is the domain of complex
benchmarks and beyond the scope of this platform. (The platform does provide complex environment
wrappers, though, which inject some of the mentioned dimensions. We couldn’t find such wrappers
in the literature/on the Internet.)

Finally, Multi-Agent RL, Multi Objective RL, Time Varying MDPs (and probably some more research
areas) are beyond the scope of the current work.

In terms of the broader impact on society and ethical considerations, we foresee no direct impact,
only indirect consequences through RL since our work promotes standardisation and reproducibility
which should accelerate RL research. An additional environmental impact would be that, at least,
prototyping and testing of agents could be done cheaply, reducing carbon emissions.

7 Conclusion and Future Work

We introduced a low-cost platform to design and debug RL agents and provided instructions on
how to use it with supporting experiments. The platform allows us to disentangle various factors
that make RL environments hard by providing fine-grained control over various dimensions. This
also lends itself to easily achievable insights and helps debug agents. We further demonstrated
how the performance of the studied agents is adversely affected by the dimensions. To the best of
our knowledge, we are the first to perform a principled study of how significant aspects such as
non-Markov information states, irrelevant features, representations and low-level dimensions, like
time discretisation, affect agent performance.

We want MDP Playground to be a community-driven effort and it is open-source for the benefit
of the RL community at https://github.com/automl/mdp-playground. While we tried to
exhaustively identify dimensions of hardness, it is unlikely that we have captured all orthogonal
dimensions in RL. We welcome more dimensions that readers think will help us encapsulate further
challenges in RL and will add them based on the community’s thoughts.

Future work can tackle not only theoretical development of such dimensions but also additional
analysis of such dimensions in complex domains such as Mujoco and dexterous manipulation [46].
Given the current brittleness of RL agents [18], and many claims that have been challenged [5, 58],
we believe RL agents need to be tested on a lower and more basic level to gain insights into their
inner workings. MDP Playground is like a programming language for regularly structured MDPs
which allows delving deeper into the inner workings of RL agents.
Acknowledgements

The authors gratefully acknowledge support by BMBF grant DeToL, by the Bosch Center for Artificial Intelligence, and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant no. 716721, by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG. They would like to thank their group, especially Joerg, Steven, Samuel, for helpful feedback and discussions. Raghu would like to additionally thank Michael Littman for his feedback and encouragement and the RLSS 2019, Lille organisers and participants who he had interesting discussions with.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

[2] P. Abbeel, A. Coates, and A. Y Ng. Autonomous helicopter aerobatics through apprenticeship learning. The International Journal of Robotics Research, 29(13):1608–1639, 2010.

[3] Olov Andersson and Patrick Doherty. Toward robust deep rl via better benchmarks: Identifying neglected problem dimensions. In 2nd Reproducibility in Machine Learning Workshop at ICML 2018, Stockholm, Sweden, 2018.

[4] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter. Rudder: return decomposition for delayed rewards. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Proceedings of the 32nd International Conference on Advances in Neural Information Processing Systems (NeurIPS’19), pages 13544–13555, 2019.

[5] Akanksha Atrey, Kaleigh Clary, and David D. Jensen. Exploratory not explanatory: Counterfactual analysis of saliency maps for deep reinforcement learning. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, Jun 2013.

[7] A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer. Towards TemproL: Learning when to act. In Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML’20), July 2020.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAI gym. arXiv:1606.01540 [cs.LG], June 2016.

[9] P. Chrabaszcz, I. Loshchilov, and F. Hutter. Back to basics: Benchmarking canonical evolution strategies for playing atari. In J. Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, (IJCAI’18), pages 1419–1426. ijcai.org, 2018.

[10] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Proceedings of the 31st International Conference on Advances in Neural Information Processing Systems (NeurIPS’18), pages 4754–4765, 2018.

[11] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging Procedural Generation to Benchmark Reinforcement Learning. arXiv:1912.01588 [cs.LG], Dec 2019.

[12] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learning. CoRR, abs/2003.11881, 2020.
[13] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A. Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks for exploration. In Proceedings of the International Conference on Learning Representations (ICLR’18), 2018. Published online: iclr.cc

[14] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic methods. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning (ICML’18), pages 1582–1591. PMLR, 2018.

[15] R. D. Gaina, S. M. Lucas, and D. Pérez-Liébana. Tackling sparse rewards in real-time games with statistical forward planning methods. In Proceedings of the 33rd Conference on Artificial Intelligence (AAAI’19), pages 1691–1698. AAAI Press, 2019.

[16] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based policies. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning, pages 1352–1361. PMLR, 2017.

[17] T. Haarnoja, A. Zhou, P. Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning (ICML’18), pages 1856–1865. PMLR, 2018.

[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement learning that matters. In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Conference on Artificial Intelligence (AAAI’18), pages 3207–3214. AAAI Press, 2018.

[19] D. Hendrycks and T. G. Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. In Proceedings of the International Conference on Learning Representations (ICLR’19), 2019. Published online: iclr.cc

[20] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Conference on Artificial Intelligence (AAAI’18), pages 3215–3222. AAAI Press, 2018.

[21] Alex Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.com/2018/02/14/rl-hard.html, 2018.

[22] T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm for partially observable markov decision problems. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Proceedings of the 7th International Conference on Advances in Neural Information Processing Systems (NeurIPS’95), pages 345–352, 1995.

[23] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. J. Mach. Learn. Res., 11:1563–1600, 2010.

[24] A. Juliani, A. Khalifa, V.P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi, J. Togelius, and D. Lange. Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning. In S. Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pages 2684–2691. ijcai.org, Feb 2019.

[25] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

[26] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep reinforcement learning. In IEEE Conference on Games, CoG 2020, Osaka, Japan, August 24-27, 2020, pages 479–486. IEEE, 2020.

[27] Geir Kirkebøen and Gro HH Nordbye. Intuitive choices lead to intensified positive emotions: An overlooked reason for “intuition bias”? Frontiers in Psychology, 8:1942, 2017.

[28] P. Klink, H. Abdullahamad, B. Belousov, and J. Peters. Self-paced contextual reinforcement learning. In L. P. Kaelbling, D. Kragic, and K. Sugiyama, editors, 3rd Annual Conference on Robot Learning, (CoRL’19), pages 513–529. PMLR, 2019.
[29] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon emissions of machine learning. *arXiv preprint arXiv:1910.09700*, 2019.

[30] Y. LeCun. Learning invariant feature hierarchies. In A. Fusiello, V. Murino, and R. Cucchiara, editors, *Computer Vision - ECCV 2012*, pages 496–505. Springer, 2012.

[31] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Back-propagation applied to handwritten zip code recognition. *Neural Comput.*, 1(4):541–551, 1989.

[32] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[33] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. E. Gonzalez, M. I. Jordan, and I. Stoica. RLlib: Abstractions for distributed reinforcement learning. In J. Dy and A. Krause, editors, *Proceedings of the 35th International Conference on Machine Learning (ICML’18)*, volume 80, pages 3059–3068. Proceedings of Machine Learning Research, 2018.

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement learning. In Y. Bengio and Y. LeCun, editors, *Proceedings of the International Conference on Learning Representations (ICLR’16)*, 2016. Published online: iclr.cc.

[35] Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Lee Isbell Jr., Min Wen, and James MacGlashan. Environment-independent task specifications via GLTL. *CoRR*, abs/1704.04341, 2017.

[36] Odalric-Ambrym Maillard, Timothy A. Mann, and Shie Mannor. How hard is my mdp?" the distribution-norm to the rescue". In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, *Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada*, pages 1835–1843, 2014.

[37] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In M. Balcan and K. Weinberger, editors, *Proceedings of the 33rd International Conference on Machine Learning (ICML’16)*, volume 48, pages 1928–1937, 2016.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.

[39] Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision. *CoRR*, abs/1906.02337, 2019.

[40] D. S. Nau. Pathology on game trees revisited, and an alternative to minimaxing. *Artif. Intell.*, 21(1-2):221–244, 1983.

[41] Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for reinforcement learning. In Amir Globerson and Ricardo Silva, editors, *Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019*, volume 115 of *Proceedings of Machine Learning Research*, pages 81–90. AUAI Press, 2019.

[42] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore, C. Szepesvari, S. Singh, B. Van Roy, R. Sutton, D. Silver, and H. Van Hasselt. Behaviour suite for reinforcement learning. In *Proceedings of the International Conference on Learning Representations (ICLR’19)*, 2019. Published online: iclr.cc.

[43] J. Pearl. Theoretical impediments to machine learning with seven sparks from the causal revolution. In Y. Chang, C. Zhai, Y. Liu, and Y. Maarek, editors, *Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, (WSDM’18)*, page 3. ACM, February 2018.
[44] Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming.* Wiley Series in Probability and Statistics. Wiley, 1994.

[45] J. Rajendran, J. Ganhotra, S. Singh, and L. Polymenakos. Learning end-to-end goal-oriented dialog with multiple answers. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, editors, *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’19)*, pages 3834–3843. Association for Computational Linguistics, 2018.

[46] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and demonstrations. In *Proceedings of Robotics: Science and Systems*, Pittsburgh, Pennsylvania, June 2018.

[47] R. Ramanujan, A. Sabharwal, and B. Selman. On adversarial search spaces and sampling-based planning. In R. I. Brafman, H. Geffner, J. Hoffmann, and H. A. Kautz, editors, *Proceedings of the 20th International Conference on Automated Planning and Scheduling. (ICAPS'10)*, pages 242–245. AAAI, 2010.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. *arXiv:1707.06347 [cs.LG]*, 2017.

[49] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and tree search. *Nature*, 529(7587):484–489, 2016.

[50] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. *Developmental science*, 10(1):89–96, 2007.

[51] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate information state for approximate planning and reinforcement learning in partially observed systems. *CoRR*, abs/2010.08843, 2020.

[52] R. S. Sutton and A. G. Barto. *Reinforcement learning: An introduction*. The MIT Press, second edition, 2018.

[53] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. *Artificial intelligence*, 112(1-2):181–211, 1999.

[54] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In I. Dhillon, Y. Koren, R. Ghani, T. Senator, P. Bradley, R. Parekh, J. He, R. Grossman, and R. Uthurusamy, editors, *The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13)*, pages 847–855. ACM Press, 2013.

[55] S. Thrun, W. Burgard, and D. Fox. *Probabilistic robotics*. Intelligent robotics and autonomous agents. MIT Press, 2005.

[56] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In *2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017*, pages 23–30. IEEE, 2017.

[57] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In *International Conference on Intelligent Robots and Systems (IROS’12)*, pages 5026–5033. IEEE, 2012.

[58] Emma Tosch, Kaleigh Clary, John Foley, and David D. Jensen. Toybox: A suite of environments for experimental evaluation of deep reinforcement learning. *CoRR*, abs/1905.02825, 2019.

[59] Alexander Matt Turner. Optimal farsighted agents tend to seek power. *CoRR*, abs/1912.01683, 2019.
[60] H. van Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, *Proceedings of the 24th International Conference on Advances in Neural Information Processing Systems (NeurIPS’10)*, pages 2613–2621, 2010.

[61] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba. Benchmarking model-based reinforcement learning. *arXiv:1907.02057 [cs.LG]*, 2019.

[62] Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for more efficient reinforcement learning experiments. *CoRR*, abs/1903.03176, 2019.

[63] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank Hutter, and Roberto Calandra. On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning. In *Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS)*’21, April 2021.

[64] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. In *5th International Conference on Learning Representations, (ICLR’17)*. OpenReview.net, 2017.

Checklist

1. For all authors...

 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes] The orthogonal dimension that influence RL agents performances are presented and their role in the implemented MDPs is discussed in Section 2. We showed that varying these dimensions can provide new insights or confirm existing insights (on the toy environments that also hold on more complex ones) in Section 4.2. We discussed how our proposed benchmark can aid in designing new agents by taking the proposed dimensions into account during the design (see Section 4.1). Finally, we discuss how the benchmark can help in debugging agents and could be used for continuous integration (see Section 4.3).

 (b) Did you describe the limitations of your work? [Yes] See Section 6.

 (c) Did you discuss any potential negative societal impacts of your work? [Yes]

 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

 (a) Did you state the full set of assumptions of all theoretical results? [N/A]

 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] See https://github.com/automl/MDP-Playground and the link is also given in Section 7.

 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Appendix P.

 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes]

 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] In Section 3 we discussed the low-cost execution of experiments on MDP Playground and we provide further details along with hardware specifications in the Appendix R.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

 (a) If your work uses existing assets, did you cite the creators? [Yes]

 (b) Did you mention the license of the assets? [N/A]

 (c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]