Prediction of outlet water temperature from cooling towers

Adel K Mashar 1,2 and Ekram H Alaskaree 1,3

1 Department of Power Mechanics Techniques, Technical Instructors Training Institute, Middle Technical University- Baghdad/Iraq
2*E-mail address: adil.kadhim@mtu.edu.iq /phone: + 9647708635729
3*E-mail address: ekram.hadi@mtu.edu.iq /phone: + 9647701716184

Abstract: This paper presents a very accurate method for water temperature prediction of outlet water from counter flow of cooling tower. This method was derived from the method of \[\frac{h_c A}{C_{pm}}\] which is called NTU (Number of Transfer Units). The effect of the water and air mass flow rate, wet bulb temperature of the inlet air, outlet water temperature, tower range, and temperature approach have been studied. The results of comparison between the presented and the NTU methods show a very good match when the outlet water temperature is between 29 and 45°C and a difference reaches to 7.23% between 26 and 28°C. Another very good match has been noticed when the air mass flow rate is between 15.6 and 16.5 kg/s with difference reaches to 2.5% when the air mass flow rate is between 10 and 15 kg/s. The last very good match has been noticed when the water mass flow rate is between 17.5 and 19 kg/s with the difference reaches to 1.2% when the water mass flow rate is (10 - 17 kg/s).

Keywords: Cooling Tower; Number of Transfer Units; Mass Flow Rate; Comparison; Temperature; Prediction; Inlet; Outlet.

Table 1: Nomenclature

A	Cross sectional area	m²
C_{pm}	Specific heat of moist air	J/kg.K
G	Air mass flow rate	kg/s
H	Enthalpy	J/kg
h_a	Enthalpy of air	J/kg
h_{ad}	Enthalpy of air entering the bottom increment	J/kg
h_{al}	Enthalpy of air leaving the bottom increment	J/kg
h_{aw}	Enthalpy of air at the inlet wet bulb temperature	J/kg
h_c	Convection heat transfer coefficient	W/m².K
h_i	Enthalpy of water	J/kg
L	Water mass flow rate	kg/s
N	Number of tower increments-1
NTU	Number of transfer units
1. Introduction

Cooling towers are commonly used to dissipate heat from heat sources to heat sink (ambient environment). Their applications are typically in heat ventilation and air conditioning systems and power generators, etc. Heat rejection of cooling towers is accomplished by heat and mass transfer between hot water droplets and ambient air, figure (1-a).

Although cooling towers are relatively inexpensive and normally consume around ten percent of the whole system energy, their operation has significant effect on the energy consumption of other related subsystems, Ref.[1]. Therefore, optimizing cooling towers performance will not only increase the tower efficiencies but also has direct to other subsystems. Accordingly, there has been some research interest in this area.

In [2] stated that the heat removal from the water in a cooling tower is accomplished by a transfer of sensible heat due to the temperature difference of the air and water, and by latent heat which is equivalent to the mass transfer resulting from the evaporation of water. The work in [3] was concerned with the performance of table tennis spheres used as a packing for an air-water cooling tower operating as a fixed bed. In addition, [4] reviewed the heat and mass transfer process in cooling towers at water droplet level and analyzed an idealized spray-type tower in one dimension, which is useful for cooling tower designers.

The cooling tower performance prediction used today is directly related to Merkel’s deduction[3]. Merkel assumed that the ratio of the overall sensible heat unit conductance is equal to one [3]. This
assumption allows the overall driving force of the process to be based on the enthalpy difference. The deduction considers each water droplet to be surrounded by a film of saturated air from which the sensible heat and mass is transmitted from the bulk hot water to the air stream.

A universal engineering model, found in [5] can be used to formulate both counter flow and crossflow cooling towers. Using fundamental laws of mass and energy balance, the effectiveness of heat exchange is approximated by a second order polynomial equation. Finally,[6] presented a computational model for the thermal performance for closed wet cooling towers intended for use in conjunction with chilled ceilings in the cooling of buildings. A variable spray water temperature inside the tower was assumed. Moreover, optimization of the tower geometry and flow rates for specified design conditions was carried out in order to achieve a high value of the coefficient of performance (COP).

In this work, a temperature prediction method, which can be used to predict temperature of outlet water from counter flow cooling tower, is proposed. This method, based upon the $h_c A/C_{pm}$ equation, prediction of seawater shower cooling towers describes the experimental data with an accuracy of about 5%. [7] This study also conducted a comparative prediction of the outlet water temperature between freshwater and seawater in a shower cooling tower; results showed that cooling performance decreases as inlet water temperature increases. [7]. The prediction of outlet water temperature is a very big challenge to do because there is no direct equation to predict the temperature of the outlet water from cooling towers. In this work, the prediction approach is built on the assumption that the arithmetic mean enthalpy difference of the tower mid increment is equal to the arithmetic mean enthalpy difference of other tower increments.

2. Theoretical prediction of NTU

To determine the NTU of a forced draught counter flow cooling tower is shown in figure (1-b), Ref. [1] presented direct equation which can be expressed as,

$$h_c A/C_{pm} = 4.19 \Delta t \sum \frac{1}{(h_i-h_a)_m} \ldots \ldots \ldots (1)$$

Where $h_c A/C_{pm}$ = NTU and $(h_i-h_a)_m$ is arithmetic mean enthalpy difference for an increment of volume. In this case of determination, the cooling tower should be divided into many increases and calculating h_i, h_a, $(h_i-h_a)_m$ and $\frac{1}{(h_i-h_a)_m}$ for each increment.

Then, the summation of $\frac{1}{(h_i-h_a)_m}$ for all the tower increments can be used to find the NTU of that tower, equation (1).
2.1 Outlet Water Temperature Prediction:

This assumption can be expressed as,
\[
\sum \frac{1}{(h_i-h_a)_m} \biggm|_{\text{all tower increments}} = N \times \frac{1}{(h_i-h_a)_m} \biggm|_{\text{mid tower increment}} \ldots \ldots \ldots (2)
\]
where N is the number of tower increments.

The substitution of equation (2) in equation (1) gives,
\[
NTU = 4.19 L \Delta t \biggm|_{(h_i-h_a)_m}^{\text{mid increment}} \ldots \ldots \ldots (3)
\]
Ref. [1] gives straight equation from which the enthalpy can be determined. This equation is:
\[
h = 4.7926 + 2.568 t - 0.029834 t^2 + 0.0016657 t^3 \ldots \ldots \ldots (4)
\]
From equation (4), the enthalpy of water at the mid increment \(h_i \) can be determined, as,
\[
h_i = 4.7926 + 2.568 t_{mi} - 0.029834 t^2_{mi} + 0.0016657 t^3_{mi} \ldots \ldots \ldots (5)
\]
Where \(t_{mi} \) is the water temperature at the mid increment which can be determined from the next equation, \(t_{mi} \)?
\[
t_{mi} = t_{in} + 0.5 \left(\frac{1}{N} + 1 \right) \Delta t \ldots \ldots \ldots (6)
\]
\[
t_{mi} = 0.55 t_{in} + 0.45 t_{out} \ldots \ldots \ldots (6)
\]
Then, substituting equation (6) into equation (5) gives,
\[
h_i = 4.7926 + 2.568 (0.55 t_{in} + 0.45 t_{out}) - 0.029834 (0.55 t_{in} + 0.45 t_{out})^2 + 0.0016657 (0.55 t_{in} + 0.45 t_{out})^3 \ldots \ldots \ldots (7)
\]
The simplification of equation (7) yields,
\[
h_i = 0.000151786 t^3_{out} + (0.000556552 t_{in} - 0.006041385) t^2_{out} + (1.1556 - 0.01476783 t_{in} + 0.00068023) t_{out} + 0.0027713 t^3_{in} - 0.009024785 t^2_{in} + 1.4124 t_{in} + 4.7926 \ldots \ldots \ldots (8)
\]
The enthalpy of air at the mid increment can be determined from the following equation, Ref. [1],
\[
h_a = \frac{2 h_{aw} + (N+1)(h_{a1}-h_{a0})}{2} \ldots \ldots \ldots (9)
\]
Where \(h_{aw} \) is the enthalpy of air at the inlet wet bulb temperature which can be found by using equation (4)?
\[
h_{aw} = 4.7926 + 2.568 T_{wb} - 0.029834 T^2_{wb} + 0.0016657 T^3_{wb} \ldots \ldots \ldots (10)
\]
and \(h_{a1} - h_{a0} \) is the energy balance at the bottom section of the cooling tower, which can be expressed as,
\[
h_{a1} - h_{a0} = 4.19 \frac{L}{G} \Delta t \ldots \ldots \ldots (11)
\]
Now, substituting equations (10) and (11) into equation (9) yields,
The NTU of a counter flow cooling tower in different Outlet water temperatures.

\[h_{aw} = 4.7926 + 2.568 T_{wb} - 0.029834 T_{wb}^2 + 0.0016657 T_{wb}^3 + 2.095 (N + 1) \frac{L}{G} (t_{in} - t_{out}) \]

(12)

The substitution of equations (8) and (12) into equation (3) gives,

\[
0.000151786 t_{out}^2 + (0.000556552 t_{in} - 0.006041385) t_{out}^2 + (1.1556 - 0.01476783 t_{in} + 0.00068023 t_{in}^2) t_{out} + 0.00027713 t_{in}^3 - 0.009024785 t_{in}^2 + 1.4124 t_{in} + 4.7926 - 4.7926 - 2.568 T_{wb} + 0.029834 T_{wb}^2 - 0.0016657 T_{wb}^3 - 2.095 (N + 1) \frac{L}{G} (t_{in} - t_{out}) =
\]

4.19 \[\frac{N}{NTU} L(t_{in} - t_{out}) \] (13)

The simplification of equation (13), gives,

\[
0.000151786 t_{out}^2 + (0.000556552 t_{in} - 0.006041385) t_{out}^2 + (1.1556 - 0.01476783 t_{in} + 0.00068023 t_{in}^2) t_{out} + 0.00027713 t_{in}^3 - 0.009024785 t_{in}^2 + (1.4124 - 2.095 (N + 1) \frac{L}{G} + 4.19 \frac{N}{NTU} L) t_{in} - 2.568 T_{wb} + 0.029834 T_{wb}^2 - 0.0016657 T_{wb}^3 = 0 \] (14)

All parameters in equation (14) are known except the outlet water temperature \(t_{out} \), which can be found by solving this equation. The solution of equation (14) gives three roots, two of them are imaginary roots and the third one is real. The real root represents the outlet water temperature of cooling towers. The solution of equation (14) is very complicated; this led to the use of MATLAB package to find the roots of this equation for each case of cooling towers situations.

3. Results and Discussion

Table (2) and figure (2) present a comparison between the results of the presented work and Ref.[1] by showing the behavior of the relationship between the NTU and the outlet water temperature with a constant temperature range (\(\Delta t = 5^\circ C \)). For the presented work, the NTU was determined from equation (13) by substituting the outlet water temperature just to make sure of the results that this equation can give, It can be seen from figure (2) that the results of the presented work and Ref. [1] are normally closed when the outlet water temperature is between 29 and 45\(^\circ\)C. This comparison also shows a difference between them which reaches to 7.32 % when the outlet water temperature is between 26 and 28\(^\circ\)C. Moreover, it can be seen that the NTU decreases to 19.34 % when the outlet water temperature increases 1\(^\circ\)C keeping the other parameters constant. This means that, if the temperature approach increases, it needs smaller transfer area.

Table 2: The NTU of a counter flow cooling tower in different Outlet water temperatures.

NTU	Outlet water temperature	
Presented work	Ref. [1]	\(t_{out}(^\circ C) \)
119.8224	111.747	26
46.96925	45.87339	27
28.70365	28.41979	28
20.40158	20.33254	29
15.66244	15.66937	20
12.60117	12.63835	21
10.46317	10.51246	22
X	Y	Z
-----	---------	-----
8.887365	8.940746	23
7.67926	7.732939	24
6.724792	6.776944	25
5.952646	6.002413	26
5.315944	5.362963	27
4.782599	4.82677	28
4.329907	4.371269	29
3.941349	3.980013	30
3.604618	3.640729	31
3.310356	3.344076	32
3.051323	3.082813	33
2.821826	2.851245	35
2.617328	2.644827	36
11.98224	11.747	37
16.96925	15.87339	38
28.70365	28.41979	39
20.40158	20.33254	40
15.66244	15.66937	41
12.60117	12.63835	42
10.46317	10.51246	43
8.887365	8.940746	44
7.67926	7.732939	45

Figure 2: Outlet water temperature variation with NTU for a constant tower range.
Table (3) and figure (3) show a comparison between the results of the presented work and [1] by showing the relationship between the NTU and the tower range Δt. Both the table and figure which show the presented work and [8] are very close when the temperatures range is between 1 and 11 °C. This comparison also shows a difference between them which reaches to 19% when the temperature range is between 12 and 22 °C. In addition, figure (3) shows that the NTU increases 30.6% if the tower range increases 2°C, which means that when the tower range increases, it needs larger transfer area.

Table 3: The NTU of a counter flow cooling tower in different tower range

Tower range Δt (°C)	NTU Ref. [1]	NTU Presented work
1	4.267168	4.268107
2	8.482796	8.489622
3	12.5951	12.61601
4	16.55766	16.60084
5	20.33254	20.40158
6	23.8921	23.98126
7	27.21894	27.30932
8	30.30573	30.36269
9	33.15281	33.1257
10	35.76715	35.58998
11	38.1601	37.75425
12	40.34552	39.62304
13	42.33909	41.20602
14	44.15658	42.51707
15	45.81388	43.57293
16	47.32587	44.39236
17	48.70651	44.99553
18	89.96891	45.40276
19	51.1246	45.63455
20	52.18444	45.71053
21	53.15787	45.64951
22	54.05339	45.46913

Figure 3: Tower range variation with NTU for a constant inlet water temperature.

This presents a comparison between the results of the presented work and Ref. [1] by showing the behavior of the relationship between the NTU and the temperature approach with a constant temperature range ($\Delta t = 5°C$). Figure (4) shows that the results of the presented work and [9] are very close when the temperature approach is between 3 and 20°C. Moreover, this comparison shows a difference between the presented work and [10] which reaches to 7.32% when the outlet water temperature is between 1 and 2°C. It is clear that the NTU decreases 19.34% when the outlet water temperature increases 1°C. This means that, if the temperatures approach increases, it needs smaller transfer area.
Figure 4: Temperature approach variation with NTU for a constant tower condition[9]

Table (4) and figure (5) present a comparison between the presented work and Ref. [1] by showing the behavior of the relationship between the NTU and the wet bulb temperature of inlet air. Both the table and figure show that the results of the presented work and Ref. [1] are very close when the wet bulb temperature is between 15 and 27 °C. There is also a difference between them when the wet bulb temperature is more than 28 °C. From figure (5), it can be seen that the NTU increases 11.54% when the wet bulb temperature increases 1 °C. This means that it needs larger transfer area when the temperatures approach decreases.

Table 4: Comparison between the presented work and Ref. [1]

Wet bulb temperature (Twb °C)	NTU
Ref. [1]	
Presented work	
Linear (Presented work)	

Figure 5: Wet bulb temperature of inlet air variation with NTU for a constant inlet water temperature
Table 4: The NTU of a counter flow cooling tower in different wet bulb temperature

Wet bulb temperature T_{wb} (°C)	NTU	Ref. [1]	Presented work
15	7.355327	7.367846	
16	7.768036	7.781875	
17	8.247109	8.262544	
18	8.810865	8.828262	
19	9.484781	9.504636	
20	10.3054	10.3284	
21	11.32709	11.35422	
22	12.63445	12.66717	
23	14.36689	14.40742	
24	16.77152	16.82341	
25	20.33254	20.40158	
26	26.14647	26.24136	
27	37.34549	37.46516	
28	68.06718	67.83559	

Table (5) and figure (6) present a comparison between the presented work and Ref. [1] by showing the relationship between the NTU and the air mass flow rate. Both of the table and figure show that the presented work and Ref. [1] match when the air mass flow rate is between 15.6 and 16.5 kg/s. In addition, it can be seen that there is a difference between them which reaches to 2.5% when the air mass flow rate is between 10.5 and 15 kg/s. Furthermore, figure (6) shows that the NTU decreases 6.13% if the air mass flow rate increases 1 kg/s. This means that it needs smaller transfer area when the air mass flow rate increases.

Table 5: The NTU of a counter flow cooling tower in different air mass flow rates.

Air mass flow rate L (kg/s)	NTU	Ref. [1]	Presented work
10	34.22311	34.16208	
10.5	30.88453	31.35652	
11	28.53083	29.17813	
11.5	26.76618	27.43774	
12	25.38638	26.01532	
12.5	24.27379	24.83101	
13	23.35534	23.82967	
13.5	22.58283	22.97188	
14	21.92318	22.2289	
14.5	21.35275	21.5791	
15	20.85415	21.00595	
15.5	20.33254	20.40158	
16	20.02338	20.0412	
16.5	19.67333	19.63138	
NTU	Air mass flow rate L(kg/s)		
-----	---------------------------		
17	19.35802		
17.5	19.07241		
18	18.81247		
18.5	18.57483		
19	18.35667		
19.5	18.15572		
20	17.96993		
20.5	17.79766		

Figure 6: Air mass flow rate variation with NTU for a constant water mass flow rate
Figure 7: Water mass flow rate variation with NTU for a constant air mass flow rate.

Table (6) and figure (7) present a comparison between the presented work and Ref. [1] through showing the behavior of the relationship between the NTU and the water mass flow rate. The comparison shows that both results match when the water mass flow rate is between 17.5 and 19 kg/s, and it also shows that there is a difference between them which reaches to 4.66% when the water mass flow rate is between 10 and 17 kg/s. Moreover, figure (7) shows that the NTU increases 10% if the water mass flow rate increases 1 kg/s, which means that, when the amount of the inlet water increases, the transfer area should be larger.

Table 6: The NTU of a counter flow cooling tower in different water mass flow rates.

Water mass flow rate L (kg/s)	NTU Ref. [1]	NTU Presented work
10	8.515385	8.11851
10.5	9.044104	8.648201
11	9.585826	9.193499
11.5	10.14116	9.755108
12	10.71075	10.33379
12.5	11.29528	10.93028
13	11.89548	11.54546
13.5	12.51217	12.18021
14	13.14618	12.83546
14.5	13.79845	13.51225
15	14.46997	14.21165
15.5	15.16183	14.93483
16	15.87516	15.68298
16.5	16.61124	16.45743
17	17.37144	17.25961
17.5	18.15726	18.09102
18	18.97034	18.95329
18.5	19.81249	19.8482
19	20.68569	20.77763
Table (7) and figure (8) show the predicted outlet water temperature from the cooling tower with different water mass flow rates keeping other parameters constant. Figure (8) shows three facts. Firstly, when the water mass flow rate increases, the NTU also increases. This means that it needs larger transfer area. Secondly the NTU decreases when the outlet water temperature increases because of the increase in the temperature approach. Thirdly when the outlet water temperature increases the three curves become close to each other which means that the effect of water mass flow rate has been limited when the temperature approach increased.

Table 7: The predicted outlet water temperatures from counter flow cooling tower with different water mass flow rates.

L (m)	Water mass flow rate (kg/s)	\(t_{\text{out}} \) (°C)
L = 16		
19.5	21.59206	21.74356
20	22.53403	22.74823
20.5	23.51427	23.79402
L = 18.8		
19.5	27.04927418368127	27.06978862001806
20	28.0262193947271	28.0463565850353
20.5	29.01017690182144	29.02783062954643
L = 20		
19.5	29.99856154097001	30.01386251771270
20	30.98983061792152	31.00316464725122
20.5	31.98307373199926	31.99477613148814

Table 7: The predicted outlet water temperatures from counter flow cooling tower with different water mass flow rates.
Table (8) and figures (9-a)&(9-b) show the behavior of the relationship between the predicted outlet water temperature and the NTU with different air mass flow rates. Figure (9-a) shows that the increase of air mass flow rate causes the NTU to decrease. This means that it needs smaller transfer area. The NTU decreases when the outlet water temperature increases because of the increase in the temperature approach. The three curves are close to each other when the outlet water temperature increases. This means that the effect of air mass flow rate has been limited when the temperature approach increased.

Table 8: The predicted outlet water temperatures from counter flow cooling tower with different air mass flow rates.

Air mass flow rate (kg/s)	G = 13	G = 15.6	G = 17
27.05571644525663	27.04927418368127	27.01008313977778	
28.07037909512880	28.02621939474271	27.99486001513698	
29.05647444331491	29.01017690182144	28.98451475711881	
30.04138111551974	29.99856154097001	29.97705500761211	
31.02834077247204	30.98983061792152	30.97148419565744	
32.01753708726621	31.98307373199926	31.96717614435426	
33.00860148837541	32.9777380838655	32.96377106319648	
34.00117705389895	33.97340843103291	33.96105476634101	
34.99497446176385	34.96989994175317	34.95884868043804	
35.98973195954115	35.96698782716793	35.95706718909009	
36.98527524829089	36.96454672315768	36.95558286954283	
37.98148684288675	37.96253923428828	37.95437596975309	
38.97821124819170	38.96082093461332	38.95338000791725	
39.97539984610151	39.95939291269287	39.95256667285889	
40.97295747992029	40.95820215405314	40.95188518148153	
41.97084529939215	41.95717520972825	41.9513767313355	
42.96900633361959	42.95630907072199	42.95096688147918	
43.96739940423626	43.95561951347262	43.95060585550317	
44.96602069100311	44.95500497409979	44.95037026432629	

Figure 8: Predicted temperature of outlet water variation with NTU for different water mass flow rate

Table 8: The predicted outlet water temperatures from counter flow cooling tower with different air mass flow rates.
Table (9) and figures (10-a) & (10-b) show the behavior of the relationship between the predicted outlet water temperature and the NTU with different wet bulb temperatures. It can be seen from figure (9-a) that the NTU increases if the wet bulb temperature increases because when the wet bulb temperature increases, the temperature approach decreases which, in turn, make the NTU increases. The NTU increases when the outlet water temperature increases. This means that when the temperature approach increases, it needs smaller transfer area to cool the inlet water. Finally, figure (10-b) shows that, the three curves get closer when the outlet water temperature increases. This means that, when the temperature approach increases, the effect of the wet bulb temperature is limited.
Table 9: The predicted outlet water temperatures from counter flow cooling tower with different wet bulb temperatures.

Wet bulb temperature T_{wb} (°C)	T$_{wb} = 20$	T$_{wb} = 23$	T$_{wb} = 25$
27.02627424098096	27.03598931614876	27.04927418368127	
28.01657753451342	28.02117240149303	28.02621939474271	
29.00833674887105	29.00957198541680	29.01017690182144	
30.0012999773841	30.00039058050302	29.99856154097001	
30.99528837148307	30.99297491547818	30.98983061792152	
31.99012317445875	31.98691400631960	31.98307373199926	
32.98565618241108	32.98192085192543	32.97773808338655	
33.98176976143140	33.97771944091170	33.97340843103291	
34.97839222288341	34.97418478046276	34.96989994175317	
35.97544994590311	35.97119461589845	35.9669878216793	
36.97285452353290	36.96861733869510	36.96454672315768	
37.97058512982251	37.96643716404007	37.96253923428828	
38.96860144737116	38.96454604194793	38.96082093461332	
39.96683953821648	39.96293290786728	39.95939291269287	
40.96532276809289	40.96155717532213	40.95820215405314	
41.96394883224593	41.96034148296561	41.95717520972825	
42.96277248134931	42.95932141535314	42.95630907072199	
43.961755225724725	43.95844929554882	43.95561951347262	
44.96085288626242	49.5769387029062	44.95500497409979	

Figure 10-a (column chart): Predicted temperature of outlet water variation with NTU for different wet bulb temperature
Finally, Table (10) figure (11) shows the predicted outlet water temperature from a cooling tower with different L/G keeping another parameters constant. Figure (11) shows that when the value of L/G decreases, the NTU decreases also, which means that it needs larger transfer area. The NTU decrease when the outlet water temperature increases because of the increase in the temperature approach. Figure (11) also shows that, when the outlet water temperature increases, the three curves become close to each other which means that the effect of L/G has been limited when the temperature approach increased.

Table 10: The results of water mass flow rate/Air mass flow rate (L/G) with NTU for different Outlet water temperature

NTU	Outlet water temperature	Water mass flow rate/Air mass flow rate			
t_{out} °C		L/G 1.4	L/G 1.2	L/G 1	
Presented work	Ref. [1]				
119.8224	111.747	26	1.002210489	1	0.996893
46.96925	45.87339	27	1.001839501	1	0.996291
28.70365	28.41979	28	1.001494449	1	0.996745
20.40158	20.33254	29	1.001227856	1	0.997241
15.66244	15.66937	20	1.001022885	1	0.997663
12.60117	12.63835	21	1.000863385	1	0.998007
10.46317	10.51246	22	1.000737863	1	0.998287
8.887365	8.940746	23	1.000635945	1	0.998517
7.67926	7.732939	24	1.000552971	1	0.998706
6.724792	6.776944	25	1.000483989	1	0.998864
5.952646	6.002413	26	1.000426729	1	0.998997
5.315944	5.362963	27	1.000377756	1	0.999109
1. The uncertainty of Enthalpy of air at the inlet wet bulb temperature \(h_{aw} \)
 \[
 \frac{\partial h_{aw}}{h_{aw}} = \sqrt{\left(\frac{\partial T_w}{T_w}\right)^2} = \sqrt{\left(\frac{15}{28}\right)^2} = 0.535
 \]

2. The uncertainty of Enthalpy of air leaving the bottom increment \(h_{a1} \)
 \[
 \frac{\partial h_{a1}}{h_{a1}} = \sqrt{\left(\frac{\partial T_{out}}{T_{out}}\right)^2} = \sqrt{\left(\frac{20}{45}\right)^2} = 0.57
 \]

3. The uncertainty of Enthalpy of air entering the bottom increment
 \[
 \frac{\partial h_{a0}}{h_{a0}} = \sqrt{\left(\frac{\partial m_{ai}}{m_{ai}}\right)^2} = \sqrt{\left(\frac{10}{20.5}\right)^2} = 0.48
 \]

4. The uncertainty of Enthalpy of air \(h_a \)
 \[
 \frac{\partial h_a}{h_a} = \sqrt{\left(\frac{\partial h_{aw}}{h_{aw}}\right)^2 + \left(\frac{\partial h_{a1}}{h_{a1}}\right)^2 + \left(\frac{\partial h_{a0}}{h_{a0}}\right)^2} = \sqrt{(0.57)^2 + (0.48)^2 + (0.535)^2} / 2 = 0.46
 \]

Figure 11: Predicted temperature of outlet water variation with NTU for different \(L/G \) values.
Conclusions

From this work, several conclusions have been drawn and may be summarized as follows:

1- The proposed prediction method is a very powerful method which can be used to predict the temperature of the outlet water from counter flow cooling towers.

2- To get very accurate results from the proposed method, the parameters of water and air should be within limits, outlet water temperature is more than 29°C, tower range is less than 11°C, temperature approach is more than 4°C, wet bulb temperature is less than 27°C, air mass flow rate is more than 15.6 kg/s, and water mass flow rate is more than 17.5 kg/s.

3- The proposed method can be used when the water and air parameters are out of the specific limits. However, the drawn results will be slightly different from the actual results.

4- The number of transfer units NTU varies directly with the wet bulb temperature and inversely with the outlet water temperature for a given range.

5- The number of transfer units NTU varies directly with the water mass flow rate and inversely with the air mass flow rate at a given wet bulb temperature.

6- The number of transfer units NTU varies directly with the tower range and inversely with the temperature approach at a given wet bulb temperature.

7- Variation in water mass flow rates has a greater effect on tower transfer area than the variation on air mass flow rates at a given wet bulb temperature and tower range.

References

[1] E. Richard Booser, E. Burton, T. Rajewski, and K. Lilje, Refrigeration and Air Conditioning Lubricants. New Age International, 1997.

[2] P. N. Selvaraju, K. M. Parammasivam, and D. G. D. Shankar, “Analysis of Drag and Lift performance in sedan car model using CFD,” J. Chem. Pharm. Sci. www.jchps.com ISSN, vol. 974, p. 2115, 2015.

[3] J. C. Kloppers and D. G. Kröger, “The Lewis factor and its influence on the performance prediction of wet-cooling towers,” Int. J. Therm. Sci., vol. 44, no. 9, pp. 879–884, 2005.

[4] M. A. Bernier, “Cooling tower performance: theory and experiments,” American Society of Heating, Refrigerating and Air-Conditioning Engineers …, 1994.

[5] L. Lu and W. Cai, “A universal engineering model for cooling towers,” 2002.

[6] A. A. Hasan, Performance analysis of heat transfer processes from wet and dry surfaces: cooling towers and heat exchangers. Helsinki University of Technology, 2005.

[7] X. Qi, Y. Liu, Q. Guo, J. Yu, and S. Yu, “Performance prediction of seawater shower cooling towers,” Energy, vol. 97, pp. 435–443, Feb. 2016.

[8] R. Al-Waked and M. Behnia, “Enhancing performance of wet cooling towers,” Energy Convers. Manag., vol. 48, no. 10, pp. 2638–2648, 2007.

[9] J. Krzywanski et al., “Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks,” Energy Convers. Manag., vol. 153, pp. 313–322, 2017.

[10] B. A. Qureshi and S. M. Zubair, “A comprehensive design and performance evaluation study of counter flow wet cooling towers,” Int. J. Refrig., vol. 27, no. 8, pp. 914–923, 2004.