Mongolians core gut microbiota and its correlation with seasonal dietary changes

Jiachao Zhang1*, Zhuang Guo1*, Angela An Qi Lim2*, Yi Zheng1, Eileen Y. Koh2, Danliang Ho2, Jianmin Qiao1, Dongxue Huo1, Qianghuan Hou1, Weiqiang Huang1, Lifeng Wang1, Chimesduren Javzandulam1, Choijilsuren Narangerel1, Jirimutu1, Menghebilige1, Yuan-Kun Lee2 & Heping Zhang1

1Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China, 2Department of Microbiology, Yong Loo Ling School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore.

Historically, the Mongol Empire ranks among the world’s largest contiguous empires, and the Mongolians developed their unique lifestyle and diet over thousands of years. In this study, the intestinal microbiota of Mongolians residing in Ulan Bator, TUW province and the Khentii pasturing area were studied using 454 pyrosequencing and q-PCR technology. We explored the impacts of lifestyle and seasonal dietary changes on the Mongolians’ gut microbes. At the phylum level, the Mongolians’s gut populations were marked by a dominance of Bacteroidetes (55.56%) and a low Firmicutes to Bacteroidetes ratio (0.71). Analysis based on the operational taxonomic unit (OTU) level revealed that the Mongolian core intestinal microbiota comprised the genera Prevotella, Bacteroides, Faecalibacterium, Ruminococcus, Subdoligranulum and Coprococcus. Urbanisation and lifestyle may have modified the compositions of the gut microbiota of Mongolians from Ulan Bator, TUW and Khentii. Based on a food frequency questionnaire, we found that the dietary structure was diverse and stable throughout the year in Ulan Bator and TUW, but was simple and varied during the year in Khentii. Accordingly, seasonal effects on intestinal microbiota were more distinct in Khentii residents than in TUW or Ulan Bator residents.

Gastrointestinal (GI) microbiota play an important role in the health and wellbeing of the host1. Several studies have shown that the intestinal microbiota fluctuates in response to a variety of intrinsic and extrinsic factors, such as host health2, genetic composition3, age4 and diet5. Among all factors, genotype and diet have been suggested to be the main components that exert a significant influence on the balance of GI microbiota.

Mongolian nationality originates from a tribe that was located in Northern China during the seventh century6,7. The Mongol Empire, one of the world’s largest contiguous empires, exerted a major influence that greatly enhanced the cultural exchange between China and the occident that took place during the Middle Ages. In Mongolia today, more than 40% of the population lives in typical pasture areas (such as Khentii Province) and maintains a traditional nomadic lifestyle and diet. In contrast, many Mongolians living in Ulan Bator (the capital of Mongolia) and TUW Province (the suburbs of the capital) have adopted an urban lifestyle because of modernisation and economic development. However, little is known about the structure of Mongolian gut microbiota or how their microbial community is affected by such changes.

The typical Mongolian diet is characterised by a high and frequent consumption of fermented dairy products, red meat and liquor6. In the pastures of Khentii, locals exhibit a distinct seasonal variation in their food consumption. Meat and meat products are the main sources of energy during winter and spring (November to April), whereas dairy products are the main source during summer and autumn (May to October)6. However, in Ulan Bator, food is abundant and diverse; therefore, the diet in this city exhibited limited changes throughout the year. Given these divergent dietary lifestyles, Mongolians are excellent candidates to study the effects of seasonal dietary changes on intestinal microbiome compositions.

In a previous study, we described the profiles of the gut microbiota of Chinese Mongolians living in Inner Mongolia province by denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain
reaction (q-PCR) techniques. However, many Chinese Mongolians have inter-married with Han nationality race which is rare in Mongolia. Thus, Mongolians in Mongolia were more authentic at the gene level. Moreover, the pyrosequencing has been suggested as a more appropriate approach for intestinal microbiota diversity analysis than DGGE.

In the present study, 320 faecal samples were collected from 64 Mongolians distributed in three areas (Ulan Bator, TUW and Khentii) at five time points (January, March, June, September and November). 454 pyrosequencing combined with q-PCR technology were applied to explore the structure of Mongolians’ gut microbiota and the effects of seasonal dietary changes on their intestinal microbiota.

Results
Sequencing coverage and estimation of bacterial diversity. In this study, the microbiotic compositions of the faecal samples were examined using a high-throughput 454 pyrosequencing technique. We generated a dataset consisting of 3,795,726 filtered high-quality and classifiable 16S rRNA gene sequences, and an average of 11,843 sequences was obtained for each individual (range: from 2,780 to 30,480). All sequences were clustered with representative sequences, and a 97% sequence identity cut-off was used. The number of OTUs per sample ranged between 118 and 1,815 (Table S3). The Simpson index, Chao1 index, Shannon index and observed number of species were estimated using the QIIME platform (Table S3).

The composition of intestinal microbiota in Mongolians. At the phylum level (Fig. 1A and 1B), Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria constituted the four most dominant bacterial phyla (contributing 55.56%, 39.53%, 2.68% and 0.85% of the total amount of sequences, respectively). For all participants, the average ratio of Firmicutes to Bacteroidetes (F/B) was 0.711 (range: from 0.006 to 2.253, Fig. 1C). At the genus level (Fig. 1B), Prevotella of the Firmicutes phylum was the most abundant genus (contributing to 36.31% of the total number of sequences), and the amounts of Bacteroides, Faecalibacterium, Enterobacter, Prevotella, Lactobacillus and Faecalibacterium as quantified using q-PCR.

Figure 1 | The composition of intestinal microbiota of Mongolians. (A) Inter-individual variation in the proportion of major phyla. (B) Box-plots showing bacterial compositions at genus and phylum level; maximum and minimum values are indicated using whiskers. (C) Inter-individual variation in the proportion of the genus Prevotella and the ratio of Firmicutes to Bacteroidetes (F/B). (D) The amounts of Bacteroides, Bifidobacterium, Enterobacter, Prevotella, Lactobacillus and Faecalibacterium as quantified using q-PCR.
were determined based on Spearman’s rank correlation (Fig. 2A). Additionally, 9 of the 22 core OTU candidates (OTU ID: 32177, 17033, 6459, 15289, 16937, 26107, 903, 5801 and 30719) primarily belonged to the genus Prevotella, Bacteroides, Faecalibacterium, Ruminococcus, Subdoligranulum and Coprococcus. These candidates were stably detected in almost every sample (Fig. 2B). Furthermore, a small proportion of OTUs (1.58%) that contributed 49.53% of the sequences were present in 78.26% of samples (Fig. 2B). In addition, the relationship between the 9 core OTU candidates and all samples was revealed by visualising a large network (Figs. 2C and S1B).

Differences in gut microbiota between Mongolians from the Khentii pasturing area, TUW province and Ulan Bator. A diversity analysis based on Simpson, Chao1, Shannon and observed species indices (Fig. S2A–S2D) revealed that the alpha diversity of the intestinal microbiota was greatest in the Khentii pasturing area but least in Ulan Bator. Additionally, we compared the composition of the intestinal microbiota of Mongolians from Khentii, TUW and Ulan Bator. A PCoA based on the unweighted (Fig. 3A and 3B) and weighted (Fig. S3A and S3B) Unifrac distances was performed using the obtained pyrosequencing data. An apparent clustering pattern was identified for the participants from different locations. Points representing the intestinal microbiota composition of Khentii, TUW and Ulan Bator residents clustered at the top, the centre and the bottom left, respectively. The enterotype analysis provided a clear visualisation of the relationships among the different sample groups (Figs. 3D and 3E). The silhouette index was more than 0.6. All samples clustered into one of two groups. Cluster 1 primarily comprised Ulan Bator residents, and cluster 2 primarily comprised Khentii pasturing area and TUW province residents.

After establishing an intrinsic difference between the compositions of the gut microbiota of Mongolians living in different areas, we further identified differences in the specific bacteria of individuals that were principally responsible for the differences found using the Kruskal-Wallis test. The significant genera found ($p < 0.05$) are listed in Table 2 and confirmed using the q-PCR data (Fig. S7). Further genus-level analysis revealed that Faecalibacterium, Eubacterium, Dorea, Collinsella, Enterococcus, Solobacterium, Caldimonas, Escherichia coli/Shigella group and Subdoligranulum levels were altered significantly ($p < 0.05$), exhibiting a lower contribution from March to September (Table 3); however, the abundance of Prevotella, Bacteroides, Clostridium and Oscillibacter remained stable throughout the year. The changes in the intestinal microbiota of the TUW residents were not as profound as those of the Khentii residents. The results shown in Fig. 4D–4F indicate that the intestinal microbiota compositions in June, March and January were similar to each other but distinct from those observed in September and November (weighted Unifrac distances and an enterotype analysis are listed in Fig. S5). At the genus level, Faecalibacterium, Anaeroporobacter, Butyricimonas, Collinsella and Roseburia changed significantly ($p < 0.05$) with season (Table 3), but the abundances of Prevotella, Bacteroides, Clostridium and Oscillibacter remained stable. However, for the Ulan Bator residents, little change was noted in their intestinal microbiota composition throughout the year (Fig. 4G–4I, weighted Unifrac distances and an enterotype analysis are listed in Fig. S6), and only the genera Eubacterium, Dorea and Collinsella differed among sampling points (Table 3).

Concordance of diet and intestinal microbiota. The traditional Mongolian diet is characterised by a high and frequent consumption of fermented dairy products, red meat and liquor. Currently, because of modernisation and economic development, many...
Mongolians living in Ulan Bator (the capital of Mongolia) and in TUW province (the suburbs of the capital) have gradually adopted an urban lifestyle, and only a few Mongolians, who mainly live in pasturing areas, retain the traditional diet. A partial least squares discriminant analysis (PLS-DA) based on participants’ food types and weights also demonstrated this tendency (Fig. 5A). The red points in the figure represent the responses obtained from Khentii Mongolians using the food frequency questionnaire and are clustered at the right of the figure. To the left of this cluster are the responses obtained from TUW and Ulan Bator residents.

Based on the heatmap (Fig. 5B), we found differences in the food types chosen by Mongolians. Food type diversity was greatest among Ulan Bator residents, and their dietary structure remained stable throughout the year. However, food type diversity was much less in TUW residents, and the dietary structure of these residents was not stable. Notably, Khentii residents lacked food type diversity, and their dietary structure changed significantly with season. Based on the results presented above, the food types that enabled the greatest discrimination were vegetables, fruit, red meat and kumiss, the consumption of which differed between the three groups of Mongolians.

To construct a concordance relationship between diet and intestinal microbiota, a procrustes analysis of the food frequency questionnaire and the microbiota \(b\)-diversity based on sampling locations was used to co-visualise the data (Fig. 5C–5E). Separations based on either diet or microbiota co-segregated along the first axis of both data sets (weighted UniFrac, Fig. S8A–S8C). Based on the figures (Fig. S8A–S8C), we observed a strong correspondence between diet and intestinal microbiota (the \(p\) values for Khentii, TUW and Ulan Bator were < 0.001, 0.008 and 0.017 respectively Rev-4).

Discussion

The phyla Firmicutes and Bacteroidetes predominated, and together, represented an average of 91.6% of the sequences identified, in agreement with previous studies, which attributed the majority of human gut microbiota to these two phyla. A noteworthy feature of the faecal bacteria structure of Mongolians in our study was that the Firmicutes to Bacteroidetes (F/B) ratio was low, only 0.71. The F/B ratio relates to dietary habit and host physiology\(^{10,11}\). Those with high-fat western diets, the obese and young adults (versus the elderly) tend to exhibit higher F/B ratios. De Filippo et al.\(^5\) concluded that a more westernised diet (higher fat and meat consumption and lower vegetable and legume consumption) causes a higher F/B ratio. Due to their nomadic lifestyle, some Mongolians have adapted to the classical diet including a high consumption of meat, alcohol and fermented milk, which more resembles typical western diets than that of rural African areas studied by De Filippo. Notably, the F/B ratio of Mongolian adult samples (0.71) calculated in this study was at the low end of the range obtained by De Filippo et al.\(^5\) (from 0.47 in rural Africa to 2.81 in urbanised Italian children). However, members of the Korean population were reported to have a high F/B ratio of 2.95, even though Korean diets contained a relatively high fibre content (19.8 g/day versus 15.1 g/day for Americans) primarily from kimchee and steamed rice\(^12\). The average age of our Mongolian participants was 34, which was closer to the adult group reported in Marion et al. Marion et al. reported adults to have a higher F/B ratio than the...
elderly (10.9 and 0.6, respectively). Our results and other findings suggest that the age, Westernised diet and lifestyle (rich in fat and meat, low in vegetables and legumes) of the participants may not be determining factors for gut microbiota composition indicators, such as the F/B ratio. Other dietary components and factors, such as host genetics, may exert considerable influence.

At the genus level, *Prevotella* and *Bacteroides* were found to predominate in the Mongolian samples, contributing 47.11% and 6.33% of the total sequences, respectively. This result was further supported by a high proportion of *Prevotella* and *Bacteroides* among the core OTUs (34/67, >50%). The genus *Prevotella* contains a wide array of carbohydrate- and protein-fermenting and acetate- and H₂-producing bacteria such as *Prevotella ruminicola* and the genus *Bacteroides* has been mainly associated with the metabolism of animal proteins, a variety of amino acids and saturated fats. The traditional Mongolian diet is characterised by a large amount of fried wheat food, red meat and fermented dairy products with low quantities of vegetables and fruits. It is unsurprising, therefore, that these two genera dominated the microbiotic composition of Mongolian guts. In our previous study of Mongolians living in Ulan Bator and TUW province and city of Ulan Bator, these two genera dominated the microbiotic composition of about 50%. The genus *Prevotella* was also found to be a stable core microbiota in other nations. The authors detected 16 stable core OTUs of core microbiota in other nations, as reported by Martinez et al. characterised the faecal microbial communities of three young Americans over a one-year period by 454 pyrosequencing of 16S rRNA tags to investigate the temporal characteristics of their bacterial communities. The authors detected 16 stable core OTUs among the core bacterial communities. The authors detected 16 stable core OTUs among the core bacterial communities. The authors detected 16 stable core OTUs among the core bacterial communities. The authors detected 16 stable core OTUs among the core bacterial communities. The authors detected 16 stable core OTUs among the core bacterial communities.
intestinal microbiotic compositions of Mongolians from the three areas differed. An analysis at the genus level revealed that the difference was primarily reflected in the populations of *Solobacterium*, *Olsenella*, *Oribacterium* and *Lactobacillus*, which were abundant in Khentii Mongolians. Previous reports indicated that *Oribacterium* and *Olsenella* are closely related to high incidences of periodontitis and gingivitis and that *Solobacterium* is considered a major cause of brontopnea. These distinctions were related to dental hygiene. The participants from Khentii brushed their teeth less frequently than did those from Ulan Bator and TUW and some herdsmen never brushed their teeth. *Lactobacillus* is widely distributed in fermented foods (such as fermented dairy products), which are habitually consumed by Mongolians residing in pastoral areas. The versatile adaptation and remarkable colonisation ability of *Lactobacillus* in the human gut has been well demonstrated. Therefore, it is not surprising that the faecal samples of the Khentii Mongolians consisted of a high amount of *Lactobacillus*.

Diet played an important role in shaping the intestinal microbiota of our subjects. In our research, we analysed the concordance of diet and intestinal microbiota by combining the data obtained using a food frequency questionnaire (FFQ) and pyrosequencing data at five sampling points (January, March, June, September and November). In Ulan Bator, food is plentiful and diverse, so limited seasonal changes were observed in the dietary structure of local residents. Accordingly, the composition of their intestinal microbiota was relatively stable. However, in the Khentii pasturing area, food is scant

Figure 4 | The changed range of the intestinal microbiota of Mongolians from the Khentii pasturing area, TUW province and Ulan Bator city was discrepant with the seasonal alternation. (A, D and G) Principal component (PCoA) score plots based on unweighted UniFrac metrics of Mongolians in the three different locations. (B, E and H) The unweighted pair-group method with an arithmetic means (UPGMA) cluster analysis based on the distance metrics of Mongolians in the three different locations. (C, F and I) Partial least squares discriminant analysis (PLS-DA) based on the species abundance of Mongolians in the three different locations.
Table 2 | The changed genera (relative amounts > 1%) in Mongolians from Khentii, TUW and Ulan Bator due to seasonal change

Genus	January	March	June	September	November
Khentii					
Prevotella	7.28	4.34	24.29	33.42	37.56
Bacteroides	9.52	13.09	12.64	13.87	9.14
Faecalibacterium	4.15	2.64	1.639	2.347	3.638
Oscillibacter	5.58	3.138	3.923	5.86	6.959
Roseburia	2.447	2.052	2.196	1.708	2.757
Ruminococcus	1.58	4.421	2.46	1.775	2.602
Clostridium	2.251	2.776	2.588	2.021	2.776
Alistipes	1.716	2.872	2.5	1.574	2.011
Catenibacterium	0.848	1.14	3.773	0.992	2.293
Parabacteroides	1.137	2.464	0.968	1.743	0.824
Coprococccus	1.107	1.101	1.48	1.043	1.097
Eubacterium	2.039	0.745	1.760	1.094	0.288
Subdoligranulum	1.397	0.563	0.685	0.381	0.851
Streptococcus	1.467	1.006	1.455	0.760	0.802
TUW					
Prevotella	56.9	52.69	50.35	56.99	54.55
Bacteroides	3.838	1.923	1.81	3.198	8.731
Faecalibacterium	5.510	6.799	4.154	6.036	8.759
Oscillibacter	3.742	3.049	2.364	2.906	4.966
Roseburia	2.679	5.332	2.094	4.946	1.740
Clostridium	1.87	1.763	2.375	2.281	2.856
Catenibacterium	1.152	1.401	1.581	0.744	1.959
Ruminococcus	1.131	1.436	0.942	0.758	1.491
Succinivibrio	0.343	2.933	0.382	1.284	0.665
Megaspheara	0.805	1.587	1.231	0.716	1.133
Ulan Bator					
Prevotella	32.48	38.74	26.09	26.09	29.53
Bacteroides	11.49	9.038	13.23	13.23	9.155
Faecalibacterium	5.961	5.224	6.912	6.912	6.211
Oscillibacter	5.485	5.103	6.451	6.451	5.875
Roseburia	5.103	3.843	3.999	3.999	3.921
Clostridium	2.369	3.145	3.251	3.251	2.709
Catenibacterium	1.859	2.472	2.064	2.064	2.555
Ruminococcus	2.405	1.451	2.261	2.261	2.061
Subdoligranulum	1.384	2.034	1.341	1.341	1.487
Catenibacterium	1.158	1.599	1.437	1.437	1.196
Parabacteroides	1.384	2.034	1.341	1.341	1.487
Subdoligranulum	1.4	0.987	2.189	2.189	1.507
Catenibacterium	0.5889	0.919	0.751	0.7511	1.709
Dialister	0.9082	0.860	1.332	1.332	1.082

Note: Only genera representing more than 1% of the total number of sequences are included in the table.
Genus	January	March	June	September	November	January	March	June	September	November	P-value		
Khentii													
Faecalibacterium	4.150	2.646	1.639	2.347	3.638	2.838	0.956	17.658	2.537	5.946	0.01275000		
Eubacterium	2.039	0.745	1.760	1.094	0.288	1.634	0.028	5.125	0.482	0.268	0.01275000		
Dorea	0.571	0.503	0.520	0.327	0.222	0.454	0.056	1.652	0.488	1.046	0.03075455		
Collinsella	1.082	0.235	0.770	0.355	0.173	0.280	0.014	4.603	0.092	1.177	0.03075455		
Enterococcus	0.001	0.000	0.082	0.002	0.0-0	0.0-0	0.0-0	0.0-0	0.0-0	0.0-0	0.03075455		
Solobacterium	0.967	0.278	0.277	0.217	0.336	0.504	0.3-0	3.041	0.182	0.2-1.251	0.03075455		
Collimonas	0.067	0.161	0.043	0.234	0.306	0.012	0.549	0.0-0	0.06-0.781	0.0-0.781	0.03075455		
Escherichia coli/Shigella group	0.147	0.018	0.511	0.092	0.392	0.055	0.0-0	0.755	0.0-0.164	0.075-4.813	0.03075455		
Subdoligranulum	1.397	0.563	0.685	0.381	0.851	0.927	0.112	4.963	0.535	0.219-1.46	0.04383571		
TUW													
Anaeroplasobacter	0.068	0.095	0.036	0.109	0.091	0.069	0.0-0	0.147	0.084	0.0-0.229	0.03075455		
Butyrichonas	0.052	0.080	0.058	0.150	0.166	0.026	0.0-0	0.305	0.052	0.0-0.323	0.04845000		
Collinsella	0.739	0.469	0.176	0.975	0.412	0.189	0.0-0	3.612	0.139	0.0-6.57	0.04870000		
Faecalibacterium	3.510	6.799	4.154	6.036	8.759	3.688	0.16-22.854	4.937	0.727-24.375	2.887-56.21906	5.805-0.494-14.927	6.774-1694-22.308	0.04828000
Roseburia	2.697	5.532	2.094	4.496	1.740	1.717	0.424-0.691	4.357	0.249-4.53	3.176-0.55-10.605	1.71-0.383-3.336	0.03075455	
Ulan Bator													
Enterococcus	0.006	0.001	0.003	0.017	0.409	0.0-0	0.0-0	0.0-0	0.0-0.196	0.0-0.004	0.0-0.182	0.0-0-14.696	0.00031620
Collinsella	0.691	0.257	0.296	0.639	0.461	0.255	0.4916	0.0-0	0.121-3.214	0.187-1.486	0.0444-0.761	0.286-1.398	0.01275000
Dorea	0.658	0.493	0.619	0.619	0.365	0.466	0.078-2.493	0.364	0.012-1.864	0.435-0.075-1.823	0.553-0.2579	0.03075455	

*Only genera representing more than 0.05% of the total number of sequences are included in the comparison.
and simple, and the dietary structure of the local residents changed significantly with the season. Thus, the intestinal microbiota of local residents distinctly changed from season to season. This study suggests that seasonally different components of the Khentii diet, such as vegetables, fruits, red meat and/or kumiss, could directly or indirectly modulate the intestinal microbiota profile. Among the microbes that varied with season, *Faecalibacterium*, *Eubacterium* and *Subdoligranulum* produce butyrate and may exert anti-inflammatory effects. *Escherichia coli/Shigella group* is a potentially pathogenic bacterium that possesses pro-inflammatory properties. The seasonal variation of intestinal microbiota should therefore be further investigated due to its health implications.

Changes in the dietary composition have been associated with changes in the composition and metabolism of gut microbial populations. Long-term dietary intake influences the structure and activity of human intestinal microbiota, but it remains unclear how rapidly and reproducibly the human gut micro-biome responds to short-term macronutrient change. Recent research confirmed that dietary interventions in humans can alter gut microbial communities only 1 day. In addition, an animal-based diet had a greater effect on the microbiota than a plant-based diet. The study of Cotillard *et al.* on diet-induced weight-loss and weight-stabilisation interventions on obese and overweight individuals concluded that dietary intervention improves low gene richness and clinical phenotypes but appears to be less effective at improving inflammation variables in individuals with lower gene richness.

In this study, 454 pyrosequencing combined with q-PCR technology was applied to examine the diversity of the intestinal microbiota of Mongolians at different phylogenetic levels. In addition, we explored the effects of the adoption of an urban lifestyle and seasonal dietary changes on Mongolians' intestinal microbiota. This basic research will bring a new understanding to the human gut microbiota of different countries and how they are affected by diet.

Methods

Participant recruitment. In this study, 64 healthy Mongolian adults with no history of gastrointestinal-related diseases were recruited (the participants' information is listed in Table S1). Among these participants, 36 volunteers lived a typical modern
lifestyle in Ulan Bator, the capital of Mongolia. Twelve volunteers were recruited from the Khetni pasture area, a typical Mongolian grassland. The local residents maintain a traditional nomadic lifestyle and diet. Sixteen volunteers lived in the TUW province, which contains the suburbs of Ulan Bator. The living standards and experienced scale of urbanisation of these residents were lower than those of Ulan Bator residents but higher than those of Khetni pasture residents. Faecal samples were collected from these volunteers at five time points (January, March, June, September and November). After obtaining written and informed consent, we collected habitual long-term dietary information from all participants using a food frequency questionnaire (the dietary information is shown in a supplementary file). The study protocol was approved by the Ethical Committee of the Inner Mongolia Agriculture University (Hohhot, China).

Stool sample processing and DNA extraction. DNA was extracted from faecal samples using a QIAGEN DNA Stool Mini-Kit (QIAGEN, Hilden, Germany) in combination with a bead-beating method21. Isolated faecal DNA was then used as a template for further analyses.

PCR amplification, quantification, pooling and pyrosequencing. The V1–V3 region of 16S ribosomal RNA (rRNA) genes were amplified as described previously30. The PCR products were quantified using an Agilent DNA 1000 Kit using an Agilent 2100 Bioanalyzer (Agilent Technologies, America) according to the manufacturer’s instructions. The amplification products were pooled together in equimolar ratios with a final concentration of 100 nmol/l each. These pools sequenced using pyrosequencing with a Roche 454 FLX.

Quantitative PCR analysis. Real-time quantitative PCR amplification was performed using an ABI Prism® 7500 Real Time PCR System (Applied Biosystems, California, USA) using the Maxima SYBR Green/ROX qPCR Master Mix (2×) (Thermo Scientific, Massachusetts, USA). The gene-targeted primer sequences, amplicon sizes and annealing temperatures used for each bacterial group are presented in Table S2.

Bioinformatic analyses. Low-quality sequences were removed based on the following criteria: a raw read shorter than 110 nucleotides, a sequence displaying an imperfect match to the barcode or a fuzzy match to at least one end of the 16S rRNA primers based on a standard BLAST search, a variable region shorter than 100 nucleotides, or more than 7% of the bases demonstrated a quality score of less than 20 in the raw read.

Bioinformatic analyses were performed using QIIME (v1.2.1) on the extracted high-quality sequences. Briefly, the sequences were aligned using PyNAST33 and clustered under 100% sequence identity using UCLUST34 to obtain the unique V1–V3 sequence set. After representative sequences were selected, the unique sequence set was classified into operational taxonomic units (OTUs) with a 97% threshold identity using UCLUST. ChimeraSlayer35 was employed to remove any potentially chimeric sequences. The resulting OTUs were classified into operational taxonomic units (OTUs) with a 97% threshold identity using UCLUST. ChimeraSlayer was employed to remove any potentially chimeric sequences. The Shannon–Wiener and Simpson’s diversity indices and the Chao1 and rarefaction estimators were calculated. UniFrac metrics were calculated to evaluate beta diversity. Both weighted and unweighted calculations were performed prior to a principal coordinate analysis (PCoA).

Statistical analyses. Differences in alpha diversity and the relative abundance of the families and genera in each sample were computed using Mann-Whitney and Kruskal-Wallis tests. The gut microbiota were clustered among the different groups using a multivariate analysis of variance (MANOVA) test on a PCoA based on weighted and unweighted UniFrac metrics. The aforementioned statistical analyses were conducted using R software (version 3.2.3). The Mantel test was used to verify any coregulated microorganisms with food intake and subjects location. The network was constructed using the software Cytoscape (version 2.6.0). Data from the food frequency questionnaire and the microbiota β-diversity were analysed using the procrustes routine in QIIME (V1.5).

Acknowledgments. We sincerely thank all the Mongolian volunteers for their participation. This research was supported by National Natural Science Foundation of China (Grant No. 31052019), Hi-Tech Research and Development Program of China (863 Planning, Grant 910-2011).
No.2011AA100902), Synergetic Innovation Center of Food Safety and Nutrition, the China Agriculture Research System (Grant No.CARS-37), the Innovation Team Development of the Ministry of Education of China (Grant No. IRT0967), the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201303085).

Author contributions
Conceived and designed the experiments: H.Z. and Y.-K.L. Performed the experiments: J.Z., A.A.Q.L., E.Y.K., D.H., D.H., L.W. and W.H. Analyzed the data: Z.G., J.Z., Q.H. and Y.Z. Contributed reagents/materials/analysis tools: J.Q. Wrote the paper: J.Z., H.Z. and Y.-K.L. Performed samples collection: J.C., N.C. and J.M. All authors reviewed the manuscript.

Additional information
Nucleotide sequence accession numbers: The sequence data reported in this paper have been deposited in the MG-RAST database (Project No. 8437).

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhang, J.C. et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci. Rep. 4, 5001; DOI:10.1038/srep05001 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/