Environment-assisted quantum control of a solid-state spin via coherent dark states

Jack Hansom¹†, Carsten H. H. Schulte¹†, Claire Le Gall¹, Clemens Matthiesen¹, Edmund Clarke², Maxime Hugues³, Jacob M. Taylor⁴* and Mete Atatüre¹*

Understanding the interplay between a quantum system and its environment lies at the heart of quantum science and its applications. So far most efforts have focused on circumventing decoherence induced by the environment by either protecting the system from the associated noise⁵–⁸ or by manipulating the environment directly⁹. Recently, parallel efforts using the environment as a resource have emerged, which could enable dissipation-driven quantum computation and coupling of distant quantum bits¹⁰–¹⁴. Here, we realize the optical control of a semiconductor quantum-dot spin by relying on its interaction with an adiabatically evolving spin environment. The emergence of hyperfine-induced, quasi-static optical selection rules enables the optical generation of coherent spin dark states without an external magnetic field. We show that the phase and amplitude of the lasers implement multi-axis manipulation of the basis spanned by the dark and bright states, enabling control via projection into a spin-superposition state. Our approach can be extended, within the scope of quantum control and feedback¹⁵,¹⁶, to other systems interacting with an adiabatically evolving environment.

Techniques for controlling spins often rely on a well-defined Zeeman splitting due to a static external magnetic field. This field also controls the selection rules of the optical transitions, enabling, for example, optical single-shot spin readout¹⁷–¹⁹ and fast spin manipulation²⁰ in self-assembled quantum dots (QDs). Unfortunately, these two capabilities require different alignments of the external field with respect to the growth direction of the QD: a field along the growth direction of a QD (Faraday configuration) provides cycling transitions for spin readout, while a magnetic field applied perpendicular to the growth direction (Voigt configuration) enables optically-driven spin control. In an effort to achieve both readout and control on a QD spin qubit, a large, rapidly switchable, multi-axis magnetic field would be the ideal toolbox. Although the quantization axis due to a static field in the Voigt configuration can in principle be converted to that in the Faraday configuration via the optical Stark effect, the prohibitively large laser power required to achieve this renders the scheme impractical. We instead consider the smallest effective field we can devise: that due to the local fluctuating nuclear spins within the QD. They give rise to an effective magnetic field for an electron spin in the QD, known as the Overhauser (OH) field (Fig. 1a), with a dispersion of 10–30 mT and a many-microsecond correlation time²¹–²³. The hyperfine interaction therefore lifts the Kramers degeneracy and provides a quantization axis for the electron spin, which in turn leads to temporally quasi-stable optical selection rules due to the quasi-static nature of the nuclei (Fig. 1b). This OH field is small enough to allow Stark tilting of the quantization axis for optical readout feasibly using laser pulses, provided coherent control of the spin can be achieved using only the OH field for quantization.

Working with a single, negatively-charged indium arsenide QD (Methods) at low external magnetic field, a single optical line is observed (Supplementary Fig. 3) as the linewidth exceeds the OH-induced Zeeman splitting. However, this single line is due to four different transitions (Fig. 1b), which lead to non-trivial correlations between the outgoing photons in time. Specifically, a low-power intensity autocorrelation measurement g²(τ) detuned from the bare resonance (Fig. 1c) shows, in addition to the well-known antibunching of photons near zero time delay, the presence of bunching—that is, g²(τ) > g²(∞). Further, the degree of bunching increases as the laser is detuned by one linewidth, indicating that one spin state is preferentially addressed. This reveals the spin dynamics²⁴ characteristic of fast optical spin pumping via spin-flip Raman processes, showing the nuclear environment provides the spin-selective access needed for optical spin control, even though spectrally resolving the transitions is not possible. A model of the four-level system in Fig. 1 agrees well with the sublinewidth detuning dependence shown in the inset of Fig. 1c and yields an OH field dispersion of 18 ± 1 mT, corresponding to a spin splitting of 0.42 times the measured absorption linewidth (Γabs = 2.23 Γ) (Supplementary Section 1).

We now seek to prepare the spin state coherently via optical pumping. A conceptually simple extension is the generation of spin coherences via two-colour coherent population trapping (CPT; ref. 25). Specifically, the destructive interference of two different excitation paths driven by lasers at two different optical frequencies selects an energy-superposition state of the spin, which will not be excited (‘dark’ state); optical decay of the other spin superposition (the ‘bright’ state) eventually shelves the spin into the dark state. Thus, in a conventional three-level Λ-system, the formation of a coherent spin dark state manifests itself as a decrease in absorption at the two-photon resonance (TPR). The magnitude and spectral width of this absorption dip are directly related to the laser intensity and the ground-state coherence time²⁶–²⁷. In our slowly varying system both the TPR and the selection rules are determined by the evolving OH field magnitude and orientation, respectively. Fortunately, a reasonable fraction of the OH field distribution gives rise to a level structure which admits coherent superpositions of energy eigenstates (coherent

¹Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK, ²EPSRC National Centre for III-V Technologies, University of Sheffield, Sheffield S1 3JD, UK, ³CNRS-CRHEA, rue Bernard Grégory, 06560 Valbonne, France, ⁴Joint Quantum Institute/National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA. †These authors contributed equally to this work. *e-mail: jmtaylor@umd.edu; ma424@cam.ac.uk

© 2014 Macmillan Publishers Limited. All rights reserved.
To detect the spectral signature of CPT, we record are effective Rabi frequencies and

\[\omega \]

depends on the relative phase of the two-laser fields. The projection of this coherent dark state in the form of

\[|\psi\rangle \propto |\uparrow, \hat{n}(t)\rangle - e^{i\phi} |\downarrow, \hat{n}(t)\rangle \]

where the unit vector \(\hat{n}(t) \) is defined by the orientation of the adiabatically evolving OH field, \(\uparrow \) and \(\downarrow \) are spin projections defined along \(\hat{n}(t) \), \(\alpha \) and \(\beta \) are effective Rabi frequencies and \(\phi \) depends on the relative phase of the two-laser fields. The projection of this dark state in the hyperfine-dictated, bare basis is given by the ratio of absolute Rabi frequencies (Supplementary Section 6). In parallel, the state in equation (1), together with an orthogonal bright state, spans the dressed basis.

The low visibility of the CPT feature is a result of its intermittent nature; only a fraction of the OH field distribution provides the desired A-scheme for CPT. Therefore, stable coherent dark states are generated intermittently and sustained for a finite period of time, dictated by the slow dynamics of the nuclei. This leads to an apparent...
For adiabatic changes, the electron
ferm.), comparable in magnitude to the
adept population trapping.

Figure 2 | Environment-assisted coherent population trapping. a, Two lasers, each set to \(\Omega = 0.224 \Gamma \), with orthogonal linear polarization (H, V) and
variable detuning, are used to excite the QD. b, Simulation of two-laser absorption of the QD at zero magnetic field and without spectral wandering.
Exponentially measured values of laser powers, radiative lifetime and OH field dispersion are used. A hyperfine-induced ground-state splitting of
400 MHz gives the best fit to the data. c, Two-laser measurement of QD absorption with experimental parameters corresponding to b. d,e, Linecuts across
\(\Delta_1 + \Delta_2 = 0 \) (dashed black line shown in c) for two different applied magnetic fields in the Faraday configuration. The corresponding linecut extracted from
the simulation of b with spectral wandering is shown in red. f, Magnetic field dependence of the visibility of the spectral signature of CPT, after correcting
for saturation and incoherent spin pumping effects (Supplementary Information). The measured OH field dispersion is shown as a vertical orange line. The
error bars are calculated by propagation of both the min–max values of the count rates around \(\Delta_1 = \Delta_2 = 0 \), and standard errors in the amplitude of Voigt
fits to single-laser line shapes used for normalization.

reduction of the CPT visibility in our time-averaged experiment and
is in contrast to other systems displaying a reduction of the CPT
visibility caused by fast spin dephasing timescales on the order of
the radiative lifetime of the optical transitions. The observation
of a pronounced decrease in absorption here verifies the adiabatic
evolution of the OH field with respect to the dressed state dynamics,
resulting in relatively long-lived coherent dark states.

Figure 2d,e shows linecuts along \(\Delta_1 + \Delta_2 = 0 \), for two values
of applied field in the Faraday configuration. Applying an 18.4 mT
external magnetic field (Fig. 2e), comparable in magnitude to the
OH field, leads to the breakdown of the hyperfine-assisted \(\Lambda \)-
system and therefore to the disappearance of the CPT dip. The
magnetic field dependence of the CPT visibility is summarized in
Fig. 2f, corrected for saturation and spin pumping effects
(Supplementary Section 4). In addition, the dependence of this
visibility on the electron spin coherence time is probed
straightforwardly by operating the QD device in the co-tunnelling
regime (Supplementary Section 2)—that is, where the interaction
of the QD spin with the Fermi sea of the back contact leads to reduced
spin coherence and the CPT feature disappears.

The coherent dark state is determined by the complex Rabi
frequencies of the optical transitions in the \(\Lambda \)-system and, hence,
a relative phase change of the lasers imposes a rotation of the
dressed basis about \(\hat{\mathbf{n}}(t) \) (ref. 32). For adiabatic changes, the
 electron follows the dark state and is hence rotated in the bare basis. To
expose the optical phase dependence of the coherent dark states,
we impose a non-adiabatic phase jump after preparing a dark state
and measure its effect on the time-resolved QD fluorescence. This
rapid phase manipulation leads to a new rotated dressed basis in
which the original dark state gains a finite bright-state component,
thus generating fluorescence. Subsequent photon scattering projects
the electron into the new dark state. Figure 3a,b depicts the experimental
set-up and the QD level structure, respectively, used to evidence the phase-dependent fluorescence by imprinting a phase jump on one of the excitation lasers using an electro-optic
modulator (EOM; Methods).

A representative time-resolved measurement for a sudden phase
jump is shown in Fig. 3c, where the bottom panel shows the photon
detection events, while the upper panels show the applied EOM
voltage and its derivative. The phase jump leads to a sharp dip,
synchronized with the falling edge of the electrical pulse. This dip
is caused by the detuning of the laser during the phase change,
\(\Delta_{\text{eff}} = \partial \Phi / \partial t \), as depicted in the middle panel, proportional to a
change in instantaneous frequency. Following the sharp dip, we
see a transient in fluorescence as the electron gains a bright-state
component after a phase-dependent rotation of the dressed basis
(see Bloch spheres). This transient arises only from an abrupt phase-
jump-induced change in fluorescence, and is therefore conditional
on the QD spin being in a coherent dark state (leftmost Bloch
spheres). This enables us to observe the phase dependence of the
dark state with intermittent CPT and the characteristic dark-state
formation timescale.

The demonstration of the phase dependence of the dark state,
along with the relative laser amplitude control, yields multi-axis
control of the dressed basis. In a quantum control picture\(^{35,36} \), the
dressed basis acts as a laser-defined measurement and preparation.
We use a sample grown by molecular beam epitaxy containing a single QD level structure at an arbitrary OH field and 8.4 mT external field, with phase and frequency differences corresponding to the experimental set-up described in a, c. Example time-resolved fluorescence measurement (lower graph) when an electrical pulse (upper graph) is sent to the EOM. The middle graph shows the phase change rate, corresponding to an effective frequency shift. The Bloch spheres depict qualitatively the effect of the phase jump on the electron spin state at different times in the cycle, both in the hyperfine-dictated and dressed bases (B is bright state, D is dark state). Basis which allows control of the electron spin by projection. The state information in this picture is provided directly by the fluorescence proportional to the bright-state component before repumping into the new dark state after a few optical cycles. To evidence such quantum control, we vary the amplitude of the phase jump described earlier and record the subsequent photon emission. The plot in Fig. 4 shows the intermittent fluorescence intensity as a function of phase-jump amplitude controlled by the EOM voltage and corrected for background signal (Supplementary Section 5). Because the intermittent fluorescence intensity is proportional to the bright-state component the spin state gains after the phase jump (see Bloch spheres in Fig. 4), the measured sinusoidal dependence evidences controlled rotation of the dressed basis. After subsequent optical pumping into the rotated dark state, this protocol implements quantum control of the electron spin about the quasi-static quantization axis, $\hat{n}(t)$, enabled by the hyperfine interaction with the nuclei.

We note that the dressed basis is defined with respect to the unknown nuclear environment. Nonetheless, we can keep the spin in a known dark state (equation (1)) and can manipulate it deterministically by controlling the laser parameters. Remarkably, this lack of knowledge does not translate to dephasing in the time-averaged protocol. These results imply a straightforward extension to time-synchronized protocols, in which the heralded preparation of a dark state could be performed and used within the correlation time of the OH field. The modest magnitude of the OH field used here to construct a heralded Voigt configuration will allow rapid switching into the orthogonal geometry through the application of a pulsed spin-selective a.c. Stark shift. Together, this combines the dual requirements of coherent spin control and single-shot spin readout with a single QD, which remains so far elusive. Environment-assisted CPT naturally lends itself to protocols which demand the initialization of the spin into a coherent superposition state and sub-linewidth ground-state Zeeman splitting, such as photonic cluster state generation13. In such a protocol, the electron spin is prepared in a superposition state and precesses at a rate slower than the radiative lifetime, while a string of subsequently scattered photons form the computational resource. Realizing this protocol requires two additional capabilities: first, the creation of a coherent spin state needs to be heralded by means of a single-shot optical readout18,19. Second, the disentangling of the electron spin from the generated photons needs to be implemented by a projective measurement of the spin in the laboratory frame. Both requirements can be achieved with the phonon-sideband detection technique demonstrated here.

Methods

Sample. We use a sample grown by molecular beam epitaxy containing a single layer of self-assembled InAs/GaAs QDs in a GaAs matrix, embedded in a Schottky diode for charge state control. The Schottky diode structure comprises an n+-doped layer 35 nm below the QDs and a 5–6 nm-thick partially transparent titanium layer evaporated on top of the sample surface. This device structure allows deterministic charging of the QDs and shifting of the QD exciton energy levels via the d.c. Stark effect. 20 pairs of GaAs/AlGaAs layers forming a distributed Bragg reflector extend to 205 nm below the QD layer for increased

![Figure 3](image-url)
collection efficiency in the spectral region between 960 nm and 980 nm. Spatial resolution and collection efficiency are enhanced by a zirconia solid immersion lens in the Weierstrass geometry positioned on the top surface of the device.

Phonon-sideband filtering. Typically for QDs at 4.2 K, the phonon sideband accounts for approximately 10% of the resonance fluorescence spectrum and has a bandwidth of ~2 nm. Reflected laser and QD resonance fluorescence is incident on a pulse-shaping grating in a configuration close to a Littman configuration. The dispersed beam is focussed and a sharp-edged mirror placed in the Fourier plane selectively reflects part of the spectrum. This reflection is sent back onto the grating to re-colimate the beam and coupled into a single-mode fibre. The saturated QD photon detection rate through the filtering stage is 13 kHz on a bandwidth of 2 nm. Reflected laser and QD resonance fluorescence is incident on a pulse-shaping grating in a configuration close to a Littman configuration.

Electro-optic phase modulation. The total phase change in Fig. 3c corresponds to the difference in phase before and after the jump (electrical fall time <2 ns). At B=0 T the selection rules evolve according to the OH field, therefore the lasers do not address a single transition selectively and a relative phase of the lasers is not mapped directly to a relative phase of the complex Rabi frequencies. We apply a small magnetic field (8.4 mT) to split the excited states, while the phase-modulated excitation laser is set to higher power than the fixed-phase laser ($\Phi_1 = 4\Phi_0 = P_{\text{mod}}/5$, where $P_{\text{mod}} = \Gamma^2/2$ time-averaged), leading to dark states with a z component in the bare basis (Supplementary Section 7). A detuning of 80 MHz between the lasers compensates for the ground-state splitting induced by the magnetic field, as illustrated in Fig. 3b. Rectangular pulses of variable amplitude drive the EOM, the same electrical signal is correlated with the time-resolved resonance fluorescence from the QD. The height of the transient is measured ~2 ns after the phase jump, to avoid phase-change-dependent effects unrelated to CPT. Imperfections in the electrical pulses lead to intermittent fluorescence of smaller amplitude that is not related to the transformation of a dark state into a bright state. This background signal decays on a much larger timescale and can be measured in an experiment with only one laser (Supplementary Section 5). Subtracting the background from the two-laser measurement yields the increase in fluorescence due to projection onto the bright state (Fig. 4).

Received 24 June 2014; accepted 25 July 2014; published online 7 September 2014

References

1. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. *Science* **318**, 766–770 (2007).
2. Moll, D. et al. Ultrafast spin echo in a single quantum dot. *Nature Photon.* **4**, 367–370 (2010).
3. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. *Nature Phys.* **7**, 109–113 (2011).
4. Weiss, K. M., Elzerman, J. M., Delley, Y. L., Miguel-Sanchez, J. & Imamoglu, A. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. *Phys. Rev. Lett.* **109**, 107401 (2012).
5. Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. *Nature Nanotech.* **8**, 561–564 (2013).
6. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. *Nature* **459**, 1105–1109 (2009).
7. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. *Nature Phys.* **5**, 758–763 (2009).
8. Foletti, S., Bluhm, H., Mahalu, D., Unansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. *Nature Phys.* **5**, 903–908 (2009).
9. De Lange, G. et al. Controlling the quantum dynamics of a mesoscopic spin bath in diamond. *Sci. Rep.* **2**, 382 (2012).
10. Plenio, M. B., Huelga, S. F., Beige, A. & Knight, P. L. Cavity loss induced generation of entangled atoms. *Phys. Rev. A* **59**, 2468–2475 (1999).
11. Durl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. *Nature Phys.* **4**, 878–883 (2008).
12. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. *Nature Phys.* **5**, 633–636 (2009).
13. Lin, Y. et al. Dissipative production of a maximally entangled steady state of two quantum bits. *Nature* **504**, 415–418 (2013).
14. Fogarty, T. et al. Entangling two defects via a surrounding crystal. *Phys. Rev. A* **87**, 050304 (2013).
15. Mabuchi, H. & Khaene, N. Principles and applications of control on quantum systems. *Int. J. Robust Nonlinear Control* **15**, 647–667 (2005).
16. Rabitz, H. Focus on quantum control. *New J. Phys.* **11**, 105030 (2009).
17. Kim, D. et al. Optical spin initialization and nondestructive measurement in a quantum dot molecule. *Phys. Rev. Lett.* **101**, 236804 (2008).
18. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. *Nature* **467**, 297–300 (2010).
19. Deltei, A., Gao, W. B., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Observation of quantum jumps of a single quantum dot spin using sub-microsecond single-shot optical readout. *Phys. Rev. Lett.* **112**, 116802 (2014).
20. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. *Nature* **456**, 218–221 (2008).
21. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. *Phys. Rev. B* **65**, 205309 (2002).
22. Urbaszek, B. et al. Nuclear spin physics in quantum dots: An optical investigation. *Rev. Mod. Phys.* **85**, 79–133 (2013).
23. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum dot. *Nature Phys.* **9**, 570–575 (2013).
24. Bernard, J., Fleury, L., Talon, H. & Orrit, M. Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing. *J. Chem. Phys.* **98**, 850–859 (1993).
25. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. *Rev. Mod. Phys.* **77**, 633–673 (2005).
26. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. *Nature Phys.* **4**, 692–695 (2008).
27. Brunner, D. et al. A coherent single-hole spin in a semiconductor. *Science* **325**, 70–72 (2009).
28. Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Acoustic phonon broadening mechanism in single quantum dot emission. *Phys. Rev. B* **63**, 155307 (2001).
29. Fu, K.-M. C., Santori, C., Stanley, C., Holland, M. C. & Yamamoto, Y. Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor. Phys. Rev. Lett. 95, 187405 (2005).
30. Sladkov, M. et al. Electromagnetically induced transparency with an ensemble of donor-bound electron spins in a semiconductor. Phys. Rev. B 82, 121308 (2010).
31. Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).
32. Yale, C. G. et al. All-optical control of a solid state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).
33. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

Acknowledgements
We gratefully acknowledge financial support by the University of Cambridge, the European Research Council ERC Consolidator Grant agreement no. 617985, EU-FP7 Marie Curie Initial Training Network S3NANO, the NSF-funded Physics Frontier Center at the Joint Quantum Institute, and ARO MURI award no. W911NF0910406. The authors also acknowledge J. C. Barnes, G. Solomon, M. J. Stanley, R. H. J. Stockill and E. Waks for fruitful discussions and technical assistance. J.M.T. thanks the Atomic, Mesoscopic and Optical Physics Group at the Cavendish Laboratory for their fine hospitality during his stays.

Author contributions
J.H., C.H.H.S., J.M.T. and M.A. devised the experiments. J.H., C.H.H.S. and C.L.G. performed the experiments and analysed the data. J.H., C.H.H.S., C.L.G., C.M., J.M.T. and M.A. contributed to the discussion of the results and the manuscript preparation. J.M.T. performed the theoretical modelling shown in Fig. 2. J.H. performed theoretical modelling of the data shown in Fig. 1. E.C. and M.H. grew the sample. C.M. processed the devices.

Additional information
Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to J.M.T. or M.A.

Competing financial interests
The authors declare no competing financial interests.