Closed range integral operators on Hardy, BMOA and Besov spaces

Kostas Panteris

Department of Mathematics and Applied Mathematics, University of Crete, University Campus Voutes, Heraklion, Greece

ABSTRACT

If \(g \in H^\infty \), the integral operator \(S_g \) on \(\mathbb{H}^p \), BMOA and \(\mathbb{B}^p \) (Besov) spaces, is defined as
\[
S_g f(z) = \int_0^z f'(w) g(w) \, dw.
\]
In this paper, we prove three necessary and sufficient conditions for the operator \(S_g \) to have closed range on \(\mathbb{H}^p \) (1 \(\leq p < \infty \)), BMOA and \(\mathbb{B}^p \) (1 \(< p < \infty \)).

1. Introduction and preliminaries

Let \(\mathbb{D} \) denote the open unit disk in the complex plane, \(\mathbb{T} \) the unit circle, \(A \) the normalized area Lebesgue measure in \(\mathbb{D} \) and \(m \) the normalized length Lebesgue measure in \(\mathbb{T} \). For \(1 \leq p < \infty \) the Hardy space \(\mathbb{H}^p \) is defined as the set of all analytic functions \(f \) in \(\mathbb{D} \) for which
\[
\sup_{0 \leq r < 1} \int_{\mathbb{T}} |f(r\zeta)|^p \, dm(\zeta) < +\infty
\]
and the corresponding norm in \(\mathbb{H}^p \) is defined by
\[
\|f\|_{\mathbb{H}^p}^p = \sup_{0 \leq r < 1} \int_{\mathbb{T}} |f(r\zeta)|^p \, dm(\zeta).
\]

When \(p = \infty \), we define \(H^\infty \) to be the space of bounded analytic functions \(f \) in \(\mathbb{D} \) and \(\|f\|_\infty = \sup \{|f(z)| : z \in \mathbb{D}\} \).

In this work we will mainly make use of the following equivalent norm (see Calderon’s theorem in [1, p.213]) in \(\mathbb{H}^p \), \(1 \leq p < \infty \):
\[
\|f\|_{\mathbb{H}^p}^p = |f(0)|^p + \int_{\mathbb{T}} \left(\int_{\Gamma_p(\zeta)} |f'(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\zeta), \tag{1}
\]
where $\Gamma_\beta(\zeta)$ is the Stolz angle at $\zeta \in \mathbb{T}$, the conelike region with aperture $\beta \in (0, 1)$, which is defined as

$$\Gamma_\beta(\zeta) = \{ z \in \mathbb{D} : |z| < \beta \} \cup \bigcup_{|z|<\beta} [z, \zeta].$$

The BMOA space is defined as the set of all analytic functions f in \mathbb{D} for which

$$\sup_{\beta \in \mathbb{D}} \int \int_{\mathbb{D}} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |f'(z)|^2 \log \frac{1}{|z|} \, dA(z) < \infty$$

and we may define the corresponding norm in BMOA by

$$\|f\|_{2}^2 = |f(0)|^2 + \sup_{\beta \in \mathbb{D}} \int \int_{\mathbb{D}} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |f'(z)|^2 \log \frac{1}{|z|} \, dA(z).$$

For $1 < p < \infty$ the Besov space B^p is defined as the set of all analytic functions f in \mathbb{D} for which

$$\int \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2} \, dA(z) < +\infty$$

and the corresponding norm in B^p is defined by

$$\|f\|_{B^p}^p = |f(0)|^p + \int \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2} \, dA(z).$$

Let $g : \mathbb{D} \to \mathbb{C}$ be an analytic function. If X is a space of analytic functions f in \mathbb{D} (in particular, in this paper, $X = H^p$ or $X = BMOA$ or $X = B^p$) then, the integral operator $S_g : X \to X$, induced by g, is defined as

$$S_g f(z) = \int_{0}^{z} f'(w) g(w) \, dw, \quad z \in \mathbb{D},$$

for every $f \in X$. S_g is companion to the widely studied operator $T_g : X \to X$ which is defined as

$$T_g f(z) = \int_{0}^{z} f(w) g'(w) \, dw, \quad z \in \mathbb{D},$$

for every $f \in X$. If $g(z) = z$ or $g(z) = \log \frac{1}{1-z}$, then T_g is the integration operator and the Cesáro operator respectively. Interest in T_g arose originally from studying semigroups of analytic composition operators because, for certain g, T_g are related to the resolvents of such semigroups (see [2]). Results, concerning the boundedness and compactness of T_g on certain spaces of analytic functions, can be found in [3–6]. It can be easily seen (using integration by parts) that T_g and its companion operator S_g are related to the multiplication operator $M_g f(z) = g(z) f(z)$ by

$$M_g f(z) = f(0) g(0) + T_g f + S_g f.$$
Let \(\rho(z, w) \) denote the pseudo-hyperbolic distance between \(z, w \in \mathbb{D} \),

\[
\rho(z, w) = \frac{|z - w|}{1 - \overline{z}w},
\]

\(D_{\eta}(a) \) denote the pseudo-hyperbolic disk of center \(a \in \mathbb{D} \) and radius \(\eta < 1 \):

\[
D_{\eta}(a) = \{ z \in \mathbb{D} : \rho(a, z) < \eta \},
\]

and \(\Delta_{\eta}(\alpha) \) denote the euclidean disk of center \(\alpha \in \mathbb{D} \) and radius \(\eta(1 - |\alpha|) \), \(\eta < 1 \):

\[
\Delta_{\eta}(\alpha) = \{ z \in \mathbb{D} : |z - \alpha| < \eta(1 - |\alpha|) \}.
\]

In the following, \(C \) denotes a positive and finite constant which may change from one occurrence to another. Moreover, by writing \(K(z) \approx L(z) \) for the non-negative quantities \(K(z) \) and \(L(z) \) we mean that there are positive constants \(C_1 \) and \(C_2 \) independent of \(z \) such that

\[
C_1 K(z) \leq L(z) \leq C_2 K(z).
\]

2. Closed range integral operators on Hardy spaces

Let \(g : \mathbb{D} \to \mathbb{C} \) be an analytic function and, for \(c > 0 \), let \(G_c = \{ z \in \mathbb{D} : |g(z)| > c \} \). It is well known (see [7]) that the integral operator \(S_g : \mathcal{H}^p \to \mathcal{H}^p \) (\(1 \leq p < \infty \)) is bounded if and only if \(g \in \mathcal{H}^\infty \).

We say that \(S_g \), on \(\mathcal{H}^p \), is bounded below, if there is \(C > 0 \) such that \(\| S_g f \|_{\mathcal{H}^p} > C \| f \|_{\mathcal{H}^p} \) for every \(f \in \mathcal{H}^p \). Since \(S_g \) maps every constant function to the 0 function, if we want to study the property of being bounded below for \(S_g \), we are obliged to consider spaces of analytic functions modulo the constants or, equivalently, spaces of analytic functions \(f \) such that \(f(0) = 0 \). Theorem 3.2 in [7] states that \(S_g \) is bounded below on \(\mathcal{H}^p / \mathbb{C} \) if and only if it has closed range on \(\mathcal{H}^p / \mathbb{C} \). Next, we denote \(\mathcal{H}^p / \mathbb{C} \) as \(\mathcal{H}^p_0 \).

Corollary 3.6 in [7] states that \(S_g : \mathcal{H}^2_0 \to \mathcal{H}^2_0 \) has closed range if and only if there exist \(c > 0, \delta > 0 \) and \(\eta \in (0, 1) \) such that

\[
A(G_c \cap D_{\eta}(a)) \geq \delta A(D_{\eta}(a))
\]

for all \(a \in \mathbb{D} \).

In the end of [7] A. Anderson posed the question, if the above condition for \(\mathcal{H}^2_0 \) holds also for all \(\mathcal{H}^p_0 \). In this paper, Theorem 2.2 gives an affirmative answer to this question, for the case \(1 \leq p < \infty \). Although the answer in case \(p = 2 \) is an immediate consequence of D. Luecking’s theorem (see [7], Proposition 3.5), the answer in case \(1 \leq p < \infty \) requires much more effort.

For \(\lambda \in (0, 1) \) and \(f \in \mathcal{H}^p \) we set

\[
E_{\lambda}(\alpha) = \{ z \in \Delta_{\eta}(\alpha) : |f'(z)|^2 > \lambda |f'(\alpha)|^2 \}
\]

and

\[
B_{\lambda}(\alpha) = \frac{1}{A(E_{\lambda}(\alpha))} \int \int_{E_{\lambda}(\alpha)} |f'(z)|^2 \, dA(z).
\]

Lemma 2.1 is due to D. Luecking (see [8], lemma 1).
Lemma 2.1: Let \(f \) analytic in \(\mathbb{D} \), \(a \in \mathbb{D} \) and \(\lambda \in (0, 1) \). Then

\[
\frac{A(E_\lambda(\alpha))}{A(\Delta_\eta(\alpha))} \geq \frac{\log \frac{1}{\lambda}}{\log \frac{B_\lambda f(\alpha)}{|f'(\alpha)|^2} + \log \frac{1}{\lambda}}.
\]

Moreover in [8], the following sentence is proved: If \(\alpha \in \mathbb{D} \) and \(\frac{2\eta}{1+\eta} \leq r < 1 \) then

\[
\Delta_\eta(\alpha) \subseteq D_r(\alpha).
\] (2)

We proceed with the main result of this section.

Theorem 2.2: Let \(1 \leq p < \infty \) and \(g \in H^\infty \). Then the following are equivalent:

(i) \(S_g : H^p_0 \to H^p_0 \) has closed range

(ii) There exist \(c > 0 \), \(\delta > 0 \) and \(\eta \in (0, 1) \) such that

\[
A(G_c \cap D_\eta(a)) \geq \delta A(D_\eta(a))
\] (3)

for all \(a \in \mathbb{D} \).

(iii) There exist \(c > 0 \), \(\delta > 0 \) and \(\eta \in (0, 1) \) such that

\[
A(G_c \cap \Delta_\eta(a)) \geq \delta A(\Delta_\eta(a))
\] (4)

for all \(a \in \mathbb{D} \).

We first prove two lemmas which will play an important role in the proof of Theorem 2.2.

For \(\zeta \in \mathbb{T} \) and \(0 < \beta < \beta' < 1 \) we consider the Stolz angles \(\Gamma_1(\beta)(\zeta) \) and \(\Gamma_1(\beta')(\zeta) \), where \(\beta' \) has been chosen so that \(\Delta_\eta(\alpha) \subseteq \Gamma_1(\beta')(\zeta) \) for every \(\alpha \in \Gamma_1(\beta)(\zeta) \).

Lemma 2.3: Let \(\varepsilon > 0 \), \(f \) analytic in \(\mathbb{D} \) and

\[
A = \left\{ \alpha \in \mathbb{D} : |f'(\alpha)|^2 < \frac{\varepsilon}{A(\Delta_\eta(\alpha))} \int_{\Delta_\eta(\alpha)} |f'(z)|^2 \, dA(z) \right\}.
\]

There is \(C > 0 \) depending only on \(\eta \) such that

\[
\int_{\Delta_\eta(\alpha)} \int_{\Delta_\eta(\alpha)} |f'(z)|^2 \, dA(z) \leq \varepsilon C \int_{\Gamma_1(\beta')(\zeta)} |f'(z)|^2 \, dA(z)
\]

Proof: Integrating

\[
|f'(\alpha)|^2 < \frac{\varepsilon}{A(\Delta_\eta(\alpha))} \int_{\Delta_\eta(\alpha)} |f'(z)|^2 \, dA(z)
\]

over \(\alpha \in A \cap \Gamma_1(\beta)(\zeta) \) and using Fubini’s theorem on the right side, we get

\[
\int_{\Delta_\eta(\alpha)} \int_{\Delta_\eta(\alpha)} |f'(\alpha)|^2 \, dA(\alpha) < \int_{\Gamma_1(\beta')(\zeta)} |f'(z)|^2 \left[\int_{\Delta_\eta(\alpha)} \frac{\chi_{\Delta_\eta(\alpha)}(z)}{A(\Delta_\eta(\alpha))} \, dA(\alpha) \right] \, dA(z)
\]

Using (2) with \(r = \frac{2\eta}{1+\eta} \), we have \(\chi_{\Delta_\eta(\alpha)}(z) \leq \chi_{D_r(\alpha)}(z) = \chi_{D_r(z)}(\alpha) \). We have that \(A(D_r(z)) \asymp (1 - |z|^2) \) and, for \(\alpha \in D_\eta(z) \), we have \((1 - |z|) \asymp (1 - |\alpha|) \), where the underlying constants in these relations depend only on \(\eta \). In addition, \(A(\Delta_\eta(\alpha)) = \eta^2 (1 - |\alpha|^2) \).
So,
\[
\int\int_{A \cap \Gamma_\beta(\zeta)} \frac{\chi_{\Delta_\eta(\alpha)}(z)}{A(\Delta_\eta(\alpha))} \, dA(\alpha) \leq \int\int_{A \cap \Gamma_\beta(\zeta)} \frac{\chi_{D_\alpha(z)}}{\eta^2(1 - |\alpha|)^2} \, dA(\alpha)
\]
\[
\leq C \int\int_{D_\alpha(z)} \frac{1}{\eta^2(1 - |z|)^2} \, dA(\alpha) = C \frac{A(D_\alpha(z))}{\eta^2(1 - |z|)^2} \leq C,
\]
where \(C > 0 \) depends only on \(\eta \).

\[\blacksquare\]

Lemma 2.4: Let \(0 < \varepsilon < 1, f \) analytic in \(\mathbb{D} \), \(0 < \lambda < \frac{1}{2} \) and
\[B = \left\{ \alpha \in \mathbb{D} : |f'(\alpha)|^2 < \varepsilon^3 B_\lambda f(\alpha) \right\}.
\]
There is \(C > 0 \) depending only on \(\eta \) such that
\[
\int\int_{B \cap \Gamma_\beta(\zeta)} |f'(z)|^2 \, dA(z) \leq \varepsilon C \int\int_{\Gamma_\beta(\xi)} |f'(z)|^2 \, dA(z)
\]

Proof: We write
\[
\int\int_{B \cap \Gamma_\beta(\zeta)} |f'(\alpha)|^2 \, dA(\alpha) = \int\int_{B \cap \Gamma_\beta(\zeta) \cap A} |f'(\alpha)|^2 \, dA(\alpha) + \int\int_{(B \cap \Gamma_\beta(\zeta)) \setminus A} |f'(\alpha)|^2 \, dA(\alpha),
\]
where \(A \) is as in Lemma 2.3. The first integral is estimated by Lemma 2.3, so it remains to show the desired result for the second integral. Integrating the relation
\[
|f''(\alpha)|^2 < \varepsilon^3 B_\lambda f(\alpha) = \varepsilon^3 \frac{1}{A(E_\lambda(\alpha))} \int_{E_\lambda(\alpha)} |f'(z)|^2 \, dA(z)
\]
over the set \((B \cap \Gamma_\beta(\zeta)) \setminus A\) and using Fubini’s theorem on the right side, we get
\[
\int\int_{(B \cap \Gamma_\beta(\zeta)) \setminus A} |f'(\alpha)|^2 \, dA(\alpha)
\]
\[
\leq \varepsilon^3 \int\int_{\Gamma_\beta(\xi)} |f'(z)|^2 \left[\int\int_{(B \cap \Gamma_\beta(\zeta)) \setminus A} \frac{1}{A(E_\lambda(\alpha))} \chi_{E_\lambda(\alpha)}(z) \, dA(\alpha) \right] \, dA(z)
\]
\[
\leq \varepsilon^3 \int\int_{\Gamma_\beta(\xi)} |f'(z)|^2 \left[\int\int_{(B \cap \Gamma_\beta(\zeta)) \setminus A} \frac{1}{A(E_\lambda(\alpha))} \chi_{\Delta_\eta(\alpha)}(z) \, dA(\alpha) \right] \, dA(z)
\]
(6)

where the last inequality is justified by \(E_\lambda(\alpha) \subseteq \Delta_\eta(\alpha) \). Let \(\alpha \not\in A \), i.e.
\[
|f''(\alpha)|^2 \geq \frac{\varepsilon}{A(\Delta_\eta(\alpha))} \int_{\Delta_\eta(\alpha)} |f'(z)|^2 \, dA(z).
\]
(7)

Set \(r = \eta(1 - |\alpha|) \) and suppose \(\lambda < \frac{1}{2} \) and \(|z - \alpha| < \frac{r}{4} \). We have that
\[
|f'(z)^2 - f'(\alpha)^2| = \frac{1}{2\pi} \left| \int_{|w - \alpha| = \frac{r}{4}} f'(w)^2 \left(\frac{1}{w - z} - \frac{1}{w - \alpha} \right) \, dw \right|
\]
\[\frac{1}{2\pi} \left| \int_{|w-\alpha| = \frac{r}{2}} f'(w)^2 \frac{z-\alpha}{(w-z)(w-\alpha)} \, dw \right|. \] \hspace{1cm} (8)

For \(|w-\alpha| = \frac{r}{2}\), by the subharmonicity of \(|f'|^2\) we have

\[|f'(w)|^2 < \frac{1}{r^2} \int \int_{|u-w| \leq \frac{r}{2}} |f'(u)|^2 \, dA(u) \leq \frac{C}{A(\Delta_\eta(\alpha))} \int \int_{\Delta_\eta(\alpha)} |f'(u)|^2 \, dA(u). \]

Since \(|w-z| > \frac{r}{4}\) when \(|w-\alpha| = \frac{r}{2}\), from (8) we get

\[|f'(z)^2 - f'(\alpha)^2| \leq \frac{C|z-\alpha|}{r} \int \int_{\Delta_\eta(\alpha)} |f'(u)|^2 \, dA(u). \]

Combining (7) and (9), we get

\[|f'(z)^2 - f'(\alpha)^2| \leq \frac{2A(\Delta_\eta(\alpha))}{2A(\Delta_\eta(\alpha))} \int \int_{\Delta_\eta(\alpha)} |f'(u)|^2 \, dA(u). \] \hspace{1cm} (9)

This means that if \(\Delta' = \{z \in \mathbb{D} : |z-\alpha| < \frac{\varepsilon r}{2C}\}\) then \(\Delta' \subset E_\lambda(\alpha)\) and

\[A(E_\lambda(\alpha)) \geq A(\Delta') \geq \frac{\varepsilon^2}{4C^2} r^2 = \frac{\varepsilon^2}{4C^2} A(\Delta_\eta(\alpha)). \]

We finally use this last inequality in (6) and we complete the proof. \(\blacksquare\)

Proof of Theorem 2.2: (ii) \(\iff\) (iii) This is easy and it is proved in [8].

(iii) \(\implies\) (i) Let \(\alpha \in \mathbb{D} \setminus B\), where \(B\) is as in Lemma 2.4, where \(0 < \varepsilon < 1, 0 < \lambda < \frac{1}{2}\).

Then \(\frac{B_{\lambda f(\alpha)}}{|f'(\alpha)|^2} \leq \frac{1}{\varepsilon^3}\) and, if we choose \(\lambda < \varepsilon \frac{6}{2C}\), then, from Lemma 2.1, we get that

\[\frac{A(E_\lambda(\alpha))}{A(\Delta_\eta(\alpha))} > \frac{\frac{2}{\delta} \log \frac{1}{\varepsilon^3}}{\log \frac{1}{\varepsilon^3} + \frac{2}{\delta} \log \frac{1}{\varepsilon^3}} > 1 - \frac{\delta}{2}. \] \hspace{1cm} (10)

Combining (4) and (10), we get

\[A(G_c \cap E_\lambda(\alpha)) = A(G_c \cap \Delta_\eta(\alpha)) - A(G_c \cap (\Delta_\eta(\alpha) \setminus E_\lambda(\alpha))) \]
\[\geq \delta A(\Delta_\eta(\alpha)) - A(\Delta_\eta(\alpha) \setminus E_\lambda(\alpha)) \]
\[= \delta A(\Delta_\eta(\alpha)) - A(\Delta_\eta(\alpha)) + A(E_\lambda(\alpha)) \]
\[\geq \delta A(\Delta_\eta(\alpha)) - A(\Delta_\eta(\alpha)) + A(\Delta_\eta(\alpha)) - \frac{\delta}{2} A(\Delta_\eta(\alpha)) \]
\[= \frac{\delta}{2} A(\Delta_\eta(\alpha)). \]
Now let $f \in H^p_0, \zeta \in \mathbb{T}$ and $\alpha \in \Gamma_\beta(\zeta) \setminus B$. Then, using the last relation and $E_\lambda(\alpha) \subset \Delta_\eta(\alpha) \subset \Gamma_\beta'(\zeta)$, we get

$$\frac{1}{A(\Delta_\eta(\alpha))} \int_{G_c \cap \Gamma_\beta'(\zeta)} |f'(z)|^2 \, dA(z)$$

$$\geq \frac{\delta}{2A(G_c \cap E_\lambda(\alpha))} \int_{G_c \cap E_\lambda(\alpha)} |f'(z)|^2 \, dA(z)$$

$$= \frac{\delta}{2A(G_c \cap E_\lambda(\alpha))} \int_{G_c \cap E_\lambda(\alpha)} |f'(z)|^2 \, dA(z) \geq \frac{\delta \lambda}{2} |f'(\alpha)|^2.$$

Integrating the last relation over the set $\Gamma_\beta(\zeta) \setminus B$ and using Fubini’s theorem on the left side, we have

$$\int_{G_c \cap \Gamma_\beta'(\zeta)} |f'(z)|^2 \, dA(z) \geq \frac{\delta \lambda}{2} \int_{\Gamma_\beta(\zeta) \setminus B} |f'(\alpha)|^2 \, dA(\alpha).$$

With similar arguments as in relation (5), we can show that the integral in the brackets is bounded above from a constant $C > 0$ depending only on η. So, we have that

$$\int_{G_c \cap \Gamma_\beta'(\zeta)} |f'(z)|^2 \, dA(z) \geq \frac{C \delta \lambda}{2} \int_{\Gamma_\beta(\zeta) \setminus B} |f'(\alpha)|^2 \, dA(\alpha) - \frac{\varepsilon C \delta \lambda}{2} \int_{\Gamma_\beta'(\zeta) \cap B} |f'(\alpha)|^2 \, dA(\alpha).$$

Because of lemma 2.4 we have that

$$\int_{G_c \cap \Gamma_\beta'(\zeta)} |f'(z)|^2 \, dA(z) \geq \frac{C \delta \lambda}{2} \int_{\Gamma_\beta(\zeta) \setminus B} |f'(\alpha)|^2 \, dA(\alpha) - \frac{\varepsilon C \delta \lambda}{2} \int_{\Gamma_\beta'(\zeta) \cap B} |f'(\alpha)|^2 \, dA(\alpha)$$

and so

$$\int_{G_c \cap \Gamma_\beta'(\zeta)} |f'(z)|^2 \, dA(z) \geq \frac{C \delta \lambda}{2} \int_{\Gamma_\beta(\zeta)} |f'(\alpha)|^2 \, dA(\alpha) + \varepsilon \frac{C \delta \lambda}{2} \int_{\Gamma_\beta'(\zeta)} |f'(\alpha)|^2 \, dA(\alpha)$$

$$\geq \frac{C \delta \lambda}{2} \int_{\Gamma_\beta(\zeta)} |f'(\alpha)|^2 \, dA(\alpha).$$

Hence,

$$\left(\int_{G_c \cap \Gamma_\beta'(\zeta)} |f'(z)|^2 \, dA(z) \right)^{\frac{1}{2}} + \left(\frac{C \varepsilon \delta \lambda}{2} \right)^{\frac{1}{2}} \left(\int_{\Gamma_\beta'(\zeta)} |f'(\alpha)|^2 \, dA(\alpha) \right)^{\frac{1}{2}}$$
\[\geq \left(\frac{C \delta \lambda}{2} \right)^{\frac{1}{2}} \left(\iint_{\Gamma_{\beta}(\xi)} |f'(\alpha)|^2 \, dA(\alpha) \right)^{\frac{1}{2}}. \]

Applying Minkowski's inequality, we get

\[
\left[\int_T \left(\iint_{G_c \cap \Gamma_{\beta'}(\xi)} |f'(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\xi) \right]^{\frac{1}{p}}
+ \left(\frac{C' \delta \lambda}{2} \right)^{\frac{1}{2}} \left[\int_T \left(\iint_{\Gamma_{\beta'}(\xi)} |f'(\alpha)|^2 \, dA(\alpha) \right)^{\frac{p}{2}} \, dm(\xi) \right]^{\frac{1}{p}}
\geq \left(\frac{C \delta \lambda}{2} \right)^{\frac{1}{2}} \left[\int_T \left(\iint_{\Gamma_{\beta}(\xi)} |f'(\alpha)|^2 \, dA(\alpha) \right)^{\frac{p}{2}} \, dm(\xi) \right]^{\frac{1}{p}}
\]

and so

\[
\left[\int_T \left(\iint_{G_c \cap \Gamma_{\beta'}(\xi)} |f'(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\xi) \right]^{\frac{1}{p}}
\geq \left(\frac{C \delta \lambda}{2} \right)^{\frac{1}{2}} \left[\int_T \left(\iint_{\Gamma_{\beta}(\xi)} |f'(\alpha)|^2 \, dA(\alpha) \right)^{\frac{p}{2}} \, dm(\xi) \right]^{\frac{1}{p}}
\]

According to (1), both integrals at the right side of (11), represent equivalent norms in H_0^p. Due to the relation between β and β' there is $C'' > 0$ which depends only on η, such that

\[
\left[\int_T \left(\iint_{\Gamma_{\beta'}(\xi)} |f'(\alpha)|^2 \, dA(\alpha) \right)^{\frac{p}{2}} \, dm(\xi) \right]^{\frac{1}{p}}
\leq C'' \left[\int_T \left(\iint_{\Gamma_{\beta}(\xi)} |f'(\alpha)|^2 \, dA(\alpha) \right)^{\frac{p}{2}} \, dm(\xi) \right]^{\frac{1}{p}}. \]
If \(\in \zeta \) So the integral operator \(S_g \) and since

\[
\left| \int_{\mathbb{T}} \left(\int_{\Gamma^c_{\beta}(\zeta)} |f'(\alpha)|^2 dA(\alpha) \right)^{\frac{p}{2}} \right| \geq \frac{1}{\beta}
\]

Choosing \(\varepsilon \) small enough so that \(C - \varepsilon \frac{1}{2} C' \frac{1}{2} C'' > 0 \), we have that

\[
\left[\int_{\mathbb{T}} \left(\int_{G \cap \Gamma^c_{\beta}(\zeta)} |f'(z)|^2 dA(z) \right)^{\frac{p}{2}} \right] \geq C\|f\|_{H^0_p},
\]

and since \(G_c = \{ z \in \mathbb{D} : |g(z)| > c \} \), we have

\[
\|S_g f\|_{H^0_p} \leq \left[\int_{\mathbb{T}} \left(\int_{\Gamma^c_{\beta}(\zeta)} |(S_g f(z))'|^2 dA(z) \right)^{\frac{p}{2}} \right] \geq C\|f\|_{H^0_p}.
\]

So the integral operator \(S_g \) has closed range.

(i) \(\Rightarrow \) (ii) Let \(\alpha \in \mathbb{D}, \xi \in \mathbb{T} \), \(\eta \in (0, 1) \), \(E(z_0, r) = \{ z \in \mathbb{D} : |z - z_0| < r \} \), \(C(z_0, r) = \{ z \in \mathbb{D} : |z - z_0| = r \} \) and the arc \(I_\alpha = \{ \xi \in \mathbb{T} : \Gamma^c_{1}(\zeta) \cap D_\eta(\alpha) \neq \emptyset \} \). It’s easy to see that \(\zeta \in I_\alpha \) is equivalent to \(\alpha \in \Gamma'_{\eta}(\zeta) \), where \(\eta' \) depends only on \(\eta \). In fact, an elementary geometric argument shows that \(1 - \eta' \sim 1 - \eta \), where the underlying constants are absolute.

Set \(R_0 = \frac{1 + \eta'}{2} \). We continue with the proof by considering two cases for \(\alpha \): (a) \(R_0 \leq |\alpha| < 1 \) and (b) \(0 \leq |\alpha| \leq R_0 \).

Case (a) \(R_0 \leq |\alpha| \leq 1 \): At first, we consider the case \(p > 1 \).

Another simple geometric argument gives \(m(I_\alpha) \geq \frac{1 - |\alpha|}{(1 - \eta')^2} \) and hence:

\[
m(I_\alpha) \geq \frac{1 - |\alpha|}{(1 - \eta')^2} \geq (13)
\]

If \(S_g \) has closed range on \(H^0_p \) then there exists \(C > 0 \) such that for every \(f \in H^0_p \) we have

\[
C\|S_g f\|^p_{H^0_p} \geq \|f\|^p_{H^0_p}.
\]

(14)
Let
\[\psi_\alpha(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}. \]

Then, after some calculations, we get that \(\|\psi_\alpha - \alpha\|_{H^p}^p \sim (1 - |\alpha|). \)

Setting \(f = \psi_\alpha - \alpha \) in (14) and using \((x + y)^p \leq 2^{p-1}(x^p + y^p) \), we get

\[
1 - |\alpha| \leq C\|S_p(\psi_\alpha - \alpha)\|_{H^p}^p = C \int_{\mathbb{T}} \left(\int_{\Gamma_{\frac{1}{2}}(\zeta)} |\psi_\alpha'(z)|^2 |g(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\zeta)
\]

\[
\leq C \int_{I_a} \left(\int_{\Gamma_{\frac{1}{2}}(\zeta) \cap G_c} |\psi_\alpha'(z)|^2 |g(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\zeta)
\]

\[
+ C \int_{I_a} \left(\int_{\Gamma_{\frac{1}{2}}(\zeta) \cap (D_\eta(\alpha) \setminus G_c)} |\psi_\alpha'(z)|^2 |g(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\zeta)
\]

\[
+ C \int_{I_a} \left(\int_{\Gamma_{\frac{1}{2}}(\zeta) \setminus D_\eta(\alpha)} |\psi_\alpha'(z)|^2 |g(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\zeta)
\]

\[
= C(I_1 + I_2 + I_3 + I_4).
\]

Using \(A(D_\eta(\alpha)) = \frac{(1 - |\alpha|^2)^2}{(1 - \eta^2|\alpha|^2)^2} \leq \frac{(1 - |\alpha|^2)^2}{(1 - \eta^2)^2} \), we get

\[
I_1 \leq \|g\|_{\infty}^p \int_{I_a} \left(\int_{G_c \cap D_\eta(\alpha)} \frac{(1 - |\alpha|^2)^2}{|1 - \bar{\alpha}z|^4} \, dA(z) \right)^{\frac{p}{2}} \, dm(\zeta)
\]

\[
\leq \|g\|_{\infty}^p m(I_a) \left(\frac{A(G_c \cap D_\eta(\alpha))}{(1 - |\alpha|^2)^2} \right)^{\frac{p}{2}}
\]

\[
\leq \|g\|_{\infty}^p m(I_a) \frac{1}{(1 - \eta^2)^p} \left(\frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} \right)^{\frac{p}{2}}.
\]

Using \(|g(z)| \leq c \) in \(\mathbb{D} \setminus G_c \) and making the change of variables \(w = \psi_\alpha(z) \), we get

\[
I_2 \leq c^p \int_{I_a} \left(\int_{\mathbb{D}} |\psi_\alpha'(z)|^2 \, dA(z) \right)^{\frac{p}{2}} \, dm(\zeta) = c^p \int_{I_a} \left(\int_{\mathbb{D}} dA(w) \right)^{\frac{p}{2}} \, dm(\zeta) = c^p m(I_a).
\]

We increase \(I_3 \) by extending it over \(\mathbb{D} \setminus D_\eta(\alpha) \) and then we make the change of variables \(w = \psi_\alpha(z) \) to get

\[
I_3 \leq \|g\|_{\infty}^p \int_{I_a} \left(\int_{\mathbb{D} \setminus D_\eta(\alpha)} \, dA(w) \right)^{\frac{p}{2}} \, dm(\zeta) = \|g\|_{\infty}^p m(I_a)(1 - \eta^2)^{\frac{p}{2}}.
\]
In order to estimate I_4 we have first to estimate $\iint_{\Gamma_1(\zeta)} |\psi'(z)|^2 \, dA(z)$, when $\zeta \in \mathbb{T} \setminus I_\alpha$.

Without loss of generality we may assume that $\alpha \in [R_0, 1)$. For $j \in \mathbb{N}$, $j \geq 2$, we define $r_j = 1 - \frac{1}{2^j}$ and consider the sets $\Omega_1 = E(0; \frac{1}{2})$ and $\Omega_j = (E(0; r_j) \setminus E(0; r_{j-1})) \cap \Gamma_1(\zeta)$.

Then we have that $\Gamma_1(\zeta) = \bigcup_{j=1}^{+\infty} \Omega_j$ and $A(\Omega_j) \asymp \frac{1}{4^j}$, when $j \geq 1$. We fix $z_j \in \Omega_j$ such that $\arg(z_j) = \arg(\zeta)$. Then, if $z \in \Omega_j$, we have $|1 - \alpha z| \asymp |\frac{1}{\alpha} - z| \asymp |\frac{1}{\alpha} - z_j|$. Also we have that $|\frac{1}{\alpha} - z_j| \asymp |\frac{1}{2^j} + 1 - |\alpha| + |\arg(\zeta)|$. In all these relations, the underlying constants are absolute. If $\zeta \in \mathbb{T} \setminus I_\alpha$, then $a \notin \Gamma_1(\zeta)$ which means that $1 - |\alpha| < |\arg(\zeta)|$, so we have that $|\frac{1}{\alpha} - z_j| \asymp |\frac{1}{2^j} + |\arg(\zeta)||$. There is some j_0 so that $\frac{1}{2^{j_0}} \leq |\arg(\zeta)| \leq \frac{1}{2^{j_0} - 1}$.

For $j < j_0$ we have $|\arg(\zeta)| < \frac{1}{2^j}$ which implies that $|\frac{1}{\alpha} - z_j| \asymp \frac{1}{2^j}$ and for $j > j_0$ we have $|\arg(\zeta)| > \frac{1}{2^j}$ which implies that $|\frac{1}{\alpha} - z_j| \asymp |\arg(\zeta)|$. Therefore

$$
\iint_{\Gamma_1(\zeta)} |\psi'(z)|^2 \, dA(z) = \int \int_{\Omega_1} (1 - |\alpha|^2)^2 \, dA(z) + \sum_{j=2}^{+\infty} \int \int_{\Omega_j} (1 - |\alpha|^2)^2 \, dA(z)
$$

$$
\asymp (1 - |\alpha|^2)^2 + \sum_{j=2}^{j_0} \int \int_{\Omega_j} (1 - |\alpha|^2)^2 \, dA(z) + \sum_{j=j_0}^{+\infty} \int \int_{\Omega_j} (1 - |\alpha|^2)^2 \, dA(z)
$$

$$
\asymp (1 - |\alpha|^2)^2 + \sum_{j=2}^{j_0} A(\Omega_j)(1 - |\alpha|^2)^2 (2j)^4 + \sum_{j=j_0}^{+\infty} A(\Omega_j) \frac{(1 - |\alpha|^2)^2}{|\arg(\zeta)|^4}
$$

$$
\asymp (1 - |\alpha|^2)^2 + (1 - |\alpha|^2)^2 \sum_{j=2}^{j_0} \frac{1}{4^j} 16^j + \frac{(1 - |\alpha|^2)^2}{|\arg(\zeta)|^4} \sum_{j=j_0}^{+\infty} \frac{1}{4^j}.
$$

But $\sum_{j=2}^{j_0} 4^j \asymp 4^{j_0} \asymp \frac{1}{|\arg(\zeta)|^2}$ and $\sum_{j=j_0}^{+\infty} \frac{1}{4^j} \asymp \frac{1}{4^{j_0}} \asymp |\arg(\zeta)|^2$. Therefore

$$
\iint_{\Gamma_1(\zeta)} |\psi'(z)|^2 \, dA(z) \asymp (1 - |\alpha|^2)^2 + \frac{(1 - |\alpha|^2)^2}{|\arg(\zeta)|^2}.
$$

(16)

Since α is positive, there is ϕ_0 such that $\mathbb{T} \setminus I_\alpha = [\phi_0, 2\pi - \phi_0]$ and $\phi_0 \asymp m(I_\alpha)$. Therefore

$$
I_4 \leq C||g||_{\infty}^p \int_{\phi_0}^{\pi} (1 - |\alpha|^2)^p \, d\phi + C||g||_{\infty}^p \int_{\phi_0}^{\pi} \frac{(1 - |\alpha|^2)^p}{\phi^p} \, d\phi
$$

$$
\leq C||g||_{\infty}^p (1 - |\alpha|^2)^p + C||g||_{\infty}^p \frac{(1 - |\alpha|^2)^p}{\phi_0^{p-1}}
$$

$$
\leq C||g||_{\infty}^p (1 - |\alpha|^2)^p + C||g||_{\infty}^p \frac{(1 - |\alpha|^2)^p}{m(I_\alpha)^{p-1}}.
$$
Substituting the estimates for I_1, I_2, I_3, I_4 in (15), we get

$$1 - |\alpha| \leq C \left[\|g\|_\infty^p m(I_\alpha) \frac{1}{(1 - \eta^2)^{\frac{p}{2}}} \left(\frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} \right)^{\frac{p}{2}} + c^p m(I_\alpha) \right. $$
$$+ \left. \|g\|_\infty^p m(I_\alpha)(1 - \eta^2)^{\frac{p}{2}} + \|g\|_\infty^p (1 - |\alpha|^2)^p + \|g\|_\infty^p \frac{1 - |\alpha|^2}{m(I_\alpha)^{p-1}} \right].$$

Using (13) we get

$$1 - |\alpha| \leq C \left[\|g\|_\infty^p \frac{1 - |\alpha|}{(1 - \eta)} \frac{1}{(1 - \eta^2)^{\frac{p}{2}}} \left(\frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} \right)^{\frac{p}{2}} $$
$$+ c^p \frac{1 - |\alpha|}{(1 - \eta)^{\frac{p}{2}}} + \|g\|_\infty^p \frac{1 - |\alpha|}{(1 - \eta)^{\frac{p}{2}}} (1 - \eta^2)^{\frac{p}{2}} $$
$$+ \|g\|_\infty^p (1 - |\alpha|^2)(1 - \eta^2)^{\frac{p}{2}} + \|g\|_\infty^p (1 - |\alpha|^2)(1 - \eta)^{\frac{p-1}{2}} \right].$$

Thus

$$C \leq \|g\|_\infty^p \frac{1}{(1 - \eta)^{\frac{2p+1}{2}}} \left(\frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} \right)^{\frac{p}{2}} + \frac{c^p}{(1 - \eta)^{\frac{1}{2}}} $$
$$+ \|g\|_\infty^p (1 - \eta)^{\frac{p-1}{2}} + \|g\|_\infty^p (1 - \eta)^{p-1} + \|g\|_\infty^p (1 - \eta)^{\frac{p-1}{2}}.$$

Choose η close enough to 1 so that $\|g\|_\infty^p (1 - \eta)^{\frac{p-1}{2}} + \|g\|_\infty^p (1 - \eta)^{p-1} + \|g\|_\infty^p (1 - \eta)^{\frac{p-1}{2}} < \frac{C}{4}$ and then set $C_\eta = (1 - \eta)^{\frac{1}{2}}$. We have that

$$\frac{3C}{4} \leq \frac{\|g\|_\infty^p}{C_\eta^{2p+1}} \left(\frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} \right)^{\frac{p}{2}} + \frac{c^p}{C_\eta}.$$

Choose c small enough so that $\frac{c^p}{C_\eta} < \frac{C}{4}$. Then

$$\frac{C}{2} \leq \frac{\|g\|_\infty^p}{C_\eta^{2p+1}} \left(\frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} \right)^{\frac{p}{2}}$$

and finally

$$\left(\frac{CC_\eta^{2p+1}}{2\|g\|_\infty^p} \right)^{\frac{2}{p}} \leq \frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))}$$

or

$$A(G_c \cap D_\eta(\alpha)) \geq \delta A(D_\eta(\alpha)),$$

for every α with $R_0 \leq |\alpha| < 1.$
Now, we consider the case $p = 1$. Let $\alpha \in \mathbb{D}$ and the functions

$$f_\alpha(z) = \frac{(1 - |\alpha|^2)^2}{3\alpha(1 - \overline{\alpha}z)^3} - \frac{(1 - |\alpha|^2)^2}{3\alpha}.$$

Obviously $f_\alpha \in H^1_0$. We define the sets $I_\alpha = \{ \zeta \in \mathbb{T} : \alpha \in \Gamma_{\frac{1}{2}}(\zeta) \}$ and it’s clear that $m(I_\alpha) \asymp 1 - |\alpha|$. Then we consider the integral

$$I = \int_{\mathbb{T} \setminus I_\alpha} \left(\iint_{\Gamma_{\frac{1}{2}}(\zeta)} |f'_\alpha(z)|^2 \, dA(z) \right)^{\frac{1}{2}} \, dm(\zeta).$$

If $\zeta \in \mathbb{T} \setminus I_\alpha$ then $\alpha \not\in \Gamma_{\frac{1}{2}}(\zeta)$. Using similar arguments as in the proof of (16), we get

$$\iint_{\Gamma_{\frac{1}{2}}(\zeta)} |f'_\alpha(z)|^2 \, dA(z) = \iint_{\Gamma_{\frac{1}{2}}(\zeta)} \frac{(1 - |\alpha|^2)^4}{|1 - \alpha z|^8} \, dA(z) \asymp (1 - |\alpha|^2)^4 + \frac{(1 - |\alpha|^2)^4}{|\text{Arg}(\zeta)|^6},$$

hence

$$I \asymp \int_{1 - |\alpha|}^{\pi} \frac{(1 - |\alpha|^2)^2}{\phi^3} \, d\phi \asymp 1. \quad (17)$$

If $F \in H^1_0$, it’s easy to show (integrating F' over radii) that

$$\|F\|_{H^1_0} \leq C' \iint_{\mathbb{D}} |F'(z)| \, dA(z). \quad (18)$$

S_g has been supposed to have closed range, so there exists $C' > 0$ such that $\|f_\alpha\|_{H^1_0} \leq C' \|S_gf_\alpha\|_{H^1_0}$ and using (17) and (18) (with $F = S_gf_\alpha$), we get

$$0 < C_0 \leq I \leq \|f_\alpha\|_{H^1_0} \leq C' \|S_gf_\alpha\|_{H^1_0} \leq C' C'' \iint_{\mathbb{D}} |(S_gf_\alpha)'(z)| \, dA(z).$$

Hence, observing that $|f'_\alpha(z)| = |\psi'_\alpha(z)|^2$, we have

$$C_1 \leq \iint_{\mathbb{D}} |(S_gf_\alpha)'(z)| \, dA(z) = \iint_{\mathbb{D}} |\psi'_\alpha(z)|^2 |g(z)| \, dA(z)$$

$$\leq \|g\|_{\infty} \iint_{G_c \cap D_\eta(\alpha)} \frac{(1 - |\alpha|^2)^2}{|1 - \alpha z|^4} \, dA(z) + c \iint_{D_\eta(\alpha) \setminus G_c} |\psi'_\alpha(z)|^2 \, dA(z)$$

$$+ \|g\|_{\infty} \iint_{D_\eta(\alpha) \setminus D_\eta(0)} |\psi'_\alpha(z)|^2 \, dA(z)$$

$$\leq \|g\|_{\infty} \iint_{G_c \cap D_\eta(\alpha)} \frac{1}{(1 - |\alpha|^2)^2} \, dA(z)$$

$$+ c \iint_{D_\eta(0)} |\psi'_\alpha(z)|^2 \, dA(z) + \|g\|_{\infty} \iint_{D_\eta(0) \setminus D_\eta(0)} \, dA(w)$$

$$\leq \frac{\|g\|_{\infty} A(G_c \cap D_\eta(\alpha))}{(1 - \eta^2)^2 \frac{A(D_\eta(\alpha))}{A(D_\eta(\alpha))}} + c \iint_{D_\eta(0)} \, dA(w) + \|g\|_{\infty} A(\mathbb{D} \setminus D_\eta(0)).$$
\[
\leq C_2 \left[\frac{\|g\|_{\infty}}{(1 - \eta^2)^2} \frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} + c + \|g\|_{\infty}(1 - \eta) \right].
\] (19)

Choosing \(c \) close enough to 0 and \(\eta \) close enough to 1 we get

\[
A(G_c \cap D_\eta(\alpha)) \leq C \|g\|_{\infty} A(D_\eta(\alpha)) = \delta A(D_\eta(\alpha)).
\]

Case (b) \(0 \leq |\alpha| \leq R_0 \): There exists \(\eta_1 \), depending only on \(\eta \), such that \(D_\eta(R_0) \subseteq D_{\eta_1}(0) \). Take \(\alpha' \) so that \(|\alpha'| = R_0 \) and \(\text{Arg}(\alpha') = \text{Arg}(\alpha) \). Then \(D_\eta(\alpha') \subseteq D_{\eta_1}(\alpha) \). Set \(\eta_2 = \max\{\eta, \eta_1\} \). Then from case (a) for \(\alpha' \) we have

\[
A(G_c \cap D_{\eta_2}(\alpha)) \geq A(G_c \cap D_{\eta_1}(\alpha)) \geq A(G_c \cap D_{\eta}(\alpha'))
\]

\[
\geq \delta A(D_{\eta_1}(\alpha)) \geq C\delta A(D_{\eta_2}(\alpha)),
\]

where the constants \(C > 0 \) depend only on \(\eta \).

Moreover, when \(R_0 \leq |\alpha| < 1 \), we have

\[
A(G_c \cap D_{\eta_2}(\alpha)) \geq A(G_c \cap D_{\eta}(\alpha)) \geq \delta A(D_{\eta}(\alpha)) \geq C\delta A(D_{\eta_2}(\alpha)),
\]

where the constant \(C > 0 \) depends only on \(\eta \). So, we have proved that there are \(\eta_2 \in (0, 1) \), \(c > 0 \) and \(C > 0 \) such that

\[
A(G_c \cap D_{\eta_2}(\alpha)) \geq CA(D_{\eta_2}(\alpha)),
\]

for every \(\alpha \in \mathbb{D} \), which is what we had to prove. \(\square \)

3. Closed range integral operators on BMOA space

Let denote as \(BMOA_0 \) the space \(BMOA/\mathbb{C} \). In [7], A. Anderson posed the question of finding a necessary and sufficient condition for the operator \(S_g \) to have closed range on \(BMOA_0 \).

Next, we answer this question, proving that conditions (ii) and (iii) of Theorem 2.2, for \(H_0^p \), are also necessary and sufficient for the integral operator \(S_g \) to have closed range on \(BMOA_0 \).

Let \(z_0 \in \mathbb{D} \). The point evaluation functional of the derivative, on \(BMOA \), induced by \(z_0 \), is defined as \(\Lambda_{z_0}f = f'(z_0), f \in BMOA \). It is easy to check that \(\Lambda_{z_0} \) is bounded on \(BMOA \). Therefore, using Theorem 2.2 and Corollary 2.3 in [7], we conclude that the operator \(S_g : BMOA_0 \to BMOA_0 \) is bounded if and only if \(g \in H^\infty \). So, we consider \(g \in H^\infty \) and set again \(G_c = \{z \in \mathbb{D} : |g(z)| > c\} \).

The following theorem is the main result of this section.

Theorem 3.1: Let \(g \in H^\infty \). Then the following are equivalent:

(i) The operator \(S_g : BMOA_0 \to BMOA_0 \) has closed range

(ii) There exist \(c > 0, \delta > 0 \) and \(\eta \in (0, 1) \) such that

\[
A(G_c \cap D_\eta(a)) \geq \delta A(D_\eta(a))
\]

(20)

for all \(a \in \mathbb{D} \).
Recall that the weighted Bergman space $A_{p, \gamma}$, $\gamma > -1$, is defined as the set of all analytic functions f in \mathbb{D} such that

$$\iint_{\mathbb{D}} |f(z)|^p (1 - |z|^2)\gamma \ dA(z) < \infty.$$

We will make use of the following theorem of D. Luecking (see [8]).

Theorem 3.2: Let $p \geq 1$, $\gamma > -1$ and measurable $G \subseteq \mathbb{D}$. The following assertions are equivalent.

(i) There exists $C > 0$ such that

$$\iint_{G} |f(z)|^p (1 - |z|^2)\gamma \ dA(z) \geq C \iint_{\mathbb{D}} |f(z)|^p (1 - |z|^2)\gamma \ dA(z)$$

for every $f \in A_{p, \gamma}$.

(ii) There exist $c > 0$, $\delta > 0$ and $\eta \in (0, 1)$ such that

$$A(G \cap D_\eta(a)) \geq \delta A(D_\eta(a))$$

for all $a \in \mathbb{D}$.

In the proof of Theorem 3.1, we will use the fact that $\log \frac{1}{|z|} \asymp 1 - |z|^2$, when $0 < \delta \leq |z| < 1$, where δ is fixed but arbitrary.

Proof of Theorem 3.1: (ii) \Rightarrow (i) If (20) holds then, because of theorem 3.2, (21) also holds for $G = G_c$. For $\beta \in \mathbb{D}$, $z \in \mathbb{D}$ and $f \in BMOA_0$, we consider the function $h_\beta(z) = \frac{(1 - |\beta|^2)^{1/2}}{1 - \beta z} f'(z)$. It’s easy to see that if $f \in BMOA_0$ then $h_\beta \in A_{1, 1}$. Indeed

$$\|h_\beta\|^2_{A_{1, 1}} = \iint_{\mathbb{D}} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |f'(z)|^2 (1 - |z|^2) \ dA(z)$$

$$\leq C \iint_{\mathbb{D}} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |f'(z)|^2 \log \frac{1}{|z|} \ dA(z) \leq \|f\|^2_{BMOA_0} < \infty.$$

Let $\beta \in \mathbb{D}$. We have that

$$\|S_g f\|^2_{BMOA_0} = \sup_{z_0 \in \mathbb{D}} \iint_{\mathbb{D}} \frac{1 - |z_0|^2}{|1 - \overline{z_0} z|^2} |(S_g f(z))'|^2 \log \frac{1}{|z|} \ dA(z)$$

$$= \sup_{z_0 \in \mathbb{D}} \iint_{\mathbb{D}} \frac{1 - |z_0|^2}{|1 - \overline{z_0} z|^2} |f'(z)|^2 |g(z)|^2 \log \frac{1}{|z|} \ dA(z)$$

$$\geq \iint_{\mathbb{D}} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |f'(z)|^2 |g(z)|^2 \log \frac{1}{|z|} \ dA(z)$$

$$\geq c^2 \iint_{G_c} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |f'(z)|^2 \log \frac{1}{|z|} \ dA(z)$$
\[\|Sgf\|_{BMOA_0}^2 \geq C \int_\mathbb{D} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |f'(z)|^2 \log \frac{1}{|z|} \, dA(z). \]

Taking the supremum over \(\beta \in \mathbb{D} \) in the last relation we get

\[\|Sgf\|_{BMOA_0}^2 \geq C \|f\|_{BMOA_0}^2. \]

(i) \(\Rightarrow \) (ii) If \(S_\gamma \) has closed range then there exist \(C_1 > 0 \) such that for every \(f \in BMOA_0 \) we have

\[\|Sgf\|_{BMOA_0}^2 \geq C_1 \|f\|_{BMOA_0}^2. \]

For \(\alpha \in \mathbb{D} \), if we set \(f = \psi_\alpha - \alpha \) in the last inequality, just as in the case of Hardy spaces and observe that \(\|\psi_\alpha - \alpha\|_{BMOA} \asymp 1 \) and \(\frac{(1-|\beta|^2)(1-|z|^2)}{|1-\beta z|^2} < 1 \), for every \(z, \beta \in \mathbb{D} \), then we have

\[C_1 \leq \|Sg(\psi_\alpha - \alpha)\|_{BMOA_0}^2 \]

\[= \sup_{\beta \in \mathbb{D}} \int_\mathbb{D} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |(Sg(\psi_\alpha - \alpha)(z))'|^2 \log \frac{1}{|z|} \, dA(z) \]

\[\leq C \sup_{\beta \in \mathbb{D}} \int_\mathbb{D} \frac{1 - |\beta|^2}{|1 - \beta z|^2} |\psi_\alpha'(z)|^2 |g(z)|^2 (1 - |z|^2) \, dA(z) \]

\[\leq C \int_\mathbb{D} |\psi_\alpha'(z)|^2 |g(z)|^2 \, dA(z) \]

At this point we continue in the same manner as with (19), replacing \(|g(z)| \) with \(|g(z)|^2 \), and we get

\[C_1 \leq C_2 \left[\frac{\|g\|_\infty^2}{(1 - \eta^2)^2} \frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} + c^2 + \|g\|_\infty^2 (1 - \eta) \right]. \]

Choosing \(c \) close enough to 0 and \(\eta \) close enough to 1 we get

\[A(G_c \cap D_\eta(\alpha)) \geq \frac{C}{\|g\|_\infty^2} A(D_\eta(\alpha)) = \delta A(D_\eta(\alpha)), \]

where \(C \) depends only on \(\eta \).
Remark 3.1: The Q_p space, $0 < p < \infty$, is defined as the set of all analytic functions f in \mathbb{D} for which
\[
\sup_{\beta \in \mathbb{D}} \iint_{\mathbb{D}} \frac{(1-|\beta|^2)^p}{|1-\beta z|^2} |f'(z)|^2 (1-|z|^2)^p \, dA(z) < \infty.
\]
Let denote as $Q_{p,0}$ the space Q_p/\mathbb{C}. For $\beta, z \in \mathbb{D}$ and $f \in Q_{p,0}$, we consider the functions
\[
h_\beta(z) = \frac{(1-|\beta|^2)^p}{(1-\beta z)^2} f'(z).
\]
It’s easy to see that if $f \in Q_{p,0}$, then $h_\beta \in A^2_p$ and using similar arguments as in the proof of Theorem 3.1, we can prove that (20) is also necessary and sufficient for S_g to have closed range on $Q_{p,0}$ ($0 < p < \infty$).

4. Closed range integral operators on Besov spaces

Let denote as B^p_0 the space B^p/\mathbb{C}. With similar arguments as in the case of $BMOA$ space we can see that the operator $S_g : B^p_0 \to B^p_0$ ($1 < p < \infty$) is bounded if and only if $g \in H^\infty$. So, we consider $g \in H^\infty$ and $G_c = \{ z \in \mathbb{D} : |g(z)| > c \}$. We will prove that condition (20) is also necessary and sufficient for the operator S_g to have closed range on B^p_0. For the sufficiency, we observe that, if $f \in B^p$ then $f' \in \mathcal{A}_p^{-1}$, the weighted Bergman space defined in the previous section, so we can use theorem 3.2. We have
\[
\|S_g f\|_{B^p_0}^p = \iint_{\mathbb{D}} |(S_g f(z))'|^p (1-|z|^2)^{p-2} \, dA(z)
\geq \iint_{G_c} |f'(z)|^p |g(z)|^p (1-|z|^2)^{p-2} \, dA(z)
\geq c^p \iint_{G_c} |f'(z)|^p (1-|z|^2)^{p-2} \, dA(z)
\geq C \iint_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^{p-2} \, dA(z)
= C \|f\|_{B^p_0}^p,
\]
where the last inequality is justified by Theorem 3.2. So S_g has closed range on B^p_0.

If S_g has closed range on B^p_0 then there exist $C_1 > 0$ such that for every $f \in B^p_0$ we have
\[
\|S_g f\|_{B^p_0}^p \geq C_1 \|f\|_{B^p_0}^p.
\]
For $\alpha \in \mathbb{D}$, if we set $f = f_\alpha = \frac{(1-|\alpha|^2)^p}{|1-\alpha z|^p} - \frac{(1-|\alpha|^2)^p}{(1-\alpha z)^{2+p}}$ in the last inequality, just as in the case of $BMOA$, and observe that $\|f_\alpha\|_{B^p_0} \approx 1$ and $|f_\alpha'(z)| = \frac{(1-|\alpha|^2)^p}{|1-\alpha z|^{2+p}}$, then we have
\[
C_1 \leq \|S_g f_\alpha\|_{B^p_0}^p = \iint_{\mathbb{D}} |f_\alpha'(z)|^p |g(z)|^p (1-|z|)^{p-2} \, dA(z)
\leq \|g\|_\infty \iint_{G_c \cap D_\alpha(\alpha)} \frac{(1-|\alpha|^2)^p}{|1-\alpha z|^{2+p}} (1-|z|)^{p-2} \, dA(z)
\]
\[+ \int_{D_\eta(\alpha) \setminus G_c} |f'_\alpha(z)|^p (1 - |z|)^{p-2} dA(z) \]
\[+ \|g\|_\infty^p \int_{\mathbb{D} \setminus D_\eta(\alpha)} \frac{(1 - |\alpha|^2)^2}{|1 - \overline{\alpha} z|^2 + p} (1 - |z|)^{p-2} dA(z) \]
\[\leq \|g\|_\infty^p \int_{G_c \cap D_\eta(\alpha)} \frac{1}{(1 - |\alpha|^2)^2} dA(z) + c^p \int_{\mathbb{D}} |f'_\alpha(z)|^p (1 - |z|)^{p-2} dA(z) \]
\[+ \|g\|_\infty^p \int_{\mathbb{D} \setminus D_\eta(\alpha)} \frac{(1 - |\alpha|^2)^2}{|1 - \overline{\alpha} \psi_\alpha(w)|^2 + p} (1 - |\psi_\alpha(w)|)^{p-2} |\psi'_\alpha(w)|^2 dA(w) \]
\[= \|g\|_\infty^p \int_{G_c \cap D_\eta(\alpha)} \frac{1}{(1 - |\alpha|^2)^2} dA(z) + c^p \|f_\alpha\|_{B^p_0}^p \]
\[+ \|g\|_\infty^p \int_{\mathbb{D} \setminus D_\eta(\alpha)} \frac{(1 - |w|^2)^{p-2}}{|1 - \overline{\alpha} w|^{p-2}} dA(w) \]
\[\leq \|g\|_\infty^p \frac{A(G_c \cap D_\eta(\alpha))}{(1 - |\alpha|^2)^2} + c^p \|f_\alpha\|_{B^p_0}^p + \|g\|_\infty^p \int_{\mathbb{D} \setminus D_\eta(\alpha)} dA(w) \]
\[\leq C' \|g\|_\infty^p \frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} + Cc^p + \|g\|_\infty^p (1 - \eta^2), \]

where \(C'\) depends only on \(\eta\) and \(C\) is absolute. So we have

\[C_1 \leq C' \|g\|_\infty^p \frac{A(G_c \cap D_\eta(\alpha))}{A(D_\eta(\alpha))} + Cc^p + \|g\|_\infty^p (1 - \eta^2). \]

Choosing \(\eta\) close enough to 1 so that \(\|g\|_\infty^p (1 - \eta^2) < \frac{C_1}{4}\), and \(c\) small enough so that \(C c^p < \frac{C_1}{4}\), we get

\[A(G_c \cap D_\eta(\alpha)) \geq \frac{C_1}{2C' \|g\|_\infty^p} A(D_\eta(\alpha)) = \delta A(D_\eta(\alpha)). \]

Acknowledgements

Many thanks to Prof. Michael Papadimitrakis for discussions about the mathematical content of this paper. His contribution was essential in order for it to take its final form. I also thank Prof. Petros Galanopoulos for helpful discussions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Kostas Panteris http://orcid.org/0000-0002-8630-8596

References

[1] Pavlovic M. Function classes on the unit disc. Berlin/Boston: Walter de Gruyter GmbH; 2014.
[2] Siskakis AG. Semigroups of composition operators on spaces of analytic functions (A review). In: Studies in composition operators. Providence, RI: American Mathematical Society; 1997. (Contemporary Mathematics; 213).

[3] Aleman A, Cima JA. An integral operator on H^p and Hardy’s inequality. J Anal Math. 2001;85:157–176.

[4] Aleman A, Siskakis AG. Integration operators on Bergman spaces. Indiana Univ Math J. 1997;46(2):337–356.

[5] Dostanić MR. Integration operators on Bergman spaces with exponential weight. Rev. Mat. Iberoamericana. 2007;23(2):421–436.

[6] Siskakis AG, Zhao R. A Volterra type operator on spaces of analytic functions. In: Function spaces (Edwardsville, IL, 1998). Providence, RI: American Mathematical Society; 1999. p. 299–311. (Contemporary Mathematics; 232).

[7] Anderson A. Some closed range integral operators on spaces of analytic functions. Integral Equations Operator Theory. 2011;69:87–99.

[8] Luecking DH. Inequalities on Bergman spaces. Illinois J Math. 1981;25:1–11.