Research Progress of Tap Water Treatment Process

Yian Wang¹, Chao Wang¹, Xinshuai Wang¹, Hui Qin¹, Hua Lin¹,*, Kong CHHUON² and Qi Chen³

¹ College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541000, China
² Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh 120000, Cambodia
³ Shandong Haipu Safety and Environmental Protection Science and Technology Research Institute, Qingdao 266000, Shandong, China

*Corresponding author’s e-mail: linhua5894@163.com

Abstract. With the rapid decrease of available water resources, to satisfy the needs of human life, it is urgent to treat and purify the water resources of waterworks so that the purified water can satisfy people’s needs. This article mainly elaborates on the current research progress of tap water treatment technology and advanced treatment technology. Provide some basis for the application of social enterprises and scientific research workers.

1. Introduction

Water is the basis of human existence, but with the acceleration of industrialization, the pollution of water resources worldwide is becoming more and more serious. Usually, the pollutants in drinking water mainly include organic matter and ammonia nitrogen [1]. At present, the commonly used water treatment processes are mainly coagulation, precipitation, filtration, and chlorine disinfection, but they cannot effectively remove ammonia nitrogen and organic matter [2-3]. And chlorine disinfection can produce harmful by-products [4]. Drinking unclean water can seriously endanger public health and even affect the kidney and urogenital system [5-6]. Under the situation of a significant reduction in clean water resources, it is urgent to treat the water resources of waterworks through an efficient water treatment process so that they can use it for domestic water.

2. The current treatment process of waterworks

2.1. Membrane separation technology

Membrane technology has become one of the key technologies for treating polluted water [7]. The application of membrane technology in the field of water purification treatment is a global development trend, including various coupling technologies, such as reverse osmosis and forward osmosis coupling to reduce energy consumption and water production costs; reverse osmosis and membrane distillation technology coupling to achieve zero emissions. And membrane technology has been widely used in sewage treatment [8-9]. Membrane separation technology mainly includes microfiltration membrane (MF) and ultrafiltration membrane (UF) technology [10], reverse osmosis (RO) technology, but reverse osmosis technology has a higher cost of filtration [11]. In contrast, reverse osmosis and nanofiltration technology can filter secondary treatment water to save costs [12].
Oh et al. used microfiltration combined with activated carbon adsorption to treat surface water, namely the raw water of the water plant. The results show that organic matter and microorganisms can be simultaneously removed by the adsorption and filtration mechanism[13]. Haas et al. used a combination of dam filtration and ultrafiltration treatment, which can make drinking water production more effective and economically feasible and can completely remove bacteria and turbidity[14]. Albergamo et al. found that after filtering the river embankment and then performing reverse osmosis treatment, it can remove biologically active pollutants and produce drinking water without the toxic effects studied, including 2,6-dichlorobenzamide, bentazon, and acesulfame[15]. The ultrafiltration membrane technology is becoming more and more mature. The membrane pollution can cause the membrane flux to reduce, and auxiliary equipment needs to be maintained, resulting in higher operation and maintenance costs.

2.2. Activated carbon treatment technology

At present, an in-depth treatment of water resources in waterworks mainly uses activated carbon and other technologies. Activated carbon treatment technology is convenient and straightforward, economical, and reusable. The commonly used granular activated carbon (GAC) helps to remove compounds in drinking water to achieve the purpose of water purification[16]. GAC filtration can remove the bad color, smell, taste, and organic compounds caused by water treatment, and also can remove pesticides and other heterogeneous organisms. During GAC filtration, adsorption, and biodegradation co-occur[17]. Siwila et al. used gravity-driven wooden filters combined with granular activated carbon to treat drinking water and found that the removal rate of bacteria can reach more than 99%, and also can remove organic matter, heavy metals, color, smell, and peculiar smell[18]. And Moona et al. found that the existing biological activated carbon filter maintains 90% of the filter media. While the new GAC promotes adsorption, biodegradation continues to be helpful for removing natural organic matter[19]. Sawana et al. used cerium dioxide modified activated carbon to purify arsenic in drinking water. It found that CeO2 coated powdered activated carbon can effectively remove arsenic in drinking water through specific adsorption and condensation attraction. The removal ability of As(III) and As(V) was close to 12 mg/g. And removal was not affected by factors such as pH and salinity[20]. And GAC adsorption can well control the controlled disinfection by-product (DBP)[21]. Liu et al. found that the adsorption of GAC can remove the organic matter of soluble microbial products in 60% of water and reduce the formation potential of disinfection by-products by more than 70%. GAC is a more effective way to control the DBP derived from wastewater in water supply[22]. Activated carbon treatment technology can effectively avoid the potential harm caused by chlorine disinfection in conventional water treatment processes. However, activated carbon treatment technology has the disadvantages of secondary pollution risk and inconvenient recovery. And analyze the membrane separation and activated carbon treatment technology currently used in waterworks, as shown in Table 1.

Treatment process	Remove pollutants	Removal	References
Microfiltration-activated carbon	UV260	90.3%	[13]
Dam filtration and ultrafiltration	Bacteria and turbidity	100%	[14]
Wooden filter-GAC	Bacteria, turbidity, and TSS	>99%	[18]
Ceria modified activated carbon	Fe, Pb, Ni, Al, and Zn	>90%	[20]
GAC	As(III) and As(V)	12 mg/g	[22]
	Soluble microbial product organic matter	60%	

2.3. Biological treatment process

Biofilm water treatment technology is a kind of water treatment technology that has been developed rapidly in recent years. It has the advantages of small footprint and convenient management. It has been widely used in the treatment process of waterworks[23]. This kind of biofilm has a long service
life, and can effectively block microorganisms in the water and improve the safety of domestic water. However, its stability is susceptible to factors such as ambient temperature, dissolved oxygen, and toxic substances[24-25]. Rittmann based on the membrane bioreactor (MBfR) of H2 can convert NO3- to N2, ClO4- to H2O and Cl-, and can effectively remove many pollutants[26]. Gilbert et al used a moving bed biofilm reactor to treat wastewater and found that denitrification can be effectively carried out[27]. The lack of treatment of heavy metals and other toxic substances in water bodies by the biofilm method for water purification is one of the defects in its application to the actual purification of water sources.

3. Advanced treatment process of waterworks

Andersson et al found that the chlorination and chlorination treatment of pilot water commonly used in Sweden produces low levels of adsorbable organic halogen (AOX). Compared with traditional treatments, brominated DBP is rich in variety, but the main is chlorinated DBP[28]. Since Br-DBPs are more toxic than Cl-DBPs, the potential increase in Br-DBPs has a significant impact on the associated health risks. In response to the genotoxicity caused by disinfection by-products caused by chlorine disinfection. Lundqvist et al reduced the genotoxicity caused by disinfection through each treatment step of the innovative water treatment technologies (suspended ion exchange, ozone, online coagulation, ceramic microfiltration membrane, and granular activated carbon combined treatment). Oxidative stress (Nrf2 activity) caused by a large amount of chlorination in conventional methods, the activity of chlorinated water after suspension ion exchange has reduced by 70%. And through subsequent ozone treatment, Nrf2 activity is further reduced after chlorination[29]. Besides, it is more interesting that Carrasco-Turigas et al through boiling and filtering tap water found that filtering and boiling can reduce 97% trihalomethane (THM4) and reduce 3-chloro-4 (dichloromethyl)-5-Hydroxy-2(5H)-furanone (MX) reduced to below the legal limit[30]. Rodriguez controlled the by-products of disinfection by spray aeration combined with activated carbon process. The results showed that reduced 58% trihalomethane (THM) and reduced 48% haloacetic acid (HAA5)[31]. The advanced treatment process is mainly to purify drinking water through a combination process. At the same time, it is also necessary to develop new technologies to promote the diversification of purifying drinking water treatment options, thereby providing options and basis for further cost reduction.

4. Conclusions

There are more and more treatment processes for purifying tap water, but each has its advantages and disadvantages. Therefore, in practical applications, we need to select the treatment process following the actual situation to achieve the purpose of purifying tap water, thereby contributing to the safe and reliable drinking water that humans can drink. The advanced treatment process is essential for the purification of tap water. The development of new, efficient, sustainable, and diversified treatment processes is a research focus in the future.

Acknowledgements

Yian Wang and Hua Lin contributed equally to this work, and Hua Lin is corresponding author (linhua5894@163.com). This work was funded by Guangxi Science and Technology Project Lancang-Mekong Water Environment Technology Innovation Platform (2018AD16013-04).

References

[1] Gao, Y.J., Li, S.J. (2019) Optimization of multiple fillers used for removal of water pollutants of large well near the river in northern China. Journal of Water, Sanitation and Hygiene for Development, 9(2): 363-373.
[2] Sahu, O.P., Chaudhari, P.K. (2013) Review on Chemical treatment of Industrial Waste Water. Journal of Applied Sciences and Environmental Management, 17(2): 241-257.
[3] Pei, M.K., Zhang, B., He, Y.L., Su, J.Q., Gin, K., Lev, O., Shen, G.X., Hu, S.Q. (2019) State of
the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. Environment International, 131: 105026.

[4] Fedler, C.B., Francis, R., Parekh, D., Blanchet, S. (2012) Review of Potential Onsite Wastewater Disinfection Technologies. Texas Tech University, Lubbock.

[5] World Health Organization (2011) Guidelines for Drinking-water Quality, 4th Edition. World Health Organization, Geneva.

[6] Papagiannis, I., Vezyraki, P., Simos, Y.V., Kontargiris, E., Giannakopoulos, X., Peschos, D., Sofikitis, N., Evangelou, A., Kalfakakou, V. (2019) Effects of secondary biological treatment plant effluent administration, as drinking water, to rats’ urogenital system in relation to cadmium and lead accumulation. Environmental Science and Pollution Research, 26(36): 36434-36440.

[7] Tortajada, C., Nambiar, S. (2019) Communications on Technological Innovations: Potable Water Reuse. Water, 11(2): 251.

[8] Phillip, W.A., Yong, J.S., Elimelech, M. (2010) Reverse Draw Solute Permeation in Forward Osmosis Modeling and Experiments. Environmental Science & Technology, 44(13): 7.

[9] Roy, S., Ragunath, S. (2018) Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constrains and Challenges. Energies, 11(11): 2997.

[10] Gao, Y., Qin, J., Wang, Z., Osterhus, S.W. (2019) Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. Journal of Membrane Science, 587.

[11] ElMekawy, A., Hegab, H.M., Pant, D. (2014) The near-future integration of microbial desalination cells with reverse osmosis technology. Energy Environ. Sci., 7(12): 3921-3933.

[12] Hashlamon, A., Mohammad, A.W., Ahmad, A. (2017) The effect of wastewater pretreatment on nanofiltration membrane performance. Journal of Water Reuse and Desalination, 7(1): 45-52.

[13] Oh, H.K., Takizawa, S., Ogaki, S., Katayama, H., Oguma, K., Yu, M.J. (2007) Removal of organics and viruses using hybrid ceramic MF system without draining PAC. Desalination, 202(1-3): 191-198.

[14] Haas, R., Opitz, R., Grisheck, T., Otter, P. (2018) The AquaNES Project: Coupling Riverbank Filtration and Ultrafiltration in Drinking Water Treatment. Water, 11(1): 18.

[15] Albergamo, V., Escher, B.I., Schymanski, E.L., Helmus, R., Dingemans, M.M.L., Cornelissen, E.R., Kraak, M.H.S., Hollender, J., Voogt, P.d. (2020) Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening. Environmental Science: Water Research & Technology, 6(1): 103-116.

[16] Committee, S.D.W. (1980) Drinking Water and Health. National Academy Press, Washington, D.C.

[17] Knezev, A. (2015) Microbial Activity in Granular Activated Carbon Filters in Drinking Water Treatment. Wageningen University, Netherlands.

[18] Siwila, S., Brink, I.C. (2019) Drinking water treatment using indigenous wood filters combined with granular activated carbon. Journal of Water, Sanitation and Hygiene for Development, 9(3): 477-491.

[19] Moona, N., Murphy, K.R., Bondelind, M., Bergstedt, O., Pettersson, T.J.R. (2018) Partial renewal of granular activated carbon biofilters for improved drinking water treatment. Environmental Science: Water Research & Technology, 4(4): 529-538.

[20] Sawana, R., Somasundar, Y., Iyer, V.S., Baruwati, B. (2017) Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification. Applied Water Science, 7(3): 1223-1230.

[21] Cuthbertson, A.A., Kimura, S.Y., Liberatore, H.K., Summers, R.S., Knappe, D.R.U., Stanford, B.D., Maness, J.C., Mulhern, R.E., Selbes, M., Richardson, S.D. (2019) Does Granular Activated Carbon with Chlorination Produce Safer Drinking Water? From Disinfection Byproducts and Total Organic Halogen to Calculated Toxicity. Environmental Science & Technology, 53(10): 5987-5999.
[22] Liu, J.L., Li, X.Y. (2015) Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies. Environmental Technology, 36(6): 722-731.

[23] Martin, K.J., Nerenberg, R. (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments. Bioresource Technology, 122: 83-94.

[24] Mohseni-Bandpi, A., Elliott, D.J., Zazouli, M.A. (2013) Biological nitrate removal processes from drinking water supply-a review. Journal of Environmental Health Science and Engineering, 11(1): 35.

[25] Liu, S., Gunawan, C., Barraud, N., Rice, S.A., Harry, E.J., Amal, R. (2016) Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Environmental Science & Technology, 50(17): 8954-8976.

[26] Rittmann, B.E. (2007) The membrane biofilm reactor is a versatile platform for water and wastewater treatment. Korean Society of Environmental Engineers, 12(4): 157-175.

[27] Gilbert, E.M., Agrawal, S., Karst, S.M., Horn, H., Nielsen, P.H., Lackner, S. (2014) Low Temperature Partial Nitritation/Anammox in a Moving Bed Biofilm Reactor Treating Low Strength Wastewater. Environmental Science & Technology, 48(15): 8784-8792.

[28] Andersson, A., Lavonen, E., Harir, M., Gonsior, M., Hertkorn, N., Schmitt-Kopplin, P., Kylin, H., Bastviken, D. (2020) Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products. Environmental Science: Water Research & Technology, 6(3): 779-794.

[29] Lundqvist, J., Andersson, A., Johannisson, A., Lavonen, E., Mandava, G., Kylin, H., Bastviken, D., Oskarsson, A. (2019) Innovative drinking water treatment techniques reduce the disinfection-induced oxidative stress and genotoxic activity. Water Research, 155: 182-192.

[30] Carrasco-Turigas, G., Villanueva, C.M., Goñi, F., Rantakokko, P., Nieuwenhuijsen, M.J. (2013) The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water. Journal of Environmental and Public Health, 2013: 1-8.

[31] Rodriguez, A.B. (2016) Integrating Spray Aeration and Granular Activated Carbon for Disinfection By-Product Control in a Potable Water System. University of Central Florida, Orlando.