The performance of a modified EWMA control chart for monitoring autocorrelated PM2.5 and carbon monoxide air pollution data

Yadpirun Supharakonsakun, Yupaporn Areepong, Saowanit Sukparungsee

1 Department of Applied Statistics, King Mongkut’s University of Technology North Bangkok, Bangkok, Bangkok, Thailand

Corresponding Author: Yupaporn Areepong
Email address: yupaporn.a@sci.kmutnb.ac.th

PM2.5 (particulate matter less than or equal to 2.5 micron) is found in the air and comprises dust, dirt, soot, smoke, and liquid droplets. PM2.5 and carbon monoxide emissions can have a negative impact on humans and animals throughout the world. In this paper, we present the performance of a modified exponentially weighted moving average (modified EWMA) control chart to detect small changes when the observations are autocorrelated with exponential white noise through the average run length evaluated (ARLs) by explicit formulas. The accuracy of the solution was verified with a numerical integral equation method. The efficacy of the modified EWMA control chart to monitor PM2.5 and carbon monoxide air pollution data and compare its performance with the standard EWMA control chart. The results suggest that the modified EWMA control chart is far superior to the standard one.
The Performance of a Modified EWMA Control Chart for Monitoring Autocorrelated PM2.5 and Carbon Monoxide Air Pollution Data

Yadpirun Supharakonsakun¹, Yupaporn Areepong², Saowanit Sukparungsee³
¹,²,³ Department of Applied Statistics, King Mongkut’s University of Technology North Bangkok, Thailand, Bangkok, Thailand

Corresponding Author:
Yupaporn Areepong²
1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok, 10800, Thailand
Email address: yupaporn.a@sci.kmutnb.ac.th

Abstract
PM2.5 (particulate matter less than or equal to 2.5 micron) is found in the air and comprises dust, dirt, soot, smoke, and liquid droplets. PM2.5 and carbon monoxide emissions can have a negative impact on humans and animals throughout the world. In this paper, we present the performance of a modified exponentially weighted moving average (modified EWMA) control chart to detect small changes when the observations are autocorrelated with exponential white noise through the average run length evaluated (ARLs) by explicit formulas. The accuracy of the solution was verified with a numerical integral equation method. The efficacy of the modified EWMA control chart to monitor PM2.5 and carbon monoxide air pollution data and compare its performance with the standard EWMA control chart. The results suggest that the modified EWMA control chart is far superior to the standard one.

Introduction
One of the world’s greatest health and environmental problems is air pollution, which has steadily increased worldwide due to global industrialization and urbanization (Manisalidis et al., 2020). Air quality monitoring in many countries has shown that the levels of common pollutants have increased from 1980 until now. During 2010–2016, an estimated 55.3% of the global population were exposed to dangerous levels of air pollution (Shaddick et al., 2020). Therefore, a major global health risk to the world’s population is air pollution, with more than 90% of people living in areas that do not meet the 2017 World Health Organization’s (WHO) recommended threshold of air quality levels (Health Effects Institute, 2019). The WHO data also reveals that in 2016, 6.1 million deaths worldwide (around 11% of the total global deaths) are attributable to air pollution.

A widespread air pollutant consisting of a mixture of solid and liquid particles suspended in air is called particulate matter (PM), in which the physical and chemical characteristics depend on the location. The common chemical components of PM include nitrates, sulfates, ammonium, other inorganic, and biological compounds (Hung et al., 2014). PM is used as an indicator that is
relevant to health and is classified in terms of the diameter or width of the particles, e.g. PM10 means the diameter is 10 µm or less and PM2.5 is 2.5 µm or less (Saarikoski et al., 2018). PM2.5 can be human-made and naturally occurring. Air pollution from vehicle emissions and traffic congestion produces both PM2.5 and carbon monoxide (CO) pollution, with major causes being diesel engine exhaust fumes and traffic congestion (Pui et al., 2014; Tian et al., 2015). Emissions from factories and power plants are also major causes of PM2.5 pollution due to burning fossil fuels, especially coal (Hua et al., 2015). Moreover, the burning of agricultural waste, especially in South East Asia, and forest fires are other major causes of PM2.5 pollution (He et al., 2020; Lee et al., 2018).

The small size of PM2.5 particles makes them particularly deleterious to health by directly cause respiratory and cardiovascular morbidity. Since the lungs are the primary organs affected by PM2.5, exposure can lead to lung injury by perturbations of the lung microbiome and its associated metabolome mechanism (Li et al., 2020), as well as causing respiratory diseases and lung cancer (Xing et al., 2015). However, PM2.5-induced neuroinflammation and metabolic turbulence may be mitigated by the anti-inflammatory and anti-oxidative activities of fisetin (Xu et al., 2020). Long-term exposure to PM pollution in the air causes extrinsic skin aging, (wrinkles and changes in pigmentation). Moreover, atmospheric pollutants also lead to skin diseases such as atopic dermatitis (Liao et al., 2020).

The trend in Central and Southern Asia has been a rise in PM2.5 levels between 2010 and 2016 (Shaddick et al., 2020; Cheong et al., 2019; Johnston et al., 2019). Recently in Thailand, especially in Bangkok and the surrounding area, the population has been exposed to dangerously high PM2.5 pollution levels due to agricultural waste burning, foreign sources, and industry. The levels of these small particles have increased over the past few years (Wimolwattanapun et al., 2011; Oanh et al., 2013; Pinichka et al., 2017; Mahidol University, 2020). Self-care practices should be the first priority to manage this problem, while PM2.5 pollution levels should be kept under control and closely monitored periodically.

Statistical process control is a quality control approach for carrying out statistical methods to monitor and control process change. Especially, the control chart is a tool that is widely used to monitor processes to detect any changes in them, thereby preventing the occurrence of faults. In many ecological and environmental sources of data, the values are not independent over time and often comprise autocorrelated observations (autocorrelation or serial correlation is a measure of the correlation between current variable values and their past ones). Hence, the assumption in traditional control chart methodology that the observations taken from the process are independent and normally distributed does not hold. Thus, traditional control charts such as the Shewhart control chart have drastically reduced efficiency when applied to serially correlated observations. Therefore, many researchers have proposed the cumulative sum (CUSUM) (Page, 1954) and exponentially weighted moving average (EWMA) (Roberts, 1959) control charts as suitable alternatives for when the observations are autocorrelated. The EWMA control chart is recommended when the observations are not normally distributed or are autocorrelated, as has been determined using the average run length (ARL) statistic (Srivasrava, 1993; Wardell et al., 1994; Jiang et al., 2000; Carson & Yeh, 2008; Han et al., 2010). The usefulness of control chart techniques has been investigated for air pollution data in a time series. The CUSUM control chart has been employed for identifying changes in the mean air pollution level (Barrett et al., 2006), as well as for identifying important change-points in the time series of air pollutants.
measured at a busy roadside location in central London (Carslaw et al. 2006). The applicability of the CUSUM control chart for detecting changes in air pollutant concentrations in Delhi was investigated by Chelani (2011), who found that they have been significantly increasing over time. Moreover, standard CUSUM and EWMA control charts have been used to detect a change in air pollutant time series data in Kuwait (Al-Rashed et al. 2019); the results reveal that both procedures provided early alarms in the detection of changes in air pollutants. Afterward, a newly structure control statistic was proposed by Patel and Devecha (2011) and was also generalized structure of control statistic namely modified EWMA control chart. Several researchers investigated the performance of modified EWMA chart by different situations of non-normal distribution including Aslam et al. (2017), Herdiani et al. (2018), Noiplab and Mayureesawan (2019). The application of modified EWMA procedures were demonstrated using real-life samples by comparing with the existing charts. The results showed that the proposed control chart is efficient in quick detection of the out-of-control process (Khan et al., 2018; Saghir et al., 2019; Saghir et al., 2020; Aslam and Anwar, 2020; Supharakonsakun et al., 2020).

According to these prior studies on control chart performance, the ARL is utilized to measure the robustness of the chart. In this paper, a modified EWMA control chart, which was newly developed from the traditional EWMA procedure, is presented for monitoring and detecting small and abrupt changes in autocorrelated data by evaluating the ARL. Its performance was studied comparatively with the standard EWMA chart for detecting changes in PM2.5 and CO gas level.

Modified EWMA Chart

Robert (1959) first proposed the EWMA control chart that is very effectively at detecting small process changes. This chart’s design parameters are the multiples of widths of the control limit and smoothing parameter. The EWMA statistic is defined as

\[Z_t = (1 - \lambda)Z_{t-1} + \lambda X_t, \]

where \(0 < \lambda \leq 1 \) is smoothing parameter and \(X_t, \ t = 1,2,3,... \) is a sequence of autocorrelated observations with the starting value is the process target mean \(Z_0 = \mu_0 \).

The respective upper and lower control limits for the EWMA chart are

\[UCL = \mu_0 + H\sigma \sqrt{\frac{\lambda}{2 - \lambda} \left[1 - (1 - \lambda)^{2i} \right]}, \]

\[LCL = \mu_0 - H\sigma \sqrt{\frac{\lambda}{2 - \lambda} \left[1 - (1 - \lambda)^{2i} \right]}, \]

where \(H \) is the width of the control limit and \(\sigma \) is the process standard deviation. The term \(\left[1 - (1 - \lambda)^{2i} \right] \) is close to 1 as \(i \) becomes large. Hence, the respective upper and lower control limit will approach their respective steady-state value as
\[UCL = \mu_0 + H\sigma \sqrt{\frac{\lambda}{2-\lambda}}, \] \hfill (4)

and

\[LCL = \mu_0 - H\sigma \sqrt{\frac{\lambda}{2-\lambda}}, \] \hfill (5)

Later, modified EWMA control chart was introduced by Patel and Divecha (2011). They corrected the inertia problem caused by errors in the EWMA statistic by considering past changes as well as the latest change in the process. The modified EWMA chart is useful for detecting process changes in observations that are autocorrelated or independent normally distributed. Recently, Khan et al. (2017) proposed a new control statistic structure that developed from the modified EWMA control chart as follow:

\[Z_t = (1-\lambda)Z_{t-1} + \lambda X_t + k(X_t - X_{t-1}), \] \hfill (6)

where \(\lambda \) is the smoothing parameter; \(X_t \), \(t = 1, 2, 3, \ldots \) is a sequence of autocorrealted observations; \(k \) is a constant; and the starting value is the process target mean \(Z_0 = \mu_0 \). It is similar to the EWMA statistic but with the last term extended.

This chart generates a false alarm when the \(Z_n \) value violates the specified control limit. In general, the upper and lower control limit are respectively given by

\[UCL = \mu_0 + L\sigma \sqrt{\frac{\lambda + 2k\lambda + 2k^2}{2-\lambda}}, \] \hfill (7)

and

\[LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda + 2k\lambda + 2k^2}{2-\lambda}}, \] \hfill (8)

where \(L \) and \(\sigma \) is the width of the control limit of modified EWMA procedure and process standard deviation, respectively.

Method of Evaluating ARL for Moving Average Order q Model

A time series is a series of data points ordered in time, and the goal of a time series analysis is usually to make a forecast of the future using time as an independent variable. A usual characteristic of a time series is autocorrelation, which is correlation between observations in the same dataset at different points in time. In other words, autocorrealted data portrays the similarity between observations as a function of the time lag between them. In a time series analysis, an MA(q) process is a common approach for modeling a univariate time series for which the error depends linearly on the current and numerous past values of the error term.

\[X_t = \mu + \varepsilon_t - \theta_1\varepsilon_{t-1} - \theta_2\varepsilon_{t-2} - \ldots - \theta_q\varepsilon_{t-q}, \] \hfill (9)
where μ is the mean of the series, ϵ_i is a white noise process assumed to be exponentially distributed, θ_i is a process coefficient, and the starting value of $\epsilon_0 = s$ is given.

Let $L(u)$ denote the ARL for an MA(q) process with exponential white noise on a modified EWMA control chart (see Appendix A1 for the proof) that there exists only one solution of the integral equation (see Appendix A2). It is obtained by deriving a Fredholm integral equation of the second kind as follows:

$$L(u) = 1 - \frac{\lambda e^{-\alpha_0 (1+\delta) \lambda}}{\lambda e^{-\alpha_0} \cdot e^{-\alpha_0}} \left[\frac{b}{e^{-\alpha_0 (1+\delta) \lambda}} - 1 \right],$$

(10)

with in-control process parameter α_0 and out-of-control process parameter $\alpha_1 > \alpha_0$.

Numerical Results

The ARLs of the explicit formulas are derived using a Fredholm integral equation of the second type, those of the numerical integral equation method are approximated using the Gauss-Legendre quadrature rule with 1,000 nodes, and the control ARL is set to $\text{ARL}_0 = 500$. The numerical approximation of the numerical integral equation and the exact result of the explicit formulas to measure the accuracy in the comparative study according to the relative error is defined as

$$\varepsilon = \frac{|L(u) - \hat{L}(u)|}{L(u)} \times 100\%,$$

(11)

where $L(u)$ is derived from the ARL using the explicit formulas and $\hat{L}(u)$ is an approximation of the ARL with the numerical integral equation. The numerical results are reported in Tables 1 - 3.

Computation of the ARL by using the explicit formulas and the numerical integral equation method on the modified EWMA control chart were carried out with a varied smoothing parameters ($\lambda = 0.05, 0.10, 0.15$ and 0.2); constant $k = 1$; in-control process parameter $\alpha_0 = 1$; out-of-control process parameter $\alpha_1 = (1+\delta)\alpha_0$, where δ is the shift size set as 0.001, 0.003, 0.005, 0.01, 0.05, 0.10, 0.50 or 1.00; and in-control process was ARL$_0 = 500$ (Tables 1 and 2). The parameters were set as $\mu = 2$; coefficients $\theta_1 = -0.3$, $\theta_2 = 0.5$ with $\lambda = 0.05, 0.1$ and $\theta_1 = 0.1$, $\theta_2 = 0.3$ with $\lambda = 0.15, 0.2$ for an MA(2) process; and coefficients $\theta_1 = 0.3$, $\theta_2 = 0.5$, $\theta_3 = 0.7$ with $\lambda = 0.05, 0.1$ and $\theta_1 = -0.5$, $\theta_2 = -0.3$, $\theta_3 = -0.5$ with $\lambda = 0.15, 0.2$ for an MA(3) process. The results indicate that when the smoothing parameter was increased, the value of ARL$_1$ was reduced.

The results in Tables 1 and 2 show that the analytically explicit expression of the ARL was in excellent agreement with the approximated ARL obtained from the numerical integral
equation (NIE) method. The computational time for the numerical integral equation method was around 21 and 23 seconds for the MA(2) and MA(3) processes, respectively, while the explicit formulas required a computational time of less than one second for both.

Table 3 reports the ARL values obtained by using the explicit formulas and numerical integral equation method. The parameters were set as $\mu = 2$; coefficient parameters $\theta_i = -0.3$, $\theta_2 = 0.7$, $\theta_3 = -0.5$ for MA(3) process; $\lambda = 0.1$; and k was varies as 5λ, 10λ, 20λ, or 50λ. The results revealed that when the constant k was large, ARL$_1$ was reduced.

The performances of the standard and modified EWMA control charts were also compared. These were obtained by the explicit expression when varying λ (0.05 and 0.10) for both control charts, as reported in Tables 4 and 5. The observations were from the MA(2) and MA(3) processes with $\theta_1 = -0.1$, $\theta_2 = -0.3$, and $\theta_1 = 0.7$, $\theta_2 = 0.7$, $\theta_3 = -0.1$, respectively, for $\mu = 2$, $k = 1$, and ARL$_0 = 500$. The last row is the relative mean index (RMI) defined as

$$RMI = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{ARL_{\delta_i} - ARL_{\text{smallest}}^{\delta_i}}{ARL_{\text{smallest}}^{\delta_i}} \right],$$

where ARL_{δ_i} denotes the ARLs of the EWMA and modified EWMA control charts obtained via the explicit formulas for each shift size and $ARL_{\text{smallest}}^{\delta_i}$ denotes the smallest of the ARLs for each shift size.

The results in Table 4 show that when $\lambda = 0.05$, the performance of the modified EWMA control chart was better than the standard one for shift sizes of 0.001, 0.003, 0.005, 0.01, 0.05, 0.10 and 0.30, whereas for shift size of 0.50, 1.00, and 2.00, the small RMI of the modified EWMA chart was 0.057529 while that the RMI of the EWMA control chart was 3.266348. When $\lambda = 0.1$, 0.15 and 0.2, the modified EWMA control chart was more powerful than the standard one for all cases of shift size with the zero RMI. The results indicate that overall, the modified EWMA control chart was better than the standard one at detecting process changes.

Application of the modified EWMA Chart

PM2.5 and CO gas air pollutants are being constantly emitted, which is likely to increase over time in the winter and summer seasons. When the levels of these air pollutants are high (> 50 µg/m3 for PM2.5 (https://en.wikipedia.org/wiki/Air_quality_guideline) and > 10000 ppm for CO (https://www.airqualitynow.eu/download/CITEAIR-Comparing_Urban_Air_Quality_across_Borders.pdf), the quality of the ambient air is unhealthy to humans. Increasing PM2.5 concentration can lead to coughing, breathing difficulties, and eye irritation and can be deadly to humans.

Table 5 contains a comparison of the ARLs of the modified and standard EWMA control charts obtained via the explicit formulas. PM2.5 and CO measurements were taken every day in January and May, respectively, 2020 by the Pollution Control Department, Thailand. There were small and abrupt changes in the PM2.5 and CO level data in the Din Daeng district of Bangkok (where there is a high volume of traffic) from measurements near a busy road (Chuersuwan et al., 2008). The PM2.5 and CO air pollution level data were tested for autocorrelation in the
observations. The Box-Jenkins technique was applied to the two air pollution datasets to
determine whether they fit forecast time series data models. The models with the lowest Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) values were considered
as optimal. Moreover, t-test statistics proved that the two datasets were autocorrelated. The
parameter values for the MA(1) and MA(2) processes were fitted and provided 51.163 for the
mean and -0.723 and -0.380 for the coefficients, respectively. The PM2.5 level was found to be
significant for the MA(2) process.

The efficiency of the modified EWMA procedure was also emphasized by its performance
with the CO level data for the Din Daeng district, Bangkok, Thailand. Table 6 displays the ARLs
of the modified and traditional EWMA control charts. The explicit formulas were used for
measuring the ARLs of the CO gas level. The data were collected every day in May 2020. The
analysis for an MA autocorrelated process resulted in a mean of 1.198 and -0.662, -0.479, and -
0.495 for the coefficients of the MA(1), MA(2), and MA(3) processes. The results of the PM2.5
and CO air pollutant data indicate that the modified EWMA control chart was more effective
than the standard one for detecting small shifts, and so confirms that it is excellent for
monitoring unusual observations with undesirable values in a timely manner for all cases of
exponential smoothing parameter.

The efficacy of the control charts was visualized by plotting graphs to showcase the
effective results obtained from the proposed procedure in a comparative study. Fig. 1 shows that
the modified EWMA control chart detected upper PM2.5 shifts at the 7th to 11th and 17th to 21st
observations. On the other hand, the standard EWMA control chart only detected shifts at the
10th to 26th observations, as illustrated in Fig. 2. Fig. 3 exhibits that the modified EWMA chart
detected upper CO level shifts at the 12th, 25th to 26th, and 30th to 31st observations. On the
contrary, the original EWMA chart only detected upper CO level shifts at the 30th to 31st
observations, as shown in Fig. 4.

The modified EWMA control chart detected the upper change in PM2.5 level at the 7th
observation (i.e. the 7th January), which marked the beginning of extreme changes in PM2.5
emissions at the upper level. Meanwhile, the standard EWMA control chart detected the change
at the 10th observation (i.e. the 10th January). Although the CO gas level emissions were low and
harmless to the human body, the performance of the modified EWMA control chart for detecting
the change in CO gas emissions was exemplary.

Discussion

The findings reveal that the modified EWMA control chart performed well for the case of
smoothing parameter is greater than or equal to 0.1 due to the RMI of the modified EWMA chart
being less than the RMI of the EWMA chart.

When applied to real data, the modified EWMA control chart performed excellently for
detecting shifts in the PM2.5 and CO pollution levels in all cases of smoothing parameter value.
The smoothing parameter value of 0.1 is recommended in applications using the modified
EWMA control chart. It is a good choice as it is easier to employ and performed better than the
original EWMA control chart in all situations tested.
Conclusions
The exact ARL was provided by deriving explicit formulas that saved significantly on computational time. Therefore, it is an excellent alternative for evaluating the ARL as a measure of the effectiveness of the modified EWMA control chart. The technique showed good aptitude in monitoring and detecting small process shifts, as illustrated by changes in PM2.5 and CO gas levels examples comprising autocorrelated observations fitted to MA(2) and MA(3) models with exponential white noise. The empirical ARL shows that a smoothing parameter value of 0.1 to 0.2 supported the modified EWMA control chart far better than the EWMA control chart for all cases. Therefore, determination of the correct smoothing parameter of the chart should not be disregarded.

References
Al-Rashed A, Al-Mutairi N, Attar MA. 2019. Air pollution Analysis in Kuwait Using a Statistical Technique (CUSUM). International Journal of Geosciences 10:254-294.
Aslam M, Anwar SM. 2020. An improved Bayesian Modified EWMA location chart and its applications in mechanical and sport industry. Plos One 15:e0229422.
Aslam M, Saghir A, Ahmad L, Jun CH, Hussain J. 2017. A control chart for COM-Poisson distribution using a modified EWMA statistic. Journal of Statistical Computation and Simulation Doi:10.1080/00949655.2017.1373114.
Barratt B, Atkinson R, Anderson HR, Beevers S, Kelly F, Mudway I, Wilkinson P. 2007. Investigation into the use of the CUSUM technique in identifying changes in mean air pollution levels following introduction of a traffic management scheme. Atmospheric Environment 41:1784-1791.
Carslaw DC, Ropkins K, Bell MC. 2006. Change-Point Detection of Gaseous and Particulate Traffic-Related Pollutants at a Roadside Location. Environmental Science & Technology 40:6912-6918.
Carson PK, Yeh AB. 2008. Exponentially weighted moving average (EWMA) control charts for monitoring an analytical Process. Industrial & Engineering Chemistry Research 47:405-411.
Champ CW, Rigdon SE. 1991. A comparison of the Markov Chain and the Integral Equation Approaches for Evaluating the Run Length Distribution of Quality Control Charts. Communications in Statistics Simulation and Computation 20:191-204.
Chelani AB. 2011. Change detection using CUSUM and modified CUSUM method in air pollutant concentrations at traffic site in Delhi. Stochastic Environmental Research and Risk Assessment 25:827-834.
Cheong KH, Ngiam NJ, Morgan GG, Pek PP, Tan BYQ, Lai JW, Koh JM, Ong MEH, Ho AF. 2019. Acut Health Impacts of the Southeast Asian Transbounday Haze Problem-A Review. International Journal of Environmental Research and Public Health 16:3286.
Chuersuwan N, Nimrat S, Lekphet S, Kerdkumrai T. 2008. Levels and major sources of PM2.5 and PM10 in Bangkok metropolitan region. Environmental International 34:671-677.
Han SW, Tsui K, Ariyajuny B, Kim SB. 2010. A comparison of CUSUM, and Temporal Scan Statistics for Detection of Increased in Poisson Rates. Quality and Reliability Engineering International 26:279-289.
He G, Lui T, Zhou M. 2020. Straw burning PM2.5, and death: Evidence from China. Journal of Development Economics 145:102468.
Health Effects Institute. 2019. State of Global Air 2018 Special Report. Health Effects Institute, Boston, MA. http://challengingheights.org/wpcontent/uploads/2014/10/National_Analytical_Report2010.pdf. (Accessed 27 February 2018)

Herdiani ET, Fandrilla G, Sunnsi Nurtiti. 2018. Modified Exponential Weighted Moving Average (EWMA) Control Chart on Autocorrelation Data. Journal of Physics Conference Series 979:012097.

Hua Y, Cheng Z, Wang S, Jiang J, Chen D, Cai S, Fu X, Fu Q, Chen C, Xu B, Yu J. 2015. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. Atmospheric Environment 123: 380-391.

Huang XHH, Bian Q, Ng WM, Louie PKK, Yu JZ. 2014. Characterization of PM2.5 Major Components and Source Investigation in Suburban Hong Kong: A one Year Monitoring Study. Aerosol and Air Quality Research 14:237-250.

Jiang W, Tsui KL, Woodall WH. 2000. A new SPC monitoring method: The ARMA chart. Technometrics 42:399-410.

Johnston HJ, Mueller W, Steinle S, Vardoulakis S, Tantrakarnnapa K, Loh M, Cherrie JW. 2019. How Harmful Is Particulate Matter Emitted from Biomass Burning? A Thailand Perspective. Current Pollution Reports 5:353-377.

Khan N, Aslam M, Jun C. 2017. Design of a Control Chart Using a Modified EWMA Statistic. Quality and Reliability Engineering International 41:100-114.

Khan N, Yasmin T, Aslam M, Jun CH. 2018. On the performance of modified EWMA chart using resampling schemes. Operations Research and Decision 3:29-43.

Lee HH, Iraqui O, Gu Y, Yim SHL, Chulakadabba A, Tonks AYM, Yang Z, Wang C. 2018. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia. Atmospheric Chemistry and Physics 18:6141-6156.

Li J, Hu Y, Liu L, Wang Q, Zeng J, Chen C. 2020. PM2.5 exposure perturbs lung microbiome and its metabolic profilein mice. Science of the Total Environment 721: 137432.

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. 2020. Environmental and Health Impacts of Air Pollution: A Review. Frontiers in public health 8:14.

Noiplab T, Mayuresawan T. 2019. Modified EWMA Control Chart for Skewed Distributions and Contaminated Process. Thailand Statistician 17:16-29.

Oanh NTK, Kongpran J, Hang NT, Parkpian P, Hung NTQ, Lee SB, Bae GN. 2013. Characterization of gaseous pollutants and PM2.5 at fixed roadsides and along vehicle traveling routes in Bangkok metropolitan Region. Atmospheric Environment 77:674-685.

Page ES. 1954. Continuous Inspection Schemes. Biometrika 41:100-115.

Patel AK, Divecha J. 2011. Modified Exponentially Weighted Moving Average (EWMA) Control Chart for an Analytical Process Data. Journal of Chemical Engineering and Materials Science 2:12-20.
Appendix A1: Derivation ARL for MA(q) process

According to an MA(q) process in the Equation (9) as follows:

\[X_t = \mu + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \ldots - \theta_q \epsilon_{t-q}, \quad (9) \]

Therefore, the modified EWMA statistic for an MA(q) model can be written as
\[Z_t = (1 - \lambda)Z_{t-1} - X_{t-1} + (\lambda + k)\epsilon_t + (\lambda + k)\mu - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-2} - \ldots -(\lambda \theta_q + \theta_q k)\epsilon_{t-q} , \] (13)

where \(t = 1,2,3,\ldots \), the initial value in the process mean \(Z_0 = u \), \(X_0 = v \), \(\epsilon_0 = s \), and we use one side of the control limit (i.e. \(\text{LCL} = 0 \) and \(\text{UCL} = b \). Thus, we can obtain

\[Z_t = (1 - \lambda)u - v + (\lambda + k)\epsilon_t + (\lambda + k)\mu - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} - \ldots -(\lambda \theta_q + \theta_q k)\epsilon_{t-q} . \] (14)

If \(X_t \) causes the out-of-control state for \(Z_t \), then

\[(1 - \lambda)u - v + (\lambda + k)\epsilon_t + (\lambda + k)\mu - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} - \ldots -(\lambda \theta_q + \theta_q k)\epsilon_{t-q} > b \]

or

\[(1 - \lambda)u - v + (\lambda + k)\epsilon_t + (\lambda + k)\mu - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} - \ldots -(\lambda \theta_q + \theta_q k)\epsilon_{t-q} < 0 . \]

If \(X_t \) causes the in-control state for \(Z_t \), then

\[0 < (1 - \lambda)u - v + (\lambda + k)\epsilon_t + (\lambda + k)\mu - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} - \ldots -(\lambda \theta_q + \theta_q k)\epsilon_{t-q} < b . \]

This can be written in the form

\[\frac{(1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k} < \frac{b - (1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k} < \epsilon_i < \frac{b - (1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k} \]

The probability that \(\epsilon_i \) satisfies the bounds mentioned above for probability distribution function \(\epsilon_i \) is given as follows:

\[p \left(\frac{(1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k} < \epsilon_i < \frac{b - (1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k} \right) \]

\[= \int_{\frac{b - (1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k}}^{\frac{b - (1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k}} f(y)dy . \]

According to the method of Champ and Rigdon (1991), let \(L(u) \) denote the ARL on a modified EWMA chart for an MA(q) process. We can write the integral equation in the form

\[L(u) = 1 + \int_{\frac{b - (1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k}}^{\frac{b - (1 - \lambda)u + v - (\lambda + k)\mu + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k}} L \left(\frac{(1 - \lambda)u + v + (\lambda + k)\mu - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} - \ldots -(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k} \right) f(y)dy . \]

(15)

By changing the integral variable:

\[g = (1 - \lambda)u + v + (\lambda + k)\mu - (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} - \ldots -(\lambda \theta_q + \theta_q k)\epsilon_{t-q} , \]

we obtain

\[L(u) = 1 + \frac{1}{\lambda + k} \int_0^b L(g) f \left(\frac{g - (1 - \lambda)u + v + (\lambda \theta_1 + \theta_2 k)\epsilon_{t-1} + \ldots +(\lambda \theta_q + \theta_q k)\epsilon_{t-q}}{\lambda + k} - \mu \right) dg . \]

(16)

In this study, we define \(\epsilon_i \) is a white noise process and assumed that it is exponentially distributed with parameter \(\alpha \). Therefore, the \(L(u) \) is a Fredholm integral equation of the second kind as follow:
\[L(u) = 1 + \frac{1}{\lambda + k} \int_{0}^{b} L(g) \frac{1}{\alpha} e^{-\frac{g}{\alpha(\lambda + k)}} \frac{e^{-\lambda e^{\frac{g}{\alpha(\lambda + k)}} - 1}}{\alpha e^{\frac{g}{\alpha(\lambda + k)}}} dg. \]

(17)

which becomes

\[L(u) = 1 + \frac{e^{\frac{g}{\alpha(\lambda + k)}}}{\alpha(\lambda + k)} \left[e^{-\frac{g}{\alpha(\lambda + k)}} - 1 \right] \int_{0}^{b} L(g) \cdot e^{-\frac{g}{\alpha(\lambda + k)}} dg. \]

(18)

Suppose that

\[C(u) = e^{-\frac{g}{\alpha(\lambda + k)}} \cdot \alpha, \quad 0 \leq u \leq b \]

and

\[D = \int_{0}^{b} L(g) \cdot e^{-\frac{g}{\alpha(\lambda + k)}} dg, \] where \(D \) is a constant.

Thus, we can obtain

\[L(u) = 1 + \frac{C(u)}{\alpha(\lambda + k)} \cdot D. \]

(19)

The ARL for an MA(q) process on a modified EWMA control chart is obtained by deriving a Fredholm integral equation of the second kind as follows:

\[L(u) = 1 - \frac{\lambda e^{\frac{(1-\lambda)u}{\alpha(\lambda + k)}} \left[e^{-\frac{b}{\alpha(\lambda + k)} - 1} \right]}{\lambda e^{\frac{(1-\lambda)u}{\alpha(\lambda + k)}} \cdot e^{-\frac{b}{\alpha(\lambda + k)}} - 1} + e^{-\frac{b}{\alpha(\lambda + k)}} - 1, \]

(10)

with in-control process parameter \(\alpha_0 \) and out-of-control process parameter \(\alpha_1 > \alpha_0 \).

Appendix A2: Existence and Uniqueness of ARLs

The Banach’s Fixed-point Theorem is used to show the exists and a uniqueness of the solution for ARL using the integral equation for the explicit formulas.

Let \(M \neq \emptyset \) be a complete metric space and \(d : M \times M \rightarrow R \). \(d \) is a distance function on \(M \) such that the following axioms hold.

1. \(d(x, y) \geq 0 \) for all \(x, y \in M \)
2. \(d(x, y) = 0 \) if and only if \(x = y \)
3. \(d(x, y) = d(y, x) \leftrightarrow x = y \) for all \(x, y \in M \)
4. \(d(x, y) \leq d(x, z) + d(z, y) \) for all \(x, y, z \in M \).
Since \((M,d)\) is a complete metric space, it denoted the space of all continuous function on \([0,b]\) with the norm \(\|L(u)\| = \sup_{u \in I} |L(u)|\) and every Cauchy’s sequence \(\{L_n\}_{n \geq 0}\) for a point of \(M\) converges to a point \(L_0 \in \[0, b\]\). In this case, let \(T\) be an operation in the class of all continuous functions defined by,

\[
T(L(u)) = 1 + \frac{1}{\lambda + k} \int_0^b L(g) \frac{1}{\alpha} e^{-\frac{g - (1 - \lambda)u + s(\lambda \theta_1 + \theta k)s + (\lambda \theta_2 + \theta k)\epsilon_{-1} + \ldots + (\lambda \theta_{n+1} + \theta k)\epsilon_{-1} + \mu}{\alpha(\lambda + k)}} \, dg .
\]

(20)

By Banach’s Fixed-point Theorem, if an operator \(T\) is a contraction, then the fixed-point equation \(T(L(u)) = L(u)\) has a unique solution. The equation (20) exists and has a unique solution according to the following theorem.

Theorem 1. (Banach’s Fixed-point Theorem)

Let \((M,d)\) be a complete metric space and \(T : M \rightarrow M\) be a contraction mapping with contraction constant \(c \in [0,1)\) such that \(\|T(L_1) - T(L_2)\| \leq c \|L_1 - L_2\|\) for all \(L_1, L_2 \in M\).

Subsequently, there exists a unique \(L(.) \in X\) such that \(T(L(u)) = L(u)\) (Sofonea et al., 2006).

Proof. The inequality

\[
\|T(L_1) - T(L_2)\| \leq c \|L_1 - L_2\| \text{ for all } L_1, L_2 \in \[0, b\] \text{ with } 0 \leq c < 1.
\]

Consider equation (14),

\[
\|T(L_1) - T(L_2)\| = \sup_{u \in \[0, b\]} |L(u)|
\]

\[
= \sup_{u \in \[0, b\]} \left| (L_1(g) - L_2(g)) \frac{1}{\alpha(\lambda + k)} \int_0^b L(g) \frac{1}{\alpha} e^{-\frac{g - (1 - \lambda)u + s(\lambda \theta_1 + \theta k)s + (\lambda \theta_2 + \theta k)\epsilon_{-1} + \ldots + (\lambda \theta_{n+1} + \theta k)\epsilon_{-1} + \mu}{\alpha(\lambda + k)}} \, dg \right|
\]

\[
\leq \sup_{u \in \[0, b\]} \left| L_1 - L_2 \right| \frac{-\alpha(\lambda + k)}{\alpha(\lambda + k)} e^{-\frac{(1 - \lambda)u - (\lambda \theta_1 + \theta k)s - (\lambda \theta_2 + \theta k)\epsilon_{-1} - \ldots - (\lambda \theta_{n+1} + \theta k)\epsilon_{-1} + \mu}{\alpha(\lambda + k)}} \left[e^{-\frac{b}{\alpha(\lambda + k)}} - 1 \right]
\]

\[
= \left| L_1 - L_2 \right| \frac{1 - e^{-\frac{b}{\alpha(\lambda + k)}}}{\alpha(\lambda + k)} \sup_{u \in \[0, b\]} e^{-\frac{(1 - \lambda)u - (\lambda \theta_1 + \theta k)s - (\lambda \theta_2 + \theta k)\epsilon_{-1} - \ldots - (\lambda \theta_{n+1} + \theta k)\epsilon_{-1} + \mu}{\alpha(\lambda + k)}}
\]

\[
= c \left| L_1 - L_2 \right| ,
\]

where \(c = \left| 1 - e^{-\frac{b}{\alpha(\lambda + k)}} \right| \sup_{u \in \[0, b\]} e^{-\frac{(1 - \lambda)u - (\lambda \theta_1 + \theta k)s - (\lambda \theta_2 + \theta k)\epsilon_{-1} - \ldots - (\lambda \theta_{n+1} + \theta k)\epsilon_{-1} + \mu}{\alpha(\lambda + k)}}\); \(0 \leq c < 1\) and \(c\) is a positive constant.

By Theorem 1, Banach’s Fixed-point Theorem guarantees the existence and uniqueness of the solution for the ARL.
Table 1 (on next page)

The ARL of explicit formulas and NIE method for MA(2) when $\mu=2$ and $k=1$ on modified EWMA control chart.
Table 1 The ARL of explicit formulas and NIE method for MA(2) when $\mu=2$ and $k=1$ on modified EWMA control chart.

λ	θ_1	θ_2	b	Explicit	NIE	ε
0.00	0.00	0.00	0.00	500.000070	500.000063	1.249x10^{-6}
0.00	0.00	0.00	0.001	344.029967	344.029963	1.098x10^{-6}
0.00	0.00	0.00	0.003	211.859210	211.859208	9.666x10^{-7}
0.00	0.00	0.00	0.005	153.059939	153.059937	9.058x10^{-7}
0.05	0.3	0.4528820782	0.01	90.369435	90.369435	8.348x10^{-7}
0.05	0.5	0.4528820782	0.05	21.191203	21.191203	6.871x10^{-7}
0.05	0.5	0.4528820782	0.10	10.915019	10.915019	5.891x10^{-7}
0.05	0.5	0.4528820782	0.50	2.615077	2.615077	2.141x10^{-7}
0.05	0.5	0.4528820782	1.00	1.693016	1.693016	8.269x10^{-8}
0.1	0.3	0.45905302	0.01	84.171367	84.171366	1.014x10^{-6}
0.1	0.5	0.45905302	0.05	19.612599	19.612599	6.883x10^{-7}
0.1	0.5	0.45905302	0.10	10.146990	10.146990	5.686x10^{-7}
0.1	0.5	0.45905302	0.50	2.508587	2.508587	1.953x10^{-7}
0.1	0.5	0.45905302	1.00	1.653220	1.653220	7.259x10^{-8}
0.15	0.1	0.572945976	0.01	84.258340	84.258339	2.104x10^{-6}
0.15	0.3	0.572945976	0.05	19.742557	19.742557	1.116x10^{-6}
0.15	0.3	0.572945976	0.10	10.274933	10.274932	8.711x10^{-7}
0.15	0.3	0.572945976	0.50	2.592448	2.592448	2.893x10^{-7}
0.15	0.3	0.572945976	1.00	1.709825	1.709825	1.053x10^{-7}
0.2	0.1	0.583106542	0.005	137.017229	137.017224	4.225x10^{-6}
0.2	0.3	0.583106542	0.01	79.531204	79.531202	2.809x10^{-6}
0.2	0.3	0.583106542	0.05	18.554510	18.554510	1.219x10^{-6}
0.2	0.3	0.583106542	0.10	9.693785	9.693784	9.119x10^{-7}
0.2	0.3	0.583106542	0.50	2.508174	2.508174	2.751x10^{-7}
0.2	0.3	0.583106542	1.00	1.677336	1.677336	1.014x10^{-7}

Where λ is a smoothing parameter, θ_i is a process coefficient, b is UCL, δ is the shift size and ε is the relative error.
Table 2 (on next page)

The ARL of explicit formulas and NIE method for MA(3) when \(\mu=2 \) and \(k=1 \) on modified EWMA control chart.
Table 2 The ARL of explicit formulas and NIE method for MA(3) when $\mu=2$ and $k=1$ on modified EWMA control chart.

λ	θ_i	b	δ	Explicit	NIE	ε
0.00				500.000035	499.99925	2.200 x10^{-5}
0.001				416.626140	416.226056	2.013 x10^{-5}
0.003				312.391104	312.391049	1.777 x10^{-5}
$\theta_i=0.3$	0.005	249.841554		249.841513	1.634 x10^{-5}	
0.05	$\theta_i=0.5$	1.7145985314	0.01	166.435290	166.435266	1.437 x10^{-5}
$\theta_i=0.7$	0.05	45.160512		45.160507	1.073 x10^{-5}	
	0.10	23.579116		23.579114	9.196 x10^{-6}	
	0.50	5.145761		5.145761	4.015 x10^{-6}	
	1.00	2.933150		2.933150	1.841 x10^{-6}	
0.10	$\theta_i=0.5$	1.790036614	0.01	160.685954	160.685914	2.495 x10^{-5}
$\theta_i=0.7$	0.05	43.171580		43.171574	1.322 x10^{-5}	
	0.10	22.563452		22.563449	1.031 x10^{-6}	
	0.50	5.001808		5.001808	4.065 x10^{-6}	
	1.00	2.881284		2.881284	1.833 x10^{-6}	
0.15	$\theta_i=0.5$	0.10145919916	0.01	52.755839	52.755839	4.928 x10^{-7}
$\theta_i=0.7$	0.05	11.649752		11.649752	3.004 x10^{-7}	
	0.10	6.024879		6.024879	2.324 x10^{-7}	
	0.50	1.671266		1.671266	5.983 x10^{-8}	
	1.00	1.247145		1.247145	0.000 x10^{-7}	
0.20	$\theta_i=0.5$	0.1023254883	0.01	49.241334	49.241334	5.910 x10^{-7}
$\theta_i=0.7$	0.05	10.884204		10.884204	3.032 x10^{-7}	
	0.10	5.670187		5.670187	2.293 x10^{-7}	
	0.50	1.630976		1.630976	6.131 x10^{-8}	
	1.00	1.234071		1.234071	0.000 x10^{-7}	

Where λ is a smoothing parameter, θ_i is a process coefficient, b is UCL, δ is the shift size and ε is the relative error.
Table 3 (on next page)

The ARL of explicit formulas and NIE method for MA(3) when \(\mu=2, \lambda=0.1 \) and \(k=5 \lambda, 10 \lambda, 20 \lambda, 50 \lambda \) on modified EWMA control chart.
Table 3 The ARL of explicit formulas and NIE method for MA(3) when $\mu = 2$, $\lambda = 0.1$ and $k = 5\lambda, 10\lambda, 20\lambda, 50\lambda$ on modified EWMA control chart.

k	θ_i	b	δ	Explicit	NIE	ϵ	
0.00		500.000066	500.000043	4.561 x10^{-6}			
0.001		413.570468	413.570451	4.083 x10^{-6}			
0.003		307.119823	307.119812	3.491 x10^{-6}			
	$\theta_i=-0.3$	0.005	244.081098	244.081090	3.137 x10^{-6}		
5λ	$\theta_2=0.7$	0.3993899124	0.01	160.988028	160.988024	2.660 x10^{-6}	
	$\theta_3=-0.5$	0.05	42.170082	42.170082	1.846 x10^{-6}		
		0.10	21.358100	21.358099	1.552 x10^{-6}		
		0.50	4.923636	4.923633	6.280 x10^{-7}		
		1.00	2.542223	2.542223	2.573 x10^{-7}		
		0.00	500.000057	500.000050	1.383 x10^{-6}		
		0.001	322.652564	322.652560	1.028 x10^{-6}		
		0.003	188.777532	188.777531	7.591 x10^{-7}		
	$\theta_i=-0.3$	0.005	133.436625	133.436624	6.465 x10^{-7}		
10λ	$\theta_2=0.7$	0.3381621032	0.01	77.030788	77.030787	5.282 x10^{-7}	
	$\theta_3=-0.5$	0.05	17.693001	17.693001	3.662 x10^{-7}		
		0.10	9.130173	9.130173	3.023 x10^{-7}		
		0.50	2.283033	2.283033	1.007 x10^{-7}		
		1.00	1.537883	1.537883	3.251 x10^{-8}		
		0.00	500.000064	500.000060	5.106 x10^{-7}		
		0.001	259.369506	259.369504	2.735 x10^{-7}		
		0.003	132.360364	132.360364	2.118 x10^{-7}		
	$\theta_i=-0.3$	0.005	88.971221	88.971221	1.455 x10^{-7}		
20λ	$\theta_2=0.7$	0.416955807	0.01	49.057165	49.057164	2.118 x10^{-7}	
	$\theta_3=-0.5$	0.05	11.092459	11.092459	1.451 x10^{-7}		
		0.10	5.913303	5.913303	1.167 x10^{-7}		
		0.50	1.796095	1.796095	3.341 x10^{-8}		
		1.00	1.339172	1.339172	7.467 x10^{-9}		
		0.00	500.000067	500.000064	5.106 x10^{-7}		
		0.001	218.076288	218.076288	2.735 x10^{-7}		
		0.003	102.797634	102.797634	1.760 x10^{-7}		
	$\theta_i=-0.3$	0.005	67.421706	67.421706	1.455 x10^{-7}		
50λ	$\theta_2=0.7$	0.763809721	0.01	36.459416	36.459416	1.74 x10^{-7}	
	$\theta_3=-0.5$	0.05	8.314559	8.314559	7.938 x10^{-8}		
		0.10	4.565969	4.565969	6.132 x10^{-8}		
		0.50	1.588295	1.588295	1.889 x10^{-8}		
		1.00	1.253079	1.253079	4.000 x10^{-8}		

Where λ is a smoothing parameter, θ_i is a process coefficient, b is UCL, δ is the shift size and ϵ is the relative error.
Table 4 (on next page)

Comparison ARL for MA(2) and MA(3) when \(\mu=2 \), \((\theta_1, \theta_2) = (-0.1,-0.3)\), \((\theta_1, \theta_2, \theta_3) = (0.7,0.7,-0.1)\) and \(k=1 \) on EWMA and modified EWMA control charts using by explicit formulas.
Table 4 Comparison ARL for MA(2) and MA(3) when $\mu = 2, (\theta_1, \theta_2) = (-0.1, -0.3), (\theta_1, \theta_2, \theta_3) = (0.7, 0.7, -0.1)$ and $k = 1$ on EWMA and modified EWMA control charts using by explicit formulas.

Shift size (δ)	MA(2)	MA(3)		
	EWMA	Modified	EWMA	Modified
	($h=1.540947 \times 10^{-6}$)	($b=0.247244692$)	($h=9.722515 \times 10^{-2}$)	($b=0.2494786708$)
0.00	500.000084	500.000051	500.000053	500.000045
0.001	491.302902	322.103642	489.573629	311.471395
0.003	474.409028	188.165212	489.573629	177.579957
0.005	458.159230	132.886351	482.755802	124.203548
0.01	420.179693	76.597597	466.298614	70.932841
0.05	216.581889	17.452224	357.212201	16.095125
0.10	101.304137	8.935028	262.720549	8.288535
0.30	9.326784	2.44020	96.241953	3.076188
0.50	2.314971	1.82431	45.489101	2.100245
1.00	1.062006	1.475103	13.178794	1.446133
2.00	1.002599	1.189396	3.916046	1.179423
RMI	3.266348	0.057529	12.408089	0.000000
	EWMA	Modified	EWMA	Modified
	($h=0.26180448$)	($b=1.495885499$)	($h=0.48260591$)	($b=1.552310613$)
0.00	500.000023	500.000016	500.000059	500.000012
0.001	497.068024	389.027511	497.491338	384.835986
0.003	491.267689	269.482277	492.501520	263.538348
0.005	485.551042	206.178820	487.548819	200.434640
0.01	471.616385	129.968083	475.331533	125.474506
0.05	376.298194	33.106525	386.389784	31.756669
0.10	288.608113	17.342524	297.158447	16.662591
0.30	117.137775	6.311771	113.435186	6.117180
0.50	58.046820	4.096353	53.536263	3.995715
1.00	17.466862	2.475941	15.918420	2.438029
2.00	5.133009	1.705112	5.033017	1.691792
RMI	6.988635	0.000000	7.082964	0.000000

Where λ is a smoothing parameter, b is UCL of the modified chart, and h is UCL of the EWMA chart.
Table 5 (on next page)

Comparison ARL for MA(2) observations for PM2.5 in Thailand when $\mu=51.163$, $(\theta_1,\theta_2)=(-0.723,-0.380)$ and $\alpha_0=8.90$ on EWMA and modified EWMA control charts using by explicit formulas.
Table 5 Comparison ARL for MA(2) observations for PM2.5 in Thailand when $\mu = 51.163$, $(\theta_1, \theta_2) = (-0.723, -0.380)$ and $\alpha_0 = 8.90$ on EWMA and modified EWMA control charts using by explicit formulas.

Shift size (δ)	$\lambda = 0.05$	$\lambda = 0.1$		
	EWMA ($h=4.2219x10^{-5}$)	Modified ($b=0.02922099$)	EWMA ($h=0.041728$)	Modified ($b=0.03046693$)
0.00	500.058819	500.062160	500.040155	500.049594
0.001	499.135917	372.303952	499.464575	371.313138
0.003	497.295828	246.500852	498.315774	245.210289
0.005	495.463334	184.318545	497.170110	183.121388
0.01	490.915098	113.156303	494.319608	112.261092
0.05	456.167456	28.053250	472.201199	27.791251
0.10	416.548214	14.711725	446.185321	14.575755
0.30	292.467926	5.402048	357.803981	5.358236
0.50	208.450137	3.507836	289.541426	3.483141
1.00	94.976087	1.428039	176.853408	1.408303
2.00	24.817914	1.428039	75.347531	1.42175

| RMI | 22.115534 | 0.000000 | 33.559477 | 0.000000 |

Shift size (δ)	$\lambda = 0.15$	$\lambda = 0.2$		
	EWMA ($h=0.211034$)	Modified ($b=0.03171369$)	EWMA ($h=0.305241$)	Modified ($b=0.03296119$)
0.00	500.037390	500.045701	500.042301	500.068733
0.001	499.529929	370.409082	499.539394	369.591967
0.003	498.516876	244.034940	498.535421	242.964923
0.005	497.506311	182.033100	497.533895	181.042240
0.01	494.990736	111.449184	495.040738	110.710551
0.05	475.411216	27.553432	475.631720	27.339135
0.10	452.240112	14.452853	452.625967	14.341252
0.30	372.239132	5.318641	373.229915	5.282691
0.50	308.827934	3.460822	310.167476	3.440555
1.00	199.849984	2.078817	210.495325	2.070201
2.00	93.953526	1.420680	95.355765	1.417504

| RMI | 37.060241 | 0.000000 | 37.933433 | 0.000000 |

Where λ is a smoothing parameter, b is UCL of the modified chart, and h is UCL of the EWMA chart.
Table 6 (on next page)

Comparison ARL for MA(3) observations for CO gas in Thailand when $\mu=1.198$, $(\theta_1, \theta_2, \theta_3) = (-0.662, -0.479, -0.495)$ and $\alpha_0=0.1226$ on EWMA and modified EWMA control charts using by explicit formulas.
Table 6 Comparison ARL for MA(3) observations for CO gas in Thailand when $\mu = 1.198$, $(\theta_1, \theta_2, \theta_3) = (-0.662, -0.479, -0.495)$ and $\alpha_0 = 0.1226$ on EWMA and modified EWMA control charts using explicit formulas.

Shift size	$\lambda = 0.05$	$\lambda = 0.1$		
	EWMA ($h = 2.15351\times10^{-10}$)	Modified ($b = 5.6968\times10^{-10}$)	EWMA ($h = 4.97638\times10^{-9}$)	Modified ($b = 5.00361\times10^{-10}$)
0.00	500.018859	500.018440	500.048462	500.049041
0.001	410.684518	12.373073	418.900893	11.525787
0.003	279.691311	4.269468	296.482942	2.537072
0.005	192.837824	2.664904	212.155442	1.501932
0.01	80.144470	1.544761	96.189807	1.501932
0.05	1.406011	1.004560	1.824931	1.004121
0.10	1.007555	1.000146	1.022682	1.000130
0.30	1.000009	1.000000	1.000000	1.000000
0.50	1.000001	1.000000	1.000000	1.000000
1.00	1.000000	1.000000	1.000000	1.000000
2.00	1.000000	1.000000	1.000000	1.000000
RMI	21.935199	0.000000	25.458726	0.000000

Shift size	$\lambda = 0.15$	$\lambda = 0.2$		
	EWMA ($h = 8.7735\times10^{-9}$)	Modified ($b = 4.45335\times10^{-10}$)	EWMA ($h = 9.2341\times10^{-9}$)	Modified ($b = 4.009478\times10^{-10}$)
0.00	500.061271	500.067195	500.027847	500.029982
0.001	443.510830	10.806701	459.400446	10.190344
0.003	350.844729	3.810433	389.296622	3.630480
0.005	279.559120	2.428984	331.547146	2.336624
0.01	163.232107	1.465789	226.523241	1.434960
0.05	7.394604	1.003757	23.667633	1.003452
0.10	1.543142	1.000116	4.865620	1.000105
0.30	1.007718	1.000000	1.171529	1.000000
0.50	1.001440	1.000000	1.048075	1.000000
1.00	1.000237	1.000000	1.011600	1.000000
2.00	1.000061	1.000000	1.003766	1.000000
RMI	36.248876	0.000000	47.475014	0.000000

Where λ is a smoothing parameter, b is UCL of the modified chart, and h is UCL of the EWMA chart.
Figure 1

The process detecting of PM2.5 level observations of modified EWMA control chart.
Figure 2

The process detecting of PM2.5 level observations of EWMA control chart.
Figure 3

The process detecting of CO gas level observations of modified EWMA control chart.
Figure 4

The process detecting of CO gas level observations of EWMA control chart.