Conference on Computational Physics (CCP2012)

for Physics, Chemistry, Biology, Engineering and related academic fields and industrial applications

October 14 (Sunday)-18 (Thursday), 2012
The Nichii Gakkan Conference Center, Kobe, Japan
(next to the K-computer site)
Organized by C20, IUPAP
Contents

Section	Page
WELCOME TO CCP2012	2
GREETINGS ON BEHALF OF CO-ORGANIZING ACADEMIC SOCIETIES	3
GREETINGS ON BEHALF OF THE CO-ORGANIZING FOUR UNIVERSITIES	5
GREETINGS ON BEHALF OF THE JAPANESE MINISTRY, MEXT	6
YOUNG SCIENTIST PRIZE IN COMPUTATIONAL PHYSICS	8
POSTER PRIZES	9
CONFERENCE ORGANIZATION	13
HISTORY OF THE CONFERENCE ON COMPUTATIONAL PHYSICS	14
CCP2012 COMMITTEES	16
GUIDELINES FOR PRESENTERS AND SESSION CHAIRPERSONS	18
PROGRAM AT A GLANCE	20
Welcome to CCP2012

You are welcome to CCP2012, held next to the K computer site in Kobe and in the best season of Japan. The Conference on Computational Physics (CCP) is organized annually under the auspices of the Commission 20 of the IUPAP (International Union of Pure and Applied Physics).

This is the first time it is held in Japan. I was asked to be the chairman about two and half years ago and when I accepted the request I decided to make the conference very unique, different from the traditional style of CCP. I was not satisfied when I attended big conferences where the parallel sessions are classified with the name of the research field. We have many chances to attend domestic and international conferences these days. There it is possible to listen to many talks on the same topics and if the topics are very new, such conference is very useful for my research. I wanted, however, to have some conference where I can listen to a variety of topics carried out with the same method.

Computational science is very unique and it is easy to organize a new type of conference with the classification in the horizontal direction of the matrix made of the names of research fields and the name of numerical methods. You may be able to enumerate easily the name of methods, finite difference, Monte Carlo, particle, molecular dynamics and so on. My dissatisfaction is found to have come from the fact that most of conferences focus on research fields and the method that brings to the scientific research is not highlighted so much. I wanted to listen to topics from fundamental physics to industrial science in a systematic way.

In order to realize such conference, a small number of experts is not enough and I asked the help of more than 100 Japanese computer scientists in a variety of fields. We called this group the Japan Advisory Board (JAB). I asked them to recommend the member of the International Advisory Board (IAB). Then, we could start making the list of plenary speakers and invited speakers. It was almost the end of March this year.

CCP2012 is organized also to celebrate the shared use of the K computer and we selected a venue next to the K computer. The shared use is of course open to the public and started on September 28th, one month earlier than previously scheduled. I hope you also enjoy the guided tour to the K computer.

Throughout CCP2012, I hope new collaborations start among scientists in different fields. It would be also my great pleasure if such an inter-disciplinary conference will encourage young scientists (with their fresh energy and skills) to challenge new topics in different fields, especially emerging ones like bio-computing, industrial applications, social sciences and so on.

Finally, allow me to express my sincere thanks to all members of the local organizing committee (LOC). Twenty scientists from three universities and one institute voluntarily worked very hard to prepare CCP2012 as LOC.

The Chairman, CCP2012

Hideaki Takabe (Aki)
Greetings on behalf of the co-organizing academic societies

Shoji Nagamiya
President of AAPPS and ex-President of JPS

It is my great pleasure to be here at the CCP2012 conference to give an opening address.

First I would like to comment that Moore’s law exists in the computer society. Namely, the computing power is increased twice per 1.5 years. If one waits ten years, the computer power is increased by 100 times, and for the 30 years by 10^6. This is amazing and this trend, which is similar to Livingston’s law in my field of accelerators, is still continuing. The KEI is on this line, I guess, and it provides many useful applications including basic science. Some physics can develop only by such a high-speed computer.

In the field of physics where I am involved, a Nambu theory was published over 50 years ago. The proton mass was generated by a spontaneous symmetry breaking. However, the calculation of the Nambu theory was not possible until very recently, since it requires parallel processors at very high speeds. This is only one example. I would like to say that physics is being developed with computer power enormously, and some filed can be developed only when high-speed computer became available. Namely, Physics and Computer are benefiting each other. I feel, therefore, it very important to have this type of conference here at this time in Japan.

Secondly, in this greeting, since I am from Association of Asia Pacific Physical Societies called, the AAPPS, I would like to say a few words on this organization. First, the AAPPS is the organization for Asian Physical Society, which is similar to EPS. It has held regular conferences during the past 30 years, first in Singapore. Immediately after the 3rd meeting in Hong Kong in 1988 the organization called the AAPPS, the association, was invented by the effort of Professor C. N. Yang and many others. The 12th meeting will be held in Japan in July of the next year.

The Association consists of 17 countries and regions written shown below.

ASEAN Institute of Physics: svirulh@chula.ac.th
Australian Institute of Physics: http://www.aip.org.au/
The Chinese Physical Society: http://www.cps-net.org.cn/
The Physical Society of Hong Kong: http://www.pshk.org.hk/
Indian Physics Association: www.tifr.res.in/~ipa
Indonesian Physical Society: http://hfi.fisika.net/
The Physical Society of Japan: http://wwwsoc.nii.ac.jp/jps/
The Japan Society of Applied Physics: http://www.jsap.or.jp/english/
The Korean Physical Society: http://www.kps.or.kr/home/kor/
Malaysian Institute of Physics: kuru@um.edu.my
Mongolian Physical Society: gantsog@num.edu.mn
Nepal Physical Society: http://www.nps.org.np/
New Zealand Institute of Physics: http://nzip.rsnz.govt.nz/
Physical Society of Philippines: http://www.nip.upd.edu.ph/spp/
Institute of Physics, Singapore: http://www.physics.nus.edu.sg/~phyips
South East Asia Theoretical Physics Association: kkphua@wspc.com.sg
The Physical Society locate din Taipei: http://psroc.phys.ntu.edu.tw/
Thai Institute of Physics: http://www.geocities.com/thai_physics/
Vietnam National Institute of Physics: http://www.iop.vast.ac.vn
Next year at APPC, C. N. Yang, Japanese Nobel laureate, for example, Makoto Kobayashi, and many others join this conference. We receive support not only from AAPPS but also from Japanese Physical Society, Japanese Society of Applied Physics. We also plan to have joint session with European Physical Society, EPS. This is the third meeting between EPS and AAPPS. The conference will be held at Makuhari, close to the Tokyo Airports, both Narita and Haneda. If you are interested in, we always welcome you.

Finally, I would like to comment that the AAPPS donates for this conference the prize for the best young (but not student) poster, similar to the EPS.

Congratulations of this important conference and wish you a great success of the conference. Please also enjoy Japan.
Greetings on behalf of the co-organizing universities

Saburo Aimoto
Vice-President of Osaka University

Good morning, everybody. I am Saburo Aimoto, the trustee and vice–president of Osaka University in charge of basic science.

I would like to extend greetings to all of you here on behalf of co-organizing four Universities of Kobe University, University of Hyogo, Kyoto University, and Osaka University.

It is a great honor for us to welcome you to the Conference on Computational Physics 2012. We would like to express our thanks to all of participants from the heart, especially ones from overseas countries for attending this conference. We also wish to express our sincere thanks to the Commission 20 of the International Union of Pure and Applied Physics, for they decided to hold this conference in Kobe, Japan on the occasion of start of the open use of the K computer. As co-organizers, we are very glad to hear that more than 400 researchers participated from 44 countries.

I am an organic chemist, not a physicist. However, I am often astonished at the rapid and remarkable progress of computational science. Scientists in this field show us deep insight into the truth hidden behind experimental data, and predict the features that we cannot elucidate otherwise. This conference covers a wide variety of topics from different disciplines. It is really fantastic that topics on computational theory, atomic nucleus, prediction of typhoon behavior, laser fusion, chemical reaction, and biological and artificial nanostructures will be discussed in one conference. This suggests that the approach based on computation should be an essential and core driving force for natural science and technology.

I suppose that this must be true for social science, too. Therefore the role of this conference and peoples expectation for the progress of this field must be enormous. In this sense, we have to recall Dr. Noyori’s great effort. I believe that his foresight and leadership have realized the setting of the K computer. Without his strong faith, the construction of the K computer would have ended in an illusion. I hope this conference will send the strong message of the importance of powerful computer infrastructure to the public.

Finally, we wish to earnestly thank to the member of the International Advisory Board and all members of the local organizing committee for the preparations of this conference.

We hope that this conference will be successful and that computational physics will make brilliant progress from now on.

I am a citizen of Kobe. As one of citizens of Kobe, I am very happy if you enjoy your stay in port city Kobe.

Thank you very much for your attention.
Greetings on behalf of the Japanese ministry, MEXT

Takahiro Hayashi
Director, Office for the Promotion of Computing Science

I’d like to say a few words to congratulate the success of CCP2012 conference. I am very pleased to learn that a lot of researchers came together from more than 40 countries and regions, which, I believe, makes this conference truly international. Then, I’d like to express my appreciation to the chair-person, Prof. Takabe of Osaka University and other supporting committee members for their substantial efforts to hold this conference here in Kobe in such a successful way.

The reason why this conference is held here is K computer, that is located at the nearby RIKEN Institute and I know you are invited to the laboratory tours to see K computer during this conference.

As many of you know, K computer has started its full service since last month for academia and industrial uses. Although the first prize of TOP500 was taken over by Sequoia of LLNL, K computer is still the most powerful computer opened to the public and is now ready for production runs to produce innovative new findings which are obtained by only K computer. This is our primary goal and I believe you will find some of those preliminary results at this meeting.

Today, the computational science is becoming a powerful tool for various research areas, and I believe national competitiveness in both academia and industries of the nations depends on the performances of supercomputers they have. In US, Europe, China, Russia, India and other countries as well as in Japan, the computational science is being recognized to be one of the most important strategic technologies for keeping the competitiveness up. And thus, a lot of countries including Japan have been promoting the computational science intensively world wide.

In order to develop such computational sciences, not only hardware developments but also application promotions are important. Such promotion programs, for example, INCITE of US and PRACE of Europe, have been conducted under the governmental supports. Of course, we have also similar one that 50 % of the K computer resources are delivered to in the fields of Life Science, Material, Prediction and Protection of Disaster, Industrial Applications and Astrophysics.

As I mentioned before, the computational science is a powerful tool for various research areas. This means researchers in various areas could interact with each other through the computational science. Therefore, I believe, the computational science has a possibility to be an engine which promotes a fusion among different research areas and then creates a new science. This is another important role of it. In that sense, the role of this conference is very significant.

Finally, I want to emphasize the following. By keeping close collaborations with US, Europe and other countries, we are anxious to continue our activities for making computational science more useful and more productive than ever. As the result, the computational science will become an indispensable tool in daily R&D activities of academia and manufacturing. And, I anticipate IUPAP C20 and CCP will play an important role at the center of it.

K is opened to international researchers through the peer review system. I hope K will play a significant role to promote international collaborations.
I hope all of you’ll have a fruitful time by sharing the latest research knowledge at this conference. And please enjoy your stay here in Kobe and Kobe Beef. Thank you for your attention.
Young Scientist Prize in Computational Physics

During CCP2012, the Young Scientist Prize in Computational Physics for year 2012 was awarded by IUPAP to Professor Roger Melko (Department of Physics & Astronomy, University of Waterloo, Canada) for his innovative and deep achievements in developing quantum Monte Carlo methods for quantum information theory and condensed matter physics.

Message upon receiving the award

I am honoured to receive the 2012 Young Scientist Prize in Computational Physics, and, given the list of previous recipients who came before me, am particularly humbled and grateful to the IUPAP for this recognition. I would like to take the opportunity to thank all of my many collaborators, without whom I could not have performed this research, especially Matthew Hastings who worked patiently with me to develop the first Monte Carlo measurement techniques for Renyi entropies in 2009. With the wide visibility that accompanies such a prestigious award, I hope that younger generations of scientists will be inspired to examine the connections between condensed matter and information theory through computer simulations in the future.

Summary of the talk presented at CCP2012

Title: The Information Age in Simulations of Quantum Matter

Abstract:
Monte Carlo simulations have been ubiquitous in efforts to simulate and characterize properties of materials, matter, and systems, since the advent of computers themselves. In the last several decades, condensed matter physicists have turned simulation technology to the study of a new set of phenomena, loosely called "emergent", present in striking examples such as quasiparticle excitations with fractional charge. Despite this interest, emergence is notoriously difficult to characterize, since it is often not manifested in traditional correlation functions. Motivated by this, a new set of tools was recently developed that allows one to probe emergent phenomena in Monte Carlo simulations through their entanglement entropy - a concept borrowed from quantum information theory. Remarkably, since certain scaling terms in the entanglement entropy appear to be universal, its utility in characterizing phases and phase transitions may be ubiquitous. Thus, Monte Carlo simulations are poised to play a central role in an upcoming paradigm shift where physicists increasingly rely on concepts of information theory to characterize correlations in condensed matter, materials, and systems.
Poster prizes

At the end of the conference three poster prizes offered by EPS (for students), AAPPS, and CCP2012 were assigned to the following participants.

1) Mr. Francesco Calcavecchia (Johannes Gutenberg Universität, Mainz, Germany)(student)

Message upon receiving the award
I want to thank all the organizer of the event, that was very interesting and useful, and gave me the opportunity to visit a wonderful country such as Japan.

Summary of the poster presented at CCP2012

Title: Variational approach to hydrogen’s electronic structure

Abstract:
Hydrogen has a complex and still not well-understood phase diagram, in particular at very high pressures and temperatures. Computational studies of its phase diagram are convenient, since it is extremely difficult and often impossible to experimentally achieve such a high pressure and temperature. Being able to accurately describe the electronic structure is a key ingredient in this investigation.
The variational approach has the big advantage that it permits to control on the quality of the trial wavefunction used to describe the electronic structure, and it is therefore easy to compare different results (the function that gives a lower variational energy is to be favored). The product of the Slater Determinant given by the orbitals found from a mean field approach and a so-called Jastrow correlation function, that takes two-body correlations into account, has shown to give accurate results and to work well for different phases. Nevertheless, we have investigated also a different trial function, called Shadow Wave Function, that potentially gives an even larger flexibility and allows for even more accurate calculations.
2) Dr. Kamal Kumar Choudhary (Shri Vaishnav Institute of Technology and Science, Indore, India)

Message upon receiving the award

CCP2012 has provided a great opportunity and platform to share and discuss the views and ideas in the interdisciplinary fields of computational physics. Awards presented at CCP2012 will definitely motivate the researchers and young scholars to look forward in the field of their interest. I am very much grateful to organizers of CCP2012 to award me the APPS Best Poster Prize.

Summary of the poster presented at CCP2012

Title: Quantitative analysis of thermoelectric properties of crystalline semiconductors embedded with ErAs nanoparticles.

Abstract:
We quantitatively analyzed the thermo electric figure of merit \(ZT = S^2 \sigma T / \kappa \) which can be enhanced by nanostructuring thermoelectric materials. The key reason for increase in \(ZT \) is the reduction of thermal conductivity (\(\kappa \)) and increase in thermoelectric power (\(S \)) by embedding ErAs nanoparticles in \(\text{In}_{0.53}\text{Ga}_{0.47}\text{As} \) crystalline semiconductors. The lattice thermal conductivity and thermoelectric power were studied by incorporating the scattering of phonons with defects, grain boundaries, electrons and phonons in the model Hamiltonian to evaluate the thermoelectric properties. We found that ErAs nanoparticles provide an additional scatterer to phonons, on inserting the nanoparticles in the crystal the phonon scattering with point defects and grain boundaries become more efficient which cause in decrease the thermal conductivity up to half and increase in thermoelectric power up to double of its value of pure crystal. The temperature dependent of thermal conductivity and thermoelectric power are determined by competition among the several operating scattering mechanisms for the heat carriers which depend on concentration of nanoparticles in the crystal. Numerical analysis of thermoelectric properties from the present analysis will help in designing better thermoelectric materials for thermoelectric applications.
3) **Dr. Muhammad Shabbir** (Department of Materials Engineering Science, Graduate School of Engineering Science Osaka University, Japan)

Message upon receiving the award

It was a great experience for me to participate in conference of computational chemistry (CCP2012) held in Kobe, Japan. The real exciting parts were the fascinating poster and plenary lecture sessions though which we have shared our knowledge as well as exchanged our ideas with world leading physicists on many cutting edge issues of computational physics. At the end, the best poster award for our poster came as pleasant surprise to me. It is not only a matter of honor for me but also for our Nakano’s group in Osaka University.

Summary of the poster presented at CCP2012

Title: *Interplay between Diradical Characters and Third-Order Nonlinear Optical Properties in Fullerene Systems*

Abstract:

In the modern era, nonlinear optical (NLO) and spintronic materials are two types of hi-tech and smart materials that have versatile properties. As a pioneering attempt towards understanding of the interplay between these two properties, we proposed a new structure-property relationship between the diradical character (γ_i), which is a chemical index of the bond nature, and the third-order NLO polarizability (second hyperpolarizability, γ) of open-shell singlet systems. We studied the topological dependence of diradical character and second hyperpolarizability (γ) in fullerenes. We found that the large differences between the geometry and topology of fullerenes have a significant effect on the diradical character of each fullerene as elucidated by their odd electron densities distributions. On the basis of their different diradical character, these fullerenes were categorized into three groups, that is, closed-shell ($\gamma_i=0$), intermediate open-shell (0<γ_i<1), and almost pure open-shell compounds ($\gamma_i\approx1$). This categorization has been found in accordance with Clar’s sextet rule that has been applied on Schlegel projections of these fullerenes. For example, we found that closed-shell fullerenes include C_{20}, C_{60}, and C_{70}, whereas fullerenes C_{26} and C_{36} and C_{30}, C_{40}, C_{42}, and C_{48} are pure and intermediate open-shell compounds, respectively. Interestingly, the γ_{zzzz} enhancement ratios between C_{30}/C_{36} and C_{40}/C_{60} are 4.42 and 11.75, respectively, regardless of the smaller π-conjugation size in C_{30} and C_{40} than in C_{36} and C_{60}. Larger γ_{zzzz} values were obtained for other
fullerenes that had intermediate diradical character that is in line to our previous valence configuration interaction (VCI) results for the two-site diradical model. The γ_{zzz} density analysis shows that the large positive contributions originate from the large γ_{zzz} density distributions on the right- and left-extended edges of the fullerenes, between which significant spin polarizations (related to their intermediate diradical character) appear within the spin-unrestricted DFT level of theory. On the bases of this structure-property relationship, we have further constructed bucky ferrocenes with robust second hyperpolarizabilities that can be switched on and off in their singlet and triplet ground states, respectively.
Conference organization

The Conference on Computational Physics (CCP) is organized annually under the auspices of the Commission 20 of the IUPAP (International Union of Pure and Applied Physics).

Main purpose of CCP2012

This 24th Conference on Computational Physics aims at stimulating interdisciplinary discussion and collaboration by putting together researchers interested in various fields of computational science, with focus on pure and applied Physics, Chemistry, Biology, Engineering, Climate, Weather, Earth Science and so on.

Distinctive features

1. Broad range of topics.
2. Thirteen plenary talks with comprehensive reviews from theoretical physics to industrial application.
3. Half of the parallel session organized on the basis of numerical methods and the other half about special topics deemed of particular importance.
4. Speakers are invited to present: i) a comprehensive overview of their research field, ii) the reasons why the selected numerical methods are useful or necessary for their computation, iii) numerical scheme and results, and iv) future prospects.

CCP2012 is co-organized by:

Osaka University
Kyoto University
Kobe University
University of Hyogo
The Japan Physical Society (JPS)
The Japan Society of Applied Physics (JSAP)

It is also endorsed by:

The Ministry of Education, Culture, Sports, Science & Technology in Japan (MEXT)
The Advanced Institute for Computational Science (AICS)
Association of Asia-Pacific Physical Societies (AAPPSS)
European Physical Society (EPS)
American Physical Society (APS)
The Asahi Shimbun (The Newspaper Co LTD)
The Kobe Shimbun (The Newspaper Co LTD)
It is supported by:

The Institute of Laser Engineering (ILE), Osaka University
The Research Center for Nuclear Physics (RCNP), Osaka University
The Earth Simulator Center (JAMSTEC)
Chinese Physical Society (CPS)

It is financially supported by:

Japan Society for the Promotion of Science (JSPS)
Japan World Exposition 1970 Commemorative Fund (JEC Fund)
Kobe Convention & Visitor Association
Nakauchi Tsutomu Convention Promotion Foundation
Fujitsu
NEC

History of the Conference on Computational Physics

The Conference on Computational Physics was organized for the first time in 1989 in Boston, and since 2003 it takes place every year, rotating between Europe-Africa, North-South America, and Asia-Oceania. The keynote plenary talks are presented by prominent researchers in each of the several sub-fields of computational physics and its applications.

Past and future editions of the Conference on Computational Physics:

2013 – Moscow, Russia
2012 - Kobe, Japan
2011 - Gatlinburg, USA
2010 - Trondheim, Norway
2009 - Kaohsiung, Taiwan
2008 - Ouro Preto, Brazil
2007 - Brussels, Belgium
2006 - Gyeongju, Republic of Korea
2005 - Los Angeles, California, USA
2004 - Genoa, Italy
2003 - Beijing, China
2002 - San Diego, California, USA
2001 - Aachen, Germany
2000 - Brisbane, Australia
1999 - Atlanta, Georgia, USA
1998 - Granada, Spain
1997 - Santa Cruz, USA
1996 - Cracow, Poland
1995 - Pittsburgh, USA
1994 - Lugano, Switzerland
1993 - Albuquerque, USA
1992 - Prague, Czech Republic
1991 - San Jose, USA

15
1990 - Amsterdam, the Netherlands
1989 - Boston, USA
CCP2012 Committees

Chair:
Hideaki Takabe (Osaka University, Japan)

Vice-Chairs: (representatives from three regions of the world)
Kimihiko Hirao (RIKEN, (AICS), Kobe, Japan)
Michele Parrinello (ETH, Zürich, Switzerland)
Robert Rosner (University of Chicago, USA)

Scientific secretary:
Luca Baiotti (Osaka University, Japan)

International Advisory Board:
Joan Adler (Technion, Israel)
Gabrielle Allen (Louisiana State University & CCT, USA)
Sinya Aoki (University of Tsukuba, Japan)
Amanda S. Barnard (CSIRO, Australia)
Manuela Campanelli (CCRG & Rochester Institute of Technology, USA)
Stefano Curtarolo (Duke University, USA)
Aysen Ergin (METU, Turkey)
Timothy Germann (Los Alamos National Laboratory, USA)
Helmut Grubmuller (MPI for Biophysical Chemistry, Germany)
Karen A. Hallberg (Centro Atomico Bariloche, Argentine)
Alex Hansen (Norwegian University of Science and Technology, Norway)
Lin-Ni Hau (NCU, China-Taipei)
Xian-Tu He (IAPCM, China)
Jisoon Ihm (Seoul National University, Korea)
Masatoshi Imada (University of Tokyo, Japan)
Chisachi Kato (University of Tokyo, Japan)
A. D. Kennedy (University of Edinburgh, UK)
Werner Krauth (Ecole Normale Superieure, France)
David P. Landau (University of Georgia, USA)
Rubin H. Landau (Oregon State University, USA)
Ewald Müller (MPI for Astrophysics, Germany)
Haruki Nakamura (Osaka University, Japan)
Witold Nazarewicz (University of Tennessee & ORNL, USA)
Jens K. Nørskov (Stanford University, USA)
David Randall (Colorado State University, USA)
Sitangshu Bikas Santra (Indian Institute of Technology Guwahati, India)
Stefano Sanvito (Trinity College Dublin, Ireland)
Katsuhiko Sato (NINS, Japan)
Lev Shchur (Landau ITP, Russia)
Ed Seidel (NSF, USA)
Junko Shigemitsu (Ohio State University, USA)
Sandro Sorella (SISSA, Italy)
Toshikazu Takada (MEXT, Japan)
William M. Tang (Princeton University, USA)
Shinji Tsuneyuki (University of Tokyo, Japan)
DingSheng Wang (Institute of Physics, China)
Kunihiko Watanabe (JAMSTEC, Japan)
Wolfgang Wenzel (KIT, Germany)
Philipp Werner (University of Fribourg, Switzerland)
Naoki Yoshida (IPMU, Japan)
Yasunari Zempo (Hosei University, Japan)

Local Organizing Committee:

Chair: Takahito Nakajima (RIKEN, AICS)
Vice-chair: Ryusuke Numata (University of Hyogo)
Vice-chair: Hideyuki Usui (Kobe University)

Luca Baiotti (Osaka University)
Atsushi Hosaka (Osaka University)
Shiaki Hyodo (University of Hyogo)
Satoshi Itoh (RIKEN, AICS)
Akira Kageyama (Kobe University)
Hiroyuki Kamano (Osaka University)
Yoshinobu Kuramashi (RIKEN, AICS)
Yoshitada Morikawa (Osaka University)
Hideo Nagatomo (Osaka University)
Shin-ichiro Shima (University of Hyogo)
Yuji Sugita (RIKEN, AICS)
Hideaki Takabe (Osaka University)
Shigenori Tanaka (Kobe University)
Seiichiro Ten-no (Kobe University)
Kei Tokita (Osaka University)
Hirofumi Tomita (RIKEN, AICS)
Shugo Yasuda (University of Hyogo)
Seiji Yunoki (RIKEN, AICS)

More than 100 computational scientists experts in fields ranging from pure physics to industrial applications of physics contributed to the completion of the scientific program.
Guidelines for presenters and session chairpersons

We organized parallel sessions on the basis of numerical methods while including very different topics from fundamental physics to industrial applications. In order for the audience to be able to understand the presentations and join the discussion, each presenter (including plenary speakers) is warmly invited to pay attention to the following points:

1. Explain the background and motivation of your research with easy words at first. Avoid using jargon. Assume the audience has knowledge at the level of an undergraduate.

2. Show the basic equations you are going to solve numerically and show them in a form as simple as possible.

3. Explain why you use your specific numerical method and what the unique and challenging points of that numerical scheme are.

4. Describe what the scientific product and result of your simulation is.

5. Explain how to improve the present numerical methods. Then show what original results you expect with such improved or new numerical methods.

The chairperson of each session is asked to stimulate discussion, also by giving ideas on how to help improve the speaker’s computations.

We hope that in this conference you will enjoy interdisciplinary discussion on forefront research and that new collaborations will start through such discussions between scientists in different fields.

Panel discussion

On Thursday 18th between 11:00 and 12:30 we organized a panel discussion on the subject:

"Will computational science be able to provide answers to important problems of human society?"

The panel started with a plenary talk (30 minutes) by a journalist, Ms Atsuko Tsuji of the Asahi Shimbun. The remaining time was left for discussion. Simultaneous English-Japanese translation will be available.
Several booths will complement the conference, advertising scientific projects and other activities.

- **Booth 1.** Predictable life science, healthcare, and drug discovery foundation (by RIKEN)
- **Booth 2.** New materials and energy creation (by Institute for Solid State Physics of the University of Tokyo; Institute for Molecular Science; Institute for Materials Research, Tohoku University)
- **Booth 3.** Projection of global change toward the mitigation of natural disasters (by Japan Agency for Marine-Earth Science and Technology)
- **Booth 4.** Next-generation manufacturing technology (by Institute of Industrial Science, University of Tokyo; Japan Aerospace Exploration Agency; Japan Atomic Energy Agency)
- **Booth 5.** The origin of matter and the universe (by University of Tsukuba, High Energy Accelerator Research Organization, National Astronomical Observatory of Japan)
- **Booth 6.** Fujitsu Company
- **Booth 7.** Center for Planetary Science, Kobe University
- **Booth 8.** Graduate school of Simulation Studies, University of Hyogo
- **Booth 9.** International Office, Osaka University
Program at a glance

Time	Sunday 14 October	Monday 15 October	Tuesday 16 October	Wednesday 17 October	Thursday 18 October
8:00	Registration	Registration	Registration	Registration	Registration
9:00	Opening ceremonies	Plenary: Zhu	Plenary: Okuda	Plenary: Arsuaga	
9:45	Plenary: Imada	Plenary: Pietrucci	Plenary: Pourtois		
10:30	Break	Break	Break	Break	
11:00	Plenary: Papenbrock	Plenary: Blügel	Plenary: Jansen		Panel discussion
11:45	Plenary: Takahashi	Plenary: Melko	Plenary: Krauth		
12:30	Lunch	Lunch	Lunch	Lunch	
13:50	Registration (starting at 15:00) and reception (starting at 17:00)	Parallel sessions	Parallel sessions	Parallel sessions	Parallel sessions
16:00	Poster session	Poster session	Poster session	Poster session	
19:00	Banquet				

Overview of parallel sessions

Oct. 15 (Mon)	K-computer special	Quantum Monte Carlo methods	Multi-hierarchy methods	Education in computational physics	Finite-difference, finite-volume, finite-element methods	Density Matrix Renormalization Group	Climate and disaster prevention
Oct. 16 (Tue)	K-computer special	Quantum Monte Carlo methods	Large-scale computing	Molecular dynamics	Finite-difference, finite-volume, finite-element methods	Density Functional Theory	Particle methods
Oct. 17 (Wed)	Monte Carlo methods	Quantum Monte Carlo methods	Large-scale computing	Molecular dynamics	Community-driven codes	Visualization	Industrial applications
Oct. 18 (Thu)	Monte Carlo methods	Biocomputing	Multi-hierarchy methods	Molecular dynamics	Finite-difference, finite-volume, finite-element methods	Density Functional Theory	Particle methods
Daily schedules

Oct. 14 (Sun)
- 15:00-19:00 Registration
- 17:00-19:00 Reception

Oct. 15 (Mon)
- **8:00-** Registration
- **9:00-9:45** Opening
 - *Masatoshi Imada*, *Quantum Monte Carlo for strongly correlated systems*, University of Tokyo (Japan)
- **10:30-11:00** Break
- **11:00-11:45** *Thomas Papenbrock*, *Computing the atomic nucleus*, University of Tennessee and Oak Ridge National Laboratory (USA)
- **11:45-12:30** *Keiko Takahashi*, *Challenge toward the prediction of typhoon behavior and downpour*, Japan Agency for Marine-Earth Science and Technology (Japan)
- **12:30-13:50** Lunch
- **13:50-16:00** Parallel sessions
 - **K-computer special**
 - **Quantum Monte Carlo methods**
 - **Multi-hierarchy methods**
 - **Education in computational physics**
 - **Finite-difference, finite-volume, finite-element methods**
 - **Density Matrix Renormaliz. Group**
 - **Climate and disaster prevention**
 - **Rooms**
 - K-computer building (AICS), seminar room 1st floor
 - Kobe University, Convention Hall, 2nd floor
 - Nichii Gakkan Conference Center, 3rd floor hall A
 - Nichii Gakkan Conference Center, 2nd floor room 1
 - Nichii Gakkan Conference Center, 3rd floor hall B
 - Nichii Gakkan Conference Center, 2nd floor room 2
 - Nichii Gakkan Conference Center, 2nd floor room 3
- **16:00-17:30** Poster session (with refreshments available)
- **16:00-16:45** Visit to K computer (group A)
- **16:45-17:30** Visit to K computer (group B)

Schedule of the opening ceremony
October 15 (9:00-9:45)

MC: Luca Baiotti

Welcome address:

Hideaki Takabe, Chair of CCP2012

Greeting on behalf of co-organizing academic societies:

Shoji Nagamiya, President of AAPPS and ex-President of JPS

Greeting on behalf of the co-organizing four universities:

Saburo Aimoto, vice-President of Osaka University

Greeting on behalf of our ministry, MEXT:

Takahiro Hayashi, Director, Office for the Promotion of Computing Science

Greeting on behalf of IUPAP,
Alex Hansen, Chair of Commission 20 (Computational Physics), IUPAP

Oct. 16 (Tue)

Time	Speaker and Title	Organization
9:00-9:45	Shao-Ping Zhu, Computer simulations on laser fusion	Institute of Applied Physics and Computational Mathematics (China)
9:45-10:30	Fabio Pietrucci, Molecular dynamics challenges: from chemical reactions to biological and artificial nanostructures	EPF Lausanne (Switzerland)
10:30-10:50	Break	
10:50-11:35	Stefan Blügel, Computing inhomogeneous solids by density functional theory	Forschungszentrum Jülich (Germany)
11:35-12:25	IUPAP Young Scientist Award 2012: Roger Melko, The information age in simulations of quantum matter	University of Waterloo (Canada)
12:25-12:45	Conference photo, in front of the building of K computer	
12:45-13:50	Lunch	
13:50-16:00	Parallel sessions	
	K-computer special	
	Quantum Monte Carlo methods	
	Large-scale computing	
	Molecular dynamics	
	Finite-difference, finite-volume, finite-element methods	
	Density Functional Theory	
	Particle methods	

Time	Session Location
13:50-16:00	K-computer building (AICS), seminar room 1st floor
	Kobe University, Convention Hall 2nd floor
	Nichii Gakkan Conference Center, 3rd floor hall A
	Nichii Gakkan Conference Center, 2nd floor room 1
	Nichii Gakkan Conference Center, 3rd floor hall B
	Nichii Gakkan Conference Center, 2nd floor room 2
	Nichii Gakkan Conference Center, 2nd floor room 3
16:00-17:30	Poster session (with refreshments available)

Oct. 17 (Wed)

Time	Speaker and Title	Organization
9:00-9:45	Motoi Okuda, Development of K-computer and toward exascale computing	Fujitsu (Japan)
9:45-10:30	Geoffrey Pourtois, Modeling challenges in nanoelectronics: an atomistic point of view	Imec (Belgium)
10:30-11:00	Break	
11:00-11:45	Karl Jansen, Lattice computations for high energy and nuclear physics	DESY (Germany)
11:45-12:30	Werner Krauth, Hard-disk melting: New algorithms, new insights	École Normale Supérieure (France)
12:30-13:50	Lunch	
13:50-16:00	Parallel sessions	
	Industrial applications	
	Visualization	
	Large-scale computing	
	Molecular dynamics	
	Quantum Monte Carlo methods	
	Community-driven codes	
	Monte Carlo methods	

Time	Session Location
13:50-16:00	K-computer building (AICS), seminar room 1st floor
	Kobe University, Convention Hall 2nd floor
	Nichii Gakkan Conference Center, 3rd floor hall A
	Nichii Gakkan Conference Center, 2nd floor room 1
	Nichii Gakkan Conference Center, 3rd floor hall B
	Nichii Gakkan Conference Center, 2nd floor room 2
	Nichii Gakkan Conference Center, 2nd floor room 3
16:00-17:30	Poster session (with refreshments available)
Oct. 18 (Thu)

9:00-9:45 F. Javier Arsuaga, *Modeling topological changes of highly confined DNA: Applications to the genomic organization of bacteriophages and trypanosomes*, San Francisco State University (USA)

9:45-10:30 Luciano Rezzolla, *Using numerical relativity to explore fundamental physics and astrophysics*, Albert Einstein Institute (Germany)

10:30-11:00 Break

11:00-12:30 Panel discussion: *Will computational science be able to provide answers to important problems of human society?*

12:30-13:50 Lunch

13:50-16:00 Parallel sessions

Rooms	Biocomputing	Monte Carlo methods	Multi-hierarchy methods	Molecular dynamics	Finite-difference, finite-volume, finite-element methods	Density Functional Theory	Particle methods
K-computer building (AICS), seminar room 1st floor	Kobe University, Convention Hall, 2nd floor	Nichii Gakkan Conference Center, 3rd floor hall A	Nichii Gakkan Conference Center, 2nd floor room 1	Nichii Gakkan Conference Center, 3rd floor hall B	Nichii Gakkan Conference Center, 2nd floor room 2	Nichii Gakkan Conference Center, 2nd floor room 3	

16:00-16:20 Break

16:20-16:50 Poster awards and closing

17:00-17:45 Visit to K computer (group E)

Parallel Sessions

October 15th (Monday)

Finite-difference, finite-volume, finite-element methods (October 15th)

Location: Nichii Gakkan Conference Center, 3rd floor, hall B	Chairperson: Brian Van Straalen
13:50-14:20 Hideo Aochi, *Finite difference simulations of seismic wave propagation for understanding earthquake physics and predicting ground motions: Advances and challenges*, Bureau de Recherches Géologiques et Minières (France)	
14:20-14:50 Petar Mimica, *Numerical simulations of dynamics and emission from relativistic astrophysical jets*, Universidad de Valencia (Spain)	
14:50-15:10 CANCELLED	
15:10-15:30 Takayuki Umeda, *Global Vlasov simulation on magnetospheres of astronomical objects*, Nagoya University (Japan)	
15:30-15:50 Jerome Breil, *Multi-material reconnection-based arbitrary Lagrangian Eulerian (ReALE) method*, CELIA (France)	
Quantum Monte Carlo methods (October 15th)

Time	Speaker	Title	Institution
13:50-14:20	CANCELLED		
14:20-14:50	Michele Casula	Variational Monte Carlo approaches as a route to describe strongly correlated materials from a fully ab-initio perspective	Pierre and Marie Curie University (France)
14:50-15:20	Ting-Wai Chiu	Simulation of lattice QCD with domain-wall fermions	National Taiwan University (Taiwan)
15:20-15:40	Nils Blümer	Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model	Johannes Gutenberg University (Germany)
15:40-16:00	Satoshi Morita	Many-variable variational Monte Carlo calculations of the J_1-J_2 Heisenberg model	University of Tokyo (Japan)

Density Matrix Renormalization Group (October 15th)

(including Direct Matrix Diagonalization, Matrix product states, PEPS, MERA ...)

Time	Speaker	Title	Institution
13:50-14:20	Pieter Maris	No Core CI calculations for light nuclei with chiral 2- and 3-body forces	Iowa State University (USA)
14:20-14:50	Valentin Zauner	Calculating excited states of 1D lattice systems with Matrix Product States	University of Vienna (Austria)
14:50-15:10	Kenji Harada	Numerical study of incommensurability of the spiral state on spin-1/2 spatially anisotropic triangular antiferromagnets using entanglement renormalization	Kyoto University (Japan)
15:10-15:30	Nicolas Lucien Jean	Computational issues of configuration interaction frameworks describing open quantum systems	University of Tennessee (USA)
15:30-15:50	Takashi Abe	Recent development of Monte Carlo shell model and its application to no-core calculations	University of Tokyo (Japan)

Multi-hierarchy methods (October 15th)

Time	Speaker	Title	Institution
13:50-14:20	Alphonse Finel	Inertia dominated criticality in martensites	Laboratoire d’Etudes des Microstructures, ONERA-CNRS (France)
14:20-14:50	Ryoichi Yamamoto	Multiscale simulations of polymeric flow	Kyoto University (Japan)
14:50-15:20	Valentina Vetere	From ab-initio to multiscale modeling of electrochemical systems	CEA/LITEN (France)
15:20-15:40	Nina Elkina	Adaptive mesh refinement method for computational electromagnetics and plasma physics	Ludwig-Maximilians University of Munich (Germany)
15:40-16:00	CANCELLED		
Climate and disaster prevention (October 15th)

Location: Nichii Gakkan Conference Center, 2nd floor, room 3
Chairperson: Keiko Takahashi

Time	Speaker	Title	Institution
13:50-14:20	Yoshiyuki Kaneda	Advanced simulation research on earthquake and tsunami for disaster mitigation,	Japan Agency for Marine-Earth Science and Technology (Japan)
14:20-14:50	Aysen Ergin	Computational challenges of coasts: Disaster prevention and adaptation	Middle East Technical University (Turkey)
14:50-15:20	Muneo Hori	Earthquake response simulation of structures and urban areas using HPC	University of Tokyo (Japan)
15:20-15:50	Masaki Satoh	The global cloud-resolving simulation by the Nonhydrostatic Icosahedral Atmospheric Model, NICAM	University of Tokyo (Japan)
15:50-16:20	Phil Cummins	New Bayesian approaches to geophysical data inference on parallel computers	Australian National University (Australia)
16:20-16:40	Takane Hori	Numerical experiment of sequential data assimilation for crustal deformation between Tonankai and Nankai earthquakes	Japan Agency for Marine-Earth Science and Technology (Japan)

Education in computational physics (October 15th)

Location: Nichii Gakkan Conference Center, 2nd floor, room 1
Chairperson: Joan Adler

Time	Speaker	Title	Institution
13:50-14:20	Nithaya Chetty	Probing the extensive nature of entropy	University of Pretoria (South Africa)
14:20-14:50	Steven Gottlieb	From many students per VAX to many cores per student: Some thoughts on teaching computational physics	Indiana University (USA)
14:50-15:20	Knut Mørken	Integrating computational methods throughout the bachelor education	Oslo University (Norway)
15:20-15:40	Kihyeon Cho	The fusion research of theory-experiment-simulation for particle physics	Korean Institute of Science and Technology Information (Republic of Korea)

K-computer special (October 15th)

Location: K-computer building (AICS), seminar room, 1st floor
Chairperson: Atsushi Oshiyama

Time	Speaker	Title	Institution
13:50-14:20	Shinobu Yoshimura	Petascale simulations of nuclear power plants subjected to strong earthquakes on K-computer	University Tokyo (Japan)
14:20-14:50	Kazuo Kitaura	Large scale quantum chemical calculations on biomolecules	Kobe University (Japan)
14:50-15:20	Hideaki Fujitani	High performance computing for drug development on K computer	University of Tokyo (Japan)
15:20-15:50	Takaharu Otsuka	New horizon of computational nuclear structure physics in the K-computer era	University of Tokyo (Japan)
October 16th (Tuesday)

Finite-difference, finite-volume, finite-element methods (October 16th)

Time	Speaker	Title	Institution
13:50-14:20	Kozo Fujii	Spectral-like schemes and their application to CFD study toward innovation	Japan Aerospace Exploration Agency (JAXA) (Japan)
14:20-14:50	Maxime Viallet	Time-accurate implicit methods for the modeling of low to moderate Mach number flows in stellar interiors	University of Exeter (UK)
14:50-15:10	Pedro Montero	BSSN equations in spherical coordinates without regularization: vacuum and non-vacuum spherically symmetric spacetimes	Max Planck Institute for Astrophysics (Germany)
15:10-15:30	CANCELLED		
15:30-15:50	Ming-Yi Lee	Three-Dimensional Finite Element Simulation of Reflectance of Sub-Wavelength Structures on Silicon Nitride for Solar Cells	National Chiao Tung University (Taiwan)

Particle methods (October 16th)

Time	Speaker	Title	Institution
13:50-14:20	Luís O. Silva	Modeling of multiscale extreme plasma physics scenarios with the Osiris particle-in-cell framework	Instituto Superior Técnico, Lisbon (Portugal)
14:20-14:50	Kohji Yoshikawa	An alternative to N-body methods in astrophysical self-gravitating systems: Vlasov-Poisson simulations	University of Tsukuba (Japan)
14:50-15:10	Nils Moschüring	Divergence-free particle merging using energy conserving particle pushing	Ludwig-Maximilians University of Munich (Germany)
15:10-15:30	Sebastiano Fabio Schifano	Exploiting parallelism in many-core architectures: a test case based on Lattice Boltzmann Models	University of Ferrara and INFN (Italy)
15:30-15:50	Mingyu Zhang	An improved surface tension model for numerical simulation of interfacial flow by Smoothed Particle Hydrodynamics method	Institute of Applied Physics and Computational Mathematics (China)
Molecular Dynamics (October 16th)

Time	Speaker	Title	Institution
13:50-14:20	Ryoji Asahi	*Extension of applicability of molecular dynamics in Li ion battery*	Toyota Central R&D Lab. (Japan)
14:20-14:50	Roland Faller	*Molecular modeling as a tool for nano-biotechnology*	University of California at Davis (USA)
14:50-15:20	Timothy C. Germann	*Molecular dynamics studies of material dynamics: from petascale to exascale*	Los Alamos National Lab (USA)
15:20-15:40	Titus Adrian Beu	*Nanofluidic Transport and field-effect conductance in voltage-controlled carbon nanotubes*	University Babes-Bolyai, Cluj-Napoca (Romania)
15:40-16:00	Tomás Miguel Sintes	*Optimal ring size in magnetic filaments*	Institute for Cross-disciplinary Physics and Complex Systems (Spain)

Quantum Monte Carlo methods (October 16th)

Time	Speaker	Title	Institution
13:50-14:20	Shinji Ejiri	*Numerical study of QCD phase structure at finite temperature and density*	Niigata University (Japan)
14:20-14:50	Stefano Gandolfi	*Neutron matter equation of state, symmetry energy and neutron stars*	Los Alamos National Lab (USA)
14:50-15:10	Americo Tristao Bernardes	*Unveiling global innovation networks*	Universidade Federal de Ouro Preto (Brazil)
15:10-15:30	Tooru Yoshida	*Cluster structure obtained from Monte Carlo shell model calculation*	University of Tokyo (Japan)
15:30-15:50	Shixun Zhang	*A study of parallelizing O(N) Green-Function-Based Monte Carlo method for many fermions coupled with classical degrees of freedoms*	University of Tsukuba (Japan)

Density Functional Theory (October 16th)

Time	Speaker	Title	Institution
13:50-14:20	Silke Biermann	*First principles calculations for correlated electron materials -- where do we stand?*	École Polytechnique, Palaiseau (France)
14:20-14:50		CANCELLED	
14:50-15:20	Minoru Otani	*Computer simulations on electrode-electrolyte interface in batteries*	National Institute of Advanced Industrial Science and Technology (Japan)
15:20-15:40	Van An Dinh	*Can a small polaron form in Olivine LiNiPO4? A Hybrid functional study on the polaron-vacancy complex diffusion*	National Institute for Materials Science (Japan)
15:40-16:00	Yoong-Kee Choe	*Nature of proton transport in polymer electrolyte membranes for fuel cell applications: A first-principles molecular dynamics study*	National Institute of Advanced Industrial Science & Technology (Japan)
Large-scale computing (present and future prospects) (October 16th)

Time	Speaker	Title	Institution
13:50-14:20	Michael Norman	Large scale simulations of cosmic reionization,	San Diego Supercomputer Center (USA)
14:20-14:50	Emanuel Gull	Large cluster dynamical mean field simulations for Hubbard models,	University of Michigan (USA)
14:50-15:10	CANCELLED		
15:10-15:30	Truong Vinh Truong Duy	A three-dimensional domain decomposition method for large-scale ab initio electronic structure calculations,	Japan Advanced Institute of Science and Technology (Japan)

K-computer special (October 16th)

Time	Speaker	Title	Institution
13:50-14:20	Kazuo Saito	Super high-resolution mesoscale weather prediction	Meteorological Research Institute (Japan)
14:20-14:50	Atsushi Oshiyama	Real-Space-Density-Functional approach to electronic properties of nanostructures,	University of Tokyo (Japan)
14:50-15:20	Norbert Attig	JUQUEEN: A multi-petaflop IBM Blue Gene/Q system at Jülich for science and engineering in Europe,	Forschungszentrum Jülich (Germany)
15:20-15:40	Tomoaki Ishiyama	Petascale cosmological N-body simulations on K Computer,	Tsukuba University (Japan)

October 17th (Wednesday)

Molecular Dynamics (October 17th)

Time	Speaker	Title	Institution
13:50-14:20	Stéphane Mazevet	Simulating matter under extreme conditions,	Laboratoire Univers et Théories (LUTH) (France)
14:20-14:50	Ivana Savic	Molecular dynamics and Monte Carlo approaches to thermal transport in nanostructured materials,	University of California at Davis (USA)
14:50-15:20	Enge Wang	Surface studies of ice,	Peking University (China)
15:20-15:40	Vladimir Stegailov	Atomistic simulation of ultrafast laser ablation of gold: Effect of electronic pressure relaxation,	Joint Institute for High Temperatures, Russian Academy of Sciences (Russian Federation)
15:40-16:00	Hongsuk Yi	Parallel programming in Intel MIC architecture,	
Monte Carlo methods (October 17th)

Location: Nichii Gakkan Conference Center, 2nd floor, room 3
Chairperson: Lev N. Shchur

Time	Speaker	Title	Institution
13:50-14:10	Tor Nordam	*The validity of the reduced Rayleigh equation*	Norwegian University of Science and Technology (Norway)
14:10-14:30	Sakineh Hosseinabadi	*Stochastic and fractal properties of silicon and porous silicon rough surfaces*	Islamic Azad University, East Tehran Branch (Iran)
14:30-14:50	Ingve Simonsen	*Photonics on the computer*	Norwegian University of Science and Technology (Norway)
14:50-15:10	Andreas Tröster	*Optimized Fourier Monte Carlo simulation of crystalline membranes*	Vienna University of Technology (Austria)
15:10-15:30	Sally J. Bridgewater	*Adapting phase-switch Monte Carlo for use with flexible organic molecules*	University of Warwick (UK)
15:30-15:50		CANCELLED	

Quantum Monte Carlo methods (October 17th)

Location: Nichii Gakkan Conference Center, 3rd floor, hall B
Chairperson: Karl Jansen

Time	Speaker	Title	Institution
13:50-14:20	Manolo Per	*Calculating physical properties with electronic-structure quantum Monte Carlo*	Commonwealth Scientific and Industrial Research Organisation (Australia)
14:20-14:50	Naoki Kawashima	*Quantum Monte Carlo simulations of deconfined critical point*	Institute for Solid State Physics (Japan)
14:50-15:10	Denis Perret-Gallix	*Computational particle physics for event generators and data analysis*	IN2P3/CNRS (France)

Industrial applications (October 17th)

Location: K-computer building (AICS), seminar room, 1st floor
Chairperson: Yasunari Zempo

Time	Speaker	Title	Institution
13:50-14:20	Chisachi Kato	*Industrial applications of large-scale fluid-dynamics simulations*	University of Tokyo (Japan)
14:20-14:50	Erich Wimmer	*Computational materials science and engineering: achievements, challenges, and perspectives*	Materials Design, Inc. (USA and France)
14:50-15:20	Masaya Ishida	*Computational materials science in industry: Practical applications*	Sumitomo Chemical (Japan)
15:20-15:50	Akira Yamaguchi	*Simulation based approach in nuclear safety assessment*	Osaka University (Japan)
15:50-16:10	Umar Fauzi	*Pore space characterization and fluid flow properties estimation of digital porous materials*	Institut Teknologi Bandung (Indonesia)
Visualization (October 17th)

Time	Speaker	Title	Institution
13:50-14:20	Chandrajit Bajaj	Enhancing visualization of multiscale biophysical simulations	University of Texas at Austin (USA)
14:20-14:50	Sam Yang	Integrate model and data to visualize microstructures of materials non-destructively	Commonwealth Scientific and Industrial Research Organisation (Australia)
14:50-15:20	Akira Kageyama	Scientific visualization by immersive virtual reality	Kobe University (Japan)
15:20-15:40	Joan Adler	3d visualization of atomistic simulations on every desktop	Technion (Israel)
15:40-16:00	Xiao Li	Parallel visual analysis for multi-physics petascale simulations	Institute of Applied Physics and Computational Mathematics (China)

Community-driven codes (October 17th)

Time	Speaker	Title	Institution
13:50-14:20	Brian Van Straalen	Chombo: Still mostly a Cathedral	Berkeley University (USA)
14:20-14:50	Synge Todo	The ALPS project: Open source software for strongly correlated systems	University of Tokyo (Japan)
14:50-15:20	Frank Löffler	The Einstein Toolkit: A community code for computational relativistic astrophysics	Lousiana State University (USA)

Large-scale computing (present and future prospects) (October 17th)

Time	Speaker	Title	Institution
13:50-14:20	Michael Marty Marinak	New frontiers in the simulation of inertial confinement fusion targets	Lawrence Livermore National Laboratory (USA)
14:20-14:50	Pablo Ordejón	Beating the size limits of first-principles calculations in nanoscale systems	Centre d'Investigació en Nanociència i Nanotecnologia (Spain)
14:50-15:10	Adam Padee	Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid	National Centre for Nuclear Research (Poland)
15:10-15:30	Cancelled		
Finite-difference, finite-volume, finite-element methods (October 18th)

Time	Speaker	Title	Institution/Location
13:50-14:20	Yasuhiro Idomura	Computational challenges in petascale fusion plasma simulations	Japan Atomic Energy Agency (JAEA) Japan
14:20-14:50	Scott Noble	Frontiers in computational relativistic magnetohydrodynamics applied to astrophysical systems	Rochester Institute of Technology (USA)
14:50-15:20	Bart van der Holst	Radiation-hydrodynamic simulations of high-energy-density experiments	University of Michigan (USA)
15:20-15:40	Yuichiro Sekiguchi	General relativistic neutrino-radiation (magneto-) hydrodynamics simulations: Formulations and applications	Yukawa Institute for Theoretical Physics (Japan)
15:40-16:00	Ian Hawke	Numerical simulations of neutron star crusts	University of Southampton (UK)

Particle methods (October 18th)

Time	Speaker	Title	Institution/Location
13:50-14:20	Anatoly Spitkovsky	Kinetic simulations of astrophysical shock waves	Princeton University (USA)
14:20-14:50	Rainer Spurzem	Astrophysical supercomputing with programmable hardware in China and Germany, Observatories of China, Chinese Academy of Sciences (China)	Heidelberg University (Germany) & National Astronomical Observatories of China, Chinese Academy of Sciences (China)
14:50-15:10	Yosuke Matsumoto	Electron accelerations at high Mach number shocks: Two-dimensional Particle-in-Cell simulations on massively parallel supercomputer systems	Chiba University (Japan)
15:10-15:30	CANCELLED		
15:30-15:50	Go Ogiya	Study of the core-cusp problem in cold dark matter halos using N-body simulations on GPU clusters	University of Tsukuba (Japan)
Molecular Dynamics (October 18th)

Time	Speaker	Title and Affiliation
13:50-14:20	Richard More	Molecular dynamics with atomic transitions and nuclear reactions, Lawrence Berkeley National Laboratory (USA)
14:20-14:40	Shinichi Miura	Development of variational path integral molecular dynamics method with applications to molecular systems, Kanazawa University (Japan)
14:40-15:00	Kim Hyeon-Deuk	Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, multiple exciton generation and recombination, Kyoto University (Japan)
15:00-15:20	Hideo Kaburaki	A molecular dynamics simulation of fracture process of metals, Japan Atomic Energy Agency (Japan)
15:20-15:40	Shoji Ishibashi	Computational study of magnetic structure of electron-doped CaMnO3, National Institute of Advanced Industrial Science and Technology (Japan)
15:40-16:00	Satoshi Ohmura	Dissociation mechanism of bromo aromatic molecules: an ab initio molecular-dynamics study, Kyoto University (Japan)

Monte Carlo methods (October 18th)

Time	Speaker	Title and Affiliation
13:50-14:20	Markus Eisenbach	Thermodynamics of magnetic systems from first principles: Combining Monte-Carlo and Density Functional calculations, Oak Ridge National Lab (USA)
14:20-14:50		CANCELLED
14:50-15:10	Lev N. Shchur	Parallel uncorrelated streams of pseudorandom numbers: problems and solutions, Landau Institute for Theoretical Physics (Russian Federation)
15:10-15:30	Yoshiaki Kato	Modeling of hot accretion flows around the galactic center black hole, National Astronomical Observatory of Japan (Japan)
15:30-15:50	Paulo Martins	Probability distribution of the order parameter in the directed percolation universality class, Universidade Federal de Mato Grosso, Brazil (Brazil)
Density Functional Theory (October 18th)

Time	Speaker	Title	Institution
13:50-14:20	Thomas Pruschke	*Reduced Density Matrix Functional Theory - A novel path to treat correlations from first principles?*	Georg-August-Universität Göttingen (Germany)
14:20-14:50	Jaejun Yu	*First-principles investigations of strain-dependent magnetism and topological characteristics of quantum materials*	Seoul National University (Republic of Korea)
14:50-15:10	Nguyen Tien Cuong	*Numerical study on electronic and phononic properties of patterned nano pores structured graphene*	Japan Advanced Institute of Science and Technology (Japan)
15:10-15:30	Shuichiro Ebata	*Simulation of heavy ion collision using a time-dependent density functional theory including nuclear superfluidity*	University of Tokyo (Japan)
15:30-15:50	Manoharan Muruganathan	*Impact of point defects in the graphene nanoribbon on its transport characteristics*	Japan Advanced Institute of Science and Technology (Japan)

Multi-hierarchy methods (October 18th)

Time	Speaker	Title	Institution
13:50-14:20	Ritoku Horiuchi	*Multiscale simulations of magnetic reconnection*	National Institute for Fusion Science (NIFS) (Japan)
14:20-14:50		CANCELLED	
14:50-15:10	Cao Xiao Lin	*Multi-physics petascale simulations using JASMIN infrastructure*	Institute of Applied Physics and Computational Mathematics (China)
15:10-15:30	Keizo Fujimoto	*AMR-PIC simulation of collisionless magnetic reconnection*	National Astronomical Observatory of Japan (Japan)
15:30-15:50	Shu Takagi	*Numerical simulation of the platelets adhesions on an injured vessel wall in the presence of red blood cells*	University of Tokyo (Japan)

Bio-computing (October 18th)

Time	Speaker	Title	Institution		
13:50-14:20	Leonardo Guidoni	*Tackling the electron correlation in biomolecules by Quantum Monte Carlo / Molecular Mechanics*	University of L’Aquila (Italy)		
14:20-14:50	Kaori Fukuzawa	*Development and application of ab-initio fragment molecular orbital method for bio-macromolecules*	Mizuho Information & Research Institute Inc. (Japan)		
14:50-15:10	Chi-Tin Shih	*Structural and functional analysis of the drosophila brain network*	Tunghai University (Taiwan)		
15:10-15:30	Busara Pattanasiri	*Thermodynamics and structural behavior of a confined HP protein determined by Wang-Landau sampling*	Mahidol University (Thailand)		
No.	Full Name	Affiliation	Country	Title	Poster Session Details
-----	------------------------	--	-------------	--	------------------------
1	Baumeister Paul F.	PGI & IAS, JARA	Germany	juRS - Massively Parallel DFT Calculations in Real-Space	Poster Session
2	Bernardes Americo	Universidade Federal de Minas Gerais	Brazil	Computer simulation of InAs HEMTs considering strain and Quantum	Poster Session
3	Bobrowski Maciej	Gdansk University of Technology	Poland	Reduction of metal films and chemical vapor deposition of polymers	Poster Session
4	Chen Kuan Peng	National Center for High-Performance Computing	Taiwan	Quantum-Algebra Partition and Quantum Error-Correction Codes	Poster Session
5	de Doncker Elise H.	Western Michigan University	USA	Fluid simulation of plume head-on collision dynamics during pulsed laser	Poster Session
6	Endoh Akira	Fujitsu Laboratories Ltd./NICT	Japan	Monte Carlo simulation of InAs HEMTs considering strain and Quantum	Poster Session
7	Endo H.	Hokkaido University	Japan	Fluid simulation of plume head-on collision dynamics during pulsed laser	Poster Session
8	Fauzi Umar	Faculty of Mathematics and Natural Sciences, ITB	Indonesia	Computer simulation of InAs HEMTs considering strain and Quantum	Poster Session
9	Freza Sylwia	Gdansk University of Technology	Poland	Reduction of metal films and chemical vapor deposition of polymers	Poster Session
10	Fujii Risa	International Centre for High-Performance Computing	Japan	Monte Carlo simulation of InAs HEMTs considering strain and Quantum	Poster Session

Poster Sessions
No.	Title	Presenting Author	Affiliation		
36	Effect of Chemical Kinetics of a Planar Atmosphere-Pressure N2/O2/NH3	J. Kim	Chiao Tung University, Taiwan		
37	A Mechanistic Study of Photodissociation of Graphene	H. Ishida	Kyung Hee University, Republic of Korea		
38	Exact Partition Function Zeros of a Polymer on a Square Lattice	T. Ishida	Soongil University, Republic of Korea		
39	Characteristics of Seismic Networks in Spatial Scales	J. Kim	Kyung Hee University, Republic of Korea		
40	Analysis of Thermal Conductivity of Largescale Low Temperature	P. Kaurav	Govt. Holkar Science College, India		
41	Numerical Study of Electron Acceleration by a Magnetized Plasma Wave	F. Kaurav	Kharazmi University, Iran		
42	MHD Simulations of Compressible Supersonic Turbulence in Galaxy Cluster-like	J. Lee	Kyung Hee University, Republic of Korea		
43	High Pressure Multi-Valance Quantum Calculations for One-Dimensional Hubbard Model	S. Lee	Kyung Hee University, Republic of Korea		
44	Very High Precision Determination of Low-Energy Parameters: The 2d-Phosphodiapsis	K. Kargarian	Kharazmi University, Iran		
45	A Non-Maxwellian Tensor Approach to Photodissociation for Phosphodiapsis and Asymmetric Exclusion Process	P. Kaurav	Kyung Hee University, Republic of Korea		
46	A Population Monte Carlo Estimation of the Current Distribution of an Abolition	F. Li	Soongil University, Republic of Korea		
47	MHD Simulations of Compressible, Supersonic Turbulence in Galaxy Cluster-like	J. Lee	Kyung Hee University, Republic of Korea		
Page	Author	Institution	Title		
------	--------	-------------	-------		
24	Li Zhi	Yukawa Institute for Theoretical Physics, Kyoto University	Spin Density Wave in Chromium under High Pressure		
25	Lin Paoan	National Tsing Hua University	Band structure of zigzag graphene nanoribbon with DFT calculation		
26	Liu Yun-Ping	Department of Physics, National Taiwan University	New Half-metallic Materials Study on Double Perovskite Sr2Bi2OB6 (Bi=B and Fe)		
27	Madkour Tarek M.	The American University in Cairo	Conformational analysis investigation into the influence of nano-porosity of multilayered porous graphene on intrinsic gas permeability and binding of hydrophobic analytes		
28	Matsushita Katsuyoshi	Graduate School of Engineering, Osaka University	Theory of electric transport in helical polyacetylene using quantum Monte Carlo		
29	Mayes Maricris L	Argonne National Laboratory	Towards Large Scale Fully Ab Initio Calculations Using Fragment Molecular Orbital Method on Mira (Blue Gene/Q)		
30	Medina Stefan	University of Mainz, Germany	A mesoscopic simulation method for photovoltaics at high cell efficiencies		
31	Minoshima Takashi	JAMSTEC, Japan	Optimization of the Jastrow factor in the correlated wave function of electrons using the first-principles transcorrelated method for solid-state calculations		
32	Mitsutake Kunitio	Frontier Research Center, Canon Inc.	Monitoring multi-dimensional distributions for visual simulations of molecular processes		
33	Nguyen Huy Duy	Graduate School of Engineering, Osaka University	Transport properties of boron carbide nitride hetero-nanotubes		
34	Ochi Masayuki	Department of Physics, The University of Tokyo	Multi-moment advancement scheme for Vlasov simulations of magnetized plasma		
35	Ono Youky	The University of Tokyo	First-Principles Molecular Dynamics Simulations for Graphene Growth Process on Si-terminated (0001) Surface		
36	Purohit Ghanshyam	Sir Padampat Singhania University, Udaipur, India	Calculation of triple differential cross section for the electron impact ionization of noble gas targets		
37	Rafiee Dastjerdi Somayeh	Shahid Beheshti University, Iran	Finite difference time domain method for calculating the band structure of 2D photonic crystals and near-infrared imaging		
Page	Name	Institutional Affiliation	Country	Paper Title	
------	---------------------------	---	-------------	---	
38	Sako Tokuei	Nihon University	Japan	Fermi- and conjugate-Fermi hole analyses in two-electron atomic systems	
39	Salam Tejeshwori	NEHU India	India	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
40	Sano Takayoshi	Osaka University	Japan	Magnetic Field Amplification Associated with the Nonlinear Growth of Richtmyer-Meshkov Instability	
41	Sharma Uttam	Shri Vaishnav Institute of Technology and Science, Indore	India	Development of tungsten coatings and characterization under plasma operations in ADITYA limiter tokamak and in future SST-1 diverter tokamak	
42	Shinjo Kazuya	Yukawa Institute for Theoretical Physics, Kyoto	Japan	Dynamical DMRG Study of Spin Excitations in Disordered Spin-Peierls Systems	
43	Skurski Piotr	Gdansk University	Poland	Reactivity of paraffins with substituted vinyl molecules	
44	Su Wei Chih	National Center for High-performance Computing	China	Modeling Migration in Multilayer Polymer Systems by a Finite Difference Method	
45	Takeuchi Yasushi	National Institute for R&D, Isotopic and Molecular Technologies, Cluj-Napoca	Romania	A Dynamical Study with Applications of the Pebble Game Algorithm	
46	Teng Ping-Han	National Tsing Hua University	Taiwan	Development of Method for Hordesch's 2X4 System	
47	Tosa Valer	National Institute for R&D, Isotopic and Molecular Technologies, Cluj-Napoca	Romania	A Graph Theoretical Approach to Fluctuating Networks in Glass-Forming Liquids: A Novel Parameter by Instantaneous Normal Mode Analysis for Melting Behaviour	
48	Tröster Andreas	Vienna University	Austria	Monte Carlo Simulation of Curved Interface Free Energies	
49	Wang Kaier	School of Engineering, The University of Waikato	New Zealand	Underlying mechanisms for the slow oscillation observed in nonrelm sleep	
50	Wang Z.	Advanced Manufacturing Research Institute, Tsing Hua University	China	Magnetic Field Amplification Associated with the Nonlinear Growth of Richtmyer-Meshkov Instability	
51	Yamauchi Shuji	Osaka University	Japan	Development of Alkyltransferase of Alkylated Mutagenic DNA Bases	
52	Zeng J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
53	Zhou H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
54	Zhou J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
55	Zhou Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
56	Zhou Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
57	Zhang J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
58	Zhang S.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
59	Zhang W.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
60	Zhao H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
61	Zhao J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
62	Zhao Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
63	Zhao Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
64	Zhou H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
65	Zhou J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
66	Zhou Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
67	Zhou Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
68	Zhang J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
69	Zhang S.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
70	Zhang W.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
71	Zhao H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
72	Zhao J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
73	Zhao Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
74	Zhao Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
75	Zhou H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
76	Zhou J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
77	Zhou Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
78	Zhou Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
79	Zhang J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
80	Zhang S.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
81	Zhang W.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
82	Zhao H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
83	Zhao J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
84	Zhao Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
85	Zhao Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
86	Zhou H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
87	Zhou J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
88	Zhou Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
89	Zhou Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
90	Zhang J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
91	Zhang S.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
92	Zhang W.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
93	Zhao H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
94	Zhao J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
95	Zhao Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
96	Zhao Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
97	Zhou H.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
98	Zhou J.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
99	Zhou Y.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
100	Zhou Z.	National University of Defense	China	Computational calculation of alkyltransferase of alkylated mutagenic DNA bases	
No.	Author	Affiliation	Title		
-----	-------------------	--------------------------------------	--		
39	Wardak Khaleda	King Abdul Aziz University	Investigation of solid state emission of a Cu(I) Br complex using ab initio method		
50	Abdul Aleem	King Abdul Aziz University			
51	Watanabe Takeshi	Department of Scientific Simulations, Nagoya Institute of Technology, Japan	Kinetic energy spectrum of the low Reynolds number turbulence with polymer		
52	Wilms Johannes	University of Vienna, Austria	Advances in Thermocapillary Droplet Migration		
53	Wu Z-B	Chinese Academy of Sciences, China	Mutual Information as a Tool to Study Correlations and Phase Transitions		
54	Yamada Yuta	Osaka Institute of Technology, Japan	Numerical Study of 5-dimensional Gravitational Collapses		
55	Yamaneaka Masanori	Tokyo Institute of Technology, Japan	Numerical study of topological crossover of protein Genus		
56	Yasuda Hiroaki	National Institute of Technology, Japan	Non-equilibrium Green's function calculations of tertiary-quantum cascade		
57	Inagaki Takashi	Tokyo Institute of Technology, Japan			
58	Kinoshita Toshiro	Tokyo Institute of Technology, Japan			
59	Kuroda Hiroshi	Tokyo Institute of Technology, Japan			
60	Kurita Yutaka	Tokyo Institute of Technology, Japan			
61	Kato Hiroyuki	Tokyo Institute of Technology, Japan			
62	Komatsu Takeo	Tokyo Institute of Technology, Japan			
63	Komiyama Hideo	Tokyo Institute of Technology, Japan			
64	Kondo Kenji	Tokyo Institute of Technology, Japan			
65	Kondo Kenji	Tokyo Institute of Technology, Japan			
66	Kondo Kenji	Tokyo Institute of Technology, Japan			
67	Kondo Kenji	Tokyo Institute of Technology, Japan			
68	Kondo Kenji	Tokyo Institute of Technology, Japan			
69	Kondo Kenji	Tokyo Institute of Technology, Japan			
70	Kondo Kenji	Tokyo Institute of Technology, Japan			
71	Kondo Kenji	Tokyo Institute of Technology, Japan			
72	Kondo Kenji	Tokyo Institute of Technology, Japan			
73	Kondo Kenji	Tokyo Institute of Technology, Japan			
74	Kondo Kenji	Tokyo Institute of Technology, Japan			
75	Kondo Kenji	Tokyo Institute of Technology, Japan			
76	Kondo Kenji	Tokyo Institute of Technology, Japan			
77	Kondo Kenji	Tokyo Institute of Technology, Japan			
78	Kondo Kenji	Tokyo Institute of Technology, Japan			
79	Kondo Kenji	Tokyo Institute of Technology, Japan			
80	Kondo Kenji	Tokyo Institute of Technology, Japan			
No.	First Name	Surname	Affiliation	Country	Title
-----	------------	---------	-------------	---------	-------
57	Bui Kieu My Thi	NIMS	Japan	Hybrid Functional Study on Diffusion in Silicate Cathode Material Li2NiSiO4	
58	Chau Shiu-Wu	National Taiwan University of Science and Technology	Taiwan	Thermal Plasma Flow Modeling of Non-Transferred Steam Torch Using a Non-Equilibrium Approach	
59	Cho Kihyeon	KISTI	Republic of Korea	Belle-Eq-related Particle Model for Poor Solvent	
60	Fujimura Takayoshi	The Institute of Scientific and Industrial Research, Osaka University	Japan	Stable arrangement of impurities of copper in silicon	
61	Fukushima Akinori	Tohoku University	Japan	Molecular dynamics simulation of water drop in micro pores	
62	Hanaoka Kyohei	Graduate School of Pure and Applied Sciences, University of Tsukuba	Japan	QM/MM simulation revealed a substrate mediated proton relay mechanism in DNA religation reaction catalyzed by Type II DNA topoisomerase	
63	Iwata Ryosuke	Graduate school of engineering, Gifu University	Japan	Effect of atomic adsorption of catalytic metals on mechanical properties of graphene	
64	Kawaguchi Kazutomo	Kanazawa University	Japan	Free energy profile of Hsp90-ADP binding by molecular dynamics simulations	
65	Kawatsu Tsutomu	Institute for Molecular Science	Japan	A Tunnel Pathway Analysis Using the Semi-Classical Instanton Approach	
66	Kim Kyungsik	Pukyong National University	Republic of Korea	Dynamical mechanism of the scaling behavior in multifractal structures	
67	Kinjo Tomoyuki	Toyota Central R&D Labs., Inc.	Japan	Coarse-grained Particle Model for Polar Solvent	
68	Kirihara Takanobu	University of Tsukuba	Japan	Resolving the outer density profile of dark matter halo in Andromeda Galaxy	
69	Kodera Mitsuru	National Institute for Materials Science	Japan	First-principles study for initial stage of graphene nucleation on the step on SiC	
70	Lee Kyungmoon	Kyungpook National University	Korea	Computational simulation of flow in double curved vascular model: A test on the accuracy of theoretical models on the fluid dynamics	
71	Li Chao	Beijing Institute of Technology	China	Hybrid Method for Modeling of Non-Transferred Steam Torch Using a Non-Equilibrium Approach	
72	Liu Bin	Key Lab of Material Science and Technology, National Taiwan University of Science and Technology	Taiwan	Hybrid Functional Study on Diffusion in Silicate Cathode Material Li2NiO3	

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 011001 doi:10.1088/1742-6596/454/1/011001
Page	Title	Authors	Affiliation			
41	Photoinduced sp in-order destructions in one-dimensional extended Hubbard model	Lu Hantao, YITP, Kyoto University, China				
71	Compatibility-based evolution of bipartite networks and its connectivity and topological overlap patterns	Maeng SeongEun, Inha University, Dept of Physics, Republic of Korea				
84	Quantum Monte Carlo Simulation of Bose-Fermi Mixtures in One-Dimensional Incommensurate Optical Lattices	Masaki Akiko, Institute for Solid State Physics, University of Tokyo, Japan				
77	GPU-Accelerated MD Simulation for Short-Range Particle Interaction	Matsumoto Kosuke, Department of Physics, Kyushu University, Japan				
80	Two-Dimensionaial AMR-PIC Simulation on Solar Wind Interaction with WIND	Miki Yohei, University of Tsukuba, Japan				
83	Hunting a Wandering Black Hole in M31 Halo Using GPU Cluster	Mima Toshiki, Department of Mechanical Engineering, University of Tokyo, Japan				
84	Mean-Field calculations including proton-neutron mixing in atomic nuclei	Noda Masashi, Institute for Molecular Science, Japan				
85	Wave-packet dynamics in rigid bilayer graphene with thin film binding model	Nakatsukasa Takashi, RIKEN Nishina Center, Japan				
78	Molecular dynamics simulation of gas-water transition of water in nanopores with controlled wettability	Nishida Keisuke, Kyoto University, Japan				
76	Hunting a Wandering Black Hole in M31 Halo Using GPU Cluster	Ohtani Hiroaki, National Institute for Fusion Science, Japan				
81	The role of a plasmoid ejection in 3-dimensional Magnetohydrodynamic simulation of solar flare	Otsuka Yuichi, RIKEN Quantitative Biology Center, Japan				
79	Mean-Field calculation including proton-neutron mixing in atomic nuclei	Otsuka Takao, Quantitative Biology Center (QBiC), Japan				
82	Two-Dimensionaial AMR-PIC Simulation on Solar Wind Interaction with WIND	Otsuka Takao, Quantitative Biology Center (QBiC), Japan				
74	Quantum Monte Carlo Simulation of Bose-Fermi Mixtures in One-Dimensional Incommensurate Optical Lattices	Physicals, University of Korea, Dept of Physics, Republic of Korea				
72	Complementarity-based evolution of bipartite networks and its connectivity and topological overlap patterns	Lee Hanjo, YITP, Kyung Hee University, Korea, South Korea				
71	Photoinduced spin-order destructions in one-dimensional extended Hubbard model	Lu Hantao, YITP, Kyoto University, China				
Title	Authors	Affiliation	Page			
--	----------------------------------	------------------------------------	------			
Binding Free Energy of Azurin-Cytochrome c551 Complex by all-atom Molecular Dynamics Simulation	Saito Hiroaki, Kanazawa University Japan	National Institute for Biochemistry, Japan	98			
Directed Sandpile Models on Random and Scale-Free Networks	Shibo Anil Kothari, Ashish Bhattacharya, A. Sarkar	Rane ANC, IGN, Jodhpur, India	99			
Ab Initio Study of Dissociation Reaction of Ethylene Molecules on Nickel Cluster	Muhammad Shahid, M. N. Zafar, M. I. Khan	Department of Physics, Quaid-i-Azam University, Pakistan	94			
Dynamics of Two-Dimensional Quantum Spin Systems	Shubhajit Bhattacharya, Asish Bhattacharya, A. Sarkar	Rane ANC, IGN, Jodhpur, India	99			
First-Principles Study on Noncollinear Magnetism and Effects of Spin-Orbit Coupling in CuAlSe2	Shubhajit Bhattacharya, Asish Bhattacharya, A. Sarkar	Rane ANC, IGN, Jodhpur, India	99			
Influence of Substitutional Impurities in the Electronic Transport	Shubhajit Bhattacharya, Asish Bhattacharya, A. Sarkar	Rane ANC, IGN, Jodhpur, India	99			
Ferromagnetic Half Metals Based on Chalcogenide Semiconductors CuAlSe2, CuInSe2	Shubhajit Bhattacharya, Asish Bhattacharya, A. Sarkar	Rane ANC, IGN, Jodhpur, India	99			
Interplay between Dredgel Characters and Third-Order Nonlinear Optical Properties in Fulgurite Glasses	Shubhajit Bhattacharya, Asish Bhattacharya, A. Sarkar	Rane ANC, IGN, Jodhpur, India	99			
Directed Sandpile Models on Random and Scale-Free Networks	Shibo Anil Kothari, Ashish Bhattacharya, A. Sarkar	Rane ANC, IGN, Jodhpur, India	99			
Binding Energy of Azurin-Cytochrome c551 Complex by all-atom Molecular Dynamics Simulation	Saito Hiroaki, Kanazawa University Japan	National Institute for Biochemistry, Japan	98			
Page	Title	Authors	Institution	Country	Conference	DOI
------	--	--	-----------------------------	--------------	--	--
43	Density functional study of conformational preferences of intermediates and transition states in the alkaline hydrolysis of dimethyl phosphate	Takano Yu Osaka University Japan	Density functional study of conformational preferences of intermediates and transition states in the alkaline hydrolysis of dimethyl phosphate	Japan	24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012)	10.1088/1742-6596/454/1/011001
99	Electronic transport properties in substitutionally doped graphene nanoribbons	Tsuyuki Hiroyoshi Seikei University Japan	Electronic transport properties in substitutionally doped graphene nanoribbons	Japan	24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012)	10.1088/1742-6596/454/1/011001
100	Spin in anomalous Hall conductivities in Ca-based Heusler alloys: A first-principle study of electronic transport properties in substitutionally doped graphene nanoribbons	Tung JenChuan Graduate Institute of Applied Physics National University of Tsukuba Taiwan	SPin in anomalous Hall conductivities in Ca-based Heusler alloys: A first-principle study of electronic transport properties in substitutionally doped graphene nanoribbons	Taiwan	24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012)	10.1088/1742-6596/454/1/011001
N.	SURNAME	NAME	AFFILIATION	COUNTRY	TITLE	
----	---------	------	-------------	---------	-------	
111	Anh	Le	The Japan advanced institute of science and technology	Viet Nam	Ab initio study of Phosphorus donor states in single dopant transistor with a stub-shaped channel	
112	Belosludov	Rodion V	Institute for Materials Research, Tohoku University, Sendai	Japan	Realization of Gas Storage Materials based on Clathrate Hydrate: Computational Modelling	
113	Blümer	Nils	Johannes Gutenberg University Mainz	Germany	Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model	
114	Bouamama	Khellil	University of Setif, Algeria	Algeria	Ab-initio calculation of the photoelastic constants of SiC	
115	Calcavecchia	Francesco	Johannes Gutenberg University Mainz	Germany	Variational Approach to Hydrogen's Electronic Structure	
116	Chakraborty	Himanshu	Indian Institute of Technology Bombay	India	Large scale configuration interaction calculations of linear optical absorption of octacene, nonacene and decacene	
117	Chen	Chih-Huan	Department of Physics, National Taiwan University	Taiwan	Spin-spiral waves in 3d transition metal atomic chains from first principle	
118	Chen	Chun-Nan	National Chiao Tung University	Taiwan	Multi-objective Solar Cell Design Optimization Using Semicon ductor Device	
119	Chen	TingTing	Hiroshima University	Japan	Empirical Study of the GARCH model with Rational Errors	
120	Chetty	Nithaya	University of Pretoria, South Africa	South Africa	The African School of Electronic Structure Methods and Applications	
Page	Title	Author	Institution	Country		
------	---	-------------------------------	------------------------------------	---------		
121	Wavelet Transform and Huffman Coding Based ECG compression Algorithm: Application to Telecardiology	Chouakri Sid Ahmed	University of Sidi Bel Abbes	Algeria		
122	Development of first-principles electronic structure calculation code for large super cell systems by using extended KKR method	Shotaro Doi	Department of Physics, Osaka University	Japan		
123	Perturbation Approaches for Calculating Electronic Structures with Electric Fields	Higashi Fujii	Kyushu University	Japan		
124	Efficient Relaxation of Magnetic Moments in noncollinear DFT calculations	Marcus Heide	Graduate School of Technology, Japan	Japan		
125	Application to molecular systems A simple non-Ewald scheme: The zero-dipole summation method and its extension to spherical and elliptic systems	Ikuo Fukuda	RIKEN	Japan		
126	Effect of the mechanism of magnetic moments on spin dynamics by solute dipole interaction on magnetic moments	Kazuyoshi Hirokawa	Hiroshima University	Japan		
127	Shape transition of micelles in amphiphilic solution: A molecular dynamics study	Susumu Fujiwara	Kyoto Institute of Technology	Japan		
128	Development of first-principles electronic structure calculation code for large super cell systems by using extended KKR method	Yuki Ikeda	Kyoto University	Japan		
129	DFT study of the mechanism for magnetic protonation by solute dipole interaction on magnetic moments	Shu-Ping Huang	Kyushu University	Japan		
130	Perturbation Approaches for Calculating Electronic Structures with Electric Fields	Yoshiro Hikawa	Hokkaido University	Japan		
131	Efficient Relaxation of Magnetic Moments in noncollinear DFT calculations	Hikaru Heide	Graduate School of Technology, Japan	Japan		

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 011001 doi:10.1088/1742-6596/454/1/011001
No.	Name	Affiliation
144	Inoue Shinri	Japan Advanced Institute of Science
		and Technology
143	Ishimoto Yukitaka	RIKEN CDB, Japan
142	Jansen Karl	NIC, DESY Zeuthen, Germany
141	Kaneko Tomoaki	Computational Materials Science Unit,
		NIMS, Japan
140	Lee	Ritsumeikan University, Japan
139	Hiroshi Yuta	University of Tokyo, Japan
138	Kaneko	University of Tokyo, Japan
137	Kawazura Yohei	Institute for Laser Engineering,
		Osaka University, Japan
136	Lee	University of Tokyo, Japan
135	Koyama Hiroshi	National Institute for Nuclear Science,
		Japan
134	Lee	University of Tokyo, Japan
133	Linh Nguyen Van	Ritsumeikan University, Japan
132	Iwata Yuta	Institute for Laser Engineering,
		Osaka University, Japan
131	Miyake Tomoaki	Graduate School of Frontier Science,
		Tokyo, Japan
130	Miyake Toseo	Graduate School of Frontier Science,
		Tokyo, Japan
129	Miyake	Graduate School of Frontier Science,
		Tokyo, Japan
128	Linh	National Institute for Nuclear Science,
		Japan
127	Ishimoto Yuta	University of Tokyo, Japan
126	Kaneko	University of Tokyo, Japan
125	Koyama Hiroshi	National Institute for Nuclear Science,
		Japan
124	Lee	University of Tokyo, Japan
123	Linh Nguyen Van	Ritsumeikan University, Japan
122	Iwata Yuta	Institute for Laser Engineering,
		Osaka University, Japan
121	Miyake Tomoaki	Graduate School of Frontier Science,
		Tokyo, Japan
120	Miyake	Graduate School of Frontier Science,
		Tokyo, Japan
119	Linh	National Institute for Nuclear Science,
		Japan
118	Ishimoto Yuta	University of Tokyo, Japan
117	Kaneko	University of Tokyo, Japan
116	Koyama Hiroshi	National Institute for Nuclear Science,
		Japan
115	Lee	University of Tokyo, Japan
114	Linh Nguyen Van	Ritsumeikan University, Japan
113	Iwata Yuta	Institute for Laser Engineering,
		Osaka University, Japan
112	Miyake Tomoaki	Graduate School of Frontier Science,
		Tokyo, Japan
111	Miyake	Graduate School of Frontier Science,
		Tokyo, Japan
110	Linh	National Institute for Nuclear Science,
		Japan
109	Ishimoto Yuta	University of Tokyo, Japan
108	Kaneko	University of Tokyo, Japan
107	Koyama Hiroshi	National Institute for Nuclear Science,
		Japan
106	Lee	University of Tokyo, Japan
105	Linh Nguyen Van	Ritsumeikan University, Japan
104	Iwata Yuta	Institute for Laser Engineering,
		Osaka University, Japan
103	Miyake Tomoaki	Graduate School of Frontier Science,
		Tokyo, Japan
102	Miyake	Graduate School of Frontier Science,
		Tokyo, Japan
101	Linh	National Institute for Nuclear Science,
		Japan

Research Topics:

- Study on Adsorption of Gas Molecules on Graphene Nanoribbons
- Ab Initio Study on Adsorption of Gas Molecules on Graphene Nanoribbons
- Development of a portable AMR module for various numerical simulations
- Parallel efficiency and recent progress of a linear-scaling DFT code CONQUEST
- Interaction with streaming plasma
- Development of a scalable PIC simulator and its application to spacecraft
- Plasma particle-in-cell simulation with Monte-Carlo QED reactions on pair production experiment using high-Z target
- Agent-based wealth exchange dynamics and power-law distribution of the wealth
- Numerical simulation of primordial vorticity generation by relativistic effect
- Hamiltonian dynamical structure of the Reduced MHD applied to the numerical simulation
- Effect of device geometry on current injection from metal electrodes to graphene: DFT-NEGF calculations
- Graphene: DFT-NEGF calculations
- Parallel efficiency and recent progress of a linear-scaling DFT code CONQUEST
- Interaction with streaming plasma
- Development of a scalable PIC simulator and its application to spacecraft
- Plasma particle-in-cell simulation with Monte-Carlo QED reactions on pair production experiment using high-Z target
- Agent-based wealth exchange dynamics and power-law distribution of the wealth
- Numerical simulation of primordial vorticity generation by relativistic effect
- Hamiltonian dynamical structure of the Reduced MHD applied to the numerical simulation
- Effect of device geometry on current injection from metal electrodes to graphene: DFT-NEGF calculations
- Graphene: DFT-NEGF calculations
| ID | Author(s) | Affiliation | Title |
|-----|--|------------------------------------|--|
| 146 | Nakamura Tatsufumi | Japan Atomic Energy Agency | High power gamma-ray source from laser irradiated solid target |
| 147 | Naylor Wade | Department of Physics, Osaka University | Photon pair creation in microwave cavities with losses and intensity coupled |
| 148 | Nikbakht Shahla | University of Queensland | Computation of Unequal Time Correlation Function for the Asymmetric Simple Exclusion Process Using Matrix Product States |
| 149 | Oda Akifumi | Kanazawa University | Evaluations of conformational search accuracy of CAMDAS using experimental models of protein-ligand complexes |
| 150 | Ogino Yousuke | Tohoku University | Computational code of high-enthalpy flow equations with collisional-radiative processes |
| 151 | SaiToh Akira | National Institute of Informatics | First principles band structure + FLEX approach to the pressure effect on Tc of superconductors |
| 152 | Sakakibara Hiroshi | National Institute of Informatics | Evaluation of conformational search accuracy of CAMDAS using experimental models of protein-ligand complexes |
| 153 | Santra Sitangshu Bikas | Indian Institute of Technology, Guwahati | Does explosive percolation occur away from the critical point? |
| 154 | Schaerf Daniel | University of Mainz | Predicting New Crystal Structures from First-Principles |
| 155 | Senami Masato | Kyoto University | Effects of a surrounding medium of quantum systems on Rigged QED Simulation |
| 156 | Shirai Nobu | Graduate School of Science, Tohoku University | Multicanonical simulation of the Domb-Joyce model and the Go model: new finite-size scaling models for three-dimensional Ising and ferromagnetic systems |
| 157 | Shirakawa Tomonori | RIKEN, Japan | Theoretical studies of a three-band Hubbard model with a strong spin-orbit interaction |
| 158 | Shirakawa Tomonori | RIKEN, Japan | Massive parallelization of ab initio RPA and GW codes |
| ID | Name | Affiliation | Title |
|-----|---------------------------|--|--|
| 48 | Takahashi Masayuki | Department of Aerospace Engineering, Tohoku | Japan Hydrodynamics-Orbit Coupling Calculation for Flight Analysis of Actively Controlled Laser Vehicle |
| 158 | Takaishi Tetsuya | Hiroshima University of Economics | Analysis of spin financial market by GARCH model |
| 159 | Tokita Kei | Cybermedia Center, Osaka | GPGPU Simulations of 2D lattice neutral models in ecology |
| 160 | Torralba Antonio Sanchez | Spanish National Cancer Research Centre (CNIO) | GP/Simulations of 2D lattice neutral models in ecology |
| 161 | Yamanaka Shusuke | Osaka University | How to determine boundaries for QM/MM calculations? A Guideline based on linear response function |
| 162 | Utsunomiya Toshio | National Defense Academy | A Numerical Calculation Method for Feynman Path of Plasma Wave Using Linear Response Function |
| 163 | Yamasaki Takahiro | Fujitsu Laboratories Limited | Linear Response Function |
| 164 | Yuasa Fukuko | KEK | Wave Digital Filters |

Additional details:

- E-mail: To be provided in the compiled form of this document.
- DOI: 10.1088/1742-6596/454/1/011001

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing Journal of Physics: Conference Series 454 (2013) 011001
