Cervical Dystonia Mimics: A Case Series and Review of the Literature

Srinivas Raju¹, Amogh Ravi² & LK Prashanth³,⁴*
¹Department of Neurology, Vydehi Institute of Medical Science & Research Centre, Bangalore, IN, ²Stepping Hill Hospital, Stockport NHS Foundation Trust, Stockport, England, UK, ³Center for Parkinson’s Disease and Movement Disorders Clinic, Vikram Hospitals, Bangalore, IN, ⁴Parkinson’s Disease and Movement Disorders Clinic, Bangalore, IN

Abstract

**Background:** Cervical dystonia is mostly idiopathic in nature. However, a small subset of cases are mimics, leading to diagnostic pitfalls. There is paucity of literature on pseudodystonias affecting the cervical region.

**Method:** We performed a retrospective review of patients attending a movement disorders clinic over a period of 7 years (2012–2018). Among them, those who were considered to have mimics of cervical dystonia based upon clinical and supportive investigations were included.

**Results:** Six out of 2,412 patients (0.24%) were diagnosed as cervical dystonia mimics and the causes included isolated neck extensor myopathy (2), craniovertebral junction anomalies (2), sternocleidomastoid fibrosis (1) and post traumatic sequelae (1). Among these patients, three patients had received various treatments for cervical dystonia, including botulinum toxin injections.

**Discussion:** Mimics of isolated cervical dystonia are rare. A high degree of suspicion and proper diligent clinical assessment assists management and prognostication.

**Keywords:** Cervical dystonia, pseudodystonia, dystonia mimics, head drop, neck extensor myopathy

**Citation:** Raju S, Ravi A, Prashanth LK. Cervical dystonia mimics: a case series and review of the literature. Tremor Other Hyperkinet Mov. 2019; 9. doi: 10.7916/tohm.v0.707

*To whom correspondence should be addressed. E-mail: drprashanth.lk@gmail.com

Editor: Elan D. Louis, Yale University, USA

Received: June 25, 2019; Accepted: November 4, 2019; Published: December 4, 2019

Copyright: © 2019 Raju et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–Noncommercial–No Derivatives License, which permits the user to copy, distribute, and transmit the work provided that the original authors and source are credited; that no commercial use is made of the work; and that the work is not altered or transformed.

Funding: None.

Financial Disclosures: None.

Conflicts of Interest: The authors report no conflicts of interest.

Ethics Statement: All patients that appear on video have provided written informed consent; authorization for the videotaping and publication of the videotape was provided.

Introduction

The 2013 expert consensus panel by Albanese et al. defined dystonia as “a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Dystonic movements are typically patterned, twisting, and may be tremulous. Dystonia is often initiated or worsened by voluntary action and associated with overflow muscle activation.” The goal of the revised definition was to exclude possible conditions that may mimic dystonias, also known as “pseudodystonias.” These pseudodystonias are thought to be caused by etiologies that are presumed to be different from the broader dystonia group.¹ It is critical to diagnose these pseudodystonias, as the therapy and prognostication is significantly different from that of typical idiopathic dystonia. In this article, we review our cases of cervical pseudodystonias along with a review of the published literature.

Methodology

The study involved retrospective analysis of subjects attending a movement disorders clinic over a period of 7 years (January 2012 to December 2018). Clinical records of subjects who were diagnosed to have cervical pseudodystonias based on clinical and imaging findings were included in the study. Patients who had pseudodystonia involving other body parts/segments were excluded.
Results

Six out of the 2412 (0.24%) patients who attended the movement disorders clinic were diagnosed with cervical pseudodystonia (Table 1). These patients were evaluated by health care professionals at various levels, including general physicians and neurophysicians. The causes of cervical pseudodystonia included isolated neck extensor myopathy \((n = 2)\), congenital sternocleidomastoid fibrosis \((n = 1)\), Post traumatic craniocervical junction sequelae \((n = 1)\), and developmental craniovertebral junction (CVJ) anomaly \((n = 2)\). The following two cases illustrate the diagnostic dilemmas, leading to various therapeutic interventions.

### Table 1. Clinical Features and Imaging Findings of Pseudodystonia Subjects

| Video  | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 |
|--------|--------|--------|--------|--------|--------|--------|
| Video 1 |        |        |        |        |        |        |
| Video 2 |        |        |        |        |        |        |
| Age at onset | 45 | Childhood | 6 | 21 | 11 | 24 |
| Current age | 48 | 22 | 6 | 53 | 14 | 24 |
| Gender | M | M | F | M | M | M |
| Clinical presentation | Neck posturing with neck flexion | Abnormal posturing of neck since childhood | Abnormal posturing of neck following a trauma | Posturing of neck since age of 21. Increased in the last 5–6 months with paraspinal spasm | Abnormal neck movements | Neck posturing and discomfort in left hand (acute onset) |
| Clinical findings mimicking dystonia | Antecollis with facial dystonia | Torticollis to the right with minimal retrocollis; left SCM is taut and string like | Severe torticollis with right shoulder elevation | Mild torticollis to the left present with features of antecollis | Jerky neck movements (dystonic jerks vs. akathisia) | Lateral shift to the right with right torticaput |
| Other neurological/clinical findings | Neck extensor weakness (MRC grade 1/5) | Thin and fibrosed left SCM | None | Head drop with neck extensor weakness (G3+/5) | Dysmorphic features | Jerky tremors of hands, bilateral hand grip weakness |
| MRI findings | Fibrosis with fatty infiltration of deep cervical muscles | Atrophy and fibrosis of the left SCM. Scoliosis of the cervical spine with convexity to the right side | Subluxation of C2-C3 | Deep paravertebral muscle atrophy | Increased atlanto dental distance of 100 mm with retroversion of odontoid process. Signal change and thinning of cord at C1-C2 level. Hypertrophied anterior arch of atlas, hypoplastic odontoid process | Multiple anomalies in CVJ with atlanto occipital assimilation, partial fusion of C1-C2 vertebrae, hemi vertebra with fusion of right C4-C5 level along with C3-C4 spinal cord hyperintensities |
| Interventions done before diagnosis | Anticholinergics, Benzodiazepines, Dopamine blocker, Botulinum toxin, none | Two sittings of botulinum toxin injections given. Anticholinergics | None | None | Benzodiazepines | None |
| Final diagnosis | Isolated neck extensor myopathy | Muscular fibrosis | Posttraumatic subluxations | Isolated neck extensor myopathy | Atlanto axial dislocation | CVJ anomaly |
| Intervention after diagnosis | Medical management and supportive care | Option for surgical release given. Patient opted for no intervention | Surgical corrections | Medical management and supportive care | Surgical correction | Surgical referral |
| Abbreviations: CVJ, Craniovertebral Junction; MRC, ; SCM, Sternocleidomastoid Muscle. |
Case 1

A 48-year-old gentleman presented with a 2.5-year history of abnormal posturing of the neck. The symptoms started gradually, reaching a peak at around 5 months after onset. He was diagnosed with cervical dystonia and was treated with an anticholinergic, dopa agonists, and benzodiazepines without any benefit. During this course, he underwent repetitive nerve stimulation and magnetic resonance imaging (MRI) of brain, which was normal. An MRI of the cervical spine showed degenerative disc changes without any significant compression of nerve roots or cord changes. Due to persistent symptoms and impaired activities of daily living, he was referred for botulinum toxin injections. There was no significant family history or history of exposure to antipsychotics. He had anterocollis and intermittent lower facial contractions. Passive range of movements of the neck was within normal limits. Power assessment revealed severe neck extensor weakness (Grade 0–1/5 Medical Research Council (MRC)) (Video 1). There were no other associated findings.

Further evaluation showed normal serum creatinine phosphokinase (CPK) (162 IU/dl). An MRI of the cervical muscles showed atrophy, fatty infiltration, and fibrosis of deep cervical muscles, especially at the level of C2, extending above and below. Trapezius and sternocleidomastoid muscles appeared normal (Figure 1A). Electromyogram of the Trapezius and Semispinalis showed very few motor unit potentials (MUP) and no recruitment. Bilateral sternocleidomastoid showed increased spontaneous activity (right > left), with normal recruitment. Clinically, he was considered to have head drop secondary to isolated neck extensor weakness (INEM), mimicking cervical dystonia.

Case 2

The 22-year-old man presented with a history of abnormal neck posture since early childhood. He was evaluated and diagnosed with cervical dystonia and treated with botulinum toxin injections. Due to limited clinical benefit, he was referred to our clinic. On evaluation, he was noted to have torticollis to the right with mild retrocollis (Video 2). In addition, he was also noted to have a thin and taut left sternocleidomastoid muscle. An MRI of the neck showed atrophy and fibrosis of the left sternocleidomastoid (Figure 1B) along with scoliosis of the cervical spine with convexity to the right side. He was diagnosed with developmental sternocleidomastoid fibrosis mimicking cervical dystonia, and a surgical release was suggested.

Discussion and literature review

Pseudodystonias are a rare group of disorders where appropriate clinical suspicion and evaluation has an impact on treatment and prognostication. Cervical pseudodystonias can be classified further into (1) vascular, (2) musculoskeletal, (3) infections, (4) mass lesions, (5) traumatic, (6) ocular causes (7) otological causes, (8) gastrointestinal causes, (9) psychogenic, and (10) others (Table 2). The aim of the discussion is to highlight potential presentations of cervical pseudodystonia.

(1) Vascular

A number of vascular pathologies can result in true cervical dystonia, majority of them being ischemic or hemorrhagic events of the brainstem, cerebrum, and cerebellum. However, vascular anomalies are noted to have abnormal neck posturing due to compensatory mechanisms to aid visual defects. Other vascular causes like aneurysms and arteriovenous malformations (AVM) can also result in dystonia. An abnormal neck posture can also be seen as a compensatory mechanism to overcome visual field defects masquerading as cervical dystonia. Spinal epidural hemorrhage secondary to severe hemophilia can present with torticollis. The outcomes are...
variable, but spontaneous improvement is reported in almost half of the cases.\(^2\)\(^{10}\)

**(2) Musculoskeletal**

Any anatomical/physiological variations in the cervical musculoskeletal system can present with cervical pseudodystonia. In our series, the possible cause for incorrect diagnosis of cervical dystonia in INEM was additional movements of the facial and neck muscles in an effort to lift the head, giving rise to the interpretation of neck drop as anterocollis. Clinical assessment for muscle strength was the key clinical feature in the diagnosis. Every patient should be evaluated to rule out secondary causes. INEM mimicking cervical dystonia is a rare condition and can pose a diagnostic dilemma. This condition is also known as “dropped head syndrome,” which has a wide spectrum of causes.\(^11\)

Routine blood, electrophysiological, radiological, and histological investigations help in confirming isolated myopathy. Some of these causes are potentially treatable, including myasthenia, hypothyroidism, hyperparathyroidism, hypokalemia, etc. Management of INEM involves physiotherapy, orthotic collars or braces, and rarely surgical fixation.\(^12\)

Congenital muscular torticollis is another common musculoskeletal cause of cervical pseudodystonia. It is commonly diagnosed during infancy and is caused due to intrauterine malposition or birth trauma. On palpation, the sternocleidomastoid muscle is taut and non-tender. Absence of tremor and sensory trick makes cervical dystonia less likely (see Case 2). There is a restriction in the range of movements of the neck. Some cases resolve spontaneously, while most of them respond well to physical therapy. Physical therapy involves passive stretching and encouraging active movements. Less than 10% of cases require surgery. Early treatment remains the key for better outcomes.\(^13\)\(^{–15}\)

Various cranio-cervical developmental anomalies can also present with cervical pseudodystonia. Klippel–Feil syndrome is a congenital anomaly caused by the fusion of a pair or more of cervical vertebrae. It is characterized by a short neck, torticollis, limited range of movements and low posterior hairline. Symptoms become more pronounced during adolescence or young adulthood. Vertigo, tinnitus, and hearing loss are sometimes associated with this condition. It can masquerade as cervical dystonia, which becomes apparent after radiological evaluation. Treatment is mostly symptomatic. Surgery may be needed if associated...
with scoliosis, radiculopathy, or myelopathy. Pseudodystonic posture secondary to Klippel–feil syndrome and diastematomyelia has been reported. Other CVJ anomalies like Chiari malformation and basilar invagination are known to cause torticollis. Syringomyelia associated with torticollis is a rare presentation. It requires a high degree of suspicion when head tilt is seen along with sensory loss. Dystonic movements of the rest of the body can also be seen occasionally. An MRI of the spine can confirm the diagnosis. Decompression of the syrinx relieves the symptoms.

Acute, painful torticollis in children with a history of fall or trauma points toward atlantoaxial rotatory subluxation (AARS). It can also be due to a local inflammatory process, or connective tissue disorders. A rare case of AARS was seen associated with familial Mediterranean fever (FMF) presenting with torticollis. FMF is an autosomal recessive autoinflammatory condition, presenting with episodes of fever and serositis. Cervical dystonia in ankylosing spondylitis resulting in AARS and cranio cervical osseous fusion (CCOF) has been reported. If there is no history of trauma, it is important to look for a history of recent ENT surgeries or any inflammatory conditions of the neck, as it could be Grisel's syndrome, which is a non-traumatic atlantoaxial subluxation resulting from an ongoing local inflammatory process. Grisel's syndrome is more commonly seen in children due to laxity of ligaments along with the tenderness of the spinous process, and there may be unilateral occipital pain. A spinal cord injury should be

**Video 2.** Video Shows Limitation of Rotation of Neck to the Left Along with Right Lateral Shift Torticaput to the Right. The prominence of sternocleidomastoid at its origin can be easily appreciated on the left side.

**Video 3.** Video Shows Right Lateral Shift of Neck Along with Left Shoulder Elevation. In addition, limitation of rotatory movements of neck to both right and left is shown.
Table 2. Cause of potential mimics of isolated idiopathic cervical dystonia Pseudodystonia

| Classification          | Causes                                                                 |
|------------------------|----------------------------------------------------------------------|
| Vascular causes        | 1. Spinal epidural haemorrhage                                      |
|                        | 2. Cerebellar infarct/haemorrhage                                   |
|                        | 3. Lateral medullary infarct                                        |
|                        | 4. Cerebral haemorrhage                                            |
|                        | 5. Bilateral Putaminal haemorrhage                                  |
|                        | 6. Cerebral AVM                                                     |
|                        | 7. Unilateral hypoplasia of Internal Carotid artery                 |
|                        | 8. ACOM                                                             |
|                        | 9. Vascular pseudo retrocollis                                      |
| Musculoskeletal        | 1. AARS                                                            |
|                        | 2. Fibrodysplasia ossificans                                       |
|                        | 3. Acute calcific tendinitis                                       |
|                        | 4. Basilar invagination                                             |
|                        | 5. Chiari 1 malformation                                            |
|                        | 6. Klippel-Fiel syndrome                                            |
|                        | 7. Syringomyelia                                                    |
|                        | 8. Diastomatomyelia                                                |
|                        | 9. Osteomyelitis                                                    |
|                        | 10. Inter vertebral disc calcification                             |
|                        | 11. Facetal hypertrophy                                            |
|                        | 12. Ankylosing spondylitis                                         |
|                        | 13. Fibromatosis of sternocleidomastoid                            |
|                        | 14. Nodular fascitis of sternocleidomastoid                        |
|                        | 15. Congenital osseous c2-c3 synostosis                            |
|                        | 16. Cervical spondylo discitis                                     |
|                        | 17. Osteoporotic fracture                                           |
|                        | 18. Absent sternocleidomastoid muscle                               |
| Infections             | 1. Septic arthritis                                                |
|                        | 2. Cat scratch disease                                             |
|                        | 3. Tuberculoma                                                      |
|                        | 4. Bacterial meningitis                                             |
|                        | 5. Acute febrile torticollis                                       |
|                        | 6. Acute encephalomyelitis                                         |
|                        | 7. Paravertebral Brucellar abscess                                 |
|                        | 8. Cervical epidural abscess                                       |
|                        | 9. Pharyngeal abscess                                              |
|                        | 10. Retroparyngeal abscess                                         |
|                        | 11. Sternocleidomastoid abscess                                     |
|                        | 12. Pyomyositis of paraspinal muscles                              |
|                        | 13. Lymphadenitis                                                   |
|                        | 14. Tuberculosis of bones & joints                                  |
| Mass / Space occupying  | 1. Tumor calcinosis of cervical spine                              |
| lesions                | 2. Intra thoracic malignancy                                       |
|                        | 3. Posterior fossa tumor                                           |
|                        | 4. Arachnoid cyst                                                  |
|                        | 5. Spinal cord ependymoma                                          |
|                        | 6. Cervical osteoblastoma                                          |
|                        | 7. Medullary tumor                                                 |
|                        | 8. Posterior glioma                                                |
|                        | 9. Ewing’s sarcoma                                                 |
|                        | 10. Osteochondroma                                                 |
|                        | 11. Giant cell tumor                                               |
|                        | 12. Osteoid osteoma                                                |
|                        | 13. Cervical hemangioblastoma                                      |

Table 2. (Continued) Cause of potential mimics of isolated idiopathic cervical dystonia Pseudodystonia

| Classification    | Causes                                                                 |
|-------------------|----------------------------------------------------------------------|
| Traumatic         | 1. Odontoid fracture                                                |
|                   | 2. Laminar fracture                                                 |
|                   | 3. Condylar fracture                                                |
|                   | 4. C1 dislocation with split atlas                                  |
|                   | 5. Fracture of c2 lamina                                           |
|                   | 6. Brachial plexus injury                                           |
|                   | 7. Post trauma foreign body                                         |
|                   | 8. Pneumomediastin                                                  |
| Ocular Causes      | 1. Congenital Nystagmus                                            |
|                   | 2. Nystagmus Compensation Syndrome                                  |
|                   | 3. Spasmus nutans                                                   |
|                   | 4. Oculomotor apraxia                                               |
|                   | 5. Refractive error                                                 |
|                   | 6. Blepharoptosis                                                   |
|                   | 7. Superior oblique palsy                                          |
|                   | 8. Abducens Palsy                                                  |
|                   | 9. Vertically incomitant horizontal strabism                         |
|                   | 10. Duane syndrome                                                  |
|                   | 11. Brown’s syndrome                                                |
|                   | 12. Double elevator palsy                                          |
|                   | 13. Orbital floor fracture                                          |
|                   | 14. Endocrine ophthalmopathy                                        |
|                   | 15. Congenital fibrosis syndrome                                    |
|                   | 16. Inferior oblique muscle palsy (ocular torticollis)              |
| Otological Causes  | 1. Acute Mastoiditis                                                |
|                   | 2. Saccular dysfunction                                             |
|                   | 3. Bezold’s abscess                                                 |
| Gastrointestinal causes | 1. Sandifer’s syndrome                                            |
| Others            | 1. Multiple sclerosis                                               |
|                   | 2. Acute disseminated encephalomyelitis                             |
|                   | 3. Idiopathic intracranial hypertension                            |
|                   | 4. Hypereosinophilic syndrome                                        |
|                   | 5. Widespread nevus spilus                                          |
|                   | 6. Parry-Romberg syndrome                                           |
|                   | 7. Moyamoya disease                                                |
|                   | 8. Behcet’s disease                                                |
|                   | 9. Kawasaki disease                                                |
|                   | 10. Goeminne syndrome                                               |
|                   | 11. Langerhans cell histiocytosis                                   |
|                   | 12. Allergy                                                        |
|                   | 13. Iatrogenic hypoparathyroidism                                   |
|                   | 14. Congenital muscular torticollis                                 |
|                   | 15. Benign paroxysmal torticollis                                   |
suspected if there are associated neurological symptoms such as unsteady gait or hyperreflexia. Early diagnosis and management is the key. It is usually treated by manipulation under anesthesia and immobilization. For less severe cases, cervical soft collar with rest and analgesia may be sufficient. Delay in the diagnosis can lead to neurological complications and require surgery.

Other causes like intervertebral disc calcification, acute calcific tendinitis of longus colli, facetal hypertrophy, and nodular fasciitis of sternocleidomastoid should be considered in the differential diagnosis of musculoskeletal causes of pseudodystonia.

(3) Infections

Infections of the upper respiratory tract or soft tissues of the neck can cause torticollis to mimic cervical dystonia. These include cervical adenitis, lymphadenitis, retropharyngeal abscess, and sternocleidomastoid myositis. Retropharyngeal abscess is a serious condition presenting with severe pain, fever, and difficulty in breathing and swallowing along with torticollis. It requires immediate treatment with antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), and sometimes surgical drainage of the abscess. Similarly, paravertebral brucellar abscess and sternocleidomastoid abscess are documented to present as cervical pseudodystonia. Other reported causes of atypical infections presenting with cervical pseudodystonias include cat scratch disease, encephalomyelitis, bacterial meningitis, neuroborreliosis, tuberculosis of the bone and joints, septic arthritis, spondylodiscitis, and osteomyelitis.

(4) Mass lesions/space occupying lesions

Central nervous system lesions can also cause cervical pseudodystonia, along with symptoms like nausea, vomiting, headache, ataxia, visual disturbances, and cranial nerve deficits. These lesions include posterior fossa and infratentorial tumors (more commonly in the cerebellum, third ventricle, and brainstem) and spinal cord tumors like astrocytomas, medulloblastomas, and ependymomas. Cervical osteoblastoma, hemangioblastoma, osteochondroma, osteoid osteoma, fibrodyplasia ossificans progressiva, giant cell tumor, and Ewings sarcoma can all present with torticollis. Torticollis in children requires brain and spinal cord imaging to avoid delay in diagnosis, which can be life threatening. Surgical removal of the tumor in most cases results in resolution of the symptoms.

Cervical pseudodystonia has been described in carcinoma larynx (following radiation therapy) due to fibrosis of neck muscles and in a Pancoast tumor of the lung due to possible segmental demyelination of the 11th cranial nerve.

(5) Traumatic

Trauma resulting in odontoid fracture, laminar fracture, condylar fracture, osteoporotic fracture, C1 dislocation with split atlas due to various causes can all present as dystonia mimics. Appropriate management will alleviate symptoms.

Other traumatic conditions presenting with a similar picture include brachial plexus injury, pneumomediastinum, foreign body, and rarely electrical injury.

(6) Ocular causes

Ocular causes like congenital nystagmus, nystagmus compensation (blockage) syndrome, spasmus nutans, oculomotor apraxia, refractive error, blepharoptosis, superior oblique palsy, abducens palsy, vertically incontinent horizontal strabismus, Duane syndrome, Brown’s syndrome, double elevator palsy, orbital floor fracture, endocrine ophthalmopathy, congenital fibrosis syndrome, and inferior oblique muscle palsy may present with torticollis called ocular torticollis. Abnormal head position is assumed in order to maintain binocularity and/or to optimize visual acuity. Bielschowsky head tilt test is the primary test in the ocular torticollis workup. Treatment is usually surgical and depends on the underlying cause.

(7) Otological causes

Cervical pseudodystonias secondary to vestibular dysfunctions contribute to otological causes. These patients have ataxia, vertigo, or nystagmus along with torticollis. Acute mastoiditis, saccular dysfunction, and Bezold’s abscess are few examples. This requires further assessment of the vestibular system and management.

(8) Gastrointestinal causes

In a child presenting with torticollis or side-to-side head movements associated with vomiting, regurgitation, or epigastric pain, Sandifer’s syndrome can be suspected. The symptoms can be intermittent and are associated with meals in most cases. The symptoms are probably due to the patient assuming a position to minimize the painful acid reflux. As the early symptoms resemble dystonia, evaluation is focused on neurological etiology, which is usually normal. Diagnosis is by monitoring esophageal pH and demonstrating reflux. Medical treatment for gastroesophageal reflux usually resolves the symptoms, but sometimes this condition requires surgery.

(9) Psychogenic dystonias

Psychogenic dystonia, also known as functional dystonia, is a controversial diagnosis commonly associated with psychiatric comorbidities.
like anxiety, depression, and personality disorders. Variability of symptoms suggests a psychogenic cause. The current classification has suggested categorization of psychogenic dystonias as one of the acquired dystonias. Although prognosis can be poor with long-term disability, the mainstay of management involves communicating the diagnosis with the patient, physiotherapy, and behavioral therapy.

(10) Others

There are various other causes of cervical pseudodystonias, which are either rarely reported or documented as single association. Among these, benign paroxysmal torticollis (BPT) of infancy is a self-limiting condition, characterized by periods of unusual, sustained posture of the head and neck, during which the head tilts to one side. Episodes are often accompanied by marked autonomic features, irritability, ataxia, apathy, and drowsiness. They last several hours to a few days and often recur every few weeks. They subside within the pre-school years. It is essential to recognize this condition and to reassure parents of its benign course and not to be misdiagnosed for other disorders, such as epileptic seizures. BPT of infancy has been linked to CACNA1A mutations and are likely to be associated with familial hemiplegic migraine, episodic ataxia, and paroxysmal tonic upgaze.

There is no approved medication for the disease. Some studies have demonstrated the uses of cyproheptadine and topiramate for BPT.

Other rare neurological causes presenting as cervical pseudodystonia include idiopathic intracranial hypertension, acute demyelinating encephalomyelitis, multiple sclerosis, Guillain–Barre syndrome, hypereosinophilic syndrome, widespread nevus spilus, Parry–Romberg syndrome, moyamoya disease, atypical Kawasaki disease, Behcet’s disease, Langerhans cell histiocytosis, Goldenhar syndrome, Goeminne syndrome, iatrogenic hypoparathyroidism, and allergy. These conditions have been reported in isolated case reports.

Conclusion

In any case of presumed cervical dystonia, a diligent clinical evaluation is a major step in diagnosis and management. The examination must include a complete neurological assessment, including the power and range of movements of the neck. It is also critical not to forget the examination of the ocular and vestibular system, and the local examination of the neck for any obvious deformities. Imaging must include an X-ray of the neck for bony deformities and an MRI of the brain and neck to rule out the possibility of tumors and other spinal lesions. We have provided a simple algorithm for workup for suspected cases of cervical pseudodystonia (Figure 2).

In patients with atypical features, a multi-disciplinary approach helps in arriving at an accurate diagnosis (pediatricians, rehabilitation experts, ENT surgeons, ophthalmologists, gastroenterologists, neurosurgeons, movement disorder specialists, and others). Dystonia mimic or pseudodystonia is an under reported entity in our movement disorder literature; this review highlights the varied causes and will help in diagnosing this chameleon-like entity and directing treating physicians toward the right intervention.

Acknowledgements

We thank Dr. Richard Walsh, Consultant Neurologist and Movement Disorders Specialist, Tallaght University Hospital, Dublin, Ireland for proof reading and editing the manuscript.

References

1. Albanese A, Bhatia K, Bressman SB, DeLong MR, Fahn S, Fung VSC, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013;28(7):863–873. doi: 10.1002/mds.25475
2. Ogawa T, Shojima Y, Kuroki T, Eguchi H, Hattori N, Miwa H. Cervico-shoulder dystonia following lateral medullary infarction: a case report and review of the literature. J Med Case Rep 2018;12(1):34. doi: 10.1186/s13256-018-1561-y
3. O’Rourke K, O’Riordan S, Gallagher J, Hutchinson M. Paroxysmal torticollis and blepharospasm following bilateral cerebellar infarction. J Neurol 2006;253(12):1644–1645. doi: 10.1007/s00415-006-0202-3
4. Shukla AW, Jesus SD, Meng FG, Hu W. Focal cervical dystonia presents in the setting of acute cerebellar haemorrhage. J Neurol Sci 2017;375:307–308. doi: 10.1016/j.jns.2016.12.037
Cervical Pseudodystonias

2004;93(7):1005–1006. doi: 10.1016/j.clineuro.2014.10.010

24. Weigel RM, Capelle HH, Krauss JK. Cervical dystonia in Bechterew disease resulting in atlantoaxial rotatory subluxation and cranio-cervical osseseous fusion. Spine 2007;32(25):E781–E784. doi: 10.1097/BRS.0b013e318157b35f

25. Allegrini D, Autelitano A, Nocerino E, Fogagnolo P, De Cilla S, Rossetti L, Grisel’s syndrome, a rare cause of anomalous head posture in children: a case report. BMC Ophthalmol 2016;16:21. doi: 10.1186/s12886-016-0197-1

26. Deichmann U, Wilkoborsky HJ. Grisel’s syndrome—a rare complication following “small” operations and infections in the ENT region. Eur Arch Otorhinolaryngol 2010;267:1467–1473. doi: 10.1007/s00405-010-1241-z

27. Elyajouri A, Assermouth A, Abilkacem R, Agadr A, Mahraoui C. Grisel’s syndrome: a rare complication following traditional uvulectomy. BMJ Case Rep 2015;2015:bcr2013202990.

28. Martins J, Almeida S, Nunes P, Prata F, Lobo ML, Marques JG, Grisel’s syndrome, acute otitis media, and temporomandibular reactive arthritis: a rare association. Int J Pediatr Otorhinolaryngol 2015;79(8):1370–1373. doi: 10.1016/j.ijporl.2015.05.030

29. Ortiz GL, Pratts I, Ramos E. Grisel’s syndrome: an unusual cause of torticollis. J Pediatr Rehabil Med 2013;6(3):175–180. doi: 10.3333/PRM-130253

30. Osiero S, Tiwari KJ, Matusz P, Gielecki J, Tubbs RS, Loukas M. Grisel’s syndrome: a comprehensive review with focus on pathogenesis, natural history, and current treatment options. Childs Nerv Syst 2012;28:821–825. doi: 10.1007/s00381-012-1706-7

31. Kouamo EI, Nour M, Gennar JM, Guillaume JM, Choufani M, Merrot T, et al. Case study of two children with intervertebral disc calcifications. Pediatr Rev 2016;37(7):272–273. doi: 10.1590/0883-073812469294

32. Alexiou GA, Prolromou N. Torticollis as an initial sign of Chiari malformation. Pediatr Emerg Care 2009;25(3):215. doi: 10.1097/PEC.0b013e3181a0bd3

33. Kuo A, Tritasavit S, Graham J. Congenital muscular torticollis and positional plagiocephaly. Pediatr Rev 2014;35(2):79–87. doi: 10.1542/pir.35-2-79

34. Cheng J, Tang S, Chen T. Stereocleidomasomatosid pseudotumor and congenital muscular torticollis in infants: a prospective study of 510 cases. J Pediatr 1999;134(6):712–716. doi: 10.1016/S0022-3476(99)70286-6

35. Ivanov NA, Parnachev S, Giduchenko OA. Vascular-induced compensatory pseudo-retrocollis. J Neurol Neurosurg Psychiatry 2006;72(11):902–903. doi: 10.1136/jnnp.2006.107951

36. Giordano A, Tedeschi G, Tessitore A. Vascular-induced compensatory pseudotumor pan-vertebral ossification. Clin Neurol Neurosurg 2011;258:149–151. doi: 10.1016/j.clineuro.2010.07-5685-2

37. Giordano A, Tedeschi G, Tessitore A. Vascular-induced compensatory pseudo-retrocollis. Neurology 2015;86(3):200–205. doi: 10.1212/WNL.000000000001568

38. Per H, Canpolat M, Tumurtur A, Gumus H, Gokoglu A, Yikilmaz A, et al. Different etiologies of acquired torticollis in childhood. Childs Nerv Syst 2014;30(3):431–440. doi: 10.1007/s00381-013-2302-6

39. Bagourí E, Dshumkh S, Lakshmanan P. Atlantoaxial rotatory subluxation as a cause of torticollis in a 5-year-old girl. BMJ Case Rep 2014;2014:bcr2013202990. doi: 10.1136/bcr2013202990

40. Sundslet J, Berg-Johnsen J, Skaar-Holme S, Zurcher M, Kolstad F. Atlantoaxial rotatory fixation—a cause of torticollis. Tidsskr Nor Laegeforen 2013;133:519. doi: 10.4045/tidsskr.11.1540

41. Gencpınar P, Bozkurt O, Karaali K, Genici A, Kazan S, Haspolat S. A rare coincidence of torticollis in Familial Mediterranean Fever: atlanto-axial rotatory subluxation. Clin Neurol Neurosurg 2014;127:158–160. doi: 10.1016/j.clineuro.2014.10.010

42. Weigel RM, Capelle HH, Krauss JK. Cervical dystonia in Bechterew disease resulting in atlantoaxial rotatory subluxation and cranio-cervical osseous fusion. Spine 2007;32(25):E781–E784. doi: 10.1097/BRS.0b013e318157b35f

43. Allegrini D, Autelitano A, Nocerino E, Fogagnolo P, De Cilla S, Rossetti L, Grisel’s syndrome, a rare cause of anomalous head posture in children: a case report. BMC Ophthalmol 2016;16:21. doi: 10.1186/s12886-016-0197-1

44. Deichmann U, Wilkoborsky HJ. Grisel’s syndrome—a rare complication following “small” operations and infections in the ENT region. Eur Arch Otorhinolaryngol 2010;267:1467–1473. doi: 10.1007/s00405-010-1241-z

45. Elyajouri A, Assermouth A, Abilkacem R, Agadr A, Mahraoui C. Grisel’s syndrome: a rare complication following traditional uvulectomy. BMJ Case Rep 2015;2015:bcr2013202990.
Cervical Pseudodystonias

2016;32(12):863–1978;5(3):77–83. PMID: 246509.

2016;98(3):e40–e42. doi:

2016;22(1):S149–S152. doi:

2005;35(4):261–262. doi:

2013;29(11):1197–1200. doi:

1997;12(3):

2010;210(6):

Raju S, Ravi A and Prashanth LK Cervical Pseudodystonias

Columbia University Libraries

Tremor and Other Hyperkinetic Movements

http://www.tremorjournal.org

2009;45:616–618. doi:

2010;35(14):E672

2003;106(1):41–43. doi:

2009;91(6):1497–1502. doi:

2008;58(10):591. PMID:

2013;139(6):639–642. doi:

apy for laryngeal carcinoma.

MB, et al. Cervical dystonia mimicking dropped-head syndrome after radiother.

Ewing sarcoma of the axis.

cyst on the cervical spine of a child: case report, differential diagnosis and treat

progressive. A case series.

osteoma of the first 2 cervical vertebrae. Report of 4 cases.

presenting as recurrent torticollis.

first manifestation of a cerebellar hemangioblastoma. Rev Clin Exp 2010;210(6):

443–447. doi:

http://www.tremorjournal.org

Ax Spine J 2014;17:271. doi:

Osteomyelitis.

Torticollis and seizures due to neuroborreliosis in a child.

Muscle J

2012;156(51):A5157. PMID: 23249509.

Tey HL, Seet RC, Lim EC. Tuberculomas causing cervical dystonia. Intern Med J 2005;35(4):261–262. doi:

Warpsus JM. Tuberculosis of bones and joints. Torticollis. Foot disorders. OMA J 1978;5(3):77–83. PMID: 246509.

Filleron A, L’Kaisi M, Cottalorda J, Jeziorski E, Rodiere M, Prodhomme O, et al. Torticollis in children: a challenging diagnosis of C1-C2 septic arthritis. Clin Pediatr 2016;55(3):459–462. doi:

Pizzolo A, Bramuzzo M, Pillon R, Tadello A, Barbì E. Torticollis as the presenting sign of cervical spondyloclisis. Pediatr Emerg Care 2016;32(12):863–864. doi:

McKnight P, Friedman J. Torticollis due to cervical epidural abscess and osteomyelitis. Neurology 1992;42(3 Pt 1):696–697. doi:

Dimäa J, Chaljuž G, Otto A, Swischuk L. Ondontoid osteomyelitis masquerading as a C2 fracture in an 18-month-old male with torticollis: CT and MRI features. Emerg Radiol 2006;12(5):234–236. doi:

Krauss JK, Seeger W, Jankovic J. Cervical dystonia associated with tumors of the posterior fossa. Mov Disord 1997;12(3):344–447. doi:

Debenedictis CN, Allen JC, Kodsi SR. Brainstem tumor presenting with tearing, photophobia, and torticollis. J AAPOS 2010;14(4):369–370. doi:

Patier de La Peña JL, Norman F, Rodríguez-Ramírez GI, Echániz-Zafra S, Díaz M. Refractory head movements in a patient with brainstem glioma. J Neurol Neurosurg Psychiatry 2011;82(10):1140–1143. doi:

Ahkaddar A, Boucetta M. Solitary osteochondroma of the cervical spine presenting as recurrent torticollis. Pan Afr Med J 2014;17:271. doi:

Amirjamoushi A, Roozbeh H, Sharifi G, Abdoli A, Abbasiouk I. Osteoid osteoma of the first 2 cervical vertebrae. Report of 4 cases. J Neurol Surg A Suppl 2010;13(6):707–714. doi:

Moore RE, Dormans JP, Drummond DS, Shore EM, Kaplan FS, Auerbach JD. Chin-on-chest deformity in patients with fibrodysplasia osseous progressive. A case series. J Bone Joint Surg Am 2009;91(1):1497–1502. doi:

Aydin R, Bägicçi MC, Dagıncar M. A very rare cause of neck pain: primary Ewing sarcoma of the axis. Pediatr Emerg Care 2013;29(11):1197–1200. doi:

Astudillo L, Hollington L, Game X, Benyoucef A, Boladeras AM, Delisle MB, et al. Cervical dystonia mimicking dropped-head syndrome after radiotherapy for laryngeal carcinoma. Clin Neurol Neurosurg 2003;106(1):41–43. doi:

Landan I, Cuillé PA. Torticollis following radiation therapy. Mov Disord 1997;2(4):317–319. doi:

Tsuij S, Inoue S, Tachibana T, Maruo K, Arizumi F, Yoshiya S. Post-traumatic torticollis due to odontoid fracture in a patient with diffuse idiopathic skeletal hyperostosis: a case report. Medicine 2015;94(36):e1478. doi:

Balpande DN, Agrawal A, Bhatlawande VK. Torticollis as a manifestation of laminar fracture in an infant. J Pak Med Assoc 2008;58(10):591. PMID: 18998320.

Chou WC, Huang WC, Shih YH, Lee LS, Wu C, Cheng H. Occult occipital condyle fracture with normal neurological function and torticollis. J Clin Neurol 2008;158(9):202–206. doi:

Ostrowski C, Ronan L, Sheridan R, Pearce V. An osteoporotic fracture mimicking cervical dystonia in idiopathic Parkinson’s disease. Age Ageing 2013;42(5):638–639. doi:

Tachibana A, Imabayashi H, Yato Y, Nakamichi K, Asazuma T, Nemoto K. Torticollis of a specific C1 dislocation with split atlas. Spine 2010;35(14):E672–E675. doi:

Hervey-Jumper S, Justice D, Vanaman M, Nelson V, Yang L. Torticollis associated with neonatal brachial plexus palsy. Pediatr Neurol 2011;45(5):305–310. doi:

Dekel B, Paret G, Vardi A, Katz M, Barzilay Z. Torticollis: an usual presentation of spontaneous pneumomediastinum. Pediatr Emerg Care 1996;12(5):352–353. PMID: 8897543.

Walton J, Darr A, George A. An unusual case of an oesophageal foreign body presenting as torticollis. Ann R Coll Surg Engl 2016;98(3):e40–e42. doi:

Boonkongchuen P, Lees A. Case of torticollis occurring following electrical injury. Mov Disord 1996;11(1):109–110. doi:

Rubin SE, Wagner RS. Ocular torticollis. Surv Ophthalmol 1986;30(6):366–376. doi:

Bredenkamp JK, Maceri DR. Inflammatory torticollis in children. Arch Otolaryngol Head Neck Surg 1999;116(6):310–313. doi:

Hallberg A, Standing RT, Ahsan S. Congenital torticollis and saccular dysfunction. JAMA Otolaryngol Head Neck Surg 2013;139(6):639–642. doi:

McMullan B. Bezold’s abscess: a serious complication of otitis media. J Paediatr Child Health 2004;40(4):138–140. doi:

Lehwald N, Krausch M, Franke C, Assmann B, Adam R, Knoefel W. Sandifer syndrome – a multidisciplinary diagnostic and therapeutic challenge. Eur J Pediatr Surg 2007;17(3):203–206. doi:

Wasserman JK, Jimenez-Rivera C, Doja A. Refractory head movements secondary to Sandifer syndrome treated with enteral feeding. Mov Disord 2010;25(11):1754–1755. doi:

Schmerler DA, Espay AJ. Functional dystonia. Handb Clin Neurol 2016;139:235–245. doi:

Hallett M. Functional (psychogenic) movement disorders – clinical presentations. Parkinsonism Relat Disord 2016;22(1):S149–S152. doi:

Shin M, Douglass LM, Milunsky JM, Rosman NP. The genetics of benign paroxysmal torticollis of infancy: is there an association with mutations in
the CACNA1A gene?  *Child Neurol* 2016;31(8):1057–1061. doi: 10.1177/0883073816636226

76. Hadjipanayis A, Efstathiou E, Neubauer D. Benign paroxysmal torticollis of infancy: an underdiagnosed condition.  *J Paediatr Child Health* 2015;51(7):674–678. doi: 10.1111/jpc.12841

77. Safiuddeen K. Idiopathic intracranial hypertension presenting as stiff neck and torticollis.  *Neural India* 2010;58(6):982. doi: 10.4103/0028-3886.73765

78. Har-Gil M, Evrani M, Waterberg N. Torticollis as the only manifestation of acute disseminated encephalomyelitis.  *J Child Neurol* 2010;25(11):1415–1418. doi: 10.1177/0883073810368995

79. Ruegg SJ, Buhlmann M, Renaud S, Steck AJ, Kappos L, Fuhr P. Cervical dystonia as first manifestation of multiple sclerosis.  *J Neurol* 2004;251(11):1408–1410. doi: 10.1007/s00415-004-0544-7

80. Berger B, Rijntjes M, Stehlin L, Stich O. Corticosteroid-responsive torticollis as a presenting symptom of multiple sclerosis.  *J Neurol Sci* 2014;340(1–2):239–240. doi: 10.1016/j.jns.2014.02.021

81. Planas AM, Occhiuzzo FP, Oferill JC, Marfa MP, Cubells CL. Torticollis and spinal hyperextension. Unusual presentation of Guillain-Barré syndrome.  *An Pediatr 2008;69(4):394–395. doi: 10.1157/13126575

82. Das JK, Gupta K, Deshmukh S, Shrivastava R. A rare case of hypereosinophilic syndrome presenting with unilateral proptosis and torticollis.  *Indian J Ophthalmol* 2018;66(10):1508–1511. doi: 10.4103/jjo.IJO_316_18

83. Marti N, Jorda E, Martinez E, Gamez I, Ramon MD. Widespread nevus spilus associated with torsion dystonia: a case report.  *Pediatr Dermatol* 2010;27(6):654–656. doi: 10.1111/j.1525-1470.2010.01325.x

84. Panda AK, Gopinath G, Singh S. Parry-Romberg syndrome with hemi-masticatory spasm in pregnancy: A dystonia mimic.  *J Neurol Rural Pract* 2014;5(2):184–186. doi: 10.4103/0976-3147.151675

85. Yasutomo K, Hashimoto T, Miyazaki M, Kuroda Y. Recurrent Torticollis As a presentation of Moyamoya disease.  *J Child Neurol* 1993;8(2):187–188. doi: 10.1177/088307389300800215

86. Runel-Belliard C, Lasserre S, Quinet B, Grimple E. Febrile torticollis: an atypical presentation of Kawasaki disease.  *Arch Pediatr* 2009;16(2):115–117. doi: 10.1016/j.arcped.2008.11.015

87. Pellecchia MT, Cuomo T, Striano S, Filla A, Barone P. Paroxysmal dystonia in Behçet’s disease.  *Mov Disord* 1999;14(1):177–179. doi: 10.1002/1531-8257(199901)14:1<177::aid-mds1037>3.0.co;2-n

88. Kostaridou S, Anastasopoulos J, Veliotis G, Nikas J, Stefanaki K, Tzortzatou-Stathopoulou F. Recurrent torticollis secondary to Langerhans cell histiocytosis: a case report.  *Acta Orthop Belg* 2005;71(1):102–106. PMID: 15792216.

89. Al Kaisi A, Ben Chehida F, Ganger R, Klaushefer K, Grill F. Distinctive spine abnormalities in patients with Goldenhar syndrome: tomographic assessment.  *Eur Spine J* 2015;24(3):594–599. doi: 10.1007/s00586-014-3204-3

90. Goeminne L. A New probably X-linked inherited syndrome: congenital muscular torticollis, multiple keloids cryptorchidism and renal dysplasia.  *Acta Genet Med Gemellol* 1968;17(3):439–467. doi: 10.1017/s120962500012634

91. Mancini F, Zangaglia R, Cristina S, Tassorelli C, Uggetti C, Nappi G, Pacchetti C. Secondary cervical dystonia in iatrogenic hypoparathyroidism associated with extensive brain calcifications.  *Neurology* 2006;62(3):165–166. PMID: 17049136.

92. Randolph TG. Allergy as a cause of Acute Torticollis.  *Am Pract Dig Treat* 1950;1(10):1062–1067. PMID: 14771412.