A review on adsorbent parameters for removal of dye products from industrial wastewater

Ali Soltani a,+, Mehdi Faramarzi b, Seyed Aboutaleb and Mousavi Parsa a

a Department of Chemical Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
b Department of Chemical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran

*Corresponding author. E-mail: alisltn7@gmail.com

ABSTRACT

Industrial effluents are usually one of the major industries polluting the environment and surface water. It is estimated that the worldwide production of dyes is about 70 tons/year. To overcome this problem, innovative processes are suggested for the treatment of industrial effluents containing dyes and heavy metals. The goal of the processes is often to reduce the toxicity of these pollutants in order to meet treatment standards. Recently, great attention has been paid to innovative processes for physical and chemical removal techniques such as adsorption on new adsorbents, biomass adsorption, membrane filtration, irradiation, and electrochemical coagulation. In this study, the application of adsorbents in the adsorption process to remove dye pollutants from industrial effluents has been studied. Factors affecting dye adsorption such as pH, temperature, initial dye concentration, and adsorbent amount are also presented. The obtained results revealed that more than 80% of the dye adsorption on the surface of adsorbents are endothermic processes and more than 95% of the processes obey the pseudo-second-order kinetic model.

Key words: adsorbent, adsorption, adsorption isotherm, dye removal, industrial effluent

HIGHLIGHTS

- Investigation of the influence of different adsorbents and different adsorption process parameters.
- Factors affecting dye adsorption.
- Regenerability of adsorbents in the adsorption process to make the adsorption process more economical.
- Application of adsorbents in the adsorption process to remove dye from industrial effluents.

1. INTRODUCTION

In recent years, adsorption processes have shown effective results on water and wastewater treatment technology in different industries. In these techniques, a series of natural or synthesized adsorbents have been used to treat contaminants such as metals, dyes, and pharmaceutical products in solutions (Hajipour et al. 2021). These adsorbents can be regenerated or consumed after the adsorption process. Synthetic dyes are widely used in many advanced industries such as various textiles, paper, leather, food process, plastics, cosmetics, printing, and industrial dyes (Benkhaya et al. 2020). The entry of synthetic dyes into industrial effluents and their discharge into aqueous solutions causes a lot of environmental issues in recent years (Al-Sakkaf et al. 2020). The presence of dye pollutants in water will reduce sunlight penetration and negatively affect the photosynthetic activity (Misra et al. 2020). To date, more than 100,000 industrial dyes with an annual production of more than 7×10^4 tons/year are known (Adegoke & Bello 2015). Textile industries consume more than 100,000 tons/year dyes, and about 100 tons/year of dye enters the effluent water (Mosbah et al. 2019). There is no exact information on the amount of dye released from various processes to the environment. However, scientists have identified the release of actual amounts of artificial colors into the environment as an environmental challenge (Lellis et al. 2019; Javidparvar et al. 2020). Various methods such as adsorption (Konicki et al. 2017), coagulation (Kosaka et al. 2018), advanced oxidation (Javid & Qazi 2019) and separation of membranes and nanosorbents (Karim et al. 2014; Abdi et al. 2018) have been used to remove dyes from wastewater.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
Adsorption is an effective process in advanced wastewater treatment techniques to reduce the effluent risks of high pollutants and minerals (Khulbe & Matsuura 2018). Many textile industries use commercial activated carbon to treat colored effluents (Briton et al. 2020). Many researchers have reported the possibility of using cheap adsorbents derived from natural materials, industrial, and agricultural solid waste (Sulyman et al. 2017). The use of biosorbents to improve the adsorption capacity has been reported by researchers (Adewuyi 2020). Several groups of dyes are stable molecules resistant to decomposition by light, chemicals, biological, and other factors and are considered mutagens for humans (Badran & Khalaf 2019; Javaid & Qazi 2019). Most dyes are complex organic molecules that require resistance to external agents such as detergents (Julkapli et al. 2014). Dye molecules are made up of two components: the dye agent, which is responsible for the color formation, and the enhancer, which is responsible for amplifying the dye agent, its solubility in water, and binding to the surface (Bisht & Lal 2019). Therefore, dye-contaminated wastewater must be treated appropriately before being released into the environment (Basheer 2018). In general, colors can be classified according to their structure, application, the charge of particles, or color in the solution. Table 1 shows the classification of colors based on their different applications (Hou et al. 2011; Yu et al. 2016).

Base colors have a high color intensity and can be seen in low concentrations (Nelis et al. 2019). Complex dyes are generally based on chromium, which is carcinogenic (Chakraborty et al. 2020). Azo dyes are toxic due to the presence of toxic amines in the effluents (Sarkar et al. 2017). Anthraquinone-based dyes are also the most resistant dyes to decomposition and remain in the effluent for a long time (Ray et al. 2020). Reactive dyes are soluble in water, and 5–10% of these dyes enter the dye bath and are present in the colored effluent, which creates serious problems for the environment (Hynes et al. 2020). Removal of reactive dyes and their degradability in biological systems using conventional wastewater treatment techniques is low (Dayi et al. 2020). For this reason, focusing on specific methods of removing dye from industrial effluents helps to select a treatment system appropriate to the type of pollution. The main purpose and novelty of this review study are to investigate the application of new and inexpensive adsorbents for the removal of dye compounds from industrial wastewater. In addition, physical and chemical adsorption processes and parameters affecting adsorption capacity are presented. Adsorption kinetics, isotherm models, thermodynamics, and adsorption capacity are collected under different process conditions. Therefore, an overview of the most comprehensive updated information on the adsorption of different colors from aqueous solution by a wide range of adsorbents has been provided in the current work. Over the past two decades, attempts have also been made to use a wide range of adsorbents to analyze color adsorption information (Ali 2013).

2. AVAILABLE TECHNOLOGIES FOR DYE REMOVAL

There are currently not many ways to remove dye from the effluents. Despite the availability of many techniques for eliminating dye contaminants from wastewater, such as flocculation, chemical oxidation of membranes, separation processes, electrochemical and aerobic, and microbial anaerobic (Rajasulochana & Prethy 2016; Zaied et al. 2020), inherent limitations have been involved by each of these methods (Ghoreishi & Haghighi 2003). Utilizing biological processes to remove dye from wastewater has grown recently, gaining several research groups’ attention. In this method, a new strain of microbe resistant to the microbe contacted the toxic waste that would convert into a less harmful form. The biodegradation mechanism is based on the biotransformation enzymes, which would lead to the biodegradation of recalcitrant compounds in the microbial system. Several enzymes such as tyrosinase, hexane oxidase,

Table 1	Classify different colors based on their application (Hou et al. 2011; Yu et al. 2016)
Category	**Sub-layer**
Acidic	Wool, nylon, silk, ink, leather, and paper
Basic	Ink, paper, polyacrylic and nitrile, processed nylon, and polyester
Direct	Nylon, rayon, paper, leather, and linen
Disperse	Polyamide, acrylic polyester, acetate, and plastic
Reactive	Wool, linen, silk, and nylon
Sulfur	Rayon and linen
Vat	Cotton, wool, and linen
Physical methods operate based on the mass transfer mechanism and usually consist of straightforward systems to remove dye from wastewater. Ion exchange, irradiation, adsorption, coagulation, and membrane filtration are the conventional physical processes that were used for the separation process. However, among the mentioned methods (chemical, biological, and physical), physical methods are implemented to remove the dye commonly due to ease of use, simple operation conditions, and more efficient processes. Adsorption method has been considered as the very effective method for utilizing in the dye removal process because of several factors, such as low operation cost, reusability of adsorbent, low material consumption, or excellent properties of adsorbent material (e.g., high surface area and high adsorption capacity) (Ghoreishi & Haghighi 2003). Several adsorbents with different features were utilized for the adsorption of dyes, as tabulated in Supplementary Table 2. The pore diameter is also one of the most important features of adsorbent materials that would affect adsorbent selectivity based on the diameter of adsorbed material (Kumar et al. 2012).

Various factors affect the way and capacity of the dye adsorption. The most effective of these factors are solution pH, temperature, initial concentration, and amount of adsorbent (Rápó et al. 2020). Optimizing these conditions will greatly affect the development of the dye removal process on an industrial scale. Some of the factors affecting color adsorption that have been investigated in most studies are reviewed in the following sections.

2.1. Effect of pH

Acidity of the solution is one of the most important factors affecting the adsorbent capacity in wastewater treatment. Adsorption efficiency depends on the pH of the solution because changes in pH lead to changes in the degree of melting properties (Kumar et al. 2019). Therefore, pH is mentioned as an important parameter in color adsorption. The adsorption ability and active centers on the surface depend on the zero electric charge point called the surface \(P_{zc} \) (Skwarek et al. 2016). This point is directly affected by the used pH solution, \(P_{Hzc} \), in which surface charge is zero, typically used to quantify the electromagnetic properties of the surface (Jouniaux & Ishido 2012).

The pH value to describe \(P_{zc} \) is only for systems in which \(H^+/OH^- \) ions are predominant. Many researchers have studied the \(P_{zc} \) point of many different adsorbents prepared from agricultural effluents to understand the mechanism of adsorption. The adsorption of cationic dyes at \(pH > P_{Hzc} \) is desirable due to the functional group, \(OH^- \) group, while the adsorption of anionic dyes at \(pH < P_{Hzc} \) is desirable, where the surface is positively charged (Elwakeel et al. 2020).

2.2. Effect of dye initial concentration

The effect of initial dye concentration is closely related to the dye concentration and the sites present on the adsorbent surface. In general, the percentage of dye removal decreases with increasing initial dye concentration, which leads to a saturation of adsorption sites on the adsorbent surface (Son et al. 2016). On the other hand, increasing the initial concentration of the dye increases the adsorption capacity due to the high driving force of mass transfer in the initial high concentration of dye.

2.3. Effect of temperature

Temperature is another important parameter in the physico-chemical adsorption process due to the fact that the amount of adsorbent capacity can be related to the process temperature (Jiang et al. 2018). If the amount of adsorption sites increases with increasing temperature, this indicates that the adsorption process is endothermic. This may be due to the increment of the mobility of dye molecules, as the number of active sites for adsorption increases with increasing the process temperature (Wong et al. 2020). On the other hand, there are several adsorption processes in which increases in temperature adsorption capacity have declined, indicating the exothermic adsorption process (Belhamdi et al. 2016; Peng et al. 2020; Romdhane et al. 2020). In this kind of adsorption, the adsorption forces between the dye species and the active sites on the adsorbent surface decreased, resulting in a decrease in the adsorption process.

2.4. Amount of adsorbent

The amount of adsorbent is an important parameter for determining the adsorbent capacity for a given amount of adsorbent under operating conditions. In general, the percentage of dye removal increases with increasing the amount of adsorbent with increasing the number of adsorption sites on the adsorbent surface. The effect of the amount of adsorbent material presents an idea for the adsorption process, which is economically viable (Salleh et al. 2011).
2.5. Kinetic study of dye adsorption

Several kinetic models are used in different laboratory conditions to investigate adsorption mechanisms, such as chemical reaction, diffusion control, and mass transfer. The information obtained from adsorption kinetics can be examined to understand the dynamics of adsorption reactions. The study of adsorption kinetics is useful for designing and modeling the process to predict the adsorption rate. The adsorption capacity at all stages of optimization is calculated from the q_e relation (Equation (1)).

\[
q_e = \frac{(C_0 - C_e)V}{M}
\]

(1)

where in this equation, C_0, C_e, V, and M are initial dye concentration (mg/L), equilibrium dye concentration (mg/L), solution volume (L), and sorbent weight (g), respectively.

Dye removal percentage (color adsorption efficiency) is also obtained from the following equation:

\[
R = 100 \times \left(\frac{C_0 - C_e}{C_0} \right)
\]

(2)

Kinetic and thermodynamic adsorption models are widely discussed in the Supplementary material.

2.5.1. Application of various isotherm models in dye removal

Equilibrium adsorption isotherm models are essential requirements for the design of adsorption systems and the interaction between adsorbent and adsorbent. Models used to analyze equilibrium adsorption data include the Langmuir and Freundlich models (Khayyun & Mseer 2019).

Langmuir is one of the most prominent isotherm models that describe the nonlinear equilibrium between the amount of adsorbed analyte and its free amount in solution at a constant temperature. This model is simple and provides a good description of the experimental behavior in a wide range of working conditions. This isotherm is based on the assumption of monolayer adsorption on an adsorbent with a homogeneous structure that all adsorption sites are the same and equal in energy. The Langmuir relationship is expressed as follows (Mustapha et al. 2019):

\[
q_e = \frac{q_{\text{max}} K_L C_e}{1 + K_L C_e}
\]

(3)

Or in linear form (Equation (4));

\[
\frac{C_e}{q_e} = \left(\frac{1}{q_{\text{max}} K_L} \right) + \left(\frac{C_e}{q_{\text{max}}} \right)
\]

(4)

In Equation (4), q_e is the amount of adsorbed analyte per unit mass of the adsorbent and q_{max} is the maximum amount of adsorption in the adsorbent monolayer in mg/g. C_e is the equilibrium concentration of the analyte in solution in mg/L, and K_L is the Langmuir equation constant.

The Freundlich adsorption model (Equation (5)) is an empirical relation which indicates that adsorption takes place in multiple layers (Na 2020).

\[
q_e = K_F C_e^{1/n}
\]

(5)

Or in the linear form as follows;

\[
\ln q_e = \ln K_F + \left(\frac{1}{n} \right) \ln C_e
\]

(6)

where n is a constant related to the heterogeneity of the surface, and its value usually varies in the range of 0–1. The closer
value of n to 1 means the more homogeneous surface. K_F is the Freundlich constant that is related to the adsorption capacity. The Freundlich model shows that a higher concentration of initial analyte would lead to a higher adsorption rate of nanoparticles.

Hall et al. (1966) introduced the dimensionless component R_L, called the separation coefficient. This component is used to describe the type and shape of the adsorption isotherm. It is expressed as Equation (7), and the relationship of R_L with the type of Langmuir isotherm is shown in Table 2.

$$R_L = 1 + K_L C_0$$

(7)

where C_0 is the initial adsorbed concentration in solution (mg/L), and K_L is the Langmuir equation constant. The Langmuir model is obtained by assuming that the adsorption energy is constant for the active positions of the adsorbent surface and does not depend on its coverage.

The Freundlich model assumes that the number of positions in the adsorption action with free energy can be potentially reduced by increasing free energy (Shikuku et al. 2018). According to this assumption, with an increasing solute concentration in the solution, the surface concentration never reaches saturation due to high free energy surface sites for adsorption. The value of n in Equation (5) describes the type of the Freundlich isotherm. The type of relationship is given in Table 3 (Santhy & Selvapathy 2006).

3. DISCUSSION

As was mentioned previously, there are many techniques for eliminating dye contaminants from wastewater. All of these different methods of color removal have the advantages and disadvantages as shown in Table 4.

Fenton reaction, electrochemical method, oxidation, photochemical, UV degradation method, ozonation, or advanced oxidation process are typical processes used for dye removal based on the chemical method. Chemical methods are not commercially favorable due to specific equipment and high electrical energy compared to physical and biological methods. Besides, utilizing the chemical techniques can lead to additional environmental problems due to the consumption of huge amounts of chemicals and releasing of probable toxic material due to chemical reactions (Katheresan et al. 2018).

As typical examples, several works studied dye removal, such as low-cost adsorbents for the removal of organic pollutants from industrial wastewater by Ali et al. (2012), adsorption of cationic and anionic dyes by agricultural solid wastes by Salleh et al. (2011), unconventional low-cost adsorbents for dye removal by Crini (2006), decolorization of effluent dye by biosorbents by Srinivasan & Viraraghavan (2010), biodegradation of industrial dyes by Ali (2010), and adsorption of aqueous methylene on low-cost adsorbents by Rafatullah et al. (2010). However, all are shared only with a specific system and have nothing to do with updated information.

Table 2 | Correlation of R_L with the Langmuir isotherm

Isotherm situation	R_L
Undesirable	$R_L > 1$
Linear	$R_L = 1$
Desired	$0 < R_L < 1$
Reversible	$R_L = 0$

Table 3 | Correlation n with the Freundlich isotherm

Isotherm situation	n
Undesirable	$n > 1$
Linear	$n = 1$
Desired	$n < 1$
The effects of pH on the dye adsorption from different solutions are given in Table 5.

Chowdhury et al. (2011) studied the effect of pH of the solution on the adsorption of four green colors by *Ananas comosus* leaf powder. They found that at a pH range of 2–10, the maximum dye removal rate was at pH = 10. Dawood & Sen (2012) studied the effect of pH on the adsorption of red Congo dye by pine cones and found that the maximum adsorption occurs at pH = 3.5. Ibrahim et al. (2010) studied the adsorption of RB4 dye by modified barley straw. They found that the complete removal of RB4 occurred at pH = 3, and with increasing pH, the amount of adsorption decreased to less than 50%. Yagub et al. (2012) reported that cationic MB's adsorption on pine leaves increases with pH increasing.

According to Table 5, almost all of the adsorbent performance in dye removal has been enhanced by increasing pH. Typically, crystal violet removal utilizing modified alumina has 60% increased by increasing pH from 2.6 to 10.8, while this manner is almost repeated for other adsorbents. The increase of H\(^+\) ion concentration may lead to a higher protonation degree of the adsorbent surface, which leads to an increase in the electrostatic interaction between the adsorbent and the dye.

Table 4 | An overview of the advantages and disadvantages of dye removal methods (Robinson et al. 2001; Salleh et al. 2011)

Method	Advantages	Disadvantages
Chemical purification		
Oxidation	Ease of use	Requires activation agent
H\(_2\)O\(_2\) + Fe (II) salts	Suitable for removal	Sludge production
Ozonation	It can be used in the form of ozone and does not increase the volume of sludge and effluent	Short half-life (20 min)
Biological treatment		
Decolorization by white-rot fungus	Enzymatic removal of dyes is performed	Enzyme production is unreliable
Microbial mixture	Removal in 24–30 h	Azo dyes are not easily metabolized under aerobic conditions
Adsorption by living or dead biomass	Specific colors have a special tendency to bind to microbial species	No effect for all colors
Anaerobic bioremediation of textile dyes	Makes it possible to remove azo and water-soluble dyes	Anaerobic decomposition produces methane and hydrogen sulfide
Physical purification		
Adsorption with carbon	Perfect removal of a wide range of colors	High cost
Membrane filtration	All of dyes removed	Production of concentrated sludge
Ion exchange	Rehabilitation: no loss of adsorbent	No effect for all colors
Irradiation	Effective oxidation on a laboratory scale	Requires high levels of soluble O\(_2\)
Electrochemical coagulation	Economically flexible	High volume of sludge production

The effects of pH on the dye adsorption from different solutions are given in Table 5.

Chowdhury et al. (2011) studied the effect of pH of the solution on the adsorption of four green colors by *Ananas comosus* leaf powder. They found that at a pH range of 2–10, the maximum dye removal rate was at pH = 10. Dawood & Sen (2012) studied the effect of pH on the adsorption of red Congo dye by pine cones and found that the maximum adsorption occurs at pH = 3.5. Ibrahim et al. (2010) studied the adsorption of RB4 dye by modified barley straw. They found that the complete removal of RB4 occurred at pH = 3, and with increasing pH, the amount of adsorption decreased to less than 50%. Yagub et al. (2012) reported that cationic MB's adsorption on pine leaves increases with pH increasing.

According to Table 5, almost all of the adsorbent performance in dye removal has been enhanced by increasing pH. Typically, crystal violet removal utilizing modified alumina has 60% increased by increasing pH from 2.6 to 10.8, while this manner is almost repeated for other adsorbents. The increase of H\(^+\) ion concentration may lead to a higher protonation degree of the adsorbent surface, which leads to an increase in the electrostatic interaction between the adsorbent and the dye.

Table 5 | Results of various studies to determine the effect of pH on the adsorption process

Adsorbent	Dye	pH range	Removal range (%)	References
Modified alumina	Crystal violet	2.6–10.8	20–80	Adak et al. (2005)
Activated carbon	Methylene blue	2–11	Additive	Kannan & Sundaram (2001)
Kaolinite	Crystal violet	2–7	65–95	Nandi et al. (2008)
Bentonite	Blue acid 193	1.5–11	Decrease	Sari et al. (2019)
Fly ash	Methylene blue	2–8	36–45	Kumar et al. (2005)
Fe\(_2\)O\(_3\)	Red acid 27	1.5–10.5	27–98	Nassar (2010)
Tobacco	Methylene blue	2–7.93	60–81	Ghosh & Reddy (2013)
Modified sawdust	Methylene blue	2–11	Additive	Zou et al. (2013)
dye with a negative charge. A higher interaction between the dye molecule and the adsorbent surface leads to a higher adsorption rate. However, increasing OH\(^{-}\) group concentration on the adsorbent surface (deprotonated surface) in a high pH would lead to a lower adsorption rate (Wong et al. 2020), leading to a more inferior adsorption rate dye in high pH conditions. The pH variation may affect the transport of dye molecules to the surface of the adsorbent, which can be considered as the rate-limiting stage in the dye adsorption process (Saratale et al. 2011).

As can be seen in Table 6, the increment of the initial dye concentration leads to an increase in dye removal by implementing all presented adsorbents, while as a typical example, methylene blue removal over kaolinite, pine leaves, or mango kernel powder has increased from 62, 41, and 92.5% to 90, 96, and 99%, respectively. The presence of more dye initial concentrations leads to the increase of dye molecules in constant adsorbent amounts, resulting in higher dye removal and adsorption capacity. Moreover, due to the saturation of adsorbent sites, the remained dye molecules in the solution do not adsorb on the adsorbent. Zhang et al. (2012) studied the adsorption of methyl orange by chitosan/alumina. The results of their study showed that when the concentration of methyl orange increased from 20 to 400 mg/L, the percentage of dye removal decreased from 99.53 to 83.55%. Yagub et al. (2012) studied the effect of initial dye concentration on the adsorption of methylene (MB) blue from pine trees. They found that the color decreased from 96.5 to 40.9% in 240 min.

However, based on the data as shown in Table 7, adsorbents such as kaolinite or Na-bentonite exhibit exothermic adsorption, while other adsorbents in Table 7 show an endothermic process. Presented adsorption results for kaolinite and Na-bentonite indicate a slight adsorption decline of Red Congo by increasing temperature from 279 to 333 K, so must a low-temperature condition be considered for Red Congo adsorption on the kaolinite and Na-bentonite. Additionally, exothermic adsorption of Red Congo over kaolinites and Na-bentonite was approved by the exhibited negative enthalpy (\(\Delta H\)) values from \(-15.25\) KJ·mol\(^{-1}\) at 279 K to \(-15.532\) KJ·mol\(^{-1}\) at 333 K. On the other hand, other adsorbents exhibit an endothermic adsorption process, in which adsorption capacities have increased by an increase in temperature for pine leaves, activated bamboo water, and residual sludge adsorbents. Typically, methylene blue adsorption over pine leaves has grown at a higher temperature, indicating endothermic adsorption of methylene blue over pine leaves. Besides, exhibited positive enthalpy (15.29 KJ·mol\(^{-1}\)) confirms the endothermic process of methylene blue.

Table 6 | Results of various studies in determining the effect of initial dye concentration on the adsorption process

Adsorbent	Dye	Concentration range (mg·L\(^{-1}\))	Removal range (%)	References
Kaolinite	Methylene blue	10–40	62–90	Motamedi et al. (2011)
Fly ash	Red Congo	5–30	84–99	Mall et al. (2005)
Red clay	Purple acid	10–40	12.52–26.2	Namasivayam et al. (2001)
Activated carbon	Ariochrome block T	30–150	10–45	Luna et al. (2013)
Mango kernel powder	Methylene blue	50–250	92.5–99	Senthil Kumar et al. (2013); Ponnumas & Sathish Kumar (2015)
Pine leaves	Methylene blue	10–90	41–96	Ramaraju et al. (2013)
Rice husk	Green Malachite	10–30	71–82.5	Kahraman et al. (2011)
Apricot kernels	Black Astrzone	50–500	62–91	Argun et al. (2008)

Table 7 | Results of various studies to determine the effect of temperature on dye adsorption

Adsorbent	Dye	Temperature range (K)	Process	References
Kaolinite	Red Congo	279–333	Exothermic	Vimonses et al. (2009)
Na-Bentonite	Red Congo	279–333	Exothermic	Vimonses et al. (2009)
Pine leaves	Methylene blue	313–333	Endothermic	Yagub et al. (2012)
Activated bamboo waste	Reactive black 5	303–323	Endothermic	Ahmad et al. (2013)
Residual sludge	Green Naphthol	303–323	Endothermic	Attallah et al. (2012)
According to Table 8, in the presence of higher concentrations of adsorbents the dye removal was increased. By increasing the pine cone adsorbent amount from 0.01 to 0.03 g, Red Congo dye removal has grown from 13.45 to 18.96, while this manner was observed for all mentioned adsorbents. As discussed above, the higher dosage of adsorbent would lead to higher vacant sites availability, so more dye molecules can contact adsorbent active sites that lead to higher dye removal. Additionally, by an increase in the amount of adsorbent, a higher surface area (micropore or mesopore structures) may be available. This higher surface area enables the adsorbent to operate with a higher capacity in dye adsorption (Mall et al. 2005).

It is important to regenerate the adsorbent and reuse it in the adsorption process to make the adsorption process more economical. Almost all of the adsorbents have been regenerated by chemical agents such as NaOH or HCl. In most cases, the regenerated adsorbent was suitable for the color adsorption process for at least three cycles; however, the reusability of the adsorbents may decline after several regeneration cycles. According to Table 9, all mentioned adsorbents show proper reusability after that regenerated by a chemical treatment (e.g., HCl or NaOH). However, adsorbent activity may decline after several cycles of regeneration due to part structure collapse or remaining adsorbed molecule in adsorbent structure (Fan et al. 2018).

4. CONCLUSION AND FUTURE PERSPECTIVES

In this study, a series of adsorbents such as industrial solids, agricultural by-products, activated carbon, activated carbon-based biomasses, nano-adsorbents, mineral oxides, and mineral soil are reviewed to remove dye or contaminants from aqueous solutions. Adsorbents should be available, cost-effective, porous, recyclable, and have many active sites on their structure. In this way, future studies could focus on the adsorbents with good adsorption/desorption performance, recyclability, and cost-effectiveness. Furthermore, finding cost-effective strategies in the fields of storage and reusability of used adsorbents are other important issues for the future studies. In this way, the safe and economical disposal/reuse of used adsorbents should be considered in future investigations. It is possible to use raw materials and refining materials instead of expensive commercial activated carbon to remove dye from aqueous solutions. In this review study, a large number of articles

Table 8	Results of studies performed to determine the effect of adsorbent on removal percentage			
Adsorbent	Dye	Amount of adsorbent	Removal percentage (%)	References
Pine cone	Red Congo	0.01–0.03 mg	13.45–18.96	Dawood & Sen (2012)
Fly ash	Methylene blue	8,000–20,000 mg	45–96	Kumar et al. (2005)
Tea residual	Basic yellow	2.20 g L⁻¹	19–60	Khosla et al. (2013)
Orange peel	Purple acid	50–600 mg/50 mL	15–98	Sivaraj et al. (2001)
Rice husk	Orange reactive	20–80 mg	21.7–56.2	Ong et al. (2007)
Refined sawdust	Green Malachite	200–1,000 mg/100 mL	18.60–86.90	Garg et al. (2003)

Table 9	Regeneration of adsorbents implemented for dye removal			
Adsorbent	Dye name	Regeneration agent	Reuse cycle	References
Activated pinecone	Alizarin Red S	NaOH	4	Bhomick et al. (2018)
Magnetic rice husk	Methylene blue	NaOH	10	Lawagon & Amon (2019)
Chitosan	Reactive black 5	NaOH	5	Vakili et al. (2019)
Chitosan/bentonite/CTAB	Weak acid scarlet	NaOH	3	Vakili et al. (2019)
Activated bentonite/alginate	Methylene blue	HCl	6	Aichour & Zaghouane-Boudiaf (2020)
Fe₃O₄/activated charcoal/cyclodextrin/alginate	Methylene blue	HCl	5	Yadav et al. (2020)
Modified activated carbon	Methylene blue	HCl	4	Naushad et al. (2019)
have been reviewed, and as can be seen, the mechanism and methods of adsorption for the removal of contaminants by the adsorbent depend on the conditions of experimental physical and chemical data such as pH, initial contaminant concentration, adsorbent concentration, and temperature. In this review study, it is found that the Langmuir and Freundlich adsorption isotherm models for measuring the adsorption capacity of adsorbents are different, and the kinetic data for the adsorption of color pollutants usually follow the pseudo-second-order kinetic model.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

FUNDING

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abdi, G., Alizadeh, A., Zinadini, S. & Moradi, G. 2018 Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. Journal of Membrane Science 552, 326–335. https://doi.org/10.1016/J.MEMSCI.2018.02.018.

Adak, A., Bandopadhyay, M. & Pal, A. 2005 Removal of crystal violet dye from wastewater by surfactant-modified alumina. Separation and Purification Technology 44 (2), 139–144. https://doi.org/10.1016/j.seppur.2005.01.002.

Adegoke, K. A. & Bello, O. S. 2015 Dye sequestration using agricultural wastewaters as adsorbents. Water Resources and Industry 12, 8–24. https://doi.org/10.1016/j.wri.2015.09.002.

Adegwu, A. 2020 Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water 12 (6), 1551. https://doi.org/10.3390/w12061551.

Ahmad, A. A., Idris, A. & Hameed, B. H. 2013 Organic Dye adsorption on activated carbon derived from solid waste. Desalination and Water Treatment 51 (13–15), 2554–2563. https://doi.org/10.1080/19443994.2012.749019.

Aichour, A. & Zaghouane-Boudiaf, H. 2020 Synthesis and characterization of hybrid activated bentonite/alginate composite to improve its effective elimination of dyes stuff from wastewater. Applied Water Science 10 (6). https://doi.org/10.1007/s13201-020-01232-0.

Ali, H. 2010 Biodegradation of synthetic dyes – a review. Water, Air, & Soil Pollution 213 (1–4), 251–273. https://doi.org/10.1007/s11270-010-0382-4.

Ali, I. 2013 Water treatment by adsorption columns: evaluation at ground level. Separation & Purification Reviews 43 (3), 175–205. https://doi.org/10.1080/15422119.2012.748671.

Ali, I., Asim, M. & Khan, T. A. 2012 Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management 113, 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028.

Al-Sakkaf, B. M., Nasreen, S. & Ejaz, N. 2020 Degradation pattern of textile effluent by using bio and sono chemical reactor. Journal of Chemistry 2020, 1–13. https://doi.org/10.1155/2020/8965627.

Argun, M. E., Dursun, S., Karatas, M. & Gur, M. 2008 Activation of pine cone using Fenton oxidation for Cd(II) and Pb(II) removal. Bioresource Technology 99 (18), 8691–8698. https://doi.org/10.1016/j.biortech.2008.04.014.

Attallah, M. F., Ahmed, I. M. & Hamed, M. M. 2012 Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent. Environmental Science and Pollution Research 20 (2), 1106–1116. https://doi.org/10.1007/s11356-012-0947-4.

Badran, I. & Khalaf, R. 2019 Adsorptive removal of alizarin dye from wastewater using maghemite nanoadsorbsents. Separation Science and Technology 55 (14), 2433–2448. https://doi.org/10.1080/01496395.2019.1634731.

Basheer, A. A. 2018 Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30 (4), 402–406. https://doi.org/10.1002/chir.22808.

Belhamdi, B., Merzougui, Z., Trari, M. & Addoun, A. 2016 A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). Journal of Applied Research and Technology 14 (5). 354–366. https://doi.org/10.1016/j.jart.2016.08.004.

Benkhaya, S., M’rabet, S. & Harfi, A. E. 2020 Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6 (1), e03271. https://doi.org/10.1016/j.heliyon.2020.e03271.

Bhomic, P. C., Supong, A., Baruah, M., Pongener, C. & Sinha, D. 2018 Pine cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: isotherm, kinetic, thermodynamic and regeneration studies. Sustainable Chemistry and Pharmacy 10, 41–49. https://doi.org/10.1016/j.scp.2018.09.001.

Bisht, V. & Lal, B. 2019 Exploration of performance kinetics and mechanism of action of a potential novel bioflocculant BF-VB2 on clay and dye wastewater flocculation. Frontiers in Microbiology 10, 1288. https://doi.org/10.3389/fmicb.2019.01288.
Khayyun, T. S. & Mseer, A. H. 2019 Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. *Applied Water Science* 9 (8). https://doi.org/10.1007/s13201-019-1061-2.

Khosla, E., Kaur, S. & Dave, P. N. 2013 Tea waste as adsorbent for ionic dyes. *Desalination and Water Treatment* 51 (34–36), 6552–6561. https://doi.org/10.1016/j.desal.2013.791776.

Khulbe, K. C. & Matsuura, T. 2018 Removal of heavy metals and pollutants by membrane adsorption techniques. *Applied Water Science* 8 (1). https://doi.org/10.1007/s13201-018-0661-6.

Konicki, W., Aleksandrzak, M., Moszyński, D. & Mijowska, E. 2017 Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. *Journal of Colloid and Interface Science* 496, 188–200. https://doi.org/10.1016/J.JCIS.2017.02.031.

Kosaka, K., Iwatan, A., Takeichi, Y., Yoshikawa, Y., Ohkubo, K. & Akiba, M. 2018 Removal of haloacetamides and their precursors at water treatment plants applying ozone/biological activated carbon treatment. *Chemosphere* 198, 68–74. https://doi.org/10.1016/J.CHES.

Kumar, K. V., Ramamurthi, V. & Sivanesan, S. 2005 Modeling the mechanism involved during the sorption of methylene blue onto fly ash. *Journal of Colloid and Interface Science* 284 (1), 14–21. https://doi.org/10.1016/j.jcis.2004.09.063.

Kumar, P., Agnihotri, R., Wasewar, K. L., Uslu, H. & Yoo, C. 2012 Status of adsorptive removal of dye from textile industry effluent. *Desalination and Water Treatment* 50 (1–3), 226–244. https://doi.org/10.1016/j.desal.2012.719472.

Kumar, H., Maurya, K. L., Gehlaut, A. K., Singh, D., Maken, S., Gaur, A. & Kamsonlian, S. 2019 Adsorptive removal of chromium(VI) from aqueous solution using binary polymeric beads made from bagasse. *Applied Water Science* 10, 1. https://doi.org/10.1007/s13201-019-1101-y.

Lawagon, C. P. & Amon, R. E. C. 2019 Magnetic rice husk Ash ‘cleanser’ as efficient methylene blue adsorbent. *Environmental Engineering Research* 25 (5), 685–692. https://doi.org/10.4491/err.2019.287.

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. 2021 Removal of organic dyes from aqueous solution using adsorption onto a graphene oxide paper. *Desalination and Water Treatment* 63 (10), 7936–7942. https://doi.org/10.1016/j.desal.2019.107309.

Luna, M. D. G. d., Flores, E. D., Genuino, D. A. D., Futalan, C. M. & Wan, M.-W. 2013 Adsorption of Eriochrome Black T (EBT) dye using kaolin as an adsorbent. * Environmental Engineering Research* 18 (3), 391–401. https://doi.org/10.4172/2161-0527.1000138.

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. 2021 Removal of organic dyes from aqueous solution using adsorption onto a graphene oxide paper. *Desalination and Water Treatment* 63 (10), 7936–7942. https://doi.org/10.1016/j.desal.2019.107309.

Misra, M., Akansha, K., Sachan, A. & Sachan, S. G. 2020 Removal of dyes from industrial effluents by application of combined biological and physicochemical treatment approaches. In: *Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant*. Springer, Singapore. https://doi.org/10.1007/978-981-15-0497-6_17.

Mosbah, A., Chouchane, H., Abdelwahed, S., Redissi, A., Hamdi, M., Koudhi, S., Neifar, M., Masmoudi, A. S., Cherif, A. & Mnif, W. 2019 Peptides fixing industrial textile dyes: a new biochemical method in wastewater treatment. *Journal of Chemistry* 2019, 1–7. https://doi.org/10.1155/2019/5081807.

Motamedi, M., Tehrani-Bagha, A. R. & Mahdavian, M. 2011 A comparative study on the electrochemical behavior of mild steel in sulfamic acid solution in the presence of monomeric and gemini surfactants. *Electrochimica Acta* 58, 488–496. https://doi.org/10.1016/j.electacta.2011.09.079.

Mall, I. D., Srivastava, V. C., Agarwal, N. K. & Mishra, I. M. 2005 Removal of Congo Red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. *Chemosphere* 61 (4), 492–501. https://doi.org/10.1016/J.CHES.

Nemis, G., Diba, H., Darvishmand, A. & Alizad, M. 2019 Removal of Rhodamine B from aqueous solutions using chitosan/graphene hybrid nanosheets. *Journal of Colloid and Interface Science* 555, 132–141. https://doi.org/10.1016/J.JCIS.2019.04.032.

Na, C. 2020 Size-controlled capacity and isocapacity concentration in Freundlich adsorption. *ACS Omega* 5 (22), 13130–13135. https://doi.org/10.1021/acsomega.0c01144.

Namasivayam, C., Yamuna, R. & Arasi, D. 2001 Removal of acid violet from wastewater by adsorption on waste Red Mud. *Environmental Geology* 41 (3–4), 269–273. https://doi.org/10.1007/s002540100411.

Nandi, B. K., Goswami, A., Das, A. K., Mondal, B. & Purkait, M. K. 2008 Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. *Separation Science and Technology* 43 (6), 1382–1403. https://doi.org/10.1080/01496390701885331.

Nassar, N. N. 2010 Kinetics, mechanistic, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe₂O₃, nanoadsorbents. *Separation Science and Technology* 45 (8), 1092–1103. https://doi.org/10.1080/01496390103696921.

Naushad, M., Alqadami, A. A., AlOthman, Z. A., Alsohaimi, I. H., Algamdi, M. S. & Aldawsari, A. M. 2019 Adsorption kinetics, isotherm and reusability studies for the removal of cationic Dye from aqueous medium using arginine modified activated carbon. *Journal of Molecular Liquids* 293, 111442. https://doi.org/10.1016/j.molliq.2019.111442.

Naushad, M., Alqadami, A. A., AlOthman, Z. A., Alsohaimi, I. H., Algamdi, M. S. & Aldawsari, A. M. 2019 Adsorption kinetics, isotherm and reusability studies for the removal of cationic Dye from aqueous medium using arginine modified activated carbon. *Journal of Molecular Liquids* 293, 111442. https://doi.org/10.1016/j.molliq.2019.111442.

Nelles, J. L. D., Bura, L., Zhao, Y., Burkin, K. M., Rafferty, K., Elliott, C. T. & Campbell, K. 2019 The efficiency of color space channels to quantify color and color intensity change in liquids, pH strips, and lateral flow assays with smartphones. *Sensors* 19 (23), 5104. https://doi.org/10.3390/s19235104.

Ong, S. T., Lee, C. K. & Zainal, Z. 2007 Removal of basic and reactive dyes using ethylenediamine modified rice hull. *Bioresource Technology* 98 (15), 2792–2799. https://doi.org/10.1016/J.BIOTECH.2006.05.011.
Peng, X., Yang, P., Dai, K., Chen, Y., Chen, X., Zhuang, W., Ying, H. & Wu, J. 2020 Synthesis, adsorption and molecular simulation study of methyleneamine-modified hyper-cross-linked resins for efficient removal of citric acid from aqueous solution. *Scientific Reports* 10 (1), 9623. https://doi.org/10.1038/s41598-020-66592-8.

Ponnusamy, S. K. & Sathish Kumar, K. 2015 Polyvinyl alcohol (PVA): adsorption isotherms, kinetics and equilibrium biosorption of lead (II) ions onto nano-sized chitosan particle blended polyvinyl alcohol (PVA): adsorption isotherms, kinetics and equilibrium studies. December 2018. https://doi.org/10.1080/19443994.2015.1061951.

Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. 2010 Adsorption of methylene blue on low-cost adsorbents: a review. *Journal of Hazardous Materials* 177 (1–3), 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047.

Rajasulochana, P. & Preethy, V. 2016 Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. *Resource-Efficient Technologies* 2 (4), 175–184. https://doi.org/10.1016/j.reefft.2016.09.004.

Ramaraju, B., Reddy, P. M. K. & Subrahmanyan, C. 2013 Low cost adsorbents from agricultural waste for removal of dyes. *Environmental Progress & Sustainable Energy* 33 (1), 38–46. https://doi.org/10.1002/ep.11742.

Rápo, E., Előd Aradi, L., Szabó, Á., Posta, K., Szép, R. & Tonk, S. 2020 Adsorption of Remazol Brilliant Violet-5R textile dye from aqueous solutions by using eggshell waste biosorbent. *Scientific Reports* 10 (1), 8385. https://doi.org/10.1038/s41598-020-65334-0.

Ray, S. S., Gusain, R. & Kumar, N. 2020 Classification of water contaminants. In: *Carbon Nanomaterial-Based Adsorbents for Water Purification*. Elsevier. https://doi.org/10.1016/b978-0-12-821959-1.00002-7.

Robinson, T., McMullan, G., Marchant, R. & Nigam, P. 2001 Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. *Bioresource Technology* 77 (3), 247–255. https://doi.org/10.1016/s0960-8524(00)00080-8.

Romdhane, D. F., Slatouli, Y., Nasraoui, R., Charef, A. & Azouzi, R. 2020 Adsorption, modeling, thermodynamic, and kinetic studies of methyl red removal from textile-polluted water using natural and purified organic matter rich clays as low-cost adsorbent. *Journal of Chemistry 2020*, 1–17. https://doi.org/10.1155/2020/4376173.

Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A. & Idris, A. 2011 Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. *Desalination* 280 (1–3), 1–13. https://doi.org/10.1016/j.desal.2011.07.019.

Santhy, K. & Selvapathy, P. 2006 Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. *Bioresource Technology* 97 (11), 1329–1336. https://doi.org/10.1016/j.biotech.2005.05.016.

Saratale, R. G., Saratale, G. D., Chang, J. S. & Govindwar, S. P. 2011 Bacterial decolorization and degradation of azo dyes: a review. *Journal of the Taiwan Institute of Chemical Engineers* 42 (1), 138–157. https://doi.org/10.1016/j.jtice.2010.06.006.

Sar, A., Bicer, A., Alkan, C. & Nazlı Özcan, A. 2019 Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell. *Solar Energy Materials and Solar Cells* 193, 1–6. https://doi.org/10.1016/j.solmat.2019.01.003.

Sarkar, S., Banerjee, A., Halder, U., Biswas, R. & Bandopadhyay, R. 2017 Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. *Water Conservation Science and Engineering* 2 (4), 121–131. https://doi.org/10.1016/j.e41101-017-0031-5.

Senthil Kumar, P., Palaniyappan, M., Priyadharshini, M., Vignesh, A. M., Thanjippavan, A., Sebastina Anne Fernando, P., Tanvir Ahmed, R. & Srinath, R. 2013 Adsorption of basic dye onto raw and surface-modified agricultural waste. *Environmental Progress & Sustainable Energy* 33 (1), 87–98. https://doi.org/10.1002/ep.11756.

Shikuku, V. O., Zanella, R., Kowenje, C. O., Donato, F. F., Bandeira, N. M. G. & Prestes, O. D. 2018 Single and binary adsorption of sulfonamide antibiotics onto iron-modified clay: linear and nonlinear isotherms, kinetics, thermodynamics, and mechanistic studies. *Applied Water Science* 8 (6), 175. https://doi.org/10.1007/s13201-018-0825-4.

Sivaraj, R., Namasiyayam, C. & Kadirvelu, K. 2001 Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. *Waste Management* 21 (1), 105–110. https://doi.org/10.1016/S0956-053X(00)00076-3.

Skwarek, E., Bolbukh, Y., Tertykh, V. & Janusz, W. 2016 Electrokinetic properties of the pristine and oxidized MWCNT depending on the electrolyte type and concentration. *Nanoscale Research Letters* 11 (1), 166. https://doi.org/10.1186/s11671-016-1367-z.

Son, D., Hai, B., Mai, V. Q., Du, D. X., Phong, N. H. & Khieu, D. Q. 2016 A study on Astrazon Black AFDL dye adsorption onto Vietnamese diatomite. *Journal of Chemistry 2016*, 1–11. https://doi.org/10.1155/2016/8685437.

Srinivasan, A. & Viraraghavan, T. 2010 Decolorization of dye wastewaters by biosorbents: a review. *Journal of Environmental Management* 91 (10), 1915–1929. https://doi.org/10.1016/j.jenvman.2010.05.003.

Sulyman, M., Namiesnik, J. & Gierak, A. 2017 Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review. *Polish Journal of Environmental Studies* 26 (2), 479–510. https://doi.org/10.15244/pjoes/66769.

Vakili, M., Deng, S., Shen, L., Shan, D., Liu, D. & Yu, G. 2019 Regeneration of chitosan-based adsorbents for eliminating dyes from aqueous solutions. *Separation & Purification Reviews* 48 (1), 1–13. https://doi.org/10.1080/15422119.2017.1406860.

Vimoneses, V., Lei, S., Jin, B., Chow, C. W. K. & Saint, C. 2009 Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. *Chemical Engineering Journal* 148 (2–3), 354–364. https://doi.org/10.1016/j.cej.2008.09.009.

Wong, S., Ghafer, N. A., Ngadi, N., Razmi, F. A., Inuwa, I. M., Mat, R. & Amin, N. A. S. 2020 Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. *Scientific Reports* 10 (1), 2928. https://doi.org/10.1038/s41598-020-60021-6.

Yadav, S., Asthana, A., Chakraborty, R., Jain, B., Singh, A. K., Carabineiro, S. A. C. & Susan, M. A. B. H. 2020 Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite. *Nanomaterials* 10 (1). https://doi.org/10.3390/nano10010170.
Yagub, M. T., Sen, T. K. & Ang, H. M. 2012 Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. *Water, Air, & Soil Pollution* **223** (8), 5267–5282. https://doi.org/10.1007/s11270-012-1277-3.

Yu, L., Chen, J., Liang, Z., Xu, W., Chen, L. & Ye, D. 2016 Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. *Separation and Purification Technology* **171**, 80–87. https://doi.org/10.1016/J.SEPPUR.2016.07.020.

Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D. & Singh, L. 2020 A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. *Science of the Total Environment* **726**, 138095. https://doi.org/10.1016/J.SCITOTENV.2020.138095.

Zhang, J., Zhou, Q. & Ou, L. 2012 Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite. *Journal of Chemical & Engineering Data* **57** (2), 412–419. https://doi.org/10.1021/je2009945.

Zou, W., Bai, H., Gao, S. & Li, K. 2013 Characterization of modified sawdust, kinetic and equilibrium study about methylene blue adsorption in batch mode. *Korean Journal of Chemical Engineering* **30** (1), 111–122. https://doi.org/10.1007/s11814-012-0096-y.

First received 10 June 2021; accepted in revised form 23 September 2021. Available online 7 October 2021.