A RICCI-TYPE FLOW ON GLOBALLY NULL MANIFOLDS AND ITS GRADIENT ESTIMATES

MOHAMED H. A. HAMED*, FORTUNÉ MASSAMBA** AND SAMUEL SSEQUJJA***

ABSTRACT. Locally, a screen integrable globally null manifold \(M \) splits through a Riemannian leaf \(M' \) of its screen distribution and a null curve \(C \) tangent to its radical distribution. The leaf \(M' \) carries a lot of geometric information about \(M \) and, in fact, forms a basis for the study of expanding and non-expanding horizons in black hole theory. In the present paper, we introduce a degenerate Ricci-type flow in \(M' \) via the intrinsic Ricci tensor of \(M \). Several new gradient estimates regarding the flow are proved.

1. INTRODUCTION

Let \(M \) be a compact \(m \)-dimensional Riemannian manifold on which a one parameter family of Riemannian metrics \(g(t), t \in [0,T], T < T_e \), where \(T_e \) is the time where there is (possibly) a blow-up of the curvature is defined. We say \((M, g(t))\) is a solution to the Ricci flow if it is evolving by the following non-linear weakly parabolic partial differential equation [1]

\[
\partial_t g_{ij}(x,t) = -2Ric_{ij}(x,t), \quad (x,t) \in M \times [0,T],
\]

with \(g_{ij}(x,0) = g_{ij}(x) \), where \(Ric_{ij}(x,t) \) is the Ricci curvature tensor of the evolving metric \(g_{ij}(x,t) \). This evolution system was initially introduced by Hamilton in [17]. The evolution equation for the metric tensor implies the evolution equation for the curvature tensor \(R \) in the form \(\partial_t R = \Delta R + Q \), where \(\Delta \) denotes the Laplacian operator on \(M \) and \(Q \) is a quadratic expression of the curvatures. In particular, the scalar curvature \(\bar{R} \) satisfies \(\partial_t \bar{R} = \Delta \bar{R} + 2|Ric|^2 \), so by the maximum principle its minimum is non-decreasing along the flow. By developing a maximum principle for tensors, Hamilton [17], proved that Ricci flow preserves the positivity of the Ricci tensor in dimension three and of the curvature operator in all dimensions; moreover, the eigenvalues of the Ricci tensor in dimension three and of the curvature operator in dimension four are getting pinched point-wisely as the curvature is getting large. In [25], Perelman used Ricci flow and its surgery to
prove Poincare Conjecture. In the papers [1] and [8], the authors used Ricci flow coupled to heat-like equations to study some gradient estimates. For more information about the classical Ricci flow, see the papers [1, 2, 3, 7, 17, 25, 26] and references therein.

When the underlying manifold M is null (sometimes called degenerate or light-like), one may not define, in the usual way, the Ricci flow associated to the degenerate metric g on M. In fact, it is well-known in [10] that, in general, there is no Ricci tensor on M via the null metric g. When M is embedded into a semi-Riemannian manifold \overline{M} as a null hypersurface, special classes of M do exist with an induced symmetric Ricci tensors. For instance, in [13] the authors shows that null hypersurfaces $C[M]_0$ of genus zero exhibits an induced Ricci tensor. As the Ricci flow is an intrinsic geometric flow, one needs not to know much about the ambient space in which M is embedded. In [16], Kupeli studies null manifolds using a factor bundle approach and proved the existence of many geometric objects on M by taking the assumption that it is stationary, i.e., the normal bundle of M is a killing distribution, which secures a Levi-Civita connection on M. In fact, stationary M is the same as a globally null manifold studied by Duggal in [11].

A screen integrable globally null manifold M is locally a product manifold of a leaf M' of its screen distribution and a null curve C tangent to the normal bundle of M. The leaves M' are fundamental in studying expanding and non-expanding black hole horizons in mathematical physics, see for instance [16] and [24] and references therein. As the intrinsic Ricci tensor of M is symmetric on M', we introduce a degenerate Ricci flow-type flow on M using such a Ricci tensor and investigate its properties in terms of the associated gradient estimates.

The theory of null submanifolds of a semi-Riemannian manifold is one of the most important topics of differential geometry. More precisely, null hypersurfaces appear in general relativity as models of different types of black hole horizons [10, 13, 24]. The study of non-degenerate submanifolds of semi-Riemannian manifolds has many similarities with the Riemannian submanifolds. However, in case the induced metric on the submanifold is degenerate, the study becomes more difficult and is strikingly different from the study of nondegenerate submanifolds [10]. Some of the pioneering works on null geometry is due to Duggal-Bejancu [10], Duggal-Sahin [13] and Kupeli [16]. Such works motivated many other researchers to invest in the study of null submanifolds, for example, [7, 10, 12, 16, 19, 20, 21, 22, 23] and many more references therein. The rest of the paper is organized as follows. In Section 2 we review the basics on globally null manifolds. In Section 3 we define a degenerate Ricci-type flow evolution on a globally null manifold and
give some examples. In Section 4-5, we develop several gradient estimates for the
degenerate Ricci flow-type.

2. GLOBALLY NULL MANIFOLDS

We recall the basic concepts on globally null manifolds (see [11] for more de-
tails and references therein). Let \((M, g)\) be a real \(m\)-dimensional smooth manifold
where \(g\) is a symmetric tensor field of type \((0, 2)\). We assume that \(M\) is para-
compact. For \(x \in M\), the \textit{radical or null} space of \(T_x M\) is subspace, denoted by
Rad \(T_x M\), defined by (see [15] for more details)
\[
\text{Rad } T_x M = \{ E_x \in \text{Rad } T_x M, g(E_x, X) = 0, \; X \in T_x M \} .
\] (2.1)
The dimension, say \(r\), of \(\text{Rad } T_x M\) is called \textit{nullity degree} of \(g\). \(\text{Rad } T_x M\) is
called the radical distribution of rank \(r\) on \(M\). Clearly, \(g\) is degenerate or non-
degenerate on \(M\) if and only if \(r > 0\) or \(r = 0\), respectively. We say that \((M, g)\) is
a null manifold if \(0 < r \leq m\).

In this paper, we assume that \(0 < r < m\). Consider a complementary distribu-
tion \(S(\mathcal{T}M)\) to \(\text{Rad } T\mathcal{M}\) in \(\mathcal{T}M\). We call \(S(\mathcal{T}M)\) a screen distribution on
\(M\), and its existence is secured by the paracompactness of \(M\). It is easy to see that
\(S(\mathcal{T}M)\) is semi-Riemannian. Therefore, we have the following decompo-
sition
\[
\mathcal{T}M = S(\mathcal{T}M) \oplus \text{Rad } \mathcal{T}M .
\] (2.2)
The associated quadratic form of \(g\) is a mapping \(h : T_x M \rightarrow \mathbb{R}\) given by \(h(X) =
g(X, X)\), for any \(X \in T_x M\). In general, \(h\) is of type \((p, q, r)\), where \(p + q + r = m\),
where \(q\) is the index of \(g\) on \(T_x M\). We use the following range of indices: \(I, J \in \{1, \ldots, q\}, A, B \in \{q+1, \ldots, q+p\}, \alpha, \beta \in \{1, \ldots, r\}\) and \(a, b \in \{r+1, \ldots, m\}\),
\(i, j \in \{1, \ldots, m\}\).

Throughout the paper we consider \(\Gamma(\Xi)\) to be a set of smooth sections of the
vector bundle \(\Xi\).

Using a well-known result from linear algebra, we have the following canonical
form for \(h\) (with respect to a local basis of \(T_x M\)): \(h = -\sum_{I=1}^{q} (\omega^I)^2 + \sum_{A=q+1}^{p+q} (\omega^A)^2\), where \(\omega^1, \ldots, \omega^{p+q}\) are linearly independent local differential 1-
forms on \(M\). With respect to a local coordinates system \((x^I)\), the above relation
leads to
\[
h = -\sum_{I=1}^{q} (\partial_i)^2 + \sum_{A=q+1}^{p+q} (\omega^A)^2, \quad h = g_{ij} dx^i dx^j, \quad \text{rank}|g_{ij}| = p + q < m,
\]
\[
g_{ij} = g(\partial_i, \partial_j) = -\sum_{I=1}^{q} \omega^I_i \omega^I_j + \sum_{A=q+1}^{p+q} \omega^A_i \omega^A_j,
\]
since \(\omega^J = \omega^J_idx^i \) and \(\omega^A = \omega^A_idx^i \).

Suppose \(\text{Rad } TM \) is an integrable distribution. Then it follows from the Frobenius theorem that leaves of \(\text{Rad } TM \) determine a foliation on \(M \) of dimension \(r \), that is, \(M \) is a disjoint union of connected subsets \(\{L_t\} \) and each point \(x \in M \), \(M \) has a coordinate system \((U,x^i) \), where \(i \in \{1,\ldots,m\} \) and \(L_t \cap U \) is locally given by the equation \(x^a = c^a \), \(a \in \{r+1,\ldots,m\} \) for real constants \(c^a \), and \((x^\alpha) \), \(\alpha \in \{1,\ldots,r\} \), are local coordinates of a leaf \(L \) of \(\text{Rad } TM \).

Consider another coordinate system \((U,x^\alpha) \) on \(M \). The transformation of coordinates on \(M \), endowed with an integrable distribution, has the following special form. \(0 = dx^i = \frac{\partial \overline{x}^i}{\partial x^\alpha}dx^\alpha + \frac{\partial \overline{x}^i}{\partial x^b}dx^b \). The following result was established in [11].

We, therefore, suppose that (2.4) holds. Also, one can show that the screen distribution \(S \) is invariant with respect to the transformations in (2.3).

Next, we assume that \(r = 1 \). Thus, the 1-dimensional nullity distribution \(\text{Rad } TM \) is integrable. Using the basic formula \((\mathcal{L}_Xg)(Y,Z) = X(g(Y,Z)) - g([X,Y],Z) - g(Y,[X,Z])\), for any \(X,Y,Z \in \Gamma(TM) \), where \(\mathcal{L} \) is the Lie-derivative operator. The following result was established in [11].

Theorem 2.1 ([11]). Let \((M,g) \) be an \(m \)-dimensional null manifold, with \(\text{Rad } TM \) of rank \(r = 1 \). Then, there exists a Levi-Civita metric connection \(\nabla \) on \(M \) with respect to the degenerate metric tensor \(g \).

Let \(C \) be a null curve in an \(m \)-dimensional null manifold \((M,g) \), with \(m > 1 \) and locally given by \(x^i = x^i(t), t \in I \subset \mathbb{R}, i \in \{1,\ldots,m\} \) for a coordinate neighborhood \(U \) on \(C \). Then, the tangent vector field \(\frac{d}{dt} = \left(\frac{dx^1}{dt}, \ldots, \frac{dx^m}{dt} \right) \) on \(U \) satisfies \(g\left(\frac{d}{dt}, \frac{d}{dt} \right) = 0 \), i.e., \(g_{ij}\frac{dx^i}{dt}\frac{dx^j}{dt} = 0 \), where \(g_{ij} = g(\partial_i,\partial_j) \) and \(i,j \in \{1,\ldots,m\} \).
\{1, \ldots, m\}. Denote by TC the tangent bundle of C which is a vector subbundle of TM, and is of rank 1. It is easy to see that $TC^\perp = \{ V \in TM, g(V,E) = 0 \} = TM$, where E is a null vector field tangent over C. Suppose that $\text{Rad} \ TM$ is of rank $r = 1$. We consider a class of null curves such that $\text{Rad} \ TM = TC$ and both are generated by a null vector field E tangent over C. Let $S(TM)$ be the complementary screen distribution to $\text{Rad} \ TM$. Then, we have

$$TM = \text{Rad} \ TM \perp S(TM) = TC \perp S(TM), \quad (2.5)$$

where \perp means the orthogonal direct sum. It follows that $S(TM)$ is the transversal vector bundle of C in TM. Suppose $S(TM)$ is Riemannian and $m = 3$, we obtain the following differential equations

$$\nabla_E E = \tilde{h} E, \quad \nabla_E W_1 = -k_1 E + k_3 W_2, \quad \nabla_E W_2 = -k_2 E - k_3 W_1, \quad (2.6)$$

where \tilde{h} and \{\textit{k}_1, \textit{k}_2, \textit{k}_3\} are smooth functions on U and \{\textit{W}_1, \textit{W}_2\} is an orthonormal basis of $\Gamma(S(TM))_U$. We call $F = \{ \frac{d}{dt} = E, W_1, W_2 \}$ a Frénet frame on M along C with respect to the screen distribution $S(TM)$. The functions \{\textit{k}_1, \textit{k}_2, \textit{k}_3\} and the differential equations (2.6) are called curvature functions of C and Frénet equations for F, respectively. The result can be generalized for higher dimensions.

It is important to mention that for any m, the first Frénet equation for F remains the same. Now we show that it is always possible to find a parameter on C such that $\tilde{h} = 0$, using the same screen distribution $S(TM)$. Consider another coordinate neighborhood U^*, and its Frénet frame F^*, with $U \cap U^* \neq \emptyset$. Then, $\frac{d}{dt} = \frac{dt}{dt'} \frac{d}{dt'}$.

Writing the first Frénet equation in (2.6) for both F and F^* and using above transformation, we obtain $\frac{d^2 t}{dt'^2} + \tilde{h} \left(\frac{dt}{dt'} \right)^2 = \tilde{h}^* \frac{dt}{dt'}$. Consider the differential equation $\frac{d^2 t}{dt'^2} - \tilde{h}^* \frac{dt}{dt'} = 0$, whose general solution comes from

$$t = a \int_{t_0}^{t'} \exp \left(\int_{s_0}^{s} \tilde{h}(t') dt' \right) ds + b, \quad a, b \in \mathbb{R}. \quad (2.7)$$

It follows that a solution of (2.7), with $a \neq 0$, may be taken as a special parameter on C such that $\tilde{h} = 0$. Denote such a parameter by $p = \frac{t - b}{a}$, where we call t the general parameter as given in (2.7), and p a distinguished parameter of C. Then, the first Frénet equation is given by $\nabla_{\frac{d}{dp}} W = 0$ and, therefore, C is a null geodesic of M, with respect to the distinguished parameter p. Since the first Frénet equation is the same for any m, the following holds.

Theorem 2.2 (11). Let C be a null curve of a null manifold M, with $\text{Rad} \ TM$ of rank 1 and Riemannian screen distribution. Then, there exists a distinguished parameter p with respect to which C is a null geodesic of M.
In view of the above theorem, the author in [11] defined globally null manifolds as follows.

A null manifold \((M, g)\) is said to be a **globally null manifold** if it admits a single global null vector field and a complete Riemannian hypersurface.

As a consequence, the following characterization holds on globally null manifolds.

Theorem 2.3 ([11]). Let \((M, g)\) be a globally null manifold. Then, the following assertions are equivalent:

1. The screen distribution \(S(TM)\) is integrable.
2. \(M = M' \times C'\) is a global product manifold, where \(M'\) is a leaf of \(S(TM)\) and \(C'\) is a 1-dimensional integral manifold of a global null curve \(C\) in \(M\).
3. \(S(TM)\) is parallel with respect to the metric connection \(\nabla\) on \(M\).

As an example, we have the following.

Example 2.4. Let \((\mathbb{R}^4, \overline{g})\) be the Minkowski spacetime with metric \(ds^2 = -dt^2 + dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2)\), for a spherical coordinate system \((t, r, \theta, \phi)\), which is non-singular if we restrict \(0 < r < \infty, \quad 0 < \theta < \pi, \quad 0 < \phi < 2\pi\). It is well known that Minkowski spacetime is globally hyperbolic. Take two null coordinates \(u = t + r\) and \(v = t - r\) \((u > v)\). Then, we have

\[
ds^2 = -dudv + \frac{1}{4}(u - v)^2(d\theta^2 + \sin^2 \theta d\phi^2), \quad -\infty < u, v < \infty. \tag{2.8}
\]

The absence of the terms \(du^2\) and \(dv^2\) in (2.8) implies that the two hypersurfaces \(\{v = \text{constant}\}\), \(\{u = \text{constant}\}\) are null. Denote one of these null hypersurfaces by \((M, g)\), where \(g\) is the induced degenerate metric tensor of \(\overline{g}\). A leaf of the 2-dimensional screen distribution \(S(TM)\) is topologically a 2-sphere with complete Riemannian metric \(d\Omega^2 = r^2(d\theta^2 + \sin^2 \theta d\phi^2)\) which is the intersection of the two hypersurfaces. Since by definition a spacetime admits a global timelike vector field, it follows that both its null hypersurfaces admit a single global null vector field. Thus, there exists a pair of globally null manifolds, as null hypersurfaces of a Minkowski spacetime.

Remark 2.5. Globally null manifolds were also studied by Kupeli in [16], under the name of stationary singular semi-Riemannian manifolds.

3. A **DEGENERATE RICCI-TYPE FLOW**

Let \((M, g)\) be a null manifold and \(S(TM)\) be its screen distribution. A globally null manifold \((M, g)\) is said to be a **screen integrable globally null manifold** if its screen distribution \(S(TM)\) is integrable.
Let \((M, g)\) be a screen integrable globally null manifold and \((M', g')\) be a leaf of \(S(TM)\) such that \(g' = g|_{M'}\), immersed in \(M\) as a non-degenerate submanifold. Denote by \(P\) the projection morphism of \(TM\) into \(S(TM)\). Let \(R\) denote the curvature tensor of \(M\) with respect to the metric connection \(\nabla\) on \(M\). If \(R'\) is the curvature tensor of \(M'\) with respect to the connection \(\nabla'\) on \(M'\), then, in view of [16] p. 48, we have

\[
R'(X, Y)Z' = PR(X, Y)Z,
\]

for all \(X, Y, Z \in \Gamma(TM)\) with \(Z' = PZ\). The intrinsic curvature tensor \(\overline{R}\) of \((M', g')\) is then given by \(\overline{R}(X', Y')Z' = R'(X, Y)Z'\), where \(X' = PX, Y' = PY\) and \(Z' = PZ\), for all \(X, Y, Z \in \Gamma(TM)\). \(\overline{R}\) satisfies the usual properties of Riemannian curvature tensors (see Theorem 3.2.10 of [16, p. 49]). Note that \(\overline{R}\) is tensorial with respect to its entries, hence for any \(x \in M\), \((\overline{R}(X', Y')Z')_x\) depend on the values of \(X', Y', Z' \in T_xM'\). Moreover, the associated curvature-like tensor of type \((0,4)\) is given by

\[
\overline{R}(X', Y', Z', W') = g'(\overline{R}(X', Y')Z', W'),
\]

where \(X', Y', Z', W' \in \Gamma(TM')\).

Let \((M, g)\) be a screen integrable global null submanifold. Then, the Ricci tensor \(\text{Ric}'\) of \(M'\) is defined by \(\text{Ric}'(X', Y') = \text{trace}\{Z' \rightarrow \overline{R}(Z', X')Y'\}\), for all \(X', Y', Z' \in \Gamma(T_xM')\). The corresponding scalar curvature \(\text{Scal}' \in C^\infty(M')\) of \((M', g')\) is defined by \(\text{Scal}' = \text{trace} (\text{Ric}')\). For a function \(f \in C^\infty(M)\), we will denote by \(\overline{f} = f|_{M'}\) its restriction on \(M'\). Recall that for a smooth function \(\overline{f}\), we define a symmetric 2-tensor \(\overline{\nabla}^2\overline{f}\) by \(\overline{\nabla}^2\overline{f}(X', Y') = X'Y'\overline{f} - (\nabla_XY')\overline{f} = \text{Hess}(\overline{f})(X', Y')\), from which we define the Laplacian \(\overline{\Delta}\overline{f}\) of \(\overline{f}\) as \(\overline{\Delta}\overline{f} = \text{trace} \overline{\nabla}^2\overline{f} = g'^{ab}(\overline{\nabla}^2\overline{f})_{ab}\). Notice that \(\overline{\Delta}\overline{f} = \text{div}(\overline{\nabla}\overline{f})\), where \(\overline{\nabla}\overline{f}\) denotes the gradient of \(\overline{f}\) and \(\text{div}(\cdot)\) denotes the divergence operator on \(M'\).

For more details of curvature properties on globally null manifolds, see Kupeli [16]. In view of the above background, we define a degenerate Ricci-type flow on \((M, g)\) as follows.

Definition 3.1. Let \((M, g)\) be a screen integrable globally null manifold, and let \((M', g' = g|_{M'})\) be a leaf of \(S(TM)\). A degenerate Ricci-type flow of \((M, g)\) is a family \(\{g'(t)\}_{t \in I}\) of Riemannian metrics on a smooth manifold \((M', g')\), parametrized by a time interval \(I \subset \mathbb{R}\) and evolving by

\[
\partial_t g'(t) = -2\text{Ric}'(g'(t)).
\]
In harmonic local coordinates around a point \(x \in M \), the Ricci tensor at \(x \) is
\[
\text{Ric}^t_{ab}(x) = -\frac{1}{2} \Delta g^t_{ab}(x).
\]
Thus, a degenerate Ricci-type flow resembles a heat flow evolution.

Next, we will give some examples of degenerate Ricci flows.

Example 3.2. Let \((M, g)\) be a globally null manifold, and \(\phi : M \to \mathbb{R}^{n+2}_1 \)
be an isometric immersion of \(M \) into \(\mathbb{R}^{n+2}_1 \) as a null hypersurface. Then, by the
definition of globally null manifolds, \(M \) is embedded in \(\mathbb{R}^{n+2}_1 \) as totally geodesic
hypersurface. As \(\mathbb{R}^{n+2}_1 \) is flat, we notice that \(M \) is flat as well (see [10] for more
details). Consequently, the intrinsic curvature \(\mathcal{R} \) vanishes and each leaf \(M' \) is flat.
Thus, the flat metric on \(M' \) has zero Ricci curvature, so it does not evolve at all
under the degenerate Ricci-type flow.

Example 3.3. Consider the globally null manifold \((M, g)\) of Example 2.4. Each
leaf \(M' \) of \(S(TM) \) is a 2-dimensional sphere of radius \(r \), the metric is given by
\[
g' = r^2 g'', \quad \text{where} \quad g'' = d\theta^2 + \sin^2 \theta d\phi^2
\]
is the metric on the unit sphere. The sectional curvatures are all \(1/r^2 \). Thus for any unit vector filed \(X' \in \Gamma(TM') \), we have
\[
\text{Ric}'(X', X') = 1/r^2.
\]
Therefore, \(\text{Ric}' = \frac{1}{r^2} g' = g'' \), so the degenerate Ricci-
type flow equation becomes an ordinary differential equation \(\partial_t g' = -2 \text{Ric}' \), from
which we obtain \(\frac{d(r^2)}{dt} = -2 \). Solving this ODE, gives \(r(t) = \sqrt{R_0^2 - 2t} \), where
\(R_0 \) is the initial radius of the sphere. Notice that the degenerate Ricci-type flow
of \((M, g)\) will become singular at \(t = (1/2)R_0^2 \). At this time, the leaf \(M' \) has
collapsed to a point.

The existence and uniqueness of degenerate Ricci-type flows can be established
in the same way as in the classical Ricci flow, as well as the associated geometric
evolution equations for the induced objects associated to curvature (see [2] p. 90
for more details).

As each leaf \(M' \) is Riemannian, we can define the distance function on \(M' \)
in a natural way. For a point \(p \in M' \), define \(d(x, p) \) for all \(x \in M' \), where
\(d(\cdot, \cdot) \) is the geodesic distance. It is important to note that \(d \) is only Lipschitz
continuous, that is, everywhere continuous except at the cut locus of \(p \) and on the
point where \(x \) coincides with \(p \). One can easily see that \(|\nabla d| = g^{ab} \partial_a d \partial_b d = 1 \)
on \(M'/\{ \{p\} \cup \text{cut}(p) \} \). Let \(d(x, y, t) \) be the geodesic distance between \(x \) and \(y \)
with respect to the Riemannian metric \(g'(t) \), we define a smooth cut-off function
\(\varphi(x, t) \) with support in the geodesic cube
\[
\mathcal{Q}_{2\rho, T} := \{ (x, y) \in M' \times (0, T) : d(x, y, t) \leq 2\rho \},
\]
for any \(C^2 \)-function \(\psi \) on \([0, \infty) \) with \(\psi(s) = 1 \), for \(s \in [0, 1] \) and \(\psi(s) = 0 \), for
\(s \in [2, +\infty] \) (see [1] for more details). Furthermore, \(\psi'(s) \leq 0 \), \(\psi''(s) \geq -c_1 \)
and \(\frac{\psi'^2}{\psi} \leq c_2 \), where \(c_1, c_2 \) are constants such that \(\varphi(x, t) = \psi(d(x, p, t)/\rho) \) and \(\varphi|_{Q_{2\rho,T}} = 1 \).

As in [1], let \(M' \) be a complete \(n \)-dimensional leaf of the integrable screen distribution \(S(TM) \) of null manifold \((M, g)\) whose Ricci curvature is bounded from below by \(Ric' \geq (n-1)k \), for some constant \(k \in \mathbb{R} \). Then the Laplacian of the distance function satisfies

\[
\Delta d(x, p) = \begin{cases}
(n-1)\sqrt{k} \cot(\sqrt{k} \rho), & k > 0, \\
(n-1)\rho^{-1}, & k = 0, \\
(n-1)\sqrt{|k|} \coth(\sqrt{k} \rho), & k < 0.
\end{cases}
\]

Throughout, we will impose boundedness condition on the Ricci curvature of the metric and note that when the metric evolves by the degenerate Ricci-type flow, boundedness and sign assumptions are preserved as long as the flow exists, so also the metrics are uniformly equivalent, if \(-\rho_1 g' \leq Ric' \leq \rho_2 g' \), where \(g'(t), t \in (0, T] \) is a degenerate Ricci flow, then

\[
e^{-\rho_1 T} g'(0) \leq g'(t) \leq e^{-\rho_2 T} g'(0).
\]

4. SOME GRADIENT ESTIMATES

In this section, we discuss the localized version of gradient estimate on the heat equation perturbed with curvature operator under both forward and backward degenerate Ricci-type flow. The estimate under backward action of degenerate Ricci-type flow is related to the local monotonicity for heat kernel and mean value theorem of Ecker, Knopf, Ni and Topping in [8]. They worked in general geometric flow, we follow their approach.

Let \((M, g)\) be a screen integrable globally null manifold and \((M', g' = g|_{M'})\) be a leaf of the screen distribution \(S(TM) \). We consider the conjugate heat equation coupled to the backward and forward degenerate degenerate Ricci-type flow, respectively, as follows:

\[
\begin{align*}
& \left\{ \begin{array}{ll}
(\partial_t - \Delta + Scal')u(x, t) = 0, & \\
\partial_t g'(x, t) = 2 Ric'(x, t)
\end{array} \right. \\
& \text{and} \quad \left\{ \begin{array}{ll}
(\partial_t - \Delta + Scal')u(x, t) = 0, & \\
\partial_t g'(x, t) = -2 Ric'(x, t)
\end{array} \right.
\end{align*}
\]

Throughout this paper, we denote by \(\| \cdot \| \) the norm on \(M' \) with respect to \(g' \).

Suppose \(u = u(x, t) \) solves the conjugate heat equation and satisfies \(0 < u < A \) in the geodesic cube \(Q_{2\rho} \subset M' \) as defined by

\[
Q_{2\rho,T} := \{(x, t) \in M' \times (0, T] : d(x, y, t) \leq 2\rho\},
\]
We set \(\omega_i := \partial_i \omega, \omega_{ij} := \partial_i \partial_j \omega \) and so on, for some smooth function \(\omega \) on \(M' \), where \(1 \leq i, j \leq n \). Then we have

Theorem 4.1. Let \((M, g)\) be a screen integrable globally null manifold and \((M', g')\) be a leaf of \(S(TM) \). Suppose that \((M', g'(t))\) (with \(t \in (0, T) \)) be a complete solution to the backward degenerate Ricci flow with \(\text{Scal}' \geq -\rho_1 \) and \(\text{Ric}' \geq -\rho_2 \) and \(\| \nabla \text{Scal}' \| \leq \rho_3 \), for some constants \(\rho_1, \rho_2, \rho_3 \geq 0 \). Let \(u = u(x, t) \) be any positive solution to the heat equation defined in \(Q_{2\rho,T} \subset (M' \times (0, T]) \) satisfying \(0 < u \leq A \). Then, there exist absolute constants \(c_1, c_2 \) depending on \(n \) such that

\[
\frac{\| \nabla u \|^2}{u^2} \leq \left(1 + \ln \left(\frac{A}{u} \right) \right)^2 \left(\frac{1}{t} + c_2 \rho_1 + 4 \rho_2 + 2 \rho_3 + \frac{1}{\rho^2} \left(\rho_1 \sqrt{\rho_2} + c_2 \right) \right).
\]

Proof. Let us define \(f = \ln \frac{u}{A} \). It is easy to see that \(1 - f \geq 1 \). Let \(\phi = \| \nabla \ln(1 - f) \|^2 = \frac{\| \nabla f \|^2}{(1 - f)^2} \). Then, a straightforward calculation using (4.1) gives the evolution equation of \(f \) as \(\partial_t f = \Delta f + \| \nabla f \|^2 - \text{Scal}' \). Next, we compute the evolution equation of \(\phi \). To that end, differentiating \(\phi \) with respect to \(t \) and using the evolution equation of \(f \), gives

\[
\partial_t \phi = \frac{\partial}{\partial t} \left(\frac{\| \nabla f \|^2}{(1 - f)^2} \right) = \frac{\partial_t \| \nabla f \|^2}{(1 - f)^2} + \frac{2 \| \nabla f \|^2 \partial_t f}{(1 - f)^3}.
\]

(4.3)

On the other hand, the term \(\partial_t (\| \nabla f \|^2) \) is given by

\[
\partial_t (\| \nabla f \|^2) = (\partial_t g^{ij}) \partial_i f \partial_j f + 2g'(\nabla f, \nabla \partial_t f)
\]

\[
= -2 \text{Ric}' \partial_i f \partial_j f + 2g' \nabla f, \nabla (\nabla f + \| \nabla f \|^2 - \text{Scal}')
\]

\[
= -2 \text{Ric}' \nabla_i f \nabla_j f + 2g' \nabla f, \nabla \Delta f + 2g' \nabla f, \nabla \| \nabla f \|^2 + 2g' \nabla f, \nabla \text{Scal}'
\]

in which we have used (4.1) and the evolution equation of \(f \). Applying (4.4) to (4.3) and using the evolution equation of \(f \), gives

\[
\partial_t \phi = \frac{-2 \text{Ric}' \nabla_i f \nabla_j f + 2g' (\nabla f, \nabla \Delta f) + 2g' (\nabla f, \nabla \| \nabla f \|^2) - 2g' (\nabla f, \nabla \text{Scal}')}{(1 - f)^2}
\]

\[
+ \frac{2 \| \nabla f \|^2 (\Delta f + \| \nabla f \|^2 - \text{Scal}')}{(1 - f)^3}
\]

\[
= - \frac{2 \text{Ric}' \nabla_i f \nabla_j f}{(1 - f)^2} + \frac{2f_j f_{jij}}{(1 - f)^2} + \frac{2g' (\nabla f, \nabla \| \nabla f \|^2)}{(1 - f)^2} - \frac{2g' (\nabla f, \nabla \text{Scal}')}{(1 - f)^2}
\]

\[
+ \frac{2 \| \nabla f \|^2 \Delta f}{(1 - f)^3} + \frac{2 \| \nabla f \|^4}{(1 - f)^3} - \frac{2 \text{Scal}' \| \nabla f \|^2}{(1 - f)^3}.
\]

(4.5)
In view of Bochner-Weitzenböck identity (see [3] for details), we have \(\Delta(\|\nabla f\|^2) = -2f_{ij}^2 + 2g'(\nabla f, \nabla \Delta f) + 2Ric'_{ij} f_i f_j \), such that (4.4) reduces to

\[
(\partial_t - \Delta) \|\nabla f\|^2 = -2f_{ij}^2 + 2g'(\nabla f, \nabla \|\nabla f\|^2) - 2g'(\nabla f, \nabla Scal') - 4Ric'_{ij} \nabla_i f \nabla_j f. \tag{4.6}
\]

Next, we compute \(\Delta \phi \). To that end, a direct calculation gives

\[
\nabla \phi = \frac{2g'(\nabla f, \nabla \nabla f)}{(1-f)^2} + \frac{2\|\nabla f\|^2 \nabla f}{(1-f)^3} = \frac{2f_{ij} f_i f_j}{(1-f)^2} + \frac{2f_{ij}^2 f_j}{(1-f)^3}. \tag{4.7}
\]

Applying the definition of \(\Delta \) and relation (4.7), we get

\[
\Delta \phi = \left(\frac{2f_{ij} f_i f_j}{(1-f)^2} \right)_j + \left(\frac{2f_{ij}^2 f_j}{(1-f)^3} \right)_j
\]

\[
= \frac{2f_{ij} f_i f_j + f_{ijj}}{(1-f)^2} + \frac{4(1-f)f_{ij} f_i j}{(1-f)^4} + \frac{4f_{ij} f_i j + f_{ijj}}{(1-f)^3} \frac{6f_{ij}^2 f_j (1-f)}{(1-f)^6}
\]

\[
= \frac{2f_{ij}^2}{(1-f)^2} + \frac{2f_{ij} f_{ijj}}{(1-f)^2} + \frac{4f_{ij} f_i j}{(1-f)^3} + \frac{4f_{ij} f_i j}{(1-f)^3} + \frac{2f_{ij}^2 f_j}{(1-f)^3} + \frac{6f_{ij}^2 f_j^2}{(1-f)^4},
\]

from which we deduce that

\[
(\partial_t - \Delta) \phi = \frac{2Ric'_{ij} f_i f_j}{(1-f)^2} + \frac{2f_{ij} f_{ijj}}{(1-f)^2} + \frac{2g'(\nabla f, \nabla \|\nabla f\|^2)}{(1-f)^2} - \frac{2g'(\nabla f, \nabla Scal')}{(1-f)^2}
\]

\[
+ \frac{2\|\nabla f\|^4}{(1-f)^3} - \frac{2Scal' \|\nabla f\|^2}{(1-f)^4} - \frac{2f_{ij} f_i j}{(1-f)^2} - \frac{2f_{ij} f_{ijj}}{(1-f)^2} - \frac{4f_{ij} f_i j}{(1-f)^3}
\]

\[
- \frac{4f_{ij} f_i j f_j}{(1-f)^2} - \frac{6f_{ij}^2 f_j^2}{(1-f)^4}. \tag{4.8}
\]

Rearranging the terms in (4.8), gives

\[
(\partial_t - \Delta) \phi
\]

\[
= - \frac{2}{(1-f)^2} \left\{ f_{ij}^2 + \frac{2f_{ij} f_{ijj}}{1-f} + \frac{f_{ij}^2 f_j}{(1-f)^2} \right\} - \frac{2Ric'_{ij} f_i f_j}{(1-f)^2} + \frac{2f_{ij} f_{ijj}}{(1-f)^2}
\]

\[
- \frac{2f_{ij} f_{ijj}}{(1-f)^2} \left\{ \frac{4f_{ij} f_i j}{(1-f)^3} - \frac{4f_{ij}^2 f_j}{(1-f)^4} + \frac{2g'(\nabla f, \nabla \|\nabla f\|^2)}{(1-f)^2} \right\}
\]

\[
- \left\{ \frac{2g'(\nabla f, \nabla Scal')}{(1-f)^2} + \frac{2Scal' \|\nabla f\|^2}{(1-f)^3} + \frac{2\|\nabla f\|^4}{(1-f)^3} \right\}. \tag{4.9}
\]
We can simplify some terms in the braces of (4.9) further. The first term becomes
\[-\frac{2}{(1-f)^2} \left\{ f_{ij}^2 + \frac{2f_if_jf_j}{(1-f)} + \frac{f_j^2f_j^2}{(1-f)^2} \right\} = -\frac{2}{(1-f)^2} \left(f_{ij} + \frac{f_if_j}{1-f} \right)^2.\]

Using the Ricci identity on the next three terms we have
\[-\frac{2\text{Ric}^i_{ij}f_if_j}{(1-f)^2} + \frac{2f_if_jf_j}{(1-f)^2} - \frac{2f_jf_if_j}{(1-f)^2} = \frac{-4\text{Ric}^i_{ij}f_if_j}{(1-f)^2},\]

since the Ricci identity implies that \(f_jf_if_jf_j = f_j(f_jf_if_j) = -\text{Ric}^i_{ij}f_if_j. \)

Also
\[-\frac{4f_if_jf_j}{(1-f)^3} - \frac{4f_j^2f_j^2}{(1-f)^4} = -\frac{2}{1-f}f_j \left(\frac{2f_if_j}{(1-f)^2} + \frac{2f_j^2f_j^2}{(1-f)^2} \right) = \frac{-2}{1-f}g'(\nabla f, \nabla \phi).\]

Similarly, we have \(2(1-f)^{-2}g'(\nabla f, \nabla \| \nabla f \|^2) = 2g'(\nabla f, \nabla \phi), \) and then the second to the last three terms gives
\[-\frac{4f_if_jf_j}{(1-f)^3} - \frac{4f_j^2f_j^2}{(1-f)^4} + \frac{2g'(\nabla f, \nabla \| \nabla f \|^2)}{(1-f)^2} \]
\[= \frac{-2}{1-f}g'(\nabla f, \nabla \phi) + 2g'(\nabla f, \nabla \phi) = \frac{-2}{1-f}g'(\nabla f, \nabla \phi).\]

Putting all these together in (4.9), we get
\[(\partial_t - \Delta)\phi = -\frac{2}{(1-f)^2} \left(f_{ij} + \frac{f_if_j}{1-f} \right)^2 - \frac{2f}{1-f}g'(\nabla f, \nabla \phi) \]
\[= \frac{-4\text{Ric}^i_{ij}f_if_j}{(1-f)^2} - \frac{2g'(\nabla f, \nabla \text{Scal}')}{(1-f)^2} - \frac{2\text{Scal}' \| \nabla f \|^2}{(1-f)^3} - \frac{2\| \nabla f \|^4}{(1-f)^5}.\]

Then, using the curvature conditions we are left with the following inequality
\[(\partial_t - \Delta)\phi \leq -\frac{2f}{1-f}g'(\nabla f, \nabla \phi) + \frac{2}{(1-f)}\rho_1\phi + 4\rho_2\phi + 2\rho_3\phi^2 - 2(1-f)\phi^2. \quad (4.10)\]

Next, we apply a cut-off function in order to derive the desired estimate. To that end, let \(\psi \) be a smooth cut function defined on \([0, \infty)\) such that \(0 \leq \psi(s) \leq 1, \) with \(\psi'(s) \leq 0, \psi''(s) \geq c_1 \) and \(|\psi'|^2/\psi \leq c_2, \) for some constants \(c_1, c_2 > 0, \) depending on the dimension of the manifold only. Let us define a distance function \(d(p, x) \) between the point \(p \) and \(x \) such that \(\varphi(x, t) = \varphi(d(p, x), t)) = \psi \left(\frac{d'(y(t), p, x)}{\rho} \right), \) for smooth function \(\varphi : M' \times (0, T] \rightarrow \mathbb{R}. \) It is easily seen that \(\varphi(x, t) \) has its support in the closure of \(Q_{2\rho, T}. \) We note that \(\varphi(x, t) \) is smooth at \((y, s) \in M' \times (0, T], \) whenever point \(y \) does not either coincide with \(p \) or fall in the cut locus of \(p, \) with respect to the metric \(g'(y, s). \) In what follows, we consider the function \(\varphi \phi \) supported in \(Q_{2\rho, T} \times [0, \infty) \) is \(C^2 \) at the maxima, in
which such assumption is supported by a standard argument by Calabi known as Calabi’s trick (see [5] for more details). This approach is used in [6], see also [8][26][28]. Therefore, we obtain

\[\|\nabla \varphi\|^2 = \frac{\|\varphi'\|^2}{\rho^2} \leq \frac{c_2}{\rho^2}, \quad \frac{\partial \varphi}{\partial t} \leq c_2 \rho_1. \]

(4.11)

and by the Laplacian Comparison Theorem (see [1] for more details), we have

\[\Delta \varphi = \frac{\psi' \nabla d}{\rho} + \frac{\psi'' \|\nabla d\|^2}{\rho} \geq \frac{c_1}{\rho} (n - 1) \sqrt{\rho_2} \coth\left(\sqrt{\rho_2} \rho \right) - \frac{c_2}{\rho^2}, \]

(4.12)

which implies that \(-\Delta \varphi \leq \frac{1}{\rho} (\frac{c_1}{\sqrt{\rho_2} \rho} \coth\left(\sqrt{\rho_2} \rho \right) + c_2)\).

Let \((x_0, t_0)\) be a point in \(Q_{2\rho, T}\) at which \(F = \varphi \phi\) attains its maximum value. At this point we have to assume that \(F\) is positive, since \(F = 0\) implies that \(\varphi \phi(x_0, t_0) = 0\) and hence, \(\phi(x, t) = 0\), for all \(x \in M\). Then, we \(d(x, x_0, t) < 2\rho\), this yields \(\nabla u(x, t) = 0\) and the theorem will follow trivially at \((x, t)\). The approach here is to estimate \((\partial_t - \Delta)(tF)\) and do some analyses on the result at the maximum point. To that end, we have

\[(\partial_t - \Delta)(tF) = F + t(\partial_t - \Delta)(\varphi \phi) \]

\[= F - 2tg'(\nabla \varphi, \nabla \phi) + t\varphi(\partial_t - \Delta)\phi + t\phi(\partial_t - \Delta)\varphi. \]

(4.13)

Note that at the maximum point \((x_0, t_0)\), we have by Derivative Test that

\[\Delta F(x_0, t_0) = 0, \quad \partial_t F(x_0, t_0) \geq 0 \quad \text{and} \quad \Delta F(x_0, t_0) \leq 0. \]

(4.14)

Taking \(tF\) on \(M' \times (0, T]\), we have \((\partial_t - \Delta)(tF) \geq 0\), whenever \((tF)\) achieves its maximum. Similarly, by this argument, we have \(\nabla(\varphi \phi)(x_0, t_0) = \phi \nabla \phi(x_0, t_0)\), which means \(\varphi \nabla \phi\) can always be replaced by \(-\phi \nabla \varphi\). By (4.10), (4.13) and (4.14), one has

\[F - 2tg'(\nabla \varphi, \nabla \phi) + t\varphi - 2f(1 - f)^{-1}g'(\nabla f, \nabla \phi) + 2(1 - f)^{-1} \rho_1 \phi \]

\[+ 4\rho_2 \phi + 2\rho_3 \phi^2 + 2(1 - f)\phi^2 + t\phi(\partial_t - \Delta)\varphi \geq 0. \]

Taking \(0 \leq \varphi \leq 1\) and noticing that \(\frac{1}{1 - f} \leq 1\), then the last inequality becomes

\[F - 2tg'\left(\frac{\nabla \varphi}{\varphi}, \nabla(\varphi \phi)\right) - 2t \frac{\|\nabla \varphi\|^2}{\varphi} \phi + t\{2\rho_1 F + 4\rho_2 F + 2\rho_3 F^2 \}

\[+ 2(1 - f)F^2\} - 2tf(1 - f)^{-1}\|\nabla f\| \|\nabla \varphi\| \phi + t\phi(\partial_t - \Delta)\varphi \geq 0. \]
Applying the following relation $2\rho_3 F^\frac{1}{2} \leq \rho_3 F + \rho_3$ (see [8] for details) and by the Young’s inequality, we derive

\[-2tf (1 - f)^{-1} \|\nabla f\| \|\nabla \varphi\| \phi \leq t\phi \left(\frac{\|\nabla f\|^2}{1 - f} \varphi + \frac{\|\nabla \varphi\|^2}{\varphi} \frac{f^2}{1 - f} \right) \]

\[= t(1 - f)F^2 + tF \frac{c_2}{\rho^2} \frac{f^2}{1 - f}.\]

Notice also that by bounds given in (4.11) and (4.12), we have

\[t\phi(\partial_t - \Delta)\varphi \leq t\phi \left(c_2 \rho_1 + \frac{1}{\rho^2} \left(c_1 \sqrt{\rho_2} \ coth \left(\sqrt{\rho_2} \rho \right) + c_2 \right) \right) \leq t\phi \left(c_2 \rho_1 + \frac{1}{\rho^2} \left(\rho c_1 \sqrt{\rho_2} + c_2 \right) \right).\]

Putting these together and dividing through by $(1 - f)$, while noticing that $\frac{1}{1 - f} \leq 1$ and $\frac{f}{1 - f} \leq 1$, we have

\[F - 2t \frac{c_2}{\rho^2} F + t(2\rho_1 + 4\rho_2 + \rho_3)F + t\rho_3 + tF \frac{c_2}{\rho^2} - tF^2 \]

\[+ t\phi \left(c_2 \rho_1 + \frac{1}{\rho^2} \left(\rho c_1 \sqrt{\rho_2} + c_2 \right) \right) \geq 0.\]

Therefore, we have

\[tF^2 \leq F + t(2\rho_1 + 4\rho_2 + \rho_3)F + t \left(c_2 \rho_1 + \frac{1}{\rho^2} \left(\rho c_1 \sqrt{\rho_2} + c_2 \right) \right) F \]

\[- t \frac{c_2}{\rho^2} F + t\rho_3.\]

Then,

\[F^2 \leq F \left\{ \frac{t}{t} + c_2 \rho_1 + 4\rho_2 + \rho_3 + \frac{1}{\rho^2} \left(\rho c_1 \sqrt{\rho_2} + c_2 \right) + \rho_3 \right\} + \rho_3.\]

From here we can conclude that

\[F \leq \frac{1}{t} + c_2 \rho_1 + 4\rho_2 + \rho_3 + \sqrt{\rho_3} + \frac{1}{\rho^2} \left(\rho c_1 \sqrt{\rho_2} + c_2 \right) \]

at (x_0, t_0). Therefore,

\[\|\nabla f\|^2 \leq (1 - f)^2 \left(\frac{1}{t} + c_2 \rho_1 + 4\rho_2 + 2\rho_3 + \frac{1}{\rho^2} \left(\rho c_1 \sqrt{\rho_2} + c_2 \right) \right),\]

which completes the proof.

The boundedness assumption may be weakened in the case of the forward degenerate Ricci-type flow. Therefore, we have the following.
Theorem 4.2. Let \((M, g)\) be a screen integrable globally null manifold and \((M', g')\) be a leaf of \(S(TM)\). Suppose that \((M', g'(t))\) (with \(t \in (0, T]\)) be a complete solution to the forward degenerate Ricci-type flow with \(\text{Scal}' \geq -\rho_1\) and \(\|\nabla \text{Scal}'\| \leq \rho_3\), for some constants \(\rho_1, \rho_3 \geq 0\). Let \(u = u(x, t)\) be any positive solution to the heat equation defined in \(Q_{2\rho T} \subset (M' \times (0, T])\) satisfying \(0 < u \leq A\). Then exist absolute constants \(c_1, c_2\) depending on \(n\) such that

\[
\frac{\|\nabla u\|^2}{u^2} \leq \left(1 + \ln \left(\frac{4}{u}\right)\right)^2 \left(\frac{1}{t} + c_2\rho_1 + 2\rho_3 + \frac{c_2}{\rho^2}\right).
\]

Proof. The proof of this theorem is similar to that of Theorem 4.1. The disparity between the estimate inequalities in Theorem 4.1 and Theorem 4.2 arises in some calculation which we briefly point out here. Similary, set \(f = \ln \frac{1}{u}\) and \(\phi = \|\nabla \ln(1 - f)\|^2 = \frac{\|\nabla f\|^2}{(1 - f)^2}\). Notice that \(g'(t)\) evolves by the forward degenerate Ricci flow, where the inverse metric evolves as \(\partial_t (g'^{ij}) = 2\text{Ric}'_{ij}\) and then

\[
\partial_t (\|\nabla f\|^2) = 2\text{Ric}'_{ij} \nabla_i f \nabla_j f + 2g' (\nabla f, \nabla \Delta f) + 2g' (\nabla f, \nabla \|\nabla f\|)^2
\]

\[
-2g' (\nabla f, \nabla \text{Scal}'),
\]

hence, the counterpart of (4.9) is

\[
(\partial_t - \Delta)\phi = -\frac{2}{(1 - f)^2} \left\{ f^2 + \frac{2f f_{ij} f_j}{1 - f} + \frac{f^2 f_j^2}{(1 - f)^2} \right\} + \left\{ \frac{2\text{Ric}'_{ij} f_i f_j}{(1 - f)^2} + \frac{2f_j f_{jjj}}{(1 - f)^2} \right\}
\]

\[
- \left\{ \frac{4f f_{ij} f_j}{(1 - f)^2} - \frac{4f^2 f_j^2}{(1 - f)^4} + \frac{2\|\nabla f, \nabla \|\nabla f\|^2}{(1 - f)^2} \right\}
\]

\[
- \left\{ \frac{2g' (\nabla f, \nabla \text{Scal}')}{(1 - f)^2} - \frac{2\text{Scal}' \|\nabla f\|^2}{(1 - f)^3} + \frac{2\|\nabla f\|^4}{(1 - f)^3} \right\}.
\]

(4.16)

Now, using the Ricci identity, some braced terms vanish. Then, we can conclude that

\[
(\partial_t - \Delta)\phi = -\frac{2}{(1 - f)^2} \left(f_{ij} + \frac{f_i f_j}{1 - f} \right)^2 - \frac{2f}{1 - f} g' (\nabla f, \nabla \phi)
\]

\[
+ \frac{4\text{Ric}'_{ij} f_i f_j}{(1 - f)^2} - \frac{2g' (\nabla f, \nabla \text{Scal}')}{(1 - f)^2} - \frac{2\text{Scal}' \|\nabla f\|^2}{(1 - f)^3} - \frac{2\|\nabla f\|^4}{(1 - f)^3}.
\]

Using the curvature conditions, we are left with the following inequality as in (4.10)

\[
(\partial_t - \Delta)\phi \leq -\frac{2f}{1 - f} g' (\nabla f, \nabla \phi) + \frac{2}{(1 - f)} \rho_1 \phi + 2\rho_3 \phi^{\frac{1}{2}} - 2(1 - f) \phi^2.
\]

The rest of the proof follows as in the one of Theorem 4.1.

\[\square\]
5. Gradient estimates on forward heat equation

Let \((M, g)\) be a screen integrable globally null manifold and \((M', g')\) be an \(n\)-dimensional complete Riemannian integral manifold of the screen distribution \(S(TM)\) without boundary. Next, we discuss space-time gradient estimates for positive solutions of the forward heat equation along the degenerate Ricci flow. More precisely, we consider

\[
\partial_t g'(x, t) = -2Ric'(x, t), \quad (x, t) \in M' \times (0, T],
\]

coupled to

\[
(\Delta - \partial_t) u(x, t) = 0, \quad (x, t) \in M' \times (0, T].
\]

As mentioned in [1], in general, our degenerate version of our estimate is local one too we also obtain it in the interior of geodesic cube. We will show how this local estimate can lead to achieving a global one. We start by proving the following lemma, which is useful to this section. Let us define the geodesic cube

\[
Q_{2p,T} := \{(x, t) \in M' \times (0, T] : d(x, x_0, t) \leq p}\.
\]

Lemma 5.1. Let \((M, g)\) be a screen integrable globally null manifold and \((M', g')\) be a leaf of \(S(TM)\). Suppose that \((M', g'(t))\) is a complete solution to the forward degenerate Ricci flow in some time interval \((0, T]\), and \(-\rho_1 g' \leq Ric' \leq \rho_2 g'\), for some positive constants \(\rho_1\) and \(\rho_2\). For any smooth positive solution \(u \in C^{2,1}(M' \times (0, T])\) to the heat equation in the geodesic cube \(Q_{2p,T}\), it holds that

\[
(\Delta - \partial_t) G \geq -2g'(\nabla f, \nabla G) - (\|\nabla f\|^2 - \alpha \partial_t f) - 2\alpha t \rho_1 \|\nabla f\|^2
\]
\[
+ \frac{2\alpha}{np} t(\|\nabla f\|^2 - \partial_t f)^2 - \frac{cnp}{2} t(\rho_1 + \rho_2)^2,
\]

where \(f = \ln u\), \(G = t(\|\nabla f\|^2 - \alpha \partial_t f)\) and \(\alpha \geq 1\) are given such that \(\frac{1}{p} + \frac{1}{q} = \frac{1}{\alpha}\), for any real numbers \(p, q > 0\).

Proof: We have \(\Delta G = t(\Delta \|\nabla f\|^2 - \alpha \Delta \partial_t f)\) and \(\partial_t G = (\|\nabla f\|^2 - \alpha \partial_t f) + t\partial_t(\|\nabla f\|^2 - \alpha \partial_t f)\). Working in local coordinates system at any point \(x \in M'\) and using Einstein summation convection where repeated indices are summed up. We have by Bochner-Weitzenböck’s identity \(\Delta \|\nabla f\|^2 = 2f_{ij}^2 + 2g^{ij} \partial_i f \partial_j f + 2Ric'_{ij}f_i f_j\).

By the hypothesis of the lemma that \(g'(x, t)\) evolves by the degenerate Ricci flow we have \(\partial_t(\|\nabla f\|^2) = (\partial_t g'^{ij}) \partial_i f \partial_j f + 2g'^{ij} \partial_i f \partial_j f + 2Ric'_{ij}f_i f_j + 2f_i f_{i,j}\). Similarly, \(\partial_t \Delta f = (\partial_t g'^{ij}) \partial_i f \partial_j f + g'^{ij} \partial_i f \partial_j f = 2Ric'_{ij}f_i f_j + \Delta(\partial_t f)\), which
implies that $\Delta(\partial_t f) = \partial_t(\Delta f) - 2\Ric_{ij} f_{ij}$. With the above computations, we obtain the following

$$\Delta G = t \left(2f_{ij}^2 + 2f_i f_{jji} + 2\Ric_{ij} f_i f_j + 2\alpha \Ric_{ij} f_{ij} - \alpha \partial_t(\Delta f) \right) \geq t \left[\left(2f_{ij}^2 + 2\alpha \Ric_{ij} f_{ij} \right) + 2f_j f_{jji} - 2\rho_1 \|\nabla f\|^2 - \alpha \partial_t(\Delta f) \right],$$

at an arbitrary point $(x, t) \in Q_{2\rho, T}$.

On the other hand $\partial_t G = \left(\|\nabla f\|^2 - \alpha \partial_t f \right) + t \left(2\Ric_{ij} f_i f_j + 2f_i f_{ti} - \alpha \partial_t f \right)$. Noticing that $f = \ln u$ implies the evolution $\partial_t f = \Delta f + \|\nabla f\|^2$, $(x, t) \in Q_{2\rho, T}$.

Therefore, we have

$$(\Delta - \partial_t)G \geq t \left[(2f_{ij}^2 + 2\alpha \Ric_{ij} f_{ij}) + 2f_j f_{jji} - 2\rho_1 \|\nabla f\|^2 - \alpha \partial_t(\Delta f) \right] - \left[(\|\nabla f\|^2 - \alpha \partial_t f) + t \partial_t(\|\nabla f\|^2 - \alpha \partial_t f) \right] = t(2f_{ij}^2 + 2\alpha \Ric_{ij} f_{ij}) - 2g'(\nabla f, \nabla G) - (\|\nabla f\|^2 - \alpha \partial_t f) - 2\alpha \rho_1 \|\nabla f\|^2.$$

Now choosing any two real numbers $p, q > 0$ such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{\alpha}$, we can write

$$2f_{ij}^2 + 2\alpha \Ric_{ij} f_{ij} = \frac{2\alpha}{p} f_{ij}^2 + 2\alpha \left(\frac{1}{q} f_{ij}^2 + \Ric_{ij} f_{ij} \right) \geq \frac{2\alpha}{p} f_{ij}^2 - \frac{\alpha q}{2} \Ric_{ij}^2,$$

where we have used completing the square method to arrive at the last inequality. Also by Cauchy-Schwarz inequality, $(\Delta f)^2 = \| g^{ij} \partial_i \partial_j f \|^2 \leq n f_{ij}^2$ holds at an arbitrary point $(x, t) \in Q_{2\rho, T}$, therefore we have $f_{ij}^2 \geq \frac{1}{n}(\Delta f)^2$. We can also write the boundedness condition on the degenerate Ricci curvature as $-(\rho_1 + \rho_2)g' \leq \Ric_{ij} \leq (\rho_1 + \rho_2)g'$ so that $\sup_M \|\Ric_{ij}\|^2 \leq n(\rho_1 + \rho_2)^2$, since the Ricci curvature tensor is symmetric. Therefore, we have

$$2t \left(f_{ij}^2 + 2\alpha \Ric_{ij} f_{ij} \right) \geq \frac{2\alpha}{np} t(\Delta f)^2 - \frac{\alpha q}{2} t(\rho_1 + \rho_2)^2.$$ \hspace{1cm} (5.4)

Hence the result. Our calculation is valid in the cube $Q_{2\rho, T}$. \hfill \square

Next, we state and prove a degenerate version result for local gradient estimate (space-time) for the positive solutions to the heat equation in the geodesic cube $Q_{2\rho, T}$ of bounded Ricci curvature manifold evolving by the degenerate Ricci-type flow.

Theorem 5.2. Let (M, g) be a screen integrable globally null manifold and (M', g') be a leaf of $S(TM)$. Suppose that $(M', g'(t))$ (with $t \in (0, T]$) is a complete solution of the degenerate Ricci-type flow (5.1) such that the Ricci curvature is bounded in $Q_{2\rho, T}$, i.e., $-\rho_1 g'(x, t) \leq \Ric'(x, t) \leq \rho_2 g'(x, t)$ to some positive constants ρ_1 and ρ_2, with $(x, t) \in Q_{2\rho, T} \subset (M' \times (0, T])$. If a smooth positive function
u \in C^{2,1}(M' \times (0, T]) solves the heat equation (5.2) in the geodesic cube \(\mathcal{Q}_{2\rho,T} \), then for any given \(\alpha > 1 \) with \(\frac{1}{p} + \frac{1}{q} = \frac{1}{\alpha} \) and all \((x, t) \in \mathcal{Q}_{2\rho,T} \times (0, T] \), the following estimate holds

\[
\sup_{x \in \mathcal{Q}_{2\rho,T}} \left\{ \| \nabla f \|^2 - \alpha \partial_t f \right\} \leq \frac{\alpha n p}{4t} + c \alpha^2 \left(\frac{\alpha^2}{\rho^2 (\alpha - 1)} + \frac{1}{t} + (\rho_1 + \rho_2) \right) + \frac{\alpha^2 n p^2}{2(\alpha - 1)} \rho_1 + \frac{\alpha n}{2} (\rho_1 + \rho_2) \sqrt{pq},
\]

(5.5)

where \(c \) is an arbitrary constant depending only on the dimension of the leaf.

Proof. Let \(f = \ln u \) and \(G = t(\| \nabla f \|^2 - \alpha \partial_t f) \). Then, \(\frac{1}{t} G = \left(\| \nabla u \|^2 - \alpha \frac{\alpha}{\alpha} \right) \).

The approach is also by using cut-off function and estimating \((\Delta - \partial_t)(t \varphi G) \) at the point where the maximum value for \((\varphi G) \) is attained as we did in Theorem 4.1.

The argument follows

\[
(\Delta - \partial_t)(t \varphi G) = 2t \nabla \varphi \nabla G - \varphi G + t \varphi (\Delta - \partial_t)G + tG(\Delta - \partial_t)\varphi. \tag{5.6}
\]

Suppose \((\varphi G) \) attains its maximum value at \((x_0, t_0) \in M' \times (0, T] \) for \(t_0 > 0 \). Since \((\varphi G)(x, 0) = 0 \) for all \(x \in M \), we have by derivative test that

\[
\nabla (\varphi G)(x_0, t_0) = 0, \quad \frac{\partial}{\partial t} (\varphi G)(x_0, t_0) \geq 0, \quad \Delta (\varphi G)(x_0, t_0) \leq 0, \tag{5.7}
\]

where the function \((\varphi G) \) is being considered with support on \(\mathcal{Q}_{2\rho,T} \times (0, T] \) and we have assumed that \((\varphi G)(x_0, t_0) > 0 \), for \(t_0 > 0 \). By (5.7) we notice that \((\Delta - \partial_t)(\varphi G) \leq 0 \). Using (5.6), (5.7) and Lemma 5.1 we have

\[
0 \geq (\Delta - \partial_t)(t \varphi G) \geq 2t \nabla \varphi \nabla G - \varphi + t \varphi \left(2 t G(\Delta - \partial_t)\varphi - 2\alpha \left(\| \nabla f \|^2 - \alpha \partial_t f \right) - 2 \alpha t \rho_1 \| \nabla f \|^2 + 2 \alpha \left(\| \nabla f \|^2 - \partial_t f \right)^2 - tG(\Delta - \partial_t)\varphi, \right.
\]

where \(\rho = (\rho_1 + \rho_2) \). Noting also that \(\varphi \nabla G \) can be replaced by \(-G \nabla \varphi \), by the condition \(\nabla (\varphi G) = 0 \). Therefore, we have

\[
0 \leq 2t \nabla \varphi \nabla G - \varphi G + 2t \nabla f \nabla \varphi.G
+ t \varphi \left\{ \frac{2 \alpha t \rho_1}{\alpha n p} \left(\| \nabla f \|^2 - \partial_t f \right)^2 - 2 \alpha t \rho_1 \| \nabla f \|^2 - \frac{\alpha n}{2} \| \nabla f \|^2 - \frac{\alpha n}{2} t \rho \right\}
- t \varphi (\| \nabla f \|^2 - \alpha \partial_t f) + tG(\Delta - \partial_t)\varphi,
\]
from which we get

\[
0 \leq -2t \|\nabla \varphi\|^2 G - 2\varphi G - 2t \|\nabla f\|^2 \|\nabla \varphi\|^2 G \\
+ t\varphi \left\{ \frac{2\alpha}{np} t \left(\|\nabla f\|^2 - \partial_t f \right)^2 - 2\alpha t \rho_1 \|\nabla f\|^2 - \frac{\alpha q}{2} t \rho \right\} \\
+ tG(\Delta - \partial_t) \varphi.
\]

As we have noted earlier, Calabi’s trick and Laplacian Comparison Theorem allows us to do the following calculation on the cut-off function depending on the geodesic distance, since we know that cut locus does not intersect with the geodesic cube

\[
-\|\nabla \varphi\|^2 \geq -c_1^2 \rho^2, \quad \Delta \varphi \geq -c_2 \rho - c_3, \quad \tau \in (0, T).
\]

Hence, \(tG(\Delta - \partial_t) \varphi \geq t c_3 \left(-\frac{1}{\rho} \sqrt{\rho_1} - \frac{1}{\rho^2} - \frac{1}{\tau} - \hat{\rho} \right) \), where we have taken \(c_3 \) to be maximum of \(c_1, c_2, c_3 \), so our computation becomes

\[
0 \geq -2t \frac{c_2}{\rho^2} G - 2\varphi G - 2t \frac{\sqrt{c_2}}{\rho} \|\nabla f\| \varphi^\frac{3}{2} G \\
+ t\varphi \left\{ \frac{2\alpha}{np} t \left(\|\nabla f\|^2 - \partial_t f \right)^2 - 2\alpha t \rho_1 \|\nabla f\|^2 - \frac{\alpha q}{2} t \rho \right\} \\
+ tc_3 \left(-\frac{1}{\rho} \sqrt{\rho_1} - \frac{1}{\rho^2} - \frac{1}{\tau} - \hat{\rho} \right) \varphi G.
\]

Multiplying through by \(\varphi \) such that \(0 \leq \varphi \leq 1 \) again, we have

\[
0 \geq -2\varphi^2 G - 2t \frac{\sqrt{c_2}}{\rho} \|\nabla f\| \varphi^\frac{3}{2} G \\
+ \frac{2t^2}{n} \left\{ \frac{\alpha}{p} \left(\|\nabla f\|^2 - \varphi \partial_t f \right)^2 - \alpha \rho_1 \varphi^2 \|\nabla f\|^2 - \frac{\alpha q}{4} t \rho \varphi^2 \right\} \\
+ tc_3 \left(-\frac{1}{\rho} \sqrt{\rho_1} - \frac{1}{\rho^2} - \frac{1}{\tau} - \hat{\rho} \right) (\varphi G).
\]

Using a standard argument from Lie and Yau [18] (see also Schoen and Yau [26] and references therein), we let \(y = \varphi \|\nabla f\|^2 \) and \(Z = \varphi \partial_t f \) to have \(\varphi^2 \|\nabla f\|^2 = \varphi y \leq y \), and \(y^\frac{3}{2} \left(y - \alpha z \right) = \varphi^\frac{3}{2} \|\nabla f\| (\varphi \|\nabla f\|^2 - \varphi \partial_t f) = \frac{1}{\tau} \|\nabla f\| \varphi^\frac{3}{2} G \). Noting that

\[
(y - z)^2 = \frac{1}{\alpha^2} (y - \alpha z)^2 + \frac{\alpha - 1}{\alpha^2} y^2 + \frac{2(\alpha - 1)}{\alpha^2} y (y - \alpha z),
\]

(5.9)
\[(y - z)^2 - np\rho_1 y - np\frac{\sqrt{c_2}}{\rho} y^\frac{1}{2}(y - \alpha z) = \frac{1}{\alpha^2}(y - \alpha z)^2 + \left(\frac{\alpha - 1}{\alpha^2}y^2 - np\rho_1 y\right) + \left(\frac{2(\alpha - 1)}{\alpha^2} y - np\frac{\sqrt{c_2}}{\rho} y^\frac{1}{2}\right)(y - \alpha z), \tag{5.10}\]

also using the inequality of the form \(ax^2 - bx \geq -\frac{b^2}{4a}\), \((a, b > 0)\), we have

\[\frac{\alpha - 1}{\alpha^2}y^2 - np\rho_1 y \geq -\frac{\alpha^2n^2p^2\rho_1}{4(\alpha - 1)^2}, \tag{5.11}\]

and

\[\frac{2(\alpha - 1)}{\alpha^2} y - np\frac{\sqrt{c_2}}{\rho} y^\frac{1}{2} \geq -\frac{c_2\alpha^2n^2p^2}{8(\alpha - 1)^2}. \tag{5.12}\]

Putting together (5.9)-(5.12), the second and the third terms in the right hand side of (5.8) are further calculated as follows, using \(t(y - \alpha z) = \varphi G\),

\[
\frac{2t^2}{n} \left\{ \frac{\alpha}{p}(y - z)^2 - \alpha\rho_1 y - \alpha n^2q\frac{1}{\rho} \tilde{\varphi}^2 - \frac{n\sqrt{c_2}}{\rho} y^\frac{1}{2}(y - \alpha z) \right\} \\
\geq \frac{2t^2}{n} \left\{ \left(\frac{1}{\alpha p}(y - \alpha z)^2 - \frac{\alpha^3n^2pp_1^2}{4(\alpha - 1)^2} \right) - \left(\frac{c_2\alpha^2n^2p}{8\rho^2(\alpha - 1)}(y - \alpha z) + \frac{\alpha n^2q}{4}\tilde{\varphi}^2 \right) \right\}.
\]

Hence, by (5.8)

\[
\left\{ \frac{2t^2}{n} \left(\frac{1}{\alpha p}(y - \alpha z)^2 - \frac{\alpha^3n^2pp_1^2}{4(\alpha - 1)^2} \right) - \frac{2t}{n} \left(\frac{c_2\alpha^3n^2p}{8\rho^2(\alpha - 1)}(\varphi G) \right) - \frac{\alpha nq}{2} t^2 \tilde{\varphi}^2 \right\} \\
+ tc_3 \left(-\frac{1}{\rho} \sqrt{p_1} - \frac{1}{\rho^2} - \frac{1}{\tau} - \tilde{\rho} \right)(\varphi G) - 2\varphi^2G \leq 0,
\]

since \(t(y - \alpha z) = \varphi G\), we have

\[0 \geq \frac{2}{\alpha np}(\varphi G)^2 + \left[\frac{c_4}{\rho^2} t \left(-\frac{p\alpha^3}{(\alpha - 1)} - \rho\sqrt{p_1} - 1 - \frac{\rho^2}{\tau} - \rho^2\tilde{\rho} \right) - 1 \right](\varphi G) \\
- \frac{\alpha^3npp_1^2}{2(\alpha - 1)^2} t^2 + \frac{\alpha nq}{2} t^2 \tilde{\varphi}^2,
\]

where \(c_4\) is a constant depending on \(n\). We see that the left hand side of the last inequality is a quadratic polynomial in \((\varphi G)\), then using the quadratic formula and
elementary inequality of the form \(\sqrt{1 + a^2 + p^2} \leq 1 + a + p \) yields

\[
\varphi G \leq \frac{\alpha np}{4} + \frac{\alpha np}{4p^2} c_4 t \left(\frac{\rho a^3}{(\alpha - 1)} + \rho \sqrt{\rho_1 + \rho^2 \rho} \right) + \frac{\alpha np}{4} \left(2 \alpha \rho_1 + 2 \rho^2 \rho t \sqrt{\frac{q}{p}} \right) = \frac{\alpha np}{4} + \frac{\alpha np}{4p^2} c_4 t \left(\frac{\rho a^3}{(\alpha - 1)} + \rho \sqrt{\rho_1 + \rho^2 \rho} \right) + \frac{\alpha^2 np \rho_1}{2(\alpha - 1)} t + \frac{\alpha n}{2} \rho \frac{2}{\rho'}. \]

Recall that we picked up \(\varphi(x, t) \) such that \(0 \leq \varphi \leq 1 \) and particularly \(\varphi(x, t) = 1 \) in \(Q_{2(\rho, T)} \) and since \((x_0, t_0) \) is a maximum point for \((\varphi G) \) in \(Q_{2(\rho, T)} \), we have \(G(x, \tau) = (\varphi G)(x, \tau) \leq (\varphi G)(x_0, t_0) \). Hence

\[
\frac{1}{t} G(x, t) \leq \frac{\alpha np}{4t} + \frac{\alpha n}{4p^2} c_4 \left(\frac{\alpha p}{(\alpha - 1)} + \rho \frac{2}{\rho' \rho} \right) + \frac{\alpha^2 np \rho_1}{2(\alpha - 1)} \rho_1 + \frac{\alpha n}{2} \rho \frac{2}{\rho' \rho},
\]

for all \(x \in M \) such that \(d(x, x_0, \tau) < \rho \) and \(\tau \in (0, T] \) was arbitrarily chosen, which implies the estimate (5.3) and completes the proof.

Let \((M, g)\) be a screen integrable globally null manifold. Let \((M', g')\) be an \(n\)-dimensional compact (or noncompact without boundary) leaf of \(S(TM) \) with bounded Ricci curvature. Using previous Lemma 5.1 and local gradient in Theorem 5.3, we now present global estimates for the positive solutions to the heat equation when the metric \(g' \) evolves by the degenerate Ricci-type flow.

Theorem 5.3. Let \((M, g)\) be a screen integrable globally null manifold and \((M', g'(t))\) be a complete leaf of \(S(TM) \) and \(g'(t) \) solves the degenerate Ricci-type flow equation such that its Ricci curvature is bounded for all \((x, t) \in M' \times (0, T)\). Let \(u = u(x, t) > 0 \) be any positive solution to the heat equation (5.2). Then, we have for \(-\rho_1 g'(x, t) \leq \text{Ric}'(x, t) \leq \rho_2 g'(x, t)\) and \(\alpha > 1 \) with \(\frac{1}{p} + \frac{1}{q} = \frac{1}{\alpha} \),

\[
\frac{||\nabla u||^2}{u^2} - \frac{u_t}{u} \leq \frac{\alpha np}{4t} + \frac{\alpha^2 np}{2(\alpha - 1)} \rho_1 + \frac{\alpha n}{2} (\rho_1 + \rho_2) \sqrt{pq},
\]

(5.13)

for all \((x, t) \in M' \times (0, T]\). Moreover, if we assume \(M' \) has non-negative Ricci curvature in the case of compact manifold, i.e., for \(0 \leq \text{Ric}'(x, t) \leq \rho g'(x, t) \), we have

\[
\frac{||\nabla u||^2}{u^2} - \frac{u_t}{u} \leq \frac{\alpha np}{4t} + \frac{\alpha n}{2} \rho \sqrt{pq},
\]

(5.14)

for all \((x, t) \in M' \times (0, T]\) and \(\alpha \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = \frac{1}{\alpha} \).
Proof. Set \(f = \ln u \) and allow \(G \) to remain as before, calculating at the maximum point \((x_0, t_0) \in M' \times (0, T)\), we will show that a new function

\[
\tilde{G} = G - \frac{\alpha^2 np}{2(\alpha - 1)} t \rho_1 - \frac{\alpha n}{2} t (\rho_1 + \rho_2) \sqrt{pq},
\]

(5.15)
satisfies the inequality

\[
\tilde{G} \leq \frac{\alpha np}{4} + \frac{\alpha^2 np}{2(\alpha - 1)} t \rho_1 + \frac{\alpha n}{2} t (\rho_1 + \rho_2) \sqrt{pq}.
\]

(5.16)

It suffices to prove that \(\tilde{G} \leq \alpha np \), for any \((x_0, t_0) \in M' \times (0, T)\). We now show this by contradiction. Suppose \(\tilde{G} > \alpha np \) and \(\tilde{G} \) has its maximum at the point \((x_0, t_0)\), then we know that \(\nabla \tilde{G}(x_0, t_0) = 0 \), \(\Delta \tilde{G}(x_0, t_0) \leq 0 \), \(\frac{\partial}{\partial t} \tilde{G}(x_0, t_0) \geq 0 \), and \((\Delta - \partial_t) \tilde{G}(x_0, t_0) \leq 0 \), then, by Lemma 5.1, we have \(0 \geq (\Delta - \partial_t) \tilde{G} \). Noticing that

\[
(\|\nabla f\|^2 - \partial_t f)^2 = \frac{1}{\alpha^2} \left(\frac{G}{t_0} \right)^2 + \frac{2(\alpha - 1)}{\alpha^2} \|\nabla f\|^2 \left(\frac{G}{t_0} \right) + \frac{(\alpha - 1)^2}{\alpha} \|\nabla f\|^4.
\]

By Lemma 4.10

\[
0 \geq (\Delta - \partial_t) G \geq -2\nabla f \nabla G + \frac{2\alpha}{n p} t_0 (\|\nabla f\|^2 - \partial_t f)^2 - (\|\nabla f\|^2 - \alpha \partial_t f)
\]

\[
- 2\alpha t_0 \rho_1 \|\nabla f\|^2 - \frac{\alpha n q}{2} t_0 (\rho_1 + \rho_2)^2.
\]

Following the calculation in Theorem 5.2, we obtain

\[
\frac{G}{t_0} \leq \frac{\alpha np}{4t_0} + \frac{\alpha^2 np}{2(\alpha - 1)} \rho_1 + \frac{\alpha n}{2} (\rho_1 + \rho_2)^2 \sqrt{pq},
\]

after sending \(\rho \) to \(\infty \). Consequently, we have the following inequality

\[
0 \geq \frac{2t_0}{\alpha np} \left(\frac{G}{t_0} \right)^2 - \frac{G}{t_0} - \left(\frac{\alpha^2 np}{2(\alpha - 1)} \rho_1 + \frac{\alpha n}{2} (\rho_1 + \rho_2)^2 \sqrt{pq} \right),
\]

resulting into a quadratic inequality, and since from (5.15)

\[
\frac{G}{t_0} = \tilde{G} + \frac{\alpha^2 np}{2(\alpha - 1)} \rho_1 + \frac{\alpha n}{2} (\rho_1 + \rho_2)^2 \sqrt{pq},
\]

\[
\frac{2t_0}{\alpha np} \left(\frac{G}{t_0} \right)^2 - \frac{G}{t_0} - \frac{\alpha^2 np}{2(\alpha - 1)} \rho_1 \leq 0.
\]

(5.17)

Using the quadratic formula, we have

\[
\frac{G}{t_0} \leq \frac{\alpha np}{4t_0} \left\{ 1 + \sqrt{1 + \frac{4\alpha np}{(\alpha - 1)^2 \rho_1}} \right\},
\]
which obviously implies that $\tilde{G} \leq \alpha np$, a contradiction by the assumption (5.16).

By definition of \tilde{G}, we therefore have

$$
\frac{G}{t_0} = \frac{\|\nabla^2 u\|}{u^2} - \frac{u_t}{u} \leq \tilde{G} = \frac{\alpha^2 np}{2(\alpha - 1)} \rho_1 + \frac{\alpha n}{2(\rho_1 + \rho_2)} \sqrt{pq}.
$$

The desired estimate follows since t_0 was arbitrarily chosen.

The case $\alpha = 1$ leads to the following result, in which we choose $p = q = 2$.

Theorem 5.4. Let (M, g) be a compact screen integrable globally null manifold and $(M', g'(t))$ (with $t \in (0, T]$) be a complete leaf of $S(TM)$ and $g'(t)$ solves the degenerate Ricci-type flow equation (5.2). Assume that $0 \leq \text{Ric}'(x, t) \leq \rho g'(x, t)$ for positive constant $\rho > 0$ and for all $(x, t) \in M' \times (0, T)$. Let $u = u(x, t) > 0$ be any positive solution to the heat equation (5.2). Then, the estimate

$$
\frac{\|\nabla u\|^2}{u^2} - \frac{u_t}{u} \leq \frac{n}{2t} + n \rho,
$$

(5.18)

holds, for all $(x, t) \in M' \times (0, T]$.

Proof. As before, set $f = \ln u$ and $G = t \left(\|\nabla f\|^2 - \partial_t f\right)$. Fix $\tau \in (0, T]$ and we can choose a point $(x_0, t_0) \in M' \times (0, \tau]$, where G_1 attains its maximum on $M' \times (0, \tau]$. Now we can show that

$$
G(x_0, t_0) \leq t_0 n \rho + \frac{n}{2}.
$$

(5.19)

If $t_0 = 0$, then $G(x_0, t_0) = 0$, for every $x \in M$. From this, we can get estimate (5.19). Next, we can assume $t_0 > 0$, from Lemma 5.1 and the conditions on the Ricci curvature of M imply the inequality

$$(\Delta - \partial_t)G \geq -2g(\nabla f, \nabla G) + \frac{2p}{n} \frac{G^2}{t_0} - \frac{G}{t_0} - \frac{t_0 n}{2(1-p)} \rho^2.
$$

Recall that G attains its maximum at (x_0, t_0). This gives us

$$
\Delta G(x_0, t_0) \leq 0, \quad \frac{\partial}{\partial t} G(x_0, t_0) \geq 0, \quad \nabla G(x_0, t_0) = 0.
$$

Then, the estimate

$$
\frac{2p}{n} \frac{G^2}{t_0} - \frac{G}{t_0} - \frac{t_0 n}{2(1-p)} \rho^2 \leq 0,
$$

holds at (x_0, t_0), and the quadratic formula yields

$$
G(x_0, t_0) \leq \frac{n}{4p} \left\{1 + \sqrt{1 + \frac{4pt_0}{(1-p)\rho^2}}\right\}.
$$
Now recall that \((x_0, t_0)\) is a maximum point for \(G\) on \(M' \times (0, \tau]\) from this fact, we can get that
\[
G(x, \tau) \leq G(x_0, t_0) \leq t_0 \rho n + \frac{n}{2} \leq \tau \rho n + \frac{n}{2},
\]
for all \(x \in M\). Therefore, the estimate
\[
\frac{||\nabla u||^2}{u^2} - \frac{u_t}{u} \leq \rho n + \frac{n}{2\tau},
\]
holds at \((x, \tau)\). Since the number \(\tau \in (0, T]\) can be chosen arbitrarily. \(\square\)

Corollary 5.5. Let \((M, g)\) be a screen integrable globally null manifold and \((M', g')\) be a complete leaf of \(S(TM)\). Assume that \(g'(t)\) solves the degenerate Ricci-type flow equation \((5.7)\) such that its Ricci curvature is bounded for all \((x, t) \in M' \times (0, T]\). Let \(u = u(x, t) > 0\) be any positive solution to the heat equation \((5.2)\), and \(0 < u \leq A\). Then, for \(-\rho_1 g'(x, t) \leq \text{Ric}'(x, t) \leq \rho_2 g'(x, t)\), there exists an absolute constant \(C\) such that
\[
t \frac{||\nabla u||^2}{u^2} \leq CA(1 + \rho_1 T),
\]
in \(M' \times (0, T]\).

Also, we have the following.

Corollary 5.6. Let \((M, g)\) be a screen integrable globally null manifold and \((M', g')\) be a complete leaf of \(S(TM)\). Assume that \((M', g'(t))\) is a complete solution of the degenerate Ricci-type flow \((5.7)\) such that the Ricci curvature satisfies
\[
-\rho_1 g'(x, t) \leq \text{Ric}'(x, t) \leq \rho_2 g'(x, t),
\]
for all \((x, t) \in M' \times (0, T]\). Let \(u = u(x, t)\) be any positive solution to the heat equation \((5.2)\). Then, for \(\alpha > 1\) with \(\frac{1}{p} + \frac{1}{q} = \frac{1}{\alpha}\), we have
\[
\frac{||\nabla u||^2}{u^2} - \frac{u_t}{u} \leq \frac{\alpha np}{4t} + c(n)\alpha^2(\rho_1 + \rho_2),
\]
for all \((x, t) \in M' \times (0, T]\) and absolute constant \(c(n)\) depending only on \(n\).

ACKNOWLEDGMENTS

Mohamed H. A. Hamed and Samuel Ssekajja would like to thank the Simons Foundation through the RGSM-Project for financial support. This work is based on the research supported wholly / in part by the National Research Foundation of South Africa (Grant Numbers: 95931 and 106072).
REFERENCES

[1] A. Abolarinwa, Gradient estimates for heat-type equations on evolving manifolds, J. Nonlinear Evol. Equ. Appl. (2015), 1-19.
[2] B. Andrews and C. Hopper, The Ricci flow in Riemannian geometry, Springer-Verlag Berlin Heidelberg, 2011.
[3] B. Andrews and C. Hopper, The Ricci flow in Riemannian geometry, Lecture notes in mathematics, Springer Heidelberg, 2011.
[4] M. Bailesteanu, X. Cao and A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal. 258 (2010), 3517-3542.
[5] E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), no. 1, 45-56.
[6] J. Cheeger and S.-T. Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math., 34 (1981), no. 4, 465-480.
[7] B. Chow, S. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo and L. Ni, The Ricci flow: Techniques and Applications, American Mathematical Society, Providence, RI, 2015.
[8] K. Ecker, D. Knopf, L. Ni and P. Topping, Local monotonicity and mean value formulas for evolving Riemannian manifolds, J. Reine Angew. Math. 616 (2008), 89-130.
[9] K. L. Duggal, On scalar curvature in lightlike geometry, J. Geom. Phys. 57 (2007), no. 2, 473-481.
[10] K. L. Duggal and A. Bejancu, Lightlike submanifold of semi-Riemannian manifold and applications, Vol. 364 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1996.
[11] K. L. Duggal, Warped product of lightlike manifolds, Nonlinear Anal. 47 (2001), no. 5, 3061-3072.
[12] K. L. Duggal and D. H. Jin, Geometry of null curves, Math. J. Toyama Univ. 22 (1999), 95-120.
[13] K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds. Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2010.
[14] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973.
[15] M. Kossowski, The intrinsic conformal structure and Gauss map of a lightlike hypersurface in Minkowski space, Trans. Amer. Math. Soc. 316 (1989), no. 1, 368-383.
[16] D. N. Kupeli, Singular semi-Riemannian geometry, Kluwer Academic Publishers, Dordrecht, Vol. 366, 1996.
[17] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential geom. 17 (1982), no. 2, 255-306.
[18] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153-201.
[19] F. Massamba, Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian manifolds, Kodai Math. J. 31 (2008), 338-358.
[20] F. Massamba, Screen conformal invariant lightlike hypersurfaces of indefinite Sasakian space form, Afr. Diaspora J. Math. 14 (2012), no. 2, 22-37.
[21] F. Massamba, On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds, J. Geom. 95 (2009) 73–89.
[22] F. Massamba, On lightlike geometry in indefinite Kenmotsu manifolds, Math. Slovaca 62 (2012), 315–344.
[23] F. Massamba and S. Ssekajja, A New Approach to totally umbilical null submanifolds, Novi Sad J. Math. 47 (2017), no. 2, 63-76.
[24] B. O’Neill, Semi-Riemannian geometry with applications to relativity, New York, Academic Press, 1983.
[25] G. Perelman, The entropy formula for the Ricci flow and its geometric application, ArXiv: math.DG/0211159v1, 2002.
[26] R. Schoen and S.-T. Yau, Lectures on differential geometry, International Press, Cambridge, MA, 1994.
[27] S. T. Swift, Null limit of the Maxwell-Sen-Witten equation, Classical Quantum Gravity 9 (1992), no. 7, 1829-1838.
[28] Q. S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Not, 2006, Article ID 92314, (2006), 39 pp.

* SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
UNIVERSITY OF KWAZULU-NATAL
PRIVATE BAG X01, SCOTTSTVILLE 3209
SOUTH AFRICA
E-mail address: wdhamed82@gmail.com

** SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
UNIVERSITY OF KWAZULU-NATAL
PRIVATE BAG X01, SCOTTSTVILLE 3209
SOUTH AFRICA
E-mail address: massfort@yahoo.fr, Massamba@ukzn.ac.za

*** SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
UNIVERSITY OF KWAZULU-NATAL
PRIVATE BAG X01, SCOTTSTVILLE 3209
SOUTH AFRICA
E-mail address: ssekajja.samuel.buwaga@aims-senegal.org