Noncommunicable Diseases in The Southwest of Iran, A Region of High Altitude with Distinctive Ethnic Groups: Results of The Shahrekord Cohort Study

ALI Ahmadi (alihamadi2007@gmail.com)
Shahrekord University of Medical Sciences

Research article

Keywords: cohort study, noncommunicable diseases, Prospective Epidemiological Research Studies in Iran

DOI: https://doi.org/10.21203/rs.3.rs-76600/v1

License: ☀️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Critical inter-provincial differences within Iran in the pattern of noncommunicable diseases (NCDs) and difficulties inherent to the identification of prevention methods to reduce mortality from NCDs have challenged the implementation of the provincial health system plan. The Shahrekord Cohort Study was designed to address these gaps in Chaharmahal and Bakhtiari, a province of high altitude of the southwest of Iran, characterized by its large Bakhtiari population.

Methods: This ongoing cohort, prospective longitudinal study is a unique, rich biobank and a large-scale study conducted for the first time in Chaharmahal and Bakhtiari province in Iran. The study began in 2015, recruited 10075 participants (52.8% female) from both urban and rural (30.2%) areas and participants will be followed up until at least 2035. Diseases and their outcomes are ascertained from clinical examinations, interviews, and linkage with medical records registered in the health system.

Results: Preliminary results indicate that the prevalence of NCDs at baseline was relatively high, for example 10.7% for type 2 diabetes mellitus, 20.2% for hypertension, 14.6% for non-alcoholic fatty liver, 11.4% for thyroid disease, and 5.7%, 0.9% and 1.3% for ischemic heart disease, stroke and myocardial infarction respectively. The mean (standard deviation) of BMI, systolic blood pressure, fasting blood glucose and cholesterol were 27.6 (4.6) kg/m², 115.4 (17.3) mmHg, 96.7 (27.3) mmol/L and 184.1 (42.8) respectively. All NCDs appeared to be more frequent in urban than rural areas, except gastroesophageal reflux (32.3% in rural and 29% in the urban area).

Conclusions: The Shahrekord Cohort Study provides a platform for epidemiological studies that will be useful for a better prevention and management of NCDs in the southwest of Iran.

Background

The World Health Organization (WHO) estimates that more than 36 million people worldwide die annually from noncommunicable diseases (NCDs) (63% of all deaths), and 14 million of these deaths occur before the age of 70. More than 90% of premature deaths from NCDs occur in low- and middle-income countries (1). Reducing the prevalence, incidence, mortality, as well as the costs and burden associated with NCDs, especially cardiovascular disease and cancer, is, therefore, a significant global challenge and priority for public health (2,3). Increased urbanization, industrialization, adoption of modern lifestyles, and rising life expectancy have increased exposure to risk factors and the occurrence of NCDs (4,5). Obtaining a better description and understanding of NCD risk factors and trends in Iran is a priority for the government (5) as it will allow achieving the action plan for the prevention and control of NCDs 2013–2020 set by the WHO (resolution WHA66.10) (6).

Iran is a developing country with a population of over 80 million. In the last two decades, the epidemiological features of health and disease in Iran have changed dramatically due to major variations in demographic indices and health-related social and economic factors (7). These changes have led Iran's health system to give priority to preventing NCDs over-controlling communicable diseases (3,5). Currently,
NCDs impose the most massive burden on Iran's health system so that in 2018, according to WHO reports, 82% of deaths in Iran were caused by NCDs (43% cardiovascular diseases, 16% cancers, and 23% other NCDs) (8). Substantial differences exist between Iran and other Western and Eastern Mediterranean countries in terms of ecological, cultural, and social characteristics. There are also critical inter-provincial differences within Iran in the pattern of health and disease (7). As one of the principal aims of the WHO is to reduce mortality from NCDs worldwide by 25% by 2025, establishing a national and regional plan to control these diseases, and support and conduct research in this region, is a significant public health objective. These WHO prospective goals have, therefore, set the perfect stage for creating high-quality regional documentation to inform decision-making by health system planners and better prevent, control, and manage these fatal diseases (8). Several isolated cohort studies have been previously conducted in Iran to address NCDs in various regions and ethnicities such as the Golestan Cohort Study including Turkmen (9), the Amirkolah Health and Ageing Project in northern Iran [10], the Yazd Health Study in central Iran (11), as well as the Tehran Glucose and Lipid Study in the capital city (12). However, the Prospective Epidemiological Research Studies in IrAN (PERSIAN) is by far the most extensive, multi-center cohort to fulfill this purpose (13). The PERSIAN Cohort started in 2014 in 19 centers, with the aim to include all the major ethnic groups in various regions of Iran including Kurds (14), Turks (15), Fars (16), Tabari (17), and Arabs, among other ethnicities (13). No cohort study was previously conducted in the Bakhtiari ethnicity; therefore, the Shahrekord Cohort Study (SCS), as one of the PERSIAN Cohort Centers, has filled this gap to assess health patterns and risk factors in individuals from the Bakhtiari ethnicity (18).

SCS was therefore conducted to study NCDs in an Iranian province with distinctive environmental, geographical (the highest region above sea level in Iran), and ethnic and social (Bakhtiari) characteristics compared with other Iranian provinces and the rest of the world.

This may have consequences for the appropriate interventions to prevent and manage NCDs in this region. Despite recent efforts to investigate NCDs in Iran (4,9–17), there are currently no comprehensive, population-based and reliable data sources from which to obtain accurate health information in this province so as to better design management plans for improvement of the health care system.

The aims of the SCS study are, therefore: i) to evaluate the prevalence and long-term trends of NCDs and their outcomes, in an Iranian province with unique geographical, ethnic, and socioeconomic characteristics, ii) to investigate associations of environmental and genetic/ethnic factors with the prevalence and incidence of NCDs and their outcomes, iii) to examine the interplay between genetic/ethnic and environmental factors in the aetiology and prevention of NCDs, iv) to provide the basis for various types of epidemiological studies (e.g., social, spatial, molecular epidemiology) and generate scientific evidence that may contribute to improving public health in the CH&B province, v) to provide a research and education platform and a resource for national and international collaboration and to make the research community aware of the existence of large cohorts around the world.

Methods
This population-based prospective cohort study recruited participants from the CH&B province. We used enrolment data in this study and analysed cross-sectional study.

Setting

The Bakhtiari ethnic group mainly lives in Chaharmahal and Bakhtiari (CH&B) province in Iran and has an estimated population of 1.25 million. It is a subgroup of the Iranian Lurs and the genetic background of Bakhtiari people is different from other Lur populations (19). They speak the Bakhtiari dialect. The Bakhtiari have maintained their bloodlines mostly intact over the centuries, largely marrying within their own tribe. Other notable differences with other Iranian ethnic groups include their culture and social and local customs (mourning and weddings), and dietary habits (tiri bread, mountain vegetables, animal oil consumption, traditional dairy products), type of employment (animal husbandry, herding, agriculture, hunting), clothing and apparel (local clothing), and different environmental exposures, such as exposure to sunlight at high altitudes. CH&B province covers an area of 16,421 km2 and is situated in the southwest of Iran, north of the Zagros Mountains, which have the highest average elevation above sea level in Iran; the Shahrekord region is known as the "roof of Iran." Despite its relatively small area (1% of the total area of Iran), CH&B holds 10% of the country's water resources. Because of its mountainous nature and its location where moist Mediterranean air converges, this province has relatively abundant rainfall (18,19). Because of the rare ethnic groups (Bakhtiari), Fars, and Turk living in this region, this cohort is unique in Iran and worldwide (18).

A total of 10075 participants were recruited from the districts of Shahrekord and Ardal, situated in urban (7034 participants) and rural (3041 participants) areas, respectively. The numbers of invited and recruited SCS participants, the area names in these districts and the map of the region are presented on the SCS protocol and website. The formula used for calculating the sample size of the study was described previously in the SCS protocol (18). The inclusion criteria were: being aged between 35 and 70 years at the time of recruitment, having lived in the specified area for at least one year, having completed and signed the informed consent, and having Iranian nationality (i.e., having an Iranian birth certificate and a national identification number) (13,18). People unable to undertake the required questions and measures (e.g., due to disability or mental disorders) were not eligible for the study. The implementation, feasibility, and sampling processes of the SCS were performed in the pre-pilot phase of the study from November 22, 2015, to September 10, 2016. In this phase, the data collection process and biological sample storage capacity were evaluated. Aspects of the regulation of ownership, preservation, and storage of data were also finalized. The pre-pilot phase also allowed i) to evaluate the participants' response rate and the recruitment and training of interviewers, ii) to determine the frequency of participant follow-up contacts, iii) to check the validity of measurements, and iv) to implement effective procedures for bio-sampling and quality control of the collected data. The study protocols were revised accordingly to improve the validity and reliability of the questionnaires and the acceptability of the data collection techniques (13,18). The pilot phase was conducted from October 6, 2016, to December 20, 2016, with the aim to further evaluate the main strengths and weaknesses of the study protocol and participant recruitment process. A total of 1000 participants aged 35–70 years were recruited for this phase. After receiving confirmation from the
quality control team, the main phase, enrolling all participants, started together with the pilot phase on October 6, 2016. The multistage sampling method (stratified proportional cluster sampling) was applied to recruit participants in the SCS in the pilot and main phase. According to the national census statistics, 70% of the CH&B province population lives in urban areas, and 30% live in rural areas, so the urban and rural strata accounted for 70% and 30% of the study sample size, respectively (18). Sampling in urban areas was also carried out using the cluster sampling method. Each of the four areas of Shahrekord county (the capital city of CH&B) was considered as an eligible cluster, and then a specific geographical region of Shahrekord was randomly chosen as the cohort cluster. The population covered by each urban healthcare centers (cluster) were used as sampling weights for recruiting participants from the corresponding (n=77030) health care centers to constitute the final study sample for the urban area (n=7034). For rural areas, the sampling process was as follows: i) nine CH&B counties were considered as eligible clusters, ii) the Ardal county was randomly selected as the cohort cluster, and iii) three of the five rural clusters of the Ardal county were randomly selected for inclusion in the SCS. A total of 3041 participants from these rural areas were recruited based on census-collected information on healthcare coverage provided by the health centers and 'health houses'. The first contact with prospective SCS participants was made through an invitation by phone to eligible people, and this process continued until the required sample size was met. Various initiatives were taken to increase participant enrollment and satisfaction; less than one percent of the people contacted declined to be part of the study and only 20 participants dropped out. Sex- and age-specific proportions of the participants included in the SCS were cross-checked against and found to be in accordance with the national population figures provided by the national census conducted by the Statistical Center of Iran. The distribution of the main sociodemographic characteristics of SCS participants is shown in Table 2.

Measurements

Data collection in SCS used standard PERSIAN cohort questionnaires and protocols (13,18). These questionnaires were used for baseline data collection from 2015 to 2019 and are described in Table 1. In addition to these extensive questionnaires, additional questionnaires unique to SCS were also completed including General Health (22), WHO Quality of Life-BREF (23), Chronic Stressors and Coping Strategies (24), WHO MONICA and the ROSE Angina questionnaire (25), Social Capital (26), Screening Tool for Joint Pain and Musculoskeletal Diseases (27), Health Literacy (28), Oxford Happiness (29), and Oswestry Low Back Pain Disability (30), following SCS protocols (18) in CH&B (Table 1) and additional data unique to SCS were also completed including body composition variables included total body water, body fat mass and percentage, and muscle thickness, which were measured using a body composition analyzer (Tanita, Japan). A spirometry test (pulmonary function test) was performed using the Spirometer device [Spirolab (MIR, Italy)]. An electrocardiography test (ECG) was carried out using an electrocardiogram device (Cardiax®, USA). Physical activity was measured using the general questionnaire and self-reported daily activities were converted to metabolic equivalent rates (METs). Although the validity of these questionnaires was addressed in previous studies (13-15, 18,23,24), SCS's experts further assessed their face validity and approved their use in the pre-pilot phase of the study. In the pre-pilot phase of the SCS, 100 participants completed the questionnaires. The questionnaires had coefficients of Cronbach's alpha
ranging from 82% to 91%, so they were considered to be reliable. A complete description of the questionnaire and information on the selection and training of the interviewers can be found in the SCS protocol (18). The height of participants was measured using a Seca 206 stadiometer. Weights were measured using a Seca analog scale, and standard tape meter was used to measure the participants' wrist, hip, and waist circumferences. Blood pressure and pulse rate measures were obtained using a standard barometer (Richter Japan).

All phases the study and data collection were monitored by a quality control team, including clinicians, a laboratory specialist, two statisticians, and an epidemiologist, under the supervision of the principal investigators.

Routine (annual) follow-up

The follow-up process aimed to register new cases of common NCDs and their outcomes, including death, cause of death, and hospital admissions, and to update information on exposures. The SCS focuses primarily on the most common NCDs, including cardiovascular diseases, cancers, and the main endocrine, digestive, hepatic, renal, psychiatric, and respiratory disorders, defined using the International Classification of Diseases 10th version (ICD-10). The annual follow-up of the SCS began in October 2017 and included questionnaires, medical examinations, and linkage with other databases (death, cancer registry). The study follow-up is done on an annual basis through telephone calls and linkage with health databases to identify disease outcomes. More specifically, the follow-up of participants is performed in two forms: an active form including phone interviews and face-to-face interviews (when outcome occurrence), and an inactive form, including self-reports. Identification of outcomes is made through automatic notifications received from the healthcare system and linkage with other health databases such as the National Disease and Health Outcome Registry Systems (13,18). The follow-up is carried out by a team of trained staff under the supervision of an experienced epidemiologist. Outcome assessments, including the cause of death identification, are done by a group of three internal medicine physicians and an experienced epidemiologist. During phone call follow-ups, if an interviewer is not able to gather the requested information, additional phone calls are made during the three consecutive weeks (up to 5 to 6 calls). Additional attempts to collect incomplete data are made during home visits and face-to-face interviews. In rural areas, the data collection process is conducted in local health care units (Health Houses) by health care staff and an experienced epidemiologist. Participants who experience an outcome are invited to undergo an in-person examination. Additional information about the participants' health history is obtained from the Hospital Information System (HIS) and the integrated electronic health system. When a death occurs, the SCS team visits the participant's home and completes an autopsy form. A schematic representation of the phases of the study and the data collection and follow-up process is shown in Figure 1.

Results
Of the 10075 participants in the SCS, 5321 (52.8%) were female and 3041 (30.2%) were living in rural areas. The mean age of participants at enrollment was 49.6 years. The proportion of married participants was high (93.8%). While 22.8% of the participants had a bachelor’s degree or higher level of education, 32.7% were illiterate. The main sociodemographic characteristics of participants at baseline are shown in Table 2.

The prevalence of type 2 diabetes mellitus in the SCS was 9.6% and was higher in women (10.7%) than in men (8.8%). The prevalence of hypertension was relatively high and appeared higher in women (20.2%) than in men (13.6%). Non-alcoholic fatty liver disease and thyroid disease were frequent (14.6% and 11.4%, respectively). A history of ischemic heart disease (5.7%), stroke (0.9%), and myocardial infarction (1.3%) was more frequently reported in men than women. All NCDs appeared to be more frequent in urban than rural areas, except gastroesophageal reflux (32.3% in rural and 29% in the urban area) (Table 3). A minority of the participants reported being occasional or regular smokers (15%). The prevalence of overweight and obesity was high (43.5% and 26.9%, respectively). Approximately 57% of the participants had low physical activity levels, particularly women (59%) and participants living in the urban area (66%) (Table 4). The key quantitative physiological variables in terms of mean (standard deviation) were, for BMI: 27.6 (4.6), for systolic blood pressure: 115.4 (17.3) mmHg, for fasting blood glucose: 96.7 (27.3), for total cholesterol: 184.1 (42.8) and for triglyceride: 150.4 (90.5). Additional quantitative variables, such as biochemical and hematological measures are shown in Table 5.

Discussion

The main strength of the study is the collection of a comprehensive set of variables and biological measures in a population including, for the first time, Bakhtiari people (about half of the cohort), and living in the highest-altitude region of Iran. The inclusion of different ethnic groups (Bakhtiari, Fars, and Turk) will allow the comparison of the prevalence and incidence of NCDs across genetic, social, and cultural characteristics of the participants and their interaction with lifestyle and environmental exposures. The SCS biobank provides the infrastructure necessary for the long-term preservation of biological samples (whole blood, blood plasma, hair, nail, and urine), collected in all participants. The SCS, by generating valid and updated information, is also an opportunity for increased cooperation between academic, healthcare and political systems and will permit better planning of health-related programs. It also creates ample opportunities for education and training of students and researchers at the Shahrekord University of Medical Sciences, as well as collaboration with other medical research initiatives such as clinical trials and national and international health research consortia. The SCS study will be limited by the fact that after the enrollment phase, it will not be possible to systematically update the data for measured exposure, in particular for the biological measures. Participants in the SCS were aged 35–70 years at baseline; therefore, it will not be possible to study NCDs in children and young adults, which constitute an essential fraction of the Iranian population. However, after obtaining information in the follow-up process, longitudinal studies and studies of older adults will be possible. Self-reported information on smoking, hookah smoking, alcohol consumption, and intake of drugs may be prone to under-reporting because of the socio-cultural characteristics of the Iranian population.
Abbreviations

NCDs, noncommunicable diseases
WHO, World Health Organization
PERSIAN, Prospective Epidemiological Research Studies in IrAN
CH & B, Chaharmahal and Bakhtiari
M.S., multiple sclerosis
DMFT, Decayed, Missing and Filled Teeth
HIS, Hospital Information System
MOHME, Ministry of Health and Medical Education
MET, metabolic equivalent rates
LDL, low-density lipoproteins
GGT, Gamma-glutamyl transferase
AST, aspartate aminotransferase
ALT, alanine aminotransferase
ALP, alkaline phosphatase
RBC, Red blood cell
WBC, white blood cells

Declarations

Ethics approval and consent to participate: The SCS was approved by the Ministry of Health and Medical Education (approval code: IR.SKUMS.REC.1394.286). All participants provided signed and fingerprinted informed written consent as per the guidelines enforced by the Ethics Committee. The participants can withdraw from the study at any time. Data are stored in an anonymized and confidential database.

Consent for publication: Not applicable.

Availability of data and materials: The SCS data are not open-access, but external investigators may use the data for collaborative projects. Information relative to data access and collaboration can be obtained from the corresponding author Dr. Ali Ahmadi, or at info@persiancohort.com. Suggested projects are first
discussed by SCS principal investigators, and final decision on data sharing for national and international collaborative projects is made by the SCS scientific committee. Further details about the cohort and information relative to data access, collaborative research, and publications can be found at http://persiancohort.com/cohortsites/shahrekord or on the SCS website https://cohort.skums.ac.ir.

Competing interests: None declared.

Funding: This study received financial support from the Deputy of Research and Technology, Ministry of Health and Medical Education of Iran (grant number: 700/12) and from the Shahrekord University of Medical Sciences, Shahrekord, Iran (grant number: 2763 and 1737).

Competing interests: The authors declare that they have no competing interests.

Authors' contributions: AA, HP, MH, SK, AK and MS generated hypotheses for this study. AA, RG, AA and AS performed the laboratory and quality control of field. AA, PAD, AK, SK, RM, HP, and PAD were major contributors to the writing of the manuscript. PAD helped with English language editing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements: The authors would like to thank all interviewers hired for this study. We sincerely thank all the staff who contributed to the design, planning, execution support, and follow-up of the SCS. We appreciate the contribution of the research committee members of the Modeling in Health Research Center, School of Health, Shahrekord University of Medical Sciences, managers, and personnel of health centers in Shahrekord and Ardal. We are grateful to the support from The Iranian Ministry of Health and Medical Education (MOHME) has contributed to the funding used in the PERSIAN Cohort through Grant no. 700/534 and Deputy of Research and Technology of the MOHME and the quality control team of the PERSIAN group involved in the training of participants in the pilot phase.

References

1. World Health Organization. Noncommunicable diseases and mental health, Global Action Plan for the Prevention and Control of NCDs 2013-2020. https://www.who.int/nmh/events/ncd_action_plan/en/. accessed March 5, 2020.

2. Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019;5(12):1749–1768.

3. Bakhtiari A, Takian A, Majdzadeh R, Haghdoost AA. Assessment and prioritization of the WHO "best buys" and other recommended interventions for the prevention and control of noncommunicable diseases in Iran. BMC Public Health. 2020;20(1):333.

4. Djalalinia S, Modirian M, Sheidaei A, et al. Protocol Design for Large-Scale Cross-Sectional Studies of Surveillance of Risk Factors of Non-Communicable Diseases in Iran: STEPs 2016. Archives of
5. Peykari N, Hashemi H, Dinarvand R, et al. National action plan for noncommunicable disease prevention and control in Iran; a response to the emerging epidemic. *J Diabetes Metab Disord.* 2017;16 (1):3.

6. Alwan A. The World Health Assembly responds to the global challenge of noncommunicable diseases. *East Mediterr Health J.* 2013;19(6):511-2.

7. Danaei G, Farzadfar F, Kelishadi R, et al. Iran in transition. Lancet. 2019; 393(10184), 1984-2005.

8. World Health Organization. Noncommunicable diseases country profiles 2018; https://www.who.int/nmh/publications/ncd-profiles-2018/en/. accessed March 20, 2020.

9. Pourshams A, Khademi H, Malekshah AF, et al. Cohort Profile: The Golestan Cohort Study—a prospective study of oesophageal cancer in northern Iran. *Int J Epidemiol.* 2010;39(1):52-59.

10. Hosseini SR, Cumming RG, Kheirkhah F, et al. Cohort Profile: The Amirkola Health and Ageing Project (AHAP). *Int J Epidemiol.* 2014;43 (5):1393-1400.

11. Mirzaei M, Salehi-Abargouei A, Mirzaei M, Mohsenpour MA. Cohort Profile: The Yazd Health Study (YaHS): a population-based study of adults aged 20–70 years (study design and baseline population data). *Int J Epidemiol.* 2018;47(3):697-698

12. Azizi F, Zadeh-Vakili A, Takyar M. Review of Rationale, Design, and Initial Findings: Tehran Lipid and Glucose Study. *Int J Endocrinol Metab.* 2018;16 (4):84777.

13. Poustchi H, Eghtesad S, Kamangar F, et al. Prospective Epidemiological Research Studies in Iran (the PERSIAN Cohort Study): Rationale, Objectives, and Design. *Am J Epidemiol.* 2018;187(4):647–655.

14. Pasdar Y, Najafi F, Moradinazar M. et al. Cohort Profile: Ravansar Non-Communicable Disease cohort study: the first cohort study in a Kurdish population. *Int J Epidemiol.* 2019; 48 (3):682-683.

15. Farhang S, Faramarzi E, Amini Sani N, et al. Cohort Profile: The AZAR cohort, a health-oriented research model in areas of major environmental change in Central Asia. *Int J Epidemiol.* 2019;48 (2):382-382

16. Farjam M, Bahrami H, Bahramali E, et al. A cohort study protocol to analyze the predisposing factors to common chronic noncommunicable diseases in rural areas: Fasa cohort study. *BMC Public Health.* 2016;16(1):1090.

17. Kheradmand M, Moosazadeh M, Saeedi M, et al. Tabari cohort profile and preliminary results in urban areas and mountainous regions of Mazandaran, Iran. *Arch Iran Med.* 2019;22(6):279–285.

18. Khaledifar A, Hashemzadeh M, Solati K, et al. The protocol of a population-based prospective cohort study in southwest of Iran to analyze common noncommunicable diseases: Shahrekord cohort study. *BMC Public Health.* 2018;18(1):660.

19. Farjadian S, Ghaderi A. Iranian Lurs Genetic Diversity: An Anthropological View Based on HLA Class II Profiles. *Iran J Immunol.* 2006 ;3(3):106-113.

20. Etemadifar M, Sajjadi S, Nasr Z., et al., Epidemiology of multiple sclerosis in Iran: a systematic review. *Eur Neurol.* 2013;70(5-6):356-363.
21. Soofi M, Pasdar Y, Karami Matin B, et al. Socioeconomic-related inequalities in oral hygiene behaviors: a cross-sectional analysis of the PERSIAN cohort study. *BMC Oral Health*. 2020;20(1):63

22. Montazeri A, Harirchi AM, Shariati M, Garmaroudi G, Ebadi M, Fateh A. The 12-item General Health Questionnaire (GHQ-12): translation and validation study of the Iranian version. *Health Qual Life Outcomes*. 2003;1(1):66.

23. Salehi F, Ahmadi A, The Investigation of Psychometric Properties (Validity and Reliability Reassessment) of WHO QOL-BREF Questionnaire in Shahrekord Cohort Study. *International Journal of Epidemiologic Research*, 2019; 6(4):182-187.

24. Ahmadi A, Sodejani SA, Malekzadeh R, Poustchi H, Solati K. Study of correlation between chronic stressor, biochemical markers and hematologic indices in Shahrekord Cohort Study: A population-based cross-sectional study. *Diabetes Metab Syndr*. 2019;13(3):2170-2174.

25. Sarrafzadegan N, Hassannejad R, Roohafza H, et al. A 10-year Isfahan cohort on cardiovascular disease as a master plan for a multi-generation noncommunicable disease longitudinal study: methodology and challenges. *J Hum Hypertens*. 2019;33(11):807-816

26. Yari A, Nadrian H, Rashidian H, et al. Psychometric properties of the Persian version of Social Capital Questionnaire in Iran. *Med J Islam Repub Iran*. 2014;28:17.

27. Davatchi F, Sandoughi M, Moghimi N, et al. Epidemiology of rheumatic diseases in Iran from analysis of four COPCORD studies. *Int J Rheum Dis*. 2016;19(11):1056-1062.

28. Ahmadi A, Salehi F. Construct Validation of the Health Literacy Questionnaire (HLQ) in Shahrekord Cohort Study, Iran. *J Hum Environ Health Promot*. 2019; 5(1): 26-31.

29. Malmir M, Khanahmadi M, Farhud D. Dogmatism and Happiness. *Iran J Public Health*. 2017;46(3):326–332.

30. Baradaran A, Ebrahimzadeh MH, Birjandinejad A, Kachooei AR. Cross-Cultural Adaptation, Validation, and Reliability Testing of the Modified Oswestry Disability Questionnaire in Persian Population with Low Back Pain. *Asian Spine J*. 2016;10(2):215–219.

Tables
Dimension	Number of items	Assessment	Sample	Components/ exposures
General [13, 18]	157	Whole cohort	10075	Age, sex, education, employment status and history, spouse's employment, marital status and number and type of marriages (first-degree or second-degree familial marriage or none); anthropometric measures: weight, height, waist & hip circumference, residence area, domestic and international travels, use of landline and mobile phones, internet access, smoking history; exposure to passive smoking, alcohol consumption, physical activity, sleep duration and quality, daily activities, occupational exposures, cooking and heating fuel, dwelling status, living arrangements, hygiene status of the dwelling and its facilities, drinking water source, history of exposure to animals, agricultural toxins and household pesticides, annual reading rate
Nutrition [13]	153	Whole cohort	10075	Food Frequency Questionnaire (FFQ), including 153 items; dietary habits during the past year and current; food preparation and storage techniques
Medical history and examination [13]	185	Whole cohort	10075	Current and past medical history, family history of diseases, self-rated health, history of falls and fractures, pain, digestive symptoms, angina, neurologic symptoms, history of transfusion, oral health condition, current use of medications, use of drugs, pulse rate and blood pressure measurement plus complete physical examination.
General Health (GHQ12) [22]	12	Subgroup	7585	Psychological distress, social dysfunction, ability to concentrate, sleep deprivation, capable of making decisions, under stress, could not overcome difficulties, enjoying healthy activities, facing up problems, feeling unhappy and depressed, losing confidence, thinking of self as worthless, feeling reasonably happy
Quality of Life (WHO-QOL) [23]	21	Subgroup	7924	Physical health, mental health, social health, environmental health, self-esteem, interpersonal relationships, sexual activity, social support, home environment, health care, transport, pain, work capacity, mobility, daily activities, leisure activities, financial support, bodily image, security, access to information
Dimension	Number of items	Assessment	Sample	Components/ exposures
---	-----------------	------------	--------	--
Chronic stressor and Coping strategies [24]	46	Subgroup	6890	Stress domains consisting of household stress, financial pressure, social relationships, personal and professional conflicts, educational concerns, job security, loss and separation, sexual life, daily life, health concerns, exercising, seeking religious support, focusing on the positive, social distancing, acting out, binge-drinking and binge-eating
Modified WHO MONICA [25]	50	Subgroup	7184	Risk factors and treatment history for coronary heart disease
Social capital [26]	44	Subgroup	3080	Memberships, trust, coherence, ability, value of life, tolerance of diversity, connections, family and friends, neighbors, and work colleagues, community participation, feelings of trust and safety, proactivity
Community-oriented program for control of rheumatic diseases [27]	100	Subgroup	3780	Work history, pain/tenderness/swelling/stiffness during the last week, functional disability, difficulty in performing specific tasks, treatment and evaluation, pain scale evaluation, history of NSAID/steroid/ DMARD use, disability
Health literacy [28]	33	Subgroup	5180	Access to and understanding of health information sources
Happiness [29]	29	Subgroup	1904	Feeling healthy, feeling attractive, waking up rested, making decisions easily, mentally alert, organized, pleased with self, the cheerful effect on others, happy memories, satisfied with life, feeling happy/joyful, feeling committed and involved
Oswestry low back pain [30]	10	Subgroup	4090	Physical function, role-physical and bodily pain indices, vitality, social function.
Table 2
Sociodemographic Characteristics of Participants at Baseline of the Shahrekord Cohort Study, by Sex and Residence Area

Variable	Total, N (%)	Sex	Place of residence	P	Place of residence	P	
		Male (%)	Female (%)		Urban area (%)		
					Rural area (%)		
Age group (years)							
35–49	5299 (52.6)	2398 (50.4)	2901 (54.5)	0.001	3770 (53.6)	1529 (50.3)	0.001
40–59	2996 (29.7)	1405 (29.6)	1591 (29.9)		2091 (29.7)	905 (29.8)	
60–70	1780 (17.7)	951 (20.0)	829 (15.6)		1173 (16.7)	607 (20)	
Sex	10075 (100)	4754 (47.2)	5321 (52.8)	-	7034 (69.8)	3041 (30.2)	-
Ethnicity							
Bakhtiari	4869 (48.3)	2236 (46.9)	2643 (49.6)	0.001	1934 (27.4)	2945 (96.8)	0.001
Fars	4102 (40.7)	2021 (42.4)	2088 (39.2)		4103 (58.2)	6 (0.2)	
Turk	682 (6.8)	349 (7.3)	336 (6.3)		680 (9.6)	86 (2.8)	
Other	422 (4.2)	160 (4/3)	262 (4.9)		336 (4.8)		
Educational attainment							
Illiterate	3291 (32.7)	1001 (21.6)	2290 (43.7)	0.001	1335 (19.4)	1956 (65.6)	0.001
Primary school							
Secondary school	995 (9.9)	560 (12)	435 (8.2)		767 (11.1)	228 (7.6)	
High school	1670 (16.6)	924 (19.9)	749 (14.2)		1519 (22)	151 (5)	
Bachelor's degree	1878 (18.6)	1072 (23.1)	806 (15.4)		1821 (26.4)	57 (1.9)	
Masters / PhD degree	423 (4.2)	314 (6.8)	109 (2.1)		412 (6.0)		
Variable	Total, N (%)	Sex	Place of residence	P	P		
-------------------	--------------	-----	--------------------	----	----		
		Male (%)	Female (%)	Urban area (%)	Rural area (%)		
Marital status	169 (1.7)	72 (1.5)	98 (1.8)	0.001	125 (1.8)	45 (1.5)	0.001
Single	9454 (93.8)	4647 (97.7)	4807 (90.3)	6672 (94.9)	2782 (91.5)		
Married	377 (3.7)	11 (0.2)	366 (6.9)	0.001	183 (2.6)	194 (6.4)	
Widow	75 (0.7)	25 (0.5)	50 (0.9)				
Divorce							
Employment	4720 (46.8)	3661 (77)	1059 (19.9)	0.001	3525 (50.1)	1195 (39.3)	0.001
Employed	5128 (50.9)	955 (20.1)	4173 (78.4)	3361 (47.8)	1767 (58.1)		
Unemployed							
Health insurance	4820 (99.3)	2308 (99.1)	2512 (99.4)	0.275	2959 (98.9)	1861 (99.9)	<0.001
(yes)							

Page 15/19
Table 3
Prevalence of the Main Noncommunicable Diseases (NCD) Self-reported at Baseline of the Shahrekord Cohort Study

NCD	N (%)	Sex	P	Residence Area	
	Male (%)	Female (%)		Urban (%)	Rural (%)
Type 2 diabetes	968 (9.8)	408 (8.8)	560 (10.7)	0.002	751 (10.9)
					217 (7.2)
					< 0.001
Hypertension	1694 (17.1)	632 (13.6)	1062 (20.2)	< 0.001	1275 (18.5)
					419 (13.9)
					< 0.001
Cardiac ischemic disease	566 (5.7)	321 (6.9)	245 (4.7)	< 0.001	433 (6.3)
					133 (4.4)
					< 0.001
Myocardial infarction	127 (1.3)	100 (2.1)	27 (0.5)	< 0.001	111 (1.6)
					16 (0.5)
					< 0.001
Stroke	93 (0.9)	51 (1.1)	42 (0.8)	0.125	65 (0.9)
					28 (0.9)
					0.959
Renal failure	60 (0.6)	31 (0.7)	29 (0.6)	0.461	48 (0.7)
					12 (0.4)
					0.079
Fatty liver	1476 (14.9)	542 (11.7)	934 (17.8)	< 0.001	1231 (17.9)
					245 (8.1)
					< 0.001
Chronic lung disease	410 (4.1)	183 (3.9)	227 (4.3)	0.340	343 (5.0)
					67 (2.2)
					< 0.001
Thyroid disease	1145 (11.6)	215 (4.6)	930 (17.7)	< 0.001	976 (14.2)
					169 (5.6)
					< 0.001
Kidney stone	2065 (20.8)	1189 (25.6)	876 (16.7)	< 0.001	1511 (21.9)
					554 (18.4)
					< 0.001
Rheumatic disease	470 (4.7)	139 (3.0)	331 (6.3)	< 0.001	370 (5.4)
					100 (3.3)
					< 0.001
Cancer	71 (0.7)	21 (0.05)	50 (1.0)	0.003	62 (0.9)
					9 (0.3)
					0.001
Gallstone	406 (4.1)	93 (2.0)	313 (6.0)	< 0.001	315 (4.6)
					91 (3.0)
					< 0.001
Multiple sclerosis	19 (0.2)	6 (0.1)	13 (0.2)	0.179	17 (0.2)
					2 (0.1)
					0.059
Depression	1610 (16.3)	432 (9.3)	1178 (22.4)	< 0.001	1272 (18.4)
					338 (11.2)
					< 0.001
Gastroesophageal reflux	2976 (30.0)	1229 (26.4)	1747 (33.2)	< 0.001	2003 (29.0)
					973 (32.3)
					< 0.001
Table 4
Prevalence of some NCD Risk Factors at Baseline of the Shahrekord Cohort Study

Risk factors	N (%)	Sex	P	Residence Area	P		
		Male (%)	Female (%)				
Tobacco use							
Frequent	1275 (12.7)	1261 (27.1)	14 (0.3)	0.001	914 (13.3)	361 (12)	< 0.001
Sometimes	271 (2.7)	267 (5.7)	4 (0.1)		234 (3.4)	37 (1.2)	
Use of alcohol (yes)	1658 (16.5)	1562 (33.6)	96 (1.8)	0.001	1365 (19.8)	293 (9.7)	< 0.001
Use of hookah (yes)	2141 (21.6)	1680 (36.1)	461 (8.8)	< 0.001	1679 (24.4)	462 (15.3)	< 0.001
Use of opium (yes)	1587 (16.0)	1472 (31.6)	115 (2.2)	< 0.001	1003 (14.5)	584 (19.4)	< 0.001
Physical activity (MET)							
Low (< 40.4)	5744 (57.0)	2612 (54.9)	3132 (58.8)	< 0.001	4639 (65.9)	1105 (36.3)	< 0.001
High (≥ 40.4)	4331 (43.0)	2142 (45.1)	2189 (41.2)		2395 (34.1)	1936 (63.7)	
Body mass index							
Underweight (< 18.5)	123 (1.2)	80 (1.7)	43 (0.8)	< 0.001	61 (0.9)	62 (2.0)	< 0.001
Normal (18.5–24.9)	2781 (27.8)	1588 (33.8)	1193 (22.5)		1706 (24.5)	1075 (35.5)	
Overweight (25-29.9)	4384 (43.8)	2188 (46.6)	2196 (41.4)		3238 (46.5)	1146 (37.8)	
Obese (≥ 30)	2710 (27.1)	844 (18.0)	1866 (35.2)		1964 (28.2)	746 (24.6)	
Hypercholesterolemia (≥ 240)	879 (8.9)	329 (7.1)	550 (10.5)	< 0.001	710 (10.3)	169 (5.8)	< 0.001
Hypertriglyceridemia (≥ 150)	3876 (39.4)	2147 (46.5)	1729 (33.1)	< 0.001	3225 (46.7)	651 (22.2)	< 0.001
High LDL	1915 (19.6)	743 (16.3)	1172 (22.6)	< 0.001	1384 (20.2)	531 (18.2)	0.018

aMET, metabolic equivalent rates
bhigh blood cholesterol
chigh fasting plasma triglyceride
dLDL, low-density lipoproteins
Table 5
Distribution of the Key Quantitative Physiological Variables measured at Baseline of the Shahrekord Cohort Study.

Variable	Total	Sex	P	Residence Area	P		
	Total	Male (%)	Female (%)		Urban (%)	Rural (%)	
Weight (kg)	73.4 ± 13.4	77.3 ± 13.4	70.0 ± 12.4	< 0.001	75.5 ± 13.0	68.7 ± 13.2	< 0.001
Height (cm)	163.2 ± 9.6	170.7 ± 6.7	156.5 ± 6.1	< 0.001	164.6 ± 9.5	159.9 ± 9.0	< 0.001
Body mass index (kg/m2)	27.6 ± 4.6	26.5 ± 4.1	28.6 ± 4.9	< 0.001	27.9 ± 4.5	26.9 ± 4.9	< 0.001
Wrist circumference (cm)	17.4 ± 1.4	18.0 ± 1.2	16.8 ± 1.3	< 0.001	17.3 ± 1.4	17.5 ± 1.4	< 0.001
Waist circumference (cm)	94.8 ± 11.4	93.9 ± 10.6	95.7 ± 12.0	< 0.001	95.1 ± 10.8	94.2 ± 12.6	0.001
Hip circumference (cm)	101.1 ± 7.9	99.7 ± 6.9	102.3 ± 8.6	< 0.001	101.9 ± 7.7	99.3 ± 8.2	< 0.001
Teeth number (n)	18.2 ± 9.7	17.7 ± 10.0	18.7 ± 9.3	< 0.001	19.4 ± 9.9	15.6 ± 8.6	< 0.001
Decayed teeth (n)	1.2 ± 2.1	1.3 ± 2.4	1.1 ± 1.8	< 0.001	1.3 ± 2.3	1.0 ± 1.6	< 0.001
Missing teeth (n)	13.5 ± 9.8	14.0 ± 10.2	13.0 ± 9.5	< 0.001	12.4 ± 10.0	16.0 ± 8.8	< 0.001
Filled teeth (n)	3.4 ± 4.4	2.9 ± 4.1	3.8 ± 4.7	< 0.001	4.5 ± 4.7	0.8 ± 2.0	< 0.001
Systolic blood pressure (mmHg)	115.4 ± 17.3	117.9 ± 16.6	113.2 ± 17.7	< 0.001	117.0 ± 16.8	111.7 ± 17.8	< 0.001
Diastolic blood pressure (mmHg)	75.5 ± 10.7	77.4 ± 10.6	73.9 ± 10.4	< 0.001	76.3 ± 10.8	73.8 ± 10.1	< 0.001
Fasting blood sugar (mmol/L)	96.7 ± 27.3	97.4 ± 26.3	96.1 ± 28.1	0.019	102.0 ± 27.5	84.1 ± 22.4	< 0.001
Hemoglobin (g/dl)	14.5 ± 1.6	15.6 ± 1.3	13.6 ± 1.3	< 0.001	14.6 ± 1.6	14.4 ± 1.6	< 0.001
Hematocrit (L/L)	42.0 ± 4.4	44.8 ± 3.5	39.6 ± 3.5	< 0.001	42.3 ± 4.3	41.5 ± 4.4	< 0.001

Abbreviations: GGT, Gamma-glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; RBC, Red blood cell; WBC, white blood cells
Variable	Total	Sex	P	Residence Area	P		
		Male (%)	Female (%)		Urban (%)	Rural (%)	P
GGT (U/L)	27.0 ± 24.6	32.1 ± 29.0	22.5 ± 19.0	< 0.001	28.4 ± 26.5	23.8 ± 19.3	< 0.001
AST (U/L)	19.6 ± 8.8	21.2 ± 9.7	18.3 ± 7.5	< 0.001	19.6 ± 9.0	19.6 ± 8.1	0.981
ALT (U/L)	22.0 ± 14.4	26.3 ± 16.5	18.3 ± 11.1	< 0.001	23.3 ± 15.2	19.1 ± 12.0	< 0.001
ALP (U/L)	205.0 ± 65.3	207.6 ± 66.7	202.7 ± 63.9	< 0.001	206.8 ± 66.6	201.0 ± 61.9	< 0.001
RBC (million/mm3)	4.8 ± 0.5	5.0 ± 0.5	4.5 ± 0.5	< 0.001	4.8 ± 0.5	4.7 ± 0.5	< 0.001
WBC (mm3)	6.0 ± 1.5	6.2 ± 1.6	5.9 ± 1.4	< 0.001	6.0 ± 1.5	6.0 ± 1.5	0.195

Abbreviations: GGT, Gamma-glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; RBC, Red blood cell; WBC, white blood cells