The influence of water content on selected physical properties of cereal seeds to improve the precision of DEM simulation

Łukasz Gierz (✉ lukasz.gierz@put.poznan.pl)
Poznań University of Technology

Ewelina Kolankowska
University of Warmia and Mazury in Olsztyn

Piotr Markowski
University of Warmia and Mazury in Olsztyn

Research Article

Keywords: moisture, cereal seeds, physical properties, DEM simulation, simulation parameters

DOI: https://doi.org/10.21203/rs.3.rs-858061/v1

License: ☑️ ⬅️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
The Influence of Water Content on Selected Physical Properties of Cereal Seeds to Improve the Precision of DEM Simulation

Łukasz Gierz¹*, Ewelina Kolankowska², Piotr Markowski²

¹Institute of Machine Design, Faculty of Mechanical Engineering, Poznań University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland.
²Department of Heavy-Duty Machines and Research Methodology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland.
*email: lukasz.gierz@put.poznan.pl

ABSTRACT

This article presents the results of research on the influence of moisture on changes in selected physical properties, i.e. the length, width, thickness and weight of dressed and untreated cereal seeds in order to improve the simulation process based on the discrete element method (DEM). The research was conducted on the seeds of three winter cereals, i.e. triticale, rye, and barley. The seeds with an initial moisture content of about 7% were moistened to 5 levels, ranging from 9.5% to 17.5%, at an increment of 2%. The statistical analysis showed that moisture significantly influenced the physical properties of the seeds, i.e. their length, width, thickness, and weight. As the moisture content of the seeds increased, there were greater differences in their weight. The average increase in the thousand kernel weight resulting from the increase in their moisture content ranged from 4 to 6 mg. The change in the seed moisture content from 9.5% to 17.5% significantly increased the volume of rye seeds from 3.10% to 14.99%, the volume of triticale seeds from 1.00% to 13.40%, and the volume of barley seeds from 1.00% to 15.33%. These data can be used as a parameter to improve the DEM simulation process.

Keywords: moisture, cereal seeds, physical properties, DEM simulation, simulation parameters

Introduction

According to the data of the Central Statistical Office http://www.gwn.gov.pl, the average share of certified seeds in the total amount of cereal seeds used for sowing in Poland in 2020 amounted to only 17.7%. It was even lower, i.e. 15.4 %, when cereal mixtures were taken into account. These shares were also similar in 2018, when they amounted to 17.1% and 14.7%, respectively http://www.stat.gov.pl. These data show that uncertified seeds stored directly on farms are sown in more than 80% of farmland in Poland. Globally, this is not an isolated case. According to Masyitah et al.³, unclassified seeds from previous harvests are used in more than 60% of the area of rice plantations in Indonesia.

Unclassified seeds from previous harvests are stored in flat (usually brick granaries) or vertical warehouses (metal silos), where they come into contact with the atmospheric air of different humidity, which depends on variable weather conditions. Research conducted in Spain http://www.cnrs.fr revealed a close dependence between air humidity and changes in the moisture content of seeds stored in hórreos (traditional grain storage buildings), which ensure natural ventilation. The researchers observed that when the relative air humidity exceeded 90%, the average humidity inside the warehouse buildings was 5.2% lower. If the relative air humidity was lower than 65%, the humidity inside the warehouse was 3.2% higher. The research showed that the geographical location, altitude, and exposure to wind influenced changes in relative humidity inside the grain warehouse.

It is important to store healthy, dry, clean, and pest-free cereal grains. The moisture content is an important parameter affecting the quality of stored seeds. It is taken into account in grain quality standards. Too high moisture content causes biochemical and microbiological changes in seeds, which
limit the time of their safe storage. In consequence, seeds warm up, become infested by fungal pathogens, mould, and other microorganisms. On the other hand, too low humidity may increase the susceptibility of seeds to mechanical damage and result in a loss 6, 7. Inappropriate storage conditions reduce the quality of seeds. As a result, they can neither be sown nor used as food or feed5. Contemporary storage of cereal grains involves a sequence of treatments protecting them from unfavourable processes lowering their quality. The drying and cooling of seeds enable their long-term storage8.

Numerous studies have shown that the physical properties of cereal grains depend mainly on their water content 9 and change significantly with it10, 11. It is necessary to know the physical properties of agricultural products to predict the quality of the raw material before, during and after processing. It helps to design technological processes and determine use-by dates12-14. The knowledge of changes in the physical properties of biomaterials caused by moisture is necessary to design technological lines for the sorting, cleaning, separation, transport, storage, processing and packaging of seeds. It is also necessary for engineers constructing sowing, planting, and cereal harvesting machinery15-20.

Simulation methods such as the Finite Element Method (FEM) and Discrete Element Method (DEM) are increasingly often used to design machinery for sorting, cleaning, separation, transport, storage, processing, and packaging. The FEM is used both for strength tests21 and to test contacts between machine elements22. The DEM is used to simulate transport23, milling24, crushing, screening and many other processes involving granular material. Numerous studies have shown that the DEM is an effective tool simulating the behaviour of granular materials. The accuracy of the simulation largely depends on the contact models, the physical parameters of particles and the input parameters25. There are no available scientific publications with the results of research on the influence of the moisture content in cereal grains on their dimensions, i.e. their length, width, thickness, and the shape factor. These physical parameters of seeds can be used as input data in the DEM simulation of specific technological processes (dosing, transport, milling, etc.). The water content in seeds stored on farms ranges very widely, from less than 10% to about 17-18%. Due to such high variability in the seed moisture content the authors of this study decided to investigate this issue.

The knowledge of the physical properties of the seeds of cereals and other crops can also be used to determine the efficiency of machines, assess the quality of end products, and to classify cultivars and distinguish between them26. The geometric traits determining the dimensions and shape of seeds are an important group of physical properties of cereal raw materials27, 28. It is important to know them when constructing machines and devices (e.g. for the pneumatic transport, sorting, hulling, and grinding of seeds) and selecting the parameters of their operation29, 30.

The aim of the study was to determine the influence of the moisture content on the selected physical properties of grains of three winter cereals, i.e. triticale, rye, and barley in order to improve the simulation of seed dosage and transport in the sowing unit of a pneumatic seed drill and to select the simulation parameters based on the discrete element method (DEM).

Research methodology

The research was conducted on the seeds of three winter cereals, i.e. triticale (Gringo cultivar – Danko Company, Poland), rye (Agata cultivar – Danko Company, Poland), and barley (LG Veronika cultivar) – which come from the seed farm: Top Farms Nasiona, Runowo, Poland.

Both dressed and untreated seeds were used in the research. The seeds were wet-dressed with Syngenta31 Vibrance Gold fungicide in September 2019. Before the experiment the initial seed moisture content measured with a RADWAG MAX 50/WH moisture analyser was about 7%. Next, the moisture content in the samples was increased to levels of about 9.5%, 11.5%, 13.5%, 15.5%, and 17.5% by adding an appropriate amount of water M_w on the basis of the equation below (1)32-34:
\[M_w = \frac{W_2 - W_1}{100 - W_2} \cdot M_p \]
\[(1) \]

where:

- \(M_w \) – the amount of water necessary to increase the moisture content, g;
- \(M_p \) – the weight of the moistened sample, g;
- \(W_1 \) – the initial moisture content of the sample, %;
- \(W_2 \) – the assumed moisture content of the sample, %.

The moisture content was increased by adding an appropriate amount of water to samples weighing 20 g. Next, the samples were refrigerated for 24 hours at a temperature of 3-4°C. Then, 100 seeds of each cereal species were randomly selected from each moistened sample and their physical parameters were measured. The other seeds were used for measurements of the moisture content.

The physical properties of seeds were measured in accordance with the methodology described by Kaliniewicz et al. \(^\text{35}\). The physical characteristics such as the length and width of the seeds were measured with an MWM 2325 workshop microscope with an accuracy of 0.02 mm. The thickness of the seeds was measured with an accuracy of 0.01 mm by means of a thickness gauge with a dial sensor. The weight of the seeds was measured with an accuracy of 0.1 mg by means of a RADWAG WAA 100/C/2 laboratory balance.

The following parameters were calculated on the basis of geometric measurements of the seeds:

- geometric equivalent diameter \(D_g \) (2), aspect ratio \(R \) (3) and sphericity index \(\Phi \) (4) \(^\text{37}\):

\[
D_g = (T \cdot W \cdot L)^{\frac{1}{3}} \text{ [mm]} \\
R = \frac{W}{L} \cdot 100 \text{ [%]} \\
\Phi = \frac{(T \cdot W \cdot L)^{\frac{1}{3}}}{L} \cdot 100 \text{ [%]} \\
\]

where:

- \(T \) – seed thickness [mm],
- \(W \) – seed width [mm],
- \(L \) – seed length [mm].

- unit weight \(m_D \) (5) \(^\text{36}\):

\[
m_D = \frac{m}{D_g^3} \text{ [g \cdot m}^{-1}] \\
\]

where:

- \(m \) – seed weight [mg].

The following equation was used to calculate the volume of seeds \(V_g \), whose shape resembles a rotational ellipsoid (6) \(^\text{37}\):

\[
V_g = \frac{\pi T \cdot W \cdot L}{6} \text{ [mm}^3] \\
\]

The results of measurements and calculations were statistically processed with the Statistica program (version 13) at a significance level of 0.05, using the module of descriptive statistics and analysis of variance. The differences between the physical characteristics and the level of moisture were determined
by means of one-way analysis of variance (ANOVA). Statistically significant differences were determined with Duncan’s test.

Results and discussion

Tables 1-3 show the results of measurements of the physical characteristics of the seeds of three types of winter cereals: triticale, barley, and rye, depending on their moisture content. The analysis of their dimensions showed that as their moisture content increased, so did their dimensions (length, width, and thickness) and weight. In extreme cases, the differences in the length between the winter triticale seeds with the highest and the lowest moisture content were as large as about 0.11 mm, or even 0.25 mm for dressed seeds. The width of the seeds decreased slightly as their moisture content increased, whereas their thickness increased slightly by 0.04-0.13 mm. The weight of the seeds also increased along with the increase in their moisture content. In extreme cases the thousand kernel weight increased from about 4 mg to 6 mg. As far as the seeds of the other two types of cereals are concerned, i.e. both untreated and dressed barley and rye seeds, their width and thickness increased along with the increase in their moisture content. The weight of the seeds also increased along with their moisture content. The differences in the nature of changes in the dimensions of winter triticale, barley and rye seeds may have been caused by differences between individual seeds in their ability to absorb water as well as differences in their chemical composition, morphological structure and the endosperm structure. The water absorption capacity of cereal seeds is important not only during their storage but also during their conditioning before milling. Flourish seeds absorb water faster than vitreous seeds, they are softer and do not require long maturing.

Additionally, in order to increase the legibility of the results of the significance of the differences between the values of physical traits and the weight of triticale, barley and rye seeds depending on their moisture content they were illustrated in graphs (Fig. 1-3).

Seeds	Moisture [%]	Length [mm]	Width [mm]	Thickness [mm]	Weight [mg]
	X SD	X SD	X SD	X SD	
Untreated					
9.5	8.20 b, a	0.447	3.56 a	0.771	2.84 b, a
11.5	8.07 b	0.622	3.45 a	0.638	2.77 b, a
13.5	8.37 a	0.602	3.52 a	0.363	2.91 a
15.5	8.30 a	0.646	3.49 a	0.434	2.87 a
17.5	8.31 a	0.874	3.52 a	0.356	2.88 a
Dressed					
9.5	7.33 b, a	0.640	3.35 b	0.335	2.93 a
11.5	7.30 b, a	0.418	3.37 b	0.288	2.93 a
13.5	7.23 a	0.744	3.24 a	0.442	2.89 a, c
15.5	7.46 b, c	0.576	3.48 c	0.334	3.03 b
17.5	7.58 b, c	0.657	3.53 c	0.303	3.06 b

X – mean value, SD – standard deviation, a, b, c – statistically significant differences at α = 0.05

Table 1. The statistical parameters of the physical characteristics of winter triticale seeds
Figure 1. The physical parameters (mean value and standard deviation) of winter triticale seeds. Note: a, b, c – different letters indicate significant differences at p < 0.05 in the group of dressed and untreated seeds (Duncan’s test).

Seeds	Moisture [%]	Length [mm]	Width [mm]	Thickness [mm]	Weight [mg]				
	X	SD	X	SD	X	SD			
Untreated	9.5	9.29^a	1.435	3.63^a	0.327	2.96^a	0.257	51.19^a	8.904
	11.5	9.71^b	1.215	3.66^a	0.294	2.96^a	0.208	50.47^a	7.151
	13.5	9.58^{a, b}	1.317	3.74^b	0.245	3.02^{a, b}	0.220	54.27^b	8.423
	15.5	9.28^a	0.976	3.77^b	0.272	3.04^{b, c}	0.262	55.10^b	8.886
	17.5	9.54^{a, b}	1.192	3.92^c	0.353	3.10^c	0.253	58.50^c	9.963
Dressed	9.5	9.10^b	0.991	3.65^a	0.349	2.78^a	0.181	48.53^a	6.687
	11.5	8.69^a	1.368	3.66^a	0.275	2.86^a	0.657	47.99^a	7.758
	13.5	9.07^b	0.770	3.80^b	0.606	2.79^a	0.204	49.15^a	8.074
	15.5	8.89^{a, b}	0.815	3.71^{a, b}	0.324	2.81^a	0.223	49.00^a	8.246
	17.5	8.96^{a, b}	0.665	3.72^{a, b}	0.279	2.79^a	0.204	49.44^a	8.683

X – mean value, SD – standard deviation, a, b, c – statistically significant differences at α = 0.05
Table 2. The statistical parameters of the physical characteristics of winter barley seeds

Seeds	Moisture [%]	Length [mm]	Width [mm]	Thickness [mm]	Weight [mg]			
		X	SD	X	SD	X	SD	
Untreated								
9.5	7.66^a	0.959	2.64^a	0.203	2.51^a	0.186	33.39^a	6.074
11.5	7.81^{a, b}	0.481	2.72^b	0.267	2.53^{a, b}	0.175	33.15^a	5.637
13.5	7.94^{b, c}	0.525	2.72^b	0.211	2.58^{b, c}	0.196	35.03^{b, b}	6.505
15.5	7.82^{a, b}	0.537	2.66^a	0.239	2.51^a	0.212	33.88^a	7.378
17.5	8.05^c	0.661	2.73^b	0.253	2.60^c	0.225	36.48^b	7.918
Dressed								
9.5	8.02^b	0.549	2.75^{a, b}	0.256	2.56^b	0.215	35.99^b	7.142
11.5	8.40^c	0.628	2.89^c	0.279	2.68^c	0.215	41.21^c	8.185
13.5	7.67^a	0.912	2.65^a	0.288	2.48^a	0.249	32.74^a	8.330
15.5	8.11^b	0.610	2.83^{b, c}	0.440	2.62b	0.205	37.42^b	6.999

Figure 2. The physical parameters (mean value and standard deviation) of winter barley seeds. Note: a, b, c – different letters indicate significant differences at p < 0.05 in the group of dressed and untreated seeds (Duncan’s test).
Table 3. The statistical parameters of the physical characteristics of winter rye seeds

	17.5	7.93b	0.737	2.67a	0.324	2.48a	0.263	33.46a	9.653

X – mean value, SD – standard deviation, a, b, c – statistically significant differences at α = 0.05

Table 4 shows the mean values of the geometric equivalent diameter D_e, the aspect ratio R and the sphericity ratio Φ, as well as the unit weight m_D calculated on the basis of measurements of the physical traits of the seeds of the species under analysis. The winter barley seeds with a moisture content of 17.5% were characterised by the highest mean value of the equivalent geometric diameter D_e and unit weight, whereas the lowest values of these parameters were noted in the dressed winter rye seeds with moisture content values of 13.5% and 11.5%. The barley seeds with a moisture content of 11.5% were characterised by the highest mean aspect ratio R. The highest mean value of the sphericity index Φ was noted in the dressed winter triticale seeds with a moisture content of 15.5%. The values of these coefficients, calculated on the basis of the dimensions of the seeds, are significant for various separation processes. They also characterise the shape of the seeds to a certain extent, and their numerical value can be used as a criterion for the selection of seeds. As can be read in scientific publications, the values of the physical characteristics of seeds may vary even within one cultivar due to the significant influence of agrobiological conditions. The conditions of cultivation, climate, fertilisation and other treatments applied to crops affect the individual physical characteristics of seeds, mostly their average length, and to a lesser extent, their thickness and width. They are also important for the selection of appropriate characteristics when separating seeds during cleaning and sorting, and they help to determine the load of machines and devices used in cereal processing. Apart from that, each separation
process is different even if the same species is used as the base material, because there may be
differences in the granulometric characteristics, moisture content, botanical composition, purity, and
alignment of seeds.

Seeds	W_z [%]	D_z [mm]	R [%]	Φ [%]	m_D [g·m$^{-1}$]
Untreated winter triticale					
9.5	4.35a,b	43.41a	53.02a	10.94b	
11.5	4.25b	42.83c	52.70a	10.85b	
13.5	4.41a	42.14a	52.67a	11.56a	
15.5	4.36a	42.14a	52.58a	11.33a,b	
17.5	4.38a	42.59b	52.88a	11.64a	
Dressed winter triticale					
9.5	4.16b	45.85a,b	56.77a	10.28b	
11.5	4.16b	46.24a,b	56.99a	10.36b	
13.5	4.07b	45.11b	56.45a	9.97b	
15.5	4.28a	46.61a	57.41a	11.12a	
17.5	4.34a	46.76c	57.38a	11.22a	
Untreated winter barley					
9.5	4.63c	40.29a,b	50.69a	11.02b	
11.5	4.71b,c	38.15c	48.91b	10.70b	
13.5	4.76b	39.59b,c	50.13a,b	11.36a	
15.5	4.73b	40.96a,b	51.26a	11.59a,b	
17.5	4.87a	41.57a	51.43a	11.96a	
Dressed winter barley					
9.5	4.51a,b	41.46a	50.41b	10.76b	
11.5	4.46b	51.12a	55.56a	10.89b	
13.5	4.57a	42.07a	50.73b	10.70b	
15.5	4.52a,b	42.00a	51.02b	10.79a	
17.5	4.52a,b	41.64a	50.61b	10.86a	
Untreated winter rye					
9.5	3.69c	36.28a	49.38a	9.04a,b	
11.5	3.77a,b	34.94a	48.37a	8.74b	
13.5	3.82a	34.33a	48.15a	9.10a,b	
15.5	3.73b,c	34.08b	47.78a	8.98b	
17.5	3.85a	33.99a	47.86a	9.39a	
Dressed winter rye					
9.5	3.83b	34.29a	47.83a,b	9.31b	
11.5	4.02a	34.46a	47.90a,b	10.18a	
13.5	3.68c	36.34a	49.09a	8.81c	
Table 4. The mean values of the indexes of the cereal seeds

Due to the ambiguous nature of changes in the physical characteristics of the triticale, barley, and rye seeds as well as the coefficients describing their shape depending on their moisture content, it was necessary to calculate their volume V_g. The results showed that although there were some differences in changes in the volume of the dressed and untreated seeds within the same species, the nature of these changes was generally similar – the volume of the seeds tended to increase along with their moisture content (rye – from 3.10% up to 14.99%, triticale – from 1.00% to 13.40%, barley – from 1.00% to 15.33%). The statistical analysis of changes in the volume of seeds showed that the change in the moisture content of the rye, triticale and barley seeds within 9.5-17.5% caused a significant increase in their volume (Fig. 4). This means that the seed volume can be used as a parameter to improve the DEM simulation process. This fact was confirmed in a study on the volumetric scaling of rice seeds with the discrete element method (DEM) 46 and in a study where the volume-to-surface ratio was used to describe and control particles 47.

Moisture M (%)	V_g [mm3]
9.5	15.5
11.5	3.91b
13.5	34.97a
15.5	48.27$^a, b$
17.5	9.51b

Winter triticale
Figure 4. The volume of the dressed and untreated winter triticale, barley, and rye seeds. Note: a, b, c – different letters indicate significant differences at p < 0.05 in the group of dressed and untreated seeds (Duncan’s test).

Conclusions

The analysis of variance showed that the moisture content of the dressed and untreated winter triticale, barley, and rye seeds significantly affected their physical characteristics, i.e. length, width, thickness, and weight. The greatest differences in the weight of the seeds were observed when their moisture content varied within 9.5-17.5%. The average increase in the thousand kernel weight ranged from 4 to 6 mg. There was also a significant dependence between the seed moisture content W_i and the values of the coefficients describing the shape of the seeds, i.e. the equivalent geometric diameter D_g, aspect ratio R, sphericity index Φ, and unit weight m_D. The values of the coefficients describing the shape of
the seeds tended to change along with the increasing seed moisture content. The nature of these changes depended on the seed species and whether they were dressed or not. The changes in the seed moisture content within 9.5-17.5% significantly increased the volume of the rye (from 3.10% to 14.99%), triticale (from 1.00% to 13.40%), and barley seeds (from 1.00% to 15.33%). This information can be used as a parameter for improvement of the simulation process based on the discrete element method (DEM).

References

1. GUS, Central Statistics Poland, (2020) Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5515/6/14/1/rocznik_statystyczny_rolnictwa_2020. (accessed on 25 August 2021)
2. GUS, Central Statistics Poland, (2018) Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rolnictwa-2018,6,12.html (accessed on 25 August 2021)
3. Masyitah M., Augussabti A., Kasimin S. Tingkat Adopsi Petani Terhadap Benih Unggul Padi Sawah Di Kabupaten Aceh Besar Provinsi Aceh. Jurnal AGRIFO. V 4(1). pp1- 6
 DOI: https://doi.org/10.29103/ag.v4i1.1538 (2019) (In Indonesian)
4. Perez-Garcia O.A., Carreira X.C., Carral E., Fernandez M.E., Mariño R.A. Evaluation of traditional grain store buildings (hórreos) in Galicia (NW Spain): Analysis of outdoor/indoor temperature and humidity relationships. Spanish Journal of Agricultural Research, 8 (4), pp. 925-935. doi: 10.5424/sjar/2010084-1210 (2010)
5. Tomkiewicz D. Construction and operation of corn seed humidity sensor using near-infrared radiation. Agric. Eng. 6(115), 309-314 (2009) (in Polish).
6. Horoszkiewicz-Janka J., Korbas M., Mrówczyński M. Metodyka integrowanej ochrony pszenicy ozimej i jarej dla producentów (Methodology of integrated protection of winter wheat and spring for producers). (Poznań: Wydawnictwo IOR, 2013) (in Polish).
7. Borkowska B., Banach D. Ocena wybranych cech fizykochemicznych pszenicy i żyta z północnego i południowego regionu Polski [Assessment of selected physicochemical properties of wheat and rye from the northern and southern region of Poland] (Roczniki Naukowe SERiA XX (6), pp. 18-21. doi: 10.5604/01.3001.0012.7726 (2018) (in Polish).
8. Rudziński R. Zasady przechowywania i magazynowania towarów pochodzenia rolniczego. [Rules for storage and warehousing of goods of agricultural origin] Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach. Administracja i Zarządzanie, T. 15, 88, pp. 113-126 (2011) (in Polish).
9. Horabik J. Charakterystyka właściwości fizycznych roślinnych materiałów sypkich istotnych w procesach składowania. Acta Agrophysica. Nr 54. (2001)
10. Kaliniewicz Z., Anders A., Markowski P., Tylek P., Owoc D. Analysis of the physical properties of spindle seeds for seed sorting operations. Scientific Reports, 11(1), pp. 1-11 (2021)
11. Andrejko D. Wpływ wilgotności i wymiarów cząstek na gęstość sypkich surowców roślinnych. Inżynieria Rolnicza. Nr 11 (71). s. 9-17. (2005)
12. Sahin S., Sumnu S.G. Physical Properties of Foods. Springer Science Business Media, LLC.New York. (2006)
13. Altuntas E, Demirtola H. Effect of moisturecontent on physical properties of some grain legume seeds. New Zeal J CropHort 35: 423–433 (2007)
14. Ili N. Effect of moisture on the physical properties of three varieties of kenaf seeds J Food Sci Technol (June 2015) 52(6):3254–3263 (2015)
15. Karimi M., Kheiralipour K., Tabatabaeefar A., Khoubakht G.M., Naderi M., Heidarbeigi K. Effect of moisture content on physical properties of wheat. Pak. J. Nutr. 8(1), 90–95 (2009)
16. Kalkan F., Kara M. Handling, frictional and technological properties of wheat as affected by moisture content and cultivar. Powder Technol. 213(1–3), 116–122 (2011)
17. Shelake P.S., Yadav S., Jadhav M.L., Dabhi M.N., Effect of moisture content on physical and mechanical properties of turmeric (Curcumalonga) rhizome. Curr. J. Appl. Sci. Technol. 30(5), 1–7 (2018)
18. Jadhav K.L., Mohnot P., Shelake P.S. Investigation of engineering properties of vegetable seeds required for the design of pneumaticseeder. Int. J. Curr. Microbiol. Appl. Sci. 6(10), 1163–1171 (2017)
19. Salawu A.T., Isiaka M., Attanda M.L. Design related physical properties of snake tomato seeds. Acad. Res. Int. 5(1), 1–10 (2014)
20. Rajaiah P., Mani I., Kumar A., Lande S.D., Singh A.K. Role of physical and engineering properties of rice (Oryza sativa) cultivars for designing of precision planter. Indian J. Agric. Sci. 85(12), 1602–1608 (2015)
21. Chodurski M, Dębski H, Samborski S, Teter A. Numerical strength analysis of the load-bearing frame of a palletizing robot’s universal head. Eksploatacja i Niezawodność – Maintenance and Reliability; 17 (3): 374–378, http://dx.doi.org/10.17531/ein.2015.3.7 (2015)
22. Jachimowicz, J., Wawrzyńiak, A.: Zastosowanie MES w zadaniach kontaktu elementów maszyn [Application of FEM in the issues of contact of machine elements]. (Prace Instytutu Podstaw Budowy Maszyn/Politechnika Warszawska. 69-108. 1999) (in Polish).
23. Gierz, Ł.; Warguła, Ł.; Kukla, M.; Koszela, K.; Zwiachel, T.S. Computer Aided Modeling of Wood Chips Transport by Means of a Belt Conveyor with Use of Discrete Element Method. Appl. Sci., 10, 9091. https://doi.org/10.3390/app10249091 (2020)
24. Bautista, R.C., Siebenmorgen, T.J. Evaluation of laboratory mills for milling small samples of rice. Applied Engineering in Agriculture, 18 (5), pp. 577-583 (2002)
25. Petingco, M.C., Casada, M.E, Maghirang, R.G, Fasina, O.O, Chen, Z., Ambrose, R.P.K, Influence of Particle Shape and Contact Parameters on DEM-Simulated Bulk Density of Wheat. Transactions of the ASABE, 63(6), 2020, pp1657-1672. doi:10.13031/trans.13718 (2020)
26. Fathollahzadeh H, Mobli H, Jafari A, Rafiee S, Mohammadi A. Some physical properties of Tabarzeh apricot kernel. Pak J Nutr. 7(3), 2020, pp1657-1672. doi:10.13031/trans.13718 (2020)
27. Mohsenin N.N. Physical properties of plant and animal materials. Characteristics and mechanical properties. Gordon and Breach Science Publishers. New York. (1986)
28. Tylek P. Measuring selected properties of seeds by computer image processing. Zeszyty Problemy PNR. Nr 423. s. 335-341. (1995) (in Polish).
29. Grochowicz J. 1994. Maszyny do czyszczenia i sortowania nasion [Machines for cleaning and sorting seeds], (Wydawnictwo AR Lublin, 1994). ISBN 83-901612-9-X. (in Polish).
30. Kusińska E. Wpływ przechowywania na właściwości fizyczne ziarna owsa. Acta Agrophysica. Nr 58. s. 105-114. (2001)
31. https://www.syngenta.pl/srodki-ochrony-roslin/zaprawy-nasienne/vibrance-gold-access 16.06.2021
32. Zewdu, A. D., & Solomon, W. K. Moisture-dependent physical properties of tef seed. Biosystems engineering, 96(1), 57-63. (2007)
33. Dursun E; Dursun I. Some physical properties of caper seed. Biosystems Engineering, 92(2), 237–245, doi:10.1016/j.biosystemseng.2005.06.003 (2005)
34. Balasubramanian D. Physical properties of raw cashew nut. Journal of Agricultural Engineering Research, 78(3), 291–297, doi:10.1006/jaer.2000.0603 (2001)
35. Kaliniewicz, Z., Markowski, P., Anders, A., Jadwisieńczak, B., Rawa, T., and Szczechowicz, D. “Basic physicalproperties of Norwayspruce (Picea abies (L.) Karst.) seeds,” Technical Sciences 19(2), 103-115. (2016)
36. Kaliniewicz, Z., Tylek, P., Markowski, P., Anders, A., Rawa, T., Jóźwiak, K., and Fura, S. “Correlations between the germination capacity and selected physical properties of Scotspine (Pinus sylvestris L.) seeds,” Baltic Forestry 19(2), 201-211. (2013)
37. Gastón, A. L., Abalone, R. M., & Giner, S. A. Wheat drying kinetics. Diffusivities for sphere and ellipsoid by finite elements. Journal of Food Engineering, 52(4), 313-322. (2002)
38. Rabiej, M. Statystyka z Programem Statistica [Statistics in Statistica Software]; Helion: Gliwice, Poland; ISBN 97888324641109. (2012)
39. Stanisz, A. Accessible Course in Statistics Based on the STATISTICA PL Software on Examples from Medicine. Tome 1. Basic Statistics; StatSoft Polska: Kraków, Poland (2007) (In Polish)
40. Fang Ch., Campbell G.M. On predicting roller milling performance V: effect of moisture content on the particle size distribution from first break milling of wheat. Journal of Cereal Sciences. Vol. 37. s. 31-41. (2003)
41. Dziki D., Różyło R., Laskowski J., Grundas S. Evaluation of wheat grain physical properties carried out using an analyser of single seeds.) Agric. Eng. 1(126), 39-46 (2011) (in Polish).
42. Hebda T, Micek P. Zależności pomiędzy właściwościami geometrycznymi ziarna zbóż [Dependencies between geometrical features of cereal grains] Inżynieria Rolnicza 9 (2005)
43. Hebda T, Micek P. Cechy geometryczne ziarna wybranych odmian zbóż [Geometric features of grain for selected corn varieties] Inżynieria Rolnicza 11 (2007): 187-193….
44. Kaliniewicz Z., Biedulska J., and Jadwisieńczak B. Assessment of cereal seed shape with the use of sphericity factors Technical Sciences/University of Warmia and Mazury in Olsztyn (2015).
Acknowledgements

The research was supported by the National Centre for Research and Development under the LIDER VIII programme, project No. LIDER/24/0137/L-8/16/NCBIR/2017.