Research Paper

Sustained IKKβ phosphorylation and NF-κB activation by superoxide-induced peroxynitrite-mediated nitrotyrosine modification of B56γ3 and PP2A inactivation

Yi Hui Yee a, Stephen Jun Fei Chong b, Li Ren Kong a, c, Boon Cher Goh a, d, e, f, g, 1, Shazib Pervaiz a, i, j, k, 1

a Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore
b Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
c Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2, 0X2, United Kingdom
d Department of Hematology-Oncology, National University Health System, Singapore
e Department of Medicine, Yong Loo Lin School of Medicine, NUS, Singapore
f National University Cancer Institute, National University Health System, Singapore
g Department of Pharmacology, Yong Loo Lin School of Medicine, NUS, Singapore
h Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
i Integrative Science and Engineering Programme, NUS Graduate School, NUS, Singapore
j Faculté de médecine, University of Paris, Paris, France
k * Corresponding author. Department of Physiology, YLL SoM, National University of Singapore, Singapore.
E-mail address: phssp@nus.edu.sg (S. Pervaiz).

Abstract

Apart from its physiological role in inflammation and immunity, the nuclear factor-kappa B (NF-kB) protein complex has been implicated in tumorigenesis and its progression. Here, we provide evidence that a pro-oxidant milieu is an upstream effector of oncogenic NF-kB signaling. Through pharmacological or genetic inhibition of SOD1, we show that elevated intracellular superoxide (O2•−) mediates sustained IKK phosphorylation, and induces downstream degradation of IκBs, leading to the nuclear localization and transcriptional activation of NF-κB. Mechanistically, we show that such sustained NF-κB signaling is a function of protein phosphatase 2A (PP2A) inactivation brought about by the nitratative modification of its substrate-binding sub-unit B56γ. Importantly, the pro-oxidant driven NF-κB activation enhances the migratory and invasive potential of cancer cells. In summary, our work highlights the critical involvement of O2•−-dependent peroxynitrite production in inhibiting PP2A-mediated dephosphorylation of IKK, thereby facilitating cancers to acquire an invasive phenotype. Given that NF-κB is a key player of chronic inflammation and carcinogenesis, our work unravels a novel synergistic node involving O2•−-driven redox milieu and deregulated PP2A as a potential therapeutic target.

Introduction

Reactive oxygen species (ROS) are important secondary messengers involved in cellular signaling and regulation of various biological processes. As such, perturbation of cellular redox states has been implicated in the etiology of many disease states including cancer. While aberrantly high ROS levels could indiscriminately induce cellular damage, recent studies demonstrated that altered redox signaling could also induce neoplasic transformation of normal cells as well as fuel the malignancy of transformed cells through activation of various pro-survival or anti-apoptotic signaling networks [1–8]. To that end, our previous reports provided evidence to link an increase in intracellular O2•− as well as mitochondrial redox metabolism to the death inhibitory activity of Bel-2 [9–11]. The crosstalk between O2•−-mediated pro-survival signaling and Bcl-2 was shown to involve serine 70 phosphorylation of Bcl-2 (Bcl-2Ser70) as well as its interaction with active GTPase Rac1 [12–14]. Furthermore, manipulating intracellular O2•− inhibited death receptor apoptosis via the upregulation of cFLIP (cellular FLICE-like Inhibitory Protein) [15]. Moreover, we demonstrated that O2•− could regulate the protein stability and cellular half-life of the oncoprotein c-Myc [16]. Notably, unlike most physiological ROS signaling that involves the dismutation of O2•− to H2O2, the pro-survival and/or death inhibitory effect of an increase in intracellular O2•− was associated with its reaction with nitric oxide (NO) to generate peroxynitrite (ONOO−) [15–17]. These findings suggest that cell fate decisions appear to be a function of a specific redox milieu jointly maintained by the activities of...
SOD(s) and iNOS. Interestingly, the master transcription factor NF-κB was implicated in ONOO−-induced upregulation of cFLIP [15], which prompted us to question whether the pro-survival redox environment effected by ONOO− also influenced the activation and/or transcriptional activity of NF-κB and if so explore the underlying mechanism. To that end, a bi-directional crosstalk between NF-κB and cellular redox environment has been demonstrated whereby oxidative stress can activate or inhibit NF-κB and similarly NF-κB activation can serve as pro- or anti-oxidant in a cell type or context dependent manner (reviewed in Ref. [18]).

In its inactive state, NF-κB is sequestered in the cytoplasm by its physical interaction with IκB\textsubscript{α}, a member of the IκB family of inhibitory proteins. NF-κB activation is triggered by a plethora of stimuli including pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF\textalpha), and interleukin-1 (IL-1), viruses, toll-like receptors and ROS [19, 20]. This involves a series of upstream phosphorylation events targeting the

![Fig. 1. O$_2^\bullet$- induces NF-κB localization, transcriptional activity and upregulates its transcriptional target protein levels.](image-url)

A. Lucigenin chemiluminescence assay detecting intracellular O$_2^\bullet$- level following 4-h treatment with 100 μM DDC in U2OS cells (** = p < 0.01)

B. Western blot analysis showing p65, p50, PARP (nuclear fraction control marker) and SOD1 (cytosolic fraction control marker) following nuclear-cytosolic fractionation after 12-h pre-treatment with 25 μM JSH-23 and subsequent 4-h treatment with 100 μM DDC in U2OS cells

C. Measurement of NF-κB transcription factor binding activity following nuclear-cytosolic fractionation after 12-h pre-treatment with 25 μM JSH-23 and subsequent 4-h treatment with 100 μM DDC in U2OS cells (** = p < 0.01)

D. Measurement of NF-κB luciferase reporter activity following 12-h pre-treatment with 25 μM JSH-23 and subsequent 4-h treatment with 100 μM DDC or treatment with 5 μg/ml TNF\textalpha (positive control) in U2OS cells (** = p < 0.01)

E. Schematic diagram illustrating some NF-κB transcriptional targets involved in invasion, migration and cell survival

F. Western blot analysis showing Snail, Slug, XIAP, Bcl-xL and tubulin following 12-h pre-treatment with 25 μM JSH-23 and subsequent 4-h treatment with 100 μM DDC in U2OS cells.
various protein sub-units involved in NF-κB activation and regulation such as phosphorylation-mediated activation of IκKβ at serine 177 and 181 (S177/181) residues [21,22]. Phospho-activated IκKβ subsequently phosphorylates IkBα at serine 32 and serine 36 (S32/36), resulting in its ubiquitination and proteasomal degradation. This in turn releases NF-κB (p65/p50 sub-units) for translocation to the nucleus to activate its transcriptional targets, which include genes involved in cellular redox metabolism and its regulation as well as those that promote cancer cell survival, proliferation, angiogenesis, epithelial to mesenchymal transition (EMT) and metastasis [18–20,23,24].

Whilst most studies pertaining to the interplay between cellular redox status and NF-κB activation and/or its regulation seem to highlight the direct or indirect effect of ROS such as H2O2 or NO on the upstream kinases, there is a relative lack of clarity whether the effect is exclusively on the kinases or also involves phosphatases that regulate these phosphorylation sites. To that end, the protein phosphatase 2A (PP2A) regulates serine phosphorylation sites of both IKK and IκBα [25]. Notably, our recent findings unraveled a novel mechanism of nitration-dependent inactivation of PP2A in the sustained phosphorylation of Bcl-2 (Bcl-2Ser70) and c-Myc (c-MycSer542), which involved O2·-mediated ONOO− signaling [16,17]. On the backdrop of these findings, we set out to delineate the molecular mechanism(s) underlying the cross-talk between cellular redox metabolism and NF-κB activation. Here, we provide evidence that a pro-oxidant state triggers NF-κB activation via ONOO−-mediated sustained phosphorylation of IKK and IkBα, which stimulates cell migration and invasion potentially via upregulation of EMT inducers, Snail and Slug. Notably, the sustained phosphorylation is a function of nitration-mediated inactivation of PP2A, thus highlighting a novel mechanism of redox-induced upregulation of NF-κB signaling.

Results

Increase in O2·- induces NF-κB nuclear localization and transcriptional activity

The effect of an increase in intracellular O2·- upon pharmacological inhibition of SOD1 activity with diethyldithiocarbamate (DCC) on the nuclear localization and transcriptional activity of NF-κB was investigated in human osteosarcoma U2OS cells. Results showed that DCC-induced increase in intracellular O2·- (Fig. 1A) was associated with enhanced nuclear localization of the NF-κB sub-units p65 and p50 (Fig. 1B). Similarly, the increase in nuclear localization of the non-canonical NF-κB sub-unit, RelB, was also observed upon treatment with DCC (Supplementary Fig. 1). The promoter binding and transcriptional activity of NF-κB p65 were subsequently assessed using an ELISA-based transcription factor binding assay and luciferase reporter assay, respectively. An increase in NF-κB binding and transcriptional activity was observed with increase in intracellular O2·- (Fig. 1C,D). To ascertain the role of DDC-induced O2·- in the transcriptional activity of NF-κB, cells were treated with JSH-23, a specific inhibitor of nuclear localization of NF-κB p65 [26]. Indeed, pre-treatment with JSH-23 abrogated the effect of DDC-induced O2·- on NF-κB translocation, binding and transcriptional activity (Fig. 1B-D). NF-κB has been shown to promote cancer progression through its ability to activate downstream genes that are essential for promoting cancer cell survival, invasion and metastasis (Fig. 1E). Validating the increase in the transcriptional activity, increase in intracellular O2·- induced the transactivation of NF-κB target genes products such as the EMT inducers Snail and Slug, and anti-apoptotic proteins Bcl-xL and XIAP, which could be reversed upon the addition of JSH-23 (Fig. 1F). Taken together, these data show that an increase in intracellular O2·- is a signal for the activation of NF-κB to upregulate its downstream transcriptional targets.

Increase in O2·- promotes phosphorylation of IKK and IkBα

Since NF-κB activation is dependent on the upstream phosphorylation of IKK (p-IκKα/β) and serine 32 and 36 of IkBα (pSer32/36/IκBα) that leads to the degradation of the NF-κB suppressor IkBα, we subsequently evaluated the effect of O2·- on p-IκKα/β, pSer32/36/IκBα and total IkBα levels. Augmentation of intracellular O2·- by increasing doses of DDC (50–200 μM) was accompanied by increase in p-IκKα/β, and pSer32/36/IκBα as well as a reciprocal decrease in IkBα levels (Fig. 2A–B). Correspondingly, an increase in phosphorylation of IKK and IkBα, and degradation of IkBα could be corroborated using small interfering RNA (siRNA) mediated silencing of SOD1 to increase intracellular O2·- (Fig. 2C–D). To further validate the role of O2·- in promoting p-IκKα/β and pSer32/36/IκBα, cells were pre-treated with Tiron, a scavenger of O2·-. Indeed, scavenging O2·- reduced p-IκKα/β and pSer32/36/IκBα levels and restored the expression of total IkBα to levels comparable with lysates from untreated control cells (Fig. 2E–F). Collectively, these data demonstrate that elevated intracellular O2·- level could regulate NF-κB through the increase in p-IκKα/β and pSer32/36/IκBα coupled with the degradation of total IkBα.

O2·- -mediated phosphorylation of IKK and IkBα is ONOO−-dependent

Peroxy nitrite (ONOO−) formation stemming from the reaction between O2·- and NO occurs rapidly at diffusion controlled rates [27]. Apart from increased O2·- levels, a readily available pool of intracellular NO is required for the generation for ONOO−. Majority of intracellular NO production relies on a tightly controlled enzymatic reaction catalyzed by nitric oxide synthases (NOS); to date, three isoforms have been identified – endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS) [28]. On the other hand, intracellular O2·- is either dismutated into H2O2 by the activities of SODs or reacts with nitric oxide (NO) to produce the relatively more reactive ONOO−. Since intracellular O2·- levels are increased via pharmacological inhibition of SOD1 activity or its knockdown, we surmised that the reaction with NO is likely favoured to generate ONOO−. To ascertain if ONOO− was involved in the sustained p-IκKα/β and pSer32/36/IκBα levels, we first investigated the effect of FeTPPS, a ONOO− decomposition catalyst. Notably, pre-treatment of cells with FeTPPS not only blocked the effect of DDC-induced increase in O2·- on p-IκKα/β and pSer32/36/IκBα levels, but also restored total IkBα levels (Fig. 3A). In addition, treatment of cells with increasing concentrations of exogenous ONOO− increased p-IκKα/β and pSer32/36/IκBα levels and led to a reciprocal decrease in IkBα (Fig. 3B). Lastly, cells treated with pharmacological NO donor/inducer, sodium nitroprusside (SNP), also affected p-IκKα/β and pSer32/36/IκBα and total IkBα in a manner similar to that observed with DDC-induced increase in O2·- or upon treatment with pure ONOO− (Fig. 3C). Together, these data indicate a role for ONOO− as the downstream effector of O2·- in inducing NF-κB signaling.

Sustained IKK phosphorylation is a function of redox-inactivation of B56δ-containing PP2A holoenzyme (PP2Aδδδ3)

Having demonstrated that O2·-/ONOO− activates NF-κB signaling, we next examined the possible mechanism(s) underlying the increase in p-IκKα/β in a pro-oxidant milieu. Canonical activation of NF-κB requires the initial phospho-activation of upstream kinase, IKK, implying that either redox activation of kinases and/or inactivation of protein phosphatases could result in ROS-mediated constitutive NF-κB signaling. Interestingly, we recently elucidated a novel mechanism underlying the upregulation of Bcl-2Ser70 and c-MycSer542, which involved peroxy nitrite (ONOO−)-mediated inactivation of PP2A [16,17]. The ONOO−-induced nitrative modification on B56δ or B56α regulatory subunit prevented the assembly of functional PP2A holoenzyme, thereby resulting in accumulation of Bcl-2Ser70 or c-MycSer542, respectively [16,17]. Accordingly, we asked if a similar PP2A-dependent mechanism was responsible for increased p-IκKα/β levels and NF-κB...
Fig. 2. \(O_2^•\)- upregulates phosphorylation of IKK and pSer32/36IκBα

A. Lucigenin chemiluminescence assay detecting intracellular \(O_2^•\)- level following 4-h treatment with increasing concentrations of DDC (50–200 μM) in U2OS cells (* \(p < 0.05\), ** \(p < 0.01\))

B. Western blot analysis showing p-IKKα/β, pSer32/36IκBα, IκBα and actin following 4-h with DDC (50–200 μM) in U2OS cells

C. Lucigenin chemiluminescence assay detecting intracellular \(O_2^•\)- level (RLU/μg protein) 48-h after transfection with control siRNA or siSOD1 sequences (100 nM) in U2OS cells (* \(p < 0.05\), ** \(p < 0.01\))

D. Western blot analysis showing p-IKKα/β, pSer32/36IκBα, IκBα and actin tubulin 48 h after transfection with control siRNA or siSOD1 sequences (100 nM) in U2OS cells

E. Lucigenin chemiluminescence assay detecting intracellular \(O_2^•\)- level following 1-h pre-treatment with 5 mM Tiron (Ti) and subsequent 4-h treatment with 100 μM DDC in U2OS cells (* \(p < 0.05\), ** \(p < 0.01\))

F. Western blot analysis showing p-IKKα/β, pSer32/36IκBα, IκBα and tubulin following 1-h pre-treatment with 5 mM Tiron (Ti) and subsequent 4-h treatment with 100 μM DDC in U2OS cells.
activity in our model. Firstly, we investigated the involvement of PP2A using a pharmacological inhibitor of PP2A, okadaic acid (OA). Cells were treated with varying doses of OA and p-IKKα/β and pSer32/36IκBα levels were monitored. Indeed, increasing doses of OA (10–40 nM) upregulated p-IKKα/β and pSer32/36IκBα levels in a dose-dependent manner, and correspondingly downregulated total IκBα as well as upregulated NF-κB target proteins (Fig. 4A).

PP2A is a ubiquitous heterotrimERIC phosphatase comprised of a core enzyme, formed by the scaffolding subunit (PP2A-A) and the catalytic subunit (PP2A-C), which is recruited to its target proteins via a wide array of B regulatory subunits that confer substrate specificity. Hence, we first set out to identify the specific B56 regulatory subunit that interacts with and regulates the phosphorylation of IKKβ. Genetic knockdown of PP2A B56γ increased p-IKKα/β more drastically (Fig. 4B) compared to the knockdown of other B56 isoforms (α, β, δ, ε). Overexpression of HA-B56γ/β also reverted DDC-induced increase in p-IKKα/β level compared to the same treatment of cells transfected with the empty pCEP4 vector (Fig. 4C). To further ascertain if B56γ regulatory subunit is the interacting partner of IKKβ, we immunoprecipitated IKKβ. Co-immunoprecipitation (co-IP) analysis revealed interaction between B56γ and IKKβ which was not disrupted by augmentation of intracellular O2•− or ONOO− (Fig. 4D–E). Similarly, the interaction between B56γ and p-IKKα/β was not affected upon augmentation of intracellular O2•− level (Fig. 4F). Notably, proximity ligation assay (PLA) of IKKβ and PP2A catalytic subunit (PP2Aα) showed significantly fewer foci in DDC, ONOO− and SNP-treated cells compared to untreated control cells, thus suggesting that the recruitment of B56γ-IKKβ complex to PP2Aα was disrupted in the presence of elevated intracellular ONOO− (Fig. 4G). On the other hand, cells incubated with FeTPPS had significantly more foci as compared to cells treated with DDC, ONOO−, SNP or control (Fig. 4G) lending further support to this argument. Importantly, the concurrent decline in B56γ-PP2Aac interaction and upregulation of p-IKKα/β and pSer32/36IκBα levels were accompanied by the presence of nitrated B56γ3 subunit (Fig. 4H). These data collectively implicate O2•−/ONOO−-mediated inhibition of PP2A_{B56γ/3} in the activation of NF-κB via increased p-IKKα/β and pSer32/36IκBα.

Aside from the regulation by PP2A, the phosphorylation status of IKKβ could also be influenced by the activities of its reported kinase(s) such as protein kinase C (PKC). Past studies demonstrated that PMA, a PKC activator shown to produce O2•− as a by-product of PKC-mediated activation of NAPDH oxidase (NOX), induces NF-κB DNA binding and transcriptional activity [29–31]. Since PMA can augment O2•− production through PKC-induced activation of NOX, we also questioned whether PKC-mediated increase in kinase activation involved a redox-dependent mechanism. Results show that, while significant upregulation of p-IKKα/β and pSer32/36IκBα and a reciprocal downregulation of total IκBα was observed upon PMA treatment, there was only a moderate increase in intracellular O2•− production unlike in cells treated with DDC (Supplementary Figs. 2A–B). Notably, scavenging O2•− (Tiron) neither had a significant effect on PMA-induced p-IKKα/β and pSer32/36IκBα levels nor restored total IκBα (Supplementary Figs. 2C–D). Similarly, pre-treatment of cells with FeTPPS had no effect on PMA-induced p-IKKα/β and pSer32/36IκBα levels and was unable to restore total IκBα level (Supplementary Fig. 2E). These data appear to rule out the intermediary involvement of intracellular ROS/RNS in PKC-mediated induction of p-IKKα/β and pSer32/36IκBα as well as degradation of IκBα.

O2•− increases migration, invasion and survival of cancer cells via NF-κB activation

Since ROS have been shown to promote tumor progression and aberrant NF-κB activity drives tumor metastasis, we next examined the effect of an increase in intracellular O2•− on cancer cells’ migratory and invasive potentials. Interestingly, MDA-MB-231 triple negative breast cancer (TNBC) cell line possessed higher basal intracellular levels of O2•− and exhibited significantly stronger migratory and invasive capacities, compared to the ER+ luminal MCF-7 breast cancer cells (Supplementary Figs. 3A–C). In addition, an increase in intracellular O2•− by pharmacological inhibition of SOD1 activity or gene knockdown of SOD1
Fig. 4. Accumulation of IKK phosphorylation is a function of redox-inactivation of B56γ3-containing PP2A holoenzyme (PP2A

A. Western blot analysis showing p-IKKα/β, pSer32/36IKBα, IKKβ, Bcl-xL, XIAP and tubulin following 6-h treatment with increasing concentrations of okadaic acid (10⁻⁴⁰ nM) in U2OS cells

B. Western blot analysis showing p-IKKα/β, IKKβ, siB56α, siB56β, siB56γ, and siB56ε and tubulin 48-h after transfection with control siRNA or siB56α, siB56β, siB56γ, siB56δ, siB56ε, and siB56ε (100 nM) in U2OS cells (n = 2)

C. Western blot analysis showing p-IKKα/β, IKKβ, HA-Tag and tubulin following 4-h treatment with 100 μM DDC in U2OS cells transiently transfected with empty vector pCEP4 or HA-B56γ3 (2 μg) (n = 2)

D. Western blot analysis showing the immunoprecipitation of IKKβ and immunoblotting of B56γ following 4-h treatment with 100 μM DDC in U2OS cells (n = 2)

E. Western blot analysis showing the immunoprecipitation of IKKβ and immunoblotting of B56γ following 2-h treatment with 50 μM ONOO⁻ in U2OS cells (n = 2)

F. Western blot analysis showing the immunoprecipitation of B56γ and immunoblotting of p-IKKα/β following 4-h treatment with 100 μM DDC in U2OS cells transiently transfected with HA-B56γ3 (8 μg) (n = 2)

G. Proximity ligation assay (PLA) showing red foci (dots) indicating endogenous interaction between PP2A catalytic subunit (PP2Ac) and IKKβ following 4-h treatment with 100 or 400 μM DCC, 6-h treatment with 50 μM FeTPPS, 2-h treatment with 50 μM ONOO⁻ or 6-h treatment with 1 mM SNP, respectively, in U2OS cells. Random representative fields were imaged and the total number of foci in 100 random cells were counted (*** = p < 0.001)

H. Western blot analysis showing the immunoprecipitation of HA-B56γ3 and immunoblotting of 3-nitrotyrosine (3-NT) following 4-h treatment with 100 μM DDC in U2OS cells transiently transfected with HA-B56γ3 (n = 2).
Fig. 4. (continued).

significantly enhanced invasiveness and migration of MCF-7 cells (Fig. 5A–D). Notably, the enhanced cell migration and invasion potentials also correlated with increased p-IKKα/β and downregulation of total IκBα levels following DDC treatment (Supplementary Fig. 4A). Conversely, MDA-MB-231 cells treated with the O₂•- scavenger (Tiron) displayed a significant reduction in invasiveness, a mild reduction in migratory capacity (Fig. 5E–F) and lower p-IKKα/β and pSer32/36IκBα levels as compared to untreated control cells (Supplementary Fig. 4B), thereby reinforcing the critical involvement of NF-κB signaling in driving O₂•- induced increase in cell migration and invasion. Similarly, treatment with NOX inhibitor, diphenyleneiodonium (DPI), impeded the invasive and migratory capabilities of MDA-MB-231 cells (Fig. 5G–H). Furthermore, corroborating the results of the invasion assay, decrease in intracellular O₂•- significantly reduced matrix metalloproteinases (MMP) activity, one of the important drivers of cell invasion (Supplementary Figs. 5A–B).

Having shown that intracellular increase in O₂•- concurrently enhanced invasion and migration potentials and increased p-IKKα/β and pSer32/36IκBα levels, we further questioned whether this was an effect of NF-κB activation. Indeed, pre-incubation of MCF-7 cells with NF-κB inhibitor JSH-23 abrogated O₂•- -induced increase in cell invasion and migration (Fig. 6A–B). In addition, gene knockdown of IKKβ reverted DDC-induced upregulation of pSer32/36IκBα, rescued IκBα levels and functionally abolished the stimulatory effect of O₂•- on cell migration and invasion (Fig. 6C–E). It should also be pointed out that pre-treatment with JSH-23 blocked O₂•- -induced upregulation of Snail and Slug (Fig. 1F), transcription factors involved in priming EMT, which is critical for migration and metastasis.

Finally, corroborating past report [16], increased O₂•- levels via SOD1 inhibition significantly blunted the death-inducing effects of DNA-damaging agents, doxorubicin and etoposide, which correlated with increased NF-κB signaling and upregulation of its downstream targets Bcl-xL and XIAP (Supplementary Figs. 6A–C), thus validating our previous work linking elevated intracellular O₂•- to apoptosis resistance in cancer cells [12,15–17]. Collectively, these findings testify to the intermediary role of NF-κB activation in the positive regulation of cell invasion, migration and survival upon an increase in intracellular O₂•-.

SOD1 downregulation in breast cancer cells correlates with increased p-IKKα/β levels and tumor invasiveness

So far we showed that a pro-oxidant milieu resulting from SOD1 inhibition or downregulation correlated with increased NF-κB activation and acquisition of an invasive/migratory phenotype. Intriguingly, we found that invasive MDA-MB-231 cells exhibited significantly lower SOD1 level (H-score: 200) had high p-IKKα/β whereas tissues with high SOD1 level (H-score: ≥200) expressed low p-IKKα/β (Fig. 7B–C). However, due to the small sample size, there was no significant correlation between low SOD1 level to low IκBα, or vice versa (Fig. 7D). These data with clinical samples, albeit in a small sample size, provide clinical proof-of-concept to our in vitro findings indicating that low SOD1 level...
Fig. 5. Intracellular O_2^{-} stimulates cancer cell invasion and migration

A. 24-hour Matrigel invasion assay following 6-h treatment with 100 or 400 μM DDC in MCF-7 cells. Invaded cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in invasion of the average number of cells of 4 random fields. (* = $p < 0.05$, $^{**} = p < 0.001$)

B. 24-hour Boyden chamber migration assay following 6-h treatment with 100 or 400 μM DDC in MCF-7 cells. Migrated cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents the percentage change in migration of the average number of cells of 4 random fields (* = $p < 0.05$, $^{**} = p < 0.01$)

C. 24-hour Matrigel invasion assay following 48-h transfection with control siRNA or siSOD1 (100 nM) in MCF-7 cells. Invaded cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents the percentage change in invasion of the average number of cells of 4 random fields ($^{**} = p < 0.001$)

D. 24-hour Boyden chamber migration assay following 48-h transfection with control siRNA or siSOD1 (100 nM) in MCF-7 cells. Migrated cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents the percentage change in migration of the average number of cells of 4 random fields (* = $p < 0.05$, $^{**} = p < 0.01$)

E. 24-hour Matrigel invasion assay following 6-h treatment with 5 mM Tiron in MDA-MB-231 cells. Invaded cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in invasion of the average number of cells of 4 random fields (* = $p < 0.05$)

F. 24-hour Boyden chamber migration assay following 6-h treatment with 5 mM Tiron in MDA-MB-231 cells. Migrated cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in migration of the average number of cells of 4 random fields ($^{**} = p < 0.01$)

G. 24-hour Matrigel invasion assay following 12-h treatment with 5 μM DPI in MDA-MB-231 cells. Invaded cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in invasion of the average number of cells of 4 random fields (* = $p < 0.05$)

H. 24-hour Boyden chamber migration assay following 12-h treatment with 5 μM DPI in MDA-MB-231 cells. Migrated cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in migration of the average number of cells of 4 random fields (* = $p < 0.05$).
increase in intracellular O_2^-. It is also noteworthy that, under states of low SOD expression, an increase in O_2^- could affect cell survival, transformation and metastasis in distinctly different manners [33]. Coupled to that is the distinctly increasing or decrease in intracellular ROS could affect cell survival, transformation and metastasis in distinctly different manners [33]. Coupled to that is the distinctly different readouts of cancer cell fate and state, depending upon the order of magnitude faster than the dismutation of O_2^-. As a matter of fact, the latter reaction is an ONOO$^-$ interlinked with pathological sequelae has been demonstrated (elegantly reviewed in Ref. [28]).

Peroxynitrite mediates O_2^--induced $\text{p-IKK}\alpha/\beta$ and IkBα degradation to trigger NF-κB activation

The observed differences in the effect(s) that an altered redox milieu exert on cancer cell survival and metastasis are also influenced by the state of the intracellular anti-oxidant circuitry, often deregulated during transformation and again upon the acquisition of metastatic potential. To that end, the master transcription factor NF-κB plays a critical role in the crosstalk between cellular redox state and pro-carcinogenic processes. NF-κB is a redox-sensitive protein complex that regulates an extensive list of genes involved in anti-oxidant responses, cell fate and state transition and carcinogenesis [20,36]. Although several studies, with the majority examining the effects of increased intracellular H_2O_2, showed that ROS could modulate NF-κB, it has been especially challenging to characterize the effects of ROS due to conflicting observations reported by various groups [36–40]. This is, in part, due to the fact that ROS could influence NF-κB signaling at multiple points—through direct regulation of NF-κB heterodimers or by indirect regulation of upstream components including IKK and IkB-α and often in opposing and context-dependent manners i.e. increased ROS levels could activate or repress NF-κB activity [18,41]. Results presented here highlight a novel mechanism of redox-dependent activation of NF-κB as it relates to cancer cell invasion, migration and survival. An intracellular redox milieu driven by an increase in O_2^--induces post-translation modification of IKK(β), specifically upregulation of p-IKKα/β, leading to downstream IkB-α phosphorylation and degradation, which could be inhibited by the decomposition of ONOO$^-$, inducing post-translation modification of IKK(β), specifically upregulation of p-IKKα/β, leading to downstream IkB-α phosphorylation and degradation, which could be inhibited by the decomposition of ONOO$^-$, leading to downstream IkB-α phosphorylation and degradation, which could be inhibited by the decomposition of ONOO$^-$, leading to downstream IkB-α phosphorylation and degradation, which could be inhibited by the decomposition of ONOO$^-$. While ROS-mediated effects on NF-κB have been extensively reported, the effects of RNS (reactive nitrogen species) still remain less well-understood with distinctly opposing activities attributed to NO (suppressing) and ONOO$^-$ (activating) [42]. Moreover, the effect of ONOO$^-$ has been mostly associated with activation of p38 MAPK-dependent phosphorylation and/or nitration of IkB-α [43]. In comparison, our work provides a novel kinase-independent effect of ONOO$^-$ in mediating the sustained phosphorylation of IKK and IkB to promote NF-κB activation, thus unraveling another potential node in the oncogenic signaling promoted by O_2^--driven redox milieu.

Redox-inactivation of PP2A$_{B56\gamma}$ contributes to increased p-IKKα/β and p-IkBα

The sustained phosphorylation of IKK and IkBα described in this report is not a function of a direct activation of a kinase but via mechanisms that disrupt the regulation of the phosphorylation sites. In this regard, PKC-mediated p-IKKα/β [44] does not seem to involve the intermediary role of cellular ROS; PMA-induced a dose-dependent increase in p-IKKα/β and pSer32/36IkBα and inhibitors of O_2^- or ONOO$^-$ neither rescued phosphorylation nor restored total IkBα levels. Based on
Y.H. Yee et al.
Fig. 6. O$_2^*$-induced migration and invasion potential is a function of NF-κB activation

A. 24-hour Matrigel invasion assay following 12-h pre-treatment with 25 μM JSH-23 and subsequent 4-h treatment with 100 μM DDC in MCF-7 cells. Invaded cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in invasion of the average number of cells of 4 random fields (n = 2)

B. 24-hour Boyden chamber migration assay following 12-h pre-treatment with 25 μM JSH-23 and subsequent 4-h treatment with 100 μM DDC in MCF-7 cells. Migrated cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in migration of the average number of cells of 4 random fields (n = 2)

C. Western blot analysis showing p-IKKα/β, pSer32/36IkBa, IkKβ, IkBa, Snail and tubulin following 48-h transfection with control siRNA or siIKKβ in MCF-7 cells (n = 2)

D. 24-hour Matrigel invasion assay following 48-h transfection with control siRNA or siIKKβ (100 nM) in MCF-7 cells. Invaded cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in invasion of the average number of cells of 4 random fields. (n = 2)

E. 24-hour Boyden chamber migration assay following 48-h transfection with control siRNA or siIKKβ (100 nM) in MCF-7 cells. Migrated cells were stained and cells from 4 random fields were counted using Fiji Image J software. The graph represents percentage change in migration of the average number of cells of 4 random fields (n = 2).

Fig. 7. SOD1 expression negatively correlates with p-IKKα/β levels and tumor invasiveness

A. Protein expression levels of SOD1 in MCF-7 and MDA-MB-231 cells. Whole cell lysates were collected and immunoblotted for SOD1, p-IKKα/β, pSer32/36IkBa, IkKβ, IkBa and tubulin (n = 2)

B. Immunohistochemistry (IHC) staining of SOD1 and p-IKKα/β levels in patient-derived breast carcinoma tissue microarray. Representative sample of tissues with low SOD1/high p-IKKα/β levels (patient #1; top panel) and high SOD1/low p-IKKα/β levels (patient #39; bottom panel)

C. H-scores of p-IKK in low SOD1 [H < 200] (n = 9) and high SOD1 [H-score ≥ 200] (n = 16) tissue samples (* = p < 0.05)

D. H-scores of SOD1, p-IKKα/β and IkBa in low SOD1 [H < 200] and high SOD1 [H-score ≥ 200] tissue samples.
these results, it seems plausible that PMA-induced increase in O$_2^*$ in the presence of normal SOD activity favors H$_2$O$_2$, rather than ONOO$^-$ generation, and as such the difference in the mechanism of NF-κB activation. In contrast, work reported here highlights an alternative pathway for the sustained phosphorylation involving inactivation of the phosphatase regulating serine phosphorylation(s) on IKK pathway for the sustained phosphorylation involving inactivation. In contrast, work reported here highlights an alternative generation, and as such the difference in the mechanism of NF-κB activation rescued the effect on cell invasion and migration, as well as NF-κB-driven redox milieu in cancer cells' invasive and migratory capacity [34,52,53].

A recent study has also linked increased cell proliferation with elevated O$_2^*$ levels, albeit accompanied by higher SOD1 expression in ErbB2-driven primary mammary tumors [54]. Notably, inhibiting NF-κB activation rescued the effect on cell invasion and migration, as well as cell survival, which provides testimony to an intricate crosstalk between the three nodes, namely a permissive redox environment, PP2A deregulation and subsequent NF-κB nuclear localization and activation of its transcriptional targets. This is, indeed, distinctly different from the reported effect of ONOO$^-$ on NF-κB activation via nitrative modification of the IkBα sub-unit [43].

Phenotypic outcome and therapeutic implications

Considering the role that unregulated NF-κB activation plays in the setting of chronic inflammation and several key processes associated with carcinogenesis and/or its progression [20,51], the stimulatory effect of an increase in intracellular O$_2^*$ with carcinogenesis and/or its progression [20,51], the stimulatory effect of an increase in intracellular O$_2^*$ provides yet another evidence that specific redox milieu facilitates oncogenic signaling. Under conditions of SOD1 inhibition, the propensity to generate ONOO$^-$ and its downstream effect(s) on various cell survival and/or oncogenic pathways have been reported by our group [15-17]. Notably, a recent study demonstrated that cellular ROS levels in pancreatic ductal adenocarcinoma (PDAC) cells are dynamically and delicately controlled to promote early carcinogenesis as well as metastasis [33]. Deregulation of the redox control upon deletion of the p53-target antioxidant protein, TIGAR, enhanced overall survival and metastatic potential of PDAC cells [33]. Similarly, loss of SOD3 (similar to our model of SOD1 inhibition) was previously shown to associate with increased aggressiveness in a model of pancreatic cancer [52]. Corroborating these findings, we provide evidence to link constitutively higher intracellular ROS (specifically O$_2^*$) and lower SOD1 expression to the invasive nature of TNBC MDA-MB-231 sub-units, compared to the luminal MCF-7 cells. Moreover, a switch to a more aggressive (invasive and migratory) phenotype was obtained upon affecting an increase in intracellular O$_2^*$ in the luminal MCF-7 cells, thus corroborating the involvement of a O$_2^*$-driven redox milieu in cancer cells' invasive and migratory capacity [34,52,53].

Human U2-OS, MCF-7 and MDA-MB-231 were purchased from ATCC. Human U2-OS human osteosarcoma cells were cultured in McCoy’s 5A (1% l-Glutamine, 1% penicillin/streptomycin and 10% FBS). Human MCF-7 breast carcinoma cells were maintained in DMEM/High Glucose (1% l- Glutamine, 1% penicillin/streptomycin and 10% FBS) and human MDA-MB-231 breast carcinoma cells were maintained in RPMI-1640 (1% l-Glutamine, 1% penicillin/streptomycin and 10% FBS).

Materials and methods

Cell lines and culture conditions

Rabbit antibodies for the detection of Phospho-IKKα/β (Ser176/180), IkBα, Snaill, Slug, XIAP, RelB, p52, Tubulin and HA-tag as well as mouse antibodies against Phospho-IκBα (Ser32/36) and HA-tag were purchased from Cell Signaling Technology (Massachusetts, USA). Mouse antibodies specific for IκBα, IκBβ, and SOD1 were purchased from BD Pharmingen. Rabbit antibodies against NF-κB p65 as well as mouse antibodies against NF-κB p50, Bcl-2, and PP2A-B56α, B56β, B56γ, B56ε were purchased from Santa Cruz Biotechnology (Texas, USA). Rabbit antibody for the detection of SOD2 as well as mouse antibodies against PP2A-C subunit (clone 1D6) and 3-nitrotyrosine were purchased from Merck Millipore (Massachusetts, USA). Rabbit antibody against IκKα was purchased from Invitrogen Thermo Fisher Scientific (Massachusetts, USA) and rabbit antibody against PP2A-C subunit was purchased from Proteintech Biotechnology (Illinois, USA). Rabbit antibody against SOD1 was purchased from Sigma Aldrich (Missouri, USA). Diethylidithiocarbamate (DDC), 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron), sodium nitroprusside (SNP), ammonium...
tetraethylthiomylobate (ATN), phorbol 12-myristate 13-acetate (PMA), N, N'-Dimethyl-9,9'-biacridinium dinitrate (Lucigenin), were all purchased from Sigma Aldrich (Missouri, USA). Okadaic acid, bisindolylmaleimide IV, 5,10,15,20-Tetrakis (4-sulfoanilophenyl) porphyrinatoiron (III) Chloride (FeTPPS) were purchased from Merck Millipore (Massachusetts, USA). Peroxynitrite (ONOO-) was purchased from Addgene. Scrambled siRNA and siRNAs targeting human PP2A-B56\textsubscript{δ} (J-0088364-09 and J-0088364-11) were purchased from Dharmacon Technologies. pCEP4 empty vector was a generous gift from Professor David Marc Virshup from DUKE-NUS GMS, Singapore. NF-κB luciferase reporter vector and renilla luciferase vector were generous gifts from Professor Pieter Eichhorn from Curtin University, Australia. pCEP4-HA-B56\textsubscript{ε} (#14535) was purchased from Addgene. Scrambled siRNA and siRNAs targeting human SOD1 (J-0088364-09 and J-0088364-11) were purchased from Dharmacon Technologies. IKK\textbeta\textgamma siRNA (#VHS40301) was purchased from Invitrogen Life Technologies (Massachusetts, USA). The respective siRNAs targeting human PP2A-B56\textalpha (#SI02225839), B56\textbeta (#SI02659034), B56\textgamma (#SI02663626), B56\textdelta (#SI02653350) and B56\textepsilon (#SI02659041) were purchased from Qiagen.

Measurement of intracellular superoxide level

Intracellular O2-- was determined independently either by a lucigenin-based chemiluminesence assay or by flow cytometry using O2---sensitive fluorescent probe, dihydroethidium (DHE) (Thermo Fisher Scientific, Massachusetts, USA). For lucigenin-based assay, harvested cells were washed with 1X PBS and lysed in 450 μl of ATP lysis buffer (Sigma Aldrich, Missouri, USA). Upon cell lysis, lysates were immediately aspirated for chemiluminescence monitoring using the Berthold Sirius Luminesizer (Bad Wildbad, Germany) at a rate of 0.6 s interval over 14.4 s. The luminescence emission was measured and recorded as relative light units (RLU). The average of RLUs was then calculated and subjected to normalization by respective sample protein concentration, determined by Coomassie Plus protein assay reagent (Pierce Biotechnology, Massachusetts, USA).

For flow cytometry-based detection of O2-- harvested cells were resuspended with plain medium containing 5 μM DHE and incubated for 15 min at 37 °C. Stained cells were then analysed by CytoFLEX LX Flow Cytometer (Beckman Coulter, California, USA) with excitation wavelength set at 595 nm and cell counter at 10,000 events. Subsequent data analysis was done using the CytExpert software.

Co-immunoprecipitation and western blot analysis

Cells harvested were lysed with ice-cold co-immunoprecipitation (co-IP) lysis buffer (50 mM Tris, pH 7.6, 150 mM NaCl, 0.5% Nonidet-P-40, 1 mM EDTA, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 20 μg/ml pepstatin A, 1 mM NaF, 1 mM Na\textsubscript{3}VO\textsubscript{4} and 1 mM PMSF). 1.5 mg of cell lysate was pre-cleared using Protein-A agarose beads for an hour before overnight incubation with 3 μg of rabbit anti-IKK\textgamma antibody. Protein A-agarose beads were then added to the mixture for 6 h to pull down the immune-complexes. Following which, protein A-agarose beads were washed thrice with co-IP lysis buffer without Nonidet-P-40. Protein samples mixed with Laemmli loading buffer were heated at 100 °C for 10 min. Samples and molecular weight protein markers (Bio-Rad, California, USA) were then subjected to 9% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Resolved proteins were transferred onto a polyvinyl difluoride (PVDF) membrane using the wet transfer method. Membranes were incubated with blocking buffer for an hour before overnight incubation with antibodies specific for the protein of interest. Following which, membranes were washed thrice with TBS/Tween-20 (TBST) and incubated with the appropriate secondary antibody in TBST containing 1% fat-free milk on shaker for 1 h. Membranes were subsequently washed thrice with TBST before incubation with EZ-ECL chemiluminescent substrate (Biological Industries, Beit HaEmek, Israel). Protein intensities were detected and visualized using the iBright FL1000 imaging system (Invitrogen Thermo Fisher Scientific, Massachusetts, USA).

Nuclear-cytoplasmic fractionation

Cells were harvested and pelleted down following treatment.
Stepwise lysis of cells and centrifugal isolation of nuclear and cytoplasmic protein fractions was performed according to manufacturer’s recommendation using the NE-PER Nuclear and Cytoplasmic Extraction Kit (Cat.#78835; Thermo Fisher Scientific, Massachusetts, USA).

Proximity ligation assay (PLA)

PLA was performed using the Duolink® In-Situ Red Starter Kit Mouse/Rabbit purchased from Sigma Aldrich (Missouri, USA). Treated cells on coverslips were fixed with 4% paraformaldehyde and permeabilized using 0.2% Triton-X. Apart from overnight primary antibody incubation, subsequent steps were performed according to manufacturer’s protocol. Prepared samples were subsequently imaged for red signals using the Olympus Fluoview FV1000 confocal microscope (Tokyo, Japan).

Trans-well cell migration assay

Treated cells were harvested and resuspended in 1% FBS medium. Approximately 6×10^4 cells were seeded in a Boyden chamber insert (Corning, New York, USA) and suspended over a well containing medium supplemented with 1% fetal bovine serum (FBS) and 10% FBS. Following 24-h incubation, non-migratory cells were removed from the upper surface of the chamber insert using a cotton tip swab moistened with medium. Migrated cells on the lower surface of the chamber insert were fixed with methanol and stained using crystal violet solution. The migrated cells were visualized and images were captured using the Olympus IX71 microscope (Tokyo, Japan). Cell counting was performed on four random microscope fields per sample using the Fiji Image J software.

Matrigel cell invasion assay

Treated cells were harvested and resuspended in 1% FBS medium. Approximately 3×10^5 cells were seeded in a Matrigel-coated chamber insert (Corning, New York, USA) suspended over a well containing medium supplemented with 1% fetal bovine serum (FBS) and 10% FBS. Following 24-h incubation, non-invasing cells were removed from the upper surface of the chamber insert using a cotton tip swab moistened with medium. Invaded cells on the lower surface of the chamber insert were fixed with methanol and stained using crystal violet solution. The invaded cells were visualized and images were captured using the Olympus IX71 microscope (Tokyo, Japan). Cell counting was performed on four random microscope fields per sample using the Fiji Image J software.

Transcription factor binding assay

Harvested cells were subjected to nuclear-cytoplasmic fractionation as per the abovementioned protocol. Isolated nuclear protein fractions were then applied to the ELISA plate provided in the kit and subsequent steps were performed according to manufacturer’s instructions to assess NF-κB p65 binding activity (AbCam, Cat. #133112). The final absorbance readout was measured at 450 nm using the Spectrafluor Plus spectrophotometer (TECAN, Männedorf, Switzerland).

Dual-luciferase reporter assay

Cells transfected with NF-κB luciferase reporter vector and renilla luciferase vector were treated, 24-h post transfection, with the intended reagents in a triplicate format. Treated cells were then harvested per the protocol provided by the manufacturer (Promega, Cat. #E1910). The luminescence emission was detected and measured using the Varioskan LUX Multimode Microplate Reader (Thermo Fisher Scientific, Massachusetts, USA). The respective firefly and renilla luciferase luminescence activities were recorded as relative luminescence units (RLU). Fold change in activity was subsequently calculated after subtracting the reporter activity from the negative control.

Matrix metalloproteinase (MMP) activity assay

Cells were subjected to intended treatments and supernatant was aspirated 24-h post treatment and transferred to a black 96-well optical-bottom plate. Matrix metalloproteinases (MMP) activity was then detected using a MMP activity kit (Cat. #112146) purchased from Abcam (Cambridge, United Kingdom).

MTT cell viability assay

Harvested cells post-treatment were transferred to a 96-well plate in a triplicate format and mixed with 4 mg/ml MTT (Sigma Aldrich, Missouri, USA). The mixture was incubated for an hour at 37 °C before centrifugation at 4200 rpm for 25 min. Supernatant was then discarded and the resulting formazan crystals were dissolved in a solution containing DMSO and Sorenson’s glycine buffer (0.1 M glycine, 0.1 M NaCl, pH 10.5) for 30 min on a shaker. Cell viability was subsequently assessed by quantitating the resultant mixture at an absorbance wavelength of 570 nm using the Spectrafluor Plus spectrophotometer (TECAN, Männedorf, Switzerland).

Immunohistochemistry

Formalin-fixed, paraffin-embedded (FFPE) breast tissues from anonymised patients spotted as tissue microarray (TMA) (#30212) was obtained from Novus Biologicals (Colorado, USA). Immunohistochemistry staining of FFPE sections was performed using the BOND-MAX Automated Immunohistochemistry Biosystem (Leica Biosystems, Wetzlar, Germany) according to the following protocol. Briefly, tissues were deparaffinised and subjected to antigen retrieval and peroxidase blocking. Tissues were then washed and incubated with primary antibody for 8 min. Following which, tissues were washed and incubated with polymer for 8 min and DAB for 10 min prior to hematoxylin staining for 10 min. Images of the sections were photographed at 20X magnification. The cores which were missing or insufficient for scoring were excluded from the analysis. H scores were derived by multiplying the intensity grades (0: no expression; +1: mild; +2: moderate, +3: strong) by the extent of expression (in percentage). The cut-off for the low and high groups was determined per the median of the normal matched tissues.

Statistical analysis

Results were presented as mean ± SD. One-way ANOVA was performed in cases where there were three or more comparisons while Student t-test (two-tailed) was employed for pairwise comparisons. Experiments were repeated three times unless otherwise stated. Statistical significance was set at $P < 0.05$.

Declaration

Several images included in the manuscript have been adapted from the thesis titled, ‘Superoxide-mediated activation of NF-κB signalling via redox-mediated PP2A inactivation’, of Yee Yi Hui (first author) for the fulfilment of the degree of Doctor of Philosophy at National University of Singapore (NUS).

Declaration of competing interest

The authors declare no potential conflicts of interest.

Acknowledgements

The authors wish to thank David M. Virshup (DUKE-NUS, Singapore)
for the generous gift of anti-B56α and B56βi antibodies as well as the pCEP4 empty vector. We thank Pieter Eichhorn (Curtin University, Perth, Australia) for providing us the NF-κB luciferase reporter vector and renilla luciferase vector. The authors also extend their gratitude to Supriya Srivastava and Jie Qing Eu for providing technical support to this study, and Deepika Raman for her thorough and constructive feedback on the manuscript. This work is supported by grants from National Medical Research Council (NMRC) (NMRC/CIRG/1433/2015) and Ministry of Education (MOE2013-T2-2-130), Singapore to SP as well as grants from NMRC (NMRC/CSA-SI/0006/2016), National Research Foundation (NRF) Singapore, and Ministry of Education, Singapore, under its Research Centres of Excellence initiatives to GBC.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2020.101834.

List of antibodies (species, company and catalogue no, dilution and application).

Primary Antibody	Company	Catalogue no.	Dilution	Application
Phospho-IKKα/β (Ser176/180)	Cell Signalling Technology	#2687	1:1000	WB
Phospho-IκBα (Ser32/36)	Cell Signalling Technology	#9246	1:1000	WB
IκBα	Cell Signalling Technology	#9242	1:1000	WB
Nεl	Cell Signalling Technology	#3879	1:1000	WB
Slug	Cell Signalling Technology	#9585	1:1000	WB
XIAP	Cell Signalling Technology	#2045	1:1000	WB
RelB	Cell Signalling Technology	#4954	1:1000	WB
p100/p52	Cell Signalling Technology	#4882	1:1000	WB
Tubulin	Cell Signalling Technology	#2125	1:1000	WB
HA-Tag	Cell Signalling Technology	#3724	1:1000	WB
HA-Tag	Cell Signalling Technology	#2367	1:1000	WB
PARP	BD Pharmingen	611039	1:1000	WB
IKKγ	BD Pharmingen	51–8120 GR	1:1000	WB
SOD1	BD Pharmingen	556369	1:1000	WB
NF-kB p65	Santa Cruz Biotechnology	SC-31451	1:500	WB
NF-kB p50	Santa Cruz Biotechnology	SC-8414	1:500	WB
Bcl-xL	Santa Cruz Biotechnology	SC-8392	1:500	WB
PPAR-β/δ	Gift from DMV	NA	1:500	WB
PPAR-β/δ	Gift from DMV	NA	1:500	WB
PPAR-β/δ	Santa Cruz Biotechnology	SC-374379	1:500	WB
PPAR-β/δ	Santa Cruz Biotechnology	SC-81605	1:500	WB
PPAR-β/δ	Santa Cruz Biotechnology	SC-376176	1:500	WB
PPAR-α	Merck Millipore	05–421	1:1000	WB
3-nitrotyrosine	Merck Millipore	05–233	1:1000	WB
IKKα	Invitrogen Thermo Fisher Scientific	PA1-32139	3 μg	IP
IKKα	ProteinTech	13482-1-AP	3 μg	IP
IKKβ	ProteinTech	51064-2-AP	3 μg	IP
HA-Tag	Santa Cruz	SC-8014	1:100	PLA
PPAR-α	Cell Signalling Technology	#2038	1:100	PLA
SOD1	Sigma Aldrich	PA001401	1:2000	IHC

Cell Signalling Technology (Massachusetts, USA), BD Pharmingen (California, USA), Santa Cruz Biotechnology (Texas, USA), Millipore (Massachusetts, USA), Proteintech (Illinois, USA), Invitrogen Thermo Fisher Scientific (Massachusetts, USA).

Rabbit primary antibodies against B56α and B56β were a generous gift from Prof David Virshup (Duke-NUS Medical School, Singapore). Phospho-IκKα/β (Ser176/180) antibody recognizes IKKα only when phosphorylated at Ser177/181.

References

[1] S. Du, et al., NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFRI, Cell Death Dis. 9 (10) (2018) 948.
[2] S. Lim, M.-V. Clément, Phosphorylation of the survival kinase Akt by superoxide is dependent on an ascorbate-reversible oxidation of PTEN, Free Radic. Biol. Med. 42 (8) (2007) 1178–1192.
[3] S.D. Lim, et al., Increased Nox1 and hydrogen peroxide in prostate cancer, Prostate 62 (2) (2005) 200–207.
[4] J.N. Moloney, T.G. Cotter, ROS signalling in the biology of cancer, Semin. Cell Dev. Biol. 80 (2018) 50–64.
[5] S. Pervaiz, et al., Activation of the RacGTPase inhibits apoptosis in human tumor cells, Oncogene 20 (43) (2001) 6263–6266.
[6] S. Pervaiz, M.V. Clément, Superoxide anion: oncogenic reactive oxygen species? Int. J. Biochem. Cell Biol. 39 (7–8) (2007) 1297–1304.
[7] M. Schieder, Navdeep S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol. 24 (10) (2014) R453–R462.
[8] P. Stern, Rras, ROS and the initiation of pancreatic cancer, Small GTPases 8 (1) (2017) 38–42.
[9] Z.X. Chen, S. Pervaiz, Bel-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells, Cell Death Differ. 14 (9) (2007) 1617–1627.
[10] Z.X. Chen, S. Pervaiz, Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bel-2, Cell Death Differ. 17 (3) (2010) 408–420.
[11] M.V. Clement, J.L. Hirpara, S. Pervaiz, Decrease in intracellular superoxide sensitizes Bcl-2-overexpressing tumor cells to receptor and drug-induced apoptosis independent of the mitochondria, Cell Death Differ. 10 (11) (2003) 1273–1285.
[12] S.J.F. Chong, et al., A feedforward relationship between active Rac1 and phosphorylated Bcl-2 is critical for sustaining Bcl-2 phosphorylation and promoting cancer progression, Canc. Lett. 457 (2019) 151–167.
[13] R. Velazhahan, et al., The small GTPase Rac1 is a novel binding partner of Bcl-2 and stabilizes its ant apoptotic activity, Blood 117 (23) (2011) 6214–6226.
[14] S.J.F. Chong, I.C.C. Low, S. Pervaiz, Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator, Mitochondrion 19 (2014) 39–48.
[15] J.L. Hirpara, et al., Superoxide induced inhibition of death receptor signaling is mediated via induced expression of apoptosis inhibitory protein cFLIP, Redox Biology 30 (2020), 101403.
[16] D. Raman, et al., Peroxynitrite promotes serine-62 phosphorylation-dependent stabilization of the oncoprotein c-Myc, Redox Biology 34 (2020), 101587.
H. Kamata, et al., Hydrogen peroxide activates IκB.

S. Bartesaghi, R. Radi, Fundamentals on the biochemistry of peroxynitrite and

S.Y. Loo, et al., Manganese superoxide dismutase expression regulates the switch

E.C. Cheung, et al., Dynamic ROS control by TIGAR regulates the initiation and

Y. Kabe, K. Ando, S. Hirao, et al., Redox regulation of NF-κB activation: from

A. Karlsson, J.B. Nixon, L.C. McPhail, Phorbol myristate acetate induces neutrophil

K. Taniguchi, M. Karin, NF-κB, inflammation, immunity and cancer: coming of

F. Christian, E.L. Smith, R.J. Carmody, The regulation of NF-κB subunits by

A. Karlsson, J.B. Nixon, L.C. McPhail, Phorbol ester-stimulated NF-κB dependent transcription: roles for isoforms of novel protein kinase C, Cell, Signal. 20 (7) (2008) 1338–1348.

A. Karlsson, J.B. Nixon, L.C. McPhail, Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase, J. Leukoc. Biol. 67 (3) (2000) 324–330.

H. Yang, et al., The role of cellular reactive oxygen species in cancer chemotherapy, J. Exp. Clin. Canc. Res. - CR (Clin. Res.) 37 (1) (2018) 266, 266.

E.C. Cheung, et al., Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer, Canc. Cell 37 (2) (2020) 168–182.

S.Y. Loo, et al., Manganese superoxide dismutase expression regulates the switch between an epithelial and a mesenchymal-like phenotype in breast carcinoma, Antioxidants Redox Signal. 25 (6) (2016) 283–299.

S. Bartesaghi, R. Radi, Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration, Redox Biology 14 (2018) 618–625.

L. Föhler, et al., Redox regulation of NF-κB activation, Free Radic. Biol. Med. 22 (6) (1997) 1115–1126.

H. Kamata, et al., Hydrogen peroxide activates IκB kinases through phosphorylation of serine residues in the activation loops, F ERBS (Fed. Eur. Biochem. Soc.) Lett. 519 (1) (2002) 231–237.

V. Oliveira-Marques, et al., Role of hydrogen peroxide in NF-κB activation: from inducer to modulator, Antioxidants Redox Signal. 11 (9) (2009) 2223–2243.

R. Schreck, P. Rieber, P.A. Baeuerle, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1, EMBO J. 10 (8) (1991) 2247–2258.

Y. Kobe, K. Ando, S. Hirao, et al., Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus, Antioxidant Redox Signal 7 (3–4) (2005) 395–403.

M.J. Morgan, Z.-g. Liu, Crosstalk of reactive oxygen species and NF-κB signaling, Cell Res. 21 (1) (2011) 103–115.

Y. Hattori, K. Kasai, S.S. Gross, NO suppresses while peroxynitrite sustains NF-κB: a paradigm to rationalize cytoprotective and cytotoxic actions attributed to NO, Cardiovasc. Res. 63 (1) (2004) 31–40.

E. Gochman, J. Mahajna, A.Z. Reznick, NF-κB activation by peroxynitrite through IkappaBalpha-dependent phosphorylation versus nitration in colon cancer cells, Anticancer Res. 31 (5) (2011) 1607–1617.

S.-W. Kim, et al., Protein kinase C-associated kinase regulates NF-κB activation through inducing IKK activation, Int. J. Oncol. 43 (4) (2014) 1707–1714.

M. Karin, How NF-κB is activated: the role of the IkappaB kinase (IKK) complex, Oncogene 18 (18) (1999) 6867–6874.

M. Mumbay, PP2A: unveiling a related tumor suppressor, Cell 130 (1) (2007) 21–40.

E. Kawahara, et al., Dynamic regulation of extracellular signal-regulated kinase (ERK) by protein phosphatase 2A regulatory subunit B56δ in nuclei induces cell migration, PLoS One 8 (5) (2013) e63792, e63792.

P.P. Ruvolo, The broken “Off” switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance, BBA Clinical 6 (2016) 25832-25848.

M.L. Gomez, et al., Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits, Proc. Natl. Acad. Sci. Unit. States Am. 99 (7) (2002) 4221.

Q. Zhang, M.J. Lenardo, D. Baltimore, 30 Years of NF-κB: a blossoming of relevance to human pathology, Cell 168 (1–2) (2017) 37–57.

B.R. O’Leary, et al., Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma, Clin. Canc. Res. 21 (7) (2015) 1741–1751.

L. Tochhawng, et al., Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion, Oncotarget 7 (33) (2016) 52832-52848.

M.L. Gomez, et al., SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation, Oncogene 38 (29) (2019) 5751–5765.

S.E. Taylor, et al., The highly recurrent PP2A alpha-subunit mutation P179R alters protein structure and impairs PP2A enzyme function to promote endometrial tumorigenesis, Canc. Res. 79 (16) (2019) 4242–4257.

C.M. O’Connor, et al., Therapeutic targeting of PP2A, Int. J. Biochem. Cell Biol. 96 (2018) 182–193.

J. Sanguinetti, et al., Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth, J. Clin. Invest. 127 (6) (2017) 2081–2090.

J.J. Oaks, et al., Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies, Blood 122 (11) (2013) 1923–1934.

S.J.F. Cheng, K. Isokan, J.X.H. Lai, et al., Serine-70 phosphorylated Bcl-2 prevents oxidative stress induced DNA damage by modulating the mitochondrial redox metabolism, Nucleic Acid Research 48 (22) (2020) 12727–12745.

K.A. Mapuskar, et al., Utilizing superoxide dismutase mimetics to enhance radiation therapy response while protecting normal tissues, Semin. Radiat. Oncol. 29 (1) (2019) 72–80.

K.H. Olson, et al., Manganese porphyrin-based SOD mimetics produce polysulfides from hydrogen sulfide, Antioxidants 8 (12) (2019).

I. Batasin-Haberle, et al., Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTe2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy, Free Radic. Biol. Med. 46 (2) (2009) 192–201.