Effect of leaf water extracts of four Asteraceae alien invasive plants on germination performance of *Lactuca sativa* L. under acid deposition

Huiyuan Cheng · Shu Wang · Mei Wei · Youli Yu · Congyan Wang

Received: 2 December 2020 / Accepted: 1 February 2021 / Published online: 19 February 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract Allelopathy of alien invasive plants (AIP) on plant germination performance is essential for their successful invasion. However, the allelopathy of AIP may be reformed or even strengthened under acid deposition. AIP in Asteraceae covers the uppermost number of AIP species at the family level presently in China. It is necessary to estimate the allelopathy of multiple Asteraceae AIP under acid deposition to address the mechanism driving their successful invasion, especially under acid deposition. However, research in this area is very restricted presently. This study purposes to estimate the allelopathy of four Asteraceae AIP, i.e., *Conyza canadensis* L. Cronq., *Erigeron annuus* (L.) Pers., *Aster subulatus* Michx., and *Bidens pilosa* L., on germination performance of the cultivated Asteraceae plant species *Lactuca sativa* L. which is sensitive to allelochemicals under acid deposition with different levels of acidity. Of the four Asteraceae AIP, *C. canadensis*, *E. annuus*, and *B. pilosa* create noticeable allelopathy on germination performance of *L. sativa*. The allelopathy of the four Asteraceae AIP decreases in the following order: *E. annuus*, *C. canadensis*, *B. pilosa*, and *A. subulatus*. Acid deposition with a low level of acidity reduces the allelopathy of *C. canadensis*, *E. annuus*, and *B. pilosa*. Inversely, acid deposition with a high level of acidity elevates the allelopathy of *B. pilosa*. The progressively growing level of acid deposition with high acidity may facilitate the invasion process of *B. pilosa* via the improved level of allelopathy.

Keywords Allelochemicals · Germination performance · Growth fitness · Invasion process · *Lactuca sativa* L.

Introduction

Currently, alien invasive plants (AIP) cause a significant effect on the ecosystem, especially the biodiversity and stability of plant community (Kieltyk and Delimat 2019; Lyytinen and Lindström 2019; Wang et al. 2020a). Hence, the issues actuating the efficient colonization of AIP have converted one of the core issues of invasive ecologists recently. Several AIP can seriously endanger plant growth fitness, especially germination performance, mainly via the allelopathy mediated by the released allelochemicals (Wang et al. 2020b; Gris et al. 2019; He et al. 2019; Lyytinen and Lindström 2019; Wei et al. 2020). However, the
germination performance controls the first stage of plant growth and population maintenance (Wang et al. 2020b; Gris et al. 2019; He et al. 2019; Lyytinen and Lindström 2019; Wei et al. 2020). Predictably, the reduced plant germination performance recruited by the raised allelopathy of AIP can significantly restrain their growth fitness (Wang et al. 2020b; Gris et al. 2019; He et al. 2019; Lyytinen and Lindström 2019; Wei et al. 2020). Further, AIP in Asteraceae covers the top of AIP species number at the family level currently in China (Wang et al. 2016a). Hence it is necessary to estimate the allelopathy of several Asteraceae AIP on plant germination performance to clarify the driving mechanism that regulates the successful invasion of Asteraceae AIP.

Acid deposition is getting worse with the increasing intensity and frequency of atmospheric activities, especially the fast development of modern industry and the number of vehicles, etc. (Solberg et al. 2004; Xu et al. 2015a, b; Yu et al. 2017; Du et al. 2020). Specifically, China has become one of the three major areas polluted by acid deposition across the world currently (Wang et al. 2007; Xu et al. 2015a, b; Liu et al. 2017; Yu et al. 2017). Nevertheless, the steadily increasing acid deposition can trigger a profound influence on plant growth (Wu et al. 2013; Wang et al. 2018; Du et al. 2017; Liu et al. 2018a, b; Huang et al. 2019). Specifically, acid deposition can also rise the growth fitness of AIP (Wang et al. 2018) and the allelopathy of AIP on germination performance of plant species (Wang et al. 2012a, b, 2016b). Consequently, it is necessary to evaluate the allelopathy of numerous Asteraceae AIP on plant germination performance under acid deposition to illuminate the mechanism actuating the successful colonization of Asteraceae AIP especially in the context of acid deposition. However, research in this area is very limited presently. Specifically, most progress in the influences of acid deposition on the allelopathy of AIP focuses on the impacts of acid deposition on the allelopathy of one AIP species, but ignore the species differences in the allelopathy (Wang et al. 2012a, b, 2016b).

This study purposes to evaluate the allelopathy of four Asteraceae AIP, i.e., Conyza canadensis L. Cronq., Erigeron annuus (L.) Pers., Aster subulatus Michx., and Bidens pilosa L., using leaf extracts on germination performance of the cultivated Asteraceae plant species Lactuca sativa L. under acid deposition with different levels of acidity via a hydroponic culture method in 9 cm Petri dishes. In particular, the four Asteraceae AIP are all originated from North America (Wang et al. 2016a) and consequently they share a similar or even identical evolutionary process in the diffusion phase and subsequent invasion behavior in China supposedly. Meanwhile, the four Asteraceae AIP have entered the list of the most destructive AIP in China chiefly because of their remarkable influences on plant communities where the invasion process occurred. Further, the allelopathy of the four Asteraceae AIP on plant germination performance is vital for their successful invasion (Khanh et al. 2009; Djurdjević et al. 2012; Fabbro et al. 2014; He et al. 2019; Wei et al. 2020). As a commonly cultivated plant species in the region which has been invaded by the four Asteraceae AIP and also polluted by acid deposition, L. sativa is a bioindicator species for the study of the allelopathy of AIP on plant germination performance (Carvalhoa et al. 2019; Gris et al. 2019; Jmii et al. 2020; Wei et al. 2020).

We check the two following hypotheses: (I) allelopathy of the four Asteraceae AIP on germination performance of L. sativa may have significant interspecific differences and (II) acid deposition can strengthen the allelopathy of the four Asteraceae AIP on germination performance of L. sativa.

Materials and methods

Preparation of the allelopathy solution and acidic solution

The mature leaves of four Asteraceae AIP (annual herbs and non-clonal plants), i.e., C. canadensis, E. annuus, A. subulatus, and B. pilosa, were randomly gathered from Zhenjiang (located at 32°21′N and 119°52′E) of Jiangsu, China in September 2019. The gathered leaves of the four Asteraceae AIP were mildly washed and subsequently air-dried drastically at about 25 °C. The air-dried leaves of the four Asteraceae AIP were soaked in sterile distilled water at about 25 °C for approximately 48 h to produce the allelopathy solution at 20 g L⁻¹ (to imitate the status with plant invasion). Sterile distilled water was used as the treatment of control (0 mg L⁻¹) to imitate the status without plant invasion. The allelopathy solution of the four Asteraceae AIP was placed at approximately 4 °C not exceeding hebdomad.
The acidic solution was prepared to simulate acid deposition by blending 0.5 M H$_2$SO$_4$ and 0.5 M HNO$_3$ at 5:1 ratio with a gradient level of acidity, i.e., pH 5.6 and pH 4.5, with sterile distilled water as the treatment of control (pH 7.0) to imitate the status without acid deposition. Specifically, the pH of normal rainfall without pollution is about 5.6 (Mishra et al. 2012; Wang et al. 2016b, 2018). Further, the acidic solution at pH 4.5 imitated the near-annual mean pH value of actual rainfall at Zhenjiang (Wang et al. 2007, 2016b, 2018; Yu et al. 2017). Further, the ratio of SO$_4^{2-}$ and NO$_3^-$ was about 5:1 for the actual rainfall at Zhenjiang (Wang et al. 2007, 2016b, 2018; Yu et al. 2017).

Experimental design of the germination performance of *L. sativa*

The experiment of germination performance of *L. sativa* included fifteen treatment combinations (triplicates per treatment combination) with all independent and combined treatment combinations of the allelopathy solution of the four Asteraceae AIP and the acidic solution with a gradient level of acidity. All of the experimental design of germination performance of *L. sativa* is presented in Table 1.

The seeds of *L. sativa* (cultivar name: cv. Xingmiao-Hongdajiang) were obtained in a local farm produce fair. Specifically, thirty seeds of *L. sativa* which were full and uniform in size were placed in Petri dishes (9 cm) from December 2 to 12, 2019 at approximately 25 °C for 8 d at the condition of 12 h light per day. Further, the light intensity was set to 27.5 μmol m$^{-2}$ s$^{-1}$. Meanwhile, 0.5 mL of sterile deionized water, allelopathy solution of the four Asteraceae AIP, and/or acidic solution were added per Petri dish every day. Specifically, allelopathy solution of the four Asteraceae AIP and acidic solution in the combined treatments were mixed in equal proportions (i.e., 1:1). Meanwhile, the final concentration of allelopathy solution of the four Asteraceae AIP in the independent and combined treatment combinations was all set to 20 g L$^{-1}$. More descriptions about the experiment of germination performance of *L. sativa* are included in our former reports (Wei et al. 2020).

Measurement of the germination performance indices of *L. sativa*

After the hydroponic cultivation for 8 d, ten seedlings of *L. sativa* per Petri dish (from thirty seedlings of *L. sativa* for one treatment combination) were randomly chosen to evaluate the values of germination performance indices of *L. sativa*. The assay-determining indices of *L. sativa* in this study is the same as in our former research (Wang et al. 2020b).

No	Treatment combinations	Concentration
I	Control (sterile distilled water)	0 g L$^{-1}$
II	*Conyza canadensis* L. Cronq. leaf extract	20 g L$^{-1}$
III	*Erigeron annuus* (L.) Pers. leaf extract	20 g L$^{-1}$
IV	*Aster subulatus* Michx. leaf extract	20 g L$^{-1}$
V	*Bidens pilosa* L. leaf extract	20 g L
VI	Acidic solution at pH 5.6	0.5 M H$_2$SO$_4$ and 0.5 M HNO$_3$ at ratio of 5:1
VII	Acidic solution at pH 4.5	0.5 M H$_2$SO$_4$ and 0.5 M HNO$_3$ at ratio of 5:1
VII	Combined *C. canadensis* leaf extract and acidic solution at pH 5.6	
IX	Combined *E. annuus* leaf extract and acidic solution at pH 5.6	
X	Combined *A. subulatus* leaf extract and acidic solution at pH 5.6	
XI	Combined *B. pilosa* leaf extract and acidic solution at pH 5.6	
XII	Combined *C. canadensis* leaf extract and acidic solution at pH 4.5	
XIII	Combined *E. annuus* leaf extract and acidic solution at pH 4.5	
XIV	Combined *A. subulatus* leaf extract and acidic solution at pH 4.5	
XV	Combined *B. pilosa* leaf extract and acidic solution at pH 4.5	
Germination percentage:

- (a) F = 53.759, P < 0.0001

Germination potential:

- (b) F = 58.468, P < 0.0001

Germination index:

- (c) F = 114.664, P < 0.0001

Germination rate index:

- (d) F = 37.764, P < 0.0001
Statistical analyses

Differences in germination performance indices of *L. sativa* among the treatment combinations were characterized by ANOVA with Tukey’s test for the operation of multiple comparisons. The threshold of statistically significant differences was set at $P \leq 0.05$. IBM SPSS Statistics (version 25.0) was used for statistical analyses.

Results

Influences of allelopathy solution of the four Asteraceae AIP and acidic solution on germination performance of *L. sativa* compared with control

All seed germination indices and root length of *L. sativa* were reduced under *C. canadensis* and *E. annuus* leaf extracts ($P < 0.05$; Figs. 1a–f and 2b). Germination index, germination rate index, germination vigor index, and root length of *L. sativa* were declined under *B. pilosa* leaf extract ($P < 0.05$; Figs. 1c–e and 2b). Root length of *L. sativa* was decreased under *A. subulatus* leaf extract ($P < 0.05$; Fig. 2b). However, leaf length and fresh weight were...
Shoot length (cm) $F=1.994$
$P=0.055$
\text{ns}

Root length (cm) $F=54.167$
$P<0.0001$

Leaf length (cm) $F=11.755$
$P<0.0001$

Leaf width (cm) $F=2.666$
$P=0.012$
increased under *A. subulatus* leaf extract (*P* < 0.05; Fig. 2c, f).

Germination percentage and germination potential of *L. sativa* under *C. canadensis* and *E. annuus* leaf extracts were less than those under *A. subulatus* and *B. pilosa* leaf extracts (*P* < 0.05; Fig. 1a, b). Germination index, germination rate index, germination vigor index, and promptness index of *L. sativa* under *C. canadensis*, *E. annuus*, and *B. pilosa* leaf extracts were less than those under *A. subulatus* leaf extract (*P* < 0.05; Fig. 1c–f). Leaf length of *L. sativa* under *E. annuus* leaf extract was less than that under *A. subulatus* leaf extract (*P* < 0.05; Fig. 2c). Fresh weight of *L. sativa* under *E. annuus* leaf extract was less than that under *A. subulatus* leaf extracts (*P* < 0.05; Fig. 2f).

The independent acidic solution did not significantly impact the germination performance of *L. sativa* (Figs. 1a–f and 2a–h).

All seed germination indices of *L. sativa* were decreased under the combined *C. canadensis* leaf extract and acidic solution at pH5.6, the combined *E. annuus* leaf extract and acidic solution at pH5.6, and the combined *B. pilosa* leaf extract and acidic solution at pH4.5 (*P* < 0.05; Fig. 1a–f). Root length of *L. sativa* was declined under all combined treatment combinations of the allelopathy solution of the four Asteraceae AIP and acidic solution (*P* < 0.05; Fig. 2b). Germination index, germination rate index, and germination vigor index of *L. sativa* were decreased under the combined *E. annuus* leaf extract and acidic solution at pH4.5 (*P* < 0.05; Fig. 1c–e). Green leaf area and fresh weight of *L. sativa* under the combined *C. canadensis* leaf extract and acidic solution at pH5.6 and the combined *E. annuus* leaf extract and acidic solution at pH5.6 were higher than those under *C. canadensis* and *E. annuus* leaf extracts, respectively (*P* < 0.05; Fig. 1a–f). Germination percentage, germination potential, germination index, germination vigor index, and promptness index of *L. sativa* under the combined *B. pilosa* leaf extract and acidic solution at pH5.6 were less than those under *B. pilosa* leaf extract (*P* < 0.05; Fig. 2c, f). Inversely, germination percentage, germination potential, germination index, germination vigor index, and promptness index of *L. sativa* under the combined *B. pilosa* leaf extract and acidic solution at pH4.5 were less than those under *B. pilosa* leaf extract (*P* < 0.05; Figs. 1a–c, e–f).

Discussion

As expected, the four Asteraceae AIP, particularly *C. canadensis*, *E. annuus*, and *B. pilosa*, form evident allelopathy on germination performance of *L. sativa*, especially on germination competitiveness, seed viability and germination uniformity, germination rate and vitality, germination responsiveness to the external environment, and seedling competitiveness for water and inorganic salt absorption in this study. Hence the growth fitness of *L. sativa* can be
Fig. 2 continued
remarkably attenuated under the allelopathy mediated by the four Asteraceae AIP. The most likely factor may be due to the created allelochemicals formed by AIP which can incur harmful influences, e.g., disrupting nutrient absorption efficiency and intensity on plant growth and development (Wang et al. 2020b; Gris et al. 2019; He et al. 2019; Lytyinen and Lindström 2019; Wei et al. 2020).

Further, there are noteworthy interspecific differences in the allelopathy of the four Asteraceae AIP on germination performance of *L. sativa*, especially on germination competitiveness, seed viability and germination uniformity, germination rate and vitality, germination responsiveness to the external environment, and seedling growth competitiveness, in this study. Further, the allelopathy of *C. canadensis* and *E. annuus* is noticeably superior to those of *A. subulatus* and *B. pilosa* in this study. Thus, the importance of allelopathy of *C. canadensis* and *E. annuus* is markedly greater than that of *A. subulatus* and *B. pilosa*. Interestingly, *A. subulatus* leaf extract does not display noteworthy allelopathy on germination performance of *L. sativa* in this study. Thus, the allelopathy of *A. subulatus* does not show a vital role in its successful colonization. Largely, the allelopathy of the four Asteraceae AIP on germination performance of *L. sativa* distinctly declines in the following order: *E. annuus, C. canadensis, B. pilosa, and A. subulatus* in this study. The key cause may be because of the diversification in the types of secondary substances, i.e., allelochemicals, and their corresponding relative content among the four Asteraceae AIP supposedly. The results confirm the first hypothesis.

Although the independent acid deposition does not markedly affect germination performance of *L. sativa*, the combined allelopathy of the four Asteraceae AIP (particularly *B. pilosa*) and acid deposition trigger a significant negative influence on germination performance of *L. sativa*, especially on germination competitiveness, seed viability and germination uniformity, germination rate and vitality, germination responsiveness to the external environment, and seedling competitiveness for water and inorganic salt absorption, in this study. Thus, the growth fitness of *L. sativa* will be significantly decreased under the condition when the plant invasion was polluted by acid deposition.

The acid deposition may be increasingly worse with the growing intensity and frequency of atmospheric activities in current periods and is estimated to upsurge in upcoming years. Hence, the allelopathy of AIP may be changed and even strengthened under the condition with the increasing level of acid deposition. Further, nitrogen, which is one of the main constituents of acid deposition, can influence and even expedite plant metabolic process (Throop and Lerdau 2004; Luo et al. 2008; Fallovo et al. 2011; Yang et al. 2014; Sun et al. 2020). Interestingly, the combined allelopathy of *C. canadensis, E. annuus, and B. pilosa* and acid deposition at pH 5.6 can promote germination performance (especially germination competitiveness, seed viability and germination uniformity, germination rate and vitality, germination responsiveness to the external environment, seedling competitiveness for sunlight capture, leaf photosynthetic area, and seedling growth competitiveness) of *L. sativa* compared with only leaf extracts in this study. Thus, acid deposition with a low level of acidity decreases the allelopathy of *C. canadensis, E. annuus,* and *B. pilosa* on germination performance of *L. sativa*. The foremost issue may be credited to the nutrient fertilization (especially nitrogen) mediated by the nutrition elements in an acid deposition with a low level of acidity. Further, the increased level of nutrition can lift the capability of plant species to resist hostile environments (Hassan et al. 2005, 2008; Xu et al. 2015a, b; Xiong et al. 2018; Tariq et al. 2019). Inversely, the combined allelopathy of *B. pilosa* and acid deposition at pH 4.5 synergistically affect germination performance of *L. sativa*, especially on germination competitiveness, seed viability and germination uniformity, germination rate and vitality, and germination responsiveness to the external environment. Accordingly, acid deposition with a high level of acidity strengthens the allelopathy of *B. pilosa* on germination performance of *L. sativa*. The reason may be owed to the increased acidity under acid deposition with a high level of acidity which is poisonous to plant growth. Meanwhile, the high level of acidity recruited by acid deposition can increase the leaching process of acid-soluble substances (Zhang et al. 2007; Wang et al. 2016b; Pabian et al. 2012; Xu et al. 2015a, b), such as phenolics (mainly polyphenols), which is one of the most abundant allelochemicals in AIP (Li et al. 2010; Zhang et al. 2011; Djurdjević et al. 2012; Gomaa et al. 2014; Harrison et al. 2017; Markska et al. 2020). Earlier outcomes also identify that acid deposition can also increase the allelopathy of AIP on plant germination performance.
(Wang et al. 2012a, b, 2016b). Thus, the consequences confirm the second hypothesis partially.

In brief, the progressively growing level of acid deposition with high acidity in the environment can be good for the invasion process of B. pilosa via the enhanced allelopathy on plant germination performance.

Acknowledgements We are very grateful to the anonymous reviewers for the insightful and constructive comments that greatly improved this manuscript

Author contributions CW—conceived and designed this study. HC, SW, and MW—performed the experiments. SW, MW, and YY—analyzed the data. CW—wrote the manuscript. All authors provided editorial advice.

Funding This study was funded by Open Science Research Fund of State Key Laboratory of Pollution Control and Resource Reuse (Tongji University), China (Grant No.: PCRRF19009).

Data availability All data generated or analyzed during this study are included in this article.

Code availability Not applicable.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate Informed consent was obtained from all individual participants included in the study.

Consent for publication All authors vouch that the work has not been published elsewhere, completely, in part, or in any other form, and that the manuscript has not been submitted to another journal. All other authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the Journal.

References

Carvalhoa MSS, Andrade-Vieira LF, dos Santos FE, Correa FF, das Graças Cardoso M, Vilela LR, (2019) Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Sci Hortic 245:90–98
Djurđević L, Gajić G, Kostić O, Jarić S, Pavlović M, Mitrović M, Pavlović P (2012) Seasonal dynamics of allelopathically significant phenolic compounds in globally successful invader Conyza canadensis L. plants and associated sandy soil. Flora 207:812–820
Du E, Dong D, Zeng X, Sun Z, Jiang X, de Vries W (2017) Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Sci Total Environ 605–606:764–769
Du JJ, Qv MX, Zhang YY, Cui MH, Zhang HZ (2020) Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: A microcosm study with artificial reconstituted fresh water. Ecotox Environ Saf 196:110535
Fabbro CD, Güsewell S, Prati D (2014) Allelopathic effects of three plant invaders on germination of native species: a field study. Biol Invasions 16:1035–1042
Fallico C, Schreiner M, Schwarz D, Colla G, Krumbein A (2011) Phytochemical changes induced by different nitrogen supply forms and radiation levels in two leafy Brassica species. J Agr Food Chem 59:4198–4207
Gomaa NH, Hassan MO, Fahmy GM, González L, Hammouda O, Atteya AM (2014) Allelopathic effects of Sonchus oleraceus L. on the germination and seedling growth of crop and weed species. Acta Bot Bras 28:408–416
Gris D, Boaretto AG, Marques MR, Damasceno-Junior GA, Carullo CA (2019) Secondary metabolites that could contribute to the monodominance of Erythrina fusca in the Brazilian Pantanal. Ecotoxicology 28:1232–1240
Harrison MM, Tyler AC, Hellquist CE, Pagano T (2017) Phenolic content of invasive and non-invasive emergent wetland plants. Aquatic Bot 136:146–154
Hassan MJ, Wang F, Ali S, Zhang G (2005) Toxic effect of cadmium on rice as affected by nitrogen fertilizer form. Plant Soil 277:359–365
Hassan MJ, Shaﬁ M, Zhang G, Zhu Z, Qaisar M (2008) The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form. Plant Grow Regul 54:125–132
He P, Deng YJ, Hu XY, Hu XY, Pan HM, Deng HP (2019) Potential allelopathic effect of Aster subulatus on Triticum aestivum and Brassica chinesis. Acta Pratacul Sin 28:101–109
Huang J, Wang HY, Zhong YD, Huang JG, Fu XF, Wang LH, Teng WC (2019) Growth and physiological response of an endangered tree, Horsfieldia hainanensis merr., to simulated sulfuric and nitric acid rain in southern China. Plant Physiol Biochem 144:118–126
Khan TD, Cong LC, Xuan TD, Uezato Y, Deba F, Toyama T, Tawata S (2009) Allelopathic plants: 20. Hairy beggarticks (Bidens pilosa L.). Allelopathy J 24:243–254
Kielyk P, Delimat A (2019) Impact of the alien plant Impatiens glandulifera on species diversity of invaded vegetation in the northern foothills of the Tatra Mountains, Central Europe. Plant Ecol 220:1–12
Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952
Liu X, Zhang B, Zhao W, Wang L, Xie D, Huo W, Wu YW, Zhang JC (2017) Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region. Sci Total Environ 601–602:669–678
Liu X, Zhao WR, Meng MJ, Fu ZY, Xu LH, Zha Y, Yue JM, Zhang SF, Zhang J (2018a) Comparative effects of simulated acid rain of different ratios of SO4^2– to NO3– on fine...
root in subtropical plantation of China. Sci Total Environ 618:336–346

Liu X, Fu Z, Zhang B, Zhai L, Meng M, Lin J, Zhuang J, Wang GG, Zhang J (2018b) Effects of sulfuric, nitric, and mixed acid rain on Chinese fir sapling growth in Southern China. Ecotox Environ Safety 160:154–161

Luo ZB, Calfapietra C, Scarascia-Mugnozza G, Liberloo M, Polle A (2008) Carbon-based secondary metabolites and internal nitrogen pools in *Populus nigra* under Free Air CO$_2$ Enrichment (FACE) and nitrogen fertilisation. Plant Soil 304:45–57

Lyytinen A, Lindström L (2019) Responses of a native plant species from invaded and uninvaded areas to allelopathic effects of an invader. Ecol Evol 9:6116–6123

Marksa M, Zymone K, Ivanauskas L, Radusˇienė K, Andriukaitis A (2020) Antioxidant profiles of leaves and inflorescences of native, invasive and hybrid *Solidago* species. Ind Crop Prod 145:112123

Mishra A, Singh AK, Singh KA, Pandey P, Yadav S, Khan AH, Barman SC (2012) Urban air pollution and their effects on rain water characteristics in Lucknow city, India. Int J Environ Res 6:1127–1132

Pabian SE, Ermer NM, Pabian SR, Zeng RS (2012b) Effects of simulated acid rain on the seed germination and seedling growth performance of *Pythium ultimum*. Sci Total Environ 719:137442

Xiong X, Chang LY, Khalid M, Zhang JJ, Huang DF (2018) Alleviation of drought stress by nitrogen application in *Brassica campestris* ssp. chinensis L. Agronomy. https://doi.org/10.3390/agronomy8050066

Xu HQ, Zhang JE, Ouyang Y, Lin L, Quan GM, Zhao BL, Yu JY (2015a) Effects of simulated acid rain on microbial characteristics in a lateritic red soil. Environ Sci Pollut Res 22:18260–18266

Yang K, Zhu JJ, Xu S (2014) Influences of various forms of nitrogen additions on carbon mineralization in natural secondary forests and adjacent larch plantations in Northeast China. Can J For Res 44:441–448

Yu HL, He NF, Wang QF, Zhu JX, Gao Y, Zhang YH, Jia YL, Yu GR (2017) Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environ Pollut 231:182–190

Zhang SS, Zhu WJ, Wang B, Tang JJ, Chen X (2011) Secondary metabolites from the invasive *Solidago canadensis* L. accumulation in soil and contribution to inhibition of soil pathogen *Pythium ultimum*. Appl Soil Ecol 48:280–286

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.