Urinary Albumin-Creatinine Ratio (UACR), Even within Normal Range, and Risk of Hypertension (HTN), Type 2 Diabetes Mellitus (T2DM), HTN with T2DM, Dyslipidemia and Cardiovascular Diseases in the Chinese Population: A Report from REACTION Study

Jie Wang
Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing

Yun Wang
Graduate School, Chinese PLA General Hospital, Beijing

Yijun Li
Department of Endocrinology, First medical center of PLA General Hospital, Beijing

Ying Hu
Department of Endocrinology, First medical center of PLA General Hospital, Beijing

Lingzi Jin
Department of International Medical Services, Peking Union Medical College Hospital, Beijing

Anping Wang
Department of Endocrinology, First medical center of PLA General Hospital, Beijing

Weiqing Wang
Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai

Zhengnan Gao
Dalian Central Hospital, Dalian, Liaoning

Xulei Tang
First Hospital of Lanzhou University, Lanzhou, Gansu

Li Yan
Zhongshan University Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong

Qin Wan
Southwest Medical University Affiliated Hospital, Luzhou, Sichuan

Zuojie Luo
First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi

Guijun Qin
First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan

Lulu Chen
Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei
Weijun Gu
Department of Endocrinology, First medical center of PLA General Hospital, Beijing

Zhaohui Lyv
Department of Endocrinology, First medical center of PLA General Hospital, Beijing

Yiming Mu (muyiming@301hospital.com.cn)
Department of Endocrinology, First medical center of PLA General Hospital, Beijing

Research Article

Keywords:

Posted Date: January 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1292378/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Albuminuria has been widely considered as a risk factor for cardiovascular diseases (CVDs) which is associated with hypertension (HTN), type 2 diabetes mellitus (T2DM), HTN with T2DM and dyslipidemia. However, it is unclear the association between albuminuria and HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs. Thus, this study is aimed to thoroughly explore the association of albuminuria, even within the normal range, with the abovementioned diseases in the Chinese population.

Methods: This study included 40188 participants aged over 40 years from seven centers across China. Urinary albumin-creatinine ratio (UACR) was firstly divided into the ≥ 30 mg/g group, indicating kidney damage, and < 30 mg/g group. Furtherly, UACR was divided into five groups: the < 20% group, the 20–39% group, the 40–59% group, the 60–79% group and the ≥ 80% group, according to quintile division of participants within the normal range. Propensity score matching was used to reduce bias, and multiple logistic regression models were conducted to examine the association between UACR and HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs.

Results: Multivariable regression analysis revealed that UACR, even within the normal range, is significantly associated with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs, and the association between UACR and HTN with T2DM was most significant in model 3 even after adjusting for confounding factors (HTN: OR: 1.76, 95%CI: 1.65-1.88, P<0.0001; T2DM: OR: 1.98, 95%CI: 1.84-2.12, P<0.0001; HTN with T2DM: OR: 2.37, 95%CI: 2.19-2.57, P<0.0001; Dyslipidemia: OR: 1.08, 95%CI: 1.01-1.14, P=0.0154; CVDs: OR: 1.14, 95%CI: 1.02-1.27, P=0.0244). In the stratified analysis, high normal UACR was significantly associated with HTN, T2DM, HTN with T2DM, dyslipidemia in subgroups.

Conclusions: We conclude the higher prevalence of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in abnormal UACR and reveal a significant association of UACR, even within the normal range, with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs.

Introductions

There is a growing population of elderly adults with hypertension (HTN), diabetes, dyslipidemia and cardiovascular diseases (CVDs) of increasingly complexity and a corresponding rise in health care burdens. Indicators that stratify risk for the general population across the metabolic abnormalities would possess great clinical value.

Albuminuria has been widely recommended as an indicator of renal damage. Emerging data has shown that albuminuria is not only an initial manifestation of renal function loss, but also a nonnegligible risk factor for CVDs especially in population with diabetes, HTN or dyslipidemia. Among diabetic adults in the United States, the prevalence of diabetic kidney disease (DKD) is about 34.5%, and 16.8% present with albuminuria. Further, evidence is increasing that the presence of albuminuria indicates a 2.5-fold increased risk of stroke, which is consistent with the findings delivered by Norfolk's research. Moreover, albuminuria as measured by urine albumin to creatinine ratio (UACR), even within the normal range, is an ineffective predictor of HTN. Similarly, a 5-year-follow-up study conducted in Korean men, demonstrated that high normal
albuminuria (UACR<30mg/g) could predict the increased risk of diabetes\(^8\). A robust body of literature has reported a strong, positive association between albuminuria and dyslipidemia in prediabetic and general population\(^9,10\). Hence, albuminuria is valuable in identifying the general population at risk for CVDs, diabetes, HTN and dyslipidemia in clinical practice.

Previous studies have described an association between albuminuria and related metabolic diseases. However, little literature placed focus on the prevalence of diabetes, HTN, diabetes with HTN and dyslipidemia in the Chinese population with different UACR level. The present study is the first population-based study in the Chinese population and may uncover the incidence of diabetes, HTN, diabetes with HTN and dyslipidemia in individuals with different UACR level. Therefore, this current study is aimed to investigate the prevalence of diabetes, HTN, diabetes with HTN and dyslipidemia in different albuminuria range and explore the internal association between albuminuria and metabolic abnormalities.

Methods And Materials

Study population and design

The present study was drawn from the REACTION (Risk Evaluation of Cancers in Chinese Diabetic Individuals) study, which was conducted to investigate the association of diabetes and prediabetes with the risk of cancer in the Chinese population. Detailed information of the REACTION study has been described previously\(^11\). The REACTION study was set up as a multi-center prospective observational study, and our study used baseline data from seven centers across China. A total of 47808 participants aged over 40 years were recruited from May and December 2012. (Liaoning 10140, Gansu 10026, Guangzhou 9743, Sichuan 8105, Shanghai 6821, Henan 1978, Hubei 995). Participants diagnosed with kidney diseases, cancer, fatty liver, viral hepatitis, cirrhosis, those using ACEI/ARB medicines and those with missing data were excluded. Then, 41757 participants were enrolled. Given differences in the baseline characteristics between the two different UACR groups, the propensity score matching was performed to reduce potential bias. Ultimately, 40188 eligible participants were included in this final analysis. (Figure 1).

The staff received extensive training related to the study questionnaire and outcome measures before the investigation. The study was conducted in accordance with Declaration of Helsinki, and the protocol was approved by the Clinical Research Ethics Committee of Rui-Jin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University. Written informed consents were obtained from all participants before the study.

Data collection and measurements

Data collection was performed by the well-trained staff, which included a standardized questionnaire, anthropometric measurements, blood collection, urine collection and a 75 g OGTT or 100 g steamed-bread meal test. The self-administered questionnaire consisted of demographic information, the history of diabetes, HTN, dyslipidemia, kidney diseases, hepatic diseases, CVDs (coronary heart disease (CHD),
myocardial infarction (MI), stroke), the current use of drugs, lifestyle including alcohol consumption and smoking consumption. Alcohol consumption was defined as follows: never; occasional drinkers who drank less than once a week; regular drinkers who drank at least once a week for over six months. Smoking consumption were defined as follows: never; occasional smokers who smoked less than one cigarette per day or less than 7 cigarettes per week; regular smokers who smoked at least one cigarette per day.

Anthropometric measurements, including the measurements of height, weight, waist circumference (WC) and blood pressure, were performed by the same well-trained staff. All participants were required to be in light clothing and take off shoes when weight and height were measured to the nearest 0.1 cm and 0.1 kg. WC was measured to the nearest 0.1 cm at the umbilical level when participants were in a standing position. Body mass index (BMI) was calculated using the following formula: BMI = body weight/ height2 (kg/m2). Blood pressure and heart rate (HR) were recorded three times consecutively by the same well-trained staff at 5-min intervals after participants were in a seated position for at least 5 min at rest. The three measurements of blood pressure and HR were averaged for the final analysis.

Blood samples were collected by the experienced nurses in the morning after at least 12 h of overnight fasting. Participants with or without a history of diabetes underwent a 100 g steamed-bread meal test or 75 g OGTT, respectively. After 2 h, the second venous blood samples were obtained by the same well-trained nurses. Fasting plasma glucose (FPG), 2 h post-load blood glucose (PBG), Haemoglobin A1c (HbA1c), serum triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatinine (Cr) were measured at every center.

The estimated glomerular filtration rate (eGFR) was calculated on the basis of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI).

Definition of Variables

Fasting midstream urine samples were collected in the morning to measure the concentration of urine albumin and urine creatinine by using chemiluminescence immunoassay in every center. UACR was calculated by dividing urine albumin in milligrams by urine creatinine in grams. The same range and units of UACR measurement were used in all seven centers. According to the KDIGO CKD guidelines, increased albuminuria was defined as UACR ≥ 30 mg/g, indicating kidney damage.

According to the WHO guidelines, type 2 diabetes mellitus (T2DM) was defined as FBG ≥ 7.0 mmol/L, or PBG ≥ 11.1 mmol/L, or diagnosed as T2DM by clinicians and meanwhile undergoing hypoglycemic medication therapy. HTN was defined as systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg, or diagnosed as HTN by clinicians and meanwhile undergoing antihypertensive medication therapy. Dyslipidemia was defined as increased TC (≥ 6.20 mmol/L), LDL-C (≥ 4.13 mmol/L), TG (≥ 2.25 mmol/L), decreased HDL-C (< 1.03 mmol/L), or a combination of the above lipid abnormalities. HTN with T2DM was defined as a combination of HTN and T2DM. Stroke was defined as a self-reported history of language or physical dysfunction lasting over 24 h and ischemic or hemorrhagic
stroke by imageological diagnosis. CHD events were defined as a self-report history of myocardial infarction or angina, or coronary revascularization by clinicians. CVDs were defined as a self-reported history of CHD, stroke, or myocardial infarction events.

Participants were divided into three groups according to their smoking frequency: no: never or have already quit smoking; occasional: smoking less than once a week or less than 7 cigarettes weekly; frequently: smoking one or more cigarettes daily for at least a half year. Similarly, participants were divided into three groups according to their alcohol intake frequency: no: never or have already quit drinking; occasional: drinking less than once a week; frequently: drinking more than once a week for at least a half year.

Statistical analysis

Empower(R) (www.empowerstats.com, X&Y Solutions Inc., Boston, MA) and R (http://www.Rproject.org) were used to perform the statistical analyses. Given differences in the baseline characteristics between eligible participants between the two groups of UACRs, propensity score matching was employed to control for potential bias. Matching was performed using a 1:7 matching protocol to match all covariates, with a calliper width equal to 0.05 of the SD of the logit of the propensity score.

Continuous variables with a non-normal distribution were presented as median (Q1-Q3), and those with a normal distribution were presented as means ± the standard deviations (SD). Categorical variables were expressed as n%. Differences in continuous variables were compared using the Kruskal–Wallis test, and when variables were categorical, the χ2 test was used. Multivariate logistic regression analysis was performed to control potential confounding factors for identifying the associations of UACR with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in three models. Model 1 was unadjusted. Model 2 was adjusted for age and BMI. Model 3 was further adjusted for sex; SBP; DBP; HR; ALT; AST; eGFR; smoking habits, drinking habits, FBG, PBG, TC, TG, HDL-C, LDL-C and history of medication. The odds ratio (OR) and corresponding 95% confidence intervals (95% CI) were calculated.

To thoroughly explore the associations between UACR and HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs, multivariate logistic regression analysis was also conducted in participants with normal albuminuria (UACR<30 mg/g). Furthermore, in order to examine the internal link of the relationship between UACR and HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs, subgroups were stratified by the different history of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in the stratified analyses. All statistical tests were two-sided, and P values < 0.05 were considered statistically significant.

Results

Clinical characteristics of the study population

After propensity score matching, a total of 40188 participants with a median age (Q1-Q3) of 57.58 (52.40-63.93) years were included in this study, including 12223 (30.41%) men and 27965 (69.59%) women (Table 1). Table 1 shows that 6205 (15.44%) of participants had T2DM, 17386 (43.26%) had HTN, 2225 (5.54%)
had CVDs, and 17071 (42.34%) had dyslipidemia. Compared to non-hypertensive participants, the hypertensive ones were older, had a larger BMI, ALT, AST, SBP, DBP, HR, TC, TG, LDL-C, FBG, PGB, HbA1c, UACR, lower eGFR, were less frequent smokers, more frequent drinkers, and a higher prevalence of T2DM, HTN with T2DM, CVDs and dyslipidemia (Table S1). Compared to non-T2DM participants, the diabetic ones were older, had a larger BMI, ALT, SBP, DBP, HR, TG, FBG, PGB, HbA1c, UACR, lower eGFR, LDL-C and HDL-C, were more frequent smokers and drinkers, and a higher prevalence of HTN, HTN with T2DM, CVDs and dyslipidemia. Similar results were found in HTN with T2DM. Similarly, participants with dyslipidemia had an inferior control of blood pressure, glucose, lipid, a higher prevalence of HTN, T2DM, CVDs, and were more frequent smokers, drinkers (Table S1-S4).

Associations of UACR with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in the total population

Multiple logistic regression models that consider the association of albuminuria with the individual prevalence of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs were constructed. Table 2 shows OR and 95% CI of HTN, T2DM, HTN with T2DM, dyslipidemia, CVDs with continuous UACR and categories of UACR in the total population of three different models. As seen in Table 2, UACR is significantly associated with HTN, T2DM, HTN with T2DM, dyslipidemia, CVDs in model 1-2. Even after further adjustments in model 3, UACR remained significantly associated with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs. However, in model 3, the adjusted OR of UACR (≥30 mg/g) was not as remarkable as it in model 2, but the association of UACR with HTN with T2DM was most significant in model 3 (HTN: OR: 1.89, 95% CI: 1.77-2.01, P<0.0001 in model 3 vs OR: 1.76, 95% CI: 1.65-1.88, P<0.0001 in model 3; T2DM: OR: 2.21, 95% CI: 2.06-2.36, P<0.0001 in model 3 vs OR: 1.98, 95% CI: 1.84-2.12, P<0.0001 in model 3; HTN with T2DM: OR: 2.50, 95% CI: 2.31-2.70, P<0.0001 in model 2 vs OR: 2.37, 95% CI: 2.19-2.57, P<0.0001 in model 3; Dyslipidemia: OR: 1.18, 95% CI: 1.12-1.25, P<0.0001 in model 2 vs OR: 1.08, 95% CI: 1.01-1.14, P=0.0154 in model 3; CVDs: OR: 1.30, 95% CI: 1.17-1.45, P<0.0001 in model 2 vs OR: 1.14, 95% CI: 1.02-1.27, P=0.0244 in model 3), indicating the blood glucose, pressure and lipid level possessing the effects of the metabolic diseases. The association between continuous values of UACR is also shown in Table 2, which was consistent with the findings delivered by categorical values.

Associations of UACR with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in participants with normal UACR (<30mg/g)

To thoroughly explore the association of albuminuria with such diseases, multiple logistic regression models were also constructed in participants with normal range of albuminuria (UACR<30mg/g) as shown in Table 3. These results indicate that compared with participants with lower UACR levels, participants with higher normal UACR levels (HTN: the second quintile to the fifth quintile; T2DM: the second quintile to the fifth quintile; HTN with T2DM: the second quintile to the fifth quintile; Dyslipidemia: the third quintile to fifth quintile; CVDs: the fifth quintile) were also significantly associated with HTN, T2DM, HTN with T2DM,
dyslipidemia and CVDs, even after adjustments for confounding factors in model 3. In model 3, the ORs for HTN were increased significantly from the second quintile, with ORs 1.08 (1.01, 1.16) for quintile 2, 1.29 (1.20, 1.39) for quintile 3, 1.45 (1.35, 1.56) for quintile 4, and 1.55 (1.40, 1.72) for quintile 5. Similar results and tendency were observed in T2DM, HTN with T2DM, dyslipidemia and CVDs (T2DM: Q2: OR 1.18, 95%CI 1.06-1.31, P=0.0025, Q3: OR 1.35, 95%CI 1.22-1.50, P<0.0001; Q4: OR 1.67, 95%CI 1.51-1.85, P<0.0001; Q5: OR 2.17, 95%CI 1.90-2.48, P<0.0001; HTN with T2DM: Q2: OR 1.29, 95%CI 1.13-1.49, P=0.0002, Q3: OR 1.45, 95%CI 1.26-1.65, P<0.0001; Q4: OR 1.90, 95%CI 1.67-2.17, P<0.0001; Q5: OR 2.32, 95%CI 1.96-2.75, P<0.0001; Dyslipidemia: Q3: OR 1.12, 95%CI 1.05-1.19, P=0.0009; Q4: OR 1.12, 95%CI 1.04-1.19, P=0.0011; Q5: OR 1.14, 95%CI 1.03-1.26, P=0.0090; CVDs: Q5: OR 1.23, 95%CI 1.00-1.51, P=0.0463). Similar positive associations were detected in participants with thenormal range of albuminuria when UACR was a continuous variable (HTN: OR 1.02, 95%CI 1.02-1.03, P<0.0001; T2DM: OR 1.08, 95%CI 1.01-1.16, P=0.0286; HTN with T2DM: OR 1.04, 95%CI 1.03-1.04, P<0.0001; Dyslipidemia: OR 1.01, 95%CI 1.00-1.01, P=0.0005; CVDs: OR 1.01, 95%CI 1.00-1.01, P=0.0940).

Stratified analysis of associations between UACR and HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in participants with normal UACR (<30mg/g)

Stratified analyses were conducted in the different subgroupsof HTN, T2DM, dyslipidemia and CVDsto validate the abovementioned results, shown in Table 4. The present study found that compared with lower UACR, higher normal UACR (the third, fourth and fifth quintiles) was closely associated with HTN in both subgroups of HTN, T2DM, dyslipidemia and CVDs. To be noted, these associations were most significant in participants that were both in the subgroup of the fifth quintile of UACR and the subgroups of normal blood glucose (OR 1.64, 95%CI 1.14-1.88, P=0.0001), dyslipidemia (OR 1.58, 95%CI 1.35-1.84, P<0.0001) and CVDs (OR 1.83, 95%CI 1.16-2.89, P=0.0097). Similarly, the most significant association of UACR with T2DM were both in the fifth quintile of UACR subgroup and normal blood pressure (OR 2.50, 95%CI 2.05-3.06, P<0.0001), normal blood lipid level (OR 2.15, 95%CI 1.77-2.61, P<0.0001) and CVDs-free (OR 2.20, 95%CI 1.91-2.54, P<0.0001) subgroups. The association between the fifth quintile of UACR and HTN with T2DM was more significant in dyslipidemia (OR 2.54, 95%CI 2.02-3.18, P=0.0001) and CVDs-free (OR 2.37, 95%CI 1.98-2.83, P<0.0001) subgroups. The most significant association of the fifth quintile of UACR with dyslipidemia was detected in participants without HTN (OR 1.15 95%CI 1.01-1.32, P=0.0399) and without T2DM (OR 1.13 95%CI 1.02-1.27, P=0.0245). However, no significant association between the fifth quintile of UACR and CVDswas observed in subgroups of HTN, T2DM and dyslipidemia.

Discussion

Main findings

As far as we all know, this is the first study conducted in a Chinses general population to observe the prevalence of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDswith different UACRleveland explore the
associations between albuminuria and the above diseases, even when albuminuria within the normal range. The following are the main findings of this current study: (1) compared with participants with normal albuminuria (UACR<30mg/g), participants with abnormal albuminuria (UACR ≥30mg/g) had a higher prevalence of HTN (40.26% VS 61.11%), T2DM (13.27% VS 28.34%), HTN with T2DM (7.79% VS 20.71%), dyslipidemia (41.48% VS 47.49%) and CVDs (4.98% VS 8.88%), indicating the close relationship between albuminuria and metabolic diseases. (2) UACR is significantly associated with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs after adjusting for a wide spectrum of confounding factors. (3) High normal UACR is also associated with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs, and the association between high normal UACR and HTN with T2DM is most significant. (4) Further stratification shows that when UACR is at a high normal level (in the fifth quintile), participants without diabetes, with dyslipidemia and CVDs, have higher risks of HTN; those without HTN, dyslipidemia, and CVDs, have higher risks of T2DM; those with dyslipidemia and without CVDs, have higher risks of HTN with T2DM; those without HTN, T2DM and with CVDs, have higher risks of dyslipidemia. Therefore, UACR is an effective discriminator for the risk of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs, even when it is within the normal range. It is not only people with abnormal UACR but that those with high normal UACR should be vigilant the detection, prevention, and control of blood glucose, pressure, lipids to prevent and decrease the incidence of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs.

UACR and HTN

It is widely accepted that HTN is an important risk factor contributing to mortality worldwide and albuminuria plays a crucial role in the initiation and progression of HTN in previous studies\(^{15,16}\). This research has described that albuminuria excretion more than 6mg per day can effectively predict the progression of HTN. Notably, a growing number of studies performed in western population have pointed out that a significant association between albuminuria and HTN was not restricted to abnormal albuminuria (UACR ≥30mg/g); albuminuria below the normal threshold (UACR<30mg/g) was also found associated with HTN. The Framingham Heart Study has reported that men with UACR >6.66 mg/g and women with >15.24 mg/ghad an approximately 2-fold risk of HTN, indicating UACR being a useful biomarker for identifying individuals at high risk for HTN\(^{17}\). Moreover, a positive association between UACR within the normal range and HTN was revealed in postmenopausal women without diabetes, suggesting the revaluation of normal albuminuria excretion\(^{18}\).

Similarly, we found that not only abnormal UACR, but also an increase in UACR even within the normal range is closely associated with HTN, especially in people with T2DM and CVDs. Although the prevalence of HTN was higher in people with abnormal UACR than those with normal UACR (61.11% VS 40.26%), people with high normal UACR (the fifth quintile) have a 1.55-fold risk of HTN than those with low UACR (the first quintile) within the normal range in our study (Table 4). Our results showed clearly that high normal UACR is closely associated with HTN and the association is independent of eGFR levels, which was consistent with previous studies. Systemic and glomerular vascular abnormalities was thought to be a physiologic link between albuminuria and HTN\(^{19,20}\). The presence of albuminuria could be caused by physiologic abnormalities of glomerular endothelial cells, the glomerular basement membrane, or podocytes, leading to
increased filtration of albumin. It is likely that increased albuminuria reflects generalized microvascular endothelial cell damage21, which possibly predispose to an increased atherogenic lipoproteins accumulation within subendothelial cell space22. A cohort study based on Japanese population, which followed 412 normotensive individuals without diabetes for a median 6.7 years, observed that a slight increase in UACR was closely associated with the incidence of HTN and is a predictor of increased blood pressure and incident HTN23, suggesting that increased UACR in this current study is partly due to increased blood pressure below the level of diagnosis of HTN.

UACR and T2DM

There is strong evidence that albuminuria could be well indicative of microvascular dysfunction21. Compared with individuals without T2DM, the microvascular function of individuals with T2DM is markedly impaired24,25. Louis et al. pointed out that the levels of albuminuria were independently associated with the severity of cardiac macrovascular function in individuals with T2DM26. Although among diabetic individuals with normal ventricular diastolic function, the prevalence of cardiac macrovascular dysfunction was higher, especially in those with abnormal albuminuria, which was in line with our results. UACR is significantly higher in individuals with T2DM than those without T2DM in the present research (Table 1), indicating a close link between UACR and T2DM. It was well proved that UACR is not only an accepted indicator of kidney damage but also an effective predictor of atherogenic state. Accordingly, the results of population-based studies supported that UACR is valuable in predicting cardiovascular outcomes in clinical practice27,28.

Interestingly, we noted that albuminuria, even within the normal range, is closely associated with T2DM in our study. Participants with abnormal albuminuria (UACR \geq 30mg/g) had a 1.98-fold risk of T2DM than those with the normal range (UACR < 30mg/g) (P < 0.0001). When UACR within the normal range, participants with high normal albuminuria (the fifth quintile) were still more likely to have the incidence of T2DM (OR 2.17, 95%CI 1.90-2.48, P < 0.0001), and the association between high normal albuminuria and T2DM was more significant in participants without HTN and dyslipidemia. This difference may be explained, in part, by smaller sample size of HTN and dyslipidemia group than non-HTN and non-dyslipidemia group in our study. Further large sample and prospective studies are necessary to clarify the association between UACR and the incidence of T2DM in different levels of blood pressure and lipids.

UACR and CVDs

As we all know, albuminuria is an established risk factor for CVDs morbidity and mortality both in diabetic and hypertensive individuals. Moreover, in the national and international guidelines, albuminuria is recommended as a routine screening parameter in individuals at high risk for CVDs29-31 and has been recognized as a significant indicator of the incidence generalized atherosclerosis because of the close association of albuminuria with atherosclerotic risk factors and microvascular endothelial damage32. Findings from population-based studies have reported a significant relationship between albuminuria and CVDs27,28. Studies on individuals without T2DM and HTN also reached similar conclusions, which was in
A prospective study, including 2484 white subjects, found that non-diabetic individuals with albuminuria have a 1.38-fold increased risk of cardiovascular mortality after adjustment for a wide spectrum of risk factors and a markedly high 5.68-fold increased risk of cardiovascular mortality was observed in diabetic population. This significant association was also assessed in the general population in this research. Additionally, a study of 40548 individuals observed that a 2-fold increase in albuminuria conferred a 1.29-fold increase in the risk of cardiovascular mortality. The results of our study, which showed an association between abnormal UACR and CVDs in the general population in seven regions across China, agree with earlier ones. Participants with abnormal albuminuria (UACR ≥ 30mg/g) had a 1.14-fold increased risk of CVDs than those with normal albuminuria in our study.

Interestingly, we noted that UACR, even within the normal range, exhibited a significant association with CVDs in our study even after adjusting for confounding factors. Several studies pointed out that low-grade albuminuria can predict the incidence of CVDs events and CVDs death. The Framingham Study, including middle-aged non-hypertensive and nondiabetic individuals with normal UACR, found that low-grade UACR well below the abnormal threshold can effectively indicate the development of CVDs. Any degree of albuminuria has been proven to be a risk factor for CVDs in diabetic and non-diabetic patients; the risk increases with albuminuria, even below the microalbuminuria cutoff. Every 3.5mg/g increment in UACR conferred a 5.9% increased risk of CVDs across a wide spectrum of UACR after adjustment for age and sex. Arnlov J et al. proposed that a nearly 3-fold increased risk of CVDs in people without HTN and T2DM but with UACR ≥ 3.9mg/g in men, ≥ 7.5mg/g in women, which was equal to the sex-specific median value.

In our study, we also found a positive association between UACR within the normal range and the risk of CVDs. CVDs events has been pronounced to be predictable by UACR variation within the normal range. The discrepancies between UACR within the normal range and CVDs in different subgroups might be account for the interaction of stratification variables with CVDs. It is documented that UACR was significantly associated with components of metabolic syndrome, including blood glucose, pressure and lipids level. ACC/AHA and ESC/EAS guidelines have recommended LDL-C to be the most crucial risk lipid factor and therapeutic goal for CVDs, and the association between UACR within the normal range and CVDs in participants with dyslipidemia was at the borderline significant level in our study. It is well noticing that despite the achievement of optimal LDL-C level, a worrisome number of CVDs events still occur in clinical practice. In fact, the contribution of other lipid components and subfractions to CVDs development is increasingly being recognized. Traditionally, high HDL-C was confirmed to be protective against the incidence and development of atherosclerosis, and low HDL-C was associated with increased risk of CVDs. However, recent clinical trials reported that low HDL-C is not a cause of atherosclerosis, as originally thought, renewed interest in elevated TG has been generated. A growing up of studies supported the theory that elevated TG has a remarkable association with increased risk of CVDs. Moreover, reports from the CACTI Study pointed out that TG independently predicted increased odds of both related CVDs and albuminuria in patients with diabetes. Apart from this, several studies placed great importance on the average levels and ideal targets of glycemic parameters, and it was shown that individuals with CVDs can benefit from well control of blood glucose. Although elevated glucose parameters has been treated as a modifiable
cardiovascular risk factor and a robust predictor of CVDs, HbA1c serves as a superior indicator of cardiovascular events than FBG and PBG in clinical practice. This might be account for the fluctuation of FBG and PBG in different individuals, which could be influenced by various factors. Lots of researches have been carried out on the relationship between HTN and CVDs. The relationship between blood pressure and the increased risk of CVDs has been reported to be graded and continuous, starting from 115/75 mmHg, well within what is thought to be the normotensive range. In fact, it is of great importance to comprehensively consider the predicted risk of atherosclerotic CVDs rather than the level of blood pressure alone, as patients with high CVDs risk could derive the benefits from blood pressure lowering treatment. Moreover, an association has also been reported between albuminuria, stroke and peripheral vascular diseases in several studies. The presence of albuminuria may occur due to vascular damage, indicating systemic endothelial dysfunction. The abovementioned evidence may further support our findings. Thus, early identification and prevention of albuminuria is of great significance and could contribute to reducing the risk of CVDs.

Limitations

Our study was a multi-center study based on seven-region community population, which representatively demonstrate the distribution of different regions across China. However, there are still limitations in our study. First, the variables in our study were measured at the same time. As a feature of the cross-sectional study, only associations, rather than causality, can be determined. Thus, the association of UACR with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs should be further explored in follow-up studies. Second, because the elderly population were from China, the association among other ethnic populations are needed to be confirmed. Third, although the participants using ACEI/ARB were excluded in our study, the possibility that other medications may partially influence the association could not be eliminated. Herein, we emphasize the association between UACR, even within the normal range and increased risk of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs, and such people should be vigilant about the detection, avoidance and intervention of the presence of albuminuria.

Conclusion

In summary, we observe the higher prevalence of HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in abnormal UACR and reveal a significant association of UACR, even within the normal range, with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs. Thus, we propose that albuminuria might be a simple and efficient indicator of the metabolic diseases as well as CVDs and targeting the early prevention as well as intervention of albuminuria metabolism may increase the possibility of successful drug discovery in the field of CVDs and its related diseases.

Declarations

Availability of data and materials

The datasets used to support this study are not freely available due to participants’ privacy protection.
Funding:

The study is supported by the Chinese Society of Endocrinology, the Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health (1994DP131044), the National Key New Drug Creation and Manufacturing Program of Ministry of Science and Technology (2012ZX09303006-001), the National High Technology Research and Development Program of China (863 Program, 2011AA020107), National Science Foundation of China (81300717), National Science and Technology Major Project 288 (2011ZX09307-001-08), the REACTION Study.

Acknowledgements:

We would like to thank the participants in this study.

Competing interests:

The authors declare no competing interests.

Consent for publication:

Not applicable.

Ethics approval and consent to participate:

The study protocol was approved by the Committee on Human Research at Rui-Jin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University. Informed consents were provided by all participants before data collection.

Authors’ contributions:

All authors have read and approved the final manuscript.
YM and JW contributed to the conception and design of the study. YL, KC, YW, WG, ZL, AW, WW, ZG, XT, LY, QW, ZL, GQ, LC, YH and LJ recruited the subjects and supervised the study. JW analyzed the data and wrote the initial draft of the paper. YMJW, YL, YW, WG and ZL contributed to the writing, reviewing, and revising of the manuscript.

References

1. Li MF, Tu YF, Li LX, et al. Low-grade albuminuria is associated with early but not late carotid atherosclerotic lesions in community-based patients with type 2 diabetes. Cardiovasc Diabetol 2013;12:110.

2. Roscioni SS, Lambers Heerspink HJ, de Zeeuw D. Microalbuminuria: target for renoprotective therapy PRO. Kidney Int 2014;86:40-9.

3. van der Velde M, Halbesma N, de Charro FT, et al. Screening for albuminuria identifies individuals at increased renal risk. J Am Soc Nephrol 2009;20:852-62.

4. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. Jama 2011;305:2532-9.
5. Nakayama T, Date C, Yokoyama T, Yoshiike N, Yamaguchi M, Tanaka H. A 15.5-year follow-up study of stroke in a Japanese provincial city. The Shibata Study. Stroke 1997;28:45-52.

6. Yuyun MF, Khaw KT, Luben R, et al. Microalbuminuria and stroke in a British population: the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) population study. J Intern Med 2004;255:247-56.

7. Jessani S, Levey AS, Chaturvedi N, Jafar TH. High normal levels of albuminuria and risk of HTN in Indo-Asian population. Nephrol Dial Transplant 2012;27 Suppl 3:iii58-64.

8. Park SK, Seo MH, Ryoo JH, et al. Urinary albumin excretion within the normal range predicts the development of diabetes in Korean men. Diabetes Res Clin Pract 2015;109:427-33.

9. Nam GE, Han K, Kim DH, et al. Relationship between dyslipidemia and albuminuria in prediabetic adults: the Korea National Health and Nutrition Examination Survey 2011-2012. Endocrine 2015;48:557-65.

10. Wang YX, Wang AP, Ye YN, et al. Elevated triglycerides rather than other lipid parameters are associated with increased urinary albumin to creatinine ratio in the general population of China: a report from the REACTION study. Cardiovasc Diabetol 2019;18:57.

11. Ning G. Risk Evaluation of cAnCers in Chinese diabeTic Individuals: a IONgitudinal (REACTION) study. J Diabetes 2012;4:172-3.

12. Bi Y, Lu J, Wang W, et al. Cohort profile: risk evaluation of cancers in Chinese diabetic individuals: a longitudinal (REACTION) study. J Diabetes 2014;6:147-57.

13. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604-12.

14. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013;158:825-30.

15. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:2073-81.

16. Brantsma AH, Bakker SJ, de Zeeuw D, de Jong PE, Gansevoort RT. Urinary albumin excretion as a predictor of the development of HTN in the general population. J Am Soc Nephrol 2006;17:331-5.

17. Wang TJ, Evans JC, Meigs JB, et al. Low-grade albuminuria and the risks of HTN and blood pressure progression. Circulation 2005;111:1370-6.

18. Forman JP, Fisher ND, Schopick EL, Curhan GC. Higher levels of albuminuria within the normal range predict incident HTN. J Am Soc Nephrol 2008;19:1983-8.

19. Rossi R, Chiurlia E, Nuzzo A, Cioni E, Origliani G, Modena MG. Flow-mediated vasodilation and the risk of developing HTN in healthy postmenopausal women. J Am Coll Cardiol 2004;44:1636-40.

20. Ballermann BJ, Stan RV. Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. J Am Soc Nephrol 2007;18:2432-8.

21. Abdelhafiz AH, Ahmed S, El Nahas M. Microalbuminuria: marker or maker of cardiovascular disease. Nephron Exp Nephrol 2011;119 Suppl 1:e6-10.
22. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989;32:219-26.

23. Hirayama A, Konta T, Hozawa A, et al. Slight increase in urinary albumin excretion within the normal range predicts incident HTN in a community-based Japanese population: the Takahata study. Hypertens Res 2015;38:56-60.

24. Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472-7.

25. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003;41:1387-93.

26. Potier L, Chequer R, Roussel R, et al. Relationship between cardiac microvascular dysfunction measured with 82Rubidium-PET and albuminuria in patients with diabetes mellitus. Cardiovasc Diabetol 2018;17:11.

27. Jones CA, Francis ME, Eberhardt MS, et al. Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. American journal of kidney diseases : the official journal of the National Kidney Foundation 2002;39:445-59.

28. Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. Jama 2001;286:421-6.

29. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013;36 Suppl 1:S67-74.

30. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama 2003;289:2560-72.

31. 2003 European Society of HTN-European Society of Cardiology guidelines for the management of arterial HTN. J Hypertens 2003;21:1011-53.

32. Martens RJH, Houben A, Kooman JP, et al. Microvascular endothelial dysfunction is associated with albuminuria: the Maastricht Study. Journal of HTN 2018;36:1178-87.

33. Tanaka F, Komi R, Makita S, et al. Low-grade albuminuria and incidence of cardiovascular disease and all-cause mortality in nondiabetic and normotensive individuals. Journal of HTN 2016;34:506-12; discussion 12.

34. Jager A, Kostense PJ, Ruhe HG, et al. Microalbuminuria and peripheral arterial disease are independent predictors of cardiovascular and all-cause mortality, especially among hypertensive subjects: five-year follow-up of the Hoorn Study. Arteriosclerosis, thrombosis, and vascular biology 1999;19:617-24.

35. Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002;106:1777-82.

36. Xu J, Knowler WC, Devereux RB, et al. Albuminuria within the "normal" range and risk of cardiovascular disease and death in American Indians: the Strong Heart Study. Am J Kidney Dis 2007;49:208-16.

37. Amlöv J, Evans JC, Meigs JB, et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation 2005;112:969-75.
38. Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. Jama 2001;286:421-6.

39. Yuyun MF, Khaw KT, Luben R, et al. Microalbuminuria independently predicts all-cause and cardiovascular mortality in a British population: The European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) population study. Int J Epidemiol 2004;33:189-98.

40. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J 2016;37:2999-3058.

41. Deedwania P, Barter P, Carmena R, et al. Reduction of low-density lipoprotein cholesterol in patients with coronary heart disease and metabolic syndrome: analysis of the Treating to New Targets study. Lancet 2006;368:919-28.

42. Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 2012;380:581-90.

43. Tani S, Yagi T, Atsumi W, Kawauchi K, Matsuo R, Hirayama A. Relation between low-density lipoprotein cholesterol/apolioprotein B ratio and triglyceride-rich lipoproteins in patients with coronary artery disease and type 2 diabetes mellitus: a cross-sectional study. Cardiovasc Diabetol 2017;16:123.

44. Zheng T, Ge B, Liu H, et al. Triglyceride-mediated influence of serum angiopoietin-like protein 8 on subclinical atherosclerosis in type 2 diabetic patients: results from the GDMD study in China. Cardiovasc Diabetol 2018;17:84.

45. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. Jama 1986;256:2835-8.

46. Haase CL, Tybjærg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab 2012;97:E248-56.

47. Bjornstad P, Maahs DM, Wadwa RP, et al. Plasma triglycerides predict incident albuminuria and progression of coronary artery calcification in adults with type 1 diabetes: the Coronary Artery Calcification in Type 1 Diabetes Study. J Clin Lipidol 2014;8:576-83.

48. Kim MK, Ahn CW, Kang S, Nam JS, Kim KR, Park JS. Relationship between the triglyceride glucose index and coronary artery calcification in Korean adults. Cardiovasc Diabetol 2017;16:108.

49. Tinsley LJ, Kupelian V, D’Eon SA, et al. Association of Glycemic Control With Reduced Risk for Large-Vessel Disease After More Than 50 Years of Type 1 Diabetes. J Clin Endocrinol Metab 2017;102:3704-11.

50. Paneni F, Lüscher TF. Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. Am J Cardiol 2017;120:S17-s27.

51. Borg R, Kuenen JC, Carstensen B, et al. HbA\textsubscript{1c} and mean blood glucose show stronger associations with cardiovascular disease risk factors than do postprandial glycaemia or glucose variability in persons with diabetes: the A1C-Derived Average Glucose (ADAG) study. Diabetologia 2011;54:69-72.

52. Oparil S, Acelajado MC, Bakris GL, et al. HTN. Nat Rev Dis Primers 2018;4:18014.
53. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet 2014;384:591-8.

54. Earle KA, Mishra M, Morocutti A, et al. Microalbuminuria as a marker of silent myocardial ischaemia in IDDM patients. Diabetologia 1996;39:854-6.

55. Zander E, Heinke P, Reindel J, et al. Peripheral arterial disease in diabetes mellitus type 1 and type 2: are there different risk factors? VASA Zeitschrift fur Gefasskrankheiten 2002;31:249-54.

Tables

Table 1 Characteristics of total population
Variables	All participants	
Age	57.58 (52.40-63.93)	
BMI	24.34 (22.19-26.64)	
ALT	15.00 (11.00-21.00)	
AST	20.00 (17.00-25.00)	
SBP	130.00 (117.00-145.00)	
DBP	77.00 (70.00-84.00)	
HR	78.00 (71.00-86.00)	
TC	5.06 (4.33-5.79)	
TG	1.38 (0.98-1.99)	
LDL-C	2.94 (2.36-3.55)	
HDL-C	1.29 (1.09-1.52)	
FBG	5.54 (5.11-6.19)	
PBG	7.41 (6.02-9.78)	
HbA1c	5.90 (5.60-6.30)	
eGFR	95.32 (90.93-99.01)	
UACR	10.17 (5.92-20.13)	
Sex	N (%)	
men	12223 (30.41%)	
women	27965 (69.59%)	
Smoking		
No	34287 (85.32%)	
Occasional	1209 (3.01%)	
Frequently	4692 (11.68%)	
Drinking		
No	30136 (74.99%)	
Occasional	7457 (18.56%)	
Frequently	2595 (6.46%)	
Antihypertensive drugs		
Yes	6452 (16.05%)	
Condition	Yes	No
----------------------------	-----------	-----------
Hypoglycemic drugs	3776 (9.40%)	36412 (90.60%)
T2DM	6205 (15.44%)	33983 (84.56%)
HTN	17386 (43.26%)	22802 (56.74%)
CVDs	2225 (5.54%)	37963 (94.46%)
Dyslipidemia	17017 (42.34%)	23171 (57.66%)

Data were mean ± SD or median (Q1-Q3) for non-normal distribution of variables or numbers (%) for categorical variables

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; ALT: alanine transferase; AST: aspartate transferase; HR: hearts rate; TG: triglyceride; TC: high cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; FBG: fasting plasma glucose; PBG: 2 h post-load blood glucose; HbA1c: glycosylated hemoglobin; eGFR: estimated glomerular filtration rate; T2DM: type 2 diabetes mellitus; CVDs: cardiovascular diseases; UACR: urinary albumin to creatinine ratio
Table 2 Associations of UACR with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in the general population.

Exposure	Model 1	Model 2	Model 3
	OR 95%CI P-value	OR 95%CI P-value	OR 95%CI P-value
HTN			
Continuous UACR	1.00 (1.00, 1.00) <0.0001	1.00 (1.00, 1.00) 0.0001	1.00 (1.00, 1.00) 0.0004
Categorical UACR			
<30 mg/g	1.0	1.0	1.0
≥ 30 mg/g	2.33 (2.20, 2.47) <0.0001	1.89 (1.77, 2.01) <0.0001	1.76 (1.65, 1.88) <0.0001
T2DM			
Continuous UACR	1.00 (1.00, 1.00) 0.0017	1.00 (1.00, 1.00) 0.0018	1.00 (1.00, 1.00) 0.0106
Categorical UACR			
<30 mg/g	1.0	1.0	1.0
≥ 30 mg/g	2.58 (2.42, 2.76) <0.0001	2.21 (2.06, 2.36) <0.0001	1.98 (1.84, 2.12) <0.0001
HTN with T2DM			
Continuous UACR	1.00 (1.00, 1.00) 0.0002	1.00 (1.00, 1.00) 0.0001	1.00 (1.00, 1.00) <0.0001
Categorical UACR			
<30 mg/g	1.0	1.0	1.0
≥ 30 mg/g	3.09 (2.87, 3.33) <0.0001	2.50 (2.31, 2.70) <0.0001	2.37 (2.19, 2.57) <0.0001
Dyslipidemia			
Continuous UACR	1.00 (1.00, 1.00) 0.1352	1.00 (1.00, 1.00) 0.2151	1.00 (1.00, 1.00) 0.4618
Categorical UACR			
<30 mg/g	1.0	1.0	1.0
≥ 30 mg/g	1.28 (1.21, 1.35) <0.0001	1.18 (1.12, 1.25) <0.0001	1.08 (1.01, 1.14) 0.0154
CVDs			
Continuous UACR	1.00 (1.00, 1.00) 0.4427	1.00 (1.00, 1.00) 0.7463	1.00 (1.00, 1.00) 0.8571
Categorical UACR			
<30 mg/g	1.0	1.0	1.0
≥ 30 mg/g	1.86 (1.68, 2.06) <0.0001	1.30 (1.17, 1.45) <0.0001	1.14 (1.02, 1.27) 0.0244

Model 1: unadjusted;
Model 2: adjusted for age, BMI,

Model 3: additionally adjusted for sex, ALT, AST, eGFR, SBP, DBP, HR, TG, TC, LDL, HDL, FBG, PBG, smoking, drinking, based on Model 2;

Abbreviations: OR: odds ratio; CI: confidential interval; BMI: body mass index; ALT: alanine transferase; AST: aspartate transferase; eGFR: estimated glomerular filtration rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: hearts rate; TG: triglyceride; TC: high cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; FBG: fasting plasma glucose; PBG: 2 h post-load blood glucose; T2DM: type 2 diabetes mellitus; CVDs: cardiovascular diseases; UACR: urinary albumin to creatinine ratio

Table 3 Associations of UACR with HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in participants with normal UACR (<30mg/g).
Exposure	Model 1	Model 2	Model 3
	OR 95%CI	OR 95%CI	OR 95%CI
	P-value	P-value	P-value
HTN			
Continuous UACR	1.03(1.03, 1.03). <0.0001	1.02(1.02, 1.03). <0.0001	1.02(1.02,1.03). <0.0001
UACR quintiles			
Q1	1.0	1.0	1.0
Q2	1.11 (1.04, 1.19) 0.0012	1.08 (1.01, 1.16). 0.0218	1.08 (1.01, 1.16). 0.0286
Q3	1.34 (1.25, 1.43). <0.0001	1.28 (1.19, 1.37). <0.0001	1.29 (1.20, 1.39). <0.0001
Q4	1.65 (1.55, 1.76). <0.0001	1.44 (1.34, 1.54). <0.0001	1.45 (1.35, 1.56). <0.0001
Q5	1.80 (1.64, 1.98). <0.0001	1.53 (1.38, 1.70). <0.0001	1.55 (1.40, 1.72). <0.0001
T2DM			
Continuous UACR	1.04 (1.03, 1.04). <0.0001	1.03 (1.03, 1.04). <0.0001	1.03 (1.03, 1.04). <0.0001
UACR quintiles			
Q1	1.0	1.0	1.0
Q2	1.21 (1.09, 1.34) 0.0003	1.18 (1.07, 1.31). 0.0013	1.18 (1.06, 1.31). 0.0025
Q3	1.42 (1.29, 1.57). <0.0001	1.35 (1.23, 1.50). <0.0001	1.35 (1.22, 1.50). <0.0001
Q4	1.89 (1.72, 2.07). <0.0001	1.69 (1.53, 1.86). <0.0001	1.67 (1.51, 1.85). <0.0001
Q5	2.41 (2.13, 2.74). <0.0001	2.14 (1.88, 2.44). <0.0001	2.17 (1.90, 2.48). <0.0001
HTNwithT2DM			
Continuous UACR	1.04 (1.04, 1.05). <0.0001	1.04 (1.03, 1.04). <0.0001	1.04 (1.03, 1.04). <0.0001
UACR quintiles			
Q1	1.0	1.0	1.0
Q2	1.34 (1.17, 1.53). <0.0001	1.30 (1.14, 1.49). 0.0002	1.29 (1.13, 1.49). 0.0002
Q3	1.57 (1.38, 1.79). <0.0001	1.44 (1.26, 1.65). <0.0001	1.45 (1.26, 1.65). <0.0001
Q4	2.26 (2.00, 2.55).	1.91 (1.69, 2.17).	1.90 (1.67, 2.17).
----	-------------------	-------------------	-------------------
Q5	2.72 (2.32, 3.19).	2.28 (1.93, 2.68).	2.32 (1.96, 2.75).

Dyslipidemia

| Continuous UACR | 1.01 (1.01, 1.01) | 1.01 (1.00, 1.01) | 1.01 (1.00, 1.01) |
| UACR quintiles | <0.0001 | <0.0001 | 0.0005 |

Q1	1.0	1.0	1.0
Q2	1.02 (0.96, 1.09).	1.03 (0.96, 1.09).	1.02 (0.96, 1.09).
Q3	1.13 (1.06, 1.20).	1.13 (1.06, 1.20).	1.12 (1.05, 1.19).
Q4	1.17 (1.10, 1.25).	1.14 (1.07, 1.21).	1.12 (1.04, 1.19).
Q5	1.21 (1.10, 1.33).	1.17 (1.06, 1.28).	1.14 (1.03, 1.26).

CVDs

| Continuous UACR | 1.02 (1.02, 1.03). | 1.01 (1.00, 1.02). | 1.01 (1.00, 1.01). |
| UACR quintiles | <0.0001 | 0.0063 | 0.0940 |

Q1	1.0	1.0	1.0
Q2	1.08 (0.92, 1.26).	1.00 (0.86, 1.17).	0.99 (0.85, 1.16).
Q3	1.28 (1.11, 1.49).	1.10 (0.95, 1.28).	1.09 (0.94, 1.27).
Q4	1.49 (1.29, 1.72).	1.13 (0.97, 1.31).	1.08 (0.93, 1.25).
Q5	1.82 (1.50, 2.21).	1.34 (1.10, 1.64).	1.23 (1.00, 1.51).

Model 1: unadjusted;
Model 2: adjusted for age, BMI,
Model 3: additionally adjusted for sex, ALT, AST, eGFR,SBP, DBP, HR, TG,TC, LDL,HDL, FBG,PBG, smoking, drinking, based on Model 2;

Abbreviations: OR: odds ratio; CI: confidential interval; BMI: body mass index; ALT: alanine transferase; AST: aspartate transferase; eGFR: estimated glomerular filtration rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: hearts rate; TG: triglyceride; TC: high cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; FBG: fasting plasma glucose; PBG: 2 h post-load
blood glucose; T2DM: type 2 diabetes mellitus; CVDs: cardiovascular diseases; UACR: urinary albumin to creatinine ratio

Table 4 Stratified analysis of associations between UACR and HTN, T2DM, HTN with T2DM, dyslipidemia and CVDs in participants with normal UACR (<30mg/g) in model 3.
Exposure	HTN	T2DM	Dyslipidemia	CVDs						
	OR 95%CI P-value	OR 95%CI P-value	OR 95%CI P-value	OR 95%CI P-value						
	No	Yes								
HTN										
Continuous UACR	1.02 (1.02, 1.03)	1.02 (1.03, 1.03)	1.02 (1.02, 1.03)	1.02 (1.03, 1.05)						
	<0.0001	0.0001	<0.0001	<0.0001						
UACR quintiles										
Q1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Q2	1.06 (0.98, 1.14)	1.09 (0.99, 1.19)	1.07 (0.96, 1.19)	1.10 (1.02, 1.18)						
	0.1287	0.0826	0.2155	0.0107						
Q3	1.31 (1.22, 1.42)	1.29 (1.06, 1.58)	1.27 (1.15, 1.42)	1.29 (1.20, 1.39)						
	<0.0001	0.0113	<0.0001	<0.0001						
Q4	1.46 (1.35, 1.58)	1.43 (1.30, 1.57)	1.46 (1.32, 1.63)	1.47 (1.36, 1.58)						
	<0.0001	<0.0001	<0.0001	<0.0001						
Q5	1.64 (1.46, 1.84)	1.51 (1.31, 1.74)	1.58 (1.35, 1.84)	1.53 (1.38, 1.71)						
	<0.0001	<0.0001	<0.0001	<0.0001						
T2DM	1.04 (1.03, 1.05)	1.03 (1.02, 1.03)	1.03 (1.02, 1.04)	1.03 (1.03, 1.04)						
	<0.0001	<0.0001	<0.0001	<0.0001						
UACR quintiles										
Q1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Q2	1.12 (0.96, 1.30)	1.30 (1.12, 1.51)	1.30 (1.12, 1.51)	1.17 (1.05, 1.30)						
	0.1446	0.0004	0.0004	0.0049						
Q3	1.43 (1.23, 1.66)	1.35 (1.17, 1.57)	1.36 (1.15, 1.53)	1.36 (1.15, 1.51)						
	<0.0001	<0.0001	<0.0001	<0.0001						

Page 25/29
	Q4									
	1.74	1.68	1.68	1.65	1.98					
	(1.50,	(1.46,	(1.45,	(1.49,	(1.38,					
	2.02)	1.92)	1.95)	1.83)	2.84)					
	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001					
Q5	2.50	2.02	2.15	2.20	1.86					
	(2.05,	(1.68,	(1.77,	(1.91,	(1.18,					
	3.06)	2.42)	2.61)	2.55)	2.95)					
	<0.0001	<0.0001	<0.0001	<0.0001	0.0081					
HTN with T2DM										
Continuous UACR										
	1.03	1.04	1.04	1.03	1.07					
	(1.02,	(1.03,	(1.03,	(1.01,	(0.70,					
	1.04)	1.05)	1.04)	1.05)	1.65)					
	0.0037	0.0274	0.0002	0.7597						
UACR quintiles										
Q1	1.0	1.0	1.0	1.0	1.0					
Q2	1.35	1.24	1.32	1.07	0.70					
	(1.10,	(1.02,	(1.14,	(1.14,	(0.70,					
	1.65)	1.49)	1.53)	1.65)	1.65)					
	0.0037	0.0274	0.0002	0.7597						
Q3	1.44	1.42	1.46	1.22	0.81					
	(1.17,	(1.18,	(1.27,	(0.81,	(0.81,					
	1.75)	1.71)	1.69)	1.83)	1.83)					
	0.0004	0.0002	<0.0001	0.3468						
Q4	1.81	1.91	1.90	1.82	1.24					
	(1.49,	(1.61,	(1.66,	(1.24,	(1.24,					
	2.19)	2.28)	2.18)	2.67)	2.67)					
	<0.0001	<0.0001	<0.0001	0.0023						
Q5	1.96	2.54	2.37	1.85	3.03					
	(1.52,	(2.02,	(1.98,	(1.13,	(1.13,					
	2.54)	3.18)	2.83)	3.03)	3.03)					
	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001					
Dyslipidemia										
Continuous UACR										
	1.01	1.01	1.01	1.01	1.01					
	(1.00,	(1.00,	(1.00,	(1.00,	(1.00,					
	1.01)	1.01)	1.01)	1.01)	1.01)					
	0.0029	0.0137	0.0052	0.0873	0.0887					
UACR quintiles										
Q1	1.0	1.0	1.0	1.0	1.0					
Q2	1.06	0.97	1.05	0.80	1.11					
	(0.98,	(0.87,	(0.98,	(0.66,	(0.81,					
	1.15)	1.08)	1.12)	0.97)	1.52)					
	0.1506	0.5983	0.1864	0.0260	0.6392					
Q3	1.17	1.07	1.12	1.03	1.10					
	1.10	1.41	1.10	1.41	1.10					
Q4	1.15	(1.05, 1.26)	1.11	(1.04, 1.20)	1.03	(0.86, 1.24)	1.11	(1.04, 1.19)	1.24	(0.96, 1.75)
----	------	-------------	------	-------------	------	-------------	------	-------------	------	-------------
	0.0016	0.0835	0.0029	0.7473	0.0024	0.0893	0.0126	0.2911		
Q5	1.15	(1.01, 1.32)	1.14	(0.99, 1.32)	1.13	(1.02, 1.27)	1.08	(0.85, 1.37)	1.14	(1.03, 1.26)
	0.0399	0.0663	0.0245	0.5193	0.0126	0.2911				

CVDs

| Continuous UACR | 0.99 | (0.98, 1.01) | 1.01 | (1.00, 1.02) | 1.00 | (0.99, 1.00) | 1.01 | (1.00, 1.02) | 1.01 | (1.00, 1.02) |
| UACR quintiles | 0.3881 | 0.0572 | 0.3992 | 0.2324 | 0.0349 |

Q1	1.0	1.0	1.0	1.0	1.0					
Q2	1.17	(0.91, 1.50)	0.88	(0.71, 1.08)	0.96	(0.80, 1.15)	1.07	(0.75, 1.52)	0.92	(0.74, 1.14)
	0.2137	0.2078	0.6418	0.7076	0.4346	0.5444				
Q3	1.06	(0.82, 1.37)	1.05	(0.86, 1.27)	1.08	(0.91, 1.28)	1.10	(0.78, 1.54)	0.92	(0.74, 1.13)
	0.6545	0.6316	0.4045	0.5884	0.4166	0.0188				
Q4	0.95	(0.73, 1.23)	1.07	(0.89, 1.29)	0.97	(0.82, 1.16)	1.30	(0.95, 1.78)	0.94	(0.76, 1.15)
	0.6832	0.4910	0.7709	0.1038	0.5439	0.0526				
Q5	1.01	(0.69, 1.49)	1.24	(0.97, 1.59)	1.25	(0.99, 1.59)	1.14	(0.76, 1.70)	1.18	(0.89, 1.56)
	0.9542	0.0829	0.0624	0.5323	0.2595	0.0898				

Model 1: unadjusted;

Model 2: adjusted for age, BMI,

Model 3: additionally adjusted for sex, ALT, AST, eGFR, SBP, DBP, HR, TG, TC, LDL, HDL, FBG, PBG, smoking, drinking, based on Model 2;

Abbreviations: OR: odds ratio; CI: confidential interval; BMI: body mass index; ALT: alanine transferase; AST: aspartate transferase; eGFR: estimated glomerular filtration rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: hearts rate; TG: triglyceride; TC: high cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; FBG: fasting plasma glucose; PBG: 2 h post-load
blood glucose; T2DM: type 2 diabetes mellitus; CVDs: cardiovascular diseases; UACR: urinary albumin to creatinine

Figures

Figure 1
Flowchart of the selection study participants

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.doc
- TableS2.doc
- TableS3.doc
- TableS4.doc