Epidemiologic Features of Lyme Disease in New York

JOHN P. HANRAHAN, M.D.,* JORGE L. BENACH, Ph.D.,b
JAMES L. COLEMAN, M.S.,b EDWARD M. BOSLER, Ph.D.,b
JOHN C. GRABAU, Ph.D.,c AND DALE L. MORSE, M.D.c

*Field Services Division, Centers for Disease Control,
Assigned to the New York State Department of Health,
Albany, New York; bNew York State Department of Health,
Health Sciences Center, SUNY at Stony Brook,
Stony Brook, New York; cNew York State Department of Health,
Bureau of Communicable Disease Control, Albany, New York

Received January 26, 1984

During 1982, surveillance identified 207 cases of Lyme disease in New York State. Cases were clustered in two geographic areas, eastern Long Island and northern Westchester counties. Symptoms and signs of Lyme disease in cases were consistent with previous reports, with erythema chronicum migrans (ECM) being the most frequently (77 percent) reported sign of disease. Facial palsy was reported in a surprisingly high 18 percent of cases. Of 160 cases whose sera were submitted for Lyme spirochete specific IgG antibody testing, 112 (70 percent) had titers ≥ 64, while 88 (55 percent) had titers ≥ 128. Positive titers were not associated with any single sign or symptom of disease, but were significantly associated with symptom onset or tick bite occurring during the three-month period of June, July, and August. We conclude that the incidence of Lyme disease in New York is much higher than previously recognized. In addition, our data suggest that a serologic test for Lyme-spirochete IgG antibody lacks sensitivity, but can be useful in confirming the diagnosis of Lyme disease when antibody titers are high.

Since Lyme disease (LD) was initially recognized in southern Connecticut in 1975 [1], its geographic distribution has expanded to include much of the northeastern seaboard and at least 15 states [2]. A spirochete present in Ixodes dammini ticks is now known to be the etiologic agent of the disease [3,4]. During 1980 and 1981 the New York State Department of Health received numerous reports of cases of LD from physicians and county health departments. In 1982, we initiated heightened passive surveillance to better define the distribution and epidemiologic features of LD in New York, and to assess serologic response to the Lyme spirochete in persons with the disease. We report here data on cases of Lyme disease occurring in 1982.

MATERIALS AND METHODS

Case Ascertainment and Reporting

Reporting of LD cases was encouraged by several mechanisms. First, practitioners were urged to report cases by articles on LD in the Health Department's Communicable Disease Newsletter, a monthly public health advisory sent statewide to all

643

Address reprint requests to: John P. Hanrahan, M.D., Bureau of Communicable Disease Control, New York State Dept. of Health, RM 651, Mayor E. Corning Tower Bldg., Empire State Plaza, Albany, NY 12237
Copyright © 1984 by the Yale Journal of Biology and Medicine, Inc.
All rights of reproduction in any form reserved.
practicing physicians. Second, individual letters were sent to more than 300 primary
care physicians in areas where previous case reports originated. Finally, serologic
testing for antibodies to the Lyme spirochete was offered free of charge to any prac-
titioner submitting sera from patients with suspected LD.

Information on reported cases was collected on a form which elicited
demographic information, tick exposure histories, and symptoms associated with the
disease.

For the purposes of this study, we defined a case as any person reported by a
physician to have Lyme disease with symptoms beginning in 1982 and who had at
least one of the following disease manifestations: erythema chronicum migrans
(ECM), aseptic meningitis (fever, headache, and stiff neck), facial nerve palsy,
and/or large joint arthritis.

Serologic Assay

Stock cultures of the *I. dammini* spirochete maintained in modified Kelly's
medium [5] were fixed to the wells of microtiter slides in a method previously de-
scribed [4]. Sera from persons with suspected LD were tested in pairs when two or
more specimens were obtained, or singly when one specimen was available. Both
positive and negative control specimens were tested simultaneously. Indirect im-
munofluorescence was performed using fluorescein isothiocyanate-(FITC) labeled
goat anti-human IgG serum (Cappel Laboratories, Cochranville, PA). Sera reactive
at $\geq 1:16$ were titered to endpoint dilution.

Control Sera

As control sera, we utilized specimens obtained for premarital syphilis screening
from 329 persons who lived in two upstate counties, located more than 200 miles
from any area known to be endemic for LD. All specimens were submitted to the
New York State Department of Health Laboratories between July and September
1982. None were reactive when tested by automated reagin test (ART). Clinical
histories of LD or other illnesses on these patients were not known.

Analysis of Data

Data from case report forms and serologic results were computerized. Data from
seropositive and seronegative persons were compared, using Pearson's chi-square
contingency test. This comparison was conducted twice. Seropositives were first
declared as persons with convalescent sera collected more than two weeks after first
symptoms of LD with titers ≥ 64. These cases were compared with seronegative per-
songs having convalescent titers <64. Seropositives were defined in the second com-
parison as persons with titers ≥ 256, who were again compared to seronegative per-
songs with titers <64.

Persons with paired sera who demonstrated a fourfold rise in IgG antibody titer
were also compared to persons with paired sera demonstrating no fourfold rise and
no single titer ≥ 64. In this comparison, the acute serum specimen was required to be
collected within two weeks of symptom onset.

Each case was given a clinical index score ranging from 0–25, based upon their
reported symptoms. Index scores were derived from the presence of the following
symptoms: ECM (10 points), fever (2), aseptic meningitis (3), large joint arthritis
(5), facial palsy (3), and palpitations (2). Index scores were compared for sero-
positive and seronegative cases.
RESULTS

During 1982, 207 cases of LD meeting the case definition were reported. Cases ranged in age from one to 79 years, with a mean age of 28 years. Forty-eight percent were men, and 52 percent were women. Cases were reported from 11 upstate counties and New York City, but 84 percent were residents of either Suffolk (56 percent) or Westchester (28 percent) counties (Fig. 1). Of 152 cases with tick bite information recorded, 130 (86 percent) reported a tick bite prior to illness. Of these, 102 (79 percent) occurred in Suffolk county, 25 (19 percent) in Westchester county, and 3 (2 percent) in other counties close to Suffolk or Westchester. Tick bites and ECM were reported to occur in every month except March, but 90 (71 percent) of 126 bites and 115 (75 percent) of 154 persons with ECM reported bite or ECM onset in the three-month period of June, July, and August (Fig. 2). In the 156 cases who had at least one serum specimen collected and who reported a precise date of onset, symptoms began in every month except February and March. Again, however, 101 (65 percent) had symptoms beginning in June, July, or August (Fig. 2).

Forty-six (23 percent) of 201 cases reported hospitalization as a result of LD. Length of stay ranged from 1-21 days, with a mean of 7.5 days. Antibiotic treatment was reported to have been given to 169 (82 percent) of 205 cases. Most frequently administered antibiotic therapy was penicillin (72.5 percent), followed by tetracycline (14.4 percent) and erythromycin (2.4 percent). Other antibiotics or antibiotic combinations accounted for the remaining 10.7 percent.

Symptoms and signs seen most commonly in cases included: ECM (77 percent), myalgias (72 percent), fever (65 percent), and headache (61 percent) (Table 1). Although joint pain was noted in 62 percent of cases, demonstrable joint swelling was reported in only 31 percent. The knee was affected more than twice as frequently.
By Month of Tick Bite (N = 126)
By Month of First Symptom Onset (N = 156)
(156 Persons with Serum Specimens)
By Month of ECM Onset (N = 154)

FIG. 2. 1982 Lyme disease cases.

TABLE I
Lyme Disease in New York—1982:
Frequency of Symptoms/Signs of Lyme Disease

Symptom/Sign	Number Reporting/Total	%
ECM	155/201	77
Malaise	150/198	76
Myalgias	143/198	72
Fever	129/198	65
Headache	120/197	61
Stiff neck	82/191	43
Nausea	36/198	18
Facial palsy	34/191	18
Palpitations	20/183	11
Temporomandibular joint pain	16/201	8
Large joint pain	124/201	62
Knee	101/201	50
Elbow	43/201	21
Hip	40/201	20
Ankle	33/201	16
Shoulder	32/201	16
Wrist	30/201	15
Large joint swelling	63/201	31
Knee	46/201	23
Elbow	14/201	7
Hip	7/201	4
Ankle	12/201	6
Shoulder	11/201	5
Wrist	11/201	5
as any other joint. Less commonly reported symptoms included facial palsy (18 percent) and palpitations (11 percent).

Of 160 cases who had at least one serum specimen collected more than two weeks after onset of symptoms, 112 (70 percent) had anti-spirochete IgG antibody titers of $\geq 1:64$, 88 (55 percent) had titers $\geq 1:128$, and 57 (36 percent) $\geq 1:256$. Of the 329 control serum specimens, 11 (3.3 percent) had titers $\geq 1:64$. Of these, ten were reactive at 1:64 and one at 1:128. No control specimens were positive at a dilution of 1:256. Of the 46 persons with paired sera and first specimen collected within two weeks of symptom onset, 35 (76 percent) had fourfold rises in antibody titer.

No single symptom of LD was significantly associated with positive IgG titers, either at a level of $\geq 1:64$ or at $\geq 1:256$ (Table 2). In addition, reported cases with high clinical index scores (many symptoms or signs suggestive of LD) were no more likely than persons with lower scores to have had positive titers, either at $\geq 1:64$, or $\geq 1:256$. Similarly, cases with positive titers were no more likely to have reported

Table 2

Lyme Disease in New York—1982: Features of Lyme Disease vs. Anti-Spirochete IgG Titers

Disease Feature (Number Reporting)	No. of Cases with Titers	p^*		
	<64	≥ 64	≥ 256	
ECM (155)				
Present	33	80	43	
Absent	14	28	13	NS
Large joint pain (160)				
Present	33	65	34	
Absent	15	47	23	NS
Large joint swelling (160)				
Present	12	39	22	
Absent	36	73	35	NS
Knee pain (160)				
Present	29	50	26	
Absent	19	62	51	NS
Knee swelling (160)				
Present	10	27	17	
Absent	38	85	40	NS
Facial palsy (155)				
Present	7	25	15	
Absent	40	83	39	NS
Palpitations (148)				
Present	7	10	8	
Absent	35	96	47	NS
Antibiotic therapy (158)				
Yes	35	91	48	
No	12	20	7	NS
Hospitalization (159)				
Yes	12	27	12	
No	36	84	45	NS
Tick bite (116)				
Yes	32	60	26	
No	5	19	10	NS
Month of bite (102)				
Jun, Jul, Aug	18	54	45	≥ 64: $X^2 = 6.43$; $p < 0.02$
Other	16	14	10	≥ 256: $X^2 = 7.12$; $p < 0.01$
Month of symptom onset (139)				
Jun, Jul, Aug	17	76	62	≥ 64: $X^2 = 21.4$; $p < 0.0001$
Other	27	19	11	≥ 256: $X^2 = 24.7$; $p < 0.0001$

Cases with titers ≥ 64 and ≥ 256 are compared to those with titers <64.
tick bites, to have been hospitalized, or to have received antibiotics. Time delay between first symptoms of LD and start of antibiotic therapy was also not found to be associated with positive titers or with development of joint pain or swelling. Thirty-four persons whose sera demonstrated a fourfold titer rise were no more likely than 11 non-converters to have had any single symptom or sign of Lyme disease, to have had higher clinical index scores, to have been treated with antibiotics or hospitalized, or to have reported a tick bite.

Cases with positive titers more frequently reported tick bites in June, July, or August than persons with negative titers (X² = 6.43; p < 0.02, for cases with titers ≥1:64; X² = 7.12, p < 0.01 for ≥1:256.) Cases with positive titers also more frequently reported symptom onset in these three months (X² = 21.4; p < 0.0001, for cases with titers ≥1:64, X² = 24.7; p < 0.0001, for ≥1:256).

DISCUSSION

Our findings lend further support to the accumulating evidence that LD is considerably more common than previously recognized. During 1980, when organized nationwide surveillance for LD was first initiated by the Centers for Disease Control (CDC), 226 cases from 13 states were reported, 11 of which were from New York [6]. In 1982, CDC received 487 Lyme disease case reports, with 179 from New York [7]. The increase in New York state cases can be attributed to three factors. First, case reports were more intensively solicited from physicians and county health departments. Second, serologic testing for Lyme spirochete antibodies was offered as a free service to practitioners, which served as an adjunct to case ascertainment. Finally, LD is probably being better recognized and diagnosed by physicians in endemic areas.

It is unclear if the rise in reported cases of LD represents any real increase in incidence or expansion of the endemic distribution of the Ixodes tick vector. However, nearly all cases reported tick bites in areas previously known to be endemic, suggesting that most of the 1982 cases resulted from better recognition of the disease.

Wherever it occurs, LD appears to be highly focal in its distribution. New York cases occurring in 1982 also followed this pattern, being clustered in two areas: the south shore and eastern forks of Long Island, and parts of northern Westchester County. Both areas share several features which contribute to the substantial incidence of LD: they have plentiful deer populations, they are endemic areas for Ixodes dammini ticks, and they have sufficient population densities to allow humans to serve as alternate tick hosts with some frequency. While other areas of New York have greater deer population density, I. dammini does not occur in areas farther north and west, accounting for the absence of cases reported from these areas.

The case definition we employed in this surveillance study was not as rigid as that required by the CDC and utilized in previous case series. Specifically, ECM was not required for inclusion in our case count. We purposely employed a less stringent case definition for two reasons. First, some cases of LD may occur without ECM, or where this sign is not recognized. We sought to quantitate the proportion of cases which were suspected by physicians on clinical grounds to be LD, who had signs or symptoms associated with the disease, but did not have ECM. Second, we wished to assess whether or not any particular sign or symptom in persons suspected of having LD, including ECM, was significantly associated with a serologic response. While some cases may have been included in our case count who did not have LD, we feel the number of non-cases is probably small. If we used a stricter case definition
demanding ECM, a fourfold rise in IgG titer, or a single IgG titer of \(\geq 128 \), 179 (86 percent) of the 207 cases would continue to be included.

Most symptoms or signs of LD were reported with frequencies consistent with that noted in previous reports [8,9]. However, myalgias (72 percent) and facial palsy (18 percent) occurred more frequently in our cases. The higher proportion of persons with facial palsy is in part due to inclusion of persons with palsy but without recognized ECM. Nonetheless, 21 (13.5 percent) of 155 persons with ECM reported palsy, a figure still substantially higher than previous reports [8,10]. Thirty (88 percent) of 34 persons with palsy had either ECM, a fourfold titer rise, or a single titer \(\geq 128 \), suggesting that 17 percent of our cases demonstrated this sign even when a stricter case definition is used.

Large joint swelling developed in 31 percent of patients, which is consistent with the 35–43 percent of patients treated with antibiotics who developed arthritis in previous reports [10,11]. Overall, more than 80 percent of our cases received antibiotic therapy.

The lack of association between IgG anti-spirochete titers and the individual symptoms or signs of LD suggests that each, considered separately, may be an unreliable predictor of Lyme spirochete infection. The absence of association between positive titers and ECM, the clinical sign used previously to define cases of LD, further suggests the serologic IgG assay may not be adequately sensitive to detect a high proportion of cases. This possibility was first noted by Steere et al. [3], who found only 22 (55 percent) of 40 persons with ECM as the only symptom of LD developed fourfold IgG titer rises.

Because no single symptom of LD was associated with positive titers, it is not surprising that high clinical index scores were also not associated with positive titers. A potential confounding variable, the presence or absence of antibiotic therapy, did not correlate with positive titers, nor did the length of time between start of symptoms and initiation of antibiotic therapy. These data should be viewed with caution, however, as cases were reported by more than 50 physicians. No attempt was made to verify clinical diagnoses, as surveillance was the primary purpose of the study. The usefulness of a clinical index score in predicting positive titers can perhaps best be determined in clinical trials, where diagnosis is uniform and verifiable, and where confounding variables such as type and timing of antibiotic therapy can be strictly controlled.

Although the serologic test for Lyme-spirochete IgG antibody is not sensitive, our data support previous evidence [3] that an IgG titer of \(\geq 128 \) is a specific marker of Lyme spirochete exposure. Only one (0.3 percent) of 329 control sera had positive titers at this level, compared to 88 (55 percent) of 160 reported cases.

The significant association between persons with reactive sera and tick bite and/or symptoms beginning in June, July, and August may imply that cases reported during these months are more likely to have LD. Previous reports have established that nymphal *Ixodes dammini* are the tick stage most frequently found during these three months [12], and that this stage is commonly infected with the Lyme spirochete [13]. Data from our study may indicate that nymphal Ixodes ticks are the most important stage involved in human transmission of LD, as tick bite history without respect to month was not associated with positive titers.

We conclude that the incidence of LD in certain areas of New York is much higher than previously appreciated. Although LD remains a clinical diagnosis, our data suggest that high titers of Lyme spirochete-specific IgG antibody in patients with
symptoms of LD can be helpful in confirming the diagnosis. However, a laboratory
test sufficiently sensitive to diagnose all cases of LD must await future refinements
or developments.

ACKNOWLEDGEMENTS

The authors wish to thank Drs. Richard Kaslow and Robert Edelman of the Epidemiology and
Biometry Section of the National Institute of Allergy and Infectious Disease for providing support for
serologic testing. Dr. Roy Stevens provided control sera. Ms. Donna Shadick and Ms. Christine Macejka
provided assistance in the preparation of the manuscript, and Ms. Marjory Simmons prepared the
figures. Mr. William Wallace and Mr. Forrest Mance assisted with data entry and analysis. Loraine Good
and Dr. John Andrews of the Epidemiology Program Office, CDC, reviewed the manuscript.

REFERENCES

1. Steere AC, Malawista SE, Snydman DR: Lyme arthritis: an epidemic of oligoarticular arthritis in
children and adults in three Connecticut communities. Arthritis Rheum 20:7–17, 1977
2. Centers for Disease Control: Lyme disease. Morbidity and Mortality Weekly Report 31:367–368, 1982
3. Steere AC, Grodzicki RL, Kornblatt AN, et al: The spirochetal etiology of Lyme disease. New England J
Med 308:733–740, 1983
4. Benach JL, Bosler EM, Hanrahan JP, et al: Spirochetes isolated from the blood of two patients with
Lyme disease. New England J Med 308:740–742, 1983
5. Barbour AG, Burgdorfer W, Hayes SF, et al: Isolation of a cultivable spirochete from Ixodes ricinus
ticks of Switzerland. Curr Microbiol 8:123–126, 1983
6. Centers for Disease Control: Lyme disease—United States, 1980. Morbidity and Mortality Weekly Report
30:489–497, 1981
7. Schmid G, Hightower A, Steere AC, et al: Lyme disease surveillance in the United States—1982.
Abstract No. 809. 23rd Interscience Conference on Antimicrobial Agents and Chemotherapy. October 24–26, 1983. Las Vegas, Nevada
8. Steere AC, Malawista SE, Hardin JA, et al: Erythema chronicum migrans and Lyme arthritis: the
enlarging clinical spectrum. Ann Intern Med 86:685–698, 1977
9. Steere AC, Bartenhagen NH, Craft JE, et al: The early clinical manifestations of Lyme Disease. Ann
Intern Med 99:76–82, 1983
10. Steere AC, Malawista SE, Newman JH, et al: Antibiotic therapy in Lyme Disease. Ann Intern Med
93:1–8, 1980
11. Steere AC, Hutchinson GJ, Rahn DW, et al: Treatment of the early manifestations of Lyme Disease.
Ann Intern Med 99:22–26, 1983
12. Main AJ, Carey AB, Carey MG, et al: Immature Ixodes dammini on small mammals in Connecticut, U.S.A. J Med Entomol 19:655–664, 1982
13. Bosler EM, Coleman JL, Benach JL, et al: Natural distribution of the Ixodes dammini spirochete.
Science 220:321–322, 1983