Extracting long basic sequences from systems of dispersed vectors

Workshop Warsaw 2013

Jarno Talponen

University of Eastern Finland

April 21, 2013
Abstract

Suppose $\{x_{\alpha}\}_{\alpha<\kappa} \subset X$ is a normalized suitably right separated (e.g. weakly null) sequence of a Banach space X. We consider the problem of finding a subsequence $\{x_{\alpha\beta}\}_{\beta<\kappa}$ which forms a monotone basic sequence, or something similar.

This problem differs considerably from the case with countable weakly null sequence. Also, monotonicity of a basic sequence is much weaker requirement than unconditionality. Countable weakly null sequences and the existence of unconditional subsequences have been studied in abundance in the literature. The conclusions and the techniques in our setting are quite different.

This talk is based on my recent paper available at ArXiv.
Some background and general remarks

- When working with a Banach space (separable or non-separable) the availability of an unconditional Schauder basis is very convenient.
Some background and general remarks

- When working with a Banach space (separable or non-separable) the availability of an unconditional Schauder basis is very convenient.
- The existence vs. non-existence of unconditional bases in different situations has been studied for some time, e.g. in connection to HI spaces and scarcity of operators on the space (References at the bottom).

It is a very natural question to look at a (countable or uncountable) sequence of vectors in a Banach space that is far from being constant, e.g. a weakly null sequence and trying to refine it further by selecting a subsequence to get a sequence of virtually ‘orthogonal’ vectors, e.g. an unconditional sequence.

In this refinement procedure one needs to control the ‘orthogonality’ of many subsets of the sequence. This can lead to heavily combinatorial considerations; Ramsey theory, cardinal invariants.
Some background and general remarks

- When working with a Banach space (separable or non-separable) the availability of an unconditional Schauder basis is very convenient.

- The existence vs. non-existence of unconditional bases in different situations has been studied for some time, e.g. in connection to HI spaces and scarcity of operators on the space (References at the bottom).

- It is a very natural question to look at a (countable or uncountable) sequence of vectors in a Banach space that is far from being constant, e.g. a weakly null sequence and trying to refine it further by selecting a subsequence to get a sequence of virtually ‘orthogonal’ vectors, e.g. an unconditional sequence.
Some background and general remarks

- When working with a Banach space (separable or non-separable) the availability of an unconditional Schauder basis is very convenient.
- The existence vs. non-existence of unconditional bases in different situations has been studied for some time, e.g. in connection to HI spaces and scarcity of operators on the space (References at the bottom).
- It is a very natural question to look at a (countable or uncountable) sequence of vectors in a Banach space that is far from being constant, e.g. a weakly null sequence and trying to refine it further by selecting a subsequence to get a sequence of virtually ‘orthogonal’ vectors, e.g. an unconditional sequence.
- In this refinement procedure one needs to control the ‘orthogonality’ of many subsets of the sequence. This can lead to heavily combinatorial considerations; Ramsey theory, cardinal invariants.
The fact that we can extract a (not necessarily unconditional) basic sequence from a countable weakly null sequence goes back to Bessaga&Pelczynski ‘58.
The fact that we can extract a (not necessarily unconditional) basic sequence from a countable weakly null sequence goes back to Bessaga&Pelczynski ‘58.

In extracting a basic sequence one has to control relatively few subsets. It is sufficient to keep the angle between the image and the kernel of the constructed basis projections positive

$$\|x + z\| \geq C\|x\|, \quad x \in [x_\alpha: \alpha < \gamma], \ z \in [x_\alpha: \gamma \leq \alpha < \kappa].$$

Such facts about these bases have been widely known for some time, Singer ‘81 book.
The fact that we can extract a (not necessarily unconditional) basic sequence from a countable weakly null sequence goes back to Bessaga&Pelczynski ‘58.

In extracting a basic sequence one has to control relatively few subsets. It is sufficient to keep the angle between the image and the kernel of the constructed basis projections positive

\[\|x + z\| \geq C\|x\|, \quad x \in [x_\alpha: \alpha < \gamma], \ z \in [x_\alpha: \gamma \leq \alpha < \kappa]. \]

Such facts about these bases have been widely known for some time, Singer ‘81 book.

Therefore combinatorics is less involved in constructing these subsequences. And the conclusions are much weaker (probably in some cases known to some specialists).
Recall that the unit ball is compact in the weak topology iff the space is reflexive. However, many nice spaces are Lindelöf in the weak topology and thus long sequences \(\{ x_\alpha \}_{\alpha < \kappa} \) cluster. So, there is a trade-off in giving up reflexivity but considering uncountable sequences. The uncountable/WL case yields some phenomena that one would expect to see in the countable/reflexive case. This can be made to work at our advantage, so that extracting basic sequences in the uncountable setting is actually easier than in the countable setting.
Recall that the unit ball is compact in the weak topology iff the space is reflexive. However, many nice spaces are Lindelöf in the weak topology and thus long sequences \(\{ x_\alpha \}_{\alpha < \kappa} \) cluster.

So, there is a trade-off in giving up reflexivity but considering uncountable sequences. The uncountable/WL case yields some phenomena that one would expect to see in the countable/reflexive case.
Recall that the unit ball is compact in the weak topology iff the space is reflexive. However, many nice spaces are Lindelöf in the weak topology and thus long sequences $\{x_\alpha\}_{\alpha<\kappa}$ cluster.

So, there is a trade-off in giving up reflexivity but considering uncountable sequences. The uncountable/WL case yields some phenomena that one would expect to see in the countable/reflexive case.

This can be made to work at our advantage, so that extracting basic sequences in the uncountable setting is actually easier than in countable setting.
We will enumerate some conditions involving the structure of Banach spaces X that subsequently turn out to be useful.
Tightness conditions

- We will enumerate some conditions involving the structure of Banach spaces X that subsequently turn out to be useful.
- The following condition is a kind of convex counterpart for the ω^*-countable tightness of the dual space:

$$(C)$$ X is said to have property (C) (after Corson ’61), if each family of closed convex sets of X with empty intersection has a countable subfamily with empty intersection.

$$(C)'$$ An equivalent reformulation of property (C) (proved by Pol ’80): given a set $A \subset X^*$ and $f \in A^\omega^*$, there is a countable subset $A_0 \subset A$ such that $f \in \text{conv}^{\omega^*}(A_0)$.

Recall that we have the following implications: $\text{WCG} = \Rightarrow \text{WLD} = \Rightarrow \text{weakly Lindelöf} = \Rightarrow \text{property } (C)$.

Jarno Talponen (UEF)
Extracting long basic sequences
April 21, 2013

6 / 26
Tightness conditions

- We will enumerate some conditions involving the structure of Banach spaces X that subsequently turn out to be useful.
- The following condition is a kind of convex counterpart for the ω^*-countable tightness of the dual space:

$(C) \quad \text{$X$ is said to have property (C) (after Corson '61), if each family of closed convex sets of X with empty intersection has a countable subfamily with empty intersection.}$

$(C') \quad \text{An equivalent reformulation of property (C) (proved by Pol '80): given a set $A \subset X^*$ and $f \in A^{\omega^*}$, there is a countable subset $A_0 \subset A$ such that $f \in \text{conv}_{\omega^*}(A_0)$.}$

Recall that we have the following implications: $\text{WCG} = \Rightarrow \text{WLD} = \Rightarrow \text{weakly Lindel"of} = \Rightarrow \text{property (C)}$.

Jarno Talponen (UEF)
April 21, 2013 6 / 26
Tightness conditions

We will enumerate some conditions involving the structure of Banach spaces X that subsequently turn out to be useful.

The following condition is a kind of convex counterpart for the ω^*-countable tightness of the dual space:

(C) X is said to have property (C) (after Corson ‘61), if each family of closed convex sets of X with empty intersection has a countable subfamily with empty intersection.
Tightness conditions

- We will enumerate some conditions involving the structure of Banach spaces X that subsequently turn out to be useful.

- The following condition is a kind of convex counterpart for the ω^*-countable tightness of the dual space:

 (C) X is said to have property (C) (after Corson ‘61), if each family of closed convex sets of X with empty intersection has a countable subfamily with empty intersection.

 (C') An equivalent reformulation of property (C) (proved by Pol ‘80): given a set $A \subset X^*$ and $f \in \overline{A}_{\omega^*}$, there is a countable subset $A_0 \subset A$ such that $f \in \overline{\text{conv}}_{\omega^*}(A_0)$.

Recall that we have the following implications: $\text{WCG} = \Rightarrow \text{WLD} = \Rightarrow \text{weakly Lindelöf} = \Rightarrow \text{property (C)}$.

Jarno Talponen (UEF)
Extracting long basic sequences
April 21, 2013 6 / 26
Tightness conditions

- We will enumerate some conditions involving the structure of Banach spaces X that subsequently turn out to be useful.

- The following condition is a kind of convex counterpart for the ω^*-countable tightness of the dual space:

 \((C)\) X is said to have property (C) (after Corson ‘61), if each family of closed convex sets of X with empty intersection has a countable subfamily with empty intersection.

 \((C')\) An equivalent reformulation of property (C) (proved by Pol ‘80): given a set $A \subset X^*$ and $f \in \overline{A}^{\omega^*}$, there is a countable subset $A_0 \subset A$ such that $f \in \overline{\text{conv}}^{\omega^*}(A_0)$.

- Recall that we have the following implications: \(\text{WCG} \implies \text{WLD} \implies \text{weakly Lindel"of} \implies \text{property (C)}\).
Some definitions

- Suppose that \(\{(x_\alpha, x_\alpha^*)\}_{\alpha<\lambda} \subset X \times X^* \) is a biorthogonal system, i.e. \(x_\alpha^*(x_\beta) = \delta_{\alpha,\beta} \).
Some definitions

- Suppose that \(\{(x_\alpha, x_\alpha^*)\}_{\alpha<\lambda} \subset X \times X^* \) is a biorthogonal system, i.e. \(x_\alpha^*(x_\beta) = \delta_{\alpha,\beta} \).
- Equivalently, \(\{x_\alpha\}_{\alpha<\lambda} \) is minimal, that is, \(x_\beta \notin [x_\alpha : \alpha \neq \beta] \) for all \(\beta \). The latter concept is sensible in topological vector spaces.
Some definitions

- Suppose that \(\{(x_{\alpha}, x_{\alpha}^*)\}_{\alpha<\lambda} \subset X \times X^* \) is a biorthogonal system, i.e. \(x_{\alpha}^*(x_{\beta}) = \delta_{\alpha,\beta} \).

- Equivalently, \(\{x_{\alpha}\}_{\alpha<\lambda} \) is minimal, that is, \(x_{\beta} \notin [x_{\alpha} : \alpha \neq \beta] \) for all \(\beta \). The latter concept is sensible in topological vector spaces.

- A biorthogonal system \(\{(x_{\alpha}, x_{\alpha}^*)\}_{\alpha} \) is bounded, if \(\sup_{\alpha} \|x_{\alpha}\| \cdot \|x_{\alpha}^*\| < \infty \).
Some definitions

- Suppose that $$\{(x_\alpha, x_\alpha^*)\}_{\alpha<\lambda} \subset X \times X^*$$ is a biorthogonal system, i.e. $$x_\alpha^*(x_\beta) = \delta_{\alpha, \beta}$$.

- Equivalently, $$\{x_\alpha\}_{\alpha<\lambda}$$ is minimal, that is, $$x_\beta \notin [x_\alpha : \alpha \neq \beta]$$ for all $$\beta$$. The latter concept is sensible in topological vector spaces.

- A biorthogonal system $$\{(x_\alpha, x_\alpha^*)\}_\alpha$$ is bounded, if
 $$\sup_\alpha \|x_\alpha\| \cdot \|x_\alpha^*\| < \infty.$$

- If $$[x_\alpha : \alpha < \lambda] = X$$ and $$[x_\alpha^* : \alpha < \lambda]^{\omega^*} = X^*$$, then $$\{(x_\alpha, x_\alpha^*)\}_{\alpha<\lambda}$$ is called a Markusevic basis or M-basis.
Weakly Lindelöf Determined spaces

- The WLD space are closely related to the topic; the spaces and conditions come very close to WLD here in several occasions.

\[|\{ \alpha : f(x_\alpha) \neq 0 \}| \leq \aleph_0 \text{ for any } f \in X^*. \]
Weakly Lindelöf Determined spaces

- The WLD space are closely related to the topic; the spaces and conditions come very close to WLD here in several occasions.
- This condition can be thought of as a kind of linear version of Corson’s property (C).
The WLD space are closely related to the topic; the spaces and conditions come very close to WLD here in several occasions.

This condition can be thought of as a kind of linear version of Corson’s property (C).

The following equivalent formulation of WLD spaces (Kalenda 2000) is very convenient to work with: There is an M-basis $\{x_\alpha\}_\alpha$ of X such that

$$|\{\alpha : f(x_\alpha) \neq 0\}| \leq \aleph_0 \text{ for any } f \in X^*.$$ \tag{1}
Some more tightness conditions for Banach spaces

We will apply the following structural/geometric assumption about Banach spaces:

Let \(\{Z_\alpha\}_{\alpha<\kappa} \) be a nested sequence of closed linear subspaces of \(X \) such that \(\bigcap_{\alpha<\kappa} Z_\alpha = \{0\} \). Then \(\bigcap_{\alpha<\kappa} B_{X+Z_\alpha} \) is bounded.

By applying an inverse limit space and the Banach open mapping principle the following condition implies (B).

For any uncountable, regular cardinal \(\kappa \) each nested sequence \(\{A_\alpha\}_{\alpha<\kappa} \) of closed affine subspaces of \(X \) has non-empty intersection.

This condition in turn follows from Corson's property (C).
Some more tightness conditions for Banach spaces

- We will apply the following structural/geometric assumption about Banach spaces:

$$\{Z_\alpha\}_{\alpha<\kappa}$$ be a nested sequence of closed linear subspaces of X such that $\bigcap_{\alpha<\kappa} Z_\alpha = \{0\}$. Then $\bigcap_{\alpha<\kappa} B_X + Z_\alpha$ is bounded.

By applying an inverse limit space and the Banach open mapping principle the following condition implies (B).

For any uncountable, regular cardinal κ each nested sequence $\{A_\alpha\}_{\alpha<\kappa}$ of closed affine subspaces of X has non-empty intersection.

This condition in turn follows from Corson’s property (C).
Some more tightness conditions for Banach spaces

- We will apply the following structural/geometric assumption about Banach spaces:

\[(B)\]

Let \(\{ Z_\alpha \}_{\alpha < \kappa} \) be a nested sequence of closed linear subspaces of \(X \) such that \(\bigcap_{\alpha < \kappa} Z_\alpha = \{0\} \). Then \(\bigcap_{\alpha < \kappa} (B_X + Z_\alpha) \) is bounded.
Some more tightness conditions for Banach spaces

- We will apply the following structural/geometric assumption about Banach spaces:

\[(B)\]

Let \(\{Z_\alpha\}_{\alpha<\kappa} \) be a nested sequence of closed linear subspaces of \(X \) such that \(\bigcap_{\alpha<\kappa} Z_\alpha = \{0\} \). Then \(\bigcap_{\alpha<\kappa} B_X + Z_\alpha \) is bounded.

- By applying an inverse limit space and the Banach open mapping principle the following condition implies \((B)\).
Some more tightness conditions for Banach spaces

- We will apply the following structural/geometric assumption about Banach spaces:

\[(B)\]

Let \(\{Z_\alpha\}_{\alpha<\kappa} \) be a nested sequence of closed linear subspaces of \(X \) such that \(\bigcap_{\alpha<\kappa} Z_\alpha = \{0\} \). Then \(\bigcap_{\alpha<\kappa} B_X + Z_\alpha \) is bounded.

- By applying an inverse limit space and the Banach open mapping principle the following condition implies \((B)\).
Some more tightness conditions for Banach spaces

- We will apply the following structural/geometric assumption about Banach spaces:

(\(B\))

Let \(\{Z_\alpha\}_{\alpha<\kappa}\) be a nested sequence of closed linear subspaces of \(X\) such that \(\bigcap_{\alpha<\kappa} Z_\alpha = \{0\}\). Then \(\bigcap_{\alpha<\kappa} B_X + Z_\alpha\) is bounded.

- By applying an inverse limit space and the Banach open mapping principle the following condition implies (\(B\)).

\(*\)

For any uncountable, regular cardinal \(\kappa\) each nested sequence \(\{A_\alpha\}_{\alpha<\kappa}\) of closed affine subspaces of \(X\) has non-empty intersection.
Some more tightness conditions for Banach spaces

- We will apply the following structural/geometric assumption about Banach spaces:

\((B)\)

Let \(\{Z_\alpha\}_{\alpha<\kappa}\) be a nested sequence of closed linear subspaces of \(X\) such that \(\bigcap_{\alpha<\kappa} Z_\alpha = \{0\}\). Then \(\bigcap_{\alpha<\kappa} B_X + Z_\alpha\) is bounded.

- By applying an inverse limit space and the Banach open mapping principle the following condition implies \((B)\).

\(*\)

For any uncountable, regular cardinal \(\kappa\) each nested sequence \(\{A_\alpha\}_{\alpha<\kappa}\) of closed affine subspaces of \(X\) has non-empty intersection.

- This condition in turn follows from Corson’s property \((C)\).
Dispersed sequences

We say that a sequence \(\{x_\alpha\}_{\alpha < \kappa} \) is dispersed if

\[
[x_\alpha : \gamma \leq \alpha < \kappa] \supset [x_\alpha : \nu \leq \alpha < \kappa], \quad \gamma < \nu < \kappa
\]

and strongly dispersed (SD) if dispersed and additionally

\[
\bigcap_{\gamma < \kappa} [x_\alpha : \gamma \leq \alpha < \kappa] = \{0\}.
\]
Dispersed sequences

- We say that a sequence \(\{x_\alpha\}_{\alpha<\kappa} \) is dispersed if
 \[
 [x_\alpha : \gamma \leq \alpha < \kappa] \supseteq [x_\alpha : \nu \leq \alpha < \kappa], \quad \gamma < \nu < \kappa
 \]
 and strongly dispersed (SD) if dispersed and additionally
 \[
 \bigcap_{\gamma<\kappa} [x_\alpha : \gamma \leq \alpha < \kappa] = \{0\}.
 \]
- These can be seen as a kind of right-separated conditions (cf. Granero et al. 2003).
Dispersed sequences

- We say that a sequence $\{x_\alpha\}_{\alpha<\kappa}$ is dispersed if

$$[x_\alpha : \gamma \leq \alpha < \kappa] \supseteq [x_\alpha : \nu \leq \alpha < \kappa], \quad \gamma < \nu < \kappa$$

and strongly dispersed (SD) if dispersed and additionally

$$\bigcap_{\gamma<\kappa} [x_\alpha : \gamma \leq \alpha < \kappa] = \{0\}.$$

- These can be seen as a kind of right-separated conditions (cf. Granero et al. 2003).

- Clearly biorthogonal sequences (resp. weakly null, M-basic sequences) are examples of dispersed (resp. SD) sequences.
Theorem A

Let X be a Banach space and $\{x_\alpha\}_{\alpha<\kappa}$ be a dispersed sequence of X. Then one can extract increasing subsequences $\{x_{\alpha_\sigma}\}_{\sigma<\kappa} \subset \kappa$ as follows.

(1) Suppose that X satisfies (C). Then there is a 2-bounded biorthogonal sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

(2) If X satisfies (B) and $\{x_\alpha\}_{\alpha<\kappa}$ is SD, then there is a basic sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

(3) If $Z \subset X^*$ is a norming subspace such that $\{x_\alpha\}_{\alpha<\kappa}$ is $\sigma(X,Z)$-null, then there exists a basic sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

If, additionally, X satisfies (C) in (2), or Z is 1-norming in (3), then the basic sequence can be chosen to be monotone.
Theorem A

Let X be a Banach space and $\{x_\alpha\}_{\alpha<\kappa}$ be a dispersed sequence of X. Then one can extract increasing subsequences $\{\alpha_\sigma\}_{\sigma<\kappa} \subset \kappa$ as follows.

(1) Suppose that X satisfies (C). Then there is a 2-bounded biorthogonal sequence $\{x_\alpha_\sigma\}_{\sigma<\kappa}$.

(2) If X satisfies (B) and $\{x_\alpha\}_{\alpha<\kappa}$ is SD, then there is a basic sequence $\{x_\alpha_\sigma\}_{\sigma<\kappa}$.

(3) If $Z \subset X^*$ is a norming subspace such that $\{x_\alpha\}_{\alpha<\kappa}$ is $\sigma(X,Z)$-null, then there exists a basic sequence $\{x_\alpha_\sigma\}_{\sigma<\kappa}$.

If, additionally, X satisfies (C) in (2), or Z is 1-norming in (3), then the basic sequence can be chosen to be monotone.
Theorem A

Let X be a Banach space and $\{x_\alpha\}_{\alpha<\kappa}$ be a dispersed sequence of X. Then one can extract increasing subsequences $\{\alpha_\sigma\}_{\sigma<\kappa} \subset \kappa$ as follows.

1. Suppose that X satisfies (C). Then there is a 2-bounded biorthogonal sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

If, additionally, X satisfies (C) in (2), or Z is 1-norming in (3), then the basic sequence can be chosen to be monotone.
Theorem A

Let X be a Banach space and $\{x_\alpha\}_{\alpha<\kappa}$ be a dispersed sequence of X. Then one can extract increasing subsequences $\{\alpha_\sigma\}_{\sigma<\kappa} \subset \kappa$ as follows.

1. Suppose that X satisfies (C). Then there is a 2-bounded biorthogonal sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

2. If X satisfies (B) and $\{x_\alpha\}_{\alpha<\kappa}$ is SD, then there is a basic sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

If, additionally, X satisfies (C) in (2), or Z is 1-norming in (3), then the basic sequence can be chosen to be monotone.
Theorem A

Let X be a Banach space and $\{x_\alpha\}_{\alpha<\kappa}$ be a dispersed sequence of X. Then one can extract increasing subsequences $\{\alpha_\sigma\}_{\sigma<\kappa} \subset \kappa$ as follows.

1. Suppose that X satisfies (C). Then there is a 2-bounded biorthogonal sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

2. If X satisfies (B) and $\{x_\alpha\}_{\alpha<\kappa}$ is SD, then there is a basic sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

3. If $Z \subset X^*$ is a norming subspace such that $\{x_\alpha\}_{\alpha<\kappa}$ is $\sigma(X,Z)$-null, then there exists a basic sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

If, additionally, X satisfies (C) in (2), or Z is 1-norming in (3), then the basic sequence can be chosen to be monotone.
- After some considerations we obtain the following alternative.

Corollary Let X be a Banach space with property (C) and let $\{x_\alpha\}_{\alpha<\kappa} \subset X$. Then

- There is no subsequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$, which is dispersed,
- There is a 2-bounded biorthogonal sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

Errata: In the paper 1-bounded b.o.s. was claimed but 2-bounded was actually proved.
After some considerations we obtain the following alternative.
After some considerations we obtain the following alternative.

Corollary

Let X be a Banach space with property (C) and let $\{x_\alpha\}_{\alpha<\kappa} \subset X$. Then exactly one of the following conditions hold:

- There is no subsequence $\{x_\alpha_{\sigma}\}_{\sigma<\kappa}$, which is dispersed,
- There is a 2-bounded biorthogonal sequence $\{x_\alpha_{\sigma}\}_{\sigma<\kappa}$.

Errata: In the paper 1-bounded b.o.s. was claimed but 2-bounded was actually proved.
After some considerations we obtain the following alternative.

Corollary

Let X be a Banach space with property (C) and let $\{x_\alpha\}_{\alpha<\kappa} \subset X$. Then exactly one of the following conditions hold:

- There is no subsequence $\{x_{\alpha\sigma}\}_{\sigma<\kappa}$, which is dispersed,
- There is a 2-bounded biorthogonal sequence $\{x_{\alpha\sigma}\}_{\sigma<\kappa}$.

Errata: In the paper 1-bounded b.o.s. was claimed but 2-bounded was actually proved.
After some considerations we obtain the following alternative.

Corollary

Let X be a Banach space with property (C) and let $\{x_\alpha\}_{\alpha<\kappa} \subset X$. Then exactly one of the following conditions hold:

- There is no subsequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$, which is dispersed,
- There is a 2-bounded biorthogonal sequence $\{x_{\alpha_\sigma}\}_{\sigma<\kappa}$.

Errata: In the paper 1-bounded b.o.s. was claimed but 2-bounded was actually proved.
After some considerations we obtain the following alternative.

Corollary

Let X be a Banach space with property (C) and let $\{x_\alpha\}_{\alpha<\kappa} \subset X$. Then exactly one of the following conditions hold:

- There is no subsequence $\{x_{\alpha\sigma}\}_{\sigma<\kappa}$, which is dispersed,

- There is a 2-bounded biorthogonal sequence $\{x_{\alpha\sigma}\}_{\sigma<\kappa}$.

Errata: In the paper 1-bounded b.o.s. was claimed but 2-bounded was actually proved.
An angle lemma

Let X be a Banach space, $Y \subset X$ a closed subspace with $\text{dens}(Y) < \kappa$, κ an uncountable regular cardinal, and let $\{Z_\alpha\}_{\alpha < \kappa}$ be a nested sequence of closed subspaces of X with trivial intersection. Suppose that $\bigcap_{\alpha < \kappa} B_X + Z_\alpha \subset rB_X$ for some $1 \leq r < \infty$. Then there exists $\beta < \kappa$ such that the angle between Y and Z_β, $\text{dist}(S_Y, Z_\beta) \geq 1/r$.

Jarno Talponen (UEF)
An angle lemma

Lemma
Let X be a Banach space, $Y \subset X$ a closed subspace with $\text{dens}(Y) < \kappa$, κ an uncountable regular cardinal, and let $\{Z_\alpha\}_{\alpha<\kappa}$ be a nested sequence of closed subspaces of X with trivial intersection. Suppose that

$$\bigcap_{\alpha<\kappa} \overline{B_X + Z_\alpha} \subset rB_X$$

for some $1 \leq r < \infty$. Then there exists $\beta < \kappa$ such that the angle between Y and Z_β, $\text{dist}(S_Y, Z_\beta) \geq 1/r$.
Proof of lemma

- First, observe that according to the assumption

\[
\bigcap_{\alpha<\kappa} (1-\epsilon)r^{-1}B_X + Z_\alpha = \bigcap_{\alpha<\kappa} (1-\epsilon)r^{-1}B_X + (1-\epsilon)r^{-1}Z_\alpha
\]

\[
= (1-\epsilon)r^{-1} \bigcap_{\alpha<\kappa} B_X + Z_\alpha \subset (1-\epsilon)B_X,
\]

for \(0 \leq \epsilon \leq 1\).
Proof of lemma

- First, observe that according to the assumption

\[
\bigcap_{\alpha < \kappa} (1 - \epsilon)r^{-1}B_X + Z_\alpha = \bigcap_{\alpha < \kappa} (1 - \epsilon)r^{-1}B_X + (1 - \epsilon)r^{-1}Z_\alpha
\]

\[
= (1 - \epsilon)r^{-1} \bigcap_{\alpha < \kappa} B_X + Z_\alpha \subset (1 - \epsilon)B_X,
\]

for \(0 \leq \epsilon \leq 1\).

- Assume to the contrary that \(\lim_{\alpha \to \kappa} \text{dist}(S_Y, Z_\alpha) = r^{-1}(1 - 2\epsilon)\) for some \(\epsilon > 0\). This reads \(\lim_{\alpha \to \kappa} \text{dist}(rS_Y, Z_\alpha) = 1 - 2\epsilon\).
Then there is a sequence $\{y_\alpha\}_{\alpha < \kappa} \subset rS_Y$ such that
\[\text{dist}(y_\alpha, Z_\alpha) < 1 - \epsilon \]
for sufficiently large ordinals $\alpha < \kappa$.

Bottom line: On cannot exit the set rS_Y in sync with $\alpha \to \kappa$.

Jarno Talponen (UEF)
Extracting long basic sequences
April 21, 2013 15 / 26
Then there is a sequence $\{y_\alpha\}_{\alpha<\kappa} \subset rS_Y$ such that $\text{dist}(y_\alpha, Z_\alpha) < 1 - \epsilon$ for sufficiently large ordinals $\alpha < \kappa$.

Since the Lindelöf number of rS_Y is less than κ, we obtain that $\bigcap_{\beta<\kappa} \{y_\alpha : \beta < \alpha < \kappa\} \neq \emptyset$ and pick y from this set.
Then there is a sequence \(\{y_\alpha\}_{\alpha < \kappa} \subset rS_Y \) such that
\[\text{dist}(y_\alpha, Z_\alpha) < 1 - \epsilon \]
for sufficiently large ordinals \(\alpha < \kappa \).

Since the Lindelöf number of \(rS_Y \) is less than \(\kappa \), we obtain that
\[\bigcap_{\beta < \kappa} \{y_\alpha : \beta < \alpha < \kappa\} \neq \emptyset \]
and pick \(y \) from this set.

Observe that
\[y \in \bigcap_{\alpha < \kappa} (1 - \epsilon)B_X + Z_\alpha \subset (1 - \epsilon)rB_X. \]
Then there is a sequence \(\{y_\alpha\}_{\alpha<\kappa} \subset rS_Y \) such that
\[\text{dist}(y_\alpha, Z_\alpha) < 1 - \epsilon \] for sufficiently large ordinals \(\alpha < \kappa \).

Since the Lindelöf number of \(rS_Y \) is less than \(\kappa \), we obtain that
\[\bigcap_{\beta<\kappa} \{y_\alpha : \beta < \alpha < \kappa\} \neq \emptyset \] and pick \(y \) from this set.

Observe that
\[
y \in \bigcap_{\alpha<\kappa} (1 - \epsilon)B_X + Z_\alpha \subset (1 - \epsilon)rB_X.
\]

Thus, we arrive at a contradiction, since \(y \in rS_Y \). \(\square \)
Then there is a sequence \(\{ y_{\alpha} \}_{\alpha < \kappa} \subset rS_Y \) such that \(\text{dist}(y_{\alpha}, Z_{\alpha}) < 1 - \epsilon \) for sufficiently large ordinals \(\alpha < \kappa \).

Since the Lindelöf number of \(rS_Y \) is less than \(\kappa \), we obtain that \(\bigcap_{\beta < \kappa} \{ y_{\alpha} : \beta < \alpha < \kappa \} \neq \emptyset \) and pick \(y \) from this set.

Observe that

\[
y \in \bigcap_{\alpha < \kappa} (1 - \epsilon)B_X + Z_{\alpha} \subset (1 - \epsilon)rB_X.
\]

Thus, we arrive at a contradiction, since \(y \in rS_Y \).

Bottom line: On cannot exit the set \(rS_Y \) in sync with \(\alpha \to \kappa \).
Sketch of the proof of Theorem A

- We will first consider the hardest case (2), where X satisfies (B).
Sketch of the proof of Theorem A

- We will first consider the hardest case (2), where X satisfies (B).
- For each $\theta < \kappa$ let $\eta(\theta)$ be the infimum of numbers $C \geq 1$ such that there exists $\gamma < \kappa$ and a continuous linear projection $P : [x_\alpha : \alpha \in [0, \theta] \cup [\gamma, \kappa)] \to [x_\alpha : \alpha \in [0, \theta]]$

 given by $P(x + y) = x$ for $x \in [x_\alpha : \alpha \in [0, \theta]]$, $y \in [x_\alpha : \alpha \in [\gamma, \kappa)]$ with $\|P\| \leq C$ (and $\eta(\theta) = \infty$ if such P does not exist).
Sketch of the proof of Theorem A

- We will first consider the hardest case (2), where X satisfies (B).
- For each $\theta < \kappa$ let $\eta(\theta)$ be the infimum of numbers $C \geq 1$ such that there exists $\gamma < \kappa$ and a continuous linear projection
 \[P : [x_\alpha : \alpha \in [0, \theta] \cup [\gamma, \kappa)] \to [x_\alpha : \alpha \in [0, \theta]] \]
 given by $P(x + y) = x$ for $x \in [x_\alpha : \alpha \in [0, \theta]]$, $y \in [x_\alpha : \alpha \in [\gamma, \kappa)]$ with $\|P\| \leq C$ (and $\eta(\theta) = \infty$ if such P does not exist).
- Let $\epsilon > 0$. Suppose that $\theta_1 \leq \theta_2 < \kappa$ and
 \[P_2 : [x_\alpha : \alpha \in [0, \theta_2] \cup [\gamma_2, \kappa)] \to [x_\alpha : \alpha \in [0, \theta_2]] \]
is an admissible projection in the definition $\eta(\theta_2)$ with $\|P_2\| \leq \eta(\theta_2) + \epsilon$.
Sketch of the proof of Theorem A

- We will first consider the hardest case (2), where X satisfies (B).
- For each $\theta < \kappa$ let $\eta(\theta)$ be the infimum of numbers $C \geq 1$ such that there exists $\gamma < \kappa$ and a continuous linear projection

$$P : [x_\alpha : \alpha \in [0, \theta] \cup [\gamma, \kappa]) \to [x_\alpha : \alpha \in [0, \theta]]$$

given by $P(x + y) = x$ for $x \in [x_\alpha : \alpha \in [0, \theta]]$, $y \in [x_\alpha : \alpha \in [\gamma, \kappa])$ with $\|P\| \leq C$ (and $\eta(\theta) = \infty$ if such P does not exist).
- Let $\epsilon > 0$. Suppose that $\theta_1 \leq \theta_2 < \kappa$ and

$$P_2 : [x_\alpha : \alpha \in [0, \theta_2] \cup [\gamma_2, \kappa]) \to [x_\alpha : \alpha \in [0, \theta_2]]$$

is an admissible projection in the definition $\eta(\theta_2)$ with $\|P_2\| \leq \eta(\theta_2) + \epsilon$.
- Then, putting $P_1 = P_2|_{[x_\alpha : \alpha \in [0, \theta_1] \cup [\gamma_2, \kappa])}$ defines a projection, which is admissible in the definition of $\eta(\theta_1)$ and again $\|P_1\| \leq \eta(\theta_2) + \epsilon$.

Jarno Talponen (UEF)
April 21, 2013 16 / 26
Sketch of the proof of Theorem A

We will first consider the hardest case (2), where X satisfies (B). For each $\theta < \kappa$ let $\eta(\theta)$ be the infimum of numbers $C \geq 1$ such that there exists $\gamma < \kappa$ and a continuous linear projection

$$P : [x_\alpha : \alpha \in [0, \theta] \cup [\gamma, \kappa]) \to [x_\alpha : \alpha \in [0, \theta]]$$

given by $P(x + y) = x$ for $x \in [x_\alpha : \alpha \in [0, \theta]]$, $y \in [x_\alpha : \alpha \in [\gamma, \kappa])$ with $\|P\| \leq C$ (and $\eta(\theta) = \infty$ if such P does not exist).

Let $\epsilon > 0$. Suppose that $\theta_1 \leq \theta_2 < \kappa$ and

$$P_2 : [x_\alpha : \alpha \in [0, \theta_2] \cup [\gamma_2, \kappa]) \to [x_\alpha : \alpha \in [0, \theta_2]]$$

is an admissible projection in the definition $\eta(\theta_2)$ with $\|P_2\| \leq \eta(\theta_2) + \epsilon$.

Then, putting $P_1 = P_2|_{[x_\alpha : \alpha \in [0, \theta_1] \cup [\gamma_2, \kappa])}$ defines a projection, which is admissible in the definition of $\eta(\theta_1)$ and again $\|P_1\| \leq \eta(\theta_2) + \epsilon$.

We conclude that $\eta : [0, \kappa) \to \mathbb{R} \cup \{\infty\}$ is a non-decreasing function.
Next, we will show that $\eta(\theta) < \infty$ for each $\theta < \kappa$ under the hypothesis (B). Indeed, we scale the bounded set

$$\bigcap_{\alpha < \kappa} B_x + Z_\alpha$$

so that it does not intersect the unit sphere.
• Next, we will show that $\eta(\theta) < \infty$ for each $\theta < \kappa$ under the hypothesis (\mathcal{B}). Indeed, we scale the bounded set

$$\bigcap_{\alpha<\kappa} B_X + Z_\alpha$$

so that it does not intersect the unit sphere.

• It follows from Lemma that there is $\beta < \kappa$ such that the angle between $[x_\alpha : \alpha \leq \theta]$ and $[x_\alpha : \alpha \geq \beta]$ is strictly positive, which is equivalent to the statement that there is a continuous linear projection

$$P : [x_\alpha : \alpha \in [0, \theta] \cup [\beta, \kappa]) \to [x_\alpha : \alpha \leq \theta]$$

given by $P(x + y) = x$ for $x \in [x_\alpha : \alpha \in [0, \theta]], \ y \in [x_\alpha : \alpha \in [\beta, \kappa])$.
Next, we will show that $\eta(\theta) < \infty$ for each $\theta < \kappa$ under the hypothesis (B). Indeed, we scale the bounded set

$$\bigcap_{\alpha < \kappa} B_{X + \mathbb{Z}_\alpha}$$

so that it does not intersect the unit sphere.

It follows from Lemma that there is $\beta < \kappa$ such that the angle between $[x_\alpha : \alpha \leq \theta]$ and $[x_\alpha : \alpha \geq \beta]$ is strictly positive, which is equivalent to the statement that there is a continuous linear projection

$$P : [x_\alpha : \alpha \in [0, \theta] \cup [\beta, \kappa)] \to [x_\alpha : \alpha \leq \theta]$$

given by $P(x + y) = x$ for $x \in [x_\alpha : \alpha \in [0, \theta]]$, $y \in [x_\alpha : \alpha \in [\beta, \kappa]]$.

Thus, the values of η are finite.
By using the regularity of κ and the fact that η is non-decreasing we obtain that $\lim_{\theta \to \kappa} \eta(\theta)$ exists and is finite. Denote this limit by $1 \leq C < \infty$.
By using the regularity of κ and the fact that η is non-decreasing we obtain that $\lim_{\theta \to \kappa} \eta(\theta)$ exists and is finite. Denote this limit by $1 \leq C < \infty$.

Let us define an increasing sequence $\Phi : [0, \kappa) \to [0, \kappa)$ by letting $\Phi(\theta)$ be the least ϕ such that there is a projection

$$P : [x_\alpha : \alpha \in [0, \theta] \cup [\phi, \kappa)] \to [x_\alpha : \alpha \in [0, \theta]]$$

with $\|P\| \leq C$. Indeed, this can be accomplished by the regularity of κ.

The required basic sequence can be extracted by transfinite recursion as follows. Let $\alpha_0 = 0$ and

$$\alpha_\sigma = \Phi \left(\sup_{\gamma < \sigma} \alpha_\gamma \right) \lor \left(\sup_{\gamma < \sigma} \alpha_\gamma \right) + 1, \quad \sigma < \kappa.$$

The relevant basis projections are obtained by restriction from the projections provided by the definition of Φ. It is clear that the basis constant is at most C. \qed
Inverse limits and tightness

- Given a SD sequence \(\{x_\alpha\}_{\alpha<\kappa} \) let us denote the ‘tail spaces’

\[
Z_\beta = [x_\alpha : \beta < \alpha < \kappa]
\]

and consider an inverse limit

\[
\lim_{\leftarrow} X / Z_\beta.
\]
Inverse limits and tightness

- Given a SD sequence \(\{x_\alpha\}_{\alpha<\kappa} \) let us denote the ‘tail spaces’
 \[
 Z_\beta = [x_\alpha : \beta < \alpha < \kappa]
 \]
 and consider an inverse limit
 \[
 \lim_{\leftarrow} X/Z_\beta.
 \]

- This space consists of sequences of quotient space elements \(\{\hat{z}_\beta\}_{\beta<\kappa} \) pairwise compatible in taking quotient mappings. The norm of an element is the sup = max of the quotient norms \(\|\hat{z}_\beta\|_{X/Z_\beta} \).
Inverse limits and tightness

1. Given a SD sequence \(\{ x_\alpha \}_{\alpha < \kappa} \) let us denote the ‘tail spaces’

\[
Z_\beta = [x_\alpha : \beta < \alpha < \kappa]
\]

and consider an inverse limit

\[
\lim \leftarrow \frac{X}{Z_\beta}.
\]

2. This space consists of sequences of quotient space elements \(\{ \hat{z}_\beta \}_{\beta < \kappa} \) pairwise compatible in taking quotient mappings. The norm of an element is the sup = max of the quotient norms \(\| \hat{z}_\beta \|_{X/Z_\beta} \).

3. The canonical inclusion \(\phi : X \rightarrow \lim \leftarrow \frac{X}{Z_\beta} \) is norm-1.
Inverse limits and tightness

- Given a SD sequence \(\{x_\alpha\}_{\alpha<\kappa} \) let us denote the ‘tail spaces’

\[
Z_\beta = [x_\alpha : \beta < \alpha < \kappa]
\]

and consider an inverse limit

\[
\lim \leftarrow X / Z_\beta.
\]

- This space consists of sequences of quotient space elements \(\{\hat{z}_\beta\}_{\beta<\kappa} \) pairwise compatible in taking quotient mappings. The norm of an element is the sup = max of the quotient norms \(\|\hat{z}_\beta\|_{X/Z_\beta} \).

- The canonical inclusion \(\phi: X \to \lim \leftarrow X / Z_\beta \) is norm-1.

- Moreover, \(\phi \) is an embedding iff the condition \((B)\) holds.
Inverse limits and tightness

- Given a SD sequence \(\{ x_\alpha \}_{\alpha < \kappa} \) let us denote the ‘tail spaces’

\[
Z_\beta = [x_\alpha : \beta < \alpha < \kappa]
\]

and consider an inverse limit

\[
\lim_{\leftarrow} X / Z_\beta.
\]

- This space consists of sequences of quotient space elements \(\{ \hat{z}_\beta \}_{\beta < \kappa} \) pairwise compatible in taking quotient mappings. The norm of an element is the \(\sup = \max \) of the quotient norms \(\| \hat{z}_\beta \|_{X / Z_\beta} \).

- The canonical inclusion \(\phi : X \to \lim_{\leftarrow} X / Z_\beta \) is norm-1.

- Moreover, \(\phi \) is an embedding iff the condition (\(B \)) holds.

- I intend to study the biduals of Banach space modeled by taking more general inverse limits over the lattice of all subspaces.
Theorem B

Let \(X \) be a topological vector space and let \(\{ x_\alpha \}_{\alpha < \kappa} \subset X \) be a sequence such that \(Y = \left[x_\alpha : \alpha < \kappa \right] / \bigcap_{\beta < \kappa} \left[x_\alpha : \beta < \alpha < \kappa \right] \) has density \(\kappa \) and suppose that the canonical inclusion \(\phi : Y \hookrightarrow \lim_{\leftarrow} (Y / \left[x_\alpha : \alpha \geq \beta \right])_{\beta < \kappa} \) is a closed mapping. Then there exists a minimal sequence \(\{ x_{\alpha \beta} \}_{\beta < \kappa} \).
Theorem B

Let X be a topological vector space and let $\{x_\alpha\}_{\alpha<\kappa} \subset X$ be a sequence such that

$$Y = \left[x_\alpha : \alpha < \kappa \right] / \bigcap_{\beta<\kappa} \left[x_\alpha : \beta < \alpha < \kappa \right]$$

has density κ and suppose that the canonical inclusion

$$\phi : Y \hookrightarrow \lim_{\beta<\kappa} (Y/[x_\alpha : \alpha \geq \beta])_{\beta<\kappa}$$

is a closed mapping. Then there exists a minimal sequence $\{x_{\alpha\beta}\}_{\beta<\kappa}$.
Coseparable subspaces

Motivated by the Baire Category Theorem considerations, call a subspace $Y \subset X$ *coseparable* if $\text{dens}(X/Y) = \omega$.

It follows easily from WLD of X: the coseparable subspaces are preserved in countable intersections (σ). Thus there are many good spaces with this property.

If K is a non-metrizable separable compact space, then $\ell_2 \oplus C(K)$ fails this even for finite intersections.

By (σ) one can work with countably many 'conditions' simultaneously.
Coseparable subspaces

- Motivated by the Baire Category Theorem considerations, call a subspace $Y \subset X$ coseparable if $\text{dens}(X/Y) = \omega$.
- It follows easily from WLD of X: the coseparable subspaces are preserved in countable intersections (σ). Thus there are many good spaces with this property.
Coseparable subspaces

- Motivated by the Baire Category Theorem considerations, call a subspace \(Y \subset X \) coseparable if \(\text{dens}(X/Y) = \omega \).
- It follows easily from WLD of \(X \): the coseparable subspaces are preserved in countable intersections (\(\sigma \)). Thus there are many good spaces with this property.
- If \(K \) is a non-metrizable separable compact space, then \(\ell^2 \oplus C(K) \) fails this even for finite intersections.
Coseparable subspaces

- Motivated by the Baire Category Theorem considerations, call a subspace $Y \subset X$ *coseparable* if $\text{dens}(X/Y) = \omega$.
- It follows easily from WLD of X: the coseparable subspaces are preserved in countable intersections (σ). Thus there are many good spaces with this property.
- If K is a non-metrizable separable compact space, then $\ell^2 \oplus C(K)$ fails this even for finite intersections.
- By (σ) one can work with countably many ‘conditions’ simultaneously.
Theorem C
Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$ there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}$, $\alpha<\omega_1$, be a countable basic sequence on X.

By using the separability of $\{x_n: n<\alpha\}$ we may let $(f_i)_{i<\omega}$ be a 1-norming sequence for $\{x_n: n<\alpha\}$.

According to (σ) we have that $\bigcap_{i<\omega} \ker(f_i)$ is a coseparable subspace, in particular non-trivial. Hence we may pick $x_\alpha \in \bigcap_{i<\omega} \ker(f_i)$, $\|x_\alpha\|=1$.

Note that $\|x\| \leq \|x+tx_\alpha\|$ for any $x \in \{x_n: n<\alpha\}$ and $t \in \mathbb{R}$.

We proceed by recursion of length ω_1.
Theorem C

Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$, there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}, \alpha<\omega_1$, be a countable basic sequence on X. By using the separability of $[x_n]_{n<\alpha}$ we may let $(f_i)_{i<\omega}$ be a 1-norming sequence for $[x_n]_{n<\alpha}$.

According to (σ) we have that $\bigcap_{i<\omega} \ker(f_i)$ is a coseparable subspace, in particular non-trivial. Hence we may pick $x_\alpha \in \bigcap_{i<\omega} \ker(f_i)$, $\|x_\alpha\| = 1$.

Note that $\|x\| \leq \|x+tx_\alpha\|$ for any $x \in [x_n]_{n<\alpha}$ and $t \in \mathbb{R}$.

We proceed by recursion of length ω_1.
Theorem C

Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$, there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}$ be a countable basic sequence on X.

By using the separability of $\{x_n : n<\alpha\}$ we may let $(f_i)_{i<\omega}$ be a 1-norming sequence for $\{x_n : n<\alpha\}$.

According to (σ) we have that $\bigcap_{i<\omega} \ker(f_i)$ is a coseparable subspace, in particular non-trivial. Hence we may pick $x_\alpha \in \bigcap_{i<\omega} \ker(f_i)$, $\|x_\alpha\| = 1$.

Note that $\|x\| \leq \|x + tx_\alpha\|$ for any $x \in \{x_n : n<\alpha\}$ and $t \in \mathbb{R}$.

We proceed by recursion of length ω_1.
Theorem C

Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$ there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.
Theorem C

Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$ there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}, \alpha < \omega_1$, be a countable basic sequence on X.
Theorem C

Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$ there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}$, $\alpha < \omega_1$, be a countable basic sequence on X.

By using the separability of $[x_n : n < \alpha]$ we may let $(f_i)_{i<\omega} \subset X^*$ be a 1-norming sequence for $[x_n : n < \alpha]$.

Theorem C

Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$ there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}$, $\alpha < \omega_1$, be a countable basic sequence on X.

By using the separability of $[x_n : n < \alpha]$ we may let $(f_i)_{i<\omega} \subset X^*$ be a 1-norming sequence for $[x_n : n < \alpha]$.

According to (σ) we have that $\bigcap_{i<\omega} \text{Ker}(f_i)$ is a coseparable subspace, in particular non-trivial. Hence we may pick $x_\alpha \in \bigcap_{i<\omega} \text{Ker}(f_i)$, $\|x_\alpha\| = 1$.
Theorem C
Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$ there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}$, $\alpha < \omega_1$, be a countable basic sequence on X.

By using the separability of $[x_n : n < \alpha]$ we may let $(f_i)_{i<\omega} \subset X^*$ be a 1-norming sequence for $[x_n : n < \alpha]$.

According to (σ) we have that $\bigcap_{i<\omega} \ker(f_i)$ is a coseparable subspace, in particular non-trivial. Hence we may pick $x_\alpha \in \bigcap_{i<\omega} \ker(f_i)$, $\|x_\alpha\| = 1$.

Note that $\|x\| \leq \|x + tx_\alpha\|$ for any $x \in [x_n : n < \alpha]$ and $t \in \mathbb{R}$.
Theorem C

Suppose that X is a nonseparable Banach space satisfying (σ).

(i) Then X has a monotone basic sequence of length ω_1. Moreover, any basic sequence of X having countable order type has an uncountable extension.

(ii) Given a separable subspace $A \subset X$ there exists a coseparable subspace $M \subset X$ such that A is 1-complemented in M.

Proof. Let us check the latter claim in (i). This argument essentially covers both claims. Let $(x_n)_{n<\alpha}$, $\alpha < \omega_1$, be a countable basic sequence on X.

By using the separability of $[x_n : n < \alpha]$ we may let $(f_i)_{i<\omega} \subset X^*$ be a 1-norming sequence for $[x_n : n < \alpha]$.

According to (σ) we have that $\bigcap_{i<\omega} \ker(f_i)$ is a coseparable subspace, in particular non-trivial. Hence we may pick $x_\alpha \in \bigcap_{i<\omega} \ker(f_i)$, $\|x_\alpha\| = 1$.

Note that $\|x\| \leq \|x + tx_\alpha\|$ for any $x \in [x_n : n < \alpha]$ and $t \in \mathbb{R}$.

We proceed by recursion of length ω_1.
I would like to (ill-)pose the following problems:
I would like to (ill-)pose the following problems:

Which ’large-density-related properties’ of a Banach space are inherited by the coseparable subspaces? For example, if X is a non-WCG space then each coseparable subspace of X is non-WCG (Valdivia 1989).
I would like to (ill-)pose the following problems:

- Which ’large-density-related properties’ of a Banach space are inherited by the coseparable subspaces? For example, if X is a non-WCG space then each coseparable subspace of X is non-WCG (Valdivia 1989).

- What can be said about properties of Banach spaces holding modulo separable subspaces?
Some future work

- It would be interesting to see how the coseparable intersection business can be applied further.
Some future work

- It would be interesting to see how the coseparable intersection business can be applied further.
Some future work

- It would be interesting to see how the coseparable intersection business can be applied further.

Project

Let X be a Banach space coseparable in its bidual. Suppose that $\{x_\alpha\}_{\alpha<\omega_1} \subset X$ is a weakly null sequence. Then there exist ω_1-many countable successive blocks of ordinals,

$$\{\beta_\theta^{(\gamma)}\}_{\theta<\eta(\gamma)} \subset \omega_1, \quad 0 \leq \gamma < \omega_1$$

and a bimonotone basic sequence $\{z_\gamma\}_{\gamma<\omega_1} \subset X$ such that

$$z_\gamma = \sum_{\theta<\eta(\gamma)} a_\theta^{(\gamma)} x_{\beta_\theta^{(\gamma)}}, \quad 0 \leq \gamma < \omega_1$$

(with convergence in the order-to-norm sense) for suitable $a_\theta^{(\gamma)} \in \mathbb{R}$?
Some future work

- It would be interesting to see how the coseparable intersection business can be applied further.

Project

Let X be a Banach space coseparable in its bidual. Suppose that $\{x_\alpha\}_{\alpha<\omega_1} \subset X$ is a weakly null sequence. Then there exist ω_1-many countable successive blocks of ordinals,

$$\{\beta^{(\gamma)}\}_{\theta<\eta(\gamma)} \subset \omega_1, \quad 0 \leq \gamma < \omega_1$$

and a bimonotone basic sequence $\{z_\gamma\}_{\gamma<\omega_1} \subset X$ such that

$$z_\gamma = \sum_{\theta<\eta(\gamma)} a^{(\gamma)}_\theta x_{\beta^{(\gamma)}}(\theta), \quad 0 \leq \gamma < \omega_1$$

(with convergence in the order-to-norm sense) for suitable $a^{(\gamma)}_\theta \in \mathbb{R}$?

The latter assumption above can be seen as a strengthening of Asplund space condition. An example of such a space is $\ell^2_\kappa(X)$ with X coseparable in its bidual. In contrast, there is a reflexive space of density ω_1 with a basis and without unconditional basic sequences (Argyros, Lopez-Abad, Todorcevic '03).
Some future work

- It would be interesting to see how the coseparable intersection business can be applied further.

Project

Let X be a Banach space coseparable in its bidual. Suppose that $\{x_\alpha\}_{\alpha<\omega_1} \subset X$ is a weakly null sequence. Then there exist ω_1-many countable successive blocks of ordinals, \[
\{\beta_\theta^{(\gamma)}\}_{\theta<\eta^{(\gamma)}} \subset \omega_1, \quad 0 \leq \gamma < \omega_1
\]
and a bimonotone basic sequence $\{z_\gamma\}_{\gamma<\omega_1} \subset X$ such that
\[
z_\gamma = \sum_{\theta<\eta^{(\gamma)}} a_\theta^{(\gamma)} x_{\beta_\theta^{(\gamma)}}, \quad 0 \leq \gamma < \omega_1
\]
(with convergence in the order-to-norm sense) for suitable $a_\theta^{(\gamma)} \in \mathbb{R}$.

The latter assumption above can be seen as a strengthening of Asplund space condition. An example of such a space is $\ell_2(\kappa, X)$ with X coseparable in its bidual. In contrast, there is a reflexive space of density ω_1 with a basis and without unconditional basic sequences (Argyros, Lopez-Abad, Todorcevic '03).
Some related references

P. Koszmider, On a problem of Rolewicz about Banach spaces that admit support sets. J. Funct. Anal. 257 (2009), 2723-2741.

W. Kubis, Banach spaces with projectional skeletons. J. Math. Anal. Appl. 350 (2009), 758-776.

W. T. Gowers, A new dichotomy for Banach spaces. Geom. Funct. Anal. 6 (1996), 1083-1093.

A. Granero, M. Jiménez, A. Montesinos, J. Moreno, A. Plichko, On the Kunen-Shelah properties in Banach spaces, Studia Math. 157 (2003), 97-120.

P. Dodos, J. Lopez-Abad, S. Todorcevic, Unconditional basic sequences in spaces of large density, Adv. Math.

R. Pol, On a question of H.H. Corson and some related problems, Fund. Math. 109 (1980), 143-154.

S. Todorčević, Biorthogonal systems and quotient spaces via Baire category methods, Math. Ann. 335 (2006), 687-715.