Inflammatory cardiomyopathy of possibly overlapping aetiology: a case posing treatment dilemma and potential association

Shun Nakagama1, Katherine Candray2,3, Tasuku Yamamoto1, Yuta Tsugeno4, Yu Nakagama2*, Yasutoshi Kido2, Yuko Nitahara2, Yasuhiro Maejima1 and Tetsuo Sasano1

1Department of Cardiovascular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; 2Department of Parasitology and Research Center for Infectious Disease Sciences, Osaka City University, Osaka, Japan; 3Centro Nacional de Investigaciones Científicas de El Salvador (CICES), San Salvador, El Salvador; and 4Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan

Abstract

We report on a 52-year-old Brazilian immigrant woman with past histories of chronic kidney disease and uveitis, presenting with symptomatic atrioventricular block. Her country of origin being endemic for Trypanosoma cruzi infection, we suspected Chagas disease as the aetiology, diagnosis of which was confirmed by serological tests. Further systemic workup identified an emerging nodular lesion in the lung, which turned out to be a sarcoid epithelioid granuloma on biopsy. Involvement of the kidneys and eyes was suggestive of systemic extension of the lung sarcoidosis. Although imaging modalities did not detect inflammatory foci in the myocardium, the rare coexistence of histologically proven sarcoidosis raised the intriguing concept of cardiac manifestation having arisen from two possibly overlapping aetiologies: Chagas disease and cardiac sarcoidosis. The case highlights a treatment dilemma increasingly likely to be encountered in this globalized world, and also raises the potential, but intriguing, association of these two diseases.

Keywords

Atrioventricular block; Inflammatory cardiomyopathy; Sarcoidosis; Chagas disease; Trypanosoma cruzi; Latin America

Introduction

Pathological features of myocardial cell infiltration, as well as their common arrhythmic manifestations, are the hallmarks of inflammatory cardiomyopathies. The ‘infection-provoked inflammation’, including that caused by Trypanosoma cruzi (Triponoscuta cruzi) parasites in Chagas disease, and the ‘sterile autoinflammation’ seen in cardiac sarcoidosis, are two distinct forms of inflammation leading to a shared arrhythmic condition of the heart.1,2 Accordingly, the treatment approach towards a common cardiac manifestation can vary from targeting the causal pathogen to regulating the autoreacting immune cells. Here, we report on a Brazilian immigrant presenting with symptomatic atrioventricular (AV) block accompanying a Chagas disease diagnosis, who concomitantly developed a lung sarcoïdotic granuloma with possible systemic extension. This rare coexistence not only points to a treatment dilemma, anticipated to be increasingly encountered in this globalized world of exploding immigration, but also raises an intriguing association.

Case report

A 52-year-old Brazilian woman was referred to our cardiology department for assessment of her syncopal episodes. Her first syncope had occurred 2 years earlier, and ever since, she complained of occasional lightheadedness. She lacked any sensation of palpitations, and had not experienced any symptoms or limitations during ordinary activities (New York Heart Association functional Class I). Baseline 12-lead electro-
cardiogram (ECG) showed normal QRS amplitudes and ST-T morphology, and was only remarkable for left anterior hemiblock (Figure 1A). X-ray showed no signs of cardiomegaly or pulmonary congestion. Laboratory examination showed mild elevation in her plasma brain natriuretic peptide level (64.2 pg/dL; reference range <18.4 pg/dL), and a moderately elevated serum creatinine of 1.55 mg/dL, corresponding to an estimated glomerular filtration rate of 28.6 mL/min/1.73 m². Myocardial defects, such as ventricular wall thinning and aneurysms, were absent, and wall motion appeared normal on echocardiographic examination. Telemetry ECG documented no evidence of ventricular tachyarrhythmias but instead revealed a prolonged period of intermittent AV block with 2:1 conduction which, after extensive evaluation, carried the highest probability of being the cause of her symptoms (Fig. 1B).

Given that the patient originated from Brazil, a country endemic for *T. cruzi* infection, and had harboured a positive family history, Chagas cardiomyopathy was sought for as the aetiology. The patient’s serum was tested on multiple serological testing platforms to detect anti-trypanosomal antibodies. The ARCHITECT Chagas assay (Abbott, Chicago, USA) screened ‘positive’ with an enhanced 9.54 signal-to-cut-off index (≥1 signal-to-cutoff index, as threshold for a positive result). Her positive serology was confirmed by two additional immunoassay platforms, namely the Trypanosoma Detect Rapid Test (InBios, Seattle, USA) and the *T. cruzi* IgG CELISA II assay (CELLABS, Sydney, Australia) (Figure 1C,D). While neither the haemoculture nor the genomic amplification by polymerase chain reaction detected persistent parasitemia, the results from serological testing confirmed that she had been chronically infected with *T. cruzi*, meeting the WHO diagnostic criteria for chronic Chagas disease. Her current state, characterized by arrhythmic presentation preceding structural or functional myocardial defects, was suggestive of early stage B1 cardiomyopathy. With a disorder of AV conduction being her sole ECG abnormality, she ranked in the lowest risk category (Rassi score of 0) indicative of 10% 10 year mortality rate.4

Her past histories of chronic kidney disease and granulomatous uveitis prompted further systemic workup. Multiorgan involvement together with slight elevation in the serum lysozyme level (11.8 μg/mL; reference range 5.0–10.0 μg/mL) led to a high suspicion of systemic sarcoidosis. Lung computed tomography revealed an emerging nodular lesion in the right lower lung field, which was absent at the time she underwent a 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) scan 8 months earlier. On biopsy, the nodular lung lesion turned out to be an epithelioid granuloma staining positive for *Propionibacterium acnes* antigens (Figure 2A,B).5 The findings altogether met the criteria for lung sarcoidosis. The co-occurrence of histologi-

Figure 1 Clinical findings and the results of *Trypanosoma cruzi* serological testing. (A) The baseline electrocardiogram was remarkable only for left anterior hemiblock. (B) The telemetry electrocardiogram revealed advanced 2:1 atrioventricular block with a ventricular response rate of 33 beats per minute. (C) A lateral flow immunoassay (Trypanosoma Detect Rapid Test; InBios, Seattle, USA) detected a positive band (arrowhead). (D) In the enzyme-linked immunosorbent assay (*T. cruzi* IgG CELISA II; CELLABS, Sydney, Australia), absorbance at 450 nm was measured. Each row indicates negative control (NC), positive control (PC) and the patient’s sample, all measured in duplicates. Samples suggested a positive result.
cally proven, extra-cardiac sarcoidosis brought about the
intriguing concept of her cardiac manifestation having arisen
from two possibly overlapping aetiologies: Chagas disease
and sarcoidosis. Although the index 18FDG-PET scan lacked
signs of active cardiac inflammation, follow-up scans are
awaited, given that 10% of patients with true cardiac involve-
ment initially return false-negative scans. While the findings
could have given crucial insight into the extent of myocardial
involvement for each aetiology, assessing patterns of late
gadolinium enhancement (LGE) on cardiac magnetic reso-
nance (CMR) imaging was contraindicated due to her ad-
vanced kidney disease.

Since the available trypanocidal drugs lack evidence in
benefiting chronic Chagas disease patients in the long term,
and harbour limited safety profiles regarding their use in
patients with renal impairment, their administration was
suspended. The lung sarcoidosis had never been severe
enough to warrant treatment, but the concomitant
extrapulmonary involvement indicated the need for therapy.
While harbouring the risk of parasitemia reactivation, steroid
therapy was considered in order to target her evident ocular
and renal sarcoidotic manifestations, as well as any poten-
tially masked cardiac extension of the disease. Dosing and
planned duration of therapy are extremely complicated deci-
sions, especially when trypanocidal drugs are contraindi-
cated, as in the present case, and remain yet to be agreed
upon as a trade-off between favourable response and
$T. cruzi$ reactivation. Specific care has been further taken
to minimize the risks of malignant arrhythmic outcome, con-
sidering the arrhythmogenic natures of the two entities. The
patient is now symptom-free after receiving a pacemaker,
and any additional therapy, including an implantable
cardioverter defibrillator, has been withheld on grounds that
she lacks signs of life-threatening ventricular arrhythmia.

Discussion

The patient’s clinical picture of inflammatory cardiomyopathy
caused by chronic $T. cruzi$ infection has been complicated by
the histological evidence of an extra-cardiac sarcoidotic gran-
uloma, which evokes the probability of its systemic extension
also involving the heart. The two aetiologies may well overlap
in phenotypic expression while differing in their origins of in-
flammation: from invasion of a parasite to sterile autoreactivity.
Therefore, treatment decisions are at odds from the perspective of the interaction between exogenous factors and host immunity, and a treatment dilemma is
brought about when the two diagnoses may potentially
coexist. If sarcoidosis is to have any contributory role in her
cardiac conduction disorder, the administration of steroids
may be effective in improving the AV block and preventing
future deterioration in cardiac function. In the setting of
Chagas disease; however, the risk of parasitemia reactivation
following steroid therapy poses a challenge in decision
making. Therefore, in such a potentially overlapping
presentation, it becomes essential to specify the
contributory roles of each aetiology in forming the cardiac
conduction abnormality.

Although not performed here due to personal contraindi-
cation issues, CMR can play an active role in this sense. CMR provides information about the spatial distribution of
active inflammation and/or scarring, which aids in differenti-
ating between the triggers of cardiac inflammation. The
LGE pattern seen in Chagas disease resembles that of myocar-
dial ischaemia, involving predominantly the subendocardium.
This is in contrast to the typical LGEs observed in cardiac sar-
coidosis following a non-ischaemic pattern, that is the sparing
of the subendocardium and the localization of enhancement
in the midwall or subepicardium.
Chagas disease, a neglected tropical cardiomyopathy, and cardiac sarcoidosis, a somewhat emerging diagnosis in the present case, may be increasingly faced. Clinical stratification of conduction abnormalities following an inflammatory cardiomyopathy diagnosis thus constitutes a growing agenda.

The case also highlighted an overlooked potential association. Infectious agents, including bacteria, fungi and even viruses, and other exogenous triggers are known causes of granuloma formation in sarcoidosis. While the T lymphocyte-mediated, autoinflammatory reaction leading to granuloma formation in sarcoidosis. However, in this age of increasing globalization, where immigrants from T. cruzi-endemic regions are obtaining better access to advanced medical care, the treatment dilemma seen in the present case may be increasingly faced. Clinical stratification of conduction abnormalities following an inflammatory cardiomyopathy diagnosis thus constitutes a growing agenda.

Acknowledgements

Nakagama S, Candrary K and Nakagama Y performed the serological, molecular, and parasitological analyses, and wrote the manuscript.

Maejima Y acquired the clinical information, critically appraised the manuscript and interpreted the results of the analyses.

Kido Y and Nitahara Y critically appraised the manuscript and interpreted the results of the analyses.

Yamamoto T, Tsugeno Y and Sasano T acquired the clinical information and contributed to the discussions and decision making upon managing the case.

Conflict of interest

None declared.

Funding

The research was supported by Science and Technology Research Partnership for Sustainable Development (SATREPS), Japan Agency for Medical Research and Development (AMED), under Grant number JP 21jm0110016.

References

1. Cardoso R, Garcia D, Fernandes G, He LJ, Lichtenberger P, Vilela-Gonzalez J, Coffey JO, Mitran RD. The prevalence of atrial fibrillation and conduction abnormalities in Chagas’ disease: a meta-analysis. J Cardiovasc Electrophysiol 2016; 27: 161–169.

2. Nery PB, Beanlands RS, Nair GM, Green M, Yang J, McArthud BA, Davis D, Ohira H, Gollob MH, Leung E, Healey JS, Birnie DH. Atrioventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol 2014; 25: 875–881.

3. Andrade JP, Marin Neto JA, Paola AA, Vilas-Boas F, Oliveira GM, Bacal F, Bocchi EA, Almeida DR, Fragata Filho AA, Moreira Mda C, Xavier SS, Oliveira Junior WA, Dias JC. Latin American guidelines for the diagnosis and treatment of Chagas’ heart disease: Executive summary. Arq Bras Cardiol 2011; 96: 434–442.

4. Rassi A Jr, Rassi A, Little WC, Xavier SS, Rassi SG, Rassi AG, Rassi GG, Hasslocher-Moreno A, Sousa AS, Scanavacca MI. Development and validation of a risk score for predicting death in Chagas’ heart disease. N Engl J Med 2006; 355: 799–808.

5. Negi M, Takemura T, Guzman J, Uchida K, Furukawa A, Suzuki Y, Iida T, Ishige I, Minami J, Yamada T, Kawachi H, Costabel U, Eishi Y. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod Pathol 2012; 25: 1284–1297.

6. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wa¨senberg G, Gulenchyn KY, Dekemp RA, Dasilva J, Birnie D, Wells GA, Beanlands RS. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and meta-analysis including the Ontario experience. J Nucl Med 2012; 53: 241–248.

7. Morillo CA, Marin-Neto JA, Avezum A, Sosa-Estani S, Rassi A Jr, Rosas F, Villena E, Quiroz R, Bonilla R, Britto C, Guhl F, Velazquez E, Bonilla L, Meeks B, Rao-Melacini P, Pogue J, Mattos A, Lazdins J, Rassi A, Connolly SJ, Yusuf S, BENEFIT Investigators. Randomized trial of benzimidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 2015; 373: 1295–1306.

8. Rassi A, Amato Neto V, de Souza Filho F, Amato VS, Junior AR. Protective effect of benzimidazole against parasite reactivation in patients chronically infected with Trypanosoma cruzi and treated with corticoids for associated diseases. Rev Soc Bras Med Trop 1999; 32: 475–482.

9. Pinazo MJ, Espinosa G, Cortez-Llett C, Posada Ede J, Aldasoro E, Oliveira I, Muñoz J, Gállego M, Gascon J. Immunosuppression and Chagas disease: a management challenge. PLoS Negl Trop Dis 2013; 7: e1965.

10. Regueiro A, García-Álvarez A, Sitges M, Ortiz-Pérez JT, De Caralt MT, Pinazo MJ, Posada E, Heras M, Gascón J, Sanz G. Myocardial involvement in Chagas disease: insights from cardiac magnetic resonance. Int J Cardiol 2013; 165: 107–112.

11. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WD, Meine TJ, White JB, Elliott MD, Kim HW, Judd RM, Kim RJ. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009; 120: 1969–1977.

12. Greulich S, Deluigi CG, Gloeckler S, Wahl A, Zürn C, Kramer U, Nothnagel D, Büttel H, Schumm J, Grün S, Ong P, Wagner A, Schneider S, Nassenstein K, Gawaz M, Sechtem U, Bruder O, Mahrholdt H. CMR imaging predicts

DOI: 10.1002/ehf2.13771
death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2013; 6: 501–511.

13. Chadalawada S, Sillau S, Archuleta S, Mundo W, Bandali M, Parra-Henao G, Rodriguez-Morales AJ, Villamil-Gomez WE, Suárez JA, Shapiro L, Hotez PJ, Woc-Colburn L, DeSanto K, Rassi A Jr, Franco-Paredes C, Henao-Martínez AF. Risk of chronic cardiomyopathy among patients with the acute phase or indeterminate form of Chagas disease: a systematic review and meta-analysis. JAMA Netw Open 2020; 3: e2015072.

14. González-Pacheco H, Álvarez-Sangabriel A, Martínez-Sánchez C, Briseño-Cruz JL, Altamirano-Castillo A, Mendoza-García S, Manzur-Sandoval D, Amezcua-Guerra LM, Sandoval J, Bojalil R, Araiza-Garaygordobil D, Sierra-Lara D, Guiza-Sánchez CA, Gopar-Nieto R, Cruz-Rodríguez C, Valdivia-Nuño JJ, Salas-Teles B, Arias-Mendoza A. Clinical phenotypes, aetiologies, management, and mortality in acute heart failure: a single-institution study in Latin-America. ESC Heart Fail 2021; 8: 423–437.

15. Gascon J, Bern C, Pinazo MJ. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 2010; 115: 22–27.