Sparse Attentive Backtracking: Temporal credit assignment through reminding

Nan Rosemary Ke1,2, Anirudh Goyal1, Olexa Bilaniuk 1, Jonathan Binas1 Chris Pal2,4, Mike Mozer 3, Yoshua Bengio1,5

1Mila, Université de Montréal
2Mila, Polytechnique Montreal
3University of Colorado, Boulder
4Element AI
5CIFAR Senior Fellow
Overview

- Recurrent neural networks
 - sequence modeling
- Training RNNs
 - backpropagation through time (BPTT)
- Attention mechanism
- Sparse attentive backtracking
Sequence modeling

Variable length input and (or) output.

- Speech recognition
 - variable length input, variable length output

- Image captioning
 - Fixed size input, variable length output

A woman is throwing a frisbee in a park.
A stop sign is on a road with a mountain in the background.
A group of people sitting on a boat in the water.
A giraffe standing in a forest with trees in the background.
More examples

- Text
 - Language modeling
 - Language understanding
 - Sentiment analysis

- Videos
 - Video generation.
 - Video understanding.

- Biological data
 - Medical imaging
Handling variable length data

- **Variable** length input or output
- **Variable** order
 - "In 2014, I visited Paris."
 - "I visited Paris in 2014."
- Use **shared parameters** across time
Vanilla recurrent neural networks

- Parameters of the network
 - U, W, V
 - unrolled across time

Christopher Olah – Understanding LSTM Networks
Training RNNs

Backpropagation through time (BPTT)

$$\frac{dE_2}{dU} = \frac{dE_2}{dh_2} (x_2^T + \frac{dh_2}{dh_1} (x_1^T + \frac{dh_1}{dh_0} x_0^T))$$

Christopher Olah – Understanding LSTM Networks
Challenges with RNN training

Parameters are shared across time

- Number of parameters do not change with sequence length.
- Consequences
 - Optimization issue
 - Exploding or vanishing gradients
 - Assumption that same parameters can be used for different time steps.
Challenges with RNN training

Train to predict the future from the past

- h_t is a lossy summary of $x_0, ..., x_t$
- Depending on criteria, h_t decides what information to keep
- **Long term dependency**: if y_t depends on distant past, then h_t has to keep information from many timesteps ago.
Example of long term dependency

- Question answering task.
- Answer is the first word.
Exploding and vanishing gradient

Challenges in learn long term dependencies

- Exploding and vanishing gradient
Gated recurrent neural networks that helps with long term dependency.

- Self-loop for gradients to flow for many steps
- Gates for learning what to remember or forget
- Long-short term memory (LSTM)

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." *Neural computation* 9.8 (1997): 1735-1780.

- Gated recurrent neural networks (GRU)

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).
Long short term memory (LSTM)

Recurrent neural network with gates that dynamically decides what to put into, forget about and read from memory.

- Memory cell c_t
- Internal states h_t
- Gates for writing into, forgetting and reading from memory

Christopher Olah – Understanding LSTM Networks
Encoder decoder model

Summarizes the input into a single h_t and decoder generates outputs conditioned on h_t.

- Encoder summarizes entire input sequence into a single vector h_t.
- Decoder generates outputs conditioned on h_t.
- Applications: machine translation, question answering tasks.
- Limitations: h_t in encoder is bottleneck.
Removes the bottleneck in encoder decoder architecture using an attention mechanism.

- At each output step, learns an attention weight for each $h_0, ..., h_t$ in the encoder.

$$a_j = \frac{e^{A(z_j, h_j)}}{\sum_{j'} e^{A(z_j, h_{j'})}}$$

- Dynamically encodes into context vector at each time step.
- Decoder generates outputs at each step conditioned on context vector c_{x_t}.

![Diagram of attention mechanism](image-url)
Limitations of BPTT

The most popular RNN training method is backpropagation through time (BPTT).

- Sequential in nature.
- Exploding and vanishing gradient
- Not biologically plausible
 - Detailed replay of all past events.
Credit assignment

- **Credit assignment**: The correct division and attribution of blame to one's past actions in leading to a final outcome.
- Credit assignment in **recurrent neural networks** uses backpropagation through time (BPTT).
 - Detailed memory of all past events
 - Assigns soft credit to almost all past events
 - Diffusion of credit? difficulty of learning long-term dependencies
• Humans selectively recall memories that are relevant to the current behavior.

• Automatic reminding:
 • Triggered by contextual features.
 • Can serve a useful computational role in ongoing cognition.
 • Can be used for credit assignment to past events?

• Assign credit through only a few states, instead of all states:
 • Sparse, local credit assignment.
 • How to pick the states to assign credit to?
Example: Driving on the highway, hear a loud popping sound. Didn’t think too much about it, 20 minutes later stopped by side of the road. Realized one of the tire has popped.

- What we tend to do?
 - Memory replay of event in context: Immediately brings back the memory of the loud popping sound 20min ago.

- what BPTT does?
 - BPTT will replay all events within the past 20min.
Maybe something more biologically inspired?

• What we tend to do?
 • Memory replay of event in context: Immediately brings back the memory of the loud popping sound 20min ago.

• what BPTT does?
 • BPTT will replay all events within the past 20min.
Credit assignment through a few states?

- Can we assign credit only through a few states?
- How to pick which states to assign credit to?
- RNN models does not support such operations in the past. Needs to make architecture changes.
 - Can change both forward and backward.
 - Or just change backward pass.
- Change both forward and backward pass
 - Forward dense, backward sparse
 - Forward sparse, backward sparse
Sparse replay

Humans are trivially capable of assigning credit or blame to events even a long time after the fact, and do not need to replay all events from the present to the credited event sequentially and in reverse to do so.

- Avoids competition for the limited information-carrying capacity of the sequential path
- A simple form of credit assignment
- Imposes a trade-off that is absent in previous, dense self-attentive mechanisms: opening a connection to an interesting or useful timestep must be made at the price of excluding others.
Sparse attentive backtracking

- Use attention mechanism to select previous timestep to do backprop
 - Local backprop: truncated BPTT
 - Select previous hidden states - **sparsely**.
 - Skip-connections: natural for long-term dependency.
Algorithm 1 SAB-augmented LSTM

1: procedure SABCell \((h^{t-1}, c^{t-1}, x^{(t)})\)

Require: \(k_{top} > 0, k_{att} > 0, k_{trunc} > 0\)

Require: Memories \(m^{(i)} \in \mathcal{M}\)

Require: Previous hidden state \(h^{(t-1)}\)

Require: Previous cell state \(c^{(t-1)}\)

Require: Input \(x^{(t)}\)

2: \(\hat{h}^{(t)}, c^{(t)} \leftarrow \text{LSTMCell}(h^{(t-1)}, c^{(t-1)}, x^{(t)})\)

3: for all \(i \in 1 \ldots |\mathcal{M}|\) do

4: \(d_{i}^{(t)} \leftarrow W_{1}m^{(i)} + W_{2}\hat{h}^{(t)}\)

5: \(a_{i}^{(t)} \leftarrow W_{3}\tanh(d_{i}^{(t)})\)

6: \(a_{k_{top}}^{(t)} \leftarrow \text{sorted}(a^{(t)})[k_{top}+1]\)

7: \(\tilde{a}^{(t)} \leftarrow \text{ReLU}(a^{(t)} - a_{k_{top}}^{(t)})\)

8: \(s^{(t)} \leftarrow \sum_{m^{(i)} \in \mathcal{M}} \tilde{a}_{i}^{(t)}m^{(i)}/\sum_{i} \tilde{a}_{i}^{(t)}\)

9: \(h^{(t)} \leftarrow \hat{h}^{(t)} + s^{(t)}\)

10: \(y^{(t)} \leftarrow V_{1}h^{(t)} + V_{2}s^{(t)} + b\)

11: if \(t \equiv 0 \pmod{k_{att}}\) then

12: \(\mathcal{M}.\text{append}(h^{(t)})\)

13: return \(h^{(t)}, c^{(t)}, y^{(t)}\)
Sparse Attentive Backtracking

Forward pass
Sparse Attentive Backtracking

Backward pass
Copy task

k_{trunc}	k_{top}	Copying (T=100)	Copying (T=200)	Copying (T=300)
		acc. CE₁₀ CE	acc. CE₁₀ CE	acc. CE₁₀ CE
full BPTT		99.8 0.030 0.002	56.0 1.07 0.046	35.9 0.197 0.047
full self-attn.		100.0 0.0008 0.0000	100.0 0.001 0.000	100.0 0.002 7.5e-5
LSTM				
1	-	20.6 1.984 0.165	17.1 2.03 0.092	14.0 2.077 0.065
5	-	31.0 1.737 0.145	20.2 1.98 0.090	
10	-	29.6 1.772 0.148	35.8 1.61 0.073	25.7 1.848 0.197
20	-	30.5 1.714 0.143	35.0 1.596 0.073	24.4 1.857 0.058
150	-	-	-	-

SAB				
1 1		57.9 1.041 0.087	39.9 1.516 0.069	43.1 0.231 0.045
1 5	100.0 0.001 0.000			89.1 0.383 0.012
5 5	100.0 0.000 0.000	100.0 0.000 0.000	99.9 0.007 0.001	
10 10	100.0 0.000 0.001	100.0 0.000 0.000		

Table 2: Test accuracy and cross-entropy (CE) loss performance on the copying task with sequence lengths of T=100, 200, and 300. Accuracies are given in percent for the last 10 characters. CE₁₀ corresponds to the CE loss on the last 10 characters. These results are with mental updates; Compare with Table 4 for without.
Comparison to Transformers

Image class.	pMNIST acc.	CIFAR10 acc.
LSTM		
full BPTT	90.3	58.3
300	-	51.3
SAB		
20	5	89.8
20	10	90.9
50	10	94.2
16	10	64.5
Transformer (Vaswani’17)	**97.9**	**62.2**

Table 4: Test accuracy for the permuted MNIST and CIFAR10 classification tasks.
Language	k_{trunc}	k_{top}	k_{att}	PTB BPC	Text8 BPC
full BPTT				1.36	1.42
LSTM	1	-	-	1.47	
	5	-	-	1.44	1.56
	20	-	-	1.40	
SAB	10	5	10	1.42	1.47
	10	10	10	1.40	1.45
	20	5	20	1.39	1.45
	20	10	20	1.37	1.44
Are mental updates important?

How important is backproping **through the local** updates (not just attention weights)?

Ablation	Copying, T=100	Adding, T=200 CE				
	k_{trunc}	k_{top}	acc.	CE$_{last10}$	CE	
no MU	1	1	49.0	1.252	0.104	
	5	5	98.3	0.042	0.0036	
	10	10	99.6	0.022	0.0018	
5 all	40.5	1.529	0.127	2.171e-6		
Generalization

- Generalization on longer sequences

Transfer Learning Results

Copy len. (T)	LSTM	LSTM +self-a.	SAB
100	99%	100%	99%
200	34%	52%	95%
300	25%	28%	83%
400	21%	20%	75%
2000	12%	12%	47%
5000	12%	OOM	41%

Generalization test for models trained on copy task with T=100

![Graph showing accuracy of last 10 digits for different sequence lengths]
Long term dependency tasks

Attention heat map

- Learned attention over different timesteps during training

Copy Task with $T = 200$
Future work

• **Content-based rule for writing to memory**
 • Reduces memory storage
 • How to decide what to write to memory?
 • Humans show a systematic dependence on many content: salient, extreme, unusual, and unexpected experiences are more likely to be stored and subsequently remembered

• **Credit assignment through more abstract states/ memory?**

• **Model-based reinforcement learning**
• The source code is now open-source, at

 https://github.com/nke001/sparse_attentive_backtracking_release