Some properties of surfaces of finite III-type

HASSAN AL-ZOUBI
Department of Mathematics
Al-Zaytoonah University of Jordan
P.O. Box 130, Amman 11733
JORDAN

dr.hassanz@zuj.edu.jo

Abstract: - In this paper, we firstly investigate some relations regarding the first and the second Laplace operators corresponding to the third fundamental form III of a surface in the Euclidean space \(E^3 \). Besides, we introduce the finite Chen type surfaces of revolution with nonvanishing Gauss curvature with respect to the third fundamental form. We present a special case of this family of surfaces of revolution in \(E^3 \), namely, surfaces of revolution with \(R \) is constant, where \(R \) denotes the sum of the radii of the principal curvature of a surface.

Key-Words: - Surfaces in the Euclidean 3-space, Surfaces of finite Chen-type, Laplace operator, Surfaces of revolution.

1 Introduction

One of the most interesting and profound aspects of differential geometry is the idea of surfaces of finite type which was born by B-Y. Chen in the early 1970s and since then, it has become a source of interest for many researchers in this field. The reader can refer to [17] for more details. In the framework of this kind of study, the first-named author with S. Stamatakis has given in [28] a new generalization to this area of study by giving a similar definition of surfaces of finite type.

Let \(x \) be an isometric immersion of a surface \(S \) in the 3-dimensional Euclidean space \(E^3 \). We represent by \(\Delta \) the Laplacian operator of \(S \) acting on the space of smooth functions \(C^\infty(S) \). Then \(S \) is said to be of finite \(J \)-type, \(J = I, II, III \), if the position vector \(x \) of \(S \) can be decomposed as a finite sum of eigenvectors of \(\Delta \) of \(S \), that is

\[
x = x_0 + x_1 + x_2 + ... + x_k, \quad (1)
\]

where

\[
\Delta x_i = \lambda_i x_i, \quad i = 1, ..., k,
\]

\(x_0 \) is a fixed vector and \(\lambda_1, \lambda_2, ..., \lambda_k \) are eigenvalues of the operator \(\Delta \).

Surfaces of finite type in \(E^3 \) regarding the second fundamental form were investigated for some important classes of surfaces. More precisely, the class of ruled surfaces was studied in [7], while in [3], H. AL-Zouabi studied tubular surfaces in \(E^3 \). Other classes such as translation surfaces, Quadric surfaces, surfaces of revolution, helicoidal surfaces, cyclides of Dupin, and spiral surfaces, the classification of its finite II-type surfaces still unknown. According to the third fundamental form, ruled surfaces in [4], tubes in [5], and quadric surfaces [6] are the only classes were investigated in \(E^3 \).

This type of study can be also extended to any smooth map, not necessary for the position vector of the surface, for example, the Gauss map of a surface. Regarding this see [8, 9].

Another generalization to the above, one can study surfaces in \(E^3 \) whose position vector \(x \) satisfies the following condition

\[
\Delta x = Ax, \quad J = I, II, III, \quad (2)
\]

where \(A \in \mathbb{R}^{3 \times 3} \).

Related to this, in [29] it was proved that the spheres and the catenoids are the only surfaces of revolution satisfying the above equation. Similarly, in [1] it was shown that helicoids and spheres are the only quadric surfaces in \(E^3 \) that satisfy (2). Next, in [2] condition (2) was studied for the class of translation surfaces. In fact, authored ascertained that Scherk's surface is the only translation surface in the Euclidean 3-space that satisfies (2), finally, in [24] the authors studied the class of translation surfaces in \(\text{Sol}_3 \) satisfying (2). Surfaces satisfying condition (2) are said to be of coordinate finite \(J \)-type.

Another interesting study is to find surfaces in \(E^3 \) whose Gauss map \(N \) satisfies the relation (2) that is
\[\Delta'N = AN, \quad J = I, \, II, \, III, \]

For this problem, readers can be referred to [10, 11, 13, 18, 19, 20, 21].

Interesting research also one can follow the idea in [23,26] by defining the first and second Laplace operator using the definition of the fractional vector operators.

In order to achieve our goal, we briefly introduce a formula for \(\Delta^I x \) and \(\Delta^II N \) by using tensors calculations. Further, in the last section, we contribute to the solution of our main result.

2 Fundamentals

We consider a smooth surface \(S \) in \(E^3 \) given by a patch \(x = x(u^1, u^2) \) on a region \(U = (a, b) \times S \) of \(\mathbb{R}^3 \) in which does not contain parabolic points. We denote by

\[I = g_{ij} du^i du^j, \quad II = b_{ij} du^i du^j, \quad III = e_{ij} du^i du^j \]

the three fundamental forms of \(S \). For any two differentiable functions \(f(u^1, u^2) \) and \(g(u^1, u^2) \) on \(S \), the first differential parameter of Laplace regarding the fundamental form \(J \) is defined by [12]

\[\nabla^I(f, g) = d^I f_i g_j, \]
where \(f_i = \frac{\partial f}{\partial u^i} \) and \((d^I) \) denotes the inverse tensor of \((g_{ij}), (b_{ij}) \) and \((e_{ij}) \) for \(J = I, \, II \) and \(III \) respectively.

We first prove the following relations:

\[\nabla^I(f, x) + \nabla^II(f, N) = 0, \quad (4) \]
\[\nabla^II(f, x) + \nabla^III(f, N) = 0. \quad (5) \]

For the proof of (5) we use (3) and the Weingarten equations

\[N_j = -e_{jk} b_{km} \, x_{m}, \quad (6) \]
to obtain

\[\nabla^II(f, N) = b_{ij} f_j N_i = b_{ij} f_j b_{km} \, x_{m}, \]
\[= -g^{im} f_j x_{m} = -\nabla^I(f, x), \]

being (4). We have similarly

\[\nabla^III(f, N) = e_{ij} f_j N_i = -e_{ij} f_j e_{jk} b_{km} \, x_{m}, \]
\[= -b^{im} f_j x_{m} = -\nabla^II(f, x), \]

which is (5).

The second Laplace operator according to the fundamental form \(J = I, \, II, \, III \) of \(S \) is defined by [10]

\[\Delta'f = -d^I \nabla^I f_i, \]

where \(f \) is a sufficiently differentiable function, \(\nabla^I \) is the covariant derivative in the \(u^i \) direction with respect to the fundamental form \(J \) [12]. For \(J = III \) we have

\[\Delta^III f = -e^{ij} \nabla^III f_{ij}, \quad (7) \]

We now compute \(\Delta^III x \) and \(\Delta^II N \). From (7) and the equations [19, p.128]

\[\nabla^III x_j = -b^{km} \nabla^I_{m} b_{ij} x_{k} + b_{ij} N \]

we get

\[\Delta^III x = e^{ij} b^{km} \nabla^I_{m} b_{ij} x_{k} - e^{ij} b_{ij} N. \quad (8) \]

Denote by

\[A^{ij}_k = \frac{1}{2} e^{km} (-e_{ijm} + e_{imj} + e_{jim}), \]

the Christoffel symbols of the second kind regarding the third fundamental form. We put

\[T^{ij}_k = \Gamma^{ij}_k - \Pi^{ij}_k, \]
\[\tilde{T}^{ij}_k = A^{ij}_k - \Pi^{ij}_k. \]

It is known that [19, p.22]

\[T^{ij}_k = -\frac{1}{2} b^{km} \nabla^I_{m} b_{ij}, \quad (9) \]
\[\tilde{T}^{ij}_k = \frac{1}{2} b^{km} \nabla^III_{m} b_{ij} \quad (10) \]

and

\[T^{ij}_k + \tilde{T}^{ij}_k = 0. \quad (11) \]

Besides, using Ricci’s Lemma

\[\nabla^III e^{ij} = 0 \]

and the formula

\[R = \frac{2H}{K} = e^{ik} b_{ik}, \quad (12) \]

where \(K \) is the Gauss curvature and \(H \) is the mean curvature of \(S \) respectively we have

\[R_{im} = \nabla^III_{m} (e^{ik} b_{ik}) = e^{ik} \nabla^III_{m} b_{ik}. \quad (13) \]

From (9), (10), (11) and (13) we find
\[e^{ij} b_{km} \nabla^I_m b_{ij} = -2e^{ij} T^k_{ij} = 2e^{ij} \tilde{T}^k_{ij} \]
\[= -e^{ij} b_{km} \nabla^m_x b_{ij} = -b_{km} R_{ln} \]

so and
\[e^{ij} b_{km} \nabla^I_m b_{ij} x_{ik} - b_{km} R_{ln} x_{ik} = -\nabla^M(R, x). \quad (14) \]

By combining (8), (12), and (14) we obtain [22]
\[\Delta^{III} x = -\nabla^{III}(R, x) - RN. \]

Finally, using (5) we arrive at
\[\Delta^{III} x = \nabla^{III}(R, N) - RN. \quad (15) \]

For the normal vector \(N \) we have
\[(1.23) \quad \nabla^{III}_k N_{ih} = -e_{ik} N \]

we have
\[\Delta^{III} N = -e^{ik} \nabla^{III} N_{ih} = e^{ik} e_{ik} N, \]

so that we conclude
\[\Delta^{III} N = 2 N. \]

From the last equation, it can be seen that the Gauss map of every surface \(S \) in \(E^3 \) is of finite \(III \)-type 1, the corresponding eigenvalue is 2. Now we prove some relations according to the third fundamental form of \(f \).

For any differentiable function \(f(u^1, u^2) \) it can be easily shown that
\[\Delta^{III}(f) = (\Delta^{III} f) x + f \Delta^{III} x - 2 \nabla^{III}(f, x) \]
\[= (\Delta^{III} f) x + f \nabla^{III}(R, N) - fR N - 2 \nabla^{III}(f, x) \]

Similarly
\[\Delta^{III}(f N) = (\Delta^{III} f) N + f \Delta^{III} N - 2 \nabla^{III}(f, N) \]
\[= (\Delta^{III} f) N + 2f N + 2 \nabla^{III}(f, x) \]

Denote by \(W = -\langle x, N \rangle \) the support function of \(S \), where \(\langle \cdot, \cdot \rangle \) is the Euclidean inner product. Applying relation (7) for the function \(W \), it can be easily verified that
\[\Delta^{III} W = e^{ik} \nabla^{III} x_{ik} = e^{ik} \nabla^{III} x_{ih} = -2 \nabla^{III}(x, N) \]
\[= -2 \nabla^{III}(x, N) + \nabla^{III}(x, N) \]
\[= -2e^{ik} x_{ih}, N > = -\Delta^{III} x, N > \]
\[- \langle x, \Delta^{III} N \rangle + 2e^{ik} x_{ih}, b_{ik} g^{ij} x_{j} > \]
\[= -\langle N, \nabla^{III}(R, N) - RN \rangle \]
\[= -\langle x, 2N \rangle - 2e^{ik} x_{ih}, b_{ik} g^{ij} x_{j} > \]
\[= 2W - R. \quad (16) \]

We consider now the surface \(S \) of finite \(III \)-type 1. Then we have \(\Delta^{III} x = kx \), where \(k \) is a constant eigenvalue.

From (15) we get \(\nabla^{III}(R, N) = RN \) \(\langle x, N \rangle \). Taking the inner product of both sides of this equation with \(N \) we find \(R = kW \), From the formula (16) we find that
\[\Delta^{III} W = (2 - k)W, \Delta^{III} R = (2 - k)R. \]

Thus, we have proved the following:

Theorem 1. Let \(S \) be a surface in \(E^3 \) of finite \(III \)-type 1 with corresponding eigenvalue \(1 \). Then the support function \(W \) and the sum of the principal radii of curvature \(R \) are of eigenfunctions of the Laplacian \(\Delta^{III} \) with corresponding eigenvalue 0.

Let now \(S \) be a minimal surface. Then we have
\[R = \frac{2H}{K} = 0. \]

Thus from the equation (16) we get \(\Delta^{III} W = 2W \). So we have

Corollary 1. Let \(S \) be a minimal surface. Then the support function \(W \) is of an eigenfunction of \(\Delta^{III} \) with corresponding eigenvalue 0.

Let \(S' \) be a parallel surface of \(S \) (in directed) distance \(\mu = \text{const.} \neq 0 \), so that \(1 - 2\mu H + \mu^2 K \neq 0 \). Then \(S' \) possesses the position vector \(x' = x + \mu N \).

Denoting by \(K' \) and \(H' \) the Gauss and mean curvature of \(S' \) respectively, we mention the following relations
\[K' = \frac{K}{1 - 2\mu H + \mu^2 K}, \]
\[H' = \frac{H - \mu K}{1 - 2\mu H + \mu^2 K}. \]

Hence we get
\[R' = \frac{2H'}{K'} = R - 2\mu. \quad (17) \]
On the other hand, the surfaces S, S' have common unit normal vector and spherical image. Thus $III = III'$ and $\Delta^\text{III} = \Delta^\text{III'}$. We prove now the following theorem for later use.

Theorem 2. Let S be a minimal surface in E^3. Then S' is a parallel surface of S if and only if the sum of the principal radii of curvature R' of S' is constant.

Proof. Suppose that S is a minimal surface in E^3, which is defined on a simply connected domain D in the (u^1, u^2)-plane. Let

$$S': x' = x + \mu N, \mu \neq 0$$

be parallel surface of S. From (17) and taking into account $H = 0$, we find $R' = -2\mu = \text{const.}$. Hence the first part of the theorem is proved.

Conversely, let $R' = \text{const.} \neq 0$. Then from Theorem (4.4) (see [29]), S' is of null III-type 2. Therefore from (1) there exist nonconstant eigenvectors $x_1(u^1, u^2)$ and $x_2(u^1, u^2)$ defined on the same domain D such that

$$x' = x_1 + x_2,$$

(18)

where $\Delta^\text{III} x_1 = \lambda_1 x_1$, $\Delta^\text{III} x_2 = \lambda_2 x_2$, and here we have $\lambda_1 = 0$ because S' is of null III-type 2.

Once we have $\Delta^\text{III} x' = \Delta^\text{III} x_1 + \Delta^\text{III} x_2$, it then follows that

$$\Delta^\text{III} x' = \lambda_2 x_2.$$

(19)

Besides, since $R' = \text{const.} \neq 0$, we find

$$\Delta^\text{III} x' = -R' N.$$

(20)

Thus from (19) and (20), one finds

$$\lambda_2 x_2 = -R' N$$

or $x_2 = c N$, where $c = -\frac{R'}{\lambda_2}$, and then (18) becomes

$$x' = x_1 + c N.$$

(21)

The differential of the above equation is

$$dx' = dx_1 + cdN.$$

(22)

Taking the inner product of both sides of (22) with N yields

$$<dx_1, N> = 0.$$

(23)

Now we want to show that $x_1(u^1, u^2)$ is a regular parametric representation of a surface in E^3. It is enough to prove that

$$x_1[1] \times x_1[2] \neq 0, \quad \forall (u^1, u^2) \in D,$$

where \times is the Euclidean cross product. We have

$$x_1 = x^* - \mu N,$$

(24)

Using the Weingarten equations

$$N_\beta = -b_{ij}g^\beta x^*_i x^*_j,$$

and the equation (24), it follows that

$$x_1[1] \times x_1[2] = (x^*_1 - \mu N_1) \times (x^*_2 - \mu N_2)$$

$$= (x^*_1 \times x^*_2) - \mu (x^*_1 \times N_2) + \mu (x^*_2 \times N_1) + \mu^2 (N_1 \times N_2)$$

$$= (1 - 2\mu H + \mu^2 K)(x^*_1 \times x^*_2) \neq 0,$$

$$\forall (u^1, u^2) \in D.$$

(25)

Hence, on account of (23) and (25), we conclude that $x_1(u^1, u^2)$ is a regular parametric representation of a surface in E^3 with N its Gauss map.

Since $\Delta^\text{III} x_1 = 0$. Consequently, from Theorem (3.1) (see [29]), $x_1(u^1, u^2)$ is a minimal surface. Thus from (21), we obtain that S' is a parallel surface of a minimal. Now we mention and prove our main theorem.

Theorem 3. The only surfaces of revolution in E^3 of which the sum of the radii of the principal curvature R is constant are

- parts of spheres which are of finite III-type 1,
- catenoids which are of finite null III-type 1, and
- the parallel surfaces to the catenoids, which are of finite null III-type 2.

3 Proof of Theorem 3

Let C be a smooth curve lies on the xz-plane parametrized by

$$x(u) = (f(u), 0, g(u)), u \in J, (J \subset R),$$

where f, g are smooth functions and f is a positive function. When C is revolved about the z-axis, the
resulting point set S is called the surface of revolution generated by the curve C. In this case, the z-axis is called the axis of revolution of S, and C is called the profile curve of S. On the other hand, a subgroup of the rotation group which fixes the vector $(0, 0, 1)$ is generated by

$$\begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then the position vector of S is given by see ([14, 24])

$$x(u, v) = (f(u) \cos v, f(u) \sin v, g(u)),$$

$$u \in J, v \in [0, 2\pi).$$

Without loss of generality, we may assume that C has the arc-length parametrization, i.e., it satisfies

$$(f')^2 + (g')^2 = 1,$$

where $':= \frac{d}{du}$. Furthermore if $f' g' = 0$, then $f = \text{const.}$ or $g = \text{const.}$ and S would be a circular cylinder or part of a plane, respectively. A case that has been excluded since S would consist only of parabolic points.

The partial derivatives of (26) are

$$x_u = (f' (u) \cos v, f' (u) \sin v, g' (u)),$$

and

$$x_v = (-f(u) \sin v, f(u) \cos v, 0).$$

The components e_θ of the first fundamental form in (local) coordinates are the following

$$g_{11} = \langle x_u, x_u \rangle = 1, \quad g_{12} = \langle x_u, x_v \rangle = 0,$$

$$g_{22} = \langle x_v, x_v \rangle = f'^2.$$

Denoting by κ the curvature of the curve C and r_1, r_2 the principal radii of curvature of S, we have

$$r_1 = \frac{1}{\kappa}, \quad r_2 = \frac{f}{g'}.$$

The Gauss curvature and the mean curvature of S are respectively

$$K = \frac{1}{r_1 r_2} = \frac{g''}{f} = -\frac{f''}{f},$$

and

$$2H = \frac{1}{r_1} + \frac{1}{r_2} = \kappa + \frac{g'}{f}.$$

The Gauss map \mathbf{N} of S is computed as follows

$$\mathbf{N}(u, v) = (-g' \cos v, -g' \sin v, -f').$$

Now, by using the natural frame $\{\mathbf{N}_u, \mathbf{N}_v\}$ of S defined by

$$\mathbf{N}_u = (-g'' \cos v, -g'' \sin v, f''),$$

and

$$\mathbf{N}_v = (g' \sin v, -g' \cos v, 0)$$

the components e_θ of the third fundamental form in (local) coordinates are the following

$$e_{11} = \langle \mathbf{N}_u, \mathbf{N}_u \rangle = (g'')^2 + (f'')^2,$$

$$e_{12} = \langle \mathbf{N}_u, \mathbf{N}_v \rangle = 0, \quad e_{22} = \langle \mathbf{N}_v, \mathbf{N}_v \rangle = (g'')^2.$$

The Beltrami operator Δ^{\III} in terms of local coordinates (u, v) of S can be expressed as follows

$$\Delta^{\III} \mathbf{g} = -\frac{1}{\kappa^2} \frac{\partial}{\partial v} \left(\frac{\partial}{\partial u} \right) + \frac{g' \kappa' - g'' \kappa}{g' \kappa^3} \frac{\partial}{\partial u} - \frac{1}{g'^2} \frac{\partial^2}{\partial v^2}. \quad (29)$$

On account of (27) we put

$$f' = \cos \varphi, \quad g' = \sin \varphi,$$

where $\varphi = \varphi (u)$. Then $\kappa = \varphi'$ and the parametric representation (28) of the unit vector \mathbf{N} of S becomes

$$\mathbf{N}(u, v) = \{-\sin \varphi \cos v, -\sin \varphi \sin v, \cos \varphi \}. \quad (30)$$

Also relation (29) takes the following form

$$\Delta^{\III} \mathbf{g} = -\frac{1}{\varphi''} \frac{\partial}{\partial \varphi} \left(\frac{\partial}{\partial u} \right) + \left(\frac{\varphi'' - \cos \varphi}{\varphi'^3} \right) \frac{\partial}{\partial u} - \frac{1}{\sin^2 \varphi} \frac{\partial^2}{\partial v^2}. \quad (31)$$

For the sum of the principal radii of curvature $R = r_1 + r_2 = \frac{2H}{\kappa}$, one finds

$$R = \frac{f}{\sin \varphi} + \frac{1}{\varphi'}. \quad (32)$$

Taking the derivative of (32) we find

$$R' = \frac{\varphi''}{\varphi'^3} - \frac{fg' \cos \varphi}{\sin^2 \varphi} + \frac{\cos \varphi}{\sin \varphi}. \quad (33)$$
Let \((x_1, x_2, x_3)\) be the coordinate functions of (26). By virtue of (31), we obtain

\[
\Delta_{III}^{x_1} = \Delta_{III}(f \cos v) =
\left(\frac{\varphi'' \cos \varphi - \frac{1}{\varphi' \sin \varphi} \frac{2 \sin \varphi}{\varphi'} + \frac{f}{\sin \varphi} \right) \cos v
\]

\[
\Delta_{III}^{x_2} = \Delta_{III}(f \sin v) =
\left(\frac{\varphi'' \cos \varphi - \frac{1}{\varphi' \sin \varphi} \frac{2 \sin \varphi}{\varphi'} + \frac{f}{\sin \varphi} \right) \sin v
\]

\[
\Delta_{III}^{x_3} = \Delta_{III}(g) = -\frac{2 \cos \varphi}{\varphi'} + \frac{\varphi'' \sin \varphi}{\varphi'^2}
\]

From (32) and (33), equations (34), (35) and (36) become respectively

\[
\Delta_{II}^{x_1} = \left(R \sin \varphi - \frac{R' \cos \varphi}{\varphi'} \right) \cos v
\]

\[
\Delta_{II}^{x_2} = \left(R \sin \varphi - \frac{R' \cos \varphi}{\varphi'} \right) \sin v
\]

\[
\Delta_{II}^{x_3} = -\frac{R' \sin \varphi}{\varphi'} - R \cos \varphi
\]

We obtain the following two cases:

Case I. \(R = 0\). Thus \(H \equiv 0\). Consequently \(S\), being a minimal surface of revolution, is a catenoid.

Case II. \(R \neq 0\). From (37), (38), and (39) we obtain

\[
\Delta_{II}^{x_1} = R \sin \varphi \cos v
\]

\[
\Delta_{II}^{x_2} = R \sin \varphi \sin v
\]

\[
\Delta_{II}^{x_3} = -R \cos \varphi
\]

Let \((N_1, N_2, N_3)\) be the coordinate functions of \(N\). From (29), relations (40) can be written

\[
\Delta_{III}^{x_1} = -RN_1, \quad \Delta_{III}^{x_2} = -RN_2, \quad \Delta_{III}^{x_3} = -RN_3,
\]

and hence

\[
\Delta_{III} x = -RN.
\]

In view of (7) and (41) we have

\[
(\Delta_{III}^0)x = -(2^{n-1})RN.
\]

Now, if \(S\) is of finite type \(k\), then there exist real numbers \(c_1, c_2, \ldots, c_k\) such that

\[
(\Delta_{III})^0 x + c_1(\Delta_{III})^{-1} x + \ldots + c_k x = 0.
\]

From (41) and (42), relation (43) becomes

\[
-2^{k-1}RN - 2^{k-2}c_1RN - \ldots - c_{k-1}RN + c_k = 0,
\]

or

\[
c N + c_k x = 0,
\]

where \(c = -R(2^{k-1} + 2^{k-2}c_1 + \ldots + c_{k-1}) = \text{const.}\).

Now, if \(c_k \neq 0\), then from (44) we have \(x = -\frac{1}{c_k} N\), and hence we get \(|x| = \frac{1}{|c|}\) and so \(S\) is a sphere. On account of Theorem (3.3) (see [23]), \(S\) is of finite \(III\)-type 1. If \(c_1 = 0\), then \(S\) is of null type \(k\). Since \(R = \text{const.}\), thus according to Theorem (4.4) (see [29]) and Theorem (2), \(S\) is of null \(III\)-type 2 which is a parallel surface of a minimal.

References:

[1] H. Al-Zoubi, S. Stamatakis, Ruled and Quadric surfaces satisfying \(\Delta_{III} x = Ax\), *J. For. Geom. and Graphics*, **20** (2016), pp. 147-157.

[2] H. Al-Zoubi, S. Stamatakis, W. Al Mashaleh and M. Awadallah, Translation surfaces of coordinate finite type, *Indian J. of Math.* **59** (2017), pp. 227-241.

[3] H. Al-Zoubi, Tubes of finite II-type in the Euclidean 3-space, *WSEAS Trans. Math.* **17** (2018), pp. 1-5.

[4] H. Al-Zoubi, S. Al-Zubi, S. Stamatakis and H. Almimi, Ruled surfaces of finite Chen-type, *J. Geom. and Graphics* **22** (2018), pp. 15-20.

[5] H. Al-Zoubi, K. M. Jaber, S. Stamatakis, Tubes of finite Chen-type, *Commun. Korean Math. Soc.* **33** (2018), pp. 581-590.

[6] H. Al-Zoubi, M. Al-Sabbagh, S. Stamatakis, On surfaces of finite Chen III-type, *Bull. Belgian Math. Soc.* **26** (2019), pp. 177-187.

[7] H. Al-Zoubi, A. Dababneh, M. Al-Sabbagh, Ruled surfaces of finite II-type, *WSEAS Trans. Math.* **18** (2019), pp. 1-5.

[8] H. Al-Zoubi, T. Hamadneh, M. Abu Hammad, and M. Al-Sabbagh, Tubular surfaces of finite type Gauss map, *J. Geom. Graph.* **25** (2021), pp. 45-52.

[9] H. Al-Zoubi, M. Al-Sabbagh, Anchor rings of finite type Gauss map in the Euclidean 3-space, *Int. J. Math. Comput. Methods* **5** (2020), 9-13.

[10] H. Al-Zoubi, H. Alzaareer, T. Hamadneh, M. Al Rawajbeh, Tubes of coordinate finite type Gauss map in the Euclidean 3-space, *Indian J. Math.* **62** (2020), 171-182.

[11] H. Al-Zoubi, T. Hamadneh, Quadric surfaces of coordinate finite type Gauss map, arXiv 2006.04529v1, May (2020).
