Geometric model of the pursuit problem on a plane for the case of sets of targets and pursuers

A A Dubanov
Buryat State University, Ulan-Ude, Russia

Abstract. This article examines a kinematic model of a group pursuing several targets by the method of parallel approach. The model is based on the fact that pursuers try to adhere to pre-designed trajectories. The pursuers' trajectories have curvature constraints. The initial directions of the pursuers' velocities are arbitrary, which changes the well-known method of parallel approach. In our model, targets are chased by the pursuers simultaneously. This is due to the change in the lengths of the predicted trajectories in such a way as to synchronize the time to reach the target. The change in the lengths of the predicted trajectories occurs due to an increase in the radius of curvature in the initial segment of the trajectory.

1. Introduction
One of the peculiarities of the method of parallel approach on the plane [1], [2], [3] is that the speed of the pursuer P_i at some moment in time is directed to a point on the circle of Apollonius. In Figure 1, this is point K_i, and point T_i is the position of the target at a given time.

![Figure 1. Method of parallel pursuit](image)

The iterative scheme of the parallel approach method is shown in Figure 1. The pursuer coordinates P_i will be calculated as follows:

$$P_{i+1} = P_i + V_P \cdot \frac{P_i K_i}{|P_i K_i|} \cdot \Delta T, T_{i+1} = T_i + V_T \cdot \frac{T_i K_i}{|T_i K_i|} \cdot \Delta T.$$
Where ΔT is the discrete time interval.
Radius R_i and the center of the circle of Apollonius Q_i are calculated as follows:

$$R_i = \frac{V^2_f}{V^2_p - V^2_T} |T_i - P_i|, Q_i = T_i + \frac{V^2_f}{V^2_p - V^2_T} (T_i - P_i).$$

K_i point coordinates are the result of solving a system of equations for a continuous parameter t:

$$\begin{cases}
(K_i - Q_i)^2 = R_i^2 \\
K_i = T_i + V_T \frac{T_{i+1} - T_i}{|T_{i+1} - T_i|} \cdot t
\end{cases}$$

2. Problem statement

It can be seen from the description of the parallel approach method that the initial velocity of the pursuer cannot have an arbitrary direction.

In this article, we want to implement a method close to the parallel approach method. At the initial stage of the solution, we consider two pursuers P_1, P_2, the speeds of which V_1, V_2 are directed arbitrarily (Figure: 2). Target T moves in a straight line and evenly.

The radius of curvature of the trajectories of the pursuers cannot be less than a certain value. Therefore, we form one-parameter sets of compound lines, which are analogous to the line of sight $(P_i T_i)$ (Figure 1).

In our case, these will be compound lines connecting points P_1, P_2 with the point T (Figure 2), consisting of an arc segment and a straight line segment.

Let's say the pursuer P_2 when calculating the trajectory to achieve the target T has less time. We can change the radius of curvature of the predicted trajectory of the pursuer P_2 upward (Figure 2), to achieve the simultaneous achievement of the target together with P_1.

If we add one more goal and one more pursuer (Fig. 3), then in this case, the standard is chosen the pursuer who has the longest time to reach its' target in the preliminary calculation.

Figure 2. Pursuit of one target by two pursuers
Figure 3 shows the pursuers P_1, P_2 pursue the target T_1, and the pursuer P_3 pursues the target T_2. We have written a test program where the pursuers P_2 and P_3 change the radius of curvature of the predicted trajectories, adjusting to the time of reaching the target T_1 by the pursuer P_1.

3. Theory

3.1. Composite curve modeling

To solve this problem, we have to simulate a compound curve for each of the pursuers (Fig. 4). Since in our model there are restrictions on the curvature of the trajectory of all participants in the pursuit problem, then our pursuer P in the predicted trajectory (Fig. 4) will pass in an arc P_1P_t, then it will come out to the straight section $[P_tT]$ to the target T.

Radius of curvature r of a circle (C, r) in our model is considered to be given and can only change upward.

Center C of circle (C, r) satisfies the system of equations:

\[|C - P| = r \]
\[V \cdot (C - P) = 0. \]

In the local coordinate system (H_1, H_2) centered at point C are equation PP_t will be:

\[L_{\text{circle}}(\alpha) = r \cdot \begin{bmatrix} \cos \left(\frac{\pi}{2} - \alpha \right) \\ \sin \left(\frac{\pi}{2} - \alpha \right) \end{bmatrix}. \]

Where α takes values from 0 to $\arccos \left(\frac{(P-C) \cdot (P_t-C)}{|P-C| \cdot |P_t-C|} \right)$. Basic vectors (H_1, H_2) are equal to:

\[H_1 = \frac{V}{|V|}, H_2 = \frac{P - C}{|P - C|}. \]
Figure 4. Modeling of the set of parallel lines

Translation to world coordinate system of a line $L_{\text{circle}}(\alpha)$ is:

$$L_{\text{circle}}(\alpha) = \begin{bmatrix} L_{\text{circle}}(\alpha)^* \cdot E_1^* \\ L_{\text{circle}}(\alpha)^* \cdot E_2^* \end{bmatrix} + C$$

$$E_1^* = \begin{bmatrix} E_1 \cdot H_1 \\ E_1 \cdot H_2 \end{bmatrix}, E_2^* = \begin{bmatrix} E_2 \cdot H_1 \\ E_2 \cdot H_2 \end{bmatrix}$$

The equation for the straight section $[P, T]$ is represented as: $L_{\text{line}}(\varepsilon) = (1 - \varepsilon) \cdot P + \varepsilon \cdot T$.

Received line segments $L_{\text{circle}}(\alpha)$ and $L_{\text{line}}(\varepsilon)$ must be combined into one composite line and parametrized in relation to the arc length.

In the test program written on the basis of the materials of the article, we received the combined arrays of coordinates $\{X_i, Y_i\}, i \in 0..N$ of the composite curve. We introduce the formal parameter τ, which continuously runs through values from 0 to N. After the cubic spline interpolation procedure, we will have continuous coordinate functions $X(\tau)$ and $Y(\tau)$ from the formal parameter τ.

3.2. Calculation of the input process

From the equation for the total arc length differential $ds^2 = dX^2 + dY^2$ we get a first order differential equation for further transmission to the built-in solvers of the Cauchy problem:

$$D(\tau, s) = \frac{ds}{d\tau} = \frac{1}{\sqrt{\frac{dX^2}{d\tau} + \frac{dY^2}{d\tau}}}, \tau(0) = 0.$$

Thus, we obtained the dependencies $X(s) \equiv Y(s)$ from the arc length parameter. If the length parameter satisfies the relation $s = V \cdot t$, where t is real time, then we will get dependencies $X(t) \equiv Y(t)$, which are the coordinate functions of the baseline $l(t)$.

The compound line that connects the pursuer and the target at the moment of the beginning of the pursuit will be called the baseline.

To highlight the line corresponding to the target position $T(t)$, it is necessary to add vector $T(t) - T(0)$ (Figure 2) to the basic line equation $l(t)$.

If we need to increase the length of the baseline, then we increase the radius of the minimum curvature. In general, the baseline length depends on the following parameters: T target coordinates, coordinates P of the pursuer, velocity vector V pursuer and radius r of the minimum radius of curvature (Figure 2, 3).
Let our pursuer P have a speed module V_P. In our task at the moment t_i the coordinates of the points of the pursuer are calculated P_i and target T_i. The equation of the predicted motion line calculated from its arc length $l_i(s)$.

![Figure 5. Calculating the next step of the pursuer](image)

At time t_{i+1}, the coordinates of the target are known. Then the parallel shear line $l_{i+1}(s)$ is calculated like this:

$$l_{i+1}(s) = l_i(s) + (T_{i+1} - T_i).$$

Pursuer's next move point P_{i+1} is a line reversal point $l_{i+1}(s)$ and the circle radius $V_P \cdot (t_{i+1} - t_i)$ centered at point P_i (Figure 5).

The test program first calculates the approximate time intervals for the pursuers to achieve their targets. Then, the largest one is selected as the reference. Then, in the cycle, small increments of the radius of the admissible curvature of the base trajectories are made δr (Fig. 2, 3) until the alignment of the values of the time intervals occurs.

4. Experimental results

Based on the materials of the article, a test program was developed [16], in which two pursuers with initial arbitrary directions and velocities begin to pursue a target moving in a straight line at a constant speed.

![Figure 6. Pursuit of one target by two pursuers](image)
Figure 6 shows the first frame of the program. Figure 6 is supplemented with a link to an animated image [8].

Let’s note that the text of the program can be found on the author's website [9]. In our work, we relied on the results obtained in [4-7]. Attention was also paid to works [10-13]. Also, the authors wrote a program of pursuit by a group of three pursuers of a group of two targets. Targets are achieved simultaneously.

Figure 7. Pursuit of two targets by a group of three pursuers

Figure 7 shows the first frame of the animated image [14] of the model of simultaneous target achievement. An animated image is posted on the resource [15] where the iterative pursuit process is shown without predicted lines of movement of the pursuers' trajectories.

5. The discussion of the results

The mathematical model of the pursuit problem presented in the article assumes that the trajectories of the pursuers at a certain point in time are calculated as if the targets are moving in a straight line and uniform. But nothing prevents us from making calculations of predicted trajectories for other directions of target movement, with different speeds.

We decided not to make direction changes in the test program, so as not to add an additional nested computational cycle to the iterative process.

The main thing in the proposed model is the imposition of restrictions on the curvature of the pursuers' trajectories. This is typical for objects that do not have the ability to change the direction of speed instantly.

6. Conclusion

An important issue in the presented model is the distribution of pursuers by targets. In the test program, distribution was done manually. We would like to have an automated distribution to targets, without operator involvement. The main thing in the developed model is the calculation and modification of baselines for synchronization with the maximum time to reach one of the pursuers of its target.

If it is possible to simulate the process of simultaneously achieving targets, then we can change the model, where the achievement of targets will occur on a timer.
7. References

[1] Isaacs R 1967 *Differential games* (Moscow: Mir)

[2] Pontryagin L S 1971 *Linear differential evasion game* (Tr. Steklov Mathematical Institute of the USSR) Vol. 112 pp 30–63

[3] Krasovsky N N, Subbotin A I 1974 *Positional differential games* (Moscow-Science)

[4] Zhelnin Yu N 1977 Linearized pursuit and evasion problem on the plane (Uchenye zapiski TsAGI) no. 3, vol. 8, pp 88–98

[5] Burdakov S V, Sizov P A 2014 Motion control algorithms of a mobile robot in the pursuit problem *Scientific and technical bulletin of St. Petersburg State Polytechnic University* (Computer Science. Telecommunications. Control) No. 6 (210) pp 49–58

[6] Simakova E N 1967 *On the differential pursuit game* (Automation and Telemechanics) 2, pp 5–14

[7] Algorithm for following predicted paths in the pursuit problem. URL: http://dubanov.exponenta.ru (date accessed: 22.07.2019)

[8] Video, results of the simulation program for simultaneous achievement of the goal, https://www.youtube.com/watch?v=7VNHNwCbWrg

[9] http://dubanov.exponenta.ru Section "Group pursuit with different strategies for one target"

[10] Vagin D A, Petrov N N 2001 *The problem of pursuing coordinated fugitives* (Izvestiya RAN. Theory and control systems) No. 5 pp 75–79

[11] Bannikov A S 2013 *Some non-stationary problems of group pursuit* (Proceedings of the Institute of Mathematics and Informatics of UdSU) Issue 1 (41) p 3–46

[12] Bannikov A S 2006 A nonstationary problem of group pursuit *Proceedings of the Lobachevsky Mathematical Center* (Kazan: Publishing house of the Kazan Mathematical Society) Vol. 34 pp 26–28

[13] Izmestiev I V, Ukhobotov V I 2016 "The problem of pursuing low-maneuverable objects with a terminal set in the form of a ring" *Materials of the international conference "Geometric methods in control theory and mathematical physics: differential equations, integrability, qualitative theory*" (Ryazan, September 15-18) Results of Science and Technology. Topic. Obz., 148, VINITI RAN, Moscow, 2018 pp 25–31

[14] Video, simulation results of simultaneous achievement of two goals by three pursuers with visualization of a network of lines of predicted trajectories, https://www.youtube.com/watch?v=NNJDJOJT34I

[15] Video, simulation results of simultaneous achievement of two goals by three pursuers without visualization of the network of lines of predicted trajectories, https://www.youtube.com/watch?v=tdbgoNoby3A

[16] Certificate of state registration of the computer program No. 2020665641. Kinematic model of the parallel approach method.

Acknowledgments
The article was funded by innovative grant of the Buryat State University in 2021 “Control of a four-link manipulator based on signals received from the neurointerface”.