Larvicide potential of essential oils from Brazilian plants against *Aedes aegypti*

Potencial larvicida de óleos essenciais de plantas brasileiras contra *Aedes aegypti*

Potencial larvicida de aceites esenciales de plantas brasileñas contra el *Aedes aegypti*

Received: 01/25/2022 | Reviewed: 01/30/2022 | Accept: 02/02/2022 | Published: 02/05/2022

Madalena Machado Rocha
ORCID: https://orcid.org/0000-0002-4592-6988
Federal University of São Francisco Valley, Brazil
E-mail: madalena.rocha@discente.univasf.edu.br

Raquel Deodato Silva Rodrigues
ORCID: https://orcid.org/0000-0003-0021-8598
Federal University of São Francisco Valley, Brazil
E-mail: deodataraquel@hotmail.com

Pedro Henrique Vieira Guimarães
ORCID: https://orcid.org/0000-0002-3176-7488
Federal University of São Francisco Valley, Brazil
E-mail: pedrovieirah@gmail.com

Joyce Kelly Marinheiro da Cunha Gonsalves
ORCID: https://orcid.org/0000-0002-1559-4249
Federal University of São Francisco Valley, Brazil
E-mail: joyce.gonsalves@ univasf.edu.br

Abstract

The arboviruses Dengue, Chikungunya and Zika virus are present in several tropical regions and are transmitted by the *Aedes aegypti* mosquito. The containment of these diseases is done by fighting the vector, usually using chemical insecticides, such as organophosphates and organochlorines. These provoke the resistance of the transmitter, have a high accumulation rate in the body of non-target populations, and promote the contamination of ecosystems. The application of materials of natural origin with larvicidal activity, such as essential oils, is a promising alternative to replace the use of chemical insecticides. In this systematic review, we sought to present the larvicidal properties of essential oils from botanical species of Brazilian flora against *Ae. aegypti*. The search resulted in 36 papers selected as articles of interest. The 65 plants described in the selected articles showed larvicidal activity mostly excellent (27 were classified as strongly active) or satisfactory (13 were moderately active, and 24 were effective), while only one was inactive. The species that showed the highest larvicidal activity were: *Anacardium occidentalis* L. (0.01 ppm); *Copaifera langsdorffii* Desf. (0.04 ppm); *Carapa guianensis* Aubl. (0.06 ppm); *Cymbopogon winterianus* Jowitt. (0.10 ppm); *Ageratum conyzoides* L. (0.15 ppm); *Tagetes minuta* L. (0.21 – 0.25 ppm); and *Siparuna guianensis* Aubl. (1.76, 0.98 and 2.46 ppm). Studies on the essential oils of Brazilian plants are of great relevance to combat arboviruses. The Brazilian flora, despite its vast biodiversity, is still little known and explored, possessing a huge potential for the development of eco-friendly, environmentally safe, and low-cost products.

Keywords: *Aedes aegypti;* Arboviruses; Larvicides; Brazilian flora; Essential oils.

Resumo

As arboviroses Dengue, Chikungunya e Zika vírus estão presentes em várias regiões tropicais e são transmitidas pelo mosquito *Aedes aegypti*. A contenção destas doenças é feita pelo combate ao vetor, geralmente utilizando inseticidas químicos, como organofosforados e organoclorados. Estes provocam a resistência do transmissor, têm uma alta taxa de acúmulo no corpo de populações não-alvo e promovem a contaminação dos ecossistemas. A aplicação de materiais de origem natural com atividade larvicida, tais como óleos essenciais, é uma alternativa promissora para substituir o uso de inseticidas químicos. Nesta revisão sistemática, procuramos apresentar as propriedades larvicidas dos óleos essenciais de espécies botânicas da flora brasileira contra *Ae. aegypti*. A pesquisa resultou em 36 artigos selecionados como artigos de interesse. As 65 plantas descritas nos artigos selecionados mostraram atividade larvicida em sua maioria excelente (27 foram classificadas como fortemente ativas) ou satisfatória (13 foram moderadamente ativas, e 24 foram efetivas), enquanto apenas uma foi inativa. As espécies que apresentaram a maior atividade larvicida foram: *Anacardium occidentalis* L. (0,01 ppm); *Copaifera langsdorffii* Desf. (0,04 ppm); *Carapa guianensis* Aubl. (0,06 ppm); *Cymbopogon winterianus* Jowitt. (0,10 ppm); *Ageratum conyzoides* L. (0,15 ppm); *Tagetes minuta* L. (0,21 - 0,25 ppm); e *Siparuna guianensis* Aubl. (1,76, 0,98 e 2,46 ppm). Os estudos sobre os óleos essenciais das plantas brasileiras são de grande relevância para combater as arboviroses. A flora brasileira, apesar de sua vasta biodiversidade, ainda é pouco conhecida e explorada, possuindo um enorme potencial para o desenvolvimento de produtos ecologicamente corretos, ambientalmente seguros e de baixo custo.

Palavras-chave: *Aedes aegypti;* Arboviroses; Larvicidas; Flora brasileira; Óleos essenciais.
1. Introduction

Dengue, Chikungunya y Zika virus are the main arboviruses present in tropical countries, transmitted by the *Aedes aegypti* mosquito. Due to its great epidemiological relevance, efforts have been made by the government to promote the control of the transmission agent. The usual forms of mosquito control occur through chemical insecticides, such as organochlorines and organophosphates (Moreira et al., 2012). Due to the high environmental persistence, the tendency to accumulate in organisms, the high degree of toxicity to animals and the emergence of resistance in insects (Sucen, 2001), organochlorines have had their use reduced or even discontinued in many countries. Organophosphates have a higher acute toxicity for mammals, are chemically unstable and biodegradable, have a short persistence in soil, and need to be replaced periodically (Nascimento & Melnyk, 2016), and have been widely used in the health area.

Given the need to develop alternative ways to combat the vector, the use of plant extracts and essential oils with larvicidal properties has shown promise because it is an easy method to obtain, low production cost and low residual effect. Cavalcanti et al. (2004) proved the larvicidal activity of nine Brazilian species against *Ae. aegypti*, such as *Alpinia zerumbet* and *Hyptis suaveolens*. Essential oils are complex natural mixtures that contain about 20-60 components in different concentrations (Bakkali et al., 2008), being composed predominantly of terpenic hydrocarbons and terpenoids. They are characterized by two or three main components in reasonably high concentration (20% - 70%) compared to other components present in trace amounts (Koul et al., 2008). Essential oils can be produced in all parts of the plant, such as in barks, stems, flowers, leaves, fruits, branches, roots, seeds (Bizzo et al., 2009), and are stored in secretory cells, cavities, channels, epidermal cells or glandular trichomes (Carréra, 2016).

The Brazilian flora is characterized by its vast biodiversity. Of a total of more than 46,000 species, 14,776 are in the Amazon Forest, 5,865 in the Caatinga, 13,566 in the Cerrado domain, 1,588 in the Pantanal biome, 2,096 in the Pampa and 20,174 in the Atlantic Forest (Guatimosim, 2020). Of these, 43% are endemic to the national territory, placing Brazil as the country with the highest plant richness in the world (Jacques, 2016), being identified annually, on average, 250 species (Fioravanti, 2016). Despite its richness and potential, Brazilian biodiversity is still little known, and its use has been greatly neglected (Coradin et al., 2018). Therefore, it is essential to intensify the investment in research in the search for a better use of this natural heritage (Coradin et al., 2011). In this review, we sought to gather articles proving the larvicidal potential of the essential oil of botanical species verified in the national territory against *Ae. aegypti*.
2. Methodology

This systematic review article addressed the topic: "Larvicidal properties of essential oils from plants occurring in Brazil against Ae. aegypti", seeking to answer the following question: "Is there evidence of the effectiveness of using essential oils from plants occurring in Brazil to combat Ae. aegypti?" The search was conducted in the following databases: Portal de Periódicos CAPES/MEC; PubMed.gov; SciELO.org; ScienceDirect (Elsevier); and Web of Science – Core Collection (Clarivate Analytics), using the descriptors: Aedes aegypti; Brazil; Brazilian plants; essential oil; larvicidal. These were selected based on the terms suggested by the descriptor locator in Health Sciences DeCS/MeSH Finder for the theme addressed. The values of the median lethal concentration (LC$_{50}$) – the dose of the substance needed to kill 50% of the test population – were observed, as well as the larval instar (L1 to L4), botanical material collected, and exposure time.

The inclusion criteria used to select the articles were: articles on Brazilian plants (or with occurrence in Brazil) used as larvicide to combat Ae. aegypti; articles in English, Portuguese, or Spanish; full text available. The reading order for the choice of articles was title, abstract and content. The temporal inclusion criterion for the articles comprised the publication date between 2000 and 2020. We did not consider articles about seaweed used as larvicide; articles that use plant extract instead of essential oil, or the mixture of essential oils from different plants, or the association of essential oil with chemical insecticides; articles whose results did not demonstrate the efficacy of the essential oil; and review articles. The analysis and data collection were carried out by three fixed evaluators, and when there was disagreement, a fourth evaluator was recruited. This systematic review was based on the article published by Marmitt et al. (2015).

3. Results

The search resulted in the identification of 395 publications that, after checking eligibility following the inclusion criteria, 134 were discarded for not meeting the criteria 'full article', 'year of publication' and 'language'. After reading the sections 'title', 'abstract' and 'full article' (Figure 1), 36 papers were selected as 'articles of interest'. The main characteristics of the articles discarded in the reading stage corresponded to research conducted using seaweed, essential oil mixtures, isolated oil compounds, plant extracts, nanoemulsions, nanosuspensions and oleoresins. Following these criteria, there was disagreement among the evaluators in the selection of articles regarding the inclusion of the latter three, which was resolved through the opinion of an external evaluator, who recommended their exclusion.

Figure 1. Schematic representation of the article selection process.

Source: Authors.
In Figure 1, the ScienceDirect (17) and Capes (16) databases had the most articles selected, while the PubMed (1), SciELO (1), and Web of Science (1) databases had only one article selected.

The relevant information from each research was summarized in Table 1, which presents the median lethal concentration (LC₅₀) values obtained in the analyzed articles, highlighting the major constituents present in the chemical composition of the essential oil of each species. The lethality data were converted to the same unit of measurement, enabling comparison of their efficacy against Ae. aegypti larvae. It was considered that 1 mg/l = 1 μg/mL is approximately equivalent to 1 ppm.

Table 1. Median lethal concentration (LC₅₀) values obtained.

SPECIES	LARVAL INSTAR	BOTANICAL MATERIAL	TIME (h)	MAIN CONSTITUENTS	LC₅₀ (ppm)	REFERENCE
Siparuna guianensis Aubl.	L4	stem	24	β- myrcene (79.71%) and 2-undecanone (14.58%)	1.76	Aguiar et al. (2015)
		leaves	24	β- myrcene (26.91%) and δ-elemene (20.92%)	0.98	
		fruits	24	2-tridecanone (38.75%) 2-undecanone (26.5%)	2.46	
Piper aduncum L.	L4	aerial parts	24	Dilapiol (86.9%)	54.50	Almeida et al. (2009)
Citrus sinensis (L.) Osbeck	L3	fruits	24	Limonene (91.88%)	11.92 - 16.30	Araujo et al. (2016)
Syzygium aromaticum (L.) Merr	L3	flower buds	24	Eugenol (65.99%)	92.97 - 106.90	
Piper marginatum Jacq.	L4	leaves	48	(Z) and (E)-asarone (4.5 - 30.4%) and patchouli alcohol (16.0 - 25.7%)	23.80	Autran et al. (2009)
		stem	48	Dilapiol (86.9%)	0.98	
		inflorescence	48	Limonene (91.88%)	11.92 - 16.30	
Baccharis reticularia DC.	L4	leaves	24	D-limonene (25.7%)	221.27	Botas et al. (2017)
			48		144.69	
Croton Tetradenius Baill.	L3 and L4	leaves	24	Camphor (25.49%)	152.00	Carvalho et al. (2016)
Alpinia zerumbet (Pers.) Burtt & Smith	L3	aerial parts	24	1,8-Cineol (17.9%) and 4-Terpineol (17.8%)	313.00	
Citrus limonia Osbeck	L3	fruit peel	24	Limonene (82%)	519.00	
Citrus sinensis (L.) Osbeck	L3	aerial parts	24	Limonene (98%)	538.00	
Cymbopogon citratus Stapf.	L3	aerial parts	24	Geraniol (60.3%)	69.00	
Hyptis suaveolens Poit.	L3	aerial parts	24	1,8-Cineol (44.2%)	261.00	Cavalcanti et al. (2004)
Lippia sidoides Cham.	L3	aerial parts	24	Thymol (80.8%)	63.00	
Ocimum americanum L.	L3	aerial parts	24	Methyl e-cinnamate (70.9%)	67.00	
Ocimum gratissimum L.	L3	aerial parts	24	Eugenol (43.7%)	60.00	
Syzygium jambolana DC.	L3	aerial parts	24	Z-ocimene (27.2%) and E-ocimene (12.2%)	433.00	
Hyptis martiusii Benth.	L3	leaves	24	1,8-Cineol (24.3%) and δ-3-Carene (22.5%)	18.20	
Lippia sidoides Cham.	L3	leaves	24	Thymol (43.5%)	19.50	Costa et al. (2005)
Syzygium aromaticum (L.)	L3	flower buds	24	Eugenol (80.8%)	21.40	
SPECIES	LARVAL INSTAR	BOTANICAL MATERIAL	TIME (h)	MAIN CONSTITUENTS	LC50 (ppm)	REFERENCE
--------	---------------	---------------------	----------	-------------------	------------	-----------
Eugenia piaulensis	L3	leaves	24	γ-elemene (17.48%) and E-β-caryophyllene (16.46%)	230,00	Dias et al. (2015)
Lippia gracilis	L3	leaves	24	Germacrene D (26.79%)	> 1000	Dias et al. (2015)
Myrcia erythroxylon	L3	leaves	24	E-β-Caryophyllene (26.05%) and α-humulene (23.92%)	292,00	
Psidium myrsinites	L3	aerial parts	24	1,8-Cineol (30.15 - 64.44%)	90,9 - 135,20	Luz et al. (2020)
Siparuna camporum	L1 and L3	-	24	Thymol (53.2%)	43,43	Maia et al. (2019)
Citrus sinensis	L3	fruits	24	R-limonene (96.3%)	21,50	Galvão et al. (2015)
Tagetes minuta L.	L3	leaves	24	-	0,21 - 0,25	Lima et al. (2009)
Mentha x villosa	L3	leaves	24	Piperitenone oxide (70.96%)	45,00	Lima et al. (2013)
Mesosphaerum suaveolens (L.) Kuntze	L3	aerial parts	24	1,8-Cineol (30.15 - 64.44%)	90,9 - 135,20	Luz et al. (2020)
Thymus vulgaris L.	L1 and L3	-	24	Thymol (53.2%)	43,43	Maia et al. (2019)
Lippia origanoides	L3	leaves	48	Carvacrol (48.31%)	138,60	Mar et al. (2018)
Psidium guajava L.	L4	leaves	24	E-Caryophyllene (7.6 - 26.6%) and caryophyllene oxide (3.2 - 16.6%)	39,48 - 64,25	Mendes et al. (2017)
Ageratum conyzoides L.	L	leaves	24	-	0,15	Mendonça et al. (2005)
Anacardium occidentale L.	L	leaves	24	-	0,01	Mendonça et al. (2005)
Carapa guianensis AUBL.	L4	leaves	48	-	0,06	Mendonça et al. (2005)
Copaifera langsdorffii Desf.	L4	leaves	48	-	0,06	Mendonça et al. (2005)
Cymbopogon winterianus Jowitt.	L3	leaves	24	-	0,04	Mendonça et al. (2005)
Piper gaudichaudianum Kunth.	L3	leaves	24	-	0,10	Mendonça et al. (2005)
Piper hostmannianum (Miq.) C. DC	L3	leaves	24	-	0,10	Mendonça et al. (2005)
Piper humaytanum Yunck.	L3	leaves	24	-	0,10	Mendonça et al. (2005)
Piper permacronatum Yunck.	L3	leaves	24	-	0,10	Mendonça et al. (2005)
Lippia rigida Schauer.	L4	leaves	24	γ-1,8-Cineol (27.5%) and aromadendrene (15.55%)	121,00	0,15
Anacardium humile Saint Hill.	L4	leaves	24	Asaricin (27.37%) and myristicin (20.26%)	54,00	Morais et al. (2007)
Schinus terebinthifolia Raddi.	L3	leaves	24	Caryophyllene oxide (16.63%) and β-selinene (15.77%)	156,00	Morais et al. (2007)
-	L3	fruits and seeds	24	Dilapiole (54.7%) and myristicin (25.61%)	36,00	Oliveira et al. (2016)
-	L4	leaves	24	Caryophyllene oxide (16.63%) and β-selinene (15.77%)	156,00	Morais et al. (2007)
-	L3	fruits and seeds	48	α-humulene (42.3%) and β-caryophyllene (13.0%)	138,90	Oliveira et al. (2016)
-	L3	fruits and seeds	48	δ-3-carene (55.36%), α-pinene (15.62%), and	447,23	Pratti et al. (2015)
-	L3	fruits and seeds	48	δ-3-carene (55.36%), α-pinene (15.62%), and	419,97	Pratti et al. (2015)
SPECIES	LARVAL INSTAR	BOTANICAL MATERIAL	TIME (h)	MAIN CONSTITUENTS	LC₅₀ (ppm)	REFERENCE
---------	--------------	--------------------	----------	-------------------	-----------	-----------
Carapa guianensis Aublet	L3 and L4	-	24	sylvesthrene (10.69%)	72	Prophiro et al. (2011)
Copaifera sp.						
Mentha piperita L.	L3	leaves	48	Linalool (51.8%) and epoxycimene (19.3%)	367.60	Ramos et al. (2017)
Helicercus velutina K. Schum.	L4	roots, stems, bark and leaves	48	-	138.90	Santos et al. (2011)
Scoparia dulcis L.						
Alpinia purpurata (Viell.) K. Schum. (Pink variant)	L4	flowers	24 e 48	α-pinene (13.86%), β-pinene (26.56%) and β-caryophyllene (15.58%)	71.50	Santos et al. (2012)
Alpinia purpurata (Viell.) K. Schum. (Red variant)						
Syagrus coronata (Mart.) Becc.	L4	seeds	48	Octanoic acid (40.55%) and dodecanoic acid (40.48%)	21.07	Santos et al. (2017)
Pogostemon cablin (Blanco) Benth.	L3	leaves	24	Eugenol (71.92%)	40.74	Santos et al. (2020)
Syzygium aromaticum (L.) Merr. & Perry	L3 and L4	flower buds	24	1,8-Cineol (15.79%) and spatulenol (10.23%) and β-caryophyllene (40.90%)	502.00	Silva et al. (2007)
Lippia gracilis Schauer.	L3 and L4	leaves	24	α-Felandrene (26.3%), (E)-caryophyllene (18.0%) and β-Felandrene (12.9%)	366.00	Silva et al. (2012)
Schinus terebinthifolia Raddi.	L3	fruits	24	δ-3-carene (55.43%) and α-pinene (16.25%)	172.44	Silva et al. (2010)
Commiphora leptophloeos Leat.	L4	leaves	48	1-Butyl-3,4-methylenedioxy benzene (30.62%)	30.52	Silva et al. (2016)
Piper corcovadensis (Miq.) C. DC	L4	leaves	24 e 48	6,9-guaiadiene (10.13 - 30.15%) and calamenene <cis> (21.29 - 35.62%) (E)-caryophyllene (21.65%) and α-pinene (11.75%)	40.84	Silva et al. (2020)
Vitex gardneriana Schauer.	L3	leaves	24	(E)-anethole (90.1%)	39.80	Silva et al. (2019)
Bauhinia cheilantha (Bong.) Steud.	L3	leaves	24	β-Caryophyllene (57.1%) and α-humulene (10.2%)	18.00	Trindade et al. (2013)
Copaifera multijuga Hayne.	L3 and L4	oil-resin, bark, and leaves	24 e 48	-	104.40	Voris et al. (2018)
Illicium verum Hook. f.						
Myristica fragrans Hoult.	L3	seeds	24	β-Caryophyllene (57.1%) and α-pinene (10.2%)	18.00	Trindade et al. (2013)
Pimenta dioica (L.) Merr.						
Source: Authors.						
In Table 1, the components 1,8-cylen (9.23%), limonene (7.69%) and eugenol (7.69%) had the highest frequency of appearance as major constituents of the essential oil. The species Ageratum conyzoides L., Anacardium occidentale L., Carapa guianensis Aubl., Copaifera langsdorffii Desf., Cymbopogon winterianus Jowitt., Siparuna guianensis Aubl. and Tagetes minuta L. showed the lowest LC50 values (0.01 – 2.46 ppm), while the species Myrcia erythroxylon O. Berg presented the highest LC50 value (LC50 > 1000 ppm). The trials used mainly L3 (47.22%), L4 (33.33%) and L3/L4 (13.89%) instar larvae.

4. Discussion

Terpenes represent the largest class of secondary metabolites, with recognized antimicrobial activity (De Martino et al., 2015; Lutfi & Roque, 2014). Chemically, they present a carbon-carbon double bond being characterized as an unsaturated hydrocarbon (McMurry, 2011). On the other hand, if a terpene contains oxygen, it is called a terpenoid, and may have different chemical functions, including acids, alcohols, aldehydes, ketones, ethers, phenols or terpenic epoxides (Felipe et al., 2016). Terpenes/terpenoids are basically structured in isoprene (C5H8) blocks, usually linked together in the "head-to-tail" order (bond 1-4) (Loomis et al., 2014; Eschenmoser et al., 2005), except for "irregular terpenes" ("tail-to-tail" bond (bond 4-4)) and cyclic terpenes ("cross-links"). Monoterpenes (two isoprene blocks) are the main constituents of volatile oils, acting in attracting pollinators, while sesquiterpenes (three isoprene blocks) protect plants against fungi and bacteria (Gershenzon et al., 2007). Thus, the relationship between the structural form of the molecules and their biological properties becomes evident (Strub et al., 2014).

The analysis of the chemical composition of the essential oils presented in Table 1 shows the majority presence of the secondary metabolites monoterpenes, sesquiterpenes and phenylpropenes, such as limonene and 1,8-cineole, (E) and (β)-caryophyllene, and eugenol, respectively. The terpenes 1,8-cylen (9.23%) and limonene (7.69%) and the phenylpropene eugenol (7.69%) had the highest frequency of appearance in the papers as major constituents of the essential oil. Limonene is the main constituent of the essential oil of the peels of citrus fruits (genus Citrus), such as lemons (C. limonia Osbeck) and oranges (C. sinensis (L.) Osbeck) and is responsible for the characteristic odor that these fruits present. The 1,8-cylen or eucalyptol is found in the essential oil of the leaves of botanical species of the genus Eucalyptus, being also reported to occur in plants of the genus Hyptis, as in H. fruticosa Salzm. (Silva et al., 2007), H. martiusii Benth. (Costa et al., 2005) and H. suaveolens Poit. (Cavalcanti et al., 2004). The caryophyllene is present in the composition of many essential oils used as spices, especially in clove, rosemary, and black pepper. Eugenol is the predominant component of the essential oil of clove (Syzygium aromaticum (L.) Merr. & Perry), as reported by Araujo et al. (2016), Costa et al. (2005), and Santos et al. (2020).

To classify the larvicidal potential of essential oils, the literature provides different criteria, and there are no standardized median lethal concentration values for determining the efficiency of the analyzed substances. According to Kiran et al. (2016), the larvicidal effect is considered significant in essential oils with LC50 less than 100 ppm under 24h of exposure. Another methodology is proposed by Komalamisra et al. (2005), according to which substances that present LC50 less than 50 ppm are considered strongly active, LC50 between 50 and 100 ppm, moderately active, and LC50 between 100 and 750 ppm, effective, while those with LC50 values higher than 750 ppm are considered inactive, under 48h of exposure. Table 2 shows the classification of the studied plants adopting the second specification presented. For items that present different larvicidal potentials for the same plant, depending on the botanical material used, place of larval collection, and time of exposure to the essential oil, the lethality considered corresponds to the arithmetic mean of the LC50 values.

Table 1: Larvicidal activities, lethal and sub-lethal toxicity of essential oils of some botanical species from the Amazon region, considering different instar larvae.

Table 2: Classification of the studied plants adopting the second specification presented.
The species *Carapa guianensis* Aubl., *Citrus sinensis* (L.) Osbeck, *Lippia gracilis* Schauer., *Lippia sidoides* Cham., *Schinus terebinthifolia* Raddi. and *Syzygium aromaticum* (L.) Merr. have been studied in more than one article, being assigned different classifications according to the larvicidal potential obtained. For example, Araujo et al. (2016), Costa et al. (2005) and Santos et al. (2020) analyzed the larvicidal activity of the essential oil of *S. aromaticum* floral buds, against larvae (L3, L3 and L3/L4, respectively) of *Ae. aegypti*, during a 24h exposure period. The analysis of the chemical composition of the essential oil identified eugenol as the main constituent (65.99%, 80.80% and 71.92%, respectively). As for larvicidal activity, *S. aromaticum* was classified as strongly active considering the articles by Costa et al. (2005) and Santos et al. (2020), while it was shown to be moderately active/effective considering the article by Araujo et al. (2016) (LC$_{50}$ of 40.74, 21.40 and 92.97 – 106.90 ppm, respectively). A possible explanation for the lower lethality of the essential oil in the study by Araujo et al. (2016) may be attributed to the lower percentage of eugenol in the chemical composition of the oil, as well as the use of resistant populations of *Ae. aegypti* in the experiment.

The species that stood out as promising plants for having greater larvicidal potential were: *Anacardium occidentale* L. (0.01 ppm), *Copaifera langsdorffii* Desf. (0.04 ppm), *Carapa guianensis* Aubl. (0.06 ppm), *Cymbopogon winterianus* Jowitt. (0.10 ppm) and *Ageratum conyzoides* L. (0.15 ppm), in the study by Mendonça et al. (2005); *Tagetes minuta* L. (0.21 – 0.25 ppm), in the study by Lima et al. (2009); and *Siparuna guianensis* Aubl. (1.76, 0.98 and 2.46 ppm), in the study by Aguiar et al. (2015).

Of the species mentioned above, the identification of the chemical composition of the essential oil was performed only for *S. guianensis*. The main components were dependent on the botanical material used for essential oil extraction, being β-mycene (79.71%) for stems, β-mycene (26.91%) for leaves, and 2-tridecanone (38.75%) for fruits. This fact was not observed in the study of Autran et al. (2009), where the essential oil of *Piper marginatum* Jacq. showed the same composition ((Z) and (E)-asarone and patchouli alcohol) when extracted from leaves, stem, and inflorescences, varying only the percentage with respect to the total composition. The chemical composition of volatile oils varies between parts of the same plant and, when extracted from the same organ of the same plant species, can vary significantly according to age and stage of development, season and time of collection, weather and soil conditions, and their properties depend on the extraction technique used (Burt, 2004; Morais, 2009).

The only species that showed inactivity against *Ae. aegypti* larvae was *Myrcia erythroxyylon* O. Berg with LC$_{50}$ > 1000 ppm, reported by Dias et al. (2015). The majority constituents identified in the essential oil of the plant were the sesquiterpenes germacrene D (26.79%), bicyclogermacrene (13.26%) and (E)-β-caryophyllene (10.55%). In the articles analyzed, germacrene D and bicyclogermacrene did not appear as majority constituents for any of the other species, which may be an indication of the inefficacy of these compounds as larvicide against *Ae. aegypti*. The (E)-β-caryophyllene was identified in the chemical composition of the species *Eugenia piachiensis* Vellaff. and *Psidium myrsinites* DC. (E)-caryophyllene was found in *Psidium guajava* L., *Commiphora leptophloeeos* Lett and *Bauhinia cheilantha* (Bong.) Steud., while β-caryophyllene was detected in

Table 2. Classification of larvicidal potential according to Komalamisra et al. (2005).

LC$_{50}$ (ppm)	Classification	Species
< 50	highly active	27
50 – 100	moderately active	13
100 – 750	effective	24
>750	inactive	1

Source: Authors.

In Table 2, of the 65 plants described, 27 are classified as strongly active (41.54%), 13 are moderately active (20.00%), 24 are effective (36.92%), and only 1 is inactive (1.54%).
Lippia rigida Schauer., Alpinia purpurata (Viell.) K. Schum., Hyptis pectinata Poit. and Copaifera multijuga Hayne. The approach of a possible explanation for the high LC_{50} value obtained was not presented by the authors. Also, no new research regarding the larvicidal activity of *M. erythroxylon* essential oil was found in the literature.

Among the species studied, the presence of species endemic to Brazil stands out, such as *Baccharis reticularia* DC, *Croton tetradenius* Baill., *Helicteres velutina* K. Schum., *Hyptis fruticosa* Salzm., *Hyptis martiusii* Benth., *Lippia gracilis* Schauer, *Lippia sidoides* Cham., *Psidium myrsinites* DC., *Syagrus coronata* (Mart.) Becc. and *Vitex gardneriana* Schauer. Note that such species correspond to a small percentage (17.86%) in relation to the total number of species analyzed, which shows the lack of knowledge of the existing native flora, although Brazil is a country of great biodiversity.

The occurrence of species exclusive to the Northeast region of Brazil and the Caatinga biome is also observed. *Croton tetradenius* Baill. is endemic to the Caatinga biome and is frequently found in most states of the Northeast region of Brazil (Carvalho et al., 2016). *Lippia gracilis* Schauer is endemic to Northeast Brazil and is widely distributed in the Caatinga (Gomes et al., 2011). *Vitex gardneriana* Schauer is a native and endemic species of Brazil, having its distribution restricted only to the Northeast region (Soares, 2017).

5. Conclusion

Unlike chemical insecticides, which are harmful to the environment and, when unstable, require periodic application to the soil, essential oils are an eco-friendly and economically viable alternative in combating arboviruses transmitted by *Ae. aegypti*. Brazil has a vast natural wealth, with about 46 thousand plant species in the most diverse biomes, 43% of which are endemic to the national territory. The essential oils from different botanical species of Brazilian flora proved to be efficient in fighting the larvae of the *Ae. aegypti* mosquito. Of the 65 plants evidenced in the research, the species *Anacardium occidentalis* L. (0.01 ppm), *Copaifera langsdorffii* Desf. (0.04 ppm) and *Carapa guianensis* Aubl. (0.06 ppm) were the most effective among the 27 strongly active species, besides the occurrence of 13 moderately active species, 24 effective, and only one inactive, according to the classification proposed by Komalamisra et al. (2005). Thus, it was proven the ability to use plants grown in the national territory as an alternative in combating *Ae. aegypti*. Therefore, studies on the essential oils of Brazilian plants are of great relevance, not only to combat arboviruses, but also due to their potential for medicinal applications, showing other relevant properties.

As suggestions for future work, we recommend the analysis of the larvicidal activity of essential oils from Brazilian plants against *Ae. aegypti* with different approaches, prioritizing the species that occur exclusively in the Northeast region and the Caatinga biome, to explore the vast biodiversity and the enormous potential existing in the native flora of this region.

Acknowledgments

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) for the financial support (Funding Code 001).

References

Aguiar, R. W. S., Santos, S. F., Morgado, F. S., Ascencio, S. D., Lopes, M. M., Viana, K. F. et al. (2015). Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negriniina) against Aedes aegypti and Culex quinquefasciatus. Plos One, 10(2), 1-14. doi:10.1371/journal.pone.0116765

Almeida, R. R. P., Souto, R. N. P., Bastos, C. N., Silva, M. H. L. & Maia, J. G. S. (2009). Chemical variation in *Piper aduncum* and biological properties of its dillapiol-rich essential oil. *Chem. Biodivers.*, 6(9), 1427-34. doi:10.1002/cbdv.200800212

Araújo, A. F. O., Ribeiro-Paes, J. T., Deus, J. T., Cavalcanti, S. C. H., Nunes, R. S., Alves, P. B. et al. (2016). Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. *Meml. Inst. Oswaldo Cruz*, 111(7), 443-9. doi:10.1590/0074-02760160075
Autran, E. S., Neves, I. A., Silva, C. S. B., Santos, G. K. N., Câmara, C. A. G. & Navarro, D. M. A. F. (2009). Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioreasour. Technol., 100(7), 2284-8. doi:10.1016/j.biotech.2008.10.055

Bakkali, F., Averbeck, S., Averbeck, D. & Idamaor, M. (2008). Biological effects of essential oils: a review. Food Chem. Toxicol., 46(2), 446-75. doi:10.1016/j.fct.2007.09.106

Bizzo, H. R., Howell, A. M. C. & Rezende, C. M. (2009). Brazilian essential oils: general view, developments and perspectives. Quim. Nova, 32(3), 588-94. doi:10.1590/S0100-40422009000300005

Botas, G. S., Cruz, R. A. S., Almeida, F. B., Duarte, J. L., Araújo, R. S., Souto, R. N. et al. (2017). Baccharis reticularia DC. and limalone nanoemulsions: promising larvicidal agents for Aedes aegypti (Diptera: Culicidae). Control. Molecules, 22(11), 1-14. doi:10.3390/molecules22111990

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol., 94(3), 223-53. doi:10.1016/j.ijfoodmicro.2004.03.022

Carrêa, J. C. (2016). Estruturas secretoras e rendimento de óleo essencial de Croton saquinacho Croizat. e dois morfotipos de Croton cajacuara Benth. (Euphorbiaceae). Graduation work, Univ. Estado Pará, Belém – PA, Brazil. https://ainsf.cnptia.embrapa.br/digital/bitstream/item/175258/1/ESTRUTURAS-SECRETORAS.pdf

Carvalho, K. S., Cunha e Silva, S. L., Souza, I. A., Gualberto, S. A., Cruz, R. C. D., Santos, F. R. et al. (2016). Toxicological evaluation of essential oil from the leaves of Croton tetradedius (Euphorbiaceae) on Aedes aegypti and Mus musculus. Parasitol. Res., 115(9), 3441-8. doi:10.1007/s00436-016-5106-2

Cavalcanti, E. S. B., Morais, S. M., Lima, M. A. A. & Santana, E. W. P. (2004). Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem. Inst. Oswaldo Cruz, 99(5), 541-4. doi:10.1590/S0074-02762004000500015

Coradin, L., Camillo, J. & Parey, F. G. C. (2018). Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Nordeste. https://aiof.cnptia.embrapa.br/digital/bitstream/item/189688/1/Livro-Nordeste-1-2018.pdf

Coradin, L., Siminski, A. & Reis, A. (2011). Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro – região Sul. Brasilia: Minist. Environ. https://www.gov.br/mina/pt-br/assuntos/biodiversidade/fauna-e-flora/Regiao_Sul_Sul.pdf

Costa, J. G. M., Rodrigues, F. F. G., Angélico, E. C., Silva, M. R., Mota, M. L., Santos, N. K. A. et al. (2005). Chemical-biological study of the essential oils of Hypsittus martiissi, Lippia sioides and Syzygium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev. Bras. Farmacogn., 15(4), 304-9. doi:10.1590/S0102-695X2005000400008

De Martino, L., Nazzaro, F., Mancini, E. & De Feo, V. (2014). In: Preedy VR, Watson RR. Essential oils from Mediterranean aromatic plants. The Mediterranean diet: an evidence-based approach. Elsevier, I(58), 649-61. doi:10.1016/B978-0-12-407849-9.00058-0

Dias, C. N., Alves, L. P. L., Rodrigues, K. A. F., Brito, M. C. A., Rosa, C. S. & Amaral, F. M. (2015). Chemical composition and larvicidal activity of essential oils extracted from Brazilian legal Amazon plants against Aedes aegypti L. (Diptera: Culicidae). Hindawi, 2015(1), 1-8. doi:10.1155/2015/490765

Eschenmoser, A. & Arigoni, D. (2005). Revisited after 50 years: the "stereochemical interpretation of the biogenetic isoprene rule for the triterpenes." Helv. Chim. Acta, 88(12), 3011-50. doi:10.1002/hlca.200590248

Felipe, L. O. & Bicas, J. L. (2017). Terpenos, aromas e a química dos compostos naturais. Quim. Nova na Esc., 39(2), 120-30. doi:10.21577/0104-8899.2016068

Fioravanti, C. (2016). A maior diversidade de plantas do mundo. https://revistapesquisa.fapesp.br/a-maior-diversidade-de-plantas-do-mundo/

Galvão, J. G., Silva, V. F., Ferreira, S. G., França, F. R. M., Santos, D. A., Freitas, L. S. et al. (2015). β-cyclodextrin inclusion complexes containing Citrus Sinensis (L.) Osbeck essential oil: an alternative to control Aedes Aegypti larvae. Thermochim. Acta, 608(1), 14-9. doi:10.1016/j.tca.2015.04.001

Gershenson, J. & Dudaeva, N. (2007). The function of terpene natural products in the natural world. Nat. Chem. Biol., 3(1), 408-14. doi:10.1038/nchembio.2007.5

Gomes, S. V. F., Nogueira, P. C. L. & Moraes, V. R. S. (2011). Aspectos químicos e biológicos do gênero Lippia enfatizando Lippia gracilis Schauer. Eclet. Chem., 36(1), 64-77. doi:10.1590/S0100-46702011000100005

Guatimosim, P. (2020). Projeto Flora do Brasil 2020 lança vídeo sobre espécies vegetais do país. http://www.faperj.br/?id=3993.2.3

Jacques, L. (2016). A maior diversidade de plantas do mundo. https://nossogurume.com.br/mayor-diversidad-de-plantas-del-mundo/

Kiran, S. R., Bhavani, K., Devi, P. S., Rao, B. R. R. & Reddy, K. J. (2006). Composition and larvicidal activity of leaves and stem essential oils of Chroxylosynx swietenia DC against Aedes aegypti and Anopheles stephensi. Bioreasour. Technol., 97(18), 2481-4. doi:10.1016/j.biotech.2005.10.003

Komalamisra, N., Trongtikit, Y., Rongsriyam, Y. & Apirwathasorn, C. (2005). Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J. Trop. Med. Public Health, 36(6), 1412-22. doi:10.1016/j.ajtropica.2009.01.019

Koul, O., Suresh, W. & Dhalwil, G. S. (2008). Essential oils as green pesticides: potential and constraints. Biopestic. Int., 4(1), 63-84. https://www.doc-developpement-durable.org/file/Urban/Culture/Arbres--Fruitiers/FICHEs_ARBRES/Bae/Esential%20Oils%20as%20Green%20Pesticides_Potential%20and%20Constraints.pdf

Lima, T. C., Silva, T. K. M., Silva, F. L., Barbosa-Filho, J. M., Marques, M. O. M., Santos, R. L. C. et al. (2013). Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere, 104(1), 37-43. doi:10.1016/j.chemosphere.2013.10.035
The effect of essential oil from Mesophaerum suaveolens (L.) Kunze on a Brazilian cultivar of guava on Aedes aegypti. Ind. Crops Prod., 108(1), 684-9. doi:10.1016/j.indcrop.2017.07.034

Mendonça, F. A. C., Silva, K. F. S., Santos, K. K., Ribeiro Júnior, K. A. L. & Sant'anna, A. E. G. (2005). Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Phytotherap., 76(7-8), 629-36. doi:10.1016/j.phymed.2005.06.013

Morais, L. A. S. (2009). Influência dos fatores abióticos na composição química dos óleos essenciais. Hortic. Bras., 27(2), 4050-63. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/143457/1/2009AA-051.pdf

Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., Anjos Júnior, J. F., Ferreira, S. A. et al. (2007). Chemical composition and larvicidal activity of essential oils from Piper species. Biochem. Syst. Ecol., 35(10), 670-9. doi:10.1016/j.bse.2007.05.002

Moreira, M. F., Mansur, J. F. & Figueira-Mansur, J. (2012). Resistência e inseticidas: estratégias, desafios e perspectivas no controle de insetos. Natl. Inst. Sci. Technol. Mol. Entomol. http://www.inctem.bioquim.uffrj.br/publico/documentos/biblioteca/Capítulo_15_Resistencia_a_Inseticidas_-_Estratégias_Desafios_e_Perspectivas_no_Controle_de_Insetos.pdf

Nascimento, L. & Melnyk, A. (2016). A química dos pesticidas no meio ambiente e na saúde. Rev. Manguio Acad., 1(1) 54-61. https://aemooddle.ufpa.br/pluginfile.php/416613/mod_resource/content/1/A%20qu%C3%ADmica%20dos%20pesticidas%20no%20meio.pdf

Oliveira, F. C., Mafezoli, J., Barbosa, F. G., Santiago, G. M. P., Camelo, A. L. M. & Guedes, M. L. S. (2016). Chemical composition and biological activities of the essential oil from leaves of Lippia rigida. Nat. Chem. Prod., 52(6), 1121-2. doi:10.1007/s10600-016-1881-3

Porto, K. R. A., Roel, A. R., Silva, M. M., Coelho, R. M., Scheleder, E. J. D. & Jeller, A. H. (2008). Larvicidal activity of Anacardium humile Saint Hill oil on Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae). Rev. Soc. Bras. Med. Trop., 41(4), 586-9. doi:10.1590/S0037-86824208000600008

Pratti, D. L. A., Ramos, A. C., Scherer, R., Cruz, Z. M. A. & Silva, A. G. (2015). Mechanistic basis for morphological damage induced by essential oil from Brazilian pepper tree, Schinus terebinthifolius, as larvae of Stegomyia aegypti, the dengue vector. Parasites & Vectors, 8(1), 1-10. doi:10.1186/s13071-015-0746-0

Prophírio, J. S., Silva, M. A. N., Kanis, L. A., Rocha, L. C. B. P., Duque-Luna, J. E. & Silva, O. S. (2012). First report on susceptibility of wild Aedes aegypti (Diptera: Culicidae) using Curapu guianensis (Meliaceae) and Copaifera sp. (Leguminosae). Parasitol. Res., 110(2), 699-705. doi:10.1007/s00436-011-2545-7

Ramos, R. S., Rodrigues, A. B. L., Farias, A. L. F., Simões, R. C., Pinheiro, M. T., Ferreira, R. M. A. et al. (2017). Chemical composition and in vitro antioxidant, cytotoxic, antimicrobial, and larvicidal activities of the essential oil of Mentha piperita L. (Lamiaceae). Hindawi, 2017(1), 1-8. doi:10.1155/2017/4927214

Santos, A. J., Pina, L. T. S., Galvão, J. G., Trindade, G. G. G., Nunes, R. K. V., Santos, J. S. et al. (2020). Clay/PVP nanocomposites enriched with Syzygium aromaticum essential oil as a safe formulation against Aedes aegypti larvae. Appl. Clay Sci., 185(1), 1-7. doi:10.1016/j.clay.2019.105394

Santos, E. A., Carvalho, C. M., Costa, A. L. S., Conceição, A. S., Moura, F. B. P. & Santana, A. E. G. (2011). Bioactivity evaluation of plant extracts used in indigenous medicine against the Snail, Biomphalaria glabrata, and the larvae of Aedes aegypti: evidence-based complementary and alternative medicine. Hindawi, 2012(3), 1-9. doi:10.1155/2012/646583

Santos, G. K. N., Dutra, K. A., Barros, R. A., Câmara, C. A. G., Lira, D. D., Gussmão, N. B. et al. (2012). Essential oils from Alpinia purpurata (Zingiberaceae): chemical composition, oviposition deterrence, larvicidal and antibacterial activity. Ind. Crops Prod., 40(1), 254-60. doi:10.1016/j.indcrop.2012.03.020

Santos, L. L., Brandão, L. B., Martins, R. L., Rabelo, E. M., Rodrigues, A. B. L., Araújo, C. M. C. V. et al. (2019). Evaluation of the larvicidal potential of the essential oil Pogostemon cablin (Blanco) Benth in the control of Aedes aegypti. Pharmaceuticals, 12(2), 1-13. doi:10.3390/ph12020053
Silva, A. G., Almeida, D. L., Ronchi, S. N., Bento, A. C., Scherer, R., Ramos, A. C. et al. (2010). The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762). *Parasites & Vectors*, 3(79), 1-7. doi:10.1186/1756-3305-3-79

Silva, A. M. A., Silva, H. C., Monteiro, A. O., Lemos, T. L. G., Souza, S. M., Militão, G. C. G. et al. (2020). Chemical composition, larvicidal and cytotoxic activities of the leaf essential oil of Bauhinia cheilanthi (Bong.) Steud. *S. Afr. J. Bot.*, 131(1), 369-73. doi:10.1016/j.sajb.2020.03.011

Silva, M. F. R., Bezerra-Silva, P. C., Lira, C. S., Albuquerque, B. N. L., Agra Neto, A. C., Pontual, E. V. et al. (2016). Composition and biological activities of the essential oil of Piper corcovadoensis (Miq.) C. DC (Piperaceae). *Exp. Parasitol.*, 165(1), 64-70. doi:10.1016/j.exppara.2016.03.017

Silva, P. T., Santos, H. S., Teixeira, A. M. R., Bandeira, P. N., Holanda, C. L., Vale, J. P. C. et al. (2019). Seasonal variation in the chemical composition and larvicidal activity against Aedes aegypti of essential oils from Vitex gardneriana Schauer. *S. Afr. J. Bot.*, 124(1), 329-32. doi:10.1016/j.sajb.2019.04.036

Silva, R. C. S., Milet-Pinheiro, P., Silva, P. C. B., Silva, A. G., Silva, M. V., Navarro, D. M. A. F. et al. (2015). (E)-Caryophyllene and o-Humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of Commiphora leptophloeos leaf oil. *Plos One*, 10(12), 1-14. doi:10.1371/journal.pone.0144586

Silva, W. J., Dória, G. A. A., Maia, R. T., Nunes, R. S., Carvalho, G. A., Blank, A. F. et al. (2007). Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. *Biore sour. Technol.*, 99(8), 3251-5. doi:10.1016/j.biotech.2007.05.064

Soares, A. S. (2007). *Lamiaceae in Rio Grande do Norte: taxonomy and conservation status*. Master's thesis, Fed. Univ. Rio Gd Norte, Natal – RN, Brazil. https://repositorio.ufrn.br/bitstream/123456789/23464/1/ArthurDeSouzaSoares_DISSERT.pdf

Strub, D. J., Balcerzak, L., Niewiadomska, M., Kula, J., Sikora, M., Gibka, J. et al. (2014). Stereochemistry of terpene derivatives. Part 8: synthesis of novel terpenoids from (1S,4R)- and (1R,4S)-fenchone and their comparative odor characteristics. *Asymmetry*, 25(13-14), 1038-45. doi:10.1016/j.tetasy.2014.06.012

Saucen – Supt. Nac. Controle Endem. (2001). *Segurança em controle químico de vetores*. https://portalideia.com.br/cursos/596d45d6e40914b34e25f0d0e909d702.pdf

Trindade, F. T. T., Stabeli, R. G., Pereira, A. A., Facundo, V. A. & Almeida e Silva, A. (2013). *Copajera multijinga* ethanolic extracts, oil resin, and its derivatives display larvicidal activity against Anopheles darlingi and Aedes aegypti (Diptera: Culicidae). *Rev. Bras. Farmacogn.*, 23(3), 464-70. doi:10.1590/S0102-695X2013005000038

Voril, D. G. R., Dias, L. S., Lima, J. A., Lima, K. S. C., Lima, J. B. P. & Lima, A. L. S. (2018). Evaluation of larvicidal, adulticidal, and anticholinesterase activities of essential oils of *Illicium verum* Hook. f., *Pimenta dioica* (L.) Merr., and *Myristica fragrans* Houtt. against Zika virus vectors. *Environ. Sci. Pollut. Res.*, 25(23), 22541-51. doi:10.1007/s11356-018-2362-y