MOYAMOYA DISEASE AS A POSSIBLE CAUSE OF ISCHEMIC STROKE IN ADULT PATIENTS

Vishnyakova AYu, Rostovtseva TM, Kovrazhkina EA, Golovin DA, Gubsky IL, Lelyuk SE, Lelyuk VG

1. Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
2. Russian Medical Academy of Postgraduate Education, Moscow, Russia

Moyamoya disease (MMD) is a rare progressive idiopathic arteriopathy that usually leads to ischemic stroke (IS) in young children, especially of East Asian origin. MMD can cause IS in the Caucasian race, too, but often remains unverified. The diagnosis of MMD relies on diagnostic radiology findings. Magnetic resonance imaging (MRI) is widely used in Japan to identify asymptomatic individuals with hereditary predisposition to MMD. There are no official statistics on MMD in Russia. Official research in Japan has established the timely diagnosis of MMD and optimizing the treatment strategies.

Ключевые слова: болезнь моямоя, ишемический инсульт, МРТ головного мозга, МР-ангиография, КТ-ангиография, ультразвуковое дуплексное сканирование.

Funding: the study was part of the State Assignment 056-00171-19-01. Topic ID: AAAA-A19-11904590018-0 (March 29, 2019).

Author contribution: Vishnyakova AYu — literature analysis, imaging, data analysis and interpretation, manuscript preparation; Rostovtseva TM — imaging, data analysis and interpretation, figures; Kovrazhkina EA — clinical examination; Golovin DA — imaging; Gubsky IL — data analysis and interpretation; Lelyuk SE — manuscript editing; Lelyuk VG — study concept, manuscript editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of FSBI Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency (protocol dated October 4, 2021). All patients gave informed consent to participate in the study.

Correspondence should be addressed: Анастасия Ю. Вишнякова
ул. Островитянова, д. 1, стр. 10, г. Москва, 117997, Россия; vishau@yandex.ru

Received: 29.09.2021 Accepted: 13.10.2021 Published online: 31.10.2021

DOI: 10.24075/vrgmu.2021.052

MOYAMOYA DISEASE AS A POSSIBLE CAUSE OF ISCHEMIC STROKE IN ADULT PATIENTS

ВЕСТНИК РГМУ 5, 2021 VESTNIKRGMU.RU
была обследована амбулаторно. Только в одном случае БММ после перенесенного ИИ. Одна пациентка с БММ перенесших ОНМК. Среди них выявили три пациента с (Москва, Россия) в 2020 г. обследовали 426 пациентов, в Федеральном центре мозга и нейротехнологии Описание клинических случаев необходимо своевременно диагностировать. как возможную причину развития ИИ у взрослых, которую этот риск) [2, 6, 18].

Патогенетические механизмы БММ остаются до конца не изученными. При микроскопическом исследовании пораженных артериальных стволов выявляются также изменения сосудистой стенки [13]. По данным корейских БММ у жителей Восточной Азии [12] и демонстрировать признаки, сформированные на основании головного мозга, которую принято называть сосудами японского слова «moyamoya», что в переводе означает «клубы сигаретного дыма в воздухе», именно такую картину напоминают изображения аномальной сосудистой сети на основании головного мозга при селективной ангиографии [4, 5]. Данная болезнь имеет наибольшую распространенность в странах Восточной Азии (Япония и Корея) — около 3,16 случаев на 100 000 человек, что в 7–10 раз превышает этот показатель в других странах мира [6, 7].

Важность диагностики БММ как причины ИИ связана с использованием полногеномного сканирования и анализа эпигаза был выявлен ген RNF213 на хромосоме 17q25, признанный основным геном предрасположенности к БММ у жителей Восточной Азии [12] и демонстрирован в последующих исследованиях сильное и очевидное для БММ характерны бимодальные возрастные пики: первый пик приходится на возраст 5–10 лет, второй — на четвертое десятилетие жизни [1, 7, 9]. Женщины страдают в 7–10 раз превышает этот показатель в других странах мира [6, 7].

Его была обследована в 2020 г. и в марте 2018 г. В 2019 г. по результатам дообследования диагноз рассеянного склероза был снят. Диагноз при поступлении в центр: поздний восстановительный период ИИ в бассейне правой СМА от января 2020 г., неуточненный патогенетический подтип.

Пациент Ю, 51 год. Клинические проявления манифестировали в сентябре 2017 г., когда остро развился парез лицевого нерва, появилось попеременное при глотании, нечеткость речи. Негрубые координаторные нарушения выявлены в усложненных пробах. Пациентка была обследована в Научно-исследовательском институте им. Н. В. Склифосовского, где выявили БММ 3-й стадии. Дважды был оперирован по этому поводу в 2017 г. и 2018 г. — наложены экстра- и интракраниальные микрососудистые анастомозы (ЭИКМА) слева и справа.

Пациент Г, 39 лет. Перенес ИИ в бассейне правой СМА в феврале 2020 г. После проведенного лечения в стационаре и реабилитации постепенно смог передвигаться с опорой на трость в пределах квартиры, частично обслуживая себя в быту. Диагноз при поступлении в центр: поздний восстановительный период ИИ в бассейне правой СМА от января 2020 г., неуточненный патогенетический подтип.

Пациентка В, 57 лет. Перенесла лакунарный ИИ в системе левой СМА в возрасте 36 лет с легким парезом правой СМА в феврале 2020 г. После проведенного лечения в стационаре и реабилитации постепенно восстановилась в течение недели. Жалобы на двигательную активность, концентрацию внимания, чувство нервного напряжения, утомление инициировали в сентябре 2017 г. и марте 2018 г. Пациентка была обследована 10 лет назад. Данные МРТ интерпретированы как вариант строения артерий головного мозга.

Для БММ характерны бимодальные возрастные пики: первый пик приходится на возраст 5–10 лет, второй — на четвертое десятилетие жизни [1, 7, 9]. Женщины страдают этой болезнью почти в 2 раза чаще, чем мужчины. Основные клинические проявления — ишемические и геморрагические [7, 9, 15]. По данным европейских исследователей, на немногочисленных когортах взрослых выявлена высокая распространенность в странах Восточной Азии (Япония и Корея) [6, 7].
Данные магнитно-резонансной томографии головного мозга

У всех пациентов выявлены признаки исхода инфарктов и очаги глиоза в белом веществе больших полушарий, в зонах смежного кровоснабжения между СМА и ПМА. У одного из четырех пациентов (пациент Г) были также выявлены признаки исхода инфаркта в бассейне глубоких перфорирующих ветвей правой СМА. У третьего пациента (пациент Ю) обнаружены участки геморрагической трансформации инфарктов по типу петехий. Внутричерепных кровоизлияний ни у одного пациента выявлено не было. На T2-взвешенных изображениях головного мозга в области проксимальных отделов СМА с обеих сторон визуализировалась сеть мелких сосудов, сами стволы СМА на этом уровне не определялись (рис. 2).

По данным бесконтрастной МР-ангиографии у всех пациентов выявили билатеральное значительное сужение терминальных отделов ВСА (вплоть до полной окклюзии) и проксимальных отрезков СМА. ПМА были сохранены у пациентов Б и Г, у одного из них они были малого диаметра. У двух других пациентов (Ю и В) проксимальные отделы ПМА также были поражены (рис. 3). У всех обследованных обращали на себя внимание широкие задние мозговые артерии (ЗМА) и задние соединительные артерии (ЗСоА).

Данные мультиспиральной рентгеновской КТ головного мозга

При КТ-ангиографии интракраниальных артерий выявлена патологическая сосудистая сеть (рис. 4; стрелки) вместо стволов М1-сегментов СМА, а также усиление сосудистого рисунка (лентикулостриарные артерии) в области базальных ганглиев разной степени выраженности, что отражало разные стадии БММ у обследованных. Патологическая сосудистая сеть была хорошо выражена у пациентов Б и В — расценено как 3 стадия болезни, и менее выражена у пациентов Ю и Г (с более выраженным неврологическим дефицитом, большим количеством и протяженностью зон инфаркта), что вероятно, соответствовало более поздним стадиям, на которых имеют место регресс анатомической сосудистой сети на основании головного мозга. Дистальные отделы основных стволов СМА и ПМА прослеживались, и в ряде случаев их диаметр достигал нормальных размеров.

У троих из четырех обследованных отмечены признаки гипоперфузии в бассейнах СМА и ПМА на фоне повышенной перфузии в заднем бассейне (рис. 5). У четвертого (пациент Б) было осуществлено наложение ЭИКМА с обеих сторон и имело место значительно менее выраженное снижение перфузии в зонах смежного кровоснабжения СМА с ПМА и ЭАМ.

Данные ультразвукового дуплексного сканирования брахиоцефальных артерий

На экстракраниальном уровне при ультразвуковом ДС БЦА не было выявлено значимых изменений ВСА, диаметры артерий и скоростные характеристики кровотока в них соответствовали нормативным значениям (у большинства пациентов соответствовали нижней границе нормы). Диаметры позвоночных артерий (ПА) значительно варьировали, кровоток в ПА был нормальным либо несколько усиленным. В целом данные
Рис. 2. Патологическая сосудистая сеть на основании головного мозга у взрослых пациентов с болезнью моямоя на МРТ (T2 ВИ в аксиальной плоскости). Проксимальные отделы СМА отчетливо не визуализируются, в их проекции заметна сеть мелких сосудов (стрелки). A. Пациент Б. B. Пациент Г. В. Пациент Ю. Г. Пациентка В.

Рис. 3. Сосудистые изменения у взрослых пациентов с болезнью моямоя при 3D-TOF МР-ангиографии. A. Пациент Б: отсутствие MR-сигнала от кровотока по дистальным отделам ВСА, проксимальным отделам СМА (стрелки). Проксимальные отделы ПМА прослеживаются, сужены. ЗМА не изменены. B. Пациент Г: значительное сужение просвета кровотока в дистальных отделах ВСА, отсутствие MR-сигнала от кровотока по проксимальным отделам СМА (стрелки). ПМА не изменены. ЗСоА, ЗМА несколько расширены. B. Пациент Ю: отсутствие MR-сигнала от кровотока по дистальным отделам ВСА, проксимальным отделам СМА и ПМА (стрелки). ЗСоА, ЗМА не изменены. Г. Пациентка В: отсутствие MR-сигнала от кровотока по дистальным отделам ВСА, проксимальным отделам СМА и ПМА. ЗСоА, ЗМА расширены (стрелки).
ДС экстракраниальных отделов БЦА не имели значимых изменений.

При транскраниальном ДС у двух (Ю и В) из четырех пациентов диагностировали стенозы терминальных отделов обеих ВСА по наличию локального гемодинамического перепада в их проекциях (рис. 6З, И). В проекциях М1-сегментов СМА в режиме цветового допплеровского кодирования (ЦДК) были визуализированы множественные или единичные разнонаправленные потоки, переплетающиеся между собой. В спектральном
допплеровском режиме потоки в этих сосудах имели умеренно или значительно сниженный уровень периферического сопротивления, характерный для коллатерального типа кровотока, и умеренное снижение скоростных характеристик потоков (рис. 6А–Ж). Помимо этого, у всех обследованных лоцировались ЗСоА с высокоскоростным кровотоком, направленным в сторону вертебрально-базилярного бассейна (ВББ), отмечено усиление кровотока в ЗМА и их ветвях. ЗМА можно было визуализировать вплоть до 3–4 сегментов (рис. 7). При локации дистальных сегментов ПА (V4) и основной артерии (ОА) в двух случаях (пациенты Б и В) выявлено компенсаторное повышение кровотока, в двух других случаях (Г и Ю) оно отсутствовало.

Обсуждение клинических случаев

Характерные для БММ сосудистые изменения можно было диагностировать с помощью разных сосудистых методик. У описываемых нами пациентов на Т2-ВИ на основании головного мозга вместо крупных стволов М1-сегментов СМА была визуализирована патологическая сосудистая сеть. При бесконтрастной МР-ангиографии отмечены окклюзии дистальных (суправентрикулярных) отделов ВСА и
Рис. 7. Транскраниальное дуплексное сканирование ЗСоА и ЗМА (ЦДК, спектральный допплер).

A. Пациентка В: в режиме ЦДК визуализируется цветовая картограмма ЗСоА, ЗМА (P2-P3 сегменты) и ее ветвей. Такое изображение возможно в связи с усиленным кровотоком в этих артериях.

B. Пациент Г: локализуется ЗСоА с высокоскоростным потоком.

В. Пациент Ю: локализуется височная ветвь ЗМА с высокоскоростным потоком проксимальных участков СМА, а в двух случаях — и ПМА. Однако только у одного пациента (Б) при МРА была хорошо заметна сеть мелких сосудов по типу «клубов дыма». МСКТ-ангиография позволила более детально визуализировать лентикулостриарные артерии в базальных ганглиях и аномальные сетевидные сосуды на основании головного мозга во всех без исключения случаях, подтвердив таким образом, диагноз БММ.

При ультразвуковом исследовании БЦА на экстракраниальном уровне явных и специфических изменений ВСА и ПА выявлено не было. Такой диагностический критерий, как уменьшение диаметров ВСА [1], у описываемых лиц не выявлено, что можно объяснить нетипичным для других вариантов поражений ВСА уровнем окклюзии. При МРА окклюзируются супраклиноидные отделы ВСА, причем выше отхождения ЗСоА, они представлены коммуникационными сегментами ВСА и их бифуркациями. Этот ключевой момент играет роль в перераспределении мозгового кровотока из систем ВСА через ЗСоА в ВББ и далее по ЗМА и их ветвям через корковые и лептоменингеальные анатомическими артериями системы СМА и ПМА. Таким образом, признаки дистальной окклюзии ВСА у больных с БММ [1] при ультразвуковом исследовании могут быть выявлены в случаях отсутствия ЗСоА.

На интракраниальном уровне при хорошо выраженной патологической сосудистой сети на основании головного мозга ее можно было визуализировать, при слабо выраженной сети — сигнал от проксимального отрезка СМА отсутствовал. При этом локализовался M2-сегмент СМА с относительно «нормальным» кровотоком, что могло привести к ошибочному суждению. Скоростные характеристики потоков в ветвях СМА и дистальных отрезках их стволов значительно варьировали, однако во всех случаях было отмечено снижение уровня периферического сосудистого сопротивления, что свидетельствовало о их коллатеральном заполнении.

Двусторонние окклюзии ВСА сочетались с небольшими по размеру исходами инфарктов головного мозга и областью глиоза, расположенными у всех пациентов в зонах смежного кровообращения СМА/ПМА. Подобное несоответствие окклюзий крупных артериальных стволов и размеров инфарктов свидетельствовало в пользу длительно существующего процесса, в результате которого эти окклюзии сформировались, а также с развитием достаточной коллатеральной компенсации. Инфаркты при БММ, скорее всего, должны быть отнесены к гемодинамическому, связанному со снижением кровотока, в частности, на фоне падения артериального давления. Другим вариантом развития инфаркта мозга, вероятно, могла служить редукция коллатерального русла, также приводящая к декомпенсации кровообращения. Перфузионный дефицит (СВФ) с пролонгированным временем контрастирования (T_{max}) диагностировали по данным КТ-перфузии в зонах смежного кровообращения СМА и ПМА — глубоком и субкортикальном белом веществе преимущественно лобных долей. В свою очередь, в ВББ у всех обследованных, кроме пациента с ЭИКМА, отмечен повышенный уровень перфузии. У пациентки В сосудистая сеть ВББ была развита особенно сильно.

Заключение

Полученные результаты позволяют сделать вывод о том, что БММ может быть диагностирована в соответствии с известными диагностическими критериями разными визуализирующими методами — МРТ, МСКТ и ультразвуковым ДС БЦА. Ошибки в диагностике БММ, вероятно, могут быть связаны либо с недоступностью ангиографических методик при нейровизуализации, либо с неинформированностью диагностов о такой причине ИИ у взрослых, как БММ.

Литература

1. Осборн А. Г., Зальцман К. Л., Завери М. Д. Лучевая диагностика. Головной мозг. М.: Издательство Панфилова, 2018; 1216 с.
2. Коршунов А. Е., Пронин И. Н., Лукина В. А. Болезнь моямоя — излечимая причина повторных ишемических инсультов у детей. Русский журнал детской неврологии. 2010; V (1): 27–34.
3. Шульгина А. А., Лукина В. А., Коршунов А. Е., Усачев Д. Ю., Пронин И. Н. Сочетание комбинированной двусторонней прямой и непрямой реваскуляризации головного мозга с двух сторон в лечении больных моямой. Вопросы нейрохирургии имени Н. Н. Бурденко, 2020; 84 (2): 93–102.
4. Takeuchi K, Shimizu K. Hypoplasia of the bilateral internal carotid arteries. Brain Nerve. 1957; 9: 37–43.
5. Nishimoto A, Takeuchi S. Abnormal cerebrovascular network related to the internal carotid arteries. J Neurosurg. 1967; 29: 255–60.
6. Guidelines for Diagnosis and Treatment of Moyamoya Disease
Takeuchi K, Shimizu K. Hypoplasia of the bilateral internal carotid arteries. Brain Nerve. 1957; 9: 37–43.

Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Stroke. 1983; 14: 50–58.

Park YS, An HJ, Kim JO, Kim WS, Han IB, Kim OJ, et al. The Role of RNF213 4810G>A and 4950G>A Variants in Patients with Moyamoya Disease in Korea. Int J Mol Sci. 2017; 18 (11): 2477. DOI: 10.3390/ijms18112477.

Fujimura M, Tominaga T. Diagnosis of moyamoya disease: international standard and regional differences. Neurol Med Chir (Tokyo). 2015; 55 (3): 189–93. DOI: 10.2176/nmc.ra.2014-0307.

Kraemer M, Heienbrok W, Berlit P. Moyamoya disease in Europeans. Stroke. 2008; 39 (12): 3193–200. DOI: 10.1161/STROKEAHA.107.513408.

Savolainen M, Mustanoja S, Pekkola J, Tyni T, Uusitalo AM, Ruotsalainen S, et al. Moyamoya angiopathy: long-term follow-up study in a Finnish population. J Neurol. 2019; 266 (3): 574–81. DOI: 10.1007/s00415-018-9154-7.

Acker G, Fekonja L, Vajkoczy P. Surgical Management of Moyamoya Disease. Stroke. 2018; 49 (2): 476–82. DOI: 10.1161/STROKEAHA.117.018563.

References

1. Osborn AG, Zalcman KL, Zaveri MD. Luchevaja diagnostika, Kolovoj mozg. M.: Izdatel'stvo Panfilova, 2018; 1216 s. Russian.

2. Korshunov AE, Pronin IN, Golovtsev AL. Bol'zhej mojamoja — izlechimaja prichina povtornykh ishemicheskikh isul'tov u detej. Russkij zurnal detskoj nevrologii. 2010; V (1): 27–34. Russian.

3. Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969; 20: 288–99.

4. Aker G, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969; 20: 288–99.

5. Nishimoto A, Takeuchi S. Abnormal cerebrovascular network related to the internal carotid arteries. J Neurosurg. 1967; 29: 255–60.

6. Guidelines for Diagnosis and Treatment of Moyamoya Disease (Spontaneous Occlusion of the Circle of Willis). Research Committee on the Pathology and Treatment of Spontaneous occlusion of Spontaneous Occlusion of the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures for Intractable Diseases. Neurol Med Chir (Tokyo). 2012; 52: 245–66.

7. Wanebo JE, Khan N, Zabramski JM Spetzler RF, ed. Moyamoya disease: diagnosis and treatment. New York Stuttgart: Thieme, 2013; 224 p.

8. Yamashita M, Oka K, Tanaka K. Histopathology of the brain vascular network in moyamoya disease. Stroke. 1983; 14: 50–58.

9. Newell DW, Abdu E. Moyamoya Disease: Current Concepts. Cureus. 2012; 4 (6): e47. DOI: 10.7759/cureus.47.

10. Ge P, Zhang Q, Ye X, Liu X Deng X Wang J, et al. Different subtypes of collateral vessels in hemorrhagic moyamoya disease with p.R4810K variant. BMC Neurology. 2020; 20: 308. DOI: 10.1186/s12883-020-01884-0.

11. Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969; 20: 288–99.

12. Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuizaki S, Kikuchi A, et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet. 2011; 56 (1): 34–40.

13. Koizumi A, Kobayashi H, Hitomi T, Harada KH, Habu T, Youssefian S. A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med. 2016; 21: 55–70. DOI: 10.1007/s00415-017-0498-7.

14. Park YS, An HJ, Kim JO, Kim WS, Han IB, Kim OJ, et al. The Role of RNF213 4810G>A and 4950G>A Variants in Patients with Moyamoya Disease in Korea. Int J Mol Sci. 2017; 18 (11): 2477. DOI: 10.3390/ijms18112477.

15. Fujimura M, Tominaga T. Diagnosis of moyamoya disease: international standard and regional differences. Neurol Med Chir (Tokyo). 2015; 55 (3): 189–93. DOI: 10.2176/nmc.ra.2014-0307.

16. Kraemer M, Heienbrok W, Berlit P. Moyamoya disease in Europeans. Stroke. 2008; 39 (12): 3193–200. DOI: 10.1161/STROKEAHA.107.513408.

17. Savolainen M, Mustanoja S, Pekkola J, Tyni T, Uusitalo AM, Ruotsalainen S, et al. Moyamoya angiopathy: long-term follow-up study in a Finnish population. J Neurol. 2019; 266 (3): 574–81. DOI: 10.1007/s00415-018-9154-7.

18. Acker G, Fekonja L, Vajkoczy P. Surgical Management of Moyamoya Disease. Stroke. 2018; 49 (2): 476–82. DOI: 10.1161/STROKEAHA.117.018563.