Assessing the Identity of Commercial Herbs From a Cambodian Market Using DNA Barcoding

Xinyun Cui, Weijie Li, Jianhe Wei, Yaodong Qi, Rongtao Li, Yun Yang, Yuhua Shi, Xiangxiao Meng, Yaolei Mi, Theang Huot, Wei Sun and Xilong Zheng*

1 Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China, 2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 3 Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China, 4 National Center of Traditional Medicine, Ministry of Health of Cambodia, Phnom Penh, Cambodia

In Cambodia, medicinal plants are often used to treat various illnesses. However, the identities of many medicinal plants remain unknown. In this study, we collected 50 types of traditional Cambodian medicinal plants that could not be identified by their appearance from a domestic market. We utilized the DNA barcoding technique, combined with the literature survey, to trace their identities. In the end, 33 species were identified at the species level and 7 species were identified at the genus level. The ethnopharmacological information of 33 medicinal plants was documented. The DNA barcoding technique is useful in the identification of medicinal plants with no previous information.

Keywords: Cambodia, herb, DNA barcoding, ITS2, psbA-trnH

INTRODUCTION

Cambodia is located in the Indo-China Peninsula, where it borders Thailand, Vietnam, and Lao PDR in Southeast Asia. Although it does not exceed 4% (181,035 km²) of the total area of Southeast Asia, Cambodia is well-known for its rich biodiversity, overlapping with four of the 25 “biodiversity hotspots” and maintaining rich natural resources and a unique ecosystem. It is estimated that the country has more than 3,000 vascular plant species (Chassagne et al., 2016). Approximately 1,200 medicinal plants are used to treat diseases (Xu, 2008; Walker, 2017). Traditional medicine plays an important role in the lives of most Cambodians. In the face of disease, 70–80% of Cambodians opt for traditional medicinal methods (Walker, 2017; Yao et al., 2017) with approximately 40–50% of the population using medicinal plants daily (Chassagne et al., 2017).

Traditional Cambodian medicine involves several cultural and regional traditions derived from Theravada Buddhism, Ayurveda, traditional Chinese medicine, and French pharmaceutical traditions (Chassagne et al., 2017). Among these, Chinese and Ayurvedic medicines are the two oldest and most comprehensive medical systems based on natural medicinal agents. Consequently,
the importance of traditional medicinal plant research in Cambodia is relatively high. However, Cambodia still does not have a national ethnopharmacopoeia (World Health Organization [WHO], 2005). Furthermore, there are few curricula teaching traditional Cambodian medicine, and books offer inconsistent and confusing information (Richman et al., 2010). Due to climate change and agro-industrial development in Cambodia, the local ecological environment is threatened (Chassagne et al., 2016). At the same time, Western medicine is being promoted, and knowledge of medicinal plants is being lost (Xu, 2008). Therefore, the study of medicinal plants in this country is very important. The medicinal plant market is not only a place for the sale of natural therapies but also a place for people to exchange information on medicinal plants, which preserves the knowledge as the information is passed from one generation to the next (Lee et al., 2008; de Carvalho Nilo Bitu et al., 2015; Jin et al., 2018). Therefore, we chose to conduct our study at a traditional market in Phnom Penh, the Cambodian capital.

We performed this study in August 2016, December 2016, and November 2017 in Orussey Market, which is one of the largest traditional markets for Chinese merchants in Phnom Penh carrying a wide variety of medicinal plants. The medicinal materials market that we surveyed represented only a small part of the entire Orussey Market (Figure 1). Only about 10 merchants were selling herbal medicines. The business model of the Cambodian medicinal plant market is mainly retail sales. Each store was small and independently run, with its own shop name. The medicinal plants were stored outside of the shops for customers to browse and purchase. The herbs had no fixed specifications, and they were derived from plants in the region. There were various types of herbs that included roots, stems, leaves, fruits, and whole plants. Most medicinal plants were previously dried, and a few fresh medicinal plants were formulated into medicines or single-flavored products. Due to the large number of Chinese customers, the shops also sold commonly used herbs in China, such as red dates, pepper, and Atractylodes macrocephalae rhizome (Atractylodes macrocephala Koidz.). The quality and specifications of the medicinal plants were not significantly different from store to store, and the price was similar across different shops. We collected samples from a total of 118 medicinal plants, of which 68 could be identified by morphology, whereas the remaining 50 species could not be morphologically distinguished. The main objective of this study was to clarify the original species of these medicinal plants.

To identify medicinal plants, morphological, microscopical, and physical and chemical identification methods are commonly used, but they require experienced investigators that are knowledgeable in the field. A shortage of experienced investigators has led to difficulties in identifying unknown plants. With advances in science and technology, such as chromatography, spectroscopy, and X-ray diffraction, new methods have been used to study medicinal plants (Chen et al., 2012). Although most methods are not useful when combined with the starting material of unknown origin, they can provide indirect evidence for the authenticity of the material (Han et al., 2016).

The DNA barcoding technique is an effective tool that can identify unknown medicinal plants with no background information (Chen S. et al., 2013). It uses a short DNA sequence from a standard and agreed-upon position in the genome to identify the species rapidly and accurately (de Vere et al., 2015; Li et al., 2015). The experimental method is fast, standardized, and simple. It generates a large experimental throughput and easily identifies the species (Chen et al., 2011). The common DNA barcodes for plants are rbcL, matK, ITS2, and psbA-trnH; however, matK is difficult to amplify with commonly used primers (Li et al., 2015); therefore, different taxonomic groups require different sets of primers (Hollingsworth, 2008). Furthermore, matK sequences evolve slowly, and this locus has by far the lowest divergence among plastid genes in flowering plants (Kress et al., 2005). Due to its modest discriminatory ability, it is not recommended for studies at the species level. Presently, psbA-trnH is the most widely used plastid barcode for species identification, as its universal primers can amplify nearly all angiosperms (Shaw et al., 2007). Internal transcribed spacer 2 (ITS2), a part of the nuclear DNA, is another ideal barcode because of its short length, easy amplification with a single primer pair, high
several could not be matched to any of the existing medicinal species, presumably due to the low species-level resolution of many plant genera and insufficient database information of GenBank. Therefore, the analyses with multiple genetic loci (e.g., single-nucleotide polymorphisms, SNPs) and other analytical methods, such as infrared spectroscopy and X-ray diffraction, must be employed to achieve high resolution for species differentiation (Chen et al., 2012).

Seventeen herbs could be matched to specific medicinal plants or the adulteration and mis-authentication of medicinal plants in Cambodian markets. Thus, DNA barcoding plays a key role in ensuring medicinal safety in Cambodia and it would be better when DNA barcoding combines chemical information.

The ethnopharmacological information (family name, distribution, local name) of 33 plants is shown in Table 2. Among these, there were five Rubiaceae and eight Fabaceae plants. The pictures of five representative medicines are shown in Figure 2. Furthermore, legumes were the most cited plants in studies from Cambodia, Thailand, and Laos (Chassagne et al., 2017).

Importantly, 19 out of 33 medicinal plants were also used as Chinese medicines, and they were Nauclea officinalis, Ficus sagittata, Dalbergia pinnata, Flacourtia indica, Anacardium occidentale, Dalbergia oliveri, Cinnamomum bejolghota,
TABLE 1 | Herb identification results of ITS2 supplemented with psbA-trnH.

No.	Voucher number	Part used	ITTS2 identification result	Maximum similarity (%)	Length (bp)	Max score	psbA-trnH identification result	Maximum similarity (%)	Length (bp)	Max score
JPZ01	20161214001	Stem bark	Nauclea officinalis (Pierre ex Pit.) Merr. & Chun	99	220	399				
JPZ02	20161214002	Stem	Ficus sagittata Vahl	100	202	374				
JPZ03	20161214003	Stem	Dalbergia pinnata (Lour.) Prain	98	218	350				
JPZ04	20161214004	Root	Flacourtia indica (Burm. f.) Merr.	96	220	357	F. indica	99	271	483
JPZ05	20161214005	Stem	Anacardium occidentale Linn.	99	229	418				
JPZ06	20161214006	Root	Calamus acanthospathus Griff.	97	250	414				
JPZ07	20161214007	Stem	Amplification failed	\	\	\	Amplification failed			
JPZ08	20161214008	Stem	No significant similarity found	\	225	\	C. odorata	97	527	326
JPZ09	20161214009	Leaf	Ceiba pentandra (Linn.) Gaertn.	100	230	425				
JPZ10	20161214010	Vine	Dalbergia oliveri Prain	100	218	399				
JPZ11	20161214011	Bark	Cinnamomum bejolghota (Buch-Ham.) Sweet	100	239	438				
JPZ12	20161214012	Bark	Oroxylum indicum (Linn.) Kurz	100	236	431				
JPZ13	20161214013	Bark	Mitragyna diversifolia (Wall. ex G. Don) Havl	100	219	403				
JPZ14	20161214014	Stem	Abutilon indicum (L.) Sweet	99	232	429				
JPZ15	20161214015	Stem	Allophylus longipes Radik.	91	243	333	Amplification failed			
JPZ16	20161214016	Stem	Capparis acutifolia Sweet	83	229	147	Capparis. mitchellii (Lindl. ex F. Muell) Lind.	89	422	345
JPZ17	20161214017	Stem	Pennisetum purpureum Schum.	99	220	401				
JPZ18	20161214018	Stem	No significant similarity found	\	225	\	C. odorata	97	527	326
JPZ19	20161214019	Stem	Oroxylum indicum (Linn.) Kurz	99	236	431				
JPZ20	20161214020	Stem	Leea guineense G. Don	98	231	318				
JPZ21	20161214021	Root	Puya venusta (Baker) Phil.	95	223	353	Ananas comosus (Linn.) Merr.	100	564	1042
JPZ22	20161214022	Fruit	No significant similarity found	\	254	\	Amplification failed			
JPZ23	20161214023	Stem bark	Cinnamomum javanicum Bl.	99	233	411				
JPZ24	20161214024	Stem	Senna alexandrina Mill.	79	232	165	Amplification failed			
JPZ25	20161214025	Vine	No significant similarity found	\	219	\	Illegera rhodantha Hance	98	425	256
JPZ26	20161214026	Stem	Salacia agasthiamalana Udayan, Yohannan & Pradeep	96	233	374	Amplification failed			
JPZ27	20161214027	Stem	Gardenia jasminoides Ellis	94	207	309	G. jasminoides	100	256	484
JPZ28	20161214028	Stem bark	Pseudoclausena chrysogyne (Miq.) T.P. Clark	89	229	241	Amplification failed			

(Continued)
TABLE 1 | Continued

No.	Voucher number	Part used	ITS2 identification result	Maximum similarity (%)	Length (bp)	Max score	psbA-trnH identification result	Maximum similarity (%)	Length (bp)	Max score
JPZ29	20161214029	Stem	Pueraria mirifica Airy Shaw & Suvat.	93	216	154	Spaltholobus pulcher Dunn	96	531	329
JPZ30	20161214030	Vine	Derris trifoliata Lour.	97	223	412				
JPZ31	20161214031	Stem	Ampelocissus martini Planch.	92	291	418	Amplification failed			
JPZ32	20161214032	Stem	Pseudoboeckea teres Dümmér	80	237	93.5	Amplification failed			
JPZ33	20161214033	Stem	No significant similarity found		233		Amplification failed			
JPZ34	20161214034	Root	Croton crassifolius Geisel.	100	204	377				
JPZ35	20161214035	Stem	Holanhera pubescens Wall. ex G. Don	93	238	348	Amplification failed			
JPZ36	20161214036	Stem	Cenchrus purpureus (Schumach.) Morrone	100	218	403				
JPZ37	20161214037	Stem	Prismanatomen filamentos Crab	100	222	344				
JPZ38	20161214038	Vine	Cyphostemma triobuta (Lam.) M.R. Almeida	96	257	453	Cayratia trifolia (Linn.) Dornin	100	564	305
JPZ39	20161214039	Stem	Acacia gummifera Willd.	93	192	243	Acacia nilotica (Linn.) Delile	99	693	395
JPZ40	20161214040	Stem	Erythrina subumbribras (Hasak.) Meer.	96	234	375	E. vespertilio Benth.	95	399	262
JPZ41	20161214041	Stem	No significant similarity found		236		Albizia lebbeck (L.) Benth.	100	658	356
JPZ42	20161214042	Stem	Sequencing failed				Amplification failed			
JPZ43	20161214043	Stem	Amplification failed				Amplification failed			
JPZ44	20161214044	Stem	Plumeria rubra Linn.	86	237	204	Amplification failed			
JPZ45	20171105001	Stem	No significant similarity found		202		Tetracera sarmentosa (Linn.) Vahl.	100	425	230
JPZ46	20171105002	Stem	Salacia chinensis L.	100	246	455				
JPZ47	20171105003	Fruit	Amplification failed							
JPZ48	20171105004	Vine	Passiflora foetida L.	100	216	399	Pandanus tectorius Parkinson	100	551	298
JPZ49	20171105005	Stem bark	Terminalia nigronevulosa Pierre ex Lanessen	99	208	372				
JPZ50	20171105006	Rhizomes	Hydnophyllum formicarum Jack	99	217	357				

1 "\“ indicates that the data do not exist or the herb sample was not tested.

Oroxylum indicum, Abutilon indicum, Illigera rhodantha, Gardenia jasminoides, Derris trifoliata, Croton crassifolius, Lablab purpureus, Cayratia trifolia, Acacia nilotica, Pandanus tectorius, Passiflora foetida, and Terminalia nigronevulosa. Among these, O. indicum, P. tectorius, and N. officinalis were the typical traditional Chinese herbs with a long history of use. N. officinalis, also known as Li minority medicine from which several new drugs have been developed, can lower body temperature, detoxify the body, reduce swelling, and relieve pain. It is often used in the treatment of colds, fevers, acute tonsillitis, pharyngitis, pneumonia, urinary system infections, enteritis, dysentery, carbuncle, and other diseases. Oroxylum indicum has been included in the 2015 Chinese Pharmacopoeia for treating fevers, coughs, sore throats, lung phlegm, liver diseases, and stomach pain (Chinese Pharmacopoeia Comission, 2015). The flowers, leaves, fruits, roots, and rhizomes of P. tectorius have high medicinal value in the remedy of colds, fevers, hepatitis, dysentery, hemorrhoids, orchitis, syphilis, and diabetes mellitus (Zhan, 2013). Therefore, studies are needed to further characterize these plants of medicinal value. According to the results shown in Table 2, there were 19 species distributed in Guangdong, 17 species in Guangxi, and 15 species in Yunnan. Therefore, the medicinal
TABLE 2 | Ethnopharmacological information for the 33 medicinal plants of defined species.

Number	Identification	Family name	Distribution	Local name
JPZ01	Nauclea officinalis (Pierre ex Pit.) Merr. & Chun	Rubiaceae	China, Borneo, Cambodia, Indonesia (Sumatra), Laos, Malaysia, Philippines, Thailand, Vietnam.	Ktum tuk
JPZ02	Ficus sagittata Vahl	Moraceae	China, Bhutan, India, Indonesia, Myanmar, Philippines, Sikkim, Thailand, Vietnam, Cambodia.	Krabei Leung Kor (Dy Phon, 2000)
JPZ03	Dalbergia pinnata (Lour.) Prain	Fabaceae	China, Indonesia (Java), Laos, Malaysia, Myanmar, Philippines, Thailand, Vietnam.	Unknown
JPZ04	Flacourtia indica (Burm.f.) Merr.	Flacourtiaeae	Widespread and cultivated in tropical and subtropical regions of Africa, Asia, the Pacific Islands.	Krkorib (Prey) (Turreira-Garcia et al., 2017)
JPZ05	Anacardium occidentale L.	Anacardiaceae	Native to tropical America, now widely cultivated in the global tropics.	Dio/Savy Chanti
JPZ06	Calamus acanthospathus Griff.	Arecaceae	China, Vietnam, Laos, Thailand, India.	Pdiao (Dy Phon, 2000)
JPZ09	Ceiba pentandra (L.) Gaertn.	Bombaciaceae	Native to tropical America and possibly West Africa, now pantropical.	Ko
JPZ10	Dalbergia oliveri Prain	Fabaceae	Myanmar, Thailand, Laos, Cambodia, Vietnam.	Niang Nuan
JPZ11	Cinnamomum bejolghota (Buch.-Ham.) Sweet	Lauraceae	China, Bangladesh, Bhutan, India, Laos, Myanmar Nepal, Thailand, Vietnam, Cambodia.	Teppirio (Turreira-Garcia et al., 2017)
JPZ12/19	Oroxylyn indicum (L.) Kurz	Bignoniaceae	Bhutan, Cambodia, India, Indonesia (Java, Sumatra), Laos, Malaysia, Myanmar, Nepal, Philippines, Thailand, Vietnam.	Pou Long
JPZ13	Mitragyna diversifolia (Wall. ex G.Don) Havil.	Rubiaceae	China, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Thailand, Vietnam.	Unknown
JPZ14	Abutilon indicum (L.) Sweet	Malvaceae	China, Bhutan, Cambodia, India, Indonesia, Laos, Myanmar, Nepal, Sri Lanka, Thailand, Vietnam.	Tbal Kenn
JPZ17	Cenchrus purpureus (Schumach.) Morrone	Poaceae	Native to Africa. Introduced and cultivated to India, Myanmar, Oceania, the Americas.	Smao Kantuy Chhker (Dy Phon, 2000)
JPZ18	Cananga odorata (Lam.) Hook.f. & Thomson	Annonaceae	Native to NE Australia, India, Indonesia, Laos, Malaysia, Myanmar, Thailand.	Chhke Sreng (PlantUse English,, 2018)
				(Cananga odorata) (Materia Aromatica,, 2019)
JPZ20	Leea guineensis G.Don	Leeaceae	Bangladesh, Bhutan, Cambodia, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, New Guinea, Philippines, Thailand, Vietnam, Africa, Madagascar.	Kolaing Bay (Dy Phon, 2000)
JPZ21	Ananas comosus (L.) Merr.	Bromeliaceae	Native to the American tropics; the cultivated pineapples are grown mainly between latitudes 24°N and 25°S.	PritNgo/NgoBone
JPZ23	Cinnamomum javanicum Blume	Lauraceae	From southern China to Peninsular Malaysia, Sumatra, Java, Borneo.	Kronvanh deum (Dy Phon, 2000)
JPZ25	Illigera rhodantha Hance	Hernandiaceae	China, Cambodia, Laos, Thailand, Vietnam.	Vor Kroch (Dy Phon, 2000)
JPZ27	Gardenia jasminoides J.Ellis	Rubiaceae	China, Bhutan, Cambodia, India, Japan, North Korea, Laos, Nepal, Pakistan, Thailand, Vietnam; cultivated in Africa, Asia, Australia, Europe, North and South America, Pacific Islands.	Unknown
JPZ30	Dennis trifoliata Lour.	Fabaceae	China, Cambodia, India, Indonesia, Japan, Malaysia, Papua New Guinea, Sri Lanka, Thailand, Vietnam, East Africa, Australia, Pacific Islands.	Vor Breng Krohom (Dy Phon, 2000)
JPZ34	Croton crassifolius Geiseler	Euphorbiaceae	China, Laos, Myanmar, Thailand, Vietnam, Cambodia.	Bongki or Pongki (Dy Phon, 2000)
JPZ36	Lablab purpureus (L.) Sweet	Fabaceae	Native to Africa; cultivated throughout the tropics.	Sandek Baraing
JPZ37	Prismatomenis filamentosa Craib	Rubiaceae	China, Cambodia, India, Thailand, Vietnam.	Romdenhmeas
JPZ38	Cayratia trifolia (L.) Mabb. & J.Wen	Vitaceae	China, Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Thailand, Vietnam.	Tror Det
JPZ39	Acacia nilotica (L.) Delile	Leguminosae	Native to Africa and extends to Arabia, Afghanistan, India; now cultivated in many parts of the world.	Unknown
JPZ41	Albizia lebbeck (L.) Benth.	Fabaceae	Native to tropical Africa; introduced or naturalized in Bangladesh, Bhutan, India, Myanmar, Nepal, Pakistan, Sri Lanka, Cambodia.	Daem Chrees

(Continued)
plants in Cambodia are similar to the three aforementioned provinces in China.

MATERIALS AND METHODS

Study Area and Materials

In Orussey Market, we interviewed a total of 10 medicine retailers, all sellers were briefed on the purpose and details of the investigation, they were also informed that the investigation could be terminated any time as needed. As shown in Tables 1, 2, we collected medicinal plant samples and recorded the local names of the medicinal plants. Some local names of these plants were provided by the sellers, others were obtained by reviewing the literature. Ethnopharmacological information including family name and distribution of medicinal species were also obtained from the literature. The medicinal material samples were dried and stored in Herbarium of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences (IMD). Voucher numbers are listed in Table 1.

DNA Extraction

Approximately 30 mg of each sample was ground for 2 min (40 Hz) using a high-throughput tissue grinder (Scientz-48, Ningbo, China). Total genomic DNA was extracted using a plant genomic DNA extraction kit (Tiangen Biotech Co., China). Occasionally, alien DNA sequences from other species – such as fungi and algae – or mixed sequence signals were repeatedly detected if the primers were not specific. To prevent non-specific PCR amplification, we washed the samples of medicinal materials using 75% alcohol to remove fungi and other plant powder contaminations.

PCR Amplification and Sequencing

The primers used for amplification and sequencing were as follows: ITS2 (the second ITS) (forward, 5'-GCGATCTCTTCTCCAGACTACATA3', reverse, 5'-GACGCTTCTCCAGACTACATA3') (Chen et al., 2010) and psbA-trnH intergenic spacer (forward, 5'-GTTATGATGACTTCCAGATGCTC3' (Sang et al., 1997); reverse, 5'-CGCGCATG TGGATCCATCC3'
Primers were synthesized by Shanghai Shenggong Bioengineering Co., Ltd. The 25 µL PCR reaction contained 12.5 µL of 2× Taq PCR Mix, 1.0 µL each of the forward and reverse primers (2.5 µmol L⁻¹), 8.5 µL of double distilled water, and 2.0 µL of the template (genomic DNA < 0.1 ng). The PCR amplification procedure for ITS2 was as follows: denaturation at 94°C for 5 min, followed by 40 cycles of denaturation at 94°C for 30 s, annealing at 56°C for 30 s, and extension at 72°C for 45 s. The PCR amplification procedure for psbA-trnH was as follows: denaturation at 95°C for 4 min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 55°C for 1 min, and extension at 72°C for 1 min. A final extension was performed at 72°C for 10 min for both PCR amplification procedures. The PCR was conducted in a thermal cycler (model 2720; Thermo Fisher Scientific). Bidirectional sequencing of the PCR products was performed by Beijing Qingke New Industry Biotechnology Co., Ltd.

Data Analysis
Codon Code Aligner V 7.0.1 (CodonCode Co., United States) was used to assemble and cut the contigs and to generate the ITS2 and psbA-trnH sequences. The sequences were submitted to the National Center for Biotechnology Information (NCBI) database to search for other similar sequences, which have been taxonomically validated from published literatures. To identify the species of each medicinal plant, each species was searched in the literature in descending order of similarity. The maximum score was used to determine if the medicinal plant distributed in Cambodia. If its origin was from Cambodia and its similarity was ≥97% [97% was used as the DNA barcoding identification similarity threshold for medicinal plants (Chen et al., 2012; Gu et al., 2015)], the species identified were considered to be the final. If the similarity was ≤97%, the psbA-trnH sequence was amplified. The final identification results of similarities ≥97% were determined according to the aforementioned ITS2 method. If the similarity was between 90 and 97%, the results revealed the genus level. In cases of inconsistent ITS2 and psbA-trnH results, we choose the one with the higher similarity.

Ethics
We plan to work with the National Center of Traditional Medicine (NCTM), Ministry of Health of Cambodia, to publish Handbook of medicinal plants in Cambodia, which will be made available to the Cambodian sellers we interviewed after its publication. Meanwhile, we also collaborate with NCTM on the Sino-Cambodian International Exchange Project to promote educational and academic communications between China and Cambodia; this project will also provide Cambodia with technical and theoretical supports in the identification and marker-assisted selection of medicinal plants.

CONCLUSION
Cambodia has a history of nearly 2000 years, and for a long time, it has suffered from civil wars and wars of aggression. In light of the extremely poor conditions, the Cambodian people have relied on their own practices to identify medicinal plants to fight diseases. Although there is some information on various medicinal plants, there is no pharmacopoeia and no readily available body of medicinal plant literature, which has hindered the application of medicinal plants and the dissemination of results from investigators of other countries. Therefore, the current study of medicinal plants in Cambodia is incomplete, and there remain many gaps in knowledge. Furthermore, many plants have become endangered due to industrialization and environmental pollution (Chassagne et al., 2016). In light of this, the DNA barcoding technique can provide useful information on the species of various medicinal plants in Cambodia. This will not only preserve plant knowledge in Cambodia, but also help develop an ethnopharmacopoeia and provide new insights on the development of new drugs in the future. At the same time, the use of DNA barcoding is one step in supporting the improvement in the quality control of plants being sold for medicinal use in Cambodia and it will emphasize the importance of protecting endangered species. This approach can also be used in other countries or regions with relatively backward economies and underdeveloped research practices. Through DNA barcoding, commonly used medicinal plants can be completely characterized.

DATA AVAILABILITY STATEMENT
All datasets generated for this study are included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS
XC, XZ, WL, YQ, TH, RL, and YY: investigation. WS, XZ, YS, XM, and YM: methodology. JW and XZ: project administration. XZ, WS, and WL: resources. JW: supervision. XC: writing – original draft. XZ and WS: writing – review and editing.

FUNDING
This research was funded by the CAMS Innovation Fund for Medical Sciences (CIFMS), grant number 2016-I2M-2-003.

ACKNOWLEDGMENTS
We thank the locals who shared traditional knowledge and helped us during the market research process. we also thank Professor Bengang Zhang, Associate Researcher Haitao Li, Liwei Jia, Danqi Chen, Shu Pan, and others for their help during the investigation.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2020.00244/full#supplementary-material
REFERENCES

Chassagne, F., Deharo, E., Punley, H., and Bourdy, G. (2017). Treatment and management of liver diseases by Khmer traditional healers practicing in Phnom Penh area, Cambodia. J. Ethnopharmacol. 202, 38–53. doi: 10.1016/j.jep.2017.03.002

Chassagne, F., Hul, S., Deharo, E., and Bourdy, G. (2016). Natural remedies used by Bunong people in Mondulkiri province (Northeast Cambodia) with special reference to the treatment of 11 most common ailments. J. Ethnopharmacol. 191, 41–70. doi: 10.1016/j.jep.2016.06.003

Chen, S., Guo, B., Zhang, G., Yan, Z., Luo, G., Sun, S., et al. (2012). Advances of studies on new technology and method for identifying traditional Chinese medicinal materials. China J. Chin. Mater. Med. 37, 1043–1055.

Chen, S., Pang, X., Yao, H., Han, J., and Luo, K. (2011). Identification system and perspective for DNA barcoding traditional Chinese materia medica. World Sci. Technol. 5, 747–754.

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613. doi: 10.1371/journal.pone.0008613

Chen, S., Yao, H., Han, J., Xin, T., Pang, X., Shi, L., et al. (2013). Principles for molecular identification of traditional Chinese materia medica using DNA barcoding. China J. Chin. Mater. Med. 38, 141–148.

Chen, X., Bai, N., Xiang, L., Sun, W., and Mei, Q. (2017). Molecular identification of Solani Nigri Herba and its sibling species based on DNA barcoding. J. Chin. Med. Mater. 40, 290–294.

Chen, X., Liao, B., Song, J., Pang, X., Han, J., and Chen, S. (2013). A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Gene 530, 39–43. doi: 10.1016/j.gene.2013.07.097

Chinese Pharmacopoeia Comission, (2015). Pharmacopoeia of the People Republic of China, Vol. 1. Beijing: China Medical Science Press.

Cui, X., Li, Y.-p., Cui, X.-m., Wang, J., Han, L., Zhao, B., et al. (2015). Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China. J. Ethnopharmacol. 117, 362–377. doi: 10.1016/j.jep.2008.02.001

Lee, S., Xiao, C., and Pei, S. (2008). Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China. J. Ethnopharmacol. 117, 362–377. doi: 10.1016/j.jep.2008.02.001

Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., and Chen, S. (2015). Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157–166. doi: 10.1111/brv.12104

Liu, Y. (2018). Study of TCM Nucleotide Signature Based on Mini-Barcoding Panax quinquefolius, Ophiocordyceps sinensis and Ginkgo biloba for Examples. Beijing: Peking Union Medical College.

Materia Aromatica, (2019). Available online at: https://materiaaromatica.com/oil-profiles/ylang-ylang-oil (accessed July 11, 2019).

Raw, R. S., Handy, S. M., Cheng, R., Shyong, N., and Grundel, E. (2017). Assessment of the authenticity of herbal dietary supplements: comparison of chemical and DNA barcoding methods. Planta Med. 83, 921–936. doi: 10.1055/s-0043-170881

PlantUse English, (2018). Plant Use. Available online at: https://uses.plantnet-project.org/en/Cananga_odorata_(PROSEA) (accessed July 10, 2019).

Richman, M. J., Navabi, S., Patty, L., and Ziment, I. (2010). Traditional Cambodian medicine. J. Complement. Integr. Med. 7, 1–14. doi: 10.2202/1553-3840.1194

Ragupathy, S., Ganeshaiah, K. N., et al. (2015). DNA barcoding to assess species adulteration in raw drug trade of “Bala” (Genus: Sida L.) herbal products in South India. Biochem. Syst. Ecol. 61, 501–509. doi: 10.1016/j.bse.2015.07.024

Seethapathy, G. S., Ganesh, D., Santhosh Kumar, J. U., Senthilkumar, U., Ragapathy, S., Ganeshaiah, K. N., et al. (2015). DNA barcoding to assess species adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int. J. Legal Med. 129, 693–700. doi: 10.1007/s00414-014-1120-z

Tate, J. A., and Simpson, B. B. (2003). Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst. Bot. 28, 723–737.

Walker, T. (2017). An Examination of Medicinal Ethnobotany and Biomedicine Use in Two Villages on the Phnom Kulen plateau. thesis, Hollins University, Roanoke.

World Health Organization [WHO] (2005). National Policy on Traditional Medicine and Regulation of Herbal Medicines. Report of a WHO Global Survey, 1–168. Available online at: https://apps.who.int/iris/bitstream/handle/10665/43229/9241593237.pdf (accessed April 23, 2019).

Wu, Y., Li, M., Yang, Y., Jiang, L., Liu, M., Wang, B., et al. (2018). Authentication of small berry fruit in fruit products by DNA barcoding method. J. Food Sci. 83, 1494–1504. doi: 10.1111/1750-3841.14177

Xin, T., Yao, H., Gao, H., Zhou, X., Ma, X., Xu, C., et al. (2013). Super food Lycium barbarum (Solanaceae) traceability via an internal transcribed spacer 2 barcode. Food Res. Int. 54, 1699–1704. doi: 10.1016/j.foodres.2013.07.007

Xu, Z. (2008). Preliminary comparison on traditional knowledge of medicinal plants used by Dai Xishuangbanna China and Khmer Cambodia. Acta Bot. Yunnan. 30, 371–377.
Yang, F., Ding, F., Chen, H., He, M., Zhu, S., Ma, X., et al. (2018). DNA Barcoding for the identification and authentication of animal species in traditional medicine. *Evid. Based Complement. Altern. Med.* 2018:5160254. doi: 10.1155/2018/5160254

Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., et al. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. *PLoS One* 5:e13102. doi: 10.1371/journal.pone.0013102

Yao, X., Pen, S., and Meng, Y. (2017). Commonly used traditional medicinal plants in Cambodia. *Mod. Chin. Med.* 19, 290–294.

Yu, N., Wei, Y., Zhang, X., Zhu, N., Wang, Y., Zhu, Y., et al. (2017). Barcode ITS2: a useful tool for identifying *Trachelospermum jasminoides* and a good monitor for medicine market. *Sci. Rep.* 7:5037. doi: 10.1038/s41598-017-04674-w

Zhan, L. (2013). Study on Extraction and Separation of Active Ingredients from *Pandanus tectorius* Sol. Haikou: Hainan University.

Zhao, Q., Liu, F., Han, B., Chen, C., Dai, J., and Chen, N. (2018). Specific PCR identification between *Dendrobium huoshanense* and its adulterants. *Chin. Pharm. J.* 53, 683–689.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Cui, Li, Wei, Qi, Li, Yang, Shi, Meng, Mi, Huot, Sun and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.