Radiative lifetimes and cooling functions for astrophysically important molecules

Jonathan Tennyson, Kelsey Hulme, Omree K Naim and Sergei N Yurchenko

Department of Physics & Astronomy, University College London, Gower St., London, WC1E 6BT, UK

E-mail: j.tennyson@ucl.ac.uk

Received 13 October 2015, revised 11 December 2015
Accepted for publication 14 December 2015
Published 25 January 2016

Abstract

Extensive line lists generated as part of the ExoMol project are used to compute lifetimes for individual rotational, rovibrational and rovibronic excited states, and temperature-dependent cooling functions by summing over all dipole-allowed transitions for the states concerned. Results are presented for SiO, CaH, AlO, ScH, H2O and methane. The results for CH4 are particularly unusual with four excited states with no dipole-allowed decay route and several others, where these decays lead to exceptionally long lifetimes. These lifetime data should be useful in models of masers and estimates of critical densities, and can provide a link with laboratory measurements. Cooling functions are important in stellar and planet formation.

Keywords: molecular spectra, intensities, molecular processes, radiation mechanisms

(Some figures may appear in colour only in the online journal)

1. Introduction

There are vast areas of the Universe where molecules exist at very low temperatures. However molecules actually occur in a wide variety of environments many of them significantly hotter including planetary nebulae, atmospheres of (exo-) planets, brown dwarfs and cool stars. This makes the radiative and cooling properties of the molecules important for models of these species. Indeed, although interstellar molecular clouds are usually characterised as cold, they are not really fully thermalised. Whether a species, or state of that species, is thermalised depends on the critical density which is given by the ratio of the radiative lifetime of the state to the rate for collisional excitation to the state. In such regions radiative lifetimes are also important for models of the many species which are observed to mase. The long lifetimes associated with certain excited states can lead to population trapping and non-thermal distributions. Such behaviour has been observed for the H3+ molecule both in space (Goto et al 2002, Oka et al 2005) and the laboratory (Kreckel et al 2002, Kreckel et al 2004), in both cases leading to state distributions which had not been anticipated.

States with short radiative lifetimes are important for direct laser cooling of polar diatomic molecules, a topic which has recently attracted significant interest (Shuman et al 2010).

Cooling functions are important in a variety of environments. For example cooling by H3+ is known to be important in the atmospheres of solar system gas giants (Miller et al 2000) and, it has been suggested, vital to stability of so-called ‘hot Jupiter’ exoplanets (Koskinen et al 2007). Similarly, cooling functions are important in the primordial Universe for the formation of the first stars (Abel et al 2002) and galaxies (Bromm et al 2009, Benson 2010). At temperatures below about 8000 K, this cooling is almost entirely provided by molecules (Miller et al 2010). Although cooling functions are available for some key diatomics (Coppola et al 2011) and there have been several attempts to provide cooling functions for H3+ (Neale et al 1996, Miller et al 2010, 2013), there are no systematic compilations of these. Indeed cooling functions for many key species, such as water, do not appear to be available.

The ExoMol project (Tennyson and Yurchenko 2012) has been undertaking the systematic calculation of very extensive spectroscopic line lists for molecules deemed to be
important for the study of exoplanet and other hot atmospheres. These line lists provide comprehensive datasets of a molecule’s radiative properties. Here we use these datasets to systematically study radiative lifetimes of comprehensive sets of states and to compute temperature-dependent cooling functions for molecules considered as part of the ExoMol project.

2. Theory

The results of ExoMol calculations have, up until now, been stored in two files (Tennyson et al 2013); a states file comprising one, numbered line per state which gives the energy level of the state plus associated quantum numbers, and a transitions file with gives a list of Einstein A coefficients, A_{ij}, plus the numbers of the initial, i, and final, f, states which, in turn, refer back to the states file. The lifetime of state i, τ_i, can be computed by summing over A coefficients:

$$\tau_i = \frac{1}{\sum_f A_{if}}.$$ \hspace{1cm} (1)

This is in principle straightforward, although the sheer size of some of the transitions files, which can contain many billions of entries (Yurchenko and Tennyson 2014, Pavlyuchko et al 2015a, Sousa-Silva et al 2015), does mean that the data handling requires some care.

At temperature T, the cooling function, $W(T)$, is the total energy emitted by a molecule and is given by

$$W(T) = \frac{1}{4\pi Q(T)} \sum_{if} A_{if} h c \nu_{if} (2J_i + 1) g_i \exp\left(-\frac{c_2 \tilde{E}_i}{T}\right).$$ \hspace{1cm} (2)

where ν_{if} is the wavenumber of the transition $i \rightarrow f$, J_i is the rotational quantum number of the initial state and g_i is its nuclear spin degeneracy factor. The final, exponential term is the Boltzmann factor for which we use the second radiation constant, $c_2 = 1.438 \, 777 \, 36 \, \text{cm} \, \text{K}$, since ExoMol actual stores energies \tilde{E} as wavenumbers in cm$^{-1}$. Finally, $Q(T)$ is the partition function given by

$$Q(T) = \sum_{i} (2J_i + 1) g_i \exp\left(-\frac{c_2 \tilde{E}_i}{T}\right).$$ \hspace{1cm} (3)

Partition functions are computed routinely for each molecule studied by the ExoMol project.

The general procedure used by ExoMol to produce linelists is to use potential energy curves and surfaces obtained by refining high quality $ab \text{ initio}$ curves and surfaces using spectroscopic data. Wavefunctions are obtained using variational nuclear motion codes (Tennyson et al 2004, Le Roy 2007, Yurchenko et al 2007, Pavlyuchko et al 2015b, Yurchenko et al 2016b). Conversely dipole moment curves and surfaces are obtained $ab \text{ initio}$: experience has shown that, at least for molecules containing light atoms, these are capable of giving results as accurate as the best measurements (Lodi et al 2011, Polyansky et al 2015).

3. Results: lifetimes

Lifetimes were obtained for molecules treated by the ExoMol project (Tennyson and Yurchenko 2016). Examples are analysed below with complete sets of data being placed on the ExoMol website (www.exomol.com). While the ExoMol line lists are very extensive, with a few exceptions (Engel et al 2005, Kyuberis et al 2016), they are not complete. Instead the project aims to provide comprehensive line lists which are effectively complete for a given upper temperature and range of wavelengths. These choices vary with the expected stability of a given species but typical objectives are the provision of a line list which represents all absorption longwards of $1 \, \mu\text{m}$ (at wavenumbers below $10 \, 000 \, \text{cm}^{-1}$) for temperatures up to $3000 \, \text{K}$. In general these parameter ranges are increased for diatomics species which may be stable in environments as hot as our Sun’s photosphere (almost $6000 \, \text{K}$) and for which absorptions at visible wavelengths are of importance. Conversely, for large molecules such as nitric acid (HNO$_3$) the range of temperatures considered is significantly reduced, to only $500 \, \text{K}$ in this case (Pavlyuchko et al 2015a). These choices are partially influenced by practical considerations as calculations on polyatomic systems become very computationally expensive (Yurchenko and Tennyson 2014). These considerations influence the states for which lifetime data is presented below.

By definition the ground state of all systems considered has an infinite lifetime to radiative decay. Some excited states also do not have allowed radiative decay routes, for example where these are forbidden by nuclear spin considerations. In principle, radiative nuclear spin transitions which interchange ortho and para nuclear spin isomers can occur but they are extremely weak (Miani and Tennyson 2004) and such transitions are not considered as part of ExoMol. States whose lifetimes are computed to be infinite are not considered below. In the following subsections we present lifetime results for a series of molecules starting with diatomics, ordered by the complexity of their electronic structure, and followed by the polyatomic molecules water and methane.

3.1. SiO

The ExoMol project has provided line lists for a number of closed shell diatomic species including NaCl and KCl (Barton et al 2013), PN (Yorke et al 2014), NaH (Rivlin et al 2015), CS (Paulose et al 2015) and CaO (Yurchenko et al 2016a). For NaH and CaO these studies also considered electronically excited state. Here we consider SiO as an example. The silicon monoxide linelists of Barton et al (2013) are particularly comprehensive, considering all vibrational and rotational level for the electronic ground state, corresponding to $v \leq 98$ and $J \leq 423$. They are expected to be complete for temperatures up to $9000 \, \text{K}$ and considered wavelengths much shorter than $1 \, \mu\text{m}$. We note that these very weak, short wavelength transitions are likely to be subject to numerical problems (Li et al 2015, Medvedev et al 2015) which, however, are not expected to influence the results presented below. In addition, SiO is a well-studied maser whose
emissions have been observed in a variety of sources and at several wavelengths (Gray 1999, Deguchi et al 2004, McIntosh and Hayes 2008, Cho et al 2009, Cotton et al 2010, Li et al 2010).

Figure 1 gives lifetimes for vibration–rotation states of $^{28}\text{Si}^{16}\text{O}$. In general these lifetimes vary smoothly with vibrational state, v, and rotational state, J, showing reduced lifetimes upon excitation of either mode. States in the $v = 0$ vibrational ground state can only decay by a single, $\Delta J = 1$, transition. The rigid rotor approximation suggests that such decays should lead to lifetimes which depend on J^{-3} and this behaviour is followed by our results. This means that the first excited state with $J = 1$ has a long lifetime, which we compute to be 3.32×10^5 s.

The lifetimes of the vibrational–rotation states of other closed shell diatomic molecules we studied behave in a similar fashion.

3.2. CaH

ExoMol has considered the vibration–rotation spectrum for a number of molecules whose electronic state also contains angular momentum (Yadin et al 2012). In this case it is necessary to consider a variety of couplings which are not present in a non-relativistic, Born–Oppenheimer treatment of the problem such as spin–orbit, spin–spin and spin–rotation coupling. Here we consider calcium monohydride, CaH, as an example.

The electronic ground state of calcium monohydride has $^2\Sigma^+$ symmetry. A line list for it was computed by Yadin et al (2012) with $v \leq 19$ and $J \leq 74$. We note that an alternative line list, which also considered transitions to the first five electronic states, has been provided by Weck et al (2003); this line list, which is purely ab initio, did not consider fine structure and other coupling effects.

Figure 2 summarises our results. The figure shows a number of features broadly in line with those seen for SiO above: for example lifetimes for the $v = 0$ levels again showing a J^{-3} behaviour. For higher J values there appears to be little dependence on spin component. However this is not true at low J, where it is found that the lifetimes for the higher, f, component increase while those for the lower e component decrease significantly.

3.3. AlO

Aluminium monoxide is chosen not only because it is an important astronomical species having been observed in sunspots (Sriramachandran et al 2013) and a variety of other stars (Banerjee et al 2004, 2012, Kaminski et al 2013) but also for terrestrial applications where emissions arise from rocket exhausts (Knecht et al 1996) and plasmas (Surmick and Parigger 2014). Furthermore there are direct experimental measurements of radiative lifetimes for vibrational levels in the B $^2\Sigma^+$ state (Johnson et al 1972, Dagdigian et al 1975).

The ExoMol model for AlO considered the three lowest electronic states, all of which are spin doublets: X $^2\Sigma^+$, A $^2\Pi$ and B $^2\Sigma^+$. In practice the X and A states are close together and cross at energies under consideration leading to significant interaction between the states which is explicitly allowed for in the model used (Patrascu et al 2014). Lifetimes for AlO were computed using the linelist of Patrascu et al (2015) which considered $\{(v \leq 66, J \leq 300.5), (v \leq 63, J \leq 300.5)\}$ and $\{(v \leq 40, J \leq 232.5)\}$ for the X, A and B states respectively. This linelist is designed to be valid for temperatures up to 8000 K and considered states as high as 40 000 cm$^{-1}$. However above 30 000 cm$^{-1}$ the line list does not include all transitions meaning that for states in this region the some computed lifetimes will be artificially long; thus only states below 30 000 cm$^{-1}$ are considered.

Figure 3 gives an overview of lifetimes of levels belonging to the lowest three electronic states of $^{27}\text{Al}^{16}\text{O}$. Broadly, the curves in the top left are associated with levels belonging to the X $^2\Sigma^+$ ground state, the large clump in the
middle belong to the low-lying \({A}^{2}{\Pi} \) state and the short lived levels at higher energy belong to the \({B}^{2}{\Sigma}^{+} \) state.

Superficially the structure of the \({X}^{2}{\Sigma}^{+} \) state lifetimes are similar to those discussed above for SiO. However they differ in two key aspects, firstly the states are much longer lived and secondly the shortest lived curve is for levels with \(v = 0 \) and lifetimes actually increase with vibrational excitation. These features are due to the very flat dipole moment curve of AlO which leads to unusually weak vibrational transitions (Lengsfield and Liu 1982, Patrascu et al 2015).

The lifetimes of levels associated with the \({A}^{2}{\Pi} \) state vary by many orders of magnitude. This is partly due to interaction with much longer-lived levels from the \({X}^{2}{\Sigma}^{+} \) state via spin–orbit coupling; the mixing of the wavefunctions between the two states leads to many structures in the lifetimes plot. Furthermore the \({A}^{2}{\Pi} \) state itself is split into \(\Omega = \frac{1}{2} \) and \(\Omega = \frac{3}{2} \) states by spin–orbit coupling. As shown in figure 4, the lifetimes of levels associated with these curves are rather similar except when the levels interact with levels associated with the \({X}^{2}{\Sigma}^{+} \) state.

There are available measurements of lifetimes for the \(v = 0, 1 \) and 2 levels of the \({B}^{2}{\Sigma}^{+} \) state: Johnson et al (1972) obtained \(128 \pm 6, 125 \pm 5 \) and \(130 \pm 7 \) ns respectively for these levels while Dagdigian et al (1975) obtained \(102 \pm 7 \) and \(102 \pm 4 \) ns respectively. These measurements were both rotationally unresolved for unspecified rotational distributions. Figure 5 shows our rotationally resolved results for the lowest ten vibrational states of the \({B}^{2}{\Sigma}^{+} \) state. It is clear that our calculations reproduce the trend of slowly increasing lifetime with vibrational state. The calculations also suggest that the lifetimes increase with rotational excitation making our results agree with those of Dagdigian et al (1975) for \(J \) in the region of 85 and those of Johnson et al (1972) for somewhat higher values of \(J \).

3.4. ScH

Figure 6 shows scandium monohydride lifetimes calculated using the linelist of Lodi et al (2015) which considered the lowest six levels of ScH and \(J \leq 59 \). In energy order these states are the \({X}^{3}{\Sigma}^{-} \) ground electronic state, \({a}^{3}{\Delta} \), \({b}^{3}{\Pi} \), \({A}^{1}{\Delta} \), \({B}^{1}{\Pi} \), and \({c}^{3}{\Sigma}^{+} \). The minima of these states span a range of little more than \(6000 \) cm\(^{-1}\). The many overlaps and couplings between these states causes a complicated set of patterns in the lifetime plot.
In contrast to the systems considered above, the model for ScH contains electronic states with different spin symmetries. In particular, while the ground state is a singlet, the first excited state is a triplet meaning that there is no dipole connecting the two states. The a$^3\Delta$ state is therefore metastable and its levels have long lifetimes.

Unlike the other systems considered here, the line list computed by Lodi et al (2015) for ScH is completely ab initio since there was insufficient available spectroscopic data to refine the ab initio model. In addition, experience has shown that present state-of-the-art ab initio calculations give a much poorer starting point in transition metal containing molecules. This means that our results for ScH must be regarded as highly uncertain. Some experimentally measured lifetimes for this system would be very helpful as input to an improved model.

3.5. Water

In contrast to molecules like ScH and AlO, the intensity of key astrophysical transitions for a molecule like water are both well studied and well-known (Barber et al 2006, Rothman 2013). However, as we show below, the lifetimes of the various levels of water do not follow the simple patterns of, say, SiO discussed above. The lifetimes are important for models of the many water masers lines found both in ground (Neufeld and Melnick 1991) and excited (Hirota et al 2012) vibrational states as they can affect the pumping routes and level populations that lead to inversions. Indeed the water maser is a textbook example (Gray 2012). Similar considerations apply to fluorescence from comets (Dello Russo et al 2004, 2005).

Here we use the BT2 line list of Barber et al (2006) whose construction actually pre-dated the ExoMol project. BT2 considered all states of water up to 30 000 cm$^{-1}$ with $J \leq 50$ and contains over 500 million transitions.

Figure 7 plots the lifetimes for levels lying below 5000 cm$^{-1}$; ortho and para levels are denoted separately since these species effectively behave as separate molecules. While the general structure of lifetimes is similar to that discussed for SiO, it is clear that the rotational substructure introduces additional complications. Indeed lifetimes for levels with the same total rotational quantum, J, within the vibrational ground state can differ by up to an order of magnitude. While the shorter-lived levels, which include the so-called water backbone (Gray 2012) important for maser models, show some systematic structure in their lifetimes and similar values for ortho and para species, the variation between the lifetimes of the longer-lived levels is significant. It is the details of this structure which allow masing to occur: for example when the lifetime of the higher level is significantly longer relative to the lower, the upper level can overpopulate relative to the lower, critical for masing to occur.

4. Methane

Methane is an important astronomical molecule and easily detected in hot environments (Yurchenko et al 2014), but it does not possess a permanent dipole moment hindering its detection in interstellar environments (Lacy et al 1991). However, methane does possess a weak rotational spectrum (Cole and Honey 1975, Oldani et al 1985, Hilico et al 1997, Boudon et al 2010) which is important for studies of methane in giant planets and Titan (Wishnow et al 2007). Lifetimes were computed using the 10to10 line list of Yurchenko and Tennyson (2014) which contains almost 10 billion vibration–rotation transitions with $J \leq 39$.

The high symmetry of CH$_4$ brings some unusual features to its spectroscopic behaviour. Nuclear spin statistics divides the levels into three distinct groups conventionally known as ortho, meta and para. One might expect that there would thus be three levels which do not undergo dipole-allowed radiative decay corresponding to the lowest level of each group. In fact, there are seven such levels. Labelling them as $(J, n, \text{symmetry})$, where n is simply a counting number, they are the lowest ortho state $(0, 1, \text{A}_j)$ at 0 cm$^{-1}$, the lowest meta level $(1, 1, \text{F}_j)$ at 10.48 cm$^{-1}$, and the lowest para level $(2, 1, \text{E})$ at 31.44 cm$^{-1}$, which are the lowest three levels in the molecule. In addition the three ortho states $(3, 1, \text{A}_j)$ at 62.88 cm$^{-1}$, $(6, 1, \text{A}_j)$ at 219.92 cm$^{-1}$ and $(9, 1, \text{A}_j)$ at 470.84 cm$^{-1}$ and the para state $(4, 1, \text{E})$ at 104.8 cm$^{-1}$ do not have any dipole allowed transitions linking them to lower levels. These states will probably decay slowly by other means, such as via electric quadrupole transitions.

Figure 8 gives lifetimes of vibration–rotation states of methane lying below 4000 cm$^{-1}$. The very weak nature of methane’s rotational spectrum means that states with no vibrational excitation live for a long time and the figure actually spans 14 orders of magnitude. In fact there are three very long-lived states which are omitted from the figure. These are $(3, 1, \text{F}_j)$ at 62.88 cm$^{-1}$, $(6, 1, \text{A}_j)$ at 219.95 cm$^{-1}$ and $(12, 1, \text{A}_j)$ at 817.10 cm$^{-1}$. None of these states can undergo a dipole-allowed P ($\Delta J = -1$) transition and instead each decay via a single, very long-wavelength Q ($\Delta J = 0$) transition. Our calculated lifetimes are 1×10^{33}, 4×10^{37}, and 6×10^{13} s, respectively. These are huge: in particular the lifetime of the $(3, 1, \text{F}_j)$ is predicted to be a thousand times the age of the Universe! Our precise numbers are rather...
uncertain because the lifetime depends on the cube of the wavelength which, for close-by energy levels, is calculated with a significant uncertainty. Furthermore, given the long lifetimes, it is likely that other non-dipole or two photon decays may become dominant. However, the prediction that these three states are very long-lived in collision-free environments is likely to be correct. The very faint, pure rotational spectrum of methane has been studied by Boudon et al. (2010), who were able to determine values for the very small transition dipoles linking the rotational states. It is the small values of these transition dipoles combined with the small gap between the states involved that leads to the exceptionally long radiative lifetimes for certain states.

5. Cooling functions

Cooling functions were computed for the molecules discussed above using the same line lists. Results are given here graphically, see figures 9 and 10, and are given numerically in 1 K intervals on the ExoMol website. The cooling functions of AlO and ScH show structure at lower temperatures due to the presence of transitions from exited electronic states. The strong electronic transitions also lead to the cooling functions for these two molecules being significantly stronger, especially of AlO for $T > 2000$ K. The cooling function for water was computed up to $T = 3000$ K, which is the temperature limit of the BT2 linelist used (Barber et al. 2006) and that for methane up to $T = 1500$ K, the limit for the 10to10 list. Methane is actually a rather inefficient cooler below about 500 K which can be understood in terms of the long lifetimes of the rotationally excited states discussed above.

It should be noted that the cooling function of CaH is expected to be an underestimate at $T > 2000$ K due to the absence of the excited electronic state in the ExoMol line list (Yadin et al. 2012). In general at high temperatures the cooling functions will be too low, due to the incompleteness of the underlying line lists. However it is possible to give an improved estimate, $W_{\text{corr}}(T)$, using the partition function, if available:

$$W_{\text{corr}}(T) = W(T) \frac{Q(T)}{Q_{\text{LL}}(T)},$$

where $Q_{\text{LL}}(T)$ is the partition function obtained by summing over the energy levels used to construct the cooling function, and $Q(T)$ is converged high-temperature partition function. Good high-temperature partition functions are available for certain key molecules such as H$_3^+$ (Neale and Tennyson 1995), water (Vidler and Tennyson 2000), ammonia and phosphine (Sousa-Silva et al. 2014), and methane (Wenger et al. 2008); the compilations made for HITRAN have also proved to be reliable up to 3000 K (Gamache et al. 2000, Laraia et al. 2011). Thus, for example, equation (4) should probably be used to scale the cooling function given for methane in figure 10 since the 10to10 list used to construct this function is incomplete for $1500 < T < 2000$ K.

6. Discussion and conclusion

We have shown that by using extensive spectroscopic line lists to compute state-dependent lifetimes, interesting and
underlying behaviour of the radiative properties of molecules can be revealed. The ExoMol project is systematically constructing line lists for a variety of astrophysically important molecules. The ExoMol format has recently been extended (Tennyson et al 2016) so that the states file can be used to capture information about each state in the molecule; this includes its computed lifetime. Lifetime data for the molecules considered here can be found on the ExoMol website (www.exomol.com) and lifetime data for other molecules will be placed there as it becomes available. In particular, the importance of lifetime cooling effects for H$_2^+$ were discussed in the introduction. However, despite there being an extensive linelist being available, despite its proven accuracy (Neale et al 2016), we have chosen not to present data for this system. For technical reasons the available linelist, despite its proven accuracy (Pavanello et al 2012), does not include the weak, ‘forbidden’, far infrared pure rotational transitions which govern both lifetime effects for states in the vibrational ground state and the cooling function at low temperatures. A new, more complete line list for H$_2^+$ is currently being computed as part of the ExoMol project (Mizus et al 2016). This new linelist will be used to both calculate state-dependent lifetimes and a new cooling curve.

Lifetimes also provide an important link with laboratory experiments. Many astronomically important species and/or transitions can only be reproduced in the laboratory in non-equilibrium conditions. This makes it very difficult to measure transition intensities. The alternative approach of measuring lifetimes has the advantage that it does not depend on the level populations or thermalisation of the sample being studied. More of such measurements would be very helpful for comparison and validation of our calculations.

We have shown that the presence of complex electronic spectra is responsible for a non-monotonic behaviour of $W(T)$ at low temperatures and strong cooling at high temperatures. We will generate cooling functions routinely on the grid of 1 K and provide them together with the partition functions as part of the ExoMol database.

Acknowledgments

This work was supported by the ERC under the Advanced Investigator Project 267219.

References

Abel T, Bryan G L and Norman M L 2002 Science 295 93–8
Banerjee D P K, Ashok N M, Launila O, Davis C J and Varricatt W P 2004 Astrophys. J. 610 L29–32
Banerjee D P K, Varricatt W P, Mathew B, Launila O and Ashok N M 2012 Astrophys. J. Lett. 753 L20
Barber R J, Tennyson J, Harris G J and Tolchenov R N 2006 Mon. Not. R. Astron. Soc. 368 1087–94
Barton E J, Yurchenko S N and Tennyson J 2013 Mon. Not. R. Astron. Soc. 434 1469–75
Benson A J 2010 Phys. Rep. 495 33

Boudon V, Piral O, Roy P, Brubach J B, Manceron L and Auwera J V 2010 J. Quant. Spectrosc. Radiat. Transfer 111 1117–29

Bromm V, Yoshida N, Hernquist L and McKee C F 2009 Nature 459 49

Cho S H, Chung H S, Kim H G, Kim H R, Roh D G and Jung J H 2009 Astrophys. J. Suppl. 181 421–32

Cole A R H and Honey F R 1975 J. Mol. Spectrosc. 55 492–4

Coppola C M, Lodi L and Tennyson J 2011 Mon. Not. R. Astron. Soc. 415 487–93

Cotton W D, Ragland W, Pluzhnik E A, Danchi W C, Traub W A, Willson L A and Lacasse M G 2010 Astrophys. J. Suppl. 188 506–25

Dagdigian P J, Cruse H W and Zare R N 1975 J. Chem. Phys. 62 1824–33

Deguchi S, Fujii T, Glass I, Imai H, Ita Y, Izumiura H, Kameya O, Miyazaki A, Nakada Y and Nakashima J 2004 Publ. Astron. Soc. Japan 56 765–802

Dello Russo N, Bonev B P, DiSanti M A, Gibb E L, Mumma M J, Magee-Sauer K, Barber R J and Tennyson J 2005 Astrophys. J. 621 337–44

Dello Russo N, DiSanti M A, Magee-Sauer K, Gibb E L, Mumma M J, Barber R J and Tennyson J 2004 Icarus 168 186–200

Engel E A, Doss N, Harris G J and Tennyson J 2005 Mon. Not. R. Astron. Soc. 357 471–7

Gamache R R, Kennedy S, Hawkins R and Rothman L S 2000 J. Mol. Struct. 517 407–25

Goto M, McCall B J, Gehalle T R, Usuda T, Kobayashi N, Terada H and Oka T 2002 Publ. Astron. Soc. Japan 54 951–61

Gray M 1999 Phil. Trans. R. Soc. A. 357 3277–98

Gray M 2012 Maser Sources in Astrophysics (Cambridge Astrophysics Series) (Cambridge: Cambridge University Press)

Hilico J C, Loitè M, Champion J P and Destombes J L 1997 J. Mol. Spectrosc. 122 381–9

Hirot A, Kim K M and Homma M 2012 Astrophys. J. 757 L1

Johnson S E, Capelle G and Broida H P 1972 J. Chem. Phys. 63 663–5

Kaminski T, Schmidt M R and Menten K M 2013 Astron. Astrophys. 549 A6

Knecht D J, Pike C P, Murad E and Rall D L A 1996 J. Spacecr. Rockets 33 677–85

Koskinen T T, Ayward A D and Miller S 2007 Nature 450 845–8

Krechel H et al 2002 Phys. Rev. A 66 052509

Krechel H, Schwa M D, Tennyson J, Wolf A and Zajfman D 2004 New J. Phys. 6 151

Kubyshkin R J, Zobov N B and Tennyson J 2004 J. Mol. Spectrosc. 225 85–100

Lacerda A H and Leao T S 2003 Icarus 155 275–84

Laraia A L, Gamache R R, Lamouroux J, Gordon I E and Rothman L S 2002 J. Spacec. Rockets 33 677–85

LeRoy R J 2007 LEVEL 8.0 a computer program for solving the radial Schrödinger equation for bound and quasibound levels University of Waterloo Chemical Physics Research Report CP-663 [http://leroy.chem.uwaterloo.ca/programs/]

Lengsfeld B H and Liu B 1982 J. Chem. Phys. 77 6083–9

Li G, Gordon I E, Rothman L S, Tan Y, Hu S M, Kassi S, Campargue A and Medvedev E S 2016 Mon. Not. R. Astron. Soc. 450 757–61

Lacy J H, Carr J S, Evans N J, Baas F, Achtermann J M and Arens J F 1991 Astrophys. J. 376 556–60

Laraia A L, Gamache R R, Lamouroux J, Gordon I E and Rothman L S 2011 Icarus 215 391–400

LeRoy R J 2007 LEVEL 8.0 a computer program for solving the radial Schrödinger equation for bound and quasibound levels University of Waterloo Chemical Physics Research Report CP-663 [http://leroy.chem.uwaterloo.ca/programs/]

Lengsfeld B H and Liu B 1982 J. Chem. Phys. 77 6083–9

Li G, Gordon I E, Rothman L S, Tan Y, Hu S M, Kassi S, Campargue A and Medvedev E S 2015 Astrophys. J. Suppl. 219 45

Li J, An T, Shen Z Q and Miyazaki A 2010 Astrophys. J. 720 L56–61

Lodi L, Tennyson J and Polansky O L 2011 J. Chem. Phys. 135 034113

Lodi L, Yurchenko S N and Tennyson J 2015 Mol. Phys. 113 1559–75

McIntosh G C and Hayes A M 2008 Astrophys. J. 678 1324–8
