Ulnar Neuropathy due to Cubital Tunnel Syndrome Caused by Anconeus Epitrochlearis: A Case Report

Je-min Choi1, Byung-chul Son1,2

1Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
2Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

INTRODUCTION

Ulnar neuropathy involving the cubital tunnel is the second most common entrapment neuropathy, following carpal tunnel syndrome. A number of risk factors for the development of cubital tunnel syndrome have been suggested, including diabetes mellitus, valgus or varus deformity of the elbow, repetitive tasks that require protracted elbow flexion, and the repetitive use of vibrating tools. Anconeus epitrochlearis (AE) muscle is a congenital accessory muscle, which originates in the medial epicondyle of the humerus and inserts onto the olecranon (OL) process the ulna. It can be found in normal elbows with an incidence ranging between 4% to 34%. However, the prevalence of ulnar neuropathy associated with the AE muscle is unknown. It is a congenital accessory muscle between the medial humeral epicondyle and the olecranon covering the posterior aspect of the cubital tunnel. It is usually diagnosed intraoperatively and not preoperatively in the absence of no imaging studies. The clinical presentation of ulnar neuropathy caused by the AE usually differs from idiopathic disease, including younger age at onset, rapid progression with a short duration of symptoms, and edema of the AE muscle on the MRI.

CASE REPORT

A 24-year-old, right-handed male patient presented with a 1-month history of continuous tingling paresis involving left medial hand and fingers accompanied by clumsiness of left hand and fingers. The pain onset was sudden and marked by a severe aching pain in the medial elbow and medial scapular areas, without any prior cause. Two weeks of excruciating pain led to clumsiness of the left hand and fingers gradually occurred. Magnetic resonance imaging (MRI) of the left elbow revealed a swollen ulnar nerve with perineural enhancement involving anconeus epitrochlearis (AE) muscle within the cubital tunnel. The operation revealed adhesion of the AE muscle to the left ulnar nerve. Open in-situ decompression of the ulnar nerve without transposition eventually alleviated the pain and weakness associated with ulnar neuropathy. The patient slowly recovered 6 months after surgery. The AE muscle is a common anatomic variation, with a prevalence of up to 34%. However, the prevalence of ulnar neuropathy associated with the AE muscle is unknown. It is a congenital accessory muscle between the medial humeral epicodyle and the olecranon covering the posterior aspect of the cubital tunnel. It is usually diagnosed intraoperatively and not preoperatively in the absence of no imaging studies. The clinical presentation of ulnar neuropathy caused by the AE usually differs from idiopathic disease, including younger age at onset, rapid progression with a short duration of symptoms, and edema of the AE muscle on the MRI.

Key Words: Anconeus epitrochlearis, Cubital tunnel syndrome, Peripheral nerve, Ulnar nerve
detected in the cubital tunnel. The patient complained of persistent tingling paresthesia involving the medial wrist, hand, and little finger.

The electrophysiological study performed at the hospital where he was previously treated revealed acute ulnar neuropathy around the left elbow without mention of denervation. Because clinical and electrophysiological findings were consistent with acute ulnar neuropathy at the elbow with advanced motor signs, an MRI of the elbow was requested. MRI of the left elbow revealed diffuse swelling of the left ulnar nerve at and distal to the cubital canal (Figure 1B-D). The left ulnar nerve was compressed against ME by the AE muscle at the level of the cubital tunnel. Mild perineural enhancement of the left ulnar nerve just distal to the cubital tunnel was observed (Figure 1C, D). Laboratory parameters including erythrocyte sedimentation rate, C-reactive protein, rheumatoid factor, antinuclear antibody, and creatinine kinase were normal. Considering the course of ulnar nerve palsy and abnormal MRI findings, an exploration of the ulnar nerve was performed.

During the surgery, the fibrous facial layer (Osborne's ligaments) over the cubital tunnel was not thickened or hypertrophied. The ulnar nerve was swollen with a slightly rubbery consistency (Figure 2A). The adhesion between the ulnar nerve and AE muscle was found and dissected (Figure 2B). The AE was excised and the ulnar nerve...
was distally dissected along its course to the flexor carpi ulnaris muscle. Although postoperative course was uneventful, the rate of recovery from ulnar neuropathy was not as fast as expected. The pinch and grip strength of the left hand and fingers did not show any improvement despite improvement in paresthesia until two months postoperatively. Then, the pinch and grip strength was gradually recovered with minimal paresthesia in the fifth finger and hypothenar area at 6 months postoperatively. No evidence of ulnar neuropathy was detected at 12 months postoperatively.

DISCUSSION

1. AE Muscle

AE is a small triangular muscle originating in the ME of the humerus, inserting laterally on the OL and proximal posterior surface of the ulnar. Its anatomic course is similar to that of the cubital tunnel retinaculum. It was postulated that the cubital tunnel retinaculum is the remnant of the AE muscle. It expands and initiates the extension of the elbow and is regarded as a continuation of the triceps brachii muscle and enables extension of the forearm. Thus, AE protects the ulnar nerve and assists the triceps muscle in preventing subluxation of the ulnar nerve. In contrast to the triceps, this muscle is innervated by a branch of the ulnar nerve. The AE, when present, forms the roof of the cubital tunnel, replacing Osborne’s ligament. It was suggested that Osborne’s ligament is a fibrous remnant of the AE that remains after the muscle regresses. The anconeus muscle occupies more space than the typically present Osborne fascia. The prevalence of this anomalous muscle is estimated to be 3% to 34% based on cadaveric and imaging studies and is often found bilaterally.

2. AE and Cubital Tunnel Syndrome

The AE muscle exerts a compressive force on the ulnar nerve and its association with cubital tunnel syndrome has long been reported. Although the AE is a common anatomical variation of the elbow, the prevalence of cubital tunnel syndrome due to AE is unknown. Its association with cubital tunnel syndrome is generally detected during operation, not preoperatively. It was suggested that ulnar neuropathy associated with AE might be dynamic rather than static compression and exhibited different clinical characteristics compared with idiopathic cubital tunnel syndrome including more rapid progression, younger age at onset, and shorter duration of symptoms.

The current case also appeared as a sudden outbreak in young patients, as previously reported. The neurophysiological findings of ulnar neuropathy associated with AE also differ from those involving patients with idiopathic cubital tunnel syndrome. Velocity drop or conduction block of the ulnar nerve indicating the subacute onset of symptoms is common rather than chronic demyelination generally seen in idiopathic ulnar neuropathy.

Ultrasound and MRI are reliable imaging modalities used to show structural abnormalities of the cubital tunnel and can reveal the causes of secondary ulnar neuropathy and anatomical variants, as in the current patient. Edema of the AE in the MRI was associated with medical elbow pain. In the MRI of the present case, the AE size was not large enough to directly compress the ulnar nerve, but close adhesion with the nerve was suspected (Figure 1). The adhesions between the AE and the ulnar nerve were confirmed by surgical findings (Figure 2). The ulnar nerve was swollen. A weak perineurial enhancement of the ulnar nerve and flexor carpi ulnaris muscle was observed in the distal cubital tunnel. However, it is not known exactly whether this perineural enhancement is pathognomonic for ulnar neuropathy triggered by AE.

3. Treatment of Ulnar Neuropathy Associated with AE

Complete excision of the AE is widely accepted as the definitive treatment for the ulnar neuropathy associated with AE, but whether to transpose the ulnar nerve remains controversial. Several treatment options have been suggested including muscular release or complete excision with in-situ decompression of the ulnar nerve and complete excision of the muscle with transposition of the ulnar nerve to prevent subluxation, depending on the surgeon’s decision about the extent of neurolysis to prevent dislocation of the ulnar nerve and the extent of muscle excision. More rapid and complete recovery with a low incidence of recurrence than idiopathic cubital tunnel syndrome is a common finding in most studies investigating the AE muscle. It was significantly less than the reported prevalence (15.5%) in asymptomatic patients. Another retrospective cohort study by Maslow et al. reported similar results. The overall institutional prevalence of AE was 13.6% compared with a prevalence of 4.5% in operative patients with cubital tunnel syndrome. It was suggested that AE is less rigid than the more common fascial layer of Osborne and may provide a more forgiving roof to the cubital tunnel and actually be more protective against the development of cubital tunnel syndrome. Therefore, cubital tunnel syndrome is associated with AE when the muscle is hypertrophied or edematous. Prior case reports hypothesized that ulnar neuropathy associated with AE may involve dynamic compression within the cubital tunnel because it is a muscular structure. A more comprehensive study investigating the pathophysiology of cubital tunnel syndrome caused by AE is warranted in the near future.

CONCLUSION

The manifestations of ulnar neuropathy associated with AE differ
from those of idiopathic cubital tunnel syndrome. They include younger age at onset, more rapid progression with a shorter duration of symptoms, neurophysiologic findings of velocity drop or conduction block of the ulnar nerve, and perineuritis and edema of AE on MRI. Therefore, when ulnar neuropathy due to cubital tunnel syndrome is suspected in young patients with rapid progression, an imaging study is essential to identify the structural lesion around the cubital tunnel.

Conflicts of Interest:
No potential conflict of interest relevant to this article was reported.

REFERENCES

1. An TW, Evanoff BA, Boyer MI, Osei DA: The prevalence of cubital tunnel syndrome: A cross-sectional study in a U.S. metropolitan cohort. *J Bone Joint Surg Am* 99:408-416, 2017
2. Byun SD, Kim CH, Jeon IH: Ulnar neuropathy caused by an anconeus epitrochlearis: Clinical and electrophysiological findings. *J Hand Surg Eur Vol* 36:607-608, 2011
3. Cheriyan T, Neuhaus V, Mudgal CS: Velocity drop in anconeus epitrochlearis-associated cubital tunnel syndrome. *Am J Orthop (Belle Mead NJ)* 43:227-229, 2014
4. Erdem Bagatur A, Yalcin MB, Ozer UE: Anconeus epitrochlearis muscle causing ulnar neuropathy at the elbow: Clinical and neurophysiological differential diagnosis. *Orthopedics* 39:e988-e991, 2016
5. Gessini L, Jandolo B, Pietrangelo A, Occhipinti E: Ulnar nerve entrapment at the elbow by persistent epitrochleoanconeus muscle. Case report. *J Neurosurg* 55:830-831, 1981
6. Husarik DB, Saeed N, Pfirrmann CW, Jost B, Hodler J, Zanetti M: Elbow nerves: MR findings in 60 asymptomatic subjects-normal anatomy, variants, and pitfalls. *Radiology* 252:148-156, 2009
7. Hwang K, Han JY, Chung IH: Topographical anatomy of the anconeus muscle for use as a free flap. *J Reconstr Microsurg* 20:631-636, 2004
8. Jeon IH, Fairbairn KJ, Neumann L, Wallace WA: MR imaging of edematous anconeus epitrochlearis: another cause of medial elbow pain? *Skeletal Radiol* 34:103-107, 2005
9. Maslow JJ, Johnson DJ, Block JJ, Lee DH, Desai MJ: Prevalence and Clinical Manifestations of the Anconeus Epitrochlearis and Cubital Tunnel Syndrome. *Hand (N Y)* 15:e69-74, 2020
10. Nellans K, Galdi B, Kim HM, Levine WN: Ulnar neuropathy as a result of anconeus epitrochlearis. *Orthopedics* 37:e743-e745, 2014
11. O'Hara JJ, Stone JH: Ulnar nerve compression at the elbow caused by a prominent medial head of the triceps and an anconeus epitrochlearis muscle. *J Hand Surg Br* 21:133-135, 1996
12. Sookar PA, Naraghi AM, Blackray RR, Jalan R, Chan O, White LM: Accessory muscles: Anatomy, symptoms, and radiologic evaluation. *Radiographics* 28:481-499, 2008
13. Wilson TJ, Tubbs RS, Yang LJ: The anconeus epitrochlearis muscle may protect against the development of cubital tunnel syndrome: A preliminary study. *J Neurosurg* 125:1533-1538, 2016