Coupling light into graphene plasmons through surface acoustic waves

Jürgen Schiefele,1 Jorge Pedrós,2,3 Fernando Sols,1,3 Fernando Calle,2,3 and Francisco Guinea4

1Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040, Madrid, Spain
2Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, E-28040, Madrid, Spain
3Campus de Excelencia Internacional, Campus Moncloa UCM-UPM, E-28040, Madrid, Spain
4Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049, Madrid, Spain
(Dated: September 3, 2013)

We propose a scheme for coupling laser light into graphene plasmons with the help of electrically generated surface acoustic waves. The surface acoustic wave forms a diffraction grating which allows to excite the long lived phonon-like branch of the hybridized graphene plasmon-phonon dispersion with infrared laser light. Our approach avoids patterning the graphene sheet, does not rely on complicated optical near-field techniques, and allows to electrically switch the coupling between far field radiation and propagating graphene plasmons.

Surface plasmon polaritons (hereafter called plasmons) are electromagnetic waves that are confined to the interface between two materials and are accompanied by collective oscillations of surface charges [1]. The strong spatial confinement of the electromagnetic field and its coupling to charge carriers allow for the manipulation of light at subwavelength scales –beyond the diffraction limit of classical optics– which opens the possibility to integrate electronics and optics at the nanoscale. Further promising plasmonic applications include single molecule detection, metamaterials, and light harvesting [2].

Graphene, a single layer of carbon atoms arranged in a honeycomb lattice [3], forms a pure two-dimensional electron gas that supports plasmons in a broad frequency range from the mid infrared to the terahertz domain [4]. Unlike conventional plasmons in noble metals, graphene plasmons can be tuned in situ through the modulation of the carrier density by electrostatic gating. For long wavelengths $k \ll k_F$, the plasmon wavevector in graphene on a (non-polar) dielectric substrate is approximately given by

$$k = \frac{\omega_p}{c} \frac{E_p}{E_F} \frac{\varepsilon_{\text{eff}}}{2 \alpha_{\text{fs}}} ,$$

where $E_p = h\omega_p$ is the plasmon energy, $\varepsilon_{\text{eff}} = (\varepsilon_\infty + 1)/2$ the effective average over the dielectric constants of substrate and air, and the Fermi energy $E_F = \hbar \nu_F \sqrt{\pi n}$ can be adjusted with the carrier density n. The strong field concentration typical for plasmon excitations results in a large wavevector mismatch $k \gg \omega_p/c$, which is revealed by the small magnitude of the fine-structure constant $\alpha_{\text{fs}} \approx 1/137$ in Eq. [1]. Therefore, the excitation of plasmons with free space radiation requires diffraction of the incident light at structures with dimensions smaller than $2\pi c/\omega_p$. In the experiments realized so far, graphene–plasmon–laser coupling required either complex near-field techniques [8, 9] or the patterning of micro- or nanoscale arrays for far-field coupling [10,13], where edge scattering reduces the plasmon lifetime. In this work, we propose a scheme for converting far-field radiation into graphene plasmons by deforming the graphene sheet with a surface acoustic wave (SAW) and thus forming a tunable optical grating without the need of any patterning. Our calculation shows that long-lived mid-infrared plasmons, hybridized with surface phonons in the supporting piezoelectric materials, are excited with good efficiencies. Figure [1] shows a sketch of the proposed device, where a high frequency signal applied to an interdigital transducer (IDT) on a piezoelectric film generates a Rayleigh-type SAW propagating in the x-direction. The graphene sheet is periodically deformed in the x-z plane by the strain field of the wave. Thus a propagating grating with an adjustable amplitude up to a few nanometers and a period in the sub-micron range can be formed. By diffraction on the grating, incident TM polarized laser light (that is, with its \mathbf{E} field polarized in the x-z-plane) can overcome the momentum mismatch and excite plasmons in the graphene sheet. AlN and ZnO have been selected as piezoelectric materials since they present large electromechanical coupling coefficients and their high-quality thin films can be deposited by sputtering on a variety of substrates [14, 15]. Sub-micron IDTs on these materials allow SAWs operating well above 10 GHz [15, 16]. A back gate, deposited on the substrate before sputtering...
the film, allows to tune the graphene plasmon dispersion in and out of resonance with the laser.

The material underneath the graphene influences its electronic properties, as the charge carriers in graphene couple to the long range electric fields generated by optically active phonon modes in the surrounding material [17]. This mechanism is known to influence charge transport and drag effects in graphene [18, 20], as well as to alter the dispersion of graphene plasmons on polar substrates [12, 21].

Piezoelectric materials are polar by definition. For the dielectric function of the piezoelectric film, an oscillator model is assumed

$$\epsilon(\omega) = \epsilon_\infty + (\epsilon_0 - \epsilon_\infty) \frac{\omega^2_{TO}}{\omega^2_{TO} - \omega^2 + 2i\omega\Gamma}$$, \hspace{1cm} (2)

where ω_{TO} denotes the frequency of the transverse optical phonon, Γ its damping rate, and ϵ_0 and ϵ_∞ the static and high-frequency dielectric constants, respectively [22].

The coupling strength between carriers in the graphene sheet and polar surface phonons (with frequency ω_{sp}) located at the surface of the piezoelectric film is given by [17, 19, 23]

$$M(k) = ge^{-k z_0} \sqrt{\pi c \alpha_0 \hbar^2 \omega_{sp} / k}$$, \hspace{1cm} (3)

where $k = (k_x, k_y)$ is the surface-phonon wavevector, the coupling constant $g = \sqrt{(\epsilon_0 - \epsilon_\infty)/[1 + (\epsilon_\infty)(1 + \epsilon_0)]}$, $z_0 > 0$ denotes the graphene-substrate separation, and ω_{sp} is the solution of the equation $1 + \epsilon(\omega) = 0$. As the wavevector range of interest here is $k \approx 10^7$ m$^{-1}$ and $z_0 \approx 3$ Å for the common substrate materials, the exponential factor has been set to unity in the following.

Due to the coupling $M(k)$, charge carriers in the graphene sheet can interact by exchange of surface phonons, which leads to the potential [21]

$$V_{\omega_{sp}}(k, \omega, \tau_{sp}) = |M(k)|^2 G_{\omega_{sp}}(\omega, \tau_{sp})$$, \hspace{1cm} (4)

where the lifetime of the surface phonon τ_{sp} enters the phonon propagator

$$G_{\omega_{sp}}(\omega, \tau_{sp}) = \frac{2\omega_{sp}}{\hbar(\omega + i/\tau_{sp})^2 - \omega_{sp}^2}$$, \hspace{1cm} (5)

For AlN we obtain $g = 0.289$ and $\hbar \omega_{sp} = 106$ meV, for ZnO $g = 0.314$ and $\hbar \omega_{sp} = 68$ meV.

The total effective carrier interaction results from Coulomb interaction $V_C = e^2/(2\epsilon\epsilon_0\epsilon_{eff})$ [with $\epsilon_{eff} = e^2/(4\pi\hbar\epsilon_0\epsilon_{eff})$ the permittivity of free space] and phonon exchange. Within the random phase approximation (RPA), it reads [21, 24]

$$V_{\text{eff}} = V_C + V_{\omega_{sp}} = \frac{V_C}{\epsilon_{\text{RPA}}}$$, \hspace{1cm} (6)

where $\Pi^{(0)}$ denotes the polarizability of graphene [23, 20] which depends parametrically on the electron relaxation time τ_e [27]. The last equality in Eq. (6) defines the total dielectric screening function $\epsilon_{\text{RPA}}(k, \omega)$. The plasmon dispersion can be obtained by (numerically) solving the equation $\epsilon_{\text{RPA}}(k, \omega) = 0$, which depends on the dielectric function of the piezoelectric film via $V_{\omega_{sp}}$ in Eq. (4). An approximate analytical expression can be obtained from Eq. (6) by setting the scattering times τ_{sp}, $\tau_e \to \infty$ and $\Pi^{(0)} \approx E_p k^2/(\pi\hbar^2\omega^2)$, which is valid for $\omega > \nu_F k$ and $E_p \gg \hbar \omega$. Solving for the zeros of ϵ_{RPA} yields the two solutions

$$\omega_{p,\pm}^2(k) = \frac{1}{2} \left[\omega_{sp}^2 + \omega_p^2 \right] \pm \sqrt{\left(\omega_{sp}^2 + \omega_p^2\right)^2 - 4 \omega_p^2 \omega_{sp}^2 (1 - 2g^2\epsilon_{eff})}$$, \hspace{1cm} (7)

where $\omega_p(k)$ is given by Eq. (1). The two branches $\omega_{p,\pm}$ shown as white curves in Fig. 2(a) and (c) describe coupled excitations involving both collective electronic and lattice oscillations. In the limit $g \to 0$ of vanishing sub-
strate coupling, \(\omega_{p+} \rightarrow \omega_{sp} \) and \(\omega_{p-} \rightarrow \omega_p \), and the unhybridized system is recovered.

The plasmon lifetimes \(\tau_p \) shown in Fig. 2(b) and (d) – of the order of \(10^{-13} \) s – are obtained by solving the equation \(E_{RF} = 0 \) for the imaginary part of the plasmon frequency. As a function of frequency, they vary between the boundaries set by the surface phonon damping \(\tau_{sp} \), assumed to be 1 ps as reported in Ref. 12, and the electron relaxation time of graphene, \(\tau_e = \mu E_F / v_F^2 \), where \(\mu \) is the carrier mobility. For low \(k \)-values, the \(\omega_{p+} \) branch is dominated by \(\tau_{sp} \) rather than \(\tau_e \), allowing to excite relatively long-lived plasmons. In the limit \(k \rightarrow 0 \), \(\tau_p = \tau_{sp} \). Conversely, the \(\omega_{p-} \) branch shows a stronger damping, due to the larger influence of \(\tau_e \).

Plasmon excitation manifests itself in enhanced light absorption. The transmittance and reflectance of graphene on a dielectric substrate can be calculated from the Fresnel coefficients \[28]\n
\[
\begin{align}
T_{TM}(k, \omega) &= \frac{\epsilon(\omega)k_z - k_z' + \epsilon(\omega)k_z' - (\epsilon_{vac}\omega)}{\epsilon(\omega)k_z + k_z' + \epsilon(\omega)k_z' - (\epsilon_{vac}\omega)}, \tag{8a}

r_{TM}(k, \omega) &= \frac{2\sqrt{\epsilon(\omega)k_z}}{\epsilon(\omega)k_z + k_z' + \epsilon(\omega)k_z' - (\epsilon_{vac}\omega)}; \tag{8b}

r_{TE}(k, \omega) &= T_{TE} - 1 = \frac{k_z - k_z' - \omega \sigma(\omega) / (\epsilon_{vac}^2 E_F)}{k_z + k_z' + \epsilon(\omega) / (\epsilon_{vac}^2 E_F)}, \tag{8c}
\end{align}
\]

where \(k_z = \sqrt{(\omega/c)^2 - k^2} \) and \(k_z' = \sqrt{\epsilon(\omega) / (\omega/c)^2 - k^2} \) are the \(z \)-components of the wavevector in air and in the substrate, respectively, and

\[
\sigma(\omega) = \frac{\epsilon^2 E_F}{\pi h^2} \frac{i}{\omega + i/\tau_e} + \frac{\epsilon^2}{4\hbar} \left[\Theta(h\omega - 2E_F) + \frac{i}{\pi} \log \left| \frac{h\omega - 2E_F}{h\omega - 2E_F} \right| \right] \tag{9}
\]

is the conductivity of graphene \[22\]. In the non-retarded limit \(\omega/c < k \), the zeros of \(E_{RF} \) are identical to the poles of \(T_{TM} \). Correspondingly, the absorption of light given by \(\text{Im} r_{TM} \) (shown by the contour plot in Fig. 2(a) and (c)), displays peak values along the two branches \(\omega_{p\pm} \) of Eq. 7.

Fig. 3(a) shows the transmittance through the air–graphene–AlN (red curve) and air–AlN (blue curve) interface in the frequency range \(h\omega = 0 - 0.2 \) eV for normal incident light. A region of low transmittance is observed between the transverse and longitudinal optical phonon frequencies of AlN. In the presence of graphene, the transmittance at low frequencies is reduced due to the Drude response. Within the frequency range of the \(\omega_{p+} \) branch, both AlN and graphene–AlN are seen to be almost transparent.

In the presence of the SAW, the transmittance changes, because a TM polarized laser beam can overcome the momentum mismatch and excite plasmons: the SAW imposes a sinusoidal deformation of wavelength \(\lambda_g \) and amplitude \(\delta \) on the graphene. This corrugation works like a diffraction grating that scatters incident light with wavevector \((k_{||}, k_z) \) into the various diffraction orders \((k_{||}, k_z) \) with

\[
\begin{align}
&k_{||} = (\omega/c) \sin \theta + m 2\pi / \lambda_g, \tag{10} \\
&k_z = \sqrt{(\omega/c)^2 - k_{||}^2} \tag{11}
\end{align}
\]

where \(\theta \) denotes the angle of off-normal incidence and \(m \) is an integer. To excite plasmons, the frequency of the plasmon has to coincide with the laser frequency, and its \(k \) vector with one of the \(k_{||} \), which in turn can be chosen by an appropriate SAW wavelength \(\lambda_g \) \[29\].

The intensity of the diffracted light in \(m \)th order, normalized to the intensity of the incoming beam, is given by \[30\]

\[
I(m) = |r_{TM}(2k_z \delta)|^2 \frac{m\pi \lambda_g k_{||}}{\lambda g k_{||} + 1 + r\delta^2} \tag{12}
\]

Here \(r \) denotes, depending on the polarization of incident light, \(r_{TM}(\omega, k_{||}) \) or \(r_{TE}(\omega, k_{||}) \) (see Eqns. (8)). As the corrugation amplitude \(\delta \) achievable with SAWs is of the order of a few nanometers, \(k_z \delta \ll 1 \), and the relative intensities \(I(m) \) are suppressed proportionally to the Bessel function \[31\]

\[
|J_m(2k_z \delta)|^2 \approx (k_z \delta)^2 m \tag{13}
\]

Thus diffraction with \(|m| > 1 \) has been neglected.

The range of wavevectors in which plasmons can be excited is determined by \(\lambda_g \), i.e. by the period of the IDT. With electron-beam or nano-imprint lithography, periods of 0.25-1 \(\mu \)m can be realized \[14\]. Normal incidence, \(k_{||} \) then takes values between 0.6 – 2.5 \(\times \) \(10^7 \) m\(^{-1}\), as indicated by the vertical dotted lines in Fig. 2(a) and (c). For \(k_{||} \) within this range and \(\omega \) along the plasmon dispersion, \(k_{||} \) is imaginary, and the electric field of the diffracted beam decays exponentially in the direction perpendicular to the surface.

The transmittance \(T \) in the presence of a SAW (with \(\lambda_g = 0.25 \mu \)m and \(E_F = 0.4 \) eV) is shown in Fig. 3(b) for TE and TM polarization (red and black curve respectively). While the former does not deviate from the transmittance at an uncorrugated interface (black dashed curve) the latter displays a dip due to plasmon excitation in the \(\omega_{p+} \) branch. As the two plasmon branches get steeper with increasing \(E_F \), the plasmon resonance blueshifts. This is shown in the extinction spectra \(1 - T_{TM}(\delta)/T_{TM}(0) \) of Fig. 3(d) and (e) for the \(\omega_{p\pm} \) branches, respectively. The height of the peaks can serve as a figure of merit for the efficiency of plasmon excitation. For fixed \(E_F \) and \(\lambda_g \), it depends on the graphene quality through the electron relaxation time \(\tau_e \). The blue, red, and green curves in Fig. 3(d) and (e) were obtained by setting \(\tau_e^{-1} \) to 0.25, 0.5, 1 \(\times \) \(10^{13} \) Hz, respectively. The height of the resonance increases with \(\tau_e \), as damping of the collective electron oscillations decreases. For \(h\omega \gtrsim 0.6 \) eV, the plasmon resonance of the
for normal incident light, because only the

\[\omega \]

strength of the resonance, however, is maximal

\[x \]

shifts the plasmon resonance only slightly, as shown by

\[\text{Fig. } 2(c) \]

frequency, to excite

\[\text{shown for AlN, but allow, due to the lower surface phonon} \]

resonances of AlN (see Fig. 3(a)). The extinction spec-

\[\text{trum of graphene on AlN in the absence of surface} \]

cesses comparable to those obtained in Ref. 12 with

\[\text{patterned graphene} \]

(see Fig. 3(c)).

As \(\omega/c \ll 2\pi/\lambda_g \), the \(\theta \)-dependent term in Eq. (10) shifts the plasmon resonance only slightly, as shown by the transmittance and extinction spectra in Fig. 3(c) and (f). The strength of the resonance, however, is maximal for normal incident light, because only the \(x \)-component of the electric field excites plasmons.

Due to the \(\delta^2 \) dependence in the diffraction intensity of Eq. (12), the achievable efficiency also depends strongly on the SAW amplitude. With the realistic value of 4 nm used in Fig. 3(a), the predicted extinction values are comparable to those obtained in Ref. [12] with patterned graphene. However, exciting plasmons in an extended graphene sheet avoids plasmon damping due to edge scattering, which severely limits plasmon lifetimes in patterned graphene [12]. Moreover, the SAW-assisted plasmon generation mechanism in homogeneous graphene will permit to design plasmonic devices using propagating plasmons, otherwise impeded in patterned graphene structures.

We have demonstrated that SAWs can be used to generate a switchable refraction grid which couples laser light into the hybridized plasmon supported by graphene on piezoelectric materials like, for example, ZnO and AlN. The coupling to surface phonons shifts the low wavevec-

\[T \]

tor part of the graphene plasmon dispersion, which is vir-

\[\text{tually unaffected by intraband losses, upwards into the} \]

tractive mid infrared frequency range. Due to their rel-

\[\text{atively low damping in the vicinity of the surface} \]

piezoelectric materials like, for example, ZnO and AlN.

The proposed scheme for plasmon excitation avoids

\[\omega_{p^-} \]

branch (Fig. 3(e)) begins to merge with the phonon

\[\text{resonances of AlN (see Fig. 3(a))}. \]

The extinction spectra for graphene on ZnO are qualitatively similar to those

\[\text{shown for AlN, but allow, due to the lower surface phonon} \]

frequency, to excite \(\omega_{p^+} \) plasmons with longer laser wave-

\[\text{lengths (see Fig. 2(c)).} \]

As \(\omega/c \ll 2\pi/\lambda_g \), the \(\theta \)-dependent term in Eq. (10) shifts the plasmon resonance only slightly, as shown by the transmittance and extinction spectra in Fig. 3(c) and (f). The strength of the resonance, however, is maximal for normal incident light, because only the \(x \)-component of the electric field excites plasmons.

Due to the \(\delta^2 \) dependence in the diffraction intensity of Eq. (12), the achievable efficiency also depends strongly on the SAW amplitude. With the realistic value of 4 nm used in Fig. 3(a), the predicted extinction values are comparable to those obtained in Ref. [12] with patterned graphene. However, exciting plasmons in an extended graphene sheet avoids plasmon damping due to edge scattering, which severely limits plasmon lifetimes in patterned graphene [12]. Moreover, the SAW-assisted plasmon generation mechanism in homogeneous graphene will permit to design plasmonic devices using propagating plasmons, otherwise impeded in patterned graphene structures.

We have demonstrated that SAWs can be used to generate a switchable refraction grid which couples laser light into the hybridized plasmon supported by graphene on piezoelectric materials like, for example, ZnO and AlN. The coupling to surface phonons shifts the low wavevector part of the graphene plasmon dispersion, which is virtually unaffected by intraband losses, upwards into the attractive mid infrared frequency range. Due to their relatively low damping in the vicinity of the surface phonon frequency, these phonon-like plasmon branches have a high potential for photonic applications.

The proposed scheme for plasmon excitation avoids the patterning of graphene, diminishing the edge scatter-

\[G \]

ing and generating propagating plasmons which could be used in future graphene-based plasmonic devices. Moreover, plasmons can be switched electrically, via the high frequency signal at the IDT, whereas the plasmon resonance can be tuned via electrostatic gating. In addition, the IDT technology allows for many different plasmon functionalities. For example, curved IDTs can create interfering SAWs for plasmon focusing [23]. Thus, SAWs offer the possibility to tailor electrically switchable graphene-based metamaterials.

We would like to thank Frank Koppens, Christopher Gaul and Harald Haakh for helpful remarks. The authors acknowledge support from the Marie Curie ITN NanoCTM, the Campus de Excelencia Internacional (Campus Moncloa UCM-UPM), ERC Advanced Grant 290846, and from MICINN (Spain) through Grant.
No. FIS2008-00124, FIS2010-21372, TEC2010-19511, and FIS2011-23713.

∗ E-mail jurgesch@ucm.es
† E-mail p.pedros@upm.es
[1] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
[2] A. Polman, Science 322, 868 (2008).
[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[4] F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Nano Letters 11, 3370 (2011).
[5] A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat Photon 6, 749 (2012).
[6] Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, Int. J. Mod. Phys. B 27, 1341001 (2013).
[7] This relation follows from a semiclassical (Drude) model for the graphene conductivity, which only takes into account the first term of Eq. (1) and neglects disorder, $\tau_e \to \infty$.
[8] J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, et al., Nature 487, 77 (2012).
[9] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, et al., Nature 487, 82 (2012).
[10] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, et al., Nat Nano 6, 630 (2011).
[11] A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, Phys. Rev. B 84, 161407 (2011).
[12] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Nat Photon 7, 394 (2013).
[13] M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Nat Commun. 4 (2013).
[14] J. Pedrós, L. García-Gancedo, C. J. B. Ford, J. P. Griffiths, G. A. C. Jones, and A. J. Flewitt, Applied Physics Letters 102, 043507 (2013).
[15] J. Rodríguez-Madrid, G. Iriarte, J. Pedrós, O. Williams, D. Brink, and F. Calle, Electron Device Letters, IEEE 33, 495 (2012).
[16] S. Büyükköse, B. Vratzov, D. Ataç, J. van der Veen, P. V. Santos, and W. G. van der Wiel, Nanotechnology 23, 315303 (2012).
[17] N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).
[18] J. Schiefele, F. Sols, and F. Guinea, Phys. Rev. B 85, 195420 (2012).
[19] E. H. Hwang and S. Das Sarma, Phys. Rev. B 87, 115432 (2013).
[20] B. Amarim, J. Schiefele, F. Sols, and F. Guinea, Phys. Rev. B 86, 125448 (2012).
[21] E. H. Hwang, R. Sensarma, and S. Das Sarma, Phys. Rev. B 82, 195406 (2010).
[22] Material parameters for AlN and ZnO are taken from Refs. 33 and 34 respectively.
[23] S. Fratini and F. Guinea, Phys. Rev. B 77, 195415 (2008).
[24] G. D. Mahan, Many-particle physics (Plenum Press, New York, 1981).
[25] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New Journal of Physics 8, 318 (2006).
[26] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).
[27] M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).
[28] R. Messina and P. Ben-Abdallah, Sci. Rep. 3, 1383 (2013).
[29] C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, Phys. Rev. B 82, 081416 (2010).
[30] E. C. Lean, in Progress in Optics, edited by E. Wolf (North-Holland, Amsterdam, 1973), vol. XI, p. 123.
[31] R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, Journal of Applied Physics 104, 014910 (2008).
[32] L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, Nano Letters 5, 1399 (2005).
[33] M. Kazan, S. Pereira, M. R. Correia, and P. Masri, Journal of Applied Physics 106, 023523 (2009).
[34] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, et al., Journal of Applied Physics 93, 126 (2003).