Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity

Isabel Manso Cobos1*, María Isabel Ibáñez García1, Fernando de la Peña Moreno2, Lara Paloma Sáez Melero1, Víctor Manuel Luque-Almagro1, Francisco Castillo Rodríguez1, María Dolores Roldán Ruiz1, María Auxiliadora Prieto Jiménez2 and Conrado Moreno Vivián1

Abstract

Background: Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN−) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required.

Results: In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha−, deleted in putative mcl-PHA synthases; Spha−, deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC–MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha− and Spha−, respectively. The scl-PHAs were identified as homopolymers of 3-hydroxybutyrate and the mcl-PHAs were composed of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers.

Conclusions: These results demonstrated, as proof of concept, that talented strains such as P. pseudoalcaligenes might be applied in bioremediation of industrial residues containing cyanide, while concomitantly generate by-products like polyhydroxyalkanoates. A customized optimization of the target bioremediation process is required to gain benefits of this type of approaches.

Keywords: Alkalophile, Bioplastics, Cyanide degradation, Polyhydroxyalkanoates, Pseudomonas

*Correspondence: b72macoi@uco.es
1 Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, 1ª Planta Universidad de Córdoba, Córdoba 14071, Spain
Full list of author information is available at the end of the article

© 2015 Manso Cobos et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Cyanide is produced at high concentrations by anthropogenic sources like electroplating, jewelry and mining activities. Residues that contain high concentrations of cyanide must be remediated in order to remove cyanide, and biological approaches may display advantages over physicochemical treatments. The alkalophilic bacterium *P. pseudoalcaligenes* CECT5344 is able to utilize cyanide and cyanide-derivatives as the sole nitrogen source [1]. In the CECT5344 strain, cyanide induces various mechanisms for cyanide resistance and assimilation, such as cyanide-insensitive respiration [2], mechanisms for iron homeostasis [3] and synthesis of the specific nitrilase involved in the cyanide assimilation pathway [4]. Recently, the complete genome sequence of this bacterium has been reported [5, 6]. In addition to genes involved in cyanide assimilation and resistance, such as the *nit* genes encoding nitrilases and the *cio* genes coding for alternative cyanide-insensitive oxidases, this strain harbors some genes potentially involved in other processes with a great biotechnological potential, such as the production of polyhydroxyalkanoates (PHAs). The cost-efficient production of PHAs is averted partly due to the high costs of the carbon sources supplied to the production medium. Valorization and utilization of wastes via their bioconversion into bioplastics is one of the most distinctive strategies to unlock the PHAs production at industrial scale. In this sense, side production of PHAs as an extra-income (by-product) of non-strictly cost-dependent processes such as those driven to strategies for bioremediation of toxic compounds has not been extensively considered.

Many bacteria accumulate PHAs in the cytoplasm as carbon and energy storage material when growing under nutrient imbalanced conditions, but with an excess of a carbon source [7–10]. PHAs are biopolymesters that consist of 3-hydroxycarboxylic acids that are classified into two major groups displaying different material properties: the short chain length (scl-) with 3–5 carbon atoms or the medium chain length (mcl-) with 6–14 carbons [9–11]. Different proteins associated to the PHAs granules have been identified [11–15], such as PHA synthases for polymerization, PHA depolymerases involved in biodegradation and monomer mobilization, and phasins with structural and regulatory functions [13, 16, 17]. Essential steps for PHAs biosynthesis are generation of the hydroxyacyl-CoA (HA-CoA) and the PHA synthase-catalyzed HA-CoA polymerization into PHAs [18–20]. PHA synthases are classified into four types, of which class I and class II PHA synthases are composed of one subunit (PhaC). However, type I enzymes accept scl-HA-CoA for polymerization [21–28] whereas type II synthases, mainly found in pseudomonads, display substrate specificity towards mcl-HA-CoA [22]. Most pseudomonads produce polymers containing mcl-PHAs. However, a few strains like *Pseudomonas* sp. 61–3 [23], *Pseudomonas oleovorans* strain B-778 [24], *Pseudomonas pseudoalcaligenes* YS1 [25] and *Pseudomonas stutzeri* 1317 [26] synthesize a mixture of scl- and mcl-PHAs.

Three gene clusters putatively involved in the metabolism of scl- and mcl-PHAs have been identified in the genome of the cyanide-degrading bacterium *P. pseudoalcaligenes* CECT5344 [5]. The *phbR* genes cluster includes the *phaB* gene that codes for an NADPH-dependent acetoacetyl coenzyme A reductase, the *phaA* gene encoding a β-ketothiolase, and the *phaC* gene coding for a class I scl-PHA synthase. The *phbR* gene shows similarity to members of the AraC/XylS transcriptional activators family. In the same locus, an additional cluster comprises the *phaP* and *phaR* genes that code for a phasin and a regulatory protein, respectively. In a different locus, a third gene cluster is similar to those found in other mcl-PHAS producers [revised in 10]. It comprises the *phaC1* and *phaC2* genes that code for class II PHA synthases, the regulatory *phaD* gene, the *phaF* and *phaI* genes encoding a phasin and a regulatory protein, respectively, and the *phaZ* gene, which is located between the *phaC1* and *phaC2* genes and encodes a putative depolymerase responsible for PHAs mobilization [29].

Cyanide degradation by the strain CECT5344 under alkaline conditions was previously optimized in a batch reactor loaded with a minimal medium containing acetate as carbon source and 2 mM NaCN as nitrogen source [30]. In this work we analyse the ability of this strain to bioremediate an industrial cyano-waste through a biological treatment that concomitantly generates PHAs as by-product.

Results and discussion

Cyanide assimilation and simultaneous synthesis of PHAs by *P. pseudoalcaligenes* CECT5344

Polyhydroxyalkanoates are reserve polyesters that are accumulated as intracellular granules in a variety of bacteria from a wide range of substrates such as renewable sources, sub-products, organic acids, fossil resources and wastes [31]. Nevertheless, in the bioremediation context, a limited number of microorganisms have been reported to accumulate PHAs from different toxic sources such as aromatic hydrocarbons [32–34], olive oil industry wastes [35] or textile dyes [36]. In a previous work, 2 mM NaCN added to a minimal medium was biologically detoxified by *P. pseudoalcaligenes* CECT5344 [30]. The main purpose of this work is to test the ability of the strain CECT5344 to accumulate PHAs during cyanide or industrial cyano-wastes assimilation, with the goal of providing the bases to pilot a bio-based treatment to
bioremediate industrial cyano-wastes, yielding by-products. Firstly, to test the functionality of the predicted scl-PHA and mcl-PHA synthase genes identified in the genome of P. pseudoalcaligenes CECT5344 [5, 6], the ability of this strain to accumulate PHAs was tested in cells grown in Erlenmeyer flasks as described in Methods section, with media containing different carbon sources such as acetate or octanoate. PHAs accumulation was not detected in P. pseudoalcaligenes CECT5344 cells grown with 50 mM acetate and 2 mM ammonium (Figure 1a). Nevertheless, PHAs were accumulated in cells cultured with 2 mM ammonium and 12.5 mM octanoate, a suitable carbon substrate that supports cell growth and polymer production. This fact was confirmed qualitatively by transmission electron microscopy (Figure 1b). Similar PHAs accumulation was observed when this strain was grown with 12.5 mM octanoate as the C-source and either 2 mM sodium cyanide (Figure 1c) or with the jewelry wastewater, diluted to obtain a concentration of free cyanide of 2 mM, as the sole N-source (Figure 1d). In both media, cells were recovered when cyanide was not completely depleted proving that PHAs accumulation takes place in the presence of cyanide and it is not inhibited by this toxic compound. On the basis of these results, octanoate was chosen as the carbon source for further experiments.

A GC–MS analysis of methanolyzed samples of PHAs produced by P. pseudoalcaligenes CECT5344 was performed to determine the composition of the polymer produced. With this purpose, P. pseudoalcaligenes CECT5344 cells were cultured on shake flasks with 12.5 mM octanoate as carbon source and ammonium chloride, sodium cyanide or cyanide-containing jewelry waste, each added at 2 mM initial concentration, as the sole nitrogen source (Table 1). In this case, content and monomer composition of PHAs were determined when the nitrogen source was totally consumed (about 50 h with ammonium and near 100 h with cyanide). P. pseudoalcaligenes CECT5344 cells accumulated both scl-PHAs and mcl-PHAs in the three nitrogen sources tested, with the highest PHAs accumulation (about 85% of cell dry weight, CDW) in presence of ammonium. However, significant PHAs production was also achieved when sodium cyanide (47% of CDW) or the cyanide-rich industrial residue (55% of CDW) was used as the sole nitrogen source (Table 1).

Figure 1 Detection by transmission electron microscopy of PHAs accumulated in P. pseudoalcaligenes CECT5344. Cells were grown with 50 mM sodium acetate and 2 mM ammonium chloride (a) or with 12.5 mM octanoate plus ammonium chloride (b), sodium cyanide (c), or cyanide from jewelry residue (d), each at 2 mM initial concentration. Samples were analyzed at 30 h of cultivation, before cyanide was completely consumed in cyanide-containing media.
PHAs accumulation in the cells grown with the cyanide-containing jewelry waste was slightly higher than that observed with sodium cyanide as nitrogen source (Table 1). This difference could be due to the presence of iron in the jewelry waste, since this metal has significant influence on PHA synthesis. Mohan and Reddy [37] demonstrated that a high iron concentration in the media increases PHAs production by mixed cultures. They also proposed that iron can interact with other parameters or factors, such as pH, nitrogen, phosphorous concentration or C-source composition, to maximize PHA production [37]. Under all these culture conditions, the mcl-PHAs accumulated by P. pseudoalcaligenes CECT5344 contained about 95% 3-hydroxyoctanoate (OH-C8) and 5% 3-hydroxyhexanoate (OH-C6) monomers (Table 1), as described for other pseudomonads when cultured in octanoic acid [10]. The scl-PHAs accumulated were found to be homopolymers of 3-hydroxybutyrate. The mcl-PHAs content detected in cells grown with the jewelry waste was slightly higher (26% of CDW) than that assessed when the nitrogen source was ammonium (20% of CDW) or sodium cyanide (16% of CDW). However, the scl-PHAs content in cells grown with both cyanide-containing media was similar (about 30% of CDW) (Table 1). These results demonstrate the functionality of the scl-PHA and mcl-PHA synthase genes from P. pseudoalcaligenes CECT5344, in both ammonium and cyanide-containing media.

Table 1 PHAs accumulation in the wild-type and PHA synthase defective mutants of P. pseudoalcaligenes CECT5344

Nitrogen source	Strain	CDW (g L⁻¹)	PHAs content	scl-PHAs (% CDW)	mcl-PHAs (% CDW)	mcl-PHA monomer composition (%)
						OH-C6
						OH-C8
Ammonium chloride	Wild-type	1.18 ± 0.1	64.95 ± 3.60	20.12 ± 0.08	5.75 ± 0.49	94.25 ± 0.35
	Mpha⁺	0.76 ± 0.05	66.14 ± 1.95	–	–	–
	Spha⁻	0.48 ± 0.03	–	36.81 ± 1.90	9.16 ± 0.08	90.84 ± 0.10
	Mpha⁺/Spha⁻	0.34 ± 0.03	–	–	–	–
Sodium cyanide	Wild-type	0.22 ± 0.04	31.02 ± 3.25	16.37 ± 2.81	5.97 ± 0.11	94.03 ± 0.14
	Mpha⁺	0.28 ± 0.02	55.47 ± 4.29	–	–	–
	Spha⁻	0.18 ± 0.02	–	15.44 ± 1.05	6.08 ± 0.08	93.92 ± 0.06
	Mpha⁺/Spha⁻	0.22 ± 0.03	–	–	–	–
Jewelry residue	Wild-type	0.34 ± 0.03	29.29 ± 0.74	25.63 ± 1.27	5.58 ± 0.07	94.42 ± 0.05
	Mpha⁺	0.36 ± 0.04	39.92 ± 2.12	–	–	–
	Spha⁻	0.28 ± 0.04	–	19.94 ± 0.02	5.43 ± 0.06	94.57 ± 0.13
	Mpha⁺/Spha⁻	0.28 ± 0.05	–	–	–	–

Cells were cultured in Erlenmeyer-flasks containing minimal medium with 12.5 mM octanoate and ammonium chloride, sodium cyanide or cyanide from the jewelry residue (2 mM each), and measurements were performed when the N source was totally consumed. Data correspond to the media of three measurements.

CDW cell dry weight, **OH-C6** 3-hydroxyhexanoate, **OH-C8** 3-hydroxyoctanoate.

By-product accumulation by P. pseudoalcaligenes CECT5344 under cyanide detoxification culture conditions

The strain CECT5344 is able to accumulate both scl- and mcl-PHAs when sodium cyanide or the jewelry residue is used as the sole nitrogen source, and octanoate as carbon source, in flask cultures (Table 1). However, the ability of P. pseudoalcaligenes CECT5344 to produce PHAs in batch reactor under cyanide degradation conditions with the cyanide-rich jewelry residue as nitrogen source need to be verified. Accumulation of PHAs was tested in a 5 L reactor with M9 minimal media using 12.5 mM octanoate and the cyanide-containing wastewater (2 mM free cyanide) as carbon and nitrogen sources, respectively, under the operational conditions described in Methods section. Cell growth (A₆₀₀), cyanide assimilation and PHAs accumulation (monitored by GC–MS) were followed for 145 h (Figure 2). The production of PHAs was determined after 90 h, when cyanide was completely consumed and about 10% octanoate (1.2 mM) was still remaining in the media. As deduced from the GC–MS analysis, the total PHAs content in wild-type strain was about 66% of CDW, with 53% scl-PHAs and 13% mcl-PHAs (Figure 2). The monomer composition of the PHAs was similar to that observed in flasks cultures (Table 1). Other strains like *Pseudomonas* 3Y2 produce PHAs consisting of both scl- and mcl-HA units, with 10–30% of scl-PHAs when growing on gluconate, octanoate, dodecanoate or oleate. However, *Pseudomonas* 3Y2 has only two PHA synthases belonging to class II, which display
ammonium chloride, sodium cyanide or cyanide from the jewelry residue, each at 2 mM initial concentration, as the sole nitrogen source (Table 1). The PHA type accumulated by *P. pseudoalcaligenes* CECT5344 during degradation of the cyanide-containing industrial residue has been found to be different depending on the bacterial strain used; scl-PHAs (Mpha− mutant), mcl-PHAs (Spha− mutant) or a mixture of both scl- and mcl-PHAs (wild-type). By contrast to wild-type, the Mpha− strain defective in the *phaC1ZC2* genes only accumulated scl-PHAs, whereas the Spha− strain deficient in the *phaC* gene only synthesized mcl-PHAs. The Mpha−/Spha− double mutant was unable to accumulate PHAs. The scl-PHAs content in Mpha− cells cultured with sodium cyanide was higher than in cells grown with jewelry residue, but the mcl-PHAs content in Spha− cells was lower with NaCN than in the presence of the cyanide-containing residue (Table 1). The scl-PHAs obtained in the Mpha− mutant were homopolymers of 3-hydroxybutyrate whereas the mcl-PHA monomer composition accumulated by Spha− mutant was similar to those observed in wild type cells, with about 95% 3-hydroxyoctanoate and 5% 3-hydroxyhexanoate monomers (Table 1). Although PHAs content of cyanide-grown cells was not very high for an industrial purpose by itself, it may be attractive as a value-added of the cyanide detoxification process. It is worth to mention that the jewelry industry located in the city of Córdoba, Spain, produces 4-5 tons per year of an alkaline residue containing up to 26 g L−1 of free cyanide (around 1 M) together with high amounts of heavy metals [1], thus making this effluent highly toxic and environmentally hazardous.

The ability of *P. pseudoalcaligenes* mutant strains to accumulate PHAs in batch reactor with the cyanide-rich jewelry residue as nitrogen source was also analyzed by the same procedure described for the wild-type strain. As expected, there were no significant differences in the ability to assimilate cyanide and octanoate between wild-type and mutant strains. After 90 h cyanide was completely consumed in all cultures and less than 10% octanoate remained in the media (Figures 2, 4). The amount of scl-PHAs accumulated in the Mpha− mutant was about 53% of CDW (Figure 4a), similar to that observed for the wild-type strain (Figure 2). The mcl-PHAs content in the Spha− mutant was about 21% of CDW (Figure 4b), slightly higher than in the wild-type strain (Figure 2). However, depending on the cultivation procedure, flask or reactor, the percentage of scl-PHAs and mcl-PHAs slightly changed in both wild-type and Mpha− mutant cells (Table 1; Figures 2, 4). It is worth to mention that in bioreactor cultures both pH (9.5) and oxygen saturation (10%) were kept constant throughout the bioremediation process, which is not the case in flask cultures.
Phylogenetic analysis of the *P. pseudoalcaligenes* CECT5344 PHA synthases

The genome of *P. pseudoalcaligenes* CECT5344 harbors three putative PHA synthase genes involved in metabolism of scl-PHAs (*phaC* gene) and mcl-PHAs (*phaC1* and *phaC2* genes) located in three different clusters (Figure 3a). The PhaC1 and PhaC2 synthases involved in mcl-PHAs and the PhaC synthase for scl-PHAs are rarely found together in other bacterial strains, excluding some pseudomonads like the *Pseudomonas* strains 61-3, USM 4-55 and 3Y2 (Figure 5). Thus, the *phbRphaBAC* and the *phaC1ZC2D* gene clusters have been identified in *Pseudomonas* sp. strain 61-3 and *Pseudomonas* sp. USM 4-55, respectively [23, 39]. The PhaC1 and PhaC2 synthases of *P. pseudoalcaligenes* CECT5344 share 57% identity and belong to class II PHA synthases, whereas the *P. pseudoalcaligenes* CECT5344 PhaC synthase is a member of class I PHA synthases and shares 52% identity with PhaC of *Cupriavidus necator*. Some *Pseudomonas* strains that contain homologues to *P. pseudoalcaligenes* *phaC1* and *phaC2* genes, but lack the *phaC* gene homologue, are *P. mendocina* ymp, *P. stutzeri* 1317, *P. putida* KT2440, *P. resinovorans* NRRL B-2649 and *P. nitroreducens* 0802 (Figure 5). All these *Pseudomonas* species harbor the *phaC1ZC2DFI* gene cluster.

![Figure 3](http://example.com/figure3.png)

Figure 3 PHAs accumulation in *P. pseudoalcaligenes* CECT5344 mutant strains defective in PHA synthesis. **a** Strategy followed for generation of the Mpha[−] and Spha[−] mutants of *P. pseudoalcaligenes* CECT5344. **b** Transmission electron microscopy images of Mpha[−] (left), Spha[−] (middle) and double Mpha[−]/{Spha[−]} (right) mutant strains of *P. pseudoalcaligenes* CECT5344. Cells were grown with 12.5 mM sodium octanoate and the cyanide-containing residue from the jewelry industry (2 mM initial concentration). Samples were analyzed at 30 h of cultivation, before cyanide was completely consumed.
gene cluster might be also acquired by horizontal gene transfer, although it lacks the direct repeat sequence and the composition of the neighbor genes is also different.

Conclusions
Our results demonstrate that the cyanotrophic bacterium *P. pseudoalcaligenes* CECT5344 is able to carry out the biodegradation of toxic cyanide-rich jewelry wastewater associated with production of PHAs as by-product. Experiments performed in flasks or in bioreactor cultures support that the type of PHA accumulated can be tailored. Both Mpha[−] (mcl-PHAs minus) and Spha[−] (scl-PHAs minus) mutants are able to assimilate cyanide, as well as wild-type, but Mpha[−] strain produces exclusively scl-PHAs and Spha[−] only produces mcl-PHAs, whereas the wild-type strain accumulates both types of PHAs. This constitutes a proof of concept to design more profitable processes to biodegrade cyanide-containing wastes.

Methods

Bacterial strains, growth conditions and plasmids *P. pseudoalcaligenes* CECT5344 (CECT: Spanish Type Culture Collection) was isolated by cyanide-enrichment cultivation from samples of the Guadalquivir River (Córdoba, Spain). This strain was able to assimilate cyanide as sole nitrogen source under alkaline conditions and it was classified as *Pseudomonas pseudoalcaligenes* by its 16S RNA sequence analysis [1]. The bacterial strains of *Escherichia coli* and *P. pseudoalcaligenes* were grown in LB rich medium [46] at 37 and 30°C, respectively. The appropriate antibiotics, nalidixic acid (10 μg mL^{−1}), ampicillin (150 μg mL^{−1}), gentamicin (20 μg mL^{−1}) and kanamycin (25 μg mL^{−1}), were added when required.

For the analysis of PHAs production in flask cultures, *P. pseudoalcaligenes* CECT5344 was first grown in LB media in order to obtain a large biomass. These cultures were centrifuged and the cells were suspended in M9 minimal medium [46] as a source of inoculums. The media were adjusted to pH 9.5 and inoculated with *P. pseudoalcaligenes* CECT5344 was first grown in LB medium to obtain a large biomass. These cultures were centrifuged and the cells were suspended in M9 minimal medium [46] as a source of inoculums. The media were adjusted to pH 9.5 and inoculated with *P. pseudoalcaligenes* CECT5344 was first grown in LB medium to obtain a large biomass. These cultures were centrifuged and the cells were suspended in M9 minimal medium [46] as a source of inoculums. The media were adjusted to pH 9.5 and inoculated with...
Batch reactor culture conditions

Experiments were carried out in a Biostat® B plus (Sartorius BBI Systems) 5 L bioreactor, using the following operational procedure based on [30]. The reactor was loaded with M9 minimal medium and further autoclaved. The working volume was 5 L. Sodium octanoate (12.5 mM) and jewelry residue (2 mM cyanide) were used as carbon and nitrogen sources, respectively. MgSO$_4$ and FeSO$_4$ solutions were sterilized by filtration and added to the M9 trace solution after autoclaving. Antifoam and the appropriate antibiotics (2 μM kanamycin) were used as carbon and nitrogen sources, respectively. MgSO$_4$ and FeSO$_4$ solutions were sterilized by filtration and added to the M9 trace solution after autoclaving. Antifoam and the appropriate antibiotics were also added to the media. The reactor was then inoculated with the appropriate bacterial strain to reach an initial A$_{600}$ of about 0.2 (25 mL of a bacterial suspension obtained from an overnight 500 mL LB culture). Temperature was maintained at 30°C and pH was initially adjusted to 9.5 and kept constant by automatic addition of 1 M NaOH. Continuous agitation at 450 rpm and dissolved oxygen saturation at 10% were controlled automatically. To prevent cyanohydrin acid (HCN) losses, a bioreactor exhaust cooler was connected to a washing flask containing a concentrated NaOH solution. The absence of cyanide in samples from this flask was confirmed during the process.

Analytical determinations

Cell growth was determined by following absorbance at 600 nm. To estimate biomass calculation, cell densities (expressed in grams of CDW per liter) were determined gravimetrically by using 50 mL Falcon tubes. Ammonium concentration was determined by the Nessler reagent as described previously [47]. Cyanide concentration was determined colorimetrically [48].

DNA manipulations and generation of mutant strains

DNA manipulations and other molecular biology techniques were essentially performed as described previously [46]. The mutant strain Mpha$^-$ of P. pseudocaligenes was constructed by deletion of thephaC1ZC2 genes and insertion of a kanamycin cassette resistance gene. In this mutant, deletion of bothphaC1 andphaC2 genes was partial, whereasphaZ gene was completely deleted. A central region of 619 bp in thephaC1 gene was cloned into pBluescript KS (±) after PCR amplification with primersphaC1E (5'-GAAGGCTTCCGATTCCGCAAGAAC-3'; EcoRI restriction site is underlined) andphaC1S (5'-GCAGGTTGCGTAAGGCAACCCAGTAGTTC-3'; SalI restriction site is underlined) to yield thepBKs-A construct. An internal fragment of 506 bp of thephaC2 gene was amplified by PCR using genomic DNA from P. pseudocaligenes CECT5344 as template and the oligonucleotidesphaC2S (5'-TCGAAGTGCACCGAACGGAAGGTTCC-3'; XhoI restriction site is underlined) andphaC2X (5'-CTTGGGACTTCCGAGGTTTCCC-3'; XhoI restriction site is underlined). This fragment was digested with the appropriate restriction enzymes and cloned into theunique SalI and XhoI sites of thepBKs-A plasmid to yieldpBKs-AB. The 2.2 kb XhoII/SalI fragment that contains the kanamycin cassette resistance gene frompSUP2025 [49] was ligated into thepBKs-AB vector previously digested with SalI to generatepBKs-AK. This construct was digested withEcoRI andKpnI, yielding a 3.3 kb fragment that contains the kanamycin cassette resistance gene flanked by the internal region of thephaC1 andphaC2 genes. The resulting fragment was cloned into pK18mob, a suicide plasmid for Pseudomonas that confers kanamycin resistance but lacks of a functional replication origin for this bacterium [50]. The final construct pK18mob-AK was used to deliver theΔphaC1ZC2 mutation to the host chromosome via homologous recombination. Biparental mating was performed using E. coli S17-1 (pK18mob-AK) as the donor.
strain and a spontaneous nalidixic acid resistant mutant of *P. pseudoalcaligenes* CECT5344 as the recipient strain. Transconjugants were selected in M9 media with nalidixic acid and kanamycin. Disruption of *phaC1ZC2* genes was confirmed by PCR sequencing analysis.

To generate the Spha− mutant of *P. pseudoalcaligenes*, the *phaC* gene was amplified by PCR using the oligonucleotides phbB (5′-GCCTGCTGACAGAATCTTTCCGCC-3′; BglII restriction site is underlined) and phbH (5′-ATAGGCCGTCGGAGAAGCTTTGAACCC-3′; HindIII restriction site is underlined) and *P. pseudoalcaligenes* CECT5344 genomic DNA as template. The amplified DNA fragment was then inserted into pBluescript II KS (±) previously digested with EcoRV and Smal to generate the pBKS-phaC construct. The 1 kb EcoRI/PstI fragment that contains the gentamicin resistance cassette from pMS255 [51] was ligated into the pBKS-phaC vector to generate the pBKS-ΔphaC construct. The restriction enzymes SpeI and HindIII were used to digest pBKS-ΔphaC, generating a 2.1 kb fragment containing the *phaC* gene disrupted by the gentamicin resistance cassette. This fragment was then ligated into the pK18mob vector previously digested with HindIII and Xbal to generate pK18mob-ΔphaC. Biparental mating was performed using *E. coli* S17-1 (pK18mob-ΔphaC) as donor strain and the nalidixic acid resistant mutant of *P. pseudoalcaligenes* CECT5344 as recipient strain. Transconjugants (nalidixic acid and gentamicin resistant, and kanamycin sensitive) were isolated. Disruption of *phaC* gene was confirmed by PCR sequencing.

A double mutant Mpha−/Spha− was obtained by biparental mating using *E. coli* S17-1 (pK18mob-ΔphaC) as donor strain and the *P. pseudoalcaligenes* Mpha− mutant as recipient strain. Transconjugants were selected in M9 with nalidixic acid, kanamycin and gentamicin. Disruptions of *phaC1ZC2* and *phaC* genes were confirmed by PCR sequencing.

Transmission electron microscopy

Cells were harvested, washed twice in M9 minimal medium and fixed in 2% (w/v) glutaraldehyde in the same solution. Then, cells were suspended in 1% (w/v) OsO₄ for 1 h, gradually dehydrated in acetone 30, 50, 70, 90 and 100% (v/v), 30 min each, and finally treated with propylene oxide (two changes, 10 min each). Afterwards, cells were embedded sequentially into 2.1, 1:1, 1:2 propylene oxide-resin. Ultrathin sections (thickness 50 nm) were cut with a Leica Ultracut R ultramicrotome (Leica Inc, Buffalo, USA) using a diatome diamond knife. The sections were picked up with 200 mesh copper grids coated with a layer of carbon and subsequently observed in a Jeol JEM-1400 (Tokyo, Japan) electron microscope. These analyses were carried out by using the microscopy facilities at the central services for research support (SCAI) of the University of Córdoba (Spain).

Gas chromatography-mass spectrometry (GC–MS) analysis for PHAs and octanoate determinations

Polyhydroxyalkanoate monomer composition and cellular PHAs content were determined by GC–MS of the methanolised polyester. Samples of 50–150 mL culture medium were centrifuged for 20 min at 12,000 × g and 4°C. Cell pellets were freeze-dried for 24 h in a lyophilizer and weighed. Methanysis procedure was carried out by suspending 5–10 mg of lyophilized aliquots in 0.5 mL chloroform and 2 mL methanol containing 15% sulfuric acid and 0.5 mg mL⁻¹ 3-methylbenzoic acid (internal standard) and then incubated at 80°C for 7 h. After cooling, 1 mL demineralized water and 1 mL chloroform were added, and the organic phase containing the resulting methyl esters of monomers was analyzed by GC–MS [52]. An Agilent series 7890A coupled with 5975C MS detector (EI, 70 eV) and a split-splitless injector were used for analysis. An aliquot (1 μL) of organic phase was injected into the gas chromatograph at a split ratio 1:20. Separation of compounds was achieved using an HP-5 MS capillary column (5% phenyl-95% methyl siloxane, 30 m × 0.25 mm film thickness). Helium was used as carrier gas at a flow rate of 1 mL min⁻¹. The injector and transfer line temperature were set at 275 and 300°C, respectively. Oven temperature was initially 80°C for 2 min, then rose from 80°C up to 150°C at 5°C min⁻¹, and kept at 150°C for 1 min. The mass spectra were recorded in full scan mode (m/z 40–550). 3-hydroxybutyric acid methyl ester was resolved using selected ion monitoring mode (SIM).

Octanoate concentration in the medium was analyzed by GC–MS following the procedure described by Escapa et al. [53].

Authors’ contributions

IM performed the experiments and wrote the manuscript. II and LPS carried out reactor experiments. MAP and FP carried out the GC–MS analysis. VM&A participated in the phylogenetic analysis. CMV, MDR, FC and MAP participated in designing the experiments and in revising the manuscript. All authors read and approved the final manuscript.

Author details

1 Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, 1ª Planta Universidad de Córdoba, Córdoba 14071, Spain.

2 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain.

Acknowledgements

This work was funded by Ministerio de Economía y Competitividad (Grants PET2008-0048, BIO2011-30026-C02-02 and BIO2013-44878-R) and by Junta de Andalucía (Grant CVI-7560). We also thank the companies GEMASUR, SAVECO and AVENIR for their fruitful collaborations.

Compliance with ethical guidelines

The authors declare that they have no competing interest.
References

1. Luque-Almagro VM, Huertas MJ, Martínez-Luque M, Moreno-Viván C, Roldán MD, García-Gil LJ et al (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71(2):940–947
2. Quesada A, Guirro M, Merchan F, Blázquez B, Igeño ML, Blasco R (2007) Essential role of cytochrome bd-related oxidase in cyanide resistance of Pseudomonas pseudocaldovinensis CECT3344. Appl Environ Microbiol 73(16):5118–5124
3. Huertas MJ, Luque-Almagro VM, Martínez-Luque M, Blasco R, Moreno-Viván C, Castillo F et al (2006) Cyanide metabolism of Pseudomonas pseudocaldovinensis CECT3344: role of siderophores. Biochim Soc Trans 34(1):152–155
4. Estepa J, Luque-Almagro VM, Manso I, Escribano MP, Martínez-Luque M, Castillo F et al (2012) The nitT gene cluster of Pseudomonas pseudocaldovinensis CECT3344 involved in assimilation of nitriles is essential for growth on cyanide. Environ Microbiol Rep 4(3):326–334
5. Luque-Almagro VM, Acera F, Igeño ML, Wibberg D, Roldán MD, Sáez LP et al (2013) Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudocaldovinensis CECT3344. Environ Microbiol 15(1):253–270
6. Wibberg D, Luque-Almagro VM, Igeño ML, Bremges A, Roldán MD, Merchan F et al (2014) Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudocaldovinensis CECT3344. J Biotechnol 175(10):67–68
7. Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45(1):71–78
8. García B, Olivera ER, Mirambeles B, Fernández-Valverde M, Cañedo LM, Prieto MA et al (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catalobol. J Biol Chem 274(41):29228–29241
9. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53
10. Prieto MA, de Eugenio LI, Luengo JM, Witthöft B (2007) Synthesis and degradation of polyhydroxyalkanoates. In: Ramos JL, Filloux A (eds) Pseudomonas: A Model System in Biology, vol 5. Springer, New York, pp 397–428
11. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and platform technology for the production of tailor-made bioparticles. Appl Microbiol Biotechnol 82(5):147–153
12. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. In: Ramos JL, Filloux A (eds) Pseudomonas: A Model System in Biology, vol 5. Springer, New York, pp 397–428
13. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carboxysomes). J Bacteriol 191(10):3195–3202
14. Chen GQ (2010) Plastics from bacteria: natural functions and applications, vol 14. Springer, Berlin, Heidelberg
15. Potter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6(2):552–560
16. Tortajada M, da Ferreira Silva L, Prieto MA (2013) Second-generation functionalized medium-chain-length polyhydroxyalkanoates. The gateway to high-value bioplastic applications. Inter Microbiol 16(1):1–15
17. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. In J Biol Macromol 25(1):13–19
18. Rehm BH (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made biopolymers. Curr Issues Mol Biol 9:41–62
19. Liebergesell M, Rahalkar S, Steinbüchel A (2000) Analysis of the Thio‐capsa pflhgr polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl Microbiol Biotechnol 54:186–194
20. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847
21. Huisman GW, Wonink E, Meirma R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans: Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266(4):2191–2198
22. Matsuoka H, Manji S, Taguchi K, Mato M, Fukui T, Doi Y (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J Bacteriol 180(24):6459–6467
23. Ashby RD, Solaiman DK, Foglia TA (2002) The synthesis of short- and medium-chain-length polyhydroxyalkanoates) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans. J Ind Microbiol Biotechnol 28(1):147–153
24. Hang X, Lin Z, Chen J, Wang G, Hong K, Chen GQ (2002) Polyhydroxyalkanoate biosynthesis in Pseudomonas pseudocaldovinensis Y51. FEMS Microbiol Lett 212(1):71–75
25. Chen JY, Liu T, Zheng Z, Chen JC, Chen GQ (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett 234(2):231–237
26. McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183(14):4235–4243
27. Satoh Y, Minamoto N, Tajima K, Munekata M (2002) Polyhydroxyalkanoate synthase from Bacillus sp. NT005 is composed of PhaC and PhaR. J Biosci Bioeng 94(4):343–350
28. de Eugenio LI, García P, Luengo JM, Sanz JM, San Román J, García JL et al (2007) Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442. J Biol Chem 282(7):4951–4962
29. Huertas MJ, Sáez LP, Roldán MD, Luque-Almagro VM, Martínez-Luque M, Blasco R et al (2010) Alkaline cyanide degradation by Pseudomonas pseudocaldovinensis CECT3344 in a batch reactor. Influence of pH. J Hazard Mater 179(1):72–78
30. Urtuúa V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Macromol 70:208–213
31. Tobin KM, O’Connor KE (2005) Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol Lett 253(1):111–118
32. Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71(4):2046–2052
33. Nikodinovic J, Kenny ST, Babu RP, Woods T, Blau WJ, O’Connor KE (2008) The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl Microbiol Biotechnol 80:665–673
34. Carrone F, Sánchez-Peinado MM, Juárez-Jiménez B, González-López J, Pozo C (2010) Biological treatment of two-phase olive mill wastewater (TDOMW, aperoju): polyhydroxyalkanoates (PHAs) production by Azotobacter strains: J Microbiol Biotechnol 20(3):594–601
35. Tamboli DP, Kurade MB, Waghmode TR, Joshi SM, Govindwar SP (2010) Exploring the ability of Sphingobacterium sp. ATMM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of Sphingobacterium strains. J Microbiol Biotechnol 20(3):594–601
36. Mohan SV, Reddy MV (2013) Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mutant culture using Taguchi design of experimental methodology. Bioresour Technol 128:409–416
37. Delamarre SC, Chang HJ, Bart CA (2005) Identification and characterization of two polyhydroxyalkanoate biosynthesis loci in Pseudomonas sp. strain 312. Appl Microbiol Biotechnol 69:293–303
38. Steinbüchel A, Fuestchenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16(10):419–427
39. Tribelli PM, Di Martino C, López NI, Raiger-lustman LI (2012) Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in
the Antarctic polyhydroxyalkanoate producer *Pseudomonas extremaustralis*. Biodegradation 23(5):645–651
41. Yan S, Subramanian SB, Tyagi RD, Surampalli RY, Zhang TC (2010) Emerging contaminants of environmental concern: source, transport, fate, and treatment. Pract Period Hazard Toxic Radioact Waste Manage 14(1):2–20
42. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS et al (2010) Cloning and characterization of poly(3-hydroxybutyrate) biosynthesis genes from *Pseudomonas* sp. USM 4-55. J Basic Microbiol 50(2):179–189
43. Pettinari JM, Chaneton L, Vazquez G, Steinbüchel A, Méndez BS (2003) Insertion sequence-like elements associated with putative polyhydroxybutyrate regulatory genes in Azotobacter sp. FA8. Plasmid 50(1):36–44
44. Segura D, Cruz T, Espín G (2003) Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-β-hydroxybutyrate synthesis. Arch Microbiol 179:437–443
45. Ayub ND, Pettinari MJ, Méndez BS, López NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic *Pseudomonas* are situated within a genomic island. Plasmid 58(3):240–248
46. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY
47. Morrison GR (1971) Microchemical determination of organic nitrogen with nessler reagent. Anal Biochem 43(2):527–532
48. Asmus E, Gerschagen H (1953) The use of barbituric acid for the photometric determination of cyanide and thiocyanate. Z Anal Chem 138:414–422
49. Simon R, Priefter U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in Gram negative bacteria. Biotechnol 1(9):784–791
50. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. Gene 145(1):69–73
51. Becker A, Schmidt M, Jäger W, Pühler A (1995) New gentamicin-resistance and lacZ promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 162(1):37–39
52. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by *Pseudomonas oleovorans*: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkanoates. Appl Environ Microbiol 54(12):2924–2932
53. Escapa IF, Garcia JL, Bühler B, Blank LM, Prieto MA (2012) The polyhydroxyalkanoate metabolism controls carbon and energy spillage in *Pseudomonas putida*. Environ Microbiol 14(4):1049–1063
54. Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425
55. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York
56. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739