Draft Genome Sequence of the Anoxygenic Phototrophic Bacterium *Rhodoferax* sp. Strain U11-2br, Isolated from a Mountain Lake on the Ulagan Plateau

E. D. Bakhmutova, A. O. Izotova, S. V. Toshchakov, Z. B. Namsaraev, N. I. Yermolaeva, A. V. Komova

National Research Center “Kurchatov Institute”, Moscow, Russia

Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Barnaul, Russia

ABSTRACT We report the draft genome sequence of an anoxygenic phototrophic bacterium, *Rhodoferax* sp. strain U11-2br, which was isolated from a freshwater mountain lake on the Ulagan Plateau (Altai, Russia). The assembly contains 4,514,979 bp, with a GC content of 59.9%.

The Ulagan Plateau is located in the south of Western Siberia. Research on the area has been mainly focused on paleoecology (1) and archaeology (2). Here, we present the first results of a microbiological study of the mountain lakes of the Ulagan Plateau.

Rhodoferax sp. strain U11-2br was isolated from a small (0.01-km³) freshwater mountain lake (50°24’32”N, 87°35’60”E). The lake is surrounded by a mountain coniferous forest. At the time of sampling (July 2018), the water temperature was 12°C and the total mineralization was 0.098 g/liter (pH 8.44). A combined sample of sediment and water column was used to obtain an enrichment culture in the light. The U4 medium for the enrichment culture and subsequent agar shake dilutions contained the following: NaHCO₃, 115 mg/liter of distilled water; KNO₃, 0.5 mg/liter; Na₂SO₄, 6 mg/liter; NaCl, 1.5 mg/liter; K₂HPO₄, 10 mg/liter; sodium acetate, 500 mg/liter; the pH of the medium was adjusted to 8.5. Light-brown colonies composed of slightly curved motile rods were developed in an agar shake tube, and a pure culture was obtained by separating a single colony. The pure isolate was confirmed using optical microscopy and 16S rRNA gene sequencing, and it was designated *Rhodoferax* sp. strain U11-2br.

Genomic DNA was isolated from the cell culture using the QIAamp DNA minikit (Qiagen, Dusseldorf, Germany) following the manufacturer’s recommendations. A paired-end DNA library (average insert size, 310 bp) was constructed using the Nextera XT DNA library preparation kit for Illumina (Illumina, USA). The DNA library was sequenced using an Illumina MiSeq system with 150-bp paired-end reads.

The draft genome sequence of *Rhodoferax* sp. strain U11-2br was constructed using the Shovill v. 1.1.0 pipeline (3), with read trimming using Trimmomatic v. 0.39 (4). Error correction of the Illumina reads was conducted using Lighter v. 1.1.2 (5). Overlapping and stitching of paired-end reads were completed with FLASH v. 1.2.11 (6). These reads were assembled de novo with SPAdes v. 3.14.1 (7). As a result, 78 contigs were assembled (N₅₀, 108,245 bp). The draft genome sequence was annotated with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (8). The genome size is estimated to be 4,514,979 bp, with a GC content of 59.9%. Default parameters were used except where otherwise noted.

The sequenced genome was compared to the closest neighbors’ genomes with the ChunLab online average nucleotide identity (ANI) calculator (https://www.ezbiocloud.net/tools/ani), which uses the OrthoANIu algorithm (9). ANI analyses confirmed discrepancies with the genomes of the closest neighbors.

Citation Bakhmutova ED, Izotova AO, Toshchakov SV, Namsaraev ZB, Yermolaeva NI, Komova AV. 2021. Draft genome sequence of the anoxygenic phototrophic bacterium *Rhodoferax* sp. strain U11-2br, isolated from a mountain lake on the Ulagan Plateau. Microbiol Resour Announc 10:e00675-21. https://doi.org/10.1128/MRA.00675-21.

Editor Julie C. Dunning Hotopp, University of Maryland School of Medicine

Copyright © 2021 Bakhmutova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to A. V. Komova, komovaav@gmail.com.

Received 2 July 2021

Accepted 17 September 2021

Published 14 October 2021
The *Rhodoferax* sp. strain U11-2br genome has an ANI value of 75.64%, compared with the genome of *Rhodoferax ferrireducens* T118 (GenBank accession number GCA_000013605.1), with an average aligned length of 1,246,512 bp. The *Rhodoferax* sp. strain U11-2br genome has an ANI value of 93.55%, compared with the genome of *Rhodoferax fermentans* DSM 10138 (GenBank accession number GCA_016583655.1), with an average aligned length of 2,631,570 bp.

The draft genome sequence contains 4,101 coding sequences in total, 9 rRNAs (including three 5S rRNAs, three 16S rRNAs, and three 23S rRNAs), 49 tRNAs, and 3 noncoding RNAs. The draft genome sequence of *Rhodoferax* sp. strain U11-2br contains genes responsible for the metabolism of aromatic compounds (protocatechuate 4,5-dioxygenase subunit alpha [accession number MBT3067934.1], protocatechuate 3,4-dioxygenase [accession number MBT3067933.1], 4-carboxy-4-hydroxy-2-oxoadipate aldolase/oxaloacetate decarboxylase [accession number MBT3067937.1], LysR family transcriptional regulator [accession number MBT3067931.1], and others). In addition, genes involved in detoxification of a variety of compounds (chromate efflux transporter [accession number MBT3066395.1], chromate transporter [accession number MBT3065318.1] and others) were detected.

Data availability. The genome has been deposited in NCBI GenBank and is available under accession number JAHFZF0000000.1. Raw sequencing reads are available in the NCBI SRA under accession number SRR14650906.

ACKNOWLEDGMENTS

The sampling was performed within the Institute for Water and Environmental Problems of the Siberian Branch of the Russian Academy of Sciences State Task framework (registration number 121031200178-8). The genome sequencing and analysis were supported by a Ministry of Science and Higher Education of the Russian Federation grant for the Kurchatov Center of Genome Research (agreement 075-15-2019-1659).

REFERENCES

1. Blyakharchuk TA, Wright HE, Borodavko PS, van der Knaap WO, Ammann B. 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 209:259–279. https://doi.org/10.1016/j.palaeo.2004.02.011.

2. Rudenko SI. 1970. Frozen tombs of Siberia: the Pazyryk burials of Iron Age horsemen. University of California Press, Berkeley, CA.

3. Seemann T. 2017. Shovill: faster SPAdes assembly of Illumina reads. https://github.com/tseemann/shovill.

4. Bolger AM, Lohse M, Usadel B. 2014. Trimomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

5. Song L, Florea L, Langmead B. 2014. Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol 15:509. https://doi.org/10.1186/s13059-014-0509-9.

6. Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507.

7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pyshkin AV, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

8. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.

9. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4.