Original Article

The association of glycemic index and glycemic load with elevated blood pressure in Iranian women

Seyyedeh Forough Sajjadi1, Alireza Milajerdi1, Leila Azadbakht1,2,3,4*

1Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
2Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
3Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Introduction: Dietary intake is a risk factor related to elevated blood pressure (EBP). Few studies have investigated an association of dietary glycemic index (GI) and glycemic load (GL) with the EBP. The aim of the current study was to examine the association of dietary GI and GL with the EBP among a group of healthy women.

Methods: This population-based cross-sectional study was conducted on 306 healthy women. Dietary GI and GL were measured using a validated semi-quantitative food frequency questionnaire (FFQ). Blood pressure (BP) was measured twice by a mercury sphygmomanometer from the right arm. Anthropometric measurements were also assessed according to the standard protocols.

Results: Before controlling for potential confounders, no significant association was seen between dietary GI/GL and SBP/DBP. Also after controlling for potential confounders, the associations did not change between dietary GI and SBP (odds ratio [OR]: 0.96; 95% CI: 0.42-2.17, P = 0.87), between GI and DBP (OR: 0.72; 95% CI: 0.35-1.45, P = 0.37), as well as between GL and SBP (OR: 1.04; 95% CI: 0.43-2.49, P = 1.00) and between GL and DBP (OR: 1.20; 95% CI: 0.56-2.00, P = 0.61). In a stratified analysis by obesity and overweight, differences between tertiles of GI were not significant (OR: 0.75; 95% CI: 0.42-1.31, P = 0.31), even after adjustment for the potential confounders (OR: 1.54; 95% CI: 0.70-3.40, P = 0.26).

Conclusion: This study did not show a significant association between dietary GI/GL and the risk of high SBP/DBP. In addition, no significant association was found between dietary GI/GL and odds of overweight or obesity in adult women.

Please cite this article as: Sajjadi SF, Milajerdi A, Azadbakht L. The association of glycemic index and glycemic load with elevated blood pressure in Iranian women. J Cardiovasc Thorac Res 2019;11(4):272-279. doi: 10.15171/jcvtr.2019.45.

Introduction

Elevated blood pressure (EBP), based on adult treatment panel III, is defined as a systolic blood pressure (SBP) ≥130 mmHg and/or diastolic blood pressure (DBP) ≥85 mmHg.1 Prevalence of hypertension has gently increased in the 2 last decades. Hypertension has been estimated to cause annually 7.5 million deaths worldwide.2,3 Unfortunately, prevalence of hypertension is high among Iranians.4,5 Hypertension causes different micro- and macro-vascular complications and increases all-cause and cardiovascular disease mortality.6 As the high complications due to EBP, its prevention is a public health priority, worldwide.

Several risk factors including genetic, environmental, lifestyle and psychosocial factors as well as dietary intake have been linked to the risk of EBP.7,8 Among them, dietary intake is one of the main environmental risk factors related to EBP.9,10 For instance, intakes of sodium, potassium, calcium, magnesium, iron, phosphorus or a combination of these modalities lower blood pressure (BP).9,12 In addition, dietary intake of carbohydrates has also found to be in relation with BP.10,11,12 Furthermore, some studies have found no association between dietary intake of some carbohydrates and BP, and showed that increased intake of dietary carbohydrate could not elevate BP.10,13 This association was direct in some others which demonstrated diets high in carbohydrate are associated with slightly higher BP.14 It seems that the association strongly depends on amount and type of the ingested carbohydrates. glycemic index (GI) is an indicator of dietary carbohydrate quality, which defines as the potential of carbohydrate containing food to

*Corresponding Author: Leila Azadbakht, Email: azadbakht@hlth.mui.ac.ir

© 2019 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
increase post-prandial blood glucose.10,15 Previous studies have shown that adherence to a low GI diet may reduce BP.16,17 Likewise, other studies that demonstrated excessive dietary intake of carbohydrates, particularly from high GI carbohydrates, have found to increase BP.13,20 In contrast, some other studies reported no association between dietary GI and SBP/DBP.16,21

Besides to dietary GI, glycemic load (GL) is as a measure of carbohydrate quality and quantity, represents both the GI and amount of the ingested carbohydrate.22 In this regard, some studies have shown a significant association between consumption of a low GL diet and decreased BP.11 while others failed to find any association.23,24 It should be noted that higher post-prandial glycemic response due to consumption of high GI/GL carbohydrates causes hyperinsulinemia. Hyperinsulinemia has suggested increasing sympathetic nervous system activity, which enhance heart rate, cardiac output, vascular resistance, sodium retention and thus BP.14

Despite previous studies investigated the association of GI/GL with BP in western countries; few studies have investigated this association among Iranian population, especially among healthy women. High consumption of carbohydrates including white bread and white rice, which are mainly high in GI/GL,25 is common among Iranians. We conducted this study to investigate association of dietary GI/GL with EBP among healthy women referred to Tehran health centers.

Materials and Methods

Subjects and study protocol

This is a cross-sectional study on women referring to health centers affiliated to Tehran University of Medical Sciences. Based on inclusion criteria, 306 women who were referred to health centers were selected. Inclusion criteria were satisfaction to participate in the study, being Iranian, and lack of chronic diseases such as diabetes, cardiovascular disease, hypertension, cancer, liver and kidney diseases. Those who were immigrant, pregnant or lactating were excluded. Subjects with energy intake fewer than 800 or above 4200 kcal/d were also excluded. All participants signed an informed written consent before the entrance.

Assessment of exposure

A validated and reliable 168-item food frequency questionnaire (FFQ) was used to assess dietary intake of participants. This semi-quantitative questionnaire consists of standard portion sizes for each food item and has been designed according to the Willett method. Participants were asked to determine the frequency of consumption of each food item during the previous year, based on serving sizes. Validity and reliability of the FFQ were determined previously.26 Food intakes reported in household measures converted to grams of food per day using the Nutritionist IV software.

Total GI of participants’ diet was estimated using the following formula: \(\sum (\text{GIs} \times \text{total available carbohydrate})/\text{total available carbohydrate \times 100} \) and expressed as g/d.

Assessment of outcome

BP was measured by a professional clinic staff using a mercury sphygmomanometer from the right arm with appropriately sized BP cuffs. BP was measured in a sitting position and underwent measurements twice. The first measurement was taken after 5 minutes of resting. After a 15-minute rest, a second measurement was taken; the average of the 2 values is reported. In this study the description of EBP, based on adult treatment panel III, used to define a high SBP (\(\geq 130 \) mm Hg) and/or high DBP (\(\geq 85 \) mm Hg).

Assessment of anthropometric measures

Anthropometric measurements including participants’ weight, height and waist circumference were measured according to the standard protocols.29 Height and weight were measured when wearing minimal clothing and without shoes using stadiometer and digital scale to the nearest of 0.1 cm and 100 g, respectively. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m\(^2\)). Waist circumference was measured in the middle of distance between the lowest gear and top of the iliac crest (narrowest girth), in a standing position and at the end of normal exhalation, when wearing minimum clothing to the nearest of 0.1 cm.

Assessment of other variables

General information including participants’ name, age, gender, location and contact number were recruited using a questionnaire. Socio-economic status of participants...
was determined by a questionnaire using family size (≤4, >4 persons), education status (academic or non-academic), and house ownership (yes, no). The score of 1 was given in case of having family members of ≤4, academic educations, and house ownership. Participants who had family members of >4, had non-academic educations, or were not house owners, were given the score of 0. The Socio-economic status score was obtained from summing up of these scores, which gave a score of 0 (poor), 1 (middle class) and 2 (high). We recorded the regular use of drugs that affect BP, including the pain medications, caffeine, and herbal supplement which used by participants then adjust the effect of drugs on BP and weight in analysis. Participants were also asked to record their daily activities during 24 hours. Mean physical activity was estimated using the following equation: PA mean = Σ (time activity × MET). Where, PA mean is the mean physical activity, Time activity is the total time of each activity within a day, and MET is the metabolic equivalent adapted from a reference list.44

Statistical analysis
All statistical analysis was performed using the IBM SPSS software version 22.0 (SPSS, Chicago, IL, USA). Normal distribution of data was checked by the Kolmogorov-Smirnov test. One-way ANOVA was used for assessed differences between tertiles of dietary GI and dietary GL. The differences between dietary intakes of participants based on the tertiles of dietary GI and dietary GL were assessed by one-way ANOVA. Logistic regression was used to assess the association of dietary GI and GL and the risk of high BP and the risk of overweight and obesity among women. Three models were constructed. Model 1 was adjusted for age and energy intake. Model 2 was adjusted for marriage status, education, occupation, number of children, family size, supplement use, medications use, and physical activity (METs/d), and Model 3 additionally adjusted for dietary intake of fiber and magnesium. Results were presented as odds ratios (ORs) and 95% confidence intervals (CIs) compared with the tertiles of dietary GI and dietary GL.

Results
General characteristics of participants throughout tertiles of dietary GI and dietary GL are indicated in Table 1. Totally, data on 306 women (age 32.42 ± 8.35 years, BMI 24.64 ± 4.68 kg/m²) were analyzed in the current study. Participants with the highest dietary GI tended to have lower height (P=0.01) and weight (P=0.03) than those with the lowest dietary GI. However, differences in age (P=0.36), BMI (P=0.23), waist circumference (P=0.20), SBP (P=0.10), DBP (P=0.22), physical activity (P=0.16), and marriage status (P=0.52) were not significant throughout tertiles of dietary GI. In addition, subjects in the highest tertile of dietary GL had lower physical activity (P=0.05) as compared with those at the lowest tertile. Significant differences in education were found between tertiles of dietary GI and GL (both P=0.04). However, no significant differences were found in terms of age (P=0.12), weight (P=0.34), height (P=0.22), BMI (P=0.33), waist circumference (P=0.39), SBP (P=0.94), DBP (P=0.35), and marriage status (P=0.99) between

Table 1. Socio-demographic characteristics of subjects according to the tertiles of dietary glycemic index and dietary glycemic load

Variables	N	1	2	3	P	1	2	3	P
Age (y)	306	32.75±8.19	33.03±8.19	31.47±8.61	0.36	32.98±7.96	31.24±7.96	31.05±8.36	0.12
Weight (kg)	306	68.33±11.27	65.34±11.45	63.83±12.41	0.03	65.84±12.51	64.53±11.66	67.11±13.26	0.34
Height (m)	306	163.96±5.13	163.29±5.57	161.76±5.52	0.01	163.67±5.48	163.00±5.03	162.35±5.84	0.22
BMI (kg/m²)	306	25.29±5.01	24.31±4.32	24.32±4.67	0.23	24.51±4.71	24.23±4.18	25.18±5.10	0.33
Waist circumference (cm)	306	87.05±12.46	84.27±11.58	84.98±10.60	0.20	85.35±11.66	84.35±9.78	86.58±13.09	0.39
SBP (mm Hg)	306	116.72±13.28	114.12±12.91	112.82±13.55	0.10	114.90±13.48	113.32±12.62	114.45±13.90	0.94
DBP (mm Hg)	306	73.89±6.12	72.89±6.23	72.42±6.31	0.22	73.01±6.06	73.72±5.76	72.46±6.82	0.35
Physical activity (METs/d)	306	31.42±3.73	30.77±3.21	30.50±3.52	0.16	30.77±3.56	31.55±3.65	30.37±3.21	0.05
Education (%)									0.99
Married	136	53.5%	52.5%	59.8%	0.52	55.4%	54.9%	55.4%	
Single	168	46.5%	47.5%	40.2%	0.52	44.6%	45.1%	44.6%	
Low-educated	101	4.0%	17.8%	78.2%	0.04	4.0%	3.9%	10.9%	0.04
Diploma	102	6.9%	30.7%	62.4%	0.20	8.0%	30.4%	30.7%	
Academic	103	7.8%	33.3%	58.8%	0.04	75.2%	65.7%	58.4%	

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.

P values are resulted from ANOVA for continues variables and chi-square test for qualitative variables.

Data are indicated as mean ± SD otherwise indicated.

274 | J Cardiovasc Thorac Res, 2019, 11(4), 272-279
tertiles of dietary GL.

Dietary intakes of participants based on tertiles of dietary GI and GL are shown in Table 2. Dietary intakes of total energy (P = 0.006), protein (P = 0.001), fat (P = 0.0001), vitamin B2 (P = 0.001), vitamin C (P = 0.0001), β-carotene (P = 0.0001), calcium (P = 0.0001), potassium (P = 0.0001), fruit (P = 0.0001), vegetable (P = 0.0001), dairy (P = 0.0001) and meat (P = 0.0001) were significantly lower among participants in the 3rd tertile than those in the first tertile of dietary GI. Furthermore, participants in the highest tertile of dietary GI had higher intakes of carbohydrate (P = 0.0001), vitamin B1 (P = 0.0001), and refined grains (P = 0.0001) as compared to those in the lowest tertile. With regards to the dietary GI, lower intakes of protein (P = 0.0001), vitamin B2 (P = 0.0001), calcium (P = 0.002), and potassium (P = 0.0001) were found among subjects in the 3rd versus those in the first tertile of dietary GL. In addition, participants with the highest dietary GI had significantly higher intake of energy (P = 0.0001), carbohydrate (P = 0.0001), fat (P = 0.002), vitamin B1 (P = 0.03), whole grains (P = 0.0001), refined grains (P = 0.0001) and fruits (P = 0.04) than those with the lowest dietary GI. Differences in intakes of vitamin C (P = 0.16), vitamin E (P = 0.21), β-carotene (P = 0.26), sodium (P = 0.20), vegetable (P = 0.89), dairy (P = 0.18) and meat (P = 0.90) were not statistically significant between the highest as compared to the lowest tertile of dietary GI.

Multivariate-adjusted models with 95% confidence intervals for risk of high SBP and DBP across tertiles of dietary GI and GL have been indicated in Table 3. In the crude model, no significant association was found between GI with SBP and DBP (for SBP: OR: 0.71; 95% CI: 0.34-1.30, 0.30; for DBP: OR: 0.61; 95% CI: 0.34-1.10, P = 0.10). In addition, no significant correlation was found between GL with SBP and DBP (for SBP: OR: 1.11; 95% CI: 0.34-1.38, P = 0.73; For DBP: OR: 0.95; 95% CI: 0.53-1.72, P = 0.88). Furthermore, after adjustment for the confounders including age, energy intake, marriage status, education, occupation, number of children, family size, supplement and medications use, physical activity, as well as dietary intake of fiber and magnesium in the final model, the associations remained unchanged; Such that no significant association were found between GI and SBP (OR: 0.96; 95% CI: 0.42-2.17, P = 0.87), GI and DBP (OR: 0.72; 95% CI: 0.35-1.45, P = 0.37), GL and SBP (OR: 1.04; 95% CI: 0.43-2.49, P = 1.00), as well as between GL and DBP (OR: 1.20; 95% CI: 0.56-2.00, P = 0.61).

Table 2 shows multivariate-adjusted models with 95% confidence intervals for risk of obesity and overweight across tertiles of dietary GI and GL. In the crude model before adjustment for the confounders, participants in the highest tertile of GI were at 80% higher risk for obesity and overweight (OR: 1.80; 95% CI: 1.02-3.16, P = 0.03) than those in the lowest tertile. After controlling for the potential confounders, the association disappeared. In addition, differences in obesity and overweight between the highest rather the lowest tertile of GI were not significant (OR: 0.75; 95% CI: 0.42-1.31, P = 0.31). This
On the other hand, some other studies have found a significant association between dietary GI/GL and DBP in adults and aged peoples. However, it should be noted that participants in these studies were from both genders and suffered from hypertension. Therefore, one may expect that the association of dietary GI/GL with BP is different among males comparing to females.

It is necessary to mention consuming a high carbohydrates diet enhances postprandial glycemia and insulin secretion at various speeds, depending on the source of carbohydrates as well as amount and type of the dietary fibers. Therefore, quality and quantity of the ingested carbohydrates are the principal determinants of postprandial glycemic response.

In this study, we also found that women who consumed a diet with higher GI were more likely to have higher intakes of vitamin B1, vitamin B2, vitamin C, β-carotene, calcium, and potassium. Also, there was a direct association between dietary GL and intakes of some nutrients including vitamin C, B1, B2, P, and calcium. Regarding to these findings, it can be suggested that those with the higher dietary GI/GL have also higher intakes of fiber and magnesium.

Discussion

Findings from this cross-sectional study did not show significant association between dietary GI/GL and SBP/DBP among 878 postmenopausal women. On the other hand, some other studies have found a significant association between dietary GI/GL and BP in adults and aged peoples. It should be noted that participants in these studies were from both genders and suffered from hypertension. Therefore, one may expect that the association of dietary GI/GL with BP is different among males comparing to females.

It is necessary to mention consuming a high carbohydrates diet enhances postprandial glycemia and insulin secretion at various speeds, depending on the source of carbohydrates as well as amount and type of the dietary fibers. Therefore, quality and quantity of the ingested carbohydrates are the principal determinants of postprandial glycemic response.

In this study, we also found that women who consumed a diet with higher GI were more likely to have higher intakes of vitamin B1, vitamin B2, vitamin C, β-carotene, calcium, and potassium. Also, there was a direct association between dietary GL and intakes of some nutrients including vitamin C, B1, B2, P, and calcium. Regarding to these findings, it can be suggested that those with the higher dietary GI/GL have also higher intakes of fiber and magnesium.

Table 3. Association of dietary glycemic index and glycemic load and the risk of high blood pressure among Tehranian women.

Glycemic index	Crude	Model 1	Model 2	Model 3			
1	2	3	P	1	2	3	P
High systolic blood pressure							
Crude	0.66 (0.34, 1.30)	0.71 (0.34,1.30)	0.30	1	0.68 (0.34, 1.38)	1.11 (0.34,1.38)	0.73
Model 1	0.63 (0.31, 1.27)	0.86 (0.43,1.74)	0.63	1	0.59 (0.28, 1.24)	0.92 (0.43,1.99)	0.80
Model 2	0.64 (0.31, 1.32)	0.81 (0.37,1.73)	0.53	1	0.48 (0.22, 1.05)	0.86 (0.38,1.94)	0.65
Model 3	0.70 (0.33, 1.48)	0.96 (0.42,2.17)	0.87	1	0.52 (0.24, 1.16)	1.04 (0.43,2.49)	1.00
High diastolic blood pressure							
Crude	0.74 (0.41, 1.31)	0.61 (0.34,1.10)	0.10	1	1.19 (0.66, 2.12)	0.95 (0.53,1.72)	0.88
Model 1	0.71 (0.40, 1.27)	0.61 (0.33,1.11)	0.10	1	1.19 (0.66,2.15)	1.03 (0.53,1.97)	0.90
Model 2	0.75 (0.41, 1.38)	0.69 (0.36,1.33)	0.26	1	1.03 (0.55, 1.92)	1.05 (0.52,2.09)	0.88
Model 3	0.77 (0.41, 1.45)	0.72 (0.35,1.45)	0.37	1	1.06 (0.56, 2.00)	1.20 (0.56,2.00)	0.61

*P values are from logistic regression.
1 Model 1: Adjusted for age and energy intake.
2 Model 2: Further adjusted for marriage status, education, occupation, number of children, family size, supplement use, medications use, and physical activity (METs/d).
3 Model 3: Further adjusted for dietary intake of fiber and magnesium.

Table 4. Association of dietary glycemic index and glycemic load and the risk of overweight and obesity among Tehranian women.

Glycemic index	Crude	Model 1	Model 2	Model 3			
1	2	3	P	1	2	3	P
Crude	0.87 (0.49,1.51)	0.75 (0.42,1.31)	0.31	1	1.08 (0.61,1.93)	1.80 (1.02,3.16)	0.03
Model 1	0.89 (0.47,1.66)	1.03 (0.54,1.95)	0.92	1	0.94 (0.49,1.80)	1.79 (0.89,3.62)	0.11
Model 2	0.83 (0.43,1.60)	0.86 (0.43,1.71)	0.67	1	0.62 (0.34,1.37)	1.48 (0.70,3.16)	0.35
Model 3	0.81(0.40,1.64)	0.83 (0.39,1.79)	0.65	1	0.70 (0.35,1.41)	1.54 (0.70,3.40)	0.34

*P values are from logistic regression.
1 Model 1: Adjusted for age and energy intake.
2 Model 2: Further adjusted for marriage status, education, occupation, number of children, family size, supplement use, medications use, and physical activity (METs/d).
3 Model 3: Further adjusted for dietary intake of fiber and magnesium.
of some vitamins and minerals which have found to have anti-hypertension effects.42-44 In current study, we found a direct association between dietary GL and odds of overweight and obesity, however, after adjustment for the potential confounders this association disappeared. In addition, we failed to find a significant association between dietary GI and odds of overweight and obesity, even after adjustment for the potential confounders. In line with our findings, some studies could not find differences in body weight between subjects who consumed a high or a low GI diet.21,45,46 In contrast, some other studies have reported an inverse association between consumption of a low GI diet and body weight.47,48 These different findings may be partially due to differences in study design, target population, and dietary assessment tools used to determine dietary GI and GL.

To the best of our knowledge, current study is the first study investigating association of dietary GI/GL with high BP among adult women in Iran. Some limitations should be kept in the mind. Due to the cross-sectional design of this study, causality could not be discovered. Hence, future researches, in particular randomized clinical trials are required to confirm these findings and to specify the causality. Although, we used a validated questionnaire to estimate dietary intakes of participants, FFQ has not been particularly planned to evaluate dietary GL and GI, therefore, it should be used carefully. Besides, due to using FFQ, misclassification of study participants is also probable.

In conclusion, we could not find significant association between dietary GI/GL and the risk of high SBP/DBP, even after controlling for a wide range of potential confounding factors. In addition, no association was found between dietary GI/GL and odds of overweight or obesity in adult women. Further studies, in particular large scale clinical trials are required to shed light in this area.

Competing interests
The authors have no conflicts of interest to declare and they did not use any outside assistance in preparing the manuscript.

Ethical approval
The study protocol was approved by the local ethics committee of the Tehran University of Medical Sciences (Code: BN092).

Acknowledgments
This study was funded by the National Elites Foundation in Iran (Code: BN092) and Iran National Science Foundation and School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS).

References
1. Carr DB, Utschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004;53(8):2087-94. doi: 10.2337/diabetes.53.8.2087
2. Ren Q, Su C, Wang H, Wang Z, Du W, Zhang B. Prospective Study of optimal obesity index cut-off values for predicting incidence of hypertension in 18-65-year-old Chinese adults. PloS One. 2016;11(3):e0148140. doi: 10.1371/journal.pone.0148140.
3. Kingue S, Ngoe CN, Menanga AP, Jingi AM, Noubiap JJ, Fesu b B, et al. Prevalence and risk factors of hypertension in urban areas of Cameroon: a nationwide population-based cross-sectional study. J Clin Hypertens 2015;17(10):819-24. doi: 10.1111/jch.12604.
4. Esteghamati A, Abbasi M, Alikhani S, Gouya MM, Delavari A, Shishehbor MH, et al. Prevalence, awareness, treatment, and risk factors associated with hypertension in the Iranian population: the national survey of risk factors for noncommunicable diseases of Iran. Am J Hypertens 2008;21(6):620-6. doi: 10.1038/ajh.2008.154.
5. Noohi F, Sarrafzadean N, Khosravi A, Andalib E. The first Iranian recommendations on prevention, evaluation and management of high blood pressure. ARYA Atheroscler 2012;8(3):97-118.
6. Seo MH, Lee J-Y, Ryu S, Won YS, Sung KC. The Effects of urinary albumin and hypertension on all-cause and cardiovascular disease mortality in Korea. Am J Hypertens 2017;30(8):799-807. doi: 10.1039/ajh/hpx051.
7. Wang L, Manson JE, Gaziano JM, Liu S, Cochrane B, Cook NR, et al. Circulating inflammatory and endothelial markers and risk of hypertension in white and black postmenopausal women. Clin Chem 2011;57(5):729-36. doi: 10.1373/clinchem.2010.156794.
8. Defagó MD, Gu D, Hixson JE, Shimmin LC, Rice TK, Gu CC, et al. Common genetic variants in the endothelial system predict blood pressure response to sodium intake: the GenSalt study. Am J Hypertens 2013;26(5):643-56. doi: 10.1093/ajh/hps099.
9. Brown JJ, Stamer J, Van Horn L, Robertson CE, Chan Q, Dyer AR, et al. Sugar-sweetened beverage, sugar intake of individuals, and their blood pressure international study of macro/micronutrients and blood pressure. Hypertension 2011;57(4):695-701. doi: 10.1161/HYERTENSIONAHA.110.165456.
10. Hosseininasab M, Norouzy A, Nematy M, Bonakdaran S. Low-glycemic-index foods can decrease systolic and diastolic blood pressure in the short term. Int J Hypertens 2015;2015:801268. doi: 10.1155/2015/801268.
11. Gopinath B, Flood VM, Rochtchina E, Baur LA, Smith W, Mitchell P. Influence of high glycemic index and glycemic load diets on blood pressure during adolescence. Hypertension. 2012;59(6):1272-7. doi: 10.1161/HYERTENSIONAHA.112.190991.
12. Carels RA, Blumenthal JA, Sherwood A. Emotional responsivity during daily life: Relationship to psychosocial functioning and ambulatory blood pressure. Int J Psychophysiol. 2000;36(1):25-33.
13. Lima ST, de Souza BD, França AK, Salgado Filho N, Sicieri R. Dietary approach to hypertension based on low glycaemic index and principles of DASH (Dietary
2014;34(8):682-7. doi: 10.1016/j.amjdis.2014.07.009.

18. Evans CE, Greenwood DC, Threapleton DE, Gale CP, Clegorn CL, Burley VJ. Glycemic index, glycemic load, and blood pressure: a systematic review and meta-analysis of randomized controlled trials. *Am J Clin Nutr* 2017;105(5):1176-90. doi: 10.3945/ajcn.116.143685.

19. Castro-Quezada I, Artacho R, Molina-Montes E, Serrano FA, Ruiz-Lopez MD. Dietary glycaemic index and glycaemic load in a rural elderly population (60–74 years of age) and their relationship with cardiovascular risk factors. *Eur J Nutr* 2015;54(4):523-34. doi: 10.1007/s00394-014-0733-9.

20. Heidari-Beni M, Golshahi J, Esmaillzadeh A, Azadbakht L. Potato consumption as high glycemic index food, blood pressure, and body mass index among Iranian adolescent girls. *ARYA Atheroscler* 2015;11(Suppl 1):81-7.

21. Sloth B, Krog-Mikkelsen I, Flint A, Tetens I, Björck I, Vinoy S, et al. No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after 10-wk ad libitum intake of the low-glycemic-index diet. *Am J Clin Nut* 2004;80(2):337-47. doi: 10.1093/ajcn/80.2.337

22. Flight I, Clifton P. Cereal grains and legumes in the prevention of coronary heart disease and stroke: a review of the literature. *Eur J Clin Nutr* 2006;60(10):1145-59. doi:10.1038/sj.ejcn.1602435.

23. Castro-Quezada I, Artacho R, Molina-Montes E, Serrano FA, Ruiz-López MD. Dietary glycaemic index and glycaemic load in a rural elderly population (60–74 years of age) and their relationship with cardiovascular risk factors. *Eur J Clin Nutr* 2015;54(4):523-34. doi: 10.1007/s00394-014-0733-9.

24. Juanola-Falgaron M, Salas-Salvadó J, Bull-Cosiales P, Corella D, Estruch R, Ros E, et al. Dietary glycemic index and glycemic load are positively associated with risk of developing metabolic syndrome in middle-aged and elderly adults. *J Am Geriatr Soc* 2015;63(10):1991-2000. doi: 10.1111/jgs.13668.

25. Hosseininasab M, Norouzy A, Nemati M, Bonakdaran S. Low-glycemic-index foods can decrease systolic and diastolic blood pressure in the short term. *Int J Hypertens* 2015;2015:801268. doi: 10.1155/2015/801268.

26. Azadbakht L, Esmaillzadeh A. Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. *J Nutr* 2008;139(2):335-9. doi: 10.3945/jn.108.096297.

27. Haghighatdoost F, Azadbakht L, Keshteli AH, Feinle-Bisset C, Daghhaghzadeh H, Afshar H, et al. Glycemic index, glycemic load, and common psychological disorders. *Am J Clin Nutr* 2016;103(1):201-9. doi: 10.3945/ajcn.114.105445.

28. Talebian F, Esmaeili M. Glycemic index of Iranian foods: *Guideline for diabetic and hyperlipidemic patients*. Tehran: National Nutrition and Food Technology of Iran, Shahid Beheshti University of Medical Science; 1999.

29. Atkinson FS, Foster-Powell K, Brand-Miller JC. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. *Am J Clin Nutr* 2008;83(6):1306-12. doi: 10.1093/ajcn/83.6.1306.

30. Izadi V, Esmaillzadeh A, Hashemipour M, Surkan PJ, Azadbakht L, Kelishadi R. High protein diets do not affect anthropometric indexes and cardiometabolic risk factors among children with excess weight: A randomized controlled trial. *J Cardiovasc Thorac Res* 2018;10(2):95. doi: 10.2337/dc08-1239.

31. Brand-Miller J, Foster-Powell K, Colagiuri S, Barclay A. The New Glucose Revolution for Diabetes: The Definitive Guide to Managing Diabetes and Prediabetes Using the Glycemic Index. Hachette UK: Da Capo Lifelong Books; 2007.

32. Wolfer TM, Yang M, Zeng XY, Atkinson F, Brand-Miller JC. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. *Am J Clin Nutr* 2008;83(6):1306-12. doi: 10.1093/ajcn/83.6.1306.

33. Atkinson FS, Foster-Powell K, Brand-Miller JC. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. *Am J Clin Nutr* 2008;83(6):1306-12. doi: 10.1093/ajcn/83.6.1306.

34. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. *Med Sci Sports Exerc* 2000;32(9 suppl):S498-504.

35. Shikany JM, Tinker LF, Neuhausser ML, Ma Y, Patterson RE, Phillips LS, et al. Association of glycemic load with cardiovascular disease risk factors: the Women’s Health Initiative Observational Study. *Nutrition* 2010;26(6):641-7. doi: 10.1016/j.nut.2009.08.014.

36. Lin P-H, Chen C, Young DR, Mitchell D, Elmer P, Wang Y, et al. Glycemic index and glycemic load are associated with some cardiovascular risk factors among the PREMIER study participants. *Food Nutr Res* 2012;56(1):9464. doi: 10.3402/fnr.v56i0.9464.

37. Milton JE, Brice B, Brown IJ, Hickson M, Robertson CE, Frost GS. Relationship of glycemic index with cardiovascular disease risk factors: analysis of the National Diet and Nutrition Survey for people aged 65 and older. *Public Health Nutr* 2007;10(11):1321-35. doi: 10.1017/S136898000702914.

38. Wolfer TM, Gibbs AL, Mehling C, Chiasson J-L, Connelly PW, Josse RG, et al. The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: no effect on glycated hemoglobin but reduction in C-reactive protein. *Am J Clin Nutr* 2008;87(1):114-25. doi: 10.1093/
ajcn/87.1.114.

39. Maki KC, Rains TM, Kaden VN, Raneri KR, Davidson MH. Effects of a reduced-glycemic-load diet on body weight, body composition, and cardiovascular disease risk markers in overweight and obese adults. Am J Clin Nutr 2007;85(3):724-34. doi:10.1093/ajcn/85.3.724.

40. Turati F, Galeone C, Gandini S, Augustin LS, Jenkins DJ, Pelucchi C, et al. High glycemic index and glycemic load are associated with moderately increased cancer risk. Mol Nutr Food Res 2015;59(7):1384-94. doi: 10.1002/mnfr.201400594.

41. Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev 2001;59(5):129-39.

42. Houston MC. The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease. Ther Adv Cardiovasc Dis 2010;4(3):165-83. doi: 10.1177/1753944710368205.

43. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97(22):2222-9.

44. Egeland GM, Skurtveit S, Sakshaug S, Dalveit AK, Vikse BE, Haugen M. Low Calcium Intake in Midpregnancy Is Associated with Hypertension Development within 10 Years after Pregnancy: The Norwegian Mother and Child Cohort Study. J Nutr 2017;12(10):251520. doi: 10.3945/jn.117.251520.

45. Pereira EV, Costa Jde A, Alfenes Rde C. Effect of glycemic index on obesity control. Arch Endocrinol Metab 2015;59(3):245-51. doi: 10.1590/2359-3997000000045.

46. de la Fuente-Arrillaga C, Martinez-Gonzalez MA, Zazpe I, Vazquez-Ruiz Z, Benito-Corchon S, Bes-Rastrollo M. Glycemic load, glycemic index, bread and incidence of overweight/obesity in a Mediterranean cohort: the SUN project. BMC Public Health 2014;14:1091. doi: 10.1186/1471-2458-14-1091.

47. Feliciano Pereira P, das Gracas de Almeida C, Alfenes Rde C. Glycemic index role on visceral obesity, subclinical inflammation and associated chronic diseases. Nutr Hosp 2014;30(2):237-43. doi: 10.3305/nh.2014.30.2.7506.

48. Schwingshackl L, Hoffmann G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2013;23(8):699-706. doi: 10.1016/j.numecd.2013.04.008.