Optical Properties of SiO₂ – TiO₂ – La₂O₃ – Na₂O – Y₂O₃ Glasses and A Novel Process of Preparing the Parent Glass-Ceramics

A. F. Abd El-Rehim¹,² · E. A. Abdel Wahab³ · M. M. Abou Halaka³ · KH. S. Shaaban⁴

Received: 18 December 2020 / Accepted: 3 February 2021 / Published online: 26 February 2021 © Springer Nature B.V. 2021

Abstract
Quaternary glasses with the composition 50SiO₂ – 25TiO₂ – 5La₂O₃ – (20-x) Na₂O – xY₂O₃ where x: (0 ≤ x ≥ 10) were synthesized using the melt-quench technique. XRD examined the nature of prepared glasses. UV-spectroscopic of investigated glass system studied at room temperature. Both optical bandgap and refractive index of the present glass have been increased. The polarizability and basicity were determined. Thermal parameter values increased as Y₂O₃ increased. Under controlling heat, the glass-ceramic were prepared and confirmed using XRD. Glass-ceramics are examined using SEM to evaluate a microstructure. Ultrasonic velocities and elastic-moduli of glass-ceramic samples are increased because of the increase in internal energy. The role of Y₂O₃ modifier in the glass system is clearly demonstrated. Y₂O₃ also works as an excellent nucleating agent that can induce crystallizations, supporting in the creation of the sub-phase of glass-ceramics.

Keywords Yttrium · UV · Glass-ceramics · XRD · SEM

1 Introduction
Glasses containing transition metals oxides attract the attention of several researchers for excellent infrared transmission compared with the conventional glasses. It makes an ideal candidate for various applications such as infrared transmission components, ultra-fast optical switches, and photonic devices [1–3]. Silicate glasses containing transition metal ions exhibit unique, versatile structural properties in physical and spectral (optical & FTIR) studies, and light activated bioactive glass [4–11]. In recent years, the studies on transition metal ions containing glasses have been increased due to their admirable improvements in semiconducting properties and optoelectronic electronic devices. The abundance of multiple valence states of transition metal ions which arises from unfilled d- orbitals made them a potential candidate for extending their applicability in electrical memory switching, photo-conducting, solid-state batteries, and electronic devices [12]. Transition metal ions containing glass are considered semiconducting substances. Nowadays The glasses are considered potential applicants for electronic, mechanical, and optical [12].

TiO₂ containing glasses show remarkable properties like low phonon frequency, high dielectric, non-linear optical, electric, and magnetic. Under these characteristics glass doped TiO₂ has extend applications in the field of optics, photonics, optoelectronics, and telecommunication devices. In glasses, usually TiO₂, are intermediate, crystallizing agents and it may be observed in the Ti⁴⁺ and involved in the structural units of TiO₄, TiO₆ and TiO₅ [13–18].

The incorporation of Y₂O₃ into sodium-silicate glasses causes the replacement of weak Si-O-Na bonds with strong Si-O-Y bonds lead to enhances the thermal, optical & chemical stability of host glasses. The introduction of Y₂O₃ into the glass network enhanced the optical and physical properties of the glass [19]. Glasses containing rare-earth ions have several optical and photonic applications available [20–28]. It is highly possible for UV optics and solid-state batteries applications because of the good ionic conductivity of these glasses [20–28]. Considering the importance of sodium titanium
Silicate glasses in scientific and technological, characteristics like ionic conductivity in power generation glasses modified with various oxides are strongly required [28, 29]. In contrast, the incorporation of transitional or rare earth oxides into sodium titanium silicate glass structures are enhanced optical, electrical, thermal, mechanical and radiation protection characteristics [30–33]. Glasses containing rare-earth ions have attracted a great deal of interest because of their benefits [34–39]. Intermediate oxides such as Y₂O₃ can act either as a glass modifier or former, depending on their concentration in the glass matrix. Y₂O₃ enhances the host glass matrix’s physical structure and mechanical strength [40–46]. The existence of Y₂O₃ enhances the capacity to form glass and reduces devitrification. The existence of TiO₂ and Y₂O₃ impacts UV-spectroscopic in glass systems. These glasses possess lower photon energy and higher refractive index than other glasses. Scientifically and technologically, the recent innovation of titanium silicate glasses containing Y₂O₃ and La₂O₃ is very significant (Table 1).

In the 1950s, Stookey and Kingery [47] discovered the first glass-ceramic that could be manufactured industrially by adding the nucleating agent TiO₂ to control the devitrification of glass. Even at the end of the nineteenth century, Mc. Millan used crystallization [48]. After Stookey’s discovery of the controlled nucleation and crystallization of glass-ceramics, several studies on sintered glass-ceramics were published [49, 50]. Glass-ceramics are polycrystalline materials formed by heat treatment of glasses of appropriate compositions. Crystallization is an important topic in glass science as well as in glass technology. The crystallization behavior and the final properties of glass ceramics parts are mainly affected by the configuration of the parent glass, the nucleating system, and the crystallization conditions. In comparison to those of the parent glass, the mechanical properties of glass-ceramics are better. Glass-ceramics can also, exert other unusual characteristics that are valuable for purposes, as shown by the incredibly small thermal expansion coefficient, which is therefore acceptable for thermal shock-resistant implementations. The goal of our article is preparing of lanthanum titanium silicate glass structures are enhanced optical, electrical, thermal, mechanical and radiation protection characteristics and TiO₂ with high purity. All chemicals used for the glass preparation obtained from Sigma-Aldrich. The starting materials were mixed by grinding the mixture repeatedly to obtain a fine powder. Firstly, the starting materials have been heated to 450 °C for 4 h to eliminate H₂O, and CO₂. The temperature has been raised to 1200 °C for 30 min. The glasses were annealed at 450 °C for 2 h to relieve the internal stresses and allowed to cool gradually to room temperature. The weight losses were found to be less than 1%.

The amorphous state of the glasses and glass-ceramics were checked using X-ray diffraction. A Philips X-ray diffractometer PW1710 with Ni-filtered Cu-Kα radiation (λ = 1.542 Å) powered at 40 kV and 30 mA was used. UV-spectroscopic of investigated glass system is studied by spectrophotometer (type JASCO V-670). Archimedes principle describes the density as the following relation: \(\rho = \rho_0 \left(\frac{C}{C_0} \right) \), the weight of samples in air and liquid is C and C1 respectively, the density of glass-ceramic sample is \(\rho \), and toluene is \(\rho_0(0.865)\) g/cm³. DTA-50 (type Shimadzu) used for the thermal investigation. By heating the specimen at specified temperatures on two steps, first, at 500 °C, the glass-ceramics are produced, the sconed is 1 h at Tc °C, the crystal growth. A pulse-echo method is used to study mechanical measurements for glass-ceramics by (KARL DEUTSCH Echograph model-1085). The model (JEM-100 CX 11 JAPAN), a scanning microscope (SEM), has been used to examine the morphology of investigated glass-ceramic.

Table 1 Chemical composition of prepared glasses (mol. %)

Sample Name	SiO₂	TiO₂	Na₂O	La₂O₃	Y₂O₃
G1	50	25	20	5	0
G2	50	25	18	5	2
G3	50	25	16	5	4
G4	50	25	14	5	6
G5	50	25	12	5	8
G6	50	25	10	5	10

3 Results and Discussions

3.1 XRD Observations

Figure 1. shows the X-ray results of the studied glasses. These diffractograms show no discrete lines, no sharp peaks, and indicate that glass samples have a high degree of glassy state. The slight shift in the hump at \((15–30)\) 2θ° values with respect to Y₂O₃ concentration can be related to the decrease in the bond length and to the higher coordination number with oxygens.

3.2 UV-Visible Absorption Spectra

UV-Vis-NIR absorption spectroscopy is a completely beneficial approach to characterize the optical of different substances which include thin films, filters, pigments, glass, and...
glass ceramics. Optical absorption spectra of various Y₂O₃ co-doped glasses in wavelength range 200–2700 nm were investigated. Figure 2 exemplifies the absorbance (A) and transmittance (T) of glass samples. Figure 3 exemplifies the reflectance (R) of these glasses. There have indications of increasing the absorption coefficient as Fig. 4. Therefore, Y₂O₃ is accounted as BO development [51]. The absorption coefficient \(\alpha \) was calculated by:

\[
\alpha(\lambda) = \frac{1}{x} \ln \left(\frac{1-R}{T} \right),
\]

Where \(x \) is sample thickness.

3.2.1 Optical Band Gap \(E_{opt} \)

Absorption spectra of glasses in the ultraviolet and visible regions have been used to calculate optical band gap.

Optical band gap is determined by \((\alpha \cdot h\nu)^{1/2} = B(h\nu - E_{opt}) \). where \(E_{opt} \) is optical band gap, B is an energy independent constant and \(h\nu \) is photon energy. By plotting the \((\alpha \cdot h\nu)^{1/2} \) versus \(h\nu \) as Fig. 5. The intercept of \(\sqrt{\alpha h\nu} \) versus \(h\nu \) at \(\sqrt{\alpha h\nu} = 0 \) denoted the value of \(E_{opt} \). It was noted with increasing Y₂O₃ content the energy gap increases as in Table 2. This increase can be explained as oxygen bridges (BO) are generated that bind energized electrons more strongly than non-bridging oxygen (NBO). Also, this increasing of \(E_{opt} \) may be due to change in composition of glass matrix and increase the interconnection.

3.2.2 Refractive Index (N)

According to the theory of reflectivity of light, the refractive index \((n) \) values obtained as a function of the reflectance \((R) \) and the extinction coefficient \((k) \) as: \(n = (1-R)^{2+k^2/(1+R)} \)
$2 + k^2$, where k values have been determined using the relation $(k = \alpha \sqrt{4\pi})$. According to the Lorentz–Lorenz equation, the density of the material affects the refractive index in a direct proportion. Thus, the increase in the values of the refractive index is ascribed to the increase in density of the glass. The refractive index of studied glasses shown in Fig. 6. The refractive index of the studied glasses increases with increasing of the wavelength and with increasing of Y_2O_3 content.

3.2.3 Dispersion Parameters

Molar polarization, and polarizability of glasses have been projected as $R_m = \langle n^2 - 1 \rangle n^2 + 2 \rangle Vm$, $\alpha_m = (34\pi N)R_m$, and $\alpha = \frac{1}{N} \left(\frac{2}{n^2+2} \right) \Sigma_{\text{cat}}$ [52–56] where Vm is molar volume, n is refractive index, N Avogadro number, and No number of oxygen atom. The optical basicity of the samples prepared was linked to polarization; $\Lambda = 1.67 \left(\frac{1}{c^2} \right)$. Figs. 7, 8 and 9 present the Molar Polarizability α_m, polarizabilities and optical basicity respectively of prepared samples, it was observed the same trend of refractive index with increasing concentrations of Y_2O_3 [53–56].

The molar refractivity depends on E_{opt}, $R_m = Vm \left(1 - \sqrt{E_{opt} / 20} \right)$ and molar polarizability (α_m). Reflection loss $R_L = \frac{R_m}{V_m}$. These values of (R_m) (α_m) and (R_L) decrease with yttrium because of the decrease in the molar volume are presented in Table 2. The criterion for metallization is predicted as $M = 1 - \frac{R_m}{V_m}$, the metallization value rises with Y^+3. The electronegativity (χ) is predicted as $\chi = 0.2688E_{opt}$, where E_{opt} bandgap. Thus, with Y^+3 increasing, the electronegativity (χ) values increase. The electron polarizability is predicted as $\alpha = -0.9 \chi + 3.5$ and optical basicity $\Lambda = -0.5 \chi + 1.7$. α and Λ have the inverse trend of (χ) thus, with Y^+3 increase.

Table 2 Various physical parameters of the studied glasses

Samples	G 1	G 2	G 3	G 4	G 5	G 6
Number of oxygen atom	1.85	1.89	1.93	1.97	2.01	2.05
Molar Refractivity R_m (cm3/mol)	14	13.16	13.32	12.97	12.5	12.05
Molar Polarizability α_m (A3)	5.55	5.22	5.2812	5.14	4.96	4.78
Metallization criterion (M)	0.36	0.362	0.365	0.367	0.37	0.374
Reflection loss (R_L)	0.639	0.637	0.635	0.633	0.63	0.626
Electronegativity (χ)	0.699	0.71	0.72	0.725	0.74	0.753
Electron Polarizability (α^o)	2.87	2.863	2.85	2.847	2.84	2.82
Optical basicity ($)	1.35	1.346	1.34	1.34	1.332	1.32
Indirect Optical band gap (eV)	2.601	2.635	2.669	2.699	2.74	2.8
Ionicity (I_o)	0.58	0.578	0.576	0.574	0.571	0.569
Covalency (I_c)	0.42	0.422	0.424	0.426	0.429	0.431

![Fig. 5](image-url) Plot of $(\alpha h\nu)^{1/2}$ and $(\alpha h\nu)^2$ against photon energy ($h\nu$) to calculate the optical band gap from the intercept of the curves.

© Springer
α° and Λ decrease. This explanation is linked to the value of the optical basicity of Y₂O₃ (0.99) and Na₂O s (1.15) \[55–58\]. Table 2 shows the variation of these values.

3.3 Thermal Analysis

DTA-thermograms are the best way to show thermal properties. The first thermal attribute is the transition temperature of samples Tg, while the following thermal property consists of Tc andTp crystallization and peak temperatures. DTA-thermograms of glasses are presented in Fig. 10. It is observed that these parameters have been increased as the Y₂O₃ increases. This is related to increase in the connection of the glass structure. According to these parameters, the glass-ceramics have been prepared. The estimated thermal stability values as: \(\Delta T = (Tc - Tg)\), \(Hg = \frac{\Delta T}{Tg}\), and \(S = (Tp - Tc) \frac{\Delta T}{Tg}\) are listed in Table 3.

It indicated that, the increasing with increasing of Y₂O₃ content is due to the transformation of Si–O–Na into Si–O–Y, and Na–O bond strength is (20 KCal/mol) is much lower than Y–O (50KCal/mol) \[59\]. This behavior is linked to the modification of the coordination number with increasing Y₂O₃, the growth in average constant force and cross-link density. As Y₂O₃ increases at expense of Na₂O, the molar volume decreases and the density increases, making the glass structure more compact.

3.4 XRD and SEM Analysis for Consistent Ceramic-Glass

Glass-ceramics have been investigated using XRD for further analysis, as seen in the Fig. 11. The XRD pattern of G1 and G6 are similar, as noticeable from the Fig. 11, excluding that diffraction peaks are stronger. High transparency, uniform color, and good chemical and mechanical properties were...
exhibited due to an increasing the content of Y_2O_3. The network of sodium silicate units could be broken by Y_2O_3 and act as a glass stabilizer, thereby increasing chemical structure and mechanical hardness. Because the transformation of $Si-O-Na$ into $Si-O-Y$, and $Na-O$ bond strength is (20KCal/mol) is much lower than $Y-O$ (50KCal/mol).

The strongest phases are Lanthanum Titanium Silicate, $La_2(Ti_2SiO_9)$, card No. 01–082-1490, Lanthanum Titanium Silicate Oxide, $La_4Ti(Si_2O_7)2$ (Ti$_3$O$_{16}$) card No. 01–079-2299 and less strongly phase Lanthanum Titanium Silicate Oxide $La_4Ti_5(Si_2O_7)2O_8$ card No. 01–083-023. New phases

Table 3 Thermal parameters of the studied glasses (°C)

Sample name	T_g	T_c	T_p	ΔT	H_g	(T_p-T_c)	S
G 1	604	690	768	86	0.14	78	11.11
G 2	606	701	780	95	0.157	79	12.38
G 3	608	706	785	98	0.16	79	12.73
G 4	631	731	815	100	0.16	84	13.31
G 5	653	780	866	127	0.19	86	16.73
G 6	693	806	901	113	0.16	95	15.5

![Fig. 10 The DTA curves of the prepared glasses](image-url)
have emerged through the increase in yttrium oxide Lanthanum Yttrium Titanium Oxide La0.5Y0.5TiO3 card No. 01-073-0070 and Yttrium Titanium Silicon Oxide (Trimounsite-(Y)) Y2Ti2SiO9 card No. 00-046-1375. The microcracks had been easily obtained during the recrystallization process based on differences in the coefficients of thermal expansion between the phases of yttrium and the impeccable standards phase, helping to make the glass-ceramic much harder.

Glass-ceramics had been examined using SEM, as seen in Figs. 12a and b to evaluate a microstructure. The size of the crystal is listed in Tables 4 and 5. SEM photograph of selected glass-ceramic samples. It is indicated that uniform distributions in the glass composition. Figure 12 show the micrographically (G1). It is indicated a nearly unchanging on the surface. Lanthanum Titanium Silicate was crystallized in occasional crystalline texture that includes comparatively large interstitial pores reflecting the remaining glassy matrix. Figure 13 illustrates the micrographically (G6). It is indicated that uniform distributions in the glass composition [60]. With the increase of Y2O3 content, the possibility of crystallization is increased, and a glass sub-phase has been created to increase the internal energy.

3.5 Mechanical Properties of Glass-Ceramics

Figures 14 and Tables 6 represented sound velocities of glass-ceramics. This found that Y2O3 increases those velocities. Due to increase in density, bonding strength, and cross-link density. The increase in sound velocities because the increase in the internal energy.

To determine elastic-moduli as,
\[L = \rho v_l^2, \quad G = \rho v_s^2, \]
\[Y = (1 + \sigma)2G, \quad and, \quad K = L - \left(\frac{Y}{2}\right)G. \]
Elastic-moduli of glass-ceramic have been estimated and represented in Fig. 15 and Table 6. It indicated that, these moduli increasing with the Y2O3 increase. Tis due to transformation of Si–O–Na into Si–O–Y, and Na–O bond strength is (20 KCal/mol) is much lower than B–O (50 KCal/mol).

Poisson’s ratio is projected as \(\sigma = \frac{1}{2} \left(\frac{1}{\frac{4\pi}{1+\sigma}}\right) \). Microhardness is projected as \(H = (1-2\sigma) \frac{\rho v_l^2}{\rho v_s^2 - \rho v_l^2} \). Thermal Expansion \((\alpha_P) \), \(\alpha_P = 23.2 \times 10^{-6} \) and acoustic impedance \((Z) \). All these parameters are shown in Table 6 and they increased as the yttrium content increase because of the role of a Y2O3 modifier in the glass system is clearly demonstrated.

Table 4 Peak list and grain-size of the glass-ceramics (G1)

Pos. [2θ°]	Height [cts]	FWHM °2Th.	d-spacing [Å]	Rel. Int. [%]	Tip width [2θ°]	G size nm	Phase and its Crystalline size nm
22.6391	709.82	0.3542	3.92773	29.53	0.3600	80.6	La2(Ti2SiO9),
32.0778	2403.5	0.5314	2.79032	100.00	0.5400	54.78	70.49888
39.5811	895.01	0.3542	2.27695	37.24	0.3600	83.95	73.6
46.3840	532.26	0.4133	1.95762	22.14	0.4200	75.35	60.23398
52.1153	243.96	0.4133	1.75502	10.15	0.4200	77.12	
57.4043	695.72	0.4133	1.60526	28.95	0.4200	77.12	
66.8322	198.36	0.4133	1.39988	8.25	0.4200	81.1	
71.6383	96.53	0.4723	1.31733	4.02	0.4800	73.1	
75.0820	38.81	0.9446	1.26522	1.61	0.9600	37.4	
76.9051	157.72	0.5904	1.23972	6.56	0.6000	60.5	La4Ti5(Si2O7)2O8
81.2975	87.59	0.4723	1.18347	3.64	0.4800	78.1	69.94197
85.1379	91.56	0.7200	1.13869	3.81	0.6000	52.76	
Table 5 Peak list and grain-size of the glass-ceramics (G 6)

Pos. [2θ°]	Height [cts]	FWHM [2θ°]	d-spacing [Å]	Rel. Int. [%]	Tip width [2θ°]	G size [nm]	Phase and its Crystalline size [nm]
19.5792	76.95	0.2952	4.53410	3.93	0.3000	96.18	La₀.₅Y₀.₅TiO₃, (65.91078)
22.6109	481.73	0.3542	3.93256	24.58	0.3600	80.55	
25.4780	103.27	0.3542	3.49615	5.27	0.3600	80.98	
28.7768	221.71	0.2952	3.10243	11.31	0.3000	97.84	Y₂Ti₂SiO₇, (76.76907)
30.2113	161.59	0.2952	2.95832	8.24	0.3000	98.2	
31.1414	223.12	0.2952	2.87206	11.38	0.3000	98.4	
31.9839	1960.04	0.5314	2.79830	100.00	0.5400	54.77	
38.6616	83.20	0.2952	2.32896	4.25	0.3000	100	
39.5320	752.34	0.3542	2.27967	38.38	0.3600	83.9	
43.9363	98.11	0.2952	2.06083	5.01	0.3000	102.2	
45.1712	139.29	0.4723	2.00732	7.11	0.4800	64.2	
46.3327	440.51	0.3542	1.95967	22.47	0.3600	85.92	
47.3145	103.10	0.2952	1.92127	5.26	0.3000	103.5	
49.2890	44.07	0.3542	1.84883	2.25	0.3600	86.9	
52.0561	197.19	0.3542	1.75688	10.06	0.3600	87.9	
56.6288	236.43	0.3542	1.62539	12.06	0.3600	89.7	
57.3691	576.42	0.3542	1.60616	29.41	0.3600	90	
58.5723	103.19	0.3542	1.57600	5.26	0.3600	90.56	
66.7314	175.71	0.5314	1.40175	8.96	0.5400	63	
67.6088	119.93	0.3542	1.38568	6.12	0.3600	95	
71.5406	96.67	0.3542	1.31888	4.93	0.3600	97.4	
75.0633	35.16	0.7085	1.26549	1.79	0.7200	49.8	
76.8601	138.16	0.5314	1.24033	7.05	0.5400	67.21	
81.2243	78.94	0.5904	1.18435	4.03	0.6000	62.4	
85.1694	72.57	0.7200	1.13835	3.70	0.6000	52.78	

Fig. 12 SEM backscattered electron images of the produced glass-ceramics (G 1)
Conclusions

Quaternary glasses with the composition of 50SiO$_2$ – 25TiO$_2$ – 5La$_2$O$_3$ – (20-x) Na$_2$O – xY$_2$O$_3$ have been manufactured using conventional melt-quenching methods. The optical, thermal, crystallization, and mechanical variables have been examined for these glasses. XRD measurements established the amorphous nature of glasses. Optical absorption was quantified to understand the optical characteristics of the prepared glasses. With increasing Y$_2$O$_3$ content the energy gap increases. This grow can be explained as oxygen bridges (BO) are generated that bind energized electrons more strongly than non-bridging oxygen (NBO). Refractive index of investigated glasses are increases as density increase. Molar polarization, polarizability, and optical basicity of these glasses having the

Sample No.	v_L (m s$^{-1}$)	v_T (m s$^{-1}$)	σ (Gpa)	α_P (K m$^{-2}$ s$^{-1}$ K$^{-1}$)
G 1	5425	2885	31.703	0.303
G 2	5455	2900	35.4	0.303
G 3	5500	2920	37.18	0.304
G 4	5550	2935	40	0.306
G 5	5610	2955	157.75221	0.308
G 6	5655	2970	46.9	0.310

Fig. 13 B SEM backscattered electron images of the produced glass ceramics (G 6)

Fig. 14 Dependence of the longitudinal and shear ultrasonic velocities v_L and v_T of the investigated glass-ceramics against of Y$_2$O$_3$ by mol. %

Table 6 values of sound velocities (v_L and v_T), elastic moduli, Poisson’s ratio, micro hardness, acoustic impedance (Z) and thermal expansion coefficient (α_P), of the studied glass-ceramics
same trend of refractive index with concentration of Y$_2$O$_3$ increased. Metallization of these glasses was enhanced because of increment of TiO$_2$. Thermal stability of these glasses was increased as the Y$_2$O$_3$ increases. These increases related to increase in the connection of the glass structure. Under controlling heat, the glass-ceramic was prepared and investigated by XRD, SEM, and mechanical properties. XRD results showed all the expected phases due to the crystallization process. SEM photograph of selected glass-ceramic samples indicated that uniform distributions in the glass composition. Ultrasonic velocities and elastic-modules of glass-ceramic samples are increased because of increase in internal energy.

Acknowledgments The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/93/41.

Author Contributions Kh. S. Shaaban: performing XRD, UV measurements and analysis, Writing-review, writing manuscript, Methodology, Software, and writing – discussion.
A.F. Abd El-Rehim: Writing-review, writing – discussion and editing manuscript.
E. A. Abdel Wahab: Writing-review, writing – discussion and editing manuscript.
M. M. Abou Halaka: Writing-review, writing – discussion and editing manuscript.

Funding Statement There are currently no Funding Sources in the list.

Availability of Data and Material My manuscript and associated personal data will be shared with Research Square for the delivery of the author dashboard.

Declarations

The manuscript has not been published elsewhere and that it has not been submitted simultaneously for publication elsewhere.

Consent to Participate The authors consent to participate.

Consent for Publication The authors consent for publication.

Conflict of Interest The authors declare that they have no conflict of interest.

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. El-Damrawi G, Abdelghany AM, Hassan AK et al. (2020) Effect of BO$_4$ and FeO$_4$ structural units on conduction mechanism of iron borosilicate glasses. Silicon. https://doi.org/10.1007/s12633-020-00694-w
2. El-Damrawi G, Abdelghany AM, Oraby AH, Madshal MA (2020) Structural and optical absorption studies on Cr$_2$O$_3$ doped SrO-P$_2$O$_5$ glasses. Spectrochimica Acta part a: molecular and biomolecular spectroscopy 228:117840 https://doi.org/10.1016/j.saa.2019.117840
3. Livage J, Jolivet JP, Tronc E (1990) Electronic properties of mixed valence oxide gels. J Non-Cryst Solids 121(1-3):35-39. https://doi.org/10.1016/0022-3093(90)90100-z
4. Moghanian, Amirhossein; Zohourfazeli, Mohammadamin; Tajer, Mahzad Haji Mahdi (2020). The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass. J Non-Cryst Solids, 546(), 120262-. doi:https://doi.org/10.1016/j.jnoncrysol.2020.120262
5. Zohourfazeli M, Mahdi Tajer MH, Moghanian A (2020) Comprehensive investigation on multifunctional properties of zirconium and silver co-substituted 58S bioactive glass. Ceram Int 47: 2499–2507. https://doi.org/10.1016/j.ceramint.2020.09.093
6. Moghanian A, Zohourfazeli M, Tajer MHM, Miri Z, Hosseini S, Rashvand A (2020) Preparation, characterization and in vitro biological response of simultaneous co-substitution of Zr$_4$+Sr$_2$ 58S bioactive glass powder. Ceram Int, https://doi.org/10.1016/j.ceramint.2020.11.139
7. Moghanian A, Tajer MHM, Zohourfazeli M, Miri Z, Yazdi M, (2021) Sol-gel derived silicate-based bioactive glass: Studies of synergetic effect of zirconium and magnesium on structural and biological characteristics, J Non-Cryst Solids, 554,120613, https://doi.org/10.1016/j.jnoncrysol.2020.120613
8. Moghanian A, Portillo-Lara R, Sani S, Ehsan, Konisky H, Bassir SH, Annabi N (2019) Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med 14(1):66–81. https://doi.org/10.1002/term.2964
9. Kazem-Rostami, Masoud; Moghanian, Amirhossein (2017). Hünlich base derivatives as photo-responsive Λ-shaped hinges. Org Chem Front, 4(2), 224 228. doi: https://doi.org/10.1039/C6QO00653A
10. Alireza Saatchi, Ahmad Razaghian Arani, Amirhossein Moghanian, Masoud Mozafari, cerium-doped bioactive glass-loaded chitosan/polyethylene oxide nanofiber with elevated antibacterial properties as a potential wound dressing. (2020), Ceram Int, https://doi.org/10.1016/j.ceramint.2020.12.078
11. Saatchi A, Arani AR, Moghanian A, Mozafari M (2020) Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications. Ceram Int 47(1):260–271. https://doi.org/10.1016/j.ceramint.2020.08.130
12. Ghosh A (1988) Memory switching in bismuth-vanadate glasses. J Appl Phys 64(5):2652–2655. https://doi.org/10.1063/1.341605

13. Reddy AP, Rao PN, Reddy MCS, Rao BA, Veeraiah N (2020) Second harmonic generation and spectroscopic characteristics of TiO2 doped Li2O-Al2O3-B2O3 glass matrix. Appl Phys A Mater Sci Process 126:689. https://doi.org/10.1007/s00339-020-03879-7

14. Shaaban KS, Wahab EAA, Shaaban ER, Yousef ES, Mahmoud SA (2020) Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B2O3−30Li2O−5Al2O3) glasses doped with Titanate. J Elec Mater 49:2040–2049. https://doi.org/10.1016/j.jele.2019.07889-x

15. Shaaban KS, Koubisy MSI, Zahran HY, Yahia IS (2020) Spectroscopic properties, electronic Polarizability, and optical basicity of titanium–cadmium Telluride glasses doped with different amounts of lanthanum. J Inorg Organomet Polym 30:4999–5008. https://doi.org/10.1007/s10904-020-01640-4

16. Shaaban KS, Yousef ES, Mahmoud SA, Wahab EAA, Shaaban ER (2020) Mechanical, Structural and Crystalization Properties in Titanate Doped Phosphate Glasses. J Inorg Organomet Polym 30:4665–4663. https://doi.org/10.1016/j.inorgpol.2020.01574-x

17. Wahab EAA, Shaaban KS (2018) Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater Res Express 5(2):025207. https://doi.org/10.1088/2053-1591/aaaee8

18. Hussain, I., Barinah, E. K., Iqbal, Y., Jose, G., & Muhammad, R. (2019). Thermal, mechanical and optical properties of TiO2-doped sodium silicate glass-ceramics. Transactions of the Indian ceramic society, 1–6. doi:https://doi.org/10.1080/0371750X.2019.1626287

19. Shaaban KS, Abo-Naf SM, Hassouna MEM (2019) Physical and structural properties of Lithium borate glasses containing MoO3. Silicon 11:2421–2428. https://doi.org/10.1007/s10706-016-9519-4

20. Abdel Wahab EA, Shaaban KS, Elsamarn R, Yousef ES (2019) Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl Phys A Mater Sci Process 125:869. https://doi.org/10.1007/s00339-019-3166-8

21. Nayak MT, Desa JAE, Babu PD (2018) Magnetic and spectroscopic studies of an iron lithium calcium silicate glass and ceramic. J Non-Cryst Solids 484:1–7. https://doi.org/10.1016/j.jnoncrysol.2017.12.050

22. Nayak, Manjunath T.; Desa, J.A. Erwin; Reddy, V. Raghvendra; Nayak, C.; Bhattacharyya, D.; Jha, S.N. (2019). Studies of potassium silicate glasses with fixed iron content and their relation to similar alkali silicates. Journal of Non-Crystalline Solids, 518(8), 85–91. doi: https://doi.org/10.1016/j.jnoncrysol.2019.04.025

23. Shaaban, K.S., Zahran, H.Y., Yahia, I.S. et al. (2020). Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Appl Phys A 126, (10), 804. https://doi.org/10.1007/s10854-020-03982-9

24. Nayak, Manjunath T.; Desa, J. A. Erwin; Babu, P. D. (2018). AIP Conference Proceedings [Author(s)] DAE SOLID STATE PHYSICS SYMPOSIUM 2017 - Mumbai, India (26–30 December 2017)] - Magnetic properties of Fe–Nd silica glass ceramics., 1942(1), 070006. https://doi.org/10.1063/1.5028804

25. Nayak, Manjunath T.; Desa, J. A. Erwin; Babu, P. D. (2019). AIP Conference Proceedings [AIP Publishing DAE SOLID STATE PHYSICS SYMPOSIUM 2018 - Hisar, Haryana, India (18–22 December 2018)] DAE SOLID STATE PHYSICS SYMPOSIUM 2018 - Effect of iron and sodium inclusion on some properties of silicate glass. 2115(1), 03224-. doi: https://doi.org/10.1063/1.1113063

26. Abdel Wahab EA, Koubisy MSI, Sayedy MI, Mahmoud KA, Zatsepin AF, Makhlouf SA, Shaaban KS (2020) Novel borosilicate glass system: Na2O-B2O3-SiO2-MoO3 synthesis, average electronic polarizability, optical basicity, and gamma-ray shielding features. J Non-Cryst Solids 553:120509. https://doi.org/10.1016/j.jnoncrysol.2020.120509

27. El-Sharkawy RM, Shaaban KS, Elsaman R, Allam EA, El-Taher A, Mahmoud ME (2020) Investigation of mechanical and radiation-shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based on nano metal oxides. J Non-Cryst Solids 528:119754. https://doi.org/10.1016/j.jnoncrysol.2019.119754

28. Shaaban KS, Yousef ES (2020) Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik - Int J Light and Electron Optics 203:163976. https://doi.org/10.1016/j.ijleo.2019.163976

29. El-Rehim, A.F.A., Shaaban, K.S., Zahran, H.Y. et al. (2020). Structural and mechanical properties of Lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass–ceramics. J Inorg Organomet Polym https://doi.org/10.1007/s10904-020-01708-1

30. El-Maaref, A. A., Wahab, E. A. A., Shaaban, K. S., Abdelawwad, M., Koubisy, M. S. I., Börsök, J., & Yousef, E. S. (2020). Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118774. doi: https://doi.org/10.1016/j.saa.2020.118774

31. Gledam RS, Ramteke DD (2012) Synthesis and characterization of Lithium borate glasses containing La2O3. Trans Indian Inst Metals 65:31–35. https://doi.org/10.1007/s12666-011-0107-4
42. Kaewjaeng S, Kothan S, Chaiphaksa W, Chanthima N, Raja Ramakrishna R, Kim HJ, Kaewkhao J (2019) High transparency La$_2$O$_3$-CaO-B$_2$O$_3$-SiO$_2$ glass for diagnosis x-rays shielding material application. Radiat Phys Chem 160:41–47. https://doi.org/10.1016/j.radphyschem.2019.03.018

43. Rajaramakrishna R, Karuthedath S, Anavekar RV, Jain H (2012) Nonlinear optical studies of lead lanthanum borate glass doped with au nanoparticles. J Non-Cryst Solids 358(14):1667–1672. https://doi.org/10.1016/j.jnoncrysol.2012.04.031

44. Fayad, A.M., Abd-Allah, W.M. & Moustafa, F.A. (2018). Effect of gamma irradiation on structural and optical investigations of borosilicate glass doped yttrium oxide. Silicon 10, 799–809. https://doi.org/10.1007/s12633-016-9533-6

45. Singh K, Gupta N, Pandey OP (2007) Effect of Y$_2$O$_3$ on the crystallization behavior of SiO$_2$–MgO–B$_2$O$_3$–Al$_2$O$_3$ glasses. J Mater Sci 42:6426–6432. https://doi.org/10.1007/s10853-006-1188-z

46. Kumar V, Pandey OP, Singh K (2010) Effect of A$_2$O$_3$ (a = La, Y, Cr, Al) on thermal and crystallization kinetics of borosilicate glass sealants for solid oxide fuel cells glasses. Ceram Int 36(5):1621–1626. https://doi.org/10.1016/j.ceramint.2010.02.040

47. Singh S, Kalia G, Singh K (2015) Effect of intermediate oxide (Y$_2$O$_3$) on thermal, structural and optical properties of lithium borosilicate glasses. Mol Struct 1086:239–245. https://doi.org/10.1016/j.molstruc.2015.01.031

48. E.A. Abdel Wahab, A.A. El-Maaref, Kh.S. Shaaban, J. Bőrcsök, M. Abdelawwad, (2020), Lithium cadmium phosphate glasses doped Sm$^{3+}$ as a host material for near-IR laser applications, optical Materials,110638, https://doi.org/10.1016/j.optmat.2020.110638

49. Stookey SD, Kingery WD (1960) Ceramic fabrication processes. John Wiley and Sons, Inc. New York

50. McMillan PW (1979) Glass-Ceramics. 2nd ed. Non-Metallic Solids, ed. J.P. Roberts. Vol. 1. Academic Press Inc. (London) Ltd, London

51. Hölland W, Beall G (2002) Glass-ceramic technology. The American Ceramic Society, Westerville, OH

52. Stmad Z (1986) Glass-ceramic materials. Elsevier, Amsterdam

53. Abdel Wahab EA, Shaaban KS, Yousef ES (2020) Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt Quant Electron 52:458. https://doi.org/10.1007/s11082-020-02575-3

54. Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. Journal of applied Physics, 79(3) 1736. https://doi.org/10.1063/1.360962

55. Dimitrov V, Komatsu T (2002) Classification of simple oxides: a Polarizability approach. J Solid State Chem 163(1):100–112. https://doi.org/10.1006/jssc.2001.9378

56. Zhao X, Wang X, Lin H, Wang Z (2007) Electronic polarizability and optical basicity of lanthanide oxides. Phys B Condens Matter 392(1–2):132–136. https://doi.org/10.1016/j.physb.2006.11.015

57. Duffy JA (1989) A common optical basicity scale for oxide and fluoride glasses. J Non-Cryst Solids 109(1):35–39. https://doi.org/10.1016/0022-3093(89)90438-9

58. Duffy JA, Ingram MD (1992) Comments on the application of optical basicity to glass. J Non-Cryst Solids 144:76–80. https://doi.org/10.1016/0022-3093(92)80385-0

59. Varshneya Arun K., (1994), Fundamentals of inorganic glasses, New York State College of Ceramics, Alfred University, Alfred, New York, Academic Press. INC, Harcourt Brace & Company, Publishers, p33

60. Xu Y, Zhang Y, Hou L, Lu X (2014) Preparation of CaO-Al$_2$O$_3$-SiO$_2$ system glass from molten blast furnace slag. Int J Miner Metall Mater 21:169–174. https://doi.org/10.1007/s12613-014-0881-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.