META-ANALYSIS

CTLA-4 and MDR1 polymorphisms increase the risk for ulcerative colitis: A meta-analysis

Jia-Jun Zhao, Di Wang, Hui Yao, Da-Wei Sun, Hong-Yu Li

Abstract

AIM: To evaluate the correlations between cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and multidrug resistance 1 (MDR1) genes polymorphisms with ulcerative colitis (UC) risk.

METHODS: PubMed, EMBASE, Web of Science, Cochrane Library, CBM databases, Springerlink, Wiley, EBSCO, Ovid, Wanfang database, VIP database, China National Knowledge Infrastructure, and Weipu Journal databases were exhaustively searched using combinations of keywords relating to CTLA-4, MDR1 and UC. The published studies were filtered using our stringent inclusion and exclusion criteria, the quality assessment for each eligible study was conducted using Critical Appraisal Skill Program and the resultant high-quality data from final selected studies were analyzed using Comprehensive Meta-analysis 2.0 (CMA 2.0) software. The correlations between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC were evaluated by OR at 95%CI. Z test was carried out to evaluate the significance of overall effect values. Cochran's Q-statistic and I^2 tests were applied to quantify heterogeneity among studies. Funnel plots, classic fail-safe N and Egger's linear regression test were inspected for indication of publication bias.

RESULTS: A total of 107 studies were initially retrieved and 12 studies were eventually selected for meta-analysis. These 12 case-control studies involved 1860 UC patients and 2663 healthy controls. Our major result revealed that single nucleotide polymorphisms (SNPs) of CTLA-4 gene rs3087243 G > A and rs231775 G > A may increase the risk of UC (rs3087243 G > A: allele model: OR = 1.365, 95%CI: 1.023-1.822, $P = 0.035$; dominant model: OR = 1.569, 95%CI: 1.269-1.940, $P < 0.001$; rs231775 G > A: allele model: OR = 1.583, 95%CI: 1.306-1.918, $P < 0.001$; dominant model: OR = 1.805,
95%CI: 1.393-2.340, \(P < 0.001 \). In addition, based on our result, SNPs of \(MDR1 \) gene rs3087243 \(C \geq T \) might also confer a significant increases for the risk of UC (allele model: \(OR = 1.389, 95\% CI: 1.214-1.590, P < 0.001; \) dominant model: \(OR = 1.518, 95\% CI: 1.222-1.886, P < 0.001 \)).

CONCLUSION: \(CTLA-4 \) gene rs3087243 \(G \geq A \) and rs231775 \(G \geq A \), and \(MDR1 \) gene rs1045642 \(C \geq T \) might confer an increase for UC risk.

Key words: Ulcerative colitis; Cytotoxic T lymphocyte-associated antigen-4; Multi-drug resistance 1; rs3087243 \(G \geq A \); rs231775 \(G \geq A \); rs1045642 \(C \geq T \); Polymorphism; Meta-analysis

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: To evaluate the correlations between cytotoxic T lymphocyte-associated antigen-4 (\(CTLA-4 \)) and multi-drug resistance 1 (\(MDR1 \)) genes polymorphisms with ulcerative colitis (UC) risk. \(CTLA-4 \) gene rs3087243 \(G \geq A \) and rs231775 \(G \geq A \), and \(MDR1 \) gene rs1045642 \(C \geq T \) might confer an increase for UC risk.

Zhao JJ, Wang D, Yao H, Sun DW, Li HY. \(CTLA-4 \) and \(MDR1 \) polymorphisms increase the risk for ulcerative colitis: A meta-analysis. World J Gastroenterol 2015; 21(34): 10025-10040 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i34/10025.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i34.10025

INTRODUCTION

Ulcerative colitis (UC) is known as an idiopathic, chronic inflammatory disease of the large intestine, frequently involving the rectum, and characterized by continuous inflammation and ulceration of intestinal mucosa and submucosa\(^1\). In the United States, UC affects approximately 500,000 individuals with an incidence of 8-12 per 100,000 populations per year and the incidence has remained relatively constant over the last five decades\(^2\). Crohn’s disease (CD) and UC are two forms of inflammatory bowel diseases (IBD), and while CD can impact any segment of the gastrointestinal tract, UC pathology is restricted to the colon\(^3\). The precise etiology of UC remains unknown, but factors such as the host immune system, other genetic factors, and environmental factors, contribute to the occurrence of UC\(^4,5\). Typical symptoms of UC include abdominal cramping, rectal bleeding and persistent bloody diarrhea, and other symptoms such as severe fecal urgency resulting from reduced rectal compliance, irritability, general malaise, incontinence, and weight loss are also common\(^6\). UC is treated in clinics with azathioprine, mesalamine, glucocorticoids, and anti-tumor necrosis factor agents (infliximab and adalimumab)\(^7\). Recently, single nucleotide polymorphisms (SNPs) of Cytotoxic T lymphocyte-associated antigen-4 (\(CTLA-4 \)) and multi-drug resistance 1 (\(MDR1 \)) genes were found to be associated with the pathogenesis of UC\(^8,9\).

\(CTLA-4 \) plays a crucial role in the immune system inducing immune tolerance and is an essential negative regulator of T cell-mediated immune response\(^10\). \(CTLA-4 \) usually functions as a co-inhibitory molecule interacting with B7.1 (CD80) and B7.2 (CD86) expressed on antigen-presenting cells\(^11\). \(CTLA-4 \) gene encodes a 40-kDa transmembrane \(CTLA-4 \) glycoprotein and the gene is located on chromosome 2q33 in humans\(^12\). \(CTLA-4 \) dampens the signal transduction in T cells in the presence of antigen presenting cells, and downregulation of \(CTLA-4 \) expression is implicated in T cell associated autoimmunity and lymphoproliferative diseases\(^13\). \(MDR1 \), also called ATP-binding cassette subfamily B member 1 (ABCB1), is extremely important in multidrug resistance of cancer cells and therapy effectiveness in several other disorders\(^14\). The \(MDR1 \) gene is located on chromosome 7q21.1 and encodes a glycoprotein of 170 kDa\(^15\). \(MDR1 \) was originally identified as a gene amplified in multiple drug-resistant cells, and its product, P-gp, plays an important role in drug resistance\(^10\). Previous studies have proposed that some SNPs of \(CTLA-4 \) gene, such as rs3087243 \(G \geq A \) and rs231775 \(G \geq A \), and SNPs of \(MDR1 \) gene rs1045642 \(C \geq T \) may increase the risk of UC\(^17,18\). However, these associations have not been confirmed, and contradictory data exists in different populations\(^19,20\). In order to address this relationship further, we undertook a meta-analysis based approach to evaluate the associations of SNPs of \(CTLA-4 \) and \(MDR1 \) genes with the risk of UC, by pooling all relevant published data.

MATERIALS AND METHODS

Search strategy

An extensive literature search for relevant studies was conducted on PubMed, EMBASE, Web of Science, Cochrane Library, CBM databases, Springerlink, Wiley, EBSCO, Ovid, Wanfang database, VIP database, China National Knowledge Infrastructure (CNKI), and Weipu Journal databases from their inception through to October 1\(^{st}, 2014\). We used the following keywords and MeSH terms: “costimulatory and inhibitory t-cell receptors” or “\(CTLA-4 \)-antigen” or “cytotoxic t-lymphocyte-associated antigen 4” or “\(CD152 \) antigen” or “cytotoxic t-lymphocyte antigen 4” or “\(CTLA-4 \)” and (“colitis, ulcerative” or “idiopathic proctocolitis”) or “ulcerative colitis” or “Colitis gravis” or “inflammatory bowel disease, ulcerative colitis type”); “genes, \(MDR \)” or “\(ABCB1 \)” or “\(MDR1 \)” or “multidrug resistance 1” or “\(ABCB1 \) protein, human” or “\(MDR \)” and (“colitis, ulcerative” or “idiopathic proctocolitis” or

Inclusion and exclusion criteria

Identified articles were reviewed in their entirety and selected if they met the following inclusion criteria: (1) study type: case-control studies; (2) research topic: correlations between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC; (3) subject investigated: UC patients in the case group and normal controls in the control group; (4) end indicators: all the included studies provided complete data such as: age, country, ethnicity, language, detection method, SNP site information; and (5) studies were published in Chinese or in English. The exclusion criteria were: (1) unclear diagnostic basis for subjects investigated; (2) animal research; (3) studies with insufficient data; and (4) duplicate publications.

Data extraction and quality assessment

Literature screening was performed by two independent reviewers, based on a predetermined data collection table. Relevant information including first author, published year, country, ethnicity, sample, disease, source of controls, gender, genotype method, gene, SNP were extracted from the eligible literature. Any disagreements in study selection between the two reviewers were resolved through discussion by all authors until consensus was obtained. The quality assessment for each eligible study was conducted using Critical Appraisal Skill Program (CASP) (http://www.casp-uk.net/#!casp-tools-checklists/c18f8).

Statistical analysis

The statistical methods of this study were reviewed by Zhou LP from Clinical Laboratory and Department of Clinical Epidemiology, the First Affiliated Hospital of China Medical University, See Supplement S1.Comprehensive Meta-analysis 2.0 software (Biostatic Inc., Englewood, New Jersey, United States) was used for data analysis in present meta-analysis. The correlations between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC were evaluated by OR at 95%CI. Z test was carried out to evaluate the significance of overall effect values\(^{[22]}\). Forest plots were drawn to reflect the comparisons of OR and 95%CI among the study groups. Cochran’s Q-statistic \((P < 0.05\) was considered significant) and \(I^2\) tests were applied to quantify heterogeneity among studies\(^{[22,23]}\). In order to calculate the pool ORs, fixed/random effects model were used. When significant heterogeneity was observed \((P < 0.05\) or \(I^2 > 50\%\)), a fixed effect model was used, otherwise, the random effect model was employed\(^{[24]}\). Univariate and multivariate meta-regression analysis was utilized to identify potential sources of heterogeneity, and further confirmed by Monte Carlo method\(^{[25,26]}\). One-way sensitivity analysis was performed to assess whether the results had significant influences on the overall outcomes by deleting single studies one by one. Funnel plots, classic fail-safe N and Egger’s linear regression test were inspected for indication of publication bias, and confirmed the reliability of original analysis results\(^{[27,28]}\). A bilateral test was conducted with \(P\) value of less than 0.05 considered to be significant.

RESULTS

Baseline characteristics of included studies

The initial database and manual search retrieved a total of 107 relevant articles. After excluding duplicates \((n = 8)\), non-human studies \((n = 6)\), letters, reviews \((n = 8)\) and studies unrelated to topic \((n = 15)\), 70 full-text articles remained. Twelve studies finally met the inclusion criteria after we eliminated studies that were not case-control \((n = 14)\), irrelevant to CTLA-4 \((n = 22)\), not irrelevant MDR1 \((n = 12)\), irrelevant to UC \((n = 6)\) and insufficient information \((n = 4)\). The twelve selected studies\(^{[17,19,20,29-37]}\), published between 2003 and 2013, contained a total of 1860 UC patients and 2663 healthy controls. Sample size varied between 195-900 patients. Of the 12 studies, 5 studies were conducted in Asians (2 from Iran, 1 from China and 2 from Japan), 1 study was performed in Africa (Tunisia), and the remaining 6 studies were in Caucasians with one study each in Croatia, Slovenia, Hungary, United Kingdom, Netherlands and Germany. SNP detection methods included polymerase chain reaction with the restriction fragment length polymorphism (PCR-RFLP) and TaqMan assay. The genotype distributions of all included studies conformed to Hardy Weinberg Equilibrium (HWE) \((P > 0.05)\) except for MDR1 rs1045642 C > T in one study. The baseline characteristics of the included studies and CASP for eligible studies are shown in Table 1 and Figure 1, respectively.

Association of CTLA-4 gene rs3087243 G > A and the risk of UC

The correlations between SNP of CTLA-4 gene, rs3087243 G > A, and UC risk were reported in 4 studies. A random-effects model was used since there was evidence of heterogeneity under the allele model and a fixed-effects model was used for the absence of heterogeneity under the dominant model \((P = 0.03; \ P = 0.121)\). The results of meta-analysis showed that rs3087243 G > A is associated with increased risk of UC (allele model: OR = 1.365, 95%CI: 1.023-1.822, \(P = 0.035\); dominant model: OR = 1.569, 95%CI: 1.269-1.940, \(P < 0.001\)) (Figure 2A and B and Table 2). Subgroup analysis based on ethnicity showed no significant association between rs3087243 G > A and the risk of UC in Asians (allele model: OR = 1.153, 95%CI: 0.860-1.546, \(P = 0.340\); dominant model: OR = 1.365, 95%CI: 1.023-1.822, \(P = 0.035\)) (Figure 2A and B and Table 2).
Association of CTLA-4 gene rs231775 G > A and the risk of UC

The correlation between SNP of CTLA-4 gene rs231775 G > A, and UC risk was reported in 4 studies. The results of the heterogeneity test showed no significant heterogeneity under the allele model and dominant model, thus the fixed-effects model was applied in this meta-analysis (all P > 0.05). Pooled data in this meta-analysis showed that rs231775 G > A is associated with significantly increased risk of UC (allele model: OR = 1.583, 95%CI: 1.306-1.918, P < 0.001; dominant model: OR = 1.805, 95%CI: 1.393-2.340, P < 0.001) (Figure 2C and D; Table 2). Subgroup analysis based on ethnicity showed no significant association between rs231775 G > A and the risk of UC in Africans (allele model: OR = 1.556, 95%CI: 0.972-2.489, P = 0.066; dominant model: OR = 1.432, 95%CI: 0.968-2.078, P = 0.099). However, in Caucasians, rs3087243 G > A is associated with an increased risk of UC (allele model: OR = 1.563, 95%CI: 1.056-2.313, P = 0.026; dominant model: OR = 1.685, 95%CI: 1.294-2.194, P < 0.001) (Figure 3A and B; Table 2).
A

Author	Statistics for each study	OR and 95%CI	Weight (random)	Residual (random)
Repnik K (2010)		1.256 0.908 1.737 1.378 0.168	25.99 -0.34	
Wang Q (2006)		0.975 0.615 1.546 -0.108 0.914	19.48 -1.12	
Rueda B (2005)		1.877 1.501 2.348 5.516 0.000	31.36 1.46	
Machida H (2005)		1.293 0.884 1.890 1.326 0.185	23.17 -0.20	
Overall		1.365 1.023 1.822 2.111 0.035		

Heterogeneity test: ($\chi^2 = 66.49\%$, $P = 0.03$)

Z test: ($Z = 2.11$, $P = 0.035$)

Favours case

Favours control

Random effects analysis

B

Author	Statistics for each study	OR and 95%CI	Weight (fixed)	Residual (fixed)
Repnik K (2010)		1.215 0.804 1.835 0.924 0.356	26.48 -1.42	
Wang Q (2006)		1.119 0.644 1.945 0.400 0.689	14.79 -1.30	
Rueda B (2005)		2.113 1.499 2.978 4.271 0.000	38.27 2.16	
Machida H (2005)		1.600 1.001 2.538 1.963 0.050	20.47 0.09	
Overall		1.569 1.269 1.940 4.159 0.000		

Heterogeneity test: ($\chi^2 = 48.33\%$, $P = 0.121$)

Z test: ($Z = 4.46$, $P < 0.001$)

Favours case

Favours control

C

Author	Statistics for each study	OR and 95%CI	Weight (fixed)	Residual (fixed)
Ben Alaya W (2009)		1.556 0.972 2.489 1.842 0.066	16.71 -0.08	
Magyari L (2007)		1.717 1.235 2.387 3.217 0.001	34.05 0.60	
Lankarani KB (2006)		1.845 1.175 2.896 2.661 0.008	18.15 0.74	
Machida H (2005)		1.337 0.947 1.887 1.651 0.099	31.09 -1.16	
Overall		1.583 1.306 1.918 4.684 0.000		

Heterogeneity test: ($\chi^2 = 0.00\%$, $P = 0.685$)

Z test: ($Z = 4.16$, $P < 0.001$)

Favours case

Favours control

D

Author	Statistics for each study	OR and 95%CI	Weight (fixed)	Residual (fixed)
Ben Alaya W (2009)		1.432 0.764 2.684 1.119 0.263	17.06 -0.79	
Magyari L (2007)		1.888 1.207 2.954 2.785 0.005	33.65 0.24	
Lankarani KB (2006)		2.346 1.320 4.168 2.907 0.004	20.39 1.00	
Machida H (2005)		1.634 1.008 2.647 1.992 0.046	28.90 -0.48	
Overall		1.805 1.393 2.340 4.462 0.000		

Heterogeneity test: ($\chi^2 = 0.00\%$, $P = 0.677$)

Z test: ($Z = 4.46$, $P < 0.001$)

Favours case

Favours control

E

Author	Statistics for each study	OR and 95%CI	Weight (fixed)	Residual (fixed)
Brinar M (2013)		1.445 0.998 2.091 1.948 0.051	13.34 0.22	
Farnood A (2007)		1.518 1.201 1.918 3.494 0.000	33.30 0.91	
Osuga T (2006)		1.232 0.711 2.135 0.745 0.456	6.04 -0.44	
Ho GT (2006)		1.261 0.984 1.615 1.835 0.067	29.79 -0.92	
Schwab M (2003)		1.401 1.015 1.935 2.048 0.041	17.53 0.06	
Overall		1.389 1.214 1.590 4.770 0.000		

Heterogeneity test: ($\chi^2 = 0.00\%$, $P = 0.85$)

Z test: ($Z = 4.77$, $P < 0.001$)

Favours case

Favours control
Table 2 Comparisons of genotype and allele frequencies between the case and the control groups

SNP	rs1045642 C > T: CT + TT vs CC	OR and 95%CI	Weight (fixed)	Residual (fixed)			
	Author	OR Lower limit	Upper limit	Z value	P value	Relative weight	Std residual
	Brinar M (2013)	1.359 0.736	2.511 0.981	0.327	12.52 -0.38		
	Farnood A (2007)	1.833 1.310	2.566 3.535	0.000	41.74 1.44		
	Osuga T (2006)	1.109 0.456	2.697 0.228	0.820	5.97 -0.71		
	Ho GT (2006)	1.184 0.765	1.833 0.757	0.449	24.68 -1.28		
	Schwab M (2003)	1.677 0.959	2.933 1.814	0.070	15.09 0.38		
	Overall	1.518 1.222	1.886 3.767	0.000	100.00 0.1		

Heterogeneity test: ($I^2 = 0.00\%$, $P = 0.528$)
Z test: ($Z = 3.77$, $P < 0.001$) Favour case Favour control

Figure 2 Forest plots for the correlations between single nucleotide polymorphisms of CTLA-4 and MDR1 with ulcerative colitis risk.

Table 2 Comparisons of genotype and allele frequencies between the case and the control groups

SNP	rs3087243 G/A	rs231775 G/A	rs1045642 C/T
	OR 95%CI P value	OR 95%CI P value	OR 95%CI P value
Allele model			
Asians	1.15 (0.86-1.55, 0.340)	1.51 (1.15-1.98, 0.003)	1.47 (1.19-1.82, < 0.001)
Caucasians	1.56 (1.06-2.31, 0.026)	1.72 (1.24-2.39, 0.001)	1.34 (1.13-1.59, 0.001)
Africans	- - -	1.56 (0.97-2.49, 0.066)	- - -
Overall	1.37 (1.02-1.82, 0.035)	1.58 (1.31-1.92, < 0.001)	1.39 (1.21-1.59, < 0.001)
Dominant model			
Asians	1.38 (0.96-1.97, 0.079)	1.90 (1.31-2.75, 0.001)	1.72 (1.26-2.36, < 0.001)
Caucasians	1.69 (1.29-2.19, < 0.001)	1.89 (1.21-2.95, 0.005)	1.35 (1.00-1.83, 0.048)
Africans	- - -	1.43 (0.76-2.68, 0.263)	- - -
Overall	1.57 (1.27-1.94, < 0.001)	1.81 (1.39-2.34, < 0.001)	1.52 (1.22-1.89, < 0.001)
Homozygous model			
Overall	2.41 (1.67-3.48, < 0.001)	2.21 (1.45-3.37, < 0.001)	1.92 (1.44-2.56, < 0.001)
Heterozygous model			
Overall	0.62 (0.44-0.89, 0.008)	0.76 (0.50-1.15, 0.190)	0.67 (0.53-0.86, 0.001)
recessive model			
Overall	1.98 (1.42-2.76, < 0.001)	1.73 (1.16-2.57, 0.007)	1.62 (1.29-2.05, < 0.001)

OR: Odds ratio.
Zhao JJ et al. CTLA-4 and MDR1 SNPs with UC

B

Group by ethnicity	Author	Statistics for each study	OR and 95% CI	Weight (fixed)	Residual (fixed)
Ethnicity					
Asian	Wang Q (2006)	1.119 (0.644 - 1.945) 0.400 0.689		41.95	-0.97
Asian	Machida H (2005)	1.600 (1.001 - 2.558) 1.963 0.050		58.05	0.97
Asian	Repnik K (2010)	1.215 (0.804 - 1.835) 0.924 0.356		40.89	-2.02
Caucasian	Rueda B (2005)	2.113 (1.499 - 2.978) 4.271 0.000		59.11	2.02
Caucasian		1.685 (1.294 - 2.194) 3.874 0.000			
Overall		1.569 (1.269 - 1.940) 4.159 0.000			

Asian: Z test: (Z = 1.76, P = 0.079)
Caucasian: Z test: (Z = 3.87, P < 0.001)
Overall: Z test: (Z = 4.16, P < 0.001)

C

Group by ethnicity	Author	Statistics for each study	OR and 95% CI	Weight (fixed)	Residual (fixed)
Ethnicity					
Africa	Ben Alaya W (2009)	1.556 (0.972 - 2.489) 1.842 0.066		100.00	0.00
Africa		1.556 (0.972 - 2.489) 1.842 0.066			
Asian	Lankarani KB (2006)	1.845 (1.175 - 2.896) 2.661 0.008		36.86	1.11
Asian	Machida H (2005)	1.337 (0.947 - 1.887) 1.651 0.099		63.14	-1.11
Asian		1.505 (1.145 - 1.980) 2.927 0.003			
Caucasian	Magyari L (2007)	1.717 (1.235 - 2.387) 3.217 0.001		100.00	0.60
Caucasian		1.717 (1.235 - 2.387) 3.217 0.001			
Overall		1.583 (1.306 - 1.918) 4.684 0.000			

Africa: Z test: (Z = 1.74, P = 0.066)
Asian: Z test: (Z = 2.93, P = 0.003)
Caucasian: Z test: (Z = 3.22, P = 0.001)
Overall: Z test: (Z = 4.68, P < 0.001)

D

Group by ethnicity	Author	Statistics for each study	OR and 95% CI	Weight (fixed)	Residual (fixed)
Ethnicity					
Africa	Ben Alaya W (2009)	1.432 (0.764 - 2.684) 1.119 0.263		100.00	-0.79
Africa		1.432 (0.764 - 2.684) 1.119 0.263			
Asian	Lankarani KB (2006)	2.346 (1.320 - 4.168) 2.907 0.004		41.36	0.94
Asian	Machida H (2005)	1.634 (1.008 - 2.647) 1.992 0.046		58.64	-0.94
Asian		1.897 (1.311 - 2.746) 3.396 0.001			
Caucasian	Magyari L (2007)	1.888 (1.207 - 2.954) 2.785 0.005		100.00	0.24
Caucasian		1.888 (1.207 - 2.954) 2.785 0.005			
Overall		1.805 (1.393 - 2.340) 4.462 0.000			

Africa: Z test: (Z = 1.12, P = 0.263)
Asian: Z test: (Z = 3.4, P = 0.001)
Caucasian: Z test: (Z = 2.79, P = 0.005)
Overall: Z test: (Z = 4.46, P < 0.001)

E

Group by ethnicity	Author	Statistics for each study	OR and 95% CI	Weight (fixed)	Residual (fixed)
Ethnicity					
Asian	Farnood A (2007)	1.518 (1.201 - 1.918) 3.494 0.000		94.64	0.68
Asian	Osuga T (2006)	1.232 (0.711 - 2.135) 0.745 0.456		15.36	-0.68
Asian		1.470 (1.185 - 1.823) 3.507 0.000			
Caucasian	Brinar M (2013)	1.445 (0.998 - 2.091) 1.948 0.051		21.99	0.45
Caucasian	Ho GT (2006)	1.261 (0.984 - 1.615) 1.835 0.067		49.11	-0.67
Caucasian	Schwab M (2003)	1.401 (1.015 - 1.935) 2.048 0.041		28.90	0.32
Caucasian		1.339 (1.126 - 1.593) 3.300 0.001			
Overall		1.389 (1.214 - 1.590) 4.770 0.000			

Asian: Z test: (Z = 3.51, P = 0.001)
Caucasian: Z test: (Z = 3.3, P = 0.001)
Overall: Z test: (Z = 4.77, P < 0.001)
Zhao JJ et al. CTLA-4 and MDR1 SNPs with UC

Figure 3 Subgroup analysis for the correlations between single nucleotide polymorphisms of CTLA-4 and MDR1 with ulcerative colitis risk.

A Regression of year on Log odds ratio

B Regression of country on Log odds ratio

C Regression of ethnicity on Log odds ratio

F	Group by ethnicity	Author	rs1045642 G > T: Ethnicity (CT + TT vs CC)	OR and 95%CI	Weight (fixed)	Residual (fixed)		
Asian	Farnood A (2007)	1.833	1.310	2.566	3.535	0.000	87.49	1.04
Asian	Osuga T (2006)	1.109	0.456	2.697	0.228	0.820	12.51	-1.04
Asian	Schwab M (2003)	1.677	0.959	2.933	1.814	0.070	23.95	0.02
Caucasian	Brinar M (2013)	1.359	0.736	2.511	0.981	0.327	47.19	-0.82
Caucasian	Ho GT (2006)	1.184	0.756	1.833	0.757	0.449	28.86	0.89
Caucasian	Schwab M (2003)	1.353	1.002	1.827	1.974	0.048	87.49	1.04
Overall		1.518	1.222	1.886	3.767	0.000	23.95	0.02

Asian: Z test: (Z = 3.39, P = 0.001)
Caucasian: Z test: (Z = 1.97, P = 0.048)
Overall: Z test: (Z = 3.77, P < 0.001)
Table 3 Meta-regression analyses of potential source of heterogeneity

Heterogeneity factors	Coefficient	SE	t	P value (adjusted)	95%CI LL	95%CI UL
Year	-0.061	0.035	-1.76	0.359	-0.15	0.028
Country	-0.054	0.03	-1.78	0.352	-0.131	0.024
Ethnicity	0.001	0.042	0.03	1	0.701	0.309
Method	0.203	0.092	2.2	0.219	-0.034	0.44
SNP	0.045	0.057	0.79	0.85	-0.101	0.191
Sample	0	0	0.09	1	0	0

SE: Standard error; LL: Lower limit; UL: Upper limit. SNP: Single nucleotide polymorphism.
A

rs3087243 G > A: A allele vs G allele

Author	Point	Lower limit	Upper limit	Z value	P value
Repnik K (2010)	1.386	0.938	2.048	1.640	0.101
Wang Q (2006)	1.490	1.120	1.982	2.737	0.006
Rueda B (2005)	1.198	0.964	1.489	1.632	0.103
Machida H (2005)	1.371	0.934	2.010	1.612	0.107
Overall	1.365	1.023	1.822	2.111	0.035

B

rs3087243 G > A: GA + AA vs GG

Author	Point	Lower limit	Upper limit	Z value	P value
Repnik K (2010)	1.721	1.343	2.204	4.296	0.000
Wang Q (2006)	1.664	1.322	2.096	4.339	0.000
Rueda B (2005)	1.305	0.996	1.710	1.931	0.053
Machida H (2005)	1.561	1.231	1.981	3.668	0.000
Overall	1.569	1.269	1.940	4.159	0.000

C

rs231775 G > A: A allele vs G allele

Author	Point	Lower limit	Upper limit	Z value	P value
Ben Alaya W (2009)	1.589	1.287	1.961	4.308	0.000
Magyari L (2007)	1.518	1.198	1.923	3.457	0.001
Lankarani KB (2006)	1.530	1.237	1.892	3.924	0.000
Machida H (2005)	1.708	1.355	2.153	4.534	0.000
Overall	1.583	1.306	1.918	4.684	0.000

D

rs231775 G > A: GA + AA vs GG

Author	Point	Lower limit	Upper limit	Z value	P value
Ben Alaya W (2009)	1.894	1.424	2.518	4.392	0.000
Magyari L (2007)	1.765	1.283	2.427	3.494	0.000
Lankarani KB (2006)	1.688	1.262	2.258	3.529	0.000
Machida H (2005)	1.880	1.382	2.558	4.021	0.000
Overall	1.805	1.393	2.340	4.462	0.000

E

rs1045642 G > T: T allele vs C allele

Author	Point	Lower limit	Upper limit	Z value	P value
Brinar M (2013)	1.381	1.194	1.597	4.360	0.000
Farnood A (2007)	1.329	1.127	1.568	3.372	0.001
Osuga T (2006)	1.400	1.218	1.609	4.732	0.000
Ho GT (2006)	1.448	1.232	1.701	4.498	0.000
Schwab M (2003)	1.387	1.195	1.609	4.308	0.000
Overall	1.389	1.214	1.590	4.770	0.000
Figure 5 Meta-regression analysis on the correlations between single nucleotide polymorphisms of CTLA-4 and MDR1 with ulcerative colitis risk.
0.764-2.684, \(P = 0.263 \)), but in both Asians and Caucasians, rs231775 G > A was strongly associated with significant increases in the incidence of UC (Asians: allele model: \(OR = 1.505, 95\% CI: 1.145-1.980, P = 0.003 \); dominant allele: \(OR = 1.897, 95\% CI: 1.311-2.746, P = 0.0001 \); Caucasians: allele model: \(OR = 1.717, 95\% CI: 1.235-2.387, P = 0.001 \); dominant model: \(OR = 1.888, 95\% CI: 1.207-2.954, P = 0.005 \)) (Figure 3C and D; Table 2).

Association of MDR1 gene rs1045642 C > T and the risk of UC

The correlation between SNP of MDR1 gene, rs1045642 C > T, and UC risk was discussed in 5 studies. A fixed-effects model was used for the absence of heterogeneity under the allele model and the dominant model (all \(P > 0.05 \)). The results of meta-analysis showed that rs1045642 C > T is linked to increased risk of UC (allele model: \(OR = 1.389, 95\% CI: 1.045-1.857, P = 0.021 \); dominant model: \(OR = 1.845, 95\% CI: 1.257-2.684, P = 0.002 \)).
between SNPs of the CTLA-4 gene, rs1045642 C > T, and the risk of UC. CTLA-4 is primarily expressed in activated T cells, and it also plays an inhibitory role in the regulation of self-tolerance and T-cell functions, suggesting that CTLA-4, by virtue of its influence on T-cell regulation, may potentially influence UC disease susceptibility[17]. CTLA-4 is described as a vital downregulator of T-cell activation resulting in peripheral tolerance, and is also a negative regulator of T/B, T-cell activation and T/monocyte-macrophage cognate interaction. Thus, CTLA-4 has been recognized as a good candidate gene for the susceptibility to UC[41]. In this context, downregulation of CTLA-4 may contribute to an exaggerated T-cell response, along with a persistent inflammation response in the gastrointestinal mucosa, possibly initiating the development of UC[42]. Data from a previous study showed that the CTLA-4 gene is involved in the pathogenesis of IBD and UC among Slovenian patients and that CT60 (rs3087243 G > A) polymorphism is an important target regulating CTLA-4 gene expression[43].

Our meta-analysis also revealed a significant association between MDR1 gene polymorphism, rs1045642 C > T, and the risk of UC. As an energy-dependent efflux pump, MDR1 (P-gp) plays a crucial role in the bioavailability and cytotoxicity of a large number of drugs, substances, and xenobiotics including sugars, glycans, ions, proteins, phospholipids, antibiotics, corticosteroids, antitumor drugs, immunosuppressants, calcium-channel blocker agents and anti- (human immunodeficiency virus) HIV protease inhibitors[44]. UC patients frequently exhibit reduced P-gp expression levels, and MDR1 mRNA expression might also be reduced in the colonic tissue of UC patients. G2677T/A (Ala893Ser/Thr, rs2032582) and C3435T (Ile1145Ile, rs1045642) are two common polymorphisms (variants) in MDR1 gene, and correlate with the function and activity of P-gp[44]. Data from a previous study revealed a 2-fold increased OR for the development of UC in patients with the MDR1 rs1045642 C > T genotype, supporting the notion that P-gp expression plays an essential role in defense against intestinal bacteria and low P-gp expression, as a result of an rs1045642 C > T genotype, contributes to the development of UC[44]. Based on our results and previous studies supporting our conclusions, we propose that individuals with the rs1045642 C > T have a reduced intestinal barrier function, and thus are at a significantly higher risk for developing UC.

To further explore the effect of other influential factors like ethnicity on the correlation between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC, a subsequent subgroup meta-analysis was conducted. Subgroup analysis based on ethnicity showed that in Asians, there was no significant association between
reaction in malignant intestinal epithelium. Cancer Res 2010; 70: 6767-6778 [PMID: 20699370 DOI: 10.1158/0008-5472.CAN-09-4701]
17 Ben Alaya W, Sfar I, Aouadi H, Jendoubi S, Najjar T, Filali A, Gorgi Y, Ben Abdallah T, Mouelhi L, Matri S, Ayed K. Association between CTLA4 gene promoter (49 A/G) in exon 1 polymorphisms and inflammatory bowel disease in the Tunisian population. Saudi J Gastroenterol 2009; 15: 29-34 [PMID: 19568552 DOI: 10.4103/1397-6432.4825]

18 Zintzaras E. Is there evidence to claim or deny association between variants of the multidrug resistance gene (MDR1 or ABCB1) and inflammatory bowel disease? Inflamm Bowel Dis 2012; 18: 562-572 [PMID: 21887726 DOI: 10.1002/ibd.21728]

19 Magiari L, Faragö B, Jane Horvatovich K, Lakaner L, Varga M, Filger M, Gasztinyi B, Mózsk G, Melegh B. No association of the cytotoxic T-lymphocyte associated gene CTLA4 +49A/G polymorphisms with Crohn’s disease and ulcerative colitis in Hungarian population samples. World J Gastroenterol 2007; 13: 2205-2208 [PMID: 17465502 DOI: 10.3748/wjg.v13.i15.2205]

20 Rueda B, Zhenakova A, López-Nevoat MA, Gomez-Garcia M, Ortega E, Piñero A, Corroto F, Brieja VA, Nieto A, Koeleman BP, Martin J. CTLA4/CT60 polymorphism is not relevant in susceptibility to autoimmune inflammatory intestinal disorders. Hum Immunol 2005; 66: 321-325 [PMID: 15784471 DOI: 10.1016/j.humimm.2004.11.005]

21 Chen H, Manning AK, Dupuis J. A method of moments estimator for random effect multivariate meta-analysis. Biometrics 2012; 68: 1278-1284 [PMID: 22551393 DOI: 1541-0420.2012.01761.x]

22 Jackson D, White IR, Riley RD. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med 2012; 31: 3805-3820 [PMID: 22763950 DOI: 10.1002/sim.4545]

23 Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA 2006; 295: 676-680 [PMID: 16467236 DOI: 10.1001/jama.295.6.676]

24 Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol 2005; 28: 123-137 [PMID: 15593903 DOI: 10.1002/gepi.20048]

25 Huizenga HM, Visser I, Dolan CV. Testing overall and moderator effects in random effects meta-analysis. Br J Math Stat Psychol 2011; 64: 1-19 [PMID: 21506942 DOI: 10.1348/000711010X522687]

26 Ferrenberg AM, Swendsen RH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett 1988; 61: 2635-2638 [PMID: 10031933]

27 Wikstrom EA, Naik S, Lodha N, Cauraugh JH. Balance of cellular capabilities after lateral ankle trauma and intervention: a meta-analysis. Med Sci Sports Exerc 2009; 41: 1287-1295 [PMID: 19461563 DOI: 10.1249/MSS.0b013e31819ebc6c]

28 Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634 [PMID: 9301063]

29 Brinar M, Cukovic-Cavka S, Bozina N, Ravic KG, Markos P, Lacic A, Cota M, Kmicare Z, Vuceic B. MDR1 polymorphisms are associated with inflammatory bowel disease in a cohort of Croatian IBD patients. BMC Gastroenterol 2013; 13: 57 [PMID: 23537364 DOI: 10.1186/1471-230X-13-57]

30 Farnood A, Naderi N, Moghaddam SJ, Noorinayer B, Firouzi F, Lankarani KB. Association between CTLA-4 gene promoter (49 A/G) in exon 1 and susceptibility to autoimmune inflammatory intestinal disorders. World J Gastroenterol 2005; 11: 321-325 [PMID: 15784471 DOI: 10.1016/j.humimm.2004.11.005]

31 Chen Z, Brant SR, Li C, Shrestha UK, Jiang T, Zhou F, Jiang Y, Shi X, Zhao Y, Li J, Xia B. CTLA-4 -1661A/G and 3'UTR long repeat polymorphisms are associated with ulcerative colitis and influence CTLA4 mRNA and protein expression. Genes Immun 2010; 11: 573-583 [PMID: 20445568 DOI: 10.1038/gene.2010.16]

32 Berman D, Parker SM, Siegel J, Chasalow SD, Weber J, Galbraith S, Taran SG, Wang HL. Blockade of cytokotic T lymphocyte antigen-4 by antiipilumumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immunol Immunother 2010; 11: 11 [PMID: 21006563]

33 Yang Q, Chen BL, Zhang QS, Zhu ZH, Hu B, He Y, Gao X, Wang YM, Hu PJ, Chen MH, Zeng ZR. Contribution of MDR1 gene polymorphisms on IBD predisposition and response to glucocorticoids in IBD in a Chinese population. J Dig Dis 2015; 16: 22-30 [PMID: 25346246 DOI: 10.1111/1751-2980.12205]

34 Krupov A, Mack D, Seidman E, Deslandres C, Amre D.
Zhao JJ et al. CTLA-4 and MDR1 SNPs with UC

Associations between variants in the ABCB1 (MDR1) gene and corticosteroid dependence in children with Crohn’s disease. Inflamm Bowel Dis 2011; 17: 2308-2317 [PMID: 21987299 DOI: 10.1002/ibd.21608]

P- Reviewer: Kapischke M, Karatapanis S, Pessi T
S- Editor: Qi Y L- Editor: O’Neill M E- Editor: Liu XM
