Genomic markers for the biological responses of Triclosan stressed hatchlings of *Labeo rohita*

Sunil Sharma 1 · Owias Iqbal Dar 1 · Kirpal Singh 1 · Sharad Thakur 2 · Anup Kumar Kesavan 2 · Arvinder Kaur 1

Received: 16 February 2021 / Accepted: 21 June 2021 / Published online: 12 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Triclosan (TCS) used commonly in pharmaceuticals and personal care products has become the most common pollutant in water. Three-day-old hatchlings of an indigenous fish, *Labeo rohita*, were given 96h exposure to a nonlethal (60 μg L⁻¹) and two moderately lethal concentrations (67 and 97 μg L⁻¹) of TCS and kept for 10 days of recovery for recording transcriptomic alterations in antioxidant/detoxification (SOD, GST, CAT, GPx, GR, CYP1a and CYP3a), metabolic (LDH, ALT and AST) and neurological (AchE) genes and DNA damage. The data were subjected to principal component analysis (PCA) for obtaining biomarkers for the toxicity of TCS. Hatchlings were highly sensitive to TCS (96h LC 50 = 126 μg L⁻¹ and risk quotient = 40.95), 96h exposure caused significant induction of CYP3a, AChE and ALT but suppression of all other genes. However, expression of all the genes increased significantly (except for a significant decline in ALT) after recovery. Concentration-dependent increase was also observed in DNA damage [Tail Length (TL), Tail Moment (TM), Olive Tail Moment (OTM) and Percent Tail DNA (TDNA)] after 96h. The damage declined significantly over 96h values at 60 and 67 μg L⁻¹ after recovery, but was still several times more than control. TCS elicited genomic alterations resulted in 5–11% mortality of exposed hatchlings during the recovery period. It is evident that hatchlings of *L. rohita* are a potential model and PCA shows that OTM, TL, TM, TDNA, SOD and GR (association with PC1 during exposure and recovery) are the biomarkers for the toxicity of TCS.

Keywords Triclosan · *Labeo rohita* · Lethal concentrations · Gene expression · DNA damage

Introduction
Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol] or TCS is commonly used as an antibacterial and antifungal agent in human medicines, personal care products (soap, toothpaste, mouthwash, detergents, handwash, deodorant, shampoo etc.) and household products (toys, cutting boards, containers, furniture etc.). It is also used as a veterinary medicine and a growth promoter for livestock and agricultural species (Daughton and Ternes 1999; Dann and Hontela 2011; Zheng et al. 2019). In 2005, Halden and Paull reported that more than 3 million tons of TCS were being used in Europe, and around 3.5 million tons were consumed in USA. Use of triclosan has been restricted in Europe (European Commission 2011), USA (FDA 2016) and Canada (ECCC and HC 2016) now, but it is still widely used in other countries. Approximately 96% of the products that drain in the sewage system have 0.1–0.3% of TCS by weight (Reiss et al. 2002), therefore, it has become a common contaminant in water bodies all over the world (Singer et al. 2002; Sabalunas et al. 2003; Miller et al. 2008). Concentration of TCS has been reported in the range of 1.4–40,000 ng L⁻¹ in surface waters, 20–86,161 ng L⁻¹ in waste water influents, 23–5370 ng L⁻¹ in waste water effluents, 0.001–100 ng L⁻¹ in sea waters, 100–53,000 μg kg⁻¹ dry weight in sediments of lakes and rivers, 0.02–35 μg kg⁻¹ dry weight in sediments of marine waters, 20–133,000 μg kg⁻¹ dry weight in biosolids of WWTPs, 580–15,600 μg kg⁻¹ dry weight in digested sludge and 0.201–328.8 μg L⁻¹ in pore water from various parts of the world (Dhillon et al. 2015). In India also, a high concentration of TCS has been reported in the water of Tamiraparani (0.944 μg L⁻¹), Kaveri and Velar (3.8–5.16 μg L⁻¹) rivers by
Genes has been reported in *Chlamydomonas reinhardtii* to reduced life span and reproductive mechanisms. Lipophilic nature, low Henry’s constant (1.5 × 10⁻⁷ atm mol⁻¹ m⁻³), high bioaccumulation factor (2.7–90) and log *k*_{ow} (4.8) seem to be responsible for a decrease in volatilization and an increase in bioaccumulation potential of TCS (Ni et al. 2005; Dhillon et al. 2015). Along with it, aromatic nature and high chlorine content have been related to its lower degradation and higher persistence in the environment (Yueh and Tukey 2016). Its persistence in surface water and aerobic soils has been reported to be about 18 days (Bester 2005; Ying and Kookana 2007; Jimoh and Sogbanmu 2021), and its high levels have been recorded in algae, crustaceans, shellfish, fishes, marine mammals and urine, blood, liver, adipose tissue, brain and breast milk of humans (Adolfsson-Erici et al. 2002; Allmyr et al. 2006; Heffernan et al. 2015; Iyer et al. 2018). TCS is highly toxic to the organisms living in the aquatic environment particularly immediately downstream of the effluents from household wastewaters (Brausch and Rand 2011). Disturbance of metabolic pathways and hormone regulation (Solá-Gutiérrez et al. 2018) by TCS and its toxic byproducts in turn induces oxidative stress, apoptosis, inflammation, diabetes and carcinogenesis (Ruszkiewicz et al. 2011). Generation and accumulation of ROS under the stress of TCS then regulate defensomes associated with detoxification and antioxidant, metabolic and neurological enzymes and DNA damage along with mortality of an indigenous food fish *Labeo rohita* after 96h exposure and 10 days post exposure (recovery) to TCS. We tried to find out biomarkers for the stress of a nonlethal (60 μg L⁻¹; LC₁₀) and two moderately lethal (67 and 97 μg L⁻¹; LC₁₀ and LC₃₀, respectively) concentrations of TCS. The study holds importance as it will help to improve our understanding of the relationship between stress and biological responses and will also help in regulatory submission of this emerging stressor in the environment and food fishes.

Materials and methods

Experimental fish

Embryos/fertilized eggs of *Labeo rohita* were procured from the Government Fish Farm, Rajasansi, Amritsar and transported to the laboratory in oxygenated bags. After washing in 0.9% saline, the eggs were transferred to plastic tubs (8-L capacity, *n* = 50) filled with dechlorinated tap water (pH 7.3–7.9) for hatching under natural photoperiod (12:12 h light-dark), room temperature 28.2 ± 1.5 °C and water temperature 25 ± 1.2 °C. After 3 days of hatching, when whole yolk sac was completely absorbed, swim bladder developed, pigmentation appeared and active swimming started, the hatchlings were exposed to TCS.

Chemicals

Triclorsan or Irgasan (CAS ID 3380-34-5) was purchased from Sigma-Aldrich, USA, (purity > 97%). A stock solution of 10 mg mL⁻¹ was prepared using acetone as solvent. All the chemicals used in the study were AR grade.

Determination of 96h LC<sub>50

Semi static bioassays (daily bath replacement) were conducted according to the OECD guidelines 210 (with minor modifications), fish early-life stage toxicity test (2013), to find out 96th...
LC50 value. Test water was changed 1 h after feeding the hatchlings with boiled egg yolk. Range finding bioassays were conducted to find out 96h LC0 and LC100 values for the hatchlings. Hatchlings were then exposed in 1L plastic jars in replicate (n = 10/rePLICATE) to different concentrations of TCS between the LC0 and LC100 values (detailed data in the supplementary file). Mean temperature, pH, total alkalinity, dissolved oxygen, electrical conductivity and total dissolved solids of the test water were 25 ± 1.2 °C, 7.35 ± 0.60, 380 ± 10.40 mg L−1, 7.7 ± 1.50 mg L−1, 0.63 ± 0.05 mS cm−1 and 280.20 ± 1.15 mg L−1, respectively in the present study. Mortality was recorded at 24h intervals through 96h, and dead hatchlings were removed from the jars immediately, when noticed. A hatchling that did not move on prodding with a rod was considered dead.

Gene expression and genotoxicity studies

Hatchlings (600) were exposed in sextuplicate (n = 20/replicate) to control (tap water), solvent control (acetone), LC0 (60 μg L−1), LC10 (67 μg L−1) and LC30 (97 μg L−1) for 96h. After the exposure, around half of the hatchlings (66) from each concentration were used for transcriptomic profiling (42) and single cell gel electrophoresis or comet assay (24) and rest of the larvae were kept in tap water for a recovery period of 10 days. Transcriptomic profiling (24) and comet assay (12) were performed at the end of recovery period to observe any reversal or prolongation of the toxic effects of the selected concentrations of TCS. Hatchlings were randomly collected from the six replicates and pooled separately for each treatment. All the estimations were done in triplicate (n = 3, i.e. 3 technical replicates).

Primer design

Primers of the target genes cytochrome P4501A (CYP1A), cytochrome P4503A (CYP3A), glutathione-S-transferase (GST), Cu/Zn superoxide dismutase (Cu/Zn SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), lactate dehydrogenase (LDH), aspartate transaminase (AST), alanine transaminase (ALT), acetylcholine esterase (AchE) and housekeeping/reference gene, beta-actin (β-actin) were designed according to the mRNA sequences from NCBI and EMBL Databases using Primer 3 software. Table 1 shows the primer sequences along with their annealing temperatures (Tm) and accession number.

Total RNA isolation and reverse transcription

Total RNA was isolated from the larvae using Trizol reagent (Invitrogen) according to the manufacturer’s instructions. The extracted RNA was treated with DNase (Biolabs) to eliminate DNA contamination. The quality and purity of the isolated RNA were determined with a Nanodrop spectrophotometer (Thermo Fisher Scientific, USA). Integrity of RNA was checked by agarose gel electrophoresis, and then 1 μg of mRNA was reverse transcribed to cDNA by using Biorad mRNA to cDNA preparation kit. The prepared cDNA was further diluted 10-fold and used for expression profiling.

Quantitative real-time PCR (qRT-PCR)

The qRT-PCR was performed on Biorad CFX-manager 3.1, using Kapa biosystems SYBR green Mastermix. The reaction mixture (10 μL) contained 1 μL cDNA, 5 μL SYBR green Mastermix, 0.15 μL (5 μM F+R) primer and 3.85 μL RNase free water. The reaction was performed at the following thermocycling conditions: initial denaturation at 95 °C for 10 min, 40 cycles of 15 s at 95 °C, 40 s of annealing and finally 1 min extension at 60 °C. The melting curve analysis was performed to ensure amplification of the specific amplicon. The results of gene expression were analysed according to the method of Livak and Schmittgen (2001). The normalized expression or relative fold change at the expression level was represented as 2−ΔΔCT.

Genotoxic effect

The genotoxic effect of TCS was evaluated with the help of comet assay (single cell gel electrophoresis) according to Singh et al. (1988) with slight modifications.

Sample preparation

Cell suspension was prepared by homogenizing live hatchlings in ice cold phosphate buffer saline (pH = 7.4). The homogenate was centrifuged at 200 g for 15 min at 4 °C, the supernatant was discarded and the pellet was resuspended in buffer and centrifuged again. This step was repeated 2–3 times, and finally the pellet was resuspended in 100 μL of PBS and used for comet assay.

Lysis buffer

Stock solution of the lysis buffer (445 mL, pH 10) was prepared by adding 73.01 g NaCl, 18.7 g EDTA, 0.6 g Tris and 4 g NaOH in distilled water. Working solution was prepared by adding 44.5 mL of DMSO and 4.95 mL of Triton X to the stock solution.

Electrophoresis buffer

Stock solution of NaOH (40 g) and EDTA (7.44 g) was prepared separately in 100 mL of double distilled water. The working solution contained 965 mL of chilled double distilled water, 30 mL of NaOH and 5 mL of EDTA.
Tris buffer

Tris buffer was prepared by adding 4.845 g of Tris buffer in 100 mL of double distilled water.

Slide preparation and electrophoresis

A base layer of 1% Normal Melting Point Agarose (NMPA) was applied on the slide, and it was kept for 12 h before the second layer of 35 μL cell suspension + 120 μL 0.5% Low Melting Point Agarose (LMPA) and the top layer of 0.5% LMPA were applied one after the other. The slide was covered with a coverslip and kept at 4 °C for 15–20 min for gel casting. The slide was dipped in lysis buffer for 2 h at 4 °C in dark. After lysis, the slide was immersed in an electrophoresis tank containing electrophoresis buffer and run at 300 mA and 20 V for 20 min. The slide was neutralized in Tris buffer. Then, the slide was washed with chilled distilled water, stained with ethidium bromide and observed at 40X (magnification) under Nikon ECLIPSE E200 fluorescent microscope and photographed with Nikon D5300 camera. For each treatment, 300 cells were scored by Casp Lab Software for Tail Length, Tail Moment, Olive Tail Moment and % Tail DNA to evaluate the extent of DNA damage.

Statistical analysis

Probit analysis (Finney 1971) was performed to find out 96h LC\textsubscript{50} value and 95% confidence limits using SPSS 16.0 software. Risk quotient (RQ) was calculated according to the formula given by the European Commission (EC 2003). One-way analysis of variance (ANOVA) was performed to find out differences among the mean values. Tukey’s test (between the treatments) and Student’s t test (between the durations) were used to determine the level of significance at 5% (\(p \leq 0.05\)) and 1% (\(p \leq 0.01\)). Data have been presented as mean ± standard deviation. Principal component analysis (PCA) was performed for obtaining the relationship between the biomarkers.

Results

Toxicity of TCS

The 96h LC\textsubscript{0} and LC\textsubscript{100} of TCS were observed at 60 and 260 μg L-1 TCS, respectively, while 96h LC\textsubscript{50} and its 95% fiducial limits were calculated at 126 μg L-1 and 110–130 μg L-1 TCS, respectively (Table 2). A concentration-dependent
increase was observed in percent mortality of hatchlings during the bioassay. After 72 h, 3–5% of TCS exposed hatchlings became paralysed, showed slight movement, ate very less and had thin body compared to the control hatchlings. Paralysed hatchlings generally remained at the bottom but showed occasional erratic circular swimming.

The average weight of control and 97 μg L⁻¹ TCS exposed larvae were 1.37 and 1.29 mg, respectively after 96 h and 3.1 and 2.8 mg, respectively after recovery. During the recovery period, corrected mortality was 5, 7 and 11% at LC₀, LC₁₀ and LC₃₀ concentrations, respectively.

Transcriptomic profiling

CYP1A

Figure 1a shows that the level of CYP1A mRNA declined significantly ($p \leq 0.01$) at 60 and 67 μg L⁻¹ but increased significantly ($p \leq 0.01$) over control at the highest concentration (0.51-fold). This was followed by a rise ($p \leq 0.01$) over control at all the concentrations after the recovery period. Compared to the 96h values, increase was maximum at 67 μg L⁻¹ (3.48-fold) and minimum at 97 μg L⁻¹ (1.04-fold).

CYP3A

Figure 1b highlights that there was a significant ($p \leq 0.05$) concentration-dependent induction of CYP3A expression over control after the exposure as well as the recovery period. After the recovery period, the expression of CYP3a decreased non-significantly over 96h values at 67 and 97 μg L⁻¹ (0.66 and 1.25-fold, respectively) but increased non-significantly at 60 μg L⁻¹ (0.26-fold).

GST

Figure 1c shows that a significant ($p \leq 0.01$) concentration-dependent decline over control in the expression of GST after 96-h exposure was followed by a significant ($p \leq 0.01$) increase (0.90, 0.70 and 3.80-fold at 60, 67 and 97 μg L⁻¹, respectively) over control after 10 days of the recovery period. After recovery, expression of this gene increased over 96h values, but it was significant ($p \leq 0.05$) at 67 and 97 μg L⁻¹ only (1.15 and 4.27-fold, respectively).

SOD

Figure 1d depicts that after 96h exposure, there was a significant ($p \leq 0.01$) decline over control in the expression of SOD gene. However, the trend of expression of SOD gene turned opposite after the recovery period, where a significant ($p \leq 0.01$) increase over control was observed at all the concentrations. After recovery, expression of SOD was significantly ($p \leq 0.05$) elevated over the respective 96h values at 60 (1.03-fold), 67 (4.61-fold) as well as 97 μg L⁻¹ (1.95-fold).

CAT

Expression of CAT was non-significantly less than control at the two lower concentrations of TCS, but it was significantly ($p \leq 0.01$) elevated at the highest concentration (1.82-fold), after 96h exposure (Fig. 1e). This was followed by a significant increase over control ($p \leq 0.05$) at all the concentrations after the recovery period. On this day, a significant ($p \leq 0.05$) increase was also observed over 96h values at the two lower concentrations, but there was a non-significant decline at 97 μg L⁻¹.

GR

GR expression showed a significant ($p \leq 0.01$) decline over control after 96h exposure to TCS and was followed by a significant ($p \leq 0.01$) induction after the recovery period (Fig. 1f). Increase was maximum at 67 μg L⁻¹ (32.11-fold), intermediate at 97 μg L⁻¹ (14.07-fold) and minimum at 60 μg L⁻¹ (7.0-fold). After recovery, the values were 7.67. 32.96 and 14.80-fold more than 96h values ($p \leq 0.05$) at 60, 67 and 97 μg L⁻¹, respectively.

GPx

Figure 1g depicts a significant ($p \leq 0.01$) concentration-dependent decline in the expression level of GPx on exposure to TCS. However, there was a significant ($p \leq 0.05$) induction of GPx expression over control, after the recovery period. On this day, increase over 96h values was significant ($p \leq 0.05$) at 67 μg L⁻¹ (1.14-fold) and 97 μg L⁻¹ (1.30-fold) only.

Table 2 96h LC₀, LC₅₀ and LC₃₀ values of TCS for the hatchlings of *L. rohita*

Labeo rohita	126	60	260	110–130	Regression equation ($Y = mx + c$)	R^2	χ^2 value
96-h LC₅₀ μg L⁻¹	96-h LC₀ μg L⁻¹	96-h LC₃₀ μg L⁻¹	Fiducial range μg L⁻¹				
corrected mortality was 5, 7 and 11% at LC₀, LC₁₀ and LC₃₀ concentrations, respectively.							
LDH

Figure 2a highlights that after 96h exposure, the level of LDH mRNA showed significant ($p \leq 0.01$) reduction over control at 60 and 67 μg L$^{-1}$ (0.74 and 0.83-fold, respectively) but a significant ($p \leq 0.01$) elevation at 97 μg L$^{-1}$ (0.52-fold). This was followed by a non-significant rise in LDH expression at all the concentrations after the recovery period. An increase in the expression of LDH over 96h was significant ($p \leq 0.05$) only at 67 μg L$^{-1}$ (1.80-fold) after recovery.

AST

The significant ($p \leq 0.01$) concentration-dependent reduction in the expression level of AST on exposure to TCS was followed by a significant ($p \leq 0.05$) increase over control as well as 96h values after the recovery period (Fig. 2b). The increase over 96h values was 3.65, 2.21 and 4.12-fold more at 60, 67 and 97 μg L$^{-1}$, respectively.

ALT

ALT mRNA copy number was significantly ($p \leq 0.01$) elevated after 96h exposure in a concentration-dependent manner. This was followed by a concentration-dependent decline ($p \leq 0.01$) during the recovery period, and the values at 60, 67 and 97 μg L$^{-1}$ were significantly ($p \leq 0.05$) less (1.27, 3.36 and 4.93-fold, respectively) than the respective 96h values also (Fig. 2c).

AchE

Figure 2d shows that there was a significant ($p \leq 0.05$) rise over control in the expression level of acetylcholine esterase during the exposure as well as the recovery period. After recovery, elevation at 60, 67 and 97 μg L$^{-1}$ (0.63, 0.05 and 0.75-fold, respectively) was non-significantly more than the respective 96h values.

Comet assay

There was a significant ($p \leq 0.01$) concentration-dependent increase over control in TL, TM, OTM and % TDNA after 96h exposure as well as the recovery period. Although after recovery, all the parameters declined compared to their respective 96h values, but the decline was significant ($p \leq 0.05$) for TL and TM, only at 60 and 97 μg L$^{-1}$ and for % TDNA at 60 μg L$^{-1}$. Maximum decline was observed in TM, while minimum decline was observed in OTM (Figs. 3 and 4).

Principal component analysis (PCA)

PCA generated two principal components after 96h (Eigen value > 1) but generated three principal components after 10 days of the recovery period with total variance of 95.40% and 95.68%, respectively (Table 3). After 96h exposure, PC1 accounted for 64.25% of total variance and showed association with OTM, ALT, GR, TL, TM, CYP3A, SOD, TDNA, GPx and AST. PC2 included LDH, CAT, CYP1A, GST and AChE and accounted for 31.15% of total variance. After 10 days
of the recovery period, PC1 accounted for 37.80% of the total variance and showed association with CAT, GR, SOD, TL, OTM, and TDNA, while AChE, AST, GPX, and GST were associated with PC2 and accounted
for 33.47% of total variance. PC3 showed association with CYP3A, LDH, CYP1A and ALT and accounted for 24.41% of total variance.

Discussion

The hatchlings of *L. rohita* were observed to be highly sensitive to the stress of TCS as the value of 96h LC50 and LC100 was 126 μg L\(^{-1}\) and 260 μg L\(^{-1}\), respectively. The risk quotient (RQ) of TCS for the larvae came out to be 40.95 in the present study. As per the standard evaluation procedure of USEPA for fresh water fish, a chemical having 96h LC50 < 1 mg is highly toxic (Zucker 1985), and the RQ value > 1 indicates high risk and sensitivity of the organisms (Hernando et al. 2006; Liang et al. 2013). Sensitivity of fish to the stress of a toxicant generally varies with age, size and species (Eaton and Gilbert 2008), and early developmental stages are more vulnerable than other stages (Dann and Hontela 2011). This is clearly evident from the comparison of the earlier reports for 96h LC50 value of TCS for the embryos of *Oryzias latipes* (169 μg L\(^{-1}\)), *Cyprinus carpio* (315 μg L\(^{-1}\)), *Ctenopharyngodon idella* (116 μg L\(^{-1}\)), *Cirrhinus mrigala* (131 μg L\(^{-1}\)), *L. rohita* (96 μg L\(^{-1}\)) by Horie et al. (2018).
and Dar et al. (2019), early life stages and larvae of Japanese medaka (600 and 118 μgL⁻¹) by Ishibashi et al. (2004) and Horie et al. (2018), respectively, fingerlings of L. rohita (390 μgL⁻¹) by Hemalatha et al. (2019) and adult fish [Lepomis macrochirus (370 μgL⁻¹), Pimephales promelas (260 μgL⁻¹) and Xiphophorus helleri (1470 μgL⁻¹)] by Orvos et al. (2002) and Liang et al. (2013). TCS affects excitation-contraction of skeletal muscles (Fritsch et al. 2013); this could have resulted in abnormal swimming by the hatchlings in the present study. Alteration of swimming behaviour in TCS exposed larvae of rainbow trout and fathead minnow has also been observed by Orvos et al. (2002) and Fritsch et al. (2013). TCS affects excitation-contraction of skeletal muscles (Fritsch et al. 2013); this could have resulted in abnormal swimming by the hatchlings in the present study. Alteration of swimming behaviour in TCS exposed larvae of rainbow trout and fathead minnow has also been observed by Orvos et al. (2002) and Fritsch et al. (2013). Occasional swimming, settling in one side of jar and non-acceptance of feed may indicate avoidance behaviour of the hatchlings to the stress of TCS. In a previous study also TCS even at 0.2 μgL⁻¹ was observed to induce avoidance behaviour, spatial displacement and decline in the population of Poecilia reticulata (Silva et al. 2017).

Involvement of ROS is confirmed in the mechanism of TCS action; therefore, the underlying cause for the observed concentration-dependent mortality of the larvae in the present study seems to be the TCS-induced oxidative stress. This was also evident from the suppression of the expression of antioxidant, detoxification and metabolic genes as well as an increase in DNA damage. During oxidative stress, the balance between generation and destruction of ROS is disturbed which leads to further production and accumulation of ROS in the body. This results in DNA damage, depletion of antioxidants, lipid peroxidation and cellular damage (Kim et al. 2020), which gradually cause morbidity or mortality of organisms. In the present study also, 5% mortality was observed even at 96-h LC₀ value of TCS during the recovery period. Expression of antioxidant enzymes and extent of DNA damage therefore reflect not only the degree of toxicity of a chemical but also the ability of an organism to tolerate the oxidative stress (Puckette et al. 2007; Zhou et al. 2009).

Treatment	Component	Variable	Factor loading	Eigen value	% variance	Cumulative %
96h	PC1	OTM	0.98	10.70	64.25	64.25
		ALT	0.98			
		GR	0.98			
		TL	0.96			
		TM	0.96			
		CYP3A	0.96			
		SOD	0.95			
		TDNA	0.93			
		GPx	0.84			
		AST	0.79			
	PC2	LDH	0.99	3.61	31.15	95.40
		CAT	0.97			
		CYP1A	0.96			
		GST	0.78			
		AChE	0.76			
10 days	PC1	CAT	0.93	8.42	37.80	37.80
		GR	0.92			
		SOD	0.92			
		TL	0.88			
		OTM	0.83			
		TM	0.76			
		TDNA	0.70			
	PC2	AChE	0.98	3.23	33.47	71.27
		AST	0.89			
		GPx	0.88			
		GST	0.85			
	PC3	CYP3A	0.95	2.70	24.41	95.68
		LDH	0.92			
		CYP1A	0.81			
		ALT	0.61			

Table 3 Statistical parameters generated by PCA for biomarkers in the hatchlings of L. rohita after 96h of exposure to TCS and 10 days of the recovery period.
Cytochrome P450 (CYP) is a superfamily of heme containing monoxygenases which play a crucial role in phase I biotransformation of xenobiotics (Chaty et al. 2004; Dejong and Wilson 2014; Woo and Chung 2020). A significant increase in the expression of CYP3a at all the concentrations and that of CYP1a at the highest concentration of TCS indicates that TCS is an inducer of these genes. CYP enzymes are usually regulated by specific receptors, and the pollutants having affinity for the chemical structure of these receptors are predominately responsible for the altered gene expression. Aryl hydrocarbon receptor (AhR), regulator of the activity of a diverse set of genes including CYPs (Kawajiri and Fujii-Kuriyama 2007; Marris et al. 2019), is a ligand activated transcription factor. Expression of AhR regulated genes is generally modulated by polycyclic aromatic hydrocarbons, polyphenolics and dioxins which have an affinity for AhR (Sarkar et al. 2006; Liang et al. 2013; Szychowski et al. 2016). TCS is an aromatic compound and is converted to dioxins in the presence or absence of sunlight (Guengerich et al. 2003), therefore, it may have activated AhR to induce transcription of CYP genes of the larvae during the exposure as well as the recovery period. Induction of CYP1a and CYP3a mRNA has been reported in swordtail fish and CD-1 and C57BL/6 mice after TCS exposure by Liang et al. (2013) and Wang et al. (2017). Due to involvement of ROS, interaction of Nr2/Keap1 transcription factor and HIF-α with AhR of the hatchlings cannot be ignored (Haarmann-Stemmann et al. 2012). These sensitive proteins undergo reversible oxidative and reductive reactions and activate or delay downstream signalling pathways including antioxidant enzyme system (Den Hertog et al. 2005; Liu et al. 2005; Wang et al. 2020) which generally counteracts the accumulation of ROS for prevention of cellular damage in stressed organisms (Valavanidis et al. 2006). In addition to this, Jacobs et al. (2005) reported that TCS has moderate affinity for the human Pregnane X receptor (another ligand activated transcription factor) that also plays an important role in regulation of CYP3a family of genes (Hollenberg 2002; Wassmur et al. 2010).

GST (Phase II detoxifying enzyme) is known to generate less toxic and more hydrophilic compounds for preventing oxidative damage by conjugating the breakdown products of peroxidases to GSH (Olsen et al. 2001; Fernandes et al. 2008; Hemalatha et al. 2019). GST proteins display a broad substrate specificity, and their expression can be modulated by exogenous compounds as well as the compounds oxidized by CYP450 enzymes (Martinez-Paz 2018). GST acts as a transport protein during detoxification processes which could be the reason for the observed concentration-dependent decline in the expression of GST after 96h exposure and an increase during the recovery period. The lesser increase in CYP3a during the recovery period could have required lesser conjugation and transportation reactions, and as a result a higher level of GST was observed. Downregulation of GST genes by TCS during 96h exposure can also be related to its structural similarity with polychlorobiphenyls which are potent inhibitors of Phase II enzymes (Wang et al. 2004). In previous studies also, TCS has been reported to downregulate expression of GSTd6 (after 1000 μg L−1 for 24 h) in Chironomus riparius (Martinez-Paz 2018) and GST mRNA (after 500 μg L−1 for 168 h) in yellow catfish (Ku et al. 2014).

A concentration-dependent decrease in the expression of SOD, CAT, GPx, GR, LDH and AST along with GST after 96h exposure to TCS in the present study also indicated that stress exceeded the capacity of the intrinsic antioxidant system of the larvae. ROS have been reported to cause repression of transcription by damaging the structure of enzymes (Slaninova et al. 2009). Modulations in these enzymes are considered an index for understanding toxicity mechanisms of a variety of xenobiotics (Regoli and Principato 1995; Regoli et al. 2003; Park et al. 2017) as well as an organism’s ability to tolerate oxidative stress (Puckette et al. 2007; Zhou et al. 2009). The early life stages of fish do not have fully developed metabolic pathways to degrade xenobiotics (Embry et al. 2010; Dar et al. 2019) that in turn may have resulted in strongly modulated gene expression during the recovery period. At lower levels, ROS have been shown to activate the pathways that reinforce defence responses and enhance survival to subsequent oxidative stress (Sanchez et al. 2015). SOD is the most active enzyme of this system; it catalyzes dismutation of superoxide (O2−) to O2 and H2O2. H2O2 is further detoxified by CAT, GPx and GR to H2O and O2 (Song et al. 2006; Sun et al. 2009; Pan et al. 2018). Similar pattern of declined SOD expression has also been reported in male juvenile zebra fish (Wang et al. 2019a), gill and ovary of zebra fish (Wang et al. 2019b) and liver of tadpole Bufo gargarizans (Chai et al. 2017) after TCS exposure. The decrease during exposure in the present study was followed by an increase in expression of all the genes during the recovery period, but the increase was 2–5-fold more than control.

CAT is responsible for preventing oxidation of unsaturated fatty acids in the cell membrane, therefore, a higher transcription level of this gene at 97 μg L−1 TCS after 96 h and at all the concentrations during the recovery period could be attributed to the production/accumulation of pro-oxidants such as H2O2. An increase in the expression of CAT has been reported in TCS exposed Brachionus koreanus (Han et al. 2016) and Chlamydomonas reinhardtii (Pan et al. 2018). GR plays an important role along with GPx for maintenance of redox potential and is responsible for regeneration of glutathione during detoxification of peroxides and free radicals. A decline in the expression of both these genes after 96h exposure is supported by earlier studies, which also reported a declined expression of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in the liver of tadpole Bufo gargarizans (Chai et al. 2017), GPX4b in male juvenile zebra fish...
(Wang et al. 2019a) and GPX1a in gill and ovary of zebrafish (Wang et al. 2019b). Significant inhibition of GR expression in the TCS exposed larvae in the present study is corroborated by the findings of Falisse et al. (2017) and Gyimah et al. (2020) who also reported declined GR activity in zebrafish early life stages and in the liver of adult zebra fish, respectively.

LDH is an important glycolytic enzyme responsible for energy production during anaerobic conditions and plays a very important role to meet the energy demand during stress conditions (Tseng et al. 2008). A significant increase in the expression of LDH at 97 μL−1 TCS in the present study indicated shift towards anaerobic metabolism of glycogen and other stored metabolites as suggested by Ellis (1937) and Martins et al. (2017). An increase in lactic acid production and LDH-A expression has been related to increased energy requirement under the stress of TCS in HepG2 cells by An et al. (2020). Similarly, an increased ALT level during 96h exposure might have been due to increased transamination rates for increasing energy production through citric acid cycle in the TCS stressed larvae of L. rohita. An increased ALT expression has been reported by Fu et al. (2020) in zebra fish exposed to 400 μL−1 methyl triclosan for 96 h. A decrease in the expression of AST but an increase in the expression of ALT in the present study indicates that TCS damaged liver of the larvae as the higher ratio of ALT:AST indicates liver damage. The decline in ALT expression but an increase in AST during the recovery period represents the induction of repairing mechanisms. This was also evident as food avoidance behaviour and low body weight of the TCS exposed larvae till the end of the recovery period.

TCS induced transcriptional changes are also common in brain (Haggard et al. 2016), and acetylcholine esterase is an important biomarker for determining neurotoxicity. This enzyme plays a key role in regulation of neuronal and muscular development and apoptosis (Hanneman 1992; Behra et al. 2002). A concentration-dependent increase in the expression of AchE during the exposure and its continuation during the recovery period seems to be responsible for the observed abnormal body posture and swimming behaviour of the larvae. Matsumura (1985) suggested that insecticides cause phosphorylation and carbamyolization of serine residues in the active site and cause inactivation of AchE and failure of synaptic nerve transmission. Transcriptional upregulation may be a feedback response to increase the level of AchE under stress. Somnuek et al. (2009), Kist et al. (2012) and Velki et al. (2017) also observed significantly elevated AchE expression in Clarias gariepinus (at 43 μM chlorpyrifos), brain of zebrafish (100 μL−1 of microcystin) and zebra fish larvae (0.06 μM diazinon), respectively. However, Oliveira et al. (2009) and Falisse et al. (2017) observed elevated AchE activity in zebrafish larvae (250 μL−1 TCS) and adult zebra fish (50 and 100 μL−1 TCS), respectively.

The genotoxic effect of TCS was observed to prolong till the end of the recovery period. The concentration-dependent increase in Tail Length, Tail Moment, Olive Tail Moment and Percent Tail DNA after 96h was followed by a small decline during the recovery period, but the values were still 1.5–2 fold more than control. The genotoxic effects of TCS have also been reported by Binelli et al. (2009), Lin et al. (2012) and Hemalatha et al. (2019) in zebra mussels, earthworms and fingerlings of L. rohita, respectively. TCS induces ROS production that act as reductants or oxidants and cause deleterious effects on DNA (Gniadecki et al. 2001). A higher level of CYPs in the exposed larvae can also be related to the concentration-dependent increase in DNA damage as the CYPs are known to catalyze the formation of genotoxic or mutagenic intermediates from a number of polycyclic aromatic hydrocarbons (Shimada et al. 1996). The results of the comet assay in our study are supported by Gyimah et al. (2020) who also recorded similar effects of TCS on the liver cells of zebra fish. In the present study, comet assay shows that TCS induced DNA damage in the larvae during 96h exposure could not be repaired till the end of recovery period, and such cells are generally induced to undergo apoptosis as a protective mechanism. This may also have resulted in higher transcription of AchE gene as AchE is an important regulator of apoptosis (Zhang et al. 2002; Jin et al. 2004).

Association of OTM, TL, TM, TDNA, CYP3a, SOD, GR, GPx, ALT and AST with PC1 after 96h exposure indicates that in spite of TCS inflicted DNA damage, the antioxidative/detoxification/metabolic genes tried to overcome the stress. However, during the recovery period, CAT also showed association with PC1 for metabolizing the pro-oxidants that may have accumulated in the hatchlings during exposure. Based on the degree of similarity, OTM, TL, TM, TDNA, SOD and GR could be ascertained as the biomarkers for the stress of TCS.

Conclusion

It seems that transcriptomic alterations and DNA damage collectively contributed to the observed concentration-dependent mortality, feed avoidance and abnormal swimming in the hatchlings during exposure as well as the recovery period. The results clearly show that differential level of expression of different groups of genes is a useful source of biomarkers for evaluating toxicity mechanisms responsible for mortality under the stress of xenobiotics. The work also indicates
possible use of the larvae of this indigenous species as a potential model for assessing the impact of TCS on the health and survival of aquatic organisms.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-15109-5.

Availability of data and materials The data presented in this study are available on request from the corresponding author.

Author contribution A.K. and S.S. designed the study, S.S. O.I.D. and K.S. performed the experiments, S.T. and A.K.K helped in RT-PCR, A.K. and S.S. drafted the manuscript. All authors have read and approved the final manuscript.

Funding Financial assistance received from the Council of Scientific and Industrial Research (CSIR), India, vide Grant No. 09/254(0272)-2017-EMR-1 and University Grants Commission Special Assistance Programme (UGC-SAP) vide Grant No. F. 4-4/2016/DRS-1 (SAP II) are duly acknowledged.

Declarations

Ethics approval This work deals with the larval stage of food fish, and the food fishes do not come under the purview of animal ethics committee in India.

Consent for publication All the authors agreed to publish this work in ESPR.

Conflict of interest The authors declare no competing interests.

References

Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Triclosan—a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489. https://doi.org/10.1016/S0045-6535(01)00255-7

Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2016) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 537:87–93. https://doi.org/10.1016/j.scitotenv.2016.08.007

An J, He H, Yao W, Shang Y, Jiang Y, Yu Z (2020) PI3K/Akt/FoxO pathway mediates glycolytic metabolism in HepG2 cells exposed to triclosan (TCS). Environ Int 136:105428. https://doi.org/10.1016/j.envint.2019.105428

Behra M, Cousi X, Bertrand C, Vonesch JL, Biellmann MS, Chatonnet A, Strähle, U. (2002) Acetylicholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci. 5: 111-118. https://doi.org/10.1038/nn788.

Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol 49: 9–17. https://doi.org/10.1007/s00244-004-0155-4

Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009) In vivo experiments for the evaluation of genotoxic and cytotoxic effects of Triclosan in Zebra mussel hemocytes. Aquat Toxicol 91:238–244. https://doi.org/10.1016/j.aquatox.2008.11.008

Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. https://doi.org/10.1016/j.chemosphere.2010.11.018

Capkin E, Ozcelep T, Kayis S, Altinok I (2017) Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout. Chemosphere 182:720–729. https://doi.org/10.1016/j.chemosphere.2017.05.093

Chai L, Chen A, Luo P, Zhao H, Wang H (2017) Histopathological changes and lipid metabolism in the liver of Bufo gargarizans tadpoles exposed to Triclosan. Chemosphere 182:255–266. https://doi.org/10.1016/j.chemosphere.2017.05.040

Chaty S, Rodius F, Vasseur P (2004) A comparative study of the expression of CYP1A and CYP4 genes in aquatic invertebrate (freshwater mussel, Unio tumidus) and vertebrate (rainbow trout, Oncorhynchus mykiss). Aquat Toxicol 69:81–94. https://doi.org/10.1016/j.aquatox.2004.04.011

Dann AB, Honetla A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311. https://doi.org/10.1002/jat.1660

Dar OL, Sharma S, Singh K, Kaur A (2019) Teratogenicity and accumulation of triclosan in the early life stages of four food fish during the bioassay. Ecotoxicol Environ Saf 176:346–354. https://doi.org/10.1016/j.ecosafe.2019.03.102

Daughton CG, Temes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938. https://doi.org/10.1289/ehp.99107s6907

Dejong CA, Wilson JY (2014) The cytochrome P450 superfamily complement (CYPome) in the annelid Capitella teleta. PLoS One 9: 107728. https://doi.org/10.1371/journal.pone.0107728

DeMicco A, Cooper KR, Richardson JR, White LA (2010) Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol Sci 113:177–186. https://doi.org/10.1093/toxsci/kfp258

Den Hertog J, Groen A, van der Wijk T (2005) Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys 434:11–15. https://doi.org/10.1016/j.abb.2004.05.024

Dhillon GS, Kaur S, Pulicharla R, Brar SK, Cledón M, Verma M, Surampalli RY (2015) Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Int. J. Environ. Res. Public Health 12:5657–5684. https://doi.org/10.3390/ijerph12050567

Eaton DL, Gilbert SG (2008) Principles of toxicology. In: Klaassen CD (ed) Casarett & Doull’s Toxicology: The Basic science of poisons, Seventh Ed. McGraw-Hill Medical New York, pp 11–43

EC (European Commission) (2003) In: Commission, E (ed) European Commission Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance, Part II, pp 100–103

ECCC, HC (2016) ECCC and HC (Environment and Climate Change Canada and Health Canada) Assessment Report Triclosan Chemical Abstracts Service Registry Number 3380-34-5. Ottawa, ON, Canada. http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=65584A12-1. Accessed 22 Apr 2020

Ellis MM (1937) Detection and measurement of stream pollution. Bull US Bur Fish 48:365–437

Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2014) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87. https://doi.org/10.1016/j.aquatox.2009.12.008

European Commission (2011) Commission decision 2010/169/EU Off. J Eur Union L 75(25)

Falisse E, Voisin AS, Silvestre F (2017) Impacts of triclosan exposure on zebrafish early-life stage: toxicity and acclimation mechanisms.
Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Cire Res 97:967–974. https://doi.org/10.1161/01.RES.0000188210.72062.10

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Marris CR, Kompella SN, Miller MR, Incardona JP, Brette F, Hancock JC, Sorhui E, Shiels HA (2019) Polyaromatic hydrocarbons in pollution: a heart-breaking matter. J Physiol 598:227–247. https://doi.org/10.1113/JP278885

Martinez-Paz P (2018) Response of detoxification system genes on Chironomus riparius aquatic larvae after antibacterial agent triclo-san exposures. Sci Total Environ 624:1–8. https://doi.org/10.1016/j.scitotenv.2017.12.107

Martins D, Monteiro MS, Soares AM, Quintaneiro C (2017) Effects of 4-MBC and triclosan in embryos of the frog Pelophylyx perezi. Chemosphere 178:325–332. https://doi.org/10.1016/j.chemosphere.2017.03.038

Matsumura F (1985) Metabolism of insecticides by animals and plants. In: Matsumura F (ed) Toxicology of insecticides. Springer, pp 203–298

Miller KE, Grossnickle JA, Brooks RD, DeHart TE, Deards CL, DeHart TE, Dellinger M, Fishburn MB, Guo HY, Hansen B, Hayward JW, Hoffman AL (2008) The TCS upgrade: design, construction, conditioning, and enhanced RMF FRC performance. Fusion Sci Technol 54:946–961. https://doi.org/10.13182/FST08-A1910

Mohammed A (2013) Why are Early Life Stages of Aquatic Organisms more Sensitive to Toxicants than Adults? In Gowder SJT (ed) New Insights into Toxicity and Drug Testing, pp 49–62

Nag SK, Das Sarkar S, Manna SK (2018) Triclosan—an antibacterial compound in water, sediment and fish of River Gomti, India. Int J Environ Health Res 28:461–470. https://doi.org/10.1080/09603123.2018.1487044

Ni Y, Zhang Z, Zhang Q, Chen J, Wu Y, Liang X (2005) Distribution patterns of PCDD/Fs in chlorinated chemicals. Chemosphere 60: 779–784. https://doi.org/10.1016/j.chemosphere.2004.05.017

Olivera I, Domingues I, Grisolia CK, Soares AM (2009) Effects of triclosan on zebrasfish early-life stages and adults. Environ Sci Pollut Res 16:679–688. https://doi.org/10.1007/s11356-009-0119-3

Olsen T, Ellerbeck L, Fisher T, Callaghan A, Crane M (2001) Variability in acetylcholinesterase and glutathione S-transferase activities in Chironomus riparius meigen deployed in situ at uncontaminated field sites. Int J Environ Res Public Health 20:1725–1732. https://doi.org/10.1016/j.ecoenv.2017.10.011

Organisation for Economic Co-operation and Development (2013) OECD guideline for testing of chemicals: fish, early-life stage toxicity test. OECD 210, Paris, France

Orvos DR, Versteeg DR, Inauen J, Capdeville M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349. https://doi.org/10.1002/etc.5620210703

Pan CG, Peng FJ, Shi WJ, Hu LX, Wei XD, Ying GG (2018) Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 148:393–401. https://doi.org/10.1016/j.ecoenv.2017.10.011

Park JC, Han J, Lee MC, Seo JS, Lee JS (2017) Effects of triclosan (TCS) on fecundity, the antioxidant system, and oxidative stress-mediated gene expression in the copepod Tigriopus japonicus. Aquat Toxicol 189:16–24. https://doi.org/10.1016/j.aquatox.2017.05.012

Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79. https://doi.org/10.1016/j.plaphy.2006.12.004

Ramaswamy BR, Shammugam G, Velu G, Renganarjan B, Larsson DJ (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbachamazine and parabens in Indian rivers. J Hazard Mater 186:1586–1593. https://doi.org/10.1016/j.jhazmat.2010.12.037

Regoli F, Principato G (1995) Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquat Toxicol 31:143–164. https://doi.org/10.1016/0166-445X(94)90006-W

Regoli F, Winston GW, Gorbi S, Frenzilli G, Nigro M, Corsi I, Forcadi S (2003) Integrating enzymatic responses to organic chemical exposure with total oxyradical absorbing capacity and DNA damage in the European eel Anguilla anguilla. Environ Toxicol Chem 22: 2120–2129. https://doi.org/10.1897/02-378

Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem 21:2483–2492. https://doi.org/10.1002/etc.5620211130

Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M (2017) Is Triclosan a neurotoxic agent? J Toxicol Environ Health B 20:104–117. https://doi.org/10.1080/10937404.2017.1281181

Sabailunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of triclosan in the River Aire Basin, UK. Water Res 37:3145–3154. https://doi.org/10.1016/S0043-1354(03)00164-7

Sanchez D, Houde M, Douville M, De Silva AO, Spencer C, Verreault J (2015) Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids. Aquat Toxicol 160:31–38. https://doi.org/10.1016/j.aquatox.2014.12.002

Sarkar A, Ray D, Shrivastava AN, Sarker S (2006) Molecular bio-markers: their significance and application in marine pollution monitoring. Ecotoxicology 15:333–340. https://doi.org/10.1007/s10646-006-0069-1

Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, Sutter TR (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res 56:2979–2984

Silva DC, Araújo CV, López-Doval JC, Neto MB, Silva FT, Paiva TC, Pompéo ML (2017) Potential effects of triclosan on spatial displacement and local population decline of the fish Poecilia reticulata using a non-forced system. Chemosphere 184:329–336. https://doi.org/10.1016/j.chemosphere.2017.06.002

Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004. https://doi.org/10.1021/es025750i

Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

Slaninova A, Smutna M, Modra H, Svobodova Z (2009) REVIEWS Oxidative stress in fish induced by pesticides. Neuro Endocrinol Lett 30:2

Solá-Gutierrez C, San Román MF, Ortiz I (2018) Fate and hazard of the electrochemical oxidation of triclosan. Evaluation of polychlorodibenzo-p-dioxins and polychlorodibenzofurans (PCDD/Fs) formation. Sci Total Environ 626:126–133. https://doi.org/10.1016/j.scitotenv.2018.01.082

Sommek C, Boonphakdee C, Cheevaporn V, Tanaka K (2009) Gene expression of acetylcholinesterase in hybrid catfish (Clarias gariepinus X Clarias macrocephalus) exposed to chlorpyrifos and carbaryl. J Environ Biol 30:83–88

Song FN, Yang CP, Liu XM, Li GB (2006) Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmus pumila L. J For Res 17: 13–16. https://doi.org/10.1007/s11676-006-0003-7

Sun L, König IR, Homann N (2009) Manganese superoxide dismutase (MnSOD) polymorphism, alcohol, cigarette smoking and risk of...
oesophageal cancer. Alcohol Alcohol 44:353–357. https://doi.org/10.1093/alc/agg025
Szychowski KA, Wnuk A, Kaja M, Wójtowicz AK (2016) Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. Environ Res 151:106–114. https://doi.org/10.1016/j.envres.2016.07.019
Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K (2004) Effects of triclosan on various aquatic organisms. Environ Sci 11:133–140
Tseng YC, Lee JR, Chang JCH, Kuo CH, Lee SJ, Hwang PP (2008) Regulation of lactate dehydrogenase in tilapia (Oreochromis mossambicus) gills during acclimation to salinity challenge. Zool Stud 47:473–480
Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. https://doi.org/10.1016/j.ecosafe.2005.03.013
Velki M, Meyer-Alert H, Seiler TB, Hollert H (2017) Enzymatic activity and gene expression changes in zebrafish embryos and larvae exposed to pesticides diazinon and diuron. Aquat Toxicol 193:187–200. https://doi.org/10.1016/j.aquatox.2017.10.019
Wang LQ, Falany CN, James MO (2004) Triclosan as a substrate and inhibitor of PAPS-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab Dispos 32:1162–1169. https://doi.org/10.1124/dmd.104.000273
Wang Z, Li X, Klaunig JE (2017) Investigation of the mechanism of triclosan induced mouse liver tumors. Regul Toxicol Pharmacol 86:137–147. https://doi.org/10.1016/j.yrtph.2017.03.001
Wang F, Liu F, Chen W (2019a) Exposure to triclosan changes the expression of microRNA in male juvenile zebrafish (Danio rerio). Chemosphere 214:651–658. https://doi.org/10.1016/j.chemosphere.2018.09.163
Wang F, Zheng F, Liu F (2019b) Effects of triclosan on antioxidant-and apoptosis-related genes expression in the gill and ovary of zebrafish. Exp Anim 19:115:199–206. https://doi.org/10.1538/expanim.19-0115
Wang H, Pan L, Zhang X, Ji R, Si L, Cao Y (2020) The molecular mechanism of AhR-ARNT-XREs signaling pathway in the detoxification response induced by polycyclic aromatic hydrocarbons (PAHs) in clam Ruditapes philippinarum. Environ Res 183:109165. https://doi.org/10.1016/j.envres.2020.109165
Wassmuth B, Gräns J, Kling P, Celander MC (2010) Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 100:91–100. https://doi.org/10.1016/j.aquatox.2010.07.013
Woo SJ, Chung JK (2020) Cytochrome P450 1 enzymes in black rock-fish, Sebastes schlegeli: molecular characterization and expression patterns after exposure to benzo [a] pyrene. Aquat Toxicol 226:105566. https://doi.org/10.1016/j.aquatox.2020.105566
Ying GG, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ Int 33:199–205. https://doi.org/10.1016/j.envint.2006.09.008
Yuhe MF, Tukey RH (2016) Triclosan: a widespread environmental toxicant with many biological effects. Annu Rev Pharmacol Toxicol 56:251–272. https://doi.org/10.1146/annurev-pharmtox-010715-103417
Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY, Shi YF (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 9:790–800
Zheng X, Yan Z, Liu P, Fan J, Wang S, Wang P, Zhang T (2019) Research progress on toxic effects and water quality criteria of triclosan. Bull Environ Contam Toxicol 102:731–740. https://doi.org/10.1007/s00128-019-02603-3
Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34. https://doi.org/10.1016/j.envexpbot.2008.06.001
Zucker E (1985) Standard evaluation procedure: acute toxicity test for freshwater fish. EPA-540/9-85-006. US Environmental Protection Agency, Washington, DC

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.