Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans

Jennifer Kremer\(^a\) Cornelia Brendel\(^a\) Elisabeth Karin Maria Mack\(^a\)

Hildegard Isolde Dietlinde Mack\(^b\)

\(^a\)Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Gießen and Marburg, Marburg, Germany; \(^b\)Institute for Biomedical Aging Research, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria

Keywords
bre-4 · sqv-3 · Lifespan regulation · Glycosylation · Biomarker

Abstract
Background: Altered plasma activity of β-1,4-galactosyltransferases (B4GALTs) is a novel candidate biomarker of human aging. B4GALT1 is assumed to be largely responsible for this activity increase, but how it modulates the aging process is unclear at present. Objectives: To determine how expression of B4GALT1 and other B4GALT enzymes changes during aging of an experimentally tractable model organism, Caenorhabditis elegans. Methods: Targeted analysis of mRNA levels of all 3 C. elegans B4GALT family members was performed by qPCR in wild-type and in long-lived daf-2 (insulin/IGF1-like receptor)-deficient or germline-deficient animals. Results: bre-4 (B4GALT1/2/3/4) is the only B4GALT whose expression increases during aging in wild-type worms. In addition, bre-4 levels also rise during aging in long-lived daf-2-deficient worms, but not in animals that are long-lived due to the lack of germline stem cells. On the other hand, expression of sqv-3 (B4GALT7) and of W02B12.11 (B4GALT5/6) appears decreased or constant, respectively, in all backgrounds during aging. Conclusions: The age-dependent bre-4 mRNA increase in C. elegans parallels the age-dependent B4GALT activity increase in humans and is consistent with C. elegans being a suitable experimental organism to define potentially conserved roles of B4GALT1 during aging.

Introduction

Aging is a major and common risk factor for many severe human diseases such as cardiovascular diseases, neurodegeneration, and cancer [1]. However, as individuals age at different rates, there is a great need for markers that, alone or in combination, can predict susceptibility to disease and death more reliably than chronological age [1–3]. Examples of candidate molecular biomarkers of aging include DNA methylation status, plasma levels of certain cytokines, hormones and lipids, and altered gly-
cosylation of particular proteins such as immunoglobulin G (IgG) [3–5]. A recent study also proposed increased plasminogen activity of β-1,4-galactosyltransferases (B4GALTs) as a novel biomarker of aging [6]. Even though the B4GALTs involved were not formally determined, B4GALT1 is assumed to be the major mediator of this increase [6].

B4GALTs are a class of evolutionarily conserved enzymes that catalyze the addition of a galactose (Gal) sugar moiety from a common UDP-α-Gal donor to different oligosaccharide acceptors via a β-1,4-glycosidic bond. Given the diverse signaling and structural functions of their products, B4GALTs modulate a broad variety of biological processes, such as protein folding, cell-cell interactions, and immune defense [7]. Among the 7 B4GALT enzymes in humans, B4GALT1–6 contribute to the synthesis of glycoproteins and glycolipids by transferring Gal to N-acetylglucosamine (GlcNAc) residues at the nonreducing ends of oligosaccharide chains, while B4GALT7 participates in the synthesis of the oligosaccharide linker in proteoglycans by transferring Gal to a Xyllose (Xyl) moiety [7, 8]. All B4GALTs are type-II transmembrane proteins located in the Golgi or transgolgi network, with their catalytic domains facing the lumen [7, 8]. In addition, B4GALT1 can function as a matrix receptor on the cell surface [9]. Moreover, a soluble isoform of B4GALT1 is expressed in mammary tissue and constitutes the catalytic subunit of lactose synthase, which adds Gal to a free Glucose (Glc) molecule [7, 8]. In humans, increased levels of B4GALT1 have been associated with both, beneficial and detrimental prognosis or outcome in various types of cancer. Examples include acute myeloid leukemia, chronic myeloid leukemia [10], nonmetastatic clear-cell renal cell carcinoma [11], and muscle-invasive bladder cancer [12], where its elevated expression in bone marrow mononuclear cells or tumor tissue correlated with chemoresistance or decreased overall survival [10–12]. On the other hand, in seminoma patients, it was found that high expression of B4GALT1 in peripheral T lymphocytes is associated with superior tumor control [13].

Studies on invertebrate model organisms such as the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster provided key insights into the biology of lifespan regulation that apparently also apply to human aging [14]. A prototypic example is provided by reduced insulin/insulin-like growth factor (IGF1)-like signaling (IIS), which was first observed in C. elegans to induce a dramatic, approximately two-fold increase in lifespan, and was subsequently shown to promote longevity in mammals [15–17]. In C. elegans, lifespan extension by reduced IIS, e.g., due to a reduction of function mutations in the gene daf-2, which encodes the common ortholog of the mammalian insulin- and IGF1 receptors, is dependent on daf-16, an ortholog of mammalian FOXO transcription factors [14]. Of note, genetic variants in FOXO3 have been repeatedly and robustly associated with lifespan in humans [18]. Beyond the daf-2 mutation, additional mechanisms for lifespan extension have been described in C. elegans, e.g., the ablation of germline stem cells (GSCs) through laser microsurgery or through temperature-sensitive mutations in the Notch–receptor ortholog glp-1 [19, 20]. Interestingly, this GSC-regulated longevity pathway also requires daf-16, but it appears to not engage daf-2 [14, 20].

The C. elegans genome encodes 3 members of the B4GALT family, BRE-4, SQV-3, and W02B12.11, but only the first 2 family members have already been functionally characterized. Bre-4 was identified in a genetic screen for Bacillus thuringiensis pore-forming toxin-resistant mutants [21]. In wild-type animals, BRE-4 confers sensitivity to these toxins through its action in intestinal cells, where it contributes to the glycosylation of membrane lipids, which can then act as toxin receptors [22, 23]. In addition, bre-4 positively regulates the Notch ortholog lin-12 during certain cell fate decisions [24], raising the possibility that it can mediate protein glycosylation, not just in vitro [25], but also in vivo. Lastly, bre-4 is required for proper developmentally timed sleep, although the underlying mechanism here has not been determined [26]. On the other hand, sqv-3 was initially isolated in a mutagenesis screen based on its squashed vulva phenotype [27]. Beyond normal vulval development, sqv-3 is required for normal oogenesis and embryonic development, apparently via its function in the synthesis of extracellular matrix proteoglycans [28].

Whether the observed increase in human plasma B4GALT activity represents a cause or a consequence of aging is unclear at present. On the other hand, the conservation of B4GALT genes between humans and C. elegans raises the possibility that they also share some common physiological activities, and that a potentially conserved role for B4GALT in lifespan regulation can be defined by studies on C. elegans. This hypothesis implies that B4GALT activity also increases during C. elegans aging. A potential and easily measurable source of increased B4GALT activity would be elevated mRNA levels. In this study, we examined mRNA expression of the B4GALT1 ortholog bre-4, and of the 2 other B4GALT genes, sqv-3 and W02B12.11, during aging in wild-type C. elegans as well as in 2 long-lived C. elegans mutants, daf-2 and glp-1.
Our observation of *bre-4* mRNA levels increasing during aging in wild-type *C. elegans* is reminiscent of the elevated B4GALT activity reported in elderly humans, thus providing the first evidence of *C. elegans* being a suitable model system to study potentially conserved roles for B4GALTs during aging.

Materials and Methods

Strains and Culture

The following strains/genotypes were analyzed in this study: N2E: wild-type; CF3942: *glp-1(e2144ts)* III (from CF1903 [29, 30], outcrossed 12× to N2E); CF4087: *daf-2(e1370)* III (from CF1041 [31], outcrossed 12× to N2E). Worms were cultured following standard protocols on NG agar plates seeded with *E. coli* OP50 [32]. Worms carrying the *glp-1(e2144ts)* mutation and corresponding *glp-1(+)* control animals were incubated at 25°C for the first 24 h of postembryonic development to eliminate germ cells, before being shifted to 20°C for the remainder of the experiment.

daf-2(e1370) worms and corresponding *daf-2(+)* control worms were continuously cultured at 20°C. To prevent progeny production in fertile strains, all worms were cultured on plates supplemented with 20 μM 5-Fluoro-2′-deoxyuridine (FUDR) from the L4 stage onwards.

Growing Worms for RNA Extraction

To obtain synchronized populations, gravid adults were treated with hypochlorite and the eggs were allowed to hatch in M9 buffer overnight. Depending on the experiment, approximately 1,200–1,800 L1 larvae per strain were plated on 10-cm NG agar plates seeded with concentrated *E. coli* OP50 and cultured at the required temperatures. At the L4 stage, 1,200–1,500 worms per strain were transferred to 6 *E. coli* OP50-seeded 6-cm NG agar plates supplemented with 20 μM FUDR to inhibit germ cell proliferation and progeny production. The worms from 2 of these plates were harvested 24 h later by washing them off with M9. After additional washing with M9 and RNAsase-free water, the worms were suspended in 1 mL Tri Reagent® (Sigma), snap-frozen in liquid nitrogen, and stored at −80°C until RNA extraction. The 4 remaining plates were cultured at 20°C and 2 plates each were harvested analogously on day 5 and day 10 of adulthood.

Fig. 1. mRNA levels of *bre-4*, but not of other *C. elegans* B4GALT family members, change during aging. **a** Evolutionary relationship between B4GALT enzyme family members in *C. elegans* and humans. *C. elegans* enzymes are colored in light grey, human enzymes in dark grey. Numbers indicate % identity and % similarity of the respective human protein to *C. elegans* BRE-4 (B4GALT1/2/3/4), W02B12.11 (B4GALT5/6), or SQV-3 (B4GALT7). **b** mRNA levels of the 3 B4GALTs were measured by qPCR and normalized to housekeeping genes in the strains indicated on day 1, day 5, and day 10 of adulthood. Data represent the mean expression relative to day 1 ± SD from 4 biological replicates. Statistical significance was determined by two-way ANOVA with Bonferroni post hoc tests (**p < 0.001**).
RNA Extraction
RNA was extracted using Tri Reagent® (Sigma) and cleaned up with the Monarch® Total RNA Miniprep kit (New England Biolabs) according to the manufacturers’ instructions.

qPCR
1 µg total RNA was reverse-transcribed using LunaScript® RT SuperMix (New England Biolabs). qPCR reactions were performed in triplicate in 20 µL reaction volume on a CFX Connect™ real-time PCR detection system with iTaq™ Universal SYBR® Green Supermix (both from Bio-Rad Laboratories). The thermal cycling protocol comprised 1 activation step at 95 °C for 3 min, followed by 40 cycles of denaturation at 95 °C for 10 s and combined annealing/extension at 60 °C for 30 s. Melting curve analysis was performed from 65 to 95 °C with 0.5 °C increments at 5 s per step. Data were analyzed by the ΔΔCt method and target gene expression levels were normalized to the geometric mean of cdc-42, tba-1, and Y45F10D.4 expression [33, 34]. Primer sequences are listed in online Supplementary Table S1 (see www.karger.com/doi/10.1159/000510722 for all online suppl. material).

Statistical Analysis of qPCR Data
Means and pooled standard deviations from 4 independent experiments were calculated in Excel and pasted into Prism 5 (GraphPad Software) for plotting and statistical analysis. Details on the particular tests used are specified in the figure legends.

Multiple Sequence Alignment
The ClustalO multiple sequence alignment of the 7 human and 3 C. elegans B4GALT proteins (Fig. 1a) was generated using the alignment tool at www.uniprot.org. The degree of identity and similarity between human and C. elegans B4GALTs (Fig. 1b) was determined by pairwise global sequence alignment using the same tool. The following sequences from the UniProt database were aligned (last accessed on 01.02.2020): B4GALT1: P15291; B4GALT2: O60909; B4GALT3: O60512; B4GALT4: O60513; B4GALT5: O43286; B4GALT6: Q9UBX8; B4GALT7: Q9UBV7; BRE-4: Q9GUM2; SQV-3: P34548; W02B12.11: G5EGS9.

Results

Bre-4 mRNA-Lvels Increase and sqv-3 Levels Decrease during Aging of C. elegans
Based on sequence analysis (Ortholist 2 [35]; our own reciprocal BLAST searches), human B4GALT1 is orthologous to C. elegans BRE-4. Other close relatives of BRE-4 include B4GALT2/3/4, while the 2 other C. elegans B4GALTs, W02B12.11 and SQV-3, are most closely related to human B4GALT5/6 and B4GALT7, respectively.
B4GALT Expression during C. elegans Aging

(1a). All human and C. elegans B4GALTs, except for W02B12.11, have been functionally characterized and form β-1,4-glycosidic bonds between donor and acceptor sugars (Table 1). To investigate how mRNA expression levels of the 3 B4GALT enzymes change during aging in C. elegans, we performed qPCR analysis on young adult worms (day 1), on worms at the end of the reproductive phase (day 5), and on aged worms before the onset of massive death in the population (day 10) ([36]; own observations). While mRNA levels of bre-4 on day 5 and day 10 were similarly increased relative to day 1, by 43–58% on average, the expression of sqv-3 decreased to 46–57% during the same time course (Fig. 1b). W02B12.11 mRNA levels, on the other hand, did not significantly differ from each other at the time points examined (Fig. 1b). In summary, the observed increase in bre-4 mRNA levels parallels the increase of plasmatic B4GALT activity during aging in humans.

Bre-4 and sqv-3 mRNA Levels Change during Aging of Long-Lived C. elegans Mutants

To determine whether, and eventually how, mRNA levels of the 3 B4GALTs changes during the aging of long-lived C. elegans mutants, we examined the expression of bre-4, sqv-3, and W02B12.11 by qPCR in daf-2(–) (insulin/IGF1-receptor-defective) and glp-1(–) (germ-line-deficient) worms at the same chronological age as wild-type worms. Similar to wild-type worms (Fig. 1b), daf-2(–) animals displayed 69–88% elevated bre-4 mRNA levels on day 5 and day 10, respectively (Fig. 2a). Analysis of wild-type worms grown under a different temperature regimen (glp-1(+); Fig. 2b) also revealed a trend towards elevated bre-4 mRNA expression on day 5, and detected a clear (64 %) increase on day 10, thus confirming our previous result (Fig. 1b, 2b). In contrast to wild-type and daf-2(–) worms (Fig. 1b, 2a, 2b), glp-1(–) worms on day 10 did not display an increase, but rather a trend towards decreased bre-4 mRNA expression relative to day 1 (Fig. 2c). On the other hand, sqv-3 expression was decreased on both day 5 and day 10 in all genetic backgrounds (to 47–58%, Fig. 2a; to 45–69%, Fig. 2b; to 76–67%, Fig. 2c). Finally, W02B12.11 mRNA expression appeared constant in the genetic backgrounds analyzed, and the reduction in daf-2(–) worms at the later time points did not reach statistical significance (Fig. 2). In summary, our data are consistent with the hypothesis that bre-4 and sqv-3, due to age-related changes in mRNA levels, contribute to lifespan regulation, not just in wild-type, but also in long-lived daf-2(–) and glp-1(–) C. elegans. On the other hand, our observations do not exclude the possibility that W02B12.11 also modulates lifespan, although by means other than changes in mRNA expression.

B4GALT mRNA Levels Are Similar between Wild-Type and daf-2(-) C. elegans

Apart from time-dependent changes, different mRNA expression levels between wild-type and long-lived C. elegans mutants could also hint towards a gene of interest functioning in lifespan regulation. Currently available high-throughput studies do not, or not consistently, provide evidence for altered B4GALT mRNA expression in glp-1(–) or daf-2(–) C. elegans relative to wild-type worms, and generally cover only early adulthood (online suppl. Table S2). Similarly, high-throughput studies on multiple lifespan-regulatory transcription factors do not, or not consistently, provide evidence for one of the B4GALTs being a transcriptional target of any of these factors in L4 or young adults, even though CHIP seq data indicates that some of these factors occupy regulatory regions of the B4GALT genes (online suppl. Tables S2, S3). To clarify potential differences in B4GALT levels between wild-type and long-lived mutants at multiple ages, we compared B4GALT mRNA levels between daf-2(–) or glp-1(–) and their corresponding wild-type control animals cultured under the same conditions. At all time points, mRNA levels of bre-4, sqv-3, and W02B12.11 did not statistically significantly differ between daf-2(+), and daf-2(–) worms (Fig. 3). On the other hand, when comparing mRNA levels between glp-1(+) and glp-1(–) worms, expression appeared reduced for W02B12.11 at all time points (to 56–68%), for sqv-3 on days 1 and 10 (51–50%), and for bre-4 only on day 10 (58%). Nevertheless, direct comparisons of transcript levels between glp-1(+) and glp-1(–) worms is difficult due to the absence of germ cells in the latter [64].

Discussion

In this study, we investigated the possibility that C. elegans, a preferred invertebrate model system for experimental research into aging [65], can also be used to study potentially conserved roles of the conserved B4GALT enzyme family during aging. Our interest in this question was sparked by a recent report that suggested B4GALT activity in plasma as a novel biomarker for human aging [6]. Our gene expression analyses presented here indicate an age-related increase in mRNA levels for bre-4, the C. elegans ortholog of B4GALT1, the major candidate for...
Fig. 2. mRNA levels of *bre-4* and *sqv-3* change during aging of long-lived *C. elegans* mutants. mRNA levels of the 3 B4GALTs were measured by qPCR and normalized to housekeeping genes in *daf-2(–) (a)*, *glp-1(+)/wild-type (b)*, and *glp-1(–) (c)* worms on day 1, day 5, and day 10 of adulthood (see Fig. 1b for *daf-2(+)/*wild-type animals analyzed in parallel with *daf-2(–)* worms). Data represent the mean expression relative to day 1 ± SD from 4 biological replicates. Statistical significance was determined by two-way ANOVA with Bonferroni post hoc tests (*p < 0.05, **p < 0.01, ***p < 0.001). Please note that the legend for panel a also applies to panels b and c.
mediating the reported age-related B4GALT activity increase in humans [6]. These increasing levels in *C. elegans* bre-4 mRNA and human B4GALT1 activity during aging parallel each other and support the concept that *C. elegans* can serve as a suitable model for investigating B4GALT1/BRE-4 functions during aging. To our knowledge, our study is the first targeted analysis of B4GALT expression during aging in *C. elegans*, and therefore validates an earlier high-throughput analysis that already provided evidence for an age-dependent increase of bre-4 levels in wild-type animals [66]. On the other hand, that particular study did not report on W02B12.11 and suggested sqv-3 levels to be slightly increased, while we observed a robust decrease in sqv-3 mRNA during aging in 3 genetic backgrounds. The reason for this discrepancy remains to be determined.

Beyond sequence homology, *C. elegans* and human B4GALTs share overlapping tissue expression patterns.
BRE-4, SQV-3, and W02B12.11 are, apparently, broadly expressed across tissues and throughout all stages of the life cycle [67, 68]. Similarly, B4GALT1–7 mRNAs and proteins are detected in a broad variety of human tissues and cell types, including tissues already present in C. elegans [69]. Examples include skeletal muscle, the reproductive system, and the nervous system as well as gut, liver, and adipose tissue, which all correspond to 1 multifunctional C. elegans tissue, the intestine [70]. In addition, B4GALT1/BRE-4 appear similar to each other based on their age-related changes in activity/expression ([6]; this study), even though additional studies are required to investigate the mechanistic cause in humans, the functional consequence in C. elegans, and the suitability of bre-4 as a biomarker also for C. elegans aging. On the other hand, B4GALT1 and BRE-4 differ in their precise enzymatic activities [8, 25]. A catalytically important amino acid in B4GALTs changed during evolution (from Ile/Leu to Phe/Tyr) and shifted donor sugar preference from UDP-GalNAc in invertebrate enzymes, including BRE-4, to UDP-Gal in vertebrates enzymes such as human B4GALT1–6 [8] (also Fig. 1a; Table 1). Clearly, during aging and beyond, it will be interesting to determine BRE-4/B4GALT1 substrates, and whether differences in the precise nature of BRE-4/B4GALT1-dependent glycoconjugates are functionally important. Yet, potentially shared cellular/organisnal functions of B4GALT1/BRE-4 may as well rely on their nonenzymatic activities, such as protein–protein interactions. In line with this possibility, B4GALT-dependent oligosaccharide structures on immunoglobulins were not observed to be increased during human aging, despite the increase in B4GALT activity [6]. Furthermore, BRE-4 was demonstrated to share binding properties with human B4GALTs, at least in vitro, as it also binds to human α-lactalbumin, a member of the lysozyme protein family already present in C. elegans [25, 71].

We observed an age-related increase in bre-4 mRNA levels in wild-type C. elegans, but also in long-lived daf-2(–) worms. Remarkably, in another type of long-lived C. elegans mutant, glp-1(–), bre-4 expression in older (day 10) worms is not elevated relative to young (day 1) worms. Therefore, bre-4 expression is responsive to at least 1 lifespan-regulatory pathway, namely that triggered by germine ablation. This observation supports the hypothesis that altered bre-4 expression is functionally important for lifespan regulation, at least in certain genetic backgrounds. Of note, at least 2 bre-4 regulated processes, N-linked protein glycosylation and lipid glycosylation, already have been implicated in lifespan regulation through genetic, functional, and proteomic analyses in C. elegans [72–75].

Similarly, lower levels of sqv-3 mRNA in older wild-type C. elegans raise the possibility that this enzyme modulates lifespan. In a simple model, loss of sqv-3 may contribute to aging, but long-lived daf-2(–) and glp-1(–) worms, that also display lower sqv-3 mRNA levels at an older age, may be able to buffer this loss. Intriguingly, mutations in SQV-3’s human ortholog B4GALT7 are the molecular cause of type 1 progeroid Ehlers-Danlos syndrome (spondyloepiphyseal dysplasia due to B4GALT7 deficiency) [61, 76]. SQV-3/B4GALT7 display the same enzymatic activity, including preference for the same donor and acceptor sugar, UDP-Gal and Xyl, respectively [8], and both contribute to the synthesis of proteoglycans [28, 61, 63]. Given these broad overlapping activities of SQV-3 and B4GALT7, functional studies to determine how altered sqv-3 expression modulates adult lifespan in C. elegans seem extremely promising to uncover conserved mechanisms of normal aging.

In summary, the experimental data we report here point towards a remarkable conservation of the age-related B4GALT activity increase in species as diverse as C. elegans and humans. Our results are consistent with the concept that C. elegans provides a suitable model system to study potentially conserved functions of B4GALTs, in particular BRE-4/B4GALT1 and SQV-3/B4GALT7, during aging. Therefore, our observations clearly encourage further mechanistic studies on B4GALTs during C. elegans aging, which may also shed light on their role during normal and accelerated aging in humans.

Acknowledgement

We thank Birgit Weinberger and Pidder Jansen-Dürr for helpful discussion and Brigitte Jennewein for technical assistance.

Statement of Ethics

Ethics approval was not required for the studies reported here on the invertebrate Caenorhabditis elegans.

Conflict of Interest Statement

The authors declare that they have no conflicts of interest relating to this manuscript.
This work was funded by a grant from the Aktion Daniel Swarowski to H.I.D.M. C.B. and E.K.M.M. are supported by Stiftung P.E. Kempkes and Deutsche José Carreras Leukämie-Stiftung. The funders had no role in study design and in the preparation of data and the manuscript.

Author Contributions

C.B. and H.I.D.M. conceived the project. E.K.M.M. and H.I.D.M designed experiments. J.K. and H.I.D.M. performed experiments. J.K., E.K.M.M. and H.I.D.M. analyzed the data. E.K.M.M. and H.I.D.M. drafted the manuscript. All authors revisited the manuscript.

References

1. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014 Nov; 159(4):709–13.
2. Levine ME, Lu AT, Quach A, Chen BH, As-simes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018 Apr; 10(4): 573–91.
3. Sebastiani P, Thyagarajan B, Sun F, Schupf N, Newman AB, Montano M, et al. Biomarker signatures of aging. Aging Cell. 2017 Apr; 16(2):329–38.
4. Field AE, Robertson NA, Wang T, Havas A, Inderer T, Adams PD. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol Cell. 2018 Sep; 71(6):882–95.
5. Dall’Olio F. Glycobiology of Aging. Subcell Biochem. 2018;90:505–26.
6. Catera M, Borelli V, Malagolini N, Chiricolo M, Venturi G, Reis CA, et al. Identification of novel plasma glycosylation-associated markers of aging. Oncotarget. 2016 Feb; 7(5):e142316.
7. Qasba PK, Ramakrishnan B, Boeggeman E. Structure and function of beta-1,4-galactosyltransferase. Curr Drug Targets. 2008 Apr; 9(4):292–309.
8. Ramakrishnan B, Qasba PK. Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetyl-galactosaminyltransferase and α-polypeptidyl-N-acetyl-galactosaminyltransferase. Curr Opin Struct Biol. 2010 Oct;20(5):536–42.
9. Wassler MJ, Shur BD. Clustering of cell surface (beta)1,4-galactosyltransferase I induces transient tyrosine phosphorylation of focal adhesion kinase and loss of stress fibers. J Cell Sci. 2000 Jan;113(Pt 1):237–45.
10. Zhou H, Ma H, Wei W, Ji D, Song X, Sun J, et al. B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1. Cell Death Dis. 2013 Jun; 4(6):e654.
11. Xi X, Zhu Y, An H, Wang H, Zhu Y, Pu H, et al. Increased B4GALT1 expression associates with adverse outcome in patients with non-metastatic clear cell renal cell carcinoma. Oncotarget. 2016 May;7(22): 32723–30.
12. Xie H, Zhu Y, Zhang J, Liu Z, Fu H, Cao Y, et al. B4GALT1 expression predicts prognosis and adjuvant chemotherapy benefits in muscle-invasive bladder cancer patients. BMC Cancer. 2018 May;18(1):590.
13. Nilius V, Keller MC, Timmesfeld N, Schmitt M, Roll R, Lorch A, et al. High β-1,4- Mutations in the nematode Caenorhabditis peripher- nal T-lymphocytes is associated with a low risk of relapse in germ-cell cancer patients undergoing high-dose chemotherapy with autologous stem cell reinfusion. OncoImmunology. 2018 Feb; 7(5):e142316.
14. Kenyon CJ. The genetics of aging. Nature. 2010 Mar;464(7288):504–12.
15. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A. C. elegans mutants that last twice as long as wild type. Nature. 1993 Dec; 366(6454):461–4.
16. Blühmer M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003 Jan;299(5606):572–4.
17. Holzenberger M, Dupont J, Ducos B, Leneuve P, Gelöoen A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003 Jan;421(6919):182–7.
18. Morris BJ, Willcox DC, Donlon TA, Willcox BJ. FOXO3: A Major Gene for Human Longevity—A Mini-Review. Gerontology. 2015; 61(6):515–25.
19. Arantes-Oliveira N, Apfeld J, Dillin A, Ken- yon C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science. 2002 Jan;295(5554):502–5.
20. Hisin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 1999 May;399(6734):362–6.
21. Marroqui LD, Elyassnia D, Griffitts JS, Feitel JS, Aroian RV. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics. 2000 Aug;155(4):1693–9.
22. Griffitts JS, Huffman DL, Whitacre JL, Bar- rows BD, Marroqui LD, Müller R, et al. Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem. 2003 Nov;278(46):45594–602.
23. Griffitts JS, Hasan SM, Yang T, Garczynski SF, Mulloy B, Morris H, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science. 2005 Feb;307(5711):922–5.
24. Katic I, Vallier LG, Greenwald I. New positive regulators of lin-12 activity in Caenorhabditis elegans include the BRET-5/Brainiac glyco- sophingolipid biosynthesis enzyme. Genetics. 2005 Dec;171(4):1605–15.
25. Kawar ZS, Van Die I, Cummings RD. Molecular cloning and enzymatic characterization of a UDP-GalNAc(beta)-R beta1,4- N-acetylgalactosaminylltransferase from Caenorhabditis elegans. J Biol Chem. 2002 Sep; 277(38):34924–32.
26. Huang H, Zhu Y, Eliot MN, Knopik VS, Mc- GEary JE, Carskadon MA, et al. Combining Human Epigenetics and Sleep Studies in Cae- norhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regu- lifting Sleep. Sleep (Basel). 2017 Jun;40(6): https://doi.org/10.1093/sleep/zsx063.
27. Herman T, Hartweg E, Horvitz HR. sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci USA. 1999 Feb;96(3):968–73.
28. Bulik DA, Wei G, Toyoda H, Kinoshita-Toyoda A, Waidrill WR, Esko JD, et al. sqv-3, -7, and -8, a set of genes affecting morphogen- esis in Caenorhabditis elegans, encode en- zymes required for glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA. 2000 Sep; 97(20):10838–43.
29. Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipidic-hormone sig- naling. Cell. 2006 Mar;124(5):1055–68.
30. Wei Y, Kenyon C. Roles for ROS and hydro- gen sulfide in the longevity response to germ- line loss in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2016 May;113(20):E2832–41.
31. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics. 2002 Jul;161(3):1101–12.
32. Blumenthal T. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94.
33. Hoogewijs D, Houthoofd K, Matthijsens F, Vandevelde MT, Vanfleteren JR. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol. 2008 Jan;9(1):9.
34. Zhang Y, Chen D, Smith MA, Zhang B, Pan X. Selection of reliable reference genes in Caen- orhabditis elegans for analysis of nanotoxic- ity. PLoS One. 2012;7(3):e31849.

B4GALT Expression during C. elegans Aging

Gerontology 2020;66:571–581
DOI: 10.1159/000510722

Funding Sources

C.B. and H.I.D.M. conceived the project. E.K.M.M. and H.I.D.M designed experiments. J.K. and H.I.D.M. performed experiments. J.K., E.K.M.M. and H.I.D.M. analyzed the data. E.K.M.M. and H.I.D.M. drafted the manuscript. All authors revisited the manuscript.

Author Contributions

C.B. and H.I.D.M. conceived the project. E.K.M.M. and H.I.D.M designed experiments. J.K. and H.I.D.M. performed experiments. J.K., E.K.M.M. and H.I.D.M. analyzed the data. E.K.M.M. and H.I.D.M. drafted the manuscript. All authors revisited the manuscript.
Aoki D, Appert HE, Johnson D, Wong SS, Fu-
lee J, Sundaram S, Shaper NL, Raju TS, Stan-
ujita M, Maresch D, Schneider V, Klart et, Grasser B, Rorth N. The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster Ovary cells. J Biotechnol. 2018 Sep;282:101–10.

Ujita M, McAuliffe J, Schwientek T, Almeida R, Hindsougual O, Clason Synthesis of the sequences of human beta-1,4-galactosyltransferase-I. J Mol Biol. 2001 Oct;353(1):53–67.

Lee J, Sundaram S, Shaper NL, Raju TS, Stanley P. Chinese Hamster ovary (CHO) cells may express six beta-4-galactosyltransferases (beta 4GalTs). Consequences of the loss of functional beta 4GalT-1, beta 4GalT-6, or both in CHO glycosylation mutants. J Biol Chem. 2001 Apr;276(17):13924–34.

Tanaka M, Misra AK, McAuliffe J, Hindsougual O, Fukuida MN. Analysis of the substrate binding sites of human galactosyltransferase IV and beta-1,3-N-acetylgalactosaminyltransferase. J Biol Chem. 1998 Dec;273(52):34843–9.

Van Die I, van Tetering A, Schiporst WI, Sato T, Furukawa K, van Den Eijnden DH. The acceptor substrate specificity of human beta-4-galactosyltransferase IV and beta-1,3-N-acetylgalactosaminyltransferase. J Biol Chem. 2002 Mar;109(6):725–33.

Hansske B, Thiel C, Lubeke T, Hasilik M, Hasilik M. Poly-N-acetyllactosamine extension in N-glycans and core 2 and core 4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the beta 1,4-galactosyltransferase family gene. J Biol Chem. 2000 May;275(21):15868–75.

Haring AC, Kozodrovski I, Wyss SR, Berger EN. The charge heterogeneity of soluble human galactosyltransferases isolated from milk, amniotic fluid and malignant ascites. Eur J Biochem. 1979 Feb;93(3):53–60.

Aoki D, Appert HE, Johnson D, Wong SS, Fukuda MN. Analysis of the substrate binding sites of human galactosyltransferase by protein engineering. EMBO J. 2002 Mar;19(6):723–33.

Chatterjee SK, Mukerjee S, Tripathi PK. Analysis of the sequences of human beta 1,4-galactosyltransferase cDNA clones. Int J Biochem Cell Biol. 1995 Mar;27(3):329–36.

Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Yoshie N, et al. Growth retardation and early death of beta 1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J. 1997 Apr;16(8):1850–7.

Lu Q, Hasty P, Shur BD. Targeted mutation in beta 1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev Biol. 1997 Jan;181(2):257–67.

Schwientek T, Almeida R, Levery SB, Holmes EH, Bennett E, Clausen H. Cloning of a novel member of the UDP-galactose:beta-N-acetyl-glucosamine beta 1,4-galactosyltransferase family, beta 4GalT-4, involved in glycosphingolipid biosynthesis. J Biol Chem. 1998 Nov;273(45):29331–40.

Bydlnski N, Maresch D, Schneider V, Klart et, Grasser B, Rorth N. The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster Ovary cells. J Biotechnol. 2018 Sep;282:101–10.

Ujita M, McAuliffe J, Schwientek T, Almeida R, Hindsougual O, Claason Synthesis of the sequences of human beta-1,4-galactosyltransferase-I. J Mol Biol. 2001 Oct;353(1):53–67.

Lee J, Sundaram S, Shaper NL, Raju TS, Stanley P. Chinese Hamster ovary (CHO) cells may express six beta-4-galactosyltransferases (beta 4GalTs). Consequences of the loss of functional beta 4GalT-1, beta 4GalT-6, or both in CHO glycosylation mutants. J Biol Chem. 2001 Apr;276(17):13924–34.

Ujita M, McAuliffe J, Schwientek T, Almeida R, Hindsougual O, Claason Synthesis of the sequences of human beta-1,4-galactosyltransferase-I. J Mol Biol. 2001 Oct;353(1):53–67.

Lee J, Sundaram S, Shaper NL, Raju TS, Stanley P. Chinese Hamster ovary (CHO) cells may express six beta-4-galactosyltransferases (beta 4GalTs). Consequences of the loss of functional beta 4GalT-1, beta 4GalT-6, or both in CHO glycosylation mutants. J Biol Chem. 2001 Apr;276(17):13924–34.

Kumagai T, Sato T, Shirome K, Furukawa K, Akiyama T. Galactosylation of N-linked oligosaccharides by human beta 1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology. 2001 Oct;11(10):813–20.

Almeida R, Amado M, David L, Levery SB. A family of human beta 4-galactosyltransferases. Cloning and expression of two novel UDP-galactose:beta N-acetylglucosamine beta 1,4-galactosyltransferases, beta 4GalT-4 and beta 1,3-N-acetylgalactosaminyltransferase. J Biol Chem. 1997 Dec;272(51):31979–91.

Christner JE, Distler JJ, Jourdian GW. Biosynthesis of keratan sulfate: structure, function, and expression of two novel UDP-galactose:beta N-acetylglucosamine beta 1,4-galactosyltransferases, beta 4GalT-4 and beta 1,3-N-acetylgalactosaminyltransferase. J Biol Chem. 1998 Dec;273(52):34843–9.

Ujita M, McAuliffe J, Schwientek T, Almeida R, Hindsougual O, Claason Synthesis of the sequences of human beta-1,4-galactosyltransferase-I. J Mol Biol. 1997 Dec;272(1):13570–7.

Funderburgh JL. Keratan sulfate: structure, function, and expression of two novel UDP-galactose:beta N-acetylglucosamine beta 1,4-galactosyltransferases, beta 4GalT-4 and beta 1,3-N-acetylgalactosaminyltransferase. J Biol Chem. 1997 Dec;272(1):13570–7.

Steinau MA, Narasimhan SD, Robida-Stubb S, Moronetti Mazzon E, Dreyfuss JF, Hourth C, et al. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife. 2015 Aug;4.

Mack H, Heimbach T, Murphy CT. The nematode Caenorhabditis elegans as a model for aging research. Drug Discov Today Dis. 2013 Oct;27:3–13.

Mansfeld J, Urban N, Priebe S, Groth M, Frahm C, Hartmann N, et al. Branch-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat Commun. 2015 Dec;6(1):10403.

Spencer WC, Zeller G, Watson JD, Henz SR, Watkins K, Whirter RD, et al. A spatial and temporal map of C. elegans gene expression. Genome Res. 2011 Feb;21(2):325–41.

Mounsey A, Bauer P, Hope IA. Evidence suggesting that a fifth of annotated Caenorhabditis elegans genes may be pseudogenes. Genome Res. 2002 May;12(5):770–5.
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan;347(6220):1260419.

Dimov I, Maduro MF. The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res. 2019 Sep;377(3):383–96.

Irwin DM. Evolution of the vertebrate goose-type lysozyme gene family. BMC Evol Biol. 2014 Aug;14(1):188.

Rahman MM, Stuchlick O, El-Karim EG, Stuart R, Kipreos ET, Wells L. Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans. Aging (Albany NY). 2010 Oct;2(10):678–90.

Denzel MS, Storm NJ, Gutschmidt A, Baddi R, Hinze Y, Jarosch E, et al. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell. 2014 Mar;156(6):1167–78.

Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Cirym P, et al. Widespread Proteome Remodeling and Aggregation in Aging C. elegans. Cell. 2015 May;161(4):919–32.

Narayan V, Ly T, Pourkarimi E, Murillo AB, Gartner A, Lamond AI, et al. Deep Proteome Analysis Identifies Age-Related Processes in C. elegans. Cell Syst. 2016 Aug;3(2):144–59.

Brady AF, Demirdas S, Fournel-Gigleux S, Ghali N, Giunta C, Kapferer-Seebacher I, et al. The Ehlers-Danlos syndromes, rare types. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):70–115.