Genomic Analysis of Carbapenem-Resistant Pseudomonas aeruginosa Isolated From Urban Rivers Confirms Spread of Clone Sequence Type 277 Carrying Broad Resistome and Virulome Beyond the Hospital

Fernanda Esposito¹,²,₄*, Brenda Cardoso²,³,₄, Herrison Fontana¹,², Bruna Fuga¹,²,³, Adriana Cardenas-Arias²,³, Quêzia Moura⁴, Danny Fuentes-Castillo²,⁵ and Nilton Lincopan¹,²,³ *

¹Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil, ²One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil, ³Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil, ⁴Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil, ⁵Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil

The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is both a public health and an environmental problem. In this regard, high-risk clones exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have shown rapid adaptation at the human-animal-environment interface. In this study, we report genomic data and the virulence potential of the carbapenemase, São Paulo metallo-β-lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding virulence genes was associated with a highly virulent behavior in the Galleria mellonella infection model. These results confirm the spread of healthcare-associated critical-priority P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, highlighting that the presence of these pathogens in environmental water samples can have clinical implications for humans and other animals.

Keywords: critical-priority pathogens, aquatic environments, carbapenemase, Galleria mellonella, resistome, virulome, genomic surveillance, One Health
INTRODUCTION

Carbapenem-resistant *Pseudomonas aeruginosa* are a leading cause of hospital-acquired infections and have become a health priority (Tacconelli et al., 2018). Efforts have been made to prevent colonization, infection, and decrease mortality. Based on that, the WHO proposed a global priority pathogens list of multidrug-resistant (MDR) bacteria to drive research, discovery, and development of new antibiotics. Along with MDR *P. aeruginosa*, the critical pathogens WHO list included *Acinetobacter baumannii* and bacteria from Enterobacteriales group (Tacconelli et al., 2018). They were categorized as critical priority through the use of multi-criteria, including being resistant to a large number of antibiotics, such as carbapenems and third generation cephalosporins, the best available options for treating MDR pathogens (Babu et al., 2020). Worryingly, carbapenem-resistant *P. aeruginosa* can cause severe and often deadly infections such as bloodstream infections, pneumonia, and osteomyelitis (Fernández-Barat et al., 2017; Pliska, 2020; Jean et al., 2020; Bobrov et al., 2021; Rosales-Reyes et al., 2021). Carbapenem resistance is usually multifactorial, including overexpression of efflux pumps (i.e., mexAB-oprM), deficiency or repression of the porin gene (oprD), alterations in the penicillin-binding proteins (PBPs), and chromosomal overexpression of cephalosporinase gene ampC (Van Nguyen et al., 2018; Gajdács, 2020; Xu et al., 2020). Moreover, resistance may be acquired by the selection of mutations in chromosomal genes or horizontal uptake of resistance determinants. However, carbapenem resistance has been most associated with production of carbapenemases, which include serine β-lactamases and metallo-β-lactamases (MβLs) (Polotto et al., 2012; Lupo et al., 2018), whereas high-risk global clones have been associated with MDR or extensively drug resistant (XDR) phenotypes. Currently, global *P. aeruginosa* high-risk clones include sequence types (STs) ST235, ST111, ST175, ST233, ST244, ST277, ST298, ST308, ST357, and ST654 (Del Barrio-Toñoño et al., 2020; Kocsis et al., 2021). Specifically, the ST277 has been sporadically reported in Asian, North American, and European countries, whereas in Brazil is highly prevalent (Gales et al., 2003; Hopkins et al., 2016; Del Barrio-Toñoño et al., 2020; Silveira et al., 2020; Kocsis et al., 2021). The success of the Brazilian endemic clone ST277 is associated with carbapenem resistance due to production of the MβL SPM-1 (Gales et al., 2003; Cipriano et al., 2007; da Fonseca et al., 2010; Nascimento et al., 2016; Silveira et al., 2020). Worryingly, SPM-1-producing *P. aeruginosa* have been identified in hospital sewage and hospital wastewater treatment plants (Fuentefria et al., 2009; Miranda et al., 2015), denoting potential to spread throughout the aquatic environment, enabling human exposure and transmission. However, although whole genome sequencing (WGS) of human SPM-1-positive isolates have been performed (Nascimento et al., 2016; Galetti et al., 2019), sequence data from environmental isolates have not been provided for comparative genomic studies. Based on WHO list priority pathogens criteria, which included pathogen mortality, hospital and environment transmissibility and limited treatment options, recognition and genomic characterization of critical priority pathogens is an essential first step to understanding their dynamic of acquisition/dissemination and ultimately to development of preventive intervention strategies (Hendriksen et al., 2019). In this study, we report genomic data and the virulence potential of carbapenem-resistant SPM-1-positive *P. aeruginosa* strains isolated from polluted urban rivers, in Brazil.

MATERIALS AND METHODS

Pseudomonas aeruginosa Strains and Antimicrobial Susceptibility Profiles

During a Brazilian surveillance study (OneBR project) conducted to investigate the burden of antimicrobial resistance in impacted aquatic environments, two *P. aeruginosa* strains [Pa19 (ONE609) and Pa151 (ONE610)] were isolated from two different locations along the Tietê (TIET-04900; S 23° 31’ 18”, W 46° 37’ 52”, S 23° 27’ 16”, and W 46° 54’ 36”) and Pinheiros (PINH-04900; S 23° 31’ 52” and W 46° 44’ 54”) Rivers in São Paulo, Brazil (Turano et al., 2016). Tietê River stretches through São Paulo state from east to west for approximately 1,100 km, while Pinheiros River is a tributary of the Tietê River that runs 25 km across the city. In this study, both strains were subjected to WGS for investigation and comparative genomic studies using five public sequences from nosocomial SPM-1-positive *P. aeruginosa* strains, previous reported (Silveira et al., 2014, 2020; Nascimento et al., 2016; Galetti et al., 2019). Susceptibility profiles were investigated by disk-diffusion method (CLSI, 2021).

Whole Genome Sequencing and Genomic Analysis

Genomic DNA of Pa19 and Pa151 were extracted using PureLink Quick Gel Extraction & PCR Purification Combo Kit (Life Technologies, Carlsbad, CA). The Illumina paired-end libraries were constructed using a Nextera XT DNA Library Preparation Kit (Illumina Inc.), according to the manufacturer’s guidelines. Whole genome sequencing was performed using an Illumina MiSeq platform with 300-bp read lengths. Reads were de novo assembled using SPAdes 3.13,1 and the resulting contigs were automatically annotated by NCBI Prokaryotic Genome Annotation Pipeline (PGAP) version 3.2.2 Antibiotic resistance genes were predicted using ResFinder 4.1 and the Comprehensive Antibiotic Resistance Database (CARD).3 Multi-locus Sequence Typing prediction was performed using MLST v.2.0. Heavy metal (HM) resistance genes were manually identified using the NCBI database4 and Geneious Prime version 2020.04 (Biomatters, New Zealand). Additionally, phage prediction was performed by Genome Detective Virus Tool software.7 The rmtD gene was detected and aligned by BLASTn

1https://github.com/ablab/spades
2https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
3https://cge.cbs.dtu.dk/services/ResFinder
4https://card.mcmaster.ca/analyze/rgi
5https://cge.cbs.dtu.dk/services/MLST/
6https://www.ncbi.nlm.nih.gov/Traces/wgs/
7https://www.genomedetective.com/app/typingtool/virus/
Virulence Potential of Carbapenem-Resistant P. aeruginosa Strains in the Galleria mellonella Larvae Model

The virulence potential of P. aeruginosa Pa19 and Pa151 strains was evaluated using the Galleria mellonella infection model (Tsai et al., 2016). In brief, groups of G. mellonella containing 10 larvae of nearly 0.25–0.35 g (supplied by the Institute of Biomedical Sciences of the University of São Paulo, Brazil) were infected with 10^4 CFU/ml of each strain per larva, by injecting a 10 μl aliquot in PBS, into the body of the larvae via the last left proleg, using a sterile ultra-fine needle syringe (Fuentes-Castillo et al., 2019). Survival was monitored every hour, for 96 h. Two biological replicates and two experimental replicates were performed with a group of 10 larvae per strain, in each replicate. SPM-1-producing P. aeruginosa clinical strain PA1088 was used as comparative control (Toleman et al., 2002). Moreover, a control group inoculated with sterile PBS was used in each biological and experimental replication assay, in order to verify that the larvae would not be killed by physical trauma. Survival curves were plotted using the Kaplan-Meier method, whereas statistical analyses were performed by the log rank test with p < 0.05 indicating statistical significance (OriginLab Software, Northampton, Massachusetts, United States).

RESULTS

In this study, two carbapenemase (SPM-1)-producing P. aeruginosa ST277 (Pa19 and Pa151 strains) isolated from impacted urban rivers in São Paulo, Brazil, were sequenced. As this clone has been endemic in Brazilian hospitals, being also identified in migratory birds (Figure 1), we have additionally performed a comparative analysis with publically available genomes obtained from ST277 lineages from human infections.

Genome sequencing yielded a total of 968,818 and 473,825 paired-end reads assembled into 395 and 337 contigs, with 305 and 299x of coverage, to Pa19 and Pa151 strains, respectively. The genome size of Pa19 was calculated at 6,927,007 bp, with a GC content of 67.8%, comprising 6,956 total genes, 60 tRNAs, and 155 pseudogenes (accession number: PHST00000000.1). On the other hand, genome size of Pa151 was calculated at 6,799,801 bp, with a GC content of 66.9%, comprising 6,747 total genes, 59 tRNAs, and 3 rRNAs (accession number: PHSS00000000.1). Genomic information of P. aeruginosa strains of 66.9%, comprising 6,747 total genes, 59 tRNAs, and 3 rRNAs, four ncRNAs, and 155 pseudogenes (accession number: PHST00000000.1). Genomic information of P. aeruginosa Pa19 and Pa151 strains are available on the OneBR platform under ONE609 and ONE610 ID numbers, respectively.

Environmental Pa19 and Pa151 strains displayed a MDR profile to ticarcillin-clavulanate, cepefime, ceftazidime, imipenem, meropenem, amikacin, gentamicin, nalidixic acid, ciprofloxacin, levofloxacin, and trimethoprim-sulfamethoxazole, and genomic analysis revealed a wide resistance to β-lactams (bla_{SPM-1}, bla_{XO-56}}, bla_{XO-396}, and \textit{bla}_{OXA-152}), aminoglycosides [\textit{aac}(A)_4, \textit{aad}(A)_7, and \textit{aph}(3’)-IIb], fluoroquinolones [\textit{aac}(6’)-Ib-cr, and \textit{gyr}A (T83I) and \textit{par}C (S87L) point mutations], phenicols (\textit{emx}), sulphonamides (\textit{sul}I), and fosfomycin (\textit{fis}A), which was predicted in agreement with the phenotype. Additionally, Pa151 strain harbored the \textit{rmt}D1 and \textit{catB7} genes related to aminoglycosides and chloramphenicol resistance, respectively (Figure 2). On the other hand, the \textit{crpP} gene associated with fluoroquinolone resistance, was only identified in the Pa19 genome. Genes associated with resistance to heavy metal [copper (\textit{pcoABD})], and quaternary ammonium compounds (\textit{qacE}, \textit{qacA}, and \textit{sugE}) were also identified in both environmental P. aeruginosa strains (Figure 2).

Virulome analysis of environmental Pa19 and Pa151 revealed a wide virulome. In fact, both lineages carried the \textit{quorum sensing} (\textit{lasA}, \textit{lasB}, \textit{lasI}, and \textit{ptxR}), alginate (\textit{alg} cluster), siderophore production (\textit{pvdA}, \textit{pvdF}, and \textit{pvdG}), fimbriae (\textit{cup

9http://www.mgc.ac.cn/VFs/
10https://cge.cbs.dtu.dk/services/PAst/
11https://github.com/sanger-pathogens/Roary
12https://github.com/sanger-pathogens/snpsites
13https://github.com/stamatak/standard-RAxML
14https://www.ncbi.nlm.nih.gov
family), flagellum (flgABCDEFGHIJLMN) synthesis, immunity protein (pyo5, imm2), colicin (cea), types II (gspDEF), III (exoYST), and IV (vgrD2/vgrD4) secretion systems and exotoxin A (toxA) genes; whereas the O2 serotype was identified in both Pa19 and Pa151 environmental strains (Figure 2). In this regard, in vivo experiments using G. mellonella larvae showed that both Pa19 and Pa151 strains killed 100% of the larvae at 24 h post-infection, similarly to what was observed with the clinical SPM-1-producing P. aeruginosa PA1088 strain isolated from a case of urinary tract infection (Figure 3).

Overall comparison of five human and two environmental ST277 genomes using BLAST Ring Image Generator (BRIG) revealed high nucleotide sequence similarities among P. aeruginosa strains, even for aquatic isolates recovered at least 13 years after the first clinical isolate (Toleman et al., 2002). Furthermore, SNP-based phylogenetic analysis revealed that both Pa19 and Pa151 environmental strains were closely related (>94% identity) to all human SPM-1-producing P. aeruginosa isolates (Supplementary Table S1). However, missing regions at position 5.5 Mbp, named as GI-I, in environmental Pa151 and clinical PA11803 and PA12117 genomes, were identified (Figure 4). In this regard, we observed genes encoding the following proteins: integrating conjugative element protein (pill), type II secretion system protein, replicative DNA helicase (dnaB), nucleoid-associated protein YejK (yejK), NADH dehydrogenase (ndh), cell division protein ZapE (zapE), ParA family protein (parA), plasmid stabilization protein ParE (parE), integrating conjugative element protein, DNA topoisoerase I (topA), pyocin S5 (pyoS5), TetR family transcriptional regulator (tetR), conjugal transfer protein TraG (traG), regulatory protein GemA (gemA), conjugative coupling factor TraD (traD), his-Xaa-Ser repeat protein HxsA (hxsA), his-Xaa-Ser system radical SAM maturase HxsB (hxsB), his-Xaa-Ser system radical SAM maturase HxsC (hxsC), his-Xaa-Ser system protein HxsD (hxsD), chaperone protein ClpB (clpB), and genes encoding for membrane proteins, transcriptional regulator, CRISPR-associated proteins, type II secretion system protein, phage tail sheath subtilisin-like, tail fiber protein, phage tail tape measure protein, and phage head morphogenesis protein.

Schematic representations of the genetic context surrounding bla_{SPM-1} genes in the environmental P. aeruginosa PA151 strain is presented in Figure 5A. The bla_{SPM-1} was flanked by a ~4.8 kbp region composed of the IS91-bla_{SPM-1}-groEL-IS91 array. The presence of IS elements is related to horizontal gene transfer, whereas the groEL encodes for a heat-shock chaperon. Additionally, we also detected the traG (encoding a conjugal transfer protein), eexN (encoding the entry exclusion protein), traR (transcriptional regulator), bcr1 (bicyclomycin resistance), virD2 (gene encoding a relaxase), and hypothetical proteins. In Figure 5B is presented the genetic context surrounding rmtD1 gene in PA151 strain. The rmtD1 was flanked by a ~7.3 kbp region composed of the IS91-rmtD1-tgt-groEL-IS91 array. In addition, aacA4, bla_{OXA-56}, aadA7, and qacEΔ1 genes were located on a class 1 integron. Moreover, cmx and sul1 resistance genes, that encodes for chloramphenicol and sulphonamide resistance, respectively, were also identified along with genes encoding hypothetical proteins, transposase, IS110, IS481, and IS3 mobile elements.
DISCUSSION

Carbapenem-resistant *P. aeruginosa* are critical-priority pathogens associated with high mortality and morbidity (Georgescu et al., 2016; Tacconelli et al., 2018; Pang et al., 2019). In this regard, one of the major concerns has been the successful expansion and rapid spread of high-risk clones. In Brazil, the metallo-\(\beta\)-lactamase (SPM-1)-producing *P. aeruginosa* ST277 clone has gained significant attention, due to its endemicity status and further identification in migratory birds and polluted environments (Gales et al., 2003; Nascimento et al., 2016; Turano et al., 2016; Martins et al., 2018).
Worryingly, previous studies have also reported the occurrence of carbapenemase (KPC-2)-producing *Klebsiella pneumoniae* belonging to the clonal group CG258 and OXA-23-positive *A. baumannii* ST79 in the Tietê River ([Oliveira et al., 2014](#); [Turano et al., 2016](#)), supporting an anthropogenic trend, most likely due to hospital wastewater discharge and domestic wastewaters effluents ([Nascimento et al., 2017](#); [Bartley et al., 2019](#); [Böger et al., 2021](#); [Popa et al., 2021](#)). Therefore, aquatic environment could play an important role in the widespread of critical pathogens ([Devarajan et al., 2017](#)). In fact, polluted rivers could be contributing for colonization of local and migratory fauna ([Martins et al., 2018](#); [Narciso et al., 2020](#)).

In order to elucidate the genomic aspects associate with the environmental dissemination of healthcare-associated *P. aeruginosa* ST277, we performed a comparative genomic analysis, extracting clinically relevant information (i.e., resistome, virulome, and phylogenomic). Interestingly, although the strains were isolated in different years (1997–2012), we observed that clinical and environmental SPM-1-producing *P. aeruginosa* strains share a common resistome and virulome.

Although, oral antibiotics have been successfully used in the treatment of bacterial infection, for *P. aeruginosa* few therapeutic options are available, being restricted to some fluoroquinolones, including ciprofloxacin, levofloxacin, and prulifloxacin, which are given alone or in combinations with a second intravenously or inhaled anti-pseudomonal antibiotic such as β-lactams (piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime, cefepime, or carbapenems) and/or aminoglycosides (tobramycin, amikacin, or gentamicin) ([Tümmler, 2019](#); [Ibrahim et al., 2020](#); [Nisly et al., 2020](#)). However, under a clinical perspective, even co-resistance to carbapenems and aminoglycosides in ST277 have already been reported and limited therapeutic options. This resistance profile is mediated by *bla*_{SPM-1} and *rmtD* genes, respectively ([Doi et al., 2007](#)). Strikingly, in some ST277, including environmental (Pa19) and human (PA7790) lineages, the *rmtD* gene was not found. On the other hand, the *rmtD1* identified in the environmental Pa151 strain, displayed 100% identity to the *rmtD1* gene from *P. aeruginosa* PA0905 strain, recovered from a human patient in 2005, in Brazil ([Doi et al., 2007](#)). The *rmtD1* was subsequently identified in *K. pneumoniae* and other Enterobacteriales in Latin America, Europe, and North America ([Bueno et al., 2016](#)). Since acquisition of this gene has been linked to transposition events ([Doi et al., 2007](#); [Nascimento et al., 2016](#)), most likely genomic plasticity of *P. aeruginosa* has led to the dissemination of *rmtD* and *rmtD-ST277* lineages.
In Brazil, occurrence of rmtD has also been documented in *Escherichia coli* and *K. pneumoniae* (Yamane et al., 2008; Leigue et al., 2015). The *bla*_{SPM-1} gene array has been previously identified within a Tn4371-like integrative and conjugative element (ICE Tn4371⁶⁰⁶¹) considered stable in the chromosome loci of *P. aeruginosa* ST277 strains recovered from humans and animals (Fonseca et al., 2015; Nascimento et al., 2016). Since ICEs are genetic mobile platforms that play an important role during bacterial evolution, they are overlooked as vectors in the spread and resistance emergence in many bacterial species (Fonseca and Vicente, 2016). Moreover, the genetic context of *rmtD1* (IS91-*rmtD1*-tgt-groEL-IS91) identified in the environmental strain was similar to previous descriptions, where the presence of the *rmtD* gene in clinical isolates was associated to the TnAs3 transposon (Fonseca et al., 2015; Nascimento et al., 2016).

In human and aquatic *P. aeruginosa* ST277 isolates the resistome was not restricted to antibiotics, and the presence of genes conferring tolerance to copper and QAC biocides was further detected. Currently, there is a growing concern about biocides that pollute aquatic environments, especially QACs, since these compounds are widely used in domiciliary and hospital settings, as disinfectants, soaps, toothpastes, and mouthwash formulations (Zubris et al., 2017; Fuentes-Castillo et al., 2020). Consequently, ecosystems impacted by HM and biocides could favor the selection and persistence of high-risk clones harboring a broad resistome (Baker-Austin et al., 2006; Zhao et al., 2012; Kim et al., 2018).

Although a limitation of this study was the lack of a known highly virulent *P. aeruginosa* to be used as a positive control in the *in vivo* assay; we observed that the virulent behavior of environmental strains was identical to clinical strains. Indeed, a wide virulence was also predicted in human and environmental *P. aeruginosa* ST277 lineages, denoting a pathogenic potential, as demonstrated in the *G. mellonella* infection model. Lipopolysaccharide (LPS) O-antigen, type IV pili, and flagella are components of the external cell wall structure of *P. aeruginosa* and play important roles in the early stage of colonization, persistence, and bacterial pathogenesis (Hauser, 2011; Behzadi et al., 2021). Furthermore, O-antigen is an important virulence factor in *P. aeruginosa* used for the detection of MDR/XDR high-risk clones (Del Barrio-Tofiño et al., 2019). Strikingly, among clinical strains were identified the serotypes O5 and O11.
O2. The latter was also identified among environment strains. Both serotypes have been associated with acute and chronic infections (Lu et al., 2014; Li et al., 2018).

Type secretion systems (TSSs) are mechanisms by which bacteria translocate a set of toxins into the cytosol of host cells and/or to the extracellular medium (Abby et al., 2016). Pseudomonas aeruginosa is known to have five TSSs, of which Types I (T1SS), II (T2SS), and III (T3SS) are involved in the virulence of this pathogen. Several studies have linked these TSSs with poor outcomes of patients with acute respiratory diseases (i.e., pneumonia), with T3SS being one of the most clinically relevant virulence determinants (Hauser, 2011; McMackin et al., 2019; Sarges et al., 2020). In this context, we detected ExoTSY exotoxins-encoding genes in both clinical and environmental strains. ExoTSY exotoxins are secreted by T3SS and reported to be involved in lung injury, pulmonary-vascular barrier disruption, and end-organ dysfunction in chronic infections, mainly in CF patients; as well as with mortality in animal models (Lu et al., 2014; Sarges et al., 2020; Jurado-Martín et al., 2021). Interestingly, the toxA gene (exotoxin A), which is present in the most clinically P. aeruginosa strains (Khosravi et al., 2016) was also identified in environmental strains. Exotoxin A has been associated with tissue damage related to poor outcomes of burn patients (Khosravi et al., 2016). In fact, the broad virulome harbored by P. aeruginosa ST277 seems to be associated with a remarkable ability to adapt to different human and non-human conditions (Jurado-Martín et al., 2021).

In brief, from comparative analysis, our data revealed that Pa19 and Pa151 environmental strains presented slight variations when compared against clinical strains, suggesting a high degree of genetic conservation, regardless isolation data and exposition to contaminants (antibiotics and biocides residues) present in the polluted aquatic environments.

CONCLUSION

In summary, we report genomic comparative data of antimicrobial-resistant *P. aeruginosa* isolated from aquatic environments in Brazil. The presence of SPM-1-producing *P. aeruginosa* ST277 in urban rivers could be associated with hospital effluents, since SNP-based phylogenomics showed high nucleotide sequence similarity between clinical and environmental genomes. Additionally, wide resistome and virulome have been conserved in environmental isolates, denoting that critical priority *P. aeruginosa* of the high-risk ST277 has successfully expanded beyond the hospital. Therefore, genomic surveillance is essential to rapidly identify and prevent the spread of WHO critical priority clones with One Health implications.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

FE, BC, HF, and BF performed the data analysis. FE, BC, QM, AC-A, and DF-C conducted the experiments. NL supervised the experiments and designed and coordinated the project. FE, BC, and NL wrote, reviewed, and edited the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Bill & Melinda Gates Foundation (Grand Challenges Explorations Brazil OPP1193112). Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission. Additionally, this study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (2020/08224-9) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (AMR 443819/2018-1 and 433128/2018-6). FE is a research fellow of FAPESP (2019/15578-4). BC and HF are researcher fellows of CAPES (88882.333054/2019-01 and 88887.506496/2020-00). DF-C is a researcher fellow of Comisión Nacional de Investigación Científica y Tecnológica (CONICYT BCh 72170436). AC-A and BF are researcher fellows of PNPD/CAPES (88887.463414/2019-00 and 88887.358057/2019-00). NL is research fellow of CNPq (312249/2017-9).

ACKNOWLEDGMENTS

The authors are grateful to Bill & Melinda Gates Foundation, FAPESP, CAPES, and CNPq. We also thank Cefar Diagnóstica Ltda. (São Paulo, Brazil) and Louise Cerdeira for kindly supplying the antibiotic disks for susceptibility testing and for assisting with BRIG software, respectively.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.701921/full#supplementary-material

REFERENCES

Abby, S. S., Cury, J., Guglielmini, J., Néron, B., Touchon, M., and Rocha, E. P. (2016). Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6:23080. doi: 10.1038/srep23080
Alikhan, N. F., Petty, N. K., Zakour, N. L. B., and Beatson, S. A. (2011). Enterobacteriaceae from surface waters in urban Brazil highlights the risks of poor sanitation. J. Trop. Med. Hyg. 115, 256–265. doi: 10.1016/j.jtm.2011.08.001
Baker-Austin, C., Wright, M. S., Stepanauskas, R., and McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182. doi: 10.1016/j.tim.2006.02.006
Bartley, P. S., Domitrovic, T. N., Moretto, V. T., Santos, C. S., Ponce-Terashima, R., Reis, M. G., et al. (2019). Antibiotic resistance in Enterobacteriaceae from surface waters in urban Brazil highlights the risks of poor sanitation. Am. J. Trop. Med. Hyg. 100, 1369–1377. doi: 10.4269/ajtmh.18-0726
Behzadi, P., Baráth, Z., and Gajdács, M. (2021). It's not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics 10:42. doi: 10.3390/antibiotics10010042
Bobrov, A. G., Getnet, D., Świerczewski, B., Jacobs, A., Medina-Rojas, M., Tyner, S., et al. (2021). Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APNIS doi: 10.1111/apn.13119 [Epub ahead of print]
Boger, B., Surek, M., Vilhena, R. O., Fachi, M. M., Junkert, A. M., Santos, J. M., et al. (2021). Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil. J. Hazard Mater. 402:123448. doi: 10.1016/j.jhazmat.2020.123448
Bueno, M. E., Francisco, G. R., de Oliveira Garcia, D., and Doi, Y. (2016). Complete sequences of multidrug resistance plasmids bearing rmtD1 and rmtD2 16S rRNA methyltransferase genes. Antimicrob. Agents Chemother. 60, 1928–1931. doi: 10.1128/AAC.02562-15
Cipriano, R., Vieira, V. V., Fonseca, E. L., Rangel, K., Freitas, F. S., and Vicente, A. C. P. (2007). Coexistence of epidemic colistin-only-sensitive clones of Pseudomonas aeruginosa, including the bla_{TEM} gene, spread in hospitals in a Brazilian amazon city. Microb. Drug Resist. 13, 142–146. doi: 10.1098/mdr.2007.008
CLSI (2021). Performance Standards for Antimicrobial Susceptibility Testing. 31st Ed. CLSI supplement M100. Clinical and Laboratory Standards Institute. Da Fonseca, É. L., dos Santos Freitas, F., and Vicente, A. C. P. (2010). The colistin-only-sensitive Brazilian Pseudomonas aeruginosa clone SP (sequence type 277) is spread worldwide. Antimicrob. Agents Chemother. 54:2743. doi: 10.1128/AAC.00012-10
Del Barrio-Tofiño, E., López-Causápé, C., and Oliver, A. (2020). Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents 56:106196. doi: 10.1016/j.ijantimicag.2020.106196
Del Barrio-Tofiño, E., Sánchez-Diener, L., Zamorano, L., Cortes-Lara, S., López-Causápé, C., Cabot, G., et al. (2019). Association between Pseudomonas aeruginosa O-antigen serotypes, resistance profiles and high-risk clones: results from a Spanish nationwide survey. J. Antimicrob. Chemother. 74, 3217–3220. doi: 10.1093/jac/dkz346
Devarajan, N., Köhler, T., Stivalangam, P., van Delden, C., Mulaji, C. K., Mpiana, P. T., et al. (2017). Antibiotic resistant Pseudomonas spp. in the aquatic environment: a prevalence study under tropical and temperate climate conditions. Water Res. 115, 256–265. doi: 10.1016/j.watres.2017.02.058
Doi, Y., de Oliveira Garcia, D., Adams, J., and Paterson, D. L. (2007). Coproduction of novel 16S rRNA methylase RmtD and metallo-β-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob. Agents Chemother. 51, 852–856. doi: 10.1128/AAC.01345-06
Fernández-Barat, L., Ferrer, M., De Rosa, F., Gabarrús, A., Esperatti, M., Terraneo, S., et al. (2017). Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J. Infect. 74, 142–152. doi: 10.1016/j.jinf.2016.11.008
Many virulence factors, so many virulence factors, so many virulence factors. In a world of pathogens, the importance of virulence factors cannot be overstated. These factors are integral to the pathogenesis of many bacterial diseases, playing crucial roles in the ability of bacteria to colonize, infect, and cause disease in hosts.

Virulence factors are broadly classified into two categories: those involved in bacterial adhesion and colonization, and those involved in the evasion of host immune responses. Adhesins, for example, are critical for the initial interaction between bacteria and host cells, enabling the establishment of a successful infection. Such adhesins can be found on the surface of bacteria and work in concert with other virulence factors to facilitate the colonization process.

Once inside the host, bacteria employ a variety of strategies to evade the host immune response. For example, bacterial toxins are potent virulence factors, capable of directly damaging host cells or disrupting host immune function. Prostaglandins and cyclic AMP (cAMP) are produced by bacteria as virulence factors, which work to promote bacterial survival and replication within host cells.

In addition to these factors, bacteria can also alter their surface structure or produce proteins that neutralize host defenses, enabling them to establish a successful infection. For instance, the production of a mannose-binding lectin by Salmonella enterica strain Typhimurium can help the bacteria evade complement-mediated killing.

The presence of virulence factors is not limited to bacterial pathogens. Viruses, fungi, and protozoa also produce a variety of factors that contribute to their pathogenicity. For example, influenza virus can produce neuraminidase activity, which helps it escape from host immune cells and enhances its spread within the host.

In the context of urban environments, the presence of virulence factors in bacteria can have significant implications. The rapid urbanization and the associated changes in the environment have led to an increased incidence of antibiotic-resistant bacteria in urban areas. This highlights the importance of understanding the role of virulence factors in the pathogenesis of bacterial infections, both in the hospital setting and in the community.

Genotypic characterizations of multidrug-resistant Pseudomonas aeruginosa from hospital wastewater treatment plant in Rio de Janeiro, Brazil. J. Appl. Microbiol. 118, 1276–1286. doi: 10.1111/jam.12792

Nascimento, A. P. B., Ortiz, M. F., Martins, W. M. B. S., Morais, G. L., Almeida, L. C., Martins, W., Almeida, L., Cayó, R., Santos, S. V., Ramos, P. L., et al. (2016). Healthcare-associated carbapenem-resistant OXA-72-producing Acinetobacter baumannii from the clonal complex CC77 colonizing migratory and captive aquatic birds in a Brazilian zoo. Sci. Total Environ. 526, 1832–1832. doi: 10.1016/j.scitotenv.2015.11.006

Nilsy, S. A., McClain, D. L., Fillius, A. G., and Davis, K. A. (2020). Oral antibiotics for the treatment of gram-negative bloodstream infections: a retrospective comparison of three antibiotic classes. J. Glob. Antimicrob. Resist. 20, 74–77. doi: 10.1016/j.jgar.2019.07.026

Oliveira, S., Moura, R. A., Silva, K. C., Pavez, M., McCulloch, J. A., Drogo, M., et al. (2014). Isolation of KPC-2-producing Klebsiella pneumoniae strains belonging to the high-risk multiresistant clonal complex 11 (ST437 and ST340) in urban rivers. J. Antimicrob. Chemother. 69, 849–852. doi: 10.1093/jac/dkt391

Pang, Z., Ru, C., Glick, B. R., Lin, T. J., and Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37, 177–192. doi: 10.1016/j.biotechadv.2018.11.013

Pliska, N. N. (2020). Pseudomonas aeruginosa: the main causative agent of bloodstream infections and its susceptibility to antibiotics. Front. Microbiol. 11:610296. doi: 10.3389/fmicb.2020.610296

Polotto, M., Casella, T., de Lucca Oliveira, M. G., Rúbio, F. G., Nogueira, M. L., de Almeida, M. T. G., et al. (2012). Detection of P. aeruginosa harboring blalacteSPP-1 and bladMARD-1 and bladaCcl-MARD and blab-adJ causing infections in Brazilian tertiary-care hospital. BMC Infect. Dis. 12,176. doi: 10.1186/1471-2334-12-176

Popa, L. I., Georghe, I., Barbu, I. C., Surleac, M., Parasciv, S., Măruțescu, L., et al. (2021). Multidrug resistant Klebsiella pneumoniae ST101 clone survival chain from inpatients to hospital effluent after chlorine treatment. Front. Microbiol. 11:610296. doi: 10.3389/fmicb.2020.610296

Rosales-Reyes, R., Vargas-Roldán, S. Y., Lezana-Fernández, J. L., and Santos-Preciado, J. I. (2021). Pseudomonas aeruginosa: genetic adaptation, a strategy for its persistence in cystic fibrosis. Arch. Med. Res. 52, 357–361. doi: 10.1016/j.archmed.2020.12.004

Sarges, E. D. S. N., Rodrigues, Y. C., Furlaneto, I. P., de Melo, M. V. H., Brabo, G. L. D. C., Lopes, K. C. M., et al. (2020). Type III secretion system virulotypes and their association with clinical features of cystic fibrosis patients. Infect. Drug Resist. 13, 3771–3781. doi: 10.2147/IDR.S273759

Silveira, M., Albano, R., Asensi, M., and Assef, A. P. C. (2014). The draft genome sequence of multidrug-resistant Pseudomonas aeruginosa strain CC84851,
a nosocomial isolate belonging to clone SP (ST277) that is prevalent in Brazil. Mem. Inst. Oswaldo Cruz 109, 1086–1087. doi: 10.1590/0074-0276140336
Silveira, M. C., Rocha-de-Souza, C. M., Albanese, R. M., de Oliveira Santos, I. C., and Carvalho-Assef, A. P. D. (2020). Exploring the success of Brazilian endemic clone Pseudomonas aeruginosa ST277 and its association with the CRISPR-Cas system type I-C. BMC Genomics 21:255. doi: 10.1186/s12864-020-6650-9
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327. doi: 10.1016/S1473-3099(17)30753-3
Toleman, M. A., Simm, A. M., Murphy, T. A., Gales, A. C., Biedenbach, D. J., Jones, R. N., et al. (2002). Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J. Antimicrob. Chemother. 50, 673–679. doi: 10.1093/jac/dkf210
Tsai, C. J., Loh, J. M., and Proft, T. (2016). Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7, 214–229. doi: 10.1080/21505594.2015.1135289
Tümmler, B. (2019). Emerging therapies against infections with Pseudomonas aeruginosa. F1000Res. 8:1371. doi: 10.12688/f1000research.19509.1
Turano, H., Gomes, F., Medeiros, M., Oliveira, S., Fontes, L. C., Sato, M. I. Z., et al. (2016). Presence of high-risk clones of OXA-23-producing Acinetobacter baumannii (ST79) and SPM-1-producing Pseudomonas aeruginosa (ST277) in environmental water samples in Brazil. Diagn. Microbiol. Infect. Dis. 86, 80–82. doi: 10.1016/j.diagmicrobio.2016.06.005
Van Nguyen, K., Nguyen, T. V., Nguyen, H. T. T., and Van Le, D. (2018). Mutations in the gyrA, parC, and mcrX genes provide functional insights into the fluoroquinolone-resistant Pseudomonas aeruginosa isolated in Vietnam. Infect. Drug Resist. 11, 275–282. doi: 10.2147/IDR.S147581
Xu, C., Wang, D., Zhang, X., Liu, H., Zhu, G., Wang, T., et al. (2020). Mechanisms for rapid evolution of carbapenem resistance in a clinical isolate of Pseudomonas aeruginosa. Front. Microbiol. 11:1390. doi: 10.3389/fmicb.2020.01390
Yamane, K., Rossi, F., Barberino, M. G., Adams-Haduch, J. M., Doi, Y., and Paterson, D. L. (2008). 16S ribosomal RNA methylase RmtD produced by Klebsiella pneumoniae in Brazil. J. Antimicrob. Chemother. 61, 746–747. doi: 10.1093/jac/dkm526
Zhao, H., Xia, B., Fan, C., Zhao, P., and Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near dabaoshan mine, southern China. Sci. Total Environ. 417–418, 45–54. doi: 10.1016/j.scitotenv.2011.12.047
Zubris, D., Minbiole, K., and Wuest, W. (2017). Polymeric quaternary ammonium compounds: versatile antimicrobial materials. Curr. Top. Med. Chem. 17, 305–318. doi: 10.2174/1568026616666160829155805

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer AB declared a shared affiliation with no collaboration with several of the authors FE, HF, BF, and NL to the handling editor at the time of the review.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.