Quantum KZ equation with $|q| = 1$ and correlation functions of the XXZ model in the gapless regime

Michio Jimbo and Tetsuji Miwa

January 18, 1996

Dedicated to the memory of Claude Itzykson

Abstract

An integral solution to the quantum Knizhnik-Zamolodchikov (qKZ) equation with $|q| = 1$ is presented. Upon specialization, it leads to a conjectural formula for correlation functions of the XXZ model in the gapless regime. The validity of this conjecture is verified in special cases, including the nearest neighbor correlator with an arbitrary coupling constant, and general correlators in the XXX and XY limits.

1 Introduction

Consider the one-dimensional spin 1/2 XXZ chain

$$H = -\frac{1}{2} \sum_{n=-\infty}^{\infty} \left(\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y + \Delta \sigma_n^z \sigma_{n+1}^z \right). \tag{1.1}$$

In this paper we address the problem of describing correlation functions of (1.1) in the gapless regime $|\Delta| \leq 1$. In the earlier works [1, 2], the case of the anti-ferromagnetic regime $\Delta < -1$ was treated in the framework of representation theory of the quantum affine algebra $U_q(\hat{sl}_2)$. As a result, correlation functions have been described by using the quantum Knizhnik-Zamolodchikov (qKZ) equation. It is this aspect that we will be concerned with in this paper. Before coming to the content, let us first recall some known results for $\Delta < -1$.

Let $V = \mathbb{C}^2$, and consider the R matrix $R(\beta) \in \text{End}_\mathbb{C}(V \otimes V)$ associated with the XXZ model (see [23]). The qKZ equation is the following system of linear
difference equations for an unknown function \(G_n(\beta_1, \ldots, \beta_{2n}) \) that takes values in \(V^{\otimes 2n} \):
\[
G_n(\beta_1, \ldots, \beta_j - 2\pi i, \ldots, \beta_{2n}) = R_{jj}^{(j+1)}(\beta_j - \beta_{j+1} - 2\pi i)^{-1} \cdots R_{j2n}^{(j)}(\beta_j - \beta_{2n} - 2\pi i)^{-1} \\
\times R_{1j}^{(1)}(\beta_1 - \beta_j) \cdots R_{j-1j}^{(j-1)}(\beta_{j-1} - \beta_j) G_n(\beta_1, \ldots, \beta_j, \ldots, \beta_{2n}). \tag{1.2}
\]
Here \(R_{ij}(\beta) \in \text{End}_C(V^{\otimes 2n}) \) signifies the matrix acting as \(R(\beta) \) on the \((i,j)\)-th tensor components and as identity elsewhere. The correlation functions of arbitrary local operators are obtained as the specialization
\[
G_n(\beta + \pi i, \ldots, \beta + \pi i, \beta, \ldots, \beta). \tag{1.3}
\]
To be precise, in the case \(\Delta < -1 \), there are two functions \(F_n^{(i)} (i = 0, 1) \) associated with the two anti-ferromagnetic vacuum states, and it is their sum \(G_n = F_n^{(0)} + F_n^{(1)} \) that satisfies the qKZ equation (1.2), as well as a set of relations (2.4), (2.5) and (2.6). The correlators are given by specializations of \(F_n^{(i)} \) rather than \(G_n \) itself. In the context of representation theory, the functions \(F_n^{(i)} \) are traces of products of certain intertwiners (vertex operators) taken over the integrable highest weight modules \(V(\Lambda_i) \). By realizing \(V(\Lambda_i) \) in terms of bosonic free fields, an explicit integral formula was obtained for the functions \(F_n^{(i)} \) and hence for the solution \(G_n \) of the qKZ equation.

The argument relating correlation functions to the functions \(G_n \) is based on the extension of the corner transfer matrix method \cite{3, 4}. It is applicable to the more general case of the XYZ spin chain as well \cite{4}. Correlation functions are related in the same way as above with solutions \(G_n \) of the qKZ equation, this time having the elliptic \(R \) matrix as coefficients. Unfortunately the mathematical structure of the XYZ model is not fully understood yet (see \cite{1, 3} for a formulation of an elliptic extension of \(U_q(\widehat{sl}_2) \)). The free field realization is still unavailable (see however the recent development \cite{5, 6} in this direction). Thus it remains an important open problem to construct solutions to the qKZ equation in the elliptic case.

For the XXZ chain in the gapless regime \(|\Delta| \leq 1 \), the corner transfer matrix fails to be well defined. Nevertheless this case can be viewed as a limiting case of the XYZ chain, so that the same recipe (1.3) is expected to apply for obtaining correlation functions. (Unlike the case \(\Delta < -1 \), the vacuum state is unique and the distinction between \(F_n^{(0)} \) and \(F_n^{(1)} \) disappears.) The problem is then to find appropriate solutions of the qKZ equation.

Up to an overall scalar, the \(R \) matrix \(R(\beta) \) of the XXZ chain is a rational function in
\[
\zeta = e^{-\nu \beta}, \quad q = -e^{\pi i \nu}, \tag{1.4}
\]
where
\[
\Delta = -\cos \pi \nu = \frac{q + q^{-1}}{2}. \tag{1.5}
\]
However the nature of the solutions is quite different depending on whether $\Delta < -1$ or $|\Delta| \leq 1$. In the case $\Delta < -1$, we have $-1 < q < 0$ and the solutions are meromorphic in ζ, typically involving infinite products of the form $\prod_{n=1}^{\infty} (1 - \zeta q^{2n})$. On the other hand, the case $|\Delta| \leq 1$ corresponds to $|q| = 1$. There are no analytic solutions which are single valued in ζ. Instead one has to look for solutions which are meromorphic in $\log \zeta$.

A certain class of solutions to the qKZ equation with $|q| = 1$ has been studied in detail by Smirnov [9] in connection with the form factors in the sine-Gordon theory. The equation relevant to the correlation functions of the XXZ model is slightly different from Smirnov’s, in particular the shift $-2\pi i$ in (1.2) is replaced by $+2\pi i$ in his case (the former has ‘level -4’ while the latter has ‘level 0’; we will consider also the case in which the shift $-2\pi i$ is replaced by $-i\lambda$ where $\lambda > 0$ is a parameter.) In this paper we give a solution to the former, in the form of an integral which has a similar structure as in the case $\Delta < -1$, and conjecture that its specialization (1.3) gives the correlation functions of the XXZ model with $|\Delta| \leq 1$. Our integral formula is essentially the same as the one written down earlier by Lukyanov [10]. However, in Lukyanov’s case, it is given as a generating function of the form factors of local operators in the sine-Gordon theory. Our point here is to interpret it as a formula for the correlation functions on the lattice. In general, difference equations determine the solutions only up to arbitrary periodic functions. We need to ensure that the particular solution we present actually corresponds to correlation functions. As supporting evidences, we verify this statement in three special cases for which exact results are available: (i) the nearest neighbour correlation $\langle \sigma^z_1 \sigma^z_2 \rangle$, (ii) the XXX model $\Delta = -1$ and (iii) the XY model $\Delta = 0$. The integral formula and these verifications are the main results of this paper.

The text is organized as follows. In Section 2 we formulate the qKZ and allied equations. We then write down an integral formula for solutions. In Section 3 we specialize the formula in Section 2 and propose that it gives correlation functions. In the special case $\nu = 0$, we recover the formula for the correlation functions of the XXX model derived earlier in [11, 12, 2]. In Section 4 we process our integral formula to reproduce the simplest correlation function $\langle \sigma^z_i \sigma^z_j \rangle$. This quantity can be derived by differentiating the ground state energy of the Hamiltonian. In Section 5 we consider the XY limit ($\nu = 1/2$), which can be studied independently by using free fermions. The correlation functions are given by the determinants of certain matrices whose entries are elementary functions in β_j. Our integral formula in this case is shown to be equivalent to the free fermion result. The last Section 6 is devoted to a discussion concerning some previous works [9, 10, 12] on the qKZ equation with $|q| = 1$.

Since most of the statements are proved by purely computational means, we put together technical points in the appendices in order to ease the reading. In Appendix A, a summary of Barnes’ multiple gamma functions is offered. Appendix B contains the proof of the difference equations of Section 2. In Appendix
C it is shown how the n-fold integral is reduced to an $(n-1)$-fold one by explicitly carrying out the integration once. Appendix D is the derivation of the expression for $\langle \sigma_1^z \sigma_2^z \rangle$. Appendix E is the evaluation of an integral in the case $\nu = 1/2$. Finally, Appendix F is devoted to the free fermion theory in the XY limit.

\textit{Acknowledgement.} We thank Sergei Lukyanov, Atsushi Nakayashiki and Feodor Smirnov for valuable discussions. We wish to express our sorrow at the death of Claude Itzykson. We have always liked his nice lectures given in his fascinating voice ever since we first met him in San Francisco, 1979.

\section{Integral formula}

\subsection{The difference equations}

In this section, we formulate the system of equations we are going to study, including the qKZ equation with $|q| = 1$. We then give a particular solution in the form of an integral. Throughout this section we fix parameters ν and λ (see (1.4)) such that $0 < \nu < 1$ and $\lambda > 0$. For the convergence of the integral, we assume that

$$\lambda + \frac{\pi}{\nu} > 2\pi. \quad (2.1)$$

In the application to the XXZ model, we will choose $\lambda = 2\pi$.

Consider the R-matrix $R(\beta) \in \text{End}_\mathbb{C}(V \otimes V)$ acting on the tensor product of $V = \mathbb{C}v^+ \oplus \mathbb{C}v^-:

$$R(\beta) (v^{\varepsilon_1} \otimes v^{\varepsilon_2}) = \sum_{\varepsilon_1, \varepsilon_2} R^{\varepsilon_1 \varepsilon_2}_{\varepsilon_1 \varepsilon_2}(\beta) v^{\varepsilon_1} \otimes v^{\varepsilon_2},$$

$$R(\beta) = \frac{1}{\kappa(\beta)} \overline{R}(\beta). \quad (2.2)$$

The parameter ν enters the matrix elements as follows.

$$\overline{R}^{++}_{++}(\beta) = \overline{R}^{--}_{--}(\beta) = 1,$$

$$\overline{R}^{++}_{+-}(\beta) = \overline{R}^{+-}_{++}(\beta) = \overline{b}(\beta),$$

$$\overline{R}^{+-}_{+-}(\beta) = \overline{R}^{--}_{++}(\beta) = \overline{c}(\beta),$$

$$\overline{R}^{\varepsilon_1 \varepsilon_2}_{\varepsilon_1 e_2}(\beta) = 0 \quad \text{in the other cases}, \quad (2.3)$$

where

$$\overline{b}(\beta) = \frac{\sinh \nu \beta}{\sinh \nu (\pi i - \beta)}, \quad \overline{c}(\beta) = \frac{\sinh \nu \pi i}{\sinh \nu (\pi i - \beta)}.$$

The function $\kappa(\beta)$ will be specified below. It is chosen to ensure that the R-matrix satisfies the unitarity and the crossing symmetry relations

$$R_{12}(\beta) R_{21}(-\beta) = \text{id}, \quad R^{\varepsilon_1 \varepsilon_2}_{\varepsilon_1 \varepsilon_2}(\beta) = R^{\varepsilon_2 \varepsilon_1}_{\varepsilon_2 \varepsilon_1}(\pi i - \beta).$$
Let n be a non-negative integer. Consider a $V^{\otimes 2n}$-valued function $G_n = G_n(\beta_1, \ldots, \beta_{2n})$, depending on the 'spectral parameters' $\beta_1, \ldots, \beta_{2n}$. We set

$$G_0 = 1.$$

We study the following system of difference equations for G_n involving the parameter λ:

$$G_n(\cdots, \beta_{j+1}, \beta_j, \cdots)_{\varepsilon_j+1, \varepsilon_j, \cdots} = \sum_{\varepsilon'_j, \varepsilon'_{j+1}} R_{\varepsilon_j, \varepsilon'_j+1}^{\varepsilon'_{j+1}, \varepsilon_j+1}(\beta_j - \beta_{j+1})G_n(\cdots, \beta_j, \beta_{j+1}, \cdots)_{\varepsilon'_j, \varepsilon'_{j+1}, \cdots, \varepsilon_j, \varepsilon_j, \cdots}, \tag{2.4}$$

$$G_n(\beta_1, \cdots, \beta_{2n-1}, \beta_{2n} - i\lambda)_{\varepsilon_1, \cdots, \varepsilon_{2n}} = G_n(\beta_{2n}, \beta_1, \cdots, \beta_{2n-1})_{\varepsilon_{2n}, \varepsilon_1, \cdots, \varepsilon_{2n-1}}, \tag{2.5}$$

$$G_n(\beta_1, \cdots, \beta_{2n})_{\varepsilon_1, \cdots, \varepsilon_{2n}}\bigg|_{\beta_{2n}=\beta_{2n-1}+\pi i} = \delta_{\varepsilon_{2n-1}+\varepsilon_{2n}} \delta_{\varepsilon_{2n-1}} G_{n-1}(\beta_1, \cdots, \beta_{2n-2})_{\varepsilon_1, \cdots, \varepsilon_{2n-2}}. \tag{2.6}$$

In particular, the qKZ equation (1.2) is a consequence of (2.4) and (2.3). It can be shown also that (2.4) and (2.6) imply

$$G_n(\beta_1, \cdots, \beta_{2n})_{\varepsilon_1, \cdots, \varepsilon_{2n}}\bigg|_{\beta_{j+1}=\beta_j+\pi i} = \delta_{\varepsilon_j+\varepsilon_{j+1}, 0} G_{n-1}(\beta_1, \cdots, \beta_j, \beta_j+1, \cdots, \beta_{2n})_{\varepsilon_1, \cdots, \varepsilon_j-1, \varepsilon_{j+2}, \cdots, \varepsilon_{2n}} \tag{2.7}$$

for any $j = 1, \cdots, 2n-1$. Note that the equations (2.4)–(2.6) involve only the functions $G_n(\beta_1, \cdots, \beta_{2n})_{\varepsilon_1, \cdots, \varepsilon_{2n}}$ with fixed value of the 'spin' $\varepsilon_1 + \cdots + \varepsilon_{2n}$. Throughout this paper we will restrict ourselves to the 'spin 0' case, i.e. we assume

$$G_n(\beta_1, \cdots, \beta_{2n})_{\varepsilon_1, \cdots, \varepsilon_{2n}} = 0 \text{ unless } \varepsilon_1 + \cdots + \varepsilon_{2n} = 0.$$

2.2 Auxiliary functions

Our aim in this section is to construct a solution to (2.4), (2.3) and (2.6) by using an n-fold integral. The formula involves certain special functions $\kappa(\beta), \rho(\beta), \varphi(\beta), \psi(\beta)$. Let us first give their definitions and list some of their properties. In what follows, $S_r(x|\omega_1, \cdots, \omega_r)$ will denote the multiple sine function (see appendix A for the definition).

- $\kappa(\beta)$

$$\kappa(\beta) = \frac{S_2(i\beta|2\pi, \frac{\pi}{2})S_2(\pi - i\beta|2\pi, \frac{\pi}{2})}{S_2(-i\beta|2\pi, \frac{\pi}{2})S_2(\pi + i\beta|2\pi, \frac{\pi}{2})} = \exp \left\{ -i \int_0^\infty \frac{dt \sin \frac{2\beta t}{\pi} \sinh(1 - \nu) t}{t \sinh t \cosh \nu t} \right\},$$

$$\kappa(\beta)\kappa(-\beta) = 1,$$

$$\kappa(\beta)\kappa(\beta - \pi i) = \frac{\sinh \nu \beta}{\sinh \nu(\pi i - \beta)} = \tilde{b}(\beta).$$
\[\rho(\beta) = \sinh \frac{\pi \beta}{2} \frac{S_3(\pi - i\beta) S_3(\pi + \lambda + i\beta)}{S_3(-i\beta) S_3(\lambda + i\beta)} \quad (S_3(x) = S_3(x|2\pi, \lambda, \frac{\pi}{2})), \]

\[\rho(\beta) = \rho(i\lambda + \beta) \exp \left\{ \int_0^\infty \frac{dt}{t} \sin^2 \left((\beta - i\lambda - \frac{\pi}{2}) \frac{\nu t}{\pi} \right) \sinh(1 - \nu t) \right\}, \]

\[\frac{\rho(\beta)}{\rho(-\beta)} = \kappa(\beta), \quad (2.8) \]

\[\rho(i\lambda - \beta) = \rho(\beta), \quad (2.9) \]

\[\rho(\beta) = \frac{\nu \rho(\pi i)}{i \sin \pi \nu} (\beta + \pi i) + \cdots \text{ when } \beta \to -\pi i. \quad (2.10) \]

\[\varphi(\beta) = \frac{2}{S_2(\frac{\pi}{2} + i\beta|\lambda, \frac{\pi}{2}) S_2(\frac{\pi}{2} - i\beta|\lambda, \frac{\pi}{2})}, \]

\[\varphi(\beta) = \varphi(0) \exp \left\{ -2 \int_0^\infty \frac{dt}{t} \sin^2 \left((\beta - \frac{\pi}{2}) \frac{\nu t}{\pi} \right) \sinh(1 + \frac{\lambda + \pi i}{\nu} \pi t) \right\}, \]

\[\varphi(-\beta) = \varphi(\beta), \quad \varphi(\beta - i\lambda) = -\frac{\sinh \nu (\beta - \frac{\pi i}{2})}{\sinh \nu (\beta + \frac{\pi i}{2} - i\lambda)}, \quad (2.11) \]

\[\varphi(\beta + \frac{\pi i}{2}) = -\frac{\sinh \frac{\nu}{\lambda} (\beta + \frac{\pi i}{2} + \frac{\pi i}{\nu})}{\sinh \frac{\nu}{\lambda} (\beta + \frac{\pi i}{2})}, \]

\[\varphi(\beta) = \pm \frac{\sqrt{\frac{1}{\lambda}}}{i S_2(\pi|\lambda, \frac{\pi}{2})(\beta + \frac{\pi i}{2})} + \cdots \text{ when } \beta \to \pm \frac{\pi i}{2}, \quad (2.12) \]

\[\rho(\beta) \rho(\beta + \pi i) \varphi(\beta + \frac{\pi i}{2}) = \frac{i}{4 \sinh \nu \beta}, \quad (2.13) \]

\[\psi(\beta) = \sinh \frac{\pi \beta}{2} S_2(\pi + i\beta|\lambda, \frac{\pi}{2}) S_2(\pi - i\beta|\lambda, \frac{\pi}{2}) \]

\[\psi(-\beta) = -\psi(\beta), \quad (2.14) \]

\[\varphi(\beta + \frac{\pi i}{2}) \varphi(\beta - \frac{\pi i}{2}) \psi(\beta) = \frac{1}{\sinh \nu \beta}, \quad (2.15) \]

\[\frac{\psi(\beta + i\lambda)}{\psi(\beta)} = \frac{\sinh \nu (\beta + i\lambda - \pi i)}{\sinh \nu (\beta + \pi i)}. \quad (2.16) \]
In addition we will use a constant \(c_n \) given by
\[
c_n = (-16)^{\frac{n(n-1)}{2}} \left(\frac{\pi S_2(\pi | \lambda, \frac{\pi}{2})^2}{\lambda \rho(\pi i)} \right)^n. \tag{2.17}
\]
In the case \(\lambda = 2\pi \) the formulas simplify to
\[
\psi(\beta) = \sinh \beta, \quad c_n = \frac{(-16)^{\frac{n(n-1)}{2}}}{\rho(\pi i)^n}.
\]

2.3 Integral formula

Let us present the integral formula for \(G_n(\beta_1, \cdots, \beta_{2n})_{\varepsilon_1 \cdots \varepsilon_{2n}} \). Given a set of indices \(\varepsilon_1, \cdots, \varepsilon_{2n} \in \{+, -\} \), we define a map \(a \in \{1, \cdots, n\} \rightarrow \bar{a} \in \{1, \cdots, 2n\} \) in such a way that \(\varepsilon_{\bar{a}} = + \) and \(\bar{a} < \bar{b} \) if \(a < b \). Define further a meromorphic function
\[
Q_n(\alpha | \beta)_{\varepsilon_1 \cdots \varepsilon_{2n}} = \prod_{j<k} \sinh \nu(\alpha_k - \beta_j + \frac{\pi i}{2}) \prod_{j>\bar{a}} \sinh \nu(\beta_j - \alpha_a + \frac{\pi i}{2}) \prod_{a<b} \sinh \nu(\alpha_a - \alpha_b - \pi i)
\]
where \(\alpha = (\alpha_1, \cdots, \alpha_n) \) and \(\beta = (\beta_1, \cdots, \beta_{2n}) \). After these preparations, we set
\[
G_n(\beta_1, \cdots, \beta_{2n})_{\varepsilon_1 \cdots \varepsilon_{2n}} = c_n \prod_{j<k} \rho(\beta_j - \beta_k) \\
\times \prod_a \int_{C_a} \frac{\varphi(\alpha - \beta_j)}{2\pi i} \prod_{a, \bar{a}} \psi(\alpha_a - \beta_j) \prod_{a<b} \psi(\alpha_a - \alpha_b) \psi(\alpha_a | \beta)_{\varepsilon_1 \cdots \varepsilon_{2n}}. \tag{2.18}
\]
Clearly we have, for any \(\gamma \),
\[
G_n(\beta_1 + \gamma, \cdots, \beta_{2n} + \gamma) = G_n(\beta_1, \cdots, \beta_{2n}).
\]

In Appendix B, we will prove that with the appropriate choice of the integration contours \(C_a \) (\(1 \leq a \leq n \)) as given below, the function \(G_n(\beta_1, \cdots, \beta_{2n}) \) is meromorphic and satisfies (2.4), (2.5) and (2.6).

In order to specify the integration contours, let us examine the poles of the integrand of (2.18). The poles of \(\varphi(\alpha_a - \beta_j) \) are at
\[
\alpha_a - \beta_j = \pm i(n_1 \lambda + \frac{n_2}{p} \pi + \frac{\pi}{2}) \quad (n_1, n_2 \geq 0). \tag{2.19}
\]
The poles of \(\psi(\alpha_a - \alpha_b) \) (\(a < b \)) are at
\[
\alpha_a - \alpha_b = \pm i(n_1 \lambda + \frac{n_2 - \nu}{p} \pi) \quad (n_1, n_2 \geq 1), \tag{2.20}
\]
and the poles of \(\frac{1}{\sinh \nu(\alpha_a - \alpha_b - \pi i)} \) are at
\[
\alpha_a - \alpha_b = \frac{n + \nu}{p} \pi i \quad (n \in \mathbb{Z}). \tag{2.21}
\]
Since \(\psi(\alpha_a - \alpha_b) \) has zeros at
\[
\alpha_a - \alpha_b = \pm i(n_1 \lambda + \frac{n_2 \pi}{2} + \pi) \quad (n_1, n_2 \geq 0),
\] (2.22)
the poles of \(\frac{\psi(\alpha_a - \alpha_b)}{\sinh \nu(\alpha_a - \alpha_b - \pi i)} \) are at
\[
\alpha_a - \alpha_b = i(n_1 \lambda + \frac{n_2 \pi}{2} + \pi) \quad (n_1, n_2 \geq 1),
\] (2.23)
or
\[
\alpha_a - \alpha_b = -i(n_1 \lambda + \frac{n_2 \pi}{2} + \pi) \quad (n_1 \geq 0, n_2 \geq 1).
\] (2.24)
Therefore, the poles in the variable \(\alpha_a \) of the integrand are contained in the set
\[
\{ \beta_j \pm i(n_1 \lambda + \frac{n_2 \pi}{2} + \frac{\pi}{2}) \quad (1 \leq j \leq 2n; n_1, n_2 \geq 0); \]
\[
\alpha_b + i(n_1 \lambda + \frac{n_2 \pi}{2} + \pi) \quad (a < b \leq n; n_1, n_2 \geq 1); \]
\[
\alpha_b - i(n_1 \lambda + \frac{n_2 \pi}{2} + \pi) \quad (a < b \leq n; n_1 \geq 0, n_2 \geq 1); \]
\[
\alpha_b + i(n_1 \lambda + \frac{n_2 \pi}{2} + \pi) \quad (1 \leq b < a; n_1 \geq 0, n_2 \geq 1); \]
\[
\alpha_b - i(n_1 \lambda + \frac{n_2 \pi}{2} + \pi) \quad (1 \leq b < a; n_1, n_2 \geq 1) \}.
\]

We choose the contour \(C_a \) for \(\alpha_a \) by the following rule:
\[
\alpha_a \text{ lies on the real line for } |\alpha_a| \gg 0,
\] (2.25)
\[
\beta_j + \frac{\pi i}{2} \quad (1 \leq j \leq 2n), \quad \alpha_b + i(\lambda + \frac{1}{2} \nu \pi) \quad (a < b \leq n),
\]
\[
\alpha_b + i\frac{1}{2} \nu \pi \quad (1 \leq b < a) \text{ are above } C_a,
\] (2.26)
\[
\beta_j - \frac{\pi i}{2} \quad (1 \leq j \leq 2n), \quad \alpha_b - i\frac{1}{2} \nu \pi \quad (a < b \leq n),
\]
\[
\alpha_b - i(\lambda + \frac{1}{2} \nu \pi) \quad (1 \leq b < a) \text{ are below } C_a.
\] (2.27)

Note that we can choose \(C_a \) to be the same contour \(C \) for all \(a \) such that \(\beta_j + \frac{\pi i}{2} \) (1 \leq j \leq 2n) are above \(C \) and \(\beta_j - \frac{\pi i}{2} \) (1 \leq j \leq 2n) are below \(C \).

Let check the convergence of the integral. Recall that the periods of the double sine function \(S_2 \) used in \(\varphi \) and \(\psi \) are such that \(\omega_1 = \lambda > 0 \) and \(\omega_2 = \frac{\pi}{2} > \pi \). In the proof below, we use “const.” to mean different constants which appear in the estimates. From (A.14), we have
\[
|\varphi(\alpha_a - \beta_j)| \leq \text{const.} e^{\pi(\pi - \omega_1 - \omega_2)|\alpha_a| \omega_1 \omega_2},
\]
\[
\left| \frac{\psi(\alpha_a - \alpha_b)}{\sinh \nu(\alpha_a - \alpha_b - \pi i)} \right| \leq \text{const.} e^{2\pi(\omega_2 - \pi)|\alpha_a + \alpha_b| \omega_1 \omega_2},
\]
\[
|\sinh \nu(\alpha_a - \beta_j \pm \frac{\pi i}{2})| \leq \text{const.} e^{\frac{\pi}{\omega_2}|\alpha_a|}.
\]

Collecting these estimates we see that
\[
\left| \prod_{a,j} \varphi(\alpha_a - \beta_j) \prod_{a<b} \psi(\alpha_a - \alpha_b) Q_n(\alpha|\beta)_{\epsilon_1 \cdots \epsilon_2n} \right| \leq \text{const.} e^{\frac{\pi}{\omega_2(\omega_1 \omega_2)} \sum_{a} |\alpha_a|}.
\]

Since we have assumed that \(2\pi - \omega_1 - \omega_2 = 2\pi - \lambda - \frac{\pi}{2} < 0 \), the integral is convergent.
2.4 One-time integration

In the case of interest \(\lambda = 2\pi \), the \(n \)-fold integral for \(G_n(\beta_1, \cdots, \beta_{2n}) \) can be reduced to an \((n - 1)\)-fold integral by carrying out the integration once. The result is stated as follows.

\[
G_n(\beta_1, \cdots, \beta_{2n})_{\varepsilon_1, \cdots, \varepsilon_{2n}} = \tilde{c}_n \prod_{1 \leq j < k \leq 2n} \rho(\beta_j - \beta_k) \\
\times \frac{\pi}{\nu} e^{\sum_{j=1}^{2n} \beta_j/2} \sum_{j=1}^{n} (-1)^{j+1} \prod_{k \neq l} d\alpha_k D(\alpha_1, \cdots, \alpha_{l-1}, \alpha_{l+1}, \cdots, \alpha_n) \\
\times \prod_{k \neq l} \left[\prod_{j=1}^{2n} \varphi(\alpha_k - \beta_j) \prod_{j<k} \sinh \nu(\alpha_k - \beta_j + \frac{\pi i}{2}) \prod_{j>k} \sinh \nu(-\alpha_k + \beta_j + \frac{\pi i}{2}) \right] \\
\times \frac{\sinh \nu \left(\sum_{k\neq l} \alpha_k + \frac{1}{2}\beta_l - \frac{1}{2}\sum_{j\neq l} \beta_j + \pi i(\bar{l} - 2l + \frac{1}{2}) \right)}{\prod_{r<s, r,s \neq l} \sinh \nu(\alpha_r - \alpha_s - \pi i)}. \tag{2.28}
\]

Here we have set

\[
\tilde{c}_n = 2^{3n(n-1)/2} \left(-\pi i \rho(\pi i) \right)^{-n},
\]

and

\[
D(x_1, \cdots, x_{n-1}) = \det \left(e^{-(n-2k-1)x_j} \right)_{1 \leq j, k \leq n-1}.
\]

As before, the numbers \(\bar{l} < \cdots < \bar{n} \) are determined by

\[
\{\bar{l} \mid 1 \leq l \leq n\} = \{j \mid 1 \leq j \leq 2n, \varepsilon_j = +\}.
\]

The integration is taken along a path going from \(-\infty\) to \(+\infty\) in such a way that \(-\pi/2 < \text{Im}(\alpha_k - \beta_j) < \pi/2\) for all \(k, j \). In the above, we assume that \(0 < \nu < 1/2 \) for the convergence of the integral. It should be possible to treat also the case \(1/2 \leq \nu < 1 \) by introducing a suitable regularization as in [9], but we do not go into this question here.

The derivation of (2.28) will be given in Appendix C.

3 Correlation functions

We now proceed to the description of correlation functions of the XXZ model. From now on, we assume that \(\lambda = 2\pi \).

First let us set up the notation. Let \(E_{\varepsilon\varepsilon'} \) denote the \(2 \times 2 \) matrix with 1 at the \((\varepsilon, \varepsilon')\)-th place and 0 elsewhere. Thus the Pauli spin operators read

\[
\sigma^x = E_{+-} + E_{-+}, \quad \sigma^y = -iE_{+-} + iE_{-+}, \quad \sigma^z = E_{++} - E_{--}.
\]

In the tensor product \(\cdots \otimes V_j \otimes V_{j+1} \otimes \cdots \) of \(V_j \simeq \mathbb{C}^2 \), we let \(\sigma_j^\alpha, E_{\varepsilon\varepsilon'}^{(j)} \) denote respectively the operators acting as \(\sigma^\alpha \) or \(E_{\varepsilon\varepsilon'} \) on the \(j \)-th component and as identity elsewhere.
By a local operator we mean an element of the algebra generated by σ_j^α's. Any local operator is a linear combination of operators of the form $O = E_{\varepsilon_1}^{(r)} E_{\varepsilon_{r+1}}^{(r+1)} \cdots E_{\varepsilon_s}^{(s)}$ ($r \leq s$). The correlation function of O is its expected value with respect to the ground state eigenvector of the XXZ Hamiltonian. We conjecture that it is given by the following special value of G_n ($n = s - r + 1$):

$$\langle E_{\varepsilon_1}^{(r)} \cdots E_{\varepsilon_s}^{(s)} \rangle \equiv G_n(\beta + \pi i, \ldots, \beta + \pi i, \beta, \ldots, \beta)_{-\varepsilon_1', \ldots, -\varepsilon_s', \varepsilon_r}.$$ \hspace{1cm} (3.1)

We shall consider a slightly more general object

$$G_n(\beta_r + \pi i, \ldots, \beta_s + \pi i, \beta_s, \ldots, \beta_r)_{-\varepsilon_1', \ldots, -\varepsilon_s', \varepsilon_r}. \hspace{1cm} (3.2)$$

This corresponds to introducing spectral parameters β_j as inhomogeneity of the model (in the terminology of [13], the corresponding model is 'Z-invariant'). We shall denote (3.2) by

$$\langle E_{\varepsilon_1}^{(r)} \cdots E_{\varepsilon_s}^{(s)} \rangle(\beta_r, \ldots, \beta_s). \hspace{1cm} (3.3)$$

To see the specialization (3.2) is well-defined, we note the following. In the general formula (2.18) the contour C for integration is such that $\beta_j + i (2\pi n_1 + \frac{\pi}{8} n_2 + \frac{\pi}{2})$ ($n_1, n_2 \geq 0$) (resp., $\beta_j - i (2\pi n_1 + \frac{\pi}{8} n_2 + \frac{\pi}{2} + \frac{\pi}{8})$ ($n_1, n_2 \geq 0$)) is above (resp., below) C. When $\beta_j = \beta_k + \pi i$, the contour C is pinched by $\beta_j - \frac{\pi}{8}$ and $\beta_k + \frac{\pi}{8}$. However, $Q_\alpha(\alpha|\beta)$ has a zero at $\alpha_a = \beta_j - \frac{\pi}{8}$ for $a > j$, and also at $\alpha_a = \beta_k + \frac{\pi}{8}$ for $a < k$. Therefore, if $j < k$, there is no pinching by poles of the total integrand.

In order for (3.1) to make sense as a correlator, we must check the following property:

Proposition 3.1

$$\langle E_{\varepsilon_1}^{(r)} \cdots E_{\varepsilon_s}^{(s)} \rangle(\beta_r, \ldots, \beta_s) \equiv \langle E_{\varepsilon_1}^{(r)} \cdots E_{\varepsilon_{s-1}}^{(s-1)} (E_{\varepsilon_{s-1}}^{(s)} + E_{-\varepsilon_s}^{(s)}) \rangle(\beta_r, \ldots, \beta_{s-1}, \beta_s) = \langle E_{\varepsilon_1}^{(r)} \cdots E_{\varepsilon_{s-1}}^{(s-1)} \rangle(\beta_r, \ldots, \beta_{s-1}),$$ \hspace{1cm} (3.4)

$$\langle (E_{\varepsilon_{s-1}}^{(s)} + E_{-\varepsilon_s}^{(s)}) E_{\varepsilon_{r+1}}^{(r+1)} \cdots E_{\varepsilon_s}^{(s)} \rangle(\beta_r, \beta_{r+1}, \ldots, \beta_s) = \langle E_{\varepsilon_{r+1}}^{(r+1)} \cdots E_{\varepsilon_s}^{(s)} \rangle(\beta_{r+1}, \ldots, \beta_s). \hspace{1cm} (3.5)$$

Proof. Let us take $\beta_j = \beta_{j+1} + \pi i$ in (2.4). Since

$$R(\pi i) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

we find from (2.7) that

$$G_{n-1}(\beta_1, \ldots, \beta_{j-1}, \beta_{j+2}, \ldots, \beta_{2n})_{\varepsilon_1, \ldots, \varepsilon_{j-1}, \varepsilon_{j+2}, \ldots, \varepsilon_{2n}}$$

$$= \sum_{\varepsilon} G_n(\beta_1, \ldots, \beta_j, \beta_{j+1}, \ldots, \beta_{2n})_{\varepsilon_1, \ldots, \varepsilon_{j-1}, \varepsilon_{j+2}, \ldots, \varepsilon_{2n}} |_{\beta_j = \beta_{j+1} + \pi i}.$$
Eq. (3.4) is a direct consequence of this. The above equation together with (2.3) imply (since \(\lambda = 2\pi \)) that

\[
G_{n-1}(\beta_2, \cdots, \beta_{2n-1}) \epsilon_2, \cdots, \epsilon_{2n-1} = \sum_{\epsilon} G_n(\beta_1, \cdots, \beta_{2n})^{-\epsilon_2, \cdots, \epsilon_{2n-1}, \epsilon} \bigg|_{\beta_{2n} = \beta_1 + \pi i}.
\]

From this follows (3.5). \(\square \)

We now write down the integral formula for (3.2). Set \(n = s - r + 1 \), and define \(\bar{1}, \cdots, \bar{n} \) (\(r \leq 1 < \cdots < \bar{n} \leq s \)) by the following rule:

\[
\{ \bar{1}, \cdots, \bar{n} \} = \{ j \mid r \leq j \leq s, \epsilon_j = -\} \cup \{ j^* \mid r \leq j \leq s, \epsilon_j = + \}
\]

where \(j^* = 2s + 1 - j \). We have then the following expression for (3.2).

\[
\langle E^{(r)}_{\epsilon_1} \cdots E^{(s)}_{\epsilon_s} \rangle(\beta_r, \cdots, \beta_s) = \prod_{r \leq j < k \leq s} \frac{\sinh(\beta_j - \beta_k)}{\sinh \nu(\beta_j - \beta_k)} \int \ldots \int \prod_{l=1}^{n} \frac{d\alpha_l}{2\pi} \prod_{1 \leq l < \nu \leq n} \frac{\sinh(\alpha_l - \alpha_{l'})}{\sinh \nu(\alpha_l - \alpha_{l'} - \pi i)} \prod_{r \leq i \leq s} \frac{1}{i} \prod_{j=r}^{i} \sinh(\alpha_l - \beta_j + i0) \prod_{r \leq j \leq i} \sinh \nu(\alpha_l - \beta_j) \prod_{l < j \leq s} \sinh \nu(\alpha_l - \beta_j + \pi i) \bigg|_{\beta_{2n} = \beta_1 + \pi i}.
\]

Here the symbol \(\alpha_l - \beta_j + i0 \) (resp. \(\alpha_l - \beta_j - i0 \)) indicates that the contour for \(\alpha_l \) runs above (resp. below) \(\beta_j \).

Let us put the formula in a form closer to the known result for \(\nu = 0 \), taking \(r = 1, s = n \). We choose the integration contour \(C_+ \) for \(\alpha_a \) (\(1 \leq a \leq n \)) and \(C_- \) for \(\alpha_a \) (\(n + 1 \leq a \leq 2n \)) in such a way that \(\beta_j + \pi i \) (resp., \(\beta_j \)) (\(1 \leq j \leq n \)) are above (resp., below) \(C_+ \) and \(\beta_j \) (resp., \(\beta_j - \pi i \)) (\(1 \leq j \leq n \)) are above (resp., below) \(C_- \). (Here the contours are directed from \(-\infty \) to \(\infty \), as opposed to the \(C^\pm \) in page 122-3 of ref. [3].)

Set \(A' = \{ j \mid \epsilon_j = -\} \) and \(A = \{ j \mid \epsilon_j = + \} \). We suppose that \(\sharp(A') + \sharp(A) = n \) since otherwise \(\langle E^{(1)}_{\epsilon_1} \cdots E^{(n)}_{\epsilon_n} \rangle(\beta_1, \cdots, \beta_n) = 0 \). We define a mapping

\[
a \in \{1, \cdots, n\} = A_+ \cup A_- \rightarrow \bar{a} \in \{1, \cdots, n\}
\]

by the condition that (i) \(\{ \bar{a} \mid a \in A_+ \} = A' \), \(\{ \bar{a} \mid a \in A_- \} = A \); (ii) if \(a, b \in A_+ \) and \(a < b \) then \(\bar{a} < \bar{b} \); (iii) if \(a, b \in A_- \) and \(a < b \) then \(\bar{a} > \bar{b} \). In other words, the \(+ \)'s in the sequence \(-\epsilon_1', \cdots, -\epsilon_n', \epsilon_n, \cdots, \epsilon_1 \) are \(-\epsilon_1', \cdots, -\epsilon_n', \epsilon_n, \cdots, \epsilon_1 \) where \(s = \sharp(A_-) = n - s' \). Then we have

\[
G_n(\beta_1 + \frac{\pi i}{2}, \cdots, \beta_n + \frac{\pi i}{2}, \beta_n - \frac{\pi i}{2}, \cdots, \beta_1 - \frac{\pi i}{2})^{-\epsilon_1', \cdots, -\epsilon_n, \epsilon_n, \cdots, \epsilon_1}
\]
The integral is taken along a path from $-\infty$ to $+\infty$ such that $-\pi < \text{Im} (\alpha - \beta_j) < \pi$ for all j.

In the limit $\nu = 0$ we recover the integral formula for the XXX correlation functions \([1, 2, 3]\).

4 Nearest neighbour correlator

In this section we examine the simplest cases of the general formula for the correlators proposed in the previous section.

First consider the case $G_1(\beta_1, \beta_2)$. Taking $n = 1$ in the formula \([2.28]\), we immediately find the following.

Proposition 4.1

\[
G_1(\beta_1, \beta_2)_{--} = G_1(\beta_1, \beta_2)_{++} = \frac{1}{2\nu} \frac{\rho(\beta_1 - \beta_2) \sinh \frac{\nu}{2}(\beta_1 - \beta_2 - \pi i)}{\rho(\pi i) \sinh \frac{\nu}{2}(\beta_1 - \beta_2 - \pi i)}.
\]

In particular, by setting $\beta_1 = \beta_2 + \pi i$, we have

\[
\langle E_{++}^{(1)} \rangle = \langle E_{--}^{(1)} \rangle = \frac{1}{2}.
\]

Next let us take $n = 2$ in \([2.28]\).

Proposition 4.2 Assuming $0 < \nu < 1/2$, we have

\[
G_2(\beta_1, \cdots, \beta_4)_{++--} = \frac{\prod_{j<k} \rho(\beta_j - \beta_k)}{\rho(0)^2 \rho(\pi i)^4} \frac{e^{-\sum_{j=1}^4 \beta_j/2}}{2\pi \nu^2 \sum_{j=1}^4 e^{-\beta_j}} \int d\alpha e^\alpha \prod_{j=1}^4 \varphi(\alpha - \beta_j) \sinh \nu(-\alpha + \beta_3 + \pi i) \sinh \nu(-\alpha + \beta_4 + \pi i) \times \sinh \nu(-\alpha + \beta_2 + \pi i) \sinh \nu(\alpha + \beta_2 - \beta_1 - \beta_3 - \beta_4 - 3\pi i) \\
- \sinh \nu(\alpha - \beta_1 + \pi i) \sinh \nu(\alpha + \beta_1 - \beta_2 - \beta_3 - \beta_4 - 2\pi i).
\]

The integral is taken along a path from $-\infty$ to $+\infty$ such that $-\pi < \text{Im} (\alpha - \beta_j) < \pi$ for all j.

\[
= (-1)^{\sum_{a \in A_+} a + \sum_{a \in A_-} a + \sum_{a \in \mathbb{Z}} n(a-1)} \prod_{1 \leq j < k \leq n} \frac{\sinh(\beta_j - \beta_k)}{\sinh(\nu(\beta_j - \beta_k))} \\
\times \prod_{a \in A_+} \int_{C_+} \frac{d\alpha_a}{2\pi i \sinh \nu(\beta_a - \beta_a)} \prod_{a \in A_-} \int_{C_-} \frac{d\alpha_a}{2\pi i \sinh \nu(\alpha_a - \beta_a)} \\
\times \prod_{1 \leq a < b \leq n} \frac{\sinh(\alpha_a - \alpha_b)}{\sinh(\alpha_a - \alpha_b - \pi i)} \prod_{1 \leq a, j \leq n} \frac{\sinh \nu(\beta_j - \alpha_a + \pi i)}{\sinh \nu(\beta_j - \alpha_a)} \prod_{j > a} \frac{\sinh \nu(\beta_j - \alpha_a)}{\sinh \nu(\alpha_a - \beta_j + \pi i)} \prod_{j > a} \frac{\sinh \nu(\beta_j - \alpha_a)}{\sinh \nu(\alpha_a - \beta_j)}.
\]
Here we have used the relation $\rho(0)\rho(\pi i) = -\frac{1}{4\sqrt{\nu}}$ which follows from (2.12), (2.13) and $S_2(\pi |2\pi, \pi) = \sqrt{2}$.

Upon specialization $(\beta_1, \cdots, \beta_4) = (\beta + \pi i, \beta + \pi i, \beta, \beta)$, this integral can be processed further. After a chain of steps detailed in Appendix D, we obtain the following result.

Proposition 4.3 We have

$$\langle E^{(1)}_{-} E^{(2)}_{-} \rangle = G_2(\beta + \pi i, \beta + \pi i, \beta, \beta)_{++--} = \frac{1}{\pi^2 \sin \pi \nu} \left(\sin \pi \nu \int_0^{\infty} \frac{\sinh(1 - \nu)t}{\sinh t \cosh \nu t} dt \right) + \frac{1}{2}. \quad (4.3)$$

We note that, since both sides are holomorphic with respect to ν for $0 < \Re \nu < 1$, (4.3) is valid without the restriction $0 < \nu < \frac{1}{2}$.

We now compare the formulas (4.1), (4.3) with known answers. For this purpose let us quote from [3] the results concerning the XXZ model which are relevant to the following discussion.

The XXZ model for a periodic chain of circumference N is given by the Hamiltonian

$$H = -\frac{1}{2} \sum_{j=1}^{N} \left(\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z \right). \quad (4.4)$$

This Hamiltonian (4.4) is associated with the six vertex model with the Boltzmann weights ([3], eq.(8.8,9))

$$a = \sin \frac{\mu - w}{2}, \quad b = \sin \frac{\mu + w}{2}, \quad c = \sin \mu. \quad (4.5)$$

Denoting by $T(w)$ the transfer matrix of the periodic system with N columns, we have

$$\left. \frac{d}{dw} \log T(w) \right|_{w=-\mu} = -\frac{1}{2 \sin \mu} \left(H + \frac{N}{2} \cos \mu \right) \quad (4.6)$$

where Δ is related to μ via

$$\Delta = -\cos \mu. \quad (4.7)$$

The gapless regime $|\Delta| \leq 1$ corresponds to μ being real.

For a local operator O, let $\langle \text{vac} | O | \text{vac} \rangle$ denote its ground state average (in the limit $N \to \infty$). Since in the gapless regime the vacuum $|\text{vac}\rangle$ is invariant under the $+$ \leftrightarrow $-$ symmetry, one must have

$$\langle \text{vac} | \sigma_1^x | \text{vac} \rangle = \langle \text{vac} | \left(E^{(1)}_{++} - E^{(1)}_{--} \right) | \text{vac} \rangle = 0.$$

Along with $1 = \langle \text{vac} | \left(E^{(1)}_{++} + E^{(1)}_{--} \right) | \text{vac} \rangle$, this means

$$\langle \text{vac} | E^{(1)}_{++} | \text{vac} \rangle = \langle \text{vac} | E^{(1)}_{--} | \text{vac} \rangle = \frac{1}{2}. \quad (4.8)$$
Our formula (4.11) is consistent with this.

In the limit \(N \to \infty \), the free energy per site \(f \) is given by (3.1, eq.(8.8.17))

\[
- \frac{f}{kT} = \log a + \int_{-\infty}^{\infty} \frac{\sinh(\mu + w)x \sinh(\pi - \mu)x}{2x \sinh \pi x \cosh \mu x} dx.
\]

(4.9)

It follows from the relation (4.6) that the ground state energy per site \(e_0 \) of the XXZ chain is

\[
e_0 = -\frac{1}{2} \cos \mu - 2 \sin \mu \frac{\partial}{\partial w} \left(-\frac{f}{kT} \right) \bigg|_{w=-\mu}.
\]

(4.10)

Differentiating \(e_0 \) with respect to \(\Delta \), we can obtain the nearest neighbour correlator for the \(\sigma^z \) operators:

\[
\langle \text{vac}|\sigma^z_1 \sigma^z_2|\text{vac} \rangle = -2 \frac{de_0}{d\Delta} = -\frac{2}{\sin \mu} \frac{de_0}{d\mu}.
\]

Inserting (4.9) into (4.10), we find the following expression for this quantity:

\[
\langle \text{vac}|\sigma^z_1 \sigma^z_2|\text{vac} \rangle = 1 + 4 \frac{d}{\sin \mu} \int_0^\infty \frac{\sinh(\pi - \mu)x}{\sinh \pi x \cosh \mu x} dx.
\]

(4.11)

On the other hand, in view of (1.8) we have

\[
\langle \text{vac}|\sigma^z_1 \sigma^z_2|\text{vac} \rangle = \langle \text{vac}|(1 - 2E^{(1)}_1)(1 - 2E^{(2)}_1)|\text{vac} \rangle = 4\langle \text{vac}|E^{(1)}_1 E^{(2)}_1 |\text{vac} \rangle - 1.
\]

Therefore, the formula (4.8) agrees with (4.11) with the identification \(\mu = \pi \nu \).

5 The XY limit

In this section we study the integral formula for the correlation functions (3.6) at a special value of the parameter \(\nu = 1/2 \). This is the case where the XXZ chain reduces to the XY chain \(\Delta = 0 \). It is well-known that the XY chain is equivalent to the two-dimensional Ising model. To be more precise, the XXZ model with \(\Delta = 0 \) corresponds to the critical Ising model. In this case, diagonalizing the transfer matrix in terms of free fermions, one can calculate the correlation functions directly in the presence of arbitrary spectral parameters. The diagonalization is worked out in Appendix F. Here we show that the formulas thus obtained give the same result as the integral formula (3.6).

We shall consider the function

\[
\langle E_{\epsilon_1 \epsilon_2}^{(r)} E_{\epsilon'_1 \epsilon'_2}^{(r+1)} \cdots E_{\epsilon_s}^{(s)} \rangle(\beta_r, \beta_{r+1}, \cdots, \beta_s)
\]

given by (3.3). In order to simplify the presentation, we shall take all \(\beta_j \)'s to be real throughout this section. (This is a matter of convenience and not actually a restriction. The final formulas are valid as meromorphic functions in \(\beta_j \)'s.)

A special feature about \(\nu = \frac{1}{2} \) is that (3.6) becomes a determinant.
Proposition 5.1 If \(\nu = \frac{1}{2} \), we have

\[
\langle E^{(r)}_{\epsilon_r} \cdots E^{(s)}_{\epsilon_s} (\beta_r, \cdots, \beta_s) = \prod_{r \leq j < k \leq s} 2i \cosh \frac{1}{2} (\beta_j - \beta_k) \times \text{det} (I_{k,k'})_{1 \leq k,k' \leq n}. \tag{5.1}
\]

Here \(n = s - r + 1 \), the \(I_{k,l} \) are given for \(r \leq l \leq s \) by

\[
I_{k,l} = 2i^{2r-s+1-l} \int \frac{d\alpha}{2\pi} \frac{1}{2(\alpha - \beta)_{}} \prod_{j=1}^{s} \frac{1}{2 \sinh \frac{1}{2} (\alpha - \beta + i0)},
\]

and for \(s+1 \leq l \leq s+n \)

\[
I_{k,l} = \tilde{I}_{k,l}.
\]

with the bar denoting the complex conjugate. In (5.2), the integration contour is a line above the real axis, as indicated by the symbol \(+i0\).

Proof. Specializing the formula (3.6) to \(\nu = 1/2 \) we find

\[
\prod_{r \leq j < k \leq s} 2\cosh \frac{\beta_j - \beta_k}{2} \int \prod_{l=1}^{n} \frac{d\alpha}{2\pi} 2i \sinh \frac{1}{2} (\alpha_l - \alpha_{l'})
\]

\[
\times \prod_{r \leq l \leq s} \left[2i^{2r-s-l} \prod_{j=1}^{i} \frac{1}{2 \cosh \frac{1}{2} (\alpha_l - \beta_j)_{}} \prod_{j=1}^{s} \frac{1}{2 \sinh \frac{1}{2} (\alpha_l - \beta_j + i0)} \right]
\]

\[
\times \prod_{s+1 \leq l \leq s+n} \left[2i^{r-1+l} \prod_{j=1}^{s} \frac{1}{2 \cosh \frac{1}{2} (\alpha_l - \beta_j)_{}} \prod_{j=1}^{s} \frac{1}{2 \sinh \frac{1}{2} (\alpha_l - \beta_j - i0)} \right].
\]

Inserting

\[
\prod_{l \leq l'} \frac{1}{2} (\alpha_l - \alpha_{l'}) = i^{-n(n-1)/2} e^{-\frac{n+1}{4}(\alpha_1 + \cdots + \alpha_n)} \text{det} (e^{k\alpha_{k'}})_{1 \leq k,k' \leq n}
\]

we obtain the right hand side of (5.1).

In Appendix E we evaluate the integral (5.2) explicitly (see (E.2)).

We now proceed to the calculation of correlation functions of the fermion operators

\[
\psi^*_m = \cdots \sigma_{m-2}^z \sigma_{m-1}^z \sigma^+_m,
\]

\[
\psi^*_m = \cdots \sigma_{m-2}^z \sigma_{m-1}^-.
\]

We shall consider only monomials consisting of an even number of such operators. They are local operators in the sense of Section 3. For instance

\[
\psi_m \psi^*_l = \begin{cases} \sigma_m \cdots \sigma_{m+1} \cdots \sigma_{l-1} \sigma^-_l & (m < l), \\ E_{-m} & (m = l), \\ \sigma^+_l \cdots \sigma_{m-1} \sigma^-_m & (m > l). \end{cases}
\]

15
Clearly the function \(\langle O \rangle \) for a monomial \(O \) is 0 (see (3.3)) unless it consists of the same number of \(\psi \)’s and \(\psi^* \)’s.

The following two propositions will be proved in Appendix E.

Proposition 5.2

\[
\langle \psi_{m_1} \cdots \psi_{m_k} \psi_{l_1}^* \cdots \psi_{l_l}^* \rangle = \det \left(\langle \psi_{m_j} \psi_{l_i}^* \rangle \right)_{1 \leq j, i \leq k}.
\]

Proposition 5.3

\[
\langle \psi_m \psi_l^* \rangle = (-1)^{m+l} \langle \psi_m^* \psi_l \rangle \\
= -\frac{i^{m+l}}{\pi} (B_mB_l)^{1/2} \prod_{i=m+1}^l \frac{\beta_j - B_i}{\prod_{i=m+1}^l (B_j - B_i)} \quad (m < l),
\]

\[
= \frac{1}{2} \quad (m = l).
\]

The formulas (5.4), (5.5) give the same results for the corresponding quantities (F.16) \(\langle \text{vac} | \psi_m \psi_l^* | \text{vac} \rangle \) obtained directly by diagonalizing the Hamiltonian (see Appendix F). In general, the multiple correlators of the fermions are given by applying Wick’s theorem. Since \(\langle \text{vac} | \psi_m \psi_l | \text{vac} \rangle = \langle \text{vac} | \psi_m^* \psi_l^* | \text{vac} \rangle = 0 \), the result is given as a determinant in the same way as (5.3). Any local operator (i.e., a finite linear combination of monomials in \(\sigma_j \)’s) can also be written as a linear combination of monomials of the fermions. Therefore, we can state

Proposition 5.4 *For an arbitrary local operator \(O \), \(\langle O \rangle = \langle \text{vac} | O | \text{vac} \rangle \) holds.*

6 Discussions

Before concluding the paper, let us touch upon previous works on the \(q \)KZ equation with \(|q| = 1 \). In [14] Smirnov introduced and solved a system of difference equations for the form factors of local operators in the sine-Gordon theory. His equations are the same as (2.4) and (2.5) in this paper except that \(S = -R \) is used (see page 29 in [14]) and that \(\lambda = -2\pi \) instead of \(\lambda > 0 \) (the case relevant to the correlation function is \(\lambda = 2\pi \)). There is a significant difference between (2.6) in this paper and the equation (16) (page 11) in Smirnov’s. The latter requires that the solution has a simple pole at the point \(\beta_{2n} = \beta_{2n-1} + \pi i \), while the former requires that the solution is regular there. The physical origin of this difference is that in Smirnov’s case the poles are the annihilation poles of the form factors while in our case (2.6) is the normalization of the correlation functions (see Proposition 3.1).
There are other mathematical differences between Smirnov’s formula and ours. The number of integration is \(n \)-fold in our formula in contrast to the \((n-1)\)-fold integrals in Smirnov’s. Since the integration can be carried out once (see (2.23)), this difference is rather superficial. The significant difference is that in Smirnov’s formula the \((n-1)\)-fold integral reduces to the determinant of an \((n-1) \times (n-1)\) matrix with entries given by integrals with respect to a single variable. This is not the case in our formula (except for \(\nu = \frac{1}{2} \)—the case of the XY model). This lack of determinantal structure is already noted by Nakayashiki in [12], where the special case \(\nu = 0 \) was studied.

In a recent paper [15], Smirnov has constructed an affluent family of solutions that corresponds to a family of local operators in the sine-Gordon theory. In our case, the structure of the total space of solutions is absolutely unknown. In this connection, let us mention an open problem: to show that our integrals satisfy
\[
G_n(\beta_1, \ldots, \beta_{2n})_{\varepsilon_1, \ldots, \varepsilon_{2n}} = G_n(\beta_1, \ldots, \beta_{2n})_{-\varepsilon_1, \ldots, -\varepsilon_{2n}}.
\]
A direct verification seems difficult, and we suspect that it should follow from the uniqueness of the solution satisfying certain analyticity and asymptotics.

In fact, the form factors and the correlation functions are closely related. As was discussed in [16, 2], in the regime \(\Delta < -1 \), the former are represented by the type II vertex operators and the latter by the type I vertex operators. The type I vertex operators generate a family of solutions to the form factor equations, and vice versa. In the sine-Gordon theory, this viewpoint was explored by Lukyanov in [10]. Lukyanov has introduced the appropriate commutation relations for the vertex operators, and has given a bosonization of the sine-Gordon theory with a cut-off parameter. Though we have not checked the details, it seems likely that the integral formula for \(G_n \) in this paper is derivable from Lukyanov’s bosonization after taking the cut-off parameter to infinity.

In the approach of this paper, the role of the quantum affine algebra \(U_q(\hat{sl}_2) \) is unclear. In the \(\Delta < -1 \) regime, the free energy, the excitation spectrum and the correlation functions depend on the spectral parameters \(\beta_j \) through \(\zeta_j = e^{-\nu \beta_j} \). In the gapless regime, these quantities are single-valued only in \(\beta_j \) and the period \(\frac{2\pi i}{\nu} \) is lost. What is the implication of this fact in the representation theory? This is an interesting question to be asked.

A Multiple gamma functions

The multiple gamma and sine functions were introduced by Barnes[17, 18], Shintani[19] and Kurokawa[20]. Here we follow the notation of [21]. In what follows we fix an \(r \)-tuple of complex numbers \(\omega = (\omega_1, \ldots, \omega_r) \). For simplicity we shall assume that \(\text{Re} \omega_i > 0 \). We set
\[
\mathbf{n} \cdot \omega = n_1 \omega_1 + \cdots + n_r \omega_r \quad (\mathbf{n} = (n_1, \ldots, n_r)), \quad |\omega| = \omega_1 + \cdots + \omega_r.
\]

The multiple gamma and associated functions are defined as follows.
Multiple Hurwitz zeta function
\[\zeta_r(s, x|\omega) = \sum_{n_1, \ldots, n_r \geq 0} (n \cdot \omega + x)^{-s} \]
(A.1)

Multiple gamma function
\[\Gamma_r(x|\omega) = \exp(\zeta'_r(0, x|\omega)) \quad (' = \frac{\partial}{\partial s}) \]
(A.2)

Multiple digamma function
\[\psi_r(x|\omega) = \frac{d}{dx} \log \Gamma_r(x|\omega) \]
(A.3)

Multiple sine function
\[S_r(x|\omega) = \Gamma_r(x|\omega)^{-1} \Gamma_r(|\omega| - x|\omega|)^{(-1)^r} \]
(A.4)

Multiple Bernoulli polynomials
\[\frac{t^r e^{xt}}{\prod_{i=1}^r (e^{\omega_i t} - 1)} = \sum_{n=0}^\infty \frac{t^n}{n!} B_{r,n}(x|\omega) \]
(A.5)

When \(r = 1 \), they are related with the ordinary gamma and other functions via
\[\zeta_1(s, x|\omega_1) = \omega_1^{-s} \zeta(s, \frac{x}{\omega_1}), \]
\[\Gamma_1(x|\omega_1) = \frac{x}{\omega_1^{x-\frac{1}{2}}} \frac{\Gamma(\frac{x}{\omega_1})}{\sqrt{2\pi}}, \]
\[\psi_1(x|\omega_1) = \frac{1}{\omega_1} \left(\psi(\frac{x}{\omega_1}) + \log \omega_1 \right), \]
\[S_1(x|\omega_1) = 2 \sin\left(\frac{\pi x}{\omega_1}\right). \]

We list here the basic properties of these functions.

Difference equations Set \(\omega(i) = (\omega_1, \ldots, \omega_{i-1}, \omega_{i+1}, \ldots, \omega_r) \).

\[\zeta_r(s, x + \omega_i|\omega) - \zeta_r(s, x|\omega) = \zeta_{r-1}(s, x|\omega(i)), \]
(A.6)

\[\frac{\Gamma_r(x + \omega_i|\omega)}{\Gamma_r(x|\omega)} = \frac{1}{\Gamma_{r-1}(x|\omega(i))}, \]
(A.7)

\[\frac{S_r(x + \omega_i|\omega)}{S_r(x|\omega)} = \frac{1}{S_{r-1}(x|\omega(i))}, \]
(A.8)

\[B_{r,n}(x + \omega_i|\omega) - B_{r,n}(x|\omega) = n B_{r-1,n-1}(x|\omega(i)). \]
(A.9)
Analyticity As a function of s, $\zeta_r(s,x|\omega)$ is continued meromorphically on the whole complex plane and is holomorphic except for simple poles at $s = 1, \ldots, r$. We have

$$
\zeta_r(n,x|\omega) = \frac{(-1)^n}{(n-1)!} \psi_r^{(n-1)}(x|\omega) \quad (n > r),
$$

$$
\zeta_r(-n,x|\omega) = (-1)^r \frac{n!}{(n+r)!} B_{r,n+r} (x|\omega) \quad (n \geq 0),
$$

$$
\lim_{s \to n} (s-n) \zeta_r(s,x|\omega) = (-1)^{n-r} \frac{B_{r,r-n}(x|\omega)}{(n-1)!(r-n)!} \quad (r \geq n \geq 1).
$$

$\Gamma_r(x|\omega)^{-1}$ is an entire function of x. $\Gamma_r(x|\omega)$ is meromorphic with poles at $x = n \cdot \omega \quad (n_1, \ldots, n_r \leq 0)$.

$S_r(x|\omega)$ is entire in x when r is odd, and is meromorphic when r is even. Its zeroes and poles are given by

- **r:odd** zeroes at $x = n \cdot \omega \quad (n_1, \ldots, n_r \geq 1$ or $n_1, \ldots, n_r \leq 0)$,
- **r:even** zeroes at $x = n \cdot \omega \quad (n_1, \ldots, n_r \leq 0)$,
- poles at $x = n \cdot \omega \quad (n_1, \ldots, n_r \geq 1)$.

All zeroes and poles are simple if $n \cdot \omega$’s do not overlap.

Integral representations If $\text{Re} \, x > 0$ then

$$
\zeta_r(s,x|\omega) = -\Gamma(1-s) \int_C \frac{e^{-xt}(-t)^{s-1}}{\prod_{i=1}^r (1-e^{-\omega_i t}) 2\pi i} \, dt,
$$

$$
\log \Gamma_r(x|\omega) = \gamma \frac{(-1)^r}{r!} B_{r,r}(x|\omega) + \int_C \frac{e^{-xt} \log(-t)}{\prod_{i=1}^r (1-e^{-\omega_i t}) 2\pi i} \, dt,
$$

$$
\psi_r(x|\omega) = \gamma \frac{(-1)^r}{r!} B_{r,r}^\prime(x|\omega) - \int_C \frac{e^{-xt} \log(-t)}{\prod_{i=1}^r (1-e^{-\omega_i t}) 2\pi i} \, dt,
$$

where $\gamma =$Euler’s constant and $\Gamma(x)$ denotes the ordinary gamma function.

The contour C is shown in Figure [4].

Asymptotic expansion Assume $\omega_1, \ldots, \omega_r > 0$. Then for any $N \geq 1$ we have

$$
\log \Gamma_r(z|\omega) = (-1)^{r-1} \sum_{k=0}^r \frac{B_{r,k}(0)}{(r-k)!} \frac{z^k}{k!} \left(\log \frac{z}{\gamma - \sum_{j=1}^k \frac{1}{j}} + \gamma \zeta_r(0,z) \right) + \sum_{n=1}^N (-1)^{n-r} \frac{(n-1)!}{(n+r)!} B_{r,r+n}(0) z^{-n} + o(z^{-N}) \quad (A.10)
$$

as $z \to \infty$ in the angular domain $|\arctan(z-x)| \leq \pi - \epsilon$, where $x > 0$ and $0 < \epsilon < \pi$.

19
The case \(r = 2 \) is of special interest to us. In this case the following formulas hold.

\[
\log S_2(x|\omega) = \int_C \frac{\sinh \left(x - \frac{\omega + \omega'}{2} \right) t}{2 \sinh \frac{\omega t}{2} \sinh \frac{\omega' t}{2}} \log(-t) \frac{dt}{2\pi i t}, \quad (0 < \text{Re} x < \omega_1 + \omega_2)
\]

\[
S_2(x + \omega_1|\omega) \overline{S_2(x|\omega)} = \frac{1}{2 \sin \frac{\pi x}{\omega_2}}, \quad (A.11)
\]

\[
S_2(x|\omega)S_2(-x|\omega) = -4 \sin \frac{\pi x}{\omega_1} \sin \frac{\pi x}{\omega_2}, \quad (A.12)
\]

\[
S_2(x|\omega) = \frac{2\pi}{\sqrt{\omega_1 \omega_2}} x + O(x^2), \quad (x \to 0), \quad (A.13)
\]

\[
S_2(\omega_1|\omega) = \sqrt{\frac{\omega_2}{\omega_1}}, \quad S_2\left(\frac{\omega_1}{2}|\omega\right) = \sqrt{2}, \quad \quad S_2\left(\frac{\omega_1 + \omega_2}{2}|\omega\right) = 1.
\]

In addition, as \(x \to \infty (\pm\text{Im} x > 0) \), we have

\[
\log S_2(x|\omega) = \pm \pi i \left(\frac{x^2}{2\omega_1 \omega_2} - \frac{\omega_1 + \omega_2}{2\omega_1 \omega_2} x - \frac{1}{12} \left(\frac{\omega_1}{\omega_2} + \frac{\omega_2}{\omega_1} + 3 \right) \right) + o(1),
\]

\[
\log S_2(a + x|\omega)S_2(a - x|\omega) = \pm \pi i \frac{(2a - \omega_1 - \omega_2)}{\omega_1 \omega_2} x + o(1). \quad (A.14)
\]

B Proof of difference equations for \(G_n \)

We prove here that the integral formula (2.18) possesses the required properties (2.4), (2.5), (2.6).

Proof of (2.4). Let \(\overline{G}_n = G_n / \rho_n, \rho_n = \prod_{j<k} \rho(\beta_j - \beta_k) \). Because of (2.8), (2.4) reduces to the same equation for \(\overline{G}_n \) wherein \(R \) is replaced by \(\overline{R} \).
There are four cases to consider: \((\varepsilon_j, \varepsilon_{j+1}) = (-, -), (+, -), (-, +)\) and \((+, +)\).

- **Case \((\varepsilon_j, \varepsilon_{j+1}) = (-, -)\)**

We are to show that

\[
\mathcal{G}_n(\cdots, \beta_{j+1}, \beta_j, \cdots) = \mathcal{G}_n(\cdots, \beta_j, \beta_{j+1}, \cdots). \tag{B.1}
\]

This is obvious because the integrand of \(\mathcal{G}_n\) is symmetric with respect to \(\beta_j\) and \(\beta_{j+1}\) if \((\varepsilon_j, \varepsilon_{j+1}) = (-, -)\).

- **Case \((\varepsilon_j, \varepsilon_{j+1}) = (-, +)\)**

Suppose that \(\bar{a} = j+1\), and set \(\alpha = \alpha_a\). Comparing the integrands of \(\mathcal{G}_n(\cdots, \beta_{j+1}, \beta_j, \cdots)\) and \(\mathcal{G}_n(\cdots, \beta_j, \beta_{j+1}, \cdots)\), we see that the desired equality follows from

\[
\bar{b}(\beta_j - \beta_{j+1}) \sinh(\nu(\alpha - \beta_j + \frac{\pi i}{2})) + \bar{c}(\beta_j - \beta_{j+1}) \sinh(\nu(\beta_{j+1} - \alpha + \frac{\pi i}{2})) = \sinh(\nu(\beta_j - \alpha + \frac{\pi i}{2})). \tag{B.3}
\]

- **Case \((\varepsilon_j, \varepsilon_{j+1}) = (+, +)\)**

We are to show that

\[
\mathcal{G}_n(\cdots, \beta_{j+1}, \beta_j, \cdots) = \mathcal{G}_n(\cdots, \beta_j, \beta_{j+1}, \cdots). \tag{B.2}
\]

Suppose that \(\bar{a} = j\), and set \(\alpha = \alpha_a\) and \(\alpha' = \alpha_{a+1}\). Apart from the factors that are symmetric with respect to \(\beta_j\) and \(\beta_{j+1}\) and antisymmetric with respect to \(\alpha\) and \(\alpha'\), the integrand of the LHS of (B.2) contains

\[
\frac{\sinh(\nu(\alpha - \beta_{j+1} + \frac{\pi i}{2})) \sinh(\nu(\beta_j - \alpha + \frac{\pi i}{2}))}{\sinh(\nu(\alpha - \alpha' - \pi i))}. \tag{B.3}
\]

Antisymmetrizing it with respect to the variables \(\alpha\) and \(\alpha'\), we obtain an expression that is symmetric with respect to \(\beta_j\) and \(\beta_{j+1}\). Therefore, we have (B.2).

Proof of (2.3). Because of (2.9), the equality (2.3) is equivalent to

\[
\mathcal{G}_n(\beta_1, \cdots, \beta_{2n-1}, \beta_{2n} - i\lambda)_{\varepsilon_1 \cdots \varepsilon_{2n}} = \mathcal{G}_n(\beta_{2n}, \beta_1, \cdots, \beta_{2n-1})_{\varepsilon_{2n} \varepsilon_1 \cdots \varepsilon_{2n-1}}. \tag{B.4}
\]

If \(\varepsilon_{2n} = -\), then \(\bar{n} \neq 2n\). In this case, the integrands of the LHS and the RHS coincide because of (2.11):

\[
\varphi(\alpha_a - \beta_{2n} + i\lambda) \sinh(\nu(\beta_{2n} - \alpha_a + \frac{\pi i}{2} - i\lambda)) = \varphi(\alpha_a - \beta_{2n}) \sinh(\nu(\alpha_a - \beta_{2n} + \frac{\pi i}{2})). \tag{B.5}
\]
If $\varepsilon_{2n} = +$, then $\bar{n} = 2n$. We make the following change of integration variables:
\[
\alpha_n \rightarrow \alpha_n - i\lambda \text{ in the LHS,}
\]
\[
\begin{cases}
\alpha_1 \rightarrow \alpha_n; \\
\alpha_2 \rightarrow \alpha_1; \\
\cdots \\
\alpha_n \rightarrow \alpha_{n-1}
\end{cases} \text{ in the RHS.}
\]
Then the integrands become the same by virtue of (2.11),
\[
\varphi(\alpha_n - i\lambda - \beta_j) \sinh \nu(\alpha_n - i\lambda - \beta_j + \pi i) = \varphi(\alpha_n - \beta_j) \sinh \nu(\beta_j - \alpha_n + \pi i)
\]
and (2.14), (2.16),
\[
\frac{\psi(\alpha_a - \alpha_n + i\lambda)}{\sinh \nu(\alpha_a - \alpha_n + i\lambda - \pi i)} = \frac{\psi(\alpha_n - \alpha_a)}{\sinh \nu(\alpha_n - \alpha_a - \pi i)}. \tag{B.8}
\]
We must also check that the contours for the LHS and the RHS are the same. Consider the contour \tilde{C}_a corresponding to α_a except for the case when $\varepsilon_{2n} = +$ and $a = n$. (We use C_a and \tilde{C}_a to distinguish the contours before and after the change of variables.) The condition (2.25), (2.26) and (2.27) for $j \neq 2n$ are unchanged for either $\varepsilon_{2n} = +$ or $\varepsilon_{2n} = -$, and for both LHS and RHS. As for the case $\varepsilon_{2n} = -$ and $j = 2n$, the condition is that, in the LHS,
\[
\beta_{2n} - i\lambda \pm i(n_1\lambda + \frac{n_2}{2} \pi + \frac{\pi}{2}) \ (n_1, n_2 \geq 0) \tag{B.9}
\]
are above (below) \tilde{C}_a; in the RHS,
\[
\beta_{2n} \pm i(n_1\lambda + \frac{n_2}{2} \pi + \frac{\pi}{2}) \ (n_1, n_2 \geq 0) \tag{B.10}
\]
are above (below) \tilde{C}_a. They are not the same, but not contradictory, i.e., no points are required to be in opposite sides of a contour at the same time. Because we know that the integrands are the same, it means that those points that appear only in either (B.9) or (B.10), are actually not poles. Therefore, the difference between (B.9) and (B.10) makes no difference in the integrals. As for the case $\varepsilon_{2n} = +$ and $j = 2n$, the conditions (2.26) and (2.27) are unchanged for α_a ($a \neq n$).

If $\varepsilon_{2n} = +$, the contour for α_n is such that for $j \neq 2n$, in the LHS
\[
\beta_j + i\lambda \pm i(n_1\lambda + \frac{n_2}{2} \pi + \frac{\pi}{2}) \ (n_1, n_2 \geq 0)
\]
are above (below) the contour for α_n; in the RHS
\[
\beta_j \pm i(n_1\lambda + \frac{n_2}{2} \pi + \frac{\pi}{2}) \ (n_1, n_2 \geq 0)
\]
are above (below) the contour for \(\alpha_n \). These two conditions are not contradictory in the same sense as above. For \(j = 2n \), the conditions (2.26) and (2.27) are unchanged.

If \(\varepsilon_{2n} = + \), the mutual position of \(\alpha_a \) and \(\alpha_n \) changes from the original one because of the change of variables. However, the resulting positions of \(\alpha_a \) and \(\alpha_n \) in the LHS and the RHS are identical. Therefore, the integrals are the same.

Proof of (2.6). The factor \(\rho(\beta_{2n-1} - \beta_{2n}) \) has a zero at \(\beta_{2n} = \beta_{2n-1} + \pi i \) we see from (2.12) that

\[
\rho(\beta_{2n-1} - \beta_{2n}) = \frac{\nu_i \rho(\pi i)}{\sin \pi \nu} (\beta_{2n} - \beta_{2n-1} - \pi i) + \cdots. \tag{B.11}
\]

The integral may have a pole at \(\beta_{2n} = \beta_{2n-1} + \pi i \) because the contour \(C_a \) is pinched by the pole of \(\varphi(\alpha_a - \beta_{2n-1}) \) at \(\alpha_a = \beta_{2n-1} + \frac{\pi}{2} \) and that of \(\varphi(\alpha_a - \beta_{2n}) \) at \(\alpha_a = \beta_{2n} - \frac{\pi}{2} \). We will check if this is indeed a pole, and, if so, compute the residue.

Let us consider the four cases separately.

- **Case** \((\varepsilon_{2n-1}, \varepsilon_{2n}) = (-, -)\)

The pole of \(\varphi(\alpha_a - \beta_{2n-1}) \) at \(\alpha_a = \beta_{2n-1} + \frac{\pi}{2} \) is cancelled by the zero of \(\sinh \nu(\beta_{2n-1} - \alpha_a + \frac{\pi}{2}) \). Therefore, there is no pinching in this case.

- **Case** \((\varepsilon_{2n-1}, \varepsilon_{2n}) = (+, +)\)

If \(a \neq 2n - 1, 2n \), for the same reason, there is no pinching of \(C_a \). Consider the integrals \(I_i \) \((i = 1, 2, 3)\) corresponding to the following contours

The integral \(I_3 \) has no pinching at \(\beta_{2n} = \beta_{2n-1} + \pi i \). Let us show that \(I_1 - I_2 \) and \(I_2 - I_3 \) are regular at \(\beta_{2n} = \beta_{2n-1} + \pi i \). After integration with respect to \(\alpha_1, \cdots, \alpha_{n-2} \), the integral reads as

\[
\int \frac{d\alpha_{n-1}}{2\pi i} \int \frac{d\alpha_n}{2\pi i} A(\alpha_{n-1}, \alpha_n) \prod_{a=n-1,n \atop j=2n-1,2n} \varphi(\alpha_a - \beta_j) \\
\times \varphi(\alpha_{n-1} - \alpha_n) \frac{\sinh \nu(\alpha_n - \beta_{2n-1} + \frac{\pi i}{2}) \sinh \nu(\beta_{2n} - \alpha_{n-1} + \frac{\pi i}{2})}{\sinh \nu(\alpha_{n-1} - \alpha_n - \pi i)}.
\]

Here, \(A(\alpha_{n-1}, \alpha_n) \) is holomorphic and symmetric with respect to \(\alpha_{n-1} \) and \(\alpha_n \). Since \(\varphi(\beta) = -\varphi(-\beta) \), we can antisymmetrize the last factor and obtain

\[
B(\alpha_{n-1}, \alpha_n; \beta_{2n-1}, \beta_{2n}) = \frac{1}{2} \left\{ \frac{\sinh \nu(\alpha_n - \beta_{2n-1} + \frac{\pi i}{2}) \sinh \nu(\beta_{2n} - \alpha_{n-1} + \frac{\pi i}{2})}{\sinh \nu(\alpha_{n-1} - \alpha_n - \pi i)} \\
- \frac{\sinh \nu(\alpha_{n-1} - \beta_{2n-1} + \frac{\pi i}{2}) \sinh \nu(\beta_{2n} - \alpha_n + \frac{\pi i}{2})}{\sinh \nu(\alpha_n - \alpha_{n-1} - \pi i)} \right\}.
\]

The integral \(I_1 - I_2 \) is equal to the integral over the contour
Taking the residue at $\alpha_n = \beta_2n - \frac{\pi i}{2}$ (the minus sign in front of Res below comes from the clockwise orientation of the integration contour), we get

\[
\int \frac{d\alpha_{n-1}}{2\pi i} \left\{ -\text{Res}_{\alpha_n=\beta_2n-\frac{\pi i}{2}} \varphi(\alpha_n - \beta_2n) \right\} A(\alpha_{n-1}, \beta_2n - \frac{\pi i}{2}) \times \varphi(\alpha_{n-1} - \beta_2n-1) \varphi(\alpha_{n-1} - \beta_2n) \varphi(\beta_2n - \beta_2n-1 - \frac{\pi i}{2}) \times \psi(\alpha_{n-1} - \beta_2n + \frac{\pi i}{2}) B(\alpha_{n-1}, \beta_2n - \frac{\pi i}{2}; \beta_2n-1, \beta_2n).
\]

The integrand has no pole at $\alpha_{n-1} = \beta_2n - \frac{\pi i}{2}$ because $\psi(\alpha_{n-1} - \beta_2n + \frac{\pi i}{2})$ vanishes. The integral has no pole at $\beta_2n = \beta_2n-1 + \pi i$ because $B(\alpha_{n-1}; \beta_2n - \frac{\pi i}{2}; \beta_{2n-1}; \beta_2n)$ vanishes. Therefore, the integral is regular at $\beta_2n = \beta_2n-1 + \pi i$. By a similar argument we can show that $I_2 - I_3$ is regular at $\beta_2n = \beta_2n-1 + \pi i$.

Figure 2: The contours for I_1, I_2 and I_3.

Taking the residue at $\alpha_n = \beta_2n - \frac{\pi i}{2}$ (the minus sign in front of Res below comes from the clockwise orientation of the integration contour), we get
\begin{itemize}
\item Case \((\varepsilon_{2n-1}, \varepsilon_{2n}) = (-, +)\)
\end{itemize}

Taking into account the zero of the factor \(\rho(\beta_{2n-1} - \beta_{2n})\) and the pole of the residue \(-\text{Res}_{\alpha_n = \beta_{2n} - \frac{\pi i}{2}} \varphi(\alpha_n - \beta_{2n})\), both at \(\beta_{2n} = \beta_{2n-1} + \pi i\), we have

\[
\frac{c_n}{c_{n-1}} \left\{ \rho(\beta_{2n-1} - \beta_{2n})\varphi(\alpha_n - \beta_{2n-1}) \left(-\text{Res}_{\alpha_n = \beta_{2n} - \frac{\pi i}{2}} \varphi(\alpha_n - \beta_{2n}) \right) \right. \\
\times \sinh \nu(\alpha_n - \beta_{2n-1} + \frac{\pi i}{2}) \\
\times \prod_{1 \leq j \leq 2n-2} \rho(\beta_{j} - \beta_{2n-1}) \varphi(\alpha_n - \beta_{j}) \sinh \nu(\alpha_n - \beta_{j} + \frac{\pi i}{2}) \\
\times \prod_{1 \leq \alpha \leq n-1} \varphi(\alpha_a - \beta_{2n-1}) \varphi(\alpha_a - \beta_{2n}) \psi(\alpha_a - \alpha_n) \\
\left. \times \frac{\sinh \nu(\beta_{2n-1} - \alpha_a + \frac{\pi i}{2}) \sinh \nu(\beta_{2n} - \alpha_a + \frac{\pi i}{2})}{\sinh \nu(\alpha_a - \alpha_n - \pi i)} \right\} = 1.
\]

Using (2.10), (2.12), (2.13), (2.15) and \(c_0 = 1\), we obtain (2.17).

The case \((\varepsilon_{2n-1}, \varepsilon_{2n}) = (+, -)\) is similar.

\section{One-time integration}

In this appendix we show how to reduce the \(n\)-fold integral for \(G(\beta_1, \ldots, \beta_{2n})\) to an \((n-1)\)-fold integral (2.28). We shall follow the method suggested earlier to us by F. Smirnov. A similar calculation has been published in Nakayashiki’s paper \([12]\) where the limiting case \(\nu \to 0\) was discussed. Since our working is entirely similar to the one in \([12]\), we shall only indicate the necessary steps, omitting further details. In the sequel we set \(\beta = (\beta_1, \ldots, \beta_{2n}), \varepsilon = (\varepsilon_1, \ldots, \varepsilon_{2n})\). We restrict to \(\lambda = 2\pi\), so that \(\psi(\beta) = \sinh \beta\) in the general formula (2.18).
Step 1 Using
\[
\prod_{r > s} 2 \sinh(\alpha_r - \alpha_s) = \det(e^{-(n-2l+1)\alpha_k})_{1 \leq k, l \leq n},
\]
we rewrite the main part of \(G(\beta)\) as
\[
J(\beta)\varepsilon = \int \cdots \int d\alpha_k \prod_{k,j} \varphi(\alpha_k - \beta_j) \det(e^{-(n-2l+1)\alpha_k})_{1 \leq k, l \leq n} Q(\alpha|\beta)\varepsilon, \quad (C.1)
\]
where
\[
Q(\alpha|\beta)\varepsilon = \frac{\prod_{j<k} \sinh \nu(\alpha_k - \beta_j + \frac{\pi i}{2}) \prod_{j>k} \sinh \nu(-\alpha_k + \beta_j + \frac{\pi i}{2})}{\prod_{r<s} \sinh \nu(\alpha_r - \alpha_s - \pi i)}.
\]

Step 2 In the first column of the determinant, substitute \(e^{-(n-1)\alpha_k}\) by the right hand side of the identity
\[
e^{-(n-1)\alpha_k} = \frac{i^{n+1} 2^{n-1}}{e^{\sum_j \beta_j/2} \sum_j e^{-\beta_j}} \left(F_+(\alpha_k) - F_-(\alpha_k) + \sum_{l=2}^{n} c_l(\beta)e^{-(n-2l+1)\alpha_k} \right).
\]
Here
\[
F_+(\alpha) = \prod_{j=1}^{2n} \sinh \frac{1}{2}(\alpha - \beta_j + \frac{\pi i}{2}), \quad F_-(\alpha) = (-1)^n \prod_{j=1}^{2n} \sinh \frac{1}{2}(\alpha - \beta_j - \frac{\pi i}{2})
\]
and \(c_l(\beta)\) denotes some function of \(\beta_j\)'s. Terms containing \(c_l(\beta)\) vanish in the determinant.

Step 3 Expand the determinant at the first column to obtain
\[
J(\beta)\varepsilon = \frac{i^{n+1} 2^{n-1}}{e^{\sum_j \beta_j/2} \sum_j e^{-\beta_j}} \prod_{l=1}^{n} (-1)^{l-1} J_{l,\varepsilon},
\]
\[
J_{l,\varepsilon} = \int \cdots \int d\alpha_k \prod_{k,j} \varphi(\alpha_k - \beta_j) (F_+(\alpha_l) - F_-(\alpha_l)) D_l(\alpha) Q(\alpha|\beta)\varepsilon,
\]
where for brevity we set \(D_l(\alpha) = D(\alpha_1, \cdots, \alpha_{l-1}, \alpha_{l+1}, \cdots, \alpha_n)\).

Step 4 Next we carry out the integral over \(\alpha_l\). For each \(l\), set
\[
Q_l(\alpha|\beta)\varepsilon = \frac{\prod_{j<\beta} \sinh \nu(\alpha_l - \beta_j + \frac{\pi i}{2}) \prod_{j>\beta} \sinh \nu(-\alpha_l + \beta_j + \frac{\pi i}{2})}{\prod_{r<\beta} \sinh \nu(\alpha_r - \alpha_l - \pi i) \prod_{r>\beta} \sinh \nu(\alpha_l - \alpha_r - \pi i)}.
\]
Consider the integrals
\[
K_{l,\varepsilon}^{(\pm)} = \pm \int_{\mathbb{C}_{l,\varepsilon}} H_{l,\varepsilon}^{(\pm)} d\alpha_l,
\]
\[
H_{l,\varepsilon}^{(\pm)} = F_\pm(\alpha_l) \prod_{j=1}^{2n} \varphi(\alpha_l - \beta_j) Q_l(\alpha|\beta)\varepsilon,
\]

26
It can be verified that inside the contours the only poles of the integrand $H_{l,\varepsilon}^{(+)}$ are $\alpha_l = \alpha_s + \pi i$ for $s < l$ or $s > l$ respectively. Collecting the residues we obtain

$$K_{l,\varepsilon}^{(+)} + K_{l,\varepsilon}^{(-)} = -2\pi i \left(\sum_{s(<l)} M_{l,s}^{(+)} + \sum_{s(>l)} M_{l,s}^{(-)} \right),$$

$$M_{l,s}^{(\pm)} = \text{Res}_{\alpha_l = \alpha_s \mp \pi i} F_{\pm}^{(\alpha_l)} \prod_j \varphi(\alpha_l - \beta_j) Q_l(\alpha|\beta)_\varepsilon d\alpha_l.$$

One can show that, upon integration by the other variables and summing over l, these terms cancel with each other. More precisely, set

$$Q_{l,s}^{(\pm)}(\alpha|\beta)_\varepsilon = \frac{\prod_{j(<l)} \sinh \nu \left(\alpha_l - \beta_j + \frac{\pi i}{2} \right) \prod_{j(>l)} \sinh \nu \left(-\alpha_l + \beta_j + \frac{\pi i}{2} \right)}{\prod_{r(<l)} \sinh \nu \left(\alpha_r - \alpha_l - \pi i \right) \prod_{r(>l)} \sinh \nu \left(\alpha_l - \alpha_r - \pi i \right)}. $$

Then we have, for any pair $r < s$,

$$\int d\alpha_r M_{sr}^{(+)} D_{\alpha} Q_{rs}^{(\alpha|\beta)}_\varepsilon + (-1)^{r-s} \int d\alpha_s M_{rs}^{(-)} D_{\alpha} Q_{sr}^{(\alpha|\beta)}_\varepsilon = 0.$$
This can be seen by changing the variable $\alpha_r \to \alpha_s + \pi i$.

Step 5 From the transformation properties of $\varphi(\beta)$ it follows that

$$H_{l,\varepsilon}^{(\pm)}|_{\alpha_l \to \alpha_l \pm \pi i/\nu} = H_{l,\varepsilon}^{(\mp)}$$

which implies that the integrals corresponding to $C_{\pm,3}$ give the same results as for $C_{\mp,1}$.

As $R \to \infty$, the integrals along $C_{\pm,2,4}$ are calculated from the following asymptotics of the integrand as $\alpha_l \to \pm \infty$:

$$\varphi(\alpha_l - \beta_j) \sim 2 \exp \left(\mp \frac{1 + \nu}{2} (\alpha_l - \beta_j) \right),$$

$$F_\sigma(\alpha_l) \prod_{j=1}^{2n} \varphi(\alpha_l - \beta_j) \sim i^n \exp \left(\mp \nu (n \alpha_l - \frac{1}{2} \sum_{j=1}^{2n} \beta_j) \right),$$

$$Q_l(\alpha|\beta)_\varepsilon \sim (-1)^{l+\ell+1} \frac{2^n}{2^n} \exp(\pm \nu (n \alpha_l + A_l)) \times (\pm 1)^n$$

with

$$A_l = \sum_{k \neq l} \alpha_k - \sum_{j \neq l} \beta_j + \pi i (\ell - 2l + \frac{1}{2}).$$

From the last two steps we find that

$$\int_{-R}^{R} (H_{l,\varepsilon}^{(+)} - H_{l,\varepsilon}^{(-)}) d\alpha_l = \frac{\pi i}{\nu} \frac{(-1)^{l+\ell+1} i^n}{2^n} (e^{\nu \tilde{A}_l} - e^{-\nu \tilde{A}_l}) + \mathcal{R},$$

where

$$\tilde{A}_l = A_l + \frac{1}{2} \sum_{j=1}^{2n} \beta_j$$

and \mathcal{R} signifies a term which vanishes when $R \to \infty$. Hence we arrive at the result (2.28) stated in the beginning.

D Derivation of the nearest neighbour correlator

Here we derive the formula (4.3). We start from (4.2) and consider the specialization

$$G = G(\beta + \pi i, \beta + \pi i, \beta, \beta)_{++--}.$$
Proposition D.1

\[G + \frac{1}{2} = \frac{1}{2\pi \nu^2} \int_{-\infty}^{\infty} \frac{e^\alpha}{\cosh^2 \alpha} \frac{\varphi'(\alpha)}{\varphi(\alpha)} (1 - \cos \pi \nu \cosh 2\nu \alpha) \, d\alpha. \] \hspace{1cm} (D.1)

Proof. First let \((\beta_1, \ldots, \beta_4) = (\beta + \pi i, \beta + \pi i, \beta + \epsilon, \beta + \epsilon)\). Then (4.2) becomes

\[
G(\beta + \pi i, \beta + \pi i, \beta + \epsilon, \beta + \epsilon) + \ldots = -\frac{1}{4\pi \nu^2} \frac{e^{-\beta - \epsilon}}{1 - e^{-\epsilon}} \rho(\pi i - \epsilon)^4 \\
\times \int d\alpha e^\alpha \varphi(\alpha - \beta - \pi i) \varphi(\alpha - \beta - \epsilon)^2 \sinh^2 \nu(\alpha - \beta - \epsilon - \frac{\pi i}{2}) \\
\times \left[\sinh \nu(\alpha - \beta - \frac{3\pi i}{2}) \sinh \nu(\alpha - \beta - \epsilon - \frac{3\pi i}{2}) \\
+ \sinh \nu(\alpha - \beta - \frac{\pi i}{2}) \sinh \nu(\alpha - \beta - \epsilon - \frac{\pi i}{2}) \right].
\]

Since \(\alpha = \beta + \epsilon + \pi i/2\) is not a pole, the contour can be taken as \(\pi/2 < \text{Im } (\alpha - \beta) < 3\pi/2\). Changing the variable \(\alpha \to \alpha + \beta + \epsilon + \pi i\) and using \(\varphi(\alpha + \pi i) \varphi(\alpha) = -i/ \cosh \alpha \sinh \nu(\alpha + \pi i/2)\), we find

\[
G = \lim_{\varepsilon \to 0} \frac{1}{4\pi \nu^2} \frac{1}{1 - e^{-\epsilon}} \int_{-\infty}^{\infty} d\alpha e^\alpha \frac{\varphi(\alpha + \epsilon)^2}{\varphi(\alpha)^2} \frac{-1}{\cosh^2 \alpha} \\
\times \left[\sinh \nu(\alpha + \frac{\pi i}{2} + \epsilon) \sinh \nu(\alpha + \frac{\pi i}{2}) + \sinh \nu(\alpha - \frac{\pi i}{2} + \epsilon) \sinh \nu(\alpha - \frac{\pi i}{2}) \right].
\]

Noting

\[
0 = \int_{-\infty}^{\infty} d\alpha \frac{e^\alpha}{\cosh^2 \alpha} \left[\sinh^2 \nu(\alpha + \frac{\pi i}{2}) + \sinh^2 \nu(\alpha - \frac{\pi i}{2}) \right]
\]

and letting \(\varepsilon \to 0\), we obtain

\[
G = \frac{1}{2\pi \nu^2} \frac{\partial}{\partial \varepsilon} \left(\int_{-\infty}^{\infty} d\alpha e^\alpha \frac{\varphi(\alpha + \epsilon)^2}{\varphi(\alpha)^2} \frac{-1}{\cosh^2 \alpha} \\
\times \Re \sinh \nu(\alpha + \frac{\pi i}{2} + \epsilon) \sinh \nu(\alpha + \frac{\pi i}{2}) \right) \bigg|_{\varepsilon = 0}
\]

\[
= I_1 + I_2,
\]

where \(I_1\) is given by the right hand side of (D.1) and

\[
I_2 = -\frac{1}{4\pi \nu} \int_{-\infty}^{\infty} d\alpha \frac{e^\alpha}{\cosh^2 \alpha} \Re \sinh 2\nu(\alpha + \frac{\pi i}{2}).
\]

Using

\[
\int_{-\infty}^{\infty} d\alpha \frac{e^{\lambda \alpha}}{\cosh^2 \alpha} = \frac{\pi \lambda}{\sin \frac{\pi \lambda}{2}} \hspace{1cm} (D.2)
\]
we find
\[I_2 = -\frac{1}{2}, \]
thereby completing the proof of the lemma. \(\square\)

Proposition D.2

\[
G = J_1 + J_2 - \frac{1}{2}, \tag{D.3}
\]

\[
J_1 = \frac{1}{\pi^2} \int_0^\infty dt \frac{\sinh(1 + \nu)t}{\sinh t} \left(\frac{1}{\sin \pi \nu} \Im \frac{1}{\cosh(\nu + \pi i)} + \frac{\sinh \nu t}{\cosh^2 \nu t} \right),
\]

\[
J_2 = \frac{1}{\pi \sin \pi \nu} \int_0^\infty dt \frac{\sinh(1 + \nu)t}{\sinh t} \left(\Re \frac{1}{\cosh(\nu + \pi i)} - \frac{\cos \pi \nu}{\cosh \nu t} \right).
\]

Proof. Substituting the integral formula for \(\log \varphi(\alpha)\) into \(I_1\) above, we obtain

\[
G + \frac{1}{2} = \frac{1}{\pi^2 \nu} \int_0^\infty dt \frac{\sinh(1 + \nu)t}{\sinh t \sinh 2\nu t} \times \int_{-\infty}^{\infty} d\alpha \frac{e^{\alpha}}{\cosh^2 \alpha} \sin \left(\frac{2\alpha}{\pi} \right) \left(\cosh 2\nu \cos \pi \nu - 1 \right).
\]

By integrating over \(\alpha\) using (D.2), the right hand side becomes

\[
\frac{1}{\pi^2} \int_0^\infty dt \frac{\sinh(1 + \nu)t}{\sinh t \sinh 2\nu t} \left(\cos \pi \nu \left(\frac{t - \pi i}{\cosh \nu(t - \pi i)} + \frac{t + \pi i}{\cosh \nu(t + \pi i)} \right) - \frac{2t}{\cosh \nu t} \right).
\]

After a little algebra we obtain (D.3). \(\square\)

Proposition D.3 We have

\[
G - \frac{1}{2} = J_1 + J_2 - 1 = \frac{1}{\pi^2 \sin \pi \nu} \frac{\partial}{\partial \nu} \left(\sin \pi \nu \int_0^\infty dt \frac{\sinh(1 - \nu)t}{\sinh t \cosh \nu t} \right). \tag{D.4}
\]

Proof. Consider the integral

\[
\int_C dt \frac{\sinh(1 + \nu)(t - \pi i)}{\sinh(t - \pi i) \cosh \nu t} = 0,
\]

where the contour \(C\) is as shown in Figure 3.

Taking the imaginary part, we obtain

\[
\int_{-R}^R dt \frac{\sinh(1 + \nu) t}{\sinh t} \Im \left(\frac{1}{\cosh \nu(t + \pi i)} \right) = \Im \left(\int_{-R}^\infty + \int_{\epsilon}^R + \int_{-\epsilon}^{-\infty} dt \left(\frac{\sinh(1 + \nu)(t - \pi i)}{\sinh(t - \pi i) \cosh \nu t} \right) \right) + \int_0^\infty dt \Re \left(\frac{\sinh(1 + \nu)(R + ti - \pi i)}{\sinh(R + ti - \pi i) \cosh \nu(R + ti)} - \frac{\sinh(1 + \nu)(-R + ti - \pi i)}{\sinh(-R + ti - \pi i) \cosh \nu(-R + ti)} \right).
\]
As $\varepsilon \to 0$, the integral over the semi-circle C_ε gives $\pi^2 \sin \pi \nu$, and as $R \to \infty$, the last term behaves like

$$4 \pi R \cos \pi \nu - 2 \pi^2 \sin \pi \nu + O(R^{-1}).$$

Since

$$\Im \left(\frac{\sinh(1 + \nu)(t - \pi i)}{\sinh(t - \pi i)} \frac{t - \pi i}{\cosh \nu t} \right) = - \frac{t \cosh(1 + \nu)t \sin \pi \nu}{\sinh t \cosh \nu t} - \frac{\pi \sinh(1 + \nu)t \cos \pi \nu}{\sinh t \cosh \nu t},$$

and

$$\frac{\sinh(1 + \nu)t \sinh \nu t}{\sinh t \cosh^2 \nu t} - \frac{\cosh(1 + \nu)t}{\sinh t \cosh^2 \nu t} = - \frac{\cosh t}{\sinh t \cosh \nu t},$$

we have

$$\int_{-R}^{R} dt \frac{\sinh(1 + \nu)t}{\sinh t} \left(\frac{\sinh \nu t}{\cosh^2 \nu t} + \frac{1}{\sin \pi \nu} \Im \frac{1}{\cosh \nu(t + \pi i)} \right)$$

$$= - \int_{-R}^{R} dt \frac{\cosh t}{\sinh t \cosh^2 \nu t} - \pi \cot \pi \nu \int_{-R}^{R} \frac{\sinh(1 + \nu)t}{\sinh t \cosh \nu t} dt$$

$$+ 4 \pi R \cot \pi \nu - \pi^2 + O(R^{-1}).$$

Noting that

$$\lim_{R \to \infty} \left(4 \pi R \cot \pi \nu - \pi \cot \pi \nu \int_{-R}^{R} dt \frac{\sinh(1 + \nu)t}{\sinh t \cosh \nu t} \right)$$

$$= 2 \pi \cot \pi \nu \int_{0}^{\infty} dt \frac{\sinh(1 - \nu)t}{\sinh t \cosh \nu t}.$$
we have

\[
J_1 = -\frac{1}{2} - \frac{1}{\pi^2} \int_0^\infty t dt \frac{\cosh t}{\sinh t \cosh^2 \nu t} + \frac{\cot \pi \nu}{\pi} \int_0^\infty dt \frac{\sinh(1 - \nu) t}{\sinh t \cosh \nu t}.
\]

By a similar calculation, starting from

\[
\int_C dt \frac{\sinh(1 + \nu)(t - \pi i)}{\sinh(t - \pi i)} \frac{1}{\cosh \nu t} = 0,
\]

we obtain \(J_2 = \frac{3}{2} \). Collecting these terms, we obtain \((D.4)\). \(\square\)

E Integrals related to the case \(\nu = 1/2 \)

Here we supply proofs to the formulas presented in section \[E\]. We retain the notation there.

First let us evaluate the integrals \(I_{ki} \) \((E.2)\) and \(J_{ki} \) \((E.3)\). Set \(B_j = e^{\beta_j} \), and define

\[
F_{ji} = \frac{1}{\prod_{k=r}^s (B_j - B_k) \prod_{k=i}^s (B_j + B_k)} (r \leq j \leq i \leq s),
\]

\[
G_{ji} = \frac{(-1)^n}{\prod_{k=r}^s (B_j + B_k) \prod_{k=1}^s (B_j - B_k)} (r \leq i \leq j \leq s). \tag{E.1}
\]

Proposition E.1 For \(1 \leq k \leq n \) and \(r \leq i \leq s \) we have

\[
I_{ki} = \frac{\sqrt{-1}^{i-1} - 1}{\pi} B_i^{1/2} \left(\prod_{j=r}^s B_j \right)^{1/2} \left(\sum_{j=r}^i (-B_j)^{k-1} \beta_j F_{ji} + \sum_{j=i}^s B_j^{k-1} (\beta_j + \pi \sqrt{-1}) G_{ji} \right), \tag{E.2}
\]

\[
J_{ki} = 2\sqrt{-1}^{i-1} B_i^{1/2} \left(\prod_{j=r}^s B_j \right)^{1/2} \sum_{j=r}^i (-B_j)^{k-1} F_{ji} \tag{E.3}
\]

\[
= -2\sqrt{-1}^{i-1} B_i^{1/2} \left(\prod_{j=r}^s B_j \right)^{1/2} \sum_{j=i}^s B_j^{k-1} G_{ji}. \tag{E.4}
\]

Proof. Changing the integration variable to \(A = e^\alpha \) we have

\[
I_{ki} = \frac{\sqrt{-1}^{2r-s+1} - 1}{\pi} B_i^{1/2} \left(\prod_{j=r}^s B_j \right)^{1/2} \times \int_0^\infty \omega_{ki},
\]

32
where we have set
\[
\omega_{ki} = \frac{A^{k-1}dA}{\prod_{j=r}^{i}(A + B_j) \prod_{j=i}^{s}(A - B_j + \sqrt{-1}0)}.
\]

To see (E.2) it suffices to show that
\[
\int_0^\infty \omega_{ki} = (-1)^{n+1} \left(\sum_{j=r}^{i} (-B_{j})^{k-1} \beta_{j} F_{ji} + \sum_{j=1}^{s} B_{j}^{k-1} (\beta_{j} + \pi \sqrt{-1}) G_{ji} \right).
\]

This follows from integration of \(\omega_{ki} \log(-A) \) along the contour shown in Figure 6.

![Figure 6: The contour for the residue calculus.](image)

The formula (E.4) is a direct consequence of (E.2). Counting the sum of the residues of \(\omega_{ki} \) we find
\[
0 = \sum_{j=r}^{i} (-B_{j})^{k-1} F_{ji} + \sum_{j=1}^{s} B_{j}^{k-1} G_{ji}.
\]
This shows the equality of (E.3) and (E.4).

Define

\[J_{ki} = I_{ki} + (-1)^{s+i} \bar{I}_{ki}, \quad \text{(E.5)} \]

and denote by \(I_i \) and \(J_i \) the column vectors

\[I_i = (I_{1i}, \cdots, I_{ni}), \quad J_i = (J_{1i}, \cdots, J_{ni}). \]

Proposition E.2

\[1 = \prod_{r \leq j < k \leq s} 2\sqrt{-1} \cosh \frac{\beta_j - \beta_k}{2} \times \det (J_r, J_{r+1}, \cdots, J_s). \quad \text{(E.6)} \]

Proof. To see this, we write down the known equality

\[1 = \langle 1 \rangle = \sum_{\varepsilon_r, \cdots, \varepsilon_s} \langle E^{(r)}_{\varepsilon_r} \cdots E^{(s)}_{\varepsilon_s} \rangle (\beta_r, \cdots, \beta_s). \quad \text{(E.7)} \]

For convenience let us introduce the symbols \(I_i(\pm), \bar{I}_i(\pm) \) by setting \(I_i(+) = I_i, \bar{I}_i(+) = \bar{I}_i \) and \(I_i(-), \bar{I}_i(-) = \text{the empty symbol} \). Then (E.7) can be written as

\[1 = \prod_{r \leq j < k \leq s} 2\sqrt{-1} \cosh \frac{\beta_j - \beta_k}{2} \times \sum_{\varepsilon_r, \cdots, \varepsilon_s} \det (I_r(-\varepsilon_r), \cdots, I_s(-\varepsilon_s), \bar{I}_s(\varepsilon_s), \cdots, \bar{I}_r(\varepsilon_r)). \]

Taking the sum over \(\varepsilon_s, \varepsilon_{s-1}, \cdots \) successively and keeping track of the signs, we find that the last sum becomes a single determinant \(\det(J_r, \cdots, J_s) \). \qed

Proposition E.3 If \(r \leq m, l \leq s \) then

\[\langle \psi_m \psi_l^* \rangle = D^{-1} \det (J_r, \cdots, J_{l-1}, I_m, J_{l+1}, \cdots, J_s) \quad \text{(E.8)} \]

where \(D = \det(J_r, J_{r+1}, \cdots, J_s) \).

Proof. This can be verified in a similar way as in the proof of Proposition E.2.

As an example, let us take \(r = 1, s = 4, m = 1, l = 3 \):

\[\langle \psi_1 \psi_3^* \rangle = \langle \sigma_1^+ \sigma_3^+ \sigma_4^+ 1 \rangle = \sum_{\varepsilon_2, \varepsilon_4} \langle E^{(1)}_{\varepsilon_4} \varepsilon_2 F^{(2)}_{\varepsilon_2} \rangle E^{(3)}_{\varepsilon_4} E^{(4)}_{\varepsilon_4}. \]

Using (D.1) and (E.6), in the same notation as in Proposition E.2, we have

\[D \langle \psi_1 \psi_3^* \rangle = \sum_{\varepsilon_2, \varepsilon_4} \varepsilon_2 \det (I_1(+), I_2(-\varepsilon_2), I_3(-), I_4(-\varepsilon_4), \bar{I}_4(\varepsilon_4), \bar{I}_3(-), \bar{I}_2(\varepsilon_2), \bar{I}_1(+)). \]
The sum over ε_4 gives J_4, Summing further over ε_2 we obtain

$$\det(I_1, J_4, \bar{I}_2, \tilde{I}_1) - \det(I_1, I_2, J_4, \bar{I}_1) = \det(I_1, -J_2, J_4, \bar{I}_1) = \det(J_1, J_2, I_1, J_4)$$

where we used $J_2 = I_2 + \bar{I}_2$ and $J_1 = I_1 - \tilde{I}_1$.

In general, consider the case $m < l$. We have

$$D\langle \psi_m \psi_i^* \rangle = \sum_{\varepsilon_2, \ldots, \varepsilon_s} \varepsilon_2 \cdots \varepsilon_{l-1} \det I(\varepsilon),$$

where $I(\varepsilon)$ denotes the matrix consisting of the following array of column vectors:

$$I_r(-\varepsilon_r), \cdots, I_{m-1}(-\varepsilon_{m-1}), I_m(+), I_{m+1}(-\varepsilon_{m+1}), \cdots, I_{l-1}(-\varepsilon_{l-1}),$$

$$I_l(-), I_{l+1}(-\varepsilon_{l+1}), \cdots, I_s(-\varepsilon_s), I_s(\varepsilon_s), \cdots, I_{l+1}(\varepsilon_{l+1}),$$

$$\tilde{I}_l(-), \tilde{I}_{l-1}(\varepsilon_{l-1}), \cdots, \tilde{I}_{m+1}(\varepsilon_{m+1}), \tilde{I}_m(+), \tilde{I}_{m-1}(\varepsilon_{m-1}), \cdots, \tilde{I}_r(\varepsilon_r).$$

Summing over $\varepsilon_s, \varepsilon_{s-1}, \cdots$ we see that the sum combines into a single determinant

$$\det(J_r, \cdots, J_{m-1}, I_m, -J_{m+1}, \cdots, -J_{l-1}, J_{l+1}, \cdots, J_s, \tilde{I}_m) = \det(J_r, \cdots, J_{m-1}, (-1)^{s-m}I_m, J_{m+1}, \cdots, J_{l-1}, I_m, J_{l+1}, \cdots, J_s).$$

This shows (E.8). The other cases are similar.

Arguing in a similar manner, one can show in general the following.

Proposition E.4 Suppose $m_1 < \cdots < m_k$, $l_1 < \cdots < l_k$, and let $r \leq \min(m_1, l_1)$, $\max(m_k, l_k) \leq s$. Then

$$\langle \psi_{m_1} \cdots \psi_{m_k} \psi_{l_k}^* \cdots \psi_{l_1}^* \rangle = D^{-1} \det (J_r, \cdots, J_{l-1}, I_{m_1}, J_{l+1}, \cdots, J_{k-1}, I_{l+k}, J_{l+k+1}, \cdots, J_s)$$

where $D = \det(J_r, J_{r+1}, \cdots, J_s)$. In the right hand side I_{m_j} is placed at the l_j-th slot.

We omit the details.

Proof of Proposition E.4. Consider the matrix $X = (J_r, J_{r+1}, \cdots, J_s)$, and set $K_m = X^{-1}I_m$. Then Proposition E.4 states that

$$\langle \psi_{m_1} \cdots \psi_{m_k} \psi_{l_k}^* \cdots \psi_{l_1}^* \rangle = \det (e_1, \cdots, K_{m_1}, \cdots, K_{m_k}, \cdots, e_n)$$

where the $e_j = (\delta_{ji})_{1 \leq i \leq n}$ denote the unit vectors. It is clear that the right hand side is

$$\det \left((K_{m_j})_{ii} \right)_{1 \leq j, i \leq k}.$$
and that \(\langle \psi_m \psi_l^* \rangle = (K_m)_l \). The proposition follows from this observation. \(\square \)

Proof of Proposition 5.3. The formula (5.5) is already known. Let us show (5.4) by taking \(r = m \) and \(s = l \) in (E.8). We wish to compute

\[
\det(J_m, J_{m+1}, \ldots, J_{l-1}, I_{m-1} - \frac{1}{2} J_m).
\]

Substituting

\[
I_{km} - \frac{1}{2} J_{km} = \frac{\sqrt{-1}^n}{\pi} B_m^{1/2} \left(\prod_{j=m}^l B_j \right)^{1/2} \left((-B_m)^{k-1} \beta_m F_{mm} + \sum_{j=m}^l B_j^{k-1} \beta_j G_{jm} \right)
\]

and using (E.3), we have the following expression for \(D \langle \psi_m \psi_l^* \rangle \):

\[
\frac{\sqrt{-1}^n}{\pi} B_m^{1/2} \left(\prod_{j=m}^l B_j \right)^{n/2} \sum_{j=m}^l (\beta_j - \beta_m) G_{jm} \times \det X_j Y Z.
\]

Here \(X_j, Y, Z \) are the following matrices.

\[
X_j = \begin{pmatrix}
1 & \cdots & 1 & 1 \\
-B_m & \cdots & -B_{l-1} & B_j \\
\vdots & \vdots & \vdots & \vdots \\
(-B_m)^{n-1} & \cdots & (-B_{l-1})^{n-1} & B_j^{n-1}
\end{pmatrix},
\]

\[
Y = \begin{pmatrix}
F_{mm} & \cdots & F_{ml-1} & 0 \\
0 & \ddots & \vdots & 0 \\
0 & \cdots & F_{l-1} & 0 \\
0 & \cdots & 0 & 1
\end{pmatrix},
\]

\[
Z = \text{diag}\left(2\sqrt{-1}^{m-1} B_m^{1/2}, \ldots, 2\sqrt{-1} B_{l-1}^{1/2}, 1 \right).
\]

The matrix \(Y \) is upper triangular with diagonal entries \(F_{kk} \ (m \leq k \leq l-1) \) and 1. It is therefore straightforward to compute the determinant. Inserting the expressions for \(F_{ji} \) and \(G_{ji} \) in (E.1) we obtain the formula (5.4).

The case of \(\langle \psi_m^* \psi_l \rangle \) can be shown similarly, using (E.4). \(\square \)

F Inhomogeneous Ising model

In this section, we compute the correlation functions of the inhomogeneous Ising model at the critical temperature. We give an explicit formula for the vacuum
expectation values $\langle \text{vac} | \psi_n^\ast \psi_n | \text{vac} \rangle$ where ψ_n^\ast, ψ_n ($n \in \mathbb{Z}$) are the free fermions diagonalizing the transfer matrix $T(u)$ of the critical Ising model. The general correlation functions are given by the Pfaffians of these matrix elements. In [21] the correlation functions for the critical Ising model were given. We have not checked the equivalence of our result to theirs except for some simple cases.

F.1 Completely inhomogeneous Hamiltonian

Consider the transfer matrix of a completely inhomogeneous six-vertex model in the infinite volume:

$$T(u)_{\{\varepsilon_n\}} = \begin{array}{ccc} \varepsilon_{n+1}^\prime & \varepsilon_n^\prime & \varepsilon_{n-1}^\prime \\ \varepsilon_{n+1} & \varepsilon_n & \varepsilon_{n-1} \\ \varepsilon_{n+1} & \varepsilon_n & \varepsilon_{n-1} \end{array}$$

$$= \sum_{\{\tau_n\}} \prod_n R_{\varepsilon_n \varepsilon_{n-1}}^\tau (\beta_n + u).$$

The horizontal line carries the spectral parameter 0 and the vertical lines carry the spectral parameters $\beta_n + u$. We assume that $\beta_n = 0$ if $|n| \gg 0$. The Boltzmann weights $R_{\varepsilon_1,\varepsilon_2}^\tau (\beta)$ are given by (2.3) with $\nu = \frac{1}{2}$. This is the choice in which the six-vertex model is equivalent to the critical Ising model (see e.g. [3]).

Let S be the shift operator

$$S_{\{\varepsilon_n\}} = \prod_n \delta_{\varepsilon_{n+1}^\prime \varepsilon_n^\prime}.$$

Then we have

$$S^{-1}T(u) = \sum_{\{\tau_n\}} \prod_n \tilde{R}_{\varepsilon_n \varepsilon_{n-1}}^\tau (\beta_n + u)$$

$$= \cdot \cdot \cdot \tilde{R}_{n+1,n} (\beta_{n+1} + u) \tilde{R}_{n,n-1} (\beta_n + u) \cdot \cdot \cdot \quad (F.1)$$

where

$$\tilde{R}(\beta) = \begin{pmatrix} 1 & c(\beta) & b(\beta) \\ c(\beta) & b(\beta) & c(\beta) \\ b(\beta) & c(\beta) & 1 \end{pmatrix}$$

37
and
\[\bar{b}(\beta) = \frac{1 - \zeta^2}{i(1 + \zeta^2)}, \quad \bar{c}(\beta) = \frac{2\zeta}{1 + \zeta^2}, \quad \zeta = e^{-\beta/2}. \]

The matrix \(\hat{R}(\beta) \) can be put in the form
\[\hat{R}(\beta) = e^{\gamma X}, \quad X = \sigma^+ \otimes \sigma^- + \sigma^- \otimes \sigma^+ \]
where \(\sigma^\pm = (\sigma^x \pm i\sigma^y)/2 \) and \(\gamma = \gamma(\beta) \) is related to \(\beta \) by
\[
e^{-\gamma} = \frac{1 + i \sinh \frac{\beta}{2}}{\cosh \frac{\beta}{2}} = \frac{2\zeta}{1 + \zeta^2} + \frac{i(1 - \zeta^2)}{1 + \zeta^2},
\]
\[
e^{-\frac{\beta}{2}} = \frac{1 - i \sinh \gamma}{\cosh \gamma} = \zeta.
\]
As \(-i\beta \) increases from 0 to \(\pi \), \(\gamma \) increases monotonically from 0 to \(\infty \). We write \(\gamma_n = \gamma(\beta_n) \), \(C_n = \cosh \gamma_n \) and \(S_n = \sinh \gamma_n \). In the below, we assume that \(S_n < 1 \).

F.2 Jordan-Wigner transformation

As usual, we define the Jordan-Wigner transformation
\[
\psi_n^* = \sigma_n^+ \prod_{m<n} \sigma_m^z, \\
\psi_n = \sigma_n^- \prod_{m<n} \sigma_m^z.
\]

Note that the operators \(\psi_n^* \) and \(\psi_n \) satisfy the canonical anti-commutation relation
\[
[\psi_m^*, \psi_n^*]_+ = [\psi_m, \psi_n]_+ = 0, [\psi_m^*, \psi_n]_+ = \delta_{m,n}.
\] (F.2)

For \(m, n \in \mathbb{Z} \) such that \(m > n \), we set
\[
H_{mn} = \psi_n\psi_m^* + (-1)^{m-n+1}\psi_m\psi_n^*.
\]

Note that
\[
X_{nn-1} = H_{n,n-1}, \quad [H_{n-1,n}, H_{m,n}] = H_{m,n-1}, \quad [H_{n-1,n}, H_{m,n-1}] = H_{m,n}.
\] (F.3)

We have

Proposition F.1
\[
T(0)^{-1}T(u) = 1 + \frac{iu}{2}\mathcal{H} + O(u^2)
\] (F.4)
where
\[H = \sum_{m>n} (-1)^{m-n} C_m S_{m-1} \cdots S_{n+1} C_n H_{mn}. \]

Proof. Let us use \(\equiv \) to mean an equality modulo \(u^2 \). Using (F.1), we have
\[
T(0)^{-1}T(u) - 1 \\
\equiv \sum_n \cdots \hat{R}_{n-1}^{-1} (\hat{R}_{n-1}^{-1} \hat{R}_{n-1}^{-1} (\beta_n - u) - 1) \\
\times \hat{R}_{n-1}^{-1} (\beta_n - u) \\
\equiv -\frac{iu^2}{2} \sum_n \cdots \text{Ad} \hat{R}_{n-1}^{-1} C_n H_{n-1}.
\]

Since \(\hat{R}_{k-1}^{-1} = e^{-\gamma_k H_{k-1}} \), the proposition follows from (F.3).

If we fix \(\beta_n \)'s, the transfer matrices \(T(u) \) commute with each other for different values of \(u \). Therefore \(H \) also commutes with \(T(u) \), and they can be diagonalized simultaneously.

F.3 Diagonalization

In order to diagonalize the Hamiltonian \(H \) we set
\[
\phi(\theta) = \sum_n C_n e^{in\theta} \prod_{j \leq n-1} (1 + S_j e^{-i\theta}) \prod_{j \geq n+1} (1 - S_j e^{i\theta}) \psi_n, \tag{F.5}
\]
\[
\phi^*(\theta) = \sum_n C_n e^{-in\theta} \prod_{j \leq n-1} (1 - S_j e^{i\theta}) \prod_{j \geq n+1} (1 + S_j e^{-i\theta}) \psi^*_n.
\]

Then we have

Proposition F.2
\[
[\mathcal{H}, \phi(\theta)] = -(e^{i\theta} + e^{-i\theta}) \phi(\theta), \tag{F.6}
\]
\[
[\mathcal{H}, \phi^*(\theta)] = (e^{i\theta} + e^{-i\theta}) \phi^*(\theta), \tag{F.7}
\]
\[
[\phi^*(\theta_1), \phi(\theta_2)]_+ = \prod_j (1 + S_j e^{-i\theta_1}) (1 - S_j e^{i\theta_1}) \sum_k e^{ik(\theta_1 - \theta_2)}. \tag{F.8}
\]

Proof. Set \(z = e^{i\theta} \), and write
\[
\phi(\theta) = \sum_{n \in \mathbb{Z}} x_n \psi_n,
\]
\[
x_n = C_n z^n \prod_{j \leq n-1} (1 + S_j z^{-1}) \prod_{j \geq n+1} (1 - S_j z).
\]
Write also,
\[
\begin{align*}
\text{[}H, \psi_n\text{]} &= -\sum_m \psi_m A_{mn} \\
A_{mn} &= \begin{cases}
C_m S_{m-1} \cdots S_{n+1} C_n & \text{if } m > n; \\
0 & \text{if } m = n; \\
(-1)^{n-m-1} C_n S_{n-1} \cdots S_{m+1} C_m & \text{if } m < n.
\end{cases}
\end{align*}
\] (F.9)

We are to prove
\[
\sum_{n \in \mathbb{Z}} A_{mn} x_n = (z + z^{-1}) x_m.
\] (F.10)

Suppose that \(\beta_n = 0 \), i.e., \(C_n = 1 \) and \(S_n = 0 \), except for \(M \leq n \leq N \). If \(m \geq N + 2 \) or \(m \leq M - 2 \), then (F.10) is valid because
\[
A_{mn} = \begin{cases}
1 & \text{if } n = m \pm 1; \\
0 & \text{otherwise},
\end{cases}
\]
and
\[
x_n = \begin{cases}
z^n \prod_{M \leq j \leq N} (1 + S_j z^{-1}) & \text{if } n \geq N + 1; \\
z^n \prod_{M \leq j \leq N} (1 - S_j z) & \text{if } n \leq M - 1.
\end{cases}
\]

Therefore, (F.10) is written in the form
\[
A^{(N,M)} x^{(N,M)} = 0
\] (F.11)

where \(A^{(N,M)} = (A_{mn})_{N+1 \geq m, n \geq M-1} \) and \(x^{(N,M)} = (x_n^{(N,M)})_{N+1 \geq n \geq M-1} \). The matrix \(A^{(N,M)} \) is of the form:
\[
A^{(N,M)} = \begin{pmatrix}
-z^{-1} & C_N & \cdots \\
C_N & -z^{-1} & \cdots \\
-S_N C_{N-1} & C_N C_{N-1} & \cdots \\
S_N S_{N-1} C_{N-2} & -C_N S_{N-1} C_{N-2} & \cdots \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots \\
& & & & \ddots & \ddots & \ddots \\
& & & & & \ddots & \ddots & \ddots \\
& & & & & & \ddots & \ddots & \ddots \\
& & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & \ddots & \ddots & \ddots \\
\end{pmatrix} \overset{A^{(N-1,M)}}{=}
\]

\[
= A^{(N,M+1)}
\]

\[\begin{pmatrix}
S_N S_{N-1} \cdots S_{M+1} C_M & S_N S_{N-1} \cdots S_{M+1} S_M \\
C_N S_{N-1} \cdots S_{M+1} C_M & C_N S_{N-1} \cdots S_{M+1} S_M \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots \\
& & & & \ddots & \ddots & \ddots \\
& & & & & \ddots & \ddots & \ddots \\
& & & & & & \ddots & \ddots & \ddots \\
& & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & & & & \ddots & \ddots & \ddots \\
\end{pmatrix}
\]
Here
\[
\mathbf{A}^{(N-1,M)} = \left(A_{mn}^{(N-1,M)} \right)_{N-1 \geq m, n \geq M-1}, \quad \mathbf{A}^{(N,M+1)} = \left(A_{mn}^{(N,M+1)} \right)_{N+1 \geq m, n \geq M+1}.
\]

Similarly, the vector \(x^{(N,M)} \) is of the form:
\[
x^{(N,M)} = \begin{pmatrix}
(1 + S_M z^{-1}) \cdots (1 + S_N z^{-1}) z^{N+1} \\
(1 + S_M z^{-1}) \cdots (1 + S_{N-1} z^{-1}) C_N z^N \\
\mathbf{\tau}^{(N-1,M)} \times (1 - S_N z) \\
\mathbf{\tau}^{(N,M+1)} \times (1 + S_M z^{-1}) \\
C_M (1 - S_M z) \cdots (1 - S_N z) z^M \\
(1 - S_M z)(1 - S_{M+1} z) \cdots (1 - S_N z) z^{M-1}
\end{pmatrix}.
\]

(F.12)

Here
\[
\mathbf{\tau}^{(N-1,M)} = \left(x_n^{(N-1,M)} \right)_{N-1 \geq n \geq M-1}, \quad \mathbf{\tau}^{(N,M+1)} = \left(x_n^{(N,M+1)} \right)_{N+1 \geq n \geq M+1}.
\]

We prove (F.11) by induction on \(N - M \). If \(N = M \), we can check directly that
\[
\begin{pmatrix}
- \frac{1}{z} & C_N & S_N \\
C_N & -z - \frac{1}{z} & C_N \\
- S_N & C_N & -z
\end{pmatrix}
\begin{pmatrix}
(1 + S_N z^{-1}) z^{N+1} \\
C_N z^N \\
(1 - S_N z) z^{N-1}
\end{pmatrix} = 0.
\]

If \(N > M \), noting that
\[-S_N \cdot (1 + S_N z^{-1}) z^{N+1} + C_N \cdot C_N z^N = (1 - S_N z) z^N,
\]
we can reduce the equality \(\left(A^{(N,M),x^{(N,M)}} \right)_n = 0 \) for \(N - 1 \geq n \geq M - 1 \) to \(\left(A^{(N-1,M),x^{(N-1,M)}} \right)_n = 0 \). Similarly, noting that
\[C_M \cdot C_M z^M + S_M \cdot (1 - S_M z) z^{M-1} = (1 + S_M z^{-1}) z^M,
\]
we can reduce the equality \(\left(A^{(N,M),x^{(N,M)}} \right)_n = 0 \) for \(N + 1 \geq n \geq M + 1 \) to \(\left(A^{(N,M+1),x^{(N,M+1)}} \right)_n = 0 \). The proof of (F.7) is similar.

Let us prove (F.8). We have
\[
[\varphi^*(\theta_1), \phi(\theta_2)]_+ = \sum_k C_k^2 z_k^2 z_1^{-k}
\times \prod_{j=-\infty}^{k-1} (1 + S_j z_2^{-1})(1 - S_j z_1) \prod_{j=k+1}^{\infty} (1 - S_j z_2)(1 + S_j z_1^{-1})
\]
where \(z_j = e^{ij} \) \((j = 1, 2)\). We assume that \(C_n = 1 \) and \(S_n = 0 \) except for \(M \leq n \leq N \). Then we have

\[
\left[\phi^*(\theta_1), \phi(\theta_2) \right]_+ = z_2^{N+1}z_1^{-N-1} \frac{\prod_{j=M}^N (1 + S_jz_2^{-1})(1 - S_jz_1)}{1 - z_2z_1^{-1}}
\]

\[+ \sum_{k=M}^N z_2^k z_1^{-k}(1 + S_k^2) \prod_{j=M}^{k-1} (1 + S_jz_2^{-1})(1 - S_jz_1) \prod_{j=k+1}^N (1 - S_jz_2)(1 + S_jz_1^{-1})
\]

\[+ z_2^{M-1}z_1^{-M+1} \prod_{j=M}^N (1 - S_jz_2)(1 + S_jz_1^{-1}) \]

Write the RHS as

\[
\left(\sum_{k \in \mathbb{Z}} z_2^k z_1^{-k} \right)^N \prod_{j=M}^N (1 + S_jz_2^{-1})(1 - S_jz_1) + F^{(N,M)}(S_M; \ldots, S_N; z_1, z_2).
\]

Then, \(F^{(N,M)}(S_M; \ldots, S_N; z_1, z_2) \) belongs to \(C[S_M; \ldots, S_N; z_1, z_2^{-1}, z_2, z_2^{-1}] \).

We wish to show \(F^{(N,M)} = 0 \). Let \(G^{(N,M)}(S_M; \ldots, S_N; z_1, z_2) \) be the RHS of (F.13). Note that \(F^{(N,M)} = G^{(N,M)} \) in \(C(z_1, z_2)[S_M; \ldots, S_N] \). Therefore, it is enough to show \(G^{(N,M)} = 0 \) as an element of \(C(z_1, z_2)[S_M; \ldots, S_N] \). Note that

\[
G^{(N,M)}(S_M; \ldots, S_N; z_1, z_2) = G^{(N,M)}(-S_M; \ldots, -S_N; z_1^{-1}, z_2^{-1}) = z_2^{N+M}z_1^{-N-M}G^{(N,M)}(S_N; \ldots, S_M; z_2, z_1).
\]

It is also easy to show that

\[
G^{(N,M)}(S_M; \ldots, S_N; z_1, z_2) = G^{(N,M)}(S_{\sigma(M)}; \ldots, S_{\sigma(N)}; z_1, z_2)
\]

for any permutation \(\sigma \) of \(\{M, \ldots, N\} \). Now \(G^{(N,M)}(S_M; \ldots, S_N; z_1, z_2) \) is a polynomial of degree 2 in \(S_M \). Therefore, in order to show that \(G^{(N,M)} = 0 \), it is enough to show

\[
G^{(N,M)}(z_1, S_{M+1}; \ldots, S_N; z_1, z_2) = 0.
\]

This is shown by induction: we have

\[
G^{(N,M)}(z_1, S_{M+1}; \ldots, S_N; z_1, z_2) = (z_2z_1^{-1} + z_2z_1)\overline{G}^{(N,M+1)}(S_{M+1}; \ldots, S_N; z_1, z_2)
\]

where

\[
\overline{G}^{(N,M+1)}(S_{M+1}; \ldots, S_N; z_1, z_2) = -z_2^{N-1}z_1^{-N+1} \sum_{j=M+1}^N (1 + S_jz_2^{-1})(1 - S_jz_1)
\]

\[+ (1 - z_1z_2^{-1}) \sum_{k=M+1}^{k-1} z_2^{k-1}z_1^{-k+1}(1 + S_k^2)
\]

\[\times \prod_{j=M+1}^k (1 + S_jz_2^{-1})(1 - S_jz_1) \prod_{j=k+1}^N (1 - S_jz_2)(1 + S_jz_1^{-1})
\]

\[+ \sum_{j=M+1}^N (1 - S_jz_2)(1 + S_jz_1^{-1}).
\]
Then we can show that
\[
\overline{G}^{(N,M+1)}(S_{M+1}, \ldots, S_N; z_1, z_2) = z_2 z_1^{-1}(1 + S_{M+1} z_1^{-1})(1 - S_{M+1} z_1)
\times \overline{G}^{(N,M+2)}(S_{M+2}, \ldots, S_N; z_1, z_2).
\]
Because \(\overline{G}^{(N,N)}(S_N; z_1, z_2) = 0\), we have \(\overline{G}^{(N,M+1)}(S_{M+1}, \ldots, S_N; z_1, z_2) = 0\) by induction.

F.4 Correlation functions

The vacuum vector \(|\text{vac}\rangle\) satisfies
\[
\phi(\theta)|\text{vac}\rangle = 0 \quad \text{if} \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \quad \phi^*(\theta)|\text{vac}\rangle = 0 \quad \text{if} \quad \frac{\pi}{2} \leq \theta \leq \frac{3\pi}{2}, \quad (F.14)
\]
Similarly, the dual vacuum \(\langle \text{vac}|\) satisfies
\[
\langle \text{vac}|\phi(\theta)\rangle = 0 \quad \text{if} \quad \frac{\pi}{2} \leq \theta \leq \frac{3\pi}{2}, \quad \langle \text{vac}|\phi^*(\theta)\rangle = 0 \quad \text{if} \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}. \quad (F.15)
\]
We have also \(\langle \text{vac}|\text{vac}\rangle = 1\). Our goal is to compute two point functions \(\langle \text{vac}|\psi_m^* \psi_n|\text{vac}\rangle\).

For this purpose we need

Proposition F.3

\[
\begin{align*}
\psi_n &= \int_0^{2\pi} \phi(\theta) A_n(\theta) \frac{d\theta}{2\pi}, \\
\psi_n^* &= \int_0^{2\pi} \phi^*(\theta) A_n^*(\theta) \frac{d\theta}{2\pi}.
\end{align*}
\]

Here \(A_n(\theta)\) and \(A_n^*(\theta)\) are given by
\[
A_n(\theta) = \frac{e^{-i n \theta}}{C_n \prod_{j=-\infty}^{n-1} (1 + S_j e^{-i \theta}) \prod_{j=n+1}^{\infty} (1 - S_j e^{i \theta})} \left\{ \frac{1}{1 + S_n e^{-i \theta}} + \frac{1}{1 - S_n e^{i \theta}} - 1 \right\},
\]
\[
A_n^*(\theta) = \frac{e^{i n \theta}}{C_n \prod_{j=-\infty}^{n-1} (1 - S_j e^{i \theta}) \prod_{j=n+1}^{\infty} (1 + S_j e^{-i \theta})} \left\{ \frac{1}{1 + S_n e^{-i \theta}} + \frac{1}{1 - S_n e^{i \theta}} - 1 \right\},
\]

Proof. From \((F.3)\) we have
\[
\int_0^{2\pi} \phi(\theta) A_n(\theta) \frac{d\theta}{2\pi} = \sum_{k \geq n} \psi_k \int_0^{2\pi} \frac{C_k \prod_{j=1}^{k-1} (1 + S_j e^{-i \theta})}{C_n \prod_{j=n+1}^{\infty} (1 - S_j e^{i \theta})} \left\{ \frac{1}{1 + S_n e^{-i \theta}} + \frac{1}{1 - S_n e^{i \theta}} - 1 \right\} e^{i(k-n)\theta} \frac{d\theta}{2\pi},
\]
\[
+ \sum_{k \leq n-1} \psi_k \int_0^{2\pi} \frac{C_k \prod_{j=k+1}^{n} (1 - S_j e^{i \theta})}{C_n \prod_{j=k}^{\infty} (1 + S_j e^{-i \theta})} \left\{ \frac{1}{1 + S_n e^{-i \theta}} + \frac{1}{1 - S_n e^{i \theta}} - 1 \right\} e^{-i(n-k)\theta} \frac{d\theta}{2\pi}.
\]
Noting that \(\int_0^{2\pi} e^{i\theta} \, d\theta = \delta_{n,0} \), we can show this is equal to \(\psi_n \). The other case is similar.

The two point functions are given as follows. We have obviously

\[
\langle \text{vac} | \psi_m \psi_n | \text{vac} \rangle = \langle \text{vac} | \psi_m^* \psi_n^* | \text{vac} \rangle = 0.
\]

Proposition F.4 Suppose that \(m < n \). We have

\[
\langle \text{vac} | \psi_m^* \psi_n | \text{vac} \rangle = (-1)^{m-n+1} \langle \text{vac} | \psi_m^* \psi_n^* | \text{vac} \rangle = -\langle \text{vac} | \psi_m^* \psi_n | \text{vac} \rangle
\]

\[
= \frac{im-n-1}{\pi} (B_mB_n)^{\frac{1}{2}} \sum_{j=m+1}^{n} \beta_j \frac{1}{\prod_{m+1 \leq l \leq n-1} (B_j + B_l)} \prod_{m \leq l \leq n-1} (B_j - B_l).
\]

(F.16)

Here, we set \(B_j = e^{\beta_j} \). In addition, we have

\[
\langle \text{vac} | \psi_n^* \psi_n^* \psi_n \rangle = \langle \text{vac} | \psi_n^* \psi_n \psi_n^* \rangle = \frac{1}{2}.
\]

Proof. Because of (F.2), it is enough to compute \(\langle \text{vac} | \psi_m^* \psi_n \rangle \) \((m, n \in \mathbb{Z})\).

Consider the anti-involution

\[
\psi_n \leftrightarrow \psi_n^*, \quad \beta_n \leftrightarrow -\beta_n, \quad \gamma_n \leftrightarrow -\gamma_n, \quad \langle \text{vac} \rangle \leftrightarrow | \text{vac} \rangle, \quad \phi(\theta) \leftrightarrow \phi^*(-\theta).
\]

Note that the last expression in (F.16) changes the sign by \((-1)^{m-n-1}\). Therefore, it is enough to prove the equality for \(\langle \text{vac} | \psi_m^* \psi_n \rangle \).

First, consider the case \(m = n \). Using (F.14), (F.15) and Proposition F.3, we have

\[
\langle \text{vac} | \psi_n^* \psi_n \rangle \rangle = \int_{\theta = \frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{1 + S_n e^{-i\theta}}{1 + S_n e^{i\theta}} \left\{ \frac{1}{1 + S_n e^{-i\theta}} + \frac{1}{1 - S_n e^{i\theta}} - 1 \right\} \frac{d\theta}{2\pi}
\]

\[
= \frac{1}{2}.
\]

In general, for \(m < n \), we have

\[
\langle \text{vac} | \psi_m^* \psi_n \rangle = \int_{\theta = \frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{C_m}{1 + S_m e^{-i\theta}} \prod_{j=m+1}^{n-1} \frac{1 - S_j e^{i\theta}}{1 + S_j e^{-i\theta}} \frac{C_n}{1 + S_n e^{-i\theta}} e^{-i(n-m)\theta} \frac{d\theta}{2\pi}
\]

44
With the change of variable $z = -e^{i\theta}$, the right hand side becomes

$$- \int_{-i}^{i} C_m C_n \prod_{j=m+1}^{n-1} (1 + S_j z) \, dz \prod_{n=m}^{n} (-z + S_j) \, \frac{2\pi i}{2\pi i}$$

$$= (-1)^{n-m} C_m C_n \frac{(2\pi i)^2}{(2\pi i)^2} \int_{C} dz \log \frac{z + i \prod_{j=m+1}^{n-1} (1 + S_j z)}{z - i \prod_{j=m}^{n} (z - S_j)}.$$

Here the branch of $\log(z + i)/(z - i)$ is such that it has the value 0 at $z = \infty$. The contour C is as in Figure 7.

![Figure 7: The contour C.](image)

Taking the residues at $z = S_j$ ($m \leq j \leq n$) and using (F.5) and, in particular, the equality

$$\log \frac{S_j + i}{S_j - i} = -\beta_j - \pi i,$$

$$\sum_{j=m}^{n} \frac{\prod_{l=m+1}^{n-1} (B_j + B_l)}{\prod_{j=m}^{n} (B_j - B_l)} = 0,$$

we have (F.16).
References

[1] M. Jimbo, K. Miki, T. Miwa, and A. Nakayashiki. Correlation functions of the XXZ model for $\Delta < -1$. *Phys. Lett. A*, 168:256–263, 1992.

[2] M. Jimbo and T. Miwa. *Algebraic Analysis of Solvable Lattice Models*. CBMS Regional Conference Series in Mathematics vol. 85, AMS, 1994.

[3] R. J. Baxter. *Exactly Solved Models in Statistical Mechanics*. Academic, London, 1982.

[4] M. Jimbo, T. Miwa, and A. Nakayashiki. Difference equations for the correlation functions of the eight-vertex model. *J. Phys. A*, 26:2199–2209, 1993.

[5] O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa, and H. Yan. An elliptic quantum algebra for \hat{sl}_2. *Lett. Math. Phys.*, 32:259–268, 1994.

[6] O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa, and H. Yan. Notes on highest weight modules of the elliptic algebra $A_{q,p} (\hat{sl}_2)$. *Prog. Theoret. Phys., Supplement*, 118:1–34, 1995.

[7] J. Shiraishi, H. Kubo, H. Awata, and S. Odake. A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, 1995. YITP/U-95-30, q-alg/9507034.

[8] S. Lukyanov. A note on the deformed Virasoro algebra, Sep. 1995. hep-th/9509037, preprint.

[9] F. A. Smirnov. *Form Factors in Completely Integrable Models of Quantum Field Theory*. World Scientific, Singapore, 1992.

[10] S. Lukyanov. Free field representation for massive integrable models. *Comm. Math. Phys.*, 167:183–226, 1995.

[11] V. E. Korepin, A. G. Izergin, F. H. Ehler, and D. B. Uglov. Correlation function of the spin-1/2 XXX antiferromagnet. *Phys. Lett.*, A190:182–184, 1994.

[12] A. Nakayashiki. Some integral formulas for the solutions of the sl_2 dKZ equation with level -4. *Int. J. Mod. Phys. A*, 9:5673–5687, 1994.

[13] R. J. Baxter. Solvable eight-vertex model on an arbitrary planar lattice. *Phil. Trans. Royal. Soc. London*, 289:315–346, 1978.

[14] F. Smirnov. Dynamical symmetries of massive integrable models, 1. *Int. J. Mod. Phys.*, A 7:813–837, 1992.
[15] F. Smirnov. Counting the local fields in sine-Gordon theory. *Nucl. Phys.*, B453[FS]:807–824, 1995.

[16] B. Davies, O. Foda, M. Jimbo, T. Miwa, and A. Nakayashiki. Diagonalization of the XXZ Hamiltonian by vertex operators. *Comm. Math. Phys.*, 151:89–153, 1993.

[17] E. W. Barnes. The theory of the double gamma function. *Philos. Trans. Roy. Soc.*, A196:265–388, 1901.

[18] E. W. Barnes. On the theory of the multiple gamma function. *Trans. Cambridge Philos. Soc.*, 19:374–425, 1904.

[19] T. Shintani. On a Kronecker limit formula for real quadratic fields. *J. Fac. Sci. Univ. Tokyo*, 24:167–199, 1977.

[20] N. Kurokawa. On the generalization of the sine function (in Japanese). *Technical Report of Tsuda University*, 4:1–25, 1992.

[21] H. Au-Yang and J. H. H. Perk. Critical correlations in a Z-invariant inhomogeneous Ising model. *Physica*, 144A:44–104, 1987.