Research Article

Genome-Wide Identification and Characterization of bZIP Transcription Factors in *Brassica oleracea* under Cold Stress

Indeok Hwang, 1 Ranjith Kumar Manoharan, 1 Jong-Goo Kang, 1 Mi-Young Chung, 2 Young-Wook Kim, 1 and Ill-Sup Nou 1

1Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonam 57922, Republic of Korea
2Department of Agricultural Education, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonam 57922, Republic of Korea

Correspondence should be addressed to Ill-Sup Nou; nis@sunchon.ac.kr

Received 14 December 2015; Revised 24 March 2016; Accepted 27 March 2016

Academic Editor: Yeon-Su Lee

Copyright © 2016 Indeok Hwang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cabbages (*Brassica oleracea* L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in *B. rapa* and a protein containing N-rich regions in LCRs.

The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses.

1. Introduction

Cabbage (*Brassica oleracea* L.) plants represent one of the major vegetable crops grown worldwide. Most crops of *B. oleracea* and its sister species *Brassica rapa* produce a range of phytochemicals with diverse functions for plant defense such as polyphenolic compounds, carotenoids, and glucosinolates [1, 2]. The draft genome sequences of *B. oleracea* (with the CC genome) and *B. rapa* (with the AA genome) were recently published [3, 4]. A total of 66.5% (34,237) of *B. oleracea* genes and 74.9% (34,324) of *B. rapa* genes were clustered. In total, 5,735 *B. rapa*-specific genes and 9,832 *B. oleracea*-specific genes among 45,758 protein coding genes were identified. The availability of published genome sequence for these crop plants facilitates studies of structural and functional genomics in agronomically important species.

Plant bZIP transcription factors play diverse roles in developmental and physiological processes and biotic/abiotic stress responses such as ABA signaling for osmotic stress responses during vegetative growth [5], seed germination and flowering time [6], glucose-ABA signaling [7], sugar signaling during metabolism [8], lipid stress responses [9], response to zinc deficiency [10], salicylic acid- (SA-) dependent plant systemic defense responses and the activation of jasmonic acid- (JA-) and ethylene (ET-) dependent defense mechanisms [11], anthocyanin accumulation during photo morphogenesis [12], floral patterning [13], auxin-mediated histone acetylation related AtbZIP11 [14], and ABA signaling related to stress tolerance [15]. As the focus of recent studies due to their importance as regulator of responses to the biotic and abiotic stresses, bZIP transcription factors have been identified in diverse plants. Based on the presence of the UARR and LCRs, 136 bZIPs were identified in *B. rapa*; 64 were found in cucumber based on predicted structural features, 92 in sorghum through genome-wide identification
and characterization, 89 in rice according to their DNA binding specificity and amino acid sequences in basic and hinge regions, 131 in soybean based on the basic region of the bZIP domain and the presence of additional conserved motifs, 75 in Arabidopsis according to sequence similarities of their basic region and additional conserved motifs, and 141 in Hordeum vulgare [16–22]. However, little is known about the genome-wide survey and expression patterns of bZIP transcription factors in B. oleracea. Among the BolbZIPS, the function of only one gene related with drought stress and ABA has been reported. Expression of BolABI5 was dramatically induced by drought stress and exogenous ABA [23]. Heterogeneous expression of BolABI5 rescued the ABA-insensitive phenotype of the Arabidopsis abi5-1 mutant during seed germination, suggesting that BolABI5 likely functions in positive regulation of plant ABA responses.

The bZIP domain includes a basic region and a leucine zipper located on a contiguous α-helix. An N-x7-R/K motif comprising −16 amino acids constitutes the basic region, which binds DNA containing a nuclear localization signal. The leucine zipper is composed of leucine residue repeat and is positioned precisely at nine amino acids towards the C-terminus from the arginine in the basic region, creating an amphipathic helix. To bind DNA, two subunits adhere via interactions between the hydrophobic sides of their helices, which create a superimposed coiled-coil structure for homot- or heterodimerization. Plant bZIPS preferentially bind to specific sequences, namely, the A-box (TACGTA), C-box (GACGTC), and G-box (CACGTG), but there are also examples of nonpalindromic binding sites [21].

In this study, we identified 119 BolbZIP proteins and classified them based on specific amino acid sequence, unique amino acid repeat regions (UARRs), and low complexity regions (LCRs). Additionally, transcriptome analysis related to cold stress responses using RNA sequencing provided valuable information for research into stress tolerance and molecular breeding in B. oleracea.

2. Materials and Methods

2.1. Database Searches for bZIP Transcription Factors in B. oleracea. The AtbZIP, BrbZIP, and BolbZIP amino acid sequences obtained from TAIR (http://www.arabidopsis.org/), BRAD (http://brassicadb.org/brad/), and Bolbase (http://ocri-genomics.org/bolbase/). To confirm the presence of bZIP domain, UARR and LCRs in putative AtbZIP, and BrbZIP and BolbZIP proteins, the Motif scan tool (http://myhits.isb-sib.ch/cgi-bin/motif_scan), SMART tool (http://smart.embl-heidelberg.de/), and Batch CD-search tool (http://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) were used. bZIP proteins that showed the presence of a bZIP domain, UARR, and LCRs with confidence (E-value < 0.1) in the Motif scan tool and Batch CD-search tool were used for further analyses. Next, LCRs were identified using the SMART tool.

2.2. Plant Material and Cold Treatment. Seeds of B. oleracea (inbred lines "BN106" and "BN107") were germinated in soil and then grown for approximately 3 weeks in a growth chamber at 25°C under long day condition (16 h day/8 h night). For cold treatment, the 5-week-old plants were transferred to a 4°C growth chamber under continuous light conditions. The plants were then treated with cold temperature at 4°C for 6 h, followed by 0°C for 2 h. Further, the plants were subjected to freezing treatment at −2°C for 2 h followed by 4°C for 6 h.

2.3. RNA Extraction and cDNA Synthesis. Total RNA was isolated from plant tissues using an RNA extraction kit (Qiagen, USA) according to the manufacturer’s protocol. Total RNA was treated with RNase-free DNase (Promega, USA) to remove the genomic DNA contamination. The quality of total RNA was checked using a nanoDrop Spectrometer (nD-1000 Spectrophotometer, PegaLab) and agarose gel electrophoresis. cDNA was then synthesized using Superscript II reverse-transcriptase (Invitrogen), after which 5 μL (about 2 μg) total RNA and 1 μL of oligo dT (500 μg/mL) were mixed in the reaction tube and then heated at 65°C for 10 min. The enzyme was then added into the tube and incubated at 42°C for 50 min. Finally, the reaction tube was incubated at 70°C for 15 min to inactivate the enzyme.

2.4. RNA Sequencing. Two cabbage lines, BN106 and BN107 which exhibit different sensitivity to cold stress, were used for RNA sequencing. Total RNA was extracted from leaves of BN106 and BN107 at 2 h in 0°C. The total RNA was isolated using TRIzol reagent (Invitrogen, USA) following the manufacturer’s instructions. Total RNA (20 μg) from each sample, BN106,22°C and BN107,22°C (control) and BN106,0°C and BN107,0°C (treated), were used for Illumina sequencing (33 G 101 bp paired-end reads; Seeders, Republic of Korea). Transcripts of unigenes assembled from the total reads were validated by direct comparison with gene sequences in the Phytozome15 (https://phytozome.jgi.doe.gov/pz/portal.html) using BLASTx (threshold E-value ≤ 1e−10). The number of mapped clean reads for each unigene was counted and normalized using the DESeq package in R on two independent biological replicates. From the differentially expressed gene dataset, the transcripts of bZIP transcription factors were analyzed for up- and downregulated differentially expressed genes. BolbZIP sequence and RNAseq database sequences were aligned to each other using ClustalW with default parameters (http://www.genome.jp/tools/clustalw/).

2.5. RT-PCR and qRT-PCR. Quantitative real-time PCR (qRT-PCR) and reverse transcription PCR (RT-PCR) were conducted using cDNA from cold treated plants using primers specific for the BolbZIP gene (see Table S1 in Supplementary Material available online at http://dx.doi.org/10.1155/2016/4376598). RT-PCR was conducted using cDNA of plants exposed to cold and freezing temperatures (22°C, 4°C, 0°C, and −2°C). The PCR procedure involved predenaturation at 95°C for 5 min followed by cycles of denaturation at 95°C for 30 s, annealing at 60°C for 30 s, extension at 72°C for 30 min, and then a final extension for 5 min at 72°C. qRT-PCR was conducted by subjecting the samples to initial denaturation at 95°C for 10 min followed by 40 cycles of 95°C for 20 s, 60°C
for 20 s, 72°C for 30 s, and final extension at 72°C for 2 min. An actin primer set for B. oleracea was used for normalization of RT-PCR and qRT-PCR.

3. Results

3.1. Identification of bZIP Transcription Factors in B. oleracea. To search for bZIP transcription factors in B. oleracea, we used the conserved bZIP domain consensus sequences (Table S2) of several proteins as BLASTP queries against the Brassica database (http://brassicadb.org/brad/). In addition, homology searches using 136 BrbZIP proteins were performed [16]. A total of 126 BolbZIP candidates were initially obtained by Hwang et al. [16] based on UARRs and LCRs, which showed over 90% similarity to the corresponding AtbZIP. Several BolbZIP proteins revealed that the similarity between BolbZIP, BrbZIP, and AtbZIPs ranged from 50% to 90%. Several BolbZIP proteins included two or three BolbZIP and BrbZIP proteins but amino acid sequence similarity (Table 1). Most categories of bZIP proteins, we found orthologous groups including counterparts from each species, although occasionally no BrbZIP or AtbZIP homologs were found. AtbZIP and BrbZIP homologs of the BolbZIP proteins are summarized in Table 1. The proteins were divided into 63 categories based on the amino acid sequence similarity (Table 1). Most categories included two or three BolbZIP and BrbZIP proteins but a single AtbZIP. Analysis of the amino acid sequences revealed that the similarity between BolbZIP, BrbZIP, and AtbZIPs ranged from 50% to 90%. Several BolbZIP proteins showed over 90% similarity to the corresponding AtbZIP. For example, the similarity among Bol010308, At3g12250, and At5g06950 was 91–94%. For other genes, the closest homologs (with over 90% amino acid homology) were between the BolbZIP and the BrbZIP such as Bol004832 and Bra004689. BolbZIP proteins were also classified according to the method of Section 2. After exclusion of the proteins lacking a bZIP domain, 119 putative BolbZIP transcription factors were identified. The position of each candidate BolbZIP gene in B. oleracea chromosome data available at Bolbase (Version 1.0) was then determined.

Among 119 candidate BolbZIP genes, 112 were mapped on chromosomes C01–C09 (Figure 1). 14 genes of BolbZIP were mapped on C01, 12 genes on C02, 15 genes on C03, 23 genes on C04, 8 genes on C05, 7 genes on C06, 10 genes on C07, 12 genes on C08, and 11 genes on C09. In particular, 20% of the BolbZIP genes mapped to chromosome 4 (Table S3). In addition, 7 genes were found in scaffolds that have yet been mapped to chromosomes. Bol024237 was anchored on Scaffold000093, Bol019052 on Scaffold000133, Bol016607 on Scaffold000153, Bol004200 on Scaffold000329, Bol003614 on Scaffold000345, Bol001886 on Scaffold000417, and Bol007089 on Scaffold000492.

3.2. Classification of BolbZIP Transcription Factors. We have classified the BolbZIP transcription factors based on amino acid sequence similarity to 136 BrbZIP and 75 AtbZIP proteins previously reported (Table 1) [16]. For the majority of bZIP proteins, we found orthologous groups including counterparts from each species, although occasionally no BrbZIP or AtbZIP homologs were found. AtbZIP and BrbZIP homologs of the BolbZIP proteins are summarized in Table 1. The proteins were divided into 63 categories based on the amino acid sequence similarity (Table 1). Most categories included two or three BolbZIP and BrbZIP proteins but a single AtbZIP. Analysis of the amino acid sequences revealed that the similarity between BolbZIP, BrbZIP, and AtbZIPs ranged from 50% to 90%. Several BolbZIP proteins showed over 90% similarity to the corresponding AtbZIP. For example, the similarity among Bol010308, At3g12250, and At5g06950 was 91–94%. For other genes, the closest homologs (with over 90% amino acid homology) were between the BolbZIP and the BrbZIP such as Bol004832 and Bra004689. BolbZIP proteins were also classified according to the method of Section 2. After exclusion of the proteins lacking a bZIP domain, 119 putative BolbZIP transcription factors were identified. The position of each candidate BolbZIP gene in B. oleracea chromosome data available at Bolbase (Version 1.0) was then determined.

Among 119 candidate BolbZIP genes, 112 were mapped on chromosomes C01–C09 (Figure 1). 14 genes of BolbZIP were mapped on C01, 12 genes on C02, 15 genes on C03, 23 genes on C04, 8 genes on C05, 7 genes on C06, 10 genes on C07, 12 genes on C08, and 11 genes on C09. In particular, 20% of the BolbZIP genes mapped to chromosome 4 (Table S3). In addition, 7 genes were found in scaffolds that have yet been mapped to chromosomes. Bol024237 was anchored on Scaffold000093, Bol019052 on Scaffold000133, Bol016607 on Scaffold000153, Bol004200 on Scaffold000329, Bol003614 on Scaffold000345, Bol001886 on Scaffold000417, and Bol007089 on Scaffold000492.

3.3. Candidate BolbZIP Genes for Responses to Cold Stress. To identify BolbZIP genes that might function in response to cold stress, we carried out comparative analysis of the expression of BolbZIP gene in two B. oleracea inbred lines, cold-tolerant BN106 and cold-susceptible BN107. BolbZIP genes were selected from an RNA sequencing dataset based on their annotations and their expression profiles were analyzed (data not shown). Among the 119 BolbZIP genes, the expression of 41 genes was remarkably changed in responses to cold
Table 1: 119 BolbZIP proteins were divided into 63 categories based on amino acid sequence similarity.

Index	Bol number	B. oleracea Length (aa)	B. rapa homologs	A. thaliana homologs							
1	Bol000879	311	3A	95	75						
	Bol017742	328	3A	80	70						
	Bol029580	300	11	76	79						
	Bol004832	300	11	65, 98, 62, 62,	75, 64						
	Bol001886	306	11	82, 75, 61, 62,	71, 65						
2	Bol005115	343	1A	62, 83, 92	83						
	Bol006882	356	1A	59, 98, 86	79						
	Bol020604	336	1A	88, 66, 67	66						
	Bol005139	67	10	79	53						
	Bol06897	639	10	65	61						
	Bol004200	281	12	59, 83, 84, 83, 60	64, 88						
	Bol005146	272	12	74, 59, 60, 60, 93	69, 60						
	Bol006902	239	12	93, 59, 60, 61, 70	64, 58						
	Bol04306	289	6B	57, 80, 79, 90, 59	61, 77						
	Bol044413	278	12	58, 96, 95, 83, 60	65, 84						
5	Bol06077	392	11	94	71						
	Bol006734	270	5B	94	71						
	Bol006735	425	5A	86	71						
	Bol006736	466	3A	93, 55	71						
	Bol045878	372	3A	48, 90	71						
	Bol06975	449	11	95	71						
6	Bol07295	334	11	94, 60, 90, 79, 94, 99	62, 92, 90, 81						
	Bol010308	331	11	94, 62, 91, 81, 94, 98, 94	65, 94, 91, 81						
	Bol024000	442	11	61, 97, 61, 58, 62, 61	87, 55, 62, 59						
	Bol024526	326	11	80, 58, 81, 99, 88, 80, 80, 81, 87	60, 80, 81, 87						
	Bol035452	331	11	99, 61, 92, 80, 95, 94	64, 93, 90, 79						
	Bol043902	246	11	87, 57, 89, 76, 87, 86	59, 83, 89, 77						
	Bol08040	380	11	67, 80, 68, 86, 57, 73	73, 77						
7	Bol09211	367	11	78, 98, 80, 91, 59, 82	81, 89						
	Bol09052	390	12	75, 89, 77, 87, 74, 95	78, 86						
	Bol024636	362	12	88, 80, 99, 79, 50, 71	89, 78						
	Bol043707	364	12	97, 77, 87, 76, 46, 68	85, 75						
8	Bol08071	201	11	94, 54	71						
	Bra024424	249									
Index	Bol number	B. oleracea Length (aa)	Group	Identity 1 (%)	Identity 2 (%)	Bra number	B. rapa Length (aa)	Group	A. thaliana homologs Length (aa)	Group	
-------	-------------	--------------------------	-------	----------------	----------------	------------	---------------------	-------	-------------------------------	-------	
14	Bol008240	233	I I	58, 90, 75, 60	62	Bra015471	392	1A	At1g06070	423	1A
	Bol023333	391	1A	73, 62, 56, 82	74	Bra088250	374	1A			1A
	Bol040035	342	1A	95, 62, 50, 73	77	Bra021735	339	11			1A
						Bra030637	381	1A			1A
15	Bol008830	102	I I	77	77	Bra005971	160	11			11
16	Bol009156	188	I I	93	76	Bra033464	203	11	At3g51960	228	12
	Bol009713	383	4A	85, 97	88	Bra063898	368	4A	At1g22070	384	11
						Bra031364	378	4A			4A
17	Bol010390	198	I I	94, 83, 83	87	Bra09715	193	11	At1g3600	196	11
	Bol031441	195	I I	78, 98, 98	84	Bra026895	195	11			11
						Bra026896	195	11			11
18	Bol010836	134	I I	98, 81	78	Bra003500	134	12	At3g62420	146	12
	Bol044598	141	I I	81, 98	88	Bra007679	141	12			12
	Bol033132	171	I I	97, 88	82, 56	Bra020735	171	11	At3g30530	173	11
	Bol043053	172	I I	85, 98	88, 59	Bra025418	172	11	At5g38800	165	12
19	Bol014170	363	3A	95	69	Bra037382	367	3A	At4g01120	360	3A
20	Bol01683	96	I I			Bra005287	438	6A	At2g36270	442	6A
	Bol037733	106	I I			Bra005287	396	6A			6A
21	Bol01779	432	6A	92, 83	78	Bra003500	134	12	At3g62420	146	12
22	Bol02142	160	6A	61, 95	61	Bra003500	179	6A	At1g75390	173	11
	Bol039324	160	6A			Bra003500	179	6A			6A
	Bol039895	178	6A	94, 62	76	Bra003500	179	6A			6A
23	Bol012472	170	5B	97, 85, 84	79	Bra024478	155	5B	At2g18160	171	5B
	Bol041488	169	5B	86, 85, 96	83	Bra024478	165	5A			5A
						Bra008192	165	5A			5A
24	Bol012703	236	I I	95, 72	73	Bra037290	239	12	At2g16770	249	12
	Bol042686	244	I I	80, 89	71	Bra013048	239	12			12
25	Bol013712	265	I I	87, 63	61	Bra013580	231	12	At4g35040	261	4B
	Bol034645	255	I I	64, 98	76	Bra034668	255	11			11
26	Bol012855	294	6A	88	54	Bra033719	266	11	At5g404080	315	5B
	Bol03623	416	1A	89	75	Bra011485	439	1A	At4g34000	454	1A
	Bol033853	410	I I	71	55	Bra011485	439	1A			1A
27	Bol03680	154	I I	98, 89, 86	81	Bra011545	179	5B	At4g34590	159	5B
	Bol024237	148	5B	89, 97, 78	82	Bra017664	153	5B			5B
	Bol034676	142	I I	84, 82, 98	78	Bra034639	142	11			11
28	Bol04051	171	3A	66, 54, 66	68, 64	Bra003335	422	3A	At1g32150	389	3A
	Bol022259	422	3A	51, 50, 85	70, 62	Bra023012	403	3A	At2g35530	409	3A
	Bol027451	392	3A	96, 66, 64	63, 83	Bra023243	352	3A			3A
	Bol039799	400	3A	62, 85, 55	58, 73	Bra003335	422	3A			3A
Index	Bol number	B. oleracea Length (aa)	Group	Identity 1 (%)	Identity 2 (%)	B. rapa homologs Bra number	Length (aa)	Group	A. thaliana homologs At number	Length (aa)	Group
-------	------------	-------------------------	-------	----------------	----------------	----------------------------	-------------	-------	-------------------------------	-------------	-------
31	Bol015239	391	12	87		Bra033649	414	1A			
32	Bol016052	394	12	72		Bra007222	445	4B			
33	Bol016288	374	11	96, 74	72	Bra027885	373	1A	At1g58110	374	11
34	Bol016432	289	11	79, 98	84	Bra009793	291	1B	At1g24800	277	5B
35	Bol016607	142	12	94	78	Bra001105	142	12	At1g49450	145	11
	Bol032354	139	12	80		Bra01035	176				
36	Bol003614	353	1A	80, 50, 70	54, 72	Bra001742	355	1B	At1g49720	403	1A
	Bol016788	307	1B	52, 87, 52	61, 48	Bra018080	368	1B	At1g9290	432	1B
	Bol018082	133	12	83, 64, 96	59, 91	Bra037533	388	1A			
	Bol031002	391	1A	74, 57, 88	53, 74	Bra01035	176	11			
37	Bol007068	187	12	93, 83, 73	60	Bra013005	182	12	At1g76030	206	12
	Bol036259	210	12	73, 85, 95	60	Bra029353	104	12			
						Bra035957	184	12			
38	Bol018521	442	1A	75	57	Bra035382	446	11	At1g38900	553	1A
39	Bol038396	243	1B	69, 95	70	Bra017780	246	1B	At1g77330	305	11
	Bol028894	246	1B	94, 66		Bra027800	240	1B			
40	Bol038688	281	11	73, 51, 92	67	Bra030504	222	11	At1g35900	285	5A
	Bol039042	270	5B	70, 66, 64	62	Bra016468	262	5A			
	Bol029939	265	11	90, 59, 66	66	Bra017735	259	5B			
41	Bol020032	89	11	78, 76, 100	82	Bra017359	174	11	At2g04038	166	5B
	Bol032575	176	11	91, 81, 78	69	Bra025144	170	5B			
	Bol042729	170	5B	80, 97, 78	77	Bra026523	89	11			
42	Bol020390	389	11	88		Bra000102	366	11			
43	Bol02155	194	4B	77, 73, 97	79	Bra006324	181	4A	At1g5830	186	4A
	Bol034371	178	4A	93, 71, 82	75	Bra008670	183	4B			
	Bol030487	187	4B	70, 93, 75	73	Bra023540	188	4B			
44	Bol021964	190	12	64	64	Bra00625	190	12	At1g39760	156	12
	Bol037334	186	12	93	64	Bra035141	324	5A	At1g06850	337	5A
45	Bol022925	148	5B	97, 84, 88	92	Bra001671	150	5B	At1g17609	149	5B
	Bol030865	145	5B	86, 97, 84	88	Bra021258	146	5B			
	Bol038660	150	11	81, 78, 96	83	Bra022225	116	12			
46	Bol023161	624	10	91, 87	59	Bra023224	593	10	At3g18000	675	10
	Bol023356	318	5A	96, 84	80	Bra030663	320	5A	At1g06850	337	5A
Table 1: Continued.

Index	Bol number	B. oleracea Length (aa)	Group	Identity 1 (%)	Identity 2 (%)	Bra number	B. rapa homologs Length (aa)	Group	At number	A. thaliana homologs Length (aa)	Group
48	Bol024704	162	5B	85, 94	84	Bra008976	164	5A	At5g11260	168	5B
	Bol043589	164	5B	90, 88	87	Bra023317	166	5A	At1g9490	471	11
49	Bol026864	459	11	97	74	Bra025743	462	11	At1g79220	368	1B
50	Bol027526	791	12	97	83	Bra015646	339	12	At1g79220	368	1B
51	Bol027732	371	6A	67	67	Bra015847	358	6A	At1g68880	138	12
52	Bol028631	120	11	97	73	Bra038341	120	12	At1g42990	295	10
53	Bol028975	313	3A	87	96	Bra010572	313	3A	At1g36730	315	3A
54	Bol033486	303	11	65	55	Bra034925	233	2B	At1g42990	295	10
55	Bol033489	250	11	84, 96	70	Bra032191	330	3A	At1g43700	341	11
56	Bol043246	330	3A	99, 82	69	Bra034916	263	11	At1g43700	341	11
57	Bol033493	310	1B	97	71	Bra034913	222	1B	At1g35490	300	1A
58	Bol037803	266	11								
59	Bol040859	266	5A	93	64	Bra015281	268	5A	At1g3970	270	5A
60	Bol041278	333	11	93	80	Bra019436	336	11	At1g44460	12	12
61	Bol043859	149	12	97		Bra0099288	147	12	At1g44460	12	12
62	Bol044292	464	10	67		Bra014680	438	10	At1g45249	427	1A
63	Bol045190	385	4A	87	51	Bra040260	364	11	At1g45249	427	1A

Length: amino acid length of bZIP proteins. Identity 1: homology between B. oleracea and B. rapa. Identity 2: homology between B. oleracea and A. thaliana.
treatment, whereas 78 genes of them showed no significant changes in their expression. BolbZIP genes with significantly different expression were determined in 4°C-treated sample on fold change (FC) ≥ 2 and ≤ 0.5 relative to 22°C-treated sample. Cold treatment at this temperature caused the upregulation of 18 genes in BNI06 and of 7 genes in BNI07, whereas 15 genes were downregulated in BNI06 and 8 genes were in BNI07 by cold treatment. In total, the expression of 21 genes was upregulated and 20 genes downregulated by cold treatment (Table 3). In addition, 6 genes were not showing any expression within BNI06 lines and therefore not calculated (Table 3). Finally, 47 BolbZIP genes’ expression level was confirmed using quantitative real-time PCR (qRT-PCR) (Table 3). To obtain detailed expression for the putative cold-response BolbZIP genes thus identified, qRT-PCR was carried out using samples from plants treated at several temperatures (22°C, 4°C, 0°C, or −2°C). Totally, 25 BolbZIP genes with significantly different expression were selected based on fold-changes (FC) ≥ 3 and ≤ 0.5 relative to the control sample (22°C). Most of the tested genes were significantly upregulated by cold treatment except Bol021255. Among 25 tested genes, 22 genes are displayed in Figure 2 and three genes by RT-PCR in Figure 3. We were not able to determine the analogous relative expression for the latter three genes because they were not expressed in the 22°C treated sample. The expression levels of several BolbZIP genes were comparable between the two lines. However, no significant change in the expression of Bol008071, Bol033132, and Bol042729 was observed in response to cold treatment in BNI06, whereas these genes were upregulated at all temperatures in BNI07 (Figure 2(a)). By contrast, Bol009713, Bol013712, Bol016432, and Bol022925 were upregulated in BNI06, but not in BNI07 (Figure 2(b)). The increased expression of 17 BolbZIP genes was more pronounced after severe cold treatment at 4°C, 0°C, and −2°C (Figure 2(c)) and one gene was downregulated by cold treatment in both BNI06 and BNI07 (Figure 2(d)). Homologs of cold stress-response BrbZIP genes were included in the qRT-PCR [16]. These expression patterns are summarized in Figure 4. Moreover, several genes including Bol016432, Bol022925, Bol026864, Bol027732, and Bol028975 displayed differential expression between cold (4°C) and freezing (−2°C) temperature. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BNI07 under cold conditions and was unchanged in BNI06. Among three genes, Bol033132 has 97% sequence similarity to Bra020735 which was previously reported gene. Two proteins, Bol033132 and Bra020735, contained N-rich regions in LCRs (Figure 5(a)). Moreover, Bol042729 included the N-containing LCR (Figure 5(b)). We suggest the possibility that BolbZIP proteins as well as BrbZIP proteins containing N-rich regions might be involved in cold stress response.

4. Discussion

It was known that B. rapa and B. oleracea genomes are highly similar in their gene structure, but there still exist species-specific genes in two species. Hence this study was carried out in B. oleracea and identified 119 BolbZIP proteins and placed them into 63 categories according to sequence similarity (Table 1). To identify the bZIP proteins in B. oleracea, a few bZIP domain consensus sequences of several species were used (Table S2). It is possible that this approach could lead us to underestimate the number of bZIP proteins present, despite the high number of BolbZIP proteins we identified. To address this, other search methods or more detailed consensus sequences for bZIP proteins in plants could be examined. In Arabidopsis, bZIP proteins were classified into different groups and subfamilies according to sequence similarities in their basic region and additional conserved motifs in order to elucidate the likely function of the proteins [21]. In rice, Nijhawan et al. [19] published 89 bZIP transcription factor-encoding genes based on DNA binding specificity and amino acid sequences in basic and hinge regions. Recently BrbZIP and AthZIP proteins were divided into 9 groups based on their UARR and LCRs, which are highly enriched in one or a few amino acids [16]. In this study, 119 BolbZIP proteins were categorized into 63 groups and also classified according to UARR and LCRs based on the classification method of Hwang et al. [16]. In addition, the sequence similarity of the bZIP proteins of B. oleracea, B. rapa, and A. thaliana was analyzed. Most of homologs were found to

Group	Classification domain	bZIP number in B. oleracea	bZIP number in B. rapa (Hwang et al.*)	bZIP number in A. thaliana (Hwang et al.*)
Group 1	Q-rich domain	13	16	10
Group 2	D-rich domain	0	4	3
Group 3	P-rich domain	12	12	6
Group 4	N-rich domain	5	9	4
Group 5	S-rich domain	13	18	14
Group 6	G-rich domain	7	6	2
Group 10	Transmembrane domain	4	4	4
Group 11	Several LCRs	38	41	17
Group 12	No LCR or UARR	27	26	13
Total		119	136	73

*See reference [16].
Table 3: Cold-treatment induced change in expression based on RNA sequencing data. The differentially expressed genes determined based on fold change (FC) ≥ 2 are displayed with bold font and ≤ 0.5 with italic font.

Locus_ID	FC1	P value	Contigs length (bp)	BRAD number	CDS length (bp)	A. thaliana homologs	Published name
Locus_08182	2.18 ± 0.11	0.0031	1.48 ± 0.02	B009713	1552	AT1G22070	
Locus_09909	0.16 ± 0.01	0.0052	0.65 ± 0.05	B001886	921	AT2G42380	
Locus_04358	3.84 ± 0.02	0.0002	NC	B004398	426	AT3G62420	
Locus_05083	4.58 ± 0.21	0.0158	1.89 ± 0.51	B002472	513	AT2G18160	
Locus_06292	2.35 ± 0.05	0.0044	1.20 ± 0.03	B003712	798	AT4G35040	
Locus_08860	13.09 ± 0.32	0.0006	2.08 ± 0.11	B002752	2376	ATIG77920	
Locus_10723	2.99 ± 0.19	0.0012	2.28 ± 0.35	B006864	1380	ATIG19490	
Locus_10986	0.06 ± 0.00	0.0062	0.76 ± 0.04	B016607	429	AT5G49450	
Locus_11058	0.57 ± 0.03	0.0177	0.60 ± 0.04	B004382	903	AT2G42380	
Locus_11330	0.27 ± 0.01	0.0333	1.51 ± 0.33	B002729	513	AT2G04038	
Locus_12559	0.35 ± 0.01	0.0090	0.87 ± 0.07	B002897	942	AT4G36730	
Locus_14643	0.83 ± 0.19	0.2500	0.32 ± 0.10	B003132	516	AT3G30530	
Locus_14780	4.80 ± 0.93	0.0083	0.78 ± 0.03	B001401	516	ATIG32150	
Locus_15053	0.15 ± 0.00	0.0049	0.47 ± 0.03	B001470	1092	AT4G01120	
Locus_16059	4.67 ± 2.83	0.0358	1.29 ± 0.28	B007732	1116		
Locus_18258	1.46 ± 0.81	0.3124	NC	B011719	1299	AT2G36270	
Locus_19284	0.48 ± 0.02	0.0023	1.00 ± 0.16	B006077	1179	AT4G02640	
Locus_19975	5.14 ± 0.02	0.0015	3.11 ± 0.24	B008894	741	AT4G37730	
Locus_20038	2.25 ± 0.04	0.0002	0.74 ± 0.09	B003583	1233	AT4G34000	
Locus_21455	2.15 ± 0.03	0.0012	1.32 ± 0.05	B004488	540	AT2G18160	
Locus_22202	2.90 ± 0.22	0.0078	0.67 ± 0.03	B000879	936	AT4G46270	
Locus_22929	0.27 ± 0.05	0.0569	0.58 ± 0.11	B003703	801		
Locus_25534	7.11 ± 1.40	0.0024	1.87 ± 0.19	B003989	537	ATIG75390	
Locus_27120	0.13 ± 0.16	0.0645	NC	B008071	606		
Locus_28516	NC	NC	NC	B003493	933	ATIG35490	
Locus_31552	0.29 ± 0.05	0.0628	NC	B006902	720	AT2G41070	
Locus_31870	6.75 ± 3.18	0.0743	0.51 ± 0.17	B003773	321		
Locus_35274	0.57 ± 0.02	0.0027	0.19 ± 0.22	B006432	870	AT5G24800	
Locus_35336	0.12 ± 0.00	0.0113	0.17 ± 0.04	B001255	585	AT5G15830	
Locus_35982	4.94 ± 0.07	0.0010	3.61 ± 0.30	B003476	429	AT4G3590	
Locus_36644	0.40 ± 0.06	0.0362	0.70 ± 0.07	B000804	1143	AT5G62510	
Locus_38207	0.56 ± 0.06	0.0396	0.18 ± 0.21	B005115	1032	AT2G40620	
Locus_38300	1.23 ± 0.64	0.5000	0.00	B008596	732	AT4G37730	
Locus_38533	4.51 ± 0.34	0.0023	0.85 ± 0.09	B004370	1095	AT5G10030	
Locus_38636	9.75 ± 0.87	0.0272	0.56 ± 0.05	B0030865	438	AT3G17609	

Note: Table entries with bold font indicate fold change ≥ 2, and italic font indicates ≤ 0.5.
Locus_ID	FC1 (BN106)	FC2 (BN107)	Contigs length (bp)	BRAD Bol number	CDS length (bp)	A. thaliana homologs	Published name		
Locus_39177	1.20 ± 0.18	0.38 ± 0.01	0.0054	839	Bol043589	495	AT5G11260	HY5	
Locus_39837	0.78 ± 0.05	2.20 ± 1.21	0.0097	1648	Bol0401035	1038	AT1G06070		
Locus_39980	NC	NC	NC	478	Bol088660	453	AT3G17609	HYH	
Locus_4080	0.07 ± 0.04	2.32 ± 0.80	0.0840	677	Bol010390	597	AT1G13600		
Locus_44632	NC	NC	NC	256	Bol029939	798	AT4G35900	FD-1	
Locus_44950	2.86 ± 0.00	1.32 ± 0.05	0.0301	1447	Bol024526	981	AT5G06960	TGA5/OBF5	
Locus_45018	NC	NC	NC	667	Bol029225	447	AT3G17609	HYH	
Locus_46951	0.15 ± 0.17	0.70 ± 0.02	0.0233	462	Bol020032	270	AT2G04038		
Locus_47897	NC	NC	NC	458	Bol037334	561	AT3G49760		
Locus_5075	0.39 ± 0.10	2.76 ± 0.40	0.0145	739	Bol034371	537	AT5G18530		
Locus_5049	NC	NC	0.57 ± 0.29	0.1464	31l	Bol098688	846	AT4G35900	FD-1
Locus_5035	0.04 ± 0.00	0.15 ± 0.06	0.0055	662	Bol032354	420	AT5G49450		

Note: NC, not calculated. FC1, signal intensity of 0°C treated plant over control plant (22°C) in BN106. FC2, signal intensity of 0°C treated plant over control plant in BN107.
Figure 2: Continued.
Figure 2: Continued.
Figure 2: Continued.
Figure 2: Relative expression levels of 22 BolbZIP genes in cabbage inbred lines cold-tolerant BN106 and cold-susceptible BN107 under cold stress conditions. 5-week-old plants were treated at 4°C, 0°C, and −2°C. The actin transcript levels were used for normalization. Values shown are relative to transcript levels in the 22°C treated plants. Error bars indicate standard deviation. (a) Genes showing no significant relative expression change in BN106 and upregulating at all temperatures in BN107. (b) Genes showing upregulation at all temperatures in BN106 and no significant relative expression change in BN107. (c) Genes showing greater upregulation at lower temperatures in BN106 and BN107. (d) Genes showing downregulation in response to cold in BN106 and BN107.
Figure 3: RT-PCR analysis of three BolbZIP genes in response to cold. These genes showed no expression in 22°C-treated cabbage inbred lines BN106 and BN107. The actin transcript levels were used as an internal control.

Figure 4: Heat map representation of cold-responsive expression of BolbZIP and BrbZIP genes. The expression pattern of the BolbZIPS and their closest BrbZIP homologs in response to cold (4°C) and freezing (−2°C) stresses are shown. Heat map was generated using up- and downregulated gene expression data from qRT-PCR and RT-PCR results.
BioMed Research International

Figure 5: Amino acid sequences of Bol003312 and Bol042749 and their homologs. (a) An alignment of the amino acid sequences of Bol003312 and two homologs, Bra020735 and AT3G30530. Conserved sequences of bZIP domain are highlighted using gray shade in the basic and leucine zipper regions. (b) An alignment of the amino acid sequences of Bol042729 and two homologs, Bra025144 and At2G04038.

have the same UARR and LCRs. UARRs were composed of 6 amino acids including Q, D, P, N, S, and G in the *B. oleracea* (Tables 2 and S4). This conservation of amino acid composition suggests that these 6 amino acids are important for biological functions and formation of protein structures in bZIP proteins.

BolbZIP gene family members were physically mapped to all the nine chromosomes of *B. oleracea*. Among them, chromosome 04 was found to contain the highest number of *BolbZIP* genes (21%), while chromosomes 05 and 06 harbored the fewest (6-7%) (Figure 1, Table S3). In *B. rapa*, the highest number of *BrbZIP* genes was detected in chromosome 09 (21%) [16]. Additionally, most *BolbZIP* genes were distributed in the arm end of each chromosome. The clustered distribution pattern of the *BolbZIP* genes on some chromosomes might be indicated in significant regions evolutionarily. For example, *BolbZIP* genes located on chromosomes 01, 02, 04, 07, and 08, and chromosomes 09 appear to be clustered at the arm end in those chromosomes (Figure 1).

To screen for cold stress-responsive *BolbZIP* genes, we tested the transcription patterns of *BolbZIP* genes enhanced or decreased by cold treatment in two *B. oleracea* lines that showed different cold tolerance [16]. Based on their expression patterns, the cold-responsive *BolbZIP* transcription factors were divided into four groups (Figure 2). We found that the expression of three genes, *Bol008071*, *Bol033132*, and *Bol042729*, was upregulated in cold-susceptible BN107 but not changed in cold-tolerant BN106. Additionally, when compared with 6 genes published for significant *BrbZIP* factors involved in the cold response, 4 *BolbZIP* genes
(Bol004832, homologous to Bra000256, Bra004689, and Bra003320; Bol033132, homologous to Bra020735; Bol018688, homologous to Bra011648; and Bol021255, homologous to Bra023540) showed similar patterns of expression in response to cold stress. For example, Bol033132 showed an expression pattern like that of its homolog Bra020735, indicating that these genes might be conserved key regulators in cold stress responses. Moreover, Bol033132 and Bol042729 encode bZIP proteins that include the LCR containing amino acid N or N-rich region (Figure 5, Tables S4 and S5). These results indicated that the N-containing region of BolbZIP proteins might be involved in cold stress responses. Although the functions of the N-containing region are largely unknown, the regions might be biologically active [24, 25]. This genome-wide identification and expression profiling of bZIP proteins from B. oleracea provides new opportunities for functional analyses, which may be used in further studies for improving stress tolerance in plants.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

Acknowledgments

This research was supported by Golden Seed Project (Center for Horticultural Seed Development, no. 213003-04-4-SB10), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA), and Korea Forest Service (KFS).

References

[1] W. T. Park, J. K. Kim, S. Park et al., “Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. Gongylodes),” Journal of Agricultural and Food Chemistry, vol. 60, no. 33, pp. 8111–8116, 2012.

[2] D. Pino Del Carpio, R. K. U. Basnet, D. Arends et al., “Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway,” PloS ONE, vol. 9, no. 9, Article ID e107123, 2014.

[3] S. Liu, Y. Liu, X. Yang et al., “The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes,” Nature Communications, vol. 5, article 3930, 2014.

[4] X. Wang, H. Wang, J. Wang et al., “The genome of the mesopolyploid crop species Brassica rapa,” Nature Genetics, vol. 43, no. 10, pp. 1035–1040, 2011.

[5] T. Yoshida, Y. Fujita, K. Maruyama et al., “Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress,” Plant, Cell and Environment, vol. 38, no. 1, pp. 35–49, 2015.

[6] Y. Wang, L. Li, T. Ye, Y. Lu, X. Chen, and Y. Wu, “The inhibitory effect of ABA on floral transition is mediated by AB13 in Arabidopsis,” Journal of Experimental Botany, vol. 64, no. 2, pp. 675–684, 2013.

[7] C. C. Matioli, J. P. Tomaz, G. T. Duarte et al., “The arabidopsis bZIP gene AthZIP63 is a sensitive integrator of transient abscisic acid and glucose signals,” Plant Physiology, vol. 157, no. 2, pp. 692–705, 2011.

[8] K. Dietrich, F. Weltmeier, A. Ehler et al., “Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during Low energy stress,” Plant Cell, vol. 23, no. 1, pp. 381–395, 2011.

[9] H. U. Stotz, S. Mueller, M. Zoeller, M. J. Mueller, and S. Berger, “TGA transcription factors and jasmonate-independent CII signalling regulate specific plant responses to reactive oxylipins,” Journal of Experimental Botany, vol. 64, no. 4, pp. 963–975, 2013.

[10] A. G. L. Assunção, E. Herrero, Y.-F. Lin et al., “Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 22, pp. 10296–10301, 2010.

[11] M. Zander, S. La Camera, O. Lamotte, J.-P. Météraux, and C. Gatz, “Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses,” Plant Journal, vol. 61, no. 2, pp. 200–210, 2010.

[12] Y. Zhang, Z. Liu, R. Liu, H. Hao, and Y. Bi, “Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner,” Plant Signaling & Behavior, vol. 6, no. 5, pp. 632–634, 2011.

[13] A. T. Maier, S. Stehling-Sun, H. Wollmann et al., “Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression,” Development, vol. 136, no. 10, pp. 1613–1620, 2009.

[14] C. Weiste and W. Dröge-Laser, “The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery,” Nature Communications, vol. 5, article 3884, 2014.

[15] D. A. Vysotskii, I. J. de Vries-van Leeuwen, E. Souer, A. V. Babakov, and A. H. de Boer, “ABF transcription factors of Thellungiella salsuginea: Structure, expression profiles and interaction with I4-3-3 regulatory proteins,” Plant Signaling & Behavior, vol. 8, no. 1, article e22672, 2013.

[16] I. Hwang, H.-J. Jung, J.-I. Park, T.-J. Yang, and I.-S. Nou, “Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response,” Genomics, vol. 104, no. 3, pp. 194–202, 2014.

[17] M. C. Baloglu, V. Eldem, M. Hajyzadeh, and T. Unver, “Genome-wide analysis of the bZIP transcription factors in cucumber,” PloS ONE, vol. 9, no. 4, Article ID e96014, 2014.

[18] J. Wang, J. Zhou, B. Zhang, J. Vanitha, S. Ramachandran, and S.-Y. Jiang, “Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum,” Journal of Integrative Plant Biology, vol. 53, no. 3, pp. 212–231, 2011.

[19] A. Nijhawan, M. Jain, A. K. Tyagi, and J. P. Khurana, “Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice,” Plant Physiology, vol. 146, no. 2, pp. 333–350, 2008.

[20] Y. Liao, H.-F. Zou, W. Wei et al., “Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis,” Planta, vol. 228, no. 2, pp. 225–240, 2008.

[21] M. Jakoby, B. Weisshaar, W. Dröge-Laser et al., “bZIP transcription factors in Arabidopsis,” Trends in Plant Science, vol. 7, no. 3, pp. 106–111, 2002.
[22] E. Pourabed, F. Ghane Golmohamadi, P. Soleymani Monfared, S. M. Razavi, and Z.-S. Shobbar, "Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis," Molecular Biotechnology, vol. 57, no. 1, pp. 12–26, 2015.

[23] X. Zhou, F. Yuan, M. Wang, A. Guo, Y. Zhang, and C. G. Xie, "Molecular characterization of an ABA insensitive 5 orthologue in Brassica oleracea," Biochemical and Biophysical Research Communications, vol. 430, no. 3, pp. 1140–1146, 2013.

[24] R. A. Fuentealba, M. Udan, S. Bell et al., "Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43," The Journal of Biological Chemistry, vol. 285, no. 34, pp. 26304–26314, 2010.

[25] A. María Velasco, A. Becerra, R. Hernández-Morales et al., "Low complexity regions (LCRs) contribute to the hypervariability of the HIV-1 gp120 protein," Journal of Theoretical Biology, vol. 338, pp. 80–86, 2013.