CDH13 is Frequently Inactivated by Promoter Hypermethylation in Pediatric Acute Myeloid Leukemia (AML)

Tao Yan-Fang1, Feng Xing1, Wang Jian1, Zhao Wen-Li1, Xiao-Juan Du1, Wu Shui-Yan1, Wang Na1, Hu Shao-Yan1, Cao Lan1, Li Yan-Hong1, Ni Jian1 and Pan Jian2*

1Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
2Department of Gastroenterology, The 5th Hospital of Chinese PLA, Yinchuan, Ningxia Province, China
3Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China

Abstract

There is growing evidence supporting a role for tumor suppressor as targets in the aberrant mechanisms of DNA hypermethylation. Methylation in the promoter of tumor suppressor always plays important roles in the development of AML. CDH13 gene is a tumor suppressor involved in leukemogenesis, metastasis and apoptosis in a variety of tumors. In this study, we are trying to investigate whether CDH13 was down regulated by promoter methylation in pediatric AML. mRNA transcriptional expression levels of CDH13 were evaluated by semi-quantitative PCR and real-time PCR. Methylation status of CDH13 promoter was investigated by Methylation Specific PCR (MSP) and Bisulfate Genomic Sequencing (BGS). CDH13 mRNA transcription was inactivated in AML cell lines. Promoter of CDH13 was aberrantly methylated in 55.6% (5/9) leukemia cell lines. Promoter aberrant methylation of CDH13 was detected in 34.2% (24/70) of the cases of pediatric AML. The methylation of CDH13 promoter could be detected in all FAB subtypes. There were no significant differences in clinical features between patients with and without CDH13 promoter methylation, which is a key epigenetic event responsible for enhanced proliferation and self-renewal, differentiation arrest, and impaired apoptosis of leukemic cells [4]. Inactivation of tumor suppressor genes by promoter hypermethylation has been recognized as key event in the development of pediatric AML. Compared to the incidences of DNA mutations and deletions, the frequency of aberrant DNA methylation of tumor suppressor genes is high in AML. This suggests that aberrant DNA methylation has important roles in this rare cancer. Identifying these methylated genes and deeply study of these genes may provide better understanding of many tumors, including pediatric AML [5].

CDH13 (also known as H-cadherin and T-cadherin) is a member of the cadherin gene super family which was isolated and mapped to 16q24. CDH13 hypermethylation has been documented in breast [6-8], lung cancers [9-11], pituitary adenomas [12,13], diffuse large B cell lymphoma [14], nasopharyngeal carcinoma [15-18] and cutaneous squamous cell carcinomas [19,20]. CDH13 has been suggested as an early marker for lung cancers [21]. It is generally associated with poor prognosis of patients with lung cancers [22,23], ovarian cancers [24], basal cell cancers [20] and gallbladder carcinomas [25], cervical cancers [26-28] and prostate cancers [29-31].

There are several studies suggested that CDH13 may functions as a tumor suppressor gene and possesses potent antitumor activity in several human cancers both in vitro and in vivo. Over-expression of CDH13 in MDA-MB-435 (human breast cancer cells) can reduce their invasive and tumor formation potential in vitro and in vivo [32]. Loss of CDH13 is associated with tumorigenicity of human non-small cell lung cancers. Over expression of CDH13 in cutaneous squamous cell carcinoma cells can induce a delay in the G2/M cell cycle and inhibit the proliferation of cancer cells [20].

To date, there have been few reports in relation to the expression of CDH13 and the methylation status of its promoter in pediatric leukemia. In this study, we have provided the first evidence of CDH13 methylation in both AML cell lines and pediatric samples. These suggest that CDH13 may function as a tumor suppressor in pediatric AML.

Materials and Methods

Cell lines

Leukemia cell lines HL-60, MV4-11, SHI-1, U937, Daudi, K562 and SHI-1 were obtained from the American Type Culture Collection (ATCC), Jurkat and 697 cell lines (gifts from Professor Wang Jian-Rong, The Cytus Tang Hematology center of Soochow University).

Keywords: CDH13; Methylation; AML; Genetics; Pediatrics

Introduction

Acute leukemia is the most common malignancy diagnosed in children, representing nearly one third of all pediatric cancers. Pediatric Acute Myeloid Leukemia (AML) comprises up to 20% of whole childhood leukemia. Pediatric AML is a heterogeneous clonal disorder of hematopoietic progenitor cells, is a complex and life-threatening disease which lose the ability to differentiate normally [1]. Recently, epigenetic and methylation disorders, such as aberrant promoter hypermethylation and abnormal histone modifications have been implicated in the pathogenesis of leukemia [2,3]. These include aberrations in methylation, which is a key epigenetic event responsible for enhanced proliferation and self-renewal, differentiation arrest, and impaired apoptosis of leukemic cells [4]. Inactivation of tumor suppressor genes by promoter hypermethylation has been recognized as key event in the development of pediatric AML. Compared to the incidences of DNA mutations and deletions, the frequency of aberrant DNA methylation of tumor suppressor genes is high in AML. This suggests that aberrant DNA methylation has important roles in this rare cancer. Identifying these methylated genes and deeply study of these genes may provide better understanding of many tumors, including pediatric AML [5].
The entire cell lines were maintained at 37°C in the RPMI 1640 supplemented with 10% fetal bovine serum.

Patients and samples

Bone marrow specimens were obtained at the time of diagnosis during routine clinical assessment of 70 patients with AML, who presented at the Department of Hematology and Oncology, Children’s Hospital of Soochow University between 2000 and 2010. Ethical approval was provided by the Children’s Hospital of Soochow University Ethics Committee (No. SUEC2000-021), and informed consent was obtained from the parents or guardians. AML diagnosis was made in accordance with the revised French–American–British (FAB) classification. Cytogenetic data were available in 64 patients. The main clinical and laboratory features of the patient cohort are summarized in table 1. Additionally, bone marrow samples from 12 healthy donors and 18 patients with Idiopathic Thrombocytopenic Purpura (ITP) were analyzed as controls. Bone marrow Mononuclear Cells (BMNCs) were isolated using Ficoll solution within 2 h after bone marrow samples harvested and immediately subjected for the extraction of total RNA and genomic DNA.

Semi-quantitative RT-PCR

RT-PCR was analyzed according to the manufacturer’s instructions. Primer sequences for CDH13 cDNA were designed according to Sun [18], generating a 203-bp PCR product: CDH13-RT-forward: TTCCAGACAAAGTGTCGATAT and CDH13-RT-reverse: GTTCTGGAGGGAACAGGAGT. PCR was carried out in a total volume of 20 μl system. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) was amplified from the same cDNA sample as the internal control. The primer sequences for GAPDH cDNA were: GAPDH-forward: TTCAGCAGAAAGTGTTCCATAT and GAPDH-reverse: 5-AAAATACCAAATCTCCCTATTCTCCGCG-3; CDH13-M-forward: 5-GTTTTTTTGGTGAGTTTTTTCGTTC-3; CDH13-M-reverse: 5-AATACCAAATCTCCCTATTCTCCACGA-3.

Quantitative Real-time PCR

RNA isolation and first-strand cDNA was synthesized as described above. Real-time PCR was performed according to the manufacturer’s protocol (Light Cycler 480 system, Roche). In brief, PCR mixture contained 100 pmol of each primer, Light Cycler 480 SYBR Green I Master (04 887 352 01 Roche, USA) and 2 μl cDNA. PCR conditions were 94°C for 10 s, 58°C for 10 s and 72°C for 15 s, 45cycles for the CDH13 and GAPDH gene.

Sodium bisulphite modification of genomic DNA

The sodium bisulphite modification procedure was according to the manufacturer’s instructions of EZ DNA methylation Gold Kit (www.zymoresearch.com). Briefly 2 μg of extracted DNA was bisulphite-modified with the EZ DNA methylation Kit which converted all unmethylated cytosines to uracils and leaving methylcytosines unaltered. Modified DNA was resuspended in TE buffer (10 mM Tris/HCl, 1 mM EDTA, pH 7.5).

Methylation-specific PCR

The methylation status of the CDH13 promoter region was determined by methylation-specific PCR. Primers distinguishing unmethylated (U) and methylated (M) alleles were designed to amplify the sequence: CDH13-M-forward: 5-GTTTTTTTGGTGAGTTTTTTCGTTC-3; CDH13-M-reverse: 5-AATACCAAATCTCCCTATTCTCCGCG-3; CDH13-U-forward: 5-TGTAGTTTTTTGAGTTTTTGGTTTTTGTGT-3; CDH13-U-reverse: 5-AAATACCAAATCTCCCTATTCTCCACGA-3.

Each PCR reaction contained 20 ng of sodium bisulphite-modified DNA, 250 pmol of each primer, 250 pmol deoxyoxynucleoside triphosphate, 1× PCR buffer, and one unit of ExTaq HS polymerase (Takara, Tokyo) in a final reaction volume of 20 μl. Cycling conditions were initial denaturation at 95°C for 3 min, 40 cycles of 94°C for 30 s, 58°C for 10 s and 72°C for 15 s, 45cycles for the CDH13 gene and 24 cycles for the GAPDH gene. The amplified PCR products were then identified on 2% agarose gels. Images were acquired with a CCD camera (Bio-Rad, USA).

Correlation of CDH13 methylation with clinical features in pediatric AML patients.

Table 1:

Patient’s parameter	Methylation (n=24)	Unmethylation (n=46)	Total	p value
Age (median and range, year)	6.30(1-13)	6.72(1-11)	6.47(1-13)	0.94
Gender (male and female)	14/10	20/28	34/46	0.68
Laboratory parameters (median and range)				
WBC (10⁹/L)	16.72(0.8-51.1)	16.31(0.8-43.6)	16.43(0.8-51.1)	0.90
Hemoglobin (g/L)	75.36(32-176)	72.11(32-176)	72.20(32-176)	0.83
Platelet count (10⁹/L)	68.37(12-310)	64.12(23-273)	65.54(12-310)	0.75
FAB subtype, n				
M1	2	10	12	
M2	12	20	32	
M3	6	4	10	
M4	2	3	5	
M5	5	4	9	0.22
Cytogenetic, n				
Normal	10	13	23	
Abnormal	24	21	45	0.61
CDH13 transcript	0.53	1.72	1.31	0.04*

* p<0.05 FAB, French-American-British; WBC, white blood cells.
CDH13-R2: 5'-AACCCCTCTCCCTACCTAAA-3. Amplified BGS products were TA-cloned and five to six randomly chosen colonies were sequenced. DNA sequences were analyzed with BiQ Analyzer (http://biq-analyzer.bioinf.mpi-inf.mpg.de). (Additional files 1 and 2).

Statistical analysis

SPSS v11.5 (SPSS Inc., Chicago, IL) was used for statistical analysis. Association between methylated sample data and clinical pathological features of AML patients were analyzed by Pearson chi-square test or Fisher’s exact test. p<0.05 was considered statistically significant.

Results

CpG islands in the promoter of CDH13

Previously, we have analyzed the expression profiles of two AML cells before and after treatment with 5-Aza and found that the CDH13
may be related with promoter methylation in AML cells. We analyzed the sequence of CDH13 promoter and found there are three CpG island areas in the promoter of CDH13 (Figure 1A). The correlation between aberrant methylation and downregulation of CDH13 has been extensively documented in numerous cancers and cell lines, as lung cancer, gastrointestinal system, reproductive system and numerous cell lines. There still rare repots about the methylation status of CDH13 in blood system, especially in the pediatric leukemia.

Expression of CDH13 transcript in leukemia cell lines

Semi-quantitative PCR analysis showed CDH13 transcript is very low in nine leukemia cell lines. The expression of CDH13 in only three cell lines can be detected (3/9). Mean while, the expression of CDH13 in NBM group is significantly higher; the expression of CDH13 in all of 5 NBM samples can be detected with PCR (Figure 1B).

Figure 2: CDH13 is frequently inactivated by promoter hypermethylation in pediatric AML.
CDH13 promoter is hypermethylated in leukemia cell lines

Methylation-specific PCR (MSP) assays were performed to detect the methylation status of the CDH13 promoter in 9 leukemia cell lines. The MSP primer was designed using MethPrimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) to encompass the CpG islands of the CDH13 promoter identified in figure 1A. The CDH13 promoter was hypermethylated in 5 of 9 leukemia cell lines (HL-60, MV4-11, U937, K562 and THP-1). Shi-1, Jurkat, 697 and Dami cells were unmethylated representative results of MSP were shown in figure 1C. Promoter methylation of HL-60, MV4-11, Jurkat and 697 cell lines was analyzed with bisulfite genomic sequencing. And the results consistent with the MSP assay (Figure 1D). In summary, these results showed that the CDH13 promoter was consistently significantly methylated in leukemia cells, such as HL-60, MV4-11, U937, K562 and THP-1. In contrast the CDH13 promoter was unmethylated in human lymphoblastic leukemia cells, such as Jurkat and 697. Based on these findings, we proposed that the promoter of CDH13 may be methylated in pediatric AML patients.

The promoter of CDH13 is methylated in Pediatric AML patients

We next examined the methylation status of the CDH13 promoter in pediatric AML samples and NBM/ITP (normal bone marrow/idiopathic thrombocytopenic purpura) control samples. Aberrant methylation of CDH13 was observed 2 (6.7%) in the 30 bone marrow samples from controls and 24 (34.3%) cases among70 pediatric AML samples (Figure 2A). Aberrant methylation of the CDH13 gene could be detected in all FAB subtypes and in all cytogenetic risk groups. There were no significant differences in clinical features, such as sex, age, initial hemoglobin level, white blood cell counts, platelet counts, and chromosomal abnormalities between patients with and without CDH13 methylation (Table 1). The survival time of the patients also has no relationship with the methylation status of CDH13 (Figure 2D).

Expression of CDH13 transcript in pediatric AML patients

The transcript level of CDH13 gene was examined in 70 AML patients with available materials using Real-time PCR. As shown in table 1, CDH13 expression was significantly decreased in AML patients (1.31 ± 2.95) compared to 30 NBM/ITP controls (6.69 ± 4.67, p<0.001); Both patients with CDH13 methylation (n=24) and those without CDH13 methylation (n=46) had significantly lower CDH13 transcript than controls (p<0.001) (Figures 2B and 2C). Furthermore, CDH13 transcript was significantly lower in patients with methylated CDH13 than those without methylated CDH13 (p=0.036) (Table 1).

Discussion

CDH13, instances of both hypermethylation and loss of function have been documented in numerous cancers. In our study, hypermethylation of the CDH13 promoter was detected in 5 of 9 (55.6%) leukemia cell lines. A high frequency (34.3%) of CDH13 promoter hypermethylation was also found in pediatric AML primary tumor cells, which implied that silencing of the CDH13, may be involved in the tumorigenesis of pediatric AML. Promoter hypermethylation of CDH13 is frequently found in AML, but it is not associated with sex, age and patient’s survival in our series. This is inconsistent with observations in non-small-cell lung cancer: a high methylation rate of CDH13 is generally associated with poor prognosis in lung cancers [23], but consistent with colorectal cancers [34].

Several reports have implied the effects of CDH13 gene on the proliferation and apoptosis of cancer cells. Melanoma cells that re-express CDH13 show a reduction in the rate of tumor growth in a nu/nu mouse tumor model [35]. CDH13 over-expression in hepatocellular carcinoma also increases sensitivity of tumor cells to TNFa-induced apoptosis [36]. Positive relationship between CDH13 and Cyclin D2 methylation was reported in prostate cancer [37]. There still no report about the effects of CDH13 in leukemia cells. Leukemia cells may share the same mechanism with solid tumor cells, or maybe there is totally different molecular mechanism in leukemia cells.

Besides the methylation of CDH13, gene mutation and spliced mRNAs may also play important role in pediatric AML. Two single nucleotide polymorphism in distinct introns of CDH13 have been associated with greater sensitivity of lymphoblastoid cell lines to apoptosis induced by cisplatin and daunorubicin [38]. CDH13 produces a lot of spliced mRNAs, many of these encode proteins are predicted to be secreted and thus, like proteolytic fragments of the major CDH13 isoforms, might function as extracellular ligands. Until now little is known about these smaller proteins. Next step, we will explore the relationship between mutation/spliced mRNA of CDH13 and pediatric leukemia.

Conclusions

This work demonstrated that inactivation of CDH13 by promoter hypermethylation is a tumor specific and frequent event in pediatric AML.

Acknowledgement

This work was supported by grants from the National Key Basic Research Program No. 2010CB933902, National Natural Science Foundation for youth No. 91100371, Natural Science Foundation of Jiangsu Province No. BK2011308, Universities Natural Science Foundation of Jiangsu Province No. 11KJB320014 and Talent’s subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020. Medical innovation team and leading talent’s subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020. Medical innovation team and leading talent’s subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020. Medical innovation team and leading talent’s subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020. Medical innovation team and leading talent’s subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020. Medical innovation team and leading talent’s subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020. Medical innovation team and leading talent’s subsidy project in science and education of department of public health of Suzhou City No. SWKQ1020.

Declaration of Interest statement

The authors have no conflicts of interest to disclose.

References

1. Esteve E, Döhner H (2006) Acute myeloid leukaemia. Lancet 368: 1894-1907.
2. Plass C, Oakes C, Blum W, Marcucci G (2008) Epigenetics in acute myeloid leukaemia. Semin Oncol 35: 378-387.
3. Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4: 988-993.
4. Southwood J, Wainscoat JS (2007) Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 138: 3-11.
5. Inaba T (2009) Epidemiology of leukemia and MDS among atomic bomb survivors in Hiroshima and Nagasaki suggests how abnormal epigenetic regulation contributes to leukemogenesis. Rinsho Ketsueki 50: 1548-1552.
6. Xu J, Shetty PB, Feng W, Chenault C, Bast RC Jr, et al. (2012) Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer 12: 243.
7. Riener MO, Nikolopoulos E, Herr A, Wild PJ, Hausmann M, et al. (2008) Microarray comparative genomic hybridization analysis of tubular breast carcinoma shows recurrent loss of the CDH13 locus on 16q. Hum Pathol 39: 1621-1629.
8. Moelans CB, Verschuer-Maes AH, van Diest PJ (2011) Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAI5, PAI6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225: 221-231.
9. Kontic M, Stojisic J, Jovanovic D, Bunjevacki V, Ognjanovic S, et al. (2012) Aberrant promoter methylation of CDH13 and MGMT genes is associated with clinicopathological characteristics of primary non-small-cell lung carcinoma. Clin Lung Cancer 13: 297-303.
10. Sato M, Mori Y, Sakurada A, Fujimura S, Horii A (1998) The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum Genet 103: 96-101.

11. Toyoooka KO, Toyoooka S, Virmani AK, Salthanarayana AG, Euhus DM, et al. (2001) Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61: 4556-4560.

12. Hutanu SH, Indrasari SR, Indrawati LP, Harjadi A, Duin S, et al. (2011) Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Mol Cancer 10: 48.

13. Gion ZR, Sano T, Yoshimoto K, Asa SL, Yamada S, et al. (2007) Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH11 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 20: 1269-1277.

14. Ogama Y, Ouchida M, Yoshino T, Ito S, Takimoto H, et al. (2004) Prevalent hyper-methylation of the CDH13 gene promoter in malignant B cell lymphomas. E J Oncol 25: 685-691.

15. Wang Z, Yuan X, Jao N, Zhu H, Zhang Y, et al. (2012) CDH13 and FLBN3 gene methylation are associated with poor prognosis in colorectal cancer. Pathol Oncol Res 18: 263-270.

16. Kinishi K, Watanabe Y, Shen L, Guo Y, Castoro RJ, et al. (2011) DNA methylation profiles of primary colorectal carcinoma and matched liver metastasis. PLoS One 6: e27889.

17. Ren JZ, Huo JR (2012) 5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice. Zhonghua Zhong Liu Za Zhi 34: 6-10.

18. Sun D, Zhang Z, Van do N, Huang G, Embger I, et al. (2007) Aberrant methylation of CDH13 gene in nasopharyngeal carcinoma could serve as a potential diagnostic biomarker. Oral Oncol 43: 82-87.

19. Lin YL, Sun G, Liu XQ, Li WP, Ma JG (2011) Clinical significance of CDH13 promoter methylation in serum samples from patients with bladder transitional cell carcinoma. J Int Med Res 39: 179-186.

20. Takeuchi T, Liang SB, Matsuyoshi N, Zhou S, Miyachi Y, et al. (2002) Loss of T-cadherin (CDH13, H-cadherin) expression in cutaneous squamous cell carcinoma. Lab Invest 82: 1023-1029.

21. Kim JS, Kim MJ, Lee JY, Kim YZ, Kim EJ, et al. (2007) Aberrant methylation of E-cadherin and H-cadherin genes in nonsmall cell lung cancer and its relation to clinicopathologic features. Cancer 110: 2785-2792.

22. Suzuki M, Shigematsu H, Iizasa T, Hiroshima K, Nakatani Y, et al. (2006) Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer 106: 2200-2207.

23. Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, et al. (2008) DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med 358: 1118-1128.

24. Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, et al. (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25: 2636-2645.

25. Enzinger PC, Mayer RJ (2004) Gastrointestinal cancer in older patients. Semin Oncol 31: 206-219.

26. Wentzensen N, Sherman ME, Schiffman M, Wang SS (2009) Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. Gyncol Oncol 112: 293-299.

27. Feng Q, Balasubramanian A, Hawes SE, Toure P, Sow PS, et al. (2005) Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 97: 273-282.

28. Muller HM, Fiegli H, Widschwendter A, Widschwendter M (2004) Prognostic DNA methylation marker in serum for cancer patients. Ann N Y Acad Sci 1022: 44-49.

29. Phve V, Cussenot O, Rouprêt M (2010) Methylated genes as potential biomarkers in prostate cancer. BJU Int 105: 1364-1370.

30. Alumkal JJ, Zhang Z, Humphreys EB, Bennett C, Mangold LA, et al. (2008) Effect of DNA methylation on identification of aggressive prostate cancer. Urology 72: 1234-1239.

31. Mariyama Y, Toyoooka S, Toyoooka KO, Virmani AK, Zischauer-Müller S, et al. (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8: 514-519.

32. Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, et al. (2010) Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer 10: 378.

33. Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, et al. (2010) KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas. Cancer Res 70: 6516-6526.

34. Hibi K, Nakao A (2006) Lymph node metastasis is infrequent in patients with highly-methylated colorectal cancer. Anancancer Res 26: 55-58.

35. Kuphal S, Martyn AC, Pedley J, Crowther LM, Bonazzi VF, et al. (2009) H-cadherin expression reduces invasion of malignant melanoma. Pigment Cell Melanoma 18: 253-262.

36. Cheng Y, Zhang C, Zhao J, Wang C, Xu Y, et al. (2010) Correlation of CpG island methylator phenotype with poor prognosis in hepatocellular carcinoma. Exp Mol Pathol 88: 112-117.

37. Padar A, Salthanarayana AG, Suzuki M, Maruyama R, Hsieh JT, et al. (2003) Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res 9: 4730-4734.

38. Shukla SJ, Duan S, Badner JA, Wu X, Dolan ME (2008) Susceptibility loci involved in cispilatin-induced cytotoxicity and apoptosis. Pharmacogenet Genomics 18: 253-262.
Additional file 1: Bisulfite genomic sequencing of HL-60 cells

Sample	Bisulfite Genomic Sequencing	SSCP Analysis
1#	GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTAAGCTGTCCTCCACGGGAAAATA	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
2#	GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
3#	GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
4#	GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
5#	GGAAGTTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA

Additional file 2: Bisulfite genomic sequencing of MV4-11 cells

Sample	Bisulfite Genomic Sequencing	SSCP Analysis
1#	GGAAGTTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTAAGCTGTCCTCCACGGGAAAATA	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
2#	GGAAGTTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
3#	GGAAGTTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
4#	GGAAGTTGGCTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
5#	GGAAGTTGGCTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA

Additional file 3: Bisulfite genomic sequencing of Jurkat cells

Sample	Bisulfite Genomic Sequencing	SSCP Analysis
1#	GGAAGTTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTAAGCTGTCCTCCACGGGAAAATA	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
2#	GGAAGTTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
3#	GGAAGTTGGCTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
4#	GGAAGTTGGCTGGCTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA
5#	GGAAGTTGGCTGGCTGGCTGGCTGGCTGGCGAGGCAGAGCCTCTCCTCCTTCTTCGAGTCATCCGCCCTCGCCAGGGTGGG	TGGCTAGTGAGCCGCGCTGTGCTGATGAAAGAAGCGCCGGGGCCCTCTTGACTGCGACAAAAA

Citation: Yan-Fang T, Xing F, Jian W, Wen-Li Z, Du XJ, et al. (2013) CDH13 is Frequently Inactivated by Promoter Hypermethylation in Pediatric Acute Myeloid Leukemia (AML). J Hematol Thromb Dis 1: 111. doi: 10.4172/2329-8790.1000111
Additional file 2: Real-time PCR analysis the expression of CDH13 gene in NBM and pediatric AML patients.

	NBM/ITP	Pediatric AML	CDH13 methylated	CDH13 unmethylated
1	5.985902	0.00956268	0.00956268	0.4312417
2	10.75226	0.00826937	0.00826937	16.81374
3	17.77242	0.5850244	0.5850244	2.773232
4	5.663008	3.045267	0.00956268	5.086131
5	4.351668	0.5850244	0.5850244	4.312417
6	5.682669	0.2729235	0.2729235	2.094464
7	2.307881	0.3442596	0.3442596	0.524317
8	0.000212032	0.0282926	0.0282926	0.05170934
9	9.136038	0.6743495	0.6743495	0.05170934
10	1.823321	0.00826937	0.00826937	0.07363669
11	6.347538	0.09615919	0.09615919	0.07363669
12	5.985902	0.3741189	0.3741189	0.0542567
13	10.75226	2.992651	0.00826937	0.3045267
14	17.77242	0.1143532	0.1143532	0.5850244
15	5.663008	0.06990641	0.06990641	0.0542567
16	4.351668	0.00399267	0.00399267	0.5850244
17	5.682669	0.5850244	0.5850244	0.2729235
18	2.307881	0.01853722	0.01853722	0.3442596
19	0.000212032	0.04057032	0.04057032	0.0282926
20	9.136038	0.2351362	0.2351362	0.6743495
21	1.823321	3.045267	3.045267	0.00826937
22	6.347538	2.094464	2.094464	0.09615919
23	5.985902	0.5402011	0.5402011	0.3741189
24	10.75226	3.045267	3.045267	2.992651
25	17.77242	0.4312417	0.4312417	0.1143532
26	5.663008	16.81374		0.06990641
---	----	----	---------------------	---------------------
27	4.351668	2.773232	0.003992667	
28	5.682669	5.086131	0.5850244	
29	2.307881	0.4312417	0.01853722	
30	9.136038	2.094446	0.04057032	
31	0.05243117	0.2351362		
32	0.05170934	0.002774741		
33	0.05170934	0.0106838		
34	0.07363669	0.5402011		
35	0.07363669	0.4668565		
36	0.009562268	0.4312417	16.61374	
37	0.00826937	2.773232	5.086131	
38	0.5850244	3.045267		
39	3.045267	2.773232		
40	0.5850244	0.4312417	2.094446	
41	0.2729235	0.05243117		
42	0.3442596	0.05170934		
43	0.0282926	0.05170934		
44	0.6743495	2.992951		
45	0.00826937	3.045267		
46	0.09615919	2.992951		
47	0.3741189	0.4312417		
48	0.6990641	0.05243117		
49	0.03992867	0.05170934		
50	0.5850244	0.05170934		
51	0.01853722	16.61374		
52	0.04057032	2.773232		
53	0.2351362	5.086131		
54	0.002774741	0.4312417	16.61374	
55	0.1143532	2.992951		
56	0.0106838	3.045267		
57	0.5402011	5.086131		
58	0.4865855	2.992951		
59	0.4312417	2.773232		
60	16.61374	3.045267		
61	0.0106838	0.4312417	2.773232	
62	0.5402011	16.61374		
63	0.5850244	0.01853722		
64	0.05243117	0.6743495	2.992951	
65	0.05170934	2.992951		
66	0.05170934	2.773232		
67	0.05170934	0.4312417	3.045267	
68	2.992951	3.045267		
69	3.045267	16.61374		
70	6.698232841	1.310098949	1.716575293	
	1.310098949	0.533199123		
	0.533199123	3.540122523		

AV 6.698232841 1.310098949 0.533199123 1.716575293
SD 4.672074863 2.959070404 0.892060633 3.540122523