Use of yeast cell walls and Yucca schidigera extract in layer hens' diets

Emel Gurbuz,1 Tahir Balevi,1 Varol Kurtoglu,1 Yasemin Oznurlu2
1Department of Animal Nutrition and Nutritional Disease, Selçuk University, Konya, Turkey
2Department of Histology and Embryology, Selçuk University, Konya, Turkey

Abstract

This research was conducted to determine the impact of diet supplementation with yeast cell walls (YCW) and Yucca schidigera extract (YE) on performance, egg weight, specific gravity, body weight, and intestinal tissue histology in layer hens. White, 48-week-old, Hy-line hybrid hens (n=320) were divided into four main groups, each comprising eight groups of 10 hens: (1) control, (2) 500 mg/kg YCW added, (3) 500 mg/kg YE added and (4) 250 mg/kg YE plus 2500 mg/kg YCW added. While the egg production and feed intake of the hens was significantly affected, overall feed efficiency, damaged-egg ratio, dirty-egg ratio, egg weight and specific gravity did not differ between the control group and the YCW, YE or YCW+YE groups. Final body weight was higher in the YCW, YE and YCW+YE groups than in the control group. There were differences in the width, muscle layer thickness and height/depth ratio of the duodenal villus and the width of the ileal villus among the four groups. It can be concluded that YCW and YCW+YE supplementation for layer hens are beneficial for egg production.

Materials and methods

Experimental design and animals

A total of 320 hybrid laying hens (Hy-Line W-36), aged 48 weeks, were placed in a completely enclosed, fan-ventilated, light- (15L:9D) and temperature- (20°C) controlled room. The hens were housed in metal cages (55×45×40 cm) with five hens in each cage (two cages per replication). Layer hens were randomly allocated to four experimental groups with eight replications (10 birds per replication, giving 80 hens per experimental group). Feed and water were provided ad libitum. The experimental period lasted 90 days.

Diets and feeding

The hens were fed a complete diet that was specially formulated to meet their requirements, which comprised 11.63 MJ/kg metabolisable energy and 16% crude protein, according to the Hy-Line W-36 Commercial Management Guide (Table 1); the diet was unchanged throughout the experimental period. The diets in four of the experimental groups were supplemented with 500 mg/kg YCW (Global Nutritech, Turkey), 500 mg/kg YE (Global Nutritech, Turkey) and 250 mg/kg YCW plus 250 mg/kg YE.

Egg weight and eggshell parameters

Egg weight and specific gravity were determined monthly using the methods described by Hamilton (1982) and Hempe et al. (1988). Five eggs were taken from each replication at 0, 30, 60 and 90 days.

Feed analyses

All feed samples were analysed for dry matter (934.01; AOAC, 1990), ash (942.05; AOAC, 1990), nitrogen (Kjeldahl procedure: 988.05; AOAC, 1990), ether extract (920.39, AOAC, 1990), crude fibre (962.09, AOAC, 1990), cal-
Yeast cell walls and Yucca in hens' diets

Body weight

Data for the 90 days evaluation period are presented in Table 2. Final body weight was higher in the YCW, YE and YCW+YE groups than in the control (P<0.05).

Mortality rate

The mortality rate throughout the trial did not differ (P>0.05) significantly among the treatments (Table 2).

Intestinal histomorphometry

Table 3 shows the effect of YCW and YE on the intestinal histomorphometry of layer hens. The width of the duodenal villus was higher (P<0.05) in the control and YCW+YE group than in the YCW and YE groups. The muscle layer thickness of the duodenal villus was higher (P<0.05) in the control group than in the YCW, YE and YCW+YE groups. The crypt depth of the duodenal villus was higher (P<0.05) in the control, YCW and YCW+YE groups than in the YE group. The villus height/crypt depth ratio of the duodenum was higher (P<0.05) in the YE and YCW+YE groups than in the control and YCW groups. The width of the ileal villus was higher (P<0.05) in the YCW, YE and YCW+YE groups than in the control group.

Discussion

The addition of YCW, YE and YCW+YE to the diets affected the egg production (days 1-30, 1-90), feed intake (days 1-30, 60-90, 1-90) and final body weight of the hens. However, there were no differences in damaged-egg ratio, dirty-egg ratio, feed efficiency, egg weight and specific gravity among the four groups. The best results were found in the YCW group in

Table 1. Components and chemical composition of the diet.

Components	Control	YCW	YE	YCW+YE
Corn, %	53.70	53.75	53.75	53.75
Soybean meal, %	5.27	5.54	5.54	5.54
Full-fat soybean, %	12.00	12.00	12.00	12.00
Sunflower soapstock, %	2.00	2.00	2.00	2.00
Sunflower meal, %	8.03	7.66	7.66	7.66
DDGS, %	5.00	5.00	5.00	5.00
Fish meal, %	1.50	1.50	1.50	1.50
Dicalcium phosphate, %	1.04	1.04	1.04	1.04
Limestone, %	10.58	10.58	10.58	10.58
Salt, %	0.23	0.23	0.23	0.23
Vitamin and mineral premix*, %	0.25	0.25	0.25	0.25
Methionine, %	0.11	0.11	0.11	0.11
Lysine, %	0.04	0.04	0.04	0.04
Sode, %	0.20	0.20	0.20	0.20
Toxin binder, %	0.05	0.05	0.05	0.05
YCW, %	-	0.05	-	0.025
YE, %	-	-	0.05	0.025
YCW+YE, %	-	-	-	-

Estimated composition* (Vitamin-mineral premix contains, per 2.5 kg, 3.6 mg retinyl acetate, 0.05 mg cholecalciferol, 30 mg tocopherol acetate, 3 mg menadione dimethylpyrimidinol bisulphite, 3 mg thiamin, 6 mg riboflavin, 5 mg pirdoksain, 0.015 mg cyanocobalamin, 25 mg niacin, 0.04 mg biotin, 8 mg carotenoïd (carophyl red, carophyl yellow), 1 mg folasin, 300 mg choline chloride, 50 mg ascobic acid, 80 mg manganese, 35 mg iron, 50 mg zinc, 5 mg copper, 2 mg iodine, 0.4 mg cobalt; calculated according to the European table of energy values for poultry feedsstuffs (WPSA, 1988); calculated based on the basis of chemical analysis of components and mixtures. YCW, yeast cell wall; YE, Yucca schidigera extract; DDGS, distillers’ grains with solubles.)

Components	Control	YCW	YE	YCW+YE
Dry matter, %	88.86	88.86	88.86	88.86
Ash, %	14.43	14.46	14.46	14.46
Crude protein, %	16.00	16.00	16.00	16.00
Crude fat, %	7.18	7.18	7.18	7.18
Crude fibre, %	4.06	4.01	4.01	4.01
Calcium, %	4.25	4.25	4.25	4.25
Total phosphorus, %	0.70	0.70	0.70	0.70
Metabolisable energy, MJ/kg	11.63	11.63	11.63	11.63

Results

Performance

YCW and YCW+YE supplementation increased egg production during days 1-90 and feed consumption during days 1-30, 60-90 and 1-90 (P<0.05). There were no differences in feed efficiency, damaged-egg ratio and dirty-egg ratio among the four groups (Table 2). The feed intake was higher (P<0.05) in the YCW, YE and YCW+YE groups on days 1-30, 60-90 and 1-90 (Table 2). The feed efficiency parameter throughout the trial did not differ (P>0.05) significantly among the treatments (Table 2).

Egg weight and specific gravity

The addition of YCW, YE and YCW+YE did not change the egg weight and specific gravity (P>0.05) (Table 2).
terms of egg production and in the YE group in terms of final body weight. On the contrary, Shashidhara and Devегowda (2003) found that MOS, which is present in YCW supplementation, had no influence on egg production of broiler breeders. Similarly, previous studies (Guerrero, 1995; Berry and Lui, 2000; Stanley et al., 2000) reported considerable improvement in egg production in the MOS-fed birds. In another study (Parks et al., 2001), addition of MOS to the layer hens’ diets improved body weight and feed conversion rate and did not affect egg production. Park et al. (2008) reported that addition of BG in YCW increased egg production and decreased feed efficiency and feed consumption.

Supplementation of YCW to the layer hens’ diets can improve egg production and final body weight. It may be hypothesised that YCW can have an effect on nutrient utilisation in the gastrointestinal tract (Savage et al., 1996; Kumprecht et al., 1997). Several studies showed that dietary supplemental YE can improve body weight and feed efficiency of broilers and layers and also egg production of layers. Rowland et al. (1976) showed that dietary supplementation of YE can increase egg production of layer hens. In studies with broilers, Kutlu et al. (1998) and Preston et al. (1999) reported that addition of YE improved live weight gain and feed conversion efficiency. These results are, in term of body weight gain, in agreement with the results of our study.

Improvement of final body weight may be related to positive effects of steroid saponins in YE on nutrient absorption from the gastrointestinal tract. In addition, studies have demonstrated that steroid saponins can improve the absorption of nutrients by the small intestine (Montagne et al., 2003; Gurбuz et al., 2010). In our study, villus height/crypt depth ratio of the duodenum was higher in the YE group than the control, YCW and YCW+YE groups, and the villus width in the ileum was higher in the YCW, YE and YCW+YE groups than the control group, which would have affected intestinal absorption. In line with this is the finding of an increment in body weight in the YCW, YE and YCW+YE groups at the end of the 90-day period. In agreement with several reports (Santin et al., 2001; Zhang et al., 2005; Alfaro et al., 2007; Morales-Lopez et al., 2009), the addition of YCW and YE to diets in our study positively affected the intestinal mucosal histology.

Table 2. Effect of YCW, YE and YCW+YE added to diets of layer chicks on growth performance.

Parameters	Control	YCW	YE	YCW+YE	SEM	P
Egg production, %/hen/d						
Pre-trial period	0.97	82.08	82.22	81.67	0.53	0.470
1-30 d	81.83	87.38	84.42	84.13	0.69	0.002
30-60 d	80.73	81.57	81.60	81.53	0.62	0.029
60-90 d	78.61	81.58	80.17	81.99	0.57	0.139
1-90 d	80.39	83.51	82.06	82.55	0.35	0.012
Damaged eggs, %						
Pre-trial period	0.51	2.19	1.19	1.75	0.23	0.060
1-30 d	2.17	2.60	2.07	3.20	0.30	0.548
30-60 d	2.02	3.57	2.44	3.30	0.39	0.489
60-90 d	2.66	1.59	2.89	2.96	0.28	0.206
1-90 d	2.27	2.58	2.46	3.15	0.16	0.254
Dirty eggs, %						
Pre-trial period	0.69	0.16	0.50	0.66	0.16	0.290
1-30 d	0.54	0.48	0.67	0.45	0.07	0.708
30-60 d	0.68	0.51	0.58	0.48	0.11	0.561
60-90 d	0.59	0.83	0.45	0.70	0.10	0.183
1-90 d	0.80	0.61	0.57	0.54	0.05	0.512
Feed consumption, g/hen/d						
1-30 d	102.45	113.02	109.99	107.62	1.34	0.012
30-60 d	100.68	102.93	104.54	104.87	1.01	0.377
60-90 d	101.86	108.80	104.62	105.05	0.83	0.013
1-90 d	101.68	108.25	106.06	105.84	0.54	0.000
Feed efficiency, kg/egg						
1-30 d	1.95	1.99	2.01	2.01	0.02	0.815
30-60 d	1.97	1.99	2.02	2.01	0.02	0.863
60-90 d	2.03	2.06	2.03	1.99	0.01	0.483
1-90 d	1.99	2.02	2.02	2.00	0.01	0.543
Egg weight, g						
1 d	63.78	64.43	64.15	63.89	0.34	0.545
30 d	64.16	64.84	64.31	64.33	0.36	0.552
60 d	63.63	64.38	63.60	63.31	0.02	0.729
90 d	64.22	65.97	64.53	64.09	0.43	0.431
Specific gravity, g/cm						
1 d	1.072	1.0774	1.0767	1.0745	0.07	0.183
30 d	1.0755	1.0740	1.0766	1.0760	0.05	0.068
60 d	1.0733	1.0739	1.0726	1.0734	0.02	0.746
90 d	1.0646	1.0692	1.0678	1.0685	0.11	0.073
Initial weight, mean g/hen	1573.19	1606.13	1606.94	1580.63	9.65	0.274
1579.79	1655.79	1667.81	1607.31	12.38	0.032	
Mortality, mean %						
0-90 d	0.00	1.25	0.00	0.00	0.205	0.391

Data are mean values for 80 hens for each treatment; YCW, yeast cell walls at 500 mg/kg of feed; YE, Yucca schidigera extract at 500 mg/kg of feed; YCW+YE, yeast cell walls at 250 mg/kg + Yucca schidigera extract at 250 mg/kg of feed. *Means within the same row bearing different superscripts differ significantly (P<0.05).
Table 3. Effect of YCW, YE and YCW+YE added to diets of layer hens on intestinal histomorphometry.

Parameters	Control	YCW	YE	YCW+YE	SEM	P
Duodenum						
Villus width, µm	205.51a	164.61b	177.90a	213.85a	5.00	0.001
Villus height, µm	1954.46	1835.25	1937.86	1908.04	29.09	0.513
Muscle layer thickness, µm	193.42a	163.56b	140.95a	168.00b	4.18	0.000
Crypt depth, µm	279.94a	271.64a	220.00b	249.58a	7.23	0.013
Villus height/crypt depth	7.17a	7.32a	9.13a	8.20a	0.23	0.008
Jejunum						
Villus width, µm	136.84a	129.38	123.75	121.84	2.96	0.284
Villus height, µm	897.26	1078.21	1056.23	983.62	20.31	0.293
Muscle layer thickness, µm	188.49a	198.65	214.96	183.38	6.80	0.351
Crypt depth, µm	153.11a	165.76	169.60	166.26	3.93	0.487
Villus height/crypt depth	6.70a	6.74a	6.69a	6.03a	0.18	0.415
Ileum						
Villus width, µm	139a	180.84a	172.45a	169.63a	4.56	0.008
Villus height, µm	756.50	831.46	753.82	762.03	14.16	0.177
Muscle layer thickness, µm	323.49	333.49	381.05	375.89	10.77	0.138
Crypt depth, µm	209.52a	197.40	183.81	185.08	4.57	0.161
Villus height/crypt depth	3.78	4.42	4.25	4.28	0.12	0.296

Data are mean values for 80 hens for each treatment; YCW, yeast cell walls at 500 mg/kg of feed; YE, Yucca schidigera extract at 500 mg/kg of feed; YCW+YE, yeast cell walls at 250 mg/kg + Yucca schidigera extract at 250 mg/kg of feed; **Means within the same row bearing different superscripts differ significantly (P<0.05).

Conclusions

The present study showed improvement in egg production and final body weight owing to YCW and YCW+YE supplementation, which possibly may be the effect of increased feed intake and increased ileal villus width. Future studies should investigate the effects of more doses of YCW and YE on performance, egg quality and digestive physiology and metabolism in hens.

References

Abel, G., Czop, J.K., 1992. Stimulation of human monocyte β-glucan receptors by glucan particles induces production of TNF-α and IL-1. Int. J. Immunopharmac. 14:1363-1373.
Alfaro, D.M., Silva, A.V.F., Borges, S.A., Maiorka, F.A., Vargas, S., Santin, E., 2007. Use of Yucca schidigera extract in broiler diets and its effects on performance results obtained with different Coccidiosis control methods. J. Appl. Poultry Res. 16:248-254.
AOAC, 1990. Official Methods of Analysis. 15th ed. AOAC, Arlington, VA, USA.

Ayasan, T., Yurtseven, S., Baylan, M., Canogullari, S., 2005. The effects of dietary Yucca schidigera on egg yield parameters and egg shell quality of laying Japanese quails (Coturnix coturnix japonica). Int. J. Poultry Sci. 4:159-162.
Berry, W.D., Lui, P., 2000. Egg production, egg shell quality and bone parameters in broiler breeder hens receiving Bio-Mos and Eggshell. Poultry Sci. 79:124 (abstr.).
Cheeke, P.R., 2000. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. J. Anim. Sci. 77:1-10.
Cotter, P.F., Sefton, A.E., Lilburn, M.S., 2002. Manipulating the immune system of layers and breeders: novel applications for mannan oligosaccharides. In: T.P. Lyons and K.A. Jacques (eds.) Biotechnology in the Feed Industry. Nottingham University Press, Nottingham, UK, pp 51:805-810.

In: T.P. Lyons and K.A. Jacques (eds.) Biotechnology in the Feed Industry. Nottingham University Press, Nottingham, UK, pp 371-378.
Gurbuz, E., Balevi, T., Kurtoglu, V., Coskun, B., Oznurlu, Y., Kan, Y., Kartal, M., 2010. Effects of Echinacea extract on the performance, antibody titres, and intestinal histology of layer chicks. Brit. Poultry Sci. 51:805-810.
Hamilton, R.M.G., 1982. Methods and factors that affect the measurement of egg shell quality. Poultry Sci. 61:2022-2039.
Hempe, J.M., Laukzen, R.C., Savage, J.E., 1988. Rapid determination of egg weight and specific gravity using a computerised data collection system. Poultry Sci. 67:902-907.
Hooge, D.M., 2003. Broiler chicken performance may improve with MOS. Feedstuffs 75:11-13.
Iji, PA., Saki, A., Tivey, D.R., 2001. Body and intestinal growth of broiler chucks on a commercial starter diet. 1. Intestinal weight and mucosal development. Brit. Poultry Sci. 42:505-513.
Kaya, S., Erdoglan, Z., Erdoglan, S., 2003. Effect of steroid saponins on nutrient absorption in the different levels of Yucca schidigera powder on the performance, blood parameters and egg yolk cholesterol of laying hens. J. Vet. Med. A. 50:14-17.
Kumpecht, I., Zobac, P., Siske, V., Sefton, A.E., Spring, P., 1997. Effects of dietary mannanoligosaccharide level on performance and nutrient utilization of broilers. Poultry Sci. 76:132 (abstr.).
Kutlu, H.R., Unsal, I., Gorgulu, M., Yurtseven, S., 2000. Yumurta Tavuklarinda Verim ve Yumurta Kolesterol Düzeyi Üzerine Rasyona Katilan Yucca schidigera Tozunun Etkisi. pp 95-102 in Proc. Int. Anim. Nutr. Congr., Salya, Turkey.
Kutlu, H.R., Unsal, I., Karaman, M., Yurtseven, S., Gorgulu, M., 1998. Yucca schidigera extract: a natural feed additive affecting performance of broiler chucks. Page 94 in Proc. 10th Eur. Poultry Conf., Jerusalem, Israel.
MacDonald, F., 1995. Use of immunostimulants in agricultural applications. In: T.P. Lyons and K.A. Jacques (eds.) Biotechnology in the Feed Industry. Nottingham University Press, Nottingham, UK, pp 97-103.
Montagne, L., Pluske, J.R., Hampson, D.J., 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Tech. 108:95-117.
Morales-Lopez, R., Auclair, E., Garcia, F.
Esteve-Garcia, E., Brufau, J., 2009. Use of yeast cell walls; β-1, 3/1, 6-glucans; and mannoproteins in broiler chicken diets. Poultry Sci. 88:601-607.

Park, K.W., Lee, I.Y., Kim, M.K., 2008. Effect of various β-1,3-glucan supplements on the performance, blood parameters, small intestinal microflora and immune response in laying hens. Korean J. Poultry Sci. 35:183-190.

Parks, C.W., Grimes, J.L., Ferket, P.R., Fairchild, A.S., 2001. The effect of mannan oligosaccharides, bambermycins, and virginiamycin on performance of large white male market turkeys. Poultry Sci. 80:718-723.

Preston, C.M., McCracken, K.J., Bedford, M.R., 1999. Effects of Yucca schidigera extract, Saccharomyces Boulardii and enzyme supplementation of wheat-based diets on broiler performance and diet metabolisability. Brit. Poultry Sci. 40:S30-S40.

Rosen, G.D., 2007. Holo-analysis of the efficacy of Bio-Mos in broiler nutrition. Brit. Poultry Sci. 48:21-26.

Rowland, L.O., Pyller, J.E., Bradley, J.W., 1976. Yucca schidigera extract effects on egg production and house ammonia levels. Poultry Sci. 55:2086.

Santin, E., Maiorka, A., Macari, M., 2001. Performance and intestinal mucosa development of broilers chickens fed diets containing Saccharomyces cerevisiae cell wall. J. Appl. Poultry Res. 10:236-244.

Savage, T.F., Cotter, P.F., Zakrzewska, E.I., 1996. The effect of feeding mannanoligosaccharide on immunoglobulins, plasma IgG and bile IgA of Wrolstad MW male turkeys. Poultry Sci. 75:143 (abstr.).

Shashidhara, R.G., Devegowda, G., 2003. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poultry Sci. 82:1319-1325.

Spring, P., Wenk, C., Dawson, K.A., Newman, K.E., 2000. The effects of dietary mannan oligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Sci. 79:205-211.

SPSS, 2006. Statistical software package for the social sciences. Ver. 15.0. SPSS Int., Chicago, IL, USA.

Stanley, V.G., Brown, C., Selton, T., 2000. Single and combined effects of dietary protease and mannanoligosaccharide on the performance of laying hens. Poultry Sci. 79:62 (abstr.).

Uni, Z., Ferket, R.P., 2004. Methods for early nutrition and their potential. World. Poultry Sci. J. 60:101-111.

Uni, Z., Geyra, A., Ben-hur, H., Sklan, D., 2000. Small intestinal development in the young chick: crypt formation and enterocyte proliferation and migration. Brit. Poultry Sci. 41:544-551.

Wang, Y., McAllister, T.A., Newbold, C.J., Rode, L.M., Cheeke, P.R., Cheng, K.J., 1998. Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Anim. Feed Sci. Tech. 74:143-153.

World’s Poultry Science Association, 1989. European table of the energy values for poultry feedstuffs. WPSA 3rd ed., Wageningen, The Netherlands.

Zhang, A.W., Lee, B.D., Lee, S.K., Lee, K.W., An, G.H., Song, K.B., Lee, C.H., 2005. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broilers chicks. Poultry Sci. 84:1015-1021.