Supplement of

Magnitude and source area estimations of severe prehistoric earthquakes in the western Austrian Alps

Patrick Oswald et al.

Correspondence to: Patrick Oswald (oswald.patrick@gmx.net)

The copyright of individual parts of the supplement might differ from the article licence.
Supplementary Table S1

All radiocarbon ages used for the age-depth models at Plansee, Piburgersee and Achensee (Oswald et al., 2021a; b; and this study)

Core ID	Sample no.	Core depth (cm)	Radiocarbon age (a BP ± 1σ)	95% calibrated age range (cal a BP)	Material	Reference
Plansee						
PLAN18-10	-	4.5	-13	137Cs peak	Oswald et al. (2021b)	
PLAN18-10	-	8.5	-36	137Cs peak	Oswald et al. (2021b)	
PLAN18-LIA-0.1-5	ETH-101431	52	595 ± 35	leaf and fir needle remains	Oswald et al. (2021b)	
PLAN18-LIA-0.1-5	ETH-101432	81.5	2154 ± 24	leaf and fir needles	Oswald et al. (2021b)	
PLAN18-10	ETH-94774	89	2591 ± 22	needle and fir cone piece	Oswald et al. (2021b)	
PLAN18-LIA-0.1-5	ETH-101433	116.5	3136 ± 43	fir needle remains	Oswald et al. (2021b)	
PLAN18-LIB-1.2-5	ETH-103730	129	3581 ± 26	fir needle	Oswald et al. (2021b)	
PLAN18-LIA-1.5-3	ETH-101434	208	3915 ± 25	leaf and fir needles	Oswald et al. (2021b)	
PLAN18-LIB-2.5-4	ETH-101435	309	5718 ± 56	leaf and fir needles	Oswald et al. (2021b)	
PLAN18-LIA-3.4-5	ETH-101436	322.5	5899 ± 57	fir needle remains	Oswald et al. (2021b)	
PLAN18-LIA-3.4-5	ETH-101437	399	7084 ± 65	fir needle remains	Oswald et al. (2021b)	
PLAN18-LIA-4.5-6	ETH-103732	473	7739 ± 29	leaf and fir needle remains	Oswald et al. (2021b)	
PLAN18-LIB-4.5-5	ETH-101438*	436.5	2595 ± 24	fir needles	Oswald et al. (2021b)	
PLAN18-LIB-4.4-5	ETH-101439*	473.5	3557 ± 22	pair of fir needles	Oswald et al. (2021b)	
PLAN18-LIB-5.6-5	ETH-101440	524	8278 ± 73	fir needle remains	Oswald et al. (2021b)	
PLAN18-LIB-6.7-5	ETH-101441	660	9800 ± 87	betula fruit, fir needle remains	Oswald et al. (2021b)	
PLAN18-LIA-9-10.5	ETH-103733	85	11509 ± 36	Conifer needle fragments	this study	

Piburgersee						
PIBU18-01	-	10	83-73	210Pb/137Cs extrapolated age^1	Thies et al. (2012)	
PIBU18-01	ETH-94775	54.5	882 ± 21	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-01	ETH-94776	82.5	2493 ± 22	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-01*	ETH-92029	81.5	6457 ± 23	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIA-3.4-5	ETH-94777	353.5	3241 ± 22	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIA-3.4-5	ETH-92030	370.5	3515 ± 23	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIA-3.4-5	ETH-94778	383.5	3983 ± 22	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIA-4.5-6	ETH-92031	450	4060 ± 22	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIB-4.5-5	ETH-94779*	456	4519 ± 23	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIB-4.5-5	ETH-94780	493.5	4828 ± 23	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIB-4.5-5	ETH-94781	511	5244 ± 23	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIB-4.5-6	ETH-94782*	528	6005 ± 23	leaf and fir needles	Oswald et al. (2021b)	
PIBU18-LIB-4.5-6	ETH-94783	551.5	5933 ± 23	leaf and birch fruits	Oswald et al. (2021b)	
PIBU18-LIB-5.5-7	ETH-92032*	571.5	2499 ± 21	leaf and birch fruits	Oswald et al. (2021b)	
PIBU18-LIB-5.5-7	ETH-96867	638	8310 ± 24	leaf and birch fruits	Oswald et al. (2021b)	
PIBU18-LIB-6.7-5	ETH-94784	650	8762 ± 25	leaf and birch fruits	Oswald et al. (2021b)	
PIBU18-LIB-6.7-5	ETH-96887	671	9299 ± 26	leaf and birch fruits	Oswald et al. (2021b)	
PIBU18-LIB-6.7-5	ETH-92033	691	10019 ± 27	leaf and birch fruits	Oswald et al. (2021b)	
PIBU18-LIB-7.8-5	ETH-92034	743	11025 ± 27	leaf and birch fruits	Oswald et al. (2021b)	

Achensee
ACH18-02
ACH18-02
Location

ACH18-02
ACH18-02
ACH18-02
ACH17-01
ACH17-01
ACH17-01
ACH19-L3D
ACH19-L3C
ACH19-L3B

* Samples excluded for age-depth modelling
Supplementary Figure S2:

Longcore data of core PLAN18-L1 at Plansee including histogram-equalized core image, CT image, bulk density, 14C samples and interpreted event horizons.
Supplementary Figure S3:

Evaluation of earthquake-related sedimentary imprints to represent a single event using the overlap of the 95% probability density functions of the individual event ages using the R software package ‘overlapping’ (Pastore and Calcagni, 2019). We defined a PDF event age overlap >40% to indicate a single earthquake event with impact in multiple lakes. PDF event age overlaps < 40% are rejected to represent potential single events. PDF event age overlaps of the events at circa 3.0 and 4.1 ka BP are derived from Oswald et al., (2021b).
Supplementary Table S4:

Available geophysical and core data sets of the investigated lakes.

Lake	Geophysical data	Core data	Measurements					
	Multibeam bathymetry	Seisms (km)	Long core	Short core	MSCL	CT	XRF	
	Pinger source	Sparker source	Number	Number				
Achensee	yes	133	99	2	3	yes	yes	no
Plansee	yes	45	-	1	4	yes	yes	no
Piburgersee	yes	no penetration	-	1	1	yes	yes	yes
References

Oswald, P., Moernaut, J., Fabbri, S. C., De Batist, M., Hajdas, I., Ortner, H., et al. (2021a). Combined On-Fault and Off-Fault Paleoseismic Evidence in the Postglacial Infill of the Inner-Alpine Lake Achensee (Austria, Eastern Alps). *Front. Earth Sci.* 9, 438. doi:10.3389/feart.2021.670952.

Oswald, P., Strasser, M., Hammerl, C., and Moernaut, J. (2021b). Seismic control of large prehistoric rockslides in the Eastern Alps. *Nat. Commun.* 12, 1059. doi:10.1038/s41467-021-21327-9.

Pastore, M., and Calcagnì, A. (2019). Measuring distribution similarities between samples: A distribution-free overlapping index. *Front. Psychol.* 10, 1–8. doi:10.3389/fpsyg.2019.01089.

Thies, H., Tolotti, M., Nickus, U., Lami, A., Musazzi, S., Guilizzoni, P., et al. (2012). Interactions of temperature and nutrient changes: Effects on phytoplankton in the Piburger See (Tyrol, Austria). *Freshw. Biol.* 57, 2057–2075. doi:10.1111/j.1365-2427.2011.02661.x.