Prevalence and antibiotic susceptibility of Mannheimia haemolytica and Pasteurella multocida isolated from ovine respiratory infection: A study from Karnataka, Southern India

Swati Sahay1,2, Krithiga Natesan1, Awadhesh Prajapati1, Triveni Kalleshmurthy3, Bibek Ranjan Shome1, Habibur Rahman2 and Rajeswari Shome1

1. Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India; 2. Department of Microbiology, Centre for Research in Pure and Applied Sciences, Jain University, Bengaluru, Karnataka, India; 3. International Livestock Research Institute, CG Centre, NASC Complex, DPS Marg, Pusa, New Delhi, India.

Corresponding author: Rajeswari Shome, e-mail: rajesarishome@gmail.com
Co-authors: SS: simi17kol@gmail.com, KN: krithigavet_83@yahoo.co.in, AP: avi75prajapati@gmail.com, TK: trivenichat@gmail.com, BRS: brshome@gmail.com, HR: hricar@gmail.com
Received: 25-04-2020, Accepted: 29-07-2020, Published online: 23-09-2020

doi: www.doi.org/10.14202/vetworld.2020.1947-1954

How to cite this article: Sahay S, Natesan K, Prajapati A, Kalleshmurthy T, Shome BR, Rahman H, Shome R (2020) Prevalence and antibiotic susceptibility of Mannheimia haemolytica and Pasteurella multocida isolated from ovine respiratory infection: A study from Karnataka, Southern India, Veterinary World, 13(9): 1947-1954.

Abstract

Background and Aim: Respiratory infection due to Mannheimia haemolytica and Pasteurella multocida are responsible for huge economic losses in livestock sector globally and it is poorly understood in ovine population. The study aimed to investigate and characterize M. haemolytica and P. multocida from infected and healthy sheep to rule out the involvement of these bacteria in the disease.

Materials and Methods: A total of 374 healthy and infected sheep samples were processed for isolation, direct detection by multiplex PCR (mPCR), and antibiotic susceptibility testing by phenotypic and genotypic methods.

Results: Overall, 55 Pasteurella isolates (27 [7.2%] M. haemolytica and 28 [7.4%] P. multocida) were recovered and identified by bacteriological tests and species-specific PCR assays. Significant correlation between the detection of M. haemolytica (66.6%) with disease condition and P. multocida (19.1%) exclusively from infected sheep was recorded by mPCR. In vitro antibiotic susceptibility testing of 55 isolates revealed higher multidrug resistance in M. haemolytica (25.9%) than P. multocida (7.1%) isolates. Descending resistance towards penicillin (63.6%), oxytetracycline (23.6%), streptomycin (14.5%), and gentamicin (12.7%) and absolute sensitivity towards chloramphenicol were observed in both the pathogens. The antibiotic resistance genes such as strA (32.7%) and sul2 (32.7%) associated with streptomycin and sulfonamide resistance, respectively, were detected in the isolates.

Conclusion: The study revealed the significant involvement of M. haemolytica together with P. multocida in ovine respiratory infection and is probably responsible for frequent disease outbreaks even after vaccination against hemorrhagic septicemia in sheep population of Karnataka, southern province of India.

Keywords: antimicrobial susceptibility, isolation, Mannheimia haemolytica, multiplex PCR, Pasteurella multocida.

Introduction

Respiratory disease in ruminant population accounts for substantial economic losses to the livestock sector globally [1]. Pasteurella multocida and Mannheimia haemolytica are the main etiological agents of the disease known to cause 30% of deaths in feedlot cattle and acute outbreaks in sheep population resulting in huge mortality all across the world [2]. The clinical manifestations of the disease in small ruminants include dyspnea, pyrexia, dullness, reduced appetite, anorexia, rapid shallow respiration, profuse mucopurulent nasal, and ocular discharge and death within 12-24 h during the outbreaks [3]. P. multocida and M. haemolytica are Gram-negative, bipolar cocccobacillus belonging to the family Pasteurellaceae of gamma proteobacteria [4,5]. Based on the capsular antigen, M. haemolytica has been classified into 12 serotypes (A1, A2, A5-A9, A12- A14, A16, and A17) [5] and based on capsular and somatic antigens, P. multocida is grouped into five serogroups (A, B, D, E, and F) and 16 serotypes [6].

The stress due to unfavorable environmental conditions, animal transportation and bacterial and viral infections are the predisposing factors for respiratory disease in ruminants [7]. The involvement of P. multocida and M. haemolytica in bronchopneumonia and presence of these bacteria as predictors of respiratory disease in ruminants are reported in various studies [8,9]. In ruminants, severity of respiratory infection leading to bronchopneumonia due to treatment failure as result of antimicrobial resistance has also been reported [10]. Various studies
have noted the emergence of multidrug resistance to beta-lactams, tetracycline, streptomycin, sulfonamides, macrolides, and sulfamethazine in *M. haemolytica* and *P. multocida* [11,12].

Of the 512.05 million livestock population in India, the sheep and goats make up to 65.06 and 135.17 million, respectively [13]. Sheep and goats are extensively distributed all across the agro-ecological terrain of India contributing to the improvement of the socio-economic status of rural population [14]. Respiratory infection in sheep, the actual etiology and epidemiology are scarcely documented in the country. Frequent respiratory infection outbreaks in sheep even after vaccination against hemorrhagic septicemia (HS) in different parts of Karnataka, Southern India prompted us to investigate the etiology of the disease.

The study aimed to rule out the involvement of *P. multocida* and *M. haemolytica* in respiratory disease of sheep and to assess the phenotypic and genotypic antibiotic resistance for implementing appropriate therapeutic measures to control the disease.

Materials and Methods

Ethical approval

The study approved by Institutional Animal Ethics Committee, Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NVEDI), Bengaluru, India and the authors have taken permission from the farm owners to publish the data. All applicable national, and institutional guidelines for the animal’s care were followed during the sample collection.

Sample collection and processing

A total of 374 (nasal-242 and lung-132) samples were collected from five different districts of Karnataka state from April 2015 to December 2016 (Table-1). Among the nasal samples, 59 were collected from apparently healthy sheep from five different flocks with no history of respiratory infection before one month of sample collection. Similarly, 183 nasal samples were collected from sheep exhibiting symptoms of respiratory infection (nasal discharge, lacrimal discharge, fever, weakness, and diarrhea) from 11 different flocks. The deep nasal swabs samples were collected into 2 ml brain heart infusion (BHI) broth. Lung tissue samples (n=132 [healthy-94 and lung with lesions-38]) were collected while slaughtering sheep at Bengaluru Municipal Abattoir, Bengaluru, India, in a tissue collection containers and transported to the laboratory.

Bacterial isolation and identification

For isolation of *M. haemolytica* and *P. multocida*, nasal samples enriched for 18 h in BHI broth were inoculated onto Tryptic Soya Agar (TSA) supplemented with 5% sheep blood (blood agar) and 15 mg/mL of bacitracin and incubated at 37°C for 24 h [15]. For lung samples, the tissue near to the bronchus was directly inoculated onto blood agar with 15 mg/mL of bacitracin and incubated as mentioned above. The colonies obtained on blood agar were purified once again on blood agar and later on BHI agar. The colonies showing the morphology of *M. haemolytica* (β-hemolytic, white-grayish, medium-sized round, and non-mucoid) and *P. multocida* (non-hemolytic, greyish, medium-sized round, and non-mucoid) were processed separately for the identification by bacteriological tests (Gram’s staining, catalase, oxidase, indole, lactose fermentation, and growth on MacConkey lactose agar [MLA]) as per standard protocols [15].

Species confirmation by PCR

The genomic DNA was extracted from pure cultures by DNeasy kit as per the manufacturer’s protocol (Qiagen, Hilden, Germany). The quality and quantity of the extracted DNA was ascertained by NanoDrop2000 (Thermo Scientific, Waltham, USA) and on 0.8% agarose gel electrophoresis. Isolates were confirmed by species-specific multiplex PCR (mPCR) assay targeting *lktD* (HP; NZ_AASA01000080 and 16S rDNA [16] for *M. haemolytica* and species-specific PCR using KMT1SP6-KMT1T7 primers for *P. multocida* [17] (Table-2).

Direct detection of *P. multocida* and *M. haemolytica* by mPCR

The mPCR was standardized for the rapid detection of *P. multocida* and *M. haemolytica* species using set of primers for *P. multocida* (KMT1SP6-KMT1T7 [460bp]) [17] and *M. haemolytica* (soda gene primer for 143bp) [18] (Table-2). The DNA was extracted from samples enriched in BHI broth for 18 h by DNeasy kit as per the manufacturer’s

Table-1: Details of nasal and lung samples collected from different locations of Karnataka.

No.	Place	Latitude	Longitude	Name of district	Healthy samples	Infected samples	Total samples
1	Chikkajala	13.1715° N	77.6356° E	Bangalore Urban	13	35	48
2	Channahalli	13.1790° N	77.6165° E	Bangalore Rural	6	47	53
3	Seethakempahalli	13.1729° N	77.5195° E	Bangalore	0	10	10
4	Chintamani	13.3862° N	78.0603° E	Kolar	9	0	9
5	Kolar	12.9984° N	78.0737° E	Kolar	0	42	42
6	Kalavara	13.5970° N	74.7483° E	Chikkaballapur	7	15	22
7	Gauribidanur	13.6112° N	77.5170° E	Chikkaballapur	24	34	58
8	Municipal Abattoir	12.9857° N	77.6057° E	Bangalore	94	38	132 (lung samples)

Total number of samples: 153 221
Table 2: List of the primers used for species identification, capsular, and antibiotics resistance gene typing of M. haemolytica and P. multocida isolates.

No.	Primer sets	Sequence (5’→3’)	Gene target	Fragment size (bp)	Reference
1	Sod A	(F)AGCAGCGACTACTCTGTTGTTTCGG (R)AAAGACTAAATTCGAGATCCTGAGCGCTTT	sodA	143	[18]
2	Lkt	(F)GCAGGAGGTATTATTTAAAGTGG (R)ACACAGATTCTGCATACCTGAAAC	lktD	206	[16]
3	Lkt2	(F)CTTTTATAGAAAATCGGATAGCCTGAAC (R)TTTTGCCAAGTGGTGTATTGC	lktD	179	
4	HP	(F)CGAGAACAGACATTTCGTTGAGGTTAC (R)CAGCGTCAAATTCTCTGTTGATAAAC	Unknown/ NZ_AASA01000080	90	
5	16S	(F)GCTATAACCCTCGTGAGCACAG (R)CGTGGACTACCAGGGTATCTAAC	16S rDNA	304	

M. haemolytica identification

No.	Antibiotics / gene	Sequence (5’→3’)	Annealing temperature (°C)	Fragment size (bp)	Reference
14	Tetracycline/tetH	(F)ATACTGTGCTATCAGCGT (R)TCCCAAAAACGGACAGCT	60	1076	[20]
15	Oxytetracycline/ICE tetR	(F)CGGCTTGGGTTAATAATGGCG (R)ATAACGCGAAAAGCTTCCGC	58	425	
16	Penicillin/blaOXA-2	(F)GCAGACGAACGCCAAGCGGA (R)CCCGCACGATTGCCTCCCTC	64	625	
17	Ampicillin/blaICE-1	(F)AAATACCCCTGCCCCAATTC	60	685	
18	Sulfonamide/sul2	(F)CCAAATACCGGCCAGCGGTGC (R)TGCGGTTCGGTCGTTG	64	489	
19	Gentamicin/aadB	(F)TTTAGCGACAGGGACAGTCGC (R)RGCCGCAGCCAGACGCTCACC	66	551	
21	Streptomycin/strA/strB	(F)AAAGCCAAGGCGTTCGGGTCG (R)CCGCCGGCTGATCTCTGTCG	64	506/586	
20	Chloramphenicol/ catAII	(F)ACATGTTGGTTTATGCTTAAAC (R)GCCAATACAGCTTTACCTCCTC	64	470	[21]

P. multocida identification

Antibiotic resistance marker genotyping

For all the isolates irrespective of the resistance pattern in ABST were subjected to antibiotic resistance marker typing for penicillin (blaOXA-2), ampicillin (blaICE-1), sulfonamide (sul2), gentamicin (aadB), chloramphenicol (catAII), tetracycline (tetH), and streptomycin (strA, strB) by simplex PCR assays [20,21] (Table 2).
Statistical analysis
Statistical analysis was performed with SPSS 16.0 (SPSS Inc., Chicago) and p<0.05 was considered statistically significant.

Results
Isolation and identification of M. haemolytica and P. multocida
Among 374 samples processed, 64 (17.1%) and 35 (9.4%) isolates obtained were identified as M. haemolytica and P. multocida, respectively, by bacteriological tests (Table-3). All of these isolates were Gram-negative, showed bipolar coccobacilli morphology microscopically and positive to oxidase and catalase tests. M. haemolytica isolates showed β-hemolysis on blood agar, variable lactose fermentation reaction on MLA and negative for indole production. Whereas, P. multocida isolates were non-hemolytic, indole positive and failed to grow on MLA. Among these identified isolates, 27 were confirmed as M. haemolytica by amplification of 304, 206, and 90 bps in mPCR (Figure-1a) and 28 isolates as P. multocida by amplification of 460bp (Figure-1b). From 132 lung tissue samples processed, 11 and 14 isolates of M. haemolytica and P. multocida, respectively, were recovered from infected lungs showing a significant correlation between isolation and disease status (p<0.0001). Similarly, 13 P. multocida isolates were recovered solely from the nasal samples of sheep suffering from respiratory infection. Co-isolation of M. haemolytica and P. multocida was observed in 15.7% infected lung samples (Table-4).

Direct detection of M. haemolytica and P. multocida by mPCR
Out of 374 samples processed, 221 (59%) and 60 (16.04%) samples were positive for M. haemolytica and P. multocida, respectively, by mPCR. Of which 66.6% M. haemolytica and 19.1% P. multocida were from nasal samples collected from sheep suffering from respiratory infection. Among 94 and 38 healthy and infected lungs samples processed respectively, higher percentage of both M. haemolytica (60.6%) and P. multocida (23.4%) were detected in healthy lungs (Table-3 and Figure-2) and co-detection of both M. haemolytica and P. multocida was observed in 18.9% of lung samples (Table-4).

In vitro antimicrobial susceptibility testing
Among ten different antibiotics tested, chloramphenicol (100%), ampicillin (98.9%), and amoxicillin/clavulanic acid (96.4%) were found most effective drugs against M. haemolytica and P. multocida (Table-5). M. haemolytica isolates showed 81.5%, 40.7%, and 22.2% resistance towards penicillin, oxytetracycline, and streptomycin, respectively, whereas, P. multocida isolates showed resistance only towards penicillin (46.4%) and 7.1% each for gentamicin, oxytetracycline, and streptomycin. Among 55 isolates tested, 22 (81.5%) and 13 (46.4%) isolates of M. haemolytica and P. multocida, respectively, were...
Table-4: Concurrence of M. haemolytica and P. multocida by isolation and mPCR in nasal and lung sheep samples.

Samples	Total samples	mPCR co-positives	Co-isolutions
Total nasal samples	242	29 (12)	0
Total lung samples	132	25 (18.9)	6 (4.5)
Cumulative total samples	374	54 (14.4)	6 (1.6)
Nasal samples			
Nasal samples from healthy sheep	59	0	0
Nasal samples from sheep with respiratory infection	183	29 (15.8)	0
Total nasal samples	242	29 (12)	0
Lung samples			
Healthy lung samples	94	22 (23.4)	0
Infected lung samples	38	3 (7.9)	6 (15.8)
Total lung samples	132	25 (18.9)	6 (4.5)

The values within the parentheses indicate percentage. M. haemolytica=Mannheimia haemolytica, P. multocida=Pasteurella multocida, mPCR=Multiplex PCR

Discussion

Small ruminants are the continuous source of income for the rural populace in India. Increasing prevalence of respiratory infection in small ruminants even after HS and PPR vaccination was a serious concern. Recently respiratory infection outbreaks due to M. haemolytica and P. multocida have been reported in various states of India [22,23]. In the present study, we investigated the involvement of M. haemolytica and P. multocida with the respiratory infection of sheep.

Overall, Pasteurella species recovered from samples were 55 (14.7%), of which, 51% and 49% were identified as P. multocida and M. haemolytica, respectively, and majority of the isolates were from sheep suffering from respiratory infection. Similarly, Miller et al. [9] noted 80% biovariants of M. haemolytica, P. multocida and P. trehalosi species from the diseased sheep indicating the importance of these pathogens in the respiratory infections. In antibiotic resistance profiles. However, the resistant genes for different antibiotics were higher in M. haemolytica compared to P. multocida isolates similar to phenotypic in vitro method. Out of 28 P. multocida isolates, 14 and 12 isolates showed the presence of strA and sul2 genes. Among 27 M. haemolytica isolates, one, three, four, and six isolates showed the presence of blaROB-1, blaOXA-2, strA, and sul2 genes, respectively (Table-6).

Antibiotic resistance marker typing

Antibiotic resistance genes by PCR screening did not show any agreement with phenotypic in vitro resistant to at least one antibiotic. Multiple drug resistance against three or more than three antibiotics was noticed in 7.1% (2/28) of P. multocida and 25.9% (7/27) of M. haemolytica isolates (Figure-3).
mPCR, *M. haemolytica* was detected in 59% of the samples and significant correlation was observed between *M. haemolytica* detection (66.7%) with the diseased condition (p=0.023) which substantiates its role in the disease. Whereas, 35.6% of *M. haemolytica* PCR positives were also detected in nasal samples collected from apparently healthy sheep. This may be because of the fact that *M. haemolytica* is generally present in the upper respiratory tract of ruminants which multiplies rapidly along with *P. multocida* upon exposure to the stress thereby resulting in respiratory illness [7]. Compared to *M. haemolytica*, the detection of *P. multocida* by mPCR was less (16.04%) but was detected solely from the infected sheep (14.4%) which acknowledges the primary role of *P. multocida* in respiratory infection. The pathogenic role of *P. multocida* in ovine pasteurellosis causing serious outbreaks was reported earlier [2]. Usually, in stressed and immunocompromised host, these secondary bacterial pathogens proliferate and increase in number in the upper respiratory tract and by gravitational drainage they reach to the ventral bronchi, bronchioles, and alveoli to cause bronchopneumonia [7]. Therefore we tried to detect these pathogens in lungs samples by mPCR. *M. haemolytica* was detected in both infected and healthy lung samples, whereas the higher number of *P. multocida* were recorded in healthy lung samples. The correlation of the disease status of the slaughtered animals to the detection of the pathogens was difficult as the animals were under transportation stress and their clinical symptoms were unknown.

As a result of ineffective immunoprophylactic measure for respiratory infection, antimicrobial treatment is considered important prophylactic agent for the control of the disease. Due to extensive use of antibiotics as supplements in animal feed both for prophylaxis

Table-5: *In vitro* antibiotic susceptibility of *P. multocida* and *M. haemolytica* isolates from sheep.
No.
1
2
3
4
5
6
7
8
9

The values within the parentheses indicate percentage. *M. haemolytica* = Mannheimia haemolytica, *P. multocida* = Pasteurella multocida.

Table-6: Detection of antibiotic resistance gene markers in *P. multocida* and *M. haemolytica* isolates.
M. haemolytica isolates
Antibiotic resistance markers
Penicillin (**bla**_{oxa-A})
Ampicillin (**bla**_{sub-1})
Streptomycin (**strA**, **strB**)
Chloramphenicol (**catAII**)
Tetracycline (**tetH**)
Sulfamethoxazole (**sul2**)
Gentamicin (**aadB**)

P. multocida isolates
Antibiotic resistance markers
Penicillin (**bla**_{oxa-A})
Ampicillin (**bla**_{sub-1})
Streptomycin (**strA**, **strB**)
Chloramphenicol (**catAII**)
Tetracycline (**tetH**)
Sulfamethoxazole (**sul2**)
Gentamicin (**aadB**)
and growth promotion, antimicrobial resistance among these pathogens was observed [11]. Among ten different antibiotics tested, chloramphenicol (100%), ampicillin (98.9%), and amoxicillin/clavulanic acid (96.4%) were found to be the most effective drugs against *M. haemolytica* and *P. multocida* isolates. In the present work, *M. haemolytica* and *P. multocida* isolates showed only 18.5% and 7.1% resistance to gentamicin, respectively. Whereas, the study from Ethiopia reported gentamicin as totally inactive against *M. haemolytica* and *P. multocida* isolates for the treatment of ovine pasteurellosis [24]. Lamm et al. [10] reported high resistance to tetracycline in *M. haemolytica* and *P. multocida* isolates from bronchopneumonic cattle, whereas, only 11.1% of ovine *M. haemolytica* isolates were resistant to tetracycline in the present study. Klima et al. [15] noted high resistance towards oxytetracycline, ampicillin, and amoxicillin/clavulanic acid among bovine *M. haemolytica* isolates. Similarly in our study, ovine *M. haemolytica* isolates showed 40.7% resistance to oxytetracycline with least resistance to ampicillin and amoxicillin/clavulanic acid. Absolute sensitivity towards chloramphenicol and absolute resistance towards sulfa drug in avian *P. multocida* stains was reported from India [25]. However, in the present study, absolute sensitivity towards both chloramphenicol and sulfa drugs was observed. Multiple drug resistance (three or more than three antibiotics) was detected higher in *M. haemolytica* than *P. multocida* isolates. Andrés-Lasheras et al. [26] and Sarangi et al. [27] have also noted multiple drug resistance in *M. haemolytica* isolates from BRD infected European cattle and Indian *P. multocida* isolates from small ruminants. So, periodical antibiotic susceptibility testing is essential to identify the drug/s of choice for the treatment in different host/s and to set guidelines for the prudent use of antibiotic/s in the disease endemic regions.

Along with the external factors such as geographical location, antibiotic pre-treatment, and dosages, antibiotic resistance among *Pasteurella* species also depends on accessibility of the isolates to the resistance genes in the gene pool. Genes such as *bla*_{ROB-1}, *tetH, tetO, tetB*, and *strA* associated with β-lactam, tetracycline, and streptomycin resistance, respectively, were detected in *P. multocida* pig isolates from Spain [28]. The *tetH, bla_{ROB-1},* genes were also identified in *M. haemolytica* isolates from cattle treated for BRD [15]. In the present study, *bla_{OXA-2}* and *strA* genes in *M. haemolytica* isolates and only *strA* and *sul2* resistance genes in *P. multocida* isolates were observed. Plasmids [28], chromosome [11], and integron conjugative elements [29,30] are the associated factors for the interspecies and inter-genic antibiotic resistance genes transmission in *Pasteurellaceae* family. Presence of different antibiotic resistance genes in *M. haemolytica* is as serious concern as these genes can be transferred to *P. multocida* and other respiratory pathogens by horizontal gene transfer which may cause severe infections.

Conclusion

The study emphasized the significance of *M. haemolytica* together with *P. multocida* in causing respiratory infection in sheep. The study suggests to include *M. haemolytica* while diagnosing respiratory disease which has been ignored or overlooked. Higher drug resistance in *M. haemolytica* than *P. multocida* together with the presence of *strA* and sul2 like antibiotic resistance genes was observed in the isolates. Further studies involving samples from multiple hosts from different geographical and anatomic locations are needed to understand the serotypic, pathogenic, and genotypic variants causing the disease outbreaks in the country.

Authors’ Contribution

RS and SS were involved in planning, execution of the work, and writing of the manuscript. SS, KN, AP, and TK performed disease investigation, sample collection, bacterial isolation, and characterization. BRS and HR provided the conceptual and technical support to formulate the work. All authors read and approved the final manuscript.

Acknowledgments

The authors acknowledge the Director and Scientists, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, for providing the facilities and support during this work. The authors are thankful to the Department of Animal Husbandry and Veterinary Services, Government of Karnataka for providing permission for the sample collection. This work was funded by the Department of Biotechnology, Government of India, New Delhi through the twinning project entitled “*Aetio-Pathology and molecular epidemiology of bacterial and viral diseases associated with the respiratory problems of yak in the North Eastern Regions of India*” (Grant No: BT/391/NE/TBP/2012).

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliation.

References

1. Jesse, F.F.A., Amira, N.A., Isa, K.M., Maqbool, A., Ali, N.M., Chung, E.L.T. and Lila, M.A.M. (2019) Association between *Mannheimia haemolytica* infection with reproductive physiology and performance in small ruminants: A review. *Vet. World*, 12(7): 978.

2. Mohamed, R.A. and Addelsalam, E.B. (2008) A review on pneumonic pasteurellosis (Respiratory mannheimiosis) with emphasis on pathogenesis, virulence mechanisms and predisposing factors. *Bulg. J. Vet. Med.*, 11(3): 139-160.

3. Lacasta, D., Ferrer, L.M., Ramos, J.J., Gonzalez, J.M. and Heras, D.L.M. (2008) Influence of climatic factors on the
development of pneumonia in lambs. Small Rumin. Res., 80(1-3): 28-32.

4. Dabo, S.M., Taylor, J.D. and Confer, A.W. (2007) Pasteurella multocida and bovine respiratory disease. Anim. Health. Res. Rev., 8(2): 129-150.

5. Sahay, S., Shome, R., Sankarasubramanian, J., Vishnu, U.S., Prajapati, A., Natesan, K., Shome, B.R., Rahman, H. and Rajendran, J. (2019) Genome sequence analysis of the Indian strain Mannheimia haemolytica serotype A2 from ovine pneumonia pasteurellosis. Ann. Microbiol., 69(2): 151-160.

6. Sahay, S., Shome, R., Sankarasubramanian, J., Vishnu, U.S., Prajapati, A., Natesan, K., Shome, B.R., Rahman, H. and Rajendran, J. (2018) Insights into the genome sequence of ovine Pasteurella multocida type a strain associated with pneumonia pasteurellosis. Small Rumin. Res., 169: 167-175.

7. García-Alvarez, A., Fernández-Varayzabal, J.F., Chaves, F., Pinto, C. and Cid, D. (2018) Ovine Mannheimia haemolytica isolates from lungs with and without pulmonary lesions belong to similar genotypes. Vet. Microbiol., 219: 80-86.

8. Taylor, J.D., Holland, B.P., Step, D.L., Payton, M.E. and Confer, A.W. (2015) Nasal isolation of Mannheimia haemolytica and Pasteurella multocida as predictors of respiratory disease in shipped calves. Res. Vet. Sci., 99: 41-45.

9. Miller, D.S., Weiser, G.C., Ward, A.C.S., Drew, M.L. and Chapman, P.L. (2011) Domestic sheep (Ovis aries) Pasteurellaceae isolates from diagnostic submissions to the caine veterinary teaching center (1990-2004). Vet. Microbiol., 150(3-4): 284-288.

10. Lamm, C.G., Love, B.C., Krehbiel, C.R., Johnson, N.J. and Step, D.L. (2012) Comparison of antemortem antimicrobial treatment regimens to antimicrobial susceptibility patterns of post-mortem lung isolates from feedlot cattle with bronchopneumonia. J. Vet. Diagn. Invest., 24(2): 277-282.

11. Kehrenberg, C., Tham, N.T.T. and Schwarz, S. (2003) New plasmid-borne antibiotic resistance gene cluster in Pasteurella multocida. Antimicrob. Agents Chemother., 47(9): 2978-2980.

12. Anholt, R.M., Klima, C., Allan, N., Matheson-Bird, H., Schatz, C., Ajikumar, P., Otto, S.J., Peters, D., Schmid, K., Olson, M. and McAllister, T. (2017) Antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex in Alberta, Canada. Front. Vet. Sci., 4: 207.

13. DADH. (2012) All India Report of 19th Livestock Census-2012, Ministry of Agriculture, Department of Animal Husbandry, Dairying and Fisheries (DADH), Government of India. Available from: http://www.dadh.nic.in/sites/default/files/livestock%202015_0.pdf. Retrieved on 10-08-2019.

14. Mohini, M., Malla, B.A. and Mondal, G. (2018) Small ruminant sector in India: Present status, feeding systems and greenhouse gas emissions. EC Vet. Sci., 3(1): 281-289.

15. Klima, C.L., Alexander, T.W., Read, R.R., Gow, S.P., Booker, C.W., Hannon, S., Sheedy, C., McAllister, A.T. and Selinger, L.B. (2011) Genetic characterization and antimicrobial susceptibility of Mannheimia haemolytica isolated from the nasopharynx of feedlot cattle. Vet. Microbiol., 149(3-4): 390-398.

16. Alexander, T.W., Cook, S.R., Yanke, L.J., Booker, C.W., Morley, P.S., Read, R.R., Gow, S.P. and McAllister, T.A. (2008) A multiplex polymerase chain reaction assay for the identification of Mannheimia haemolytica, Mannheimia glucosid and Mannheimia ruminalis. Vet. Microbiol., 130(1-2): 165-175.

17. Townsend, K.M., Frost, A.J., Lee, C.W., Papadimitriou, J.M. and Dawkins, H.J. (1998) Development of PCR assays for species-and type-specific identification of Pasteurella multocida isolates. J. Clin. Microbiol., 36(4): 1096-1100.

18. Guenther, S., Schierack, P., Grobel, M. and Becker, A.L. (2008) Real-time PCR assay for the detection of species of the genus Mannheimia. J. Microbiol. Methods, 75(1): 75-80.

19. Bauer, A.W., Kirby, W.M.M., Sherhis, J.C. and Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4): 493-496.

20. Klima, C.L., Zaheer, R., Cook, S.R., Booker, C.W., Hendrick, S., Alexander, T.W. and McAllister, T.A. (2014) Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J. Clin. Microbiol., 52(2): 438-448.

21. Kehrenberg, C. and Schwarz, S. (2001) Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. FEMS Microbiol. Lett., 205(2): 283-290.

22. Kumar, J., Dixit, S.K. and Kumar, R. (2015) Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture. Vet. World, 8(9): 1073.

23. Rawat, N., Gilhare, V.R., Kushwaha, K.K., Hatimire, D.D., Khan, F.F., Shende, R.K., and Jolhe, D.K. (2019) Isolation and molecular characterization of Mannheimia haemolytica and Pasteurella multocida associated with pneumonia of goats in Chhattisgarh. Vet. World, 12(2): 331-336.

24. Marru, H.D., Anijau, T.T. and Hassen, A.A. (2013) A study on ovine pulmonary pasteurellosis: Isolation and identification of Pasteurellae and their antibiotic susceptibility pattern in Haryana district, Eastern Hararghe, Ethiopia. BMC Vet. Res., 9(1): 1-8.

25. Shivachandra, S.B., Kumar, A.A. Biswas, A., Ramakrishnan, M.A., Singh, V.P. and Srivastava, S.K. (2004) Antibiotic sensitivity patterns among Indian strains of avian Pasteurella multocida. Trop. Anim. Health Prod., 36(6): 743-750.

26. Andrés-Lasheras, S., Zaheer, R., Klima, C., Sanderson, H., Polo, R.O., Milani, M.R.M., Vertenten, G. and Mc Allister, T.A. (2019) Serotyping and antimicrobial resistance of Mannheimia haemolytica strains from European bovine cattle with respiratory disease. Res. Vet. Sci., 124: 10-12.

27. Sarangi, L.N., Thomas, P., Gupta, S.K., Priyadarshini, A., Kumar, S., Nagaleekar, V.K., Kumar, A. and Singh, V.P. (2015) Virulence gene profiling and antibiotic resistance pattern of Indian isolates of Pasteurella multocida of small ruminant origin. Comp. Immunol. Microbiol. Infect. Dis., 38: 33-39.

28. San Millan, A., Escudero, J.A., Gutierrez, B., Hidalgo, L., Garcia, N., Llagostera, M., Domínguez, L. and Gonzalez-Zorn, B. (2009) Multi-resistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob. Agents Chemother., 53(8): 3399-3404.

29. Eidam, C., Pochlein, A., Leimbach, A., Michael, G.B., Kadlec, K., Liesegang, H., Daniel, R., Sweeney, M.T., Murray, R.W., Watts, J.L. and Schwarz, S. (2015) Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J. Antimicrob. Chemother., 70(1): 93-97.

30. Peng, Z., Liang, W., Liu, W., Chen, H. and Wu, B. (2017) Genome characterization of Pasteurella multocida subspecies septica and comparison with Pasteurella multocida subspecies multocida and gallicida. Arch. Microbiol., 199(4): 635-640.
