Counting copies of a fixed subgraph in F-free graphs

Dániel Gerbner∗ Cory Palmer†

Abstract

Fix graphs F and H and let $\text{ex}(n, H, F)$ denote the maximum possible number of copies of the graph H in an n-vertex F-free graph. The systematic study of this function was initiated by Alon and Shikhelman [J. Comb. Theory, B. 121 (2016)]. In this paper, we give new general bounds concerning this generalized Turán function. We also determine $\text{ex}(n, P_k, K_{2,t})$ (where P_k is a path on k vertices) and $\text{ex}(n, C_k, K_{2,t})$ asymptotically for every k and t. For example, it is shown that for $t \geq 2$ and $k \geq 5$ we have $\text{ex}(n, C_k, K_{2,t}) = \left(\frac{1}{2k} + o(1)\right)(t-1)^{k/2}n^{k/2}$. We also characterize the graphs F that cause the function $\text{ex}(n, C_k, F)$ to be linear in n. In the final section we discuss a connection between the function $\text{ex}(n, H, F)$ and so-called Berge hypergraphs.

Keywords: Turán numbers, generalized Turán numbers
AMS Subj. Class. (2010): 05C35, 05C38

1 Introduction

Let G and F be graphs. We say that a graph G is F-free if it contains no copy of F as a subgraph. Following Alon and Shikhelman [1], let us denote the maximum number of copies of the graph H in an n-vertex F-free graph by

$$\text{ex}(n, H, F).$$

The case when H is a single edge is the classical Turán problem of extremal graph theory. In particular, the Turán number of a graph F is the maximum number of edges possible in an n-vertex F-free graph G. This parameter is denoted $\text{ex}(n, F)$ and thus $\text{ex}(n, K_2, F) = \text{ex}(n, F)$. For more on the ordinary Turán number see, for example, the survey [12]. Recall that the Turán graph $T_{k-1}(n)$ is the complete $(k-1)$-partite graph with n vertices such that the vertex classes are of size as close to each other as possible.

In 1962, Erdős [6] proved that the Turán graph $T_{k-1}(n)$ is the unique graph containing the maximum possible number of copies of K_t in an n-vertex K_k-free graph (when $t < k$).

*Hungarian Academy of Sciences, Alfrédrényi Institute of Mathematics, P.O.B. 127, Budapest H-1364, Hungary. e-mail: gerbner.daniel@renyi.mta.hu
†Department of Mathematical Sciences, University of Montana, Missoula, Montana 59812, USA. e-mail: cory.palmer@umontana.edu
By counting copies of K_t in $T_{k-1}(n)$ we get the following corollary for \(\text{ex}(n, K_t, K_k) \). Let \(N(H, G) \) denote the number of copies of the subgraph H in the graph G.

Corollary 1 (Erdős, [6]). If $t < k$, then

\[
\text{ex}(n, K_t, K_k) = N(K_t, T_{k-1}(n)) = \binom{k-1}{t} \left(\frac{n}{k-1} \right)^t + o(n^t).
\]

This result also follows from a theorem of Bollobás [2] and the case $t = 3$ and $k = 4$ was known to Moon and Moser [32]. Another proof appears in Alon and Shikhelman [1] modifying a proof of Turán’s theorem.

When H is a pentagon, C_5, and F is a triangle, K_3, this is a well-known conjecture of Erdős [8]. An upper bound of $1.03\left(\frac{n}{5}\right)^5$ was proved by Győri [20]. The blow-up of a C_5 gives a lower-bound of $\left(\frac{n}{5}\right)^5$ when n is divisible by 5. Hatami, Hladký, Král’, Norine and Razborov [24] and independently Grzesik [19] proved

\[
\text{ex}(n, C_5, K_3) \leq \left(\frac{n}{5}\right)^5. \tag{1}
\]

Swapping the role of C_5 and K_3, we count the number of triangles in a pentagon-free graph. Bollobás and Győri [4] determined

\[
(1 + o(1)) \frac{1}{3\sqrt{3}} n^{3/2} \leq \text{ex}(n, K_3, C_5) \leq (1 + o(1)) \frac{5}{4} n^{3/2}.
\]

The constant in the upper bound was improved to $\frac{\sqrt{3}}{3}$ by Alon and Shikhelman [1] and by Ergemlidze, Győri, Methuku and Salia [10]. Győri and Li [23] give bounds on $\text{ex}(n, K_3, C_{2k+1})$. A particularly interesting case to determine the value of $\text{ex}(n, K_3, K_{r,r,r})$ was posed by Erdős [7] and remains open in general.

The systematic study of the function $\text{ex}(n, H, F)$ was initiated by Alon and Shikhelman [1] who proved a number of different bounds. Two examples from their paper are as follows.

An analogue of the Kővari-Sós-Turán theorem

\[
\text{ex}(n, K_3, K_{s,t}) = O(n^{3-3/s})
\]

which is shown to be sharp in the order of magnitude when $t > (s - 1)!$ (see also [26]).

Another example is an Erdős-Stone-Simonovits-type result that for fixed integers $t < k$ and a k-chromatic graph F that

\[
\text{ex}(n, K_t, F) = \binom{k-1}{t} \left(\frac{n}{k-1} \right)^t + o(n^t). \tag{2}
\]

Gishboliner and Shapira [18] determined the order of magnitude of $\text{ex}(n, C_k, C_\ell)$ for every ℓ and $k \geq 3$. Moreover, they determined $\text{ex}(n, C_k, C_4)$ asymptotically. We give a theorem (proved independently of the previous authors) that extends this result to $\text{ex}(n, C_k, K_{2,t})$. Other recent results include [16] [13] [31].
The goal of this paper is to determine new bounds $ex(n, H, F)$ and investigate its behavior as a function. In Section 2 we give general bounds using standard extremal graph theory techniques. In particular, we give the following extension of (2) using a slight modification of its proof in [1].

Theorem 2. Let H be a graph and F be a graph with chromatic number k, then

$$ex(n, H, F) \leq ex(n, H, K_k) + o(n^{\lfloor H \rfloor}).$$

Note that Theorem 2 only gives a useful upper-bound if $ex(n, H, K_k) = \Omega(n^{\lfloor H \rfloor})$. Fortunately, this is often the case. For example, (2) follows by applying Corollary 1 in the case when $H = K_t$. Applying (1) to the case when $H = C_5$ gives

$$ex(n, C_5, F) \leq \left(\frac{n}{5}\right)^5 + o(n^5)$$

for every graph F with chromatic number 3. When F contains a triangle, the construction giving the lower bound in [1] can be used to give an asymptotically equal lower bound on $ex(n, C_5, F)$.

In Section 3 we give bounds on $ex(n, H, F)$ for some specific values of H and F. For example,

Theorem 3. Fix $t \geq 2$ and $k \geq 5$. Then,

$$ex(n, C_k, K_{2,t}) = \left(\frac{1}{2k} + o(1)\right) (t - 1)^{k/2} n^{k/2}.$$

In Section 4 we study the behavior of the function $ex(n, C_k, F)$ and determine which graphs F cause this function to be linear in n. In Section 5 we investigate for which graphs H the function $ex(n, H, K_k)$ is maximized by the Turán graph. Finally, in Section 6 we establish connections between this counting subgraph problem and so-called Berge hypergraph problems. For notation not defined in this paper, see Bollobás [3].

2 General bounds on $ex(n, H, F)$

We begin with a proof of Theorem 2. Our proof mimics the proof of the Erdős-Stone-Simonovits by the regularity lemma. We use the following versions of the regularity lemma and an embedding lemma found in [3].

Lemma 4 (Embedding lemma). Let F be a k-chromatic graph with $f \geq 2$ vertices. Fix $0 < \delta < \frac{1}{k}$, let G be a graph and let V_1, \ldots, V_k be disjoint sets of vertices of G. If each V_i has $|V_i| \geq \delta^{-f}$ and each pair of partition classes is δ^f-regular with density $\geq \delta + \delta^f$, then G contains F as a subgraph.
Lemma 5 (Regularity Lemma). For an integer \(m\) and \(0 < \epsilon < 1/2\) there exists an integer \(M = M(\epsilon, m)\) such that every graph on \(n \geq m\) vertices has a partition \(V_0, V_1, \ldots, V_r\) with \(m \leq r \leq M\) where \(|V_0| < \epsilon n\), \(|V_1| = |V_2| = \cdots = |V_r|\) and all but at most \(\epsilon r^2\) of the pairs \(V_i, V_j, 1 \leq i < j \leq r\) are \(\epsilon\)-regular.

Proof of Proposition 4 Fix \(\delta > 0\) and an integer \(m \geq k\) such that the following inequality holds

\[
\left(\frac{1}{2m} + 2\delta^f + \frac{\delta + \delta^f}{2}\right) N(H, K_{|H|}) < \alpha. \tag{3}
\]

Let us apply the regularity lemma with \(\epsilon = \delta^f\) and \(m\) to get \(M = M(\epsilon, m)\). Let \(G\) be a graph on \(n > M\delta^{-f}\) vertices and more than \(\text{ex}(n, H, K_k) + \alpha n^{|H|}\) copies of \(H\). We will show that \(G\) contains \(F\) as a subgraph.

Let \(V_0, V_1, \ldots, V_r\) be the partition of \(G\) given by the regularity lemma. We will remove the following edges.

1. Remove the edges inside of each \(V_i\). There are at most \(r \binom{n/2}{r} \leq \frac{n^2}{2^r} \leq \frac{1}{2m} n^2\) such edges.
2. Remove the edges between all pairs \(V_i, V_j\) that are not \(\epsilon\)-regular. There are at most \(\epsilon r^2\) such pairs and each has at most \(\binom{n/2}{r}\) edges. So we remove at most \(\epsilon n^2\) such edges.
3. Remove the edges between all pairs \(V_i, V_j\) if the density of the pair \(d(V_i, V_j) < \delta + \delta^f\). There are less than \(\binom{r}{2}(\delta + \delta^f)(\frac{n}{r})^2 < \frac{\delta + \delta^f}{2} n^2\) such edges.
4. Remove all edges incident to \(V_0\). There are at most \(\epsilon n^2\) such edges.

In total we have removed at most

\[
\left(\frac{1}{2m} + 2\delta^f + \frac{\delta + \delta^f}{2}\right) n^2
\]

edges. There are at most \(N(H, K_{|H|}) n^{|H| - 2}\) copies of \(H\) containing a fixed edge. Therefore, by [3] we have removed less than \(\alpha n^{|H|}\) copies of \(H\). Thus, the resulting graph still has more than \(\text{ex}(n, H, K_k)\) copies of \(H\) so it contains \(K_k\) as a subgraph.

The \(k\) classes of the resulting graph that correspond to the vertices of \(K_k\) satisfy the conditions of the embedding lemma so \(G\) contains \(F\). \(\Box\)

Using a standard first-moment argument of Erdős-Rényi [9] we can get a lower-bound on the number of copies of \(H\) in an \(F\)-free graph.

Proposition 6. Let \(F\) and \(H\) be graphs such that \(e(F) > e(H)\). Then

\[
\text{ex}(n, H, F) = \Omega\left(n^{|H| - \frac{e(H)(|F|-2)}{e(F)-e(H)}}\right).
\]
Proof. Let G be an n-vertex random graph with edge probability

$$p = cn^{-\frac{|F|-2}{e(F) - e(H)}}$$

where $c = |H||e(F) - e(H)| + 1$.

Among $|F|$ vertices in G there are at most $|F|!$ copies of the graph F. Therefore, the expected number of copies of F is at most

$$|F|! \left(\frac{n}{|F|} \right)^{p^e(F)} \leq n^{|F|} p^e(F).$$

Fix $|H|$ vertices in G. The probability of a particular copy of H appearing among those vertices is $p^e(H)$. Thus, the probability of at least one copy of H appearing among those $|H|$ vertices is at least $p^e(H)$. Therefore, the expected number of copies of H is at least

$$\left(\frac{n}{|H|} \right)^{p^e(H)} \geq \left(\frac{n}{|H|} \right)^{|H|} p^e(H).$$

We remove an edge from each copy of F in G and count the remaining copies of H. There are at most $n^{|H|-2}$ copies of H destroyed for each edge removed from G.

Let X be the random variable defined by the difference between the number of copies of H and the number of copies of H destroyed by the removal of edges. The expectation of X is

$$E[X] \geq \left(\frac{n}{|H|} \right)^{|H|} p^e(H) - n^{|H|-2} n^{|F|} p^e(F).$$

Which simplifies to

$$E[X] = \Omega \left(n^{|H|-\frac{e(H)|F|-2}{e(F) - e(H)}} \right).$$

This implies that there exists a graph such that after removing an edge from each copy of F we are left with at least $E[X]$ copies of H.

We conclude this section with two simple bounds on $ex(n, H, F)$. Neither result is likely to give a sharp bound, but may be useful as simple tools.

Proposition 7. $ex(n, H, F) \geq ex(n, F) - ex(n, H)$.

Proof. Consider an edge-maximal n-vertex F-free graph G. Remove an edge from each copy of the subgraph in H in G. The resulting graph does not contain H and therefore has at most $ex(n, H)$ edges.

The other simple observation is a consequence of the Kruskal-Katona theorem [28, 25]. A hypergraph \mathcal{H} is k-uniform if all hyperedges have size k. For a k-uniform hypergraph \mathcal{H}, the i-shadow is the i-uniform hypergraph $\Delta_i \mathcal{H}$ whose hyperedges are the collection of all subsets of size i of the hyperedges of \mathcal{H}. We denote the collection hyperedges of a hypergraph \mathcal{H} by $E(\mathcal{H})$. Here we use a version of the Kruskal-Katona theorem due to Lovász [30].
Theorem 8 (Lovász, [30]). If H is a k-uniform hypergraph and

$$|E(H)| = \binom{x}{k} = \frac{x(x-1)\cdots(x-k+1)}{k!}$$

for some real number $x \geq k$, then

$$|E(\Delta H)| \geq \binom{x}{i}.$$

This gives the following easy corollary,

Corollary 9.

$$\text{ex}(n, K_t, F) \leq \text{ex}(n, F)^{t/2}.$$

Proof. Suppose G is F-free and has the maximum number of copies of K_t. Let us consider the hypergraph H whose hyperedges are the vertex sets of each copy of K_k in G. Pick x such that the number of hyperedges in H is

$$|E(H)| = \binom{x}{t}.$$ \hspace{1cm} (4)

Applying Theorem 8 we get that the 2-uniform hypergraph (i.e., graph) $\Delta_2 H$ has size at least $\binom{x}{2}$.

On the other hand, the family $\Delta_2 H$ is a subgraph of G. Therefore,

$$\binom{x}{2} \leq e(G) \leq \text{ex}(n, F).$$ \hspace{1cm} (5)

Combining (4) and (5) gives the corollary. \hfill \Box

3 Counting paths and cycles in $K_{2,t}$-free graphs

The maximum number of edges in a $K_{2,t}$-free graph is

$$\text{ex}(n, K_{2,t}) = \left(\frac{1}{2} + o(1)\right) \sqrt{t-1} n^{3/2}. \hspace{1cm} (6)$$

The upper bound above is given by Kővári, Sós and Turán [27] and the lower bound is given by an algebraic construction of Füredi [11]. We will refer to this construction as the Füredi graph $F_{q,t}$. We recall some well-known properties of $F_{q,t}$ without giving a full description of its construction. For fixed t and q a prime power such that $t-1$ divides $q-1$, the graph $F_{q,t}$ has $n = (q^2 - 1)/(t-1)$ vertices. All but at most $2q$ vertices have degree q and the others have degree $q-1$, thus the number of edges is $(1/2 + o(1))\sqrt{t-1} n^{3/2}$. Furthermore, every pair of vertices has at most $t-1$ common neighbors while every pair of non-adjacent vertices has exactly $t-1$ common neighbors.

Alon and Shikhelman [1] used the Füredi graph to give a lower bound in the following theorem.
Theorem 10 (Alon, Shikhelman, [1]).

\[\text{ex}(n, K_3, K_{2,t}) = \left(\frac{1}{6} + o(1) \right) (t-1)^{3/2} n^{3/2}. \]

We generalize this theorem to cycles of arbitrary length and paths. We use the notation \(v_1v_2 \cdots v_k \) for the path \(P_k \) with vertices \(v_1, \ldots, v_k \) and edges \(v_iv_{i+1} \) (for \(1 \leq i \leq k-1 \)). The cycle \(C_k \) that includes this path and the edge \(v_kv_1 \) is denoted \(v_1v_2 \cdots v_kv_1 \).

Proposition 11. For \(t \geq 3 \) we have

\[\text{ex}(n, C_4, K_{2,t}) = \left(\frac{1}{8} + o(1) \right) (t-1)^2 n^2. \]

Proof. We begin with the upper bound. Consider an \(n \)-vertex graph \(G \) that is \(K_{2,t} \)-free. Fix two vertices \(u \) and \(v \). As \(G \) is \(K_{2,t} \)-free, \(u \) and \(v \) have at most \(t-1 \) common neighbors.

Therefore the number of \(C_4 \)s with \(u \) and \(v \) as non-adjacent vertices is at most \(\binom{t-1}{2} \). Therefore, the number of \(C_4 \)s in \(G \) is at most

\[\frac{1}{2} \binom{n}{2} \binom{t-1}{2} \leq \frac{1}{8} (t-1)^2 n^2 \]

as each cycle is counted twice.

The lower bound is given by the F"uredi graph \(F_{q,t} \). Every pair of non-adjacent vertices has \(t-1 \) common neighbors, so there are \(\binom{t-1}{2} \) copies of \(C_4 \) containing them. There are \((1/2 + o(1))n^2 \) pairs of non-adjacent vertices in \(F_{q,t} \). Each \(C_4 \) is counted twice in this way, so the number of \(C_4 \)s in \(F_{q,t} \) is at least

\[\frac{1}{2} \left(\frac{1}{2} + o(1) \right) n^2 \binom{t-1}{2} \geq \left(\frac{1}{8} + o(1) \right) (t-1)^2 n^2. \]

\[\square \]

A slightly more sophisticated argument than the proof of Proposition 11 is needed to count longer cycles and paths.

Theorem 12. Fix \(t \geq 2 \). For \(k \geq 5 \),

\[\text{ex}(n, C_k, K_{2,t}) = \left(\frac{1}{2k} + o(1) \right) (t-1)^{k/2} n^{k/2} \]

and for \(k \geq 2 \),

\[\text{ex}(n, P_k, K_{2,t}) = \left(\frac{1}{2} + o(1) \right) (t-1)^{(k-1)/2} n^{(k+1)/2}. \]
Proof. We begin with the upper bound for \(\text{ex}(n, C_k, K_{2,t}) \). Let \(G \) be a \(K_{2,t} \)-free graph. We distinguish two cases based on the parity of \(k \).

Case 1: \(k \) is even. Fix a \((k/2)\)-tuple \((x_1, x_2, \ldots, x_{k/2})\) of distinct vertices of \(G \). This can be done in at most \(n^{k/2} \) ways. We count the number of cycles \(v_1v_2 \cdots v_kv_1 \) such that \(x_i = v_{2i} \) for \(1 \leq i \leq k/2 \). As \(G \) is \(K_{2,t} \)-free, there are at most \(t-1 \) choices for each vertex \(v_{2i+1} \) on the cycle (for \(0 \leq i \leq (k-2)/2 \)) as \(v_{2i+1} \) must be joined to both \(v_{2i+2} \) and \(v_{2i} \) (where the indicies are modulo \(k \)). Each cycle \(v_1v_2 \cdots v_kv_1 \) is counted by \(2k \) different \((k/2)\)-tuples, so the number of copies of \(C_k \) is at most

\[
\frac{1}{2k} (t-1)^{k/2} n^{k/2}.
\]

Case 2: \(k \) is odd. Fix a \(((k+1)/2)\)-tuple \((x_1, x_2, \ldots, x_{(k-3)/2}, y, z)\) of distinct vertices such that \(yz \) is an edge. This can be done in at most

\[
2e(G)n^{(k-3)/2} \leq (1 + o(1)) (t-1)^{1/2} n^{3/2} n^{(k-3)/2} = (1 + o(1)) (t-1)^{1/2} n^{k/2}
\]

ways by (6). We count the number of cycles \(v_1v_2 \cdots v_kv_1 \) such that \(x_i = v_{2i} \) for \(1 \leq i \leq (k-3)/2, y = v_{k-1}, \) and \(z = v_k \). Similar to Case 1, as \(G \) is \(K_{2,t} \)-free, there are at most \(t-1 \) choices for each of the \((k-1)/2\) remaining vertices \(v_{2t+1} \) of the cycle. Each cycle \(v_1v_2 \cdots v_kv_1 \) is counted by \(2k \) different \(((k+1)/2)\)-tuples, so the number of copies of \(C_k \) is at most

\[
\frac{1}{2k} (t-1)^{(k-1)/2} (1 + o(1)) (t-1)^{1/2} n^{k/2} = \left(\frac{1}{2k} + o(1) \right) (t-1)^{k/2} n^{k/2}.
\]

For the upper bound on \(\text{ex}(n, P_k, K_{2,t}) \) we fix a tuple of distinct vertices of \(G \) as above. We sketch the proof and leave the remaining details to the reader. If \(k \) is odd we fix a \(((k+1)/2)\)-tuple \((x_1, x_2, \ldots, x_{(k+1)/2})\) and if \(k \) is even we fix a \(((k+2)/2)\)-tuple \((x_1, x_2, \ldots, x_{(k-2)/2}, y, z)\) such that \(yz \) is an edge. In both cases we count the paths \(v_1v_2 \cdots v_k \) such that \(x_i = v_{2i-1} \) and with the additional conditions that \(y = v_{k-1}, \) and \(z = v_k \) in the case \(k \) even. Similar to the case for cycles there are at most \(t-1 \) choices for each of the remaining vertices of the path. Each path is counted exactly two times in this way.

Both lower bounds are given by the Füredi graph \(F_{q,t} \) for \(q \) large enough compared to \(t \) and \(k \). We begin by counting copies of the path \(P_k = v_1v_2 \cdots v_k \) greedily. The vertex \(v_1 \) can be chosen in \(n \) ways. As the Füredi graph \(F_{q,t} \) has minimum degree \(q-1 \), we can pick vertex \(v_i \) (for \(i > 1 \)) in at least \(q - i + 1 \) ways. Each path is counted twice in this way, therefore, we have at least

\[
\frac{1}{2} n(q-k+1)^{k-1} = \left(\frac{1}{2} + o(1) \right) (t-1)^{(k-1)/2} n^{(k+1)/2}
\]

paths of length \(k \) in the Füredi graph \(F_{q,t} \).

For counting copies of the cycle \(C_k = v_1v_2 \cdots v_kv_1 \) we proceed as above with the addition that \(v_k \) should be adjacent to \(v_1 \). In order to do this, we pick \(v_1 \) arbitrarily and \(v_2, \ldots, v_{k-3} \) greedily as in the case of paths. As \(k \geq 5 \) the vertex \(v_{k-3} \) is distinct from \(v_1 \). From the
neighbors of \(v_{k-3}\) we pick \(v_{k-2}\) that is not adjacent to \(v_1\). The number of choices for \(v_{k-2}\) is at least \(q - k + 3 - (t - 1)\) as \(v_{k-3}\) and \(v_1\) have at most \(t - 1\) common neighbors. From the neighbors of \(v_{k-2}\) we pick \(v_{k-1}\) that is not adjacent to any of the vertices \(v_1, \ldots, v_{k-3}\). Each \(v_i\) has at most \(t - 1\) common neighbors with \(v_{k-2}\) which forbids at most \((k - 3)(t - 1)\) vertices as a choice for \(v_{k-1}\). Therefore, we have at least \(q - k - 2 - (k - 3)(t - 1)\) choices for \(v_{k-1}\).

Since \(v_{k-1}\) is not joined to \(v_1\) by an edge they have \(t - 1\) common neighbors and none of these neighbors are among \(v_1, v_2, \ldots, v_{k-1}\). Hence we can pick any of the common neighbors as \(v_k\). Every copy of \(C_k\) is counted \(2k\) times, thus altogether we have at least

\[
\frac{1}{2k} n(q - t(k - 3))^{k-2}(t - 1) = \left(\frac{1}{2k} + o(1)\right) (t - 1)^{k/2}n^{k/2}
\]

copies of \(C_k\).

\[
\square
\]

4 Linearity of the function \(\text{ex}(n, C_k, F)\)

It is easy to see that \(\text{ex}(n, H, F)\) is never sublinear (except for the obvious case when \(H\) contains \(F\) and it is 0). It is natural to investigate which graphs \(H\) and \(F\) cause \(\text{ex}(n, H, F)\) to be linear. When \(H\) is \(K_3\), Alon and Shikhelman \([1]\) characterized the graphs \(F\) with \(\text{ex}(n, K_3, F) = O(n)\). For trees they also essentially answer the question by determining the order of magnitude of \(\text{ex}(n, T, F)\) where both \(T\) and \(F\) are trees. One can easily see that their proof extends to the case when \(F\) is a forest. On the other hand, if \(F\) contains a cycle and \(T\) is a tree, then \(\text{ex}(n, F)\) is superlinear and \(\text{ex}(n, T)\) is linear. Thus by Proposition 7 we have that \(\text{ex}(n, T, F)\) is superlinear.

![Figure 1: The graphs \(C_{k}^{*r}, C_{4}^{*r}\) and, \(C_{5}^{*r}\)](image)

Now we turn our attention to the case when \(H\) is a cycle. We begin by introducing some notation. Let \(C_{k}^{*r}\) be a cycle \(C_k\) with \(r\) additional vertices adjacent vertex \(x\) of the \(C_k\). For \(k = 4\), let \(C_{4}^{**r}\) be a cycle \(v_1v_2v_3v_4\) with \(2r\) additional vertices; \(r\) are adjacent to \(v_1\) and \(r\) are
Banana graph B_t^r \hspace{1cm} Q_k^r-graph \hspace{1cm} $R_k^r(a, b, c, d)$

Figure 2: A banana graph B_t^r, a Q_k^r-graph, and $R_k^r(a, b, c, d)$

adjacent edge to v_3. Similarly, let C_5^{**r} be a cycle $v_1v_2v_3v_4v_5$ with $2r$ additional vertices; r are adjacent to v_1 and r are adjacent to v_3. See Figure[4] for an example of these graphs.

A banana graph B_t^r is the union of r internally-disjoint $u-v$ paths of length t. We call the vertices u, v the main vertices of B_t^r and the $u-v$ paths of B_t^r are its internal paths.

A Q_k^r-graph is a graph consisting of a banana graph B_t^r (for some $t < k$) with main vertices u, v and a $u-v$ path of length $k-t$ that is otherwise disjoint from B_t^r. Alternatively, a Q_k^r-graph is a C_k with $r-1$ additional paths of length t (for some $t < k$) between two vertices that are joined by a path of length t in the C_k. The internal paths and main vertices of a Q_k^r-graph are simply the internal paths and main vertices of the associated banana graph B_t^r. The main path of a Q_k^r-graph is the associated $u-v$ path of length $k-t$.

For $a, c \geq 2$ and $b, d \geq 0$ such that $a + b + c + d = k$, let $R_k^r(a, b, c, d)$ be the graph formed by a copy of B^r_a with main vertices u, v and a copy of B^r_c with main vertices u', v' together with a $v-v'$ path of length b and a $u-u'$ path of length $d = k - (a + b + c)$. When $b = 0$ we identify the vertices v and u' and when $d = 0$ we identify the vertices u and v'. Note that the last parameter d is redundant, but we include it for ease of visualizing individual instances of this graph. For simplicity, we call any graph $R_k^r(a, b, c, d)$ an R_k^r-graph. Finally, let the family forests which are subgraphs of every R_k^r-graph be the F_k^r-graphs (i.e., the forests that are subgraphs of every $R_k^r(a, b, c, d)$ for all permissible values of a, b, c, d).

We now characterize those graphs F for which the function $\text{ex}(n, C_k, F)$ is linear.

Theorem 13. For $k = 4$ and $k = 5$, if F is a subgraph of C_k^{***r} (for some r large enough), then $\text{ex}(n, C_k, F) = O(n)$. For $k > 5$, if F is a subgraph of C_k^{**r} or an F_k^r-graph (for some r large enough), then $\text{ex}(n, C_k, F) = O(n)$. On the other hand, for every $k > 3$ and every other F we have $\text{ex}(n, C_k, F) = \Omega(n^3)$.

It is difficult to give a simple characterization of F_k^r-graphs. However, the following lemma
gives some basic properties of these forests. For simplicity, the term high degree refers to a vertex of degree greater than 2. A star is a single high degree vertex joined to vertices of degree 1. A broom is a path (possibly of a single vertex) with additional leaves attached to one of its end-vertices. Finally, let $c(F)$ be the sum of the number of vertices in the longest path in each component of F (excluding the isolated vertex components).

![Figure 3: An F_k^r-graph with a non-broom component and an F_k^r-graph F with $c(F) = k + 4$.]

Proposition 14. Let F be an F_k^r-graph, i.e., F is a subforest of every R_k^r-graph. Then the following properties hold when $k > 5$:

1. F has at most two vertices of high degree. This implies that all but at most two components of F are paths.

2. Each component of F has at most one vertex of high degree.

3. Each vertex of high degree in F is adjacent to at most two vertices of degree 2.

4. If F has two high degree vertices, then at least one of them is contained in a component that is a broom.

5. The number of vertices in the longest path in F is at most k.

6. $c(F) \leq k + 4$.

7. If $c(F) = k + 4$, then F contains three components that are stars on at least 3 vertices. Furthermore, each component of F with a high degree vertex is a star.

Proof. The first property follows as F is a subgraph of the graph $R_k^r(2, 0, k - 2, 0)$ which has exactly two high degree vertices.
For property two, consider the graphs $R^r_k(2,0,k-2,0)$ and $R^r_k(3,0,k-3,0)$. Each graph has two high degree vertices and they are at distance 2 and 3, respectively. If F had a component with two high degree vertices, then these vertices would be at distance 2 and 3 simultaneously; a contradiction. Note that we use $k > 5$ here.

For property three, consider the graph $R^r_k(2,0,2,k-4)$. This graph contains three high degree vertices x, y, z such that every vertex adjacent to y is adjacent to either x or z. If F has a component with a high degree vertex adjacent to more than two vertices of degree 2, then that component contains a cycle; a contradiction.

For property four, again consider the graph $R^r_k(2,0,2,k-4)$ and define the three high degree vertices x, y, z as before. If F has two components each with a high degree vertex, then without loss of generality one of these high degree vertices is x. If x is adjacent to two vertices of degree 2 in F, then one of these vertices is y. Therefore, the other high degree vertex in F is z. That component cannot contain y, so z is adjacent to at most one vertex of degree 2, i.e., that component is a broom.

For property five, observe that the number of vertices in a longest path in $R^r_k(2,0,2,k-4)$ is k.

For property six and seven we can assume that all the components of F are paths (by deleting unnecessary leaves) and that each component contains at least two vertices.

Consider again the graph $R^r_k(2,0,2,k-4)$ with high degree vertices x, y, z as above. Note that this graph contains an x-z path on $k - 3$ vertices. The components of F containing x or z have at most 2 additional vertices not on this path. Moreover, the component of F containing y has at most 3 vertices not on this path (this includes y itself). Therefore, $c(F) \leq k - 3 + 2 + 2 + 3 = k + 4$. This proves property six. In order to achieve equality $c(F) = k + 4$ there must be three distinct components containing x, y and z and each of these components has 3 vertices in their longest path, i.e., each such component is a star. This proves property seven.

The next lemma establishes another class of graphs that contains each F^r_k-graph as a subgraph.

Lemma 15. Let $k > 5$ and H be a graph formed by two Q^r_k-graphs Q_1, Q_2 such that Q_1 and Q_2 share at most one vertex and such a vertex is on the main path of both Q_1 and Q_2. Then each F^r_k-graph is a subgraph of H.

Proof. Let F be an F^r_k-graph. We will show that F can be embedded in H. Suppose Q_1, Q_2 share a vertex x on their main paths as this is the more difficult case.

Let F' be a graph formed by components of F such that $c(F') \leq k$ and there is at most one vertex of high degree in F'. We claim that F' can be embedded into Q_2. Indeed, first we embed the component of F' containing the high degree vertex using a main vertex of Q_2. The remaining (path) components of F' can be embedded into the remaining vertices of the C_k in Q_2 greedily. Now, if we can embed components of F into Q_1 without using the vertex x such that the remaining components satisfy the conditions of F' above, then we are done.

First suppose that $c(F) = k + 4$. By property seven of Proposition 14 let T and T' be distinct star components of F such that T has exactly 3 vertices. It is easy to see that T
and T' can both be embedded to Q_1 without using the vertex x. Therefore, the remaining components of F can be embedded into Q_2.

We may now assume $c(F) \leq k + 3$. If F contains a single component, then it can be embedded into Q_1 by property five of Proposition 14. If F has no high degree vertex, then every component is a path. In this case it is easy to embed F into Q_1 and Q_2. So let us assume that F contains at least two components and at least one high degree vertex.

The graph Q_1 has two high degree vertices. Therefore, one of them is connected to x by a path P_ℓ with $\ell > (k + 2)/2$.

Suppose F contains two high degree vertices, then let T be a component containing a high degree vertex. We may assume that the number of vertices on the longest path in T is at most $(k + 3)/2$ (as there are two components with a high degree vertex). Therefore, we may embed T into Q_1 without using the vertex x. The remaining components of F can be embedded into Q_2.

Now suppose F contains exactly one high degree vertex. If F contains a component with longest path on k vertices, then it can be embedded into Q_2 and the remaining component of F can be embedded into Q_1 without using vertex x. So we may assume all components in F have longest paths with less than k vertices. If there is a (path) component on at least three vertices, then it can be embedded into Q_1 without using the vertex x and the remaining components of F can be embedded into Q_2. If there is no such path, then all path components are single edges. Two such edges can be embedded into Q_1 without using the vertex x and the remaining components can be embedded into Q_2 as before.

A version of the next lemma has already appeared in a slightly different form in [14].

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{The graph B from Lemma 16}
\end{figure}

\textbf{Lemma 16.} Fix integers $s \geq 2$ and $i \geq 2$. Let G be a graph containing a family P of $(s_i)^{2i-2}$ u–v paths of length i. Then G contains a subgraph B consisting of a banana graph B_t^s (for some $t \leq i$) with main vertices u', v' together with a u–u' path and and v'–v path that are disjoint from each other and otherwise disjoint from B (we allow that the additional paths be of length 0, i.e., $u = u'$ and $v = v'$), such that each u–v path in B is a sub-path of some member of P. Moreover, if each member of P is a sub-path of some copy of C_k in G, then G contains a Q_k^l-graph where $s' = s - k$.

\textbf{Proof.} We prove the first part of the lemma by induction on i. The statement clearly holds for $i = 2$, as such a collection of paths is a banana graph. Let $i > 2$ and suppose the lemma holds for smaller values of i. If there are s disjoint paths of length i between u and v then
we are done. So we may assume that there are at most $s - 1$ disjoint paths of length i from u to v. The union of a set of disjoint paths of length i from u to v has at most si vertices. Furthermore, every other u-v path of length i must intersect this set of vertices. Therefore, there is a vertex w that is contained in at least $(si)^{2i-3}$ of these paths. This w can be in different positions in those paths, but there are at least $(si)^{2i-4}$ paths where w is the $(p + 1)$st vertex (counting from u) with $1 \leq p < i$. Then there are either at least $(si)^{2p-2} > (sp)^{2p-2}$ sub-paths of length p from u to w or at least $(si)^{2(i-p)-2} > (s(i-p))^{2(i-p)-2}$ sub-paths of length $i - p$ from w to v. Without loss of generality, suppose there are at least $(si)^{2p-2} > (sp)^{2p-2}$ sub-paths of length p from u to w. Then, by induction on this collection of paths of length $p < i$, we find a banana graph B^*_i with main vertices u', v' together with a u'-u path and a v'-w path (that are disjoint from each other). As there is a path from w to v we have the desired subgraph B.

Now it remains to show that if each member of P is a sub-path of some copy of C_k in G, then G contains a Q'_k-graph. Suppose we have a graph B from the first part of the lemma. Let C be a cycle of length k that contains any u-v path of length i in B. Note that C also contains a u-v path P of length $k - i$. The internal vertices of P intersect at most k of the internal paths of the banana graph B^*_i in B. Remove these internal paths from B^*_i and let B' be the resulting subgraph of B. Now B' together with P forms a Q'_k-graph.

Proof of Theorem 13 First let us suppose that F is a graph such that $ex(n, C_k, F) = o(n^2)$. Therefore, F must be a subgraph of every graph with $\Omega(n^2)$ copies of C_k. It is easy to see that each R^r_k-graph contains $\Omega(n^2)$ copies of C_k. Thus, F is a subgraph of every R^r_k-graph.

The Füredi graph $F_{q,2}$ does not contain a copy of C_4 and contains $\Omega(n^2)$ copies of C_k for $k \geq 5$. Furthermore, $F_{q,3}$ contains $\Omega(n^2)$ copies of C_4. This follows from the proof of the lower bound in Theorem 12. Therefore, when $k \geq 5$ and r and q are large enough, the graph F is a subgraph of $F_{q,2}$. When $k = 4$, and r and q are large enough the graph F is a subgraph of $F_{q,3}$.

Claim 17. The graph F contains at most one cycle and it is of length k.

Proof. As F is a subgraph of $R^r_k(2,0,2,k - 4)$, every cycle in F is of length k or 4. If $k > 4$, as F is a subgraph of $F_{q,2}$, it does not contain cycles of length 4. Therefore, all cycles in F are of length k.

Suppose there is more than one copy of C_k in F. For $k = 4$, as F is a subgraph of $R^r_4(2,0,2,0)$ it is easy to see that any two copies of C_4 in F form a $K_{2,3}$ or $K_{2,4}$. This contradicts the fact that F is also a subgraph of $F_{q,3}$. For $k = 5$, as F is a subgraph of $R^r_5(2,0,3,0)$ it is easy to see that any two copies of C_5 in F form a C_4 or C_6. This contradicts the fact that all cycles are of length k. For $k > 5$, as F is a subgraph of $R^r_k(2,0,2,k - 4)$, every pair of C_ks in F share $k - 3$ or $k - 1$ vertices. On the other hand, as F is a subgraph of $R^r_k(3,0,3,k - 6)$, every pair of C_ks in F share $k - 4$ or $k - 2$ vertices; a contradiction. □

We now distinguish three cases based on the value of k.

Case 1: $k = 4$. The graph F is a subgraph of $R^r_4(2,0,2,0)$. By Claim 17, F has at most one cycle. The subgraphs of $R^r_4(2,0,2,0)$ with at most one cycle are clearly subgraphs of C^{*rr}_4.

14
Case 2: $k = 5$. The graph F is a subgraph of $R_5^r(2, 0, 3, 0)$ and therefore has at most 2 vertices of degree greater than 2 and they are non-adjacent. Furthermore, F is a subgraph of $R_5^r(2, 0, 2, 1)$. By the above claim, F has at most one cycle. The subgraphs of $R_5^r(2, 0, 2, 1)$ with at most one cycle that are simultaneously subgraphs of $R_5^r(2, 0, 3, 0)$ are subgraphs of $C_5^{w,r}$.

Case 3: $k > 5$. First assume that F is a forest. As every R_k^r-graph contains $\Omega(n^2)$ copies of C_k, each must contain F as a subgraph. Therefore, F is an F_k^r-graph by definition.

Now consider the remaining case when F contains a cycle C. As F is a subgraph of $R_k^r(2, 0, k - 2)$, every edge of F is incident to C. If F has at least two vertices of degree greater than 2 on C, then as F is a subgraph of both $R_k^r(2, 0, k - 2)$ and $R_k^r(3, 0, k - 3)$, we have that these two vertices should be at distance 2 and 3 from each other in F; a contradiction. Thus, there is only one vertex of degree greater than 2 on C. Therefore, F is a subgraph of $C_k^{w,r}$. This completes the first part of the proof that if F is a graph such that $\text{ex}(n, C_k, F) = O(n)$, then F is as characterized in the theorem.

Now it remains to show that if F is as characterized in the theorem, then $\text{ex}(n, C_k, F) < cn$ for some constant c. The constants k and r are given by the statement of the theorem. Fix constants r'', r', γ, c', c in the given order such that each is large enough to k and r and the previously fixed constants.

Let G be a vertex-minimal counterexample, i.e, G is an n-vertex graph with at least cn copies of C_k and no copy of F such that n is minimal. We may assume every vertex in G is contained in at least c copies of C_k, otherwise we can delete such a vertex (destroying fewer than c copies of C_k) to obtain a smaller counterexample.

Case 1: F contains a cycle. Thus, for $k = 4, 5$ we have that F is a subgraph of $C_k^{w,r}$ and for $k > 5$ we have that F is a subgraph of $C_k^{w,r}$. If every vertex of G has degree at least $2r + k$, then on any C_k in G we can build a copy of $C_k^{w,r}$ or $C_k^{w,r}$ greedily. These graphs contain F; a contradiction.

Now let x be a vertex with degree less than $2r + k$. This implies that there is an edge xy contained in at least $c/(2r + k)$ copies of C_k. Therefore, that there are at least $c/(2r + k)$ x--y paths of length $k - 1$. As c is large enough compared to k and r, we may apply Lemma 16 to this collection of paths of length $k - 1$ (each a subgraph of a C_k) to get a Q_k^r-graph Q. The graph Q contains $C_k^{w,r}$ when $k > 5$ and $C_k^{w,r}$ when $k = 4, 5$. This implies that G contains F; a contradiction.

Case 2: F is a forest. Note that if $k \leq 4$, then F is a subgraph of $C_k^{w,r}$, and we are done. Thus, we may assume $k > 5$.

Claim 18. Suppose G contains a collection \mathcal{C} of at least $c'n$ copies of C_k. Then there is an integer $\ell < k$ such that G contains a Q_k^r-graph Q with main vertices x, y and internal paths of length ℓ such that less than $c'n$ members of \mathcal{C} contain x, y at distance ℓ.

Proof. We distinguish two cases.

Case 1: There exists two vertices u, v of G in at least $c'n$ members of \mathcal{C}. Then there are at least $(c'/k)n$ members of \mathcal{C} that contain a u--v sub-path of length $i < k$. Let us suppose that u and v are chosen such that i is minimal. Among these u--v paths of length i we can find a collection \mathcal{P} of $(c'/k)n/(ni) \geq c'/k^2$ of them that contain some fixed vertex.
Applying Lemma 16, this collection \(P \) of \(u-w \) paths of length \(j \) gives a \(Q_k' \)-graph \(Q \). Let \(x, y \) be the main vertices of \(Q \) and let \(\ell \leq j < i \) be the length of the main paths in \(Q \). By the minimality of \(i \), there are less than \(c'n \) members of \(C \) that contain \(x, y \) at distance \(\ell \).

Case 2: The graph \(G \) does not contain two vertices in \(c'n \) members of \(C \). As \(G \) is \(F \)-free and \(F \) is a forest there are at most \(2|V(F)| \) edges in \(G \). Thus, there is an edge \(uv \) contained in at least \(c'/(2|V(F)|) \) members of \(C \). Let \(P \) be a collection of \(c'/(2|V(F)|) \) \(u-v \) paths of length \(k-1 \) defined by these members of \(C \). Applying Lemma 16 to \(P \) gives a \(Q_k' \)-graph \(Q \). Let \(x, y \) be the main vertices of \(Q \). By the assumption in Case 2, the vertices \(x, y \) are contained in less than \(c'n \) total copies of \(C_k \) in \(G \).

Now let us apply Claim 18 repeatedly in the following way. Let \(C_0 \) be the collection of all \(cn \) copies of \(C_k \) in \(G \). We may apply Claim 18 to \(C_0 \) to find a \(Q_k' \)-graph \(Q_1 \) with main vertices \(x_1, y_1 \) at distance \(\ell_1 \) in \(Q_1 \). Now remove from \(C_0 \) the copies of \(C_k \) that contain \(x, y \) at distance \(\ell_1 \) and let \(C_1 \) be the remaining copies of \(C_k \) in \(C_0 \). Note that \(|C_1| \geq (c-c')n \) and that none of the copies of \(C_k \) in \(Q_1 \) are present in \(C_1 \). Repeating the argument above on \(C_1 \) in place of \(C_0 \) gives another \(Q_k' \)-graph \(Q_2 \) with main vertices \(x_2, y_2 \). We can continue this argument until we have \(k\gamma \) different \(Q_k' \)-graphs (as \(c \) is large enough compared to \(c' \)).

A pair of vertices \(x, y \) can appear as main vertices in at most \(k \) of the graphs \(Q_1, Q_2, \ldots, Q_{k\gamma} \). Indeed, as once they appear as main vertices at distance \(\ell \leq k \) in some \(Q_k' \)-graph we remove all copies of \(C_k \) that have \(x, y \) at distance \(\ell \). Therefore, there is a collection of \(\gamma = k\gamma/k \) different \(Q_k' \)-graphs such that no two of the \(Q_k' \)-graphs have the same two main vertices.

Let \(Q_1', Q_2', \ldots, Q_{\gamma}' \) be this collection of \(Q_k' \)-graphs.

The internal paths of any \(Q_i' \) may share vertices with \(Q_j' \) (for \(j \neq i \)). However, for \(r' \) large enough compared to \(r'' \), we may remove internal paths from each of the \(Q_i' \)'s to construct a collection of \(Q_k'' \)-graphs \(Q_1'', Q_2'', \ldots, Q_{\gamma}'' \) such that any two graphs \(Q_i'' \) and \(Q_j'' \) only share vertices on their respective main paths (for \(i \neq j \)).

Now let \(M_1, M_2, \ldots, M_{\gamma} \) be the collection of main paths of the \(Q_k'' \)-graphs \(Q_1'', Q_2'', \ldots, Q_{\gamma}'' \). If there are two paths \(M_i \) and \(M_j \) that share at most one vertex, then we may apply Lemma 15 to \(Q_i'' \) and \(Q_j'' \) to find a copy of \(F \) in \(G \); a contradiction.

So we may assume that each \(M_i \) shares at least two vertices with each other \(M_j \). Recall that they can share at most one of their main vertices. Therefore, there is a vertex \(u \in M_1 \) that is contained in at least \(\gamma/k \) of the paths \(M_2, M_3, \ldots, M_{\gamma} \). Moreover, \(u \) is the \(i \)th vertex in at least \(\gamma/k^2 \) of those paths. Each of these paths contain another vertex from \(M_1 \). At least \(\gamma/k^3 \) of them contains the same vertex \(v \), and it is the \(j \)th vertex in at least \(\gamma/k^4 \) of them. Thus, there are at least \(\gamma/k^4 \) vertices \(u \) and \(v \) such that the \(j \)th vertex of \(v \) is contained in at least \(\gamma/k^4 \) of them. As \(\gamma/k^4 \) is large enough we may apply Lemma 16 to this collection of \(u-v \) paths of length \(j-i \) to get a subgraph \(B \) consisting of a banana graph \(B'_t \) (for some \(t < k \)) with main vertices \(u, v \) together with a \(u-u' \) path and a \(v-v' \) path. Each \(u-v \) path of \(B \) is a sub-path of some \(Q_i'' \). Pick any such \(Q_i'' \) and take its union with \(B \). The vertices of \(B \) intersect at most \(kr \) internal paths of \(Q_i'' \). As \(r'' \) is large enough compared to \(r \), we may remove internal paths of \(Q_i'' \) that intersect the vertices of \(B \) to get a graph containing an \(R_k^r \)-graph. As \(F \) is a subgraph of every \(R_k^r \)-graph, we have that \(G \) contains \(F \); a contradiction.
5 Maximizing copies of H in K_k-free graphs

In [1] it is shown that if we forbid K_k and want to maximize the number of copies of some $(k-1)$-partite graph H, then the graph with the maximum number of copies of H is itself a complete $(k-1)$-partite graph, but it is not necessarily the Turán graph $T_{k-1}(n)$. A theorem of Ma and Qiu [31] shows that the Turán graph gives the maximum if the $(k-1)$-partite graph has $k-2$ parts of size s and one part of size t with $s \leq t < s + 1/2 + \sqrt{2s + 1}/4$ and n is large enough.

Now we investigate for which graphs H the function $\text{ex}(n, H, K_k)$ is maximized by the Turán graph $T_{k-1}(n)$. A graph H is k-Turán-good if $\text{ex}(n, H, K_k) = \mathcal{N}(H, T_{k-1}(n))$ for every n. Theorem [1] shows that complete graphs are k-Turán-good for any k.

Lemma 19. Let H be a k-Turán-good graph. Let H' be any graph constructed from H in the following way. Choose a complete subgraph of H with vertex set X, add a vertex-disjoint copy of K_{k-1} to H and join the vertices in X to the vertices of K_{k-1} by edges arbitrarily. Then H' is k-Turán-good.

Proof. By Theorem [1] the maximum number of copies of K_{k-1} in a K_k-free graph is achieved by the Turán graph $T_{k-1}(n)$. Since H is k-Turán-good, the Turán graph $T_{k-1}(n-k+1)$ has the maximum number of copies of H among K_k-free graphs on $n-k+1$ vertices. We will show that $T_{k-1}(n)$ has the maximum number of copies of H'.

Let G be a K_k-free graph on n vertices with the maximum number of copies of H'. Since H' contains a copy of K_{k-1}, the graph G must contain a copy of K_{k-1}. Let K be this copy of K_{k-1} in G. Every other vertex of G is adjacent to at most $k-2$ vertices of K. Let Y be a complete graph that is disjoint from K.

Consider a bipartite graph with classes formed by the vertices of Y and K, respectively and join two vertices by an edge if they are non-adjacent in G.

Suppose this bipartite graph does not have a matching saturating the class Y, i.e., a matching that uses every vertex of Y. Then, by Hall’s theorem, there exists a non-empty subset Y' of Y whose neighborhood in K has size less than $|Y'|$. In the original graph G this means that all of the vertices in Y' are connected to a fixed set of more than $|K| - |Y'|$ vertices in K. As Y' and K are complete graphs, this gives a copy of K_k in G; a contradiction. Therefore, this bipartite graph has a matching saturating Y which implies that in G the edges between Y and K are a subgraph of a complete bipartite graph minus a matching saturating Y.

On the other hand, in a $(k-1)$-partite Turán graph the edges between K_{k-1} and a clique of size $|Y|$ form a complete bipartite graph minus a matching saturating the clique of size $|Y|$. This implies that there are at least as many ways to join the vertices of a copy of H with a copy of K_{k-1} in a Turán graph as in G.

The number of copies of H' is the number of copies of K_{k-1}, multiplied by the number of copies of H on the remaining $n-k+1$ vertices, multiplied by the number of ways to join the vertices of K_{k-1} and H, divided by how many times a copy of H' was counted. The first three quantities are maximized by the Turán graph, while the last quantity depends only on H'. This implies that the number of copies of H' is maximized by $T_{k-1}(n)$. \qed
We do not characterize the graphs that can be built this way from complete graphs. Instead we give three simple consequences.

Corollary 20.
1. Every path is 3-Turán good.
2. Every Turán graph $T_{k-1}(\ell)$ is k-Turán-good.
3. The cycle C_4 is 3-Turán good.

We conclude this section with a simple proposition.

Proposition 21. The path P_3 is k-Turán-good.

Proof. Fix a graph G and let a be the number of induced copies of P_3. Let us count the number of pairs (e,v) where e is an edge in G and v is a vertex in G that is disjoint from e. Clearly, there are $e(G)(n-2)$ such pairs. On the other hand, on any set of three vertices there is at most one triangle or one induced P_3 and each triangle consists of three such pairs (e,v) and every induced P_3 consists of two such pairs (e,v). Thus

$$2a + 3N(K_3,G) \leq e(G)(n-2).$$

(7)

If G is a complete multi-partite graph, then we have equality in (7) as for any edge e and disjoint vertex v, there is at least one edge incident to e and v.

Now suppose that G is an n-vertex K_k-free graph with the maximum number of copies of P_3. By Turán’s theorem, we have that $e(G) \leq e(T_{k-1}(n))$ and by Theorem 1 we have that $N(K_3,G) \leq N(K_3,T_{k-1}(n))$. Counting copies of P_3 in G we have

$$N(P_3,G) = a + 3N(K_3,G) = (a + \frac{3}{2}N(K_3,G)) + \frac{3}{2}N(K_3,G)$$

$$\leq (a + \frac{3}{2}N(K_3,G)) + \frac{3}{2}N(K_3,T_{k-1}(n))$$

$$\leq \frac{1}{2}e(G)(n-2) + \frac{3}{2}N(K_3,T_{k-1}(n))$$

$$\leq \frac{1}{2}e(T_{k-1}(n))(n-2) + \frac{3}{2}N(K_3,T_{k-1}(n)) = N(P_3,T_{k-1}(n)).$$

\[\square\]

6 Connection to Berge-hypergraphs

The problem of counting copies of a graph H in an n-vertex F-free graph is closely related to the study of so-called Berge hypergraphs. Generalizing the notion of hypergraph cycles due to Berge, the authors introduced the notion of Berge copies of any graph. Let F be a graph. We say that a hypergraph \mathcal{H} is a Berge-F if there is a bijection $f : E(F) \rightarrow E(\mathcal{H})$ such that $e \subseteq f(e)$ for every $e \in E(F)$. Note that Berge-F actually denotes a class of
hypergraphs. The maximum number of hyperedges in an \(n \)-vertex hypergraph with no sub-hypergraph isomorphic to any Berge-\(F \) is denoted \(\text{ex}(n, \text{Berge-} F) \). When we restrict ourselves to \(r \)-uniform hypergraphs, this maximum is denoted \(\text{ex}_r(n, \text{Berge-} F) \).

Results of Győri, Katona and Lemons [21] together with Davoodi, Győri, Methuku and Tompkins [5] give tight bounds on \(\text{ex}_r(n, \text{Berge-} P_\ell) \). Upper-bounds on \(\text{ex}_r(n, \text{Berge-} C_\ell) \) are given by Győri and Lemons [22] when \(r \geq 3 \). A brief survey of Turán-type results for Berge-hypergraphs can be found in the introduction of [17].

An early link between counting subgraphs and Berge-hypergraph problems was established by Bollobás and Győri [4] who investigated both \(\text{ex}_3(n, \text{Berge-} C_5) \) and \(\text{ex}(n, K_3, C_5) \). The connection between these two parameters is also examined in two recent manuscripts [15, 33]. In this section we prove two new relationships between these problems.

Proposition 22. Let \(F \) be a graph. Then

\[
\text{ex}(n, K_r, F) \leq \text{ex}_r(n, \text{Berge-} F) \leq \text{ex}(n, K_r, F) + \text{ex}(n, F).
\]

and

\[
\text{ex}(n, \text{Berge-} F) = \max_G \left\{ \sum_{i=0}^{n} N(K_i, G) \right\} \leq \sum_{i=0}^{n} \text{ex}(n, K_i, F)
\]

where the maximum is over all \(n \)-vertex \(F \)-free graphs \(G \).

Proof. Given an \(F \)-free graph \(G \), let us construct a hypergraph \(\mathcal{H} \) on the vertex set of \(G \) by replacing each clique of \(G \) by a hyperedge containing exactly the vertices of that clique. The hypergraph \(\mathcal{H} \) contains no copy of a Berge-\(F \). This gives \(\text{ex}(n, K_r, F) \leq \text{ex}_r(n, \text{Berge-} F) \) and

\[
\max_G \left\{ \sum_{i=0}^{n} N(K_i, G) \right\} \leq \text{ex}(n, \text{Berge-} F)
\]

where the maximum is over all \(n \)-vertex \(F \)-free graphs \(G \).

Given an \(n \)-vertex hypergraph \(\mathcal{H} \) with no Berge-\(F \) subhypergraph, we construct a graph \(G \) on the vertex set of \(\mathcal{H} \) as follows. Consider an order \(h_1, \ldots, h_k \) of the hyperedges of \(\mathcal{H} \) such that the hyperedges of size two appear first. We proceed through the hyperedges in order and at each step try to choose a pair of vertices in \(h_i \) to be an edge in \(G \). If no such pair is available, then each pair of vertices in \(h_i \) is already adjacent in \(G \). In this case, we add no edge to \(G \). A copy of \(F \) in \(G \) would correspond exactly to a Berge-\(F \) in \(\mathcal{H} \), so \(G \) is \(F \)-free.

For each hyperedge \(h_i \) where we did not add an edge to \(G \), there is a clique on the vertices of \(h_i \) in \(G \). Thus, the number of hyperedges of \(\mathcal{H} \) is at most the number of cliques in \(G \). If \(\mathcal{H} \) is \(r \)-uniform, then each hyperedge \(h_i \) of \(\mathcal{H} \) corresponds to either an edge in \(G \) or a clique \(K_r \) on the vertices of \(h_i \) (when we could not add an edge to \(G \)). Therefore, the number of hyperedges in \(\mathcal{H} \) is at most \(\text{ex}(n, K_r, F) \) + \(\text{ex}(n, F) \). \(\square \)

As in the case of traditional Turán numbers we may forbid multiple hypergraphs. In particular, let \(\text{ex}_r(n, \{\text{Berge-} F_1, \text{Berge-} F_2, \ldots, \text{Berge-} F_k\}) \) denote the maximum number of
hyperedges in an r-uniform n-vertex hypergraph with no subhypergraph isomorphic to any Berge-F_i for all $1 \leq i \leq k$. Similarly, $\text{ex}(n, H, \{F_1, F_2, \ldots, F_k\})$ denotes the maximum number of copies of the graph H in an n-vertex graph that contains no subgraph F_i for all $1 \leq i \leq k$.

Proposition 23. Let $k \geq 4$. Then

$$\text{ex}_3(n, \{\text{Berge-}C_2, \ldots, \text{Berge-}C_k\}) = \text{ex}(n, K_3, \{C_4, \ldots, C_k\}).$$

Proof. Let \mathcal{H} be an n-vertex 3-uniform hypergraph with no Berge-C_i for $i = 2, 3, \ldots, k$ and the maximum number of hyperedges. Consider the graph G on the vertex set of \mathcal{H} where a pair of vertices are adjacent if and only if they are contained in a hyperedge of \mathcal{H}. As \mathcal{H} is C_2-free (i.e., each pair of hyperedges share at most one vertex) each edge of G is contained in exactly one hyperedge of \mathcal{H}.

Each hyperedge of \mathcal{H} contributes a triangle to G. We claim that G contains no other cycles of length i for $i = 3, 4, 5, \ldots, k$. That is, G contains no cycle with two edges coming from different hyperedges of \mathcal{H}. Suppose (to the contrary) that G does contain such a cycle C. If two edges of C come from the same hyperedge, then they are incident in C. Therefore, these two edges can be replaced by the edge between their disjoint endpoints (which is contained in the same hyperedge) to get a shorter cycle. We may repeat this process until we are left with a cycle such that each edge comes from a different hyperedge of \mathcal{H}. Then this cycle corresponds exactly to a Berge-cycle of at most k hyperedges in \mathcal{H}; a contradiction. Thus, $\text{ex}_3(n, \{\text{Berge-}C_2, \ldots, \text{Berge-}C_k\}) \leq \text{ex}(n, K_3, \{C_4, \ldots, C_k\})$.

On the other hand, let G be an n-vertex graph with no cycle C_4, C_5, \ldots, C_k and the maximum number of triangles. Construct a hypergraph \mathcal{H} on the vertex set of G where the hyperedges of \mathcal{H} are the triangles of G. The graph G is C_4-free, so each pair of triangles share at most one vertex, i.e., \mathcal{H} contains no Berge-C_2. If \mathcal{H} contains a Berge-C_3, then it is easy to see that G contains a C_4; a contradiction.

Therefore, if \mathcal{H} contains any Berge-C_i for $i = 4, \ldots, k$, then G contains a cycle C_i; a contradiction. Thus, $\text{ex}_3(n, \{\text{Berge-}C_2, \ldots, \text{Berge-}C_k\}) \geq \text{ex}(n, K_3, \{C_4, \ldots, C_k\})$. \hfill \QED

Alon and Shikhelman [11] showed that for every $k > 3$, $\text{ex}(n, K_3, \{C_4, \ldots, C_k\}) \geq \Omega(n^{1 + \frac{1}{k-1}})$. For $k = 4$ they showed that $\text{ex}_3(n, K_3, C_4) = (1 + o(1)) \frac{1}{6} n^{3/2}$.
Lazebnik and Verstraëte [29] proved $\text{ex}_3(n, \{\text{Berge-}C_2, \text{Berge-}C_3, \text{Berge-}C_4\}) = (1 + o(1)) \frac{1}{6} n^{3/2}$. By Proposition 23 these two statements are equivalent.

References

[1] N. Alon, C. Shikhelman, Many T copies in H-free graphs. *Journal of Combinatorial Theory, Series B* 121 (2016) 146–172.

[2] B. Bollobás, On complete subgraphs of different orders. *Math. Proc. Cambridge Philos. Soc.* 79 (1976) 19–24.
[3] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184. Springer-Verlag, New York, 1998. xiv+394 pp. ISBN: 0-387-98488-7

[4] B. Bollobás, E. Győri, Pentagons vs. triangles. Discrete Mathematics 308 (2008) 4332-4336.

[5] A. Davoodi, E. Győri, A. Methuku, C. Tompkins, An Erdős-Gallai type theorem for hypergraphs. arXiv:1608.03241 (2016).

[6] P. Erdős, On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. KutatóInt. Közl. 7 (1962) 459–464.

[7] P. Erdős, Problems and results in graph theory and combinatorial analysis, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congress. Numer. XV , pp. 169–192, Utilitas Math., Winnipeg, Man., 1976 MR53 #13006; Zentralblatt 335.05002.

[8] P. Erdős, On some problems in graph theory, combinatorial analysis and combinatorial number theory. Graph Theory and Combinatorics, Proc. Conf. Hon. P. Erdős, Cambridge 1983 (1984) 1–17.

[9] P. Erdős, A. Rényi, On the evolution of random graphs. Magyar Tud. Akad. Mat. KutatóInt. Közl. 5 (1960) 17–61.

[10] B. Ergemlidze, E. Győri, A. Methuku, N. Salia, A note on the maximum number of triangles in a C_5-free graph. arXiv:1706.02830, 2017.

[11] Z. Füredi. New asymptotics for bipartite Turán numbers. Journal of Combinatorial Theory, Series A, 75 (1996) 141–144.

[12] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems. Erdős Centennial. Springer, Berlin, Heidelberg, (2013) 169–264.

[13] D. Gerbner, E. Győri, A. Methuku, M. Vizer, Generalized Turán problems for even cycles. arXiv:1712.07079 (2017).

[14] D. Gerbner, B. Keszegh, C. Palmer, B. Patkós, On the number of cycles in a graph with restricted cycle lengths. SIAM Journal on Discrete Mathematics 32 (2018) 266–279.

[15] D. Gerbner, A. Methuku, M. Vizer, Asymptotics for the Turán number of Berge-$K_{2,t}$. arXiv:1705.04134 (2017).

[16] D. Gerbner, A. Methuku, M. Vizer, Generalized Turán problems for disjoint copies of graphs. arXiv:1712.07072 (2017).

[17] D. Gerbner, C. Palmer, Extremal Results for Berge Hypergraphs. SIAM Journal on Discrete Mathematics 31 (2017) 2314–2327.
[18] L. Gishboliner, A. Shapira, A Generalized Turán Problem and its Applications. arXiv:1712.00831 (2017).

[19] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph. Journal of Combinatorial Theory, Series B, 102 (2012) 1061–1066.

[20] E. Győri, On the number of C_5’s in a triangle-free graph. Combinatorica 9 (1989) 101–102.

[21] E. Győri, G. Y. Katona, N. Lemons, Hypergraph extensions of the Erdős-Gallai Theorem, European Journal of Combinatorics 58 (2016) 238–246.

[22] E. Győri, N. Lemons, Hypergraphs with no cycle of a given length. Combinatorics, Probability and Computing 21 (2012) 193–201.

[23] E. Győri, H. Li, The maximum number of triangles in C_{2k+1}-free graphs. Combinatorics, Probability and Computing 21 (2011) 187–191.

[24] H. Hatami, J. Hladký, D. Král’, D. Norine, A. Razborov. On the number of pentagons in triangle-free graphs. Journal of Combinatorial Theory, Series A 120 (2012) 722–732.

[25] G.O.H. Katona, A theorem for finite sets. Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, New York, (1968) 187–207.

[26] A. Kostochka, D. Mubayi and J. Verstraëte, Turán problems and shadows III: expansions of graphs, SIAM Journal on Discrete Math. 29 (2015) 868-876.

[27] T. Kővári, V. Sós, P. Turán, On a problem of K. Zarankiewicz. In Colloquium Mathematicae Vol. 3, No. 1, (1954) 50–57.

[28] J. Kruskal. The optimal number of simplices in a complex. Mathematical Optimization Techniques (1963) 251–268.

[29] F. Lazebnik, J. Verstraëte, On hypergraphs of girth five. Electronic Journal of Combinatorics 10 (2003) #R25.

[30] L. Lovász, Combinatorial Problems and Exercises. Akadémiai Kiadó, North Holland, 1979.

[31] Jie Ma and Yu Qiu, Some sharp results on the generalized Turán numbers. arXiv:1802.01091 (2018).

[32] I. W. Moon, L. Moser, On a problem of Turán. Magyar Tud. Akad. Mat. KutatóInt. Közl. 7 (1962) 311–314.

[33] C. Palmer, M. Tait, C. Timmons, A. Z. Wagner, Turán numbers for Berge-hypergraphs and related extremal problems. arXiv:1706.04249 (2017)