Buckling analysis of Functionally Graded Material (FGM) square plates using Quadrilateral Element

S C X Sidara*, I J Maknun and I Katili
Universitas Indonesia, Civil Engineering Department, Depok, 16424, Indonesia

E-mail*: sthefanichxsidara@yahoo.com

Abstract. Functionally Graded Material in one type of material that currently gets much attention in the civil engineering field because it is claimed as the material that can resist the high-temperature environment. FGM is consist of two or more material that continuously changed along the thickness direction of the structure. FGM is often formed by ceramic at the top of the structure that can resist the high-temperature environment and metal at the bottom of the structure that flexible and can resist the mechanical load. DKMQ Element gives a good convergence behavior in a thick and a thin plate problem. The purpose of this research is to study the convergence behavior of the DKMQ element in the buckling analysis of FGM plate under uniaxial compression. The result is a critical buckling load that will be compared to the reference. The results show that the DKMQ element gives a good result for buckling analysis on the FGM plate.

1. Introduction
The development in the civil engineering field is also required to be more advanced in material selection. In 1984 a research group in Sendai, Japan, discovered a new type of composite material, namely FGM (Functionally Graded Material), which is claimed to be a material that can adapt and resist the high-temperature environments (1–3). FGM is a part of a composite material consisting of two or more material components whose volume fraction continuously changed along the thickness direction, thus preventing delamination between layers (4–7).

In 1993, Katili discovered elements of DKMQ (Discrete Kirchhoff Mindlin Quadrilateral) whose formulation is free of shear locking and passed the patch test (8–11). This element also gives a good result for isotropic and orthotropic materials, both on thick plates and thin plates problems (12). The study of plates and shells using the DKMQ and DKMT are presented in [12]–[23].

In this paper, the formulation of the DKMQ element for buckling analysis FGM plate has been derived. Wong et al. had developed the formulation of the DKMQ element for buckling analysis isotropic bending plate (24). The study for buckling analysis on the plate are presented in (1, 25–33).

2. Problem formulation
2.1. Functionally Graded Materials
Figure 1 shows the geometry of the FGM plate composed of ceramic on the top of the structure and metal at the bottom of the structure. Its material properties are continuously changed by varying volume fractions (Figure 2). By using power-law from [1], we have:

\[
P(z) = (P_C - P_M) V_C(z) + P_M
\]

(1)
\[V_C(z) = \left(\frac{1}{2} + \frac{z}{h} \right)^n \]

(2)

\(P \) denotes the volume fraction of FGM where subscripts \(M \) is metal, and \(C \) is ceramic.

\[E_m = E_i = \int_{\gamma} E(z)dz = \left(\frac{E_C - E_M}{n+1} + E_M \right)h \]

(3)

\[E_n = \int_{\gamma} E(z)z^2dz = \left(\frac{n^2 + n + 2}{4(n+1)(n+2)(n+3)}(E_C - E_M) + \frac{E_M}{12} \right)h^3 \]

(4)

\[E_{nb} = \int_{\gamma} E(z)zdz = \left(\frac{n}{2(n+1)(n+2)}(E_C - E_M) \right)h^2 \]

(5)

2.2. DKMQ Formulations for FGM Plates

DKMQ is a quadrilateral element that has 4 nodes at the edges of it sides. For FGM plates, each node of the DKMQ element has five degrees of freedom, as seen in Figure 3. Element DKMQ for FGM plate. There is the couple membrane effect (membrane-bending) on FGM material.
Figure 3. Element DKMQ for FGM plate.

The interpolation functions of the DKMQ element are:

\[u = \sum_{i=1}^{n_1} N_i u_i; \quad v = \sum_{i=1}^{n_2} N_i v_i; \quad w = \sum_{i=1}^{n_2} N_i w_i \]

\[\beta_x = \sum_{i=1}^{n_1} N_i \beta_{x_i} + \sum_{k=3}^{8} P_k C_k \Delta \beta_{x_k}; \quad \beta_y = \sum_{i=1}^{n_1} N_i \beta_{y_i} + \sum_{k=3}^{8} P_k S_k \Delta \beta_{y_k} \]

where, \(N_i \) and \(P_k \) are.

\[N_i = \frac{1}{4} (1 - \xi)(1 - \eta); \quad N_2 = \frac{1}{4} (1 + \xi)(1 - \eta); \quad N_3 = \frac{1}{4} (1 + \xi)(1 + \eta); \quad N_4 = \frac{1}{4} (1 - \xi)(1 + \eta) \]

\[P_3 = \frac{1}{2} (1 - \xi^2)(1 - \eta); \quad P_6 = \frac{1}{2} (1 + \xi)(1 - \eta^2); \quad P_7 = \frac{1}{2} (1 - \xi^2)(1 + \eta); \quad P_8 = \frac{1}{2} (1 - \xi)(1 - \eta^2) \]

The formulation for the stiffness matrix of DKMQ element is derived from Total Potential Energy,

\[\Pi = \Pi_{\text{int}} - \Pi_{\text{ext}} \]

The modification of the Hu-Washizu principle that related to the Reissner-Mindlin plate theory

\[\Pi_{\text{ext}} = \int_A w f dA \]

\[\Pi_{\text{int}} = \Pi_{\text{int}^m} + \Pi_{\text{int}^b} + \Pi_{\text{int}^s} \]

The membrane energy:

\[\Pi_{\text{int}^m} = \frac{1}{2} \langle u_n \rangle \{ k_m \} \{ u_n \} \]

The bending energy:

\[\Pi_{\text{int}^b} = \frac{1}{2} \langle u_n \rangle \{ k_b \} \{ u_n \} \]

The membrane bending energy:

\[\Pi_{\text{int}^{mb}} = \frac{1}{2} \langle u_n \rangle \{ [k_{mb}] + [k_{mb}]^T \} \{ u_n \} \]

The shear energy:

\[\Pi_{\text{int}^s} = \frac{1}{2} \langle u_n \rangle \{ k_s \} \{ u_n \} \]

The theoretical formulation for the geometric stiffness matrix:

\[\Pi_{\sigma} = \frac{1}{2} h \langle \nabla u \rangle \{ \sigma_0 \} \{ \nabla u \} dA + \frac{1}{2} h \langle \nabla v \rangle \{ \sigma_0 \} \{ \nabla v \} dA + \frac{1}{2} h \langle \nabla w \rangle \{ \sigma_0 \} \{ \nabla w \} dA + \]

\[\frac{1}{2} h^3 \int_A \{ \nabla \beta_x \} \{ \sigma_0 \} \{ \nabla \beta_x \} dA + \frac{1}{2} h^3 \int_A \{ \nabla \beta_y \} \{ \sigma_0 \} \{ \nabla \beta_y \} dA \]

\[\frac{1}{2} h^4 \int_A \{ \nabla \beta_{x,y} \} \{ \sigma_0 \} \{ \nabla \beta_{x,y} \} dA \]
\[\Pi_\sigma = \frac{1}{2} \langle \sigma, \sigma \rangle \]

The membrane stress matrix:

\[
[\sigma_0] = \begin{bmatrix}
\sigma_x^0 \\
\tau_{xy}^0 \\
\tau_{xy}^0 \\
\sigma_y^0
\end{bmatrix}
\]

\[\sigma^0 = \frac{N^0}{h} \]

The critical buckling load \(N_{cr} \), from the eigenvalue equation:

\[
([k] - N_{cr} [k_G]) \{ u_n \} = 0
\]

3. Numerical result

Figure 4 illustrates the uniaxial compression on FGM Square Plate. The constituent component of FGM is Aluminium (Al) for the metal and Zirconia (ZrO2-1) for the ceramic. Material properties of FGM are \(E_m = 200000; E_c = 70000; \) Poisson’s ratio=0.3. Square FGM Plate with ratio \(L/h = 10 \) for thick plate and \(L/h = 100 \) for the thin plate. Figure 5 shows the various boundary condition that had been analyzed.

![Figure 4](image)

Figure 4. Uniaxial Compression on Square Plate.

![Figure 5](image)

Figure 5. Boundary Condition FGM Square Plate (a) SSSS, (b) CCCC, (c) SCSC, (d) SFSF.
Table 1 and Table 2 presented the non-dimensional critical buckling load given by the DKMQ element. And the result is DKMQ Element gives a good result compared to the REF, with 0.3% difference from Wong et al. (24), and 0.05% difference from Meshfree Method (28) for the thick plate in Table 1. For the thin plate in Table 2, the result is DKMQ Element also gives a good result compared to the REF, with 0.07% difference from Wong et al. (24).

Table 1. Non-dimensional Critical Buckling Load Square Plate $\overline{N_{cr}} = L^2 N_{cr} / \pi^2 D_b$, $D_b = Eh^3 / (12(1-\nu^2))$, $L/h=10$.

Boundary Condition	Method	$n = 0$	$n = 0.5$	$n = 1$	$n = 2$	$n = 5$	$n = 10$	$n = \infty$
SSSS	Present	3.7291	2.7297	2.3293	2.0431	1.8411	1.7013	1.3052
	REF (Wong)							
	Meshfree(28)							3.727
CCCC	Present	8.0068	5.9047	5.0399	4.3949	3.9085	3.5979	2.8024
SCSC	Present	7.2892	5.3662	4.5824	4.0048	3.5747	3.2927	2.5512
SFSF	Present	0.9147	0.6686	0.5706	0.5011	0.4528	0.4187	0.3201

Table 2. Non-dimensional Critical Buckling Load Square Plate $\overline{N_{cr}} = L^2 N_{cr} / \pi^2 D_b$, $D_b = Eh^3 / (12(1-\nu^2))$, $L/h=100$.

Boundary Condition	Method	$n = 0$	$n = 0.5$	$n = 1$	$n = 2$	$n = 5$	$n = 10$	$n = \infty$
SSSS	REF (Wong)	3.9971	2.9172	2.4897	2.1899	1.9845	1.8365	1.3990
	Present	4.0000						
CCCC	Present	10.0477	7.3339	6.2590	5.5050	4.9878	4.6155	3.5167
SCSC	Present	8.5885	6.2686	5.3499	4.7055	4.2637	3.9455	3.0060
SFSF	Present	0.9515	0.6944	0.5926	0.5213	0.4724	0.4372	0.3330

Figure 6 shows that DKMQ Element is convergence compared to the reference. Figure 7 shows that the critical buckling load value from the largest is CCCC-SCSC-SSSS-SFSF. And Figure 8 shows that if the power-law index value is increase, then the critical buckling load value will be decreased.
Figure 7. Critical Buckling Load FGM Square Plate with various boundary condition.

Figure 8. Critical Buckling Load FGM Square Plate with various power-law index.

4. Conclusion

The buckling analysis of DKMQ Element for FGM Plate has been presented. The buckling case of the FGM square plate using the DKMQ element has been analyzed to establish the accuracy of the element. The result is the DKMQ Element is convergence to the reference for both thick and thin plates. Furthermore, it is seen that the DKMQ Element shows excellent performance compared to the reference solution.

Acknowledgments

The financial support from Universitas Indonesia through Publikasi Terindeks Internasional (PUTI) Q1 Tahun Anggaran 2020 Nomor: NKB-1397/UN2.RST/HKP.05.00/2020

References

[1] Do VN Van, Ong TH, Lee C-H. Isogeometric analysis for nonlinear buckling of FGM plates under various types of thermal gradients. Thin-Walled Struct [Internet]. 2019 Apr 1 [cited 2019 Mar 11];137:448–62. Available from: https://www.sciencedirect.com/science/article/pii/S0263823118310851
[2] Nguyen-Xuan H, Tran L V., Nguyen-Thoi T, Vu-Do HC. Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos Struct. 2011;93(11):3019–39.
[3] Del Carpio Ramos M, Whittaker AS, Gulec CK. Predictive equations for the peak shear strength of low-aspect ratio reinforced concrete walls. J Earthq Eng. 2012;16(2):159–87.
[4] Chi SH, Chung YL. Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis. Int J Solids Struct. 2006;43(13):3657–74.
[5] Chi S-H, Chung Y-L. Mechanical behavior of functionally graded material plates under
transverse load—Part II: Numerical results. Int J Solids Struct. 2005;43(13):3675–91.

[6] Tomar SS, Talha M. Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates. Compos Part B Eng [Internet]. 2019 Apr 15 [cited 2019 Mar 11];163:779–93. Available from: https://www.sciencedirect.com/science/article/pii/S1359836818312587

[7] Vafakhah Z, Navayi Neya B. An exact three dimensional solution for bending of thick rectangular FGM plate. Compos Part B Eng [Internet]. 2019 Jan 1 [cited 2019 Mar 11];156:72–87. Available from: https://www.sciencedirect.com/science/article/pii/S135983681832119X

[8] Katili I. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields—part I: An extended DKT element for thick-plate bending analysis. Int J Numer Methods Eng. 1993;36(11):1859–83.

[9] Katili I, Maknun IJ, Batoz JL, Katili AM. Asymptotic equivalence of DKMT and MITC3 elements for thick composite plates. Compos Struct [Internet]. 2018;206(July):363–79. Available from: https://doi.org/10.1016/j.compstruct.2018.08.017

[10] I. K, J.-L. B, I.J. M, A. H, O. M. The Development of DKMQ Plate Bending Element for Thick to Thin Shell Analysis Based on Naghdi/Reissner/Mindlin Shell Theory. Finite Elem Anal Des. 2014;100:12–27.

[11] Katili I, Maknun IJ, Hamdouni A, Millet O. Application of DKMQ element for composite plate bending structures. Compos Struct [Internet]. 2015;132:166–74. Available from: http://dx.doi.org/10.1016/j.compstruct.2015.04.051

[12] Katili I, Batoz JL, Maknun IJ, Lardeur P. A comparative formulation of DKMQ, DSQ and MITC4 quadrilateral plate elements with new numerical results based on s-norm tests. Comput Struct [Internet]. 2018;204:48–64. Available from: https://doi.org/10.1016/j.compstruct.2018.04.001

[13] Mahjudin M, P. L, F. D, Katili I. Stochastic finite element analysis of plates with the certain generalized stresses method. Struct Saf. 2016;61:12–21.

[14] H. I, I. K, I.J. M. Development DKMQ Shell Element with Five Degrees of Freedom per Nodal. Int J Mech Eng Robot Res. 2017;6:248–52.

[15] Maknun IJ, Katili I, Purnomo H. Development of the DKMT element for error estimation in composite plate structures. Int J Technol. 2015;6(5):780–9.

[16] I.J. M, I. K, O. M, A. H. Application of DKMQ24 shell element for twist of thin-walled beams: comparison with Vlasov theory. Int J Comput Methods Eng Sci Mech. 2016;17(6):391–400.

[17] I. K, I.J. M, J.-L. B, A. I. Shear deformable shell element DKMQ24 for composite structures. Compos Struct. 2018;202:182–200.

[18] I. K, I.J. M, E. T, I. A. Error estimation for the DKMQ24 shell element using various recovery methods. Int J Technol. 2017;6:1060–9.

[19] Kumar R, Lal A, Singh BN, Singh J. New transverse shear deformation theory for bending analysis of FGM plate under patch load. Compos Struct [Internet]. 2019 Jan 15 [cited 2019 Mar 11];208:91–100. Available from: https://www.sciencedirect.com/science/article/pii/S0263822318322517

[20] Katili A., I.J. M, Katili I. Theoretical equivalence and numerical performance of T3s and MITC3 plate finite elements. Struct Eng Mech. 2019;69(5):527–36.

[21] Katili I, Maknun IJ, Katili AM, Bordas SPA, Natarajan S. A unified polygonal locking-free thin/thick smooth plate element. Compos Struct [Internet]. 2019;219(2018):147–57. Available from: https://doi.org/10.1016/j.compstruct.2019.03.020

[22] Maknun IJ, Katili I, Ibrahimbegovic A, Katili AM. A new triangular shell element for composites accounting for shear deformation. Compos Struct [Internet]. 2020;243(2020):112214. Available from: https://doi.org/10.1016/j.compstruct.2020.112214

[23] Katili I, Maknun IJ, Batoz JL, Katili AM. A comparative formulation of T3γs, DST, DKMT and
MITC3+ triangular plate elements with new numerical results based on s-norm tests. Eur J Mech A/Solids [Internet]. 2019;78(July):103826. Available from: https://doi.org/10.1016/j.euromechsol.2019.103826

[24] Wong FT, Erwin, Richard A, Katili I. Development of the DKMQ Element for Buckling Analysis of Shear-deformable Plate Bending. Procedia Eng. 2017;171:805–12.

[25] Arslan K, Gunes R. Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads. Compos Struct [Internet]. 2018 Oct 15 [cited 2019 Mar 11];202:304–12. Available from: https://www.sciencedirect.com/science/article/pii/S0263822317342745

[26] Nguyen-Xuan H, Tran L V., Thai CH, Nguyen-Thoi T. Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin-Walled Struct [Internet]. 2012;54:1–18. Available from: http://dx.doi.org/10.1016/j.twss.2012.01.013

[27] Sofiyev AH. The buckling and vibration analysis of coating-FGM-substrate conical shells under hydrostatic pressure with mixed boundary conditions. Compos Struct [Internet]. 2019 Feb 1 [cited 2019 Mar 11];209:686–93. Available from: https://www.sciencedirect.com/science/article/pii/S0263822318334469

[28] Liew KM, Wang J, Ng TY, Tan MJ. Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. J Sound Vib. 2004;276(3–5):997–1017.

[29] Xu G, Huang H, Chen B, Chen F. Buckling and postbuckling of elastoplastic FGM plates under inplane loads. Compos Struct [Internet]. 2017;176:225–33. Available from: http://dx.doi.org/10.1016/j.compstruct.2017.04.061

[30] Mohammadi M, Mohseni E, Moeinfar M. Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory. Appl Math Model [Internet]. 2019;69:47–62. Available from: https://doi.org/10.1016/j.apm.2018.11.047

[31] BeikMohammadlou H, EkhteraeiToussi H. Parametric studies on elastoplastic buckling of rectangular FGM thin plates. Aerosp Sci Technol [Internet]. 2017 Oct 1 [cited 2019 Mar 11];69:513–25. Available from: https://www.sciencedirect.com/science/article/pii/S127096381730651X

[32] Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN, et al. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos Part B Eng [Internet]. 2013 Jan [cited 2019 May 22];44(1):657–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836812001382

[33] Do VN Van, Lee C-H. Numerical investigation on post-buckling behavior of FGM sandwich plates subjected to in-plane mechanical compression. Ocean Eng [Internet]. 2018 Dec 15 [cited 2019 Mar 11];170:20–42. Available from: https://www.sciencedirect.com/science/article/pii/S0029801818306048