PBW FILTRATION AND BASES FOR SYMPLECTIC LIE ALGEBRAS

EVGENY FEigin, GHISLAIN FOURIER AND PETER LITTELMANN

ABSTRACT. We study the PBW filtration on the highest weight representations \(V(\lambda) \) of \(\mathfrak{sp}_{2n} \). This filtration is induced by the standard degree filtration on \(U(n^-) \). We give a description of the associated graded \(S(n^-) \)-module \(grV(\lambda) \) in terms of generators and relations. We also construct a basis of \(grV(\lambda) \). As an application we derive a graded combinatorial formula for the character of \(V(\lambda) \) and obtain a new class of bases of the modules \(V(\lambda) \).

INTRODUCTION

In this paper we continue the study of the PBW filtration on irreducible representations of simple Lie algebras initiated in \[FFoL\]. The goal of this paper is to develop the theory of PBW-graded modules for symplectic Lie algebras \(\mathfrak{sp}_{2n} \). We start with recalling the definition of the PBW filtration.

Let \(g \) be a simple Lie algebra and let \(g = n^+ \oplus \mathfrak{h} \oplus n^- \) be a Cartan decomposition. For a dominant integral \(\lambda \) we denote by \(V(\lambda) \) the irreducible \(g \)-module with highest weight \(\lambda \). Fix a highest weight vector \(v_\lambda \in V(\lambda) \). Then \(V(\lambda) = U(n^-)v_\lambda \), where \(U(n^-) \) denotes the universal enveloping algebra of \(n^- \). The degree filtration \(U(n^-)_s \) on \(U(n^-) \) is defined by:

\[
U(n^-)_s = \text{span}\{x_1 \ldots x_l : x_i \in n^-, l \leq s\}.
\]

In particular, \(U(n^-)_0 = \mathbb{C} \) and \(grU(n^-) \simeq S(n^-) \), where \(S(n^-) \) denotes the symmetric algebra over \(n^- \). The filtration of \(U(n^-) \) by the subspaces \(U(n^-)_s \) induces a filtration of \(V(\lambda) \) by the subspaces \(V(\lambda)_s \):

\[
V(\lambda)_s = U(n^-)_sv_\lambda.
\]

We call this filtration the PBW filtration. The central objects of our paper are the associated graded spaces \(grV(\lambda) \) as \(S(n^-) \)-modules for \(g \) of type \(C_n \).

We note that \(grV(\lambda) = S(n^-)v_\lambda \) is a cyclic \(S(n^-) \)-module. So one has

\[
grV(\lambda) \simeq S(n^-)/I(\lambda),
\]

for some ideal \(I(\lambda) \subset S(n^-) \). For example, for any simple root \(\alpha_i \) the power \(f^{(\lambda,\alpha_i)+1} \) of a root vector \(f_{\alpha_i} \in n^-\alpha_i \) belongs to \(I(\lambda) \) since \(f^{(\lambda,\alpha_i)+1}_{\alpha_i}v_\lambda = 0 \) in \(V(\lambda) \). To describe \(I(\lambda) \) explicitly, we prepare some notations. All positive
In particular, \(\alpha_1, \tau \) is the highest root. Consider the action of the opposite subalgebra \(n^+ \) on \(V(\lambda) \). It is easy to see that \(n^+ V(\lambda)_s \hookrightarrow V(\lambda)_s \), so we obtain the structure of an \(U(n^+) \)-module on \(grV(\lambda) \) as well. We show:

Theorem A. The ideal \(I(\lambda) \) is generated as \(S(n^-) \)-module by the subspace

\[
U(n^+) \circ \text{span}\{ f^{(\lambda, \alpha_i, j)+1}_{\alpha_i, j}, 1 \leq i \leq j \leq n - 1, \ f^{(\lambda, \alpha_i, n)+1}_{\alpha_i, n}, 1 \leq i \leq n \}.
\]

Theorem A should be understood as a commutative analogue of the well-known description of \(V(\lambda) \) as the quotient\n
\[
V(\lambda) \simeq U(n^-)/(f^{(\lambda, \alpha_i)+1}_{\alpha_i}, 1 \leq i \leq n)
\]

(see for example [11]).

Our second problem (closely related to the first one) is to construct a monomial basis of \(grV(\lambda) \). The elements \(\prod_{\alpha > 0} f^{s_{\alpha}}_{\alpha} v_\lambda \) with \(s_{\alpha} \geq 0 \) obviously span \(grV(\lambda) \) (recall that the order in \(\prod_{\alpha > 0} f^{s_{\alpha}}_{\alpha} \) is not important since \(f_{\alpha} \) are considered as elements of \(S(n^-) \)). For each \(\lambda \) we construct a set \(S(\lambda) \) of multi-exponents \(s = \{s_{\alpha}\}_{\alpha > 0} \) such that the elements

\[
f^{s_{\alpha}}_{\alpha} v_\lambda = \prod_{\alpha > 0} f^{s_{\alpha}}_{\alpha} v_\lambda, \ s \in S(\lambda)
\]

form a basis of \(grV(\lambda) \). To give a definition of \(S(\lambda) \) we need the notion of a symplectic version of *Dyck path*, which is precisely defined in Section 1.2. The definition is similar to the one for usual Dyck paths, see for example [12]. In short, a Dyck path \(p = (p(0), \ldots, p(k)) \) is a sequence of positive roots starting at a simple root \(\alpha_i \), ending at a root \(\alpha_j \) or \(\alpha_j, j \geq i \) and obeying some recursion rules. We denote by \(\mathbb{D} \) the set of all Dyck paths.

For a dominant weight \(\lambda \) we introduce a polytope \(P(\lambda) \subset \mathbb{R}^{n^2}_{\geq 0} \):

\[
P(\lambda) := \left\{ (s_{\alpha})_{\alpha > 0} \mid \forall p \in \mathbb{D} : \begin{cases} \text{If } p(0) = \alpha_i, p(k) = \alpha_j, \text{ then} \\ s_{p(0)} + \cdots + s_{p(k)} \leq (\lambda, \alpha_i, j), \\ s_{p(0)} + \cdots + s_{p(k)} \leq (\lambda, \alpha_i, n), \\ \text{if } p(0) = \alpha_i, p(k) = \alpha_j, \text{ then} \\ s_{p(0)} + \cdots + s_{p(k)} \leq (\lambda, \alpha_i, j) \end{cases} \right\}.
\]

Let \(S(\lambda) \) be the set of integral points in \(P(\lambda) \).

We show:

Theorem B. The set of elements \(f^{s_{\alpha}}_{\alpha} v_\lambda, \ s \in S(\lambda) \), forms a basis of \(grV(\lambda) \).

For \(s \in S(\lambda) \) define the weight

\[
\text{wt}(s) := \sum_{1 \leq j \leq k \leq n} s_{\alpha_j \alpha_{j,k}} + \sum_{1 \leq j < k \leq n} s_{\alpha_j \tau \alpha_{j,k}}.
\]

As an important application we obtain:
Corollary 0.1.

i) For each \(s \in S(\lambda) \) fix an arbitrary order of factors \(f_\alpha \) in the product \(\prod_{\alpha > 0} f_\alpha^{s_\alpha} \). Let \(f^* = \prod_{\alpha > 0} f_\alpha^{s_\alpha} \) be the ordered product. Then the elements \(f^*v_\lambda, s \in S(\lambda) \), form a basis of \(V(\lambda) \).

ii) \(\dim V(\lambda) = \#S(\lambda) \).

iii) \(\text{char} V(\lambda) = \sum_{s \in S(\lambda)} e^{\lambda - \text{wt}(s)} \).

We note that the order in the corollary above is important since we are back to the action of the (in general) not commutative enveloping algebra. We thus obtain a family of bases for irreducible \(\mathfrak{sp}_{2n} \)-modules. The existence of these bases (with the same indexing set) was proved by Vinberg for \(\mathfrak{sp}_4 \) (see [V]).

The modules \(grV(\lambda) \) have one more nice property. Namely, given two dominant integral weights \(\lambda \) and \(\mu \), consider the subspace \(grV(\lambda, \mu) \hookrightarrow grV(\lambda) \otimes grV(\mu) \) generated from the product of highest weight vectors: \(grV(\lambda, \mu) = S(n^-)(v_\lambda \otimes v_\mu) \). We prove that \(grV(\lambda, \mu) \simeq grV(\lambda + \mu) \) as \(n^- \)-modules. This is an analogue of the corresponding classical result. In type \(A \) this statement was proved in [FPFL]. Dualizing the embedding \(grV(\lambda + \mu) \hookrightarrow grV(\lambda) \otimes grV(\mu) \), one obtains an algebra structure on the space \(\bigoplus(\text{gr}V(\lambda))^* \). The projective spectrum of this algebra is a certain deformation of the symplectic flag variety. In type \(A \) it was studied in [F3].

Remark 0.2. The data labeling the basis vectors is similar to that for the symplectic Gelfand-Tsetlin patterns (see [GT], [BZ]). However, these bases are very different from the symplectic GT basis. On the combinatorial side the connection with the Gelfand-Tsetlin patterns was recently clarified by Ardila, Bliem and Salazar [ABS]. Generalizing a result of Stanley, they show that for every partition \(\lambda \) there exists a marked poset \((P, A, \lambda)\) such that the Gelfand-Tsetlin polytope coincides with the corresponding marked order polytope and our polytope \(P(\lambda) \) coincides with the corresponding marked chain polytope. Note that both polytopes have the same Ehrhart polynomials [ABS].

We finish the introduction with several remarks. The PBW filtration for highest weight representations was considered in [FPoL], [Kum], [FFJMT], [F1], [F2], [F3]. It was shown that it has important applications in algebraic geometry, representation theory of current and affine algebras and in mathematical physics.

There exist special representations \(V(\lambda) \) such that the operators \(f^* \) consist only of mutually commuting root vectors, even before passing to \(grV(\lambda) \). These modules can be described via the theory of abelian radicals and turned out to be important in the theory of vertex operator algebras (see [GG], [FPL], [FL]).
Finally we note that $grV(\lambda)$ carries an additional grading on each weight space $V(\lambda)^{\mu}$ of $V(\lambda)$:

$$grV(\lambda)^{\mu} = \bigoplus_{s \geq 0} gr_s V(\lambda)^{\mu} = \bigoplus_{s \geq 0} V(\lambda)^{\mu}_s/V(\lambda)^{\mu}_{s-1}.$$

The graded character of the weight space is the polynomial

$$p_{\lambda,\mu}(q) := \sum_{s \geq 0} (\dim V(\lambda)^{\mu}_s/V(\lambda)^{\mu}_{s-1}) q^s.$$

Define the degree

$$\deg(s) := \sum_{1 \leq j \leq k \leq n} s_{\alpha_{j,k}} + \sum_{1 \leq j \leq k < n} s_{\alpha_{j,k}} - 1$$

for $s \in S(\lambda)$, and let $S(\lambda)^{\mu}$ be the subset of elements such that $\mu = \lambda - \text{wt}(s)$. Then

Corollary. $p_{\lambda,\mu}(q) = \sum_{s \in S(\lambda)^{\mu}} q^{\deg s}$.

We note that our filtration is different from the Brylinski-Kostant filtration (see [Br], [Kos]).

Our paper is organized as follows:
In Section 1 we introduce notations and state the problems. Sections 2 and 3 are devoted to the proof of Theorems A and B. In Section 2 we prove the spanning property of our basis and in Section 3 we finalize the proof.

1. **DEFINITIONS**

Let R^+ be the set of positive roots of \mathfrak{sp}_{2n}. For each $\alpha \in R^+$ we fix a non-zero element $f_{\alpha} \in \mathfrak{n}^-_{-\alpha}$. Let $\alpha_i, \omega_i, i = 1, \ldots, n$ be the simple roots and the fundamental weights. All positive roots of \mathfrak{sp}_{2n} can be divided into two groups:

$$\alpha_{i,j} = \alpha_i + \alpha_{i+1} + \cdots + \alpha_j, \quad 1 \leq i \leq j \leq n,$$

$$\alpha_{i,j}^- = \alpha_i + \alpha_{i+1} + \cdots + \alpha_n + \alpha_{n-1} + \cdots + \alpha_j, \quad 1 \leq i \leq j \leq n$$

(note that $\alpha_{i,n} = \alpha_{i,n^-}$). We will use the following short versions

$$\alpha_i = \alpha_i, \quad \alpha_i^- = \alpha_i^-, \quad f_{i,j} = f_{\alpha_{i,j}}, \quad f_{i,j}^- = f_{\alpha_{i,j}^-}.$$

We recall the usual order on the alphabet $J = \{1, \ldots, n, n-1, \ldots, 1\}$

$$1 < 2 < \ldots < n-1 < n < n-1 < \ldots < 1.$$

Let $\mathfrak{sp}_{2n} = \mathfrak{n}^+ \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ be the Cartan decomposition. Consider the increasing degree filtration on the universal enveloping algebra of $U(\mathfrak{n}^-)$:

$$U(\mathfrak{n}^-)_s = \text{span}\{x_1 \ldots x_l : x_i \in \mathfrak{n}^-, l \leq s\},$$

for example, $U(\mathfrak{n}^-)_0 = \mathbb{C} \cdot 1$.

For a dominant integral weight $\lambda = m_1\omega_1 + \cdots + m_n\omega_n$ let $V(\lambda)$ be the corresponding irreducible highest weight \mathfrak{sp}_{2n}-module with a highest weight
vector v_λ. Since $V(\lambda) = U(n^-)v_\lambda$, the filtration \([1.1]\) induces an increasing filtration $V(\lambda)_s$ on $V(\lambda)$:

$$V(\lambda)_s = U(n^-)_sv_\lambda.$$

We call this filtration the PBW filtration and study the associated graded space $grV(\lambda)$. In the following lemma we describe some operators acting on $grV(\lambda)$. Let $S(n^-)$ denotes the symmetric algebra of n^-.

Lemma 1.1. The action of $U(n^-)$ on $V(\lambda)$ induces the structure of a $S(n^-)$-module on $grV(\lambda)$ and

$$gr(V(\lambda)) = S(n^-)v_\lambda.$$

The action of $U(n^+)$ on $V(\lambda)$ induces the structure of a $U(n^+)$-module on $grV(\lambda)$.

Our aims are:

- to describe $grV(\lambda)$ as an $S(n^-)$-module, i.e. describe the ideal $I(\lambda) \hookrightarrow S(n^-)$ such that $grV(\lambda) \cong S(n^-)/I(\lambda)$;
- to find a basis of $grV(\lambda)$.

The description of the ideal is given in the introduction (see Theorem A). To describe the basis we introduce the notion of the symplectic Dyck paths:

Definition 1.2. A symplectic Dyck path (or simply a path) is a sequence

$$p = (p(0), p(1), \ldots, p(k)), \; k \geq 0$$

of positive roots satisfying the following conditions:

- a) the first root is simple, $p(0) = \alpha_i$ for some $1 \leq i \leq n$;
- b) the last root is either simple or the highest root of a symplectic subalgebra, more precisely $p(k) = \alpha_j$ or $p(k) = \alpha_{n-j}$ for some $i \leq j \leq n$;
- c) the elements in between obey the following recursion rule: If $p(s) = \alpha_{r,q}$ with $r, q \in J$ then the next element in the sequence is of the form either $p(s + 1) = \alpha_{r,q+1}$ or $p(s + 1) = \alpha_{r+1,q}$, where $x + 1$ denotes the smallest element in J which is bigger than x.

To give a visual interpretation of the notion of a Dyck-path for sp_8, arrange the positive roots in the form of a triangle. In this picture, a Dyck path is a path in the directed graph, starting at a simple root root and ending at one of the edges.
Denote by \mathbb{D} the set of all Dyck-paths. For a dominant weight $\lambda = \sum_{i=1}^{n} m_i \omega_i$ let $P(\lambda) \subset \mathbb{R}_{\geq 0}^n$ be the polytope
\[
(1.2) \quad P(\lambda) := \left\{ (s_\alpha)_{\alpha > 0} \mid \forall p \in \mathbb{D}: \begin{cases}
\text{if } p(0) = \alpha_i, p(k) = \alpha_j, \text{ then } s_p(0) + \cdots + s_p(k) \leq m_i + \cdots + m_j, \\
\text{if } p(0) = \alpha_i, p(k) = \alpha_j, \text{ then } s_p(0) + \cdots + s_p(k) \leq m_i + \cdots + m_n
\end{cases} \right\},
\]
and let $S(\lambda)$ be the set of integral points in $P(\lambda)$.

For a multi-exponent $s = \{ s_\beta \}_{\beta > 0}, s_\beta \in \mathbb{Z}_{\geq 0}$, let f^s be the element
\[
f^s = \prod_{\beta \in R^+} f^{s_\beta}_\beta \in S(n^-).
\]

In the next two sections we prove the following theorem (Theorem B from the introduction), which immediately implies Corollary 0.1.

Theorem 1.3. The set $f^sv_\lambda, s \in S(\lambda)$, forms a basis of $grV(\lambda)$.

Proof. In Section 2 we show that the elements $f^sv_\lambda, s \in S(\lambda)$, span $grV(\lambda)$, see Theorem 2.4. In Section 3 we show that the elements are linear independent in $grV(\lambda)$ (see Theorem 3.6), which finishes the proof. □

2. THE SPANNING PROPERTY

We start with writing down the powers of certain positive roots annihilating a highest weight vector in an irreducible \mathfrak{sp}_{2n}-module.

Lemma 2.1. Let $\lambda = \sum_{i=1}^{n} m_i \omega_i$ be the \mathfrak{sp}_{2n}-weight and let $V(\lambda)$ be the corresponding highest weight module with highest weight vector v_λ. Then
\[
(2.1) \quad f^{m_i+\cdots+m_j+1}_{\alpha_i,j} v_\lambda = 0, \quad 1 \leq i \leq j \leq n - 1,
\]
\[
(2.2) \quad f^{m_i+\cdots+m_n+1}_{\alpha_i,n} v_\lambda = 0, \quad 1 \leq i \leq n.
\]

Proof. For each positive root α we have the corresponding \mathfrak{sl}_2-triple $\{ e_\alpha, h_\alpha, f_\alpha \}$. Now the lemma follows immediately from the \mathfrak{sl}_2-theory. □

In the following we use the differential operators ∂_α defined by
\[
\partial_\alpha f_\beta = \begin{cases}
 f_{\beta-\alpha}, & \text{if } \beta - \alpha \in \Delta^+ \\
 0, & \text{otherwise}
\end{cases}
\]
As in the \mathfrak{sl}_2-case (see [FFoL]), we have a natural action of $U(\mathfrak{n}^+)$ on $S(n^-)$ coming from the natural action of $U(\mathfrak{n}^+)$ on $S(\mathfrak{g})$ and the identification $S(n^-) \simeq S(\mathfrak{g})/S(n^-)S_+(\mathfrak{h} \oplus \mathfrak{n}^+)$. The operators ∂_α satisfy the property
\[
\partial_\alpha f_\beta = c_{\alpha,\beta}(\text{ad } e_\alpha)(f_\beta),
\]
where $c_{\alpha,\beta}$ are some non-zero constants. In what follows we sometimes use the equality $\alpha_i, \pi = \alpha_i, n$.

Lemma 2.2. The only non-trivial vectors of the form $\partial_\beta f_\alpha$, $\alpha, \beta > 0$ are as follows: for $\alpha = \alpha_{i,j}$, $1 \leq i \leq j \leq n$

(2.3) $\partial_{i,s} f_{i,j} = f_{s+1,j}$, $i \leq s < j$, $\partial_{s,j} f_{i,j} = f_{i,s-1}$, $i < s \leq j$,

and for $\alpha = \alpha_{i,j}$, $1 \leq i \leq j \leq n$

(2.4) $\partial_{i,s} f_{i,j} = f_{s+1,j}$, $i \leq s < j$, $\partial_{i,s} f_{i,j} = f_{j,s+1}$, $j \leq s < j$,

(2.5) $\partial_{s,j} f_{i,s} = f_{i,s-1}$, $i < s$, $\partial_{j,s} f_{i,s} = f_{i,s}$, $j < s$.

Let us illustrate this lemma by the following picture in type C_5.

\[\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \]

\[\circ \circ \circ \circ \circ \circ \circ \circ \]

\[\circ \circ \circ \circ \circ \circ \circ \circ \]

\[\circ \circ \circ \circ \circ \circ \circ \circ \]

Here all circles correspond to the positive roots of the root system of type C_5 in the following way: in the upper row we have from left to right $\alpha_{1,1}, \ldots, \alpha_{1,5}, \alpha_{1,5}$, in the second row we have from left to right $\alpha_{2,2}, \ldots, \alpha_{2,5}, \alpha_{2,5}, \alpha_{2,5}$, and the last line corresponds to the root $\alpha_{5,5}$. Now let us take the root $\alpha_{1,3}$ (which corresponds to the fat circle). Then all roots which can be obtained by applying the operators ∂_β are depicted as filled small circles.

The following remark will be important for us.

Remark 2.3. Formula (2.3) reproduces the picture in type A_n. Formulas (2.4), (2.5) resemble the situation in type A_{2n-1}. The difference is that in the symplectic case the roots $\partial_\beta f_\alpha$ with fixed α do not form two segments (as in type A_t), but three segments.

Our goal is to prove the following theorem.

Theorem 2.4.

i) The vectors $f^s v_\lambda$, $s \in S(\lambda)$ span $\text{gr} V(\lambda)$.

ii) Let $I(\lambda)$ be the ideal $I(\lambda) = S(n^-)(U(n^+) \circ R)$, where

\[R = \text{span}\{f^{m_i+\cdots+m_j+1}_{i,j}, 1 \leq i \leq j \leq n-1, f^{m_i+\cdots+m_n+1}_{i,i}, 1 \leq i \leq n\}. \]

There exists a monomial order on $S(n^-) = \mathbb{C}[f_\alpha | \alpha > 0]$, denoted by “$>$”, such that for any $s \not\in S(\lambda)$ there exists a homogeneous
expression (a straightening law) of the form

$$f^s - \sum_{s \succ t} c_t f^t \in I(\lambda).$$

Remark 2.5. In the following we refer to (2.6) as a straightening law for the polynomial ring $S(n^-) = \mathbb{C}[f_\alpha \mid \alpha > 0]$ with respect to the ideal $I(\lambda)$. Such a straightening law implies that in the quotient ring $S(n^-)/I(\lambda)$ we can express f^s for $s \not\in S(\lambda)$ as a linear combination of monomials which are smaller in the monomial order than f^s, but of the same total degree since the expression in (2.6) is homogeneous.

We show first that ii) implies i):

Proof. [ii) ⇒ i)] The elements in R obviously annihilate $v_\lambda \in \text{gr} V(\lambda)$, and so do the elements of $U(n^+) \circ R$, and hence so do the elements of the ideal $I(\lambda)$. As a consequence we get a surjective map $S(n^-)/I(\lambda) \twoheadrightarrow \text{gr} V(\lambda)$.

Suppose $s \not\in S(\lambda)$. We know by ii) that $f^s = \sum_{s \succ t} c_t f^t$ in $S(n^-)/I(\lambda)$. If some t with nonzero coefficient c_t is not an element of $S(\lambda)$, then we can again apply a straightening law and replace f^t by a linear combination of smaller monomials. Since there are only finite number of monomials of the same total degree, by repeating the procedure if necessary, after a finite number of steps we obtain an expression of f^s in $S(n^-)/I(\lambda)$ as a linear combination of elements f^t, $t \in S(\lambda)$. It follows that the set $\{f^t | t \in S(\lambda)\}$ is a spanning set for $S(n^-)/I(\lambda)$, and hence, by the surjection above, we get a spanning set $\{f^tv_\lambda | t \in S(\lambda)\}$ for $\text{gr} V(\lambda)$. \qed

To prove the second part we need to define the total order. We start by defining a total order on the variables:

$$f_{n,n} > f_{n-1,n-1} > f_{n-2,n-2} > \cdots > f_{1,n} > f_{1,n-1} > \cdots > f_{1,2} > f_{1,1}.$$

We use the same notation for the induced homogeneous lexicographic ordering on the monomials. Note that this monomial order $>$ is not the order \succ.

To define the latter, we need some more notation. Let

$$s_{\bullet,j} = \sum_{i=1}^j s_{i,j}, \quad s_{\bullet,\overline{j}} = \sum_{i=1}^j s_{i,\overline{j}},$$

$$s_{i,\bullet} = \sum_{j=i}^n s_{i,j} + \sum_{j=i}^{n-1} s_{i,j}.$$

Define a map d from the set of multi-exponents s to $\mathbb{Z}_{\geq 0}^n$:

$$d(s) = (s_{n,\bullet}, s_{n-1,\bullet}, \ldots, s_{1,\bullet}).$$
So, \(d(s)_i = s_{n-i+1} \). We say \(d(s) > d(t) \) if there exists an \(i \) such that
\[
d(s)_i = d(t)_1, \ldots, d(s)_i = d(t)_i, d(s)_{i+1} > d(t)_{i+1}.
\]

Definition 2.6. For two monomials \(f^s \) and \(f^t \), we say \(f^s \succ f^t \) if either

a) the total degree of \(f^s \) is greater than the total degree of \(f^t \);

or b) both have the same total degree, but \(d(s) < d(t) \);

or c) both have the same total degree, \(d(s) = d(t) \), but \(f^s > f^t \).

In words, if both have the same total degree, this definition says that \(f^s \) is greater than \(f^t \) if \(d(s) \) is smaller than \(d(t) \), or \(d(s) = d(t) \) but \(f^s > f^t \) with respect to the homogeneous lexicographic ordering on \(\mathbb{C} \).

Proof of Theorem 2.4 ii). Slightly abusing notations, we use the same symbol \(\succ \) also for the multi-exponents: we write \(s \succ t \) if and only if \(f^s \succ f^t \).

Remark 2.7. It is easy to check that \(\succ \) defines a monomial ordering, i.e.,

if \(f^s \succ f^t \) and \(f^m \neq 1 \), then
\[
f^s f^m = f^{s+m} \succ f^t f^m = f^{t+m} \succ f^t.
\]

Let \(s \) be a multi-exponent violating some of the Dyck paths condition from the definition of \(S(\lambda) \) and let \(p \) be a corresponding Dyck path. We write \(s \) as a sum of \(s^1 + s^2 \), where \(s^1 \) is defined as follows: \(s^1_\alpha = s_\alpha \) if \(\alpha \in p \) and \(s^1_\alpha = 0 \) if \(\alpha \notin p \), so \(s^1 \) has support (i.e. nonzero entries) only on \(p \). Now obviously we still have \(s^1 \notin S(\lambda) \).

If we have a straightening law for \(f^{s^1} \):
\[
f^{s^1} - \sum_{s^1 \succ t} c_t f^t \in I(\lambda)
\]
then multiplication by \(f^{s^2} \) gives a straightening law for \(f^{s^1} f^{s^2} \), because \(\succ \) is a monomial order.

So it suffices to find a straightening law for those \(s \notin S(\lambda) \) which are supported on a Dyck path \(p \) and \(s \) violates the Dyck path condition for \(S(\lambda) \) for the path \(p \).

Suppose first that the Dyck path \(p \) is such that \(p(0) = \alpha_i, p(k) = \alpha_j \) for some \(1 \leq i \leq j < n \). We are going to show that in this case we get a straightening law by the corresponding result for the Lie algebra \(\mathfrak{sl}_n \) from \[\text{PBW FILTRATION AND BASES}\].

In fact, consider the Lie subalgebra \(M \subset \mathfrak{sp}_{2n} \) generated by the elements \(e_{\alpha_i,i}, f_{\alpha_i,i}, h_{\alpha_i,i}, 1 \leq i < n \). This subalgebra is isomorphic to \(\mathfrak{sl}_n \). Let \(M = n^+_M \oplus h_M \oplus n^-_M \) be the Cartan decomposition obtained by setting \(n^+_M = n^+ \cap M, n^-_M = n^- \cap M \) and \(h_M = h \cap M \). Let
\[
R_M = \text{span}\{f_{\alpha_i,j}^{m_i+\cdots+m_j+1}, 1 \leq i \leq j \leq n - 1\} \subset S(n^-_M) \subset S(n^-).
\]
Then \(R_M \subset R \) and \(U(n^+) \circ R_M \subset U(n^+) \circ R \). Set \(\lambda_M = \sum_{i=1}^{n-1} m_i \omega_i \) and let \(I_M(\lambda_M) \) be the ideal \(I_M(\lambda) := S(n^-_M) (U(n^+_M) \circ R_M) \subset S(n^-_M) \).

We have an obvious inclusion \(I_M(\lambda_M) \subset I(\lambda) \). But note that the ideal \(I_M(\lambda_M) \) is considered in \[\text{PBW FILTRATION AND BASES}\] for the \(\mathfrak{sl}_n \)-case (recall, \(M \simeq \mathfrak{sl}_n \)). Also the
Dyck path considered here is an sl$_n$ Dyck path, because all roots occurring in the path are roots in the subroot-system associated to the Lie-subalgebra M. It follows by [FFoL] that we have a straightening law

$$f^s - \sum_{s > t} c_t f^t \in I_M(\lambda_M) \subset I(\lambda). \quad (2.8)$$

It remains to show that in the sum above we can replace “$>$” by “$>$”. For this we need to recall the proof in the type A-case. Recall that we work now with the subalgebra $M \simeq \mathfrak{sl}_n \subset \mathfrak{sp}_{2n}$. To get the straightening law above, one starts with the element $f_{1,i}^s p(0) + \cdots + f_{1,i}^s p(k) \in R_M$. Applying the ∂-operators (see [FFoL]) one shows that

$$B = f_{1,1}^{s_{1,1}} f_{1,2}^{s_{1,2}} \cdots f_{1,i}^{s_{1,i}} \in R_M.$$

One applies then the following ∂-operators to B to get

$$A = \partial_{1,2} f_{2,1}^{s_{2,1}} \partial_{1,2} f_{2,1}^{s_{2,2}} \cdots \partial_{1,i-1} f_{1,i}^{s_{1,i}} B \in R_M \quad (2.9)$$

(since s is supported on p and $p(k) = \alpha_j$, $j < n$, we have $s_{1,i} = \sum_{j=1}^{n-1} s_{i,j}$). We show in [FFoL] that

$$A = \sum_{t \leq s} c_t F^t \quad (2.10)$$

for some $c_s \neq 0$, which gives rise to the straightening law in (2.8). Now in this special case Lemma 2.2 implies that the application of the ∂-operators in (2.9) produces only summands such that $d(s) = d(t)$ for any t occurring in the sum with a nonzero coefficient. Hence we can replace “$>$” by “$>$” in (2.8), which finishes the proof of the theorem in this case.

Now assume $p(0) = \alpha_{i,i}$ and $p(k) = \alpha_{j,j}$ for some $j \geq i$. We include the case $j = n$ by writing $\alpha_{n,n} = \alpha_{n,1}$. We proceed by induction on n. For $n = 1$ we have $\mathfrak{sp}_2 = \mathfrak{sl}_2$, so we can refer to [FFoL]. Now assume we have proved the existence of a straightening law for all symplectic algebras of rank strictly smaller than n. If $i > 1$, then the Dyck path is also a Dyck path for the symplectic subalgebra $L \simeq \mathfrak{sp}_{2n-2(i-1)}$ generated by $e_{\alpha_{k,k}}, f_{\alpha_{k,k}}, h_{\alpha_{k,k}}$, $i \leq k \leq n$. Let $\mathfrak{n}_L^+, \mathfrak{n}_L^-$ etc. be defined by the intersection of $\mathfrak{n}_L^+, \mathfrak{n}_L^-$ etc. with L and set $\lambda_L = \sum_{k=i}^{n} m_k \omega_k$. It is now easy to see that the straightening law for f^s viewed as an element in $S(\mathfrak{n}_L^-)$ with respect to $I_L(\lambda_L)$ defines also a straightening law for f^s viewed as an element in $S(\mathfrak{n}_L^-)$ with respect to $I(\lambda)$.

So from now on we fix $p(0) = \alpha_1$ and $p(k) = \alpha_{i,i}$ for some $i \in \{1, \ldots, n\}$. For a multi-exponent s supported on p, set

$$\Sigma = \sum_{l=0}^{k} s_{p(l)} > m_1 + \cdots + m_n.$$
We have obviously \(f^\Sigma_{1,1} \in I(\lambda) \). We consider now two operators

\[
\Delta_1 := \partial^{s_{1,i-1}}_{1,i-1} \partial^{s_{i,i}}_{i+1,i+1} \cdots \partial^{s_{n-1,n}}_{n,n} \quad \text{and} \quad \Delta_2 := \partial^{s_{i,i}}_{1,i-2} \partial^{s_{i,i}}_{1,i-2} \cdots \partial^{s_{i-1,i}}_{1,i-1}.
\]

(2.12) \(\Delta_1 := \partial^{s_{1,i-1}}_{1,i-1} \partial^{s_{2,i}}_{1,i} \delta_3 \delta_2 \delta_1 \) and \(\Delta_2 := \partial^{s_{1,i}}_{1,i} \partial^{s_{3,i}}_{1,i} \cdots \partial^{s_{i-1,i}}_{1,i} \).

We will show that

\[
(2.11) \quad \Delta_2 \Delta_1 f^\Sigma_{1,1} = c_s f^s + \sum_{s \succ t} c_t f^t
\]

with complex coefficients \(c_s, c_t \), where \(c_s \neq 0 \). Since \(\Delta_2 \Delta_1 f^\Sigma_{1,1} \in I(\lambda) \), the proof of (2.11) finishes the proof of the theorem. A first step in the proof of (2.11) is the following lemma.

Recall the alphabet \(J = \{1, \ldots, n, n-1, \ldots, 1\} \). Let \(q_1, \ldots, q_i \in J \) be a sequence of increasing elements defined by

\[
q_k = \max\{l \in J : \alpha_{k,l} \in p\}.
\]

For example, \(q_i = \bar{\tau} \). The roots of \(p \) are then of the form

\[
\alpha_{1,1}, \ldots, \alpha_{1,q_1}, \alpha_{2,q_1}, \ldots, \alpha_{2,q_2}, \ldots, \alpha_{i,q_{i-1}}, \ldots, \alpha_{i,q_i}.
\]

Lemma 2.8. Set \(f^s = f_1^{s_{1,1}} f_2^{s_{1,2}} \cdots f_{1,q_{i-1}}^{s_{1,q_{i-1}}} f_{j,q_{i-1}}^{s_{j,q_{i-1}}} \cdots f_{i,1}^{s_{i,1}} \). Then \(\Delta_1 f^\Sigma_{1,1} \) is of the form

\[
(2.12) \quad \Delta_1 f^\Sigma_{1,1} = c_s f^s + \sum_{s \succ t} c_t f^t
\]

such that \(c_s \neq 0 \). In addition, if \(f^t, t \neq s \), is a monomial occurring in this sum, then one of the following statements holds:

- there exists an index \(j \) such that \(d(t)_j > 0 \) for some \(j \in \{1, 2, \ldots, n-i\} \),
- \(d(t)_j = 0 \) for all \(j \in \{1, 2, \ldots, n-i\} \) and \(d(t)_{n-i+1} > s_{i,1} \),
- \(d(t) = d(s') \) and \(f_{i,i}^{s_{i,i}} f_{i,i+1}^{s_{i,i+1}} \cdots f_{i,i}^{s_{i,i}} < f_{i,i}^{s_{i,i}} f_{i,i+1}^{s_{i,i+1}} \cdots f_{i,i}^{s_{i,i}} \)

Before proving the lemma, we explain in the following corollary the reason why we need the lemma. The corollary is proved after the proof of the lemma.

Corollary 2.9. If \(f^t \neq f^s \) is a monomial occurring in (2.12), then \(\Delta_2 f^t \) is a sum of monomials \(f^k \) such that \(f^s \succ f^k \).

Proof of the lemma. One sees easily by induction that

\[
\delta_1(f^\Sigma_{1,1}) = f_1^{s_{1,1}} f_2^{s_{1,2}} \cdots f_{1,q_{i-1}}^{s_{1,q_{i-1}}} f_{1,q_{i-1}}^{s_{1,q_{i-1}}} f_{1,q_{i-1}}^{s_{1,q_{i-1}}} \cdots f_{i,1}^{s_{i,1}}.
\]
Since \(\alpha_{1,j} - \alpha_{1,i} \leq 1 \leq j < i \leq \ell \leq n\), and \(\alpha_{1,j} - \alpha_{\ell,i} \leq 1 \leq j < i \leq \ell \leq n\), and \(\alpha_{1,j} - \alpha_{1,i-1} \leq 1 \leq j < i \leq \ell \leq n\), are never positive roots, all factors of \(\delta_2\) and \(\delta_3\), as well as \(\partial_{1,i-1}\), annihilate the vector

\[f^x = f_{1,1}^{s_{1,1}} f_{1,2}^{s_{1,2}} \ldots f_{1,i-1}^{s_{1,i-1}}. \]

Therefore

\[\Delta_1(f_{1,1}^{s_{1,1}}) = f^x \partial_{1,i-1}^{s_{1,i-1}} \delta_3 \delta_2 (f_{1,1}^{s_{1,1}} - s_{1,2} - \cdots - s_{1,i-1}). \]

To visualize the following procedure, one should think of the variables \(f_{i,j}\) as being arranged in a triangle like in the picture after Lemma 2.2, or in the following example (type \(C_1\)):

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 6 & 7 & 8 & 9 \\
5 & 6 & 7 & 8 & 9 & 10 \\
6 & 7 & 8 & 9 & 10 & 11
\end{array}
\]

(2.13)

With respect to the ordering "\(>\)"., the largest element is in the bottom row and the smallest element is in the top row on the left side. We enumerate the rows and columns like the indices of the variables, so the top row is the 1-st row, the bottom row the \(n\)-th row, the columns are enumerated from left to right, so we have the 1-st column on the left side and the most right one is the 1-st column.

The operator \(\partial_{1,q}\), \(1 \leq q \leq n - 1\), kills all \(f_{1,j}\) for \(1 \leq j \leq q\), \(\partial_{1,q}(f_{1,j}) = f_{q+1,j}\) for \(j = q + 1, \ldots, q + 1\), \(\partial_{1,q}(f_{1,j}) = f_{q+q+1,j}\) for \(j = 1, \ldots, q\), and \(\delta_{1,q}\) kills all \(f_{k,i}\) for \(k \geq 2\). Because of the set of indices of the operators occurring in \(\delta_2\), the operator applied to \(f_{1,1}^{s_{1,1}} - s_{1,2} - \cdots - s_{1,i-1}\) never increases the zero entries in the first row, column \(i\) up to column \(\bar{i}\). As a consequence, the application of \(\delta_2\) produces the monomial

\[f^x \partial_{1,i-1}^{s_{1,i-1}} \delta_3 \delta_2 (f_{1,1}^{s_{1,1}} - s_{1,2} - \cdots - s_{1,i-1} f_{1,n}^{s_{1,n}} + \sum c_k f^k), \]

where the monomials \(f^k\) occurring in the sum are such that the corresponding triangle (see (2.13)) has at least one non-zero entry in one of the rows between the \((i + 1)\)-th row and the \(n\)-th row (counted from top to bottom). This implies \(d(k)_j > 0\) for some \(j = 1, \ldots, n - i\). The operators \(\delta_3\) and \(\partial_{1,i-1}^{s_{1,i} + s_{i-1}}\) do not change this property, because (in the language of the scheme (2.13) above) the operators \(\partial_{j,i}\) used to compose \(\delta_3\) either kill a monomial or, in the language of the scheme (2.13), they subtract from an entry in the \(\bar{i}\)-th column, \(k\)-th row and add to the entry in the same row, but \((j - 1)\)-th column. The operator \(\partial_{i,i-1}\) subtracts from the entries in the top row. Since the entries in the top row, column \(i - 1\) up to \(\bar{2}\), are zero, it adds to the entries in the \(i\)-th row. The only exception is \(\partial_{1,i-1}\) applied to \(f_{1,1}\), the result is \(f_{1,\bar{i}}\). It follows that the monomials \(f^{k'}\) occurring in \(\partial_{1,i-1}^{s_{1,i} + s_{i-1} + s_{i-2}} \delta_3 f^k\) have already the desired properties, because we have just seen that \(d(k)_j > 0\) for some \(j = 1, \ldots, n - i\).
So to finish the proof of the lemma, it suffices to look at
\begin{equation}
(2.14) \quad f^x\partial^s_{i,i-1} \delta f_{\bar{1},i-1}^{s_{i-1}+s_i} \ldots f_{\bar{1},n-1}^{s_{n-2}+s_n} f_{\bar{1},n}^{s_{n-1}+s_n} f_{\bar{1},1}^{s_{1}}
\end{equation}
\begin{equation}
(2.15) \quad = f^x\partial^s_{i,i-1} \delta f_{\bar{1},i-1}^{s_{i-1}} f_{i,i+1}^{s_{i}+1} \ldots f_{i,n}^{s_{n}} f_{\bar{1},n}^{s_{n-1}} \ldots f_{\bar{1},n-1}^{s_{1}} f_{\bar{1},1}^{s_{1}}
\end{equation}
Note that the operator \(\partial_{1,i-1}\) being applied to any variable in \((2.15)\) but \(f_{1,1}\) increases the degree with respect to the variables \(f_{i,*}\) or gives zero. We note also that \(\partial_{1,i-1} f_{1,i} = f_{1,i}\). So \((2.14)\) written as a linear combination \(\sum c_k f^k\) of monomials such that \(d(k) = 0\) for \(j = 1, \ldots, n-i\) and \(d(k)_{n-i+1} \geq s_{i,*}\).

It remains to consider the case where \(d(k)_{n-i+1} = s_{i,*}\). This is only possible if \(\partial_{1,i-1}\) is applied \(s_{i,*} + s_{i,*}\) times to \(f_{1,1}^{s_{i,*}}\), in which case \(d(k)\) has only two non-zero entries: \(d(k)_{n} = \sum - s_{i,*}\) and \(d(k)_{n-i+1} = s_{i,*}\), so \(d(k) = d(s')\).

If \(k \neq s'\), then necessarily \(f_{i,i}^{t_{i,i}^{1}} f_{i,i+1}^{1} \ldots f_{i,i}^{t_{i,i}^{j}} < f_{i,i}^{s_{i,i}^{1}} f_{i,i}^{s_{i,i}^{1}} \ldots f_{i,i}^{s_{i,i}^{j}}\). \(\Box\)

Proof of the corollary. The operators used to compose \(\Delta_2\) do not change anymore the entries of \(d(t)\) for the first \(n-i+1\) indices.

Suppose first \(t\) is such that there exists an index \(j\) such that \(d(t)_{j} > 0\) for some \(j = 1, 2, \ldots, n-i\) or \(d(t)_{n-i+1} > s_{i,*}\). By the description of the operators occurring in \(\Delta_2\), every monomial \(f^k\) occurring with a nonzero coefficient in \(\Delta_2 f^t\) has this property too and hence \(f^s \succeq f^k\).

Next assume \(d(t) = d(s')\) and \(f_{i,i}^{t_{i,i}^{1}} f_{i,i+1}^{1} \ldots f_{i,i}^{t_{i,i}^{j}} < f_{i,i}^{s_{i,i}^{1}} f_{i,i}^{s_{i,i}^{1}} \ldots f_{i,i}^{s_{i,i}^{j}}\). Recall that \(t_{1,\bar{1}} = \ldots = t_{1,\bar{1}} = 0\). It follows that the operators occurring in \(\Delta_2\) always only subtract from one of the entries in the top row and add to the entry in the same column and a corresponding row (of index strictly smaller than \(i\)). It follows that all monomials \(f^k\) occurring in \(\Delta_2 f^t\) have the property: \(d(k) = d(s)\). Since \(f_{i,i}^{t_{i,i}^{1}} f_{i,i+1}^{1} \ldots f_{i,i}^{t_{i,i}^{j}} < f_{i,i}^{s_{i,i}^{1}} f_{i,i}^{s_{i,i}^{1}} \ldots f_{i,i}^{s_{i,i}^{j}}\), it follows that \(f^s \succeq f^k\) and hence \(f^s \succeq f^k\).

Continuation of the proof of Theorem [2.4] ii). We have seen that to prove Theorem [2.4] ii), it suffices to prove \((2.11)\). By Lemma [2.9] and Corollary [2.9], it remains to prove for \(f^s\) that \(\Delta_2 f^s\) is a linear combination of \(f^s\) with a non trivial coefficient and monomials strictly smaller than \(f^s\). The following lemma proves this claim and hence finishes the proof of the theorem. \(\Box\)

The following lemma completes the proof of part ii) of Theorem [2.3]

Lemma 2.10. The operator \(\Delta_2 := \partial_{1,1} \partial_{1,2} \ldots \partial_{1,i-2}^*\) applied to the monomial \(f^s\) is a linear combination of \(f^s\) and smaller monomials:
\begin{equation}
(2.16) \quad \Delta_2 f^s = cf^s + \sum_{s > t} c_t f^t, \quad \text{where } c \neq 0.
\end{equation}

Proof. First note that all monomials \(f^k\) occurring in \(\Delta_2 f^s\) have the same total degree. Recall that \(s_{i,i}^{1,\bar{1}} = \ldots = s_{i,i}^{1,\bar{1}} = 0\). It follows that the operators occurring in \(\Delta_2\) always only subtract from one of the entries in the top row and add to the entry in the same column and a corresponding row (of index
strictly smaller than \(i \) and strictly greater than 1). Thus all monomials \(f^k \) occurring in \(\Delta_2(f^{s'}) \) have the same multi-degree. In fact, we will see below that \(f^s \) is a summand and hence \(d(k) = d(s) \).

So in the following we can replace the ordering \(\succ \) by \(> \) since, in this special case, the latter implies the first.

The elements \(f_{i,j} \) and \(f_{i,j}, 2 \leq i \leq j \leq n \), are in the kernel of the operators \(\partial_{1,k} \) for all \(1 \leq k \leq n \), and so are the variables \(f_{1,j}, j \leq k \) in the first \(k \) columns.

The operator \(\partial_{1,k}, 1 \leq k \leq n \), “moves” the variables \(f_{1,j}, k + 1 \leq j \leq n \) from the first row to the variable \(f_{k+1,j} \) in the same column.

The operator \(\partial_{1,k}, 1 \leq k \leq n \), “moves” the variables \(f_{i,j}, k + 1 \leq j \leq n \) from the first row to the variable \(f_{k+1,j} \) in the same column. For \(j \leq k \), the operator makes the variables switch also the column, it moves the variable \(f_{1,j} \) to the variable \(f_{j,k+1} \) in the \(j \)-th row and \((k+1)\)-th column.

If \(i = 1, 2 \), then \(\Delta_2 \) is the identity operator, \(f^s = f^{s'} \) and hence the lemma is trivially true. Now assume \(i \geq 3 \). We note that the monomial

\[
\begin{align*}
&f_{1,1}^{s_{1,1}} \ldots f_{1,q_1}^{s_{1,q_1}} \cdot (\partial_{1,1}^{s_{2,1}} f_{1,q_1}^{s_{2,q_1}} \ldots \partial_{1,1}^{s_{2,q_2}} f_{1,q_1}^{s_{2,q_2}}) \cdot \ldots \\
&\ldots (\partial_{1,i-2}^{s_{i-1,q_{i-2}}} f_{1,q_{i-2}}^{s_{i-1,q_{i-2}}} \ldots \partial_{1,i-2}^{s_{i-1,q_{i-1}}} f_{1,q_{i-1}}^{s_{i-1,q_{i-1}}}) (f_{i,q_{i-1}}^{s_{i,q_{i-1}}} \ldots f_{i,j}^{s_{i,j}})
\end{align*}
\]

is proportional to \(f^s \) and appears as a summand in \(\Delta_2 f^{s'} \). Our goal is to show that all other monomials in \(\Delta_2 f^{s'} \) are less than \(f^s \).

All monomials share the common factor \(f_{1,q_{i-1}} f_{i,j} f_{i,j} \). The maximal variable smaller that the ones occurring in this factor is the variable \(f_{i-1,q_{i-1}} \). Note that if \(j < i - 1 \) then for any \(q \in J \) the variable \(\partial_{1,j} f_{1,q} \) lies in the \((j+1)\)-th row and \(j + 1 < i \). The operator \(\partial_{1,i-2} \) is applied \(s_{i-1,j} \cdot \) times and the unique maximal monomial in the sum expression of \(\partial_{1,i-2} f^{s'} \) is

\[
f_{1,1}^{s_{1,1}} f_{1,1}^{s_{1,2}} \ldots f_{1,q_{i-1}}^{s_{i-1,q_{i-2}}} f_{i,j}^{s_{i,j}} (f_{i,q_{i-1}}^{s_{i,q_{i-1}}} \ldots f_{i,j}^{s_{i,j}}).
\]

In fact, applying the operator \(\partial_{1,i-2} \) to any of the variables \(f_{1,j} \) such that \(j \neq q_{i-2}, \ldots, q_{i-1} \), one gets a monomial smaller in the order \(\succ \). The exponents \(s_{i-1,j} \), \(j = q_{i-2}, \ldots, q_{i-1} \), are the maximal powers such that \(\partial_{1,i-2} \) can be applied to \(f_{1,j}^{s_{i,j}} \) because either \(q_{i-2} < j < q_{i-1} \), and then \(y = s_{i,j} = s_{i-1,j} \), or \(j = q_{i-1} \), then \(s_{i-1,q_{i-1}} \) is the power with which the variable occurs in \(f^{s'} \), or \(j = q_{i-2} \), then only the power \(s_{i-1,q_{i-2}} \) of the operator is left.

Repeating the arguments for the operators \(\partial_{1,i-3} \) etc. we complete the proof of the lemma. \(\square \)

3. Main Theorem

Recall that in [ABS] the equality \#S(\(\lambda \)) = \text{dim} V(\(\lambda \)) is proved using purely combinatorial tools. Combining this result with Theorem 2.4 we obtain Theorems A and B from the introduction. However in this section we present a representation theoretical proof of the equality \#S(\(\lambda \)) = \text{dim} V(\(\lambda \)) by showing that the vectors \(f^s, s \in S(\lambda) \), are linearly independent in \(grV(\lambda) \).
The advantage of our proof is that in the course of the proof we obtain the following important statement: the subspace of $grV(\lambda) \otimes grV(\mu)$ generated from the product of highest weight vectors is isomorphic to $grV(\lambda + \mu)$ (see Theorem 3.6 (iii)).

3.1. Fundamental weights and minimal sets

In this subsection we study the case $\lambda = \omega_i$. The following lemma follows from the definition of $S(\omega_i)$.

Lemma 3.1. $S(\omega_i)$ consists of all s such that $s_\alpha \leq 1$ and the support of s is given by the set

$$M^s = \{\alpha_{j_l, k_l} \mid l = 1, \ldots, p\} \cup \{\alpha_{t_l, r_l} \mid l = 1, \ldots, q\}$$

with the following conditions

\[1 \leq j_1 < j_2 < \ldots < j_p \leq i; \ 1 \leq k_1 < k_2 < \ldots < k_p,\]
\[j_p < t_1 < t_2 < \ldots < t_q \leq i \leq r_1 < \ldots < r_q \leq n.\]

Remark 3.2. We note that $\#M^s \leq i$ and every path contains at most one element from M^s, since the roots on a path are ordered with respect to the order $>$.

Lemma 3.3. For every fundamental weight ω_i we have

$$\#S(\omega_i) = \dim V(\omega_i)$$

Proof. Follows from [ABS] or by establishing a bijection with Kashiwara-Nakashima tableaux or by showing that

$$\#S(\omega_i) + \#S(\omega_{i-2}) + \cdots = \binom{2n}{i}$$

(compare with $\Lambda^i V(\omega_1) = V(\omega_i) \oplus V(\omega_{i-2}) \oplus \ldots$, see [FH]). \qed

We set

$$R_i = \{\beta \in R^+ \mid (\omega_i, \beta) \neq 0\}.$$

Let $\lambda = \sum m_j \omega_j \in P^+$ and $s \in S(\lambda)$. We set

$$R_i^s = \{\beta \in R_i \mid s_\beta \neq 0\}.$$

From now on let i be the minimal index, s.t. $m_i \neq 0$.

Definition 3.4. For $s \in S(\lambda)$ denote by M_i^s the set of minimal elements in R_i^s with respect to the order $>$ (see (2.7)). Denote by m_i^s the tuple $m_\beta = 1$ if $\beta \in M_i^s$ and 0 otherwise.

Lemma 3.5. Let $\lambda = \sum m_i \omega_i$ and i minimal with $m_i \neq 0$. If $s \in S(\lambda)$ then $m_i^s \in S(\omega_i)$ and $s - m_i^s \in S(\lambda - \omega_i)$.

Proof. We first note that the statement \(m_i^s \in S(\omega_i) \) follows from Remark 3.2. Let us prove that \(s - m_i^s \in S(\lambda - \omega_i) \). For this we need to show that the conditions from (1.2) for \(s - m_i^s \) are satisfied for all paths \(p \). Let \(p = (p(0), \ldots, p(k)) \). Then we know that \(\sum_{l=0}^k s_{p(l)} \leq m_a + \cdots + m_b \), where \(p(k) = \alpha_b \) if \(b < n \) and \(p(k) = \alpha_j \), if \(b = n \) (\(j \geq a \)). The cases \(b < i \) or \(a > i \) are trivial. So we assume \(a \leq i \) and \(b \geq i \). If \(M_i^s \cap p \neq \emptyset \), then

\[
\sum_{l=0}^k (s - m_i^s)_{p(l)} \leq m_a + \cdots + m_b - 1.
\]

Now assume that \(M_i^s \cap p = \emptyset \). Let \(l \) be the minimal number such that \(s_{p(l)} > 0 \). Then there exists \(\alpha \in M_i^s \) such that \(\alpha < p(l) \). Therefore there exists a path \(p' \) containing \(\alpha, p(l), \ldots, p(k) \). We note that

\[
m_a + \cdots + m_b \geq \sum_{l \geq 0} s_{p'(l)} > \sum_{l \geq 0} s_{p(l)}.
\]

Therefore, \(\sum_{l \geq 0} (s - m_i^s)_{p(l)} \leq m_a + \cdots + m_b \). \(\square \)

3.2. Proof of the main theorem. In the following we write \(V^a(\lambda) \) for the associated graded module \(grV(\lambda) \). Denote by \(V^a(\lambda, \mu) \hookrightarrow V^a(\lambda) \otimes V^a(\mu) \) the \(S(n^-) \)-submodule generated by the tensor product \(v^\lambda \otimes v^\mu \) of the highest weight vectors.

Theorem 3.6. i) The vectors \(f^a v^\lambda, s \in S(\lambda) \) form a basis of \(V^a(\lambda) \),

ii) Let \(V^a(\lambda) = S(n^-)/I(\lambda) \). Then \(I(\lambda) = S(n^-)(U(n) \circ R) \), where

\[R = \text{span}\{ f^a_{\alpha_i, \omega_i}^{m_i+\cdots+m_j+1}, 1 \leq i \leq j \leq n - 1, f^a_{\alpha_i, \pi}^{m_i+\cdots+m_n+1}, 1 \leq i \leq n \}. \]

iii) The \(S(n^-) \) modules \(V^a(\lambda, \mu) \) and \(V^a(\lambda + \mu) \) are isomorphic.

The proof of the theorem is by an inductive procedure. We know that part i) of the theorem holds for all fundamental weights. For a dominant weight \(\lambda = \sum_i a_i \omega_i \) denote by \(|\lambda| = \sum a_i \) the sum of the coefficients. A first step in the proof is the following proposition:

Let \(\lambda \) be a dominant weight, and let \(i \) be the minimal number such that \((\lambda, \alpha_i) \neq 0 \).

Proposition 3.7. The vectors \(f^a(v^\lambda_{\omega_i - \omega_j} \otimes v^\omega_j), s \in S(\lambda) \), are linearly independent in \(V^a(\lambda - \omega_i) \otimes V^a(\omega_j) \), and the vectors \(f^a(v^\lambda), s \in S(\lambda) \), form a basis for \(V^a(\lambda) \).

Proof. The proof is by induction on \(|\lambda| \). If \(\lambda \) is a fundamental weight, then the first part of the claim makes no sense and the second part is true.

So assume now \(|\lambda| \geq 2 \) and assume that the second part of the proposition holds for all dominant weights \(\mu \) such that \(|\mu| < |\lambda| \). We prove now the first part of the proposition for \(\lambda \).
Assume that there exists some vanishing linear combination

\[\sum_{s \in S(\lambda)} c_s f^s(v_{\lambda - \omega_i} \otimes v_{\omega_i}) = 0. \]

We will prove that \(c_s = 0 \) for all \(s \).

Recall first that we have an order \(\succ \) on the set of \(\mathbb{C}_n \)-multi-exponents (see Definition 2.6) such that if \(t \not\in S(\lambda) \) then

\[f^t v_\lambda = \sum_{s \in S(\lambda)} d_s f^s v_\lambda. \]

Another important ingredient will be the elements \(m_i^s \) (Definition 3.4). Recall that \(i \) is minimal such that \((\lambda, \alpha_i) \neq 0 \), \(m_i^s \in S(\omega_i) \) and \(s - m_i^s \in S(\lambda - \omega_i) \).

The proof is by contradiction. Assume that \(c_s \neq 0 \) for some \(s \). In the following we fix such an element \(s \in S(\lambda) \) and we assume without loss of generality that \(c_t = 0 \) for all \(t \succ s \).

The vector space \(V^a(\lambda - \omega_i) \otimes V^a(\omega_i) \) has a basis given by the elements \(f^a v_{\lambda - \omega_i} \otimes f^b v_{\omega_i}, a \in S(\lambda - \omega_i), b \in S(\omega_i) \). For all \(t \in S(\lambda) \) such that \(c_t \neq 0 \) in (3.1) we express \(f^t(v_{\lambda - \omega_i} \otimes v_{\omega_i}) \) as a linear combination of these basis elements, i.e., we will write

\[f^t(v_{\lambda - \omega_i} \otimes v_{\omega_i}) = \sum_{a \in S(\lambda - \omega_i)} K_{a,b}^t f^a v_{\lambda - \omega_i} \otimes f^b v_{\omega_i}. \]

In the next step we show that \(K_{s - m_i^s, m_i^s}^t = 0 \) for all \(t \neq s \) and \(K_{s - m_i^s, m_i^s}^t \neq 0 \).

Using the rules for the action on a tensor product we see:

\[f^s(v_{\lambda - \omega_i} \otimes v_{\omega_i}) = C f^{s - m_i^s} v_{\lambda - \omega_i} \otimes f^{m_i^s} v_{\omega_i} + \sum_{r_1 + r_2 = s} p_{r_1, r_2} f^{r_1} v_{\lambda - \omega_i} \otimes f^{r_2} v_{\omega_i}, \]

where \(C \) is a nontrivial constant (a product of binomial coefficients) and \(r_1 \neq s - m_i^s, r_2 \neq m_i^s \). The elements \(f^{r_1} v_{\lambda - \omega_i}, f^{r_2} v_{\omega_i} \) need not to be basis elements, we discuss the several possible cases separately. First assume that \(r_2 \in S(\omega_i) \setminus \{m_i^s\} \). Then \(f^{r_1} v_{\lambda - \omega_i} \otimes f^{r_2} v_{\omega_i} \) is a sum of basis elements of the form \(f^{a} v_{\lambda - \omega_i} \otimes f^{b} v_{\omega_i} \) where \((a, r_2) \neq (s - m_i^s, m_i^s) \). For the same reason, if \(r_1 \in S(\lambda - \omega_i) \setminus \{s - m_i^s\} \), then \(f^{r_1} v_{\lambda - \omega_i} \otimes f^{r_2} v_{\omega_i} \) is a sum of basis elements of the form \(f^{a} v_{\lambda - \omega_i} \otimes f^{b} v_{\omega_i} \) where \((r_1, b) \neq (s - m_i^s, m_i^s) \). If \(r_1 \not\in S(\lambda - \omega_i) \) and \(r_2 \not\in S(\omega_i) \), then

\[f^{r_1} v_{\lambda - \omega_i} = \sum_{a \in S(\lambda - \omega_i)} e_a f^a v_{\lambda - \omega_i} \quad \text{and} \quad f^{r_2} v_{\omega_i} = \sum_{b \in S(\omega_i)} d_b f^b v_{\omega_i}, \]

with some constants \(e_a, d_b \). But among the pairs \((a, b) \) the pair \((s - m_i^s, m_i^s) \) can not appear, because

\[(s - m_i^s) + m_i^s = s = r_1 + r_2 > a + b. \]
Therefore the expression of $f^s(v_{\lambda - \omega_i} \otimes v_{\omega_i})$ as a sum of the basis elements is of the form

$$C f^{s-m^*_i} v_{\lambda - \omega_i} \otimes f^{m^*_i} v_{\omega_i} + \sum_{a \in S(\lambda - \omega_i), b \in S(\omega_i)} p_{a,b} f^a v_{\lambda - \omega_i} \otimes f^b v_{\omega_i},$$

and hence $K^{s-m^*_i} v_{\lambda - \omega_i} \otimes f^{m^*_i} v_{\omega_i} \neq 0$.

Now let us consider a term $f^t(v_{\lambda - \omega_i} \otimes v_{\omega_i})$, $t \neq s$, such that $c_t \neq 0$ in (3.1). We write again

$$f^t(v_{\lambda - \omega_i} \otimes v_{\omega_i}) = \sum_{r_1 + r_2 = t} p_{r_1,r_2} f^{r_1} v_{\lambda - \omega_i} \otimes f^{r_2} v_{\omega_i},$$

and express each of the terms $f^{r_1} v_{\lambda - \omega_i} \otimes f^{r_2} v_{\omega_i}$ as a sum of the basis elements

$$f^{r_1} v_{\lambda - \omega_i} \otimes f^{r_2} v_{\omega_i} = \sum_{a \in S(\lambda - \omega_i), b \in S(\omega_i)} q_{a,b} f^a v_{\lambda - \omega_i} \otimes f^b v_{\omega_i}.$$

Recall that a is less than or equal to r_1, and b is less than or equal to r_2. We claim that none of the couples (a,b) occurring with a nonzero coefficient $q_{a,b}$ is equal to $(s - m^*_i, m^*_i)$. The proof is by contradiction: If $(a,b) = (s - m^*_i, m^*_i)$, then $r_1 + r_2 = t$ is greater than or equal to $a + b = s - m^*_i + m^*_i = s$, which is not possible, because $c_t = 0$ if $t > s$. Hence $K^{s-m^*_i} v_{\lambda - \omega_i} \otimes f^{m^*_i} v_{\omega_i} = 0$ for all $t \neq s$.

It follows that if we express each of the summands in (3.1) as a linear combination of the basis elements $f^a v_{\lambda - \omega_i} \otimes f^b v_{\omega_i}$, $a \in S(\lambda - \omega_i), b \in S(\omega_i)$, then the term $f^{s-m^*_i} v_{\lambda - \omega_i} \otimes f^{m^*_i} v_{\omega_i}$ occurs only once with a non-zero coefficient, which is not possible unless $c_s = 0$ in (3.1). Hence all coefficients vanish in the expression in (3.1), proving the linear independence.

To prove the second part of the proposition recall the degree filtration $U(n^-)_s$ on $U(n^-)$:

$$U(n^-)_s = \text{span}\{x_1 \ldots x_l : x_i \in n^-, l \leq s\},$$

and recall that for a dominant weight μ we set

$$V(\mu)_s = U(n^-)_s v_{\mu}.$$ Then $V^a(\mu)$ is the associated graded $S(n^-)$-module. The tensor product $V^a(\lambda - \omega_i) \otimes V^a(\omega_i)$ of the graded modules with grading

$$V^a(\lambda - \omega_i) \otimes V^a(\omega_i) = \bigoplus_{k \geq 0} (\oplus_{k=\ell+m} (V^a(\lambda - \omega_i))_\ell \otimes (V^a(\omega_i))_m)$$
is the associated graded module for the filtration

$$(V(\lambda - \omega_i) \otimes V(\omega_i))_k = \sum_{k=\ell+m} V(\lambda - \omega_i)_\ell \otimes V(\omega_i)_m.$$ Recall the total order on the set of positive roots. We write $f^s \in U(n^-)$ for $s \in S(\lambda)$ for the ordered product of the corresponding root vectors. The linear independence of the vectors $f^s(v_{\lambda - \omega_i} \otimes v_{\omega_i})$, $s \in S(\lambda)$, in $V^a(\lambda -$
\[\omega_i \otimes V^a(\omega_i) \] implies the linear independence of the vectors \(f^s(v_{\lambda-\omega_i} \otimes v_{\omega_i}) \), \(s \in S(\lambda) \), in \(V(\lambda - \omega_i) \otimes V(\omega_i) \). Since these vectors are all contained in the Cartan component \(V(\lambda) \hookrightarrow V(\lambda - \omega_i) \otimes V(\omega_i) \), we obtain the inequality \(|S(\lambda)| \leq \dim V(\lambda) \). We know already that the vectors \(f^s(v_{\lambda}), s \in S(\lambda), \) span \(V^a(\lambda) \) (section 2) the straightening law, so \(|S(\lambda)| \geq \dim V^a(\lambda) = \dim V(\lambda) \) and hence:

\[|S(\lambda)| = \dim V^a(\lambda). \]

It follows that the vectors \(f^s(v_{\lambda}), s \in S(\lambda), \) are in fact a basis for \(V^a(\lambda) \). □

Using the straightening law in section 2 we get as an immediate consequence:

Corollary 3.8. Let \(V^a(\lambda) = S(n^-)/I(\lambda) \). Then \(I(\lambda) = S(n^-)(U(n) \circ R) \), where

\[R = \text{span}\{ f_{\alpha_{i,j}}^{m_{i,j}+\cdots+m_{j,k}+1}, 1 \leq i \leq j \leq n-1, \ f_{\alpha_{i,j}}^{m_{i,j}+\cdots+m_{n,k}+1}, 1 \leq i \leq n \}. \]

Using the defining relations for \(V^a(\lambda) \), it is easy to see that we have a canonical surjective map \(V^a(\lambda) \rightarrow V^a(\lambda - \omega_i, \omega_i) \) sending \(v_{\lambda} \) to \(v_{\lambda-\omega_i} \otimes v_{\omega_i} \). By Proposition 3.7 we know that the image of basis \(\{ f^s(v_{\lambda}), s \in S(\lambda) \} \subset V^a(\lambda) \) remains linearly independent and hence:

Corollary 3.9. The \(S(n^-) \) modules \(V^a(\lambda - \omega_i, \omega_i) \) and \(V^a(\lambda) \) are isomorphic.

Proof. (of Theorem 3.6) The first and second part of the theorem follow from Proposition 3.7 and Corollary 3.8. It remains to prove the third part. As above, it is easy to see that we have a canonical surjective map \(V^a(\lambda+\mu) \rightarrow V^a(\lambda, \mu) \) sending \(v_{\lambda+\mu} \) to \(v_{\lambda} \otimes v_{\mu} \).

The corollary above says that our theorem holds if \(\mu = \omega_i \). Iterating, we obtain that both \(V^a(\lambda, \mu) \) and \(V^a(\lambda + \mu) \) sit inside the tensor product

\[V^a(\omega_1)^{\otimes(\lambda+\mu, \alpha_1)} \otimes \ldots \otimes V^a(\omega_n)^{\otimes(\lambda+\mu, \alpha_n)} \]

as highest components (generated from the tensor product of highest weight vectors). This proves the theorem. □

Acknowledgements

The work of Evgeny Feigin was partially supported by the Russian President Grant MK-281.2009.1, the RFBR Grants 09-01-00058 and NSh-3472.2008.2, by Pierre Deligne fund based on his 2004 Balzan prize in mathematics. The work of Ghislain Fourier was partially supported by the DFG project “Kombinatorische Beschreibung von Macdonald und Kostka-Foulkes Polynomen”. The work of Peter Littelmann was partially supported by the priority program SPP 1388 of the German Science Foundation.
References

[ABS] F. Ardila, T. Bliem, D. Salazar, Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes, arXiv:1008.2365

[B] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitres IV, V, VI, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.

[Br] R-K. Brylinski, Limits of weight spaces, Lusztig’s q-analogs and fiberings of adjoint orbits, J. Amer. Math. Soc, 2, no.3 (1989), 517-533.

[BZ] A. D. Berenstein and A. V. Zelevinsky, Tensor product multiplicities and convex polytopes in partition space, J. Geom. Phys. 5 (1989), 453-472, doi:10.1016/0393-0440(88)90033-2.

[F1] E. Feigin, The PBW filtration, Represent. Theory 13 (2009), 165-181.

[F2] E. Feigin, The PBW Filtration, Demazure Modules and Toroidal Current Algebras, SIGMA 4 (2008), 070, 21 pages.

[F3] E. Feigin, G\textsubscript{A}\textsubscript{1}M degeneration of flag varieties, arXiv:1007.0646

[FFJMT] B. Feigin, E. Feigin, M. Jimbo, T. Miwa, Y. Takeyama, A φ\textsubscript{1,3}-filtration on the Virasoro minimal series M(p, p'), 1 < p'/p < 2, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 213–257.

[FFL] B. Feigin, E. Feigin, P. Littelmann, Zhu’s algebras, C\textsubscript{2}-algebras and abelian radicals, arXiv:0907.3962 (2009).

[FFoL] E. Feigin, G. Fourier, P. Littelmann, PBW filtration and bases for irreducible modules in type A\textsubscript{n}, arXiv:1002.0674, to appear in Transformation Groups.

[FL] E. Feigin, P. Littelmann, Zhu’s algebras, C\textsubscript{2}-algebras and abelian radicals, arXiv:0907.3962 (2009).

[FH] W. Fulton, J. Harris, Representation Theory, Graduate Texts in Mathematics, Springer Verlag, New York 1991.

[GG] M. R. Gaberdiel, T. Gannon, Zhu’s algebra, the C\textsubscript{2} algebra, and twisted modules, arXiv:0811.3892

[GT] I. M. Gelfand and M. L. Tsetlin, Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR 71 (1950), 825-828 (Russian). English transl, in: I. M. Gelfand, ”Collected papers”. Vol II, Berlin: Springer-Verlag 1988, pp. 653-656.

[H] J.E. Humphreys, Introduction to Lie algebras and representation Theory. Graduate Texts in Math., vol. 9, Springer -Verlag (1970).

[Kos] B. Kostant, Lie groups representations on polynomial rings, Amer. J. Math, 85, 327–404 (1963).

[Kum] S. Kumar, The nil Hecke ring and singularity of Schubert varieties, Inventiones Math. 123, 471-506 (1996).

[V] E. Vinberg, On some canonical bases of representation spaces of simple Lie algebras, conference talk, Bielefeld, 2005.

Evgeny Feigin:
Department of Mathematics, University Higher School of Economics, 20 Myasnitskaya st, 101000, Moscow, Russia and
Tamm Department of Theoretical Physics, Lebedev Physics Institute, Leninsky prospect, 53, 119991, Moscow, Russia
E-mail address: evgfeig@gmail.com

Ghislain Fourier:
Mathematisches Institut, Universität zu Köln,
Weyertal 86-90, D-50931 Köln, Germany
E-mail address: gfourier@math.uni-koeln.de
Peter Littelmann:
Mathematisches Institut, Universität zu Köln,
Weyertal 86-90, D-50931 Köln, Germany

E-mail address: littelma@math.uni-koeln.de