Establishment and Assessment of a Nomogram for Predicting Blood Transfusion Risk in Posterior Lumbar Spinal Fusion

Haosheng Wang
Jilin University Second Hospital

Kai Wang
Jilin University Second Hospital

Bin Lv
Affiliated Renmin Hospital of Jiangsu University: Zhenjiang First People's Hospital

Haotian Xu
Jilin University Second Hospital

Weibo Jiang
Jilin University Second Hospital

Jianwu Zhao
Jilin University Second Hospital

Rongpeng Dong
Jilin University Second Hospital

Mingyang Kang
Jilin University Second Hospital

Yang Qu (✉ quy@jlu.edu.cn)
Jilin University Second Hospital

Research article

Keywords: Blood Transfusion, Blood Loss, Lumbar Fusion, Risk factors, Nomogram

DOI: https://doi.org/10.21203/rs.3.rs-69243/v1

License: ☕️ ① This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The aim of this study was to determine the risk factors and develop a nomogram for blood transfusions after posterior lumbar spinal fusion (PSL).

Methods: We conducted a retrospective, single-center study based on 885 patients receiving lumbar PSL, and data was obtained from May 2015 to September 2019. Multivariable logistic regression analysis was conducted to identified risk factors for blood transfusion, and a nomogram was constructed to individually evaluate the risk of blood transfusion. Discrimination, calibration, and clinical usefulness were validated by the receiver operating characteristics (ROC), C-index, calibration plot, and decision curve analysis, respectively. Bootstrapping validation was performed to assess the performance of the model.

Results: Of 885 patients, 885 were enrolled in the final study population and 289 receive blood transfusion. Statistical analyses showed the low preoperative hemoglobin (Hb), longer time to surgery, operative time, levels of fusion>1, longer surgery duration, and higher total intraoperative blood loss (IBL) were the risk factors for transfusion. The C-index was 0.898 (95% CI: 0.847–0.949) in this dataset and 0.895 in bootstrapping validation, respectively. Calibration curve showed satisfied discrimination and calibration of the nomogram. Decision curve analysis (DCA) shown that the nomogram was clinical utility.

Conclusions: In summary, we investigated the relationship between the blood transfusion requirement and predictors: levels of fusion, operative time, time to surgery, total intraoperative EBL, and preoperative Hb level. Our nomogram with a robust performance in the assessment of risk of transfusion, which can contribute clinicians making clinical decision. However, external validation is still needed in the further.

1. Background

Posterior spinal fusion (PSF) is a widely recognized surgical stabilization procedure in the treatment of various spinal diseases including deformity, tumour, degenerative disease, trauma and infection(1, 2). Intraoperative and/or post-operative blood loss was a major focus of spinal surgeons and anesthesiologist. In particular, complex spinal surgeries are performed frequently in the past few decades, and blood loss is still one of the most common complications in the procedure(3). A recent investigation in the United States (US) has reported that the proportion of allogenic blood transfusion in the patients underwent PSL has been growing, which has doubled in the past ten years(4). Therefore, spinal fusion has been characterized as the top 10 surgical procedure in the in North America associated with blood transfusion—not surprisingly(5).

An investigation of spinal fusion has indicated that patients receiving blood transfusion had experienced adverse events and complications including longer hospital stay, higher incidence of surgical site infections, sepsis, febrile reactions and pulmonary embolism(6, 7). More importantly, blood transfusion would impose a huge burden on the individuals, families and healthcare system worldwide, which remain an intractable health condition especially in areas lacking medical resources, especially in the developing
regions and countries(8). Hence, it is particularly important to identify the risk factors in blood transfusion would help clinicians to evaluate the risk of individuals and make the best decision for each patient to minimize cost and reduce transfusion-related and other complications.

Regrettably, however, there is little evidence to explore the risk factors related to blood transfusion in patients receiving PSF. Aoude et al. 2016, indicated that age, dyspnea, ASA score, level of fusion, and high blood urea nitrogen (BUN) levels were the risk factors blood transfusion(9). Mina et al. 2016, reported that ASA > 1, longer operating time, level of fusion > 1, sacrum inclusion, and open posterior approach were the significant risk factors for blood transfusion(10). Hence, it is necessary to improve preoperative evaluation and blood management. Consequently, it is urgent for us to develop easy-to-use visualization tools for clinicians in clinical practice. Nomogram, a simple predictive tool, was widely used in various disciplines, which can help clinicians to estimate the probability of events(11, 12). In this study, we aim to develop and validate a brief and reliable nomogram to evaluate the risk of blood transfusion in patients who underwent PSF and identify high-risk patients in clinical decision-making. Besides, we assess the accuracy of the nomogram via cross-validation and bootstrap of the data set.

2. Methods

2.1 Patients and data collection

This research approved by the Ethics Committee of the Second Hospital of Jilin University (Changchun, People's Republic of China). All patients provided informed written consent. The study inclusion and exclusion criteria were listed in Table 2. From May 2015 to September 2019, 941 patients, including 456 male patients and 485 female patient compliance with the requirements. Of these, 56 were excluded: 9 died, 23 used oral non-steroidal anti-inflammatory drugs with seven days, 4 used antiplatelet drugs within 15 days, ten had impaired breathing after cervical severe spinal cord injury (SCI), eight each of family given up treatment, and four lost to follow-up. Ultimately, 885 patients were included in this study. All of the patients underwent a standard posterior spinal fusion. Although still controversial, careful preoperative preparation consists of the individualized assessment of the patient's condition, grasping the appropriate timing of blood transfusion, and delicate intraoperative operation is still essential(13, 14). Therefore, based on the experience of the medical team at this centre and the regulations of the actual blood transfusion department, only patients Hb < 85 g/L or > 100 g/L with severe hemodynamic instability, chest pain, major bleeding, and weakness.
Table 2
Inclusion criteria and exclusion criteria in this present study

Number	Inclusion criteria
1	1. Lumbar disc herniation; 2. Lumbar spinal stenosis; 3. Lumbar spondylolisthesis; 4. Lumbar disc herniation with spinal stenosis; 5. Age greater than or equal to 40 years; 6. Posterior fusion; 7. No coagulation abnormalities
2	1. Revision surgery; 2. Minimally invasive fusion surgery; 3. Emergency surgery; 4. Lumbar tumor; 5. Lumbar tuberculosis; 6. Brucellosis; 7. Lumbar scoliosis deformity; 8. Lumbar fracture and dislocation; 9. Cervical or thoracic surgery; 10. Pre-deposit autologous blood transfusion; 11. Recycled autologous blood transfusion; 12. Preoperative blood transfusion

2.2 Potential risk factors

Patients characteristics in this study including age, gender, body mass index (BMI), comorbid diseases (e.g., hypertension, congestive heart failure, bleeding disorder, and COPD), smoker, American Society of Anesthesiologists (ASA) class, levels of fusion, time to surgery, length of stay, total intraoperative estimated blood loss (EBL), operative time, previous transfusion, previous surgery, preoperative activated partial thromboplastin time (APTT), preoperative prothrombin time (PT), preoperative Fibrinogen, preoperative platelet count, preoperative hematocrit, preoperative Hb, preoperative white blood cell count (WBC), and length of stay (LOS) were extracted from electronic medical records in our hospital.

2.3 Statistical analysis

Data processing and statistical analysis were performed by R software (Version 4.0.0; https://www.R-project.org). Among the clinical parameters, normally distributed variables were compared using the independent t-test, group comparisons used Mann-Whitney U-test, and similarly, the Chi-square test was conducted in comparing qualitative parameters. In order to further explore the potential relationship between the clinical parameters and blood transfusion, logistics regression analyses were carried out to control the confounding effects and identify the predictors of blood transfusion. P-value < 0.05 was considered significant in this study. It is imperative to note that we need to give priority to clinical significance rather than statistical significance in the process of developing the clinical model. The parameters were demonstrated as odds ratio (OR) having 95% confidence interval (CI) and as P-value. Subsequently, combined statistical and clinical consideration, these candidate parameters were included to develop the newly-build predictive model by using this cohort. The nomogram calibration curve was plotted to evaluate the efficiency of the blood transfusion nomogram. A no significant of the Hosmer–Lemeshow statistic indicated that the model does perfectly fitness. For further model assessment, the receiver operating characteristics (ROC) was curved. The area under the curve (AUC) of the ROC curve was then calculated. A relatively corrected C-index (1,000 bootstrap resamples) of the nomogram was also determined in this cohort. Decision curve analysis was used to evaluate the net benefit and
usefulness of our model. The "rmda" package was used to plot the DCA curve. In the process of DCA, the net benefit is calculated by subtracting the proportion of false-positive patients from the proportion of true positive patients in the population by a certain threshold that is set while taking into account the negative effects of not performing any non-essential intervention.

3. Results

3.1 Patients' characteristics

In this present study, we enrolled 885 patients with elective lumbar PSF, of whom 289 (32.7%) received blood transfusion. Table 1 demonstrates the baseline characteristics. Overall, 440 (49.718%) were males, and 445 (50.282%) were female. Among the clinical characteristics, gender (p = 0.312), comorbidities (p = 0.057), the proportion of smokers (p = 0.323), previous transfusion (p = 0.023), previous surgery (p = 0.211), preoperative APTT (p = 0.091), preoperative Fibrinogen (p = 0.630), preoperative platelet count (p = 0.861), and preoperative WBC (p = 0.733), no statistical difference between the transfusion and no-transfusion group. Compared with transfusion cohort, the mean age was greater in the no-transfusion group. The preoperative Hb and hematocrit were statistical lower, while the BMI, operative time, time to surgery, total intraoperative EBL, level of fusion, ASA class, and length of stay were significantly higher in transfusion cohort than no-transfusion cohort. Other characteristics were demonstrated in Table 1.
Table 1
Patients demographics and preoperative characteristics.

	Total	Not Transfused	Transfused	P Value
Number of patients	885	596	289	
Age (y)	62.8 [56.4, 69.8]	61.6 [55.7, 67.7]	66.8 [57.8, 75.6]	< 0.001
Gender (%)				0.312
Male	440 (49.718%)	315 (52.852%)	125 (43.253%)	
Female	445 (50.282%)	281 (47.148%)	164 (56.747%)	
Comorbidities				0.057
None (%)	135 (15.254%)	93 (15.604%)	42 (14.533%)	
1–3 (%)	543 (61.356%)	352 (59.060%)	191 (66.090%)	
≧ 4 (%)	207 (23.390%)	151 (25.336%)	56 (19.377%)	
BMI (kg/m\(^2\))	28.8 [26.6, 31.0]	28.6 [26.4, 30.7]	29.6 [26.9, 32.1]	0.001
Smoker (%)				0.323
Yes	256 (28.927%)	79 (13.255%)	177 (61.246%)	
No	629 (71.073%)	517 (86.745%)	112 (38.754%)	
ASA class (%)				< 0.001
1	57 (6.441%)	49 (8.221%)	8 (2.768%)	
2	504 (56.949%)	351 (58.893%)	153 (52.941%)	
3	316 (35.706%)	192 (32.215%)	124 (42.907%)	
4	8 (0.904%)	4 (0.671%)	4 (1.384%)	
Levels of fusion (%)				< 0.001
1	344 (38.870%)	301 (50.503%)	43 (14.879%)	
2	184 (20.791%)	146 (24.497%)	38 (13.149%)	
≧ 3	357 (40.339%)	149 (25.000%)	208 (71.972%)	

BMI: Body Mass Index; ASA: American Stroke Association; EBL: estimated blood loss; APTT: activated partial thromboplastin time; PT: Prothrombin time; HB: hemoglobin; WBC: white blood cell count; LOS: length of stay.
	Total	Not Transfused	Transfused	P Value
Time to surgery (d)	5.4 [4.6, 6.5]	5.1 [4.3, 5.8]	6.5 [5.4, 7.7]	< 0.001
Total intraoperative EBL (ml)	357.9 [273.3, 512.0]	320.3 [238.3, 390.7]	857.3 [422.4, 956.1]	< 0.001
Operative time (minutes)	191.2 [154.3, 235.9]	181.0 [150.1, 210.5]	249.4 [176.7, 344.0]	< 0.001
Previous transfusion (%)	0.023			
Yes	24 (2.712%)	11 (1.846%)	13 (4.498%)	
No	861 (97.288%)	585 (98.154%)	276 (95.502%)	
Previous surgery (%)	0.211			
Yes	74 (8.362%)	45 (7.550%)	29 (10.035%)	
No	811 (91.638%)	551 (92.450%)	260 (89.965%)	
Preoperative APTT	31.4 [29.9, 33.0]	31.3 [29.9, 32.9]	31.6 [29.8, 33.6]	0.091
Preoperative PT	11.9 [11.1, 12.9]	12.1 [11.2, 13.1]	11.5 [10.8, 12.4]	< 0.001
Preoperative Fibrinogen	3.2 [2.7, 3.7]	3.2 [2.7, 3.7]	3.2 [2.6, 3.7]	0.630
Preoperative platelet count	249.9 [211.3, 297.5]	248.3 [209.3, 298.9]	253.7 [214.8, 293.6]	0.861
Preoperative hematocrit	35.5 [32.9, 37.8]	36.4 [34.1, 38.6]	33.2 [31.0, 35.9]	< 0.001
Preoperative Hb	113.3 [106.2, 121.7]	115.5 [107.9, 126.2]	109.9 [104.2, 114.8]	< 0.001
Preoperative WBC	7.21 [5.6, 8.7]	7.2 [5.5, 8.6]	7.3 [5.7, 8.7]	0.733
LOS	9.12 [5.6, 8.7]	7.13 [4.90, 9.36]	11.77 [6.93, 15.61]	< 0.001

BMI: Body Mass Index; ASA: American Stroke Association; EBL: estimated blood loss; APTT: activated partial thromboplastin time; PT: Prothrombin time; HB: hemoglobin; WBC: white blood cell count; LOS: length of stay.

3.2 Identification of the risk factors of blood transfusion

Based on the build cohort, 21 parameters were imported to multivariable logistic regression analysis to screen potential predictors for blood transfusion and 5 significant factors were identified in this present study. Level of fusion (β 0.414, OR 1.513, 95% CI 1.163–1.971, $p = 0.00208$), time to surgery (β 0.252, OR
1.286, 95% CI 1.068–1.556, p = 0.00867), total intraoperative EBL (β 0.006, OR 1.016, 95% CI 1.003–1.024, p = 6.66e-16), operative time (β 0.004, OR 1.024, 95% CI 1.012–1.058, p = 0.03366), preoperative Hb (β -0.051, OR 0.950, 95% CI 0.931–0.968, p = 2.49e-07). The result of multivariable logistic regression analysis was illustrated in Table 3.
Table 3
Prediction factors for blood transfusion risk in posterior lumbar spinal fusion.

Intercept and parameter	Prediction model				
	β	Odds ratio	2.500%	97.500%	P value
Intercept	-2.805	0.060	0.000	34.288	0.387
Age	0.017	1.017	0.992	1.042	0.183
Gender	0.205	1.228	0.772	1.969	0.389
Comorbidities	0.022	1.022	0.638	1.624	0.928
BMI	0.044	1.045	0.974	1.120	0.219
Smoker	-0.723	0.485	0.230	1.020	0.053
ASA	0.192	1.212	0.833	1.769	0.316
Levels of fusion	0.414	1.513	1.163	1.971	0.00208 **
Time to surgery	0.252	1.286	1.068	1.556	0.00867 **
Total intraoperative EBL	0.006	1.016	1.003	1.024	6.66e-16 ***
Operative time	0.004	1.024	1.012	1.058	0.03366*
Previous transfusion	-0.641	0.527	0.079	3.272	0.514
Previous surgery	-0.009	0.991	0.402	2.253	0.984
Preoperative APTT	-0.046	0.955	0.864	1.055	0.366
Preoperative PT	-0.005	0.995	0.837	1.181	0.951
Preoperative Fibrinogen	0.178	1.195	0.862	1.663	0.286
Preoperative platelet count	0.002	1.002	0.999	1.006	0.184
Preoperative hematocrit	-0.015	0.985	0.920	1.054	0.665
Preoperative Hb	-0.051	0.950	0.931	0.968	2.49e-07 ***
Preoperative WBC	0.060	1.062	0.958	1.177	0.251
LOS	-0.023	1.321	1.023	1.534	0.078

Abbreviations: BMI: Body Mass Index; ASA: American Stroke Association; EBL: estimated blood loss; APTT: activated partial thromboplastin time; PT: Prothrombin time; HB: hemoglobin; WBC: white blood cell count.

3.3 Development of a prediction model
Based on the result of multivariable logistic regression analysis, the following were related to blood transfusion: level of fusion, time to surgery, total intraoperative EBL, operative time, and preoperative Hb. These 5 factors were incorporated into the predictive model and develop a nomogram, a graphical tool, which can visualize the results of regression analysis. The clinician can provide an individualized assessment of the risk of blood transfusion for patients undergoing lumbar PSL. For a specific patient, the total points were obtained by adding each score in the nomogram, and then the corresponding transfusion probability of the patient can be obtained according to the total score. This will facilitate accurate preoperative risk assessment, better identification of the transfused population, and more efficient doctor-patient communication(15).

3.4 Evaluation of the performance of the predictive model

The calibration curve of the predictive model for evaluating the risk of transfusion in patients underwent lumbar PSL shown satisfied agreement in this dataset (Fig. 2). Both discrimination and calibration of our model performed satisfactorily in a sizeable population of patients. Subsequently, the C-index of this model was 0.898 (95% CI: 0.847–0.949) in this dataset and was an identity to be 0.895 via bootstrapping validation (Bootstrap = 1000). The ROC curve was generated, and AUC was identified as 0.898 in this dataset (Fig. 3). Overall, the nomogram demonstrated great performance in predicting the risk of blood transfusion.

3.5 Clinical application

To evaluate the clinical usefulness of the predictive model, a decision analysis (DCA) was performed in the data. The DCA is a novel method that assessed the clinical net benefit of the nomogram. The DCA was demonstrated in Fig. 4. For clinician and patients, if the threshold was set at 16% and above, the use of this model to predict the probability of patient transfusion is more beneficial than this scheme.

4. Discussion

Posterior spinal fusion is the procedure of choice for patients with trauma, spinal infection, spinal deformities and degenerative spinal diseases(16). The total number of operations in PSL has been rising annually, especially in China(17, 18). Significant blood loss is the most frequent surgical complication and receiving a great deal of attention in the spinal surgeon, as well as anesthesiologist(19). There was no consensus among the definition of major blood loss; it is generally accepted that one volume of blood loss reaching the total blood loss (60 mL/kg adult) within 24 hours was defined as major blood loss(20). Now evolving techniques have helped to the clinician to aid treatment decisions. Meanwhile, blood transfusion is by far the most effective way to treat the major blood loss in spinal surgeries(21). However, blood shortage is an increasing problem within developing countries, especially in rural, underdeveloped areas of China(22). Thus, early and accurate identification of the risk of blood transfusion is not only to save blood resources but also for better clinical outcome of patients. Although it has been recognized that PSL closely related to significant blood loss and transfusion, the related risk factors for transfusion were still unclear(10, 23). In our cohort, 289 (32.7%) required blood transfusion. We identified independent
risk factors associated with transfusion as follows: increased levels of fusion, prolonged operative time, longer time to surgery, total intraoperative EBL, and a low preoperative Hb level.

The preoperative Hb was 115.5 [107.9, 126.2] g/L in the no transfused group and 109.9 [104.2, 114.8] g/L in the transfused group (p < 0.001), respectively. Previous studies have reported that low preoperative Hb was the risk factor with a longer LOS, increased complications, higher costs, and increased mortality(24, 25). Similarly, consistent with what we reported before, Josiah et al. preoperative Hb was a critical predictor in the complex spine surgery(26). These results corroborate the ideas of Adunsky et al., who suggested that patients with Hb < 120 g/L faced a significant risk of transfusion, with a risk that was approximately five times higher than the patients with Hb > 120 g/L(27). It can thus be suggested that low preoperative Hb lead to poor immune and a poor tolerance had unfortunately resulted in low compensative ability to surgical and anaesthetic trauma, as well as blood loss.

However, it was interesting that time to surgery was an independent risk factor of transfusion. Previous studies confirmed that the duration from admission to surgery was correlated with the incidence of complication, morality, and clinical outcome(28). Through the statistical analysis, we confirmed these conclusions; patients in this cohort receive transfusion has a length of stay, which could be explained by poor preoperative general conditions. In no transfused group, the meantime to surgery was 5.1 [4.3, 5.8] days compared to 6.5 [5.4, 7.7] days in patients who received transfusion (p < 0.001). We cautiously assume that this may be because patients with delayed surgery have a series of reasons such as poor general condition, relatively complex surgery or more complications, which might lead to challenging bleeding and need for transfusion.

In this present study, total intraoperative EBL was the strongest independent risk factor for transfusion. Although there is no consistent conclusion on the evaluation of blood loss and the indication of transfusion in spinal surgery, a considerable proportion of studies have reported that in cases requiring blood transfusion, the range of intraoperative blood loss is 650 ml to 2839 ml(20). Moreover, even in the same diseases, we observed a significant positive relationship between blood loss and different procedures, including open surgery or minimally invasive surgery, and unilateral laminar fenestration decompression and fusion, laminar fenestration decompression and fusion, and total laminectomy and decompression. Yang et al.(29) conducted a randomized controlled study on blood loss during lumbar minimal invasive transforaminal lumbar interbody fusion (MIS-TLIF) and open transforaminal lumbar interbody fusion (TLIF), and reported that the total operative blood loss was 355 ml for MIS-TLIF and 538 ml for open TLIF. Zhang et al.(30) reported that the total intraoperative blood loss was 602 ml for lumbar MIS-TLIF and 42 ml for oblique lumbar interbody fusion (OLIF). Morcos et al.(10) reported after a retrospective analysis of transfusion risk factors in lumbar fusion surgery in Canada that perioperative blood transfusion was 18% and intraoperative blood loss was 1018 ml (transfusion group) and 477 ml (non-transfusion group) in posterior lumbar fusion, respectively, and the difference in intraoperative blood loss between the two groups was statistically significant, but multivariate analysis showed that intraoperative blood loss was not a risk factor for perioperative blood transfusion. Therefore, intraoperative judgments of the operators were critical to the assessment of the risk of transfusion.
What attracted our attention is that operative time and numbers of levels of fusion were independent risk factors of transfusion, which was consistent with previous studies (10). The risk of blood transfusion in 2 segments of posterior lumbar fusion was 1.5 times higher than that in 1 fusion, and the risk of blood transfusion in 3 or more segments of fusion was 3 times higher than that in 1 fusion. This confirms that there is a correlation between prolonged posterior spinal fusion surgery and increased operative blood loss (31). Long fusion requires extensive exposure of the spine for pedicle screw placement and intraspinal decompression, which means that a large number of muscles and soft tissues behind the spine need to be dissected from bone tissue, and the more exposed the muscles, soft tissues, and bone surfaces, the increased blood loss during the operation period. Morcos et al. (10) found that the increase of operative segment would prolong the operative time, and then increase the risk of blood transfusion. Therefore, in the face of complex, more difficult, or more fused segments, we believe that good communication within the surgical team, between surgeons, operating room nurses and anaesthetists could reduce the operative time and incidence of transfusion.

Here, we develop a novel predictive nomogram for predicting the risk of transfusion in patients receiving lumbar PSL based on a single high-volume centre for the first time in northeast China. Our nomogram can demonstrate all the key factors graphically and can individually evaluate the incidence of blood transfusions after lumbar PSF. This model can assist contribute to clinical decision making and identify the patients with a high risk of transfusion (32). Additionally, it provides references for blood transfusion and saves blood resources and hospitalization costs (32, 33).

Several limitations of this study should not be ignored. First, this was a retrospective, single high-volume centre study with possible bias, which limits it's a generality and weak some statistical analyses. Second, external validation, especially in other regions and countries, in the future research is needed. Third, specific data was could not be obtained from the medical records or were missing, including particular procedure, transfusion-related complications, intraoperative fluid infusion volume and intraoperative urine volume.

5. Conclusions

In summary, by using a single high-volume centre for the first time in northeast China, we investigated the relationship between the blood transfusion requirement and predictors: levels of fusion, operative time, time to surgery, total intraoperative EBL, and preoperative Hb level. Our nomogram with a robust performance in the assessment of the risk of transfusion, which can contribute clinicians making the clinical decision and determined whether individual based on our nomogram. However, external validation is still needed in the future.

Abbreviations

BMI: Body Mass Index; ASA: American Stroke Association; EBL: estimated blood loss; APTT: activated partial thromboplastin time; PT: Prothrombin time; Hb: hemoglobin; WBC: white blood cell count. TLIF:
transforaminal lumbar interbody fusion. MIS-TLIF: minimal invasive transforaminal lumbar interbody fusion. OLIF: oblique lumbar interbody fusion.

Declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgements

We thank the members of our research group. All authors have approved the final version of the manuscript and read the journal’s authorship agreement.

Availability of data and materials

All the data and materials can be found in the manuscript.

Ethics approval and consent to participate

The study was approved by the ethics committee at the Second Hospital of Jilin University (Changchun, People's Republic of China).

Consent for publication

All individual persons consented for their data to be published.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

HSW did the surgery, collected the data, analyzed the data, drafted the manuscript. YQ supervised the project and reviewed the manuscript. KW, BL, WBJ, RPD, JWZ and MYK conceived of the study, participated in its design and coordination, and helped to draft the manuscript. YQ was responsible for the whole project, designed the study, and supervised the study. All authors read and approved the final manuscript.

Funding

No funds were received in support of this work.

References
1. Lee JC, Kim Y, Soh JW, Shin BJ. Risk factors of adjacent segment disease requiring surgery after lumbar spinal fusion: comparison of posterior lumbar interbody fusion and posterolateral fusion. Spine. 2014;39(5):E339-45.

2. Starkweather A. Posterior lumbar interbody fusion: an old concept with new techniques. The Journal of neuroscience nursing : journal of the American Association of Neuroscience Nurses. 2006;38(1):13-20, 30.

3. Rumalla K, Yarbrough CK, Pugely AJ, Koester L, Dorward IG. Spinal fusion for pediatric neuromuscular scoliosis: national trends, complications, and in-hospital outcomes. Journal of neurosurgery Spine. 2016;25(4):500-8.

4. Yoshihara H, Yoneoka D. National trends in spinal fusion for pediatric patients with idiopathic scoliosis: demographics, blood transfusions, and in-hospital outcomes. Spine. 2014;39(14):1144-50.

5. Segal JB, Guallar E, Powe NR. Autologous blood transfusion in the United States: clinical and nonclinical determinants of use. Transfusion. 2001;41(12):1539-47.

6. Busch MP, Kleinman SH, Nemo GJ. Current and emerging infectious risks of blood transfusions. Jama. 2003;289(8):959-62.

7. Mushahwar IK. Verses, viruses, and the vulnerability of the blood supply in industrialized countries. Journal of medical virology. 2007;79(8):1229-37.

8. Greinacher A, Weitmann K, Schönborn L, Alpen U, Gloger D, Stangenberg W, et al. A population-based longitudinal study on the implication of demographic changes on blood donation and transfusion demand. Blood advances. 2017;1(14):867-74.

9. Aoude A, Nooh A, Fortin M, Aldebeyan S, Jarzem P, Ouellet J, et al. Incidence, Predictors, and Postoperative Complications of Blood Transfusion in Thoracic and Lumbar Fusion Surgery: An Analysis of 13,695 Patients from the American College of Surgeons National Surgical Quality Improvement Program Database. Global spine journal. 2016;6(8):756-64.

10. Morcos MW, Jiang F, McIntosh G, Johnson M, Christie S, Wai E, et al. Predictors of Blood Transfusion in Posterior Lumbar Spinal Fusion: A Canadian Spine Outcome and Research Network Study. Spine. 2018;43(1):E35-e9.

11. Bagante F, Spolverato G, Ruzzente A, Wilson A, Gani F, Conci S, et al. Validation of a Nomogram to Predict the Risk of Perioperative Blood Transfusion for Liver Resection. World journal of surgery. 2016;40(10):2481-9.

12. Kim Y, Bagante F, Gani F, Ejaz A, Xu L, Wasey JO, et al. Nomogram to predict perioperative blood transfusion for hepatopancreatobiliary and colorectal surgery. The British journal of surgery. 2016;103(9):1173-83.

13. Oetgen ME, Litrenta J. Perioperative Blood Management in Pediatric Spine Surgery. The Journal of the American Academy of Orthopaedic Surgeons. 2017;25(7):480-8.

14. Yoshihara H, Yoneoka D. Predictors of allogeneic blood transfusion in spinal fusion for pediatric patients with idiopathic scoliosis in the United States, 2004-2009. Spine. 2014;39(22):1860-7.
15. Wei L, Champman S, Li X, Li X, Li S, Chen R, et al. Beliefs about medicines and non-adherence in patients with stroke, diabetes mellitus and rheumatoid arthritis: a cross-sectional study in China. BMJ open. 2017;7(10):e017293.

16. Ling T, Liu L, Yang X, Qiang Z, Hu X, An Y. Revision surgery for spinal tuberculosis with secondary deformity after treatment with debridement, instrumentation, and fusion. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015;24(3):577-85.

17. Li G, Li P, Chen Q, Thu HE, Hussain Z. Current Updates on Bone Grafting Biomaterials and Recombinant Human Growth Factors Implanted Biotherapy for Spinal Fusion: A Review of Human Clinical Studies. Current drug delivery. 2019;16(2):94-110.

18. Mu X, Li Z, Ou Y, Wei J. Early and short-segment anterior spinal fusion for cervical spinal cord injury without fracture and dislocation can achieve more significant neurological recovery: a retrospective study based on the current medical system in southern China. Journal of orthopaedic surgery and research. 2019;14(1):414.

19. Lee J, Son D, Sung S, Lee S, Song G. Effects of Discontinuance of Preoperative Anti-Platelet Medication in Multi-Level Thoracolumbar Spine Surgery. Turkish neurosurgery. 2018;28(1):99-104.

20. Elgafy H, Bransford RJ, McGuire RA, Dettori JR, Fischer D. Blood loss in major spine surgery: are there effective measures to decrease massive hemorrhage in major spine fusion surgery? Spine. 2010;35(9 Suppl):S47-56.

21. Mroz TE, Wang JC, Hashimoto R, Norvell DC. Complications related to osteobiologics use in spine surgery: a systematic review. Spine. 2010;35(9 Suppl):S86-104.

22. Yu X, Wang Z, Shen Y, Liu Z, Wang H, Zhang S, et al. Population-based projections of blood supply and demand, China, 2017-2036. Bulletin of the World Health Organization. 2020;98(1):10-8.

23. Lam SK, Pan IW, Harris DA, Sayama CM, Luerssen TG, Jea A. Patient-, procedure-, and hospital-related risk factors of allogeneic and autologous blood transfusion in pediatric spinal fusion surgery in the United States. Spine. 2015;40(8):560-9.

24. Basques BA, Fu MC, Buerba RA, Bohl DD, Golinaux NS, Grauer JN. Using the ACS-NSQIP to identify factors affecting hospital length of stay after elective posterior lumbar fusion. Spine. 2014;39(6):497-502.

25. Morcos MW, Jiang F, McIntosh G, Ahn H, Dea N, Abraham E, et al. Predictive Factors for Discharge Destination Following Posterior Lumbar Spinal Fusion: A Canadian Spine Outcome and Research Network (CSORN) Study. Global spine journal. 2019;9(4):403-8.

26. Perez JJ, Yanamadala V, Wright AK, Bohl MA, Leveque JA, Sethi RK. Outcomes Surrounding Perioperative Transfusion Rates and Hemoglobin Nadir Values Following Complex Spine Surgery. World neurosurgery. 2019;126:e1287-e92.

27. Morris R, Rethnam U, Russ B, Topliss C. Assessing the impact of fracture pattern on transfusion requirements in hip fractures. European journal of trauma and emergency surgery : official publication of the European Trauma Society. 2017;43(3):337-42.
28. Zhang H, Zhang X, Hu F, Hu W, Wang Y, Hao Y. Ankylosing spondylitis kyphosis surgical correction postoperative evaluation via SRS-22 domain investigation. Journal of orthopaedic surgery and research. 2018;13(1):5.

29. Kushioka J, Yamashita T, Okuda S, Maeno T, Matsumoto T, Yamasaki R, et al. High-dose tranexamic acid reduces intraoperative and postoperative blood loss in posterior lumbar interbody fusion. Journal of neurosurgery Spine. 2017;26(3):363-7.

30. Zhang H, Chen ZX, Sun ZM, Jiang C, Ni WF, Lin Y, et al. Comparison of the Total and Hidden Blood Loss in Patients Undergoing Open and Minimally Invasive Transforaminal Lumbar Interbody Fusion. World neurosurgery. 2017;107:739-43.

31. Durand WM, DePasse JM, Daniels AH. Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery: A Tree-Based Machine Learning Approach. Spine. 2018;43(15):1058-66.

32. Malik AT, Khan SN. Predictive modeling in spine surgery. Annals of translational medicine. 2019;7(Suppl 5):S173.

33. Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. Journal of neurosurgery Spine. 2019:1-11.

Figures

![Figure 1](image_url)
A nomogram to predict the risk of blood transfusions in posterior lumbar spinal fusion. EBL: estimated blood loss.

Figure 2

Calibration curve for nomogram prediction of risk of blood transfusions in posterior lumbar spinal fusion.
Figure 3

Receiver operating characteristic curve analysis – model validation.

AUC = 0.898
Figure 4

Decision curve analysis for nomogram prediction of risk of blood transfusions in posterior lumbar spinal fusion.