Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

Afkar A. Badawy¹ Ali El-Hindawi² Olfat Hammam¹ Mona Moussa¹
Noha S. Helal¹ Amira Kamel¹

¹Department of Pathology, Theodor Bilharz Research Institute; ²Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt

Key Words
Bladder cancer • Epidermal growth factor receptor • Immunohistochemistry • Schistosomiasis • Transforming growth factor-α

Abstract
Introduction: Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand–receptor combination constitutes an important event in multistep tumorigenesis. Methods: This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immunochemically stained with EGFR and TGFα antibodies. Results: EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion: EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy.
has been reported to be involved in the pathological processes of several cancers through interaction with other ligands like transforming growth factor alpha (TGFα) [8]. EGFR plays critical roles in cell growth, differentiation, motility, and survival [9]. It was reported to be overexpressed in a variety of solid malignancies including UC [10]. Several investigators have suggested that expression of EGFR could be utilized for molecular targeted therapy in urinary bladder cancer [11–13].

TGFα is a mitogenic polypeptide that has a wide range of biological activities including self-renewing epithelia; it acts as a paracrine growth factor through its interaction with EGFR [14]. The ability of TGFα to contribute to transformation and oncogenesis occurs through the activation of EGFR [15]. Overexpression of TGFα appears to be an event in bladder cancer that occurs more frequently in schistosomal bladder cancer and SCC, and may play an important role in their development. These observations may provide insight into treatment guided by molecular changes [16].

The present study was conducted to evaluate immunohistochemical expression of EGFR and TGFα in urothelial cells of chronic cystitis and urinary bladder cancer with or without schistosomal affection.

Materials and Methods

Specimens

A total of 55 archival urinary bladder blocks from Pathology Department of Theodor Bilharz Research Institute were included in this study; obtained either as transurethral resections or radical cystectomy specimens. They consisted of 10 cases of cystitis, 30 UC and 15 SCC. They belong to 47 males and 8 females (mean age 55.41 ± 12.73 years, range 27–74 years). In addition, 5 normal bladder specimens were obtained from patients subjected to prostatectomy after taking their consent, and served as controls (mean age 66.00 ± 5.38 years, range 57–71 years).

Histopathological Study

Five micron serial sections were stained with hematoxylin & eosin. The 60 biopsies were categorized into the following groups: Group 1: Control (n = 5); Group 2: Cystitis/schistosomal (n = 5) and non-schistosomal (n = 5); Group 3: UC/schistosomal (n = 17) and non-schistosomal (n = 13); Group 4: SCC/schistosomal (n = 10) and non-schistosomal (n = 5).

Histological Grading

Urinary bladder tumors were histologically divided into 3 grades (I–III).

Pathological staging

Staging of bladder tumors followed WHO classification [17]. Tumors of grade I are considered of low grade, while those in grades II and III are of high grade. Tumors of pathological stage T1 are considered superficial and that > T1 are muscle invasive.

Schistosomal infection was diagnosed upon presence of Schistosoma ova in tissue samples.

Immunohistochemical technique

Formalin-fixed paraffin embedded sections (5μm in thickness) were cut. Sections were incubated in oven at 60 °C overnight, deparaffinization and rehydration were done. Endogenous peroxidase was blocked with methanol containing 3% hydrogen peroxide. Antigen retrieval was performed by microwaving the sections in citrate buffer, pH 6.0. Sections were incubated overnight at 4 °C in humid chamber with the primary antibodies: EGFR monoclonal antibody (Dako, Code no. Ab1006, Glostrup, Denmark) and TGFα polyclonal antibody (Abcam, Ab 9578, Cambridge, Massachusetts, USA), at an optimal dilution of 1:50 for both, with application of ultravision detection system HRP Polymer. The antigen was localized by the addition of DAB (3, 3’ Diaminobenzidine) substrate chromogen solution. Finally, slides were counterstained with hematoxylin, dehydrated in alcohol and mounted.

For each setting, negative controls were carried out in which phosphate buffered saline was used instead of the primary antibody. Skin biopsies were used as positive controls for both antibodies.

Interpretation of Immunostaining

All immunostained slides were assessed and scored. The sections were examined by using light microscope (Zeiss, Germany). For EGFR, immunopositivity was indicated by brownish cytoplasmic or membranous staining in the urothelial cells while TGFα alpha positivity was detected as brownish cytoplasmic staining in

Table 1. Grades and stages of studied malignant bladder lesions

Category	UC	SCC	Total
Grade	n (%)	n (%)	n (%)
I	11 (36.7)	4 (26.7)	15 (33.3)
II	12 (40)	6 (40)	18 (40)
III	7 (23.3)	5 (33.3)	12 (26.7)
Pathological stage			
T1	15 (50)	5 (33.3)	20 (44.4)
T2	11 (36.7)	5 (33.3)	16 (35.6)
T3	4 (13.3)	5 (33.3)	9 (20)
Total	30	15	45

Category	Non-schistosomal	Schistosomal	Total
Grade	n (%)	n (%)	n (%)
I	8 (44.4)	7 (26)	15 (33.3)
II+III	10 (55.6)	20 (74)	30 (66.7)
Pathological stage			
Superficial (T1)	11 (61.1)	9 (33.3)	20 (44.4)
Invasive (T2+T3)	7 (38.9)	18 (66.7)	25 (55.6)
Total	18	27	45

UC = Urothelial carcinoma; SCC = squamous cell carcinoma.

Table 2. Effect of Schistosomal association on tumor grade and stage

EGFR and TGFα in Bladder Cancer

Curr Urol 2015;9:192–201 193
urothelial cells. The percentage of positive cells was evaluated in 10 microscopic fields at power \(\times 400 \) and the mean value was obtained.

The percentage of stained cells in each section was estimated on a scale of 0–3 (extent of expression), 0 (no positive cells), 1+ (positivity in 1–20% of cells), 2+ (positivity in 21–50% of cells), and 3+ (positivity in > 51% of cells). Immunostaining intensity of EGFR and TGF\(_\alpha\) were scored into mild, moderate and marked.

Statistical Analysis

SPSS for Windows, version 20 was used for statistical analysis (IBM Corporation, Armonk, New York, USA). Means of different groups were compared using one-way ANOVA. The correlation between EGFR and TGF\(_\alpha\) scores of immunoreactivity and histopathological stage, grade and schistosomal association was assessed by Spearman correlation coefficient. A p value < 0.05 was considered significant.

Results

Histopathology

Among studied urothelial tumors (Group 3), UC was diagnosed in 30/45 (66.7%) and SCC in 15/45 (33.3%). Urothelial tumors were found to be 15 (33.3%), 18 (40%) and 12 (26.7%) in grades I, II, and III respectively. Twenty (44.4%), 16 (35.6%) and 9 (20%) were in stage T1, T2, and T3 respectively (table 1). Schistosomiasis was diagnosed in 32/55 (58.2%) of all studied lesions. It was diagnosed in 50% of chronic cystitis cases and in 60% of malignant cases (56.6% of UC cases and 66.6% of SCC cases). In Schistosomal associated tumors, 20/27 (74.1%) were muscle invasive (T2+T3), and 18/27 (66.7%) were of high grade (grade II or III) versus 55.6% and 38.9% of non-Schistosomal associated tumors (table 2).

EGFR Immunoexpression

All control and chronic non schistosomal cystitis cases were negative for EGFR staining. Positivity of EGFR was expressed in urothelial cells as brownish cytoplasmic and/or membranous staining. Only one case of chronic schistosomal cystitis (1/5) was positive for EGFR with weak expression (score 1+) showing mild staining intensity (table 3, Histogram 1 and fig. 1A).

Table 3. EGFR expression in studied groups

Studied groups (n)	Positive cases n (%)	% of positive cells (Mean ± SD)	Extent of EGFR immunoreactivity	Score 1+, n (%)	Score 2+, n (%)	Score 3+, n (%)
Control (5)	0	0	–	–	–	–
Chronic cystitis (10)	1 (10)	2.00 ± 6.32	1 (100)	0	0	–
Non-schistosomal cystitis (5)	0	4.00 ± 8.94	–	1 (100)	–	–
Schistosomal cystitis (5)	39 (86.7)*	43.51 ± 23.54*	0	21 (53.8)	18 (46.2)	–
Carcinomas (45)	15 (83.3)	39.44 ± 24.54	0	11 (73.3)	4 (26.7)	–
Schistosomal carcinomas (27)	24 (89)	46.22 ± 22.92	0	10 (41.7)	14 (58.3)	–

EGFR = Epidermal growth factor receptor; *Significant difference compared to control and chronic cystitis (p < 0.01).

Table 4. EGFR expression in malignant lesions

Histological diagnosis (n)	Positive cases n (%)	% of positive cells (Mean ± SD)	Extent of EGFR immunoreactivity	Score 1+, n (%)	Score 2+, n (%)	Score 3+, n (%)
UC (30)	24 (80)	41.10 ± 26.51	0	13 (54.2)	11 (45.8)	–
Non-Schistosomal (13)	10 (77)	37.30 ± 28.32	0	7 (70)	3 (30)	–
Schistosomal (17)	14 (82.4)	44 ± 25.53	0	6 (43)	8 (57)	–
SCC (15)	15 (100)	48.33 ± 15.77	0	8 (53.3)	7 (46.7)	–
Non-Schistosomal (5)	5 (100)	45.00 ± 10.00	0	4 (80)	1 (20)	–
Schistosomal (10)	10 (100)	50 ± 18.25	0	4 (40)	6 (60)	–

EGFR = Epidermal growth factor receptor; UC = urothelial carcinoma; SCC = squamous cell carcinoma.
(mean% of positive cells) rose significantly in malignant cases versus cases of chronic cystitis (p < 0.01) (table 3, histogram 1). All cases of SCC were positive for EGFR versus 80% of UC cases without significant difference in its extent of expression or staining intensity between both tumor types (table 4, fig. 1B–D).

Fig. 1. Immunohistochemistry for EGFR in urinary bladder sections expressed as brown cytoplasmic and membranous staining of urothelial cells (A) Schistosomal cystitis (score 1+, × 200), (B) TCC Grade I (score 2+, × 400), (C) TCC Grade II (score 3+, × 400), (D) SCC with schistosomiasis (arrowed) Grade II (score 3+, × 400). EGFR = epidermal growth factor receptor; TCC = transitional cell carcinoma; SCC = squamous cell carcinoma.

Histogram. 1. Intensity of EGFR expression in studied groups
Schistosomal association with bladder cancer increased extent of EGFR expression (score 3+) as well as its staining intensity compared to non Schistosomal cancer cases in both cancer types (table 3, 4 and histogram 1).

As regards the studied grades and stages of bladder cancer; EGFR positivity, extent of expression as well as moderate staining intensity were found to be increased in grade 3 and stage 3 than in lower ones (table 5, histogram 2 and fig.1B–D).

Fig. 2. Immunohistochemistry for TGFα in urinary bladder sections expressed as brown cytoplasmic staining of urothelial cells. (A) Schistosomal cystitis (score 1+, × 200). (B) Papillary TCC Grade II (score 3+, × 400). (C) TCC Grade III (score 3+, × 400). (D) SCC Grade II (score 3+, × 200). TGF = transforming growth factor alpha; TCC = transitional cell carcinoma; SCC = squamous cell carcinoma.

Histogram. 2. Intensity of EGFR in different grades and stages of positive malignant cases. G = Grade; T = Stage.
EGFR and TGFα in Bladder Cancer

TFG alpha immunoexpression

TGFα positive staining was indicated by brown cytoplasmic staining in urothelial cells. Forty percent of control cases showed TGFα immunopositivity (2 out of 5 cases), all were in score 1+, with sequential increase to 70% in chronic cystitis and 91.2% in bladder cancer cases. Similarly, the extent of TGFα expression (mean % of positive cells) increased significantly in bladder cancer over chronic cystitis and control cases (p < 0.01). Schistosomal association with cystitis and bladder
Histogram 3. Intensity of TGF-α expression in studied groups.

Histogram 4. Intensity of TGF-α in different grades and stages of positive malignant cases. G = Grade; T = Stage.

Table 8. TGF-α expression in malignant grades and stages

Histological diagnosis (n)	Positive cases n (%)	Extent of TGF-α immunoreactivity	% of positive cells (Mean ± SD)	Score 1+, n (%)	Score 2+, n (%)	Score 3+, n (%)
Grade						
Grade I (15)	14 (93.3)	50.53 ± 22.95	3 (21.5)	5 (35.7)	6 (42.8)	
Grade II (18)	16 (88.8)	50.00 ± 24.25	0	7 (43.7)	9 (56.3)	
Grade III (12)	11 (91.6)	53.25 ± 27.49	0	2 (18.2)	9 (81.8)	
Stage						
Stage 1 (20)	17 (85)	47.40 ± 26.20	3 (17.6)	6 (35.3)	8 (47)	
Stage 2 (16)	16 (100)	54.31 ± 5.49	0	7 (43.7)	9 (56.3)	
Stage 3 (9)	8 (88.8)	53.3 ± 8.33	0	1 (12.5)	7 (87.5)	
cancer increased TGFα positivity, and extent of expression in score 3+ compared to non Schistosomal cases. All positive cases of cystitis either schistosomal or non-schistosomal showed mild staining intensity, while in carcinoma (schistosomal and non-schistosomal) they were mainly of moderate and marked intensity (table 6 and histogram 3).

In SCC TGFα positivity was 100%, while being 86.7% in UC cases. Extent of TGFα expression (mean % of positive cells) was significantly higher in SCC than in UC (p < 0.01). In addition schistosomal association increased TGFα positivity and extent of expression in score 3+ compared to non Schistosomal cases in both SCC and UC (table7 and fig. 2).

No detectable changes in TGFα positivity, or staining intensity among different grades or stages of studied tumors, but extent of expression of score 3+ increased in higher stages and grades than in lower ones (table 8 and histogram 4).

Spearman’s correlation coefficient (r) calculation revealed significant positive correlation between schistosomal association and EGFR positivity (r = 0.628, p = 0.001), EGFR score (r = 0.619, p = 0.001), EGFR staining intensity (r = 0.279, p = 0.01), TGFα positivity (r = 0.403, p = 0.001), TGFα staining intensity (r = 0.184, p = 0.01), and TGFα score (r = 0.305, p = 0.05). EGFR score correlated significantly with tumor grade (r = 0.352, p = 0.01) and stage (r = 0.389, p = 0.01). Also TGF score correlated significantly with tumor grade (r = 0.312, p = 0.05) and stage (r = 0.263, p = 0.05).

Discussion

Different studies have established that bladder cancer is the most common cancer in Egypt and most cases were linked with Schistosomiasis [7]. EGFR has been associated with the genesis of bladder tumors [18]. Over-expression of EGFR leads to uncontrolled cell proliferation. It also results in increased angiogenesis and reduced apoptosis, processes necessary for continuing malignant growth [19]. TGFα contributes to transformation and oncogenesis through the activation of EGFR [15].

In our study we detected EGFR immunostaining as membrano-cytoplasmic staining of urothelial cells; this finding is in accordance with results observed by Khaled et al. [13] and Abdulamir et al. [20].

Our 5 control cases were negative for EGFR; this finding is consistent with results of Khaled et al. [13]. Cheng et al. [21] stated that 40–60% of human bladder tumors overexpress EGFR mRNA and protein, while Naik et al. [7] reported positive EGFR expression in only 23% of their malignant cases. In our study 86.7% of malignant lesions were positive for EGFR; 83% of non schistosomal and 89% of schistosomal carcinoma. Abdulamir et al. [20] recorded EGFR overexpression in 58% and 84% of non schistosomal and schistosomal bladder tumors, and Khaled et al. [13] reported its expression in 66% of schistosomal bladder cancer.

In current study schistosomal association increased percentage of positive cases for EGFR expression in both cystitis and malignant cases. This finding is consistent with data reported by Abdulamir et al. [20] who concluded that schistosomal cystitis might act as an intermediate stage between normal and tumor tissues indicating the danger of the long-lasting inflammation of the bladder.

For histological types of bladder cancer, EGFR immunopositivity was found in all SCC cases compared to 80% of UC cases; this is in accordance with Guo et al. [22] and Ibrahim et al. [23] who reported that SCC of the urinary bladder, which is frequently related to schistosomal etiology and an advanced stage, expresses more intensely enhanced levels of EGFR.

Significant association reported in current study between increased EGFR expression with high grade and late stage of cancer bladder is in agreement with Colquhoun et al. [24] and Khaled at al. [13], suggesting that EGFR signaling may play a role in tumor progression [25]. However, Popove et al. [18] demonstrated that EGFR expression had no additional prognostic value over clinical stage, grade or cell proliferation. A study of Memon et al. [26] provided an explanation for this controversial data since they found that in some cases EGFR expression alone shows no correlation with survival, yet a high expression of EGFR together with increased Her3 and Her4 correlate with a better survival, denoting the existence of a synergistic effect between EGFR and other Erb family members mainly Her3/4.

In the current study, TGFα immunoreactivity was detected in 40% of control cases, this agrees with that reported by Tungekar et al. [27]. TGFα positivity increased to be 70% in chronic cystitis and 91.2% in bladder cancer cases matching with data reported by Mellow et al. [28].

Schistosomal association increased the percentage of positive cases for TGFα expression in both cystitis and malignant cases. This finding is consistent with data reported by Swellam et al. [16] who concluded that TGFα appears more frequently in schistosomal bladder cancer.
and SCC, suggesting that it may play an important role in their development. These observations may provide insight into treatment guided by molecular changes.

In our study, TGFα immunopositivity was found in all SCC cases compared to 86.7% of UC cases; this is in accordance with results reported by Swellam et al. [16] and Tungekar et al. [27].

Swellam et al. [16] found an association between late stages, and high histological grades with TGFα positivity. In the current work, TGFα also expressed with higher scores in high grades and late tumor stage.

In conclusion, EGFR and TGFα overexpression were found to be more frequent in bladder malignant lesions and stronger in schistosomal versus non-schistosomal cases. EGFR and TGFα overexpression correlated with higher tumor grade and stage, thus can be used as predictors for prognosis.

The current treatment of advanced bladder cancer relies mainly on traditional cytotoxic agents. High expression of biologic markers such as EGFR and TGFα can provide a preclinical proof of concept that anti-EGFR therapy can be used to target bladder tumors expressing these markers.

References

1 Felix AS, Soliman SA, Khaled H, Zaghloul SM, Banerjee M, El-Baradie M, El-Kalawy M, Abdel-Sayed AA, Ismail K, Hablas A, Seifeldin IA, Ramadan M, Wilson ML: The changing patterns of bladder cancer in Egypt over the past 26 years. Cancer Causes Control 2008;19:421–429.
2 Ploeg M, Aben KK, Kiemeney LA: The present and future burden of urinary bladder cancer in the world. World J Urol 2009;27:289–293.
3 Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010;60:277–300.
4 Manunta A, Vincendeau S, Kiriakou G, Lobel B, Guillé F: Non-transitional cell bladder carcinomas. BJU Int 2005;95:497–502.
5 Reuter VE: The urothelial tract: renal pelvis, ureter, urinary bladder, and urethra; in Mills SE, Carter D, Greenson JK, Reuter VE, Stoler MH (eds): Sternberg’s Diagnostic Surgical Pathology, ed 5. Philadelphia, Lippincott Williams & Wilkins, 2010, p1830.
6 el-Mawla NG, eL-Bolkainy MN, Khaled HM: Bladder cancer in Africa: update. Semin Oncol 2001;28:174–181.
7 Naik DS, Sharma S, Ray A, Hedau S: Epidermal growth factor receptor expression in urinary bladder cancer. Indian J Urol 2011;27:208–214.
8 De Luca A, Carotenuto A, Rachiglio A, Gallo M, Masiello MR, Aldinucci D, Pinto A, Normanno N: The role of the EGFR signaling in tumor microenvironment. J Cell Physiol 2008;214:559–567.
9 Herbst RS: Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59(2 suppl):21–26.
10 Chau A, Cohen JS, Schultz L, Albudine R, Jadallah R, Murphy KM, Sharma R, Schoenberg MP, Netto GJ: High epithelial growth factor immunohistochemical expression in urothelial carcinoma of the bladder is not associated with EGFR mutations in exons 19 and 21: a study using formalin-fixed, paraffin-embedded archival tissues. Hum Path 2012;43:1590–1595.
11 Cardillo MR, Castagna G, Memeo L, De Bernardinis E, Di Silverio F: Epidermal growth factor receptor, MUC-1 and MUC-2 in bladder cancer. J Exp Clin Cancer Res 2000;19:225–233.
12 Matsubara H, Yamada Y, Naruse K, Nakamura K, Aoki S, Taki T, Tobiume M, Zenami K, Katsuda R, Honda N: Potential for HER-2/neu molecular targeted therapy for invasive bladder carcinoma: comparative study of immunohistochemistry and fluorescent in situ hybridization. Oncol Rep 2008;19:57–63.
13 Khaled HM, Bahnassy AA, Raafat AA, Zekri AN, Madboul MS, Mokhtar NM: Clinical significance of altered nm23-H1, EGFR, RB and p53 expression in bilharzial bladder cancer. BMC Cancer 2009;9:32.
14 Ganganosa LM, Dempsey PJ, Damstrup L, Barnard JA, Coffey RJ: Transforming growth factor-alpha. Baillieres Clin Gastroenterol 1996;10:49–63.
15 Selvaggi G, Novello S, Torri V, Leonardo E, De Giuli P, Borasio P, Mossetti C, Ardisonne F, Lausi P, Scagliotti GV: Epidermal growth factor receptor over expression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol 2004, 15:28–32.
16 Swellam M, El-Aal AA, AbuGabel KM: Deletions of p15 and p16 in schistosomal bladder cancer correlate with transforming growth factor-alpha expression. Clin Biochem 2004;37:1098–1104.
17 Eble JN, Sauter G, Epstein JI, Sesterhenn IA: Pathology and genetics of tumours of the urinary system and male genital organs. World Health Organization Classification of Tumours. Lyon, France, International Agency for Research on Cancer (IARC), 2004, pp90–157.
18 Popov Z, Gil-Diez-De-Medina S, Ravery V, Hoznek A, Bastuji-Garin S, Lefrere-Belda MA, Abbou CC, Chopin DK: Prognostic value of EGF receptor and tumor cell proliferation in bladder cancer: therapeutic implications. Urol Oncol 2004;22:93–101.
19 Wells A: The epidermal growth factor receptor (EGFR) – a new target in cancer therapy. Signal 2000;1:4–11.
20 Abdulamir AS, Hafidh RR, Kadhim HS, Abubakar F: Tumor markers of bladder cancer: the schistosomal bladder tumors versus non-schistosomal bladder tumors. J Exp Clin Cancer Res 2009;28:27.
21 Cheng J, Huang H, Zhang ZT, Shapiro E, Pellicer A, Sun TT, Wu XR: Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 2002;62:4157–4163.

22 Guo CC, Gomez E, Tamboli P, Bondaruk JE, Kamat A, Bassett R, Dinney CP, Czerniak BA: Squamous cell carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical study of 16 cases. Hum Pathol 2009;40:1448–1452.

23 Ibrahim N, Elzagheid A, El-Hashmi H, Syrjanen K, Alhakim S: The potential value of EGFR and p53 immunostaining in tumors of the urinary bladder. Libyan J Med 2009;4:143–145.

24 Colquhoun AJ, Mellon JK: Epidermal growth factor receptor and bladder cancer. Postgrad Med J 2002;78:584–589.

25 Thogersen VB, Jorgensen PE, Sorensen BS, Bross P, Orntoft T, Wolf H, Nexo E: Expression of transforming growth factor and epidermal growth factor receptor in human bladder cancer. Scand J Clin Lab Invest 1999;59:267–277.

26 Memon AA, Sorensen SB, Nexo E: The epidermal growth factor family has a dual role in deciding the fate of cancer cells. Scand J Clin Lab Invest 2006;66:623–630.

27 Tungekar MF, Linehan J: Patterns of expressions of transforming growth factor and epidermal growth factor receptor in squamous cell lesions of the urinary bladder. J Clin Pathol 1998;51:583–587.

28 Mellon JK, Cook S, Chambers P, Neal DE: Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor. Br J Cancer 1996;73:654–658.