Background

The precursor of heparin-binding EGF-like growth factor (proHB-EGF) is found on a wide variety of cell surfaces and is present in numerous tissue types [1]. Previously in our laboratory, we cloned the cDNA encoding proHB-EGF from monkey Vero cells and identified this cell-surface molecule as a receptor for diphtheria toxin (DT) [2]. The predicted amino acid sequence was shown to be identical...
to that of the cell surface-expressed precursor of human heparin-binding EGF-like growth factor (proHB-EGF) [3,4]. The derived amino acid sequence revealed a signal sequence (residues 1–23), an extracellular domain (residues 24–159), a transmembrane domain (residues 160–184), and a carboxyl terminal cytoplasmic domain (residues 185–208) [2]. Proteolytic processing of the proHB-EGF occurs on the cell surface and results in the release of mature HB-EGF (mHB-EGF) (residues 63–148) [5]. The mature/soluble HB-EGF is a member of the EGF family of growth factors that includes amphiregulin, epidermal growth factor, and transforming growth factor α [6]. Mature HB-EGF released from the cell surface is mitogenic and is able to bind to the EGF receptor [3]. Membrane-bound proHB-EGF has juxtacrine growth factor activity [7] and also acts as a DT receptor [2,8].

Previously we have described the interaction of the extracellular domain of proHB-EGF with the second extracellular domain of the tetraspanin protein, monkey CD9 [9]. Tissue culture experiments using DT-sensitive transfected mouse fibroblast cell lines expressing on the cell surface both the monkey DT receptor and chimeric mouse-monkey CD9 antigen showed that the second extracellular domain of monkey CD9 antigen is able to act as a coreceptor for DT and is also responsible for the increased DT-sensitivity and affinity for DT in these cell lines [9]. These observations suggested that the CD9 antigen and proHB-EGF likely interact physically on the cell surface. Using a yeast two-hybrid system, we have shown that the extracellular domain of proHB-EGF and the second extracellular domain of monkey CD9 do indeed interact [9].

The yeast two-hybrid system strategy has been used to examine both intracellular and receptor-ligand protein-protein interactions. The interaction of mammalian growth hormone, prolactin, and vascular endothelial growth factor with their respective extracellular ligand-binding proteins have been observed using yeast two-hybrid sytems [10–13].

The involvement of HB-EGF in various cellular and tissue functions and its presence in extracellular matrices suggested the possibility that it may interact with other extracellular matrix proteins. To test this possibility we used the extracellular domain of proHB-EGF in a yeast two-hybrid system to screen a monkey kidney cDNA library. In the present report, we have identified two novel extracellular matrix proteins latent transforming growth factor β-binding protein 3 and fibulin-1C that interact with the extracellular domain of proHB-EGF.

Results and Discussion

Yeast two-hybrid screening of the monkey cDNA library using the extracellular domain of proHB-EGF as the bait fusion

The initial screening of ≈ 3 × 10⁶ clones of the monkey cDNA library with the bait fusion of GAL4 binding domain fused to the extracellular domain of proHB-EGF yielded 294 colonies that were able to grow on Trp-His-Leu media and that gave positive β-galactosidase activity in the β-galactosidase filter paper assay. False positives were ruled out by testing the β-galactosidase activity of the library clone alone or the library clone and the GAL4 DNA binding domain plasmid vector together in the yeast host strain. False positives were also ruled out by testing the β-galactosidase activity of the library clone with pVA3 (pGBT9 with a cloned insert). The elimination of these false positive colonies from the initial screening of the cDNA library resulted in a total of 64 colonies whose library clones encoded potentially true interacting proteins with the extracellular domain of proHB-EGF. Some of these cDNA library clones were transformed into the other yeast host strain, Y187, and tested for β-galactosidase activity as a further check that these clones did indeed contain potential protein-interacting partners for the extracellular domain of proHB-EGF.

Detection of the physical interactions of proHB-EGF with CD9 antigens

The membrane-bound precursor and soluble forms of heparin-binding epidermal growth factor-like growth factor (HB-EGF) contribute to a variety of cellular developmental processes [1]. The observations of HB-EGF in cell and tissue types have suggested roles for HB-EGF in numerous cellular and tissue events such as: cell movement, extracellular matrix formation, tumor formation and cell adherence [1]. As described above, the membrane-bound precursor of HB-EGF (proHB-EGF) is also the cell-surface receptor for diphtheria toxin (DT) in DT-sensitive cells [2].

Previously we have examined the protein-protein interactions of proHB-EGF with the cell-surface CD9 antigen [9]. The CD9 antigen is found on a wide variety of tissue and cell types and has been reported to be involved in such cellular processes as B-cell development, cell metastasis, platelet activation and adhesion, and cell motility [14,15]. CD9 antigen is a member of the tetraspanin superfamily and consists of two extracellular domains sandwiched between four highly-conserved hydrophobic transmembrane domains [14,15]. The second extracellular domain (75–130 amino acids) is larger than the first extracellular domain (20–27 amino acids). Short cytoplasmic domains (5–14 amino acids) are found at both the amino and carboxyl termini of CD9 [14]. As reported previously, we used a yeast two-hybrid system and observed interaction...
between the second extracellular domain of MkCD9 and the extracellular domain of proHB-EGF [9]. However, despite repeated attempts, using the yeast two-hybrid system, we were unable to show interaction between the amino terminal cytoplasmic domain of monkey CD9 and the cytoplasmic domain of proHB-EGF; these results may reflect the limitation of the yeast two-hybrid system as the insert sizes cloned into the vectors may be too small resulting in Gal4 fusion proteins whose "test subunits" are masked by the Gal4 subunit. This would result in the fusion proteins being unable to recognize each other.

The results of screening the monkey cv-1 cDNA library with the bait plasmid pGBT9/DTREx were somewhat surprising in that no portions of the CD9 protein were represented among the proteins found to interact with the extracellular domain of proHB-EGF. These results may reflect improper folding of CD9 protein fragments encoded by cDNA inserts or these results may be due to under representation of the CD9 cDNA in the monkey cv-1 cDNA library. It was also surprising that the extracellular portion of any of the EGF receptor proteins was also not represented among the proteins found to interact with the extracellular domain of proHB-EGF, since the mature protein proteolytically cleaved from proHB-EGF (mHB-EGF) as well as the membrane bound form are known to interact with the EGF receptor.

The extracellular domain of proHB-EGF interacts with monkey LTBP-3

The positive interaction of the fragment of the latent transforming growth factor β-binding protein-3 (LTBP-3) with the extracellular domain of proHB-EGF was of great interest (Additional file 1). Recently it has been reported that treatment of EGF-responsive, nontransformed rat intestinal crypt cell line RIE-1 cells with TGF-β resulted in an increased level of expression of HB-EGF [16]. LTBP-3 is a protein that is ubiquitous in tissues and cells. Human LTBP-3 (Fig. 1) and mouse LTBP-3 contain 1242 and 1251 amino acids, respectively, and each protein has five structural domains. Each has a signal sequence (55 amino acids and 49, respectively), a second domain containing an EGF-like repeat, a proline/glycine rich region, a fibrillin motif [17], an EGF calcium-binding repeat, and a TGF-β repeat (390 and 389 amino acids, respectively), a third domain containing a proline/glycine rich region (113 and 111 amino acids, respectively), a fourth domain containing numerous calcium-binding type II EGF-like modules (D/N)(I/V)(D/N)(E/D)C1 (678 and 677 amino acids, respectively) and a fifth carboxyl-terminal domain (5 and 21 amino acids, respectively) (human LTBP-3 information was obtained from the GenBank database accession no. AF135960.2; [18]). Colony hybridization experiments using the LTBP-3 probe (see materials and methods) and the monkey cv-1 cDNA library yielded a set of six (two identical) overlapping clones (Fig. 2). The amino acid sequence derived from the nucleotide sequence obtained for the monkey LTBP-3 sequence (GenBank accession number AF395658) shows it to share 98.6% identity with the human LTBP-3 amino acid sequence (GenBank accession number NP_066548) and 86.7% identity with the mouse LTBP-3 amino acid sequence (GenBank accession number NP_032546).

The presence of the calcium-binding EGF-like modules in monkey LTBP-3 is noteworthy. It is well established that EGF-like modules are important structural features found in many extracellular proteins and that these modules enable numerous protein:protein interactions; the binding of EGF-like modules in laminin to nidogen [19] and the interaction of EGF-like modules within fibrillin monomers [20,21]. Calcium may be required for some of these protein interactions.

At the time of writing, there have not been any reported interactions of these EGF-like modules in LTBP-3 proteins with specific proteins. It is interesting that the combina-
The LTBP-3 protein is secreted as a soluble protein from the cell surface into the extracellular matrix. Two of the proposed functions of LTBP proteins include protecting the cell-surface negatively charged heparan sulfate proteoglycans [22]. It remains to be seen whether specific/all of the EGF-like modules required and whether calcium is needed for the interaction of HB-EGF with LTBP-3.

The extracellular domain of proHB-EGF interacts with monkey fibulin 1C

The extracellular domain of proHB-EGF interacts with monkey fibulin-1C (Additional file 1). Fibulin-1 is a calcium-binding extracellular matrix glycoprotein that is associated with various connective tissues, basement membranes and blood [37–39]. Splicing of the C terminal domain of fibulin-1 (A-D) [37]. The amino acid sequence of the heparin-binding region of HB-EGF (21KRKKKGKGLGKKRDPCLRKYK41) [2] has been shown to have a strong affinity for heparin and may influence the interaction of this growth factor with cell-surface negatively charged heparan sulfate proteoglycans [22]. It remains to be seen whether specific/all of the EGF-like modules are required and whether calcium is needed for the interaction of HB-EGF with LTBP-3.
sequences, I-III; type I sequences bind heparin, matrix. Fibronectin contains three types of homology sequences, I-III; type I sequences bind heparin, Staphylococcus aureus, fibrin, and cell surfaces, type II sequences bind collagen and gelatin, and type III sequences bind DNA, cell surfaces, heparin, and fibulin-1 [40,43]. Fibulin-1 interacts with fibronectin through a heparin-binding region in type III13 repeat; the binding of fibulin-1 to this site is independent of the binding of heparin as addition of exogenous heparin does not inhibit fibulin-1 binding to fibronectin [40]. The fibronectin-binding site in fibulin-1 is located in EGF-like modules 5 and 6 [44]; the binding of fibulin-1 to fibronectin is a heterotypic interaction in which an EGF-like module binds to a non EGF-like domain (the type III13 fibronectin repeat) [40].

The EGF-like modules found in fibulin-1 are instrumental in a variety of extracellular protein:protein interactions. Fibulin-1 has been reported to interact with such extracellular matrix proteins as fibronectin, laminin, nidogen, aggrecan and versican [39–42]. Fibronectin is a glycoprotein found as multimers in insoluble form in the extracellular matrix. Fibronectin contains three types of homology sequences, I-III; type I sequences bind heparin, Staphylococcus aureus, fibrin, and cell surfaces, type II sequences bind collagen and gelatin, and type III sequences bind DNA, cell surfaces, heparin, and fibulin-1 [40,43]. Fibulin-1 interacts with fibronectin through a heparin-binding region in type III13 repeat; the binding of fibulin-1 to this site is independent of the binding of heparin as addition of exogenous heparin does not inhibit fibulin-1 binding to fibronectin [40]. The fibronectin-binding site in fibulin-1 is located in EGF-like modules 5 and 6 [44]; the binding of fibulin-1 to fibronectin is a heterotypic interaction in which an EGF-like module binds to a non EGF-like domain (the type III13 fibronectin repeat) [40].

Laminin is a glycoprotein composed of three chains, A, B1, and B2 in a cross-shaped molecule; this protein is found in basement membranes where it interacts with other such components as collagen IV, heparan-sulfate proteoglycan, and nidogen [45]. Laminin contains EGF-like modules in the amino-terminal region of the A, B1, and B2 chains [45]. Surprisingly, these modules do not appear to be involved in the binding of fibulin-1. The site of fibulin-1 binding to laminin maps to the carboxy-terminal segment of the laminin A chain which consists of five basic tandem repeats containing conserved glycine and cysteine residues [39,46]. The binding site of laminin to fibulin-1 maps to the calcium-binding type II EGF-like modules of fibulin-1 [39].

Nidogen is a basement membrane protein composed of three globular domains G1-G3 and two linking sequences; domain G1 is joined to domain G2 through a flexible link and domain G2 is connected to domain G3 by a rod-like element consisting of EGF-like modules [47]. Nidogen1 is an important structural component of tertiary complexes with other such extracellular components as laminins, collagen IV, perlecan, and fibulins [48]. Fibulin-1C binds to nidogen1 through domain G2 of nidogen [48]. The nidogen binding site of fibulin-1C includes the type II EGF-like modules 6–9 and the carboxyl-terminal domain [42].

Aggrecan and versican are aggregating proteoglycans that are key constituents found in the extracellular matrix [41]. Both proteoglycans contain amino-terminal hyaluronic acid-binding regions, central core glycosaminoglycan attachment domains, and carboxyl-terminal domains containing EGF-like modules (one in aggrecan and two in versican), C-type lectin like modules and complement regulatory protein-like modules [49,50]. Fibulin-1 exhibits calcium-dependent binding to the carboxyl-terminal domain of aggrecan and versican [41]. The binding site of aggrecan to fibulin-1 maps to the type II EGF-like modules 8–9 and the carboxyl-terminal domain of fibulin-1 [41]. The binding site of versican to fibulin-1 maps to the type II EGF-like modules 2–8 of fibulin-1 [41].

Fibulin-1 has been reported to exhibit calcium-dependent self-association [40,44]. The two self-association sites map to type II EGF-like modules 5 and 6 and to a cryptic site in the amino-terminal region of fibulin-1 [40,44].

As described above, the calcium-binding type II EGF-like modules of fibulin-1 are used in various extracellular matrix interactions. It is noteworthy that these modules may interact with other EGF-like modules or with non EGF-like modules.

The yeast two-hybrid system and colony hybridization screens used in this study indicated that a monkey cDNA clone (Fig. 3), containing half of the anaphylatoxin type I repeats, an EGF-adjoining sequence, calcium-binding EGF-like modules and a carboxyl-terminal fibulin-type module, demonstrated interaction with the extracellular domain of proHB-EGF (Additional file 1). To see if the any/all of the calcium-binding EGF-like modules were necessary for this interaction, two clones were constructed. A clone, pGAD424/Fib-1C EGF #5-COOH, that contained calcium-binding type EGF-like modules #5–9 and the carboxyl-terminus of fibulin-1C fused to the GAL4-activation domain (see Fig. 3 and materials and methods) was tested using the yeast two-hybrid system and found to interact with the extracellular domain of proHB-EGF (Table 1). In contrast, the construct, pGAD424/Fib-1C EGF#1-5, that contained calcium-binding type II EGF-like modules #1–5 fused to the GAL4 activation domain (see Fig. 3 and materials and methods) did not interact with proHB-EGF (Additional file 1). It remains to be determined which of the regions within the EGF-like modules #5–9 (e.g. hydroxylation and glycosylation sites) and the carboxyl-terminus of fibulin-1C are necessary for the in-
The interaction of fibulin-1C with proHB-EGF. The interaction of fibulin-1C may map to the heparin-binding region of the extracellular domain of proHB-EGF or it may map to the EGF-like modules of proHB-EGF or it may map to both of these regions within proHB-EGF. To test whether the fibulin-1C interaction with proHB-EGF maps to the heparin-binding region, a construct, pGBT9/prodelHB-EGF, containing amino acid residues Asp106-His159 (the entire EGF-like region of proHB-EGF and 18 out of 32 residues of the heparin-binding region) [2] was used in the yeast two-hybrid system (see materials and methods). Construct pGBT9/prodelHB-EGF was unable to interact with pGAD424/Fib-1C EGF#5-COOH (data not shown). Caution must be used with this result however, as the size of the cloned prodelHB-EGF region is small, encoding just 54 amino acids; this may have resulted in a Gal4 fusion protein in which the EGF epitopes in prodelHB-EGF are hidden by the Gal4 subunit and thus not recognized by the GAL4 fusion partner protein (GAL4/Fib-lC EGF #5-COOH).

Fibulin-1 is incorporated into fibronectin-containing matrix fibers [44,51]. Although a distinct function for fibulin-1 has not yet been described, it is conceivable that fibulin-1 is important for cell adhesion and migration along protein fibers within the extracellular matrix. Fibulin-1 may serve to anchor the mHB-EGF to its fibers as it migrates through the extracellular matrix. As explained above, mHB-EGF has been reported to be involved as a structural protein in such tissue developmental processes as wound healing and it is feasible that the direct physical association of mHB-EGF with fibulin-1 may be useful in the tissue remodeling of a wound site and in scar formation.

The results presented in this paper now suggest that there is potential in carrying out experiments to further delineate the molecular interactions between proHB-EGF and LTBP-3 and between proHB-EGF and fibulin-1C. A transitional step in this process will be the expression and purification of these proteins. In order to rule out false positives that may have resulted from the yeast two-hybrid system, experiments that provide co-immunoprecipitation data or solid phase binding results of the interaction of these proteins will be useful.

The interaction of EGF-modules with either non EGF-like modules (e.g. the EGF-like modules of fibulin-1C interacting with the heparin-binding region of fibronectin) or with EGF-like modules (e.g. the interaction of fibulin-1C with aggrecan and versican) between extracellular matrix proteins argues for the interaction of the EGF-modules containing within fibulin-1C and LTBP-3 with either the heparin-binding region or with the EGF-like domain of HB-EGF.

Conclusions
In summary, we have shown the interaction of two novel proteins with the extracellular domain of proHB-EGF using a yeast two-hybrid system. The interactions of LTBP-3 and fibulin-1C with the extracellular domain of proHB-EGF may provide further insights into the roles that these proteins play in cellular and tissue development processes. The trafficking of such growth factors as HB-EGF and TGF-β and structural proteins within the extracellular matrix is important in wound healing processes. Therefore, the interactions of HB-EGF with LTBP-3 and fibulin-1C described in this study suggest novel functions for HB-EGF between cell-surfaces and tissue surfaces.

Materials and methods
The plasmid vectors, pGBT9, pGAD424, pTD1, pVA3, the monkey cv-1 cDNA library in pGAD10, and the S. cerevisiae strains Y187 and Y190 were obtained from Clontech. The cv-1 cDNA library was amplified and stored as per the manufacturer's instructions. Unless otherwise noted, all chemicals and reagents were obtained from Sigma.
E. coli strain DH5α was used as the host strain for cloning. The extracellular domain (amino acid residues Glu24, His159) of monkey proHB-EGF (GenBank accession number Q09118) [2] was amplified by PCR using primers MkHB-EGF ex(5’) TCGGCCAACGTTGGAATTGAGACCTG-GAG and MKHB-EGF ex(3’) CACACCCAGGATGGAATCATGCTGTCATAGGT. The PCR product was digested with EcoRI and BamHI and ligated into the EcoRI and BamHI restriction sites of pGBT9 and pGAD424 to produce constructs pGBT9/proHB-EGFEx and pGAD424/proHB-EGFEx, respectively. The pGBT9/proHB-EGFEx construct was used as the bait construct in the yeast two-hybrid screen to identify extracellular proteins that interact with the extracellular domain of proHB-EGF. Each construct from the cDNA library that tested positive for both lacZ and his reporter gene expression was also tested for the ability to activate directly β-galactosidase/his reporter gene transcription without the presence of the bait construct, pGBT9/proHB-EGFEx. False positives were eliminated using this screening assay. Potential true positive clones were sequenced using primers GAD10SEQ 5’TACCACTACATTGGAATG and LB3priLQGSYVC 5’CCGGGATCTCCAAACACAGTAGACCGCCGTAAG. The PCR product was digested with EcoRI and BamHI and ligated into the EcoRI and BamHI restriction sites of pGADA424 to produce construct pGAD424/LTBP-3 EGF#1–8. The construct was sequenced as described above using the primers pGAD10SEQ and pGAD10cSEQ.

The calcium-binding type II EGF-like modules #1–8 of monkey LTBP-3 (Fig. 1) were amplified by PCR using primers GAD10SEQ 5’TACCACTACATTGGAATG and LB3priLQGSYVC 5’CCGGGATCTCCAAACACAGTAGACCGCCGTAAG. The PCR product was digested with EcoRI and BamHI and ligated into the EcoRI and BamHI restriction sites of pGADA424 to produce construct pGAD424/LTBP-3 EGF#1–8. The construct was sequenced as described above using the primers pGAD10SEQ and pGAD10cSEQ.

The calcium-binding type II EGF-like modules #1–5 (Fig. 3) of monkey fibulin-1C were amplified by PCR using primers Fib3priLYNDRC 5’GAATTCTCTGAATGACCGTCGG and Fib3priCAPPAE 5’CCGTCGACTCTACGTCCAGGTGGCCGGCA. The calcium-binding type II EGF-like repeats #5–9 (Fig. 3) and the carboxyl terminus of monkey fibulin-1C were amplified by PCR using primers Fib3priCAPPAE 5’GAATTCTCTGAATGACCGTCGG and Fib3priLYNDRC 5’GAATTCTCTGAATGACCGTCGG. Colony hybridizations were performed on E. coli colonies containing the monkey cv-1 cDNA library. Colony lifts on zeta probe membranes were then UV cross-linked using a Stratagene crosslinker. The probe was allowed to hybridize to the colony DNA at 42°C overnight as described by Sambrook et al. [52]. The membranes were then rinsed and washed twice for 5 minutes in 2X SSC/0.1% SDS at room temperature, twice for 15 minutes in 0.1X SSC/0.1% SDS at 68°C, and once for 15 minutes in 0.1X SSC/0.1% SDS at room temperature. The colony blots were then wrapped in saran wrap and exposed to X-ray film at room temperature for 24 h at -80°C. The above strategy was used to perform colony blot hybridization screening on the monkey cv-1 cDNA library using a ~750 bp P33-labeled probe to a region of the fibulin-1C gene containing most of the type I anaphylatoxin repeats and almost all of the type II EGF-like repeats (Fig. 3).
Additional material

Additional file 1

β-galactosidase activity of years two-hybrid fusion proteins with the extra-
cellular domain of proHB-EGF.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2121-3-2-s1.doc]

Acknowledgements

This research was supported by U.S. Public Health Service Grant AI-16805. We would like to acknowledge the technical assistance of Allen S. Dyke and Kathy N. Ivey. We thank Dr. E. Davis for helpful discussions of this re-

References

1. Davis-Fleischer KM, Besner GE: Structure and function of heparin-binding EGF-like growth factor (HB-EGF). Frontiers in Bioscience 1998, 3:2088-299

2. Naglich JG, Metherall JE, Russell DW, Edels L: Expression cloning of diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 1992, 69:1051-1061

3. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M: A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991, 251:926-939

4. Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M: Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem 1992, 267:6205-6212

5. Goishi K, Higashiyama S, Klagsbrun M, Nakano N, Umezato T, Isikawa M, Melkada E, Taniguchi N: Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtracrine to paracrine growth factor activity. Mo. Biol Cell 1995, 6:967-980

6. Carpenter G, Wahl MI: The epidermal growth factor family. In: Handbook of Experimental Pharmacology (Edited by Sporn MB, Roberts AB) New York, Springer-Verlag 1990, 95:69-171

7. Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M, Melkada E: The membrane protein CD9/DRAP27 potenten-
tial to the juxtracrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Biol Chem 1995, 270:929-938

8. Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Melkada E: Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates func-
tional receptors and diphtheria toxin sensitivity. EMBO J 1994, 13:2322-2330

9. Cha JH, Brooke JS, Ivey KN. Edels L: Cell surface monotypic CD9 antigen is a coreceptor that increases diphtheria toxin sensi-
tivity and diphtheria toxin receptor affinity. J Biol Chem 2000, 275:6901-6907

10. Bignon C, Nakashima H, Cappel R, Cohen N, Dijane J, Gerdler A: Preparation of the extracellular domain of the rabbit prolac-
tin receptor expressed in Escherichia coli and its interaction with lactogenin receptors. J Biol Chem 1994, 269:3318-3324

11. Potgens AJG, Hk Lubsen N, van Altena MC, Vermeulen R, Bakker A, Schoonmakers JG, Rutier DJ, de Waal RMW: Covalent dimerization of vascular permeability factor/vascular endothelial growth factor is essential for its biological activity. J Biol Chem 1994, 269:32879-32885

12. Terman Bl, Cougger-Vermanen M, Carrion ME, Dimitrov D, Armel-
ina DC, Gospodarowicz D, Bohlen P: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Comm 1992, 187:1579-1586

13. Vaisman N, Gospodarowicz D, Neufeld G: Characterization of the receptors for vascular endothelial growth factor. J Biol Chem 1990, 265:19461-19466

14. Wright MD, Tomlinson MG: The ins and outs of the transmembrane 4 superfamily. Immunol Today 1994, 15:588-594

15. Maecker HT, Todd SC, Levy S: The tetraspan superfamily: molecular facilitators. FASEB J 1997, 11:428-442

16. Bulus N, Barnard JA: Heparin binding epidermal growth factor-like growth factor is a transforming growth factor β-regulat-
ed gene in intestinal epithelial cells. Biochem Biophys Res Commun 1999, 264:808-812

17. Pereira L, D’Alessio M, Ramírez F, Lynch JR, Sykes B, Pangilinan T, BonADIO J: Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum.

18. Yen W, Smiley E, Germiller J, Mecham RP, Florer JB, Wensrup RJ, Bonadio J: Isolation of a novel latent transforming growth factor-
β binding protein gene (LTBP-3). J Biol Chem 1995, 270:10147-10160

19. Meyer U, Nischt R, Posehl E, Mann K, Fukuda K, Gerl M, Yamada Y, Taira R: A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J 1993, 12:1879-1885

20. Handford P, Downing AK, Rhao Z, Hewett DR, Sykes BC, Kiely CM: The calcium binding properties and molecular organization of epidermal growth factor-like domains in human fibrillin-1. J Biol Chem 1995, 270:2578-2584

21. Downing AK, Knott V, Werner M, Cardy CM, Campbell ID, Hand-
ford PA: Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell 1996, 85:597-605

22. Thompson SA, Higashiyama S, Wood K, Pollicit ND, Damm D, McEn-
roe G, Garrick B, Ashton N, Lau K, Hancock N, Klagsbrun M, Abra-
ham JA: Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. J Biol Chem 1994, 269:2541-2549

23. Miyazono K, Olofsson A, Colosetti P, Heldin CH: A role of the latent TGF-beta 1-binding protein in the assembly and secre-
tion of TGF-beta 1. EMBO J 1991, 10:1091-1101

24. Lyons RM, Kesi-Oij A, Moses HL: Proteolytic activation of latent transforming growth factor-β from fibroblast conditioned medium. J Cell Biol 1988, 106:1597-1605

25. Ignatza RA, Massage J: Transforming growth factor-β stimulates expression of fibronectin and collagen and their incor-
poration into the extracellular matrix. J Biol Chem 1986, 261:4337-4345

26. Roberts CJ, Birkenmeier TM, McQuillan JJ, Akiyama SK, Yamada SS, Chen WT, Yamada KM, McDonald JA: Transforming growth factor-
β stimulates expression of fibronectin and both subunits of the human fibronectin receptor by cultures of human lung fibroblasts. J Biol Chem 1988, 263:4586-4592

27. Penttinen RP, Kobayashi S, Bornstein P: Transforming growth factor-
β increased mRNA for matrix proteins both in the presence and absence of changes in mRNA stability. Proc Natl Acad Sci USA 1988, 85:1105-1108

28. McKay NG, Khong TF, Haites NE, Power DA: The effect of transforming growth factor beta 1 on mesangial cell fibronectin synthesis: increased incorporation into the extracellular matrix and reduced pl but not effect on alternative splicing. Exp Mol Pathol 1993, 59:211-224

29. Marigo V, Volpin D, Vitale G, Bressin GM: Identification of a TGF-
β responsive element in the human elastin promoter. Biochem Biophys Res Commun 1994, 199:1049-1056

30. Rossi P, Karsenty G, Roberts AB, Roche NS, Sporn MB, DeCrombrugghe B: A nuclear factor binding site mediates the tran-
scriptional activation of a type I collagen promoter by transforming growth factor β. Cell 1988, 52:405-414

31. Kall K, Lohi J, Hautanen A, Keeski-Oij A: Enhancement of vitronec-
tin expression in human HepG2 hepatoma cells by transforming growth factor-β. Eur J Biochem 1991, 199:337-345

32. Pearson CA, Pearson D, Shibahara S, Hofsteenge J, Chiquet-Ehris-
ton E, Garrick B, Ashton N, Lau K, Hancock N, Klagsbrun M, Abra-
ham JA: Isolation of a novel latent transforming growth factor-
β binding protein gene (LTBP-3). J Biol Chem 1998, 273:2677-2681

33. Edwards DR, Murphy G, Reynolds JJ, Whitham SE, Docherty JP, Angel P, Heath JK: Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 1997, 16:1899-1904

34. Kubota S, Fridman R, Yamada Y: Transforming growth factor β suppresses the invasiveness of human fibrosarcoma cells in

http://www.biomedcentral.com/1471-2121/3/2

Page 8 of 9 (page number not for citation purposes)
vitro by increasing expression of tissue inhibitor of metalloprotease. Biochem Biophys Res Commun 1991, 176:129-136
35. Tomooka S, Border WA, Marshall BO, Noble WA: Glomerular matrix accumulation is linked to inhibition of the plasmin protease system. Kidney Int 1992, 42:1462-1469
36. Laiho M, Saksela O, Keski-Oja J: Transforming growth factor-β induction of type-I plasminogen activator inhibitor. J Biol Chem 1987, 262:17467-17474
37. Argraves WS, Tran H, Burgess WH, Dickerson K: Fibulin is an extracellular matrix and plasma glycoprotein with repeated domain structure. J Cell Biol 1990, 111:3155-3164
38. Kluge M, Mann K, Dziadek M, Timpl R: Characterization of a novel calcium-binding 90-kDa glycoprotein (BM-90) shared by basement membranes and serum. Eur J 1990, 193:651-659
39. Pan TC, Kluge M, Zhang RZ, Mayer U, Timpl R, Chu ML: Sequence of extracellular mouse protein BM-90/fibulin and its calcium-dependent binding to other basement membrane ligands. Eur J Biochem 1993, 215:733-740
40. Balbona K, Tran H, Godyna S, Ingham KC, Strickland DK, Argraves WS: Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J Biol Chem 1992, 267:20120-20125
41. Aspberg A, Adam S, Kostka G, Timpl R, Heinegard D: Fibulin-I is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 1999, 274:20444-20449
42. Adam S, Göhring W, Wiedemann H, Chu ML, Timpl R, Kostka G: Binding of fibulin-I to nidogen depends on its C-terminal globular domain and a specific array of calcium-binding epidermal growth factor-like (EG) modules. J Mol Biol 1997, 272:226-236
43. McKeown-Longo P: Fibronectin-cell surface interactions. Rev Infect Dis 1987, 9:5322-5334
44. Tran H, VanDusen WJ, Argraves WS: The self-association and fibronectin-binding sites of fibulin-I map to calcium-binding epidermal growth factor-like domains. J Biol Chem 1997, 272:22600-22606
45. Sasaki M, Kleinman HK, Huber H, Deutzmann R, Yamada Y: Laminin, a multidomain protein. J Biol Chem 1988, 263:16536-16544
46. Brown JC, Wiedemann H, Timpl R: Protein binding and cell adhesion properties of two laminin isoforms (AmB1εB2ε, AmB1βB2ε) from human placenta. J Cell Science 1994, 107:329-338
47. Reinhardt D, Mann K, Nischt R, Fox JW, Chu ML, Krieg T, Timpl R: Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J Biol Chem 1993, 268:10881-10887
48. Ries A, Göehringer W, Fox JW, Timpl R, Sasaki T: Recombinant domains of mouse nidogen-I and their binding to basement membrane proteins and monoclonal antibodies. Eur J Biochem 2001, 268:5119-5128
49. Wight TN, Heinegard DK, Hascall VC: Proteoglycans: structure and function. In: Cell Biology of Extracellular Matrix. 1991:45-78
50. Izuo RV, Murdoch AD: Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel properties in molecular diversity and function. FASEB J 1996, 10:598-614
51. Godyna S, Mann DM, Argraves WS: A quantitative analysis of the incorporation of fibulin-I into extracellular matrix indicates that fibronectin assembly is required. Matrix Biol 1994, 14:467-477
52. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual. Cold Spring Harbor, Cold Spring Harbor Press 1989