On the relation between weighted trees and tropical Grassmannians

Filip Cools *

Abstract. — In this article, we will prove that the set of 4-dissimilarity vectors of n-trees is contained in the tropical Grassmannian $\mathcal{G}_{4,n}$. We will also propose three equivalent conjectures related to the set of m-dissimilarity vectors of n-trees for the case $m \geq 5$. Using a computer algebra system, we can prove these conjectures for $m = 5$.

MSC. — 05C05, 05C12, 14M15

1 Introduction

Let T be a tree with n leaves, which are numbered by the set $[n] := \{1, \ldots, n\}$. Such a tree is called an n-tree. We assume that T is weighted, so each edge has a length. Denote by $D(i, j)$ the distance between the leaves i and j (i.e. the sum of the lengths of the edges of the unique path in T from i to j). We say that $D = (D(i, j))_{i,j} \in \mathbb{R}^{n \times n}$ is the dissimilarity matrix of T, or conversely, that D is realized by T. The set of dissimilarity matrices of n-trees is fully described by the following theorem (see [2] or [3, Theorem 2.36]).

Theorem 1.1 (Tree Metric Theorem). Let $D \in \mathbb{R}^{n \times n}$ be a symmetric matrix with zero entries on the main diagonal. Then D is a dissimilarity matrix of an n-tree if and only if the four-point condition holds, i.e. for every four (not necessarily distinct) elements $i, j, k, l \in [n]$, the maximum of the three numbers $D(i, j) + D(k, l), D(i, k) + D(j, l)$ and $D(i, l) + D(j, k)$ is attained at least twice. Moreover, the n-tree T that realizes D is unique.

If T is an n-tree, $(D(i, j))_{i<j} \in \mathbb{R}^{\binom{n}{2}}$ is called the dissimilarity vector of T.

We can reformulate the above theorem in the context of tropical geometry (see [1, Theorem 4.2]). For some background, I refer to section 2.

Theorem 1.2. The set T_n of dissimilarity vectors of n-trees is equal to the tropical Grassmannian $\mathcal{G}_{2,n}$.

*K.U.Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium, email: Filip.Cools@wis.kuleuven.be; the author is a postdoctoral fellow of the Research Foundation - Flanders (FWO)
We can generalize the definition of dissimilarity vectors of n-trees. Let m be an integer with $2 \leq m < n$ and let i_1, \ldots, i_m be pairwise distinct elements of $\{1, \ldots, n\}$. Denote by $D(i_1, \ldots, i_m)$ the length of the smallest subtree of T containing the leaves i_1, \ldots, i_m. We say that the point $D = (D(i_1, \ldots, i_m))_{i_1 < \ldots < i_m} \in \mathbb{R}^{ \binom{n}{m} }$ is the m-dissimilarity vector of T.

The following result gives a formula for computing the m-subtree weights from the pairwise distances of the leafs of an n-tree (see [1, Theorem 3.2]).

Theorem 1.3. Let n and m be integers such that $2 \leq m < n$. Denote by $C_m \subset S_m$ the set of cyclic permutations of length m. Let

$$ \phi(m) : \mathbb{R}^{ \binom{n}{2} } \to \mathbb{R}^{ \binom{n}{m} } : X = (X_{i,j}) \mapsto (X_{i_1, \ldots, i_m}) $$

be the map with

$$ X_{i_1, \ldots, i_m} = \frac{1}{2} \min_{\sigma \in C_m} \{X_{i_1, i_{\sigma(1)}}, X_{i_{\sigma(1)}, i_{\sigma(2)}}, \ldots, X_{i_{\sigma(m-1)(1)}, i_{\sigma(m)(1)}}\}. $$

If $D \in T_n \subset \mathbb{R}^{ \binom{n}{2} }$ is the dissimilarity vector of an n-tree T, then the m-dissimilarity vector of T is equal to $\phi(m)(D)$. So $\phi(m)(T_n)$ is the set of m-dissimilarity vectors of n-trees.

The description of the set of m-dissimilarity vectors of n-trees as the image of T_n under the map $\phi(m)$ is not useful to decide whether or not a given point in $\mathbb{R}^{ \binom{n}{m} }$ is an m-dissimilarity vector. So we are interested in finding a nice description of these sets as subsets of $\mathbb{R}^{ \binom{n}{m} }$. The case $m = 3$ is solved by the following result (see [1, Theorem 4.6]).

Theorem 1.4. $\phi(3)(T_n) = G_{3,n} \cap \phi(3)(\mathbb{R}^{ \binom{n}{2} })$.

In this article, we prove the following partial answer for the case $m = 4$.

Theorem 1.5. $\phi(4)(T_n) \subset G_{4,n} \cap \phi(4)(\mathbb{R}^{ \binom{n}{2} })$.

To finish the article, we propose three equivalent conjectures for the case $m \geq 5$. The case $m = 5$ is solved using a computer algebra system.

2 Tropical geometry

Consider the tropical semi-ring $(\mathbb{R} \cup \{-\infty\}, \oplus, \otimes)$, where the tropical sum is the maximum of two numbers and the tropical product is the usual sum of the numbers. Let x_1, \ldots, x_k be real variables. Tropical monomials $x_1^{i_1} \ldots x_k^{i_k}$ represent linear forms $i_1x_1 + \ldots + i_kx_k$ and tropical polynomials $\oplus_{i \in I} a_ix_1^{i_1} \ldots x_k^{i_k}$ (with $I \subset \mathbb{N}^k$ finite) represent piece-wise linear forms

$$ \max_{i \in I} \{a_i + i_1x_1 + \ldots + i_kx_k\}. $$

(1)
If F is such a tropical polynomial, we define the tropical hypersurface $\mathcal{H}(F)$ to be its corner locus, i.e. the points $x \in \mathbb{R}^k$ where the maximum is attained at least twice.

Let $K = \mathbb{C}\{\{t\}\}$ be the field of Puiseux series, i.e. the field of formal sums $c = \sum c_q t^q$ in the variable t such that the set $S_c = \{q | c_q \neq 0\}$ is bounded below and has a finite set of denominators. For each $c \in K^*$, the set S_c has a minimum, which we call the valuation of c and is denoted by $\text{val}(c)$.

A polynomial $f = \sum_{i \in I} f_i x_i^1 \ldots x_i^k$ over K gives rise to a tropical polynomial $\text{trop}(f)$, defined by taking $a_i = -\text{val}(f_i)$ in (1).

Theorem 2.1. If $I \subset K[x_1, \ldots, x_k]$ is an ideal, the following two subsets of \mathbb{R}^k coincide:

1. the intersection of all tropical hypersurfaces $\mathcal{T}(\text{trop}(f))$ with $f \in I$;
2. the closure in \mathbb{R}^k of the set

 $$\{(-\text{val}(x_1), \ldots, -\text{val}(x_k)) | (x_1, \ldots, x_k) \in V(I)\} \subset \mathbb{Q}^k.$$

Proof. See [4, Theorem 2.1].

For an ideal $I \subset K[x_1, \ldots, x_k]$, the set mentioned in Theorem 2.1 is called the tropical variety $\mathcal{T}(I) \subset \mathbb{R}^k$ of the ideal I.

We say that $\{f_1, \ldots, f_r\}$ is a tropical basis of $\mathcal{T}(I)$ if and only if $I = \langle f_1, \ldots, f_r \rangle$ and

$$\mathcal{T}(I) = \mathcal{T}(\text{trop}(f_1)) \cap \cdots \cap \mathcal{T}(\text{trop}(f_r)).$$

We are particularly interested in tropical Grassmannians $\mathcal{G}_{m,n} = \mathcal{T}(I_{m,n})$. In this case, the ideal

$$I_{m,n} \subset K[x_{i_1} \ldots i_m | 1 \leq i_1 < \ldots < i_m \leq n]$$

is the ideal of the affine Grassmannian $G(m,n) \subset K^\binom{n}{m}$ parameterizing linear subspaces of dimension m in K^n. The ideal $I_{m,n}$ consists of all relations between the $(m \times m)$-minors of an $(m \times n)$-matrix.

Remark 2.2. In case $m = 2$, the Plücker relations

$$p_{ijkl} := x_{ij}x_{kl} - x_{ik}x_{jl} + x_{il}x_{jk}$$

(with $i < j < k < l$) generate the ideal $I_{2,n}$. One can show that these polynomials also form a tropical basis of $I_{2,n}$, hence $\mathcal{G}_{2,n}$ is the intersection of the tropical hypersurfaces $\mathcal{H}(\text{trop}(p_{ijkl}))$. Note that trop$(p_{ijkl})$ is equal to

$$(x_{ij} \otimes x_{kl}) \oplus (x_{ik} \otimes x_{jl}) \oplus (x_{il} \otimes x_{jk}) = \max\{x_{ij} + x_{kl}, x_{ik} + x_{jl}, x_{il} + x_{jk}\},$$

so we get Theorem 1.2 using Theorem 1.1.
3 The case $m = 4$: the proof of the main theorem

Remark 3.1. Let $\phi^{(4)} : \mathbb{R}^\binom{n}{2} \rightarrow \mathbb{R}^\binom{4}{2}$ be the map sending $X = (X(i,j))_{i<j}$ to $(X(i,j,k,l))_{i<j<k<l}$, where $X(i,j,k,l)$ is the minimum of the three terms

$$X(i,j) + X(j,k) + X(k,l) + X(i,l),$$
$$X(i,j) + X(j,l) + X(k,l) + X(i,k),$$
$$X(i,k) + X(j,k) + X(j,l) + X(i,l),$$

divided by two. By Theorem 1.3, the map $\phi^{(4)}$ sends the dissimilarity vector D of a tree T to its 4-dissimilarity vector $(D(i,j,k,l))_{i<j<k<l}$.

We will now prove the main theorem.

Proof of Theorem 1.5. Since the inclusion $\phi^{(4)}(T_n) \subset \phi^{(4)}(\mathbb{R}^\binom{4}{2})$ is evident, we only have to prove $\phi^{(4)}(T_n) \subset \mathcal{G}_{4,n}$.

Let T be a tree with 4-dissimilarity vector

$$D := (D(i,j,k,l))_{i<j<k<l} = \phi^{(4)}(\phi^{(4)}((D(i,j))_{i<j})) \in \phi^{(4)}(T_n) \subset \mathbb{R}^\binom{4}{2}.$$

If $M \in K^{4 \times n}$, we denote by $M(i,j,k,l)$ the 4×4-minor coming from the columns i, j, k, l of M. The tropical Grassmannian is the closure in $\mathbb{R}^\binom{n}{2}$ of the set

$$S := \{(\det(M_{i,j,k,l}))_{i<j<k<l} | M \in K^{4 \times n}\} \subset \mathbb{Q}^\binom{4}{2}.$$

Assume first that all edges of T have rational length, hence $D \in \mathbb{Q}^\binom{4}{2}$. We are going to show that $D \in S$.

Fix a rational number E with $E \geq D(i,n)$ for all i. Define a new metric D' by

$$D'(i,j) = 2E + D(i,j) - D(i,n) - D(j,n)$$

for all different $i,j \in [n]$, in particular $D'(i,n) = 2E$ for $i \neq n$. Note that $D' \in T_n$ and that D' an ultrametric on $\{1, \ldots, n-1\}$, so it can be realized by an equidistant $(n-1)$-tree T'' with root r. Each edge e of T'' has a well-defined height $h(e)$, which is the distance from the top node of e to each leaf below e. Pick random rational numbers $a(e)$ and $b(e)$ for every edge e of T''. If $i \in \{1, \ldots, n-1\}$ is a leaf of T'', define the polynomial $x_i(t)$ resp. $y_i(t)$ as the sum of the monomials $a(e)t^{2h(e)}$ resp. $b(e)t^{2h(e)}$, where e is an edge between r and i. It is easy to see that

$$D'(i,j) = \deg(x_j(t) - x_i(t)) = \deg(y_j(t) - y_i(t))$$

for all $i,j \in \{1, \ldots, n-1\}$.

Denote the distance from r to each leaf by F. Since

$$2F = \max\{D'(i,j) | 1 \leq i < j \leq n-1\} < 2E,$$
we have $F < E$. The metric D' on $[n]$ can be realized by a tree T', where T' is the tree obtained from T'' by adding the leaf n together with an edge (r, n) of length $2E - F$. If we define $x_n(t) = y_n(t) = t^{2E}$, we get that $D'(i, j) = \deg(x_j(t) - x_i(t)) = \deg(y_j(t) - y_i(t))$ for all $i, j \in [n]$. Consider the matrix

$$M' := \begin{bmatrix} 1 & x_1(t) & x_2(t) & x_3(t) & x_4(t) & \cdots & x_n(t) \\ x_1(t)^2 & x_2(t)^2 & x_3(t)^2 & x_4(t)^2 & \cdots & x_n(t)^2 \\ y_1(t) & y_2(t) & y_3(t) & y_4(t) & \cdots & y_n(t) \end{bmatrix}.$$

We claim that $\deg(\det(M'(i, j, k, l))) = 2D'(i, j, k, l)$ for all $i, j, k, l \in [n]$. After renumbering the leaves, we may assume that $\{i, j, k, l\} = \{1, 2, 3, 4\}$ and that $D'(1, 2) \leq D'(1, 3) \leq D'(1, 4)$. In Figure 1 all combinatorial types of the subtrees are pictured. Every edge in this picture may consist of several edges of the tree T'. Note that types I and II are different, since the top node v sits on a different edge of the subtree. The type III case is special, since $n \in \{i, j, k, l\}$ (before the renumbering).

![Figure 1: The combinatorial types of 4-subtrees](image)

The determinant of $M'(1, 2, 3, 4)$ is equal to

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ y_1 & y_2 & y_3 & y_4 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ 0 & y_2 - y_1 & y_3 - y_1 & y_4 - y_1 \end{vmatrix}$$

$$= (y_2 - y_1)(x_4 - x_1)(x_3 - x_1)(x_4 - x_3) - (y_3 - y_1)(x_4 - x_1)(x_2 - x_1)(x_4 - x_2) + (y_4 - y_1)(x_3 - x_1)(x_2 - x_1)(x_3 - x_2)$$

(2)

The degree of the term $(y_2 - y_1)(x_4 - x_1)(x_3 - x_1)(x_4 - x_3)$ in (2) is

$$D'(1, 2) + D'(1, 3) + D'(1, 4) + D'(3, 4),$$

which equals $2D'(1, 2, 3, 4)$ for each of the three types.

If v and w are nodes between r and i, we will denote the sum of the monomials $a(e)t^{2b(e)}$ for e between v and w by $x_{i,v,w}(t)$. Analogously, we define
We are going to take a look at the type I case. In Figure 2, the arrows stand for edges of T'. For example, the edge e_v is adjacent to v and goes into the direction of w.

Figure 2: Type I

Denote $x := x_3, [v, w] - x_1, [v, w]$, $x_{12} := x_2, [w, 2] - x_1, [w, 1]$, $x_{13} := x_3, [u, 3] - x_1, [w, 1]$, etc. Analogously, we define $y, y_{12}, y_{13}, \ldots, y_{34}$. The determinant $\text{det}(2)$ equals

$$y_{12}x_{34}(x + x_{13})(x + x_{14}) - x_{12}(y + y_{13})(x + x_{14})(x + x_{24}) + x_{12}(y + y_{14})(x + x_{13})(x + x_{23}).$$

Since $\deg(x) = \deg(y)$ is bigger than $\deg(x_{ij}) = \deg(y_{ij})$ for all i and j, we have that the degree of the last two terms is equal to

$$\deg(x_{12}yx^2) > 2D'(1, 2, 3, 4),$$

but the term $x_{12}yx^2$ vanishes in the determinant. So, the degree of the sum of the last two terms in (3) is equal to

$$\deg(x_{12}(x^2(y_{14} - y_{13}) + xy(x_{13} + x_{23} - x_{14} - x_{24})))
= \deg(x_{12}(y_{34}x^2 - 2x_{34}xy])
= 2D'(1, 2, 3, 4).$$

We conclude that the determinant of $M'(1, 2, 3, 4)$ has degree $2D'(1, 2, 3, 4)$. Indeed, the coefficient of $t^{2D'(1, 2, 3, 4)}$ is equal to

$$(b(e'_u) - b(e_w))(a(e'_u) - a(e_w))(a(e'_v) - a(e_v))^2
+ (b'(e_u) - b(e_u))(a(e'_u) - a(e_w))(a(e'_v) - a(e_v))^2
- 2(b(e'_v) - b(e_v))(a(e'_u) - a(e_w))(a(e'_v) - a(e_v))(a(e'_u) - a(e_u)) \neq 0.$$
for type II and
\[
(b(e'_w) - b(e_u))(a(e'_w) - a(e_w)) - (b(e'_w) - b(e_u))(a(e'_u) - a(e_u)) \neq 0
\]
for type III.

\[\begin{array}{c}
\text{Figure 3: Type II and III}
\end{array}\]

Let \(M\) be the matrix obtained from \(M'\) by multiplying, for each \(i\), the \(i\)-th column of \(M'\) by \((tD(i,n) - E)^2\). We have
\[
D(i,j) = D'(i,j) + (D(i,n) - E) + (D(j,n) - E) = \deg \left(tD(i,n) - E \cdot tD(j,n) - E \cdot (x_i(t) - x_j(t)) \right).
\]

Using Remark 3.1, we get that
\[
2D(i,j,k,l) = \deg(\det(M(i,j,k,l))).
\]
If we replace each \(t\) in \(M\) by \(t^{-1/2}\), we have
\[
D(i,j,k,l) = -\val(\det(M(i,j,k,l)));
\]

hence \(\mathcal{D} \in S\).

Now assume \(T\) has irrational edge weights. We can approximate \(T\) arbitrarily close by a tree \(\tilde{T}\) with rational edge weights. From the arguments above, it follows that the 4-dissimilarity vector \(\tilde{D}\) of \(\tilde{T}\) belongs to \(S\), hence \(\mathcal{D} \in \mathcal{G}_{4,n}\).

4 What about the case \(m \geq 5\)?

The proof of Theorem 1.5 does not give an obstruction for the following to be true for \(m \geq 5\).

\textbf{Conjecture 4.1.} \(\phi^{(m)}(T_n) \subset \mathcal{G}_{m,n} \cap \phi^{(m)}(\mathbb{R}^{(n)}_2)\)

Note that using the same arguments as in the proof of Theorem 1.5, it suffices to show the following.
Consider the matrix

\[
M = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
x_1^{(1)} & x_2^{(1)} & \ldots & x_n^{(1)} \\
x_1^{(2)} & x_2^{(2)} & \ldots & x_n^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
x_1^{(m-2)} & x_2^{(m-2)} & \ldots & x_n^{(m-2)}
\end{bmatrix} \in K^{m \times n}.
\]

Let \(i_1, \ldots, i_m\) be pairwise disjoint elements in \(\{1, \ldots, n\}\). Then we have that \(D(i_1, \ldots, i_m) = \deg(\det(M(i_1, \ldots, i_m)))\).

Remark 4.3. The matrix \(M\) arising in Conjecture [4.1] has a sort of asymmetry. However, if one would construct polynomials \(x_j^{(3)}\) as in the conjecture with \(j \in \{1, \ldots, m\}\) for each leaf \(i \in \{1, \ldots, n\}\), the statement fails for

\[
N = \begin{bmatrix}
x_1^{(1)} & x_2^{(1)} & \ldots & x_n^{(1)} \\
x_1^{(2)} & x_2^{(2)} & \ldots & x_n^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
x_1^{(m)} & x_2^{(m)} & \ldots & x_n^{(m)}
\end{bmatrix} \in K^{m \times n},
\]

even for \(m = 3\). Indeed, if the minimal subtree \(\tilde{T}\) of the equidistant tree \(T'\) containing the three leaves \(i_1, i_2, i_3\) does not contain the root \(r\), the degree of the determinant of \(N(i_1, i_2, i_3)\) is not equal to the length of \(\tilde{T}\). Instead, it is equal to the length of the subtree of \(T'\) containing the leaves \(i_1, i_2, i_3\) and the root \(r\). The same happens for \(m = 4\). So it seems that the row consisting of ones in the matrix \(M\) is necessary to cancel the distance between the top node of \(\tilde{T}\) and the root \(r\). On the other hand, the determinant of a maximal minor has to be homogeneous in the variables \(x_j^{(3)}\) of degree \(m\) (see Theorem [1.3]), so once we put a row with ones in \(M\), there should be a row consisting of quadric forms in the variables \(x_j^{(3)}\), i.e. the third row of \(M\).

We can simplify Conjecture [4.2] Firstly, we can see that the tree \(T\) can be considered as an equidistant \(n\)-tree, if we pick the top node to be the node on the
edge \((r, n)\) at distance \((d' + d'')/2\) of \(n\). For example, in the proof of Theorem 1.5 the types II and III are in fact equivalent. Secondly, assume \(I = \{i_1, \ldots, i_m\}\) is an \(m\)-subset of \(\{1, \ldots, n\}\) and let \(T_I\) be the minimal subtree of \(T\) containing the leaves in \(I\). The edges between the top node \(r_I\) of \(T_I\) and the root \(r\) of \(T\) do not give a contribution in the determinant of \(M(I) = M(i_1, \ldots, i_m)\). Also, the edges of \(T_I\) with 2-valent top node different from \(r_I\) can be canceled out in the computation of \(\deg(\det(M(I)))\). So we see that Conjecture 4.2 is equivalent to the following.

Conjecture 4.4. Let \(T\) be an equidistant \(m\)-tree with root \(r\) such that all edges of \(T\) have rational length.

For each edge \(e\) of \(T\), pick random numbers \(a_1(e), \ldots, a_{m-2}(e) \in C\) and denote its height in \(T\) by \(h(e)\). Let \(x_i^{(j)}(t) \in K\) (with \(i \in \{1, \ldots, m\}\) and \(j \in \{1, \ldots, m-2\}\)) be the sum of the monomials \(a_j(e)^{h(e)}\), where \(e\) runs over all edges between \(r\) and \(i\). Then the degree of the determinant of

\[
M = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
x_1^{(1)} & x_2^{(1)} & \ldots & x_m^{(1)} \\
(x_1^{(1)})^2 & (x_2^{(1)})^2 & \ldots & (x_m^{(1)})^2 \\
x_1^{(2)} & x_2^{(2)} & \ldots & x_m^{(2)} \\
\vdots & \vdots & \vdots & \vdots \\
x_1^{(m-2)} & x_2^{(m-2)} & \ldots & x_m^{(m-2)}
\end{bmatrix}
\]

is equal to the length \(D\) of \(T\).

We give an example to illustrate Conjecture 4.4 for \(m = 5\).

Example 4.5. Consider the equidistant 5-tree \(T\) of Figure 4. In the boxes, the distances of the edges are mentioned. Note that \(D = 37\).

![Equidistant 5-tree](image)
Following the notations of Conjecture 4.4 we have

\[
\begin{align*}
x_1^{(j)}(t) &= a_j(r, v) t^{10} + a_j(v, w) t^7 + a_j(w, 1) t^4, \\
x_2^{(j)}(t) &= a_j(r, v) t^{10} + a_j(v, w) t^7 + a_j(w, 2) t^4, \\
x_3^{(j)}(t) &= a_j(r, v) t^{10} + a_j(v, 3) t^7, \\
x_4^{(j)}(t) &= a_j(r, u) t^{10} + a_j(u, 4) t^6, \\
x_5^{(j)}(t) &= a_j(r, u) t^{10} + a_j(u, 5) t^6.
\end{align*}
\]

Using a computer algebra system, one can see that the determinant of \(M \) is a polynomial of degree 37 in the variable \(t \). Each of its coefficients is homogeneous of degree 5 in the numbers \(a_j(e) \), with \(j \in \{1, 2, 3\} \) and \(e \) an edge of \(T \).

If we take the numbers \(a_j(e) \) to be the first 24 = 3 \times 8 prime numbers (i.e. \(a_1(r, v) = 2, \ldots, a_3(u, 5) = 89 \)), the determinant of \(M \) has leading coefficient 3344.

Remark 4.6. In order to prove Conjecture 4.4 for a fixed value of \(m \), one could follow the strategy of Theorem 1.5. Indeed, the number \(t(m) \) of combinatorial types of equidistant \(m \)-trees is finite and for each of these types, one can compute the determinant of \(M \) and check whether its degree equals \(D \).

In this way, we can prove Conjecture 4.4 for \(m = 5 \) using a computer algebra system. For each of the three combinatorial types of equidistant 5-trees, the determinant of \(M \) can be computed, leaving the random numbers \(a_j(e) \) and the lengths \(l(e) \) of the edges as variables. This determinant (considered as a polynomial in the variable \(t \)) has degree equal to the length \(D \) of the tree \(T \) and its leading coefficient is a homogeneous polynomial \(c_T \) of degree 5 in the numbers \(a_j(e) \). If the tree \(T \) is binary, the polynomial \(c_T \) has 272 terms for the type corresponding to Example 4.5, and 144 terms for the other two types.

Note that the numbers \(a_j(e) \) are sufficiently random if they don’t vanish for the polynomial \(c_T \). We can conclude that the inclusion

\[
\phi(5)(G_{2,n}) \subset G_{5,n} \cap \phi(5)(\mathbb{R}(\binom{n}{2}))
\]

holds, i.e. Conjecture 4.4 for \(m = 5 \).

On the other hand, the number \(t(m) \) grows exponentially, e.g.

\[
t(4) = 2, t(5) = 3, t(6) = 6, t(7) = 11, t(8) = 23, t(9) = 46, t(10) = 98, etc.,
\]

and for each of these types, the square matrix \(M \) is of size \(m \), hence the computation of its determinant gets more complicated when \(m \) grows. So this technique is not suited in order to prove Conjecture 4.4 for every \(m \). However, one can hope to find a proof by induction on \(m \).

References

[1] C. Bocci, F. Cools, *A tropical interpretation of m–dissimilarity maps*, preprint (2008). [arXiv:0803.2184]
[2] P. Buneman, A Note on the Metric Properties of Trees, J. Combinatorial Theory 17 (1974), 48-50.

[3] L. Pachter, B. Sturmfels, Algebraic statistics for computational biology, Cambridge University Press, New York 2005

[4] D. Speyer, B. Sturmfels, The Tropical Grassmannian, Adv. Geom. 4 (2004), 389-411.