Black-Box Tuning for Language-Model-as-a-Service

Tianxiang Sun
School of Computer Science, Fudan University

https://txsun1997.github.io/
Acknowledgment

Tianxiang Sun1 \quad Yunfan Shao1 \quad Hong Qian2 \quad Xuanjing Huang1 \quad Xipeng Qiu1,3

Yang Yu4 \quad Zhengfu He1

1 Fudan University \quad 2 East China Normal University \quad 3 Peng Cheng Laboratory \quad 4 Nanjing University
Acknowledgment

Tianxiang Sun1
Yunfan Shao1
Hong Qian2
Xuanjing Huang1
Xipeng Qiu1,3

NLP/Deep Learning

Yang Yu4
Zhengfu He1

1 Fudan University
2 East China Normal University
3 Peng Cheng Laboratory
4 Nanjing University
Acknowledgment

Tianxiang Sun¹, Yunfan Shao¹, Hong Qian², Xuanjing Huang¹, Xipeng Qiu¹,³, Yang Yu⁴, Zhengfu He¹

¹ Fudan University ² East China Normal University ³ Peng Cheng Laboratory ⁴ Nanjing University
Pre-train, then fine-tune

Big Data (MLM/LM Pre-Training) → Open Source → Down-Stream

Small Data (Task-Specific Fine-Tuning) → Download → Up-Stream

Google
OpenAI
When language models become larger...
When language models become larger...

In the era of large language models (LLMs)...

- **Servers** often do not open-source the weights of LLMs due to commercial reasons

- **Users** usually do not have enough resources to run LLMs
When language models become larger...

Why did OpenAI choose to release an API instead of open-sourcing the models?

There are three main reasons we did this. First, commercializing the technology helps us pay for our ongoing AI research, safety, and policy efforts.

Second, many of the models underlying the API are very large, taking a lot of expertise to develop and deploy and making them very expensive to run. This makes it hard for anyone except larger companies to benefit from the underlying technology. We’re hopeful that the API will make powerful AI systems more accessible to smaller businesses and organizations.

Third, the API model allows us to more easily respond to misuse of the technology. Since it is hard to predict the downstream use cases of our models, it feels inherently safer to release them via an API and broaden access over time, rather than release an open source model where access cannot be adjusted if it turns out to have harmful applications.
When language models become larger...

In the era of large language models (LLMs)...

- **Servers** often do not open-source the weights of LLMs due to commercial reasons
- **Users** usually do not have enough resources to run LLMs

The emergent ability of LLMs

- Manually craft text prompt to query LLMs
- In-context learning (GPT-3, Brown et al., 2020)
When language models become larger...

Why in-context learning?
- Generalization: One general purpose model for all tasks
- Backpropagation is expensive
- Commercial use
Language-Model-as-a-Service (LMaaS)

Big Data
(MLM/LM Pre-Training)

Inference API

Small Data
(Task-Specific Prompt)

Up-Stream

Google

OpenAI

Down-Stream
Language-Model-as-a-Service (LMaaS)

GPT-3 Pricing

Model	Speed	Price (1K tokens)
Ada	Fastest	$0.0008
Babbage		$0.0012
Curie		$0.0060
Davinci	Most powerful	$0.0600
Language-Model-as-a-Service (LMaaS)

https://gpt3demo.com/
LMaaS in China

https://www.biendata.xyz/wudao/
However...

The performance of manual prompt and in-context learning highly depend on the choice of prompt and demonstrations, and lags far behind model tuning.

Zhao et al. Calibrate Before Use: Improving Few-Shot Performance of Language Models. ICML 2021
Grounding LLMs From the Cloud

Big Data (MLM/LM Pre-Training) → Small Data (Task-Specific Fine-Tuning)

Open Source → Download Free

Big Data (MLM/LM Pre-Training) → Small Data (Task-Specific Prompt)

API → Performance

Performance is the Key for grounding. (Who are the users?)
To make LLMs benefit more people...

Can we optimize the prompt with the API feedback? (without expensive backpropagation)

Objective:

\[p^* = \arg \min_{p \in P} \mathcal{L}(f(p; \tilde{X}, \tilde{Y})) \]
A challenge of high dimensionality

Considering optimization of the continuous prompt, the dimensionality can be tens of thousands (say we are going to optimize 50 prompt tokens, each with 1k dimensions, there are 50k parameters to be optimized.)

Derivative-free optimization (DFO) can struggle with high-dimensional problems, except for the case when the problem has a low intrinsic dimensionality.

Note: Intrinsic dimensionality is the minimal number of parameters needed to represent the problem.
A challenge of high dimensionality

An example

- The objective to be optimized has two dimensions but only one matters
- In that case we can perform optimization with random embedding

Wang et al. Bayesian optimization in a billion dimensions via random embeddings. J. Artif. Intell. Res. 2016
Fortunately...

LLMs have a very low intrinsic dimensionality!

Aghajanyan et al. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. ACL 2021
Black-Box Tuning

- p
- p_0
- A_z

Pre-Trained Language Model Inference (Black-Box API)

Labeled Data

- Great
- Terrible
- Great

Best film ever. It was <MASK>.

A totally boring movie! It was <MASK>.

You'll probably love it. It was <MASK>.

$\mathcal{L}(\hat{Y}, \bar{Y})$

Derivative-Free Optimizer

User

Server
Black-Box Tuning

The CMA-ES (Covariance Matrix Adaptation Evolution Strategy)

Consider $P^{(t)} = \mathcal{N}(\mu^{(t)}, \sigma^{(t)} \Sigma^{(t)})$ where $\mu^{(t)} \in \mathbb{R}^n$, $\sigma^{(t)} \in \mathbb{R}_+$, $\Sigma^{(t)} \in \mathbb{R}^{n \times n}$

- $\mu^{(t)} \rightarrow \mu^{(t+1)}$: Maximum likelihood update, i.e. $P(x^{(t)}_{\text{selected}} | \mu^{(t+1)}) \rightarrow \max$

- $\Sigma^{(t)} \rightarrow \Sigma^{(t+1)}$: Maximum likelihood update, i.e. $P\left(\frac{d^{(t)}_{\text{selected}} - \mu^{(t)}}{\sigma^{(t)}} | \Sigma^{(t+1)} \right) \rightarrow \max$, under consideration of prior $\Sigma^{(t)}$ (otherwise $\Sigma^{(t+1)}$ becomes singular).

- $\sigma^{(t)} \rightarrow \sigma^{(t+1)}$: Update to achieve conjugate perpendicularity, i.e. conceptually
 \[
 \frac{(\mu^{(t+2)} - \mu^{(t+1)})^T \Sigma^{(t+1)}^{-1} (\mu^{(t+1)} - \mu^{(t)}) / \sigma^{(t+1)}^2}{\sigma^{(t)}^2} \rightarrow 0
 \]

https://cma-es.github.io/
Experiments

Datasets and processing details

| Category | Dataset | $| \mathcal{Y} |$ | Train | Test | Type | Template | Label words |
|---------------|--------------|---|-----|------|-------|--------|-----------------------------------|--|
| single-sentence | SST-2 | 2 | 67k | 0.9k | sentiment | $\langle S \rangle$. It was [MASK]. | great, bad |
| | Yelp P. | 2 | 560k | 38k | sentiment | $\langle S \rangle$. It was [MASK]. | great, bad |
| | AG’s News | 4 | 120k| 7.6k | topic | [MASK] News: $\langle S \rangle$ | World, Sports, Business, Tech |
| | DBPedia | 14| 560k| 70k | topic | [Category: [MASK]] $\langle S \rangle$ | Company, Education, Artist, Athlete, Office, Transportation, Building, Natural, Village, Animal, Plant, Album, Film, Written |
| sentence-pair | MRPC | 2 | 3.7k| 0.4k | paraphrase | $\langle S_1 \rangle$? [MASK], $\langle S_2 \rangle$ | Yes, No |
| | RTE | 2 | 2.5k| 0.3k | NLI | $\langle S_1 \rangle$? [MASK], $\langle S_2 \rangle$ | Yes, No |
| | SNLI | 3 | 549k| 9.8k | NLI | $\langle S_1 \rangle$? [MASK], $\langle S_2 \rangle$ | Yes, Maybe, No |
Experiments

16-shot (per class) learning with RoBERTa-large (350M)

Method	SST-2 acc ±3.78	Yelp P. acc ±3.05	AG’s News acc ±3.46	DBPedia acc ±3.14	MRPC F1 ±4.85	SNLI acc ±1.05	RTE acc ±2.28	Avg. ±4.05
Gradient-Based Methods								
Prompt Tuning	68.23 ±3.78	61.02 ±6.65	84.81 ±0.66	87.75 ±1.48	51.61 ±8.67	36.13 ±1.51	54.69 ±3.79	63.46 ±4.05
+ Pre-trained prompt	/	/	/	/	77.48 ±4.85	64.55 ±2.43	77.13 ±0.83	74.42 ±4.05
P-Tuning v2	64.33 ±3.05	92.63 ±1.39	83.46 ±1.01	97.05 ±0.41	68.14 ±3.89	36.89 ±0.79	50.78 ±2.28	70.47 ±4.05
Model Tuning	85.39 ±2.84	91.82 ±0.79	86.36 ±1.85	97.98 ±0.14	77.35 ±5.70	54.64 ±5.29	58.60 ±6.21	78.88 ±4.05
Gradient-Free Methods								
Manual Prompt	79.79 ±3.06	85.38 ±3.92	62.21 ±13.46	34.83 ±7.59	45.81 ±6.67	47.11 ±0.63	60.36 ±1.56	59.36 ±4.05
In-Context Learning	79.79 ±3.06	85.38 ±3.92	62.21 ±13.46	34.83 ±7.59	45.81 ±6.67	47.11 ±0.63	60.36 ±1.56	59.36 ±4.05
Feature-MLP	64.80 ±1.78	79.20 ±2.26	70.77 ±0.67	87.78 ±0.61	68.40 ±0.86	42.01 ±0.33	53.43 ±1.57	66.63 ±4.05
Feature-BiLSTM	65.95 ±0.99	74.68 ±0.10	77.28 ±2.83	90.37 ±3.10	71.55 ±7.10	46.02 ±0.38	52.17 ±0.25	68.29 ±4.05
Black-Box Tuning	89.56 ±0.25	91.50 ±0.16	81.51 ±0.79	87.80 ±1.53	61.56 ±4.34	46.58 ±1.33	52.59 ±2.21	73.01 ±4.05
+ Pre-trained prompt	/	/	/	/	75.51 ±5.54	83.83 ±0.21	77.62 ±1.30	**83.90 ±4.05**
Experiments

Detailed comparison on SST-2 and AG News

Method	Deployment-Efficient	As-A-Service	Test Accuracy	Training Time	Memory User	Memory Server	Upload per query	Download per query
SST-2 (max sequence length: 47)								
Prompt Tuning	√	×	72.6	15.9 mins	-	5.3 GB	-	-
Model Tuning	×	×	87.8	9.8 mins	-	7.3 GB	-	-
Feature-MLP	√	√	63.8	7.0 mins	20 MB	2.8 GB	4 KB	128 KB
Feature-BiLSTM	√	√	66.2	9.3 mins	410 MB	2.8 GB	4 KB	6016 KB
Black-Box Tuning	√	√	89.4	10.1 (6.1*) mins	30 MB	3.0 GB	6 KB	0.25 KB
AG’s News (max sequence length: 107)								
Prompt Tuning	√	×	84.0	30.2 mins	-	7.7 GB	-	-
Model Tuning	×	×	88.4	13.1 mins	-	7.3 GB	-	-
Feature-MLP	√	√	71.0	13.5 mins	20 MB	3.6 GB	20 KB	256 KB
Feature-BiLSTM	√	√	73.1	19.7 mins	500 MB	3.6 GB	20 KB	27392 KB
Black-Box Tuning	√	√	82.6	21.0 (17.7*) mins	30 MB	4.6 GB	22 KB	1 KB
Forward Is All You Need?

Limitations of black-box tuning:
- Slow convergence on many-label classification (e.g., DBPedia)
- Requirement of prompt pre-training (gradient) on difficult tasks (e.g., SNLI)

Current version of black-box tuning is just a lower bound:
- Prompt/verbalizer engineering, prompt ensemble, prompt pre-training...
- Better derivative-free algorithms
- Pre-trained random embedding
- ...

...
Can We Go Deeper?

The "Deep Prompt Tuning"

Prefix Tuning (Li and Liang, ACL 2021) P-Tuning v2 (Liu et al., ACL 2022)
The challenge, again, is the high dimensionality
- Say we are going to optimize 50 prompt tokens at each layer of RoBERTa-large, each with 1k dimensions, there are $50k \times 24 = 1.2M$ parameters to be optimized
- Besides, the prompt parameters at different layers are heterogenous and therefore we can not simply use the random embedding to solve it
Take A Closer Look Into the Forward Pass

Thanks to the residual connections in modern LLMs, the forward computation can be decomposed as an additive form.

An example of a 3-layer model:

\[
 f(x_1) = f_3(x_3) + x_3 \\
 = f_3(x_3) + f_2(x_2) + x_2 \\
 = f_3(x_3) + f_2(x_2) + f_1(x_1) + x_1
\]

Therefore, the optimization can be decomposed into multiple sub-problems!
Take A Closer Look Into the Forward Pass

A general formulation of "deep black-box tuning":

\[f(x_1, p) = [A_1 z_1 + p_1^0; x_1] \]

\[+ \sum_{j=1}^{L} f_j([A_j z_j + p_j^0; x_j]) \]

Given such an additive form, we propose a divide-and-conquer (DC) algorithm to alternately optimize prompt at each layer
Divide-and-Conquer

- Layer-specific optimizer
- Layer-specific random projection
- Alternate from the bottom to top

Algorithm 1: DC Algorithm for BBTv2

Require: \(L \)-layer PTM Inference API \(f \),
Loss function \(\mathcal{L} \),
Budget of API calls \(\mathcal{B} \),
Derivative-free optimizers \(\{\mathcal{M}_j\}_{j=1}^L \)

1: Initialize random projections \(\mathbf{A}_1, \ldots, \mathbf{A}_L \)
2: Initialize parameters \(\mathbf{z}_1^{(0)}, \ldots, \mathbf{z}_L^{(0)} \)
3: Deep prompts \(\mathbf{p} = \langle \mathbf{A}_1 \mathbf{z}_1^{(0)}, \ldots, \mathbf{A}_L \mathbf{z}_L^{(0)} \rangle \)
4: for \(i = 1 \) to \(\mathcal{B}/L \) do
5: for \(j = 1 \) to \(L \) do
6: Evaluate: \(\text{loss} = \mathcal{L}(f(\mathbf{p})) \)
7: Update: \(\mathbf{z}_j^{(i)} \leftarrow \mathcal{M}_j(\mathbf{z}_j^{(i-1)}, \text{loss}) \)
8: Replace: \(\mathbf{p}_j \leftarrow \mathbf{A}_j \mathbf{z}_j^{(i)} \)
9: end for
10: end for
11: return Optimized deep prompts \(\mathbf{p} \)
Revisiting Random Projection (Embedding)

Generating random projections from a normal distribution with std dev as

\[\sigma_A = \frac{\hat{\sigma}}{\sqrt{d\sigma_z}} \]

A visualization of generated prompt with RoBERTa-large
BBTv2: Towards A Gradient-Free Future

Main improvements of BBTv2
- Get rid of prompt pre-training
- Improved random projection
- Deep prompts
BBTv2: Towards A Gradient-Free Future

Main improvements of BBTv2
Experiments of BBTv2

Comparable to full model tuning but merely tuning ~10k parameters
Experiments of BBTv2

Improve BBT on entailment tasks

- Be comparable to full model tuning without pre-trained prompt embedding
Experiments of BBTv2

Improve BBT on many-label classification tasks

- Faster convergence than BBT on DBPedia (14 classes)
Experiments of BBTv2

Generalization across LMs
Experiments of BBTv2

Overall comparison

Method	Tunable Params	SST-2 acc	Yelp P. acc	AG’s News acc	DBPedia acc	MRPC F1	SNLI acc	RTE acc	Avg.
Gradient-Based Methods									
Model Tuning	355M	85.39 ±2.84	91.82 ±0.79	86.36 ±1.85	97.98 ±0.14	77.35 ±5.70	54.64 ±5.29	58.60 ±6.21	78.88
Adapter	2.4M	83.91 ±2.90	90.99 ±2.86	86.01 ±2.18	97.99 ±0.07	69.20 ±3.58	57.46 ±6.63	48.62 ±4.74	76.31
BitFit	172K	81.19 ±6.08	88.63 ±6.69	86.83 ±0.62	94.42 ±0.94	66.26 ±6.81	53.42 ±10.63	52.59 ±5.31	74.76
LoRA	786K	**88.49 ±2.90**	90.21 ±4.00	**87.09 ±0.85**	97.86 ±0.17	**72.14 ±2.23**	**61.03 ±8.55**	49.22 ±5.12	78.01
Prompt Tuning	50K	68.23 ±3.78	61.02 ±6.65	84.81 ±0.66	87.75 ±1.48	51.61 ±8.67	36.13 ±1.51	54.69 ±3.79	63.46
P-Tuning v2	1.2M	64.33 ±3.05	**92.63 ±1.39**	83.46 ±1.01	97.05 ±0.41	68.14 ±3.89	36.89 ±0.79	50.78 ±2.28	70.47
Gradient-Free Methods									
Manual Prompt	0	79.82	89.65	76.96	41.33	67.40	31.11	51.62	62.56
In-Context Learning	0	79.79 ±3.06	85.38 ±3.92	62.21 ±13.46	34.83 ±7.59	45.81 ±6.67	47.11 ±0.63	60.36 ±1.56	59.36
Feature-MLP	1M	64.80 ±1.78	79.20 ±2.26	70.77 ±0.67	87.78 ±0.61	68.40 ±0.86	42.01 ±0.33	53.43 ±1.57	66.63
Feature-BiLSTM	17M	65.95 ±0.99	74.68 ±0.10	77.28 ±2.83	90.37 ±3.10	71.55 ±7.10	46.02 ±0.38	52.17 ±0.25	68.29
BBT	500	89.56 ±0.25	**91.50 ±0.16**	81.51 ±0.79	79.99 ±2.95	61.56 ±4.34	46.58 ±1.33	52.59 ±2.21	71.90
BBTv2	12K	**90.41 ±0.71**	**90.69 ±0.66**	**85.06 ±0.49**	**92.59 ±0.17**	**78.15 ±2.00**	**61.50 ±1.28**	**60.56 ±5.09**	**79.85**
Experiments of BBTv2

Versatility across different language models

LM	Method	SST-2	AG’s News	DBPedia
Encoder-only PTMs				
BERT	BBT	76.26 ±2.64	76.67 ±1.12	89.58 ±0.51
	BBTv2	79.32 ±0.29	79.58 ±1.15	93.74 ±0.50
RoBERTa	BBT	89.56 ±0.25	81.51 ±0.79	79.99 ±2.95
	BBTv2	90.41 ±0.71	85.06 ±0.49	92.59 ±0.17
Decoder-only PTMs				
GPT-2	BBT	75.53 ±1.98	77.63 ±1.89	77.46 ±0.69
	BBTv2	80.13 ±3.28	82.18 ±1.07	91.36 ±0.73
Encoder-Decoder PTMs				
BART	BBT	77.87 ±2.57	77.70 ±2.46	79.64 ±1.55
	BBTv2	89.53 ±2.02	81.30 ±2.58	87.10 ±2.01
T5	BBT	89.15 ±2.01	83.98 ±1.87	92.76 ±0.83
	BBTv2	91.08 ±1.49	84.32 ±1.29	92.76 ±0.85

Comparison on CPM-2 (11B)

Method	Tunable Params	ChnSent acc	LCQMC acc
Model Tuning	11B	86.1 ±1.8	58.8 ±1.8
Vanilla PT	410K	62.1 ±3.1	51.5 ±3.4
Hybrid PT	410K	79.2 ±4.0	54.6 ±2.3
LM Adaption	410K	74.3 ±5.2	51.4 ±2.9
BBTv2	4.8K	**86.4 ±0.8**	**59.1 ±2.5**
Experiments of BBTv2

The power of scale (with T5)
- Outperform gradient descent when model size becomes large
Other Solutions for LMaaS
Other Solutions for LMaaS

- **Text prompt**: Manually or automatically design task-specific text prompts
- **In-context learning**: Include a few examples in the input at inference time
- **Black-box optimization**: Tuning a small portion of parameters with only the access of the LLM`s output probability via black-box optimization (BBO)
- **Feature-based learning**: LLMs can serve as a feature extractor, on which users can build some lightweight learnable model to solve the task
- **Data generation**: Use LLMs to generate a dataset of labeled text pairs, which is then used to locally train a much smaller model
Language Model as a Service (LMaaS)

This is a curated list of "Language-Model-as-a-Service (LMaaS)" papers, which is mainly maintained by Tianxiang Sun. We strongly encourage the NLP researchers who are interested in this topic to make pull request to add or update the papers (See Contributing). Watch this repository for the latest updates!

Updates

- 2022/7/7: Write a blog (in Chinese)
- 2022/7/4: Create this paper list

Contents

- Introduction
 - Scope
 - Advantages
- Keywords
- Papers
 - Text Prompt
 - In-Context Learning
 - Black-Box Optimization
 - Feature-based Learning
 - Data Generation
- Contributing
Resources

- LMaas paper list: https://github.com/txsun1997/LMaas-Papers
- Code of BBT and BBTv2: https://github.com/txsun1997/Black-Box-Tuning
- BBT paper (ICML 2022): https://arxiv.org/abs/2201.03514
- BBTv2 paper: https://arxiv.org/abs/2205.11200
- Blog for BBT (in Chinese): https://zhuanlan.zhihu.com/p/455915295
- Blog for LMaas (in Chinese): https://zhuanlan.zhihu.com/p/538857729

Feel free to reach out if you have any questions or suggestions about our papers, code, or the paper list!
Thanks!

Tianxiang Sun
School of Computer Science, Fudan University

https://txsun1997.github.io/