Uncovering the mechanistic basis for specific recognition of monomethylated H3K4 by the CW domain of Arabidopsis histone methyltransferase SDG8

Yanchao Liu¹ and Ying Huang¹,*

From the ¹State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China

Running title: Crystal structure of SDG8-CW in complex with H3K4me1

*To whom correspondence should be addressed: Ying Huang: State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210; huangy@sibcb.ac.cn; Tel. (86)20778200; Fax. (86)20778200.

Keywords: CW domain, SDG8, H3K4me1 reader, recognition of low methylation level, ASHH2, crystal structure, histone methylation, histone modification, epigenetics, chromatin modification

ABSTRACT

Chromatin consists of DNA and histones, and specific histone modifications that determine chromatin structure and activity are regulated by three types of proteins, called writer, reader and eraser. Histone reader proteins from vertebrates, vertebrate-infecting parasites, and higher plants possess a CW domain, which has been reported to read histone H3 lysine 4 (H3K4). The CW domain of Arabidopsis SDG8 (also called ASHH2), a histone H3 lysine 36 methyltransferase, preferentially binds monomethylated H3K4 (H3K4me1), unlike the mammalian CW domain protein which binds trimethylated H3K4 (H3K4me3). However, the molecular basis of the selective binding by the SDG8 CW domain (SDG8-CW) remains unclear. Here, we solved the 1.6 Å resolution structure of SDG8-CW in complex with H3K4me1, which revealed that residues in the C-terminal alpha helix of SDG8-CW determine binding specificity for low methylation levels at H3K4. Moreover, substitutions of key residues, specifically Ile915 and Asn916, converted SDG8-CW binding preference from H3K4me1 to H3K4me3. Sequence alignments and mutagenesis studies revealed that the CW domain of SDG725, the homolog of SDG8 in rice, shares the same binding preference with SDG8-CW, indicating that preference for low-methylated H3K4 by the CW domain of ASHH2 homologs is conserved among higher-order plants. Our findings provide first structural insights into the molecular basis for specific recognition of monomethylated H3K4 by the H3K4me1 reader protein SDG8 from Arabidopsis.
The basic unit of chromatin is the nucleosome, which contains eight histone proteins and 147 base pairs of DNA (1). The histone proteins have tails that protrude from the nucleosome and many residues in these tails can be covalently modified (2). A number of specific modifications of histones have been identified, including methylation, acetylation, ubiquitination, phosphorylation, SUMOylation, deamination and ADP-ribosylation (2-4). Combinations of these modifications play important roles in many biological processes, such as regulation of gene activity and cell fate determination (5-8). Most of these modifications have been found to be dynamic (9, 10). Therefore, establishment, recognition and removal of histone modifications are carefully regulated by three types of proteins, called "writer", "reader", and "eraser", respectively (11, 12). Investigations of these proteins show that more than one functional domain may occur in one protein and may play multiple roles in chromatin-associated processes (13). The N-termini of histones are rich in lysine residues. Methylation markers can be deposited on particular lysine residues with different methylation degrees of mono-, di-, and trimethylation, and can be recognized by various functional domains of histone readers (14). The "Royal Family" of proteins is well-known for its function in the recognition of methylated histones, including chromodomain (CD), Tudor domain, malignant brain tumor (MBT) domain, and PWPP domain (15, 16). Plant homeo domain (PHD) and WD40 domain are also capable of binding methylated or unmethylated histones (17-19). Recently, a domain family, called CW domain, was found to function as a H3K4 reader (20-23).

The CW domain is a zinc binding domain with conserved cysteines and tryptophans (hence the name CW) and was found in vertebrates, vertebrate-infecting parasites, and higher-order plants (24-27). The CW domains are usually found in chromatin-related proteins associated with other domains, such as PWPP domain, SET domain, amino oxidase domain, suggesting a gene regulation role for this domain. There are seven CW domain-containing proteins in humans and eleven in Arabidopsis. Previous studies indicate that the CW domains in various proteins show different preference for the methylation degree of H3K4 (20, 21, 23, 28). The CW domains in mammalian MORC1, MORC2 and LSD2 have been reported to have no binding ability to any histone H3K4 peptides, whereas the CW domains of mammalian ZCWPW1, ZCWPW2, MORC3, and MORC4 bind to H3K4me3 (20, 23, 29). Interestingly, the CW domain of Arabidopsis SDG8 (also called ASHH2/CCR1/EF5) was reported to preferentially bind H3K4me1 (21). Moreover, SDG8 bears sequence homology to SET2 (yeast sole H3K36 methyltransferase), catalyzing the di- and trimethylation of H3K36 from the monomethylated state (30, 31). The sdg8 mutant plants exhibit early flowering with a global reduction of H3K36me2/me3 level and an increase of H3K36me1 level. SDG8 is not the sole H3K36 methyltransferase in Arabidopsis. SDG26, which lacks the N-terminal CW domain, is also homologous to SET2. In addition, SDG8 is involved in many biological processes, including shoot branching, ovule and anther development, carotenoid biosynthesis, defense response, seed development, brassinosteroid-regulated gene expression, and light and/or carbon responsive gene expression, indicating the non-redundant role of SDG8 in chromatin modification and gene regulation (32-39). Therefore, SDG8 may serve as a platform for downstream H3K36 methylation via the recognition of H3K4me1 by the CW domain.
So far, several structures of mammalian CW domains complexed with histone H3K4 peptides have been reported (20, 21, 23, 40). However, mammalian CW domains prefer to bind unmethylated or trimethylated H3K4 (20, 23, 40). The molecular mechanism by which the Arabidopsis SDG8 CW domain specifically recognizes low level methylation of H3K4 remains unclear. Here we determined the crystal structure of SDG8-CW in complex with H3K4me1 peptide at 1.6 Å resolution. The structural and biochemical data provide the molecular basis for the selective recognition of H3K4me1/2. Key residues that determine the specificity were identified.

Furthermore, we also test the binding specificity of SDG725, the homologue of SDG8 in rice, for various histone peptides. Sequence alignment and biochemical data indicate the preference for low level methylation of H3K4 by the CW domain of SDG8 is conserved in green plants. Our findings may provide new insights into the molecular mechanism of the recruitment of SDG8 to its target genes and shed light on the conserved role played by an incomplete aromatic cage in plants in recognizing low level methylation of H3K4.

Results

The CW domain of SDG8 preferentially binds monomethylated H3K4

SDG8 harbors a CW domain in the middle of its amino acid sequence and a SET domain that is C-terminal to the CW domain (Fig. 1A). To systematically explore the binding affinity of the SDG8-CW domain to different histone markers, we performed isothermal titration calorimetry (ITC) using label-free histone peptides. SDG8-CW (residues 862–921) was purified with its N-terminal His-SUMO fusion protein removed to rule out any impact introduced by this fusion protein (Fig. 1B). As shown in Fig. 1C, SDG8-CW showed an ability to bind to H3K4me peptides, but not H3K9me3, H3K27me3, and H3K36me3, consistent with a previous report (21). The equilibrium dissociation constants (K_D) determined for SDG8 to various H3K4me peptides is 1.3 ± 0.2 µM for H3K4me1, 3.3 ± 0.3 µM for H3K4me2, 18.9 ± 1.5 µM for H3K4me3, and 65.8 ± 11.5 µM for H3K4me0 (Fig. 1B; Table S1). Compared to monomethylated H3K4, di- and trimethylation decreased the binding affinity 2.5-fold and 14.5-fold, respectively, indicating preference of SDG8-CW domain for low levels of methylation of H3K4, especially H3K4me1.

Overall structure of SDG8-CW in complex with H3K4me1

To elucidate the molecular mechanism for the specific recognition of H3K4me1, we tried to co-crystallize SDG8-CW and an H3K4me1 peptide (residues 1–9). However, our initial attempts at crystallizing the complex failed. By analyzing the sequence of SDG8-CW using the SERp server (41), we mutated E917 to alanine to reduce the potential surface entropy for crystallization. Binding affinity of the E917A mutant to H3K4me1 was also measured (Fig. 1C). The K_D is 2.79 ± 0.36 µM, indicating that the alanine mutation at E917 bears little impact on the binding affinity. E917A was successfully co-crystallized with H3K4me1. Thus, for convenience, we treated the E917A mutant as SDG8-CW.

The CW domain is a zinc-binding domain. We determined the structure of SDG8-CW in complex with H3K4me1 (residues 1–9) by the single-wavelength anomalous dispersion (SAD) method using the anomalous signal of zinc ion. The structure was refined to 1.6-Å resolution with all the statistics within a reasonable range (Table 1).
There are three SDG8-CW molecules in one asymmetric unit, with each molecule binding one H3K4me1 peptide. The overall structure of SDG-CW comprises a β-hairpin core (β1 and β2), a 3₁₀-helical turn (η1) and a C-terminal α-helix (α1) (Fig. 1D). The whole structure is stabilized by four highly conserved cysteine residues chelating a zinc ion, including C868, C871, C893, and C904 (Fig. 1E). The H3K4me1 peptide is bound on the concave surface of SDG8-CW formed by β1 and α1 with a buried surface area of 557 Å² calculated by PISA (Fig. 1F) (41). The monomethylated side chain of K4 inserts into a pocket formed by five residues, including W865 on β1, W874 on β2, I915, N916 and L919 on α1 (Fig. 1G). The overall structure of SDG8-CW-H3K4me1 complex is similar to previously reported CW domain complex structures. The root-mean-square-deviation (RMSD) of SDG8-CW domain to ZCWPW2-CW (PDB 4O62), MORC3-CW (PDB 4QQ4), LSD2-CW (PDB 4HSU) is 1.70 Å, 0.28 Å, and 2.25 Å, respectively (Fig. 1H) (23, 43).

Structural basis for the interaction of SDG-CW with H3K4me1

Residues 1–7 of the histone H3K4me1 peptide show a defined electron density and can be successfully modelled (Fig. 2A). Multiple interactions were observed between SDG8-CW and H3K4me1 (Figs. 2B, 2C). The methyl group of A1 inserts into a hydrophobic pocket formed by V866, I885, and W891 (Fig. 2D). The free amine group of A1 interacts with the main chain carbonyl groups of D886 and S889 via hydrogen bonds. The carboxyl group of D869 further stabilizes A1 via water-mediated hydrogen bonds. Moreover, R2 and K4me1 form hydrogen bonds with the main chains of R867 and W865 on β1, respectively (Fig. 2B). R2 stretched toward the solvent with its guanidinium moiety sandwiched by R867 and E887 (Fig. 2E). The methyl group of T3 is anchored in a shallow hydrophobic pocket formed by V866, I877, V882, and I885 (Fig. 2F). And the hydroxyl group of T3 is involved in water-mediated hydrogen bond interactions with the main chain of V882 and I885. Intriguingly, SDG8-CW adopts a unique cage to accommodate the monomethylated K4 (Fig. 2G). Two conserved tryptophan W865 and W874 occupies the back and left walls of the cage, respectively. I915 and L919 on α1 form the right wall of the cage. And N916 constitutes the floor of the cage, leaving the front side of the cage unshielded. In addition, the amino group of N916 contacts the guanidino group of K4me1 via a hydrogen bond. The K4me1 binds in a straight concave surface of SDG-CW, which is different from the canonical trimethyllysine binding pocket formed by three or more aromatic residues to increase the hydrophobicity and space to facilitate the accommodation of a bulky trimethyllysine.

Validation of the key residues that determine the specific recognition of sequence and lysine methylation level

To validate the intermolecular interactions between SDG8-CW and H3K4me1, we performed ITC assays to detect changes in binding affinity that were introduced by site-specific mutagenesis. Structural analysis showed that the first three residues ART shared most of the interactions between SDG8-CW and the H3K4me1, indicating that residues ART may be important for the sequence specific binding. We designed and synthesized four H3K4me1 mutant peptides, including H3K4me1ΔA1 which lacks the first A1 residue, AH3K4me1 which adds an additional alanine to the N-terminus of the peptide, and two alanine substitution mutants, namely...
Crystal structure of SDG8-CW in complex with H3K4me1

H3K4me1R2A and H3K4me1T3A which substitute R2 and T3 with alanine, respectively (Fig. 3A). H3K4me1ΔA1 peptide completely lost its ability to bind SDG8-CW, whereas AH3K4me1 exhibited severely diminished binding, underscoring the importance of residue A1 in the recognition of H3K4me1 (Fig. 3B and Table S1). Mutation of R2 to alanine only mildly reduced the binding about 5-fold, while mutation of T3 abolished the binding, consistent with the structural analysis result. Thus, A1 and T3 are two key residues that determine the sequence specific recognition of H3K4me1 by SDG8-CW.

Unlike other CW domains, such as MORC3-CW which has additional negatively charged residues, or ZCWPW2-CW which has a third aromatic residue, the monomethyllysine binding cage of SDG8-CW comprises some hydrophobic residues (Figs. 7A and 7B). To further investigate how SDG8-CW prefers to bind monomethylated lysine, we used the same strategy as above to monitor the impact on binding affinity introduced by point mutations (Table S1). Alanine substitution of W865 and W874 significantly affect the binding ability. W874A mutant exhibited no binding ability to all four H3K4me peptides (Fig. 3C). W865A mutant lost its ability to bind H3K4me0 and H3K4me3, and dramatically decreased the binding to H3K4me1 and H3K4me2, about 60-fold and 23-fold lower, compared to wild-type, respectively (Fig. 3D). This is consistent with previous studies, which indicated that the corresponding residue of W865 is substituted by isoleucine and threonine in ZCWPW2, resulting in the absence of binding ability to any histone H3K4me peptide (23). In the crystal structure, the monomethyl group of K4me1 is facing towards I915, and N916 contacts the methylammonium ion via a hydrogen bond (Fig. 2G). Using this structural information as a guide, we generated two single mutants, I915A and N916A, and the double mutant I915A/N916A. Both I915A and N916A mutants reduced the ability to bind to H3K4me peptides (Figs. 3E, 3F). However, for various degrees of methylation level, I915A and N916A mutants all exhibit drastic differences in the reduction of ability to bind to histone H3K4me peptides. Compared to wild-type, I915A reduced the binding about 116-fold for H3K4me1, 16-fold for H3K4me2, and 1.5-fold for H3K4me3, respectively (Fig. 3E). N916A and the double mutant I915A/N916A showed selectively diminished binding to H3K4me peptides in a manner similar to I915A (Figs. 3F, 3G). Therefore, mutation of I915 and N916 leads to a conversion of ligand binding preference from K4me1 to K4me3, indicating that I915 and N916 are determinants of the selectivity for the recognition of monomethyllysine (Fig. 3H).

SDG8-CW undergoes conformational change upon binding to H3K4me1

The solution structure of the apo form of SDG8-CW domain was previously reported (21). However, superimposition of the apo form (PDB 2L7P) and the complex form reveals a significant conformational change at the η1 turn (Fig. 4A). The RMSD between the apo and the complex is 1.18 Å. In the complex structure, the loop connecting β2 and α1, containing the η1 in between, is closer to the β-hairpin core, thus facilitating the binding to H3K4me1 peptide. In the apo form, residues V882, I885 and W891 that are involved in the recognition of A1 and T3 were far away from V866 on β1 and I877 on β2, failed to form the hydrophobic pockets for the accommodation of the methyl groups of A1 and T3 (Fig. 4B). In addition, conformational changes were also observed in the methyllysine binding cage. The cage is more open in the complex.
Crystal structure of SDG8-CW in complex with H3K4me1

structure compared to that in the apo form due to the deviation of the indole ring of W874 (Figs. 4C, 4D). Moreover, the orientation of the side chain of N916, which forms a hydrogen bond with the methylammonium of K4me1, turns away from the peptide (Fig. 4E). Together, we suggest that the methyllysine binding pocket is closed in the absence of histone ligand. Upon binding, SDG-CW undergoes conformational changes, including forming the open state of the methyllysine binding cage, the flip of N916, and the closer distance of 3_{10}-turn η_1, to facilitate the binding of histone H3K4me1 peptide.

The C-terminal alpha-helix of SDG-CW domain that is important for the K4me1 recognition is conserved in green plants

I915, N916 and L919 are the three key residues that form the monomethyllysine binding pocket. Mutagenesis study and ITC assays also indicated the critical role of I915 and N916 in the selection of methylation level of lysine. These three residues are located on the C-terminal alpha helix of SDG8-CW. We searched the structural homology of SDG8-CW domain on the Dali server (44). The result showed that the most homologous structure is ZCWPW2 with an RMSD of 1.6 Å. However, we found that in all previous reported CW structures, no C-terminal alpha helix is observed, including the CW domains of ZCWPW1-3, MORC1-3, and LSD2 (20, 23, 43), indicating that the presence of the C-terminal alpha helix is unique in SDG8-CW (Fig. 1G). To investigate whether the C-terminal alpha helix may exist in a wider range of species, we performed sequence alignments (Fig. 5A). The alignment results indicated that the three key residues (I915, N916 and L919) involved in the monomethyllysine binding pocket were neither conserved in human CW domains, nor conserved in other CW-containing proteins in Arabidopsis. Therefore, we speculated that the specific recognition of monomethylated lysine is a unique feature to SDG8 protein in green plants.

The CW domain of OsSDG725 in rice shows a similar binding preference as SDG8-CW

However, we found that the C-terminal α_1 of SDG8-CW is highly conserved in ASHH2 proteins in most green plants, including dicots and monocots (Fig. 5B). To investigate whether the CW domain of SDG8 protein in other plant species has the same binding preference as Arabidopsis SDG8, we chose OsSDG725, the rice homolog of SDG8. OsSDG725 contains 637 amino acids, with a CW domain and a SET domain as well (Fig. 6A). OsSDG725-CW domain (residues 41–101) exhibits high binding affinity for histone H3K4me peptides as SDG8-CW, while no binding to H3K9me3, H3K27me3, and H3K36me3 (Fig. 6B and Table S2). The K_D for H3K4me peptides are 0.31 ± 0.05 µM for H3K4me1, 0.38 ± 0.06 µM for H3K4me2, 1.58 ± 0.23 µM for H3K4me3, and 2.30 ± 0.30 µM for H3K4me0. Therefore, the preference order of OsSDG725 to H3K4me peptides is H3K4me1 \geq H3K4me2 > H3K4me3 > H3K4me0. However, the difference of the binding affinities caused by the methylation degree is narrower. Next, according to the mutagenesis studies in SDS8-CW, we generated five mutants in OsSDG725, that is W53A (corresponds to W874A in SDG8-CW), W44A (corresponds to W865A), I95A (corresponds to I915A), N96A (corresponds to N916A), and I95A/N96A (corresponds to the double mutant I915A/N916A). Similar to SDG8-CW mutants, the W53A mutant completely abolished the ability to bind any of the four H3K4me peptides (Fig. 6C and Table S2). W44A reduced the binding ability about 26-fold for mono-, 24-fold for di-, 31-fold for...
trimethylation H3K4, and 28-fold for unmethylated peptide (Fig. 6D). I95 and N96 in OsSDG725 also play critical roles in the recognition of low methylation degree (Figs. 6E, 6F and 6G). Mutation at the C-terminal alpha helix decreases the binding to H3K4me peptides at different levels. The binding affinities to H3K4me1 are most affected compared to H3K4me2 and H3K4me3. The fold change of binding affinity caused by I95A is 74-fold for mono-, 38-fold for di-, and 6-fold for trimethylated H3K4 (Figs. 6E, 6I). N96A reduced the binding about 21-fold, 6-fold, and 1.4-fold, respectively (Figs. 6F, 6I). So is the double mutant I95A/N96A (Figs. 6G, 6I). Mutation at the histone peptides was also performed (Fig. 6H). The results showed that ART (residues 1–3) of histone H3 is important for the recognition of H3K4me1 by OsSDG725-CW, the same as SDG8. Together, the sequence-specific recognition of H3K4me1 by the CW domain of ASHH2 is conserved in rice. According to the sequence alignment results, residues that specifically recognize A1 and T3 are highly conserved among green plants.

Discussion

In this work, we investigated the binding ability and preference of the CW domains of *Arabidopsis* SDG8 and rice SDG725 to the monomethylated histone H3K4 peptide, and we determined the crystal structure of SDG8-CW in complex with H3K4me1 peptide. We found that the N-terminus of H3 is critical for the sequence specific binding, and residues on the C-terminal alpha helix are the determinants of the monomethyllysine recognition. Mutation on leads to a conversion of the binding preference from monomethylated lysine to trimethylated lysine. By analyzing the sequences and structures of other CW domains, we found that the existence of α1 is a unique phenomenon in the CW domains of ASHH2 homologs among green plants. Our findings may provide structural insights into the molecular mechanism of the specific recognition of a histone H3K4me1 marker by the SDG8-CW domain.

So far, many crystal structures of histone reader and histone H3K4 peptides have been reported (45, 46). However, most of these structures are in complex with H3K4me3 or unmethylated H3K4. Two structures of histone readers in complex with H3K4me1 have been previously published in the PDB data bank, including MORC3-CW-H3K4me1 (PDB 5SVY) (40), and WDR5-H3K4me1 (PDB 2H9N) (47). However, these two proteins are not H3K4me1 readers. They preferentially bind trimethylated H3K4 (MORC3-CW) and unmethylated H3K4 (WDR5), respectively. Therefore, our structure is the first H3K4me1-specific reader protein in complex with H3K4me1.

We compared our crystal structure with other reported human CW domain structures, such as MORC3 and ZCWPW2, revealing some differences between an H3K4me1-reader CW domain and H3K4me3-reader CW domains (23). In our structure, A1 and T3 are key residues in the sequence-specific recognition. R2 plays less important roles than A1 and T3. R2 is sandwiched by R867 and E887 in SDG8 (Figs. 2B, 2D). However, the guanidinium moiety is closer to R867, which causes electrostatic repulsion. Mutation of R2 to alanine only decreased the binding about 5-fold. In MORC3-CW-H3K4me3 complex and ZCWPW2-CW-H3K4me3 complex structures, the corresponding residues of R867 are Q412 and Q32, respectively (23). Thus, R2 forms hydrogen bonds with Q412 or Q32 (Figs. 7A, 7B). Mutation of R2 to alanine nearly abolishes the binding by ZCWPW2-CW (23). No binding could be detected...
in an NMR experiment of MORC3-CW titrated with the histone H3K4me3 peptides (residues 3–10) in the absence of A1 and R2 (40). We noticed the orientation of histone H3K4me peptides starting from residue Q5, as they are quite different in the SDG8-CW-H3K4me1 complex structure compared with similar structures (Figs. 7C, 7D). In the MORC3-CW or ZCWPW2-CW complex structures, the C-terminal histone peptides form anti-parallel β-strands with β1. However, in our structure, the C-terminal α1 helix blocks the position, so that the direction of the peptide flips away and cannot form anti-parallel β-strands. Moreover, the existence of α1 results in narrower and tighter binding to the methylated lysine. By contrast, in the MORC3-CW-H3K4me3 and ZCWPW2-CW-H3K4me3 complex structures, the trimethylated lysine is surrounded by three aromatic residues in a much more open and large pocket (Fig. 7E, 7F). If we model the trimethylated lysine in the structure of SDG8-CW, a steric hindrance occurs between the trimethyl group and the binding pocket is observed (Fig. 7G). Similarly, unmethylated lysine does not fit well into the pocket, leaving behind a portion of a cavity in the pocket (Fig. 7H). Our crystal structure reveals that the hydrophobic, narrow pocket of SDG8-CW excludes binding of a higher methylation state of lysine due to steric hindrance (Fig. 7I).

In *Arabidopsis*, SDG8 is an H3K36 methyltransferase, which catalyzes the di-methylation and tri-methylation of H3K36 and functions in nutrient and energy metabolism, cell differentiation, flowering timing and so on (30, 48, 49). The function of the CW domain in SDG8 remains unclear. In animals, the H3K4me1 marker is associated with enhancers (50). However, the H3K4me1 in *Arabidopsis* is predominantly located on gene bodies, especially the transcribed regions correlated with the CG DNA methylation (51-53). How the combination of a histone H3K4me1 reader and an H3K36me2/3 writer interprets the effect on gene regulation, plant development, and stress response remains to be elucidated. Based on our study, we propose that SDG8 is recruited via the CW domain to the H3K4me1 labeled transcribed region to deposit the H3K36me2/3 marker and is subject to gene regulation.

Experimental procedures

Protein expression and purification

The cDNA encoding the CW domain of *Arabidopsis thaliana* SDG8 (residues 862–921) and *Oryza sativa* SDG725 (residues 41–101) were amplified by PCR and cloned into the modified pET28-SMT3 vector with an N-terminal His-SUMO tag. Site-specific mutants were generated using a Site-Directed Mutagenesis kit (NEB) according to the manufacturer’s instructions. The plasmid was transformed into *Escherichia coli* strain BL21 (DE3). The cells were cultured in LB medium with 50 µg/mL kanamycin and 0.1 mM ZnSO4. The cells were induced by isopropyl-β-d-thiogalactopyranoside (IPTG) at a final concentration of 0.2 mM and continued growing at 18°C for 18 hours. Cells were harvested by centrifugation and re-suspended in 20 mM Tris pH 8.0, 500 mM NaCl, 25 mM imidazole. Cells were lysed by French press (JNBIO). Wild-type and mutant proteins were purified by HisTrap column (GE healthcare), followed by removal of the His-SUMO tag by Ulp1 digestion. The target protein was further purified by ion exchange chromatography using HiTrap Q column (GE healthcare) and size exclusive chromatography using Superdex G75 Hiload 16/60 column (GE healthcare). Fractions with target proteins were pooled and concentrated to 50 mg/mL in a buffer
containing 10 mM Tris pH 8.0, 100 mM NaCl, 1 mM Dithiothreitol for structural and biochemical studies. Sequence alignment was calculated using Jalview (54) and amino acid residues were shaded according to ESPript server (55).

Crystallization, data collection and structure determination

To crystallize SDG8-CW E917A and H3K4me1 complex, purified E917A protein (40 mg/mL) and H3K4me1 (residues 1–9) was mixed at 1:2 ratio and incubated on ice for 1 hour. The SDG8-CW E917A-H3K4me1 complex was crystallized by the hanging drop vapor diffusion method. The well buffer contained 0.1 M Tris pH 8.5, 30% PEG 3350, 30% isopropanol. X-ray diffraction data were collected at BL19U1 of SSRF (Shanghai Synchrotron Radiation Facility). Crystals were flash frozen under a cold nitrogen stream (100 K) during data collection. The data were processed using the HKL3000 program suite (56). Initial phases were determined by the single-wavelength anomalous dispersion method using zinc anomalous scattering. Phenix program suite was used for location of Zn positions, phasing, and density modification (57). The graphics program COOT was used for model building (58), and refinement was performed using Phenix. The structure was analysed using the MolProbity server (59). Phasing and refinement statistics are listed in Table 1. Buried surface area was calculated using PISA (42). Figures were generated using Pymol (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). Electrostatic surface potential was calculated with the PDB2PQR server (60).

Isothermal titration calorimetry assays

ITC experiments were performed at 20 °C on a MicroCal iTC200 (Malven). Protein and peptide were kept in an identical buffer of 20 mM Tris pH 8.0, 100 mM NaCl. The sample cell was filled with a 0.05 mM solution of protein, and the injection syringe with 1 mM of the titrating ligand. Each titration consisted of 20 2-µL injections with 2 min intervals. Binding isotherms were analyzed by fitting data into the one-site model using the ITC data analysis module Origin 7.0 software.
Accession numbers
The Coordinates and structure factors have been deposited in PDB with accession number 5YVX.

Acknowledgments: We thank Prof. Wenhui Shen at Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg for providing us the cDNA of SDG8, and Prof. Aiwu Dong at Fudan University for providing us the cDNA of OsSDG725. We thank National Center for Protein Science Shanghai (NCPSS) for their instrumental support and technical assistance. We thank the staff from BL19U1 beamline of the National Facility for Protein Science Shanghai (NFPS) at Shanghai Synchrotron Radiation Facility (SSRF) for assistance during data collection.

Conflict of interests: The authors declare that there are no conflict of interests in this study.

Author contribution: Y.L. performed all the experiments under the supervision of Y.H. Y.H. conceived the project and wrote the manuscript.
Crystal structure of SDG8-CW in complex with H3K4me1

References

1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260
2. Allfrey, V. G., Faulkner, R., and Mirsky, A. E. (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of RNA Synthesis. Proc. Natl. Acad. Sci. U. S. A. 51, 786-794
3. Cosgrove, M. S. (2007) Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert review of proteomics 4, 465-478
4. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858-5868
5. Jenuwein, T., and Allis, C. D. (2001) Translating the histone code. Science 293, 1074-1080
6. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693-705
7. Shilatifard, A. (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243-269
8. Strahl, B. D., and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41-45
9. Bannister, A. J., Schneider, R., and Kouzarides, T. (2002) Histone methylation: dynamic or static? Cell 109, 801-806
10. Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349-352
11. Goldberg, A. D., Allis, C. D., and Bernstein, E. (2007) Epigenetics: a landscape takes shape. Cell 128, 635-638
12. Yun, M., Wu, J., Workman, J. L., and Li, B. (2011) Readers of histone modifications. Cell Res. 21, 564-578
13. Ruthenburg, A. J., Li, H., Patel, D. J., and Allis, C. D. (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983-994
14. Zhang, Y., and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343-2360
15. Maurer-Stroh, S., Dickens, N. J., Hughes-Davies, L., Kouzarides, T., Eisenhaber, F., and Ponting, C. P. (2003) The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28, 69-74
16. Musselman, C. A., Lalonde, M. E., Cote, J., and Kutateladze, T. G. (2012) Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218-1227
17. Pena, P. V., Davrazou, F., Shi, X., Walter, K. L., Verkhusha, V. V., Gozani, O., Zhao, R., and Kutateladze, T. G. (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100-103
18. Rajakumara, E., Wang, Z., Ma, H., Hu, L., Chen, H., Lin, Y., Guo, R., Wu, F., Li, H., Lan, F., Shi, Y. G., Xu, Y., Patel, D. J., and Shi, Y. (2011) PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol. Cell 43, 275-284
Crystal structure of SDG8-CW in complex with H3K4me1

19. Schmitges, F. W., Prusty, A. B., Faty, M., Stutzer, A., Lingaraju, G. M., Aiwazian, J., Sak, R., Hess, D., Li, L., Zhou, S., Bunker, R. D., Wirth, U., Bouwmeester, T., Bauer, A., Ly-Hartig, N., Zhao, K., Chan, H., Gu, J., Gut, H., Fischle, W., Muller, J., and Thoma, N. H. (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330-341

20. He, F., Umehara, T., Saito, K., Harada, T., Watanabe, S., Yabuki, T., Kigawa, T., Takahashi, M., Kuwasako, K., Tsuda, K., Matsuda, T., Aoki, M., Seki, E., Kobayashi, N., Guntert, P., Yokoyama, S., and Muto, Y. (2010) Structural insight into the zinc finger CW domain as a histone modification reader. Structure 18, 1127-1139

21. Hoppmann, V., Thorstensen, T., Kristiansen, P. E., Veiseth, S. V., Rahman, M. A., Finne, K., Aalen, R. B., and Aasland, R. (2011) The CW domain, a new histone recognition module in chromatin proteins. EMBO J. 30, 1939-1952

22. Liu, Y., Liu, S., Zhang, X., Liang, X., Zahid, K. R., Liu, K., Liu, J., Deng, L., Yang, J., and Qi, C. (2016) Structure and Function of CW Domain Containing Proteins. Current protein & peptide science 17, 497-506

23. Liu, Y., Tempel, W., Zhang, Q., Liang, X., Loppnau, P., Qin, S., and Min, J. (2016) Family-wide Characterization of Histone Binding Abilities of Human CW Domain-containing Proteins. J. Biol. Chem. 291, 9000-9013

24. Perry, J., and Zhao, Y. (2003) The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants. Trends Biochem. Sci. 28, 576-580

25. Liggins, A. P., Cooper, C. D., Lawrie, C. H., Brown, P. J., Collins, G. P., Hatton, C. S., Pulford, K., and Banham, A. H. (2007) MORC4, a novel member of the MORC family, is highly expressed in a subset of diffuse large B-cell lymphomas. Br. J. Haematol. 138, 479-486

26. Suzuki, M., Wang, H. H., and McCarty, D. R. (2007) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol. 143, 902-911

27. Wang, G. L., Wang, C. Y., Cai, X. Z., Chen, W., Wang, X. H., and Li, F. (2010) Identification and expression analysis of a novel CW-type zinc finger protein MORC2 in cancer cells. Anat Rec (Hoboken) 293, 1002-1009

28. Zhang, Z., Zhang, F., Cheng, Z. J., Liu, L. L., Lin, Q. B., Wu, F. Q., Zhang, H., Wang, J. L., Wang, J., Guo, X. P., Zhang, X., Lei, C. L., Zhao, Z. C., Zhu, S. S., and Wan, J. M. (2017) Functional characterization of rice CW-domain containing zinc finger proteins involved in histone recognition. Plant Sci. 263, 168-176

29. Fang, R., Chen, F., Dong, Z., Hu, D., Barbera, A. J., Clark, E. A., Fang, J., Yang, Y., Mei, P., Rutenberg, M., Li, Z., Zhang, Y., Xu, Y., Yang, H., Wang, P., Simon, M. D., Zhou, Q., Li, J., Marynick, M. P., Li, X., Lu, H., Kaiser, U. B., Kingston, R. E., Xu, Y., and Shi, Y. G. (2013) LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol. Cell 49, 558-570

30. Xu, L., Zhao, Z., Dong, A., Soubigou-Taconnat, L., Renou, J. P., Steinmetz, A., and Shen, W. H. (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes
involved in flowering time regulation and other processes in Arabidopsis thaliana. *Mol. Cell. Biol.* **28**, 1348-1360

31. Zhao, Z., Yu, Y., Meyer, D., Wu, C., and Shen, W. H. (2005) Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. *Nat. Cell Biol.* **7**, 1256-1260

32. Berr, A., McCallum, E. J., Alioua, A., Heintz, D., Heitz, T., and Shen, W. H. (2010) Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. *Plant Physiol.* **154**, 1403-1414

33. Cazzonelli, C. I., Cuttriss, A. J., Cossetto, S. B., Pye, W., Crisp, P., Whelan, J., Finnegan, E. J., Turnbull, C., and Pogson, B. J. (2009) Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. *Plant Cell* **21**, 39-53

34. Cazzonelli, C. I., Roberts, A. C., Carmödy, M. E., and Pogson, B. J. (2010) Transcriptional control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis development. *Molecular plant* **3**, 174-191

35. Dong, G., Ma, D. P., and Li, J. (2008) The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. *Biochem. Biophys. Res. Commun.* **373**, 659-664

36. Grini, P. E., Thorstensen, T., Alm, V., Vizcay-Barrena, G., Windju, S. S., Jorstad, T. S., Wilson, Z. A., and Aalen, R. B. (2009) The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. *PLoS One* **4**, e7817

37. Li, Y., Mukherjee, I., Thum, K. E., Tanurdzic, M., Katari, M. S., Obertello, M., Edwards, M. B., McCombie, W. R., Martienssen, R. A., and Coruzzi, G. M. (2015) The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. *Genome Biol.* **16**, 79

38. Tang, X., Lim, M. H., Pelletier, J., Tang, M., Nguyen, V., Keller, W. A., Tsang, E. W., Wang, A., Rothstein, S. J., Harada, J. J., and Cui, Y. (2012) Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. *Journal of experimental botany* **63**, 1391-1404

39. Wang, X., Chen, J., Xie, Z., Liu, S., Nolan, T., Ye, H., Zhang, M., Guo, H., Schnable, P. S., Li, Z., and Yin, Y. (2014) Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana. *Molecular plant* **7**, 1303-1315

40. Andrews, F. H., Tong, Q., Sullivan, K. D., Cornett, E. M., Zhang, Y., Ali, M., Ahn, J., Pandey, A., Guo, A. H., Strahl, B. D., Costello, J. C., Espinosa, J. M., Rothbart, S. B., and Kutateladze, T. G. (2016) Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase. *Cell reports* **16**, 3195-3207

41. Goldschmidt, L., Cooper, D. R., Derewenda, Z. S., and Eisenberg, D. (2007) Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. *Protein Sci.* **16**, 1569-1576

42. Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. *J. Mol. Biol.* **372**, 774-797
Crystal structure of SDG8-CW in complex with H3K4me1

43. Chen, F., Yang, H., Dong, Z., Fang, J., Wang, P., Zhu, T., Gong, W., Fang, R., Shi, Y. G., Li, Z., and Xu, Y. (2013) Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res. 23, 306-309

44. Holm, L., and Laakso, L. M. (2016) Dali server update. Nucleic Acids Res. 44, W351-355

45. Patel, D. J. (2016) A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb. Perspect. Biol. 8, a018754

46. Patel, D. J., and Wang, Z. (2013) Readout of epigenetic modifications. Annu. Rev. Biochem. 82, 81-118

47. Schuetz, A., Allali-Hassani, A., Martin, F., Loppnau, P., Vedadi, M., Bochkarev, A., Plotnikov, A. N., Arrowsmith, C. H., and Min, J. (2006) Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J. 25, 4245-4252

48. Shafiq, S., Berr, A., and Shen, W. H. (2014) Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation. The New phytologist 201, 312-322

49. Cazzonelli, C. I., Nisar, N., Roberts, A. C., Murray, K. D., Borevitz, J. O., and Pogson, B. J. (2014) A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation. Frontiers in plant science 5, 533

50. Cheng, J., Blum, R., Bowman, C., Hu, D., Shilatifard, A., Shen, S., and Dynlacht, B. D. (2014) A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol. Cell 53, 979-992

51. Roudier, F., Ahmed, I., Berard, C., Sarazin, A., Mary-Huard, T., Cortijo, S., Bouyer, D., Caillieux, E., Duvernois-Berthet, E., Al-Shikhley, L., Giraut, L., Despres, B., Drevensek, S., Barneche, F., Derozier, S., Brunaud, V., Aubourg, S., Schnittger, A., Bowler, C., Martin-Magniette, M. L., Robin, S., Caboche, M., and Colot, V. (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928-1938

52. Sequeira-Mendes, J., Araguez, I., Peiro, R., Mendez-Giraldez, R., Zhang, X., Jacobsen, S. E., Bastolla, U., and Gutierrez, C. (2014) The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell 26, 2351-2366

53. Zhang, X., Bernatavichute, Y. V., Cokus, S., Pellegrini, M., and Jacobsen, S. E. (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10, R62

54. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., and Barton, G. J. (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191

55. Robert, X., and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320-324

56. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326
Crystal structure of SDG8-CW in complex with H3K4me1

comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213-221

58. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486-501

59. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 12-21

60. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., and Baker, N. A. (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res.* **32**, W665-667
FOOTNOTES
This work was supported by grants from the National Natural Science Foundation of China (91640102 to Y.H.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08010202 to Y.H.), the Open Research Project on Major Infrastructure of Science and Technology of the Chinese Academy of Sciences, and State Key Laboratory of Molecular Biology.

The abbreviations used are: H3K4, histone H3 Lysine 4; H3K4me1, monomethylated H3K4; SDG8-CW, CW domain of SDG8; CD, chromodomain; MBT, malignant brain tumor; PHD, Plant homeo domain; ITC, isothermal titration calorimetry; K_D, equilibrium disassociation constants; SAD, single-wavelength anomalous dispersion; RMSD, root-mean-square-deviation; IPTG, isopropyl-β-d-thiogalactopyranoside
Table 1. Crystallographic statistics of SDG8-CW and H3K4me1 complex

Data collection	
Space group	P6₃
Cell dimension	a, b, c (Å)
	66.4, 66.4, 29.2
	α, β, γ (°)
	90, 90,120
Wavelength (Å)	1.2824
Resolution range (Å)²	30.00-1.59 (1.65-1.59)
Completeness (%)	98.6 (89.0)
Rmerge (%)	12.2 (58.1)
I/σ(I)	26.6 (2.3)
Redundancy	6.4 (2.9)

Refinement	
Resolution range (Å)	28.76-1.59
No. of reflections	19,132
Rwork (%)/Rfree (%)	16.75/18.45
No. atoms	
Protein	475
Peptide	54
Water	84
B-factors	
Protein	25.7
Peptide	33.0
Water	35.2
R.m.s.deviations	
Bond length (Å)	0.007
Bond angles (°)	0.991
Ramachandran plot	
Most favored region (%)	100
Allowed region (%)	0
Outliers (%)	0
MolProbity Analysis	
Clashscore	0.97
Overall score	0.97
Rotamer outliers (%)	1.8
C-beta outliers (%)	0

²Values in parentheses are for the highest-resolution shell.
Figure 1. Overall structure of SDG8-CW in complex with H3K4me1. (A) Domain architecture of Arabidopsis thaliana SDG8. The amino acid positions at domain junctions are indicated. The CW domain is colored in green. The AWS and the SET domain are colored in yellow and orange, respectively. (B) Purified wild-type and E917A mutant SDG8-CW (residues 862-921) stained by coomassie blue. (C) ITC measurements of the interaction between wild-type and E917A mutant SDG8-CW and the indicated histone peptides. (D) Cartoon representation of overall structure of SDG8-CW colored green in complex with H3K4me1 peptide colored in yellow. View of 90° rotation around the vertical axis is shown in right. (E) Ball and stick representation of the conserved zinc finger of SDG8-CW. The zinc atom is colored in red and the sulfur atoms are colored in orange. The chelate bonds are indicated by yellow dashes. (F) Surface representation of SDG8-CW and H3K4me1 peptide. (G) Residues consisting of aromatic cages are shown as sticks. (H) Superimposition of CW domains of SDG8 (green), MORC3 (blue), ZCWPW2 (pink) and LSD2 (wheat).
Crystal structure of SDG8-CW in complex with H3K4me1

Figure 2. Interactions of SDG8-CW and H3K4me1 peptide. (A) 2Fo-Fc electron density map (contoured at 0.5 σ cutoff, blue mesh) of H3K4me1 peptide. (B) Details of intermolecular interactions between SDG8-CW and H3K4me1 peptide. Residues are shown as sticks and water molecules are shown as gray spheres. Hydrogen bonds are indicated as orange dashes. (C) Electrostatic potential of the surface of SDG8-CW, calculated by the PDB2PQR server with H3K4me1 binding on the concave surface (60). (D)–(G) Detailed interactions between N-terminal-residues ARTK of H3K4me1 and SDG8-CW. Residues in sticks are shown in top panel and surface structures are shown in bottom panel.
Figure 3. SDG8-CW interacts with histone H3 tail with specific recognition of sequence and preference of lysine methylation level. (A) Sequence of H3K4me1 mutant peptides. Residues substituted by alanine are in italics. (B) ITC measurements of the interaction between SDG8-CW and H3K4me1 mutant peptides. (C)–(G) ITC measurements of the interaction between SDG8-CW mutant and H3K4 peptides. (H) K_D fold change of the binding of H3K4me peptides by wild-type and mutant SDG8-CW.
Crystal structure of SDG8-CW in complex with H3K4me1

Figure 4. SDG-CW undergoes conformational change upon binding to H3K4me1. (A) Superimposition of SDG8-CW in apo form (salmon) and SDG8-CW (green) in complex with H3K4me1 peptide (yellow). (B) A stereo view of the conformational change at SDG8-CW η1 turn due to H3K4me1 peptide binding. Key residues involved in binding are shown in sticks. (C) Superimposition of aromatic cage of SDG8-CW in apo form and in complex with H3K4me1 peptide. (D) Surface representation of the aromatic cage of SDG8-CW in apo form with residues shown in sticks. (E) Conformational change at SDG8-CW C-terminal alpha-helix due to H3K4me1 peptide binding.
Figure 5. Sequence alignment of CW proteins in species. Sequence alignment was calculated using Jalview (53) and amino acid was shaded according to ESPript server (54). Secondary structural elements of SDG8-CW are displayed above the sequence alignment. The conserved zinc-binding mode is shown by lines at the bottom of the alignment. The residues that form the conserved aromatic cage are marked by red circles and the various residues of the aromatic cage are marked by green frames, respectively. The key residues involved in histone tail sequence specific recognition are marked by green triangles. (A) Sequence alignment of CW domains in human and plant. (B) Sequence alignment of SDG8 CW domain with its homologs from other plants. Accession numbers: Glycine max XP_003524665.1, XP_003550033.1; Arabidopsis lyrata XP_002866959.1; Brassica napus XP_013722997.1; Camelina sativa XP_010446680.1; Ricinus communis XP_002524929.1, XP_015578314.1; Theobroma cacao XP_007047399.1, XP_007047400.1; Sorghum bicolor KXG30057.1; Zea mays AFW70861.1; Elaeis guineensis XP_010928390.1; Phoenix dactylifera XP_010928390.1; Triticum urartu EMS62229.1.
Crystal structure of SDG8-CW in complex with H3K4me1

Figure 6. The CW domain of OsSDG725 in rice showed the similar binding preference as SDG8-CW. (A) Domain architecture of *Oryza sativa* SDG725. The CW domain is colored in blue. The AWS and the SET domain are colored in yellow and orange, respectively. (B) ITC measurements of the interaction between SDG725-CW and the indicated histone peptides. (C)–(G) ITC measurements of the interaction between the SDG725-CW mutant and H3K4 peptides. (H) ITC measurements of the interaction of SDG725-CW and H3K4me1 mutant peptides. (I) *K*_D fold change of the binding of H3K4me peptides by wild-type and mutant SDG725-CW.

Peptide	wild-type	W44A	I95A	N96A	I95A/N96A
H3K4me1	1	26	74	21	102
H3K4me2	1	24	38	7	37
H3K4me3	1	31	6	14	5
Figure 7. Structure comparison of SDG8-CW-H3K4me1 complex with MORC3-CW-H3K4me3 complex and ZCWPW-CW-H3K4me3 complex. (A) Structure of MORC3-CW colored in blue, binding with H3K4mfe3 peptide colored in gray (PDB:4QQ4). (B) Structure of ZCWPW2-CW colored in pink binding with H3K4mfe3 peptide colored in gray (PDB:4O62). (C) Superimposition of SDG8-CW-H3K4me1 complex with MORC3-CW-H3K4me3 complex. (D) Superimposition of SDG8-CW-H3K4me1 complex with ZCWPW2-CW-H3K4me3 complex. (E) Surface representation of MORC3-CW with trimethylated lysine binding on the concave surface shown in spheres. (F) Surface representation of ZCWPW2-CW with trimethylated lysine binding on the concave surface shown in spheres. (G) Surface representation of SDG8-CW with docked tri-methylated lysine of ZCWPW2-CW-H3K4me3 complex shown in spheres. (H) Surface representation of SDG8-CW with unmethylated lysine shown in spheres. (I) Surface representation of SDG8-CW with mono-methylated lysine binding on the concave surface shown in spheres.
Uncovering the mechanistic basis for specific recognition of monomethylated H3K4 by the CW domain of Arabidopsis histone methyltransferase SDG8
Yanchao Liu and Ying Huang

J. Biol. Chem. published online March 1, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.001390

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts