The expression of Oct3/4A mRNA and not its isoforms is upregulated by the HPV16 E7 oncoprotein

Yazmín Gómez-Gómez1 · Jorge Organista-Nava1 · Sayuri Itzel Clemente-Periván1 · Alfredo Lagunas-Martínez2 · Eric Genaro Salmerón-Bárdenas3 · Daniel Villanueva-Morales3 · Dania Yahaira Ayala-Reyna1 · Luz del Carmen Alarcón-Romero4 · Julio Ortiz-Ortiz1 · Marco Antonio Jiménez-López5 · Ciresthel Bello-Rios1 · Marco Antonio Leyva-Vázquez1 · Berenice Illades-Aguiar1

Received: 6 May 2022 / Accepted: 28 September 2022 / Published online: 15 November 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Purpose Oct3/4 a transcription factor is involved in maintaining the characteristics of cancer stem cells. Oct3/4 can be expressed differentially with respect to the progression of cervical cancer (CC). In addition, Oct3/4 can give rise to three isoforms by alternative splicing of the mRNA Oct3/4A, Oct3/4B and Oct3/4B1. The aim of this study was to evaluate the mRNA expression from Oct3/4A, Oct3/4B and Oct3/4B1 in low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), CC samples, and measure the effect of the HPV16 E7 oncoprotein on the mRNA expression from Oct3/4 isoforms in the C-33A cell line.

Methods The expression levels of Oct3/4A, Oct3/4B and Oct3/4B1 mRNA were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in patients with LSILs, HSILs and CC. Additionally, C-33A cells that expressed the HPV16 E7 oncoprotein were established to evaluate the effect of E7 on the expression of Oct3/4 mRNA isoforms.

Results Oct3/4A (p = 0.02), Oct3/4B (p = 0.001) and Oct3/4B1 (p < 0.0001) expression is significantly higher in patients with LSIL, HSIL and CC than in woman with non-IL. In the C-33A cell line, the expression of Oct3/4A mRNA in the presence of the E7 oncoprotein increased compared to that in nontransfected C-33A cells.

Conclusion Oct3/4B and Oct3/4B1 mRNA were expressed at similar levels among the different groups. These data indicate that only the mRNA of Oct3/4A is upregulated by the HPV16 E7 oncoprotein.

Keywords Oct3/4 isoforms · Oct3/4A · Oct3/4B · Oct3/4B1 · HPV16 E7 oncoprotein

Introduction
Cervical cancer (CC) is a worldwide public health problem, ranking fourth in incidence and mortality among cancers [1]. CC is a multifactorial disease [2, 3]. However, persistent high-risk human papillomavirus (HR-HPV) infection, mainly HPV types 16 and 18, is the most important risk factor and is mainly related to oncogenic potential of the E6 and E7 oncoproteins [4, 5]. The E7 oncoprotein of HPV promotes cell proliferation and inactivates the G1-S...
checkpoint of the cell cycle [6]. In addition to HPV oncoproteins, genes associated with stem cells, including Oct3/4, Sox2 and Nanog, have also been shown to be related to CC and are overexpressed in CC cells [7–9].

Octamer-binding transcription factor 4 (Oct3/4), also known as POU5F1, is a nuclear transcription factor of the POU family that binds to the 5′-ATTTGCAT-3′ octamer motif, forms a trimeric complex with Sox2 in the DNA and controls the expression of several genes involved in embryonic development [10]. The human POU5F1 gene consists of five exons that can generate three isoforms, Oct3/4A, Oct3/4B and Oct3/4B1 [11, 12], by alternative mRNA splicing, and these isoforms generate four proteins: Oct3/4A, Oct3/4B-190, Oct3/4B-265 and Oct3/4B-164 [11]. Oct3/4 is overexpressed in CC [8, 9]. Oct3/4 has also been reported to be overexpressed in HR-HPV-positive CC cell lines (HeLa and Caski) compared to HPV-negative cell lines (C-33A). Therefore, Oct3/4 overexpression is closely related to HR-HPV infection (HPV16 and HPV18)[13].

Previously, it was observed that the E7 oncoprotein upregulates the expression of factors such as Oct3/4, Sox2 and Nanog both in vivo and in vitro [14]. However, it is unknown which isoform is deregulated by the HPV16 E7 oncoprotein. While the expression of Oct3/4 has been detected in several cancer cell lines and tumors, little information exists about the differences in the expression of Oct3/4 splice variants in CC. Indeed, almost nothing is known about the expression of Oct3/4 isoform variant in cervical tissues. Thus, we investigated the expression of Oct3/4 isoforms in a series of cervical samples, and we analyzed the effect of the E7 oncoprotein of HPV16 on the level of mRNA expression of the Oct3/4 isoforms, contributing to understanding the importance of Oct3/4 expression in the development of CC and improving its application in clinical diagnosis.

Materials and Methods

Public gene expression data download and analysis

Gene expression data related to CC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO: www.ncbi.nlm.nih.gov/geo). TCGA analysis was performed using cBioPortal [15, 16] and Gene Expression Profiling Interactive Analysis (GEPIA) [17] software. GEO analysis was performed with the GSE7803 dataset [18] (platform: GPL96 [HG-U133A] Affymetrix Human Genome U133A Array) in GEO2R software [19]. Data for nonmalignant cervical tissues and various International Federation of Gynecology and Obstetrics (FIGO) stages of carcinomas from the TCGA dataset were used to assess the differences in Oct3/4 mRNA expression levels.

Patients and clinical samples

A total of 67 females aged 19–88 years were enrolled in this study from September 2017 to March 2019. All participants were from the Servicio de Diagnóstico Integral en la Detección Oportuna de Cáncer Cervico Uterino y VPH of the Facultad de Ciencias Químico Biológicas at the Universidad Autónoma de Guerrero and the Servicio de Ginecología Oncológica at the Instituto Estatal de Cancerología “Dr. Arturo Beltran Ortega” (Guerrero, Mexico).

The patient samples were further divided into two groups: (1) those sent to the histopathology service for diagnosis according to the classification system of the FIGO [non-intraepithelial lesion (non-IL; N = 18), low-grade squamous intraepithelial lesion (LSIL; N = 13), high-grade squamous intraepithelial lesion (HSIL; N = 15) and CC (N = 21)] and (2) those sent for DNA and RNA extraction for HPV16 typing and analysis of expression of the Oct3/4 isoforms. The exclusion criteria for the study were as follows: patients with a history of chemotherapy or radiotherapy; patients with previous physical treatment of the cervix; and patients with autoimmune diseases. This study was reviewed and approved by the ethical committee of each participating institution. All procedures were in accordance with the Helsinki Declaration. Informed consent was obtained from all participants. Data confidentiality was maintained throughout the study.

Sample collection and DNA extraction

Sample collection was performed as described previously. Briefly, all women (n = 67) included in this study provided exo-endocervical, exfoliated cell samples collected by sampling the ectocervix with an Ayre spatula and endocervix with a cytobrush, ensuring that tissue from the transformation zone was obtained. Smears were utilized for cytomorphological examination using conventional Papanicolaou. For women who were cytologically diagnosed with No-IL or LSIL, a biopsy was not performed. For women with a cytological diagnosis of HSIL or CC, a biopsy was performed to confirm the diagnosis [20].

For HPV detection, cytobrushes with cervical scrapes (non-IL and LSIL) were placed in lysis buffer (10 mM Tris pH 8.0, 20 mM EDTA pH 8.0, and 0.5% sodium dodecyl sulfate) and removed after the cervical material was separated; the samples were stored at −20°C until analysis. For HPV detection in women with HSIL or CC, biopsy
specimens were eluted in phosphate-buffered saline (PBS) and stored at −70°C until analysis. DNA purification from cervical samples was performed with the standard SDS-proteinase K-phenol-chloroform method [21].

HPV16 detection

HPV16 DNA was detected and identified by the INNO-LiPA HPV Genotyping Extra CE assay. Briefly, PCR was performed in a final reaction volume of 50µl containing 40µl of PCR master mix and 10µl of the extracted DNA. The amplification program was as follows: 9min at 94°C, 40 cycles of 30s at 94°C, 45s at 52°C and 45s at 72°C, with a final extension step at 72°C for 10min. The PCR amplicons were subsequently analyzed by reverse hybridization on a nitrocellulose strip following the manufacturer’s instructions. The line probe assays were evaluated by two independent observers and were adjudicated by a third observer when different results were reported, which did not occur in this study.

Cell culture and transfection

The C33-A cell line was cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, MO, USA) containing 10% FBS (Gibco, Life Technologies, Grand Island, NY, USA) and an antibiotic-antimycotic mixture (100 U/ml penicillin and 100µg/ml streptomycin; Invitrogen, Carlsbad, CA, USA). The cells were cultured in plates and maintained at 37°C with 5% CO2. The cells were transfected with PEGFP-N1-E7 [14] or PEGFP-N1 using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol. Non-transfected C-33A cells were used as a control. 24h after transfection luciferase activity from at least 3 independent transfections was measured in an EVOS FL Cell Imaging System (Life Technologies, USA). The images (20X) are representative of the cell population observed in the experiments performed.

Total RNA extraction and quantitative real-time PCR (RT-qPCR)

Total RNA (large- and small-sized RNAs) from clinical specimens and from cultured cells was extracted using TRIzol Reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s recommended protocol. The A260/A280 ratio was used to assess the purity of the RNA (>1.8 indicated high purity), and the RNA concentration was determined using a spectrophotometer (NanoDrop 2000 Thermo Scientific).

Total RNA (1µg) was reverse transcribed into cDNA with oligo (dT) primers and the Superscript II First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA) for RT-PCR according to the manufacturer’s instructions. Quantitative real-time PCR was performed with a CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, Calif., USA) using TaqMan Universal PCR Master Mix II (Applied Biosystems, Foster City, CA, USA) and the protocol provided by the manufacturer.

PCR was carried out in a final reaction volume of 15µl including 7.5µl 2X TaqMan Universal PCR Master Mix II (containing Taq DNA polymerase, reaction buffer, dNTP mix, 1 mM MgCl2), 0.5 µM of each primer, 5µl of the template (300 ng of template per reaction) and a variable volume of ultrapure water. All primer sequences and product sizes are described in Table S1. The expression levels of the mRNAs were determined from the threshold cycle (Ct), and the relative expression levels were calculated using the \(2^{\Delta\Delta Ct}\) method [22]. For mRNA quantification, the Ct values were normalized to the mRNA expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). mRNA quantification was performed in triplicate, and both negative and positive controls (data not shown) were included in each reaction.

Statistical analysis

The data are presented as the mean ± standard deviation (SD) and were analyzed using GraphPad Prism software (v5.0; GraphPad Software, Inc., CA, USA). The differences between experimental groups were analyzed using a Mann-Whitney test. P values less than 0.05 were considered to indicate a statistically significant difference.

Results

Oct3/4 is expressed in patients with cervical tumors

Analysis of the mRNA from tumor and nontumor samples from the TCGA in GEPIA revealed that the expression of Oct3/4 in tumor samples was upregulated compared with that in nontumor samples (Fig. 1A). Oct3/4 expression was compared between different types of cervical carcinoma samples in cBioPortal and was found to be upregulated in cervical squamous cell carcinoma and endocervical adenocarcinoma (Fig. 1B).
isoforms expression were significantly upregulated in LSIL, HSIL and CC patients (Fig. 2). Our data revealed Oct3/4A expression was detected in 27.00% (5/18) of women with non-ILs. Oct3/4A mRNA was observed in 38.00% (5/13) of LSIL patients and in 40.00% (6/15) of HSIL patients. Oct3/4A mRNA expression was observed in 71.00% (15/25) of CC patients (Fig. 2). The average expression of Oct3/4A mRNA was 7.88 ± 1.15-fold (mean ± standard error [SE]) higher in LSIL patients than in patients with non-ILs (p = 0.004). In patients with HSILs, the Oct3/4A mRNA expression level was also significantly upregulated, with an average of 8.83 ± 6.55-fold increase.

Oct3/4A and Oct3/4B1 are highly expressed in CC

To analyze the Oct3/4 isoforms in CC and compare their expression between them, we used forward, and reverse primers and probes previously reported by Asadi et al., 2011. The primers used prevent the nonspecific amplification of Oct3/4 pseudogenes [23]. To identify whether Oct3/4 isoforms are differentially expressed between LSIL, HSIL and CC patients, samples of LSIL (n = 13), HSIL (n = 15), CC (n = 21) patients and women with non-ILs positive for Oct3/4A, Oct3/4B and Oct3/4B1 expression (n = 18) were examined. The analysis clearly demonstrated that Oct3/4 isoforms expression were significantly upregulated in samples of cervical squamous cell carcinoma and endocervical adenocarcinoma. All samples analyzed were from the TCGA dataset. Abbreviations: CEC: Cervical Endometrioid Carcinoma; CAC: Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; EA: Endocervical Adenocarcinoma; MC: Mucinous Carcinoma; GEPIA: Gene Expression Profiling Interactive Analysis.

Fig. 1 Oct3/4 is upregulated in CC. (A) cBioPortal database analysis revealed that Oct3/4 expression was upregulated in cervical squamous cell carcinoma and endocervical adenocarcinoma patients. The box-plot analysis shows log2 + 1 values on a log-scale. (B) GEPIA database analysis revealed that Oct3/4 expression was upregulated in CC tissues. (C) cBioPortal database analysis showed that expression was upregulated in cervical squamous cell carcinoma and endocervical adenocarcinoma. All samples analyzed were from the TCGA dataset. Abbreviations: CEC: Cervical Endometrioid Carcinoma; CAC: Cervical Adenosquamous Cercinoma; Cervical Squamous Cell Carcinoma; EA: Endocervical Adenocarcinoma; MC: Mucinous Carcinoma; GEPIA: Gene Expression Profiling Interactive Analysis.
of 11.95 ± 4.79-fold compared with that in the women with non-ILs (p = 0.009; Fig. 3C). Compared with that in the women with non-ILs, the expression level of Oct3/4B1 mRNA in the CC patients was significantly upregulated by an average of 15.01 ± 7.31-fold (p < 0.0001; Fig. 3C).

Our data revealed that Oct3/4 isoforms (A, B and B1) are expressed in a higher percentage of CC patients than in women with non-ILs. To obtain a broader view of these results, the level of expression of the Oct3/4A and Oct3/4B isoforms was evaluated from data available in the TCGA and data obtained from a GSE7803 dataset. From this analysis, we observed an upregulation in Oct3/4A and Oct3/4B mRNA levels in CC samples, although this increase was not significant (Fig. 3D to G, p < 0.05). It was previously shown that Oct3/4A functions as the active isoform, while Oct3/4B is more closely related to the regulation of the expression of the active isoform [8], which could explain why the level of expression of Oct3/4B remains constant, while Oct3/4A increases, favouring the maintenance of the CC.

Increased levels of Oct3/4A mRNA are observed in cells expressing the HPV16 E7 oncoprotein

Previously, it was observed that the oncoprotein HPV16 E7 increases the level of Oct3/4 expression both in vivo and in vitro [14]. However, it is unknown which isoform is deregulated by the HPV16 E7 oncoprotein. Here, we observed an effect on the expression of Oct3/4A and Oct3/4B1 mRNA.
with the increase’s degree of lesions in HPV16-positive samples. To investigate the effects of the HPV16 E7 oncoprotein on the expression of Oct3/4 mRNA isoforms, we established C-33A cells that transiently express the E7 oncoprotein, according to a previously reported method [14]. As a positive control for the Oct3/4 mRNA PCR assay, we used cDNAs derived from gastric cancer samples (where it has been reported that Oct3/4 mRNA isoforms are highly expressed [23], data not shown). We used the forward and reverse primers previously reported by Aguilar-Lemarroy et al., 2002 and Xu et al., 2015 [24, 25] to analyse the expression of HPV16 E7 mRNA, which was only observed in C-33A cells that transiently expressed the E7 oncoprotein (PEGFP-N1-E7 cells; Fig. 4D).

As shown in Fig. 4A, the levels of Oct3/4A were significantly upregulated in cells transfected with the HPV16 E7 oncoprotein (P < 0.05); the average Oct3/4A mRNA level was 4.07 ± 1.24-fold (mean ± SE) higher in the C-33A-PEGFP-N1-E7 cells than in the C-33A cells (p = 0.017) and PEGFP-N1 cells (p = 0.032). On the other hand, the

Fig. 3 Expression patterns of Oct3/4A, Oct3/4B and Oct3/4B1 in non-IL, LSIL, HSIL and CC patients. RT-qPCR analysis of the relative expression of Oct3/4A (A), Oct3/4B (B) and Oct3/4B1 (C) mRNA in women with non-ILs and LSIL, HSIL and CC patients. D) The expression levels of Oct3/4 mRNA in healthy women and CC patients from the TCGA dataset. E) The expression levels of Oct3/4A mRNA in healthy women and CC patients from the GSE7803 dataset. F) The expression levels of Oct3/4B mRNA in healthy women and CC patients from the TCGA dataset. G) The expression levels of Oct3/4A mRNA in healthy women and CC patients from the GSE7803 dataset. RT-qPCR experiments with non-IL, LSIL, HSIL and CC samples were performed in triplicate, and the values are expressed as the mean ± SE (normalized to GAPDH). Statistical significance was set to P < 0.05. A Mann-Whitney test was used to assess the differences in the mRNA. Abbreviations: non-IL: non-intraepithelial lesion; LSIL: low-grade squamous intraepithelial lesion; HSIL: high-grade squamous intraepithelial lesion; CC: cervical cancer; RT-qPCR: quantitative reverse transcription PCR; TCGA: The Cancer Genome Atlas; SE, standard error.
E7 oncoprotein had no effect on Oct3/4B and Oct3/4B1 mRNA expression. Regarding Oct4B, there was no change in the level of expression in C-33A-PEGFP-N1-E7 cells (1.42 ± 0.39-fold; p > 0.05) (Fig. 4B). Likewise, analysis of the data concerning the expression of Oct3/4B1 mRNA did not show any significant change in C-33A cells transiently infected with a construct encoding the E7 oncoprotein were performed in triplicate, and the values are expressed as the mean ± SE (normalized to GAPDH). Abbreviations: RT-qPCR: quantitative reverse transcription PCR; SE, standard error.

The HPV16 E7 oncoprotein increases Oct3/4A mRNA expression in C-33A cells. RT-qPCR analysis of the relative expression of Oct3/4A (A), Oct3/4B (B) and Oct3/4B1 (C) mRNA in C-33A cells transiently infected with a construct encoding the HPV16 E7 oncoprotein. D) Representative photographs of GFP expression and HPV16 E7 mRNA expression in C-33A cells transiently infected with a construct encoding the E7 oncoprotein. The black line indicates the mRNA expression of E7 and GAPDH in C-33A cells. The Mann-Whitney test was performed to assess the differences in the mRNA expression levels. The threshold for statistical significance was set at P < 0.05. RT-qPCR experiments in C-33A cells transiently infected with a construct encoding the E7 oncoprotein were performed in triplicate, and the values are expressed as the mean ± SE (normalized to GAPDH). Abbreviations: RT-qPCR: quantitative reverse transcription PCR; SE, standard error.

Discussion

In the present study, Oct3/4A, Oct3/4B and Oct3/4B1 mRNA expression was investigated in non-ILs, LSILs, HSILs and CCs. In addition, we used a cell line that expresses the HPV16 E7 oncoprotein [C-33A cells] to evaluate the effect of the HPV16 E7 oncoprotein on the mRNA expression of...
Oct3/4A, Oct3/4B and Oct3/4B1. Our results suggest that the HPV16 E7 oncoprotein is involved in the overexpression of Oct3/4A mRNA in CC.

The E7 oncoprotein is an important factor in cervical carcinogenesis, and it is also involved in the alteration of a large number of cellular genes [26] and increases the expression of Oct3/4 and stemness-related genes [14]. The human Oct3/4 gene can generate three isoforms by alternative mRNA splicing, Oct3/4A, Oct3/4B and Oct3/4B1 [11, 12]. Oct3/4 plays an important role in maintaining the totipotentiality and pluripotentiality of human embryonic cells [12]. Previous studies have shown that Oct3/4 is overexpressed in CC [8, 9, 27]. Moreover, Oct3/4 can promote carcinogenesis and the development of tumors, while the loss of its expression leads to the loss of self-renewal and proliferation capabilities [28, 29].

Likewise, it has been reported that the HPV E7 oncoprotein binds to Oct3/4 protein, forming a complex both in vitro and in vivo and that Oct3/4 is active and expressed in HR-HPV-transformed cells [30, 31]. However, it is unknown which isoform is deregulated by the HPV16 E7 oncoprotein.

It has also been observed that the HPV16 E7 oncoprotein positively regulates the expression of Oct3/4 at the mRNA and protein levels both in vivo and in vitro, so the HPV16 E7 oncoprotein is proposed as a critical factor for cell self-renewal that facilitates the overexpression of factors related to maintenance of stem features [14, 30]. In 2015, Li et al. observed the expression of Oct3/4 (A and B) isoforms in CC and reported that Oct3/4A is responsible for cell self-renewal, which has also been attributed to the onset of CC, while Oct3/4B increases proliferation and tumor formation due to antiapoptotic activity [8]. Therefore, it is suggested that the expression level of each Oct3/4 isoform could be different in CC due to the presence of oncoproteins, such as the HPV16 E7 oncoprotein. To meet the stated objective, the PEGFP-N1 vector and PEGFP-N1-E7 construct were transiently transfected into HPV-negative C-33A epithelial cells derived from CC.

In this study, the detection of Oct3/4A, Oct3/4B and Oct3/4B1 mRNA expression was performed to identify which of the Oct3/4 isoforms are expressed in samples of patients with LSILs, HSILs and CC positive for HPV16 infection. Oct3/4A and Oct3/4B1 mRNA were mostly expressed in samples from patients with HSILs and CC. Our results are similar to those of Li et al., 2015 and Assadi et al., 2011, who reported overexpression of Oct3/4A mRNA in samples from CC patients [8] and Oct3/4B1 mRNA in samples from gastric cancer patients [23], which could be due to the presence of the E7 oncoprotein of HPV16 in CC patients. Oct3/4 mRNA overexpression is closely related to HR-HPV infection, and the HPV16 E7 oncoprotein plays an important role in Oct3/4 overexpression [8, 9, 14, 30].

The results of this study showed higher expression of Oct4A mRNA in C-33A cells in the presence of the HPV16 E7 oncoprotein than in cells that were not transfected or in cells transfected with the vector PEGFP-N1. A similar behavior was observed for the expression of Oct3/4B and Oct4B1 mRNA since their expression was very similar between the study groups, so the HPV16 E7 oncoprotein seemed to have no effect on the expression levels of Oct3/4B and Oct4B1 mRNA. Our data are consistent with those reported by Wang et al., who showed basal expression of Oct3/4 in C-33A cells, which agrees with our expression data of the different isoforms in C-33A cells without transfection [9]. There is also similarity in our results and those reported by Liu et al., who showed that the expression of Oct3/4 was higher in HR-HPV-positive cells, such as CasKi (HPV16-positive) and HeLa (HPV18-positive) cells, compared to C-33A cells (HPV-negative) [13]. Taken together, these data indicate that the HPV16 E7 oncoprotein is directly or indirectly involved in the upregulation of Oct3/4A, which supports the idea that the transformation of cells mediated by the HPV16 E7 oncoprotein is closely related to the overexpression of Oct3/4A.

Furthermore, it has been reported that Oct3/4 can act as an oncogene and is associated with the triggering of cancerous stem cells [8, 32]. Likewise, during HR-HPV infection, viral DNA can be integrated into host DNA and initiate the synthesis of the E6 and E7 oncoproteins, promoting proliferation by inactivating the p53 and pRB tumor suppressors, respectively [33]. Moreover, it has been shown that the increase in cell proliferation leads to high expression of Oct3/4 in a pRB-dependent manner [34], while the degradation of p53 leads to the upregulation of Nanog [35]. Nanog is a positive regulator of Oct3/4 expression [36]. In addition, it has been observed that the HPV16 E7 oncoprotein also binds to the Oct3/4 protein [30] and that expression of the HPV16 E7 oncoprotein stimulates the Oct3/4 promoter [31]. In addition, it was found that the Oct3/4 gene is auto-regulated by the Oct3/4 protein [37]. These data could help to understand why the high levels of Oct3/4 expression in patient samples could be due to the degradation of p53 by the HR-HPV E6 oncoprotein, leading to overexpression of Nanog, which could lead to an increase in the expression of Oct3/4 in the presence of HPV16 infections. Likewise, pRB degradation by the HR-HPV E7 oncoprotein could also lead to overexpression of Oct3/4. In addition, the interaction between the Oct3/4 protein and HPV16 E7 oncoprotein could modify the transcription of the Oct3/4 gene by directly binding to its promoter region, suggesting that the HPV16 E7 oncoprotein promotes self-renewal through the positive regulation of the Oct3/4 gene, thus maintaining the population of CC stem cells (Fig. 5).
The data shown here suggest that Oct3/4A mRNA expression is positively regulated by the HPV16 E7 oncoprotein. However, future studies needed to clarify the effect of the HPV16 E7 oncoprotein on the Oct3/4 isoforms and to reveal new perspectives on the potential roles of the HPV16 E7 oncoprotein in Oct3/4 protein regulation during CC development. In conclusion, we showed that the presence of the E7 oncoprotein of HPV16 upregulates the expression of Oct4A mRNA.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11033-022-07988-9.

Acknowledgements We thank all of the Instituto Estatal de Cancerología “Dr. Arturo Beltrán Ortega” and Secretaría de Salud personnel who helped with this study at the clinic sites. We also thank technicians of Laboratorio de Biomedicina Molecular for their excellent laboratory assistance.

Author contributions Gómez-Gómez Y: Data collection, Validation, Formal analysis, and Manuscript original draft preparation. Organista-Nava J: Conceptualization, Data collection, Validation, Formal analysis, Project administration, Manuscript writing—review and editing. Clemente-Pérrizán SI: Data collection, Formal analysis, and Manuscript original draft preparation. Lagunas-Martínez A: Data collection. Salmerón-Bárcenas EG: Data collection, and Formal analysis. Villanueva-Morales D: Data collection. Ayala-Reyna DY: Data collection. Alarcón-Romero L del C: Data collection. Ortiz-Ortiz J: Data collection. Bello-Ríos C: Data collection. Jiménez-López MA: Data collection. Leyva-Vázquez MA: Data collection. Illades-Aguilar B: Conceptualization, Project administration and Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding Statement The present study was supported by grant from CONACYT, México (Investigación Científica Básica 2016; grant no. 288612).

Data Availability The data used to support the findings of this study are available from the corresponding author upon request.
Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This study was approved by the Bioethical Committee of the Universidad Autónoma de Guerrero and Instituto Estatal de Cancerología “Dr. Arturo Beltrán Ortega” (approval no. FO-INV-AUT2018).

Consent to participate This study was conducted in accordance with the guidelines of the Declaration of Helsinki. Written informed consent was obtained from all participants prior your registration in this study. Data confidentiality was maintained throughout the study.

Consent for publication All authors consent to the publication of this manuscript.

References

1. GLOBOCAN GLOBOCAN (IARC) (2020) Available online at: https://gco.iarc.fr [accessed June 1, 2020]
2. American Cancer Society (2020) Available online at: https://www.cancer.org/ [accessed November 1, 2020]
3. World Health Organization (2014) Comprehensive cervical cancer control: a guide to essential practice, [Accessed Oct, 2020]; Available at: https://www.ncbi.nlm.nih.gov/books/NBK296919/. 2nd edition ed
4. Lin J, Albers AE, Qin J, Kaufmann AM (2014) Prognostic significance of overexpressed p16INK4a in patients with cervical cancer: a meta-analysis. PLoS ONE 9(9):e106384. https://doi.org/10.1371/journal.pone.0106384
5. Wise-Draper TM, Wells SI (2008) Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci 13:1003–1017. https://doi.org/10.2741/2379
6. Roman A, Munger K (2013) The papillomavirus E7 protein and estradiol in cervical tissue. Virology 447(1–2):155–165. https://doi.org/10.1016/j.virol.2013.08.036
7. Alberti L, Losi L, Levyraz S, Benhattar J (2015) Different Effects of BORIS/CTCF on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells. PLoS ONE 10(7):e0132977. https://doi.org/10.1371/journal.pone.0132977
8. Li S-W, Wu X-L, Dong C-L, Xie X-Y, Wu J-F, Zhang X (2015) The Differential Expression of OCT4 Isosforms in Cervical Carcinoma. PLoS ONE 10(3):e0118033. https://doi.org/10.1371/journal.pone.0118033
9. Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS (2013) OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by mir-125b/BAK1 pathway. Cell Death Dis 4(8):e760. https://doi.org/10.1038/cddis.2013.272
10. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019
11. Wang X, Dai J (2010) Concise review: isosforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 28(5):885–893. https://doi.org/10.1002/stem.419
12. Villodre ES, Kipper FC, Pereira MB, Lenz G (2016) Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 51(1):1–9. https://doi.org/10.1016/j.ctrv.2016.10.003
13. Liu D, Zhou P, Zhang L, Wu G, Zheng Y, He F (2011) Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol 32(5):941–950. https://doi.org/10.1007/s13277-011-0196-z
14. Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, García-Villa E, Bonilla-Delgado J, Lagunas-Martínez A et al (2016) The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology 499(1):230–242. https://doi.org/10.1016/j.virol.2016.09.020
15. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(299):pl1. https://doi.org/10.1126/scisignal.2004088
16. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.cd-12-0095
17. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–w102. https://doi.org/10.1093/nar/gkx247
18. Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble CL et al (2007) Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 67(21):10163–10172. https://doi.org/10.1158/0008-5472.can-07-2056
19. Barrett T, Willhite SE, Ledoux P, Evangelista C, Kim IF, Tomashovsky M et al (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41(1):D991–D995. https://doi.org/10.1093/nar/gks1193
20. Alarcón-Romero LDC, Organista-Nava J, Gómez-Gómez Y, Ortiz-Ortiz J, Hernández-Soto Doyle, Del Moral-Hernández O et al (2022) Prevalence and Distribution of Human Papillomavirus Genotypes (1997–2019) and Their Association With Cervical Cancer and Precursor Lesions in Women From Southern Mexico. Cancer Control 29:1–21. https://doi.org/10.1177/10732748221103331
21. Leonard D, Michael K, James B. Basic methods in molecular biology1994
22. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582. https://doi.org/10.1038/nprot.2006.236
23. Asadi MH, Mowlaj S, Fathi F, Aysenin A, Asadzadeh J, Atlasi Y (2011) OCT4B1, a novel spliced variant of OCT4, is highly expressed in gastric cancer and acts as an antiapoptotic factor. Int J Cancer 128(11):2645–2652. https://doi.org/10.1002/ijc.25643
24. Aquilina-Lemarroy A, Garraud P, Whitaker NJ, Eichhorst ST, zur Hausen H, Krammer PH et al (2002) Restoration of p53 expression sensitizes human papillomavirus type 16 immortalized human keratinocytes to CD95-mediated apoptosis. Oncogene 21(2):165–175. https://doi.org/10.1038/sj.onc.1204979
25. Xu S, Sui S, Zhang J, Bai N, Shi Q, Zhang G et al (2015) Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int J Clin Exp Pathol 8(5):4881–4891
26. Cortés-Malagón EM, Bonilla-Delgado J, Diaz-Chávez J, Hidalgo-Miranda A, Romero-Cordoba S, Uren A et al (2013) Gene expression profile regulated by the HPV16 E7 oncoprotein and estradiol in cervical tissue. Virology 447(1–2):155–165. https://doi.org/10.1016/j.virol.2013.08.036
27. Kim BW, Cho H, Choi CH, Yiya K, Chung YJ, Kim JH et al (2015) Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMC Cancer 15(1):1015. https://doi.org/10.1186/s12877-015-2015-1
28. Chiu SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer
29. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68(16):6533–6540. https://doi.org/10.1158/0008-5472.can-10-2638

30. Panayiotou T, Michael S, Zaravinos A, Demirag E, Achilleos C, Strati K (2020) Human papillomavirus E7 binds Oct4 and regulates its activity in HPV-associated cervical cancers. PLoS Pathog 16(4):e1008468. https://doi.org/10.1371/journal.ppat.1008468

31. Brehm A, Obbo K, Zwierschke W, Bottacin V, Jansen-Dürr P, Schöler HR (1999) Synergism with germ line transcription factor Oct-4: viral oncoproteins share the ability to mimic a stem cell-specific activity. Mol Cell Biol 19(4):2635–2643. https://doi.org/10.1128/mcb.19.4.2635

32. da Silva PBG, Teixeira Dos Santos MC, Rodini CO, Kaid C, Pereira MCL, Furukawa G et al (2017) High OCT4A levels drive tumorigenicity and metastatic potential of medulloblastoma cells. Oncotarget 8(12):19192–19204. https://doi.org/10.18632/oncotarget.15163

33. Gariglio P, Organista-Nava J, Alvarez-Rios E (2016) Role of HR-HPVs E6 and E7 oncoproteins in cervical carcinogenesis. J Mol Genet Med 10(216):1747-0862.1000216. https://doi.org/10.4172/1747-0862.1000216

34. Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S, Zmoos AF et al (2015) Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16(1):39–50. https://doi.org/10.1016/j.stem.2014.10.019

35. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E et al (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7(2):165–171. https://doi.org/10.1038/ncb1211

36. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655. https://doi.org/10.1016/s0092-8674(03)00392-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.