PDGFRα gene, maternal binge drinking and obstructive heart defects

Xinyu Tang1, Johann K. Eberhart3, Mario A. Cleves1, Jingyun Li1, Ming Li4, Stewart MacLeod2, Wendy N. Nembhard2 & Charlotte A. Hobbs2

Obstructive heart defects (OHDs) are a major health concern worldwide. The platelet-derived growth factor (PDGF) genes are known to have regulatory functions that are essential for proper heart development. In a zebrafish model, Pdgfra was further demonstrated to interact with ethanol during craniofacial development. In this article, we investigated interactions between variants in PDGF genes and periconceptional alcohol exposure on the risk of OHDs by applying log-linear models to 806 OHD case and 995 control families enrolled in the National Birth Defects Prevention Study. The interactions between four variants in PDGFA and maternal binge drinking reached a nominal significance level. The maternal T allele of rs869978 was estimated to increase OHD risk among women who binge drink, while infant genotypes of rs2291591, rs2228230, rs1547904, and rs869978 may reduce the risk. Although none of these associations remain statistically significant after multiple testing adjustment and the estimated maternal effect may be influenced by unknown confounding factors, such as maternal smoking, these findings are consistent with previous animal studies supporting potential interactions between the PDGFRα gene and maternal alcohol exposure. Replication studies with larger sample sizes are needed to further elucidate this potential interplay and its influence on OHD risks.

More than 85% of congenital heart defects are thought to result from a complex interplay between maternal exposures, genetic susceptibilities, and epigenetic phenomena. Among all congenital heart defects, right- and left-sided obstructive heart defects (OHDs) are a major health concern since they are the most lethal subtypes of congenital heart defects in infancy. Although studies have investigated the interaction between maternal exposures and genetic variants on risk of congenital heart defects, the impact of various gene-environment interactions during cardiogenesis remains largely unknown.

Alcohol exposure has been linked to the risk of congenital heart defects in both mice and human studies. Webster et al. 1984 demonstrated that a relative short exposure to high doses of alcohol during pregnancy in mice can cause congenital heart defects. Carmichael et al. reported that the risks of conotruncal heart defects associated with consuming five or more drinks per drinking occasion were 1.6 for less than once a week, and 2.4 for once a week or more. However, recent lines of research suggested no association between alcohol exposure and congenital heart defects. Analysis of the data from 7,076 mothers whose children were affected by congenital heart defects and 7,972 control mothers enrolled in the National Birth Defects Prevention Study (NBDPS) did not show statistically significant increased risks between maternal alcohol consumption and congenital heart defects. Three recent meta-analyses also suggested that periconceptional alcohol exposure was not associated with congenital heart defects. From these mixed findings, it is suspected that periconceptional alcohol exposure may indirectly impact the occurrence of congenital heart defects via gene-ethanol interactions.

Studies in animal models support the involvement of ethanol exposure in the genesis of congenital heart defects and demonstrate that this genesis is likely to be complex. In zebrafish, ethanol exposure at different stages results in differing heart defects. Similarly, ethanol exposure during gastrulation results in cardiac defects in

1 Biostatistics Program, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, 72202, USA. 2 Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, 72202, USA. 3 Department of Molecular and Cell and Developmental Biology, Institute for Cellular and Molecular Biology and Institute for Neuroscience, University of Texas, Austin, 78712, USA. 4 Department of Epidemiology and Biostatistics, School of Public Health, Indiana University at Bloomington, Bloomington, 47405, USA. Correspondence and requests for materials should be addressed to C.A.H. (email: HobbsCharlotte@uams.edu)
In both of these models, the cardiac defects were rescued by folate administration, suggesting that the genesis of congenital heart defects following ethanol exposure in humans is a complex and multifactorial event. There is growing evidence that gene-ethanol interactions modulate the teratogenic effects of ethanol, further adding complexity to ethanol-induced congenital heart defects. Animal models have given insight into some of these gene-ethanol interactions, often these ethanol-sensitive loci are genes governing the development of the organ system.

Proper development of both the face and the heart requires the function of the receptor tyrosine kinase in platelet-derived growth factor receptor alpha (PDGFRA). Both mouse and zebrafish Pdgfra mutants can cause heart defects. In zebrafish, ethanol has been shown to interact with Pdgfra, causing apoptosis of the neural crest cell precursors of the face in mutants and heterozygotes. This study also demonstrated that the interaction was conserved in humans and noted an increase in gross cardiac defects in ethanol-treated zebrafish mutants. Collectively, these studies suggest that variants in the PDGF pathway could modulate the genesis of congenital heart defects in humans.

Using data from 806 OHD case and 996 control families enrolled in the NBDPS with birth dates between 1997 and 2011, we sought to evaluate interactions between 102 variants in the PDGF family of genes (PDGFRA, PDGFRB and PDGFB) and periconceptional alcohol exposure on the risk for OHDs. Maternal and infant genotypes were both investigated, since both are shown to alter the intrauterine environment and simultaneously contribute to OHD development.

Results and Discussion

Study Sample.

The final analytic sample includes 3422 individuals from 806 case-parental triads and 996 control-mother dyads. The demographic and lifestyle characteristics of case and control mothers are summarized in Table 1. Case mothers were slightly older (27.8 years vs. 26.8 years) and more highly educated than control mothers (more than high school: 59% cases vs. 52% controls). There were more Caucasian mothers in the case group (63% cases vs. 56% controls) and more Hispanic mothers in the control group (24% cases vs. 32% controls).

Binge Drinkers vs. Non-binge Drinkers.

Among 806 case mothers, 126 (16%) were identified as binge drinkers; whereas among 996 control mothers, 148 (15%) were identified as binge drinkers. Binge drinking alone was not found to be significantly associated with OHD risk. The odds of giving birth to an infant with OHD among binge drinkers was estimated to be 1.07 times that among non-binge drinkers (95% CI: 0.83 to 1.39, p = 0.5847). Thus, when genotype is not considered there appears to be no relationship between drinking pattern and OHD risk.

To investigate the interaction between genetic variant and binge drinking, a log-linear model was fitted for each variant. The final analysis included 43 variants in the PDGFRA gene, 58 variants in the PDGFRB gene, and one variant in the PDGFB gene. The maternal genotype of a variant in the PDGFB gene (rs869978) was identified to associate with the risk of OHDs via an interaction with maternal binge drinking at a nominal significance level (p = 0.0373). Binge drinkers carrying CT genotype for rs869978 had an increased risk of having infants with OHDs compared to those carrying CC genotype (genetic relative risk (GRR): 1.49; 95% CI: 1.05 to 2.12).

Maternal age at delivery, mean (SD)	Case (N = 806)	Control (N = 996)
27.8 (5.8)		26.8 (5.8)

Maternal race, n (%)		
Caucasian	506 (63%)	558 (56%)
African American	42 (5%)	59 (6%)
Hispanic	194 (24%)	323 (32%)
Others	64 (8%)	56 (6%)

Maternal education, n (%)		
0–11 years	123 (15%)	200 (20%)
Completed high school	205 (25%)	269 (27%)
1–3 years of college	235 (29%)	283 (28%)
4 years college or more	241 (30%)	244 (24%)

Alcohol exposure I (B1-M3), n (%)		
Binge drinkers	126 (16%)	148 (15%)
Non-binge drinkers	667 (84%)	842 (85%)

Alcohol exposure II (B1-M3), n (%)	
Binge drinkers	126 (20%)
Non-drinkers	497 (80%)

Table 1. Maternal characteristics. SD = standard deviation. aBinge drinkers are mothers who had four or more drinks on one occasion during the exposure window (i.e. from one month prior to conception (B1) to three months after conception (M3)). bNon-binge drinkers are mothers who had less than four drinks on one occasion or did not have any alcohol consumption during the exposure window. cNon-drinkers are mothers who did not have any alcohol consumption during the same exposure window.
In contrast, no significant genetic effect was found among non-binge drinkers (GRR: 0.99, 95% CI: 0.84 to 1.17). Under the assumption of multiplicative risk of alleles (see Statistical Method for details), the GRRs for comparing maternal TT genotype to maternal CC genotype of variant rs869978 were estimated to be 2.22 (95% CI: 1.10, 4.49) among binge drinkers and 0.98 (95% CI: 0.71, 1.37) among non-binge drinkers, respectively. Collectively, these findings suggest a maternal genotype-case phenotype interaction with the maternal T allele of variant rs869978 increasing the risk of OHDs occurring in offspring whose mothers were exposed to binge drinking. After adjustment for multiple testing, the above association was not statistically significant.

Binge Drinkers vs. Non-drinkers

Non-binge drinkers included both mothers who had less than four drinks on one occasion and those who did not have any alcohol consumption during the exposure window. To avoid biased results due to a mixed group of non-binge drinkers, we excluded those mothers who had less than four drinks on one occasion, and conducted analyses to compare binge drinkers to non-drinkers. Mothers who were binge drinkers were approximately 1.09 times more likely to give birth to an infant with OHD than those who are non-drinkers (95% CI: 0.83 to 1.42, \(p = 0.5416 \)). Table 2 summarizes findings from this analysis. These results are consistent with those above showing no relationship between binge drinking and OHDs in this cohort in the absence of genotype.

Similar to the comparison between binge drinkers and non-binge drinkers, a nominally significant genetic effect was identified for maternal variant rs869978 for binge drinkers versus non-drinkers \((p = 0.0242) \). Here again, the maternal T allele associates with an increased occurrence of OHDs in infants exposed to prenatal ethanol.

The infant genotypes also interacted with ethanol in this set of analyses. The infant genotypes of four variants (i.e., rs2291591, rs2228230, rs1547904, and rs869978) in the *PDGFRA* gene were found to associate with the risk of OHDs through an interaction with maternal binge drinking at a nominal significance level \((p = 0.0357, 0.0380, 0.0385, \text{and} 0.0395 \) respectively). In each instance, the alternative allele associates with reduced occurrence of OHDs in infants with prenatal alcohol exposures, but not for those without exposure. For example, among binge drinkers, infants carrying the CT genotype for rs2291591 had a decreased risk of OHDs compared to those carrying the CC genotype (GRR: 0.41; 95% CI: 0.18 to 0.94). In contrast, no significant difference was found among non-drinkers (GRR: 1.07, 95% CI: 0.75 to 1.53). Similar effects were detected for the other three variants in the same gene. Variants rs2291591, rs2228230, and rs1547904 were determined to be in high linkage disequilibrium (LD; \(D = 0.93 \)), suggesting that these three variants are measuring the same genetic effect. After adjustment for multiple testing, none of the associations reported above were statistically significant.

Table 2. The significant maternal and infant SNPs interacting with maternal alcohol exposure (binge drinkers vs. non-drinkers). GRR = genetic relative risk. CI = confidence interval. *Maternal interaction p-value = p-value for the interaction between disease status, maternal genotypes and maternal alcohol exposure. Infant interaction p-value = p = value for the interaction between disease status, infant genotypes and maternal alcohol exposure.

Chromosome	Gene	SNP	Type	Genotype	Non-drinkers GRR (95% CI)	Binge-drinkers GRR (95% CI)	Interaction p-value
4	PDGFRA	rs869978	Intron	CC	Reference	Reference	0.0242
				CT	0.96 (0.79, 1.17)	1.51 (1.06, 2.15)	
				TT	0.92 (0.62, 1.37)	2.28 (1.12, 4.62)	

Chromosome	Gene	SNP	Type	Genotype	Non-drinkers GRR (95% CI)	Binge-drinkers GRR (95% CI)	Interaction p-value
4	PDGFRA	rs2291591	Intron/Missense	CC	Reference	Reference	0.0357
				CT	1.07 (0.75, 1.53)	0.41 (0.18, 0.94)	
				TT	1.14 (0.56, 2.34)	0.17 (0.03, 0.88)	

Chromosome	Gene	SNP	Type	Genotype	Non-drinkers GRR (95% CI)	Binge-drinkers GRR (95% CI)	Interaction p-value
4	PDGFRA	rs2228230	Synonymous	GG	Reference	Reference	0.0380
				AG	1.04 (0.84, 1.29)	0.58 (0.34, 0.97)	
				AA	1.08 (0.71, 1.66)	0.34 (0.12, 0.94)	

Chromosome	Gene	SNP	Type	Genotype	Non-drinkers GRR (95% CI)	Binge-drinkers GRR (95% CI)	Interaction p-value
4	PDGFRA	rs1547904	Intron	CT	1.04 (0.83, 1.28)	0.58 (0.34, 0.97)	0.0385
				TT	1.08 (0.69, 1.64)	0.34 (0.12, 0.94)	

Chromosome	Gene	SNP	Type	Genotype	Non-drinkers GRR (95% CI)	Binge-drinkers GRR (95% CI)	Interaction p-value
4	PDGFRA	rs869978	Intron	CC	Reference	Reference	0.0395
				CT	1.06 (0.86, 1.29)	0.65 (0.42, 1.00)	
				TT	1.12 (0.74, 1.66)	0.42 (0.18, 1.00)	
ods were performed in accordance with the relevant guidelines and regulations. As with their parents, informed written consent was obtained from their legal guardian for DNA collection. All meth-
and Prevention and all NBDPS institutions. All study subjects gave informed consent. For minors in legal custody
prior to conception to three months after conception. We included one month prior to conception in the expo-
as mothers who had four or more drinks on one occasion during the exposure window (i.e. from one month
information regarding periconceptional alcohol exposure. Based on NIAAA criteria, binge drinkers are defined
here. However, this same variant nominally associated with increased risk for OHD when maternal. The reasons
for these differing associations are unclear, and may be related to different roles for PDGF signaling programs
between the mother and the developing fetus14,15; indeed, the functional consequences of any of these variants
are unknown.
However, the function of Pdgfra has been extensively studied in animal models and may help provide insight
into possible roles for these genotype-ethanol interactions. Platelet-derived growth factors (PDGFs) and their
receptors (PDGFRs) are involved in many cellular processes such as migration, survival and proliferation, and
they are critical during developmental processes26,27. Cardiac development requires Pdgfra in both mouse and
zebrafish28,29. In mouse Pdgfra mutants, cardiac neural crest cells have migratory defects30; and Pdgfrb double
mutants have more extensive cardiac neural crest cell migration deficits19. In zebrafish the migration of
mesoderm-derived cardiac progenitors requires Pdgfra function (Bloomekatz et al., 2017). Cardiac neural crest
cells do populate the heart in zebrafish15,16; although it’s unclear if these cells require Pdgfra function. How eth-
anol may interact with PDGFR in humans remains an intriguing question that may be elucidated by further
analyses in zebrafish.

Materials and Methods

Ethics Statement. The study was approved by the University of Arkansas for Medical Sciences’ Institutional
Review Board. The NBDPS was approved by the Institutional Review Boards at the Centers for Disease Control
and Prevention and all NBDPS institutions. All study subjects gave informed consent. For minors in legal custody
of their parents, informed written consent was obtained from their legal guardian for DNA collection. All meth-
ods were performed in accordance with the relevant guidelines and regulations.

Study Population. Families were recruited for the NBDPS, a population-based case-control study designed
to identify infants with major structural birth defects and evaluate genetic and environmental factors associ-
ated with the occurrence of birth defects30,31. The families included in the current study were identified through
population-based birth defects surveillance systems in the states of Arkansas, California, Georgia, Iowa and
Texas. A total of 4,101 individuals from 873 case-parental triads and 1,084 control-mother dyads were included.
Cases were singleton live-born infants with OHDs. Both right-sided and left-sided OHDs included hypoplastic
left heart syndrome, tricuspid atresia, pulmonary valve atresia, coarctation of the aorta, interrupted aortic arch
types A and C, aortic stenosis, pulmonary valve stenosis, and Ebstein’s anomaly32. Cases where the pregnancy was
affected by a known single gene disorder, chromosomal abnormality, or syndrome were excluded. A classification
system developed for NBDPS, which incorporated three dimensions of cardiac phenotype, cardiac complexity,
and extracardiac anomalies, was used to classify cases32. Controls were singleton live-born infants without any
major structural birth defects. The mothers of all participating families completed interviews.

Data Collection. Information regarding multiple maternal exposures and lifestyle factors hypothesized to
impact developing embryos was obtained from a 1-hour telephone interview with each case and control mother.
The interviews were conducted by female interviewers using a computer assisted telephone questionnaire30,31.
All study materials were available in English and Spanish30,31. For the current study, we focused on interview
information regarding periconceptional alcohol exposure. Based on NIAAA criteria, binge drinkers are defined
as mothers who had four or more drinks on one occasion during the exposure window (i.e. from one month
prior to conception to three months after conception). We included one month prior to conception in the expo-
sure window to include many mothers who may not know the exact date of conception and may unknowingly
continue drinking during the critical period of embryogenesis as up to half of US pregnancies are unplanned33,34.
Non-binge drinkers are mothers who had less than four drinks on one occasion or did not have any alcohol con-
sumption during the exposure window. Non-drinkers are mothers who did not have any alcohol consumption
during the exposure window. Once a mother completed the interview, a buccal-cell sample-collection kit with
instructions was mailed to the family for collection of DNA from the child, mother and father30,31.

Genotyping and Quality Assessment. From the genotyping results of the Illumina HumanOmni5Exome
BeadChip, 275 variants from the PDGF family of genes (PDGFRA, PDGFRB and PDGFB) were selected for analy-
sis. DNA was extracted from buccal cell samples using Puregene DNA purification reagents (Qiagen, Valencia,
CA), Genotyping was performed using the HumanOmni5Exome BeadChip (Illumina, San Diego, CA). Genotype calls were generated using GenCall, Illumina’s proprietary genotyping algorithm. A total of 4,101 individual samples were genotyped, and 679 samples were removed from analysis due to study ineligibility (n = 16), low genotype call rates (n = 663), resulting in an analytic sample consisting of 3,422 individuals from 806 case-parental triads and 995 control-mother dyads. We excluded 43 non-polymorphic variants, 17 variants with no-call rates > 5%, and 113 variants with minor allele frequencies < 1%. After the quality assessment, the analytical data had 102 variants in total.

Statistical Method. Summary statistics were expressed as means (standard deviation) for continuous variables, and counts (percentage) for categorical variables. The means of continuous variables were compared using the two-sample t-test, while the proportions of categorical variables were compared using the chi-squared test. Because both case-parental triads and control-mother dyads were enrolled and genotyped in our study, a hybrid design where case-parental triads were augmented by control-parental dyads, provided optimal power for studying both the maternal and infant genetic effects. Based on the hybrid design, the following log-linear (Poisson) model was fitted for each variant.

\[
\ln[E(count[M, F, C, D, E])] = \ln(\mu_j + \delta_j(E-1)) + \gamma_{(D-1)} + \beta_{(D-1)F} + \beta_{(D-1)C} + \beta_{(D-1)(E-1)F} + \beta_{(D-1)(E-1)C} + \ln(\text{off}),
\]

where \(\mu_j, j = 1, ..., 6\) are stratum parameters indicating six possible mating types under the assumption of mating symmetry; \(\mu_j + \delta_j\) are corresponding stratum parameters for ethanol-exposed families; \(I_{(E-1)}\) equals to 1 for ethanol-exposed families and 0 otherwise; \(I_{(E-1)}\) equals to 1 for case families and 0 for control families; \(I_0\) is an indicator for maternal genetic effect and equals the number of copies of the variant allele (0, 1, or 2) carried by the mother; and \(I_E\) is the corresponding indicator for infant genetic effects. Indicators \(I_D\) and \(I_C\) are defined in this way to assume multiplicative (i.e. log-additive) risk per allele. Under this assumption, the relative risk of carrying two copies of the allele is the square of the relative risk of carrying one copy of the same allele, with zero copies as the reference. This model specification provides population-based inferences related to both maternal and infant genotypes, and additional family-based evidence related to infant genotypes that is robust to population admixture, and allows estimation of gene-ethanol interactions and inclusion of incomplete families using the Expectation-Maximization (EM) algorithm for handling missing genotypes. Comparisons were made between families of mothers who were binge drinkers vs. non-binge drinkers, and between families of mothers who were binge drinkers vs. non-drinkers. Statistical significance was assessed as p-value \(\leq 0.05\). We used R statistical software v3.2.3 (R Foundation for Statistical Computing, Vienna, Austria) for computing summary statistics, and LEM statistical software to fit log-linear models with incomplete family genotype data. Patterns of linkage disequilibrium (LD) between important variants from the same gene were constructed using HaploView 4.2.

As discussed comprehensively elsewhere, the log-linear model being used here has a few unique strengths and limitations. It is worthwhile to note that the infant genetic effects are estimated using the case-parents triads. By conditioning on parental genotypes, the transmissions of alleles to affected offspring can be tested against the null hypothesis of random transmission (i.e. Mendel’s law). Such a family-based association test strategy is robust to population stratification and other confounding factors, such as maternal age and smoking. However, the maternal genetic effects uses a population-based association test strategy by contrasting between case mothers and control mothers, and thus, are susceptible to unknown confounding factors. Meanwhile, the log-linear model partition family units into strata of gene-by-environment combinations, and does not allow estimation of “main effect” for additional covariates.

References
1. Botto, L. D. & Correa, A. Decreasing the burden of congenital heart anomalies: an epidemiologic evaluation of risk factors and survival. Progress in Pediatric Cardiology 18, 111–123 (2003).
2. Cleves, M. A., Ghaffar, S., Zhao, W., Mosley, B. S. & Hobbs, C. A. First-year survival of infants born with congenital heart defects in Arkansas (1993–1998): a survival analysis using registry data. Birth defects research. Part A, Clinical and molecular teratology 67, 662–668, https://doi.org/10.1002/bdra.10119 (2003).
3. Kuehl, K. S. & Loffredo, C. A. Genetic and environmental influences on malformations of the cardiac outflow tract. Birth defects research. Part A, Clinical and molecular teratology 23, 138–141, https://doi.org/10.1002/bdra.10087 (2006).
11. Wen, Z. et al. Association between alcohol consumption during pregnancy and risks of congenital heart defects in offspring: meta-analysis of epidemiological observational studies. Italian journal of pediatrics 42, 12, https://doi.org/10.1186/s13052-016-0222-2 (2016).
12. Zhu, Y. et al. Maternal periconceptional alcohol consumption and congenital heart defects. Birth defects research. Part A, Clinical and molecular teratology 103, 617–629, https://doi.org/10.1002/bdra.23352 (2015).
13. Yang, J. et al. Prenatal Alcohol Exposure and Congenital Heart Defects: A Meta-Analysis. PloS one 10, e0130681, https://doi.org/10.1371/journal.pone.0130681 (2015).
14. Sun, J., Chen, X., Chen, H., Ma, Z. & Zhou, J. Maternal Alcohol Consumption before and during Pregnancy and the Risks of Congenital Heart Defects in Offspring: A Systematic Review and Meta-Analysis. Congenital heart disease 10, E216–224, https://doi.org/10.1111/chd.12271 (2015).
15. Sarmah, S. & Marrs, J. A. Zebrasfish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function. International Journal of Molecular Sciences 17, 2123, https://doi.org/10.3390/ijms17121223 (2016).
16. Sarmah, S. & Marrs, J. A. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: Prevention with folic acid. Developmental dynamics: an official publication of the American Association of Anatomists 242, 1184–1201, https://doi.org/10.1002/dvdy.24015 (2013).
17. Serrano, M., Han, M., Brinez, P. & Linask, K. K. Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. American Journal of Obstetrics and Gynecology 203, 75.e7–75.e15, https://doi.org/10.1016/j.ajog.2010.03.017 (2010).
18. Eberhart, J. K. & Parnell, S. E. The Genetics of Fetal Alcohol Spectrum Disorders (FASD). Alcoholism, clinical and experimental research 40, 1154–1165, https://doi.org/10.1111/acr.13066 (2016).
19. Richarte, A. M., Mead, H. B. & Tallquist, M. D. Cooperation between the PDGF receptors in cardiac neural crest cell migration. Developmental biology 306, 785–796, https://doi.org/10.1016/j.ydbio.2007.04.023 (2007).
20. Tallquist, M. D., French, W. J. & Soriano, P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS biology 1, E52, https://doi.org/10.1371/journal.pbio.0000052 (2003).
21. McCarthy, N. et al. Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD. Development 140, 3254–3265, https://doi.org/10.1242/dev.094938 (2013).
22. Hobbs, C. A., Cleves, M. A., Karim, M. A., Zhao, W. & MacLeod, S. L. Maternal folate-related gene environment interactions and congenital heart defects. Obstet Gynecol 116, 316–322, https://doi.org/10.1097/01.014.80979 (2010).
23. Chowdhury, S. et al. Associations between maternal genotypes and metabolites implicated in congenital heart defects. Mol Genet Metab 107, 596–604, https://doi.org/10.1016/j.ymgme.2012.09.022 (2012).
24. Adkins, R. M. et al. Association between small for gestational age and paternally inherited 5’ insulin haplotypes. Int J Obes (Lond) 32, 372–380, https://doi.org/10.1038/ijob.1.4008370 (2008).
25. Shi, M., Umbach, D. M. & Weinberg, C. R. Identification of risk-related haplotypes with the use of multiple SNPs from nuclear families. American journal of human genetics 83, 53–66, https://doi.org/10.1016/S0002-9297(08)00078-2 (2008).
26. Andrae, J., Gallini, R. & Betscholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes & development 22, 1276–1312, https://doi.org/10.1101/gad.1653708 (2007).
27. Paugh, B. S. et al. Novel oncogenic PDGFRα mutations in pediatric high-grade gliomas. Cancer research 73, 6219–6229, https://doi.org/10.1158/0008-5472.CAN-13-1491 (2013).
28. Schattenman, G. C., Motley, S. T., Effmann, E. L. & Bowen-Pope, D. F. Platelet-derived growth factor receptor alpha subunit deleted Patch mouse exhibits severe cardiovascular dysmorphogenesis. Teratology 51, 351–366, https://doi.org/10.1002/tera.1240510602 (1995).
29. Beck, L. Jr. & D’Amore, P. A. Vascular development: cellular and molecular regulation. FASEB j 11, 365–373 (1997).
30. Yoon, P. W. et al. The National Birth Defects Prevention Study. Public Health Rep 116(Suppl 1), 32–40 (2001).
31. Reehuis, J. et al. The National Birth Defects Prevention Study: A review of the methods. Birth defects research. Part A, Clinical and molecular teratology 103, 656–669, https://doi.org/10.1002/bdra.23384 (2015).
32. Botto, L. D. et al. Seeking causes: Classifying and evaluating congenital heart defects in etiologic studies. Birth defects research. Part A, Clinical and molecular teratology 79, 714–727, https://doi.org/10.1002/bdra.20403 (2007).
33. Finer, L. B. & Zolna, M. R. Unintended pregnancy in the United States: incidence and disparities, 2006. Contraception 84, 478–485, https://doi.org/10.1016/j.contraception.2011.07.013 (2011).
34. Finer, L. B. & Zolna, M. R. Shifts in intended and unintended pregnancies in the United States, 2001–2008. Am J Public Health 104(Suppl 1), S43–48, https://doi.org/10.2105/AJPH.2013.301416 (2014).
35. Vermeulen, S. H., Shi, M., Weinberg, C. & R. Umbach, D. M. A hybrid design: case-parent triads supplemented by control-mother dyads. Genetic Epidemiology 33, 136–144, https://doi.org/10.1002/gepi.20365 (2009).
36. Weinberg, C. R. & Umbach, D. M. A hybrid design for studying genetic influences on risk of diseases with onset early in life. American journal of human genetics 77, 627–636, https://doi.org/10.1086/496900 (2005).
37. Umbach, D. M. & Weinberg, C. R. The use of case-parent triads to study joint effects of genotype and exposure. American journal of human genetics 66, 251–261, https://doi.org/10.1093/aje/kwh131 (2000).
38. Vermunt, J. K. LEM: A General Program for the Analysis of Categorical Data. Department of Methodology and Statistics, Tilburg University (1997).
39. Barrett, J. C. Haplview: Visualization and analysis of SNP genotype data. Cold Spring Harbor protocols 2009, pdbi7p1, https://doi.org/10.1101/pdb.ip7p1 (2009).

Acknowledgements
The authors wish to thank the generous numerous families that made this research study possible. We also thank the Centers for Birth Defects Research and Prevention in California, Georgia, Iowa, and Texas for their contribution of data and medical review. We also thank the National Birth Defects Prevention Study for its contribution. The authors thank Ashley S. Block for assistance in preparation of the manuscript. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention. This work is supported by the National Institute of Child Health and Human Development (NICHD) under award number R01HD039054 and the National Center on Birth Defects and Developmental Disabilities (NCBDDD) under award number U01DD00491. J.K.E. is supported by the National Institute of Dental and Craniofacial Research under award number R01DE020884 and the National Institute on Alcohol Abuse and Alcoholism under award number R01AA023426. M.L. is supported by the National Institute of Heart, Lung, and Blood under award number K01HL140333.

Author Contributions
X.T., J.K.E., W.N.N. and C.A.H. designed this research, S.M. performed genotyping. X.T., M.A.C., J.L., M.L. discussed and analyzed the results. X.T. wrote the manuscript, all the authors reviewed, edited, and approved the manuscript.
