The distribution function (df) of a random variable X is defined as:
\[F_X(x) = \Pr[X \leq x] \]

The generalized inverse for a df, the quantile function $q_X(p)$, is defined as:
\[F_X^{-1}(p) = \inf \{ \text{real } x \mid F_X(x) \geq p \} \]
\[= \sup \{ \text{real } x \mid F_X(x) < p \} \]

The ‘check’ function is defined as:
\[\rho_q(r) = qr - r1_{\{r < 0\}} \quad \text{for } 0 \leq q \leq 1, \]
e.g. $\rho_{0.5}(r) = 0.5 |r|$
Curious folk result

For an integrable rv X, the minimizer of $E [\rho_q (X - x)]$ with respect to x, is the q-quantile of X.

For an elementary proof, see [Hunter, Lange 1998, Appendix]
An even more curious result

Suppose rv X has $E[|X|] < \infty$. Then the Fenchel-Legendre transform of the convex function $\Psi(x) = E[(x - X)^+]$ is given by

$$\Psi^*(y) = \sup_{x \in \text{Real}} (xy - \Psi(x))$$

= Integral from 0 to y of q_X, if $0 \leq y \leq 1$, and $+\infty$ otherwise.

Moreover, for $0 < y < 1$, the supremum above is attained in x if and only if x is a y-quantile of X, that is $x = q_X(y)$.

[Follmer, Schied, 2004, Lemma A.22]
Their connection!

\[
\begin{align*}
\arg \min_{x \in \mathbb{R}} \{ E [\rho_q (X - x)] \} \\
= \arg \min_{x \in \mathbb{R}} \{ qE[X] - qx - E[(X - x)1_{\{X-x < 0\}}] \} \\
= \arg \max_{x \in \mathbb{R}} \{ qx + E[(X - x)1_{\{X-x < 0\}}] \} \\
= \arg \max_{x \in \mathbb{R}} \{ xq - E[(x - X)^+] \} \\
= \arg \max_{x \in \mathbb{R}} \{ xq - \Psi(x) \} \\
= q_X(q), \text{ for } 0 < q < 1.
\end{align*}
\]

So we have an elegant proof of the folk result via functional analysis!
Applications

Quantile regression is a statistical technique used to estimate and make inference about conditional quantile functions [Koenker, Bassett, 1978]. Financial applications of quantile functions include asset pricing [Follmer, Schied, 2004], portfolio construction [Ma, Pohlman, 2005], [Bassett, Koenker, Kordas, 2004], risk management [Chernozhukov, 2002], [McNeil, Frey, Embrechts, 2005], and insurance [Denuit, Dhaene, Goovaerts, Kaas, 2005].
Some quantile function properties

First order quantile ODE:
\[
dq/dp = 1/f(q) \text{ where } q \text{ is the quantile function, } 0 \leq p \leq 1, \text{ and } f \text{ is the pdf.}
\]

Second order non-linear ODE:
\[
d^2q/dp^2 = H(q) \left(dq/dp \right)^2
\text{ where } H(q) = -d/dq \ln\{ f(q) \}.
\]
For power series solutions, see [Steinbrecher, Shaw, 2007].

The quantile-characteristic function connection:
\[
\phi_X(t) := E\left[\exp(itX) \right] = \text{Integral from 0 to 1 of } \exp(itq_X)
\text{ is explored via differentiation in [Shaw, McCabe, 2009].}
\]

May you discover more curious quantile properties!
References

- Stochastic Finance 2nd Ed., Follmer and Schied, W de G 2004.
- ‘An optimization transfer algorithm for quantile regression’, Hunter and Lange, 1998.
- ‘Regression quantiles’, Koenker and Bassett, Econometrica, 46 33-50, 1978.
- ‘Return forecasts and optimal portfolio construction’, Ma and Pohlman, 2005.
- ‘Pessimistic portfolio allocation and Choquet expected utility’, Bassett, Koenker, and Kordas, 2004.
References (cont.)

• ‘Extremal quantile regression’, Chernozhukov, 2002.

• Quantitative Risk Management, McNeil, Frey and Embrechts, PUP 2005.

• Actuarial Theory for Dependent Risks, Denuit, Dhaene, Goovaerts and Kaas, Wiley 2005.

• ‘Quantile mechanics’, Steinbrecher and Shaw, 2007.

• ‘Monte Carlo sampling given a characteristic function’, Shaw and McCabe, 2009.