An analysis-ready and quality controlled resource for pediatric brain white-matter research

Adam Richie-Halford, Matthew Cieslak, Lei Ai, Sendy Caffarra, Sydney Covitz, Alexandre R. Franco, Iliana I. Karipidis, John Kruper, Michael Milham, Bárbara Avelar-Pereira, Ethan Roy, Valerie J. Syndo, Jason D. Yeatman, The Fibr Community Science Consortium, Theodore D. Satterthwaite, and Ariel Rokem

We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets.

Background & Summary
Childhood and adolescence are characterized by rapid dynamic changes to human brain structure and function. This period of development is also a time during which the symptoms of many mental health disorders emerge. Understanding how individual differences in brain development relate to the onset and progression of psychopathology inevitably requires large datasets. The Healthy Brain Network (HBN) is a landmark pediatric mental health study that is designed to eventually include MRI images along with detailed clinical and cognitive phenotyping from over 5000 New York City area children and adolescents. The HBN dataset takes a trans-diagnostic approach and provides a broad range of phenotypic and brain imaging data for each individual.

1Stanford University, Division of Developmental and Behavioral Pediatrics, Stanford, California, 94305, USA. 2Stanford University, Graduate School of Education, Stanford, California, 94305, USA. 3Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA. 4Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, 19104, USA. 5Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA. 6Child Mind Institute, Center for the Developing Brain, New York City, New York, 10022, USA. 7University of Modena and Reggio Emilia, Department of Biomedical, Metabolic and Neural Sciences, 41125, Modena, Italy. 8Nathan Kline Institute for Psychiatric Research, Center for Biomedical Imaging and Neuromodulation, Orangeburg, New York, 10962, USA. 9Stanford University, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford, California, 94305, USA. 10University of Zurich, Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, Zurich, 8032, Switzerland. 11Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland. 12University of Washington, Department of Psychology, Seattle, Washington, 98195, USA. 13University of Washington, eScience Institute, Seattle, Washington, 98195, USA. *These authors jointly supervised this work: Theodore D. Satterthwaite, Ariel Rokem. *A list of authors and their affiliations appears at the end of the paper. ✉e-mail: adamrh@stanford.edu; matthew.cieslak@pennmedicine.upenn.edu
One of the brain imaging measurements acquired is diffusion MRI (dMRI), which is the dominant technology for inferring the physical properties of white matter7. The dMRI data is openly available in its raw form through the Functional Connectomes Project and the International Neuroimaging Data-Sharing Initiative (FCP-INDI), spurring collaboration on open and reproducible science6.

However, this raw, publicly available data requires extensive processing and quality assurance before it can be fruitfully analyzed. The most immediate contribution of the present work is a large openly-available analysis-ready dMRI data resource derived from the HBN dataset9. In the past decade, projects such as the Human Connectome Project (HCP)10, UK Biobank11, ABCD12, and CamCan13,14, as well as FCP-INDI, have ushered a culture of data sharing in open big-data human neuroscience. The adoption and reuse of these datasets reduces or eliminates the data collection burden on downstream researchers. Some projects, such as the HCP15, also provide preprocessed derivatives, further reducing researchers’ burden and extending the benefits of data-sharing from data collection to preprocessing and secondary analysis. Following the example of the HCP, the present study provides analysis-ready dMRI derivatives from HBN. This avoids duplication of and heterogeneity across the preprocessing effort, while also ensuring a high standard of data quality for HBN researchers.

The analysis of a large, multi-site dMRI dataset must take into account the inevitable variability in scanning parameters across scanning sessions. Critical preprocessing steps, such as susceptibility distortion correction16, require additional MRI acquisitions besides dMRI and accurate metadata accompanying each image. A session missing an acquisition or important metadata can either be processed to the extent its available data allows or excluded entirely. In addition, the quality of preprocessed data is heavily affected by differences in acquisition parameters17 and by differences in preprocessing steps. Here we address these problems by meticulously curating the HBN data according to the Brain Imaging Data Specification (BIDS)18 and processing the data using the QSIPrep19 BIDS App20. QSIPrep automatically builds and executes benchmarked workflows that adhere to best practices in the field given the available BIDS data. The results include automated data quality metrics, visual reports and a description of the processing steps automatically chosen to process each session.

This preprocessing requires a costly compute infrastructure and is both time-consuming and error-prone. Requiring researchers to process dMRI data on their own introduces both a practical barrier to access and an extra source of heterogeneity into the data, devaluing its scientific utility. We provide the preprocessed data as a transparent and open resource, thereby reducing barriers to data access and allowing researchers to spend more of their time answering questions in brain development and psychopathology rather than recapitulating preprocessing.

In addition to requiring extensive preprocessing, dMRI data must be thoroughly checked for quality. dMRI measurements are susceptible to a variety of artifacts that affect the quality of the signals and the ability to make accurate inferences from them. In small studies, with few participants, it is common to thoroughly examine the data from every participant as part of a quality control (QC) process. However, expert examination is time consuming and is prohibitive in large datasets such as HBN. This difficulty could be ameliorated through the automation of QC. Given their success in other visual recognition tasks, machine learning and computer vision methods, such as convolutional deep artificial neural networks or “deep learning”21, are promising avenues for automation of QC. However, one of the challenges of these new methods is that they require a large training dataset to attain accurate performance. In previous work, we demonstrated that deep learning can accurately emulate expert QC of T1-weighted (T1w) anatomical brain images22. To obtain a large enough training dataset of T1w images in our prior study, we deployed a community science tool that collected quality control scores of parts of the dataset from volunteers through a web application. The scores were then calibrated using a gold standard expert-scored subset of these images. A deep learning neural network was trained on the calibrated and aggregated score, resulting in very high concordance with expert ratings on a separate test dataset. We termed this approach “hybrid QC”, because it combined information from experts with information from community scientists to create a scalable machine learning algorithm that can be applied to future data collection.

However, the hybrid QC proof-of-concept left lingering questions about its applicability to other datasets because it was trained on a single-site, single-modality dataset. Here, we expand the hybrid-QC approach to a large multi-site dMRI dataset. Moreover, one of the common critiques of deep learning is that it can learn irrelevant features of the data and does not provide information that is transparent enough to interpret23-25. To confirm that the hybrid-QC deep learning algorithm uses meaningful features of the diffusion-weighted images (DWI) to perform accurate QC, we used machine learning interpretation methods that pry open the “black box” of the neural network, thereby highlighting the features that lead to a specific QC score26,27.

Taken together, the combination of curated BIDS data, preprocessed images, and quality control scores generated by the deep learning algorithm provides researchers with a rich and accessible data resource. Making MRI derivatives accessible not only reduces the burden of processing large datasets for research groups with limited resources28, but also aids research performed by clinicians who are interested in brain-behavior relationships but may be lacking the technical training to process large-scale dMRI data. We anticipate that these HBN Preprocessed Open Diffusion Derivatives (HBN-PoDD) will accelerate translational research on both normal and abnormal brain development.

Methods

The aims of this data resource were fourfold (i) curate the HBN MRI data into a fully BIDS-compliant MRI dataset, (ii) perform state-of-the-art diffusion MRI (dMRI) preprocessing using QSIPrep, (iii) assign QC scores to each participant, and (iv) provide unrestricted public release to the outputs from each of these steps. We started with MRI data from 2,747 HBN participants available through FCP-INDI, curating these data for compliance with the Brain Imaging Data Structure (BIDS) specification18. We preprocessed the structural MRI (sMRI) and diffusion MRI (dMRI) data using QSIPrep. Participants that could not be curated to comply with the BIDS standard or that did not have dMRI data were excluded, resulting in 2,134 participants with preprocessed, BIDS-compliant dMRI data (Fig. 1).
Inputs. Inputs for this study consisted of MRI data from releases 1–9 of the Healthy Brain Network pediatric mental health study5,6, containing dMRI data from 2,747 participants aged 5–21 years. These data were measured using a 1.5 T Siemens mobile scanner on Staten Island (SI, N = 300) and three fixed 3 T Siemens MRI scanners at sites in the New York area: Rutgers University Brain Imaging Center (RU, N = 873), the CitiGroup Cornell Brain Imaging Center (CBIC, N = 887), and the City University of New York Advanced Science Research Center (CUNY, N = 74), where numbers in parentheses represent participant counts in HBN-POD2. Site CBIC has two different acquisition types: one which shares its pulse sequence with sites RU and CUNY and another (with only 19 participants), which better matches the ABCD study diffusion protocol29. Informed consent was obtained from each participant aged 18 or older. For participants younger than 18, written consent was obtained from their legal guardians and written assent was obtained from the participant. Voxel resolution was 1.8 mm × 1.8 mm × 1.8 mm with 64 non-collinear directions measured for each two degrees of diffusion weighting: b = 1500 s/mm² and b = 3000 s/mm² for the ABCD-harmonized sequence and b = 1000 s/mm² and b = 2000 s/mm² for the others. Figure 10 depicts the age distribution of study participants by sex for each of these scan sites as well as pairwise distributions for the automated quality metrics that are described in the next sections.

BIDS curation. We curated the imaging metadata for 2,615 of the 2,747 currently available HBN participants. Using dcm2bids and custom scripts, we conformed the data to the Brain Imaging Data Structure (BIDS)18 specification. The BIDS-curated dataset is available on FCP-INDI and can be accessed via AWS S3 at s3://fcp-indi/data/Projects/HBN/BIDS_curated/.

After conforming the data to BIDS, we used the “Curation of BIDS” (CuBIDS) package30 to identify unique combinations, or “variants” of imaging parameters in the curated dMRI and fieldmap acquisitions. CuBIDS is a Python-based software package that provides a sanity-preserving workflow to help users reproducibly parse, validate, curate, and understand heterogeneous BIDS imaging datasets. CuBIDS includes a robust implementation of the BIDS Validator that scales to large samples and incorporates DataLad31, a distributed data management system, to ensure reproducibility and provenance tracking throughout the curation process. CuBIDS tools also employ agglomerative clustering to identify variants of imaging parameters. Each session was grouped according to metadata parameters that affect the dMRI signal (PhaseEncodingDirection, EchoTime, VoxelSize, FlipAngle, PhasePartialFourier, NumberOfVolumes, Fieldmap availability). We identified a total of 20 unique DWI acquisitions across HBN-POD2, where about 5% of acquisitions were different from the most common DWI acquisition at their site.

Preprocessing. We performed dMRI preprocessing on 2615 participants, using QSI Prep19 0.12.1, which is based on Nipype 1.5.132,33, RRID:SCR_002502. QSI Prep is a robust and scalable pipeline to group, distortion correct, motion correct, denoise, coregister and resample MRI scans. Of the BIDS curated participants, 2,134 passed this step, with the majority of failures coming from participants with missing dMRI scans. Expert raters assigned QC scores to 200 of these participants, creating a “gold standard” QC subset (Fig. 2). Community raters then assigned binary QC ratings to a superset of the gold standard containing 1,653 participants. An image classification algorithm was trained on a combination of automated quality metrics from QSI Prep and community scientist reviews to “extend” the expert ratings to the community science subset (Fig. 4). Finally, a deep learning QC model was trained on the community science subset to assign QC scores to the entire dataset and to future releases from HBN (Fig. 7). The HBN-POD2 dataset, including QC ratings, is openly available through FCP-INDI.
thorough methods boilerplate text for later use in scientific publications, which we use for the reminder of this subsection to document each preprocessing step.

- **Anatomical data preprocessing.** All T1-weighted (T1w) images found for each participant were corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection\(^3^4\) (ANTs 2.3.1). If a single T1w was found, it was used as the T1w-reference throughout the workflow. If multiple T1w images were found, a T1w-reference map was computed after registration of the T1w images (after INU-correction) using mri_robust_template\(^3^5\) (FreeSurfer 6.0.1). The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection\(^3^4\) (ANTs 2.3.1), and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped using antsBrainExtraction.sh (ANTs 2.3.1), using OASIS as target template. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796)\(^3^6\) was performed through nonlinear registration with antsRegistration (ANTS 2.3.1, RRID:SCR_004757)\(^3^7\), using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FAST (FSL 6.0.3:b862cdd5, RRID:SCR_002823)\(^3^8\).

- **Diffusion data preprocessing.** Any images with a \(b\)-value less than 100 s/mm\(^2\) were treated as a \(b=0\) image. MP-PCA denoising as implemented in MRtrix3’s dwidenoise\(^3^9\) was applied with a 5-voxel window. After MP-PCA, B1 field inhomogeneity was corrected using dwibiascorrect from MRtrix3 with the N4 algorithm\(^3^4\). After B1 bias correction, the mean intensity of the DWI series was adjusted so all the mean intensity of the \(b=0\) images matched across each separate DWI scanning sequence. FSL’s (version 6.0.3:b862cdd5) eddy was used for head motion correction and eddy current correction\(^4^0\). Eddy was configured with a \(q\)-space smoothing factor of 10, a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first level model and a linear second level model were used to characterize eddy current-related spatial distortion. \(q\)-space coordinates were forcefully assigned to shells. Field offset was attempted to be separated from participant movement. Shells were aligned post-eddy. Eddy’s outlier replacement was run\(^4^1\). Data were grouped by slice, only including values from slices determined to contain at least 250 intracerebral voxels. Groups deviating by more than four standard deviations from the prediction had their data replaced with imputed values. Data was collected with reversed phase-encode blips, resulting in pairs of images with distortions going in opposite directions. Here, \(b=0\) reference images with reversed phase encoding directions were used along with an equal number of \(b\)=0 images extracted from the DWI scans. From these pairs the susceptibility-induced off-resonance field was estimated using a method similar to that described in\(^4^2\). The fieldmaps were ultimately incorporated into the Eddy current and head motion correction interpolation. Final interpolation was performed using the jac method. Several confounding time-series were calculated based on the preprocessed DWI; framewise displacement (FD) using the implementation in Nipype following the definitions by\(^4^3\). The DWI time-series were resampled to ACPC, and their corresponding gradient directions were rotated accordingly to generate a preprocessed DWI run in ACPC space.

![Fig. 2](https://example.com/fig2.png)

Expert QC results: Six dMRI experts rated a subset of 200 participants. Experts agreed with QSIPrep’s automated QC metrics. Here we show the distribution of mean expert QC ratings (a) and associations between the mean expert QC rating and the QSIPrep metrics (b) neighboring diffusion-weighted imaging (DWI) correlation\(^1^7\), (c) maximum relative translation, and (d) number of outlier slices. As expected, neighboring DWI correlation is directly correlated with expert rating while the other two metrics are inversely correlated with expert rating. (e) Experts agreed with each other. Here we show the pairwise Cohen’s \(κ\) measure of inter-rater reliability (see text for ICC calculations). The XGB model has an inter-rater reliability (quantified here as Cohen’s \(κ\)) that is indistinguishable from the other raters.
Many internal operations of QSIPrep use Nilearn 0.6.244, RRID:SCR_001362 and DIPY45. For more details of the pipeline, see the section corresponding to workflows in QSIPrep’s documentation.
In the quality of HBN’s structural T1w MRI data. This method (i) starts with dMRI expert raters labelling a small subset of participants, the “gold standard” dataset (ii) amplifies these labels using a community science web application to extend expert ratings to a much larger subset of the data, the community science subset and (iii) trains a deep learning model on the community science subset to predict expert decisions on the entire dataset.

Cloud-based distributed preprocessing. The containerization of QSIPrep provided a consistent pre-processing pipeline for each participant but the number of participants made serial processing of each participant prohibitive on a single machine. We used cloudknot, a previously developed cloud-computing library to parallelize the preprocessing over individual participants on spot instances in the Amazon Web Services Batch service. Cloudknot takes as input a user-defined Python function and creates the necessary AWS infrastructure to map that function onto a range of inputs, in this case, the participant IDs. Using cloudknot and AWS Batch Spot Instances, the preprocessing cost less than $1.00 per participant.

Quality control. To QC all available HBN dMRI data, we adopted a hybrid QC approach that combines expert rating, community science, and deep learning, drawing on the success of a previous application in assessing the quality of HBN’s structural T1w MRI data. This method (i) starts with dMRI expert raters labelling a small subset of participants, the “gold standard” dataset (ii) amplifies these labels using a community science web application to extend expert ratings to a much larger subset of the data, the community science subset and (iii) trains a deep learning model on the community science subset to predict expert decisions on the entire dataset.

Expert quality control. The expert QC “gold standard” subset was created by randomly selecting 200 participants from the preprocessed dataset, sampled such that the proportional site distribution in the gold standard subset matched that of the preprocessed dataset.

We then developed dmriprep-viewer, a dMRI data viewer and QC rating web application to display QSIPrep outputs and collect expert ratings. The viewer ingests QSIPrep outputs and generates a browser-based interface for expert QC. It provides a study overview displaying the distributions of QSIPrep’s automated data quality metrics (described at https://qsiprep.readthedocs.io/en/latest/preprocessing.html#quality-control-data). Each datum on the study overview page is interactively linked to a participant-level QC page that provides an interactive version of QSIPrep’s visual reports (described at https://qsiprep.readthedocs.io/en/latest/preprocessing.html#visual-reports). The viewer allows users to assign a rating of –2 (definitely fail), –1 (probably fail), 0 (not sure), 1 (probably pass), or 2 (definitely pass) to a participant. To standardize rater expectations before rating, expert raters watched a tutorial video (available on YouTube at https://youtu.be/SQ0v-O-e5b8 and in the OSF project), which demonstrated data for which each of these ratings was appropriate. Six of the co-authors, who are all dMRI experts, rated the gold standard subset using extensive visual examination of each participant’s dMRI data, including the preprocessed dMRI time series, a plot of motion parameters throughout the dMRI scan, and full 3D volumes depicting (i) the brain mask and (ii) a directionally encoded color fractional anisotropy (DEC-FA) image laid over the $b=0$ volume. See Fig. 3 for an example of the dmriprep-viewer interface.

The distribution of scores given by the experts demonstrates that the gold standard dataset included a range of data quality (Fig. 2a). Mean expert ratings correlated with the three QSIPrep automated QC metrics that were most informative for the XGB model described in the next section: neighboring diffusion-weighted imaging (DWI) correlation, maximum relative translation and number of outlier slices (Fig. 2d). The neighboring DWI correlation characterizes the pairwise spatial correlation between pairs of DWI volumes that sample neighboring points in q-space. Since lower values indicate reduced data quality, it is reassuring that the neighboring DWI correlation correlated directly with expert ratings (Pearson CC: 0.797). Conversely, high relative translation and a high number of motion outlier slices reflect poor data quality and these metrics were inversely related to mean expert rating (Pearson CC: –0.692 and Pearson CC: –0.695, respectively).

In addition to agreeing qualitatively with QSIPrep’s automated QC metrics on average, the expert raters also tended to agree with each other (Fig. 2c). We assessed inter-rater reliability (IRR) using the pairwise Cohen’s $κ$, computed using the scikit-learn `cohen_kappa_score` function with quadratic weights. The pairwise $κ$ exceeded 0.52 in all cases, with a mean value of 0.648. In addition to the pairwise Cohen’s $κ$, we also computed the intra-class correlation (ICC) as a measure of IRR, using the pingouin statistical package.

Fig. 4 Community science predictions of the expert ratings: Scatter plots showing the relationship between mean expert rating and both mean Fibr rating (a) and XGB prediction (b). Fibr raters overestimated the quality of images compared to expert raters. But the XGB prediction compensated for this by incorporating automated QC metrics and weighting more valuable Fibr raters. (c) ROC curves for the XGB, XGB-q, and XGB-f models. Translucent bands represent one standard deviation from the mean of the cross-validation splits.
intraclass_corr function. ICC3k is the appropriate variant of the ICC to use when a fixed set of k raters each code an identical set of participants, as is the case here. ICC3k for inter-rater reliability among the experts was 0.930 (95% CI: [0.91, 0.94]), which is qualitatively considered an “excellent” level of IRR. The high IRR provides confidence that the average of the expert ratings for each image in the gold standard is an appropriate target to use for training a machine learning model that predicts the expert scores.

Community scientist quality control. Although the expert raters achieved high IRR and yielded intuitive associations with QSIPrep’s automated QC metrics, generating expert QC labels for the entire HBN-POD2 dataset would be prohibitively time consuming. To assess the image quality of the remaining participants, we deployed Fibr (https://fibr.dev), a community science web application in which users assigned binary pass/fail labels assessing the quality of horizontal slice DEC-FA images overlaid on the $b = 0$ image (see Fig. 3 for an example). Specifically, after a brief tutorial, Fibr users saw individual slices or an animated sequence of ten slices taken from

Fig. 5 Deep learning model architecture: (a) The CNN-i + q model accepts multichannel input that combined four imaging channels with a fifth channel containing 31 QSIPrep automated data quality metrics. The imaging channels are separated from the data quality channel using Lambda layers. The imaging channels are passed through a CNN (b), the output of which is concatenated with the data quality metrics, batch normalized and passed through two fully-connected (FC) layers, with rectified linear unit (ReLu) activation functions and with 512 and 128 units respectively. Each FC layer is followed by a dropout layer which drops 40% of the input units. The final layer contains a single unit with a sigmoid activation function and outputs the probability of passing QC. (b) The CNN portion of the model passes the imaging input through four convolutional blocks. Each block consists of a 3D convolutional layer with a kernel size of 3 and a ReLu activation, a 3D max pooling layer with a pool size of 2, and a batch normalization layer with Tensorflow’s default parameters. The number of filters in the convolutional layers in each block are 64, 64, 128, and 256 respectively. The output of the final block is passed through a 3D global average pooling layer with Tensorflow’s default parameters.
the entire DEC-FA volume that the expert raters saw. The Fibr users, therefore, saw only a subset of the imaging data that the dMRI experts had access to for a given participant, but they saw data from many more participants. In total, 374 community scientists provided 587,778 ratings for a mean of >50 ratings per slice (or >200 ratings per participant) from 1,653 participants. Of the community scientists, 145 raters provided >3,000 ratings each and are included in the Fibr Community Science Consortium as co-authors on this paper.

We created quality control web applications for both community raters and expert raters. These apps are publicly accessible at https://fibr.dev and at http://www.nipreps.org/dmriprep-viewer/, for the community science instrument and the expert rating instrument, respectively. We encourage readers to try these web applications on their own but have included screenshots and a summary of the interfaces in Fig. 3.

There are three issues to account for when comparing Fibr and expert QC ratings. First, the unadjusted Fibr ratings were overly optimistic; i.e., on average, community scientists were not as conservative as the expert raters (Fig. 4a). Second, different community scientists provide data of differing accuracy. That is, they were less consistent across different views of the same image, and/or were less consistent with expert ratings for the same data. This means that data from some Fibr raters was more informative than others. Third, important information about data quality was provided in the QSIPrep data quality metrics, which were not available to Fibr raters.

To account for rater variability and take advantage of the information provided by QSIPrep, we trained gradient boosted decision trees to predict expert scores, scaled to the range [0,1] and binarized with a threshold of 0.5, based on a combination of community science ratings and 31 automated QSIPrep data quality metrics. One can think of the gradient boosting model as assigning more weight to Fibr raters who reliably agree with the expert raters, thereby resolving the aforesaid issues with community rater accuracy. We refer to this gradient boosting model as XGB.

All gradient boosting models were implemented as binary classifiers using the XGBoost library. The targets for these classifiers were the mean expert ratings in the gold standard dataset, rescaled to the range [0, 1] and binarized with a threshold of 0.5. Using repeated stratified K-fold cross-validation, with three splits and two repeats, we evaluated the models’ performance in predicting the gold standard ratings. In each fold, the best model hyperparameters were chosen using the scikit-optimize BayesSearchCV class. Since each split resulted in a different XGB model and we required a single QC score to train the deep learning model, we combined the models from each cross-validation split using a voting classifier, computing a weighted average of the predicted probability of passing from each model, weighted by its out-of-sample ROC-AUC. This was implemented using scikit-learn's VotingClassifier class.

To clarify the contributions of the automated QC metrics and the community science raters, we trained two additional gradient boosting models: (i) one trained only on the automated QSIPrep data quality metrics, which we call XGB-q and (ii) one trained on only the Fibr ratings, which we call XGB-f. XGB-f may be viewed as a
data-driven weighting of community scientists’ ratings, while XGB-q may be viewed as a generalization of data quality metric exclusion criteria. XGB, combining information from both Fibr ratings and QSIPrep data quality metrics attained a cross-validated area under the receiver operating curve (ROC-AUC) of 0.96 ± 0.01 on the “gold standard,” where the ± indicates the standard deviation of scores from repeated k-fold cross-validation (Fig. 4b). In contrast, XGB-q attained an ROC-AUC of 0.91 ± 0.03 and XGB-f achieved an ROC-AUC of 0.84 ± 0.04. The enhanced performance of XGB-q over XGB-f shows that community scientists alone are not as accurate as automated data quality metrics are at predicting expert ratings. And yet, the increased performance of XGB over XGB-q demonstrates that there is additional image quality information to be gained by incorporating community scientist input.

We used SHapley Additive exPlanations (SHAP) to measure the global feature importance of the automated quality metrics in the gradient boosting models. SHAP is a method to explain individual predictions based on game theoretically optimal Shapley values. To estimate global feature importance for the XGB and XGB-q models, we used the shap library’s TreeExplainer and averaged the absolute Shapley value per feature across each individual prediction. Tables 1 and 2 list the QSIPrep automated QC metric features in order of decreasing mean absolute shap value for the XGB and XGB-q models, respectively. We chose the top three metrics from Table 1 to plot metric distributions in Fig. 10 and correlations with the expert QC results in Fig. 2.

As a way of evaluating the quality of the XGB predictions, consider the fact that the average Cohen’s κ between XGB and the expert raters was 0.74, which is higher than the average Cohen’s κ between any of the other raters and their human peers (Fig. 2). This is not surprising, given that the XGB model was fit to optimize this match, but further demonstrates the goodness of fit of this model.

Nevertheless, this provides confidence in using the XGB scores in the next step of analysis, where we treat the XGB model as an additional coder and extend XGB ratings to participants without Fibr ratings. When adding XGB to the existing expert raters as a seventh expert, we achieved ICC3 = 0.709 (95% CI: [0.66, 0.75]). The high ICC3 value after inclusion of the XGB model justifies using the XGB scores as the target for training an image-based deep learning network.

feature	mean abs shap
raw_neighbor_corr	0.664429
max_rel_translation	0.348662
raw_num_bad_slices	0.288937
t1_neighbor_corr	0.282198
raw_incoherence_index	0.229733
raw_coherence_index	0.162103
max_rel_rotation	0.118963
mean_fd	0.116457
max_fd	0.099359
max_rotation	0.078774
t1_coherence_index	0.035553
t1_dice_distance	0.034510
max_translation	0.032323
t1_incoherence_index	0.030225
raw_voxel_size_x	0.000000
raw_voxel_size_y	0.000000
raw_voxel_size_z	0.000000
raw_num_directions	0.000000
raw_max_b	0.000000
raw_dimension_y	0.000000
raw_dimension_z	0.000000
t1_voxel_size_x	0.000000
t1_dimension_x	0.000000
t1_dimension_y	0.000000
t1_dimension_z	0.000000
t1_voxel_size_y	0.000000
t1_voxel_size_z	0.000000
t1_max_b	0.000000
t1_num_bad_slices	0.000000
t1_num_directions	0.000000
raw_dimension_x	0.000000

Table 1. XGB mean absolute shap values.
Automated quality control labelling through deep learning. While the XGB “rater” does a good job of extending QC ratings to the entire community science subset, this approach requires Fibr scores; without community science Fibr scores, only the less accurate XGB-q prediction can be employed. Consequently, a new, fully automated QC approach is needed that can be readily applied to future data releases from HBN.

We therefore trained deep convolutional neural networks to predict binarized XGB ratings directly from QSIPrep outputs. We modified an existing 3D convolutional neural network (CNN) architecture previously applied to the ImageCLEF Tuberculosis Severity Assessment 2019 benchmark to accept multichannel input generated from the preprocessed dMRI: the \(b = 0 \) reference diffusion image, each of the three cardinal axis components of the DEC-FA image, and, optionally, automated QC metrics from QSIPrep. We trained these networks on XGB scores and validated it against the gold standard expert-scored dataset. We refer to the convolutional neural network model trained only on imaging data as CNN-i and the model that incorporates automated QC metrics as CNN-i + q.

Both the CNN-i and CNN-i + q models were implemented in Tensorflow using the Keras module. The image processing part of the model architecture was identical for both models: a modification of an existing 3D CNN previously applied to assess tuberculosis severity. It accepts a 3D volume as input with four channels: (i) the \(b = 0 \) reference volume, (ii) DEC-FA in the \(x \)-direction, (iii) DEC-FA in the \(y \)-direction and (iv) DEC-FA in the \(z \)-direction. The QSIPrep’s automated QC metrics were included as an additional fifth channel. The CNN-i + q model architecture is summarized in Fig. 5. Upon input, the CNN-i + q model extracts the imaging channels and passes them through the CNN architecture. The remaining data quality metrics channel is flattened and passed “around” the CNN architecture and concatenated with the output of the convolutional layers. This concatenated output is then passed through a fully-connected layer to produce a single output, the probability of passing QC. This architecture has 1,438,783 trainable parameters.

To estimate the variability in model training, we trained ten separate models using different training and validation splits of the data. The gold standard dataset was not included in any of these splits and was reserved for reporting final model performance. Models were optimized for binary crossentropy loss using the Adam optimizer with an initial learning rate of 0.0001. We reduced the learning rate by a factor of 0.5 when the validation loss plateaued for more than two epochs. We also stopped training when the validation loss failed to improve for 10 epochs.

Table 2. XGB-q mean absolute shap values.

Feature	Mean abs shap
raw_neighbor_corr	0.767536
raw_incoherence_index	0.455897
raw_num_bad_slices	0.430422
t1_coherence_index	0.382218
max_rel_translation	0.363052
raw_coherence_index	0.320438
t1_neighbor_corr	0.250948
t1_dice_distance	0.248104
t1_incoherence_index	0.242348
max_rel_rotation	0.135590
mean_fd	0.128642
max_translation	0.120815
max_fd	0.119739
max_rotation	0.101209
t1_num_bad_slices	0.000765
raw_dimension_y	0.000000
raw_dimension_z	0.000000
raw_voxel_size_x	0.000000
raw_voxel_size_y	0.000000
raw_voxel_size_z	0.000000
raw_max_b	0.000000
t1_voxel_size_x	0.000000
raw_num_directions	0.000000
t1_dimension_x	0.000000
t1_dimension_y	0.000000
t1_dimension_z	0.000000
t1_voxel_size_y	0.000000
t1_voxel_size_z	0.000000
t1_max_b	0.000000
t1_num_directions	0.000000
raw_dimension_x	0.000000
to improve by more than 0.001 for twenty consecutive epochs. These two adjustments were made using the ReduceLROnPlateau and EarlyStopping callbacks in Tensorflow respectively. The training and validation loss curves for both the CNN-i and CNN-i+q models are depicted in Fig. 6. While the CNN-i+q model achieved better validation loss, it did not outperform the CNN-i model on the held out gold standard dataset. The two models performed nearly identically and achieved an ROC-AUC of 0.947 ± 0.004 (Fig. 7a). The near-identical performance suggests that QSIPrep’s automated data quality metrics provided information that was redundant with information available in the imaging data. Both CNN-i and CNN-i+q outperformed XGB-q, which was trained only on automated QC metrics, but both modestly underperformed relative to the full XGB model, that uses Fibr scores in addition to the QSIPrep data quality metrics.

The openly available HBN-POD2 data released with this paper provides four QC ratings: the mean expert QC ratings, XGB-q and XGB predicted scores, as well as the CNN-i predicted score. However, we treat the CNN-i score as the definitive QC score because it is available for all participants, can be easily calculated for new participants in future HBN releases, and is more accurate than XGB-q in predicting expert ratings in the “gold standard” report set. When we refer to a participant’s QC score without specifying a generating model, the CNN-i score is assumed. Figure 7 depicts the distribution of these QC scores by age (Fig. 7b), sex (Fig. 7c), and scanning site (Fig. 7d). QC distributions are independent of sex and scanning site.

Tractometry. To further validate the importance of quality control, we used tract profiling, which is a subset of tractometry. In particular, tract profiling uses the results of dMRI tractography to quantify properties of the white matter along major pathways. We used the Python Automated Fiber Quantification toolbox (pyAFQ) as previously described. Briefly, probabilistic tractography was performed using constrained spherical deconvolution fiber orientation distribution functions, as implemented in DIPY. Twenty-four major tracts, which are enumerated in Fig. 8, were identified using multiple criteria: inclusion ROIs and exclusion ROIs, combined with a probabilistic atlas. Each streamline was resampled to 100 nodes and the robust mean...
at each location was calculated by estimating the 3D covariance of the location of each node and excluding streamlines that are more than 5 standard deviations from the mean location in any node. Finally, a bundle profile of tissue properties in each bundle was created by interpolating the value of MRI maps of these tissue properties to the location of the nodes of the resampled streamlines designated to each bundle. In each of 100 nodes, the values were summed across streamlines, weighting the contribution of each streamline by the inverse of the Mahalanobis distance of the node from the average of that node across streamlines. Bundle profiles of mean diffusivity (MD) and fractional anisotropy (FA) from the diffusional kurtosis imaging (DKI) model, implemented in DIPY, were used in technical validation of the data and evaluation of the impacts of QC. We used the previously mentioned cloudknot cloud-computing library to parallelize the pyAFQ tractometry pipeline over individual participants on spot instances in the Amazon Web Services Batch service.

Fig. 8 MD bundle profiles show large QC group differences: MD profiles binned by QC score in twenty-four major white matter bundles. The x-axis represents distance along the length of the fiber bundle. The left and right uncinate bundles were the most sensitive to QC score. Generally, QC score tended to flatten bundle profiles. Error bands represent bootstrapped 95% confidence intervals. Bundle abbreviations for lateralized bundles contain a trailing “L” or “R” indicating the hemisphere. Bundle abbreviations: inferior fronto-occipital fasciculus (IFO), uncinate (UNC), anterior thalamic radiation (ATR), corticospinal tract (CST), arcuate fasciculus (ARC), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), cingulum cingulate (CGC), orbital corpus callosum (Orbital), anterior frontal corpus callosum (AntFrontal), superior frontal corpus callosum (SupFrontal), motor corpus callosum (Motor), superior parietal corpus callosum (SupParietal), temporal corpus callosum (Temporal), posterior parietal corpus callosum (PostParietal), and occipital corpus callosum (Occipital).
Here, we plot mean diffusivity tract profiles (MD, Fig. 8) and fractional anisotropy profiles (FA, Fig. 9) grouped into four QC bins along the length of twenty-four bundles. While some bundles, such as the cingulum cingulate (CGC) and the inferior longitudinal fasciculus (ILF), appear insensitive to QC score, others, such as the uncinate (UNC) and the orbital portion of the corpus callosum, exhibit strong differences between QC bins. In most bundles, low QC scores tend to flatten the MD profile, indicating that MD appears artifactually homogeneous across the bundle.

Data Records

Curated imaging data. Curated BIDS data and their corresponding *QSI* *pre* outputs are public resources that can be accessed by anyone using DataLad\(^3\) or standard Amazon Simple Storage Service (S3) access tools. The curated data are available in the FCP-INDI S3 bucket and as a DataLad dataset\(^4\) as indicated in Table 3. Likewise, the *QSI* *pre* derivatives are available on FCP-INDI, as a standalone DataLad dataset\(^7\), and as a derivative subdataset in the primary HBN-POD2 DataLad dataset\(^9\). These processed diffusion derivatives are standard *QSI* *pre* outputs (see https://qsiprep.readthedocs.io/en/latest/preprocessing.html#outputs-of-qsiprep), which contain preprocessed imaging data along with the corresponding QC metrics:

- **Anatomical Data** Preprocessed images, segmentations and transforms for spatial normalization are located in the anat/ directory of each session. The gray matter, white matter and cerebrospinal fluid (GM, WM,
CSF) probabilistic segmentations are provided in nifti format with the _probtissue suffix. The deterministic segmentation is in _dseg.nii.gz. All images are in alignment with AC-PC-aligned sub-X_desc-preproc_T1w.nii.gz image unless they have space-MNI152NLin2009cAsym in their file name, in which case they are aligned to the MNI Nonlinear T1-weighted asymmetric brain template (version 2009c)36. The spatial transform between the AC-PC T1w image and MNI space is in the ITK/ANTs format file named sub-X_from-MNI152NLin2009cAsym_to-T1w_mode-image_xfm.h5. The brain mask from ANTsBrainExtraction.sh is included in the file with the _desc-brain_mask.nii.gz suffix.

• Diffusion Data. The preprocessed dMRI scan and accompanying metadata are in the dwi directory of each session. The fully-preprocessed dMRI data is follows the naming pattern sub-X_space-T1w_desc-preproc_dwi.nii.gz. These images all have an isotropic voxel size of 1.7 mm³ and are aligned in world coordinates with the anatomical image located at anat/sub-X_desc-preproc_T1w.nii.gz. Gradient information is provided in bval/bvec format compatible with DIPY and DSI Studio and the .b format compatible with MRtrix3. Volume-wise QC metrics including head motion parameters are included in the confounds.tsv file. Automatically computed quality measures for the entire image series are provided in the ImageQC.csv file, which includes the neighboring DWI Correlation, number of bad slices and head motion summary statistics. Figure 10 depicts pairwise distributions for the three of these automated data quality metrics that were most informative in QC models described later (see Tables 1 and 2). The desc-brain_mask file is a dMRI-based brain mask that should only be used when the T1w-based brain mask is inappropriate (i.e., when no susceptibility distortion correction has been applied).

CuBIDS Variants. We identified 20 unique dMRI acquisitions across HBN-POD2, which are summarized in Table 4. Site CBIC has two acquisition types: “64dir,” which shares its pulse sequence with sites RU and CUNY, and “ABCD64dir,” with acquisition parameters that better match the ABCD study (TE = 0.089 s and TR = 4.1 s). The “Most_Common” variant identifies the most common combination of acquisition parameters...
Table 3. HBN-POD2 data records. 1FCP-INDI: All paths are relative to the root s3://fcp-indi/data/Projects/HBN/BIDS_curated/. E.g., use the AWS CLI: aws s3 ls s3://fcp-indi/data/Projects/HBN/BIDS_curated/ or view these files in a web browser at https://fcp-indi.s3.amazonaws.com/index.html#/data/Projects/HBN/BIDS_curated/. 2HBN-POD2 DataLad dataset: Use datalad clone git@github.com:nrdg/HBN-POD2-derivatives-qsiprep.git. All paths are relative to the repository root. 3QSIQC derivatives dataset: Use datalad clone git@github.com:nrdg/HBN-POD2-derivatives-qsiprep.git. All paths are relative to the repository root. 4Participants.tsv: located on FCP-INDI and in the HBN-POD2 DataLad dataset at relative path derivatives/qsiprep/participants.tsv, and in the HBN-POD2 QSIQC derivatives DataLad dataset at participants.tsv. 5HBN-POD2 OSF Project: all paths are relative to the root HBN-POD2 QC/OSF Storage.

for a given site and acquisition. The "Low_Volume" variant identifies participants from all sites with less than 129 DWI volumes, which is the number of volumes in the most common variants. All remaining variant names identify the acquisition parameter(s) that differ from those of the most common variant. For example, the "MultibandAccelerationFactor" variant has a different multiband acceleration factor than that of the most common variant but all participants within that variant share the same multiband acceleration factor. Variants that differ by multiple acquisition parameters have names that are composed of concatenated parameters. For example, the variant "Dim3SizeVoxelSizeDim3" varies both in the number of voxels in dimension 3 ("Dim3Size") and in the voxel size in dimension 3 ("VoxelSizeDim3").

The specific variant of each scanning session is provided as a column in the HBN-POD2 participant.tsv file.

Quality control data. We provide four separate QC scores in the participants.tsv file described in Table 3. The mean expert ratings are available in the "expert_qc_score" column. These ratings are scaled to the range 0 to 1, so that a mean rating from 0 to 0.2 corresponds to an expert rating of "definitely fail"; a mean rating from 0.2 to 0.4 corresponds to "probably fail"; from 0.4 to 0.6 corresponds to "not sure"; from 0.6 to 0.8 corresponds to "probably pass", and 0.8 to 1.0 corresponds to "definitely pass." The XGB model’s positive class probabilities are available in the "xgb_qc_score" column, while the XGB-q model’s positive class probabilities are available in the "xgb_qsiprep_qc_score" column. Finally, the CNN-i + q model’s positive class probabilities are available in the "dl_qc_score" column.

Tractography and tractometry. The outputs of the pyAFQ tractometry pipeline, including tractography and tract profiles, are provided as specified in Table ref/afq-data-records: in a BIDS derivative directory in the

Data Resource	Repositories	Location
BIDS Curated Imaging	FCP-INDI	/
	DataLad dataset	/
QSIPrep preprocessed DWI	FCP-INDI	/derivatives/qsiprep/
	DataLad dataset	/derivatives/qsiprep/
	QSIQC dataset	/
CuBIDS variants	participants*	site/variant column
Raw expert ratings	OSF	/expert-qc/
Expert QC scores	participants*	expert_qc_score column
Raw community ratings	OSF	/community-qc/
Community QC scores	participants*	xgb_qc_score_column
QSIQC QC scores	participants*	xgb_qsiprep_qc_score_column
QSIQC model	GitHub	https://doi.org/10.5281/zenodo.5949269
Deep learning input images	FCP-INDI	/derivatives/qsiprep/derivatives/dlqc/
Deep learning models	OSF	/deep-learning-qc/saved-models
Deep learning QC scores	participants*	dl_qc_score_column
Deep learning attributions	OSF	/deep-learning-qc/integrated-gradients
AFQ tractography & tractometry	FCP-INDI	/derivatives/afq/
	DataLad dataset	/derivatives/afq/
	AFQ dataset	/
AFQ streamline counts	FCP-INDI	/derivatives/afq/participants.tsv
	DataLad dataset	/derivatives/afq/participants.tsv
	AFQ dataset	/participants.tsv
AFQ tract profiles	FCP-INDI	/derivatives/afq/combined_tract_profiles.csv
	DataLad dataset	/derivatives/afq/combined_tract_profiles.csv
	AFQ dataset	/combined_tract_profiles.csv
FCP-INDI AWS S3 bucket, as a Datalad dataset and as a DataLad subdataset in the primary HBN-POD2 dataset. In particular the FA and MD tract profiles for each participants are available on S3 at s3://fcp-indi/data/Projects/HBN/BIDS_curated/derivatives/afq/combined_tract_profiles.csv. Streamline counts for each of the bundles are available at s3://fcp-indi/data/Projects/HBN/BIDS_curated/derivatives/afq/participants.tsv.

For each subject, intermediate data derivatives of the pyAFQ pipeline are also provided.

- A brain mask and mean $b=0$ image are saved with "_brain_mask.nii.gz" and "_b0.nii.gz" file-name suffixes. A set of diffusion modeling derivatives are saved for each of three different diffusion models: DTI, DKI and CSD. Diffusion model parameters are saved with the "_diffmodel.nii.gz" suffix. Derived model scalars are saved with suffixes that indicate the model and the scalar. For example, the FA derived from the DTI model is saved with the "_DTI_FA.nii.gz" suffix.

- Masks used to initialize tractography are saved with the "seed_mask.nii.gz" suffix, while those used to determine the stopping criterion for tractography are stored with the "stop_mask.nii.gz" suffix.

- Files that define a non-linear transformation between the individual subject anatomy and the MNI template for the purpose of waypoint ROI placement are stored with "mapping_from-DWI_to_MNI_xfm.nii.gz" (non-linear component) and "prealing_from-DWI_to_MNI_xfm.npy" (affine component) suffixes. The waypoint ROIs, transformed to the subject anatomy through this non-linear transformation are also stored in the "ROIs" sub-directory.

- Tractography derivatives are stored with the "_tractography.trk" suffix. The whole-brain tractography, which serves as the input data for bundle segmentation, is stored with the "_CSD_desc-prob_tractography.trk" suffix. Streamlines that were selected for inclusion in one of the major bundles are stored in separate files in the "bundles" sub-directory and saved in a consolidated file with the "CSD_desc-prob-afq_tractography.trk" suffix. The streamlines selected for inclusion and also additionally cleaned through a process of outlier removal are stored with the "CSD_desc-prob-afq-clean_tractography.trk" suffix and also in a "clean_bundles" sub-directory.

- An interactive visualization of bundles relative to the individual anatomy is stored with the "_viz.html" suffix and summaries of streamline counts in each bundle are stored with the "_sl_count.csv" suffix. Additional visualizations are provided in the "tract_profile_plots" and "viz_bundles" sub-directory.

- Individual tract profiles are stored with the "afq_profiles.csv" suffix. This information is redundant with the one provided in aggregate format in the "combined_tract_profiles.csv" file.

- Individual streamline counts for each of the bundles are stored with the "_sl_count.csv" suffix. This information is redundant with the one provided in aggregate format in the "participants.tsv" file.

Technical Validation

Attribution masks for the deep learning classifier. We generated post-hoc attribution maps that highlight regions of the input volume that are relevant for the deep learning generated QC scores. The integrated gradient method is a gradient-based attribution method that aggregates gradients for synthetic images interpolating between a baseline image and the input image. It has been used to interpret deep learning models applied to retinal imaging in diabetic retinopathy and glaucoma prediction, as well as in multiple sclerosis prediction.

Site	Acquisition	Variant	Count
CBIC	64dir	Most_Common	828
CBIC	64dir	Obliquity	32
CBIC	64dir	VoxelSizeDim1VoxelSizeDim2	1
CBIC	ABCD64dir	Most_Common	15
CBIC	ABCD64dir	HasFMap	2
CBIC	ABCD64dir	MultibandAccelerationFactor	1
CBIC	ABCD64dir	Obliquity	1
CUNY	64dir	Most_Common	68
CUNY	64dir	Dim3SizeVoxelSizeDim3	4
CUNY	64dir	Obliquity	2
RU	64dir	Most_Common	859
RU	64dir	NoFmap	5
RU	64dir	Obliquity	8
SI	64dir	PhaseEncodingDirection	1
SI	64dir	EchoTime	1
SI	64dir	EchoTimePhaseEncodingDirection	9
SI	64dir	Most_Common	269
SI	64dir	NoFmap	2
SI	64dir	Obliquity	12
All Sites	All Acquisitions	Low_Volume_Count	14

Table 4. Participant counts for HBN-POD2 variants.
Our goal is to confirm that the CNN-i model was driven by the same features that would drive the expert rating, thereby bolstering the decision to apply it to new data.

To generate the attribution maps, we followed Tensorflow’s integrated gradients tutorial with a black baseline image and 128 steps in the Riemann sum approximation of the integral (i.e., \(m _steps = 128 \)).

Figure 11 shows attribution maps for example participants from each confusion class: true positive, true negative, false positive, and false negative. The columns correspond to the different channels of the input tensor: the \(b = 0 \) DWI volume and the DEC-FA images in the \(x, y, \) and \(z \) directions. The first three columns show an axial slice while the last column shows a coronal slice. Blue voxels indicate positive attribution (i.e., evidence for passing the participant), while red voxels indicate negative attribution (i.e., evidence for QC failure). The voxels with small magnitude attribution values (≤98% of the highest value in each image) have been rendered to be transparent, as they do not indicate strong evidence in either direction. In these cases, the underlying grayscale depicts the input channel (\(b = 0 \) or \(x, y, \) or \(z \) elements of the DEC-FA image). Each row depicts a representative participant from each confusion class: (a) Attribution maps for a true positive prediction. The model looked at the entire brain and focused on known white matter bundles in the DEC-FA channels. In particular, it focused on lateral bundles in the \(x \) direction, anterior-posterior bundles in the \(y \) direction, and superior-inferior bundles in the \(z \) direction. (b) Attribution maps for a true negative prediction. The model focused primarily on the \(b = 0 \) channel, suggesting that it ignores DEC-FA when motion artifacts like banding are present. (c) Attribution maps for a false positive prediction. Both the false positive and negative predictions were low confidence predictions. This is reinforced by the fact that the model viewed some voxels that are outside of the brain as just as informative as those in major white matter tracts. (d) Attribution maps for a false negative prediction. The model failed to find long-range white matter tracts in the anterior-posterior and lateral directions. We also speculate that the model expected left-right symmetry in the DEC-FA channels and assigned negative attribution to asymmetrical features.

Fig. 11 Integrated gradient attribution maps for the deep learning classifier: Each column depicts a different channel of the input tensor: the \(b = 0 \) DWI volume and the DEC-FA images in the \(x, y, \) and \(z \) directions. The first three columns show an axial slice while the last column shows a coronal slice. Blue voxels indicate positive attribution (i.e., evidence for passing the participant), while red voxels indicate negative attribution (i.e., evidence for QC failure). The voxels with small magnitude attribution values (≤98% of the highest value in each image) have been rendered to be transparent, as they do not indicate strong evidence in either direction. In these cases, the underlying grayscale depicts the input channel (\(b = 0 \) or \(x, y, \) or \(z \) elements of the DEC-FA image). Each row depicts a representative participant from each confusion class: (a) Attribution maps for a true positive prediction. The model looked at the entire brain and focused on known white matter bundles in the DEC-FA channels. In particular, it focused on lateral bundles in the \(x \) direction, anterior-posterior bundles in the \(y \) direction, and superior-inferior bundles in the \(z \) direction. (b) Attribution maps for a true negative prediction. The model focused primarily on the \(b = 0 \) channel, suggesting that it ignores DEC-FA when motion artifacts like banding are present. (c) Attribution maps for a false positive prediction. Both the false positive and negative predictions were low confidence predictions. This is reinforced by the fact that the model viewed some voxels that are outside of the brain as just as informative as those in major white matter tracts. (d) Attribution maps for a false negative prediction. The model failed to find long-range white matter tracts in the anterior-posterior and lateral directions. We also speculate that the model expected left-right symmetry in the DEC-FA channels and assigned negative attribution to asymmetrical features.
input volume: the $b=0$ reference image and the DEC-FA in the x, y, and z directions. These integrated gradients are dimensionless quantities but their sign is meaningful. They are proportional to the probability of assigning one label (“pass”) or another (“fail”). The blue voxels indicate positive attribution, that is, data that supports a passing QC classification. Conversely, the red voxels indicate negative attribution, data that supports a failing QC classification. The true positive map indicates that the network was looking at the entire brain rather than focusing on any one anatomical region (Fig. 11a). Moreover, the model identified white matter fascicles that travel along the direction of the input channel: lateral for x, anterior-posterior for y, and superior-inferior for z.

The true negative attribution map (Fig. 11b) reveals that when the reference $b=0$ volume contains motion artifacts, such as banding, the network ignored the otherwise positive attributions for the clearly identifiable white matter tracts in the DEC-FA channels. The false positive map (Fig. 11c) and the false negative map (Fig. 11d) should be interpreted differently since they come from low confidence predictions; the probability of passing hovered on either side of the pass/fail threshold. For example, in the false positive case, the network was confused enough that it treated voxels that are outside of the brain to be as informative as voxels in the major white matter bundles.

QC prediction models can generalize to unseen sites. Site harmonization is a major issue for any multisite neuroimaging study and developing automated QC tools that generalize between sites has been a perennial issue\(^5\). Furthermore, the ability to generalize between sites in a single multisite study would signal the promise of generalizing to other datasets altogether. To better understand the ability of our QC models to generalize across scanning sites, we trained multiple versions of XGB-q and CNN-i on partitions of the data with different scanning sites held out and then evaluated those models on the held out sites (Fig. 12 and Table 5). These models were therefore evaluated on data from “unseen” sites. We constructed these train/evaluate splits from combinations of the HBN sites with 3 T scanners (RU, CBIC, and CUNY), and excluded CUNY as a standalone training or test site because of its low number of participants ($N=74$). This left four combinations of site-generated training splits: CBIC+CUNY (eval: RU), CBIC (eval: RU+CUNY), RU+CUNY (eval: CBIC), and RU (eval: CBIC+CUNY).

We trained eight models (with distinct random seeds) from the CNN-i family of models using the global XGB scores as targets, just as with the full CNN-i model. Similarly, we trained twenty models (with distinct random seeds) from the XGB-q family of models using the expert scores as targets, just as with the full XGB-q model. For each model, we reported three evaluation metrics: ROC-AUC, accuracy, and balanced accuracy. Because the distribution of QC scores was imbalanced (Figs. 2a and 7d), we included balanced accuracy as an evaluation metric. Balanced accuracy avoids inflated accuracy estimates on imbalanced data\(^6\), and in the binary classification case, it is the mean of the sensitivity and specificity. For the CNN-i family, we further decomposed the evaluation split into a report set, for which expert scores were available, and a test set, with participants who
were not in the “gold standard” dataset. For the report set, we evaluated the model using the expert scores as the ground truth. For the test set, we evaluated each model using the XGB scores as ground truth. Aside from the specification of train and evaluation splits, model training followed exactly the same procedure as for the full dataset. For example, we use the same cross-validation and hyperparameter optimization procedure for the XGB-q family as for the original XGB-q model and the same architecture, input format, and early stopping criteria for the CNN-i family as for the CNN-i model.

ROC-AUC for generalization is uniformly high for both the XGB-q and the CNN-i models. However, more importantly, accuracy and balanced accuracy vary substantially: depending on the site that was used for training, balanced accuracy could be as low as guess rate, particularly for the CNN-i model. Notably, it seems that including the RU site in the training data led to relatively high balanced accuracy in both models. The XGB-q model balanced accuracy was less dependent on the specific sites used for training, but also displayed some variability across permutations of this experiment. In particular, the benefit from including the “right site” in the training data, namely RU, eclipsed the slight benefit conferred by including more than one site in the training data.

Quality control improves inference. To demonstrate the effect that quality control has on inference, we analyzed tract profile data derived from HBN-POD2 data.

Model	Site	Accuracy	Balanced accuracy	ROC-AUC
CNN-i	train: CBIC + CUNY, test: RU	0.748 ± 0.086	0.652 ± 0.112	0.930 ± 0.015
	train: CBIC, test: RU + CUNY	0.696 ± 0.095	0.574 ± 0.123	0.791 ± 0.169
	train: RU + CUNY, test: CBIC	0.859 ± 0.033	0.847 ± 0.030	0.912 ± 0.013
	train: RU, test: CBIC + CUNY	0.851 ± 0.018	0.753 ± 0.029	0.910 ± 0.014
XGB-q	train: CBIC + CUNY, test: RU	0.763 ± 0.071	0.805 ± 0.052	0.895 ± 0.006
	train: CBIC, test: RU + CUNY	0.725 ± 0.079	0.779 ± 0.058	0.886 ± 0.019
	train: RU + CUNY, test: CBIC	0.894 ± 0.024	0.838 ± 0.036	0.931 ± 0.018
	train: RU, test: CBIC + CUNY	0.886 ± 0.030	0.816 ± 0.048	0.940 ± 0.017

Table 5. Site generalization summary statistics: Below we list the mean ± standard deviation of the site generalization evaluation metrics displayed in Fig. 12. For each of the CNN-i and XGB-q model families and each of the site generalization splits, we report the accuracy, balanced accuracy, and ROC-AUC.

Usage Notes

HBN-POD2 is one of the largest child and adolescent diffusion imaging datasets with preprocessed derivatives that is currently openly available. The dataset was designed to comply with the best practices of the field. For example, it complies with the current draft of the BIDS diffusion derivative specification. It will grow continuously as the HBN study acquires more data, eventually reaching its 5,000 participant goal.
Preprocessing and quality control increase the impact of openly-available data. The HBN-POD2 data is amenable to many different analyses, including tractometry, graph theoretical analysis, and combinations with functional MRI data and other data types for the same participants. The availability of standardized preprocessed diffusion data will allow researchers to create and test hypotheses on the white matter properties underlying disease, from reading and math acquisition to childhood adversity and mental health. As such, this dataset will accelerate discovery at the nexus of white matter microstructure and neurodevelopmental and learning disorders.

In large developmental datasets, it is critically important to perform accurate and reliable QC of the data. QC is associated not just with age, but with many phenotypic variables of interest in cognition and psychopathology. HBN-POD2 provides four separate QC scores alongside its large dataset of pediatric neuroimaging diffusion derivatives, paving the way for users of the data to incorporate considerations of data quality into their analysis of the processed data. Unsurprisingly, QC scores are strongly correlated with age. This accords with the negative association between head motion and age in developmental studies, which is well established both in general and specifically for resting-state fMRI in the HBN dataset. Moreover, it is important that QC has bundle-specific and spatially localized effects. Analysis of this data that does not incorporate QC is likely to find replicate but invalid effects. For example, in patient-control studies, patients are likely to have lower quality data. And analysis of such patient data that does not control for QC will find spatially-localized and replicable group differences that are due to data quality, not necessarily underlying neuroanatomical differences.

We further demonstrated the impact of QC in a benchmark age prediction task. In this case, the increase in model performance from imposing a QC cutoff is intuitive: we know from Fig. 8 that participants with low QC scores have reduced MD, but MD also decreases as participants mature. Eliminating participants with low QC therefore removes the ones who may look artificially older from the analysis, improving overall performance. The most noticeable improvement in performance comes after imposing the most modest cutoff of 0.05, suggesting that inferences may benefit from any QC screening. On the other hand, QC screening inherently introduces a tradeoff between the desire for high quality data and the desire for a large sample size. In this case, after a QC cutoff of around 0.9, the training set size is reduced such that it degrades predictive performance. Importantly, we do not expect the sensitivity analysis of an age prediction model to generalize to other analyses and therefore recommend that researchers using HBN-POD2 choose the most appropriate QC cutoff for their research question and consider including QC score as a model covariate in their analyses.

Automated quality control: scalability, interpretability, and generalization. The predictive performance of the CNN-i model gives us confidence that it could accurately classify unseen data from the same sites, justifying its extension to the entire HBN-POD2 dataset and to future releases of HBN. However, one limitation of this model is that it does not satisfactorily explain its decisions. As deep learning models have been increasingly applied to medical image analysis, there is an evolving interest in the interpretability of these models. While an exhaustive interpretation of deep learning QC models is beyond the scope of this work, we provided a preliminary qualitative interpretation of the CNN-i model that demonstrates the intuitive nature of its decisions.

The accuracy in generalizing to unseen data from HBN also suggested the tantalizing possibility that the QC models would be able to generalize to similar data from other datasets. To assess this, we trained the models with unseen sites held out. Both the CNN-i model and the XGB-q model do sometimes generalize to data from unseen sites, suggesting that they would be able to generalize to other datasets as well. However, they do not reliably generalize, implying that they should not currently be used in this way. Future work could build upon the work that we have done here to establish a procedure whereby the models that we fit in HBN would be applied to data from other studies, but comprehensive calibration and validation would have to be undertaken as part of this procedure.

We recognize that decisions about QC exclusion/inclusion must balance accuracy, interpretability, generalization to new data, and scalability to ever larger datasets. We therefore provide three additional scores: (i) the mean expert QC score for the 200 participants in the gold standard dataset, (ii) the scores predicted by...
the XGB model, which outperformed all other models when evaluated against the gold standard ratings, but which are only available for participants that have community science scores, and (iii) the scores predicted by the XGB-q model, which underperformed the deep learning generated scores, but which rely only on the automated QC metrics output by QSIPrep. We view the XGB-q scores, which are available for all participants, as a more interpretable and scalable fallback because the XGB-q model ingests QSIPrep output without any further postprocessing. XGB-q also provides slightly more uniform performance in generalization to unseen HBN sites (Fig. 12). Because the XGB-q model most readily generalizes to other QSIPrep outputs, we packaged it as an independent QC service in the QSIQC software package105, available both as a docker image at ghcr.io/richford/qsiqc and as a Streamlit app at https://share.streamlit.io/richford/qsiqc/main/app.py. The decision to use a more interpretable but slightly less performant method of generating QC scores was also advocated by Tobe et al.104, who noted that the Euler number of T1-weighted images105 in the NKI-Rockland dataset can reliably predict scores generated with Braindr, the community science application developed in our previous work102.

We also note that the issue of algorithmic impact in choosing a QC method is not exclusive to the deep learning model. We have chosen models that most reliably reproduce the gold standard ratings, but a reliable algorithm might still negatively influence researcher’s decisions. For example, excluding participants by QC score could spur them to exclude populations deserving of study, as when QC score is highly correlated with age or socio-economic status. We therefore caution researchers to examine interactions between the QC scores we provide and their phenotype of interest.

More generally, QC in the dataset that we have produced is fundamentally anchored to the decisions made by the expert observers. While Cohen’s κ between some pairs of experts can be as low as 0.52, IRR quantified across all of the experts with ICC3k is excellent. Nevertheless, it is possible that improvements to the final QC scores could be obtained through improvements to IRR, or by designing a more extensive expert QC protocol. The tradeoff between more extensive QC for each participant and more superficial QC on more participants was not explored in this study, but could also be the target for future research.

Finally, the QC scores in this dataset are single scalar representations of the quality of each participant’s diffusion weighted imaging. They should not be taken as a single measurement of suitability for inclusion. QC metrics are exclusion metrics, not inclusion metrics. In fact, we postulate that no single measurement is suitable as an inclusion criterion by itself. For example, some HBN participants have both neuroanatomical abnormalities and high quality diffusion data, as measured by high neighboring DWI correlation, low framewise displacement, and high QC scores. Therefore, one would need to include other sources of information when considering inclusion in a particular study. For example, we recommend that users consult the pyAFQ streamline counts (see Table 3) to assess suitability for inclusion in a study of normative brains.

Transparent pipelines provide an extensible baseline for future methods. While the primary audience of HBN-POD2 is researchers in neurodevelopment who will use the dMRI derivatives in their studies, other researchers may use HBN-POD2 to develop new preprocessing algorithms or quality control methods. In this respect, HBN-POD2 follows Avesani et al.106, who recognized the diverse interests that different scientific communities have in reusing neuroimaging data and coined the term data upcycling to promote multiple-use data sharing for purposes secondary to those of the original project. Implementing the approach taken in Avesani et al.’s work, which provided dMRI from a small number of participants preprocessed with many pipelines, HBN-POD2 contains many participants, all processed with a single state of the art pipeline, QSIPrep. For researchers developing new preprocessing algorithms, HBN-POD2 provides a large, openly available baseline to which they can compare their results.

Similarly, neuroimaging QC methods developers will benefit from a large benchmark dataset of expert, community science, and automated QC ratings, with which to test new methods. Importantly, the architecture and parameters of the deep learning network used for QC are also provided as part of this work, allowing application of this network to future releases of HBN data, and allowing other researchers to build upon our efforts. Indeed, in this work, we have extended our previous work on what we now call “hybrid QC”. This approach, which we originally applied to the first two releases of the HBN T1-weighted data22 (using the Braindr web app: https://braindr.us) was extended here in several respects. First, the Braindr study used a smaller dataset of approximately 700 participants, while we extended this approach to well over 2000 participants. Second, Braindr relied on approximately 80000 ratings from 261 users. Here, we received more than 500000 ratings from 374 community scientists. As our understanding of the role of community scientist contributions has evolved, we decided that we would include as collective co-authors community scientists who contributed more than 3000 community scientists. As our understanding of the role of community scientist contributions has evolved, we relied on approximately 80000 ratings from 261 users. Here, we received more than 500000 ratings from 374 approximately 700 participants, while we extended this approach to well over 2000 participants. Second, Braindr used data from only a single site. Here, multi-site data was used. This opens up multiple possibilities for deeper exploration of between-site quality differences, and also for harmonization of QC across sites, as we have attempted here. Last, the most challenging extension of hybrid QC from Braindr to this study entailed developing an approach that would encompass multi-volume dMRI data. On the one hand, this meant that the task performed by the expert observers was more challenging, because it required examination of the full dMRI time-series for each scan. To wit, expert inter-rater reliability was considerably higher for the T1-weighted only data in22 than for the dMRI data used (Fig. 2e). On the other hand, it also meant that the 4D data had to be summarized into 2D data to be displayed in the Fibr web application. This was achieved by summarizing the entire time-series as a DEC-FA + b = 0 image and presenting community scientists with animated sections of these images that showed how the data extended over several horizontal slices. In addition, the extension to 4D data required developing new deep learning architectures for analysis of 4D images, including upstream contributions to Nobrainer, a community-developed software library for deep learning in neuroimaging data107. These extensions demonstrate that the hybrid QC approach generalizes very well to a variety of sections of these images that showed how the data extended over several horizontal slices. In addition, the extension to 4D data required developing new deep learning architectures for analysis of 4D images, including upstream contributions to Nobrainer, a community-developed software library for deep learning in neuroimaging data107. These extensions demonstrate that the hybrid QC approach generalizes very well to a variety of
different circumstances. Future applications of this approach could generalize to functional MRI data, as well as other large datasets from other kinds of measurements and other research domains.

Future work and open problems. While our work was based on HBN releases 1–9, the HBN study plans to acquire imaging data for over 5000 participants, necessitating future data releases. In particular, the 10th release of HBN data was already made available between completion of the work and the publication of this paper. Since this 10th release as well as future releases of HBN will also require future releases of HBN-POD2, a plan for these is essential. This is a general issue affecting multi-year neuroimaging projects for which derivative data is being released before study completion. The use of QSIPrep, cloudknot and the containerization of the QC score assignment process facilitate running the exact pipeline described in this paper on newly released participants. However, this approach is somewhat unsatisfactory because it fails to anticipate improvements in preprocessing methodology. That is, what should we do when QSIPrep is inevitably updated between HBN releases? Enforce standardization by using an outdated pipeline or use state-of-the-art preprocessing at the expense of standardized processing between releases? Because the use of cloudknot and AWS Spot Instances renders preprocessing fast and relatively inexpensive, we propose a third way: if improvements to the preprocessing pipeline are available with a new HBN release, we plan to execute the improved pipeline on the entire HBN dataset, while preserving the previous baseline release in an archived BIDS derivative dataset.

Undertaking the processing and QC effort to generate HBN-POD2 required construction and deployment of substantial informatics infrastructure, including tools for cloud computing, web applications for expert annotation and for community science rating and analysis software. All of these tools are provided openly, so that this approach can be generalized even more widely in other projects and in other scientific fields.

Code availability

To facilitate replicability, Jupyter notebooks108 and Dockerfiles109 necessary to reproduce the methods described herein are provided in the HBN-POD2 GitHub repository at https://github.com/richford/hbn-pod2-qc. The specific version of the repository used in this study is documented in [10]. Most of the code in this repository uses Pandas [15], NumPy [11], Matplotlib [14], and Seaborn [15]. The make or make help commands will list the available commands and make build will build the requisite Docker images to analyze HBN-POD2 QC data.

In order to separate data from analysis code [14], we provide intermediate data necessary to analyze the QC results in an OSF [17] project [18], the contents of which can be downloaded using the make data command in the root of the HBN-POD2 GitHub repository. The NIFTI-1 files and TFRecord files provided as input to the CNN models may be separately downloaded using the make niftis and make tfrecs commands, respectively. The remaining make commands and Jupyter notebooks follow the major steps of the methods section:

1. The cloudknot preprocessing function used to execute QSIPrep workflows on curated data was a thin wrapper around QSIPrep's command line interface and is provided in the “notebooks” directory of the HBN-POD2 GitHub repository in a Jupyter notebook with the suffix preprocess-remaining-hbn-curated.ipynb.
2. The expert rating analysis can be replicated using the make expert-qc command in the HBN-POD2 GitHub repository.
3. The Fibr community science web application is based on the SwipesForScience framework (swipesforscience.org), which generates a web application for community science given an open repository of images to be labelled and a configuration file. The source code for the Fibr web application is available at https://github.com/richford/fibr.
4. The images that the Fibr raters saw were generated using a DIPY [35] TensorModel in a cloudknot-enabled Jupyter notebook that is available in the “notebooks” directory of the Fibr GitHub repository. Fibr saves each community rating to its Google Firebase backend, the contents of which have been archived to the HBN-POD2 OSF project as specified in Table 3.
5. The community ratings analysis can be replicated using the make community-qc command in the HBN-POD2 GitHub repository. Saved model checkpoints for each of the XGB models are available in the HBN-POD2 OSF project and are automatically downloaded with the make data command.
6. The input multichannel volumes for the CNN models were generated using DIPY [35] and cloudknot [46] and saved as NIFTI-1 files [19]. These NIFTI files were then converted to the Tensorflow TFRecord format using the Nobrainer deep learning framework [17]. The Jupyter notebooks used to create these NIFTI and TFRecord files are available in the “notebooks” directory of the HBN-POD2 GitHub repository, with suffixes save-b0-tensorfa-nifti.ipynb and save-tfrecs.ipynb, respectively.
7. We trained the CNN models using the Google Cloud AI Platform Training service; the HBN-POD2 GitHub repository contains Docker services to launch training (with make dl-train) and prediction (with make dl-predict) jobs on Google Cloud, if the user has provided the appropriate credentials in an environment file and placed the TFRecord files on Google Cloud Storage. Further details on how to organize these files and write an environment file are available in the HBN-POD2 GitHub repository’s README_GCP.md file. To generate the figure depicting the deep learning QC pipeline and results, use the make deep-learning-figures command.
8. We provide a Docker service to compute integrated gradient attribution maps on Google Cloud, which can be invoked using the make dl-integrated-gradients command. This step also requires the setup steps described in README_GCP.md. Similarly, the XGB-q site generalization experiments can be replicated
locally using the `make site-generalization` command, which will also plot the results of the CNN-i experiments.

10. The tractometry pipeline was executed using `pyAFQ` and `cloudknot` in a Jupyter notebook provided in the “notebooks” directory of the HBN-POD2 GitHub repository with the with suffix `afq-hbn-curated.ipynb` with suffix `afq-hbn-curated.ipynb`, provided in the HBN-POD2 GitHub repository in the “notebooks” directory. The `pyAFQ` documentation contains a more pedagogical example of using `pyAFQ` with `cloudknot` to analyze a large openly available dataset (https://yeatmanlab.github.io/pyAFQ/auto_examples/cloudknot_example.html).

11. The bundle profile and age prediction analyses can be replicated using the `make bundle-profiles` and `make inference` commands, respectively.

Received: 20 April 2022; Accepted: 12 September 2022; Published: 12 October 2022

References

1. Lebel, C. & Deoni, S. The development of brain white matter microstructure. *NeuroImage* **182**, 207–218 (2018).
2. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge during adolescence? *Nature Reviews Neuroscience* **9**, 947–957 (2008).
3. Paus, T. Population neuroscience: Why and how. *Human Brain Mapping* **31**, 891–903 (2010).
4. Fair, D. A., Dosenbach, N. U., Moore, A. H., Satterthwaite, T. D. & Milham, M. P. Developmental Cognitive Neuroscience in the Era of Networks and Big Data: Strengths, Weaknesses, Opportunities, and Threats. *Annual Review of Developmental Psychology* **3**, 249–275 (2021).
5. Alexander, L. M. et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. *Scientific Data* **4**, 170181 (2017).
6. Functional Connectomes Project International Neuroimaging Data-Sharing Initiative. https://doi.org/10.15387/CMI_HBN (2017).
7. Wandell, B. A. Clarifying Human White Matter. *NeuroImage* **82**, 683–691, https://doi.org/10.1016/j.neuroimage.2012.10.064 (2013).
8. Richie-Halford, A. Healthy Brain Network Preprocessed Open Diffusion Derivatives. Zenodo, https://doi.org/10.5281/zenodo.7047788 (2022).
9. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. *NeuroImage* **80**, 62–79, https://doi.org/10.1016/j.neuroimage.2013.05.041 (2013).
10. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. *Nature neuroscience* **19**, 1523–1536, https://doi.org/10.1038/nn.4393 (2016).
11. Jernigan, T. L. & Brown, S. A. Introduction. *Developmental Cognitive Neuroscience* **32**, 1–3 (2018). The Adolescent Brain Cognitive Development (ABCD) Consortium: Rationale, Aims, and Assessment Strategy.
12. Taylor, J. R. et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. *NeuroImage* **144**, 262–269, https://doi.org/10.1016/j.neuroimage.2015.09.018 (2017).
13. Shafto, M. A. et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. *BMC neuroscience* **14**, 204, https://doi.org/10.1186/s12888-014-0204-1 (2014).
14. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. *NeuroImage* **80**, 105–124, https://doi.org/10.1016/j.neuroimage.2013.04.127 (2013).
15. Jones, D. K. & Cercignani, M. Twenty-five pitfalls in the analysis of diffusion MRI data. *NMR in biomedicine* **23**, 803–820 (2010).
16. Yeh, F.-C., et al. Differential tractography as a track-based biomarker for neuronal injury. *NeuroImage* **202**, 116131, https://doi.org/10.1016/j.neuroimage.2019.116131 (2019).
17. Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. *Scientific Data* **3**, 160044 (2016).
18. Cieslak, M. et al. QSIprep: an integrative platform for preprocessing and reconstructing diffusion MRI data. *Nature Methods* **18**, 775–778 (2021).
19. Gorgolewski, K. J. et al. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. *PLOS Computational Biology* **13**, 1–16 (2017).
20. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. *Nature* **521**, 436–444, https://doi.org/10.1038/nature14539 (2015).
21. Lebel, C. & Deoni, S. The development of brain white matter microstructure. *NeuroImage* **182**, 207–218 (2018).
22. Keshavan, A., Yeatman, J. D. & Rokem, A. Combining Citizen Science and Deep Learning to Amplify Expertise in Neuroimaging. *Frontiers in Neuroinformatics* **13**, 29 (2019).
23. Lipton, Z. C. The Doctor Just Won’t Accept That! https://arxiv.org/abs/1711.08037 (2017).
24. Salahuddin, Z., Woodruff, H. C., Chatterjee, A. & Lambin, P. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. *Computers in biology and medicine* **140**, 105111, https://doi.org/10.1016/j.compbiomed.2021.105111 (2022).
25. Zeck, J. R., et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. *PLoS Med.* **15**, e1002683 (2018).
26. Sundararajan, M., Taly, A. & Yan, Q. Axiation attributive for deep networks. In Precup, D. & Teh, Y. W. (eds.) *Proceedings of the 34th International Conference on Machine Learning*, of *Proceedings of Machine Learning Research*, vol. **70**, 3319–3328 (PMLR, 2017).
27. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Definitions, methods, and applications in interpretable machine learning. *Proceedings of the National Academy of Sciences* **116**, 22071–22080, https://doi.org/10.1073/pnas.1908065416 (2019).
28. Laird, A. R. Large, open datasets for human connectomics research: Considerations for reproducible and responsible data use. *NeuroImage* **244**, 118579 (2021).
29. Casey, B. J. et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. *Developmental cognitive neuroscience* **32**, 43–54 (2018).
30. Covitz, S. et al. Curation of BIDS (CalBIDS): A workflow and software package for streamlining reproducible curation of large BIDS datasets. *NeuroImage* **263**, 11960 (2022).
31. Halchenko, Y. O. et al. Datalad: distributed system for joint management of code, data, and their relationship. *Journal of Open Source Software* **6**, 3262, https://doi.org/10.21105/joss.03262 (2021).
32. Gorgolewski, K. J. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. *Frontiers in Neuroinformatics* **5**, 13 (2011).
33. Gorgolewski, K. J. nipype/nipype: 1.8.3, Zenodo, https://doi.org/10.5281/zenodo.596855 (2018).
34. Tufts, N. J., et al. N4ITK: Improved N3 Bias Correction. *IEEE Transactions on Medical Imaging* **29**, 1310–1320 (2010).
35. Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: A robust approach. *NeuroImage* **53**, 1181–1196 (2010).
36. Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. *NeuroImage* **47**(Supplement 1), S102 (2009).
37. Avants, B., Epstein, C., Grossman, M. & Gee, J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. *Medical Image Analysis* **12**, 26–41 (2008).
38. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. *IEEE Transactions on Medical Imaging* **20**, 45–57 (2001).
39. Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. *NeuroImage* **142**, 394–406 (2016).
40. Anderson, J. L. & Sotiras, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. *NeuroImage* **125**, 1063–1078 (2016).
41. Anderson, J. L., Graham, M. S., Zsólológ, É. & Sotiras, S. N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. *NeuroImage* **141**, 556–572 (2016).
42. Anderson, J. L., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. *NeuroImage* **20**, 870–888 (2003).
43. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. *NeuroImage* **84**, 320–341 (2014).
44. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics **8** (2014).
45. Garyfallidis, E. et al. DIPY, a library for the analysis of diffusion MRI data. *Frontiers in neuroinformatics* **8**, 8 (2014).
46. Richie-Halford, A. & Rokem, A. Cloudknot: A Python Library to Run your Existing Code on AWS Batch. *Proceedings of the 17th Python in Science Conference* 8–14 (2018).
47. Richie-Halford, A. et al. NiRV: the Neuroimaging Report Viewer. In *Organization for Human Brain Mapping 2022* (Glasgow, Scotland, 2022).
48. Di Eugenio, B. & Glass, M. The kappa statistic: a second look. *Computational Linguistics* **30**, 95–101, https://doi.org/10.1162/08912010477363402 (2004).
49. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research* **12**, 2825–2830 (2011).
50. Hallgren, K. A. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. *Tutorials in Quantitative Methods for Psychology* **8**, 23–34, https://doi.org/10.20982/tqmp.08.1.p023 (2012).
51. Vallat, R. Pingouin: statistics in python. *Journal of Open Source Software* **3**, 1026, https://doi.org/10.21105/joss.01026 (2018).
52. Cicchetti, D. V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. *Psychol. Assess.* **6**, 284–290 (1994).
53. Ward-Fear, G., Pauly, G. B., Vendetti, J. E. & Shine, R. Authorship protocols must change to credit citizen scientists. *Trends Ecol. Evol.* **35**, 187–190 (2020).
54. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD’16, 765–794, https://doi.org/10.1145/2939672.2939785 (Association for Computing Machinery, New York, NY, USA, 2016).
55. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD’16, 765–794, https://doi.org/10.1145/2939672.2939785 (ACM, New York, NY, USA, 2016).
56. Head, T., Kumar, M., Nahrstaedt, H., Louppe, G. & Shcherbatiy, I. scikit-optimize/scikit-optimize, *Zenodo*, https://doi.org/10.5281/zenodo.5656057 (2021).
57. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Guyon, I. (ed.) *Advances in Neural Information Processing Systems 30*, 4765–4774 (Curran Associates, Inc., 2017).
58. Lundberg, S. M. et al. From Local Explanations to Global Understandability with Explainable AI for Trees. *Nature machine intelligence* **2**, 56–67, https://doi.org/10.1038/s42256-019-0138-9 (2020).
59. Zunair, H., Rahman, A., Mohammed, N. & Cohen, J. P. Uniformizing Techniques to Process CT Scans with 3D CNNs for Tuberculosis Prediction. In *Predictive Intelligence in Medicine*, 156–168 (Springer International Publishing, 2020).
60. Dicente, C. et al. Overview of imageCLEF: Tuberculosis 2019 - automatic CT-based report generation and tuberculosis severity assessment. In *CLEF* (2019).
61. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org.
62. Chollet, F. et al. Keras. https://keras.io (2015).
63. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2017). 3rd International Conference for Learning Representations, San Diego, 2015
64. Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A. & Feldman, H. M. Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification. *PloS one* **7**, e49790 (2012).
65. Jones, D. K., Travis, A. R., Eden, G., Pierpaoli, C. & Basser, P. J. PASTA: pointwise assessment of streamline tractography attributes. *Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine* **53**, 1462–1467, https://doi.org/10.1002/mrm.20484 (2005).
66. Colby, J. B. et al. Along-track statistics allow for enhanced tractography analysis. *NeuroImage* **59**, 3227–3242, https://doi.org/10.1016/j.neuroimage.2011.11.004 (2012).
67. O’Donnell, L. J., Westin, C.-F. & Colby, A. J. Tract-based morphometry for white matter group analysis. *NeuroImage* **45**, 832–844, https://doi.org/10.1016/j.neuroimage.2008.12.023 (2009).
68. Krupar, J. et al. Evaluating the reliability of human brain white matter tractometry. *Aperture Neuro* https://doi.org/10.1101/2021.02.24.432740 (2021).
69. Bells, S. et al. Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts. *Proceedings of the annual conference of the International Society for Magnetic Resonance in Medicine* **678**, 1 (2011).
70. Tournier, J.-D., et al. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. *NeuroImage* **42**, 617–625 (2008).
71. Wakana, S. et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. *NeuroImage* **36**, 630–644, https://doi.org/10.1016/j.neuroimage.2007.05.033 (2008).
72. Hua, K. et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. *NeuroImage* **39**, 336–347, https://doi.org/10.1016/j.neuroimage.2007.02.049 (2007).
73. Jensen, J. H., Helpert, J. A., Raman, A., Lu, H. & Kaczynski, K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. *Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine* **53**, 1432–1440 (2005).
74. Henriquez, R. N. et al. Diffusional kurtosis imaging in the diffusion imaging in python project. Front. Hum. Neurosci. **15**, 390 (2021).
75. Richie-Halford, A. et al. Healthy Brain Network QSPinDerivatives, *Zenodo*, https://doi.org/10.5281/zenodo.7047785 (2022).
76. Richie-Halford, A. et al. Healthy Brain Network AFQDerivatives, *Zenodo*, https://doi.org/10.5281/zenodo.7048954 (2022).
Acknowledgements

We would like to thank Anisha Keshavan for useful discussions of community science and web-based quality control and for her work on SwipesForScience. We would like to thank Adina S. Wagner, Yaroslav O. Halchenko, and Michael Hanke for their guidance in creating the HBN-POD2 Datadag dataset. We thank Samuel Buck Johnson for useful discussions of data quality for the HBN structural MRI data. This manuscript was prepared using a limited access dataset obtained from the Child Mind Institute Biobank, The Healthy Brain Network dataset. This manuscript reflects the views of the authors and does not necessarily reflect the opinions or views of the Child Mind Institute. This work was supported via BRAIN Initiative grant 1RF1MH121868-01 from the National Institutes of Mental Health. Additional support was provided by grant 1R01EB027585-01 from the National Institutes of Biomedical Imaging and Bioengineering (PI: Eleftherios Garyfallidis). Additional support was provided by R01MH120482 and the Penn/CHOP Lifespan Brain Institute.

Author contributions

The last two authors named share senior authorship. The first two authors named share lead authorship. The remaining authors are listed in alphabetical order, with the exception of the Fibr Community Science Consortium, whose members provided community science QC ratings and are listed in the following section. We describe contributions to the paper using the CRediT taxonomy. Conceptualization: A.R.-H., A.R., T.S. and M.C.; Methodology: A.R.-H. and A.R.; Software: A.R.-H., M.C. and S.C.; Validation: A.R.-H., M.C. and S.C.; Formal Analysis: A.R.-H. and M.C.; Investigation: A.R.-H. and M.C.; Resources: A.R., T.S. and M.M.; Data Curation: S.C., M.C., V.J.S., I.I.K., B.A-P. and L.A.; Writing - Original Draft: A.R.-H. and A.R.; Writing - Review & Editing: A.R.-H., A.R., M.C., A.F., T.S., V.J.S., I.I.K., B.A-P. and S.C.; Visualization: A.R.-H. and T.S.; Project Administration: A.R.-H. and A.R.; Funding Acquisition: A.R. and T.S. The following community raters provided over 3,000 ratings and elected to be included in the Fibr Community Science Consortium. They are considered bona fide authors on this paper.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to A.R.-H. or M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022, last corrected publication 2023

The Fibr Community Science Consortium

Nicholas J. Abbott 44, John A. E. Anderson 25, B. Gagana, MaryLena Bleile 16, Peter S. Bloomfield 14, Vince Bottom 17, Josiane Bourque 39, Rory Boyle 19, Julia K. Brynildsen 18, Navona Calarco 20, Jaime J. Castrellon 21, Natasha Chaku 22, Bosi Chen 23, 24, Sidhant Chopra 14, Emily B. J. Coffey 25, Nigel Colenbier 26, Daniel J. Cox 27, James Elliott Crippen, Jacob J. Crouse 28, Szabolcs David 29, Benjamin De Leener 30, Gwyneth Delap 31, Zhi-De Deng 32, Jules Roger Dugre 33, Anders Eklund 34, Kirsten Ellis 35, Arielle Ered 36, Harry Farmer 37, Joshua Faskowitz 38, Jody E. Finch 39, Guillaume Flandin 40, Matthew W. Flounders 14, Leon Fonville 42, Summer B. Frandsen 42, Dea Garic 43, Patricia Garrido-Vásquez 44, Gabriel Gonzalez-Escamilla 45, Shannon E. Grogans 46, Mareike Grotheer 47, David C. Gruskin 48, Guido I. Guberman 49, Edda Briana Haggerty 50, Younghee Hahn, Elizabeth H. Hall 17, Jamie L. Hanson 30, Yann Harel 51, Bruno Hebling Vieira 52, Meike D. Hettwer 53, Harriet Hobday, Corey Horien 46, Fan Huang, Zeeshan M. Hique 18, Anthony R. James 55, Isabella Kahhale 50, Sarah L. H. Kamhout 56, Arielle S. Keller 18, Harmandeep Singh Khera 14, Gregory Kiar 57, Peter Alexander Kirk 60, Simon H. Kohl 58, Stephanie A. Korenic 49, Cole Korponay 59, Alyssa K. Kozlowski 56, Nevena Kraljevic 58, Alberto Lazari 60,
Mackenzie J. Leavitt, Zhaolong Li, Giulia Liberati, Elizabeth S. Lorenz, Annabelle Junia Lossin, Leon D. Lotter, David M. Lydon-Staley, Christopher R. Madan, Levine Magielse, Hilary A. Marusak, Julian Mayor, Amanda L. McGowan, Kahini P. Mehta, Steven Lee Meisler, Cleanthis Michael, Mackenzie E. Mitchell, Simon Morand-Beaulieu, Benjamin T. Newman, Jared A. Nielsen, Shane M. O’Mara, Amar Ojha, Adam Omary, Evren Özerslan, Linden Parkes, Madeline Peterson, Adam Robert Pines, Claudia Pisanu, Ryan R. Rich, Matthew D. Sacchet, Ashik K. Sahoo, Amjad Samara, Farah Sayed, Jonathan Thore Schneider, Lindsay S. Shaffer, Ekaterina Shatalina, Sara A. Sims, Skyler Sinclair, Jae W. Song, Griffin Stockton Hogrogian, Christian K. Tannes, Ursula A. Tooley, Vaibhav Tripathi, Hamid B. Turkler, Sofie Louise Valk, Matthew B. Wall, Cheryl K. Walther, Yuchao Wang, Bertil Wegmann, Thomas Welton, Alex I. Wiesman, Andrew G. Wiesman, Mark Wiesman, Drew E. Winters, Ruiyi Yuan, Sadie J. Zacharek, Chris Zajner, Ilya Zakharov, Gianpaolo Zammarchi, Dale Zhou, Benjamin Zimmerman & Kurt Zoner

1Old Dominion University, Norfolk, VA, 23529, USA. 11Carleton University, Northfield, MN, 55057, USA. 15Southern Methodist University, Dallas, TX, 75275, USA. 12University of California-Davis, Davis, CA, 95616, USA. 16University of Pennsylvania, Philadelphia, PA, 19104, USA. 13Harvard University, Cambridge, MA, 2138, USA. 14University of Toronto, Toronto, ON, M5T 2B8, Canada. 21Duke University, Durham, NC, 27708, USA. 16University of Michigan-Ann Arbor, Ann Arbor, MI, 48109, USA. 22San Diego State University, San Diego, CA, 92182, USA. 23University of California-San Diego, La Jolla, CA, 92039, USA. 24Concordia University, Montréal, QC, H4B 1R6, Canada. 25Katholieke Universiteit Leuven, 3000, Leuven, Belgium. 26University of Manchester, Manchester, M13 9PL, United Kingdom. 27University of Sydney, Camperdown, NSW, 2006, Australia. 28University Medical Center Utrecht, 3584 CX, Utrecht, Netherlands. 29Polytechnique Montréal, Montréal, QC, H3T 1J4, Canada. 30University of Rochester, Rochester, NY, 14627, USA. 31National Institute of Mental Health, Bethesda, MD, 20892, USA. 32Centre de Recherche de l'Institut Universitaire de Santé Mentale de Montréal, Montréal, QC, H1N 3M5, Canada. 33Linköping university, 581 83, Linköping, Sweden. 34Monash University, Clayton, VIC, 3800, Australia. 35Temple University, Philadelphia, PA, 19122, USA. 36University of Greenwich, London, SE10 9LS, United Kingdom. 37Indiana University-Bloomington, Bloomington, IN, 47405, USA. 38Georgia State University, Atlanta, GA, 30303, USA. 39University College London, London, WC1E 6BT, United Kingdom. 40Imperial College London, London, SW7 2BX, United Kingdom. 41Brigham and Women’s Hospital, Boston, MA, 02115, USA. 42University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. 43University of Concepción, Concepción, Bio Bio, Chile. 44Universitätsmedizin der Johannes Gutenberg-Universität Mainz, 55131, Mainz, Germany. 45University of Maryland-College Park, College Park, MD, 20742, USA. 46Philips-Universität Marburg, Marburg, 35037, Germany. 47Columbia University, New York, NY, 10027, USA. 48McGill University, Montréal, Quebec, H3A 0G4, Canada. 49University of Pittsburgh, Pittsburgh, PA, 15260, USA. 50University of Montréal, Montréal, Quebec, H3T 1J4, Canada. 51Universidade de Sã o Paulo, Ribeirão Preto, Brazil. 52Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany. 53Yale University, New Haven, CT, 6520, USA. 54University of Chicago, Chicago, IL, 60637, USA. 55Brigham Young University, Provo, UT, 84602, USA. 56Child Mind Institute, New York, NY, 10022, USA. 57Institute of Neurosciences and Medicine, Forschungszentrum Jülich, 52425, Jülich, Germany. 58Massachusetts General Hospital, Cambridge, MA, 02115, USA. 59University of Oxford, Oxford, OX1 2JF, United Kingdom. 60Auburn University, Auburn, AL, 36849, USA. 61Washington University in St Louis, Saint Louis, MO, 63130, USA. 62Université catholique de Louvain, 1348, Ottignies-Louvain-la-Neuve, Belgium. 63University of Texas at Austin, Austin, TX, 78705, USA. 64University of Nottingham, Nottingham, NG7 2RD, United Kingdom. 65Wayne State University, Detroit, MI, 48202, USA. 66University of Oslo, 0315, Oslo, Norway. 67University of Michigan, Ann Arbor, MI, 48109, USA. 68University of Virginia, Charlottesville, VA, 22903, USA. 69Trinity College Dublin, Dublin, 2, Ireland. 70Linköping University, 581 83, Linköping, Sweden. 71Stanford University, Stanford, CA, 94305, USA. 72University of Cagliari, 09124, Cagliari, CA, Italy. 73Massachusetts General Hospital, Harvard Medical School, Boston, USA. 74University of Florida, Gainesville, FL, 32611, USA. 75George Mason University, Fairfax, VA, 22030, USA. 76University of Alabama at Birmingham, Birmingham, AL, 35294, USA. 77Boston University, Boston, MA, 2215, USA. 78Cornell University, Ithaca, NY, 14853, USA. 79Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany. 80National Neuroscience Institute, Singapore, 308433, Singapore. 81University of Colorado School of Medicine, Aurora, CO, 80045, USA. 82Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. 83Western University, London, ON, N6A 3K7, Canada. 84Psychological Institute of Russian Academy of Education, Moscow, 129366, Russia. 85University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA.