Regulation of COX-2 transcription in a colon cancer cell line by Pontin52/TIP49a

Mary L Carlson1,2, Ellen T Wilson1,2 and Stephen M Prescott*1,2

Abstract

Cyclooxygenase-2 (COX-2) is expressed early in colon carcinogenesis and is known to play a crucial role in the progress of the disease. Here we show that the regulation of the expression of this enzyme in a colon cancer cell line, and in patients, is associated with overexpression of the Wnt pathway-associated proteins, Pontin52/TIP49a and LEF-1. Recently shown to be essential for transformation via the c-Myc pathway, Pontin52/TIP49a promotes COX-2 expression in tissue culture and is overexpressed in colon cancer tissue, co-localizing with COX-2 expression in transformed tissue, relative to paired normal tissue.

Findings

Both genetic and pharmacological studies have shown that the inducible isoform of cyclooxygenase, cyclooxygenase-2 (COX-2), is expressed early in colon carcinogenesis and plays a crucial role in the development of this disease [1]. COX-2 expression is induced early in stromal cells and subsequently at high levels in epithelial cells, where it correlates with tumor invasion and clinical outcome [2]. The regulatory pathway responsible for increased expression of COX-2 in colonic tumors is unknown.

In multiple colon cancer cell lines, COX-2 expression appears to be constitutive. We have examined promoter sequences active in constitutive COX-2 expression and have shown that high basal activity is retained with a promoter containing only the COX-2 TATA box region [3]. A normal function of the tumor suppressor and cell cycle regulator p53 is to negatively regulate COX-2 promoter activity by binding the TATA binding protein in this region [4]. However, certain colon cancer cell lines that express wildtype p53 also display high levels of COX-2 mRNA. This suggests that other proteins may be important for regulating COX-2 expression. We have focused on the LoVo colon cancer cell line, as normal COX-2 5’flanking sequences (-1840 to -50 bp) had a 3-fold positive effect on transcription of a luciferase reporter construct in this cell line, though not in three other colon cancer cell lines tested, Colo320HSR, HCA7, LS174T (data not shown).

COX-2 is known to be a downstream target of the Wnt signaling pathway. The Wnt pathway is highly conserved evolutionarily and has been implicated in many biological processes. Deregulation of this pathway results in the inappropriate expression of target genes and has been rigorously linked to carcinogenesis [5,6]. Signaling through the Wnt pathway increases expression of COX-2 mRNA, COX-2 protein, and PGE2 levels [7]. Therefore, candidates for proteins responsible for maintaining constitutive COX-2 promoter activity in carcinogenesis include effectors of Wnt signaling. One such protein, Pontin52/TIP49a, was isolated in an in vitro assay designed to...
The TCF/LEF transcription factors are downstream components of the Wnt signaling cascade [29]. In general, DNA binding alone is not sufficient for TCF proteins to activate transcription via this pathway. First, TCFs must form a complex with β-catenin [30] in which TCF provides a DNA binding function and β-catenin a transcriptional activation domain [31]. Because COX-2 is a known Wnt target [7], we examined whether overexpression of the Wnt pathway protein LEF-1 affected COX-2 promoter activity.

In Fig. 1B, we show that overexpression of either LEF-1 or Pontin52/TIP49a modestly increased COX-2 promoter activity in the LoVo colon cancer cell line. Overexpression of both proteins had an additive effect on COX-2 promoter activity. Of interest, LEF-1 activation of the COX-2 promoter did not require LEF-1 binding sites for either β-catenin or DNA (Fig. 1C); thus, this activation of COX-2 expression appears to occur through a novel mechanism. Previous reports suggest that certain Wnt signaling pathways are independent of β-catenin [32,33].

To evaluate the expression of Pontin52/TIP49a and COX-2 in normal mucosa and colon carcinoma tissues, tissue samples from seven patients were analyzed by RT-PCR (Fig. 1D). An increase in the level of Pontin52/TIP49a mRNA was observed in four of the colon carcinoma samples, but in none of the samples of normal mucosa. Similarly, in three patients an increase in the level of COX-2 mRNA was observed in carcinoma, but not in normal colonic tissue. In situ hybridization showed that Pontin52/TIP49a and COX-2 were co-localized in tissue sections from individuals previously shown to have up-regulated levels of both proteins (Fig. 1E). Strong mRNA hybridization was detected throughout dysplastic epithelium for both Pontin52/TIP49a and COX-2. In contrast, only low to undetectable levels of hybridization were observed in normal mucosa with either probe. Thus, these proteins are both overexpressed and co-localize in colon carcinoma, a pattern that is compatible with Pontin52/TIP49a participating in COX-2 expression during carcinogenesis.

Previous work showing that Pontin52/TIP49a modulates c-myc-dependent apoptosis [28] may be related to our finding that Pontin52/TIP49a induces COX-2 expression. Multiple observations support the conclusion that COX-2 expression during carcinogenesis blocks apoptosis in response to some stimuli. Thus, the demonstration by Dugan et al. (2002) that showed a dominant negative construct of Pontin52/TIP49a caused increased apoptosis might have reflected decreased expression of COX-2.

We show here a trend toward upregulation of Pontin52/TIP49a and COX-2 expression in a coordinated fashion.
COX-2 expression is increased by Pontin52/TIP49a and LEF-1 over-expression; colon cancer tissue shows increased expression and co-localization of Pontin52/TIP49a and COX-2. (A) Pontin52/TIP49a overexpression increases COX-2 promoter activity. Increasing amounts of an expression construct for Pontin52/TIP49a were transiently transfected into LoVo cells along with a COX-1840 reporter construct. A dose-dependent increase in COX-2 promoter activity was observed in co-transfections with Pontin52/TIP49a. (B) The COX-2 promoter is activated in an additive manner by co-overexpression of LEF-1 and Pontin52/TIP49a. cDNAs for LEF-1 (0.5 µg) and Pontin52/TIP49a (1 µg) were transfected into LoVo cells alone or in combination. Data are the means of assays performed in triplicate in each of two independent experiments. RLU: relative light units. (C) LEF-1 activation of the COX-2 promoter is independent of the β-catenin binding region (∆N67) or the DNA-binding HMG domain (HMG; amino acids 300–359) of LEF-1. Transient transfection of LoVo cells with the -1840nt COX-2 reporter construct (+) and constructs containing wild type LEF-1 (WT) or the indicated constructs were completed. Controls included a COX-2 promoterless reporter, pGL3-basic (c) and LEF-1 vector controls, FLAG or EV3S (v). Data are the means of assays performed in triplicate in each of 3 independent experiments. In the LEF-1 transfected cells the fold-increase ranged from 1.2 to 2.3 and the average is shown. This response was observed in multiple other experiments, using different amounts of transfected cDNA, and in different cells. (D) Reverse transcription PCR was performed with cDNAs from paired samples of normal (N) colonic tissue and colon cancer tissue (CA) from each of four patients. The top panel shows Pontin52/TIP49a expression; the bottom panel shows COX-2 expression (upper band) relative to a control template (β-actin, lower band). The data shown are representative of two experiments. (E) An example of in situ hybridization using anti-sense (experimental) and sense (control) probes for Pontin52/TIP49a and COX-2, showing co-expression and up-regulation of miRNAs for both proteins in a colon cancer sample, compared to normal mucosa from the same patient.
In one patient, Pontin52/TIP49a mRNA was increased, but COX-2 mRNA expression levels were comparable in colon cancer tissue and normal mucosa. Thus, our results are consistent with a scenario where Pontin52/TIP49a dysregulation occurs prior to COX-2 overexpression in carcinogenesis.

Methods

Cell Culture, Transient Transfection
Colon cancer cell lines Colo320HSR, LS174T, and LoVo (American Type Culture Collection) were grown in RPMI-1640, MEM, and either Ham's F12 or MEM media, respectively (Life Technologies, Gibco). HCA7 cells, provided by Dr. Susan Kirkland (ICRF Histopathology Unit, London, UK) were grown in high glucose DMEM with 110 mg/l sodium pyruvate. Ten percent fetal bovine serum and 100 units/ml each of penicillin and streptomycin were used throughout. Cells were grown to 60–85% confluency before transfection or RNA isolation. For transfections, LipofectAMINE PLUS (Gibco) was used according to manufacturer’s suggestions. After a 3-hour transfection, 0.5 ml of 10% FBS/DMEM media was added and the plates incubated 24–48 hours. Plates were harvested, cellular debris was pelleted, and 50 µl dual (firefly and sea pansy) luciferase assay reagents (Promega) were added to 50 µl supernatant aliquots and measured in a luminometer (Dynex Technologies Inc.). For some experiments, firefly luciferase activity was normalized to total protein concentration (BCA protein assay, Pierce). Experimental constructs containing firefly reporter DNA were normalized to empty vector sea pansy luciferase controls.

Plasmid Construction
The expression constructs were provided by Dr. Marian Waterman (Burnham Institute, La Jolla, CA), LEF-1 cDNA (EV3S vector); Dr. Donald Ayer (Huntsman Cancer Institute), FLAG-tagged N-terminally deleted LEF-1 constructs; Dr. Rolf Kemler (Max Plank Institute of Immunobiology, Freiburg, Germany) [8], Pontin52/TIP49a cDNA (CS2+ vector); Dr. Donald Ayer (Huntsman Cancer Institute, PO1-CA73992).

RNA Isolation, Reverse-Transcription, PCR
Total RNA isolated by the Trizol procedure from either colon cancer or normal mucosa tissues was reverse transcribed using 1 unit/µg Moloney Murine Leukemia Virus polymerase (Gibco). Reactions were primed with 5 mM oligo (dT)12–18 in the presence of 10 mM DTT, 0.5 mM dNTP, and 0.4 units of RNase Inhibitor (Promega). Template cDNA was amplified by PCR (conditions available on request).

Tissue In Situ Hybridization
Human tissues were supplied by the Tissue Access and Imaging Core Facility at Huntsman Cancer Institute. RNA probes were made by incorporation of biotin-UTP using an in vitro DIG RNA labeling kit (Boehringer Mannheim). The probes utilized were: Pontin52/TIP49a antisense, 1 kb; sense, 698 bp; COX-2, antisense and sense 413 bp. Paraffin embedded tissue of colon carcinoma and grossly uninvolved colonic mucosa were prepared and analyzed as described previously [34].

List of abbreviations
COX-2, cyclooxygenase-2; HMG, high mobility group; LEF, lymphocyte enhancer factor; PCR, polymerase chain reaction; PGE2, prostaglandin E2; RT-PCR, reverse transcription PCR; TCF, T-cell factor.

Author’s contributions
MLC conceived, planned, and completed the experiments described. ETW evaluated the literature and prepared the manuscript. SMP participated in study design and evaluation. All authors read and approved the final manuscript.

Acknowledgments
We thank Kelley Murphy for performing the in situ hybridization experiments and Kavita Dave for technical assistance. We are grateful to Drs. Cindy Cao, Terrece Pearman, Debbie Regier, Diana Stafforini for helpful discussions and review of the manuscript and to Diana Lim for the preparation of the figures. This work was supported by grants from the National Cancer Institute (P30 CA42014) and the National Institutes of Health (PO1-CA73992).

References
1. Prescott SM, Fitzpatrick FA: Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta 2000, 1470:669-678.
2. Sheehan KM, Sheehan K, O’Donoghue DP, MacSweeney F, Conroy RM, Fitzgerald DJ, Murray FE: The relationship between cyclooxygenase-2 expression and colorectal cancer. Jana 1999, 282:1254-1257.
3. Kuchlera W, Jones DA, Matsumani N, Groden J, McIntyre TM, Zimm merman GA, White RL, Prescott SM; Prostaglandin H synthase-2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 1996, 93:4816-4820.
4. Subbarao K, Altorok N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ: Inhibition of cyclooxygenase-2 gene expression by p53. J. Biol. Chem. 1999, 274:10911-10915.
5. Bienz M, Clevers H: Linking colorectal cancer to Wnt signaling, Cell 2000, 103:311-320.
6. Polakis P: Wnt signaling and cancer. Genes Dev 2000, 14:1837-1851.
7. Howe JR, Subbarao K, Chung WJ, Dannenberg AJ, Brown AM: Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 1999, 59:1572-1577.
8. Bauer A, Huber O, Kemler R; Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci U S A 1998, 95:14787-14792.
9. Kanemaki M, Makino Y, Yoshida T, Kishimoto T, Koga A, Yamamoto K, Yamamoto M, Moncollin V, Egly JM, Muramatsu M, Tamura T: Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochim Biophys Acta 1999, 1235:64-68.
10. Wood MA, McMahon SB, Cole MD: An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Biol 2000, 320:321-330.

11. Henriksson M, Luscher B: Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 1996, 68:109-182.

12. Sladek TL: EZF transcription factor action, regulation and possible role in human cancer. Cell Prolif 1997, 30:97-105.

13. Stone J, de Lange T, Ramsay G, Jakobovits E, Bishop JM, Varmus H, Lee W: Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 1987, 7:1697-1709.

14. Freytag SO, Dang CV, Lee WM: Definition of the activities and properties of c-myc required to inhibit cell differentiation. Cell Growth Differ 1990, 1:339-343.

15. Penn LJ, Brooks MW, Lafer EM, Land H: Negative autoregulation of c-myc transcription. Embo J 1990, 9:1113-1121.

16. 2000, 19:Wylie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992, 69:119-128.

17. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB: c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. Embo J 1994, 13:4070-4079.

18. Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K, Morishita T, Tamura TA: TIP49b, a novel RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 1999, 274:22437-22444.

19. Kurokawa Y, Kanemaki M, Makino Y, Tamura TA: A notable example of an evolutionary conserved gene: studies on a putative DNA helicase TIP49. DNA Seq 1999, 10:37-42.

20. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, et al: TIP49, a new RuvB-like DNA helicase, is a component of the chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 2001, 276:16279-16288.

21. Shen X, Mizuguchi G, Hamiche A, Wu C: A chromatin remodeling complex involved in transcription and DNA processing. Nature 2000, 406:541-544.

22. Cho SG, Bhomik A, Broday L, Ivanov V, Rosenberg B, Ronai Z: TIP49b, a regulator of activating transcription factor 2 response to stress and DNA damage. Mol Cell Biol 2001, 21:8930-8943.

23. Jonsson ZO, Dhar SK, Narlikar GJ, Aury R, Wagle N, Pellman D, Pratt RE, Kingston R, Dutta A: Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 2001, 276:16279-16288.

24. Saurin AJ, Shao Z, Erdjument-Bromage H, Tempst P, Kingston RE: A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 2001, 412:655-660.

25. Makino Y, Kanemaki M, Kurokawa Y, Koji T, Tamura T: A rat RuvB-like protein, TIP49a, is a germ cell-enriched novel DNA helicase. J Biol Chem 1999, 274:15329-15335.

26. Bauer A, Chauvet S, Huber O, Usseglio F, Rothbacher U, Aragould I, Kemler R, Pradel J: Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. Embo J 2000, 19:6121-6130.

27. Rottbauer W, Saurin AJ, Lackert H, Shen X, Burns CG, Wu ZG, Kemler R, Kingston R, Wu C, Fishman M: Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 2002, 111:661-672.

28. Dujon KA, Wood MA, Cole MD: TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene 2002, 21:5835-5843.

29. Brantjes H, Barker N, van Es J, Clevers H: TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol Chem 2002, 383:255-261.

30. Barker N, Morin PJ, Clevers H: The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 2000, 77:1-24.

31. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kindler KW, Vogelstein B, Clevers H: Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC(-/-) colon carcinoma. Science 1997, 275:1784-1787.

32. Miller JR, Hocking AM, Brown JD, Moon RT: Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 1999, 18:7860-7872.

33. Haertel-Wiesmann M, Liang Y, Fandl WJ, Williams LT: Regulation of cyclooxygenase-2 and peristin by Wnt-3 in mouse mammary epithelial cells. J Biol Chem 2000, 275:32046-32051.

34. Cao Y, Murphy KJ, McIntyre TM, Zimmerman GA, Prescott SM: Expression of fatty acid-Caa ligase 4 during development and in brain. FEBS Lett 2000, 467:263-267.