CONSTRUCTING ELLIPTIC CURVES WITH A KNOWN NUMBER OF POINTS OVER A PRIME FIELD

AMOD AGASHE, KRISTIN LAUTER, AND RAMARATHANAM VENKATESAN

Abstract. Elliptic curves with a known number of points over a given prime field \mathbb{F}_p are often needed for use in cryptography. In the context of primality proving, Atkin and Morain suggested the use of the theory of complex multiplication to construct such curves. One of the steps in this method is the calculation of a root modulo n of the Hilbert class polynomial $H_D(X)$ for a fundamental discriminant D. The usual way is to compute $H_D(X)$ over the integers and then to find the root modulo n. We present a modified version of the Chinese remainder theorem (CRT) to compute $H_D(X)$ modulo n directly from the knowledge of $H_D(X)$ modulo enough small primes. Our complexity analysis suggests that asymptotically our algorithm is an improvement over previously known methods.

1. Introduction

In order to use elliptic curves in cryptography, one often needs to construct elliptic curves with a known number of points over a given prime field. One way of doing this is to randomly pick elliptic curves and then to count the number of points on the curve over the prime field, repeating this until the desired number of points is found. Atkin and Morain [AtMor] pointed out that instead, one can use the theory of complex multiplication to construct elliptic curves with a known number of points. Although at present it may still be more efficient to count points on random curves, we hope that improving the complex multiplication method will eventually yield a more efficient algorithm. In some situations, using complex multiplication methods is the only practical possibility (e.g. if the prime is too large for point-counting to be efficient yet the discriminant of the imaginary quadratic field is relatively small). This paper provides a new version of the complex multiplication method.

Suppose n is an integer, usually a prime or a pseudo-prime, and one wants to construct an elliptic curve modulo n along with the number of points on that curve modulo n. One of the steps in the complex multiplication method is the calculation of the Hilbert class polynomial $H_D(X)$ modulo n for a certain fundamental discriminant D. The usual way to do this is to compute $H_D(X)$ over the integers and then to reduce it modulo n. Atkin and Morain proposed computing $H_D(X)$ as an integral polynomial by listing all the relevant binary quadratic forms, associating to each form an algebraic integer, evaluating the j-function at each of those as a floating point integer with sufficient precision, and then taking the product and rounding the coefficients to nearest integers. Let $d = |D|$. If we use the estimate given by formula (3), then in view of [LL §5.10], the computation of $H_D(X)$ by this method takes time $O(d^2 (\log d)^2)$.

In [CNST §4], the authors suggested computing $H_D(X) \mod p$ for sufficiently many small primes p and then using the Chinese remainder theorem (CRT) to compute $H_D(X)$ as a polynomial with integer coefficients. In this paper we use a modified version of CRT to compute $H_D(X)$ modulo n directly (knowing $H_D(X) \mod p$ for sufficiently many small
primes \(p \)), without computing its coefficients as integers. We also give the mathematical justification and details of the (usual) CRT method, which were omitted in \cite{CNST} §4 and also correct their erroneous complexity analysis. By avoiding the computation of the coefficients of \(H_D(X) \) as integers, we obtain an algorithm with asymptotically shorter running time as \(d \) gets large. Also, both CRT approaches require less precision of computation than the Atkin-Morain approach.

Our complexity analysis in Section 5 shows that, when \(d \) is large, with high probability, the running time of one of the versions of our algorithm is

\[
O(d^{3/2}(\log d)^{10} + d(\log d)^2 \log n + \sqrt{d}(\log n)^2),
\]

which is better than the Atkin-Morain method when \(d \) is sufficiently large (roughly speaking, bigger than \((\log n)^2\)). Our algorithm has a step in common with the (usual) CRT method, which takes time \(O(d^{3/2}(\log d)^{10}) \), and for the other step, our algorithm takes time

\[
O(d(\log d)^4 + d(\log d)^2 \log n + \sqrt{d}(\log n)^2),
\]

while the (usual) CRT method takes time

\[
O(d(\log d)^2 \log n + d^{3/2}(\log d)^4).
\]

Thus we obtain an improvement over the (usual) CRT method when \(d \) is greater than \((\log n)^2\).

Note that in \cite{AtMor}, the authors suggest that using Weber polynomials works better in practice than using Hilbert polynomials. At the moment, we do not have a generalization of our algorithm which works with Weber polynomials. The use of Weber polynomials only reduces the number of digits by a constant, hence will only change the time taken by a constant factor independent of \(d \), (see \cite{Cohen} p.409), so the asymptotic complexity estimates remain the same.

Note also that we only focus on one step of the complex multiplication algorithm, the computation of the Hilbert class polynomial, The other time-consuming step is the computation of a root of \(H_D(X) \) modulo \(n \), which (by \cite{LL} §5.10) takes time \(O(d(\log n)^3) \). The relative size of \(d \) and \(n \) will determine which of these two steps will dominate (when we use our algorithm to compute \(H_D(X) \) modulo \(n \)).

It is not clear how our method compares to existing methods computationally. While we did some examples (reported in Section 5), they involved small discriminants, where existing methods are already very fast. The purpose of this paper is to suggest a new version of the complex multiplication method and to present a complexity analysis, leaving the task of efficient implementation for the future.

The paper is organized as follows: in Section 2, we give a brief description of the complex multiplication method for generating elliptic curves. In Section 3, we give an outline of our algorithm and discuss its complexity. In Sections 4 and 5, we explain the details of some of the steps of the algorithm. Finally in Section 6, we give some examples of our method.

2. Complex multiplication method

We briefly review the complex multiplication method, referring the reader to \cite{AtMor} and \cite{Silv2} for details. Suppose we are given a prime \(n \), and a non-negative number \(N \) in the Hasse-Weil interval \([n + 1 - 2\sqrt{n}, n + 1 + 2\sqrt{n}]\). We want to produce an elliptic curve \(E \) over \(\mathbb{F}_n \) with \(N \) points over \(\mathbb{F}_n \): \(\#E(\mathbb{F}_n) = N = n + 1 - t \), where \(t \) is the trace of the Frobenius endomorphism of \(E \) over \(\mathbb{F}_n \). We set

\[
D = t^2 - 4n.
\]

The Frobenius endomorphism of \(E \) has characteristic polynomial \(x^2 - tx + p \), and its roots lie in \(\mathbb{Q}(\sqrt{D}) \). It is standard to associate the Frobenius endomorphism with a root of this polynomial. If \(t \neq 0 \), then \(E \) is not supersingular, in which case \(R \), the endomorphism ring of \(E \), is an order in the ring of integers of \(K = \mathbb{Q}(\sqrt{D}) \) \cite{Silv1} Thm 3.1.b). For simplicity of the algorithm, we will want to assume that \(R = \mathcal{O}_K \), the full ring of integers in \(K \). Recall that a negative integer \(D \) is said to be a fundamental discriminant if it is not divisible by any square of an odd prime and satisfies \(D \equiv 1 \mod 4 \) or \(D \equiv 8, 12 \mod 16 \). If \(D \) is a
fundamental discriminant, then R is automatically equal to O_K, since then the Frobenius endomorphism generates the full ring of integers and is contained in the endomorphism ring. Our results can be generalized to orders in the ring of integers, but the algorithm will become more complicated. We will assume throughout this paper that D is a fundamental discriminant. In particular, this means that the simplest version of our algorithm only works for those choices of n and N such that this condition on D is met.

The Hilbert class polynomial $H_D(X)$ is defined as:

\[H_D(X) = \prod \left(X - j\left(\frac{-b + \sqrt{D}}{2a}\right) \right), \]

where the product ranges over the set of $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ such that $ax^2 + bxy + cy^2$ is a primitive, reduced, positive definite binary quadratic form of discriminant D for some $c \in \mathbb{Z}$, and j denotes the modular invariant. The degree of $H_D(X)$ is equal to h, the class number of O_K. It is known that $H_D(X)$ has integer coefficients. The equivalence between isomorphism classes of elliptic curves over \mathbb{Q} with endomorphism ring equal to O_K and primitive, reduced, positive definite binary quadratic forms of discriminant D allows us to interpret a root of this polynomial as the j-invariant of an elliptic curve having this endomorphism ring. Since our goal is to find such an elliptic curve modulo n, it suffices to find a root j of $H_D(X)$ modulo n.

Assuming $j \neq 0, 1728$, the required elliptic curve is recovered as the curve with Weierstrass equation (assume $n \neq 2, 3$)

\[y^2 = x^3 + 3kx + 2k, \]

where

\[k = \frac{j}{1728 - j}. \]

The number of points on the elliptic curve is either $n + 1 + t$ or $n + 1 - t$, and one can easily check which one it is by raising randomly chosen points to one of the possible group orders.

3. OUR ALGORITHM AND ITS COMPLEXITY

3.1. Overview of the algorithm. As before, let D be a fundamental discriminant and let $d = |D|$. Let $K = \mathbb{Q}(\sqrt{D})$, let O_K denote the ring of integers of K, and let h denote the class number of O_K. Let B be an upper bound on the size of the coefficients of $H_D(X)$ given by the formula in Section 3.3. Let n be a given prime number.

Here is our algorithm for computing $H_D(X) \mod n$; it comes in two versions, Version A and Version B, which differ only in Step (1) below:

Step (0) Compute h and B. Compute h using any of the standard algorithms (e.g., see [Cohen §5.4]) and compute B using formula (2) in Section 3.3. Fix a small real number $\epsilon > 0$ (e.g., $\epsilon = 0.001$), and let $M = B/(1/2 - \epsilon)$.

Step (1) Compute $H_D(X)$ modulo sufficiently many small primes:

Version A: This can be used whenever $d \neq 7 \mod 8$.

(a) Generate a collection of distinct primes p, each satisfying $4p = t^2 + d$, for some integer t. Generate enough primes p so that the product of all the primes exceeds the bound B (or slightly exceeds $2B$, see the remark after Example 6.1).

(b) For each p in S, consider a set of representatives for the \mathbb{F}_p-isomorphism classes of elliptic curves over \mathbb{F}_p, and count the number of \mathbb{F}_p-points on each representative. In practice, we take as a representative the model

\[y^2 = x^3 + 3kx + 2k, \]

where $k = \frac{j}{1728 - j}$, and j runs through all possible values in \mathbb{F}_p (except 0 and 1728, which can be handled separately if necessary). We then form the set S_p consisting of all the j-invariants such that the corresponding curve has $p + 1 + t$ or $p + 1 - t$ points. There are exactly h such j values, by Prop. 4.1 and Prop. 1.2 below (or by [Cox, p. 319]). Alternatively, for
each representative, we could pick random points P on E and check if $(p+1)P = tP$ (or $(p+1)P = -tP$). This would rapidly filter out almost all of the candidates, and point-counting could be used to check the remaining ones.

(c) For each prime p in S, we form the polynomial $H_D(X) \mod p$ by multiplying together the factors $(X - j)$, where j is in the set S_p. This is also justified by Prop. 4.1 and Prop. 4.2 below.

Version B: This can be used for any d; however, we expect it to be more difficult to implement.

Version B is exactly like Version A except that we allow slightly more general primes when forming the set S in Step (a). We allow all primes p such that $4p = t^2 + u^2d$, for some integers t and u. We again generate enough primes p so that their product exceeds the bound B; call the resulting set of primes T. Then for each p in T, we compute the endomorphism ring for each $\overline{\text{F}}_p$ isomorphism class of elliptic curves over F_p using the algorithm in [Kohel] (we use the same representatives for the isomorphism classes as in Version A, Step (b) above). We then form the set T_p consisting of all the j-invariants such that the corresponding curve has endomorphism ring isomorphic to \mathcal{O}_K. The class number of \mathcal{O}_K is h, so there are exactly h such j values.

Finally, as in Version A, Step (c), for each prime p in T, we form the polynomial $H_D(X) \mod p$ by multiplying together the factors $(X - j)$, where j is in the set T_p.

Remark 3.1. Note that in Version B, when we allow more general primes p such that $4p = t^2 + u^2d$, where $u > 1$, it is not sufficient to use point-counting to find the desired collection of elliptic curves. In that case, point-counting would produce the set of all elliptic curves with endomorphism ring equal to an order in \mathcal{O}_K containing the order of index u. In this paper, we assumed that d was square-free, but to generalize our algorithm to non-square-free d, it would be necessary to work with Version B of the algorithm. The number and size of the primes required to implement the two versions does not seem to be much different in practice (see the remark after Example 6.2). The main advantage to Version A is that it is easy to implement because there are many point-counting packages available. The main advantage to Version B is that it will generalize to work for all d.

Step (2) Lift to $H_D(X) \mod n$:

Use the modified Chinese remainder algorithm of Section 5 to compute each coefficient of $H_D(X) \mod n$ using the values of the coefficients of $H_D(X) \mod p$ computed in Step (1). This step can be parallelized.

3.2. Complexity analysis

In our complexity analysis, we assume that if a and b are two integers, then their addition takes time $O(\log a + \log b)$, their multiplication takes time $O(\log a \log b)$, and the division of the greater by the smaller takes time $O(\log a \log b)$. This can certainly be achieved by current algorithms; in fact, one can do better, but we will stick to our model of computation for the sake of simplicity and comparison (the complexity estimate for the Atkin-Morain algorithm, $O(d^2)$, given in [LL] does not assume fast arithmetic either). The steps mentioned below are numbered as in Section 5.1.

Step (0) According to [Cohen] §5.4, the computation of h can be done in time $O(d^{1/4})$, or in time $O(d^{1/5})$ assuming the generalized Riemann Hypothesis, and B is computed from the formula given in Section 3.6.

Step (1) We do the analysis only for Version A.

(a) By the discussion in §3.3, with high probability, the size of S is $O(\log B / \log d)$, and each $p \in S$ is $O((\log B)^2)$; for the purposes of the complexity analysis, we will assume this happens (this makes our complexity analysis “probabilistic”).

(b) The best implementations of elliptic curve point-counting algorithms currently run in time $O((\log p)^5)$ [Schoof1985], perhaps assuming fast arithmetic, although this will not affect the power of d in our overall complexity estimate. This step is repeated p times, so this
step will take time \(O(p(\log p)^5) \). Finally, since the step is repeated for every prime in \(S \), the total time taken will be \(O((\log B)^3(\log \log B)^5/\log d) \). In Section 3.3 we estimate \(\log B \) in terms of \(d \) as \(\log(B) = O(\sqrt{d}(\log d)^2) \). Using this estimate, the time taken for this step in terms of \(d \) is \(O(d^{3/2}(\log d)^{10}) \), ignoring \(\log d \) factors. We should be able to speed up this step in practice by using the alternative suggested above to avoid counting points on each curve modulo \(p \).

(c) The number of terms in the product used to compute \(H_D(X) \mod p \) is \(h \) and each coefficient is between zero and \(p \), so this can be done in time \(O(h^2(\log p)^2) \), i.e., \(O(d(\log d)^2) \).

Since the step has to be repeated for every \(p \in S \), the total time taken is \(O(d^{3/2}(\log d)^3) \).

Overall, the total time taken by Step 1 in this version is \(O(d^{3/2}(\log d)^{10}) \).

Step (2) As will be explained in Section 5, the time taken by the modified Chinese remainder algorithm to compute all the coefficients of \(H_D(X) \mod n \) is

\[
O(d(\log d)^4 + d(\log d)^2 \log n + \sqrt{d}(\log n)^2).
\]

Our algorithm differs from the one in [CNST, §4] mainly in Step (2). As shown in Section 5 if one uses the ordinary Chinese remainder theorem to find \(H_D(X) \) and then reduces modulo \(n \), as proposed in [CNST, §4], then the complexity of this procedure would be

\[
O(d(\log d)^2 \log n + d^{1/2}(\log d)^4),
\]

which is not as good as our method in Step (2) when \(d \) is large (roughly speaking, bigger than \((\log n)^2 \)).

On the other hand, for primality proving as in [AtMor], one wants a small discriminant; in fact, in [LL, §5.10] they assume \(d = O((\log n)^2) \). In that case, it is clear that our algorithm is an improvement over the one in [CNST, §4] only if \(\log B \) is bigger than \(\log n \), i.e., if the coefficients of \(H_D(X) \) are large compared to \(n \).

The overall complexity of our algorithm, assuming Statement 3.1 is

\[
O(d^{3/2}(\log d)^{10} + d(\log d)^2 \log n + \sqrt{d}(\log n)^2).
\]

3.3. Some estimates needed for the complexity analysis

We need an estimate for the size of \(B \), i.e., an upper bound for the size of the coefficients of the class polynomial. As is explained in [AtMor p. 42], we may take

\[
B = \left(\frac{h}{[h/2]} \right) \exp \left(\pi \sqrt{d} \sum \frac{1}{a} \right),
\]

where the sum in the above expression is taken over the set of integers \(a \) such that \(ax^2 + bxy + cy^2 \) is a primitive, reduced, positive definite binary quadratic form of discriminant \(D \) for some integers \(b \) and \(c \) (the set of \(a \)'s is finite). This bound comes from the product of all the roots times the largest binomial coefficient.

Note that by the corollary in [Lang, Chap XVI, §4], we have \(\log h \sim \log(\sqrt{d}) \) as \(d \to \infty \) (recall that the regulator of a quadratic imaginary field is one). This means that for any positive real number \(\epsilon' \), we have \(d^{1/2-\epsilon'} \leq h \leq d^{1/2+\epsilon'} \) when \(d \) is big enough. For the sake of simplicity in our analysis, we will assume \(h \sim \sqrt{d} \).

We will soon need a lower bound on the size of \(\log B \). By [Cohen, Lem. 5.3.4(1)],

\[
a \leq \sqrt{d}/3.
\]

Thus \(\sum \frac{1}{a} \geq h \sqrt{\frac{3}{d}} \), and the latter is asymptotically a constant bigger than 1. Thus there is a constant \(c > 1 \) such that \(\log B \) is greater than \(c\sqrt{d} \) for \(d \) large enough.

To get an upper bound for \(\log B \) in terms of \(d \), we estimate \(\sum \frac{1}{a} \) using the argument in [LL p. 711]. They observe that there cannot be too many \(a \)'s that are “small”, since the number of reduced forms \((a, b) \) with a fixed \(a \) is bounded by \(\tau(a) \), the number of positive divisors of \(a \). So certainly an overestimate for the sum \(\sum \frac{1}{a} \) is given by \(\sum_{d=1} d \frac{\tau(a)}{a} \).

This in turn can be written as a telescoping sum plus an error term:

\[
\sum_{a=1}^d \frac{\tau(a)}{a} = \sum_{a=1}^d \left(\sum_{u=1}^{a} \tau(u) \right) \left(\frac{1}{a} - \frac{1}{a+1} \right) + \frac{1}{d+1} \sum_{a=1}^d \tau(a).
\]
The sum $\sum_{a=1}^{d} \frac{\tau(a)}{a}$ can be estimated as $d \log d$ plus some lower order terms (see [NZM, Thm 8.28, p. 393]). So the first term can be estimated via the integral
$$\int_{a=1}^{d} \frac{\log a}{a} da = \frac{(\log d)^2}{2},$$
and the second term is less than $\log d$. This observation leads to the estimate
$$\sum \frac{1}{a} \leq O((\log d)^2),$$
(see also [Crapom, p. 324]). In fact, much better estimates for $\sum \frac{1}{a}$ should be possible, and it looks like a better bound is being assumed in the complexity analysis for the Atkin-Morain algorithm given by [LL], since they seem to assume that $\log(B) = O(\sqrt{d})$, but we will stick with our estimate for our analysis.

Since the middle binomial coefficient is clearly less than the sum of all of the binomial coefficients, which is 2^d, we see that
$$B \leq 2^h e^{\frac{\sqrt{d}(\log d)}{2}}.$$ So throughout the paper, we use the estimate
$$\log(B) = O(\sqrt{d}(\log d)^2) = O(h(\log h)^2).$$

An important consideration for accurately assessing the running time of our algorithm is the relative size of the small primes found in Step (1). Consider the following statement:

Statement 3.1. If $d \not\equiv 7 \mod 8$, then the procedure of finding primes in Version A of Step (1) terminates, and the size of the set S is $O(\frac{\log B}{\log d})$ and each $p \in S$ is $O((\log B)^2)$.

We expect that the statement above is true with high probability when d is large enough. The main idea for Statement 3.1 was suggested to us by an anonymous referee. We now give a heuristic argument to support our expectation, some of the details of which were explained to us by J. Vaaler.

By the prime number theorem, the probability that a randomly chosen positive integer m is prime is $1/(\log m)$. For a given d, and randomly chosen t, we want to say that a number of the form $(t^2 + d)/4$ looks like a randomly chosen integer, so that we can claim that the probability that it is prime is $1/(\log((t^2 + d)/4))$.

If $d \equiv 3 \mod 8$, say $d = 8k + 3$, and if t is odd, say $t = 2\ell + 1$, then $(t^2 + d)/4 = \ell(\ell + 1) + 2k + 1$ is an odd integer. If $d \equiv 4 \mod 16$, say $d = 16k + 4$, and if t is a multiple of 4, say $t = 4\ell$, then $(t^2 + d)/4 = 4\ell^2 + 4k + 1$ will be an odd integer. If $d \equiv 8 \mod 16$ (the only possibility left), say $d = 16k + 8$, and if t is even, say $t = 2\ell$, then $(t^2 + d)/4 = \ell^2 + 4k + 2$ will be an odd integer provided ℓ is odd. So for any d, for a random choice of an integer t, with probability at least 1/4, the rational number $(t^2 + d)/4$ will be an odd integer (i.e., $(t^2 + d)/4$ will be an integer that need not necessarily be composite). So we will assume that the probability that it is prime (provided it is an odd integer) is indeed $1/(\log((t^2 + d)/4))$.

Now let c_1 and c_2 be two positive integers such that $c_1 < c_2$. Let S_1 denote the set
$$S_1 = \{(t^2 + d)/4 : t \in \mathbb{Z}, c_1 \log B \leq t \leq c_2 \log B, (t^2 + d)/4 \text{ is prime}\}.$$ The size of the set $\{(t^2 + d)/4 : t \in \mathbb{Z}, c_1 \log B \leq t \leq c_2 \log B\}$ is $(c_2 - c_1) \log B$, and roughly one-fourth of the elements of this set are integers. Moreover, among those which are integers, we are assuming that the probability that an element $(t^2 + d)/4$ is prime is $1/(\log((t^2 + d)/4))$. Thus with high probability, the following statement is true for large d:

(*) The size of the set S_1 is between $\frac{1}{4} \left(\frac{(c_2-c_1) \log B}{4 \log(c_2 \log B)}\right)$ and $\frac{1}{4} \left(\frac{(c_2-c_1) \log B}{4 \log(d/4)}\right)$.

We will assume that (*) is indeed true for the rest of this section (so everything below holds only with high probability).

If $p \in S_1$, then
$$p \geq \frac{(c_1 \log B)^2 + d}{4} > \frac{(c_1 \log B)^2}{4}.$$
Thus
\[\sum_{p \in S_1} \log p > \left[2(\log \log B) + \log(c_2^2/4) \right] \frac{(c_2 - c_1) \log B}{4 \log(c_2 \log B)}. \]

By choosing \(c_1 \) and \(c_2 \) appropriately (say \(c_2 = 12 \) and \(c_1 = 4 \)), we see that when \(d \) is large enough (so that \(\log B > c_2 \)), \(\sum_{p \in S_1} \log p > \log B \) and hence \(\prod_{p \in S_1} p > B \).

Now let \(S_2 \) denote the set
\[S_2 = \{(t^2 + d)/4 : t \in \mathbb{Z}, 0 \leq t \leq c_2 \log B, (t^2 + 4)/d \text{ is prime}\}. \]
Putting \(c_1 = 0 \) in statement (\(\ast \)), we see that the size of \(S_2 \) will be \(O\left(\frac{\log B}{\log \log B}\right) \).

Also, \(\prod_{p \in S_1} p > B \), since the set \(S_2 \) contains the set \(S_1 \). Furthermore, if \(p \in S_2 \), then
\[p < ((c_2 \log B)^2 + d)/4. \]
Since \(d \) is \(O((\log B)^2) \), we see that \(p \) is \(O((\log B)^2) \). Finally (assuming statement (\(\ast \)) holds), the set \(S \) can be chosen to be a subset of the set \(S_2 \); from this, Statement 4.1 follows.

4. Computing \(H_D(X) \mod p \) for small primes \(p \)

In this section, we prove that Step 1 of our algorithm is a valid way to compute \(H_D(X) \mod p \). The same strategy for this step was used in [CNST] §4, but it was not justified there, and the distinction between Versions A and B was blurred.

As in the introduction, let \(D \) be a fundamental discriminant and let \(H_D(X) \) denote the Hilbert class polynomial. Let \(H \) denote the Hilbert class field of \(K = \mathbb{Q}(\sqrt{D}) \), and let \(p \) be a rational prime that splits completely in \(H \), i.e., splits into principal ideals in \(K \), which means that \(4p = t^2 - Du^2 \) for some integers \(u \) and \(t \).

Let \(\text{Ell}(D) \) denote the set of isomorphism classes of elliptic curves over \(\mathbb{C} \) with complex multiplication by \(\mathcal{O}_K \) (i.e., whose ring of endomorphisms over \(\mathbb{C} \) is isomorphic to \(\mathcal{O}_K \)). Then an equivalent way of defining the Hilbert class polynomial is as follows:

\[H_D(X) = \prod_{[E] \in \text{Ell}(D)} (X - j(E)), \]
where, if \(E \) is an elliptic curve, then \(j(E) \) denotes its \(j \)-invariant.

Let \(\text{Ell}'(D) \) denote the set of \(\mathbb{F}_p \)-isomorphism classes of elliptic curves over \(\mathbb{F}_p \) with endomorphism ring (over \(\mathbb{F}_p \)) isomorphic to \(\mathcal{O}_K \).

Proposition 4.1. With notation as above,

\[H_D(X) \mod p = \prod_{[E'] \in \text{Ell}'(D)} (X - j(E')). \]

Proof. Let \(\beta \) be a prime ideal of the ring of integers of \(H \) lying over \(p \). It follows from the discussion in the proof of Thm. 14.18 on p. 319–320 of [Cox] that in each class \(i \) in \(\text{Ell}(D) \), we can write down an elliptic curve \(E_i \) such that \(E_i \) is defined over \(H \) and \(E_i \) has good reduction modulo \(\beta \) (in fact, [Cox] gives a collection of such elliptic curves, denoted \(E_c \); we just pick one such \(E_c \) for each class); denote the reduction modulo \(\beta \) of \(E_i \) by \(\widetilde{E}_i \). Since \(p \) splits completely in \(H \), \(\widetilde{E}_i \) is defined over \(\mathbb{F}_p \), as opposed to an extension of \(\mathbb{F}_p \). Also, by [Lang] Chap. 13, Thm. 12(2i)] (or [Cox] Thm. 14.16), each \(\widetilde{E}_i \) has endomorphism ring (over \(\mathbb{F}_p \)) isomorphic to \(\mathcal{O} \). This gives us a map \(\phi \) from \(\text{Ell}(D) \) to \(\text{Ell}'(D) \). Since we assume that \(p \) splits in \(K \), then by [Cox] Thm. 13.21], if two elliptic curves have distinct \(j \)-invariants, then the reductions modulo \(\beta \) of these \(j \)-invariants are distinct, i.e., the map \(\phi \) is injective. By the Deuring lifting theorem [Lang] Chap. 13, Thm. 14] (or [Cox] Thm. 14.16]) this map is also a surjection.

From the definition of \(j(E) \) in terms of the coefficients of the Weierstrass equation of \(E \), it is easy to see that
\[H_D(X) \mod p = \prod_{[E_i] \in \text{Ell}(D)} (X - j(E_i)). \]
Hence, from the discussion above,

\[H_D(X) \mod p = \prod_{[E'] \in \text{Ell}'(D)} (X - j(E')). \]

\[\square \]

Proposition 4.2. Recall that \(D \) is a fundamental discriminant. Suppose \(p \) is a prime and \(x \neq 0 \) is an integer such that \(4p = x^2 - D \). Let \(E' \) be an elliptic curve over \(\mathbb{F}_p \). Then \([E'] \in \text{Ell}'(D) \) if and only if \(\#E'(\mathbb{F}_p) \) is either \(p + 1 - x \) or \(p + 1 + x \).

Proof. Suppose \(\#E'(\mathbb{F}_p) \) is either \(p + 1 - x \) or \(p + 1 + x \). Let \(t \) denote the trace of the Frobenius endomorphism of \(E' \). Then \(t = x \) or \(t = -x \). In either case, the discriminant of the characteristic polynomial of the Frobenius endomorphism is \(t^2 - 4p = x^2 - 4p = D \). Let \(\text{End}(E') \) denote the endomorphism ring of \(E' \). Since \(D \) is square-free, the subring \(R \) of \(\text{End}(E') \) generated by the Frobenius endomorphism is \(\mathcal{O} \), and at the same time \(\text{End}(E') \) is contained in the ring of integers of the quotient field of \(R \). Hence \(\text{End}(E') = \mathcal{O} \), i.e., \([E'] \in \text{Ell}'(D) \).

Conversely, suppose \([E'] \in \text{Ell}'(D) \), and let \(t \) denote the trace of the Frobenius endomorphism of \(E' \). Suppose the Frobenius endomorphism generates a subring of index \(u \) in \(\text{End}(E') \), the endomorphism ring of \(E' \). Then the characteristic polynomial of the Frobenius endomorphism has discriminant \(u^2D \), hence \(4p = t^2 - u^2D \). But we know \(4p = x^2 - D \), so by [Cox] Ex. 14.17, \(t = x \) or \(t = -x \). Hence \(\#E'(\mathbb{F}_p) \) is either \(p + 1 - x \) or \(p + 1 + x \). \[\square \]

5. **A modification of the Chinese remainder theorem**

5.1. **The algorithm and its complexity.** This section follows [Cov] §2.1] closely, which in turn is based on [MS] §4]; the only addition is a more detailed complexity analysis.

The problem we consider is as follows: for some positive integer \(\ell \) we are given a collection of pairwise coprime positive integers \(m_i \) for \(i = 1, 2, \ldots, \ell \). For each \(i \), we are also given an integer \(x_i \) with \(0 \leq x_i < m_i \). In addition, we are given a small positive real number \(\epsilon \). Finally, we are told that there is an integer \(x \) such that \(|x| < (1/2 - \epsilon) \prod_i m_i \) and \(x \equiv x_i \mod m_i \) for each \(i \); clearly such an integer \(x \) is unique if it exists. The question is to compute \(x \mod n \), for a given positive integer \(n \).

Define

\[M = \prod_i m_i \]

\[M_i = \prod_{j \neq i} m_j = M/m_i \]

\[a_i = 1/M_i \mod m_i, \quad 0 \leq a_i < m_i. \]

Then the number \(z = \sum_i a_i M_i x_i \) is congruent to \(x \) modulo \(M \). Hence, if \(r = \lfloor 2M + \frac{1}{2} \rfloor \), then \(x = z - rM \). So \(x \mod n = z \mod n - (r \mod n)(M \mod n) \); the point is that we can calculate \(r \mod n \) without calculating \(z \), as we now explain. From the fact that \(x = z - rM \) and \(|x| < (1/2 - \epsilon)M \), it follows that \(\frac{2M}{M} + \frac{1}{2} \) is not within \(\epsilon \) of an integer. Hence, to calculate \(r \), one only has find an approximation \(t \) to \(z/M \) such that \(|t - z/M| < \epsilon \), and then round \(t \) to the nearest integer. Such an approximation \(t \) can be obtained from

\[\frac{z}{M} = \sum_i \frac{a_i x_i}{m_i}, \]

where the calculations are done using floating point numbers.

If \(a \) and \(b \) are two integers, then let \(\text{rem}(a, b) \) denote the remainder of the Euclidean division of \(a \) by \(b \); we will assume that it takes time \(O(\log a \log b) \) to calculate \(\text{rem}(a, b) \) and \(\text{gcd}(a, b) \).

From the discussion above, we obtain the following algorithm:

(i) Compute \(a_i \)'s, for each \(i \), using [S]: this takes time \(O(\sum_i (\log m_j \log m_i) + \ell(\log m_i)^2 + \log m_i^2) = O((\log M)^2 + \ell \sum (\log m_i)^2) \).

(ii) Compute \(\text{rem}(M, n) \) using [E]: this will take time \(O(\sum_i (\log m_i \log n) + \ell(\log n)^2) = \)
O(log n log M + ℓ(log n)^2).

(iii) Compute rem(M_i, n) for each i by dividing rem(M, n) by m_i modulo n: this will take time O(ℓ(ℓ(log n)^2)) (in our application, m_i will be much lesser than n), and can be parallelized.

(iv) Compute r: In [4], every term in the sum has to be calculated to precision ε/ℓ, hence the calculation of each term takes time O((log(ℓ/ε))^2). In the application to computing \(H_D(X) \) mod n, we can take ε to be an arbitrary small number and taking M = B/(1/2 − ε).

Then the calculation of all the terms in [4] will take total time O(ℓ(ℓ(log ℓ))^2) and the addition in [4] of ℓ numbers with precision ε/ℓ will take time O(ℓ log ℓ).

(v) Output rem(x, n) =

\[
\text{rem}\left(\left(\text{rem}\left(\sum_i (\text{rem}(a_i \cdot x_i, n) \cdot \text{rem}(M_i, n))\right), n\right) - \text{rem}(r, n) \cdot \text{rem}(M, n)\right), n\right).
\]

The various substeps in step (v) and the time taken for each are as follows:

(a) Calculation of \(\text{rem}(a_i \cdot x_i, n) \) and \(\text{rem}(M_i, n) \) for all i: takes time \(O(\sum_i((\log m_i)^2 + (\log m_i)(\log n))) \).

(b) Computing the product of \(\text{rem}(a_i \cdot x_i, n) \) and \(\text{rem}(M_i, n) \) for all i: takes time \(O(\ell(\log n)^2) \).

(c) Performing the sum in (10) and taking remainder modulo n: this involves about ℓ additions of integers of size up to ℓn^2, which takes time \(O(\ell \log(\ell n^2)) \) and taking the remainder takes time \(O((\log n)(\log(\ell n^2))) \).

(d) Calculation of \(\text{rem}(r, n) \cdot \text{rem}(M, n) \): The size of r is about \(\sum m_i \), hence this substep takes time \(O((\log n)(\log(\sum m_i) + (\log n)^2)) \).

(e) Subtraction operation and taking remainder: takes time \(O(\log n) \) and \(O((\log n)^2) \) respectively.

In Section 5.1 we use this algorithm to lift \(H_D(X) \) mod p for p ∈ S to \(H_D(X) \) mod n one coefficient at a time. Note that steps (i), (ii), and (iii) above are common to the lifting of all the coefficients, and only step (iv) and (v) have to be repeated for each coefficient.

In the notation of Section 5.1 the m_i’s are the elements of S, and so, assuming Statement 5.11 we see that the m_i’s are O((log B)^2) and ℓ is O(log B / log log B). Using this, and the estimates from § 5.3 we see that the most time consuming steps are Step (i), which takes time O(d(log d)^4), and Steps (v-a) and (v-d) repeated h times, which take time O(d(log d)^2 log n) and O(√d(log n)^2) respectively.

5.2. Complexity of the usual Chinese Remainder Algorithm. If we are to use the naive Chinese remainder theorem for the problem stated at the beginning of Section 5.1 then we calculate

\[
z = \text{rem}\left(\left(\sum_i a_i \cdot x_i \cdot M_i\right), M\right),
\]

and then reduce z modulo n.

The steps involved are as follows:

(i) Compute a_i’s, for each i, using 5.1: this takes time \(O(\sum_i((\log m_j \log m_i) + \ell(\log m_i)^2 + (\log m_i)^2)) = O((\log M)^2 + \ell(\log m_i)^2)) \).

(ii) Calculation of \(a_i \cdot x_i \cdot M_i \) for all i: takes time \(O(\sum_i(\log m_i)(\log M)) \).

(iii) Performing the sum in (11): this involves ℓ additions of integers of size up to ℓm_i^2M, hence takes time \(O(\ell \log(\ell m_i^2 M)) \).

(iv) Calculating the outer “rem” in (11): takes time \(O((\log M)(\log(\ell m_i^2 M))) \).

(v) Reducing z modulo n: takes time \(O((\log M)(\log n)) \).

In the context of lifting \(H_D(X) \) mod p to \(H_D(X) \) and then reducing \(H_D(X) \) modulo n, only steps (ii) – (vi) have to be repeated for each coefficient. In the notation of Section 5.1 the m_i’s are the elements of S, and so, assuming Statement 5.11 we again have that the m_i’s are O((log B)^2) and ℓ is O(log B / log log B). Using this, and the estimates from § 5.3 we see that the most time consuming steps are Steps (ii) and (iv), each of which take total time \(O(d^{3/2}(\log d)^4) \) and Step (v), which takes total time \(O(d(\log d)^2 \log n)) \).

From this analysis, we see that our modified Chinese remainder algorithm will be asymptotically more efficient than the usual one when \(\log B > \log n \), which will certainly be the
case in our context whenever \(d \geq (\log n)^2 \) (certainly, when \(n > B \), the modified version is no better than the usual Chinese remainder algorithm).

6. Examples

In this section we present several examples to illustrate our algorithm. Throughout these examples, we used the software package PARI, which is available at

\[
\text{http://www.parigp-home.de}
\]

6.1. \(D = -59 \).

6.1.1. Atkin-Morain Method. Since here we are dealing with a very small discriminant, we can easily compute the minimal polynomial over the integers directly by finding all the reduced, positive definite, primitive, binary quadratic forms with discriminant \(-59\) and then evaluating \(j(\tau) \) for the corresponding \(\tau \) with sufficiently high precision. The class number of \(\mathbb{Q}(\sqrt{-59}) \) is three, and the three binary quadratic forms are

\[
(a, b, c) = (3, 1, 5), (3, -1, 5), (1, 1, 15).
\]

The corresponding algebraic integer is

\[
\tau_{(a,b,c)} = -b + \sqrt{b^2 - 4ac} \over 2a.
\]

We expect the absolute value of the largest of the \(j(\tau) \) to be roughly \(e^{\sqrt{59}} \approx e^{24} \). Evaluating the product

\[
(x - j(\tau_1))(x - j(\tau_2))(x - j(\tau_3))
\]

with enough significant digits and rounding the coefficients to integers, we find the class polynomial:

\[
H_D(x) = x^3 + 30197678080x^2 - 140811576541184x + 374643194001883136.
\]

Here 28 decimal digits of precision are required using the package pari (19 digits of precision are not enough).

6.1.2. Chinese Remainder type algorithms. To implement our algorithm for this example, we set the bound \(B \) equal to \(e^{41} \) to be bigger than the largest coefficient of \(H_D(x) \). This estimate comes from the product of the three \(j \) values, whose absolute value we expect to be roughly

\[
e^{\sqrt{59}(1+\frac{1}{3}+\frac{1}{5})}.
\]

We find the following list of 7 small primes which are of the form \((t^2 - D)/4\) for some integer \(t \):

\[
17, 71, 197, 521, 827, 1907, 3797, 5417
\]

and whose product exceeds \(B \). For each prime \(p \) in the list, we loop through the \(p - 1 \) possible \(j \)-values. For each possible \(j \)-value, we count the number of points on a curve over \(\mathbb{F}_p \) with that \(j \)-value using a version of Schoof's algorithm (we use a version available on the web by Mike Scott: \texttt{ftp://ftp.compapp.dcu.ie/pub/crypto/sea.cpp}). If the curve has either \(p+1 \) or \(p+1-t \) points, with \(t^2 = 4p - 59 \), then we keep that \(j \)-value in a list \(S_p \). At the end of the loop, we will have \(h \) \(j \)-values in the list \(S_p \), where \(h \) is the degree of \(H_D(x) \). Then the polynomial \(H_D(x) \mod p \) is formed as the product over \(j \in S_p \) of \((x - j)\).

Here is a table summarizing the results for this example:

\(p \)	\(t \)	\(j \in S \)	\(H_D(x) \mod p \)
17	3	\(j = 2, 7, 13 \)	\(x^3 + 12x^2 + 12x + 5 \)
71	15	\(j = 51, 54, 67 \)	\(x^3 + 41x^2 + 62x + 11 \)
197	27	\(j = 71, 195, 130 \)	\(x^3 + 195x^2 + 160x + 139 \)
521	45	\(j = 103, 366, 367 \)	\(x^3 + 206x^2 + 379x + 510 \)
827	57	\(j = 97, 498, 554 \)	\(x^3 + 505x^2 + 824x + 196 \)
1907	87	\(j = 24, 915, 1613 \)	\(x^3 + 1262x^2 + 1432x + 1045 \)
3797	123	\(j = 70, 958, 2381 \)	\(x^3 + 388x^2 + 1114x + 1584 \)
CONSTRUCTING ELLIPTIC CURVES

Usual Chinese Remainder routine

Here is a short routine in the algebraic number theory package PARI to compute the polynomial $H_D(x)$ with integer coefficients using the usual Chinese Remainder Theorem. It takes as input the coefficients of $H_D(x)$ modulo the small primes p.

```pari
l=7; (number of small primes)
h=degree; (degree of the hilbert class polynomial)
m=[17,71,197,521,827,1907,3797]; (list of small primes)
M=prod(i=1,l,m[i]); (M=17*71*197*521*827*1907*3797)
log(M);
invm = vector(l,i,M/m[i]);
a=vector(l,i,Mod(1/invm[i],m[i]));
modcoeff = [[12,41,195,206,505,1262,388], [12,62,160,379,824,1432,1114], [5,11,139,510,196,1045,1584]]; (list of coefficients modulo small primes)
z=vector(h,j,Mod(sum(i=1,l,lift(a[i])*invm[i]*modcoeff[j][i]),M));
```

Modified Chinese Remainder routine

For our algorithm, we input in addition the prime n such that we want to determine $H_D(x) \mod n$. Here is a short routine in PARI to compute the polynomial $H_D(x)$ with coefficients modulo n using our modified version of the Chinese Remainder Theorem.

```pari
n=prime; (the prime where we want the curve in the end)
r=vector(h,j,round(sum(i=1,l,(lift(a[i])*modcoeff[j][i]/m[i]))))
finalcoeff=vector(h,j,sum(i=1,l,
    lift(a[i])*modcoeff[j][i]*Mod(invm[i],n)-Mod(r[j],n)*Mod(M,n)));
```

Note that the precision required for this computation is almost trivial (the minimum value to set the precision in PARI is 9 significant digits).

n=141767

Here is an example where we use our algorithm to find the class polynomial modulo n. Note that $4n = 753^2 - D$, so we will construct a curve over F_n with 142521 points. The output of our Modified Chinese Remainder routine is:

```
[Mod(31177, 141767), Mod(73152, 141767), Mod(48400, 141767)].
```

Note that this corresponds to the class polynomial that we found using the Atkin-Morain method reduced modulo n:

$$X^3 + 31177X^2 + 73152X + 48400.$$

Taking the root $j = 118481 \mod n$, we get the elliptic curve

$$y^2 = x^3 + 39103x + 120580.$$

It has 142521 points as desired.

Remark 6.1. Actually, the third coefficient in this example had to be re-computed because there was a rounding problem. The constant term of the class polynomial over the integers is slightly more than half the product of the small primes. The problem in this example can be solved in a clean way by adding one more prime to the algorithm, since in fact our algorithm requires the product of the small primes to slightly exceed $2B$ by an amount depending on the choice of epsilon: $B/(1/2 - \epsilon)$.

6.2. $D = -832603$. The Algorithms and Parameters for Secure Electronic Signatures document put out by the EESSI-SG (European Electronic Signature Standardisation Initiative Steering Group) recommends using elliptic curves with class number of the endomorphism ring at least equal to 200. Here is an example with class number equal to 96. Let

$$n = 100959557.$$
Note that $4n = 20075 - D$, and so we will construct a curve over \mathbb{F}_n with $N = 100979633 = n + 1 + 20075$ points.

We have that D is square-free, so $\sqrt{\mathcal{D}}$ has class number $h = 96$, which is small compared to the square root of $|\mathcal{D}|$,

$$\sqrt{|\mathcal{D}|} \approx 912.$$

According to the estimates, the largest coefficient of the class polynomial is bounded by e^{368}. This comes from the fact that

$$\sum_{a=1}^{96} \frac{1}{a} \approx 1.85$$

and the middle binomial coefficient is roughly e^{64}.

6.2.1. Atkin-Morain method. We can obtain the class polynomial using the algorithm of Atkin and Morain with 3000 digits of precision (2323 digits should suffice): $\mathcal{N} = 801068319277722429351787182436044877583524504791009384726007986645588604878204472074912440454097120558672945641426384935324988690098759944648896660045318527025515763885872980747755007610515898204472752926495809058604095538594298938376729839199351458912697131741249708573841706207466567184768701217756173583188

The list contains 410 primes. Their product is roughly e^{3729}, which exceeds the bound $2B$ as desired.

To illustrate the algorithm, we find the class polynomial modulo the largest prime on the list $p = 1434707$. Note that $4p = 2215 - D$. By counting the number of points on a representative for each isomorphism class of elliptic curves over \mathbb{F}_p, we found the following list of 96 j-values such that the associated elliptic curve has $p + 1 \pm 2215$ points over \mathbb{F}_p.

The list contains 410 primes. Their product is roughly e^{3729}, which exceeds the bound $2B$ as desired.

To illustrate the algorithm, we find the class polynomial modulo the largest prime on the list $p = 1434707$. Note that $4p = 2215 - D$. By counting the number of points on a representative for each isomorphism class of elliptic curves over \mathbb{F}_p, we found the following list of 96 j-values such that the associated elliptic curve has $p + 1 \pm 2215$ points over \mathbb{F}_p.

The list contains 410 primes. Their product is roughly e^{3729}, which exceeds the bound $2B$ as desired.

To illustrate the algorithm, we find the class polynomial modulo the largest prime on the list $p = 1434707$. Note that $4p = 2215 - D$. By counting the number of points on a representative for each isomorphism class of elliptic curves over \mathbb{F}_p, we found the following list of 96 j-values such that the associated elliptic curve has $p + 1 \pm 2215$ points over \mathbb{F}_p.

The list contains 410 primes. Their product is roughly e^{3729}, which exceeds the bound $2B$ as desired.

To illustrate the algorithm, we find the class polynomial modulo the largest prime on the list $p = 1434707$. Note that $4p = 2215 - D$. By counting the number of points on a representative for each isomorphism class of elliptic curves over \mathbb{F}_p, we found the following list of 96 j-values such that the associated elliptic curve has $p + 1 \pm 2215$ points over \mathbb{F}_p.

The list contains 410 primes. Their product is roughly e^{3729}, which exceeds the bound $2B$ as desired.

To illustrate the algorithm, we find the class polynomial modulo the largest prime on the list $p = 1434707$. Note that $4p = 2215 - D$. By counting the number of points on a representative for each isomorphism class of elliptic curves over \mathbb{F}_p, we found the following list of 96 j-values such that the associated elliptic curve has $p + 1 \pm 2215$ points over \mathbb{F}_p.

The list contains 410 primes. Their product is roughly e^{3729}, which exceeds the bound $2B$ as desired.
\textit{j-values for } p = 1434707:

\begin{align*}
&28534, 29064, 39989, 50559, 58497, 61669, 87155, 97313, 120663, 153566, 158121, 164378, 182440, 199741, 201155, 218108, 219959, 23789, 257474, 289215, 317239, 338891, 357577, 459025, 381504, 398682, 449952, 482780, 485134, 487674, \\
&511196, 527120, 543027, 574978, 583669, 584091, 585813, 595906, 642664, 644346, 653188, 654512, 655575, 696063, 698345, \\
&699857, 702443, 705043, 710770, 721309, 734948, 785963, 789978, 790585, 816076, 821241, 869331, 871700, 889175, 892721, \\
&902226, 923156, 924382, 980018, 1022428, 1033432, 1057121, 1079631, 1101285, 1129437, 1154957, 1161878, 1175298, 1185913, 1186864, 1199076, 1205398, 1213078, 1225411, 1279055, 1281872, 1286184, 1312922, 1327236, 1334297, \\
&1335254, 1337269, 1368672, 1381024, 1410659, 1426507, 1428519, 1433197\]
[NZM] Niven, Ivan; Zuckerman, Herbert S.; Montgomery, Hugh L. An introduction to the theory of numbers, Fifth edition. John Wiley & Sons, Inc., New York, 1991.

[Schoof] Schoof, R., Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 219–254.

[Silv1] Silverman, J., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986.

[Silv2] Silverman, J., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994.

Department of Mathematics, University of Texas, Austin, Texas, USA
E-mail address: amod@math.utexas.edu

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA.
E-mail address: klauter@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA.
E-mail address: venkie@microsoft.com