Measurements of branching fraction, polarization, and charge asymmetry of $B^\pm \rightarrow \rho^\pm \rho^0$ and a search for $B^\pm \rightarrow \rho^\pm f_0(980)$

B. Aubert, M. Bona, D. Boutigny, F. Coudere, Y. Karyotakis, J. P. Lees, V. Poirier, V. Tisserand, A. Zghiche, E. Grauges, A. Palano, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofte, B. Stugu, G. S. Abrams, M. Battaglia, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, M. S. Gill, Y. Groysman, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, Y. Gu, G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, W. A. Wenzel, P. del Amo Sanchez, M. Barrett, K. E. Ford, A. J. Hart, T. J. Harrison, C. M. Hawkes, A. T. Watson, T. Held, K. Koch, B. Lewandowski, M. Pelizaeus, K. Peters, T. Schroeder, M. Steinke, J. T. Boyd, J. P. Burke, W. N. Cottingham, D. Walker, D. J. Asgeriizen, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, A. Khan, P. Kyberd, M. Saleem, D. J. Sherwood, L. Teodorescu, V. E. Blinov, A. D. Buki, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. SerEdnychakov, Yu. I. Skovpen, E. P. Solodov, K. Yu Todyshiev, I. Bondiolli, M. Bruinsma, M. Chao, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, R. K. Mommersen, W. Roethel, D. P. Stoker, S. Abachi, C. Buchanan, S. D. Foulkes, J. W. Gary, O. Long, B. C. Shen, K. Wang, L. Zhang, H. K. Hadavand, E. J. Hill, H. P. Paar, S. Rahatlon, V. Sharma, J. W. Berryhill, G. Campagnari, A. Cunha, B. Dahmes, T. M. Hong, D. Kovalsky, J. D. Richman, T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroeseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson, J. Albert, E. Chen, A. Drovetski, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, G. Mancinelli, B. T. Meadows, K. Misra, M. D. Sokoloff, F. Blanc, P. C. Bloom, S. Chen, W. T. Ford, J. F. Hirschauer, A. Kreisel, M. Nagel, U. U. Neubauer, A. Olivas, W. O. Ruddick, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zhang, A. Chen, E. A. Eckhart, A. Soffer, W. H. Toki, R. J. Wilson, F. Winklemier, Z. Q. Zeng, D. D. Altenburg, E. Feltesi, A. Hauke, H. Jasper, J. Merkel, A. Petzold, B. Spaan, T. Brandt, V. Klose, H. M. Lacker, W. F. Mader, R. Bogowski, J. Schubert, K. R. Schubert, R. Schwierz, J. E. Sundemunder, A. Volk, D. Bernard, G. R. Bonneau, E. Latour, Ch. Thiebaux, M. Verderi, P. J. Clark, W. Gradl, F. Muheim, S. Playfer, A. I. Robertson, Y. Xie, M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Luppi, M. Negrini, A. Petrella, L. Piemontese, E. Precipec, F. Anulli, R. Baldini-Ferroli, A. Calcatera, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi, M. Piccolo, M. Rama, Z. Zallo, A. Buzzo, R. Contri, M. L. Vetere, M. M. Macri, R. M. Monge, S. Passaggio, C. Patriginari, E. Robutti, A. Santroni, T. Sosi, G. Brandenburg, K. S. Chaisanguanthum, M. Mori, J. Wu, R. S. Dubitzky, J. Marks, S. Schenk, U. Uwer, D. J. Bard, W. Blinov, A. Bowman, P. D. Danue, U. Egede, R. L. Flack, J. A. Nash, M. B. Nikolich, W. Panduro Vazquez, D. J. Bard, P. K. Behera, X. Chai, M. J. Charles, U. Mallik, N. T. Meyer, S. Ziegler, J. Cochran, H. B. Crawford, D. Long, V. Eyges, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, A. V. Gritsan, A. G. Denig, M. Fritsch, G. Schott, N. Arnaud, M. Davier, G. Grosdidier, A. Höcker, F. Le Diberder, V. Lepeltier, M. Lutz, A. Oyanguren, S. Pruvot, S. Rodier, P. Roudeau, M. H. Schune, A. Stocchi, W. F. Wang, G. Wormser, C. H. Cheng, D. J. Lange, D. M. Wright, C. A. Chavez, I. J. Forster, J. R. Fry, G. Babathuler, R. Garnet, K. A. George, D. E. Hutchcroft, D. J. Payne, K. C. Schofield, C. Touramanis, A. J. Bevan, F. Di Lodovico, W. Menges, R. Sacco, G. Cowan, H. U. Flaecher, D. A. Hopkins, P. S. Jackson, T. R. McMahon, S. Ricciardi, F. Salvatore, A. C. Wren, D. N. Brown, C. L. Davis, J. Allison, N. R. Barlow, R. J. Barlow, Y. M. Chia, C. L. Edgar, G. D. Lafferty, M. T. Naisbit, J. C. Williams, J. I. Yi, C. Chen, W. D. Hulsbergen, A. Jawahery, C. K. Lae, D. A. Roberts, G. Simi, G. Blaylock, C. Dallapiccola, S. H. Hertzbach, X. Li, T. B. Moore, S. Saremi, H. Staengle, R. Cowan, G. Sciolla, S. J. Sekula, G. Spitznagel, F. Taylor, R. K. Yamamoto, H. Kim, J. E. Melachlin, P. M. Patel, S. H. Robertson, A. Lazzaro, V. Lombardo, F. Palombo, J. M. Bauer, L. Cremonaldi, V. Eschenburg, R. Godang, R. Kroeger, D. A. Sanders, D. J. Summers, H. W. Zhao, S. Bruner, D. Côte, M. Simard, P. Taras, F. B. Viala, H. Nicholson, N. Cavallo, G. De Nardo, F. Fabozzi, G. Gatto, L. Lista, D. Monorchio, P. Paolucci, D. Piccolo, C. Sciaccia, M. A. Baak, G. Raven, H. L. Snoek, C. P. Jessop,
J. M. LoSecco, T. Allmendinger, G. Benelli, L. A. Corwin, K. K. Gan, K. Honscheid, D. Hufnegel, P. D. Jackson, H. Kagan, R. Kass, A. M. Rahimi, J. J. Regensburger, R. Ter-Antonyan, Q. K. Wong, N. L. Blount, J. Braun, R. Frey, O. Igonkina, J. A. Kolb, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence, A. Gaz, M. Margoni, M. Morandi, A. Pomplini, M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, C. Voci, M. Benayoun, H. Briaud, J. Chauveau, P. David, L. Del Buono, Ch. de la Vaisière, O. Hamon, B. L. Hartfiel, Ph. Leruste, J. Malcles, J. Ocariz, L. Roos, G. Therin, L. Gladney, M. Biasini, C. Angelini, G. Batignani, S. Bettarini, F. Bucci, G. Calderini, M. Carpinelli, R. Cenci, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, M. A. Mazur, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, J. J. Walsh, M. Haire, D. Judd, D. E. Wagoner, J. Biesiada, N. Danielson, P. Elmer, Y. P. Lau, C. Lu, J. Olsen, A. J. S. Smith, A. V. Telnov, F. Bellini, G. Cavoto, A. D’Orazio, D. del Re, E. Di Marco, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, L. Li Gioi, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Safai Tehrani, C. Voena, M. Ebert, H. Schröder, R. Waldi, T. Adye, N. De Groot, B. Franek, E. O. Olaiya, F. F. Wilson, R. Aleksan, S. Emery, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, M. Legrande, G. Vasseur, Ch. Yéche, M. Zito, X. R. Chen, H. Liu, W. Park, M. V. Purohit, J. R. Wilson, M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, N. Berger, R. Claus, J. P. Coleman, M. R. Convery, M. Cristinzian, J. C. Dingfelder, J. Dorfan, G. P. Dubois-Felsmann, D. Dujmic, W. Dunwoodie, R. C. Field, T. Ghanzaman, S. J. Gowy, M. T. Graham, P. Grenier, V. Halyo, C. Hast, T. Hryn’ova, W. R. Imnes, M. H. Kelsey, P. Kim, D. W. G. S. Leith, S. Li, S. Lutz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, T. Pulliam, B. N. Ratcliff, A. Rooodman, A. A. Sahinov, R. H. Schindler, J. Schwiening, A. Snyder, J. Stelzer, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Vavra, N. van Bakel, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, K. Yi, C. C. Young, P. P. Burchat, A. J. Edwards, S. A. Majewski, B. A. Petersen, C. Roat, L. Wilden, S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, V. Jain, B. Pan, M. A. Saeed, F. R. Wappler, B. S. Zain, W. Bugg, M. Krishnamurthy, S. M. Spanier, R. Eckmann, J. L. Ritchie, A. Satpathy, C. J. Schilling, R. F. Schwitter, J. M. Izen, X. C. Lou, S. Ye, F. Bianchi, F. Gallo, D. Gamba, M. Bomben, L. Bosio, C. Cartaro, F. Cossutti, G. Della Ricca, S. Dittongo, L. Lanceri, L. Vitale, V. Azzolini, N. Lopez-March, F. Martinez-Vidal, Sw. Banerjee, B. Bhuyan, C. M. Brown, D. Fortin, K. Hamano, R. Kowalewski, I. M. Nugent, J. M. Roney, R. J. Sobie, J. J. Back, P. F. Harrison, T. E. Latham, G. B. Mohanty, M. Pappagallo, H. R. Band, X. Chen, B. Cheng, S. Dasu, M. Datta, K. T. Flood, J. J. Hollar, P. E. Kutter, B. Mellado, A. Mihalyi, Y. Pan, M. Pierini, R. Prepost, S. L. Wu, Z. Yu, and H. Neufeld (The BABAR Collaboration)
22 Colorado State University, Fort Collins, Colorado 80523, USA
24 Technische Universität Dortmund, Institut für Kern- und Teilchenphysik, D-44221 Dortmund, Germany
25 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Universität di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Iowa State University, Ames, Iowa 50011-3160, USA
35 Johns Hopkins University, Baltimore, Maryland 21218, USA
36 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
37 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
38 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39 University of Manchester, Manchester M13 9PL, United Kingdom
40 Queen Mary, University of London, E1 4NS, United Kingdom
41 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42 University of Louisville, Louisville, Kentucky 40292, USA
43 University of Manchester, Manchester M13 9PL, United Kingdom
44 University of Maryland, College Park, Maryland 20742, USA
45 University of Massachusetts, Amherst, Massachusetts 01003, USA
46 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47 McGill University, Montréal, Québec, Canada H3A 2T8
48 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
49 University of Mississippi, University, Mississippi 38677, USA
50 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
51 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52 Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
53 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54 University of Notre Dame, Notre Dame, Indiana 46556, USA
55 Ohio State University, Columbus, Ohio 43210, USA
56 University of Oregon, Eugene, Oregon 97403, USA
57 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
58 Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
59 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
61 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
62 Prairie View A&M University, Prairie View, Texas 77446, USA
63 Princeton University, Princeton, New Jersey 08544, USA
64 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
65 Universität Rostock, D-18051 Rostock, Germany
66 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
67 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
68 University of South Carolina, Columbia, South Carolina 29208, USA
69 Stanford Linear Accelerator Center, Stanford, California 94309, USA
70 Stanford University, Stanford, California 94305-4060, USA
71 State University of New York, Albany, New York 12222, USA
72 University of Tennessee, Knoxville, Tennessee 37996, USA
73 University of Texas at Austin, Austin, Texas 78712, USA
74 University of Texas at Dallas, Richardson, Texas 75083, USA
75 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
76 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
77 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
78 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
79 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
80 University of Wisconsin, Madison, Wisconsin 53706, USA
81 Yale University, New Haven, Connecticut 06511, USA

(Dated: October 17, 2018)
We measure the branching fraction \(\mathcal{B} \), polarization \(f_L \) and CP asymmetry \(A_{CP} \) of \(B^\pm \to \rho^\pm \rho^0 \) decays and search for the decay \(B^\pm \to \rho^\pm f_0(980) \) based on a data sample of 231.8 million \(\Upsilon(4S) \to BB \) decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy \(B \) factory. In \(B^\pm \to \rho^\pm f_0 \) decays we measure \(\mathcal{B} = (16.8 \pm 2.2 \pm 2.3) \times 10^{-6}, f_L = 0.905 \pm 0.042^{+0.023}_{-0.027} \), and \(A_{CP} = -0.12 \pm 0.13 \pm 0.10 \), and find an upper limit on the branching fraction of \(B^\pm \to \rho^\pm f_0(980)(\to \pi^+\pi^-) \) decays of \(1.9 \times 10^{-6} \) at 90% confidence level.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

The measurement of the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix \(|V_{ub}| \) is an important part of the present program in particle physics. Violation of CP symmetry is manifested as a non-zero area of the CKM unitarity triangle \(|V_{ub}| \). In this paper we report the measurement of the branching fraction, polarization and CP asymmetry of the \(B^\pm \to \rho^\pm \rho^0 \) decay mode, which is needed for the \(\rho \) polarizaton analysis used to extract \(\alpha = \arg[V_{ud}^\ast V_{ub}] \). We also set an upper limit on the unknown branching fraction of \(B^\pm \to \rho^\pm f_0(980)(\to \pi^+\pi^-) \), which is measured to control this background to the \(B^\pm \to \rho^\pm \rho^0 \) analysis.

In \(B^0(\bar{B}^0) \to \rho^\pm \rho^0 \) decays \(\Delta \sigma \) the interference between the \(B\bar{B} \) oscillations which depend on \(V_{ud} \) and the dominating tree-level amplitude \(b \to u\pi d \) causes a time-dependent CP asymmetry that depends on \(\sin(2\alpha) \). The presence of loop (penguin) amplitudes leads to a shift \(\delta\alpha = |\alpha - \alpha_{\text{exp}}| \), between the physical weak phase \(\alpha \), and the effective one \(\alpha_{\text{exp}} \) experimentally measured in \(B^0(\bar{B}^0) \to \rho^\pm \rho^- \) decays. However, the penguin amplitudes in these decays are known to contribute at a very low level due to the small upper limit of \(1.1 \times 10^{-6} \) at 90% confidence level (CL), obtained from the branching fraction of the penguin dominated mode \(B^0 \to \rho^0 \). The size of \(\delta\alpha \) can be extracted from the full isospin analysis combining all \(B \to \rho \rho \) modes.

In \(B \to \rho \rho \) decays, a spin zero particle decays into two spin one particles. The final state is therefore a superposition of two transversely polarized modes (helicity \(\pm 1 \)) and one longitudinal mode (helicity 0), which can be measured through an angular analysis. The longitudinal polarization fraction \(f_L \) is defined as the fraction of decays to the helicity zero state, \(f_L = \Gamma_L/\Gamma \), where \(\Gamma \) is the total decay rate and \(\Gamma_L \) is the decay rate to the longitudinally polarized final state. The transverse polarization is a mixed CP state while the longitudinal state is pure CP even. The previous measurements of \(f_L \) showed the decay is consistent with being fully longitudinally polarized.

Our analysis is performed in the helicity frame as a function of the two helicity angles \(\theta_L \) and \(\theta_T \) where the helicity angle of a \(\rho^\pm (\rho^0) \) meson is defined as the angle between its daughter \(\pi^\pm (\pi^0) \) and the direction opposite to the \(B \) meson in the \(\rho^\pm (\rho^0) \) rest frame. The polarization \(f_L \) can be extracted from the differential decay rate:

\[
\frac{1}{\Gamma} \frac{d^2\Gamma}{d\cos\theta_L \ d\cos\theta_T} = \frac{9}{4} \left[f_L \cos^2\theta_L \cos^2\theta_T \right] + \frac{1}{4} (1 - f_L) \sin^2\theta_L \sin^2\theta_T \tag{1}
\]

Here we integrate over the angle between the \(\rho \)-meson decay planes.

The measurements presented in this paper are based on data collected with the BABAR detector at the SLAC PEP-II asymmetric-energy \(e^+e^- \) collider. The analyzed data sample of 231.8 ± 2.6 million \(B\bar{B} \) pairs produced at the \(\Upsilon(4S) \) resonance corresponds to an integrated luminosity of 210.5 fb\(^{-1} \).

To reconstruct \(B^\pm \to \rho^\pm \rho^0 \) and \(B^\pm \to \rho^\pm f_0 \) decays, we select events with at least three charged tracks and one neutral pion candidate. Charged tracks are required to originate from the interaction point and have particle identification information inconsistent with kaon, electron, and proton hypotheses. We form \(\pi^0 \to \gamma\gamma \) candidates from pairs of calorimeter showers, each with a photon-like lateral spread and a minimum energy of 50 MeV. The invariant mass of \(\pi^0 \) candidates is required to fall in the range \(0.10 < m_{\gamma\gamma} < 0.16 \) GeV/c\(^2 \).

The mass of charged \(\rho^\pm \) candidates must satisfy \(0.396 < m_{\pi^\pm \pi^\mp} < 1.146 \) GeV/c\(^2 \) where the low-side requirement on the \(\pi^\pm \pi^0 \) mass is chosen to exclude \(K^0_{\text{SD}} \to \pi^+ \pi^- \) decays. Neutral final state meson candidates \((\rho^0, f_0) \) must satisfy \(0.520 < m_{\pi^+\pi^-} < 1.146 \) GeV/c\(^2 \). In order to suppress backgrounds with low momentum pions, the helicity angles are required to fall in the ranges \(-0.8 < \cos\theta_L < 0.95 \) and \(|\cos\theta_T| < 0.95 \). Backgrounds from \(D^0 \to K^-\pi^+\pi^0 \) and \(D^0 \to \pi^-\pi^+\pi^0 \) decays are reduced by requiring the candidate \(D^0 \) invariant mass to be at least 40 MeV/c\(^2 \) away from the \(D^0 \) mass.

About 20% of the selected events have multiple \(B \) candidates and the one that has the reconstructed \(\pi^0 \) mass closest to the \(\pi^0 \) mass is kept. In the case that more than one candidate has the same reconstructed \(\pi^0 \) mass, we select one at random.

Continuum decays represent the largest source of background and are reduced by requiring \(|\cos\theta_T| < 0.8 \), where \(\theta_T \) is the cosine of the angle between the \(B \) thrust axis and that from the rest of the event (ROE). To further discriminate signal from continuum, we also use a neural network built out of five event-shape variables: a Fisher discriminant combining the \(\theta^1 \) and \(2^{nd} \) order monomials...
at the contributions are modeled with one-dimensional parameterized likelihood function. The event yield. The likelihood function is:

\[L = \frac{1}{N_{\text{tot}}} \exp \left(- \sum_{k=1}^{M} n_k \prod_{i=1}^{N} \sum_{j=1}^{M} n_j \mathcal{P}_j(x_i) \right), \]

(2)

where \(M \) is the number of hypotheses (signal, misreconstructed signal, continuum and \(B \)-background classes), and \(n_k \) \((n_j)\) represents the number of measured events for each hypothesis determined by maximizing the likelihood function. \(\mathcal{P}_j(x_i) \) is the product of the probability density functions (PDFs) of hypothesis \(j \) evaluated at the \(i \)-th event’s measured variables, \(x_i = \{m_{\text{ES}}, \Delta E, m_{\pi\pi}, m_{\pi\pi}, \cos \theta_\perp, \cos \theta_\parallel, x_{NN} \} \). In addition, the charge asymmetry, obtained from the measured \(B^- \) and \(B^+ \) signal candidate decay yields, \(A_{\text{CP}} = \frac{N_{B^-} - N_{B^+}}{N_{B^-} + N_{B^+}} \), is determined in the fit to the data.

Each discriminating variable in the likelihood function is modeled with a PDF extracted either from the data, or from high statistics Monte Carlo (MC) simulated data samples. The correlations between the variables are assumed to be small and the PDFs independent. This is checked with systematic error studies, and corrections are applied where necessary.

The continuum background \(\Delta E, m_{\text{ES}}, \) and \(x_{NN} \) distributions are modeled with one-dimensional parameterized distributions taken from fits to the data. Correlations are observed between the \(m_{\pi\pi} \) and \(\cos \theta \) distributions for both \(\rho \)-meson candidates, which are taken into account with two-dimensional PDFs. The signal component is modeled with one-dimensional parameterized distributions for each of six variables; \(m_{\text{ES}} \) is modeled with a non-parametric PDF \([13]\). The signal PDF shapes are obtained from fits to signal MC sample after the selection is applied. Events with a true \(B^\pm \rightarrow \rho^\pm \rho^0 \) decay but with wrong tracks or calorimeter clusters assigned to the final state are referred to as self cross feed (SCF) events. They make up 35% and 14% of the selected longitudinally and transversely polarized signal samples, respectively.

The longitudinal and transverse SCF components and \(B \)-background PDFs are determined in a similar manner using high statistics MC samples and modeled with non-parametric PDFs \([13]\) for each variable.

To understand the backgrounds from other decay modes we use MC simulated events. There are two types of \(B \)-background: ‘charmed’ (decays involving \(b \rightarrow c \) transitions), and ‘charmless’ (all other \(b \) decays). Altogether sixteen \(B \)-background categories plus the two SCF components are included in the fit. The SCF yields and polarization are fixed in the final fit at values that match those fitted for the signal in previous iterations of the fit. Four specific charmed background modes are included: \(B^\pm \rightarrow D^0 \pi^\pm, B^\pm \rightarrow D^0 \rho^\pm, B^0 \rightarrow D^0 \pi^0, \) and \(B^0 \rightarrow D^0 \rho^0 \). Other charmed backgrounds are combined into two generic classes of events for charged and neutral charmed \(B \) decays. For the charmless \(B \)-backgrounds, separate MC samples of eight modes were used: neutral \(B \) decaying to \(\rho^0 \rho^- \) and charged \(B \) decaying to \(\rho^0 f_0(980) \), \(\eta^\prime \rho^\pm \), \(K'^0 \rho^\pm \), \(a_1^0 \pi^\pm, a_1^0 \pi^0, a_1^0 \rho^0 \), and \(a_1^0 \rho^\pm \) with the decays \(a_1^0 \rightarrow (\rho\pi)^0 \) and \(a_1^\pm \rightarrow (\rho\pi)^\pm \). For \(B \) decaying to vector-mesons, only the longitudinal component of the decay is considered. Two generic categories, one for 5-body modes and one for all ‘other charmless’ decays, complete the \(B \)-background model.

The number of ‘other charmless’ events and the \(B^\pm \rightarrow \rho^\pm f_0 \) yield were determined from the data fit. The other fourteen backgrounds had their yields fixed in the fit. We use the following branching fractions:

\[B(B^0 \rightarrow \rho^+ \rho^-) = (26.2 \pm 3.7) \times 10^{-6} \]

\[B(B^\pm \rightarrow \eta' \rho^\pm) = (12.9 \pm 6.5) \times 10^{-6} \]

\[B(\eta' \rightarrow \rho^0 \pi^0) = 0.295 \pm 0.010 \]

\[B(B^+ \rightarrow K'^0 \rho^+) = (10.5 \pm 1.8) \times 10^{-6} \]

\[B(K'^0 \rightarrow K^+ \pi^-) = 2/3. \]

The decays \(B^\pm \rightarrow (a_1 \pi)^\pm \) and \(B^\pm \rightarrow (a_1 \rho)^\pm \) have few experimental constraints \([17, 18]\). We adopt the following \(B^\pm \) branching ratios, in units of \(10^{-6} \), and assume a 100% systematic uncertainty: \(a_1^0 \pi^+ = 12, a_1^0 \pi^0 = 6, a_1^0 \rho^+ = a_1^\pm \rho^- = 48 \).

Table shows the results of the fit, where the quoted errors are statistical errors only. Projection plots for \(m_{\text{ES}} \) and \(\Delta E \) are shown in Fig. 4.

Systematic effects are considered in the modeling of
TABLE I: Summary of the results of the fit with statistical errors (before correction for fit biases).

Observables	Fitted value
$B^\pm \rightarrow \rho^\pm \rho^0$ yield	390±49 events
Polarization f_L	0.897±0.042
Charge asymmetry A_{CP}	−0.12 ± 0.13
$B^\pm \rightarrow \rho^\pm f_0$ yield	51±30 events

The effect of uncertainties in these values is evaluated by varying the number of events in each background category within the range allowed by the error on the branching fraction. Fourteen non-resonant backgrounds that are not in the default fit are tested by adding them singly to the fit with a yield that is allowed to vary. The only shift seen was associated with the mode $B^\pm \rightarrow \pi^+\pi^0\pi^0$, and is taken as a symmetric systematic uncertainty.

The systematic error associated with mis-reconstructed signal is evaluated by taking the difference between the default fit and the one for which these events are not modeled, and therefore mostly absorbed into the ‘other charmless’ background category. We consider the error due to the uncertainty on the signal, B-background, and continuum PDF shapes and estimate a systematic error by varying these shapes within their statistical uncertainty. The impact of the uncertainty on the measurement of the f_0 mass and width [19] has also been evaluated. The values of the systematic errors described above are given in Table II.

TABLE II: Summary of the systematic uncertainties on the $B^\pm \rightarrow \rho^\pm \rho^0$ yield, the polarization f_L, and the $B^\pm \rightarrow \rho^\pm f_0$ yield.

Source	$\rho^\pm \rho^0$ yield	f_L	$\rho^\pm f_0$ yield
Fit bias	27.3	0.005	9.8
B-background rates	11.0	0.007	2.8
Non-resonant backgrounds	12.0	0.009	3.0
Amount of SCF	24.0	0.010	0.6
PDF shapes	+21.1	+0.017	+7.9
	-22.5	-0.022	-13.5
f_0 mass and width	+0.9	0.000	3.9
Total	+4.5	+0.054	+4.4

Systematic uncertainties in the reconstruction and calibration procedure introduce a systematic error of 3% after a correction of −2.5% on the π^0 reconstruction efficiency, 3.9% after a correction of −1.5% on the track reconstruction efficiency, and a systematic error of 1.1% from the particle identification. The uncertainty on the efficiency ratio between longitudinal and transverse events is found to be negligible. The error on A_{CP} includes a 0.45% uncertainty in the charged track reconstruction asymmetry, a 4% uncertainty from the detector’s intrinsic charged particle identification asymmetry, and a 9% uncertainty which is the largest single shift obtained when assuming a uniform probability for the charge asymmetry of every B-background individually.

In summary, we measure the branching fraction, longitudinal polarization, and CP asymmetry of the decay $B^\pm \rightarrow \rho^\pm \rho^0$, using a dataset of about 231.8 million $B\bar{B}$ pairs, to be:

$$B(B^\pm \rightarrow \rho^\pm \rho^0) = (16.8 \pm 2.2 \pm 2.3) \times 10^{-6},$$

$$f_L(B^\pm \rightarrow \rho^\pm \rho^0) = 0.905 \pm 0.042^{+0.024}_{-0.027},$$

$$A_{CP}(B^\pm \rightarrow \rho^\pm \rho^0) = -0.12 \pm 0.13 \pm 0.10.$$
The measurement of the branching fraction has improved by a factor of about two with respect to the previous \textit{BABAR} measurement, and supersedes it. The isospin relations between branching ratios are consistent between this measurement and those of $\rho^+\rho^-$ and $\rho^0\rho^0$ \cite{HFAG}, validating the approach used to constraint α. Moreover, our measurements confirm that this mode is largely longitudinally polarized. They also confirm that the charge asymmetry is consistent with zero as expected for decays proceeding through one decay channel only; this suggests the contributions of electroweak penguins are small in the $B\to\rho\rho$ system.

In addition we measure $\mathcal{B}(B^\pm \to \rho^\pm f_0(980)(\to \pi^+\pi^-)) = (0.7 \pm 0.8 \pm 0.5) \times 10^{-6}$ with a significance of 0.4σ. We set an upper limit on the branching fraction of 1.9×10^{-6} at 90\% confidence level by finding the yield (N) that satisfies $\int_0^N \mathcal{L}(n)dn / \int_0^\infty \mathcal{L}(n)dn = 0.9$ taking into account systematic uncertainties.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support \textit{BABAR}. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

\begin{itemize}
\item[] * Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\item[] † Also with Università della Basilicata, Potenza, Italy
\end{itemize}

\begin{thebibliography}{99}
\bibitem{1} N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
\bibitem{2} C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
\bibitem{3} M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
\bibitem{4} Charge conjugation is implied throughout this document, unless explicitly stated.
\bibitem{5} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, Phys. Rev. Lett. 95, 041805 (2005).
\bibitem{6} Belle Collaboration, A. Somov \textit{et al.}, Phys. Rev. Lett. 96, 171801 (2006).
\bibitem{7} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, Phys. Rev. Lett. 94, 131801 (2005).
\bibitem{8} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, Phys. Rev. Lett. 91, 171802 (2003).
\bibitem{9} Belle Collaboration, J. Zhang \textit{et al.}, Phys. Rev. Lett. 91, 221801 (2003).
\bibitem{10} G. Kramer and W. F. Palmer, Phys. Rev. D 45, 193 (1992).
\bibitem{11} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, Nucl. Instr. Methods Phys. Res., Sect. C A479, 1 (2002).
\bibitem{12} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, Phys. Rev. Lett. 89, 281802 (2002).
\bibitem{13} K. S. Cranmer, Comput. Phys. Commun. 136, 198 (2001).
\bibitem{14} Heavy Flavor Averaging Group (HFAG), \texttt{hep-ex/0603003}.
\bibitem{15} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, Phys. Rev. D 70, 032006 (2004).
\bibitem{16} S. Eidelman \textit{et al.}, Phys. Lett. B 592, 1 (2004).
\bibitem{17} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, \texttt{hep-ex/0603050} (SLAC-PUB-11769).
\bibitem{18} \textit{BABAR} Collaboration, B. Aubert \textit{et al.}, \texttt{hep-ex/0605024} (SLAC-PUB-11850).
\bibitem{19} E791 Collaboration, E. M. Aitala \textit{et al.} Phys. Rev. Lett. 86, 765 (2004).
\end{thebibliography}
We measure the branching fraction (\mathcal{B}), polarization (f_L) and CP asymmetry (A_{CP}) of $B^\pm \rightarrow \rho^\pm \rho^0$ decays and search for the decay $B^\pm \rightarrow \rho^\pm f_0(980)$ based on a data sample of 231.8 million $\Upsilon(4S) \rightarrow B\bar{B}$ decays collected with the BaBar detector at the SLAC PEP-II asymmetric-energy B factory. In $B^\pm \rightarrow \rho^\pm \rho^0$ decays we measure $\mathcal{B} = (16.8 \pm 2.2 \pm 2.3) \times 10^{-6}$, $f_L = 0.905 \pm 0.042^{+0.023}_{-0.027}$, and $A_{CP} = -0.12 \pm 0.13 \pm 0.10$, and find an upper limit on the branching fraction of $B^\pm \rightarrow \rho^\pm f_0(980)(\rightarrow \pi^+\pi^-)$ decays of 1.9×10^{-6} at 90% confidence level.