In Silico Identification of Epitopes in Mycobacterium avium subsp. paratuberculosis Proteins That Were Upregulated under Stress Conditions

Ratna B. Gurung, Auriol C. Purdie, Douglas J. Begg, and Richard J. Whittington

Faculty of Veterinary Science, University of Sydney, Camden, NSW, Australia, and Department of Livestock, Ministry of Agriculture and Forests, Thimphu, Bhutan

Johne’s disease in ruminants is caused by Mycobacterium avium subsp. paratuberculosis. Diagnosis of M. avium subsp. paratuberculosis infection is difficult, especially in the early stages. To date, ideal antigen candidates are not available for efficient immunization or immunodiagnosis. This study reports the in silico selection and subsequent analysis of epitopes of M. avium subsp. paratuberculosis proteins that were found to be upregulated under stress conditions as a means to identify immunogenic candidate proteins. Previous studies have reported differential regulation of proteins when M. avium subsp. paratuberculosis is exposed to stressors which induce a response similar to dormancy. Dormancy may be involved in evading host defense mechanisms, and the host may also mount an immune response against these proteins. Twenty-five M. avium subsp. paratuberculosis proteins that were previously identified as being upregulated under in vitro stress conditions were analyzed for B and T cell epitopes by use of the prediction tools at the Immune Epitope Database and Analysis Resource. Major histocompatibility complex class I T cell epitopes were predicted using an artificial neural network method, and class II T cell epitopes were predicted using the consensus method. Conformational B cell epitopes were predicted from the relevant three-dimensional structure template for each protein. Based on the greatest number of predicted epitopes, eight proteins (MAP2698c [encoded by desA2], MAP2312c [encoded by fadE19], MAP3651c [encoded by fadE3_2], MAP2872c [encoded by fabG5_2], MAP3523c [encoded by oxC], MAP0187c [encoded by sodA], and the hypothetical proteins MAP3567 and MAP1168c) were identified as potential candidates for study of antibody- and cell-mediated immune responses within infected hosts.

Mycobacterium avium subsp. paratuberculosis is an intracellular, Gram-positive, facultative, and slow-growing acid-fast bacillus that causes Johne’s disease (JD), primarily in ruminants. The predominant ruminant hosts are cattle and sheep, and bacilli are known to be shed in the feces and milk of an infected host. The disease is typically observed as a subclinical or clinical form, but the largest proportion of animals is found to remain subclinically infected (34). The detection of infection becomes efficient as the disease progresses to its clinical stage, but there are no sensitive tests available for detection of subclinical or early-stage infection.

Outside the host system, M. avium subsp. paratuberculosis is known to survive in food, water, and soil (26). In an external environment, typically on soil, M. avium subsp. paratuberculosis is known to undergo a state of dormancy (40). In vitro experiments have reported differential regulation of certain M. avium subsp. paratuberculosis proteins when the organism is exposed to stressors similar to dormancy (13, 15, 21). It is believed that the in vivo regulation of dormancy genes and associated proteins by M. avium subsp. paratuberculosis may play a role in the ability of the organism to evade host defense mechanisms, and in addition, the host may mount an immune response against these proteins.

Previous evaluation of M. avium subsp. paratuberculosis proteins identified as differentially regulated under stress conditions found only a few to be immunogenic (14), suggesting that not all proteins differentially regulated under in vitro stress conditions are expressed in the host and/or are immunogenic. Knowledge of the proteomic response alone is not a sufficient classifier of M. avium subsp. paratuberculosis protein immunogenicity. Therefore, there is a need for a robust selection method to identify possibly immunogenic M. avium subsp. paratuberculosis proteins.

In recent years, immunoinformatics (a subdiscipline of bioinformatics), an integration of immunology and informatics, has become the driving force in understanding the networks regulating the immune system. Such approaches have been used to predict immune epitopes in pathogens to identify potential vaccine candidates in an approach called reverse vaccinology (11, 36). This process has been used successfully to identify proteins for use in vaccines against pathogens such as Neisseria meningitidis and Mycobacterium tuberculosis (28, 32). The availability of the M. avium subsp. paratuberculosis K-10 genome (24) and bioinformatics tools makes an in silico approach to identifying potentially immunogenic antigens from M. avium subsp. paratuberculosis proteins possible. Such an approach allows for systematic antigen selection and provides a basis for laboratory experiments that may reduce the high cost of cloning and subsequent evaluation.

The aim of this study was to identify immunogenic candidate antigens which can be evaluated later in M. avium subsp. paratuberculosis diagnostic assays. This study utilized the in silico approach to analyze 25 M. avium subsp. paratuberculosis proteins that had previously been identified as upregulated when the organism was exposed to in vitro stressors (13, 15, 21).
MATERIALS AND METHODS

Selection of stress-regulated M. avium subsp. paratuberculosis proteins. The M. avium subsp. paratuberculosis proteins were selected based on the prior demonstration of an upregulated proteomic response to at least one in vitro stress condition (13, 15, 21), leading to a set of 25 M. avium subsp. paratuberculosis proteins. Each protein was submitted to a basic local alignment search (BLASTp) at the National Center for Biotechnology and Information (NCBI) database to confirm the M. avium subsp. paratuberculosis K-10 sequence identity. Proteins which showed 100% sequence identity to M. avium subsp. paratuberculosis K-10 were retained, while those with 100% sequence identity to other mycobacterial taxa were excluded. Eighteen such proteins unique to M. avium subsp. paratuberculosis K-10 were identified for epitope prediction.

T cell epitope prediction. T cell epitopes were identified using prediction tools located at the Immune Epitope Database and Analysis Resource (IEDB-AR), a database of experimentally characterized immune epitopes (B and T cell epitopes) for humans, nonhuman primates, rodents, and other animal species (http://tools.immuneepitope.org/analyze/html/mhc_binding.html). T cell epitopes were classified based on their binding affinity for mouse major histocompatibility complex (MHC) alleles, using the half-maximal inhibitory concentration of a biological substance (IC50) as the unit of measure, as follows: high-affinity binding, IC50 ≤ 50 nM; intermediate-affinity binding, IC50 ≥ 50 nM and ≤ 500 nM; and low-affinity binding, IC50 > 500 nM. A lower IC50 is indicative of a higher affinity of binding to host MHC alleles. The mouse MHC alleles used for antigen peptide binding were H-2Db, H-2Dd, H-2Kb, H-2Kd, H-2Kk, and H-2Id for MHC class I epitopes and H-2IAb, H-2IAd, and H-2IEd for MHC class II epitopes. T cell epitope binding to mouse MHC molecules were identified by submitting the FAST-All (Fasta) format M. avium subsp. paratuberculosis protein sequence to IEDB-AR. Nine-mer MHC class I T cell epitope prediction was performed using the artificial neural network (ANN) method as described previously (29, 35), and 15-mer MHC class II T cell epitope prediction was performed using the consensus method (38), a combination of the average relative binding (ARB) matrix method and the stabilization matrix alignment method (SMM_align).

3D structure template modeling for selected M. avium subsp. paratuberculosis proteins. The SWISS-MODEL Workspace (2) (http://swissmodel.expasy.org) and ElliPro (31) (http://tools.immuneepitope.org/tools) were used for three-dimensional (3D) structure template/scaffold modeling. The modeling results were compared for agreement between SWISS-MODEL Workspace and ElliPro. A template model was obtained for each M. avium subsp. paratuberculosis protein by submitting FASTA format protein sequences and modeling them.

Conformational B cell epitope prediction. ElliPro was used to predict conformational B cell epitopes from M. avium subsp. paratuberculosis proteins, using a modeled 3D structure template for each protein. The 3D structure template was selected based on best-fitting scaffold criteria. The best-fitting template was defined as having a long alignment length, a large number of identities, and a small number of gaps. Prediction at a minimum level of 0.5 was considered the most stringent, with a level of 1.0 as the most stringent, and the maximum distance for residue clustering was defined as 6.0 Å. Selection of M. avium subsp. paratuberculosis proteins as B cell epitope candidates was based on the number of epitopes predicted with a minimum cutoff score of 0.8. Each predicted epitope formed by a group of amino acid residues was viewed with a Java viewer for chemical structures in 3D (Jmol) to illustrate its 3D structure and relative orientation to the protein molecule. The Jmol viewer was also used to confirm the positions of residues of each predicted epitope.

Prediction of protein secretion. Prediction of the secretory or nonsecretory nature of stress-regulated M. avium subsp. paratuberculosis proteins was performed. Protein secretion was categorized as classical or nonclassical. Prediction of classical secretion and detection of the presence of signal sequences were performed using SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP) as described previously (6). SecretomeP 2.0 (http://www.cbs.dtu.dk/services/SecretomeP) was used to predict nonclassical secretion as described previously (5). Both types of prediction were performed at a default setting score of 0.5. The proteins with predicted scores of 0.5 and above were considered to be secreted.

RESULTS

Upregulated M. avium subsp. paratuberculosis proteins exposed to stress conditions. Twenty-five proteins from the S and C strains of M. avium subsp. paratuberculosis which had not been evaluated for immunogenicity and had an upregulated proteomic response to different stress conditions were identified (Table 1). Each protein identified was upregulated under at least one stress condition.

Sequence identity mapping of stress-regulated M. avium subsp. paratuberculosis proteins. Protein sequence identity analysis at the NCBI GenBank database showed that the amino acid sequences of all 25 proteins were 100% identical to those in M. avium subsp. paratuberculosis K-10, with an equal or lesser identity to closely related taxa, e.g., Mycobacterium avium subsp. hominisuis 104 and Mycobacterium avium subsp. avium ATCC 25291 (Table 1). Eighteen M. avium subsp. paratuberculosis proteins were 100% identical only to those in M. avium subsp. paratuberculosis K-10. Seven proteins had 100% sequence identity with either M. avium subsp. hominisuis 104, M. avium subsp. avium, or both. Thus, the 18 proteins that were 100% identical only to proteins in M. avium subsp. paratuberculosis K-10 were selected for epitope prediction. The MAP3974c protein revealed 39% and 99% sequence identity with the hypothetical proteins MavA2_17319 and MavA2_20904 of Mycobacterium avium subsp. avium ATCC 25291, respectively, indicating comparison with two different proteins in the database.

Predicted MHC class I T cell epitopes. Each protein was predicted to have a large number of low-affinity and a relatively small number of intermediate- and high-affinity epitopes (Table 2). The number of predicted epitopes was lowest in the high-affinity category. Four proteins (MAP1297, MAP1653, MAP4340, and MAP2487c) failed to identify with any epitopes in the high-affinity category. The remaining 14 proteins were consistently predicted to have high-affinity epitopes in addition to a large number of epitopes of intermediate affinity. The MHC class I T cell epitopes with high-affinity binding are presented in Table 3. Five proteins (MAP2698c, MAP3567, MAP3561c, MAP3523c, and MAP2312c) were found to carry the largest numbers of MHC class I T cell epitopes of intermediate- and high-affinity binding and were selected as potential candidates. Details of the epitopes of these five proteins are shown in Table 3. Intermediate- and high-affinity nine-mer MHC class I T cell epitopes for all 18 M. avium subsp. paratuberculosis proteins are presented in Table S1 in the supplemental material.

Predicted MHC class II T cell epitopes. Thirteen proteins were predicted to have at least one MHC class II T cell epitope of intermediate-affinity binding. Five proteins (MAP1589c, MAP4340, MAP1017c, MAP3974c, and MAP3268) did not reveal any epitopes with intermediate- or high-affinity binding. The MAP3523c protein showed the largest number of epitopes in the intermediate-affinity category. The number of predicted MHC class II T cell epitopes is shown in Table 2. Only one protein (MAP1168c) was found to have epitopes with high-affinity binding in addition to a large number of epitopes of low- and intermediate-affinity binding. High-affinity MHC class II T cell epitopes of the MAP1168c protein are shown in Table 3. Three proteins

856 cvi.asm.org Clinical and Vaccine Immunology

Gurung et al.
TABLE 1 Sequence identity mapping of proteins that were upregulated in response to stress conditions

Protein	Mass (kDa)	M. avium subp. paratuberculosis strain(s)	Regulation in response to in vitro stress conditions	Sequence identity (%)
MAP0187c	23.0	S	↑	M. avium subp. hominisssuis 104
MAP0540	17.6	C	↑	M. avium subp. avium ATCC 25291
MAP1017c	27.8	C	↑	M. avium subp. hominisssuis 104
MAP1168c	31.9	C	↑	M. avium subp. hominisssuis 104
MAP1297	25.3	S	↑	M. avium subp. hominisssuis 104
MAP1560	15.2	C	↑	M. avium subp. hominisssuis 104
MAP1588c	18.8	C	↑	M. avium subp. hominisssuis 104
MAP1589c	21.6	C, S	↑↑∪	
M. avium subsp. paratuberculosis proteins revealed at least one epitope at the same cutoff score. A comparison of the numbers of epitopes and the cutoff scores illustrated the effect of stringent prediction parameters. The effect indicated that the stringent prediction identified fewer epitopes with higher scores and vice versa. With the default prediction parameter, all proteins with the largest numbers of MHC class I T cell epitopes; b, proteins with the largest numbers of MHC class II T cell epitopes; c, proteins with the largest numbers of conformational B cell epitopes.

Table 2: Numbers of conformational B cell and T cell (MHC class I and II) epitopes

Protein^a	PDB ID^b	No. of B cell epitopes^c at prediction cutoff score	No. of T cell epitopes^c	MHC class I T cell epitopes	MHC class II T cell epitopes							
		0.5	0.6	0.7	0.8	0.9	L	H	L	H	L	H
MAP1297	2VEP	5	7	9	3	0	234	1	225	4		
MAP1653	1Y25	4	4	2	2	2	155	1	138	12		
MAP3393c	1O4V	5	4	4	3	2	158	6	149	10		
MAP2872c	2ZAT	4	9	5	9	5	241	7	231	13		
MAP1589sc	2BXM	8	7	6	3	3	183	3	1	181		
MAP4340	1NW2	8	7	2	2	1	106	3	1	103		
MAP2698c	1ZAO	7	7	7	4	3	249	9	256	5		
MAP1168c	1EZW	9	7	6	4	2	288	7	267	20		
MAP3567^c	1ZBQ	10	12	9	5	5	268	7	268	5		
MAP1017c	3H8I	7	7	6	4	3	249	4	2	249		
MAP2487c	1YLK	5	6	4	2	2	148	6	140	9		
MAP3268	1SHS	4	4	5	4	2	138	1	133	1		
MAP1698c	1SHS	8	8	6	4	2	133	4	1	131		
MAP3651^{ac}	2PGO	10	10	10	10	6	381	10	381	10		
MAP3523^{abc}	2Q27	9	7	9	9	5	570	13	539	41		
MAP0187c	1GN3	6	7	4	2	1	188	8	175	18		
MAP2312c	1JQI	6	8	7	8	5	364	11	373	1		
MAP3974c												

^a Proteins are marked as follows: a, proteins with the largest numbers of MHC class I T cell epitopes; b, proteins with the largest numbers of MHC class II T cell epitopes; c, proteins with the largest numbers of conformational B cell epitopes.

^b PDB ID of the 3D structural template for each M. avium subsp. paratuberculosis protein. A detailed description of the source of each template is presented in Table S4 in the supplemental material.

^c L, low-affinity binding; I, intermediate-affinity binding; H, high-affinity binding.

Table 3: High-affinity (IC₅₀ of <50 nM) MHC class I and II T cell epitopes

Protein	Epitope sequence (positions)
MAP2696c	RPYANALTL (4–12)
	HRELVEHFI (83–91)
	IALRNYLVV (112–120)
	LEEPILSGL (173–181)
	EEPILSGLV (174–182)
	HELFFSNLV (192–200)
	LEYTRDTEI (204–212)
	TENDLRQVI (246–254)
	DEPALKPVL (265–273)
MAP3567	RAVNYDYSV (65–73)
	VGLINSLAL (172–180)
	KYNIHANAI (184–192)
	NPNASAVEV (230–238)
MAP3651c	SPVSPMCYTV (81–89)
	VSPMCYVRV (83–91)
	CYTVRYTEQL (87–95)
	IEQMKRIGL (61–69)
	SNARRSLGL (178–186)
	MEAGMAKLF (336–344)
MAP3523c	NATTNCMPF (115–123)
	AYAQADNEI (247–255)
	SEFDSNQI (331–339)
MAP2312c	YGFMNEYPV (349–357)
	SYQAISFKI (285–293)
	NEEQKRWL (108–116)
	KEAAIAKMI (322–330)
	NEYVPVARHY (353–361)

M. avium subsp. paratuberculosis proteins were consistently predicted even with more stringent cutoffs of 0.5 to 0.9. However, the number of residues in each epitope was greatly reduced as the stringency of the prediction parameters was increased, and thus the size of the epitope became smaller. A list of conformational B cell epitopes for all 17 M. avium subsp. paratuberculosis proteins is shown in Table S4 in the supplemental material. Five M. avium subsp. paratuberculosis proteins (MAP2872c, MAP1589c, MAP3567, MAP1017c, MAP1698c, MAP3651c, MAP3523c, and MAP2312c) were identified as having relatively large numbers of conformational B cell epitopes that were consistently predicted even with more stringent cutoffs of 0.5 to 0.9. However, the number of residues in each epitope was greatly reduced as the stringency of the prediction parameters was increased, and thus the size of the epitope became smaller. A list of conformational B cell epitopes for all 17 M. avium subsp. paratuberculosis proteins is shown in Table S4 in the supplemental material. Five M. avium subsp. paratuberculosis proteins (MAP2872c, MAP1589c, MAP3567, MAP3651c, MAP3523c, and MAP2312c) were consistently predicted to have a large number of conformational B cell epitopes at a cutoff prediction score of 0.8 (Fig. 1 to 5). For the purpose of B cell immune response studies, these proteins would be selected. The epitopes of the MAP2872c protein selected as potential B cell candidates are shown in Fig. 1. The 3D images of the predicted epitopes are shown as ball-and-stick models (viewed with Jmol), which illustrate their spatial locations relative to the protein molecule. The predicted residues of the epitopes were identified from the complete length of the MAP2872c protein sequence. The residues that formed the epitopes were scattered over the surface of the protein molecule. The predicted epitopes had scores of between 0.816 and 0.921, as the minimum prediction cutoff score was set at 0.80. The predicted epitopes were of the conformational type. The details of epitopes and Jmol views of MAP3567, MAP3651c, MAP3523c, and MAP2312c are shown in Fig. 2 to 4.

Protein secretion

SignalP 3.0 identified a single protein (MAP2872c) as being secreted, with a score of 0.56, whereas all other protein sequences submitted had low scores suggesting the absence of a signal sequence. The MAP2872c protein was predicted to be secreted with a 33-amino-acid signal sequence at the N-terminal end and, most likely, with a cleavage site for peptidase I at positions 33 and 34, between alanine and asparagine residues, with the first residue of the mature protein being asparagine. The signal sequence with the cleavage site was MTSDLTLGTRTAITG ASRGGILAAIQQLAAAGA|NV. Prediction of nonclassical secretion showed SecP scores ranging from 0.028 to 0.300 for all 18 proteins. These values were below the cutoff score (0.50), indicating that none were secreted via a nonclassical secretory pathway.

In summary, from 18 proteins with 100% sequence identity to M. avium subsp. paratuberculosis proteins revealed at least one epitope at the same cutoff score. A comparison of the numbers of epitopes and the cutoff scores illustrated the effect of stringent prediction parameters. The effect indicated that the stringent prediction identified fewer epitopes with higher scores and vice versa. With the default prediction parameter, all proteins with the largest numbers of MHC class I T cell epitopes; b, proteins with the largest numbers of MHC class II T cell epitopes; c, proteins with the largest numbers of conformational B cell epitopes.
M. avium subsp. paratuberculosis K-10 that were upregulated under stress conditions, 8 were identified as potentially immunogenic based on the number of epitopes predicted from their protein sequence/structure. Three proteins (MAP0187, MAP1168c, and MAP2698c) were identified as having epitopes that could be potential candidates for cell-mediated immune responses, while MAP2872c was identified as a candidate protein for an antibody-mediated immune response. Four proteins (MAP3523c, MAP3651c, MAP2312c, and MAP3567) had large numbers of epitopes for both cell- and antibody-mediated immune responses. The MAP2872c protein was found to be secretory in nature, while the other 17 proteins were nonsecretory. The proteins identified as potential candidates for immunogenicity evaluation are shown in Table 5.

DISCUSSION

Knowledge of the interactions between MHC alleles, peptides, and host immune cells has immense immunological value for identifying immune epitopes and for the development of diagnostic assays or vaccines against pathogens. The information obtained from *in silico* analysis in this study may be used for evaluating *M. avium* subsp. *paratuberculosis* recombinant proteins and/or selected peptides in cattle and sheep to examine their potential for use in an effective vaccine. The findings of this study may be validated by evaluating identified proteins/peptides in gamma interferon (IFN-γ) and antibody assays.

Previous proteomic analyses identified a number of *M. avium* subsp. *paratuberculosis* proteins (MAP1297, MAP2872c, MAP3567, and MAP3651c [17], as well as MAP1168c [23]). However, none of these proteins were identified by *in silico* analysis for the purpose of assessing immunogenic potential, and only one of these proteins (MAP1297) was evaluated by antibody assay to confirm a reaction with sera obtained from sheep infected with *M. avium* subsp. *paratuberculosis*.

In the present study, these and other potential candidate *M. avium* subsp. *paratuberculosis* proteins which were identified as immunogenic based upon the results of epitope prediction were selected. Random selection of proteins has not proven to be an effective method of antigen characterization (20). Therefore, an additional step of *in silico* analysis was utilized to make the antigen characterization process more efficient.

The stress-regulated proteins from *M. avium* subsp. *paratuberculosis* K-10 and other closely related taxa showed 99 to 100% amino acid sequence identity, which is in agreement with findings from other studies (3, 33). T cell epitope prediction was performed based on the probability of MHC-peptide ligand formation and presentation to different T cell populations (35). MHC-peptide ligand formation is dependent on the generation of antigenic peptides in proteasomal and phagolysosomal complexes. The availability of MHC alleles for the generated peptides is also important for

TABLE 4 Overlapping MHC class I and II T cell epitopes

Protein	MHC class II T cell epitope	MHC class I T cell epitope
MAP1297	ALYAGRFTLPQALAA (226–240)	ALYAGRFTL (226–234)
MAP3393c	LPGVNSATPLPVG (75–89)	GMVSATPL (77–85)
MAP3567	KNYHANAIAPIAAAT (184–198)	KNYHANAI (184–192)
MAP3651c	DQKRAYLPRMASGEI (123–137)	LPRMASGEI (129–137)
MAP3523c	HPMRFYNALGAIRAV (393–407)	HPMRFYNAL (393–401)
MAP1168c	SELSAAPSFPVRVPG (139–153)	SELSAAPSF (139–147)
MAP0187c	WDALEPHISQIQIN (11–25)	DYALEPHI (12–20)
MAP2487c	YASSEFGLPMPPSK (14–28)	YASSEFGL (14–22)
		SFFEGLPM (16–24)
		EETGIKPPWAAEFA (107–121)

The underlined residues are the 9-mer MHC class I T cell epitopes overlapping the 15-mer MHC class II T cell epitopes, offset at either the N-terminal or C-terminal end.

FIG 1 Conformational B cell epitopes of MAP2872c (*fabG4_2*) predicted from the 3D structure template under PDB ID 2ZAT (a crystal structure of a mammalian reductase). In the ball-and-stick model, yellow balls are the residues of predicted epitopes (E1 to E5) and white sticks are the structures for nonepitope and core residues. Each epitope is shown with predicted residues (abbreviated amino acids) and residue positions (superscript numerals): E1, MTSLQ¹°; E2, A²²-GPQLAL²⁵-²⁷; E3, PAYGPLIEQDHARF¹°-¹⁵-¹⁷; E4, KQP4¹°-²⁴; D²⁴; and E5, LWKDHEDP¹⁶-²¹-²⁴-²⁵-²⁶-ALGR²⁵-²⁷-GTPS²²-²⁵-²⁶-²⁷.©
effective binding and presentation by antigen-presenting cells (APCs). This in silico analysis was performed using tools designed for mouse MHC alleles. Although there are several reports on antigen processing and presentation in a mouse MHC model (27) and on identification of immunogenic peptides (19, 42), this is the first study to investigate MHC binding of peptides by using an in silico model to identify epitopes for use in a cattle and sheep study. It is recognized that the bovine MHC profile in particular is more complex than the mouse MHC profile. However, MHC haplotype sequence homology within

FIG 2 Conformational B cell epitopes of MAP3567 predicted from the 3D structure template under PDB ID 1ZBQ (a crystal structure of human 17-beta-hydroxysteroid dehydrogenase type 4 in complex with NAD). In the ball-and-stick model, yellow balls are the residues of predicted epitopes (E1 to E5) and white sticks are the structures for nonpeptide and core residues. Each epitope is shown with predicted residues (abbreviated amino acids) and residue positions (superscript numerals): E1, QNAGVTYDKPPTVQDVAARWDEITDLSAA^{251–279}; E2, E¹⁰⁸-MF^{111–113}; E3, KLG^{185–187}; E4, LPKEV^{209–214}-AKL^{211–215}; and E5, DGT^{155–157}-HK^{158–160}-NFG^{158–160}.

FIG 3 Conformational B cell epitopes of MAP3651c (fadE2_2) predicted from the 3D structure template under PDB ID 2PGO (a crystal structure of acyl-CoA dehydrogenase from Geobacillus kaustophilus). In the ball-and-stick model, yellow balls are the residues of predicted epitopes (E1 to E10) and white sticks are the structures for nonpeptidpeptide and core residues. Each epitope is shown with predicted residues (abbreviated amino acids) and residue positions (superscript numerals): E1, RESVR^{16–20}; E2, A³⁹⁶-LVTRGGI^{399–405}; E3, YAAQRRESFGQITWQHQS^{186–206}; E4, LPDPDS^{160–167}; E5, TDPKA^{192–198}; E6, GGY^{351–353}-YSQEY^{363–369}; E7, V²-AQQVDV^{9–14}-WAQ^{21–23}; E8, G^{211–213}-GN^{236–237}; E9, MGANS^{1–5}; and E10, NDE^{25–27}.
the NCBI database revealed more than 80% identity between the MHC alleles of mice, sheep, and cows.

There was variation in the number of predicted epitopes among the different proteins. One reason for this may simply have been variation in the sizes of the proteins. The relatively large protein molecule MAP3523c, with a molecular mass of 62.3 kDa, showed a larger total number of epitopes than that for smaller proteins. However, with an increase in the stringency of the pre-

FIG 4 Conformational B cell epitopes of MAP3523c (oxcA) predicted from the 3D structure template under PDB ID 2Q27 (a crystal structure of oxalyl-CoA decarboxylase from *E. coli*). In the ball-and-stick model, yellow balls are the residues of predicted epitopes (E1 to E9) and white sticks are the structures for non-epitope and core residues. Each epitope is shown with predicted residues (abbreviated amino acids) and residue positions (superscript numerals): E1, MAGQ1–4; E2, YPHGHR5–11; E3, SHRMSATSAGPAPESAR12–30; E4, ASAAAPAVSAGA32–39; E5, PAPEAVDRLVLDARRP220–238; STGI261–264; AD295–296; DALAARPITVPA306–367; E571; E6, RGDEAPHGDPAPTV304–318; P367; E7, SP130–131; ALVDLRRGDY133–142; DI144–145; E8, LSARAR519–524; 1, 527; EAF350–532; H358; and E9, SAGKV378–322.

FIG 5 Conformational B cell epitopes of MAP2312c (fadE19) predicted from the 3D structure template under PDB ID 1JQI (a crystal structure of rat short-chain acyl-CoA dehydrogenase complexed with acetoacetyl-CoA). In the ball-and-stick model, yellow balls are the residues of predicted epitopes (E1 to E8) and white sticks are the structures for non-epitope and core residues. Each epitope is shown with predicted residues (abbreviated amino acids) and residue positions (superscript numerals): E1, ARSLGLS382–388; E2, YAKERQSGQPIGSQAIS372–391; E3, GGY347–349; FMNEY351–355; E4, AGTLPK7–12; QD15–16; E5, RLEDGE147–152; V154; N156; TPG198–200; SD223–224; R226; E229; E6, GTVGAD180–185; K187; G237; E7, MTT1–3; and E8, AGKP316–319.
TABLE 5 Candidate proteins identified for immune response studies

Protein	Gene encoding the protein or hypothetical protein	Type of epitope	Type of immune response
MAP2698c	desA2	MHC class I T cell and B cell	Cell mediated
MAP3567	Hypothetical protein	MHC class I T cell and B cell	Cell and antibody mediated
MAP2312c	fadE19	MHC class I T cell and B cell	Cell and antibody mediated
MAP1168c	Hypothetical protein	MHC class II T cell	Cell mediated
MAP3523c	oxaA	MHC class I and II T cell and B cell	Cell and antibody mediated
MAP0187c	sodA	MHC class II T cell	Cell mediated
MAP2872c	fabG5_2	B cell	Antibody mediated

a Secreted protein.

by the degree of sequence alignment, by sequence identity, and by the similarity of structural scaffolding between the target protein and the modeled template (12). Therefore, a template modeled with a longer range of sequence alignment and a higher percentage of sequence identity may have resulted in a more accurate epitope prediction. The majority of proteins in this study showed 40 to 90% sequence identity, which is in concurrence with findings from other studies where modeling was proved significantly accurate when sequence identity was ≥40% (37). Two proteins (MAP1698c and MAP3268) were modeled on the same 3D structure template due to their relatively high structural equivalence or unavailability of a more relevant template in the PDB library. BLASTp revealed 60% sequence identity between these two proteins.

The in silico epitope prediction in this study revealed several M. avium subsp. paratuberculosis proteins containing both B and T cell epitopes, and these proteins are potential candidates for the investigation of both cellular and humoral immune responses in an infected host. Our findings support those of a recent study which reported a combined antibody and IFN-γ response in M. avium subsp. paratuberculosis-infected sheep rather than a defined switch from a cell-mediated Th1 response to an antibody-mediated Th2 response (4). The coexistence of both B and T cell epitopes within several M. avium subsp. paratuberculosis proteins could be a reason for the development of such an immune response.

The majority of the proteins in this study were predicted to be nonsecretory in nature, suggesting that they are probably not secreted by M. avium subsp. paratuberculosis. Only one protein (MAP2872c) with oxidoreductase activity was identified as classically secreted by SignalP 3.0. Studies have identified several secreted M. avium subsp. paratuberculosis proteins in culture filtrates, but MAP2872c was not one of them (8), and its involvement in pathogenesis may be worth investigating.

SecretomeP predicted the highest score for MAP0187c but did not classify it as a non-classically secreted protein. Its homologue in M. tuberculosis was also identified as nonsecretory. However, M. avium subsp. paratuberculosis sod, with a manganese-binding cofactor, was found to be secreted into the culture supernatant without a signal sequence of its own and was translocated by the specific export machinery of mycobacteria (25). The copper- and zinc-cofactored superoxide dismutase encoded by the sodC gene from M. avium subsp. paratuberculosis was also found to be a secreted protein (9). The protein encoded by the same gene in Mycobacterium tuberculosis was found in the host cell cytoplasm, which suggested that the proteins encoded by sod genes are secretory (7, 16). However, neither tool (SignalP 3.0 or SecretomeP 2.0) predicted the MAP0187c protein to be a secretory protein, suggesting that the default prediction threshold of 0.5 in these tools may be too stringent.

The selection of proteins was based on three main criteria: an upregulated response to physiological stress similar to the case with dormancy, a large number of predicted epitopes, and 100% sequence identity to M. avium subsp. paratuberculosis K-10. However, due to the high levels of genetic similarity of the M. avium subsp. paratuberculosis genome and those of other mycobacteria, selection of candidate proteins based only on 100% identity to M. avium subsp. paratuberculosis K-10 was difficult and may not be accurate, and species excluded due to 1 to 2% differences in genetic composition may not actually be different. Therefore, to
increase specificity, most immunological assays for detection of *M. avium* subsp. *paratuberculosis* infection involve a step dedicated to eliminating cross-reactions encountered as a result of such genetic similarity.

The *in silico* analysis in this study led to identification of eight *M. avium* subsp. *paratuberculosis* proteins as potential immunogens, based on the presence of relatively large numbers of B and T cell epitopes in their amino acid sequences. T cell epitope prediction was performed on a recently created data set in IEDB-AR, and conformational B cell epitope prediction was performed to overcome the limitations of predicting immunogenicity based on linear epitopes. These proteins may be tested further for their immunoreactivity in sheep or cattle to support the *in silico* findings. Immunogenicity testing of these proteins may prove their value as diagnostic antigens. The performance of prediction tools depends on the quality of the databases, which are dynamic and evolving as new information is submitted. Therefore, it is likely that epitope prediction results obtained for the same set of proteins at later time points may vary.

ACKNOWLEDGMENTS

This work was supported by Meat and Livestock Australia and by the Cattle Council of Australia, Sheepmeat Council of Australia, and Wool-Producers Australia through Animal Health Australia. The first author of this work was awarded an Endeavor Postgraduate Award by the Department of Education, Employment and Workplace Relations (DEEWR), Australia.

We thank Julia Ponomarenko, the author of “ElliPro: a New Structure-Based Tool for the Prediction of Antibody Epitopes,” at San Diego Supercomputer Center, University of California, San Diego, CA, for her guidance in using the ElliPro tool to predict conformational B cell epitopes.

REFERENCES

1. Amigorena S, Savina A. 2010. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr. Opin. Immunol. 22:109–117.
2. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201.
3. Bannantine JP, Bacchler E, Zhang Q, Li L, Kapur V. 2002. Genome scale comparison of Mycobacterium avium subsp. paratuberculosis with *Mycobacterium avium* subsp. *avium* reveals potential diagnostic sequences. J. Clin. Microbiol. 40:1303–1310.
4. Begg DJ, et al. 2011. Does a Th1 over Th2 dominancy really exist in the early stages of *Mycobacterium avium* subsp. *paratuberculosis* infections? Immunobiology 216:840–846.
5. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. 2004. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17:349–356.
6. Bendtsen JD, Nielsen H, Von Heijne G, Brunak S. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340:783–795.
7. Braunstein M, Espinoza BJ, Chan J, Belisle JT, Jacobs WR, Jr. 2003. SecA2 functions in the secretion of superoxide dismutase A in and in the virulence of *Mycobacterium tuberculosis*. Mol. Microbiol. 48:453–464.
8. Cho D, Sung N, Collins MT. 2006. Identification of proteins of potential diagnostic value for bovine paratuberculosis. Proteomics 6:5785–5794.
9. Dupont C, Murray A. 2001. Identification, cloning and expression of sodC from an alkaline phosphatase gene fusion library of *Mycobacterium avium* subsp. *paratuberculosis*. Microbios 106:7–19.
10. Ehr T, et al. 1997. A novel antioxidant gene from *Mycobacterium tuberculosis*. J. Exp. Med. 186:1885–1896.
11. Guerfali EZ, et al. 2009. An in silico immunological approach for prediction of CD8+ T cell epitopes of *Leishmania major* proteins in susceptible BALB/c and resistant C57BL/6 murine models of infection. Infect. Genet. Evol. 9:344–350.
12. Gues N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723.
13. Gumber S, Taylor DL, Marsh IB, Whittington RJ. 2009. Growth pattern and partial proteome of *Mycobacterium avium* subsp. *paratuberculosis* during the stress response to hypoxia and nutrient starvation. Vet. Microbiol. 133:344–357.
14. Gumber S, Taylor DL, Whittington RJ. 2009. Evaluation of the immunogenicity of recombinant stress-associated proteins during *Mycobacterium avium* subsp. *paratuberculosis* infection: implications for pathogenesis and diagnosis. Vet. Microbiol. 137:290–296.
15. Gumber S, Whittington RJ. 2009. Analysis of the growth pattern, survival and proteome of *Mycobacterium avium* subsp. *paratuberculosis* following exposure to heat. Vet. Microbiol. 136:82–90.
16. Harth G, Horwitz MA. 1999. Export of recombinant *Mycobacterium tuberculosis* superoxide dismutase is dependent upon both information in the protein and mycobacterial export machinery: a model for studying export of leaderless proteins by pathogenic mycobacteria. J. Biol. Chem. 274:4281–4292.
17. Hughes V, et al. 2008. Immunogenicity of proteome-determined *Mycobacterium avium* subsp. *paratuberculosis*-specific proteins in sheep with paratuberculosis. Clin. Vaccine Immunol. 15:1824–1833.
18. Ikeuchi N, et al. 2010. Efficient cross-presentation of soluble exogenous antigens introduced into dendritic cells using a weak-alkaline phosphatase. Biochem. Biophys. Res. Commun. 392:217–222.
19. Jones GJ, Baguini F, Hewinson RG, Vordermeier HM. 2011. The use of binding-prediction models to identify *M. bovis*-specific antigenic peptides for screening assays in bovine tuberculosis. Vet. Immunol. Immunopathol. 141:239–245.
20. Kawaji S, Gumber S, Whittington RJ. 2012. Evaluation of the immunogenicity of *Mycobacterium avium* subsp. *paratuberculosis* (MAP) stress-associated recombinant proteins. Vet. Microbiol. 155:298–309. doi:10.1016/j.vetmic.2011.08.021.
21. Kawaji S, Zhong L, Whittington RJ. 2010. Partial proteome of *Mycobacterium avium* subsp. *paratuberculosis* under oxidative and nitrosative stress. Vet. Microbiol. 145:252–264.
22. Kim KK, Kim R, Kim SH. 1998. Crystal structure of a small heat-shock protein. Nature 394:595–599.
23. Leroy B, et al. 2007. Antigen discovery: a postgenomic approach to paratuberculosis diagnosis. Proteomics 7:1164–1176.
24. Li L, et al. 2005. The complete genome sequence of *Mycobacterium avium* subsp. *paratuberculosis*. Proc. Natl. Acad. Sci. U. S. A. 102:12344–12349.
25. Liu XF, et al. 2001. Identification of a secreted superoxide dismutase in *Mycobacterium avium* subsp. *paratuberculosis*. FEMS Microbiol. Lett. 202:225–230.
26. Mackintosh CG, De Lisle GW, Collins DM, Griffin JFT. 2004. Mycobacterial diseases of deer. N. Z. Vet. J. 52:163–174.
27. Men Y, et al. 1999. MHC class I- and class II-restricted processing and presentation of microencapsulated antigens. Vaccine 17:1047–1056.
28. Mustafa AS, Shaban FA. 2006. ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of *Mycobacterium tuberculosis*. Tuberculosis 86:115–124.
29. Nielsen M, et al. 2003. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12:1007–1017.
30. Pedone E, Cannio R, Saviano M, Rossi M, Bartolucci S. 1999. Prediction and experimental testing of *Bacillus acidocaldarius* thermoexotoxins. Biochem. J. 339:309–317.
31. Ponomarenko J, et al. 2008. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514. doi:10.1186/1471-2105-9-514.
32. Sardinas G, et al. 2009. Assessment of vaccine potential of the *Nis seria*-specific protein NMB0938. Vaccine 27:6910–6917.
33. Saxegaard F, Baess I. 1988. Relationship between *Mycobacterium avium*, *Mycobacterium paratuberculosis* and ‘wood pigeon mycobacteria’. Determinations by DNA-DNA hybridization. APHIS 96:37–42.
34. Stevenson K. 2010. Diagnosis of Johne’s disease: current limitations and prospects. Cattle Pract. 18:104–109.
35. Tenzer S, et al. 2005. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell. Mol. Life Sci. 62:1025–1037.
36. Vani J, Shaila MS, Chandra NR, Nayak R. 2006. A combined immuno-

June 2012 Volume 19 Number 6 cvlasm.org 863
informatics and structure-based modeling approach for prediction of T cell epitopes of secretory proteins of Mycobacterium tuberculosis. Microbes Infect. 8:738–746.

37. Vijayasri S, Agrawal S. 2005. Domain-based homology modeling and mapping of the conformational epitopes of envelope glycoprotein of West Nile virus. J. Mol. Model. 11:248–255.

38. Wang P, et al. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4:e1000048. doi:10.1371/journal.pcbi.1000048.

39. Werther T, et al. 2006. New insights into structure-function relationships of oxalyl CoA decarboxylase from Escherichia coli. FEBS J. 277: 2628–2640.

40. Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddycliff LA. 2004. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl. Environ. Microbiol. 70:2989–3004.

41. Zahrt TC, Deretic V. 2002. Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid. Redox Signal. 4:141–159.

42. Zhao BP, et al. 2011. In silico prediction of binding of promiscuous peptides to multiple MHC class-II molecules identifies the Th1 cell epitopes from secreted and transmembrane proteins of Schistosoma japonicum in BALB/c mice. Microbes Infect. 13:709–719.

43. Zhu X, et al. 2008. Transcriptional analysis of diverse strains of Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages. Microbes Infect. 10:1274–1282.