Light and electromagnetic waves teaching in engineering education

Roman Ya. Kezerashvili
The Graduate School and University Center, The City University of New York, New York, NY, USA
E-mail: rkezerashvili@citytech.cuny.edu

Abstract Suggestions are made for physics laboratory exercises and the physics laboratory curricula are discussed for engineering majors where the properties of light and electromagnetic waves are studied in parallel. It is shown that there are important educational advantages of an experimental study of the properties of microwaves as an example of electromagnetic waves simultaneously with the properties of light: on the one hand, it enables visualisation of the properties of microwaves, and on the other, it provides evidence that light is an electromagnetic wave.

Keywords experiments with light and microwaves; Michelson interferometry; teaching

Engineering is the application of mathematics and science to the development of useful products or technologies. In other words, engineering is turning ideas into reality. Physics is the study of the physical world and physics is an indispensable component in engineering curricula because technology is based on our knowledge of physical laws. Physics remains the leader of the modern natural sciences, the theoretical basis of modern engineering and, as no other science does, promotes the development of creative and critical thinking in future engineers. Effective training in physics also provides a solid base for lifelong learning.

Research in education in different countries shows that students at college and even university level continue to hold fundamental misunderstandings about the world around them. Science learning remains within the classroom context and just a small percentage of students are able to use the knowledge gained at school for solving various problems of the larger physical world.1,2

In most of the courses students hear lectures without strong connections to their everyday experience.1 Students usually do not have the opportunity to form their own ideas; they rarely get a chance to work in a way in which they are engaged in discovery and building and testing models to explain the world around them, as scientists do.

During the past four years I began to include some ‘simple’ conceptual questions in the exams of the physics courses I taught. The results were initially quite surprising: most students performed very poorly on the conceptual questions which most physics tutors would consider almost ‘too easy’, while they sometimes solved ‘difficult’ multiple-step quantitative problems better. Some of the ‘top’ students with high scores on the quantitative problems had very low scores on the conceptual part.3 One of the questions which I asked is “What are the similarities and differences between electromagnetic waves and light? The best short answer I had was ‘Light is an electromagnetic wave’, without any deeper explanation of the properties and
phenomena. I had a lot of speculation about light but only a few students mentioned that light is the part of the electromagnetic spectrum the human eye can detect and they listed the main properties of electromagnetic waves. This motivated me to revise my physics laboratory curricula and develop physics laboratory exercises where the properties of light and electromagnetic waves are studied in parallel. Indeed, one of the places where active and collaborative learning can be realised is the physics laboratory, where students become active participants in the learning process.4–7

When Maxwell showed that electric and magnetic fields can propagate through space according to the classical wave equation and found the equation for the speed of propagation of electromagnetic field to be:

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}},$$ \hspace{1cm} (1)

where ε_0 and μ_0 are the electric permittivity and magnetic permeability of free space, he evaluated the numerical value for the speed of these electromagnetic waves by substituting the numerical values for ε_0 and μ_0 and obtained the remarkable result: $c = 3 \times 10^8$ m/s.8 Maxwell recognised that this result is very close to the experimentally measured speed of light and reached the great conceptual conclusion that light is electromagnetic waves. Of course, this conclusion does not surprise physicists today. Equation (1) is one of the great equations in physics, stemming as it does from Maxwell’s electromagnetic theory. This equation unifies three seemingly disparate fields of physics: electricity, magnetism and optics.

Since electromagnetic wave concepts are usually unfamiliar, abstract, and difficult to visualise, conceptual analogies from familiar light phenomena are invaluable for teaching. Such analogies emphasise an understanding of the continuity of electromagnetic waves and support the spiral development of student understanding. We found that the approach of teaching the topics of electromagnetic waves and optics in parallel in the physics laboratory is very helpful and useful.

The following experiments can be easily designed and they provide a methodical introduction to electromagnetic theory using microwave radiation and light: the study of the inverse square law of the dependence of the intensity of radiation (microwave and light) on the distance; the law of reflection and refraction; investigation of the phenomenon of polarization and how a polariser can be used to alter the polarisation of microwave radiation and light; and studying interference by performing the double-slit experiment for microwave radiation and light. Finally, students measure the wavelength of laser light and microwave radiation using the corresponding versions of Michelson’s interferometer, and recognise that these two forms of radiation differ only in the wavelength or frequency.

To perform the above-mentioned experiments we are using a regular light source or He-Ne laser for optics, and a microwave transmitter and receiver for microwave electromagnetic radiation experiments. Today, for experiments with microwaves, PASCO9 as well as DAEDALON10 provide excellent sets of equipment. In our laboratory we use PASCO equipment. We are using the same design for light and
microwave experiments to demonstrate the similarity of measurements and the only
difference is that in the case of light experiments students can see the phenomena
and measure their physical properties and in the case of the microwaves they can
observe the same phenomena through the meter reading of the intensity of the
microwave radiation.

The purpose of the present paper is to introduce laboratory curricula for the study
of the properties of light and microwaves in parallel as part of a general physics
laboratory course for engineering majors, especially for electrical engineering and
telecommunications students. The article is organised as follows: the next section
introduces the experiments for the inverse square law of the dependence of the
intensity of light and microwave radiation on the distance from a source of electro-

magnetic waves. In the subsequent section we analyse and discuss the reflection and
refraction experiments for microwaves and light, followed by two sections in which
the double-slit interference and polarisation experiments for light and microwaves
are discussed, respectively. Interferometer measurements for the wavelength of light
and microwaves are then presented, and conclusions then follow in the final
section.

Inverse square law for light and microwave radiation

The intensity received from the point-like source of an electromagnetic wave is
inversely proportional to the square of the distance from the wave source and an
inverse square law can be written in the form

\[I = \frac{L}{4\pi r^2}, \]

where \(L \) is the luminosity of the source. To observe this phenomenon we designed
an experiment where a photoelectric photometer has been used to measure the
intensity of light in increments of distance from the light source. In the case where
the students perform the measurements for the intensity of electromagnetic waves
by using the microwave transmitter and receiver, they gradually increase the distance
between the transmitter and receiver by moving the receiver. Students represent the
results of the measurements for the dependence of intensity on distance for light as
well as for microwaves in graphical form by plotting the relative intensity versus
the inverse square of the distance as shown in Figs 1(a) and (b). The analysis of
these graphs shows that intensities of light as well as invisible microwaves decrease
in inverse proportion to the square of the distance from the source.

Reflection and refraction of light and microwaves

There are two fundamental laws of geometric optics: the law of reflection and Snell’s
law – the law of refraction. Today’s laboratory class technology allows students to
verify these laws using a beam of light as well as a beam of monochromatic laser
light. Students can perform experiments for the reflection and refraction of light,
gradually changing the angle of incidence and measuring the angle of reflection or the angle of refraction and at the same time visually observing the propagation of the incident ray and reflected or refracted rays for each of the incident angles. By plotting the graph of dependence of the angle of reflection versus the angle of incidence they can find that the slope of this graph is unity and therefore, can conclude that the angle of incidence equals the angle of reflection. In the same way, by plotting a graph of the sine of the angle of incidence versus the sine of the angle of refraction, students see that there is a linear dependence and from the slope of the graph determine the index of refraction for the given medium. Fig. 2(a) represents an example of such dependence for the refraction of light in glass. We are suggesting studying reflection and refraction of microwaves in parallel with these optics experiments. The difference in the setting for these experiments is that in the case of light,
students actually see the reflected and the refracted rays, while, in the case of microwaves, the reflected and refracted electromagnetic waves are invisible and students determine the angle of reflection as well as the angle of refraction of microwaves by finding the maximum intensity for the reflected or refracted microwave radiation. Using a transmitter and receiver of microwaves and a metallic reflective plate and gradually increasing the angle of incidence, students can find the angle of refraction which corresponds to the maximum intensity of reflecting microwaves. In the case of refraction, the incident microwaves are refracted on a prism mould filled with styrene pellets. The angle of the refracted microwaves can be found by the maximum intensity meter reading of the refracted waves. By plotting the same graphs as in the case of light experiments for the angle of incidence versus the angle of reflection and for the sine of the angle of incidence versus the sine of the angle of refraction, students can verify the laws of reflection and refraction for the microwaves and justify that these are the same as for light. Fig. 2(b) presents the results for these kinds of measurements for the reflection of the microwaves.

Double-slit interference for light and microwaves

The other experiment in optics which is easy to visualise is double-slit interference of light. This is the standard set which is available on the market. By performing this experiment, students can see a clear interference pattern. Of course, there are many different experiments, which also demonstrate the interference of light and enable the visualisation of the interference concept for light. We are choosing the double-slit interference of light because a somewhat similar phenomenon occurs when microwaves pass through a two-slit aperture and can be easily set up and performed with microwaves. When incident microwaves from a transmitter radiate on a double-slit aperture, the intensity of the microwave beyond the aperture will vary depending on the angle of detection by a receiver. For two thin slits separated by a distance \(d \), the maxima of the intensity will be found at such angles that \(d \sin \theta = m\lambda \), where \(\theta \) is the angle of detection, \(\lambda \) is the wavelength of the incident radiation, and \(m \) is any integer. By gradually changing the angle by increments of 5° for the detection position of the receiver, the student measures the intensity of microwaves beyond the double-slit aperture. Fig. 3 presents an example of such measurements for two different runs. The solid curve represents the measurements when the receiver is positioned close to the double-slit aperture, while the dotted curve corresponds to the measurements when the distance between the receiver and double-slit is increased. To analyse the results of the experiment, for the given wavelength of microwave students calculate the angles at which they would expect the maxima and minima to occur and compare these with the locations of observed maxima and minima.

Polarisation phenomena for light and microwaves

The other laboratory activities which excite students and catch their attention deal with the observation of the polarisation of light. Two activities which are the easiest
to set up in the undergraduate college physics laboratory are polarisation by absorption and polarisation by reflection. As is well known when unpolarised light is incident on a polarising material, the transmitted light is linearly polarised in the direction parallel to the transmission axis of the polariser. When two polarizing materials are placed in succession in a beam of light, the first is called the polariser and the second the analyser; the amount of light transmitted by the analyser depends on the angle θ between its transmission axis and the direction of the axis of the polariser. The intensity of light transmitted by both polariser and analyser is given by Malus’s law

$$I = I_0 \cos^2 \theta,$$

where I_0 is the intensity of the light incident on the analyzer. The standard setting for this experiment requires the light source (regular light source for qualitative observation or laser for a quantitative observation), polariser and analyser to be placed in succession in a beam of light with a screen or photometer for measurement of the intensity of transmitted light. Students set up a polariser-analyser system and the laser light source and orient and align their polarisation axes. They then slowly rotate the analyser in either direction while observing the intensities of the light spot on the screen. Their observation shows that the intensity of the light changes. Afterwards, students attach the analyzer to the special component carrier of the angular translator connected to the photometer with the fiber probe and place it instead of the screen. A student starts at $\theta = 0$ and rotates the analyser by increasing the angle in 10° increments up to 180° and measures the intensity of transmitted light for the different angles of polarisation. The typical results of the measurements are presented in graphical form as shown in Fig. 4(a). Then students study the polarisation phenomenon for microwave radiation. The microwave radiation from the transmitter

$$Fig. 3 \text{ Interference pattern for microwaves.}$$
is already linearly polarised along the transmitter diode axis. Therefore, as the microwave propagates through space, its electric field remains aligned with the axis of the diode. Thus, if the transmitter diode was aligned vertically, the electric field of the transmitted wave would be vertically polarised. If the detector diode of the receiver is at an angle θ with respect to the transmitter diode, then the receiver will only detect the component of the incident electric field that was aligned along its axis. Students rotate the initially aligned receiver from 0° to 180° in increments of ten degrees and measure the intensities of the microwave radiation. By plotting the graph for the relative intensities versus the angle, students can observe the similarity with the polarisation of light. By comparing the data in Figs 4(a) and 4(b) and plotting the graph of the relative intensity versus $\cos^2 \theta$ as shown in Fig. 5, a student can conclude that the intensity of polarised light as well as polarised microwaves follows Malus’s law.

To better understand the mechanism of polarisation for the experiment with microwaves, a student places a grid of parallel conducting strips under different angles between the transmitter and aligned receiver and again measures the intensities for the different angular positions of the grid. Linearly polarised microwaves are sent through a grid of parallel conducting strips. We choose the two perpendicular directions to represent the linearly polarised incident beam to be parallel and perpendicular to the metallic strips. The polarised waves with electric field vector parallel to the conducting strips are absorbed by the strips. The oscillatory field parallel to the strips transfers energy to the electrons that can move along the strips; it is the polarisation direction perpendicular to the strips that is transmitted. So the metallic strip grid acts as a polariser, a device for producing polarised microwaves. The axis of a polariser is the direction parallel and antiparallel to the plane of polarisation of the transmitted waves. The axis of a polariser is not a unique line but simply a direction or a whole collection of lines oriented parallel to each other. Therefore, for the metallic strip grid polariser of microwaves, the axis of the polariser is a direction in the plane of the polariser perpendicular to the direction of the strips. Thus, the
experiments of polarisation of light and microwaves are complementary which helps students to understand and visualise the phenomenon and mechanism of polarisation.

Hence, on the one hand, students visualise the phenomenon of polarisation by observing the polarisation of light. They can observe that by changing the angle between the polariser and analyzer the brightness of the spot of light changes from maximum bright to dark when the angle is changing from 0° to 90°. On the other hand, polarisation of microwaves helps to visualise the mechanism of polarisation by observing that intensity changes depending on the angular position of the grid.

Interferometer measurements for wavelength of light and microwaves

In the interferometry technique we superpose (interfere) two or more electromagnetic waves, which creates an output wave different from the input waves. Because interference is a very general phenomenon with waves, interferometry can be applied to a wide variety of electromagnetic waves, including the optical spectrum and microwaves, and can be used for measurements of the wavelength of light as well as that of microwaves. The Michelson interferometer is the most common configuration for optical interferometry and can be very easily adapted for microwave interferometry. In many scientific and industrial uses of interferometers, a light source of a known wavelength is used to measure incredibly small displacements – about 10^{-6} m. However, if you know the distance of mirror movement, you can use the interferometer to measure the wavelength of a light source as well as a source of other electromagnetic waves. The aim of this experiment is to make the students familiar with the simplest type of interferometers and use the interferometer to measure the wavelength of a helium-neon laser light source and a microwave source.
The first part of the experiment is centered on giving the students a ‘feeling’ for the sensitivity of a Michelson interferometer and the different types of interference patterns which can be observed visually with the laser source. The Michelson interferometer produces interference fringes by splitting a beam of monochromatic laser light by a partially transparent reflector so that one beam strikes a fixed mirror and the other a movable mirror. When the reflected beams are brought back together, an interference pattern results. By measuring the distance d_m that the movable mirror is moved towards the beam-splitter and the corresponding number of fringes m, students are able to determine with high precision the wavelength of the laser light as

$$\lambda = \frac{2d_m}{m}. \quad (4)$$

The advantage of this part of the experiment is that the students visually see the interference pattern. This presents a way of directly understanding important concepts in wave optics. In the second part of this experiment students use the Michelson interferometer that is set up with a microwave transmitter, partial reflector, two metallic reflectors and receiver. Microwaves travel from the transmitter to the receiver over two different paths. On one path, the microwave passes directly through the partial reflector, reflects back to the first reflector, and then is reflected from the partial reflector into the receiver. On the other path, the microwave reflects from the partial reflector into the second reflector, and then back through the partial reflector into the receiver. While for the optical part of this experiment a student can visually observe these pathways, for microwaves the paths are invisible. Now by moving one of the reflectors the student changes the path length of one wave, thereby changing its phase at the receiver. While watching the meter, and slowly moving the reflector, students can observe relative maxima and minima of the meter deflections. By measuring the reflector’s displacement distances and corresponding numbers of maximum relative intensity, the wavelength of microwave radiation can be determined using the same eqn (4) as for visible laser light.

The other advantage of this experiment is that students learn and understand why Michelson’s interferometer has become a widely used instrument for measuring extremely small distances by using the wavelength of a known light source. Based on this experiment students understand that the resolution for measurements of distances depends on the wavelength of electromagnetic radiation and why an optical interferometer (an interferometer using visible light rather than microwaves) provides better resolution when measuring distance than does a microwave interferometer.

The detailed procedures of some of the experiments discussed in this article are presented in Refs 11 and 12. Some of the experiments are computer-based and some are performed in the traditional way. Because not every lab has computer access, computer-assisted experiments serve as supplements to the traditional experiments. This allows instructors to find the appropriate balance between traditional and computer-based experiments for teaching topics of light and electromagnetic waves in the physics laboratory.
Conclusion

Our ultimate goal is to improve engineering major students’ learning and motivation in physics courses by presenting the abstract material in the traditional curriculum through real-time experiments in a laboratory session. This approach assumes the experimental study of the properties of light and microwaves in parallel. One of the important educational advantages of the simultaneous study of electromagnetic waves and light is to show that light and electromagnetic radiation have the same properties so that the students can visualise the properties of the electromagnetic radiation through the observation of light propagation. In other words, the abstract invisible properties of microwaves are visualised via observing visible properties of light. On the other hand, the observation of the polarisation of microwaves helps to visualise and understand the mechanism of the polarisation of light. It is important to underline that all of this is real-time visualisation but not computer-based animations, simulations or interactive multimedia design cases. In our approach we suggested studying the properties of electromagnetic microwave radiation and light in parallel by performing the same laboratory experiments for light and microwaves to show that these two phenomena demonstrate the same properties and follow the same laws. By performing these experiments students become active participants of the learning process.

The other advantage in teaching light and microwaves in parallel is that students realise that for measuring the same properties of electromagnetic waves in a different range of the electromagnetic spectrum you should use different equipment which have different precision of measurements. In our approach, by analyzing data for the same phenomenon through two different methods of measurement, students gain a greater understanding of the concepts behind the experiments.

The visualisation of complex phenomena does not by itself reach our goal. We put this visualisation into a context of the same invisible phenomena and created a series of parallel activities that involve questions to motivate the students and investigations of practical devices.

Acknowledgement

This work is supported by US Department of Education under Grant P120A060052.

References

1 R. K. Thornton, ‘Changing the physics teaching laboratory: using technology and new approaches to learning to create an experimental environment for learning physics concepts’, in Proc. Europhysics Conf. on the Role of Experiment in Physics Education, Skofja Loka, Slovenia, 13–16 July 1992, (Ljubljana, 1993), pp. 12–31; L. C. Epstein, *Thinking Physics* (Insight Press, San Francisco, 1987); R. K. Thornton, ‘Learning physics concepts in the introductory course: Microcomputer-based Labs and Interactive Lecture Demonstrations’, in J. Wilson (Ed.), *Proc, Conf. on Intro Physics Course* (Wiley, New York, 1997), pp. 69–86.

2 G. Ippolitova, ‘Physics and professional teaching in technical universities’, in *Proc. Int. Conf. Engineering Education*, 6–10 August, 2001, Oslo, Norway. 6E5-12-6E5-14, pp. 12–14.
3 J. Bernhard, ‘Improving engineering physics teaching – learning from physics education research’, in P. Pacher and J. Pipek (Eds), Proc. PTEE 2000 Physics Teaching in Engineering Education, Budapest, 14–17 June 2000, pp 9–22.

4 R. K. Thornton, ‘Tools for scientific thinking – microcomputer-based laboratories for teaching physics’, Phys. Ed., 22 (1987), 230–238.

5 R. K. Thornton, ‘Tools for scientific thinking: Learning physical concepts with real-time laboratory measurement tools’, in E. F. Redish (Ed.), Proc. Conf. Computers in Phys Instruction (Addison Wesley, Reading, 1989), pp. 177–189.

6 D. R. Sokoloff, R. K. Thornton and P. W. Laws, Real-Time Physics, Active Learning Laboratories (Wiley, New York, 1998).

7 R. R. Hake, ‘Socratic pedagogy in the introductory physics lab’, The Physics Teacher, 30 (1992), 546.

8 J. C. Maxwell, Treatise on Electricity and Magnetism, Vol. 2 (Oxford University Press, Oxford, 1973).

9 PASCO Catalog, Physics – 2007, Science and Engineering Education. p. 285.

10 DAEDALON Experiments and Apparatus Catalog 2001, p. 66.

11 R. Ya. Kezerashvili, College Physics Laboratory Experiments. Electricity, Magnetism, Optics (Gurami Publishing, New York, 2003).

12 J. D. Wilson and C. Hernandez Hall, Physics Laboratory Experiments, 6th edn (Houghton Mifflin, Boston, 2005).