Editorial

Muscles Journal: The New Home of Muscle Followers

Guglielmo Duranti

Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università Degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy; guglielmo.duranti@uniroma4.it

In recent years, the number of scientific papers focused on the study of muscle and its physiopathology has grown significantly. This is not surprising, given that this tissue is fundamental for the well-being of the individual in many ways, for example, for posture, movement, and metabolism.

If we consider only the last twenty years, the increase in studies on this subject been even more marked.

Taking into consideration, for example, the PubMed index, the number of publications/years searched using the keyword “muscle” increased from 22,246 in 2001 to 49,921 in 2021.

It must be considered among this large number of publications, there are contributions from all disciplines applied to muscle, such as muscle anatomy; muscle biochemistry; muscle biology; muscle immunology; muscle pathology; muscle pharmacology; muscle physiology; and muscle toxicology etc. (Figure 1) [1–15].

Figure 1. Number of publications indexed in PubMed from 2001 to 2021 applying the keyword “muscle” and in combination with “anatomy”, “biochemistry”, “biology”, “immunology”, “pathology”, “pharmacology”, “physiology” and “toxicology”.
Considering that muscle diseases represent a comorbid conditions associated with a multitude of genetic and acquired pathologies, it is not strange to note a significant increase in publications if we consider “muscle disease”, “muscle pathology”, “muscle cachexia” and “muscle sarcopenia” (Figure 2) as searching keywords.

Recently, interest in some muscle-related topics has increased incredibly. Manuscripts with “muscle” and “sarcopenia” or “cachexia” as keywords have seen, respectively, an almost a ninety-fold and ten-fold increased amount of manuscripts/year with respect to twenty years ago. This fact clearly highlights the extent of the increase in attention in recent years of scientific research towards the well-being of muscle and its relapse into modern society.

“Muscle aging” is another topic that has seen an increase in publications of up to five-times in the last few years. Aging is a physiological event correlated with an increasingly elderly society, and this important aspect is particularly evident in several countries of the world [16].

Another growing topic is “muscle exercise”, which has seen manuscripts quadruple/year (Figure 2 and Table 1). This is a clear indication of how physical exercise is now considered fundamental for the well-being of the person, even in the context of prevention/treatment of various pathologies.

Furthermore, advances in research with the development of -omics and methods for the study of molecular mechanisms related to the physiopathology of muscle has given a notable impetus in publications; for example, in applied biology and molecular biology (Figures 1 and 2 and Table 1).

Following these considerations, the journal Muscles [17] was born from the need to have a reference magazine among MDPI collections for all researchers that could collect studies, research and new techniques applied to the physiopathology of muscle, even from different disciplines.
Table 1. Number of publications indexed in PubMed.

Keyword/s	Year 2001	Year 2021	Fold Increase
muscle	22,246	49,921	2.24
muscle aging	648	3012	4.65
muscle anatomy	10,487	10,686	1.02
muscle biochemistry	1954	2440	1.25
muscle biology	1174	4241	3.61
muscle cachexia	57	584	10.25
muscle disease	6032	16,088	2.67
muscle exercise	1693	7471	4.41
muscle immunology	1020	1703	1.67
muscle molecular biology	602	2302	3.82
muscle pathology	4910	9555	1.95
muscle pharmacology	8144	8729	1.07
muscle physiology	17,563	20,073	1.14
muscle sarcopenia	26	2390	91.92
muscle toxicology	179	675	3.77

With the Editorial Board, I welcome all researchers to *Muscles* and invite them to contribute with research papers, reviews or submit Special Issue proposals.

Muscles journal is now ready to be the new home for all muscle followers.

Conflicts of Interest: The author declares no conflict of interest.

References

1. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
2. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+aging&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
3. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+anatomy&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
4. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+biochemistry&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
5. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+biology&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
6. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+cachexia&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
7. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+disease&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
8. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+exercise&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
9. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+immunology&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
10. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+molecular+biochemistry&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
11. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+anatomy&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
12. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+pathology&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
13. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+pharmacology&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
14. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+physiology&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
15. PubMed Website. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=muscle+sarcopenia&filter=dates.2001%2F1%2F1-2022%2F1%2F31 (accessed on 28 February 2022).
16. United Nations Website. Available online: https://www.un.org/en/global-issues/ageing (accessed on 28 February 2022).
17. Muscles Home Page. Available online: https://www.mdpi.com/journal/muscles (accessed on 28 February 2022).