Effect of Level of Concentrate Feeding and Addition of Monensin on Blood Parameters of Awassi Lambs

Hayder F. H. Al-Shemary1 and Ali A. Saeed2

1Agriculture Directorate in Babylon, Babylon, Iraq.
2College of Agriculture-Al-Qasim Green University, Babylon, Iraq.

Email: storylove1990@yahoo.com

Abstract

This study was conducted to investigate the effect of level of concentrate feeding and addition of monensin on blood parameters. Sixteen Awassi lambs were used at 4-6 months of age and mean initial weight of 21.27 kg. Concentrate diet was offered at two levels (2.5 and 3% of body weight, BW) with or without the addition of monensin at a rate of 30 mg/kg DM. Ground wheat straw was offered \textit{ad libitum}. Results showed that increasing level of concentrate significantly increased (P<0.01) blood concentration of total protein (BTP) from 6.94 to 8.84 g.100 ml\(^{-1}\), urea nitrogen (BUN), and triglyceride (TG) from 15.54 to 18.23 and 22.66 to 25.12 mg.100 ml\(^{-1}\) respectively. The addition of monensin significantly increased (P<0.05) TP concentration from 7.61 to 8.17 g.100 ml\(^{-1}\), whereas, BUN concentration was decreased (P<0.01) from 18.15 to 15.62 mg.100 ml\(^{-1}\). All blood parameters were also affected (P<0.05) by the interaction between the level of concentrate and the addition of monensin. In the study of diurnal changes, blood parameters showed an expected response to the time of withdrawing blood samples from lambs.

Keyword: Monensin, Concentrate, Blood parameters.

1. Introduction

Protein supplements, feed additives such as medicinal plants or probiotics and monensin are very important materials that can improve growth rate, feed efficiency utilization, and carcass characteristics of Awassi lambs [1]. Additives, such as monensin were reported to influence blood constituents through remodel of ruminal microbial populations, which was reflected by changes in fermentation end products [2], i.e. the increase of propionic acid was associated with increased plasma glucose concentration, and increased ruminal molar proportion of butyrate was associated with raised plasma BHBA concentration. According to Stradiotti Júniör, et. al., [3], ionophores act on ruminal microbes and inhibit gram-negative species, these bacterial species are the main responsible for amino acid deamination and produce unwanted gases, such as methane and ammonia. The inhibition of these bacteria increases the production of propionate and the levels of blood glucose [4], [5] reported that monensin has the potential to increase the supply of glucogenic precursors, thereby increasing the hepatic synthesis of glucose and consequently improving energy balance. This improvement was associated with changes in some blood parameters such as insulin and growth hormone [6], blood urea and uric acid [7], total protein and blood sugar [8]. Therefore, this study aimed to evaluate the effect of introducing monensin in concentrate diet offered to lambs at low and high levels on blood parameters.

2. Material and Methods

This study was carried out at the animal field/Animal Production Department- College of Agriculture- Al-Qasim Green University from 28/11/2018 to 16/3/2019. The study included feeding Awassi lambs two levels of concentrate diet 2.5 and 3% of BW with or without the addition of monensin. Thus there will be 4 experimental treatments. A concentrate diet was prepared by mixing several ingredients including wheat bran, barley, yellow corn, and soybean meal. In addition to that, salt and minerals- vitamin mix was offered as well. The level of each ingredient was estimated to ensure that the concentrate diet contains ~12.5% CP and 1.34 g of rumen degradable nitrogen (RDN)/each mega joule of metabolizable energy (g RDN.MJ\(^{-1}\) of ME). The estimated content of RDN was ~1.64 g.100 g DM\(^{-1}\) and content of ME was about 1.23 MJ.100 g DM\(^{-1}\), then, the estimated ratio of RDN/ME was 1.34. The above estimations were performed according to the effective ruminal degradability of protein fraction in the ingredients used in the concentrate diet as mentioned in table

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd.
1. Monensin as 10% monensin sodium was added at level of 30 mg.kg DM⁻¹. The chemical composition of the concentrate diet, ingredients, and wheat straw is shown in table 1.

Sixteen Awassi male lambs were used in this study. Lambs were bought from the local market with an initial average weight (21.275 ± 2.56 kg) and age ranged (4-6 months). Lambs were randomly divided into four treatments, 4 lambs each and housed individually. Lambs were well adapted to individual cages and study conditions before the beginning of the study. Concentrate diets were offered gradually with two meals at 8 am and 4 pm.

In the last week of the study, blood samples were withdrawn from the Jugular vein from each lamb. Samples were transferred to sterile tubes containing anticoagulant before morning feeding (zero time), and after 3, and 6 hrs following determine BG, BTP, BUN, and BTG concentrations. Blood samples were centrifuged and separated serum was collected and stored at -20°C until analysis. Spectrophotometrically using SP-3000 UV-Visible Spectrophotometer and commercial ready-made solutions kit.

Data obtained were statistically analyzed according to factorial experiments (2 × 2) in a completely randomized design (CRD) to evaluate the effect of the main factors studied in the experiment. Statistical Analysis System. SAS [14] was used for that purpose.

3. Results and Discussion

3.1. Effect of level of concentrate feeding and the addition of monensin on blood parameters

The effect of concentrate levels and the addition of monensin on blood parameters are presented in table 2. Results revealed that increasing the level of concentrate from 2.5 to 5% of BW of the Awassi lambs’ diet had no significant effect on BG concentration (66.02 - 65.69 mg.100 ml⁻¹). Insignificant effect on BG concentrations (67.14 vs. 70.92 mg.100 ml⁻¹) was due to an increasing level of concentrate from 2 to 3% of BW in the lambs’ diet shown by Keady and Hanrahan [15].

A similar result was obtained by Vosooghi-poostindoz, et. al., [16] who observed that the BG concentration of lambs was not significantly affected (58.0 vs. 58.66 mg.100 ml⁻¹) by increasing concentrate level in the lamb diet. In another study, increasing the level of concentrate from 2.73 to 3.46 % of BW of the Awassi wethers diet had no significant effect on BG concentrations [17]. The insignificant effect of concentrate levels on blood glucose in a current study might be explained by the relatively small number of experimental lambs and insufficient statistical power of the experiment.

Results of a current study revealed that increasing level of concentrate from 2.5 to 3% of BW increased (P<0.01) BTP from 6.94 to 8.84 g.100 ml⁻¹, BUN from 15.54 to 18.23 mg.100 ml⁻¹, and BTG from 22.66 to 25.12 mg.100 ml⁻¹. Allam, et. al., [18] concluded that higher BTP concentration may have resulted from higher intake and digestion of protein.

In agreement with the result of the current study, Can et. al., [19] found that increasing the level of concentrate from 2.43 to 2.84% of BW in the lamb’s diet increased (P<0.05) BUN concentrations from 12.35 to 23.00 mg.100 ml⁻¹. Similarly, Vosooghi-poostindoz and his coworkers [16] showed an increase (P<0.05) in BUN concentrations from 12.3 to 16.3 mg.100 ml⁻¹ as a result of increasing level of concentrate from 1.89 to 2% of BW in the lambs.

Higher BUN concentration in the lambs fed high concentrate may be related to ruminal ammonia-N concentration. The findings of Azizi-Shotorkhoft, et. al., [17] have shown a positive correlation between BUN ruminal NH₃-N concentrations. The increased BUN concentrations can be explained largely by increased absorption of ruminal ammonia, resulting in greater quantities of ammonia being detoxified in the liver to form urea. Moreover, since urea is excreted in urine and milk, then urea-N in the blood will be associated with nitrogen use efficiency, its concentration is increased by increasing protein consumption and by increasing the decomposing protein in the rumen [20].

With regard to the effect of the concentrate level on BTG, Dosky [21] reported a similar result as that previously mentioned in the current study. Russell [22] attributed higher BTG concentration associated with higher concentrate level and to the higher content of soluble sugars, where there is a direct relationship between carbohydrates and fats often exist.

Regarding the effect of the addition of monensin at a rate of 30 mg.kg DM⁻¹ on blood parameters, results revealed that there was no significant effect on BG, 64.09 vs. 67.62 mg.100 ml⁻¹. A similar result was shown in another study in which Reis, et. al., [23] found that concentrations of BG were insignificantly influenced as a result of the addition of monensin at a rate of 33 mg.kg DM⁻¹ diets.

In concern with the insignificant effect of monensin on blood glucose observed in a current study, Duffield, et. al., [24] reported that this case is most likely a function of the response being small and generally requiring a larger sample size to effectively assess the glucose response. Though it was not significant, the increase in BG concentration from 64.09 to 67.62 mg.100 ml⁻¹ in a current study may support that attribution.

Results of a current study also revealed that BTP concentration was significantly (P<0.05) increased from 7.61 to 8.17 g.100 ml⁻¹ due to the addition of monensin. The positive effect of monensin supplementation on BTP was attributed to increased protein digestion post rumen through the effect of proteolytic enzymes and changes in the amino acid profile of feed portions due to increased microbial protein synthesis [25].
Regarding BUN, the results of a current study showed that the addition of monensin to Awassi lambs diet decreased (P<0.01) BUN concentration from 18.15 to 15.62 mg.100 ml⁻¹. Similar results were observed by Khoshadi, et. al. [26] who reported that the monensin additive at the levels of 0, 20, and 40 mg.kg DM⁻¹ to Zeal lambs diets, resulted in a significant decrease (P<0.05) in BUN concentration from 14.49 to 10.33 and 11.99 mg.100 ml⁻¹. A significant decrease (P<0.05) in BUN concentration from 54.7 to 44.2 mg.100 ml⁻¹ was also recorded by Asadi, et. al. [27] due to the inclusion of monensin into Farahani lamb's diets at a rate of 24 mg.kg DM⁻¹ respectively. Worth mentioning, the plasma urea-N concentration is related to the level of ammonia absorption from the rumen and/or the deamination of amino acids not deposited in the tissue [28]. Ding, et. al., [29] reported that the lower plasma urea-N concentration may be attributed to the role of monensin to promote the utilization and deposition of nitrogen in tissues.

Results in the current study revealed that the addition of monensin slightly increased BTG from 23.33 to 24.46 mg.100 ml⁻¹. Similar results were obtained by Ding, et. al., [29] who found that this parameter was not significantly affected by the inclusion of monensin at a rate of 38 mg.kg⁻¹ into lambs diet, 25.69 to 26.58 mg.100 ml⁻¹.

3.2. Effect of interaction between level of concentrate feeding and addition of monensin on some biochemical blood parameter

The effect of interaction between level of concentrate and addition of monensin on blood parameters is shown in table 3. Results revealed that higher (P<0.05) BG concentration was detected in blood samples withdrawn from lambs fed higher level of concentrate (3%) with the addition of monensin, whereas, lower was detected in blood samples withdrawn from those fed higher level of concentrate (3%) without the addition of monensin. This increment in BG concentration may be due to the effect of monensin to increase the supply of glycolic precursors, thereby increasing the hepatic synthesis of glucose and consequently improving energy balance, with a high concentrate diet [5].

Higher BTP (P<0.05) concentration was detected in blood samples withdrawn from lambs fed the high level of concentrate with the addition of monensin (9.38 g.100 ml⁻¹) as compared with other samples. However, though insignificant, higher BTP concentration was detected in blood samples withdrawn from lambs fed the high level of concentrate without the addition of monensin (8.51 g.100 ml⁻¹) as compared with BTP concentration detected those withdrawn from lambs fed the lower level of concentrate without or with the addition of monensin (6.91 and 6.96 g.100 ml⁻¹). Similar result was reported by Drong [30]. The increase in BTP associated with diets containing a high level of concentrate with the addition of monensin may be attributed to the lower CP degradability of these diets [31]. The positive effect of low degradable protein can be simply explained by the reverse relationship between the rate of CP degradability and amino acid flow to the duodenum [32].

Results also showed that BUN concentrations were significantly decreased (P<0.05) by the addition of monensin regardless to concentrate level. But higher (P<0.05) concentration was associated with a high level of concentrate offered without monensin (9.81 mg.100 ml⁻¹) as compared with other diets. Nevertheless lower (P<0.05) BUN concentration was detected in blood samples withdrawn from lambs fed low level of concentrate with the addition of monensin (15.59 mg.100 ml⁻¹) (Table 15). Similar results were obtained by Xu, et. al., [33] where BUN concentration was significantly decreased (P<0.05) as affected by the interaction effect level of concentrate and between the addition of monensin.

Results also revealed that BTG was significantly (P<0.05) affected by the above interaction, where, as expected higher values were observed in blood samples withdrawn from lambs fed a high level of concentrate with the addition of monensin, whereas, those offered diet with the low level of concentrate without the addition of monensin recorded the lower concentration, values were 25.52 and 21.93 mg.100 ml⁻¹ respectively. Similar results were reported by Taghipoor, et. al., [34]. This may be due to the role of monensin in enhancing digestion.

3.3. Diurnal changes in some blood parameters

Diurnal changes in blood parameters as affected by factors studied in a current study are shown in table 4. Results indicated that higher (P<0.01) BG concentration was recorded in the samples withdrawn from the lambs before morning meal as compared with those withdrawn after 3 and 6 hrs of feeding. The concentration of BG was decreased (P<0.01) after 3 hrs of feeding. Then the reduction in the samples withdrawn after 6 hrs of morning feeding attained an additional decrease, values of 70.34, 66.50, and 60.73 mg.100 ml⁻¹, respectively. [35], obtained similar results, with the highest concentration of glucose obtained in the samples withdrawn before feeding which was then decreased to the lowest concentration at 6 hrs after feeding. [36], reported that the variations in the gluconeogenesis rate and synthesis of both insulin and glucagon were probably results for these fluctuations of glycemia during the day.

Regarding the diurnal changes of BTP concentrations, a higher (P<0.01) value was detected in blood samples withdrawn 3 hrs after morning meal (10.83 g.100 ml⁻¹), [37], reported that the increase in the amount of protein that reaches the small intestine and the use of amino acid was associated with increased BTP concentration. BTP concentration was then decreased (P<0.01) in samples withdrawn after 6 hrs of feeding (5.99 g.100 ml⁻¹) to return slightly increase after that to reach 6.86 g.100 ml⁻¹.
Results showed that higher (P<0.01) BUN concentration was recorded in samples withdrawn from lambs at 3 hrs after feeding, values were 18.61 mg.100 ml⁻¹. Then, it was decreased (P<0.01) to 16.58 mg.100 ml⁻¹ in samples withdrawn after 6 hrs of feeding. This pattern of changes in BUN concentration may indicate a gradual increase in the utilization rate of urea-N in the rumen. High BUN concentrations in lambs resulted from the high N intake and digestibility might be associated with high dietary CP content [16]. Therefore, BUN concentration can be a useful indicator of protein status in animals.

Results also showed that the lower value (P<0.01) of BTG concentration was detected in the blood samples withdrawn after 3 hrs of feeding (20.55 mg.100 ml⁻¹), as compared with those withdrawn before and 6 hrs thereafter. BTG concentration was increased (P<0.01) to 28.65 mg.100 ml⁻¹ in samples of blood withdrawn 6 hrs after morning feeding (28.65 mg.100 ml⁻¹). This pattern of changes was expected since it reflects dietary fat digestion and energy utilization.

Table 1. Chemical composition of concentrate diet, its ingredients and wheat straw (%).

Ingredients	ME MJ.100g⁻¹							
	Ash	OM	CP	CF	EE	NFE		
Wheat bran	91.75	5.48	94.52	14.27	13.96	3.77	62.52	1.23
Yellow corn	91.18	2.22	97.78	9.27	4.2	3.51	80.80	1.37
Barley	91.78	5.65	94.35	10.16	6.71	1.99	75.49	1.27
Soybean meal	91.93	7.87	92.03	45.48	3.75	1.83	39.35	1.18
Urea	-	-	-	287.5	-	-	-	-
Concentrate	89.66	8.60	91.40	12.22	5.74	2.14	71.13	1.23**
Wheat straw	92.59	7.38	92.62	2.47	36.74	1.72	51.69	0.99**

* 46% nitrogen × 6.25

ME values were estimated according to [9] equation with subsequent conversion from MJ. kg DM⁻¹ to MJ. 100 g DM⁻¹ in accordance with chemical composition based on percentage determinations:

**ME (MJ. kg DM⁻¹) = 0.012 CP +0.031 EE+0.005 CF +0.014 NFE

NaCl and mineral-vitamin mix were added to concentrate at rate of 1% for each. Urea was added at rate of 0.62% to ensure existence of a standard ratio of 1.34 g RDN. MJ⁻¹ of ME [10]. Level of RDN was estimated according to previous studies in which the ruminal effective degradability of protein fraction in the different ingredients of concentrate diet had been determined as follows: 80 and 60% for barley and yellow corn respectively [11], 70% for soybean meal [12] and 67% for wheat bran [13].

Table 2. Main effect of level of concentrate feeding and addition of monensin on blood parameter (mean ± SE).

Blood parameter	Level of conc. % of BW	Monensin mg/kg conc.	P			
	2.5	3	0	30	Conc.	Mon.
BG	66.02	65.69	64.09	67.62	NS	NS
mg/100 ml	±1.66	±1.76	±1.73	±1.41		
BTP	6.94b	8.84a	7.61b	8.17a	**	*
g/100ml	±0.15	±0.25	±0.29	±0.48		
BUN mg/100 ml	15.54b	18.23a	18.15b	15.62	**	**
BTG	22.66b	25.12a	23.33	24.46		
mg/100 ml	±0.57	±0.26	±0.70	±0.49		NS

Means in the same row with different superscripts are significantly different

** (P<0.01) NS= Non significant

Table 3. Effect of interaction between level of concentrate feeding and addition of monensin on blood parameter (mean ± SE).

Level of conc. % of BW¹	2.5%	3%			
Addition of monensin, mg/kg conc.	0	30	0	30	P
BG, mg/100 ml	66.44ab	65.59ab	61.74bc	69.65a	*
	±2.84	±2.19	±1.53	±1.32	
BTP, g/1000 ml	6.91c	6.96c	8.31b	9.38a	*
	±0.24	±0.21	±0.15	±0.29	
BUN, mg/100 ml	16.50b	14.59a	19.81a	16.65b	*
	±0.41	±0.39	±0.63	±0.19	
BTG, mg/100 ml	21.93c	23.39bc	24.73ab	25.52a	*
	±0.95	±0.53	±0.35	±0.33	*

Means in the same row with different superscripts are significantly different , * (P<0.05) NS= Non significant.
Table 4. Effect of time of sampling on blood parameter (mean ± SE).

Blood parameter	Before feeding	After feeding, hrs	P
	0 time	3	6
BG, mg/100 ml	70.34±	66.50±	60.73±
	± 1.32	± 1.13	± 1.16
BTP, g/100 ml	6.86±	10.83±	5.99±
	± 0.35	± 0.27	± 0.30
BUN, mg/100 ml	15.44±	18.61±	16.58±
	± 0.50	± 0.65	± 0.47
BTG, mg/100 ml	22.50±	20.55±	28.65±
	± 0.55	± 0.53	± 0.35

Means in the same row with different superscripts are significantly different
** *(P<0.01)*

Conclusions

The results suggest that the addition of monensin brought about additional benefits as evidenced by higher blood total protein and lower urea nitrogen concentrations. These may reflect improved utilization of diet by lambs.

Acknowledgments

The authors wish to express their appreciation to Mr. Ahmad Al-Saady for his assistance in the determinations of blood parameters.

Reference

[1] Hassan, S. A. (2009). Effect of some medicinal plants supplementation on daily intake, live weight gain and carcass characteristics of Awassi lambs. Egyptian Journal of Nutrition and Feeds, 12 (1): 65-73.
[2] Juchem, S. O., F. A. P. Santos, H. Imaizumi, A. V. Pires and E. C. Arnabé (2004). Production and blood parameters of Holstein cows treated prepartum with sodium monensin or propylene glycol. Journal of Dairy Science, 87:680-689.
[3] Stradiotti Júnior, D., A. C. D. Queiroz, R. D. P. Lana, C. G. Pacheco, M. M. I. Camarcelli, E. Detmann and M. V. M. D. Oliveira (2004). Effect of the propolis on the in vitro fermentation of different feedstuffs by the technique of gas production. Brazilian Journal of Animal Science, 33 (4): 1093-1099.
[4] Silva, F. G., S. M. Yamamoto, E. M. Silva, M. A. Queiroz, L. A. Gordiano and M. A. Formiga (2015). Propolis extract and sodium monensin on ruminal fermentation and hematological parameters in sheep. Health and Animal Science, 37 (3): 273-280.
[5] Muñeyya, B., C. Sar, B. Santos, T. Kobayashi, R. Morikawa, K. Takaura, K. Umetsu, K. Kogawa, S. Kimura, K. Mizuki and H. J. Takahashi (2005). Comparing the effects of β1-4 galacto-oligosaccharides and L-cysteine to monensin on energy and nitrogen concentration in steers fed a very high concentrate diet. Animal Feed Science and Technology, 118 (1-2): 19-30.
[6] Al-Rafeem, S. A., Hassan, A. A. Al-Ani and A. A. Al-Sultan (1995). Plasma insulin concentration, growth and carcass characteristics in Awassi lambs fed dried date pulp. IPAJournal of Agricultural Research, 5 (2): 236-244.
[7] Hassan S. A. and S. M. N. Muhamad (2009). Effect of feeding urea treated and untreated barley straw with two levels of rumen undegradable nitrogen on some carcass characteristic of Karadi lambs. Altiquany Journal, 22 (1): 197-213.
[8] Hassan, S. A., A. A. Ahmed and M. F. Alwan (2008). Effect of Iraqi probiotic supplementation on growth rate, blood parameters and carcass characteristics of Awassi lambs. Egyptian Journal of Nutrition and Feed. 25 (8A): 420-431.
[9] MAFF (1975). Ministry of Agriculture, Fisheries and Food Department, of Agriculture and fisheries of Scotland. Energy allowances and feed systems for ruminants. Technical Bulletin, 33.
[10] ARC (1984). The nutrient requirements of ruminant livestock. Commonwealth Agricultural Bureau, Slough. UK.
[11] Humady, D. T. (1988). Digestion and utilization of rumen undegradable protein by sheep and goats (Doctoral dissertation, MSc. Thesis, University of Baghdad).
[12] Abdullah, N. S. (1988). Effect of roughage to concentrate ratio on the response of Awassi lambs to a supplement of dietary rumen undegradable protein. MSc. Thesis, University of Baghdad.
[13] Paya, H., A. Taghiizadeh, H. Janamohamadi and G. A. Moghadam (2008). Ruminal dry matter and crude protein degradability of some tropical (Iranian) feeds used in ruminant diets estimated using the in situ and in vitro techniques. Research Journal of Biological Science, 3 (7): 720-725.
[14] SAS (2010). SAS/STAT User’s Guide for Personal Computers. Release 6.12. SAS. Institute Inc., Cary, NC, USA.
[15] Keady, T. W. J. and J. P. Hanrahan (2015). Effects of shearing, forage type and feed value, concentrate feed level, and protein concentration on the performance of housed finishing lambs. Journal of Animal Science, 93 (1): 306-318.
[16] Vosooghi-Poostindoz, V., A. R. Foroughi, A. Delkhorshian, M. H. Ghaifari, R. Vakili, and A. K. Soleimani (2014). Effects of different levels of protein with or without probiotics on growth performance and blood metabolite responses during pre-and post-weaning phases in male Kurdi lambs. Small Ruminant Research, 117 (1): 1-9
[17] Azizi-Shotorkhhoft, A., A. Sharifi, D. Mirmohammadi, H. Baluch-Gharaei, and J. Rezaei (2016). Effects of feeding different levels of corn steep liquor on the performance of fattening lambs. Journal of Animal Physiology and Animal Nutrition, 100 (1): 109-117.

[18] Allam, M. S., H. M. El-Shaer, K. M. Youssef, M. A. Ali and S. Y. Abo Bakr (2009). Impact of feeding biologically treated wheat straw on the production performance of goats in north Sinai. World Journal of Agriculture Science, 5 (5): 535-543.

[19] Can, A., N. Denek and M. Şeker (2008). Effect of harsh environmental conditions on nutrient utilization and blood parameters of Awassi sheep and Kilis goat fed different levels of concentrate feed. Journal of Applied Animal Research, 33 (1): 39-43.

[20] Das, A. (2008). Effect of different levels of concentrate supplementation on growth performance of Sikkim local kids fed mixed jungle grass based diet. Animal Nutrition Feed and Technology, 8 (2): 213-218.

[21] Dosky, K. N. (2007). Effect of formaldehyde treated concentrate on productive performance and some blood biochemical parameters in Karadhi sheep. PhD. Thesis, University of Mosul, Iraq.

[22] Russell, A. J. (1984). Means of assessing the adequacy of nutrition of pregnant ewes. Livestock Production Science, 11, 429–436.

[23] Reis, L. F., R. S. Sousa, F. L. Oliveira, F. A. Rodrigues, C. A. Araújo, E. B. Meira-Júnior, R. A. Barrêto-Júnior, C. S. Morl1, A. H. Minervino and E. L. Ortolani (2018). Comparative assessment of probiotics and monensin in the prophylaxis of acute ruminal lactic acidosis in sheep. BMC Veterinary Research, 14 (1): 9.

[24] Mohammed, M.A., Salman, S.R., Abdulridha, W.M., (2020), Structural, optical, electrical and gas sensor properties of zro2 thin films prepared by sol-gel technique, NeuroQuantology, 18(3), pp. 22–27.

[25] Vendramini, T. H., C. S. Takiya, T. H. Silva, F. Zanferari, M. F. Rentas, J. C. Bertoni, C. E. Consentini, R. Gardinal, T. S. Acedo and F. P. Renno (2016). Effects of a blend of essential oils, chitosan or monensin on nutrient intake and digestibility of lactating dairy cows. Animal Feed Science and Technology, 214, 12-21.

[26] Khorsheid, K. J., A. Karimnia, S. Gharaveisi and H. Kioumarsi (2008). The effect of monensin and supplemental fat on growth performance, blood metabolites and commercial productivity of zel lamb. Pakistan Journal of Biological Science, 11 (20): 2395-400.

[27] Asadi, A., A. Kiani, A. Azarfar and E. Valipoor (2016). Effects of Metafix with or without Monensin on performance and blood metabolites in Farahani lambs. Iranian Journal of Animal Science, 47, 421-428.

[28] Deaville, E. R. and H. Galbraith (1992). Effect of dietary protein level and yeast culture on growth, blood prolactin and mohair fibre characteristics of British Angora goats. Animal Feed Science and Technology, 38: 123-133.

[29] Ding, J., Z. M. Zhou, L. P. Ren and Q. X. Meng (2008). Effect of monensin and live yeast supplementation on growth performance, nutrient digestibility, carcass characteristics and ruminal fermentation parameters in lambs fed steam-flaked corn-based diets. Asian-Australas Journal of Animal Science, 21 (4): 547-554.

[30] Droung, C. (2016). Effects of monensin and essential oils on ruminal fermentation, performance, energy metabolism and immune parameters of dairy cows during the transition period. PhD. Thesis, University of Veterinary Medicine Hannover.

[31] Duffield, T., D. Sandals, K. E. Leslie, K. Lissemore, B. W. McBride, J. H. Dick, P. Lumsden and R. Bagg (1998). Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows. Journal of Dairy Science, 81 (11): 2866-2873.

[32] Erasmus, L. J., P. M. Botha, C. W. Cruywagen and H. H. Meissner (1994). Amino acid profile and intestinal digestibility in dairy cows of rumen undegradable protein from various feedstuffs. Journal of Dairy Science, 77: 541-551.

[33] Alsultani, M.J., Abed, H.H., Ghazi, R.A., Mohammed, M.A., (2020), Electrical Characterization of Thin Films (TiO2: ZnO)x-1 (GO)x / FTO Heterojunction Prepared by Spray Pyrolysis Technique, Journal of Physics: Conference Series, 1591(1), 012002.

[34] Taghipoor, B., H. A. Seifi, M. Mohri, N. Farzaneh and A. A. Naserian (2011). Effect of prepartum administration of monensin on metabolism of pregnant ewes. Livestock Science, 135 (2-3): 231-237.

[35] Al-Saady, Y. M. (2009). Effect of probiotic addition and substituting reed silage for alfalfa hay in the ration on Awassi lambs performance. MSc. thesis, Baghdad University.

[36] Caldeira, R. M., M. A. Almeida, C. C. Santos, M. I. Vasques and A. V. Portugal (1999). Daily variation in blood enzymes and metabolites in ewes under three levels of feed intake. Canadian Journal of Animal Science, 79 (2): 157-164.

[37] Sadjadiian, R., H. A. Seifi, M. Mohri, A. A. Naserian and N. Farzaneh (2013). Effects of monensin on metabolism and production in dairy Saanen goats in periparturient period. Asian-Australasias. Journal of Animal Science, 26 (1): 82-89.