I. INTRODUCTION

The W-boson mass, M_W, is a precisely measured quantity, and even a slight deviation from the predicted value would hint toward physics beyond the Standard Model (SM). The SM predicts $M_W^{\text{SM}} = (80.357 \pm 0.004) \text{ GeV}$, which agrees with the most up-to-date PDG value $M_W^{\text{PDG}} = (80.379 \pm 0.012) \text{ GeV}$ at the 2σ confidence level [1]. Very recently, the CDF collaboration has reported a new precision measurement of M_W using their full 8.8 fb$^{-1}$ data set that yields [2]

$$M_W^{\text{CDF-2022}} = (80.4335 \pm 0.0094) \text{ GeV},$$

which deviates from the SM prediction by 7σ, clearly indicating the presence of new physics (NP) [3–73].

The muon’s anomalous magnetic moment (AMM) $\Delta a_\mu = (g-2)_\mu / 2$, is another quantity that has recently been measured with unprecedented accuracy in the Muon g-2 experiment [74]. The result from this experiment is in complete agreement with the previously measured value at BNL [75]. When these two results are combined, it shows a large 4.2σ discrepancy compared to the SM prediction [76] (for original works, see Refs. [77–96]):

$$\Delta a_\mu = (2.51 \pm 0.59) \times 10^{-9},$$

hinting towards physics beyond the SM (BSM); for a recent review, see e.g. [97].

In addition, lepton flavor universality (LFU) violating B-meson decays have been persistently observed in a series of experiments [98–102]. The most noteworthy deviation is observed in neutral-current transitions associated with the $R_K - R_{K^*}$ ratios, which are defined as:

$$R_K = \frac{Br(B \to K \mu^+ \mu^-)}{Br(B \to K e^+ e^-)}, \quad R_{K^*} = \frac{Br(B \to K^* \mu^+ \mu^-)}{Br(B \to K^* e^+ e^-)}.$$

LFU in the SM predicts these ratios to be unity with uncertainties less than 1%. However, the most precise measurement by LHCb [102] finds a deficit with a significance of 3.1σ for R_K-ratio. There are several other related observables for which LHCb also found deficits with respect to the SM prediction, which are of order $O(1.5 - 3.5)\sigma$; for a comprehensive list, see e.g. [103]. However, if only the theoretically clean observables: R_K, R_{K^*} ratios and $BR(B_s \to \mu^+ \mu^-)$ are taken into account, the data is found to be in 4.2σ tension with the SM [104], for a recent review, see [105]. On the other hand, when both theoretically clean and dirty observables are considered, global analyses show preferences compared to the SM hypothesis with pulls more than 7σ (see [104, 106–112] for theoretical assumptions and data included in these fits).

On top of these downsides mentioned above, neutrinos remain massless in the SM. On the contrary, several experiments discovered non-zero masses of the neutrinos via observations of neutrino oscillations [113–119]. This work proposes a simultaneous explanation of the W-boson mass shift, the tension in the $(g-2)_\mu$, and the anomalies in the neutral current transitions in the B-meson decays, as well as neutrino oscillation data. The proposed model employs two scalar leptoquarks (LQs [120, 121]): $R_2 \sim (3, 2, 1/6)$ and $S_3 \sim (\overline{5}, 3, 1/3)$ and a vectorlike quark (VLQ) $\psi \sim (3, 2, -5/6)$. Non-zero mixing between R_2 and S_3 LQs leads to loop corrections to W-boson self-energy explaining the CDF anomaly. Utilizing this same mixing, the $(g-2)_\mu$ receives a large NP contribution via the mass flip of the VLQ inside the loop. The S_3 LQ, with its interactions with the SM fermions, addresses the discrepancies in the rare decays of B-mesons based on the neutral current $b \to s\ell\ell$ transitions. Furthermore, non-zero mixing between R_2 and S_3 LQs is also responsible for generating neutrino mass at the one-loop order, and the model put forward in this work can be tested in the ongoing and upcoming experiments.
II. PROPOSAL

In this work, we propose a new leptoquark-vectorlike quark model that contains three BSM particles: (i) an iso-doublet LQ, \tilde{R}_2, (ii) an iso-triplet LQ, S_3, and (iii) an iso-doublet vectorlike quark, ψ. For these particles, a complete list of quantum numbers is presented in Table I, and the corresponding component fields are defined in the following way:

\[
\tau.S_3 = \begin{pmatrix} S_{1}^{1/3} \\ \sqrt{2}S_{2}^{-2/3} \\ -S_{1}^{1/3} \end{pmatrix},
\]

\[
\tilde{R}_2 = \begin{pmatrix} \tilde{R}_2^{2/3} \\ R^{-1/3} \end{pmatrix},
\]

\[
\psi = \begin{pmatrix} \psi^{1/3} \\ \psi^{-1/3} \end{pmatrix}.
\]

The cubic coupling μ leads to mixing between \tilde{R}_2 and S_3 components, which is crucial in addressing both the W-boson mass and $(g - 2)_{\mu}$ anomalies within the proposed model. Remarkably, the existence of this cubic term also allows neutrinos to have non-zero masses at the one-loop order. In this theory, μ is one of the most important parameters, and in the limit $\mu \to 0$, one gets $\Delta m_{\nu} \to 0$, $\Delta a_{\mu} \to 0$, as well as $m_{\nu} \to 0$. Note that, to reduce the number of parameters and for the simplicity of our study, scalar quartic couplings are assumed to be somewhat smaller and are not included in Eq. (8). Consequently, all mass splittings are only a function of the trilinear coupling μ.

From the above potential, the mass matrices in the (S^Q, R^Q) basis are given by,

\[
M_{2/3}^2 = \begin{pmatrix} m_S^2 & \mu v & m_R^2 \\ \mu v & m_R^2 & -\mu v/\sqrt{2} \\ m_R^2 & -\mu v/\sqrt{2} & m_R^2 \end{pmatrix},
\]

with $v = 246$ GeV. We denote the weak and mass eigenstates with X and \tilde{X}, respectively, which are related by,

\[
S^Q \sim c_X S^Q + s_X \tilde{X}^Q,
\]

\[
R^Q \sim s_X S^Q + c_X \tilde{X}^Q,
\]

with $x = \theta, \phi$ for $Q = 2/3, 1/3$. Masses and mixing for \tilde{X}^Q states then take the form,

\[
m_{S,R}^2 = \frac{1}{2} \left\{ m_S^2 + m_R^2 \pm \left[(m_S^2 - m_R^2)^2 + a_Q \mu^2 v^2 \right]^{1/2} \right\},
\]

\[
\sin 2x = \frac{b_{Q,\mu}}{m_{S,R}^2 - m_{S,R}^2},
\]

where, $a_Q(b_Q) = 4(2)$ and $2(-\sqrt{2})$ for $Q = 2/3$ and $1/3$, respectively.

W-boson mass shift:—The effects of NP phenomena on the electroweak (EW) gauge sector are parameterized in terms of oblique parameters [122, 123] S, T, and U. Then, the shift in the W-boson mass from the NP can be calculated as a function of these oblique parameters [124],

\[
m_W^2 = m_{W,SM}^2 \left\{ 1 + \frac{\alpha_{em} \left(c_{\omega} T - \frac{1}{2} S + \frac{c_{\omega}^2 - s_{\omega}^2}{2} U \right)}{c_{\omega}^2 - s_{\omega}^2} \right\}.
\]

When the new CDF data is taken into account in a global electroweak precision fit, the oblique parameters would deviate from their previous (PDG) SM predictions, which several studies have already analyzed [15, 23, 26], and updated the 2σ allowed ranges for S, T, and U parameters in light of the CDF result. By incorporating these new sets of values of oblique parameters in our numerical analysis, we find that for our model, the mass splitting of the mixed LQ states must be of order

Field	$SU(3) \times SU(2) \times U(1)$	B
ψ	$(3, 2, -\frac{2}{3})$	$\frac{1}{4}$
S_3	$(3, 3, \frac{3}{2})$	$\frac{7}{2}$
\tilde{R}_2	$(3, 2, \frac{1}{3})$	$\frac{7}{2}$

Table I. Quantum numbers of the BSM particles under the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$. Their baryon number assignments are also presented.
$\Delta m_{LQ} \sim 100$ GeV to be compatible with the result reported by CDF collaboration.

In our model, NP contributions to these parameters originate from the mass splittings among the component fields as a result of mixing between the same charged states from \tilde{R}_2 and S_3. We obtain the following one-loop correction to the T-parameter for our model,

$$
\Delta T = \frac{N_c}{16\pi s_W^2 m_W^2} \left\{ \left(s_\phi c_\theta - \sqrt{2} c_\phi c_\theta \right)^2 \hat{F} \left[m_{S_{-2/3}}, m_{S_{-1/3}} \right]
+ \left(s_\phi c_\theta + \sqrt{2} c_\phi c_\theta \right)^2 \hat{F} \left[m_{\tilde{R}_{-2/3}}, m_{\tilde{R}_{-1/3}} \right]
+ \left(c_\phi c_\theta + \sqrt{2} s_\phi c_\theta \right)^2 \hat{F} \left[m_{\tilde{S}_{-2/3}}, m_{\tilde{R}_{-1/3}} \right]
+ \left(c_\phi c_\theta - \sqrt{2} s_\phi c_\theta \right)^2 \hat{F} \left[m_{\tilde{R}_{-2/3}}, m_{\tilde{R}_{-1/3}} \right]
+ 2 c_\phi^2 \hat{F} \left[m_{\tilde{S}_{1/3}}, m_{S_{-1/3}} \right]
- \frac{c_\phi^2 s_\phi^2}{2} \hat{F} \left[m_{S_{1/3}}, m_{R_{-1/3}} \right] - \frac{c_\phi^2 s_\phi^2}{2} \hat{F} \left[m_{S_{2/3}}, m_{R_{2/3}} \right] \right\},
$$

(15)

with,

$$
\hat{F}(m_1, m_2) = m_1^2 + m_2^2 - \frac{2m_1^2 m_2^2}{m_1^2 - m_2^2} \log \left(\frac{m_1^2}{m_2^2} \right).
$$

(16)

In contrast, we find that the NP contribution to ΔS is small compared to ΔT, which in our model, takes the following form:

$$
\Delta S = \frac{N_c}{\pi m_Z^2} \left\{ \frac{1}{3} B_{22} \left[m_Z^2, m_{S_{-2/3}}, m_{S_{-1/3}} \right]
+ \frac{1}{48} (3 + c_{2\theta})(1 + 3c_{2\theta}) B_{22} \left[m_Z^2, m_{S_{-2/3}}, m_{S_{-1/3}} \right]
+ \frac{1}{96} (9 - 20c_\theta + 3c_{2\theta}) B_{22} \left[m_Z^2, m_{R_{-2/3}}, m_{R_{-1/3}} \right]
- \frac{1}{24} (1 + 3c_\theta) c_\phi^2 B_{22} \left[m_Z^2, m_{S_{1/3}}, m_{S_{1/3}} \right]
- \frac{1}{24} (1 - 3c_\theta) c_\phi^2 B_{22} \left[m_Z^2, m_{S_{2/3}}, m_{S_{1/3}} \right]
+ \frac{1}{8} s_{2\theta}^2 B_{22} \left[m_Z^2, m_{S_{2/3}}, m_{S_{2/3}} \right]
+ \frac{1}{8} s_{2\theta}^2 B_{22} \left[m_Z^2, m_{S_{2/3}}, m_{S_{1/3}} \right]
\right\},
$$

(17)

here, the expression for the loop function $B_{22}(q^2, m_1^2, m_2^2)$ can be found in [125].

Muon AMM: In this theory, the AMM of the muon receives NP contributions as shown in Fig. 1, which can be expressed as [126, 127],

$$
\Delta a_\mu = -\frac{m_\mu N_c}{4\pi^2} \sum_k \left\{ \left| \Gamma_k^L \Gamma_k^R \right|^2 \frac{m_\mu}{m_{\phi_k}} \right. F_k \left(\frac{m_{\phi_k}^2}{m_{\phi_k}^2} \right) +
\left[\left| \Gamma_k^L \right|^2 + \left| \Gamma_k^R \right|^2 \right] \frac{m_\mu}{m_{\phi_k}} G_k \left(\frac{m_{\phi_k}^2}{m_{\phi_k}^2} \right) \right\},
$$

(18)

Figure 1. Leading order NP contribution to muon AMM (in the weak basis). Photon can be attached to either fermion line or the scalar line.

here sum is taken over $k = \{ \tilde{S}_{2/3}, \tilde{R}_{2/3}, \tilde{S}_{1/3}, \tilde{R}_{1/3} \}$ for which we define $\{ \Gamma_k^L, \Gamma_k^R \} = \{ y_{\mu}^L, y_{\mu}^R, \sqrt{2} y_{\phi_k}^L, \sqrt{2} y_{\phi_k}^R \}, \{ y_{\mu}^L, y_{\phi_k}^L, -\sqrt{2} y_{\phi_k}^R \}, \{ y_{\mu}^L, y_{\phi_k}^R, -\sqrt{2} y_{\phi_k}^L \}$, and $\{ y_{\mu}^L, y_{\phi_k}^L \}$, respectively. While $X^{2/3}$ is propagating in the loop $Q_\phi = -1/3$, and for $X^{-1/3}$ it is $Q_\phi = -4/3$. And the functions $F(x), G(x)$ are given by,

$$
F(x) = f(x) + Q_\phi g(x), \quad G(x) = \tilde{f}(x) + Q_\phi \tilde{g}(x),
$$

$$
f(x) = \frac{x^2 - 1 - 2x \log x}{4(x - 1)^4}, \quad g(x) = \frac{x - 1 - \log x}{2(x - 1)^2},
$$

$$
\tilde{f}(x) = \frac{2x^3 + 3x^2 - 6x + 1 - 6x^2 \log x}{24(x - 1)^4}, \quad \tilde{g}(x) = \frac{1}{2} f(x).
$$

(19)

(20)

(21)

By considering only the dominant chirally-enhanced terms, $(g - 2)_\mu$ takes the following simpler form:

$$
\frac{\Delta a_\mu}{3m_\mu m_\mu y_{\mu}^L y_{\mu}^R} = \frac{s_{2\theta}}{8\pi^2} \left[\frac{F \left(\frac{m_\mu^2}{m_{S_{1/3}}^2} \right)}{m_{S_{1/3}}^2} - \frac{F \left(\frac{m_\mu^2}{m_{R_{1/3}}^2} \right)}{m_{R_{1/3}}^2} \right] - \sqrt{2} s_{2\theta} \left[\frac{F \left(\frac{m_\mu^2}{m_{S_{2/3}}^2} \right)}{m_{S_{2/3}}^2} - \frac{F \left(\frac{m_\mu^2}{m_{R_{2/3}}^2} \right)}{m_{R_{2/3}}^2} \right].
$$

(22)

$R_K - R_{K^*}$ anomalies: The part of the Lagrangian relevant for R_{K^*}-observable is the first term given in Eq (6). We choose to work with the ‘down-type diagonal’ flavor ansatz for which the CKM matrix enters in the interactions associated with the up-type quarks. Then S_3 couplings to SM fermions contain a term of the form:

$$
L_{S_3} \supset -\sqrt{2} y_S \left(\bar{u}_i \gamma_5 d_j \right) \tilde{c}_{L,i} \mu_{L,j} S_{1/3}^3 + h.c.,
$$

(23)

which leads to $b \to s \mu^+ \mu^-$ transition as shown in Fig 2. The Wilson coefficients relevant for generating such neutral current processes that we are interested in are given by,

$$
\Delta C_{9}^{\mu \mu} = -\Delta C_{10}^{\mu \mu} = \frac{\psi^2}{V_{tb} V_{ts}^*} \alpha_{em} \frac{y_{\mu}^S (y_{\mu}^S)^*}{M_{4/3}^2}.
$$

(24)
A global fit to the data that includes all $b \to s \mu \mu$ observables, the $R_{K^{(*)}}$ ratios, and $B_s \to \mu^+\mu^-$ branching ratio prefers $\Delta C_{9}^{\mu\mu} = -\Delta C_{10}^{\mu\mu} = -0.39 \pm 0.07$ [106].

Figure 2. Feynman diagram leading to $b \to s \mu^+\mu^-$ transition.

Neutrino mass: Non-zero mixing between the \tilde{R}_2 and S_3 LQs and BSM Yukawa interactions of the SM fermions with these LQs give rise to neutrino oscillations [128, 129] in this theory (for LQ effects in leptonic processes, see e.g. [130, 131]).

Feynman diagram that leads to non-zero neutrino mass is shown in Fig. 3, and the neutrino mass formula takes the following form [128]:

$$M'_{ij} = \frac{\sin 2\phi}{32\pi^2} \sum_{k=d,s,b} m_k \left[(y^R)_{ki}(y^S)_{kj} + (y^R)_{kj}(y^S)_{ki} \right]$$

$$\times \left[\frac{m^2_{S_{1/3}} \ln \frac{m^2_S}{m^2_k}}{m^2_{S_{1/3}} - m^2_k} - \frac{m^2_{R_{1/3}} \ln \frac{m^2_R}{m^2_k}}{m^2_{R_{1/3}} - m^2_k} \right].$$

(25)

Since down-type quark masses are much smaller than the LQ masses, the above formula can be further simplified,

$$M' \approx \frac{\sin 2\phi}{16\pi^2} \left(\frac{m_{R_{1/3}}}{m_{S_{1/3}}} \right) \left\{ (y^R)^T m_D y^S + (y^S)^T m_D y^R \right\}.$$

(26)

Collider constraints: At LHC, \tilde{R}_2 and S_3 LQs can be pair produced [132, 133] via gluon-fusion $pp \to$ LQ LQ†. Once produced, each of these LQs would decay to SM fermions. Several searches for LQ pairs have been made at ATLAS and CMS for different final states with or without neutrinos. The strongest constraints for our scenario come from decay of these LQs to a third generation quark and a second generation charged lepton, namely $b\mu$ and $\tau\mu$. For 100% branching ratio to $pp \to b\tilde{R}_2 \mu^- \mu^-$ channel, LHC provides a lower bound of $m_{\text{LQ}} \gtrsim 1.7$ (1.5) TeV [134, 135]. For similar processes with third generation charged lepton, the corresponding bounds are $m_{\text{LQ}} \gtrsim 1$ TeV ($pp \to t\tilde{R}_3 \mu^+$) and $m_{\text{LQ}} \gtrsim 1.4$ TeV ($pp \to t\tilde{R}_3 \tau^+$), respectively [136, 137].

The single production of LQ becomes only relevant for larger Yukawa couplings to the first and second-generation quarks, which is not the case in our scenario. For a similar reason, non-resonant diphoton searches at the LHC do not provide strong constraints for the parameter space we are interested in.

VLQs can also be pair produced at the LHC through gluon-fusion. If LQs are lighter than VLQs, then each VLQ would mostly decay to a muon and a LQ leading to $\nu L d R \nu L$ processes of these types have been previously considered in Ref. [138]. We take the LHC bounds on VLQ from [139, 140] that typically correspond to $m_\psi \gtrsim 1.3 - 1.4$ TeV. For our numerical analysis, we consider both LQ and VLQ masses around or somewhat above 2 TeV to evade stringent collider constraints.

Results: One of the most important parameters in this model is the μ, which mixes the two LQs. As described above, for $\mu \to 0$, $(g-2)_\mu, \Delta m_W, m_\nu \to 0$. In Fig. 4, $(g-2)_\mu$ and ΔT are presented as a function of μ for two benchmark (BM) scenarios.

Figure 3. Feynman diagram leading to non-zero neutrino masses (in the weak basis).

Figure 4. Muon $(g-2)$ and ΔT-parameter for two benchmark (BM) scenarios as a function of μ. Green (pink) shaded region corresponds to the experimentally allowed 1σ (2σ) range for $(g-2)_\mu$ (m_W). Yellow shaded region represents the correct range for μ that is compatible with both $(g-2)_\mu$ and m_W (CDF II).

BM-I (BM-II) corresponds to $m_R = m_S = 2$ TeV ($m_R = 2$ TeV, and $m_S = 2.2$ TeV) and mass of the VLQ is varied with μ as $m_\psi = (2050 + \mu)$ GeV ($m_\psi = (2150 + \mu)$ GeV). For both these cases $y^\psi_L = -y^\psi_R = 1$ are taken. In Fig. 4, green and pink shaded regions correspond to the experimentally allowed 1σ and 2σ ranges.
The most crucial cLFV for the given texture is \(\tau \rightarrow \mu \mu \gamma \), which is constrained from neutrino oscillations as well as meson-antimeson oscillations; for details, see e.g. [144, 145]. As aforementioned, the 23-block in \(y^S \) plays an important role in fitting neutrino observables; some of its entries address the \(R_K^{(\pm)} \) anomalies and are required to be sizable. By randomly varying these couplings, interrelations between \(BR[\tau \rightarrow \mu \gamma] \) and \(B \rightarrow K^{(\pm)}\nu\bar{\nu} \) observables are depicted in Fig. 5 along with their respective experimental bounds.

In addition to the above-mentioned parameters for BM-I, from a combined fit, we obtain the following Yukawa couplings addressing \(R_K - R_{K^*} \) anomalies as well as neutrino oscillation data:

\[
y^S = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0.01216 & -0.01495 \\
0.07729 & 0.19480 & 0.07439
\end{pmatrix}, \quad (27)
\]

\[
y^R = 10^{-7} \begin{pmatrix}
0.8756 & 0.2081 & -0.5057 \\
0.1519 & -0.4183 & -0.02171 \\
0.08701 & -0.6155 & -1.0380
\end{pmatrix}. \quad (28)
\]

This fit corresponds to the following neutrino observables:

\[
(m_1, m_2, m_3) = (1.59 \times 10^{-2}, 8.60, 50.27) \text{ meV}, \quad (29)
\]

\[
(\sin^2 \theta_{12}, \sin^2 \theta_{23}, \sin^2 \theta_{13}) = (0.309, 0.574, 0.02224), \quad (30)
\]

which are in excellent agreement with experimental data and satisfy all flavor constraints.

For \((g-2)_{\mu}\) and \(m_W\), respectively and the yellow shaded region constitutes the correct range for \(\mu\), which is compatible with both \((g-2)_{\mu}\) and \(m_W\) (CDF II) experimental data. Further correlations in the \(m_\psi\) versus \(\mu\) plane is demonstrated in Fig. 5. As shown in [141], even though the current LHC measurements [142, 143] of \(h \rightarrow \mu\mu\) allow a large trilinear coupling, future colliders such as the FCC may be able to measure this coupling and constraint the theory parameter space.

From Fig. 4, it can be seen that for BM-I, a choice of \(\mu = 950\) GeV simultaneously solves \((g-2)_{\mu}\) and \(m_W\) (CDF II) anomalies. We take these reference values and perform a fit to the neutrino observables to demonstrate the viability of the theory. Note, however, that this fitting procedure is highly non-trivial since the same Yukawa couplings addressing the \(R_K - R_{K^*}\) anomalies also enter in neutrino observables. In fact, with the texture for \(y^S\) with only two non-zero elements as given in Eq. (7), neutrino masses and mixings utilizing the formula Eq. (26) cannot be accommodated. To generate viable neutrino masses and mixings, a few more entries must be introduced in \(y^S\), which would lead to both charged lepton flavor violation as well as flavor violations in the quark sector [144–146] (see also [129, 147–156]).

Our detailed numerical analysis shows that a non-zero 23-block in \(y^S\) is insufficient to satisfy neutrino oscillation data. Therefore, we also introduce a non-zero 31-entry, which is constrained from \(\mu \rightarrow e\) transition (through CKM rotations). The most crucial cLFV for the given texture is \(\tau \rightarrow \mu \gamma\), via which this model may be probed at the upcoming experiment [157]. In addition, various other flavor violating processes are considered in our numerical analysis that includes \(Z \rightarrow \ell\ell, \ell \rightarrow \ell' \ell' \ell'^*\), \(\tau \rightarrow \mu \gamma\), and several meson decay observables as well as meson-antimeson oscillations; for details, see e.g. [144, 145].

Figure 5. Correlation between \(m_\psi\) and \(\mu\) for a fixed \(m_S = m_R = 2\) TeV and \(y^V_{\ell} = -0.65, y^V_\mu = 0.4\). Here the green and light-red shaded regions corresponds to \((m_\psi, \mu)\) values satisfying the \((g-2)_{\mu}\) (within allowed 1σ) and \(m_W\) (CDF II) (within 2σ), respectively. The magenta shaded region is compatible with both experimental data.

Figure 6. The results of random scans showing the correlations between \(BR[\tau \rightarrow \mu \gamma]\) and \(R_{K^{(\pm)}}\). Current (future) bounds on \(BR[\tau \rightarrow \mu \gamma]\) from BaBar Collaboration [158] (Super B Factory [157]) and on \(R_{K^{(\pm)}}\) from Belle collaboration [159] are also depicted. In making this plot, \(y^S_{32,33}\) couplings are randomly varied within ranges \((-0.1, 0.1)\) and \((-1, 1)\), respectively.
III. CONCLUSION

In this work, we proposed a simple new physics scenario to simultaneously address several puzzles that cannot be accounted for by the Standard Model alone. The model is comprised of two scalar leptoquarks and a vectorlike quark. One of the most crucial parameters in this theory is the mixing parameter between the two leptoquarks. This mixing generates neutrino masses via quantum corrections at one loop, provides additional contributions to the W-boson mass consistent with recent CDF measurement, and plays a non-trivial role in incorporating the longstanding tension in the muon anomalous magnetic moment. The vectorlike quark, assisted with both the leptoquarks, gives rise to the required sizeable new physics contributions to the $(g - 2)_\mu$ via chirally enhanced terms proportional to its mass. Furthermore, the iso-triplet leptoquark is responsible for accounting for the deviations observed persistently in the $R_{K^{(*)}}$ ratios. By performing a numerical analysis, we have illustrated how to consistently resolve all these mysteries mentioned above by keeping flavor violations under control. Moreover, the model is within reach of the current and future upgrades of the LHC and has the potential to be probed by the B meson factories.

[1] Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.

[2] CDF Collaboration, T. Aaltonen et al., “High-precision measurement of the W boson mass with the CDF II detector,” Science 376 no. 6589, (2022) 170–176.

[3] Y.-Z. Fan, T.-P. Tang, Y.-L. S. Tsai, and L. Wu, “Inert Higgs Dark Matter for New CDF W-boson Mass and Detection Prospects,” arXiv:2204.03693 [hep-ph].

[4] C.-R. Zhu, M.-Y. Cui, Z.-Q. Xia, Z.-H. Yu, X. Huang, Q. Yuan, and Y. Z. Fan, “GeV antiproton/gamma-ray excesses and the W-boson mass anomaly: three faces of ~ 60 – 70 GeV dark matter particle?,” arXiv:2204.03767 [astro-ph.HE].

[5] P. Athron, A. Fowlie, C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “The W boson Mass and Muon g – 2: Hadronic Uncertainties or New Physics?,” arXiv:2204.03996 [hep-ph].

[6] X. K. Du, Z. Li, F. Wang, and Y. K. Zhang, “Explaining The Muon g – 2 Anomaly and New CDF II W-Boson Mass in the Framework of (Extra)Ordinary Gauge Mediation,” arXiv:2204.04286 [hep-ph].

[7] J. M. Yang and Y. Zhang, “Low energy SUSY confronted with new measurements of W-boson mass and muon g-2.” arXiv:2204.04202 [hep-ph].

[8] J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits,” arXiv:2204.04204 [hep-ph].

[9] T.-P. Tang, M. Abduhghani, L. Feng, Y.-L. S. Tsai, and Y.-Z. Fan, “NMSSM neutralino dark matter for W-boson mass and muon g – 2 and the promising prospect of direct detection,” arXiv:2204.04356 [hep-ph].

[10] M. Blennow, P. Coloma, E. Fernández-Martínez, and M. González-López, “Right-handed neutrinos and the CDF II anomaly,” arXiv:2204.04559 [hep-ph].

[11] B.-Y. Zhu, S. Li, J.-G. Cheng, R.-L. Li, and Y.-F. Liang, “Using gamma-ray observation of dwarf spheroidal galaxy to test a dark matter model that can interpret the W-boson mass anomaly,” arXiv:2204.04688 [astro-ph.HE].

[12] K. Sakurai, F. Takahashi, and W. Yin, “Singlet extensions and W boson mass in the light of the CDF II result,” arXiv:2204.04770 [hep-ph].

[13] Y. Heo, D.-W. Jung, and J. S. Lee, “Impact of the CDF W-mass anomaly on two Higgs doublet model,” arXiv:2204.05728 [hep-ph].

[14] K. Cheung, W.-Y. Keung, and P.-Y. Tseng, “Iso-doublet Vector Leptoquark solution to the Muon g – 2, R_{K,K^*}, R_{D,D^*}, and W-mass Anomalies,” arXiv:2204.05942 [hep-ph].

[15] C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “Electroweak Precision Fit and New Physics in light of W Boson Mass,” arXiv:2204.03796 [hep-ph].

[16] A. Strumia, “Interpreting electroweak precision data including the W-mass CDF anomaly,” arXiv:2204.04191 [hep-ph].

[17] J. Fan, L. Li, T. Liu, and K.-F. Lyu, “W-Boson Mass, Electroweak Precision Tests and SMEFT,” arXiv:2204.04805 [hep-ph].

[18] G. Cacciapaglia and F. Sannino, “The W boson mass weighs in on the non-standard Higgs,” arXiv:2204.04514 [hep-ph].

[19] X. Liu, S.-Y. Guo, B. Zhu, and Y. Li, “Unifying gravitational waves with W boson, FIMP dark matter, and Majorana Seesaw mechanism,” arXiv:2204.04834 [hep-ph].

[20] H. M. Lee and K. Yamashita, “A Model of Vector-like Leptons for the Muon g – 2 and the W Boson Mass,” arXiv:2204.05024 [hep-ph].

[21] Y. Cheng, X.-G. He, Z.-L. Huang, and M.-W. Li, “Type-II Seesaw Triplet Scalar and Its VEV Effects on Neutrino Trident Scattering and W mass,” arXiv:2204.05031 [hep-ph].

[22] H. Song, W. Su, and M. Zhang, “Electroweak Phase Transition in 2HDM under Higgs, Z-pole, and W precision measurements,” arXiv:2204.05085 [hep-ph].

[23] E. Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, “SMEFT Analysis of m_W, arXiv:2204.05260 [hep-ph].

[24] A. Paul and M. Valli, “Violation of custodial symmetry from W-boson mass measurements,” arXiv:2204.05267 [hep-ph].

[25] H. Bahl, J. Braathen, and G. Weiglein, “New physics effects on the W-boson mass from a doublet extension
of the SM Higgs sector,” arXiv:2204.05269 [hep-ph].

[26] P. Asadi, C. Cesarotti, K. Fraser, S. Homiller, and A. Parikh, “Oblique Lessons from the W Mass Measurement at CDF II,” arXiv:2204.05283 [hep-ph].

[27] L. Di Luzio, R. Gröber, and P. Paradisi, “Higgs physics confronts the M_W anomaly,” arXiv:2204.05284 [hep-ph].

[28] P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and A. Voigt, “Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY,” arXiv:2204.05285 [hep-ph].

[29] J. Gu, Z. Liu, T. Ma, and J. Shu, “Speculations on the W-Mass Measurement at CDF,” arXiv:2204.05296 [hep-ph].

[30] K. S. Babu, S. Jana, and V. P. K., “Correlating W-Boson Mass Shift with Muon $\text{g} - 2$ in the 2HDM,” arXiv:2204.05303 [hep-ph].

[31] A. Crivellin, M. Kirk, T. Kitahara, and F. Mescia, “Correlating $t \rightarrow cZ$ to the W Mass and B Physics with Vector-Like Quarks,” arXiv:2204.05862 [hep-ph].

[32] M. Endo and S. Mishima, “New physics interpretation of W-boson mass anomaly,” arXiv:2204.05965 [hep-ph].

[33] X.-F. Han, F. Wang, L. Wang, J. M. Yang, and Y. Zhang, “A joint explanation of W-mass and muon $g - 2$ in 2HDM,” arXiv:2204.06505 [hep-ph].

[34] T. Biekötter, S. Heinemeyer, and G. Weiglein, “Excesses in the low-mass Higgs-boson search and the W-boson mass measurement,” arXiv:2204.05975 [hep-ph].

[35] R. Balkin, E. Madge, T. Menzo, G. Perez, Y. Soreq, and J. Zupan, “On the implications of positive W mass shift,” arXiv:2204.05992 [hep-ph].

[36] J. Kawamura, S. Okawa, and Y. Omura, “W boson mass and muon $g - 2$ in a lepton portal dark matter model,” arXiv:2204.07022 [hep-ph].

[37] A. Ghoshal, N. Okada, S. Okada, D. Raut, Q. Shafi, and A. Thapa, “Type III seesaw with R-parity violation in light of m_W (CDF),” arXiv:2204.07138 [hep-ph].

[38] P. F. Perez, H. H. Patel, and A. D. Plascencia, “On the W-mass and New Higgs Bosons,” arXiv:2204.07144 [hep-ph].

[39] K. I. Nagao, T. Nomura, and H. Okada, “A model explaining the new CDF II W boson mass linking to muon $g - 2$ and dark matter,” arXiv:2204.07411 [hep-ph].

[40] S. Kanemura and K. Yagyu, “Implication of the W boson mass anomaly at CDF II in the Higgs triplet model with a mass difference,” arXiv:2204.07511 [hep-ph].

[41] J. J. Heckman, “Extra W-Boson Mass from a D3-Brane,” arXiv:2204.05302 [hep-ph].

[42] Y. H. Ahn, S. K. Kang, and R. Ramos, “Implications of New CDF-II W Boson Mass on Two Higgs Doublet Model,” arXiv:2204.06485 [hep-ph].

[43] T. A. Chowdhury, J. Heck, S. Saad, and A. Thapa, “W boson mass shift and muon magnetic moment in the Zee model,” arXiv:2204.08390 [hep-ph].

[44] Y.-P. Zeng, C. Cai, Y.-H. Su, and H.-H. Zhang, “Extra boson mix with Z boson explaining the mass of W boson,” arXiv:2204.09487 [hep-ph].

[45] M. Du, Z. Liu, and P. Nath, “CDF W mass anomaly from a dark sector with a Stueckelberg-Higgs portal,” arXiv:2204.09024 [hep-ph].

[46] K. Ghorbani and P. Ghorbani, “W-Boson Mass Anomaly from Scale Invariant 2HDM,” arXiv:2204.09001 [hep-ph].

[47] A. Bhaskar, A. A. Madathil, T. Mandal, and S. Mitra, “Combined explanation of W-mass, muon $g - 2$, R_K and $R_{D^{(*)}}$ anomalies in a singlet-triplet scalar leptoquark model,” arXiv:2204.09031 [hep-ph].

[48] S. Baek, “Implications of CDF W-mass and $(g - 2)_\mu$ on $U(1)_{L_\mu - L_\tau}$ model,” arXiv:2204.09585 [hep-ph].

[49] J. Cao, L. Meng, L. Shang, S. Wang, and B. Yang, “Interpreting the W mass anomaly in the vectorlike quark models,” arXiv:2204.09477 [hep-ph].

[50] D. Borah, S. Mahapatra, and N. Sahu, “Singlet-Doublet Fermion Origin of Dark Matter, Neutrino Mass and W-Mass Anomaly,” arXiv:2204.09671 [hep-ph].

[51] A. Batra, S. K. A., S. Mandal, and R. Srivastava, “W boson mass in Singlet-Triplet Scotogenic dark matter model,” arXiv:2204.09376 [hep-ph].

[52] S. Lee, K. Cheung, J. Kim, C.-T. Lu, and J. Song, “Status of the two-Higgs-doublet model in light of the CDF m_W measurement,” arXiv:2204.10338 [hep-ph].

[53] Y. Cheng, X.-G. He, F. Huang, J. Sun, and Z.-P. Xing, “Dark photon kinetic mixing effects for CDF W mass excess,” arXiv:2204.10156 [hep-ph].

[54] A. Addazi, A. Marciano, A. P. Morais, R. Pasechnik, and H. Yang, “CDF II W-mass anomaly faces first-order electroweak phase transition,” arXiv:2204.10315 [hep-ph].

[55] J. Heeck, “W-boson mass in the triplet seesaw model,” arXiv:2204.10274 [hep-ph].

[56] H. Aboubaid, A. Arhrib, R. Benbrik, M. Krab, and M. Ouchemhou, “Is the new CDF m_W measurement consistent with the two higgs doublet model?,” arXiv:2204.12018 [hep-ph].

[57] A. Batra, S. K. A. S. Mandal, H. Prajapati, and R. Srivastava, “CDF-II W Boson Mass Anomaly in the Canonical Scotogenic Neutrino-Dark Matter Model,” arXiv:2204.11945 [hep-ph].

[58] R. Benbrik, M. Boukidi, and B. Mann, “W-mass and 96 GeV excess in type-III 2HDM,” arXiv:2204.11755 [hep-ph].

[59] C. Cai, D. Qiu, Y.-L. Tang, Z.-H. Yu, and H.-H. Zhang, “Corrections to electroweak precision observables from mixings of an exotic vector boson in light of the CDF W-mass anomaly,” arXiv:2204.11570 [hep-ph].

[60] Q. Zhou and X.-F. Han, “The CDF W-Mass, muon $g - 2$ and dark matter in a $U(1)_{L_\mu - L_\tau}$ model with vector-like leptons,” arXiv:2204.13027 [hep-ph].

[61] R. S. Gupta, “Running away from the T-parameter solution to the W mass anomaly,” arXiv:2204.13690 [hep-ph].

[62] J.-W. Wang, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, “Electroweak dark matter model accounting for the CDF W-mass anomaly,” arXiv:2205.00783 [hep-ph].

[63] B. Barman, A. Das, and S. Sengupta, “New W-Boson mass in the light of doubly warped braneworld model,” arXiv:2205.01699 [hep-ph].
[64] J. Kim, S. Lee, P. Sanyal, and J. Song, “CDF m_W and the muon $g-2$ through the Higgs-phobic light pseudoscalar in type-X two-Higgs-doublet model,” arXiv:2205.01701 [hep-ph].

[65] J. Kim, “Compatibility of muon $g-2$, W mass anomaly in type-X 2HDM,” arXiv:2205.01437 [hep-ph].

[66] R. Dcruez and A. Thapa, “W boson mass, dark matter and $(g-2)_\mu$ in ScoTozee neutrino mass model,” arXiv:2205.02217 [hep-ph].

[67] J. Isaacson, Y. Fu, and C. P. Yuan, “ResBos2 and the CDF W Mass Measurement,” arXiv:2205.02788 [hep-ph].

[68] F. J. Botella, F. Cornet-Gomez, and M. Nebot, “Electron and muon $g-2$ anomalies in general flavour conserving two Higgs doublet models,” Phys. Rev. D 102 no. 3, (2020) 035023, arXiv:2006.01934 [hep-ph].

[69] F. J. Botella, F. Cornet-Gomez, C. Miró, and M. Nebot, “Muon and electron $g-2$ anomalies in a flavor conserving 2HDM with an oblique view on the CDF M_W value,” arXiv:2205.01115 [hep-ph].

[70] S.-P. He, “Leptoquark and vectorlike quark extended models as the explanation of the muon g-2 anomaly,” Phys. Rev. D 105 no. 3, (2022) 035017, arXiv:2112.13490 [hep-ph].

[71] S.-P. He, “A leptoquark and vector-like quark extended model for the simultaneous explanation of the W boson mass and muon $g-2$ anomaly,” arXiv:2205.02088 [hep-ph].

[72] A. Crivellin, D. Müller, and F. Saturnino, “Leptoquarks in oblique corrections and Higgs signal strength: status and prospects,” JHEP 11 (2020) 094, arXiv:2006.10758 [hep-ph].

[73] O. Popov and R. Srivastava, “The Triplet Dirac Seesaw in the View of the Recent CDF-II W Mass Anomaly,” arXiv:2204.08568 [hep-ph].

[74] Muon $g-2$ Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 141801, arXiv:2104.03281 [hep-ex].

[75] Muon $g-2$ Collaboration, G. W. Bennett et al., “Final Report of the Muon ES21 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D73 (2006) 072003, arXiv:hep-ex/0602035 [hep-ex].

[76] T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, arXiv:2006.04822 [hep-ph].

[77] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, “Complete Tenth-Order QED Contribution to the Muon g-2,” Phys. Rev. Lett. 109 (2012) 111808, arXiv:1205.5370 [hep-ph].

[78] T. Aoyama, T. Kinoshita, and M. Nio, “Theory of the Anomalous Magnetic Moment of the Electron,” Atoms 7 no. 1, (2019) 28.

[79] A. Czarnecki, W. J. Marciano, and A. Vainshtein, “Refinements in electroweak contributions to the muon anomalous magnetic moment,” Phys. Rev. D67 (2003) 073006, arXiv:hep-ph/0212229 [hep-ph]. [Erratum: Phys. Rev.D73,119901(2006)].

[80] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, “The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement,” Phys. Rev. D 88 (2013) 053005, arXiv:1306.5546 [hep-ph].

[81] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $g-2$ and $\alpha(m_Z^2)$ using newest hadronic cross-section data,” Eur. Phys. J. C 77 no. 12, (2017) 827, arXiv:1706.09436 [hep-ph].

[82] A. Keshavarzi, D. Nomura, and T. Teubner, “Muon $g-2$ and $\alpha(M_Z^2)$: a new data-based analysis,” Phys. Rev. D 97 no. 11, (2018) 114025, arXiv:1802.02995 [hep-ph].

[83] G. Colangelo, M. Hoferichter, and P. Stoffer, “Two-pion contribution to hadronic vacuum polarization,” JHEP 02 (2019) 006, arXiv:1810.00007 [hep-ph].

[84] M. Hoferichter, B.-L. Hoid, and B. Kubis, “Three-pion contribution to hadronic vacuum polarization,” JHEP 08 (2019) 137, arXiv:1907.01556 [hep-ph].

[85] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to $\alpha(m_Z^2)$”, Eur. Phys. J. C 80 no. 3, (2020) 241, arXiv:1908.00921 [hep-ph]. [Erratum: Eur.Phys.J.C 80, 410 (2020)].

[86] A. Keshavarzi, D. Nomura, and T. Teubner, “$g-2$ of charged leptons, $\alpha(M_Z^2)$, and the hyperfine splitting of muonium,” Phys. Rev. D 101 no. 1, (2020) 014029, arXiv:1911.00367 [hep-ph].

[87] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, “Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order,” Phys. Lett. B 734 (2014) 144–147, arXiv:1403.6400 [hep-ph].

[88] K. Melnikov and A. Vainshtein, “Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited,” Phys. Rev. D70 (2004) 113006, arXiv:hep-ph/0312226 [hep-ph].

[89] P. Masjuan and P. Sanchez-Puertas, “Pseudoscalar-pole contribution to the $(g_\mu - 2)$: a rational approach,” Phys. Rev. D 95 no. 5, (2017) 054026, arXiv:1701.05829 [hep-ph].

[90] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, “Dispersion relation for hadronic light-by-light scattering: two-pion contributions,” JHEP 04 (2017) 161, arXiv:1702.07347 [hep-ph].

[91] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, “Dispersion relation for hadronic light-by-light scattering: pion pole,” JHEP 10 (2018) 141, arXiv:1808.04823 [hep-ph].

[92] A. Gérardin, H. B. Meyer, and A. Nyffeler, “Lattice calculation of the pion transition form factor with $N_f = 2 + 1$ Wilson quarks,” Phys. Rev. D 100 no. 3, (2019) 034520, arXiv:1903.09471 [hep-lat].

[93] J. Bjønnsen, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez, “Short-distance constraints for the HLB* contribution to the muon anomalous magnetic moment,” Phys. Lett. B 798 (2019) 134994, arXiv:1908.03331 [hep-ph].

[94] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, “Longitudinal short-distance constraints for the hadronic light-by-light contribution to $(g-2)_\mu$ with large-N_c Regge models,” arXiv:1910.13432 [hep-ph].

[95] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, “The hadronic light-by-light
scattering contribution to the muon anomalous magnetic moment from lattice QCD,”
[arXiv:1911.08123 [hep-lat].]

[96] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, “Remarks on higher-order hadronic corrections to the muon g−2,” Phys. Lett. B 735 (2014) 90–91, arXiv:1403.7512 [hep-ph].

[97] P. Athron, C. Balázs, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, “New physics explanations of $a_μ$ in light of the FNAL muon g-2 measurement,” JHEP 09 (2021) 080, arXiv:2104.03691 [hep-ph].

[98] LHCB Collaboration, R. Aaij et al., “Test of lepton universality with $B^0 \to K^{\mp} e^\mp e^\mp$ decays,” JHEP 08 (2017) 055, arXiv:1705.05802 [hep-ex].

[99] LHCB Collaboration, R. Aaij et al., “Search for lepton-universality violation in $B^0 \to K^{\mp} e^\mp e^\mp$ decays,” Phys. Rev. Lett. 122 no. 19, (2019) 191801, arXiv:1903.09252 [hep-ex].

[100] Belle Collaboration, A. Abdesselam et al., “Test of Lepton-Flavor Universality in $B \to K^{\mp} e^\mp e^\mp$ Decays at Belle,” Phys. Rev. Lett. 126 no. 16, (2021) 161801, arXiv:1904.02440 [hep-ex].

[101] BELLE Collaboration, S. Choudhury et al., “Test of lepton flavor universality and search for lepton flavor violation in $B \to K e\nu\nu$ decays,” JHEP 03 (2021) 105, arXiv:1908.01848 [hep-ex].

[102] LHCB Collaboration, R. Aaij et al., “Test of lepton universality in beauty-quark decays,” Nature Phys. 18 no. 3, (2022) 277–282, arXiv:2103.11769 [hep-ex].

[103] J. M. Camalich and M. Patel, “New lepton non-universal forces in flavor physics?,” Science Bulletin 67 no. 1, (2022) 1–4, https://www.sciencedirect.com/science/article/pii/S2095927321006307.

[104] L.-S. Geng, B. Grinstein, S. Jäger, S.-Y. Li, J. Martin Camalich, and R.-X. Shi, “Implications of new evidence for lepton-universality violation in $b \to s\ell^+\ell^-$ decays,” Phys. Rev. D 104 no. 3, (2021) 035029, arXiv:2103.12738 [hep-ph].

[105] A. Angelescu, D. Bećirević, D. A. Faroughy, F. Jaffredo, and O. Sumensari, “Single leptoquark solutions to the B-physics anomalies,” Phys. Rev. D 104 no. 5, (2021) 055017, arXiv:2103.12504 [hep-ph].

[106] W. Altmannshofer and P. Stangl, “New Physics in Rare B Decays after Moriond 2021,” arXiv:2103.13370 [hep-ph].

[107] M. Algueró, B. Capdevilla, S. Descotes-Genon, J. Matias, and M. Novoa-Brulet, “$b \to s\ell^+\ell^-$ global fits after R_K and $R_{K^{(*)}}$,” Eur. Phys. J. C 82 no. 4, (2022) 326, arXiv:2104.08921 [hep-ph].

[108] T. Hurth, F. Mahmoudi, D. M. Santos, and S. Neshatpour, “More indications for lepton nonuniversality in $b \to s\ell^+\ell^-$,” Phys. Lett. B 824 (2022) 136838, arXiv:2104.10058 [hep-ph].

[109] G. Isidori, D. Lancieri, P. Owen, and N. Serra, “On the significance of new physics in $b \to s\ell^+\ell^-$ decays,” Phys. Lett. B 822 (2021) 136644, arXiv:2104.05631 [hep-ph].

[110] K. Kowalska, D. Kumar, and E. M. Sessolo, “Implications for new physics in $b \to s\mu\mu$ transitions after recent measurements by Belle and LHCB,” Eur. Phys. J. C 79 no. 10, (2019) 840, arXiv:1903.10932 [hep-ph].

[111] M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini, and M. Valli, “New Physics without bias: Charming Penguins and Lepton Universality Violation in $b \to s\ell^+\ell^-$ decays,” arXiv:2110.10126 [hep-ph].

[112] G. D’Amico, M. Nardecchia, P. Panci, F. Sannino, A. Strumia, R. Torre, and A. Urbano, “Flavour anomalies after the R_{K^*} measurement,” JHEP 09 (2017) 010, arXiv:1704.05438 [hep-ph].

[113] Super-Kamiokande Collaboration, Y. Fukuda et al., “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett. 81 (1998) 1562–1567, arXiv:hep-ex/9807003.

[114] Super-Kamiokande Collaboration, S. Fukuda et al., “Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data,” Phys. Rev. Lett. 86 (2001) 5651–5655, arXiv:hep-ex/0103032.

[115] SNO Collaboration, Q. R. Ahmad et al., “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89 (2002) 011301, arXiv:nuci-ex/0204008.

[116] KamLAND Collaboration, K. Eguchi et al., “First results from KamLAND: Evidence for reactor anti-neutrino disappearance,” Phys. Rev. Lett. 90 (2003) 021802, arXiv:hep-ex/0212021.

[117] KamLAND Collaboration, T. Araki et al., “Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion,” Phys. Rev. Lett. 94 (2005) 081801, arXiv:hep-ex/0406035.

[118] K2K Collaboration, M. H. Ahn et al., “Indications of neutrino oscillation in a 250 km long baseline experiment,” Phys. Rev. Lett. 90 (2003) 041801, arXiv:hep-ex/0212007.

[119] MINOS Collaboration, D. G. Michael et al., “Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam,” Phys. Rev. Lett. 97 (2006) 191801, arXiv:hep-ex/0607088.

[120] W. Buchmuller, R. Ruckl, and D. Wyler, “Leptoquarks in Lepton - Quark Collisions,” Phys. Lett. B193 (1987) 442–448, [Erratum: Phys. Lett.B448,320(1999)].

[121] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, “Physics of leptoquarks in precision experiments and at particle colliders,” Phys. Rept. 641 (2016) 1–68, arXiv:1603.04993 [hep-ph].

[122] M. E. Peskin and T. Takeuchi, “A New constraint on a strongly interacting Higgs sector,” Phys. Rev. Lett. 65 (1990) 964–967.

[123] M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Phys. Rev. D46 (1992) 381–409.

[124] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, “The Oblique parameters in multi-Higgs-doublet models,” Nucl. Phys. B501 (2000) 81–96, arXiv:0802.4353 [hep-ph].

[125] H.-J. He, N. Polonsky, and S.-f. Su, “Extra families, Higgs spectrum and oblique corrections,” Phys. Rev. D 64 (2001) 053004, arXiv:hep-ph/0102144.

[126] J. P. Leveille, “The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models,” Nucl. Phys. B137 (1978) 63–76.

[127] A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg, “Combined explanations of
(g−2)μ,e and implications for a large muon EDM,” *Phys. Rev. D* **D98** no. 11, (2018) 113002, arXiv:1807.11484 [hep-ph].

[128] I. Doršner, S. Fajfer, and N. Košnik, “Leptoquark mechanism of neutrino masses within the grand unification framework,” *Eur. Phys. J. C* **77** no. 6, (2017) 417, arXiv:1701.08322 [hep-ph].

[129] J. Julio, S. Saad, and A. Thapa, “A Tale of Flavor Anomalies and the Origin of Neutrino Mass,” arXiv:2202.10479 [hep-ph].

[130] A. Crivellin, D. Mueller, and F. Saturnino, “Correlating h−μ+μ− to the Anomalous Magnetic Moment of the Muon via Leptoquarks,” *Phys. Rev. Lett.* **127** no. 2, (2021) 021801, arXiv:2008.02643 [hep-ph].

[131] A. Crivellin, C. Greub, D. Müller, and F. Saturnino, “Scalar Leptoquarks in Leptonic Processes,” *JHEP* **02** (2021) 182, arXiv:2010.06593 [hep-ph].

[132] B. Díaz, M. Schmaltz, and Y.-M. Zhong, “The leptoquark Hunter’s guide: Pair production,” *JHEP* **10** (2017) 097, arXiv:1706.05633 [hep-ph].

[133] I. Doršner and A. Grejo, “Leptoquark toolbox for precision collider studies,” *JHEP* **05** (2018) 126, arXiv:1801.07641 [hep-ph].

[134] *ATLAS* Collaboration, G. Aad et al., “Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in √s = 13 TeV pp collisions with the ATLAS detector,” *JHEP* **10** (2020) 112, arXiv:2006.05872 [hep-ex].

[135] *ATLAS* Collaboration, G. Aad et al., “Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton–proton collisions at √s = 13 TeV with the ATLAS detector,” *Eur. Phys. J. C* **81** no. 4, (2021) 313, arXiv:2010.02098 [hep-ex].

[136] *ATLAS* Collaboration, M. Aaboud et al., “Searches for third-generation scalar leptoquarks in √s = 13 TeV pp collisions with the ATLAS detector,” *JHEP* **06** (2019) 144, arXiv:1902.08103 [hep-ex].

[137] *ATLAS* Collaboration, G. Aad et al., “Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in pp collisions at √s = 13 TeV with the ATLAS detector,” *Eur. Phys. J. C* **81** no. 4, (2021) 313, arXiv:2010.02098 [hep-ex].

[138] B. A. Dobrescu and F. Yu, “Exotic Signals of Vectorlike Quarks,” *J. Phys. G* **45** no. 8, (2018) 08LT01, arXiv:1612.01909 [hep-ph].

[139] *CMS* Collaboration, A. M. Sirunyan et al., “Search for vector-like T and B quark pairs in final states with leptons at √s = 13 TeV,” *JHEP* **08** (2018) 177, arXiv:1805.04758 [hep-ex].

[140] *ATLAS* Collaboration, M. Aaboud et al., “Search for pair production of heavy vector-like quarks decaying into high-pT W bosons and top quarks in the lepton-plus-jets final state in pp collisions at √s = 13 TeV with the ATLAS detector,” *JHEP* **08** (2018) 048, arXiv:1806.01762 [hep-ex].

[141] M. J. Baker, P. Cox, and R. R. Volkas, “Radiative muon mass models and (g−2)μ,” *JHEP* **05** (2021) 174, arXiv:2103.13401 [hep-ph].

[142] *CMS* Collaboration, A. M. Sirunyan et al., “Evidence for Higgs boson decay to a pair of muons,” *JHEP* **01** (2021) 148, arXiv:2009.04363 [hep-ex].

[143] *ATLAS* Collaboration, G. Aad et al., “A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector,” *Phys. Lett. B* **812** (2021) 135980, arXiv:2007.07830 [hep-ex].

[144] S. Saad and A. Thapa, “Common origin of neutrino masses and R(D), R(K) anomalies,” *Phys. Rev. D* **102** no. 1, (2020) 015014, arXiv:2004.07880 [hep-ph].

[145] S. Saad, “Combined explanations of (g−2)μ, R(D), R(K) anomalies in a two-loop radiative neutrino mass model,” *Phys. Rev. D* **102** no. 1, (2020) 015019, arXiv:2005.04352 [hep-ph].

[146] J. Julio, S. Saad, and A. Thapa, “Marriage between neutrino mass and flavor anomalies,” arXiv:2203.15499 [hep-ph].

[147] H. Päs and E. Schumacher, “Common origin of R(K) and neutrino masses,” *Phys. Rev. D* **92** no. 11, (2015) 114025, arXiv:1510.08757 [hep-ph].

[148] K. Cheung, T. Nomura, and H. Okada, “Testable radiative neutrino mass model without additional symmetries and explanation for the b → sℓ+ℓ− anomaly,” *Phys. Rev. D* **94** no. 11, (2016) 115024, arXiv:1610.02322 [hep-ph].

[149] F. F. Deppisch, S. Kulkarni, H. Päs, and E. Schumacher, “Leptoquark patterns unifying neutrino masses, flavor anomalies, and the diphoton excess,” *Phys. Rev. D* **94** no. 1, (2016) 013003, arXiv:1603.07672 [hep-ph].

[150] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R. Volkas, “Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass,” *JHEP* **10** (2017) 047, arXiv:1704.05849 [hep-ph].

[151] S.-Y. Guo, Z.-L. Han, B. Li, Y. Liao, and X.-D. Ma, “Interpreting the R(K) anomaly in the colored Zee–Babu model,” *Nucl. Phys. B* **928** (2018) 435–447, arXiv:1707.00522 [hep-ph].

[152] C. Hati, G. Kumar, J. Orloff, and A. M. Teixeira, “Reconciling B-meson decay anomalies with neutrino masses, dark matter and constraints from flavour violation,” *JHEP* **11** (2018) 011, arXiv:1806.10146 [hep-ph].

[153] A. Datta, D. Sachdeva, and J. Waite, “Unified explanation of b → sµ+µ− anomalies, neutrino masses, and B → πK puzzle,” *Phys. Rev. D* **100** no. 5, (2019) 055015, arXiv:1905.04046 [hep-ph].

[154] O. Popov, M. A. Schmidt, and G. White, “R2 as a single leptoquark solution to R(D) and R(K),” *Phys. Rev. D* **100** no. 3, (2019) 035028, arXiv:1905.06339 [hep-ph].

[155] P. B. Dev, R. Mohanta, S. Patra, and S. Sahoo, “Unified explanation of flavor anomalies, radiative neutrino mass and ANITA anomalous events in a vector leptoquark model,” arXiv:2004.09464 [hep-ph].

[156] K. S. Babu, P. S. B. Dev, S. Jana, and A. Thapa, “Unified framework for B-anomalies, muon g − 2 and neutrino masses,” *JHEP* **03** (2021) 179, arXiv:2009.01771 [hep-ph].

[157] T. Aushev et al., “Physics at Super B Factory,” arXiv:1902.5012 [hep-ex].

[158] *BaBar* Collaboration, B. Aubert et al., “Searches for Lepton Flavor Violation in the Decays tau+ → e+γ and tau+ → μ+γ,” *Phys. Rev. Lett.* **104** (2010) 021802, arXiv:0908.2381 [hep-ex].
[159] Belle Collaboration, J. Grygier et al., “Search for $B \to h\nu\bar{\nu}$ decays with semileptonic tagging at Belle,” *Phys. Rev. D* **96** no. 9, (2017) 091101, [arXiv:1702.03224 [hep-ex]]. [Addendum: Phys.Rev.D 97, 099902 (2018)].