Influence of Mycorrhiza and Phosphorus on Physiological Parameters of Leaves of Litchi (Litchi chinensis Sonn.) Layers

Priyanka Kumari¹, R. R. Singh¹, Ruby Rani¹, Mahendra Singh² and Uday Kumar³

¹Department of Horticulture (Fruit and Fruit Technology), Bihar Agricultural University, Sabour, Bhagalpur, Bihar-813210, India.
²Department of Soil Science and Agricultural chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar-813210, India.
³Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar-813210, India.

Authors' contributions

This work was carried out in collaboration among all authors. Author PK designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors RRS, RR and MS correct the manuscript and managed the analyses of the study. Author UK managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

Litchi (Litchi chinensis Sonn.), is delicious juicy fruit of India having excellent nutritional quality. It has a great potential to earn foreign exchange in the national and international market through export. Slow plant growth and high rate of mortality in initial stage of plant establishment are the major problem of litchi. Increasing photosynthetic activity through exploiting photosynthetic, components are major target. The carotenoid and chlorophyll content are one of the major components that affect the photosynthetic activity of plant. Arbuscular mycorrhizal (AM) fungi are beneficial symbiotic soil microorganisms and AM technology can find its potential application in the nursery of horticultural industry. When AM fungi have been successfully applied to many wood fruit...
1. INTRODUCTION

Litchi (Litchi chinensis Sonn.), is subtropical fruit tree native to the area between southern china, northern Viet Nam and Myanmar belong to the Sapindaceae family, is an important fruit crop that is widely cultivated in the world [1]. The fruit are fleshy drupes with an edible aril surrounded by the pericarp. China is leading producer country with 950 thousand metric tons in term of production in the world [2]. Litchi has been historically propagated by marcottage, and this is the most common method of propagation employed by commercial nurseries. Other methods of propagation like seeds, cutting, budding and grafting are not expedient, as they may lead to either long juvenile period or improper establishment of the litchi seedlings [3]. Marcottage (air branch-layering, Chinese layering, air-grafting, gootee, guti or marcotting) has been practiced by the Chinese for over 300 for propagating litchi [4]. Marcots come into bearing early, although they have a shallow root system and thus lead to obtaining profitable returns quite early. Nursery is the backbone of the fruit production and healthy planting material is the prerequisite for establishment of the orchard. Hence the poor establishment of the air-layers in the nursery is the major hindrance in obtaining optimum returns. This may be due to several factors namely, root thickness, genetic difference, insect and pathogen attack, unfavourable climatic conditions, low phosphorus uptake and other essential nutrients. The enhanced P uptake and phytohormones (IAA and iPAs) seemed to account for the changes in plant growth. However, information of AM fungal effect on rootstock seedlings is very rare. Photosynthesis is the basis of carbohydrate accumulation in plants and it improves photosynthesis together with increase the nutrient uptake by AM fungi contribute to the enhance the biomass of many plants [5,6]. The arbuscular mycorrhizal (AM) symbiosis affects plant hormone biosynthesis and plant metabolism [7,8,9,10,11]. Effects of the AM symbiosis are observed not only in colonized root systems but also in the above ground part of plants (leaves, flowers and fruits) [10,12,13]. In fruit crops, AMF colonization stimulates growth [14,15], enhances photosynthesis [16]. Barea and Azcón-Aguilar [17] reported that the presence of substances like auxin, gibberellins, and cytokin have been found in G. mosseae extracts. While some studies have reported the lack of any effect of the AM symbiosis on auxin levels [18], it is known that AMF colonization can increase the concentration in planta of molecules with auxinic activity [19,20]. In addition, a synergistic effect of AMF and rhizobia on the production of IAA was shown in the roots and nodules of Vigna mungo [21]. Phosphorus is one of the important plant nutrients that involved and plays important role in plant Functions like photosynthesis, movement of nutrient within the plant, transformation of sugars and starches, and transfer of genetic characteristics from one generation to the next are mediated through phosphorus. The mycorrhizae thus increase the nutrient-uptake ability of the plant. The pigments are involved to the process of photosynthesis activity and increasing photosynthetic activity enhances higher accumulation of synthesized organic compound which helps development of

Keywords: Litchi chinensis; mycorrhiza; chlorophyll; carotenoid.

Tree species, little information is available in litchi. Therefore, the pot experiment was undertaken to study the influence of phosphorus (50 mg and 75 mg), mycorrhiza (G. mosseae and G. coronatum) alone and in combination. The treatment significantly influenced the changes in chlorophyll and carotenoid content in leaves of litchi samplings in nursery stage. After 120 days of inoculation both the species of mycorrhiza alone and in combination with phosphorus application were very effective with the highest level of total chlorophyll content of (2.474 mg/g fr. wt) in case T₅ G. mosseae 10 g + Phosphorus 50 mg. Significantly lowest value of chlorophyll was noted in T₀ control (2.090 mg/g fr.wt). Carotenoid content was also measured maximum in T₅ G. mosseae 10 g + Phosphorus 50 mg (0.154 mg/g fr. wt.) as compare to T₀ control with (0.065 mg/g fr. wt.). Relative water content (RWC) after 60, 90 and 120 DAI significantly differentiate. Maximum RWC in case T₅ G. mosseae 10 g + Phosphorus 50 mg (31.43%) which was statistically equal with G. coronatum 10 g + P 50 mg (31.14%). Significantly influencing specific leaf weight at different date of observations. The performance was maximum found in T₅ G. mosseae 10 g + Phosphorus 50 mg (7.28%) as compare to T₀ control (4.44%). Significant effect of treatments on leaf parameters of litchi layers pertaining number of leaves per flush and length of flush is maximum with T₅ G. mosseae 10 g + Phosphorus 50 mg (5 - 8) and (10.2 cm).
2.1 Plant Materials and Experimental Design

The experiments were carried out at Bihar Agricultural University, Sabour during 2018-19 on uniform sized layered plants of litchi cultivar Purbi. The treatments were phosphorus (50 mg and 75 mg per kg of pot mixture) quantity of SS, mycorrhiza (G. mosseae and G. coronatum) at 10 g per kg of pot mixture alone and in combination with phosphorus viz., T₀ Control (Uninoculated), T₁ G. mosseae @ 10 g kg⁻¹ of soil, T₂ G. coronatum, @ 10 g kg⁻¹ of soil, T₃ Phosphorus @ 50 mg kg⁻¹ of soil, T₄ Phosphorus @ 75 mg kg⁻¹ of soil, T₅ G. mosseae 10 g + Phosphorus 50 mg kg⁻¹ of soil, T₆ G. mosseae 10 g + Phosphorus 75 mg kg⁻¹ of soil, T₇ G. coronatum 10 g + Phosphorus 50 mg kg⁻¹ of soil, T₈ G. Coronatum 10 g + Phosphorus 75 mg kg⁻¹ of soil, Treatments were applied immediately after separation of litchi layers from their mother plant. Estimation of chlorophyll content, carotenoid content of leaf, relative water content, specific leaf weight, number of leaves per flush and length of flush were taken at 30 days interval till 120 days after inoculation.

The experiment was conducted on a completely Randomized Block Design (CRD) according to Gomez and Gomez [26]. The mean difference was tested by F-test at (5%) level of significance. Critical difference at 5% level of significance was used for comprising among the treatments.

2.2 Chlorophyll Estimation

Chlorophyll contents a, b and total chlorophyll was estimated using acetone method with little modification as given by Arnon [27]. Leaf samples were collected at initial stage of flush emergence. Fully expanded leaf was used as materials for extraction and estimation of chlorophyll. 0.2 gram of freshly collected leaf material (devoid of mid-rib) were homogenized in 8 ml 80% acetone using mortar and pestle. The homogenate was then centrifuge at 4°C for 15 min at 15000 rpm. The supernatant collected carefully read the absorbance at 663 and 645 nm. Total Chlorophyll are determined by using the formula given below:

\[
\text{Total Chlorophyll} = \left[\left(8.02 \times A_{663}\right) + \left(20.2 \times A_{645}\right)\right] \times V/1000 \times W
\]

2.3 Carotenoids Estimation

Estimation of carotenoids at continues 30 days interval viz., 60, 90 and 120 DAI. Estimation of carotenoids was performed by the method with little modification [28]. Leaf sample of 0.2 g was homogenized in 80% acetone. As mentioned in the chlorophyll estimation process, carotenoids were extracted and after centrifugation supernatant was used for spectrophotometric reading. An absorbance was recorded at three different wavelengths such as 663nm, 645 nm and 480 nm. Carotenoids content was calculated using.
3. RESULTS AND DISCUSSION

The litchi plants responded positively to the application of varying concentration of the AMF and inorganic phosphorus alone and in combination. All the mycorrhizal inoculated plants showed higher total chlorophyll, carotenoids, relative leaf water content, specific leaf weight, flush length and number of leaves per flush. Variation in the contents of chlorophyll was noticed amongst the treatments studied and also in flushes. Data depicted (Table 1) revealed that the highest total chlorophyll increased but treatment effect not performed after 60 days planting while after 90 days and 120 days total chlorophyll increased significantly under all the treatments.

On second day of observation (90 DAI) the maximum chlorophyll (1.603 mg/g fr.wt.) was recorded in case T5 G. mosseae 10 g + P 50 mg which was significantly similar with T7 G. coronatum 10 g + Phosphorus 50 mg (1.588 mg/g fr.wt.), T6 G. mosseae10 g + Phosphorus 75 mg (1.507 mg/g fr.wt.), T3 Phosphorus 50 mg (1.507 mg/g fr.wt.) and T1 G. mosseae 10 g (1.477 mg/g fr.wt.). The minimum total chlorophyll (1.011 mg/g fr.wt.) was observed in T0 Control. 120 days after planting the highest level of chlorophyll content of 2.474 mg/g fr.wt. Was found in treatment T5 G. mosseae 10 g + Phosphorus 50 mg which was at par with T6, T7, T8, T1 and T2 with respective values of (2.411, 2.401, 2.398, 2.413 and 2.394 mg/g fr.wt.). Significantly lowest value of chlorophyll was noted in T8 Control (2.090 mg/g fr.wt.). Gradual increase in chlorophyll content was noted under all the treatments with passes of time after treatment application. All the treatments significantly increased the chlorophyll content. In sour orange, Nemec and Vu [31] observed increased chlorophyll on inoculation with Glomus spp. Inoculation of glass house grown apple seedlings with AM species increased chlorophyll content Sharma and Bhutani [31].

The data (Table 2) revealed that the second day of observation (90 DAI) the significantly highest carotenoids (0.136 mg g-1 fr.wt.) was recorded in case T5 G. mosseae 10 g + Phosphorus 50 mg which was followed by T7 G. coronatum 10 g + Phosphorus 50 mg (0.130 mg g-1 fr.wt.), T6 G. mosseae10 g + Phosphorus 75 mg (0.123 mg g-1 fr.wt.), T3 Phosphorus 50 mg (0.123 mg g-1 fr.wt.). The minimum carotenoids (0.059 mg g-1 fr.wt) was observed in T0 Control. After 120 days inoculation the highest level of carotenoids content of (0.154 mg g-1 fr.wt) was found in treatment T6 G. mosseae 10 g + Phosphorus 50 mg which was followed by T7 G. coronatum 10 g + Phosphorus 50 mg (0.146 mg g-1 fr.wt.), T6 G. mosseae10 g + Phosphorus 75 mg (0.135 mg g-1 fr.wt). Significantly lowest value of carotenoids was noted in T0 Control (0.065 mg g-1 fr.wt.). Gradual increase in carotenoids content was noted under all the treatments with passes of time after treatment application. All the treatments significantly increased the carotenoids content except T0 control. The result also revealed an increasing concentration of carotenoids with increasing chlorophyll content.

Formula:

\[\text{RWC} = \frac{\text{Fresh weight} - \text{Oven dry weight}}{\text{Turgid weight} - \text{Oven dry weight}} \times 100 \]

Specific leaf weight - It is just reverse to specific leaf area and it was measured by using following Formula:

\[\text{SLW} = \frac{\text{Leaf weight}}{\text{Leaf area}} \]
Table 1. Effect of mycorrhiza and inorganic phosphorus on total chlorophyll (mg g\(^{-1}\) fr.wt.) of litchi layers

S. No	Treatments	Concentration	60 DAI	90 DAI	120 DAI
T\(_0\)	Control	No application	0.613	1.011	2.090
T\(_1\)	G. mosseae	10 g kg\(^{-1}\) of soil	0.675	1.477	2.413
T\(_2\)	G. coronatum	10 g kg\(^{-1}\) of soil	0.670	1.459	2.394
T\(_3\)	Phosphorus	50 mg kg\(^{-1}\) of soil	0.688	1.507	2.265
T\(_4\)	Phosphorus	75 mg kg\(^{-1}\) of soil	0.619	1.392	2.170
T\(_5\)	G. mosseae + Phosphorus	10 g + 50 mg kg\(^{-1}\) of soil	0.739	1.603	2.474
T\(_6\)	G. mosseae + Phosphorus	10 g + 75 mg kg\(^{-1}\) of soil	0.688	1.507	2.401
T\(_7\)	G. coronatum + Phosphorus	10 g + 50 mg kg\(^{-1}\) of soil	0.726	1.588	2.411
T\(_8\)	G. coronatum + Phosphorus	10 g + 75 mg kg\(^{-1}\) of soil	0.685	1.457	2.398

CD (P=0.05) - NS 0.128 0.154
CV (%) - 5.183 3.872

DAI-Date after inoculation, fr.wt. – Fresh weight

Table 2. Effect of mycorrhiza and inorganic phosphorus on carotenoids (mg g\(^{-1}\) fr.wt.) of litchi layers

S. No	Treatments	Concentration	60 DAI	90 DAI	120 DAI
T\(_0\)	Control	No application	0.051	0.059	0.065
T\(_1\)	G. mosseae	10 g kg\(^{-1}\) of soil	0.102	0.118	0.130
T\(_2\)	G. coronatum	10 g kg\(^{-1}\) of soil	0.098	0.114	0.125
T\(_3\)	Phosphorus	50 mg kg\(^{-1}\) of soil	0.095	0.107	0.116
T\(_4\)	Phosphorus	75 mg kg\(^{-1}\) of soil	0.088	0.099	0.107
T\(_5\)	G. mosseae + Phosphorus	10 g + 50 mg kg\(^{-1}\) of soil	0.118	0.136	0.154
T\(_6\)	G. mosseae + Phosphorus	10 g + 75 mg kg\(^{-1}\) of soil	0.109	0.123	0.135
T\(_7\)	G. coronatum + Phosphorus	10 g + 50 mg kg\(^{-1}\) of soil	0.114	0.130	0.146
T\(_8\)	G. coronatum + Phosphorus	10 g + 75 mg kg\(^{-1}\) of soil	0.105	0.121	0.132

CD (P=0.05) - NS 0.009 0.009
CV (%) - 4.728 4.140

DAI-Date after inoculation
Table 3. Effect of mycorrhiza and inorganic phosphorus on relative leaf water content (%) in litchi layers

S. No	Treatments	Concentration	60 DAI	90 DAI	120 DAI
T₀	Control	No application	25.37	26.16	23.03
T₁	G. mosseae	10 g kg⁻¹ of soil	32.89	36.41	29.28
T₂	G. coronatum	10 g kg⁻¹ of soil	32.59	34.71	27.28
T₃	Phosphorus	50 mg kg⁻¹ of soil	28.70	30.61	25.91
T₄	Phosphorus	75 mg kg⁻¹ of soil	26.66	28.63	25.68
T₅	G. mosseae + Phosphorus	10 g +50 mg kg⁻¹ of soil	37.78	39.09	31.43
T₆	G. mosseae + Phosphorus	10 g+ 75 mg kg⁻¹ of soil	32.16	35.10	30.47
T₇	G. coronatum + Phosphorus		38.71	31.14	
T₈	G. coronatum + Phosphorus		34.77	30.07	
CV (%)			4.21	4.22	3.40
CD (P=0.05)			2.26	2.42	1.63

DAI-Day after inoculation

Table 4. Effect of mycorrhiza and inorganic phosphorus on specific leaf wt. (%) in litchi layers

S. No	Treatments	Concentration	60 DAI	90 DAI	120 DAI
T₀	Control	No application	3.63	3.39	4.44
T₁	G. mosseae	10 g kg⁻¹ of soil	5.31	4.20	6.34
T₂	G. coronatum	10 g kg⁻¹ of soil	5.29	4.17	6.33
T₃	Phosphorus	50 mg kg⁻¹ of soil	5.28	4.15	5.19
T₄	Phosphorus	75 mg kg⁻¹ of soil	4.57	4.13	4.89
T₅	G. mosseae + Phosphorus	10 g +50 mg kg⁻¹ of soil	6.22	5.77	7.28
T₆	G. mosseae + Phosphorus	10 g+ 75 mg kg⁻¹ of soil	5.33	5.72	7.05
T₇	G. coronatum + Phosphorus		6.18	5.75	7.18
T₈	G. coronatum + Phosphorus		5.30	5.72	6.97
CV (%)			1.51	4.21	5.11
CD (P=0.05)			0.13	0.35	0.54

DAI-Date after inoculation
Specific supports the present finding.

Relative leaf water content was significantly influenced by different treatments. The data depicted in (Table 3) was recorded after 60 days inoculation maximum RWC in T5 G. mosseae + Phosphorus 50 mg (31.62%) which was statistically equal to each other. Minimum RWC was recorded in untreated T0 Control (25.37%). At 90 days after inoculation same inclination was found while 120 days after inoculation highest relative water content was observed in T5 G. mosseae + Phosphorus 50 mg (31.43%) which was statistically equal with T7 G. coronatum 10 g + P 50 mg (31.07%). It was followed by T5 G. mosseae 10 g (29.82%) and T2 G. coronatum 10 g (27.28%) and minimum was observed in T0 Control (23.03%). Present study supported by Sheng et al., [33] represented that relative water content in the leaves was higher in mycorhizal inoculated plant than non-mycorrhizal which supports the present finding.

The data depicted in (Table 4) pertaining to Specific leaf weight (SLW) clearly indicated that treatments differed significantly in influencing SLW at different date of observations. The performance was better found in T5 G. mosseae 10 g + Phosphorus 50 mg (6.22%) which was at par with T7 G. coronatum 10 g + Phosphorus 50 mg (6.18%) after 60 days inoculation followed by application of T6 G. mosseae 10 g + Phosphorus 75 mg (5.72%), T1 G. mosseae 10 g (5.31%), T8 G. coronatum 10 g + Phosphorus 75 mg (5.30%), T2 G. coronatum 10 g (5.29%) and T3 Phosphorus 50 mg (5.28%) which was statistically equal with each other. Minimum SLW of (3.63%) was recorded in control. After 90 days inoculation maximum specific leaf wt. observed in T5 G. mosseae 10 g + Phosphorus 50 mg (5.77%) which was statistically similar with T7 G. coronatum 10 g + Phosphorus 50 mg (5.75%), T6 G. mosseae 10 g + Phosphorus 75 mg (5.72%) Minimum found in Phosphorus 75 mg (4.13%) which was at par with other treatments except control. After 120 days inoculation same inclination of treatments was noted with maximum SLW of (7.28%) in case T5 G. mosseae 10 g + Phosphorus 50 mg that was statistically similar to T6, T7 and T8 with respective SLW of (7.05%, 7.18% and 6.97%). Significantly minimum SLW of (4.44%) was noted under control. Present study supported by Sheng et al., [33] represented that relative specific leaf wight in the leaves of layered litchi was higher in mycorrhizal inoculated plant than non- mycorrhizal which supports the present finding.

The data collected in (Table 5) pertaining to Significant effect of treatments on leaf parameters of litchi layers pertaining to number of leaves per flush and flush length was also observed. T7 (G. mosseae 10 g + Phosphorus 50 mg) is the longest of flush with 10.2 cm followed

Table 5. Effect of mycorrhiza and inorganic phosphorus on flush length (cm) and number of leaves per flush in litchi layers

S. No	Treatments	Length of flush	No. leaves/flush				
		60 DAI	90 DAI	120 DAI	60 DAI	90 DAI	120 DAI
T0	Control	6.7	5.7	5.9	6.7	5.7	5.9
T1	G. mosseae	7.2	6.7	6.6	7.2	6.7	6.6
T2	G. coronatum	7.9	7.2	7.1	7.9	7.2	7.1
T3	Phosphorus	7.9	7.4	7.6	7.9	7.4	7.6
T4	Phosphorus	7.9	7.4	7.6	7.9	7.4	7.6
T5	G. mosseae + Phosphorus	7.9	7.4	7.6	7.9	7.4	7.6
T6	G. mosseae + Phosphorus	7.9	7.4	7.6	7.9	7.4	7.6
T7	G. coronatum + Phosphorus	7.9	7.4	7.6	7.9	7.4	7.6
T8	G. coronatum + Phosphorus	7.9	7.4	7.6	7.9	7.4	7.6

DAI - Date after inoculation

This may be due to the shielding activity of Carotenoids towards chlorophyll oxidation under high light. Present study supported by Neha et al., [32] reported that Carotenoid content was also measured maximum in Bedana (0.12 mg g-1 fr. wt) followed by Shahi (0.11 mg g-1 fr. wt), Deharose (0.087 mg g-1 fr. wt), Purbi (0.079 mg g-1 fr. wt.) and China (0.056 mg g-1 fr. wt.).

The data collected in (Table 5) pertaining to number of leaves per flush in litchi layers is the longest of flush with 10.2 cm followed.
by T7 (G. coronatum 10 g + Phosphorus 50 mg) treatment with 9.8 cm after 120 days of inoculation and Number of leaves per flush was also noted for all treatments in which T5 (G. mossea 10 g + Phosphorus 50 mg) and T7 (G. coronatum 10 g + Phosphorus 50 mg) has been noticed with maximum number of leaves i.e. (5 - 8) and (5 - 7). Present study supported by Singh and Kushwah [34] also reported that the importance and contributions of leaf flushing towards litchi trees adaption under a strong seasonal subtropical climate. Increase in number of leaves might be due to better mobilization of nutrient and water from rhizosphere as the fungal hyphae of AM fungi goes up to (11 cm) even beyond the rhizosphere causing better exploitation of soil nutrients [35]. The increased level of cytokines as influenced with AM fungi inoculation might have caused higher leaf production and increased plant height as reported by Rawat et al., [36].

4. CONCLUSION

The influence of phosphorus (50 mg and 75 mg) mycorrhiza (G. mossea and G. coronatum) alone and in combination. The treatment significantly influenced the changes in chlorophyll, carotenoids content, Relative water content, specific leaf weight, number of leaves per flush and length of flush in leaves of litchi saplings in nursery stage. After 120 days of inoculation both the species of mycorrhiza combination with phosphorus application were very effective as evident from the results, highest Total chlorophyll content is (2.474 mg g - 1 fr. wt.), Carotenoids (0.154 mg g-1 fr.wt.), RLW (31.43%), SLW(7.28%), number of leaves per flush and length of flush (5 - 8) and (10.2 cm) was analysed in case T5 G.mossea10 g + Phosphorus 50 mg kg-1 of soil. Hence, the treatment G. mossea 10 g + Phosphorus 50 mg can be used as the best treatment to increase the healthy planting material and survival of litchi cv. Purbi without hampering the soil fertility status.

ACKNOWLEDGEMENT

The authors are highly thankful to the Department of Horticulture (Fruit and Fruit Technology), Bihar Agricultural University, Sabour and Bhagalpur for providing all facilities to carry out this research work. This research work was financially supported by Department of Horticulture (Fruit and Fruit Technology) and my Major advisor Dr. R. R. Singh (University Professor– cum- Senior-Scientist and Dean Agriculture of B.A.U, Sabour).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Menzel C. The lychee crop in Asia and the pacific. Bangkok, Thailand. FAO/RAP Publication; 2002.
2. Jiang Y, Gao H, Zhang M. Lychee (Litchi). In: Siddiq M (Ed). Tropical and Subtropical Fruit: Postharvest Physiology, Processing and Packaging, 1st edn. John Wiley & Sons, Inc., New Delhi, India. 2012;241-258.
3. Pande RM, Sharma HC. The litchi. ICAR, New Delhi, India. 1989;80.
4. Li LY, Li CS. An improved method of air-layering lychee tree. Fukien. Agriculture Journal. 1949;11:1-6.
5. Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency and growth of frankincense seedlings under pulsed water availability conditions. Oecologia. 2012;169:895-904.
6. Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X. Arbuscular mycorrhizae improve photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment. 2012;58:186-191.
7. Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C. IAA and ZR content in leek (Allium porrum L.) as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil. 2000;226:29–35.
8. Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G. Proteomic analysis of Pterisvittatafronds: Two arbuscular mycorrhizal fungi differendially modulate protein expression under arsenic contamination. Proteomics. 2010;10:3811–3834.
9. Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S. Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone.
grown on a zinc and copper contaminated soil. Environment Experiment Botanical. 2012;75:25–35.

10. Lingua G, Bona E, Todeschini V, Cattaneo C, Marsano F, Berta G, Cavalletto M. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: A time course analysis. PLoS One. 2012;7:38662.

11. Baslam M, Esteban R, García-Plazaola JI, Goicoechea N. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology Biotechnology. 2013;3119- 3128.

12. Guerrieri E, Lingua G, Dígilio MC, Massa N, Berta G. Do interactions between plant roots and the rhizosphere affect parasitoid behaviour?. Ecological Entomology. 2004;29:753–756.

13. Copetta A, Lingua G, Berta G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza. 2006;16:485–494.

14. Hršelova H, Grindler H, Vancura V. Influence of inoculation with VA mycorrhizal fungus Glomus sp. on growth of strawberries and runner formation. In: Agriculture Ecosystems and Environment. Elsevier Science Publishers B.V., Amsterdam. 1989;193–197.

15. Gryndler M, Vosatka M, Hršelova H, Catska V, Chvalatova I, Jansa J. Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. Journal Plant Nutrition. 2002;25:1341–1358.

16. Burkowska B. Growth and photosynthetic activity of micro propagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiological Plant. 2002;24:365–370.

17. Barea J, Azcón-Aguilar C. Production of plant growth-regulating substances by the vesicular- arbuscular mycorrhizal fungus Glomus mosseae. Applied Environment Microbiology. 1982;43:810–813.

18. Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch HJ, Bothe H. Influence of vesicular-arbuscular mycorrhiza on phytohormone balance sinmaize (Zea mays L.). Journal Plant Physiology.1993;141:33–39.

19. Yao Q, Zhu HH, Chen JZ. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Scientia Horticulture. 2005;105:145–151.

20. Jentschel K, Thiel D, Rehn F, Ludwig-Müller J. Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiology Plant. 2007;129:320–333.

21. Chakraborti J, Chatterjee S, Ghosh S, Chatterjee NC, Dutta S. Synergism of VAM and Rhizobium on production and metabolism of IAA in roots and root nodules of Vigna mungo. Current Microbiology. 2010;61:203-209.

22. Kadam VB, Deore SV, Kadam UB. Estimation of chlorophyll content in leaves of Trigonella foenum–graecum Linn. World. Journal Pharm. Pharmaceutical Science. 2017;6:569–572.

23. Kadam VB, Tambe SS, Fatima S, Kadam UB, Wadikar MS. Biochemical analysis of leaves of some medicinal plants of Marathwada region in Maharashtra. Journal Biomed Pharmaceutical Research. 2013;2:27-30.

24. Momin RK, Kadam VB. Biochemical analysis of leaves of some medicinal plants of genus Sesbania. Journal Ecobiotechnology. 2011;3:14-16.

25. Anonymous. The Useful plants of India. CSIR, New Delhi, India; 1986.

26. Gomez KA, Gomez AA. Statistical procedures for agricultural research. Wiley and Sons, New York; 1984.

27. Arnon DI. Copper enzymes in isolated chloroplast: Polyphenol oxidases in Beta vulgaris. Plant Physiology. 1949;24:1-14.

28. Hendry GAF, Price AH. Stress indicators chlorophyll and carotenoids. In: Methods in Comparative Plant Ecology- A Laboratory Manual. Hendry GF, Grime JP. (eds.). Chapman and Hall, London. 1993;148-152.

29. Weatherley PE. Studies in water relations of the cotton plant. The field measurement of water deficits in leaves. New phytology. 1950;49:81-87.
30. Nemec S, Vu JCV. Effect of soil P and Glomus intraradices on growth, non-structural carbohydrates and photosynthetic activity of Citrus aurantium. Plant Soil. 1990;128:257-263.

31. Sharma SD, Bhutani VP. Response of apple seedlings to VAM, Azotobacter and inorganic fertilizers. Horticulture Journal. 1998;11(1):1-8.

32. Kumari N, Nahakpam S, Rani R. Changing pattern of chlorophyll content and carotenoid in different flushes of five litchi varieties. Journal of Pharmacognosy and Phytochemistry. 2018;1:719-722.

33. Sheng M, Tang M, Chen H, Yang B, Zang F, Huang Y. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 2008;18:287-296.

34. Singh KP, Kushwaha CP. Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. 2006;97(2):265-27.

35. Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil. 1994;65(3):89-102.

36. Rawat A, Mishra NK, Mishra DS, Kumar P, Rai RB, Damodaran T. Concentration mediated effect of arbuscular mycorrhizal fungi (AMF) on growth and nutrition of air layered litchi plants. International Journal of Current Research. 2013;5(07):1730-1734.

© 2020 Kumari et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/56581