Material removal rate of double-faced mechanical polishing of 4H-SiC substrate

Peng Zhang1,2 · Jingfang Yang1,2 · Huadong Qiu1,2

Received: 16 April 2021 / Accepted: 7 October 2021 / Published online: 21 October 2021 © The Author(s), under exclusive license to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Silicon carbide (SiC) has been a promising third-generation semiconductor power device material for high-power, high-temperature, and substrate applications. However, under certain surface quality requirement, its current processing efficiency is the bottleneck. Therefore, it aims to improve the material removal rate (MRR), on the premise of ensuring the surface roughness requirements. To obtain the relationship between any point on SiC substrate and polishing pads, the model about double-faced mechanical polishing has been established, and the kinematics equations have been created. Best optimized material removal rate parameters were obtained. MRR reached the maximum when speed rate of the outside ring gear to the inside sun gear \(m = -1 \), speed rate of lower plate to the inside sun gear \(n = 5 \), and SiC substrate distribution radius \(RB = 75 \). The primary and secondary order of MRR \((n>m>RB)\) was obtained. An accurate mathematical model of orthogonal rotary regression test of Tri-factor quadratic of MRR was established, and the regression model was significant. Surface quality of SiC substrate was observed and characterized with SEM and AFM. It greatly provides a key guarantee for the next process of CMP, confirms the importance of MRR to ultra-smooth polishing, and provides a guarantee for its application in semiconductor equipment and technology.

Keywords Material removal rate · Polishing · Orthogonal · Kinematic · Regression analysis

1 Introduction

Development of semiconductor industry has been closely related to the national defense, military, aerospace, energy, and other important areas of science and technology [1, 2]. Silicon carbide (SiC) is a typical representative of wide-band gap semiconductor materials, which can be used as a substrate for growing gallium nitride (GaN) and graphene [3–5]. It also has become an ideal semiconductor material for producing high-temperature, high-frequency, and high-power electric power devices [6, 7].

Ultra-smooth polishing of the SiC substrate was required atomic surface roughness [8–10]. At present, the biggest problem was that the processing efficiency was too low on the premise of ensuring the surface quality. However, the double-faced mechanical polishing (MP) process was the key to ensure a certain surface roughness (Ra) and the high efficient material removal rate (MRR). At the same time, it was the crux of chemical mechanical polishing (CMP) in the next step. Michio et al. [11] reported that when the ozone gas bubbles are applied to the conventional slurry, surface reaction products can be produced to obtain higher MRR than dedicated slurry. Pan et al. [12] found that the MRR could reach 45nm/h, when polished with H2O2 and silica slurry. Meanwhile, MRR could increase to 105nm/h in CMP of SiC. Many researchers have analyzed the relationship between MRR and surface roughness[13–15].

In this paper, kinematic equations of SiC substrate during double-faced polishing were analyzed. The accurate mathematical model of orthogonal rotary regression test of Tri-factor quadratic of MRR was established, and the parameters affecting MRR were studied.
2 Materials and methods

Experimental materials were used 6 inch N type 4H-SiC. Structure model of double-faced MP was as shown in Fig. 1. The lower plate 1, the upper plate 4, the inside sun gear 5, and the outside ring gear 7 were, respectively, driven by four servo motors. SiC substrates 8 were distributed at the center of five middle planetary gears 6. The five middle planetary gears were caught between the lower pad 2 and the upper pad 3. The upper and the lower pads were, respectively, adhered to each surface of corresponding polishing disk. The five middle planetary gears were meshed with the inside sun gear 5 and the outside ring gear 7 were, respectively, driven by four servo motors. SiC substrates 8 were distributed at the center and the outside ring gear, driving the SiC substrates to realize the motion of revolution and rotation [16, 17].

Kinematic equations of any point on SiC substrate relative to the lower pad during double-faced MP were analyzed. Theoretical model of MRR and the influence of various parameters on the processing efficiency were studied.

Radius of five middle planetary gears represented as R_1. Similarly, the inside sun gear radius was R_2. Rotational speed of the inside sun gear, the outside ring gear, and lower disk was ω_s, ω_r, and ω_p, respectively. Speed of the five middle planetary gears was ω_h. Furthermore, it was equivalent to that the five middle planetary gears only just revolved on its axis with an angular velocity ω_s when $-\omega_h$ added to the whole model. We selected certain point B (R_B, φ) on the substrate in the coordinate system $X_1O_1Y_1$ and established kinematic equations of the point B relative to lower pad in $X_2O_2Y_2$. Among them, SiC substrate distribution radius $RB=|O_1B|$, $RB\in[0, R_M]$. R_M was the maximum radius of SiC substrate. Besides, φ was the angle between O_1B and O_1X_1. $\varphi\in[0, 2\pi]$. $\theta_1=\omega_s t$, $\theta_2=\omega_h t$, $\theta_3=\omega_p t$. Kinematic equations have been hold follows:

$$
\begin{align*}
\begin{bmatrix}
X_B \\
Y_B
\end{bmatrix} &= \begin{bmatrix}
\cos \theta_3 & -\sin \theta_3 \\
\sin \theta_3 & \cos \theta_3
\end{bmatrix} \cdot \begin{bmatrix}
\cos (-\theta_2) & \sin (-\theta_2) \\
-\sin (-\theta_2) & \cos (-\theta_2)
\end{bmatrix} \cdot \begin{bmatrix}
(R + r) \\
0
\end{bmatrix} + \begin{bmatrix}
\cos \theta_1 \\
\sin \theta_1
\end{bmatrix} \cdot \begin{bmatrix}
RB \cos \varphi \\
RB \sin \varphi
\end{bmatrix} \\
\begin{bmatrix}
X_B \\
Y_B
\end{bmatrix} &= \begin{bmatrix}
RB \cos (\theta_1 + \theta_2 + \theta_3 + \phi) + (R + r) \cos (\theta_2 + \theta_3) \\
RB \sin (\theta_1 + \theta_2 + \theta_3 + \phi) + (R + r) \sin (\theta_2 + \theta_1)
\end{bmatrix}
\end{align*}
$$

(1)

Fig. 1. Model of double-faced MP of SiC single crystal substrate. a Structure figure. b Geometric figure
The results expressed by Equations (1)–(7) were shown the kinematics equations of point B on the surface of SiC relative to lower pad during double-faced MP. XB, VXB, and AXB were, respectively, the components of point B on X axis of the displacement, velocity, and the acceleration. YB, VYB, and AYB were, respectively, the components of point B on Y axis of the displacement, velocity, and the acceleration.

According to the equation Preston [18]:

$$MRR = K \cdot P \cdot V$$

During the polishing time t, the MRR of point B on the SiC substrate surface was as follows:
Substituting Equation (5) into Equation (9), we got:

$$MRR = \frac{K \cdot P \cdot \int_{0}^{t} VBdt}{t}$$ \hspace{1cm} (9)$$

Then substituting Equation (5) into Equation (9), we get:

$$MRR = \frac{K \cdot P \cdot \int_{0}^{t} \left\{ \left[\left(RB \cdot \left(\omega_c + \omega_h + \omega_p \right) \right] + \left[\left(R + r \right) \cdot \left(\omega_h + \omega_p \right) \right] + 2RB \cdot \left(R + r \right) \cdot \left(\omega_h + \omega_p \right) \cdot \left(\omega_h + \omega_p \right) \cdot \cos \left(\omega_c t + \phi \right) \right\} \frac{1}{2} dt}{t}$$ \hspace{1cm} (10)$$

According to the transmission ratio relationship of the composite gear train:

$$i_{sr}^h = \frac{\omega_r^h}{\omega_r} = \frac{\omega_s - \omega_r}{\omega_s - \omega_r} = -\frac{Z_r}{Z_s}$$ \hspace{1cm} (11)$$

$$i_{sc}^h = \frac{\omega_c^h}{\omega_c} = \frac{\omega_s - \omega_h}{\omega_s - \omega_h} = -\frac{Z_c}{Z_s}$$ \hspace{1cm} (12)$$
Table 4 Variance analysis of L25

Index	Source	SS	DF	F	Significance
MRR	A	0.489	4	7.562	**
	B	2.219	4	34.314	**
	C	0.004	4	0.062	
	Error	0.19	12		

Note: F_{0.01} (4, 12) = 5.410, **means 0.01 levels significant

According to formula (8), it is assumed that the pressure \(P \) in Preston equation is constant pressure.

Because polishing parameters \(K \) and polishing pressure \(P \) were constants and initial angle \(\phi_0 \) has no effect on \(MRR \), in order to facilitate normalization of simulation analysis, we set \(K = 1 \), \(P = 1 \) Pa, initial angle \(\phi_0 = 0^\circ \), \(\omega_s = -20 \) r/min, \(t = 1 \) s. Influence of the three parameters (speed rate of the outside ring gear to the inside sun gear \(m \), speed rate of lower plate to the inside sun gear \(n \), SiC substrate distribution radius \(RB \)) in formula (15) on \(MRR \) was studied.

\[
MRR = \frac{K \cdot P}{t} \int_0^t \left[\left(RB \cdot \frac{Z_s \omega_s + Z_r \omega_r}{Z_s + Z_r} + n \cdot w_i \right)^2 + 2RB \cdot (R + r) \cdot \frac{Z_s \omega_s + Z_r \omega_r}{Z_s + Z_r} + n \cdot w_i \right] \cdot \cos \left(\frac{Z_s \omega_s - Z_r \omega_r}{Z_s + Z_r} \cdot t + \phi \right) dt
\]

(15)

Fig. 4. Influence trend of single factor on \(MRR \)

Table 5 Orthogonal rotary regression test of factors and levels design of L23

Levels	Factors	\(m \)	\(n \)	\(RB \)
\(+r \)	-1.318	4.682	70.23	
\(+1 \)	-2	4	60	
0	-3	3	45	
-1	-4	2	30	
\(-r \)	-4.682	1.318	19.77	

The International Journal of Advanced Manufacturing Technology (2022) 118:3983–3993
MRR = 2.3066 × 10^4 occurs at $m = -1$, $n = 5$, $RB = 75$. That is to say, the closer the speed rate of the outside ring gear to the inside sun gear is to 0, and the greater speed rate of lower plate to the inside sun gear, the larger the SiC substrate distribution radius, the higher the MRR it is. The slice figure of the influence of parameters on MRR was shown in Fig. 2.

In Fig. 2, there are one dependent variable and three independent variables (m, speed rate of the outside ring gear to the inside sun gear; n, speed rate of lower plate to the inside sun gear; RB, SiC substrate distribution radius). From the slice diagram, it can be seen the impact of three dimensional parameters on MRR and the effect of three variables on MRR is $n > m > RB$.

3 Results and discussion

Polishing disks were made of cast iron, while polishing pads were grooved polyurethane polishing pad IC1400. At $T = 25 \, ^\circ\mathrm{C}$, $\omega_s = -20\, \text{r/min}$, $P = 30 \, \text{kPa}$, diamond powder W2.5. Orthogonal tests of three factors and five levels of L_{25} were carried out. Orthogonal test factors and levels were shown in Table 1, and orthogonal test results were shown in Table 2 as follows:

\[
MRR = \frac{\Delta m}{\rho \cdot \pi r^2 \cdot t}
\]

(16)

No.	Factors	m	n	RB	Index
1		-2	4	60	2.32
2		-2	4	30	2.32
3		-2	2	60	1.71
4		-2	2	30	1.71
5		-4	4	60	2.10
6		-4	4	30	2.09
7		-4	2	60	1.55
8		-4	2	30	1.53
9		-1.318	3	45	2.09
10		-4.682	3	45	1.81
11		-3	4.682	45	2.42
12		-3	1.318	45	1.41
13		-3	3	70.23	1.93
14		-3	3	19.77	1.92
15		-3	3	45	1.93
16		-3	3	45	1.92
17		-3	3	45	1.93
18		-3	3	45	1.93
19		-3	3	45	1.93
20		-3	3	45	1.94
21		-3	3	45	1.92
22		-3	3	45	1.93
23		-3	3	45	1.93

Table 6 Orthogonal rotary regression test results of L_{23}
MRR was calculated by Equation (16), among them, Δm means the difference of quality before and after double-faced mechanical polishing by electronic balance with an accuracy of 0.1 mg, ρ means the SiC substrate density 3.2 g/cm3, and t means polishing time.

Optimal level combination can be derived by calculating K value. Range R can be obtained by Equation (17):

$$R = \max K_i - \min K_i (i = 1, 2, 3, 4, 5)$$ \hspace{1cm} (17)

Through range analysis shown in Table 3, the primary and secondary order of MRR was $B > A > C$, at the same time, the corresponding optimal combination was $A_5B_5C_5$. MRR reached the maximum when speed rate of the outside ring gear to the inside sun gear $m = -1$, speed rate of lower plate to the inside sun gear $n = 5$, and SiC substrate distribution

Source	SS	DF	MS	F	P	Significance
x_1	0.001761954	1	0.001761954	11.5726150	0.004725454	Yes
x_1^2	0.000336056	1	0.000336056	2.2072385	0.161207697	No
x_2	0.032578451	1	0.032578451	213.9771828	0.000000002	Yes
x_2^2	0.000960483	1	0.000960483	6.3085119	0.026009565	Yes
x_3	0.000099444	1	0.000099444	0.6531524	0.433528562	No
x_3^2	0.000285584	1	0.000285584	1.8757337	0.194013919	No
$x_1 \cdot x_2$	0.001512500	1	0.001512500	9.9341891	0.007644289	Yes
$x_1 \cdot x_3$	0.000112500	1	0.000112500	0.7389066	0.405584308	No
$x_2 \cdot x_3$	0.000012500	1	0.000012500	0.0821007	0.77896055	No
Regression	1.308194637	9	0.145394960	954.6999383	1.1E-16	
Lack of Fit	0.000288889	5	0.000057780	0.2734522		
Residual	0.001690387	8	0.000211298			
Total	1.310173913	22	0.059553360			

Table 7 Variance analysis of L23

![Image](image.png)

Fig. 6. Surface response diagram of MRR

No.	x_1	x_2	x_3	y(test)	y(model)	Relative error
2	-2	4	30	2.32	2.324	0.0017
8	-4	2	30	1.53	1.540	0.0065
16	-3	3	45	1.92	1.929	0.0047
add1	-3	2	45	1.62	1.626	0.0037
add2	-2	4	60	2.33	2.321	0.0039
add3	-1	3	30	2.12	2.132	0.0056

Table 8 Verification of test results

R = max $K_i - \min K_i (i = 1, 2, 3, 4, 5)$
radius \(RB = 75 \). If only the influence of these three factors on \(MRR \) was considered, proportion of the influence of parameters was shown in Fig. 3.

Variance analysis [19] was used to study the significance of the influence of various factors on the index. Analysis of variance was shown in Table 4.

According to the table above, at 99% confidence, \(m \) and \(n \) have a significant effect on \(MRR \) while \(RB \) not. In order to study the influence of factors on index, the trend chart in the intuitive analysis method was used as shown in Fig. 4. Horizontal axis was the five levels of each factor, and the vertical axis was the \(MRR \).

Figure 4 shown that speed rate of lower plate to the inside sun gear \(n \) has the greatest influence on \(MRR \), speed rate of the outside ring gear to the inside sun gear \(m \) has an effect on \(MRR \) while it was approximately linearly correlated, and SiC substrate distribution radius \(RB \) has little influence on \(MRR \).

In order to build an accurate mathematical model and more accurately analyze the relationship between index and factors, orthogonal rotary regression test of Tri-factor quadratic was carried out based on orthogonal test of three factors and five levels of L25. The number of central repeated tests was 9 and asterisk arm length \(\gamma \) was equal to 1.682. Orthogonal rotary regression test of factors and levels design and results were shown in Table 5 and Table 6.

It was used the STATISTICA 8.0 to analyze the variance of the test results[20, 21], and the regression equation was obtained by fitting the ternary quadratic polynomial. Pareto chart of \(t \) values for coefficients was shown in Fig. 5. The variance analysis of \(MRR \) was shown in Table 7.

Among them, \(x_1 \) stands for speed rate of the outside ring gear to the inside sun gear, \(x_2 \) stands for speed rate of lower plate to the inside sun gear, \(x_3 \) stands for SiC substrate distribution radius. Coefficient of determination was \(R^2 = 0.998 \).

Degree of regression and lack of fit must be tested according the following equation:

\[
F_R = \frac{SS_R/df_R}{SS_Re/df_Re} = 954.69994
\]

\[
F_L = \frac{SS_L/df_L}{SS_Er/df_Er} = 0.27345
\]

Table \(F \) shows that \(F_{0.05} (5, 8) = 3.69, F_{0.05} (9, 13) = 2.71, F_R > F_{0.05} (9,13), F_L < F_{0.05} (5,8) \). Therefore, the regression model was significant, and the lack of fit model was not significant. So as that, the equation fit well. \(MRR \) was derived as (20). After removing the constant term and the insignificant term, the regression model can be simplified as
Surface response diagram of the coupling effect of three factors \(x_1, x_2, \) and \(x_3 \) on \(MRR \) was shown in Fig. 6. The influence and interaction of \(x_1, x_2, \) and \(x_3 \) on \(MRR \) are obtained from Figure 6. Among them, the interaction between \(x_1 \) and \(x_2 \) has a great impact. Meanwhile, an accurate mathematical model is obtained by STATISTICA 8.0 as Equation (20):

\[
MRR = 1.142972 + 0.08991x_1 + 0.004598x_2^2 + 0.386613x_2 - 0.007773x_2^2 + 0.001424x_3 - 0.000019x_2^3 + 0.013750x_1 \cdot x_2 - 0.00025x_1 \cdot x_3 - 0.000083x_2 \cdot x_3
\]

At \(m = -1, n = 5, RB = 75 \), the maximum \(MRR \) was calculated 2.7 \(\mu m/h \). Characterization parameters were calculated as shown in Fig. 7. The total thickness variation (TTV) was within 10 \(\mu m \), bending of wafer (BOW) within 25 \(\mu m \), and Warp within 40 \(\mu m \).

Fig. 9. Surface roughness of C-face and Si-face after MP by AFM at 10um×10um. a C-face 3D, b Si-face 3D, c C-face 2D, d Si-face 2D

In order to verify the applicability of the model, three groups tested in Table 8 and add another three new groups were chosen by formula (20) in Table 8.

In Table 8, it was shown that the test results were closed to the model, and the relative errors were less than 1%. It means that this model can well respond to the changes of the \(MRR \) of the SiC single crystal substrate.
10 um) through AFM (Dimension FastScan) as shown in Fig. 9.

4 Conclusion

The MRR of the double-faced MP of SiC substrate was researched. Based on the coordinate transformation theory, the kinematic equations of SiC substrate relative to lower pad during double-faced MP were analyzed. MRR reached the maximum when speed rate of the outside ring gear to the inside sun gear \(m = -1 \), speed rate of lower plate to the inside sun gear \(n = 5 \), and SiC substrate distribution radius \(RB = 75 \). Through range analysis of orthogonal test factors and levels of L25, the primary and secondary order of MRR \(n > m > RB \) was obtained. An accurate mathematical model of orthogonal rotary regression test of Tri-factor quadratic of MRR was established and the regression model was significant. At \(m = -1, n = 5, RB = 75, TTV < 10 \) um, BOW < 25 um, Warp < 40 um, the maximum MRR was 2.7 um/h, which really improved the processing efficiency. At the same time, \(Ra \) of C-face was \(-6.7 \) nm–7.8 nm (10 um × 10 um), and \(Ra \) of Si-face was \(-4.9 \) nm–4.4 nm (10 um × 10 um) through AFM. This work provided the key for CMP and verified the importance of MRR for ultra-smooth polishing. It has certain guidance for semiconductor equipment and process technology.

Author contribution Peng Zhang: conceptualization, experiments, and writing; Jingfang Yang: data analysis; Huadong Qiu: supervision, investigation.

Data availability All the data have been presented in the manuscript.

Declarations

Ethics approval Not applicable

Consent to participate The authors declare that they all consent to participate in this research.

Consent for publication The authors declare that they all consent to publish the manuscript.

Competing interests The authors declare no competing interests.

References

1. Su TT, Hsiao HH (2021) Developing a fuzzy-set-based shortcut layout approach for a semiconductor inter-bay handling system[J]. Int J Adv Manuf Technol 113:1255–1266. https://doi.org/10.1007/s00170-020-06150-8
2. Shi L, Fang Y, Dai Q, Huang W, Wang X (2018) Surface texturing on SiC by multiphase jet machining with microdiamond abrasives. Mater Manuf Process 33(13):1415–1421. https://doi.org/10.1080/10426914.2017.1401723
3. Kim M, Lee SM, Lee SJ, Kim YW, Li L, Lee DW (2017) cc of micro/nano hierarchical patterns on sapphire wafers. Int J Precis Eng Manuf-Green Technol 4(1):27–35. https://doi.org/10.1007/s40684-017-0004-3
4. Li S, Du S, Tang A, Landers RG, Zhang Y (2015) Force modeling and control of SiC monocrystal wafer processing. J Manuf Sci Eng 137(6):061003. https://doi.org/10.1115/1.4029432
5. Li L, Feng L, Bai X, Li ZY (2016) Surface characteristics of Ti-6Al-4V by SiC abrasive-mixed EDM with magnetic stirring. Mater Manuf Process 32(1):83–86. https://doi.org/10.1080/10426914.2016.1151043
6. Yuan ZW, He Y, Sun XW, Wen Q (2018) UV-TiO2, photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer. Mater Manuf Process 33(11):1214–1221. https://doi.org/10.1080/10426914.2017.1364855
7. Kukushkina SA, Sharofdinov SS (2019) A new method of growing AlN, GaN, and AlGaN bulk crystals using hybrid SiC/Si substrates. Phys Solid State 61(12):2342–2347. https://doi.org/10.1134/S1063783419120254
8. Jeng YR, Tsai PC, Lin YZ (2019) On the planarization mechanism and pad aging effects of soft pad polishing: a perspective from the micro-mechanical properties of soft pads. J Tribol 141(6):064501. https://doi.org/10.1115/1.4043348
9. Ahtuwalia K, Mediratta R, Yeo SH (2016) A novel approach to vibratory finishing: double vibro-polishing. Mater Manuf Process 32(9):998. https://doi.org/10.1080/10426914.2016.1232812
10. Wu J, Gao FM, Shao G, Du ZT, Yang WY, Wang L, Wang L, Chen SL, (2020) Enhanced piezoresistive behavior of SiC nanowire by coupling with piezolectric effect. ACS Appl Mater Interfaces 12(19):21903–21911. https://doi.org/10.1021/acsami.0c0411
11. Michio U, Koji F (2020) Highly efficient chemical mechanical polishing method for SiC substrates using enhanced slurry containing bubbles of ozone gas. Precis Eng 64:91–97. https://doi.org/10.1016/j.precisioneng.2020.03.015
12. Zhou Y, Pan GS, Shi XL, Xu L, Zou CL, Gong H, Luo GH (2014) XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP). Appl Surf Sci 316(1):643–648. https://doi.org/10.1016/j.apsusc.2014.08.011
13. Wei JS, Li YB, Dai DM, Zhang FT, Zou HL, Yang XX, Ji YH, Li B, Wei XJ (2020) Surface roughness: a crucial factor to robust electric double layer capacitors. ACS Appl Mater Interfaces 12(5):5786–5792. https://doi.org/10.1021/acsami.9b18799
14. Ryu J, Kim W, Yun J, Lee K, Lee J, Yu H, Kim JH, Kim JJ, Jang J (2018) Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization. ACS Appl Mater Interfaces 10(14):11843–11851. https://doi.org/10.1021/acsami.7b15952
15. Isohashi A, Bui PV, Toh D, MatsuyamaSY, Inagaki K, Morikawa Y, Yamauchi K (2017) Chemical etching of silicon carbide in pure water by using platinum catalyst. Appl Phys Lett 110(20):201601. https://doi.org/10.1063/1.4983206
16. Zhang P, Yang JF, Li L (2020) Trajectory uniformity of the double-faced mechanical polishing of SiC single crystal substrate. Mater Sci Semicond Process 107(C):104814. https://doi.org/10.1016/j.mssp.2019.104814
17. Zhang P, Feng XY, Yang JF (2015) Kinematics analysis on the double-faced polishing without planet carrier of 3 inch SiC substrate. J Funct Mater 46(18):18105–18111. https://doi.org/10.3969/j.issn.1001-9731.2015.18.022
18. Fang CF, Yan Z, Deng WW, Zhang LC (2019) Material removal in grinding sapphire wafers with brazed–diamond pellet plates.
19. Kumar S, Dvivedi A (2020) Development of material removal rate model and performance evaluation of ultrasonic turning process. Mater Manuf Process 35(14):1598–1611. https://doi.org/10.1080/10426914.2020.1784929

20. Singh A, Garg H, Kumar P, Lall AK (2017) Analysis and optimization of parameters in optical polishing of large diameter BK7 flat components. Mater Manuf Process 32(5):542–548. https://doi.org/10.1080/10426914.2016.1221103

21. Yin Y, Xu H, Wang Y, Liu Z, Zhang S, Weng Z, Wang Z (2020) Improving adhesion between nanoparticles and surface of mica substrate by aminosilane modification. Plasmonics 15(1558):399–407. https://doi.org/10.1007/s11468-019-01030-8

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.