Collagen Remodeling along Cancer Progression Providing a Novel Opportunity for Cancer Diagnosis and Treatment

Kena Song 1,*, Zhangqing Yu 1, Xiangyang Zu 1, Guoqiang Li 2, Zhigang Hu 1 and Yun Xue 1

1 College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemical and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
* Correspondence: kenasong@haust.edu.cn; Tel.: +86-157-3005-9476

Abstract: The extracellular matrix (ECM) is a significant factor in cancer progression. Collagens, as the main component of the ECM, are greatly remodeled alongside cancer development. More and more studies have confirmed that collagens changed from a barrier to providing assistance in cancer development. In this course, collagens cause remodeling alongside cancer progression, which in turn, promotes cancer development. The interaction between collagens and tumor cells is complex with biochemical and mechanical signals intervention through activating diverse signal pathways. As the mechanism gradually clears, it becomes a new target to find opportunities to diagnose and treat cancer. In this review, we investigated the process of collagen remodeling in cancer progression and discussed the interaction between collagens and cancer cells. Several typical effects associated with collagens were highlighted in the review, such as fibrillation in precancerous lesions, enhancing ECM stiffness, promoting angiogenesis, and guiding invasion. Then, the values of cancer diagnosis and prognosis were focused on. It is worth noting that several generated fragments in serum were reported to be able to be biomarkers for cancer diagnosis and prognosis, which is beneficial for clinic detection. At a glance, a variety of reported biomarkers were summarized. Many collagen-associated targets and drugs have been reported for cancer treatment in recent years. The new targets and related drugs were discussed in the review. The mass data were collected and classified by mechanism. Overall, the interaction of collagens and tumor cells is complicated, in which the mechanisms are not completely clear. A lot of collagen-associated biomarkers are excavated for cancer diagnosis. However, new therapeutic targets and related drugs are almost in clinical trials, with merely a few in clinical applications. So, more efforts are needed in collagens-associated studies and drug development for cancer research and treatment.

Keywords: cancer; the extracellular matrix (ECM); collagen remodeling; interaction; mechanism; diagnosis; biomarker; therapeutic target; treatment

1. Introduction

Cancer is a serious disease for humans with high morbidity and death. The extracellular matrix (ECM) is a non-ignored factor in cancer progression due to the fact that it is the major component of tumor stroma, playing the roles of the physical scaffold and regulator of cell and tissue function. ECM could not only act as a medium to conduct signals but also elicits biochemical and biophysical signaling to excite cells [1,2]. The interaction between tumor cells and ECM is bidirectional and dynamical, which could reshape the morphology of perimalignant tissue continuously. Recent studies have shown that tumors could directly leverage ECM remodeling to create a microenvironment that promotes tumorigenesis and metastasis. Conversely, many cell behaviors are inspired by transformed ECM, such as adhesion, migration, angiogenesis, and canceration [3,4].
In the complex interaction between ECM and tumor cells, collagens play a significant role involved in multiple actions. Collagens are the major component in ECM, which constitute up to 30%—28 different collagens have been identified. Multiple subtype collagens participate in the construction of both matrices of ECM, i.e., base-membrane and interstitial matrix, and create special ECM compositions in different tissues [5,6]. Recently, many studies reported the abnormal appearance in the cancer progression, including degradation, remodeling, fragmentation settlement, linearization, and fasciculation. It is confirmed that collagens are relevant to the precancerous lesion and cancer progression. Based on the mechanisms of collagens involved in the multiple stages of cancer progression, the value of diagnosis and prognosis is developed. Moreover, it provides opportunities to identify new therapeutic targets for cancer treatment. This review investigated the complex response of collagens in cancer progression and summarized the interaction between collagens and cancer cells. Then, we focused on the diagnosis value of collagen-associated imaging and biomarkers. Finally, we discussed the therapeutic opportunities of targeting collagens for cancer treatment.

2. Collagen Is a Significant Concern for Cancer Research Associated with the ECM

2.1. Collagens Are the Major Component of ECM

Collagens are a superfamily comprising 28 members characterized by collagen α chains [6,7]. According to the supramolecular organization, collagens are divided into fibrillar collagens and non-fibrillar collagens. Fibrillar collagens occupy 90% of the totality, including types I, II, III, V, XI, XXIV, and XXVII. They show elongated, rod, or banded fibril structures under electron microscopy. In comparison, others are non-fibrillar collagens, which form other types of supramolecular structures. Non-fibrillar collagens are further subdivided into fibril-associated collagens with interrupted triple helices (types of IX, XII, XIV, XVI, XIX, XXI, and XXII), network-forming collagens (types IV, VI, VIII, and X), beaded filament-forming collagens (types VI, XXVI, and XXVIII), anchoring fibrils (type VII) and transmembrane collagens (types XIII, XVII, XXIII, and XXV). Collagens participate in the formation of both forms of ECM, i.e., the base-membrane and interstitial matrix. Fibrillar collagens have a clear structural role of mechanical support and dimensional stability, which could provide three-dimensional frameworks for tissue and organs. As an example, type I collagen, as fibrillar collagen, is the main protein in skin, contributing to the tensile strength of skin [6,8]. Non-fibrillar collagens are also essential to maintain tissue structure; for instance, the type IV collagen network is the main scaffold structure of the base membrane. In addition, non-fibrillar collagens are the key regulators to anchor and organize the ECM meshwork. It has been reported that an anchoring bridge is created between the base membrane and the interstitial matrix by the regulation of type VI collagen [9].

2.2. The Observation Methods of Collagens in Research and Clinic

The paramorphia of collagens is a significant signal of many diseases, especially fibrosis and precancerosis. Several imaging modalities were developed for quantitative or qualitative analysis collagens. The coarse collagen fiber could be observed directly under the light field of optical microscopy, the visual scenes of which are shown in Figure 1A. However, the tiny collagen fibrils or soft networks are hard to be identified under optical microscopy. Pathological staining technology offers the assistance to catch high-recognition images under light fields, especially for clinicopathological sections. Of note, immunohistochemistry (IHC) could recognize the types of collagens with the assistance of optical microscopy. Fluorescence immunostaining is a method to mark the collagens with a fluorescence dye, then the marked collagens are highlighted under the excitation light of a fluorescence microscope from the background. This method is suitable for all subtypes of collagens, whether fibrous or not; however, this method is hard to apply in practical applications due to the fact that the fluorescence dye is hard to wash completely from the dense networks, causing significant interference to collagen identification. Collagen fiber is a non-centrosymmetry and high second-order nonlinear coefficient structure that could
produce the signal of second-harmonic generation (SHG) under two-photon excitation. This provides an excellent opportunity to image collagens, and SHG imaging has been promoted to be a popular and effective approach to investigate collagens in the laboratory. As an example, SHG imaging is developed to investigate collagen fiber organization, which has a high resolution capable of recognizing faint signals [10]. In fact, SHG imaging of collagens is always used combining with confocal microscopy, which could catch the interior signals of the samples to reconstruct 3D images [11,12]. We took an SHG image of type I collagen fibers in an in vitro experiment using confocal microscopy shown in Figure 1B. Due to the fibrous structure differs from other matrices, the pure reflective mode of the confocal microscope is available to take the fiber signal, although the clarity is worse in contrast to SHG imaging [13–15]. Figure 1C exhibited the collagen network structure in an in vitro experiment using the reflective mode of the confocal microscope. Electron microscopy is an instrument manufactured by the principle of electron photons, which replaces light beams and optical lenses with electron beams and electron lenses to take the subtle structure imaged with a very high magnification. Fortunately, collagen fibers could be imaged by the two commonly types of electron microscopy, i.e., scanning electron microscopy (SEM) and transmission electron microscopy (TEM) [16–18]. SEM could see the morphology of collagens limited to surface and longitudinal. We took the porous structure by SEM, shown in Figure 1D. TEM could evaluate the cross sections through 3D imaging. Figure 1E is the structure of collagen type I under TEM. Cryo-TEM advanced the TEM technique allowing the sample examined to maintain the frozen-hydrated state and removing the step of heavy-metal staining. The early banding analysis of reconstituted collagen fibrils was performed from cryo-TEM images [19–21]. Atomic force microscopy (AFM) is another morphology detection instrument based on a completely different principle, i.e., van der Waals force. AFM could be used to confirm the inner assembly of collagen fibrils. As an example, Figure 1F exhibited the microstructure of a single collagen fibril in a high magnification AFM image. However, AFM could only scan the 3D topographic feature, but not the section structure inside the matrix [22–24].

Figure 1. Several examples of collagen detecting methods. (A) light field of optical microscopy. (B) SHG imaging. (C) The reflection mode of confocal microscopy. Reprinted/adapted with permission from Ref. [3]. (D) SEM imaging. (E) TEM imaging. Reprinted/adapted with permission from Ref. [6]. (F) AFM imaging. Reprinted/adapted with permission from Ref. [12].

Clinically, medical imaging technology is an important contribution to disease diagnosis and surgical guidance, which is popular due to its non-invasive, including ultrasound, X-ray, computed tomography (CT), and nuclear magnetic resonance imaging (MRI). The
medical imaging technology allows the sample to be examined in a close to physiological hydration state without chemical fixation of sectioning. Diffraction pattern signals are inspired by high-intensity X-rays scattering from the arranged collagen molecules and fibrils in the bulk matrix. So, X-ray is available to analyze the average diameter, lateral arrangement, and alignment of collagen fibrils; as an example, corneal ultrastructure is obtained by X-ray with a powerful synchrotron source [25,26]. CT and MRI are able to analyze the collagen fibers quantitatively. Karjalainen et al. used micro-computed tomography to analyze the three-dimensional collagen orientation of the human meniscus posterior horn in health and osteoarthritis [27]. Eder et al. used MRI to evaluate the regional collagen fiber network in the human temporomandibular joint disc [28]. Ultrasound is developed to assess collagen microstructure based on the integrated backscatter coefficient (IBC). Mercado, Karla P. et al. employed IBC as a quantitative ultrasound parameter to detect the quantify spatial variations of collagen fiber density and diameter [29]. Kenton et al. prospectively characterize the collagen organization in the Achilles and patellar tendon [30]. However, IHC still plays an irreplaceable role in the clinic due to its ability to recognize the types of collagens. Pathological detection based on IHC is the gold standard for tumor diagnosis in the clinic.

3. Collagen Remodeling Is a Significant Signal in Cancer Progression

3.1. Precancerous Lesions

Stromal alterations are the reference precursors to predict the progression of carcinoma, especially collagens, which is the main component of the ECM. The occurrence of fibrosis and the base membrane abnormality, which are mainly involved by collagens, are the important cues orienting to deterioration, having a significant clinical meaning. In precancerous lesions, it is likely to occur due to the abnormal ratio of collagen types, new collagen types secreted, and abnormal molecular structure, causing the abnormal ECM.

The fibrosis of organ tissue is an important cue to draw attention to, which is likely to be a stage of deterioration, such as liver fibrosis, lung fibrosis, oral submucosa fibrosis, and so on. Most hepatocellular carcinoma develops through the progression of chronic liver injury, hepatic inflammation, and fibrosis, so liver fibrosis is a precursor of cancerization. It has been confirmed that high fibrosis index is positively correlated with the risk of hepatocellular carcinoma [31,32]. The configuration of collagen types is changed greatly in the progression of fibrillation. In normal liver, the collagens in ECM are type IV and VI, which are non-fibrillar; however, a great accumulation of fibrillar collagens occurs in the fibrotic liver, such as collagen type I and III [33]. Similarly, idiopathic pulmonary fibrosis is considered to have a high risk of concomitant lung cancer in the clinic. What is worse, patients with idiopathic pulmonary fibrosis have a poor prognosis with a 2–5 year survival time, which is worse than liver fibrosis [34]. Enhancing nodules in post-radiation fibrosis in CT imaging could be an early detecting method of recurrent lung cancer [35]. The deposition of collagens in the interstitium is the direct reason for fibrosis. In early pulmonary fibrosis, collagen type III predominates in the matrix; however, the proportion is gradually replaced by collagen type I along the process of pulmonary fibrosis to the late stage [36]. Oral submucous fibrosis is a precancerous disorder and has a 1.5–15% chance of transforming into a malignant tumor. The characteristics of oral submucous fibrosis are abnormal collagen deposition. In oral submucous fibrosis cells, the collagen synthesis is increased and the ratio of the α1(I) to α2(I) chains of type I collagen is ~3:1 whereas ~2:1 in normal cells [37,38].

The analysis of collagen fibers is significant in predicting cancer. Despotovic et al. caught the SEM images of the perimalignant tissue shown in Figure 2A. They found that the altered organization of collagen fibers was observed at 10 cm and 20 cm away from the malignant tumor. The alignment of collagen fibers is step increased as proximity to the tumor [39]. Wu et al. focused on the base membrane in intraductal carcinoma, a precancerous lesion of invasive ductal carcinoma. They found that the base membrane was distorted and elongated compared with the normal cases (Figure 2B). Several types
of gynecological cancers are reported differently in terms of precancerous lesions, such as breast cancer, ovarian cancer, and vulvar cancer. Castor et al. characterized the collagen fibers in preneoplastic lesions compared with normal tissue and squamous carcinoma in vulvar cancer using SHG microscopy. They found that the collagen fibers showed better organization in the normal tissue than in the other two stages. The devise parameters of collagen fibers showed reducing in squamous carcinoma and preneoplastic lesions compared with normal tissue, i.e., quantity, organization, and uniformity; however, no obvious difference was observed between squamous carcinoma and preneoplastic lesions [40]. In cervical precancers, several collagen-associated indicators directly affect the quantitative classification of precancerous stages, including the density and degree of linear arrangement, collagen degradation, and the breakage of collagen cross-links. Zaffar et al. focused on this valuable information by developing a series of studies of the spatial frequencies of collagens for cervical precancer detection [41,42]. The expression of collagen IV seriously affects the integrity of the base membrane because collagen IV is the main complement of the base membrane. As a precancerous lesion of squamous cell carcinoma in malignant skin tumors, actinic keratosis has shown the premonition of collagen IV low expression. Hirakawa et al. compared the expression of collagen IV using immunohistochemical in actinic keratosis tissue. The result showed that collagen IV in dysplastic areas of actinic keratosis samples was lower than peri-lesional tissue and no longer continuous [43].

Figure 2. Collagen remodeling in precancerous lesions is a signal of cancerization. (A1−A3) The SEM images of collagen fibers in the health tissue and 10 cm and 20 cm away from the malignant tumor [39] (A1) The collagen fibers in the health tissue are thin collagen fibers forming a dense network. (A2) The collagen fibers at 20 cm away from the tumor, thick and aligned. (A3) The collagen fibers at 10 cm away from the tumor, highly aligned. (B1−B3) The difference of base membrane in intraductal carcinoma, a precancerous lesion of invasive ductal carcinoma [44] (B1) The base membrane shows a distorted structure with a larger size. (B2) The base membrane is destroyed in the evolution from intraductal carcinoma to invasive ductal carcinoma. (B3) The statistics data of the circle length of base membrane. The circle length is elongated observably in precancerous lesions compared with normal cases.
3.2. Post-Cancerous

3.2.1. Breaching Base Membrane

In the development of cancer progression, collagens become from a passive barrier resisting cancer cells to an accomplice in promoting the progression. The base membrane is a baffle between tumor cells and normal tissue originally; however, it would be breached at the early stage of carcinogenesis. The main reason is collagen IV, which occupies the major complement of the base membrane, is degraded directly or indirectly by tumor cells. In the degrading progress, matrix metalloproteinase plays an indispensable role, which is secreted by tumor cells or stimulated epithelial or stromal cells. In the subsequent progression of cancer development, degrading collagens remains an effective strategy to create roads to invasion or migration. Yan et al. reported a period that collagens exhibited a significant loss in invasive ductal carcinoma compared to the normal case and precursor lesion [44]. Recently, another cue is revealed that cancer cells could break the base membrane just facilitated by physical forces, which is a completely different manner independent of protease. As evidence, the collagen IV meshwork exhibits a densified structure at the adjacent disruption; on the contrary, the collagen IV scaffold should be decreased under the degradation theory. Piercing filopodia is captured in further studies, which is proved to have a pivotal role in the mechanical response model. The force of push and pull by the contractility of piercing filopodia is considered an explanation of the base membrane non-protease disruption [45–47].

3.2.2. Enhancing ECM Stiffness

Enhancing the stiffness of ECM is another strategy to promote tumor cell migration and invasion through the pathway of activating integrins to increase the adhesion between cells and substrate. Castor et al. found that the parameters of collagen fibers present higher in metastatic vulvar cancer patients than in that without metastases [40]. High ECM stiffness is mainly realized by increasing the secretion of fibrous collagens and the deposition of non-fibrous collagens, most notably collagen type I and type IV [48,49]. In medical statistics, ECM stiffness is considered a reason for tumor rise incidence with aging because it is a fact that the aged tissues are stiffer due to containing more aberrant cross-linked collagens [50]. High collagen density in tumors is often closely correlated with poor prognosis; however, the association between collagen density and cancer progression is not completely clear. Recent reports studied it from various perspectives. The most accepted view is that ECM stiffness is closely related to cancer-associated fibroblasts (CAFs) [51–54]. This viewpoint is supported because CAFs are the main producer of abnormal collagen fibers. Shibata et al. reported that CAFs promote ECM stiffness in response to the signals from yes-associated protein 1 (YAP1) [55]. However, Farhat et al. found that abnormal activation and expression of the Lox family of proteins, a group of extracellular enzymes catalyzing the cross-linking of collagens, would lead to the ECM toward increased rigidity and fibrosis [56].

3.2.3. Orienting the Collagen Fibers

Orienting the collagen fibers is a significant manner of remodeling the ECM by cancer cells. The stress of tumor growth remodels the collagen fibers toward the tumor circumference at the tumor periphery. Those oriented collagen fibers provide a highway to cancer cell invasion directly [57–60]. Meanwhile, the tension of aligned collagen fiber bunches contributes to ECM stiffness [61]. Many studies reported the high orientation of collagen fibers in the tumor location [13,57,59,62]. The mechanism of collagen fibers orientation in the malignant tumor is still unclear. Many scientists dedicated themselves to this study, and they revealed it is a complex process, maybe participated in by tumor cells, CAFs, mesenchymal cells, and interstitial fluid. Tumor cells remodel the collagen fibers through various manners, including the stress of tumor growth, the pseudopod with contractility, the protease, and so on, which is a complex process with multiple pathways [61,63–67]. The examples are shown below. Ray et al. reported that the traction forces from the di-
rected migration of cancer cell clusters are a mechanism of collagen fiber alignment [68]. Drifka et al., using a pancreatic ductal adenocarcinoma model, found that human pancreatic stellate cells could orchestrate the alignment of collagen fibers, and they further found that the aligned collagen fibers, in turn, enhanced cancer cell migration. Bayer et al. showed that the collagen receptor DDR2 in CAFs reorganizes collagen fibers at the tumor-stromal boundary [69]. Hanley et al. reported that CAFs could induce the formation of elongated collagen fibers [70]. Del Amo et al. constructed a collagen-based osteoblasts model in 3D microfluidic devices, and the data suggested that a high rate of interstitial fluid flow could modify the orientation of collagen fibers [71].

4. Remodeled Collagens Assist Cancer Progression

4.1. Promoting Angiogenesis

In cancer progression, limited oxygen and nutrients are always insufficient for the rapid growth of cancer cells. Angiogenesis is induced under a poor supply of oxygen and nutrient. The angiogenesis process is always accompanied by the upregulation of collagens and ECM-modifying enzymes, which has been confirmed in different human tumor types. That is because the collagen network provides the scaffold for recruited endothelial cells migrating during angiogenesis. Even the remote collagen fiber network is induced by tumor cells into orientation steers for angiogenesis. We illustrated the process of angiogenesis induced by collagen fibers in Figure 3A. Piotrowski-Daspit et al. took a confocal image of a representative tissue comprised of breast cancer cell MDA-MB-231. They found that the collagen fibers showed high alignment obviously (Figure 3B). The collagen network provides the intact physical connection with tumor tissue for vascular endothelial cells’ mechanical sensing, which is considered essential during angiogenesis [72]. Nathaniel et al. observed the fibrilar organization around angiogenic sprouts and growing neo-vessels in real time. They found that a strong association of fibrillar collagens occurred during vessel reconstitution and a substantial collagen fibril reorganization at the sites of sprout and neo-vessel tips [73]. Luthria et al. investigated the vasculature around the tumor in the dense collagen micro-environment—shown in Figure 3C [74]. Niels et al. reported that type VIII collagen was elevated in diseases associated with angiogenesis and vascular remodeling, such as pulmonary fibrosis and cancer [75].

![Figure 3. Tumor cells organize the disordered collagen fibers into orientation, further providing a scaffold to recruit endothelial cells (green cell in illustration) for angiogenesis or inducing vasculogenic mimicry constituted by tumor cells (red cell in illustration) without endothelial cells present.](image_url)

A The cartoon diagram displays the process of angiogenesis. B A confocal image of a representative tissue comprised of breast cancer cell MDA-MB-231. The collagen fibers around the tissue are aligned, obviously. Reprinted/adapted with permission from Ref. [76]. C1, C2 The SHG images show the vasculature (blue) formed neighbor tumor within the micro-environment of high dense collagen matrix. Reprinted/adapted with permission from Ref. [74].
Another vasculature-like structure could also support tumors with blood, which is called vasculogenic mimicry constructed by cancer cells without endothelial cells. The primary trigger is dense collagen, inducing cancer cells to form interconnected networks [4]. Velez et al. found that the collagen matrixes with small pores and short fibers induced vasculogenic mimicry. The upregulation of β1-integrin is triggered by the collagen matrix architecture and is considered a significant reason in the follow-up research [77]. The non-fibril collagens contribute to vasculogenic mimicry, such as collagen type IV, VI, and XVI. Bedal et al. found the NC11 domain of human collagen XVI, one non-fibril collagen, induced vasculogenic mimicry in oral squamous cell carcinoma cells. The process is realized by triggering the generation of tubular-like net structures on a laminin-rich matrix [78].

4.2. Promoting Invasion

Escaping from the primary site is another strategy employed by cancer cells to obtain supplies; collagens also play a significant role in this process. Collagen fibers induce cancer cell migration by contact guidance [68]. Especially, the aligned collagen fibers are confirmed to provide “a highway” to cancer cell invasion [79–81]. The guidance of collagen fibers runs through the major process of cancer progression. In the early stage, the collagen fibers that are perpendicular to the solid tumor provide conduits to escape and penetrate the base membrane [58,82]. In the following process, the interface between the collagen fiber bundle in ECM and the peripheral interstitial components provides the opportunity for breakthrough for tumor cells. We illustrated the intravasation guided by collagen fibers in Figure 4A. The role of the “highway” has been verified by several reports. In an experiment on the orientation of collagen fibers, cancer cells could break through the high density of Matrigel along with the collagen fibers, while they were unable to do that in the absence of oriented collagen fibers—shown in Figure 4B [59]. In the process of intravasation (cancer cell entering blood vessel) and extravasation (cancer cell exuding blood vessel), collagen fibers as important participators are remodeled firstly and, in turn, guide the cancer cell invasion [83–86]. Moreover, the orientation and the deposition of collagens make the matrix stiff. The stiffness of the ECM could induce the enhancement of transforming growth factor-β (TGF-β) to increase the cell adhesion to the substrate, further promoting the migration and invasion of tumor cells. Masoud et al. reported that ECM stiffness could make a bridge in the base membrane through the related pathway of transforming growth factor-β (TGF-β), which contributed to EMT [87]. Figure 4C illustrates the process of EMT induced by the high stiffness ECM. Han et al. displayed a merged image of the SHG signal and light field of the pathological section (Figure 4D). They found that the tumor cells invaded along with the direction of fibers [59]; however, the mechanism of the stiffness ECM acting on tumor cells is complex; there are other pathways being investigated as well. For instance, Anne et al. investigated the immune modulatory properties of collagens in cancer, and they revealed that collagens could affect the function and phenotype of various types of tumor-infiltrating immune cells, such as tumor-associated macrophages and T cells [88]. Yu et al., from the perspective of drug transport, revealed that ECM stiffness was a barrier to drug screening at the tumor site [89].

Non-fibril collagens also participate in the invasion process. Fang et al. reported that collagen type IV occurred a series of changes to provide a proper tumor microenvironment for cancer invasion. In the initial stage, collagen IV presents an irregular sheath in the base membrane, and then it is degraded and accompanied by linear redeposition to form invasion fronts, which would become the escape sites of cancer cells [90]. Zhang et al. reported that collagen XIII could promote invasive tumor growth, enhance the stemness of cancer cells, and induce anoikis resistance [91]. Karagiannis et al. investigated collagen type XII by immunohistochemistry and found that collagen XII was highly expressed in the invasion front of cancer cells [92]. Kumagai et al. found that the intercellular expression of type XVII collagen could promote collective invasion by producing intercellular adhesion sites for contact following [93]. Miyake et al. reported that collagen IV and collagen XIII played a pivotal role in tumor invasion by inducing tumor budding [94].
5. Collagens Provide Opportunities to Cancer Diagnosis and Prognosis

5.1. Collagen-Associated Biomarkers for Cancer Diagnosis

Collagens, as the main component of the ECM, would be abnormally expressed or deposited in the location or the pericarcinoma of the cancer site. It is for this reason that collagens are proposed as a diagnostic biomarker in cancer types. Type I collagen is reported to be a good diagnostic marker to detect the metastasis of lung cancer, the expression level of which is a significant indicator of distinct bone involvement happening or not in lung cancer metastasis [95]. The degradation products of type I collagen in serum are a significant reference for diagnosis and prognosis. Nurmenniemi et al. reported that type III collagen N-terminal telopeptide and type I collagen C-terminal telopeptide in serum are available for cancer diagnosis, which provides a convenient detection method through drawing peripheral blood.

Figure 4. Collagens promote cancer invasion. (A) The schematic representation of oriented collagen fibers providing a “highway” to guide cancer cells in realizing the intravasation process. (B1, B2) The fluorescent images show the stiffness Matrigel (green) region is invaded by cancer cells (red) in the guidance of the oriented collagen fibers (blue) [59]. (C) The schematic representation of stiffness ECM inducing EMT accompanied with high adhesion of tumor cells. (D1, D2) Tumor cells (gray color in (D2)) invade along with the direction of collagen fibers. (D1) The SHG signal of collagen fibers in the pathological section. (D2) The merge of the light field and SHG signal of the pathological section [59].
Table 1. The collagen-associated biomarkers and the applicating cancer types in cancer diagnostic.

Collagen Type	Biomarker	Cancer Type	Reference
Type I	the expression level of collagen I	bone metastases of lung cancer; bladder cancer; colorectal cancer	[95,98,99]
	the carboxyl terminal peptide beta-special sequence, total type I procollagen amino terminal propeptide, alkaline phosphatase of collagen I in serum	bone metastases of lung cancer	[100]
	type I collagen C-terminal telopeptide in serum	head and neck squamous cell carcinoma	[96]
	MMP-generated fragments of type I collagen in serum	lung cancer; breast cancer	[97,101]
	the expression level of collagen type I alpha 1	hepatocellular carcinogenesis and metastasis	[102]
	the carboxyterminal collagen type I telopeptid	breast cancer with bone metastases	[103]
	the expression level of collagen type I alpha 2	gastric cancer	[104]
Type III	MMP-generated type III collagen fragment, procollagen type III N-peptide in serum	breast cancer	[101,105]
	the propeptide of type III collagen in serum	pancreatic cancer	[106]
	the level of procollagen III aminoterminal propeptide	malignant head and neck cancer; cervical carcinoma	[107,108]
	procollagen type III N-peptide in serum	gastric cancer; ovarian cancer; lung cancer	[109–111]
	type III collagen in serum	hepatocellular carcinoma	[112]
	type III collagen in cancer tissue	malignant pleural mesothelioma	[113]
	the expression of collagen III and collagen III mRNA	Ewing’s sarcoma	[114]
	the type IV collagen, MMP-generated type IV collagen fragment in serum in serum	breast cancer	[101,105]
Type IV	7S domain of type IV collagen in serum	gastric cancer; pancreatic cancer; lung cancer; extrahepatic cancer; hepatocellular carcinoma	[111,115–118]
	the expression level of collagen IV	malignancy glioma	[119]
	the differential localization of the type IV collagen alpha5/alpha6 chains	colorectal epithelial tumors	[120]
	MMP-degradation of type IV collagen	ovarian cancer	[121]
	the expression level of collagen IV	prostate cancer	[122]
	the expression of collagen type IV	urothelial carcinoma; oral squamous cell carcinoma	[123,124]
	the expression of the type IV collagen alpha1 and alpha2 chains	hepatocarcinogenesis	[125]
	the expression of the type IV collagen alpha1	bladder cancer	[126]
	the expression of collagen IV in tumor location	invasive adenocarcinoma	[127]
	serum N-terminal pro-peptide of type IV collagen 7S domain	hepatocellular carcinoma in patients with liver cirrhosis	[128]
Table 1. Cont.

Collagen Type	Biomarker	Cancer Type	Reference
Type V	the expression level of collagen type V alpha 2	colorectal cancer; gastric cancer;	[129,130]
	the expression level of collagen type V	breast cancer; lung cancer	[131,132]
Type VI	MMPgenerated type III collagen fragment	breast cancer; colon cancer; gastric cancer; malignant melanoma; lung cancer; ovarian cancer; pancreas cancer; prostate cancer	[133]
	serum collagen type VI alpha 3	pancreatic ductal adenocarcinoma	[134]
	stromal collagen type VI	salivary gland cancer	[135]
	the expression of COL6	pancreatic cancer	[136]
	collagen type VI alpha 1 chain	esophageal squamous cell carcinoma	[137]
Type VII	the expression level of type VII collagen	identifying lung cancer subtypes; skin cancer; gastric cancer	[138–140]
	the expression level of collagen type VII a 1 chain	clear cell renal cell carcinoma	[141]
Type VIII	the NC1 domain of human type VIII collagen a1 chain in serum	colorectal cancer	[142]
	collagen type VIII alpha 1 chain	breast cancer; colon Adenocarcinoma	[143,144]
Type XI	the expression level of Collagen Type XI Alpha 1 Chain	colorectal cancer; breast carcinoma invasiveness; colon cancer; pancreatic ductal adenocarcinoma; pancreatic adenocarcinoma; pancreatic cancer	[145–151]
	the expression of procollagen XI Alpha 1 Chain	breast cancer	[152]
Type XIII	the expression of the type XIII collagen alpha 1	bladder cancer	[126]
Type XIV	the expression of type XIV collagen	breast cancer	[153]
Type XV	fragments of collagen XV collagen alpha 1 in urine	gastrointestinal cancer	[154]
Type XVIII	the expression of type XVIII collagen	pancreatic ductal adenocarcinoma	[155]
	serum endostatin (a fragment of collagen XVIII) levels	colorectal cancer	[156]
Type XXIII	the expression of collagen type XXIII alpha 1 chain	clear cell renal cell carcinoma	[157]

5.2. The Predictive Value of Collagens

Collagens have high value in monitoring cancer processes, prognosis, and recurrence. The predictive value is exhibited in many types of cancer, including breast cancer, prostate adenocarcinoma, lung cancer, hepatocellular carcinoma, colon cancer, and pancreatic cancer. In breast cancer, the qualitative descriptors of collagens at the boundaries between tumor and stroma are important indicators for tumor staging. In invasive breast cancer, the 5-year disease-free survival in patients with low tumor-stromal ratios is poorer than the patients with high tumorstroma ratios. In lung cancer, high levels of collagen I in serum and tissue demonstrated a significant decrease in survival. Furthermore, collagen metabolic components and prolyl hydroxylases have been marked as the predictive factors of lung cancer presence, progression, and outcome. Abnormal collagen expression is associated with cancer overall survival (OS). The prognosis value is outstanding in enriched stromal
cancers, such as pancreatic cancer and colon cancer. It is confirmed that the alignment of collagens was associated with the patient survival of pancreatic ductal adenocarcinoma (PDAC). Highly aligned collagen fibers report poor prognosis in PDAC, according to clinical statistics. Collagen types I, III, VI, and XI were shown to be associated with the diverse response of pancreatic cancers, such as proliferation, migration, decreasing E-cadherin expression, and cancer-associated fibroblasts [158]. Furthermore, the percent survival with a high level of collagen type I is observably lower than the low level. It was shown that the level of collagen type I had a negative correlation to OS for pancreatic cancer [159]. In colon cancer, the level of collagen expression is the key indicator to predicting the OS and risk, especially the types of COL1A1, COL1A2, COL3A1, COL4A3, and COL4A6. Please refer to reference [158] for more information on the predictive value of collagens.

6. Therapeutic Opportunities of Cancer Target to Collagens and the Collagen Associated Molecules

Collagen remodeling plays a significant role in cancer progression, as the content described above. It provides the possibility for therapeutic cancer targeting to collagens undergoing remodeling, including inhibiting the synthesis of collagens and interdicting the reactivator on the signal pathway. Of note, many small molecule inhibitors of collagen synthesis and functioning are available as anti-cancer drugs. They could accurately point to the target, avoiding damage to normal cells, which is an absolute advantage over conventional chemotherapeutic agents.

6.1. Inhibiting the Synthesis and Secretion of Collagens

Inhibiting collagen synthesis and secretion is a strategy for cancer therapeutics, which could prevent the series of effects initiated by collagen remodeling. For instance, as a catalyst in a key step of collagen biosynthesis, CP4H was linked with cancer metastasis in recent studies. Undoubtedly, CP4H has confirmed a new target for anti-cancer drugs. Several drugs targeted to CP4H have been developed as CP4H inhibitors, such as Ethyl 3,4-dihydroxybenzoate (EDHB) and 2-(5-carboxythiazol-2-yl) pyridine-5-carboxylic acid (pythiDC) [160]. Lysyl hydroxylation is a key step for collagen cross-link and deposition, which is a potential target to inhibit collagen synthesis. Aiming at the collagen remodeling induced by aberrant lysyl hydroxylation and collagen cross-link, lysyl hydroxylation is developed as a potential target for cancer therapeutic. Minoxidil, as an inhibitor of lysyl hydroxylation, is confirmed to have anti-invasive effects on human breast cancer [161]. Relatively, procollagen-lysine 2-oxoglutarate 5-dioxygenase (PLOD) drew much attention as the catalyzer of the process of lysyl hydroxylation. Increased PLOD expression has been detected in many types of cancer. Targeting PLODs is considered a potential strategy for cancer treatment; however, there are still no reports revealing the related anti-cancer drugs [162]. More available targets and the related drug aiming at collagen synthesis are summarized in Table 2.

Table 2. A summary of drugs targeting the synthesis and secretion of collagens.

Therapeutics Target	Drug	Mechanism	Cancer Type	Status	Reference
	collagen type I		lung cancer, osteosarcoma cells,	a promising candidate	[163–165]
	Baicalein	inhibiting collagen type I	bladder cancer, breast cancer,	awaiting further testing	
		transcription by alleviating TGF-β1 stimulation	pancreatic cancer, cervical cancer, oral cancer		
	Phenylbutyrate, sodium	as a weak histone deacetylase	lung cancer, prostate cancer,	a promising candidate	[166–171]
	Phenylbutyrate	inhibitor decreasing collagen	liver cancer, breast cancer,	awaiting further testing	
		type I Alpha 1 mRNA transcription	ovarian cancer, bladder cancer		
Table 2. Cont.

Therapeutics Target	Drug	Mechanism	Cancer Type	Status	Reference
collagen type I	C9	C9 inhibits collagen production by dissociating laribonucleoprotein domain family member 6 (LARP6) from type I collagen 50′SL RNA	-	awaiting further testing	[172]
	Ethyl 3,4-dihydroxybenzoate (EDHB), 2-(5-carboxythiazol-2-yl) pyridine-5-carboxylic acid (pythiDC)	inhibiting collagen synthesis by inhibiting Prolyl 4-hydroxylases (P4Hs), which is a synthesis and regulatory factor of collagen type I	colorectal cancer, breast cancer	awaiting further testing	[160,173,174]
	Minoxidil	inhibiting collagen synthesis by inhibitor lysyl hydroxylases (LHs), which is a synthesis and regulatory factor of collagen type I	prostate cancer, breast cancer, ovarian cancer	a promising candidate awaiting further testing	[161,162,175,176]
	AK-778	inhibiting collagen synthesis by mitigating the interaction between collagen and HSP47, which is a molecule required for collagen type I maturation.	-	a promising candidate awaiting further testing	[177,178]
	CCT365623	decreasing collagen synthesis by inhibiting lysyl oxidase (LOX), which is a regulatory factor for collagen cross-linking	-	a promising candidate awaiting further testing	[179,180]
collagen type XI	L2Y157299	inhibiting collagen XI alpha 1 chain (COL11A1) expression by inhibiting the transforming growth factor beta receptor 1 (TgβRI)	ovarian cancer, pancreatic cancer, breast cancer	phase II clinical trial	[181–185]
	SC66	as an Akt inhibitor preventing the transcription of COL11A1	colon cancer, ovarian cancer, bladder cancer	under clinical trials	[182,186–189]
collagen type XI	AK778 and its cleavage product Col003	disrupted collagen binding with the molecular chaperone HSP47 and inhibited collagen secretion	-	awaiting further clinical studies	[177,182]

6.2. Interdicting the Receptors

The collagen receptors are the direct trigger of the interaction between cancer cells and collagens. Cancer cells sense the surrounding microenvironment by responding to the biochemical and mechanical properties of transmembrane receptors, including integrins and discoidin domain receptors (DDRs). Interdicting the receptors of collagens is another effectual strategy. We summarize the related targets and the corresponding drug below.

6.2.1. Integrins

Integrins are the important receptor of collagens on the cell membrane. It is a large family, at least including 24 different functional heterodimeric receptors distinguished by 18α-subunits and 8β-subunits [190,191]. According to the reports by far, the integrins of α1β1, α2β1, α3β1, α4β1, α5β1, α6β1, α9β1, α10β1, α11β1, α5β3, and α5β8 have been
found to be involved in tumor growth and metastasis by the regulation of collagen-binding integrin signal [190,192–200]. Further, integrin-mediated pathways are reported many times to connect to drug resistance [201,202]. So, integrins are considered an attractive drug target for cancer therapeutics [203]. This concept is largely encouraged by preclinical studies. Cilengitide, an inhibitor of integrin \(\alpha_v\beta_3 \) and \(\alpha_v\beta_5 \), has been developed as an anti-cancer drug in various tumor types. Several clinical trials were carried out on diverse cancers, such as lung cancer, breast cancer, glioblastoma, prostate cancer, melanoma, and squamous cell cancer [204,205]. Abituzumab (EMD 525797), a monoclonal antibody targeting integrin alpha nu heterodimers, was also demonstrated as an anti-cancer drug. The phase I clinical trial was completed in ovarian cancer patients with liver metastases and the phase II clinical trial was completed in metastatic colorectal cancer; however, successful clinical trials are few in number. For example, cilengitide failed to improve survival for glioblastoma patients in the phase III trial, despite the standard care. At the same time, the trial data of combining abituzumab showed no improvement in the progression-free survival of patients compared with the standard of care alone. So, further verified trials are essential based on stratifying the patient population [206]. Exploiting tumor-specific integrin expression profiles or downstream integrin effectors is also an alternative strategy to target for the development of anti-cancer drugs. Many typical integrin activation factors are noticed, such as FAK, LOX, mucins, and the corresponding inhibitors are developed for cancer therapeutic. Moreover, snake venom disintegrins were confirmed to inhibit integrins and further effected cancer treatment. We summarize the data in Table 3 below.

Table 3. Integrin-associated therapy and the related drugs in cancer therapeutics.

Therapeutics Target	Drug	Mechanism	Cancer Type	Status	Reference
Cilengitide	an inhibitor of integrin \(\alpha_v\beta_3, \alpha_v\beta_5, \alpha_5\beta_1, \alpha_5\beta_3 \)	lung cancer, breast cancer, glioblastoma, prostate cancer, melanoma, squamous cell cancer	in clinical trials	[203,207,208]	
Abituzumab	inhibiting integrin \(\alpha_v\beta_1, \alpha_v\beta_3, \alpha_v\beta_5, \alpha_v\beta_6, \alpha_v\beta_8 \)	colorectal cancer, ovarian cancer	in clinical trials	[203,209]	
Etaracizumab	inhibiting integrin \(\alpha_v\beta_3 \)	melanoma, prostate cancer	a phase II trial	[203]	
Intetumumab	inhibiting integrin \(\alpha_v\beta_1, \alpha_v\beta_3, \alpha_v\beta_5, \alpha_v\beta_6, \alpha_v\beta_8 \)	melanoma, prostate cancer	a phase II trial	[203]	
NCT02428270	using a FAK inhibitor in combination with a MEK1 and MEK2 inhibitor	pancreatic cancer	a phase II trial	[206]	
NCT02546531	using a FAK inhibitor in combination with a humanized antibody targeting programmed cell death protein 1 (PD1) and chemotherapy	solid tumors, pancreatic cancer	a phase I trial	[206]	
NCT01279603	inhibit MUC1 cytoplasmic tail oligomerization	solid tumors	a phase I trial	[206]	
NCT00565721	as valuable probes in cancer imaging studies to determine both prognosis and treatment efficacy	lung cancer, Head & Neck cancer	a phase II trial	[206]	
NCT02683824	an \(\alpha_v\beta_6 \) integrin tracer to detect tumors and evaluate treatment response in patients with pancreatic cancer	pancreatic cancer	early phase I trial	[206]	
6.2.2. DDRs

Another important receptor is DDRs family, including DDR1 and DDR2, which have been proved to regulate various cellular signaling pathways, including cell proliferation, adhesion, migration, and matrix remodeling. DDRs are a subfamily of receptor tyrosine kinases, activated by the triple-helical structure of collagens in the interaction. It is revealed that DDRs possess a special activation mechanism, which initiates the pathways leading to autophosphorylation through collagen binding. In the fibrillar collagens, DDR1 and DDR2 could respond to collagen type I, II, III, and V, while in the non-fibrillar collagens, type IV, VI, VIII, and X are also the activator. However, the mechanism of extracellular collagen binding and activation of the cytosolic kinase domain of the receptors is not clear so far. A recognized theory is that DDRs occur dimerization before the ligand binding with collagens, which is different from the other receptor tyrosine kinases undergoing dimerization after ligand binding [210]; then, the amino acid produces residues of collagens as the sites bind with DDRs dimerization [211]. In turn, the activated DDRs could trigger the signal transduction pathways of cell behaviors, such as proliferation, migration, and invasion [212]. In many cancers, overexpression of DDRs is associated with a poor prognosis. Deng et al. demonstrated that collagen-induced DDR1 activation in cancer cells could recruit tumor-associated neutrophils to form extracellular traps, enhancing the subsequent cancer cell invasion and metastasis [213]. The imbalance expression of DDRs has been demonstrated to be associated with most cancers. Huo et al. revealed that high expression of DDR1 was associated with poor prognosis in pancreatic ductal adenocarcinoma [214]. Xie et al. found that overexpression of DDR1 promoted the aggressive growth, migration, and invasion of bladder cancer cells, in which process collagen IV was a signal axis [215]. As DDRs play a significant role in cancer progression, DDRs would be new promising targets for cancer treatment, such as the design of DDR inhibitors for use in clinical settings. Some drugs were developed to inhibit DDR expression, such as dasatinib, imatinib, nilotinib, and ponatinib. Dasatinib was confirmed enabling to inhibit gastric cancer cell migration and invasion in the assays. Several clinical trials were completed in phases I and II, such as lung cancer, breast cancer, and prostate cancer. Nilotinib was reported to reduce metastatic colorectal cancer invasion by inhibiting DDR1 kinase activation. Many clinical trials are currently underway in several types of cancer, such as breast cancer, gastrointestinal stromal tumors, and so on. The antibody–drug conjugate targeting DDRs is utilized in anti-cancer drug development. As an example, T4H11-DM4 is demonstrated to be effective for colon cancer. Many other drugs were developed to target DDRs in recent years—shown in Table 4.

Table 4. DDRs associated therapy and the related drugs in cancer therapeutics.

Therapeutics Target	Drug	Mechanism	Cancer Type	Status	Reference
DDRs	nilotinib	inhibiting the kinase activity of DDR1	colorectal cancer		[216]
	Dasatinib	inhibit DDRs	prostate cancer, glioblastoma, breast cancer, lung cancer, gastric cancer	in clinical trials	[217–223]
	Nilotinib	inhibit DDRs	colorectal cancer, colon cancer	in clinical trials	[217,224–226]
Table 4. Cont.

Therapeutics Target	Drug	Mechanism	Cancer Type	Status	Reference
DDRs	Imatinib	inhibit DDRs	lung cancer, liver cancer	in clinical trials	[227–230]
	Ponatinib	inhibit DDRs	lung cancer	in clinical trials	[231,232]
	T4H11-DM4	an antibody-drug conjugate targeting DDR1	colon cancer	awaiting further clinical studies	[233]
	Actinomycin D	an antagonist of the DDR2-collagen interaction	rhabdomyosarcoma, Ewing’s sarcoma, trophoblastic neoplasia, and testicular carcinoma	in clinical application	[234,235]
	LCB 03-0110	inhibiting collagen-induced activation of DDR1 and DDR2 receptors	-	awaiting further clinical studies	[236,237]
	pyrazolo-urea containing compounds 2a, 4a, 4b	inhibit DDR2	gastric cancer, nasopharyngeal carcinoma, pancreatic ductal adenocarcinoma, breast cancer, uveal melanoma	in clinical trials	[218,239–243]
	7rh	inhibited the kinase activity of DDR1	colorectal cancer, lung cancer	awaiting further clinical studies	[232,244–246]
	7rj	inhibited the kinase activity of DDR1	-	awaiting further clinical studies	[235]
	DDR1-IN-1	induced a significant inhibitory effect against DDR1	colorectal cancer, lung cancer	awaiting further clinical studies	[232,244–246]
	DDR1-IN-2	induced a significant inhibitory effect against DDR1	-	awaiting further clinical studies	[235]
	miR-199a-5p, a targeted delivery of miRNAs	inhibit DDRs	colorectal cancer, renal cancer	awaiting further clinical studies	[247–250]
	monoclonal antibodies Fab 3E3, 48B3, H-126	inhibit DDRs	ductal breast carcinoma	awaiting further clinical studies	[235,251]

6.3. Targeting to Collagen-Induced Chemoresistance

More and more data implicated the desmoplastic reaction is substantially related to chemoresistance in chemotherapeutics. It is reported that the pancreatic cancer cells grown in collagens demonstrated low sensitivity to gemcitabine chemotherapy. A further study showed that three-dimensional collagens enabled an increase in ERK1/2 signaling, which is known to promote chemotherapy resistance in several cancers. In other malignancies, it is repeatedly reported that collagens protect cancer cells against chemotherapy. For instance, in lung cancer models, collagens are shown to provide survival signals to attenuate the effects of chemotherapy. In this regard, MT1-MMP plays a critical physiological role in modulating growth factors and integrin signaling to enhance ERK1/2 phosphorylation in the collagen microenvironment. Moreover, the increasing density of the ECM initiated by collagen fibers and collagen deposition attenuates the permeability of drug delivery in chemotherapy. Targeting collagen-induced chemoresistance is an effective strategy to promote the chemotherapy effect. Some drugs are developed targeting the intermediary in the signal pathway. Moreover, enhancing the collagen penetration of anticancer drugs is an available strategy for cancer therapeutics, which targets collagen-associated stiffness ECM and high dense collagen fibers, increasing the drug efficacy [252]. We summarize the related drugs in Table 5.
Table 5. The drugs that target collagen-induced chemoresistance.

Therapeutics	Target Drug	Mechanism	Cancer Type	Status	Reference
collagen	polyethylene glycol (PEG) & glutaraldehyde co-modified fluorinated chitosan (PGFCS)	as a collagen-targeted transepithelial penetration enhancer creating a tumor-targeted adhesive interface to open the transepithelial-delivery barrier at the tumor site	bladder cancer	awaiting further testing	[253]
	losartan	reducing stromal collagen and hyaluronan production to decompress tumor vessels for enhancing drug delivery.	prostate cancer, colorectal cancer, pancreatic cancer, breast cancer, lung cancer, ovarian cancer, endometrial cancer	in clinical application	[254–261]

Collagen type II

Therapeutics	Target Drug	Mechanism	Cancer Type	Status	Reference
	Ivosideni	a selective inhibitor of mutant IDH1, which is a gene mutant site of collagen type II	chondrosarcoma	waiting further clinical studies	[262]

ERK1/2

Therapeutics	Target Drug	Mechanism	Cancer Type	Status	Reference
	JaZ-30	downregulates phosphorylation of the extracellular signal-regulated ERK1/2	melanoma	waiting further clinical studies	[263]

7. Conclusions and Future Perspectives

Collagens are the main component of the ECM, and their remodeling occurs along with all processes of cancer progression. Collagens occur in abnormal morphology and distribution in precancerous lesions, which seriously affect the topography of the ECM. This provides a chance for clinicians to discover the pathology through medical imaging or pathological for cancer early diagnosis. In cancer development, collagens cause different stages of ECM topography, which contributes to cancer staging. Moreover, collagen-associated biochemical indicators are the significant biomarkers of cancer diagnosis and prognosis. Collagen participation in cancer progression is not only reflected in the remodeling under the influence of tumor cells or tumor-associated cells but is further revealed as the role of guider or inducer for cancer cell invasion. The “highway” for cancer cell invasion and the high stiffness of ECM are all enhanced by collagens, corresponding with the aligned collagen fiber bundle and collagen deposition, respectively. Based on the mechanism of the interaction between collagens and cancer cells, many opportunities for cancer therapeutics are revealed by disturbing or blocking the requirement in the interaction. The targets are diversely located across the pathway of collagen synthesis, binding to receptors, degradation, and drug transport. Overall, collagens provide many opportunities, whether for cancer diagnosis or cancer treatment; however, there are still many challenges from the exploration of therapeutic targets to drug development because there are only a few drugs allowed to enter the clinical application, while most of them are just in clinical trials or waiting for further clinical studies. Several questions and propositions are provided for further research. Firstly, the mechanism of collagen remodeling and its interaction with cancer cells is not completely clear. So further studies are essential on the mechanisms of collagen remodeling and the interaction between collagens and cancer cells. In our opinion, small molecule inhibitors are worth developing as anti-cancer drugs due to their excellent location and potential to cause no damage to normal cells. It would be a potential strategy to block the collagen remodeling; however, it is hard to implement for the reconstructed collagens. So, how to reduce the effectiveness of the reconstructed collagens is a valuable issue. In addition to the targets in the action pathway, we propose that ablating the reconstructed collagens is another strategy for cancer therapeutics. Moreover, to enhance the efficacy, we highlight the significance of finding a suitable nanocarrier to increase the drug transport capacity. Overall, further efforts are urgent in the collagen-associated mechanism and the therapeutic strategy for cancer.
Author Contributions: K.S. and Z.H., designed the study; Z.Y. and G.L. drew the schematic diagrams; K.S., X.Z. and Y.X. wrote and modified the paper. All authors have read and agreed to the published version of the manuscript.

Funding: Grants from the National Natural Science Foundation of China (Grant No. 12104134), key specialized research and development breakthrough of He’nan province (Grant No. 212102310887, No. 212102310741), key scientific research projects of He’nan colleges and universities (Grant No. 21A416005), Luoyang Public Security Project (Grant No. 2101024A).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Paszek, M.J.; Zahir, N.; Johnson, K.R.; Lakins, J.N.; Rozenberg, G.I.; Gefen, A.; Reinhart-King, C.A.; Margulies, S.S.; Dembo, M.; Boettiger, D.; et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8, 241–254. [CrossRef] [PubMed]
2. Butcher, D.T.; Alliston, T.; Weaver, V.M. A tense situation: Forcing tumour progression. Nat. Rev. Cancer 2009, 9, 108–122. [CrossRef] [PubMed]
3. Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [CrossRef] [PubMed]
4. Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020, 11, 5120. [CrossRef] [PubMed]
5. Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [CrossRef] [PubMed]
6. Ricard-Blum, S. The Collagen Family. Cold Spring Harbor Perspect. Biol. 2011, 3, a004978. [CrossRef] [PubMed]
7. Wu, Y.X.; Ge, G.X. Complexity of type IV collagens: From network assembly to function. Biol. Chem. 2019, 400, 565–574. [CrossRef] [PubMed]
8. Bella, J.; Hulmes, D.J.S. Fibrillar Collagens. In Fibrous Proteins: Structures and Mechanisms; Parry, D.A.D., Squire, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 82, pp. 457–490.
9. Shamhart, P.E.; Meszaros, J.G. Non-fibrillar collagens: Key mediators of post-infarction cardiac remodeling? J. Mol. Cell. Cardiol. 2010, 48, 530–537. [CrossRef]
10. Ambekar, R.; Lau, T.-Y.; Walsh, M.; Bhargava, R.; Toussaint, K.C., Jr. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. J. Biomed. Opt. Express 2012, 3, 2021–2035. [CrossRef]
11. Belisle, J.; Zigras, T.; Costantino, S.; Cartier, R.; Butany, J.; Wiseman, P.W.; Leask, R.L. Second harmonic generation microscopy to investigate collagen configuration: A pericarditis case study. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2010, 19, e125–e128. [CrossRef] [PubMed]
12. Grethel Fuentes-Corona, C.; Licea-Rodriguez, J.; Younger, R.; Rangel-Rojo, R.; Potma, E.O.; Rocha-Mendoza, L. Second harmonic generation signal from type I collagen fibers grown in vitro. Biomed. Opt. Express 2019, 10, 6449–6461. [CrossRef] [PubMed]
13. Mohammed, D.; Pardon, G.; Versaevel, M.; Bruyere, C.; Alaimo, L.; Luciano, M.; Vercruyse, E.; Pruitt, B.L.; Gabriele, S. Producing Collagen Micro-strips with Aligned Fibers for Cell Migration Assays. Cell. Mol. Bioeng. 2020, 13, 87–98. [CrossRef] [PubMed]
14. Okoro, C.; Toussaint, K.C., Jr. Second-harmonic patterned polarization-analyzed reflection confocal microscope. J. Biomed. Opt. 2017, 22, 086007. [CrossRef] [PubMed]
15. Olivares, V.; Condor, M.; Del Amo, C.; Asin, J.; Borau, C.; Manuel Garcia-Aznar, J. Image-based Characterization of 3D Collagen Networks and the Effect of Embedded Cells. Microsc. Microanal. 2019, 25, 971–981. [CrossRef] [PubMed]
16. Xu, M.Y.; Liu, J.; Sun, J.Y.; Xu, X.R.; Hu, Y.C.; Liu, B. Optical Microscopy and Electron Microscopy for the Morphological Evaluation of Tendons: A Mini Review. Orthop. Surg. 2020, 12, 366–371. [CrossRef] [PubMed]
17. Raspanti, M.; Reguzzoni, M.; Rita Basso, P.; Protasoni, M.; Martini, D. Visualizing the Supramolecular Assembly of Collagen. Methods Mol. Biol. 2019, 1592, 33–44. [PubMed]
18. Oosterlaken, B.M.; Friedrich, H.; de With, G. The effects of washing a collagen sample prior to TEM examination. Microsc. Res. Tech. 2022, 85, 412–417. [CrossRef] [PubMed]
19. Quan, B.D.; Sone, E.D. Cryo-TEM Analysis of Collagen Fibrillar Structure. In Research Methods in Bion mineralization Science; Yoreo, J.J.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 532, pp. 189–205.
20. Oosterlaken, B.M.; van Rijt, M.M.J.; Joosten, R.R.M.; Bomans, P.H.H.; Friedrich, H.; de With, G. Time-Resolved Cryo-TEM Study on the Formation of Iron Hydroxides in a Collagen Matrix. ACS Biomater. Sci. Eng. 2021, 7, 3123–3131. [CrossRef] [PubMed]
21. Quan, B.D.; Sone, E.D. Structural changes in collagen fibrils across a mineralized interface revealed by cryo-TEM. Bone 2015, 77, 42–49. [CrossRef] [PubMed]
22. Raspanti, M.; Protasoni, M.; Manelli, A.; Guizzardi, S.; Mantovani, V.; Sala, A. The extracellular matrix of the human aortic wall: Ultrastructural observations by FEG-SEM and by tapping-mode AFM. Micron 2006, 37, 81–86. [CrossRef]
23. Stylianou, A. Assessing Collagen D-Band Periodicity with Atomic Force Microscopy. Materials 2022, 15, 1608. [CrossRef] [PubMed]
24. Youn, Y.-S.; Kim, S. Real-time atomic force microscopy imaging of collagen fibril under ultraviolet irradiation. J. Ind. Eng. Chem. 2016, 42, 15–18. [CrossRef]
25. Meek, K.M.; Quantock, A.J. The use of X-ray scattering techniques to determine corneal ultrastructure. Prog. Retin. Eye Res. 2001, 20, 95–137. [CrossRef]
51. Barbazan, J.; Vignjevic, D.M. Cancer associated fibroblasts: Is the force the path to the dark side? Curr. Opin. Cell Biol. 2019, 56, 71–79. [CrossRef]

52. Bertero, T.; Oldham, W.M.; Grasset, E.M.; Bourget, I.; Boulter, E.; Pisano, S.; Hofman, P.; Bellvert, F.; Meneguzzi, G.; Bulavin, D.V.; et al. Tumor-Struma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metab. 2019, 29, 124–140.e10. [CrossRef]

53. Stylianou, A.; Gkretsi, V.; Louca, M.; Zacharia, L.C.; Stylianopoulos, T. Collagen content and extracellular matrix cause cytoskeletal remodelling in pancreatic fibroblasts. J. R. Soc. Interface 2019, 16, 20190226. [CrossRef] [PubMed]

54. Stylianou, A.; Gkretsi, V.; Stylianopoulos, T. Transforming growth factor-beta modulates pancreatic cancer associated fibroblasts cell shape, stiffness and invasion. Biochim. Et Biophys. Acta-Gen. Subj. 2018, 1862, 1537–1546. [CrossRef] [PubMed]

55. Shibata, M.; Ham, K.; Hoque, M.O. A time for YAP1: Tumorigenesis, immuno-suppression and targeted therapy. Int. J. Cancer 2018, 143, 2133–2144. [CrossRef] [PubMed]

56. Farhat, A.; Ferns, G.A.; Ashrafi, K.; Arjmand, M.-H. Lysyl Oxidase Mechanisms to Mediate Gastrointestinal Cancer Progression. Gastrointest. Tumors 2021, 8, 33–40. [CrossRef]

57. Azimzade, Y.; Saberi, A.A.; Sahimi, M. Regulation of migration of chemotactic tumor cells by the spatial distribution of collagen fiber orientation. Phys. Rev. E 2019, 99, 062414. [CrossRef]

58. Geiger, F.; Schnitzler, L.G.; Brugger, M.S.; Westerhausen, C.; Engelke, H. Directed invasion of cancer cell spheroids inside 3D collagen matrices oriented by microfluidic flow in experiment and simulation. PLoS ONE 2022, 17, e0264571. [CrossRef]

59. Han, W.; Chen, S.; Yuan, W.; Fan, Q.; Tian, J.; Wang, X.; Chen, L.; Zhang, X.; Wei, W.; Liu, R.; et al. Oriented collagen fibers direct tumor cell intravasation. Proc. Natl. Acad. Sci. USA 2016, 113, 11208–11213. [CrossRef]

60. Suveges, S.; Chamseddine, I.; Rejniak, K.A.; Eftimie, R.; Trucu, D. Collective Cell Migration in a Fibrous Environment: A Hybrid Multiscale Modelling Approach. Front. Appl. Math. Stat. 2021, 7, 680029. [CrossRef]

61. Gkretsi, V.; Stylianopoulos, T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell invasion and Metastasis. Front. Oncol. 2018, 8, 145. [CrossRef]

62. Li, H.; Bera, K.; Gilmore, H.; Davidson, N.E.; Madabhushi, A. Histomorphometric measure of disorder of collagen fiber orientation is associated with risk of recurrence in ER plus breast cancers in ECOG-ACRIN E2197 and TCGA-BRCA. Cancer Res. 2020, 80, 615. [CrossRef]

63. Lee, B.; Konen, J.; Wilkinson, S.; Marcus, A.I.; Jiang, Y. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics. Sci. Rep. 2017, 7, 39498. [CrossRef] [PubMed]

64. Lewis, D.M.; Tang, V.; Jain, N.; Isser, A.; Xia, Z.; Gerecht, S. Collagen Fiber Architecture Regulates Hypoxic Sarcoma Cell Migration. ACS Biomater. Sci. Eng. 2018, 4, 400–409. [CrossRef]

65. Nan, H.; Liang, L.; Chen, G.; Liu, L.; Liu, R.; Jiao, Y. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion. Phys. Rev. E 2018, 97, 033311. [CrossRef] [PubMed]

66. Wang, S.; Abhilash, A.S.; Chen, C.S.; Wells, R.G.; Senyo, V.B. Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers. Biophys. J. 2014, 107, 2592–2603. [CrossRef] [PubMed]

67. Wang, J.; Petefish, J.W.; Hillier, A.C.; Schneider, I.C. Epitaxially Grown Collagen Fibers Reveal Diversity in Contact Guidance among Cancer Cells. Langmuir 2015, 31, 307–314. [CrossRef]

68. Ray, A.; Provenzano, P.P. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr. Opin. Cell Biol. 2021, 72, 63–71. [CrossRef] [PubMed]

69. Bayer, S.V.H.; Grither, W.R.; Brenot, A.; Hwang, P.Y.; Barcus, C.E.; Ernst, M.; Pence, P.; Walter, C.; Pathak, A.; Longmore, G.D. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. Elife 2019, 8, e45508. [CrossRef]

70. Hanley, C.J.; Noble, F.; Ward, M.; Bullock, M.; Drifka, C.; Mellone, M.; Manousopoulou, A.; Johnston, H.E.; Johnston, H.E.; Hayden, A.; et al. A subset of myofibroblast-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget 2016, 7, 6159–6174. [CrossRef] [PubMed]

71. Del Amo, C.; Olivares, V.; Condor, M.; Blanco, A.; Santolaria, J.; Asin, J.; Borau, C.; Garcia-Aznar, J.M. Matrix architecture plays a pivotal role in 3D osteoblast migration: The effect of interstitial fluid flow. J. Mech. Behav. Biomed. Mater. 2018, 83, 52–62. [CrossRef]

72. Balcioglu, H.E.; van de Water, B.; Danen, E.H.J. Tumor-induced remote ECM network orientation steers angiogenesis. Sci. Rep. 2016, 6, 22580. [CrossRef]

73. Kirkpatrick, N.D.; Andreou, S.; Hoying, J.B.; Utzinger, U. Live imaging of collagen remodeling during angiogenesis. Am. J. Physiol.-Heart Circ. Physiol. 2007, 292, H3198–H3206. [CrossRef] [PubMed]

74. Luthria, G.; Li, R.; Wang, S.; Pytyskach, M.; Kohler, R.H.; Lauenburger, D.A.; Mitchison, T.J.; Weissleder, R.; Miller, M.A. In vivo microscopy reveals macrophage polarization locally promotes coherent microtubule dynamics in migrating cancer cells. Nat. Commun. 2020, 11, 3521. [CrossRef] [PubMed]

75. Hansen, N.U.B.; Willumsen, N.; Sand, J.M.B.; Larsen, L.; Karsdal, M.A.; Leeming, D.J. Type VIII collagen is elevated in diseases associated with angiogenesis and vascular remodeling. Clin. Biochem. 2016, 49, 903–908. [CrossRef]

76. Piotrowski-Daspit, A.S.; Nerger, B.A.; Wolf, A.E.; Sundaresan, S.; Nelson, C.M. Dynamics of Tissue-Induced Alignment of Fibrous Extracellular Matrix. Biophys. J. 2017, 113, 702–713. [CrossRef] [PubMed]
77. Velez, D.O.; Tsui, B.; Goshia, T.; Chute, C.L.; Han, A.; Carter, H.; Fraley, S.I. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasogenic mimicry. Nat. Commun. 2017, 8, 1651. [CrossRef]

78. Bedal, K.B.; Grassel, S.; Spanier, G.; Reichert, T.E.; Bauer, R.J. The NC11 domain of human collagen XVI induces vasogenic mimicry in oral squamous cell carcinoma cells. Carcinogenesis 2015, 36, 1429–1439. [CrossRef]

79. Fan, H.; Li, H.; Liu, G.; Cong, W.; Zhao, H.; Cao, W.; Zheng, J. Doxorubicin combined with low intensity ultrasound suppresses the growth of oral squamous cell carcinoma in culture and in xenografts. J. Exp. Clin. Cancer Res. 2017, 36, 163. [CrossRef]

80. Nelson, M.T.; Short, A.; Cole, S.L.; Gross, A.C.; Winter, J.; Eubank, T.D.; Lannutti, J.B. Preferential, enhanced breast cancer cell migration on biomimetic extracellular matrix ‘cell highways’. BMC Cancer 2014, 14, 825. [CrossRef]

81. Su, C.-Y.; Burchett, A.; Dunworth, M.; Choi, J.S.; Ewald, A.J.; Aln, E.H.; Kim, D.-H. Engineering a 3D collective cancer invasion model with control over collagen fiber alignment. Biomaterials 2021, 275, 120922. [CrossRef]

82. Gritsenko, P.G.; Ilinia, O.; Friedl, P. Intercellular guidance of cancer invasion. J. Pathol. 2012, 226, 185–199. [CrossRef]

83. Iuliano, J.N.; Kutscha, P.D.; Biderman, N.J.; Subbaran, S.; Groves, T.R.; Tenenbaum, S.A.; Hempel, N. Metastatic bladder cancer cells distinctively sense and respond to physical cues of collagen fibril-mimetic nanotopography. Exp. Biol. Med. 2015, 240, 601–610. [CrossRef] [PubMed]

84. Soon, L.L. A discourse on cancer cell chemotaxis: Where to from here? Iubmb Life 2007, 59, 60–67. [CrossRef]

85. Yokoi, K.; Kojic, M.; Milosevic, M.; Tane, T.; Ferrari, M.; Ziems, A. Capillary-Wall Collagen as a Biophysical Marker of Nonanthetic Permeability into the Tumor Microenvironment. Cancer Res. 2014, 74, 4239–4246. [CrossRef]

86. Yudasaka, M.; Okamata-Agura, Y.; Tanaka, T.; Saeki, K.; Kataura, H. Cold-induced Conversion of Connective Tissue Skeleton in Brown Adipose Tissues. Acta Histochem. Et Cytochem. 2021, 54, 131–141. [CrossRef] [PubMed]

87. Knudson, K.M.; Hicks, K.C.; Luo, X.; Chen, J.Q.; Schlom, J.; Gameiro, S.R. M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 2018, 7, e1426519. [CrossRef] [PubMed]

88. Romer, A.M.A.; Thorseth, M.L.; Madsen, D.H. Immune Modulatory Properties of Collagen in Cancer. Front. Immunol. 2021, 12, 791453. [CrossRef]

89. Yu, Q.; Yue, Y.X.; Liu, J.; Xi, Z.; Li, Z.; Liu, Y.H. Fibronectin Promotes the Malignancy of Glioma Stem-Like Cells Via Modulation of Cell Adhesion, Differentiation, Proliferation and Chemoresistance. Front. Mol. Neurosci. 2018, 11, 130. [CrossRef]

90. Fang, M.; Yuan, J.-P.; Peng, C.-W.; Liu, S.-P.; Li, Y. Dynamic Changes of Collagen IV During Cancer Invasion and Migration: Pulse Mode. Biochim. Biophys. Acta 2010, 1804, 1056–1062.

91. Zhang, H.; Fredericks, T.; Xiong, G.; Qi, Y.; Rychahou, P.G.; Li, J.-D.; Pihlajaniemi, T.; Xu, W.; Xu, R. Membrane associated collagen XIII promotes cancer metastasis and enhances anoikis resistance. Breast Cancer Res. 2018, 20, 116. [CrossRef]

92. Karagiannis, G.S.; Petraki, C.; Prassas, I.; Saraon, P.; Musrap, N.; Dimitromanolakis, A.; Diamandis, E.P. Proteomic Signatures of the Desmoplastic Invasion Front Reveal Collagen Type XII as a Marker of Myofibroblastic Differentiation During Colorectal Cancer Metastasis. Oncotarget 2012, 3, 267–285. [CrossRef]

93. Kumagai, Y.; Nio-Kobayashi, J.; Ishida-Ishihara, S.; Tachibana, H.; Omori, R.; Enomoto, A.; Ishihara, S.; Haga, H. The intercellular expression of type-XVII collagen, laminin-332, and integrin-beta 1 promote contact following during the collective invasion of a cancer cell population. Biochim. Biophys. Res. Commun. 2019, 514, 1115–1121. [CrossRef] [PubMed]

94. Miyake, M.; Hori, S.; Morizawa, Y.; Cong, W.; Zhao, H.; Cao, W.; Zheng, J. Doxorubicin combined with low intensity ultrasound suppresses the growth of oral squamous cell carcinoma in culture and in xenografts. J. Exp. Clin. Cancer Res. 2017, 36, 163. [CrossRef]

95. Nurmenniemi, S.; Koivula, M.K.; Nyberg, P.; Tervahartiala, T.; Sorsa, T.; Mattila, P.S.; Salo, T.; Risteli, J. Type I and III collagen metabolism with TAZ and The Progression of High-Grade Bladder Cancer. Cell J. 2019, 21, 2533–2543. [CrossRef]

96. Franjevic, A.; Pavicevic, R.; Bubanovic, G. ICTP in bone metastases of lung cancer. Coll. Anthropol. 2011, 35, 43–47.

97. Willumsen, N.; Bager, C.L.; Leeming, D.J.; Smith, V.; Christiansen, C.; Karsdal, M.A.; Karsdal, M.A. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer. J. Exp. Clin. Cancer Res. 2018, 37, 1651. [CrossRef]

98. Ghassemi, H.; Hashemnia, M.; Mousavibahar, S.H.; Hosseini, H.M.; Mirhosseini, S.A. Positive Association of Matrix Proteins Alteration with TAZ and The Progression of High-Grade Bladder Cancer. Cell J. 2021, 23, 742–749.

99. Qin, L.P.; Zeng, J.P.; Shi, N.N.; Chen, L.; Wang, L. Application of weighted gene co-expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer. Mol. Med. Rep. 2020, 21, 2533–2543. [CrossRef]

100. Zhou, Z.L.; Yang, G.Y.; Fang, Z.Z.; Liang, J.W.; Wang, W.Z.; Zhou, Y.L. Establishment of a regression model of bone metabolism markers for the diagnosis of bone metastases in lung cancer. World J. Surg. Oncol. 2021, 19, 27. [CrossRef]

101. Lipton, A.; Leitzel, K.; Ali, S.M.; Polimera, H.V.; Nagabhauri, V.; Marks, E.; Richardson, A.E.; Krecko, L.; Ali, A.; Koestler, W.; et al. High turnover of extracellular matrix reflected by specific protein fragments measured in serum is associated with poor outcomes in two metastatic breast cancer cohorts. Int. J. Cancer 2018, 143, 3027–3034. [CrossRef]

102. Ma, H.P.; Chang, H.L.; Bambod, O.A.; Yadav, V.K.; Huang, T.Y.; Wu, A.T.H.; Yeh, C.T.; Tsai, S.H.; Lee, W.H. Collagen 1A1 (COL1A1) Is a Reliable Biomarker and Putative Therapeutic Target for Hepatocellular Carcinogenesis and Metastasis. Cancers 2019, 11, 786. [CrossRef]
103. Zulaut, N.; Bruggmann, D.; Gorneberg, D.; Oremek, G.M. Expressiveness of Bone Markers in Breast Cancer with Bone Metastases. *Oncology* **2019**, *97*, 236–244. [CrossRef] [PubMed]

104. Rong, L.; Huang, W.; Tian, S.K.; Chi, X.B.; Zhao, P.; Liu, F.F. COL1A2 is a Novel Biomarker to Improve Clinical Prediction in Human Gastric Cancer: Integrating Bioinformatics and Meta-Analysis. *Pathol. Oncol. Res.* **2018**, *24*, 129–134. [CrossRef] [PubMed]

105. Narita, T.; Funahashi, H.; Sato, Y.; Takagi, H. Procollagen type III N-peptide and type IV collagen 7S-domain in the sera of breast cancer patients. *Surg. Today* **1993**, *23*, 682–686. [CrossRef] [PubMed]

106. Chen, J.M.; Willumsen, N.; Dehler, D.; Johansen, A.Z.; Jensen, B.V.; Hansen, C.P.; Hasselby, J.P.; Bojesen, S.E.; Pfeiffer, P.; Nielsen, S.E.; et al. Clinical value of serum hyaluronan and propeptide of type III collagen in patients with pancreatic cancer. *Int. J. Cancer* **2020**, *146*, 2913–2922. [CrossRef]

107. Mazurek, K.; Siemianowicz, K.; Likus, W.; Pientka, R.; Kwiatkowski, R.; Markowski, J. Collagen Type III Metabolism Evaluation in Patients with Malignant Head and Neck Cancer Treated with Radiotherapy. *BioMed Res. Int.* **2018**, *2018*, 8702605. [CrossRef]

108. Tomas, C.; Risteli, J.; Risteli, L.; Vuori, J.; Kauppi, A. Use of various epithelial tumor markers and a stromal marker in the assessment of cervical carcinoma. *Obstet. Gynecol.* **1991**, *77*, 566–572.

109. Akazawa, S.; Harada, A.; Futatsuki, K. Diagnostic values of type III Procollagen N-terminal peptide and combination assay of type III procollagen N-terminal peptide with CEA and CA 19-9 in gastric cancer. *Gan To Kagaku Ryoho*. Cancer Chemother. **1984**, *11*, 1434–1438.

110. Cracchiolo, B.M.; Hanauske-Abel, H.M.; Schwartz, P.E.; Chambers, J.T.; Holland, B.; Chambers, S.K. Procollagen-derived biomarkers in malignant ascites of ovarian cancer. Independent prognosticators for progression-free interval and survival. *Gynecol. Oncol. 2002*, *87*, 24–33. [CrossRef]

111. Gabazza, E.C.; Taguchi, O.; Yamakami, T.; Machishi, M.; Ibata, H.; Tsutsui, K.; Suzuki, S. Coagulation-fibrinolysis system and markers of collagen metabolism in lung cancer. *Cancer* **1992**, *70*, 2631–2636. [CrossRef]

112. Attallah, A.M.; Albannan, M.S.; El-Deen, M.S.; Farid, K.; Khedr, F.M.; Attallah, K.A.; Abdallah, S.O. Diagnostic role of collagen-III and matrix metalloproteinase-1 for early detection of hepatocellular carcinoma. *Br. J. Biomed. Sci.* **2020**, *77*, 58–63. [CrossRef]

113. Gueugnon, F.; Leclercq, S.; Blanquet, C.; Sagan, C.; Cellerin, L.; Padiou, M.; Perigaud, C.; Scherpeereel, A.; Greigore, M. Identification of Novel Markers for the Diagnosis of Malignant Pleural Mesothelioma. *An. J. Pathol.* **2011**, *178*, 1033–1042. [CrossRef]

114. Tang, M.; Liu, P.Q.; Wu, X.K.; Gong, J.; Weng, J.C.; Gao, G.Y.; Liu, Y.L.; Gan, L. COL3A1 and Its Related Molecules as Potential Biomarkers in the Development of Human Ewing’s Sarcoma. *BioMed Res. Int.* **2021**, *2021*, 7453500. [CrossRef] [PubMed]

115. Kinoshita, J.; Fushida, S.; Harada, S.; Makino, I.; Nakamura, K.; Oyama, K.; Fujita, H.; Ninomiya, I.; Fujimura, T.; Kayahara, M.; et al. Type IV collagen levels are elevated in the serum of patients with peritoneal dissemination of gastric cancer. *Oncol. Lett.* **2010**, *1*, 989–994. [CrossRef]

116. Willumsen, N.; Bager, C.L.; Leeming, D.J.; Smith, V.; Karsdal, M.A.; Dornan, D.; Bay-Jensen, A.C. Extracellular matrix specific protein fingerprints measured in serum can separate pancreatic cancer patients from healthy controls. *BMC Cancer* **2013**, *13*, 554. [CrossRef]

117. Seko, Y.; Sumida, Y.; Tanaka, S.; Takeuti, H.; Kanemasa, K.; Ishiba, H.; Okajima, A.; Nishimura, T.; Yamaguchi, K.; Moriguchi, M.; et al. Predictors of malignancies and overall mortality in Japanese patients with biopsy-proven non-alcoholic fatty liver disease. *Hepatol. Res.* **2015**, *45*, 728–738. [CrossRef]

118. Sumida, Y.; Yoneda, M.; Seko, Y.; Ishiba, H.; Harada, S.; Makino, I.; Nakamura, K.; Oyama, K.; Fujita, H.; Ninomiya, I.; Fujimura, T.; Kayahara, M.; et al. Type IV collagen levels are elevated in the serum of patients with peritoneal dissemination of gastric cancer. *Oncol. Lett.* **2010**, *1*, 989–994. [CrossRef]

119. Rong, L.; Huang, W.; Tian, S.K.; Chi, X.B.; Zhao, P.; Liu, F.F. COL1A2 is a Novel Biomarker to Improve Clinical Prediction in Human Gastric Cancer: Integrating Bioinformatics and Meta-Analysis. *Pathol. Oncol. Res.* **2018**, *24*, 129–134. [CrossRef] [PubMed]

120. Hiki, Y.; Iyama, K.; Tsuruta, J.; Egami, H.; Kamio, T.; Suko, S.; Naito, I.; Sado, Y.; Ninomiya, Y.; Ogawa, M. Differential expression of extracellular matrix components in urothelial carcinoma. *Pathol. Int.* **2002**, *52*, 224–233. [CrossRef]

121. Attallah, A.M.; Albannan, M.S.; El-Deen, M.S.; Farid, K.; Khedr, F.M.; Attallah, K.A.; Abdallah, S.O. Diagnostic role of collagen-III and matrix metalloproteinase-1 for early detection of hepatocellular carcinoma. *Br. J. Biomed. Sci.* **2020**, *77*, 58–63. [CrossRef]

122. Sameni, M.; Dosescu, J.; Yamada, K.M.; Sloane, B.F.; Cavallo-Medved, D. Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells. *Mol. Imaging* **2008**, *7*, 199–213. [CrossRef]

123. Iacchim, E.; Michael, M.; Stavropoulos, N.E.; Kitsiou, E.; Salmis, M.; Malamou-Mitsi, V. A clinicopathological study of the expression of extracellular matrix components in uterine tumor tissues. *BJU Int.* **2005**, *95*, 655–659. [CrossRef] [PubMed]

124. Chen, C.; Mendez, E.; Houck, J.; Fan, W.; Lohavanchibutr, P.; Doody, D.; Yueh, B.; Putran, N.D.; Upton, M.; Farwell, D.G.; et al. Gene expression profiling identifies genes predictive of oral squamous cell carcinoma. *Cancer Epidemiol. Biomark. Prevent.* **2008**, *17*, 2152–2162. [CrossRef] [PubMed]

125. Liu, Y.L.; Zhang, J.Y.; Chen, Y.; Sohel, H.; Ke, X.R.; Chen, J.Q.; Li, Y.X. The correlation and role analysis of COL4A1 and COL4A2 in hepatocarcinogenesis. *Aging-Us* **2020**, *12*, 204–223. [CrossRef] [PubMed]
126. Miyake, M.; Morizawa, Y.; Horii, S.; Tatsumi, Y.; Onishi, S.; Owari, T.; Iida, K.; Onishi, K.; Gotoh, D.; Nakai, Y.; et al. Diagnostic and prognostic role of urinary collagens in primary human bladder cancer. Cancer Sci. 2017, 108, 2221–2228. [CrossRef] [PubMed]

127. Yantiss, R.K.; Rosenberg, M.W.; Antonioli, D.A.; Odze, R.D. Utility of MMP-1, p53, E-cadherin, and collagen IV immunohistochemical stains in the differential diagnosis of adenomas with misplaced epithelium versus adenomas with invasive adenocarcinoma. Am. J. Surg. Pathol. 2002, 26, 206–215. [CrossRef] [PubMed]

128. Kayashima, H.; Maeda, T.; Harada, N.; Masuda, T.; Gunlani, A.; Ito, S.; Matsuyama, A.; Hamatake, M.; Tsutsui, S.; Matsuda, H.; et al. Risk factors for incisional hernia after hepatic resection for hepatocellular carcinoma in patients with liver cirrhosis. Surgery 2015, 158, 1670–1676. [CrossRef]

129. Wang, J.; Jiang, Y.H.; Yang, P.Y.; Liu, F. Increased Collagen Type V alpha 2 (COL5A2) in Colorectal Cancer is Associated with Poor Prognosis and Tumor Progression. Oncotargets Ther. 2021, 14, 2991–3002. [CrossRef]

130. Ding, Y.L.; Sun, S.F.; Zhao, G.L. COL5A1 as a potential clinical biomarker for gastric cancer and renal metastasis. Medicine 2021, 100, e24561. [CrossRef]

131. Wu, M.; Sun, Q.; Mo, C.H.; Pang, J.S.; Hou, J.Y.; Pang, L.L.; Lu, H.P.; Dang, Y.W.; Fang, S.J.; Tang, D.; et al. Prospective molecular mechanism of COL5A1 in breast cancer based on a microarray, RNA sequencing and immunohistochemistry. Oncol. Rep. 2019, 42, 151–175. [CrossRef]

132. Balancin, M.L.; Teodoro, W.R.; Baldavira, C.M.; Prieto, T.G.; Farhat, C.; Velosa, A.P.; Souza, P.D.; Yaegashi, L.B.; Ab’Saber, A.M.; Takagaki, T.Y.; et al. Different histological patterns of type-V collagen levels confer a matrices-privileged tissue microenvironment for invasion in malignant tumors with prognostic value. Pathol. Res. Pract. 2020, 216, 153277. [CrossRef]

133. Willumsen, N.; Bager, C.; Karsdal, M.A. Matrix Metalloprotease Generated Fragments of Type VI Collagen Have Serum Biomarker Potential in Cancer—A Proof of Concept. Transl. Oncol. 2019, 12, 693–698. [CrossRef]

134. Kang, C.Y.; Wang, J.; Axell-House, D.; Soni, P.; Chu, M.L.; Chipitsyna, G.; Sarosiek, K.; Sendecki, J.; Hyslop, T.; Al-Zoubi, M.; et al. Clinical Significance of Serum COL6A3 in Pancreatic Ductal Adenocarcinoma. J. Gastrointest. Surg. 2014, 18, 7–15. [CrossRef]

135. Angenendt, L.; Mikesch, J.H.; Gorlich, D.; Busch, A.; Arnhold, I.; Rudack, C.; Hartmann, W.; Wardelmann, E.; Berdel, W.E.; Stenner, M.; et al. Stromal collagen type VI associates with features of malignancy and predicts poor prognosis in salivary gland cancer. Cell. Oncol. 2018, 41, 517–525. [CrossRef]

136. Arafat, H.; Lazar, M.; Salem, K.; Chipitsyna, G.; Gong, Q.K.; Pan, T.C.; Zhang, R.Z.; Yeo, C.J.; Chu, M.L. Tumor-specific expression of COL8A1 and TWIST1 as important differentially-expressed pathogenic genes between left and right-sided colon cancer. Pathol. Oncol. Res. 2019, 25, 1256–1265. [CrossRef]

137. Fan, N.J.; Gao, C.F.; Wang, C.S.; Zhao, G.; Lv, J.J.; Wang, X.L.; Chu, G.H.; Yin, J.; Li, D.H.; Chen, X.; et al. Identification of the differentially-expressed pathogenic genes between left and right-sided colon cancer. Pathol. Res. Pract. 2019, 265, 206–215. [PubMed]

138. Yantiss, R.K.; Bosenberg, M.W.; Antonioli, D.A.; Odze, R.D. Utility of MMP-1, p53, E-cadherin, and collagen IV immunohistochemical stains in the differential diagnosis of adenomas with misplaced epithelium versus adenomas with invasive adenocarcinoma. Am. J. Surg. Pathol. 2002, 26, 206–215. [CrossRef] [PubMed]

139. Pourreyron, C.; Chen, M.; McGrath, J.A.; Salas-Alanis, J.C.; South, A.P.; Leigh, I.M. High levels of type VII collagen expression in recessive dystrophic epidermolysis bullosa cutaneous squamous cell carcinoma keratinocytes increases PI3K and MAPK signalling, cell migration and invasion. Br. J. Dermatol. 2014, 170, 1256–1265. [CrossRef]

140. Oh, S.E.; Oh, M.Y.; An, J.Y.; Lee, J.H.; Sohn, T.S.; Bae, J.M.; Choi, M.G.; Kim, K.M. Prognostic Value of Highly Expressed Type VII Collagen (COL7A1) in Patients with Gastric Cancer. Pathol. Oncol. Res. 2021, 27, 1609860. [CrossRef]

141. He, Z.H.; Deng, T.; Duan, X.L.; Zeng, G.H. Profiles of overall survival-related gene expression-based risk signature and their prognostic implications in clear cell renal carcinoma. Medicine 2019, 108, 2221–2228. [CrossRef] [PubMed]

142. Willumsen, N.; Jorgensen, L.N.; Karsdal, M.A. Vastatin (the NC1 domain of human type VIII collagen α1 chain) is linked to prognostic implications in clear cell renal carcinoma. Oncotargets Ther. 2019, 12, e24561. [CrossRef]

143. Peng, W.; Li, J.D.; Zeng, J.J.; Zou, X.P.; Tang, D.; Tang, W.; Rong, M.H.; Li, Y.; Dai, W.B.; Tang, Z.Q.; et al. Clinical value and potential mechanisms of COL8A1 upregulation in breast cancer: A comprehensive analysis. Cell. Oncol. 2018, 41, 517–525. [CrossRef]

144. Shang, J.; Wang, F.; Chen, P.F.; Wang, X.B.; Ding, F.; Liu, S.; Zhao, Q. Co-expression Network Analysis Identified COL8A1 As Associated with the Progression and Prognosis in Human Colon Adenocarcinoma. Digest. Dis. Sci. 2018, 63, 1219–1228. [CrossRef]

145. Zhang, D.W.; Zhu, H.F.; Harpaz, N. Overexpression of alpha 1 chain of type XI collagen (COL11A1) aids in the diagnosis of invasive carcinoma in endoscopically removed malignant colorectal polyps. Pathol. Res. Pract. 2016, 212, 545–548. [CrossRef]

146. Freire, J.; Dominguez-Hormaezte, S.; Pereda, S.; De Juan, A.; Vega, A.; Simon, L.; Gomez-Roman, J. Collagen, type XI, alpha 1: An accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol. Res. Pract. 2014, 210, 879–884. [CrossRef]

147. Su, C.; Zhao, J.B.; Hong, X.Y.; Yang, S.J.; Jiang, Y.; Hou, J.J. Microarray-based analysis of COL11A1 and TWIST1 as important differentially-expressed pathogenic genes between left and right-sided colon cancer. Mol. Med. Rep. 2019, 20, 4202–4214. [CrossRef]

148. Zhao, Y.; Zhou, T.H.; Li, A.Q.; Yao, H.M.; He, F.; Wang, L.J.; Si, J.M. A Potential Role of Collagens Expression in Distinguishing Between Premalignant and Malignant Lesions in Stomach. Anat. Rec.-Adv. Integr. Anat. Evol. Biol. 2009, 292, 692–700. [CrossRef]
149. Wang, H.; Zhou, H.C.; Ni, H.; Shen, X.H. COL11A1-Driven Epithelial-Mesenchymal Transition and Sternness of Pancreatic Cancer Cells Induce Cell Migration and Invasion by Modulating the AKT/GSK-3 beta/Snail Pathway. *Biomolecules* 2022, 12, 391. [CrossRef]

150. Zheng, X.Y.; Liu, X.L.; Zheng, H.S.; Wang, H.N.; Hong, D.F. Integrated bioinformatics analysis identified COL11A1 as an immune infiltrates correlated prognostic factor in adenocarcinoma. *Int. Immunopharmacol.* 2021, 90, 106892. [CrossRef]

151. Garcia-Pravia, C.; Galvan, J.A.; Gutierrez-Corral, N.; Solar-Garcia, L.; Garcia-Perez, E.; Garcia-Ocana, M.; Del Amo-Iribarren, J.; Menendez-Rodriguez, P.; Garcia-Garcia, J.; de los Toyos, J.R., et al. Overexpression of COL11A1 by Cancer-Associated Fibroblasts: Clinical Relevance of a Stromal Marker in Pancreatic Cancer. *PloS ONE* 2013, 8, e78327.

152. Fuentes-Martinez, N.; Garcia-Pravia, C.; Garcia-Ocana, M.; Menendez-Rodriguez, P.; Del Amo, J.; Suarez-Fernandez, L.; Galvan, J.A.; Toyos, J.R.D.; Barneo, L. Overexpression of proCOL11A1 as a stromal marker of breast cancer. *Histol. Histopathol.* 2015, 30, 87–93.

153. Goto, R.; Nakamura, Y.; Takami, T.; Sanke, T.; Tozuka, Z. Quantitative LC-MS/MS Analysis of Proteins Involved in Metastasis of Breast Cancer. *PloS ONE* 2015, 10, e0130760.

154. Husi, H.; MacDonald, A.; Skipworth, R.J.E.; Miller, J.; Cronshaw, A.; Greig, C.; Fearon, K.C.H.; Ross, J.A. Urinary diagnostic proteomic markers for dysplasia in cancer patients. *Biomed. Rep.* 2018, 8, 547–556. [CrossRef] [PubMed]

155. Franklin, O.; Ohlund, D.; Lundin, C.; Oman, M.; Naredi, P.; Wang, W.Z.; Sund, M. Combining conventional and stroma-derived tumour markers in pancreatic ductal adenocarcinoma. *Cancer Biomark.* 2015, 15, 1–10. [CrossRef]

156. Kantola, T.; Vayrynen, J.P.; Klintrup, K.; Makela, J.; Karpinnen, T.; Pihlajaniemi, T.; Karttunen, T.J.; Mäkinen, M.J.; Tuomisto, A. Serum endostatin levels are elevated in colorectal cancer and correlate with invasion and systemic inflammatory markers. *Br. J. Cancer* 2014, 111, 1605–1613. [CrossRef]

157. Xu, F.J.; Chang, K.; Ma, J.; Qu, Y.Y.; Xie, H.Y.; Dai, B.; Gan, H.L.; Zhang, H.L.; Shi, G.H.; Zhu, Y.; et al. The Oncogenic Role of COL2A1 in Clear Cell Renal Cell Carcinoma. *Sci. Rep.* 2017, 7, 9846. [CrossRef]

158. Angel, P.M.; Zambrzycki, S.C. Predictive value of collagen in cancer. *Adv. Cancer Res.* 2022, 154, 15–45. [PubMed]

159. Whatcott, C.J.; Diep, C.H.; Jiang, P.; Watanabe, A.; LoBello, J.; Sima, C.; Hostetter, G.; Shepard, H.M.; Von Hoff, D.D.; Han, H. Desmplasia in Primary Tumors and Metastatic Lesions of Pancreatic Cancer. *Clin. Cancer Res.* 2015, 21, 3561–3568. [CrossRef]

160. Vasta, J.D.; Raines, R.T. Collagen Prolyl 4-Hydroxylase as a Therapeutic Target. *J. Med. Chem.* 2018, 61, 10403–10411. [CrossRef] [PubMed]

161. Qi, Y.F.; Xu, K.; Zhang, K.; Shen, X.H. COL11A1-Driven Epithelial-Mesenchymal Transition and Sternness of Pancreatic Cancer Cells Induce Cell Migration and Invasion by Modulating the AKT/GSK-3 beta/Snail Pathway. *Biocatal. Biotransfor.* 2015, 32, 326. [CrossRef]

162. Lee, J.-S.; Jin, H.Y.; Ko, J.M.; Kim, S.H.; Han, N.; Park, B.K.; Park, M.; Park, H.J.; Lee, J.A. Hyperammonemic Encephalopathy Mimicking Ornithine Transcarbamylase Deficiency in Fibrolamellar Hepatocellular Carcinoma: Successful Treatment with ranolazine. *J. Med. Exp. Mol.* 2020, 259, 118183. [CrossRef] [PubMed]

163. Agarwal, S.; Behring, M.; Kim, H.G.; Bajpai, P.; Chakravarthi, B.; Gupta, N.; Elkholy, A.; Al Diffalha, S.; Varambally, S.; Manne, U. Targeting P4HA1 with a Small Molecule Inhibitor in a Colorectal Cancer PDX Model. *Cancer Res.* 2022, 91, 740–748. [CrossRef] [PubMed]

164. Wang, X.H.; Cui, X.J.; Chen, X.H.; Jiang, X.G. Baicalein alleviated TGF beta 1-induced type I collagen production in lung fibroblasts. *Int. J. Mol. Sci.* 2022, 23, 10509. [CrossRef]

165. Rubio, C.; Avendano-Ortiz, J.; Ruiz-Palomares, R.; Karaiwanova, V.; Alberquilla, O.; Sanchez-Dominguez, R.; Casalvilla-Duenas, J.C.; Montalban-Hernandez, K.; Lodewijk, I.; Rodriguez-Izquierdo, M.; et al. Toward Tumor Fight and Tumor Microenvironment Remodeling: PBA Induces Cell Cycle Arrest and Reduces Tumor Hybrid Cells’ Pluripotency in Bladder Cancer. *Cancers* 2022, 14, 287. [CrossRef]

166. Stefanovic, B.; Manojlovic, Z.; Vied, C.; Badger, C.D.; Stefanovic, L. Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound. *Sci. Rep.* 2019, 9, 326. [CrossRef]

167. Agarwal, S.; Behring, M.; Kim, H.G.; Bajpai, P.; Chakravarthi, B.; Gupta, N.; Elkholy, A.; Al Diffalha, S.; Varambally, S.; Manne, U. Targeting P4HA1 with a Small Molecule Inhibitor in a Colorectal Cancer PDX Model. *Transl. Oncol.* 2020, 13, 100754. [CrossRef]

168. Wang, Y.-Y.; Lee, K.-T.; Lim, M.C.; Choi, J.-H. TRPV1 Antagonist DWP05195 Induces ER Stress-Dependent Apoptosis through the Mitochondrial Pathway and Endoplasmic Reticulum Stress-Induced Pathway. *Int. J. Mol. Sci.* 2020, 21, 1702. [CrossRef]

169. Gilkes, D.M.; Chaturvedi, P.; Bajpai, S.; Wong, C.C.; Wei, H.; Pitcairn, S.; Hubbi, M.E.; Wirtz, D.; Semenza, G.L. Collagen Prolyl Hydroxylases Are Essential for Breast Cancer Metastasis. *Cancer Res.* 2013, 73, 3285–3296. [CrossRef]
175. Chen, L.S.; Chou, C.-T.; Liu, Y.-Y.; Yu, C.-C.; Liang, W.-Z.; Kuo, C.-C.; Shieh, P.; Kuo, D.-H.; Chen, F.-A.; Jan, C.-R. The investigation of minoxidil-induced Ca2+ (i) rises and non-Ca2+-triggered cell death in PC3 human prostate cancer cells. J. Recept. Signal Transduct. 2017, 37, 1–7. [CrossRef]

176. Fukushiro-Lopes, D.; Jain, M.; Khalid, M.; Hegel, A.; Gentile, S. Potassium channel activator minoxidil (Rogaine) as a novel single-agent or combination therapy in ovarian cancer. Clin. Cancer Res. 2018, 24, 66–67. [CrossRef]

177. Ito, S.; Ogawa, K.; Takeuchi, K.; Takagi, M.; Yoshida, M.; Hirokawa, T.; Hiyama, S.; Shin-ya, K.; Shimada, I.; Doi, T.; et al. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis. J. Biol. Chem. 2017, 292, 20076–20085. [CrossRef]

178. Miyamura, T.; Sakamoto, N.; Kakugawa, T.; Taniguchi, H.; Akiyama, Y.; Okuno, D.; Moriyama, S.; Hara, A.; Kido, T.; Ishimoto, H.; et al. Small molecule inhibitor of HSP47 prevents pro-fibrotic mechanisms of fibroblasts in vitro. Biochem. Biophys. Res. Commun. 2020, 530, 561–565. [CrossRef]

179. Leung, L.; Niculescu-Duyaz, D.; Smithen, D.; Lopes, F.; Callens, C.; McLeary, R.; Saturno, G.; Davies, L.; Aljarah, M.; Brown, M.; et al. Anti-metastatic Inhibitors of Lysyl Oxidase (LOX): Design and Structure-Activity Relationships. J. Med. Chem. 2019, 62, 5863–5884. [CrossRef]

180. Wang, T.-H.; Hsia, S.-M.; Shieh, T-M. Lysyl Oxidase and the Tumor Microenvironment. Int. J. Mol. Sci. 2017, 18, 62. [CrossRef]

181. Kelley, R.K.; Gane, E.; Assenat, E.; Siebler, J.; Galle, P.R.; Merle, P.; Hourmand, I.O.; Cleverly, A.; Zhao, Y.; Gueorguieva, I.; et al. A Phase 2 Study of Galunisertib (TGF-β1 Receptor Type 1 Inhibitor) and Sorafenib in Patients with Advanced Hepatocellular Carcinoma. Clin. Transl. Gastroenterol. 2019, 10, e0056. [CrossRef] [PubMed]

182. Wu, Y.-H.; Chou, C.-Y. Collagen XI Alpha 1 Chain, a Novel Therapeutic Target for Cancer Treatment. Front. Oncol. 2022, 12, 925165. [CrossRef]

183. Chen, J.; Li, S.; Liu, X.; Liu, S.; Xiao, C.; Zhang, Z.; Li, S.; Li, Z.; Yang, T. Transforming growth factor-beta blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy. Nanoscale 2021, 13, 9989–10001. [CrossRef] [PubMed]

184. Wang, Y.; Gao, Z.; Du, X.; Chen, S.; Zhang, W.; Wang, J.; Li, H.; He, X.; Cao, J.; Wang, J. Co-inhibition of the TGF-beta pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomater. Sci. 2020, 8, 5121–5132. [CrossRef] [PubMed]

185. Zhang, Q.; Hou, X.; Evans, B.J.; VanBlaricam, J.L.; Weroha, S.J.; Cliby, W.A. LY2157299 Monohydrate, a TGF-beta R1 Inhibitor, Suppresses Tumor Growth and Ascites Development in Ovarian Cancer. Cancers 2018, 10, 260. [CrossRef] [PubMed]

186. Wu, Y.H.; Huang, Y.F.; Chen, C.C.; Chou, C.Y. Akt inhibitor SC66 promotes cell sensitivity to cisplatin in chemoresistant ovarian cancer cells through inhibition of COL11A1 expression. Cell Death Dis. 2019, 10, 322. [CrossRef]

187. Cai, X.; Hu, B.; Liu, S.; Liu, M.; Huang, Y.; Lei, P.; Zhang, Z.; He, Z.; Zhang, L.; Huang, R. Overexpression of close homolog of L1 receptor expression. Clin. Transl. Gastroenterol. 2020, 11, e0056. [CrossRef] [PubMed]

188. Chen, W.; Zhao, S.; Yu, W.; Rao, T.; Ruan, Y.; Zhu, S.; Xia, Y.; Song, H.; Cheng, F. SC66 inhibits the proliferation and induces apoptosis of human bladder cancer cells by targeting the AKT/beta-catenin pathway. J. Cell. Mol. Med. 2021, 25, 10684–10697. [CrossRef]

189. Liu, Y.; Huang, Y.; Ding, J.; Liu, N.; Peng, S.; Wang, J.; Wang, F.; Zhang, Y. Targeting Akt by SC66 triggers GSK-3 mediated apoptosis in colon cancer therapy. Cancer Cell Int. 2019, 19, 124. [CrossRef]

190. Bourgot, I.; Primac, I.; Louis, T.; Noel, A.; Maquoi, E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front. Oncol. 2020, 10, 1488. [CrossRef]

191. Ivaska, J.; Heino, J. Adhesion receptors and cell invasion: Mechanisms of integrin-guided degradation of extracellular matrix. Cell. Mol. Life Sci. CMLS 2000, 57, 16–24. [CrossRef]

192. Coopman, P.J.; Thomas, D.M.; Gehlsen, K.R.; Mueller, S.C. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells. Mol. Biol. Cell 1996, 7, 1789–1804. [CrossRef]

193. Feng, X.; Jin, L. Relationship between integrin alpha v beta 3 and alpha 6 beta 1 expression levels and clinicopathological characteristics of cervical cancer. Trop. J. Pharm. Res. 2020, 19, 2233–2328. [CrossRef]

194. Gupta, S.K.; Ommen, S.; Aubry, M.C.; Williams, B.P.; Vlahakis, N.E. Integrin alpha 9 beta 1 promotes malignant tumor growth and metastasis by potentiating epithelial-mesenchymal transition. Oncogene 2013, 32, 141–150. [CrossRef] [PubMed]

195. Rentala, S.; Yalavarthy, P.; Mangamoori, L.N. alpha 1 and beta 1 integrins enhance the homing and differentiation of cultured breast cancer stem cells. Asia J. Androl. 2010, 12, 548–555. [CrossRef]

196. Sawai, H.; Okada, Y.; Funahashi, H.; Matsuo, Y.; Takahashi, H.; Takeyama, H.; Manabe, T. Interleukin-1alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alphabeta1-integrin and urokinase plasminogen activator receptor expression. BMC Cell Biol. 2006, 7, 8. [CrossRef]

197. Scalici, J.M.; Harrer, C.; Allen, A.; Jazaeri, A.; Atkins, K.A.; McLachlan, K.R.; Slack-Davis, J.K. Inhibition of alpha 4 beta 1 integrin increases ovarian cancer response to carboplatin. Gynecol. Oncol. 2014, 132, 455–461. [CrossRef]

198. Subbaram, S.; DiPersio, C.M. Integrin alpha 3 beta 1 as a breast cancer target. Expert Opin. Ther. Targets 2011, 15, 1197–1210. [CrossRef]

199. Wang, H.-Y.; Chen, Z.; Wang, Z.-H.; Wang, H.; Huang, L.-M. Prognostic Significance of alpha 5 beta 1-integrin Expression in Cervical Cancer. Asian Pac. J. Cancer Prevent. 2013, 14, 3891–3895. [CrossRef]
200. Zhou, M.; Niu, J.; Wang, J.; Gao, H.; Shahbazi, M.; Niu, Z.; Li, Z.; Zou, X.; Liang, B. Integrin alpha v beta 8 serves as a Novel Marker of Poor Prognosis in Colon Carcinoma and Regulates Cell Invasiveness through the Activation of TGF-beta 1. J. Cancer 2020, 11, 3803–3815. [CrossRef]

201. Hirata, E.; Girotti, M.R.; Viros, A.; Hooper, S.; Spencer-Dene, B.; Matsuda, M.; Larkin, J.; Marais, R.; Sahai, E. Intravitral imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 2015, 27, 574–588. [CrossRef]

202. Hanker, A.B.; Estrada, M.V.; Bianchini, G.; Moore, P.D.; Zhao, J.; Cheng, F.; Koch, J.P.; Gianni, L.; Tyson, D.R.; Sánchez, V.; et al. Extracellular Matrix/Integrin Signaling Promotes Resistance to Combined Inhibition of HER2 and PI3K in HER2(+) Breast Cancer. Cancer Res. 2017, 77, 3280–3292. [CrossRef]

203. Lasinska, I.; Mackiewicz, J. Integrins as A New Target for Cancer Treatment. Anti-Cancer Agents Med. Chem. 2019, 19, 580–586. [CrossRef] [PubMed]

204. Lautenschlaeger, T.; Perry, J.; Peereboom, D.; Li, B.; Ibrahim, A.; Huebner, A.; Meng, W.; White, J.; Chakravarti, A. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines. Radiat. Oncol. 2013, 8, 246. [CrossRef]

205. Reardon, D.A.; Cheresh, D. Cilengitide: A prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies. Genes Cancer 2011, 2, 1199–1165. [CrossRef]

206. Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018, 18, 533–548. [CrossRef]

207. Henriet, E.; Sala, M.; Abou Hammoud, A.; Tuarihiiona, A.; Di Martino, J.; Ros, M.; Saltel, F. Multitasking discoidin domain receptor 1 promotes lung adenocarcinoma migration via the AKT/snail signaling axis. Mol. Biol. Rep. 2022, 49, 7275–7286. [CrossRef]

208. Massabeau, C.; Khalifa, J.; Filleron, T.; Modesto, A.; Bigay-Gamé, L.; Plat, G.; Dierickx, L.; Aziza, R.; Rouquette, I.; Gomez-Roca, C.; et al. Continuous Infusion of Cilengitide Plus Chemoradiotherapy for Patients With Stage III Non-Small-cell Lung Cancer: A Phase I Study. Clin. Lung Cancer 2018, 19, e277–e285. [CrossRef]

209. Akhtar, B.; Muhammad, F.; Sharif, A.; Anvar, M.I. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur. J. Pharmacol. 2021, 899, 174022. [CrossRef]

210. Matada, G.S.P.; Das, A.; Dhiwar, P.S.; Ghara, A. DDR1 and DDR2: A review on signaling pathway and small molecule inhibitors as an anticancer target. Med. Chem. Res. 2021, 30, 533–551. [CrossRef]

211. Jeitany, M.; Leroy, C.; Tosti, P.; Lafitte, M.; Le Guet, J.; Simon, V.; Bonenfant, D.; Robert, B.; Grillet, F.; Mollevi, C.; et al. Inhibition of DDR1-induced neutrophil extracellular traps drive pancreatic cancer metastasis. JCI Insight 2021, 6, e146133. [CrossRef]

212. Gao, Y.; Zhou, J.L.; Li, J. Discoidin domain receptors orchestrate cancer progression: A focus on cancer therapies. Cancer Sci. 2021, 112, 962–969. [CrossRef]

213. Xia, E.; He, H.C.; Zhang, N.; Wang, X.J.; Rui, W.B.; Xu, D.F.; Zhu, Y. Overexpression of DDR1 Promotes Invasion, Though EMT-Related Molecule Expression and COL4A1/DDR1/MMP-2 Signaling Axis. Technol. Cancer Res. Treat. 2020, 19, 153303820973277. [CrossRef]

214. Keijnen, A.; Sterk, W.; van der Zee, M.; van der Vaart, H.; Nijman, N.; Jeuken, W.; de Vries, J.; Roosendaal, R.; Pilot, T.; et al. DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. Neuro-Oncology 2022, 24, 39–51. [CrossRef]

215. Henriet, E.; Sala, M.; Abou Hammoud, A.; Tuarihiiona, A.; Di Martino, J.; Ros, M.; Saltel, F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adhes. Migr. 2018, 12, 363–377. [CrossRef]

216. Lu, Q.-P.; Wells, A.U.; Seibold, J.R.; Wax, S.; Vazquez-Mateo, C.; Fleuranceau-Morel, P.; Damian, D.; Denton, C.P. STRATUS: A Phase II Study of Abituzumab in Patients With Systemic Sclerosis-associated Interstitial Lung Disease. J. Rheumatol. 2021, 48, 1295–1298. [CrossRef]

217. Zhu, J.J.; Cheng, H.; Wang, L.; Xu, W.D.; Wang, J.Q.; Han, Q.; Lee, J.H.; Du, L.Y.; Lyu, J.X. Discoidin domain receptor 1 promotes lung adenocarcinoma migration via the AKT/snail signaling axis. Mol. Biol. Rep. 2022, 49, 7275–7286. [CrossRef]

218. Huo, Y.M.; Yang, M.W.; Liu, W.; Yang, J.Y.; Fu, X.L.; Liu, D.J.; Li, J.; Zhang, J.F.; Hua, R.; Sun, Y.W. High expression of DDR1 is associated with the poor prognosis in Chinese patients with pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 88. [CrossRef]

219. Akhtar, B.; Muhammad, F.; Sharif, A.; Anvar, M.I. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur. J. Pharmacol. 2021, 899, 174022. [CrossRef]

220. Reardon, D.A.; Cheresh, D. Cilengitide: A prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies. Genes Cancer 2011, 2, 1199–1165. [CrossRef]

221. Henriet, E.; Sala, M.; Abou Hammoud, A.; Tuarihiiona, A.; Di Martino, J.; Ros, M.; Saltel, F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adhes. Migr. 2018, 12, 363–377. [CrossRef]

222. Kurashige, J.; Hasegawa, T.; Niida, A.; Sugimachi, K.; Deng, N.; Mima, K.; Uchi, R.; Sawada, G.; Takahashi, Y.; Eguchi, H.; et al. Integrated Molecular Profiling of Human Gastric Cancer Identifies DDR2 as a Potential Regulator of Peritoneal Dissemination. J. Exp. Clin. Cancer Res. 2019, 38, 89. [CrossRef]

223. Alhalabi, O.T.; Fletcher, M.N.C.; Hielscher, T.; Kessler, T.; Lokumcu, T.; Baumgartner, U.; Wittmann, E.; Schlue, S.; Goettmann, M.; Rahman, S.; et al. A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. Clin. Lung Cancer 2018, 19, 888–897. [CrossRef] [PubMed]
223. Somlo, G.; Atzori, F.; Strauss, L.C.; Geese, W.J.; Specht, J.M.; Gradishar, W.J.; Rybicki, A.; Sy, O.; Vahdat, L.T.; Cortes, J. Dasatinib plus Capcitabine for Advanced Breast Cancer: Safety and Efficacy in Phase I Study CA180004. *Clin. Cancer Res.* **2013**, *19*, 1884–1893. [CrossRef] [PubMed]

224. Ohashi, K.; Pao, W. A New Target for Therapy in Squamous Cell Carcinoma of the Lung. *Cancer Discov.* **2011**, *1*, 23–24. [CrossRef] [PubMed]

225. Leroy, C.; Robert, B.; Simon, V.; Roche, S. The Abl tyrosine kinase inhibitor Nilotinib inhibits invasive properties of colon cancer cells by targeting the discoidin domain receptor 1. *EJC Suppl.* **2010**, *8*, 113. [CrossRef]

226. Sirvent, A.; Lafitte, M.; Roche, S. DDR1 inhibition as a new therapeutic strategy for colorectal cancer. *Mol. Cell. Oncol.* **2018**, *5*, e1453882. [CrossRef] [PubMed]

227. Ahmed, N.; Vengalassetti, Y.; Haslam, A.; Prasad, V. Association of Adjuvant or Metastatic Setting with Discontinuation of Cancer Drugs in Clinical Trials. *Jama Netw. Open* **2022**, *5*, e2212327. [CrossRef]

228. Italiano, A. Next questions for the medical treatment of gastrointestinal stromal tumor. *Curr. Opin. Oncol.* **2022**, *34*, 348–353. [CrossRef]

229. Nazzal, M.; Sur, S.; Steele, R.; Khatun, M.; Patra, T.; Phillips, N.; Long, J.; Ray, R.; Ray, R.B. Establishment of a Patient-Derived Xenograft Tumor from Hepatitis C-Associated Liver Cancer and Evaluation of Imatinib Treatment Efficacy. *Hepatology* **2020**, *72*, 379–388. [CrossRef]

230. Puri, S.; Kaur, G.; Piplani, H.; Sanyal, S.N.; Vaish, V. Imatinib modulates pro-inflammatory microenvironment with angiostatic effects in experimental lung carcinogenesis. *Inflammopharmacology* **2020**, *28*, 231–252. [CrossRef]

231. Copland, M.; Slade, D.; Mclroy, G.; Horne, G.; Byrne, J.L.; Rothwell, K.; Brock, K.; De Lavallade, H.; Craddock, C.; Clark, R.E.; et al. Ponatinib with fluorarubine, catarubine, idarubicin, and granulocyte colony-stimulating factor chemotherapy for patients with blast-phrase chronic myeloid leukaemia (MATCHPOINT): A single-arm, multicentre, phase 1/2 trial. *Lancet Haematol.* **2022**, *9*, E121–E132. [CrossRef]

232. Canning, P.; Tan, L.; Hebron, M.; Phillips, N.; Long, J.; Ray, R.; Ray, R.B. Establishment of a Patient-Derived Xenograft Tumor from Hepatitis C-Associated Liver Cancer and Evaluation of Imatinib Treatment Efficacy. *Hepatology* **2020**, *72*, 379–388. [CrossRef] [PubMed]

233. Tao, Y.; Wang, R.; Lai, Q.; Wu, M.; Wang, Y.; Jiang, X.; Zeng, L.; Zhou, S.; Li, Z.; Yang, T.; et al. Targeting of DDR1 with a potent and selective DDR1 receptor tyrosine kinase inhibitor. *Int. J. Mol. Sci.* **2022**, *23*, 3795. [CrossRef] [PubMed]

234. Grither, W.R.; Longmore, G.D. Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. *Proc. Natl. Acad. Sci. USA* **2018**, *115*, E7786–E7794. [CrossRef] [PubMed]

235. Ramlal, H.; Saby, C.; Magnien, K.; Van-Gulick, L.; Gamotel, P.; Buache, E.; El Btaouri, H.; Jeannesson, P.; Morjani, H. Discoidin Domain Receptors: Potential Actors and Targets in Cancer. *Front. Pharmacol.* **2016**, *7*, 55. [CrossRef]

236. Fowler, A.J.; Hebron, M.; Balaraman, K.; Shi, W.; Missner, A.A.; Greenzaid, J.D.; Chu, T.L.; Ullman, C.; Weatherdon, E.; Duka, V.; et al. Discoidin Domain Receptor 1 is a therapeutic target for neurodegenerative diseases. *Hum. Mol. Genet.* **2020**, *29*, 2882–2898. [CrossRef] [PubMed]

237. Canning, P.; Tan, L.; Chu, K.; Lee, S.W.; Liu, F.; Canning, P.; Ezell, S.A.; Wu, H.; Zhao, Z.; Wang, J.; et al. Discovery of a potent and selective DDR1 Receptor Tyrosine Kinase Inhibitor. *ACS Chem. Biol.* **2013**, *8*, 2145–2150. [CrossRef] [PubMed]
247. Li, T.; Zhang, H.; Wang, Z.; Gao, S.; Zhang, X.; Zhu, H.; Wang, N.; Li, H. The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance. *Cancer Cell Int.* 2022, 22, 120. [CrossRef]

248. Yang, X.; Zheng, Y.; Tan, J.; Tian, R.; Shen, P.; Cai, W.; Liao, H. MiR-199a-5p-HIF-1 alpha-STAT3 Positive Feedback Loop Contributes to the Progression of Non-Small Cell Lung Cancer. *Front. Cell Dev. Biol.* 2021, 8, 620615. [CrossRef]

249. Hu, Y.; Liu, J.; Jiang, B.; Chen, J.; Fu, Z.; Bai, F.; Jiang, J.; Tang, Z. MiR-199a-5p Loss Up-Regulated DDR1 Aggravated Colorectal Cancer by Activating Epithelial-to-Mesenchymal Transition Related Signaling. *Digest. Dis. Sci.* 2014, 59, 2163–2172. [CrossRef]

250. Krazinski, B.E.; Kiewisz, J.; Sliwinska-Jewsiewicka, A.; Kowalczyk, A.E.; Grzegorzoka, J.; Godlewski, J.; Kwiatkowski, P.; Dziegieł, P.; Kmiec, Z. Altered Expression of DDR1 in Clear Cell Renal Cell Carcinoma Correlates With miR-199a/b-5p and Patients’ Outcome. *Cancer Genom. Proteom.* 2019, 16, 179–193. [CrossRef]

251. Ilbeigi, S.; Naeimzadeh, Y.; Davoodabadi Farahani, M.; Rafi Monjezi, M.; Dastsooz, H.; Daraei, A.; Farahani, F.; Dastgheib, A.; Mansoori, Y.; Tabei, S.M.B. Clinical values of two estrogen receptor signaling targeted lncRNAs in invasive ductal breast carcinoma. *Klin. Onkol. Cas. Ces. A Slov. Onkol. Spol.* 2021, 34, 382–391. [CrossRef]

252. Najafi, M.; Farhood, B.; Mortezaee, K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. *J. Cell. Biochem.* 2019, 120, 2782–2790. [CrossRef] [PubMed]

253. Li, G.; Tao, T.; Deng, D.; Zhang, S.; Chao, Y.; Dai, Y.; Li, Y.; Tao, R.; Yuan, S.; Liu, Z.; et al. Collagen-targeted tumor-specific transepithelial penetration enhancer mediated intravesical chemoimmunotherapy for non-muscle-invasive bladder cancer. *Biomaterials* 2022, 283, 121422. [CrossRef] [PubMed]

254. Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Stylianopoulos, T.; Mousa, A.S.; Han, X.X.; Adstamongkonkul, P.; et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. *Nat. Commun.* 2013, 4, 2516.

255. Kasi, A.; Allen, J.; Mehta, K.; Dandawate, P.; Saha, S.; Bossmann, S.; Anant, S.; Sun, W. Association of losartan with outcomes in metastatic pancreatic cancer patients treated with chemotherapy. *J. Clin. Transl. Res.* 2021, 7, 257–262.

256. Zhao, Y.; Cao, J.; Melamed, A.; Worley, M.; Gockley, A.; Jones, D.; Nia, H.T.; Zhang, Y.; Stylianopoulos, T.; Kumar, A.S.; et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. *Proc. Natl. Acad. Sci. USA* 2019, 116, 2210–2219. [CrossRef]

257. Cardinale, D.; Sandri, M.T.; Colombo, A.; Salvatici, M.; Tedeschi, I.; Bacchiani, G.; Beggiato, M.; Meroni, C.A.; Civelli, M.; Lamantia, G.; et al. Prevention of Atrial Fibrillation in High-risk Patients Undergoing Lung Cancer Surgery the PRESAGE Trial. *Ann. Surg.* 2016, 264, 244–251. [CrossRef]

258. Choi, C.H.; Park, Y.-A.; Choi, J.-J.; Song, T.; Song, S.Y.; Lee, Y.-Y.; Lee, J.-W.; Kim, T.-J.; Kim, B.-G.; Bae, D.-S. Angiotensin II type 1 receptor and miR-155 in endometrial cancers: Synergistic antiproliferative effects of anti-miR-155 and losartan on endometrial cancer cells. *Gynecol. Oncol.* 2012, 126, 124–131. [CrossRef] [PubMed]

259. Hashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleiman, A.; Ruiji, H.; Ferns, G.A.; et al. Angiotensin Receptor Blocker Losartan Inhibits Tumor Growth of Colorectal Cancer. *EXCLI J.* 2021, 20, 506–521. [PubMed]

260. Yazdannejat, H.; Hosseinimehr, S.J.; Ghasemi, A.; Pourfallah, T.A.; Rafie, A. Losartan sensitizes selectively prostate cancer cell to ionizing radiation. *Cell. Mol. Biol.* 2016, 62, 30–33.

261. Zhao, Q.; He, X.; Qin, X.; Liu, Y.; Jiang, H.; Wang, J.; Wu, S.; Zhou, R.; Yu, C.; Liu, S.; et al. Enhanced Therapeutic Efficacy of Combining Losartan and Chemo-Immunotherapy for Triple Negative Breast Cancer. *Front. Immunol.* 2022, 13, 938439. [CrossRef]

262. Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tsujiya, H. Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. *Int. J. Mol. Sci.* 2022, 23, 1096. [CrossRef]

263. Romanchikova, N.; Trapencers, P.; Zemits, J.; Turks, M. A novel matrix metalloproteinase-2 inhibitor triazolylmethyl aziridine reduces melanoma cell invasion, angiogenesis and targets ERK1/2 phosphorylation. *J. Enzym. Inhib. Med. Chem.* 2014, 29, 765–772. [CrossRef] [PubMed]