Building Language Resources for Exploring Autism Spectrum Disorders

Julia Parish-Morris¹, Christopher Cieri², Mark Liberman², Leila Bateman¹, Emily Ferguson¹, Robert T. Schultz²

¹Center for Autism Research, Children’s Hospital of Philadelphia
²Linguistic Data Consortium, University of Pennsylvania
Outline

- Autism
- Challenges
- Opportunities
- Prior research
- Current collaboration
- Future projects
Autism Spectrum Disorder

- Brain-based disorder typically identified in early childhood
 1.5% of U.S. children (CDC, 2016)

- Diagnostic criteria:
 - Impairments in social communication
 - Presence of repetitive behaviors or restricted patterns of interests

- “Spectrum” = mild to severe symptoms

- Significant public health cost

- Swift, accurate, early diagnosis is critical to improved outcomes

- Behaviorally defined: no brain scan or blood test

- Significant symptom overlap with other disorders

- Many children diagnosed late
PROBLEM:

sample heterogeneity +
small samples +
poor measurement =

non-reproducible scientific results
Opportunities

- Natural language interaction
 - Highly nuanced outward signal of internal brain activity
 - Fundamentally social

- Most children with ASD acquire language; nearly all vocalize

- Can HLT and Big Data methods help us identify ASD more reliably and understand it better?
Language in ASD

- Variable vocalization throughout development:
 - Differences evident in infancy
 - Language delay as toddlers/preschoolers
 - Difficulty being understood & understanding humor, sarcasm
 - Conversational quirks
 - unusual word use
 - turn-taking
 - synchrony
 - accommodation

- Real-life effects of pragmatic language problems:
 - Difficulty forming/maintaining friendships
 - Increased risk of being bullied
 - Difficulty with romantic relationships
 - Difficulty maintaining employment
4 mo: fewer complex pitch contours during cooing (Brisson et al., 2014)

6 mo: Higher and more variable F₀ in cries, poorer phonation (Orlandi et al., 2012; Sheinkopf et al., 2012)

9 mo: Fewer well-formed babble sounds (Paul et al., 2011)

12 mo: Less waveform modulation and more dysphonation in cries, compared to TD and DD (Esposito & Venuti, 2009)

16 mo: fewer responses to parent vocalizations, especially when directing to people (Cohen et al., 2013)

18 mo: Higher F₀ in cries, compared to TD and DD (Esposito & Venuti, 2010)
Characterizations

◆ ASD speech communication:
 ● Many small variations accumulate to create an odd impression
 ● Difficulty to determine what exactly differs
 ● Difficult to recognize
Characterizations

Too slow
Too quiet
Too fast
Robotic
Pedantic
Stilted
Disorganized
Flat
Too loud
“Little Professor”
Sing-songy
The truth?

- The generalizations in the literature are mostly impressions (or stereotypes....)
 - There are few empirical studies
 - Sample sizes are generally very small
- In fact:
 - The ASD phenotype is very diverse in speech communication as in other ways
 - The truth is probably neither a point nor a “spectrum” but a complex multidimensional multimodal distribution in a space that we all live in
- We don’t really know the dimensions of this space and figuring it out will take careful analysis of lots of data
Clinical Computational Linguistics

- Natural language:
 - Nuanced signal (marriage of cognitive and motoric systems)
 - Few practice effects

- Can automatically identify and extract features ("linguistic markers")

- Specific linguistic features associated with:
 - Depression
 - Dementia
 - PTSD
 - Schizophrenia
 - …Autism
Prior Research

On average, individuals with ASD have been found to:

- Produce idiosyncratic or unusual words more often than typically developing peers (Ghaziuddin & Gerstein, 1996; Prud’hommeaux, Roark, Black, & Van Santen, 2011; Rouhizadeh, Prud’Hommeaux, Santen, & Sproat, 2015; Rouhizadeh, Prud’hommeaux, Roark, & van Santen, 2013; Volden & Lord, 1991)

- Repeat words or phrases more often than usual (echolalia; van Santen, Sproat, & Hill, 2013)

- Use filler words “um” and “uh” differently than matched peers (Irvine, Eigsti, & Fein, 2016)

- Wait longer before responding in the course of conversation (Heeman, Lunsford, Selfridge, Black, & Van Santen, 2010)

- Produce speech that differs on pitch variables; these can be used to classify samples as coming from children with ASD or not (Asgari, Bayestehtashk, & Shafran, 2013; Kiss, van Santen, Prud’hommeaux, & Black, 2012; Schuller et al., 2013)
Collaboration

- Center for Autism Research (CAR)
 - autism expertise
 - data samples
- Linguistic Data Consortium (LDC)
 - corpus building methods
 - expertise in linguistics analysis
Process and analyze recorded language samples from Autism Diagnostic Observation Schedule ("ADOS"; Lord et al., 2012)

- Conversation and play-based assessment of autism symptoms
- Recorded for reliability and clinical supervision, coded on a scale, then filed away

- 600+ at CAR alone, thousands more across the U.S. and in Europe; never compiled

- Associated with rich metadata that includes family history, social, cognitive, and behavioral phenotype, genes, and neuroimaging
Pilot

Goals

- Assess feasibility
- Identify and extract linguistic features
- Machine learning classification and/or discovery of relevant dimensions
- Correlate features with clinical phenotype
Transcription

- Time aligned, verbatim, orthographic transcripts (~20 minutes of conversation per interview, from ADOS Q&A segment)
- New transcription specification developed by LDC, (adapted from previous conversational transcription specifications)
- 4 transcribers and 2 adjudicators from LDC and CAR produced a “gold standard” transcript for analysis and for evaluation/training of future transcriptionists

Simple comparison of word level identity between CAR’s adjudicated transcripts and LDC’s transcripts: 93.22% overlap on average, before a third adjudication resolved differences between the two

- Forced alignment of transcripts with audio
Participants

- Pilot sample
- N=100
- Mean age=10-11 years
- Primarily male
- 65 ASD, 18 TD,
 17 Non-ASD mixed clinical
- Average full scale IQ, verbal IQ, nonverbal IQ
Preliminary Analyses

Bag-of-words classification:

- Correctly classified 68% of ASD participants and 100% of TD participants
- Naïve Bayes, leave-one-out cross validation and weighted log-odds-ratios calculated using the “informative Dirichlet prior" algorithm (Monroe et al., 2008)
- Receiver Operating Characteristic (ROC) analysis revealed good sensitivity and specificity; AUC=85%
Word Choice

◆ 20 most “ASD-like” words:
 ● \{nsv\}, know, he, a, now, no, uh, well, is, actually, mhm, w-, years, eh, right, first, year, once, saw, was
 ● \{nsv\} stands for “non-speech vocalization”, meaning sounds that with no lexical counterpart, such as imitative or expressive noise
 ● “uh” appears in this list, as does “w-”, a stuttering-like disfluency.

◆ 20 least “ASD-like” words:
 ● like, um, and, hundred, so, basketball, something, dishes, go, york, or, if, them, \{laugh\}, wrong, be, pay, when, friends.
 ● “um” appears, as does the word friends and laughter
Rates of um production across the ASD and TD groups (um/(um+uh))

ASD group produced UM during 61% of their filled pauses (CI: 54%-68%)

TD group produced UM as 82% of their filled pauses (CI: 75%-88%)

Minimum value for the TD group was 58.1%, and 23 of 65 participants in the ASD group fell below that value.
Rate

- Mean word duration as a function of phrase length
- TD participants spoke the fastest (overall mean word duration of 376 ms, CI 369-382, calculated from 6891 phrases)
- Followed by the non-ASD mixed clinical group (mean=395 ms; CI 388-401, calculated from 6640 phrases)
- Followed by the ASD group with the slowest speaking rate (mean=402 ms; CI: 398-405, calculated from 24276 phrases)
Latency to Respond

- Characterizes gap between speaker turns
- Too short = interrupting or speaking over a conversational partner
- Too long (awkward silences) interrupts smooth exchanges
- ASD somewhat slower than TD
Fundamental Frequency

- Mean absolute deviation from the median (MAD)
 - Outlier-robust measure of dispersion in F0 distribution
 - Calculated in semitones relative to speaker’s 5th percentile

- MAD values are both higher and more variable within the ASD and non-ASD mixed clinical group than the TD group
 - ASD: median: 1.99, IQR: 0.95
 - Non-ASD: median: 1.95, IQR: 0.80
 - TD: median: 1.47, IQR: 0.26
Next Steps

◆ Expand sample sizes
 ● Improve classification metric
 ■ Focus on specificity (differentiate ASD from its cousins)
 ● Identify relevant dimensions of variation
 ● Hone HLT for pediatric clinical population

◆ Emerging collaborations include more ADOS evals with phenotypic data, neuroimaging, and genetics
 ● Large body of shared data
 ● Goal: gene-brain-behavior mapping

◆ Enlarge age range
 ● Goal: downward extension to infancy
 ● Identify clusters of acoustic markers
 ● Chart growth to pinpoint critical points of divergence (targets for intervention)
- We have subject consent and IRB clearance for publication of anonymized transcripts and audio
- Larger ADOS sample from CAR in process
- Possible multi-site project (like ADNI) to pool very large collection of existing ADOS interviews processed and analyzed to the same standard

- **BUT**
 - New ADOS interviews require expensive, time-consuming in-person collection
 - **NEED:** Scalable, inexpensive methods to collect natural language from large, diverse samples
Future Directions

- **Phone bank**
 - Inexpensive student worker asks ADOS questions
 - Child and parent language samples, questionnaires, online IQ
 - Nationally representative cohort
 - Longitudinal samples

- **Computerized Social Affective Language Task (C-SALT)**
 - Self-contained laptop-based audio/video collection
 - Records language and social affect in schools, clinics and homes
 - Controlled recording is conducive to automated approaches (reduces need for transcription)

- **Combine data sources to improve predictive power:**
 - Motor, language, medical records, parent/teacher report, clinical judgment, performance tasks, imaging, genetics
CAR and LDC are eager to collaborate:

looking for novel analytic approaches

and outside-the-box ideas!
Applications

- **Support clinical decision-making and improve access**
 - Low-cost, remote screening
 - Direct behavioral observation: record in clinics, integrate into EHR
 - Inform identification efforts and assist in differential diagnosis

- **Identify behavioral markers**
 - of underlying (treatable) pathobiology
 - Profiles of individual strengths and weaknesses link to biology = personalized treatment planning and improved outcomes
 - Granular assessment of response to intervention – dense sampling

- **Give participants and families more information about themselves**
 - Online feedback
 - Monitor growth trajectories
Acknowledgements

- Participants and Families
- Clinicians, research, staff from CAR and LDC
- Funding sources
 - Autism Science Foundation
 - McMorris Autism Program
 - NIH K12