THE HASSE NORM PRINCIPLE FOR A_n-EXTENSIONS

ANDRÉ MACEDO

Abstract. We prove that, for every $n \geq 5$, the Hasse norm principle holds for a degree n extension K/k of number fields with normal closure F such that $\text{Gal}(F/k) \cong A_n$. We also show the validity of weak approximation for the associated norm one tori.

1. Introduction

Let K/k be an extension of number fields with associated idèle groups A_K^* and A_k^* and let $N_{K/k} : A_K^* \to A_k^*$ be the norm map on the idèles. We can view K^* (respectively, k^*) as sitting inside A_K^* (respectively, A_k^*) via the diagonal embedding and $N_{K/k}$ naturally extends the usual norm map of the extension K/k. We say that the Hasse norm principle (often abbreviated to HNP) holds for K/k if the knot group

$$\mathfrak{R}(K/k) := (k^* \cap N_{K/k}(A_K^*)) / N_{K/k}(K^*)$$

is trivial, i.e. if every nonzero element of k which is a local norm everywhere is a global norm.

The first example of the validity of this principle was established in 1931 by Hasse, who proved that the knot group $\mathfrak{R}(K/k)$ is trivial if K/k is a cyclic extension (the Hasse norm theorem). Since then, much work has been done in the abelian case (see, for instance, [7], [9] or [12]), but results for the non-abelian and non-Galois cases are still limited. For example, if F denotes the normal closure of K/k, it is known that the HNP holds for K/k when

- $[K : k]$ is prime ([1]);
- $[K : k] = n$ and $\text{Gal}(F/k) \cong D_n$, the dihedral group of order $2n$ ([2]);
- $[K : k] = n$ and $\text{Gal}(F/k) \cong S_n$, the symmetric group on n letters ([20]).

In this paper, we study the HNP for a degree n extension K/k with normal closure F such that $\text{Gal}(F/k)$ is isomorphic to A_n, the alternating group on n letters. We also look at weak approximation - recall that this property is said to hold for a variety X/k if $X(k)$ is dense (for the product topology) in $\prod_v X(k_v)$, where the product is taken over all places v of k and k_v denotes the completion of k with respect to v. In particular, we examine weak approximation for the norm one torus $T = R^1_{K/k}G_m$ associated to a degree n extension of number fields K/k with A_n-normal closure.

The first non-trivial case is $n = 3$. In this case, $K = F$ is a Galois extension of k and the Hasse norm theorem tells us that the HNP holds for K/k. Moreover, using a result of Voskresenskiĭ, one can show that weak approximation holds for

2010 Mathematics Subject Classification. 14G05 (primary), 11E72, 11R37, 20D06 (secondary).
the associated norm one torus. In [15] Kunyavski˘ı solved the case \(n = 4 \) by showing that, for a quartic extension \(K/k \) with \(A_4 \)-normal closure, \(\mathfrak{K}(K/k) \) is either 0 or \(\mathbb{Z}/2 \) and both cases can occur. Additionally, he proved that the HNP holds for \(K/k \) if and only if weak approximation fails for \(T \). In this paper, we use several cohomological results about \(A_n \)-modules to prove the following theorem.

Theorem 1.1. Let \(n \geq 5 \) be an integer. Let \(K/k \) be a degree \(n \) extension of number fields and let \(F \) be its normal closure. If \(\text{Gal}(F/k) \cong A_n \), then the Hasse norm principle holds for \(K/k \) and weak approximation holds for the norm one torus \(T = R_{K/k}^1 \mathbb{G}_m \).

The layout of this paper is as follows. In Section 2, we use various cohomological and group-theoretic tools to establish the injectivity of an important restriction map on the cohomology of \(A_n \). In Section 3, we look at the consequences of these results in the arithmetic of number fields. In particular, combining the results of Section 2 with the work of Colliot-Thélène and Sansuc on flasque resolutions and a theorem of Voskresenski˘ı, we prove Theorem 1.1 for \(n \neq 6 \). In Section 4, we exploit a computational method developed by Hoshi and Yamasaki to solve the remaining case \(n = 6 \). All of the code used in Section 4 is provided in the Appendix.

Notation. Throughout this paper, we fix the following notation.

- \(k \) a number field;
- \(\overline{k} \) an algebraic closure of \(k \);
- \(v \) a place of \(k \);
- \(k_v \) the completion of \(k \) at \(v \).

For a variety \(X \) over a field \(K \), we use the notation

\[
X_L = X \times_K L \quad \text{the base change of} \ X \ \text{to a field extension} \ L/K;
\]

\[
\overline{X} = X \times_K \overline{K} \quad \text{the base change of} \ X \ \text{to an algebraic closure of} \ K;
\]

\[
\text{Pic} X \quad \text{the Picard group of} \ X.
\]

We define \(\mathbb{G}_{m,K} = \text{Spec}(K[t, t^{-1}]) \) to be the multiplicative group over a field \(K \) and, if \(K \) is apparent from the context, we omit it from the subscript and simply write \(\mathbb{G}_m \). Given a \(K \)-torus \(T \), we write \(\hat{T} \) for its character group \(\text{Hom}(T, \mathbb{G}_m) \).

If \(L/K \) is a finite extension of fields and \(T \) is an \(L \)-torus, we denote the Weil restriction of \(T \) from \(L \) to \(K \) by \(R_{L/K} T \). We use the notation \(R_{L/K}^1 \mathbb{G}_m \) for the norm one torus, defined as the kernel of the norm map \(N_{L/K} : R_{L/K} \mathbb{G}_m \to \mathbb{G}_m \).

Let \(G \) be a finite group. The label ‘\(G \)-module’ shall always mean a free \(\mathbb{Z} \)-module of finite rank equipped with a right action of \(G \). For a \(G \)-module \(A \) and \(q \in \mathbb{Z} \), we denote the Tate cohomology groups by \(\hat{H}^q(G, A) \) and the kernel of the restriction map \(\hat{H}^q(G, A) \xrightarrow{\text{Res}} \prod_{g \in G} \hat{H}^q((g), A) \) by \(\mathfrak{H}_q^G(A) \). Since \(\hat{H}^0(G, A) = H^0(G, A) \) for \(q \geq 1 \), we will omit the hat in this case. We also use the notation \(\text{Z}(G), [G, G], G^\sim \) and \(M(G) \) for the center, the derived subgroup, the dual group \(\text{Hom}(G, \mathbb{Q}/\mathbb{Z}) \) and the Schur multiplier \(\hat{H}^{-3}(G, \mathbb{Z}) \) of \(G \), respectively. Given elements \(g, h \in G \), we use the conventions \([g, h] = ghg^{-1}h^{-1} \) and \(g^h = hgh^{-1} \).
Acknowledgements. I would like to thank my supervisor Rachel Newton for suggesting this problem and for helpful comments on an earlier version of this manuscript. I am also grateful to Prof. Boris Kunyavski˘ı for bringing up the importance of Lemma [2.2]. This work was supported by the FCT doctoral scholarship SFRH/BD/117955/2016.

2. Group cohomology of A_n-modules

The goal of this section is to establish several cohomological facts about A_n-modules. We start by stating some useful group-theoretic facts.

Remark 2.1. Recall that, for $n \geq 5$, A_n is a non-abelian simple group and hence perfect. Moreover, its Schur multiplier $M(A_n) = \hat{H}^{-3}(A_n, \mathbb{Z})$ is given as follows (see Theorem 2.11 of [11]):

$$M(A_n) = \begin{cases} 0 & \text{if } n \leq 3 \\ \mathbb{Z}/2 & \text{if } n \in \{4, 5\} \text{ or } n \geq 8 \\ \mathbb{Z}/6 & \text{if } n \in \{6, 7\}. \end{cases}$$

Given a copy H of A_{n-1} inside $G = A_n$, we have a corestriction map on cohomology

$$\text{Cor}^H_G : M(H) \to M(G).$$

This map will play an important role for us later, so we begin by establishing the following result.

Lemma 2.2. Let $n \geq 8$ and let H be a copy of A_{n-1} inside $G = A_n$. Then, the corestriction map Cor^H_G is surjective.

In order to prove this lemma, we will use multiple results about covering groups of S_n and A_n together with the characterization of the image of Cor^H_G given in Lemma 4 of [6]. To put this plan into practice, we need the following concepts.

Definition 2.3. Let G be a finite group. A stem extension of G is a group \widetilde{G} containing a normal subgroup K such that $\widetilde{G}/K \cong G$ and $K \subseteq Z(\widetilde{G}) \cap [\widetilde{G}, \widetilde{G}]$. A Schur covering group of G is a stem extension of G of maximal size.

It is a well-known fact that a stem extension of a finite group G always exists (see Theorem 2.1.4 of [14]). Additionally, the base normal subgroup K of a Schur covering group \widetilde{G} of G coincides with its Schur multiplier $\hat{H}^{-3}(G, \mathbb{Z})$ (see Section 9.9 of [10]). In [15], Schur completely classified the Schur covering groups of S_n and A_n. He also gave an explicit presentation of a cover of S_n, as follows.

Proposition 2.4. Let $n \geq 4$ and let U be the group with generators z, t_1, \ldots, t_{n-1} and relations

1. $z^2 = 1$;
2. $zt_i = t_iz$, for $1 \leq i \leq n - 1$;
3. $t_i^2 = z$, for $1 \leq i \leq n - 1$;
4. $(t_i^3 + 1)^3 = z$, for $1 \leq i \leq n - 2$;
5. $t_it_j = zt_jt_i$, for $|i - j| \geq 2$ and $1 \leq i, j \leq n - 1$.

Then U is a Schur covering group of S_n with base normal subgroup $K = \langle z \rangle$. Moreover, if Γ_{i} denotes the transposition $(i\ i+1)$ in S_n, then the map

$$
\pi : U \to S_n
$$

$$
z \mapsto 1
$$

$$
t_i \mapsto \Gamma_{i}
$$

is surjective and has kernel K.

Proof. See Schur’s original paper [18] or Chapter 2 of [11] for a more modern exposition.

Remark 2.5. An immediate consequence of this last proposition is that the Schur multiplier of S_n is isomorphic to $\mathbb{Z}/2$ for $n \geq 4$.

Using the Schur cover of S_n given in Proposition 2.4, one can also construct a Schur covering group of A_n for $n \geq 8$.

Lemma 2.6. In the notation of Proposition 2.4, the group $V := \pi^{-1}(A_n)$ defines a Schur covering group of A_n for every $n \geq 8$.

Proof. It is well-known that A_n is generated by the $n-2$ permutations $\Gamma_i := \Gamma_1\Gamma_{i+1} = (1\ 2)(i+1\ i+2)$ for $1 \leq i \leq n-2$. Hence, $V = \pi^{-1}(A_n)$ is generated by z, e_1, \ldots, e_{n-2}, where $e_i := t_it_{i+1}$ for $1 \leq i \leq n-2$. Clearly, we have $K \subseteq Z(V)$ and $V/K \cong A_n$. As the Schur multiplier of A_n is also $\mathbb{Z}/2$ for $n \geq 8$, in order to show that V defines a Schur covering group of A_n, it suffices to prove that $K \subseteq [V, V]$.

Claim: $z = [e_1^{-1}e_2^3, e_2]$.

Proof of claim: This follows from a standard computation using the identities $(e_1e_2)^3 = z$, $e_1^3 = z$ and $e_2^2 = z$ for $2 \leq i \leq n-2$, which follow directly from the relations satisfied by the t_i.

Given the claim, it follows that $K = \langle z \rangle$ is contained in $[V, V]$, as desired.

Given a copy H of A_{n-1} inside A_n, one can subsequently repeat the same procedure of this last lemma and further restrict π to $W := \pi^{-1}(H)$ to seek a Schur covering group of H. The same argument works, but with two small caveats.

First, it is necessary to assure that we still have $z \in [W, W]$. This is indeed the case since, for $n \geq 7$, any subgroup $H \leq A_n$ isomorphic to A_{n-1} is conjugate to the point stabilizer $(A_n)_n$ of the letter n in A_n (this is a consequence of Lemma 2.2 of [21]). Therefore, we have $H = (A_n)_n \pi(x)$ for some $x \in U$ and hence $z = z^x = [e_1^{-1}e_2e_1, e_2]^x = [(e_1^{-1}e_2e_1)^x, e_2^x]$ is in $[W, W]$, as clearly $e_1, e_2 \in (A_n)_n$.

Second, note that we are making use of the fact that the Schur multipliers of A_{n-1} and S_n coincide, which is only true for $n \geq 9$ (recall that $M(A_7) = \mathbb{Z}/6$). However, it is still true that $\pi^{-1}(A_7)$ gives a (non-maximal) stem extension of A_7 by the same reasoning as above. We have thus established the following result.
Lemma 2.7. Let $n \geq 8$ and let H be a copy of A_{n-1} inside A_n. Then, the restriction to $W = \pi^{-1}(H)$ of the Schur cover V of A_n given in Lemma 2.6 defines a stem extension of H.

We can now prove Lemma 2.2.

Proof of Lemma 2.2. Let V be the Schur covering group of G constructed in Lemma 2.6. We then have a central extension

$$1 \to M(G) \to V \xrightarrow{\pi} G \to 1,$$

where we identified the base normal subgroup K of V with the Schur multiplier $M(G)$ of G. Since $M(G) \subset [V, V]$ by the definition of a Schur cover, V is a generalized representation group of G, as defined on p. 310 of [6]. Therefore, by Lemma 4 of [6], we have an isomorphism $\text{Cor}_{H}^{H}(M(H)) \cong M(G) \cap [W, W]$, where $W = \pi^{-1}(H)$. Hence, it is enough to show that $M(G) \cap [W, W] = M(G)$. By Lemma 2.7, W defines a stem extension of H for $n \geq 8$, so that we immediately get $M(G) \subset [W, W]$. It follows that $M(G) \cap [W, W] = M(G)$, as desired. □

In order to proceed with our cohomological analysis, we need to recollect some group-theoretic objects. Let H be a subgroup of a finite group G. Recall that we have the augmentation map $\epsilon : \mathbb{Z}[G/H] \to \mathbb{Z}$ defined by $\epsilon : Hg \mapsto 1$ for any $Hg \in G/H$. This map produces the exact sequence of G-modules

$$0 \to I_{G/H} \to \mathbb{Z}[G/H] \xrightarrow{\epsilon} \mathbb{Z} \to 0,$$

where $I_{G/H} = \ker(\epsilon)$ is the augmentation ideal. Dually, we also have a map $\eta : \mathbb{Z} \to \mathbb{Z}[G/H]$ defined by $\eta : 1 \mapsto N_{G/H}$, where $N_{G/H} = \sum_{Hg \in G/H} Hg$. This produces the exact sequence of G-modules

$$0 \to \mathbb{Z} \xrightarrow{\eta} \mathbb{Z}[G/H] \to J_{G/H} \to 0,$$

where $J_{G/H} = \text{coker}(\eta)$ (called the Chevalley module of G/H) is the dual module $\text{Hom}(I_{G/H}, \mathbb{Z})$ of $I_{G/H}$.

For any $g \in G$, we can consider the restriction maps

$$\text{Res}_g : H^2(G, J_{G/H}) \to H^2(\langle g \rangle, J_{G/H})$$

and aggregate all of these functions together in order to get a homomorphism of G-modules

$$\text{Res} : H^2(G, J_{G/H}) \to \prod_{g \in G} H^2(\langle g \rangle, J_{G/H}).$$

It turns out that the kernel of this map (denoted by $\Pi H^2(G, J_{G/H})$) is of extreme importance in the arithmetic of number fields, as we will see in the next section. We describe this kernel for our case of interest $G = A_n$, $H \cong A_{n-1}$ and $n \geq 8$ (the cases $n \leq 7$ will be treated separately).
Proposition 2.8. Let $n \geq 8$ and let H be a copy of A_{n-1} inside $G = A_n$. Then, we have $\III^2_\omega(G, J_{G/H}) = 0$.

Proof. Taking the G-cohomology of the exact sequence (2.2) gives the exact sequence of abelian groups

$$H^2(G, \mathbb{Z}[G/H]) \to H^2(G, J_{G/H}) \to H^3(G, \mathbb{Z}) \xrightarrow{\overline{\eta}} H^3(G, \mathbb{Z}[G/H]),$$

where $\overline{\eta}$ is the map induced on the degree 3 cohomology groups by the norm map η. Applying Shapiro’s lemma and using the fundamental duality theorem in the cohomology of finite groups (see, for example, Section VI.7 of [3]), we have $H^2(G, \mathbb{Z}[G/H]) \cong H^2(H, \mathbb{Z}) \cong \hat{H}^{-2}(H, \mathbb{Z}) \cong H/[H, H] = 0$, as H is perfect. Therefore, this last exact sequence becomes

$$0 \to H^2(G, J_{G/H}) \to H^3(G, \mathbb{Z}) \xrightarrow{\overline{\eta}} H^3(G, \mathbb{Z}[G/H]),$$

which shows that $H^2(G, J_{G/H}) = 0$ if $\overline{\eta}$ is injective. Since the composition of the map $\overline{\eta}$ with the isomorphism in Shapiro’s lemma

$$H^3(G, \mathbb{Z}) \xrightarrow{\overline{\eta}} H^3(G, \mathbb{Z}[G/H]) \xrightarrow{\cong} H^3(H, \mathbb{Z})$$

gives the restriction map (see Example 1.27(b) of [16]), it is enough to prove that the restriction

$$\text{Res}^G_H : H^3(G, \mathbb{Z}) \to H^3(H, \mathbb{Z})$$

is injective. Again, by the duality in the cohomology of finite groups, this is the same as proving that the corestriction map (dual to Res^G_H)

$$\text{Cor}^H_G : \hat{H}^{-3}(H, \mathbb{Z}) \to \hat{H}^{-3}(G, \mathbb{Z})$$

is surjective. But this is the content of Lemma 2.2, so it follows that $H^2(G, J_{G/H})$ is trivial and therefore $\III^2_\omega(G, J_{G/H}) = 0$, as desired.

\[\square \]

3. Arithmetic consequences

In this section, we delve into the consequences of the cohomological results of Section 2 in the arithmetic of number fields. In particular, we will recall how the group $\III^2_\omega(G, J_{G/H})$ governs two important local-global principles, the Hasse norm principle and weak approximation. Specifying to the case $G = A_n$, $H \cong A_{n-1}$ and using Proposition 2.8, we will prove Theorem 1.1 for $n \geq 8$. The remaining cases ($n \leq 7$) will be solved using a result of Colliot-Thélène and Sansuc and a computational method adapted from work of Hoshi and Yamasaki.

Let k be a number field and let T be a k-torus. We introduce the defect to weak approximation for T

$$A(T) = \left(\prod_v T(k_v) \right) / T(k),$$

where the product is taken over all places \(v \) of \(k \) and \(\overline{T(k)} \) denotes the closure (with respect to the product topology) of \(T(k) \) in \(\prod_v T(k_v) \). We say that weak approximation holds for \(T \) if and only if \(A(T) = 0 \).

We also define the Tate-Shafarevich group of \(T \) as

\[
X(T) = \ker(H^1(k, T) \to \prod_v H^1(k_v, T_{k_v}))
\]

where the product runs over all places \(v \) of \(k \). It is known that this group controls the validity of the Hasse principle for every principal homogeneous space under \(T \). In fact, the Hasse principle holds for every such space if and only if \(X(T) = 0 \).

The following result remarkably connects weak approximation with the Hasse principle by combining the two groups \(A(T) \) and \(X(T) \) in an exact sequence.

Theorem 3.1 (Voskresenski˘ı). Let \(T \) be a torus defined over a number field \(k \) and let \(X/k \) be a smooth projective model of \(T \). Then there exists an exact sequence

\[
0 \to A(T) \to H^1(k, \text{Pic } \overline{X}) \to X(T) \to 0.
\]

Proof. See Theorem 6 of [19]. \(\square \)

Let us now specialize \(T \) to be the norm one torus \(R^1_{K/k} \mathbb{G}_m \) of an extension \(K/k \) of number fields. In this case, we have \(\mathfrak{H}(K/k) \cong \Pi(T) \) (see p. 307 of [17]). Therefore, the cohomology group \(H^1(k, \text{Pic } \overline{X}) \) in the previous theorem is pivotal in the study of the HNP for \(K/k \) and weak approximation for \(T \). A very useful tool to deal with this object is flasque resolutions, as introduced in the work of Colliot-Thélène and Sansuc. We recall here the main definitions and refer the reader to [4] and [5] for more details on this topic.

Flasque resolutions. Let \(G \) be a finite group and let \(A \) be a \(G \)-module. The module \(A \) is said to be flasque if \(\check{H}^{-1}(G', A) = 0 \) for every subgroup \(G' \) of \(G \) and coflasque if \(H^1(G', A) = 0 \) for every subgroup \(G' \) of \(G \). Moreover, \(A \) is called a permutation module if it admits a \(\mathbb{Z} \)-basis permuted by \(G \) and an invertible module if it is a direct summand of a permutation module. A flasque resolution of \(A \) is an exact sequence of \(G \)-modules

\[
0 \to A \to P \to M \to 0
\]

where \(P \) is a permutation module and \(M \) is flasque. Dually, a coflasque resolution of \(A \) is an exact sequence of \(G \)-modules

\[
0 \to N \to Q \to A \to 0
\]

where \(Q \) is a permutation module and \(N \) is coflasque.

It turns out that there is a very direct relation between the group \(H^1(k, \text{Pic } \overline{X}) \) and flasque resolutions of the \(G \)-module \(\check{T} \), as the following result shows.
Theorem 3.2 (Colliot-Thélène & Sansuc). Let T be a torus defined over a number field k and split by a finite Galois extension F/k with $G = \text{Gal}(F/k)$. Suppose that

$$0 \to \hat{T} \to P \to M \to 0$$

is a flasque resolution of the G-module \hat{T} and let X/k be a smooth projective model of T. Then, we have

$$H^1(k, \text{Pic} X) = H^1(G, \text{Pic} X_F) = H^1(G, M).$$

Proof. See Lemme 5 and Proposition 6 of [4]. □

We proceed by presenting a very useful description of the group $H^1(G, M)$ in the conclusion of the previous theorem.

Proposition 3.3. $H^1(G, M) = \text{III}_2^2(G, \hat{T})$.

Proof. See Proposition 9.5(ii) of [5]. □

Using this characterization, we can now prove Theorem 1.1 for $n \neq 6$ (the case $n = 6$ will be treated separately in the next section).

Proof of Theorem 1.1 for $n \neq 6$. Set $G = \text{Gal}(F/k) \cong A_n$ and $H = \text{Gal}(F/K)$. Observe that such a group H is necessarily isomorphic to A_{n-1}, since it has index n in A_n. We have two cases:

Case $n \geq 8$: By Theorems 3.1 and 3.2 and Proposition 3.3 it is enough to establish that the group $\text{III}_2^2(G, \hat{T})$ is trivial, where $\hat{T} = R_{K/k}^{1}G_m$ is the norm one torus associated to the extension K/k. Moreover, it is a well-known fact that $\hat{T} = J_{G/H}$ as G-modules, so it is sufficient to prove that $\text{III}_2^2(G, J_{G/H}) = 0$. But this was shown in Proposition 2.8 of Section 2, so the result follows.

Cases $n = 5$ and $n = 7$: Since n is a prime number, these cases follow from a direct application of Proposition 9.1 of [3]. In this proposition, the authors show that there exists a k-torus T_1 such that the variety $T \times_k T_1$ is k-rational, where $T = R_{K/k}^{1}G_m$ is the norm one torus associated to K/k. This result is in its turn equivalent to the fact that any flasque module M in a flasque resolution of \hat{T} is invertible (see Proposition 9.5(i) of [5]), which is a stronger property than being coflasque. Therefore, the group $H^1(G, M)$ vanishes and so, by Theorem 3.2 the middle group of Voskresenskii's exact sequence in Theorem 3.1 is trivial. Hence, we conclude that $A(T) = 0 = \text{III}(T)$, as desired. □

4. The case $n = 6$

In this section, we finish the proof of Theorem 1.1 by using the computer algebra system GAP to establish the remaining case $n = 6$. More precisely, we devise an algorithm that, given a finite group G and a non-normal subgroup H such that $\text{Core}_G(H) := \bigcap_{g \in G} g^{-1}Hg$ is trivial (for example, this is always the case
if \(G \) is simple), outputs the invariant \(H^1(G, M) \) of Theorem 3.2 for the norm one torus. We use two ingredients to achieve this: First, we construct a routine in GAP that computes the matrix representation of the action of \(G \) on the Chevalley module \(J_{G/H} \). Second, we make use of the GAP algorithms developed by Hoshi and Yamasaki in [13] to construct flasque resolutions. Before we present our method, we need a few preliminaries.

Definition 4.1 (Definition 1.26 of [13]). Let \(G \) be a finite subgroup of \(\text{GL}(n, \mathbb{Z}) \). The \(G \)-lattice \(M \) is defined to be the \(G \)-lattice with a \(\mathbb{Z} \)-basis \(\{u_1, \ldots, u_n\} \) and right action of \(G \) given by \(u_i.g = \sum_{j=1}^{n} a_{i,j} u_j \), where \(g = [a_{i,j}]_{i,j=1}^{n} \in G \).

In [13] the authors study the rationality of low-dimensional algebraic tori via the properties of the corresponding group modules, for which they create multiple algorithms. In particular, given a finite subgroup \(G \) of \(\text{GL}(n, \mathbb{Z}) \), they design the functions \(H^1 \) and \(\text{FlabbyResolution} \) (see Sections 5.0 and 5.1 of [13], respectively) computing the cohomology group \(H^1(G, M) \) and producing a flasque resolution of the \(G \)-module \(M \), respectively. For instance, by invoking the command
\[
gap> \text{FlabbyResolution}(G).\text{actionF};
\]
in GAP, one can access the matrix representation of the action of \(G \) on a flasque module in a flasque resolution of \(M \).

Let \(G \) be a finite group and \(H \) a non-normal subgroup of \(G \) with trivial normal core \(\text{Core}_{G}(H) \). Set \(d = |G/H| \) and fix a set of right-coset representatives \(L = \{Hg_1, \ldots, Hg_d\} \) of \(H \) in \(G \). In this way, we have \(\mathbb{Z}[G/H] = \sum_{i=1}^{d} Hg_i \mathbb{Z} \) and \(N_{G/H} = \sum_{i=1}^{d} Hg_i \in \mathbb{Z}[G/H] \).

Our first goal is to establish an isomorphism between the \(G \)-module \(J_{G/H} \) and the \(R_G \)-module \(M_{R_G} \), where \(R_G \leq \text{GL}(d-1, \mathbb{Z}) \) is a group (to be defined below) isomorphic to \(G \). We accomplish this by using the representation of \(G \) associated to its right action on \(J_{G/H} \). More precisely, consider the \(\mathbb{Z} \)-basis
\[
B = \{Hg_1 + N_{G/H} \mathbb{Z}, \ldots, Hg_{d-1} + N_{G/H} \mathbb{Z}\}
\]
of \(J_{G/H} \). Since the submodule \(N_{G/H} \mathbb{Z} \) is fixed by the action of any element of \(G \), we will omit it when working with elements of \(B \). Given \(g \in G \), we build a matrix \(R_g \in \text{GL}(d-1, \mathbb{Z}) \) as follows.

For any \(Hg_i \in B \), we have \((Hg_i).g = Hg_{\sigma(i)} \) for some \(1 \leq \sigma(i) \leq d \). There are two cases:

1) If \(\sigma(i) < d \), then the \(k \)-th entry of the \(i \)-th row of \(R_g \) is set to be equal to 1 if \(k = \sigma(i) \) and 0 otherwise.

2) If \(\sigma(i) = d \), then the \(k \)-th entry of the \(i \)-th row of \(R_g \) is set to be equal to \(-1 \) for every \(k \).

1The code for these algorithms is available on the web page https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/.
Let R_G be the group $\langle R_g \mid g \in G \rangle \leq \text{GL}(d-1, \mathbb{Z})$. It is easy to see that the map

$$\rho_G : G \rightarrow R_G$$

$$g \mapsto R_g$$

is the representation of G corresponding to its action on $J_{G/H}$. Clearly we have $\ker \rho_G = \text{Core}_G(H)$, which we are assuming is trivial. Hence, ρ_G is faithful and thus it yields an isomorphism $G \cong R_G$. Moreover, identifying $R_g \in R_G$ with the corresponding element $g \in G$, it is straightforward to check that the map

$$\psi : M_{R_G} \rightarrow J_{G/H}$$

$$\sum_{i=1}^{d-1} \lambda_i u_i \mapsto \sum_{i=1}^{d-1} \lambda_i Hg_i + N_{G/H} \mathbb{Z}$$

defines an isomorphism of group modules.

With the tools introduced so far, we are now able to construct the function \texttt{FlasqCoho}(G,H) (presented in the Appendix) in GAP that computes the cohomology group $H^1(G,M)$, where M is a flasque module in a flasque resolution of the Chevalley module $J_{G/H}$. The necessary steps to assemble this function are the following.

Step 1) Fix a set \texttt{gens} of generators of G and construct the matrix group $R_G = \langle R_g \mid g \in \text{gens} \rangle$ using the following two functions

- \texttt{row(s,d)} (an auxiliary routine to \texttt{action}), returning the i-th row of the matrix R_g as explained on page 9;
- \texttt{action}(G,H), constructing the matrices R_g for $g \in \text{gens}$ and returning the group R_G.

The code for these two functions is also provided in the Appendix. The group $R_G = \text{action}(G,H)$ is then a subgroup of $\text{GL}(d-1, \mathbb{Z})$ isomorphic to G such that $M_{R_G} \cong J_{G/H}$.

Step 2) Create a flasque resolution of the R_G-module M_{R_G} and access its flasque module M' using the commands

```gap
gap> FR:=FlabbyResolution(RG);
gap> FM:=FR.actionF;
```

The object \texttt{FM} is the matrix representation group of the action of R_G on M'. Note that, by the inflation-restriction exact sequence, we have $H^1(R_G,M') \cong H^1(\text{FM},M_{\text{FM}})$.

Step 3) Obtain the group $H^1(\text{FM},M_{\text{FM}}) \cong H^1(G,M)$ using the function \texttt{H1}.

```gap
gap> H1(FM);
```

The result of this line is the final output of the algorithm.
Using this computational method, we can now establish the remaining case of Theorem 1.1.

Proof of the case $n = 6$ in Theorem 1.1. Set $G = \text{Gal}(F/k) \cong A_6$ and $H = \text{Gal}(F/K)$. By Theorems 3.1 and 3.2, it is enough to prove that the cohomology group $H^1(G, M)$ is trivial, where M is a flasque module in a flasque resolution of the G-module $\hat{T} = J_{G/H}$ and $T = R^1_{K/k} \mathbb{G}_m$ is the norm one torus associated to the extension K/k.

As in the case $n \neq 6$, we have $H \cong A_5$. Notice that, up to conjugation, there are exactly two distinct subgroups of A_6 isomorphic to A_5, namely $H_1 = \langle (1 \ 2 \ 3 \ 4 \ 5), (1 \ 2 \ 3) \rangle$ and $H_2 = \langle (1 \ 2 \ 3 \ 4 \ 5), (1 \ 4)(5 \ 6) \rangle$. Moreover, it suffices to check the vanishing of $H^1(G, M)$ for one subgroup H in each conjugacy class (this follows from the fact that two subgroups H_1 and H_2 are conjugate if and only if the two G-sets G/H_1 and G/H_2 are isomorphic). Using the above algorithm, we obtained $H^1(G, M) = 0$ in both cases, as desired.

\begin{remark}
The computation used for the case $n = 6$ in the previous proof can be reproduced for other small values of n. We have checked that for $n \leq 11$ the algorithm confirms our results, giving the trivial group for $n \neq 4$ and producing the counterexample $H^1(A_4, M) = \mathbb{Z}/2$ for $n = 4$, as computed by Kunyavskii in [15].

The authors of [13] also pay special attention to the case $n = 5$ (see Example 8.1 of [13]). In this case, they establish that the torus $T = R^1_{K/k} \mathbb{G}_m$ is stably k-rational (see Corollary 1.11 of [13]), i.e. that there exists $n \in \mathbb{N}$ such that $T \times_k \mathbb{G}_m^n$ is k-rational. In the language of group modules, this is equivalent to any flasque module M in a flasque resolution of \hat{T} being a permutation module, which is a stronger property than being coflasque.

The computational method developed in this section might be of independent interest, as it can often be used to compute the birational invariant $H^1(G, M)$ for low-degree field extensions and, in this way, deduce consequences about the groups $A(T)$ and $\mathcal{R}(K/k)$.
Appendix

Remark 4.3. The code for all the functions below can also be found at https://sites.google.com/view/andre-macedo/code. Additionally, in order to successfully run the function `FlasqCoho`, the user will need the GAP programs for the functions `ConjugacyClassesSubgroups2`, `H1` and `FlabbyResolution` (see Sections 4.1, 5.0 and 5.1 of [13], respectively).

```plaintext
row:=function(s,d)
    local r,k;
    r:=[];  // i-th row of \( R_g \)
    if s = d then  // Case 2 of page 9
        r:=List([1..d−1],x−>−1);
    else
        for k in [1..d−1] do
            if k = s then
                r:=Concatenation(r,1);
            else
                r:=Concatenation(r,0);
            fi;
        od;
    fi;
    return r;
end;
```

```plaintext
action:=function(G,H)
    local d,gens,RT,L,S,j,Rg,i,s;
    d:=Order(G)/Order(H);
    gens:=GeneratorsOfGroup(G);
    RT:=RightTransversal(G,H);
    L:=List(RT,i−>CanonicalRightCosetElement(H,i));  // List of right-coset representatives of \( H \) in \( G \)
    S:=[[]];  // List of matrices \( R_g \) for \( g \in \text{gens} \)
    for j in [1..Size(gens)] do
        Rg:=List([1..d−1],x−>0);  // Create a matrix with \( d−1 \) lines
        for i in [1..d−1] do
            s:=PositionCanonical(RT,L[i]∗gens[j]);  // Obtain the index \( s = \sigma(i) \) of the right-coset \( (H ∗ L[i]) \cdot \text{gens}[j] \) in \( RT \) as explained on page 9
            Rg[i]:=row(s,d);  // Produce the \( i \)-th row of \( R_{\text{gens}[j]} \)
        od;
        S:=Concatenation(S,[Rg]);  // Append the matrix \( R_{\text{gens}[j]} \) to \( S \)
    od;
    return GroupByGenerators(S);  // Return the group \( R_G \)
end;
```
FlasqCoho:=function(G,H)
 local RG,FR,FM;
 RG:=action(G,H); // Matrix group \(R_G \)
 FR:=FlabbyResolution(RG); // Flasque resolution of \(R_G \)
 FM:=FR.actionF; // Flasque module in FR
 return H1(FM); // Return the cohomology group \(H^1(G,M) \)
end;

REFERENCES

[1] H.-J. Bartels, Zur Arithmetik von Konjugationsklassen in algebraischen Gruppen, J. Algebra 70 (1981), 179-199.
[2] H.-J. Bartels, Zur Arithmetik von Diedergruppenerweiterungen, Math. Ann. 256 (1981), 465-473.
[3] K. Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer-Verlag, 1982.
[4] J.-L. Colliot-Thélène, J.-J. Sansuc, La R-équivalence sur les tores. Ann. Sc. E.N.S. 10 (1977), 175–229.
[5] J.-L. Colliot-Thélène, J.-J. Sansuc, Principal homogeneous spaces under flasque tori: Applications, J. Algebra 106 (1987), 148–205.
[6] Y. A. Drakokhrust, V. P. Platonov, The Hasse norm principle for algebraic number fields, Math. USSR-Izv. 29 (1987), 299-322.
[7] C. Frei, D. Loughran, R. Newton, The Hasse norm principle for abelian extensions, Amer. J. Math, to appear.
[8] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.10 (2018), available at https://www.gap-system.org
[9] F. Gerth, The Hasse norm principle for abelian extensions of number fields, Bulletin of the AMS, Vol. 83 (1977), 264-266.
[10] K. W. Gruenberg, Cohomological Topics in Group Theory, Lecture Notes in Mathematics 143, Springer-Verlag, 1970.
[11] P. N. Hoffman, J. F. Humphreys, Projective representations of the symmetric groups, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1992.
[12] M. Horie, The Hasse norm principle for elementary abelian extensions, Proc. Amer. Math. Soc. 118(1) (1993), 47–56.
[13] A. Hoshi, A. Yamasaki, Rationality problem for algebraic tori, Memoirs of the American Mathematical Society 248 (2017), no. 1176.
[14] G. Karpilovsky, The Schur Multiplier, Clarendon Press, Oxford, 1987.
[15] B. Kunyavskiĭ, Arithmetic properties of three-dimensional algebraic tori, Zap. Nauch. Sem. LOMI Akad. Nauk SSSR 16 (1982), 102-107.
[16] J. S. Milne, Class Field Theory, Version 4.02 (2013), available at http://www.jmilne.org/math/CourseNotes/CFT.pdf
[17] V. Platonov, A. Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994.
[18] J. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. reine angew. Math. 139 (1911), 155–250.
[19] V. Voskresenskiĭ, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 3–19. English translation: Math. USSR-Izv. Vol. 4 (1970), 1-17.
[20] V. Voskresenskiĭ, B. Kunyavskiĭ, Maximal tori in semisimple algebraic groups, Manuscript deposited at VINITI 15.03.84, no. 1269-84, 28pp. (in Russian).
[21] R. A. Wilson, The finite simple groups, Graduate Texts in Mathematics 251, Springer-Verlag, 2009.
ANDRÉ MACEDO

ANDRÉ MACEDO, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF READING, WHITEKNIGHTS, PO BOX 220, READING RG6 6AX, UK

E-mail address: c.a.v.macedo@pgr.reading.ac.uk
URL: https://sites.google.com/view/andre-macedo