The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective

Britt Mossink¹,² · Moritz Negwer¹,² · Dirk Schubert² · Nael Nadif Kasri¹,²

Received: 7 August 2020 / Revised: 4 November 2020 / Accepted: 16 November 2020 / Published online: 2 December 2020
© The Author(s) 2020

Abstract

Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.

Keywords

Epigenetics · Transcriptional regulation · Neurodevelopment · Radial glia · Neural progenitor · Chromatin accessibility

Introduction

A mature brain is the product of its development. Early developmental insults during the assembly of these neuronal circuits can severely impact how a person develops and behaves in their adult life. Across the ongoing developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation, early developmental insults will compound over time, leading to a circuit dysfunction.

Neurodevelopmental disorders (NDDs) pose such an example of disorders where early developmental insults from conception on result in a wide and heterogeneous spectrum of clinical diagnosis’s including intellectual disability (ID), autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ) and mood disorders (bipolar disorder (BD), major depressive disorder (MDD)) [1]. These NDDs are often diagnosed during childhood, and overlap between diagnostic categories [2]. NDDs can be caused by both genetic and non-genetic sources. The most frequent non-genetic cause of NDDs is foetal alcohol syndrome disorder [3–5]. Additionally, the extreme genetic heterogeneity in NDDs is one of the major limiting factors in both diagnosis and treatment [6]. With the use of sophisticated diagnostic tools such as whole exome sequencing and whole genome sequencing, the number of genes and variants linked to the aetiology of NDDs is vastly increasing [7, 8]. By doing so, chromatin remodelling genes have been found enriched in large datasets of NDD patients, and thereby pointing towards epigenetics as a convergent pathogenic mechanism [8–13]. By altering the epigenetic state of genes or histones, chromatin remodelers play an integral part in the machinery that translate external signals into lasting...
changes in gene expression patterns [14]. Furthermore, chromatin remodelers are multifunctional proteins that can influence various processes across the developmental continuum, including neural progenitor generation and specification, cell-type differentiation and expansion, migration and circuit integration [15]. Hence, as a significant subset of NDDs are caused by a failure of chromatin remodelling, it is to be expected that deficient chromatin remodelling will have a compounding effect across the developmental continuum, ultimately causing circuit dysfunction in mature networks [16].

Several reviews have already focussed on the most recent findings regarding the epigenetic origin of NDDs [17–19], however comparatively little is known about the function of these chromatin remodelers during the different programs of progenitor expansion, cell-type specification, neuronal migration and circuit integration. Using examples from mouse models mimicking these NDDs by introducing mutations in chromatin remodelers (also called NDD-related chromatinopathies), this review will first discuss how altered chromatin remodelling affects the different processes of the ongoing developmental continuum from mouse embryonic day (E) 10–17. Here, we will specifically focus on the three most abundant cell types found in the neocortex: excitatory (glutamatergic) and inhibitory (GABAergic) neurons, as well as glia cells. Although various chromatin remodelers have been described to play a role at one of these developmental steps, we chose to elaborate only on specific well-studied examples that play a role at multiple of these developmental steps, stressing their importance in neurodevelopment (Table 1). Furthermore, we will only focus on chromatin remodeler proteins and protein complexes and thereby exclude chromatin remodelling by non-coding RNAs (for a good review the authors would like to refer the readers to [20–22]).

Chromatin remodelers

Chromatin was first described by Walther Flemming for the unique fibrous structures observed in cellular nuclei [23]. Chromatin is a highly dynamic structure that regulates the complex organization of the genome and thereby controls the gene expression underneath, and is composed of nucleosomes containing an octamer of histones (i.e. H2A, H2B, H3 and H4), wrapped by 147 base pairs of DNA and the linker histone H1 [24]. The distinction between condensed heterochromatin and open euchromatin structures were first reported by Emil Heitz [25], and can be altered by chromatin remodelers via three distinct mechanisms, including: (i) sliding of an octamer across the DNA (nucleosome sliding), (ii) changing the conformation of nucleosomal DNA, and (iii) altering the composition of the octamers (histone variant exchange). By doing so, chromatin remodelling facilitates downstream gene expression in a cell-type and cellular demand-specific way, stressing their important role during (neuro) development.

Based on their function, three categories of chromatin remodelers have been classified, which are (i) the enzymes that control histone post-translational modifications (PTM) [26], (ii) DNA modifications that can attract/repel chromatin remodelling proteins or complexes, or (iii) enzymes that alter histone-DNA contact within the nucleosome via ATP hydrolysis [27]. Furthermore, 3D genome architecture is increasingly considered an important epigenetic regulator of gene expression [28]. In the next section, we will briefly discuss the global function of these epigenetic regulators (Fig. 1).

Histone modifying enzymes

Over the last decade a major effort was put into the identification of enzymes that directly modify histones. So far, enzymes have been identified for methylation [29], acetylation [30], phosphorylation [31], ubiquitination [32], sumoylation [33], biotinylination [34], ADP-ribosylation [35], deamination [36, 37], proline isomerization [38], β-N-glycosylation [39], crotonylation [40], propionylation [41], butyrylation [41], serotonylation [42], dopaminylation [43], Glutarylation [44–46], Lactylylation [47], Benzoylation [48], S-palmitoylation [49], O-palmitoylation [50] and 5-Hydroxylysine [51]. Also nonenzymatic histone PTMs have been identified including Glycation [52, 53], 4-Oxononanoylation [54, 55], Acrolein adduct [56, 57], Homocysteinylaton [58, 59] nitrosylation [60–63], sulfe, sulfi and sulfonylation [64, 65] and 5-Glutathionylation [66, 67]. For many of them, also enzymes have been identified that can remove the PTM, or ‘read’ the PTM and recruit other proteins to form a chromatin remodelling complex (for a detailed review of all histone modifying enzymes and their function see [26, 68]). Currently, two mechanisms are known by which histone PTMs can alter the state of chromatin. First, it is accepted that all histone modifications have the potential to affect higher order chromatin structure by neutralising the basic charge of the nucleosome, and therefore could loosen inter or intra-nucleosomal DNA-histone interactions [69–72]. A well-known example is acetylation of lysine residues, which removes the positive charge of lysine and therefore increases the probability to alter the structural state of chromatin [73]. Second, histone PTMs can recruit non-histone proteins to set in motion processes such as transcription, DNA repair and DNA replication [73]. Depending on which histone modification (or which sequence of histone modifications) are present at a given histone tail, different sets of proteins are encouraged to bind or prevent from binding to chromatin. This recruitment process is highly dynamic, as multi-step
Table 1 NDD-Associated Chromatin Remodelers

Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
ACTL6A	SWI/SNF, nBAF	Actin-related	Non-specific ID, BOD Syndrome	ID, distinct facial features, delayed skeletal maturation, short stature	113477	–	Impaired stem cell renewal	[253, 254, 463, 464]
ACTL6B	SWI/SNF, nBAF	Actin-related	ID, Early Infantile Epileptic Encephalopathy	Intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypes, and minor facial dysmorphisms Epilepsy, Infantile Encephalopathy	612458	Memory deficits, reduced LTP	Reduced Bdnf signaling at NAc synapses, reduced MAP2 expression, dendritic abnormalities	[253, 254, 464–467]
ARID1A	SWI/SNF, BAF	ATPase subunit	Coffin-Siris syndrome	ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	614607	Craniofacial deficits	Reduced pluripotency and self-renewal of embryonic stem cells, increased potential to differentiate towards dopaminergic neurons	[279, 285, 465, 468]
ARID1B	SWI/SNF, BAF	DNA binding	Coffin-Siris Syndrome	ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	135900	Small stature, weak muscle tone, corpus callosum hypoplasia, abnormal social, vocal, and behavioral phenotypes, PV-cKO: social and emotional impairments, SST-cKO: stereotypies, learning and memory dysfunction	E/I imbalance, altered number of GABAergic neurons	[277, 278, 280, 282, 283, 323, 353, 354]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
------	-----------	-----------------------------	-----	-------------------	--------	-----------------	-------------------	------------
ARID2	SWI/SNF, BAF	ATPase subunit	Coffin-Siris syndrome	ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	617808	–	–	[285]
ARL14EP	SETDB1/KAP1/ MCAF1 repressor complex	H3K9 methyltransferase	WAGR Syndrome	ID, Wilms Tumor, Aniridia	194072	–	Projection neuron generation via Sema6a promoter methylation	[324, 325]
ARX	Homeobox protein	ID, XLAG	X-linked lissencephaly with ambiguous genitalia (XLAG), agenesis of the corpus callosum (ACC), early-onset intractable seizures (EIEE1) and severe psychomotor retardation	300382, 300215	–	De-repression of Scn2a, Syn1 and Bdnf in prenatal Arx^{−/−} brains	[438, 441, 469–472]	
ATRX	DAXX complex, CTCF/Cohesin binding	ATP-dependent DNA translocase, Histone variant exchange	Alpha-thalassemia/mental retardation syndrome (ATR-X), X-linked mental retardation-hypotonic facies syndrome-1 (MRXFH1)	ATR-X: Severe psychomotor retardation, characteristic facial features, genital abnormalities, alpha-thalassemia, ocular defects. MRXFH1: Mental retardation, microcephaly, short stature, unusual facial appearance, hypotonia	300032, 301040, 309580	Hemizygote males: Embryonic lethal. Heterozygote female cKO: Impaired spatial, contextual fear and novel object recognition memory, stunted growth	Sex-specific repression of miR-137, synaptic defects, loss of retinal interneurons (amacrine and horizontal cells)	[95, 299–308, 473–476]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
------------	--------------------	------------------------------	------------------------------	---	--------	--	--	--
AUTS2	PRC complex	H2AUb1 K119	Autosomal dominant form of syndromic mental retardation	ID, ASD, microcephaly, short stature and cerebral palsy	615834	Defects in: motor skills, vocalisation following maternal separation, neurocognitive ability, exploration, recognition and associative memory and learning and memory formation	Impaired progenitor migration, increased in cell death during in vitro corticogenesis, premature neuronal differentiation, altered neuronal morphology	[123, 124, 477]
CBP	Acetylation of H3K9, H3K14 and H3K27	ID, postnatal growth deficiency, microcephaly, broad thumbs and hallucines, and dysmorphic facial features	Rubinstein-Taybi syndrome	Microcephaly, anxiety, reduced exploration and curiosity, brain structure abnormalities in the corpus callosum, hippocampus and olfactory bulb	180849	Increased progenitor proliferation, reduced glutamatergic and gabaergic neuron generation, astrocytes and oligodendrocytes generation		[41, 68, 162–165, 319, 355–359, 446]
CDK5RAP2	Centrosomal protein	Autosomal recessive primary microcephaly-3 (MCPH3)	ID, Microcephaly	Microcephaly with hypoplasia of cortex and hippocampus	604804, 608201		Reduced neuroepithelial differentiation, fewer and smaller progenitor regions, and premature neuronal differentiation	[455, 478]
CHD1	ATPase subunit	Pilarowski-Bjornsson Syndrome	ID, developmental delay, ASD features, speech apraxia, mild dysmorphic features	KO: Early embryonic lethal with gastrulation defects. Heterozygote: No effects	602118, 617682	KO: Decreased NSC self-renewal, increased apoptosis		[197–200]
CHD2	ATP-dependent remodeler	Broad spectrum NDDs, Dravet Syndrome	Developmental delay, ID, ASD, epilepsy and behavioural problems, photosensitivity	Aberrant cortical rhythmogenesis, memory deficits	615369	Less proliferative RGCs, more differentiated IPs and Neurons, shift in excitatory / inhibitory neuron production, E/I imbalance		[197, 201–207, 351, 352]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
------	-----------	-----------------------------	-----	--------------------	--------	------------------	-------------------	-------------
CHD3	NuRD complex	ATP-dependent remodeler	Snijders Blok–Campeau syndrome	ID, developmental delays, macrocephaly, impaired speech and language skills, and characteristic facial features	618205	–	Increased number of deep layer neurons at the expense of upper layer neurons	[97, 156, 196, 207–210]
CHD4	NuRD complex	ATP-dependent remodeler	CHD4-related syndrome	Macrocephaly, ID, hearing loss, ventriculomegaly, hypogonadism, palatal abnormalities and facial dysmorphisms that are diagnosed by Sifrim–Hitz–Weiss syndrome	617159	–	Reduced cortical thickness, reduced NPC proliferation, premature cell cycle exit, increased apoptosis of premature born neurons	[97, 137, 196, 207, 208, 211–213]
CHD5	NuRD complex	ATP-dependent remodeler	ASD	–	–	Abnormalities in socialization and communication, and deficits in behavioral measures of empathy	Reduced migration in cortical excitatory neurons	[9, 196, 207, 215–219]
CHD6	–	ATPase subunit	Hallerman-Streiff Syndrome	Craniofacial and dental dysmorphisms, eye malformations, hair and skin abnormalities, and short stature	602118, 234100	Ataxia, coordination problems	–	[196, 219–223, 479]
CHD7	–	ATP-dependent remodeler	CHARGE syndrome	Hypoplasia of olfactory bulb and cerebellum, agenesis of the corpus callosum, microcephaly and atrophy of the cerebral cortex, coloboma, heart defects, growth retardation, genital hypoplasia, and nose and ear abnormalities	214800	Hypoplasia of olfactory bulb, cerebral hypoplasia, defects in the development of telencephalic midline and reduction of the cortical thickness	Impaired proliferation and self-renewal of RGCs, reduced OPC and cerebral granular cell survival and differentiation	[224–230, 232, 233, 235]
Table 1 (continued)

Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
CHD8	REST complex	ATP-dependent remodeler	ASD	Macrocephaly, rapid early postnatal growth, characteristic facial features, increased rates of gastrointestinal complaints and marked sleep dysfunction	615032	Macrocephaly, abnormal craniofacial features, and ASD like behaviour	Prematurely depletion of the progenitor pool, negative regulator of the Wnt-β-catenin signalling pathway, Impairs dendrite and axonal growth and branching of upper-layer callosal projection neurons, and resulted in delayed migration	[226, 237–241, 243–249, 251, 322, 439]
CHD9	–	–	–	NDD mental retardation, autosomal dominant 21 (MRD21)	616936	KO: No effects	–	[286, 480]
CTCF	Cohesin complex	3D Chromatin loop organizer	–	ID, microcephaly, growth retardation	604167	KO: No effects	–	[28, 104–106, 186–190]
DAXX	DAXX complex	Histone variant exchange	–	Alpha-thalassemia/mental retardation syndrome(ATR-X)	301040, 603186	KO: No effects	Impaired activity-dependent Histone H3.3 loading in active neurons, Knockdown: Elevated Gad67 expression	[299–301, 481]
DNMT1	PRC complex	H3K27me3	Hereditary sensory neuropathy type IE (HSN1E)	Hereditary sensory neuropathy with dementia and hearing loss or cerebellar ataxia, deafness, and narcolepsy	614116, 604121	KO: No effects	Transcriptional derepression, p53-activation, and partial cell growth defects	[79, 343, 363, 364, 401, 483]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
--------	-----------	-----------------------------	---------------------------------	---	------------	--	--	-------------------
DNMT3A	DNA methylation	Taton-brown-rahman syndrome	ID, tall stature, macrocephaly characteristic facial features, atrial septal defects, seizures, umbilical hernia, and scoliosis	ID, tall stature, macrocephaly characteristic facial features, atrial septal defects, seizures, umbilical hernia, and scoliosis	615879	Long bone length, enlarged body mass, increased anxiety like behavior, reduced activity and exploration	Clustered protocadherin expression regulation in pyramidal cells + cerebellar Purkinje cells	[78, 483–486]
DNMT3B	DNA methylation	Hirschsprung disease, immunodeficiency-centromeric instability-facial anomalies syndrome-1	–	ID, tall stature, macrocephaly characteristic facial features, atrial septal defects, seizures, umbilical hernia, and scoliosis	615879	Long bone length, enlarged body mass, increased anxiety like behavior, reduced activity and exploration	Clustered protocadherin expression regulation in pyramidal cells + cerebellar Purkinje cells	[78, 483–486]
DPF1	SWI/SNF, nBAF	Histone binding	–	ID, tall stature, macrocephaly characteristic facial features, atrial septal defects, seizures, umbilical hernia, and scoliosis	601670	Postmitotic expression	Reduced ESC self-renwal and increased apoptosis. Increased expression of neuron related genes in Dpf2-/- EBs	[255, 256]
DPF2	SWI/SNF, BAF, PRC2	ATPase subunit	ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	601672	Postmitotic expression	disturbed laminar identity in cortex, Dentate Gyrus malformation	[130, 131, 466, 487, 488]
DPF3	SWI/SNF, nBAF	Histone binding	–	ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	601672	Postmitotic expression	Reduced ESC self-renwal and increased apoptosis. Increased expression of neuron related genes in Dpf2-/- EBs	[255, 256]
EED	PRC2	H3K9/K27 methylation reader	ID, overgrowth of multiple tissues, macrocephaly, speech delay, poor motor skills	ID, overgrowth of multiple tissues, macrocephaly, speech delay, poor motor skills	605984, 617561	Postnatal lethal	Disturbed laminar identity in cortex, Dentate Gyrus malformation	[130, 131, 466, 487, 488]
Table 1 (continued)

Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
EHMT1	G9a-GLP complex	H3K9me1,2	Kleefstra Syndrome	Microcephaly, mild to severe ID, ASD, developmental delay, speech problems, hypotonia, characteristic facial features, epileptic seizures, heart defects and various behavioural difficulties	610253	Anxiety, immobility, impaired social interaction	NDMA-mediated overexcitability, cPcdh misregulation, PV critical period delayed	[154, 158, 159, 287, 375, 381, 401, 402, 425, 437, 489–498]
EHMT2	EHMT1/EHMT2 complex	H3K9me1/2	–	–	604599	KO: Embryonic lethal. cKO: decreased exploratory behavior, decreased sucrose preference, increased cocaine preference, obesity, altered locomotion. Heterozygote: No effects	cKO: increased dendritic spine plasticity in nucleus accum-bens neurons, knockdown: decreased neurite sprouting	[158, 401, 425, 493, 499, 500]
EZH1	PRC2	H3K27me1/2/3	–	–	601674	–	Reduced PSD95 expression in hippocampal cultures	[125, 501]
EZH2	PRC complex	H3K27me1,2,3	Weaver syndrome	Overgrowth and macrocephaly, accelerated bone maturation, ASD, developmental delay and characteristic facial features	277590	Macrocephaly	Premature RGC differentiation, increased generation of lower-layer neurons, decreased upper-layer neuron production, precocious astrocyte generation and differentiation, altered neuronal polarization and radial neuronal migration	[125, 127–129, 138, 364, 403, 404, 466, 487, 501–503]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
-------	-----------------------------------	-----------------------------	-----	--	---------	--	---	----------------------
HDAC1	NuRD complex, DAXX complex	Histone deacetylase	–	–	601241	Astrocyte-specific cKO: Lethal early postnatal	Impaired neuronal differentiation, premature apoptosis, impaired lower layer neuron generation. Knockdown: elevated Gad67 expression	[174, 176, 481, 504]
HDAC2	HDACs, NuRD	Histone deacetylase	Cornelia de Lange Syndrome	Developmental delay, limb abnormalities, congenital heart defects, altered development of the reproductive system, growth retardation and characteristic craniofacial features	122470	Accelerated extinction of conditioned fear responses, accelerated learning in ASST test	Reduced proliferation and premature differentiation, abnormal cell death, decreased production of deep-layer neurons and increased production of superficial-layer neurons, defects in oligodendrocyte production	[174, 176, 177, 504]
HDAC8	SMC3 deacetylase	Cornelia de Lange Syndrome, Wilson-Turner syndrome	X-linked intellectual disability ID, hypogonadism, gynaecomastia, truncal obesity, short stature and recognisable craniofacial manifestations resembling but not identical to Wilson-Turner syndrome	122470, 309585	Craniofacial features,	Reduced proliferation and differentiation of progenitors, increased apoptosis	[178–181, 183, 184, 505]	
HP1γ	–	Heterochromatin formation	–	–	604477	–	Impaired axon/dendrite growth, impaired callosal projections	[148, 320]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
---------	--------------------	------------------------------	----------------------	---	---------	--	---	-------------------
INO80A	INO80 complex	ATPase subunit/ Histone variant exchange	–	–	610169	Homozygous KO: Embryonic lethal, Heterozygotes/ cKO: Microcephaly, Motor neuro deficits, premature death	Delayed DNA damage repair response, premature senescence	[289, 292, 294, 506]
KANSL1	NSL complex	H4K16ac	Koolen-de Vries Syndrome, 17q21.31 deletion syndrome	ID, distinctive facial features, friendly behaviour	610443	Altered weight, general activity, social behaviors, object recognition, and fear conditioning memory associated with craniofacial and brain structural changes	–	[167, 168]
KANSL2	NSL complex	H4K16ac	Severe ID	–	–	–		[8]
KAT6A	MOZ/MORF	Lysine Acetyltransferase	Syndromic ID (KAT6A Syndrome)	–	616268	Craniophacic dysmorphism, body segment identity shift	Reduced generation of Excitatory + inhibitory neurons	[347–350]
KAT6B	MOZ/MORF	Lysine Acetyltransferase	Genitopatellar Syndrome and Ohdo/SBBYS Syndrome	Hypoplasia/agenesis, urogenital anomalies, congenital flexion contractures of the large joints, microcephaly, agenesis of corpus callosum, and hydronephrosis	603736, 606170	–	Reduced generation of Excitatory + inhibitory neurons	[68, 344, 346]
KAT8	NSL complex	Lysine Acetyltransferase (H4K16) H4K16 propionylation	Syndromic ID	Brain abnormalities, epilepsy, global developmental delay, ID, facial dysmorphisms, variable language delay, and other developmental anomalies	–	Cerebral hypoplasia, postnatal growth retardation and preweaning lethality	Reduced progenitor proliferation, precocious neurogenesis	[8, 166]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
---------	---------------	-----------------------------	---------------------------	---	--------	---	--	-------------
KDM5C	REST complex	H3 Lysine 4 Demethylase	Claes-Jensen type of X-linked syndromic mental retardation (MRXSCJ)	Severe ID, epilepsy, short stature, hypertonia, aggressive behavior and microcephaly	300534	Small body size, aggressive behavior, and reduced social activity and learning	Malformation of dendritic arbors and spines along with misregulation of neurodevelopmental genes	[76, 438, 443, 471]
KDM6A	COMPASS complex	H3K4me3, H3K27me3/me2/me1	Kabuki Syndrome	Moderate ID, postnatal growth retardation, dysmorphic facial features (long palpebral fissures, with eversion of the lateral third of lower eyelids, high arched eyebrows, long lashes, broad and depressed nasal tip, large ears), clinodactyly, and recurrent otitis media in infancy	300128	Drosophila: rough eyes, dysmorphic wings and modification of the sex combs	Regulates posterior HOX gene expression	[507, 508]
KMD1A	NuRD complex	H3K4me1/2 demethylase	CRPF Syndrome	Cleft Palate, Psychomotor Retardation, Distinctive Facial Features, Hypotonia	609132, 616728	–	Reduced NSC proliferation, inhibition: Reduced adult neurogenesis in DG	[509, 510]
KMT2A	MLL1/MLL complex	H3K4 methylation	Wiedemann-Steiner Syndrome	ID, Mental Retardation, distinctive facial appearance, hairy elbows, short stature, microcephaly	605130	Increased anxiety, cognitive deficits	Loss of Immediate Early Gene expression, impaired synaptic short-term plasticity	[76, 443, 511, 512]
KMT2C	COMPASS complex	H3K4me1 and H3K4me3	Kleefstra Syndrome	ID, Language/Motor Delay, ASD	610253	Prenatal and postnatal growth retardation and lethality in some embryos	–	[437, 495]
KMT2D	ASCOM complex	H3K4 methylation	Kabuki Syndrome	Intellectual disability, facial and limb dysmorphic features, and postnatal growth retardation	147920	Craniofacial dysmorphism and cognitive deficit	–	[444, 508]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
---------	----------------------	-----------------------------	---	---	---------	---	--	----------------------
MBD5	DNA methylation reader	Kleefstra Syndrome, MBD5-associated neurodevelopmental disorder (MAND), 2q23.1 microdeletion syndrome	ID, Language/Motor Delay, ASD, distinctive craniofacial phenotype	156200	Small body size, abnormal social behavior, cognitive impairment, and motor and craniofacial abnormalities	Deficiency in neuronal outgrowth, altered E/I balance	[82, 83, 140, 437, 495, 513]	
MECP2	NuRD complex	DNA methylation reader	Rett Syndrome	Arrested development between 6 and 18 months of age, regression of acquired skills, loss of speech, stereotypic movements (classically of the hands), microcephaly, seizures, and mental retardation	312750	Altered sensory processing, impaired auditory learning.	Premature maturation of PV+ cells including marker expression, morphology, and synaptic properties. Astrocytes significantly affect the development of wild type hippocampal neurons in a non-cell autonomous manner	[80, 81, 84, 140, 303, 371–376, 378, 380, 412–414, 514–516]
NIPBL	Cohesin complex	Cohesin regulator	Cornelia de Lange Syndrome	Developmental delay, limb abnormalities, congenital heart defects, altered development of the reproductive system, growth retardation and characteristic craniofacial features	608667	Repetitive Behaviour, Seizures	Small size, craniofacial anomalies, reduced brain size, hearing abnormalities, early postnatal mortality, dysregulated clustered Protocadherin expression	[193, 517]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
-------	---------------------------------	-----------------------------	------------------------------	------------------------------------	---------	--	---	-------------
NR1I3	–	Nuclear hormone receptor	Kleefstra Syndrome	ID, Language/Motor Delay, ASD	610253	Impaired memory function and increased anxiety	Increased cortical NEUN density and dispersion of hippocampal granule cells, increased NPY expression in CA1, altered astrocyte morphology and increased microglia body size in CA1	[495, 518]
PHC1	PRC complex	H2AUb1	Primary microcephaly-11 (MCPH11)	Significant reduction of brain size, particularly the cortex, in the absence of gross-structural defects, and variable degree of intellectual disability	615414	Cephalic neural crest defect, microcephaly, abnormal facies, parathyroid and thymic hypoplasia together with skeletal and cardiac abnormalities	Increased Geminin expression and causes several cellular defects. Via Geminin expression is thought to affect germinal differentiation, lineage commitment and early specification of neural cell fate	[122]
PHF10	SWI/SNF, BAF	Histone binding	–	–	613069	Embryonic lethal	Impaired stem cell renewal	[255, 256, 519]
PHF6	PAF1 transcription elongation complex, NURD complex	Transcription regulation	Borjeson-Fonsense-Lehmann syndrome	Mild to severe mental retardation, hypogonadism, hypometabolism, obesity with marked gynecomastia, facial dysmorphism, narrow pulpal tissure, large and fleshy ears, tapered fingers	301900	–	Affected neuronal migration towards upper layers, affects morphology of migrating progenitors	[520–522]
PHF8	–	Demethylate histone	Siderius-type X-linked syndromic mental retardation (MRXSSD)	–	300263	Deficits in long term potentiation, learning and memory	Affected axon guidance, regulation of neuronal gene expression, overactivation of mTOR signalling	[523, 524]
Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
------	-----------	----------------------------	-----	-------------------	--------	-----------------	-------------------	------------
PRDM8	–	Histone Methyltransferase	Progressive myoclonic epilepsy-10 (EPM10)	Progressive myoclonus epilepsy associated with Lafora bodies	616639	Elevated Scratching Behaviour	Impaired axonal targeting	[320, 321, 525]
RAD21	Cohesin complex	3D Chromatin loop organizer	Cornelia de Lange Syndrome (mild)	Mild ID, Growth retardation, minor skeletal anomalies, facial features that overlap findings in individuals with CdLS	606462	–	–	[192]
RING1B	PRC complex	H2A Ubiquitination	Syndromic ID	Microcephaly, impairment of additional language-, cognitive-, and adaptive social skills, ID, Schizophrenia	–	–	Prolonged the neurogenic phase and delayed the astrogenic phase in cultures of neocortical progenitors. Increased production of deep-layer neurons	[136, 139, 526]
SETB2	H3K9me3	ASD	–	–	Altered left–right symmetry, deficits in zebrafish gastrulation	Delayed mitosis and is essential for chromatin condensation and segregation	[527–529]	
SETD5	DNA methylation reader	SETD5 syndrome	Characteristic facial features, mild to moderate ID, delayed speech development, hypotonia, short stature, microcephaly, febrile seizures	ASD-like behaviour, brain anatomical differences, reduced cortical thickness in L5/6	615761	ASD-like behaviour, brain anatomical differences, reduced cortical thickness in L5/6	Altered neuronal morphology and hypoconnectivity, delayed network development,	[530, 531]
SETDB1	PRC complex	H3K9me3, DNA methylation	ASD, Schizophrenia, MDD, Prader-Willi syndrome	Prader-Willi syndrome: neonatal hypotonia, hypogonadism, small hands and feet, hyperphagia and obesity in adulthood	176270	Microcephaly	Loss of Super TAD, reduced number of layer V and VI basal progenitors, increased number of layer II and III neurons in the CP	[140–143, 145, 146, 150, 151, 402, 417]
Gene Complex	Chromatin modifier function	Clinical phenotype	NDD	OMIM #	Animal phenotype	Clinical phenotype	OMIM #	Reference #
--------------	----------------------------	-------------------	-----	--------	------------------	-------------------	--------	-------------
SMARCA2	SWI/SNF, BAF ATPase subunit	Microcephaly, sparse scalp hair, distinct facial features, short stature, prominent dysmorphic features, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	--	135900, 601358	--	--	--	[285, 423, 532]
SMARCA4	SWI/SNF, BAF ATPase subunit	Coffin-Siris syndrome, Noonan-Lambert-Baraitser syndrome	--	--	--	--	--	--
SMARCA5	SWI/SNF, BAF ATPase subunit	--	--	--	--	--	--	--
SMARCB1	SWI/SNF, BAF ATPase subunit	--	--	--	--	--	--	--
SMARCC1	SWI/SNF, nBAF ATPase subunit	Severe Neural Tube Defect (Occipital encephalocele and myelomeningoceles)	--	--	--	--	--	[257, 260, 533, 537-540]

Table 1 (continued)

Gene Complex	Chromatin modifier function	Clinical phenotype	NDD	OMIM #	Animal phenotype	Clinical phenotype	OMIM #	Reference #
SMARCA2	SWI/SNF, BAF ATPase subunit	Impaired social interaction and prepulse inhibition	--	--	--	--	--	[285, 423, 532]
SMARCA4	SWI/SNF, BAF ATPase subunit	Coffin-Siris syndrome	--	--	--	--	--	--
SMARCA5	SWI/SNF, BAF ATPase subunit	--	--	--	--	--	--	--
SMARCB1	SWI/SNF, BAF ATPase subunit	--	--	--	--	--	--	--
SMARCC1	SWI/SNF, nBAF ATPase subunit	--	--	--	--	--	--	--
Table 1 (continued)

Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
SMARCC2	SWI/SNF, BAF	ATPase subunit	ASD	ID, developmental delay, prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities	618362	Impaired memory, reduced cortical size and thickness	Depletion of RGC like progenitors in the Dentate Gyrus, enhanced astrogenesis	[257–260, 533, 534, 538, 539]
SMARCD1	SWI/SNF, BAF	ATPase subunit	–	Developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet	618779	Drosophila: defects in long-term memory	–	[540]
SMARCE1	SWI/SNF, BAF	ATPase subunit	Coffin-Siris syndrome	ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails, corpus callosum underdevelopment or absence, microcephaly	616938	–	Responsible for repression of neuronal genes via interaction with REST	[277, 279]
SMCIA	Cohesin complex	3D Chromatin loop organizer	Cornelia de Lange Syndrome (mild)	Mild-to-moderate ID and other CdLS symptoms	300040	–	–	[191]
SMC3	Cohesin complex	3D Chromatin loop organizer	Cornelia de Lange Syndrome (mild)	Mild-to-moderate ID and other CdLS symptoms	606062	Anxiety	Greater dendritic complexity and more immature synapses	[191, 541]
SOX11	–	Transcription factor	Coffin-Siris Syndrome	ID, Language Delay, poor motor skills, small head, scoliosis	600898	KO: Embryonic lethal	cKO: Impaired NPC proliferation, neuronal migration, and differentiation	[256, 488, 542]
SRCAP	SRCAP complex	ATPase subunit/ Histone variant exchange	Floating-Harbor Syndrome	Mild to moderate ID, short stature, typical facial features, delayed bone age, delayed speech development with normal general motor development	136140, 611421	–	Erroneous progenitor lineage commitment	[291, 294, 296]
Table 1 (continued)

Gene	Complexes	Chromatin modifier function	NDD	Clinical phenotype	OMIM #	Animal phenotype	Cellular phenotype	Reference #
SUV39H1	EHMT1/EHMT2 complex	H3K9me3	–	–	300254	–	–	[402, 528]
SUZ12	PRC2, EZH2-EED complex	H3K9/K27 methylation	Imagawa-Matsu- moto Syndrome	Postnatal overgrowth, increased bifrontal diameter, large ears, round face, horizontal chin crease and skeletal anomalies	606245, 618768	KO: Early embryonic lethal. Heterozygotes: Neural tube defects, spinocebellar abnormalities, hydrocephalus	–	[128, 502, 543]
YY1	INO80 complex, PRC	Transcription Factor, CTCF-Binding	Gabrielle-de Vries Syndrome	Cognitive Impairment, motor abnormalities, dysmorphic facial features	617557, 600013	Homozygote: Early embryonic lethal. Heterozygote: Neurulation defects, developmental retardation	Regulates GluR1 expression following depolarization	[106, 544–546]
YY1AP1	INO80 complex	Recruits YY1	Grange Syndrome	Borderline ID, hypertension, bone fragmentation, Kidney malfunction, vascular disease	607860, 602531	–	–	[547]
ZNF143	Cohesin complex	3D Chromatin loop organizer	–	–	603433	–	–	[107]
ZNF644	EHMT1/EHMT2 complex	Transcription factor	Autosomal Dominant Myopia	Strong Myopia	614167, 614159	–	maintenance of proliferative identity and delayed formation of differentiated retinal neurons	[157, 548]
ZNF711	Transcription factor	ID	Non-syndromic ID accompanied by autistic features or mild facial dysmorphisms	–	300803, 314990	–	–	[442, 549, 550]

ASD Autism Spectrum Disorder, ID Intellectual Disability, MDD Major Depressive Disorder, TAD Topologically Accessible Domain, KAT Lysine Acetyltransferase, HDAC Histone Deacetylase, KDM Lysine Demethylase, KMT Lysine Methyltransferase, HDM Histone Demethylase, DNMT DNA Methyltransferase, MOZ/MORF Monocytic Leukemia Zinc Finger Protein/MOZ-related Factor, NSL Non-Specific Lethal, NuRD Nucleosome Remodelling and Deacetylase, REST RE1-Silencing Transcription Factor, SWI/SNF SWItch/Sucrose Non-Fermentable, BAF Brahma Associated Factors, PRC Polycomb Repressive Complex, COMPASS Complex Proteins Associated with Set1, ASCOM ASC-2 Complex
processes (e.g. transcription) require a distinct set of histone PTMs to recruit a distinct set of chromatin-remodelling proteins. Proteins that are recruited to PTMs contain specific PTM-reader domains (such as bromo-domains, chromo-like domains, PhD domains etc.). Many chromatin remodelers actually possess multiple reader domains, suggesting their ability for multivalent interactions that would increase both affinity and specificity \[74, 75\]. Functional interplay among writer-eraser PTM enzymes in the brain remains largely unknown. Recent reports, however, showed that knockout mice of the writer-eraser duo \textit{Kmt2a} and \textit{Kdm5c}, which are responsible for Wiedemann-Steiner Syndrome and Mental Retardation X-linked Syndromic Claes-Jensen, share similar brain transcriptomes, cellular- and behavioural deficits \[76\]. Double mutation of \textit{Kmt2a} and \textit{Kdm5c} however partly corrected H3K4 transcriptomes as well as their cellular and behavioural deficits, suggesting this balance is essential during development and might be an interesting therapeutic strategy for NDDs \[76\].

DNA methylation

In addition to methylation of histone tails, DNA can also be methylated to regulate chromatin state transitions (Fig. 1). The addition of a methyl group from S-adenosyl-L-methionine substrates only occurs on cytosines that are followed by guanines (called CpG sites), and is catalysed by DNA methyltransferases (DNMTs) leading to gene repression. There are two types of DNMT classes, namely either the de novo methyltransferases or maintenance methyltransferases \[77\]. DNMT3a and DNMT3b are classified as de novo methyltransferases as these can methylate previously unmethylated cytosine of CpG dinucleotides on both strands \[78\]. DNMT1 is classified as a maintenance methyltransferase as it has a substrate preference for hemimethylated DNA over unmethylated DNA. In contrast to its preference, DNMT1 can also display de novo methyltransferase activity in a specific cellular context-dependent manner \[79\]. DNA methylation can affect chromatin remodelling either by attracting transcriptional activators to the methylated cytosine \[80\], or it can attract transcriptional repressors that have methyl cytosine-binding domains. For example, DNA methylation can recruit histone deacetylases, which facilitate the formation of the silent chromatin state \[81\]. These methyl cytosine-binding proteins include methyl CpG-binding domains (MBDs) \[82, 83\] and methyl CpG-binding protein 2 (MeCP2) \[84\], which are known for their role in the aetiology of NDDs. During human development, genomic DNA methylation signatures
are established in early development by two consecutive waves of nearly global demethylation, followed by targeted re-methylation [85, 86]. NDD mutations have often been found to underlie errors in methylation during these early time points [87, 88]. Consequently, altered methylation signatures during early development may be passed on across all cell lineages and can thus affect multiple tissues. When these epigenetic changes are maintained throughout development and across cell-types, these so called ‘episignatures’ can be used as biomarkers for the diagnosis of NDDs using easily accessible tissues such as peripheral blood [89–92]. Indeed, several very recent studies have already showed the potential for using disease-specific episignatures as diagnostic tool for NDDs, including patients with a known diagnosis as well as patients carrying variants of unknown significance [93–95].

ATP-dependent chromatin remodelers

The third class of chromatin modifying enzymes are the ATP-dependent chromatin remodelers including SWI/SNF (switch/sucrose-non-fermenting), ISWI (imitation switch), CHD (chromdomain-helicase-DNA binding) and INO80 (inositol requiring 80). In general, ATP-dependent chromatin remodelers hydrolyse ATP to generate enough energy to disrupt the interactions between histones and DNA. By doing so, ISWI remodelers can alter nucleosome positioning to promote heterochromatin formation and thus transcriptional repression. The SNF2/SNF chromatin remodelling family act as DNA translocases, by destroying histone-DNA bonds forming a DNA loop that propagates around the nucleosome until it reaches the exit site on the other side of the nucleosome [14]. Furthermore INO80 chromatin remodelers in vivo have been shown to play a role in nucleosome eviction, and histone variant exchange of the histone dimer H2A-H2B by the H2AZ-H2B dimer [96]. Finally, CHD family members exert a heterogeneous set of biological properties. One of the best studied examples is the NURD (nucleosome remodelling and deacetylase) complex, which contains lysine-specific histone demethylase 1A (LSD1), Chromodomain Helicase DNA Binding Protein 3 (CHD3) or CHD4, histone deacetylases (HDAC1 or HDAC2) and methyl CpG-binding domain (MBD) proteins. The NURD complex has been shown to deacetylitate specific gene sets during development leading to transcriptional repression [97].

ATP-dependent chromatin remodelers all share a conserved core ATPase domain, however all ATP-dependent chromatin remodelers harbour exclusive domains adjacent to the ATPase domain [14]. Each of these domains play a role in the recruitment of remodelers to chromatin, interaction with specific histone modifications and/or are involved in the regulation of the ATPase activity of the remodelers (see [14] for a detailed review on their function).

3D chromatin architecture

3D genome architecture is increasingly considered as an important epigenetic regulator of gene expression. On a coarse level, genomes are organised into structures known as chromosome territories (Fig. 1) [98]. These chromosome territories separate euchromatic from heterochromatic regions, and are termed ‘A’ and ‘B’ compartments, respectively [99]. Within the chromosome territories, megabase-sized chromatin domains are organised into smaller and smaller sub-domains known as topologically associated domains (TADs) [100]. TADs can be found in either ‘A’ or ‘B’ compartments, and are separated by sharp boundaries across which contacts are relatively infrequent. Interestingly, the boundaries between TADs are strikingly consistent across cell divisions and between cell types, as roughly 50%–90% of TAD boundaries have been shown to overlap in a pairwise comparisons between cell types [100]. In ‘A’ compartments, TADs are regions where DNA is highly organised in 3D space to enable “long-range” transcriptional regulation. This long-range transcriptional regulation is possible because enhancers are in close physical proximity to the promoters of their target genes in 3D space, despite long stretches of intervening nucleotides [101]. This physical proximity allows protein complexes to be found at enhancers to interact with those bound at promoters (i.e. called enhancer-promotor loops), thereby influencing transcription of target genes. CCCTC-binding factor (CTCF) and Cohesin are such proteins that facilitate chromatin looping interactions [102]. CTCF-mediated loop formation requires one CTCF at each end of the chromatin loop, which dimerize if they are facing each other in the opposite orientation [103]. CTCF interacts with Cohesin via its C-terminal tail [104] and may thus allow Cohesin to locate on a particular side of the interaction to anchor and stabilize the chromatin loop [105]. In addition to Cohesin and CTCF, other proteins such as YY1 [106], ZNF143 and Polycomb group proteins [107], repetitive elements and PTMs are enriched at TAD boundaries to support transcription. These repetitive elements at TAD boundaries have been found to act as specific anchor points to spatially organize chromosomes [108], whereas enrichment for the transcription marks H3K4me3 and H3K36me3 in TAD boundaries show an association with highly expressed regions and suggests that transcription itself plays a role in TAD organisation [109]. By doing so, 3D chromatin structures play an essential role in orchestrating the lineage-specific gene expression programs that underlie cellular identity [110].

In summary, the above examples show that cells possess a wide range of chromatin remodelers to translate external signalling cues into lasting changes in gene expression.
The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental…

(Fig. 1). Interestingly, chromatin remodelers are especially strongly expressed in the brain [111], and it is therefore not surprising that impaired chromatin remodelling in any of the above described remodeler classes has been identified to a cause monogenic forms of NDDs [68, 112–114]. Chromatin remodelers are often multifunctional [15], and by doing so have the ability to play divergent roles in the multi-step continuum of brain development. This continuum encompasses neural progenitor generation and specification, cell-type differentiation and expansion, migration and circuit integration. Dysfunction of chromatin remodelers at any point during this developmental continuum will result in lasting changes on mature network function. In the next section we will discuss the different steps along this developmental continuum, and explain how altered chromatin remodelling at any of these steps ultimately affects the structure and function of mature neuronal networks.

Epigenetic modulation during neurodevelopment and disease

In the early stages of neocortical development, the telencephalic wall is composed neuroepithelial (NE) cells that will give rise to diverse pools of progenitor cells [115]. As these progenitors proliferate and expand in number, some begin to differentiate into radial glia cells (RGCs), establishing the ventricular zone (VZ). RGCs in turn begin to produce projection neurons and intermediate progenitors (IP) around E11.5 in mice which establish the subventricular zone (SVZ) [116]. In human development, RGCs not only produce projection neurons and IPs, but also the human specific outer radial glia (oRG) between gestational week (GW) 16–18, which will populate the outer SVZ (oSVZ) [117]. The RGCs in mice and oRG in humans act as transit-amplifying cells to increase the population of glutamatergic neurons until E18 in mice [118] or GW 21 in the human neocortex [119, 120], after which they switch to local glia production [121] (Fig. 2).

Epigenetic modulation during neocortical development

Histone PTMs

Mutations in the Polycomb repressive complex (PRC) are a prime example of how defective chromatin remodelling influences progenitor proliferation. The PRC consists of two complexes: PRC1 and PRC2. Although for PRC1 no dominant germline mutations have been described, autosomal recessive mutations in the PRC1 complex protein PHC1 have been shown to cause a form of microcephaly with short stature in two Saudi siblings [122]. Loss of PHC1 resulted of the inability of patient cells to ubiquitinate H2A, resulting in increased Geminin expression causing cell cycle abnormalities and impaired DNA damage response [122]. Additionally, mutations of interactors of PRC1 are mutually vulnerable to cause NDDs with brain volume abnormalities. For example, mutations in the PRC1 interactor AUTS2 have been shown to cause an autosomal dominant form of syndromic mental retardation, including comorbidities such as ID, ASD, microcephaly, short stature and cerebral palsy [123, 124]. Mouse embryonic stem cells (mESCs) carrying heterozygous mutations in Autos2 showed an increase in cell death during in vitro corticogenesis, which was rescued by overexpressing the human AUTS2 transcripts. Furthermore, mESCs harbouring a truncated AUTS2 protein (missing exons 12–20) showed premature neuronal differentiation, whereas cells overexpressing AUTS2 showed increase in expression of pluripotency markers and delayed differentiation.

The PRC2 complex consists of core subunits Enhancer of Zeste 2 (EZH2) and its homolog EZH1, which catalyse mono-, di-, and tri-methylation of H3K27 resulting in heterochromatin formation and gene repression. EZH2 is mainly expressed during embryogenesis, while EZH1 is more ubiquitously expressed in adult and quiescent cells [125]. Loss-of-function mutations in EZH2 and thus reduced H3K27me3 levels in humans have been shown to cause Weaver syndrome, causing overgrowth and macrocephaly, accelerated bone maturation, ASD, developmental delay and characteristic facial features [126–128]. In accordance with the overgrowth phenotype in Weaver syndrome, conditional KO of Ezh2 in mice accelerated proliferation of neuronal precursors in the cerebral cortex at the expense of self-renewal of progenitors [129]. These results were strengthened by showing that fate-mapped E14-born neurons in a cKO for the PRC2 complex member Eed (which interacts with EZH2) mainly resided in the layer 2/3, in contrast to WT E14-born neurons, which resided in layer 4 [130]. These results confirmed PRC2 regulates the progression of apical progenitor’s temporal specification [130, 131].

Progenitors follow a specific pattern of cell divisions to initiate the build-up of the different layers in the cortex [132]. This is done in an ‘inside-out’ fashion, meaning the early-born neurons form the deep neocortical layers (i.e. 6 and 5), whereas late born neurons radially migrate through the deeper layers to create the more superficial layers (layer 4 and 2/3). Each RGC has been shown to consistently produce 8 to 9 glutamatergic neurons progressing from lower-layer excitatory neurons at mouse E12.5 to glutamatergic neurons that undergo radial migration towards the upper-layers at mouse embryonal day E15.5 [130]. Approximately 1 in 6 RGCs switches to gliogenesis, generating astrocytes and oligodendrocytes at the end of the cell cycle [133]. The process of neuroprogenitor specification during corticogenesis
has been studied and reviewed in great detail elsewhere (see [134] or for a review see [116]) and will therefore not be discussed in this review. Numerous studies however have shown that defects in chromatin remodelers during RGC specification result in shifts in the neuron classes produced or in precocious cell cycle exit and gliogenesis, and thereby could contribute to the neuronal phenotypes found in NDD patients [135]. In mice, Ezh2 is highly expressed in RGCs up to E14.5 and has been proposed to regulate RGC identity and proliferation behaviour, as well as RGC-to-glial-progenitor transition [129, 136, 137] by inhibiting Neurogenin 1 expression [136]. Ablation of Ezh2 in mouse RGCs correlates with premature RGC differentiation as described earlier, increased generation of lower-layer neurons, decreased
upper-layer neuron production, and precocious astrocyte generation [129]. Furthermore, knockdown of Ezh2 in mice has been shown to affect the neuronal polarization and radial neuronal migration [138].

In addition to PRC2, deletion of the PRC1 component Ring1b at E13 prolongs the expression of Fez transcription factor family member zinc-finger 2 (Fezf2). The prolonged expression of Fezf2 results in the continuous expression of downstream target genes such as Ctip2, resulting in an increased production of deep-layer neurons [139]. Interestingly, when Ring1b is knocked out later in developmental time at E14.5, the number of upper-layer neurons is increased instead, due to an extended neurogenic period [136].

Similar to H3K27me, H3K9me2/3 is a repressive mark which is established by the methyltransferases SETDB1, (KMT1E), SUV39H1 (KMT1A), G9a (EHMT2, KMT1C) and G9a-like protein (EHMT1, KMT1D). SETDB1 has been associated to several NDDs. In humans, two missense mutations [140] and a microdeletion [141] in SETDB1 were found in a large cohort of ASD patients. In addition, SETDB1 has been implicated to play a role in the aetiology of Schizophrenia by regulating GRIN2B expression [142]. Moreover, SETDB1 has been shown to influence chromatin 3D structure by binding to a non-coding element upstream of the Pcdh cluster [143, 144] which was a near-perfect match to a Schizophrenia risk haplotype (number 108 in [144]). Finally, SETDB1 is also described to play an indirect role in Prader-Willi syndrome, by contributing to the maternal silencing of the SNORD116 gene [145, 146]. Setdb1 is highly expressed early in corticogenesis (E9.5) in NE cells in the VZ, however its expression declines at E15.5 [135]. While deletion of Setdb1 does not affect RGC numbers, it has been shown to reduce layer V and VI Ctip2+ basal progenitors between E14.5 and E16.5 [147]. At the same time, an increase of the number of Brn2+ layer II and III neurons was found in the CP. This shift in the production of upper layer neurons at the expense of deep layer neurons remained after neurogenesis ceased at E18.5. All these events together lead to a reduced cortical volume in Setdb1 knockout mice at E18.5 and P7 [147]. Moreover, deletion of Setdb1 causes accelerated astrogliogenesis, demonstrating that Setdb1 does not only regulate the timing of late neurogenic events, but also the RGC-to-astrogenic-progenitor transition [147]. As SETDB1 is a H3K9 methyltransferase, its general role is to repress gene transcription, or methylate DNA. SETDB1 does so by being involved in several complexes. SETDB1 interacts with The Krippel-associated box (KRAB) domain-containing zinc-finger proteins (KRAB-Zfp) and KRAB domain-associated protein 1 (KAP-1) [148], which recruit the NuRD complex and HP1 to form a repressive complexes [149]. SETDB1 can also interact with MBD1 and ATF7IP [150], which has been suggested to play a role in X-inactivation [151]. To repress gene transcription via DNA methylation, SETDB1 interacts with DNMT3A/B in cancer cells, to repress the expression of p53BP2 and RASSF1A [152]. Through the interaction with these complexes, SETDB1 can thus target various genomic loci in different cell types, at different stages during brain development.

Like SETDB1, EHMT1 plays a major role in embryonic development, as full knockout of this gene leads to embryonic lethality [153]. In hematopoietic stem cells, EHMT1 activity is essential to facilitate the long-term silencing of pluripotency genes, and thus inhibition of EHMT1 is essential for maintaining pluripotency [154]. Furthermore, a reduction of large H3K9me2 chromosome territories was found in these stem cells [154], which are proposed to stimulate lineage specification by affecting the higher order chromatin structure [155]. Little is known about the role of EHMT1 during early neurodevelopment, however knockdown of EHMT1 in NPCs revealed differential expression of genes important in development, such as BMP7, WNT7A, CTNNB1, TGFB2 and CHD3 [156]. Furthermore, in neural progenitors EHMT1 has been found to interact with ZNF644 to silence multipotency and proliferation genes. Disruption of the ZNF644/EHMT1 resulted in maintenance of proliferative identity and delayed formation of differentiated retinal neurons [157]. Similar roles for EHMT1 in the regulation neuronal progenitor genes were found in a conditional knockout mice (Camk2a-Cre; GLP^{π/π}) [158]. Interestingly, no brain volume abnormalities are described in animal models of EHMT1 haploinsufficiency [158, 159] whereas microcephaly was found in 20% of patients carrying intragenic EHMT1 mutations [160]. These patients are diagnosed with Kleefstra Syndrome, which is in addition to microcephaly characterised by mild to severe ID, ASD, developmental delay, speech problems, hypotonia, characteristic facial features, epileptic seizures, heart defects and various behavioural difficulties [160, 161].

Histone acetylation by HATs and removal by HDACs is another example where deficits in chromatin remodelling affect the cellular distribution during corticogenesis. For example, the gene encoding the HAT cAMP-response element binding protein (CBP) is highly expressed in proliferating RGCs and post-mitotic neurons during corticogenesis [162], and CBP null mice have been shown embryonically lethal due to failure of neural tube closure (E9-E12.5) [163], stressing their role in neurodevelopment [164]. In humans, heterozygous mutations in CBP are associated with Rubinstein–Taybi syndrome (OMIM# 180849), which is characterised by ID, postnatal growth deficiency, microcephaly, broad thumbs and halluces, and dysmorphic facial features [68]. In mice, similar brain volume abnormalities have been described [165]. CBP induces acetylation of H3K9, H3K14 and H3K27 within target gene promoters, such as <i>al-tubulin</i> (E13-E16), <i>Gfap</i> (E16-P3), <i>S100β</i>, <i>Plp2</i> and <i>Mbp</i> (P14).
Accordingly, heterozygous loss of

\text{Cbp} in mice diminishes acetylation at these promoters and leads to decreased differentiation of progenitor towards astrocytes and neurons [162]. Consequently, a reduced number of neurons, astrocytes and oligodendrocytes were observed in the cortex of heterozygous _\text{Cbp}_ mice around P14, whereas an increase in PAX6 expressing progenitors was found as compared to wild-type mice [162]. At later ages (P50), only a reduction in gliogenesis remained in the corpus callosum [162]. Another example of a HAT important in NPC development is Lysine acetyltransferase 8 (KAT8), a member of the Non-specific Lethal (NSL) complex which is responsible for acetylation of H4K16 and plays a role in H4K16 propionylation [166]. Cerebrum specific knockout of _Kat8_ in mice has recently been shown to cause severe cerebral hypoplasia in the neocortex and in the hippocampus, together with postnatal growth retardation and pre-weaning lethality [166]. Furthermore, these mice showed a loss of RGC proliferation and thus reduced progenitor pool at E13.5, massive apoptosis starting at E12.5 and increased numbers of _TuJ1^+_ cells, indicating precocious neurogenesis at E13.5 [166]. Similarly, patients with _Kat8_ mutations presented with variable brain MRI abnormalities, epilepsy, global developmental delay, ID, facial dysmorphisms, variable language delay, and other developmental anomalies [166]. Interestingly, patients with epilepsy responded well to the histone deacetylase inhibitor Valproate [166], stressing the importance of _Kat8_ and other lysine acetyltransferases function in brain development.

Within the NSL complex, _Kat8_ is regulated by the NSL regulatory subunits KANSL1 and KANSL2. Mutations in _KANSL1_ cause Koolen-de Vries Syndrome (OMIM# 610443), characterized by ID, distinctive facial features, and friendly demeanour [167]. Likewise, _KANSL2_ mutations have been identified in ID patients [8]. Interestingly, haploinsufficiency of _Kansl1_ in the mouse causes craniofacial abnormalities, reduced activity levels and impaired fear learning, as well as epigenetic dysregulation in genes linked to glutamatergic and GABAergic cells [168]. The balance between acetylation and deacetylation plays an important role in progenitor proliferation and differentiation, as inhibition of HDAC activity also results in progenitor proliferation/differentiation deficits [169]. Histone acetylation is removed by HDACs, resulting in chromatin condensation and transcriptional repression [170]. So far, over 18 HDACs are characterised in the mammalian genome, and they are expressed in a cell type- and developmental stage-dependent fashion [171]. For example, HDAC1 is highly expressed in neural stem cells/progenitors and glia, whereas HDAC2 expression is initiated in neural progenitors and is up-regulated in post-mitotic neuroblasts and neurons, but not in fully differentiated glia [172]. Conditional knockout of _Hdac1_ or _Hdac2_ in mice progenitors impairs neuronal differentiation [173]. Specifically, conditional knockout of _Hdac1_ and _Hdac2_ in _Gfap-Cre_ mice resulted in major brain abnormalities and lethality at around P7 [173], whereas conditional knockout of _Hdac1_ and _Hdac2_ in _Nestin-Cre_ mice resulted in reduced proliferation and premature differentiation of NPCs prior to abnormal cell death [174]. Moreover, inhibition of HDAC activity at the neurogenic stage decreases the production of deep-layer neurons and increases the production of superficial-layer neurons [175]. Conditional deletion of _Hdac1_ and _Hdac2_ in oligodendrocyte precursors results in severe defects in oligodendrocyte production and maturation [176]. Recently, the first patient carrying a mutation in _HDAC2_ has been characterised presenting with many clinical features consistent with Cornelia de Lange Syndrome (CdLS) including severe developmental delay, limb abnormalities, congenital heart defects, altered development of the reproductive system, growth retardation and characteristic craniofacial features [177]. No patients harbouring mutations in HDAC1 have been characterized as to date.

Next to HDAC2, missense mutations in HDAC8 are also linked to the aetiology of CdLS presenting with overlapping clinical features (OMIM# 300269) [178, 179]. HDAC8 plays a key role in regulating cohesion function by deacetylating one of the core cohesion proteins, SMC3, which affects mitosis as well as transcription through loss of TAD function [180, 181]. Loss of HDAC8 activity in SVZ progenitors from 4-month old mice has been shown to reduce progenitor proliferation and differentiation [182]. Moreover, knockdown of HDAC8 in the mouse embryonic carcinoma cell line P19 cells permitted the formation of embryoid bodies [183]. Furthermore, loss of HDAC8 in zebrafish has been found to increase apoptosis in CNS progenitors [182]. Recently a novel intronic variant in HDAC8 was found in a large Dutch family with seven affected males presenting with X-linked ID, hypogonadism, gynaecomastia, truncal obesity, short stature and recognisable craniofacial manifestations resembling but not identical to Wilson-Turner syndrome (OMIM# 309585) [184]. This variant disturbs the normal splicing of exon 2 resulting in exon skipping, and introduces a premature stop at the beginning of the HDAC catalytic domain [184]. How this specific variant influences neurodevelopment remains elusive.

Chromatin 3D organisation

The 3D organization of chromatin is changing dynamically as the cell differentiates. Whereas the nuclei of embryonic stem cells have been shown to be relatively homogenous, heterochromatin foci are becoming more apparent during differentiation into progenitors. When these progenitors differentiate into neurons, the heterochromatin foci are becoming even larger, suggesting that heterochromatin regions are actively reorganized during differentiation [185].
Deficiencies of 3D chromatin organizers such as CTCF and Cohesin are associated with the aetiology of NDDs called CTCF-associated NDDs and cohesinopathies, respectively. Heterozygous mutations in CTCF (OMIM# 604167) have been shown to cause the NDD mental retardation, autosomal dominant 21 (MRD21), which is characterised by variable levels of ID, microcephaly, and growth retardation [186–188]. In mice, loss-of-function studies of Ctcf revealed an important role for this protein in cell fate specification and neural differentiation. Knockout of Ctcf at E8.5 resulted in upregulation of PUMA (p53 upregulated modulator of apoptosis), leading to high levels of apoptosis and loss of the telencephalic structure [189]. Inactivation of CTCF several days later (E11) also resulted in PUMA upregulation and increased apoptotic cell death, and again the CTCF-null forebrain was hypocellular and disorganized at birth [189]. In contrast, conditional knockout of CTCF in postmitotic projection neurons resulted in misexpression of clustered protocadherin (Pcdh) genes leading to altered functional neuronal development and neuronal diversity [190]. These results suggest that CTCF activity regulates the survival of neuroprogenitor cells, and the balance between neuroprogenitor cell proliferation and differentiation [189].

The two best-described cohesinopathies are CdLS (OMIM# 122470, 300590, 610759, 614701, 300882) and Roberts syndrome (and its variant SC Phocomelia, OMIM# 268300). As described above, CdLS can be caused by loss of function mutations in HDAC2 and HDAC8. Additionally, mutations in three Cohesin subunits (SMC1a, SMC3, RAD21) [191, 192] and in one Cohesin-interacting protein (NIPBL) [193] have been found causal for CdLS, whereas mutations in ESCO2 are responsible for Roberts syndrome/SC Phocomelia (OMIM# 269000) [194]. While a full knockout of Cohesin subunits in mice is lethal, mice carrying heterozygous mutations in these genes are viable and show altered gene expression in developmental programs, DNA repair and replication [195].

Chromatin remodelling complexes: CHD proteins and the NuRD complex

Altered chromatin remodelling by multi-subunit protein complexes has been shown to play a role in RGC differentiation and in the aetiology of NDDs. One of these complexes, called the NuRD complex, consists amongst other proteins of LSD1, HDAC1, and a Chromodomain Helicase DNA (CHD) Binding Protein (either CHD3, 4 or 5) [196]. These CHD proteins have been shown to play essential roles during neurodevelopment, as pathogenic variants in CHD1, CHD2, CHD3, CHD4, CHD6, CHD7 and CHD8 have been associated with a range of neurological phenotypes. Of the nine human CHD family members that have been characterized (CHD1-9), further subdivisions are being made into subgroups based on their function. Subfamily one consists of CHD1 and CHD2 because of their shared DNA binding domain that is not well-conserved in the other CHD proteins [197]. CHD1 has been found to play an essential role in early mice development, as Chd1−/− embryos show proliferation defects and increased apoptosis, are smaller than controls by E5.5 and fail to become patterned or to gastrulate [198]. Similar results in decreased self-renewal and pluripotency were found using knockdown of Chd1 in mESC cells [199]. Furthermore, Chd1−/− ESCs show deficits in self-renewal and a reduction in genome-wide transcriptional output by directly affecting ribosomal RNA synthesis and ribosomal assembly [198]. In contrast, mice lacking a single Chd1 allele (Chd1+/−) are healthy, fertile and phenotypically normal [198].

Recently the first patients with CHD1 missense mutations were identified, which presented with ID, ASD, developmental delay, speech apraxia, seizures, and dysmorphic features. Interestingly, also a patient with a microdeletion spanning RGMB and the last exons of CHD1 was characterised with no obvious NDD phenotype, suggesting that whereas deletions of CHD1 may not cause a consistent neurological phenotype, missense mutations in CHD1 may do so via a dominant negative mechanism [200].

Despite the fact that CHD family members are rather ubiquitously expressed, only CHD2 pathogenic variants cause a brain-restricted phenotype, suggesting a unique role for this gene in neurodevelopment. Based on loss-of-function studies, CHD2 has been shown to regulate self-amplification of RGCs and prevents precocious cell-cycle exit. CHD2 is mainly expressed in RGCs between E12-E18 and rarely in IPs, however knockdown of Chd2 in utero resulted in a reduction of RGCs in the SVZ whereas an increase was found in the number of produced IPs and neurons (Fig. 2) [201, 202]. This premature differentiation in RGCs can lead to a depletion of the progenitor pool, resulting in a smaller overall brain volume as a consequence [203]. Indeed patients harbouring mutations in CHD2 present with a reduced head size and in 20% of the cases microcephaly [204, 205], developmental delay, ID, ASD, epilepsy and behavioural problems with phenotypic variability between individuals [206]. A subset of patients carrying CHD2 pathogenic variants present with developmental and epileptic encephalopathy (also called Dravet Syndrome), which is an early onset of epilepsy disorders characterized by refractory seizures and cognitive decline or regression associated with ongoing seizure activity [207].

CHD3, CHD4 and CHD5 are categorised in the second CHD family because they share dual plant homeodomain zinc finger domains [207]. Furthermore, these class 2 CHD remodelers exhibit subunit-specific functions and display mutually exclusive occupancy within the NuRD complex at different stages of corticogenesis [208]. CHD3, has
been shown to play an important role in the correct cortical layering and controls the timing of upper-layer neuron specification [208]. In mice, CHD3 expression starts around E12.5 where it is still low expressed, and this increases from E15.5 to E18.5. At these later time points, CHD3 is mainly expressed in upper layer neurons in the cortical plate. Neurons lacking CHD3 (CHD3-knockdown) have been found more likely to express transcription factors that regulate laminar positioning and differentiation of deeper cortical layers (i.e. Tbr1 and Sox5), whereas a lower number of neurons expressed the upper layer markers Brn2 and Cux1, implicating that CHD3 may influence the expression of genes that couple radial migration with laminar identity (Fig. 2) [208]. Patients with CHD3 mutations are only very recently identified with Snijders Blok–Campeau syndrome, which is characterized by ID (with a wide range of severity), developmental delays, macrocephaly, impaired speech and language skills, and characteristic facial features [209, 210].

The second CHD protein that plays a role in the NuRD complex is CHD4. Mice lacking Chd4 almost always died at birth, however when examining brain volumes at E18.5 a significant reduction of the cortical thickness was found, caused by reduced NPC proliferation and premature cell cycle exit, followed by increased apoptosis of premature born neurons [208]. As a result, CHD4−/−/Nestin-Cre mice presented with lower numbers of IPs and late born upper layer neurons (Fig. 2) [208]. Interestingly, Chd4 appears to guide Polycomb repressor complex (PRC2) and especially Ezh2 to opposing effects early vs. late in corticogenesis, first interacting to repress the gliogenic gene Gfra1, and later repressing the neurogenic Ngn1 after the neurogenic-to-gliogenic switch [137]. Interestingly, patients carrying mutations in CHD4 actually present with macrocephaly, amongst other characteristics like ID, hearing loss, ventriculomegaly, hypogonadism, palatal abnormalities and facial dysmorphisms that are diagnosed by Sifrim–Hitz–Weiss syndrome [211]. The opposing phenotypes found for brain volume between rodent models and patients might be explained by a gene dosage effect, as for some variants in CHD4 altered ATPase activity levels were found, suggesting a possible gain-of-function phenotype in certain patients [212, 213]. Another possibility might be that the NuRD complex function is differentially regulated in humans and mice, as was recently suggested in a study comparing mouse and human pluripotent stem cells [214].

Finally, CHD5 has only recently been characterized as one of the core subunits of the NuRD complex [215]. CHD5 is the only CHD member that is mainly expressed in the total brain, foetal brain and cerebellum [216]. Chd5 expression was mainly found in late-stage neuronal progenitors undergoing terminal differentiation, rather than in proliferating progenitors [215]. In utero knockout of Chd5 furthermore resulted in an accumulation of undifferentiated progenitors, which were unable to exit the VZ, SVZ and intermediate zone (IZ; Fig. 2) [215]. Additionally, knockout of Chd5 in mouse ESCs resulted in a failure to upregulate late stage neuronal genes [215]. Similar results for the role of Chd5 in neuronal gene regulation were found in primary rat cultures [217]. A de novo damaging missense variant in the CHD5 gene was identified in an ASD proband from the Autism Sequencing Consortium [9]. In accordance, knockout of Chd5 in mice indeed has been shown to cause ASD-like behaviour including increased anxiety and decreased social interaction [218].

The third subfamily consists of the remaining family members CHD6-9 [219]. CHD6 mutations have previously been described, including a large translocation in one Pitt-Hopkins patient [220], in a single case of mental retardation [221], in sporadic acute myeloid leukaemia incidences [222], and most recently for the very rare Hallermann–Strieff syndrome [223]. CHD6 is the least studied member of the CHD family, and little is known for its contribution during neurodevelopment.

Similar as to other members of the CHD family, loss of CHD7 resulted in impaired proliferation and self-renewal of RGCs in the SVZ. Consequently, a reduction of NE thickness in telencephalon and midbrain was shown in Chd7 homozygous gene-trap mutant embryo at E10.5 [224]. Similarly, mESCs from Chd7+/− mice showed a reduced potential to differentiate into neuronal and glial lineages, and presented with altered accessibility and expression of NPC genes. Furthermore, neurons generated from these Chd7+/− mESCs presented with a significant lower length and complexity [225]. Furthermore, CHD7 plays a key role in oligodendrocyte precursor survival and differentiation (Fig. 2) [226, 227] and has been shown to cooperate with Sox10 to regulate myelination and re-myelination [227]. Additionally, CHD7 has been shown to play an important role in cerebral granular cell differentiation and cell survival [228].

Mice lacking one Chd7 copy (found in Chd7−/− mice [229] and Chd7−/+ mice [230]) also often present with brain abnormalities including the absence or hypoplasia of olfactory bulb, cerebral hypoplasia, defects in the development of telencephalic midline and reduction of the cortical thickness [229, 230]. Patients with CHD7 mutations present with similar brain structure abnormalities including hypoplasia of olfactory bulb and cerebellum, agenesis of the corpus callosum, microcephaly and atrophy of the cerebral cortex [231–233]. Additionally, in relation to its role in oligodendrocyte differentiation and function, some patients have been characterised with white matter defects [234, 235]. Loss of CHD7 in patients is called CHARGE syndrome (OMIM# 214800), which is next to the brain malformations characterised by coloboma, heart defects, growth retardation, genital hypoplasia, and nose and ear abnormalities (including choanal atresia, deafness and vestibular disorders) [236].
Finally, CHD8 has been identified as a causal gene for ASD, presenting with common phenotypic features included macrocephaly, accompanied by rapid early postnatal growth, characteristic facial features, increased rates of gastrointestinal complaints and marked sleep dysfunction [237]. Chd8 is strongly expressed around the transition from symmetric proliferative to asymmetric neurogenic RGC division [238], and knockout of Chd8 at E13 has been shown to prematurely deplete the neural progenitor pool in developing mice cortices (Fig. 2) [239]. Similarly, both heterozygous and homozygous knockout of Chd8 in mESCs resulted in an upregulation of neuronal genes upon differentiation into NPCs [240]. Indeed, CHD8 binds the promoters of cell cycle genes and serves as a transcriptional activator of for example PRC2 components Ezh2 and Suppressor of Zeste 12 [239], which allows for the repression of neural genes during this developmental period [129]. In human iPS-derived CHD8+/− organoids, a number of ASD risk genes was upregulated [241]. Furthermore, CHD8 is identified as a negative regulator of the Wnt–β-catenin signalling pathway [242], as knockdown of Chd8 in non-neuronal cells lead to an enrichment of up-regulated Wnt–β-catenin signalling pathway genes [239]. Interestingly, knockdown of Chd8 in neuronal cells lead to an enrichment of down-regulated Wnt–β-catenin signalling pathway genes, indicating CHD8 plays cell-type specific roles [239]. Furthermore, conditional knockout of CHD8 in oligodendrocytes (Chd8+/−;Olig1-Cre+/−) has shown to impair oligodendrocyte differentiation and myelination in a cell-autonomous manner [243, 244]. Whereas homozygous deletion of Chd8 in mice results in early embryonic lethality [245], Chd8 heterozygous mice were viable and presented with similar phenotypes as patients, including macrocephaly, abnormal craniofacial features, and ASD like behaviour [246–250]. Moreover, introducing the human truncating variant N237K into the mouse Chd8 gene (Chd8+/−;N237K) revealed ASD-like behaviour, aberrant vocalization, enhanced mother attachment behaviour and enhanced isolation-induced self-grooming specifically in males, but not females [251]. These phenotypes were also conserved in zebrafish, where Chd8 knockdown was found to cause macrocephaly and gastrointestinal phenotypes [237, 238].

Chromatin remodelling complexes: SWI/SNF

Also SWI/SNF chromatin remodelling complex subunits are expressed in a temporal and cell-type specific manner [199, 252]. During differentiation from embryonic stem cells into neurons, the SWI/SNF complex begins to switch subunits to those unique to neural progenitors, followed by subunits specific to neurons [253, 254]. Neural progenitor proliferation requires a SWI/SNF complex containing PHF10 and ACTL6A subunit, which are replaced by the subunits DPF1, DPF3, and ACTL6B when neural progenitors exit the cell cycle to become post-mitotic neurons [255, 256]. Interestingly, the neural progenitor-specific SWI/SNF complex exclusively incorporates either SMARCC2 or SMARCC1 subunits at distinct developmental stages. In the mouse, neural progenitor SWI/SNF complexes harbours SMARCC2 until E14.5 to repress intermediate progenitor generation, whereas between E14.5 and E15.5, SMARCC2 is replaced by SMARCC1, activating intermediate progenitor generation in RGCs via the interaction with the H3K27 demethylases JMJD3 and UTX [257–259]. Double loss of Smarce2 and Smarce1 from as early as E10.5 (Smarce1fl/fl;Smarce2fl/fl; Emx-Cre) resulted in reduced numbers of proliferative progenitors, thinning of the cortical SVZ and loss of projection neurons [259]. In addition, loss of Smarce2 and Smarce1 in late NPCs (Smarce1fl/fl;Smarce2fl/fl, hGFAP-Cre) resulted in reduced cortical thickness, dendritic abnormalities, hippocampal underdevelopment and cerebellar disorganization [261]. Furthermore, Smarce2 and Smarce1 double knockouts showed an upregulation of Wnt signalling activity resulting in increased progenitor proliferation-related defects [260]. This Wnt β-catenin pathway has indeed previously been shown to be a critical regulator of NPC proliferation and neurogenesis during cortical development [116, 262, 263]. Thus, timely expression of these SWI/SNF subunits [264] is essential for regulating cell fate during neurodevelopment, and can control these processes by regulating Wnt signalling activity [262].

Not only SMARCC1 and SMARCC2 expression is essential during brain development, also divergent patterns of expression of SMARCA1 and SMARCA5 were found in the mouse embryo. Whereas Smarca5 is mainly expressed in proliferating progenitors in the neocortex and the cerebellum, Smarca1 is predominantly expressed in terminally differentiated neurons after birth in the cerebellum and hippocampus of adult animals [265, 266]. Consequently, Smarca5-null mice die during early preimplantation due to hypoproliferation of the inner cell mass [267], whereas Smarca1-null mice develop normally, but show hyperproliferation of progenitors causing an enlarged brain size [268]. Both remodelers have been shown to play a role in the proliferation and differentiation of IPs by controlling FoxG1 expression. FoxG1 is a critical transcription factor for IP proliferation and control of the timing of neurogenesis [269, 270]. On the one hand, conditional knockout of Smarca5 in forebrain progenitors (Emx-cre) resulted in reduced FoxG1 expression, impaired cell cycle kinetics and increased cell death. This resulted in a reduced number of Tbr2+ and FoxG1+ intermediate progenitors and thus a reduced cortical
size [271]. Similarly, conditional knockout of Smarca5 (Nes-tin-cre) caused reduced brain size and cerebral hypoplasia as a result of reduced granular progenitor proliferation [266]. On the other hand, loss of Smarc1 (Ex6DEL) has been shown result in an increased FoxG1 expression, a disruption of progenitor cell cycle kinetics, increased progenitor proliferation and increased neurogenesis [268]. Furthermore, Smarc1 has been shown to directly bind to the promoter of the FoxG1 gene, suggesting that timed chromatin remodelling by SMARCA1 is essential for controlling neuronal development and differentiation [268]. Taken together, these results confirm that timed chromatin remodelling of SWI/SNF-remodelers is essential during neurodevelopment [272]. It is therefore thus not surprising that misexpression of SWI/SNF complex subunits cause NDDs.

SWI/SNF-Related Intellectual Disability Disorders comprise a spectrum of disorders that includes the classic Coffin-Siris syndrome (CSS, OMIM# 135900) and Nicolaides–Baraitser syndrome (NCBRS, OMIM# 601358) [273]. These disorders differ amongst each other in a phenotypic spectrum ranging from syndromic ID over to classic and atypical/severe CSS to NCBRS. The core manifestations of CSS include ID, hypotonia, feeding problems, characteristic facial features, hypertrichosis, sparse scalp hair, visual problems, lax joints, short fifth finger, and one or more underdeveloped nails [274], and in a minority of the cases, microcephaly [275]. In contrast, NCBRS is defined by ID, short stature, microcephaly, typical face, sparse hair, brachydactyly, prominent interphalangeal joints, behavioural problems, and seizures [276]. Interestingly, structural brain midline defects such as corpus callosum malformations or atypical/severe CSS to NCBRS. The core manifestations ranging from syndromic ID over to classic Coffin-Siris syndrome (CSS, OMIM# 135900) and Nicolaides–Baraitser syndrome (NCBRS, OMIM# 601358) are known to be caused by mutations in SWI/SNF complex subunits cause NDDs.

The mild form of CSS is caused by either mutations in the ATPase subunit ARID1B (OMIM# 614556) [283], or by pathogenic changes in other chromatin remodelling proteins with no direct interaction with SWI/SNF complex, including SOX11 (OMIM# 600898) [256] and DPF2 (OMIM# 601671) [284]. Additionally, classic and more severe CSS are known to be caused by mutations in SMARCA4 (OMIM# 603254), the common core subunit SMARCBl (OMIM# 601607), and accessory subunits such as SMARCE1 (OMIM# 603111), ARID1A (OMIM# 603024) and ARID2 (OMIM# 609539) [285]. NCBRS on the contrary has been shown to be caused by mutations in SMARCA2 (OMIM# 600014). Other patients found with mutations in SWI/SNF complex subunits are described for SMARCB1 (OMIM# 601607) have been shown to cause either CSS, but also DOORS syndrome (OMIM# 220500) or Kleefstra syndrome (OMIM# 610253) depending on the site/location of the mutation [286, 287]. Together, these studies on chromatin remodelling complexes support the notion that combinatorial assembly of subunits can instruct cell lineage specification by creating specific patterns of chromatin states at different developmental stages, are essential for normal neurodevelopment [288, 289], and will result in clinical overlapping phenotypes [279].

Chromatin remodelling complexes: histone variant remodelers

The third class of ATP dependent chromatin remodelers is the INO80 family. The INO80 subfamily is known for its role in histone variant exchange of canonical H2A or H3 histone variants, which is assisted by editing remodelers such as Swr1 complex (SWR1C) [290], mammalian Snf2-related CBP activator protein (SRCAP) [291] and p400. Recently, INO80 function in NPCs has been found essential in homologous recombination (HR) DNA repair in a p53-dependent manner [292]. Loss of Ino80 in NPCs (Neurod6Cre+/;Ino80flox/flox) impairs these processes, causing apoptosis and microcephaly in mice [292]. Interestingly, Ino80 deletion in mice leads to unrepaired DNA breaks and apoptosis in symmetric NPC-NPC divisions, but not in asymmetric neurogenic divisions [292]. In correspondence with these findings, INO80 was recently identified as a candidate gene for ID and microcephaly [293]. Among the key histone variants that can be incorporated by the INO80 family is the H2A variant H2A.Z. Specifically, it has been shown that SRCAP removes canonical H2A–H2B dimers and replaces them with H2A.Z–H2B dimers [294]. Little is known yet how mutations in SRCAP affect neurodevelopment. However, mutations in SRCAP have been shown to cause the NDD Floating Harbour Syndrome (OMIM# 136140), which is characterized by intellectual and learning disabilities, a short stature, delayed osseous maturation, language deficits, and distinctive facial features [291, 295–298].

In addition to the INO80 family, another mechanism for histone exchange is suggested for the α-thalassemia X-linked mental retardation (ATRX) protein. ATRX is an ATP-dependent DNA translocase belonging to the Swi/Snf family of chromatin remodelers [299]. ATRX forms a complex with death domain associated protein (DAXX) [299, 300], and plays a critical role in the replication-independent deposition of the histone variant H3.3, functioning as a histone chaperone at specific genomic regions, including the telomeric domains [301, 302]. Furthermore, ATRX is involved in the suppression of several imprinted genes in the neonatal brain by promoting 3D chromatin structures via CTCF and cohesion [303]. In mice, germline deletion of Atrx has been shown embryonic lethal [304], whereas conditional deletion of Atrx in NPCs (Foxg1Cre+) caused a widespread cellular reduction in both the neocortex and hippocampus resulting in a significant smaller forebrain size [305]. In addition, AtrxFoxg1Cre mice show excessive DNA damage
caused by DNA replication stress and subsequentTp53-dependent apoptosis [306, 307]. On a cellular level, these
AxRx^{Foxg1Cre}\text{ mice show a reduction in precursor cell number and }
abnormal migration of progenitors in the hippocampus and the upper layers of the cortex [305, 306]. Furthermore,
fewer Neuropeptide Y (NPY), SST and cholecystokinin (CCK) expressing GABAergic neurons were generated in
the ventral telencephalon [306]. In humans, mutations in
ARX cause the rare congenital X-linked disorder ATRX
syndrome (OMIM# 301040), characterised by moderate to
severe ID, DD, microcephaly, hypomyelination, and a mild
form of a-thalassemia [308].

To summarize, chromatin remodelers are highly
expressed in neural progenitors, and are essential to dynam-
ically activate, repress, or poise gene expression during
the transition from RGCs to glutamatergic neurons or glia
(Fig. 2, Table 1). Epigenetic modulation in glutamatergic
neuron maturation is reviewed in detail elsewhere [135],
however in the next section we want to highlight the matu-
ration a specialized glutamatergic subpopulation that is
frequently impacted in NDDs, called callosal projection
neurons.

Epigenetic modulation in callosal projection neuron
development

The corpus callosum is a critical link between the two
cortical hemispheres. The developmental mechanisms for
callosal projections have been well researched in mice
(reviewed in [309, 310]), and abnormalities of the corpus
callosum often feature in human NDDs, especially ID and
epilepsy [311] but also in Coffin-Siris Syndrome [312].
During mouse brain development, the cortical hemispheres fuse
along the midline around E16 [313], aided by specialized
glia populations called midline zipper glia and indusium
griseum glia. Those establish the glial wedge to both sides,
as well as the bridge-like subcallosal sling. Subsequently,
callosal-projecting cortical pyramidal neurons start project-
ing axons across the midline and connect to their homotopic
cortical area. Those projection neurons mostly reside in the
upper cortical layers, and their callosal-projecting identity
is under direct epigenetic control.

In newly generated pyramidal cell precursors, the trans-
scription factor Ctip2 specifies a subcortical-projecting fate,
and is normally expressed in layer 5 neurons. In contrast,
in future upper-layer callosal-projecting neurons Ctip2 is
repressed by de-acetylation of H4K12 at its promoter region
via NuRD complex and HDAC1 recruitment by the DNA-
binding protein SATB2 [314–316]. After fate specification
in the early postnatal period, HDAC1 is gradually removed
from the Ctip2 promoter by the transcription factor LMO4,
leading to re-establishment of H4K12ac and consequently
re-expression of Ctip2 in a subset of upper-layer neurons
[317, 318].

Several other mouse models presented with deficits of cal-
losal projections. For example in Cbp knockout mice (Rubin-
stein–Taybi Syndrome) a reduced size of the corpus callo-
sum was found [319], similar to the phenotype of mutants
for the chromatin remodelling complex members Prdm8 and
HP1γ [320, 321]. Furthermore, knockdown of the chroma-
tin remodeler Chd8 in the neocortex impaired dendrite and
axonal growth and branching of upper-layer callosal projec-
tion neurons, and resulted in delayed migration of cortical
neurons at E18.5, as the majority of labelled cells remained
in the VZ/SVZ [322]. Moreover, mutations in the ISWI
complex member Smarca5 cause partial agenesis of the
corpus callosum, specifically due to reduced generation of
viable upper-layer pyramidal neurons during mid-neurogen-
esis [271]. Lastly, a mouse model for Arid1b and Smarcb1
deficits (Coffin-Siris Syndrome) indeed mirror the human
phenotype, as Arid1b^{+/−} and Smarcb1^{+/-} NesCre^{+/−}
mice also have a significantly reduced corpus callosum thick-
ness [277, 282]. Brain-specific Smarcb1^{+/-} mice showed
agenesis of the corpus callosum due to midline glia defects,
similar to human CSS patients with mutations in SMARCB1,
SMARCE1 and ARIDIB [277]. In a human patient cohort
with non-syndromic callosal abnormalities, mutations in
ARID1B were found to be the most common cause, account-
ing for 10% of all cases [323].

During the axonal crossover, a multitude of axon guidance
factors are required, and defects in the expression of those
factors can also cause callosal projection deficits. A recent
study described that chromatin remodelling of the axon
guidance cue Sema6a caused the callosal defects observed
in WAGR Syndrome (OMIM# 194072), a complex disor-
der including aniridia, kidney tumours, genital abnormali-
ties, and ID [324]. Specifically, this study identified a novel
protein, C11orf46/ADP ribosylation factor like GTPase 14
effector protein (ARL14EP), of which mutations were pre-
viously associated with ID [325]. C11orf46 is a member of the
SETDB1-KRAB associated protein (KAP1)-MCAF1 chro-
matin repressor complex, and controls H3K9 methylation
levels at the Sema6a promoter, cell-autonomously in projec-
tion neurons [324]. The callosal projection phenotype could
be rescued by targeted H3K9 re-methylation at the Sema6a
locus, indicating a direct epigenetic repressive control over
axon guidance receptors in callosal-projecting neurons.

Epigenetic modulation in GABAergic neuron
development

Besides glutamatergic excitatory neurons, the mamma-
lian neocortex contains between 12 and 20% GABAergic
inhibitory neurons [326, 327]. Defects in GABAergic neu-
rons feature prominently in NDDs, in for example epilepsy,
Schizophrenia, and ASD (reviewed in [328]). Broadly, GABAergic neurons can be subdivided according to the expression of marker genes Parvalbumin (PV +), Somatostatin (SST +), and Serotonin Receptor 3a (5-HT3aR +) [329, 330]. Within each of those three large groups, further subdivisions can be made according to gene expression [331, 332], morphology, and electrophysiological firing parameters [333, 334], with current estimates ranging from 20 to 60 subdivisions [335].

The mechanism of GABAergic neuron generation is comparatively well-conserved between mice and humans [336, 337]. In mice, GABAergic neurons are generated in subdivisions of the Ganglionic Eminences (GEs: Medial GE (MGE), Lateral GE (LGE), Caudal GE (CGE), and Preoptic Area (POA)), which are temporary proliferative zones at the site of the future Striatum. In contrast to the developing cortical plate, the precursors in the GE do form a SVZ, but are not all anchored to the basal membrane, and this population is massively expanded in the human GEs [336]. The precursors divide asymmetrically to produce future GABAergic cells, which gather in the mantle zone and migrate in two morphogen-directed streams towards the cortical plate [338, 339]. The MGE and POA express the transcription factor Nkx2-1 and produce the majority of PV +, and SST + neurons [338, 340] (Fig. 2). In contrast, VIP + neurons (the largest subset of 5-HT3aR + neurons) are produced in the CGE (see for reviews: [338, 341, 342]). Although the networks of transcription factors that define cellular identities during GABAergic neuron development and migration are comparatively well-researched [341], data on epigenetic regulation and especially chromatin remodelers is scarce and mostly has been inferred from other cell types including cancer biology and other neuron classes [343].

The first evidence for involvement of chromatin remodelers in GABAergic neuron production was reported in mice with a knock out for the histone acetyltransferase Kat6b/Querkopf, where a reduced density of GAD67 + (GABAergic) neurons in the cortex was found [344]. Years after the initial mouse study, mutations in human KAT6B were found to cause Ohdo/SBBYS syndrome (OMIM# 603736) [345, 346], however the initial findings regarding GABAergic neuron density have not been followed up to date. Mutations in the related KAT6A histone acetyltransferase were also found to cause ID and craniofacial dysmorphism [347, 348], recently described as KAT6A Syndrome [349]. Mouse studies have reproduced a craniofacial phenotype via Hox gene regulation [350], however neurodevelopmental phenotypes have not yet been studied. We do have a more complete picture for the ATP-dependent chromatin remodeler CHD2, which in humans is associated with epilepsy and broad-spectrum NDDs as described above [351]. Specifically, Chd2 transcription is found to be activated in MGE/POA progenitors by the transcription factor NKX2-1, and by doing so the CHD2 protein in turn colocalizes with NKX2-1 on its downstream targets, illustrating the feedback loops in which chromatin remodelers act [352]. Chd2+/− mice display a marked reduction in MGE-derived GABAergic neuron production, which results in a reduced PV + /SST + GABAergic neuron count in the cortex [202]. The functional consequences (defects in inhibitory synaptic transmission, altered excitatory/inhibitory balance, and behavioural abnormalities) were rescued by an embryonal transplantation of MGE-derived GABAergic neurons, which indicates that already a reduced GABAergic neuron production can produce profound circuit abnormalities [202].

Haploinsufficiency of the epigenetic regulator ARID1B, which we previously discussed as the causal gene for Coffin-Siris Syndrome, was found to cause premature apoptosis in MGE precursors in mice. As a result, Arid1b+/− mice show a reduced production of MGE-derived (PV + and SST +) GABAergic neurons, and altered laminar arrangement of PV + and SST + neurons in the cortex (Fig. 2) [353]. Mechanistically, the same study found a general reduction of the permissive histone mark H3K9ac3 at the Pvalb promoter in Arid1b+/− mice, resulting in reduced PV transcription throughout development into the adult cortex [353]. Conditional Arid1b knockout in specific GABAergic neuron population showed an interesting bifurcation of effects, as PV-specific Arid1b haploinsufficiency led to reduced mobility and social deficits, while SST-specific Arid1b haploinsufficiency led stereotyped behaviour such as excessive grooming [354].

Also mutations in the histone acetyltransferase CBP (Rubinstein–Taybi Syndrome), have been implicated in GABAergic precursor generation [355]. Constitutive heterozygous Cbp knockout mice show a transient impairment in GABAergic neuron formation in vivo [356]. Using a more direct approach, region-specific Cbp knockout in the developing MGE reduces the number of PV + and SST + neurons in the cortex and results in a prominent seizure phenotype [357], indicating that epigenetic regulation by CBP is directly required for proper cell-type specification of inhibitory GABAergic neurons. These results were also confirmed outside of the cortex in non-cortical areas, as conditional knockout of CBP in cerebellar progenitors lead to cerebellar hypoplasia and altered morphology of the cerebellum in both mice (hGFAPCre::CrebbpF/F P25) [358] and patients [359]. On a cellular level, conditional knockout of CBP in granule cell progenitors altered cerebellar foliation as a result of loss of glial endfeet on the pial surface by Bergmann glia fibers and abnormal Purkinje cells arborisation [358].

After the formation of GABAergic precursors, the immature GABAergic neurons migrate tangentially following two morphogen-directed streams along the developing cortical plate, where they subsequently invade the cortex in the late stages of corticogenesis between E19 and P4 [341, 360,
The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental…

361]. The exact place and time for programming the subdivisions within PV +, SST + and 5-HT3aR + is an area of active debate, with different hypotheses highlighting programming at the progenitor stage, during migration to the cortex, or only by local factors in the cortical plate. A recent study indicates that for MGE-derived neurons, the subtype is determined prior to migration, and instructs the migratory route and the place of integration in the cortex [362]. Specifically, the SST + subgroup of Martinotti cells and the PV + subgroup of translaminar PV + neurons preferentially migrate through the Marginal Zone, along the outer side of the developing cortical plate [362]. Migrating GABAergic neurons sense a multitude of environmental cues and integrate them to gene expression patterns. Similarly to GABAergic neuron progenitors, the cascades of transcription factors in migrating GABAergic neurons are comparatively well-characterized, but epigenetic modulations have only recently come into focus (see for review [343]). A recent series of studies investigated cortical GABAergic neurons derived from the POA, which produces subgroups of SST +, PV + and Reelin + GABAergic neurons [341]. Specifically, POA-derived GABAergic neurons suppress the expression of the transcription factor Pak6 during migration via a non-canonical recruitment of the PRC (specifically EZH2) by DNMT1 to the Pak6 promoter [363, 364]. In POA-specific Dnmt1-knockout mice, the repressive mark H3K27me3 is reduced around the Pak6 transcription start site, leading to precocious expression of Pak6 during migration and consequentially precocious activation of a post-migratory genetic program. As a result, a large portion of POA-derived neurons undergo apoptosis before reaching their cortical destination in POA-specific Dnmt1-knockout mice [363].

After migrating to the cortex, GABAergic neurons distribute throughout the layers, in a cell-type and area-specific pattern. Broadly speaking, PV + and SST + neurons predominate in the mid- to lower layers, whereas 5-HT3aR + are predominant in layer 1 [365] and (the VIP + subset) in layer 2/3 [366]. Primary sensory areas contain a higher density of PV + neurons, while the areas at the edge of the cortical plate contain a higher density of SST + neurons [366]. Once the GABAergic precursors are located at the appropriate cortical area and laminar location, they integrate into the local circuitry as it develops [367, 368]. The SST + GABAergic neurons mature relatively early, around the same time as the excitatory neurons in the same circuit [362, 369]. However, PV + GABAergic neurons mature much slower, and are dependent on external inputs that activate the local circuit for a successful maturation. The activity levels need to be translated to gene expression patterns, and while no complete mechanism is currently known, the high number of PV + neuron maturation dysfunctions caused by mutations in chromatin remodelers is indicative of a tight epigenetic control over this process [370]. One example is the maturation of PV + neurons in MeCP2+/− mice, which is the primary cause for Rett Syndrome (OMIM# 312750) in humans [371–375]. It is characterized by arrested development between 6 and 18 months of age, regression of acquired skills, loss of speech, stereotypic movements (classically of the hands), microcephaly, seizures, and mental retardation. In MeCP2+/− mice, the lack of MECP2 leads to a premature maturation of PV + cells including marker expression, morphology, and synaptic properties [372, 376]. MECP2 directly binds to the promoter regions of Pvalb and Gad1, the rate-limiting GABA synthesizing enzyme [377, 378]. Also at the adult level, neuronal activity regulates the expression of PV in a dynamic manner [379], a phenotype which is also impaired in PV + neurons of MeCP2+/− mice [380], indicating an epigenetic component to the integration of the activity-dependent signal. In contrast, haploinsufficiency of the histone methyltransferase Ezhl (Kleefstra Syndrome) causes delayed maturation of PV + neurons in the mouse sensory cortices, consisting of delayed PV expression and PNN generation, as well as reduced GABAergic neurotransmission [381]. Besides neuronal activity levels, PV + neurons also integrate morphogenic signals such as the released transcription factor Otx2. Otx2 is not produced in the cortex, but rather released by thalamic afferents and the Choroid Plexus [382–385]. Otx2 is taken up by the future PV + neurons, where it upregulates the expression of Gad65/67, two DNA demethylases which then mediate the up/downregulation of large sets of genes necessary for the maturation to full PV + cells, including Pvalb itself [382].

Epigenetic modulation during glia development and function

At the end of the neurogenic period, cortical RGCs cells switch to glial production and generate a vast number of astrocytes and oligodendrocytes [133]. In the mouse cortex, astrocytes are first detected around E16 and oligodendrocytes around birth; however, the vast majority of both cell types are produced during the first month of postnatal development. Cre-loxP lineage tracing showed that oligodendrocytes in the cerebral cortex are produced at different sites outside of the cortex depending on the developmental stage [386]. The first wave of production begins around E12.5 in the MGE and anterior entopeduncular area. The second wave begins around E15 from in the LGE and CGE, and finally, local production begins in the cortical SVZ around birth (Fig. 2) [387]. Similar to oligodendrocytes, astrocytes can be both generated from dividing RGCs [388], from the postnatal SVZ [389], or locally by self-amplification in the postnatal cortex [118] (for detailed information about the origin and specification of glia see [390–393]). Glia play crucial roles in CNS homeostasis [394], including synaptic glutamate uptake [395], synaptogenesis [396], maintenance
of extracellular potassium [397], nutrient support for neurons [398], the formation of ECM molecules [399, 400] and many other processes.

Studies investigating the role of chromatin remodelling in mouse models of NDDs have primarily focussed on the alteration of neuronal network function. Recent advances in our understanding of astrocyte function have led to the emerging concept that primary astrocyte dysfunction alone is sufficient to drive the complex behavioural phenotypes observed in some cases of NDDs. As described earlier, RGCs undergo chromatin remodelling in response to various extracellular cues to enable the accessibility of neurogenic or gliogenic genes. Loss of the H3K9 methylase Setdb1 in mice has been shown to reduce H3K9me3 occupancy at the Gfap promoter, resulting in enhanced astrogenesis and accelerated differentiation (Fig. 2) [147]. Furthermore, EHMT1 has been shown to play a role in DNMT1-mediated DNA methylation via UHRF1/LIG1 interaction [401], which implies that astrocytes might contribute to the neuronal phenotypes in SETDB1-associated disorders or Kleefstra syndrome. Both SETDB1 and EHMT1 have recently been described to coexist in the same complex together with EHMT2 and SUV39H1 [402], revealing the interesting hypothesis that this complex plays an important role in the neurogenic-to-gliogenic switch, and any dysfunction in any of these genes will lead to a convergent phenotypic outcome.

Epigenetic regulation by the Polycomb Repressor Complex (PRC) has also been described to play a role in the differentiation from NPCs to astrocytes and oligodendrocytes. Acute deletion of the PRC1 component Ring1B or Ezh2 at E12.5 in mice prolonged the neurogenic phase and delayed the astrogenic phase in cultures of neocortical NPCs [136]. In contrast, another report found that cerebral specific loss of Ezh2 in the Emx1-Cre mice accelerated gliogenesis and glial differentiation at P0 [129]. Furthermore, overexpression of Ezh2 in postmitotic astrocytes in turn lead to a downregulation of pro-astrocytic genes S100b and GFAP, whereas an increase in progenitor like genes like SOX2 and CD133 was found [403]. Similarly, a small population of specialized neurogenic astrocytes that resides in the SVZ and survives into adulthood expresses Ezh2, which is required for those astrocytes to keep their neurogenic potential [404]. These results indicate that the PRC associated proteins are essential for promoting the onset of the astrocytic differentiation of NPCs during neocortical development.

Mature glia function has been studied widely in models of NDD (including Noonan syndrome [405], Neurofibromatosis-1 [406], Costello syndrome [399, 407], Cardiomyopathies [408], Fragile X syndrome [409], Alexander disease [410], and Tuberous Sclerosis Complex [411]) however only in few models of deficient chromatin remodelling. One example is a mouse model for MeCP2 deficiency. Aside from the clear neuronal phenotype found in these mouse models, co-culture studies showed that secreted factors by MeCP2−/− mouse astrocytes significantly affect the development of wild type hippocampal neurons in a non-cell autonomous manner, as was visualised by altered dendrite morphology [412]. Furthermore, neuronal phenotypes found in co-culture with MeCP2−/− astrocytes appear to be dependent upon the expression of astroglial gap-junction protein Connexin-43 (Cx-43), as blocking Cx-43 restored this phenotype [413]. MeCP2−/− mouse astrocytes also showed an increased expression of astroglial marker genes Gfap and S100β and abnormal glutamate clearance [414]. Interestingly, selective restoration of MeCP2 in astrocytes in vivo using the Cre-loxP recombination system significantly improves locomotion and anxiety levels, and restores respiratory abnormalities to a normal pattern [415]. At the cellular level, re-expressed MeCP2 in astrocytes also restores normal neuronal dendritic morphology [415]. Similar to these findings, an increased expression of GFAP and Cx-43 proteins was found in the superior frontal cortex in a cohort of ASD patients [416]. Furthermore, increased levels of H3K9me3 occupancy at the promoter of the gap junction proteins Cx-30 and Cx-43 have been found in cortical and subcortical regions of patients with MDD [417]. This cohort consisted of patients expressing extremely low levels of pro-astrocytic genes GFAP, ALDH1L1, SOX9, GLUL, SCL1A3, GJA1, and GJB6 [418], proposing a possible role for the H3K9 methylases SETDB1 and SUV39H1 in mature astrocyte function and Cx-43 expression [417].

CHD8 is another example of a chromatin remodeler that plays a role in glia function. Recent studies show cell-type specific Chd8 deletion in OPCs results in myelination defects in mice [243]. In addition to altered myelination, conditional knockout of Chd8 in OPCs (Olig1-Cre;Chd8fl/fl) has been shown to slow down action potential propagation as a result of impaired myelination, leading to deficits including increased social interaction and anxiety-like behaviour as similar to Chd8 heterozygous mutant mice [244] and behavioural phenotypes found in patients. Heterozygous loss of Smarca4 (Brg1fl/fl, Nestin-cre) was furthermore shown to cause precocious neuronal differentiation before the onset of gliogenesis [419]. This resulted in a significant reduction of astrocyte and oligodendrocyte differentiation in these animals, suggesting Smarca4 controls the switch from neurogenesis to gliogenesis [419]. Furthermore, SMARCA4 is known as a mediator of long-range interactions of enhancer regions and TTSs [420], and by doing so is involved in the STAT3 dependent [421] interchromosomal gene clustering of Gfap and Osmr resulting in transcriptional enhancement of these genes [422]. Interestingly, loss of SMARCA2 in SMARCA22K755R/+ and SMARCA2K1159Q/+ NPCs resulted in a reduction of Smarca4 mRNA expression, together with an increased and functionally active binding to chromatin [423]. These results suggested
that mutations in SMARCA2 result in global retargeting of SMARCA4, which was shown to drive de novo activation of enhancers and upregulation of astrocyte genes [423].

To summarize, current evidence shows that chromatin remodelers play a role in the development, migration and circuit integration of each of the major cortical cell classes: Glutamatergic and GABAergic neurons and glia. Consequently, failures of chromatin remodelling can impact the development of each of those cell types, resulting in a lasting impairment in cellular function.

Future perspectives

In this review, we detailed the contribution of chromatin remodelers in different neural cell-classes during the multiple stages of the developmental continuum. Chromatin remodelers are crucial parts of a cell’s information processing machinery, by integrating external and internal signals into gene expression patterns. Developing neurons inhabit an extraordinarily complex epigenetic landscape, and events such as cell-type specification are under tight epigenetic control [424]. Consequently, defects in chromatin remodelling will lead to a relaxation of that epigenetic control, causing for example premature neural differentiation at the expense of progenitor pool expansion [208].

As chromatin remodelers have such a variety of functions in different cell types, timepoints and at specific genetic loci, a full picture requires concurrent measurements at several levels simultaneously—a task that current technologies are only starting to address. We see the potential for progress in the following fields:

1) Understanding chromatin remodeler locus specificity: Chromatin modifications are site-specific on the genome level, such as histone methylation at the activity-dependent \(Bdnf \) exon IV [425]. However, until recently, to study this site-specific targeting one had to rely on the cell’s innate targeting abilities. Coupling catalytic subunits to a precise targeting protein allows artificial induction of locus-specific chromatin modifications. One example is the dCas9-SunTAG method [143, 426], where a genetic locus is tagged via dCas9 and gRNAs. Subsequently, local chromatin is modified by a chromatin modifier’s catalytic subunit targeted towards the tag. The ability to induce chromatin modifications at specific genomic sites will improve our understanding of the regulatory networks in gene expression, for example during cell fate specification.

2) Understanding the role of chromatin remodeler presence in complexes: Chromatin modifiers exist in complexes that dynamically assemble, disassemble, and bind to chromatin at different locations. Complexes are hypothesized to differ between different locations (or time points), however those have proven difficult to investigate with classic immunolabelling techniques. Recent advances in spatial proximity labelling, such as promiscuous biotinylation targeted via dCas9 [427], allow for a precise snapshot of protein complexes assembled in spatial proximity to a single genomic region. Importantly, this technique can be applied in living cells and in vivo in the developing brain [428], making it applicable to the neurodevelopmental questions that we have detailed here. This technique allows detailed insights site-specific complex dynamics, a largely unexplored feature of the genetic landscape.

3) Chromatin remodelling temporal specificity: Neuronal specification is thought to be a series of tightly controlled gene expression (and hence epigenetic regulation) states. For glutamatergic neuron generation in the cortex, recent evidence points to a stochastic generation of different subtypes [121, 429], however it is currently unknown whether GABAergic neuron generation is controlled in a similar way [361]. Classic labelling techniques such as BrdU were only able to identify neurons born within approximately 12 h from each other, which is slower than the hypothesized changes in genetic expression state. Recently developed labelling techniques such as FlashTag selectively label neurons born in a 2-h window in vivo, leading to a more precise identification of the transcriptional program controlling glutamatergic neuron specification [424, 430]. Application of the same technique for GABAergic neurons might deliver interesting insights into subtype specification as well.

4) Measuring cell-type specificity: The classification of the brain’s cells has been controversial since the start of neuroscience as a field. For example, GABAergic neurons and glia have long resisted simple classification [431, 432]. However, recent large-scale single-cell RNA sequencing studies [331, 332, 433–435] attempt to map the cellular diversity of brain from the bottom up. Furthermore, studies measuring multiple modalities on the same neurons promise a unification of classifications from single-cell electrophysiology, morphology and RNA sequencing (Patch-Seq), and have delivered insights in glutamatergic [436] and GABAergic neuron populations [333]. Especially when coupled with advanced analysis techniques [334], those large datasets might soon be available as a “reference classifier” that experimental data can be compared with, similarly to reference atlases in neuroanatomy or reference genomes in genomics.

5) Identification of converging molecular pathways for therapeutic interventions: Functional interactions between several NDD related chromatin remodelers and their reg-
The studies summarized in this review were almost exclusively performed in animal models of NDDs. While mice have many advantages as model organisms and many features are conserved down to the cellular level [331], some features appear to be unique to the human lineage, for example specialized cell-types such as outer radial glia cells [448], subpial interlaminar astrocytes [449], or the recently described rosethe neurons [450]. Furthermore, some time periods in neurodevelopment are much longer in comparison, elongating the vulnerable periods for many regulatory processes in humans. Therefore, using mouse brains as the sole model we might overlook important human-specific aspects of brain development and NDD pathogenesis. Although the use of animal models will remain essential to study complex developmental processes like cortical layering or migration, human induced pluripotent stem cells (hiPSCs) offer a higher-throughput model to investigate the developmental continuum from the earliest point of progenitor specification until the formation of neuronal circuits in vitro. For this reason, the use hiPSCs has gained a lot of attention recent years in the field of NDD research. HiPSCs provide an unlimited pool of (patient) material, which can be differentiated into neuronal networks, and can be monitored over development in vitro. In addition, these cells are comparatively easy to manipulate using for example CRISPR-Cas9 genome editing, and therefore can be used as a high throughput tool to study genotype–phenotype correlations in a controlled environment [451, 452]. Moreover, patient specific hiPSCs carry the same genetic background as the patient, which allows the study of polygenic disorders like ASD or Schizophrenia that cannot be modelled using animal models.

Protocols for the differentiation of hiPSCs into 3D cerebral organoids are becoming increasingly popular as these models have been shown to resemble the complex developmental programs of early corticogenesis during the first and second trimester of human foetal development [453, 454]. Indeed, 3D cerebral organoids derived from patients with severe microcephaly as a result of CDK5RAP2 mutations showed reduced neuroepithelial differentiation, fewer and smaller progenitor regions, and premature neuronal differentiation [455]. Furthermore, 3D human organoids from idiopathic ASD patients showed reduced proliferation of progenitors, increased neurogenesis, and an imbalance between the production of glutamatergic and GABAergic neurons [456]. Moreover, organoids derived from CNT-NAP2+/− hiPSCs showed increased organoid volumes as a result of increased proliferation of progenitors, which in turn expanded the neuronal population [457]. Recent work has shown that patient-derived iPSC organoids with copy number variants in the ASD risk locus 16p11.2 mirror the patient’s micro/macrocephaly phenotype [458]. Similarly, RAB39b loss in 3D organoids has recently been shown to cause hyperproliferation and enlarged organoid size [459]. Studies are currently exploring organoid vascularization to further extend the development and complexity of these organoids [460–462], which will allow in the future to study more complex brain phenotypes using these in vitro approaches.

In summary, despite lots of progress in the field, the full influence of chromatin remodelling on neurodevelopment is currently unknown. To fully understand chromatin remodellers’ influence throughout the developmental continuum and identify possible human-specific pathways, future studies should combine human-specific in vitro models such as 3D cerebral organoids and well-characterized developmental models such as mice.

Acknowledgements This work was supported by grants from: The Netherlands Organization for Scientific Research, NWO-CAS grant 012.200.001 (to N.N.K); the Netherlands Organization for Health Research and Development ZonMw grant 91217055 (to N.N.K); SFARI grant 610264 (to N.N.K); ERA-NET NEURON-102 SYN-SCHIZ grant (NWO) 013-17-003 4538 (to D.S) and ERA-NET NEURON DECODE! grant (NWO) 013.18.001 (to N.N.K).

Author contributions BM, MN, and NNK conceived and wrote the manuscript. DS provided resources.

Availability of data and material Correspondence and should be addressed to n.nadif@donders.ru.nl.
Compliance with ethical standards

Conflict of interest The authors declare no conflict of interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ernst C (2016) Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci 39(5):290–299
2. Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349(6255):1489–1494
3. May PA et al (2018) Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities. JAMA 319(5):474–482
4. Lange S et al (2017) Global Prevalence of Fetal Alcohol Spectrum Disorder Among Children and Youth: A Systematic Review and Meta-analysis. JAMA Pediatrics 171(10):948–956
5. Kaminen-Ahola N (2020) Fetal alcohol spectrum disorders: Genetic and epigenetic mechanisms. Prenat Diagn 40(9):1185–1192
6. An JY, Claudianos C (2016) Genetic heterogeneity in autism: From single gene to a pathway perspective. Neurosci Biobehav Rev 68:442–453
7. Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19(5):253–268
8. Gilsen C et al (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511(7509):344–347
9. De Rubeis S et al (2014) Synaptic, transcriptional and chromatin dysregulation in autism. Nature 515(7526):216–221
10. Iossifov I et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221
11. Pinto D et al (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94(5):677–694
12. Satterstrom FK et al (2020) Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180(3):568–584 (e23)
13. Ciptasari U, van Bokhoven H (2020) The phenotypical epigenome in neurodevelopmental disorders. Hum Mol Genet 29(R1):R42–R50
14. Tyagi M et al (2016) Chromatin remodelers: we are the drivers!! Nucleus 7(4):388–404
15. Hsieh J, Gage FH (2005) Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 17(6):664–671
16. Lomvardas S, Maniatis T (2016) Histone and DNA modifications as regulators of neuronal development and function. Cold Spring Harb Perspect Biol 8(7):a024208
17. Gabriele M et al (2018) The chromatin basis of neurodevelopmental disorders: rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 84:306–327
18. Parenti I et al (2020) Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci 43(8):608–621
19. Iwas S et al (2017) Epigenetic ethology of intellectual disability. J Neurosci 37(45):10773–10782
20. De Majo F, Calore M (2018) Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Non-coding RNA Res 3(1):20–28
21. Böhmderor G, Wierzbicki AT (2015) Control of chromatin structure by long noncoding RNA. Trends Cell Biol 25(10):623–632
22. Wei JW et al (2017) Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep 37(1):3–9
23. Flemming W (1882) Zellsubstanz, Kern und Zelltheilung, ed. F.C.W. Vogel. Leipzig.
24. Luger K et al (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272(3):301–311
25. Heitz E (1928) Das Heterochromatin der Moose. Bornträger.
26. Sadakierska-Chudy A, Filip M (2015) A comprehensive view of the epigenetic landscape Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 27(2):172–197
27. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304
28. Davis L, Onn I, Elliott E (2018) The emerging roles for the chromatin structure regulators CTCF and cohesin in neurodevelopment and behavior. Cell Mol Life Sci 75(7):1205–1214
29. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360
30. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2):435–459
31. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220
32. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269
33. Nathan D et al (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20(8):966–976
34. Hymes J, Fleischhauer K, Wolf B (1995) Biotinylation of histone H2B. J Biol Chem 270(31):17338–17346
35. Hassa PO et al (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829
36. Cuthbert GL et al (2004) Histone deimination antagonizes arginine methylation. Cell 118(5):545–553
37. Wang Y et al (2004) Human PAD4 regulates histone arginine methylation. Trends Genet 20(4):214–220
38. Nelson CJ, Santos-Rosa H, Kouzarides T (2006) Proline isomerisation of histone H3 regulates lysine methylation and gene expression. Cell 126(5):905–916
39. Hassa PO et al (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829
40. Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028
130. Telley L et al (2019) Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364(6440):eaav522
131. Oberst P et al (2019) Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature 573(7774):370–374
132. Molyneaux BJ et al (2007) Neural subtype specification in the cerebral cortex. Nat Rev Neurosci 8(6):427–437
133. Gao P et al (2014) Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159(4):775–788
134. Doneva V et al (2018) Transcriptional dysregulation in postnatal glutamatergic progenitors contributes to closure of the cortical neurogenic period. Cell Rep 22(10):2567–2574
135. Amberg N, Lauther S, Hippienmeyer S (2019) Epigenetic cues modulating the generation of cell-type diversity in the cerebral cortex. J Neurochem 149(1):12–26
136. Hirabayashi Y et al (2009) Polycym limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Nature 453(6):600–613
137. Sparrmann A et al (2013) The chromodomain helicase Chd4 is required for Polycym-mediated inhibition of astroglial differentiation. Embo J 32(11):1598–1612
138. Zhao L et al (2015) Ezh2 is involved in radial neuronal migration through regulating Reelin expression in cerebral cortex. Sci Rep 5(1):15484
139. Morimoto-Suzuki N et al (2014) The polycomb component Ring1B regulates the timed termination of subcerebral projection neuron production during mouse neocortical development. Development 141(22):4343–4353
140. Cukier HN et al (2012) The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBDS, MBDS, and SETDB1. Autism Res 5(6):385–397
141. Xu Q et al (2016) Chromosomal microarray analysis in clinical evaluation of neurodevelopmental disorders-reporting a novel deletion of SETDB1 and illustration of counseling challenge. Pediatr Res 80(3):371–381
142. Jiang Y et al (2010) Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J Neurosci 30(21):7152–7167
143. Jiang Y et al (2017) The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat Genet 49(8):1239–1250
144. Ripke S et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427
145. Cruvinel E et al (2014) Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 23(17):4674–4685
146. Zhu Y et al (2020) Epigenetic mechanism of SETDB1 in brain: implications for neuropsychiatric disorders. Transl Psychiatry 10(1):115
147. Ling BM et al (2012) Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc Natl Acad Sci USA 109(3):841–846
148. Sripathy SP, Stevens J, Schultz DC (2006) The KAP1 corepressor functions to coordinate the assembly of De Novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 26(22):3623–3638
149. Schultz DC, Friedman JR, Rauscher FJ 3rd (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the HD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15(4):428–443
150. Timms RT et al (2016) ATF7IP-mediated stabilization of the histone methyltransferase SETDB1 is essential for heterochromatin formation by the HUSH complex. Cell Rep 17(3):653–659
151. Minkovsky A et al (2014) The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation. Epigenet Chromatin 7(1):12
152. Tian Z et al (2006) Expression of DNA methyltransferases in salivary adenoid cystic carcinoma and its association with the CpG islands methylation of tumor suppressor genes. Zhonghua Kou Qian Yi Xue Za Zhi 41(7):411–415
153. Tachibana M et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791
154. Chen X et al (2012) G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev 26(22):2499–2511
155. Wen B et al (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41(2):246–250
156. Chen ES et al (2014) Molecular convergence of neurodevelopmental disorders. Am J Hum Genet 95(5):490–508
157. Olsen JB et al (2016) G9a and ZNF644 physically associate to suppress progenitor gene expression during neurogenesis. Stem Cell Rep 7(3):454–470
158. Schaefer A et al (2009) Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuro 64(5):678–691
159. Balemans MCM et al (2014) Reduced euchromatin histone methyltransferase 1 causes developmental delay, hypotonia, and cranial abnormalities associated with increased bone gene expression in Kleefstra syndrome mice. Dev Biol 386(2):395–407
160. Willemsen MH et al (2012) Update on kleefstra syndrome. Mol Syndromol 2(3–5):202–212
161. Vermeulen K et al (2017) Adaptive and maladaptive functioning in Kleefstra syndrome compared to other rare genetic disorders with intellectual disabilities. Am J Med Genet A 173(7):1821–1830
162. Wang J et al (2010) CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain. Dev Cell 18(1):114–125
163. Yao T-P et al (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93(3):361–372
164. Lipinski M, Del Blanco B, Barco A (2019) CBP/p300 in brain development and plasticity: disentangling the KAT’s cradle. Curr Opin Neurobiol 59:1–8
165. Ateca-Cabarga JC et al (2015) Brain size regulations by cbp haplloinsufficiency evaluated by in-vivo MRI based volumetry. Sci Rep 5:16256
166. Li L et al (2020) Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability. J Clin Invest 130(3):1431–1445
167. Koolen DA et al (2012) Mutations in the chromatin modifier KANSL1 cause the 17q21.31 microdeletion syndrome. Nat Genet 44(6):639–641
168. Arbogast T et al (2017) Mouse models of 17q21.31 microdeletion syndrome embryonic stem cells. Nat Genet 49(8):1239–1250
169. D’Mello SR (2019) Regulation of central nervous system development by class I histone deacetylases. Dev Neurosci 41(3):149–165
170. Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14(5):461–469
The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental...
232. Yu T et al (2013) Deregulated FGF and homeotic gene expression.
231. Lin AE, Siebert JR, Graham JM Jr (1990) Central nervous system
229. Jiang X et al (2012) The mutation in Chd7 causes misexpression
225. Yao H et al (2020) CHD7 promotes neural progenitor differentia-
221. Yamada K et al (2010) Characterization of a de novo balanced
219. Mills AA (2017) The chromodomain helicase DNA-binding
218. Pisansky MT et al (2017) Mice lacking the chromodomain heli-
217. Potts RC et al (2011) CHD5, a brain-specific paralog of Mi2
216. Thompson PM et al (2003) CHD5, a new member of the chro-
215. Egan CM et al (2013) CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression. Dev Cell 26(3):223–236
214. Thompson PM et al (2003) CHD5, a new member of the chro-
213. Lin AE, Siebert JR, Graham JM Jr (1990) Central nervous system
212. Potts RC et al (2011) CHD5, a brain-specific paralog of Mi2
211. Douet-Guilbert N et al (2015) A novel translocation (6;20)
210. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
209. Yao H et al (2020) CHD7 promotes neural progenitor differentia-
208. Sood S et al (2020) CHD8 dosage regulates transcription in pluripo-
207. Mills AA (2017) The chromodomain helicase DNA-binding
206. Jiang X et al (2012) The mutation in Chd7 causes misexpression
205. Sugathan A et al (2014) CHD8 regulates neurodevelopmental
204. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
203. Takebayashi S et al (2013) Murine esBAF chromatin remod-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
203. Platt RJ et al (2017) Chd8 mutation leads to autistic-like behav-
202. Kalscheuer VM et al (2008) Disruption of the TCF4 gene in a girl
201. Thompson PM et al (2003) CHD5, a new member of the chro-
200. Lui L et al (2014) A novel CHD7 mutation in a Chinese patient with CHARGE syndrome. Meta Gene 2:469–478
The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental…

258. Tuoc TC et al (2013) Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev Cell 25(3):256–269

259. Narayanan R et al (2015) Loss of BAF (mSWI/SNF) complexes causes global transcriptional and chromatin state changes in forebrain development. Cell Rep 13(9):1842–1854

260. Nguyen H et al (2018) Epigenetic regulation by BAF complexes limits neural stem cell proliferation by suppressing Wnt signaling in late embryonic development. Stem Cell Rep 10(6):1734–1750

261. Holdhoff D et al (2020) hGFAP-Positive stem cells depend on BAF170 for proper formation of cerebral and cerebellar structures. Cereb Cortex 30(3):1382–1392

262. Caricasole A et al (2005) Two sides of the same coin: Wnt signaling in late embryonic development. Cell 121(2):2791–2801

263. Hirabayashi Y et al (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131(12):2791–2801

264. Lazzaro MA, Picketts DJ (2001) Cloning and characterization of the murine Imitation Switch (ISWI) genes: differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J Neurochem 77(4):1145–1156

265. Alvarez-Saavedra M et al (2014) Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat Commun 5(1):4181

266. Stopka T, Skoulitchi AI (2003) The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci USA 100(24):14097–14102

267. Yip DJ et al (2012) Snf2l regulates Foxg1-dependent progenitor cell expansion in the developing brain. Dev Cell 22(4):871–878

268. Kumamoto T et al (2013) Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Reports 3(3):931–945

269. Martynoga B et al (2005) Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283(1):113–127

270. López AJ, Hecking JK, White AO (2020) The emerging role of ATP-dependent chromatin remodeling in memory and substance use disorders. Int J Mol Sci 21(18):6816

271. López AJ, Hecking JK, White AO (2020) The emerging role of ATP-dependent chromatin remodeling in memory and substance use disorders. Int J Mol Sci 21(18):6816

272. Bögershausen N, Wollnik B (2018) Mutational landscapes and phenotypic spectrum of SWI/SNF-related intellectual disability Disorders. Front Mol Neurosci 11:252

273. Santen GWE et al (2012) Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat Genet 44(4):379–380

274. Sousa SB, Hennekam RC, t.N.B.S.I. Consortium (2014) Phenotype and genotype in Nicolaides-Baraitser syndrome. Am J Med Genet C Semin Med Genet 166c(3):327–332

275. Santen GWE et al (2012) Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat Genet 44(4):379–380

276. Hirabayashi Y et al (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131(12):2791–2801

277. Koshi T, Okamoto N (2014) Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A. Am J Med Genet C Semin Med Genet 166c(3):262–275

278. Sousa SB, Hennekam RC, t.N.B.S.I. Consortium (2014) Phenotype and genotype in Nicolaides-Baraitser syndrome. Am J Med Genet C Semin Med Genet 166c(3):302–314

279. Vogel MJ, Heeger P, Narayanan R et al (2018) Mutations affecting components of SWI/SNF complexes limit neural stem cell proliferation by suppressing Wnt signaling in late embryonic development. Stem Cell Rep 10(6):1734–1750

280. Alvarez-Saavedra M et al (2014) Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat Commun 5(1):4181

281. Stopka T, Skoulitchi AI (2003) The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci USA 100(24):14097–14102

282. Yip DJ et al (2012) Snf2l regulates Foxg1-dependent progenitor cell expansion in the developing brain. Dev Cell 22(4):871–878

283. Kumamoto T et al (2013) Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Reports 3(3):931–945

284. Martynoga B et al (2005) Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283(1):113–127

285. Alvarez-Saavedra M et al (2019) Snf2h drives chromatin remodeling to prime upper layer cortical neuron development. Front Mol Neurosci 12:243

286. López AJ, Hecking JK, White AO (2020) The emerging role of ATP-dependent chromatin remodeling in memory and substance use disorders. Int J Mol Sci 21(18):6816

287. Bögershausen N, Wollnik B (2018) Mutational landscapes and phenotypic spectrum of SWI/SNF-related intellectual disability Disorders. Front Mol Neurosci 11:252

288. Yoon K-J et al (2018) Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. J Cell Biol 217(6):1901–1914

289. Sokpor G et al (2018) ATP-dependent chromatin remodeling during cortical neurogenesis. Front Neurosci 12:226

290. Mizuguchi G et al (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303(5656):343–348

291. Ruhl DD et al (2006) Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45(17):5671–5677

292. Keil JM et al (2020) Symmetric neural progenitor divisions require chromatin-mediated homologous recombination DNA repair by Ino80. Nat Commun 11(1):3839

293. Alzari AM et al (2015) Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep 10(2):148–161

294. Papamichos-Chronakis M et al (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme. Science 333(6047):1267–1271

295. Robinson PL et al (1988) A unique association of short stature, dysmorphic features, and speech impairment (Floating-Harbor syndrome). J Pediatr 113(4):703–706

296. Hood RL et al (2012) Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am J Hum Genet 90(2):308–313

297. Fryns JP et al (1996) The floating-harbor syndrome: two affected siblings in a family. Clin Genet 50(4):217–219

298. Patton MA et al (1991) Floating-harbor syndrome. J Med Genet A 158A(8):1865–1876

299. Xue Y et al (2003) The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci USA 100(19):10635–10640

300. Tang J et al (2004) A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J Biol Chem 279(19):20369–20377
301. Lewis PW et al. (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107(32):14075–14080

302. Goldberg AD et al. (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691

303. Kornohan KD et al. (2010) ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell 18(2):191–202

304. Garrick D et al. (2006) Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet 2(4):e58

305. Bérubé NG et al. (2005) The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J Clin Invest 115(2):258–267

306. Seach C et al. (2008) Neuronal death resulting from targeted disruption of the Snf2 protein ATRX Is mediated by p53. J Neurosci 28(47):12570–12580

307. Watson LA et al. (2013) Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J Clin Invest 123(5):2049–2063

308. Gibbons RJ et al. (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80(6):837–845

309. Fame RM, MacDonald JL, Macklis JD (2011) Development, specification, and diversity of callosal projection neurons. Trends Neurosci 34:41–50

310. Lodato S, Shetty AS, Arlotta P (2015) Cerebral cortex assembly: generating and reprogramming projection neuron diversity. Trends Neurosci 38:117–125

311. Margari L et al. (2016) Clinical manifestations in children and adolescents with corpus callosum abnormalities. J Neurol 263:1939–1945

312. Halgren C et al. (2012b) Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. Clin Genet 82:248–255

313. Xu Q et al. (2018) Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol Autism 9:1–17

314. Peter CJ et al. (2019) In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Ar114ep risk gene. Nat Commun 10:1–14

315. Najmabadi H et al. (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63

316. Meyer HS et al. (2010) Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cereb Cortex 20:2277–2286

317. Cederquist GY et al. (2013) Lmo4 establishes rostral motor cortex neuron identity in the developing cerebral cortex. Neuron 76:86–100

318. Leone DP et al. (2015) Satb2 regulates the differentiation of both upper-layer neuron specification in the neocortex. Neuron 81:260–292

319. Schoof M et al. (2019) The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun 7:199

320. Oshiro H et al. (2015) Up-regulation of HP1γ expression during neuronal maturation promotes axonal and dendritic development in mouse embryonic neocortex. Genes Cells 20:108–120

321. Ross SE et al. (2012) Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron 73:292–303

322. Xu Q et al. (2018) Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol Autism 9:1–17

323. Mignot C et al. (2016) ARID1B mutations are the major genetic cause of corpus callosum anomalies in patients with intellectual disability. Brain 139:e64

324. Harr K et al. (2016) Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. eLife 5:1–25

325. Harb K et al. (2016) Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. eLife 5:1–25

326. Shen T et al. (2003) Abnormal development of forebrain midline genes in the brain. Dev Cell 18(2):191–202

327. Meyer HS et al. (2010) Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cereb Cortex 20:2277–2286

328. Sahara S et al. (2012) The fraction of cortical GABAergic neurons is constant from near the start of corticogenesis to adulthood. J Neurosci 32:4755–4761

329. Selten M, van Bokhoven H, Nadif Kasri N (2018) Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research 7:23

330. Rudy B et al. (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71:45–61

331. Ross SE et al. (2012) Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron 73:292–303

332. Peter CJ et al. (2019) In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Ar114ep risk gene. Nat Commun 10:1–14

333. Lim L et al. (2018a) Development and functional diversification of cortical interneurons. Neuron 100(2):294–313

334. Thomas T et al. (2000) Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Proc Natl Acad Sci USA 97:260–292

335. Gelman D et al. (2011) A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 31:16570–16580

336. Thomas T et al. (2000) Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Proc Natl Acad Sci USA 97:260–292

337. Bjornsson HT (2015b) The Mendelian disorders of the epigenetic machinery. Genome Res 25:1473–1481

338. Kessaris N et al. (2014) Genetic programs controlling cortical interneuron fate. Curr Opin Neurobiol 26:79–87

339. Gouwens NW et al. (2020) Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons. bioRxiv 2020.2002.03.932244

340. Gelman D et al. (2011) A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 31:16570–16580

341. Thomas T et al. (2000) Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Proc Natl Acad Sci USA 97:260–292

342. GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30:16796–16808

343. Ross SE et al. (2012) Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron 73:292–303

344. Gelman D et al. (2011) A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 31:16570–16580

345. Bjornsson HT (2015b) The Mendelian disorders of the epigenetic machinery. Genome Res 25:1473–1481

346. Campeau PM et al. (2012) The KAT6B-related disorders genitopatellar syndrome and Ohdo/SBBYS syndrome have distinct
The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental…
391. Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27:75–81

392. Freeman MR, Rowitch DH (2013) Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80(3):613–623

393. Zuccherio JB, Barres BA (2015) Glia in mammalian development and disease. Development 142(22):3805–3809

394. Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

395. Maragakis NJ, Rohstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58(3):365–370

396. Baldwin KT, Eroglu C (2017) Molecular mechanisms of astrocyte-induced synaptogenesis. Curr Opin Neurobiol 45:113–120

397. Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36(4–5):291–300

398. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

399. Krenchik R et al. (2015) Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci Transl Med 7(286):286ra66

400. Hillen AEJ, Burbach JPH, Hol EM (2018) Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 165–167:66–86

401. Ferry L et al. (2017) Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Mol Cell 67(4):550-565.e5

402. Fritsch L et al. (2010) A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol Cell 37(1):46–56

403. Sher F, Boddeke E, Copray S (2011) Ezh2 expression in astrocytes induces their dedifferentiation toward neural stem cells. Cell Reprogram 13(1):1–6

404. Hwang WW et al. (2014) Distinct and separable roles for EZH2 in neurogenic astroglia. Elife 3:e02439

405. Tartaglia M et al. (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4):465–468

406. Hegedus B et al. (2007) Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neural progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 1(4):443–457

407. Paquin A et al. (2009) Costello syndrome H-Ras alleles regulate cortical development. Dev Biol 330(2):440–451

408. Urosevic J et al. (2011) Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proc Natl Acad Sci USA 108(12):5051–5060

409. Pacey LK, Doering LC (2007) Developmental expression of FMRF in the astrocyte lineage: implications for fragile X syndrome. Glia 55(15):1601–1609

410. Quinlan RA et al. (2007) GFAP and its role in Alexander disease. Mol Neurobiol 35(1):285–296

411. Ni Z, Bremner R (2007) Braf-mediated gliogenesis and spread MeCP2 deficiency through gap junctions. J Neurosci 32(1):311–317

412. Matsuzawa I et al. (2011) Constitutive activation of B-Raf in the astrocyte lineage: implications for neurological disorders. Proc Natl Acad Sci USA 108(12):5015–5020

413. Roux KJ et al. (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

414. Umethum H, Hampel S (2020) Proximity labeling techniques to study chromatin. Front Genet 11:1–13

415. Matsumoto S et al. (2009) A role for glia in the progression of Rett’s syndrome. Nature 475(7357):497–500

416. Fatemi SH et al. (2008) Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 62(7):501–507
involved in multiple neurodevelopmental disorders. Hum Mol Genet 28(24):4089–4102

Wade AA et al (2018) Common CHD8 genomic targets contrast with model-specific transcriptional impacts of CHD8 haploinsufficiency. Front Mol Neurosci 11:481

445. Park J, Thomas S, Munster PN (2015) Epigenetic modulation of cortical development leading to macrocephaly/autism phenotypes. Genes Dev 34:580–597

446. Pham MT et al (2018) Generation of human vascularized brain organoids. NeuroReport 29:588–593

447. Shi Y et al (2020) Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 18:1–29

448. Mansour AA et al (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36:432–441

449. Krasteva V et al (2012) The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function. Blood 120(24):4720–4732

450. Bell S et al (2019) Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. Am J Hum Genet 105(5):815–834

451. Gao X et al (2008) ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci U S A 105(18):6656–6661

452. Zhang, W., et al., The BAF and PRC2 Complex Subunits Dpf2 and Eed Antagonistically Converge on Tbx3 to Control ESC Differentiation. Cell Stem Cell, 2019. 24(1): p. 138–152 e8.

453. Friocourt G et al (2008) Cell-Autonomous Roles of ARX in Cell Proliferation and Neuronal Migration during Corticogenesis. The Journal of Neuroscience 28(22):5794–5805

454. Poeta L et al (2013) A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions. BMC Med Genet 8:25–25

455. Medina CF et al (2008) Altered visual function and interneuron differentiation in a model of human forebrain development. Science 318(5851):1524–1528

456. Shimizu T et al (2008) Forebrain Organoid Model of CNTNAP2-Associated Autism Spectrum Disorder. bioRxiv, 2019: https://doi.org/10.1101/739391

457. Subburaju S et al (2016) Toward dissecting the etiology of schizophrenia: HDAC1 and DAXX regulate GAD67 expression in an in vitro hippocampal GABA neuron model. Transl Psychiatry 6(1):e723–e723

458. Cenik B et al (2011) Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapy in Rubinstein-Taybi syndrome and its amelioration. Neuron 70(6):947–959

459. Urresti, J., et al., Cortical Organoids Model Early Brain Development Disrupted by 16p11.2 Copy Number Variants in Autism. bioRxiv, 2020: p. 2020.06.25.172262.
482. Michod D et al (2012) Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74(1):122–35
483. Takebayashi S et al (2007) Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Mol Cell Biol 27(23):8243–8258
484. Christian DL et al (2020) DNMT3A haploinsufficiency results in behavioral deficits and global epigenomic dysregulation shared across neurodevelopment disorders. bioRxiv 33(8):108416
485. Tarusawa E et al (2016) Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins. BMC Biol 14(1):103
486. Toyoda S et al (2014) Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82(1):94–108
487. Cohen ASA et al (2015) A novel mutation in EED associated with overgrowth. J Hum Genet 60(6):339–342
488. Liu P-P et al (2019) Polycomb protein EED regulates neuronal proliferation. Mol Cell Neurosci 57:130–143
489. Frega M et al (2019) Neuronal network dysfunction in a model of the histone chaperone DAXX regulates H3.3 loading and neuronal functional deficits and neurobehavioral abnormalities consistent with 2q23.1 microdeletion syndrome. EMBO Mol Med 6(8):1003–15
490. Tunovic S et al (2014) De novo ANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome. Am J Med Genet A 164(7):1744–9
491. Sun G et al (2010) Histone demethylase LSD1 regulates neural stem cell proliferation. Mol Cell Biol 30(8):1997–2005
492. Jakovcevski M et al (2015) Neuronal Kmt2a/Mll histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J Neurosci 35(13):5097–5108
493. Jones WD et al (2012) De Novo Mutations in MLL3 Cause Wiedemann–Steiner syndrome. Am J Hum Genet 91(2):358–364
494. Camarena V et al (2014) Disruption of Mbd5 in mice causes neuronal functional deficits and neurobehavioral abnormalities. Neuron 82(1):114
495. Iacono G et al (2018) Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Res 46(10):4950–4965
496. Koemans TS et al (2017) Functional convergence of histone methyltransferases E HMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet 13(10):e1006864
497. Marchesi G et al (2016) Kleefstra-variant syndrome with heterozygous mutations in EHMT1 and KCNQ2 genes: a case report. Neuronal Sci 37:829–831
498. Martens MB et al (2016) Euchromatin histone methyltransferase 1 regulates cortical neuronal network development. Sci Rep 6:35756
499. Jawaadi R et al (2016) Alternative splicing of g9a regulates neuronal differentiation. Cell Rep 14(12):2797–2808
500. Maze I et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216
501. Henriquez B et al (2013) EzH1 and EzH2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol Cell Neurosci 57:130–143
502. Imagawa E et al (2017) Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum Mutat 38(6):637–648
503. Lan F et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163):689–694
504. Morris MJ et al (2013) Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 33(15):6401–6411
505. Haberland M et al (2009) Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23(14):1625–1630
506. Min J-N et al (2013) The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability. Cell Res 23(12):1396–1413
507. Herz HM et al (2010) The H3K27me3 demethylase DUTX is a suppressor of notch- and Rb-dependent tumors in Drosophila. Mol Cell Biol 30(10):2485–2497
508. Shangguan H et al (2019) Kabuki syndrome: novel pathogenic variants, new phenotypes and review of literature. Orphanet J Rare Dis 14(1):255
509. Antoine MW et al (2016) Increased excitation-inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models. Neuroil 101:648-661.e4
510. Banerjee A et al (2016) Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc Natl Acad Sci USA 113:E7287–E7296
511. Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698
512. Kawauchi S et al (2009) Multiple organ system defects and transcriptional dysregulation in the Nipbl+/− Mouse, a model of cornelia de lange syndrome. PLoS Genet 5(9):e1000650
513. Boussadia B et al (2016) Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo. Exp Neurol 283(Pt A):39–48
514. Krasteva V, Crabtree GR, Lessard JA (2017) The BAF45a/PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance. Exp Hematol 45:58–71.e15
515. Francozoni E et al (2015) miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. elife 4:e04263
516. Zhang C et al (2013) The X-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain. Neuron 78(6):986–993
517. Zweier C et al (2014) Females with de novo aberrations in PHF6: Clinical overlap of Borjeson–Forssman–Lehmann with Coffin-Siris syndrome. Am J Hum Genet C 166(3):290–301
518. Chen X et al (2018) Phf8 histone demethylase deficiency causes cognitive impairments through the mTOR pathway. Nat Commun 9(1):114
524. Riveiro AR et al (2017) JMJD-12/PHF8 controls axon guidance by regulating Hedgehog-like signaling. Development 144(5):856–865
525. Turnbull J et al (2012) Early-onset Lafora body disease. Brain 135(9):2684–2698
526. Pierce SB et al (2018) De novo mutation in RING1 with epigenetic effects on neurodevelopment. Proc Natl Acad Sci USA 115(7):1558–1563
527. Du TT et al (2014) Setdb2 controls convergence and extension movements during zebrafish gastrulation by transcriptional regulation of dvr1. Dev Biol 392(2):233–244
528. Falandrý C et al (2010) CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J Biol Chem 285(26):20234–20241
529. Xu PF et al (2010) Setdb2 restricts dorsal organizer territory and regulates left-right asymmetry through suppressing fgf8 activity. Proc Natl Acad Sci USA 107(6):2521–2526
530. Kuechler A et al (2015) Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. Eur J Hum Genet 23(6):753–60
531. Moore SM et al (2019) Setd5 haploinsufficiency alters neuronal network connectivity and leads to autistic-like behaviors in mice. Transl Psychiatry 9(1):24
532. Koga M et al (2009) Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia. Hum Mol Genet 18(13):2483–2494
533. Battaglioli E et al (2002) REST repression of neuronal genes requires components of the hSWI/SNF complex. J Biol Chem 277(43):41038–45
534. Machol K et al (2019) Expanding the spectrum of BAF-related disorders: de novo variants in SMARCC2 cause a syndrome with intellectual disability and developmental delay. Am J Hum Genet 104(1):164–178
535. Matsumoto S et al (2016) Brp1 directly regulates Olig2 transcription and is required for oligodendrocyte progenitor cell specification. Dev Biol 413(2):173–187
536. Diets IJ et al (2019) A recurrent de novo missense pathogenic variant in SMARCB1 causes severe intellectual disability and choroid plexus hyperplasia with resultant hydrocephalus. Genet Med 21(3):572–579
537. Al Mutairi F et al (2018) A mendelian form of neural tube defect caused by a de novo null variant in SMARCC1 in an identical twin. Ann Neurol 83(2):433–436
538. Tuoc T et al (2017) Ablation of BAF170 in developing and postnatal dentate gyrus affects neural stem cell proliferation, differentiation, and learning. Mol Neurobiol 54(6):4618–4635
539. Harmske L et al (2014) A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice. Dev Neurobiol 74(5):483–497
540. Nixon KC et al (2019) A syndromic neurodevelopmental disorder caused by mutations in SMARCD1, a Core SWI/SNF subunit needed for context-dependent neuronal gene regulation in flies. Am J Hum Genet 104(4):596–610
541. Fujita Y et al (2017) Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior. J Exp Med 214(5):1431–1452
542. Wang Y et al (2013) Transcription factor Sox11 is essential for both embryonic and adult neurogenesis. Dev Dyn 242(6):638–653
543. Miró X et al (2009) Haploinsufficiency of the murine polycomb gene Suz12 results in diverse malformations of the brain and neural tube. Dis Models Mech 2(7–8):412–418
544. Donohoe ME et al (1999) Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol Cell Biol 19(10):7237–7244
545. Gabriele M et al (2017) YY1 Haploinsufficiency causes an intellectual disability syndrome featuring transcriptional and chromatin Dysfunction. Am J Hum Genet 100(6):907–925
546. Wu T, Donohoe ME (2019) YY1 regulates Senp1 contributing to AMPA receptor GluR1 expression following neuronal depolarization. J Biomed Sci 26(1):79
547. Weymann S et al (2001) Severe arterial occlusive disorder and brachysyndactyly in a boy: a further case of Grange syndrome? Am J Med Genet 99(3):190–195
548. Shi Y et al (2011) Exome sequencing identifies ZNF644 mutations in high myopia. PLoS Genet 7(6):e1002084
549. Tarpey PS et al (2009) A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 41(5):535–543
550. Kleine-Kohlbrecher D et al (2010) A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol Cell 38(2):165–178

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.