Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway

Brian J Wilson and Vincent Giguère*

Address: Molecular Oncology Group, Room H5-45, McGill University Health Centre, 687 Pine Avenue West, Montréal, Québec, H3A 1A1, Canada
Email: Brian J Wilson - brian.wilson2@mcgill.ca; Vincent Giguère* - vincent.giguere@mcgill.ca
* Corresponding author

Abstract

Background: The transcription factor GATA3 has recently been shown to be necessary for mammary gland morphogenesis and luminal cell differentiation. There is also an increasing body of data linking GATA3 to the estrogen receptor α (ERα) pathway. Among these it was shown that GATA3 associates with the promoter of the ERα gene and ERα can reciprocally associate with the GATA3 gene. GATA3 has also been directly implicated in a differentiated phenotype in mouse models of mammary tumourigenesis. The purpose of our study was to compare coexpressed genes, by meta-analysis, of GATA3 and relate these to a similar analysis for ERα to determine the depth of overlap.

Results: We have used a newly described method of meta-analysis of multiple cancer studies within the Oncomine database, focusing here predominantly upon breast cancer studies. We demonstrate that ERα and GATA3 reciprocally have the highest overlap with one another. Furthermore, we show that when both coexpression meta-analysis lists for ERα and GATA3 are compared there is a significant overlap between both and, like ERα, GATA3 coexpresses with ERα pathway partners such as pS2 (TFF1), TFF3, FOXA1, BCL2, ERBB4, XBP1, NRIP1, IL6ST, keratin 18(KRT18) and cyclin D1 (CCND1). Moreover, as these data are derived from human tumour samples this adds credence to previous cell-culture or murine based studies.

Conclusion: GATA3 is hypothesized to be integral to the ERα pathway given the following: (1) The large overlap of coexpressed genes as seen by meta-analysis, between GATA3 and ERα, (2) The highest coexpressing gene for GATA3 was ERα and vice-versa, (3) GATA3, like ERα, coexpresses with many well-known ERα pathway partners such as pS2.

Background

While GATA3 has most intensively been studied in the immune system [1] GATA3 is also expressed in other biological environments such as the human endometrium epithelial cells, where levels are regulated in a cyclic manner [2]. GATA3 levels are also considered a good prognostic biomarker in breast tumours. Specifically, in the luminal A subtype of breast cancer GATA3 has both a favorable prognostic outcome, and the highest ERα and GATA3 expression of all breast tumours [3]. Consistent with this, basal-like tumours have the lowest GATA3 expression and the worst prognosis. GATA3 has also been shown in murine models to be essential to the development and maintenance of mammary luminal cells [4,5]. There is also tentative data showing that different poly-
morphism of the GATA3 gene may associate with differential susceptibility to breast cancer [6].

GATA3 levels have previously been correlated with expression of ERα [7] and both were shown to reciprocally regulate one another at the transcriptional level in a cell culture based system in a cross-regulatory loop [8]. Furthermore, in a meta-analysis of ERα 10 genes were proposed as classifier of ERα positive breast tumours, listing GATA3 as one of these [9]. A study has also compared microarray experiments between estradiol-induced genes from MCF-7 cells, and transfected GATA3-induced genes from 293T cells to assess common upregulated genes [10].

In an elegant series of experiments utilizing MMTV-PyMT (polyoma middle T antigen) mice it was first shown that GATA3 expression was downregulated with the transition from adenoma to carcinoma in mammary tumours, and the expression was lost in lung metastases. Infection of the MMTV-PyMT carcinomas with GATA3 upregulated markers of differentiation and resulted in a dramatic 27-fold reduction in lung metastases [10]. Further crossing of these mice with an inducible cre-WAP (whey acidic protein – reduction in lung metasases [11].

In a recent study known pathway partners were in the same pathway. We report here not only the overlap data with the frequency cutoff of 4 or more studies (4% of 21 studies). This generated a meta-analysis list for ERα or GATA3, which were then compared for overlap. As the overlap was high the stringency was increased to 4 studies (19%), the data of which is used for Table 1. Gene names were obtained using Genecards [14].

Methods

Meta-analysis

The following procedure was undertaken for independent meta-analyses of GATA3 or ERα: a co-expression gene search was performed within Oncomine [13]. Coexpression data from 21 multi-array studies was extracted and analysed, separately for ERα and GATA3 (putative pathway partners), then comparing the results for overlapping genes would yield a highly significant number of genes if these transcription factors were in the same pathway. We report here not only that these meta-analyses have a high degree of overlap, but that genes identified are consistent with previous reports of the ERα pathway regulation. Additionally we show this correlation with previously identified ERα targets by combining our meta-analysis data with both RT-PCR and genome-wide location analysis from other studies. These data not only confirm GATA3 as being a key player in the ERα pathway, but also give fresh insights into the pathway itself.

Results and Discussion

Using the Oncomine™ integrated cancer profiling database GATA3 and ERα were searched for coexpressing genes [13]. Coexpression data from 21 multi-array studies was extracted and analysed, separately for ERα and GATA3. While these studies varied in cancer-types, the overwhelming majority extracted for analysis were breast-cancer based [Additional file 1 and 2]. The frequency of coexpressing genes over the 21 studies was determined and the cutoff set to 3 studies or more (3 studies = 14% frequency overlap – [see Additional file 1 and 2]). Next, to ascertain the extent GATA3 may play a role in ERα pathways the frequency coexpression lists were compared for overlap. Interestingly, there was an extensive overlap between both GATA3 and ERα lists at the cutoff of 3 studies (Figure 1A). Increasing the cutoff to 4 or more studies (almost one-fifth of the studies) did not change the relative overlap with respect to total gene numbers, with 43% of the number of ERα coexpressed genes, and 56% of GATA3 coexpressed genes represented in the overlap (Figure 1B). The overlap data with the frequency cutoff of 4 studies is shown in Table 1.

Every technique has its caveats, and the limitation here is that we are assessing the common genes that are consistently coexpressed with ERα and GATA3 over many different human cancer studies. This implies that coexpressed genes are in the same pathways as GATA3 and ERα. However, the meta-analyses can only infer association within
Table 1: Overlapping meta-analyses of GATA3 and ERα at cutoff of 4 studies (19%)

Overlap of ERα and GATA3 (4 or more studies)	ERα = 257, GATA3 = 194, OVERLAP = 108
ERα	**GATA3**
GATA3	100%
ESR1	67%
XBP1	52%
FOXA1	52%
FOXC1	24%
TFF1	52%
TFF3	67%
NRIP1	19%
BCL2	67%
ACADSB	48%
LAF4	38%
COX6C	33%
FBP1	33%
IGFI R	33%
IRS1	33%
CELSR2	38%
LRBA	38%
NAT1	57%
SCNN1A	57%
DNJ1C2	48%
RAB31	19%
RABEP1	33%
SELENBP1	33%
FAAH	38%
TNFSF10	33%
SLC22A18	24%
SLC39A6	57%
SLC40A1	19%
SLC9A3R1	43%
SIAH2	33%
SERPINA3	24%
SERPINA5	19%
SERPINA6	24%
ERBB3	33%
ERBB4	19%
IL6ST	38%
KIAA0040	24%
KIAA0303	43%
KIAA0882	19%
ITPR1	33%
INPP4B	43%
JMJD2B	48%
C10orf116	52%
ANXA9	19%
AR	19%
CCND1	19%
CCNG2	19%
CAL2	19%
CACNA1D	33%
CACNA2D2	19%
DNAI1	19%
AGR2	19%
GFRα1	33%
HPN	19%
GREB1	19%
MAPT	19%
MLPH	24%

Note: percentages represent the overlap of genes based on their expression in at least 4 studies.
the same pathways, and pathway coexpression at the RNA level might not necessarily translate into protein level. Nevertheless, our data are strongly supported by previous knowledge of the ERα pathway.

A recent study identified 51 genes significantly upregulated in ERα positive breast tumours, using a real-time PCR based approach [16]. Attesting to the stringency of the meta-analysis approach used here 32 of these genes were found to overlap with the ERα coexpression list, while an identical number also overlapped with GATA3.

Table 1: Overlapping meta-analyses of GATA3 and ERα at cutoff of 4 studies (19%) (Continued)

Gene	GATA3 %	ERα %	Gene	GATA3 %	ERα %
KRT18	24%	33%	keratin 18		
PTPRT	24%	48%	protein tyrosine phosphatase, receptor type, T		
STC2	24%	33%	stanniocalcin 2		
SCUBE2	33%	24%	CEGP1 protein		
PTGER3	33%	24%	prostaglandin E receptor 3 (subtype EP3)		
PDCD4	33%	24%	programmed cell death 4 (neoplastic transformation inhibitor)		
MUC1	33%	29%	mucin 1, transmembrane		
NPY1R	33%	29%	neuropeptide Y receptor Y1		
FLJ20366	38%	24%	hypothetical protein FLJ20366		
TLE3	33%	29%	transducin-like enhancer of split 3 (E(spl) homolog, Drosophila)		
I3CDNA73	24%	24%	29% hypothetical protein CG003		
AGTR1	24%	29%	Angiotensin II receptor, type 1		
ASAH1	24%	29%	N-acylphosphosine amidohydrolase (acid ceramidase)		
BF	24%	24%	B-factor, properdin		
ENPP1	24%	29%	ectonucleotide pyrophosphatase/phosphodiesterase		
QDPR	24%	29%	quinoid dihydroteridine reductase		
C9orf116	19%	29%	chromosome 9 open reading frame 116		
CYFIP2	19%	29%	cytoplasmic FMR1 interacting protein 2		
GRIA2	19%	29%	glutamate receptor, ionotropic, AMPA 2		
GSTM1	19%	29%	Glutathione S-transferase M3 (brain)		
ACOX2	19%	29%	acyl-Coenzyme A oxidase 2, branched chain		
LRG1	19%	29%	leucine-rich repeats and immunoglobulin-like domains		
PLAT	19%	29%	plasminogen activator, tissue		
MAGED2	19%	29%	Melanoma antigen family D, 2		
THRAP2	19%	29%	thyroid hormone receptor associated protein 2		
MSX2	24%	24%	msh homeo box homolog 2 (Drosophila)		
UGCG	24%	24%	UDP-glucose ceramide glucosyltransferase		
ALCAM	19%	24%	activated leukocyte cell adhesion molecule		
ALDH4A1	19%	24%	aldehyde dehydrogenase 4 family, member A1		
ABCA3	24%	19%	ATP-binding cassette, sub-family A (ABC1), member 3		
LOCS1760	19%	24%	B/K protein		
PRSS23	19%	24%	protease, serine, 23		
RHOM	24%	19%	ras homolog gene family, member H		
TFAP2B	19%	24%	transcription factor AP-2 beta (activating enhancer binding protein 2 beta)		
WDFC2	24%	19%	WAP four-disulfide core domain 2		
ANGPTL1	19%	19%	angiopoietin-like 1		
BCA51	19%	19%	breast carcinoma amplified sequence		
CYP2B6	19%	19%	cytochrome P450, subfamily IB (phenobarbital-inducible), polypeptide 6		
EML2	19%	19%	echinoderm microtubule associated protein like 2		
FLNB	19%	19%	filamin B, beta (actin binding protein 278)		
GPR160	19%	19%	G protein-coupled receptor 160		
LU	19%	19%	Lutheran blood group (Auberger b antigen included)		
MRPS30	19%	19%	mitochondrial ribosomal protein S30		
PTE2B	19%	19%	peroxisomal acyl-CoA thioesterase 2B		
RERG	19%	19%	RAS-like, estrogen-regulated, growth inhibitor		
RNASE4	19%	19%	ribonuclease, RNase A family, 4		
RNF110	19%	19%	polycomb group ring finger 2 (MEL-18)		
SEMA3C	19%	19%	sema domain, immunoglobulin domain (Ig), short basic domain, (semaphorin) 3C		
SULT2B1	19%	19%	sulfotransferase family, cytosolic, 2B, member I		
TPBG	19%	19%	trophoblast glycoprotein		
TPDS2	19%	19%	tumor protein D52		
KAL1	19%	19%	Kallmann syndrome 1 sequence		

After individual Oncomine meta-analysis of 21 studies both lists of coexpressing genes, for GATA3 and ERα were compared for overlap. Overlap greater than 30% frequency (7 studies) is shown in **bold**. Overlap list is arranged by percent frequency.
A.

![Overlap between ERα and GATA3 meta-analyses](image)

Cutoff = 14% (3 studies)

B.

![Overlap between ERα and GATA3 meta-analyses](image)

Cutoff = 19% (4 studies)

Figure 1

Venn diagram showing overlap between ERα and GATA3 meta-analyses. (A) Overlap when the frequency cutoff is 3 studies (14%). (B) Overlap when the frequency cutoff is 4 studies (19%).

Table 2: Comparison of GATA3 and ERα meta-analyses, and RT-PCR study

Gene	GATA3 Oncomine	ERα Oncomine
ESR1	✓	✓
GATA3	✓	✓
TFF1	✓	✓
TFF3	✓	✓
FOXA1	✓	✓
XBPI	✓	✓
IL6ST	✓	✓
KRT18	✓	✓
AR	✓	✓
BCL2	✓	✓
CCND1	✓	✓
RERG	✓	✓
ERBB4	✓	✓
NAT1	✓	✓
SLC39A6	✓	✓
DNAJC12	✓	✓
HPN	✓	✓
CYP2B6	✓	✓
CA12	✓	✓
STC2	✓	✓
ACADSB	✓	✓
LRBA	✓	✓
PITPRT	✓	✓
SULT2B1	✓	✓
MYB	✓	✓
SEMA3B	✓	✓
RET	✓	✓
SLC7A2	✓	✓
RABEP1	✓	✓
IGFBP4	✓	✓
CGA	✓	✓
GJA1	✓	✓
PGR	✓	✓
RARRES	✓	✓
BBC3	✓	✓
LOC255743	✓	✓

51 genes were identified as being upregulated in ERα-positive breast tumours in a recent study by Tozlu et al., and are compared with the Oncomine meta-analysis lists for ERα and GATA3, showing a significant overlap. ✓ shows that this gene is represented.

51 genes were identified as being upregulated in ERα-positive breast tumours in a recent study by Tozlu et al., and are compared with the Oncomine meta-analysis lists for ERα and GATA3, showing a significant overlap. ✓ shows that this gene is represented.

System. While not to detract from the power of a model system such as MCF-7 there are likely to be a great many differences between a homogeneous cell monolayer and a 3-dimensional cancer made up of a heterogeneous cell population.

Of the 10 classifier genes previously identified in a meta-analysis of ERα, the same 4 were identified in both meta-analyses of this study (ESR1, GATA3, FOXA1, SLC39A6) [9]. Once again this adds credence to the high-quality data obtained in our current meta-analyses.

Implicating GATA3 in control of some of these gene products is a microarray experiment performed after overex-
pression of GATA3 in 293T cells [20]. After expression of GATA3 elevated levels of TFF1, TFF3, KRT18, FOXA1, SLC9A3R1, TPD52, BCAS1 were observed, all of which we identified here for both GATA3 and ERα meta-analyses. While 293T are not breast cancer cells, it raises the question of how many more of our predicted pathway partners of GATA3 would be identified if the microarray were repeated in cells such as MCF-7 which also retain high ERα expression. In the example of SLC9A3R1 (NHERF1) which is a putative tumour suppressor, it was shown to increase growth of 2 breast cancer cell lines when knocked down by shRNA [21]. If GATA3 does help to control expression of NHERF1 this might be one mechanism consistent with its role in the less-aggressive differentiated luminal A breast cancers. Another example is BCAS1 (NABC1) which is overexpressed in breast carcinomas but downregulated in colorectal tumours [22,23]. Indeed, overexpression of NABC1 did not result in changes in cell-cycle or anchorage-dependent growth properties in NIH3T3 cells, implying it may not be intrinsically onco-
genic [24].

As GATA3 is expressed in, and regulates, luminal epithelial cells and has also been shown to regulate the MUC1 gene it is no surprise that MUC1 is also mostly expressed in luminal breast epithelial cells as well as other glandular epithelia [25]. MUC1, when abnormally expressed, leads to a loss of both cell-extracellular and cell-cell contacts. It has also been shown that MUC1 levels can be regulated by estrogen and ERα can bind putative binding sites derived from the MUC1 promoter in-vitro [26]. Here we reveal that both GATA3 and ERα coexpress with MUC1 acting as further validation of the meta-analysis technique used here. Furthermore, transfected GATA3 can activate a MUC1 promoter reporter in MCF-7 cells, even in the presence of Tamoxifen i.e. independently to ERα activation. This activation could be repeated in the ERα-negative breast cancer cell line SKBR3 (Figure 2). The activation of ERα pathway genes was also observed with pS2 (TFF1) and KRT18 reporters (Figure 2). These data indicate that GATA3 can have its own impact on the ERα pathway and is not just acting indirectly via ERα.

It has also been postulated that, as the deletion of GATA3 in mammary primordia (by K14-Cre) resulted in an inability to form mammary placodes is similar to that of loss of LEF1, Msx1 and Msx2 these may all be intertwined in a transcriptional network [4,27]. It is of interest that in our

Table 3: Comparison of GATA3 and ERα meta-analyses with previously reported binding sites (by ChIP-chip analysis)
ERα ChIP-chip: GATA3 Oncomine
ABCA3
ALDH3B2
ANXA9
EPS8
ESR1
FJ20152
FOXA1
GREB1
GTF2H2
LOC51760
MGC11242
MGP
NAV3
NQO1
PDZK1
PHF15
RTN1
SEMA3B
SLC27A2
SLC7A2
SLC7A8
STARD10
STK39
TFF1
TFF3
TOMM40
NRIP1

Oncomine meta-analysis data for GATA3 or ERα was compared both to a promoter list published by Laganiere et al (P = 0.05), and to a chromosome array list of 30 genes identified by Carroll et al. The overlap is shown and common overlap between ERα and GATA3 is shown in bold.
present study we observe MSX2 coexpression both with GATA3 and ERα, which helps to support this notion.

Using the meta-analysis data presented it is easy to build up transcriptional networks such as this and all of the data presented strongly supports (1) the quality of the meta-analysis results, (2) the concept that GATA3 is firmly entrenched within ERα pathways. Future in-depth analysis of the data presented may lead to novel aspects of ERα or GATA3 regulated pathways, and help to understand the etiology of ERα-positive breast cancers, and management of their outcomes.

Conclusion

While GATA3 has been identified previously in a meta-analysis of ERα only 10 genes were identified in total [9]. Here we give an extensive list of coexpressed ERα genes and for the first time a reciprocal meta-analysis for GATA3 has been performed, and the results compared for overlap. This overlap was considerable, confirming the important role of GATA3 in the ERα pathway. The vital question raised is whether GATA3 is crucial to the ERα pathway only by regulation of ERα levels, or through further control of ERα-regulated genes in concert with ERα itself. The GATA3 overexpression microarray experiment in 293T cells, and our reporter gene assays certainly implies the latter [20]. Genome-wide location analysis (ChIP-chip) of GATA3 in a well-established ERα system such as MCF-7 cells, as well as specific analysis of the ERα pathway in GATA3 conditional knockout mice will yield vital information regarding the extent that GATA3 is integral to the ERα pathway.

Authors’ contributions

BW conceived and designed the study, performed the meta-analyses, the reporter assays, and wrote the manuscript. VG critically reviewed the manuscript, and approved the final version.

Additional material

Additional file 1

GATA3 Oncomine meta-analysis. Meta-analysis results from 21 Oncomine studies shown. Coexpressing genes with GATA3 are shown with a cutoff of 3 studies (14% of the 21 studies).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-7-49-S1.xls]

Additional file 2

ERα Oncomine meta-analysis. Meta-analysis results from 21 Oncomine studies shown. Coexpressing genes with ERα are shown with a cutoff of 3 studies (14% of the 21 studies).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-7-49-S2.xls]

Additional file 3

External data comparison. Comparison of data to that of Abba et al, 2005. ERα pathway genes common to oligo microarrays, SAGE and our meta-analysis overlap.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-7-49-S3.xls]
Acknowledgements

We thank John Coligan, NIH, for pcDNA3-GATA3. Funding was provided by the Canadian Institute for Cancer Research (VG) and a McGill University Health Centre fellowship (BW).

References

1. Ho IC, Pai SY: GATA-3 – not just for Th2 cells anymore. Cell Mol Immunol 2007, 4:15-29.

2. Inman D, Kawana K, Schust D, Lininger R, Young S: Cyclic regulation of T- and GATA-3 in human endometrium. Reprod Sci 2008, 15:83-90.

3. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, Chinnaiyan AM, Kleer CG: Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 2005, 65:11259-11264.

4. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosfeld FG, Wees J van der, Lidereau R, Bieche I: Cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription.

5. Kouros-Mehr H, Sternlicht MD, Werb Z: Coactivator 1alpha activation of target promoters. J Cell 2005, 203:1929-1934.

6. Garcia-Closas M, Langerod A, Yeager M, Linsley PS, Bernards R, Friend SH: Expression profiling predicts clinical outcome of breast cancer. Cell 2006, 127:839-852.

7. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.

8. Schneider J, Ruschhaupt M, Buness A, Asslaber M, Regitnig P, Zatloukal K, Schippinger W, Ploner F, Poustka A, Sultmann H: Identification of novel pathway partners by Na+/H+ exchanger regulatory factor 1 (NHERF1). Proc Natl Acad Sci USA 2007, 104:9459-9464.

9. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M: A single nucleotide in an estrogen-related receptor alpha site can dictate mode of binding and peroxisome proliferator-activated receptor gamma coactivator 1alpha activation of target promoters. Mol Endocrinol 2006, 20:302-310.

10. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler LG, Lonning PE, Strausburg RL, Chappell MC, Mutation of GATA3 in human breast tumors. Oncogene 2004, 23:7669-7678.

11. Wang L, Dai JL: Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1). Breast Cancer Res 2006, 8:R63.

12. Correa RG, de Carvalho AF, Pinheiro NA, Simpson AJ, de Souza SJ: NABCI (BCAS1): alternative splicing and downregulation in colorectal tumors. Genomics 2006, 85:297-302.

13. Beardsley DI, Kowbel D, Lataxes TA, Mannino JM, Xin H, Kim WJ, Collins C, Brown KD: Characterization of the novel amplified in breast cancer-1 (NABC1) gene product. Exp Cell Res 2003, 290:402-413.

14. Collins C, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler LG, Lonning PE, Strausburg RL, Chappell MC, Mutation of GATA3 in human breast tumors. Oncogene 2004, 23:7669-7678.

15. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler LG, Lonning PE, Strausburg RL, Chappell MC, Mutation of GATA3 in human breast tumors. Oncogene 2004, 23:7669-7678.

16. Pan Y, Wang L, Dai JL: Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1). Breast Cancer Res 2006, 8:R63.

17. Collins C, Rommens JM, Kowbel D, Godfrey T, Tanner M, Hwang SI, Polikoff D, Nonet G, Cochran J, Myambo K, Jay KE, Froula J, Cloutier T, Kuo WL, Yaswen P, Darriere S, Giovanola J, Hutchinson GB, Isola J, Kallioniem OP, Palazzolo M, Martin C, Ericsson C, Pinkel D, Albertson D, Li VW, Gray JW: Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci USA 1998, 95:8703-8708.

18. Pan Y, Wang L, Dai JL: Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1). Breast Cancer Res 2006, 8:R63.

19. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EY, Geistlinger TR, Fox EA, Silver PA, Brown M: Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FOXA1. Cell 2005, 122:33-43.

20. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler LG, Lonning PE, Strausburg RL, Chappell MC, Mutation of GATA3 in human breast tumors. Oncogene 2004, 23:7669-7678.

21. Pan Y, Wang L, Dai JL: Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1). Breast Cancer Res 2006, 8:R63.

22. Collins C, Rommens JM, Kowbel D, Godfrey T, Tanner M, Hwang SI, Polikoff D, Nonet G, Cochran J, Myambo K, Jay KE, Froula J, Cloutier T, Kuo WL, Yaswen P, Darriere S, Giovanola J, Hutchinson GB, Isola J, Kallioniem OP, Palazzolo M, Martin C, Ericsson C, Pinkel D, Albertson D, Li VW, Gray JW: Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci USA 1998, 95:8703-8708.

23. Correa RG, de Carvalho AF, Pinheiro NA, Simpson AJ, de Souza SJ: NABCI (BCAS1): alternative splicing and downregulation in colorectal tumors. Genomics 2006, 85:297-302.

24. Beardsley DI, Kowbel D, Lataxes TA, Mannino JM, Xin H, Kim WJ, Collins C, Brown KD: Characterization of the novel amplified in breast cancer-1 (NABC1) gene product. Exp Cell Res 2003, 290:402-413.

25. Abba MC, Nunez ML, Galussi AG, Groce MV, Segal-Eiras A, Aldaz CM: GATA3 protein as a MUC1 transcriptional regulator in breast cancer cells. Breast Cancer Res 2006, 8:R64.

26. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.

27. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.

28. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.

29. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.

30. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.

31. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.

32. Zaret KS, Nusse R: GATA3 – not just for Th2 cells anymore. Mol Endocrinol 2005, 19:2397-2399.