Yeast cell surface display: An efficient strategy for improvement of bioethanol fermentation performance

Xianzhong Chen

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China

ABSTRACT
The cell surface serves as a functional interface between the inside and the outside of the cell. Within the past 20 y the ability of yeast (Saccharomyces cerevisiae) to display heterologous proteins on the cell surface has been demonstrated. Furthermore, S. cerevisiae has been both developed and applied in expression of various proteins on the cell surface. Using this novel and useful strategy, proteins and peptides of various kinds can be displayed on the yeast cell surface by fusing the protein of interest with the glycosylphosphatidylinositol (GPI)-anchoring system. Consolidated bioprocessing (CBP) using S. cerevisiae represents a promising technology for bioethanol production. However, further work is needed to improve the fermentation performance. There is some excellent previous research regarding construction of yeast biocatalyst using the surface display system to decrease cost, increase efficiency of ethanol production and directly utilize starch or biomass for fuel production. In this commentary, we reviewed the yeast surface display system and highlighted recent work. Additionally, the strategy for decrease of phytate phosphate content in dried distillers grains with solubles (DDGS) by display of phytase on the yeast cell surface is discussed.

KEYWORDS
anchoring protein; biocatalyst; bioethanol production; phytase; Saccharomyces cerevisiae; surface display system

Introduction
Glycosylphosphatidylinositol (GPI) anchors not only play critical roles in the surface expression of cell surface proteins but they are also essential for the viability of the yeast.1,2 Many glucanase-extractable proteins contain these GPI anchors, such as agglutinin (Ago1p and Aga1p) and flocculin (Flo1p, Sed1p).2 Among these, Ago1p, Aga1p and Flo1p have been studied extensively and used successfully for development of a yeast display system. In S. cerevisiae cells the localization of GPI-anchored proteins on the cell surface is accomplished through the general secretory pathway, release from the plasma membrane and transferring to the outermost surface of the cell wall.3 Three surface display systems using α-agglutinin, a-agglutinin and Flo1p as GPI anchors are illustrated in Fig. 1, respectively.

α-Agglutinin (Ago1p) exists in mating type α cells of S. cerevisiae. α-Agglutinin is the most frequent anchor in N-terminal fusion displays, in which the N terminus of the anchor protein is genetically fused to the C terminus of the target protein (Fig. 1a). Moreover, when there are differences in the size of the C-terminal region of α-agglutinin the capability of surface displays of foreign protein is affected. Comparably, a-agglutinin consists of 2 subunits, Aga1p and Aga2p. Aga1p is incorporated into the cell wall through a GPI anchor, and the secretion-type protein Aga2p is conjugated to Aga1p via a disulfide bond (Fig. 1b). Generally, Aga2p is used as anchor for C-terminal fusion to display foreign protein in yeast surface.4,5 The heterologous proteins are fused to the C-terminus of the 69 amino acid binding subunit Aga2p (Fig. 1b). Both Ago1p and Aga1p contain a secretion-signal region, an active region, a support region rich in serine and threonine and a putative GPI anchor-attachment signal. These proteins presumably exist in heavily O-glycosylated forms.6,7

Flocculin Flo1p plays an important role in flocculation. Flo1p is used for N-terminal fusion displays, in which a heterologous protein is fused to the C-terminal region of Flo1p. This consists of a
GPI-attachment signal with various anchor lengths (Fig. 1c). Also, truncated forms of Flo1p (FL and FS) were used as anchors for C-terminal fusion experiments.7

S. cerevisiae has the ability to produce and express many of the functional proteins necessary for post-translational modification and in a range of different sizes. This property lends *S. cerevisiae* to be uniquely useful among the various display systems currently available. Additionally it is capable of conferring novel additional abilities upon living cells. As cell-surface engineering enters a new era of combinatorial bioengineering in the field of biotechnology there are more options for use of *S. cerevisiae* to play a significant role.

This commentary describes molecular display using *S. cerevisiae* and its applications in bioethanol production. We also highlight recent studies pertaining to anchoring phytase on *S. cerevisiae* cell surface for ethanol production.

Applications in expanding substrates for bioethanol production

Due to environmental pollution and the depletion of oil reserves, bioethanol has become one of the most promising alternatives to conventional fossil fuels because of its high octane value and combustion efficiency.7 Therefore, low production cost, high ethanol fermentation yield and expanding substrates are very important for industrial bioethanol refinery. In recent years, bioethanol production from different substrates using *S. cerevisiae* surface display system has been

Table 1. Applications of yeast cell surface display during bioethanol production.

Anchor protein	Strategy*	Products and substrates	Reference
α-Agglutinin	Co-display of EG and BGL for ethanol production	Ethanol production from β-glucan	16
α-Agglutinin	Co-display of EG, BGL, CBH for ethanol production	Ethanol production from amorphous cellulose	17
α-Agglutinin	Co-display of xylanase and β-xylosidase	Ethanol production from xylan	18
α-Agglutinin	Display of BGL	Ethanol production from xylose/cellobiose	19
α-Agglutinin	Co-display of BGL and EG from *A. oryzae*	Ethanol production from β-glucan	10,11
α-Agglutinin	Co-display of α-amylase, glucoamylase, EG, BGL, CBH	Ethanol production from cassava pulp	20
α-Agglutinin	Display of phytase	Ethanol production from starch	9
Aga2	Display of trifunctional minicellulosomes	Ethanol production from phosphoric acid-swollen cellulose	5
Aga2	Display of a trifunctional scaffoldin using a synthetic yeast consortium	Ethanol production from trifunctional minicellulosome	21
Aga2	Display of minicellulosomes (2 individual minicellulosins)	Ethanol production from trifunctional minicellulosome	4
Flo1p	Co-display of glucoamylase and *α*-amylase	Production of ethanol from raw corn starch	22
Flo1p	Co-display of glucoamylase and *α*-amylase	Ethanol production from starch	23

EG indicates endoglucanase; CBH indicates cellobiohydrolase I; BGL indicates β-glucosidase.
studied extensively. Table 1 summarizes some prominent bioethanol production strategies using cellulosic materials and starch. Lignocellulose is particularly attractive in this context because of its widespread abundance and low cost. However, the central technological impediment to more widespread utilization of lignocellulose is the absence of a low cost technology to break down its major component, cellulose. Degradation of cellulose requires cellulase, which includes endoglucanase, cellobiohydrolase and β-glucosidase. Cellulase is the primary cost for lignocellulosic biofuel production. However, *S. cerevisiae* does not produce sufficient amounts of cellulase. To develop an efficient bioethanol production process using cellulosic materials as substrates, different groups developed novel biocatalysts (Table 1).

Recently, *S. cerevisiae* was engineered through display of minicellulosomes on the cell surface to directly convert the microcrystalline cellulose into bioethanol. The resulting strain could produce 1,412 mg/L ethanol in fermentation of carboxymethyl cellulose. Cellulase-displaying *S. cerevisiae* was also used as whole-cell biocatalysts for bioethanol production from other substrates (Table 1). Kotaka et al. constructed transformants to co-display both β-glucosidase and endoglucanase from *Aspergillus oryzae*. The co-displaying strain could produce 7.94 g/L from 20 g/L barley β-glucan, in which the conversion ratio of ethanol from β-glucan was 69.6% of the theoretical ethanol concentration. After then, they constructed another recombinant *S. cerevisiae* strain that expresses glucoamylase from *A. oryzae*; this construct can produce 18.5 g/L ethanol from 50 g/L liquefied starch with a 64.9% ethanol conversion efficiency. More recently, Liu et al. engineered a *S. cerevisiae* strain that is capable of co-displaying β-glucosidase, endoglucanase and cellobiohydrolase I. The resulting strain could produce 2.9 g/L ethanol from 10 g/L phosphoric acid swollen cellulose. Similarly, an engineered strain of *S. cerevisiae* was developed to co-display heterologous α-amylase and glucoamylase; the resulting strain yielded 22.5 g/L of ethanol from 100 g/L of raw starch after 120 h of fermentation.

Disclosure of potential conflicts of interest
No potential conflicts of interest were disclosed.

Funding
This study was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Fundamental Research Funds for the Central Universities (JUSRP51611A, JUSRP51504), and the 111 Project (No.1112-06).
References

[1] Kondo A, Ueda M. Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 2004;64:28-40; PMID:14716465; http://dx.doi.org/10.1007/s00253-003-1492-3

[2] van der Vaart JM, Caro LH, Chapman JW, Klis FM, Verrips CT. Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 1995;177:3104-10; PMID:7768807

[3] Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM. Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked \(\beta-1,3/\beta-1,6 \)-glucan heteropolymer. Glycobiology 1996;6:337-45; PMID:8724141; http://dx.doi.org/10.1093/glycob/6.3.337

[4] Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA 2012;109:13260-5; PMID:22853950; http://dx.doi.org/10.1073/pnas.1209856109

[5] Wen F, Sun J, Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 2010;76:1251-60; PMID:20023102; http://dx.doi.org/10.1128/AEM.01687-09

[6] Tanaka T, Kondo A. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology. FEMS Yeast Res 2015;15:1-9; PMID:25243459

[7] Tanaka T, Yamada R, Ogino C, Kondo A. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 2012;95:577-91; PMID:22652839; http://dx.doi.org/10.1007/s00253-012-4175-0

[8] Lin Y, Chomvong K, Acosta-Sampson L, Estrella R, Galazka JM, Kim SR, Jin YS, Cate JH. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. Biotechnol Biofuels 2014;7:126; PMID:25435910

[9] Chen X, Xiao Y, Shen W, Govender A, Zhang L, Fan Y, Wang Z. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production. Appl Microbiol Biotechnol 2016;100:2449-58; PMID:26610799; http://dx.doi.org/10.1007/s00253-015-7170-4

[10] Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M. Direct ethanol production from barley \(\beta \)-glucan by sake yeast displaying Aspergillus oryzae \(\beta \)-glucosidase and endoglucanase. J Biosci Bioeng 2008;105:622-7; PMID:18640601; http://dx.doi.org/10.1263/jbb.105.622

[11] Kotaka A, Sahara H, Hata Y, Abe Y, Kondo A, Kato-Murai M, Kuroda K, Ueda M. Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Biosci Biotechnol Biochem 2008;72:1376-9; PMID:18460787; http://dx.doi.org/10.1271/bbb.70825

[12] Liu Z, Inokuma K, Ho SH, Haan R, Hasunuma T, van Zyl WH, Kondo A. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels 2015;8:162; PMID:26413161; http://dx.doi.org/10.1186/s13068-015-0344-6

[13] Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A. Efficient co-displaying and artificial ratio control of \(\alpha \)-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 2015;99:1655-63; PMID:25432675; http://dx.doi.org/10.1007/s00253-014-6250-1

[14] Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 2013;31:1200-23; PMID:23473968; http://dx.doi.org/10.1016/j.biotechadv.2013.02.009

[15] Liu K. Chemical composition of distillers grains, a review. J Agric Food Chem 2011;59:1508-26; PMID:21299215; http://dx.doi.org/10.1021/jf103512z

[16] Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulosytic enzymes. Appl Environ Microbiol 2002;68:5136-41; PMID:12324364; http://dx.doi.org/10.1128/AEM.68.10.5136-5141.2002

[17] Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 2004;70:1207-12; PMID:14766607; http://dx.doi.org/10.1128/AEM.70.2.1207-1212.2004

[18] Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xyllose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 2004;70:5407-14; PMID:15345427; http://dx.doi.org/10.1128/AEM.70.9.5407-5414.2004

[19] Katahira S, Mizuike A, Fukuda H, Kondo A. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xyllose- and cellobio(gosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 2006;72:1136-43; PMID:16575564; http://dx.doi.org/10.1007/s00253-006-0402-x

[20] Apiwatanapiwat W, Murata Y, Kosugi A, Yamada R, Kondo A, Araji T, Rughaworn P, Mori Y. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and \(\beta \)-glucosidase. Applied Microbiol Biotechnol 2011;90:377-384; http://dx.doi.org/10.1007/s00253-011-3115-8

[21] Tsai SL, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using
a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2010;76:7514-20; PMID:20889773; http://dx.doi.org/10.1128/AEM.01777-10

[22] Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol 2004;70:5037-40; PMID:15294847; http://dx.doi.org/10.1128/AEM.70.8.5037-5040.2004

[23] Seong KT, Katakura Y, Ninomiya K, Bito Y, Katahira S, Kondo A, Ueda M, Shioya S. Effect of flocculation on performance of arming yeast in direct ethanol fermentation. Appl Microbiol Biotechnol 2006;73:60-6; PMID:16699755; http://dx.doi.org/10.1007/s00253-006-0454-y