A Remarkable New Identity Satisfied by the Dirac Matrices of a Bilocal Field Theory

Patrick L. Nash

Department of Physics and Astronomy, Retired
The University of Texas at San Antonio
San Antonio, Texas 78249-0697

(Dated: May 23, 2021)

Abstract

In 1925 Elie Cartan described ‘triality’ \cite{4,5} as a symmetry between SO(8; \mathbb{C}) vectors and the two types of Spin(8; \mathbb{C}) spinor. It is known that the reduced generators of the Clifford algebra \mathbb{C}_8 defined on the real, eight-dimensional Euclidean space \mathbb{E}_8 satisfy an identity that guarantees the existence of matrix representations (acting on the vector and spinor bundles of \mathbb{E}_8) of triality.

Analogously, let \mathbb{E}_{4,4} denote a real eight-dimensional pseudo-Euclidean vector space that is endowed with an indefinite inner product with signature (+, +, +, −; −, −, −, +). As a normed vector space, \mathbb{E}_{4,4} \cong M_{3,1} \times M_{3,1}^\ast, where \text{M}_{3,1} and \text{M}_{3,1}^\ast denote real four-dimensional Minkowski spacetimes, with opposite signatures. The reduced generators (i.e., the Dirac matrices) of the pseudo Clifford algebra \mathbb{C}_{4,4} defined on \mathbb{E}_{4,4} satisfy an identity \cite{10,11} that guarantees the existence of invertible linear mappings between each of the two types of S0(4, 4; \mathbb{R}) spinor and the S0(4, 4; \mathbb{R}) vector, thereby realizing matrix representations of triality that act on the vector and spinor bundles of the spacetime \mathbb{E}_{4,4}.

In this note we generalize this identity (see Eq.[13]).

PACS numbers: 02.10.Yn

Keywords:

*Electronic address: Patrick299Nash@gmail.com
I. INTRODUCTION AND NOTATION

In 1925 Elie Cartan described ‘triality’ \[4\], \[5\] as a symmetry between three types of geometrical objects that may be defined on real, eight-dimensional \(\mathbb{R}^8\) and transform linearly under either \(\text{SO}(8; \mathbb{C})\) or \(\text{Spin}(8; \mathbb{C})\), namely a symmetry between \(\text{SO}(8; \mathbb{C})\) vectors and the two types of \(\text{Spin}(8; \mathbb{C})\) spinor (semi-spinors of the first type and semi-spinors of the second type, in the terminology of Cartan).

Analogously, let \(E_{4,4}\) denote a real eight-dimensional pseudo-Euclidean vector space that is endowed with an indefinite inner product with signature \((+,-,+,+; -,-,+,+)\) (see Gray \[6\]). As a normed vector space, \(E_{4,4} \cong M_{3,1} \times \ast M_{3,1}\), where \(M_{3,1}\) denotes a real four-dimensional Minkowski spacetime manifold that is endowed with the pseudo-Euclidean metric \(\eta_{3,1} = \text{diag}(1, 1, 1, -1)\), and \(\ast M_{3,1}\) denotes a real four-dimensional Minkowski spacetime that is endowed with the pseudo-Euclidean metric \(\text{diag}(-1, -1, -1, 1) = -\eta_{3,1}\). \(M_{3,1} \times \ast M_{3,1}\) may be regarded as a classical phase space of a single relativistic point particle, or a spacetime that carries a bilocal Minkowski field theory (appropriate restrictions on the automorphism groups of \(E_{4,4} \cong M_{3,1} \times \ast M_{3,1}\) are implied).

The reduced generators (i.e., the Dirac matrices) of the pseudo Clifford algebra \(\mathbb{C}_{4,4}\) defined on \(E_{4,4}\) satisfy an identity \[10\], \[11\] that guarantees the existence of invertible linear mappings between each of the two types of \(\text{SO}(4,4; \mathbb{R})\) spinor and the \(\text{SO}(4,4; \mathbb{R})\) vector, thereby realizing matrix representations of triality that act on the vector and spinor bundles of the spacetime \(E_{4,4}\). In this note we generalize this remarkable identity Eq.\[11\] to Eq.\[13\]. Simple applications of this formalism are given in Sections \[IV\] and \[V\].

\(E_{4,4}\) is an orientable differentiable manifold that, of course, admits a global, right-handed Cartesian atlas (as well as many other “curvilinear” and general coordinate systems). Let \(x \in E_{4,4}\) and let the 8 scalars \(x^A \in \mathbb{R}\), \(A, B, ... = 1, 2, ..., 8\), denote the Cartesian coordinates of \(x\) with respect to a global, right-handed Cartesian atlas. Let \(T_x(E_{4,4})\) denote the tangent space at \(x\). \(T_x(E_{4,4})\) is isomorphic to \(E_{4,4}\). The right-handed frame \(\{ \frac{\partial}{\partial x^A} : A = 1, \ldots , 8 \}\) that is adapted to these coordinates is orthogonal and pseudo-normal with respect to the metric defined below, and comprises a basis of \(T_x(E_{4,4})\). This coordinate system and frame are simply called a “canonical frame”. A vector field \(V\) at \(x\), \(V_x = V^A(x) \frac{\partial}{\partial x^A} \in T_x(E_{4,4})\), has contravariant components \(V^A(x)\) with respect to a canonical frame. Here the \(A, B, ... = 1, ... , 8\) are to regarded as \(T_x(E_{4,4})\) vector indices, and not as indices that enumerate the
II. DIRAC MATRICES ON $\mathbb{E}_{4,4}$

A. Representations of $SO(8; \mathbb{C})$

There is a well known relationship between Clifford algebras C_n and the spinor representations of the classical complex orthogonal groups; see, for example, Boerner, *The Representations of Groups*. In particular, the Clifford algebra C_8 may be defined as the algebra generated by a set of eight elements $e_j, j, k = 1, \ldots, 8$, that anticommute with each other and have unit square $e_j e_k + e_k e_j = 2 \delta_{jk} I_{16 \times 16}$, where $I_{16 \times 16} = 16 \times 16$ unit matrix. The scaled commutators $\frac{1}{4} (e_j e_k - e_k e_j)$ computed from an irreducible 16-dimensional representation of the e_j are the infinitesimal generators of a reducible 16-dimensional representation of $\text{Spin}(8; \mathbb{C})$, which is the universal double covering of the special orthogonal group $SO(8; \mathbb{C})$. This 16-dimensional representation of is fully reducible to the direct sum of two inequivalent irreducible 8×8 spin representations of the infinitesimal generators of $\text{Spin}(8; \mathbb{C})$. The fundamental irreducible vector representation of $SO(8; \mathbb{C})$ is also 8×8. The Dynkin diagram for $D_4 \cong SO(8; \mathbb{C})$ is symmetrical and pictured in Figure 1. The central node corresponds to the adjoint representation. The three outer nodes correspond to the vector representation (left-most node), type 1 spinor and type 2 spinor representations of $\text{Spin}(8; \mathbb{C})$. The “left-handed” and “right-handed” $\text{Spin}(8; \mathbb{C})$ spinors have counter parts that are denoted $\psi^{(1)}$ and $\psi^{(2)}$ in this paper, and transform, respectively, under two inequivalent real 8×8 irreducible spinor representations of $SO(4, 4; \mathbb{R})$ that we have called $D_{(1)}$ (type 1) and $D_{(2)}$ (type 2).

$SO(4, 4; \mathbb{R})$ is a real form of the classical complex orthogonal group $SO(8, \mathbb{C})$. $O(4, 4; \mathbb{R})$ (respectively, $SO(4, 4; \mathbb{R})$) may be defined as the group of all real matrices (respectively, with unit determinant) that preserve the norm squared of $V_x \in T_x(\mathbb{E}_{4,4})$, which is the quadratic
form
\[(V^8)^2 + (V^1)^2 + (V^2)^2 + (V^3)^2 - [(V^4)^2 + (V^5)^2 + (V^6)^2 + (V^7)^2].\]

\(O(4, 4; \mathbb{R})\) is a pseudo-orthogonal Lie group that possess two connected components \([2],[8]\), with \(SO(4, 4; \mathbb{R})\) being the identity component (the connected component containing the identity matrix). \(\text{Spin}(4, 4, \mathbb{R})\), alternatively denoted \(SO(4, 4; \mathbb{R})\), is the 2-to-1 covering group of \(SO(4, 4; \mathbb{R})\).

\(\mathbb{E}_{4,4}\) may be endowed with both \(SO(4, 4; \mathbb{R})\)-invariant and \(SO(4, 4; \mathbb{R})\)-invariant pseudo-Euclidean metrics that may each be represented in terms of an \(8 \times 8\) matrix with real matrix elements.

In a canonical \(\mathbb{E}_{4,4}\) frame the \(SO(4, 4; \mathbb{R})\)-invariant pseudo-Euclidean metric tensor \(G\) (respectively, inverse \(G^{-1}\)) has components \(G_{AB}\) (respectively, \((G^{-1})^{AB} = G^{BA} = G^{AB}\)) that are given by

\[G_{AB} = G^{AB} = \begin{pmatrix} \eta_{3,1} & 0 \\ 0 & -\eta_{3,1} \end{pmatrix}\]

The indefinite inner product is realized as \(T_x(\mathbb{E}_{4,4}) \times T_x(\mathbb{E}_{4,4}) \ni (V_x, V'_x) \mapsto < V_x, V'_x > = G_{AB} V^A_x V^B_x \in \mathbb{R}\).

B. Spinor representations of \(\overline{SO}(4, 4; \mathbb{R})\)

There exist two inequivalent real \(\overline{SO}(4, 4; \mathbb{R})\) basic 8-component spinor representations of \(\overline{SO}(4, 4; \mathbb{R})\). They are defined in Eqs.\([47]\) and simply denoted as \(D_{(1)}\) (type 1) and \(D_{(2)}\) (type 2). The \(\overline{SO}(4, 4; \mathbb{R})\) invariant metric, denoted \(\sigma\), is invariant under the action of both \(D_{(1)}\) and \(D_{(2)}\). Let \(S_x^{(j)}(\mathbb{E}_{4,4})\), \(j = 1, 2\), denote the two distinct basic real 8-component spinor vector spaces at \(x\), endowed with respective automorphism groups \(D_{(j)}\). As vector spaces each is isomorphic to \(\mathbb{E}_{4,4}\). (Thus, as vector spaces, both of the \(S_x^{(j)}(\mathbb{E}_{4,4})\) and \(T_x(\mathbb{E}_{4,4})\) are each isomorphic to \(\mathbb{E}_{4,4}\) but with different automorphism groups.) A spinor element \(\psi_{(j)} \in S_x^{(j)}(\mathbb{E}_{4,4})\) has components \(\psi_{(j)}^a \in \mathbb{R}\). In this note, for simplicity, we do not distinguish the spinor index on \(\psi_{(1)}\) from that on \(\psi_{(2)}\) [using a convention such as \(\psi_{(1)\dot{a}}\) and \(\psi_{(2)}^\dot{a}\) for spinor components, for example].

The disjoint union of tangent spaces \(T_x(\mathbb{E}_{4,4})\) at all points \(x \in \mathbb{E}_{4,4}\) gives the \(SO(4, 4; \mathbb{R})\) tangent bundle \(T(\mathbb{E}_{4,4})\) over \(\mathbb{E}_{4,4}\). In this case, it is a trivial bundle \(\mathbb{E}_{4,4} \times T_x(\mathbb{E}_{4,4}) \xrightarrow{\pi} \mathbb{E}_{4,4}\).
with the natural projection π of the first factor in the Cartesian product. Clearly there also exist two distinct trivial 16-dimensional real basic 8-component spinor bundles $S^{(1)}(E_{4,4})$ and $S^{(2)}(E_{4,4})$, each with base space $E_{4,4}$ but with fibers $S_{x}^{(1)}(E_{4,4})$ and $S_{x}^{(2)}(E_{4,4})$, respectively. For each of the three bundles we denote the natural projection of the first factor in the Cartesian product by π.

$E_{4,4}$ may be endowed with a $SO(4,4;\mathbb{R})$ invariant metric $\sigma^{[10]}$ that we represent as

$$\sigma = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

where 0 denotes the 4×4 zero matrix and 1 denotes the 4×4 unit matrix. The matrix elements of σ are denoted $\sigma_{ab} = \sigma_{ba}$, where $a, b, \ldots = 1, \ldots, 8$ are $SO(4,4;\mathbb{R})$ spinor indices (elaborated in Eqs. [47] through [53] below). Note that σ^{2} is equal to the unit matrix, so that the eigenvalues of σ of are ± 1. Since the trace of σ is zero, these eigenvalues occur with equal multiplicity.

The $SO(4,4;\mathbb{R})$ invariant (pseudo) norm-squared $\|\psi_{(j)}\|^2$ of basic real 8-component spinors $\psi_{(j)} \in S_{x}^{(j)}(E_{4,4})$ is the $SO(4,4;\mathbb{R})$-invariant quadratic form $\psi_{(j)}^a \sigma_{ab} \psi_{(j)}^b$. We define an oriented spinor basis e_a of $S_{x}^{(1)}(E_{4,4})$ normalized according to

$$\langle e_a, e_b \rangle = \sigma_{ab}$$

(the oriented spinor basis of $S_{x}^{(2)}(E_{4,4})$ also satisfies Eq. [3]), so that

$$\langle \psi_{(1)}, \psi_{(1)} \rangle = \langle \psi_{(1)}^a e_a, \psi_{(1)}^b e_b \rangle = \psi_{(1)}^a \sigma_{ab} \psi_{(1)}^b = \tilde{\psi}_{(1)}^a \sigma \psi_{(1)}$$

where the tilde denotes transpose. For brevity we employ the shorthand $u \in S^{(1)}(E_{4,4})$ and $u^a \in S^{(1)}(E_{4,4})$ to denote $e_a u^a \in S^{(1)}(E_{4,4})$, with similar conventions implied for $T(E_{4,4})$ and $S^{(2)}(E_{4,4})$.

We also define an oriented vector basis ϵ_A of $T_{x}(E_{4,4})$ normalized according to

$$\langle \epsilon_A, \epsilon_B \rangle = G_{AB}.$$

These two sets of basis vectors are related by Eq. [54] below.

The basic spinor representation of the pseudo-orthogonal group $SO(4,4;\mathbb{R})$ may be constructed from the irreducible generators t^A, $A = 1, \ldots, 8$, of the pseudo-Clifford algebra $C_{4,4}$ [2], [3], [9]. Following Brauer and Weyl we call such irreducible C_{2n-2} generators “reduced Brauer-Weyl generators” [3]. We begin the construction of a representation of
\(S0(4, 4; \mathbb{R}) \) by defining eight real \(8 \times 8 \) matrix reduced Brauer-Weyl generators \(\tau^A, \overline{\tau}^A, A, B, \ldots = 1,...,8 \), of the pseudo-Clifford algebra \(C_{4,4} \) that anticommute and have square \(\pm 1 \). (The \(\tau^A \) matrices play the role of the Dirac Matrices on \(\mathbb{E}_{4,4} \).) We realize this by requiring that the tau matrices satisfy (the tilde denotes transpose)

\[
\sigma \tau^A = \overline{\tau}^A = \overline{\tau}^A \sigma \quad (5)
\]

and

\[
\tau^A \tau^B + \tau^B \tau^A = 2 \mathbb{I}_{8 \times 8} \, G^{AB} = \tau^A \tau^B + \tau^B \tau^A, \quad (6)
\]

where \(\mathbb{I}_{8 \times 8} \) denotes the \(8 \times 8 \) unit matrix. Denoting the matrix elements of \(\tau^A \) by \(\tau^A_{ab} \), we may write Eq.\([5]\) as

\[
\overline{\tau}^A_{ab} = \tau^A_{ba}, \quad (7)
\]

where we have used \(\sigma \) to lower the spinor indices. In general, \(\sigma \) (respectively, \(\sigma^{-1} \)) will be employed to lower (respectively, raise) lower case Latin indices (i.e. a \(S0(4, 4; \mathbb{R}) \) spinor index of either type).

The following identity is occasionally useful. Let \(\psi \in S^{(1)}(\mathbb{E}_{4,4}) \) be an arbitrary real eight component type-1 spinor field (a section of the type-1 spinor bundle \(S^{(1)}(\mathbb{E}_{4,4}) \)). Consider

\[
\overline{\psi} \sigma \tau^A \tau_B \psi = \left(\overline{\psi} \sigma \tau^A \tau_B \psi \right)^T = \left(\overline{\psi} \sigma \tau_B \tau^A \psi \right), \text{ by Eq.}\,[5]
\]

\[
= \frac{1}{2} \overline{\psi} \sigma \left(\tau^A \tau_B + \tau_B \tau^A \right) \psi
\]

\[
= \delta^A_B \overline{\psi} \sigma \psi, \text{ using Eq.}\,[6]. \quad (8)
\]

We adopt a real irreducible \(8 \times 8 \) matrix representation of the tau matrices that is adapted to the \(X^8 \)-axis, in which \(\tau^8 = \mathbb{I}_{8 \times 8} = \overline{\tau}^8 \). Then, by Eq.\,[6], \(\overline{\tau}^A = -\tau^A \) for \(A = 1, \ldots, 7 \). Hence, again by Eq.\,[6], \((\tau^A)^2 \) is equal to \(-\mathbb{I}_{8 \times 8} \) for \(A = 1,2,3 \) and is equal to \(+\mathbb{I}_{8 \times 8} \) for \(A = 4,5,6,7,8 \). The Appendix displays one possible representation.

III. THE NEW IDENTITY

The tau matrices verify an important identity \([10], [11]\) that encodes triality: Let \(M \) be any \(8 \times 8 \) matrix satisfying (recall that the tilde denotes transpose)

\[
\overline{\sigma} \, \widetilde{M} = \sigma \, M \quad (9)
\]
(i.e., σM is a symmetric matrix) and moreover transforming under $SO(4, 4; \mathbb{R})$ according to

$$M \mapsto D_{(1)} M D_{(1)^{-1}}$$

(see Eq. 11, below). Then $[10], [11]$

$$\tau_A M \tau^A = \mathbb{I}_{8 \times 8} \text{tr}(M),$$

where, as above, $\mathbb{I}_{8 \times 8}$ denotes the 8×8 unit matrix. This is a remarkable identity because this linear combination of eight terms involving an arbitrary real 8×8 symmetric matrix σM is proportional to the unit matrix, and there are 36 linearly independent real 8×8 matrices M such that σM is a symmetric matrix (these are given below in Eq. 14).

This is a special case of another simple, but also remarkable, general identity that we record as

Theorem III.1 Let M be an arbitrary 8×8 matrix that transforms under $SO(4, 4; \mathbb{R})$ according to $M \mapsto D_{(1)} M D_{(1)^{-1}}$. M has matrix elements M^a_b. Note that $M - \sigma^{-1}(\sigma M)$ is twice σ^{-1} times the anti-symmetric part of σM. The generalization of Eq. 11 is

$$\tau_{(\mu)} M \tau^\mu = -\tau_{(\mu)} \text{tr}(\tau^\mu M) + 2 \left(\mathbb{I}_{8 \times 8} \text{tr}(M) + M - \sigma^{-1}(\sigma M) \right)$$ \hspace{1cm} (12)

or

$$(\tau_{(\mu)})^a_b (\tau^\mu)^c_d = - (\tau_{(\mu)})^a_d (\tau^\mu)^c_b + 2 (\delta^c_d \delta^a_b - \delta^a_d \delta^c_b - \sigma^{ac} \sigma_{bd})$$ \hspace{1cm} (13)

The Proof of Theorem III.1 is straightforward. Firstly, if σM is symmetric then Eq. 12 devolves to Eq. 11. What if σM has no symmetry? Eqs. 12, 13 are linear in M. Expand M in terms of a linear combination of the 64 basis 8×8 matrices comprised of the $36 = 35 + 1$ basis matrices $M_s \in S_{8 \times 8}$ such that σM_s is symmetric, plus the $28 = 7 + 21$ basis matrices $M_a \in A_{8 \times 8}$ such that σM_a is anti-symmetric, and verify the theorem component by component. The set of $35 + 1$ matrices $S_{8 \times 8}$ is given by

$$S_{8 \times 8} = \left\{ \tau^{(A)} \tau^{(B)} \tau^{(C)} \right\}_{\{A,B,C\} \in \{1, \ldots, 7\} \& A > B > C}, \mathbb{I}_{8 \times 8} \right\},$$

and each element of this set clearly verifies Theorem III.1.

The $7 + 21$ matrices $M_a \in A_{8 \times 8}$ such that σM_a is anti-symmetric are given by

$$A_{8 \times 8} = \left\{ \tau^{(A)} \right\}_{A \in \{1, \ldots, 7\}}, \tau^{(A)} \tau^{(B)} \right\}_{\{A,B\} \in \{1, \ldots, 7\} \& A > B}}.$$ \hspace{1cm} (15)
Each of $M_a \in \{\tau^{(A)}\}_{A \in \{1,\ldots,7\}}$ satisfies $\tau(\mu) M_a \tau(\mu) = -4 M_a$ as well as $\tau(\mu) \text{tr} (\tau(\mu) M_a) = +8 M_a$. Each of $M_a \in \{\tau^{(A)}\}_{\{A,B\} \in \{1,\ldots,7\} \& A > B}$ satisfies $\tau(\mu) M_a \tau(\mu) = +4 M_a$ as well as $\tau(\mu) \text{tr} (\tau(\mu) M_a) = 0$. Therefore each element of $A_{8 \times 8}$ satisfies Eqs. [12,13] and the Theorem [III.1] is proven. □

IV. BILOCAL TETRAD

Let $u = u(x^a) \in S^{(1)}(\mathbb{E}_{4,4})$ be a real eight component type-1 spinor field (a section of the type-1 spinor bundle $S^{(1)}(\mathbb{E}_{4,4})$). u is called the “unit field” for reasons that are explained in Section [VI]. In a quantum theory the u^a satisfy commutation relations rather than anti-commutation relations because of triality. We assume that $\langle u, u \rangle = \tilde{u} \sigma u > 0$ everywhere on $\mathbb{E}_{4,4} = \pi \left(S^{(1)}(\mathbb{E}_{4,4}) \right)$.

For brevity a vielbein set of 8 independent vector fields is simply referred to as a tetrad (vierbein). In this Section and the next we replace the indices $A, B, \ldots = 1, \ldots, 8$ with the indices $(\mu), (\nu), \ldots$, where $\mu, \nu, \ldots = 1, \ldots, 8$, in order to display this information in a more conventional form. Summarizing, $\alpha, \beta, \ldots, \mu, \nu, \ldots, a, b, \ldots = 1, \ldots, 8$. We also employ $\alpha_4, \beta_4, \ldots, \mu_4, \nu_4, \ldots = 1, \ldots, 4$.

Let $\psi \in S^{(2)}(\mathbb{E}_{4,4})$ denote a real eight component type-2 spinor field that realizes the bilocal Cartesian coordinates $x \equiv (x^\alpha, x^{4+\alpha})$ of $\pi \left(S^{(2)}(\mathbb{E}_{4,4}) \right) \cong M_{3,1} \times \ast M_{3,1}$. The Cartesian coordinates $x^\alpha = \{x\}_\alpha$ are assumed to be C^∞ functions of ψ, $x^\alpha = x^\alpha(\psi)$ such that $\text{det} \left(\frac{\partial x^\alpha}{\partial \psi} \right) \neq 0$, so that the inverse $\psi^a = \psi^a(x^\alpha)$ always exists. We abuse notation and write $u = u(x^\alpha) = u(x^\alpha(\psi)) = u(\psi^a)$. The mass dimension of ψ, $[\psi]$, is -1: $[\psi] = \text{LENGTH} = 1/\text{MASS} = [\text{Planck length}]$.

We define a spacetime tetrad $E^{(\mu)}$ with components $E_{\alpha}^{(\mu)}$ as

$$E_{\alpha}^{(\mu)} = \frac{1}{\sqrt{u \sigma u}} \tilde{u} \sigma \tau(\mu) \frac{\partial}{\partial x^\alpha} \psi. \quad (16)$$

Remark: Let $f : \mathbb{E}_{4,4} \to \mathbb{R}$ and $\frac{\partial f}{\partial x^\alpha} = f_{,\alpha}$. Let $r : \mathbb{E}_{4,4} \to \mathbb{R}^+$. The tetrad $E^{(\mu)}$ may be made to transform covariantly under the local projective transformation

$$u \mapsto u' = r(x^\alpha) u$$
$$\psi \mapsto \psi' = r(x^\alpha) \psi \quad (17)$$
by replacing the gradient operator $\frac{\partial}{\partial x^\alpha}$ with

$$D_\alpha = I_{8\times8} \frac{\partial}{\partial x^\alpha} - \frac{1}{\tilde{u} \sigma u} \tau_{(\mu)} \frac{\partial u}{\partial x^\alpha} \otimes \tilde{u} \sigma \tau_{(\mu)}$$

(18)

because $D'_\alpha \psi' = (r \psi + r, \psi) - \frac{1}{r^2} \tilde{u} \sigma u \tau_{(\mu)} (ru, \psi + ru, \psi) \otimes r \tilde{u} \sigma \tau_{(\mu)} (r \psi) = r D_\alpha \psi$, since $\frac{1}{r^2} \tilde{u} \sigma u \tau_{(\mu)} (ru, \psi + ru, \psi) = r \psi$, using Eq. [11] or Eq. [12].

Therefore, if

$$E_\alpha(\mu) = \frac{1}{\sqrt{\tilde{u} \sigma u}} \tilde{u} \sigma \tau_{(\mu)} D_\alpha \psi.$$

(19)

then

$$E_\alpha(\mu) \mapsto E'_\alpha(\mu) = r(x) E_\alpha(\mu)$$

(20)

under the local projective transformation Eq.[17].

This local projective transformation generates a conformal transformation of the metric tensor. ■

Lemma IV.1 The inverse of the tetrad has components $E^\alpha_{(\mu)}$

$$E^\alpha_{(\mu)} = \frac{1}{\sqrt{\tilde{u} \sigma u}} \frac{\partial x^\alpha}{\partial \psi_{(\mu)}} u.$$

(21)

Proof:

$$E^\alpha_{(\mu)} E^\beta_{(\nu)} = \left(\frac{1}{\sqrt{\tilde{u} \sigma u}} \frac{\partial x^\alpha}{\partial \psi_{(\mu)}} u \right) \left(\frac{1}{\sqrt{\tilde{u} \sigma u}} \tilde{u} \sigma \tau_{(\mu)} \frac{\partial}{\partial x^\beta} \psi \right)$$

$$= \frac{1}{\tilde{u} \sigma u} \frac{\partial x^\alpha}{\partial \psi} \tau_{(\mu)} u \tilde{u} \sigma \tau_{(\mu)} \frac{\partial}{\partial x^\beta} \psi$$

$$= \frac{\partial x^\alpha}{\partial \psi} \frac{\partial x^\beta}{\partial x^\beta} \text{ by Eq. [11] or Eq. [12]}$$

$$= \delta^\alpha_\beta$$

(22)

QED ■

Since a matrix commutes with its inverse we also have

$$E^\alpha_{(\mu)} E^\alpha_{(\nu)} = \delta^\alpha_{(\nu)}.$$

(23)
Let’s look at an example. We make the self-consistent assumption that there exists a constant spacetime tetrad \(E^{(\mu)} \) with constant components \(E_{\alpha}^{(\mu)} \), which might verify \(E_{\alpha}^{(\mu)} = \delta^{(\mu)}_{\alpha} \), for example. Pick a constant unit field \(u \) that satisfies \(\tilde{u} \sigma u > 0 \), define

\[
\psi = \frac{1}{\sqrt{\tilde{u} \sigma u}} \tau^{(\nu)} u \ E^{(\nu)}_{\beta} x^\beta
\]

(compare with the twistor type) and compute

\[
E^{(\mu)}_{\alpha} = \frac{1}{\sqrt{\tilde{u} \sigma u}} \tilde{u} \sigma \tau^{(\mu)} \frac{\partial}{\partial x^\alpha} \psi
\]

\[
= \frac{1}{\tilde{u} \sigma u} \tilde{u} \sigma \tau^{(\mu)} \frac{\partial}{\partial x^\alpha} \left(\tau^{(\nu)} u \ E^{(\nu)}_{\beta} x^\beta \right)
\]

\[
= \frac{1}{\tilde{u} \sigma u} \left(\tilde{u} \sigma \tau^{(\mu)} \tau^{(\nu)} u \right) E^{(\nu)}_{\alpha}
\]

\[
= E^{(\mu)}_{\alpha} \text{ using the identity of Eq.[8]}
\]

The pseudo-Riemannian metric associated to this tetrad field is

\[
g_{\alpha\beta} = E^{(\mu)}_{\alpha} \eta_{(\mu)(\nu)} E^{(\nu)}_{\beta}
\]

\[
= \frac{1}{\tilde{u} \sigma u} \tilde{u} \sigma \tau^{(\mu)} \frac{\partial}{\partial x^\alpha} \psi \eta_{(\mu)(\nu)} \tilde{u} \sigma \tau^{(\nu)} \frac{\partial}{\partial x^\beta} \psi
\]

\[
= \frac{1}{\tilde{u} \sigma u} \left(\tilde{u} \sigma \tau^{(\mu)} \frac{\partial}{\partial x^\alpha} \psi \right) \eta_{(\mu)(\nu)} \tilde{u} \sigma \tau^{(\nu)} \frac{\partial}{\partial x^\beta} \psi
\]

\[
= \frac{1}{\tilde{u} \sigma u} \frac{\partial}{\partial x^\alpha} \tilde{u} \sigma \tau^{(\mu)} u \eta_{(\mu)(\nu)} \tilde{u} \sigma \tau^{(\nu)} \frac{\partial}{\partial x^\beta} \psi
\]

\[
= \frac{1}{\tilde{u} \sigma u} \frac{\partial}{\partial x^\alpha} \tilde{u} \sigma \left(\tau^{(\mu)} u \tilde{u} \sigma \tau^{(\nu)} \right) \frac{\partial}{\partial x^\beta} \psi
\]

\[
= \omega^{\alpha}_{\beta} \text{ using Eq.[11] or Eq.[12]}
\]

\[
= \omega^{a}_{b} \text{ using the coordinate-transform of } \sigma_{ab}
\]

\[
= \omega^{a}_{b} \text{ using Eq.[11] or Eq.[12]}
\]

\[
= \omega^{a}_{b}
\]

which is not an induced metric but, as one may expect, is the coordinate-transform of \(\omega_{ab} \).

The \(4 + 4 = 8 \) dimensional spacetime \(\pi \left(S^{(1)}(\mathbb{E}_{4,4}) \right) \) endowed with this metric has zero curvature.

V. SCHWINGER REAL REPRESENTATION OF QED

Julian Schwinger \[15\] has given a representation of charged fermion field operators for an electron in terms of real anti-commuting \(8 \)-component spinor fields. Therefore it may be of
interest to evaluate, using the new identity Eq.[12] and the above tetrad, and with arbitrary Schwinger spinor (bilocal) fields F and H, the operator

$$H \gamma^\mu \frac{\partial}{\partial x^\mu} F = H \gamma^\mu \frac{1}{\sqrt{u} \sigma u} \frac{\partial x^\alpha}{\partial \psi} \tau(\mu) u \frac{\partial}{\partial x^\alpha} F$$

$$= \frac{1}{\sqrt{u} \sigma u} H \gamma^\mu \frac{\partial F}{\partial \psi} \tau(\mu) u$$

$$= \left[- \left(\tau(\mu) \right)^a_d \left(\tau(\mu) \right)^c_b + 2 \left(\delta^a_d \delta^c_b + \delta^a_b \delta^c_d - \sigma^{ac} \sigma_{bd} \right) \right] H \frac{u^b}{\sqrt{u} \sigma u} \frac{\partial F}{\partial \psi^a},$$

which may easily be further reduced.

VI. ALGEBRAIC SIGNIFICANCE OF THE SPINOR u, THE UNIT FIELD

Let $u \in S^{1}(E_{4,4})$ be a type-1 spinor field (a section of the type-1 spinor bundle $S^{1}(E_{4,4})$), with $< u, u > = \bar{u} \sigma u > 0$ everywhere on the base space $E_{4,4}$, but being otherwise arbitrary. u, may be called a “unit field”. One may define a special $E_{4,4}$ frame field \mathfrak{g} in terms of u and the tau matrices as follows. Let M be the real 8×8 matrix defined by

$$M = \frac{1}{\bar{u} \sigma u} u \otimes \bar{u} \sigma = \frac{1}{\bar{u} \sigma u} u \bar{u} \sigma$$

$$M^a_b = \frac{1}{\bar{u} \sigma u} u^a u^c \sigma_{cb}$$

Then M obeys Eq.[9] and transforms under $SO(4,4;\mathbb{R})$ according to Eq.[10]. Using Eq.[11] or Eq.[12] to evaluate $\tau_A M \tau^A$ yields

$$\mathbb{I}_{8 \times 8} = \frac{1}{\bar{u} \sigma u} \tau_A \left(u \bar{u} \sigma \right) \tau^A = \left(\frac{1}{\sqrt{u} \sigma u} \tau_A u \right) \left(\frac{1}{\sqrt{u} \sigma u} \tilde{u} \sigma \tau^A \right)$$

This is a resolution of the identity on $E_{4,4}$. Alternatively this relation may be interpreted as a completeness condition verified by the $E_{4,4}$ orthogonal frame \mathfrak{g} whose components \mathfrak{g}^A_a are given by

$$\mathfrak{g}^A_a = \frac{1}{\sqrt{u} \sigma u} \tau^a \tau^b u^b$$

and its inverse is

$$\mathfrak{g}_a = \frac{1}{\sqrt{u} \sigma u} u^c \sigma_{cb} \tau^b_{A}$$

Accordingly Eq.[29] may be expressed in index notation as

$$\{ \mathbb{I}_{8 \times 8} \}^a_b = \delta^a_b = \mathfrak{g}^A_a \mathfrak{g}^A_b$$
Since a matrix commutes with its inverse we also have

\[\delta^A_B = \bar{\varphi}^A_a \bar{\varphi}^a_B. \] (33)

We have defined an oriented spinor basis \(e_a \) of \(S_x^{(1)}(\mathbb{E}_{4,4}) \) in Eq[3] and an oriented vector basis \(\epsilon_A \) of \(T_x(\mathbb{E}_{4,4}) \) in Eq[4]. The two are related by

\[\epsilon_A = e_a \bar{\varphi}^a_A \quad \text{and} \quad e_a = \epsilon_A \bar{\varphi}^a_A \] (34)

A. Split octonion algebra over \(\mathbb{R}, \mathcal{O}_s(\mathbb{R}) \)

Let \(\mathcal{O}_s(\mathbb{R}) \) denote the split octonion algebra over \(\mathbb{R} \) [17], [16], [11], [12], [13].

A nonassociative alternative multiplication of the oriented spinor basis \(e_a \) (respectively, oriented vector basis \(\epsilon_A \)) may be defined [11] that endows the real vector space \(S_x^{(1)}(\mathbb{E}_{4,4}) \) (respectively, \(T_x(\mathbb{E}_{4,4}) \)) with the structure of a normed nonassociative algebra with multiplicative unit that is isomorphic to the split octonion algebra over \(\mathbb{R}, \mathcal{O}_s(\mathbb{R}) \). This is accomplished by specifying the multiplication constants \(m_{ab}^c \) (respectively, \(m_{AB}^C \)) of the algebra, which verify

\[e_a e_b = e_c m_{ab}^c \]
\[\epsilon_A \epsilon_B = \epsilon_C m_{AB}^C \] (35)

The set of multiplication constants \(m_{ab}^c \) (respectively, \(m_{AB}^C \)) is defined by [11]

\[m_{ab}^c = \bar{\varphi}^a_A \tau_A^a c_b \]
\[m_{AB}^C = \bar{\varphi}^C_a \tau_A^a c_b \bar{\varphi}^b_B. \] (36)

It has been shown that the nonassociative product defined by Eq.35 (respectively, Eq.36) of the spinor basis \(e_a \) (respectively, of the vector basis \(\epsilon_A \)) endows the respective real vector space with the structure of the split octonion algebra over the reals [11]. This is explicit in the multiplication table below, which employs the representation of the tau matrices given in Appendix 3 and \(u^a = \frac{1}{\sqrt{2}}(0, 1, 0, 0, 0, 1, 0, 0) \), which is an eigenvector of \(\sigma \) with eigenvalue +1.
B. Multiplicative identity

An element $\Psi \in O_s(\mathbb{R})$ may be realized as

$$\Psi = e_a \psi^a = \epsilon_A \hat{\psi}^A$$

$$\hat{\psi}^A = \hat{\mathcal{S}}_A^a \psi^a \iff \psi^a = \hat{\mathcal{S}}_A^a \hat{\psi}^A.$$ \hspace{1cm} (37)

The normalized fiducial unit field $O_s(\mathbb{R}) \ni \sqrt{\langle u, u \rangle} \ u = \sqrt{\langle u, u \rangle} \ \epsilon_a u^a = \frac{1}{\sqrt{\langle u, u \rangle}} \ \tau_8^a \ u^b = e_a \hat{\mathcal{S}}_8^a = \epsilon_8 = \textbf{multiplicative identity}$ element of the split octonion algebra $O_s(\mathbb{R})$ \hspace{1cm} (38)

Multiplicative identity $= \frac{1}{\sqrt{\langle u, u \rangle}} \ \epsilon_a u^a = \frac{1}{\sqrt{\langle u, u \rangle}} \ u = \epsilon_8.$

VII. CONCLUDING REMARK

The reduced generators (i.e., the Dirac matrices) of the pseudo Clifford algebra $\mathbb{C}_{4,4}$ defined on $\mathbb{E}_{4,4}$ satisfy a remarkable identity Eq.[13] that defines invertible linear mappings between each of the two types of $SO(4,4;\mathbb{R})$ spinor and the $SO(4,4;\mathbb{R})$ vector, thereby admitting matrix representations of triality on this spacetime $\mathbb{E}_{4,4}$. The trialities are given below in Eqs[55] and [56].
VIII. APPENDIX 1: TRANSFORMATION UNDER ACTION OF $\overline{S0(4,4;\mathbb{R})}$

The special Lorentz transformation properties of the theory may be determined by constructing a real reducible 16×16 matrix representation of $\overline{S0(4,4;\mathbb{R})}$ utilizing the irreducible generators t^A, $A = 1, \ldots, 8$ of the (pseudo-) Clifford algebra $C_{4,4}$. Following Lord’s general procedure [9] we define the irreducible generators t^A as

$$t^A = \begin{pmatrix} 0 & \tau^A \\ \tau^A & 0 \end{pmatrix}. \quad (39)$$

Let $g \in \overline{S0(4,4;\mathbb{R})}$. The 16×16 basic spinor representation of $S0(4,4;\mathbb{R})$ is reducible into the two real 8×8 inequivalent irreducible spinor representations $D^{(1)}_g$ and $D^{(2)}_g$ of $\overline{S0(4,4;\mathbb{R})}$. The reduced generators of the two real 8×8 spinor representations $D^{(1)}_g$ and $D^{(2)}_g$ of $\overline{S0(4,4;\mathbb{R})}$ follow from the calculation of the infinitesimal generators

$$t^{AB} = \left(\begin{array}{cc} \tau^A \tau^B - \tau^B \tau^A & 0 \\ 0 & \tau^A \tau^B - \tau^B \tau^A \end{array} \right)$$

$$= 4 \left(\begin{array}{cc} D^{(1)}_{AB} & 0 \\ 0 & D^{(2)}_{AB} \end{array} \right), \quad (40)$$

of the 16-component spinor representation of $\overline{S0(4,4;\mathbb{R})}$. We see, as is in fact well known from the general theory, that the 16-component spinor representation of $\overline{S0(4,4;\mathbb{R})}$ is the direct sum of two (inequivalent) real 8×8 irreducible spinor representations $D^{(1)}_g = D^{(1)}(g)$ and $D^{(2)}_g = D^{(2)}(g)$ of $\overline{S0(4,4;\mathbb{R})} \ni g$ that are generated by $D^{(1)}_{AB}$ and $D^{(2)}_{AB}$ respectively, where

$$4 D^{(1)}_{AB} = \tau^A \tau^B - \tau^B \tau^A \quad (41)$$

and

$$4 D^{(2)}_{AB} = \tau^A \tau^B - \tau^B \tau^A \quad (42)$$

For completeness we remark that the generators of the two spinor types are images of
the projection operators

\[\chi_\pm = \frac{1}{2} (1 \pm t^9) \]
\[\chi_+ = \left(\begin{array}{cc} I_{8\times8} & 0 \\ 0 & 0 \end{array} \right) \]
\[\chi_- = \left(\begin{array}{cc} 0 & 0 \\ 0 & I_{8\times8} \end{array} \right) , \]

(43)

where

\[t^9 = t^1 t^2 t^3 t^4 t^5 t^6 t^7 t^8 = \begin{pmatrix} \tau^0 & 0 \\ 0 & \tau^0 \end{pmatrix} \].

(44)

Here

\[\tau^0 = \tau^1 \tau^2 \tau^3 \tau^4 \tau^5 \tau^6 \tau^7 = \tau^1 \tau^2 \tau^3 \tau^4 \tau^5 \tau^6 \tau^7 \]

(45)

and

\[\tau^0 = \tau^1 \tau^2 \tau^3 \tau^4 \tau^5 \tau^6 \tau^7 = -\tau^1 \tau^2 \tau^3 \tau^4 \tau^5 \tau^6 \tau^7 = -\tau^0 \]

(46)

The representation of the tau matrices is irreducible. \(\tau^0 \) has square equal to \(+I_{8\times8}\) and commutes with each of the \(\tau^A \) matrices (and therefore with all of their products). Therefore we conclude that \(\tau^0 = \pm I_{8\times8} \) in any irreducible representation.

Let \(\omega_{AB} = -\omega_{BA} \in \mathbb{R} \), \(A, B = 1, \ldots, 8 \), enumerate a set of 28 real parameters that coordinatize \(g = g(\omega) \in S0(4, 4; \mathbb{R}) \). Also, let \(L = L(g) \in SO(4, 4; \mathbb{R}) \) have matrix elements \(L^A_B \), \(\omega^\sharp \) denote the real \(8 \times 8 \) matrix with matrix elements \(\omega^A_B = G^{AC} \omega_{CB} \), \(\omega_1 = \frac{1}{2} \omega_{AB} D_{(1)}^{AB} \) and \(\omega_2 = \frac{1}{2} \omega_{AB} D_{(2)}^{AB} \). We find that

\[D_{(1)} = D_{(1)}(g) = \exp \left(\frac{1}{2} \omega_1 \right) \]
\[D_{(2)} = D_{(2)}(g) = \exp \left(\frac{1}{2} \omega_2 \right) \]
\[L^A_B = L^A_B(g) = \left\{ \exp \left(\omega^\sharp \right) \right\}^A_B \]

(47)

where, under the action of \(\widetilde{S0}(4, 4; \mathbb{R}) \),

\[\widetilde{D}_{(1)}^{AB} \sigma = -\sigma D_{(1)}^{AB} \Rightarrow \widetilde{D}_{(1)}(g) = \sigma D_{(1)}^{-1} \]

(48)

\[\widetilde{D}_{(2)}^{AB} \sigma = -\sigma D_{(2)}^{AB} \Rightarrow \widetilde{D}_{(2)}(g) = \sigma D_{(2)}^{-1} \]

(49)

\[L^A_C G_{AB} L^B_D = G_{CD} = \left\{ \tilde{L}_{CG} \right\}_C_D \]

(50)
The canonical 2-1 homomorphism $S_0(4, 4; R) \to S_0(4, 4; R) : g \mapsto L(g)$ is given by

$$8L_B^A = \text{tr} \left(D(1)^{-1} \tau^A D(2) \tau^B \right) G_{CB},$$

where tr denotes the trace. Note that $D(1)(\omega) = D(2)(\omega)$ when $\omega_{AB} = 0$, i.e., when one restricts $S_0(4, 4; R)$ to

$$S_0(3, 4; R) = \left\{ g \in S_0(4, 4; R) \mid g = \begin{pmatrix} \exp \left(\frac{1}{4} \omega_{AB} D(1)^{AB} \right) & 0 \\ 0 & \exp \left(\frac{1}{4} \omega_{AB} D(2)^{AB} \right) \end{pmatrix} \text{ and } \omega_{AB} = 0 \right\}$$

This is one of the real forms of Spin$(7, C)$.

IX. APPENDIX 2: TRIALITY AND $S_0(4, 4; R)$ COVARIANT MULTIPLICATIONS

Let $V_1, V_2,$ and V_3 be vector spaces over R. A duality is a nondegenerate bilinear map $V_1 \times V_2 \to R$. A triality is a nondegenerate trilinear map $V_1 \times V_2 \times V_3 \to R$. A triality may be associated with a bilinear map that some authors call a “multiplication” [1] by dualizing, $V_1 \times V_2 \to *V_3 \cong V_3$.

Let u denote the unit field and let $\psi(1) \in S_x^{(1)}(E_{4,4})$ and $\psi(2) \in S_x^{(1)}(E_{4,4})$. Under the action of $S_0(4, 4; R)$ we assume that $u \mapsto \bar{u} = D(1) \ u$, $\psi(1) \mapsto \bar{\psi}_1 = D(1) \ \psi(1)$ and $\psi(2) \mapsto \bar{\psi}_2 = D(2) \ \psi(2)$. Consider the following two multiplications that possess covariant transformation laws under the action of $S_0(4, 4; R) \Rightarrow S_0(4, 4; R)$. The first multiplication $m_1^A : E_{4,4} \times E_{4,4} \to E_{4,4}$ is defined by

$$Q^A = \frac{1}{\sqrt{\bar{u} \sigma u}} \bar{u} \sigma \bar{u} \tau^A \psi(2).$$

For fixed u^a, $Q^A \in E_{4,4}$ depends on 8 real parameters arranged into the type-2 spinor $\psi(2)$.

The second multiplication $m_2^{AB} : E_{4,4} \times E_{4,4} \to V_3$ has an image in $V_3 \cong E_{4,4} \times E_{4,4}$, and depends on 8 real parameters (for fixed u^a) arranged into the type-1 spinor $\psi(1)$:

$$Q^{AB} = \frac{1}{\sqrt{\bar{u} \sigma u}} \bar{u} \sigma \bar{u} \tau^A \tau^B \psi(1).$$
For fixed \(u \), \(Q^{AB} \) possesses only 8 degrees of freedom corresponding to the 8 independent degrees of freedom of \(\psi_{(1)} \), so we also refer to this map as a “multiplication.”

Eq. \([56]\) may be easily be solved for the components \(\psi_{(1)}^a = \psi_{(1)}^a (Q^{AB}) \). Consider

\[
\begin{align*}
\frac{1}{\sqrt{u \sigma u}} (\tau_B) (Q^{AB} \tau_{(A)} u) &= \frac{1}{u \sigma u} (\tau_B) (\tau_{(A)} u) \left(\tilde{u} \sigma \tau^A \tau^B \psi_{(1)} \right) \\
&= \frac{1}{u \sigma u} (\tau_B) (\tau_{(A)} u \tilde{u} \sigma \tau^{(A)}) \tau^B \psi_{(1)} \\
&= (\tau_B) \tau^B \psi_{(1)} \text{ by Eq.}\left[11\right] \text{ or Eq.}\left[12\right] \\
&= (\tau_B \tau^B) \psi_{(1)} \\
&= 8 \psi_{(1)}
\end{align*}
\]

Similarly,

\[
\psi_{(2)} = \frac{1}{\sqrt{u \sigma u}} \tau_A u Q^A. \tag{58}
\]

In this paragraph Greek indices run from 1 to 4, \(\alpha, \beta, \ldots, \mu, \nu, \ldots \) = 1, \ldots, 4, while Latin continue to run from 1 to 8, \(A, B, \ldots, a, b, \ldots \) = 1, \ldots, 8. It is convenient to define a \(\text{SO}(3, 1; \mathbb{R}) \)-invariant symplectic structure \(\Omega \) on \(\mathbb{E}_{4,4} \) (and a complex structure on the split octonion algebra) by

\[
\Omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \tag{59}
\]

where 0 denotes the 4 x 4 zero matrix and 1 denotes the 4 x 4 unit matrix. The \(Q^{AB} \) may be represented in terms of an arbitrary antisymmetric \(M_{3,1} \) rank 2 tensor \(F^\beta_\alpha = -F^\alpha_\beta \) and two \(\text{SO}(3, 1; \mathbb{R}) \) scalars \(x_4 \) and \(x_8 \) according to

\[
Q^{AB} = \left\{ \begin{pmatrix} F^\alpha_\beta & *F^\alpha_\beta \\ *F^\beta_\alpha & F^\beta_\alpha \end{pmatrix} \right\}^{AB}_{AB} + Q^{48} \Omega^{AB} + Q^{88} G^{AB}, \tag{60}
\]

where \(*F^\alpha_\beta \) is dual to \(F^\alpha_\beta \) and defined by \(*F^{\mu \nu} = -\frac{1}{2} \epsilon^{\alpha \beta \mu \nu} F^\alpha_\beta \). Note that \(Q_{[AB]} = \frac{1}{2} (Q^{AB} - Q^{BA}) \) is independent of \(Q^{88} \).

Clearly, in order for Eq.\([60]\) to possess physical significance the action of \(\text{SO}(4, 4; \mathbb{R}) \) must be restricted to \(\text{SO}(3, 1; \mathbb{R}) \) in a manner that links transformations of \(x^5, x^6, x^7, x^8 \) to \(x^1, x^2, x^3, x^4 \).
A. Covariance of maps under $S_0(4; \mathbb{R})$

Let $u \mapsto \overline{u} = D_{(1)} u$, $\psi_{(1)} \mapsto \overline{\psi}_1 = D_{(1)} \psi_{(1)}$ and $\psi_{(2)} \mapsto \overline{\psi}_2 = D_{(2)} \psi_{(2)}$ under $S_0(4; \mathbb{R})$.

Consider the transformation law for the $Q_A \mapsto \overline{Q}_A$:

$\overline{Q}_A = \tilde{u} \sigma \overline{\tau}_A \overline{\psi}_2 = \overline{D}_{(1)} \ u \sigma \overline{\tau}_A \overline{D}_{(2)} \psi$

$= \tilde{u} \sigma \overline{D}_{(1)}^{-1} \overline{\tau}_A \overline{D}_{(2)} \psi$

$= L^A_B \tilde{u} \sigma \overline{\tau}_B \psi = L^A_B Q^B,$

which follows from Eq.[51]. Also $Q^{AB} \mapsto \overline{Q}^{AB}$:

$\overline{Q}^{AB} = \tilde{u} \sigma \overline{\tau}_A \overline{\tau}_B \overline{\psi}_1 = \overline{D}_{(1)} \ u \sigma \overline{\tau}_A \overline{\tau}_B \overline{D}_{(1)} \psi_{(1)}$

$= \tilde{u} \overline{D}_{(1)} \sigma \overline{\tau}_A \overline{D}_{(2)} \overline{D}_{(2)} \overline{\tau}_B \overline{D}_{(1)} \psi_{(1)}$

$= \tilde{u} \sigma \left(\overline{D}_{(1)}^{-1} \overline{\tau}_A \overline{D}_{(2)} \right) \left(\overline{D}_{(2)}^{-1} \overline{\tau}_B \overline{D}_{(1)} \right) \psi_{(1)}$

$= L^A_C L^B_D \tilde{u} \sigma \overline{\tau}_C \overline{\tau}_D \psi_{(1)} = L^A_C L^B_D Q^{CD},$

which follows from Eq.[51] and Eq.[52]. In summary, under the action of $S_0(4; \mathbb{R})$,

$$u \mapsto \overline{u} = D_{(1)} u$$

$$\psi_{(1)} \mapsto \overline{\psi}_1 = D_{(1)} \psi_{(1)}$$

$$\psi_{(2)} \mapsto \overline{\psi}_2 = D_{(2)} \psi_{(2)}.$$

$$Q^A \mapsto \overline{Q}^A = L^A_B Q^B$$

$$Q^{AB} \mapsto \overline{Q}^{AB} = L^A_C L^B_D Q^{CD} = \{L \overline{Q} \overline{\tau}\}^{AB}$$ \hspace{1cm} (61)

X. APPENDIX 3: IRREDUCIBLE REPRESENTATION OF THE τ MATRICES

We adopt a real irreducible 8×8 matrix representation of the tau matrices (see the Appendix) in which $\overline{\tau}^8 = I_{8\times8} = \tau^8$. Then by Eq.[6] $\overline{\tau}^A = -\tau^A$ for $A = 1, \ldots, 7$. Hence, again by Eq.[6], $(\tau^A)^2$ is equal to $-I_{8\times8}$ for $A = 1,2,3$ and is equal to $I_{8\times8}$ for $A = 4,5,6,7,8$.

A particular irreducible representation of the tau matrices is
\[
\tau^1 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \quad \tau^2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\tau^3 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \quad \tau^4 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\tau^5 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \quad \tau^6 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\tau^7 = \begin{pmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \quad \tau^8 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]
[1] J. C. Baez. The octonions. *Bull. Amer. Math. Soc.*, 39:145–205, 2002.

[2] H. Boerner. *Representations of Groups*. North Holland, Amsterdam, 1963.

[3] R. Brauer and H. Weyl. Spinors in n dimensions. *Am. J. Math.*, 57:425, 1935.

[4] E. Cartan. Le principe de dualité et la théorie des groupes simple et semi-simples. *Bull. Sci. Math.*, 49:361–374, 1925.

[5] E. Cartan. *Leçons sur la théorie des spineurs, Vol. I and II*. Hermann and Cie, Paris, 1938.

[6] Alfred Gray. Vector cross products on manifolds. *Trans. Amer. Math. Soc.*, 141:465504, 1969.

[7] F Reese Harvey. *Spinors and Calibrations*. Perspectives in Mathematics VOL 9. Academic Press, San Diego, CA, 2000.

[8] S. Helgason. *Differential Geometry and Symmetric Spaces*, p. 346. Academic Press, New York, N. Y., 1962.

[9] E. A. Lord. The dirac spinor in six dimensions. *Proc. Camb. Phil. Soc.*, 64:765–778, 1968.

[10] P. L. Nash. On the exceptional equivalence of complex dirac spinors and complex space-time vectors. *J. Math. Phys.*, 27:1185, 1986.

[11] P. L. Nash. On the structure of the split octonion algebra. *Il Nuovo Cimento*, 105 B:31–41, 1990.

[12] Patrick L. Nash. Second gravity. *Journal of Mathematical Physics*, 51:042501–1 – 042501–27, 2010.

[13] Patrick L. Nash. Spinor-unit field representation of electromagnetism applied to a model inflationary cosmology. *General Relativity and Gravitation*, 44(9):2147–2179, 2012.

[14] Roger Penrose and Wolfgang Rindler. *Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry* (Cambridge Monographs on Mathematical Physics). Cambridge University Press, April 1988.

[15] J. Schwinger. *Lectures on particles and field theory*. Brandeis Summer Institute in Theoretical Physics (1964), volume 2. Prentice-Hall, Englewood Cliffs, NJ, 1965.

[16] T A Springer and F D Veldkamp. *Octonions, Jordan algebras and exceptional groups*. Springer monographs in mathematics. Springer, Berlin, 2000.

[17] Max Zorn. Theorie der alternativen ringe. *Abhandlungen aus dem Mathematischen Seminar der Universit¨ at Hamburg*, 8(1):123–147, 1931.