Differential Effects of Interleukin-15 and Interleukin-2 on Differentiation of Bipotential T/Natural Killer Progenitor Cells

By Georges Leclercq, Veronique Debacker, Magda De Smedt, and Jean Plum

From the Department of Clinical Chemistry, Microbiology and Immunology, University of Ghent, University Hospital, B-9000 Ghent, Belgium

Summary

Bipotential T/natural killer (NK) progenitor cells are destined to differentiate mainly into T cell receptor (TCR)αβ and TCRγδ cells in a thymic microenvironment, whereas extrathymically they selectively develop into NK cells. The exact environmental conditions that are required for differentiation into these three leukocyte populations are largely unknown. In this report, we have investigated and compared the effect of interleukin (IL)-15 and IL-2 in this process. The IL-15 receptor is composed of the γ and β chains of the IL-2 receptor (IL-2Rγ and IL-2Rβ) and of a specific α chain (IL-15Rα). Here, it is shown that IL-15 mRNA is mainly expressed in thymic epithelial stromal cells, whereas IL-2 mRNA is exclusively expressed in thymocytes. IL-2Rβ-expressing cells were present in the fetal thymus with a CD25^-CD44^+FcyR^+HSA^-/lowTCR^+ phenotype, which is characteristic of progenitor cells. These cells also expressed IL-15Rα messenger RNA. Sorted IL-2Rβ^-TCR^- cells differentiated into TCRαβ and TCRγδ cells after transfer to alymphoid thymic lobes, whereas culture of the same sorted cells in cell suspension in the presence of IL-15 resulted in the generation of functional NK cells. This shows that IL-2Rβ^-TCR^- cells of the fetal thymus contain bipotential T/NK progenitors. Addition of low concentrations of IL-15 to fetal thymic organ culture (FTOC) resulted in an increase of all T cell subpopulations. The largest expansion occurred in the TCRγδ compartment. In contrast, low concentrations of IL-2 did not result in a higher total cell number and did not induce outgrowth of TCRγδ cells. High concentrations of IL-15 blocked TCRαβ development and shifted differentiation towards NK cells. Differentiation towards TCRγδ cells still proceeded. High concentrations of IL-2 similarly induced development into NK cells, but the cell number was fourfold lower than in IL-15 cultures. Importantly, blocking of IL-2Rα in IL-2-treated FTOC resulted in a drastic increase in cell number, indicating that IL-2Rα negatively regulates cell expansion. Collectively, these experiments provide direct evidence that IL-15 and IL-2 differentially affect the differentiation of bipotential T/NK progenitors.

IL-15 is a novel cytokine that was originally cloned from CV-1/EBNA, a simian kidney epithelial cell line (1). Although the amino acid sequence of IL-15 has no homology to IL-2, three-dimensional modeling of IL-15 predicts that it is a four-helix bundle type cytokine (1), and thus IL-15 is a member of the same cytokine family as is IL-2 (2). IL-15 also uses components of the IL-2 receptor (IL-2R): both the β and γ chains of the IL-2R are required for binding and signal transduction by this cytokine (3). In addition, a specific α chain of the IL-15R has been identified. This IL-15R α chain (IL-15Rα)1 is structurally similar to the IL-2R α chain, but with only limited sequence identity (4). The common use of the IL-2R β and γ chains by both IL-2 and IL-15 probably explains the finding that several biological

1 Abbreviations used in this paper: DP, CD4 and CD8 double positive; FD, fetal day; FTOC, fetal thymic organ culture; HPRT, hypoxanthin phosphoribosyltransferase; IL-15Ra, IL-15 receptor α chain; RAG-1, recombination activating gene-1; RT-PCR, reverse transcription PCR.
well as the production of these two cytokines by mutually but not IL-15, negatively regulates peripheral expansion of progenitor cells in the thymus. Thymocytes differentiate from progenitor cells, which originate from stem cells of the fetal liver or the adult bone marrow. It has been shown in several independent studies that, both in mice and in humans, bipotential T/NK progenitor cells are present in the thymus. Thymocytes differentiate from progenitor cells, which originate from stem cells of the fetal liver or the adult bone marrow. It has been shown in several independent studies that, both in mice and in humans, bipotential T/NK progenitor cells are present in the thymus. The phenotype of those bipotential T/NK progenitors has been defined as FcyRII/III+CD3 CD4-CD8-CD25-CD44+ in the mouse (11-13) and as CD3+CD2+CD5+CD3-CD4-CD8- in humans (14). From the next stage of differentiation, CD25+CD44+ cells in mice (15) and CD1+CD2+CD5+ cells in humans (14, 16), which both are still CD4-CD8-TCR-, become T cell committed. Subsequently, these cells rearrage their TCR genes and become CD4+CD8- thymocytes expressing the CD3/TCR complex. After negative and positive selection, they eventually become functionally mature CD4 or CD8 single-positive cells (SP) that emigrate from the thymus. Although bipotential T/NK progenitor cells are clearly present in the thymus, these cells preferentially differentiate in this lymphoid organ into T cells, whereas extrathymically, they mainly differentiate into NK cells (12, 14). This indicates that the signals which are required by the T/NK bipotential progenitor cells to differentiate into either direction are different.

In the murine fetal thymus, a substantial part of the progenitor cell population expresses the β chain of the IL-2R (this study and reference 17), as well as IL-15Rα (this study), which probably enables these cells to respond to IL-2 as well as to IL-15. We therefore examined and compared the effects of IL-15 and IL-2 on the differentiation of these progenitor cells. Our results show that there are important differences between IL-15 and IL-2, and that IL-2Rα negatively regulates IL-2-induced cell expansion.

Materials and Methods

Mice. BALB/c, originally purchased from Proefdierencentrum (Catholic University Leuven, Leuven, Belgium), were bred in our breeding facility. To obtain dated pregnant mice, mice were mated for 15 h and the fetuses were removed at the indicated fetal days (FD) (plug date = day 0).

Cytokines. Purified simian rIL-15 and human rIL-2 were kindly provided by Dr. E. Thomas (Immunex Corp., Seattle, WA) and Dr. M. Gately (Hoffmann-La Roche, Nutley, NJ), respectively. In a 24-h CTL-L proliferation assay, 500 ng/ml IL-15 induced the same proliferation as 1,000 U/ml IL-2.

Antibodies, Flow Cytometric Analysis, and Sorting. The mAbs used for staining, flow cytometric analysis, and sorting were described before (18, 19). To avoid specific binding of mAbs, the FcyR was blocked by preincubation of the cells with saturating amounts of anti-FcγRII/III mAb (clone 2.4G2) for 15 min at 4°C. FcyR-blocking was not done when cells had to be labeled with FITC-conjugated anti-FcγR mAb afterwards. Propidium iodide was added to the cells (2 µg/ml) just before analysis. Gating was done on propidium iodide-negative thymocytes to exclude dead cells. In the case of sorting of CD45-positive and -negative cells from FD17 thymus, thymic cell suspension was prepared by trypsinization of the thymic lobes (20). This treatment does not remove the CD45 antigen from the cell surface (data not shown).

The mAb used for the addition to fetal thymic organ culture (FTOC) was purified unlabeled anti-IL-2Rα (clone PC61) (kind gift of Dr. M. Nabholz, Epalinges, Switzerland).

Reverse Transcription (RT)-PCR and Southern Blotting. Trisol (Life Technologies, Gaithersburg, MD) was added to sorted cells and RNA was extracted according to the manufacturer’s instructions. cDNA was synthesized with oligo(dT) as primer using the Superscript kit (Life Technologies). Oligonucleotides used for RT-PCR and hybridization were as described by Chun et al. (21) for recombinating activating gene-1 (RAG-1). Other oligonucleotides used were as follows: for IL-15: AATGAAGGTCTT- TTCTTGGG (sense primer), GTGTTGATGAACATTG- GAC (antisense primer), and AACAGAATCTGAGTGAACAG (probe); for IL-2: TGATGGACCTACAGAGGTCTT- GAG (sense primer), ACCTCAGAAATTTTCTTGACAC- CAGG (antisense primer), and CAGCATGCGATCAGT- GCC (probe); for IL-15Rα: ATTGGAGCATGTGATC- TTC (sense primer), TTCTCCTATGAGGAG (antisense primer), and GTAACTCCTGTTAAGCG (probe); and for hypoxanthin phosphoribosyltransferase (HPRT): GTAATGAT- CAGTCAAGCGG (antisense primer), CCAGCAACGTG- TACAT (antisense primer), and GCTTTCCCTGG- AGTACACAGCTACGCC (probe). PCR amplification was performed using a 96-well thermocycler (OmniGene, Hybrid Technology, UK) with 30 (RAG-1, IL-15, IL-2, and HPRT) or 33 cycles (IL-15, IL-2, and HPRT) of 94°C for 0.5 min, 55°C for 0.5 min, and 72°C for 1 min. In each PCR, water and 50 ng mouse genomic DNA were included as negative controls. All primer pairs amplified cDNA only. For semiquantitative RT-PCR, four twofold (IL-15, IL-2, and HPRT) or threefold dilutions (IL-
15Rα and HPRT) of each cDNA sample were amplified. For Southern blotting, PCR products were separated on 2% agarose gels, denatured, and transferred onto Nytran paper (Schleicher & Schuell, Inc., Keene, NH). The DNA was UV-cross-linked to the membrane, probed with a 33P-labeled internal oligonucleotide, and the membrane was exposed to film (Amersham, Arlington Heights, IL).

Cell-mediated Cytotoxicity Assay. YAC-1 cells were used as target cells. Cytotoxicity was analyzed in a 6 h 51Cr release assay using 1,000 target cells per well as described previously (22).

FTOC. Four to five thymic lobes from FD14 BALB/c mice were placed on the surface of polycarbonate filters (0.8-μm pore size; Nuclepore, Pleasanton, CA) that were supported on blocks of gel foam (Upjohn Co., Kalamazoo, MI) in 1.8 ml of Iscove’s modified Dulbecco’s medium supplemented with 10% FCS (both from Life Technologies) in 12-well plates. Cytokines were added at different concentrations, as indicated. In the case of IL-2Rα-blocking experiments, anti-IL-2Rα mAb was added at 100 μg/ml. Cultures were grown in 7.5% CO2 in humid air at 37°C for 11 d. Afterwards, the thymus lobes were disrupted using a small Potter homogenizer. Cell viability was determined by trypan blue exclusion.

Recolonization Assays. Alymphoid lobes were prepared by culturing FD15 BALB/c thymic lobes in FTOC in the presence of 1.35 mM 2'-deoxyguanosine (Sigma Chemical Co., Filter Service, Eupen, Belgium) for 5 d. After extensive washing, single thymic lobes were put together with 1,000 sorted thymic cells in a total volume of 25 μl in the wells of a Terasaki plate. The plates were inverted to form hanging drops, and the cells were allowed to seed the lobes during 48 h. Subsequently, untransferred cells were removed by washing, and the lobes were cultured in FTOC for the indicated time. No thymocytes could be detected after FTOC of deoxyguanosine-treated thymic lobes that were not re-populated with thymic cells.

Results

Expression of IL-2Rβ, IL-2Rα, and IL-15Rα on thymocytes. Freshly prepared thymocytes from FD15, FD17, 2-d-old, and adult mice were analyzed by flow cytometric analysis for the expression of IL-2Rβ and IL-2Rα (Fig. 1). The cell number per thymus was 50,000, 750,000, 107 and 108 for FD15, FD17, 2-d-old, and adult mice, respectively. Approximately 6% of FD15 thymocytes expressed IL-2Rβ. This percentage decreased to <1% in 2-d-old mice; in adult mice, it was ~2%. Expression of IL-2Rβ and IL-2Rα was almost, but not completely, mutually exclusive. In FD15 thymocytes, IL-2Rβ-positive cells were bright positive for FcγR and CD44, were mainly negative for TCRγδ or TCRαβ, and HSA was expressed at low levels or was absent. This indicates that IL-2Rβ is expressed on thymocyte progenitor cells. At FD17, part of the IL-2Rβ-positive cells became negative for FcγR, and CD44, were mainly negative for TCRαβ or TCRγδ, and HSA was expressed at low levels or was absent. This indicates that IL-2Rβ is expressed on thymocyte progenitor cells. At FD17, part of the IL-2Rβ-positive cells became negative for FcγR, and part of the TCRγδ cells clearly expressed IL-2Rβ. In adult thymocytes, most IL-2Rβ—positive cells were mainly FcγR-negative and TCRαβ positive.

To examine expression of IL-15Rα, to which no antibody is available yet, we performed a semiquantitative RT-PCR. As a control, the housekeeping enzyme HPRT was stud-
ied. The results show that an equivalent amount of HPRT mRNA was present in the populations tested. IL-15Rα mRNA was abundantly present in FD17 thymus, both in the total cell population and in IL-2Rβ+CD8+ TCRαβ+TCRγδ− cells (Fig. 2).

Differential Capacity of IL-2Rβ+Cells to Differentiate into T Cells in a Thymic Environment and into Functional NK Cells in Cell Suspension in the Presence of IL-15.

To examine whether IL-2Rβ+ TCR− cells were committed to the T cell lineage, we first tested if these cells contained RAG-1 mRNA. RT-PCR was performed using RAG-1–specific oligonucleotides. As a positive control, uncultured and unseparated thymocytes from adult mice were used. Fig. 3 shows that uncultured, sorted IL-2Rβ+CD8+ TCRαβ−TCRγδ− cells from FD17 thymuses did not express RAG-1 mRNA. This indicates that either these cells are not T progenitor cells or that these cells do not yet contain RAG-1 mRNA. Therefore, we examined if these cells had the potential to differentiate into T cells. For this purpose, highly purified IL-2Rβ+CD8− TCR− cells (>99.5% purity) from FD15 or FD16 thymuses were transferred to alymphoid thymic lobes (1,000 cells per lobe) and analyzed after FTOC for 6 and 12 d. It is shown in Fig. 4 that CD4 and CD8 double positive (DP) cells were clearly present after 6 d, as were TCRαβ+ cells with intermediate TCR and TCRγδ cells. After 12 d of FTOC, the percentage of CD4 and CD8 SP cells and of cells with high TCRαβ density was increased. The absolute cell number per lobe was 20,000 and 30,000 after 6 and 12 d of FTOC, respectively. Thymic lobes that did not receive sorted IL-2Rβ+ thymocytes did not contain thymocytes after FTOC (data not shown).

Alternatively, unsorted FD16 thymocytes or sorted IL-2Rβ+CD8− TCR− cells from FD16 thymuses were cultured in cell suspension in the presence of IL-15 for 5 d. There was a 2.5-fold increase in the cell number of total FD16 thymic cells and a 12-fold increase in the cell number of sorted IL-2Rβ+CD8− TCR− cells (data not shown). No TCRαβ+ or TCRγδ+ cells were present after IL-15 culture of the sorted IL-2Rβ+CD8− TCR− cells (data not shown). The resulting cells were very efficient in lysing the NK-susceptible target cell line YAC-1. Freshly prepared uncultured cells did not kill YAC-1 cells to a significant extent (Fig. 5). No viable cells were left when FD16 thymic cells were cultured in the absence of exogenous IL-15 for 5 d (data not shown).

Differential Expression of IL-15 and IL-2 in the Thymus.

An RT-PCR was performed to study expression of IL-15 mRNA in fetal and adult thymus. It is shown in Fig. 6 that IL-15 mRNA is clearly expressed in the thymus of fetal and adult mice. To examine which cell population of the thymus mainly expressed IL-15 mRNA, two types of experiments were done. In the first, FD15 thymic lobes were organ cultured in the presence of deoxyguanosine, which results in depletion of thymocytes and stromal cells of bone marrow origin. The majority of the cells that are still present after this treatment are epithelial stromal cells. Deoxyguanosine-treated thymic lobes clearly expressed IL-15 mRNA. In a second type of experiment, a semiquantitative RT-PCR was done on total as well as on CD45+ and CD45− sorted cells from trypsinized FD17 thymic lobes. The control RT-PCR on HPRT showed that equivalent amounts of mRNA were present in all three preparations. With regard to IL-15 mRNA expression, only low amounts were found in CD45+ cells, which contain thymocytes and stromal cells of bone marrow origin. CD45− cells, which are epithelial stromal cells, expressed high levels of IL-15 mRNA. As a control, we also analyzed the expression of IL-2 mRNA in the same preparations. As expected, and in contrast to IL-15 mRNA expression, IL-2 mRNA could not be detected in deoxyguanosine–treated thymic lobes or in CD45− sorted cells, but was present in CD45+ sorted cells.

Treatment of FTOC with IL-15 or IL-2.

To study the effect of exogenous IL-15 on intrathymic differentiation, FD14 thymic lobes were cultured in FTOC in the presence of 20, 100, or 500 ng/ml IL-15 or 40, 200, or 1,000 U/ml IL-2 for 11 d. In a CTLL-2 proliferation assay, the activity of 500 ng/ml IL-15 was comparable with 1,000 U/ml IL-2 (data not shown). After 11 d of FTOC, the cell number per thymic lobe was increased more than twofold in the presence of 20 or 100 ng/ml IL-15, and fourfold in cultures with 500 ng/ml IL-15, as compared to the control culture (Table 1). Notwithstanding the considerable cell expansion in FTOC with 20 ng/ml IL-15, the percentages of the different subpopulations with regard to CD4 versus CD8, IL-2Rα versus IL-2Rβ, and TCRαβ expression were not drastically changed, showing that all these subpopulations increased in absolute cell number. The percentage of TCRγδ cells, both Vγ3+ and Vγ3−, doubled. This showed that the increase in the number of TCRγδ cells is higher than that of the other thymocyte subpopula-
Figure 4. Fetal thymic IL-2Rβ+ cells differentiate into T cells in FTOC. IL-2Rβ+CD8– TCRαβ TCRγδ+ cells were sorted from FD16 thymic lobes and transferred to deoxyguanosine-treated thymic lobes. After FTOC for 6 and 12 d, cells were analyzed. Results shown are representative of two independent experiments.

Figure 5. Fetal thymic IL-2Rβ+ cells cultured in cell suspension in the presence of IL-15 generate functional NK cells. Total or IL-2Rβ+ CD8– TCRαβ TCRγδ+ sorted FD16 thymic cells were cultured in cell suspension in the presence of 500 ng/ml IL-15 for 5 d or were used uncultured. Lytic activity was tested against the NK-sensitive target cell line YAC-1. Results shown are representative of two independent experiments.
Cells from FTOC with Exogenous IL-15 Have Lost T Progenitor Potential. Given that FTOC with high concentrations of exogenous IL-15 yielded mainly CD4-CD8-CD25+/-IL2Rβ+FcγR+TCR- cells, which are cells with an immature phenotype, we examined whether these cells could still differentiate into T cells. Sorted CD44+CD8+ TCR- cells from FTOCs were transferred to deoxynucleosine-treated thymic lobes and organ cultured. Fig. 9 shows the phenotypic analysis of a representative experiment after 9 d culture. Sorted cells from control FTOC differentiated into T cells, as shown by the appearance of CD4+CD25+ and CD44+CD25- cells in the CD8+TCRαβ+TCRγδ population, and by the generation of CD4+CD8+ and SP cells. On the contrary, similarly sorted cells from IL-15 FTOC did not differentiate into the T lineage: they remained CD44 positive and CD4-CD8 double negative. The same results were obtained when the organ cultures were analyzed after 16 d (data not shown).

Addition of IL-15 to FTOC Shifts Differentiation towards Functional NK Cells. Since CD44+CD8+ TCR- cells isolated from IL-15-supplemented FTOC did not have any T cell progenitor potential, we examined if these cells had lytic activity. CD44+CD8+ TCR- cells were sorted from IL-15-supplemented FTOC and tested in a 51Cr release assay. Fig. 10 shows that these cells killed the NK-sensitive YAC-1 target cell line very efficiently. Similarly sorted cells from control FTOC did not have any significant lytic activity.

Discussion

IL-15 and IL-2 both require the β and γ chain of the IL-2R for binding and signal transduction (3). This probably explains why several biological activities of those two cytokines are similar (1, 5-7). However, IL-15 and IL-2 are produced by mutually exclusive cell types (1, 10). In addition, only IL-2 is able to bind to IL-2Rα (3), whereas only IL-15 is able to bind to IL-15Rα (4). This indicates that there may be functional differences between those two cytokines. We have therefore examined and compared the effects of IL-15 and IL-2 on differentiation of bipotential T/NK progenitor cells towards T cells and NK cells. In contrast to T cells, NK cells do not rearrange TCR genes and develop normally in SCID mice (23) and RAG-deficient mice (24, 25). Nevertheless, there are several similarities between T and NK cells. These include cytoplasmic expression of CD3 proteins (26, 27), cell membrane expression of numerous cell surface antigens (reviewed in 28), and cytolytic activity. These phenotypic and functional similarities between T and NK cells indicate that these two lymphocyte subsets are related. Additional evidence for this has recently been obtained by the finding that both in mice and in humans, T and NK cells originate from a common precursor that is present in the thymus (12-14, 29, 30). Although the existence of bipotential T/NK progenitors implicates a direct lineage relationship between T and NK cells, the anatomical localizations for T and NK differentiation are not the same. The thymus is required for mainstream T cell development. Both thymic epithelial and mesenchymal cells are necessary for early differentiation of progenitor cells towards DP thymocytes (20), whereas thy-

Table 1. Effect of Exogenous IL-15 and IL-2 on Cell Yield of Organ-cultured FD14 Thymic Lobes

Cytokine added	Cells per lobe
None	282 ± 45*
IL-15 20 ng/ml	738 ± 172
100 ng/ml	636 ± 46
500 ng/ml	1,132 ± 226
IL-2 40 U/ml	285 ± 73
200 U/ml	313 ± 20
1000 U/ml	250 ± 16

*Data are the mean cell number (× 10^9) per thymic lobe ±SD of three to six experiments.
Figure 7. Phenotypic analysis of thymocytes after FTOC with IL-15 or IL-2. FD14 thymic lobes were organ-cultured without or with 20, 100, or 500 ng/ml IL-15 or 40, 200, or 1,000 U/ml IL-2 for 11 d. Cells were labeled with mAbs against the indicated antigens. Propidium iodide was added before analysis and propidium iodide-negative thymocytes were gated. Results shown are representative of three to six independent experiments.

Mic epithelial cells provide unique signals for positive selection of DP thymocytes towards mature T lymphocytes (31). In contrast to T cell differentiation, NK cell differentiation clearly does not require the thymus, since athymic nude mice have normal numbers of NK cells. It is generally accepted that the bone marrow is one of the main sites for NK cell development (32, 33).

In the mouse, Rodewald et al. have shown that the bipotential T/NK progenitors in the fetal thymus are contained in the FcyR+ population (12). This population, which has a CD3-CD4-CD8-CD25-CD44+HSA- phenotype (13), is abundantly present during fetal life (12). It is shown in this report that ~6% of FD15 thymocytes expressed IL-2Rα and that the majority of these cells had a progenitor-like phenotype, i.e., FcyR+ and CD25-CD44+HSA-TCR+. All IL-2Rα+ cells coexpressed FcyR, but the IL-2Rα+ population (6% of total cell number) was only a fraction of the FcyR+ population (26%). IL-2Rα-CD8-TCRαβ-TCRγδ- cells are not yet in the process of TCR rearrangement, since no RAG-1 mRNA

331 Leclercq et al.
could be detected. Upon transfer to deoxyguanosine-treated thymic lobes, highly purified IL-2R\(\alpha^+\)CD8\(^-\)TCR\(\alpha\beta^-\)TCR\(\gamma\delta^-\) cells differentiated into TCR\(\alpha\beta\) and TCR\(\gamma\delta\) cells, showing that these cells were indeed T progenitor cells. These results are in agreement with those of Falk et al. (17). Purified IL-2R\(\alpha^+\)CD8\(^-\)TCR\(\alpha\beta^-\)TCR\(\gamma\delta^-\) cells also expressed IL-15R\(\alpha\) mRNA, indicating that these cells are able to respond to IL-15. Indeed, these cells proliferated extensively when cultured in cell suspension in the presence of IL-15 and, more importantly, in this culture condition, they differentiated into functional NK cells. Freshly sorted IL-2R\(\beta^+\) thymic cells did not have NK activity. These findings indicate that IL-2R\(\beta^+\) cells present in the fetal thymus contain progenitors for both T and NK cells. It still has to be determined whether IL-2R\(\beta^+\) cells are indeed bipotential T/NK cells or whether the IL-2R\(\beta^+\) cell population contains both T and NK progenitors.

Although bipotential progenitor cells can develop into T cells as well as NK cells, T cell differentiation mainly occurs in the thymus, whereas NK cell differentiation mainly occurs extrathymically. This indicates that cell–cell interactions and/or cytokines that direct these bipotential progenitor cells towards T or NK cell differentiation pathways are different. A central role for cytokines in the development of both T and NK cells has recently been demonstrated by the generation of mice deficient for the \(\gamma\) chain of the IL-2R, since no T or NK cells develop in these mice (34). Also in humans, mutations in the gene encoding the IL-2R\(\gamma\) chain results in a severe block in T and NK development (35). The \(\gamma\) chain of the IL-2R is shared by IL-4R, IL-7R, IL-9R, and IL-15R (3, 36–39). Previously, it was proposed that IL-2 has a crucial role in thymic development. However,
Although not addressed in this study, cells from these mice TCR'β- cells were sorted and examined for lytic activity against YAC-1 FD14 thymic lobes were organ-cultured in the absence or presence of stress-induced changes rather than intrinsic problems with regard to CD4-CD8 subpopulations up to 3 wk of age. In 6-wk-old mice, thymocyte cell numbers are decreased sevenfold with a drastic reduction of DN and DP thymocyte subpopulations. As peripheral T cells are spontaneously activated and autoimmunity develops in these mice, however, the observed reduction in thymocyte cell numbers was interpreted by the authors as being the result of general stress-induced changes rather than intrinsic problems with thymocyte development (43). The only cytokine with a crucial role in T cell development that has been described so far is IL-7. This has been demonstrated by generation of mice deficient for IL-7 (44) or deficient for the α chain of the IL-7R (45). Also, by the use of neutralizing anti-IL-7 mAbs, it has been demonstrated that IL-7 plays a central role in thymic development (46, 47).

Whereas IL-7 is an important cytokine for T cell differentiation, the crucial cytokines for NK cell development probably are IL-2 and/or IL-15. This has been shown by postnatal treatment of mice with anti-IL-2Rβ mAb, which results in long-term elimination of NK cells (48). NK cell activity is also markedly reduced in IL-2-deficient mice, but is still inducible (49). IL-15-deficient mice have not been described so far, but IL-15 has been demonstrated to induce activation and proliferation of human NK cells (7), indicating a potential role of this cytokine in NK cell development and function.

It is shown here that both IL-15 and IL-2 mRNA is expressed in fetal and adult thymuses. IL-15 mRNA was mainly present in CD45+ cells, which are stromal epithelial cells. IL-2 mRNA was found exclusively in CD45+ cells. This is in agreement with previous reports showing that IL-15 is abundantly present in epithelial and fibroblast cell lines, but not in peripheral blood T lymphocytes (1), whereas the only cells that are known to produce IL-2 are T cells (10). Since it is shown in this report that IL-2Rβ as well as IL-15RA are expressed by bipotential T/NK progenitor cells in the murine thymus, we examined whether addition of IL-15 to FTOC would have an effect on the choice that these progenitor cells make to differentiate in the direction of either T or NK cells. Since others have shown that there are some functional differences of IL-15 and IL-2 (7-9), we compared the effect of IL-15 addition to FTOC with that of IL-2. Addition of low concentrations of IL-15 to FTOC resulted in a 2.5-fold increase in total cell number, as compared to control cultures. All differentiation stages were expanded including TCR-negative, TCRβ, and TCRγδ cells. This could be either a direct effect of IL-15 or an indirect effect caused by secondary cytokine production. FTOC in the presence of high concentrations of IL-15 resulted in a four times higher cell yield than control cultures. Differentiation towards TCRβ cells did not occur, whereas TCRγδ cells still developed. The majority of the cells were IL-2Rβ+CD45+CD25-/+TCRβ-. Blocking IL-2Rβ with mAb neutralized the effects of IL-15 on FTOC; blocking IL-2Rα had no effect (data not shown). As the homogenous population of CD45+TCR- cells in IL-15-treated FTOC could be T cell progenitors, we transferred these cells to alymphoid thymic lobes and followed their differentiation. No T cell development could be detected. Contrary to the absence of T cell progenitor potential, these cells were functional NK cells, as shown in a 51Cr release assay. Also, the finding that these cells only expressed FcγRIII (data not shown) indicates that these cells were indeed NK cells, since progenitor T cells express both FcγRII and FcγRIII (12). Collectively, our findings indicate that IL-2Rβ+ cells in the fetal thymus are bipotential T/NK progenitor cells, and that addition of high amounts of IL-15 to FTOC directs differentiation towards the NK pathway.

We also added IL-2 to FTOC. The main difference as compared to IL-15-treated FTOC was that no increase in cell number was obtained with any tested concentration of IL-2. With regard to the receptor chains that interact with IL-15 and IL-2, both IL-2Rβ and IL-2Rγ are required for the biological activity of these two cytokines (3). Only IL-2, however, is able to bind IL-2Rα (3), whereas only IL-15 is able to bind IL-15Rα (4). In addition, by the generation of IL-2Rα-deficient mice, it has been shown recently that IL-2Rα negatively regulates peripheral expansion of T lymphocytes (9). This prompted us to examine the effect of blocking IL-2Rα in IL-2-treated FTOC. The result was that the cell number increased 2.5-fold. This strongly indicates that the lower cell number obtained in IL-2-treated FTOC versus IL-15-treated FTOC is caused by negative regulatory signals delivered by IL-2Rα.
In early fetal thymuses, IL-2Rβ⁺ cells were mainly progenitor cells. From FD16-17, part of IL-2Rβ-expressing cells were TCRγδ cells. We have shown earlier that immature TCRγδ thymocytes, as defined by expression of HSA, are present from FD14, whereas mature, HSA negative, TCRγδ thymocytes appear from FD16 (50). During this transition from the immature to the mature phenotype, TCRγδ cells start to express IL-2Rβ (19). It has been shown by others that IL-2Rβ is an activation marker, since it is expressed on thymocytes after TCR ligation (51, 52). This indicates that mature, but not immature, fetal TCRγδ cells become activated in the thymus. This is supported by the finding that in addition to expression of IL-2Rβ, other cell surface markers that are characteristic for stimulation, such as FcγR and the B220 marker, become expressed during the transition from immature to mature fetal TCRγδ cells (22). As mature TCRγδ cells express IL-2Rβ, it was not surprising that an extensive proliferation of these cells was observed in FTOC supplemented with IL-15. Immature TCRγδ thymocytes did not expand to a significant extent (data not shown). Another difference between the effects of IL-15 and IL-2 in FTOC was that no or only a low expansion of TCRγδ cells was observed in IL-2-treated FTOC.

Our results showing that exogenous addition of low amounts of IL-15, but not IL-2, induced expansion of TCRγδ cells, which were mainly TCR Vγ3 cells, is in line with reports showing that in utero treatment with anti-IL-2Rβ mAb completely abrogates development of Vγ3⁺ dendritic epidermal cells (53), which are the progeny of fetal TCR Vγ3 thymocytes (54), whereas IL-2-deficient mice still have Vγ3⁺ dendritic epidermal cells (55). This indicates a potential role for endogenous IL-15 in TCR Vγ3 cell development and/or peripheral expansion. Also, proliferation of other TCRγδ cells during salmonella infection, as well as the activation of IFN-γ production by these γδ T cells, has been shown to be mainly caused by IL-15 (56).

In summary, we have compared the effects of IL-15 and IL-2 on the differentiation of thymic bipotential T/NK progenitor cells towards TCRαβ, TCRγδ, and NK cells. It is shown that there are important functional differences between those two cytokines. It can be hypothesized from these results that IL-15 is an important cytokine in the development of TCRγδ cells and NK cells.

We thank our colleagues for providing us with cytokines and antibodies, E. Dhont for purification and labeling of mAbs, A. Moerman for animal care, and C. De Boever for art work.

This work was supported by grants from the National Fund for Scientific Research (NFWO), the Fonds voor Geneeskundig Wetenschappelijk Onderzoek (FGWO), and the Gezamenlijk Overlegde Acties (GOA). G. Leclercq is a research associate of the NFWO.

Address correspondence to Georges Leclercq, Department of Clinical Chemistry, Microbiology and Immunology, University of Ghent, University Hospital, Blok A, Fourth Floor, De Pintelaan 185, B-9000 Ghent, Belgium.

Received for publication 11 December 1995 and in revised form 15 May 1996.

References

1. Grabstein, K.H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M.A. Schoenborn, M. Ahdieh et al. 1994. Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. *Science* (Wash. DC). 264:965–968.

2. Bazan, J.F. 1992. Unraveling the structure of IL-2. *Science* (Wash. DC). 257:410–413.

3. Giri, J.G., M. Ahdieh, J. Eisenman, K. Shanebeck, K. Grabstein, S. Kumaki, A. Namen, L.S. Park, D. Cosman, and D. Anderson. 1994. Utilization of the β and γ chains of the IL-2 receptor by the novel cytokine IL-15. *EMBO* (Eur. Mol. Biol. Organ.) J. 13:2822–2830.

4. Giri, J.G., S. Kumaki, M. Ahdieh, D.J. Friend, A. Loomis, K. Shanebeck, R. DuBose, D. Cosman, L.S. Park, and D.M. Anderson. 1995. Identification and cloning of a novel IL-15 binding protein that is structurally related to the α chain of the IL-2 receptor. *EMBO* (Eur. Mol. Biol. Organ.) J. 14: 3654–3663.

5. Armitage, R.J., B.M. Macduff, J. Eisenman, R. Paxton, and K.H. Grabstein. 1995. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. *J. Immunol.* 154:483–490.

6. Wilkinson, P.C., and F.Y. Liew. 1995. Chemotraction of human blood T lymphocytes by interleukin-15. *J. Exp. Med.* 181:1255–1259.

7. Carson, W.E., J.G. Giri, M.J. Lindemann, M.L. Linett, M. Ahdieh, R. Paxton, D. Anderson, J. Eisenmann, K. Grabstein, and M.A. Caligiuri. 1994. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. *J. Exp. Med.* 180:1395–1403.

8. de Jong, J.L.O., N.L. Farner, M.B. Widmer, J.G. Giri, and P.M. Sondel. 1996. Interaction of IL-15 with the shared IL-2 receptor β and γ subunits. The IL-15/IL-2 receptor- ligand complex is less stable than the IL-2/IL-2 receptor- ligand complex. *J. Immunol.* 156:1339–1348.

9. Willerford, D.M., J. Chen, J.A. Ferry, L. Davidson, A. Ma, and F.W. Alt. 1995. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. *Immunity.* 3:521–530.

10. Smith, K.A. 1988. Interleukin-2: inception, impact, and implications. *Science* (Wash. DC). 240:1169–1176.

11. Godfrey, D.L., J. Kennedy, T. Suda, and A. Zlotnik. 1993. A
developmental pathway involving four phenotypically and functionally distinct subsets of CD3⁺CD4⁻CD8⁻ triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150:4244–4252.

12. Rodewald, H.R., P. Moingeon, J.L. Lucich, C. Dosiou, P. Lopez, and E.L. Reinherz. 1992. A population of early fetal thymocytes expressing FcγRII/III contains precursors of T lymphocytes and natural killer cells. Cell. 69:139–150.

13. Rodewald, H.R., K. Awad, P. Moingeon, L. D’Adamio, D. Rabinowitz, Y. Shinkai, F.W. Alt, and E.L. Reinherz. 1993. FcγRII/III and CD2 expression mark distinct subpopulations of immature CD4⁻CD8⁻ murine thymocytes: in vivo developmental kinetics and T cell receptor β chain rearrangement status. J. Exp. Med. 177:1079–1097.

14. Sanchez, M.J., M.O. Muench, M.G. Roncarolo, L.L. Lanier, and J.H. Phillips. 1994. Identification of a common T/natural killer cell progenitor in human fetal thymus. J. Exp. Med. 180:569–576.

15. Ardavin, C., L. Wu, C.L. Li, and K. Shortman. 1993. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature (Lond.). 362:761–763.

16. Galy, A., S. Verma, A. Barcena, and H. Spits. 1993. Precursors of CD3⁺CD4⁻CD8⁻ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development. J. Exp. Med. 178:391–401.

17. Falk, I., C.N. Levelt, and K. Eichmann. 1993. Lineage relationships of the fetal thymocyte subset that expresses the β chain of the interleukin-2 receptor. Eur. J. Immunol. 23:3373–3376.

18. Plum, J., M. De Smedt, G. Leclercq, and B. Vandekerckhove. (1995). Influence of TGF-β on murine thymocyte development in fetal thymus organ culture. J. Immunol. 154:5789–5798.

19. Leclercq, G., M. De Smedt, and J. Plum. 1995. Cytokine dependence of Vγ3 thymocytes; mature but not immature Vγ3 cells require endogenous IL-2 and IL-7 to survive. Evidence for cytokine redundancy. Int. Immunol. 7:843–851.

20. Anderson, G., E.J. Jenkinson, N.C. Moore, and J.J. Owen. 1993. MHC class II-positive epithelioid and mesenchymal cells are both required for T cell development in the thymus. Nature (Lond.). 362:70–73.

21. Chun, J.J., D.G. Schatz, M.A. Oettinger, R. Jaenisch, and D. Baltimore. 1991. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell. 64:189–200.

22. Leclercq, G., and J. Plum. 1994. Developmentally ordered appearance of a functional Fcγ receptor on TCR Vγ3 thymocytes. Evidence for stimulation-induced expression. J. Immunol. 153:2429–2435.

23. Hackett, J.J., G.C. Bosma, M.J. Bosma, M. Bennett, and V. Kumar. 1986. Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes. Proc. Natl. Acad. Sci. USA. 83:3427–3431.

24. Mombaerts, P., J. Iacomini, R.S. Johnson, K. Herrup, S. Tonegawa, and V.E. Papaioannou. 1992. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 68:869–877.

25. Shinkai, Y., G. Rathbun, K.P. Lam, E.M. Oltz, V. Stewart, M. Mendelsohn, J. Charron, M. Datta, F. Young, A.M. Stall, and et al., 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 68:855–867.

26. Lanier, L.L., H. Spits, and J.H. Phillips. 1992. The developmental relationship between NK cells and T cells. Immunol. Today. 13:392–395.

27. Wang, B., C. Biron, J. She, K. Higgins, M.J. Sunshine, E. Lacy, N. Lonberg, and C. Terhorst. 1994. A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3⁺ gene. Proc. Natl. Acad. Sci. USA. 91:9402–9406.

28. Spits, H., L.L. Lanier, and J.H. Phillips. 1995. Development of human T and natural killer cells. Blood. 85:2654–2670.

29. Matsuzaki, Y., J. Gyotoku, M. Ogawa, S. Nishikawa, Y. Katamura, G. Gachelin, and H. Nakauchi. 1993. Characterization of c-kit-positive intrathymic stem cells that are restricted to lymphoid differentiation. J. Exp. Med. 178:1283–1292.

30. Sanchez, M.J., H. Spits, L.L. Lanier, and J.H. Phillips. 1993. Human natural killer cell committed thymocytes and their relation to the T cell lineage. J. Exp. Med. 178:1857–1866.

31. Anderson, G., J.J. Owen, N.C. Moore, and E.J. Jenkinson. 1994. Thymic epithelial cells provide unique signals for positive selection of CD4⁺CD8⁺ thymocytes in vitro. J. Exp. Med. 179:2027–2031.

32. Miller, J.S., C. Verfaillie, and P. McGlave. 1992. The generation of human natural killer cells from CD34⁺/DR⁺ primitive progenitors in long-term bone marrow culture. Blood. 80:2182–2187.

33. Miller, J.S., K.A. Alley, and P. McGlave. 1994. Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34⁺DR⁺ NK progenitor. Blood. 83:2594–2601.

34. DiSanto, J.P., W. Muller, D. Guy Grand, A. Fischer, and K. Rajewsky. 1995. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl. Acad. Sci. USA. 92:377–381.

35. Noguchi, M., H. Yi, H.M. Rosenblatt, A.H. Filipovich, S. Adelstein, W.S. Modi, O.W. McBride, and W.J. Leonard. 1993. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 73:147–157.

36. Kimura, Y., T. Takeshita, M. Kondo, N. Ishii, M. Nakamura, J. Van Snick, and K. Sugamura. 1993. Sharing of the IL-2 receptor γ chain with the functional IL-9 receptor complex. Int. Immunol. 7:115–120.

37. Kondo, M., T. Takeshita, N. Ishii, M. Nakamura, S. Watanabe, K. Arai, and K. Sugamura. 1993. Sharing of the interleukin-2 (IL-2) receptor γ chain between receptors for IL-2 and IL-4. Science (Wash. DC). 262:1874–1877.

38. Noguchi, M., Y. Nakamura, S.M. Russell, S.F. Ziegler, M. Tsang, X. Cao, and W.J. Leonard. 1993. Interleukin-2 receptor γ chain expression results in interleukin-2 dependent T cell leukemia. J. Exp. Med. 178:1283–1292.
Effects of IL-15 and IL-2 on Thymic Bipotential Progenitor Cells