Review of renal cell carcinoma and its common subtypes in radiology

Gavin Low, Guan Huang, Winnie Fu, Zaahir Moloo, Safwat Girgis

Abstract

Representing 2%-3% of adult cancers, renal cell carcinoma (RCC) accounts for 90% of renal malignancies and is the most lethal neoplasm of the urologic system. Over the last 65 years, the incidence of RCC has increased at a rate of 2% per year. The increased incidence is at least partly due to improved tumor detection secondary to greater availability of high-resolution cross-sectional imaging modalities over the last few decades. Most RCCs are asymptomatic at discovery and are detected as unexpected findings on imaging performed for unrelated clinical indications. The 2004 World Health Organization Classification of adult renal tumors stratifies RCC into several distinct histologic subtypes of which clear cell, papillary and chromophobe tumors account for 70%, 10%-15%, and 5%, respectively. Knowledge of the RCC subtype is important because the various subtypes are associated with different biologic behavior, prognosis and treatment options. Furthermore, the common RCC subtypes can often be discriminated non-invasively based on gross morphologic imaging appearances, signal intensity on T2-weighted magnetic resonance images, and the degree of tumor enhancement on dynamic contrast-enhanced computed tomography or magnetic resonance imaging examinations. In this article, we review the incidence and survival data, risk factors, clinical and biochemical findings, imaging findings, staging, differential diagnosis, management options and post-treatment follow-up of RCC, with attention focused on the common subtypes.

Key words: Papillary renal cell carcinoma; Multidetector computed tomography; Clear cell renal cell carcinoma; Magnetic resonance imaging; Chromophobe renal cell carcinoma; Tumor staging; Treatment protocols

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
Core tip: The common renal cell carcinoma (RCC) subtypes can often be discriminated non-invasively based on characteristic imaging appearances. Clear cell RCC typically shows a heterogeneous consistency (secondary to necrosis, cystic change or hemorrhage), has high signal intensity on T2-weighted magnetic resonance imaging (MRI), and is hypervascular on dynamic contrast-enhanced computed tomography or MRI examinations. Most papillary RCCs are detected while at a low grade and small size, show low signal intensity on T2-weighted MRI, and are hypovascular following contrast administration. Chromophobe RCCs may have a homogeneous solid appearance even when large, and may exhibit a central stellate scar and spoke-wheel enhancement.

Low G, Huang G, Fu W, Moloo Z, Girgis S. Review of renal cell carcinoma and its common subtypes in radiology. World J Radiol 2016; 8(5): 484-500 Available from: URL: http://www.wjgnet.com/1949-8470/full/v8/i5/484.htm DOI: http://dx.doi.org/10.4329/wjr.v8.i5.484

INTRODUCTION

Renal cell carcinoma (RCC) accounts for 90% of adult renal malignancies and is the most lethal of all urologic cancers[1-3]. RCC is not a single entity but rather a heterogeneous group of neoplasms with varying histological findings, cytogenetic abnormalities, biologic behavior, prognosis and response to therapy[1,4-10]. The 2004 World Health Organization Classification of adult renal tumors stratifies RCC into several distinct subtypes of which clear cell, papillary and chromophobe tumors account for 70%, 10%-15%, and 5%, respectively[1]. Other RCC subtypes are rare and include carcinoma of the collecting ducts of Bellini, renal medullary carcinoma, Xp11.2 translocation carcinoma, multilocular clear cell RCC, carcinoma associated with neuroblastoma, mucinous tubular and spindle cell carcinoma and unclassified RCC[1]. Sarcomatoid or rhabdoid differentiation, a rare finding that can occur in any subtype, is associated with a highly aggressive behavior and poor prognosis[4].

Clear cell RCC has a golden yellow appearance on cut specimen due to rich lipid content while microscopically an alveolar, acinar or solid architectural pattern is commonly detected, including a clear or eosinophilic cytoplasm and a delicate vascular network[1]. Chromosome 3p deletions are found in up to 96% of clear cell RCCs including somatic inactivating mutations of the Von Hippel-Lindau (VHL) gene[11,12]. Papillary RCC is characterized by malignant epithelial cells that form papillae and tubules on histology[1]. Type 1 tumors show papillae covered by small cells with a scanty cytoplasm arranged in a single layer while type 2 tumors show papillae with pseudostratified nuclei and an eosinophilic cytoplasm, and generally carry a worse prognosis than type 1 tumors due to higher stage and grade[1,14]. Cytogenetic abnormalities associated with the papillary subtype include trisomies of chromosomes 3, 7, 12, 16, 17 and 20, c-MET mutations and loss of the Y chromosome[11,13,14]. Chromophobe RCC has a homogeneous light brown or tan appearance on cut specimen while large polygonal cells with a reticulated cytoplasm and prominent cell membranes are detected histologically[1]. Unlike clear cell RCC, the blood vessels in chromophobe RCC are thick walled and eccentrically hyalinized[1]. Cytogenetic abnormalities associated with chromophobe RCC include loss of multiple chromosomes such as 1, 2, 6, 10, 13, 17 and 21[15].

The clear cell subtype shows a less favorable outcome compared with papillary and chromophobe subtypes, and is more likely to be symptomatic, present at an advanced stage, and show a greater propensity to metastasize[1,4-6,8,11,16]. The 5-year survival rate is 44%-69% in clear cell tumors, 82%-92% in papillary tumors and 78%-92% in chromophobe tumors[9,16-17]. Considering metastases from RCC, clear cell tumors account for 94%, papillary tumors 4% and chromophobe tumors 2%-6-10,17]. The most common site of organ metastasis varies according to the subtype with the lung being most frequently involved in clear cell tumors and the liver in chromophobe tumors[16]. Surgery is the mainstay of treatment in localized disease, irrespective of subtype. In advanced disease, a tailored management approach is recommended as the effectiveness of systemic therapy including the specific regime used may be influenced by the RCC subtype[16,18-20]. Studies have suggested that clear cell, papillary and chromophobe subtypes can be differentiated non-invasively on imaging[11,15,17,20,23-29]. It is important therefore that radiologists are familiar with the imaging appearances of RCC given that accurate subtyping has therapeutic and prognostic implications for patients. In this article, we review the incidence and survival data, risk factors, clinical and biochemical findings, imaging findings, staging, differential diagnosis, management options and post-treatment follow-up of RCC.

INCIDENCE AND SURVIVAL DATA

Renal cancer represents 2%-3% of adult malignancies[2]. The median age at diagnosis is 65 years with most patients being in the 6th to 8th decade of life[2,23]. Males are 2 to 3 times as affected as females[1,2,23]. Over the last 65 years, the incidence of RCC has increased at a rate of 2% per year[2]. According to data from the National Cancer Institute's Surveillance, Epidemiology and End Results Program, there are 61500 estimated new cases of kidney cancer in the United States in 2015. Of these, 38270 are males (7th most common male cancer at 5%) and 23290 are females (10th most common female cancer at 3%)[3]. Correspondingly, there are 14080 estimated deaths from kidney cancer in the United States in 2015[3]. Of these, males account for 9070 (9th most fatal cancer in males at 3%) and females 5010 (outside the top 10 most fatal cancers in females)[3]. The overall survival
CLINICAL AND BIOCHEMICAL FINDINGS

Most RCCs are asymptomatic and discovered as unexpected findings on imaging performed for unrelated clinical indications[39-41]. The frequency of these incidental RCCs appears to be rising - these represent 48%-66% of contemporary RCCs compared with 3%-13% in the 1970s[42,43]. The improved detection of RCCs is likely a reflection of the greater availability of high-resolution cross-sectional imaging modalities over the last few decades[44-46]. Furthermore, these incidental RCCs are often detected at a smaller size and lower stage[47,48]. The classic triad of a palpable mass, flank pain and hematuria is found in 6%-10% and portends a more aggressive histology and advanced disease[23,37,52]. About 20%-30% have metastatic disease at presentation - symptoms may include dyspnea (lung metastases) or bone pain (bone metastases)[49]. The development of hypercalcemia, erythrocytosis, gynecorexia, hypertension or fever may be related to a paraneoplastic syndrome. Non-specific complaints include fatigue, loss of appetite and weight loss[37,46].

Biomarker development is a rapidly growing field in oncology given the potential impact of this technology as a diagnostic and prognostic tool. Investigators have studied serum and urinary compounds to determine their suitability as biomarkers for RCC. These include serum compounds such as tumor necrosis factor receptor-associated factor-1, heat shock protein 27 (HSP27), serum amyloid A, osteopontin, pyruvate kinase type M2 and thymidine kinase 1 and urinary compounds such as nuclear matrix proteins-22, neutrophil gelatinase-associated lipocalin, aquaporin-1, kidney injury molecule-1 and perilipin 2[37]. While preliminary results are encouraging, no serum or urinary biomarker has yet received validation for RCC. Imaging remains the mainstay in RCC for diagnosis, screening, follow-up and treatment monitoring.
IMAGING

RCCs may exhibit a variable spectrum of morphologic appearances ranging from small indolent lesions to large aggressive masses associated with local invasion and metastatic disease. Despite the wide range of findings that may be encountered, careful attention to certain imaging characteristics is often helpful in discriminating between the subtypes.

The gross morphologic profile of the tumor can provide an indication of its subtype. Clear cell RCC typically exhibits exophytic growth and has a tendency to be heterogeneous (Figure 1) due to intratumoral necrosis, cystic change or hemorrhage\(^\text{[1,11]}\). Moreover, Pedrosa et al\(^\text{[30]}\) found that findings such as large size, intraregional necrosis, retroperitoneal vascular collaterals, and renal vein thrombosis predicted a high grade clear cell subtype \((P < 0.05)\). Interruption of the tumor capsule has also been correlated with high tumor grade\(^\text{[54]}\). Seventy percent of papillary RCCs are confined to the kidney at presentation and are generally small size \((\leq 3 \text{ cm})\) and low grade - these commonly manifest as peripherally located tumors which are well-circumscribed and homogeneous (Figure 2)\(^\text{[11,15,53]}\). Papillary tumors > 4 cm can show internal heterogeneity due to cystic change and necrosis\(^\text{[55]}\). Cystic papillary RCCs may show hemorrhagic fluid content and internal mural nodules or papillary projections while cystic clear cell RCCs typically show clear fluid content and irregular walls and septations\(^\text{[11,53,55]}\). Chromophobe RCC tends to appear well-circumscribed and homogeneous (cystic change and necrosis are uncommon) even when large (Figure 3), and perinephric infiltration and vascular involvement \(< 4\%\) are rare\(^\text{[1,11,55,56]}\). Other features that can help to discriminate chromophobe RCC from other subtypes include the presence of a central stellate scar (Figure 4) and spoke-wheel enhancement, although these may also be seen in oncocytoma\(^\text{[57,58]}\). The presence of intraregional fat (either macroscopic or microscopic), is a recognized feature of some clear cell RCCs\(^\text{[1,11,53,59]}\). However, this finding is not subtype specific as rarely papillary RCC and chromophobe RCC may contain fat\(^\text{[1,11,55,60,61]}\). Karlo et al\(^\text{[51]}\) found that while all 3 subtypes may contain microscopic fat as visualized by signal intensity loss on opposed-phase compared to in-phase T1-weighted magnetic resonance imaging (MRI) (Figure 5), a \(> 25\%\) signal loss was predictive for clear cell RCC. The use of a simple two-point Dixon fat-water separation technique derived from a dual-echo chemical shift T1 sequence is often helpful in aiding the radiologist in identifying small quantities of microscopic fat in a renal mass. Calcifications were significantly more frequent in papillary RCCs \((32\%)\) and chromophobe RCCs \((38\%)\) than clear cell RCCs \((11\%)\).\(^\text{[25,56]}\) Bilaterality and multifocality is also more common in papillary RCC \((4\%\) and 22.5% respectively) than clear cell RCC \((< 5\%)\).\(^\text{[1,15,60]}\) However, such findings have limited practical value in subtype discrimination.

An important imaging characteristic is the signal intensity appearance of the tumor on T2 weighted MRI. Most papillary RCCs demonstrate low T2 signal intensity (Figure 6A)\(^\text{[11,20,53,54,62,63]}\). In contrast, most clear cell RCCs show high T2 signal intensity (Figure 7A)\(^\text{[11,53,54,62,63]}\) while the signal intensity of chromophobe RCC has yet to be formally profiled in great detail. Oliva et al\(^\text{[63]}\) evaluated the T1 and T2 signal intensity of 49 RCCs \((28\text{ clear cell and } 21\text{ papillary})\) and correlated the findings with pathology. The authors found that while the T1 signal intensity of both subtypes was similar, the neoplasms could be discriminated on the basis of the T2 signal intensity with papillary RCC showing an average mean signal intensity ratio of 0.67 \(\pm 0.2\), and clear cell RCC showing an average mean signal intensity ratio of 1.41 \(\pm 0.4\) \((P < 0.05)\). The tumor signal intensity ratio was calculated as follows: [Tumor (signal intensity)/renal cortex (signal intensity)]. A tumor T2 signal intensity ratio of \(\leq 0.66\) was found to have 100% specificity and 54% sensitivity for papillary RCC\(^\text{[53]}\). The authors also reported that only a papillary architecture on histology correlated with the low T2 signal intensity appearance of papillary RCCs\(^\text{[63]}\). This was contrary to prior studies that attributed this appearance to the presence of blood degradation products \((\text{e.g., hemosiderin or ferritin})\), fibrosis or a high nucleus-to-cytoplasm ratio\(^\text{[64-66]}\).

Several preliminary studies have shown encouraging results in utilizing diffusion-weighted imaging (DWI) for characterizing RCCs into its main subtypes as well as into high grade and low grade tumors\(^\text{[67-70]}\). In a study of 33 patients with 36 RCCs \((\text{clear cell } 32\text{ and } 4\text{ non-clear cell})\) of which 23 were grade I or II and 13 were grade III or IV at 1.5-T, Goyal et al\(^\text{[67]}\) found that clear cell RCCs \((1.6 \times 10^{-3}/\text{mm}^2/\text{s})\) had significantly higher mean apparent diffusion coefficient \((\text{ADC})\) values than non-clear RCCs \((1.0 \times 10^{-3}/\text{mm}^2/\text{s})\) \((P = 0.005)\) while lower grade tumors \((1.7 \times 10^{-3}/\text{mm}^2/\text{s})\) had higher mean ADC values than higher grade tumors \((1.3 \times 10^{-3}/\text{mm}^2/\text{s})\) \((P = 0.005)\). In a study of 77 patients with 78 RCCs \((59\text{ clear cell tumors}, 12\text{ papillary tumors and } 7\text{ chromophobe tumors})\) at 3-T, Choi et al\(^\text{[68]}\) found that papillary RCCs \((1.3 \times 10^{-3}/\text{mm}^2/\text{s})\) and chromophobe RCCs \((1.6 \times 10^{-3}/\text{mm}^2/\text{s})\) had significantly lower mean ADC values than clear cell RCCs \((1.8 \times 10^{-3}/\text{mm}^2/\text{s})\) \((P < 0.01)\). No significant differences were found between papillary and chromophobe tumors \((P = 0.26)\). In addition, high grade clear cell RCCs \((1.7 \times 10^{-3}/\text{mm}^2/\text{s})\) were noted to have significantly lower mean ADC values than low grade clear cell RCCs \((2.0 \times 10^{-3}/\text{mm}^2/\text{s})\) \((P = 0.021)\). In a study of 83 patients with 85 RCCs \((49\text{ clear cell tumors, } 22\text{ papillary tumors and } 14\text{ chromophobe tumors})\) at 3-T, Wang et al\(^\text{[69]}\) found that papillary RCCs \((1.1 \times 10^{-3}/\text{mm}^2/\text{s})\) and chromophobe RCCs \((1.3 \times 10^{-3}/\text{mm}^2/\text{s})\) had significantly lower mean ADC values than clear cell RCCs \((1.8 \times 10^{-3}/\text{mm}^2/\text{s})\). No significant differences were found between papillary and chromophobe tumors \((P = 0.068)\). Furthermore, a meta-analysis by Lassell et al\(^\text{[70]}\) of 17 studies with 764 patients found that ADC values on DWI could differentiate RCC \((1.6 \pm 0.08 \times 10^{-3}/\text{mm}^2/\text{s})\) from benign renal lesions such as oncocytoma \((2.0 \pm 0.08 \times 10^{-3}/\text{mm}^2/\text{s})\) \((P < 0.0001)\).
Several investigators have advocated the adoption of quantitative enhancement metrics as a useful means to discriminate between RCC subtypes on multiphasic cross-sectional imaging modalities[17,26]. Fundamentally, this exploits the principle that papillary RCC shows hypovascularity (Figure 6B), chromophobe RCC intermediate vascularity and clear cell RCC hypervascularity (Figure 7). In a 4-phase (unenhanced phase, corticomedullary phase at 40-55 s, nephrographic phase at 90-120 s and excretory phase at 8 min) computed tomography (CT) study of 298 renal tumors (170 clear cell RCCs, 57 papillary RCCs, 22 chromophobe RCCs and 49 oncocytomas), Young et al[17] found that the mean enhancement of clear cell RCC peaked on the corticomedullary phase compared with that of papillary RCC and chromophobe RCC which peaked on the nephrographic phase. Compared with papillary RCC, clear cell RCC showed greater mean enhancement on all phases - corticomedullary phase (125 HU vs 54 HU, P < 0.01), nephrographic phase (103 HU vs 64 HU, P < 0.001) and excretory phase (80 HU vs 54 HU, P < 0.01). Compared with chromophobe RCC, clear cell RCC showed greater mean enhancement on the corticomedullary phase (125 HU vs 74 HU, P < 0.001) and excretory phase (80 HU vs 60 HU, P = 0.008)[17]. Furthermore, multiphasic enhancement threshold levels enabled clear cell RCC to be discriminated from papillary RCC (threshold of 55 HU on the corticomedullary phase, 65 HU on the nephrographic phase and 55 HU on the excretory phase) and chromophobe RCC (threshold of 75 HU on the corticomedullary phase, 85 HU on the nephrographic phase and 60 HU on the excretory phase) with an accuracy and sensitivity of 85% and 94%, and 84% and 92%, respectively[17]. A multiphasic CT study by Lee-Felker et al[29] of 86 clear cell RCCs, 36 papillary RCCs, 10 chromophobe RCCs, 10 fat-poor angiomyolipomas and 23 oncocytomas found that clear cell RCC had a significantly higher maximum attenuation than papillary RCC on the corticomedullary phase (174.4 HU vs 62.2 HU), nephrographic phase (113.2 HU vs 81.8 HU) and excretory phase (87.9 HU vs 64.5 HU), and significantly higher maximum attenuation than chromophobe RCC on the nephrographic phase (113.2 HU vs 91.4 HU) and excretory phase (87.9 HU vs 71.3 HU). Contrary to Young et al[17] findings, Lee-Felker et al[29] found that chromophobe RCCs showed maximal enhancement on the corticomedullary phase rather than...
the nephrographic phase - this difference was attributed to the more uniform 4-phase CT protocol adopted in the latter study. Sun et al.[26] performed a multiphasic MRI study of 113 renal masses that included 75 clear cell RCCs, 28 papillary RCCs and 10 chromophobe RCCs. The authors found that the tumor signal intensity change was highest for clear cell RCC (205.6% on corticomedullary phase and 247.1% on nephrographic phase), intermediate for chromophobe RCC (109.9% on corticomedullary phase and 192.5% on nephrographic phase) and lowest for papillary RCC (32.1% on corticomedullary phase and 96.6% on nephrographic phase). The percentage signal intensity change of the tumor was calculated as follows: [Signal intensity (post)-signal intensity (pre)/signal intensity (pre)] x 100%. A signal intensity change threshold of 84% on the corticomedullary phase was able to differentiate clear cell RCC from papillary RCC with 93% sensitivity, 96% specificity and an area under the receiver operating curve of 0.99[26]. The study also found that clear cell RCC had a significantly higher tumor to cortex (TCR) ratio than either chromophobe RCC or papillary RCC on the corticomedullary and nephrographic phases (clear cell RCC - TCR of 1.4 and 1.2, chromophobe RCC - TCR of 0.6 and 0.8, and papillary RCC - TCR of 0.2 and 0.4).[26] In patients with moderate or severe renal impairment, where CT or MR contrast agents may be contraindicated, contrast-enhanced ultrasound (US) may be used as a viable alternative for evaluating renal masses[71]. It can discriminate if a focal lesion is solid or cystic and can differentiate a solid neoplasm from a pseudotumor such as a column of Bertin[71]. In 103 patients with complex cystic renal masses, Xue et al.[72] found that contrast-enhanced US was superior to both contrast-enhanced CT and conventional US in evaluating cystic masses including determining the cyst wall thickness, the number of internal septa and the presence of solid components.

CT perfusion is an advanced technique that calculates quantitative parameters that reflect the tumor’s intrinsic microvascular environment such as blood flow, blood volume, capillary permeability and mean transit time[73]. In a study of 85 patients that included a subset of 66 clear cell RCCs, 7 papillary RCCs and 5 chromophobe RCCs, Chen et al.[74] found that mean equivalent blood flow and blood volume were significantly higher in clear cell RCCs vs papillary RCCs (P < 0.001), while mean equivalent blood volume was significantly higher in clear cell RCCs vs chromophobe RCCs (P < 0.001). In a CT perfusion study of 15 patients with 15 RCCs, Reiner et al.[75] found that parameters such as blood flow

Figure 5 A 61-year-old female with a pathologically proven clear cell renal cell carcinoma in the right kidney. A: Axial in-phase T1-weighted magnetic resonance imaging; B: Axial opposed-phase T1-weighted magnetic resonance image; C: Axial fat-only magnetic resonance image from a two-point Dixon reconstruction which displays the difference between echos from A and B. The tumor (arrow) shows high signal on C due to the presence of microscopic fat. Incidentally, the liver also shows high signal on C due to hepatic steatosis.

Figure 6 A 42-year-old male with a pathologically proven papillary renal cell carcinoma in the right kidney. A: On an axial T2-weighted magnetic resonance image. The well-circumscribed exophytic solid tumor (arrow) shows relatively homogeneous low T2 signal intensity; B: On an axial contrast-enhanced T1-weighted magnetic resonance image during the corticomedullary phase. The tumor (arrow) is homogeneously hypovascular compared to the adjacent renal cortex, except for mild enhancement of the renal capsule.
and blood volume had a strong correlation with tumor microvascular density on histology with lower blood flow and blood volume noted in poor prognosis RCCs that had lower microvascular density. This suggests that CT perfusion may have a potential role as a prognostic marker as a greater microvascular density is associated with improved prognosis and longer survival for RCC\(^{75,76}\).

In patients with metastatic RCC, CT perfusion could be used to select patients that would benefit from targeted anti-angiogenic therapy as well to evaluate the post-treatment response\(^{73}\).

Finally, \(^{18}\)F-fluorodeoxyglucose positron emission tomography (PET)-CT is another modality that has been used to evaluate RCC. In a study of 100 patients with 107 RCCs, Nakajima \textit{et al}\(^{77}\) found that clear cell RCCs had significantly higher maximum standardized uptake and tumor-to-normal tissue ratio than non-clear cell RCCs (\(P < 0.001\)) when evaluated during the early dynamic phase. During the whole body phase, the authors found that RCCs that were of higher stage, higher grade, and associated with vascular or lymphatic invasion showed higher maximum standardized uptake than less aggressive RCCs\(^{77}\). However, PET-CT is limited in primary tumor assessment as physiologic tracer excretion by the kidneys can mask an RCC leading to false negative results. PET-CT has more of a defined role for disease re-staging in advanced RCC and in recurrent RCC\(^{78,79}\). Alongi \textit{et al}\(^{80}\) suggested that PET-CT was able to predict disease progression and survival in patients with recurrent RCC after surgery and so influence clinical decision making. The study found that patients with a PET positive scan had a worse 5-year survival (19% vs 69%, \(P < 0.05\)) and a lower 3-year progression free survival (20% vs 67%, \(P < 0.05\)) compared to patients with a PET negative scan\(^{80}\). A PET positive scan was also associated with a higher risk of disease progression than a PET negative scan with a HR of 3.8 (\(P < 0.05\))\(^{80}\).

STAGING OF RCC

The American Joint Committee on Cancer staging system for RCC is as follows\(^{47,81}\).

Primary tumor (T)
- T0: No evidence of a primary tumor
- T1: Tumor \(\leq 7\) cm limited to kidney
 - T1a: Tumor \(\leq 4\) cm limited to kidney
 - T1b: Tumor > 4 cm to 7 cm limited to kidney
- T2: Tumor > 7 cm limited to kidney
 - T2a: Tumor > 7 cm to 10 cm limited to kidney
 - T2b: Tumor > 10 cm limited to kidney
- T3: Tumor extends into major veins or has spread into the perinephric tissues but not beyond Gerota’s fascia
 - T3a: Tumor extends into the renal vein or the perinephric tissues but not beyond Gerota’s fascia
 - T3b: Tumor extends into vena cava below the diaphragm (Figure 8)
 - T3c: Tumor extends into vena cava above diaphragm or invades the wall of the vena cava
- T4: Tumor has spread beyond Gerota’s fascia, which may include the ipsilateral adrenal gland

Regional lymph nodes (N)
- N0: Negative for regional lymph node involvement
- N1: Positive for regional lymph node involvement

Distant metastasis (M)
- M0: Negative for distant metastasis
- M1: Positive for distant metastasis

Overall, the most frequent sites of metastases for RCC are the lungs (60%), liver (40%), bone (40%) and brain (5%)\(^{82}\).

Stages I to IV correspond to the following TNM categories

Stage	T, N, M
Stage I: T1, N0, M0	
Stage II: T2, N0, M0	
Stage III: T1 or T2, N1, M0 or T3, any N, M0	
Stage IV: T4, any N, M0 or any T, any N, M1	

The 5-year survival for RCC according to stage is 96% for stage I, 82% for stage II, 64% for stage III and 23% for stage IV\(^{21}\).
DIFFERENTIAL DIAGNOSIS

Tumors that can mimic the appearance of RCC on imaging include lipid-poor angiomyolipoma, oncocytoma, and lymphoma. These are discussed below.

Angiomyolipoma

Angiomyolipoma (AML) - the most common benign renal tumor - is composed of varying amounts of mature adipose tissue, smooth muscle and dysmorphic blood vessels[58]. Most AMLs are sporadic but less frequently may be associated with tuberous sclerosis (< 20%) or lymphangioleiomyomatosis[84]. Seventy-five percent to 80% of patients with tuberous sclerosis develop AMLs - such tumors have a propensity towards multicentricity, bilaterality, larger size and being symptomatic compared with sporadic AMLs[84,85]. AMLs show a female predilection (female to male ratio of 4:1) and are commonly detected in middle-age[86]. Most are asymptomatic although tumors > 4 cm have an increased risk of hemorrhage[86]. The diagnosis of AML on imaging is based on the detection of macroscopic fat (Figure 9). However, 5% of AMLs have an insufficient amount of lipid (equivalent to a fat content of ≤ 25% per high power field on histopathologic examination[87]) to be perceived on cross-sectional imaging modalities[86]. Included are lipid-poor AMLs and AMLs that completely lack fat, and these are a radiologic pitfall for misdiagnosis and unnecessary surgery. Of the 10%-17% of resected renal masses that are ultimately classified as benign on pathologic analysis, AMLs account for 18%-59%[88-92]. Around 14%-33% of AMLs associated with tuberous sclerosis are lipid-poor[85,93,94]. Imaging findings suggestive for a lipid-poor AML include homogeneous isoechogenicity compared with normal renal parenchyma on US[93,95-97], homogeneous hyperdensity compared with normal renal parenchyma on unenhanced CT[92,97-99], rapid homogeneous enhancement followed by rapid washout or persistent enhancement on delayed images[92,97-100], signal loss on opposed-phase compared with in-phase T1-weighted MR[100,101] and low signal intensity on T2-weighted MR[96,97,102]. Unfortunately, no single radiologic finding is pathognomonic as the imaging appearances of AML and RCC may overlap. Furthermore, lipid-poor AMLs should be differentiating from AMLs that completely lacks fat. The former displays signal loss on opposed-phase compared with in-phase T1-weighted MRI, at least in some areas, while the latter does not. Yang et al[99] suggested 4 CT parameters for differentiating lipid-poor AML from RCC - an angular tumor interface with the normal parenchyma, an unenhanced density > 38.5 HU, a hypodense rim due to subtle marginal fat and homogeneous enhancement. Lee-Felker et al[96] found that lipid poor AML could be differentiated from clear cell RCC with 95% accuracy, 70% sensitivity, 98% specificity, 78% positive predictive value and 97% negative predictive value based on the combination of an unenhanced CT density > 45 HU and a relative corticomedullary attenuation ([lesion (region of interest) - cortex (region of interest)/cortex (region of interest)] x 100%) of < 10%. On MRI, Hindman et al[96] found that in-phase and opposed-phase T1-weighted MRI had poor ability to discriminate between lipid-poor AML and clear cell RCC as both may show microscopic fat. While low T2 signal intensity is a common feature of lipid-poor AML and papillary RCC, the tumors may be differentiated on the basis of vascularity as AMLs are hypervascular while papillary RCCs are hypovascular[96,102]. Features such as larger tumor size (> 3 cm), intratumoral necrosis and calcifications favor a diagnosis of RCC[83,96].

Renal oncocytoma

Oncocytoma is the second most common benign tumor after AML and accounts for 3%-7% of renal neoplasms[83,96]. A study of 138 pathologically proven oncocyotomas reported a mean patient age of 68 years (24-86 years), male to female ratio of 2.6 and median tumor size of 3.2 cm (0.3-14.5 cm)[103]. Oncocytomas were found to be unilateral in 95%, bilateral in 5%, multiple in 6% while a co-existing RCC was found in 10%[105]. Oncocytomas and chromophobe RCCs share some common imaging and histological findings[58,106-108]. Both arise from the intercalated cells - of the collecting duct in oncocyotomas and the cortex in chromophobe RCC[58,106-109]. Imaging findings regarded as suggestive of oncocyotoma such as a well-defined margin, homogeneous consistency, central stellate scar, spoke-wheel enhancement and segmental enhancement inversion may also be seen in chromophobe RCC[58,107,110-115] (Figure 10). First described by Kim et al[112] segmental enhancement inversion refers to a renal mass that shows 2 distinct regions of enhancement on the corticomedullary phase which then exhibits enhancement reversal on the nephrographic phase. In a systemic review of 4 studies and 307 patients, segmental enhancement inversion was found to have 87%-100% specificity but 0%-80% sensitivity for oncocyotoma[116]. Woo et al[111] suggested that non-uniform CT technique and interpretation errors
accounted for the variable sensitivity. Wu et al. [107] evaluated the CT findings of pathologically proven oncocytomas (n = 56) and chromophobe RCCs (n = 54). Homogeneous enhancement was found in 64.3% of oncocytomas vs 38.9% of chromophobe RCCs (P = 0.008), a central stellate scar in 46.4% of oncocytomas vs 25.9% of chromophobe RCCs (P = 0.025), spoke-wheel enhancement in 73.2% of oncocytomas vs 20.4% of chromophobe RCCs (P < 0.001), and segmental enhancement inversion in 69.6% of oncocytomas vs 16.7% of chromophobe RCCs (P < 0.001) [107]. The combination of a central stellate scar, spoke-wheel enhancement, and segmental enhancement inversion had 99.1% sensitivity, 100% specificity, 100% positive predictive value and 75% negative predictive value for oncocytoma [107]. The authors also noted that oncocytoma had significantly higher unenhanced CT density than chromophobe RCC and normal renal cortex, and significantly greater enhancement than chromophobe RCC on corticomedullary, nephrographic and excretory phases [107]. In differentiating oncocytoma from clear cell RCC, Ren et al. [57] found that a corticomedullary phase TCR < 1 had 93% sensitivity, 84% specificity and 87% accuracy while a nephrographic phase TCR > corticomedullary phase TCR had 71% sensitivity, 97% specificity and 89% accuracy for oncocytoma. Lee-Felker et al. [29] found that CT de-enhancement [region of interest (corticomedullary) - region of interest (nephrographic)] > 50 HU or a relative corticomedullary attenuation > 0% was able to differentiate clear cell RCC from oncocytoma with 74% accuracy, 76% sensitivity, 70% specificity, 90% positive predictive value and 43% negative predictive value. Young et al. [17] found that a multiphasic CT threshold level of 106 HU on the corticomedullary phase, 92 HU on the nephrographic phase and 68 HU on the excretory phase was able to differentiate clear cell RCC from oncocytoma with 77% accuracy, 86% sensitivity and 85% positive predictive value. Despite these promising preliminary reports, there remains a strong clinical body of opinion that oncocytoma cannot be reliably differentiated from RCC based on imaging features alone.

Renal lymphoma

Renal lymphoma may be primary or secondary. Secondary renal lymphoma is relatively common (> 30% post-mortem incidence) and generally develops in the context of widespread lymphoma as a consequence of hematogenous dissemination or contiguous extension from retroperitoneal adenopathy [117-119] (Figure 11). Primary lymphoma is rare and accounts for < 1% of extranodal lymphomas [117]. El-Sharkawy et al. [120] found that renal lymphoma has 5 morphologic patterns on CT: Enlarged lobular non-enhancing kidneys, bilateral multiple renal masses, focal single non-enhancing renal mass, perirenal infiltrations from retroperitoneal extension and bilateral diffuse areas of non-enhancing hypodensities. Multifocal lesions are the most frequent presentation followed secondly by contiguous extension from retroperitoneal adenopathy [117,121]. Renal lymphoma appears homogeneously hypoechoic on US, hypodense on CT and low to intermediate signal intensity on T1- and T2-weighted MRI [121-123]. Due to high cellularity, renal lymphoma generally show restricted diffusion and low DWI values although further analysis is required to determine if DWI can be used to differentiate renal lymphoma from other renal tumors [124].

Lymphomatous lesions may show negligible mass effect - deformation of the renal contour, collecting system and ureter (hydronephrosis is a late finding) and displacement of surrounding structures are relatively uncommon findings [23,120]. Renal lymphoma is hypovascular and shows lower enhancement than the renal parenchyma on CT or MRI [121]. This can make differentiation from a...
hypovascular RCC such as a papillary tumor challenging\(^{125}\). Conversely, type 2 papillary RCC may show extensive para-aortic adenopathy which can mimic secondary renal lymphoma\(^{125}\). Cystic tumors, calcifications and vascular extension into the renal vein and/or inferior vena cava are atypical findings for lymphoma that should raise the suspicion for an alternative etiology\(^{117,120,121}\). Renal biopsy may be required to establish the diagnosis in equivocal cases. Such patients can be spared surgery as lymphoma generally responds well to chemotherapy.

MANAGEMENT OPTIONS AND IMAGING FOLLOW-UP

A variety of management strategies have been formulated for RCC. Accurate radiological staging is essential as therapeutic options are stage dependent. The National Comprehensive Cancer Network (NCCN) multidisciplinary recommendations for the clinical management and imaging follow-up of patients with RCC are discussed below\(^{2,47,127}\).

Stage I a

Nephron-sparing partial nephrectomy - with the objective being the complete surgical extirpation of the tumor while retaining sufficient healthy tissue for adequate renal function - is the preferred treatment option for stage I a\(^{2,47,127}\). The technique was originally intended for the selective treatment of: (1) small RCCs; (2) patients at increased risk of post-surgical renal insufficiency due to inadequate renal reserve such as subjects with a solitary kidney, pre-existing borderline renal function, or those with multiple or bilateral tumors; and (3) patients at increased risk for additional RCCs that may require repeat surgeries such as those with a genetic syndrome. Over the last decade, the clinical indications for partial nephrectomy have been expanded to include most patients with low stage tumors as studies have demonstrated that partial nephrectomy is as effective a therapeutic option as radical nephrectomy with comparable rates of tumor-free survival and overall survival\(^{128-131}\). Recurrence rates following partial nephrectomy for stage I a tumors is low at 0%-3%\(^{128}\). Radical nephrectomy - first described by Robson et al\(^{123}\) in 1969 to encompass the en-bloc excision of the diseased kidney with the perirenal fat, ipsilateral adrenal gland and regional lymph nodes - is reserved for stage I a cases ineligible for partial nephrectomy such as RCCs situated at the renal hilum\(^{2}\). In addition to being a more extensive procedure, radical nephrectomy increases the risk of renal impairment which adversely affects quality of life and cardiovascular specific- and overall- survival\(^{127,133,134}\). A study by Huang et al\(^{135}\) of 662 patients that underwent either radical nephrectomy or partial nephrectomy for a stage I a renal tumor found that the 3-year probability of freedom from new onset glomerular filtration rate (GFR) < 60 mL/min was 80% for partial nephrectomy compared with 35% for radical nephrectomy. For a new onset GFR < 45 mL/min, the 3-year probability of freedom was 95% for partial nephrectomy compared with 64% for radical nephrectomy. For poor surgical candidates such as elderly patients with significant co-morbidities, minimally invasive thermal ablation techniques such as radiofrequency ablation (RFA) or cryoablation represent effective alternatives for stage I a tumors\(^{2,136-138}\). Performed with US or CT-guidance as an elective procedure, these techniques have the advantage of improved patient tolerance and recovery, preservation of renal function and a lower complication rate compared with surgery\(^{138,139}\). Ablative therapies may be inferior to surgery for oncologic control with a higher risk of recurrence, but this is often an acceptable compromise in non-surgical candidates\(^{138}\). The recurrence rate for stage I a tumors post-RFA is 2.5%-9%\(^{140,141}\). In a study of 200 renal tumors, Wah et al\(^{141}\) found that a tumor size < 3 cm and an exophytic location were independent predictors of successful RFA. In contrast, a central or lower pole tumor location was an independent predictor of ureteric injury. A systemic review by Klatte et al\(^{139}\) comparing cryoablation vs partial nephrectomy for the
Low G et al. Review of RCC

treatment of small renal masses found that cryoablation conferred an 8.5% risk of tumor progression and partial nephrectomy a 1.9% risk. On CT or MRI images, recurrent disease may be detected as a focus of new enhancement ± an increase in size of the viable portion of the ablated tumor. The NCCN recommends that abdominal CT or MRI at 3 and 6 mo be performed to evaluate treatment response followed by annual CT or MRI for 5 years[22]. Active imaging surveillance may be an appropriate strategy in frail patients with small RCCs as these tumors generally have a slow growth rate and low metastatic potential[2,142-148]. Analyzing the results of 6 studies with a total of 937 renal tumors (mean size of 2.4 cm at diagnosis) and a follow-up period of 28-36 mo showed that tumors grew at an average rate of 0.24 cm/year[143-146]. The NCCN recommends that abdominal CT or MRI be performed within 6 mo of surveillance initiation followed by abdominal CT, MRI or US at least annually[22]. A chest X-ray or CT chest yearly is also suggested to evaluate for pulmonary metastases.

Stage I b
The NCCN recommends that either partial nephrectomy or radical nephrectomy be performed for stage I b tumors[22]. Both techniques show comparable oncologic control[128,131,134,149,150]. The follow-up schedule suggested by the NCCN for surgically treated stage I a/b tumors is as follows[22]: (1) a baseline abdominal CT, MRI or US within 3-12 mo of surgery; (2) if the initial postoperative scan following a partial nephrectomy is negative, then abdominal CT, MRI or US should be performed annually for 3 years based on individual risk factors; (3) if the initial postoperative scan following a radical nephrectomy is negative, then abdominal imaging beyond 12 mo may be performed at the discretion of the physician, and (4) chest X-ray annually for 3 years, and beyond that as deemed appropriate.

Stage II and III
The NCCN recommends that radical nephrectomy be performed for stage II and III tumors[2]. Routine adrenalectomy and lymphadenectomy is not advocated in the absence of radiologic disease at these sites as it does not improve survival[151,152]. A laparoscopic approach is favored for stage II tumors while stage III tumors are usually treated by an open approach[27,137]. Comparing laparoscopic vs open radical nephrectomy, Hemel et al[153] found that laparoscopic nephrectomy had the advantage over the open procedure of reduced blood loss and analgesia requirements, reduced hospital stay and improved recovery times. The follow-up schedule suggested by the NCCN for stage II and III patients treated by radical nephrectomy is as follows[22]: (1) baseline abdominal CT or MRI within 3-6 mo, then CT, MRI or US every 3-6 mo for at least 3 years and then annually up to 5 years; (2) baseline chest CT within 3-6 mo after surgery with continued imaging (CT or chest X-ray) every 3-6 mo for at least 3 years and then annually up to 5 years; and (3) site-specific imaging depending on symptoms.

Stage IV
Targeted molecular therapies using vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) (e.g., sunitinib, sorafenib, pazopanib and axitinib) or mammalian target of rapamycin inhibitors (e.g., temsirolimus and everolimus) have largely replaced immunotherapy agents (e.g., interferon-α) for systemic therapy. A randomized trial by Motzer et al[154] involving 750 patients with metastatic clear cell RCC showed that patients treated with sunitinib had longer progression free survival and overall survival compared with patients treated with interferon-α. Several studies have suggested that VEGF-TKIs may be less effective in treating papillary and chromophobe RCCs compared with clear cell RCCs[158-161]. At present, there is no established first-line therapy for metastatic non-clear cell RCC. As such, the NCCN suggests that the preferred option in these patients is enrollment in a clinical trial[126]. Potential agents include temsirolimus, sorafenib, sunitinib, pazopanib, axitinib, everolimus, bevacizumab or erlotinib[126]. Preliminary studies have suggested that temsirolimus has efficacy in treating papillary RCC[158-161]. Two randomized controlled studies found that cytoreductive nephrectomy followed by immunotherapy improved survival in patients with metastatic RCC compared to immunotherapy alone[162,163]. Similarly, a study of 314 patients with metastatic RCC found that cytoreductive nephrectomy followed by VEGF-TKI therapy improved survival compared with VEGF-TKI therapy alone (19.8 mo vs 9.4 mo, P < 0.01)[164].

The NCCN guidelines for stage 4 patients are as follows[22]: (1) Cases that involve a potentially resectable solitary metastatic site should undergo nephrectomy and surgical metastasectomy; (2) cases that involve a potentially resectable RCC with multiple metastatic sites should undergo cytoreductive nephrectomy in appropriate patients prior to systemic therapy; and (3) cases with medically or surgically unresectable disease should undergo systemic therapy.

The NCCN suggests that stage IV patients should undergo baseline chest, abdominal and pelvic imaging by CT or MRI pre-treatment or prior to observation, followed by repeat imaging every 6-16 wk as per physician discretion and per patient clinical status[22]. The imaging frequency may be modified depending on the rate of disease change and the sites of active disease[22].

CONCLUSION
RCC is not a single uniform entity but a group of related neoplasms in which the histologic findings, cytogenetic abnormalities, biologic behavior and imaging appearances of the tumors are subtype dependent. The 3 main subtypes - clear cell, papillary and chromophobe - can often be differentiated non-invasively based on characteristic radiologic appearances. This knowledge is useful for radiologists as it has an impact on prognosis,
clinical management and treatment options.

REFERENCES

1. Eble JN, Sauter G, Epstein JJ, Sesterhenn IA. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. Lyon: IARC Press, 2004.

2. Motzer RJ, Agarwal N, Beard C, Bhayani S, Bolger GB, Carducci MA, Chang SS, Choueiri TK, Hancock SL, Hudes GR, Jonasch E, Josephson D, Kuzel TM, Levine EG, Lin DW, Margolin KA, Michaelson MD, Olenczi T, Pili R, Ratliff TW, Redman BG, Robertson CN, Ryan CJ, Sheinfeld J, Spiess PE, Wang J, Wilder RB. Kidney cancer. J Natl Compr Canc Netw 2011; 9: 960-977 [PMID: 21917622]

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5-29 [PMID: 25559415 DOI: 10.3322/cac.21254]

4. Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z. 2004 WHO classification of the renal tumors of the adults. Eur Urol 2006; 49: 798-805 [PMID: 16442207 DOI: 10.1016/j.eururo.2005.11.035]

5. Lopez-Beltran A, Carrasco JC, Cheng L, Scarpelli M, Kirkali Z, Montironi R. 2009 update on the classification of renal epithelial tumors in adults. Int J Urol 2009; 16: 432-443 [PMID: 19453547 DOI: 10.1111/j.1142-4240.2009.02302.x]

6. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 2005; 29: 612-624 [PMID: 12717246]

7. Moch H, Gasser T, Amin MB, Torhorst J, Sauter G, Mihatsch MJ. Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: a Swiss experience with 588 tumors. Cancer 2000; 89: 604-614 [PMID: 10931460]

8. Hoffmann NE, Gilliet MD, Cheville JC, Lohse CM, Leibovich BC, Blute ML. Differences in organ system of distant metastasis by renal cell carcinoma subtype. J Urol 2008; 179: 474-477 [PMID: 18076920 DOI: 10.1016/j.juro.2007.09.036]

9. Beck SD, Patel MI, Snyder ME, Kattan MW, Motzer RJ, Reuter VE, Russo P. Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Ann Surg Oncol 2004; 11: 71-77 [PMID: 14699037]

10. Amin MB, Corless CL, Renshaw AA, Tickoo SK, Kubus J, Schultz DS. Papillary (chromophob) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol 1997; 21: 621-635 [PMID: 9199639]

11. Gurel S, Narra V, Elsayes KM, Siegel CL, Chen ZE, Brown JJ. CT. Clear cell renal cell carcinoma: discrimination from other renal cell carcinomas using thin-section with pathologic correlation. Radiographics 2006; 26: 1795-1806; discussion 1806-1810 [PMID: 17102051 DOI: 10.1148/rg.266065101]

12. Amin MB, Amin MB, Tamboli P, Javidan J, Stricker H, de-Peralta Venturina M, Deshpande A, Monen M. Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am J Surg Pathol 2002; 26: 281-291 [PMID: 11859199]

13. Young JR, Margolis D, Saus K, Pantuck AJ, Sayre J, Raman SS. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncycotma at multiphasic multidetector CT. Radiology 2013; 267: 444-453 [PMID: 23382290 DOI: 10.1148/radiol.13111627]

14. Choueiri TK, Plantade A, Elson P, Negrier S, Ravaud A, Oudard S, Zhou M, Rini BI, Bukowski RM, Escudier B. Efficacy of sunitinib and sorafenib in metastatic papillary and chromophobe renal cell carcinoma. J Clin Oncol 2008; 26: 127-131 [PMID: 18165647 DOI: 10.1200/jco.2007.13.3232]

15. Tannir NM, Thall PF, Ng CS, Wang X, Wooten L, Sieffer-Radkte A, Mathew P, Pagliaro L, Wood C, Jonasch E. A phase II trial of gemcitabine plus bevacizumab for metastatic renal cell cancer previously treated with immunotherapy and targeted agents. J Urol 2008; 180: 867-872; discussion 872 [PMID: 18635226 DOI: 10.1016/j.juro.2008.05.017]

16. Vikram R, Ng CS, Tamboli P, Tannir NM, Jonasch E, Matin SF, Wood CG, Sandler CM. Papillary renal cell carcinoma: radiologic-pathologic correlation and spectrum of disease. Radiographics 2009; 29: 741-754; discussion 755-757 [PMID: 19484113 DOI: 10.1148/rg.293085190]

17. Upton MP, Parker RA, Youmans A, McDermott DF, Atkins MB. Histologic predictors of renal cell carcinoma response to interleukin-2-based therapy. J Immunother 2005; 28: 488-495 [PMID: 16113605]

18. Motzer RJ, Jonasch E, Agarwal N, Beard C, Bhayani S, Bolger GB, Chang SS, Choueiri TK, Costello BA, Derweesh IH, Gupta S, Hancock SL, Kim JJ, Kuzel TM, Lau C, Levine EG, Lin DW, Michaelson MD, Olenczi T, Pili R, Plimack ER, Rampersaud EN, Redman BG, Ryan CJ, Sheinfeld J, Shuch B, Sirr K, Soner B, Wilder RB, Dwyer M, Kumar R. Kidney cancer, version 3.2015. J Natl Compr Canc Netw 2015; 13: 151-159 [PMID: 25691606]

19. Zhang J, Lefkowitz RA, Bach A. Imaging of kidney cancer. Radiol Clin North Am 2007; 45: 119-147 [PMID: 17157626 DOI: 10.1016/j.radcl.2006.10.011]

20. Prando A, Prando D, Prando P. Renal cell carcinoma: unusual imaging manifestations. Radiographics 2006; 26: 233-244 [PMID: 16418254 DOI: 10.1148/radiol.261055060]

21. Park SB, Cho KS, Lee JH, Jeong YK, Choi SH, Kang BS, Kim JK. Unusual manifestations of renal cell carcinoma. Acta Radiol 2008; 49: 839-847 [PMID: 19140367]

22. Sun MK, Ngo L, Geneva EM, Atkins MB, Finn ME, Rofsky NM, Pedrosa I. Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 2009; 250: 793-802 [PMID: 19244046 DOI: 10.1148/radiol.2503080995]

23. Campbell N, Rosenkrantz AB, Pedrosa I. MRI phenotype in renal cancer: is it clinically relevant? Top Magn Reson Imaging 2014; 23: 95-115 [PMID: 24690616 DOI: 10.1097/mrr.000000000000019]

24. Ramamurthy NK, Moosavi S, McNees MD, Flood TA, Schieda N. Multimetric MRI of solid renal masses: pearls and pitfalls. Clin Radiol 2015; 70: 304-316 [PMID: 25472466 DOI: 10.1016/j.crad.2014.10.006]

25. Lee-Felker SA, Felker ER, Tan N, Margolis DJ, Young JR, Sayre J, Raman SS. Quantitative and qualitative MDCT features for differentiating clear cell renal cell carcinoma from other solid renal cortical masses. AJR Am J Roentgenol 2014; 203: W516-W524 [PMID: 25341166 DOI: 10.2214/ajr.14.12460]

26. Hunt JD, van der Hel OL, McMullan GP, Boffetta P, Brennan P. Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int J Cancer 2005; 114: 101-108 [PMID: 15523697 DOI: 10.1002/ijc.20618]

27. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371: 569-578 [PMID: 18280327 DOI: 10.1016/s0140-6736(08)60269-x]

28. Weikert S, Boeing H, Pischon T, Weikert C, Olsen A, Tjonneland A, Low G et al. Review of RCC
Overvad K, Becker N, Lineisen J, Trichopoulos A, Mountokalakis T, Trichopoulos D, Sieri S, Palizi D, Vineis P, Panico S, Peeters PH, Bueno-de-Mesquita HB, Verschuren WM, Ljungberg B, Hallmans G, Borglund G, González CA, Dorronsoro M, Barricarte A, Tormo MJ, Allen N, Roddam A, Bingham S, Khaw KT, Rinaldi S, Ferrart P, Norat T, Riboli E. Blood pressure and risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition. *Am J Epidemiol* 2008; 167: 438-446 [PMID: 18048375 DOI: 10.1093/aje/kwn321]

Hofmann JN, Schwartz K, Chow WH, Rut erbusch JJ, Shuch BM, Karami S, Rothman N, Wachtolder S, Graubard BI, Colt JS, Pur dues MP. The association between chronic renal failure and renal cell carcinoma may differ between black and white Americans. *Cancer Causes Control* 2013; 24: 167-174 [PMID: 23179659 DOI: 10.1007/s10552-012-0102-z]

Breda A, Lucarelli G, Rodriguez-Fabu O, Guirado L, Facundo C, Bettocci C, Gesualdo L, Castellano G, Grandalliano G, Battaglia M, Palou J, Dito mpo P, Villavicencio H. Clinical and pathological outcomes of renal cell carcinoma (RCC) in native kidneys of patients with end-stage renal disease: a long-term comparative retrospective study with RCC diagnosed in the general population. *World J Urol* 2015; 33: 1-7 [PMID: 24504760 DOI: 10.1007/s00345-014-1248-y]

Shreswberry AB, Us oikuya AO, Jiang K, Westby R, Canter D, Pattaras J, Turgoon N, Master VA, Ogan K. Renal cell carcinoma in patients with end-stage renal disease has favorable overall prognosis. *Clin Transplant* 2014; 28: 211-216 [PMID: 24494735 DOI: 10.1111/ctr.12299]

Neuzillet Y, Tiliou X, Mathieu R, Long JA, Gigante M, Paparet P, Poissonnier L, Baumert H, Escudier B, Lang H, Rooux-Leclercq N, Bigot P, Bernhard JC, Alibges L, Basilien L, Petit J, Saint F, Bruyere F, Boutin JM, Brichart N, Karam G, Branchearue J, Ferrer JM, Wallerand H, Barbet S, Elkentauoui H, Hubert J, Feuilhou B, Thenaeniu PE, Villers A, Zini L, Desaceaux A, Roupert M, Barrou F, Behri L, Lebret T, Tostain J, Terrier JE, Terrier N, Martins L, Dugardin F, Galliot I, Staerman P, Afzeen MD, Irani J, Isserles B, Timosi MT, Sullust F, Rischmann P, Gay L, Valeri A, Deruelle C, Azzouzi AR, Chautard D, Mejean A, Salomon L, Rigaud J, Pfister C, Soulé M, Kleinlauss F, Badet L, Patard JJ. Renal cell carcinoma (RCC) in patients with end-stage renal disease exhibits many favourable clinical, pathological, and outcome features compared with RCC in the general population. *Eur Urol* 2011; 60: 366-373 [PMID: 21377780 DOI: 10.1016/j.eururo.2011.02.035]

Pastore AL, Palleschi G, Silvestri L, Moschese D, Ricci S, Petrozza V, Carbone A, Di Carlo A. Serum and urine biomarkers for human renal cancer. *Clin Transl Oncol* 2015; 23: 251-260 [PMID: 25274276 DOI: 10.1007/s12094-014-1219-1]

Krabbe LM, Bagrodia A, Margulis V, Wood CG. Surgical management of renal cell carcinoma. *Semin Intersect Radiol* 2014; 31: 27-32 [PMID: 24596347 DOI: 10.1055/s-0033-1363840]

Volpe A, Panzarella T, Rendón RA, Haider MA, Kondylis FL, Jewett MA. The natural history of incidentally detected small renal masses. *Cancer* 2004; 100: 738-745 [PMID: 14770429 DOI: 10.1002/cncr.20025]

Gill IS, Arrow M, Gervais DA, Jewett MA. Clinical practice. Small renal mass. *N Engl J Med* 2010; 362: 624-634 [PMID: 20164486 DOI: 10.1056/NEJMcp0910041]

Cohen HT, McGovern FJ. Renal-cell carcinoma. *N Engl J Med* 2005; 353: 2477-2490 [PMID: 16339096 DOI: 10.1056/NEJMoa043172]

Lee CT, Katz J, Fearn PA, Russo P. Mode of presentation of renal cell carcinoma provides prognostic information. *Urol Oncol* 2002; 7: 135-140 [PMID: 12474528]

Pedrosa I, Choi MT, Ngo L, J Baroni R, Genega EM, Galaburda L, DeWolf WC, Ro fsky NM. MR classification of renal masses with pathologic correlation. *Eur Radiol* 2008; 18: 365-375 [PMID: 17899106 DOI: 10.1007/s00330-007-0757-0]

Pedrosa I, Alsop DC, Ro fsky NM. Magnetic resonance imaging as a biomarker in renal cell carcinoma. *Cancer* 2005; 115: 2334-2345 [PMID: 15402070 DOI: 10.1002/cncr.21332]

Muglia V, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. *Radiol Bras* 2015; 48: 166-174 [PMID: 26185343 DOI: 10.1590/0100-984X.2013.1927]

Kim JK, Kim TK, Ahn HJ, Kim CS, Kim KR, Cho KS. Differentiation of subtype of renal cell carcinoma on helical CT scans. *AJR Am J Roentgenol* 2002; 178: 1499-1506 [PMID: 12034628 DOI: 10.2214/ajr.178.6.1781499]

Ren A, Cai F, Shang YN, Ma ES, Huang ZG, Wang W, Lu Y, Zhang XZ. Differentiation of renal oncocytoma and renal clear cell carcinoma using relative CT enhancement ratio. *Chin Med J (Eng)* 2015; 128: 175-179 [PMID: 25591558 DOI: 10.4103/0366-6999.49190]

Rosenkrantz AB, Hindman N, Fitzgerald EF, Niver BE, Melamed J, Babb JS. MRI features of renal oncocytoma and chromophobe renal cell carcinoma. *AJR Am J Roentgenol* 2010; 195: W421-W427 [PMID: 21098174 DOI: 10.2214/ajr.10.74718]

Outwater EK, Bhatia M, Siegelman ES, Burke MA, Mitchell DG. Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. *Radiology* 1997; 205: 103-107 [PMID: 9314970 DOI: 10.1148/radiology.205.1.9314970]

Lesavre A, Correas JM, Merran S, Grenier N, Veillefond A, Hélémon O. CT of papillary renal cell carcinomas with cholesterol nesosis mimicking angiomylipomas. *AJR Am J Roentgenol* 2003; 181: 143-145 [PMID: 12818846 DOI: 10.2214/ajr.181.1.1810143]

Karlo CA, Donati OF, Burger IA, Zheng J, Moskowitz CS, Hricak H, Akin O. MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. *Eur Radiol* 2013;
of angiomylipoma without visible fat from renal cell carcinoma utilizing MR imaging. *Radiology* 2012; 263: 160-168 [PMID: 22344404 DOI: 10.1148/radiol.12111205]
92 *Farrell C*, Noyes SL, Tourojan M, Lane BR. Renal angio-
myolipoma: preoperative identification of atypical fat-poor AML. *Curr Urol Rep* 2015; 16: 12 [PMID: 25677233 DOI: 10.1007/s11934-015-0484-z]
93 *Lemaitre L*, Claudon M, Dubrule F, Mazeman E. Imaging of angiomylipomas. *Semin Ultrasound CT MR* 1997; 18: 100-114 [PMID: 9163829]
94 *Bret PM*, Bretagnolle M, Gaillard D, Plauchu H, Labadie M, Lapray JF, Rouillard Y, Cooperberg P. Small, asymptomatic angiomylipomas of the kidney. *Radiology* 1985; 154: 7-10 [PMID: 3880613 DOI: 10.1148/radiology.154.1.3880613]
95 *Silverman SG*, Mortelle KJ, Tuncali K, Jinzaki M, Cibas ES. Hyperattenuating renal masses: etiologies, pathogenesis, and imaging evaluation. *Radiographics* 2007; 27: 1131-1143 [PMID: 17620471 DOI: 10.1148/rg.276075147]
96 *Hindman N*, Lgo L, Genega EM, Melamed J, Wei J, Braza JM, Rofsky NM, Pedrosa I. Angiomylipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? *Radiology* 2012; 265: 468-477 [PMID: 23012463 DOI: 10.1148/radiol.12112087]
97 *Jinzaki M*, Tanimoto A, Narumatsuyama Y, Okhuma K, Kurata T, Shinmoto H, Hiramatsumoto K, Mukai M, Murai M. Angiomylipoma: imaging findings in lesions with minimal fat. *Radiology* 1997; 205: 497-502 [PMID: 9356635 DOI: 10.1148/radiology.205.2.9356635]
98 *Zhang YY*, Luo S, Liu Y, Xu RT. Angiomylipoma with minimal fat: differentiation from papillary renal cell carcinoma by helical CT. *Clin Radiol* 2013; 68: 365-370 [PMID: 23231146 DOI: 10.1016/j.crad.2012.08.028]
99 *Yang CW*, Shen SH, Chang YH, Chung HJ, Wang JH, Lin AT, Chen KK. Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomylipoma? *AJR Am J Roentgenol* 2013; 201: 1017-1028 [PMID: 24147472 DOI: 10.2214/ajr.12.10204]
100 *Kim JK*, Kim SH, Jang YH, Ahn H, Kim CS, Park H, Lee JW, Kim S, Cho KS. Renal angiomylipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. *Radiology* 2006; 239: 174-180 [PMID: 16507752 DOI: 10.1148.radiol.2391050102]
101 *Israel GM*, Hindman N, Hecht E, Kirsinsky G. The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomylipomas. *AJR Am J Roentgenol* 2005; 184: 1868-1872 [PMID: 15908544 DOI: 10.2214/ajr.184.6.1868]
102 *Cornelis F*, Tricaud E, Lasserre AS, Petterpie F, Bernhard JC, Le Bras Y, Yacoub M, Bouzgarrou M, Ravaud A, Grenier N. Routinely utilizing MR imaging. *AJR Am J Roentgenol* 2009; 252: 307-314 [PMID: 19508984 DOI: 10.1148/radiol.2522081180]
103 *Scheida N*, McNees MD, Ca L. Diagnostic accuracy of segmental enhancement inversion at biphasic multidetector CT: characteristic finding of small renal oncocytoma. *Radiology* 2009; 252: 441-448 [PMID: 19356237 DOI: 10.1148/radiol.2522081180]
104 *Ambos MA*, Bosniak MA, Valensi QJ, Madyag MA, Leffler RS. Angiographic patterns in renal oncocytomas. *Radiology* 1978; 129: 615-622 [PMID: 7250534 DOI: 10.1148/129.3.615]
105 *Quinn MJ*, Hartman DS, Friedman AC, Sherman JL, Lautin EM, Pyatt RS, Ho CK, Csere R, Fromowicz FB. Renal oncocytoma: new observations. *Radiology* 1984; 153: 49-53 [PMID: 6473802 DOI: 10.1148/radiology.153.1.6473802]
106 *Richmond J*, Sherman RS, Diamond HD, Craver LF. Renal lesions associated with malignant lymphomas. *Am J Med* 1962; 32: 184-207 [PMID: 14492019]
107 *Miyakes O*, Imai K, Sonoda T, Kitamura H. Secondary involve-
ment of genitourinary organs in malignant lymphoma. *Urol Int* 1987; 42: 360-362 [PMID: 3433582]
108 *El-Sharkawy MS*, Siddiqui N, Aleem A, Diab AA. Renal involve-
ment in lymphoma: prevalence and various patterns of involvement on abdominal CT. *Int Urol Nephrol* 2007; 39: 929-933 [PMID: 17549602 DOI: 10.1007/s11255-007-9224-8]
109 *Sheh S*, Ali S, Fishman E. Imaging of renal lymphoma: patterns of disease with pathologic correlation. *Radiographics* 2006; 26: 1151-1168 [PMID: 16844939 DOI: 10.1148/rg.264055125]
110 *Schemelka RC*, Kelekis NL, Burdeny DA, Mitchell DG, Brown JJ, Siegelman ES. Renal lymphoma: demonstration by MR imaging. *AJR Am J Roentgenol* 1996; 166: 823-827 [PMID: 8610558 DOI: 10.2214/ajr.166.4.8610558]
111 *Hauser M*, Keleski NL, Burdeny DA, Mitchell DG, Brown JJ, Siegelman ES. Renal lymphoma: demonstration by MR imaging. *AJR Am J Roentgenol* 1996; 166: 823-827 [PMID: 8610558 DOI: 10.2214/ajr.166.4.8610558]
112 *Hucqueret D*, Prat A, Raviak H, Kora S, Takeshita M, Miyajima S, Yoshimura K. Papillary renal cell carcinoma with extensive paraaortic nodal metastasis mimicking malignant lymphoma. *Magn Reson Med Sci* 2011; 10: 201-204 [PMID: 21966003]
126 Motzer RJ, Jonash E, Agarwal N, Beard C, Bhayani S, Bolger GB, Chang SS, Choiouei TK, Derweesh IH, Gupta S, Hancock SC, Kim JJ, Kuzel TM, Lam ET, Lau C, Levine EG, Lin DW, Margolin KA, Michaelson MD, Olenczi T, Pili R, Plimack ER, Rampersaud EN, Redman BG, Ryan CJ, Sheinfeld J, Sirac K, Sober B, Wang J, Riedmiller RB, Dwyer MA, Kumar R. Kidney cancer, version 2.2014. *J Natl Compr Canc Netw* 2014; 12: 175-182 [PMID: 24586079]

127 Thompson RH, Boorjian SA, Lohse CM, Leibovich BC, Kwon ED, Cheville JC, Blute ML. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. *J Urol* 2008; 179: 468-471; discussion 472-473 [PMID: 18076931 DOI: 10.1016/j.juro.2007.09.077]

128 Uzzo RG, Novick AC. Nephron-sparing surgery for renal tumors: indications, techniques and outcomes. *J Urol* 2001; 166: 6-18 [PMID: 11435813]

129 Lee CT, Katz J, Shi W, Thaler HT, Reuter VE, Russo P. Surgical management of renal tumors 4 cm. or less in a contemporary cohort. *J Urol* 2000; 163: 730-736 [PMID: 10687966]

130 Delakas D, Karystos I, Daskalopoulos G, Terhors B, Lymbertopoulos S, Cianipsis A. Nephron-sparing surgery for localized renal cell carcinoma with a normal contralateral kidney: a European three-center experience. *Urology* 2002; 60: 998-1002 [PMID: 12475657]

131 Patard JJ, Shivarts O, Lam JS, Pantuck AJ, Kim HL, Riccaro V, Cindolo L, Han KR, De La Taille A, Tostain J, Abitini W, Abbou CC, Lobel B, Chopin DK, Figlin RA, Mulders PF, Blute ML. Safety and efficacy of partial nephrectomy for all T1 tumors based on a multicenter experience. *J Urol* 2004; 171: 2181-2185, quiz 2435 [PMID: 15126781]

132 Robson CJ, Churchill BM, Anderson W. The results of radical nephrectomy for renal cell carcinoma. *J Urol* 1969; 101: 297-301 [PMID: 5765875]

133 Weight CJ, Larson BT, Fergany AF, Gao T, Lane BR, Campbell SC, Kauz Kh, Klein EA, Novick AC. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. *J Urol* 2010; 183: 1317-1323 [PMID: 20171685 DOI: 10.1016/j.juro.2009.12.030]

134 Milonas D, Skulčius G, Baltrimavičius R, Auškalnis S, Kinčius Gervais DA. Long-term oncologic outcomes after radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 2082 patients. *BJU Int* 2014; 113: 416-426 [PMID: 24053769 DOI: 10.1111/bju.12349]

135 Nguyen MM, Gill IS. Effect of renal cancer size on the prevalence of metastasis at diagnosis and mortality. *J Urol* 2009; 181: 1020-1027; discussion 1027 [PMID: 19150563 DOI: 10.1016/j.juro.2008.11.023]

136 Bahouth Y, Halachmi S, Meyer G, Avitan O, Moskowitz B, Nativ O. The natural history and predictors for intervention in patients with small renal mass undergoing active surveillance. *Adv Urol* 2015; 2015: 692014 [PMID: 25960742 DOI: 10.1155/2015/692014]

137 Mason RJ, Abdollah M, Trottier G, Pringle C, Lawen JG, Bell DG, Jewett MA, Kolotz L, Rendon RA. Growth kinetics of renal masses: analysis of a prospective cohort of patients undergoing active surveillance. *J Urol* 2011; 59: 863-867 [PMID: 21353376 DOI: 10.1016/j.juro.2011.02.023]

138 Kunkle DA, Crispens PL, Chen DY, Greenberg RE, Uzzo RG. Enhancing renal masses with zero net growth during active surveillance. *J Urol* 2007; 177: 849-853; discussion 853-854 [PMID: 17296355 DOI: 10.1016/j.juro.2006.10.073]

139 Jewett MA, Mattar K, Basiuk J, Morash CG, Pautler SE, Siemens DR, Tanguay S, Rendon RA, Gleave ME, Drachenberg DE, Chow R, Chung H, Chin JL, Fleisher NE, Evans AJ, Gallie BL, Haider MA, Kachura JR, Kurbann G, Fernandez K, Finelli A. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. *Eur Urol* 2011; 60: 39-44 [PMID: 21477920 DOI: 10.1016/j.eururo.2011.03.030]

140 Smaldone MC, Kutikov A, Egleston BL, Canter DJ, Viterbo R, Chen DY, Jewett MA, Greenberg RE, Uzzo RG. Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. *Cancer* 2012; 118: 997-1006 [PMID: 21766302 DOI: 10.1002/cncr.26369]

141 Chawla SN, Crispens PL, Hanlon AL, Greenberg RE, Chen DY, Uzzo RG. The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. *J Urol* 2006; 175: 425-431 [PMID: 16406965 DOI: 10.1016/s0022-5374(05)00148-5]

142 Crépel M, Jelders C, Perrotte P, Caputiano U, Isbarn H, Shirati SF, Liberman D, Sun M, Lughezzani G, Arjane P, Widmer H, Graefen M, Montorsi F, Patard JJ, Karkarzewicz P. Nephron-sparing surgery is equally effective to radical nephrectomy for T1BNO0M0 renal cell carcinoma: a population-based assessment. *Urology* 2010; 75: 271-275 [PMID: 19962740 DOI: 10.1016/j.urology.2009.04.098]

143 Simmons MN, Weight CJ, Gill IS. Laparoscopic radical versus partial nephrectomy for tumors > 4 cm: intermediate-term oncologic and functional outcomes. *Urology* 2009; 73: 1077-1082 [PMID: 19394509 DOI: 10.1016/j.urology.2008.11.059]

144 Lane BR, Tiong HY, Campbell SC, Fergany AF, Weight CJ, Larson BT, Novick AC, Flechner SM. Management of the adrenal gland during partial nephrectomy. *J Urol* 2009; 181: 2430-2436; discussion 2436-2437 [PMID: 19371896 DOI: 10.1016/j.juro.2009.02.027]

145 Blom JH, van Poppel H, Marčelja JM, Jacmin D, Schröder FH, de Prijck L, Sylvester R. Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. *Eur Urol* 2009; 55: 28-34 [PMID: 18483832 DOI: 10.1016/j.eururo.2008.09.052]

146 Hemal AK, Kumar A, Kumar R, Wadhwa P, Seth A, Gupta NP. Laparoscopic versus open radical nephrectomy for large renal tumors: a long-term prospective comparison. *J Urol* 2007; 177: 862-866 [PMID: 17296361 DOI: 10.1016/j.juro.2006.10.053]

147 Motzer RJ, Hisok TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bijnasen GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Xinjiang H, Figlin RA. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. *Clin Oncol* 2009;
Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylak C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. *N Engl J Med* 2007; 356: 115-124 [PMID: 17215529 DOI: 10.1056/NEJMoa065044]

Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solksa E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM. Sorafenib in advanced clear-cell renal-cell carcinoma. *N Engl J Med* 2007; 356: 125-134 [PMID: 17215530 DOI: 10.1056/NEJMoa060655]

Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, Redman BG, Margolin KA, Merchant JR, Wilding G, Ginsberg MS, Bacik J, Kim ST, Baum CM, Michaelson MD. Sunitinib in patients with metastatic renal cell carcinoma. *JAMA* 2006; 295: 2516-2524 [PMID: 16757724 DOI: 10.1001/jama.295.21.2516]

Schrader AJ, Olbert PJ, Hegele A, Varga Z, Hofmann R. Metastatic non-clear cell renal cell carcinoma: current therapeutic options. *BJU Int* 2008; 101: 1343-1345 [PMID: 18241246 DOI: 10.1111/j.1464-410X.2008.07462.x]

Dutcher JP, Szczylik C, Tannir N, Benedetto P, Ruff P, Hsu A, Berkenblit A, Thiele A, Straus A, Feingold J. Correlation of survival with tumor histology, age, and prognostic risk group for previously untreated patients with advanced renal cell carcinoma (adv RCC) receiving temsirolimus (TEMsiR) or interferon-alpha (IFN). *J Clin Oncol* 2007; 25: 5033

Dutcher JP, de Souza P, McDermott D, Figlin RA, Berkenblit A, Thiele A, Krygowski M, Straus A, Feingold J, Hudes G. Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. *Med Oncol* 2009; 26: 202-209 [PMID: 19229667 DOI: 10.1007/s12032-009-9177-0]

Bergmann I, Maute L, Guschmann M. Temsirolimus for advanced renal cell carcinoma. *Expert Rev Anticancer Ther* 2014; 14: 9-21 [PMID: 24313573 DOI: 10.1586/14737140.2014.864562]

Flanigan RC, Salmon SE, Blumenstein BA, Bearman SI, Roy V, McGrath PC, Caton JR, Munshi N, Crawford ED. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. *N Engl J Med* 2001; 345: 1655-1659 [PMID: 11759643 DOI: 10.1056/NEJMoa003013]

Mickisch GH, Garin A, van Poppehl H, de Prijck L, Sylvester R. Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: a randomised trial. *Lancet* 2001; 358: 966-970 [PMID: 11585750]

Choueiri TK, Xie W, Kollmannaberger C, North S, Knox J, Lampard JG, McDermott DF, Rini BI, Heng D. The impact of cytoreductive nephrectomy on survival of patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor targeted therapy. *J Urol* 2011; 185: 60-66 [PMID: 21074201 DOI: 10.1016/j.juro.2010.09.012]
