Theoretical Study of the Elements’ Vibrations of the Diesel Shunting Locomotive Cabins

I A Yaitskov

Scientific-Research Department, Rostov State Transport University, 2, Rostovskogo Strelkovogo Polka Narodnogo Opolcheniya sq., Rostov-on-Don, 344038, Russia

E-mail: yia@rgups.ru

Abstract. The article is devoted to the creation of the high-capacity transport vehicles, in which the use of vibro-active organs is increasingly used, inevitably leads to the increase in the levels of vibration and noise that are harmful to locomotive crews, and in the operation of the transport vehicles in the dwellings and to the acoustic environment pollution. This problem is relevant for the rail vehicles. First of all, according to the EU, it is necessary to implement measures for extinguishing noise in the places where it occurs, i.e. from the movement of the rolling stock. In this direction, the domestic and foreign experts carried out certain research. However, the formation process of the vibro-acoustic characteristics has not been studied enough. It should also be noted that the theoretical research of the vibro-acoustic dynamics of the rolling stock and methods for calculating vibration and noise spectra are limited that makes it difficult to substantiate engineering solutions for reducing the intensity of the sound emission from dominant noise sources. It is considered in the negative effect of the high level noise on workers of the locomotive crews, machinists and the environment, it is necessary to create rail vehicles with appropriate vibro-acoustic characteristics that meet the requirements of the international standards. For the locomotive’s cab, the significant influence of the structural noise component is characteristic. Therefore, this article presents the results of the theoretical studies of vibro-acoustic characteristics of the locomotives’ cabins based on traditionally used method of the energy balance for plate structures. In addition, the system of equations observes the elements of the glazing of the cabins as a "weak link" of the supporting structure. The obtained results determine the expected sound pressure levels in the design of the cabins and compare them with the maximum permissible values. The values of the excesses in the according frequency ranges are the main information for choosing engineering solutions for reducing noise levels at the design stage of such machines.

1. Introduction
The power installation of the locomotives uses the internal combustion engine which is set up closely to the cabin. The impact of the vibrations and sound emissions of the power installation identifying by power will be differed in intensity with almost identical arrangement of the vibration sources and noise in the relative calculation points for different types of the locomotives.

Therefore, the theoretical background, the calculation and design of such group of machines according to the vibro-acoustic safety criteria is carried out with the same methodological positions.
2. Object and methods of research

The typical characteristics of the general vibro-acoustic system of the locomotives are:
1. A crane is installed on the roof of the locomotive cabin, where the drive is the source of the sound radiation and vibrations.
2. The diesel shunting locomotive as the loading transport locomotive LTL-6 (Fig. 1) is equipped with a removable workshop with a set of machines and tools which create a sound field in a closed volume with rigid enclosing walls.
3. The cabins of the diesel shunting locomotives have a larger glazing area than the locomotives. These features must be considered in calculating the air noise component at the engine operator's workplaces.

![Figure 1](image1.png)

Figure 1. The loading transport locomotive LTL-6 (Overview): 1 - the jib of the crane; 2 – the locksmith's workshop; 3 – the cabin for transportation of the mechanized brigades; 4 – the platform of the locomotive; 5 – the outriggers; 6 – the control foot-plate

As a research object, the loading transport locomotive LTL-6 and LTL-4 were chosen, the loading transport locomotive LTL-6 is equipped with two cabs. The study of the formation of the vibro-
acoustic characteristics at the workplace of the driver was carried out for the cabs on the roof where the crane was installed. The calculation of the structural noise component is based on the energy balance methods traditionally used for such structures. However, it should be noted that in [1-20] the above-mentioned specificity of the research objects as locomotives cabins aren’t observed. Therefore, in the scheme of the locomotive cabin, presented in Fig. 1 and Fig. 2, the door, the glazing and the features of the input vibrational power are considered in.

The authors present the notation according to the arrangement of the locomotive cabin (Fig. 2): 1 - floor, 2 - front panel, 20 - glazing elements of the front panel, 3 - door, 30 - front panel glazing, 4 - rear panel, 40 - the glazing of the rear panel, 5 - the left panel, 50 - the glazing of the left panel, 6 - the ceiling of the cabin.

For such scheme of the cabin the equations system has the form:

$$\delta_1 S_1^l q_1 + \alpha_{21} l_{12} q_1 + \alpha_{13} l_{13} q_1 + \alpha_{14} l_{14} q_1 + \alpha_{31} l_{13} q_1 + \alpha_{32} l_{31} q_1 = \alpha_{21} l_{12} q_2 + \alpha_{31} l_{13} q_2 + \alpha_{32} l_{31} q_3 + \alpha_{41} l_{14} q_1 + \alpha_{51} l_{15} q_1 + \alpha_{52} l_{15} q_2 + \alpha_{61} l_{16} q_1 + \alpha_{62} l_{16} q_2 + \alpha_{71} l_{17} q_1 + \alpha_{72} l_{17} q_2 + \alpha_{73} l_{17} q_3 + \alpha_{74} l_{17} q_4 + \alpha_{75} l_{17} q_5 + \alpha_{76} l_{17} q_6 + \ldots$$

$$\delta_2 S_2 q_2 + \frac{k^2}{\varepsilon} \alpha_{20} l_{20} q_2 + \alpha_{22} l_{22} q_2 + \alpha_{32} l_{32} q_2 + \alpha_{23} l_{23} q_2 + \alpha_{24} l_{24} q_2 + \alpha_{25} l_{25} q_2 + \alpha_{26} l_{26} q_2 = \alpha_{22} l_{22} q_4 + \frac{k^2}{\varepsilon} \alpha_{02} l_{20} q_2 + \alpha_{22} l_{22} q_2 + \alpha_{23} l_{23} q_3 + \alpha_{52} l_{15} q_5 + \alpha_{62} l_{16} q_6 + \ldots$$

$$\delta_3 S_3 q_3 + \frac{k^2}{\varepsilon} \alpha_{21} l_{21} q_3 + \frac{k^2}{\varepsilon} \alpha_{20} l_{20} q_3 + \alpha_{23} l_{23} q_3 + \alpha_{32} l_{32} q_3 + \alpha_{34} l_{34} q_3 + \alpha_{36} l_{36} q_3 = \alpha_{13} l_{13} q_1 + \alpha_{23} l_{23} q_2 + \alpha_{34} l_{34} q_4 + \alpha_{63} l_{36} q_6 + \ldots$$

$$\delta_4 S_4 q_4 + \frac{k^2}{\varepsilon} \alpha_{21} l_{21} q_4 + \alpha_{43} l_{43} q_4 + \alpha_{45} l_{45} q_4 + \alpha_{46} l_{46} q_4 = \frac{k^2}{\varepsilon} \alpha_{04} l_{10} q_4 + \alpha_{14} l_{14} q_1 + \alpha_{34} l_{34} q_3 + \alpha_{54} l_{54} q_5 + \alpha_{64} l_{64} q_6 + \ldots$$

$$\delta_5 S_5 q_5 + \frac{k^2}{\varepsilon} \alpha_{21} l_{21} q_5 + \alpha_{35} l_{35} q_5 + \alpha_{55} l_{55} q_5 + \alpha_{56} l_{56} q_5 + \alpha_{65} l_{65} q_5 = \frac{k^2}{\varepsilon} \alpha_{05} l_{10} q_5 + \alpha_{15} l_{15} q_1 + \alpha_{25} l_{25} q_2 + \alpha_{45} l_{45} q_4 + \alpha_{65} l_{65} q_6 + \ldots$$

where $q_{02}, q_{03}, q_{04}, q_{05}$ – the streams of the vibration power in the glazing of the according panels of the locomotive cabin, W / m;

$k2, k3, k4, k5$ – the number of glazing elements;

S_1^l - the area of the corresponding glazing elements, m²;

index «g» - refers to the door in the second panel of the cabin;

ΣN_e – the vibration power transmitted to the floor of the cab from the wheelsets and powerplant, W;

N_e – the vibration power transmitted to the cockpit ceiling from the tap, W;
\(l_k \) – the distance between fixing the cab to the frame, m;
\(\ell_k = \pi d_k, \quad d_k \) – the diameter of the crane platform installed on the roof of the cabin, m.

At glazing thicknesses \(h = 5 \text{–} 6 \text{ mm} \), even with double glazed windows \(f_{\text{dif}} = \frac{10^4}{S} \), i.e. for the entire normalized frequency range, the impedance of the glazing elements can be determined by the formula

\[
z_0 = 1.5 \eta f M = 45 h S f, \text{ kg/s.}
\]

For the elements of the cabin, even when the vibrational energy loss coefficient is reached near \(10^{-2} \), \(f_{\text{dif}} = \frac{4 \cdot 10^4}{S} \), i.e. for the cab elements it is also possible to use the dependence for the impedance in the whole normalized frequency range

\[
z_0 = 1.5 \eta f M.
\]

Then the speed of vibration of each element of the cabin is defined as

\[
V_i = \frac{q_i}{\sqrt{z_i}}.
\]

The absorption coefficient

\[
\delta = 2 \frac{\pi h}{c_\text{ul}} = \frac{\pi f h}{2 \sqrt{c_\text{ul} h \cdot f^{-1.8}}},
\]

For glazing

\[
\delta = 2 \frac{3.14 \cdot 2.5 \cdot 10^{-7} h}{\sqrt{2 \frac{4.3 \cdot 10^8}{\sqrt{3 \cdot 12 \cdot 10^5} f^{-1.8}}} = 68 \cdot 10^{-4} \sqrt{\frac{f}{h}},
\]

For body construction

\[
\delta = 0.33 \eta_S \sqrt{\frac{f}{h}},
\]

where \(\eta_S \) – the total effective loss factor of the vibrational energy of the cabin elements.

The diffuse boundary line

\[
f = \frac{8 h}{\pi n \sqrt{3(1-\mu^2) \rho}}
\]

For glazing

\[
f_{\text{dif}} = \frac{8 h}{3.14 \cdot 2.5 \cdot 10^{-7} \sqrt{\frac{4.3 \cdot 10^8}{3 \cdot 12 \cdot 10^5}} = 1.12 \cdot 10^5 \frac{h}{S}}
\]

For supporting structure

\[
f_{\text{dif}} = \frac{7.8 \cdot 10^9 h}{\eta S}
\]

When the thickness of the glazing elements, even double-glazed windows, the dependence for calculating the impedance will look like:

\[
z_0 = 0.27 f S
\]

From the system of energy balance equations, the energy flows of each element of the cabin \((q_i) \), which the vibration velocities are calculated

\[
V_i = \frac{q_i}{\sqrt{z_i}} \quad \text{and the vibration levels}
\]
The vibration velocities’ calculation of each element in the locomotive cabin system is advisable to perform a matrix method using Microsoft Excel. As a consequence of the cumbersome nature of the solution system of equations for the velocities of oscillations, it is not given in this research paper.

3. Conclusion
The obtained dependencies consider whether in geometric and physic-mechanical parameters of all elements of the locomotive cabin, but they also have dissipative function given by effective coefficient of the vibrational energy losses. Only this physical quantity is the main choice for the reducing means of the structural noise component, which is one of the main reasons for exceeding the sound pressure levels in the driver cabs above standard values for diesel locomotives and locomotives. It should be noted that the obtained dependences make it possible to substantiate theoretically the choice of the vibration-absorbing materials based on the limiting spectra at the stage of designing the research cabin facility.

4. References
[1] Podust S F and Chukarin A N and Boguslavsky I V 2013 The basics of the vibro-acoustic calculations of domestic electric locomotives (Rostov n/D: Publishing center of DSTU) p 157
[2] Podust S F and Kuklin D A 2013 Modeling of the vibro-acoustic dynamics of a rail on sleepers (Bulletin of DSTU №1-2) pp 103-111
[3] Podust S F 2013 Modeling of the vibro-acoustic dynamics of sleepers during rolling stock movement (Bulletin RGUPS № 1) pp 50-54
[4] Kolesnikov I V and Pronnikov Y V and Chukarin A N 2012 Fundamentals of acoustic design of driver cabs (theory and practice) (Rostov n / D: Publishing Center of DSTU) p 120
[5] Sergienko N P and Kolesnikov I V and Bukharov S N and Pronnikov Y V and Sychev A P and Chukarin A N 2012 Reduction of noise and vibration of vehicles (Moscow: Mechanical Engineering) p 297
[6] Podust S F 2012 Analysis of the regularities of the noise generation of electric trains (Bulletin RGUPS №14) pp 42-45
[7] Ivanov N I 1987 Fighting noise and vibrations on track and construction machines 2 nd ed (Moscow: Transport) p 223
[8] Kolesnikov I V and Podoust S F and Podoust S S and Chukarin A N 2015 The ways of noise and steepness of the revolution when designing, production and operation of the railway rolling stock (M.: VINITI RAS) p 216
[9] Pronnikov Y V 2010 Modeling the structural component of noise in the cabs of rolling stock drivers (Bulletin RGUPS №3) pp 64-68
[10] Pronnikov Y V 2010 On the calculation of the noise component in the cabs of the rolling stock drivers created by the vibration of the glazing elements Proc. Int. scientific-practical Conf. on Transport. Security. Logistics. (Rostov n / D) pp 8-14
[11] Technical acoustics of transport vehicles: Reference book 1992 ed L G Balishanskaya L G and L F Drozdova and N I Ivanov (St. Petersburg: Polytechnic) p 365
[12] Ivanov N I and Krishnevsky B A 1982 Analysis of the efficiency of soundproof cabins of self-propelled machines Struggle against noise and harmful vibrations in construction (L.: Leningr. house n.t. propaganda) pp 45-51
[13] Ivanov N I 1989 The Theory and Structure of the Transport Machine Noise Reduction Proc. Int. Conf. Unikeller (Zürich) p 4
[14] Ivanov N I 2013 Engineering acoustics Theory and practice of noise control: a textbook (Moscow: Logos) p 432
[15] Nikiforov A S 1990 Acoustic design of ship structures (L.: Shipbuilding) p 200
[16] Tartakovsky B D 1974 Methods and means of vibration absorption Combating noise and vibration (M.: Knowledge) pp 430-436

[17] Yaitskov I A and Finochenko T A and Chukarin A N 2017 Identification of production factors affecting the working conditions of locomotive crews of diesel locomotives and locomotives (Engineering Don Bulletin №4) URL: ivdon.ru/en/magazine/archive/n4y2017/4438

[18] Yaitskov I A and Chukarin A N and Finotchenko T A 2017 Theoretical Research of Noise and Vibration Spectra in Cabins of Locomotive and Diesel Shunting Locomotive International Journal of Applied Engineering Research Vol 12 №21 ISSN 0973-4562 pp10724-10730

[19] Yaitskov I A 2017 Theoretical study of the air component of the noise of power plants of transport vehicles Internet-journal "Naukovedy" Vol 9 №6 https://naukovedenie.ru/PDF/35TVN617.pdf (access is free). Ver. from the screen. Yaz. rus., Eng.

[20] Yaitskov I A and Razdorsky S A 2017 On the calculation of the spectra of vibrations and noise of thin-walled shells on the example of power plant hoods and in the abrasive processing of welded joints of bodywork International scientific periodical "Modern fundamental and applied researches" № 4 (27) pp 191-196