Identification of dominant factors for the delays in building construction project in kepulauan Anambas

Putri Arumsari*, Muhammad Malik Karim
Civil Engineering Department, Faculty of Engineering, Bina Nusantara University Jakarta, Indonesia 11480

Corresponding author: putri.arumsari@binus.ac.id

Abstract. Delay is a serious issue and most often happens in construction projects. There are a lot of factors affecting delays in a construction project. Each construction project has its own characteristic which is different from other projects regarding the nature of the project and its location. Kepulauan Anambass Regency is several islands located on the remote and outmost of Indonesia which makes construction projects in this area unique according to its location. The aim of this research is to identify the dominant factors that cause delay in building construction project located in Kepulauan Anambass Regency. The results show that the dominant factors are delay in material delivery, transportation problems in material delivery, shortage of material in the market and adverse weather condition.

Keyword: Kepulauan Anambas, building construction project, delay, dominant factors

1. Introduction

Development in the construction sector is very important as an engine driving economic and social growth in an area [1] & [2]. One of them is the construction of a building that has a very important role as a place to conduct activities as the purpose of building construction [3]. This is intended to create a prosperous and prosperous society [4].

Kepulauan Anambass Regency is one of Indonesia's outermost islands which are a group of Kepulauan Anambass in the South China Sea that are directly adjacent to other countries or international seas. The administrative area of the Kepulauan Anambass Regency is in large part the open seas with an area of sea reaching 98.7 percent of the total area of 46,664.14 km² or 2.47 percent of Indonesia's total area of 1,890,754 km².

Kepulauan Anambass Regency which consists of a group of 255 islands scattered in vast open seas. Natural phenomena such as wind direction have the potential to affect the socio-economic life of the community. This is due to the accessibility to Kepulauan Anambass Regency which can only be done using sea and air transportation modes.

As a new area established in 2008, development in Kepulauan Anambass District has many challenges. Referring to the 2015-2021 Kepulauan Anambass District Medium Term Development Plan, it is planned that there will be construction of 10 government buildings in the office centres, and several construction of other public facilities and places of worship. But in 2017 there were several
construction projects that has experienced delays, one of which was a planned three-story building project that would have a function as a regent's office.

Delay is a very serious problem [5] and most often [6] in most construction projects [7]. Delays in project completion can adversely affect the economic sector [8] and can be felt by all project stakeholders such as the emergence of acceleration fees and fines for contractors and the loss of value of the benefits of the building experienced by the owner, but the contractor is the one who carries a lot of risk delays in the completion of the project [9].

2. Delay in Construction Project

2.1. Definition

Every stakeholder in a construction project has the same goals in achieving project that finishes on time which is the essence in the contract [10]. Delay in project is defined as delay in finishing the project as planned [11] or an added time frame beyond the scheduled planned written on the contract document [10, 4, 12]. Delay in a project can be represented in mathematical as the net duration subtracted by duration based on the contract; where as the net duration is from the beginning of the project until the project is handing over to the owner [12].

2.2. Delay in Construction Project

The reason for delays in construction project can originate from anywhere [4], it can be caused from the internal project itself such as unavailability of resources and delays in project designs, or external factors such uncertain weather condition [10]. Using the Ishikawa (fishbone) diagram in Figure 1, there are factors such as external, workers, equipments, design, material, contractor, owner, consultant and project condition which is the prime source affecting directly to the delays in construction projects [13].

![Fishbone Diagram](image)

Figure 1. Fishbone Diagram

2.3. Factor Affecting Delay in Building Construction Project

There are several factors affecting the delays in building construction projects. Based on past literatures there are 66 factors identified [14], [15], [16] & [17]. These factors are classified in 9 categories based on the fishbone diagram in Figure 1. The factors affecting the delays in building construction projects can be seen in Table 1.

Risk No.	Risk Factor	Risk No.	Risk Factor
OW₁	Changes in the project scope	MT₉	Unreliable supplier
OW₂	Late payments by the owner	MT₁₀	Bad quality construction material
OW₃	Late decision making by the owner	WO₁	Short supply of workers
Risk No.	Risk Factor	Risk No.	Risk Factor
---------	--	---------	---
OW_4	Delay in construction work caused by the owner	WO_2	Delay in mobilising workers
OW_5	Tendency in corruption by the owner	WO_3	Lack of motivation and spirit of the workers
OW_6	Complicated bureaucracy system	WO_4	Inadequate number of qualified and experienced workers
OW_7	Lack of communication and coordination with other parties by the owner	WO_5	Low workers’ productivity
OW_8	Financial difficulties by the owner	WO_6	Absence of construction workers
CS_1	Delay in checking and approving finished construction works result	WO_7	Conflict between workers
CS_2	Delay in reviewing and approving material samples and design changes	WO_8	Incompetent team on the field
CS_3	Lack of consultant’s experience in construction project	WO_9	Worker strike
CS_4	Misunderstanding of the requirements given by the owner	EQ_1	Improper equipment selection
CS_5	Lack of communication and coordination with other parties by the consultant	EQ_2	Technology used is outdated
CO_1	Problems in managing contractor’s cash flow	EQ_3	Equipment damage often occurs
CO_2	Difficulties in funding by the contractor	EQ_4	Lack of equipments
CO_3	Ineffective project design and scheduling	EQ_5	Low equipment efficiency and productivity
CO_4	Bad management and supervision on site	EQ_6	Slow equipment mobility
CO_5	Repetition of work due to mistakes during construction	EQ_7	Bad equipment maintenance
CO_6	Incompetent subcontractor	PR_1	Lack of feasibility studies
CO_7	Not using the right construction method	PR_2	Unconventional construction method used
CO_8	Lack of communication and coordination with other parties	PR_3	Impact on the lack of soil testing
DS_1	Delay in preparing shop drawings	PR_4	Unavailable utilities on the project site
DS_2	Frequent design changes	PR_5	Traffic control and work zone restrictions at the project site
DS_3	Mistakes and discrepancies in design	PR_6	Work accident during construction
DS_4	Design drawing incomplete	EX_1	Adverse weather condition
3. Methodology

The object of the research is 29 low-rise buildings which have been completed in Kepulauan Anambass Regency within the fiscal year of 2015-2017 using the Regional Revenue and Expenditures Budget. The low-rise building is not more than four floors. The data needed for this research is obtained by handing out questionnaires to former contractors handling the 29 low-rise building projects. Project managers or site supervisor will be the respondents in this research. The questions in the questionnaire will analyse the level of frequency and impact of each factor affecting the delay in building construction projects in Kepulauan Anambass Regency identified through literature study.

The aim of this research is to identify the dominant factors or the highest risk factors affecting the delay in building construction projects in Kepulauan Anambass Regency. Level of risk of each factor are found by analysing the scale factor of each factor using the Frequency Adjusted Importance Index (FAII) which is then plotted into the standard level of risk according to Table 3 [14]. Dominant factors are factors which are qualified as High and Very High. The methodology of the research can be seen in Figure 2.
4. Frequency Adjusted Importance Index (FAII)

The level of frequency from the Frequency Index (FI) factor is categorised in 5 category: 1) never, 2) seldom, 3) sometimes, 4) frequent and 5) always. The same of the Severity Index (SI) which is also categorised into 5 category; not significant (1), slightly significant (2), moderately significant (3), very significant (4) and extremely significant (5). The limit of each category is determined by the number of samples available as in Equation 1 [15].

\[
B_{max} = \left(\frac{a \cdot N}{A \cdot N} \right) \cdot 100 \quad \ldots \ldots (1)
\]

\[
(FI)\% = \left(\frac{\sum W_{frequency}}{A \cdot N} \right) \cdot 100 \quad \ldots \ldots (2)
\]

\[
(SI)\% = \left(\frac{\sum W_{impact}}{A \cdot N} \right) \cdot 100 \quad \ldots \ldots (3)
\]

\[
FAII = \frac{(FI)\% \cdot (SI)\%}{100} \quad \ldots \ldots (4)
\]

Where as:

- \(B_{max}\) = the maximum limit score of a category
- \(a\) = category score (1, 2, 3, 4, or 5)
- \(A\) = the highest weight on the Likert scale used
- \(W\) = given weight for each factor
- \(N\) = number of respondent
By inputting the highest category score from Equation 1, with a free number of samples, then the category parameter of frequency and impact index is achieved such as in Table 2.

Table 2. Category Parameter of Frequency and Impact Index

Classification Grade	Explanation
1	FI or SI \(\leq 20 \)
2	\(20 < \text{FI or SI} \leq 40 \)
3	\(40 < \text{FI or SI} \leq 60 \)
4	\(60 < \text{FI or SI} \leq 80 \)
5	\(80 < \text{FI or SI} \leq 100 \)

After the FI and SI score have been classified using the category in Table 3, the risk scale can be calculated by using Equation 5. Level of risk of each factors can later be classified using Table 3.

\[
RS = GFI \ast GSI
\] (5)

Details:
- \(RS \) = Risk scale
- \(GFI \) = FI Classification Grade
- \(GSI \) = SI Classification Grade

After calculating the risk scale of each factor, the level of risk is obtained using the risk matrix in Table 3 [16].

Table 3. Risk Matrix

Probability	1 (insignificant)	2 (Minor)	3 (Moderate)	4 (Major)	5 (Catastrophic)
1 (Rare)	LOW	LOW	LOW	LOW	MEDIUM
2 (Unlikely)	LOW	LOW	MEDIUM	MEDIUM	HIGH
3 (Moderate)	LOW	MEDIUM	MEDIUM	HIGH	HIGH
4 (Likely)	LOW	MEDIUM	HIGH	HIGH	VERY HIGH
5 (Almost certain)	MEDIUM	HIGH	VERY HIGH	VERY HIGH	

5. Analysis

5.1. **Level of risk factor analysis**

Based on the FAII analysis, the 66 factors affecting the delay of building construction project in Kepulauan Anambass is classified as seen in Table 4.

Table 4. Level of risk factor analysis

Ranking	Factor	FAII	Risk Score	Level of Risk
1	Delay in material delivery	48,0	12	High
2	Transportation problems in material delivery	44,0	12	High
3	Shortage of material in the market	40,0	12	High
4	Adverse weather condition	40,0	12	High
5	Slow equipment mobility	32,0	9	Medium
6	Traffic control and work zone restrictions	24,9	9	Medium
Ranking	Factor	FAlI	Risk Score	Level of Risk
---------	--	------	------------	---------------
7	Complicated bureaucracy system	24,0	6	Medium
8	Delay in checking and approving finished construction works result	24,0	6	Medium
9	Lack of consultant’s experience in construction project	24,0	6	Medium
10	The location and layout of the construction project	24,0	6	Medium
11	Frequent design changes	21,8	9	Medium
12	Late decision making by the owner	21,3	6	Medium
13	Mistakes and discrepancies in design	21,3	6	Medium
14	Fluctuation in material cost	21,3	6	Medium
15	Late payments by the owner	20,0	6	Medium
16	Unreliable supplier	18,7	6	Medium
17	Equipment damage often occurs	18,7	6	Medium
18	Changes in the project scope	17,8	6	Medium
19	Lack of communication and coordination with other parties by the owner	17,8	6	Medium
20	Delay in reviewing and approving material samples and design changes	17,8	6	Medium
21	Lack of communication and coordination with other parties by the consultant	17,8	6	Medium
22	Repetition of work due to mistakes during construction	16,0	4	Medium
23	Damage material due to storage issue	16,0	4	Medium
24	Low workers’ productivity	16,0	4	Medium
25	Low equipment efficiency and productivity	16,0	4	Medium
26	Bad equipment maintenance	16,0	4	Medium
27	Lack of feasibility studies	16,0	4	Medium
28	Delay in construction work caused by the owner	15,6	6	Medium
29	Delay in preparing shop drawings	13,3	4	Medium
30	Design drawing incomplete and unclear	13,3	4	Medium
31	Short supply of workers	13,3	4	Medium
32	Delay in mobilising workers	13,3	4	Medium
33	Fluctuation in cost/currency	13,3	4	Medium
34	Misunderstanding of the requirements given by the owner	12,4	6	Medium
35	Bad management and supervision on site	11,1	4	Medium
36	Lack of motivation and spirit of the workers	11,1	4	Medium
Ranking	Factor	FAlI	Risk Score	Level of Risk
---------	--	------	------------	---------------
37	Inadequate number of qualified and experienced workers	11,1	4	Medium
38	Absence of construction workers	11,1	4	Medium
39	Incompetent team on the field	11,1	4	Medium
40	Lack of equipments	11,1	4	Medium
41	Changes in government regulations and laws	11,1	4	Medium
42	Financial difficulties by the owner	10,7	4	Medium
43	Tendency in corruption by the owner	10,7	4	Medium
44	Incompetent subcontractor	8,9	4	Medium
45	Changes in the material type and specification during construction	8,9	4	Medium
46	Mistake in choosing the material	8,9	4	Medium
47	Problems in managing contractor’s cash flow	7,1	4	Medium
48	Not using the right construction method	7,1	4	Medium
49	Lack of communication and coordination with other parties by the contractor	7,1	4	Medium
50	Poor construction material procurement mechanism	7,1	4	Medium
51	Bad quality construction material	7,1	4	Medium
52	Improper equipment selection	7,1	4	Medium
53	Technology used is outdated	7,1	4	Medium
54	Unconventional construction method used	7,1	4	Medium
55	Impact on the lack of soil testing	7,1	4	Medium
56	Unavailable utilities on the project site	7,1	4	Medium
57	Work accident during construction	7,1	4	Medium
58	Geopolitical and regional stability	7,1	4	Medium
59	Delay in obtaining permission from local authorities	7,1	4	Medium
60	Conflict between workers	5,3	2	Low
61	Difficulties in funding by the contractor	4,0	1	Low
62	Ineffective project design and scheduling	4,0	1	Low
63	Worker strike	4,0	1	Low
64	Natural disasters	4,0	1	Low
65	Conflict, war and public animosity	4,0	1	Low
66	Problems with social neighbourhood	4,0	1	Low

6. Conclusion

Based on the level of risk factor analysis using the FAlI method there are 4 factors that are identified as high risk, those risk factors are:

a. Delay in material delivery
b. Transportation problems in material delivery
c. Shortage of material in the market
d. Adverse weather condition

Shortage of materials in the market, delay in material delivery, and adverse weather condition were ranked the 7th, 11th, and 17th factor that causes the time overrun in construction industry of central and southern parts of Malaysia [17]. However in Egypt shortage of material in the market in ranked 1st according to the severity index that causes delays in construction project [18].

Whereas the transportation problems in material delivery was identified as a factor in construction projects in Turkey that causes delay but does not make the top 10 factors [19]. These differences can be caused by the geographical position of the object of the research. Kepulauan Anambass Regency is an island that relies on sea transportation to transport goods and material. The weather also plays a big part in the operation of the transportation in or out of the regency of Kepulauan Anambass. These 4 factors identified as the dominant factors that causes delay in building construction project in Kepulauan Anambass Regency needs to be mitigated to lower the risks of further delays.

7. Acknowledgement

The authors would like to acknowledge Bina Nusantara University for the funding support of the research project.

References

[1] K. Mhetre, B. Konnur and A. B. Landage, "Risk Management in Construction Industry," International Journal of Engineering Research, Volume No.5, Issue Special 1, pp. 153-155, 2016.

[2] O. O. Odimabo, C. F. Oduoza and S. Suresh, "Methodology for Project Risk Assessment of Building Construction Projects Using Bayesian Belief Networks," International Journal of Construction Engineering and Management, 6(6), pp. 221-234, 2017.

[3] Y. K. Wongkar, J. Tjakra and P. A. Pratasis, "Analisis Life Cycle Cost Pada Pembangunan Gedung (Studi Kasus: Sekolah St: URSULA Kotamobagu)," Jurnal Sipil Statik Vol 4 No. 4, pp. 253-262, 2016.

[4] H. Hassan, J. B. Mangare and P. A. Pratasis, "Faktor–Faktor Penyebab Keterlambatan Pada Proyek Konstruksi Dan Alternatif Penyelesaiannya (Studi Kasus : Di Manado Town Square III)," Jurnal Sipil Statik, Vol.4 No.11, pp. 657-664, 2016.

[5] A. Shebob, N. Dawood and R. K. Shah, "Development of A Methodology for Analysing and Quantifying the Impact of Delay Factors Affecting Construction Projects," Journal of Construction Engineering and Project Management, pp. 17-29, 2012.

[6] G. J. Sweis, "Factors Affecting Time Overruns in Public Construction Projects: The Case of Jordan," International Journal of Business and Management; Vol. 8, No. 23, pp. 120-129, 2013.

[7] M. A. Akhund, A. R. Khoso, U. Memon and S. H. Khahro, "Time Overrun in Construction Projects of Developing Countries," Imperial Journal of Interdisciplinary Research (IJIR), Vol-3, Issue-5, pp. 124-129, 2017.

[8] B. B. Akomah and E. N. Jackson, "Contractors’ Perception of Factors Contributing to Road Project Delay," International Journal of Construction Engineering and Management, 5(3), pp. 79-85, 2016.

[9] O. J. Ameh and E. E. Osegbo, "Study Of Relationship Between Time Overrun And Productivity On Construction Sites," International Jo urnal Of Construction Supply Chain Management, Volume 1 Number 1, pp. 56-67, 2011.

[10] T. Subramani, P. Lishitha and M. Kavitha, "Time Overrun and Cost Effectiveness in the Construction Industry," International Journal of Engineering Research and Applications, Vol. 4, Issue 6 (Version 5), pp. 111-116, 2014.

[11] S. Pirabahar, P. Vijay and T. vairamuni, "A Study On Cost And Time Overrun And Its Preventive
Measures In Building Construction Projects," SSRG International Journal of Civil Engineering, pp. 452-455, 2017.
[12] P. Raykar and A. Ghadge, "Analyzing the Critical Factors Influencing the Time Overrun and Cost Overrun in Construction Project," International Journal of Engineering Research, Volume No.5, Issue Special 1, pp. 21-25, 2016.
[13] M. Gunduz, Y. Nielse and M. Ozdemir, "Quantification of Delay Factors Using the Relative Importance Index Method for Construction Projects in Turkey," Journal of Management in Engineering, pp. 133-139, 2013.
[14] G. E. M. Soputan, B. F. Sompie and R. J. M. Mandagi, "Manajemen Risiko Kesehatan Dan Keselamatan Kerja (K3) (Study Kasus Pada Pembangunan Gedung SMA Eben Haerz)," Jurnal Ilmiah Media Engineering Vol.4 No.4, pp. 229-238, 2014.
[15] M. Gunduz and A. M. A. Yahya, "Analysis of project success factors in construction industry," 2015.
[16] A. Standard, "Risk Management," Standards Australia & STANDARDS NEW ZEALAND Paerewa Aotearoa, 2004.
[17] A. H. Memon, I. A. Rahman, M. Akram and N. M. Ali, "Significant Factors Causing Time Overrun in Construction Projects of Peninsular Malaysia," Modern Applied Science; Vol. 8, No. 4, pp. 16-28, 2014.
[18] M. M. Marzouk and T. I. El-Rasas, "Analyzing Delay Causes in Egyptian Construction Projects," Journal of Advanced Research, pp. 49-55, 2014.
[19] A. Kazaz, S. Ulubeyli and N. A. Tuncbilekli, "Causes of Delays In Construction Project In Turkey," Journal of Civil Engineering And Management, Volume 18(3), pp. 426-435, 2012.
[20] P. Arumsari, A. Suhendra and H. Indira, "Risk factors affecting the quality of high rise office building projects in DKI Jakarta province," in The 2nd International Conference on Eco Engineering Development 2018 (ICEED 2018), South Tangerang, 2018.