COSMIC RAYS AND MAGNETIC FIELD IN THE CORE AND HALO OF THE STARBURST M82: IMPLICATIONS FOR GALACTIC WIND PHYSICS

Benjamin Buckman
Tim Linden
Todd Thompson

ArXiv: Next Week
QUESTION!

- Can cosmic rays propel a gas cloud?

- If the answer to the previous question was yes, explain.
QUESTION!

• Can cosmic rays propel a gas cloud? **YES!**

• If the answer to the previous question was yes, explain.
QUESTION!

- Can cosmic rays propel a gas cloud? **YES!**

- If the answer to the previous question was yes, explain.

\[a_{gas} = -\frac{\nabla P_{CR}}{\rho_{gas}} \]

Acceleration of gas from CRs is due to the gradient of the CR pressure mediated by the magnetic field
COSMIC RAYS AND MAGNETIC FIELD IN THE CORE AND HALO OF THE STARBURST M82: IMPLICATIONS FOR GALACTIC WIND PHYSICS

Benjamin Buckman
Tim Linden
Todd Thompson
STARBURST GALAXY M82

- Gamma-ray detection – Not resolved
- Spatially resolved radio halo measurements @ multiple wavelengths
- Viewed from edge-on
- Well studied galactic wind
- Starburst core – known SNR and dimension
MODELING CR’S IN M82
IMPORTANT INGREDIENTS

- Transport
- Wind
- Injection
- Primary Spectrum
- Source Distribution
- Energy Losses
- B
- ISRF
- n_{HI}, n_{HII}
- SNR
- Primary p/e ratio

B. J. Buckman [CCAPP, OSU] -- ArXiv: Next Week
GALPROP

- Injection
- Propagation
- Energy losses
- Secondaries

Energy Losses

Transport

Injection

Cosmic ray Distribution

Radio Emission
- Synchrotron
- Free-Free

Gamma-ray Emission
- Bremsstrahlung
- Inverse Compton
- Pion-decay Emission
INPUT DISTRIBUTIONS

• Magnetic Field (B) and Gas Density (n)
 - Constant inside ellipsoidal core
 - Outside core: $B \propto r^{-\beta}$, $n \propto r^{-2}$

• Interstellar Radiation Field
 - Determined from exponential disk of sources (dust+stars)

• Cosmic-ray Sources
 - Constant inside ellipsoidal core
 - No sources outside core

Simulation box size:
$R \in [0,5] \text{ kpc}, z \in [-4,4] \text{ kpc}$
CONSTRaining PARAMETERS

• Use **integrated radio and gamma-ray emission** to constrain properties in starburst core:
 - Magnetic Field
 - Gas Density

• Use **extended radio halo** to constrain halo properties:
 - Magnetic field, $B \propto r^{-\beta}$
 - Gas density
 - CR advection velocity
We replicated emission with our models
We constrain magnetic field and gas density
DEGENERACY in the core
EXTENDED EMISSION

- Wavelength increases
- Halo size increases

Model B

6 cm

3 cm

22 cm

92 cm
TIMESCALES

- Electron Cooling Timescales

\[
\tau_{\text{ionization}} \sim 10^6 \left(\frac{\nu_{\text{crit}}}{1 \text{ GHz}} \right)^{\frac{1}{2}} \left(\frac{B}{100 \mu \text{G}} \right)^{-\frac{1}{2}} \left(\frac{n}{100 \text{ cm}^{-3}} \right)^{-1} \text{ yr}
\]

\[
\tau_{\text{bremss}} \sim 3 \times 10^5 \left(\frac{n}{100 \text{ cm}^{-3}} \right)^{-1} \text{ yr}
\]

\[
\tau_{\text{IC}} \sim 3 \times 10^5 \left(\frac{\nu_{\text{crit}}}{1 \text{ GHz}} \right)^{\frac{1}{2}} \left(\frac{B}{100 \mu \text{G}} \right)^{\frac{1}{2}} \left(\frac{U_{\text{rad}}}{1000 \text{ eV cm}^{-3}} \right)^{-1} \text{ yr}
\]

\[
\tau_{\text{synch}} \sim 10^6 \left(\frac{\nu_{\text{crit}}}{1 \text{ GHz}} \right)^{\frac{1}{2}} \left(\frac{B}{100 \mu \text{G}} \right)^{-\frac{3}{2}} \text{ yr}
\]

\[
\left(\frac{E}{1 \text{ GeV}} \right) = \left(\frac{\nu_{\text{crit}}}{1 \text{ GHz}} \right)^{\frac{1}{2}} \left(\frac{B}{100 \mu \text{G}} \right)^{-\frac{1}{2}}
\]

Spectral index from competition of cooling timescales

steepen spectrum
RADIO SPECTRAL INDEX ALONG MINOR AXIS

- Spectral index changes by >1.5 along the minor axis of M82
- Changing of cooling mechanism can change spectral index by 1 at most
- Spectral steeping is due to the galactic wind and changing cooling mechanism
SPECTRAL STEEPENING CONSTRAINS:

- Cosmic ray population
- Magnetic field
- Gas density
- Wind velocity

All along the minor axis of M82
COSMIC RAY SPECTRA

Colors denote distance from core (0, 0.2, 0.5, 3.0) kpc

Protons

Electrons + Positrons

Radio emission spectral steepening
GAS ACCELERATION

\[a_{\text{gas}} = -\frac{\nabla P_{\text{CR}}}{\rho_{\text{gas}}} \]

- Cosmic rays are subdominant to gravity
GAS ACCELERATION II

\[a_{\text{gas}} = -\frac{\nabla U_B}{\rho_{\text{gas}}} \]

- Magnetic field is dynamically relevant!
- May effect galactic winds!
SUMMARY

• Using GALPROP:
 - Modeled integrated gamma-ray and radio data
 - Modeled radio halo and constrained magnetic field, gas density, and wind velocity

• Cosmic rays are not able to drive galactic winds in starburst galaxies

• Magnetic fields are dynamically relevant to galactic winds!
QUESTIONS?
MAGNETIC FIELD VS GAS DENSITY

- Degeneracy due to:
 - Relative gamma-ray/radio normalization
 - Radio spectral index

- We chose 3 models to exemplify behavior

- Magnetic Field must be >150 microG
EXTENDED EMISSION

B. J. Buckman [CCAPP, OSU] -- ArXiv: Next Week
