INTRODUCTION

Esophageal cancer is a major cause of cancer death worldwide, with a 5-year survival rate of less than 50%\(^3\). Complete resection is essential for curing esophageal cancer\(^2-3\). However, the morbidity after esophageal surgery with lymph node dissection has been reported to range from 30% to 60%, and the complications are sometimes fatal\(^4-6\). Among postoperative complications, some studies have shown that the development of postoperative pneumonia particularly increased the risk of disease recurrence and reduced the overall survival in esophageal cancer patients who received esophagectomy\(^7-8\). Therefore, it is important to predict the occurrence of postoperative pneumonia before surgery and determine the most appropriate perioperative care for these patients.

The importance of multidisciplinary team efforts, such as oral and dental care programs, for preventing postoperative pneumonia after esophagectomy has been reported\(^9\). Indeed, some studies have shown that the incidence of postoperative pneumonia can be decreased by appropriate application of multidisciplinary team efforts\(^10\). However, very few tools are available for assessing the risk factors of postoperative pneumonia after esophageal cancer surgery\(^11-15\).

Recently, the Oral Health Assessment Tool (OHAT) was developed for use by non-dental professionals, such as nurses, personal care attendants and allied health or medical professionals. Originally, the OHAT was intended to be used to screen the oral health status of patients to make appropriate and timely referrals to a dentist or a dental hygienist. If the OHAT could be used to predict the risk of postoperative pneumonia after esophagectomy, we would be able to determine appropriate indications of oral care and dental care while considering the balance between the risks and benefits in patients.

The aim of this study was to determine whether or not the OHAT can be used to identify patients at risk of developing postoperative pneumonia after esophagectomy for esophageal cancer.
PATIENTS AND METHODS

Patient data

The patients were selected from among consecutive patients who underwent esophagectomy for esophageal cancer at Yokohama City University from January 2005 to September 2018. The inclusion criteria were as follows: (1) histologically proven primary esophageal squamous cell carcinoma or adenocarcinoma, (2) clinical stage IB to III (excluding T4) disease as evaluated using the 7th edition of the tumor-node-metastasis classification established by the Union for International Cancer Control (UICC), (3) complete (R0) resection of the esophageal cancer with radical lymph node dissection, and (4) screened with the OHAT. Patients who had undergone R2 or R1 resection were excluded from the study.

Surgical procedure

Our standard procedures consisted of open subtotal esophagectomy via right thoracotomy, reconstruction with a gastric tube through the posterior mediastinal route or retrosternal route, and anastomosis in the cervical incision. In principle, two-field lymph node dissection is indicated when tumors are located at the middle thoracic to lower thoracic esophagus, while three-field dissection is applied for upper thoracic tumors. A feeding tube was routinely placed at the stomach or duodenum.

Perioperative care

All of the patients received perioperative management. Antibiotics were administered 30 min before surgical incision and then again every 3 h during surgery and on postoperative day (POD) 2. The patients were allowed to eat 30% rice porridge until midnight the day before the surgery. The patients remained on ventilation overnight. Ambulation and enteral nutrition were started on POD 1. Oral intake was initiated on POD 5, beginning with water and gelatinous foods. The patients began to eat solid food on POD 10, starting with rice gruel and soft food and progressing in three steps to regular food intake.

Definition of postoperative pneumonia

All data were retrospectively retrieved from the patients’ records. The rate of postoperative pneumonia was measured by the revised Uniform Pneumonia Score. This scoring system uses the variables temperature, leucocyte count, and chest X-ray findings to determine whether or not treatment of pneumonia is indicated. Chest X-ray was performed according to unstandardized local routine care policies. On the days when chest X-ray was performed, the local researcher assessed the variables of the Uniform Pneumonia Score.

OHAT

The OHAT consists of eight categories (‘lips’, ‘tongue’, ‘gums and tissues’, ‘saliva’, ‘natural teeth’, ‘dentures’, ‘oral cleanliness’, and ‘dental pain’) with three possible scores (0: healthy, 1: some changes present and 2: unhealthy condition). Scoring of each category is based on structured observation with clear operational definitions. A score of 1 or 2 for any of the specifically marked categories (starred and underlined) mandates referral to an oral health professional (dentist, dental hygienist or denturist). The total score is the sum of the various sub scores (Table 1).

Evaluations and statistical analyses

Univariate and multivariate logistic regression analyses were performed to identify the risk factors for postoperative pneumonia. Comparisons between the two groups were analyzed by the chi-square test. In the multivariate analysis, we fitted linear regression models. To select a model, we used backward elimination. All statistical tests were two-sided, and significance was set at P < 0.05. The SPSS software package (v11.0 J Win, SPSS, Chicago, IL, USA) was used for all statistical analyses.

Ethics

This study was approved by the IRB Committee of the Yokohama City University.

RESULTS

Patients’ clinicopathological data

A total of 122 patients underwent esophagectomy for esophageal cancer between October 2008 and September 2018. Among them, 47 patients were evaluated in this study. The patients’ ages ranged from 38 to 80 years (median: 70 years); 38 patients were male, and 9 were female. Twenty patients had an OHAT score ≤2 (OHAT-low group) and 27 had an OHAT score ≥3 (OHAT-high group). The patient characteristics are summarized in Table 2. Relationships between the OHAT score and clinicopathological parameters are shown in Table 2. The patients’ background characteristics were similar between the two groups.

Surgical and pathological findings

The patients’ surgical and pathological findings are summarized in Table 3. There were no significant differences between the two groups in surgical and pathological findings.

Risk factors for surgical morbidity

Postoperative pneumonia was found in 18 of the 47 patients (38.3%) in the present study. The risk factors for postoperative pneumonia were analyzed by univariate and multivariate analyses using the preoperative and
The OHAT score was risk factor for postoperative pneumonia after esophagectomy

Perioperative factors. The results are summarized in Table 4. Among the various factor examined, the OHAT score (p < 0.001) was identified as a significant independent risk factor, and the age (p = 0.082) was identified as a marginally significant independent risk factor. In addition, the OHAT score and age were identified as significant independent risk factors in the multivariate analysis.

The incidence of postoperative pneumonia was 5% (1 of 20) in the OHAT-low group and 51.9% (14 of 27) in the OHAT-high group. In addition, the incidence of postoperative pneumonia was 41.7% (10 of 24) among patients ≥70 years old and 21.7% (5 of 23) among those <70 years old.

Table 1 Oral health assessment tool

Category	0 = healthy	1 = changes	2 = unhealthy
Lips	smooth, pink, moist	dry, chapped, or red, at corners	swelling or lump, white/red/ulcerated patch; bleeding/ulcerated at corners
Tongue	normal, moist, rough, pink	patchy, fissured, red, coated	white/red patches, ulcerated, swollen
Gums and tissues	pink, moist, smooth, no bleeding	dry, shiny, rough, red, swollen, one ulcer sore spot under dentures	Swollen, bleeding, ulcers, white/red patches, generalized redness under dentures
Saliva	moist tissues, watery and free flowing saliva	dry sticky tissues, little saliva present, resident thinks they have a dry mouth	tissues parched and red, very little/no saliva present, saliva thick, resident thinks they have a dry mouth
Natural teeth	Yes/No	no decayed or broken teeth/roots	1-3 decayed or broken teeth/roots or very worn-down teeth
Dentures	Yes/No	no broken areas or teeth, dentures regularly worn and named	1 broken area/tooth or dentures only worn for 1-2 h daily, or dentures not named or loose
Oral cleanliness		clean and no food particles or tartar in mouth or dentures	Food particles/tartar/plaque in 1-2 areas of the mouth or on a small area of dentures or halitosis (bad breath)
Dental pain		no behavioral, verbal, or physical signs of dental pain	verbal and/or behavioral signs of pain present, such as pulling at face, chewing lips, not eating, aggression

- Arrange for resident to receive a dental examination by a dentist
- Resident and/or family/guardian refuses dental treatment
- Complete Oral Hygiene Care Plan and start oral hygiene care intervention for resident
- Review this resident’s oral health again on [date]

Table 2 Clinicopathological data of patients with oral health assessment tool scores of ≤2 and ≥3

Characteristics	All cases	Score 0-2 (n = 20)	Score ≥3 (n = 27)	P value	
Age	0.900				
<70 years old	23	48.9	10	13	48.1
≥70 years old	24	51.1	10	14	51.9
Gender	0.380				
Male	38	80.9	15	23	85.2
Female	9	19.1	5	4	14.8
ASA-PS	0.101				
1	7	14.9	1	6	22.2
2-3	40	85.1	19	21	77.8
Site of tumor	0.679				
Upper thoracic	2	4.3	1	1	3.7
Middle thoracic	30	63.8	14	16	59.3
Lower thoracic	15	31.9	5	10	37.0
Histological type	0.170				
SCC	43	91.5	17	26	96.3
Adenocarcinoma	4	8.5	3	1	3.7
Body mass index	21.2±2.5	21.4±2.3	21.0±2.7	0.515	
Smoking habit	0.383				
Yes	44	93.6	18	26	96.3
No	3	6.4	2	1	3.7
Alcohol habit	0.753				
Yes	43	91.5	18	25	92.6
No	4	8.5	2	2	7.4

ASA-PS: ASA physical status, SCC: squamous cell carcinoma
Table 3 Surgical and pathological findings of patients with oral health assessment tool scores of ≤2 and ≥3

Characteristics	Number	%	Number	%	Number	%	P value
Neoadjuvant chemotherapy							
Yes	24	51.1	9	45.0	15	55.6	0.474
No	23	48.9	11	55.0	12	44.0	
Surgery type							
Transthoracic	6	12.8	3	15.0	3	11.1	0.693
Thoracoscopic	41	87.2	17	85.0	24	81.9	
Lymph node dissection							
Two-field	27	57.4	12	60	15	55.6	0.761
Three-field	20	42.6	8	40	12	44.4	
Operative duration							
<570 min	15	31.9	8	40	11	25.9	0.306
≥570 min	32	68.1	12	60	20	74.1	
Blood loss							
<540 ml	27	57.4	11	55.0	16	59.3	0.770
≥540 ml	20	42.6	9	45.0	11	40.7	
Blood transfusion							
Yes	14	29.8	6	30	8	29.6	0.978
No	33	70.2	14	70	19	70.4	
Pathological depth of invasion							
T1	15	31.9	7	35.0	8	29.6	0.696
T2 or more	32	68.1	13	65.0	19	70.4	
Pathological lymph node status							
Negative	25	53.2	10	50	15	55.6	0.706
Positive	22	46.8	10	50	12	44.4	
Lymph vascular invasion							
Negative	14	29.8	7	35.0	7	25.9	0.501
Positive	33	70.2	13	65.0	20	74.1	

Table 4 Results of univariate and multivariate analyses of risk factors for postoperative pneumonia

Characteristics	Number	Univariate analysis	Multivariate analysis				
		HR	95% CI	P value	HR	95% CI	P value
Age		0.082			0.040		
<70 years old	23	1.000	0.970-1.663	1.000	1.011-1.552	1.000	1.252
≥70 years old	24	1.270	0.745-1.329	0.786	1.069	0.847-1.349	0.574
Neoadjuvant chemotherapy		0.984					
Yes	23	1.000	0.745-1.329	0.984	1.000	0.847-1.349	0.574
No	24	0.984	0.745-1.329	0.984	1.000	0.847-1.349	0.574
Operative type		0.526					
Transthoracic	6	1.000	0.578-1.324	0.526	1.000	0.578-1.324	0.526
Thoracoscopic	41	0.874	0.578-1.324	0.874	1.000	0.578-1.324	0.526
Operative duration		0.235		0.235	0.847	0.578-1.349	0.574
<570 min	15	1.000	0.884-1.592	1.000	1.000	0.847-1.349	0.574
≥570 min	32	1.186	1.069	0.847	1.069	1.069	0.847
Blood loss		0.688		0.688	0.847	0.578-1.349	0.574
<540 ml	27	1	0.713-1.250	0.574	1.000	0.847-1.349	0.574
≥540 ml	20	0.944	0.713-1.250	0.574	1.000	0.847-1.349	0.574
Lymph node dissection		0.413		0.413	0.847	0.578-1.349	0.574
Two-field	27	1.000	0.850-1.486	1.000	1.000	0.850-1.486	1.000
Three-field	20	1.124	0.850-1.486	1.124	1.000	0.850-1.486	1.000
Smoking habit		0.614		0.614	0.847	0.578-1.349	0.574
Yes	4	1.000	0.535-1.446	1.000	1.000	0.535-1.446	1.000
No	43	0.880	0.535-1.446	0.880	1.000	0.535-1.446	1.000
Oral health assessment tool score		<0.001		<0.001	<0.001		
≤2	20	1.000	1.423-2.240	1.000	1.000	1.423-2.240	1.000
≥3	27	1.785	1.761	1.785	1.000	1.761	1.785

HR: hazard ratio, CI: confidence interval
DISCUSSION

The present study explored whether or not the OHAT score is a risk factor of postoperative pneumonia after esophagectomy for esophageal cancer. The major finding was that the OHAT score was a significant risk factor for postoperative pneumonia after esophagectomy for esophageal cancer. To improve the oncological outcomes of patients with esophageal cancer, it is necessary to carefully plan perioperative oral/dental care using the OHAT score.

Previously, a limited study showed that there was a significant relationship between the OHAT score and pneumonia. Saensom et al. prospectively evaluated the association between the oral health score and ventilator-associated pneumonia (VAP) in 162 patients treated with a mechanical ventilator. In that study, the oral health status was assessed on Day 4 after intubation. Those authors found that the OHAT score was risk factor for postoperative pneumonia after esophagectomy for esophageal cancer. The major finding was that the OHAT score was risk factor of postoperative pneumonia after esophagectomy for esophageal cancer. To improve the oncological outcomes of patients with esophageal cancer, it is necessary to carefully plan perioperative oral/dental care using the OHAT score.

In conclusion, the OHAT score is a risk factor for postoperative pneumonia in patients who have undergone curative esophagectomy for esophageal cancer. To improve the oncological outcomes of patients with esophageal cancer, it is necessary to carefully plan perioperative oral/dental care using the OHAT score.

Acknowledgments:

This work was supported, in part, by the non-governmental organization Kanagawa Standard Anti-cancer Therapy Support System, Dr. Masumi Kamachi (Tokyo Shinagawa Hospital), Dr. Ryuji Tominaga (Fukuoka Wajiro Hospital), Dr. Nobuko Yoshiki (Yoshiki Dermatology Clinic Ginza). The authors express their sincere gratitude to Ms. Natsumi Sato and Ms. Rika Takahashi for their excellent data management in this study.
CONFLICT OF INTEREST STATEMENT:
None.

REFERENCES
1) Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65: 87–108.
2) Lordick F, Mariette C, Haustermans K, Obermannová R, Arnold D; ESMO Guidelines Committee. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016; 27: v50–v57.
3) Mayanagi S, Irino T, Kawakubo H, Kitagawa Y. Neoadjuvant treatment strategy for locally advanced thoracic esophageal cancer. Ann Gastroenterol Surg. 2019; 3: 269–275.
4) Fransen LFC, Luyer MDP. Effects of improving outcomes after esophagectomy on the short- and long-term: a review of literature. J Thorac Dis. 2019; 11: S845–S850.
5) Biere SS, van Berge Henegouwen MI, Maas KW, Bonavina L, Rosman C, Garcia JR, Gisbertz SS, Klinkenbijl JH, Hollmans MW, de Lange ES, Bonjer HJ, van der Peet DL, Cuesta MA. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. Lancet. 2012; 379: 1887–92.
6) Mantziari S, Hübbe M, Demartines N, Schäfer M. Impact of preoperative risk factors on morbidity after esophagectomy: is there room for improvement? World J Surg. 2014; 38: 2882–90.
7) Kataoka K, Takeuchi H, Mizusawa J, Atsumi Y, Ozawa S, Abe T, Nakamura K, Kato K, Ando N, Kitagawa Y. Prognostic Impact of Postoperative Morbidity After Esophagectomy for Esophageal Cancer: Exploratory Analysis of JCOG9907. Ann Surg. 2017 ; 265: 1152–1157.
8) Tamagawa A, Aoyama T, Tamagawa H, Ju M, Komori K, Maegawa Y, Kano K, Kazama K, Murakawa M, Atsumi Y, Sawazaki S, Hara K, Numata M, Sato T, Yagishita N, Masuda M, Rino Y. Influence of Postoperative Pneumonia on Esophageal Cancer Survival and Recurrence. Anticancer Res. 2019; 39: 2671–2678.
9) Cassidy MR, Rosenkranz P, McCabe K, Rosen JE, McAneny D. I COUGH: reducing postoperative pulmonary complications with a multidisciplinary patient care program. JAMA Surg. 2013; 148: 740–5.
10) Miki Y, Makuuchi R, Honda S, Tokunaga M, Tanizawa Y, Bando E, Kawamura T, Yurikusa T, Tanuma A, Terashima M. Prospective phase II study evaluating the efficacy of swallow ability screening tests and pneumonia prevention using a team approach for elderly patients with gastric cancer. Gastric Cancer. 2018; 21: 353–359.
11) Zingg U, Smithers BM, Gotley DC, Smith G, Aly A, Clough A, Esterman AJ, Jamieson GG, Watson DL. Factors associated with postoperative pulmonary morbidity after esophagectomy for cancer. Ann Surg Oncol. 2011; 18: 1460–8.
12) Blencowe NS, Strong S, McNair AG, Brooks T, Crosby T, Griffin SM et al. Reporting of short-term clinical outcomes after esophagectomy: a systematic review. Ann Surg 2012; 255: 658–666.
13) Atkins BZ, D’Amico TA. Respiratory complications after esophagectomy. Thorac Surg Clin 2006; 16: 35–48.
14) Ferguson MK, Celeauro AD, Prachand V. Prediction of major pulmonary complications after esophagectomy. Ann Thorac Surg. 2011; 91: 1494–1500.
15) Atkins BZ, D’Amico TA. Respiratory complications after esophagectomy. Thorac Surg Clin 2006; 16: 35–48.
16) Valkenet K, Trappenburg JCA, Ruurda JP, Guinan EM, Reynolds JV, Nafteux P, Fontaine M, Rodrigo HE, van der Peet DL, Hania SW, Sosef MN, Willms J, Rosman C, Pieters H, Scheepers JG, Faber T, Kouwenhoven EA, Tinselboer M, Råsånen J, Ryynänen H, Gosselink R, van Hillegersberg R, Backx FIG. Multicentre randomized clinical trial of inspiratory muscle training versus usual care before surgery for oesophageal cancer. Br J Surg. 2018; 105: 502–511.
17) Simpelae IS, Van Nuffelen G, Vanderwegen J, Wouters K, De Bodt M. Oral health screening: feasibility and reliability of the oral health assessment tool as used by speech pathologists. Int Dent J. 2016; 66: 176–180.
18) Saensom D, Merchant AT, Wara-Aswapati N, Ruaisungnoen W, Pithaphat W. Oral health and ventilator-associated pneumonia among critically ill patients: a prospective study. Oral Dis. 2016; 22: 709–714.
19) Law S, Wong KH, Kwok KF, Chu KM, Wong J. Predictive factors for postoperative pulmonary complications and mortality after esophagectomy for cancer. Ann Surg. 2004; 240: 791–800.
20) Molena D, Mungo B, Stem M, Lidor AO. Incidence and risk factors for respiratory complications in patients undergoing esophagectomy for malignancy: a NSQIP analysis. Semin Thorac Cardiovasc Surg. 2014; 26: 287–94.