ABSTRACT

Indonesia set the mission to reduce marine plastic debris by 70% between 2018-2025 with a global significance to support the United Nations Sustainable Development Goal 14.1. This short communication assesses marine debris baseline estimates in Indonesia before 2020 from available contributions and provides recommendations for monitoring marine debris between 2021-2025. Widely ranging model estimates of plastic debris leakages into seas highlight the importance of data source, the spatial resolution of models and in situ data to provide representative baseline values. Model outputs, recognizing the strengths and uncertainties of available contributions, converge on a baseline value of 0.52 ± 0.36 million tons (Mt) per year prior to 2020 in Indonesia, setting a targeted reduced number of 0.16 Mt of marine debris leakages in 2025. The Indonesian Institute of Sciences showed a preliminary value of plastic debris accumulation in beaches at 113.58 ± 83.88 g/m² monthly or equivalent to 0.40 Mt/year by assuming plastic debris is most pervasive within 3 meters from Indonesia’s 99,093 km-long coastlines. While river monitoring data informs land-based plastic debris leakages, stranded beach debris represents a fraction of debris not present in the water column and bottom sediments. Moving forward, monitoring initiatives to mitigate marine debris should leverage on nationwide municipality-level model estimates (e.g., the source to leakage route framework of the National Plastic Action Partnership) as well as in situ river and coastal particularly but not limited to sites co-identified in previous monitoring studies (i.e., Medan, Batam-Bintan, Padang, Jakarta-Seribu Islands, Semarang, Pontianak, Bali, Lombok, Makassar, Manado, Bitung). The latter should be conducted at least seasonally, considering evidence of monsoonal variations of marine debris releases and accumulation in Indonesia. Indonesia’s vastness and regional diversity require coordination among stakeholders (government agencies, research institutions, universities, NGOs, citizen scientists) to monitor progress in the environments.

Keywords: Marine debris, plastic, baseline, monitoring, Indonesia.

INTRODUCTION

The Indonesian government has set a national action plan to reduce plastic debris by 70% between 2018-2025 with a further ambition to achieve near-zero plastic pollution in Indonesia by 2040, highlighting the importance of measuring outcomes with respect to available baseline data. Without policy interventions and deliverable actions, business as usual scenario has projected increased annual plastic debris leakages into Indonesian seas by 30% from 0.62 to 0.78 million tons (Mt) between 2017-2025 (NPAP, 2020). Through the Presidential Decree Number 83/2018, Indonesia aims to set the projection back through community...
awareness, the intervention of plastic debris at river outlets and marine sources, import taxes, incentives for biodegradable plastics, and the conversion of plastic waste. The initiatives carry a global significance in achieving the UN Sustainable Development Goal 14.1 to reduce land-based plastic debris, considering Indonesia as a major contributor to marine plastic debris (e.g., Jambeck et al., 2015; Lebreton et al., 2017).

We provide an assessment of marine debris baseline estimates in Indonesia prior to 2020 by taking into account available studies and reports with their strengths and uncertainties, and recommendations for monitoring progress towards meeting the 70% reduction target in 2025.

AN ENSEMBLE OF MODEL-BASED ESTIMATES FOR MARINE PLASTIC LEAKAGES IN INDONESIA (2010-2020)

Widely ranging model-based estimates of plastic debris leakages into seas globally (1.15-12.7 Mt/year) and in Indonesia (0.20-1.29 Mt/year) underline the roles of data source, the spatial resolution of models and in situ data to provide representative baseline values (Figure 1). Jambeck et al. (2015) laid down a framework for estimating marine plastic debris leakages from mismanaged plastic waste by populations living within 50 km from the coast in 192 countries. While the study adopted the World Bank database reported in Hoornweg and Bhada-Tata (2012), a similar approach by Lebreton and Andradry (2019) combined the Waste Atlas (2006) database with high-resolution population data and yielded lower estimates of marine debris leakages. The earlier study ranked Indonesia as the second-largest contributor to marine plastic debris, while the latter as the ninth worldwide. The National Plastic Action Partnership (NPAP) applied the waste mass flow analysis using secondary data from 514 regencies and cities to capture regional diversity across Indonesia and provided estimates of marine debris leakages are within uncertainty ranges of the previously mentioned studies (NPAP, 2020). An assessment by the World Bank focused on 15 hotspot cities for releasing plastic debris into Indonesian seas in western and central Indonesia by combining modeling and field checks to gain a local understanding of waste management, societal behaviors and plastic debris in the environments (World Bank, 2018). It is worth highlighting the role of physical barriers in waterways in reducing plastic debris releases. By considering artificial barriers such as dams, Lebreton et al. (2017) showed significantly lower global and country-specific values. The model assumption is in line with Cordova and Nurhati (2019) that showed significantly lower values using in situ river monitoring data in Jakarta Bay that may be attributed to the presence of net booms and river clean-ups.

![Figure 1. Model-based estimates of marine plastic debris leakages into the oceans at globally (red) and in Indonesia (blue) based on Jambeck et al. (2015), Lebreton and Andradry (2019), GPAP (2017)-NPAP (2020), Lebreton et al. (2017) and World Bank (2018). The dashed line denotes an ensemble mean value of 0.52 ± 0.36 Mt/year in Indonesia.](image)

Recognizing their strengths and uncertainties (Table 1), the models show an ensemble mean value of 0.52 ± 0.36 Mt/year as a baseline for marine plastic debris leakages in Indonesia prior to 2020, therefore setting a targeted reduced number of 0.16 Mt of marine debris leakages in 2025. While other studies estimated global marine debris leakages (e.g., Eunomia, 2016; Schmidt et al., 2017; UNEP Ryberg et al., 2018), herein, we included only those with corresponding reported values from Indonesia.
Table 1. Reference period, spatial resolution and methodology of available references providing baseline marine debris leakages in Indonesia before 2020.

Study	Reference Period	Spatial Resolution within Indonesia	Framework
Jambeck et al. (2015)	2010	Country-level	Model using coastal population, waste generated per capita, the fraction of plastic waste, and the fraction of mismanaged waste.
Lebreton and Andradry (2019)	2017	Country-level	Model similar to the framework of Jambeck et al. (2015) with high-resolution (30 × 30 arc seconds) population combined with GDP distributions.
GPAP (2017) - NPAP (2020)	2017	Regency and city level (N=514, representing mega, medium rural and remote archetypes based on the capability to transport and recycle plastic waste).	System model of waste mass flow analysis based on measurements in the waste system, reported by local governments.
Lebreton et al. (2017)	unspecified	Country-level value for Indonesia was reported based on plastic load inputs from 40,760 watersheds.	Model similar to the framework of Jambeck et al. (2015) with monthly catchment runoff and the presence of artificial barriers.
World Bank (2018)	2016	City-level (N=15, representing three tiers based on performance and commitment to solid waste management in western and central Indonesia).	Model using data on waste generated, waste composition, waste management systems, field analysis of waste disposal and capture, and in situ waste sampling in waterways and coastal areas.
LIPI – Cordova et al. (2019)	2018-2019	Beach sites (N=18 spread across Indonesia with Aceh as the westernmost and Biak as the easternmost sites),	In situ measurement of stranded beach debris using a line transect alongside low tide line.

Based on field sampling in 18 beaches over the period 2018-2019, the Indonesian Institute of Sciences (LIPI) reported an average monthly plastic debris accumulation of 113.6 ± 84 g/m² (Cordova et al., 2019) or 0.40 Mt/year assuming that plastic debris is most pervasive within 3 meters from Indonesia’s 99,093 km-long coastlines (BIG and Indonesian Navy, 2018). It is important to note that while river monitoring data informs land-to-sea plastic debris releases, stranded beach debris represents a fraction of debris that is not present in the water column and bottom sediments. The stranded beach debris data also showed that 47.6 ± 11.8% of the collected debris were buoyant plastic materials.

MARINE PLASTIC DEBRIS MONITORING STRATEGY (2021-2025)

Monitoring plastic debris in marine environments in the coming years shall meet the criteria of comparability with baseline estimate, representative spatial coverage, and ease of methods of existing frameworks. Monitoring efforts should employ nationwide municipality-level model estimates to quantify sources and transport, and in situ monitoring in the environments (e.g., rivers, coastal areas). The nationwide system model developed by NPAP enables to monitor plastic debris by municipalities and sectors following the system change scenario using local government data. The World Bank report referred river waterways as 'non-tidal zones' and coastal areas as 'tidal zones' underlines that in situ monitoring data could serve as ground truth for land-derived plastic waste releases and accumulation in the environments. In other words, in situ river and coastal monitoring data are not complimentary, but both are necessary considering the information that they provide related to model outputs. The ease of visual counting of macroplastic debris in the field makes it possible to scale up monitoring data through citizen science programs.
WHERE AND WHEN TO MONITOR

Future in situ river and coastal monitoring would benefit from comparison with previous monitoring efforts; however, this does not limit new monitoring sites to provide more representative spatial coverage (Figure 2). There were western and central sites surveyed by both the World Bank and LIPI report: Medan, Batam-Bintan, Padang, Jakarta-Seribu Islands, Semarang, Pontianak, Bali, Lombok, Makassar, Manado and Bitung. We highlight the need for including sites based on population density and small islands concentrated in eastern Indonesia.

In situ monitoring also would benefit from having a time continuity considering monsoonal variations of marine debris release and accumulation in Indonesia (e.g., Cordova and Nurhati, 2019; Kurniawan and Imron, 2019).

MONITORING METHODS

Currently, several protocols for in situ monitoring involve characterization of the collected debris (plastic, metal, glass, timber, etc.), plastic categories (plastic bottles, styrofoam, etc.), and estimation of plastics by abundance and weight such as the UNEP (Cheshire et al., 2009), OSPAR protocol (2010), NOAA (Lippiatt et al., 2013), and GESAMP (2019) protocols. These approaches may differ slightly in debris categories. An introduction of a new category that represents personal protective equipment may be useful with regard to the prolonged COVID-19 pandemic.

Besides manual collection techniques, the use of an unmanned aerial system (UAS) offers the collection of high-resolution, time-effective, cost-efficient monitoring of over larger sections of natural and built environments compared to manual surveys (Manfreda et al., 2018; Tmušić et al., 2020). Recent works showed the application of UAS to map debris of less than 2.5 cm using aerial images maps produced by drones (Bao et al., 2018; GESAMP, 2019; Andriolo et al., 2020). Furthermore, the UAS could identify hotspots and pathways of marine debris (Andriolo et al., 2020; Gonçalves et al., 2020; Tmušić et al., 2020).

River Debris in situ Monitoring

Plastic debris monitoring has used networks of stationary stations such as bridges (e.g., Cordova and Nurhati, 2019; van Emmerik et al., 2019), floating booms (Gasperi et al., 2014) and possibly vessels, as well as active tracking methods (e.g., Ivar do Sul et al., 2014). For instance, Gasperi et al.
(2014) used a network of 26 existing floating booms to collect river debris. The tracking methods may actively monitor debris moving through the river system using the global positioning system (GPS) and the release of plastic marked objects that can be recovered and identified. For example, Ivar do Sul et al. (2014) used painted plastic materials to study preferential flow routes, accumulation and removals of plastic debris in mangrove forests with changes in hydrometeorological conditions.

Monitoring Stranded Beach Debris

For stranded beach debris monitoring, the surveyed beaches should be consistent in length (i.e., no less than 100 m), setting (i.e., sandy or pebble for Indonesia), and not regularly cleaned. If the beach has been cleaned, it is advised to survey after two months or depending on the sampling frequency to allow debris accumulation. The pervasiveness and composition of plastic debris can be determined using at least triplets of large quadrats of a certain size. A team of trained observers could classify, count and weight debris the collected debris from the quadrants.

Besides the typical debris classification by types, studies have also classified debris by countries of origin and pre-disposal categories for stranded beach debris. Lee et al. (2012) classified debris by the country of origin from information on the manufacturing country and printed language to identify foreign debris. Debris can also be classified by pre-disposal categories, including end-user products, packaging material, fishery products and industrial materials other than fisheries. End-user products are consumer goods thrown away after use. Packaging materials are products for containment, safety, handling and distribution of goods from manufacturers to customers (e.g., food wrappers, PET bottles). Because beaches accumulate large amounts of fishing-related debris, the categories can be isolated from other industrial items to identify attributing industries (Jang et al., 2014).

REFERENCES

Andriolo, U., Gonçalves, G., Bessa, F., and Sobral, P. (2020). Mapping marine litter on coastal dunes with unmanned aerial systems: A showcase on the Atlantic Coast. *Science of the Total Environment*, 736. https://doi.org/10.1016/j.scitotenv.2020.139632.

Bao, Z., Sha, J., Li, X., Hanchiso, T., and Shifaw, E. (2018). Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method. *Marine Pollution Bulletin*, 137, 388–398. https://doi.org/10.1016/j.marpolbul.2018.08.009.

BIG and Indonesian Navy (2018). *Rajukan Nasional Data Kewilayah Indonesia*. Badan Informasi Geospasial (BIG) and Pushidros TNI AL. Jakarta, Indonesia.

Cheshire, A.C., Adler, E., Barbieri, J., Cohen, Y., Evans, S., Jarayabhand, S., Jeffic, L., Jung, R.T., Kinsey, S., Kusui, E.T., Lavine, L., Manyara, P., Oosterbaan, L., Pereira, M.A., Sheavly, S., Tkaln, A., Varadarajan, S., Wenneker, B., and Westphalen, G. (2009). UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter. *UNEP Regional Seas Reports and Studies No. 186*. Nairobi, Kenya. Accessed on September 28, 2020 <http://wodocs.unep.org/xmlui/handle/20.500.11822/13604>.

Cordova, M.R., Falahudin, D., Puspitasari, R., Purbonegoro, T., Wulandari, I., Iskandar, M.R., and Rositasari, R. (2019). Naskah Akademik Inisiasi Data Sampah Laut Indonesia Untuk Melengkapi Rencana Aksi Nasional Penanganan Sampah Laut Sesuai Peraturan Presiden RI No.83 Tahun 2018. Pusat Penelitian Oceanografi, Lembaga Ilmu Pengetahuan Indonesia (LIPI). Accessed on September 28, 2020 <https://sampahlaut.id/wp-content/uploads/2020/02/Naskah-Akademik-Inisiasi-Data-Sampah-Laut-Lembaga-Ilmu-Pengetahuan-Indonesia-LIPI.pdf>.

Cordova M.R. and Nurhati, I.S. (2019). Major sources and monthly variations in the release of land-derived marine debris from the Greater Jakarta area, Indonesia. *Scientific Reports*, 9, 18730. https://doi.org/10.1038/s41598-019-55065-2.

Eunomia (2016). Plastics in the environment. Accessed on September 28, 2020 <https://www.eunomia.co.uk/reports-tools/plastics-in-the-marine-environment>.

Gasperi, J., Dris, R., Bonin, T., Rocher, V., and Tassin, B. (2014). Assessment of floating plastic debris in surface water along the Seine River. *Environmental Pollution*, 195, 163–166. https://doi.org/10.1016/j.envpol.2014.09.001.

GESAMP (2019). *Guidelines for the monitoring and assessment of plastic litter in the ocean*. Eds: Kershaw P.J., Turra A. and Galgani F. Accessed on September 28, 2020 <http://gesamp.org>.

Gonçalves, G., Andriolo, U., Pinto, L., and Bessa, F. (2020). Mapping marine litter using UAS on a beach-dune system: a multidisciplinary approach. *Science of the Total Environment*, 706.
Hoornweg, D. and Bhada-Tata, P. (2012) What a waste: a global review of solid waste management. World Bank. Accessed on September 28, 2020 <https://openknowledge.worldbank.org/handle/10986/17388>.

Ivar do Sul, J.A., Costa, M.F., Silva-Cavalcanti, J.S., and Araújo, M.C.B. (2014). Plastic debris retention and exportation by a mangrove forest patch. Marine Pollution Bulletin, 78(1–2), 252–257. https://doi.org/10.1016/j.marpolbul.2013.11.011.

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady A., Narayan, R., and Law K.R. (2015). Plastic Waste Inputs from Land into the Ocean. Science 347(6223): 768–771. https://doi.org/10.1126/science.1260352.

Jang, Y.C., Lee, J., Hong, S., Lee, J.S., Shim, W.J., and Song, Y.K. (2014). Sources of plastic marine debris on beaches of Korea: More from the ocean than the land. Ocean Science Journal, 49(2), 151–162. https://doi.org/10.1007/s12601-014-0015-8.

Kurniawan, S.B. and Imron, M.F. (2019). Seasonal variation of plastic debris accumulation in the estuary of Wonorejo River, Surabaya, Indonesia. Environmental Technology & Innovation, 16, 100490. https://doi.org/10.1016/j.eti.2019.100490.

Lebreton, L. and Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1). https://doi.org/10.1057/s41599-018-0212-7.

Lebreton, L.C., van der Zwaan, J., Damsteeg, J.W., Slat, B., Andrady, A., and Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8, 15611. https://doi.org/10.1038/ncomms15611.

Lee, J.-M., Jang, Y.-C., Hong, S.-W., and Choi, H.-W. (2012). Features of Foreign Marine Debris on the Dune Beach of U-i Island, Korea. Journal of the Korean Society of Marine Environment and Safety, 18(2), 167–174. https://doi.org/10.7837/kosomes.2012.18.2.167.

Lippiatt, S., Opfer, S., and Arthur, C. (2013). Marine Debris Monitoring and Assessment. NOAA Technical Memorandum NOS-ORM&R-46. NOAA Technical Memorandum NOS-ORM&R-46, (November), 82. Accessed on September 28, 2020 <http://marinedebris.noaa.gov/sites/default/files/Lippiatt%20et%20al%202013.pdf>.

Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Madrigal, V.P., Mallinis, G., Dor, E. Ben, Helman, D., Estes, L., Ciracolo, G., Müllervá, J., Tauro, F., de Lima, M.I., de Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., and Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040641.

OSPAR. (2010). Guideline for monitoring marine litter on the beaches in the OSPAR Maritime Area. OSPAR Commission. Accessed on September 28, 2020 <https://www.ospar.org/ospar-data/10-02e_beachlitter%20guideline%20english%20only.pdf>.

Ryberg, M., Laurent, A., and Hauptschild, M.Z. (2018). Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment). United Nations Environment Programme. Accessed on September 28, 2020 <https://wedocs.unep.org/handle/20.500.11822/26745>.

Schmidt, C., Krauth, T., and Wagner, S. (2017). Export of Plastic Debris by Rivers into the Sea. Environmental Science and Technology, 51(21), 12246-12253. https://doi.org/10.1021/acs.est.7b02368.

Su, Z., Vico, G., and Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(6). https://doi.org/10.3390/rs10061001.

Van Emmerik, T., Loozen, M., Van Oeveren, K., Buschman, F., and Prinsen, G. (2019). Riverine plastic emissions from Jakarta into the ocean. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab30e8.

World Bank (2018). Indonesia marine debris hotspot. Accessed on September 28, 2020 <http://documents1.worldbank.org/curated/en/983771527663689822/pdf/Indonesia-Marine-debris-hotspot-rapid-assessment-synthesis-report.pdf>.

National Plastic Action Partnership (NPAP). (2020). Radically Reducing Plastic Pollution in Indonesia: A Multistakeholder Action Plan National Plastic Action Partnership. Accessed on September 28, 2020 <https://globalplasticaction.org/wp-content/uploads/NPAP-Indonesia-Multistakeholder-Action-Plan_April-2020.pdf>.

OSPAR. (2010). Guideline for monitoring marine litter on the beaches in the OSPAR Maritime Area. OSPAR Commission. Accessed on September 28, 2020 <https://www.ospar.org/ospar-data/10-02e_beachlitter%20guideline%20english%20only.pdf>.