Transcriptional output, cell types densities and normalization in spatial transcriptomics

Manuel Saiselet,1¶ Joël Rodrigues-Vitória,1¶ Adrien Tourneur,1¶ Ligia Craciun,2 Alex Spinette,2 Denis Larsimont,2 Guy Andry,3 Joakim Lundeberg,4,5 Carine Maenhaut,1# Vincent Detours1#*

¶Contributed equally
#Contributed equally
*Correspondence should be addressed to vdetours@ulb.ac.be

1 IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - 1070 Brussels, Belgium.

2 Department of Pathology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Boulevard de Waterloo, 125 - 1000 Brussels, Belgium.

3 Department of Head & Neck and Thoracic Surgery, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Boulevard de Waterloo, 125 - 1000 Brussels, Belgium.

4 Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden

5 Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center, Stanford, CA 94305-4245, USA

Running Title: Normalization of spatial transcriptomics data

© The Author(s) 2020. Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.
Dear Editor,

Spatial transcriptomics (ST) makes it possible to perform RNA-seq at hundreds of precisely located spots on the surface of an histological slice (Ståhl et al., 2016). Since mRNA diffusion is minimal during tissues permeabilization and mRNA capture, the transcriptome of each spot is thought to aggregate the transcriptomes of the cells it contains. The number of cells within a spot and their transcriptional output depend on their type, state and on overall local morphology. ST shares some limitations with single cell RNA-seq, including high dropout rate. So far, ST studies have relied on preprocessing pipelines inspired by single cell RNA-seq studies (Ståhl et al., 2016; Asp et al., 2017; Giacomello et al., 2017; Berglund et al., 2018; Lundmark et al., 2018). These include normalization of gene-wise read counts in a cell/spot by the total number of reads collected from that cell/spot. But the number of reads obtained from a spot could reflect its cellular content or technical variation in RNA capture and amplification. Thus, whether read count normalization is warranted in the context of ST remains an open question. We addressed it by quantifying the cellular content of individual spots from image analysis and by comparing it with read counts.

A BRAF V600E-mutated papillary thyroid cancer (PTC) was profiled with ST (Supplementary Material and Methods). Pathology review of the H&E image revealed five major types of morphologies (Figure 1A). This qualitative approach was complemented by whole-slide machine learning-based localization of nuclei, and their classification within three categories (Figure 1B): epithelial cells, fibroblasts and ‘other cells’, which mostly contains immune cells. Among 86,111 detected nuclei (Figure 1C), 31% were located within ST spots. The mean number of cells per spots varied from 0 to 197 (median 67).

Spot-wise read coverage varied from 356 to 8,749 across the slide (Figure 1E), a 25-fold variation. It was associated with the number of cells of all types in a multivariate analysis (Figure 1G), particularly epithelial cells (Figure 1F). As expected, total read count per spots was highest in dense epithelial areas, and lowest in low cell density fibrotic zones (Figure 1E and G). We concluded that total read counts per spot reflects relevant quantitative and qualitative features of tissue morphology.

To assess the effect of normalization we compared raw read counts with raw counts normalized for total counts and with scale-normalized expression estimates generated by DCA (Eraslan et al., 2019) a neural autoencoder-based algorithm developed in the context of single cell RNA-seq. Figure 1H and I show expression of thyroglobulin (TG, a thyroid differentiation marker) and of vimentin (VIM, a mesenchymal intermediate filament), respectively. Raw counts and normalized expression of TG all closely followed epithelial density and total counts (compare Figure 1H to Figure 1A and E, see also Supplementary Figure 1). VIM raw counts were substantial in the epithelial areas, but also in the cellular fibrosis and immune foci. Normalization, however, revealed a dramatically different picture, particularly for DCA: while remaining high in cellular fibrosis and immune foci, VIM expression was lower in epithelium (Figure 1I and Supplementary Figure 1).

Thus, normalization affected the spatial expression pattern of VIM, but not TG. The absolute numbers of epithelial cells and fibroblasts per spot were weakly associated (Figure 1J), while their relative proportions, i.e. their number divided by the total number of cells within a spot, were massively anti-correlated (Figure 1K). The raw counts of TG and VIM are positively correlated (Figure 1L), while their normalized values are negatively correlated (Figure 1M). The positive correlation between TG and VIM raw counts (Figure 1L) suggests that the tumoral epithelium expresses VIM and could undergo an epithelial-mesenchymal transition. This transition has been reported in BRAF V600E-mutated tumors (Knauf et al., 2011) such as this one. VIM is also expressed in primary cultures of normal thyrocytes treated with Epidermal Growth Factor, which inhibits differentiation, but not of thyrocytes treated with Thyroid Stimulating Hormone, which promotes thyroid differentiation—while both are mitogenic (Coclet et al., 1991). Alternatively, VIM expression by fibroblast could be promoted by nearby epithelial cells. Overall, raw counts seemed more related to the number
of cells of a given cell type, while normalized expression captured cell types’ relative proportions.

To rule out possible artifacts related to TG and VIM in this particular tissue slice, we reproduced the above analysis 1- to the thyroid stimulating hormone receptor (TSHR) and collagen III α1 (COL3A1) in another slice of the same thyroid cancer (Supplementary Figure 2); 2- to the estrogen receptor (ESR1) and VIM in a publicly available breast cancer slice profiled on the recent Visium platform (10x Genomics, Pleasanton, USA; Supplementary Figure 3). Taken together, these controls support the generality of the effect of normalization on the relation between epithelial differentiation and mesenchymal markers, and their relevance to Visium slides, which have a 4-fold higher resolution than the first generation of ST slides shown in Figure 1.

To gain insights on the global effect of normalization, we calculated the distribution of gene-gene correlations across spots for all 3 expression metrics (Figure 1N). Raw counts were positively correlated for most pairs of genes. By contrast, normalized expressions correlations were centered on 0. This implies that genes tend to show a similar expression pattern that reflects total transcriptional output when raw counts are considered, while normalized expression highlights contrasts between genes.

We showed that the variation of total read counts is largely determined by local cell density in ST data. Thus, total counts per spot are biologically informative and do not necessarily need to be normalized out. Importantly, normalization and denoising are technically independent operations. For example, DCA estimates read counts scale factors, but users are free to use its scale-adjusted or un-adjusted outputs (Eraslan et al., 2019). Our study shows that both options are valid, but address different purposes.

Raw read counts inform about the absolute density of cell types, while normalized expression informs about their relative proportions. It is remarkable that normalized expression better detects specific morphologies such as pure epithelium and cellular fibrosis (see boxplots Figure 1H and I, compare the DCA panels of Figure 1H and I with the pathology annotation of Figure 1A), while raw counts do reflect actual cell-type local densities and may highlight atypical expression patterns, as exemplified here for VIM in regions of high epithelial density.

The resolution of commercially available spatial transcriptomics will eventually reach sub-cellular resolution (Vickovic et al., 2019). Given that some cells, e.g. cancer cells, produce more RNA that others (Lovén et al., 2012), it begs the question of to what extent our argument also applies at single cell level. Cell level phenotypic information measured independently of transcription must be available together with matched cell transcriptomes in order to unambiguously address this question.

Acknowledgments
We thank Annelie Mollbrink and Jose Navarro for help with the ST protocol and bioinformatics.

Funding
This work was supported by ‘Les Amis de l’Institut Bordet’, Fondation Naets (#J1813300), the Fondation Belge Contre le Cancer (#2016-093) and FNRS (#U.N019.19, #J006120F).. M.S. is supported by FNRS, J.R.V. by the Fonds National de la Recherche, Luxembourg (#11587122).

Author contributions
M.S. performed experiments with support of J.L. and A.T.. J.R.V. and V.D. performed computational analysis, L.C., A.S. and D.L. handled sample banking and pathology review, G.A. resected the tumor. C.M. and V.D. supervised the research and wrote the manuscript.

Competing interests
No competing interest.

References
Asp, M. et al. (2017). Spatial detection of fetal marker genes expressed at low level in adult human heart tissue. Sci Rep 7, 12941.

Berglund, E. et al. (2018). Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat Commun 9, 2419.

Coclet, J. et al. (1991). Intermediate filaments in normal thyrocytes: modulation of vimentin expression in primary cultures. Mol. Cell. Endocrinol. 76, 135–148.

Eraslan, G. et al. (2019). Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun 10, 390.

Giacomello, S. et al. (2017). Spatially resolved transcriptome profiling in model plant species. Nat Plants 3, 17061.

Knauf, J.A. et al. (2011). Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene 30, 3153–3162.

Lovén, J. et al. (2012). Revisiting global gene expression analysis. Cell 151, 476–482.

Lundmark, A. et al. (2018). Gene expression profiling of periodontitis-affected gingival tissue by spatial transcriptomics. Sci Rep 8, 9370.

Ståhl, P.L. et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82.

Vickovic, S. et al. (2019). High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990.

Figure Legend
Figure 1. Variation of total read counts is related to morphology and number of cells of different types. (A) Five types of morphological regions were determined from pathology. The transcriptome was determined for each spot with ST. (B) The nuclei on the H&E image were segmented and classified with a machine learning-based algorithm (Supplementary Material and Methods). (C) Nuclei counts. (D) Distributions of the number of cells per ST spot. (E) Total read count per spot. (F) Multivariate analysis of association between cell numbers and the log2 of total read count per spot. (G) Each point represents a ST spot with same color code as in panel A, ρ denotes the Spearman’s correlation. (H) Expression of thyroglobulin without normalization (left), with adjustment for total read counts (center), and with DCA normalization (right). Boxplots represents the expression of spots in the regions shown in panel A (same color code). (I) Same as panel H, for vimentin. (J) Points represent spots (same color code as before) with the absolute number of epithelial cells (x-axis) and the fibroblasts (y-axis). (K) Same as J with cell types proportions. The large negative
correlation stems from the low number of ‘other’ cells (panel C). (L and M) Expression of TG and VIM are compared using raw counts or auto-encoder-based normalization. (N) Distribution of gene vs. gene correlation across spots for raw counts and normalized data.

Supplementary data

Supplementary material is available at *Journal of Molecular Cell Biology* online. Code and data are available at https://github.com/vdet/st-normalization.
Whole slide nuclei segmentation

Total read count (log2)

epithelial cells

ρ = 0.7
(p=3e−43)

Downloaded from https://academic.oup.com/jmcb/advance-article/doi/10.1093/jmcb/mjaa028/5861536 by ULB user on 12 August 2020