A polynomial-time approximation algorithm for the number of k-matchings in bipartite graphs

Shmuel Friedland and Daniel Levy
Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago
Chicago, Illinois 60607-7045, USA

July 28, 2006

Abstract

We show that the number of k-matching in a given undirected graph G is equal to the number of perfect matching of the corresponding graph G_k on an even number of vertices divided by a suitable factor. If G is bipartite then one can construct a bipartite G_k. For bipartite graphs this result implies that the number of k-matching has a polynomial-time approximation algorithm. The above results are extended to permanents and hafnians of corresponding matrices.

2000 Mathematics Subject Classification: 05A15, 05C70, 68A10.
Keywords and phrases: Perfect matchings, k-matchings, permanents, hafnians, polynomial-time approximation algorithm.

1 Introduction

Let $G = (V, E)$ be an undirected graph, (with no self-loops), on the set of vertices V and the set of edges E. A set of edges $M \subseteq E$ is called a matching if no two distinct edges $e_1, e_2 \in M$ have a common vertex. M is called a k-matching if $\#M = k$. For $k \in \mathbb{N}$ let $\mathcal{M}_k(G)$ be the set of k-matchings in G. ($\mathcal{M}_k(G) = \emptyset$ for $k > \lfloor \frac{\#V}{2} \rfloor$.) If $\#V = 2n$ is even then an n-matching is called a perfect matching. $\phi(k, G) := \#\mathcal{M}_k(G)$ is number of k-matchings, and let $\phi(0, G) := 1$. Then $\Phi(x, G) := \sum_{k=0}^{\infty} \phi(k, G)x^k$ is the matching polynomial of G. It is known that a nonconstant matching polynomial of G has only real negative roots [6].

Let G be a bipartite graph, i.e., $V = V_1 \cup V_2$ and $E \subset V_1 \times V_2$. In the special case of a bipartite graph where $n = \#V_1 = \#V_2$, it is well known that $\phi(n, G)$ is given as perm $B(G)$, the permanent of the incidence matrix $B(G)$ of the bipartite graph G. It was shown by Valiant that the computation of the
permanent of a $(0, 1)$ matrix is $\#P$-complete \cite{8}. Hence, it is believed that the computation of the number of perfect matching in a general bipartite graph satisfying $\#V_1 = \#V_2$ cannot be polynomial.

In a recent paper Jerrum, Sinclair and Vigoda gave a fully-polynomial randomized approximation scheme (fpras) to compute the permanent of a nonnegative matrix \cite{4}. (See also Barvinok \cite{1} for computing the permanents within a simply exponential factor, and Friedland, Rider and Zeitouni \cite{2} for concentration of permanent estimators for certain large positive matrices.)

\cite{4} yields the existence a fpras to compute the number of perfect matchings in a general bipartite graph satisfying $\#V_1 = \#V_2$. The aim of this note is to show that there exists fpras to compute the number of k-matchings for any bipartite graph G and any integer $k \in [1, \frac{\#V}{2}]$. In particular, the generating matching polynomial of any bipartite graph G has a fpras. This observation can be used to find a fast computable approximation to the pressure function, as discussed in \cite{4}, for certain families of infinite graphs appearing in many models of statistical mechanics, like the integer lattice \mathbb{Z}^d.

More generally, there exists a fpras for computing $\perm_k B$, the sum of all $k \times k$ subpermanents of an $m \times n$ matrix B, for any nonnegative B. This is done by showing that $\perm_k B = \frac{\perm B_k}{(m-k)!(n-k)!}$ for a corresponding $(m+n-k) \times (m+n-k)$ matrix B_k.

It is known that for a nonbipartite graph G on $2n$ vertices, the number of perfect matchings is given by $\haf A(G)$, the hafnian of the incidence matrix $A(G)$ of G. The existence of a fpras for computing the number of perfect matching for any undirected graph G on even number of vertices is an open problem. (The probabilistic algorithm suggested in \cite{4} applies to the computation of perfect matchings in G, however it is not known if this algorithm is fpras.) The number of k-matchings in a graph G is equal to $\haf A(G)$, the sum of the hafnians of all $2k \times 2k$ principle submatrices of $A(G)$. We show that that for any $m \times m$ matrix A there exists a $(2m-2k) \times (2m-2k)$ matrix A_k such that $\haf_k A = \frac{\haf A_k}{(2m-k)!}$. Hence the computation of the number of k-matching in an arbitrary G, where $n = O(k)$, has fpras if and only if the number of perfect matching in G has fpras.

\section{The equality $\perm_k B = \frac{\perm B_k}{(m-k)!(n-k)!}$}

Recall that for a square matrix $A = [a_{ij}]_{i,j=1}^n \in \mathbb{R}^{n \times n}$, the permanent of A is given as $\perm A := \sum_{\sigma \in S_n} a_{\sigma(1)} \cdots a_{\sigma(n)}$, where S_n is the permutation group on $\langle n \rangle := \{1, \ldots, n\}$. Let $Q_{k,m}$ denote the set of all subset of cardinality k of $\langle m \rangle$. Identify $\alpha \in Q_{k,m}$ with the subset $\{\alpha_1, \ldots, \alpha_k\}$ where $1 \leq \alpha_1 < \cdots < \alpha_k \leq m$. Given an $m \times n$ matrix $B = [b_{ij}]_{i,j=1}^{m,n} \in \mathbb{R}^{m \times n}$ and $\alpha \in Q_{k,m}, \beta \in Q_{l,n}$ we let $B[\alpha, \beta] := [b_{\alpha_i \beta_j}]_{i,j=1}^{k,l} \in \mathbb{R}^{k \times l}$ to be the corresponding $k \times l$ submatrix of
Then
\[
\text{perm}_k B := \sum_{\alpha \in \mathbb{Q}_{k,m}, \beta \in \mathbb{Q}_{k,n}} \text{perm} B[\alpha, \beta].
\]

Let \(G = (V_1 \cup V_2, E) \) be a bipartite graph on two classes of vertices \(V_1 \) and \(V_2 \). For simplicity of notation we assume that \(E \subset V_1 \times V_2 \). It would be convenient to assume that \#\(V_1 = m, \#V_2 = n \). So \(G \) is presented by \((0, 1)\) matrix \(B(G) \in \{0, 1\}^{m \times n} \). That is \(B(G) = [b_{ij}]_{i,j=1}^{m,n} \) and \(b_{ij} = 1 \iff (i, j) \in E \). Let \(k \in [1, \min(m, n)] \) be an integer. Then \(k\)-matching is a choice of \(k \) edges in \(E_k := \{e_1, \ldots, e_k\} \subset E \) such that \(E_k \) covers \(2k \) vertices in \(G \). That is, no two edges in \(E_k \) have a common vertex. It is straightforward to show that \(\text{perm}_k B(G) \) is the number of \(k\)-matching in \(G \).

More generally, let \(B = [b_{ij}] \in \mathbb{R}_+^{m \times n}, \mathbb{R}_+ := [0, \infty) \) be an \(m \times n \) non-negative matrix. We associate with \(B \) the following bipartite graph \(G(B) = (V_1(B) \cup V_2(B), E(B)) \). Identify \(V_1(B), V_2(B) \) with \(\langle m \rangle, \langle n \rangle \) respectively. Then for \(i \in \langle m \rangle, j \in \langle n \rangle \) the edge \((i, j)\) is in \(E(B) \) if and only if \(b_{ij} > 0 \). Let \(G_w := (V_1(B) \cup V_2(B), E_w(B)) \) be the weighted graph corresponding to \(B \). I.e., the weight of the edge \((i, j)\) in \(E(B) \) is \(b_{ij} > 0 \). Hence \(B(G_w) \), the representation matrix of the weighted bipartite graph \(G_w \), is equal to \(B \). Let \(M \in \mathcal{M}_k(G(B)) \). Then \(\prod_{(i,j) \in M} b_{ij} \) is the weight of the matching \(M \) in \(G_w \). In particular, \(\text{perm}_k B \) is the total weight of weighted \(k\)-matchings of \(G_w \). The weighted matching polynomial corresponding to \(B \in \mathbb{R}_+^{m \times n} \), or \(G_w \) induced by \(B \), is defined as:

\[
\Phi(x, B) := \sum_{k=0}^{\min(m, n)} \text{perm}_k B x^k, \ B \in \mathbb{R}_+^{m \times n}, \ \text{perm}_0 B := 0.
\]

\(\Phi(x, B) \) can be viewed as the grand partition function for the monomer-dimer model in statistical mechanics. (See §3 for the case of a nonbipartite graph.) In particular, all roots of \(\Phi(x, B) \) are negative.

Theorem 2.1 Let \(B \in \mathbb{R}_+^{m \times n} \) and \(k \in \langle \min(m, n) \rangle \). Let \(B_k \in \mathbb{R}_+^{(m-n-k) \times (m+n-k)} \) be the following \(2 \times 2 \) block matrix

\[
B_k := \begin{bmatrix}
B & 1_{m,m-k} \\
1_{n-k,n} & 0
\end{bmatrix}, \text{ where } 1_{p,q} \text{ is a } p \times q \text{ matrix whose all entries are equal to 1.}
\]

Then

\[
\text{perm}_k B = \frac{\text{perm} B_k}{(m-k)!(n-k)!}.
\]

Proof. For simplicity of the exposition we assume that \(k < \min(m, n) \). (In the case that \(k = \min(m, n) \) then \(B_k \) has one of the following block structure: \(1 \times 1, 1 \times 2, 2 \times 1 \).) Let \(G_w = (V_1(B) \cup V_2(B), E_w(B)), G_{w,k} = (V_1(B_k) \cup V_2(B), E_w(B_k)) \) be the weighted graphs corresponding to \(B, B_k \) respectively. Note that \(G_w \) is a weighted subgraph of \(G_{w,k} \) induced by \(V_1(B) = \langle m \rangle \subset \langle m+n-k \rangle = V_1(B_k), V_2(B) = \langle n \rangle \subset \langle n+m-k \rangle = V_2(B_k) \). Furthermore, each vertex in \(V_1(B_k) \) connected exactly to each vertex in \(V_2(B) \), and
each vertex in $V_2(B_k) \setminus V_2(B)$ is connected exactly to each vertex in $V_1(B)$. The weights of each of these edges is 1. These are all edges in $G(B_k)$. A perfect match in $G(B_k)$ correspond to:

- An $n - k$ match between the set of vertices $V_1(B_k) \setminus V_1(B)$ and the set of vertices $\beta' \in Q_{n-k,n}$, viewed as a subset of $V_2(B)$.
- An $m - k$ match between the set of vertices $V_2(B_k) \setminus V_2(B)$ and the set of vertices $\alpha' \in Q_{m-k,m}$, viewed as a subset of $V_1(B)$.
- A k match between the set of vertices $\alpha := \langle m \rangle \alpha' \subset V_1(B)$ and $\beta := \langle n \rangle \beta' \subset V_2(B)$.

Fix $\alpha \in Q_{k,m}, \beta \in Q_{k,n}$. Then the total weight of k-matchings in $G_w(B_k)$ using the set of vertices $\alpha \subset V_1(B_k), \beta \subset V_2(B_k)$ is given by $\text{perm} B[\alpha, \beta]$. The total weight of $n - k$ matchings using $V_1(B_k) \setminus V_1(B)$ and $\beta' \subset V_2(B_k)$ is $(n-k)!$. The total weight of $m - k$ matchings using $V_2(B_k) \setminus V_2(B)$ and $\alpha' \subset V_1(B_k)$ is $(m-k)!$. Hence the total weight of perfect matchings in $G_w(B_k)$, which matches the set of vertices $\alpha \subset V_1(B_k)$ with the set $\beta \subset V_2(B_k)$ is given by $(m-k)!(n-k)! \text{perm} B[\alpha, \beta]$. Thus perm $B_k = (m-k)!(n-k)! \text{perm}_k B$. □

We remark that the special case of Theorem 2.1 where $m = n$ appears in an equivalent form in [2].

Proposition 2.2. The complexity of computing the number of k-matchings in a bipartite graph $G = (V_1 \cup V_2, E)$, where $\min(#V_1, #V_2) \geq k \geq c \max(#V_1, #V_2)^\alpha$ and $c, \alpha \in (0, 1]$, is polynomially equivalent to the complexity of computing the number of perfect matching in a bipartite graph $G' = (V_1' \cup V_2', E')$, where $\#V_1' = \#V_2'$.

Proof. Assume first that $G = (V_1 \cup V_2, E), m = #V_1, n = #V_2$ and $k \in [c \max(#V_1, #V_2)^\alpha, \min(m, n)]$ are given. Let $G' = (V_1' \cup V_2', E')$ be the bipartite graph constructed in the proof of Theorem 2.1. Theorem 2.1 yields that the number of perfect matching in G' determines the number of k-matching in G. Note that $n' := \#V_1' = \#V_2' = O(k^{1/2})$. So the k-matching problem is a special case of the perfect matching problem.

Assume second that $G' = (V_1' \cup V_2', E')$ is a given bipartite graph with $k = \#V_1 = \#V_2$. Let $m, n \geq k$ and denote by $G = (V_1 \cup V_2, E'), \#V_1 = m, \#V_2 = n$ the graph obtained from G by adding $m-k, n-k$ isolated vertices to V_1', V_2' respectively, $(E' = E)$. Then a perfect matching in G' is a k-matching in G, and the number of perfect matching in G' is equal to the number of k-matchings in G. Furthermore if $k \geq c \max(m, n)^\alpha$ it follows that $m, n = O(k^{1/2})$. □

The results of [2] yield.

Corollary 2.3 Let $B \in \mathbb{R}^m_{+} \times n$ and $k \in (\min(m, n))$. Then there exists a fully-polynomial randomized approximation scheme to compute $\text{perm}_k B$. Furthermore for each $x \in \mathbb{R}$ there exists a fully-polynomial randomized approximation scheme to compute the matching polynomial $\Phi(x, B)$.

4
3 Hafnians

Let $G = (V, E)$ be an undirected graph on $m := \#V$ vertices. Identify V with $\langle m \rangle$. Let $A(G) = [a_{ij}]_{i,j=1}^m \in \{0, 1\}^{m \times m}$ be the incidence matrix of G, i.e. $a_{ij} = 1$ if and only if $(i, j) \in E$. Since we assume that G is undirected and has no self-loops, $A(G)$ is a symmetric $(0, 1)$ matrix with a zero diagonal. Denote by $S_m(T) \supset S_{m,0}(T)$ the set of symmetric matrices and the subset of symmetric matrices with zero diagonal respectively, whose nonzero entries are in the set $T \subseteq \mathbb{R}$. Thus any $A = [a_{ij}] \in S_{m,0}(\mathbb{R}_+)$ induces $G(A) = (V(A), E(A))$, where $V(A) = \langle m \rangle$ and $(i, j) \in E(A)$ if and only if $a_{ij} > 0$. Such an A induces a weighted graph $G_w(A)$, where the edge $(i, j) \in E(A)$ has the weight $a_{ij} > 0$. Let $M \in \mathcal{M}_k(G(A))$ be a k-matching in $G(A)$. Then the weight of M in $G_w(A)$ is given by $\prod_{(i,j) \in M} a_{ij}$.

Assume that m is even, i.e. $m = 2n$. It is well known that the number of perfect matchings in G is given by $\text{haf} \ A(G)$, the hafnian of $A(G)$. More general, the total weight of all weighted perfect matchings of $G_w(A), A \in S_{2n,0}(\mathbb{R}_+)$ is given by $\text{haf} \ A$, the hafnian of A.

Recall the definition of the hafnian of $2n \times 2n$ real symmetric matrix $A = [a_{ij}] \in \mathbb{R}^{2n \times 2n}$. Let K_{2n} be the complete graph on $2n$ vertices, and denote by $\mathcal{M}(K_{2n})$ the set of all perfect patterns in K_{2n}. Then $\alpha \in \mathcal{M}(K_{2n})$ can be represented as $\alpha = \{(i_j, j_{k}), (i_2, j_2), \ldots (i_n, j_n)\}$ with $i_k < j_k$ for $k = 1, \ldots,n$.

Denote $a_\alpha := \prod_{k=1}^n a_{i_k,j_k}$. Then $\text{haf} \ A := \sum_{\alpha \in \mathcal{M}(K_{2n})} a_\alpha$. Note that $\text{haf} \ A$ does not depend on the diagonal entries of A. Hafnian of A is related to the pfaffian of the skew symmetric matrix $B = [b_{ij}] \in \mathbb{R}^{2n \times 2n}$, where $b_{ij} = a_{ij}$ if $i < j$, the same way the permanent of $C \in \mathbb{R}^{n \times n}$ is related to the determinant of C. Recall $\text{pfaf} \ B = \sum_{\alpha \in \mathcal{M}(K_{2n})} \text{sgn}(\alpha)b_\alpha$, where $\text{sgn}(\alpha)$ is the signature of the permutation $\alpha \in S_{2n}$ given by $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & \cdots & 2n \\ i_1 & j_1 & i_2 & j_2 & \cdots & j_n \end{bmatrix}$. Furthermore $\det B = (\text{pfaf} \ B)^2$.

Let $A \in S_m(\mathbb{R})$. Then

$$\text{haf}_k A := \sum_{\alpha \in Q_{2k,m}} \text{haf} \ A[\alpha, \alpha], \ k = 1, \ldots, \lfloor \frac{m}{2} \rfloor.$$

For $A \in S_{m,0}(\mathbb{R}_+)$ $\text{haf}_k A$ is the total weight of all weighted k-matchings in $G_w(A)$. Let $\text{haf}_0(A) := 1$. Then the weighted matching polynomial of $G_w(A)$ is given by $\Phi(x, A) := \sum_{k=0}^{\lfloor \frac{m}{2} \rfloor} \text{haf}_k A x^k$. It is known that a nonconstant $\Phi(x, A), A \in S_{m,0}(\mathbb{R}_+)$ has only real negative roots $[6]$.

Theorem 3.1 Let $A \in S_{m,0}(\mathbb{R}_+)$ and $k \in \{\lfloor \frac{m}{2} \rfloor\}$. Let $A_k \in S_{2m-2k,0}(\mathbb{R}_+)$ be the following 2×2 block matrix $A_k := \begin{bmatrix} A & 1_{m,m-2k} \\ 1_{m-2k,m} & 0 \end{bmatrix}$. Then

$$\text{haf}_k A = \frac{\text{haf} A_k}{(m-2k)!}.$$ \hspace{1cm} (3.1)
Proof. It is enough to consider the nontrivial case \(k < \frac{n}{2} \). Let \(G_w = (V(A), E_w(A)), G_{w,k} = (V(A_k), E_w(A_k)) \) be the weighted graphs corresponding to \(A, A_k \) respectively. Note that \(G_w \) is a weighted subgraph of \(G_{w,k} \) induced by \(V(A) = \langle m \rangle \subset \langle 2m - 2k \rangle = V(A_k) \). Furthermore, each vertex in \(V(A_k) \setminus V(A) \) is connected exactly to each vertex in \(V(A) \). The weights of each of these edges is 1. These are all edges in \(G(A_k) \). A perfect match in \(G(A_k) \) correspond to:

- An \(m - 2k \) match between the set of vertices \(V(A_k) \setminus V(A) \) and the set of vertices \(\alpha' \in Q_{m-2k,m} \), viewed as a subset of \(V(A) \).
- A \(k \) match between the set of vertices \(\alpha := \langle m \rangle \setminus \alpha' \subset V(B) \).

Fix \(\alpha \in Q_{2k,m} \). Then the total weight of \(k \)-matchings in \(G_w(A_k) \) using the set of vertices \(\alpha \subset V(A_k) \) is given by \(haf A[\alpha, \alpha] \). The total weight of \(m - 2k \) matchings using \(V(A_k) \setminus V(A) \) and \(V(A) \setminus \alpha \) is \((m-2k)! \). Hence the total weight of perfect matchings in \(G_w(A_k) \), which matches the set of vertices \(\alpha \subset V(A_k) \) is given by \((m-2k)! \) \(haf A[\alpha, \alpha] \). Thus \(haf A_k = (m-2k)! haf_k A \).

It is not known if the computation of the number of perfect matching in an arbitrary undirected graph on an even number of vertices, or more generally the computation of \(haf A \) for an arbitrary \(A \in S_{2n,0}(\mathbb{R}_+) \), has a fpras. The probabilistic algorithm outlined in [4] carries over to the computation of \(haf A \), however it is an open problem if this algorithm is a fpras. Theorem 5.1 shows that the computation of \(haf_k A \), for \(A \in S_{m,0}(\mathbb{R}_+) \), has the same complexity as the computation of \(haf A \), for \(A \in S_{2n,0}(\mathbb{R}_+) \).

4 Remarks

In this section we offer an explanation, using the recent results in [3], why \(perm A \) is a nicer function than \(haf A \). Let \(A = [a_{ij}] \in S_n(\mathbb{R}), B = [b_{ij}] \in \mathbb{R}^{n \times n} \). For \(x := (x_1, \ldots, x_n) \top \in \mathbb{R}^n \) let

\[
p(x) := \prod_{i=1}^n (\sum_{j=1}^n b_{ij} x_j), \quad q(x) := \frac{1}{2} x^\top A x.
\]

Then \(perm B = \frac{\partial^n}{\partial x_1 \ldots \partial x_n} p(x) \) and \(haf A = (((\frac{n}{2})!)^{-1} \frac{\partial^n}{\partial x_1 \ldots \partial x_n} q(x))^{\frac{n}{2}} \) if \(n \) is even. Assume that \(B \in \mathbb{R}_+^{n \times n} \) has no zero row. Then \(p(x) \) is a positive hyperbolic polynomial. (See the definition in [3].) Assume that \(A \in S_{2m,0}(\mathbb{R}_+) \) is irreducible. Then \(q(x) \), and hence any power \(q(x)^i, i \in \mathbb{N} \), is positive hyperbolic if and only if all the eigenvalues of \(A \), except the Perron-Frobenius eigenvalue, are nonpositive.
References

[1] A. Barvinok, Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor, *Random Structures Algorithms* 14 (1999), 29-61.

[2] S. Friedland, A proof of a generalized van der Waerden conjecture on permanents, *Linear Multilin. Algebra* 11 (1982), 107-120.

[3] S. Friedland and L. Gurvits, Generalized Friedland-Tverberg inequality: applications and extensions, *submitted*.

[4] S. Friedland and U.N. Peled, The pressure associated with multidimensional SOFT, *in preparation*.

[5] S. Friedland, B. Rider and O. Zeitouni, Concentration of permanent estimators for certain large matrices, *Annals of Applied Probability*, 14(2004), 1559-1576.

[6] O.J. Heilman and E.H. Lieb, Theory of monomer-dimer systems, *Comm. Math. Phys.* 25 (1972), 190–232; Errata 27 (1972), 166.

[7] M. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries, *J. ACM* 51 (2004), 671-697.

[8] L.G. Valiant, The complexity of computing the permanent, *Theoretical Computer Science* 8 (1979), 189-201.