An Algebraic Approach to the Non-chromatic Adherence of the DP Color Function

Samantha L. Dahlberg1, Hemanshu Kaul2, and Jeffrey A. Mudrock3

December 27, 2022

Abstract

DP-coloring (or correspondence coloring) is a generalization of list coloring that has been widely studied since its introduction by Dvořák and Postle in 2015. As the analogue of the chromatic polynomial of a graph G, $P(G, m)$, the DP color function of G, denoted by $P_{DP}(G, m)$, counts the minimum number of DP-colorings over all possible m-fold covers. A function f is chromatic-adherent if for every graph G, $f(G, a) = P(G, a)$ for some $a \geq \chi(G)$ implies that $f(G, m) = P(G, m)$ for all $m \geq a$. It is known that the DP color function is not chromatic-adherent, but there are only two known graphs that demonstrate this. Suppose G is an n-vertex graph and \mathcal{H} is a 3-fold cover of G, in this paper we associate with \mathcal{H} a polynomial $f_{G, \mathcal{H}} \in \mathbb{F}_3[x_1, \ldots, x_n]$ so that the number of non-zeros of $f_{G, \mathcal{H}}$ equals the number of \mathcal{H}-colorings of G. We then use a well-known result of Alon and Füredi on the number of non-zeros of a polynomial to establish a non-trivial lower bound on $P_{DP}(G, 3)$ when $2n > |E(G)|$. Finally, we use this bound to show that there are infinitely many graphs that demonstrate the non-chromatic-adherence of the DP color function.

Keywords. DP-coloring, correspondence coloring, DP color function, graph polynomial

Mathematics Subject Classification. 05C15, 05C25, 05C31, 05C69, 11T06

1 Introduction

In this paper all graphs are nonempty, finite, undirected loopless multigraphs. For the purposes of this paper, a simple graph is a multigraph without any parallel edges between vertices. Generally speaking we follow West[31] for terminology and notation. The set of natural numbers is $\mathbb{N} = \{1, 2, 3, \ldots\}$. For $m \in \mathbb{N}$, we write $[m]$ for the set $\{1, \ldots, m\}$. If G is a graph and $S, U \subseteq V(G)$, we use $G[S]$ for the subgraph of G induced by S, and we use $E_G(S, U)$ for the set consisting of all the edges in $E(G)$ that have one endpoint in S and the other in U. When $u, v \in V(G)$ we use $E_G(u, v)$ to denote the set of edges in $E(G)$ with endpoints u and v (note $E_G(u, v) = E_G(v, u)$), and we let $e_G(u, v)$ denote the number

\begin{itemize}
 \item 1Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. E-mail: sdahlberg@iit.edu
 \item 2Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. E-mail: kaul@iit.edu
 \item 3Department of Mathematics, College of Lake County, Grayslake, IL 60030. E-mail: jmudrock@clcillinois.edu
\end{itemize}
of elements in $E_G(u,v)$. When G is a multigraph, the \textit{underlying graph} of G is the simple graph formed by deleting all parallel edges of G. When G is a simple graph, we can refer to edges by their endpoints; for example, if u and v are adjacent in the simple graph G, uv or vu refers to the edge between u and v. We say that a multigraph G is k-degenerate if every subgraph of G has a vertex of degree at most k. If G and H are vertex disjoint multigraphs, we write $G \lor H$ for the join of G and H.

1.1 DP-Coloring

In classical vertex coloring we wish to color the vertices of a graph G with up to m colors from $[m]$ so that adjacent vertices receive different colors, a so-called \textit{proper} m-\textit{coloring}. The smallest k for which a proper k-coloring of G exists is called the \textit{chromatic number} of G, and it is denoted $\chi(G)$. List coloring is a well-known variation on classical vertex coloring that was introduced independently by Vizing [29] and Erdős, Rubin, and Taylor [13] in the 1970s. For list coloring, we associate a \textit{list assignment} L with a graph G such that each vertex $v \in V(G)$ is assigned a list of colors $L(v)$. Then, G is \textit{L-colorable} if there is a proper coloring f of G such that $f(v) \in L(v)$ for each $v \in V(G)$ (we say f is a \textit{proper} L-\textit{coloring} of G). A list assignment L is called an m-\textit{assignment} for G if $|L(v)| = m$ for each $v \in V(G)$. We say G is m-\textit{choosable} if G is L-colorable whenever L is an m-assignment for G.

In 2015, Dvořák and Postle [12] introduced a generalization of list coloring called DP-coloring (they called it correspondence coloring) in order to prove that every planar graph without cycles of lengths 4 to 8 is 3-choosable. DP-coloring has been extensively studied over the past 7 years (see e.g., [3, 4, 16, 18, 22, 23, 25]). Intuitively, DP-coloring is a variation on list coloring where each vertex in the graph still gets a list of colors, but identification of which colors are different can change from edge to edge. Due to this property, DP-coloring multigraphs is not as simple as coloring the corresponding underlying graph (see [5]). Following [24], we now give the formal definition. Suppose G is a multigraph. A \textit{cover} of G is a triple $\mathcal{H} = (L, H, M)$ where L is a function that assigns to each $v \in V(G)$ a set $L(v) = \{(v, a) : a \in A_v\}$ where A_v is some nonempty finite set, H is a multigraph with vertex set $\bigcup_{v \in V(G)} L(v)$, and M is a function that assigns to each $e \in E(G)$ a matching $M(e)$ with the property that each edge in $M(e)$ has one endpoint in $L(u)$ and the other endpoint in $L(v)$ where u and v are the endpoints of e. Moreover, L, H, and M satisfy the following conditions:

1. For every $u \in V(G)$, $H[L(u)] = K_{|L(u)|}$;
2. For distinct edges $e_1, e_2 \in E(G)$, $M(e_1) \cap M(e_2) = \emptyset$;
3. For distinct vertices $u, v \in V(G)$, the set of edges between $L(u)$ and $L(v)$ in H is $\bigcup_{e \in E_G(u,v)} M(e)$.

Note that by conditions (2) and (3) in the above definition H may contain parallel edges. Furthermore, note that if G is a simple graph, H must be simple.

Suppose $\mathcal{H} = (L, H, M)$ is a cover of G. An \mathcal{H}-\textit{coloring} of G is an independent set in H of size $|V(G)|$. It is immediately clear that an independent set $I \subseteq V(H)$ is an \mathcal{H}-coloring of G if and only if $|I \cap L(u)| = 1$ for each $u \in V(G)$. We say \mathcal{H} is m-\textit{fold} if $|L(u)| = m$ for each $u \in V(G)$. Moreover, we say that \mathcal{H} is a \textit{full} m-\textit{fold cover} of G if $|E_H(L(u), L(v))| = e_G(u,v)m$.
whenever \(u \) and \(v \) are distinct vertices of \(G \). The **DP-chromatic number** of \(G \), denoted \(\chi_{DP}(G) \), is the smallest \(k \) such that an \(\mathcal{H} \)-coloring of \(G \) exists whenever \(\mathcal{H} \) is a \(k \)-fold cover of \(G \). Clearly, \(\chi(G) \leq \chi_{DP}(G) \), and if \(G \) is \(d \)-degenerate, then \(\chi_{DP}(G) \leq d + 1 \).

It is easy to demonstrate that DP-coloring is a generalization of list coloring. Suppose that \(K \) is an \(m \)-assignment for the simple graph \(G \). For each \(v \in V(G) \), let \(L(v) = \{(v, j) : j \in K(v)\} \). For each \(uv \in E(G) \), let \(M(uv) = \{(u, j)(v, j) : j \in L(u) \cap L(v)\} \). Finally, let \(H \) be the graph with vertex set \(\bigcup_{v \in V(G)} L(v) \) and edge set that is the union of \(\bigcup_{uv \in E(G)} M(uv) \) and \(\left(\bigcup_{v \in V(G)} \bigcup_{i,j \in K(v), i \neq j} \{(v, i)(v, j)\} \right) \).

Now, let \(\mathcal{H} = (L, H, M) \) and note that \(\mathcal{H} \) is an \(m \)-fold cover of \(G \). Then, if \(\mathcal{L} \) is the set of \(\mathcal{H} \)-colorings of \(G \) and \(\mathcal{C} \) is the set of proper \(L \)-colorings of \(G \), the function \(f: \mathcal{C} \to \mathcal{L} \) given by \(f(c) = \{(v, c(v)) : v \in V(G)\} \) is a bijection.

1.2 The DP Color Function

In 1912 Birkhoff introduced the notion of the chromatic polynomial in hopes of using it to make progress on the four color problem. For \(m \in \mathbb{N} \), the **chromatic polynomial** of a graph \(G \), \(P(G, m) \), is the number of proper \(m \)-colorings of \(G \). It can be shown that \(P(G, m) \) is a polynomial in \(m \) of degree \(|V(G)| \) (see \([6]\)). For example, \(P(K_n, m) = \prod_{i=0}^{n-1} (m - i) \) and \(P(T, m) = m(m - 1)^{n-1} \) whenever \(T \) is a tree on \(n \) vertices (see \([31]\)).

The notion of chromatic polynomial was extended to list coloring in the 1990s \([20]\). In particular, if \(L \) is a list assignment for \(G \), we use \(P(G, L) \) to denote the number of proper \(L \)-colorings of \(G \). The **list color function** \(P_L(G, m) \) is the minimum value of \(P(G, L) \) where the minimum is taken over all \(m \)-assignments \(L \) for \(G \). It is clear that \(P_L(G, m) \leq P(G, m) \) for each \(m \in \mathbb{N} \) since we must consider the \(m \)-assignment that assigns \([m]\) to each vertex of \(G \) when considering all possible \(m \)-assignments for \(G \). In general, the list color function can differ significantly from the chromatic polynomial for small values of \(m \). However, for large values of \(m \), Dong and Zhang \([11]\) (improving upon results in \([9, 27, 30]\)) showed that for any graph \(G \) with at least 4 edges, \(P_L(G, m) = P(G, m) \) whenever \(m \geq |E(G)| - 1 \).

With this in mind, we are ready to define a notion that will be important in this paper. Let \(\mathcal{G} \) be the set of all finite multigraphs. We say a function \(f: \mathcal{G} \times \mathbb{N} \to \mathbb{N} \) is **chromatic-adherent** if for every graph \(G \), \(f(G, a) = P(G, a) \) for some \(a \geq \chi(G) \) implies that \(f(G, m) = P(G, m) \) for all \(m \geq a \). It is unknown whether the list color function is chromatic-adherent.

Question 1 \(([19])\). Is \(P_L \) chromatic-adherent?

In 2019, the second and third author introduced a DP-coloring analogue of the chromatic polynomial called the DP color function in hopes of gaining a better understanding of DP-coloring and using it as a tool for making progress on some open questions related to the list color function \([15]\). Since its introduction in 2019, the DP color function has received some attention in the literature (see e.g., \([2, 10, 14, 17, 21, 26]\)).

Suppose \(\mathcal{H} = (L, H, M) \) is a cover of a multigraph \(G \). Let \(P_{DP}(G, \mathcal{H}) \) be the number of \(\mathcal{H} \)-colorings of \(G \). Then, the **DP color function** of \(G \), \(P_{DP}(G, m) \), is the minimum value of \(P_{DP}(G, \mathcal{H}) \) where the minimum is taken over all full \(m \)-fold covers \(\mathcal{H} \) of \(G \). It is easy to

\(^1\)We take \(\mathbb{N} \) to be the domain of the DP color function of any multigraph. Also, we can restrict our attention to full \(m \)-fold covers since adding edges to a graph can’t increase the number of independent sets of some prescribed size.
show that for any \(m \in \mathbb{N} \),
\[
P_{\text{DP}}(G, m) \leq P_{\ell}(G, m) \leq P(G, m).
\]

Unlike the list color function, it is well known that \(P_{\text{DP}}(G, m) \) does not necessarily equal \(P(G, m) \) for sufficiently large \(m \). Indeed, Dong and Yang recently generalized a result of Kaul and Mudrock \cite{15} and showed the following.

Theorem 2 (\cite{10}). If \(G \) is a simple graph that contains an edge \(e \) such that the length of a shortest cycle containing \(e \) is even, then there exists an \(N \in \mathbb{N} \) such that \(P_{\text{DP}}(G, m) < P(G, m) \) whenever \(m \geq N \).

It was recently shown that the DP color function is not chromatic-adherent. A **Generalized Theta graph** \(\Theta(l_1, \ldots, l_n) \) consists of a pair of end vertices joined by \(n \) internally disjoint paths of lengths \(l_1, \ldots, l_n \in \mathbb{N} \). It is easy to see that \(\chi_{\text{DP}}(\Theta(l_1, \ldots, l_n)) = 3 \) whenever \(n \geq 2 \).

Theorem 3 (\cite{8}). If \(G \) is \(\Theta(2, 3, 3, 3, 2) \) or \(\Theta(2, 3, 3, 3, 3, 2, 2) \), then \(P_{\text{DP}}(G, 3) = P(G, 3) \) and there is an \(N \in \mathbb{N} \) such that \(P_{\text{DP}}(G, m) < P(G, m) \) for all \(m \geq N \).

Motivated by Theorem 3, the authors of \cite{8} pose the following question.

Question 4. For which graphs \(G \) do there exist, \(a, b \in \mathbb{N} \) with \(\chi(G) \leq a < b \), \(P_{\text{DP}}(G, a) = P(G, a) \), and \(P_{\text{DP}}(G, b) < P(G, b) \)?

The authors of \cite{8} remarked that the two graphs in Theorem 3 are the only examples that they know of that demonstrate that the DP color function is not chromatic-adherent. In this paper we show that there are infinitely many graphs with the property described in Question 4.

1.3 Outline of Paper

The proofs of our results are algebraic. We begin by extending an algebraic technique for analyzing full 3-fold covers described in \cite{16} to multigraphs. This technique along with the following well-known result of Alon and Füredi will allow us to establish a non-trivial lower bound on \(P_{\text{DP}}(G, 3) \) for certain graphs \(G \).

Theorem 5 (\cite{11}). Let \(\mathbb{F} \) be an arbitrary field, let \(A_1, A_2, \ldots, A_n \) be any non-empty subsets of \(\mathbb{F} \), and let \(B = \prod_{i=1}^{n} A_i \). Suppose that \(P \in \mathbb{F}[x_1, \ldots, x_n] \) is a polynomial of degree \(d \) that does not vanish on all of \(B \). Then, the number of points in \(B \) for which \(P \) has a non-zero value is at least \(\min \prod_{i=1}^{n} q_i \) where the minimum is taken over all integers \(q_i \) such that \(1 \leq q_i \leq |A_i| \) and \(\sum_{i=1}^{n} q_i \geq -d + \sum_{i=1}^{n} |A_i| \).

We prove the following.

Theorem 6. Suppose \(G \) is a multigraph with \(\chi_{\text{DP}}(G) \leq 3 \). Also, suppose that \(|V(G)| = n \), \(|E(G)| = l \), and \(2n \geq l \). Then, \(P_{\text{DP}}(G, 3) \geq 3^{n-1/2} \).
As an immediate application, consider a \(n \)-vertex planar graph \(G \) of girth at least 5. It is known (see \cite{12}) that \(\chi_{DP}(G) \leq 3 \). Since number of edges in \(G \) is at most \(5n/3 \), Theorem \cite{6} implies \(P_{DP}(G, 3) \geq 3^{n/6} \). Previously, it was only known (see \cite{7}) that the same lower bound holds for \(P_{C}(G, 3) \).

We demonstrate that the bound in Theorem \cite{6} is tight, and in the process, prove the following.

Theorem 7. There are infinitely many graphs \(G \) for which \(\chi_{DP}(G) = 3 \), \(P_{DP}(G, 3) = P(G, 3) \), and there is an \(N_{G} \in \mathbb{N} \) such that \(P_{DP}(G, m) < P(G, m) \) whenever \(m \geq N_{G} \).

2 Proofs of Results

From this point forward whenever \(G \) is a multigraph with \(n \) vertices, we suppose that \(V(G) = \{ v_{1}, \ldots, v_{n} \} \). We will also suppose, unless otherwise noted, that all addition and multiplication is performed in \(\mathbb{F}_{3} \) where \(\mathbb{F}_{3} \) is the finite field of order 3. Suppose \(\mathcal{H} = (L, H, M) \) is a full 3-fold cover of the multigraph \(G \) on \(n \) vertices. From this point forward, we will always assume under this set up that \(L(v) = \{ (v, j) : j \in \mathbb{F}_{3} \} \). Suppose \(e \) is an arbitrary element of \(E(G) \) with endpoints \(v_{i} \) and \(v_{j} \) where \(i < j \). Also, for each \(k \in \mathbb{F}_{3} \), suppose the edge in \(M(e) \) with endpoint \((v_{i}, k) \) has \((v_{j}, c_{k}) \) as its other endpoint. The permutation of \(\mathcal{H} \) associated with \(M(e) \), denoted \(\sigma_{e}^{H} \), is the permutation \(\sigma_{e}^{H} : \mathbb{F}_{3} \rightarrow \mathbb{F}_{3} \) given by \(\sigma_{e}^{H}(k) = c_{k} \). We will now associate a polynomial in \(\mathbb{F}_{3}[x_{1}, \ldots, x_{n}] \) with \(\mathcal{H} \). Before we do this, we need an observation that was specifically used for full 3-fold covers in \cite{16}.

Observation 8. Suppose \(\sigma \) is a permutation of \(\mathbb{F}_{3} \). Then, either \(z - \sigma(z) \) is the same for all \(z \in \mathbb{F}_{3} \), or \(z + \sigma(z) \) is the same for all \(z \in \mathbb{F}_{3} \).

Now, let the linear factor of \(\mathcal{H} \) associated with \(M(e) \), denoted \(l_{e}^{H}(x_{1}, \ldots, x_{n}) \), be the polynomial in \(\mathbb{F}_{3}[x_{1}, \ldots, x_{n}] \) given by \((x_{i} + (-1)^{c}x_{j} - a) \) where \(c \) and \(a \) are chosen so that \((x_{i} + (-1)^{c}x_{j} - a) \) is zero if and only if \(x_{i}, x_{j} \) are chosen so that \(x_{i} = x_{j} \). Notice that Observation \cite{8} guarantees that such a \(c \) and \(a \) must exist \cite{2}. Finally, we let the graph polynomial of \(G \) associated with \(\mathcal{H} \), denoted \(f_{G,H}(x_{1}, \ldots, x_{n}) \), be the polynomial in \(\mathbb{F}_{3}[x_{1}, \ldots, x_{n}] \) given by

\[
\prod_{E_{G}(v_{i}, v_{j}) \neq \emptyset, i < j} \left(\prod_{e \in E_{G}(v_{i}, v_{j})} l_{e}^{H}(x_{1}, \ldots, x_{n}) \right).
\]

Notice that \(f_{G,H} \) is a polynomial of degree \(|E(G)| \). Also, by construction, the following observation is immediate.

Observation 9. Let \(\mathcal{C} = \{ C \subset V(H) : |C \cap L(v)| = 1 \text{ for each } v \in V(G) \} \), and note that all \(\mathcal{H} \)-colorings of \(G \) are contained in \(\mathcal{C} \). Suppose \(C \in \mathcal{C} \) and \(C = \{ (v_{1}, c_{1}), \ldots, (v_{n}, c_{n}) \} \). Then, \(C \) is an \(\mathcal{H} \)-coloring of \(G \) if and only if \(f_{G,H}(c_{1}, \ldots, c_{n}) \neq 0 \). Consequently, if \(B = \prod_{i=1}^{n} \mathbb{F}_{3} \), then the number of points in \(B \) for which \(f_{G,H} \) has a non-zero value is \(P_{DP}(G, \mathcal{H}) \).

It is easier to apply the following corollary of Theorem \cite{5}

\footnote{It is also not too difficult to prove that \(c \) and \(a \) are unique by considering each possible matching.}
Corollary 10 [7]. Let \mathbb{F} be an arbitrary field, let A_1, A_2, \ldots, A_n be any non-empty subsets of \mathbb{F}, and let $B = \prod_{i=1}^{n} A_i$. Suppose that $P \in \mathbb{F}[x_1, \ldots, x_n]$ is a polynomial of degree d that does not vanish on all of B. If $S = \sum_{i=1}^{n} |A_i|$, $t = \max |A_i|$, $S \geq n + d$, and $t \geq 2$, then the number of points in B for which P has a non-zero value is at least $t^{(S-n-d)/(t-1)}$.

We are now ready to complete the proof of Theorem 5. Suppose $V(G) = \{v_1, \ldots, v_n\}$ and $\mathcal{H} = (L, H, M)$ is a full 3-fold cover of G with $P_{DP}(G, \mathcal{H}) = P_{DP}(G, 3)$. Suppose also that the vertices of H are arbitrarily named so that $L(v) = \{(v, j) : j \in \mathbb{F}_3\}$ for each $v \in V(G)$. Let $A_i = \mathbb{F}_3$ for each $i \in [n]$, and let $B = \prod_{i=1}^{n} A_i$. Note that $f_{G, \mathcal{H}}(x_1, \ldots, x_n) \in \mathbb{F}_3[x_1, \ldots, x_n]$ has degree l. Moreover, $f_{G, \mathcal{H}}(x_1, \ldots, x_n)$ doesn’t vanish on all of B by the fact that $\chi_{DP}(G) \leq 3$ and Observation 9.

Thus, the number of points in B for which $f_{G, \mathcal{H}}(x_1, \ldots, x_n)$ has a non-zero value is at least $3^{(3n-l)/(3-1)}$ by Corollary 10. The Theorem 5 then follows from Observation 9.

We now mention three simple examples that demonstrate the tightness of Theorem 5. First, notice that if G_1 is an edgeless graph on n vertices, then $P_{DP}(G_1, 3) = 3^n$. Second, suppose that G_2 is a multigraph on 2 vertices with 2 edges. Then, it is easy to see that $P_{DP}(G_2, 3) = 3$ (see Proposition 11 in [24]). Finally, suppose that $k \in \mathbb{N}$ and $G_3 = K_1 \vee C_{2k+2}$. Notice that $|V(G_3)| = 2k + 3$ and $|E(G_3)| = 4k + 4$. It is shown in [2] that $P_{DP}(G_3, 3) = 3$. It is also worth mentioning that Theorem 5 tells us that $P_{DP}(G_3, 3) = 3$ in a manner that is much more elegant than the result used in [2] to demonstrate the same lower bound (see Lemma 16 in [2]).

We now turn our attention to proving Theorem 7. First, we need a definition and a result. A graph G is said to be uniquely k-colorable if there is only one partition of its vertex set into k independent sets. It is well known (see [28]) that if G is a uniquely k-colorable graph with n vertices, then $|E(G)| \geq (k-1)n - k(k-1)/2$. It is also easy to observe that when G is uniquely k-colorable, $\chi(G) = k$ and $P(G, k) = k!$. With this in mind, we have the following lemma.

Lemma 11. Suppose G is a uniquely 3-colorable graph on n vertices with $\chi_{DP}(G) = 3$. If $|E(G)| = 2n - 3$, then $P_{DP}(G, 3) = P(G, 3)$.

Proof. Clearly, $P(G, 3) = 6$ and $P_{DP}(G, 3) \leq P(G, 3)$. Since $\chi_{DP}(G) = 3$, Theorem 5 implies that $P_{DP}(G, 3) \geq 3^{n-(2n-3)/2} = 3^{3/2}$. Since $P_{DP}(G, 3)$ is an integer, this means $P_{DP}(G, 3) \geq 6$.

We are now ready to prove Theorem 7.

Proof. For each $k \in \mathbb{N}$, let H_k be the graph obtained from a copy of $K_1 \vee P_{2k+2}$ by adding a new vertex z and then adding an edge between z and each endpoint of the copy of P_{2k+2}. To prove Theorem 7, we will show that for each $k \in \mathbb{N}$, $P_{DP}(H_k, 3) = P(H_k, 3)$, and there is an $N_{H_k} \in \mathbb{N}$ such that $P_{DP}(H_k, m) < P(H_k, m)$ whenever $m \geq N_{H_k}$.

Now, fix a $k \in \mathbb{N}$. It is easy to see that H_k is both 2-degenerate and uniquely 3-colorable. Consequently, $\chi_{DP}(H_k) = 3$. Moreover, $|V(H_k)| = 2k+4$ and $|E(H_k)| = 4k+5 = 2(2k+4)-3$. So, Lemma 11 implies that $P_{DP}(H_k, 3) = P(H_k, 3)$.

Finally, notice that each of the two edges in H_k incident to z have the property that the smallest cycle in H_k containing the edge is of length 4. So, Theorem 2 implies there is an $N_{H_k} \in \mathbb{N}$ such that $P_{DP}(H_k, m) < P(H_k, m)$ whenever $m \geq N_{H_k}$.
References

[1] N. Alon and Z. Füredi, Covering the cube by affine hyperplanes, European Journal of Combinatorics 14 (1993), 79-83.

[2] J. Becker, J. Hewitt, H. Kaul, M. Maxfield, J. Mudrock, D. Spivey, S. Thomason, and T. Wagstrom, The DP Color Function of Joins and Vertex-Gluings of Graphs, Discrete Mathematics 345(11) (2022), 113093.

[3] A. Bernshteyn, The Johansson-Molloy Theorem for DP-coloring, Random Structures & Algorithms 54:4 (2019), 653-664.

[4] A. Bernshteyn and A. Kostochka, Sharp Dirac’s theorem for DP-critical graphs, Journal of Graph Theory 88 (2018), 521-546.

[5] A. Bernshteyn, A. Kostochka, and S.P. Pron, On DP-coloring of graphs and multigraphs, Siberian Mathematical Journal 58 (2017), 28-36.

[6] G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, The Annals of Mathematics 14 (1912), 42-46.

[7] B. Bosek, J. Grytczuk, G. Gutowski, O. Serra, M. Zajac, Graph polynomials and group coloring of graphs, European Journal of Combinatorics 102 (2022), 103505.

[8] M. V. Bui, H. Kaul, M. Maxfield, J. A. Mudrock, P. Shin, and S. Thomason, Non-chromatic-adherence of the DP color function via generalized theta graphs, to appear in Graphs and Combinatorics.

[9] Q. Donner, On the number of list-colorings, J. Graph Theory 16 (1992), 239-245.

[10] F. Dong and Y. Yang, DP color functions versus chromatic polynomials, Advances in Applied Mathematics 134 (2022), 102301.

[11] F. Dong and M. Zhang, How large can \(P(G, L) - P(G, k) \) be for \(k \)-assignments \(L \), arxiv: 2206.14536v2 (preprint), 2022.

[12] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, Journal of Combinatorial Theory Series B 129 (2018), 38-54.

[13] P. Erdős, A. L. Rubin, and H. Taylor, Choosability in graphs, Congressus Numerantium 26 (1979), 125-127.

[14] C. Halberg, H. Kaul, A. Liu, J. A. Mudrock, P. Shin, and S. Thomason, On polynomial representations of the DP color function: theta graphs and their generalizations, arXiv:2012.12897 (preprint), 2020.

[15] H. Kaul and J. Mudrock, On the chromatic polynomial and counting DP-colorings of graphs, Advances in Applied Mathematics 123 (2021), article 103121.

[16] H. Kaul and J. Mudrock, Combinatorial Nullstellensatz and DP-coloring of Graphs, Discrete Mathematics 343 (2020), article 112115.

[17] H. Kaul, J. Mudrock, G. Sharma, Q. Stratton, DP-coloring the Cartesian Products of Graphs, to appear in Journal of Graph Theory.
[18] S.-J. Kim and K. Ozeki, A note on a Brooks’ type theorem for DP-coloring, *Journal of Graph Theory* 91(2) (2019), 148-161.

[19] R. Kirov and R. Naimi, List coloring and n-monophilic graphs, *Ars Combinatoria* 124 (2016), 329-340.

[20] A. V. Kostochka and A. Sidorenko, Problem Session of the Practative Conference on Graph Theory, *Fourth Czechoslovak Symposium on Combinatorics, Graphs and Complexity*, Ann. Discrete Math. 51 (1992), 380.

[21] Z. Li and Y. Yang, Bound for DP color function of 2-connected graphs, arxiv: 2210.06000v2 (preprint), 2022.

[22] R. Liu and X. Li., Every planar graph without 4-cycles adjacent to two triangles is DP-4-colorable, *Discrete Mathematics* 342 (2019), 623-627.

[23] R. Liu, S. Loeb, Y. Yin, and G. Yu, DP-3-coloring of some planar graphs, *Discrete Mathematics* 342 (2019), 178-189.

[24] J. Mudrock, A deletion-contraction relation for the DP color function, *Graphs and Combinatorics* 38 (2022), 115.

[25] J. Mudrock, A note on the DP-chromatic number of complete bipartite graphs, *Discrete Mathematics* 341 (2018) 3148-3151.

[26] J. Mudrock and S. Thomason, Answers to two questions on the DP color function, *Elect. Journal of Combinatorics*, 28 (2021), P2.24.

[27] C. Thomassen, The chromatic polynomial and list colorings, *Journal of Combinatorial Theory Series B* 99 (2009), 474-479.

[28] M. Truszczynski, Some results on uniquely colourable graphs, *Colloquia Math. Soc. János Bolyai* 37 (1981), 733-746.

[29] V. G. Vizing, Coloring the vertices of a graph in prescribed colors, *Diskret. Analiz.* no. 29, *Metody Diskret. Anal. v Teorii Kodovi Skhem* 101 (1976), 3-10.

[30] W. Wang, J. Qian, and Z. Yan, When does the list-coloring function of a graph equal its chromatic polynomial, *Journal of Combinatorial Theory Series B* 122 (2017) 543-549.

[31] D. B. West, (2001) *Introduction to Graph Theory*. Upper Saddle River, NJ: Prentice Hall.