ON ALTERNATING SUMS OF BINOMIAL AND \(q\)-BINOMIAL COEFFICIENTS

MOHAMED EL BACHRAOUI

Abstract. In this paper we shall evaluate two alternating sums of binomial coefficients by a combinatorial argument. Moreover, by combining the same combinatorial idea with partition theoretic techniques, we provide \(q\)-analogues involving the \(q\)-binomial coefficients.

1. Introduction

Recall that the \(q\)-shifted factorials are given by

\[
(a;q)_0 = 1, \quad (a;q)_n = \prod_{i=0}^{n-1} (1 - aq^i), \quad (a;q)_\infty = \lim_{n \to \infty} (a;q)_n = \prod_{i=0}^{\infty} (1 - aq^i)
\]

and the \(q\)-binomial coefficients are given by

\[
\begin{cases}
\binom{n}{m} = \frac{(q;q)_n}{(q;q)_m(q;q)_{n-m}}, & \text{if } n \geq m \geq 0, \\
0, & \text{otherwise}.
\end{cases}
\]

Evaluating alternating sums and differences involving the binomial coefficients and finding their \(q\)-analogues involving the \(q\)-binomial coefficients have been extensively studied throughout the years and there is a rich literature on the topic, see for instance \[9\ 4\ 5\ 6\ 9\ 10\ 11\ 12\]. A special case of a result by Andrews et al \[9\] states that

\[
\sum_k (-1)^k \binom{m+n}{m-kl} \geq 0 \quad \text{if } |m-n| \leq l
\]

with a corresponding \(q\)-analogue stating that

\[
\sum_k (-1)^k q^{k^2(a+b)+kl(b-a)} \binom{m+n}{m-kl}
\]

is a polynomial in \(q\) with nonnegative coefficients where \(m, n, l, a, b\) are nonnegative integers such that \(a + b < 2l\) and \(b - l \leq n - m \leq l - a\). The authors proved their results using integer partitions. Ismail et al \[11\] extended the previous results by considering among other things expressions of the form

\[
\sum_k \binom{m+n}{m-kl} \cos(kx)
\]

1991 Mathematics Subject Classification. 33C20.

Key words and phrases. binomial coefficients; \(q\)-binomial coefficients; Gaussian binomial coefficients.
and their \(q \)-analogues. Recently Guo and Zhang [10] gave combinatorial proofs for
a variety of alternating sums and differences of binomial and \(q \)-binomial coefficients
including
\[
\sum_{k=-\infty}^{\infty} (-1)^k \binom{2n}{n+2k} = 2^n \tag{1.1}
\]
and
\[
\sum_{k=-\infty}^{\infty} (-1)^k \binom{2n}{n+3k} = \begin{cases} 2 \cdot 3^{n-1}, & \text{if } n \geq 1, \\ 1, & \text{if } n = 0. \end{cases} \tag{1.2}
\]
and their \(q \)-analogues
\[
\sum_{k=-\infty}^{\infty} (-1)^k q^{2k^2} \binom{2n}{n+2k} = (-q; q^2)_n \tag{1.3}
\]
and
\[
\sum_{k=-\infty}^{\infty} (-1)^k q^{(9k^2+3k)/2} \binom{2n}{n+3k} = \begin{cases} 1, & \text{if } n = 0, \\ (1 + q^n) \frac{(q^n; q^n)_\infty}{(q; q)_\infty}, & \text{if } n \geq 1. \end{cases} \tag{1.4}
\]
respectively. In this note we will prove generalisations of the identities (1.1) and (1.2)
including \(-q\)-analogues. Recently Guo and Zhang [10] gave combinatorial proofs for
along with generalisations of their \(q \)-analogues (1.3) and (1.4). Our \(q \)-analogues are
expressed in terms of certain restricted integer partitions which we introduce now.

Definition 1. For any nonnegative integers \(N \) and \(M \) and any positive rational
numbers \(a \leq b \) let \(p_d(N, [a, b], M) \) denote the number of partitions of \(N \) into exactly
\(M \) distinct parts all of which are in the integer interval \([a, b]\). We assume that
\(p_d(-N, [a, b], M) = 0 \) if \(N \leq 0 \).

Further, to simplify the formulas, we introduce the following notation.

Definition 2. Let \(m \) and \(n \) be nonnegative integers and let \(a_{j,l} = p_d(j, [n, n+m], l) \).
For any positive integer \(k \) and any nonnegative integer \(r \) we let \(A_{n,m,k,r}(q) \) be the
polynomial in \(q \) given by:
\[
A_{n,m,k,r}(q) = A_{k,r}(q) = \sum_{l=0}^{\lfloor \frac{n+1-r}{k} \rfloor} \sum_{j=(kl+r)(n+\frac{1-r}{k})}^{\lfloor \frac{n+1-r}{k} \rfloor (kl+r-1)(n+\frac{1-r}{k})} a_{j,kl+r-1} q^j + \sum_{l=0}^{\lfloor \frac{n+1-r}{k} \rfloor} \sum_{j=(kl+r-1)(n+\frac{1-r}{k})}^{\lfloor \frac{n+1-r}{k} \rfloor (kl+r-1)(n+\frac{1-r}{k})} a_{j,kl+r} q^j
\]

2. The Results

Theorem 1. If \(m \) is an integer and \(n \) is a nonnegative integer, then
\[
\sum_{k=-\infty}^{\infty} (-1)^k \binom{2n+m}{n+2k} = 2^n \frac{\cos \frac{m\pi}{4}}{2}\cos \frac{m\pi}{4}
\]

Theorem 2. If \(m \) is a nonnegative integer and \(n \) is a positive integer, then
\[
\sum_{k=-\infty}^{\infty} (-1)^k q^{2k^2} \binom{2n+m}{n+2k} = (-q; q^2)_n
\]
\[
\times \left(\sum_{l=0}^{\lfloor \frac{n+1}{2} \rfloor} \sum_{j=2l(2n+4l)}^{\lfloor \frac{n+1}{2} \rfloor (2l+1)(2n+4l-2)} a_{j,l} q^l - \sum_{l=0}^{\lfloor \frac{n+1}{2} \rfloor} \sum_{j=(2l+1)(2n+4l+2)}^{\lfloor \frac{n+1}{2} \rfloor (2l+1)(2n+4l+2)} b_{j,l} q^l \right),
\]
where

\[a_{j,l} = p_d(j, [n + 1, n + m - 1], 4l) \text{ and } b_{j,l} = p_d(j, [n + 1, n + m - 1], 4l + 2). \]

Theorem 3. If \(n \) and \(m \) are positive integers, then

\[
\sum_{k=-\infty}^{\infty} (-1)^k q^{2k^2-k} \left[\begin{array}{c} 2n + m \\ n + 2k \end{array} \right] = (-q^2; q^2)_n
\]

\[
\times \left\{ \sum_{l=0}^{\infty} \sum_{j=2l(2n+4l+1)}^{2l(2n+2m-4l-1)} a_{j,l} q^j + \sum_{l=0}^{\infty} \sum_{j=(4l+1)(n+2l)}^{(4l+1)(n-m-2l-1)} c_{j,l} q^j \\
- \left(\sum_{l=0}^{\infty} \sum_{j=(2l+1)(2n+4l+3)}^{(2l+1)(2n+2m-4l-3)} b_{j,l} q^j + \sum_{l=0}^{\infty} \sum_{j=(4l+1)(n+2l+2)}^{(4l+1)(n+m-2l+1)} d_{j,l} q^j \right) \right\},
\]

where

\[a_{j,l} = p_d(j, [n + 1, n + m - 1], 4l), \quad c_{j,l} = p_d(j, [n + 1, n + m - 1], 4l - 1), \]
\[b_{j,l} = p_d(j, [n + 1, n + m - 1], 4l + 2), \quad d_{j,l} = p_d(j, [n + 1, n + m - 1], 4l + 1). \]

Theorem 4. If \(m \) is an integer and \(n \) is a nonnegative integer, then

\[
\sum_{k=-\infty}^{\infty} (-1)^k \left(\begin{array}{c} 2n + m \\ n + 3k \end{array} \right) = \begin{cases} 1, & \text{if } n = m = 0, \\ 2 \cdot 3^{n-1} + \pi \cos \frac{m \pi}{6}, & \text{otherwise}. \end{cases}
\]

Theorem 5. Let \(m \) be a nonnegative integer and let \(n \) be a positive integer. Then

\[
\sum_{k=-\infty}^{\infty} (-1)^k q^{2k^2+3k} \left[\begin{array}{c} 2n + m \\ n + 3k \end{array} \right] = \frac{(q^2; q^2)_n}{(q; q)_n} \left(A_{6,0}(q) - A_{6,3}(q) + A_{6,1}(q) - A_{6,4}(q) \right).
\]

Remarks. 1. As a consequence of the previous theorems, sums involving the partitions \(p_d(N, [a, b], M) \) and formulas involving \(A_{n,m,6;1}(1) \) will be obtained upon letting \(q \to 1 \). For instance, letting \(m = 4N + 2 \) and \(q \to 1 \) we find by combining Theorem 1 with Theorem 2 that

\[
\sum_{l=0}^{\infty} \sum_{j=2l(2n+4l+1)}^{2l(2n+2m-4l-1)} p_d(j, [n + 1, n + m - 1], 4l) = \\
\sum_{l=0}^{\infty} \sum_{j=(2l+1)(2n+4l+2)}^{(2l+1)(2n+2m-4l-2)} p_d(j, [n + 1, n + m - 1], 4l + 2)
\]

and letting \(m = 6N + 3 \) and \(q \to 1 \) we find by combining Theorem 4 with Theorem 5 that for all positive integer \(n \)

\[A_{n,m,6;0}(1) - A_{n,m,6;3}(1) + A_{n,m,6;1}(1) - A_{n,m,6;4}(1) = 0. \]

2. Notice that for any integers \(m \) and \(n \), the binomial and \(q \)-binomial coefficients make the series in the previous theorems finite on both ends. However, if \(m, n \to +\infty \), then by virtue of the Jacobi triple product (see 2 [8]) the sum in Theorem 2 becomes:

\[
\lim_{m,n \to \infty} \sum_{k=-\infty}^{\infty} (-1)^k q^{2k^2} \left[\begin{array}{c} 2n + m \\ n + 2k \end{array} \right] = \frac{(q^2; q^2)_\infty (q^4; q^4)_\infty}{(q; q)_\infty} = (-q^2; q^2)_\infty(q^2; q^4)_\infty
\]
and similarly the sums in Theorem 3 and Theorem 5 respectively become:

\[
\lim_{m,n \to \infty} \sum_{k=-\infty}^{\infty} (-1)^k q^{2k^2-k} \left[\frac{2n+m}{n+2k} \right] = \frac{1}{(q^2; q^4)_\infty}
\]

and

\[
\lim_{m,n \to \infty} \sum_{k=-\infty}^{\infty} (-1)^k q^{9k^2+3k} \left[\frac{2n+m}{n+3k} \right] = \frac{(q^3; q^4)}{(q; q)_\infty}
\]

3. We note further that the sums in Theorems 2, 3, and 5 are related to a finite sum version of a ψ_2 sum. Refer to \cite{2,8} for more details about the function ψ_2.

3. Proof of Theorem 1

Suppose first that $n > 0$ and $m \geq 0$. Following Guo and Zhang \cite{10}, throughout let $S = \{a_1, \ldots, a_{2n}, a_{2n+1}, \ldots, a_{2n+m}\}$ be a set of $2n + m$ elements. Let

- $\mathcal{F} = \{A \subseteq S : \#A \equiv n \pmod{2}\}$,
- $\mathcal{G} = \{A \subseteq S : \#(A \cap \{a_{2i-1}, a_{2i}\}) = 1 \text{ for all } i = 1, \ldots, n\}$,
- $\mathcal{H} = \{A \in \mathcal{F} : \#(A \cap \{a_{2i-1}, a_{2i}\}) \neq 1 \text{ for some } i = 1, \ldots, n\}$.

For simplicity of notation, if $A \in S$, we let $A' = A \cap \{a_{2n+1}, \ldots, a_{2n+m}\}$.

We define a map

\[\text{sgn} : \mathcal{F} \to \{-1, 1\}, \quad \text{sgn}(A) = (-1)^{\#A-n}.\]

Then it is clear that

\[
\sum_{k=-\left\lfloor \frac{n+m}{2} \right\rfloor}^{\left\lceil \frac{n+m}{2} \right\rceil} (-1)^k \left(\frac{2n+m}{n+2k} \right) = \sum_{A \in \mathcal{F}} \text{sgn}(A).
\]

Furthermore, if $A \in \mathcal{H}$ let i_A be the minimum index i such that $\#(A \cap \{a_{2i-1}, a_{2i}\}) \neq 1$. Next we define a map

\[\text{inv} : \mathcal{H} \to \mathcal{H}\]

\[\text{inv}(A) = \begin{cases} A \cup \{a_{2i_A-1}, a_{2i_A}\} & \text{if } \#(A \cap \{a_{2i_A-1}, a_{2i_A}\}) = 0 \\ A \setminus \{a_{2i_A-1}, a_{2i_A}\} & \text{if } \#(A \cap \{a_{2i_A-1}, a_{2i_A}\}) = 2. \end{cases}\]

Then it is easily seen that the function inv is an involution satisfying $\text{sgn}(\text{inv}(A)) = -\text{sgn}(A)$ and therefore we have

\[
\sum_{A \in \mathcal{F}} \text{sgn}(A) = \sum_{A \in \mathcal{G}} \text{sgn}(A) = \sum_{\#A' \equiv 0 \pmod{2}} 1 - \sum_{\#A' \equiv 2 \pmod{4}} 1
\]

\[
= 2^n \left(\sum_{l=0}^{\left\lfloor \frac{m}{4} \right\rfloor} \binom{m}{4l} - \sum_{l=0}^{\left\lceil \frac{m-2}{4} \right\rceil} \binom{m}{2+4l} \right).
\]
Then the case \(m = 0 \) follows easily from the identities (6.1) and (3.2). Suppose now that \(m \geq 1 \). Note that by the formulas (6.1) and (3.2) it suffices to show that
\[
\sum_{l \geq 0} \binom{m}{4l} - \sum_{l \geq 0} \binom{m}{4l + 2} = 2^m \cos \frac{m\pi}{4}.
\]
By a well-known result, see Gould [9] and Benjamin et al [5], we have
\[
\sum_{l \geq 0} \binom{m}{4l} = \frac{1}{4} \sum_{k=0}^{3} (1 + e^{i\frac{2\pi k}{4}})^m
\]
and
\[
\sum_{l \geq 0} \binom{m}{4l + 2} = \frac{1}{4} \sum_{k=0}^{3} e^{-2k+i\frac{m\pi}{4}} (1 + e^{i\frac{2\pi k}{4}})^m,
\]
from which it follows that
\[
\sum_{l \geq 0} \binom{m}{4l} - \sum_{l \geq 0} \binom{m}{4l + 2} = 2^m \cos \frac{m\pi}{4},
\]
as desired. Suppose next that \(m < 0 \) and let \(M = -m = 4s - r \) with \(0 \leq r < 4 \). Then with the help of the previous case we have
\[
\sum_{k=0}^{\infty} (-1)^k \binom{2n + m}{n + 2k} = \sum_{k=0}^{\infty} (-1)^k \binom{2n - 4s + r}{n - 2s + 2(k + s)}
\]
\[
= (-1)^s \sum_{k=0}^{\infty} (-1)^k \binom{2(n - 2s) + r}{(n - 2s) + 2k}
\]
\[
= (-1)^s 2^{n-2s+\frac{r}{4}} \cos \frac{\pi r}{4}
\]
\[
= 2^{n-4s} \cos \frac{\pi M}{4},
\]
as desired. Further, suppose that \(n = 0 \) and \(m \geq 4 \). Then
\[
\sum_{k=0}^{\infty} (-1)^k \binom{m}{2k} = \sum_{k=0}^{\infty} (-1)^k \binom{4 + (m - 4)}{2 + 2(k - 1)}
\]
\[
= - \sum_{k=0}^{\infty} (-1)^k \binom{4 + (m - 4)}{2 + 2k}
\]
\[
= -2^{m-4} \cos \frac{(m - 4)\pi}{4}
\]
\[
= 2^m \cos \frac{m\pi}{4}.
\]
Finally it is easy to check the cases \(n = 0 \) and \(m = 1, 2, 3 \). This completes the proof.
4. Proof of Theorem 2

If the $2n + m$ elements of the set S are integers and $A \subseteq S$ then we define the weight of A by $\|A\| = \sum_{a \in A} a$. From the well-known fact, see Andrews [1],

$$\binom{zq; q}{N} = \sum_{j=0}^{N} \binom{N}{j} (-1)^j z^j q^{(j+1)/2}$$

we conclude that

$$\sum_{A \subseteq \{1, \ldots, n\} \atop \# A = k} q^{\|A\|} = \left[\binom{n}{k} q^{(k+1)/2} \right].$$

Now let

$$S = \left\{ i - \frac{2n + 1}{2} : i = 1, \ldots, 2n + m \right\} = \left\{ \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots, \pm \frac{2n - 1}{2}, \frac{2n + 1}{2}, \ldots, \frac{2n + 2m - 1}{2} \right\},$$

that is,

$$a_{2i-1} = -\frac{2i - 1}{2}, a_{2i} = \frac{2i - 1}{2} \quad \text{for } i = 1, \ldots, n \text{ and } a_{2n+j} = \frac{2n + 2j - 1}{2} \quad \text{for } j = 1, \ldots, m.$$

Then the function inv defined above is weight preserving and therefore we have

$$\sum_{A \subseteq \mathcal{F}} \text{sgn}(A) q^{\|A\|} = \sum_{A \subseteq \mathcal{S} \atop \# A \equiv 0 \pmod{4}} q^{\|A\|} - \sum_{A \subseteq \mathcal{G} \atop \# A \equiv 2 \pmod{4}} q^{\|A\|}$$

As to the left-hand-side of the relation (7.1), we have

$$\sum_{A \subseteq \mathcal{F}} \text{sgn}(A) q^{\|A\|} = \sum_{k = -\lfloor \frac{n + m}{2} \rfloor}^{\lfloor \frac{n + m}{2} \rfloor} \sum_{A \subseteq \{1, \ldots, 2n + m\} \atop \# A = n + 2k} \text{sgn}(A) q^{\|A\|}$$

$$= \sum_{k = -\lfloor \frac{n + m}{2} \rfloor}^{\lfloor \frac{n + m}{2} \rfloor} \sum_{A \subseteq \{1, \ldots, 2n + m\} \atop \# A = n + 2k} (-1)^k q^{\|A\| + (n + 2k)(-\frac{2n + 1}{2})}$$

$$= \sum_{k = -\lfloor \frac{n + m}{2} \rfloor}^{\lfloor \frac{n + m}{2} \rfloor} (-1)^k q^{-\frac{2n + 1}{2}(n + 2k)} \sum_{A \subseteq \{1, \ldots, 2n + m\} \atop \# A = n + 2k} q^{\|A\|},$$

which with the help of the identity (4.1) gives

$$\sum_{A \subseteq \mathcal{F}} \text{sgn}(A) q^{\|A\|} = \sum_{k = -\lfloor \frac{n + m}{2} \rfloor}^{\lfloor \frac{n + m}{2} \rfloor} (-1)^k q^{-\frac{2n + 1}{2}(n + 2k)} \left[\frac{2n + m}{n + 2k} \right] q^{(n + 2k + 1)/2}$$

(4.3)

$$= \sum_{k = -\lfloor \frac{n + m}{2} \rfloor}^{\lfloor \frac{n + m}{2} \rfloor} (-1)^k q^{\frac{(2k+1)^2 - 2n^2}{2n + 2k}} \left[\frac{2n + m}{n + 2k} \right].$$

As to the first sum on the right-hand-side of the relation (7.1), notice first that the least sum and the largest sum into exactly 4l distinct parts belonging to the set $\{(2n + 1)/2, \ldots, (2n + 2m - 1)/2\}$ are respectively

$$\frac{2n + 1}{2} + \ldots + \frac{2n + 2(4l - 1) + 1}{2} = 2l(2n + 4l)$$
and \[\frac{2n + 2(m - 4l) + 1}{2} + \ldots + \frac{2n + 2m - 1}{2} = 2l(2n + 2m - 4l). \]

So, letting \[a_{j,l} = p_d \left(j, \left[\frac{2n + 1}{2}, \frac{2n + 2m - 1}{2} \right], 4l \right) = p_d(j, [n + 1, n + m - 1], 4l), \]

it is easily checked that

\[
\sum_{\substack{A \in G \\mod{1}}} \sum_{\# A' \equiv 0 \mod{4}} 1 = \prod_{i=1}^{n} (q + \frac{2i-1}{2}) \times \sum_{l=0}^{\frac{m}{2}} \sum_{j=2l(2n+4l)} a_{j,l} q^j
\]

(4.4)

\[
= q^{-\frac{n+2}{2}} (-q; q^4)_n \sum_{j=2l(2n+4l)} a_{j,l} q^j.
\]

As to the second sum on the right-hand-side of the relation (7.1) we use the same remark as before with 4l replaced by 4l + 2 and \(a_{j,l}\) replaced by

\[b_{j,l} = p_d \left(j, \left[\frac{2n + 1}{2}, \frac{2n + 2m - 1}{2} \right], 4l + 2 \right) = p_d(j, [n + 1, n + m - 1], 4l + 2) \]

to obtain

\[
\sum_{\substack{A \in G \\mod{1}}} \sum_{\# A' \equiv 2 \mod{4}} 1 = \prod_{i=1}^{n} (q + \frac{2i-1}{2}) \times \sum_{l=0}^{\frac{m}{2}} \sum_{j=(2l+1)(2n+4l+2)} b_{j,l} q^j
\]

(4.5)

\[
= q^{-\frac{n+2}{2}} (-q; q^4)_n \sum_{j=(2l+1)(2n+4l+2)} b_{j,l} q^j.
\]

Then the desired formula follows by combining the relation (7.1) with the relations (4.3), (4.4), and (4.5).

5. Proof of Theorem 3

We proceed as in the proof of Theorem [2]. Let

\[S = \{ i - (n + 1) : i = 1, \ldots, 2n + m \} = \{ \pm 1, \ldots, \pm n, 0, n + 1, n + 2, \ldots, n + m - 1 \}, \]

that is,

\[a_{2i-1} = -i, a_{2i} = i \] for \(i = 1, \ldots, n \), \(a_{2n+1} = 0 \), and \(a_{2n+j} = n+j-1 \) for \(j = 2, \ldots, m \).

Then

\[
\sum_{A \in \mathcal{F}} \sgn(A) q^{\|A\|} = \sum_{k=-\left\lfloor \frac{m+n}{2} \right\rfloor}^{\left\lfloor \frac{m+n}{2} \right\rfloor} (-1)^k q^{k^2-k-\frac{n(n+1)}{4}} \left[\frac{2n + m}{n + 2k} \right].
\]

(5.1)

Let as before

\[a_{j,l} = p_d(j, [n + 1, n + m - 1], 4l), \] and \(b_{j,l} = p_d(j, [n + 1, n + m - 1], 4l + 2) \).
However, because of the presence of 0 among the elements of S we shall also take into account partition into exactly $4l - 1$ (nonzero) parts and therefore we let
\[c_{j,l} = p_d(j, [n + 1, n + m - 1], 4l - 1) \quad \text{and} \quad d_{j,l} = p_d(j, [n + 1, n + m - 1], 4l + 1). \]

We have
\[
q^{\|A\|} = \prod_{i=1}^{n}(q^{-i} + q^{i}) \]
for all $\# A \equiv 0 \pmod{4}$.

\[\sum_{l=0}^{m-3} \sum_{j=2l(2n+4l+1)} a_{j,l}q^j + \sum_{l=0}^{m-2} \sum_{j=(4l+1)(n+2l)} c_{j,l}q^j \]
for all $\# A \equiv 0 \pmod{4}$.

Then the desired formula follows by combining the relations (5.1), (5.2), and (5.3) with the relation (6.1).

6. Proof of Theorem 4

The case $n = m = 0$ is clear. Suppose now that $n > 0$ and $m \geq 0$. Extending definitions from Guo and Zhang [10], throughout let $S = \{a_1, \ldots, a_{2n}, a_{2n+1}, \ldots, a_{2n+m}\}$ be a set of $2n + m$ elements and let

\[\mathcal{F} = \{ A \subseteq S : \# A \equiv n \pmod{3} \}, \]

\[\mathcal{G} = \{ A \subseteq \mathcal{F} : \# (A \cap \{a_1, a_{2i+1}\}) \not\in \{i - 1, i + 2\} \quad \text{for all} \quad i = 1, \ldots, n - 1 \}. \]

We define a map
\[\text{sgn} : \mathcal{F} \to \{-1, 1\}, \quad \text{sgn}(A) = (-1)^{\frac{\#A - n}{3}}. \]

Then it is clear that
\[
\sum_{k=-\left\lfloor \frac{n+m}{3} \right\rfloor}^{\left\lfloor \frac{n+m}{3} \right\rfloor} (-1)^k \binom{2n+m}{n+3k} = \sum_{A \in \mathcal{F}} \text{sgn}(A). \]
Furthermore, if \(A \in \mathcal{F} \setminus \mathcal{G} \) let \(i_A \) be the minimum index \(i \) such that \(\#(A \cap \{a_1, a_{2i+1}\}) \in \{i - 1, i + 2\} \). Letting
\[
A' = A \Delta \{a_1, \ldots, a_{2i_A+1}\} = (A \cup \{a_1, \ldots, a_{2i_A+1}\}) \setminus (A \cap \{a_1, \ldots, a_{2i_A+1}\}),
\]
ote{that it is easily seen that \(\#A' = \#A \pm 3 \). Next we define a map
\[\text{inv}: \mathcal{F} \setminus \mathcal{G} \to \mathcal{F} \setminus \mathcal{G}, \quad \text{inv}(A) = A'\]
as follows:
- \(a_1 \in A'' \) if and only if \(a \not\in A \),
- \(a_{2j}, a_{2j+1} \in A'' \) if \(a_{2j}, a_{2j+1} \not\in A \) \((j = 1, \ldots, i_A)\);
- \(a_{2j}, a_{2j+1} \not\in A'' \) if \(a_{2j}, a_{2j+1} \in A \) \((j = 1, \ldots, i_A)\);
- \(a_{2j} \in A'' \) and \(a_{2j+1} \not\in A'' \), if \(a_{2j} \in A \) and \(a_{2j+1} \not\in A \) \((j = 1, \ldots, i_A)\);
- \(a_{2j} \not\in A'' \) and \(a_{2j+1} \in A'' \), if \(a_{2j} \not\in A \) and \(a_{2j+1} \in A \) \((j = 1, \ldots, i_A)\);
- \(a_k \in A'' \) if and only if \(a_k \in A \) \((2i_A + 2 \leq k \leq 2n + m)\).

Observing that \(\#A'' = \#A' \), we have from the previous note that \(\#A'' = \#A \pm 3 \). Further, it is clear that \(A'' \in \mathcal{F} \setminus \mathcal{G} \) and that the function inv is an involution satisfying \(\text{sgn}(\text{inv}(A)) = -\text{sgn}(A) \). Therefore, we have
\[
(6.2) \quad \sum_{A \in \mathcal{F}} \text{sgn}(A) = \sum_{A \in \mathcal{G}} \text{sgn}(A) + \sum_{A \in \mathcal{F} \setminus \mathcal{G}} \text{sgn}(A) = \sum_{A \in \mathcal{G}} \text{sgn}(A).
\]
We now evaluate \(\sum_{A \in \mathcal{G}} \text{sgn}(A) \). We claim that if \(A \in \mathcal{G} \), then
\[
\#(A \cap \{a_1, \ldots, a_{2i_A+1}\}) \in \{i - 1, i, i + 1, i + 2\},
\]
from which the claim follows since the cases \(i - 1 \) and \(i + 2 \) are excluded by definition. For simplicity of notation, if \(A \in \mathcal{S} \), we let
\[
A_1 = A \cap \{a_1, \ldots, a_{2n-1}\}, \quad A_2 = A \cap \{a_{2n}, \ldots, a_{2n+m}\},
\]
\[\mathcal{G}_1 = \{A \in \mathcal{G} : \#A_1 = n\}, \text{ and } \mathcal{G}_2 = \{A \in \mathcal{G} : \#A_1 = n - 1\}.
\]
By the previous claim we have \(\#A_1 \in \{n - 1, n\} \), which combined with the identity \((6.2) \) yields
\[
(6.3) \quad \sum_{A \in \mathcal{F}} \text{sgn}(A) = \sum_{A \in \mathcal{G}_1} \text{sgn}(A) + \sum_{A \in \mathcal{G}_2} \text{sgn}(A).
\]
Furthermore, we clearly have
\[
(6.4) \quad \sum_{A \in \mathcal{G}_1} \text{sgn}(A) = \sum_{A \in \mathcal{G}_1 \cap \{a_1, \ldots, a_{2i_A+1}\}} 1 - \sum_{A \in \mathcal{G}_1 \setminus \{a_1, \ldots, a_{2i_A+1}\}} 1
\]
and
\[
(6.5) \quad \sum_{A \in \mathcal{G}_2} \text{sgn}(A) = \sum_{A \in \mathcal{G}_2 \cap \{a_1, \ldots, a_{2i_A+1}\}} 1 - \sum_{A \in \mathcal{G}_2 \setminus \{a_1, \ldots, a_{2i_A+1}\}} 1.
\]
Moreover, if \(A \in \mathcal{G} \), then there are three possible choices for \(A \cap \{a_{2i}, a_{2i+1}\} \) for all \(i = 1, \ldots, n - 1 \) and there is exactly one possible choice for \(A \cap \{a_1\} \), implying that
\[
(6.6) \quad \#\mathcal{G}_1 = \#\mathcal{G}_2 = 3^{n-1}.
\]
Then from the relations (6.4) and (6.6) we derive

\[
\sum_{A \in G_1} \text{sgn}(A) = 3^{n-1} \left(\sum_{l=0}^{\lfloor \frac{m+1}{6} \rfloor} \binom{m+1}{6l} - \sum_{l=0}^{\lfloor \frac{m-2}{6} \rfloor} \binom{m+1}{6l+3} \right)
\]

and from the relations (6.5) and (6.6) we derive

\[
\sum_{A \in G_2} \text{sgn}(A) = 3^{n-1} \left(\sum_{l=0}^{\lfloor \frac{m+1}{6} \rfloor} \binom{m+1}{6l} - \sum_{l=0}^{\lfloor \frac{m-3}{6} \rfloor} \binom{m+1}{6l+4} \right).
\]

Substituting (6.7) and (6.8) in the formula (6.3) gives

\[
\sum_{A \in F} \text{sgn}(A) = 3^{n-1} \left(\sum_{l=0}^{\lfloor \frac{m+1}{6} \rfloor} \binom{m+1}{6l} - \sum_{l=0}^{\lfloor \frac{m-2}{6} \rfloor} \binom{m+1}{6l+3} \right) + 3^{n-1} \left(\sum_{l=0}^{\lfloor \frac{m+1}{6} \rfloor} \binom{m+1}{6l+1} - \sum_{l=0}^{\lfloor \frac{m-3}{6} \rfloor} \binom{m+1}{6l+4} \right).
\]

Then the case \(m = 0 \) follows easily from the identities (6.1) and (6.9). Suppose now that \(m \geq 1 \). By a well-known result, see Gould [9] and Benjamin et al [5], we have

\[
\sum_{l \geq 0} \binom{m}{6l} - \sum_{l \geq 0} \binom{m}{6l+3} = 2 \cdot 3^{\frac{m-1}{2}} \cos \left(\frac{m+1}{6} \pi \right),
\]

and

\[
\sum_{l \geq 0} \binom{m}{6l+1} - \sum_{l \geq 0} \binom{m}{6l+4} = 2 \cdot 3^{\frac{m-1}{2}} \cos \left(\frac{m-1}{6} \pi \right),
\]

which combined with (6.9) yields

\[
\sum_{A \in F} \text{sgn}(A) = 3^{n-1} \left(2 \cdot 3^{\frac{m}{6}} \cos \frac{m \pi}{6} \right) = 2 \cdot 3^{n-1} + \frac{3^{m \pi}}{6},
\]

as desired. Suppose next that \(m < 0 \) and let \(M = -m = 6s - r \) with \(0 \leq r < 6 \). Then with the help of the above we have

\[
\sum_{k=-\infty}^{\infty} \binom{2n + m}{n + 3k} = \sum_{k=-\infty}^{\infty} \binom{2n - 6s + r}{n - 3s + 3(k + s)} = (-1)^s \sum_{k=-\infty}^{\infty} (-1)^k \binom{2(n - 3s) + r}{n - 3s + 3k} = (-1)^s 2 \cdot 3^{n-3s-1} \cos \frac{\pi r}{6} = 2 \cdot 3^{n-1} \cos \frac{\pi M}{6},
\]
as desired. Further, suppose that \(n = 0 \) and \(m \geq 6 \). Then

\[
\sum_{k=\infty}^{\infty} \binom{m}{3k} = \sum_{k=\infty}^{\infty} \left(\frac{6 + (m - 6)}{3 + 3(k - 1)} \right) = -\sum_{k=\infty}^{\infty} \left(\frac{6 + (m - 6)}{3 + 3k} \right) = -2 \cdot 3^{3-1+\frac{m-6}{2}} \cos \left(\frac{(m - 6)\pi}{6} \right) = 2 \cdot 3^{-1+\frac{m}{2}} \cos \left(\frac{m\pi}{6} \right).
\]

Finally it is easy to check the cases \(n = 0 \) and \(m \in \{1, 2, 3, 4, 5\} \). This completes the proof.

7. Proof of Theorem 5

Let

\[
S = \{i - n : i = 1, \ldots, 2n + m\} = \{\pm 1, \ldots, \pm (n - 1), 0, n, n + 1, \ldots, n + m\},
\]

with

\[
a_1 = 0, a_{2i} = -i, a_{2i+1} = i \text{ for } i = 1, \ldots, n - 1 \text{ and } a_{2n+j} = n + j \text{ for } j = 0, \ldots, m.
\]

Then the function inv defined above is weight preserving and therefore we have

\[
\sum_{A \in F} \text{sgn}(A) q^{\|A\|} = \sum_{A \in \mathcal{G}_1} \text{sgn}(A) q^{\|A\|} + \sum_{A \in \mathcal{G}_2} \text{sgn}(A) q^{\|A\|}
\]

\[
= \sum_{\#A_2 \equiv 0 \pmod{6}} q^{\|A\|} - \sum_{\#A_2 \equiv 3 \pmod{6}} q^{\|A\|} + \sum_{\#A_2 \equiv 1 \pmod{6}} q^{\|A\|} - \sum_{\#A_2 \equiv 4 \pmod{6}} q^{\|A\|}.
\]

(7.1)

As to the left-hand-side of the relation (7.1), we have

\[
\sum_{A \in F} \text{sgn}(A) q^{\|A\|} = \sum_{k=-\infty}^{\infty} \sum_{A \subseteq S \#A=n+3k} \text{sgn}(A) q^{\|A\|}
\]

\[
= \sum_{k=-\infty}^{\infty} \sum_{A \subseteq \{1, \ldots, 2n+m\} \#A=n+3k} (-1)^k q^{\|A\| - n(n+3k)}
\]

\[
= \sum_{k=-\infty}^{\infty} (-1)^k q^{-n(n+3k)} \sum_{A \subseteq \{1, \ldots, 2n+m\} \#A=n+3k} q^{\|A\|},
\]
which with the help of the identity \(1.1\) gives

\[
\sum_{A \in F} \sgn(A)q^{\|A\|} = \sum_{k=-\lfloor \frac{n+3}{2} \rfloor}^{\lfloor n+3k \rfloor} (-1)^k q^{-n(n+3k)} \left[\frac{2n + m}{n + 3k} \right] q^{k(n+3k+1)}
\]

(7.2)

\[
= \sum_{k=-\lfloor \frac{n+3}{2} \rfloor}^{\lfloor n+3k \rfloor} (-1)^k q^{\frac{9k^2+3k+2}{2}n} \left[\frac{2n + m}{n + 3k} \right].
\]

To evaluate the sum \(\sum_{A \in \mathcal{G}_1} q^{\|A\|}\) in the relation (7.1), we shall consider partitions into exactly 6l distinct parts belonging to the set \(\{n, \ldots, n + m\}\) and moreover, because of the presence of 0 among the elements of \(S\), we shall also take into account partition into exactly 6l - 1 distinct (nonzero) parts belonging to the set \(\{n, \ldots, n + m\}\). Notice that the least sum and the largest sum into exactly 6l distinct parts belonging to the set \(\{n, \ldots, n + m\}\) are respectively

\[n + (n + 1) + \ldots + (n + 6l - 1) = 3l(2n + 6l - 1)\]

and

\[(n + m) + (n + m - 1) + \ldots + (n + m - 6l + 1) = 3l(2n + 2m - 6l + 1)\]

and similarly the least sum and the largest sum into exactly 6l - 1 distinct parts belonging to the set \(\{n, \ldots, n + m\}\) are \((6l - 1)(n+3l - 1)\) and \((6l - 1)(n + m - 3l + 1)\) respectively. Then it is easily checked that

\[
\sum_{\# A_2 \equiv 0 \pmod{6}} q^{\|A\|} = \prod_{i=1}^{n-1} \left(q^{-i} + q^i + q^0 \right)
\]

\[
\times \left(\sum_{l=0}^{\lfloor \frac{n+3}{2} \rfloor} \sum_{j=6l(n+m-6l-2)}^{n(n+m-6l-2)} a_{j,6l}q^j + \sum_{l=0}^{\lfloor \frac{6l-1}{2} \rfloor} \sum_{j=(6l-1)(n+6l-2)}^{n(n+m-6l-2)} a_{j,6l-1}q^j \right)
\]

(7.3)

\[
= q^{n^{2-n}} \left(\frac{q^3; q^3}{(q; q)_{n-1}} A_{6,0}(q) \right).
\]

Similarly, we obtain

(7.4)

\[
\sum_{\# A_2 \equiv 3 \pmod{6}} q^{\|A\|} = q^{n^{2-n}} \left(\frac{q^3; q^3}{(q; q)_{n-1}} A_{6,3}(q) \right),
\]

(7.5)

\[
\sum_{\# A_2 \equiv 1 \pmod{6}} q^{\|A\|} = q^{n^{2-n}} \left(\frac{q^3; q^3}{(q; q)_{n-1}} A_{6,1}(q) \right),
\]

and

(7.6)

\[
\sum_{\# A_2 \equiv 4 \pmod{6}} q^{\|A\|} = q^{n^{2-n}} \left(\frac{q^3; q^3}{(q; q)_{n-1}} A_{6,4}(q) \right).
\]

Then the desired formula follows by combining the relation (7.1) with the formulas (7.2), (7.3), (7.4), (7.5), and (7.6).
Acknowledgment. The author is grateful to the referee for valuable comments and suggestions which improved the quality of the paper.

References

[1] G. E. Andrews, *The theory of partitions*, Vol. 2, Cambridge University Press, 1984.
[2] G. Andrews, R. Askey, and R. Roy, *Special Functions*, Cambridge University Press, Cambridge, 1999.
[3] G. Andrews, R. Baxter, D. Bressoud, W. Brugel, P. Forrester, and G. Viennot, *Partitions with prescribed hook differences*, Eur. J. Combinatorics 8 (1987), 341-350.
[4] W. N. Bailey, *A note on certain q-identities*, Quart. J. Math., Oxford Ser. 12 (1941), 173-175.
[5] A. Benjamin, B. Chen, and K. Kindred, *Sums of evenly spaced binomial coefficients*, Mathematics Magazine 83 (2010), 370-373.
[6] D. M. Bressoud, *Some identities for terminating q-series*, Math. Proc. Cambridge Philos. Soc. 89 (1981), 211-223.
[7] D. M. Bressoud, *The Borwein conjecture and partitions with prescribed hook differences*, Electron. J. Combin. 3 (1996).
[8] G. Gasper and M. Rahman, *Basic hypergeometric series*, Cambridge University Press, Cambridge, 2004.
[9] H. W. Gould, *Combinatorial identities*, Morgantown Printing and Building Co., 1972.
[10] V. J. W. Guo and J. Zhang, *Combinatorial proofs of a kind of binomial and q-binomial coefficient identities*, Ars Combinatoria 1 (2014), 415-428.
[11] M. E. Ismail, D. Kim, and D. Stanton, *Lattice paths and positive trigonometric sums*, Constr. Approx 15 (1999), 69-81.
[12] F. H. Jackson, *Certain q-identities*, Quart. J. Math., Oxford Ser. 12 (1941), 167-172.

E-mail address: melbachraoui@uaeu.ac.ae