The norm game - how a norm fails

Krzysztof Kulakowski† and Antoni Dydejczyk∗

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Kraków, Poland

†kulakowski@novell.ftj.agh.edu.pl, ∗dydejczyk@ftj.agh.edu.pl

October 29, 2008

Abstract

We discuss the simulations of the norm game between players at nodes of a directed random network. The final boldness of the players can vary with the initial one as the Θ function. One of the conditions of this behaviour is that the player who does not punish automatically becomes a defector. The threshold value of the initial boldness can be interpreted as a norm strength. It increases with the punishment and decreases with its cost. Surprisingly, it also decreases with the number of potential punishers. The numerical results are discussed in the context of the statistical data on crimes in Northern Ireland and New Zealand, on divorces in USA, and on the alcohol consumption in Poland.

1 Introduction

The cultural paradigm of the supremacy of an individual over collective thought is well established in our culture. On the contrary to this, there is much evidence that individual decisions and beliefs strongly depend on the social environment. The effects related are the spiral of silence [12], the pluralistic ignorance [34], the bystander effect [5], the group polarization [6], the groupthink [7], the bandwagon effect [89], the Abilene paradox [10], stereotyping [1112] and others. All these effects show that social groups influence or sometimes even determine their members’ behaviour. It is natural that this notion shifts attention of scientists to investigations of an interaction between agents rather than the agents themselves, notwithstanding this interaction perception merely in individual minds. A physicist could be surprised how far the analogy can be driven between the cognitive-emotional social field [13] and the electromagnetic field [14].

The subject of social norms seems to belong to these parts of the science on human behaviour, which can be treated as a systematic science (in terms of Ref. [13]). Up to our knowledge, the first attempt of such a treatment was done by Robert Axelrod [1516]. A brief introduction to the problem can be found in the introduction to Ref. [17]. Axelrod was inspired by the idea of the evolutionary principle (EP), formulated by himself as follows: ...what works well for a player is more likely to be used again, whereas what turns out poorly is more likely to be discarded. [18]. Axelrod enumerated three independent mechanisms which lead to the realization of EP: i) more effective individuals survive more likely, ii) players learn by trial and error and maintain strategies which are more effective, iii) players observe each other and imitate the winners. Axelrod suggested
that in the problem of norms, the third mechanism is most applicable. In the opinion of the present author the second mechanism is even more important for norms which can persist in the timescale of the order of human life. The argument is that such norms are characteristic for a social group rather than for a given person, and they are obeyed sometimes just by tradition. Investigation of this kind of norms with statistical tools makes sense, as the psychics of an individual agent can be reduced there to a black box. This is the area where a sociophysicist is allowed to enter.

In our previous work [19] a new scheme of simulation was formulated for the norm game [15, 16]. Most briefly, the original version of the norm game can be described as follows. N players are positioned at nodes of a fully connected network. The players are endowed with their boldnesses, i.e. initial probabilities of defecting (breaking the norm), and with vengeances, i.e. the probabilities of punishing the defection, if observed at other players. Next, a player is selected and tempted to break the norm. If he does, he is granted with some prize. Further, if a neighbour of the defector decides to punish, the defector has to pay a fine. Finally, also the punisher incurs some cost of his action. An application of the genetic algorithm leads to spreading of most effective strategies. This game, with some simplifications described in Section II, was simulated recently in a directed Erdős-Rényi network [19]. The main result was the history dependence of the final distribution of the agents' boldness. Namely, a discontinuity was found of the dependence of the final boldness. The values of the initial boldness of the players were selected from the range $(0.9\rho, \rho)$, where $0 < \rho < 1$. Below some threshold value ρ_c of ρ, the mean value of the final boldness was found to be close to zero. When $\rho > \rho_c$, the same mean value was found to be close to one. Calculated values of ρ_c were found to decrease with the cost parameter γ. In parallel, a similar bistability was obtained by means of analytical calculations [19, 20].

The aim of the present work is to investigate this discontinuity. New numerical results to be reported here are as follows:

i) A necessary condition for the appearance of the discontinuity is that once a player abstains from punishing, his boldness is set to one.

ii) The discontinuity remains in the undirected growing networks: both in the scale free and the exponential ones, but it disappears in the directed growing networks.

iii) The value of ρ_c increases with the punishment and it decreases with the mean node degree.

These results are described in Section III with more details. They are discussed in Section IV in the context of some statistical data, which display a relatively quick variations in time. Final remarks in Section V close the text.

2 The simulation algorithm

Basically, we use the same algorithm as in Ref. [19], generalized for different network topologies. Players are placed at nodes of a network of a given topology. For the directed Erdős-Rényi network, for each node i its degree $k(i)$ is selected from the Poisson distribution, and then the neighbors of i are chosen
with uniform probability. The links are directed from the neighbours to the node \(k \); this means that the player at \(i \) can be punished by his neighbours, but not the opposite. Obviously, each neighbour has its own neighbours who can punish him.

As the next step, each player \(i \) is endowed by the probability that he defects \(b(i) \) (boldness) and the probability that he punishes \(v(i) \) (vengeance), with the condition \(b(i) + v(i) \leq 1 \). The boldnesses are selected from the range \(((\rho - 1)/100, \rho/100)\), where \(\rho \) is an integer number from 1 to 100. Then, \(\rho \) is a measure of the initial boldness in the system. For each \(i \), the vengeance is set as \(v(i) = (1 - b(i))/\mu \), where \(\mu \geq 1 \). Then, the initial state is described by two parameters \(\rho \) and \(\mu \). As a rule, \(\mu = 1 \) or \(\mu = 2 \).

The dynamics is described by two parameters \(\beta \) and \(\gamma \). A node \(i \) is selected randomly. The player at \(i \) defects with probability \(b(i) \). If he does, his boldness \(b(i) \) is set to 1, and his vengeance \(v(i) \) is set to 0. If he does not, \(b(i) \) is set to 0 and \(v(i) \) is set to 1. This settings can be treated as an example of social labelling [21]. Then, a neighbour \(j \) of \(i \) is checked if he punishes or not, with his actual vengeance \(v(j) \). If he does not punish, he is treated as a defector. Then, his boldness \(b(j) \) is set to 1 and his vengeance \(v(j) \) is set to 0. If \(j \) punishes, the boldness of punished \(i \) is reduced by a factor \(1 - \beta \), i.e.

\[
 b(i) \rightarrow b(i)(1 - \beta)
\]

Simultaneously, the punisher \(j \) pays the cost of punishing, what leads to a reduction of his vengeance as

\[
 v(j) \rightarrow v(j)(1 - \gamma)
\]

In this way, we omit the parameters of the payoffs, which are not necessary. If one of the neighbours punishes, the other neighbours are no more checked if they do. The algorithm just selects another player \(i \) to be tempted to defect.

The simulation is repeated for the undirected growing networks: exponential and scale-free ones, and for the directed growing networks. In the last case the direction of nodes was selected either from the new node to its older neighbours, or the opposite.

3 Numerical results

Although the threshold effect is present for the directed Erdős-Rényi networks [19], it disappears in the directed Albert-Barabási networks where the direction of bonds is chosen from newly attached nodes to their older neighbours. The effect disappears also in the latter case when the direction of all bonds is inverted. These results are shown in Fig. 1. Then, this combination of the age of nodes and the direction of bonds between them does modify significantly the system behaviour. The nature of this modification remains to be clarified.

The simulations were concentrated on the calculation on the threshold boldness \(\rho_c \) against the punishment parameter \(\beta \) and the cost parameter \(\gamma \). Let us repeat that if the initial value of \(\rho \), what is a rough measure of the initial boldness, is smaller than \(\rho_c \), then the final boldness is small; the defection is
Figure 1: The mean boldness for Albert-Barabási growing networks with $M = 3$. For the undirected network the threshold value is observed at ρ_c about 53. For two directed networks the direction is either from new to old nodes or the opposite. Then, either new nodes can punish those to which they are attached (the plot 'new'), or the old nodes can punish those attached to them (the plot 'old'). No threshold is observed for the directed networks.
rare. On the contrary, if $\rho > \rho_c$, most agents defect in the stationary state. In other words, it is more difficult to defect if ρ_c is large. Then, ρ_c can be treated as a measure of the norm strength.

The simulations confirm the previous result [19] that ρ_c increases with the punishment constant β. Also, they give a new result, that ρ_c decreases with the punishment cost γ. Both facts are natural; the norm is stronger if the punishment is heavy for the defector, and it is weaker if the punishment is costful for the punisher. These results are shown in Fig. 2 for the directed Erdős-Rényi network with the mean number of potential punishers $\lambda = 5$, and in Fig. 3 for the undirected Albert-Barabási networks.

On the other hand, these results suggest that the norm strength decreases with the potential number of neighbours. To verify this, we have calculated ρ_c for the directed Erdős-Rényi networks for various numbers of in-neighbours λ as well for the undirected scale-free networks for various numbers of the parameter M. The results are shown in Fig. 4 a,b. In both cases the same effect is observed, that the norm strength ρ_c decreases with the mean number of potential punishers, which is λ for the the directed Erdős-Rényi networks and which is $2M$ for the undirected scale-free networks.

This result is somewhat surprising. Before the calculation is done, we expected that an increase of the number of punisher should make the norm more strong. We have to admit that the process contains some internal feedback from those tempted to their neighbours. Once the norm is broken, those who can punish have to decide if the punishment cost is not too large. According to our algorithm once they do not punish, they become defectors. If the norm was broken at all, this outcome was not possible. In this sense, the larger number of potential punishers who do not punish can lead to an avalanche of new defectors. This is a possible explanation of the observed decrease of ρ_c with the number of neighbors.

4 Some stylized facts

Some statistical data suggest that indeed some ‘equilibrium’ social states are possible, where a norm is obeyed to some definite extent. Once such a state ceases its stability, the system moves to another state, where the mean boldness is constant again or it fluctuates only slowly. This transformation can be seen in the statistical data as a large change of a given quantity, accompanied by its relatively slow variation before and after the change. Such a change can be interpreted as a discontinuous jump between two states. Here we are going to mention four examples and to comment them shortly.

Our first example is the number of recorded criminal offences per year in Northern Ireland. Between 1980 and 1997 it varied between 50 thousands and 70 thousands, but it increased to about 120 thousands in 1997 [22, 23]. The plot is shown in Fig. 5. This jump was probably triggered by the fact that since 1997 the Provisional IRA has observed a ceasefire. At this moment, large hidden arsenals became useless for the patriotic purposes. As a consequence, the social norm ‘preserve your gun for the outbreak’ has failed.

The data on murders in New Zealand between 1950 and now show a similar dynamics [24]. Before 1986 the number of homicides did not excess 60 per
Figure 2: The value of the norm strength ρ_c for the directed Erdős-Rényi network, for $\mu = 1$ and $\mu = 2$.
Figure 3: The value of the norm strength ρ_c for the undirected scale-free Barabási-Albert network, for $M = 2$ and $M = 4$.
Figure 4: The value of the norm strength ρ_c for the directed Erdős-Rényi networks for $\lambda = 3 - 7$ and for the undirected scale-free Albert-Barabási network, for $M = 2 - 7$.
Figure 5: The number of recorded criminal offences in thousands per year in Northern Ireland (+, solid line) \cite{22, 23} and the number of homicides per year in New Zealand (x, dash line) \cite{24} against time. Sharp changes are visible, which mark the cease-fire in Northern Ireland in 1997 and the transition to free economy, started in 1984 in New Zealand.

Our third example is the number of divorces in USA (Fig. 6). The data \cite{25} show that this number increased twice (from about 2.5 to about 5.0 per 1000 population) between 1965 and 1975. This change was accompanied by a similarly large relative increase of numbers of rapes, murders and robberies within the same time period \cite{26}. Obviously, this fall of norms was triggered by the Vietnam war, but it is not easy to separate this cause of divorces from the accompanying sexual revolution. Divorced people often look for other partners, not necessarily unmarried, what accelerates the process like in a chain reaction \cite{27}; still the related lifetime is not shorter than a couple of years.

Our last example is the fall of spirits consumption in Poland in 1981 from 8 to 6 litres of pure alcohol per an adult per year \cite{28}. At that time, Polish people had drank mainly spirits, while the French preferred wine and the German - beer. To drink alcohol is in Poland a kind of social norm, to show friendship and empathy, paying no heed to health losses. This need for a demonstration of common feeling of being unhappy was released by the new hope of a political transformation, brought by the free trade union “Solidarity” and the message of John Paul II. The political transformation in Europe is not visible at the
Figure 6: Divorces (+, solid line) [25], murders (x, dash line) [26] and rapes (*, dotted line) [26] in USA against time. For clarity, the numbers are rescaled: divorces to 500, murders to 10 and rapes to 35 per 10^5 inhabitants per year. The peak on the left on the divorces curve is due to WWII.

As we see, all these changes were triggered by some events: the ceasefire in Northern Ireland, the economic transformation in New Zealand, Vietnam war in USA or political reforms in Poland. To interpret these changes in terms of our model picture, we admit that in each case the event as those listed above changes the punishment or/and it cost. This influences the temptation process, which is more or less steady in the society; new and new people are faced with the question: to divorce or not, to drink or not, to break law or not. Their decisions are influenced by individual attitudes of their neighbours, which are also determined in the process. As an output we see a social change in macroscopic data.

We note that according to our numerical results, the abrupt fall of norm preserving is a consequence of the rule 'those who abstain from punishing, defect'. In other words, the society is divided into defectors and punishers. A question arises, if this rule makes sense in our four examples. To find an answer, we have to identify the punishment. In the first and second example to punish is to report the case to the police. Then, the interpretation is clear: who did not report to the police is guilty. In the third example to punish could be to condemn divorces in public. However, in principle one could be faithful in marriage and tolerant towards manifestations of sexual promiscuity. We face the same problem also in the fourth example, where many people prefer the strategy 'don’t drink but let drink’. Then, our numerical result seems to apply.
Figure 7: Consumption of spirits in Poland (+, solid line), beer in Germany (x, dash line) and wine in France (*, dotted line), in litres of pure alcohol per an adult (+15) per year, against time. The consumption of beer and wine in Poland, wine and spirits in Germany and spirits and beer in France did not exceed 4 litres. All data from Ref. [28].

to two examples out of four.

This difficulty is solved, if the norm itself is redefined as 'the duty to punish'. According to this new point of view, to obey a norm means to declare in public that this norm should be obeyed. In particular in our third example what is important is to declare in public that the institution of marriage is holy and inviolable. Similarly in the fourth example the norm is to insist that to be accepted in the group, everybody must drink. In this way, the metagame (in terms of Axelrod) is the game. This transformation can be interpreted theoretically as follows: the preservation of a given norm should be evaluated by counting not those people who preserve it, but rather those who punish for its defection. This formulation raises the question about the status of norms which vanish in a continuous way. This in turn calls for an experimental criterion, which change is continuous and which is sharp. These questions are beyond the scope of this paper.

5 Final remarks

Even if numerically complete, the study is preliminary. It reveals the connection between consequences of decisions of individual players and the state of the society at a macro-level. In the above calculations, these consequences are chosen as to label the players: who once defected will never punish and who once punished will never defect. In this way, the society is divided into two
opposite groups. These rules of labelization should be justified and relaxed if
necessary in accordance with the social reality, and these modifications in each
case do depend on the specific norm under consideration.

To conclude, the sharp dependence of the final boldness on its initial distri-
bution follows from the labelling consequences of initial decisions of the players.
This sharpness does not depend much on the network topology. However, it
can be removed if the direction of the links is determined by the age of nodes
in growing networks.

Acknowledgements. The research is partially supported within the FP7
project SOCIONICAL, No. 231288.

References

[1] E. Noelle-Neumann, The spiral of silence: A theory of public opinion, Journal
of Communication, 24 (1974) 43-51.

[2] E. Noelle-Neumann, The Spiral of Silence: Public Opinion - Our Social
Skin, University of Chicago Press, Chicago 1993.

[3] F. H. Allport, Institutional Behavior, University of North Carolina Press,
Chapel Hill, 1933.

[4] D. A. Prentice and D. T. Miller, Pluralistic ignorance and alcohol use on
campus: Some consequences of misperceiving the social norm, Journal of
Personality and Social Psychology, 64 (1993) 243-256.

[5] B. Latané and J. M. Darley, The Unresponsive Bystander: Why Doesn’t
He Help?, Prentice Hall, Englewood Cliffs, 1970.

[6] S. Moscovici and W. Doise, Conflict and Consensus: A General Theory of
Collective Decisions, Sage Publ., London 1994.

[7] I. L. Janis and L. Mann, Decision making: A psychological analysis of
conflict, choice, and commitment, Free Press, NY 1977.

[8] R. Navazio, An experimental approach to bandwagon research, Public Opinion
Quarterly, 41 (1977) 217-225.

[9] V. G. Morowitz and C. Pluziński, Do polls reflect opinions or do opin-
ions reflect polls? The impact of political polling on voters’ expectations,
preference, and behavior, J. of Consumer Research, 23 (1996) 53-67.

[10] J. B. Harvey, The Abilene Paradox, Jossey-Bass, San Francisco 1996.

[11] W. Lippmann, Public Opinion, Free Press Paperbacks, NY 1997 (first edition
NY 1922).

[12] S. A. Haslam, J. Salvatore, Th. Kessler and S. D. Reicher, How Stereotyping
Yourself Contributes to Your Success (or Failure), Sci. Am., April 2008.
[13] J. F. Brown, *Individual, Group, and Social Field*, American J. of Sociology 44 (1939) 858-867.

[14] D. L. Sallach, *Social Field Theory: Concept and Application*, preprint, 2006.

[15] R. Axelrod, *An evolutionary approach to norms*, Amer. Political Sci. Rev. 80 (1986) 1095-1111.

[16] R. Axelrod, *Complexity of Cooperation. Agent-Based Models of Competition and Collaboration*, Princeton University Press, Princeton 1997.

[17] T. Fent, P. Groeber and F. Schweitzer, *Coexistence of social norms based on in- and out-group interaction*, Advances in Complex Systems 10 (2007) 271-286.

[18] R. Axelrod, *The Evolution of Cooperation*, Basic Books, NY 1984.

[19] K. Kuślakowski, *Cops or robbers - a bistable society*, Int. J. Mod. Phys. C 19 (2008) 1105-1111.

[20] K. Kuślakowski, *The norm game in a mean-field society*, submitted to the Journal of Economic Interaction and Coordination (arXiv:0801.3520).

[21] *The Concise Oxford Dictionary of Sociology*, edited by Gordon Marshall, Oxford UP 1998.

[22] data of Eurostat (http://epp.eurostat.ec.europa.eu/)

[23] B. French and R. Freel, *Experience of crime: Findings from the 2005 Northern Ireland crime survey*, Northern Ireland Office, Research and Statistical Bulletin 2/2007 (www.equality.nisra.gov.uk/Experiences of crime 2005 crime survey.pdf).

[24] data of the Sensible Sentencing Trust (http://www.safe-nz.org.nz/statsgraph.htm).

[25] Monthly Vital Statistics Report, Vol. 39 No 12 Suppl. 2, May 21, 1991.

[26] data of the Disaster Center (http://www.disastercenter.com/crime/uscrime.htm).

[27] C. Everett, *Legal Decisions and Family Outcomes*, Routledge, London 1998.

[28] data of the Food and Agriculture Organization of the United Nations, *World Drink Trends 2003*.

13