Regulation of Tumor Angiogenesis and Choroidal Neovascularization by Endogenous Angioinhibitors

Venugopal Gunda1 and Yakkanti A Sudhakar*2

1 The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
2 Cell Signaling Laboratory, Bioscience Division, Center for Cancer and Metabolism, Stanford Research Institute (SRI) International, Menlo Park, CA 94025, USA

Abstract

Angiogenesis is the process of neovascularization from parent blood vessels, which is a prerequisite for many physiological and pathological conditions and is regulated by a balance between endogenous angioinhibitors and angiogenic factors. Imbalance between angiogenic factors and angiostatin is associated with neovascularization capacity during progression of tumor development and Choroidal Neovascularization (CNV). Normalization of pathological angiogenesis is considered as an alternative strategy to prevent the tumor growth in cancer progression or retinal damage in CNV. Various angiokinase inhibitors are being identified and evaluated for their pathological angiogenesis regulation, of which endogenous angioinhibitors are one class derived either from extra cellular matrix or from non-extra cellular matrix of human origin. Endogenous angioinhibitors are gaining much significance as they interact with proliferating endothelial cells by binding to distinct integrins and non-integrin receptors, regulating different intracellular signaling mechanisms leading to inhibition of choroidal neovascularization and tumor growth. This review will focus on endogenous angiogenic factors and their receptor(s) mediated angioinhibitory signaling, which are of major concern in angiogenesis and their clinical and pharmaceutical implications.

Keyword: Angiogenesis; Endothelial Progenitor Cells (EPCs); Vaso-inhibins; Pigment epithelium derived factor (PEDF)

Introduction

Angiogenesis

Angiogenesis is the sprouting of capillaries to form new vascular network for maintaining the supply and exchange of metabolites, hormones, and gases required for tissue growth or repair. It is the major process of de-novo vascular growth or neovascularization in adult tissues for wound healing, inflammatory responses and endometrial vascular growth during female reproductive cycles [1]. Blood capillaries are constituted by a single layer of Endothelial Cells (ECs), surrounded and supported by Extracellular Matrix (ECM) called Vascular Basement Membrane (VBM) and pericytes [2]. This simple histological organization facilitates the exchange of metabolites and regulatory factors with the surrounding tissues. Angiogenic factors promote angiogenesis which is initiated with the proliferation and migration of ECs, remodeling of VBM by ECs through secretion of proteases, differentiation of ECs into tip and stalk cells, lumen development, ECM secretion and finally vessel anastomosing into functional capillaries [3]. These angiogenic factors stimulate and maintain the vascular growth necessary in both physiological and pathological angiogenesis.

Pathological angiogenesis in tumors and ocular tissues

Angiogenesis during tumor growth and neovascularization in ocular tissues involves the stimulation by angiogenic factors, which are in relatively higher levels in both these conditions. Tumor neovascularization is maintained by the secretion of angiogenic factors either by the tumor cells themselves or by the cells recruited into tumor microenvironment by the differentiation of Endothelial Progenitor Cells (EPCs), through vasculogenesis [4]. Similarly, ocular neovascularization arises from the pre-existing vasculature in eye, through the angiogenic switch stimulated by the angiogenic factors secreted within ocular tissues or by the cells recruited through vasculogenesis.

Tumor angiogenesis

Tumor progression is an abnormal tissue growth comprising of transformed cancerous cells with altered genetic and proteomic patterns. The oncogenic genetic and physiological aberrations in tumor cells confer them with uncontrolled proliferative capacity, which demands a continuous supply of oxygen and removal of the metabolic wastes, to compensate the enhanced growth. Therefore, additional vascular supply is essential for the developing tumors as reported by Judah Folkman group at Harvard University; showing that the tumor growth is not supported beyond a few millimeters in size without angiogenesis [5]. However, tumor vasculature exhibits differences compared to normal vasculature with respect to the fenestrated tumor endothelium comprised of ECs and tumor cells, few pericytes, convoluted vasculature and incomplete or leaky VBM in tumor vessels [6].

Age related macular degeneration and choroidal neovascularization

In the eye, ocular tissues have an organized vascular supply confined to choroid, hyaloid and inner layers of retina, maintaining the supply and homeostasis in healthy condition [7,8]. However, abnormal vascular growth patterns such as Choroidal Neovascularization (CNV) and retinal angiogenesis are evident in pathological proliferative
Integrin mediated signaling in angiogenesis

Integrins are transmembrane, heterodimeric proteins that act as receptors for various extracellular ligands, especially the components of ECM such as collagen, laminins, fibronectins, vitronectin, ECM bound growth factors and some proteases [18-20]. The heterodimers of integrins are composed of two subunit types viz., α (18 isoforms) and β (8 isoforms), of which different combinations are expressed in cellular specific manner. The extracellular domains of dimerized integrins bind to different ECM ligands, whereas the intracellular and transmembrane domains transmit the signals to the intracellular kinases and other signal modulators [20]. The role of different integrins in regulation of angiogenesis has been deciphered by using integrin deficient cell and animal models, which revealed the significance of integrins in regulating the signaling corresponding to the survival, proliferation and migration of ECs [21]. Some of the signaling mechanisms mediated by different classes of integrins that are specifically inhibited by endogenous angioinhibitors are discussed in the following

Transcription factors and angiogenesis

Angiogenic signaling manifested as the cellular responses evident from morphological and migratory patterns of ECs, also involve the role of transcription factors that are either up regulated or stabilized during pathological angiogenesis. Hypoxia is one of the common condition that was identified in tumor microenvironment and ocular tissues, under stress, that leads to the stabilization of a key transcription factor viz., hypoxia inducible factor-1a (HIF-1a) which inturn upregulates expression of different genes that play role in angiogenesis such as Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), matrix metalloproteinases (MMPs) etc. [22-28]. Hypoxia also up-regulates the expression of angiogenic factors such as VEGF and enhances the hypoxic metabolism promoting the survival of ECs under stress conditions followed by proliferation and migration [22]. Nuclear factor kappa B (NF-κB) is another key transcriptional factor identified to play role in angiogenesis. Generation of reactive oxygen species (ROS) under stress conditions leads to the activation of kinase (K-ras) pathways that can activate NF-κB which inturn activates several genes such as chemokines that mediate angiogenesis [22,29,30]. In addition, several other transcription factors of basic helix-loop-helix, homeobox, E26 transforming specific family, zinc finger, nuclear hormone receptor families etc are also involved in angiogenesis [24].

MMP’s and angiogenesis

Sprouting of new capillaries from the intact ones in angiogenesis involves not only the proliferation, but also migration of ECs into the angiogenic sites. The VBM or basal lamina forms a mechanical barrier to the ECs [26]. Therefore, degradation of VBM is a common process observed during angiogenesis which facilitates the invasion of ECs, removal of ECM components that obstruct invasion or migration, release of sequestered growth factors and also provision of space for new capillary growth [26]. These functions of ECM or basal lamina degradation are carried out by the proteases, MMPs that are present either on the cell surface, released into extracellular milieu or some of those present within the cell. The expression of the MMPs is low in quiescent ECs and up-regulated in the sprouting ECs through the signaling mechanisms elicited by the hypoxia and secreted pro-angiogenic factors [31]. In addition, regulation of MMP activity is also achieved through their inhibitors that are present within the tissues.

diabetic retinopathy, retinopathy of prematurity and Age Related Macular Degeneration (AMD). CNV of AMD is of serious concern as the leading cause of blindness observed with aging in the modern world. The clinical manifestation of AMD includes detachment of retina with the degeneration of macula (the central zone of retina opposite to the lens), leading to the partial or complete loss of vision. There are two types of AMD; “Wet” or Neovascular and “Dry” or Atrophic. There is no cure for AMD, but new treatments are available for the Wet form of the disease. Wet form of AMD is a pathological condition, which involves the growth of new blood vessels from the choroid that lies underneath the retina leading to the formation of leaky blood vessels (Choroidal Neovascularization/CNV) with subsequent detachment of the retina [8-10]. Dry form of AMD is most common type of macular degeneration and affects 90% of the people who have the condition. In the Dry form of AMD, there is a degeneration of the layer of Retinal Pigment Epithelial Cells (RPE) in the macula. These RPE cells support the light sensitive photoreceptor cells that are critical to vision. The photoreceptors (rods and cones) gather the images and send them to the brain, where vision takes place. The death or degeneration of RPE cells is called atrophy. Dry form of AMD is characterized by the presence of drusen (dots of yellow crystalline deposits that develop within the macula) and thinning of the macula, reduces central vision and can effect color perception. In general, the damage caused by the “Dry” form is not as severe or rapid as that of the “Wet” form. However, over time Dry form of AMD can cause profound vision loss and no treatment available, but training and special devices can promote independence and a return to favourite activities. Thus, wet form AMD (CNV) reflects a pathologic angiogenic condition in which the loss of regulation over angiogenesis leads to the retinal damage.

Angiogenic signaling

Model studies using genetic and biochemical methods have facilitated in understanding the cellular mechanisms through which angiogenesis is regulated in both normal and pathological conditions. Stress inducing factors such as chronic hypoxia in the tumors, aging, ischemia, ultraviolet radiation and free radicals in Retinal Pigmented Epithelium (RPE), can lead to the upregulation, expression and secretion of excess angiogenic factors. Paracrine or autocrine angiogenic factors secreted in different tissues generally include Vascular Endothelial Growth Factors (VEGFs), Fibroblast Growth Factors (FGFs), angiopoietins (APs), transforming growth factors (TGFs), hepatocyte growth factor (HGF) etc. [7,11,12]. Angiogenic factors act as ligands and bind to their specific receptors on ECs among which the integrins and receptor tyrosine kinases have gained significance as key regulators in angiogenic signaling [12]. Ligand bound receptors are activated through oligomerization through homodimer formation or binding to other receptors. The cytoplasmic domains of the activated receptors undergo modifications such as phosphorylation followed by recruitment of other downstream kinases which act as signaling modulators and intern regulate gene expression patterns at transcriptional and translation levels [13-15]. Internalization of receptor bound angiogenic factors also leads to the activation of signaling modulators. The sequential signaling mechanism(s) lead to the activation of pathways that support survival of ECs under stress conditions, proliferation of ECs under stimulation by growth factors, release of different proteinases by ECs for remodeling of ECM, migration of ECs and finally organization into new capillaries [16,17]. Thus, angiogenesis is initiated and maintained through the regulation of signaling mechanisms in ECs and other cell types.
MMPs are endopeptidases, which require zinc for their activities [32]. Different secreted and membrane bound MMPs (23 types in human) have been identified with distinct substrate specificities [26,31,33]. In particular MMP-2, MMP-9 and membrane bound MT1-MMP have been identified to be involved in angiogenesis. Gene deletion studies in mice have ascertained the role of these three MMPs in the initiation of tumor and physiological angiogenesis [34,35]. The role of MMP-2, MMP-9, MT1-MMP etc., has also been studied in the progression of CNV in ocular tissues [36,37]. MMPs can act as gelatinases and elastases that degrade the ECM components, release the inactive growth factors and also release the membrane receptor fragments such as of Notch, which plays pivotal role in capillary and tip cell differentiation in angiogenesis [38,39]. Some of the MMPs are also shown to exhibit anti-angiogenic properties.

Regulation of pathological angiogenesis by endogenous angioinhibitors

In addition to the angiogenic factors which activate angiogenesis, tissues and especially ECM possess endogenous angioinhibitors, which include the fragments or molecules derived from macromolecules or metabolites produced within the body and identified with the potency to halt angiogenic process [40]. They are either sequestered into ECM or secreted as soluble molecules and regulate angiogenesis by inhibiting the survival, proliferation and migration of activated ECs and degradation of VBM. There are about more than 40 endogenous inhibitors being characterized and those derived from proteinaceous components of ECM or secreted by degradation of VBM are widely studied for their abundance and occurrence in the VBM of capillaries. Endogenous angioinhibitors are also secreted into vasculature and thus organized vasculature in healthy tissues is maintained by the balanced action of angiogenic factors and angioinhibitors [40-42]. However, in pathological angiogenesis, angiogenic factors are secreted in higher levels compared to angioinhibitors, thus leading to an imbalance between the angiogenic factors and angioinhibitors causing aberrant vascular growth as evident in tumor vascularization and CNV. Therefore, studies to evaluate the search for angioinhibitors with potential to inhibit uncontrolled angiogenesis and in depth studies pertaining to the mechanisms of pathological angiogenesis regulation are in progress.

Extra cellular matrix derived endogenous angioinhibitors

Vascular Basement Membrane (VBM) provides support to the endothelium maintaining the integrity and functioning of capillaries. VBM also supports angiogenesis by regulating the migration, proliferation and survival of ECs, acting as guiding scaffold during lumen formation and maturation of capillaries [43]. These effects are mediated partly by the interaction of the cells with the Extra Cellular Matrix (ECM) components. ECM also sequesters the growth factors, which are released into pericellular milieu by the degradation of ECM during angiogenesis [40,44]. However, it is also known that degradation of VBM also leads to release of fragments of ECM components, which act as endogenous angioinhibitors.

Collagen derivatives

Collagens are the abundant components of ECM constituting scaffold and basement membrane constituents of different body tissues [12]. They form the major structural and functional constituents of the VBM. Around 13 different types of collagens are known to constitute the VBM in vascular tissues and small peptides derived from type IV, XVII and XV collagens have been shown to act as endogenous angioinhibitors.

Arresten: Arresten [α1(IV)NC1] is the 26-kDa collagen type IV, α1 chain derived non-collagenous (NC1) domain which functions via binding to α1β1 integrin and heparan sulfate proteoglycans regulating bFGF and VEGF stimulated activation of ECs. It inhibits the survival of mouse lung endothelial cells through inhibition of FAK phosphorylation in AKT independent manner [14,45,46]. FAK inhibition by α1(IV)NC1 via α1β1 integrin leads to downstream inhibition of Raf/MEK/ERK1/2/p38 MAPK and HIF-1α [14]. Inhibition of HIF-1α by arresten is critical in preventing hypoxic survival of ECs through VEGF regulation. Arresten also affects the metastasis leading to reduction of renal carcinomas in vivo [14]. In addition to anti-tumoral properties, antiangiogenic activity of arresten...
was also found to inhibit bFGF-induced proliferation of mouse retinal endothelial cells (MREC), in-vitro in a dose dependent manner. It inhibited the bFGF-induced migration of MREC mediated by MMP-2, activity but not the expression levels of MMP-2 [47]. In-vitro studies have also shown that LASER induced Choroidal Neovascularisation (CNV) is inhibited by arresten in mice models. Thus, arresten has been shown to effect the proliferation and migration of endothelial cells, regulation of tumors and CNV in both tumor and retinal angiogenesis (author’s unpublished findings).

Canstatin: It is the 24-kDa collagen type IV, α2 derived non-collagenous (NC1) domain [α2(IV)NC1], which binds to the αVβ3 and αVβ5 integrins inhibiting EC proliferation, tube formation and migration by enhancing apoptosis in these cells [48-51]. The angioinhibitory signaling mechanism(s) of canstatin have been identified using different in-vitro and in-vivo models [52,53]. Canstatin was shown to induce apoptosis through the induction of Fas-ligand, activation of pro-caspase-8 and -9 cleavage, reduction in membrane potential, inhibition of Akt, FAK, mToR, eIF-4EBP-1 and ribosomal S6-kinase phosphorylations, in cultured ECs [54]. The caspase-9 mediated apoptotic activation in both endothelial and tumor cells by recombinant canstatin (recombinant adenovirus AdCanHSA) were mediated through the cross talk between αVβ3 and αVβ5 integrin receptors [48]. Recombinant CanHSA was also reported to sensitize the tumors to radiotherapy by modulating the HIF-1α induced apoptosis of tumor cells [49]. Canstatin also suppressed growth of large and small size tumors in two human xenograft mouse models in-vivo [51]. The antiangiogenic efficacy of canstatin was further confirmed by inhibition of in-vivo LASER induced choroidal neovascularisation and in alkali burn induced corneal neovascularisation in different mice models [55,56].

Tumstatin: Tumstatin [α3(IV)NC1] is a 28-kDa collagen type IV, α3 chain derived non-collagenous (NC1) domain with angioinhibitory and pro-apoptotic activities. It binds to the CD47/IDP, αVβ3, α3β1 and α6β1 integrin(s) and inhibits the signaling cascade mediated by FAK, Akt, PI3K/mTOR/eIF-4E/4EBP1 and NFκB/COX-2 [15,22,57-60]. Inhibition of eIF-4E/4EBP1 by tumstatin leads to the cap dependent translational level gene regulation, whereas inhibition of transcriptional factor signaling such as NFκB leads to regulation of genes such as COX-2 at the transcriptional level. Thus tumstatin exhibits gene regulation in endothelial cell-specific and integrin dependent manner [22]. Tumstatin, or its derivative peptides and tumstatin gene delivery have been shown to exhibit anti-tumor properties both in-vitro and in-vivo, when applied individually or in combination drug studies [61]. Several studies have ascertained angioinhibitory and anti-tumor properties of tumstatin using in-vitro melanoma, hepatoma cell lines etc., and in-vivo in gastric/colon carcinomas and ovarian cancers [62-65]. Tumstatin is generally found in the circulation and mice with a genetic deletion of Col(IV)α3 show abnormal tumor growth together with enhanced pathological angiogenesis; whereas physiological angiogenesis associated with development, wound healing and liver regeneration were unaltered [57]. Supplemented Col(IV)α3-deficient mice with normal physiological concentration of recombinant tumstatin abolished the tumor growth rate confirming it as an endogenous angioinhibitor. The suppressive effects of tumstatin require integrins αVβ3 and α3β1 that are expressed on many pathological, but not on physiological angiogenic vasculature or blood

Figure 2: Schematic illustration of non-collagenous ECM derived endogenous angioinhibitors’ signaling. **Angiostatins:** Bind ATP synthases, αVβ3 integrin and angiomotin. Inhibit FAK activity by binding of integrins and ATP synthase of ECs. **Endorepellin:** Binds α2β1 integrins and VEGFR-2. Binding to α2β1, TSP-1 activates cAMP-PKA/FAK/p38 MAPK/Hsp27. **Thrombospondins (TSPs):** Bind to CD36 and integrin associated protein (IAP) promoting Src-family protein kinases/Caspase-3/ p38 MAPK leading to apoptosis; different integrins (α2β1), CD47 and heparan sulfated proteoglycans (HSPGs) and TGF- β promoting tumor cell death.
vessels. The cleavage of Col(IV)α3 by matrix metalloproteinase-9 (MMP-9) is known to lead to the physiological release of tumstatin, as lower concentrations of tumstatin were recorded in mice deficient in MMP-9 [58]. Administration of soluble recombinant tumstatin into mice also reduced the tumor growth and CD-31 positive endothelial vasculature in tumors. These studies indicate that tumstatin has endogenous function as αVβ3/α3β1 integrins-dependent suppressor of pathological angiogenesis and tumor growth [59].

Hexastatin: Hexastatin, is the 25-kDa carboxy terminal non-collagenous (NC1) domain of α6 chain of type (IV) collagen [α6(IV) NC1]. Recombinant human hexastatin was shown to inhibit EC proliferation and in-vivo neovascularization and the tumor growth in mouse models of cancer. Further, the peptides derived from hexastatin also exhibited the inhibition of proliferation and migration of HUVECs in-vitro [50,66]. Inhibition of elastin peptide-mediated angiogenic signaling inhibited in choroidal endothelial cells by hexastatin [67]. The signaling mechanisms elicited by the hexastatin and the putative integrins that can bind to this angioinhibitor are yet to be identified.

Tetrasatins and pentastatins: Bioinformatic studies have been applied to identify the endogenous angioinhibitory peptides, which facilitated the identification of tetra, penta and hexastatin peptides from the αIV, αV, and αVI fibrils of type IV collagen respectively. The peptide derivatives were shown to exhibit angioinhibitory properties [68]. Pentastatin-1 is the 20-mer synthetic peptide, which inhibited migration and viability of HUVEC, NC1-H82-SCLC and 3T3 fibroblast cells, in vitro and also exhibited low toxicity in xenograft models [69]. β1 and β3 integrins are considered as the putative targets to which Pentastatin-1 binds and exhibits angioinhibitory activities [68].

Endostatin is the partial 20-kDa fragment of collagen type XVIII, carboxy terminal, non collagenous domain (NC1), derived from the parent collagen by proteolytic cleavage activities of elastase and cathepsin-L [70]. It was initially identified in the conditioned media of hemangioendothelioma cell cultures, but later detected from various human tissues and sera in healthy and pathologic scenarios. Thus, endostatin is found in normal circulation enabling it to be utilized as an effective endogenous angioinhibitor without toxic effects. Endostatin elicits the anti-proliferative and anti-migratory effects by binding to different endothelial cell (ECs) surface molecules and regulating the signaling cascades [59]. Recombinant endostatin binds to αV integrins as shown in human endothelial cells [71]. Further studies have also shown localization of endostatin in the lipid rafts and association with caveolae [72,73]. Surface plasmon resonance assays characterized the binding of endostatin to both αVβ1 integrin and the heparin sulfate proteoglycans and localization to the lipid rafts [71]. In-vitro assays using ECs also showed the colocalization of endostatin with α5β1 integrin, actin stress fibers and membrane anchor protein, caveolin-1 which enumerates the interaction of endostatin with caveolae, inhibiting EC migration through the disassembly of actin stress fibers/ focal adhesions, activation of Src and impaired fibronectin deposition by ECs in response to bFGF [59,73]. Binding of endostatin to another caveolae and eNOS linked heparin sulfate containing glycoprotein, called glypicans, was also reported. Binding of endostatin with integrins down-regulates the activity of RhoA-GTPase and inhibits signaling pathways mediated by small kinases of the Ras and Raf families. In addition, binding to the KDR/Flik-1, endostatin inhibits the VEGF-induced tyrosine phosphorylation of KDR/Flik-1 and activation of ERK, p38 MAPK, and p125FAK in HUVECs [59,74]. Other signaling cascades regulated by the endostatin are also being identified which are mediated by activator protein 1 (Id), HIF1α , ephrin, tumor necrosis factor-α (TNFα), nuclear factor-κB (NFκB), coagulation cascades, adhesion molecules and Wnt, which indicate the potential role of endostatin as an endogenous angioinhibitor [75-77]. Due to such angioinhibitory potential, endostatin has been validated for regulation of pathological tumor and retinal angiogenesis in different studies. The clinical implications of effective tumor treatment with endostatin have been elaborated in other reviews. Lower levels of endostatin have been recorded in CNV samples compared with the healthy donor eyes and within the tissues of progressive AMD [78,79]. These observations along with the evidence of inhibition of CNV with intravenous injection of adenoviral vectors, that express secretable endostatin, corroborate the significance of endostatin in regulation of CNV.

Non-collagenous derivatives

Angiostatin: Angiostatins are 38-45 kDa kringle domains derived from plasminogen by protease activity [80]. Though the parent molecule, plasminogen, has significant role in activation of fibrinogen and blood clotting, the derivative peptides exhibit angioinhibitory properties by inhibiting proliferation, migration and tube formation of proliferating ECs. Angiostatins bind to ATP synthases on the surface of ECs leading to their apoptotic death [81,82]. Further αVβ3 integrin and angiotatin are also shown to bind angiostatin [81,82]. The FAK activity is known to be disrupted by the binding of angiostatin to the integrins and ATP synthase of ECs in the hypoxic tumor microenvironment, thus leading to the death of ECs (Lawler, 2000). Regulation of the tumor growth and metastasis at clinical levels were proven possible with application of angiostatin and endostatin in different studies [69,83,84]. The application of angiostatin in regulating CNV of AMD was also evaluated by the expression of the peptides in-vivo, using adenoviral vectors [85].

Thrombospondins: Thrombospondins (TSPs) are secreted ECM
glycoproteins playing key role in cellular and ECM interactions. The N-terminal peptides derived from the TSPs, by the action of different proteases are identified to possess anti-globular domains with anti-angiogenic properties and subgroup-B consists of TSP’s 3-5 which are pentameric with subunit molecular weight of 110-kDa. TSP-1 was the first naturally occurring inhibitor of angiogenesis identified, from the ECM of many normal tissues and produced by a variety of cells including platelets, megakaryocytes, epithelial, endothelial and stromal cells. TSP-1 induces the apoptotic mechanism through integrins and VEGFR-2 and SHP-1 modulation was also demonstrated in-vitro models. Dual receptor antagonism of endorepellin to both integrins and VEGFR-2 and SHP-1 modulation was also demonstrated in-vitro. Recently, the N-terminal laminin-like globular (LG3) domain of endorepellin, released by the activity of BMP-1/Tolloid family of metalloproteases, was identified as the active angioinhibitory peptide and the levels of LG3 in the sera of many cancer patients were found to be lowered compared to normal subjects. The in-vivo efficacy of endorepellin in controlling tumor growth was demonstrated using tumor xenograft models and endorepellin was found to localize in the periphery of tumors, enhancing hypoxia and thus preventing tumor survival.

Table 1: Collage Derived Angioinhibitors.

Angioinhibitor	Parent molecule	Targets	Receptors	Models of evaluation
Arresten	collagen IV, α1	α1β1 integrin, HSPG	Raf/MEK/ERK1/2/p38 MAPK HIF-1α	In-vitro, Tumors studies
Canstatin	collagen IV, α2	αβ3, αβ5 integrins Fas	procaspase-8 and -9 Akt/FAK/mTor/RelF-4E/BP-1 Ribosomal S6-kinase	In-vitro, Tumors, alkali burn CNV studies
Tumstatin	collagen IV, α3	CD47/IPoβ3, αβ1 integrins	FAK/Akt/PI3K/mT RelF- 4E/4E/BP-1/NFk/B/C X-2	In-vitro, Tumors studies
Hexastatin	collagen IV, α6	Not known	Not known	In-vitro, Tumors studies
Endostatin	collagen XVII	αβ3α5β1 integrins HSP, Glypican caveolin-1	Ras/Raf/KDR/Fik-1/ERK/ p38-MAPK/p125FAK/HIF1 /Ephrin/TNF α/ NFkB/ Nmt	In-vitro, Tumors, CNV studies
Pentastatins	Collagen αV & αV	β1 and β3 integrins	Not known	In-vitro studies not known

Table 2: Non-Collagen Derived Angioinhibitors.

Angioinhibitor	Parent molecule	Receptors	Targets	Models of evaluation
Angiotatin	Plasminogen	ATP synthases, αβ3 integrin, angiogenin	Apoptotic pathway	In-vitro Tumor and CNV studies
Thrombospondins	TSP	CD36, IAP, CD47, HSPG, α3β1, other integrins	Src-family kinases/Caspase-3/p38 MAPK, TGF-β	In-vitro Tumor and CNV studies
Endorepellin	Perlecan	αβ1 integrins	cAMP-PKA/FAK/p38-MAPK/ Hsp27 SHP-1, Ca2+	In-vitro, Tumor studies
Vasoinhibins	Prolactin, growth hormone, placental lactogen	Not known	Sox/Ras/MAPK, eNOS/Ral/ MAPK, Ca2+/eNOS/protein phosphatase 2, Ras/Tiam-1/Rac-1/Pak1, Bcl- XL, NF-kβ	In-vitro CNV studies
PEDF	PEDF	Not known	Apoptosis	In-vivo CNV studies

Endorepellin: Perlecan is the large multifunctional heparin sulfite proteoglycan, found as a major component of ECM supporting angiogenesis. However, the 80-kDa, C-terminal derivative of perlecan, inhibits endothelial cell adhesion to fibronectin and type I collagen for which it was termed as "endorepellin". Endorepellin exhibits angioinhibitory activity by binding both α2β1 integrins and VEGFR-2. Recombinant and adenoviral expressed endorepellin inhibits migration and tube formation by binding to α2β1 integrins and activating signaling cascade including cAMP-PKA/FAK/p38-MAPK/Hsp27 that leads to disassembly of actin and focal adhesions. Regulation of endorepellin-elicited activity by Src homology-2 domain-containing protein phosphatase-1 (SHP-1) was demonstrated in α2β1−/− mice and in-vitro. Recently, the N-terminal laminin-like globular (LG3) domain of endorepellin, released by the activity of BMP-1/Tolloid family of metalloproteases, was identified as the active angioinhibitory peptide and the levels of LG3 in the sera of many cancer patients were found to be lowered compared to normal subjects. The in-vivo efficacy of endorepellin in controlling tumor growth was demonstrated using tumor xenograft models and endorepellin was found to localize in the periphery of tumors, enhancing hypoxia and thus preventing tumor survival.

Non-ECM derived endogenous angioinhibitors

Vasoinhibins: Vasoinhibins are naturally occurring angioinhibitory proteins...
peptides found in the pituitary, retina and extrapituitary tissues derived from three different precursors, prolactin, growth hormone and placental lactogen, which do not exhibit angiointeractive activities [99]. Vasooinhibins of molecular weights ranging from 14-18 kDa were derived or expressed from the NH2-terminal regions of their precursors. Mechanisms of regulation of EC survival, proliferation and migration by the vasooinhibins have been deciphered in different studies; nevertheless, the receptors through which the mechanisms are mediated still remain enigmatic. Vasooinhibins regulate the EC migration and survival through inhibition of VEGF and bFGF stimulated MAPK activation [100]. VEGF activated Sos/Ras/MAPK or eNOS/cGMP stimulated signaling and Ca2+/cNOS/protein phosphatase 2, mediated vascular permeability and vasodilation were shown to be inhibited by the vasooinhibins [101,102]. In addition vasooinhibins also inhibit migration of ECs stimulated by IL-1β through Ras/Tiam-1-Rac-1-Pak1 and promote apoptosis through conversion of Bcl-XL to proapoptotic Bcl-Xs and NF-kB mediated activation of initiator and effector caspases [103,104]. The therapeutic potential of vasooinhibins in regulating angiogenesis in CNV and tumor growth was evaluated and studies indicate that adenosin mediated expression of vasooinhibins inhibit the LASER induced CNV in-vivo and angiogenesis in mice models [105]. However, the therapeutic potential of vasooinhibins in other retinopathic diseases is still controversial due to the speculated role of vasooinhibins in promoting progression of retinopathy of prematurity [106].

Pigment epithelium derived factor (PEDF)

Pigment Epithelium Derived Factor (PEDF) is a 50-kDa, secreted, serpin family glycoprotein, first identified from the cultured fetal RPE conditioned media. PEDF accumulates in the vitreous humor and is also expressed in different adult tissues. Addition of PEDF to the cultured HUVECs increased the number of TUNEL positive cells suggesting apoptotic mode of action of PEDF and thus possibly preventing EC response to ischemia in-vivo [107,108]. The level of PEDF found to be decreased in Bruch membrane with progression of AMD and a concomitant increase in VEGF levels was also identified with decrease in PEDF levels [78]. Different methods of PEDF upregulation have been applied to investigate the effect of PEDF on CNV in mice models. Intravitreal injections of adenosin expressing the PEDF and ultrasound-microbubble technique of noninvasive gene transfer of PEDF found to be decreased in Bruch membrane with progression of normal and pathological conditions. Regulation of integrin- and their origin from endogenous molecules and the occurrence of some angioinhibitors are considered as one of the optimal modalities for this purpose. The rationales for emphasis on usage of endogenous angioinhibitors lies in their origin from endogenous molecules and the occurrence of some of these angiointeractive molecules within the tissues, ECM or circulation in normal and pathological conditions. Regulation of integrin-, HSPG-, kinase- and messenger-, NFκB-, Wnt-, mTOR-, eIF-4E/eIFBP1-, COX-2- and MMP-mediated EC survival, proliferation and migration by these inhibitors, reflects the scope for angiointeraction at different stages of angiogenesis. Another issue of significance is the targeting by these inhibitors through different integrins, other receptors and the downstream signaling cascades that are found either in abnormally proliferating ECs, but not in quiescent ECs, or upregulated in pathological hypoxic conditions. Studies so far indicate specificity of different endogenous angioinhibitors to their respective receptors and potential inhibition of angiogenic switches at the receptor, signaling mediator, transcriptional, translational and even at the ECM modulation levels. Also, the angiogenic signaling cascades regulated by them appear to be applicable for both the tumoral and CNV pathologic angiogenesis, as evident from some of the studies quoted above.

Further validation studies using strategies such as i) angiointeractive combinations similar to endostain and angioinhibin studied earlier, ii) combinations of different peptides derived from the angiointeractors, iii) fusion molecules containing domains of different angiointeractors and finally, iv) application of all known angiointeractors for both tumoral angiointerhibition and CNV would be essential for successful clinical application and treatment of the angiogenic supported pathologies by the endogenous angiointeractors.

Acknowledgements

This study was supported by Flight Attendant Medical Research Institute Young Clinical Scientist Award Grant FAMRI-062558, NIH/NCI Grant RO1CA143128, to YS.

References

1. Hoebe A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, et al. (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56: 589-590.
2. Bergers G, Song S (2005) The role of pericytes in blood-vascular formation and maintenance. Neuro Oncol 7: 452-464.
3. Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aldihtenhead M, et al. (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res 66: 102-112.
4. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287: C572-579.
5. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182-1186.
6. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58-62.
7. Alon T, Hemo I, Ilani A, Pe'er E, Stone J, et al. (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024-1029.
8. Grossniklaus HE, Ling JX, Wallace TM, Dlithmar S, Lawson DH, et al. (2002) Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 8: 119-126.
9. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029-1039.
10. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108: 2369-2379.
11. Lu M, Adams GP (2006) Molecular biology of choroidal neovascularization. Ophthalmol Clin North Am 19: 323-334.
12. Sudhakar A, Kalluri R (2010) Molecular mechanisms of angiostasis. Encyclopedia of the eye 3 M-P: 52-59.
13. Siemenink MJ, Augustin AJ, Schlingemann RO (2010) Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol 45: 4-20.
14. Sudhakar A, Nyberg P, Keshamouni VG, Mannam AP, Li J, et al. (2005) Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha1beta1 integrin. J Clin Invest 115: 2801-2810.
15. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, et al. (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 296: 140-143.

16. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249-257.

17. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3: 422-433.

18. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119: 3901-3903.

19. Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115: 3729-3738.

20. Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 2002: pe7.

21. Cheresh DA, Stupack DG (2002) Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nat Med 8: 193-194.

22. Boosani CS, Mannam AP, Cosgrove D, Silva R, Hodvala-Dilke KM, et al. (2007) Regulation of COX-2 mediated signaling by alpha3 type IV noncollagenous domain in tumor angiogenesis. Blood 110: 1168-1177.

23. Gazi Y, Maddula S, Ambati BK (2009) Mediators of ocular angiogenesis. J Genet 88: 495-515.

24. Sato Y (2000) Molecular mechanism of angiogenesis transcription factors and their therapeutic relevance. Pharmacol Ther 87: 51-60.

25. Avraamides CJ, Garry-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8: 604-617.

26. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161-174.

27. Oku R, Walker TG, Wicky S, Hesketh R (2010) Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J Vasc Interv Radiol 21: 1791-1805.

28. Mettouche A, Meneguzzi G (2006) Distinct roles of beta1 integrins during angiogenesis. Eur J Cell Biol 85: 243-247.

29. Li M, Wu ZM, Yang H, Huang SJ (2011) NFkB and JNK/MAPK activation mediates the production of major macrophage- or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab 96: 2502-2511.

30. Aurora AB, Biyashev D, Mirochnik Y, Zaichuk TA, Sanchez-Martinez C, et al. (2010) NF-kappaB balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement. Blood 116: 475-484.

31. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8: 221-233.

32. van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78: 203-212.

33. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85: 1-31.

34. Pozzi A, LeVine WF, Gardner HA (2002) Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21: 272-281.

35. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25: 9-34.

36. Chau KY, Sivaprasad S, Patel N, Donaldson TA, Luthert PJ, et al. (2008) Plasma levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular degeneration. Eye (Lond) 22: 855-859.

37. Alge-Priglinger CS, Kreuzer T, Olholzer K, Wolf A, Mempel M, et al. (2009) Oxidative stress-mediated induction of MMP-1 and MMP-3 in human RPE cells. Invest Ophthalmol Vis Sci 50: 5495-5503.

38. Mallon MB, Singh H, Tahir TA, Kavumkal J, Kim HZ, et al. (2007) Regulated proteolytic processing of Tie1 modulates ligand responsiveness of the receptor-tyroaine kinase Tie2. J Biol Chem 282: 30509-30517.

39. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134: 2709-2718.

40. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65: 3867-3979.

41. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6: 273-286.

42. Folkman J (2007) Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg 42: 1-11.

43. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization, Circ Res 97: 1093-1107.

44. Clamp AR, Jayson GC (2005) The clinical potential of antiangiogenic fragments of extracellular matrix proteins. Br J Cancer 93: 967-972.

45. Colorado PC, Torre A, Kamphans G, Maeshima Y, Hopfer H, et al. (2000) Antiangiogenic cues from vascular basement membrane collagen. Cancer Res 60: 2520-2526.

46. Nyberg P, Xie L, Sugimoto H, Colorado P, Sund M, et al. (2008) Characterization of the anti-angiogenic properties of arresten, an alpha1beta1 integrin-dependent collagen-derived tumor suppressor. Exp Cell Res 314: 3292-3305.

47. Boosani CS, Nalabothula N, Sheibani N, Sudhakar A (2010) Inhibitory effects of arresten on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 activation in mouse retinal endothelial cells. Curr Eye Res 35: 45-55.

48. Magnon C, Galaup A, Mullan B, Rouffiac V, Bouquet C, et al. (2005) Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins. Cancer Res 65: 4353-4361.

49. Magnon C, Opolon P, Ricard M, Connault E, Ardonin P, et al. (2007) Radiation and inhibition of angiogenesis by canstatin synergize to induce Hif-1alpha-mediated tumor apoptotic switch. J Clin Invest 117: 1844-1855.

50. Petitclerc E, Boutaud A, Prestayko A, Xu J, Sado Y, et al. (2000) New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275: 8051-8061.

51. Kamphans GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, et al. (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275: 1209-1215.

52. Magnon C, Opolon P, Connault E, Mir LM, Perricaudet M, et al. (2008) Canstatin gene electrotransfer combined with radiotherapy: preclinical trials for cancer treatment. Gene Ther 15: 1436-1445.

53. Narazaki M, Tosato G (2008) Canstatin: an inhibitor of angiogenesis and tumor growth revisited. Cancer J 12: 110-112.

54. Panka DJ, Mier JW (2003) Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem 278: 37632-37636.

55. Lima E Silva R, Kachi S, Narazaki M, Quigley JP (2006) Matrix metalloproteinases and tumor angiogenesis. Exp Cell Res 314: 3292-3305.

56. Wang Y, Yin H, Chen P, Xie L, Wang Y (2011) Inhibitory effect of canstatin in alkali burn-induced corneal neovascularization. Ophthalmic Res 46: 66-72.

57. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, et al. (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaVbeta3 integrin. Cancer Cell 3: 589-601.

58. Monboisse JC, Gamotel R, Bellon G, Ohno N, Perreau C, et al. (1994) The alpha3 chain of type IV collagen prevents activation of human polymorphonuclear leucocytes. J Biol Chem 269: 25475-25482.

59. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, et al. (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha vbeta 3 and alpha vbeta 5 integrins. Proc Natl Acad Sci U S A 100: 4766-4771.

60. Maeshima Y, Colorado PC, Torre A, Holthaus KA, Drumheller YA, et al. (2000) Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 275: 21340-21348.

61. Maeshima Y, Yerramalla UL, Dhanabal M, Holthaus KA, Barbashov S, et al. (2001) Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J Biol Chem 276: 31959-31968.
62. Goto T, Ishikawa H, Matsumoto K, Nishimura D, Kusaba M, et al. (2008) Turn-1, a tumstatin fragment, gene delivery into hepatocellular carcinoma suppresses tumor growth through inhibiting angiogenesis. Int J Oncol 33: 33-40.

63. Chung IS, Son Y, Ko JY, Baek CH, Cho JK, et al. (2008) Peritumor injections of purified tumstatin delay tumor growth and lymphatic metastasis in an orthotopic oral squamous cell carcinoma model. Oral Oncol 44: 1118-1126.

64. Pasco S, Brassart B, Ramont L, Maquart FX, Monboisse JC (2005) Control of melanoma cell invasion through type IV collagen. Cancer Detect Prev 29: 260-266.

65. Zhang GM, Sui LH, Jia T, Zhao YZ, Fu SB, et al. (2008) [Inhibitory effect of recombinant anti-angiogenic peptide of tumstatin on growth and metastasis of human ovarian cancer transplanted in nude mice]. Zhonghua Zhong Liu Za Zhi 30: 170-173.

66. Munedi TM, Yithinem AM, Maeshima Y, Sugimoto H, Kieran M, et al. (2008) Type IV collagen alpha(6) chain-derived noncollagenous domain 1 (alpha6(IV) NC1) inhibits angiogenesis and tumor growth. Int J Cancer 122: 1738-1744.

67. Gunda V, Verma RK, Sudhakar AY (2013) Inhibition of Elastin Peptide-Mediated Angiogenic Signaling Mechanism(s) in Choroidal Endothelial Cells by the alpha(IV)NC1 Collagen Fragment. Invest Ophthalmo Vis Sci (Publication ahead of print: accepted).

68. Karagiannis ED, Popel AS (2007) Identification of novel short peptides derived from the alpha 4, alpha 5, and alpha 6 fibrins of type IV collagen with anti-angiogenic properties. Biochem Biophys Res Commun 354: 434-439.

69. Kosikimaki JE, Karagiannis ED, Tang BC, Hammers H, Watkins DN, et al. (2010) Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer 10: 29.

70. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, et al. (2000) Secreted cathepsin L generates endostatin from collagen XVIII. J Biol Chem 275: 702-706.

71. Wickström SA, Aaltola K, Keski-Oja J (2002) Endostatin associates with integrin alpha5beta3 in endothelial cells. J Biol Chem 277: 2927-2936.

72. Wickström SA, Aaltola K, Keski-Oja J (2003) Endostatin associates with lipid rafts and induces reorganization of the actin cytoskeleton via down-regulation of RhoA activity. J Biol Chem 278: 37985-37991.

73. Ling Y, Yang Y, Lu N, You QD, Wang S, et al. (2007) Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells. Biochem Biophys Res Commun 361: 79-84.

74. Abdollahi A, Hahnfeldt P, Maercker C, Gröne HJ, Debus J, et al. (2004) Role of endostatin in the angiogenic switch: implications for tumor angiogenesis and antiangiogenic therapy. J Natl Cancer Inst 96: 1634-1646.

75. Van Dijck B, De Langhe A, Vermeir B, Declercq S, Degeest B, et al. (2005) Characterization of endostatin binding to heparin and heparan sulfate by surface plasmon resonance and molecular modeling: role of divalent cations. J Biol Chem 280: 37895-37901.

76. Nagai J, Gloy J, Karumanchi SA, Kale S, Tang J, et al. (2002) Endostatin is a heparin-binding, mitogenesis, and angiogenesis. Cell 79: 1005-1013.

77. Verma RK, Sudhakar AY (2013) Identification of novel short peptides derived from collagen XVIII. J Biol Chem 286: 25947-25962.

78. Goyal A, Pal N, Concannon M, Paul M, Doran M, et al. (2011) Endostatin regulates the normal prostate in vivo through angiogenesis and TGF-beta activation. Lab Invest 90: 1078-1090.

79. Ziche M, Morbidelli L (2000) Nitric oxide and angiogenesis. J Neurooncol 50: 139-148.

80. Martini JF, Plot C, Humeau LM, Strumnan I, Martin JA, et al. (2000) The angiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 14: 1536-1549.

Plasma levels of angiotatin and endostatin remain unchanged for the first 3 weeks after colorectal cancer surgery. Surg Endosc 25: 1939-1944.

84. Tsyme JR, Wang P, Alusi G, Briat A, Gangeswaran R, et al. (2011) Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: an oncolytic virus superior to d1520 (ONYX-015) for human head and neck cancer. Hum Gene Ther 22: 1101-1108.

85. Lau CC, Wu WC, Chen SL, Xiao X, Tsai TC, et al. (2001) Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci 42: 2401-2407.

86. Bornstein P (2001) Thrombospondins as matricellular modulators of cell function. J Clin Invest 107: 929-934.

87. Bornstein P (2009) Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 3: 189-200.

88. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazer WA, et al. (1997) CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138: 707-717.

89. Kaur S, Kuznetsova SA, Pendrak ML, Sipes JM, Romeo MJ, et al. (2011) Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J Biol Chem 286: 14991-15002.

89a. Flitchev PP, Wcislo SM, Lee C, Bergh A, Brendler CB, et al. (2010) Thrombospondin-1 regulates the normal prostate in vivo through angiogenesis and TGF-beta activation. Lab Invest 90: 1078-1090.

89b. Krady MM, Zeng J, Yu J, MacLaughlan S, Skokos EA, et al. (2008) Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. Am J Pathol 173: 879-891.

89c. Lopez-Dee Z, Pidcock K, Gutierrez LS (2011) Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm 2011: 296069.

89d. Aviezer D, Hecht D, Safran M, Eisinger M, David G, et al. (1994) Perlecain, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79: 1005-1013.

89e. Bix G, Fu J, Gonzalez EM, Macro L, Barker A, et al. (2004) Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. J Cell Biol 166: 97-109.

89f. Goyal A, Pal N, Concannon M, Paul M, Doran M, et al. (2011) Endostatin regulates the normal prostate in vivo through angiogenesis and TGF-beta activation. Lab Invest 90: 1078-1090.

90. Martin JF, Plot C, Humeau LM, Strumnan I, Strumnan JA, et al. (2000) The angiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 14: 1536-1549.
104. Tabruyn SP, Sorlet CM, Rentier-Delrue F, Bours V, Weiner RI, et al. (2003)
 The antiangiogenic factor 16K human prolactin induces caspase-dependent
 apoptosis by a mechanism that requires activation of nuclear factor-kappaB.
 Mol Endocrinol 17: 1815-1823.

105. Zhou SY, Xie ZL, Xiao O, Yang XR, Heng BC, et al. (2010) Inhibition of mouse
 alkali burn induced-corneal neovascularization by recombinant adenovirus
 encoding human vaso-inhibin-1. Mol Vis 16: 1389-1396.

106. Clapp C, Aranda J, González C, Jeziorski MC, Martínez de la Escalera G
 (2006) Vaso-inhibins: endogenous regulators of angiogenesis and vascular
 function. Trends Endocrinol Metab 17: 301-307.

107. Tombran-Tink J, Chader GG, Johnson LV (1991) PEDF: a pigment epithelium-
 derived factor with potent neuronal differentiative activity. Exp Eye Res 53:
 411-414.

108. Ho TC, Chen SL, Yang YC, Liao CL, Cheng HC, et al. (2007) PEDF induces
 p53-mediated apoptosis through PPAR gamma signaling in human umbilical
 vein endothelial cells. Cardiovasc Res 76: 213-223.

109. Zhou XY, Liao Q, Pu YM, Tang YQ, Gong X, et al. (2009) Ultrasound-mediated
 microbubble delivery of pigment epithelium-derived factor gene into retina
 inhibits choroidal neovascularization. Chin Med J (Engl) 122: 2711-2717.

110. Gehlbach P, Demetriades AM, Yamamoto S, Deering T, Duh EJ, et al. (2003)
 Periocular injection of an adenoviral vector encoding pigment epithelium-
 derived factor inhibits choroidal neovascularization. Gene Ther 10: 637-646.

111. Gehlbach P, Demetriades AM, Yamamoto S, Deering T, Xiao WH, et al. (2003)
 Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and
 vascular endothelial growth factor-induced breakdown of the blood-retinal
 barrier. Hum Gene Ther 14: 129-141.

112. Apte RS, Barreiro RA, Duh E, Volpert O, Ferguson TA (2004) Stimulation of
 neovascularization by the anti-angiogenic factor PEDF. Invest Ophthalmo Vis
 Sci 45: 4491-4497.