THE RING LEARNING WITH ERRORS PROBLEM: SPECTRAL DISTORTION

L. BABINKOSTOVA 1, A. CHIN 2, A. KIRTLAND 3, V. NAZARCHUK 4, AND E. PLOTNICK 5

Abstract. We answer a question posed by Y. Elias and others [8] about possible spectral distortions of algebraic numbers. We provide a closed form for the spectral distortion of certain classes of cyclotomic polynomials. Moreover, we present a bound on the spectral distortion of cyclotomic polynomials.

1. Introduction

A large fraction of lattice-based cryptographic constructions are built upon on Learning With Errors (LWE) problem or its variants learning with errors. The Learning With Errors (LWE) problem introduced by O. Regev [13], relates to solving a “noisy” linear system modulo a known integer. The “algebraically structured” variants, called RLWE [16], PLWE [13], Module-LWE [1]. As other cryptographic problems, LWE is an average-case problem which means the input instances are chosen at random from a prescribed probability distribution.

Since its introduction, the RLWE problem [13] has already been used as a building block for many cryptographic applications. It has since been used as a hardness assumption in the constructions of efficient signature schemes [18], fully-homomorphic encryption schemes [3], pseudo-random functions [2], protocols for secure multi-party computation [7], and also gives an explanation for the hardness of the NTRU cryptosystem [11].

The RLWE and PLWE problems are formulated as either “search” or “decision” problems. Let \(f(x) \in \mathbb{Z}[x] \) to be monic and irreducible of degree \(n \), \(P = \mathbb{Z}[x]/f(x) \), and \(P_q = P/qP \cong \mathbb{F}_q[x]/f(x) \) where \(q \) is a prime.

Search PLWE Problem. Let \(s(x) \in P_q \) be a secret. The search PLWE problem, is to discover \(s(x) \) given access to arbitrarily many independent samples of the form \((a_i(x), b_i(x) = a_i(x)s(x) + e_i(x)) \in P_q \times P_q \), where for each \(i \), \(e_i(x) \) is chosen from a discretized Gaussian distribution of parameter \(\sigma \), and \(a_i(x) \) is uniformly random. The polynomial \(s(x) \) is the secret and the polynomials \(e_i(x) \) are the errors.

Decision PLWE Problem. Let \(s(x) \in P_q \) be a secret. The decision PLWE problem is to distinguish, with non-negligible advantage, between the same number of independent samples in two distributions on \(P_q \times P_q \). The first consists of samples of the form \((a(x), b(x) = a(x)s(x) + e(x)) \) where \(e(x) \) is chosen from a discretized Gaussian distribution of parameter

2010 Mathematics Subject Classification. 14H52, 14K22, 11Y01, 11N25, 11G07, 11G20, 11B99.

Key words and phrases. Learning with Errors, Spectral Distortion, Cyclotomic Polynomials.

Supported by the National Science Foundation under the grant number DMS-1659872.

Corresponding Author: liljanababinkostova@boisestate.edu.
\(\sigma\), and \(a(x)\) is uniformly random. The second consists of uniformly random and independent samples from \(P_q \times P_q\).

In [6], an attack on PLWE was presented in rings \(P_q = \mathbb{F}_q[x]/(f(x))\), where \(f(1) \equiv 0 \mod q\). There are also two standard PLWE problems, quoted here from [8]. Let \(\mathbb{K}\) be number field of degree \(n\) with ring of integers \(R\). Let \(R^w\) denote the dual of \(R\), \(R^w = \{\alpha \in \mathbb{K} : \text{Tr}(\alpha x) \in \mathbb{Z} \text{ for all } x \in R\}\). The standard RLWE problems [14] for a canonical discretized Gaussian are defined as follows.

Search RLWE Problem. Let \(s \in R^w_q\) be a secret. The search RLWE problem is to discover \(s\) given access to arbitrarily many independent samples of the form \((a, b = as + e)\) where \(e\) is chosen from the canonical discretized Gaussian and \(a\) is uniformly random.

Decision RLWE Problem. Let \(s \in R_q\) be a secret. The decision RLWE problem is to distinguish with non-negligible advantage between the same number of independent samples in two distributions on \(R_q \times R^w_q\). The first consists of samples of the form \((a, b = as + e)\) where \(e\) is chosen from the canonical discretized Gaussian and \(a\) is uniformly random, and the second consists of uniformly random and independent samples from \(R_q \times R^w_q\).

In [5], [14] the authors give sufficient conditions on the ring so that the “search-to-decision” reduction for RLWE holds, and also that RLWE instances can be translated into PLWE instances, so that the RLWE decision problem can be reduced to the PLWE decision problem.

Theorem 1.1 (Search-to-Decision Reduction for RLWE, [5], [14]). There exists a randomized, polynomial time reduction from Search-RLWE to Decision-RLWE.

We investigate the spectral distortion that occurs in the RLWE to PLWE reduction (spectral distortion), a question posed in [8]. Our results include a closed form for the spectral distortion of certain classes of polynomials, and bounds for spectral distortion and related values.

2. Preliminaries

2.1. **Learning with Errors Distributions.** The RLWE distribution is parameterized by \((K, s, q, \sigma)\), where \(K\) is a number field, \(s\) is some secret, \(q\) prime, and \(\sigma\) is the parameter for the error distribution.

Definition 2.1 (RLWE Distribution, [8]).

For some number field \(K\), let ring \(R = \mathcal{O}_K\) be its ring of integers. Suppose \(q\) to be prime. Then, we define

\[R_q := R/qR.\]

Let \(\mathcal{U}_{R_q}\) be the uniform distribution over \(R_q\), and let \(\mathcal{G}_{\sigma, R_q}\) be the discrete Gaussian distribution centered at 0 with variance \(\sigma^2\) over \(R_q\). Let some \(s \in R_q\) be the secret. Sample \(a\) from the uniform distribution, \(a \leftarrow \mathcal{U}_{R_q}\), and the error \(e\) from the Gaussian distribution, \(e \leftarrow \mathcal{G}_{\sigma, R_q}\). Pairs of the form

\[(a, a \cdot s + e)\]
make up the RLWE distribution \mathcal{L}_{s,G_σ} over $R_q \times R_q$. For simplicity, we let $c = a \cdot s + e$, and refer to (a, c) as our sample in the future.

The PLWE distribution is defined similarly; rather than the ring of integers of a number field, the distribution is defined over a polynomial ring. The PLWE distribution is parameterized by (f, n, s, q, σ), where $f \in \mathbb{Z}[x]$ is a monic, irreducible polynomial of degree n, s is some secret, q prime, and σ is the parameter of the error distribution.

Definition 2.2 (PLWE Distribution, [8]).

Let $f \in \mathbb{Z}[x]$ be monic, irreducible of degree n. Assume that f splits over $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$. Then, we define

$$P := \mathbb{Z}[x]/(f(x)), P_q := P/qP.$$

Let $G_{\sigma,P}$ be a discretized Gaussian over P spherical in the power basis of $P (1, x, x^2, \ldots, x^{n-1})$. Let U_{P_q} be the uniform distribution over P_q, and let G_{σ,P_q} be the discrete Gaussian distribution centered at 0 with variance σ^2 over P_q.

Let some $s \in P_q$ be the secret. Sample a from the uniform distribution, $a \leftarrow U_{P_q}$, and the error e from the Gaussian distribution, $e \leftarrow G_{\sigma,P_q}$.

Pairs of the form

$$(a, a \cdot s + e)$$

make up the PLWE distribution \mathcal{L}_{s,G_σ} over $P_q \times P_q$. Similarly to RLWE, we let $c = a \cdot s + e$, and refer to the samples (a, c).

2.2. **Spectral Distortion.** In this section, we reference several terms commonly associated with the computation of spectral distortion.

Definition 2.3. Let f be a monic, irreducible polynomial over \mathbb{Z} of degree n, with some root α, and all roots α_i. Let M_f be the Vandermonde matrix $(\alpha_i^{j-1})_{ij}$. The Minkowski embedding of the number field $K = \mathbb{Q}(\alpha)$ is a function $M : K \to \mathbb{R}^{r_1} \otimes \mathbb{C}^{2r_2}$, where every component of M is a field homomorphism, r_1 is the number of real roots of f, and $2r_2$ is the number of complex roots of f.

Let B be the unitary matrix

$$\begin{bmatrix}
I_{r_1 \times r_1} & 0 & 0 \\
0 & \frac{\sqrt{2}}{2} I_{r_2 \times r_2} & \frac{i\sqrt{2}}{2} I_{r_2 \times r_2} \\
0 & \frac{\sqrt{2}}{2} I_{r_2 \times r_2} & -\frac{i\sqrt{2}}{2} I_{r_2 \times r_2}
\end{bmatrix}$$

The columns of B give an orthonormal basis under which the Minkowski space is isomorphic to \mathbb{R}^n as an inner product space [4]. Note that the $\sqrt{2}$ factor ensures this B is unitary. Because B is unitary, $B^{-1} = B^\dagger$.

3
Remark 2.4. We note here that $B^\dagger M_f = B^{-1} M_f$ is the transpose of the real matrix

$$
\begin{bmatrix}
\sigma_1(1) & \ldots & \sigma_r(1) & \sqrt{2} \Re(\sigma_{r+1}(1)) & \ldots & \sqrt{2} \Re(\sigma_{r+2}(1)) \\
\sigma_1(\alpha) & \ldots & \sigma_r(\alpha) & \sqrt{2} \Re(\sigma_{r+1}(\alpha)) & \ldots & \sqrt{2} \Re(\sigma_{r+2}(\alpha)) \\
\vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
\sigma_1(\alpha) & \ldots & \sigma_r(\alpha) & \sqrt{2} \Re(\sigma_{r+1}(\alpha)) & \ldots & \sqrt{2} \Re(\sigma_{r+2}(\alpha))
\end{bmatrix}
$$

We have

$$(B^\dagger M_f)^\dagger (B^\dagger M_f) = M_f^\dagger B B^\dagger M_f = M_f^\dagger M_f$$

Therefore, we may implicitly compute using $B^\dagger M$ instead of M. We will use this fact in several of the proofs in this paper.

Because $B^\dagger M_f$ is real, $(B^\dagger M_f)^\dagger (B^\dagger M_f)$ is real, and $(B^\dagger M_f)^\dagger (B^\dagger M_f)$ is conjugate transpose symmetric, so $M_f^\dagger M$ is a real, symmetric matrix.

Definition 2.5. The spectral norm $\|M\|_2$ is the measure of the distortion between RLWE and PLWE for a specific polynomial f, given by the largest singular value of $M_f^\dagger M_f$ [9]. The normalized spectral norm, or spectral distortion, provides another measure of distortion that is a convenient quantity in reductions from PLWE to RLWE. The spectral distortion is defined by

$$SD(f) = \frac{\|M_f^{-1}\|_2}{|\det M_f|^{\frac{1}{n}}} = \frac{1}{\sigma_{\text{min}}(M_f)} = \frac{1}{|\det M_f|^{\frac{1}{n}}}$$

3. Cyclotomic Polynomials and Bounds on Spectral Distortion

We first consider the case that f is a cyclotomic polynomial, the current class of candidates for lattice-based homomorphic encryption with ideal lattices [8]. In addition, cyclotomic polynomials tend to have a comparatively smaller spectral norm than general polynomials. In this case, the $M_f^\dagger M_f$ matrix has a convenient formula, from which its eigenvalues can be determined easily in some cases.

Theorem 3.1. Let $n = p_1^{k_1} \cdots p_{\omega(n)}^{k_{\omega(n)}}$, for primes p_i and $k_i \in \mathbb{N}$. Then, the $M_f^\dagger M_f$ matrix is of the following form:

$$(M_f^\dagger M_f)_{ij} = \begin{cases}
\varphi(n) & \text{if } i = j \\
0 & \text{if } \frac{n}{\varphi(n)} \nmid i - j \\
(-1)^{(\omega(n)+\omega(d)} \left(\frac{n}{\varphi(n)} \right) \varphi \left(\frac{n}{\varphi(n)} \right) & \text{if } \frac{n}{\varphi(n)} \mid i - j
\end{cases}$$

where $d = \gcd \left(\frac{i-j}{n/\varphi(n)}, n \right)$

Proof. Let $c_1, \ldots, c_{\varphi(n)}$ be the integers coprime to n, up to n. Then, we label the roots of f, the primitive n-th roots of unity, as $\zeta_n^{c_1}, \ldots, \zeta_n^{c_{\varphi(n)}}$. By properties of n-th roots of unity, we know that $\zeta_n^{c_i}$ and $\zeta_n^{c_{\varphi(n)+1-i}}$ are complex conjugates.
Then, we note that the j-th row of $M^†$ looks like

\[
\left[\sqrt{2} \Re (\zeta_{n}^{j}) \cdots \sqrt{2} \Re (\zeta_{n}^{j\varphi(n)/2}) \sqrt{2} \Im (\zeta_{n}^{j}) \cdots \sqrt{2} \Im (\zeta_{n}^{j\varphi(n)/2}) \right]
\]

where $\Re(\zeta_{n}^{i}) = \cos(2\pi c_{l}/n)$ and $\Im(\zeta_{n}^{i}) = \sin(2\pi c_{l}/n)$.

\[
(M_{f}^{†} M_{f})_{ij} = 2 \sum_{l=1}^{\varphi(n)/2} \left(\cos(2\pi c_{l}/n) \cos(2\pi j c_{l}/n) + \sin(2\pi c_{l}/n) \sin(2\pi j c_{l}/n) \right)
\]

\[
= 2 \sum_{l=1}^{\varphi(n)/2} \cos(2\pi c_{l}(i-j)/n) = 2 \sum_{l=1}^{\varphi(n)/2} \Re \zeta_{n}^{l(i-j)}
\]

\[
= \sum_{l=1}^{\varphi(n)/2} (\Re \zeta_{n}^{l(i-j)c_{l}} + \Re \zeta_{n}^{l(i-j)c_{l}}) = \sum_{l=1}^{\varphi(n)} \Re \zeta_{n}^{l(i-j)c_{l}}
\]

Let g_{l} iterate through the $n - \varphi(n)$ integers not coprime to n. If $i - j = 0$, then we see that $(M_{f}^{†} M_{f})_{ij} = \varphi(n)$. If $i - j \neq 0$, then we have

\[
\sum_{l=1}^{\varphi(n)} \zeta_{n}^{l(i-j)c_{l}} = \sum_{l=1}^{n - \varphi(n)} \zeta_{n}^{l(i-j)c_{l}} = \sum_{l=0}^{n-1} \zeta_{n}^{l(i-j)d_{l}} = 0 \implies (M_{f}^{†} M_{f})_{ij} = -\Re \sum_{g_{l}} \zeta_{n}^{l(i-j)c_{l}}
\]

The next part of the proof uses inclusion-exclusion on the prime factors of n to count all roots with a nontrivial common factor to n (or all roots not coprime to n). Let $p_{1}, \ldots, p_{\omega(n)}$ be the prime factors of n where $\omega(n)$ denotes the number of all distinct prime factors of n. For the last term, there is just one possible set of $\omega(n)$ unique prime factors.

\[
- \sum_{g_{l}} \zeta_{n}^{l(i-j)c_{l}} = - \sum_{k=1}^{\omega(n)} \sum_{t=0}^{\omega(n)/p_{k} - 1} \zeta_{n}^{l(i-j)c_{p_{k}}} + \sum_{k<l} \sum_{t=0}^{\omega(n)/p_{k} p_{l} - 1} \zeta_{n}^{l(i-j)c_{p_{k} p_{l}}} + \ldots + (-1)^{\omega(n)} \sum_{t=0}^{n/(\text{rad}(n)) - 1} \zeta_{n}^{l(i-j)c_{p_{\text{rad}(n)}}}
\]

\[
= \sum_{k=1}^{\omega(n)} (-1)^{k} \sum_{p_{l_{1}} \cdots < p_{l_{k}}} \zeta_{n}^{l(i-j)c_{p_{l_{1}} \cdots p_{l_{k}}}}
\]

We observe

\[
\sum_{t=0}^{n/p_{l_{1}} - 1} \zeta_{n}^{l(i-j)c_{p_{l_{1}} \cdots p_{l_{k}}}} = \sum_{t=0}^{n/p_{l_{1}} - 1} \zeta_{n}^{l(i-j)c_{p_{l_{1}} \cdots p_{l_{k}}}}
\]

\[
\begin{pmatrix}
\frac{n}{\text{rad}(n)} & \frac{n}{\text{rad}(n)} - 1
\end{pmatrix}
\]

\[
\frac{n}{\text{rad}(n)} \zeta_{n}^{l(i-j)c_{p_{l_{1}} \cdots p_{l_{k}}}} = \frac{n}{\text{rad}(n)} \zeta_{n}^{l(i-j)c_{p_{l_{1}} \cdots p_{l_{k}}}}
\]

\[
\frac{n}{\text{rad}(n)} \zeta_{n}^{l(i-j)c_{p_{l_{1}} \cdots p_{l_{k}}}} = \frac{n}{\text{rad}(n)} \zeta_{n}^{l(i-j)c_{p_{l_{1}} \cdots p_{l_{k}}}}
\]

Let $\Pi_{r} p_{l_{r}} = \frac{\text{rad}(n)}{\Pi_{l_{1}}} p_{l_{1}}$ be the complement set of $\omega(n) - k$ primes where $\text{rad}(n)$ denotes the product of all distinct prime factors of n. Then,
\[
\begin{align*}
&= \sum_{k=1}^{\omega(n)} (-1)^k \sum_{p_{l_1} < \cdots < p_{l_k}} n / \prod_{l} p_{l_k}^{-1} \sum_{t=0}^{n/\prod_{l} p_{l_k}} \zeta_n^{(i-j)t} \prod_{l} p_{l_k} \\
&= \frac{n}{\text{rad}(n)} \sum_{k=1}^{\omega(n)} (-1)^k \sum_{p_{l_1} < \cdots < p_{l_{\omega(n)-k}}} \begin{cases}
\prod_{l} p_{l_k} & \text{if } \frac{n}{\text{rad}(n)} \mid (i-j) \\
0 & \text{if } \frac{n}{\text{rad}(n)} \nmid (i-j)
\end{cases} \\
\end{align*}
\]

We see that if \(\frac{n}{\text{rad}(n)} \mid i-j \), then \(n / (i-j) \mid \text{rad}(n) \), and the above summations are all zero. If \(\frac{n}{\text{rad}(n)} \nmid i-j \), then we can factor out \(n / \text{rad}(n) \mid i-j \) from our cases to get

\[
M^\dagger M_{ij} = \frac{n}{\text{rad}(n)} \sum_{k=1}^{\omega(n)} (-1)^k \sum_{p_{l_1} < \cdots < p_{\omega(n)-k}} \begin{cases}
\prod_{l} p_{l_k} & \text{if } \frac{\prod_{l} p_{l_k}}{n/\text{rad}(n)} \mid (i-j) \\
0 & \text{if } \frac{n}{\text{rad}(n)} \nmid (i-j)
\end{cases}
\]

Note that since \(\frac{n}{\text{rad}(n)} \mid i-j \), then \(n / (i-j) \mid \text{rad}(n) \), and \(\zeta_n^{(i-j)t} \mid \text{rad}(n) = 1 \). So, the last term of our summation is

\[
(-1)^{\omega(n)} \sum_{t=0}^{n/(\text{rad}(n))} \zeta_n^{(i-j)t} = (-1)^{\omega(n)} \frac{n}{\text{rad}(n)}
\]

If there are no primes \(p_l \) such that \(p \mid \frac{i-j}{n/\text{rad}(n)} \), then all of the other summations are zero, and \(M^\dagger M = (-1)^{\omega(n)} \frac{n}{\text{rad}(n)} \). Otherwise, let \(d = \gcd(\frac{i-j}{n/\text{rad}(n)}, n) \). There exist \(k = \omega(d) \) primes \(q_1, \ldots, q_k \) that do divide \((i-j)/(n/\text{rad}(n)) \) and \(n \).

Let \(S = q_1, q_2, \ldots, q_k \) be the set of all such primes. Since \(\forall q \in S, q \mid (i-j)/(n/\text{rad}(n)) \), we know that for any subset \(S_1 \subset S \), \(\prod_{q \in S_1} (i-j)/(n/\text{rad}(n)) \).

Moreover, if any product contains primes \(p \) such that \(p \notin S \), then that product cannot divide \((i-j)/(n/\text{rad}(n)) \), as \(p \nmid (i-j)/(n/\text{rad}(n)) \).

Thus, every nonzero term in our summation corresponds exactly to the product of elements in \(S_1, \forall S_1 \subset S \), and we can rewrite our expression as below.
Let \(c = (-1)^{\omega(n) - \omega(d)} \). We can factor the summation as follows:

\[
(M_f^\dagger M_f)_{ij} = c \cdot \frac{n}{\text{rad}(n)} \left(q_1 \cdots q_k - \sum_{q_1 \cdots q_{k-1} \in S} q_{f_1} \cdots q_{f_{k-1}} + \cdots + (-1)^{k-1} \sum_{q \in S} q + (-1)^k \right)
\]

\[
= c \cdot \frac{n}{\text{rad}(n)} (q_k - 1) \left(q_1 \cdots q_{k-1} - \sum_{q_1 \cdots q_{k-2} \in S \setminus q_k} q_{f_1} \cdots q_{f_{k-2}} + \cdots + (-1)^{k-1} \right)
\]

\[
= c \left(\frac{n}{\text{rad}(n)} \right) (q_k - 1)(q_{k-1} - 1) \cdots (q_2 - 1)(q_1 - 1) = c \left(\frac{n}{\text{rad}(n)} \right) \prod_{q \in S} \varphi(q)
\]

\[
= c \left(\frac{n}{\text{rad}(n)} \right) \varphi \left(\text{rad} \left(\gcd \left(\frac{i-j}{n/\text{rad}(n), n} \right) \right) \right)
\]

We get the desired result

\[
(M_f^\dagger M_f)_{ij} = (-1)^{\omega(n) - \omega(d)} \left(\frac{n}{\text{rad}(n)} \right) \varphi(\text{rad}(d))
\]

\[\square\]

Corollary 3.2. Let \(f = \Phi_n \) be \(n \)th cyclotomic polynomial. The \(M_f^\dagger M_f \) matrix for \(f \) is of the form:

\[
M_f^\dagger M_f = \left(\frac{n}{\text{rad}(n)} \right) M_{\Phi_n}^\dagger M_{\Phi_n} \otimes I_{\frac{n}{\text{rad}(n)}}
\]

Remark 3.3. Let the eigenvalues of \(M_{\Phi_n}^\dagger M_{\Phi_n} \) be \(\lambda_1, \ldots, \lambda_{\varphi(\text{rad}(n))} \). This implies that the eigenvalues of \(M_n^\dagger M_n \) are \(\frac{n}{\text{rad}(n)} \lambda_1, \ldots, \frac{n}{\text{rad}(n)} \lambda_{\varphi(\text{rad}(n))} \) with multiplicity \(\frac{n}{\text{rad}(n)} \). In particular, for a prime \(p \), \(M_n^\dagger M_n = pI_{\varphi(p)} - 1_{\varphi(p)} \). Also, in particular, for any number \(n \) with prime factor \(p \), \(M_{\Phi_n}^\dagger M_{\Phi_n} = pM_{\Phi_n} \otimes I_p \).

Remark 3.4. Note that \(M_{\Phi_n}^\dagger M_{\Phi_n} \) forms a symmetric Toeplitz matrix. \[\square\]

We can also describe the \(M_{\Phi_n}^\dagger M_{\Phi_n} \) matrix’s construction as follows:

- Let \(t = p_1 \cdots p_s \) be a squarefree integer. Then the matrix \(M_f^\dagger M \) for \(\Phi_t \) is given by the symmetric Toeplitz matrix generated by the vector \(v \), where \(v \) is constructed as follows:
 - (1) Let \(v \) be a constant vector of value \((-1)^s\) of length \(\varphi(t) \), indexed by \(i \) from 0 to \(\varphi(t) - 1 \).
 - (2) For all \(i \), if \(p_j \) divides \(i \), then let \(v[i] \leftarrow -\varphi(p_j) \cdot v[i] \).
- Let \(n = p_1^{k_1} \cdots p_s^{k_s} \) be an arbitrary integer and \(L \) be the Toeplitz matrix of \(s \) as constructed above. Then the matrix \(M_f^\dagger M_f \) for \(n \) is given by \(\frac{n}{\text{rad}(n)} L \otimes I_{\frac{n}{\text{rad}(n)}} \) where \(I_q \) is the identity matrix of size \(q \).
- Equivalently, the matrix for \(n \) can be given by

\[
\left(\frac{n}{s} \right) \left(\sum_{i=1}^{s} \left[\begin{array}{c} 1_{\varphi(s)} \\ 0_{[\varphi(s)/p]-1} \\ 0_{[\varphi(s)/p]} \end{array} \right] \right) \ast \left(p \ast 0_{[\varphi(s)/p]} \otimes I_p \right) \ast \left(\begin{array}{c} 1_{\varphi(s)} \\ 0_{[\varphi(s)/p]} \end{array} \right) \otimes I_{n/s}
\]

1A Toeplitz matrix, or a diagonal-constant matrix, is a matrix \(A \) such that \(A_{i,j} = A_{i+1,j+1} \).
where \(\odot \) denotes the Hadamard, or entrywise, product.

Example 3.5. For \(f = \Phi_{15} \), we have a symmetric Toeplitz matrix

\[
\begin{bmatrix}
8 & 1 & 1 & -2 & 1 & -4 & -2 & 1 \\
1 & 8 & 1 & 1 & -2 & 1 & -4 & -2 \\
1 & 1 & 8 & 1 & 1 & -2 & 1 & -4 \\
-2 & 1 & 1 & 8 & 1 & 1 & -2 & 1 \\
1 & -2 & 1 & 1 & 8 & 1 & 1 & -2 \\
-4 & 1 & -2 & 1 & 1 & 8 & 1 & 1 \\
-2 & -4 & 1 & -2 & 1 & 1 & 8 & 1 \\
1 & -2 & -4 & 1 & -2 & 1 & 1 & 8
\end{bmatrix}
\]

We can use this rich structure to derive more specific properties of spectral distortion for cyclotomic polynomials. The following theorem shows that the spectral distortion of the \(n \)th cyclotomic polynomial depends only on the radical of \(n \).

Corollary 3.6.

\[
\text{SD}(\Phi_n) = \text{SD}(\Phi_{\text{rad} \ n})
\]

Proof. Let \(n \geq 1 \). Let \(p \) be a prime that divides \(n \). We show \(\text{SD}(\Phi_n) = \text{SD}(\Phi_{np}) \). For cyclotomic polynomials, \(|\text{Disc}(\Phi_n)| = \prod_{p|n}(p^{\varphi(n)/p-1}) \).

\[
\det(M_{\Phi_{np}})^{1/\varphi(np)} = \sqrt{\frac{(np)^{\varphi(np)}}{\prod_{p|n}(p^{\varphi(n)/p-1})}} = \sqrt{\frac{np}{\prod_{p|n}(p^{1/(p-1)})}}
\]

\[
\det(M_{\Phi_{n}})^{1/\varphi(n)} = \sqrt{\frac{n^{\varphi(n)}}{\prod_{p|n}(p^{\varphi(n)/p-1})}} = \sqrt{\frac{n}{\prod_{p|n}(p^{1/(p-1)})}}
\]

\[\implies \det(M_{\Phi_{np}})^{1/\varphi(np)} = \sqrt{p} \det(M_{\Phi_{n}})^{1/\varphi(n)}\]

We see in Theorem 3.1 that the largest eigenvalue of \(M_{\Phi_{np}} \) increases by a factor of \(p \), so \(\|M_{\Phi_{np}}\| = \sqrt{p}\|M_{\Phi_{n}}\| \). Thus, we have

\[
\text{SD}(\Phi_{np}) = \frac{\sqrt{p} \det(M_{\Phi_{n}})^{\varphi(n)}}{\sigma_{\text{min}}(M_{\Phi_{np}})} = \frac{\sqrt{p} \det(M_{\Phi_{n}})^{\varphi(n)}}{\sqrt{p} \cdot \sigma_{\text{min}}(M_{\Phi_{n}})} = \text{SD}(\Phi_{n})
\]

\[\square\]

Theorem 3.7. The eigenvalues of \(M_{\Phi_{p}}^\dagger M_{\Phi_{p}} \) for prime \(p \) are 1 with multiplicity 1 and \(p \) with multiplicity \(p - 2 \).

Proof. By \(3.1 \) \(M_{\Phi_{p}}^\dagger M_{\Phi_{p}} \) is a circulant matrix with row entries \(c_0 = p - 1, c_1 = \cdots = c_{p-2} = -1 \). By well-known properties of circulant matrix eigenvalues, for \(0 \leq j < p - 2 \), the
eigenvalues of $M^\dagger_\Phi \Phi M^\dagger_\Phi$ are of the form
\[
\lambda_j = c_0 + \sum_{k=1}^{p-2} c_{p-1-k}\zeta^{jk}
\]
\[
= (p - 1) - \sum_{k=1}^{p-2} \zeta^{jk}
\]
If $j = 0$, then
\[
(p - 1) - \sum_{k=1}^{p-2} \zeta^{jk} = (p - 1) - \sum_{k=1}^{p-2} 1 = (p - 1) - (p - 2) = 1
\]
For the other $p - 2$ cases, $j \neq 0$, and
\[
(p - 1) - \sum_{k=1}^{p-2} \zeta^{jk} = (p - 1) + \zeta^0 - \sum_{k=1}^{p-2} \zeta^{jk} = (p - 1) + 1 - \sum_{k=0}^{p-2} \zeta^{jk} = (p - 1) + 1 - 0 = p
\]

Corollary 3.8. For prime p,
\[
SD(\Phi_p) = p^{\frac{p-2}{2(p-1)}}
\]

Proof. For cyclotomic polynomials, $|\text{Disc}(\Phi_n)| = \prod_{p|n}(\frac{p^{\phi(n)}}{p-1})$.
\[
\det(M_p)^{1/(p-1)} = \sqrt[p-1]{\frac{(p-1)^{1/(p-1)}}{p^{1/(p-1)}}} = \sqrt[p-1]{\frac{p^{1/(p-1)}}{p}} = p^{\frac{p-2}{p-1}}
\]
We know that $\text{Det}(M^{-1}) = (\text{Det}(M)^{1/(p-1)})^{-1} = p^{-\frac{p-2}{2(p-1)}}$. We know also from 3.7 that the smallest eigenvalue of $M^\dagger_\Phi \Phi M^\dagger_\Phi$ for prime p is 1. So,
\[
\|M^{-1}_\Phi\| = \frac{1}{\sigma_{\min}(M^\dagger_\Phi)} = 1
\]
\[
SD(\Phi_n) = \frac{\|M^{-1}_\Phi\|_2}{|\det(M^{-1}_\Phi)|^{1/(p-1)}} = \frac{1}{p^{\frac{p-2}{2(p-1)}}} = p^{\frac{p-2}{2(p-1)}}
\]

Lemma 3.9. The $M^\dagger_\Phi M^\dagger_\Phi$ matrix for $f = \Phi_{2n}$, $2 \not| n$, is of the form:
\[
(M^\dagger_\Phi \Phi M^\dagger_\Phi)_{ij} = (-1)^{i+j}(M^\dagger_\Phi \Phi M^\dagger_\Phi)_{ij}
\]

Proof. Note that since $2 \not| n$, $\phi(2n) = 2(1 - \frac{1}{2})\phi(n) = \phi(n)$, and $\frac{2n}{\text{rad}(2n)} = \frac{2n}{2\text{rad}(n)} = \frac{n}{\text{rad}(n)}$.
We need to check each case given in 3.1.

Case 1: $i = j$
In this case,

\[
 (M_{\Phi_{2n}}^\dagger M_{\Phi_{2n}})_{ij} = \phi(2n) = 2 \left(1 - \frac{1}{2}\right) \phi(n) = \phi(n)
\]

\[
 = (M_{\Phi_{n}}^\dagger M_{\Phi_{n}})_{ij} = (-1)^{i+j} (M_{\Phi_{n}}^\dagger M_{\Phi_{n}})_{ij}
\]
as \(2 \mid (i + j)\).

Case 2: \(\frac{2n}{\text{rad}(2n)} \mid (i - j)\)

Since \(\frac{2n}{\text{rad}(2n)} = \frac{n}{\text{rad}(n)}\), then \(\frac{n}{\text{rad}(n)} \mid (i - j)\), and

\[
 (M_{\Phi_{2n}}^\dagger M_{\Phi_{2n}})_{ij} = 0 = (-1)^{i+j} (M_{\Phi_{n}}^\dagger M_{\Phi_{n}})_{ij}
\]

Case 3: \(\frac{2n}{\text{rad}(2n)} \mid (i - j)\)

Recall that \(\omega(n)\) is the number of distinct prime factors of \(n\). Note that \(\omega(2n) = \omega(n) + 1\), as \(2 \nmid n\).

Consider when \(2 \mid (i - j)\). Then, \(2 \mid \frac{i-j}{n/\text{rad}(n)}\), and

\[
 \gcd \left(\frac{i-j}{2n/\text{rad}(2n)}, 2n \right) = \gcd \left(\frac{i-j}{n/\text{rad}(n)}, 2n \right) = \gcd \left(\frac{i-j}{n/\text{rad}(n)}, n \right)
\]
so \(d_{2n} = d_n\). Thus,

\[
 (M_{\Phi_{2n}}^\dagger M_{\Phi_{2n}})_{ij} = (-1)^{s_n + \omega(d_n) + 1} \left(\frac{n}{\text{rad}(n)}\right) \phi(\text{rad}(d_n))
\]

\[
 = - (M_{\Phi_{n}}^\dagger M_{\Phi_{n}})_{ij} = (-1)^{i+j} (M_{\Phi_{n}}^\dagger M_{\Phi_{n}})_{ij}
\]

Consider now when \(2 \mid (i - j)\). Then, \(2 \mid \frac{i-j}{n/\text{rad}(n)}\), and

\[
 \gcd \left(\frac{i-j}{2n/\text{rad}(2n)}, 2n \right) = 2 \gcd \left(\frac{i-j}{n/\text{rad}(n)}, n \right)
\]
so \(d_{2n} = 2d_n\), and \(\omega(d_{2n}) = \omega(d_{2n}) + 1\). Thus,

\[
 (M_{\Phi_{2n}}^\dagger M_{\Phi_{2n}})_{ij} = (-1)^{s_n + \omega(d_n) + 1 + 1} \left(\frac{n}{\text{rad}(n)}\right) \phi(\text{rad}(d_n))
\]

\[
 = (M_{\Phi_{n}}^\dagger M_{\Phi_{n}})_{ij} = (-1)^{i+j} (M_{\Phi_{n}}^\dagger M_{\Phi_{n}})_{ij}
\]

\[\square\]

Lemma 3.10. Let \(A\) be a matrix. The matrix \((-1)^{i+j} A_{ij}\) has the same eigenvalues as \(A\).

Proof. The eigenvalues of \(A\) are defined by the characteristic equation \(\det(\lambda I - A)\).
By the Leibniz formula for determinants,
\[
\det(\lambda I - ((-1)^{i+j} A_{ij})) = \sum_\sigma (-1)^\sigma \prod_i (\lambda I - (-1)^{i+\sigma(i)} A_{i\sigma(i)})
\]

Taking out the identity permutation, we have
\[
\prod_i (\lambda I - A_{ii}) + \sum_{\sigma/i} (-1)^\sigma \prod_i (-1)^{i+\sigma(i)} A_{i\sigma(i)}
\]

Because
\[
\prod (-1)^{i+\sigma(i)} = \prod (-1)^i \prod (-1)^{\sigma(i)} = (-1)^{\varphi(n)/2} = 1
\]

We have
\[
\prod_i (\lambda I - A_{ii}) + \sum_{\sigma/i} (-1)^\sigma \prod_i A_{i\sigma(i)} = \det(\lambda I - A)
\]

\[\square\]

Theorem 3.11. Let \(n \in \mathbb{N} \) be odd. The eigenvalues of \(M_{\Phi_{2n}}^\dagger M_{\Phi_{2n}} \) are the same as the eigenvalues of \(M_{\Phi_n}^\dagger M_{\Phi_n} \).

Proof. From Lemma 3.9 we know that \((M_{\Phi_{2n}}^\dagger M_{\Phi_{2n}})_{ij} = (-1)^{i+j}(M_{\Phi_n}^\dagger M_{\Phi_n})_{ij} \). The proof then follows directly from the above lemma 3.10. \[\square\]

Corollary 3.12. For odd \(n \),
\[
\text{SD}(\Phi_{2n}) = \text{SD}(\Phi_n)
\]

Proof. First we look at the denominator, \(\det(M_{\Phi_n})^{1/\varphi(n)} \):
\[
\det(M_{\Phi_n})^{1/\varphi(n)} = \sqrt{\frac{n^{\varphi(n)}}{\prod_{p\mid n}(p^{\varphi(n)/p-1})}} = \sqrt{\frac{n}{\prod_{p\mid n}(p^{1/(p-1)})}}
\]
\[
\det(M_{\Phi_{2n}})^{1/\varphi(2n)} = \sqrt{\frac{(2n)^{\varphi(2n)}}{\prod_{p\mid (2n)}(p^{\varphi(2n)/p-1})}} = \sqrt{\frac{2n}{\prod_{p\mid (2n)}(p^{1/(p-1)})}}
\]
\[
= \sqrt{\frac{2n}{2(\prod_{p\mid n}(p^{1/(p-1)})}}} = \sqrt{\frac{n}{\prod_{p\mid n}(p^{1/(p-1)})}}
\]
\[
\Rightarrow \det(M_{\Phi_n})^{1/\varphi(n)} = \det(M_{\Phi_{2n}})^{1/\varphi(2n)}
\]

From Theorem 3.11 we know that the eigenvalues of \(M_{\Phi_{2n}}^\dagger M \) are the same as those of \(M_{\Phi_n}^\dagger M \), and therefore the spectral norm for \(2n \) and \(n \) are the same. It follows that \(\text{SD}(\Phi_{2n}) = \text{SD}(\Phi_n) \). \[\square\]

3.1. **Non-Cyclotomic Polynomials.** We now turn to results that encompass non-cyclotomic polynomials.
Theorem 3.13. Let $h(x)$ be a monic, irreducible polynomial over \mathbb{Z}. Let $f(x) = h(x^k)$. Let α_t be the roots of $h(x)$.

\[
(M_f^\dagger M_f)_{ij} = \begin{cases}
k \left(\sum_{\text{real } \alpha_t} \alpha_t^{(i+j)/k} + \sum_{\text{non-real } \alpha_t} \alpha_t^{i/k} \overline{\alpha_t^{j/k}} \right) & \text{if } k \mid i - j \\
0 & \text{if } k \nmid i - j \end{cases}
\]

Proof.

\[
(M_f^\dagger M_f)_{ij} = \sum_{\alpha_t} \sum_{s=0}^{k-1} \left(\zeta_k^s \alpha_t^{1/k} \right)^i \overline{\left(\zeta_k^s \alpha_t^{1/k} \right)^j} = \sum_{\alpha_t} \alpha_t^{i/k} \overline{\alpha_t^{j/k}} \sum_{s=0}^{k-1} \zeta_k^{s(i-j)}
\]

\[
= \begin{cases}
k \sum_{\alpha_t} \alpha_t^{i/k} \overline{\alpha_t^{j/k}} & \text{if } i - j = 0 \mod k \\
0 & \text{if } i - j \neq 0 \mod k \end{cases}
\]

If $i = j \mod k$, then

\[
(M_f^\dagger M_f)_{ij} = k \left(\sum_{\text{real } \alpha_t} \alpha_t^{(i+j)/k} + \sum_{\text{non-real } \alpha_t} \alpha_t^{i/k} \overline{\alpha_t^{j/k}} \right)
\]

\[\square\]

Corollary 3.14. Let $s = i \mod k$.

\[
(M_f^\dagger M_f)_{ij} = \begin{cases}
k(M_h^\dagger M_h)_{i',j', h(0)^{s/k}} & \text{if } k \mid i - j \\
0 & \text{if } k \nmid i - j \end{cases}
\]

and

\[
M_f^\dagger M_f = M_h^\dagger M_h \otimes
\begin{bmatrix}
h(0)^{0/k} & 0 & 0 & \cdots \\
0 & h(0)^{1/k} & 0 & 0 & \cdots \\
0 & 0 & \ddots \\
\vdots & 0 & h(0)^{k-1/k} & h(0)^{0/k} & h(0)^{1/k} & \cdots \\
& & & & & h(0)^{k-1/k}
\end{bmatrix}
\]
Proof. When \(i \equiv j \mod k \), we have \(i = i'k + s \) and \(j = j'k + s \) for some \(s \leq k, i', j' \in \mathbb{Z} \). Then,

\[
k \left(\sum_{\alpha \in \mathbb{R}} \alpha^{((i'k+s)+(j'k+s))/k} + \sum_{\alpha \not\in \mathbb{R}} \alpha^{((i'k+s)+j'k+s)/k} \right) = k \left(\sum_{\alpha \in \mathbb{R}} \alpha^{(i'+j'+2s)/k} + \sum_{\alpha \not\in \mathbb{R}} \alpha^{s/k} \alpha^{i' \alpha} \right)
\]

If \(h(x) \) is a quadratic polynomial with negative discriminant, then \(|\alpha|^{2s/k} = h(0)^{s/k} \), so we have the listed results.

\[\square \]

Corollary 3.15. Let \(h(x) = x^2 + bx + c \) have negative discriminant.

\[
M_h^iM_h = \begin{bmatrix} 2 & -b \\ -b & 2c \end{bmatrix}
\]

\(M_h^iM_h \) has characteristic polynomial

\[
(\lambda - 2)(\lambda - c) - b^2 = \lambda^2 - (2 + 2c)\lambda - b^2
\]

And eigenvalues

\[1 + c \pm \sqrt{b^2 + c^2 + 2c + 1} \]

Therefore, we can calculate the eigenvalues and therefore spectral norm of \(M_f \) for all \(f(x) = h(x^k) \).

3.2. Bounds on Spectral Distortion

In [12], Hong and Pan derive a lower bound on the smallest singular value of general matrices \(A \):

\[
\sigma_{\min}(A) \geq \left(\frac{n-1}{n} \right)^{(n-1)/2} |\det(A)| \max \left\{ \frac{r_{\min}(A)}{\prod_{i=0}^{n} r_i(A)}, \frac{c_{\min}(A)}{\prod_{i=0}^{n} c_i(A)} \right\}
\]

where \(r_i \) is the \(L^2 \) norm of the \(i \)th row, and \(c_i \) is the \(L^2 \) norm of the \(i \)th column.

We use this lower bound to create an upper bound for general spectral distortion:

Theorem 3.16. Let \(r_i \) be the \(L^2 \) norm of the \(i \)th row of \(M_f \), and \(c_i \) be the \(L^2 \) norm of the \(i \)th column of \(M_f \). For a polynomial \(f \) of degree \(n \),

\[
\text{SD}(f) \leq \left(\frac{n}{n-1} \right)^{(n-1)/2} |\det(M_f)|^{\frac{1}{n}} \max \left\{ \frac{r_{\min}(M_f)}{\prod_{i=0}^{n} r_i(M_f)}, \frac{c_{\min}(M_f)}{\prod_{i=0}^{n} c_i(M_f)} \right\}
\]

Proof.

\[
\text{SD}(f) = \frac{\|M_f^{-1}\|_2}{|\det(M_f)|^{\frac{1}{n}}} = \frac{1}{\sigma_{\min}(M_f)} = \frac{|\det M_f|^\frac{1}{n}}{\sigma_{\min}(M_f)}
\]

\[
\text{SD}(f) \leq \frac{|\det M_f|^\frac{1}{n}}{\left(\frac{n-1}{n} \right)^{(n-1)/2} |\det(M_f)|^{\frac{1}{n}} \prod_{i=0}^{n} (M_f)} = \left(\frac{n}{n-1} \right)^{(n-1)/2} |\det(M_f)|^{\frac{1}{n}} \prod_{i=0}^{n} \frac{1}{r_{\min}(M_f)}
\]
\(\implies \text{SD}(f) \leq \left(\frac{n}{n-1} \right)^{(n-1)/2} |\det(M_f)| \prod_{i=0}^{n-1} r_i(M_f) / \min r_{\text{min}}(M_f) \)

Similarly, in [17], Yu and Gu presented another lower bound on the minimum singular value based on the Frobenius norm. With the Frobenius norm defined as

\(\|A\|_F^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \)

The minimum singular value of matrix \(A \) is bounded as follows:

\[\sigma_{\text{min}}(A) \geq |\det A| \left(\frac{n-1}{\|A\|_F^2} \right)^{n-1/2} \]

We use this now to propose another bound on spectral distortion.

Theorem 3.17. For a polynomial \(f \) of degree \(n \),

\[\text{SD}(f) \leq \left(\frac{\|M_f^2\|}{n-1} \right)^{(n-1)/2} |\det M_f|^{1-n} \]

Proof.

\[\text{SD}(f) = \frac{\|M_f^{-1}\|_F}{|\det M_f|^{1/n}} = \frac{\frac{1}{\sigma_{\text{min}}(M_f)}}{|\det M_f|^{1/n}} = \frac{|\det M_f|^{1/n}}{\sigma_{\text{min}}(M_f)} \]

\[\text{SD}(f) \leq \frac{|\det M_f|^{1/n}}{\left(\frac{n-1}{\|M_f^2\|_F} \right)^{n-1/2} |\det M_f|} \]

This implies

\[\text{SD}(f) \leq \left(\frac{\|M_f^2\|}{n-1} \right)^{(n-1)/2} |\det M_f|^{1-n} \]

\(\square \)

4. Conclusion

In this paper, we showed that the \(M_f^\dagger M_f \) matrix from which the spectral distortion is derived has a convenient formula with special properties for the case of a cyclotomic polynomial \(f \). Moreover, we derived mild generalizations of these properties for non-cyclotomic polynomials. Finally, we found bounds on the eigenvalues of this matrix for the general case, as well as bounds on the spectral distortion in the cyclotomic case.

References

[1] M. R. Albrecht and A. Deo, *Large modulus ring-LWE ≥ module-LWE*, *ASIACRYPT 2017*, Vol. 10624, (2017) 267–296.
[2] A. Banerjee, C. Peikert and A. Rosen, *Pseudorandom functions and lattices*, EUROCRYPT 2012, Lecture Notes in Computer Science, Vol. 7237 (2012) 719 – 737.

[3] Z. Brakerski and V. Vaikuntanathan, *Fully homomorphic encryption from Ring-LWE and security for key dependent messages*, Lecture Notes in Computer Science Vol. 6841, (2011), 505-524.

[4] W. Castryck, I. Iliashenko, and F. Vercauteren, *Provably Weak Instances of Ring-LWE Revisited*, Advances in Cryptology - CRYPTO 2016, Lecture Notes in Computer Science, Vol. 9665, Springer (2016), 147-167.

[5] H. Chen, K. Lauter, and K.E. Stange, *Attacks on the Search-RLWE problem with small errors*, SIAM Journal on Applied Algebra and Geometry, Vol. 1 (2017).

[6] H. Chen, K. Lauter, and K. E. Stange, *Attacks on the Search RLWE Problem with Small Errors*, SIAM J. Appl. Algebra Geometry, Vol. 1(1), 665–682.

[7] I. Damgård, A. Polychroniadou, and R. Adaptively, *Secure Multi-Party Computation from LWE*, PKC 2016: Public-Key Cryptography, Lecture Notes in Computer Science, Vol. 9615, 208–233.

[8] Y. Elias, K.E. Lauter, E. Ozman, and K.E. Stange, *Ring-LWE Cryptography for the Number Theorist*, Directions in Number Theory, Association for Women in Mathematics Series, Vol. 3, Springer (2016), 271–290.

[9] Y. Elias, K.E. Lauter, E.Ozman, and K.E. Stange, *Provably Weak Instances of Ring-LWE*, Advances in Cryptology – CRYPTO 2015, Lecture Notes in Computer Science, Vol. 9215, Springer, Heidelberg (2015), 63–92.

Y. Elias, K.E. Lauter, E. Ozman, and K.E. Stange, *Ring-LWE Cryptography for the Number Theorist*, Directions in Number Theory, Association for Women in Mathematics Series, Vol. 3, Springer (2016), 271–290.

[10] K. Basu, D. Soni, M. Nabeel, and R. Karri, *NIST Post-Quantum Cryptography: A Hardware Evaluation Study*, IACR Cryptology ePrint Archive, Vol. 47 (2019).

[11] J. Hoffstein, J. Pipher, J. H. Silverman, *NTRU: A Ring Based Public Key Cryptosystem*, Lecture Notes in Computer Science Vol. 1423, (1998), 267–288.

[12] Y. P. Hong and C.-T.Pan, *A Lower Bound for the Smallest Singular Value*, Linear Algebra and its Applications, Vol. 172 (1992), 27–32.

[13] R. Lindner and Chris Peikert, *Better Key Sizes (and Attacks) for LWE-Based Encryption*, Lecture Notes in Computer Science, Vol. 6558, (2011), 319–339.

[14] V. Lyubashevsky, C. Peikert, and O. Regev, *On Ideal Lattices and Learning with Errors Over Rings*, Advances in Cryptology – EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 – June 3, 2010. Proceedings (2010), 1-23.

[15] M.W. Meckes, *On the Spectral Norm of a Random Toeplitz Matrix*, Electronic Communications in Probability, Vol. 12 (2007), 315–325.

[16] D. Micciancio and O. Regev, *Lattice-based cryptography*, Advances in Cryptology - CRYPTO 2006, (2009), 131–141.

[17] Y. Yu and D. Gu, *A note on a lower bound for the smallest singular value*, Linear Algebra and its Applications, Vol. 252 (1997), 25–38.

[18] T. Wang, J. Yu, P. Zhang and Y. Zhang, *Efficient Signature Schemes from R-LWE*, Trans. Internet Inf. Syst., Vol. 10 (2010), 3911–3924.
1 Boise State University

2 University of California, Berkeley

3 Washington University in St. Louis

4 Yale University

5 Harvard University