INTRODUCTION

The Indian Intensive Care Case Mix and Practice Patterns Study (INDICAPS) was the first large-scale, multicenter survey that gathered information about intensive care units and practices in India. This multicenter study of 4,038 adult patients from 120 ICUs conducted between July 2010 and April 2011 provided a snapshot of intensive care in India. Highlights included a moderate severity of illness with relatively high mortality in patients with severe sepsis and septic shock, and those receiving vasopressors or inotropes (Vls) or mechanical ventilation (MV). Self-paying patients, public hospital ICUs, and inadequately equipped ICUs were independently associated with ICU mortality, and terminal discharge (TD) from the ICU was widely practiced. Over the next several years, there has been a significant change in the delivery of intensive care services, critical care education, socioeconomic indicators, antibiotic use, resistance patterns, and other aspects of practices in Indian ICUs. Hence the second Indian Intensive Care Case Mix and Practice Patterns Study (INDICAPS-II) was performed to revisit and study the practice of intensive care in India in the years 2018 and 2019.

PATIENTS AND METHODS

This was a multicenter, observational, staggered point prevalence study performed on four separate days: August 23, 2018; October 25, 2018; April 21, 2019; and April 25, 2019. A total of 4,669 adult patients from 132 ICUs were included in the study. The results of this study have been reported elsewhere.

© The Author(s). 2021 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
2018; December 13, 2018; and April 11, 2019. All ICUs in India, including participants from INDICAPS, were invited to participate through announcements on social media, at conferences, and on the website of the Indian Society of Critical Care Medicine (ISCCM). All investigators obtained approval from their respective hospital ethics committees. The study is registered at clinicaltrials.gov (NCT03631927).

The study protocol, forms, and instructions were uploaded on the study website (http://indicaps.isccm.org). Individual sites could contribute on any or all days of the study. All patients present in the ICU on the study days were included in the study. Data were recorded for all patients present in the ICU during the 24 hours starting from 08.00 a.m. on the study day to 08.00 a.m. the next day. Neonatal and pediatric ICUs were not included. There were no other exclusion criteria. All data were anonymized and submitted online through a dedicated website.

The first time an ICU joined the study, demographic data about the ICU were recorded. A closed ICU was defined as one in which final orders for the patient were written only by the ICU team; all other ICUs, where orders could be written by either the ICU team or the primary team, were considered as open ICUs. A center was considered adequately equipped if all the following facilities were available: renal replacement therapy (RRT) and echocardiography available in the ICU, computed tomography scan, microbiology, biochemistry and hematology laboratories, blood bank, and cardiac catheterization laboratory available in the hospital.

Primary reasons for ICU admission, source of admission, demographics, patient characteristics, and comorbidities were recorded. Admission was defined as surgical if the patient was admitted to the ICU from the operation theater or recovery room. Elective surgery was defined as a surgical procedure that was planned more than 24 hours before ICU admission. Emergency surgery was defined as a surgical procedure before ICU admission that was planned <24 hours in advance. The primary reason for ICU admission was the single most applicable diagnostic category based on the acute physiology and chronic health evaluation (APACHE) III classification.2

Age, physiological parameters, and comorbidities were collected and used to calculate the APACHE II score1 and sequential organ failure assessment (SOFA) score.4 Physiological variables used for the calculation were the worst recorded values during the 24-hour study period. When data for any parameter required calculation of the APACHE II and SOFA score were missing, that parameter was assumed to be normal. A SOFA score of 3 or 4 for any individual organ was used to identify organ failure.

The presence of infection (suspected or proven infection at ICU admission or during the 24-hour study period) was recorded. Tropical infection (malaria, dengue, leptospirosis, or scrub typhus) was diagnosed based on a positive laboratory test. Sepsis was diagnosed if the investigators entered a diagnostic code for sepsis, or if the patient had a SOFA score ≥2 and suspected or confirmed infection on the study day,2 or confirmed tropical infection. Septic shock was recorded if the investigator entered a diagnosis of septic shock or when vasopressors were used in patients with sepsis as defined above.5 Data on cultured microorganisms were also recorded.

ICU survival status was recorded up to 30 days from the day of the study. Patients discharged alive from ICU were followed till hospital discharge, or 30 days from the day of the study, whichever was earlier. For patients dying in the ICU, investigators were asked to record whether any form of limitation of treatment occurred.

TDs from ICU to a location outside the hospital, either on family or patient request, as well as those documented as left against medical advice,6 were recorded.

The primary outcome was ICU mortality, which included patients who died in the ICU, as well as TDs, up to 30 days from the day of the study. Secondary outcomes included hospital mortality (including patients who died in the hospital and TDs from the ICU within 30 days from the day of the study), and ICU and hospital lengths of stay, till 30 days from the study day.

The standardized mortality ratio (SMR) using the ratio of observed hospital mortality to the hospital-predicted mortality by APACHE II was calculated for those patients who were admitted to the ICU within 24 hours of the study day.

We also determined the adherence to selected process measures, including the presence of written protocols in the ICU, capnography to confirm tracheal intubation, use of subglottic suction and closed tracheal suction systems, administration of deep venous thrombosis (DVT) prophylaxis, and maintaining plateau pressure or peak airway pressure (during volume-controlled or pressure-controlled ventilation, respectively) ≤30 cm H2O in patients receiving invasive MV, and monitoring of sedation, analgesia, and delirium.7 We also determined the proportion of patients with inappropriate transfusion triggers of hemoglobin (Hb) >9 g/dL for packed red blood cell transfusion, international normalized ratio (INR) ≤1.5 and activated partial thromboplastin time (APTT) ≤45 for fresh frozen plasma (FFP), and platelet count >50 × 10^9/mm^3 for platelet transfusion.
Prior training of investigators and verification of source data were not performed. However, an online investigator’s discussion forum was formed to deal with queries and problems during the data entry. Investigators were contacted by E-mail to complete missing data.

Analysis

Analysis was performed for adult patients (≥16 years of age), for whom ICU mortality was available. Continuous variables were compared with the use of the Student’s t-test, analysis of variance, Mann–Whitney test, or the Kruskal–Wallis test. Categorical variables were compared using the chi-square test. A two-tailed \(p \)-value of <0.05 was considered statistically significant. Multivariable binary logistic regression analysis (method Enter) was performed to determine the independent predictors of ICU mortality using ICU characteristics, patient factors, and interventions (RRT, MV, and VIs in the ICU) with a \(p \)-value of ≤0.1 in the univariate analysis. All analyses were performed using IBM® SPSS® Statistics version 20.0.0.

Results

A total of 5,222 patients from 141 ICUs were enrolled inclusive of all the four study days, of whom 5,094 were adults (≥16 years of age). Data for the primary outcome were not available in 425 adults, resulting in the exclusion of these patients and nine ICUs. Data analysis was done for adult patients (\(n = 4,669 \)) from 132 ICUs. Details of participation are provided in Supplementary Tables S1 to S4. Missing data for patient-related variables are summarized in Supplementary Table S5.

Table 1 summarizes the facilities available in the ICU or the hospital. In the study, the number per bed (median [interquartile range, (IQR)]) of invasive ventilators, noninvasive ventilators, and high-flow nasal oxygen (HFNO) were 0.51 (0.36–0.76), 0.14 (0.08–0.25), and 0 (0–0.08), respectively. Sixty-two centers (47%) were considered adequately equipped, whereas 70 (53%) were categorized as “not adequately equipped.”

Table 2 summarizes the characteristics of the 132 ICUs. The median (IQR) number of hospital beds, ICU beds, nurse: patient ratio, and full-time consultants per bed were 338(200–650), 20 (13.25–32.75), 0.55 (0.43–0.67), and 0.15(0.08–0.23), respectively. Most ICUs were in hospitals that were not accredited to the National Accreditation Board for Hospitals and Healthcare Providers (NABH) or the Joint Commission International (JCI). The vast majority of ICUs and patients were from private hospitals.

The primary APACHE III diagnostic categories are summarized in Table 3, and patient demographics, the severity of illness, and outcomes are detailed in Table 4. Overall, 737 out of 4,669 patients (15.8%) died in the ICU, and an additional 355 patients were TDs from the ICU. Thus total ICU mortality including TDs was 1,092 out of 4,669 (23.4%). The total hospital mortality was 25.3%, which included 809 patients who died in the hospital and 355 TDs. The median (IQR) length of ICU stay was 6 (3–13) days, with significantly longer stays in nonsurvivors (Table 2). Figures 1A and 1B show the distribution of APACHE II scores and the number of organ failures with the associated ICU mortality. Almost 51% of patients did not have any organ failure on the study day; ICU mortality was 13.1% in these patients and 32% of patients did not have any comorbidities.

A subset of 1,854 patients was admitted within 24 hours of a study day, of which 1,819 had data for hospital outcomes. Of these, 398 patients were predicted to die in the hospital, whereas the observed hospital mortality was 36.8. The SMR was thus 0.92. The APACHE II score generally predicted mortality well, except at scores ≥30, when it overpredicted mortality, as seen in Figure 2.

Medical admissions accounted for 85.5% of admissions; they had a higher severity of illness than surgical admissions and significantly higher mortality. Mortality was significantly higher for admissions after emergency surgery than elective surgery (Table 4).

Sepsis with or without septic shock during the ICU stay was present in 1,368 patients (29.3%), with ICU mortality of 36.9%. During the 24-hour study period, 1,195 patients had a suspected or confirmed infection. A total of 4,609 microbiological cultures were obtained in 2,275 patients, and 1,304 organisms were identified in 902 patients. Gram-negative organisms accounted for 75.6%, while gram-positive organisms, fungi, mycobacteria, and anaerobes accounted for 13.6, 9.7, and 0.46% of organisms identified, respectively. In addition, 87 patients (1.99%) had a

Table 1: Facilities available in the ICU and in the hospital in 132 centers

Facility	Available in ICU	Available in hospital	Not available
Chest X-ray	107 (81.1)	25 (18.9)	0 (0.0)
Blood gas analysis	96 (72.7)	35 (26.5)	1 (0.8)
Ultrasonography (excluding echocardiography)	104 (78.8)	26 (19.7)	2 (1.5)
Echocardiography	103 (78.0)	28 (21.2)	1 (0.8)
Hemodialysis	103 (78.0)	24 (18.2)	5 (3.8)
Continuous renal replacement therapy	61 (46.2)	19 (14.4)	52 (39.4)
Fiber-optic bronchoscope	76 (57.6)	50 (37.9)	6 (4.5)
Blood bank	Not applicable	109 (82.6)	23 (17.4)
Platelet pheresis	Not applicable	97 (73.5)	35 (26.5)
Microbiology laboratory	Not applicable	126 (95.5)	6 (4.5)
Computed tomography	Not applicable	125 (94.7)	7 (5.3)
Magnetic resonance imaging	Not applicable	109 (82.5)	23 (17.4)
Cardiac catheterization laboratory	Not applicable	117 (88.6)	15 (11.4)
High-flow nasal cannula oxygen	62 (46.7)	Not applicable	70 (53.3)
Videolaryngoscope	48 (36.4)	Not applicable	84 (63.6)
Extracorporeal membrane oxygenation	33 (25)	32 (24.2)	67 (50.8)
Table 2: Characteristics of the participating intensive care units

Characteristic	Number of ICUs (%)	Number of patients (%)	APACHE II score (mean ± SD)	ICU mortality (%) [terminal discharges, %]	Hospital mortality (n = 4,594)
Overall	132 (100)	4,669 (100)	16.7 ± 9.8	1,092 (23.4) [355, 7.6%]	1,164 (25.3)
Type of ICU					
Open	112 (84.8)	3,939 (84.4)	16.7 ± 9.7	877 (22.3) [274, 7.0%]	939 (24.3)
Closed	20 (15.2)	730 (15.6)	16.8 ± 10.0	215 (29.5) [81, 11.1%]	225 (31.0)
p	0.884				
ICU specialty					
1. Mixed medical–surgical	108 (81.8)	4,082 (87.4)	16.8 ± 9.8*	962 (23.6) [304, 7.4%]	1,025 (26.0)
2. All other specialty ICUs	24 (18.2)	587 (12.6)	16.6 ± 9.3	130 (22.1) [51, 8.7%]	139 (23.7)
a. Neuro-intensive care	6 (4.5)	120 (2.6)	16.0 ± 8.6	23 (19.2) [18, 15%]	27 (22.5)
b. Surgical	7 (5.3)	141 (3.0)	12.2 ± 6.7	16 (11.3) [2, 1.4%]	16 (11.4)
c. Coronary care	1 (0.8)	45 (0.96)	11.8 ± 6.7	5 (11.1) [0]	5 (11.1)
d. Medical	8 (6.1)	266 (5.7)	19.6 ± 9.9	84 (31.6) [31, 11.7%]	88 (33.3)
e. Cardiac surgical	6 (4.5)	120 (2.6)	16.0 ± 8.6	23 (19.2) [18, 15%]	27 (22.5)
f. Other	1 (0.8)	10 (0.21)	28.0 ± 5.7	2 (20.0) [0]	3 (30.0)
p	0.7 (1 vs 2)			0.45 (1 vs 2)	0.11 (1 vs 2)
Number of beds in ICU					
A. 1–20 beds	67 (50.8)	1,490 (31.9)	17.1 ± 9.6	349 (23.4) [114, 7.6%]	380 (25.5)
B. >20 beds	65 (49.2)	3,179 (68.1)	16.6 ± 9.8	743 (23.4) [241, 7.6%]	784 (25.1)
p	0.09 (A vs B)			0.920 (A vs B)	0.20 (A vs B)
Number of hospital beds					
A. 1–499	84 (63.6)	2,453 (52.5)	17.1 ± 9.8	521 (21.2) [178, 7.3%]	560 (22.3)
a. 1–199	32 (24.2)	777 (16.6)	15.4 ± 9.6	169 (21.8) [71, 9.1%]	190 (24.7)
b. 200–499	52 (39.4)	1,676 (35.9)	17.8 ± 9.8	352 (21.0) [107, 6.4%]	370 (22.5)
B. ≥500	48 (36.4)	2,216 (47.5)	16.4 ± 9.7	571 (25.8) [177, 8.0%]	604 (27.7)
p	0.01 (A vs B)			0.000 (A vs B)	0.002 (A vs B)
Nurse to patient ratio					
<1:2 (less than 1 nurse per two patients)	45 (34.1)	1,205 (25.8)	16.8 ± 9.6	265 (21.2) [101, 8.4%]	289 (24.1)
≥1:2 (1 or more nurses per two patients)	87 (65.9)	3,464 (74.2)	16.7 ± 9.8	827 (23.9) [254, 7.3%]	874 (25.7)
p	0.672			0.182	0.278
Hospital					
Public hospital ICUs	6 (4.5)	111 (2.4)	18.6 ± 11.1	31 (27.9) [2, 1.8%]	33 (30.0)
Private hospital ICUs	126 (95.5)	4,558 (97.6)	16.7 ± 9.7	1,061 (23.3) [353, 7.7%]	1,131 (25.2)
p	0	0	0.04	0.253	0.255
The results of the multivariable analysis of organizational and patient characteristics, severity of illness, and need for interventions are summarized in Table 7. Closed ICUs and ICUs in hospitals with \(\geq 500 \) beds were independently associated with increased ICU mortality. In addition, the APACHE II and SOFA scores on the study day, medical admissions, the presence of cancer or cirrhosis of the liver, the presence of infection on the study day, and the need for invasive or noninvasive ventilation or VIs were independent predictors of mortality.

Discussion

The study provides a snapshot of adult critical care in India between August 2018 and May 2019. Patients had moderate severity of illness and the ICU mortality, including TDs, was 23.4%.

While we attempted to describe the change in intensive care practices and outcomes over the 9 years between INDICAPS and INDICAPS-II (Table 8), direct comparisons of the results of the two studies may not be appropriate. The participating ICUs were different; ICUs that participated in both studies may have changed in their structure, organization, and staffing in the intervening period, and criteria used to classify open and closed ICUs, adequately equipped ICUs, sepsis, and tropical infections differed between the two studies.

Overall ICU mortality of 23.4% appears to be higher than the 18.1% mortality observed in the previous study. The proportion of patients dying in the ICU was 15.8%, and TDs constituted a significant percentage of total nonsurvivors (32.5%) in the present study, as compared to 25.1% in INDICAPS. The increase in the

Postgraduate teaching/training program in intensive care	None	Present	\(p \)	Equipment and facilities	Adequate	Not adequate	\(p \)	NABH/JCI accreditation	Not accredited	Accredited	\(p \)	Written protocols	Present	Absent	\(p \)																	
None	37 (28.0)	812 (17.4)	15.9 ± 9.5	168 (20.7) [60, 7.4%]	186 (23.8)			Adequate	62 (47.0)	2,855 (61.1)	17.2 ± 9.9	692 (24.2) [229, 8.0%]	738 (26.3)			Not adequate	70 (53.0)	1,814 (38.9)	16.0 ± 9.4	400 (22.1) [126, 6.9%]	426 (23.8)					0.004	0.089	0.055		0.059	0.748	0.846
Present	95 (72.0)	3,857 (82.6)	16.9 ± 9.8	924 (23.9) [295, 7.6%]	978 (25.7)			\(p \)	0.006	0.046	0.264		\(p \)	0.000	0.748	0.846																

APACHE, acute physiology and chronic health evaluation; ICU, intensive care unit; NABH, national accreditation board for hospitals and healthcare providers; JCI, joint commission international

Postgraduate teaching/training program in intensive care	None	Present	\(p \)	Equipment and facilities	Adequate	Not adequate	\(p \)	NABH/JCI accreditation	Not accredited	Accredited	\(p \)	Written protocols	Present	Absent	\(p \)																	
None	37 (28.0)	812 (17.4)	15.9 ± 9.5	168 (20.7) [60, 7.4%]	186 (23.8)			Adequate	62 (47.0)	2,855 (61.1)	17.2 ± 9.9	692 (24.2) [229, 8.0%]	738 (26.3)			Not adequate	70 (53.0)	1,814 (38.9)	16.0 ± 9.4	400 (22.1) [126, 6.9%]	426 (23.8)					0.004	0.089	0.055		0.059	0.748	0.846
Present	95 (72.0)	3,857 (82.6)	16.9 ± 9.8	924 (23.9) [295, 7.6%]	978 (25.7)			\(p \)	0.006	0.046	0.264		\(p \)	0.000	0.748	0.846																

The degree of compliance with selected process measures is outlined in Table 6. Almost all ICUs (92%) had written protocols. Compliance for process measures related to MV ranged from 62.7–85.3%, whereas for monitoring delirium, sedation, and analgesia, it ranged from 11.2–47.4%. Inappropriate triggers for transfusion of blood products, based only on the laboratory values (Hb > 9 g/dL), were observed in 7.7–25.3% of patients (Table 6).

positive laboratory test for dengue, 78 (1.67%) for H1N1 influenza virus, one for cytomegalovirus, three for other viruses, 23 (0.49%) for scrub typhus, 18 (0.39%) for leptospirosis, and 14 (0.30%) patients for malaria.

On the study day, 3,263 patients (69.9%) received antimicrobials. In patients receiving antimicrobials, a median of 2.0 (IQR 1, 2) antimicrobials was given, and 16.5% of patients received three or more antimicrobials and 68 patients (1.5%) were admitted after poisoning or drug overdose, including 36 organophosphorus or organochlorine poisoning, 9 corrosive poisonings, and 4 snake bites. ICU mortality in this group was 19.1%.

Various interventions in the ICU are detailed in Table 5. Patients receiving invasive MV, VIs, and RRT had significantly higher mortality than those who did not (44.4 vs 16.7%, \(p < 0.001 \); 44.0 vs 17.5%, \(p < 0.001 \); and 41.7 vs 21.5%, \(p < 0.001 \), respectively). Arterial and central venous catheters were inserted in 25.4 and 34.3% of all patients, respectively, and 50.3 and 64.3% of 1,033 patients receiving VIs. Echocardiography in the ICU was performed in 21.4% of patients, and cardiac output was measured in 81 patients (1.7%). In 727 patients who received fluid boluses, normal saline was used in more than 86% of patients, balanced crystalloids were used in 58.4%, and albumin in 6.6% of patients.
A striking finding in INDICAPS-II was the association of closed ICUs with higher mortality on multivariable analysis. Only six (4.5%) public hospital ICUs accounting for 111 (2.4%) patients participated in the study. The proportion of self-paying patients was smaller in this study as compared to INDICAPS (64.5 vs 80.5%). This may be the result of increasing penetration of insurance as well as central and state government schemes. While 53.0% of ICUs were inadequately equipped in this study, as opposed to only 32.5% in the INDICAPS study, this may be because we changed the definition of adequately equipped ICUs to include the presence of a blood bank in the hospital and have facilities for RRT and echocardiography in the ICU, rather than in the ICU or hospital. While there was a median of 0.55 invasive ventilators per ICU bed, HFNO capability was available in only 47% of ICUs.

In INDICAPS, we found no difference in outcome between open and closed ICUs, where an open ICU was defined as one in which care of the patient was directed by non-ICU doctor teams, and orders could be written by non-ICU team doctors. A striking finding in INDICAPS-II was the association of closed ICUs with higher mortality on multivariable analysis. A closed ICU was defined as one in which final orders for the patient proportion of TDs is an area of concern and may reflect more defensive practice after the Aruna Shanbaugh case, where the Supreme Court ruled that “passive euthanasia” was permissible, but required prior approval from the High Court. We assumed that all TDs from the ICU eventually died. A single-center study from a tertiary level private hospital in South India found that 23 and 14% of patients were alive 30 and 90 days after being discharged against medical advice, respectively. However, only 9% of their patients were discharged because of an overall poor prognosis. Thus classifying all TDs does overestimate mortality, but excluding them would grossly underestimate mortality.

Public hospital ICUs, self-paying patients, and inadequately equipped ICUs were independently associated with ICU mortality in INDICAPS but were not associated with ICU mortality in INDICAPS-II on univariate analysis. Only six (4.5%) public hospital ICUs accounting for 111 (2.4%) patients participated in the study. The proportion of self-paying patients was smaller in this study as compared to INDICAPS (64.5 vs 80.5%). This may be the result of increasing penetration of insurance as well as central and state government schemes. While 53.0% of ICUs were inadequately equipped in this study, as opposed to only 32.5% in the INDICAPS study, this may be because we changed the definition of adequately equipped ICUs to include the presence of a blood bank in the hospital and have facilities for RRT and echocardiography in the ICU, rather than in the ICU or hospital. While there was a median of 0.55 invasive ventilators per ICU bed, HFNO capability was available in only 47% of ICUs.

In INDICAPS, we found no difference in outcome between open and closed ICUs, where an open ICU was defined as one in which care of the patient was directed by non-ICU doctor teams, and orders could be written by non-ICU team doctors. A striking finding in INDICAPS-II was the association of closed ICUs with higher mortality on multivariable analysis. A closed ICU was defined as one in which final orders for the patient

Primary reason for ICU admission	Number of patients	APACHE II score	ICU nonsurvivors N (%)
Medical	3,993	17.9 ± 9.4	1,030 (25.8)
Cardiovascular	580	15.2 ± 9.4	105 (18.1)
Respiratory	884	19.6 ± 9.9	260 (29.4)
Gastrointestinal	462	17.5 ± 9.0	146 (31.6)
Neurological	723	16.3 ± 8.8	163 (22.5)
Sepsis	587	20.7 ± 9.4	202 (34.4)
Trauma	205	13.9 ± 8.8	31 (15.1)
Metabolic	123	17.2 ± 9.7	21 (17.1)
Hematological	84	16.5 ± 9.3	20 (23.8)
Renal	247	22.2 ± 8.9	59 (23.9)
Unclassified	100	14.1 ± 9.3	23 (23.0)
Surgical	676	11.5 ± 6.5	62 (9.2)
Cardiovascular	126	10.3 ± 5.2	4 (3.2)
Respiratory	63	13.1 ± 7.7	8 (12.7)
Gastrointestinal	187	11.5 ± 5.7	19 (10.2)
Neurological	113	12.0 ± 7.9	16 (14.2)
Trauma	34	12.2 ± 7.5	7 (20.6)
Renal	58	11.8 ± 6.4	4 (6.9)
Obstetric	44	10.5 ± 5.2	1 (2.3)
Hip or extremity fracture	46	11.4 ± 6.3	3 (6.5)
Unclassified	3	12.0 ± 7.9	0 (0)

Type of Surgery			
Elective surgery	462	10.8 ± 6.0	37 (8.0)
Emergency surgery	214	12.3 ± 7.9	25 (11.7)

*p <0.001 comparing medical vs surgical admissions, and elective vs emergency surgery; ICU, intensive care unit; APACHE, acute physiology and chronic health evaluation

Table 4: Patient demographics, ICU admission characteristics and severity of illness*

Patient demographics	All patients	ICU survivors	ICU nonsurvivors	p
Number of patients (%)	4,669 (100)	3,577 (76.6%)	1,092 (23.4%)	
Age (years) (mean ± SD)	56.9 ± 17.4	56.4 ± 17.6	58.5 ± 16.6	0.01
Male [number of patients, (%)]	2,973 (63.7)	2,271 (76.4)	702 (23.6)	0.632
Female [number of patients, (%)]	1,696 (36.3)	1,306 (77.0)	390 (23.0)	
Financial resources				0.193
Self-paying [number of patients, (%)]	3,010 (64.5)	2,288 (76.0)	722 (24.0)	
Not self-paying (payment by employer, insurance, etc.) [number of patients, (%)]	1,659 (35.5)	1,289 (77.7)	370 (22.3)	
Type of ICU admission [number of patients, (%)]				<0.001
Medical/nonoperative	3,993 (85.5)	2,963 (74.2)	1,030 (25.8)	
Surgical	676 (14.5)	614 (90.8)	62 (9.2)	
Elective postoperative	462 (9.9)	425 (92.0)	37 (8.0)	
Unscheduled/emergent postoperative	214 (4.6)	189 (88.3)	25 (11.7)	<0.001
Source of admission [number of patients, (%)]				<0.001
Home	913 (19.6)	716 (78.4)	197 (21.6)	
Emergency department	1,596 (34.2)	1,202 (75.3)	394 (24.7)	
Ward of same hospital	703 (15.1)	479 (68.1)	224 (31.9)	
ICU of other hospital	435 (9.3)	307 (70.6)	128 (29.4)	
Ward of other hospital	283 (6.1)	212 (74.9)	71 (25.1)	
Comorbidities [number of patients, (%)]

Comorbidity	Number of Patients	Percentage	
Chronic obstructive pulmonary disease	363 (7.8)	267 (7.3)	
Diabetes mellitus (IDDM and NIDDM)	1,555 (33.3)	1,170 (77.3)	385 (22.7)
Hypertension	2,055 (44.0)	1,589 (77.3)	466 (22.7)
Heart failure	362 (7.8)	245 (67.7)	
Any cancer	598 (12.8)	417 (69.7)	
Hematological malignancy	80 (1.7)	41 (51.3)	
Metastatic cancer	200 (4.3)	118 (59.0)	
Dialysis-dependent renal failure	280 (6.0)	179 (63.9)	
Cirrhosis of the liver	195 (4.2)	102 (52.3)	
Immunosuppressive treatment	354 (7.6)	237 (66.9)	

Number of comorbidities [number of patients, (%)]

Number of Comorbidities	Number of Patients	Percentage	
0	1,496 (32.0)	1,203 (80.4)	293 (19.6)
1	1,364 (29.2)	1,049 (76.9)	315 (23.1)
2	1,186 (25.4)	912 (76.9)	
3	483 (10.3)	325 (67.3)	
4	125 (2.7)	83 (66.4)	
5	13 (0.3)	4 (30.8)	
6	2 (0.0)	1 (50.0)	

Severity of illness

Measure	Mean ± SD	p-Value
APACHE II score	16.7 ± 9.8	<0.001
SOFA score	4.4 ± 3.6	<0.001
ICU stay, days [median, (IQR)]	6 [3–13]	
N = 4,137	12 [7–20]	
Hospital stay, days [median, (IQR)]	12 [7–20]	
N = 3,842	12 [6–21]	

ICU admission to study day interval, days [median, (IQR)]

Days [median, (IQR)]	p-Value
2.0 [1–6]	<0.001

Figures represent the number of patients (percent) unless otherwise indicated; p-values compare survivors vs nonsurvivors; ICU, intensive care unit; IDDM, insulin-dependent diabetes mellitus; NIDDM, non-insulin-dependent diabetes mellitus; APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment; IQR, interquartile range

were written only by the ICU team; all other ICUs, where orders could be written by either the ICU team or the primary team, were considered as open ICUs. Thus an open ICU could include not only those ICUs where the care of the patient was directed by non-ICU teams but also the “hybrid” or mandatory consult model, where all patients admitted to the ICU are seen by the intensive care team as well as by the primary consultant, both of them have the privileges to write orders.\(^{10-12}\) An overwhelming majority of ICUs (84.8%) were classified as open ICUs. Since the data in this study were contributed by intensivists, we believe that most open ICUs followed a “hybrid” model, which may have resulted in better interaction between the ICU and primary referring teams, with a beneficial impact on the outcome.\(^{13}\) Two other surveys of Indian ICUs in 2018 found that only 20 and 14% were closed ICUs. However, they did not evaluate association with mortality.\(^{14,15}\) A study based on the Project IMPACT database of 1,01,832 patients in 123 ICUs in the United States had also found that even after adjusting for disease severity, patients managed by critical care specialists showed higher mortality.\(^{16}\) They speculated that some routine critical care practices and procedures may not be beneficial or that the presence of confounders not included in the model may account for worse outcomes. Another study of 69 ICUs in the USA found higher crude mortality (but no difference in adjusted mortality) for closed ICUs compared to open ICUs,\(^{13}\) while an analysis of data from the EPIC study found no difference in outcome between closed and open ICUs.\(^{17}\) Unlike these studies,\(^{13,17}\) we did not find a higher nurse: patient ratio to be associated with a better
monitoring for delirium and sedation was done in less than 20% of patients, while pain assessment was performed in less than half of the patients. Despite the findings of the National Audit Project-4 that failure to use capnography contributed to 74% of cases of death or persistent neurological injury related to airway management in the ICU or emergency department, \(^1\) capnography was routinely used after intubation in less than 35% of ICUs. Triggers for transfusion of RBCs, FFP, and platelets appeared to be inappropriate in up to 25.3% of patients. However, this determination was based only on laboratory parameters; data on clinical circumstances that may have necessitated transfusions, e.g., ongoing hemorrhage and perioperative or periprocedural transfusion, were not available. Thus, further improvements are required in the organization and delivery of critical care in Indian ICUs.

There are limitations to our study. Participation was purely voluntary, and ICUs that were motivated and willing to share data contributed to the study. Participation of public hospital ICUs was negligible, and only 14.5% of patients were surgical admissions. These are even lower than in INDICAPS. \(^1\) Source data verification was not performed.

The strengths of this study include a large number of ICUs and patients from all regions of the country and different types of ICUs. Updated definitions were used to classify patients with sepsis, and tropical infections were diagnosed based on confirmatory laboratory tests. Data from this study can be used as a benchmark of structure, process, and outcome of Indian ICUs for comparative, quality assurance, and audit purposes. This may also help the regulatory and planning authorities for resource allocation and also in planning future research studies. Future studies could focus on details of ICU organization, costs of care, and antibiotic utilization.

Conclusion

Patients in this study had moderate severity of illness with relatively high mortality in patients with sepsis, patients on Vls, or receiving MV. Closed ICUs were independently associated with a worse outcome, and the proportion of TDs from the ICU has increased compared to INDICAPS. Public hospital ICUs, self-paying patients, and inadequately equipped ICUs were not associated...
Table 5: Interventions

Interventions	All patients	ICU survivors	ICU nonsurvivors (mortality %)	p
Number of patients	4,669 (100)	3,577 (76.6)	1,092 (23.4)	
Infectious disease				
Patients receiving antibiotics	3,263 (69.9)	2,417 (74.1)	846 (25.9)	<0.001
One antibiotic	1,321 (28.3)	1,084 (82.1)	237 (17.9)	
Two antibiotics	1,172 (25.1)	861 (73.5)	311 (26.5)	
Three antibiotics	527 (11.3)	344 (65.3)	183 (34.7)	
Four or more antibiotics	243 (5.2)	128 (52.7)	115 (47.3)	
Procalcitonin measured	528 (11.3)	352 (66.7)	176 (33.3)	<0.001
Ventilation and airway				
High-flow nasal oxygen		165 (3.5)	110 (66.7)	<0.001
Mechanical ventilation		1,539 (33.0)	974 (7.2)	<0.001
Noninvasive ventilation		484 (10.4)	349 (72.1)	<0.001
Invasive ventilation		1,125 (24.1)	625 (55.6)	<0.001
Prone position		175 (3.7)	114 (65.1)	<0.001
Neuromuscular blockade		272 (5.8)	147 (54.0)	<0.001
Tracheal intubation		1,006 (21.5)	552 (54.9)	<0.001
Tracheostomy		392 (8.4)	274 (69.9)	0.02
Surgical tracheostomy		201 (4.3)	139 (69.2)	0.30
Percutaneous tracheostomy		191 (4.1)	135 (70.7)	<0.001
High-frequency oscillation		40 (0.9)	25 (62.5)	0.03
Extracorporeal membrane oxygenation (veno-venous)		20 (0.4)	19 (95.0)	1.50
Extracorporeal membrane oxygenation (veno-arterial)		4 (0.1)	3 (75.0)	1 (25.0)
Capnography		432 (9.1)	276 (63.9)	<0.001
Renal				
Renal replacement therapy	434 (9.3)	253 (58.3)	181 (41.7)	<0.001
Continuous	34 (0.7)	18 (52.9)	16 (47.1)	
Intermittent hemodialysis	177 (3.8)	117 (66.1)	60 (33.9)	
Sustained low-efficiency daily dialysis	187 (4.0)	96 (51.3)	91 (48.7)	
Ultrafiltration	17 (0.4)	11 (64.7)	6 (35.3)	
Cardiovascular and hemodynamic				
Vasopressors/inotropes	898 (22.2)	574 (63.9)	324 (36.1)	<0.001
Invasive blood pressure monitoring	1,185 (25.4)	751 (63.4)	434 (36.6)	<0.001
Central venous catheter inserted	1,603 (34.3)	1,048 (65.4)	555 (34.6)	<0.001
Central venous pressure monitoring	566 (12.1)	398 (70.3)	168 (29.7)	<0.001
Hourly urine output monitoring	3,253 (69.7)	2,412 (74.1)	841 (25.9)	<0.001
Echocardiography in ICU	1,000 (21.4)	674 (67.4)	326 (32.6)	<0.001
Pulse pressure variation monitoring	279 (6.0)	186 (66.7)	93 (33.3)	<0.001
Cardiac output monitoring	81 (1.7)	61 (75.3)	20 (24.7)	0.30
Passive leg raising test	108 (2.3)	72 (66.7)	36 (33.3)	<0.001
Blood lactate measured	1,477 (31.6)	952 (64.5)	525 (35.5)	<0.001
Svo2 measured	69 (1.5)	41 (59.4)	28 (40.6)	0.002
Intra-aortic balloon pump	76 (1.6)	46 (60.5)	30 (39.5)	0.001
Fluid therapy, blood and blood products				
Fluid boluses	727 (15.6)	503 (69.2)	224 (30.8)	<0.001
Normal saline	627 (13.4)	4,426 (70.5)	185 (29.5)	<0.001
Lactated Ringers'	215 (4.6)	161 (74.9)	54 (25.1)	0.18
Plasmalyte™	210 (4.5)	143 (68.1)	67 (31.9)	0.002
Gelatins	25 (0.5)	20 (80.0)	5 (20.0)	0.27
Starches	18 (0.4)	15 (83.3)	3 (16.7)	0.37
Albumin	48 (1.0)	33 (68.8)	15 (31.2)	0.06
Whole blood/packed red blood cells	297 (6.4)	200 (67.3)	97 (32.7)	<0.001

(Contd...)
Table 5: (Contd...)

indicator	All patients	ICU survivors	ICU nonsurvivors (mortality %)	p
Fresh frozen plasma	99 (2.1)	45 (45.5)	54 (54.5)	<0.001
Platelets	76 (1.6)	37 (48.7)	39 (51.3)	<0.001
Random donor platelets	38 (0.8)	17 (44.7)	21 (55.3)	
Single donor platelets	38 (0.8)	20 (52.6)	18 (47.4)	
Neurological				
Intracranial pressure monitoring	25 (0.5)	14 (56.0)	11 (44.0)	<0.001
EEG monitoring	147 (3.1)	114 (77.6)	33 (22.4)	0.004
Transcranial Doppler	32 (0.7)	22 (68.8)	10 (31.2)	0.006
General care				
Stress ulcer prophylaxis	3,635 (90.0)	2,953 (89.2)	682 (93.6)	<0.001
Low-molecular-weight heparin for DVT prophylaxis	1,384 (29.6)	1,060 (76.6)	324 (23.4)	0.25
Unfractionated heparin	365 (7.8)	266 (72.9)	99 (27.1)	0.10
Compression stockings	547 (11.7)	414 (75.7)	133 (24.3)	0.30
Intermittent calf compression	1,175 (25.2)	836 (68.8)	339 (22.4)	<0.001
Enteral nutrition	2,823 (60.5)	2,085 (73.9)	738 (26.1)	<0.001
Parenteral nutrition	230 (4.9)	152 (66.1)	78 (33.9)	<0.001
Sedation, analgesia, delirium				
Sedation measured	800 (17.1)	519 (64.9)	281 (35.1)	<0.001
Ramsay sedation score	228 (4.9)	172 (75.4)	56 (24.6)	
RASS	592 (12.7)	369 (62.3)	223 (37.7)	
Bispectral index	88 (1.9)	54 (61.4)	34 (38.6)	
Pain measured	2,215 (47.4)	1,703 (76.9)	512 (23.1)	0.36
Behavioral pain scale	373 (8.0)	249 (66.8)	124 (33.2)	
Critical care pain observation tool	200 (4.3)	141 (70.5)	59 (29.5)	
Numeric rating scale	242 (5.2)	199 (82.2)	43 (17.8)	
Visual analog scale	1,244 (26.6)	979 (78.7)	265 (21.3)	
Delirium monitored	522 (11.2)	397 (76.1)	125 (23.9)	0.27
CAM-ICU	500 (10.7)	379 (75.8)	121 (24.2)	
IDSC	11 (0.2)	10 (90.9)	1 (9.1)	

ICU, intensive care unit; RASS, Richmond agitation-sedation scale; CAM, confusion assessment method; IDSC, intensive care delirium screening checklist.

Table 6: Compliance with process measures

Indicator	Compliance
ICUs that always use capnography to confirm tracheal intubation	46 (34.8%)
Patents receiving invasive mechanical ventilation	1,055
Subglottic suction via endotracheal or tracheostomy tube	814 (77.2%)
Closed tracheal suction system	661 (62.7%)
Receiving DVT prophylaxis	807 (76.5%)
Receiving stress ulcer prophylaxis	900 (85.3%)
Patients with plateau pressure <30 cm H₂O*	750 (71.1)
Sedation monitored	800 (17.1)
Analgesia monitored in the preceding 24 hours	2,215 (47.4%)
Delirium monitored	522 (11.2)
Patients receiving packed red blood cell transfusion	297
Hb (g/dL) at transfusion [Median, (IQR)] N = 265	7.0 [6.2–7.9]
Patients with Hb >9 g/dL**	23 (7.7%)

Indicator	Compliance
Patients receiving fresh frozen plasma	99
INR at transfusion [Median, (IQR)] N = 92	2.25 [1.67–3.43]
APTT at transfusion [Median, (IQR)] N = 92	42.85 [33.85–58.5]
Patients with INR ≤1.5 and APTT ≤45**	25 (25.3%)
Patients receiving platelet transfusions	76
Platelet count at transfusion (median, [IQR]) (N = 72)	18.0 [8.63–40]
Patients with platelet count >50 x 10⁹/mm³***	14 (19.4%)

ICU, intensive care unit; DVT, deep venous thrombosis; Hb, hemoglobin; IQR, interquartile range; INR, international normalized ratio; APTT, activated partial thromboplastin time; *Plateau pressure during volume-controlled ventilation, peak airway pressure during pressure-controlled ventilation; **Inappropriate use of blood product based on the laboratory values; the clinical context was not available with increased ICU mortality. Analgesia, sedation, and delirium are infrequently monitored, and the use of capnography after tracheal intubation is uncommon, suggesting scope for improvements in
Table 7: Multivariable analysis for independent predictors of mortality

Predictor	p	Odds ratio for ICU mortality	95% CI (lower)	95% CI (upper)
Biopsy-proven cirrhosis	0.000	2.523	1.815	3.508
Medical admission (vs surgical admission)	0.000	2.081	1.547	2.800
Mechanical ventilation	0.000	1.707	1.441	2.022
Vasopressors or inotropes	0.000	1.587	1.317	1.913
Any cancer	0.000	1.567	1.236	1.986
Infection on the study day	0.031	1.404	1.032	1.910
Closed ICU (vs open ICU)	0.002	1.398	1.131	1.727
Hospital size (≥500 beds vs 1–499 beds)	0.000	1.355	1.143	1.607
SOFA score	0.000	1.077	1.039	1.117
APACHE II score	0.000	1.044	1.029	1.058

a. Variable not significant: age, immunosuppressive therapy, presence of heart failure, dialysis-dependent, sepsis, need for RRT, adequately equipped, respiratory system dysfunction or failure, ICU teaching, number of ICU beds

CI, confidence interval; ICU, intensive care unit; SOFA, sequential organ failure assessment; APACHE, acute physiology and chronic health evaluation

Table 8: ICU and patient characteristics and outcomes in INDICAPS and INDICAPS-II

Characteristic	INDICAPS	INDICAPS-II	Remarks
Number of ICUs	120	132	
Number of patients	4,038	4,669	
Age (years) (mean ± SD)	54.1 ± 17.1	56.9 ± 17.4	
Male patients (%)	66.1	63.7	
APACHE II score	17.4 ± 9.2	16.7 ± 9.8	
SOFA score (mean ± SD)	3.8 ± 3.6	4.4 ± 3.6	
ICU stay, days (median, IQR)	6 [3–13]	6 [3–13]	
Patients dying in ICU (%)	13.5	15.8	
Terminal discharges (%)	4.5	7.6	
Total ICU mortality (%)	18.1	23.4	
Open ICUs (%)/patients in open ICUs (%)	74.2/78.0	84.8/84.4	
Mixed medical-surgical ICUs (%)/patients in mixed medical-surgical ICUs (%)	80.8/83.1	81.8/87.4	
ICUs with >20 beds (%)/patients in ICUs with >20 beds (%)	25.0/37.0	49.2/68.1	
Hospitals with ≥500 beds (%)/patients in hospitals with ≥500 beds (%)	35/46.6	36.4/47.5	
ICUs with nurse:patient ratio <1:2 (%)/patients in ICUs with nurse:patient ratio <1:2 (%)	30.8/45.6	34.1/25.8	
Public hospital ICUs (%)/patients in public hospital ICUs (%)	10.8/9.7	4.5/2.4	
ICUs with a postgraduate teaching program in intensive care (%)/patients in ICUs with a postgraduate teaching program in intensive care (%)	39.2/64.9	72.0/82.6	
Adequately equipped ICUs (%)/patients in adequately equipped ICUs (%)	67.5/87.4	47.0/61.1	Criteria for adequately equipped ICUs were different between the two studies
Self-paying patients, (%)	80.5	64.5	
Medical or nonoperative patients	77.1	85.5	
Patients with suspected or confirmed infection on the study day (%)	36.0	25.6	
Sepsis and/or septic shock during ICU stay (%)	28.3	29.3	Criteria for diagnosis of sepsis were different between the two studies

(Contd...)

Author Contributions

Conception or design of the work: Jigeeshu V Divatia, Yatin Mehta, Deepak Govil, Kapil Zirpe, Pravin R Amin, Nagarajan Ramakrishnan, Farhad N Kapadia, Subhash K Todi.

Acquisition, analysis, or interpretation of data for the work: Jigeeshu V Divatia, Yatin Mehta, Deepak Govil, Kapil Zirpe, Pravin R Amin, Nagarajan Ramakrishnan, Farhad N Kapadia, Mrinal Sircar, Samir Sahu, Pradip K Bhattacharya, Sheila N Myatra, Srinivas Samavedam, Subhal Dixit, Rajesh K Pande, Sujata N Mehta, Ramesh Venkatraman, Khusra Bajan, Vivek Kumar, Rahul Harne, Leelavati Thakur, Darshana Rathod, Prachee Sathe, Sushma Gurav, Carol D’Silva, Shaik A Pasha, Subhash K Todi.

Drafting the work or revising it critically for important intellectual content: All authors.

Final approval of the version to be published: All authors.

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: All authors.
Table 8: (Contd…)

Characteristic	INDICAPS	INDICAPS-II	Remarks
Poisoning or overdose	3.1	1.5	
Invasive mechanical ventilation (%)	31.1	24.1	
ICU mortality in patients receiving invasive mechanical ventilation (%)	35.6	44.4	
Patients receiving renal replacement therapy (%)	12.0	9.3	
ICU mortality in patients receiving renal replacement therapy (%)	31.5	41.7	
Patients receiving vasopressors/inotropes (%)	22.2	22.2	
ICU mortality in patients receiving vasopressors/inotropes (%)	36.1	44.0	
Invasive blood pressure monitoring (%)	19.5	25.4	
Central venous catheter inserted (%)	34.6	34.3	
Blood lactate measured (%)	11.3	31.6	

INDICAPS, Indian intensive care unit case-mix and practice patterns study; ICU, intensive care unit; APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment

ORCID

Jigeeshu V Divatia https://orcid.org/0000-0001-7384-4886
Yatin Mehta https://orcid.org/0000-0002-0888-4774
Deepak Govil https://orcid.org/0000-0002-4624-1614
Kapil Zipre https://orcid.org/0000-0002-8140-727X
Pravin R Amin https://orcid.org/0000-0002-9865-2829
Nagarajan Ramakrishnan https://orcid.org/0000-0001-5208-4013
Farhad N Kapadia https://orcid.org/0000-0003-1837-1144
Mrinal Sircar https://orcid.org/0000-0002-2199-3318
Samir Sahu https://orcid.org/0000-0003-1246-3187
Pradip Kumar Bhattacharya https://orcid.org/0000-0002-0219-385X
Sheila Nainan Myatra https://orcid.org/0000-0001-6761-163X
Srinivas Samavedam https://orcid.org/0000-0001-6737-8663
Subhal Dixit https://orcid.org/0000-0002-1441-0807
Rajesh Kumar Pande https://orcid.org/0000-0002-0149-727X
Sujata N Mehta https://orcid.org/0000-0003-0306-538X
Ramesh Venkataraman https://orcid.org/0000-0003-1949-3979
Khusrav Bajran https://orcid.org/0000-0002-7339-4288
Vivek Kumar https://orcid.org/0000-0002-6914-5422
Rahul Harne https://orcid.org/0000-0002-0178-2628
Leelavati Thakur https://orcid.org/0000-0002-1592-7592
Darshana Rathod https://orcid.org/0000-0002-5446-6768
Prachee Sathe https://orcid.org/0000-0002-1236-1669
Sushma Gurav https://orcid.org/0000-0001-6875-2071
Carol D'Silva https://orcid.org/0000-0002-3920-1366
Shaik Anif Pasha https://orcid.org/0000-0001-6314-8473
Subhash Kumar Todi https://orcid.org/0000-0003-2306-6080

Supplementary Material

All the supplementary material from Supplementary tables 1–5 are available online on the website of www.IJCCM.org

References

1. Divatia JV, Amin PR, Ramakrishnan N, Kapadia FN, Todj S, Sahu S, et al. Intensive care in India: The Indian intensive care case mix and practice patterns study. Indian J Crit Care Med 2016;20(4):216–225. DOI: 10.4103/0972-5229.180042.
2. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991;100:1619–1636. DOI: 10.1378/chest.100.6.1619.
3. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13(10):818–829.
4. Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001;286(14):1754–1758. DOI: 10.1001/jama.286.14.1754.
5. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016;315(8):858–873. DOI: 10.1001/jama.2016.0287.
6. Mani RK. End-of-life care in India. Intensive Care Med 2006;32:1066–1068. DOI: 10.1007/s00134-006-0185-7.
7. Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 2018;46(9):e825–e873. DOI: 10.1097/CCM.0000000000003299.
8. Aruna Ramachandra Shanbag vs the Union of India & Ors. WRIT Petition (CRIMINAL) No. 115 of 2009 (Supreme Court of India Proceedings); 2009.
9. Ramakrishnan N, Ranganathan L, Abraham BK, Rajagopalan S, Venkataraman R. What happens to patients discharged against medical advice? Indian J Crit Care Med 2018;22(8):580–584. DOI: 10.4103/ijccm.IJCCM_101_18.
10. Brilli RJ, Spervitz A, Branson RD, Campbell GM, Cohen H, Dasta JF, et al. Critical care delivery in the intensive care unit: Defining clinical roles and the best practice model. Crit Care Med 2001;29(10):2027–2019. DOI: 10.1097/00003246-200110000-00026.
11. Critical care delivery in intensive care units in India: defining the functions, roles and responsibilities of a consultant intensivist: recommendations of the Indian Society of Critical Care Medicine Committee on defining the functions, roles and responsibilities of a consultant intensivist. Available from: https://isccm.org/pdf/ISCCM%20Intensivist%20guidelines.pdf [Last cited on June 07, 2021].
12. Rungta N, Zirpe KG, Dixit SB, Mehta Y, Chaudhry D, Govil D, et al. Indian Society of Critical Care Medicine experts committee consensus statement on ICU planning and designing. 2020. Indian J Crit Care Med 2020;24(Suppl. 1):S43–S60. DOI: 10.5005/jp-journals-10071-G23185.
13. Checkley W, Martin GS, Brown SM, Chang SY, Dabbagh O, Fremant RD, et al. Structure, process, and annual ICU mortality across 69 centers: United States critical illness and injury trials group critical illness outcomes study. Crit Care Med 2014;42(2):344–356. DOI: 10.1097/CCM.0b013e3182a75d7.
14. Kashyap R, Vashistha K, Saini C, Dutt T, Raman D, Bansal V, et al. Critical care practice in India: results of the intensive care unit need assessment survey (INN2018). World J Crit Care Med 2020;9(2):31–42. DOI: 10.5492/wjccm.v9i2.31.
15. Kartik M, Gopal PBN, Amr R. Quality indicators compliance survey in Indian intensive care units. Indian J Crit Care Med 2017;21(4):187–191. DOI: 10.4103/ijccm.IJCCM_164_15.
16. Levy MM, Rapoport J, Lemeshow S, Chalfin DB, Phillips G, Danis M. Association between critical care physician management and patient mortality in the intensive care unit. Ann Intern Med 2008;148(11):801–809. DOI: 10.7326/0003-4819-148-11-200806030-00002.

17. Sakr Y, Moreira CL, Rhodes A, Ferguson ND, Kleinpell R, Pickkers P, et al. The impact of hospital and ICU organizational factors on outcome in critically ill patients: results from the extended prevalence of infection in intensive care study. Crit Care Med 2015;43(3):519–526. DOI: 10.1097/CCM.0000000000000754. PMID: 25479111.

18. Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and Outcomes of infection among patients in intensive care units in 2017. JAMA 2020;323(15):1478–1487. DOI: 10.1001/jama.2020.2717. PMID: 32207816; PMCID: PMC7093816.

19. Cook TM, Woodall N, Harper J, Benger J; Fourth National Audit Project. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments. Br J Anaesth 2011;106(5):632–642. DOI: 10.1093/bja/aer059.
APPENDIX

INDICAPS-II Investigators

Neeraj Kumar, Amarjeet Kumar, All India Institute of Medical Sciences, Patna
Dipak Kumar Agarwal, Sarat Kumar Behera, AMRI Hospital, Bhubaneswar
Susruta Bandyopadhyay, Rajarshi Roy; AMRI Hospital, Salt Lake, Kolkata
Samir Sahu, Rajeshree Nandy; AMRI Hospitals, Bhubaneswar
Sushmita Basu; AMRI Hospitals, Mukundapur, Kolkata
Subhash Kumar Todi, Saswati Sinha; AMRI, Dhakuria, Kolkata
Lawn Goswami; Apollo Gleneagles Hospital, Kolkata
Manoj Kumar Singh, Jay Kothari; Apollo Hospital International Ltd, Ahmedabad
Vilas Kushare, Pravin Tajane, Apollo Hospitals, Nashik
Banambar Ray, Sharmili Sinha, Saroj Pattnaik; Apollo Hospitals, Bhubaneswar
Nagarajan Ramakrishnan, Ramesh Venkataraman; Apollo Hospitals, Chennai
Reshma Tewari, Sujan Dey; Artemis Health Institute, Gurugram
Ruchira Khasne, Ashoka Medcover Hospital, Nashik
Prasanna Kumar Mishra, Sampat Dash; Ashwini Hospital, Cuttack
Sandip Bhattacharyya; Asian Institute of Medical Sciences, Faridabad
Vandana Sinha, Anup Jyoti Dutta; Ayurveda Superspeciality Hospital, Guwahati
Praveen Kumar Koppula, Krishna Prabhakar Kasam, Basanth Kumar Rayani, Abhijit Sukumaran Nair; Basavataraakam Indo American Cancer Hospital and Research Institute, Hyderabad
Jignesh Navinchandra Shah, Prashant Jedge; Bharati Vidyapeeth Medical College and Research Institute, Pune
Amol Hartalkar; BKL Walawalkar Rural Medical College and Hospital, Chiplun
Rajesh Kumar Pande, Abhishek Vishnu; BLK Superspeciality Hospital, Delhi
Pravin R Amin, Sujata N Mehta; Bombay Hospital and Medical Research Centre, Mumbai
Kalpesh Bhoyar, Joanne Mascarenhas; Breach Candy Hospital, Mumbai
Madhusudan R Jaju; CARE Hospital, Nampally, Hyderabad
Venkat Raman Kola, Hariprasad; Care Hospital Banjara Hills, Hyderabad
T Mohan S Maharaj, Lakshmi Rani Takkellapati; Care Hospitals, Visakhapatnam
Sunil T Pandya, Kiran M; Century Super Speciality Hospital, Hyderabad
Akshay Shrivastava, Pallavi Shrivastava; Chirayu Hospital, Rewa
Pradip K Bhattacharya, Nimita Deora; Chirayu Medical College and Hospital, Bhopal
Anand Sanghi; Choithram Hospital and Research Centre, Indore
Abhishek Samprathi, Kishore Pichamuthu; Christian Medical College, Vellore
Bhagyesh Shah, Shuchi Kaushik; CIMS Hospital, Ahmedabad
Palepu B Gopal, Ch. Balasubrahmanyam; Continental Hospitals, Hyderabad
Deepak Jeswani, Deepti Jeswani; Criticare Hospital and Research Institute, Nagpur
Shruti Sharma, Gunchhan Paul; Dayanand Medical College and Hospital, Ludhiana
Prasad Rajhans, Safal Sable; Deenanath Mangeshkar Hospital, Pune
Chaitri Shah, JD Lakhani; Dhiraj Hospital SBKSMIRC, Vadodara
Arpita Dwivedy, Pritemea Channa; Dr LH Hiranandani Hospital, Mumbai
Vaibhav Bhargava, Pramod Sarwa, Kishore Mangal, Yatendra Kumar Gupta; Eternal Hospital, Jaipur
Vivek Nangia, Amina Mobashir; Fortis Hospital, Vasant Kunj, New Delhi
Minraj Sircar, Saurabh Mehra; Fortis Hospital, Noida
Arun Kumar, Amit Kumar Mandal; Fortis Hospital, Mohali
VK Thakur; Paras HMR Hospital, Patna
Sandeept Patil; Fortis Hospitals, Kalyan
Bhushan Kinholkar; Galaxy Care Hospital, Pune
Neeta Bose, Dhara Tanna; GMERS Gotri Medical College, Vadodara
Bhavik V Shah, Priyanka Khatri; HCG Hospitals, Ahmedabad
Nischil H Patel, Sanjoy Joseph George; Holy Family Hospital, Thodupuzha, Kerala
Sanghamitra Mishra, Basanta Kumar Pati; IMS and SUM Hospital, Bhubaneswar
Rajesh Chawla, Sudha Kansal; Indraprastha Apollo Hospitals, New Delhi
Atul Kumar Singh, Sulakshana; Institute of Medical Sciences, BHU, Varanasi
Leelavati Thakur; IQ City Medical College and Narayana Multi-Speciality Hospital, Durgapur
Shruti Tandan, Varun Deshmukh; Jaslok Hospital, Mumbai
Gyanendra Agrawal, Deepak Singhal; Jaypee Hospital, Noida
Narendra Rungta, Neena Rungta; JNU Institute of Medical Sciences and Research Center, Jaipur
Om Prakash Shrivastava, Satnam Singh; Kothari Medical and Research Institute, Bikaner
Vivek Kumar, Srinivasan Ramanathan; Lilavati Hospital and Research Centre, Mumbai
Dipak Aghara, Jayendra Aghara; Mangalam Hospital, Morbi
Rajesh Mohan Shetty, Manjunath Thimmappa; Manipal Hospital Whitefield, Bengaluru
Shantanu Belwal, Bhupesh Uniyal, Rekha Gupta, Mudit Garg; Max Superspeciality Hospital, Dehradun
Yatin Mehta, Deepak Govil, Shaleen Bhatnagar, Chitra Mehta, Prashant Kumar, Tariq Ali, Rahul Harne; Medanta–The Medicity, Gurgaon
Payel Bose, Saurabh Debnath; Medica Superspeciality Hospital, Kolkata
Lalit Singh, Nipun Agrawal; Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly
Ajay A Bulle; Meditrina Institute of Medical Sciences, Nagpur
Ajit Annachatre, Yogesh Belapurkar; Mahatma Gandhi Mission's Medical College and MCRI Superspeciality Hospital, Aurangabad
Kanwalpreet Sohdi, Harmanpreet Kaur; Deep Hospital, Ludhiana
AS Ansari, Sourabh Phadtare, Ranjit Sousa, Minal Jariwala, Yuti Sheth, Gunjan Chanchalani; Nanavati Superspeciality Hospital, Mumbai
Harish Mallapurap Maheshwarappa, Ramya BM; Narayana Hrudayalaya, Bengaluru
Sachin Gupta, Deeksha Singh Tomar; Narayana Superspeciality Hospital, Gurugram
Indoor Particle Levels in the ICU: A Review of Literature

Rajeev Pratap Singh, MD; St John's Medical College Hospital, Bengaluru
Utpal Sarma, Vinod Mishra; Nayati Medicity, Mathura
Sultana Teslima Begum, Ajit Deka; NMC Hospital, Guwahati
Sunita Bini Varghese, Ajit Yadav; Niramaya Hospital, Pune
Shaik Arif Pasha, V Chittaranjan Naidu, Lakshmi Prasannam; NRI Medical College and General Hospital, Guntur
Pankaj Patil; Ozone Multispeciality Hospital, Akola
Farhad N Kapadia, Khusrav Bajan; PD Hinduja National Hospital and MRC, Mumbai
Ajoy Krishna Sarkar; Peerless Hospital, Kolkata
Diptimala Agarwal; Pushpanjali Hospital, Agra
Simant Kumar Jha, Shiv Kumar; Pushpawati Singhania Research Institute, New Delhi
Kapil Zirpe, Sushma Gurav, Prajakta Wankhede, Prachee Sathe, Prashant Sakhavalkar, TR Jadhav; Ruby Hall Clinic, Pune
Shilpa Kulkarni, Saurabh Shaha; Ruby Hall Clinic, Pune
Sanjith Saseedharan, Roopa Karanam; SL Raheja Hospital, Mumbai; Promise Jain; Shree Shree Hospital, Shree
Subhal Dixit, Priyanka Khalate; Sanjeevan Hospital, Pune
Nikhil Ajmera, Geetesh Mangal; Santokba Durlabhji Memorial Hospital, Jaipur
AS Arunkumar, Kalaiselvan MS; Saveetha Medical College and Hospital, Chennai
A Mohana Rao, V Kuchela Babu; Sevenhills Hospital, Visakhapatnam
Vishal Sadatia, Tushar Patel; Shree Giriraj Multi-Speciality Hospital, Rajkot
Abhishek Prajapati, Deepak S Sharma; Shree Krishna Hospital, Anand
Krutika Tandon; Shree Krishna Hospital, Karamsad
Nitinkumar B Agarwal, Basavraj Pujari; Shri Ganpatlal Agarwal Memorial Ayush Multi-Speciality Hospital and Research Center, Bijapur
Sudhir Khunteta; Shubh Hospital, Jaipur
Darshana Rathod; Sir H N Reliance Foundation Hospital, Mumbai
Ankur Bhavsar; Spandan Multispeciality Hospital, Vadodara
NK Vinod, Bharath KV; Sri Shankara Cancer Hospital and Research Center, Bengaluru
Carol Dsilva, Bhuvana Krishna; St John's Medical College Hospital, Bengaluru
Harjit Dumra, Mansi Dandnaik; Sterling Hospital, Ahmedabad
Anand V Joshi; Sunshine Hospitals, Gachibowli, Hyderabad
Nirmal Jaiswal, Shivam Chopra; Suretech Hospital, Nagpur
Ranvir Singh Tyagi, Rakesh Kumar Tyagi; Synergy Plush Hospital, Agra
Milap Mashru, Jayeshkumar Dobariya; Synergy Multi Superspeciality Hospital, Rajkot
Jigeeshu V Divatia, Sheila Nainan Myatra, Atul P Kulkarni, Anjana Shrivastava, Amit Narkhede; Tata Memorial Hospital, Mumbai
Bharat Jagiasi, Pallavi Patekar; Terna Speciality Hospital and Research Centre, Navi Mumbai
Shyam Sunder Tipparaju, Yalavarthy Swathi; Thumbay Hospital, Hyderabad
Himansu Sekhar Mishra, N Srinivas; Vikas Multispeciality Hospital, Bargah
Srinivas Samavedam, Narmada Aluru; Virinchi Hospital, Hyderabad