Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade

B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G. Seidah, E. Decroly

UNITÉ DES VIRUS ÉMERGENTS (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France

Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, Affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada

ARTICLE INFO

Keywords:
2019-nCoV
SARS-CoV
Spike protein
Maturation protease
Furin
Antivirals

ABSTRACT

In 2019, a new coronavirus (2019-nCoV) infecting Humans has emerged in Wuhan, China. Its genome has been sequenced and the genomic information promptly released. Despite a high similarity with the genome sequence of SARS-CoV and SARS-like CoVs, we identified a peculiar furin-like cleavage site in the Spike protein of the 2019-nCoV, lacking in the other SARS-like CoVs. In this article, we discuss the possible functional consequences of this cleavage site in the viral cycle, pathogenicity and its potential implication in the development of antivirals.

Human coronaviruses (CoV) are enveloped positive-stranded RNA viruses belonging to the order Nidovirales, and are mostly responsible for upper respiratory and digestive tract infections. Among them SARS-CoV and MERS-CoV that spread in 2002 and 2013 respectively, have been associated with severe human illnesses, such as severe pneumonia and bronchiolitis, and even meningitis in more vulnerable populations (de Wit et al., 2016). In December 2019, a new CoV (2019-nCoV) has been detected in the city of Wuhan, and this emerging viral infection was associated with severe human respiratory disease with a ~2–3% fatality rate (Li et al., 2020). The virus that was presumed to have initially been transmitted from an animal reservoir to humans possibly via an amplifying host. However human-to-human transmission has been reported, leading to a sustained epidemic spread with >31,000 confirmed human infections, including >640 deaths, reported by the WHO in early February 2020. The estimated effective reproductive number (R) value of ~2.90 (95%: 2.32–3.63) at the beginning of the outbreak raises the possibility of a pandemic (Zhao et al., 2020). This prompted WHO to declare it as a Public Health Emergency of International Concern. This is especially relevant because so far there are no specific antiviral treatments available or vaccine. Based on its genome sequence, 2019-nCoV belongs to lineage b of Betacoronavirus (Fig. 1A), which also includes the SARS-CoV and bat CoV ZXC21, the latter and CoV ZC45 being the closest to 2019-nCoV. 2019-nCoV shares ~76% amino acid sequence identity in the Spike (S)-protein sequence with SARS-CoV and 80% with CoV ZXC21 (Chan et al., 2020). In this article, we focus on a specific furin-like protease recognition pattern present in the vicinity of one of the maturation sites of the S protein (Fig. 1B) that may have significant functional implications for virus entry.

The proprotein convertases (PCs; genes PCSKs) constitute a family of nine serine secretary proteases that regulate various biological processes in both healthy and disease states (Seidah and Prat, 2012). By proteolysis, PCs are responsible for the activation of a wide variety of precursor proteins, such as growth factors, hormones, receptors and adhesion molecules, as well as cell surface glycoproteins of infectious viruses (Seidah and Chretien, 1999) (Table 1). Seven PCs cleave precursor proteins at specific single or paired basic amino acids (aa) within the motif (R/K)-(2X)n-(R/K), where n = 0, 1, 2, or 3 spacer aa (Seidah and Chretien, 1999). Because of their role in the processing of many critical cell surface proteins PCs, especially furin, have been implicated in viral infections. They have the potential to cleave specifically viral envelope glycoproteins, thereby enhancing viral fusion with host cell membranes (Izaguirre, 2019; Moulard and Decroly, 2000). In the case of human-infecting coronaviruses such as HCoV-OC43 (Le Coupanc et al., 2015), MERS-CoV (Millet and Whittaker, 2014), and HKU1 (Chan et al., 2008) the spike protein has been demonstrated to be cleaved at an S1/S2 cleavage site (Fig. 2) generating the S1 and S2 subunits. The above three viruses display the canonical (R/K)-(2X)n-(R/K)↓ motif (Table 1). Additionally, it has been demonstrated that variation around the viral envelope glycoprotein cleavage site plays a role in cellular tropism and pathogenesis. For instance, the pathogenesis of some CoV
has been previously related to the presence of a furin-like cleavage site in the S-protein sequence. For example, the insertion of a similar cleavage site in the infectious bronchitis virus (IBV) S-protein results in higher pathogenicity, pronounced neural symptoms and neurotropism in infected chickens (Cheng et al., 2019).

Similarly, in the case of influenza virus, low-pathogenicity forms of influenza virus contain a single basic residue at the cleavage site, which is cleaved by trypsin-like proteases and the tissue distribution of the activating protease(s) typically restricts infections to the respiratory and/or intestinal organs (Sun et al., 2010). Conversely, the highly pathogenic forms of influenza have a furin-like cleavage site cleaved by different cellular proteases, including furin, which are expressed in a wide variety of cell types allowing a widening of the cell tropism of the virus (Kido et al., 2012). Furthermore the insertion of a multibasic motif REKRRK at the H5N1 hemagglutinin HA cleavage site was likely associated with the hyper-virulence of the virus during the Hong Kong 1997 outbreak (Claas et al., 1998). This motif exhibits the critical Arg at P1 and basic residues at P2 and P4, as well as P6 and P8 and an aliphatic Leu at P2' positions (Table 1) (Schechter and Berger, 1968), typical of a furin-like cleavage specificity (Braun and Sauter, 2019; Izaguirre, 2019; Seidah and Prat, 2012).

The coronavirus S-protein is the structural protein responsible for the crown-like shape of the CoV viral particles, from which the original name “coronavirus” was coined. The ~1200 aa long S-protein contains several conserved domains and motifs

Table 1

Comparative sequences of envelope protein cleavage site(s) in coronaviruses (above) and in other RNA viruses (below). Empty boxes: no consensus motif detected.

Coronavirus	S1/S2, site 1	S1/S2, site 2	S2'	
2019-nCoV	SRRRRR	IATIINS	SKFSRRR	SF
CoV-ZXC21	TASILRTI	IATIINS	SKFSRRR	SF
Bat-AC45	TASILRTI	IATIINS	SKFSRRR	SF
SARS-CoV	TSVLKLRTI	IATIINS	LEKFSRRR	SF
BM48-31	SSTLRLQQG	IATIINS	LEKFSRRR	SF
HKU9-1	ADILFRQLQG	VNTLVVL	GATYRSLA	
MERS-CoV	TEFSCRHVVG	GSRARRSA		
HKU1	SRRRRR	SISA	CSRRRR	SF
HCoV-OC43	KNRKRR	GASTT	SKASSRSLA	
HCoV-229E	IAQQPR	MVSGYD	SRVACSRLA	
HCoV-NL63	IPYRRR	NSIDN	SRIAGSRLA	

Fig. 1. Characterization of an nCoV-peculiar sequence at the S1/S2 cleavage site in the S-protein sequence, compared SARS-like CoV. (A) Phylogenetic tree of selected coronaviruses from genera alphacoronavirus (α-Cov) and betacoronavirus (β-Cov), lineages a, b, c and d: 2019-nCoV (NC_045512.2), CoV-ZXC21 (MG772934), SARS-CoV (NC_004718.3), SARS-like BM4821 (MG772934), HCoV-Oc43 (AY391777), HKU9-1 (EF065513), HCoV-NL63 (KF530114.1), HCoV229E (KF514433.1), MERS-CoV (NC019843.3), HKU1 (NC_006577.2). The phylogenetic tree was obtained on the Orf1ab amino acid sequence using the Maximum Likelihood method by Mega X software. Red asterisks indicate the presence of a canonical furin-like cleavage motif at site 1; (B) Alignment of the coding and amino acid sequences of the S-protein from CoV-ZXC21 and 2019-nCoV at the S1/S2 site. The 2019-nCoV-specific sequence is in bold. The sequence of CoV-ZXC21 S-protein at this position is representative of the sequence of the other betacoronaviruses belonging to lineage b, except the one of 2019-nCoV. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 2. Schematic representation of the human 2019-nCoV S-protein with a focus on the putative maturation sites. The domains were previously characterized in SARS-CoV and MERS-CoV: Signal peptide (SP), N-terminal domain (NTD), receptor-binding domain (RBD), fusion peptide (FP), internal fusion peptide (IFP), heptad repeat 1/2 (HR1/2), and the transmembrane domain (TM). The SP, S1/S2 and S2′ cleavage sites are indicated by arrows. The sequence of different CoV S1/S2 and S2′ cleavage sites were aligned using Multalin webserver (http://multalin.toulouse.inra.fr/multalin/) with manual adjustments and the figure prepared using ESPript 3 (http://esprit.ibcp.fr/ES Pript/ESPript/) presenting the secondary structure of SARS-CoV S-protein at the bottom of the alignment (PDB 5X58)(Yuan et al., 2017). Insertion of furin like cleavage site is surrounded by a black frame. Red asterisks indicate the presence of a canonical furin-like cleavage motif at the S1/S2 site. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
exposed P
innovation programme under grant agreement No 871029. This furin-like cleavage site, is supposed to be cleaved during virus egress (Mille and Whittaker, 2014) for sustained inhibition, deserve to be rapidly tested to assess their some toxicity. Accordingly, it is likely that such small molecule in-
hibitor form a complex with furin (Dahms et al., 2017). As furin-like dideoxystreptamine-derived inhibitor, where two molecules of the in-
hibitors of furin-like enzymes may contribute to inhibiting virus propagation.

A variety of approaches have been proposed to inhibit furin activity to limit tumour growth, viral and bacterial infection. Thus, a variant of the naturally occurring serine protease inhibitor α-antitrypsin harbouring a consensus furin cleavage, called α1-antitrypsin Portland (α1-PDX), inhibits furin and prevents the processing of HIV-1 Env (Anderson et al., 1993). The addition of a chloromethylketone (CMK) moiety to the C-terminus of a polybasic cleavage motif and a decanoyl group at the N-terminus to favour cell penetration (de-RVKR-cmk) irreversibly blocked the enzymatic activity of furin, PC7, PC5, PACE4 and PC7 (Decroly et al., 1996; Garten et al., 1994). Finally, the eluci-
dation of the crystal structure of furin resulted in the design of a 2,5-
dideoxystreptamine-derived inhibitor, where two molecules of the in-
hibitor form a complex with furin (Dahms et al., 2017). As furin-like enzymes are involved in a multitude of cellular processes, one im-
portant issue would be to avoid systemic inhibition that may result in some toxicity. Accordingly, it is likely that such small molecule in-
hibitors, or other more potent orally active ones, possibly delivered by inhalation and exhibiting a slow dissociation rate from furin to allow for sustained inhibition, deserve to be rapidly tested to assess their antiviral effect against 2019-nCoV.

Acknowledgments

This work was supported by a CIHR Foundation grant # 148363 (NGS), a Canada Research Chairs in Precursor Proteolysis (NGS; # 950-231335), and by the European Virus Archive Global (BCo; EVA GLOBAL) funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871029.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.antiviral.2020.104742.

References

Anderson, E.D., Thomas, L., Hayflick, J.S., Thomas, G., 1993. Inhibition of HIV-1 p160-
dependent membrane fusion by a furin-directed α1-antitrypsin variant. J. Biol. Chem. 268, 24887–24891.
Bassi, D.E., Zhang, J., Renner, C., Klein-Szanto, A.J., 2017. Targeting protease
convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol. Carcinog. 56, 1182–1188. https://doi.org/10.1002/mc.22550.
Bosch, B.J., Bartelink, W., Rottier, P.J.M., 2008. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 82, 8887–8890. https://doi.org/10.1128/JVI.00415-08.
Braun, E., Sauter, D., 2019. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 8, e01073. Chan, C.M., Woo, P.C., Lau, S.K., To, H., Chen, L.L., Li, F., Zheng, B.J., Chen, L., Huang, J.D., Yuen, K.Y., 2008. Spike protein, S, of human coronavirus HKU1: role in viral life cycle and application in antibody detection. Exp. Biol. Med. 233, 1527–1536. https://doi.org/10.1177/1089999008314142.
Chan, J.F., Kok, K.H., Zhu, Z., Chiu, H., To, K.K., Yuen, S., Yuen, K.Y., 2020. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microb. Infect. 9, 2238. https://doi.org/10.1101/2020.02.06.949622.
Cheng, J., Zhao, Y., Xu, G., Zhang, K., Jia, W., Sun, Y., Zhao, J., Xue, J., Hu, Y., Zhang, G., 2019. The S2 subunit of Xc-type insecticidal coronavirus spike protein is an essential determinant of neurotropism. Viruses 11. https://doi.org/10.3390/v11070972.
Claas, E.C., Osterhaus, A.D., Van Ree, B., De Jong, J.C., Rimmelzwaan, G.F., Senne, D.A., Krauss, S., Shotton, R.C., Webster, R.G., 1998. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477. https://doi.org/10.1016/S0140-6736(98)05450-5.
Dahms, S.O., Jiao, G.-S., Than, M.E., 2017. Structural studies revealed active site dis-
tortions of human furin by a small molecule inhibitor. ACS Chem. Biol. 12, 2474. https://doi.org/10.1021/acschembio.7b00631.
Decroly, E., Wouters, S., Di Bello, C., Lazuz, C., Ryschaevsky, J.-M., Seidah, N.G., 1996. Identification of the Pairing Based Convertases Implicated in HIV gp160 Processing Based on in Vitro Assays and Expression in CD4+ Cell Lines. J. Biol. Chem. 271, 30442–30450. https://doi.org/10.1074/jbc.271.48.30442.
Foster, C.M., van Doremalen, N., Falzarano, D., Munster, V.J., 2016. SARS and MERS: recent insights into emerging coronaviruses. Nat. Publ. Gr. https://doi.org/10.1038/nmic.2016.81.
Kuhn, J.H., Li, W., Moore, M.J., Vasllieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Kleek, H.D., 1994. Processing of viral glycoproteins by the subtilisin-like en-
doprotease furin and its inhibition by specific peptidechloroalkylketones. Biochimie 76, 217–225. https://doi.org/10.1016/S0006-3495(94)80019-x.
Kim, W., Zekas, E., Lodge, R., Suasan-Resiga, D., Esalami, R., Mihara, K., Matsuura, K., Grandmand, R., Abas, F.A., Power, H., Gaddum, J.M., Seidah, N.G., 2015. Neuroinflammation-Induced Interactions between pro-
tease-activated receptor 1 and proprotein convertases in HIV-associated neuro-
progressive disorder. Mol. Cell Biol. 35, 3684–3700. https://doi.org/10.1128/mcb.01245-15.
Li, F., Li, W., Choe, H., Farzan, M., 2004. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell. Mol. Life Sci. 61, 2738–2743. https://doi.org/10.1007/s00018-004-4242-5.
Li, W., Moore, M.J., Thomas, L., Hayflick, J.S., Thomas, G., 1993. Inhibition of HIV-1 p160-
dependent membrane fusion by a furin-directed α1-antitrypsin variant. J. Biol. Chem. 268, 24887–24891.
Liu, G., Wang, L., Gao, G.F., 2015. Bat-to-human: spike features determining host jump in severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 89, 2487–2491. https://doi.org/10.1128/jvi.01167-14.
Lu, G., Wang, Q., Gao, G.F., 2015. Bat-to-human: spike features determining host jump in severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 89, 8887–8890. https://doi.org/10.1128/JVI.00415-08.
Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., 2010. Angiotensin-converting enzyme 2 and application in antibody detection. Exp. Biol. Med. 233, 1527–1536. https://doi.org/10.1177/1089999008314142.
mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. U.S.A. 102, 12543–12547. https://doi.org/10.1073/pnas.0503203102.

Mbikay, M., Sirois, F., Yao, J., Seidah, N.G., Chrétien, M., 1997. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Canc. 75, 1509–1514. https://doi.org/10.1038/bjc.1997.258.

Mille, J.K., Whitaker, G.R., 2014. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. U.S.A. 111, 15214–15219. https://doi.org/10.1073/pnas.1407087111.

Millet, J.K., Whitaker, G.R., 2015. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202, 120–134. https://doi.org/10.1016/j.virusres.2014.11.021.

Millet, J.K., Whitaker, G.R., 2014. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. U.S.A. 111, 15214–15219. https://doi.org/10.1073/pnas.1407087111.

Moulard, M., Decroly, E., 2000. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim. Biophys. Acta Rev. Biomembr. https://doi.org/10.1016/S0304-4157(00)00014-9.

Schechter, I., Berger, A., 1968. On the active site of proteases. 3. Mapping the active site of papain: specific peptide inhibitors of papain. Biochem. Biophys. Res. Commun. 32, 898–902. https://doi.org/10.1016/0006-291x(68)90326-4.

Seidah, N.G., Chrétien, M., 1999. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45–62. https://doi.org/10.1016/S0006-8993(99)01909-5.

Seidah, N.G., Prat, A., 2012. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd3699.

Sun, X., Tse, L.V., Ferguson, A.D., Whitaker, G.R., 2010. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J. Virol. 84, 8683–8690. https://doi.org/10.1128/JVI.00797-10.

Wan, Y., Shang, J., Graham, R., Baric, R.S., Li, P., 2020. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J. Virol. https://doi.org/10.1128/JVI.00127-20.

Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., Zhang, X., Guo, G.F., 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. https://doi.org/10.1038/ncomms15092.

Zhao, S., Ran, J., Musa, S.S., Yang, G., Wang, W., Lou, Y., Gao, D., Yang, L., He, D., Wang, M.H., 2020. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis 30053–30059. https://doi.org/10.1016/j.ijid.2020.01.050.