Element Abundance Determination in Hot Evolved Stars

Klaus Werner

Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, University of Tübingen, Sand 1, 72076 Tübingen, Germany,

werner@astro.uni-tuebingen.de

Summary. The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

1 Introduction

The chemical evolution of the Universe is driven by the nucleosynthesis of elements in stars. Evolved stars return a significant fraction of their mass to the interstellar medium. This matter is enriched with heavy elements which were produced in the stellar interior and dredged-up to the surface by convective motions. For quantitative modeling of galactic chemical evolution it is crucial to know the stellar yields of chemical elements, i.e., how much metals are produced by which stars. Yields are computed from stellar evolution models, however, several uncertainties in modeling can strongly affect the yields. Among the most serious problems are mixing processes (convection) and some particular nuclear reaction rates. One solution to these problems is a comparison of predicted surface abundances with observations. Quantitative spectroscopy is therefore a powerful tool to calibrate free modeling parameters, e.g., those associated with convective overshoot.

This paper is restricted to evolved low-mass stars, or to be more precise, to hot post-AGB stars. About 95% of all stars in our Galaxy end their life
as a white dwarf. These low- and intermediate-mass stars ($\approx 1-8 \, M_{\odot}$) roughly produce 50% of the metal yields, mainly during the phase of AGB evolution in combination with strong radiatively-driven mass loss. We demonstrate here that quantitative abundance analyses of particular elements in post-AGB stars provide valuable insight into AGB-star nucleosynthesis processes.

We further confine our paper to very hot hydrogen-deficient post-AGB stars. The reason is that these particular objects offer the unique possibility to directly access the nucleosynthesis products. Why do we concentrate on hot stars, i.e., those having $T_{\text{eff}} \approx 100 000 \, \text{K}$? This is because the spectra of cooler objects are wind-contaminated. These are the Wolf-Rayet type central stars of planetary nebulae and their atmospheres are much more difficult to model. In addition, very weak spectral features from rare elements can be smeared out by atmospheric motion and become undetectable. We also exclude from our studies hot white dwarfs and subdwarf O/B stars, because their nucleosynthesis history was wiped out by diffusion effects in their atmospheres.

2 Quantitative spectral analysis of PG1159 stars

We report on our work on PG1159 stars, a group of 40 extremely hot hydrogen-deficient post-AGB stars [10]. Their effective temperatures (T_{eff}) range between 75 000–200 000 K. Many of them are still heating up along the constant-luminosity part of their post-AGB evolutionary path in the HRD ($L \approx 10^4 \, L_{\odot}$) but most of them are already fading along the hot end of the white dwarf cooling sequence (with $L \gtrsim 10 \, L_{\odot}$). Luminosities and masses are inferred from spectroscopically determined T_{eff} and surface gravity ($\log g$) by comparison with theoretical evolutionary tracks. The position of analysed PG1159 stars in the “observational HR diagram”, i.e. the T_{eff}–$\log g$ diagram, are displayed in Fig. 1. The high-luminosity stars have low $\log g$ (≈ 5.5) while the low-luminosity stars have a high surface gravity (≈ 7.5) that is typical for white dwarf (WD) stars. The derived masses of PG1159 stars have a mean of 0.62 M_{\odot}, a value that is practically identical to the mean mass of WDs. The PG1159 stars co-exist with hot central stars of planetary nebulae and the hottest hydrogen-rich (DA) white dwarfs in the same region of the HR diagram. About every other PG1159 star is surrounded by an old, extended planetary nebula.

What is the characteristic feature that discerns PG1159 stars from “usual” hot central stars and hot WDs? Spectroscopically, it is the lack of hydrogen Balmer lines, pointing at a H-deficient surface chemistry. The proof of H-deficiency, however, is not easy: The stars are very hot, H is strongly ionized and the lack of Balmer lines could simply be an ionisation effect. In addition, every Balmer line is blended by a Pickering line of ionized helium. Hence, only detailed modeling of the spectra can give reliable results on the photospheric composition. The high effective temperatures require non-LTE modeling of the atmospheres. Such models for H-deficient compositions have only become
The first quantitative spectral analyses of optical spectra from PG1159 stars indeed confirmed their H-deficient nature \[17\]. It could be shown that the main atmospheric constituents are C, He, and O. The typical abundance pattern is C=0.50, He=0.35, O=0.15 (mass fractions). It was speculated that these stars exhibit intershell matter on their surface, however, the C and O abundances were much higher than predicted from stellar evolution models. It was further speculated that the H-deficiency is caused by a late He-shell flash, suffered by the star during post-AGB evolution, laying bare the intershell layers. The re-ignition of He-shell burning brings the star back onto the AGB,
Fig. 2. Complete stellar evolution track with an initial mass of 2 M⊙ from the main sequence through the RGB phase, the HB to the AGB phase, and finally through the post-AGB phase that includes the central stars of planetary nebulae to the final WD stage. The solid line represents the evolution of a H-normal post-AGB star. The dashed line shows a born-again evolution of the same mass, triggered by a very late thermal pulse, however, shifted by approximately $\Delta \log T_{\text{eff}} = -0.2$ and $\Delta \log L/L_\odot = -0.5$ for clarity. The “⋆” shows the position of PG1159-035 [16].

giving rise to the designation “born-again” AGB star [8]. If this scenario is true, then the intershell abundances in the models have to be brought into agreement with observations. By introducing a more effective overshoot prescription for the He-shell flash convection during thermal pulses on the AGB, dredge-up of carbon and oxygen into the intershell can achieve this agreement [7]. Another strong support for the born-again scenario was the detection of neon lines in optical spectra of some PG1159 stars [15]. The abundance analysis revealed Ne=0.02, which is in good agreement with the Ne intershell abundance in the improved stellar models.

If we accept the hypothesis that PG1159 stars display former intershell matter on their surface, then we can in turn use these stars as a tool to investigate intershell abundances of other elements. Therefore, these stars offer the unique possibility to directly see the outcome of nuclear reactions and mixing processes in the intershell of AGB stars. Usually the intershell is kept hidden below a thick H-rich stellar mantle and the only chance to obtain information about intershell processes is the occurrence of the 3rd dredge-up. This indirect view of intershell abundances makes the interpretation of the nuclear
and mixing processes difficult, because the abundances of the dredged-up elements may have been changed by additional burning and mixing processes in the H-envelope (e.g., hot-bottom burning). In addition, stars with an initial mass below 1.5 M_{\odot} do not experience a 3rd dredge-up at all.

We note that the central stars of planetary nebulae of spectral type [WC] are believed to be immediate progenitors of PG1159 stars, representing the evolutionary phase between the early post-AGB and PG1159 stages. This is based on spectral analyses of [WC] stars which yield very similar abundance results. We do not discuss the [WC] stars here because the analyses of trace elements are much more difficult or even impossible due to strong line broadening in their rapidly expanding atmospheres.

3 Three different late He-shell flash scenarios

The course of events after the final He-shell flash is qualitatively different depending on the moment when the flash starts. We speak about a very late thermal pulse (VLTP) when it occurs in a WD, i.e. the star has turned around the “knee” in the HR diagram and H-shell burning has already stopped (Fig. 2). The star expands and develops a H-envelope convection zone that eventually reaches deep enough that H-burning sets in (also called hydrogen-ingestion flash). Hence H is destroyed and whatever H abundance remains, it will probably be shed from the star during the “born-again” AGB phase. A late thermal pulse (LTP) denotes the occurrence of the final flash in a post-AGB star that is still burning hydrogen, i.e., it is on the horizontal part of the post-AGB track, before the “knee”. In contrast to the VLTP case, the bottom of the developing H-envelope convection zone does not reach deep enough layers to burn H. The H-envelope (having a mass of about $10^{-4} M_{\odot}$) is mixed with a few times $10^{-3} M_{\odot}$ intershell material, leading to a dilution of H down to about H=0.02, which is below the spectroscopic detection limit. If the final flash occurs immediately before the star departs from the AGB, then we talk about an AFTP (AGB final thermal pulse). In contrast to an ordinary AGB thermal pulse the H-envelope mass is particularly small. Like in the LTP case, H is just diluted with intershell material and not burned. The remaining H abundance is relatively high, well above the detection limit (H \sim 0.1).

There are three objects, from which we believe to have witnessed a (very) late thermal pulse during the last \approx 100 years. FG Sge suffered a late flash in 1894. The star became rich in C and rare earth elements. It most probably was hit by an LTP, not a VLTP, because it turned H-deficient only recently (if at all, this is still under debate). As of today, FG Sge is located on or close to the AGB.

V605 Aql experienced a VLTP in 1917. Since then, it has quickly evolved back towards the AGB, began to reheat and is now in its second post-AGB phase. It has now an effective temperature of the order 100 000 K and is H-deficient.
Sakurai’s object (V4334 Sgr) also experienced a VLTP, starting around 1993 [3]. It quickly evolved back to the AGB and became H-deficient. Recent observations indicate that the reheating of the star already began, i.e., its second departure from the AGB might just have begun.

The spectroscopic study of FG Sge and Sakurai’s object is particularly interesting, because we can observe how the surface abundances change with time. The stars are still cool, so that isotopic ratios can be studied from molecule lines [12] and abundances of many metals can be determined. The situation is less favorable with the hot PG1159 stars: All elements are highly ionised and for many of them no atomic data are available for quantitative analyses. On the other hand, in the cool born-again stars the He-intershell material is once again partially concealed.

4 Comparison of observed and predicted abundances

Abundance analyses of PG1159 stars are performed by detailed fits to spectral line profiles. Because of the high T_{eff} all species are highly ionized and, hence, most metals are only accessible by UV spectroscopy. Optical spectra always exhibit lines from HeII and CIV. Only the hottest PG1159 stars display additional lines of N, O, and Ne (Nv, Ovi, Nevii). For all other species we have utilized high-resolution UV spectra that were taken with the *Hubble Space Telescope* (HST) and the *Far Ultraviolet Spectroscopic Explorer* (FUSE). FUSE allowed observations in the Lyman-UV range ($\approx 900–1200 \, \text{Å}$) that is not accessible with HST, and this turned out to be essential for most results reported here.

A number of chemical elements could be identified (F, P, S, Ar). In addition, very high ionisation stages of several elements, which were never seen before in stellar photospheric spectra, could be identified in the UV spectra for the very first time (e.g. SiV, SiVI, NeVIII). To illustrate this, we display in Figs. 3–6 details of FUSE and HST spectra of PG1159 stars of particularly interesting wavelength regions, together with synthetic line profile fits.

Hydrogen – Four PG1159 stars show residual H with an abundance of 0.17. These objects are the outcome of an AFTP. All other PG1159 stars have H $\lesssim 0.1$ and, hence, should be LTP or VLTP objects.

Helium, carbon, oxygen – These are the main constituents of PG1159 atmospheres. A large variety of relative He/C/O abundances is observed. The approximate abundance ranges are: He=0.30–0.85, C=0.15–0.60, O=0.02–0.20. The spread of abundances might be explained by different numbers of thermal pulses during the AGB phase.

Nitrogen – N is a key element that allows us to decide if the star is the product of a VLTP or a LTP. Models predict that N is diluted during an LTP so that in the end N=0.1%. This low N abundance is undetectable in the optical and only detectable in extremely good UV spectra. In contrast, a VLTP produces nitrogen (because of H-ingestion and burning) to an amount of 1% to maybe...
Fig. 3. Detail from FUSE spectra of two relatively cool PG1159 stars. Note the following features. The FVI 1139.5 Å line which is the first detection of F at all in a hot post-AGB star; the PVI resonance doublet at 1118.0 and 1128.0 Å, the first discovery of P in PG1159 stars; the NIV multiplet at 1132 Å. Also detected are lines from SiIV and S VI. The broader features stem from CIV and OVI [13].

a few percent. N abundances of the order 1% are found in some PG1159 stars, while in others it is definitely much lower.

Neon – Ne is produced from 14N that was produced by CNO burning. In the He-burning region, two α-captures transform 14N to 22Ne. Stellar evolution models predict Ne=0.02 in the intershell. A small spread is expected as a consequence of different initial stellar masses. Ne=0.02 was found in early optical analyses of a few stars and, later, in a much larger sample observed with FUSE [19].

Fluorine – F was discovered by [20] in hot post-AGB stars; in PG1159 stars as well as H-normal central stars. A strong absorption line located at 1139.5 Å remained unidentified until we found that it stems from FVI. The abundances derived for PG1159 stars show a large spread, ranging from solar to up to 250 times solar. This was surprising at the outset because 19F, the only stable F isotope, is very fragile and easily destroyed by H and He. A comparison with AGB star models of [11], however, shows that such high F abundances in the intershell can indeed be accumulated by the reaction 14N(α,γ)18F(β+)18O(p,α)15N(α,γ)19F, the amount depending on the stellar mass. We find a good agreement between observation and theory. Our results also suggest, however, that the F overabundances found in AGB stars [10] can only be understood if the dredge-up of F in the AGB stars is much more efficient than hitherto thought.

Silicon – The Si abundance in evolution models remains almost unchanged. This is in agreement with the PG1159 stars for which we could determine the Si abundance.
Phosphorus – Systematic predictions from evolutionary model grids are not available; however, the few computed models show P overabundances in the range 4–25 times solar (Lugaro priv. comm.). This is at odds with our spectroscopic measurements for two PG1159 stars, that reveal a solar P abundance.

Sulfur – Again, model predictions are uncertain at the moment. Current models show a slight (0.6 solar) underabundance. In strong contrast, we find a large spread of S abundances in PG1159 stars, ranging from solar down to 0.01 solar.

Argon – This element has been identified very recently for the first time in hot post-AGB stars and white dwarfs [21]. Among them is one PG1159 star for which a solar Ar abundance has been determined (Fig. 5). This is in agreement with AGB star models which predict that the Ar abundance remains almost unchanged.

Lithium – Unfortunately, PG1159 stars are too hot to exhibit Li lines because Li is completely ionised. If Li were detected then it must have been produced during a VLTP. The discovery of Li in Sakurai’s star is a strong additional hint that it underwent a VLTP and not an LTP.

Iron and Nickel – Fe VII lines are expected to be the strongest iron features in PG1159 stars. They are located in the UV range. One of the most surprising results is the non-detection of these lines in three PG1159 stars examined (K1-16, NGC 7094, PG1159-035; see, e.g., Fig. 6). The derived upper abundance limits (e.g., [18, 9]) indicate that iron is depleted by about 0.7–2 dex, depending on the particular object. Iron depletions were also found for the PG1159-[WC] transition object Abell 78 as well as for several PG1159 progenitors, the [WC] stars. Such high Fe depletions are not in agreement with current AGB models. Destruction of 56Fe by neutron captures is taking place in the AGB star intershell as a starting point of the s-process; however, the resulting depletion of Fe in the intershell is predicted to be small (about 0.2 dex). It could be that additional Fe depletion can occur during the late thermal pulse. In any case, we would expect a simultaneous enrichment of
nickel, but up to now we were unable to detect Ni in PG1159 stars at all. While the solar Fe/Ni ratio is about 20, we would expect a ratio close to the s-process quasi steady-state ratio of about 3. Fittingly, this low ratio has been found in Sakurai’s (cool) LTP object.

Trans-iron elements – The discovery of s-process elements in PG1159 stars would be highly desirable. However, this is at present impossible due to the lack of atomic data. From the ionization potentials we expect that these elements are highly ionised like iron, i.e., the dominant ionization stages are \text{vi} – \text{ix}. To our best knowledge, there are no laboratory measurements of so highly ionised s-process elements that would allow us to search for atomic lines in the observed spectra. Such measurements would be crucial to continue the element abundance determination beyond the current state.

5 Conclusions

It has been realized that PG1159 stars exhibit intershell matter on their surface, which has probably been laid bare by a late final thermal pulse. This provides the unique opportunity to study directly the result of nucleosynthesis and mixing processes in AGB stars. Spectroscopic abundance determinations of PG1159 photospheres are in agreement with intershell abundances predicted by AGB star models for many elements (He, C, N, O, Ne, F, Si, Ar). For other elements, however, disagreement is found (Fe, P, S) that points at possible weaknesses in the evolutionary models.

Acknowledgement. I thank the conference organizers for travel support and particularly for their kind hospitality and assistance.
Fig. 6. Left: The high spectral resolution of HST/STIS allows us to distinguish the photospheric N\textsc{v} resonance doublet from the weak blueshifted ISM components. This enabled the first reliable N abundance determination in the prototype PG1159-035 [9]. Right: From the absence of Fe\textsc{vii} lines in the FUSE spectrum a Fe deficiency is concluded. Model spectra were computed with solar and 0.1 solar Fe [9].

References

1. Blöcker, T. 1995, A&A, 299, 755
2. Clayton, G. C. & De Marco, O. 1997, AJ, 114, 2679
3. Duerbeck, H. W. & Benetti, S. 1996, ApJ Lett., 468, L111
4. Gonzalez, G., Lambert, D. L., Wallerstein, et al. 1998, ApJS, 114, 133
5. Hamann, W.-R. 1997, IAU Symp. 180, ed. H. J. Habing & H. J. G. L. M. Lamers (Kluwer), 91
6. Herwig, F. 2003, IAU Symp. 209, ed. S. Kwok, M. Dopita, & R. Sutherland, ASP, 111
7. Herwig, F., Blöcker, T., Langer, N., & Driebe, T. 1999, A&A, 349, L5
8. Iben, Jr., L., Kaler, J. B., Truran, J. W., & Renzini, A. 1983, ApJ, 264, 605
9. Jahn, D., Rauch, T., Reiff, E., Werner, K., Kruk, J. W., & Herwig, F. 2007, A&A, 462, 281
10. Jorissen, A., Smith, V. V., & Lambert, D. L. 1992, A&A, 261, 164
11. Lugato, M., Ugalde, C., Karakas, A. I., et al. 2004, ApJ, 615, 934
12. Pavlenko, Ya. V., Geballe, T. R., Evans, A., et al. 2004, A&A, 417, L39
13. Reiff, E., Rauch, T., Werner, K., Kruk, J. W., & Herwig, F. 2007, in 15th European Workshop on White Dwarfs, eds. R. Napiwotzki, M.R. Burleigh, ASP Conference Series, 372, 237
14. Schönberner, D. 1983, ApJ, 272, 708
15. Werner, K. & Rauch, T. 1994, A&A, 284, L5
16. Werner, K. & Herwig, F. 2006, PASP, 118, 183
17. Werner, K., Heber, U., & Hunger, K. 1991, A&A, 244, 437
18. Werner, K., Deetjen, J. L., Dreizler, S., et al. 2003, IAU Symp. 209, ed. S. Kwok, M. Dopita, & R. Sutherland, ASP, 169
19. Werner, K., Rauch, T., Reiff, E., Kruk, J. W., & Napiwotzki, R. 2004, A&A, 427, 685
20. Werner, K., Rauch, T., & Kruk, J. W. 2005, A&A, 433, 641
21. Werner, K., Rauch, T., & Kruk, J. W. 2007a, A&A, 466, 317
22. Werner, K., Rauch, T., & Kruk, J. W. 2007b, A&A, 474, 591
23. Wood, P. R. & Faulkner, D. J. 1986, ApJ, 307, 659