Invasive Aspergillosis in Children: Update on Current Guidelines

Athanasia Apsemidou1, Nikolaos Petridis1, Timoleon-Achilleas Vyzantiadis2 and Athanasios Tragiannidis3.

1 Department of Internal Medicine, Papanikolaou General Hospital, Thessaloniki, Greece.
2 Microbiology Laboratory, Aristotle University of Thessaloniki, Greece.
3 Pediatrics-Pediatric Hematology-Oncology, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki.

Competing interests: The authors have declared that no competing interests exist.

Abstract. Invasive aspergillosis (IA) is an important cause of infectious morbidity and mortality in immunocompromised paediatric patients. Despite improvements in diagnosis, prevention, and treatment, IA is still associated with high mortality rates. To address this issue, several international societies and organisations have proposed guidelines for the management of IA in the paediatric population. In this article, we review current recommendations of the Infectious Diseases Society of America, the European Conference on Infection in Leukaemia and the European Society of Clinical Microbiology and Infectious Diseases for the management and prevention of IA in children.

Keywords: Invasive aspergillosis, Paediatric, Immunosuppression.

Introduction. Invasive fungal infections (IFI) caused by the mould of the genus *Aspergillus* are an important cause of morbidity and mortality in immunocompromised children, mainly including those with cancer or those who had to undergo hematopoietic stem cell transplantation (HSCT).1,8 A three- to fourfold increase in the incidence of invasive Aspergillosis infections (IAI) during the past decade has been reported, which is suggested to be correlated with more invasive treatment methods and the survival rate of immunocompromised patients. During 2000, the annual incidence of IAI was 437/100,000 (0.4%) among hospitalized immunosuppressed children in the United States, while almost 75% of the patients had an underlying malignancy.2,9-10 This at-risk population for invasive aspergillosis (IA) is comprised mainly of patients with prolonged granulocytopenia, haematologic malignancies, allogeneic HSCT recipients, solid organ transplantation (SOT) recipients, patients treated with glucocorticosteroids. Patients with refractory or relapsed acute leukemia in the reinduction are at high risk for IA. The highest incidence rates in a single-center study were found in pediatric patients with de novo or recurrent acute myeloid leukemia (AML) (28% each), recurrent acute lymphoblastic leukemia (ALL) (9%), and de novo ALL (2%).1,6,11,12

According to a large contemporary study, *Aspergillus fumigatus* is the predominant isolate, as in adults, followed by *Aspergillus flavus* and *Aspergillus terreus*, while the lungs are the most frequently infected site, followed by disseminated disease.1,3,13 Especially in the pediatric population, primary cutaneous aspergillosis has been reported.
and associated with a favorable prognosis.4,14,15 \textit{A. fumigatus} seems to be the most common species isolated in the pulmonary infections, while \textit{A. flavus} is predominantly found in skin infections.3

Despite improvements in antifungal prevention and treatment, IA is related to high mortality rates, which are historically ranging from 52.5\%-85\% in children with cancer, while the overall fatality rate of pediatric patients with IA who had to undergo allogeneic HSCT ranges from 45\%-80\% in different studies.3-6,8,16-20 In children with acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) IAI increases the mortality rate 5-fold for AML and 14-fold for ALL.2 The observation from the literature reveals that the overall mortality before 1990 was 82.8\%, while is reported to be 39.5\% after it.21

In this review article, the International guidelines for the management of Aspergillosis disease published in the last three years are summarized and compared. Among other national and international guidelines in this review are compared the guidelines of the Infectious Diseases Society of America (IDSA), the European Conference on Infection in Leukaemia (ECIL) and the ESCMID (European Society of Clinical Microbiology and Infectious Diseases) - ECCM (European Confederation of Medical Mycology) - ERS (European Respiratory Society) guidelines.12,22,23 The methodologies used by the three expert groups are quite similar. IDSA guidelines published in 2016 focus on adults and issue specific recommendations for children because of their different drug dosage and pharmacology, while recommend using the same treatment approach as in adults.12 Of note, the ECIL group focuses on pediatric patients with cancer and HSCT recipients.22 Additionally, the ECIL group issues guidelines for diagnosis, prevention, and management of invasive opportunistic fungal diseases (IFDs) and not strictly for IA, whereas ESCMID-ECMM-ERS experts group issues guidelines specifically for the prevention, diagnostic procedure, and management of aspergillosis in adults and pediatric population.22,23 The strength of recommendation and the quality of evidence vary between the different working groups except for the ECIL group that adopted the grading system suggested by the IDSA for adults, whereas the important differences existing for pediatric patients were considered.22 The IDSA expert group also provides guidance on how the factors that could increase or decrease the quality of evidence should be weight and regarding the strength of a recommendation if the benefits of following it are likely to outweigh potential harms.12 Differentiations in methodology, scope and patients populations between these guidelines are shown in Table 1.

Diagnosis of IA in Children. Recommendations regarding the diagnosis of IA in children have been proposed by the ECIL, ESCMID-ECMM-ERS and IDSA expert groups.12,22,23 All the guidelines recommend that early recognition and rapid initiation of effective treatment are key to the control of the infection and that the diagnosis should be based on the integration of clinical, radiological and microbiological data. Both microscopy and culture should be attempted on specimens received from patients at risk for IA as mandated by clinical findings, although there are difficulties in obtaining the appropriate specimen, the long-time of culturing and the low (50\%) sensitivity of the diagnostic value of the culture.12,22-30

Galactomannan (GM) is a heteropolysaccharide, cell-wall component released by all \textit{Aspergillus} spp that can be detected in the serum and bronchoalveolar lavage (BAL) samples by an enzyme immunoassay with high specificity and sensitivity in pediatric patients, although false-positive results can occur for various reasons.31-45 GM testing has a lower sensitivity for use in non-neutropenic patients and those who have received mold-active prophylaxis.46,47 Although there is a limited number of studies evaluating the use of GM assay in pediatric patients, the combined sensitivity and specificity of the five pediatric studies that used EORTC/MSG criteria and included adequate information for individual patients were comparable to adults.34,36,48-51 Blood GM testing in diagnosing invasive aspergillosis is strongly recommended by the ESCMID-ECMM-ERS group for use in prolonged neutropenic patients with underlying hematological malignancy and for monitoring patients with cancer, while the same recommendations are proposed for children. Additionally, serial screening for GM in blood in neutropenia and HSCT recipients in the absence of mould prophylaxis has a high sensitivity and negative predictive value for IA in a clinical and imaging context. The Further to this, the IDSA and
Table 1. Comparison of the methodology of guidelines for IA in children.

Population	IDSA	ECIL	ESCMID-ECMM-ERS
Children (prolonged neutropenia HSCT, SOT, corticosteroid use, inherited or acquired immunodeficiency)	Pediatric hematological patients, HSCT recipients	Children (hematological malignancies, solid tumours, HSCT)	

Published Evidence search Strength of recommendation	2016 IDSA/SPGC	2014 EBM/T/EORTC/ELN/ICHS	2017 EFISG
2016 IDSA/SPGC	A: good evidence to support a recommendation for or against use	As IDSA	As IDSA
	B: moderate evidence to support a recommendation for or against use		
	C: poor evidence to support a recommendation for or against use		

Quality of evidence	I: evidence from at least one well-executed randomised trial	As IDSA	I: evidence from at least 1 properly designed randomized, controlled trial (orientated on the primary endpoint of the trial)
II: evidence from at least one well-designed non-randomised clinical trial; cohort or case–controlled analytical studies	II: evidence from at least 1 well-designed clinical trial (incl. secondary endpoints), without randomization; from cohort or case-controlled analytic studies (preferably from >1 center); from multiple time series; or from dramatic results of uncontrolled experiments		
III: evidence from opinions of respected authorities, based on clinical experience, descriptive studies, or reports from expert committees	Evidence from opinions of respected authorities, based on clinical experience, descriptive case studies, or reports of expert committees		

ECIL. European Conference on Infection in Leukaemia; ESCMID, European Society of Clinical Microbiology and Infectious Diseases; IDSA, Infectious Diseases Society of America; HSCT, haematopoietic stem cell transplant; IA, invasive aspergillosis; EORTC, European Organization for Research and Treatment of Cancer; IDSA/SPGC, Infectious Diseases Society of America (IDSA)/Standards and Practice Guidelines Committee (SPGC); EFISG, European Fungal Infection Study Group (EFISG) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID); ELN, European Leukemia Network; ICHS, International Immunocompromised Host Society; EBMT, European Group for Bone Marrow Transplantation.

The ECIL group strongly recommend the serum and BAL GM as an accurate marker in children with hematologic malignancy and HSCT recipients, but not in SOT recipients and in children who have received mold-active prophylaxis. Finally, a limited amount of data also suggest the usefulness of GM testing in the cerebrospinal fluid (CSF) of children with involvement of the CNS.

The presence of (1→3)-β-D-glucan in serum signifies the presence of fungal invasion but is not specific for *Aspergillus* spp, as it could also be positive in candidiasis, fusariosis, and *Pneumocystis jirovecii* pneumonia. The β-D-glucan test is not validated yet in children, while higher baseline levels are reported in healthy children, and therefore the cut-off is yet unknown. As a result, no evidence-based recommendations can be made for children, only a proposal for the evaluation of β-D-glucan in high-risk adults with hematological malignancy and allogeneic HSCT.

Regarding the diagnostic value of nucleic acid testing the three groups, ECIL, ESCMID-ECMM-ERS, and IDSA group do not make any recommendation in the pediatric population due to the absence of standardization and validation of the PCR assays results. Nevertheless, polymerase chain reaction (PCR) based diagnostic methods in blood or serum are currently evaluated for inclusion as a diagnostic method in the MSG/EORTC consensus group criteria. Of note, in a recent study in which 71 pediatric patients were evaluated, the sensitivity and specificity of PCR were 80% and 81% respectively. Typical abnormalities (e.g., halo sign, air crescent sign) on CT-chest as described in adults are less frequent in children in which masses or
infiltrates predominate. Due to the scarcity of evidence in persistently febrile neutropenic children with cancer and proven pulmonary IA, there are no strong recommendations from either of the three groups.

Nevertheless, in high-risk children with febrile neutropenia persistent for more than 96 h or with focal clinical findings, imaging studies such as a CT are moderately recommended by the ECIL group, as they should provide evidence for the initiation of mould-active treatment.

Regarding the diagnosis of invasive pulmonary aspergillosis, the IDSA group recommend the performing of bronchoscopy with BAL(A-II), while comorbidities such as severe hypoxemia, bleeding, and platelet transfusion-refractory thrombocytopenia may be considered.

Differences in the strength of the recommendation and the quality of evidence regarding the non-cultural diagnostic methods for diagnosis of IA in children between these groups are shown in Table 2.

Table 2. Comparison of the strength of recommendation and quality of evidence in non-culture diagnostic methods for diagnosis of IA in children.

	IDSA	ECIL	ESCMID-ECMM-ERS
GM in serum and BAL and CFS	A-I Diagnostic tool of IA in children with cancer or HSCT, not recommended for screening in patients in mold-active therapy or prophylaxis, SOT recipients, patients with CGD, could be applied to bronchoscopy specimens from those patients	A-II Prospective monitoring and screening of GM in serum 2/week in children with cancer or HSCT at high risk for IA, not in anti-mould prophylaxis, B-III GM in BAL as a diagnostic tool, B-III GM in CSF	A-I GM in blood Prospective screening for IA in prolonged neutropenia and HSCT recipients not on mold-active prophylaxis, A-II for diagnosis of IA in neutropenic children with hematological malignancy, B-II non-neutropenic, C-II ICU and SOT patients A-II monitoring patients with cancer, GM for diagnosis of IA in BAL, B-II GM for diagnosis in CSF
β-D-glucan in serum	No specific recommendations and no grading	No specific recommendations and no grading	No specific recommendations and no grading
PCR in blood and serum	A-II PCR assays results considered in conjunction with other diagnostic tests and the clinical context	No specific recommendations and no grading	No specific recommendations and no grading
CT-chest	No specific recommendations and no grading	B-II In high-risk children with febrile neutropenia persistent more than 96 h or with focal clinical findings, B-II typical and non-typical pulmonary infiltrates should prompt further diagnostic work-up and initiation of mould-active antifungal treatment	No specific recommendations and no grading

ECIL, European Conference on Infection in Leukaemia; ESCMID, European Society of Clinical Microbiology and Infectious Diseases; IDSA, Infectious Diseases Society of America; HSCT, haematopoietic stem cell transplantation; IA, invasive aspergillosis; GM, galactomannan; PCR, polymerase chain reaction; CSF, cerebrospinal fluid; BAL, bronchoalveolar lavage; SOT, solid organ transplant; CGD, chronic granulomatous disease.

Treatment and Prophylaxis of Invasive Aspergillosis. Although likely to adults, pediatric patients are susceptible to IAIs; relevant differences exist in the epidemiology and underlying conditions, performance and usefulness of diagnostic methods, pharmacology and dosing of systemic antifungal agents, and the availability of evidence generated by interventional phase III studies. Recommendations for paediatric patients are based on efficacy in phase II and III trials in adults, the availability of paediatric pharmacokinetic data, safety data, supportive efficacy data and regulatory approval. For diagnostic interventions, referenced above, the ECIL group used the adult data as supportive and not as major evidence for useful performance in
children. Therapeutic drug monitoring (TDM) is recommended when mould-active azoles are used as prophylaxis or treatment in children, due to the much higher rates of drug elimination and pharmacokinetic variability.

Primary prophylaxis. Guidelines for the prevention of IA in children are released only by the ESCMID-ECMM-ERS and ECIL experts group. As a general principle, these guidelines recommend the use of antifungal agents as primary prophylaxis in pediatric patients at ‘high risk’ for developing IA. High risk populations include children with de novo or recurrent leukaemia (AML, ALL), bone marrow failure syndromes with profound and prolonged neutropenia (MDS, aplastic anaemia), allo-HSCT recipients, patients with chronic granulomatous disease and those undergoing lung transplantation. Additionally, the local epidemiology should be considered when designing an appropriate institutional prophylaxis strategy.

Two randomised studies of antifungal prophylaxis compared micafungin and voriconazole, respectively, to fluconazole in the setting of allogeneic HSCT, while paediatric patients were making up about 10% of all enrolled participants. Thus, these two studies provided important randomised safety data for micafungin and voriconazole. Further to this, a large number of retrospective and prospective studies have been done with various mould-active and mould non-active agents. Due to the scarcity of paediatric data, recommendations for lung and liver transplant patients correspond to those made for adults.

ESCMID-ECMM-ERS guidelines strongly recommend (A-II) voriconazole (>2 years, supported by HSCT trials and studies) and posaconazole (>13 years, supported by pediatric data) plus TDM as a prophylaxis for allo-HSCT recipients, in the pre or the post-engraftment phase or with graft versus host disease (GvHD) or with augmented immunosuppression, in high risk paediatric patients with de novo or recurrent leukaemia, with bone marrow failure syndromes with prolonged and severe neutropenia. In addition to this, this expert group strongly recommends itraconazole with TDM (approved EU only for patients older than 18 years) in allo-HSCT recipients in the pre-engraftment phase, in high-risk patients with de novo or recurrent leukaemia, with bone marrow failure syndromes with neutropenia. Whereas, there is moderate evidence for recommendation of this agent in allo-HSCT recipients in post-engraftment phase, with GvHD and in augmented immunosuppression.

Liposomal Amphotericin B is not approved for prophylaxis, only as an alternative agent in case of triazoles are not tolerated or contra-indicated. Further to this, there is no definite evidence for the prophylactic efficacy of micafungin against Aspergillus spp, only as an alternative agent in the same cases as above. Liposomal Amphotericin B and micafungin have a low quality of evidence for recommendation in allo-HSCT recipients in the post-engraftment phase, with GvHD and in augmented immunosuppression (B-III). Finally, the ESCMID-ECMM-ERS group suggests as a prophylactic strategy for patients with CGD the use of itraconazole and posaconazole with TDM (both not approved in EU for patients <18 years, although for posaconazole safety data exist for children ≥ four years, but not yet approved).

ECIL guidelines suggest three different group of pediatric patients: a) allogeneic HSCT recipients without GVHD b) allogeneic HSCT recipients with GVHD and c) patients with de novo or recurrent leukaemia.

In the first group the ECIL recommends the use of antifungal agents as prophylaxis during the granulocytopenic phase until engraftment (B-II) and after the engraftment in the absence of GvHD until discontinuation of immunosuppression (no grading), including moderate recommendation of voriconazole (children aged>2 years, supported by pharmacokinetic, safety, and efficacy data in paediatric patients) and itraconazole (not approved in children aged <18 years, also supported by pharmacokinetic, safety, and efficacy data in paediatric patients). Liposomal amphotericin B, as also the ESCMID-ECMM-ERS guidelines suggested, is not approved for prophylaxis of IA. It is approved as an alternative option for patients who do not tolerate triazoles or have contraindications to them (supported by pharmacokinetic, safety, and efficacy data in paediatric patients), while aerosolised liposomal amphotericin B is not either approved for prevention, due to the unknown of the appropriate
dosage schedule in children<18 years. 22,23,138–140 Finally, regarding posaconazole there is no grading in the ECIL group guidelines because of the limited pharmacokinetic data in children aged ≥13 years, in contrast to the ESCMID-ECMM-ERS guidelines which strongly recommend it with TDM for children>13 years. 22,23,141

In the second group, in the presence of GvHD treated with augmented immunosuppressive agents (including glucocorticosteroids or anti-inflammatory antibodies), prevention against IAIs is recommended (A-II) by the ECIL guidelines. 22

The recommended options are: posaconazole plus TDM for patients aged >13 years (B-I), voriconazole plus TDM for patients aged>2 years(B-I), whereas the ESCMID-ECMM-ERS groups strongly recommend these agents. 22,23

Additionally, itraconazole plus TDM is also recommended(C-II) for this group of patients. Other options may include intravenous liposomal amphotericin B and micafungin (no grading). 22

Finally, in the third group suggested by the ECIL guidelines, specifically in high-risk patients with de-novo or recurrent acute leukaemia, primary prophylaxis against Aspergillus spp should be considered (B-II). The prevention may include itraconazole with TDM (B-I, in children aged ≥2 years), although it is not approved for children<18 years, posaconazole plus TDM in patients aged 13 years or older (B-I) and intravenous liposomal amphotericin B (B-II) as an alternative option for patients who do not tolerate triazoles or have contraindications to them. Other possible options include aerosolised liposomal amphotericin B, micafungin, and voriconazole with TDM (no grading because of inferences for efficacy from studies in the HSCT recipients). 22

The concomitant use of itraconazole, posaconazole, and voriconazole with vincristine and other anticancer agents should be carefully considered. 114,138,142,143

Guidelines for the prevention of IA in children are not released by the IDSA group. 12

The strength of recommendation, the quality of evidence, the indication and the dosage of the antifungal agents recommended as primary prophylaxis by the two expert groups are shown in Table 3.

\textit{Secondary prophylaxis}. There are a limited number of studies about the term secondary antifungal chemoprophylaxis, but the available data suggest an IFD relapse rate of 30–50% in leukemia or allogeneic HSCT settings. 140 Data in paediatric patients are limited to a prospective study, which evaluated 11 adolescents with acute leukaemia and a history of antecedent possible or probable IA who received intravenous liposomal amphotericin B followed by oral voriconazole during and after allogeneic HSCT. In the absence of GvHD, two breakthrough infections occurred that were correlated with recurrent leukaemia and refractory graft failure. 144

On the basis of these data and other existing data from adults, secondary antifungal prophylaxis or continued antifungal treatment is recommended by the ECIL guidelines, targeted against the previous Aspergillus species, for as long as the patient is neutropenic or immunosuppressed (A-II). 22,145 Nevertheless, no recommendations about the duration of therapy and the extent of patient’s response before the continuation of anticancer regimens or initiation of the treatment for allogeneic HSCT could be made by the ECIL group due to the lack of data (no grading). 22

The ESCMID-ECMM-ERS group also proposes that secondary prophylaxis to prevent recurrence of IA in children when risk factors are persisting should consist of an antifungal agent targeted at the previous Aspergillus species which caused the first episode. 23

The IDSA guidelines for the secondary prevention of IA in children are the same as for adults. For patients with successfully treated pulmonary aspergillosis who require subsequent immunosuppression, secondary prophylaxis is recommended to prevent recurrence (A-II). 12

\textit{Targeted (first-line) treatment of IA in children}. Despite improvements in diagnosis, prevention, and treatment, IA is still associated with high mortality rates among children. 6,146,147 In the Children’s Cancer Group (CCG) Phase III AML chemotherapy trial CCG 2961, the incidence of IFIs in children with AML was 13% per treatment phase and almost one-third of the documented IFI were caused by Aspergillus spp and the mortality rate of IA ranged from 15% to 57%, depending on the phase of chemotherapy. 148 A survey performed in the US documented the annual incidence of IA in children to be was 0.4%, while in the US 2000 Kids’ Inpatient Database, the fatality rate for children with cancer and IA (21%) at first discharge was much greater than that in children.
Table 3. Comparison of recommendations on primary prophylaxis from IA in children.

Indication	ECIL	ESCMID-ECMM-ERS	Dosage (by ECIL)/comments
Voriconazole			
B-I for patients>2years Allo-HSCT with or without GVHD No grading De-novo or recurrent leukaemias	A-I for children>2years Allo-HSCT recipients, pre and post engraftment phase, GvHD and augmented immunosuppression, high-risk patients with de novo or recurrent leukaemia, bone marrow failure syndromes with prolonged neutropenia	Children aged 2–12 years or aged 12–14 years and weighing <50 kg: 8 mg/kg (day 1, 9 mg/kg) twice daily intravenously or 9 mg/kg twice daily orally, children aged ≥15 years or aged 12–14 years and weighing ≥50 kg: 4 mg/kg (day 1, 6 mg/kg) twice daily intravenously or 200 mg twice daily orally plus TDM, not approved <2 years	
Itraconazole			
B-I for children≥2 years Allo-HSCT without GVHD C-II for children≥2 years Allo-HSCT with GVHD B-I for children≥2 years De-novo or recurrent leukaemias	A-I for patients>18 years Allo-HSCT recipients, pre engraftment phase, high-risk patients with de novo or recurrent leukaemia, bone marrow failure syndromes with prolonged neutropenia B-I for patients>18 years Allo-HSCT recipients in post-engraftment phase, GvHD and augmented immunosuppression A-II for patients>18 years CGD patients	5 mg/kg per day orally (in children aged ≥2 years) in two divided doses plus TDM, not approved EU < 18 years	
Posaconazole			
No grading for children>13years Allogeneic HSCT without GVHD B-I for children>13years Allogeneic HSCT with GVHD B-I for children>13years De-novo or recurrent leukaemias	A-I for children>13years Allo-HSCT recipients, pre and post engraftment phase, GvHD and augmented immunosuppression, high-risk patients with de novo or recurrent leukaemia, bone marrow failure syndromes with prolonged neutropenia A-III for children>13years CGD patients	600 mg per day orally in three divided doses plus TDM, in children aged ≥13 years	
Liposomal AmB			
C-III Allo-HSCT without GVHD, No grading Allo-HSCT with GVHD B-II De-novo or recurrent leukaemias	B-I for children>13years Allo-HSCT recipients, pre and post engraftment phase, GvHD and augmented immunosuppression, high-risk patients with de novo or recurrent leukaemia, bone marrow failure syndromes with prolonged neutropenia B-III Allo-HSCT recipients in post-engraftment phase, GvHD and augmented immunosuppression	1 mg/kg intravenously every other day or 2-5 mg/kg intravenously twice weekly, not approved for prophylaxis, alternative if triazoles are not tolerated / contra-indicated	
Micafungin			
C-I Allo-HSCT without GVHD, No grading Allo-HSCT with GVHD, No grading De-novo or recurrent leukaemias	B-I for children>13years Allo-HSCT recipients, pre engraftment phase, high-risk patients with de novo or recurrent leukaemia, bone marrow failure syndromes with prolonged neutropenia B-III Allo-HSCT recipients in post-engraftment phase, GvHD and augmented immunosuppression	1 mg/kg per day (in children weighing ≥50 kg, 50 mg) intravenously in one dose, no definite evidence for prophylactic efficacy against Aspergillus spp., alternative if triazoles are not tolerated or contra-indicated	
Aerosolised liposomal AmB			
No grading Allo-HSCT without GVHD, De-novo or recurrent leukaemias	B-I for children>13years Allo-HSCT recipients, pre and post engraftment phase, GvHD and augmented immunosuppression, high-risk patients with de novo or recurrent leukaemia, bone marrow failure syndromes with prolonged neutropenia	12.5 mg on 2 consecutive days per week, Targeted against pulmonary mould infections; non-approved route of administration; appropriate doses and dosage schedule unknown in children aged <18 years	

ECIL, European Conference on Infection in Leukaemia; ESCMID, European Society of Clinical Microbiology and Infectious Diseases; HSCT, haematopoietic stem cell transplantation; IA, invasive aspergillosis;CGD; chronic granulomatous disease, CVHD, graft versus host disease, t: transferred evidence (i.e. results from different patients’ cohorts, or similar immune-status situation)
with malignancy but no IA (1%).2,9,10

The most recent guidelines for the treatment of IA in children were released by the ECIL in 2014, the IDSA in 2016 and the ESCMID-ECMM-ERS in 2017. Although no consistency in the three guidelines is found, in principle voriconazole, liposomal amphotericin B, and caspofungin are proposed as drugs of choice.12,22,23

All of the three expert groups propose that general management principles of IA might include prompt initiation of antifungal treatment, control of predisposing conditions (e.g., reduction or discontinuation of corticosteroids in immunosuppressed patients, colony-stimulating factors in granulocytopenic patients), and surgical interventions on a case by case basis using a multidisciplinary approach. Granulocyte transfusions might be considered in patients with profound and prolonged granulocytopenia. A thorough evaluation of further sites of infection, particularly the CNS, should be included. The optimal duration of therapy is not defined but determined by the resolution of all signs and symptoms and reversal of the underlying deficit in host defenses.12, 22, 23,139,140

The IDSA guidelines propose that in the treatment of IA in children the same recommended therapies as in adult patients should be used with a different dosing. (A-I)12 This expert group favour the use of voriconazole (approved for patients 12 years and older) also for children by evaluating substantial pharmacokinetic data and experience.104 The recommended pediatric dosing is higher than for adults. Reduced voriconazole levels may be observed with oral administration.12,84,105,140 In addition to this, IDSA groups recommend the liposomal amphotericin B(A-II) with the same dosing as in adults and the posaconazole for children>13 years for both the oral suspension and tablet and for older than 18 years the intravenous formulation. Further to this, it suggests the use of caspofungin for children three months and older and micafungin for children four months and older.12,153,150 The echinocandins are strongly recommended to be avoided as a primary treatment (A-II), while the combination with voriconazole may be considered in selected patients(C-II). Of note, anidulafungin is not FDA approved for children.12,151-153 Finally, the expert group recommends that treatment of invasive pulmonary aspergillosis need to be continued for a minimum of 6–12 weeks, dependent on the degree and duration of immunosuppression, site of disease, and evidence of disease improvement (A-III).

The recently published ESCMID-ECMM-ERS guidelines also favour the use of voriconazole (A-II) as the first line agent to treat IA in paediatric patients aged >2 years.23,84,104-107,110,111,149,154-159

This experts group gives a more moderate recommendation for the use of Liposomal Amphotericin B (B-II) due to relatively limited clinical data for comparison to voriconazole.23,128,130,160-163 Finally, for caspofungin, the ESCMID-ECMM-ERS guidelines give a weak recommendation(C-II) since the study has been prematurely stopped because of low accrual.23,150,164-173 All the recommendations of the expert group are referring to pediatric patients with cancer, bone marrow failure syndromes, CGD and to HSCT and SOT recipients.23

The recommendations of the ECIL group are generally based on dose finding studies and phase III clinical trials. The group gives a strong recommendation for the use of intravenous voriconazole with TDM, based on the pivotal phase 3 trial in adults (A-I; restricted to patients aged ≥2 years). The voriconazole is suggested as a treatment of choice for infections involving the CNS. The drug dosage for children aged 2–12 years or 12–14 years and weighing <50 kg is 8 mg/kg (day 1, 9 mg/kg) twice daily intravenously or 9 mg/kg twice daily orally, while for children aged ≥15 years or 12–14 years and weighing ≥50 kg is 4 mg/kg (day 1, 6 mg/kg) twice daily intravenously or 200 mg twice daily orally plus TDM.22,110,111,140 In addition to this, they give a somewhat weaker B-I recommendation for liposomal amphotericin B (3 mg/kg per day intravenously in one dose), due to the fact that the pivotal phase 3 trial was a comparison between two different dose strategies and not a comparison with the reference agent voriconazole. Further to this, they give a moderate recommendation to amphotericin B lipid complex (B-II) with a dosage of 5 mg/kg per day intravenously in one dose. Based on the available data of the randomised, comparative clinical trial the ECIL group suggests no general superiority of combination therapy of voriconazole plus anidulafungin for primary treatment of IA (C-III).22,140,174

Comparison of the strength of recommendation, the quality of evidence of the first line antifungal
agents for IA in children between the three expert groups is shown in Table 4.

Second-line and resistant Aspergillus spp treatment of IA in children. Second-line treatment refers to antifungal treatment in patients with response failure or those with intolerance to the initial treatment.175

The ECIL group generally suggests that a switch in class might be considered when antifungal treatment is changed for refractory disease (no grading). The group recommends as a second-line treatment liposomal amphotericin B in amphotericin-B-naive patients based on data from the pivotal first-line phase 3 trial (B-I), and voriconazole with TDM in voriconazole-naive patients based on data from the pivotal first-line phase 3 trial and a second-line phase 2 trial (A-I; restricted to children aged \geq 2 years), respectively.22,110,111,140 Other options approved in pediatric patients include amphotericin B lipid complex (B-II) and caspofungin (A-II; dosage: 50 mg/m2 per day intravenously in one dose,70 mg/m2 on day 1 loading dose).18 Regarding the combination therapy, a small phase 2 study, a retrospective cohort study and results from one not fully published phase 3 first-line trial demonstrate that there are no differences in the primary endpoint.152,153,170,176 Only a weak recommendation is made by the ECIL group about the combination therapy with either voriconazole or amphotericin B with an echinocandin for salvage treatment(C-II). Of note, although there is a scarcity of relevant data, the ECIL group recommends a switch in class in patients with breakthrough infections on antifungal prophylaxis or empirical therapy (no grading).

According to ESCMID-ECMM-ERS guidelines, liposomal amphotericin B represents an alternative to voriconazole as first-line treatment of IA in areas or institutions with a high prevalence of azole-resistant A. fumigatus. MIC-testing is recommended for all clinically relevant Aspergillus isolates or if grown in patients previously exposed to or on antifungal therapy. Isavuconazole is strongly recommended in IA due to amphotericin B resistant species only in the adult population and has not yet been approved for children. A switch to a different class of antifungals is recommended by this expert group for salvage therapy and breakthrough infections.23,177-189

Guidelines by the IDSA group for the second line treatment of IA in children are the same as for adults.12 The group recommends as a general strategy for salvage therapy, after excluding the emergence of a new pathogen, a switch to a different class of antifungal agent or the use of an alternative agent with a nonoverlapping side-effect profile, a taper or reversal of underlying immunosuppression when feasible, and a surgical resection of necrotic lesions in selected cases (A-III).12 The options include lipid formulations of AmB, micafungin, caspofungin, posaconazole, or itraconazole (A-II), or combination of antifungal agents from different classes other than those in the initial regimen (C-II).12,153,190-193

Empirical and preemptive (diagnostic-driven) treatment for IA. Empirical treatment for IA is recommended according to the ECIL guidelines in granulocytopenic children with acute leukaemia/allogeneic HSCT after four days of fever of unclear etiology that is unresponsive to broad-spectrum antibacterial agents, and it should be continued until resolution of granulocytopenia in the absence of suspected or documented IFIs (B-II). The ECIL additionally suggests that empirical antifungal therapy might be considered in individual persistently febrile children with low-risk disorders and profound and prolonged granulocytopenia and severe mucosal damage (no grading).18 Both the ECIL and ESCMID-ECMM-ERS guidelines favour the use of liposomal

Table 4. Comparison of the strength of recommendation and quality of evidence in first line agents for targeted treatment of IA in children.

Antifungal treatment	IDSA	ECIL	ESCMID-ECMM-ERS
Voriconazole	A-I	A-I	A-II
Liposomal amphotericin B	(A-II)	B-I	B-II
Caspofungin	(C-II)	A-II(considered from this group as a second line agent)	C-II
Amphotericin B lipid complex	No grading	B-II	Not considered as a first-line agent
Antifungal combination therapy	C-II	C-II	Not considered as first-line treatment

ECIL, European Conference on Infection in Leukaemia; ESCMID, European Society of Clinical Microbiology and Infectious Diseases; IA, invasive aspergillosis.
amphotericin and caspofungin (A-I) based on large randomised clinical trials comparing the caspofungin versus liposomal amphotericin b and the different formulations of amphotericin b for empiric antifungal therapy in pediatric patients with persistent fever and neutropenia.22,23,194-196 The similar treatment approach is proposed by the ECIL group in those granulocytopenic patients who develop a recurrent fever after afebrile period upon the initiation of broad-spectrum antibacterial agents (no grading).18 According to the ECIL guidelines, a switch to a different class of mould-active antifungal agents and the initiation of either caspofungin or liposomal amphotericin B for empirical therapy in patients receiving antifungal prophylaxis without mould activity need to be considered (no grading). 22

The intention of pre-emptive antifungal treatment, which uses clinical, usually non-culture-based microbiological and radiographic data to establish whether or not to initiate antifungal therapy in granulocytopenic patients, is to reduce the exposure to unnecessary antifungal therapy. The usefulness of this strategy has been shown in adults, and it has been established as an alternative option to the empirical treatment. 191-195 Although there is a lack of data assessing the paediatric population, the ECIL group suggests that pre-emptive approach as a strategy in children (no grading) with the prerequisite of rapid performance of pulmonary CT imaging, GM testing and the availability to undertake bronchoscopies with BAL. 22 According to the ESCMID-ECMM-ERS guidelines, treatment recommendations for a diagnostic-driven strategy correspond to those made for targeted treatment. 23,197-201 Guidelines for empirical and the diagnostic driven therapy of IA in children are not released by the IDSA group.12

Conclusions. Although differences are found in pediatric guidelines for the prevention of IA between various societies, general treatment recommendations suggest the prompt initiation of antifungal treatment, control of predisposing conditions and surgical interventions on a case by case basis using a multidisciplinary approach. The recommendations for treatment favour the use of voriconazole, the lipid formulations of amphotericin B, caspofungin and a combination of antifungal agents. Voriconazole is strongly recommended by the three expert groups like the drug of choice although it should be replaced by liposomal amphotericin B as first-line treatment of IA in areas or institutions with a high prevalence of azole-resistant A. fumigatus, according to the recent ESCMID-ECMM-ERS guidelines. Lipid formulations of amphotericin B seem to offer additional treatment options for first line treatment of IA in children. Caspofungin although considered by the ESCMID-ECMM-ERS and IDSA guidelines as a first-line agent, has a weak recommendation due to the premature cessation of a relevant study. Finally, regarding the combination of voriconazole plus anidulafungin, the ECIL group suggests no general superiority, based on the available data of the randomised, comparative clinical trial, while the IDSA group recommend it for selected patients.

IDSA guidelines published in 2016 focus on adults and issue specific recommendations for children while recommend using the same treatment approach as in adults.12 The ECIL group focuses on pediatric patients with cancer and HSCT recipients.22 Additionally, the ECIL group releases guidelines for diagnosis, prevention, and management of invasive opportunistic fungal diseases (IFDs) and not strictly for IA, whereas ESCMID-ECMM-ERS experts group issue guidelines for the prevention, diagnostic procedure and management of aspergillosis in adults and pediatric population. 22,23 Despite the usefulness of the above guidelines in the prevention, diagnosis and treatment of IA, guidelines focused on pediatric IA need to be issued considering the high mortality rate of the disease in children.

References:

1. Tragianidis A, Rozides E, Walsh TJ and Groll AH. Invasive aspergillosis in children with acquired immunodeficiencies. Clin Infect Dis. 2012; 54: 258-256. https://doi.org/10.1093/cid/cir786 PMid:22075793
2. Zaoutis TE, Heydon K, Chu JH, Walsh TJ, Steinbach WJ. Epidemiology, outcomes, and costs of invasive aspergillosis in immunocompromised children in the United States, 2000. Pediatrics 2006; 117: 711-716. https://doi.org/10.1542/peds.2005-1161
3. Burgess A, Zaoutis TE, Dvorak CC, Hoffman IA, Knapp KM, Nania JJ, Prasad P, Steinbach WJ. Pediatric invasive aspergillosis: a multicenter retrospective analysis of 139 contemporary cases. Pediatrics 2008; 121: 1286-1294. https://doi.org/10.1542/peds.2007-2317 PMid:18450871
4. Walmersley S, Devi S, King S, Schneider R, Richardson S, Ford-Jones L. Invasive Aspergillus infections in a pediatric hospital: a ten-year
20. Dotis J, Iosifidis E, Rolides E. Central nervous system aspergillosis in children: a systematic review of reported cases. Int J Infect Dis 2007; 11: 381–393. doi:10.1016/j.ijid.2007.01.013 PMid:17509921

21. Andreas H Gross, Elio Castagnola, Simona Cesaro, Jean-Hugues Dubois, Dan Engelhard, William Hope, Emmanuel Rolides, Jan Styczynski, Adilia Warris, Thomas Lehnhbecher. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Infect Dis 2014; 15: 327–344. doi:10.1016/S1470-2113(14)70001-8

22. Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning D, Lagrou K, C. Lass-Flór, R.E. Lewis, P. Muno, P.E. Verweij, A. Warris, F. Ader, M. Akova, M.C. Arendrup, R.A. Barnes, C. Beigelman-Aubry, S. Blot, E. Bouza, R.J.M. Bridgemann, D. Buchheidt, J. Cadranel, E. Castagnola, A. Chakrabarti, M. Cuenca-Estrella, G. Dompoulos, J. Fortun, J.-P. Gangneux, J. Garbinj, W.J. Heinz, R. Herbrecht, C.P. Heusell, C.C. Kibbler, N. Klajmjo, B. Kullberg, C. Lange, T. Lehnehbecher, J. Löffler, O. Lortholary, J. Maertens, G. Marchetti, J.F. Meis, L. Pagano, P. Ribaud, M. Richardson, E. Rolides, M. Ruhnke, M. Sanguinetti, D.C. Sheppard, J. Sinkó, A. Skuadzi, M.J.G.T. Vehreschild, C. Viscoli, O.A. Cornell. Diagnosis and management of Aspergillosis diseases: executive summary of the 2017 ESCMID ERSM-ECMID-ERSM guideline. Clinical Microbiology and Infection. 2018; 24: 811–840. doi:10.1016/j.cmi.2018.01.007

23. Fraczek MG, Kirwan MB, Moore CB, Morris J, Denning DW, Richardson MD. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of aspergillus quantitative pc. Mycoses. 2014; 57: 69–78.

24. Dornbusch HJ, Manzoni P, Rolides E, Walsh TJ, Gross H. Invasive fungal infections in children. Pediatric Infect Dis J 2009; 28: 734–737. doi:10.1097/INF.0b013e31818707d6 PMid:19633517

25. Dornbusch HJ, Gross H, Walsh TJ. Diagnosis of invasive fungal infections in immunocompromised children. Clin Microbiol Infect 2010; 16: 1328–1334. doi:10.1111/j.1469-0691.2010.03336.x PMid:20678175

26. Rolides E. Early diagnosis of invasive aspergillosis in infants and children. Med Mycol 2006; 44: 199–205 doi:10.1080/13693780600810057

27. Guamer J, Brandt ME. Histopathological diagnosis of fungal infections in the 21st century. Clin Microbiol Rev 2011; 24: 247–280 doi:10.1128/CMR.00053-10 PMid:21482723 PMcid:PMC3324913

28. Vyzintzidis TA, Johnson EM, Kibbler CC. From tissue to clinical mycology laboratory: how we can optimise microscopy and culture methods for mould identification? J Clin Pathol 2012; 65:475–483. doi:10.1136/jclinpath-2011-050005 PMid:22380826

29. Barton RC. Laboratory diagnosis of invasive aspergillosis: from diagnosis to prediction of outcome. Scientific 2013; 2013:459405. doi:10.1155/2013/459405 PMid:24278780 PMcid:PMC3820361

30. Lehnhbecher T, Phillips R, Alexander S, Alexander S, Ammann RA, Beaucemmin M, Carless F, Gross H, Haesler GM, Santolaya M, Steinhabe WJ, Castagnola E, Davis BL, Dupuis LL, Gaur AH, Tissing WI, Zaatous T, Phillips R, Sung L and the International Pediatric Fever and Neutropenia Guideline Panel. Guideline for the management of fever and neutropenia in children with cancer and/ or undergoing hematopoietic stem-cell transplantation. J Clin Oncol 2012; 30: 4427–4438. doi:10.1200/JCO.2012.42.7164 PMid:22987086

31. Groll AH. Tragianidis A. Recent advances in antifungal prevention and treatment. Semin Hematol 2009; 46: 212–229. doi:10.1053/j.seminhematol.2009.03.003 PMid:19549575

32. Pfeffer CD, Fune JP, Sadaf N. Diagnosis of invasive aspergillosis using a galactomannan assay: A meta-analysis. Clin Infect Dis. 2006; 42: 1417-1427. doi:10.1086/505427 PMid:16619154

33. Hovi L, Saxinen-Pihlakum UM, Vettenranta K, Meri T, Richardson MD. Prevention and monitoring of invasive fungal infections in pediatric patients with cancer and hematologic disorders. Pediatr Blood Cancer. 2014; 61: 28–34. doi:10.1002/pbc.240717 PMid:16935687

34. Steinhabe WJ, Addison RM, McLaughlin L, Gerrald Q, Martin PL,
Driscoll T, Bentzen C, Perfect JR, Alexander BD. Prospective aspergillus galactomannan antigen testing in pediatric hematopoietic stem cell transplant recipients. Pediatr Infect Dis J. 2007; 26: 558-564. https://doi.org/10.1097/INF.0b013e3180616cb6

36. Hayden R, Pounds S, Knapp K, Petratiene R, Schaafuele RL, Sein T, Walsh TJ. Galactomannan antigenemia in pediatric oncology patients with invasive aspergillosis. Pediatr Infect Dis J. 2008; 27: 815-819. https://doi.org/10.1097/INF.0b013e31817197a8

37. Castagnola E, Farfaro E, Caviglia I, Lecchiardo M, Faraci M, Fioredda F, Tomà P, Bandettini R, Machetti M, Viscoli C. Performance of the galactomannan antigen detection test in the diagnosis of invasive aspergillosis in children with cancer or undergoing haemopoietic stem cell transplantation. Clin Microbiol Infect. 2010; 16: 1197-1203. https://doi.org/10.1111/j.1469-0691.2009.03065.x

38. Fisher BT, Zaoutis TE, Park IR, Bleakley M, Englund JA, Kane C, Arceci RJ, Guinan E, Smith FO, Luan X, Marr KA. Galactomannan antigen testing for diagnosis of invasive aspergillosis in pediatric hematology patients. J Pediatric Infect Dis Soc. 2012; 1: 103-111. https://doi.org/10.1016/j.pids.2011.05.004

39. Choi SH, Kang ES, Eo H, Yoo SY, Kim JH, Yoo KH, Sung KW, Koo HH, Kim YJ. Aspergillus galactomannan antigen assay and invasive aspergillosis in pediatric cancer patients and hematopoietic stem cell transplant recipients. Pediatr Blood Cancer. 2013; 60: 316-322. https://doi.org/10.1002/pbc.24363

40. Jha AK, Bansal D, Chakraborti A, Shrivapakras MR, Trehan A, Marwaha RK. Serum galactomannan assay for the diagnosis of invasive aspergillosis in children with haematological malignancies. Mycoses. 2013; 56: 442-448. https://doi.org/10.1111/myc.12048

41. Dinand V, Anjan M, Oberoi JK, Khanna S, Yadav SP, Watatt C, Sachdeva A. Threshold of galactomannan antigenemia positivity for early diagnosis of invasive aspergillosis in neutropenic children. J Microbiol Immunol Infect. 2016; 49: 66-73. https://doi.org/10.1016/j.jmii.2013.12.003

42. Viscoli C, Machetti M, Cappellano P, Bucci P, Bruzzi M, MT Van Lint, A Baccaglione. False-positive galactomannan plateia Aspergillus test results for patients receiving piperacillin-tazo-bactam. Clin Infect Dis 2004; 38: 913-916. https://doi.org/10.1086/522224

43. Aubry A, Porcher R, Bottero J, Touriatier S, Leblanc T, Brethon B, Rousselet P, Raffoux E, Menotti J, Derouin F, Ribaud P, Sulahian A. Occurrence and kinetics of false-positive Aspergillus galactomannan test results following treatment with beta-lactam antibiotics in patients with hematological disorders. J Clin Microbiol; 2006; 44: 389-394. https://doi.org/10.1128/JCM.44.2.389-394.2006

44. Mennink-Kersten MA, Klont RR, Warris A, Op den Camp HJ, Perfect JR, Alexander BD. Prospective assessment of platelia aspergillus galactomannan antigen testing in pediatric hematological patients with clinical isolation of aspergillus spp. Med Mycol. 2008; 46: 575-579. https://doi.org/10.1189/ymyc.12060

45. Pag. 18 / 22

Pediatrician cancer patients. Med Mycol 2006; 44: 733-739. https://doi.org/10.1191/13693780600939955

50. Martin-Rabadan P, Gijon P, Alonso Fernandez R, Ballesteros M, Anguita J, Bouza E, False-positive galactomannan antigenemia due to blood product conditioning fluids. Clin Infect Dis 2012; 55: e22-27. https://doi.org/10.1093/cid/cio933

51. El-Mahallawy HA, Shaker HH, Ali Helmy H, Mostafa T, Razak Abo-Sedah A, Evaluation of pan-fungal PCR assay and Aspergillus antigen detection in the diagnosis of invasive fungal infections in high risk patients. Med Mycol 2006; 44: 558-564. https://doi.org/10.1097/INF.0b013e3180616cb6

52. Malbrain ML. Prognostic value of serum galactomannan in mixed icu patients. Blood. 2001; 97: 1604-1610. https://doi.org/10.1182/blood.V97.6.1604

53. Eo H, Yoo SY, Kim JH, Yoo KH, Sung KW, Koo HH, Kim YJ. False-positive results of the galactomannan antigen detection test in patients with hematological disorders. J Clin Microbiol; 2016; 54: 1242-1250. https://doi.org/10.1128/JCM.01978-15

54. Driscoll T, Bentsen C, Perfect JR, Alexander BD. Prospective Aspergillus galactomannan antigen testing in pediatric hematopoietic stem cell transplant recipients. Pediatr Infect Dis J 2007; 26: 558-564. https://doi.org/10.1097/INF.0b013e31810161bb

55. Malbrain ML. Prognostic value of serum galactomannan in mixed icu patients.Blood. 2001; 97: 1604-1610. https://doi.org/10.1182/blood.V97.6.1604

56. Rousselot P, Raffoux E, Menotti J, Derouin F, Ribaud P, Sulahian A. Galactomannan antigen detection test in the diagnosis of invasive aspergillosis in children with cancer or undergoing haemopoietic stem cell transplantation. Clin Microbiol Infect. 2010; 16: 1197-1203. https://doi.org/10.1111/j.1469-0691.2009.03065.x

57. Pfeiffer CD, Fine JP, Saffar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis 2006; 42: 1417-1427. https://doi.org/10.1086/503432

58. Maertens J, Verhaegen J, Elaer J, Boogaerts M. Screening for circulating galactomannan as a non-invasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: A prospective validation. Blood. 2001; 97: 1604-1610. https://doi.org/10.1182/blood.V97.6.1604

59. Hoenigl M, Seebacher K, Koidl C, Buzina W, Wolfßer A, Duettman W, Wagner J, Strenger V, Krause R. Sensitivity of galactomannan enzyme immunoassay for diagnosing breakthrough invasive aspergillosis under antifungal prophylaxis and empirical therapy. Mycoses. 2013; 56: 471-476. https://doi.org/10.1111/myc.12060

60. Marr KA, Laverdure M, Gugl E, Leisenring W. Antifungal therapy decreases sensitivity of the aspergillus galactomannan enzyme immunoassay. Clin Infect Dis. 2005; 40: 1762-1769. https://doi.org/10.1086/430592

61. Cordonnier C, Botterel F, Ben Amor R, Pautas C, Maury S, Kuentz M, Hicher Y, Bastuji-Garin S, Bargete S. Correlation between galactomannan antigen levels in serum and neutrophil counts in hematological patients with invasive aspergillosis. Clin Microbiol Infect. 2009; 15: 811-817. https://doi.org/10.1111/j.1469-3780.2008.01212.x
65. Vergidis P, Walker RC, Kaul DR, Kauffman CA, Freifeld AG, Slagle DC, Kressel AB, Wheat LJ. False-positive aspergillus galactomannan assay in solid organ transplant recipients with histoplasmosis. Transpl Infect Dis. 2012; 14: 213-217. https://doi.org/10.1111/j.1398-2346.2012.00675.x PMid:22903368

66. Huang YT, Hung CC, Liao CH, Sun HY, Chang SC, Chen YC. Detection of circulating galactomannan in serum samples for diagnosis of penicillium marneffei infection and cryptococcosis among patients infected with human immunodeficiency virus. J Clin Microbiol. 2007; 45: 2858-2862. https://doi.org/10.1128/JCM.01500-07 PMid:17596363 PMCid:PMC2045252

67. Nucci M, Carlesse F, Cappellano P, Varon AG1, Seber A2, Garnica Ketchum PA, Finkelman MA, Rex JH, Ostrosky Odabasi Z, Mattiuzzi G, Estey E, Kantarjian H, Saeki F, Ridge RJ, Kolarick MT, Gualandi F, Truini M, and B

68. De Pauw B, Walsh TJ, Donnelly JP, Day AG, Stevens, John E, Edwards, Thierry Calandra, Peter G. Pappas, Johan Maertens, Olivier Lortholary, Carol A. Kauffman, David W. Denning, Thomas F. Patterson, Georg Maschmeyer, Jacques Bille, William E. Dismukes, Raouf Herbrecht, William W. Hope, Christopher C. Kibbler, Bart Jan Kuilberg, Kieren A. Marr, Patricia Mu-oz, Frank C. Odds, John R. Perfect, Angela Rostapetro, Markus Ruhnke, Braham H. Segal, Jack D. Sobel, Tania C. Sorrell, Claudio Viscoli, John R. Wingard, Theoklis Zaatouis, and John E. Bennett. European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group; National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 2008; 46: 1813–1821 https://doi.org/10.1086/588660 PMid:18462102 PMCid:PMC2671227

69. King ST, Stover KR. Considering confounders of the galactomannan index: The role of piperacillin-tazobactam. Clin Infect Dis. 2014; 58: 751-752. https://doi.org/10.1093/cid/cis773 PMid:24280091

70. Koltze A, Rath P, Schoning S, Steinmann J, Buchheidt D. Beta-glucan antigen in an infant with corticosteroid-resistant nphritic syndrome. Pediatr Nephrol 2003; 18: 450-53. PMid:12736086

71. Viscoli C, Machetti M, Gazzola P, De Maria A, Paola D, Van Lint MT, Gualand M, Truini M, and Bacigalupo A. Aspergillus galactomannan antigen in the cerebrospinal fluid of bone marrow transplant recipients with probable cerebrospinal aspergillosis. J Clin Microbiol 2002; 40: 1496-1499. https://doi.org/10.1128/JCMI.40.4.1496-1499.2002 PMid:11923380 PMCid:PMC140329

72. Viscoli C, Machetti M, Gazzola P, De Maria A, Paola D, Van Lint MT, Gualand M, Truini M, and Bacigalupo A. Aspergillus galactomannan antigen in the cerebrospinal fluid of bone marrow transplant recipients with probable cerebrospinal aspergillosis. J Clin Microbiol 2002; 40: 1496-1499. https://doi.org/10.1128/JCMI.40.4.1496-1499.2002 PMid:11923380 PMCid:PMC140329

73. Smith PB, Benjamann DK, Jr., Alexander BD, Johnson MD, Finkelman MA, Steinbach WJ. Quantification of β-1,3-beta-glucan levels in children: Preliminary data for diagnostic use of the β-glucan beta-1,6 assay in a pediatric setting. Clin Vaccine Immunol. 2007; 14: 924-925. https://doi.org/10.1128/CVI.00025-07 PMid:17538119 PMCid:PMC1951061

74. Zhao L, Tang FY, Wang Y, Zhou YF, Chen J, Li BR, Xue HL, [value of plasma beta-glucan in early diagnosis of invasive fungal infection in children]. Zhongguo Dang Dai Er Ke Za Zhi. 2009; 11: 905-908. PMid:20113658

75. Mularoni A, Furfaro E, Faraci M, Franceschi A, Mezzano P, Bandettini R, Viscoli C, Castagnola E, High levels of beta-d-glucan in immunocompromised children with proven invasive fungal disease. Clin Vaccine Immunol. 2010; 17: 882-885. https://doi.org/10.1128/CVI.00038-10 PMid:20335432 PMCid:PMC2863371

76. Badiee P, Alborazi A, Karimi M, Pourabas B, Haddadi P, Mandaneh J, Moieni M. Diagnostic potential of nested PCR, galactomannan elisa, and beta-d-glucan for invasive aspergillosis in pediatric patients. J Infect Dev Cities. 2012; 6: 352-357. https://doi.org/10.3855/jidc.2110 PMid:22505446

77. Koltze A, Rath P, Schoning S, Steinmann J, Wielchhaus TA, Bader P, Bochennek K, Lehrnbecher T. Beta-glucan screening for detection of invasive fungal disease in children undergoing allogeneic hematopoietic stem cell transplantation. J Clin Microbiol. 2015; 53: 2065-2061. https://doi.org/10.1128/JCM.00747-15 PMid:26041896 PMCid:PMC4508457

78. Ostrosky-Zeichner L, Alexander BD, Kett DH., Vazquez J, Pappas PG, Saeki F, Fung HM, Jett WR, J. Schaff R, Tamura H, Finkelman MA, Rex JH. Multicenter clinical evaluation of the (1→3)-β-d-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis 2005; 41:654-659. https://doi.org/10.1086/4332470 PMid:16080087

79. Kornacki Z, Mozaffari G, Estey E, Karimian H, Saeki F, Ridge RJ, Ketchum PA, Finkelman MA, Rex JH, Ostrosky-Zeichner L. Beta-D-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin Infect Dis 2004; 39:199–205 https://doi.org/10.1086/421944 PMid:15307029

80. Hummel M, Spiess B, Roder J, von Komorowski G, Dürken M, Kentouche K, Laws HJ, Mor Z, Hehlimann M, Buchheidt D. Detection of Aspergillus DNA by a nested PCR assay is able to improve the diagnosis of invasive aspergillus in paediatric patients. J Med Microbiol 2009; 58: 1291-1297. https://doi.org/10.1099/jmm.0.007393-0 PMid:19541789

81. Gavaldá J, Meije Y, Fortun J, Roilides E, Saliba F, Lortholary O, Mu-oz P, Grossi P, Cuenc-Estrella M, ESCMID-ECMM-ERS Study Group for Infections in Compromised Hosts. Invasive fungal infections in solid organ transplant recipients. Clin Microbiol Infect. 2014; 20 Suppl 7: 27-48. https://doi.org/10.1111/cmi.12660 PMid:24810152 PMCid:PMC4343122

82. Fribeg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents and adults. Antimicrob Agents Chemother. 2015; 59: 3090-3097. https://doi.org/10.1128/AAC.00323-15 PMid:25779580 PMCid:PMC4432122

83. Hope WW, Castagnola E, Groll AH, Roilides E, Akova M, Arendrup MC, Arian-Akdag S, Bassetti M, Bille J, Cornely OA, Cuena-Estrella M, Donnelly JP, Garbino J, Herbrecht R, Jensen HE, Kuilberg BJ, Lass-Florl C, Lortholary O, Meersman W, Petrikos G, Richardson MD, Verweij PE, Viscoli C, Ullmann AJ; ESCMID-ECMM-ERS Study Group. ESCMID-ECMM-ERS-STR’S guideline for the diagnosis and management of candida diseases 2012, prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect 2012; 18: 38– 52. https://doi.org/10.1111/1469-0691.12040 PMid:2317316

84. van Bakur JA, Ratanatharathorn V, Stapan DE., Miller CB, Lipton JH, Vesole DH, Bunn N, Wall DA, Hiemzen JW, Saitos Y, Lee JM, Walsh TJ; National Institute of Allergy and Infectious Diseases Mycoses Study Group. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis 2004; 39: 1407–14, 48

85. Wingard JR, Carter SL, Walsh TJ, Kurtzberg J, Small TN, Baden LR.
Gersten ID, Mendizabal AM, Leather HL, Confer DL, Maziarz RT, Stadmutter EA, Bola-os-Meade J, Brown J, Dipersio JP, Boechk M, Marr KA; Blood and Marrow Transplant Clinical Trials Network. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood 2010; 116: 5118–5126. https://doi.org/10.1182/blood-2010-02-268151

PMID:20826719 PMCID:PMC3012532

90. Dvorak CC, Fisher BT, Sung L, Steinbach WJ, Nieder M, Alexander S, Zaatouis TE. Antifungal prophylaxis in pediatric hematology/oncology: new choices and new data. Pediatr Blood Cancer 2012; 59: 21–26. https://doi.org/10.1002/bjc.23415

PMID:22102607 PMCID:PMC4008331

91. Traignaudis D, Dokos C, Lehnhbecher T, Groll AH. Antifungal chemoprophylaxis in children and adolescents with haematological malignancies and following allogeneic hematopoietic stem cell transplantation: review of the literature and options for clinical practice. Drugs 2012; 72: 685–704. https://doi.org/10.2165/1598910.00000000-00000

PMID:2243762

92. Cornely OA, Maetens J, Winston DJ, Perfect J, Ullmann AJ, Walsh TJ, Helfgott D, Holowiecki J, Stockelberg D, Goh YT, Petroni M, Hardalo C, Suresh R, Angulo-Gonzalez D. Posaconazole vs. Fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med. 2007; 356: 348-359. https://doi.org/10.1056/NEJMoa061094 PMID:17251531

93. Ullmann AJ, Lynch JH, Van Vossele DH, Chandrasekar P, Langston A, Tarantolo SR, Greinix H, Morais de Azevedo W, Reddy V, Boparai N, Pedrasco L, Patino H. Analysis of posaconazole as prophylaxis in children after single- or multiple-dose administration. Antimicrob Agents Chemother. 2011; 48: 2166-2172. https://doi.org/10.1128/AAC.48.6.2166-2172.2004

PMID:15155217 PMCID:PMC415618

94. Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009; 53: 935-944. https://doi.org/10.1128/AAC.01075-08

PMID:19075073 PMCID:PMC2650572

95. Dworkin TA, Frangou H, Vlock ER, Murphy DK, Yu LC, Blumber J, Krance RA, Baruch A, Liu P. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised adolescents and healthy adults. Antimicrob Agents Chemother. 2011; 55: 5780-5789. https://doi.org/10.1128/AAC.0210-10 PMID:21891570 PMCID:PMC3232803

96. Soler-Palacín P, Frick MA, Martin-Nalda A, Lanaspa M, Pou L, Roselló E, de Heredia CD, Figueras C. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: A prospective study. J Antimicrob Chemother. 2012; 67: 700-706. https://doi.org/10.1093/jac/dks157 PMID:22190607

97. Pieper S, Kolvhe G, Gunbinger HG, Goletz G, Wurthein G, Groll AH. Monitoring of voriconazole plasma concentrations in immunocompromised paediatric patients. J Antimicrob Chemother. 2012; 67: 2717-2724. https://doi.org/10.1093/jac/dks258 PMID:22796890

98. Molina JR, Serrano J, Sanchez-Garcia J, Rodriguez-Villa A, Gomez P, Tallón D, Martín V, Rodriguez G, Rojas R, Martín C, Martínez F, Alvarez MA, Torres A. Voriconazole as primary antifungal prophylaxis in children undergoing allo-sct. Bone Marrow Transplant. 2012; 47: 562-567. https://doi.org/10.1038/bmt.2011.111 PMID:21572466

99. Troke PF, Hocke HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011; 55: 4782-4788. https://doi.org/10.1128/AAC.01081-10 PMID:21768513 PMCID:PMC3186950

100. Park WB, Kim N-H, Kim K-H, Lee SH, Nam WS, Yoon SH, Song KH, Choe PG, Kim NJ, Jang DJ, Oh MD, Yu KS. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: A randomized controlled trial. Clin Infect Dis. 2012; 55: 1080-1087. https://doi.org/10.1093/cid/cis599 PMID:22761409

101. Winston DJ, Maziarz RT, Chandrasekar PH, Lazurus HM, Goldman M, Blumer JL, Leitz CJ, Territo MC. Intravenous and oral itraconazole versus itraconazole and oral fluconazole for long-term antifungal prophylaxis in allogeneic hematopoietic stem-cell transplant recipients. A multicenter, randomized trial. Ann Intern Med. 2003; 138: 705-713. https://doi.org/10.7326/0003-4819-138-9-200305060-00006 PMID:12754291

102. Marr KA, Crippa F, Vazquez JA, Uhlert WJ, Hoyte M, Boechk M, Balajea SA, Nichols WG, Mushir B, Corey L. Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants. Blood. 2004; 103: 1527-1533. https://doi.org/10.1182/blood-2003-08-2644 PMID:14525770

103. Marr KA, Leisenring W, Crippa F, Slattery JT, Corey L, Boechk M, McDonald DJ. Cyclophosphamide metabolism is affected by azole antifungals. Blood. 2004; 103: 1557-1559.
ungal management in leukemia and chronic myeloid leukemia. Pediatr Infect Dis J. 2011; 30: 57-62.

Prentice HG, Caillot D, Dupont B, Menichetti F, Schuler U. Oral and intravenousitraconazole for systemic fungal infections in neutropenic haematological patients: Meeting report. London, united kingdom, 20 June 1998. Acta Haematol. 1999; 101: 56-62. https://doi.org/10.1111/j.1365-2213.1999.tb01086.x

Harousseau JL, Dekker AW, Stamatoullas-Bastard A, Fassas A, Linkesw W, Gouveia J, De Boek R, Revira M, Seifert WF, Joosen H, Peeters M, De Beule K. Itraconazole oral solution for primary prophylaxis of fungal infections in patients with hematological malignancy and profound neutropenia: A randomized, double-blind, double-placebo, multicenter trial comparing itraconazole and amphotericin b. Antimicrob Agents Chemother. 2000; 44: 1887-1893. https://doi.org/10.1128/AAC.44.7.1887-1893.2000

PMID:10858349 PMCID:PMC389980

Gallin JI, Alling DW, Maleh HL, Wesley R, Kozol D, Marciano B, Eissenstern EM, Turner ML, DeCarlo ES, Starling JM, Holland SM. Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med. 2003; 348: 2416-2422. https://doi.org/10.1056/NEJMoa021391 PMID:12802027

de Repentigny L, Ratelle J, Leclerc JM, Cormu G, Sokal EM, Jacqmin P, De Beule K. Repeated-dose pharmacokinetics of an oral solution of itraconazole in infants and children. Antimicrob Agents Chemother. 1998; 42:404-408. PMID:9557794 PMCID:PMC1054522

Groll AH, Wood L, Roden M, Miekine D, Chou CC, Townley E, Liu T, Zhu H, Wang J, Hu J. Multicenter, randomized, open-label study comparing the efficacy and safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2012; 18: 1509-1516. https://doi.org/10.1016/j.bbmt.2012.03.014 PMID:22469884

Serbel NL, Schwartz C, Arrieta A, Flynn P, Shad A, Albano E, Keirns J, Lau WM, Facklam RD, Beull DN, Wang TL, Safety, tolerability, and pharmacokinetics of micafungin (K643) in febrile neutropenic pediatric patients. Antimicrob Agents Chemother. 2005; 49: 3317-3324. https://doi.org/10.1128/AAC.49.9.3317-3324.2005 PMID:16048942 PMCID:PMC1962711

Hope WW, Seibel NL, Schwartz CL., Arrieta A, Flynn P, Shad A, Albano E, Keirns J, Buel DN, Guerro MA, Gutiérrez RL, Walsh TL. Population pharmacokinetics of micafungin in pediatric patients and implications for antifungal dosing. Antimicrob Agents Chemother. 2007; 51: 3714-3719. https://doi.org/10.1128/AAC.00398-07 PMID:17638869 PMCID:PMC2043275

Arrieta AC, Maddison P, Groll AH. Safety of micafungin in pediatric clinical trials. Pediatr Infect Dis J. 2011; 30: e97-e102. https://doi.org/10.1097/INF.0b013e3182127eaf PMID:21378595

Mehta PA, Vinks AA, Filipovich AV., Blessing J, Jodele S, Jordan MB, Marsh R, Tarin R, Edwards F, Dearing L, Lawrence J, Davies SM. Alternate-day micafungin antifungal prophylaxis in pediatric patients undergoing hematopoietic stem cell transplantation: A pharmacokinetic study. Biol Blood Marrow Transplant. 2010; 16: 1458-1462. https://doi.org/10.1016/j.bbmt.2010.05.002 PMID:20546908

Beaute J, Oerber G, Le Mignot L, Mahalou S, Bourgouin ME, Mouy R, Gougerot-Pocidalo MA, Barbogis V, Suarez F, Lanfiermer N, Hermanne O, Lecuit M, Blanche S, Fischer A; Lortholary O; French Paediatric Study Group (CREEDIH). Epidemiology and outcome of invasive fungal infections in patients with chronic granulomatous disease: A multicenter study in france. Pediatr Infect Dis J. 2011; 30: 57-62. https://doi.org/10.1097/INF.0b013e3181e725f2 PMID:20700078

Mouy R, Veber F, Blanche S, Donadieu J, Brauner L, Levron JC, Griscelli C, Fischer A. Long-term itraconazole prophylaxis against aspergillus infections in thirty-two patients with chronic granulomatous disease. J Pediatr. 1994; 125: 906-1003. https://doi.org/10.1016/0022-3476(94)90203-2

Lester J, Smith PB, Cohen-Wolkowiez M, Benjamin DK Jr, Hope WW. Antifungal agents and therapy for infants and children with invasive fungal infections: a pharmacological perspective. Br J Clin Pharmacol 2013;75: 1381–95.

Herbrecht R, Flügge C, Gachot B, Ribaud P, Tiebaut A, Cordonnier C. Treatment of invasive candida and invasive aspergillus infections in adult haematological patients. Eur J Clin Microbiol Infect Dis 2007; 26: 49–59. https://doi.org/10.1007/s10096-006-0707-8

Maertens J, Marchetti O, Herbrecht R, Cornelis OA, Flügge C, Frere P, Gachot B, Herard C, Lass-Fleury C, Reisb M, Thiebaud A, Cordonnier C. Third European Conference on Infections in Leukemia. European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: summary of the ECIL 3—2009 update. Bone Marrow Transplant 2011; 46: 709–18. https://doi.org/10.1038/bmt.2011.175 PMID:2162325

Jang SH, Colangelo PM, Gobetti JV. Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: https://www.mhjid.org/Medittr J Hematol Infect Dis 2018; 10; e2018048

Pag. 15 / 18

www.mhjid.org
evaluating the need to adjust doses based on drug concentrations in plasma. Clin Pharmacol Ther 2010; 88: 115–119. https://doi.org/10.1038/clpt.2010.64 PMid:20505665

142. Groll AH, Traganidis A. Update on antifungal agents for paediatric patients. Clin Microbiol Infect 2010; 16: 1543–53. https://doi.org/10.1111/j.1469-0691.2010.3334.x PMid:20681777

143. Sung L, Phillips R, Lehrmebner T. Time for paediatric febrile neutropenia guidelines—children are not little adults. Eur J Cancer 2011; 47: 811–813. https://doi.org/10.1016/j.ejca.2011.01.021 PMid:21371884

144. Allison K, Kolve H, Gumbinger HG, Voroomi MH, Ehert K, Groll AH. Secondary antifungal prophylaxis in paediatric haematopoietic allogeneic haematopoietic stem cell recipients. J Antimicrob Chemother 2008; 61: 734–742. https://doi.org/10.1093/jac/dkm521 PMid:18238981

145. Cordonnier C, Kivira M, Maertens J, Olivarius R, Faucher C, Bilger K, Pigeaux A, Cornely OA, Ullmann AH, Bochennek K, Tramsen L, Schedler N, et al. Liposomal amphotericin b (lipamb) in children. J Antimicrob Chemother 2006; 5173(02)00066-2 PMid:15536389

146. Verdoux M, Corona D, Gagliano M, Sorbello M, Macaronne M, Cutuli M, Guffrida G, Moreso P, Aricò P. Voriconazole in the treatment of invasive aspergillosis in kidney transplant recipients. Transplant Proc. 2007; 39: 1840–1844. https://doi.org/10.1016/transpro.2007.05.012 PMid:17692627

147. Doby EH, Benjamin DK Jr., Blaschke AJ, Ward RM, Pavia AT, Martin PL, Driscoll TA, Cohen-Wolkowitz M, Moran C. Therapeutic monitoring of voriconazole in children less than three years of age: A case report and summary of voriconazole concentrations for ten children. Pediatr Infect Dis J. 2012; 31: 632-635. https://doi.org/10.1097/INF.0b013e31824a1979 PMid:22501479 PMcid:PMC3356483

148. Bartelink IH, Wolfs T, Jonker M de Waal M, Egberts TC, Ververs TT, Boelens JJ, Biering M. Highly variable plasma concentrations of liposomal amphotericin b (l-amp-irc) in adults, children and neonates. Int J Pharm. 2002; 238: 11-15. https://doi.org/10.1016/S0378-5173(00)00066-2 PMid:11807679

149. Walsh TJ, Driscoll TD, Milligan PA, Wood ND, Schlamm H, Groll AH,Jafridi H, Arrieta AC, Klein NJ, Lutsia P. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob Agents Chemother 2010; 54: 4116–4123. https://doi.org/10.1128/AAC.00896-10 PMid:20606087 PMcid:PMC2944563

150. Walsh TJ, Adamson PC, Seibel NL, Flynn PM, Nicey MN, Schwartz C, Shad A, Khan SL, Roden MM, Stone JA, Miller A, Bradshaw SK, Li SX, Sable CA, Kartsonis NA. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother 2005; 49: 4536–4545. https://doi.org/10.1128/AAC.01540-05 PMid:16251972 PMcid:PMC12810172

151. Benjamin DJ, Driscoll T, Seibel NL, Gonzales CE, Roden MM, Kilaru R, Clark K, Dowell JA, Schranz J, Walsh TJ. Safety and pharmacokinetics of intravenous anidulafungin in children with neutropenia at high risk for invasive fungal infections. Antimicrob Agents Chemother 2006; 50: 632–638. https://doi.org/10.1128/AAC.00588-05 PMid:16436720 PMcid:PMC1366891

152. Caillot D, Thiebaud A, Herbrecht R, de Botton S, Pigneur A, Bernard F, Larché J, Monchecourt F, Alfandari S, Mahi L. Liposomal amphotericin B in combination with caspofungin for invasive aspergillosis in patients with hematologic malignancies: a randomized pilot study (Combistrial trial). Cancer 2007; 110: 2740–2746. https://doi.org/10.1002/cncr.23109 PMid:17941026

153. Marr KA, Boecht M, Carter RA, Kim HW, Corey L. Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis 2004; 39: 797–802. https://doi.org/10.1086/383668 PMid:15472810

154. Denning DW, Ribaud P, Milpied N, Caillot D, Herbrecht R, Thiel E, Haas A, Ruhnke M, Lode H. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 2002; 34: 563-571. https://doi.org/10.1086/324620 PMid:11807679

155. Fortun J, Martin-Davila P, Sanchez MA, Pinto O, Alvarez ME, Sanchez-Souza A, Moreno S. Voriconazole in the treatment of invasive mold infections in transplant recipients. Eur J Clin Microbiol Infect Dis 2003; 22: 408-413. https://doi.org/10.1007/s10096-003-0960-0 PMid:12827536

156. Wieland T, Liebold A, Jagiello M, Retzl G, Birnbaum DE. Superiority of voriconazole over amphotericin b in the treatment of invasive aspergillosis after heart transplantation. J Heart Lung Transplant. 2004; 23: 102-104. https://doi.org/10.1016/j.healcelj.2003.10.014 PMid:15653389

157. Veroux M, Corona D, Gagliano M, Sorbello M, Macaronne M, Zanghi M, Ullmann AH. Secondary antifungal prophylaxis in patients with hematologic malignancies: a randomized, placebo-controlled, pilot study (Combistrat trial). Eur J Clin Microbiol Infect Dis 2018; 37: 1221-1224. https://doi.org/10.1007/s10096-018-3577-3 PMid:30084208
Transplant Infect Dis. 2010; 12: 230-237. https://doi.org/10.1111/j.1399-3063.2009.00490.x

Neely M, Jafri HS, Salloum K, Knapp K, Adamson PC, Bradshaw SK, Strohmair KM, Sun P, Bi S, Dockendorf MF, Stone JA, Kastornos NA. Pharmacokinetics and safety of caspofungin in older infants and toddlers. Antimicrob Agents Chemother. 2009; 53: 1450-1456. https://doi.org/10.1128/AAC.01027-08

Cesaro S, Giacchino M, Locatelli F., Spiller M, Bultini B, Castellini C, Caselli D, Giraldi E, Tucci F, Tridello G, Rossi MR, Castagnola E. Safety and efficacy of a caspofungin-containing combination therapy for treatment of proven or probable aspergillosis in pediatric hematological patients. BMC Infect Dis. 2007; 7: 28. https://doi.org/10.1186/1471-2334-7-28

Masciach A, Lehmann L, Gollub S, Corcoran G, Gogate J, Krishna G, Pedicone L, Hardalo C, Perfect A, Louie A, Ribaud P, Segal BH, Stevens DA, van Burik JA, White J, Raad I, Patterson TF, Aoun M, Horst TA, Inbal BB, Lutsar I, Driscoll T, Paquin P, Arai M, Wang Y, Ha YH, Huh J, Espinel-Charreau I, Thiebaut A, Cordonnier C, Herbrecht R, Denning DW, Walsh TJ, Raad I, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Syvertson R, Rubins J, Wingard JR, Stark P, Durand C, Caillo G, Diel E, Chandraaske PH, Hodges MR, Schlamm HT, Trofe PF, de Pauw B; Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group. Voriconazole versus amphotericin b for primary therapy of invasive aspergillosis. N Engl J Med. 2002; 347: 408-415. https://doi.org/10.1056/NEJMoa0200315

Walsh TJ, Lutsar I, Driscoll T, Dupont B, Roden M, Ghaifamani P, Hedges M, Groll AH, Perfect JR. Voriconazole in the treatment of aspergillosis, scedosporiosis and other invasive fungal infections in children. Pediatr Infect Dis J. 2009; 28: 212-219. https://doi.org/10.1097/INF.0b013e3181af5a15

Maertens J, Raad I, Petrikkios G, Boogaerts M, Selleslag D, Petersen FB, Sable CA, Kartsonis NA, Ngai A, Taylor A, Patterson TF, Denning DW, Walsh TJ; Caspofungin Salvage Aspergillosis Study Group. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis. 2004; 39: 1563-1571. https://doi.org/10.1086/423381

Corney OA, Maertens J, Bresnik M, Ebrahim R, Ullmann AJ, Bouza E, Heussel CP, Lortholary O, Rieger C, Boehme A, Aoun M, Horst TA, Thiebaut A, Ruhne M, Reichert D, Bianelli N, Krause SW, Olavarria E, Herbrecht R; AMBiOad Trial Study Group. Liposomal amphotericin b as initial therapy for invasive mold infection: A randomized trial comparing a high-dose loading regime with standard dosing (ambioad trial). Clin Infect Dis. 2007; 44: 1289-1297. https://doi.org/10.1086/515507

Raad II, Hanna HA, Boktour M, Jiang Y, Torres HA, Affi C, Kontoyiannis DP, Hachem RY. Novel antifungal agents as salvage therapy for invasive aspergillosis in patients with hematologic malignancies: Posaconazole compared with high-dose lipid formulations of amphotericin b alone or in combination with caspofungin. Leukemia. 2008; 22: 496-503. https://doi.org/10.1038/leu.2008.565

Corney OA, Maertens J, Bresnik M, Ullmann AJ, Ebrahim R, Herbrecht R. Treatment outcome of invasive mould disease after sequential exposure to caspofungin and liposomal amphotericin b. J Antimicrob Chemother. 2010; 65: 114-117. https://doi.org/10.1093/jac/dkp397

Winston DJ, Bartoni K, Territo MC, Schiller GJ. Efficacy, safety, and breakthrough infections associated with standard long-term posaconazole antifungal prophylaxis in allogeneic stem cell transplantation recipients. Biol Blood Marrow Transplant. 2011; 17: 507-515. https://doi.org/10.1016/j.bbmt.2010.04.017

De la Serna J, Jarque I, Lopez-Jimenez J, Vallejo C. Treatment of invasive fungal infections in high risk hematological patients. The outcome with liposomal amphotericin b is not negatively affected by prior administration of mold-active azoles. Rev Esp Quimioter. 2013; 26: 64-69. PMid:2354666

Aubeger J, Lass-Filior C, Aigner M, Clausen J, Gastl G, Nachbaur D. Invasive fungal breakthrough infections, fungal colonization and emergence of resistant strains in high-risk patients receiving antifungal prophylaxis with posaconazole: a real-life data from a single-centre institutional retrospective observational study. J Antimicrob Chemother. 2012; 67: 2268-2273. https://doi.org/10.1093/jac/dks189

Maertens J, Raad I, Petrikkios G, Boogaerts M, Selleslag D, Petersen FB, Sable CA, Kartsonis NA, Ngai A, Taylor A, Patterson TF, Denning DW, Walsh TJ; Caspofungin Salvage Aspergillosis Study Group. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis 2004; 39: 1563–1571. https://doi.org/10.1086/423381

Perfect JR, Marr KA, Walsh TJ, Greenberg RN, DuPont B, de la Torre-Cisneros J, Just-Nübling G, Schlamm HT, Lutsar I, Espinel-
Ingroff A, Johnson E. Voriconazole treatment for less-common, emerging, or refractory fungal infections. Clin Infect Dis 2003; 36:1122–31. https://doi.org/10.1086/374457 PMID:12715306

192. Ng TT, Denning DW. Liposomal amphotericin B (AmBisome) therapy in invasive fungal infections. Evaluation of United Kingdom compassionate use data. Arch Intern Med 1995; 155:1093–1098. https://doi.org/10.1001/archinte.1995.00430100129015

193. Walsh TJ, Hiemenz JW, Seibel NL, Perfect JR, Horwith G, Lee L, Silber JL, DiNubile MJ, Reboli A, Bow E, Lister J, Anaissie EJ. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 1998; 26:1383–1396. https://doi.org/10.1086/516353 PMID:9636868

194. Prentice HG, Hann IM, Herbrecht R, ,Aoun M, Kvaloy S, Catovsky D, Pinkerton CR, Schey SA, Jacobs F, Oakhill A, Stevens RF, Darbyshire PJ, Gibson BE. A randomized comparison of liposomal versus conventional amphotericin b for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol. 1997; 98: 711-718. https://doi.org/10.1046/j.1365-2141.1997.2473063.x PMID:9332329

195. Maertens JA, Madero L, Reilly AF, Lehrnbecher T, Groll AH, Jafri HS, Green M, Nania JJ, Bourque MR, Wise BA, Strohmaier KM, Taylor AF, Kartsonis NA, Chow JW, Arndt CA, DePauw BE, Walsh TJ; Caspofungin Pediatric Study Group. A randomized, double-blind, multicenter study of caspofungin versus liposomal amphotericin b for empiric antifungal therapy in pediatric patients with persistent fever and neutropenia. Pediatr Infect Dis J. 2010; 29: 415-420. https://doi.org/10.1097/INF.0b013e3181da2171 PMID:20431381

196. Caselli D, Paolucci O. Empiric antibiotic therapy in a child with cancer and suspected sepsis. Pediatr Rep. 2012; 4: e2. https://doi.org/10.4081/pr.2012.e2 PMID:22690308 PMCID:PMC3357615

197. Cordonnier C, Pautas C, Maury S, Vekhoff A, Farhat H, Suarez F, Dhédin N, Isnard F, Ades L, Kuhnowski F, Foulet F, Kuentz M, Maizon P, Bretagne S, Schwarzinger M. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: A randomized, controlled trial. Clin Infect Dis. 2009; 48: 1042-1051. https://doi.org/10.1086/597395 PMID:19281327

198. Girmancia C, Micozzi A, Gentile G, Santilli S, Arleo E, Cardarelli L, Capria S, Minotti C, Cartoni C, Brocchieri S, Guerriani V, Meloni G, Foà R, Martino P. Clinically driven diagnostic antifungal approach in neutropenic patients: A prospective feasibility study. J Clin Oncol. 2010; 28: 667-674. https://doi.org/10.1200/JCO.2009.21.8052 PMID:19841328

199. Tan BH, Low JG, Chlebicka NL, Kurup A, Cheah FK, Lin RT, Goh YT, Wong GC. Galactomannan-guided preemptive vs. Empirical antifungals in the persistently febrile neutropenic patient: A prospective randomized study. Int J Infect Dis. 2011; 15: e350-356. https://doi.org/10.1016/j.ijid.2011.01.011 PMID:21397541

200. Castagnola E, Bagnasco F, Amoroso L, Caviglia L, Caruso S, Faraci M, Calvillo M, Moroni C, Bandettini R, Cangemi G, Magnano GM, Buffa P, Moscattelli A, Haupt R. Role of management strategies in reducing mortality from invasive fungal disease in children with cancer or receiving hematopoietic stem cell transplant: A single center 30-year experience. Pediatr Infect Dis J. 2014; 33: 233-237. https://doi.org/10.1097/INF.0000000000000471 PMID:24136371

201. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JJ, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR; Infectious Diseases Society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 2011; 52: 427–431. https://doi.org/10.1093/cid/ciq147 PMID:21205900