Floristic Compositions and its Affinities to Phytogeographical Regions in Wadi Khulab of Jazan, Saudi Arabia

Wael Taha Kasem¹² and Marei Hamed¹

1-Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Egypt
2- Biology Department, Faculty of Science, Jazan University, KSA

wael_kasm@yahoo.com

ABSTRACT

Wadi Khluab is considered one of the most important wadis in Jizan, south-western Saudi Arabia. Thus the current work provides an analysis of the floristic composition, life form and chorology of plant life of the wadi, a total of 119 species related to 93 genera represented 44 vascular plant families were documented. Six families (Aizoaceae, Euphorbiaceae, Papilionaceae, Poaceae, Amaranthaceae and Asclepiadaceae) provided nearly half of the total number of species reported. Therophytes and chamaephytes are the most frequent life forms which may indicating a typical desert spectrum vegetation. The floristic composition of the different geomorphologic landscape units offered differences in species richness in the different sectors of the wadi, and the phytocoria. Monoregional and biregional areas contained 45 species (41%), while biregional species were 39 species (36%) respectively, while only two species (2%) were recorded in the pleuriregion. It is thus concluded that the region should be considered a hot-spot in the Kingdom in terms of floral diversity.

Key words: Floristic composition, Life forms, Chorology, Wadi Khluab

1. INTRODUCTION

Saudi Arabia is a huge arid desert with an area of about 2,250,000 km² that covers the majority of the Arabian Peninsula (Abdel Khalik et al., 2013). It is approximately located between latitude 15°45' and 34°35'N and longitude 34°40' and 55°45'E. Flora of Saudi Arabia is considered to be the richest in the Arabian Peninsula. Jazan province is situated in the south-western part of Saudi Arabia, their foothills are characterized by rocky slopes, cliffs and crevices with granite, sandy soil whereas the hilly areas are generally formed of rocky cliffs, rocky ridges, granite boulders, granite outcrops, granite sandstones and crevices (Marei, et al., 2014). Al-Sherif (1984) divided the Jazan region geomorphologically into three main landscapes: Mountains (El-Sarwat Mountains), Plains (Tihamah coastal plains) and islands including those between Jazan city and Farsan Islands. Distribution of the life form is closely related to topography and landform (Fakhireh et al., 2012). In several wadis, the composition of life forms expresses a typical desert flora, with the majority of species are therophytes and chamaephytes, The vegetation of wadis is not constant it varies from year to year, depending upon the moisture level (Siddiqui and Al-Harbi, 1995). Plant life growth and distribution in the wadis are controlled by many factors such as geographical position, physiographic features, and human impact (Shaltout and El-Sheikh, 2003; Kurschner and Neef, 2011; Alataret et al., 2012; Korkmaz and Ozcelik, 2013). Several studies on the floristic diversity and vegetation analysis in Tihamah plains of Saudi Arabia were performed (Al-Hubaishi and Hohenstein 1984; El-Demerdash et al., 1994; Al-Farhan et al., 2005; Masrahi, 2012; Marei, et al., 2014). Aim of the work was thus to survey and identification of the wild plants growing in
WadiKhulab and to study the vegetation types in the Wadi in terms of floristic composition, life-form and chorotype.

Study area

WadiKhulab is located in the southwestern part of Saudi Arabia, between the Al-Khobh in the east and the Ahad Al Masarih in the west. It lies between 16°46'0"N latitude and 43°16'0"E longitude (Figure 1). The study area, approximately 40-50 Km² long lies 70 meters above sea level. It is considered to be favorable for plant growth due to stagnant water after rainfall. According to Walter et al. (1975), the study area lies within the subtropical dry zone, and has very hot summers and mild winters. The average annual temperature is 31.3°C; January and February are the coldest months with the lowest average temperature (26°C), while the hottest months is August with the highest average temperature (40°C). The maximum precipitation (15.0 mm) falls during August, while the minimum of about 5.0 mm falls during June (Fig. 2, Table 1).

2. MATERIALS AND METHODS

The study area (Fig. 1) was conducted from April 2016 to February 2017, a species were recorded according to the classification of Cornquist (1981). Life forms were determined following Raunkiaer (1934). Phytogeographical analysis was carried out according to Wickens (1978) and Zohary (1973). The collected plant specimens were identified and named according to Migahid (1996), Chaudhary (2001), Al-Farhan et al. (2005) and Masrahi (2012), and deposited in Jazan University Herbarium, KSA (JAZUH).

![Fig. 1: A. Location map of Saudi Arabia showing the Southwestern border region. B. Location map of Jazan in which the study area (Map downloaded from http://google-aps.pro/satellite/Samitah.Saudi_Arabia)](image-url)
3. RESULTS and DISCUSSION

3.1. Floristic Composition

A total of 119 taxa belonging to 93 genera and 44 families of phanerogams, were recorded in the 28 different surveyed sectors of Wadi Khluab. Their generic representations are quite variable. In terms of species richness, the Poaceae (Gramineae) was the most abundant family comprising 20% of the total taxa (Figure 3 and Table 2), with 24 species related to 19 genera (Table 2) due to water availability, including annual precipitation and soil properties. These floristic findings were in accordance with those of Parker (1991) and Soulé et al. (2016). The families of Aizoaceae, Euphorbiaceae and Papilionaceae are represented by six taxa, although the variation in the number of their genera (Table 4). As well, the two families of Amaranthaceae and Asclepiadaceae are similar in representing five species of four genera. family has four species representing 3 genera.Cyperaceae, Malvaceae, Convolvulaceae, and Caesalpinioideae families contained four species each representing 1, 3, 4 and 4 genera respectively. Furthermore, three species exhibited in five families (Aracaceae, Cucurbitaceae, Solanaceae, Tiliaceae and Zygophyllaceae). Likewise, the restricted families of Acanthaceae, Nyctaginaceae, Lamiaceae, Aracaceae, Heliotropiaceae and Primulaceae having only two species related to two genera. Also, the remainder families (26
families) were represented by a single species (Figure 3). These results were similar to Marei, et al., 2014 studies on Tihama hill slopes of Jazan region.

Table 2. Plant species recorded with their families, life forms and chorotypes.

Family	Taxa	Life form*	Life Span	Chorotype
Acanthaceae	Anisotestriculus (Forssk.) Nees	Ph	Per	SA + TR
	Blepharisciliaris (L.) B.L. Burtt. Ch	Ch	Ann	SA +SZ
Amaranthaceae	Amaranthushybridus L.	Th	Ann	PAL
	Amaranthusgraecizans L.	Th	Ann	PAL
	Aervajavanica (Burn. F.) Juss	Ch	Per	SA + SZ
	Achyranthesasaspica L.	Ch	Ann	Me + IT
	Digeramuricata (L.) Mast.	Th	Ann	TR
Anacardiaceae	Mangiferaindica	Ph	Per	Cult
Lamiaceae	Ocimumbasilicum L.	Ch	Per	SZ
	Ocimumforsskallii Benth	Ch	Per	SZ
Aracaceae	Hyphaenethebaica (L.) Mart	Ph	Per	SA +SZ
	Phoenix dactylifera L.	Ph	Per	SA + SZ
Astraceae	Launaeamucronata (Forssk.) Muschl.	Th	Ann	SA
	Plucheadioscoridis (L.) DC.	Ch	Per	SA + SZ
	Pulicariaundulata (L.) C.A. May	He	Per	SA +SZ
Asphodelaceae	Asphodelustenufolius Cav	Cr	Ann	SA + SZ
Asclepiadaceae	Calotropisprocera (Ait.) R. Br.	Ph	Per	SA + SZ
	Ceropegiavariegata Decne	Ch	Per	SA + SZ
	Pentatropisnivalis (Gmel.) Field & Wood	Ch	Per	SA +SZ
	Leptadeniapyrotechnica (Forssk.) Decne	Ph	Per	SA + SZ
	Leptadeniaarborea (Forssk.) Schweinf	Ch	Per	SA + SZ
Aizoaceae	Glinuslotoides L.	Th	Ann	PAL
	Mollugonudicaulis Lam.	Th	Ann	TR
	Trianthemashei A.G. Miller	Th	Ann	SA
	Trianthema portulacastrum L.	Th	Ann	SA
	Sesuvium sesuviodus (Fenzl) Verdc	Ch	Ann	TR
	Zaleyapentandra (L.) Jeffrey	Th	Ann	SZ
Chenopodiaceae	Suaedamonoica Forssk. ex J. Gmel	Ch	Per	SA + SZ
Cappariaceae	Dipterygium laugulum Decne	Ch	Per	SZ
Cactaceae	Opuntiadiellenii (Ker-Gawl.) Haw.	Ch	Per	PAN
Celastraceae	Catha edulis (Vahl) Forssk	Ch	Ann	Cult
Cleomaceae	Cleome gynandra L.	Ch	Ann	SA + SZ
Cyperaceae	Cyperus conglomeratus Rotb.	Th	Per	SA
	Cyperusalopecuroides Rotb. Descr	Cr	Per	PAN
	Cyperuslaevigatus L.	Cr	Per	PAN
	Cyperusalternifolius L.	Cr	Per	SA
Convolvulaceae	Convolvulus prostratus Forssk.	Th	Per	SA +SZ
	Ipomoea sinensis (Desr.) Choisy in Mem	Th	Ann	SA + SZ
	Ipomoea hochstetteri House	Th	Ann	SA + SZ
	Sedderavigata Hochst. & Steud. ex Hochst.	Ch	Per	SZ
Caesalpinaceae	Chamaeristanicigricans (Vahl) Greene	Ph	Ann	SA + SZ
	Prosopis juliflora (Sw.) DC.	Ph	Per	SA
	Sennaitalica Mill	Ch	Per	SA + SZ
Family	Genus	Author	Distribution	
-----------------	------------------------------	-----------------	--------------	
Cucurbitaceae	Senna alexandrina	Mill.	Ch	
	Cucumis prophetarum	L. He	Ann	
	Cucumis melo	L. He	Ann	
	Zehneria anomala	C. Jeffrey	Ch	
Euphorbiaceae	Acalypha fruticosa	Forssk.	Th	
	Acalypha indica	L. Th	Ann	
	Croton bonplandianus	L. Th	Ann	
	Euphorbia granulata	Forssk.	Th	
	Euphorbia hirta	L. Th	Ann	
	Ricinus communis	L. Ph	Per	
Heliotropiaceae	Heliotropium pterocarpum	(DC.) Steud.	Ch	
	Heliotropium longiflorum	Steud. & Hochst.	Ch	
Malvaceae	Abutilon pannosum	(G. Forst.) Schlech.	Ch	
	Abutilon hirtum	(Lamk.) Sw	Ch	
	Malvavarpflora	L. Th	Ann	
	Senraicana Cav.	Ch	Per	
Mimosaceae	Acacia ehrenbergiana	Hayne	Ph	
	Acacia tortilis	(Forssk.) Hayne	Ph	
Menispermae	Coccusus pendulatus	(J.R. & G. Forst.) Diels	Ph	
Moraceae	Ficus populifolia	Vahl	Ph	
Nyctaginaceae	Boerhaviadiffusa	L. Ch	Ann	
	Boerhaviarepens	L. Ch	Ann	
Papilionaceae	Alysicarpus rugosus	(Willd.) DC.	Ch	
	Indigofera oblongifolia	L. Th	Per	
	Indigoferaspinosa	Forssk.	Ch	
	Indigofera argentea	Burm.	Ch	
Menispermae	Tephrosia purpurea	(L.) Pers.	Ch	
	Tephrosia anubica	(Boiss.) Bak	Ch	
Polygonaceae	Polygala eriopera	DC. Ch	Ann	
Poaceae	Aristidamutabilis	Trin. & Rupr.	Th	
	Cenchrus pennisetiformis	Hochst. & Steud.	Th	
	Cenchrus ciliaris	L. Th	Per	
	Chloris barbata	Sw. Th	Per	
	Dactyloctenium aegyptium	(L.) Wild.	Th	
	Dactyloctenium scindicum	Boiss. Th	Ann	
	Digitaria ciliaris	(Retz.) Koel	Th	
	Digitariavelutina	(Forssk.) Beauv.	Th	
	Desmostachyapsinata	(L.) Stapf	Th	
	Dinebraretroflexa	(Vahl) Panz	Th	
	Eragrostis ciliaris	(L.) R. Br.	Th	
	Eragrostis minor	Host Th	Per	
	Eriochloa fatensis	(Hochst. & Steud.) He	Per	
Clayton	Echinochloa colonolana	(L.) Link	Th	
	Ochchloa compressa	(Forssk.) Hilu	Th	
	Paspalidium desertorum	(A. Rich.) Stapf.	Th	
	Panicum turgidum	Forssk. Cr	Per	
	Sporobolus helvolus	(Trin.) Dur. & Schinz	Th	
	Saccharum spontaneum	L. Th	Per	
	Schoenefeldia gracilis	Kunth Th	Per	
3.2. Life Form

Table 3 shows the life form spectra of the recorded species, the highest life form recorded was for the therophytes constituted by 50 species representing 42% of the total species followed by the chamaephytes with 40 species representing 34%. Likewise, 18 species of the phanerophytes estimated represented 15%. Furthermore, six species estimated as cryptophytes (Asphodelustenuifolius, Cyperusalopecuroides, Cyperuslaevigatus, Cyperusalterifolius, PanicumturgidumundTetrapogontenellus) compromised 5%. Also, four taxa of Pulicaria undulate, Cucumisprophetarum, Cucumismelo and Pennisetumsetaceumseen ashemicryptophyte. Also, hydrophytes in this area represented by Typhadomengensis. The five cultivated plants represented by 5 % (Fig. 4). A comparison of families in terms of the largest number of species recorded in this investigation and in similar studies in different regions of Saudi Arabia, such as: Hosni & Hegazi (1996) in the Asir Mountains, Mosallam (2007) in Taif, Al-Turki & Al-Olayan (2003) in Hail region and Alatar et al. (2012) in Al-Jufair Wadi. Therophyteshave the highest contribution followed by chamaephytes indicating the adjustment of the flora to water balance. The predominance of phanerophytes expresses that the flora is tertiary dominated with woody plants (shrub and trees). It also displayed the level of woody flora management by the farmers using of woody species as green fertilizers and assisting natural regeneration. These results coincide with the findings of Al-Turki and Al-Olayan (2003) and Soulé et al. (2016). As well, Danin and Orchan (1990); Abd El
Ghani (1997) and Fahmy and Hassan (2005) reported the domination of therophytes and chaemophytes as vegetation spectra in desert and semi-desert vegetation in other parts of the Middle East. Moreover, the dominance of therophytes, chaemophytes and phanerophytes over other life forms are seen to be a response to the hot dry climate, topographic variation and human and animal interference (Abd El-Ghani and Abd El-Khalik, 2006 and Al-Shammari et al., 2013). Three medicinal plants used by some local people, including *Acacia tortilis*, *Malvaparviflora* and *Solanum glabratum*. Also, many poisonous plants such as *Anagallis arvensis*, *Calotropis procera*, *Datura innoxia*, *Datura stramonium*, *Leptadenia pyrotechnica*, *Solanum nigrum*, *Tribulus terrestris* and *Zygophyllum simplex* were recorded.

![Fig. 3. Floristic composition of the different families in Wadi Khulab.](image)

Table 3. Systematic composition of the studied flora families in the study area.

Family	Genera	%	Species	%	Tree	Habit	Herb
Acanthaceae	2	2	2	2			+
Amaranthaceae	4	4	5	4	+		
Anacardiaceae	1	1	1	1	+		
Aracaceae	2	2	2	2	+		
Astraceae	3	3	3	2			
Asphodelaceae	1	1	1	1	+		
Asclepideae	4	4	5	4			
Aizoaceae	5	5	6	5			
Chenopodiaceae	1	1	1	1			
Capparidaceae	1	1	1	1			
Cactaceae	1	1	1	1			
Clasteraceae	1	1	1	1	+		Sub-shrub
Cleomaceae	1	1	1	1			
Cyperaceae	1	1	4	3			
Convolvulaceae	4	4	4	3	+		
Caesalpiniaceae	4	4	4	3	Sub-shrub	+	
Table 4. Aggregation summary showing the distribution of collected plant species into their growth types and life forms.

Families	Genera	Species	Type	Spp. No.	%	Life Form*	Species No.	Percentages
44	93	119	Annual	55	46	Ph	18	15
--	--	--	Perennial	64	54	Ch	40	34
--	--	--	--	--	--	Cr	6	5
--	--	--	--	--	--	Th	50	42
--	--	--	--	--	--	Hy	1	1
--	--	--	--	--	--	He	4	3
--	--	--	Total	119	100	Total	119	100

*Ph = phanerophyte, Ch = chamaephyte, Th = therophyte, Cr = cryptopyte and Hy = hydrophyte
Figure 4. Life-form relative spectrum of WadiKhulab vegetation. Ph = phanerophyte, Ch = chamaephyte, Th = therophyte, Cr = cryptopyte and Hy= hydrophyte

Table 5: Phytochoric distribution of studied plant Species

Phytochorial Type	Species Number	Percentage (%)
Monoregional		
SA	20	18.00
TR	7	6.00
SZ	18	17.00
Total	45	41.00
Biregional		
SA + SZ	29	27.00
SA + TR	6	5.00
ME + IT	2	2.00
SZ + TR	2	2.00
Total	39	36.00
Pleuriregional		
ME + IT + SA	2	2.00
Total	2	2.00
PAN	8	7.00
PAL	6	5.00
COSM	4	4.00
Cult	5	5.00
Total	**23**	25.00
Figure 5. Floristic category spectrum of Khulab. TR = Tropical, SA = Saharo-Arabian, SZ = Sudano-Zambezian, ME = Mediterranean, IT = Irano-Turanian, PAN = Pantropical, PAL = Paleotropical, COSM = Cosmopolitan and Cult = Cultivated.

3.3. Chorology

From the phytogeographical point of view, the recorded species in the different sectors of the studied valley may be classified as monoregional, biregional or pluriregional (Table 5). Monoregional area has in total 45 species representing 41%, in which 20, 18 and 7 species are within the Saharo-Arabian, Sudano-Zambezian and tropical regions, respectively. The highest percentage in this area was recorded in Saharo-Arabian (18%). Biregional area included 39 species with 36% in which 29 species were shared by Saharo-Arabian and Sudano-Zambezian regions (27%), six species were shared by Saharo-Arabian and tropical regions, and two species of Achyranthes aspera and Malva parviflora were recorded in the Mediterranean and Irano-Turanian regions and the two species of Anisotestriculus and Boerhavia diffusa were estimated in the Sudano-Zambezian and tropical regions. Pleuriregional (Mediterranean, Irano-Turanian and Saharo-Arabian) area has only 2 species (Tetrapogon villosus and Setaria viridis) representing 2%. Likewise, eight species (8%) were reported within the panatropical area and six species (6%) were recorded in paleotropical area. Cosmopolitan plants comprised 4% of the population are four species, Euphorbia hirta, Portulaca oleracea, Anagallis arvensis and Tribulus terrestris (Figure 5). These results agree with chorological characteristic in other parts of Saudi Arabia (ALSherif, et al., 2013 on Khulais region, Abdel Khalik, et al., 2013 on Wadi Al-Noman and Osman et al., 2014 on WadiArar). The results indicate that Saharo-Arabian elements predominate the studied area (66 species, 55.5%), and were represented as mono-regional (18 species, 15.12%), bi-regional under the influence of Sudano-Zambezian and tropical regions (35 species, 29.41%) and Pleuriregionals under the influence of Mediterranean, Irano-Turanian and Saharo-Arabian regions (2 species, 2.00%), followed by Sudano-Zambezian region (49 species, 41.17%), were represented in mono-regional with 18 species and bio-regional with 31 species.
CONCLUSION
Wadi Khulab, located in the south-western of Saudi Arabia, is floristically diverse in biodiversity. The present survey recorded 119 taxa and represented over one quarter of the checklist recorded before in Jazan area by Masrahi (2012) who identified and described about 524 species which belong to these floristic structures. The total number of identified genera was 93 indicating a high generic index of 78% (93/119). This high diversity in the wadi was due to the abundance of rainfall sources and soil fertility which considered as a biotic factors. The floristic composition of the wadi is rich in species, genera and botanical families due to rainfall water balance. Poaceae is the best represented botanical family followed by five families (Aizoaceae, Euphorbiaceae, Papilionaceae, Amaranthaceae and Asclepiadaceae) constituted the main bulk of the wild plants in the study area. Besides that, the life forms are diverse but the therophyte and chamaephytes are the dominant. The growth types in this study were perennial types were 64 species while the annual types were 55 species. Their predominance makes the phytoclimate of the waditherochoamephytic type. In addition, the areas of Saharo-Arabian and Saharo-Arabian and Sudano-Zambezian are the most dominant chorotypes represented more than third of total plants. There are some plant species were left unrecorded hence need long-term comprehensive study to document.

ACKNOWLEDGEMENT
The author would like to thank the Biology Department, Faculty of Science, Jazan University, KSA and Jazan University Herbarium (JAZUH). Thanks, also to Dr. Jeffery and to Dr. Mahmoud Salah, Prof. of Biology Department, Jazan University, for their help and advices.

REFERENCES
Abdel Khalik, K., El-Sheikh, M., El-Aidarous, A., (2013). Floristic diversity and vegetation analysis of Wadi Al-Noman, Holy Mecca, Saudi Arabia. Turk. J. Bot., 37, 894–907.
Abulfatih, H. A. (1981). Wild plants of Abha and its surroundings. Proceeding of the Saudi Biol. Soc. 5: 143-159.
Abd El-Ghani, M.M. and Abd El-Khalik, K.N., (2006). Floristic diversity and phytogeography of the Gebel Elba national park, southeast Egypt. Turk. J. Bot., 30: 121-136.
Abd El-Ghani M., (1997). Vegetation analysis and species diversity along an altitudinal gradient in the central Hijaz Mountains of Saudi Arabia. Arab Gulf J. Sci. Res. 15:399–414.
Al-Farhan, A. H., Al Turky, T.A. and Basahy, A. Y.(2005). Flora of Jizan region. Final Report Supported by King Abdulaziz City for Science and Technology Vol. 1 & 2 pp. 545.
Al-shammari, A.S. (2013). Soil classification, water quality and chemical pollution of some crops and soils at farms in wadi Al-Aderaa-Hail, Ph.D. thesis, faculty of Meteorology, environment and Arid Land Agriculture - King Abdulaziz University - Jeddah – Saudi Arabia.
Al-Sheriff, A. S. (1984). The geography of the kingdom of Saudi Arabia. Part II: The South Western Province. Dar El-Marikh. Riyadh. pp 483.
Al-Sheriff, A., Ahmed, M. Ayesh and Sayed, M. (2013): Floristic composition, life form and chorology of plant life at Khulais region, Western Saudi Arabia. Pak. J. Bot., 45(1): 29-38, 2013.
Al-Turki, T.A. and Al-Olayan, H.A. (2003). Contribution to the flora of Saudi Arabia: Hail region. Saud. J. Biol. Sci., 10: 190-222.
Alatar A, El-Sheikh M.A.& Thomas J (2012). Vegetation analysis of wadi Al-Jufair, a hyper-arid region in Najd, Saudi Arabia. Saudi Journal of Biological Sciences 19: 357–368.
Al-Hubaishi, A. & Hohenstein, K. M. (1984). An introduction to the vegetation of Yemen. ecological basis, floristic composition and human influence. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. pp 209.

Chaudhary, S.A., (2001). In: Flora of the Kingdom of the Saudi Arabia, V. 1-3. Ministry of Agriculture and Water press, Riyadh.

Cornquist, A.J., (1981). An integrated system of classification of flowering plants. Columbia Univ. Press, New York.

Danin A., Orchan A.G., (1990). The distribution of Raunchier life forms in Israel in relation to environment. J. Veg. Sci. 1: 41–48.

El-Demerdash, M.A., Hegazy, A.K. and Zilay, A.M. (1994). Vegetation-soil relationships in Tihamah coastal plains of Jazan region, Saudi Arabia. Journal of Arid Environments, 30:161–174.

Fahmy, A.G. and Hassan L.M., (2005). Plant diversity of wadi el Ghayl, Asir Mountains, Saudi Arabia. Egypt. J. Desert Res., 55, pp. 39–52

Fakhireh A., Ajorlo M, Shahryari A, Mansouri S, Nouri S & Pahlavanravi A (2012). The autecological characteristics of Desmostachyabipinnata in hyper-arid regions. Turkish Journal of Botany 36: 690–696.

Hosni, H.A. and A.K. Hegazy. 1996. Contribution to the flora of Asir, Saudi Arabia. Candollea, 51: 169–202.

Korkmaz, M.&Ozcelik, H. (2013). Soil-plant relations in the annual Gypsophila Caryopyhllaceae) taxa of Turkey. Turk. J. Bot., 37: 85–98.

Kurschner, H.&Neef, R. (2011). A first synthesis of the flora and vegetation of the Tayma oasis and surroundings (Saudi Arabia). Plant Diversity Evolution 129: 27–58.

Siddiqui, A.Q., Al-Harbi, A.H., 1995. A preliminary study of the ecology of WadiHanifah stream with reference to animal communities. Arab Gulf. J. Sci. Res. 13, 695–717.

Masrahi, Y. 2012. A Brief illustrate to wild plants in Jizanregion. King Fahad Library, Jeddah pp. 302.

Mosallam, H. (2007). Comparative study on the vegetation of protected and non protected areas, Sudera, Taif, Saudi Arabia. Int. J. Agric. Biol., 9(2). 202-214.

Osman, A, Faraj Al-Ghamdi, AbdulhakimBawadekji. (2014) Floristic diversity and vegetation analysis of WadiArar: A typical desert Wadi of the Northern Border region of Saudi Arabia. Saudi Journal of Biological Sciences. 21, 554–565

Parker, K (1991). Topography, substrate, and vegetation patterns in the northern sonoran desert. Journal of Biogeography 18: 151–163.

Raunkiaer, C. (1934). Life forms of plants and statistical plant geography. Oxford: Clarendon Press.

Shaltout, K.H and El-Sheikh, M.A. (2003). Vegetation of the urban habitats in the Nile Delta region, Egypt. Urban Ecosystems 6: 205–221.

Soulé, M. Ado, A.M., Ibrahim D.B, Saadou, M. (2016). Systematic composition, life forms and chorology of agroforestry systems of Aguié Department, Niger, West Africa. Journal of Applied Life Sciences International; 8(4):1-12.

Migahid, A.M. (1996). Flora of Saudi Arabia, Vol. I–III. Jeddah: King Abdul Aziz University Press.

Wickens, G.E. (1978). Some of the phytogeographical problems associated with Egypt. Cairo University Herbarium 7–8: 223–230.
Walter, H.Harnickell, E. & Mueller-Dombois, D. (1975). *Climate diagram maps*. Berlin: Springer Verlag. Geobotanical Foundations of the Middle East. Stuttgart: Gustav Fischer Verlag.