Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats

Jun Chen, Jia-Tian Dong, Xiao-Jing Li, Ye Gu, Zhi-Jian Cheng, Yuan-Kun Cai

Abstract

AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect.

METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group.

RESULTS: In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01).

CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.

Key words: Intestinal mucosal barrier; Glucagon-like
Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide encoded by the carboxy terminal of GLP-1 in proglucagon. It was first reported and introduced as a specific adapter of the intestinal mucosa by Drucker et al[8] in 1996. GLP-2 is co-secreted with GLP-1, oxyntomodulin and glicentin from enteroendocrine L cells, which are primarily located in the ileum and proximal colon. It has recently been demonstrated that GLP-2 has a highly tissue-specific trophic effect on the small intestine and augments the adaptive response to intestinal resection in the rat. Additionally, GLP-2 inhibits gastric acid secretion, enhances intestinal sugar transport and slows gastric emptying[2-5]. Halaçla et al[7] reported that bacterial translocation in samples of the liver, spleen, mesenteric lymph nodes and portal and systemic blood obtained from the GLP-2 treated group was reduced compared with samples obtained from the colitis group. In addition, the Chinese scholars Li et al[10] discovered that the rate of bacterial translocation and the level of endotoxin in rats with gut ischemia-reperfusion injury were significantly increased compared with those treated by GLP-2. Above all, the most important property of GLP-2 in the gastrointestinal (GI) tract is its enterotrophic effect[8-10]. Therefore, its potential therapeutic role in patients with intestinal insufficiency secondary to extensive disease or resection of the small bowel is of interest[6].

In the terminal ileum, embedded in Optimal Cutting Temperature (OCT) compound (Sakura Finetechnical, Tokyo, Japan) and immediately snap-frozen in liquid nitrogen for immunohistochemistry. Then, the samples were fixed in 400 g/L of paraformaldehyde solution. Sections of 5 μm were cut and stained with hematoxylin and eosin (HE). The pathological changes and injuries to the intestinal mucosa were evaluated under a light microscope by an independent observer who was blinded to the experimental protocol. Additionally, secretory peptide-2; Obstructive jaundice

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: It has recently been demonstrated that glucagon-like peptide-2 (GLP-2) has a highly tissue-specific trophic effect on the small intestine. However, whether GLP-2 also functions as an adapter for rats with obstructive jaundice is unknown. Studies on this topic are rare, and our research clearly illustrates that exogenous GLP-2 reduces intestinal mucosal injuries in an obstructive jaundice rat model. The next step of our study is to continue focusing on the details of this research as further studies are needed.

Chen J, Dong JT, Li XJ, Gu Y, Cheng ZJ, Cai YK. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats. World J Gastroenterol 2015; 21(2): 484-490 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i2/484.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i2.484

INTRODUCTION

Blood biochemistry

Serum samples were obtained and analyzed on postoperative days 1, 3, 7, 10 and 14. All serum samples were measured using a Hitachi 7600 modular chemistry analyzer (Hitachi High-Technologies Corporation, Tokyo, Japan) to determine the levels of alanine aminotransferase (ALT) and total bilirubin (Tbil) using kits from Jiancheng Bioengineering Institute. The endotoxin levels in plasma were measured according to the manufacturer’s instructions with the kits (Horseshoe Crab Reagent, Xiamen, China).

Tissue harvest and histopathological evaluation

After 2 wk, the animals were anesthetized, and repeat laparotomy was performed. Segments of the small bowel, approximately 3 cm long, were harvested from the terminal ileum, embedded in Optimal Cutting Temperature (OCT) compound (Sakura Finetechinal, Tokyo, Japan) and immediately snap-frozen in liquid nitrogen for immunohistochemistry. Then, the samples were fixed in 400 g/L of paraformaldehyde solution. Sections of 5 μm were cut and stained with hematoxylin and eosin (HE). The pathological changes and injuries to the intestinal mucosa were evaluated under a light microscope by an independent observer who was blinded to the experimental protocol. Additionally, secretory peptide-2; Obstructive jaundice

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: It has recently been demonstrated that glucagon-like peptide-2 (GLP-2) has a highly tissue-specific trophic effect on the small intestine. However, whether GLP-2 also functions as an adapter for rats with obstructive jaundice is unknown. Studies on this topic are rare, and our research clearly illustrates that exogenous GLP-2 reduces intestinal mucosal injuries in an obstructive jaundice rat model. The next step of our study is to continue focusing on the details of this research as further studies are needed.

Chen J, Dong JT, Li XJ, Gu Y, Cheng ZJ, Cai YK. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats. World J Gastroenterol 2015; 21(2): 484-490 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i2/484.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i2.484

INTRODUCTION

Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide encoded by the carboxy terminal of GLP-1 in proglucagon. It was first reported and introduced as a specific adapter of the intestinal mucosa by Drucker et al[8] in 1996. GLP-2 is co-secreted with GLP-1, oxyntomodulin and glicentin from enteroendocrine L cells, which are primarily located in the ileum and proximal colon. It has recently been demonstrated that GLP-2 has a highly tissue-specific trophic effect on the small intestine and augments the adaptive response to intestinal resection in the rat. Additionally, GLP-2 inhibits gastric acid secretion, enhances intestinal sugar transport and slows gastric emptying[2-5]. Halaçla et al[7] reported that bacterial translocation in samples of the liver, spleen, mesenteric lymph nodes and portal and systemic blood obtained from the GLP-2 treated group was reduced compared with samples obtained from the colitis group. In addition, the Chinese scholars Li et al[10] discovered that the rate of bacterial translocation and the level of endotoxin in rats with gut ischemia-reperfusion injury were significantly increased compared with those treated by GLP-2. Above all, the most important property of GLP-2 in the gastrointestinal (GI) tract is its enterotrophic effect[8-10]. Therefore, its potential therapeutic role in patients with intestinal insufficiency secondary to extensive disease or resection of the small bowel is of interest[6].

Intestinal barrier function is damaged in patients with obstructive jaundice, potentially leading to bacteria translocation, endotoxia and increased mortality within the peri-operative period. An increasing number of scientists and doctors have attempted to improve intestinal function in patients or rats with obstructive jaundice. Based on the aforementioned comments, we designed a study to observe whether GLP-2 acts on the damaged intestinal mucosa of rats with obstructive jaundice.

MATERIALS AND METHODS

Animals and experimental design

Male Sprague-Dawley rats, weighing 200-250 g, were housed under controlled temperature, humidity and 12-h dark/light cycles; the rats were housed in stainless-steel cages and provided free access to water and rat chow before and after the operation. The rats were randomized into three groups (n = 12 in each group). Group 1 (Control; C) underwent sham operation, whereas Group 2 [obstructive jaundice (OB)] underwent common bile duct ligation. Both of the groups were given simultaneous treatment with the same amount of normal saline after the surgeries. Group 3 [obstructive jaundice with GLP-2 (OBGLP-2)] underwent common bile duct ligation and simultaneous treatment with GLP-2 [0.2 μg/(g•d)]. Either normal saline or GLP-2 was administered by peritoneal injection daily.

Operative procedures

Using sterile techniques, a midline incision was created. The common bile duct was identified, double ligated with 5-0 silk and divided between the two ligatures. In sham-operated animals, the common bile duct was freed from the surrounding soft tissue without ligation and transection. The operation was performed using 100 g/L chloral hydrate (3 mL/kg) for intraperitoneal anesthesia.

Blood biochemistry

Serum samples were obtained and analyzed on postoperative days 1, 3, 7, 10 and 14. All serum samples were measured using a Hitachi 7600 modular chemistry analyzer (Hitachi High-Technologies Corporation, Tokyo, Japan) to determine the levels of alanine aminotransferase (ALT) and total bilirubin (Tbil) using kits from Jiancheng Bioengineering Institute. The endotoxin levels in plasma were measured according to the manufacturer’s instructions with the kits (Horseshoe Crab Reagent, Xiamen, China).

Tissue harvest and histopathological evaluation

After 2 wk, the animals were anesthetized, and repeat laparotomy was performed. Segments of the small bowel, approximately 3 cm long, were harvested from the terminal ileum, embedded in Optimal Cutting Temperature (OCT) compound (Sakura Finetechinal, Tokyo, Japan) and immediately snap-frozen in liquid nitrogen for immunohistochemistry. Then, the samples were fixed in 400 g/L of paraformaldehyde solution. Sections of 5 μm were cut and stained with hematoxylin and eosin (HE). The pathological changes and injuries to the intestinal mucosa were evaluated under a light microscope by an independent observer who was blinded to the experimental protocol. Additionally, secretory
immunoglobulin A (sIgA) expression in the tissue samples was assessed by immunohistochemical analysis.

Statistical analysis

Experimental data were analyzed with the SPSS 13.0 statistical program (statistical product and service solutions, © 1999 to 2003; SPSS Institute Inc., Armonk, NY, United States). The results are expressed as mean ± SD. The means of independent samples were analyzed and compared with the independent sample t-test. Differences were considered significant at $P < 0.05$.

RESULTS

Rat observations

Two to three days after bile duct ligation, the ears and tails started to exhibit jaundice, and the urine turned yellow. After 4-6 d, the jaundice was obvious, the stools were pale, and the activity of the rats decreased. Four rats (1 in group C, 1 in group OBGLP-2 and 2 in group OB) died of complications, including abdominal infection, malnutrition, liver function failure and water and electrolyte disorders. The remaining rats survived until they were sacrificed at the end of the experiments.

Gross mesentery observation

Unlike the sham group, the organ serosa of the jaundiced rats exhibited yellow discoloration, and the root mesenteric lymph nodes displayed beadlike enlargement. However, on the 14th day, the GLP-2 group exhibited no parietal peritoneum changes (Figure 1A). The mean body weight and wet intestinal weight were reduced in the jaundiced group compared with the sham group (Figure 1B and C); however, GLP-2 reduced the reduction in both body weight and wet intestinal weight, indicating that GLP-2 protects the intestinal mucosa from damage.

Small intestinal pathology and alterations in sIgA expression

The sham group exhibited normal villous formation in the intestine tissue with equal height (Figure 2A). However, the jaundiced group displayed intestinal muscularis layer thinning with villous thinning, atrophy, uneven height, villous fusion, partial villous epithelium shedding and considerable lymphocyte infiltration (Figure 2B). The GLP-2 group displayed villi that were more equal in height compared with the jaundiced group as well as slight villous edema with no epithelial shedding (Figure 2C). In the sham group, the intestinal crypts exhibited minimal sIgA-stained cells (Figure 2D). The jaundiced group had shallow and disorganized intestinal
crypts with almost no IgA-stained cells (Figure 2E). The GLP-2 group exhibited deeper and more organized intestinal tissue crypts than the jaundiced group with localized positive sIgA staining (Figure 2F).

Alterations in serum Tbil, ALT and endotoxin levels
The jaundiced and GLP-2 groups exhibited obvious ALT elevations compared with the sham group. However on postoperative days 3, 7, 10, and 14, the GLP-2 group had reduced ALT levels compared with the jaundiced group (Figure 3A, \(P < 0.05 \)). The jaundiced and GLP-2 groups showed obvious elevations in endotoxin levels compared with the sham group, and the level continued to rise as time passed. However, on days 10 and 14, the endotoxin level in the GLP-2 group was significantly reduced compared with the jaundiced group on the same days (Figure 3B, \(P < 0.05 \)). The jaundiced and GLP-2 groups exhibited an obvious increase in the serum bilirubin compared with the sham group. However, on postoperative days 10 and 14, the GLP-2 group exhibited a significantly lower level of serum bilirubin compared with the jaundiced group (Figure 3C, \(P < 0.05 \)).

DISCUSSION
Obstructive jaundice can cause a host of complex and severe pathological and physiological changes to various organs. Intestinal mucosal barrier dysfunction and intestinal immune function decline might result in endotoxemia and intestinal bacterial translocation, which are important contributors to disease progression or death in patients\(^{11-13}\). Under normal circumstances, the large number of bacteria in the intestinal tract cannot enter the body tissue or blood circulation due to the mechanical,
biological, chemical and immunological barriers of the intestine. When the intestinal mechanical barrier is damaged, endotoxins enter the blood circulation, causing endotoxemia. Then, the intestinal bacteria can migrate into the intestinal lymph nodes, blood, liver or spleen, causing bacterial translocation.[14-20]

In this study, we observed that rats with obstructive jaundice exhibit circular muscularis thinning and decreased mucosal thickness and villous height. Obstructive jaundice is associated with intestine mucosal structural changes and a decline in protein synthesis in the liver. These effects are coupled with a lack of proteins for gastrointestinal epithelium regeneration and renewal, leading to intestinal mechanical barrier damage and bacterial translocation.

GLP-2 is an intestinal epithelial specific growth factor, and its main role is to stimulate intestinal crypt cell proliferation and inhibit cell apoptosis, promoting the growth of the intestinal mucosa and regeneration after injury.[18]

GLP-2 also inhibits gastric acid secretion and gastric motility, increases the intestinal blood supply, improves intestinal barrier function and immune function are rare. Studies regarding the use of rhGLP-2 in obstructive jaundice to improve the intestinal barrier function and immune function are rare. As seen from the 14-d results of this experiment, rats receiving subcutaneous exogenous GLP-2 exhibited less structural damage to the intestinal mucosa and tall intestinal villi that were neat and relatively intact compared with the jaundiced group. This indicates that exogenously administered GLP-2 aids in the protection and improvement of the intestinal mechanical barrier in rats with obstructive jaundice.

Additionally, when obstructive jaundice occurs, the impaired local intestinal immune function is also one of the factors responsible for bacterial translocation. The local intestinal mucosal immune system primarily consists of intestinal lymphocytes, lymphoid tissue, plasma cells and immunoglobulins.[21,22] Among the immunoglobulins, sIgA plays an important role. sIgA neutralizes viruses, toxins and the biological activity of antigen enzymes and prevents bacterial adhesion on the surface of intestinal epithelial cells. sIgA displays a synergistic bactericidal effect with the complement system and lysozymes. Therefore, sIgA is an important factor facilitating the protection of the intestinal barrier function that prevents bacterial translocation.[23] In this study, ileal biopsy immuno-histochemistry indicated that rats with obstructive jaundice display significantly decreased expression of ileal sIgA compared with the control group. However, the GLP-2 group exhibited significantly increased IgA expression compared with the obstructive jaundice group. These results indicate that by repairing damage to the integrity of intestinal epithelial cells and increasing sIgA synthesis in ileal epithelial cells, GLP-2 can protect rats with obstructive jaundice from intestinal barrier dysfunction and immune system damage. As an
intestinal epithelium-specific growth factor, GLP-2 has a strong effect on the recovery of intestinal epithelial injury, and it is stronger than any other non-specific intestinal epithelial growth factor[24−27]. These advantages of GLP-2 suggest that it might have useful clinical applications.

With respect to its mechanism of action on the intestinal mucosa, a large number of studies have demonstrated that GLP-2 exerts its actions via a G protein-coupled receptor (GLP-2R). The human GLP-2R gene is located on chromosome 17p13.3[28,29]. GLP-2R is a member of the G protein-coupled receptor superfamily and has 7 transmembrane domains. GLP-2R and glucagon as well as GLP-1 and the glucose-dependent insulinotropic polypeptide receptor are highly homologous. GLP-2R is widely distributed in intestinal epithelial cells, gastric epithelial cells, enteric neurons, intestinal endocrine cells[29], intestinal submucosal myofibroblasts, islet α cells, the brain and lungs[30,31]. New research findings demonstrate that GLP-2 promotes the growth of normal small bowel and the recovery of pathologic intestinal mucosa through multiple pathways. On one hand, GLP-2 promotes proliferation of the intestinal mucosa by binding to GLP-2R, which is distributed in intestinal epithelial cells. On the other hand, GLP-2 protects the intestinal function indirectly by binding to the GLP-2R, which is distributed in other regions. The effects of GLP-2 involve many cell signal transduction pathways, mainly the cAMP/PKA, PI3K/Akt and Wnt/β-catenin pathways, of which the cAMP/PKA pathway is the main one. These pathways coordinate and regulate intestinal epithelial cells, promoting steady development and intestinal adaptation. However, the mechanism(s) by which these pathways coordinate and integrate key control points and feedback inhibition are not entirely clear, and further studies are required[32−35].

Above all, GLP-2 has widely been accepted as an adapter of the intestinal mucosa. In this study, we also observed its protective function in an obstructive jaundice rat model. This effect might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. In December 2012, the United States Food and Drug Administration approved the use of Teduglutide, a GLP-2 analog, to treat adults with short bowel syndrome. Unfortunately, to date, few studies have discussed the relationship between GLP-2 and injuries caused by obstructive jaundice.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Ying Zhou and Lei Yu from Zhongshan Hospital of Fudan University for their contributions to this research as well as Dr. Ru-Chuan Shen from the University of Queensland Australia for critical review of and language revisions to the manuscript.

REFERENCES

1 Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA 1996; 93: 7911-7916 [PMID: 8755576 DOI: 10.1073/pnas.93.15.7911]
2 Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 2002; 122: 531-544 [PMID: 11832466 DOI: 10.1053/gast.2002.31068]
3 Dubé PE, Forse CL, Bahrami J, Brubaker PL. The essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice. Gastroenterology 2006; 131: 589-605 [PMID: 16906161 DOI: 10.1053/j.gastro.2006.05.055]
4 Martin GR, Wallace LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2004; 286: G964-G972 [PMID: 14962847 DOI: 10.1152/ajpgi.00509.2003]
5 Evans R, Kamdar SJ. Stability of RNA isolated from macrophages depends on the removal of an RNA-degrading activity early in the extraction procedure. Biotechniques 1990; 8: 357-360 [PMID: 1692714 DOI: 10.1080/s1043019900808006-9077-5]
6 Halaçlar B, Ağaç Ay A, Akcan AC, Ay A, Öz B, Arslan E. Effects of glucagon-like peptide-2 on bacterial translocation in rat models of colitis. Turk J Gastroenterol 2012; 23: 691-698 [PMID: 23794307]
7 Li H, Wu GH, Chen J. Effect of glucagon-like peptide 2 on the intestinal mucosal immunity and correlative cytokines in mice with gut ischemia/reperfusion injury. Zhonghua
Chen J et al. GLP-2 in obstructive jaundice rats' intestines

Weidang Waike Zazhi 2006; 9: 67-70 [PMID: 16437377]

Walsh NA, Yusta B, DaCambra MP, Anini Y, Drucker DJ, Brubaker PL. Glucagon-like-peptide-2 receptor activation in the rat intestinal mucosa. Endocrinology 2003; 144: 4385-4392 [PMID: 12960904 DOI: 10.1210/en.2003-0309]

Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like-peptide-2 in mice. Am J Physiol 1997; 273: E77-E84 [PMID: 9252462]

Ghatei MA, Goodlad RA, Taheri S, Mandir N, Brynes AE, Jordinson M, Bloom SR. Proglucagon-derived peptides in intestinal epithelial proliferation: glucagon-like peptide-2 is a major mediator of intestinal epithelial proliferation in rats. Dig Dis Sci 2001; 46: 1255-1263 [PMID: 11414302]

Konenenko SN, Limonchikov SV. [The diagnostics of the obstructive jaundice and possibilities to improve the efficacy of its mininvasive treatment]. Khirurgiya (Mosk) 2011; (9): 4-10 [PMID: 22431532]

Iida A, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M, Morita Y, Takeuchi D, Miyazaki M. Does prolonged biliary obstructive jaundice sensitize the liver to endotoxemia? Shock 2009; 31: 397-403 [PMID: 18665046 DOI: 10.1097/ SHK.0b013e31818349ea]

Jones C, Badger SA, Black JM, McFerran NV, Hoper M, Diamond T, Parks RW, Taylor MA. The use of antitoxic peptide antibodies in obstructive jaundice endotoxemia. Eur J Gastroenterol Hepatol 2012; 24: 248-254 [PMID: 22246330 DOI: 10.1111/j.1468-1253.2011.04169.x]

Assimakopoulos SF, Scopa CD, Zervoudakis G, Mylonas PG, Georgiou C, Nikolopoulos V, Vagianos CE. Decrease in intestinal villus atrophy in experimental obstructive jaundice. Ann Surg 2005; 241: 159-167 [PMID: 15622004]

Margaritis VG, Filos KS, Michalaki MA, Scopa CD, Spiliopoulos I, Nikolopoulos VN, Vagianos CE. Effect of oral glutamine administration on bacterial translocation, endotoxemia, liver and ileal morphology, and apoptosis in rats with obstructive jaundice. World J Surg 2005; 29: 1329-1334 [PMID: 16136290 DOI: 10.1007/s00268-005-7721-4]

Zulfiqarolu B, Zulfiqarolu E, Ozmen MM, Ozalp N, Berkem R, Erdogan S, Besler HT, Koc M, Korkmaz A. The effect of oral glutamine on bacterial translocation, intestinal villus atrophy in experimental obstructive jaundice. Clin Nutr 2003; 22: 277-281 [PMID: 12765668 DOI: 10.1016/S0261-5614(02)00211-X]

Ogata Y, Nishi M, Nakayaama T, Kuwahara T, Ohashi Y, Tashiro S. Role of bile in intestinal barrier function and its inhibitory effect on bacterial translocation in obstructive jaundice. Clin Nutr 2005; 115: 18-25 [PMID: 14572768]

Muto M, Kaji T, Mukai M, Nakame K, Yoshioka T, Tanimoto A, Matsufuji H. Ghrelin and glucagon-like peptide-2 increase IGF-I mRNA in intestinal subepithelial fibroblasts. J Endocrinol 2005; 210: 150-164 [PMID: 16401478 DOI: 10.1015/j.gastro.2005.11.005]

Yusta B, Huang L, Munroe D, Wolff G, Fantaske R, Sharma S, Demchyshyn L, Asa SL, Drucker DJ. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology 2000; 119: 744-755 [PMID: 10982769 DOI: 10.1053/gast.2000.16489]

Guo X, Karpen HE, Stephens J, Bukowski JT, Niu S, Zhang G, Stoll B, Finegold MJ, Holst J, Hadsell D, Nichols BL, Burrin DG. GLP-2 receptor localizes to enteric nerves and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 2006; 130: 150-164 [PMID: 16401478 DOI: 10.1053/j.gastro.2005.11.005]

Örskov C, Hartmann B, Poulsen SS, Thulesen J, Hare KJ, Holst J. GLP-2 stimulates colonic growth via KGf, released by subepithelial myofibroblasts with GLP-2 receptors. Peptides 2005; 26: 105-112 [PMID: 15544847 DOI: 10.1016/j.peptides.2004.07.001]

Jasleen J, Ashley SW, Shimoda N, Zinner MJ, Whang EE. Glucagon-like peptide 2 stimulates intestinal epithelial proliferation in vitro. Dig Dis Sci 2002; 47: 1135-1140 [PMID: 12018913 DOI: 10.1023/A:1015062712767]

Rocha FG, Shen KR, Jasleen J, Tavakkolizadeh A, Zinner MJ, Whang EE, Ashley SW. Glucagon-like peptide-2: divergent signaling pathways. J Surg Res 2004; 121: 5-12 [PMID: 15313368 DOI: 10.1016/j.jss.2004.04.009]

Koehler JA, Yusta B, Drucker DJ. The Hela cell glucagon-like peptide-2 receptor is coupled to regulation of apoptosis and ERK1/2 activation through divergent signaling pathways. Mol Endocrinol 2005; 19: 459-473 [PMID: 15471943]

Hartmann B, Thulesen J, Hare KJ, Kiskov H, Orskov C, Poulsen SS, Holst J. Immunoneutralization of endogenous glucagon-like peptide-2 reduces adaptive intestinal growth in diabetic rats. Regul Pept 2002; 105: 173-179 [PMID: 11959371]

Leen JL, Izzo A, Upadhyay C, Rowland KJ, Dubé PE, Gu S, Heximer SP, Rhodes CJ, Storm DR, Lund PK, Brubaker PL. Mechanism of action of glucagon-like peptide-2 to increase IGF-1 mRNA in intestinal subepithelial fibroblasts. Endocrinology 2011; 152: 436-446 [PMID: 21159855 DOI: 10.1210/en.2010-08022]
