Scale-free Protocol Design for Output Synchronization of Heterogeneous Multi-agent subject to Unknown, Non-uniform and Arbitrarily Large Input Delays

Donya Nojavanzadeh1, Zhenwei Liu2, Ali Saberi1, Anton A. Stoorvogel3
1. School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
E-mail: donya.nojavanzadeh@wsu.edu; saberi@wsu.edu
2. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
E-mail: liuzhenwei@ise.neu.edu.cn
3. Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
E-mail: A.A.Stoorvogel@utwente.nl

Abstract: This paper studies output synchronization problems for heterogeneous networks of continuous- or discrete-time right-invertible linear agents in presence of unknown, non-uniform and arbitrarily large input delay based on localized information exchange. It is assumed that all the agents are introspective, meaning that they have access to their own local measurements. Universal linear protocols are proposed for each agent to achieve output synchronizations. Proposed protocols are designed solely based on the agent models using no information about communication graph and the number of agents or other agent models information. Moreover, the protocols can tolerate arbitrarily large input delays.

1 Introduction

Synchronization problem of multi-agent systems (MAS) has become a hot topic among researchers in recent years. Cooperative control of MAS is used in practical applications such as robot networks, autonomous vehicles, distributed sensor networks, and others. The objective of synchronization is to secure an asymptotic agreement on a common state or output trajectory by local interaction among agents (see [1, 20, 34, 46] and references therein).

Most of the attention has been focused on state synchronization of MAS, where each agent has access to a linear combination of its own state relative to that of the neighboring agents, called full-state coupling [25, 26, 27, 32, 33, 38]. A more realistic scenario which is partial-state coupling (i.e. agents share part of their information over the network) is studied in [39, 16, 30, 40].

We identify two classes of MAS: homogeneous and heterogeneous. The agents dynamics can be different in heterogeneous networks. For heterogeneous network it is more reasonable to consider output synchronization since the dimensions of states and their physical interpretation may be different. Meanwhile a common assumption, especially for heterogeneous MAS is that agents are introspective; that is, agents possess some knowledge about their own states. There exist many results about this type of agents, for instance, homogenization based synchronization via local feedback [12, 49], $H_{\infty}$ design [15], HJB based optimal synchronization [21], adaptation based event trigger regulated synchronization [31], and a feed forward design for nonlinear agents [4]. Recently, scale-free collaborative protocol designs are developed for continuous-time heterogeneous MAS [24] and for homogeneous continuous-time MAS subject to actuator saturation [19].

On the other hand, for non-introspective agents, regulated output synchronization for a heterogeneous network is studied in [28, 29]. Other designs can also be found, such as an internal model principle based design [45], distributed high-gain observer based design [10], low-and-high gain based, purely distributed, linear time invariant protocol design [9].

In practical applications, the network dynamics are not perfect and may be subject to delays. Time delays may affect systems performance or even lead to instability. As it has been discussed in [3], two kinds of delay have been considered in the literature: input delay and communication delay. Input delay is the processing time to execute an input for each agent whereas communication delay can be considered as the time for transmitting information from origin agent to its destination. Some research have been done in the case of communication delay [37, 47, 22, 23, 18, 5, 6, 36, 7, 13]. Regarding input delay, many efforts have been done (see [2, 18, 17, 37, 48, 27]) where they are mostly restricted to simple agent models such as first and second-order dynamics for both linear and nonlinear agents dynamics. Authors of [43, 41] studied state synchronization problems in the presence of unknown, uniform constant input delay for both continuous- and discrete-time networks with higher-order linear agents. [51] has studied synchronization in homogeneous networks of both continuous- and discrete-time agents with unknown, non-uniform, and constant input delays.

In this paper, we deal with output synchronization problem for heterogeneous MAS with continuous- or discrete-time introspective right-invertible agents in presence of unknown, non-uniform and arbitrarily large input delays. Scale-free protocols are designed based on localized information exchange which do not require any knowledge of the communication network except connectivity. In particular, output synchronization of heterogeneous networks are achieved for an arbitrary number of agents. The protocol design is scale-free, namely,
• The design is independent of information about communication networks such as spectrum of the associated Laplacian matrix. That is to say, the universal dynamical protocols work for any communication network as long as it is connected.
• The dynamic protocols are designed solely based on agent models and do not depend on communication network and the number of agents.
• The proposed protocols archive output synchronization for heterogeneous continuous- or discrete-time MAS with any number of agents, any unknown, non-uniform, input delays, and any communication network.

Notations and definitions
Given a matrix $A \in \mathbb{R}^{m \times n}$, $A^T$ denotes its conjugate transpose and $||A||$ is the induced 2-norm while $\sigma_{\min}(A)$ denotes the smallest singular value of $A$. Let $j$ indicate $\sqrt{-1}$. A square matrix $A$ is said to be Hurwitz stable if all its eigenvalues are in the open left half plane and is Schur stable if all its eigenvalues are inside the open unit disc. We denote by $\text{diag}\{A_1, \ldots, A_N\}$, a block-diagonal matrix with $A_1, \ldots, A_N$ as the diagonal elements. $A \otimes B$ depicts the Kronecker product between $A$ and $B$. $I_n$ denotes the $n$-dimensional identity matrix and $0_n$ denotes $n \times n$ zero matrix; sometimes we drop the subscript if the dimension is clear from the context. Notation $[t_1, t_2] = \{t \in \mathbb{Z} : t_1 \leq t \leq t_2\}$.

To describe the information flow among the agents we associate a weighted graph $G$ to the communication network. The weighted graph $G$ is defined by a triple $(\mathcal{V}, \mathcal{E}, \mathcal{A})$ where $\mathcal{V} = \{1, \ldots, N\}$ is a node set, $\mathcal{E}$ is a set of pairs of nodes indicating connections among nodes, and $\mathcal{A} = [a_{ij}] \in \mathbb{R}^{N \times N}$ is the weighted adjacency matrix with non-negative elements $a_{ij}$. Each pair in $\mathcal{E}$ is called an edge, where $a_{ij} > 0$ denotes an edge $(j, i) \in \mathcal{E}$ from node $j$ to node $i$ with weight $a_{ij}$. Moreover, $a_{ij} = 0$ if there is no edge from node $j$ to node $i$. We assume there are no self-loops, i.e., we have $a_{ii} = 0$. A path from node $i_1$ to $i_k$ is a sequence of nodes $\{i_1, \ldots, i_k\}$ such that $(i_j, i_{j+1}) \in \mathcal{E}$ for $j = 1, \ldots, k - 1$. A directed tree is a sub-graph (subset of nodes and edges) in which every node has exactly one parent node except for one node, called the root, which has no parent node. The root set is the set of root nodes. A directed spanning tree is a sub-graph which is a directed tree containing all the nodes of the original graph. If a directed spanning tree exists, the root has a directed path to every other node in the tree.

For a weighted graph $G$, the matrix $L = [\ell_{ij}]$ with

$$\ell_{ij} = \begin{cases} \sum_{k=1}^{N} a_{ik}, & i = j, \\ -a_{ij}, & i \neq j, \end{cases}$$

is called the Laplacian matrix associated with the graph $G$. The Laplacian matrix $L$ has all its eigenvalues in the closed right half plane and at least one eigenvalue at zero associated with right eigenvector $1$ [8]. Moreover, if the graph contains a directed spanning tree, the Laplacian matrix $L$ has a single eigenvalue at the origin and all other eigenvalues are located in the open right-half complex plane [34].

2 Problem Formulation
Consider a MAS consisting of $N$ non-identical linear agents:

$$\begin{cases} sx_i(t) = A_i x_i(t) + B_i u_i(t), \\ y_i(t) = C_i x_i(t), \end{cases}$$

where $x_i \in \mathbb{R}^{n_i}$, $u_i \in \mathbb{R}^{m_i}$ and $y_i \in \mathbb{R}^n$ are the state, input, output of agent $i$ for $i = 1, \ldots, N$. In the aforementioned presentation, for continuous-time systems, $s$ denotes the time derivative, i.e., $sx_i(t) = \dot{x}_i(t)$ for $t \in \mathbb{R}$; while for discrete-time systems, $s$ denotes the time shift, i.e., $sx_i(t) = x_i(t + 1)$ for $t \in \mathbb{Z}$.

The agents are introspective, meaning that each agent collects a local measurement $z_i \in \mathbb{R}^{n_i}$ of its internal dynamics. In other words, each agent has access to the quantity

$$z_i(t) = C_i^m x_i(t).$$

where $z_i(t) \in \mathbb{R}^{n_i}$.

We define the set of graphs $\mathcal{G}^N$ for the network communication topology as following.

Definition 1 Let $\mathcal{G}^N$ denote the set of directed graphs of $N$ agents which contain a directed spanning tree.

The communication network provides agent $i$ with the following information which is a linear combination of its own output relative to that of other agents:

$$\zeta_i(t) = \sum_{j=1}^{N} a_{ij} (y_j(t) - y_j(t))$$

where $a_{ij} > 0$ and $a_{ii} = 0$, and $\mathcal{A} = [a_{ij}]$ is the weighting matrix associated to the network graph $G$. We refer to this case as partial-state coupling since only part of the states is exchanged among the agents. When $C = I$, it means all states are communicated over the network and we call it full-state coupling. Basically, output synchronization is considered for heterogeneous MAS, therefore, we focus on partial-state coupling.

In this paper, we also introduce a localized information exchange among protocols. In particular, each agent $i = 1, \ldots, N$ has access to the localized information, denoted by $\hat{\zeta}_i(t)$, of the form

$$\hat{\zeta}_i(t) = \sum_{j=1}^{N} a_{ij} (\eta_j(t) - \eta_j(t))$$

where $\eta_j(t) \in \mathbb{R}^n$ is a variable produced internally by agent $j$ and to be defined in next sections.

In the case of networks with discrete-time agents, for any graph $\mathcal{G} \in \mathcal{G}^N$, with the associated Laplacian matrix $L$, we define

$$D = I - (I + D_m)^{-1} L$$

where

$$D_m = \text{diag}\{d_m(i)\}$$
with \( d_{in}(i) = \sum_{j=1}^{N} a_{ij} \). The weight matrix \( D = [d_{ij}] \) is a so-called, row stochastic matrix, where \( d_{ij} \geq 0 \), and we choose \( d_{ii} = 1 - \sum_{j=1, j \neq i}^{N} d_{ij} \) such that \( \sum_{i=1}^{N} d_{ij} = 1 \) for \( i, j \in \{1, \ldots, N\} \). Note that \( d_{ii} \) satisfies \( d_{ii} > 0 \).

Therefore, for discrete-time networks we can obtain the information exchange as

\[
\dot{\zeta}_i(t) = \sum_{j=1}^{N} d_{ij} (y_i(t) - y_j(t)) \tag{7}
\]

and we can rewrite \( \dot{\zeta}_i(t) \) as

\[
\dot{\zeta}_i(t) = \sum_{j=1}^{N} d_{ij} (\eta_i(t) - \eta_j(t)) \tag{8}
\]

The heterogeneous MAS is said to achieve output synchronization if

\[
\lim_{t \to \infty} (y_i(t) - y_j(t)) = 0, \quad \text{for } i, j \in \{1, \ldots, N\}. \tag{9}
\]

In this paper, we introduce a protocol architecture as shown below in Figure 1.

![Architecture of the protocol](image)

Figure 1: Architecture of the protocol

As seen in the above figure our protocol has two main modules.

1) precompensator
2) collaborative protocol

we also assume that agents are experiencing input delay \( \tau_i \) represented by the delay block in the figure. Note that as discussed in [3] input delay can be considered as the summation of computation time and execution time. We formulate output synchronization problem for continuous- or discrete-time heterogeneous networks as follows.

**Problem 1** Consider a heterogeneous network of \( N \) agents (1) with local information (2) satisfying Assumption 1 and a given \( \bar{\tau} \). Let the associated network communication be given by (3) and (7) for continuous- and discrete-time MAS respectively. Let \( \mathbb{G}^N \) be the set of network graphs as defined in Definition 1.

Then, the scalable output synchronization problem based on localized information exchange in presence of input delay as defined in Problem 1 is solvable.

**Proof:** Proof will be given in next sections.

\[\blacksquare\]

## 3 Protocol Design

In this section, we design dynamic protocols to solve scalable output synchronization problem for heterogeneous networks of continuous- or discrete-time agents. The architecture of the proposed protocol is illustrated in Figure 1.

**Architecture of the protocol**

Our design methodology consists of two modules as shown in Figure 1.

1) The first module is to reshape the dynamics of the agents to obtain the target model by designing precompensators following our previous results stated in [49, 44].
2) The second module is designing collaborate protocols for almost homogenized agents to achieve output synchronization in presence of input delay.

### 3.1 Designing pre-compensators

In this section, the goal of the design is to reshape the agent models and obtain suitable target model i.e. \( (C_i, A_i, B_i) \) such that following conditions are satisfied.

**Remark 1** Note that in our problem formulation it is embedded that our linear dynamic protocols are designed only based on agent models \( (C_i, A_i, B_i) \) and given upper bound on input delays \( \tau \). Moreover, this universal protocol is scale-free, meaning that it works for any network with any number of agents, as long as the associated communication graph contains a spanning tree.

We make the following assumption for the agents.

**Assumption 1** For agents \( i \in \{1, \ldots, N\} \),

1) \( (A_i, B_i) \) is stabilizable.
2) \( (C_i, A_i) \) is detectable.
3) \( (C_i, A_i, B_i) \) is right-invertible
4) \( (C_i^m, A_i) \) is detectable.

Then we have the following solvability condition for scalable output synchronization of heterogeneous continuous- or discrete-time MAS in presence of input delay.

**Solvability Condition 1** Consider a heterogeneous network of \( N \) agents (1) with local information (2) satisfying Assumption 1 and a given \( \bar{\tau} \). Let the associated network communication be given by (3) and (7) for continuous- and discrete-time MAS respectively. Let \( \mathbb{G}^N \) be the set of network graphs as defined in Definition 1.

Then, the scalable output synchronization problem based on localized information exchange in presence of input delay as defined in Problem 1 is solvable.

**Proof:** Proof will be given in next sections.

\[\blacksquare\]
1) rank(C) = p.

2) (C, A, B) is invertible of uniform rank \( n_q \geq \tilde{n}_d \), and has no invariant zeros.

3) eigenvalues of \( A \) are in closed left half plane (closed unit disc for discrete-time systems).

4) eigenvalues of \( A \) satisfy the additional property

\[ \tilde{\tau}\omega_{\max} < \frac{\pi}{2}, \]

where \( \omega_{\max} \) is defined as

\[ \omega_{\max} = \begin{cases} 0, & A \text{ is Hurwitz stable,} \\
\max\{\omega \in \mathbb{R} \mid \det(j\omega I - A) = 0\}, & \text{otherwise}
\end{cases} \] (11)

for continuous-time systems, and

\[ \omega_{\max} = \begin{cases} 0, & A \text{ is Schur stable,} \\
\max\{\omega \in [0, \pi] \mid \det(e^{i\omega} I - A) = 0\}, & \text{otherwise}
\end{cases} \] (12)

for discrete-time systems.

**Remark 2** We would like to make several observations:

1) The property that the triple \((C, A, B)\) is invertible and has no invariant zero implies that \((A, B)\) is controllable and \((C, A)\) is observable.

2) The triple \((C, A, B)\) is arbitrarily assignable as long as the conditions are satisfied. In this paper, \( A \) is chosen such that its eigenvalues are in closed left half plane (in closed unit disc for discrete-time systems). For example, one can choose \( A \) such that \( A' + A = 0 \) for continuous-time systems and \( A'A = I \) for discrete-time systems.

Next, given chosen \((C, A, B)\), by utilizing the design methodologies from [49, Appendix B] for continuous-time and [44, Appendix A.1] for discrete-time systems, we design a pre-compensator for each agent \( i \in \{1, \ldots, N\} \), of the form

\[ \begin{cases} x_i(t) = A_i \xi_i(t) + B_i \eta_i(t) + E_i \eta_i(t), \\ u_i(t) = C_i \eta_i(t), \\ y_i(t) = D_i \eta_i(t), \\ z_i(t) = F_i \eta_i(t), \\ \end{cases} \] (13)

which yields the compensated agents as

\[ \begin{cases} \hat{x}_i(t) = A \tilde{x}_i(t) + B(v_i(t) + \psi_i(t)), \\ \psi_i(t) = C_i \tilde{x}_i(t), \\ \end{cases} \] (14)

where \( \psi_i(t) \) is given by

\[ \begin{cases} s\omega_i(t) = A_{i,s} \omega_i(t), \\ \psi_i(t) = C_{i,s} \omega_i(t), \\ \end{cases} \] (15)

and \( A_{i,s} \) is Hurwitz stable (Schur stable for discrete-time systems). Figure 2 shows the compensated agents as a component of Figure 1.

Note that the compensated agents are homogenized and have the target models \((C, A, B)\).

We consider our compensated agents in presence of input delay as

\[ \begin{cases} s\tilde{x}_i(t) = A \tilde{x}_i(t) + B(v_i(t - \tau_i) + \psi_i(t)), \\ \psi_i(t) = C \tilde{x}_i(t), \\ \end{cases} \] (16)

where \( \psi_i(t) \) is given by (15).

### 3.2 Designing collaborative protocols for compensated agents

In this subsection, to achieve output synchronization, we design collaborative protocols for almost homogenized continuous- or discrete-time agents in presence of unknown, non-uniform and arbitrarily large input delays.

#### 3.2.1 Continuous-time MAS

We design a dynamic protocol based on localized information exchange as

\[ \begin{cases} \dot{x}_1(t) = A \xi_1(t) + B_1 \xi_2(t) + F_1(\xi_2(t) - \xi_1(t)) \\ \dot{\xi}_1(t) = A_1 \xi_1(t) + B_1 \xi_2(t) + \xi_1(t) - \xi_2(t) \\ v_1(t) = -\rho B_1^T P_x \chi_2(t) \\ \end{cases} \] (17)

for \( i = 1, \ldots, N \) where \( F \) is a pre-design matrix such that \( A - FC \) is Hurwitz stable and \( \rho > 0 \). \( \varepsilon \) is a parameter satisfying \( \varepsilon \in (0, 1] \). \( P_x \) satisfies

\[ A^T P_x + P_x A - P_x B B^T P_x + \varepsilon I = 0 \] (18)

note that for any \( \varepsilon > 0 \), there exists a unique solution of (18).

**Remark 3** (18) is a special case of the general low-gain \( H_2 \) algebraic Riccati equation (\( H_2\)-ARE), which is written as follows:

\[ A^T P_x + P_x A - P_x B B^T P_x + Q_x = 0 \] (19)

where \( R_x > 0 \), and \( Q_x > 0 \) is such that \( Q_x \to 0 \) as \( \varepsilon \to 0 \).

In our case, we restrict our attention to \( Q_x = \varepsilon I \) and \( R_x = 1 \). However, as shown in [35], when \( A \) is neutrally stable, there exists a suitable (nontrivial) choice of \( Q_x \) and \( R_x \) which yields an explicit solution of (19), of the form

\[ P_x = \varepsilon P \] (20)

where \( P \) is a positive definite matrix that satisfies \( A^T P + PA \leq 0 \).

The agents communicate \( \eta_i = (\eta_{i1}, \eta_{i2})^T \) where \( \eta_{i1}(t) = \chi_i(t) \) and \( \eta_{i2}(t) = v_i(t - \tau_i) \), therefore each agent has access to the localized information \( \tilde{x}_i = (\tilde{x}_{i1}, \tilde{x}_{i2})^T \):

\[ \tilde{x}_{i1}(t) = \sum_{j=1}^{N} a_{ij}(\chi_j(t) - \chi_i(t)), \]

and

\[ \tilde{x}_{i2}(t) = \sum_{j=1}^{N} a_{ij}(v_j(t - \tau_i) - v_i(t - \tau_j)). \] (22)
while $\zeta_i(t)$ is defined by (3). Finally, we combine the designed protocol for homogenized network with pre-compensators and present our protocols as:

$$
\begin{align*}
\dot{z}_i(t) &= A_{i,h}z_i(t) + B_{i,h}z_i(t) - \rho E_{i,h}B^TP_e\chi_i(t), \\
\dot{y}_i(t) &= A_{i,h}y_i(t) + B_{i,h}z_i(t) + F(z_i(t) - C\hat{y}_i(t)), \\
\dot{\hat{y}}_i(t) &= A\chi(t) - \rho BB^TP_e\chi_i(t) + \hat{x}_i(t) - \hat{z}_i(t), \\
u_i(t) &= C_{i,h}z_i - \rho D_{i,h}B^TP_e\chi_i(t).
\end{align*}
$$

(23)

Then, we have the following theorem for scalable output synchronization of heterogeneous continuous-time MAS in presence of input saturation.

**Theorem 1** Consider a heterogeneous network of agents (1) with local information (2) satisfying Assumption 1 and a given $\bar{\tau}$. Let the associated network communication be given by (3). Let $\mathcal{G} \subset \mathcal{N}$ be the set of network graphs as defined in Definition 1.

Then the scalable output synchronization problem as stated in Problem 1 is solvable. In particular, there exist a $\rho^* > 0.5$ and for any fixed $\rho > \rho^*$, there exists an $e^*$ such that for any $e \in (0,e^*)$, dynamic protocol given by (23) and (17) solves the scalable output synchronization problem for any $N$ and any graph $\mathcal{G} \subset \mathcal{N}$.

**Proof of Theorem 1**: Let $\tilde{x}^o_i = \tilde{x}_i - \tilde{x}_N, y^o_i = y_i - y_N, \tilde{x}^\chi_i = \tilde{x}_i - \chi_N$. Then, we have

$$
\begin{align*}
\dot{\tilde{x}}^o_i(t) &= A\tilde{x}^o_i(t) + Bv_i(t - \tau_i) - v_N(t - \tau_N) + \omega_i(t) - \psi_N(t), \\
\dot{y}^o_i(t) &= C\tilde{x}^o_i(t), \\
\dot{\xi}_i(t) &= \zeta_i(t) - \zeta_N(t) = \sum_{j=1}^{N-1} \tilde{\epsilon}_{ij}y^o_j(t), \\
\dot{\tilde{x}}^\chi_i(t) &= A\tilde{\chi}_i(t) + B(\tilde{x}^o_i(t) - \tilde{x}_N(t)) + F(\tilde{\xi}_i - C\tilde{x}^o_i). \\
\dot{\tilde{x}}^\chi_i(t) &= A\tilde{\chi}_i(t) + B(v_i(t - \tau_i) - v_N(t - \tau_N)) + \tilde{\chi}_i(t) - \sum_{j=1}^{N-1} \tilde{\epsilon}_{ij}\tilde{\chi}_j
\end{align*}
$$

where $\tilde{\epsilon}_{ij} = \ell_{ij} - \ell_{Nj}$ for $i, j = 1, \ldots, N - 1$. Note that eigenvalues of

$$
\bar{L} = [\tilde{\epsilon}_{ij}]_{(N-1) \times (N-1)}
$$

are equal to the nonzero eigenvalues of $L$ (see [50]).

We define

$$
\begin{align*}
\dot{\tilde{x}}(t) &= \begin{pmatrix} \tilde{x}_1(t) \\ \vdots \\ \tilde{x}_{N-1}(t) \end{pmatrix}, \\
\dot{\chi}(t) &= \begin{pmatrix} \chi_1(t) \\ \vdots \\ \chi_{N-1}(t) \end{pmatrix}, \\
\dot{\tilde{x}}^\tau(t) &= \begin{pmatrix} \tilde{x}_1(t - \tau_1) \\ \vdots \\ \tilde{x}_{N-1}(t - \tau_{N-1}) \end{pmatrix}, \\
\dot{\psi}(t) &= \begin{pmatrix} \psi_1(t) \\ \vdots \\ \psi_{N-1}(t) \end{pmatrix}, \\
\dot{\omega}(t) &= \begin{pmatrix} \omega_1(t) \\ \vdots \\ \omega_{N-1}(t) \end{pmatrix}.
\end{align*}
$$

Then we have the following closed-loop system

$$
\begin{align*}
\dot{\tilde{x}}(t) &= (I \otimes A)\tilde{x}(t) - \rho(I \otimes BB^TP_e)\chi^\tau(t) + (\Pi \otimes B)\psi(t), \\
\dot{\tilde{x}}^\tau(t) &= (I \otimes A - \bar{L} \otimes I)\tilde{x}(t) - \rho(I \otimes BB^TP_e)\chi^\tau(t) + \tilde{x}(t), \\
\dot{\tilde{y}}(t) &= (I \otimes A - \bar{L} \otimes I)\chi(t) - \rho(I \otimes BB^TP_e)\chi^\tau(t) + \tilde{y}(t).
\end{align*}
$$

(24)

where $\Pi = (I - 1)$. By defining $e(t) = \tilde{x}(t) - \chi(t)$ and $\tilde{e}(t) = (\bar{L} \otimes I)\tilde{x}(t) - \tilde{x}(t)$, we can obtain

$$
\begin{align*}
\tilde{x}(t) &= (I \otimes A)\tilde{x}(t) - \rho(I \otimes BB^TP_e)\chi^\tau(t) + (\Pi \otimes B)C_e\omega(t), \\
\tilde{e}(t) &= \bar{L} \otimes (A - FC)\tilde{e}(t) + (\bar{L} \Pi \otimes B)C_e\omega(t), \\
\dot{\tilde{e}}(t) &= (I \otimes A - \bar{L} \otimes I)e(t) + \tilde{e}(t) + (\Pi \otimes B)C_e\omega(t).
\end{align*}
$$

(25)

where $e^*(t) = \tilde{x}^\tau(t) - \chi^\tau(t)$. We use critical lemma 1 for the stability of delayed system. The proof proceeds in two steps.

**Step c.1**: First, we prove the stability of system (25) without delay. By combining (25) and (15), we have

$$
\begin{pmatrix}
\dot{\tilde{x}} \\
\dot{\tilde{e}} \\
\dot{\omega}
\end{pmatrix} = 
\begin{pmatrix}
I \otimes A - \rho(I \otimes BB^TP_e) & 0 \\
0 & I \otimes (A - FC) \\
0 & I
\end{pmatrix}
\begin{pmatrix}
\bar{L} \Pi \otimes B \\
\Pi \otimes B \\
\Pi \otimes B
\end{pmatrix}
\begin{pmatrix}
\tilde{x} \\
\tilde{e} \\
\omega
\end{pmatrix}
\begin{pmatrix}
\rho(I \otimes BB^TP_e) \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
\Pi \otimes B \\
\Pi \otimes B \\
\Pi \otimes B
\end{pmatrix}
\begin{pmatrix}
\tilde{x} \\
\tilde{e} \\
\omega
\end{pmatrix}
$$

(26)

Since all eigenvalues of $\bar{L}$ are positive, we have

$$
(T \otimes I)(I \otimes A - \bar{L} \otimes I)(T^{-1} \otimes I) = I \otimes A - \bar{J} \otimes I
$$

(27)

for a non-singular transformation matrix $T$, where (27) is upper triangular Jordan form with $A - \lambda_iI$ for $i = 1, \ldots, N - 1$ on the diagonal. Since all eigenvalues of $A$ are in the closed left half plane, $A - \lambda_iI$ is stable. Therefore, all eigenvalues of $I \otimes A - \bar{L} \otimes I$ have negative real part. Therefore, we have that the dynamics for $e$ is asymptotically stable. Meanwhile, since $A - FC$ is Hurwitz stable, one can obtain

$$
\lim_{t \to \infty} \tilde{e}(t) \to 0 \quad \text{and} \quad \lim_{t \to \infty} e(t) \to 0
$$

i.e. we just need to prove the stability of

$$
\dot{\tilde{x}}_i(t) = (A - \rho BB^TP_e)\tilde{x}_i(t).
$$

Based on lemma 3, $A - \rho BB^TP_e$ is Hurwitz stable for $e > 0$ and $\rho > 0.5$.

**Step c.2**: In this step, since we have that $e_i$ and $\tilde{e}_i$ are asymptotically stable, we just need to prove the stability of

$$
\dot{\tilde{x}}_i(t) = A\tilde{x}_i(t) - \rho BB^TP_e\tilde{x}_i(t - \tau_i)
$$

for $i = 1, \ldots, N$. Similar to the proof of [42, Theorem 1], there exists an $e^*$ only function of $(C, A, B)$ such that by choosing

$$
\rho > \frac{1}{2 \cos(\bar{\tau}\omega_{\max})},
$$

we can obtain the synchronization result for any $e \in (0,e^*)$.

**3.2.2 Discrete-time MAS**

In this subsection, we design dynamic protocols with localized information exchange for (14) and (15) as

$$
\begin{align*}
&\dot{\xi}_i(t + 1) = A\tilde{x}_i(t) + B\tilde{z}_i(t) + F(\tilde{\xi}_i(t) - C\tilde{x}_i(t)), \\
&\dot{\chi}_i(t + 1) = A\chi_i(t) + Bv_i(t - \tau_i) + A\tilde{x}_i(t) - A\tilde{z}_i(t), \\
&v_i(t) = -\rho K_e\chi_i(t).
\end{align*}
$$

(28)
for $i = 1, \ldots, N$ where $F$ is a pre-design matrix such that $A - FC$ is Schur stable, and

$$K_{e} = (I + B^TP_eB)^{-1}B^TP_eA,$$

and $\rho > 0$, $\varepsilon$ is a parameter satisfying $\varepsilon \in (0, 1]$, where for any $\varepsilon > 0$, $P_e$ is the unique solution of

$$A^TP_eA - P_e = A^TP_eB(I + B^TP_eB)^{-1}B^TP_eA + \varepsilon I = 0 \quad (29)$$

**Remark 4** (29) is a special case of the general low-gain $H_2$ discrete algebraic Riccati equation ($H_2$-DARE), which is written as follows:

$$A^TP_eA - P_e = A^TP_eB(R_e + B^TP_eB)^{-1}B^TP_eA + Q_e = 0 \quad (30)$$

where $R_e > 0$, and $Q_e > 0$ is such that $Q_e \to 0$ as $\varepsilon \to 0$. In our case, we restrict our attention to $Q_e = \varepsilon I$ and $R_e = I$. However, as shown in [55], when $A$ is neutrally stable, there exists a suitable (nontrivial) choice of $Q_e$ and $R_e$ which yields an explicit solution of (30), of the form

$$P_e = \varepsilon P \quad (31)$$

where $P$ is a positive definite matrix that satisfies $A^TPA \leq P$.

In this protocol, the agents communicate $\eta_i = (\eta_{t1}^i, \eta_{t2}^i)$ where $\eta_{t1}^i(t) = \chi_i(t)$ and $\eta_{t2}^i(t) = v_i(t - \tau_i)$, therefore each agent has access to the localized information $\hat{\xi}_i = (\hat{\xi}_{t1}^i, \hat{\xi}_{t2}^i)$:

$$\hat{\xi}_{t1}(t) = \sum_{j=1}^{N} d_{ij}(\chi_i(t) - \chi_j(t)), \quad (32)$$

$$\hat{\xi}_{t2}(t) = \sum_{j=1}^{N} d_{ij}(v_i(t - \tau_i) - v_j(t - \tau_j)). \quad (33)$$

while $\hat{\xi}_i(t)$ is defined by (7). Finally, we combine the designed protocol for homogenized network with pre-compensators designed in step 1 to get our protocol as:

$$\begin{align*}
\xi_i(t + 1) &= A_{i,h}\xi_i(t) + B_{i,h}\hat{\xi}_i(t) - \rho E_{i,h}K_x\chi_i(t), \\
\dot{\xi}_i(t + 1) &= A_{i,h}\xi_i(t) + B_{i,h}\hat{\xi}_i(t) + F(\hat{\xi}_i(t) - C_{i,h}\hat{\hat{\xi}}_i(t)), \\
\chi_i(t + 1) &= A_i\chi_i(t) - \rho BK_x\chi_i(t - \tau_i) + A_i\dot{\xi}_i(t) - A_i\hat{\xi}_{t1}(t), \\
u_i(t) &= C_{i,h}\xi_i(t) - \rho D_{i,h}K_x\chi_i(t),
\end{align*}$$

(34)

Then, we have the following theorem for scalable output synchronization of heterogeneous discrete-time MAS in presence of input saturation.

**Theorem 2** Consider a heterogeneous network of $N$ agents (1) with local information (2) satisfying Assumption 1 and a given $\bar{\xi}$. Let the associated network communication be given by (7). Let $G^N$ be the set of network graphs as defined in Definition 1.

Then the scalable output synchronization problem as stated in Problem 1 is solvable. In particular, there exist a $\rho' > 0.5$ and for any fixed $\rho > \rho'$, there exists an $\varepsilon^*$ such that for any $\varepsilon \in (0, \varepsilon^*]$, dynamic protocol given by (34) and (28) solves the scalable output synchronization problem for any $N$ and any graph $G \in G^N$.

**Proof of Theorem 2:** Let $\tilde{\xi}_i^o(t) = \hat{\xi}_i(t) - \hat{\chi}_N(t)$, $\tilde{\chi}_i^o(t) = \chi_i(t) - \chi_N(t)$. Then, we have

$$\begin{align*}
\tilde{\xi}_i^o(t + 1) &= A\tilde{\xi}_i^o(t) + B(v_i(t - \tau_i) - v_N(t - \tau_N)) + \psi_i(t) - \psi_N(t), \\
\tilde{\chi}_i^o(t + 1) &= C\tilde{\chi}_i^o(t), \\
\hat{\xi}_i(t) &= \hat{\xi}_i(t) - \hat{\chi}_N(t) = \frac{1}{1 + d_{ii}A} \sum_{j=1}^{N-1} \hat{\xi}_{t1}^j v_j^o(t), \\
\hat{\chi}_i(t + 1) &= A\hat{\chi}_i(t) + B(v_i(t - \tau_i) - v_N(t - \tau_N)) + \frac{1}{1 + d_{ii}A} \sum_{j=1}^{N-1} \hat{\xi}_{t1}^j \hat{\chi}_j^o(t), \\
\tilde{\chi}_i^o(t + 1) &= \tilde{\chi}_i^o(t) + B(v_i(t - \tau_i) - v_N(t - \tau_N)) + \frac{1}{1 + d_{ii}A} \sum_{j=1}^{N-1} \hat{\xi}_{t1}^j \hat{\chi}_j^o(t).
\end{align*}$$

We define

$$\begin{align*}
\tilde{\chi}(t) &= \begin{pmatrix} \tilde{\chi}_1^o(t) \\ \vdots \\ \tilde{\chi}_N^o(t) \end{pmatrix}, \hat{\chi}(t) = \begin{pmatrix} \hat{\chi}_1^o(t) \\ \vdots \\ \hat{\chi}_N^o(t) \end{pmatrix}, \\
\tilde{\psi}(t) &= \begin{pmatrix} \tilde{\psi}_1(t) \\ \vdots \\ \tilde{\psi}_N(t) \end{pmatrix}, \omega(t) = \begin{pmatrix} \omega_1(t) \\ \vdots \\ \omega_N(t) \end{pmatrix}.
\end{align*}$$

Then we have the following closed-loop system

$$\begin{align*}
\tilde{\chi}(t + 1) &= (I \otimes A)\tilde{\chi}(t) - \rho(I \otimes BK_x)\tilde{\chi}^T(t) + (\Pi \otimes B)\tilde{\psi}(t), \\
\tilde{\psi}(t + 1) &= I \otimes (A - FC)\tilde{\psi}(t) - \rho(I - D) \otimes BK_x\tilde{\chi}(t) + (I - D) \otimes FC\tilde{x}(t), \\
\chi(t + 1) &= [D \otimes A]\chi(t) - \rho(I \otimes BK_x)\tilde{\chi}^T(t) + (I \otimes A)\tilde{\chi}(t),
\end{align*}$$

(35)

where $\Pi = (I - 1)$ and $D = [d_{ij}] \in \mathbb{R}^{(N-1)\times(N-1)}$, and $d_{ij} = d_{ij} - d_{Nj}$. We have that the eigenvalues of $D$ are equal to the eigenvalues of $D$ unequal to 1 (see [44]).

By defining $e(t) = \tilde{\chi}(t) - \chi(t)$ and $\bar{e}(t) = ((I - D) \otimes I)\tilde{\chi}(t) - \tilde{\chi}(t)$, we can obtain

$$\begin{align*}
\tilde{\chi}(t + 1) &= (I \otimes A)\tilde{\chi}(t) - \rho(I \otimes BK_x)\tilde{\chi}^T(t) + \rho(I \otimes BK_x)e^T(t) + (\Pi \otimes B)C_\omega\omega(t), \\
\bar{e}(t + 1) &= I \otimes (A - FC)e(t) + ((I - D) \otimes B)C_\omega\omega(t) + (\Pi \otimes B)C_\omega\omega(t), \\
e(t + 1) &= (D \otimes A)e(t) + \bar{e}(t) + (\Pi \otimes B)C_\omega\omega(t).
\end{align*}$$

(36)

where $e^T(k) = \tilde{\chi}^T(t) - \chi^T(t)$. We use the critical lemma 2 for the stability of delayed system. The proof proceeds in two steps.

**Step d.1:** First, we prove the stability of system (36) without delay. By combining (36) and (15), we have

$$\begin{pmatrix} \tilde{\chi}(t + 1) \\ \bar{e}(t + 1) \\ e(t + 1) \\ \omega(t + 1) \end{pmatrix} = \begin{pmatrix} I \otimes A - \rho(I \otimes BK_x) & 0 & 0 & 0 \\ 0 & I \otimes (A - FC) & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{\chi} \\ \bar{e} \\ e \\ \omega \end{pmatrix} + \begin{pmatrix} \rho(I \otimes BK_x) \Pi \otimes B)C_\omega \omega(t) \\ 0 \\ ((I - D) \Pi \otimes B)C_\omega \omega(t) \\ 0 \end{pmatrix}. \quad (37)$$
The eigenvalues of $\tilde{D} \otimes A$ are of the form $\lambda_i \mu_j$, with $\lambda_i$ and $\mu_j$ eigenvalues of $\tilde{D}$ and $A$, respectively [11, Theorem 4.2.12]. Since $|\lambda_i| < 1$ and $|\mu_j| \leq 1$, we find $\tilde{D} \otimes A$ is Schur stable. Meanwhile, we have that $A - FC$ is Schur stable. Then we have

$$\lim_{t \to \infty} \bar{e}(t) \to 0$$

Therefore, we have that the dynamics for $e_i(t)$ and $\bar{e}_i(t)$ are asymptotically stable.

According to the above result, for (37) we just need to prove the stability of

$$\bar{x}(t + 1) = [I \otimes (A - \rho BK_c)]\bar{x}(t)$$

or Schur stability of $A - \rho BK_c$. Based on Lemma 4, there exist $\rho > 0.5$ and $e^*$ such that $A - \rho BK_c$ is Schur stable for $e \in (0, e^*)$.

**Step d.2:** In this step, since we have that dynamics of $e_i(t)$ and $\bar{e}_i(t)$ are asymptotically stable, we just need to prove the stability of

$$\bar{x}_i(t + 1) = A\bar{x}_i(t) - \rho BK_c\bar{x}_i(t - \tau_i)$$

for $i = 1, \ldots, N$. Similar to the proof of [43, Theorem 1], there exists an $e^*$ only function of $(C, A, B)$ such that by choosing

$$\rho > \frac{1}{2 \cos(\tau_i \omega_{\text{max}})}$$

we can obtain the synchronization result for any $e \in (0, e^*)$.

**4 Simulation Results**

In this section, we will illustrate the effectiveness of our protocols with a numerical example for output synchronization of continuous heterogeneous MAS with partial-state coupling in presence of input delays. We show that our protocol design (34) is scale-free and it works for any graph with any number of agents. Consider the agents models (1) with:

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, B_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, C_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, C_1^m = I$$

$$A_i = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B_i = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, C_i = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C_i^m = I, \text{ for } i = 2, 4$$

and for $i = 3, 5$

$$A_i = \begin{pmatrix} -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}, B_i = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, C_i = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, C_i^m = I,$$

Note that $\bar{n}_d = 3$, which is the degree of infinite zeros of $(C_2, A_2, B_2)$. We choose $n_q = 3$ and matrices $A, B, C$ as following.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Figure 3: Output synchronization for MAS with $N = 3$ and $N = 5$ agents

where $K = (30 \ 30 \ 10)^T$ and $H = (6 \ 10 \ 0)$. We consider two different heterogeneous MAS with different number of agents and different communication topologies to show that the designed protocols are independent of the communication networks and the number of agents $N$.

- **Case 1:** Consider a MAS with 3 agents with agent models $(C_i, A_i, B_i)$ for $i \in \{1, \ldots, 3\}$, and directed communication topology with $a_{21} = a_{32} = 1$, and input delays $\tau_1 = 0.1, \tau_2 = 0.2, \tau_3 = 0.3$.
- **Case 2:** In this case, we consider a MAS with 3 agents with agent models $(C_i, A_i, B_i)$ for $i \in \{1, \ldots, 5\}$ and directed communication networks with $a_{15} = a_{21} = a_{32} = a_{43} = a_{54} = 1$, and input delays $\tau_1 = 0.1, \tau_2 = 0.2, \tau_3 = 0.3, \tau_4 = 0.4$ and $\tau_5 = 0.5$.

**5 Appendix**

**5.1 Stability of delayed continuous-time systems**

Following lemma from [42] is a classical results in the study of stability of continuous-time systems.

**Lemma 1** Consider a linear time-delay system

$$\dot{x}(t) = Ax(t) + \sum_{i=1}^{m} A_i x(t - \tau_i),$$

where $x(t) \in \mathbb{R}^n$ and $\tau_i \in \mathbb{R}$. Assume that $A + \sum_{i=1}^{m} A_i$ is Hurwitz stable. Then, (38) is asymptotically stable for $\tau_1, \ldots, \tau_N \in [0, \tau]$ if

$$\det[j \omega I - A - \sum_{i=1}^{m} e^{-j \omega \tau_i} A_i] \neq 0,$$

for all $\omega \in \mathbb{R}$, and for all $\tau_1, \ldots, \tau_N \in [0, \tau]$. 
5.2 Stability of delayed discrete-time systems

We also recall the following lemma from [51] for stability of discrete-time systems.

**Lemma 2** Consider a linear time-delay system

\[ x(t + 1) = Ax(t) + \sum_{i=1}^{m} A_i x(t - \tau_i), \quad (39) \]

where \( x(t) \in \mathbb{R}^n \) and \( \tau_i \in \mathbb{N}^+ \). Suppose \( A + \sum_{i=1}^{m} A_i \) is Schur stable. Then, (39) is asymptotically stable if

\[ \det[e^{i\omega I} - A - \sum_{i=1}^{m} e^{-j\omega \tau_i} A_i] \neq 0, \]

for all \( \omega \in [-\pi, \pi] \) and for all \( \tau_i \in [0, \bar{\tau}] \) for \( i = 1, \ldots, N \).

5.3 Robustness of low-gain

Now we recall the following lemmas for the robustness of low-gain design from [14, 42].

**Lemma 3** \( A - \rho BB^TP_\rho \) is Hurwitz stable for any \( \rho \in \{ x \in \mathbb{C} | \text{Re}(x) \geq \frac{1}{2} \} \) where \( P_\rho \) is the unique positive definite solution of

\[ A^TP_\rho + P_\rho A - P_\rho BB^TP_\rho + \varepsilon I = 0. \]

**Lemma 4** Consider a linear uncertain system,

\[ x(t + 1) = Ax(t) + \lambda Bu(t), \quad x(0) = x_0, \quad (41) \]

where \( \lambda \in \mathbb{C} \) is unknown. Assume that \((A, B)\) is stabilizable and \( A \) has all its eigenvalues in the closed unit disc. A low-gain state feedback \( u = F_\delta x \) is constructed, where

\[ F_\delta = -(B^TP_\delta B + I)^{-1}B^TP_\delta A, \]

with \( F_\delta \) being the unique positive definite solution of the \( H_2 \) algebraic Riccati equation.

\[ P_\delta = A^TP_\delta A + \delta I - A^TP_\delta B(B^TP_\delta B + I)^{-1}B^TP_\delta A. \]

Then, \( A + \lambda BF_\delta \) is Schur stable for any \( \lambda \in \mathbb{C} \) satisfying,

\[ \lambda \in \Omega_\delta := \{ \lambda \in \mathbb{C} : |\lambda| \geq \left(1 + \frac{1}{\gamma_\delta}\right) < \frac{\sqrt{1+\gamma_\delta}}{\gamma_\delta} \}, \]

where \( \gamma_\delta = \gamma_{\max}(B^TP_\delta B) \). As \( \delta \to 0 \), \( \Omega_\delta \) approaches the set

\[ H_1 := \{ \lambda \in \mathbb{C} : \text{Re} \lambda > \frac{1}{2} \} \]

in the sense that any compact subset of \( H_1 \) is contained in \( \Omega_\delta \) for a \( \delta \) small enough.

References

[1] H. Bai, M. Arcak, and J. Wen. Cooperative control design: a systematic, passivity-based approach. Communications and Control Engineering. Springer Verlag, 2011.

[2] P. Bliman and G. Ferrari-Trecate. Average consensus problems in networks of agents with delayed communications. Automatica, 44(8):1985–1995, 2008.

[3] Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. on Industrial Informatics, 9(1):427–438, 2013.

[4] Z. Chen. Feedforward design for output synchronization of nonlinear heterogeneous systems with output communication. Automatica, 104:126–133, 2019.

[5] N. Chopra. Output synchronization on strongly connected graphs. IEEE Trans. Aut. Contr., 57(1):2896–2901, 2012.

[6] N. Chopra and M. K. Spong. Output synchronization of nonlinear systems with time delay in communication. In Proc. 45th CDC, pages 4986–4992, San Diego, CA, 2006.

[7] R. Ghabcheloo, A. P. Aguiar, A. Pascoal, and C. Silvestre. Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays. In Proc. 46th CDC, pages 2327–2332, New Orleans, LA, 2007.

[8] C. Godsil and G. Royle. Algebraic graph theory. Graduate Texts in Mathematics. Springer–Verlag, New York, 2001.

[9] H.F. Grip, A. Saberi, and A.A. Stoorvogel. Synchronization in networks of minimum-phase, non-introspective agents without exchange of controller states: homogeneous, heterogeneous, and nonlinear. Automatica, 54:246–255, 2015.

[10] H.F. Grip, T. Yang, A. Saberi, and A.A. Stoorvogel. Output synchronization for heterogeneous networks of non-introspective agents. Automatica, 48(10):2444–2453, 2012.

[11] R. Horn and C.R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge, 1991.

[12] H. Kim, H. Shim, and J.H. Seo. Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans. Aut. Contr., 56(1):200–206, 2011.

[13] J.R. Klotz, S. Obuz, Z. Kan, and W.E. Dixon. Synchronization of uncertain euler-lagrange systems with unknown time-varying communication delays. In American Control Conference, pages 683–688, Chicago, IL, 2015.

[14] J. Lee, J. Kim, and H. Shim. Disc margins of the discrete-time LQR and its application to consensus problem. Int. J. System Science, 43(10):1891–1900, 2012.

[15] X. Li, Y. C. Soh, L. Xie, and F. L. Lewis. Cooperative output regulation of heterogeneous linear multi-agent networks via \( H_\infty \) performance allocation. IEEE Trans. Aut. Contr., 64(2):683–696, 2019.

[16] Z. Li, Z. Duan, G. Chen, and L. Huang. Consensus of multi-agent systems and synchronization of complex networks: A unified viewpoint. IEEE Trans. Circ. & Syst.-I Regular papers, 57(1):213–224, 2010.

[17] P. Lin and Y. Jia. Average consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A: Statistical Mechanics and its Applications, 387(1):303–313, 2008.

[18] P. Lin and Y. Jia. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica, 45(9):2154–2158, 2009.

[19] Z. Liu, A. Saberi, A. A. Stoorvogel, and D. Nojavanzadeh. Global and semi-global regulated state synchronization for homogeneous networks of non-introspective agents in presence of input saturation. In Proc. 58th CDC, pages 7307–7312, Nice, France, 2019.

[20] M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent networks. Princeton University Press, Princeton, 2010.

[21] H. Modares, F.L. Lewis, W. Kang, and A. Davoudi. Optimal syn-
S.E. Tuna. Condition for synchronizability in arrays of coupled linear systems. *IEEE Trans. Aut. Contr.*, 63(1):117–131, 2018.

U. Münz, A. Papachristodoulou, and F. Allgöwer. Delay robustness in consensus problems. *Automatica*, 46(8):1252–1265, 2010.

U. Münz, A. Papachristodoulou, and F. Allgöwer. Delay robustness in non-identical multi-agent systems. *IEEE Trans. Aut. Contr.*, 57(6):1597–1603, 2012.

D. Nojavanzadeh, Z. Liu, A. Saberi, and A. A. Stoorvogel. Output and regulated output synchronization of heterogeneous multi-agent systems: A scale-free protocol design using no information about communication network and the number of agents. In *American Control Conference*, Denver, CO, 2020.

R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation in networked multi-agent systems. *Proc. of the IEEE*, 95(1):215–233, 2007.

R. Olfati-Saber and R.M. Murray. Agreement problems in networks with direct graphs and switching topology. In *Proc. 42nd CDC*, pages 4126–4132, Maui, Hawaii, 2003.

R. Olfati-Saber and R.M. Murray. Consensus problems in networks of agents with switching topology and time-delays. *IEEE Trans. Aut. Contr.*, 49(9):1520–1533, 2004.

E. Peymani, H.F. Grip, and A. Saberi. Homogeneous networks of non-introspective agents under external disturbances - $H_\infty$ almost synchronization. *Automatica*, 52:363–372, 2015.

E. Peymani, H.F. Grip, A. Saberi, and T.I. Fossen. $H_\infty$ almost synchronization for homogeneous networks of non-introspective SISO agents under external disturbances. In *Proc. 52nd CDC*, pages 4012–4017, Florence, Italy, 2013.

A.Y. Pogromsky, G. Santoboni, and H. Nijmeijer. Partial synchronization: from symmetry towards stability. *Physica D*, 172(1-4):65–87, 2002.

Y. Qian, L. Liu, and G. Feng. Output consensus of heterogeneous linear multi-agent systems with adaptive event-triggered control. *IEEE Trans. Aut. Contr.*, 64(6):2606–2613, 2019.

W. Ren and E. Atkins. Distributed multi-vehicle coordinate control via local information. *Int. J. Robust & Nonlinear Control*, 17(10-11):1002–1033, 2007.

W. Ren, R.W. Beard, and E. Atkins. Information consensus in multivehicle cooperative control. *IEEE Control Systems Magazine*, 27(2):71–82, 2007.

W. Ren and Y.C. Cao. *Distributed coordination of multi-agent networks*. Communications and Control Engineering. Springer-Verlag, London, 2011.

A. Saberi, A.A. Stoorvogel, and P. Sannuti. *Internal and external stabilization of linear systems with constraints*. Birkhäuser, Boston, MA, 2012.

A.A. Stoorvogel and A. Saberi. Synchronization in an homogeneous, time-varying network with nonuniform time-varying communication delays. In *Proc. 55th CDC*, pages 910–915, Las Vegas, NV, 2016.

Y.-P. Tian and C.-L. Liu. Consensus of multi-agent systems with diverse input and communication delays. *IEEE Trans. Aut. Contr.*, 53(9):2122–2128, 2008.

S.E. Tuna. LQR-based coupling gain for synchronization of linear systems. Available: arXiv:0801.3390v1, 2008.

S.E. Tuna. Synchronizing linear systems via partial-state coupling. *Automatica*, 44(8):2179–2184, 2008.

S.E. Tuna. Conditions for synchronizability in arrays of coupled linear systems. *IEEE Trans. Aut. Contr.*, 55(10):2416–2420, 2009.

X. Wang, A. Saberi, A.A. Stoorvogel, H. Grip, and T. Yang. Consensus in the network with uniform constant communication delay. *Automatica*, 49(8):2461–2467, 2013.

X. Wang, A. Saberi, A.A. Stoorvogel, H.F. Grip, and T. Yang. Consensus in the network with uniform constant communication delay. *Automatica*, 49(8):2461–2467, 2013.

X. Wang, A. Saberi, A.A. Stoorvogel, H.F. Grip, and T. Yang. Synchronization in a network of identical discrete-time agents with uniform constant communication delay. *Int. J. Robust & Nonlinear Control*, 24(18):3076–3091, 2014.

X. Wang, A. Saberi, and T. Yang. Synchronization in heterogeneous networks of discrete-time introspective right-invertible agents. *Int. J. Robust & Nonlinear Control*, 24(18):3255–3281, 2013.

P. Wieland, R. Sepulchre, and F. Allgöwer. An internal model principle is necessary and sufficient for linear output synchronization. *Automatica*, 47(5):1068–1074, 2011.

C.W. Wu. *Synchronization in complex networks of nonlinear dynamical systems*. World Scientific Publishing Company, Singapore, 2007.

F. Xiao and L. Wang. Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. *IEEE Trans. Aut. Contr.*, 53(8):1804–1816, 2008.

F. Xiao and L. Wang. Consensus protocols for discrete-time multi-agent systems with time-varying delays. *Automatica*, 44(10):2577–2582, 2008.

T. Yang, A. Saberi, A.A. Stoorvogel, and H.F. Grip. Output synchronization for heterogeneous networks of introspective right-invertible agents. *Int. J. Robust & Nonlinear Control*, 24(13):1821–1844, 2014.

M. Zhang, A. Saberi, and A.A. Stoorvogel. Synchronization in a network of identical continuous- or discrete-time agents with unknown nonuniform constant input delay. *Int. J. Robust & Nonlinear Control*, 28(13):3959–3973, 2018.

M. Zhang, A. Saberi, and A.A. Stoorvogel. Synchronization in a network of identical continuous- or discrete-time agents with unknown nonuniform constant input delay. *Int. J. Robust & Nonlinear Control*, 28(13):3959–3973, 2018.