A flexible format for exchanging pulsar data

D.R. Lorimer\(^1\), A. Jessner\(^1\), J.H. Seiradakis\(^2\), A.G. Lyne\(^3\), N. D’Amico\(^4\), A. Athanasopoulos\(^2\), K.M. Xilouris\(^5\), M. Kramer\(^1\), R. Wielebinski\(^1\)

\(^1\) Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
\(^2\) University of Thessaloniki, Department of Physics, Section of Astrophysics, Astronomy and Mechanics, GR–54006, Greece
\(^3\) University of Manchester, Jodrell Bank Centre for Astrophysics, Jodrell Bank, Macclesfield, Cheshire, SK11 9DL, UK
\(^4\) Osservatorio Astronomico di Bologna, via Zamboni 33, 40126 Bologna, Italy
\(^5\) National Astronomy and Ionospheric Center, Arecibo Observatory, P.O. Box 995, Arecibo, Puerto Rico 00613

Received ; accepted

Abstract. We describe a data format currently in use amongst European institutions for exchanging and archiving pulsar data. The format is designed to be as flexible as possible with regard to present and future compatibility with different operating systems. One application of the common format is simultaneous multi-frequency observations of single pulses. A data archive containing over 2500 pulse profiles stored in this format is now available via the Internet, together with a small suite of computer programs that can read, write and display the data.

Key words: Pulsars: general — Astronomical databases: miscellaneous

1. Introduction

The European Pulsar Network (“EPN”) is an association of European astrophysical research institutes that co-operate in the subject of pulsar research. All institutes have up until now developed their own individual hardware and software facilities tailored to their own requirements and will, of course, continue to do so in future. Contact and co-operation has always existed between the scientists of the member institutes and outside, but the lack of a common standard format for pulsar data has hampered previous collaborative research efforts.

In this paper, we describe a flexible format that we have developed for exchanging data between EPN pulsar groups. The format has some generic similarities to the widely used FITS format (Wells et al. 1981) but has been designed to meet the specific needs of the EPN. The format has proved so successful that we now advocate its use as a useful world–wide utility for pulsar data exchange. To aid implementation of the format, we have written a suite of freely available Fortran–77 sub–routines which can be easily incorporated within existing software to read and write data in this format. Astrophysical applications of such a format currently being pursued by EPN groups include the establishment of a data bank of pulse profiles as well as simultaneous observations of pulsars by several European observatories.

2. The EPN format

The underlying principles of the format result from a number of requirements. This was essentially a balance between the need for efficient data storage and providing sufficient information about the data for potential users. Specifically, the following requirements had to be met:

– Operating system independence: To make the data format as portable as possible between present and future operating systems, we have opted to use only ASCII–data throughout. We have arranged these data so that words are aligned over 80-byte boundaries, this simplifies inspection and printing of the files.

– Completeness: The data should contain all information for the identification of the source and the observing circumstances useful for further analyses of the data by others.

– Compactness: Descriptive information should not dominate the format. The measured values that form the bulk of a block of data are given as scaled four-character hexadecimal numbers, giving a dynamic range of up to 65536:1.

– Versatility: The format should be suitable for continuously sampled multi–channel filterbank search data, synchronous integrated and single–pulse data as well as processed data. In addition, we have designed the format, so that it can be used for observations of pulsars outside the radio regime i.e. variable units for
the observing frequency and bandwidth, as well as
topocentric telescope coordinates which are time vari-
able for satellite observatories. Space is left for more
descriptors, future adaptations and expansions.

Simplicity and ease of access: We describe a data
format consisting of a standardised fixed-length header
with a variable length data structure attached to it.
The header fully describes the structure of the data,
which is not changed within one file but can vary be-
tween files. In this way, it is possible to calculate the
length of a data block within each file after reading its
header. The file can then be opened for random access
with fixed block length, faster than a sequential read.

Many of the above mentioned requirements were al-
ready met by a format in use at Jodrell Bank to which
we made suitable modifications and extensions to make it
more flexible.

Header	480 Characters
Sub-Header	160 Characters
Data	

Fig. 1. Schematic representation of an EPN data block.

Each EPN file consists of one or more EPN blocks.
The basic structure of an EPN block is shown in Fig.
1. Each file has a common fixed length header followed
by a number of individual data streams of equal length.
The header describes the data, containing information on
the pulsar itself, the observing system used to make the
observation as well as some free-form information about
the processing history of the data. The onus is on the
site–specific conversion process to ensure correct conver-
sion to the standardised entries and reference to common
catalogues (e.g. the Taylor et al. 1993 catalogue of pulsar
parameters). The full list of header variables is given in
Tables 1 and 2.

The data streams themselves may be outputs of differ-
ent polarisation channels, or individual channels (bands)
of a filterbank or a combination thereof. In total, there
may be \(N_{\text{freq}} \) data streams of i.e. different frequencies for
each polarisation. Each data stream starts with a small,
fixed length sub-header in front of the actual data values.
The number of data streams and their length may vary
between different EPN files, but is constant within each
file. A character field and an ordinal number is provided
for each stream for its identification.

3. Simultaneous observations of single pulses

Pulsars are, in general, very weak sources, typically requir-
ing the addition of several thousand individual pulses with
a large radio telescope equipped with sensitive receivers
in order to attain a sufficiently large signal-to-noise ratio.
The brightest pulsars are, however, strong enough so that
individual pulses can be observed. These pulses are known
to exhibit great variety in morphology and polarimetric
properties from one pulse to the next (see for example
Lyne & Smith 1990). It is presently unclear whether the
same features in the individual pulses are present at dif-
ferent observing frequencies. One of the current research
topics being carried out by EPN is a multi-frequency study
of single pulses. The project requires the pulses observed
at different telescopes to be time-aligned and thus the
format described above has an ideal application in this
project. After conversion of the data into this format, the
time alignment of the pulses and subsequent statistical
analyses is a relatively straight-forward procedure. As an
example, a set of pulses from PSR B0329+54 observed si-
multaneously at Bologna (410 MHz), Jodrell Bank (1.404
GHz) and Effelsberg (4.850 GHz) are shown in Fig. 2.
The pulses show a remarkable similarity at these three
frequencies, although counter examples are also observed.
Full results of this study will be published shortly.

4. The EPN pulse profile archive

As well as being used for data interchange between EPN
members, the common format forms the basis of a pulse
profile archive presently being maintained at the Max-
Planck-Institut für Radioastronomie in Bonn. The idea
of the archive is to build up a useful collection of pulse
profiles which anybody with access to the Internet can
Position	**Name**	**Format**	**Unit**	**Comment**
1 | version | A8 | EPN + version of format (presently EPN05.00) |
9 | counter | I4 | No. of records contained in this data block |
13 | history | A68 | comments and history of the data |
81 | jname | A12 | pulsar jname |
93 | name | A12 | common name |
105 | P_{b} | F16.12 | s | current barycentric period |
121 | DM | F8.3 | pc cm$^{-3}$ | dispersion measure |
129 | RM | F10.3 | rad m$^{-2}$ | rotation measure |
139 | CATREF | A6 | pulsar parameter catalogue in use |
145 | BIBREF | A8 | bibliographical reference key (or observer’s name) |
153 | 8X | blank space free for future expansion |
161 | α_{2000} | I2,I2,F6.3 | hhmmss | right ascension of source |
171 | δ_{2000} | I3,I2,F6.3 | ddmnss | declination of source |
182 | telname | A8 | name of the observing telescope (site) |
190 | EPOCH | F10.3 | day | modified Julian date of observation |
200 | OPOS | F8.3 | degrees | position angle of telescope |
208 | PAFLAG | A1 | $A =$ absolute polarisation position angle, else undefined |
209 | TIMFLAG | A1 | $A =$ absolute time stamps (UTC), else undefined |
210 | 31X | blank space free for future expansion |
241 | x_{tel} | F17.5 | m | topocentric X rectangular position of telescope |
258 | y_{tel} | F17.5 | m | topocentric Y rectangular position of telescope |
275 | z_{tel} | F17.5 | m | topocentric Z rectangular position of telescope |
292 | 29X | blank space free for future expansion |
321 | CDATE | I2,I2,I4 | d m y | creation/modification date of the dataset |
329 | SCANNO | I4 | sequence number of the observation |
333 | SUBSCAN | I4 | sub–sequence number of the observation |
337 | N_{pol} | I2 | number of polarisations observed |
339 | N_{freq} | I4 | number of frequency bands per polarisation |
343 | N_{bin} | I4 | number of phase bins per frequency (1-9999) |
347 | t_{bin} | F12.6 | µs | duration (sampling interval) of a phase bin |
359 | t_{res} | F12.6 | µs | temporal resolution of the data |
371 | N_{int} | I6 | number of integrated pulses per block of data |
377 | n_{cal} | I4 | t_{bin} | bin number for start of calibration signal |
381 | l_{cal} | I4 | t_{bin} | length of calibration signal |
385 | FLUXFLAG | A1 | $F =$ data are flux calibrated in mJy, else undefined |
386 | 15X | blank space free for future expansion |
401 | 80X | blank space free for future expansion |

Table 1. A description of the EPN format variables.

Use. Presently, around 2500 pulse profiles are stored in this format. The profiles themselves have usually already been, or about to be, published so that full credit for any subsequent use via the database can go to the contributing authors. The archive has the following URL address: http://www.mpifr-bonn.mpg.de/pulsar/data/. Authors are encouraged to make their data available to this archive and should contact Duncan Lorimer (Email: dunc@mpifr-bonn.mpg.de) if they wish to do this.

Acknowledgements. We thank the referee, Dick Manchester, for useful comments on an earlier version of the manuscript. The EPN was funded under Brussels Human Capital and Mobility grant number CHRX-CT94-0622.

References

Lyne A. G., Smith F. G., 1990, Pulsar Astronomy. Cambridge University Press

Taylor J. H., Manchester R. N., Lyne A. G., 1993, ApJS, 88, 529

Wells D. C., Greisen E. W., Harten R. H., 1981, A&A Supp. Ser, 44, 363

A. Format Compatible Software

To incorporate the capability to read and write data in this format within existing analysis software, a simple routine exists which can read and write data in this format. In addition, we have written some sample programs which can plot the data and display the header parameters. The software are written in Fortran—77 and have been packaged into a single UNIX
Position	Name	Format	Unit	Comment
481 | IDfield | A8 | | type of data stream (I,Q,U,V etc.)
489 | n_{band} | I4 | | ordinal number of current stream
493 | n_{avg} | I4 | | number of streams averaged into the current one
497 | f_0 | F12.8 | | effective centre sky frequency of this stream
509 | U_f | A8 | | unit of f_0
517 | Δf | F12.6 | | effective band width
529 | U_Δ | A8 | | unit of Δf
537 | t_{start} | F17.5 μs | | time of first phase bin w.r.t. EPOCH
554 | 7X | | | blank space free for future expansion
561 | SCALE | E12.6 | | scale factor for the data
573 | OFFSET | E12.6 | | offset to be added to the data
585 | RMS | E12.6 | | rms for this data stream
597 | P_{app} | F16.12 s | | apparent period at time of first phase bin
613 | 28X | | | blank space free for future expansion
641 | Data(1) | I4 | | scaled data for first bin
4($N_{\text{bin}} - 1$) + 641 | Data(N_{bin}) | I4 | | data for last bin of stream

$N_{\text{records}} = \text{INT}(N_{\text{bin}} \cdot 0.05) + \Theta((4N_{\text{bin}} \mod 80) - 1)^*$

Table 2. The sub-header variables. * is the Heaviside–function: $= 1$ if $x \geq 0$ and $= 0$ elsewhere.

Fig. 2. Time-aligned single pulses for PSR B0329+54 observed simultaneously at Effelsberg (4.850 GHz) and Jodrell Bank (1.404 GHz) shown in the upper panel and at Bologna (410 MHz) and Jodrell Bank (1.404 GHz) in the lower panel. The data were processed using the EPN format.

To uncompress and extract the contents of the tar file on a UNIX operating system, issue the commands:

```
gunzip epnsoft.tar.gz
tar xvf epnsoft.tar
```

The present package contains some sample data and two example programs — “plotepn” and “viewepn” which plot and view EPN files respectively. The ASCII file `00README` in this packages gives further details of the software and how to use it.

This article was processed by the author using Springer-Verlag \LaTeX\ A&A style file `L-AA` version 3.