A NOTE ON 2-DISTANT NONCROSSING PARTITIONS AND WEIGHTED MOTZKIN PATHS

IRA M. GESSEL AND JANG SOO KIM

Abstract. We prove a conjecture of Drake and Kim: the number of 2-distant noncrossing partitions of \{1, 2, \ldots, n\} is equal to the sum of weights of Motzkin paths of length \(n\), where the weight of a Motzkin path is a product of certain fractions involving Fibonacci numbers. We provide two proofs of their conjecture: one uses continued fractions and the other is combinatorial.

1. Introduction

A Motzkin path of length \(n\) is a lattice path from \((0, 0)\) to \((n, 0)\) consisting of up steps \(U = (1, 1)\), down steps \(D = (1, -1)\) and horizontal steps \(H = (1, 0)\) that never goes below the \(x\)-axis. The height of a step in a Motzkin path is the \(y\) coordinate of the ending point.

Given two sequences \(b = (b_0, b_1, \ldots)\) and \(\lambda = (\lambda_0, \lambda_1, \ldots)\), the weight of a Motzkin path with respect to \((b, \lambda)\) is the product of \(b_i\) and \(\lambda_i\) for each horizontal step and down step of height \(i\) respectively, see Figure 1. Let \(\text{Mot}_n(b, \lambda)\) denote the sum of weights of Motzkin paths of length \(n\) with respect to \((b, \lambda)\). This sum is closely related to orthogonal polynomials; see [5, 6].

Drake and Kim [1] defined the set \(\text{NC}_k(n)\) of \(k\)-distant noncrossing partitions of \([n] = \{1, 2, \ldots, n\}\). For \(k \geq 0\), a \(k\)-distant noncrossing partition is a set partition of \([n]\) without two arcs \((a, c)\) and \((b, d)\) satisfying \(a < b \leq c < d\) and \(c - b \geq k\), where an arc is a pair \((i, j)\) of integers contained in the same block which does not contain any integer between them. For example, \(\pi = \{\{1, 5, 7\}, \{2, 3, 6\}, \{4\}\}\) is a 3-distant noncrossing partition but not a 2-distant noncrossing partition because \(\pi\) has two arcs \((1, 5)\) and \((3, 6)\) with \(5 - 3 \geq 2\). Note that the 1-distant noncrossing partitions are the ordinary noncrossing partitions, which implies that \(# \text{NC}_1(n)\) is equal to the Catalan number \(\frac{1}{n+1} \binom{2n}{n}\). It is not difficult to see that \(\text{NC}_0(n)\) is in bijection

The first author was supported by NSA Grant H98230-10-1-0196. The second author was supported by the grant ANR08-JCJC-0011.

Figure 1. A Motzkin path and the weights of its steps with respect to \((b, \lambda)\).
with the set of Motzkin paths of length n. In the same paper, they proved that

$$\sum_{n \geq 0} \# NC_2(n)x^n = \frac{3}{2} - \frac{1}{2} \sqrt{1 - \frac{5x}{1 - x}}$$

The number $\# NC_2(n)$ also counts many combinatorial objects: Schröder paths with no peaks at even levels, etc; see [2, 4, 7].

There are simple expressions of $\# NC_k(n)$ using Motzkin paths for $k = 0, 1, 3$:

$$\# NC_0(n) = \text{Mot}_n((1, 1, \ldots), (1, 1, \ldots)),$$
$$\# NC_1(n) = \text{Mot}_n((1, 2, 2, \ldots), (1, 1, \ldots)),$$
$$\# NC_3(n) = \text{Mot}_n((1, 2, 3, 3, \ldots), (1, 2, 2, \ldots)),$$

where the second equation is well known and the third one was first conjectured by Drake and Kim [1] and proved by Kim [3]. The main purpose of this paper is to prove the following theorem which was also conjectured by Drake and Kim [1].

Theorem 1.1. Let $b = (b_0, b_1, \ldots)$ and $\lambda = (\lambda_0, \lambda_1, \ldots)$ be the sequences with $b_0 = \lambda_0 = 1$ and for $n \geq 1$,

$$b_n = 3 - \frac{1}{F_{2n-1}F_{2n-3}} \quad \text{and} \quad \lambda_n = 1 + \frac{1}{F_{2n-1}},$$

where F_m is the Fibonacci number defined by $F_0 = 0, F_1 = 1$, and $F_m = F_{m-1} + F_{m-2}$ for all m (so $F_{-1} = 1$). Then we have

$$\# NC_2(n) = \text{Mot}_n(b, \lambda).$$

Theorem 1.1 is very interesting because it is not even obvious that $\text{Mot}_n(b, \lambda)$ is an integer. In this paper, we give two proofs of Theorem 1.1: one uses continued fractions and the other is combinatorial.

2. Continued Fractions

Let $\alpha = (\alpha_0, \alpha_1, \alpha_2, \ldots)$, $\beta = (\beta_0, \beta_1, \beta_2, \ldots)$, and $c = (c_0, c_1, c_2, \ldots)$ be sequences of numbers.

Let $J(x; \alpha_0, \beta_0; \alpha_1, \beta_1; \alpha_2, \beta_2; \ldots) = J(x; \alpha, \beta)$ denote the J-fraction

$$\frac{1}{1 - \alpha_0 x - \frac{\beta_0 x^2}{1 - \alpha_1 x - \frac{\beta_1 x^2}{1 - \alpha_2 x - \ldots}}}$$

and let $S(x; c_0, c_1, \ldots) = S(x; c)$ denote the S-fraction

$$\frac{1}{1 - \frac{c_0 x}{1 - \frac{c_1 x}{1 - \ldots}}}$$

A Dyck path of length $2n$ is a lattice path from $(0, 0)$ to $(2n, 0)$ consisting of up steps $U = (1, 1)$ and down steps $D = (1, -1)$ that never goes below the x-axis. The height of a step in a Dyck path is the y coordinate of the ending point. The weight of a Dyck path with respect to c is the product of c_i for each down step of height i, see Figure 2. Let $\text{Dyck}_n(c)$ denote the sum of weights of Dyck paths of length $2n$ with respect to c.
It is well known that
\[\sum_{n \geq 0} \text{Mot}_n(\alpha, \beta)x^n = J(x; \alpha, \beta) \quad \text{and} \quad \sum_{n \geq 0} \text{Dyck}_n(c)x^n = S(x; c). \]

The following proposition is easy to see.

Proposition 2.1. If \(\alpha_n = c_{2n-1} + c_{2n} \) and \(\beta_n = c_{2n}c_{2n+1} \) for all \(n \geq 0 \), with \(c_{-1} = 0 \), then \(S(x; c) = J(x; \alpha, \beta) \).

One can prove Proposition 2.1 by the following observation: a Motzkin path may be obtained from a Dyck path by taking steps two at a time and changing \(U \) to \(DU \), \(D \) to \(DU \) and \(DD \), respectively, to \(U \), \(H \), \(H \) and \(D \). For example, the Motzkin path in Figure 1 is obtained from the Dyck path in Figure 2 in this way.

Let \(d = (d_0, d_1, d_2, \ldots) \) be the sequence with \(d_0 = 1 \) and for \(n \geq 1 \),

\[d_{2n-1} = \frac{F_{2n-1}}{F_{2n-3}}, \quad d_{2n} = \frac{1}{d_{2n-1}}. \]

Recall the two sequences \(b = (b_0, b_1, \ldots) \) and \(\lambda = (\lambda_0, \lambda_1, \ldots) \) defined in (2).

Lemma 2.2. We have the following.

1. \(b_n = d_{2n-1} + d_{2n} \) for all \(n \geq 0 \), where \(d_{-1} = 0 \).
2. \(\lambda_n = d_{2n}d_{2n+1} \) for all \(n \geq 0 \).
3. \(1/d_{2n-1} + d_{2n+1} = 3 \) for all \(n \geq 1 \).

Proof. We will use two cases of the well-known Catalan identity for Fibonacci numbers, \(F_m^2 - F_{m+i}F_{m-i} = (-1)^{m-i}F_i^2 \).

1. This is true for \(n = 0 \). For \(n \geq 1 \) we have

\[
d_{2n-1} + d_{2n} = \frac{F_{2n-1}}{F_{2n-3}} + \frac{F_{2n-3}}{F_{2n-1}} = \frac{F_{2n-1} + F_{2n-3}}{F_{2n-1}F_{2n-3}} = \frac{2F_{2n-1}F_{2n-3} + (F_{2n-1} - F_{2n-3})^2}{F_{2n-1}F_{2n-3}} = 2 + \frac{F_{2n-2}^2}{F_{2n-1}F_{2n-3}} = 3 + \frac{F_{2n-2}^2 - F_{2n-1}F_{2n-3}}{F_{2n-1}F_{2n-3}} = 3 - \frac{1}{F_{2n-1}F_{2n-3}} = b_n.
\]

2. This is true for \(n = 0 \). For \(n \geq 1 \) we have

\[
d_{2n}d_{2n+1} = \frac{F_{2n-3}F_{2n+1}}{F_{2n-1}F_{2n-1}} = \frac{F_{2n-1}^2 + (F_{2n-3}F_{2n+1} - F_{2n-1}^2)}{F_{2n-1}^2} = 1 + \frac{1}{F_{2n-1}^2} = \lambda_n.
\]

3. We have

\[
\frac{1}{d_{2n-1}} + d_{2n+1} = \frac{F_{2n-3}}{F_{2n-1}} + \frac{F_{2n+1}}{F_{2n-1}} = \frac{(F_{2n-1} - F_{2n-2}) + (F_{2n} + F_{2n-1})}{F_{2n-1}} = 2 + \frac{F_n - F_{n-2}}{F_{2n-1}} = 3.
\]
By Proposition 2.1 and Lemma 2.2 we obtain the following.

Corollary 2.3. For the sequences b, λ and d defined in (2) and (3), we have

$$\text{Dyck}_n(d) = \text{Mot}_n(b, \lambda).$$

Now we can prove the following S-fraction formula for the generating function (1) for $\# \text{NC}_2(n)$.

Theorem 2.4. We have

$$\frac{3}{2} - \frac{1}{2} \sqrt{\frac{1-5x}{1-x}} = S(x; 1, 1, 1, 2, \frac{1}{2}, 2, \frac{5}{2}, 5, \frac{89}{15}, \frac{13}{5}, \frac{233}{34}, \frac{89}{34}, \frac{89}{233}, \frac{610}{233}, \frac{610}{610}, \ldots).$$

To prove Theorem 2.4 we define R_n for $n \geq -1$ by

$$\begin{align*}
R_{-1} &= \frac{3}{2} - \frac{1}{2} \sqrt{\frac{1-5x}{1-x}}, \\
R_{2n+1} &= d_{2n+1} + \frac{1 - 3x - \sqrt{(1-x)(1-5x)}}{2x}, \quad n \geq 0, \\
R_{2n} &= \frac{d_{2n}}{1 - x R_{2n+1}}, \quad n \geq 0.
\end{align*}$$

One can easily check that R_n is a power series in x with constant term d_m (with $d_{-1} = 1$), though this will follow from Lemma 2.5.

Lemma 2.5. For $m \geq -1$, we have

$$R_m = \frac{d_m}{1 - x R_{m+1}},$$

where $d_{-1} = 1$.

Proof. By definition, this is true if m is even. Thus it is enough to prove that for $n \geq 0$,

$$R_{2n} = \frac{d_{2n-1}}{1 - x R_{2n+1}},$$

which is equivalent to

$$R_{2n+1} = \frac{1}{x} - \frac{1}{d_{2n-1}} - \frac{1}{R_{2n-1} - d_{2n-1}}.$$

We can check (3) directly for $n = 0$. Assume $n \geq 1$. Then the right-hand side of (1) is equal to

$$\begin{align*}
\frac{1}{x} - \frac{1}{d_{2n-1}} - \frac{2x}{1 - 3x - \sqrt{(1-x)(1-5x)}} &= \frac{1}{x} - \frac{1}{d_{2n-1}} - \frac{2x \left(1 - 3x + \sqrt{(1-x)(1-5x)}\right)}{(1 - 3x)^2 - (1 - 6x + 5x^2)} \\
&= \frac{1}{x} - \frac{1}{d_{2n-1}} - \frac{1 - 3x + \sqrt{(1-x)(1-5x)}}{2x} \\
&= 3 - \frac{1}{d_{2n-1}} + \frac{1 - 3x - \sqrt{(1-x)(1-5x)}}{2x}.
\end{align*}$$

Since $3 - 1/d_{2n-1} = d_{2n+1}$ by Lemma 2.2, we are done. \qed
Proof of Theorem 2.4. It follows from Lemma 2.5 that
\[
\frac{3}{2} \cdot \sqrt{\frac{1 - 5x}{1 - x}} = \frac{1}{1 - xR_0} = \frac{1}{1 - \frac{d_0x}{1 - xR_1}} = \frac{1}{1 - \frac{d_1x}{1 - xR_2}} = \cdots.
\]
Continuing, and taking a limit, gives the S-fraction for \(R_{-1} \).
\[\square\]

By (1), Theorem 2.4 and Corollary 2.3, we obtain the following which proves Theorem 1.1.
\[
\sum_{n \geq 0} \# NC_2(n)x^n = \frac{3}{2} \cdot \sqrt{\frac{1 - 5x}{1 - x}} = \sum_{n \geq 0} \text{Dyck}_n(d)x^n = \sum_{n \geq 0} \text{Mot}_n(b, \lambda)x^n
\]

3. A COMBINATORIAL PROOF

Let \(b, \lambda \) and \(d \) be the sequences defined in (2) and (3).

Recall that in the previous section we have shown that \(\text{Dyck}_n(d) = \text{Mot}_n(b, \lambda) \) by changing a Dyck path of length \(2n \) to a Motzkin path of length \(n \). We can do the same thing after deleting the first and the last steps of a Dyck path. More precisely, for a Dyck path of length \(2n \), we delete the first and the last steps, take two steps at a time in the remaining \(2n - 2 \) steps, and change \(\text{UU}, \text{UD}, \text{DU}, \) and \(\text{DD} \), respectively, to \(\text{U}, \text{H}, \text{H} \) and \(\text{D} \). Then we obtain a Motzkin path of length \(n - 1 \). This argument shows that
\[
\text{Dyck}_n(d) = d_0 \cdot \text{Mot}_{n-1}(\alpha, \beta) = \text{Mot}_{n-1}(\alpha, \beta),
\]
where \(\alpha_n = d_{2n} + d_{2n+1} \) and \(\beta_n = d_{2n+1}d_{2n+2} \). By (3) and Lemma 2.2, we have \(\alpha = (2, 3, 3, \ldots) \) and \(\beta = (1, 1, \ldots) \). Note that we can also prove Theorem 2.4 using (5).

To find a connection between \(\text{Mot}_{n-1}(\alpha, \beta) \) and \(\text{NC}_2(n) \) we need the following definition.

A Schröder path of length \(2n \) is a lattice path from \((0, 0)\) to \((2n, 0)\) consisting of up steps \(\text{U} = (1, 1) \), down steps \(\text{D} = (1, -1) \) and double horizontal steps \(\text{H}^2 = (2, 0) \) that never goes below the \(x \)-axis. Let \(\text{SCH}_{\text{even}}(n) \) denote the set of Schröder paths of length \(2n \) such that all horizontal steps have even height.

Proposition 3.1. Let \(\alpha = (2, 3, 3, \ldots) \) and \(\beta = (1, 1, \ldots) \). Then, for \(n \geq 1 \), we have
\[
\text{Mot}_n(\alpha, \beta) = \# \text{SCH}_{\text{even}}(n).
\]

Proof. From a Motzkin path of length \(n \) we obtain a Schröder path of length \(2n \) as follows. Change \(\text{U} \) and \(\text{D} \) to \(\text{UU} \) and \(\text{DD} \) respectively. For a horizontal step \(\text{H} \), if its height is 0, we change it to either \(\text{UD} \) or \(\text{HH} \), and if its height is greater than 0, we change it to either \(\text{UD}, \text{DU}, \) or \(\text{HH} \). Then we get an element of \(\text{SCH}_{\text{even}}(n) \). Since the weight of a horizontal step \(\text{H} \) in the Motzkin path is equal to the number of choices, the theorem follows.
\[\square\]

Remark 1. The definition of \(\text{SCH}_{\text{even}}(n) \) in [2] is the set of Schröder paths of length \(2n \) which have no peaks at even height. From such a path, by changing all the horizontal steps at odd height to peaks, we get a Schröder path whose horizontal steps are all at even height, and this transformation is easily seen to be a bijection.
Kim [2] found a bijection between $\text{NC}_2(n)$ and $\text{SCH}_{\text{even}}(n - 1)$. Using Kim's bijection in [2], Proposition 3.1, (5) and Corollary 2.3 we finally get the following sequence of identities which implies Theorem 1.1:

$$\# \text{NC}_2(n) = \# \text{SCH}_{\text{even}}(n - 1) = \text{Mot}_{n-1}(\alpha, \beta) = \text{Dyck}_n(d) = \text{Mot}_n(b, \lambda).$$

ACKNOWLEDGEMENT

The authors would like to thank the anonymous referees for their careful reading and helpful comments which significantly improved the presentation of the paper.

REFERENCES

[1] Dan Drake and Jang Soo Kim. k-distant crossings and nestings of matchings and partitions. *DMTCS Proceedings*, AK:349–360, 2009.

[2] Jang Soo Kim. Bijections on two variations of noncrossing partitions. http://arxiv.org/abs/0812.4091.

[3] Jang Soo Kim. Front representation of set partitions. http://arxiv.org/abs/0907.1485.

[4] Toufik Mansour and Simone Severini. Enumeration of $(k, 2)$-noncrossing partitions. *Discrete Mathematics*, 308(20):4570–4577, October 2008.

[5] Gérard Viennot. Une théorie combinatoire des polynômes orthogonaux généraux, Sept.–Oct. 1983. Notes from a conference given at the Université du Québec à Montréal.

[6] Gérard Viennot. A combinatorial theory for general orthogonal polynomials with extensions and applications. In *Orthogonal polynomials and applications (Bar-le-Duc, 1984)*, volume 1171 of *Lecture Notes in Math.*, pages 139–157, Berlin, 1985. Springer.

[7] Sherry Yan. Schröder paths and pattern avoiding partitions. *Int. Journal of Contemp. Math. Sciences*, Vol. 4, no. 17-20:979–986, 2009.

E-mail address, Ira M. Gessel: gessel@brandeis.edu
E-mail address, Jang Soo Kim: kimjs@math.umn.edu