Supporting Information for:

A Practical and Science-Based Strategy for Establishing Acceptable Intakes for Drug Product N-Nitrosamine Impurities

Krista L Dobo*, Michelle O Kenyon†, Olivier Dirat‡, Maria Engel†, Andrew Fleetwood§, Matthew Martin‡, Susan Mattano*, Alyssa Musso††, James Christopher McWilliams‡‡, Alexandros Papanikolaou†, Patricia Parris§§, Jessica Whitenour†, Shu Yu‡‡, and Amit S. Kalgutkar**

†Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA

‡Global Product Development, Pfizer Worldwide Research, Development, and Medical, Sandwich CT13 9NJ, United Kingdom

§ East Kent Pharma Consulting Ltd, 10408413, United Kingdom

§ Drug Safety Research and Development, Global Computational Safety Sciences, Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA

† Sue Mattano Consulting, Mystic CT 06355, USA

††Drug Safety Research and Development, Genetic Toxicology, Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA

‡‡Pharmaceutical Sciences Small Molecules, Pfizer Worldwide Research, Development, and Medical, Groton, 06340 CT, USA

§§Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Sandwich CT13 9NJ, United Kingdom

**Medicine Design, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA, 02139 USA

*Corresponding author: krista.l.dobo@pfizer.com; phone: + 1-860-326-1288.
Contents
Table S1. Structural Group 3 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S2. Structural Group 4 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S3. Structural Group 5 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S4. Structural Group 7 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S5. Structural Group 9 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S6. Structural Group 10 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S7. Structural Group 11 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S8. Structural Group 12 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
Table S9. Structural Group 13 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.
References
Table S1. Structural Group 3 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$_{50}$ (mg/kg/day)c	Referenced
614-00-6	104 weeks	Rat, mixed sex, 48 per group	Drinking water	Esophagus, multiple tumor types	0: 0/48 0.0838: 39/48 0.319: 42/48	0.106	LCDB1
145438-97-7	41 (52) weeks	Rat, mixed sex, 43 control, 42 treated	Gavage	Forrestomach, squamous cell carcinoma	0: 0/43 1.71: 42/42 9.13: 40/42	0.185	LCDB1
937-25-7	50 (114) weeks	Rat, male, 20 per group	Drinking water	Esophagus, multiple tumor types	0: 0/20 0.714: 18/20	0.255	LCDB1
16699-10-8	34 (52) weeks	Rat, female, 20 per group	Diet	Liver, hyperplastic nodules	0: 0/20 1.63: 9/20	0.468	LCDB1
145438-96-6	73 (79) weeks	Rat, mixed sex, 66 control, 41-45 treated	Drinking water	Nasal cavity, multiple tumor types	0: 0/66 2.14: 31/41 3.57: 28/45 10.7: 32/43	1.01	LCDB1
99-80-9	26 (86) weeks	Rat, male, 10 control, 14 treated	intraperitoneal	Peritoneal cavity, multiple tumor types	0: 0/10 0.429: 2/14	1.3e	LCDB1
No CAS #	104 weeks	Mouse, female, 16 control, 20 treated	Drinking water	Reproductive tract, multiple tumor types	0: 1/16 35.7: 16/20	15.8	LCDB1
Name (methyl nitros o)adenosine/adenine	TD₅₀	Experimental duration	Species, gender, age, number of animals	Route of administration	Tumor endpoint	Tumor incidence	Reference
---------------------------------------	----------------	-----------------------	--	------------------------	----------------	----------------	-----------
21928-82-5	104 weeks	Mouse, male, 21 control, 19 treated	Drinking water, Lung, type not specified	0: 4/21, 17.0^h: 11/19	18.1	Anderson et al²	
N⁶- (methyl nitros o)adenine	116 weeks	Rat, female, 5 control, 26 treated	Gavage	NA	0	Not carcinogenic	LCDB¹
69658-91-9	50 (114) weeks	Rat, male, 20 per group	Drinking water	NA	0	Not carcinogenic	LCDB¹
943-41-9	101 weeks	Rat, female, 5 controls, 15 treated	Gavage	NA	0	Not carcinogenic	LCDB¹
16219-99-1	Not available	Not available	Not available	NA	Not available	Not carcinogenic	Nagao et al³
62018-88-6	Not available	Not available	Not available	NA	Not available	Not carcinogenic	Nagao et al³

TD₅₀ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database; NA = Not applicable.

^aExperiment length if different than treatment duration.

^bTumor incidence (number of animal with tumors in selected endpoint/total number of animals analyzed for selected endpoint) is provided for each dose for compounds deemed as carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

^cWhen reference is not LCDB, TD₅₀ was calculated internally using R-code adapted from Thresher et al⁴ based on the data from cited reference.

^dSource of carcinogenicity study data reviewed and from which the presented data was selected.

^eGold TD₅₀ reported in LCDB, but results are not statistically significant.
When a user enters CAS number 21928-82-5 into LCDB, it will pull back a record associated with N⁶-methyladenosine. It should be noted that the CAS number provided in CPDB and LCDB corresponds to the structure for N⁶-methylnitrosoadenine in CAS (though CAS does list both names). There is no unique CAS number provided for N⁶-(methylnitroso)adenosine. The data presented in LCDB does correspond to that for N⁶-(methylnitroso)adenosine from Anderson et al, 1979.

When a user enters CAS number 21928-82-5 into LCDB, it will pull back a record of carcinogenicity data associated with N⁶-methyladenosine. However, this CAS number is associated to N⁶-methylnitrosoadenine in CAS and one must refer to the source document, Anderson et al² to find the relevant carcinogenicity data for N⁶-methylnitrosoadenine.

Dose reported as 1 mM solution in drinking water 4 days per week until death. At a molecular weight of 178.16 g/mol, this is equivalent to 178.16 mg/L. Assuming a male mouse weight of 0.030 kg and daily water intake of 5 mL, the daily dose is 17.0 mg/kg when corrected for dosing 4 days per week.

No data reported in the LCDB or the CPDB. The literature reference (review article) did not report study details.
Table S2. Structural Group 4 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$_{50}$ (mg/kg/day)	Referencec	
75411-83-5	30 (75) weeks	Rat, male, 20 per group	Drinking water	Nasal cavity, multiple tumor types	0: 0/20	0.286: 18/20	0.0442	LCDB1
86451-37-8	40 (110) weeks	Rat, female, 20 per group	Drinking water	Lung, multiple tumor types	0: 0/20	0.430: 8/20	0.646	LCDB1

TD$_{50}$ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database.

aExperiment length if different than treatment duration.

bTumor incidence (number of animal with tumors in selected endpoint/total number of animals analyzed for selected endpoint) is provided for each dose for compounds deemed carcinogenic.

cSource of carcinogenicity study data reviewed, and from which the presented data was selected.
Table S3. Structural Group 5 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$_{50}$ (mg/kg/day)c	Referenced	
55556-85-9	36 (50) weeks	Rat, male, 15 treated	Drinking water	Nasal cavity, squamous cell tumors and adenocarcinomas	2.38: 13/15	0.819f	Lijinsky and Taylor5.	
88208-16-6	50 (55) weeks	Rat, female, 20 per group	Drinking water	Esophagus, multiple tumor types	0: 0/20 8.16: 17/20	0.825	LCDB1	
53609-64-6	45 (52) weeks	Rat, male, 12 controls, 9-10 treated	Drinking water	Lung, adenoma	0: 0/12 5: 6/10 25: 9/9	0.891	LCDB1	
75896-33-2	50 (75) weeks	Rat, female, 20 per group	Drinking water	Liver, hepatocellular carcinoma	0: 0/20 5.44: 17/20	1.02	LCDB1	
61499-28-3	21 or 40 weeks	Rat, female 20 per group	Drinking water	Esophagus, papilloma	0: 0/20 8.98: 19/20 2.2h: 18/20	1.1	Lijinksy et al6	
89911-78-4	75 (120) weeks	Rat, female, 20 per group	Drinking water	Liver, multiple tumor types	0: 3/20 1.87: 8/20	6.04	LCDB1	
CAS Number	Experiment Length	Species, Sex, Number per Group	Route of Administration	Endpoints	Control Incidence	Treated Incidence	TD$_{50}$	LCDB
------------	-------------------	--------------------------------	-------------------------	-----------	------------------	------------------	----------	------
56222-35-6	112 weeks	Rat, mixed sex, 24 controls, 23 treated	Drinking water	Liver, hepatocellular carcinoma	0: 0/24	3.74: 10/20	8.11	LCDB1
30310-80-6	75 (104) weeks	Rat, female, 15 per group	Drinking water	NA	0	4.42	Not carcinogenic	LCDB1
75195-74-3	3X per week for 7.3 (37.3) weeks	Mouse, female, 25 per group	ip injection	NA	0	3.6i	Not carcinogenic	Castonguay et al7
75195-75-4	3X per week for 7.3 (37.3) weeks	Mouse, female, 25 per group	ip injection	Lung tumors	0: 10/25	3.6i: 19/25	Study design does not allow for a reliable estimate of TD$_{50}$	Castonguay et al7

TD$_{50}$ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database; NA = Not applicable; ip = intraperitoneal.

aExperiment length if different than treatment duration.

bTumor incidence (number of animal with tumors in selected endpoint / total number of animals analysed for selected endpoint) is provided for each dose for compounds deemed carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

cWhen reference is not LCDB, TD$_{50}$ was calculated internally using R-code adapted from Thresher et al4 based on the data from cited reference.

dSource of carcinogenicity study data reviewed and from which the presented data was selected.

eTotal dose reported as 3.2 mmol. At a molecular weight of 130.15 g/mol, this is equivalent to 416 mg over the course of the study. Animals were dosed for 36 weeks (1.65 mg/day), and the total study duration was 50 weeks (1.19 mg/day). Assuming a male rat weight of 0.50 kg, the daily dose is 2.38 mg/kg/day.

fTD$_{50}$ was calculated assuming a control group tumor incidence of 0/15, as the study did not include control animals.

gTotal dose was 460 mg over 21 weeks with treatment 5X per week. Daily dose was calculated by dividing total dose by 21 weeks x 7 days/week for a daily average dose of 3.1 mg/day and divided by average female rat weight of 0.35 kg.
Total dose was 220 mg over 40 weeks with treatment 5X per week. Daily dose was calculated by dividing total dose by 40 weeks x 7 days/week for a daily average dose of 0.79 mg/day and divided by average female rat weight of 0.35 kg.

Total dose reported as 0.12 mmol/mouse. At a molecular weight of 193.2 mg/mmol, this is equivalent to 23 mg total over 7.3 week. Animals were examined 30 weeks after treatment stopped for a total experiment duration of 37.3 weeks after treatment ended (0.089 mg/day). Assuming a female mouse weight of 0.025 kg, the daily dose is 3.6 mg/kg/day.
Table S4. Structural Group 7 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$_{50}$ (mg/kg/day)c	Referenced
55984-51-5	67 (76) weeks	Rat, female, 15 per group (14 for high dose)	Gavage	Nasal/paranasal cavity, multiple tumor types	0: 0/15 0.129: 14/15 0.257: 15/15 0.500: 9/14	0.017	LCDB1
92177-50-9	31 (55) weeks	Rat, female, 20 per group	Drinking water	Esophagus, multiple tumor types	0: 0/20 0.349: 17/20	0.0352	LCDB1
91308-71-3	50 (85) weeks	Rat, female, 20 per group	Drinking water	Liver, hepatocellular carcinoma	0: 0/20 1.18: 16/20	0.335	LCDB1
60599-38-4	73 (77) weeks	Rat, female, 15 per group	Gavage	Liver, multiple tumor types	0: 0/15 0.357: 0/15 0.714: 12/15 1.43: 14/15	0.286	LCDB1
92177-49-6	50 (65) weeks	Syrian hamster, female, 20 per group	Gavage	Liver, multiple tumor types	0: 0/20 5.99: 16/20	0.997	LCDB1
61499-28-3	21 or 40 weeks	Rat, female, 20 per group	Drinking water	Esophagus, papilloma	0: 0/20 8.9c: 19/20 2.2c: 18/20	1.1	Lijinksy et al6
TD$_{50}$ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database.

 Experiment length if different than treatment duration.

 Tumor incidence (number of animal with tumors in selected endpoint/total number of animals analyzed for selected endpoint) is provided for each dose for compounds deemed carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

 When reference is not LCDB, TD$_{50}$ was calculated internally using R-code adapted from Thresher et al4 based on the data from cited reference.

 Source of carcinogenicity study data reviewed and from which the presented data was selected.

 Surviving control animals were sacrificed after the last experimental animal had died (52 weeks). Survival was impacted by treatment with average survival of 43, 30, and 28 weeks for low, mid, and high doses, respectively.

 Total dose was 460 mg over 21 weeks with treatment 5X per week. Daily dose was calculated by dividing total dose by 21 weeks x 7 days/week for a daily average dose of 3.1 mg/day and divided by average female rat weight of 0.35 kg.

 Total dose was 220 mg over 40 weeks with treatment 5X per week. Daily dose was calculated by dividing total dose by 40 weeks x 7 days/week for a daily average dose of 0.79 mg/day and divided by average female rat weight of 0.35 kg.
Doses were 0.025, 0.05, and 0.1 of LD$_{50}$, which was defined as 1100 and 1200 mg/kg in males and females, respectively. Tumor incidence was combined for males and females so the daily doses are estimates calculated by averaging the LD$_{50}$ to 1150 mg/kg, multiplying by the factors of 0.025, 0.05 and 0.1 and dividing by 7 to get at the daily doses of 4.1, 8.2, and 16 mg/kg/day, respectively, over the treatment period.

Tumor incidence (%) was reported and was converted to incidence (number of animal with tumor/total number of animals) by multiplying the effective number of animals reported by the % incidence.

10 rats were treated daily for 4-13 weeks until death (5) or sacrifice (5). An additional 5 rats were added, which were treated every other week for 10-17 weeks and sacrificed 10 weeks later.

Total dose in rats treated continuously for 4-13 weeks is reported as 0.3-0.5 g. 5 of 10 rats died within 10 weeks and 5 were sacrificed after 13 weeks so daily corrected dose was calculated as 0.3 g/70 days or 0.5g/91days for daily dose of 4.3 mg/day or 5.5 mg/day, respectively. Male ACI/N rats used in the study typically weighed ~150-275 g during the study based on the data presented, but rats treated with this compound weighed about 140-190 g based on the data presented. Average body weight is estimated to be about 160 g for these rats over the course of the study, resulting in estimated average daily doses of 26.8-34.3 mg/kg/day. Only 8 of the 10 dosed rats were analysed for tumors.

Total dose in rats treated every other week for 10-17 weeks and then maintained on tap water for 10 weeks is reported as 0.3-0.5 g, so daily corrected dose was calculated at 0.3 g/140 days or 0.5 g/189 days. Body weight of 160 g was used as in footnote k, resulting in estimated average daily doses of 13.4-16.5 mg/kg/day.
Table S5. Structural Group 9 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$_{50}$ (mg/kg/day)c	Referenced	
55556-91-7	36 (60) weeks	Rat, male, 15 treated, no control animals	Drinking water	Nasal cavity, adenocarcinomas	1.96e: 14/15	0.499f	Lijinsky and Taylor5	
55556-93-9	36 (60) weeks	Rat, male and female, 15 per sex, no control animals	Drinking water	Nasal cavity, squamous cell tumors and adenocarcinomas	2.33e: 13/15 (male) 2.33e: 15/15 (female)	0.596c,h	Lijinsky and Taylor5	
15104-03-7	40 (70) weeks	Rat, females, 15 treated, no control animals	Drinking water	Upper gastrointestinal tract tumors	2.60i: 14/15	0.665f	Lijinsky and Taylor10	
13603-07-1	50 (70) weeks	Rat, male and female, 14 per sex, no control animals	Drinking water	Upper gastrointestinal tract tumors	2.71i: 14/14 in both males and females	0.665e	Lijinsky and Taylor10	
55556-85-9	36 (50) weeks	Rat, male, 15 treated	Drinking water	Nasal cavity, squamous cell tumors and adenocarcinomas	2.38j: 13/15	0.819f	Lijinsky and Taylor5	
100-75-4	116 (141) weeks	Rat, mixed sex, 34-78 per group	Drinking water	Liver, multiple tumor types	0: 0/40 0.017: 3/78 0.0857: 5/75 0.429: 16/34 2.14: 11/34	0.974	LCDB1	
CAS Number	Treatment Duration	Species, Sex, Group Size	Route of Administration	Tumor Site, Subtype	Incidence	TD$_{50}$	Carcinogenicity	Source
------------	--------------------	--------------------------	--------------------------	---------------------	-----------	---------	----------------	--------
37620-20-5	78 weeks	Rat, male, 16 per group	Drinking water	Esophagus, benign and malignant tumors	0: 0/16 10bc: 13/16	4.14	Boyland et al11	
14026-03-0	104 weeks	Rat, mixed sex, 20 per group	Drinking water	Olfactory nerve ependymoblastoma	0: 0/20 25.7: 11/20	22.1	LCDB1	
36702-44-0	104 weeks	Rat, mixed sex, 20 per group	Drinking water	Liver, multiple tumor types	0: 0/20 25.7: 6/20	49.4	LCDB1	
17721-95-8	50 (120) weeks	Rat, male and female, 15 per sex, no control group	Drinking water	NA	1.74a	Not carcinogenic	Lijinksy and Taylor10	
55557-03-4	73 (106) weeks	Mouse, female, 43 control, 31 treated	Drinking water	NA	0 8.05	Not carcinogenic	LCDB1	
6130-93-4	50 (120) weeks	Rat, male and female, 15 per sex	Drinking water	NA	2.10a	Not carcinogenic	Lijinksy and Taylor10	
6238-69-3	50 (130) weeks	Rat, male and female, 15 per sex	Drinking water	NA	1.81p	Not carcinogenic	Lijinsky and Taylor12	
4515-18-8	75 (104) weeks	Rat, female, 15 treated	Drinking water	NA	0 4.42	Not carcinogenic	LCDB1	

TD$_{50}$ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database; NA = Not applicable.

aExperiment length if different than treatment duration.

bTumor incidence (number of animal with tumors in selected endpoint/total number of animals analyzed for selected endpoint) is provided for each dose for compounds deemed carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

cWhen reference is not LCDB, TD$_{50}$ was calculated internally using R-code adapted from Thresher et al4 based on the data from cited reference.
Source of carcinogenicity study data reviewed and from which the presented data was selected.

Total dose reported as 3.2 mmol. At a molecular weight of 128 g/mol, this is equivalent to 410 mg over the course of the study. Animals were dosed for 36 weeks (1.63 mg/day) and the total study duration was 60 weeks (0.98 mg/day). Assuming a male rat weight of 0.50 kg, the daily dose is 1.96 mg/kg/day.

As there were no control animals included in the study a tumor incidence of 0 in 15 was assumed to allow a TD_{50} value to be estimated.

Total dose reported as 3.2 mmol. At a molecular weight of 130 g/mol, this is equivalent to 416 mg over the course of the study. Animals were dosed for 36 weeks (1.65 mg/day) and the total study duration was 60 weeks (0.99 mg/day). Assuming a combined sex weight of 0.425 kg, the daily dose is 2.33 mg/kg/day.

Given that there was 100% tumor incidence in female rats, it is not possible to calculate a reliable TD_{50} value for females, therefore the tumor incidence of male and female rats was combined to estimate the TD_{50}.

Total dose reported as 3.5 mmol. At a molecular weight of the compound is 128 g/mol, this is equivalent to 448 mg over the course of the study. Animals were dosed for 50 weeks (1.28 mg/day) and the total study duration was 70 weeks (0.91 mg/day). Assuming a female rat weight of 0.350 kg, the daily dose is 2.60 mg/kg/day.

Total dose reported as 4.4 mmol. At a molecular weight of 128 g/mol, this is equivalent to 563 mg over the course of the study. Animals were dosed for 50 weeks (1.61 mg/day) and the total study duration was 70 weeks (1.15 mg/day). Assuming a mixed rat sex weight of 0.425 kg, the daily dose is 2.71 mg/kg/day.

As all animals treated with 3-methylnitrosopiperidine had gastrointestinal tumors, it is not possible to calculate a reliable TD_{50}. However, examination of the overall tumor incidence reveals a pattern like that reported for 4-methylnitrosopiperidine. Therefore, the TD_{50} of 3-methylnitrosopiperidine is predicted to be like that of 4-methylnitrosopiperidine.

Total dose reported as 3.2 mmol. At a molecular weight of 130 g/mol, this is equivalent to 416 mg over the course of the study. Animals were dosed for 36 weeks (1.65 mg/day) and the total study duration was 50 weeks (1.19 mg/day). Assuming a male rat weight of 0.50 kg, the daily dose is 2.38 mg/kg/day.

Dose reported as 5 mg/day. Animals were dosed for 78 weeks and the total study duration was 78 weeks. Assuming a male rat weight of 0.50 kg, the daily dose is 10 mg/kg/day.
Total dose reported as 4.4 mmol. At a molecular weight of 142 g/mol, this is equivalent to 625 mg over the course of the study. Animals were dose for 50 weeks (1.79 mg/day) and the total study duration was 120 weeks (0.74 mg/day). Assuming a mixed rat sex weight of 0.425 kg, the daily dose is 1.74 mg/kg/day.

Total dose reported as 4.4 mmol. At a molecular weight of 170 g/mol, this is equivalent to 748 mg over the course of the study. Animals were dose for 50 weeks (2.14 mg/day) and the total study duration was 120 weeks (0.89 mg/day). Assuming a mixed rat sex weight of 0.425 kg, the daily dose is 2.10 mg/kg/day.

Total dose reported as 700 mg over the course of the study. Animals were dose for 50 weeks (2 mg/day) and the total study duration was 130 weeks (0.77 mg/day). Assuming a mixed rat sex weight of 0.425 kg, the daily dose is 1.81 mg/kg/day.
Table S6. Structural Group 10 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$_{50}$ (mg/kg/day)c	Referenced
16339-07-4	74 days over 7.5 months	Rat, female, 7 control, 10 treated	Inhalation	Nasal cavity tumors	0: 0/7 4.6: 10/10	0.140e	Klein et al13
75881-18-4	30 (85) weeks	Rat, female, 20 per group	Drinking water	Nasal cavity carcinoma - olfactory	0: 0/20 0.259: 13/20 0.980: 18/20	0.153	LCDB1
67774-31-6	29 (50) weeks	Rat, female, 20 per group	Drinking water	Thymus, lymphoma, or leukaemia	0: 0/20 2.37: 17/20	0.866	Singer et al14
75881-17-3	30 (40) weeks	Rat, female, 20 per group	Drinking water	Esophagus multiple tumor types	0: 0/20 3.98: 19/20	0.921	Singer et al14
55380-34-2	35 (76) weeks	Syrian hamster, male, 20 per group	Gavage	Forestomach papilloma	0: 3/20 3.68: 9/20	3.1	LCDB1
140-79-4	52 (100) weeks	Mouse, male, 50 control, 22 treated	Drinking water	Lung adenoma	0: 3/50 8.67: 11/22	8.7	LCDB1
61034-40-0	50 (125) weeks	Rat, female, 20 per group	Drinking water	Liver, multiple tumor types	0:1/20 2.81: 6/20	9.1	LCDB1
5632-47-3h	Lifetime	Rat, female, 69 controls, 27 or 29 treated	Drinking water	Nasal cavity multiple tumor types	0: 0/69 16.3i: 8/29 32.6i: 13/27	34.6	Love et al15

TD$_{50}$ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database.
a Experiment length if different than treatment duration.

b Tumor incidence (number of animal with tumors in selected endpoint/total number of animals analyzed for selected endpoint) is provided for each dose for compounds deemed carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

c When reference is not LCDB, TD$_{50}$ was calculated internally using R-code adapted from Thresher et al4 based on the data from cited reference.

d Source of carcinogenicity study data reviewed, and from which the presented data was selected.

e 100% tumor incidence observed in the only treatment group included on study, therefore does not result in a reliable estimate of TD$_{50}$. This TD$_{50}$ value was not considered in derivation of the AI for the structural class due to the limitation of the estimate.

f Total dose reported as 290 mg. Animals were dosed for 29 weeks (1.43 mg/day) and the total study duration was 50 weeks (0.83 mg/day). Assuming a female rat weight of 0.35 kg, the daily dose is 2.37 mg/kg/day.

g Total dose reported as 390 mg. Animals were dosed for 30 weeks (1.86 mg/day) and the total study duration was 40 weeks (1.39 mg/day). Assuming a female rat weight of 0.35 kg, the daily dose is 3.98 mg/kg/day.

h Data is summarized in LCDB for another carcinogenicity study conducted in male and female rats.16 However, the study is considered less robust than the Love et al study15 summarized in the table above. The study16 included two treatment groups, had 10 animals in the treatment groups and the duration of administration was more limited (60 weeks). In addition, there was no specific site of carcinogenicity that was reported to have a significant increase in tumors. It was only when all tumor sites were considered that a statistically significant increase in tumors was observed.

i Animals were dosed 5 days a week in drinking water for life, with 20 mL of a 400 or 800 mg/L solution of 1-nitrosopiperazine. Assuming a mean body weight of 0.35 kg for female rats and adjusting for 7 days in a week, average daily doses of 16.3 and 32.6 mg/kg/day were administered.
Table S7. Structural Group 11 Nitrosamines: Details of Carcinogenicity Studies from which TD₅₀ Values were Derived.

CAS Number	Duration of exposure (experiment)^a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidence^b	TD₅₀ (mg/kg/day)^c	Reference^d
53759-22-1	87 weeks	Rat, male, 9 control, 14 treated	Drinking water	Esophagus, squamous cell papilloma	0: 0/9 0.250: 10/14	0.0957	LCDB¹
78246-24-9	36 (104) weeks	Rat, male, 12 per group	Drinking water	Nasal cavity, multiple tumor types	0: 0/12 2.08: 11/12	0.573	LCDB¹
930-55-2	159 (164) weeks	Rat, male, 500 control, 80 per treated group	Drinking water	Liver, multiple tumor types	0: 3/500 0.0286: 1/80 0.095: 4/80 0.286: 17/80	2.47	LCDB¹
56222-35-6	112 weeks	Rat, mixed sex, 24 control, 23 treated	Drinking water	Liver, hepatocellular carcinoma	0: 0/24 2.50: 5/23	8.11	LCDB¹
55556-86-0	50 (130) weeks	Rat, no control, 15 males, 14 females	Drinking water	Hepatocellular	3.23^e: 2/29	31.3^f	Lijinsky and Taylor¹⁷
75195-75-4	3X per week for 7.3 (37.3) weeks	Mouse, female, 25 per group	ip injection	Lung tumors	0: 10/25 3.6^g: 19/25	Study design does not allow for a reliable estimate of TD₅₀	Castonguay^{et al}⁷
75195-74-3	3X per week for 7.3 (37.3) weeks	Mouse, female, 25 per group	ip injection	NA	0: 10/25 3.6^g: 12/25	Not carcinogenic	Castonguay^{et al}⁷
7519-36-0 75 (104) weeks Rat, female, 15 per group Drinking water NA 0 Not carcinogenic LCDB
30310-80-6 75 (104) weeks Rat, female, 15 per group Drinking water NA 0 Not carcinogenic LCDB

TD$_{50}$ = dose resulting in tumors in 50% of animals; CI: Confidence Interval of TD$_{50}$; LCDB = Lhasa Carcinogenicity Database; NA = Not applicable; ip = intraperitoneal.

*Experiment length if different than treatment duration.

*Tumor incidence (number of animal with tumors in selected endpoint/total number of animals analyzed for selected endpoint) is provided for each dose for compounds deemed carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

*When reference is not LCDB, TD$_{50}$ was calculated internally using R-code adapted from Thresher *et al* based on the data from cited reference.

*Source of carcinogenicity study data reviewed and from which the presented data was selected.

*Dosed 20/ml/rat/day (5 days/week) of a 250 mg/L dosing solution for 50 weeks for a total dose of 1250 mg/rat. Assuming an average rat weight of 0.425 kg and correcting for experimental duration of 130 weeks, the daily dose is 3.23 mg/kg/day.

*Calculated internally assuming zero tumors for controls since there were no controls included.

*Total dose reported as 0.12 mmol/mouse. At a molecular weight of 193.2 mg/mmol, this is equivalent to 23 mg total over 7.3 week. Animals were examined 30 weeks after treatment stopped for a total experiment duration of 37.3 weeks after treatment ended (0.089 mg/day). Assuming a female mouse weight of 0.025 kg, the daily dose is 3.6 mg/kg/day.
Table S8. Structural Group 12 Nitrosamines: Details of Carcinogenicity Studies from which TD$_{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$_{50}$ (mg/kg/day)	Referencec
55557-00-1	30 (133) weeks	Rat, female, 20 per group	Drinking water	Gastrointestinal tract-upper, carcinoma	0: 0/20 0.0101: 1/20 0.0264: 3/20 0.072: 7/20 0.269: 13/20 1.18: 10/20 2.93: 14/20	0.242	LCDB1
932-83-2	32 (60) weeks	Mouse, male, 194 in control, 10 in treatment group	Drinking water	Esophagus, multiple tumor types	0: 0/194 3.16: 9/10	0.313	LCDB1

TD$_{50}$ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database/

aExperiment length if different than treatment duration.

bTumor incidence (number of animal with tumors in selected endpoint/total number of animals analysed for selected endpoint) is provided for each dose for compounds deemed carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

cSource of carcinogenicity study data reviewed and from which the presented data was selected.
Table S9. Structural Group 13 Nitrosamines: Details of Carcinogenicity Studies from which TD$\textsubscript{50}$ Values were Derived.

CAS Number	Duration of exposure (experiment)a	Species, sex, animal number	Dose route	Endpoint selected	Dose (mg/kg/day): tumor incidenceb	TD$\textsubscript{50}$ (mg/kg/day)	Referencec
59-89-2	100 (126) weeks	Rat, female, 24 to 100 per group	Drinking water	Liver, multiple tumor types	0: 1/80 0.00227: 6/100 0.00583: 5/99 0.0146: 7/47 0.0356: 9/48 0.0842: 22/48 0.249: 23/24	0.129	LCDB1
1456-28-6	66 (87) weeks	Syrian hamster, male, 15 per group	Gavage	Lung, multiple tumor types	0: 0/15 1.31: 7/15 2.63:9/15 5.24: 5/15 10.5:5/15	1.22	LCDB1
67587-52-4e	50 (122) weeks	Rat, female, 20 per group	Drinking water	NA	0 0.265 0.530	Not carcinogenic	LCDB1
34993-08-3	50 (140) weeks	Rat, female, 30 control, 15 treated	Drinking water	NA	0 2.62d	Not carcinogenic	Lijinsky and Taylor18

TD$\textsubscript{50}$ = dose resulting in tumors in 50% of animals; LCDB = Lhasa Carcinogenicity Database; NA=Not applicable.
Experiment length if different than treatment duration.

Tumor incidence (number of animal with tumors in selected endpoint/total number of animals analyzed for selected endpoint) is provided for each dose for compounds deemed carcinogenic. Incidence is not provided for compounds evaluated as non-carcinogenic.

Source of carcinogenicity study data reviewed and from which the presented data was selected.

Total dose reported as 900 mg. Animals were dosed for 50 weeks (2.57 mg/day) and the total study duration was 140 weeks (0.92 mg/day). Assuming a female rat weight of 0.35 kg, the daily dose is 2.62 mg/kg/day.

There is a carcinogenicity study conducted in mice that concludes that 4-nitrosomorpholin-2-ol is weakly carcinogenic (Hecht et al., 1989). However, due to the limited duration of the study (animals exposed for 10 weeks and total duration of study 30 weeks) a TD$_{50}$ value was not calculated. In this study the incidence of lung adenomas was 40% in control animals and 60% in treated animals.
References

(1) Lhasa Limited Carcinogenicity Database. Lhasa Carcinogenicity Database (lhasalimited.org).

(2) Anderson, L. M.; Giner-Sorolla, A.; Greenbaum, J. H.; Last-Barney, K.; Budinger, J. M. Induction of reproductive system tumors in mice by N6-(methylnitroso)-adenosine and a tumorigenic effect of its combined precursors. Int. J. Cancer 1979, 24, 319-322.

(3) Nagao, M.; Suzuki, E.; Yasuo, K.; Yahagi, T.; Seino, Y. Mutagenicity of N-butyl-N-(4-hydroxybutyl) nitrosamine, a bladder carcinogen, and related compounds. Cancer Res. 1977, 37, 399-407.

(4) Thresher, A.; Foster, R.; Ponting, D. J. Stalford, S. A.; Tennant, R. E.; Thomas R. Are all nitrosamines concerning? A review of mutagenicity and carcinogenicity data. Regul. Toxicol. Pharmacol. 2020, Oct;116:104749. doi: 10.1016/j.yrtph.2020.104749. Epub 2020 Aug 7.

(5) Lijinsky, W.; Taylor, H. W. Tumorigenesis by oxygenated nitrosopiperidines in rats. J. Natl. Cancer Inst. 1975, 55, 705-708.

(6) Lijinsky, W.; Saavedra, J. E.; Reuber, M. D. Carcinogenesis in F-344 rats by nitrosobis(2-oxopropyl)amine and related compounds administered in drinking water. J. Cancer Res. Clin. Oncol. 1984, 107, 178-182.

(7) Castonguay, A.; Lin, D.; Stoner, G. D.; Radok, P.; Furuya, K.; Hecht, S. S.; Schut, H. A.; Klaunig, J. E. Comparative carcinogenicity in A/J mice and metabolism by cultured mouse peripheral lung of N'-nitrosonornicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butaneone, and their analogues. Cancer Res. 1983, 43, 1223-1229.

(8) Pour, P.; Althoff, J.; Cardesa, A.; Mohr, U. Effect of beta-oxidized nitrosamines on Syrian golden hamsters. II. 2-Oxopropyl-n-propylnitrosamine. J. Natl. Cancer Inst. 1974, 52, 1869-1874.

(9) Okada, M.; Hashimoto, Y. Carcinogenic effect of N-nitrosamines related to butyl(4-hydroxybutyl)nitrosamine in ACI/N rats, with special reference to induction of urinary bladder tumors. Gan. 1974, 65, 13-19.

(10) Lijinsky, W.; Taylor, H. W. Carcinogenicity of methylated nitrosopiperidines. Int. J Cancer 1975, 16, 318-322.

(11) Boyland, E.; Roe, F. J.; Gorrod, J. W.; Mitchley, B. C. The carcinogenicity of nitrosoanabasine, a possible constituent of tobacco smoke. Br. J. Cancer 1964, 18, 265-270.

(12) Lijinsky, W.; Taylor, H. W. Carcinogenesis tests of nitroso-N-methylpiperazine, 2,3,5,6-tetramethyldinitrosopiperazine, nitrosoisonipecotic acid and nitrosomethoxymethylamine in rats. Z. Krebforschung Klin. Onkol. Cancer Res. Clin. Oncol. 1977, 89, 31-36.
(13) Klein, R. G.; Schmezer, P.; Hermann, R.; Waas, P.; Spiegelhalder, B.; Bartsch, H. Strong nasal carcino
genic and genotoxicity of 1-nitroso-4-methylpiperazine after low dose inhalation in rats. Carcinogenes
is 1999, 20, 1629-1631.

(14) Singer, S. S.; Singer, G. M.; Saavedra, J. E.; Reuber, M. D.; Lijinsky, W. Carcinogenesis by deri
vatives of 1-nitroso-3,5-dimethylpiperazine in rats. Cancer Res. 1981, 41, 1034-1038.

(15) Love, L. A.; Lijinsky, W.; Keefer, L. K.; Garcia, H. Chronic oral administratin of 1-nitrosopiperazine
at high doses to MRC rats. Z Krebforsch. Klin. Onkol. Cancer Res. Clin. Oncol. 1977, 89, 69-73.

(16) Garcia, H.; Keefer, L.; Lijinksy, W.; Wenyon, C. E. Carcinogenicity of nitrosothiomorpholine and 1-
nitrosopiperazine in rats. Z Krebsforsch. 1970, 74, 179-184.

(17) Lijinsky, W.; Taylor, H. W. The Effect of substituents on the carcinogenicity of N-nitrosopyrrolidi
ne in Sprague-Dawley rats. Cancer Res. 1976, 36, 1988-1990.

(18) Lijinsky, W.; Taylor, W. H. Carcinogenicity tests of N-nitroso derivatives of two drugs, phenme
trazine and methylphenidate. Cancer Lett. 1976, 1, 359-363.