Supporting Information

A Biomimetic Phosphate Catalyzed Pictet-Spengler Reaction for the Synthesis of 1,1'-Disubstituted and Spiro-Tetrahydroisoquinoline Alkaloids

Jianxiong Zhao†, Daniel Méndez-Sánchez†, John M. Ward‡ and Helen C. Hailes†*

† Department of Chemistry, University College London, Christopher Ingold Building, 20 Gordon Street, London, WC1H 0AJ, UK;
‡ Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.

Corresponding Author: h.c.hailes@ucl.ac.uk
List of Contents

Figure S1. Influence of pH on the phosphate catalysed PSR S3

Figure S2. Influence of co-solvent on the phosphate catalysed PSR S4

Table S1. Influence of KPi concentration on the PSR S5

Table S2. Influence of dopamine concentration on the PSR S6

Table S3. Influence of buffer or base on the PSR (10 mM dopamine 5) S7

Table S4. Influence of buffer or base on the PSR (50 mM dopamine 5) S8

Table S5. HPLC retention times for substrates and PSR products S9

NMR spectra S10
Figure S1. Influence of pH on the phosphate catalysed PSR.

\[
\begin{align*}
\text{HO} & \quad \text{NH}_2 \\
\text{HO} & \quad \text{O} \\
\text{KPi} \ (1 \text{ M}) & \quad \text{MeCN} \ (50\% \ \text{v/v}) \\
18 \text{ h}, \ 70 ^\circ \text{C} &
\end{align*}
\]

\[
\begin{align*}
\text{5} & \quad + \quad \text{6} \\
\xrightarrow{\text{KPi} \ (1 \text{ M})} & \\
\text{7} &
\end{align*}
\]

pH affects yields of KPi catalyzed PSR

pH	Yield (%)
4.2	0
5.1	1
6.1	5
7.0	10
8.0	15
9.0	16
10.0	15
11.0	10
12.3	5

Reaction conditions: dopamine 5 (17-27 mM), cyclohexanone 6 (19 mM) and sodium ascorbate (1.0 equiv. to dopamine) on a 1 mL scale in KPi (1 M) and 50% MeCN (v/v). Yields were determined using analytical HPLC based on the formation of 7.
Figure S2. Influence of co-solvent on the phosphate catalysed PSR.

![Chemical structure](image)

Reaction conditions: dopamine 5 (15 mM), cyclohexanone 6 (19 mM) and sodium ascorbate (1.0 equiv. to dopamine) on a 1 mL scale in KPi (1 M, pH 9) and 50% co-solvent (v/v). Yields were determined using analytical HPLC based on the formation of 7.
Table S1. Influence of KPi concentration on the PSR

![Chemical reaction](image)

[KPi] mM	Yield a
5	15
12.5	28
25	64
50	92
100	97
300	97
500	97
1000	97

Reaction conditions: 5 (15 mM), 6 (150 mM) and sodium ascorbate (1.0 equiv. to dopamine) with 50% v/v methanol at 70 °C for 18 h (1 mL scale). aYields were determined by analytical HPLC based on the formation of 7.
Table S2. Influence of dopamine concentration on the PSR.

\[
\begin{align*}
\text{HO} & \text{HO} \\
\text{NH}_2 & \rightarrow \text{HO} \\
\text{KPi (0.3 M, pH 9)} & \text{Sodium Ascorbate} \\
\text{MeOH (50% v/v)} & \text{18 h, 70 °C}
\end{align*}
\]

[Dopamine] mM	Yielda
15	97
25	97
50	97
100	97
300	97
500	90
1000	48

\textit{Reaction conditions:} 5, 6 (10 equiv. to dopamine) and sodium ascorbate (1.0 equiv. to dopamine) with 50% v/v methanol at 70 °C for 18 h (1 mL scale). a Yields were determined by analytical HPLC based on the formation of 7.
Table S3. Influence of buffer or base on the PSR (10 mM dopamine 5).

![Chemical structure of dopamine 5, ketone 6, and product 7]

Buffer	Yield^a
K₂HPO₄-K₃PO₄ (0.5 M, pH 9)^b	91%
KHCO₃-K₂CO₃ (0.5 M, pH 9)	24%
KOH (pH 9)^c	<1%
H₂O	<1%
Na₃BO₃ (0.5 M, pH 9)^d	<1%
Na₂SO₃ (saturated, pH 9)^e	43%

^aYields were determined by ¹H NMR (600 MHz) spectroscopy. ^bK₃PO₄ (0.5 M) and K₂HPO₄ (0.5 M) were mixed and adjusted to pH 9. ^cDilute KOH (aq.) was added to water until a pH of 9 was reached; ^dNaOH (aq.) was added to H₃BO₃ to pH 9 and then diluted to 0.5 M with water; ^eNa₂SO₃ (0.5 M, pH 9) was prepared initially and some precipitation observed when mixed with methanol.

Reaction conditions: 5 (10 mM), 6 (100 mM) and sodium ascorbate (1.0 equiv. to dopamine) with 50% v/v methanol under 70 °C for 21 h (1 mL scale).
Table S4. Influence of buffer or base on the PSR (50 mM dopamine 5).

![Chemical structures](image)

Buffer	Yielda
K$_2$HPO$_4$-K$_3$PO$_4$ (0.5 M, pH 9)b	94%
KHCO$_3$-K$_2$CO$_3$ (0.5 M, pH 9)	63%
KOH (pH 9)c	15%
H$_2$O	11%
Na$_3$BO$_3$ (0.5 M, pH 9)d	8%
Na$_2$SO$_3$ (saturated, pH 9)e	89%

*Reaction conditions: 5 (50 mM), 6 (500 mM) and sodium ascorbate (1.0 equiv. to dopamine) with 50% v/v methanol under 70 °C for 21 h (1 mL scale). *Yields were determined by 1H NMR (300 MHz) spectroscopy. bK$_3$PO$_4$ (0.5 M) and K$_2$HPO$_4$ (0.5 M) were mixed and adjusted to pH 9. cDilute KOH (aq.) was added to water until a pH of 9 was reached; dNaOH (aq.) was added to H$_3$BO$_3$ to pH 9 and then diluted to 0.5 M with water; eNa$_2$SO$_3$ (0.5 M, pH 9) was prepared initially and some precipitation observed when mixed with methanol.*
Table S5. HPLC retention times of substrates and PSR products.

Compound	Retention time (min)	Compound	Retention time (min)	Compound	Retention time (min)
5	2.4	7	4.9	8	2.5
9	2.9	10	5.2	11	5.4
12	5.1	13	5.5	14	5.7
15	4.8	16	5.4	17	5.4
18	6.3	19	3.1	20	4.0
21	4.5	22	4.9	23	5.4
24	5.5	25	5.8	26	5.3
29	5.3				

Retention times were determined following the analytical HPLC method described.
NMR Spectra

1H NMR of compound 7

13C NMR of compound 7
\(^1\)H NMR of compound 8

\(^{13}\)C NMR of compound 8
1H NMR of compound 9

13C NMR of compound 9
1H NMR of compound 10

13C NMR of compound 10
\textbf{1H NMR of compound 11}

\textbf{13C NMR of compound 11}
1H NMR of compound 12

13C NMR of compound 12
1H NMR of compound 13

13C NMR of compound 13
1H NMR of compound 14

13C NMR of compound 14
1H NMR of compound 15

13C NMR of compound 15
1H NMR of compound 16

13C NMR of compound 16
1H NMR of compound 17

13C NMR of compound 17
1H NMR of compound 18

13C NMR of compound 18
1H NMR of compound 19

13C NMR of compound 19
1H NMR of compound 20

13C NMR of compound 20
1H NMR of compound 21

![1H NMR spectrum of compound 21](image)

13C NMR of compound 21

![13C NMR spectrum of compound 21](image)
1H NMR of compound 22

13C NMR of compound 22
\(^1\)H NMR of compound 23

\(^{13}\)C NMR of compound 23
1H NMR of compound 24

13C NMR of compound 24
1H NMR of compound 25

13C NMR of compound 25
^{1}H NMR of 5-(2-aminoethyl)benzene-1,3-diol.HBr

^{13}C NMR of 5-(2-aminoethyl)benzene-1,3-diol.HBr
^{1}H NMR of compound 26

^{13}C NMR of compound 26
1H NMR of compound 29

13C NMR of compound 29