Effects of tanshinone on hyperandrogenism and the quality of life in women with polycystic ovary syndrome: protocol of a double-blind, placebo-controlled, randomised trial

Wenjuan Shen, Yuehui Zhang, Wei Li, Jing Cong, Ying Zhou, Ernest H Y Ng, Xiaoke Wu

ABSTRACT

Introduction: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-age women. Chinese herbal medicine has been used for the treatment of PCOS, but the evidence for its efficacy and safety is minimal. Tanshinones are a class of bioactive molecules isolated from Salvia miltiorrhiza, a commonly used herb in Traditional Chinese Medicine. This study aims to evaluate the efficacy of tanshinones on hyperandrogenism and quality of life in women with PCOS who do not attempt to conceive.

Methods and analysis: A total of 100 patients will be recruited and randomised into the tanshinone or placebo group. Tanshinone or placebo capsules will be taken orally for 12 weeks. The primary outcome parameter will be a change in plasma testosterone. Secondary end points will be changes in human chorionic gonadotropin-induced androgen response, insulin resistance, reproductive hormones, fasting lipid profiles, oral glucose tolerance test, quality of life and side effects.

Ethics and dissemination: Written informed consent will be obtained from each participant at the time of enrolling in the study. The trial has been approved by the Ethics Committee of First Affiliated Hospital of Heilongjiang University of Chinese Medicine. Results will be disseminated through a publicly accessible website.

Registration details: The study has been registered at the Chinese Clinical Trials Registry (ChiCTR-TRC-12002973) and at clinicaltrials.gov (NCT 01452477).

INTRODUCTION

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-age women. Its prevalence rates depend on the diagnostic criteria used, but it can be up to 18% using the Rotterdam diagnostic criteria. PCOS is characterised by hyperandrogenism, oligo/amenorrhoea and polycystic ovary morphology and is often associated with insulin resistance. Hyperandrogenism is found in 60–80% of women with PCOS. The major clinical and biochemical features of hyperandrogenism are hirsutism, acne, alopecia and seborrhoeic dermatitis; elevated androstenedione, testosterone and dehydroepiandrosterone sulfate (DHEAS) levels; and decreased sex hormone binding globulin (SHBG) levels. The syndrome presents not only with reproductive manifestations but also has metabolic implications including insulin resistance, obesity, dyslipidaemia, systemic inflammation and type 2 diabetes.

PCOS is a clinical and public health issue because it adversely affects women’s health and health-related quality of life and puts a significant strain on healthcare resources. PCOS and related complications are also a tremendous economic burden, and in 2006 the total annual cost to treat women with PCOS between the ages of 14 and 44 years was more than US$430 million in the USA. Treatments for hirsutism and diabetes account for 14% and 40%, respectively, of the total healthcare costs related to PCOS.

The long-term therapy for women of PCOS who do not desire to become pregnant depends on the specific clinical presentations and individual patient goals. Comprehensive treatment methods for hyperandrogenism and glucose and lipid metabolic dysfunction include lifestyle modifications, diuretic medicines, insulin-sensitising and anticholesterol agents and oral contraceptives (OC). The first-line treatment in the management of overweight or obese women with PCOS is lifestyle modification, which consists of diet and
exercise, and this can often improve psychological outcomes, metabolic features and reproductive features.5–11 Lifestyle modifications can be combined with pharmacological interventions for optimal results.12 OC can be used as the first-line medical agent in women with PCOS who have no desire to conceive, and OC can significantly reduce serum androgen concentrations and ameliorate the androgenic symptoms in the skin. In addition, antiandrogens for hyperandrogenism such as spironolactone, flutamide and cyproterone acetate can inhibit androgen-binding receptors and decrease androgen production.13

When choosing a medication, the side effects of the various medications must be taken into account, including weight gain, fatigue, nausea, oedema, diarrhoea, sinusitis, hypoglycaemia and kidney toxicity.13–14 Furthermore, some studies have shown that OC might decrease insulin sensitivity and aggravate glucose and lipid metabolism.15–16 Therefore, OC have not been approved by the US Food and Drug Administration for suppressing androgen production.

Traditional Chinese Medicine (TCM), which originated in China more than 3000 years ago, is an important part of complementary medicine (CM). CM includes many modalities such as Chinese herbal medicine (CHM), acupuncture, Tai Chi and other therapies. The theory of TCM is complex and includes Yin and Yang, Qi and Xue, Zang and Fu and the five elements. According to TCM theory, the aetiology and pathogenesis of PCOS are closely related to ‘blood stasis’ and ‘kidney vacuity’.17 CHM is emerging as one of the most commonly practiced treatments for PCOS18 and it has been shown to aid in weight loss and improve the ovulation rate and insulin resistance as well as improve the patients’ outlook.19 A clinical trial compared the efficacy of metformin and the Chinese herbal formula ‘Tiangui Fang’ in treating hyperandrogenism and hyperinsulinism in patients with PCOS. After treatment for 12 weeks, the Chinese herbal formula significantly lowered the serum testosterone and insulin levels compared to metformin alone.17 The mechanisms of some CHM formulations used to treat PCOS have been elucidated. For example, Gancao (\textit{Radix glycyrrhiza}) can inhibit androgen synthesis and Baishao (\textit{Radix paeoniae Alba}), Danggui (\textit{Radix angelicae Sinensis}) and Danshen (\textit{Salvia miltiorrhiza Bunge}) improve insulin sensitivity. Furthermore, Sanqi (\textit{Radix Notoginseng}), Zelan (\textit{Herba Lycii}) and Zexie (\textit{Rhizoma Alismatis}) can induce ovulation.19

Tanshinones are a class of bioactive constituents isolated from \textit{S. miltiorrhiza} (Danshen), which is a commonly used herb in TCM. Cryptotanshinone is the major bioactive tanshinone in the plant and has several pharmacological effects including anti-inflammatory, antioxidative, anticholinesterase, antibacterial and anti-platelet aggregation and anticancer activities.20–22 CHM has been used for the treatment of PCOS, but the evidence for its efficacy and safety is minimal. Animal experiments showed that cryptotanshinone can induce favourable alterations in androgen excess and insulin resistance as well as glucose metabolism.23 but there is still a lack of scientific justification for the use of tanshinone in women with PCOS. In particular, no randomised controlled trials have been performed to evaluate the use of tanshinone on hyperandrogenism, metabolic profiles or the quality of life in women with PCOS who do not wish to conceive.

In the proposed study, we seek to evaluate the efficacy of tanshinone on hyperandrogenism, glucose and lipid metabolism as well as the quality of life in women with PCOS who do not attempt to conceive. Our hypothesis is that tanshinone is effective in the suppression of androgen production by directly inhibiting ovarian androgen production and by reducing insulin resistance and improving the lipid profile.

METHODS AND ANALYSIS

Study design

The study has been registered at the Chinese Clinical Trials Registry (ChiCTR-TRC-12002973) and at clinicaltrials.gov (NCT 01452477). This is a multicentre, randomised, double-blind and placebo-controlled clinical trial. Informed written consent will be obtained from eligible women prior to their participation in this study, and the recruited women will be randomised into either the tanshinone group or the placebo group. We will follow the CONSORT recommendations in reporting the results.24

Setting and recruitment

This study will be conducted in the outpatient clinics of four hospitals in mainland China. The principal investigator at each clinic will recruit potentially eligible participants who will be informed of the study through internet, radio, newspaper or television advertisements. All of the potential participants can get full information about the study objectives, design and treatment as well as the benefits and risks of treatment from the investigators or research coordinators at each site.

Participants

A total of 100 eligible women will be recruited from four centres in China. They will be examined at the site centre and enrolled into the trial if they meet the selection criteria.

Inclusion criteria

1. Presence of PCOS diagnosed based on the Androgen Excess Society criteria. All participants must have hyperandrogenism (hirsutism and/or hyperandrogenaemia) and ovarian dysfunction (oligoanovulation and/or polycystic ovaries) and must not have other androgen excess-related disorders. Oligomenorrhoea is defined as an intermenstrual interval >35 days or <8 menstrual bleedings in the last year. Amenorrhoea is defined as an intermenstrual interval >90 days. Clinical hyperandrogenism is defined as a Ferriman-Gallwey (FG) score ≥5.25
2. Within the age range of 18–35 years.
3. No desire to become pregnant within 6 months and using condoms for contraception.

Exclusion criteria
1. Use of hormonal drugs or other medications in the past 12 weeks that can affect the results from the Chinese herbal prescriptions.
2. Other androgen excess endocrine disorders including 21-hydroxylase deficiency, hyperprolactinaemia, Cushing syndrome, severe insulin resistance and thyroid dysfunction.
3. A history of severe cardiac, pulmonary, hepatic, renal or neurological disease or mental illness.
4. Pregnancy or lactation.

Interventions
Eligible participants will be randomised into either the tanshinone group or the placebo group. The tanshinone capsules (1 g 3 times/day, China State Food and Drug Administration (SFDA) approval number Z13020110) and placebo capsules will be provided by Hebei Xinglong Xili Pharmaceutical Co Ltd. The tanshinone and placebo capsules have the same outer packaging, colour, shape and flavour. Tanshinone or placebo will be administered orally for 12 weeks. The main pharmaceutical formulation of the tanshinone capsules is cryptotanshinone, which comprises 90% of the total formulation in the experimental drug.

Study-specific visits and procedures
The trial phase will involve treatment with either tanshinone or placebo for 12 weeks (figure 1). Participants will attend the clinic five times in total for a screening visit, a baseline visit, two monthly visits and the end-of-treatment visit.

At the baseline and the end-of-treatment visits, participants will undergo the following tests between 8:00 and 12:00 after an overnight fast: a human chorionic gonadotrophin (HCG) stimulation test, a 75 g 2 h oral glucose tolerance test (OGTT), a hyperinsulinaemic euglycemic clamp test and measurement of fasting lipid profiles and levels of reproductive hormones. Side effects, adverse events and other current drug treatments will be recorded during the visits. An overview of the study visits is found in table 1.

Study assessment (including questionnaires)
The primary outcome measure is a decrease in basal serum testosterone concentration. The secondary outcomes include
1. HCG-induced response of androgens including 17-α-hydroxyprogesterone (17-OHP), androstenedione (A2) and testosterone;
2. Insulin resistance as determined by measuring the glucose disposal rate (GDR) with the hyperinsulinaemic euglycemic clamp test;
3. Hyperinsulinaemia as determined by OGTT.
4. Plasma levels of reproductive hormones: oestradiol, 17-OHP, follicle stimulation hormone, luteinising hormone, SHBG and DHEAS;
5. Fasting glucose and lipid profiles: fasting blood glucose, fasting insulin, C peptide, glycosylated haemoglobin A1c, cholesterol, triglycerides, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol;
6. Weight, blood pressure, waist/hip circumference, FG score and acne;
7. Side effects and adverse events.

Clinical examination and study tests
Height will be recorded to the nearest 1 cm without shoes, and weight will be recorded to the nearest 0.01 kg. Patients will be weighed while dressed in light clothing.
Table 1 Overview of study visits

Study visit	Screening visit	Baseline visit	Monthly visit 1	Monthly visit 2	Monthly visit 3 and end-of-treatment visit
Physical examination	X	X			
Safety labs (liver profile: ALT/AST, total bilirubin)		X			
Renal profile: BUN or creatinine					
Transvaginal ultrasound		X			
Fasting phlebotomy for study parameters		X			
Hyperinsulinaemic euglycemic clamp					
Ask about adverse events and concurrent		X	X	X	X
medications					
Ask about menstrual period	X	X	X	X	X
Medication dispensing and accounting	X				

Physical examination: Height, weight, hip and waist circumference, blood pressure, FG score and acne.
Fasting phlebotomy: Serum for the Central Core Laboratory.
Transvaginal ultrasound: Endometrial thickness, ovarian volume, antral follicle count and size of ovarian cysts or developing follicles.

Data entry and quality control of data

The data will be recorded in the Case Report Forms (CRFs). The CRFs will be filled out truly and accurately, and the electronic versions of the CRFs will be deposited into a web-based data management system at http://210.76.97.192:8080/dst/ produced by the independent data centre. Participants, investigators and physicians taking care of participants will be blind to the assignment.
and timeliness of the recorded information on the CRFs. Second, the data manager and programmer of the Data Coordination Center (DCC) will be in charge of data monitoring and validation and will ensure that issues arising from the data are resolved quickly and accurately. Third, unscheduled monitoring of the clinical sites will be important for quality control. These visits will ensure that the collection method and study data are standardised, accurate and authentic. The CRFs will be compared with source documents to make sure that errors have been resolved without delay. After each visit, the monitoring report will be distributed to the site principal investigator. The site visit is an effective action for maintaining data quality and patient protection.

Sample size calculation and statistical analysis
We hypothesise that the basal serum testosterone level will be reduced by 10 ng/dL in the tanshinone group and remain unchanged in the placebo group. We assume standard deviation of 0.06 of the difference of two groups. The sample size needed to achieve an 80% power to perceive a significant difference in serum testosterone concentration between the two treatment groups at the two-sided 5% level can be estimated with the parameters $\alpha=0.05$ and $\beta=0.1$. This power analysis suggests that 40 patients will be needed for each group. Assuming a 20% dropout rate based on our past experience, 50 patients will be enrolled in both groups and 100 patients will be enrolled in total.

All data will be analysed by a specialised statistician using the intent-to-treat approach for the evaluation of drug efficacy, the per-protocol analysis for adherence and safety analysis for adverse events. The efficacy of two treatments (tanshinone vs placebo capsules and within-participant effects before vs after treatment) will be compared by analysis of variance (ANOVA). Pearson’s χ^2 test will be used to assess the different qualitative data between the two groups. Statistical evaluation of the data will be performed using the SPSS programme V.16.0 (SPSS Inc, Chicago, Illinois, USA) and a p value <0.05 will be considered statistically significant.

DISCUSSION
As the number of patients with PCOS increases, it is anticipated that more and more patients will turn to CM for treatment. CHM can regulate and strengthen the primary biologically active form of tanshinone. This trial was designed based on the high efficacy and few side effects of cryptotanshinone. To better evaluate the therapeutic effects of tanshinone on hyperandrogenism, quality of life, insulin resistance and hyperinsulinemia, we will use the HCG test, questionnaires (PCOS-QOL and ChQOL), hyperinsulinemia euglycemic clamp and OGGT test. There have been no clinical trials performed to determine the efficacy of tanshinone for PCOS, and a well-designed, double-blind, placebo-controlled randomised trial will not only determine the clinical efficacy of such treatment but also could provide insights into new evidence-based therapies for PCOS.

REFERENCES
1. March WA, Moore VM, Willson KJ, et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 2010;25:544–51.
2. Azziz R, Carmina E, Dewailly D, et al. 2006 Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 2006;91:4237–45.
3. Santor BM, Dickey RP. Polycystic ovarian syndrome and the metabolic syndrome. Am J Med Sci 2005;330:336–42.
4. DeUgarte CM, Bartolucci AA, Azziz R. Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 2005;83:1454–60.
5. Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and meta analysis. Fertil Steril 2011;95:1048–58.
6. Azziz R, Marin C, Hoq L, et al. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 2005;90:1650–8.
7. ACOG Committee on Practice Bulletins–Gynecology. ACOG Practice Bulletin No. 108: polycystic ovary syndrome. Obstet Gynecol 2009;114:936–49.
8. Moran LJ, Brinkworth G, Noakes M, et al. Effects of lifestyle modification in polycystic ovarian syndrome. Reprod Biomed Online 2006;12:569–78.

9. Moran LJ, Pasquali R, Teede HJ, et al. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril 2009;92:1966–82.

10. Hoeger KM, Kochman L, Wixom N, et al. A randomized, 48-week, placebo-controlled trial of intensive lifestyle modification and/or metformin therapy in overweight women with polycystic ovary syndrome: a pilot study. Fertil Steril 2004;82:421–9.

11. Pritts EA. Treatment of the infertile patient with polycystic ovarian syndrome. Obstet Gynecol Surv 2002;57:587–97.

12. Duleba AJ. Medical management of metabolic dysfunction in PCOS. Steroids 2012;77:306–11.

13. Falsetti L, Gambra A, Platto C, et al. Management of hirsutism. Am J Clin Dermatol 2000;1:89–99.

14. Bargiota A, Diamanti-Kandarakis E. The effects of old, new and emerging medicines on metabolic aberrations in PCOS. Their Adv Endocrinol Metab 2012;3:27–47.

15. Krysiak R, Okopien B, Gdula-Dymek A, et al. Treating gynaecological disorders with traditional Chinese herbal medicine. Chin J Integr Trad West Med 2010;10:589–92.

16. Diamanti-Kandarakis E, Baillargeon JP, Iuorno MJ, et al. Studies on the effect of cryptotanshinone in lowering serum insulin and androgens synthesis for the prenatally androgenized male rats. Chin J Integr Trad West Med 2006;28:1001–4.

17. Hou JW, Yu J, Wei MJ. Study on treatment of hyperadrogenism and hyperinsulinism in polycystic ovary syndrome with Chinese herbal formula “tiangui fang”. Chin J Integr Trad West Med 2010;20:589–92.

18. Badawy A, Elnashar A. Treatment options for polycystic ovary syndrome. Int J Womens Health 2011;3:25–35.

19. Raja-Khan N, Stener-Victorin E, Wu X, et al. The physiological basis of complementary and Alternative medicines for polycystic ovary syndrome. Am J Physiol Endocrinol Metab 2011;301:E1–10.

20. Han J-Y, Fan J-Y, Horie Y, et al. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 2008;117:280–95.

21. Kang BY, Chung SW, Kim SH, et al. Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from Salvia miltiorrhiza. Immunopharmacology 2008;69:555–61.

22. Zhang Y, Jiang P, Ye M, et al. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 2012;13:13621–66.

23. Yang X, Zhang Y, Wu X, et al. Cryptotanshinone reverses reproductive and metabolic disturbances in prenatally androgenized rats via regulation of ovarian signaling mechanisms and androgen synthesis. Am J Physiol Regul Integr Comp Physiol 2011;300:R869–75.

24. Schulz KF, Altman DG, Moher D, et al. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med 2010;152:726–32.

25. Zhao X, Ni R, Li L, et al. Effects of lifestyle modification in polycystic ovarian syndrome (PCOS). Reprod Biomed Online 2009;19:100–6.

26. Leung KF, Liu FB, Zhao L, et al. Development and validation of the Chinese Quality of Life Instrument. Health Qual Life Outcomes 2005;3:26.

27. Qi B, Song J, Yang L, et al. Studies on the effect of cryptotanshinone on insulin resistant ovarian granular cells by DNA microarray. Sci Technol Rev 2009;27:39–43.

28. Zhou J, Qu F. Treating gynaecological disorders with traditional Chinese medicine: a review. Afr J Tradit Complement Altern Med 2009;6:494–517.

29. Li X, Yang X, Wu X, et al. Effects of cryptotanshinone in lowering androgens synthesis for the prenatally androgenized male rats. Chin J Integr Trad West Med 2008;28:1001–4.

30. Xing J, Zhang Y, Hu M, et al. Tanshinone effect on the expression of IRS-1 and p-ERK in trophoblastic cells under insulin resistance. Sci Technol Rev 2009;27:75–9.

31. Yan M, Yang L, Wu X. Effects of insulin-sensitizing agents on insulin resistance of porcine granulosa cells. Sci Technol Rev 2008;26:77–81.