ON THE PERIMETERS OF SIMPLE POLYGONS CONTAINED IN A PLANE CONVEX BODY

ZSOLT LÁNGI

Abstract. A simple n-gon is a polygon with n edges such that each vertex belongs to exactly two edges and every other point belongs to at most one edge. Brass, Moser and Pach [2] asked the following question: For $n \geq 5$ odd, what is the maximum perimeter of a simple n-gon contained in a Euclidean unit disk? In 2009, Audet, Hansen and Messine [1] answered this question, and showed that the supremum is the perimeter of an isosceles triangle inscribed in the disk, with an edge of multiplicity $n - 2$. In [3], Lángi generalized their result for polygons contained in a hyperbolic disk. In this note we find the supremum of the perimeters of simple n-gons contained in an arbitrary plane convex body in the Euclidean or in the hyperbolic plane.

1. Introduction

A question regarding an isoperimetric problem about simple polygons was asked by Brass, Moser and Pach (see Problem 3 on p. 437 in [2]).

Problem 1 (Brass, Moser and Pach, 2005). For $n \geq 5$ odd, what is the maximum perimeter of a simple n-gon contained in a Euclidean unit disk?

The authors of [2] remarked that for n even, the supremum of the perimeters is the trivial upper bound $2n$, as it can be approached by simple n-gons in which the vertices alternate between some small neighborhoods of two antipodal points of the disk. This argument cannot be applied if n is odd. In 2009, Audet, Hansen and Messine [1] showed that for n odd, the supremum is attained as the perimeter of an isosceles triangle inscribed in the disk, with an edge of multiplicity $n - 2$. The author of [3] gave a shorter proof of the same statement, and proved that for hyperbolic disks of any radius, the supremum is attained as the perimeter of an n-gon of the same kind; that is, that of an isosceles triangle with a multiple edge inscribed in the disk. He noted that for n even and for any plane convex body C in the Euclidean plane \mathbb{E}^2 or in the hyperbolic plane \mathbb{H}^2, the supremum of the perimeters of the simple n-gons contained in C is the trivial bound $n \text{ diam} C$, where $\text{ diam} C$ is the diameter of C. He asked whether it is true that for n odd, the supremum is the perimeter of a triangle with an edge of multiplicity $n - 2$, inscribed in C.

In this paper we answer this question. Our main result is the following.

\textit{1991 Mathematics Subject Classification.} 52B60, 52A40, 52A55.
\textit{Key words and phrases.} isoperimetric problem, simple polygon, perimeter, circumcircle.
Theorem. Let \(n \geq 3 \) be an odd integer, and let \(C \) be a plane convex body in \(\mathbb{E}^2 \) or in \(\mathbb{H}^2 \). For every simple \(n \)-gon \(P \) contained in \(C \) there is a triangle, inscribed in \(C \) and with side-lengths \(\alpha \geq \beta \geq \gamma \), such that \(\text{perim} \leq (n-2)\alpha + \beta + \gamma \).

In the proof we use the following notations. Let \(\mathbb{M} \in \{ \mathbb{E}^2, \mathbb{H}^2 \} \) and \(x, y \in \mathbb{M} \). The distance of \(x \) and \(y \) is denoted by \(\text{dist}(x,y) \). The closed (respectively, open) segment with endpoints \(x \) and \(y \) is denoted by \([x,y] \) (respectively, \((x,y) \)). If \(x \neq y \), \(L(x,y) \) denotes the straight line passing through \(x \) and \(y \), and \(R_t(x,y) \) denotes the closed ray in \(L(x,y) \) emanating from \(x \) and not containing \(y \).

For any set \(A \subseteq \mathbb{M} \), we use the standard notations \(\text{int} A, \text{bd} A, \text{diam} A, \text{perim} A, \text{area} A \) and \(\text{conv} A \) for the interior, the boundary, the diameter, the perimeter, the area, or the convex hull of \(A \). Points are denoted by small Latin letters, and sets of points by capital Latin letters.

In the proof we find a triangle \(T \), contained in \(C \), with side-lengths \(\alpha, \beta \) and \(\gamma \) such that \(\text{perim} \leq (n-2)\alpha + \beta + \gamma \), as in this case we can move the vertices of \(T \) to \(\text{bd} C \) in a way that no side-length of \(T \) decreases.

2. Proof of Theorem for the Euclidean plane

Let us consider a Descartes coordinate system. If \(z \in \mathbb{E}^2 \) is an arbitrary point, by \(z = (\mu, \nu) \) we mean that the \(x \)-coordinate of \(z \) is \(\mu \), and its \(y \)-coordinate is \(\nu \). Let \([a_0, a_1], [a_1, a_2], \ldots, [a_{n-1}, a_n] \) denote the edges of \(P \) such that \(a_0 = a_n \), and let \(a_i = (\omega_i, \theta_i) \) for \(i = 0, 1, 2, \ldots, n \). Without loss of generality, we may assume that \([a_0, a_1] \) is a longest edge of \(P \), \(a_0 \) is the origin \((0,0)\), and that \(a_1 = (0,1) \).

For \(i = 0, 1, \ldots, n \), let \(\zeta_i = \theta_{i+1} - \theta_i \). Note that \(\zeta_0 = \zeta_n = 1 \). As \(n \) is odd, the sequence \(\{ \zeta_i \} \) consists of an even number of elements. Thus, it has two consecutive elements, say \(\zeta_{i-1} \) and \(\zeta_i \), that are both nonnegative or nonpositive. From this, we have that \(\theta_{j-1} \leq \theta_j \leq \theta_{j+1} \), or that \(\theta_{j-1} \geq \theta_j \geq \theta_{j+1} \), respectively. For simplicity, we denote \(a_0, a_1, a_{j-1}, a_j \) and \(a_{j+1} \) by \(p = (0,0), q = (0,1), a = (\omega_a, \theta_a), b = (\omega_b, \theta_b) \) and \(c = (\omega_c, \theta_c) \), respectively, and set \(p_a = (0, \theta_a) \) and \(p_c = (0, \theta_c) \). If \(\text{dist}(a,c) \geq 1 \), we have \(\text{perim} \leq (n-2)\text{dist}(a,c) + \text{dist}(a,b) + \text{dist}(a,c) \). Thus, in the following we may assume that \(\text{dist}(a,c) < 1 \) and also that \(\theta_a \leq \theta_b \leq \theta_c \).

![Figure 1](image-url)
Assume that \([a, b] \cap R_p(p, q) \neq \emptyset\). From this, it follows that \(\text{dist}(a, b) \leq 1 \leq \text{dist}(b, p)\) and that \(1 \leq \text{dist}(c, p)\) (cf. Figure 1). Thus, we have that \(\text{perim } P \leq n - 2 + \text{dist}(a, b) + \text{dist}(b, c) \leq (n - 2) \text{dist}(p, c) + \text{dist}(b, p) + \text{dist}(c, b)\). If \([b, c] \cap R_p[p, q] \neq \emptyset\), we may apply a similar argument.

Assume that \([a, b] \cap R_p(p, q) \neq \emptyset\), which yields that \(\theta_a \leq 0\). If \(\theta_b \leq 0\), then we may apply the argument in the previous paragraph, and thus, we may assume that \(0 < \theta_b\). From this and from \(\text{dist}(a, c) < 1\), we readily obtain that \(0 < \theta_b < \theta_c < 1\).

Let \(L\) denote the bisector of the segment \([c, q]\). Since \(\text{dist}(a, c) < 1 \leq \text{dist}(a, q)\), we have that \(L\) separates \(q\) from \(a\) and \(c\). Observe also that if \(\text{dist}(b, q) \geq \text{dist}(b, c)\), then \(\text{perim } P \leq (n - 2) \text{dist}(a, q) + \text{dist}(a, b) + \text{dist}(b, q)\), and hence, we may assume that \(L\) separates \(b\) and \(q\) from \(c\). Thus, \([a, b] \cap L \neq \emptyset \neq [b, c] \cap L\), which implies that \(b \in \text{conv} \{a, p_c, c\}\) and \(\text{dist}(a, b) + \text{dist}(b, c) \leq \text{dist}(a, p_c) + \text{dist}(p_c, c) \leq \text{dist}(a, c) + \text{dist}(c, q)\). From this, we obtain that \(\text{perim } P \leq (n - 2) \text{dist}(a, q) + \text{dist}(a, c) + \text{dist}(c, q)\). If \([b, c] \cap R_q(p, q) \neq \emptyset\), the assertion follows by a similar argument.

We are left with the case that \(a, b, c\) are in the same closed half-plane bounded by \(L(p, q)\). Let \(0 \leq \omega_a, \omega_b, \omega_c\). If \(\theta_a \leq 0\) and \(\theta_c \geq 1\), then \(\text{dist}(a, c) \geq 1\) and hence, we may assume that, say, \(\theta_a \geq 0\).

Assume that \(\theta_c \leq 1\) and that, say, \(\omega_a \leq \omega_c\). If \(\omega_b > \omega_c\), then \(\text{dist}(a, b) \leq \text{dist}(p_a, b) \leq \text{dist}(b, p)\) and \(\text{dist}(b, c) \leq \text{dist}(b, p_c) \leq \text{dist}(b, q)\), which yields that \(\text{perim } P \leq n - 2 + \text{dist}(p, b) + \text{dist}(b, q)\). If \(\omega_b \leq \omega_c\), then \(\text{dist}(a, b) + \text{dist}(b, c) \leq \text{dist}(a, p_c) + \text{dist}(p_c, c) \leq \text{dist}(a, c) + \text{dist}(c, c) \leq \text{dist}(a, c) + \text{dist}(c, q)\), from which it readily follows that \(\text{perim } P \leq n - 2 + \text{dist}(p, c) + \text{dist}(c, q)\).

Assume that \(\theta_c > 1\) and that \(b \notin \text{conv} \{p_a, p_c, a, c\}\). Then the three rays, emanating from \(a\), that pass through \(p, c\) and \(b\) are in this clockwise order around \(a\). Let \(L'\) denote the bisector of the segment \([p, a]\). Note that as \(\text{dist}(a, c) < 1 \leq \text{dist}(p, c)\), \(L'\) separates \([a, c]\) from \(p\). Hence, it follows from \(\theta_b \leq \theta_c\) that \(L'\) separates \([a, b]\) from \(p\) (cf. Figure 2). Then we obtain that \(\text{dist}(a, b) \leq \text{dist}(p, b)\), and hence, that \(\text{perim } P \leq (n - 2) \text{dist}(p, c) + \text{dist}(p, b) + \text{dist}(b, c)\).

![Figure 2](image_url)

Our last case is that \(\theta_c > 1\) and \(b \in \text{conv} \{p_a, p_c, a, c\}\). We may assume that \(\{p, q\} \cap \{a, b, c\} = \emptyset\), as otherwise the assertion clearly follows. If \(b \notin \text{conv} \{p, q, a, c\}\), then \(b \in \text{conv} \{q, p_c, c\}\), \(\text{dist}(b, c) \leq \text{dist}(c, q)\) and \(\text{perim } P \leq (n - 2) \text{dist}(p, c) + \text{dist}(p, q) + \text{dist}(q, c)\). Thus, we may assume that \(b \in \text{conv} \{p, q, a, c\}\), from which we obtain that \(\text{dist}(a, b) + \text{dist}(b, c) \leq \max \{\text{dist}(a, q) + \text{dist}(q, c), \text{dist}(a, p_a) + \text{dist}(p_a, c)\}\).
Assume that \(\text{dist}(a, p_a) + \text{dist}(p_a, c) \leq \text{dist}(a, q) + \text{dist}(q, c) \). Then \(\text{dist}(a, p_a) + \text{dist}(p_a, c) \leq \text{dist}(a, p_c) + \text{dist}(p_c, c) \), which yields that \(\omega_a \leq \omega_c \). Thus, the two legs of the right triangle \(\text{conv}\{p, c, p_a\} \) are pairwise greater than or equal to the two legs of \(\text{conv}\{q, a, p_a\} \), from which we obtain that \(\text{dist}(q, a) \leq \text{dist}(p, c) \) and that \(\text{perim} P \leq n - 2 + \text{dist}(p, c) + \text{dist}(q, c) \). Hence, we may assume that \(\text{dist}(a, b) + \text{dist}(b, c) \leq \text{dist}(a, p_a) + \text{dist}(p_a, c) \).

Assume that \(\theta_a \geq \frac{1}{2} \), or in other words, that \(\text{dist}(a, p) \geq \text{dist}(a, q) \). Then \(\text{dist}(a, b) + \text{dist}(b, c) \leq \text{dist}(u, v) + \text{dist}(u, c) \), where \(u = (0, \frac{1}{2}) \) and \(v = (\omega_a, \frac{1}{2}) \). Note that for any \(x, y, z \in \mathbb{E}^2 \), the function \(\tau \mapsto \text{dist}(x, y + \tau z) \) is a convex function on \(\mathbb{R} \). Thus,

\[
\text{dist}(u, v) + \text{dist}(u, c) \leq \frac{1}{2} (\text{dist}(a, p) + \text{dist}(a, q)) + \frac{1}{2} (\text{dist}(p, c) + \text{dist}(q, c)) \leq \max\{\text{dist}(a, p) + \text{dist}(a, q), \text{dist}(p, c) + \text{dist}(c, q)\},
\]

and the assertion readily follows.

Finally, assume that \(\theta_a \leq \frac{1}{2} \), which immediately yields that \(\theta_c - \theta_a \geq \frac{\theta_a}{\omega_a} \). If \(n = 5 \), then the remaining two edges of \(P \) are \([p, a]\) and \([q, c]\), and we obtain that \(\text{perim} P \leq 3 \text{dist}(p, c) + \text{dist}(p, q) + \text{dist}(q, c) \). Furthermore, if \(\text{dist}(a, c) \geq \text{dist}(p_a, c) \), then \(\text{perim} P \leq (n - 2) \text{dist}(p, c) + \text{dist}(p, a) + \text{dist}(a, c) \). Hence, we may assume that \(n \geq 7 \) and that \(\text{dist}(a, c) < \text{dist}(p_a, c) \), which yields that \(\omega_c \geq \frac{\theta_c}{\omega_a} \). Set \(w = (\frac{\theta_c}{\omega_a}, \theta_a) \).

Since \(n \geq 7 \), it suffices to prove that \(5 + \text{dist}(a, b) + \text{dist}(b, c) \leq 5 \text{dist}(p, c) + \text{dist}(a, p) + \text{dist}(a, c) \); that is, that

(1) \(5 + \text{dist}(a, p_a) + \text{dist}(p_a, c) \leq 5 \text{dist}(p, c) + \text{dist}(a, p) + \text{dist}(a, c) \).

Let \(M \) and \(N \) denote the left-hand side and the right-hand side of (1), respectively, and let us regard them as functions of \(c \). Consider the vector \(v = (1, 0) \). Note that \(5 + \text{dist}(a, p_a) + \text{dist}(p_a, w) \leq 5 \text{dist}(p, w) + \text{dist}(p, a) + \text{dist}(a, w) \), and thus, that (1) holds for \(c = w \). Thus, we need only prove that in the direction of \(v \), the derivative of \(N \) is not smaller than that of \(M \); that is, using the standard differential geometric notation, that \(v(M) \leq v(N) \).

Let \(\phi, \chi \) and \(\psi \) denote the internal angles at \(c \) of \(\text{conv}\{p_a, p_c, c\} \), \(\text{conv}\{p, p_c, c\} \) and \(\text{conv}\{a, c, p_a, p_c\} \), respectively (cf. Figure 3). We observe that \(0 < \phi \leq \pi - \psi < \pi \) and that \(\cos \phi \geq -\cos \psi \).
Note that $v(M) = \cos \phi$, and $v(N) = 5 \cos \chi + \cos \psi \geq 5 \cos \chi - \cos \phi$. We set $I = 5 \cos \chi - 2 \cos \phi \leq v(N) - v(M)$. Then an elementary calculation yields that

$$I = \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c - \theta_a)^2}} \geq \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c/2)^2}} = \frac{\omega_c (21\omega_c^2 + 4\theta_c^2)}{\sqrt{\omega_c^2 + \theta_c^2} \sqrt{\omega_c^2 + (\theta_c/2)^2}} \left(5\sqrt{\omega_c^2 + (\theta_c/2)^2} + 2\sqrt{\omega_c^2 + \theta_c^2}\right) \geq 0.$$

3. Proof of Theorem for the hyperbolic plane

In this section we show how to modify the argument in Section 2 to obtain the proof for polygons in the hyperbolic plane. Let $[a_0, a_1], \ldots, [a_{n-1}, a_n]$ be the edges of P, where $a_0 = a_n$. We use our notation in a way that $[a_0, a_1]$ is a longest edge of P and, like in the previous section, we write $p = a_0$ and $q = a_1$.

Similarly like in Section 2 we obtain that P has three consecutive vertices, which we denote by a, b and c, with orthogonal projections p_a, p_b, and p_c onto $L(p, q)$, respectively, such that $p_b \in [p_a, p_c]$. Without loss of generality, we may assume that, orienting the points of $L(p, q)$ in a way that p precedes q, we have that a precedes c. We set $\rho = \text{dist}(p, q)$, and denote the lines, orthogonal to $L(p, q)$, that pass through p and q by L_p and L_q, respectively. Furthermore, we denote the closed infinite strip bounded by L_p and L_q by $S(p, q)$, and the one bounded by $L(a, p_a)$ and $L(c, p_c)$ by $S(a, c)$.

We may assume that $\text{dist}(a, c) < \rho$ and that a, b and c are in the same closed half-plane bounded by $L(p, q)$, since otherwise we may apply an argument similar to the one in Section 2. Thus, we obtain that one of the components of $\mathbb{H}^2 \setminus S(p, q)$, say the one containing p in its boundary, is disjoint from $\{a, b, c\}$.

**Case 1, $c \in S(p, q)$.

Note that it yields that $\{a, b, c\} \subset S(p, q)$. First, assume that $b \in \text{conv}\{p_a, p_c, a, c\}$. Without loss of generality, let $\text{dist}(a, p_a) \leq \text{dist}(c, p_c)$. Then the assertion readily follows from $\text{dist}(a, b) + \text{dist}(b, c) \leq \max\{\text{dist}(a, p_a) + \text{dist}(p_a, c), \text{dist}(a, p_c) + \text{dist}(p_c, c)\} \leq \text{dist}(c, p_c) + \text{dist}(c, p_a) \leq \text{dist}(a, p) + \text{dist}(a, q)$. Thus, we may assume that $b \notin \text{conv}\{p_a, p_c, a, c\}$.
Let D denote the closure of the component of $S(a, c) \setminus [a, c]$ that does not contain $[p_a, p_c]$, and observe that $b \in D$. We recall that for every hypercycle $H \subset \mathbb{H}^2$, there is a unique hyperbolic line such that the distances of the points of H from L are equal. We call this line the reference line of H. Let H_a denote the hypercycle, orthogonal to $L(p, q)$, that passes through p and a. In this case the reference line L^* of H_a is also orthogonal to $L(p, q)$. Let H_c denote the hypercycle, with the reference line L^*, that passes through c. We observe that H_c is also orthogonal to $L(p, q)$. Figure 4 shows these hypercycles in the conformal disk model such that p is the centre of the model. We note that as $\text{dist}(a, c) < \rho$, we have that $H_c \cap [p, q] \neq \emptyset$.

Let L_a and L_c denote the line, orthogonal to both H_a and H_c, that passes through a and c, respectively. Observe that $L(p, q)$, L_a and L_c are pairwise disjoint. Since two hyperbolic lines intersect at most once, we obtain that the point $b \in D$ and the segment $[p_a, p_c]$ are separated by L_a or by L_c. We show that in the first case we have $\text{dist}(a, b) \leq \text{dist}(p, b)$, and in the second case $\text{dist}(b, c) \leq \text{dist}(b, q)$.

First, assume that b and $[p_a, p_c]$ are separated by L_a. Then the angle of $[a, b]$ and the arc of H_a between a and p is not acute. Note that if $x \in \mathbb{H}^2$ is a point and $H \subset \mathbb{H}^2$ is a hypercycle, and we move a point $y \in H$ farther from the orthogonal projection of x onto H, then the quantity $\text{dist}(x, y)$ does not decrease. Thus, it follows that $\text{dist}(a, b) \leq \text{dist}(p, b)$.

Now we assume that b and $[p_a, p_c]$ are separated by L_c. Then, denoting the intersection point of H_c and $[p, q]$ by h_c, we have that the angle of $[b, c]$ and the arc of H_c between c and h_c is not acute, and that $\text{dist}(b, c) \leq \text{dist}(b, h_c)$. If $h_c \in [p, q]$, then $h_c \in [p_a, q]$, and clearly, $\text{dist}(b, c) \leq \text{dist}(b, q)$. If $h_c \in [p, p_c]$, then the angle between $[b, c]$ and $[c, p_c]$ is not acute, which yields that $\text{dist}(b, c) \leq \text{dist}(b, p_c) \leq \text{dist}(b, q)$ (cf. Figure 5).

![Figure 5](image)

We have obtained that $\text{dist}(a, b) \leq \text{dist}(p, b)$ or that $\text{dist}(b, c) \leq \text{dist}(b, q)$. Without loss of generality, let $\text{dist}(a, b) \leq \text{dist}(p, b)$. If $\text{dist}(p, c) \geq \rho$, then $\text{perim} P \leq (n - 2) \text{dist}(p, c) + \text{dist}(p, b) + \text{dist}(b, c)$, and hence, we may assume that $\text{dist}(p, c) < \rho$. Let \hat{L} denote the line bisecting the segment $[q, c]$. If $b \in \text{conv}\{p, c, q\}$, then
ON THE PERIMETERS OF SIMPLE POLYGONS

\[\text{dist}(p, b) + \text{dist}(b, c) \leq \text{dist}(p, p_c) + \text{dist}(p_c, c) \leq \text{dist}(p, c) + \text{dist}(c, q), \]
and the assertion readily follows. If \(b \notin \conv\{p, c, q\} \), then \(\bar{L} \) separates \(b \) and \(q \), and thus, the assertion follows from \(\text{dist}(b, c) \leq \text{dist}(b, q) \).

Case 2, \(c \notin S(p, q) \). Then \(\rho \leq \text{dist}(p, c) \).

We introduce \(M, N, \phi, \chi, \psi \) as in the Euclidean case. Note that the angle of \(\conv\{p, q, x, y\} \) at \(y \) is acute, and thus \(0 < \phi \leq \pi - \psi < \pi \) and \(\cos \phi \geq -\cos \psi \).

Let \(v \) denote the unit vector at \(c \) (an element of the tangent plane \(T_{cH^2} \)) tangent to \(L(c, p) \) and pointing away from \(p_c \). Then, as in the Euclidean case, we need only prove that \(v(M) \leq v(N) \). Observe that \(v(M) = \cos \phi \), and \(v(N) = 5 \cos \chi + \cos \psi \geq 5 \cos \chi - \cos \phi \).

As in Section 2, we set \(I = 5 \cos \chi - 2 \cos \phi \leq v(N) - v(M) \). Set \(\theta_a = \text{dist}(p, a), \theta_c = \text{dist}(p, c) \) and \(\omega_c = \text{dist}(c, p_c) \).

By the hyperbolic Pythagorean and cosine theorems, we obtain that

\[I = \frac{5 \cosh \theta_c \sinh \omega_c}{\cosh^2 \theta_c \cosh^2 \omega_c - 1} - \frac{2 \cosh(\theta_c - \theta_a) \sinh \omega_c}{\cosh^2(\theta_c - \theta_a) \cosh^2 \omega_c - 1} \]

Note that \(\theta_c - \theta_a \geq \frac{\theta_a}{2} \) and the function \(x \mapsto \frac{Ax}{\sqrt{Bx^2 - 1}} \), where \(A, B \in \mathbb{R} \) and \(A > 0 \), is strictly decreasing. Thus,

\[I \geq \frac{5 \cosh \theta_c \sinh \omega_c}{\cosh^2 \theta_c \cosh^2 \omega_c - 1} - \frac{2 \cosh \frac{\theta_a}{2} \sinh \omega_c}{\cosh^2 \frac{\theta_a}{2} \cosh^2 \omega_c - 1} \]

Now the inequality \(I \geq 0 \) follows from the estimate \(\cosh \omega_c \geq 1 \) and by algebraic transformations similar to those used in the Euclidean case.

References

[1] C. Audet, P. Hansen and F. Messine, Simple polygons of maximum perimeter contained in a unit disk Discrete Comput. Geom. 41 (2009), 208-215.

[2] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.

[3] Z. Lángi, On the perimeters of simple polygons contained in a disk Monatsh. Math., accepted, arXiv:1002.3922v1 [math.GM] February 20, 2010.

Zsolt Lángi, Dept. of Geometry, Budapest University of Technology, Budapest, Egry József u. 1., Hungary, 1111

E-mail address: zlangi@math.bme.hu