RPL Based Routing Protocols for Load Balancing in IoT Network

Sangeeta Rani¹, Ajay Kumar¹, Arko Bagchi¹, Snehlata Yadav², Sachin Kumar³
¹Shree Guru Gobind Singh Tricentenary University, Haryana, India
²KR Mangalam University, Haryana, India
³Sat Kabir Institute of Technology and Management, Jhajjar
E-mail: sangeeta.sept@gmail.com, ajay.kumar30886@gmail.com

Abstract. RPL is a direct routing convention for remote organizations with low force utilization and large defenseless to parcel misfortune. It is a proactive convention dependent on distance vectors and works on IEEE 802.15.4. RPL can uphold a wide assortment of connection layers, including IoT, which is a technology that taking hold of research and industries with a fast tramp. It is a collection of actuators and sensors that collect data which can be processed to produce actual information. Important parameters allied to human body and physical environment data such that humidity, temperature, pressure, pollution etc. have immense significance for computerization, failure recognition, well timed, and appropriate cure. In this manner, IoT network offered ascend to keen urban communities, home mechanization, savvy wellbeing, present day travel strategic and some more. There is a distance vector normalization Routing Protocol for Low force and Lossy organization (RPL) for IoT sending, which relies upon different course improvement Objective functions (OF). These capacities rely upon different networks in the vein of energy like Received Sign Strength Indicator (RSSI) and Expected Transmission tally (ETX) for course streamlining. Course enhancement is influenced by issue of burden adjusting. In this paper, an inclusive survey of existing load balancing schemes, matrices, Objective Functions and different RPL based Routing protocols with reference to load imbalance is represented and highlighted when load balancing merged with the RPL, how it had a great impact. Keywords: RPL, IoT, Objective Functions, RSSI, ETX.

1. Introduction
In modern existence, across the world billions of sensors have been deployed, where the most complicated network is IoT [1]. It includes many significant areas like industry, health care, agriculture and transportation. These fields comprise with features of large-scale network, IP based network, and automation which can provide latest category of Quality of Service (QoS) for flexible and smart network [1]. Moreover, the consolidation of immense measure of IoT included hubs transform into a region of exploration, web designing Task Force (IETF) backing to start RPL approaches with respect to these issues, diverse examination regions can be indicated in organized to lead the vision of IoT [2]. RPL is a distance vector steering convention travel for IPV6 gadgets. It works with 6LoWPAN adaption layer on IEEE802.15.4 standard. RPL works with ZigBee which is a correspondence convention and can be straightforwardly sent to the utilizations of IoT [3]. RPL structures a treelike geography Destination Oriented Acyclic Graph (DODAG) having leaves at the limits. All DODAG hubs are compartment with DODAG root, which is a solitary sink hub. DODAG covers entire organization, are called DAG [4]. IETF normalized two target capacities Objective Function Zero (OF0) and Minimum Rank Hysterlsis Objective Function (MRHOF), which choose the course by clarifying Optimization goals, steering
frameworks and related capacities in DODAG. Target Function OF0 consider bounce tally to find the way to the root and MRHOF utilizes ETX for upgrading way [5].

![RPL Structure](image)

Figure 1. RPL Structure

Authors have introduced several performance evaluation studies of RPL which can estimate end to end delay of packets, energy usage and packet loss. But authors have not investigated how packet delivery ratio can be affected with average power transmission. To lessen the parcel misfortune research was completed in 6LoWPAN Network [6]. Zhang et. al. in [7] conveyed towards ContikiRPL assessment in Cooja however it was not explicit to a specific application. Gnaleb et al. in [8] extended an improved RPL to crush the limitation on the parent hubs stockpiling abilities. Muneer et al. in [10] examine comprehensively two huge remote organization stages have been encased regarding bundle overhead, parcel conveyance proportion and parcel dynamicity when hubs may join or detach the organization. The creators show through different experimentation how the soundness of the steering arrangement influenced by hub disappointment. Ha Kwon et al. in [11-12] stretched out the RPL to accomplish unwavering quality, energy effectiveness and low defer information move. The creators colored that heap adjusting, multipath directing and various sinks had an immense effect when it is joined with the RPL.

2. RPL with load balancing

In RPL, Load adjusting makes the exchange as predictable as attainable, while decreasing force usage of hubs [13]. Various endeavors can be conceivable to achieve balance in exchange, In request to lessen parcel drop and blockage. To give a reasonable tree in RPL numerous Objective capacities have been proposed. RPL based Objective Functions These are the procedures used by nodes to select path in RPL. They work with routing matrices like Hop Count, ETX, Parent Count and buffer occupancy. The default Objective Functions such as OF0 and MRHOF calculate the rank based on the routing matrices like packet delivery ratio.

Examination [29] foreseen a heap adjusting enhancement utilizing Q-Learning (LBO-QL). It can adjust the heap through RPL creation and applies a Q-Learning method to stack adjusting streamlining for calamity situations. In Q-Learning approach, organization’s traffic flood can be kept away from, the hub
Figure 2. Objective Functions Features

need to know just the halfway parent hub. By utilizing Contiki and Cooja test system LBO-QL is executed as a RPL directing convention Objective Function. Execution of organization can be intentional with parcel conveyance proportion, energy Consumption and Convergence time control. Target work LBO-QL blesses with network help, improve network execution and give capable bundle conveyance proportion. Issue: It doesn’t cover all the part of RPL configuration steering measure and not think about the connection Quality.

Figure 3. DODAG in RPL for Smart City
Sr. No.	Authors	Objective Function	Function	Routing Metric	Performance Metric	Application Scenario	Advantage
1.	B.Y. Firas et. al. [18]	Objective Function 0	Pick a way which has least number of jumps	Hop count	Energy consumption and Packet Delivery Ratio (PDR)	Home Automation, Streetlamp	Most limited way first will be picked
2.	B.Y. Firas et. al. [18]	Objective Function 1	Pick a way which has least number of retransmission when sending parcel	Hop count	Energy consumption and Packet Delivery Ratio (PDR)	Home Automation	lessen bundle retransmission
3.	Zibuyisile et. al. [21],[29]	Least Rank with Hysteresis Objective Function (MRHOF)	To discover the ways with the littlest way cost while forestalling unreasonable stir in the organization	Load balancing and Burden adjusting metric-based steering for RPL (lbRPL), Expected Transmission tally (ETX) and Hop check	Packet conveyance proportion, Network lifetime through Node Participation, Control Traffic Overhead	Smart home automation, data delivery and network reliability	Appropriate for use in sensor network that require information conveyance in the dependable organization
4.	Zibuyisile et. al. [21],[33]	Traffic Aware Objective Function (TA-OF)	To decide the best way dependent on distance.	Transmission Rate (PTR), Expected Transmission count (ETX)	Energy consumption - Packet Deliver Ratio	Smart cities and wearable devices	Better in adjusting the organization geography, accomplishes the dependability better than default RPL target capacities. It likewise diminishes the bundle over-burden in the hubs.
Sr. No.	Authors	Objective Function	Function	Routing Metric	Performance Metric	Application Scenario	Advantage
--------	--------------------------	---	--	----------------	-------------------------------------	---	--
5.	Eriksson et al. [26]	Context-Aware Objective Function (CA-OF)	Selecting a goal to pursue, among many that are deemed.	Buffer Occupancy (BO), Expected Transmission count (ETX)	Packet delivery ratio - Energy consumption - Throughput	Home automation, industrial control, urban environment and building automation	Better network throughput, better packet delivery ratio, and less energy consumption, network lifetime extension, and high efficiency
6.	B.K. Tarcisco et al. [30]	A LoAd Balancing MOdel (AL-ABAMO)	Used to help hubs in picking the best parent to be utilized.	Expected Transmission Count (ETX)	Network delivery ratio - Energy Consumption - Network lifetime	Multi-hop data collection as environmental monitoring	Compatible with RPL and provides traffic-aware balanced routing.
7.	B. Dubai et al. [31]	Balanced Ad-hoc Network Formation, BNOF(Stateless)	pick a way which equilibrium directing sections in the hubs	-	-	Farming, Smart meter	Balance network load when all the hubs produce roughly comparative measure of traffic
8.	B. Dubai et al. [31]	Balanced Ad-hoc Network Formation, BNOF(Stateful)	Pick a way which equilibrium network traffic among hubs	ETX-based routing metric approach	-	Smart City, Smart meter, Building Automation	Balance network load when the hubs produce lopsided measure of traffic
9.	O. Gad-dour, et al. [34]	QoS-Aware Fuzzy Logic Objective Function (OF-FL)	To develop a way that upgrade or oblige a steering metric on the ways.	ETX, bounce check, start to finish deferral and battery level	Normal jump check, End-to-end delay, Average excess energy	Path optimization	Performs in a way that is better than standard RPL as far as strength, energy utilization, and bundle conveyance
3. Load Balancing Problem with RPL Protocol

Congestion avoidance and load adjusting are not considered in the RPL steering convention configuration measure. In the parent determination measure the traffic fleeting throughout parent nodes were not considered. This causes unbalance structure. There are different studies on RPL load balancing.

3.1. Imbalanced Tree Algorithm

It is a ravenous calculation to take care of issues of Load adjusting. For ID of hubs that are inclined to the clog load balance factor has been determined at each degree of directing. Point of this technique is to limit the heap irregularity factor and equilibrium the directing tree. From three nominated parents one parent has been selected and the root node executes the algorithm. During network lifeline, this is to be done occasionally for keeping the tree as much as balanced. This algorithm keeps the load balanced among nodes and appreciable increase the network lifeline and average packet delivery ratio.

3.2. TREEB Algorithm

In this algorithm, nodes want to join DODAG must know about the total number of nodes in each subtree. It will try to remain tree size same but had no effect on load balancing. [17]. This algorithm is completely ineffective with only one root and increase overhead. While planning RPL directing convention load adjusting is fundamental factors that should be thought of. ETX is the most widely recognized directing networks which have been fixed with RPL steering convention. ETX can give association between various hubs. It depends on three ideas: The Parent Selection, the Path cost count and the rank calculation.RPL unmistakably depends on Objective Functions. [18].This adaptability in the OFs keep RPL talented for any application situations here and there the OF’s should be changed and afterward another OF can be executed for burst traffic [19].

4. RPL Based Routing Protocols

RPL does not believe Load Balancing for steering convention for IoT. To tackle with load balancing in RPL, researchers anticipated different proposals by which network lifetime and packet diversity can be increased and load rescheduling can be decreased [21].

The current RPL-base burden changing game plans can be arranged as:

Figure 4. LLN Routing Protocols
Sr. No.	Authors	Routing Protocol	Operating System	Type	Topology	Algorithm	Scalability	Memory Usage	Energy Usage	Supported Traffic	IPv6 Support	Performance Metrics
1.	Packet Delivery ratio et. al [22]	LB-RPL	NS-2	Proactive	Flat	Distance Vector	High	Less	Less	P2P	Yes	Packet Delivery Ratio, End-to-End Delay
2.	Taghizadeh et. al [23] (CL-RPL)	Contiki	Proactive	Hierarchical / Flat	Distance Vector	High	High	High	P2P, M2P	Yes	Queue Loss, Packet delivery Ratio, Energy consumption	
3.	H. Kim [24] Que-Utilization (QU-RPL)	Tiny OS	Proactive	Flat	Distance Vector	Less	High	High	P2P, MP2P	Yes	Packet Delivery ratio,	
4.	Tang [25] Clustered additive (CA-RPL)	Contiki-OS	Proactive	Hierarchical / Flat	Distance vector	High	Average	Less	P2P	Yes	Packet Delivery ratio, Energy conservation, Average Delay	
5.	Sennan et. al [28] Energy and Load Aware EL-RPL	Contiki-OS	Reactive	Flat	Distance Vector	High	Average	Average	P2P	Yes	Packet Delivery ratio, Throughput	
6.	Dawson et. at [35] Beacon Vector routing (BVR)	Contiki	Geographical	Hierarchical	Greedy Forwarding	High	High	High	P2P	Yes	Energy Consumption, Packet delivery ratio.	
7.	Ming Dawson et. at [35][36]	Hydro	Contiki OS	Proactive	Hierarchical / Flat	Source Routing	High	Average	High	MP2P, P2P, P2MP	Yes	Packet Delivery ratio

Table 2. RPL Based Routing Protocols
Sr. No.	Authors	Routing Protocol	Operating System	Type	Topology	Algorithm	Scalability	Memory Usage	Energy Usage	Supported Traffic	IPv6 Support	Performance Metrics
8.	Gomez et. al. [37]	NST-AODV	Tiny OS	Reactive	Flat	Distance Vector	High	Less	Less	MP2P, P2P	Yes	Packet Delivery Ratio, high throughput
9.	Pham et. al. [38]	Tiny AODV	Tiny OS	Reactive	Flat	Distance Vector	High	Less	Less	MP2P, P2P	Yes	Packet Delivery Ratio, high throughput, average delay
10.	Vucinic et. al. [39]	LOADng Contiki OS	Reactive	Flat	Distance Vector	High	Less	P2P	No	Energy consumption, packet delivery ratio, Better acceptable path		
11.	Long et. al. [40]	CTP	Tiny OS	Proactive	Flat	Source Routing	High	Less	MP2P, P2MP	No	Energy consumption, packet delivery ratio	
12.	Goyal et. al. [41]	P2P RPL	Contiki	Proactive	Flat	Distance Vector/Source Routing	High	High	High	MP2P	No	Path Quality metrics, Packet Delivery ratio
13.	Xie HF et. al. [42]	ZigBee Clustering tree	Contiki	Proactive	Flat	Link State	High	High	High	MP2P	No	Energy efficiency, Minimum delay
The RPL-based directing shows give different approaches to manage understanding burden changing and blockage in network in Low Power and Lossy Network. It should be excused on how it impacts the energy use of focus focuses and time delays while the kid place point looking for the parent community with less bundles.

5. Discussion and Future Direction
The researchers in the past examinations address the Load Balancing in RPL while others projected directing convention based on RPL and target works that manage load adjusting issues. This paper gives the cutting edge of RPL execution in IoT appropriated networks and talk about the proposed arrangements to move towards the load balancing in RPL. The paper audits all proposed arrangements by the researchers to ease the issues of Load Balancing in IoT. The essential responsibility of this paper is to give the analysts with the work that analyzes, inspects and overview the examination approaches made to address the Load changing issue in RPL. This survey gives extra understanding into different load adjusting arrangements dependent on RPL convention.

6. Conclusion
Problem of Load Balancing can be comprehended. Lots of plans anticipated to deal with RPL load evolving issue. Incrdbly these plans have several prerequisites. RPL is unacceptable to coordinate transfer superior in enormous augmentation affiliation, proposed store changing approaches are reasonable for various affiliation conditions. This paper mentioned the plans as appeared by its highlights. Examined the RPL-based organizing show, its presentation assessments, and the restrictions. The RPL-based organizing shows continue as shown by the showcase assessments utilized on it. A tremendous section of the investigated guiding shows are restricted to bundle transport degree additionally, parent confirmation. Just one out of each odd one of them wires energy use, to achieve best in IoT, RPL should be power cautious. Organizing assessments which can manage the presentation in RPL thinks about affiliation superiority and bounces. Weight changing target limit dependent are examined. ALABAMO can perform best in power use separated from objective function (OF0) in any case passes on less packages due to deferral. Regardless, executing ALABAMO in RPL will be the best choice because of dull showing up. In IoT orbited network, TA-OF can turn out best for RPL, it can change geography and bundle transparent degree. CA-OF has high throughput, pack development degree showed up diversity corresponding to objective function (OF0). The current strategies for pushing toward load changing in RPL give insufficient weight evolving. Evaluating the procedures anticipated for load balancing in RPL assist with understanding tremendous bits. The game plan measure rules of the show and the burdens of as far as possible.

References
[1] Hussien Saleh Altwassi, Zeeshan Pervez, Keshav Dahal, Baraq Ghaleb, 2019, The RPL Load Balancing in IoT Network with Burst Traffic Scenarios, 12th International Conference on Software, Knowledge, Information Management ‘Applications (SKIMA), IEEE.
[2] J. Isern, A. Betzler, C. Gomez, I. Demirkoly, and J. Paradellsy, 2016, Large scale performance evaluation of the internet of things protocol suite for smart city solutions. In Proc. of the 12th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, Ubiquitous Networks ((PE-WASUN’15).
[3] K. F. Haque, R. Zabin, K. Yelamarthi, P. Yanambaka, and A. Abdelgawad, “An Iot Based Efficient Waste Collection System With Smart Bins,” in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). IEEE, 2020.
[4] Khandaker Foyesal Haque, Ahmed Abdelgawad, Venkata P. Yanambaka, Kumar Yelamarthi, 2020, An Energy-Efficient and Reliable RPL for IoT, IEEE.
[5] Popa, D., Monden, K., Toutain, L., Hui, J., Gillmore, M., Ruben, R.: Applicability Statement for the Routing Protocol for Low Power and Lossy Networks (RPL) in AMI Networks, pp. 1–25 (2017). Draft-Ietf-Roll-Applicability-Ami-09
[6] Ha, M., Kwon, K., Kim, D., Kong, P.Y.: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Proceedings of 2014 IEEE International Conference Internet Things, iThings 2014, 2014 IEEE International Conference Green Com Comput Communications GreenCom 2014, 2014 IEEE International Conference Cyber-PhysicalSocial Computing CPS 20, pp. 87–94 (2014). https://doi.org/10.1109/ithings.2014.22
[7] Zhang, T., Li, X.: Evaluating and analyzing the performance of RPL in contiki. In: Proceedings of First International Workshop Mobile Sensing, Computing Communication, pp. 19–24 (2014). https://doi.org/10.1145/2633675.2633678

[8] Ghaaleb, B., Al-dubai, A., Ekonomou, E., Wadhaj, I.: A new enhanced RPL based routing for internet of things. In: ICC2017 WS06-Convergent Internet Things- Synergy IoT Systems, pp. 1–6 (2017)

[9] K. Heurtetfeux, H. Menouar and N. AbuAli, Experimental Evaluation of a Routing Protocol for WSNs: RPL robustness under study, in Wireless and Mobile Computing, Networking and Communications (WiMob), 2013 IEEE 9th International Conference, Lyon, 2013

[10] B.Y. Muneer, A.B. Firas, and O.A. Odeh, Energy-Aware Objective Function for Routing Protocol in Internet of Things, International Journal on Communications Antenna and Propagation, Vol.7, No.3, 2017

[11] M. Ha, K. Kwon, D. Kim, and P.-Y. Kong, Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN, in Proc. IEEE Int. Conf. Internet of Things, Oct. 2014, pp. 8794.

[12] Quang-Duy Nguyen1, Julien Montavont1(B) , Nicolas Montavont2, and Thomas Noel, RPL Border Router Redundancy in the Internet of Things, International Conference on Ad-hoc, Mobile, and Wireless Networks pp 202-214 18 June 2016.

[13] M. Michel, S. Duquennoy, B. Quoitin Load-Balanced Data Collection through Opportunistic Routing DOI: 10.1109/DCOSS.2015.10 Conference: IEEE DCOSS 2015

[14] lifetime with energy balancing routing: Application to RPL. 2014 7th IFIPWireless and Mobile Networking Conference (WMNC), pages 18.

[15] Rehmat Ullah, et al. Energy and Congestion-Aware Routing Metric for Smart Grid AMI Networks in Smart City, Article in IEEE Access July 2017 DOI: 10.1109/ACCESS.2017.2728623

[16] H.-S. Kim, H. Kim, J. Paek, S. Bahk, Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks, IEEE Trans. Mob. Comput. 16 (4) (2017) 964979.

[17] Mohammad reza parsaei*, ahmad reza parsian, samaneh miri rostami and reza javidian, 2017, “rpl load balancing in internet of things”, IJUM Journal of Communication, Vol. 18, No. 2.

[18] B.Y. Muneer, A.B. Firas, and O.A. Odeh, Energy-Aware Objective Function for Routing Protocol in Internet of Things, International Journal on Communications Antenna and Propagation, Vol.7, No.3, 2017.

[19] T. Winter, et al. RPL: IPv6 routing protocol for low Power and lossy networks, IETF, RFC 6550, April 2012.

[20] Hyung-Sim Kim, Hongchan Kim, Jeongyeup Paek, and Saewoong Bahk, Senior Member, IEEE, “Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks”, IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 4, APRIL, 2017.

[21] Zibuyisile Magubane, Paul Tarwireyi, Adnan M. Abu-Mahfouz, Mathew O Adigun, 2019,“RPL-Based on Load Balancing Routing objective Functions for IoTs in Distributed Networks”, International Multidisciplinary Information Technology and Engineering Conference (IMITEC), IEEE

[22] M. R. Parsaei, A. R. Parnian, S. Miri Rostami, and R. Javidan, “Rpl Load Balancing in Internet of Things,” IIUM Eng. J., vol. 18, no. 2, pp. 137–150, 2018.

[23] S. Taghibzahdeh, H. Bobarshad, and H. Elbiaye, “CLRPL: Context-Aware and Load Balancing RPL for IoT Networks under Heavy and Highly Dynamic Load,” IEEE Access, vol. 6, pp. 23277–23291, 2018.

[24] H. Kim, “QU-RPL : Queue Utilization based RPL for Load Balancing in Large Scale Industrial Applications,” 2015 12th Ann. IEEE Int. Conf. Sensing, Commun. Comput. Netw., pp. 265–273, 2015.

[25] W. Tang, X. Ma, J. Huang, and J. Wei, “Toward Improved RPL: A Congestion Avoidance Multipath Routing Protocol with Time Factor for Wireless Sensor Networks,” J. Sensors, vol. 2016, 2016.

[26] J. Eriksson et al., “COOJA/MSPSim: interoperability testing for wireless sensor networks,” 2009.

[27] H. A. A. Al-kashoash, Y. Al-nidawi, and A. H. Kemp, “Congestion analysis for low power and lossy networks,” Wireless Telecommun. Symp., vol. 2016-May, pp. 1–6, 2016.

[28] S. Sennan, “Energy and Load Aware Routing Protocol for Internet of Things,” no. October, 2018.

[29] H. A. A. Al-kashoash, Y. Al-nidawi, and A. H. Kemp, “CongestionAware RPL for 6LoWPAN Networks,” 2016 Wireless Telecommun. Symp., 2016.

[30] B. K. Tarcisio Bruno Oliveira, Pedro Henrique Gomes, Danielo G. Gomes, “ALABAMO : A LoAd BAancing MOdel for RPL ALABAMO : A LoAd BAancing MOdel for RPL,” no. May, 2016.

[31] B. Ghaleb, A. Al-Dubai, E. Ekonomou, W. Gharib, L. Mackenzi, and M. Bani Khala, “A New Load-Balancing Aware Objective Function for RPL’s IoT Networks,” Proc. - 20th Int. Conf. High Perform. Comput. Commun. 16th Int. Conf. Smart City 4th Int. Conf. Data Sci. Syst. HPCC/SmartCity/DSS 2018, no. June, pp. 909–914, 2019.

[32] A. Sebastian, S. Sivagurunathan, “Load Balancing Metric Based Routing Protocol for Low Power and Lossy Networks (lbRPL),” Int. J. Eng. Technol., vol. 7, no. 2.22, p. 39, 2018.

[33] C. Ji, R. A. Koutsiamanis, N. Montavont, P. Chatzimisios, D. Dujovne, and G. Z. Papadopoulos, “TAOF: Traffic Aware Objective Function for RPL-based networks,” 2018 Glob. Inf. Infrastructure Netw. Symp. GIHS 2018, pp. 1–5, 2019

[34] O. Gaddour, A. Koubaa, +1 author M. Abid, “OF-FL: QoS-aware fuzzy logic objective function for the RPL routing protocol”, 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), IEEE
[35] Ming Zhao1•Arun Kumar2•Peter Han Joo Chong3•Rongxing Lu, 2016, “A comprehensive study of RPL and P2P RPL routing protocols: Implementation, Challenges and opportunities.” Springer Science+Business Media New York 2016

[36] Dawson-Haggerty S, Tavakoli A, Culler D (2010) Hydro: A hybrid routing protocol for low-power and lossy networks. In: The Proceedings of the First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp 268–273

[37] Gomez C, Salvatella P, Alonso O, Paradells J (2006) Adapting ad hoc network: theoretical discussion and performance evaluation in a real environment. In: The Proceedings of the IEEE Computer Society International Symposium on on World of Wireless, Mobile and Multimedia Networks, pp 159–170

[38] Pham NN, Youn J, Won C (2006) A comparison of wireless sensor network routing protocols on an experimental testbed. In: The Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, vol 2, pp 276–281

[39] Vucinic M, Tourancheau B, Duda A (2013) Performance comparison of the rpl and loadng routing protocols in a home automation scenario. IEEE Wireless Communications and Networking Conference (WCNC) pp 1974–1979

[40] Long NT, De Caro N, Colitti W, Touhafi A, Steenhaut K (2012) Comparative performance study of rpl in wireless sensor networks. In: The Proceedings of the 19th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), pp 1–6

[41] Goyal M, Philipp M, Brandt A, Baccelli E (2013) Reactive discovery of point-to-point routes in low-power and lossy networks

[42] Xie HF, Zeng F, Zhang GQ, Su DL (2016) Simulation research on routing protocols in zigbee network. In: The Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation, pp 891–898