THE FIXED POINT PROPERTY FOR \((c)\)-MAPPINGS AND UNBOUNDED SETS

ABDELKADER DEHICI\(^1\), SAMI ATAILIA\(^2\)*, NAJEH REDJEL\(^1\)

\(^1\)Laboratory of Informatics and Mathematics, University of Souk-Ahras, P.O.Box 1553, Souk-Ahras, 41000, Algeria.
\(^2\)Department of Mathematics, University of Boumerdes, 35000 Boumerdes, Algeria.

Abstract. We prove that a closed convex subset \(C\) of a real Hilbert space \(X\) has the fixed point property for \((c)\)-mappings if and only if \(C\) is bounded. Some convergence results about the iterations are obtained.

Keywords. Banach space; \((c)\)-mapping; unbounded closed convex subset; uniformly convex Banach space; fixed point; Picard sequence.

2010 Mathematics Subject Classification. 47H10, 54H25.

1. INTRODUCTION

Let \(X\) be a real Banach space with norm \(\|\cdot\|\) and let \(C\) be a nonempty subset of \(X\). A mapping \(T : C \rightarrow C\) is said to be nonexpansive if \(\|Tx - Ty\| \leq \|x - y\|\) for all \(x, y \in C\). \(T\) is said to be a \((c)\)-mapping if there exist \(a, c \in [0, 1], c > 0\) and \(a + 2c = 1\) such that
\[
\|Tx - Ty\| \leq a\|x - y\| + c(\|Tx - y\| + \|Ty - x\|).
\]
for all \(x, y \in C\).

A closed convex subset \(C\) of \(X\) is said to have the fixed point property for nonexpansive mappings (in short, FPP) if every nonexpansive mapping \(T : C \rightarrow C\) has at least a fixed point in \(C\) (see \([7, 9, 10, 11, 12, 13, 19]\)).

A closed convex subset \(C\) of \(X\) is said to have the fixed point property for \((c)\)-mappings (in short, \((c)\)-FPP) if every \((c)\)-mapping \(T : C \rightarrow C\) has at least a fixed point in \(C\) (see \([20, 22]\)).

It is an open problem whether these two fixed point properties hold simultaneously. The answer is affirmative if \(C\) is a bounded set of uniformly convex Banach space (see \([10, 12, 13]\)). However, the situation seems to be unknown when \(C\) is unbounded. The contributions related to this subject are very few. In 1980, W. Ray (see \([16]\)) proved that the boundedness of \(C\) characterizes FPP in Hilbert spaces. Ray’s result was simplified by R. Sine \([21]\) who observed that the metric projection in Hilbert space is nonexpansive. After that, T. Benavides (see \([5]\)) established the same result in the Banach space \(c_0\). In \([22]\), M. A. Smyth investigated the existence of fixed points for \((c)\)-mappings defined on weakly compact convex subsets which does not have necessarily normal structure and he wondered about assumptions.

*Corresponding author.
E-mail addresses: dehicikader@yahoo.fr (A. Dehici), s.atailia@univ-boumerdes.dz (S. Atailia), n.radjal@univ-soukahras.dz (N. Redjel).

Received January ... ; Accepted ...
on C to be a weakly compact convex subset having FPP, to possess (c)-FPP. Recall that in the setting of Banach space $L^1([0,1])$, the weakly compact convex subset

$$C = \{ f \in L^1([0,1]) : 0 \leq f \leq 2, a.e., \int_0^1 f(t) dt = 1 \}$$

fails to have FPP (see [1]) but we do not know if C has (c)-FPP.

In this paper, by the insights in the contributions of W. Takahashi et al in [25], we prove the variant of Ray’s result for (c)-mappings. Some convergence of iterations associated to (c)-mappings are studied. Finally, we conclude this work by asking some interesting questions.

2. MAIN RESULTS

First of all, let us define the concept of firmly nonexpansive mappings.

Definition 2.1. Let C be a nonempty subset of a Banach space X. A mapping $T : C \rightarrow C$ is said to be λ-firmly nonexpansive ($\lambda \in (0, 1)$) if

$$\|Tx - Ty\| \leq \|(1 - \lambda)(x - y) + \lambda(Tx - Ty)\|$$

for all $x, y \in C$. T is said to be firmly nonexpansive if T is λ-firmly nonexpansive for all $\lambda \in (0, 1)$.

Remark 2.2. It is obvious that a λ-firmly nonexpansive mapping is nonexpansive while the converse is in general not true (it suffices to take $T : X \rightarrow X$ defined by $Tx = -x$).

For more details on λ-firmly nonexpansive mappings, we quote [2, 9, 10, 17, 23]).

The first result in this section is the following proposition.

Proposition 2.3. Let C be a nonempty subset of a Banach space X. Then every λ-firmly nonexpansive mapping is a (c)-mapping.

Proof. Let $x, y \in C$. Since T is a λ-firmly nonexpansive mapping, we have

$$\|Tx - Ty\| \leq \|\lambda(Tx - Ty) + (1 - \lambda)(x - y)\|$$

$$= \|(1 - \lambda)x + \lambda Tx - y + \lambda y - \lambda Ty\|$$

$$= \|(1 - \lambda)[(1 - \lambda)x + \lambda Tx - y] + \lambda[(1 - \lambda)x + \lambda Tx - Ty]\|$$

$$\leq (1 - \lambda)\|[(1 - \lambda)x + \lambda Tx] - y\| + \lambda\|[(1 - \lambda)x + \lambda Tx - Ty]\|$$

$$\leq (1 - \lambda)\|[(1 - \lambda)x + \lambda Tx] - [(1 - \lambda)y + \lambda y]\|$$

$$+ \lambda\|[(1 - \lambda)x + \lambda Tx] - [(1 - \lambda)Ty + \lambda Ty]\|$$

$$\leq (1 - \lambda)[(1 - \lambda)]\|x - y\| + \lambda\|Tx - Ty\|$$

$$+ \lambda[(1 - \lambda)]\|x - Ty\| + \lambda\|Tx - Ty\|$$

$$= (1 - \lambda)^2\|x - y\| + (1 - \lambda)\|Tx - y\| + (1 - \lambda)\|x - Ty\|$$

$$+ \lambda^2\|Tx - Ty\|.$$
\[(1 - \lambda^2) ||T x - T y|| \leq (1 - \lambda) ||x - y|| + \lambda (1 - \lambda) ||T x - y|| + \lambda (1 - \lambda) ||x - T y||.\]

Therefore

\[||T x - T y|| \leq \frac{1 - \lambda}{1 + \lambda} ||x - y|| + \frac{\lambda}{1 + \lambda} (||T x - y|| + ||x - T y||).\] \hspace{1cm} (2.2)

which means that \(T \) is a \((c)\)-mapping.

The following example shows that the class of \((c)\)-mappings is wider than that of firmly nonexpansive mappings.

Example 2.4. (see [24]) Let \((X, ||.||) = (\mathbb{R}, |.|)\) and \(C = [0, 3]\). Define \(T : [0, 3] \rightarrow [0, 3]\) by

\[T x = \begin{cases}
0 & \text{if } x \in [0,3], \\
1 & \text{if } x = 3.
\end{cases}\]

A simple calculation shows that \(T\) is a \((c)\)-mapping for \(c = \frac{1}{2}\) and \(c = \frac{1}{3}\). However, \(T\) is not firmly nonexpansive, since \(T\) is not nonexpansive.

The following theorem was established by W. Takahashi et al in [25].

Theorem 2.5. Let \(H\) be a Hilbert space and let \(C\) be a nonempty closed convex subset of \(H\). Then the following conditions are equivalent.

(i) Every firmly nonexpansive mapping \(T : C \rightarrow C\) has a fixed point in \(C\).

(ii) \(C\) is bounded.

The main theorem of this paper is the following.

Theorem 2.6. Let \(H\) be a Hilbert space and let \(C\) be a nonempty closed convex subset of \(H\). Then the following conditions are equivalent.

(i) Every \((c)\)-mapping \(T : C \rightarrow C\) has a fixed point in \(C\).

(ii) \(C\) is bounded.

Proof. \((ii) \implies (i)\) Since \(C\) is bounded then \(C\) is a weakly compact convex subset of \(H\) (which has a normal structure). So the result is an immediate consequence of Theorem 2 in [6] (see also [13]).

\((i) \implies (ii)\) Assume that \(C\) is unbounded. By using Theorem 2.5, there exists a free fixed point firmly nonexpansive mapping \(T : C \rightarrow C\). But following Proposition 2.3, \(T\) is a \((c)\)-mapping which contradicts \((i)\). Hence \(C\) must be bounded.

Corollary 2.7. Let \(C\) be a nonempty closed convex subset of a Hilbert space \(H\) and let \(T : C \rightarrow C\) be a mapping satisfying
9\|Tx - Ty\|^2 \leq \|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2 \tag{2.3}

If \(C \) is bounded then \(T \) has a (unique) fixed point in \(C \).

Proof. For the uniqueness, assume that \(T \) has two distincts fixed points \(z_1, z_2 \in C \) such that \(z_1 \neq z_2 \). Then

\[9\|z_1 - z_2\|^2 \leq \|z_1 - z_2\|^2 + \|z_1 - z_2\|^2 + \|z_1 - z_2\|^2 = 3\|z_1 - z_2\|^2. \]

which is a contradiction.

Now, if \(T \) satisfies (4), then

\[\|Tx - Ty\|^2 \leq \frac{1}{9}(\|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2). \]

Consequently,

\[\|Tx - Ty\| \leq \frac{1}{3}(\|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2)^{\frac{1}{2}}. \]

By using the inequality

\[\sqrt{x^2 + y^2 + z^2} \leq x + y + z \text{ for all } x, y, z \geq 0, \]

we get

\[\|Tx - Ty\| \leq \frac{1}{3}(\|x - y\| + \|Tx - y\| + \|Ty - x\|), \tag{2.4} \]

which proves that \(T \) is a \((c)\)-mapping. Now, the result is an immediate consequence of the implication \((u) \implies (i)\) of Theorem 2.6.

Definition 2.8. Let \(X \) be a Banach space. The modulus \(\delta \) of convexity of \(X \) is defined by

\[\delta(\varepsilon) = \inf\left\{ 1 - \frac{\|x + y\|}{2} : \|x\| \leq 1, \|y\| \leq 1, \|x - y\| \geq \varepsilon \right\} \]

for every \(0 \leq \varepsilon \leq 2 \). A Banach space \(X \) is said to be uniformly convex if \(\delta(\varepsilon) > 0 \) for all \(\varepsilon \in (0, 2] \).

For a mapping \(T : C \rightarrow C \), we define the orbit \(O(x_0) \) of \(x_0 \in C \) by \(O(x_0) = \{ T^n x_0 \}_{n \geq 0} \) \((T^0 x_0 = x_0) \).

Theorem 2.9. Let \(X \) be a uniformly convex Banach space and let \(C \) be a closed convex subset of \(X \). Assume that \(T : C \rightarrow C \) is a \((c)\)-mapping satisfying

\((i) \) There exists \(x_0 \in C \) such that \(O(x_0) \) is bounded.

Then \(T \) has a fixed point in \(C \).

If moreover, \(C = -C \) and \(T \) is an odd mapping satisfying

\((u) \) For all integer \(i \geq 1 \) and all \(x, y \in C \), the sequence \((\|T^{n+i} x - T^ny\|) \) is decreasing.

Then the Picard sequence \((T^n(x_0))_n \) converges in norm to a fixed point of \(T \).
Proof. (i) Since X is uniformly convex, then the asymptotic center $A(C, (T^n(x_0)))$, associated to the Picard sequence $(T^n(x_0))$, is a singleton (see assertions (a) and (c) of Theorem 5.2 in [10]). On the other hand, Lemma 2 in [3] shows that

$$\lim_{n \to +\infty} \|Ty_n - y_n\| = 0.$$

(2.5)

where $y_n = T^n(x_0)$. A simple argument implies that there exists $z_0 \in C$ such that $Tz_0 = z_0$ which proves the first claim.

(ii) Now, since C is a nonempty convex subset with $C = -C$, we have

$$0 = \frac{x + (-x)}{2} \in C.$$

Next, since T is a (c)-mapping then for all $x \in C$, we have

$$\|Tx - T0\| \leq a\|x - 0\| + c(\|Tx - 0\| + \|T0 - x\|).$$

But T is odd, so $T0 = 0$. Therefore

$$\|Tx\| \leq a\|x\| + c\|Tx\| + c\|x\|.$$

This leads to

$$\|Tx\| \leq \left(\frac{a + c}{1 - c}\right)\|x\|.$$

$$= \|x\|.$$

(2.6)

Thus, by induction, we deduce that the sequence $(\|T^n x\|)_n$ is decreasing in $[0, +\infty]$, and

$$\lim_{n \to +\infty} \|T^n x\| = \gamma \geq 0.$$

(2.7)

Furthermore, since T is odd, we have $T^n(-x) = -T^n x$ for all integer $n \geq 1$. So, by replacing y by $-x$ in (ii), we observe that the sequence $(\|T^{n+i}x - T^n(-x)\| = \|T^{n+i}x + T^n(-x)\|)_n$ is non-increasing for all fixed integer $i \geq 1$.

Afterwards, by the triangle inequality, we infer that

$$\|T^{n+i}x_0 - T^n x_0\| \leq \sum_{k=1}^{i} \|T^{n+k}x_0 - T^{n+k-1}x_0\|.$$

(2.8)

It follows, from Lemma 2 in [3] that for all fixed integer i, we have

$$\lim_{n \to +\infty} \|T^{n+i}x_0 - T^n x_0\| = 0.$$

(2.9)
The rest of the proof is similar to that given in Theorem 1.1 in [4].

The next example shows that the hypothesis of uniform convexity is important in Theorem 2.9.

Example 2.10. Let \(X = C([0, 1]) \) equipped with the sup norm and let

\[
C = \{ f \in X : f(0) = 0 \}
\]

and let \(T : C \rightarrow C \) defined by \(Tf(t) = tf(t) \).

Clearly, \(C \) is a closed convex subset of \(X \) with \(C = -C \). In addition, \(T \) is an odd \((c) \)-mapping (see Example in [3]). The formula

\[
T^n f(t) = t^n f(t) \quad (n \geq 1) \quad (2.10)
\]

shows that the orbit \(O(f) \) of any \(f \in C \) is bounded. On the other hand, it is obvious that \(T \) is also nonexpansive then for any fixed integer \(i \geq 1 \), the sequence \((\|T^n f_i - T^n f_2\|)_n \) is decreasing and 0 is the unique fixed point of \(T \) in \(C \). But if we take \(f_0(t) = \sin(t\pi/2) \) then \(f_0 \in C \) and \(T^n f_0(t) = t^n \sin(t\pi/2) \) does not converge to 0 in \(X \) since \(\|T^n f_0 - 0\| = 1 \not\rightarrow 0 \).

Definition 2.11. A mapping \(T : C \rightarrow C \) is called Chatterjea mapping if \(T \) is a \((c) \)-mapping with \(c = \frac{1}{2} \).

In the sequel, we will denote by \(R(I - T) \) the range of the mapping \(I - T : C \rightarrow X \).

Now, we are in a position to state our next result

Theorem 2.12. Let \(C \) be a closed convex subset of a Banach space \(X \) and let \(T : C \rightarrow C \) be a \((c) \)-mapping. Then

I) If \(X \) is uniformly convex then

\[
0 \in R(I - T) \iff O(x_0) \text{ is bounded for some } x_0.
\]

II) If \(T \) is a Chatterjea mapping satisfying the following assumptions:

\(\mathcal{H}_1 \) For all \(x \in C \) and all integer \(k \geq 2 \), the sequence \((\|T^{n+k} x - T^nx\|)_n \) is decreasing.

\(\mathcal{H}_2 \) There exists an integer \(k_0 \geq 1 \) such that \(T^n \) is uniformly lipschitzian for all \(n \geq k_0 \).

a) Then we have

\[
0 \notin \overline{R(I - T)} \iff \lim_{n \rightarrow +\infty} \frac{\|T^n x\|}{n} = \alpha > 0 \text{ for all } x \in C.
\]

b) If \(X \) is uniformly convex. Then

\[
0 \in \overline{R(I - T)} \text{ and } 0 \notin R(I - T) \iff \lim_{n \rightarrow +\infty} \|T^n x\| = \infty \text{ and } \lim_{n \rightarrow +\infty} \frac{\|T^n x\|}{n} = 0
\]

for all \(x \in C \).
Proof. The proof of I) can be obtained by combining Lemma 2 in [3] and the equivalence between assertions (a) and (c) of Theorem 5.2 in [10].

Now, we will prove II)

II) a) \implies Assume that

$$\lim_{n \to +\infty} \frac{\|T^nx_0\|}{n} = 0 \text{ for some } x_0 \in C.$$

From Corollary 2.8 in [8], we have

$$\lim_{n \to +\infty} \|T^{n+1}x_0 - T^nx_0\| = 0.$$

But

$$\lim_{n \to +\infty} \|T(T^nx_0) - T^nx_0\| = \lim_{n \to +\infty} \|(I - T)(T^nx_0)\| = 0$$

and

$$(I - T)(T^nx_0) \in R(I - T),$$

so

$$0 \in R(I - T).$$

II) a) \impliedby If $0 \in R(I - T)$. Then

$$0 = \inf\{\|y\| : y \in R(I - T)\},$$

this implies the existence of a sequence $(x_k)_k$ in C such that

$$\lim_{k \to +\infty} \|Tx_k - x_k\| = 0.$$

On the other hand, since

$$T^nx_k = x_k + \sum_{s=1}^{n} (T - I)T^{s-1}x_k,$$ \hspace{1cm} (2.11)

and T^n is uniformly lipschitzian for $n \geq k_0$, then

$$\|T^n x\| \leq \|T^nx_0\| + M\|x - x_0\| (M > 1),$$ \hspace{1cm} (2.12)

But from (2.11), we have

$$\|T^nx_k\| \leq \|x_k\| + \sum_{s=1}^{n} \|(T - I)T^{s-1}x_k\|,$$

$$\leq \|x_k\| + n\|Tx_k - x_k\|,$$ \hspace{1cm} (2.14)
it follows that

\[\|T^nx\| \leq \|T^nx_k\| + M\|x_k - x\|, \]
\[\leq \|x_k\| + n\|T x_k - x_k\| + M\|x - x_k\|, \]
(2.15)

By dividing by \(n\), we get

\[\frac{\|T^nx\|}{n} \leq \frac{\|x_k\|}{n} + \frac{M\|x_k - x\|}{n} + \frac{\|T x_k - x_k\|}{n}. \]
(2.17)

For a fixed integer \(k \geq 1\), letting \(n \to +\infty\), we infer that

\[\limsup_n \frac{\|T^nx\|}{n} \leq \|T x_k - x_k\|. \]
(2.18)

Now, by letting \(k \to +\infty\), we obtain that

\[\lim_n \frac{\|T^nx\|}{n} = 0. \]
(2.19)

II) \(b)\) Can be deduced immediately from I) and \(a)\) of II).

To illustrate Theorem 2.11, we give the following examples

Example 2.13. Let \((X, \|\cdot\|) = (\mathbb{R}, |\cdot|)\) and let \(T : \mathbb{R} \to \mathbb{R}\) defined by \(Tx = x + a\) \((a \neq 0)\). It is easy to see that \(T\) is a free fixed point \((c)\)-mapping. Obviously, we have

\[\lim_n |T^nx| = \lim_n |x + na| = \infty. \]
(2.20)

which illustrates the assertion I) of Theorem 2.12. This example illustrates also assertion \(a)\) of II) since in this case, we have \(R(I-T) = R(I-T) = \{-a\}\).

Example 2.14. Let \(X = C([0, 1])\) equipped with the sup norm and

\[C = \{f \in X : f(0) = 0 \leq f(t) \leq f(1) = 1\} \]

and let \(T : C \to C\) be defined as in Example 2.10. Then \(T\) is a free fixed point \((c)\)-mapping. But since

\[\lim_n \|T^{n+1}x - T^nx\| = 0 \text{ (by Lemma 2 in [3])}, \]

we infer that \(0 \in R(T-I)\). Next, the fact that all orbits are bounded in this case, we get

\[\lim_n \frac{\|T^nx\|}{n} = 0. \]

This contradicts \(b)\) of II). Indeed, \(C([0, 1])\) is not uniformly convex.
3. Some questions

We conclude this work by the following interesting questions

Question 1: Does Banach space $L^1([0,1])$ have (c)-FPP?

Question 2: Does Benavides’s result in c_0 hold for (c)-mappings?

Question 3: Can we extend Benavides’s result to orthogonally convex spaces? (see [22] for the definition)

Question 4: Let X be a Banach space and let $T : X \rightarrow X$ be a (c)-mapping. Is it true that $\overline{R(I-T)}$ is a convex subset of X.

Recall that when T is nonexpansive, the convexity of $\overline{R(I-T)}$ was proved by A. Pazy in the case of Hilbert spaces (see [15]) and the result was generalized by S. Reich to the setting of uniformly convex Banach spaces (see [18]).

Question 5: Let C be a nonempty closed convex subset of a Hilbert space X and let \mathcal{S} be a representation of a semigroup S of (c)-mappings on C. Suppose that $\{T_c : s \in S\}$ is relatively weakly compact for some $c \in C$. Does $\mathcal{F}(\mathcal{S}) \neq \emptyset$? (Here $\mathcal{F}(\mathcal{S})$ is the set of common fixed points of \mathcal{S}).

Competing interests

The authors declare that they have no competing interests.

Funding: This work is supported by the research team RPC (Controllability and Perturbation Results) in the laboratory of Informatics and Mathematics (LIM) at the university of Souk-Ahras (Algeria).

References

[1] D. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc., 82 (1981), 423-424.
[2] D. Ariza-Ruiz, L. Leustean and G. Lopez-Acedo, Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc., 336(8), (2014), 4299-4322.
[3] J. S. Bae, Fixed point theorems of generalized nonexpansive maps, J. Korean. Math. Soc., 21 (2) (1984), 233-248.
[4] J. B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston. J. Math., 4 (1) (1978), 1-9.
[5] T. D. Benavides, The failure of the fixed point property for unbounded sets in c_0, Proc. Amer. Math. Soc., 140 (2) (2012), 645-650.
[6] J. Bogin, A generalization of a fixed point theorem of Goebel, Kirk and Shimii, Canad. Math. Bull., 19 (1) (1976), 7-12.
[7] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA., 54 (4) (1965), 1041-1044.
[8] A. Dehici and N. Redjel, On the asymptotics of (c)-mappings iterations, Preprint.
[9] K. Goebel and W. A. Kirk, *Topics in metric fixed point theory*, Cambridge University Press, 1990.
[10] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and textbooks in pure and applied mathematics, New York, Marcel Dekker, 1984.
[11] D. Göhde, Zum Prinzip der kontraktiven Abbildung. Math. Nachr., 30 (1965), 251-258.
[12] M. A. Khamsi and W. A. Kirk, *An introduction to metric spaces and fixed point theory*, Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts, 2001.
[13] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly., 76 (1965), 1004-1006.
[14] A. T. M. Lau and Y. Zhang, Fixed point properties of semigroups of nonlinear mappings on unbounded sets, J. Math. Anal. Appl., 433 (2016), 1204-1219.
[15] A. Pazy, Asymptotic behavior of contractions in Hilbert spaces, Israel. J. Math., 9, (1971), 235-240.
[16] W. O. Ray, The fixed point property and unbounded sets in Hilbert spaces, Trans. Amer. Math. Soc., 258, (1980), 531-537.
[17] S. Reich and I. Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proc. Amer. Math. Soc., 101 (2), (1987), 246-250.
[18] S. Reich, Asymptotic behavior of Contractions in Banach spaces, J. Math. Anal. Appl., 44, (1973), 57-70.
[19] S. Reich, The fixed point property for nonexpansive mappings, I, II Amer. Math. Monthly., 83, (1976), 266-268; 87 (1980), 292-294.
[20] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5, (1972), 26-42.
[21] R. Sine, On the converse of the nonexpansive map fixed point theorem for Hilbert space, Proc. Amer. Math. Soc., 100, (1987), 489-490.
[22] M. A. Smyth, The fixed point theorem for generalised nonexpansive maps, Bull. Austral. Math. Soc., 55, (1997), 45-61.
[23] R. Smarzewski, On firmly nonexpansive mappings, Proc. Amer. Math. Soc., 113 (3), (1991), 723-725.
[24] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088-1095.
[25] W. Takahashi, J-C Yao and F. Kohsaka, The fixed point property and unbounded sets in Banach spaces, Taiwanese. J. Math., 14 (2) (2010), 733-742.