Relationship between coronary calcium score and high-risk plaque/significant stenosis

Kohichiro Iwasaki, Takeshi Matsumoto

AIM
To investigate the relationship between coronary calcium score (CCS) and vulnerable plaque/significant stenosis using coronary computed tomographic angiography (CCTA).

METHODS
CCTA was performed in 651 patients and these patients were divided into the four groups (CCS 0, 1-100, 101-400 and > 400). We studied the incidence of high-risk plaque, including positive remodeling, low attenuation plaque, spotty calcification, and napkin-ring sign, and significant stenosis in each group.

RESULTS
High-risk plaque was found in 1.3%, 10.1%, 13.3% and 13.4% of patients with CCS 0, 1-100, 101-400 and > 400, respectively (P < 0.001). The difference was only significant for patients with zero CCS. The incidence of significant stenosis was 0.6%, 7.6%, 13.3% and 26.9% for each patient group, respectively (P < 0.001), which represented a significant stepwise increase as CCS increased. The combined incidence of high-risk plaque and significant stenosis was 1.9%, 17.7%, 26.9% and 40.3% in each patient group, respectively (P < 0.001), again representing a significant stepwise increase as CCS increased. The rate of major coronary event was 0%, 4.0%, 7.9% and 17.2% in each patient group, respectively (P < 0.001), another significant stepwise increase as CCS increased.

CONCLUSION
Stepwise increased risk of coronary events associated with increasing CCS is caused by increasing incidence of significant stenosis, while that of high-risk plaque remains the same.

Key words: Coronary calcium score; Coronary stenosis; High-risk plaque; Low attenuation plaque; Napkin-ring
Iwasaki K et al. Coronary calcium and high-risk plaque/stenosis

sign; Positive remodeling; Spotty calcification

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Coronary computed tomographic angiography was performed in 651 patients and these patients were divided into the four groups according to coronary calcium score (CCS): 0, 1-100, 101-400 and > 400. The incidence of high-risk plaque was not significantly different among the three groups, except patients with zero CCS. The incidence of significant stenosis increased stepwise as CCS increased, as did the rate of major coronary event. Therefore, the stepwise increased risk of coronary events associated with increasing CCS is caused by an increasing incidence of significant stenosis, while that of high-risk plaque remains the same.

Iwasaki K, Matsumoto T. Relationship between coronary calcium score and high-risk plaque/significant stenosis. World J Cardiol 2016; 8(8): 481-487 Available from: URL: http://www.wjgnet.com/1949-8462/full/v8/i8/481.htm DOI: http://dx.doi.org/10.4330/wjc.v8.i8.481

INTRODUCTION

Coronary artery calcification represents the presence of coronary atherosclerosis and there is a strong relationship between the extent of coronary artery calcification and the total coronary plaque burden [4, 5]. Many studies demonstrate that coronary calcium score (CCS) is the powerful predictor of coronary events and provide incremental risk stratification beyond traditional risk scores [6]. In contrast, patients with no calcium show a very low risk of coronary events [7]. However the precise mechanism of this increased risk associated with increased CCS has not been fully elucidated. Generally, most coronary events are caused by significant stenosis or vulnerable plaque. Many studies have demonstrated that significant stenosis increases the risk of coronary events [8]. In addition, recent studies demonstrate that 70%-80% of cardiac death and myocardial infarction are caused by rupture of vulnerable plaque, which often has non-significant stenosis [9].

Thus, we hypothesized that both significant stenosis and vulnerable plaque were associated with increased coronary events as CCS increased. We investigated the relationship between CCS and vulnerable plaque/significant stenosis using coronary computed tomographic angiography (CCTA).

MATERIALS AND METHODS

Patients

From September 2010 through September 2014, 981 patients underwent CCTA. We excluded: (1) patients who underwent coronary revascularization before CCTA; (2) patients who developed acute coronary syndrome before CCTA; (3) patients who have coronary artery disease (CAD); and (4) patients with inadequate image quality because of motion artifacts, blooming artifacts, or severe calcification. Finally, we studied 651 patients. Most patients underwent CCTA for the evaluation of CAD because of multiple risk factors and/or symptom of chest pain.

CCTA

For CCTA, we used a sixty-four multi-detector computed tomography (MDCT) scanner (SOMATOM Sensation 64 Cardiac, Siemens Medical Solutions, Erlangen, Germany). Before the scan, we administered 20 mg metoprolol if patients had a heart rate more than 70 beats/min. We administered sublingual nitroglycerin 0.8 mg for all patients.

We performed a scan without contrast dye to measure the coronary calcium burden. The detail of the CCTA procedure was reported in the previous study [11].

CCTA image interpretation

For image analysis, we transferred CT data sets to a workstation (Aquarius NetStation, Terarecon Inc, San Mateo, CA, United States). We calculated total calcium score and expressed as Agatston score [12]. We divided our patients into the four groups according to the usual CCS risk classification definitions: CCS 0, 1-100, 101-400 and > 400. We defined high-risk CCS as CCS > 400.

Two reviewers, who were blinded to the patients’ clinical characteristics, evaluated the CCTA data, with maximum intensity and curved multiplanar reconstruction (CMPR) techniques. We regarded positive remodeling as the ratio of plaque site diameter divided by reference segment diameter more than 1.1 [13]. We regarded spotty calcification as its size less than 3 mm on CMPR images and one side occupied on cross-sectional images [13]. We regarded low attenuation plaque as the lowest CT number less than 30 HU on axial images [13]. We regarded napkin-ring sign as a ring of high attenuation around coronary artery plaque and CT attenuation of a ring higher than that of the adjacent plaque but no greater than 130 HU [14]. We regarded high-risk plaque as the plaque with positive remodeling, low attenuation plaque, spotty calcification, or napkin ring sign. Percent aggregate plaque volume was measured according to Nakazato’s method [15]. Two reviewers identified coronary segments and these segments were classified into normal, non-significant stenosis, or significant stenosis. Normal segment was defined as smooth parallel or tapering borders. Non-significant stenosis was defined as luminal irregularities or % diameter stenosis less than 50%. Significant stenosis was defined as % diameter stenosis more than 50%.

Major coronary event

The duration of follow-up was 2.1 ± 1.3 years (median 1.9 years). Major coronary event was defined as cor-
Coronary death, myocardial infarction, and coronary revascularization.

The Institutional Review Board of Okayama Kyokuto Hospital reviewed and approved this study. All patients provided informed consent.

Statistical analysis
We described continuous variables as mean ± SD. We compared continuous variables by two group t-test between the two groups and by one-factor ANOVA among the four groups. We described discrete variables as counts or percentage. We compared discrete variables by the \(\chi^2 \) or Fisher’s exact test between the two groups and by the \(\chi^2 \) test for independence among the four groups. We investigated predictors of high-risk plaque, significant stenosis, and high-risk CCS by a multiple logistic regression analysis, including age, sex, and all risk factors. A \(P \)-value < 0.05 was regarded as statistically significant. The biomedical statistician performed statistical review of this study.

RESULTS
The patients’ clinical characteristics are shown in Table 1. Figure 1 shows the incidence of high-risk plaque and significant stenosis among the four groups. The high-risk plaque was found in 1.3%, 10.1%, 13.3% and 13.4% of patients with CCS 0, 1-100, 101-400 and > 400, respectively (Figure 1A). The difference was only significant for patients with zero CCS. The incidence of significant stenosis was 0.6%, 7.6%, 13.3% and 26.9% in each patient group, respectively (Figure 1B), which represented a stepwise increase as CCS increased. The combined incidence of high-risk plaque and significant stenosis was 1.9%, 17.7%, 26.9% and 40.3% in each patient group, respectively (Figure 1C), again representing a significant stepwise increase as CCS increased.

Table 2 shows the incidence of high-risk plaque among the four groups. Apart from patients with zero CCS, there were no significant differences in the incidence of high-risk plaque, positive remodeling, low attenuation plaque, spotty calcification, and napkin-ring appearance among the three groups. In addition, the incidence of multiple high-risk plaques was not significantly different among the four groups. The percent aggregate plaque volume was not significantly different among the four groups. Table 3 shows the predictors of high-risk plaque, significant stenosis, and high-risk CCS by stepwise increased rate of major coronary event was observed. The rate of coronary revascularization also increased stepwise. The rate of coronary death and myocardial infarction was not significantly different among the four groups.
DISCUSSION

Our results showed that the incidence of high-risk plaque was not significantly different among the three groups with CCS of 1-100, 101-400 and > 400. However, the incidence of significant stenosis increased stepwise as CCS increased. Thus, the combined incidence of high-risk plaque and significant stenosis increased significantly as CCS increased. These results suggest that the stepwise increased risk of coronary events associated with increasing CCS would be due to an increasing incidence of significant stenosis, while the incidence of high-risk plaque remains the same except in patients who have zero CCS.

High-risk plaque

Recently, CCTA characteristics of vulnerable plaque are reported to be positive remodeling, low attenuation
plaque, and spotty calcification\cite{13}. In addition, the napkin-ring sign is regarded as another sign of vulnerable plaque\cite{14}. Thus, we regarded high-risk as the plaque with positive remodeling, low attenuation plaque, spotty calcification, or napkin-ring sign.

The incidence of high-risk plaque was 9.5% in our patients. Motoyama et al\cite{16} detected positive remodeling and/or low attenuation plaque in 6.8%. Fujimoto et al\cite{17} detected positive remodeling and low attenuation plaque in 6.3%. Their incidence is similar to our results.

In our study, the incidence of high-risk plaque was not significantly different among the three groups with CCS ≥ 1. No previous studies demonstrated this association. Fujimoto et al\cite{17} studied the incidence of positive remodeling and low attenuation plaque in 1139 patients without symptoms or with atypical symptoms. High-risk plaque was detected in 0%, 4.3% and 15.5% in the low-, intermediate- and high-risk Framingham scores groups, respectively. For patients of the intermediate-risk group, the incidence of high-risk plaque was 3.3%, 4.9%, 9.8% and 6.5% in patients who have CCS of 0, 1-250, 251-500 and > 500, respectively. For patients of the high-risk group, it was 7.0%, 20.0%, 17.1% and 12.5% in the respective CCS groups. They found that the incidence of high-risk plaque was lower for CCS > 500 and > 250 in the intermediate- and high-risk groups, respectively. However, when we recalculated their results, we found that the incidence of high-risk plaque was 3.7%, 9.1%, 13.2% and 9.5% in the respective CCS categories. There were no significant differences apart from patients with zero CCS. These results are very similar to ours.

Predictors of high-risk plaque, significant stenosis, and high-risk CCS

In our study, multivariate analysis demonstrated that the predictors of high-risk plaque were male sex and hypertension, while those of significant stenosis were hypertension, dyslipidemia, and diabetes. Furthermore, the predictors of high-risk CCS were age, male sex, and diabetes. These predictors are conventional coronary risk factors.

Limitations

There are several limitations to our study. The number of patients was not large enough. We need a larger patient population to confirm our results. Although the rate of major coronary event differed significantly among the four groups, this difference was caused by the difference in coronary revascularization. We selected coronary revascularization only for patients with either moderate or severe ischemia by myocardial perfusion imaging or fractional flow reserve less than 0.75. Many studies demonstrate that these patients are at increased risk of coronary events, and benefit from coronary revascularization\cite{23,24}. We think that it is difficult to demonstrate differences in hard cardiac events among the 4 groups, because the number of patients and follow-up period were not sufficient. In addition, our patients are basically at low to intermediate risk for coronary events, because these patients have no known CAD, which means subclinical CAD. Moreover, we prescribed high-intensity statin therapy for patients with high-risk plaque. Therefore, we think that these are the reasons why there are too few events in our study.

Significant stenosis

Our results also showed that the incidence of significant stenosis increased stepwise as CCS increased. Rosen et al\cite{18} performed CCS measurement and coronary angiography and found a close association between baseline calcium mass score and stenosis severity in each coronary artery. Ho et al\cite{19} performed CCS measurement and CCTA in 664 patients and found that the frequency of significant stenosis increased as CCS increased, being 7.9%, 8.3%, 14.5% and 27.2% in those with CCS of 1-100, 101-400, 401-1000 and > 1000, respectively. These results are consistent with ours.

Zero CCS

Our study showed that, in patients who have zero CCS, the incidence of non-calcified plaque, high-risk plaque, and significant stenosis was 13.6%, 1.3% and 0.6%, respectively. Previously, we found non-calcified plaque in 11.1% of 224 asymptomatic low-risk patients with zero CCS\cite{20}. Hausleiter et al\cite{21} detected non-calcified plaque in 15.9% of intermediate-risk patients. The CONFIRM registry reported that the incidence of significant stenosis was 1.4% in patients with zero CCS\cite{22}. Their results are consistent with ours.

Table 3 Predictors of high-risk plaque, significant stenosis, and high-risk coronary calcium score by multivariate analysis

Predictor	OR	95% CI	P
High-risk plaque factor			
Male	4.93	2.07-11.7	0.0003
Hypertension	2.2	1.13-4.28	0.0204
Significant stenosis factor			
Hypertension	2.66	1.44-4.89	0.0017
Dyslipidemia	2	1.15-3.47	0.0137
Diabetes	2.32	1.42-5.79	0.0008
High-risk CCS factor			
Age	1.06	1.03-1.08	0.0001
Male	1.54	1.02-2.34	0.0414
Diabetes	2.46	1.68-3.59	0.0001

CCS: Coronary calcium score.
Our results demonstrate that the stepwise increased risk of coronary events in association with an increased CCS would be caused by an increasing incidence of significant stenosis, while the incidence of high-risk plaque remains the same, except patients with zero CCS. Thus, the combined incidence of high-risk plaque and significant stenosis increased stepwise as CCS increased.

COMMENTS

Background
Coronary calcium score (CCS) is the most powerful predictor of cardiac events beyond conventional risk factors. However, the precise mechanism of increased risk of coronary events associated with increasing CCS is not fully elucidated.

Research frontiers
Many studies have demonstrated that most cardiac death and myocardial infarction are caused by rupture of vulnerable plaque, which often has non-significant stenosis. Recent studies demonstrate that the characteristics of vulnerable plaque by coronary computed tomographic angiography, which is called high-risk plaque, are positive remodeling, low attenuation plaque, spotty calcification, and napkin-ring sign.

Innovation and breakthroughs
The authors showed that stepwise increased risk of coronary events associated with increasing CCS is caused by increasing prevalence of significant stenosis, while that of high-risk plaque remains the same. There was each study which investigated the relationship between CCS and significant stenosis, and CCS and high-risk plaque, respectively. However, the authors comprehensively showed the relationship between CCS and high-risk plaque/significant stenosis.

Applications
The higher the CCS, the more the authors have a chance to find significant stenosis in these patients. For patients with significant stenosis, non-invasive stress test to detect myocardial ischemia is needed. The authors also must pay attention to high-risk plaque even for patients with low CCS.

Terminology
Napkin-ring sign is defined as the presence of a ring of high attenuation around certain coronary artery plaque and the CT attenuation of a ring presenting higher than those of the adjacent plaque and no greater than 130 HU.

Peer-review
Very nice and interesting study, well performed.

REFERENCES

1. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study. *Circulation* 1995; 92: 2157-2162 [PMID: 7554196 DOI: 10.1161/01.CIR.92.8.2157]

2. Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Greigore J, Fitzpatrick LA, Schwartz RS. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. *J Am Coll Cardiol* 1998; 31: 126-133 [PMID: 9426030]

3. Yousuf G, Budoff MJ. Coronary artery calcium scoring, what is answered and what questions remain. *Cardiovasc Diagn Ther* 2012; 2: 94-105 [PMID: 24282703 DOI: 10.3987/anj.2223-3652.2012.06.04]

4. Budoff MJ, Nasir K, McClelland RL, Detrano R, Wong N, Blumenthal RS, Kondos G, Kronmal RA. Coronary calcium predicts events better with absolute calcium scores than age-sex-race/ethnicity percentiles: MESA (Multi-Ethnic Study of Atherosclerosis). *J Am Coll Cardiol* 2009; 53: 345-352 [PMID: 19161884 DOI: 10.1016/j.jacc.2008.07.072]

5. Yehouah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, Carr JJ, Goff DC, Greenland P, Harrington DM. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. *JAMA* 2012; 308: 788-795 [PMID: 22910756 DOI: 10.1001/jama.2012.9624]

6. Erbel R, Möhlenkamp S, Moebus S, Schermernaud A, Lehmann N, Stang A, Dragoanu N, Grönenmeyer D, Seibert R, Kälsch H, Bröcker-Preuss M, Mann K, Siegrist J, Jöckel KH. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. *J Am Coll Cardiol* 2010; 56: 1397-1406 [PMID: 20946997 DOI: 10.1016/j.jacc.2010.06.030]

7. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, Cadernartiri F, Callister TQ, Chang H, Cheng V, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Matfeas I, Ruff G, Shaw LJ, Villines T, Berman DS. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. *J Am Coll Cardiol* 2011; 58: 849-860 [PMID: 21835321 DOI: 10.1016/j.jacc.2011.02.074]

8. Hou ZH, Lu B, Gao Y, Jiang SL, Wang Y, Li W, Budoff MJ. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. *AJCC Cardiovasc Imaging* 2012; 5: 990-999 [PMID: 23058065 DOI: 10.1016/j.jccim.2012.06.006]

9. Arbab-Zadeh A, Nakano M, Virmani R, Fuster V. Acute coronary events. *Circulation* 2012; 125: 1147-1156 [PMID: 22392862 DOI: 10.1161/CIRCULATIONAHA.111.047431]

10. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. *N Engl J Med* 2013; 368: 2004-2013 [PMID: 23697515 DOI: 10.1056/NEJMra1216063]

11. Iwasaki K, Matsumoto T, Aono H, Furukawa H, Samukawa M.
Iwasaki K et al. Coronary calcium and high-risk plaque/stenosis

Relationship between epicardial fat measured by 64-multidetector computed tomography and coronary artery disease. Clin Cardiol 2011; 34: 166-171 [PMID: 21373349]

12 Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15: 827-832 [PMID: 2407762]

13 Motoyama S, Kondo T, Sarai M, Sugiyama A, Harigaya H, Sato T, Inoue K, Okamura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007; 50: 319-326 [PMID: 17659199]

14 Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, Shinmada K, Yoshiyama M. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 2013; 6: 448-457 [PMID: 23498679 DOI: 10.1016/j.jcmg.2012.09.016]

15 Nakazato R, Shalev A, Doh JH, Koo BK, Gransar H, Gomez MJ, Leipsic J, Park HB, Berman DS, Min JK. Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J Am Coll Cardiol 2013; 62: 460-467 [PMID: 23727206 DOI: 10.1016/j.jacc.2013.04.062]

16 Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009; 54: 49-57 [PMID: 19555840 DOI: 10.1016/j.jacc.2009.02.068]

17 Fujimoto S, Kondo T, Kodama T, Orijara T, Sugiyama J, Kondo M, Endo A, Fukazawa H, Nagaoka H, Oida A, Ikeda T, Yamazaki J, Takase S, Narula J. Coronary computed tomography angiography-based coronary risk stratification in subjects presenting with no or atypical symptoms. Circ J 2012; 76: 2419-2425 [PMID: 22864230]

18 Rosen BD, Fernandes V, McClelland RL, Carr JJ, Detrano R, Bluemke DA, Lima JA. Relationship between baseline coronary calcium score and demonstration of coronary artery stenoses during follow-up MESA (Multi-Ethnic Study of Atherosclerosis). JACC Cardiovasc Imaging 2009; 2: 1175-1183 [PMID: 19833306 DOI: 10.1016/j.jcmg.2009.06.014]

19 Ho JS, Fitzgerald SJ, Stolfit LS, Wade WA, Reinhardt DB, Barlow CE, Cannaday JJ. Relation of a coronary artery calcium score higher than 400 to coronary stenoses detected using multidetector computed tomography and to traditional cardiovascular risk factors. Am J Cardiol 2008; 101: 1444-1447 [PMID: 18471456 DOI: 10.1016/j.amjcard.2008.01.022]

20 Iwasaki K, Matsumoto T, Aono H, Furukawa H, Samukawa M. Prevalence of non-calcified coronary plaque on 64-slice computed tomography in asymptomatic patients with zero and low coronary artery calcium. Can J Cardiol 2010; 26: 377-380 [PMID: 20847965]

21 Haasleiter J, Meyer T, Hadamitzky M, Kastrati A, Martinoff S, Schömig A. Prevalence of noncalcified coronary plaques by 64-slice computed tomography in patients with an intermediate risk for significant coronary artery disease. J Am Coll Cardiol 2006; 48: 312-318 [PMID: 16843181]

22 Villines TC, Hulten EA, Shaw LJ, Goyal M, Dunning A, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng VY, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Haasleiter J, Kaufmann P, Lin FY, Maffei E, Raff GL, Min JK. Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography: results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol 2011; 58: 2533-2540 [PMID: 22079127 DOI: 10.1016/j.jacc.2011.10.851]

23 Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, Hayes SW, Cohen I, Gorman G, Berman DS. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 2011; 32: 1012-1024 [PMID: 21258084 DOI: 10.1093/eurheartj/ehq500]

24 Johnson NP, Tóth GG, Lai D, Zhu H, Ačar G, Agostoni P, Appelman Y, Arslan F, Barbato E, Chen SL, Di Serafino L, Domínguez-Franco AJ, Dupouy P, Esen AM, Esen OB, Hamilos M, Iwasaki K, Jensen LO, Jiménez-Navarro MF, Katrisitis DG, Kocaman SA, Koo BK, López-Palop R, Lorin JD, Miller LH, Müller O, Nam CW, Oud N, Psymirat E, Rieber J, Riusoul G, Rodik-Cabau J, Seldís SP, Takeishi Y, Tonino PA, Van Belle E, Verna E, Werner GS, Fearnon WF, Pijs NH, De Bruyne B, Gould KL. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol 2014; 64: 1641-1654 [PMID: 25323250 DOI: 10.1016/j.jacc.2014.07.973]
