Coherent transport of interacting electrons through a single scatterer

Martin Moško, Pavel Vagner, Andrej Gendiar, Radoslav Németh
Institute of Electrical Engineering, Slovak Academy of Sciences, 84104 Bratislava, Slovakia

Abstract

Using the self-consistent Hartree-Fock method, we calculate the persistent current of weakly-interacting spinless electrons in a one-dimensional ring containing a single δ barrier. We find that the persistent current decays with the system length (L) asymptotically like \(L^{-1-\alpha} \), where \(\alpha > 0 \) is the power depending only on the electron-electron interaction. We also simulate tunneling of the weakly-interacting one-dimensional electron gas through a single δ barrier in a finite wire biased by contacts. We find that the Landauer conductance decays with the system length asymptotically like \(L^{-2\alpha} \). The power laws \(L^{-1-\alpha} \) and \(L^{-2\alpha} \) have so far been observed only in correlated models. Their existence in the Hartree-Fock model is thus surprising.

Key words: one-dimensional transport, mesoscopic ring, persistent current, electron-electron interaction

PACS: 73.23.-b, 73.61.Ey

Magnetic flux applied through the opening of a mesoscopic conducting ring gives rise to a persistent electron current circulating along the ring [1]. Here we study the persistent current of interacting spinless electrons in a one-dimensional (1D) ring with a single scatterer. For non-interacting electrons the persistent current \(I \) depends on the magnetic flux \(\phi \) and ring length \(L \) as [2]

\[
I = \left(ev_F/2L \right) |\delta_{k_F}| \sin(\phi'), \tag{1}
\]

if \(|\delta_{k_F}| \ll 1. \) In eq. (1) \(\phi' \equiv 2\pi\phi/\phi_0, \phi_0 = h/e \) is the flux quantum, \(\delta_{k} \) is the electron transmission amplitude through the scatterer, \(k_F \) is the Fermi wave vector, and \(v_F \) is the Fermi velocity. For a repulsive electron-electron interaction the spinless persistent current was derived in the Luttinger liquid model [2]. For \(L \to \infty \)

\[
I \propto L^{-\alpha-1} \sin(\phi'), \tag{2}
\]

where \(\alpha > 0 \) depends only on the e-e interaction.

In this work we find similar results in the Hartree-Fock model. We consider \(N \) interacting 1D electrons with free motion along a circular ring threaded by magnetic flux \(\phi = BS = AL \), where \(S \) is the area of the ring, \(B \) is the magnetic field threading the ring, and \(A \) is the magnitude of the vector potential. In the Hartree-Fock model the many-body wave function is the Slater determinant of single-electron wave functions \(\psi_k(x) \). These wave functions obey the Hartree-Fock equation

\[
\left[\frac{\hbar^2}{2m} \left(-i \frac{\partial}{\partial x} + \frac{2\pi}{L} \frac{\phi}{\phi_0} \right)^2 + \gamma \delta(x) + U_H(x) + U_F(k, x) \right] \psi_k(x) = \epsilon_k \psi_k(x), \tag{3}
\]

with cyclic boundary condition \(\psi_k(x + L) = \psi_k(x) \), where \(m \) is the electron effective mass, \(x \) is the electron coordinate along the ring, \(\gamma \delta(x) \) is the potential of the scatterer, the Hartree potential is given by

\[
U_H(x) = \sum_{k'} \int dx' V(x - x') |\psi_{k'}(x')|^2, \tag{4}
\]

the Fock term is written as an effective potential

\[
U_F(k, x) = -\frac{1}{\psi_k(x)} \times \sum_{k'} \int dx' V(x - x') \psi_{k'}(x') \psi_{k'}(x), \tag{5}
\]

and \(V(x - x') \) is the electron-electron (e-e) interaction.

We solve equation (3) coupled with the potentials (4) and (5) using self-consistent numerical iterations [4]. We obtain numerically the single-particle states \(\psi_k(x) \)
and ε_L, the energy of the Hartree-Fock groundstate, E, and eventually the persistent current $I = -\partial E/\partial \phi$.

We present results for the GaAs ring with electron density $n = 5 \times 10^7$ m$^{-1}$, effective mass $m = 0.067 m_0$, and e-e interaction $V(x - x') = V_0 e^{-|x-x'|/d}$,\footnote{where $V_0 = 34$ meV and $d = 3$ nm. The interaction (6) is short-ranged. It emulates screening and allows comparison with correlated models [2,3] which also use the e-e interaction of finite range.}

We study rings with a strong scatters ($|\tilde{t}_{kF}| \ll 1$), for which the asymptotic behavior with L is reachable for not too large L [3]. To show results typical of $|\tilde{t}_{kF}| \ll 1$, we use the δ barrier with transmission $|\tilde{t}_{kF}| = 0.03$.

Panel a of figure 1 shows in log scale the persistent current $L I(\phi' = \pi/2)$ as a function of L. The full line is the power law $L I \propto L^{-\alpha}$ predicted by equation (2). For weak e-e interaction ($\alpha \ll 1$) it holds\footnote{[5] for small \tilde{t}_{kF}. We obtain the scaling law (2) including the proportionality constant $\text{const} = eV_F |\tilde{t}_{kF}| d^{\alpha}/2$. This scaling law is presented in panel c. It can be seen that the results of panels b and c are in good accord.}

\[\psi_k(x = -L/2) = e^{ikx} + r_k e^{-ikx}, \psi_k(x = L/2) = t_k e^{ikx}, \]

where r_k is the reflection amplitude and t_k is the transmission amplitude (analogously for the electrons entering the wire from the right). We have solved this Hartree-Fock problem self-consistently and we have evaluated the Landauer conductance $(e^2/h)|\tilde{t}_{kF}|^2$.

The result is shown in figure 2 together with the square of $L I$ for the equivalent ring. The conductance scales like $L^{-2\alpha}$ and so does the square of $L I$.

We thank for the APVT grant APVT-51-021602.

\section*{References}
[1] Y. Imry, \textit{Introduction to Mesoscopic Physics} (Oxford University Press, Oxford, UK, 2002).
[2] A. Gogolin, N. Prokof’ev, Phys. Rev. B 50, 4921 (1994).
[3] V. Meden, U. Schollwöck, Phys. Rev. B 67, 035106 (2003).
[4] R. Németh, M. Možko, cond-mat/0503146; P. Vagner, M. Možko, R. Németh, et al., submitted to Physica E.
[5] K. A. Matveev et al., Phys. Rev. Lett. 71, 3351 (1993).