Planar anti-Ramsey numbers of paths and cycles

Yongxin Lan1, Yongtang Shi1, Zi-Xia Song2*
1Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: lan@mail.nankai.edu.cn; shi@nankai.edu.cn
2Department of Mathematics
University of Central Florida, Orlando, FL 32816, USA
Email: Zixia.Song@ucf.edu

August 31, 2017

Abstract

Motivated by anti-Ramsey numbers introduced by Erdős, Simonovits and Sós in 1975, we study the anti-Ramsey problem when host graphs are plane triangulations. Given a positive integer \(n \) and a planar graph \(H \), let \(T_n(H) \) be the family of all plane triangulations \(T \) on \(n \) vertices such that \(T \) contains a subgraph isomorphic to \(H \). The \textit{planar anti-Ramsey number} of \(H \), denoted \(\text{ar}_p(n, H) \), is the maximum number of colors in an edge-coloring of a plane triangulation \(T \in T_n(H) \) such that \(T \) contains no rainbow copy of \(H \). Analogous to anti-Ramsey numbers and Turán numbers, planar anti-Ramsey numbers are closely related to planar Turán numbers, where the \textit{planar Turán number} of \(H \) is the maximum number of edges of a planar graph on \(n \) vertices without containing \(H \) as a subgraph. The study of \(\text{ar}_p(n, H) \) (under the name of rainbow numbers) was initiated by Horňák, Jendrol', Schiermeyer and Soták [J Graph Theory 78 (2015) 248–257]. In this paper we study planar anti-Ramsey numbers for paths and cycles. We first establish lower bounds for \(\text{ar}_p(n, P_k) \) when \(n \geq k \geq 8 \). We then improve the existing lower bound for \(\text{ar}_p(n, C_k) \) when \(k \geq 5 \) and \(n \geq k^2 - k \). Finally, using the main ideas in the above-mentioned paper, we obtain upper bounds for \(\text{ar}_p(n, C_6) \) when \(n \geq 8 \) and \(\text{ar}_p(n, C_7) \) when \(n \geq 13 \), respectively.

\textbf{AMS Classification:} 05C10; 05C35.

\textbf{Keywords:} rainbow subgraph; anti-Ramsey number; plane triangulation

*Corresponding author.
1 Introduction

All graphs considered in this paper are finite and simple. Motivated by anti-Ramsey numbers introduced by Erdős, Simonovits and Sós [4] in 1975, we study the anti-Ramsey problem when host graphs are plane triangulations. A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. Let \mathcal{F} be a family of planar graphs. For the purpose of this paper, we call an edge-coloring that contains no rainbow copy of any graph in \mathcal{F} an \mathcal{F}-free edge-coloring. A graph G is \mathcal{F}-free if no subgraph of G is isomorphic to any graph in \mathcal{F}. Let $n_\mathcal{F}$ be the smallest integer such that for any $n \geq n_\mathcal{F}$, there exists a plane triangulation on n vertices that is not \mathcal{F}-free. Such an integer $n_\mathcal{F}$ is well-defined, because for any $F \in \mathcal{F}$, we can obtain a plane triangulation from a plane drawing of F by adding new edges. When $\mathcal{F} = \{F\}$, then $n_\mathcal{F} = |F|$. For any integer $n \geq n_\mathcal{F}$, let $T_n(\mathcal{F})$ be the family of all plane triangulations T on n vertices such that T is not \mathcal{F}-free. The planar anti-Ramsey number of \mathcal{F}, denoted $ar_p(n, \mathcal{F})$, is the maximum number of colors in an \mathcal{F}-free edge-coloring of a plane triangulation in $T_n(\mathcal{F})$. Clearly, $ar_p(n, \mathcal{F}) < 3n - 6$. It is worth noting that this problem becomes trivial if the host plane triangulation on n vertices is \mathcal{F}-free, because $3n - 6$ colors can be used.

Analogous to the relation between anti-Ramsey numbers and Turán numbers proved in [4], planar anti-Ramsey numbers are closely related to planar Turán numbers [3]. The planar Turán number of \mathcal{F}, denoted $ex_p(n, \mathcal{F})$, is the maximum number of edges of an \mathcal{F}-free planar graph on n vertices. Given an edge-coloring c of a host graph T in $T_n(\mathcal{F})$, we define a representing graph R of c to be a spanning subgraph R of T obtained by taking one edge of each color under the coloring c (where R may contain isolated vertices). Clearly, if c is an \mathcal{F}-free edge-coloring of T, then R is \mathcal{F}-free. Thus $ar_p(n, \mathcal{F}) \leq ex_p(n, \mathcal{F})$ for any $n \geq n_\mathcal{F}$. When \mathcal{F} consists of a single graph H, we write $ar_p(n, H)$ and $ex_p(n, H)$ instead of $ar_p(n, \{H\})$ and $ex_p(n, \{H\})$. Given a planar graph H, let $\mathcal{H} = \{H - e : e \in E(H)\}$. Let G be an \mathcal{H}-free plane subgraph of a plane triangulation $T \in T_n(H)$ with $e(G) = ex_p(n, H)$. We then obtain an H-free edge-coloring of T by coloring the edges of G with distinct colors and then coloring the edges in $E(T) \setminus E(G)$ with a new color. Hence, $1 + ex_p(n, \mathcal{H}) \leq ar_p(n, H)$ for any $n \geq |H|$. We obtain the following analogous result.

Proposition 1.1 Given a planar graph H and a positive integer $n \geq |H|$,

$$1 + ex_p(n, \mathcal{H}) \leq ar_p(n, H) \leq ex_p(n, H),$$

where $\mathcal{H} = \{H - e : e \in E(H)\}$.

Colorings of plane graphs that avoid rainbow faces have also been studied, see, e.g., [5, 7, 15, 16]. Various results on anti-Ramsey numbers can be found in: [1, 2, 8, 9, 10, 11, 13, 14] to
name a few. The study of planar anti-Ramsey numbers \(ar_p(n, H)\) was initiated by Horňák, Jendrol’, Schierzeyer and Soták [6] (under the name of rainbow numbers). We summarize their results in [6] as follows, where given two positive integers \(a\) and \(b\), we use \(a \mod b\) to denote the remainder when \(a\) is divided by \(b\). We use \(P_k\) and \(C_k\) to denote the path and cycle on \(k\) vertices, respectively.

Theorem 1.2 ([6]) Let \(n, k\) be positive integers.

(a) \(ar_p(n, C_3) = \lfloor (3n - 6)/2 \rfloor\) for \(n \geq 4\).

(b) \(ar_p(n, C_4) \leq 2(n - 2)\) for \(n \geq 4\), and \(ar_p(n, C_4) \geq (9(n - 2) - 4r)/5\) for \(n \geq 42\) and \(r = (n - 2) \mod 20\).

(c) \(ar_p(n, C_5) \leq 5(n - 2)/2\) for \(n \geq 5\), and \(ar_p(n, C_5) \geq (19(n - 2) - 10r)/9\) for \(n \geq 20\) and \(r = (n - 2) \mod 18\).

(d) \(ar_p(n, C_k) \geq (3n - 6) \cdot \frac{k-3}{k-2} - \frac{2k-7}{k-2}\) for \(6 \leq k \leq n\).

Finding exact values of \(ar_p(n, H)\) is far from trivial. As observed in [6], an induction argument in general cannot be applied to compute \(ar_p(n, H)\) because deleting a vertex from a plane triangulation may result in a graph that is no longer a plane triangulation.

Dowden [3] began the study of planar Turán numbers \(ex_p(n, H)\) (under the name of “extremal” planar graphs) and proved Theorem 1.3 below, where each bound is tight.

Theorem 1.3 ([3]) Let \(n\) be a positive integer.

(a) \(ex_p(n, C_3) = 2n - 4\) for \(n \geq 3\).

(b) \(ex_p(n, C_4) \leq 15(n - 2)/7\) for \(n \geq 4\).

(c) \(ex_p(n, C_5) \leq (12n - 33)/5\) for \(n \geq 11\).

By Proposition [1.1] and Theorem 1.3(c), we see that \(ar_p(n, C_5) \leq (12n - 33)/5\) for \(n \geq 11\). This improves the upper bound for \(ar_p(n, C_5)\) in Theorem 1.2(c) when \(n \geq 11\). Notice that the upper bound in Proposition 1.1 in general is quite loose, for example, \(ex_p(n, C_3) - ar_p(n, C_3) = \lfloor n/2 \rfloor - 1\) for all \(n \geq 4\). In this paper we study planar anti-Ramsey numbers for paths and cycles. In Section 2 we establish lower bounds for \(ar_p(n, P_k)\) when \(n \geq k \geq 8\). In Section 3 we first improve the existing lower bounds for \(ar_p(n, C_k)\) when \(k \geq 5\) and \(n \geq k^2 - k\), which improves Theorem 1.2(c,d). We then use the main ideas in [6] by studying lower and upper bounds for the planar anti-Ramsey numbers when host graphs are wheels to obtain upper bounds for \(ar_p(n, C_6)\) when \(n \geq 8\) and \(ar_p(n, C_7)\) when \(n \geq 13\), respectively.

We need to introduce more notation. For a graph \(G\) we use \(V(G)\), \(|G|\), \(E(G)\), \(e(G)\), \(\delta(G)\) and \(\alpha(G)\) to denote the vertex set, number of vertices, edge set, number of edges,
minimum degree, and independence number of G, respectively. For a vertex $x \in V(G)$, we will use $N_G(x)$ to denote the set of vertices in G which are adjacent to x. We define $N_G[x] = N_G(x) \cup \{x\}$ and $d_G(x) = |N_G(x)|$. The subgraph of G induced by A, denoted $G[A]$, is the graph with vertex set A and edge set $\{xy \in E(G) : x, y \in A\}$. We denote by $B \setminus A$ the set $B - A$ and $G \setminus A$ the subgraph of G induced on $V(G) \setminus A$, respectively. If $A = \{a\}$, we simply write $B \setminus a$ and $G \setminus a$, respectively. Given two graphs G and H, the union of G and H, denoted $G \cup H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Given two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write $G = H$. Given a plane graph G and an integer $i \geq 3$, an i-face in G is a face of size i. Let $f_i(G)$ denote the number of i-faces in G and $n_i(G)$ denote the number of vertices of degree i in G. Given an edge-coloring c of G, let $c(G)$ denote the number of colors used under c. For any positive integer k, let $\{k\} := \{1, 2, \ldots, k\}$.

2 Rainbow Paths

In this section, we study planar anti-Ramsey numbers for paths. We begin with a construction of a plane triangulation T_H that will be needed in the proof of Theorem 2.3.

Lemma 2.1 For any integers $p \geq 1$ and $n = 3p + 2$, there exist plane triangulations H on $p + 2$ vertices and T_H on n vertices such that H and T_H satisfy the following.

(a) $H \subseteq T_H$ and H is hamiltonian;
(b) $V(T_H) \setminus V(H)$ is an independent set in T_H;
(c) The longest path in T_H has $2p + 5 - \max\{0, 3 - p\}$ vertices; and
(d) The longest path in T_H with both endpoints in $V(H)$ has $2p + 3$ vertices.

Proof. Let P be a path with vertices v_1, v_2, \ldots, v_p in order. Let H be the plane triangulation obtained from P by adding two adjacent vertices x, y and joining each of x and y to all vertices on P with the outer face of H having vertices x, y, v_p on its boundary. Then $|H| = p + 2$ and H is hamiltonian. Let T_H be the plane triangulation obtained from H by adding a new vertex to each 3-face F of H and then joining it to all vertices on the boundary of F. For each $i \in \{1, 2, \ldots, p - 1\}$, let u_i and w_i be the new vertices added to the faces with vertices v_i, v_{i+1}, x and v_i, v_{i+1}, y on the boundary, respectively. Let w, z be the new vertices added to the outer face of H and the face of H with vertices x, y, v_1 on its boundary. The construction of T_H when $p = 5$ is depicted in Figure 1. Then $|T_H| = |H| + f_3(H) = 3p + 2 = n$ and $V(T_H) \setminus V(H) = \{u_1, u_2, \ldots, u_{p-1}, w_1, \ldots, w_{p-1}, v_1, z\}$. Clearly, $V(T_H) \setminus V(H)$ is a maximal independent set of T_H with $|V(T_H) \setminus V(H)| = f_3(H) = 2p$ and $|V(T_H) \setminus V(H)| \geq |H| + 1 - \max\{0, 3 - p\}$.

\[4 \]
Figure 1: The construction of T_H when $p = 5$.

It can be easily checked that the longest path in T_H has $2p + 5 - \max\{0, 3 - p\}$ vertices, and the longest path with both endpoints in $V(H)$ has $2p + 3$ vertices.

Theorem 2.2 For any $k \in \{8, 9\}$, let $\varepsilon = k \mod 2$ and $n \geq k$ be an integer. Then $\ar_{p}(n, P_{k}) \geq (3n + 3\varepsilon - \varepsilon^{*} - 3)/2$, where $\varepsilon^{*} = (n + 1 + \varepsilon) \mod 2$.

Proof. Let $k \in \{8, 9\}, n, \varepsilon, \varepsilon^{*}$ be given as in the statement. Let t be a positive integer satisfying $2t - 3 - \varepsilon + \varepsilon^{*} = n$. Then $t \geq k - 3$ because $n \geq k$. Let H be a plane drawing of $K_{2} + (K_{t-3-\varepsilon} \cup K_{\varepsilon+1})$. Clearly, H has 3-faces and 4-faces only. Notice that $|H| = t$, $f_{3}(H) = 2 + 2\varepsilon$, $f_{4}(H) = t - 3 - \varepsilon$, $e(H) = 2t - 3 + \varepsilon$, and H is P_{k-2}-free but not P_{k-3}-free. Let \mathcal{F} be a set which consists of all 4-faces of H and ε^{*} of the 3-faces of H. Let T^{*} be the plane triangulation obtained from H by adding a new vertex to each face $F \in \mathcal{F}$ and then joining it to all vertices on F. Then $|T^{*}| = |H| + |\mathcal{F}| = |H| + f_{4}(H) + \varepsilon^{*} = 2t - 3 - \varepsilon + \varepsilon^{*} = n$. Clearly, $T^{*} \in \mathcal{T}_{n}(P_{k})$. Now let c be an edge-coloring of T^{*} defined as follows: edges in $E(H)$ are colored with distinct colors under c (that is, T^{*} contains a rainbow copy of H under c), and for each $F \in \mathcal{F}$, all the new edges added inside F are colored the same, but for distinct faces $F, F' \in \mathcal{F}$, new edges inside F are colored differently than the new edges inside F'. It can be easily checked that T^{*} has no rainbow P_{k} but contains a rainbow copy of P_{k-1} under c. Then $c(T^{*}) = e(H) + f_{4}(H) + \varepsilon^{*} = 3t - 6 + \varepsilon^{*} = (3n + 3\varepsilon - \varepsilon^{*} - 3)/2$, since $n = 2t - 3 - \varepsilon + \varepsilon^{*}$. Hence, $\ar_{p}(n, P_{k}) \geq c(T^{*}) \geq (3n + 3\varepsilon - \varepsilon^{*} - 3)/2$, as desired. This completes the proof of Theorem 2.2.

We next prove a lower bound for $\ar_{p}(n, P_{k})$ when $k \geq 10$.

Theorem 2.3 Let k and n be two integers such that $n \geq k \geq 10$. Let $\varepsilon = k \mod 2$. Then

$$ar_p(n, P_k) \geq \begin{cases}
 n + 2k - 12 & \text{if } k \leq n < 3\lfloor k/2 \rfloor + \varepsilon - 5, \\
 (3n + 9 \lfloor k/2 \rfloor + 3\varepsilon - 43)/2 & \text{if } 3\lfloor k/2 \rfloor + \varepsilon - 5 \leq n \leq 5\lfloor k/2 \rfloor + \varepsilon - 15, \\
 2n + k - 14 & \text{if } n > 5\lfloor k/2 \rfloor + \varepsilon - 15.
\end{cases}$$

Proof. Let k, n, ε be given as in the statement. Assume first that $k \leq n < 3\lfloor k/2 \rfloor + \varepsilon - 5$. Then $k \geq 12$. Let $p = k - 5$ and let P and H be defined in the proof of Lemma 2.1. By Lemma 2.1, $|H| = k - 3$, $f_3(H) = 2k - 10$, $e(H) = 3k - 15$ and H is hamiltonian. Since $n < 3\lfloor k/2 \rfloor + \varepsilon - 5$, we see that $n - k + 3 < f_3(H)$. Let F be a set which consists of $n - k + 3$ many 3-faces of H. Let T^* be the plane triangulation obtained from H by adding a new vertex to each face $F \in F$ and then joining it to all vertices on the boundary of F. Clearly, $T^* \in T_n(P_k)$. Now let c be an edge-coloring of T^* defined as follows: edges in $E(H)$ are colored with distinct colors under c (that is, T^* contains a rainbow copy of H under c), and for each $F \in F$, all the new edges added inside F are colored the same, but for distinct faces $F, F' \in F$, new edges inside F are colored differently than the new edges inside F'. It can be easily checked that T^* has no rainbow P_k but contains a rainbow copy of P_{k-1} under c. Then $c(T^*) = c(H) + |F| = 3k - 15 + n - k + 3 = n + 2k - 12$. Hence, $ar_p(n, P_k) \geq c(T^*) \geq n + 2k - 12$.

Next assume that $3\lfloor k/2 \rfloor + \varepsilon - 5 \leq n \leq 5\lfloor k/2 \rfloor + \varepsilon - 15$. Let $\varepsilon^* = (n + \lfloor k/2 \rfloor) \mod 2$. By the choice of ε^*, let t be a positive integer satisfying $2t + \varepsilon^* + 10 - 3\lfloor k/2 \rfloor - \varepsilon = n$. Since $n \geq 3\lfloor k/2 \rfloor + \varepsilon - 5$, it follows that $t - 3\lfloor k/2 \rfloor + 10 \geq 2 + \varepsilon$. Let $p = \lfloor k/2 \rfloor - 4$ and let $P, H, T_H, x, y, w, v_{\lfloor k/2 \rfloor - 4}$ be defined in the proof of Lemma 2.1. By Lemma 2.1, $|H| = \lfloor k/2 \rfloor - 2$, $f_3(H) = 2|H| - 4 = 2\lfloor k/2 \rfloor - 8$ and $|T_H| = |H| + f_3(H) = 3\lfloor k/2 \rfloor - 10 \geq k - 5 - \varepsilon$. Let F^* be the outer face of T_H and F_0 be the 3-face of T_H with vertices $x, w, v_{\lfloor k/2 \rfloor - 4}$ on its boundary. Let T be the plane graph on t vertices obtained from T_H by adding $t - 3\lfloor k/2 \rfloor + 10 \geq 2 + \varepsilon$ new vertices to the face F^* and then joining each of the new vertices to both x and y (and further adding exactly one edge among the new vertices added inside F^* when $\varepsilon = 1$). Then all 4-faces of T are inside the face F^* of T_H, $e(T) = e(T_H) + 2(t - 3\lfloor k/2 \rfloor + 10) + \varepsilon = 2t + 3\lfloor k/2 \rfloor - 16 + \varepsilon$ and $f_4(T) = t - 3\lfloor k/2 \rfloor + 10 - \varepsilon$. Let F be a set which consists of all 4-faces of T (and F_0 when $\varepsilon^* = 1$). Finally, let T^* be the plane triangulation obtained from T by adding a new vertex to each face $F \in F$ and then joining it to all vertices on the boundary of F. Then $|T^*| = |T| + f_4(T) + \varepsilon^* = 2t - 3\lfloor k/2 \rfloor + 10 + \varepsilon^* - \varepsilon = n$. By Lemma 2.1, the longest (x, y)-path in T_H has $k - 5 - \varepsilon$ vertices. Clearly, the longest (x, y)-path in T^* with all its internal vertices inside the face F^* contains all the new vertices added to F^*.

Thus T^* contains P_k as a subgraph and so $T^* \in \mathcal{T}_n(P_k)$. Now let c be an edge-coloring of T^* defined as follows: edges in $E(T)$ are colored with distinct colors under c (that is, T^* contains a rainbow copy of T under c), and for each $F \in \mathcal{F}$, all the new edges added inside F are colored the same, but for distinct $F, F' \in \mathcal{F}$, new edges inside F are colored differently than the new edges inside F'. We see that T^* has no rainbow P_k but contains a rainbow P_{k-1} under c. Since $n = 2t + \varepsilon^* + 10 - 3\lfloor k/2 \rfloor - \varepsilon$, we see that
\[c(T^*) = e(T) + f_4(T) + \varepsilon^* = (2t + 3 \lfloor k/2 \rfloor - 16 + \varepsilon) + (t - 3 \lfloor k/2 \rfloor + 10 - \varepsilon) + \varepsilon^* \]
\[= (3n + 9 \lfloor k/2 \rfloor + 3\varepsilon - 42 - \varepsilon^*)/2 \]
\[\geq (3n + 9 \lfloor k/2 \rfloor + 3\varepsilon - 43)/2, \]
Hence, $ar_\rho(n, P_k) \geq c(T^*) \geq (3n + 9 \lfloor k/2 \rfloor + 3\varepsilon - 43)/2$, as desired.

Finally assume that $n \geq 5\lfloor k/2 \rfloor + \varepsilon - 14$. Let $n - k + 7 = 3m + r$, where m is a positive integer and $r \in \{0, 1, 2\}$. Since $k \geq 10$ and $n \geq 5\lfloor k/2 \rfloor + \varepsilon - 14$, we have $m \geq 3$ or $m = r = 2$. Let $t := k + 2m - 7 + \lfloor r/2 \rfloor$. Then $t \geq k - 2$ because $m \geq 3$ or $m = r = 2$, and $t + \lfloor (t-k+7)/2 \rfloor = n - \varepsilon'$, where $\varepsilon' = 1$ when $r = 1$ and $\varepsilon' = 0$ when $r \in \{0, 2\}$. Let $p = k - 9$ and let $P, H, x, y, v_1, \ldots, v_{k-9}$ be defined in the proof of Lemma 2.1. Then $|H| = k - 7$ and the longest path between x an y in H has $k - 7$ vertices. Let T' be the plane triangulation on t vertices obtained from H by: adding $t - k + 7 \geq 5$ new vertices to the outer face of H, then adding a matching of size $\lfloor (t-k+7)/2 \rfloor \geq 2$ among the new vertices, and finally joining each of the new vertices to both x and y. We see that T' is a connected P_{k-2}-free plane graph with only 3-faces and 4-faces. It can be easily checked that $f_4(T') = \lfloor (t-k+7)/2 \rfloor$ and $e(T') = 2t + k - 13 + \lfloor (t-k+7)/2 \rfloor$. Let F_0 be the 3-face of T' with vertices x, y, v_{k-9} when $k = 10$ and x, v_{k-10}, v_{k-9} when $k \geq 11$ on its boundary. Let \mathcal{F} be a set which consists of all 4-faces of T' (and F_0 when $\varepsilon' = 1$). Let T^* be the plane triangulation obtained from T' by adding a new vertex to each $F \in \mathcal{F}$ and then joining it to all vertices on the boundary of F. Then $|T^*| = |T'| + |\mathcal{F}| = |T'| + f_4(T') + \varepsilon' = t + \lfloor (t-k+7)/2 \rfloor + \varepsilon' = n$. Clearly, T^* contains P_k as a subgraph and so $T^* \in \mathcal{T}_n(P_k)$. Now let c be an edge-coloring of T^* defined as follows: edges in $E(T')$ are colored with distinct colors under c (that is, T^* contains a rainbow copy of T' under c), and for each $F \in \mathcal{F}$, all the new edges added inside F are colored the same, but for distinct faces $F, F' \in \mathcal{F}$, new edges inside F are colored differently than the new edges inside F'. We see that T^* has no rainbow P_k under c but contains a
rainbow copy of P_{k-1}. Then
\[
c(T^*) = c(T') + f_4(T') + \varepsilon' = \left(2t + k - 13 + \left\lfloor \frac{t - k + 7}{2} \right\rfloor \right) + \left(\left\lfloor \frac{t - k + 7}{2} \right\rfloor + \varepsilon' \right) \\
= 2n + k - 13 - \varepsilon' + \left\lfloor \frac{t - k + 7}{2} \right\rfloor - \left\lfloor \frac{t - k + 7}{2} \right\rfloor \\
= 2n + k - 13 - \varepsilon' + \left\lfloor \frac{r}{2} \right\rfloor - \left\lfloor \frac{r}{2} \right\rfloor \\
\geq 2n + k - 14,
\]
since $n = t + \left\lfloor (t - k + 7)/2 \right\rfloor + \varepsilon'$ and $t = k + 2m - 7 + \lfloor r/2 \rfloor$. Hence, $ar_p(n, P_k) \geq c(T^*) \geq 2n + k - 14$, as desired. This completes the proof of Theorem 2.3.\]

Remark. In the proofs of Theorem 2.2 and Theorem 2.3, $T^* \in T_n(P_k)$ has no rainbow P_k but does contain a rainbow copy of P_{k-1} under the coloring c we found.

3 Rainbow Cycles

In this section, we study planar anti-Ramsey numbers for cycles.

3.1 Improving the existing lower bound for $ar_p(n, C_k)$

We first prove a lower bound for $ar_p(n, C_5)$, which improves Theorem 1.2(c).

Theorem 3.1 Let $n \geq 119$ be an integer and let $r = (n + 7) \mod 18$. Then $ar_p(n, C_5) \geq (39n - 123 - 21r)/18$.

Proof. Let r, n be given as in the statement. Let $t \geq 6$ be a positive integer satisfying $18t + 11 + r = n$. This is possible because $n \geq 119$ and $r = (n + 7) \mod 18$. Let H be a connected C_5-free plane graph with $15t + 9$ vertices and $(12|H| - 33)/5$ edges such that H has only 3-faces and 6-faces, and no two 6-faces share an edge in common. The existence of such a graph H is due to Dowden (see Theorem 4 in [3]). Notice that $f_6(H) = 3t + 2$ and $f_3(H) = 18t + 6$. Let F be a set which consists of all 6-faces and r of the 3-faces of H. Then $|F| = f_6(H) + r$. Let T^* be the plane triangulation obtained from H by adding a new vertex to each face $F \in F$ and then joining it to all vertices on the boundary of F. Then $|T^*| = |H| + |F| = |H| + f_6(H) + r = (15t + 9) + (3t + 2) + r = 18t + 11 + r = n$ and so $T^* \in T_n(C_5)$. Finally let c be an edge-coloring of T^* defined as follows: edges in $E(H)$ are colored with distinct colors under c (that is, T^* contains a rainbow copy of H under c), and for each $F \in F$, all the new edges added inside F are colored the same, but for distinct
$F, F' \in \mathcal{F}$, new edges inside F are colored differently than the new edges inside F'. We see that T^* has no rainbow C_5 under c because H is C_5-free and no rainbow C_5 in T^* can contain any new edges added to H. Then

$$c(T^*) = e(H) + f_6(H) + r = (36t + 15) + (3t + 2) + r = (39n - 123 - 21r)/18,$$

since $n = 18t + 11 + r$. Therefore, $ar_p(n, C_5) \geq c(T^*) \geq (39n - 123 - 21r)/18$, as desired. This completes the proof of Theorem 3.1.

Remark. By Proposition 1.1 and Theorem 1.3(c), $ar_p(n, C_5) \leq ex_p(n, C_5) \leq (12n - 33)/5$ for all $n \geq 11$. It then follows from Theorem 3.1 that $(39n - 123 - 21r)/18 \leq ar_p(n, C_5) \leq ex_p(n, C_5) \leq (12n - 33)/5$ for all $n \geq 119$, where $r = (n + 7) \mod 18$.

Theorem 3.2 below provides a new lower bound for $ar_p(n, C_k)$ when $k \geq 5$, which improves Theorem 1.2(d).

Theorem 3.2 For integers $k \geq 5$, $n \geq k^2 - k$, and $r = (n - 2) \mod (k^2 - k - 2)$,

$$ar_p(n, C_k) \geq \left(\frac{k - 3}{k - 2} + \frac{2}{3(k + 1)(k - 2)}\right)(3n - 6) - \frac{2k^2 - 5k - 5}{k^2 - k - 2}r.$$

Proof. Let n, k, r be given as in the statement. Let $t \geq 3$ be an integer satisfying $(k^2 - k - 2)(t - 2) + 2 + r = n$. This is possible because $r = (n - 2) \mod (k^2 - k - 2)$ and $n \geq k^2 - k$. Let T be a plane triangulation on t vertices. Then $f_3(T) = 2t - 4$. Let $k := 3m + q$, where $q \in \{0, 1, 2\}$ and $m \geq 1$ is an integer. Let T' be obtained from T as follows. For each face F in T: first subdivide each of the $q + 1$ of the edges of F m times; next, subdivide each of the remaining $2 - q$ edges of F $m - 1$ times; and finally, replace each edge from the subdivision of T by any plane triangulation on $k - 1$ vertices. Examples of constructions of T' when $k \in \{5, 6, 7\}$ are depicted in Figure 2 and Figure 3.

![Figure 2: Subdividing one 3-face of T when k \in \{5, 6, 7\}.](image)

It is worth noting that different edges of the subdivision of T may be replaced by different plane triangulations on $k - 1$ vertices. Such a subdivision of T is possible when $q \in \{0, 1, 2\}$.
because when \(q = 2 \), every edge of \(T \) is subdivided \(m \) times; and when \(q \in \{0, 1\} \), the dual of \(T \) has a perfect matching, say \(M \). Let \(M^* \) be the dual edges of \(M \) in \(T \). Then every face \(F \) in \(T \) contains exactly one edge in \(M^* \) and \(|M^*| = t - 2 \). When \(q = 0 \), each edge in \(M^* \) is divided \(m \) times, and when \(q = 1 \), each edge in \(M^* \) is divided \(m - 1 \) times. Thus \((q + 1)(t - 2)\) many edges of \(T \) are each subdivided \(m \) times and \((2 - q)(t - 2)\) many edges of \(T \) are each subdivided \(m - 1 \) times. One can check that

\[
|T'| = t + (q + 1)(t - 2)[(m + 1)(k - 3) + m] + (2 - q)(t - 2)[((m - 1) + 1)(k - 3) + (m - 1)]
\]

\[
= t + (t - 2)[(q + 1)(mk - 2m + k - 3) + (2 - q)(mk - 2m - 1)]
\]

\[
= t + (t - 2)[(q + 1 + 2 - q)(mk - 2m) + (q + 1)(k - 3) - (2 - q)]
\]

\[
= t + (k^2 - k - 5)(t - 2)
\]

and

\[
e(T') = (q + 1)(t - 2)(m + 1)[(3(k - 1) - 6] + (2 - q)(t - 2)m[3(k - 1) - 6]
\]

\[
= (t - 2)(3k - 9)[(q + 1 + 2 - q)m + q + 1]
\]

\[
= (t - 2)(3k - 9)(3m + q + 1)
\]

\[
= (t - 2)(3k - 9)(k + 1) = 3(k^2 - 2k - 3)(t - 2).
\]

By the construction of \(T' \), we see that \(T' \) is \(C_k \)-free (but contains \(C_{k+1} \) as a subgraph), \(T' \) has \(f_3(T) \) many \(i \)-faces with \(i > 3 \) and at least

\[
(q + 1)(t - 2)(m + 1)[(2(k - 1) - 5] + (2 - q)(t - 2)m[(2(k - 1) - 5]
\]

\[
= (t - 2)(2k - 7)[(q + 1 + 2 - q)m + q + 1]
\]

\[
= (t - 2)(2k^2 - 5k - 7)
\]

\[
\ge k^2 - k - 2
\]
many 3-faces because \(t \geq 3 \) and \(k \geq 5 \). Let \(\mathcal{F} \) be a set which consists of all \(i \)-faces of \(T' \) with \(i > 4 \) and \(r \) of the 3-faces of \(T' \). Let \(T^* \) be the plane triangulation obtained from \(T' \) by adding a new vertex to each face \(F \in \mathcal{F} \) and then joining it to all vertices on the boundary of \(F \). Then \(|T^*| = |T'| + f_3(T) + r = [t+(k^2-k-5)(t-2)]+(2t-4)+r = (k^2-k-2)(t-2)+2+r = n \) and so \(T^* \in \mathcal{T}_n(C_k) \). Now let \(c \) be an edge-coloring of \(T^* \) defined as follows: edges in \(E(T') \) are colored with distinct colors under \(c \) (that is, \(T^* \) contains a rainbow copy of \(T' \) under \(c \)), and for each \(F \in \mathcal{F} \), all the new edges added inside \(F \) are colored the same, but for distinct \(F, F' \in \mathcal{F} \), new edges inside \(F \) are colored differently than the new edges inside \(F' \). We see that \(T^* \) has no rainbow \(C_k \) (but contains a rainbow copy of \(C_{k+1} \)) under \(c \) because \(T' \) is \(C_k \)-free (but contains \(C_{k+1} \) as a subgraph) and no rainbow \(C_k \) in \(T^* \) can contain any new edges added to \(T' \). Hence,

\[
c(T^*) = e(T') + f_3(T) + r = 3(k^2 - 2k - 3)(t - 2) + 2(t - 2) + r
\]

\[
= (3k^2 - 6k - 7)(t - 2) + r
\]

\[
= (3k^2 - 6k - 7) \frac{n - r - 2}{k^2 - k - 2} + r
\]

\[
= \left(\frac{k - 3}{k - 2} + \frac{2}{3(k + 1)(k - 2)} \right)(3n - 6) - \frac{2k^2 - 5k - 5}{k^2 - k - 2} r,
\]

since \(n = (k^2-k-2)(t-2)+2+r \). Therefore, \(ar_p(n, C_k) \geq c(T^*) \geq \left(\frac{k - 3}{k - 2} + \frac{2}{3(k + 1)(k - 2)} \right)(3n - 6) - \frac{2k^2 - 5k - 5}{k^2 - k - 2} r \). This completes the proof of Theorem 3.2.

3.2 New upper bounds for \(ar_p(n, C_k) \) when \(k \in \{6, 7\} \)

Finally, we use the main ideas in [6] to establish upper bounds for \(ar_p(n, C_k) \) when \(k \in \{6, 7\} \). We need to introduce more notation. Let \(C_q \) be a cycle with vertices \(v_1, v_2, \ldots, v_q \) in order, where \(q \geq 3 \). Let \(W_q \) be a wheel obtained from \(C_q \) by adding a new vertex \(v \), the central vertex of \(W_q \), and joining it to all vertices of \(C_q \). Vertices \(v_1, v_2, \ldots, v_q \) are called rim vertices of \(W_q \). A cycle \(C \subseteq W_q \) is a central \(k \)-cycle if it contains the central vertex of \(W_q \) and \(|C| = k \). For any plane triangulation \(T \) with at least four vertices and any \(v \in V(T) \), the subgraph of \(T \) induced by \(N_T[v] \) contains the wheel \(W_{d_T(v)} \) with central vertex \(v \) as a subgraph. Let \(c(v) \) be the set of all colors such that each is used to color the edges of \(W_{d_T(v)} \) under any edge-coloring \(c \) of \(T \). Lemma 3.3 below will be used in our proof.

Lemma 3.3 ([6]) Let \(T \) be a plane triangulation and let \(c : E(T) \to [m] \) be a surjection, where \(m \) is a positive integer. Then

\[
\sum_{v \in V(T)} |c(v)| \geq 4m.
\]
To establish an upper bound for $ar_p(n, C_k)$ when $k \in \{6, 7\}$, we use the main ideas in [6] by studying lower and upper bounds for the planar anti-Ramsey numbers when host graphs are wheels. For integers $k \geq 4$ and $q \geq k - 1$, we define $ar_p(W_q, C_k)$ to be the maximum number of colors in an edge-coloring of W_q that has no rainbow copy of C_k.

Theorem 3.4 For integers $k \geq 5$ and $q \geq k - 1$, $\lfloor \frac{2k-7}{k-3}q \rfloor \leq ar_p(W_q, C_k) \leq \lfloor \frac{2k-5}{k-2}q \rfloor$.

Proof. Let W_q be a wheel with rim vertices v_1, v_2, \ldots, v_q and central vertex v. To obtain the desired lower bound, let $c : E(W_q) \to [(2k-7)q/(k-3)]$ be an edge-coloring of W_q defined as follows: for each $i \in [q]$, let $r := i \mod (k-3)$ and $c(vv_i) := i$,

$$c(v_i v_{i+1}) = \begin{cases} (k-4) \cdot \frac{i-r}{k-3} + q + r - 1, & \text{if } r \in \{3, 4, \ldots, k-4\}, \\ (k-4) \cdot \frac{i-2}{k-3} + q + 1, & \text{if } r = 2, \\ (k-4) \cdot \frac{i}{k-3} + q, & \text{if } r = 0, \end{cases}$$

and

$$c(v_i v_{i+1}) = \begin{cases} (k-4) \cdot \frac{i+1}{k-3} + q + 1, & \text{if } i \neq q \text{ and } r = 1, \\ (k-4) \cdot \frac{i+1}{k-3} + q, & \text{if } i = q \text{ and } r = 1, \end{cases}$$

where all arithmetic on the index $i+1$ here and henceforth is done modulo q. It can be easily checked that c is a surjection and W_q has no rainbow C_k (but contains a rainbow copy of C_{k-1}) under the coloring c. Hence, $ar_p(W_q, C_k) \geq \lfloor (2k-7)q/(k-3) \rfloor$.

Next we prove that $ar_p(W_q, C_k) \leq (2k-5)q/(k-2)$. Let $c : E(W_q) \to [m]$ be any surjection such that W_q contains no rainbow C_k under the coloring c. It suffices to show that $m \leq (2k-5)q/(k-2)$. For any integer ℓ, let A_ℓ be the set of colors used ℓ times under the coloring c. For integers $\alpha \in [m]$ and $j \geq 1$, let: $\eta_j(\alpha)$ be the number of central k-cycles in W_q containing j edges colored α under c, $\eta(\alpha) := \sum_{j=2}^k \eta_j(\alpha)$, $\beta(\alpha) := |\{i \in [q] : c(vv_i) = \alpha\}|$ and $\beta'(\alpha) := |\{i \in [q] : c(v_i v_{i+1}) = \alpha\}|$. For any integer ℓ, it is easy to check that $\beta(\alpha) + \beta'(\alpha) = \ell$ for any $\alpha \in A_\ell$. Notice that for any integer $i \in [q]$, vv_i belongs to exactly two central k-cycles and $v_i v_{i+1}$ belongs to exactly $k-2$ central k-cycles in W_q. For any $\alpha \in A_\ell$, we see that

$$2\eta(\alpha) \leq 2\eta(\alpha) + \eta_1(\alpha) \leq \sum_{j \geq 1} j\eta_j(\alpha) = 2\beta(\alpha) + (k-2)\beta'(\alpha) \leq (k-2)\ell,$$

which implies that $\eta(\alpha) \leq (k-2)\ell/2$. Since each of the q central k-cycles of W_q contains a color α with $\eta(\alpha) \geq 1$, we have

$$q \leq \sum_{\ell \geq 2} \sum_{\alpha \in A_\ell} \eta(\alpha) \leq \sum_{\ell \geq 2} (k-2)\ell|A_\ell|/2,$$

12
which implies $2q/(k-2) \leq \sum_{\ell \geq 2} \ell |A_\ell|$. This, together with $2q = e(W_q) = \sum_{\ell \geq 1} \ell |A_\ell|$, implies that $|A_1| \leq (2k - 6)q/(k - 2)$. Then

$$m = |A_1| + \sum_{\ell \geq 2} |A_\ell| \leq |A_1| + \sum_{\ell \geq 2} |A_\ell|/2 = |A_1|/2 + \sum_{\ell \geq 1} \ell |A_\ell|/2 \leq (2k - 5)q/(k - 2),$$

as desired. \[\blacksquare\]

Corollary 3.5 below follows from the fact that $\left\lceil \frac{2k-7}{k-3} q \right\rceil = 2q - \left\lfloor \frac{q}{k-3} \right\rfloor$, $\left\lfloor \frac{2k-5}{k-2} q \right\rfloor = 2q - \left\lfloor \frac{q}{k-2} \right\rfloor$ and $ar_p(W_q, C_k) = 2q - \left\lfloor \frac{q}{k-2} \right\rfloor$ if $\left\lfloor \frac{q}{k-2} \right\rfloor = \left\lfloor \frac{q}{k-3} \right\rfloor$. One can see that $\left\lfloor \frac{q}{k-3} \right\rfloor = \left\lfloor \frac{q}{k-2} \right\rfloor$ when $q \in \{t(k - 2), \ldots, t(k - 2) + k - 4 - t\}$ for any integer $t \in [k - 4]$.

Corollary 3.5 Let $k \geq 5$ and $q \geq k - 1$ be integers. If $q \in \{t(k - 2), \ldots, t(k - 2) + k - 4 - t\}$ for some integer $t \in [k - 4]$, then $ar_p(W_q, C_k) = 2q - \left\lfloor \frac{q}{k-3} \right\rfloor$.

We are ready to determine the exact value for $ar_p(W_q, C_6)$ when $q \geq 5$.

Theorem 3.6 For integer $q \geq 5$, $ar_p(W_q, C_6) = \lfloor 5q/3 \rfloor$.

Proof. By Theorem 3.3, $ar_p(W_q, C_6) \geq \lfloor 5q/3 \rfloor$. To prove that $ar_p(W_q, C_6) \leq \lfloor 5q/3 \rfloor$, it suffices to show that for any surjection $c : E(W_q) \to [m]$ such that W_q contains no rainbow C_6 under the coloring c, we must have $m \leq \lfloor 5q/3 \rfloor$. We do that next.

Let A_ℓ be the set of colors used ℓ times under the coloring c. For $\alpha \in [m]$, let $\eta_j(\alpha)$ be the number of central 6-cycles in W_q containing j edges colored α under c, $\eta(\alpha) := \sum_{j=2}^6 \eta_j(\alpha)$, $\beta(\alpha) := |\{i \in [q] : c(v_iv_{i+1}) = \alpha\}|$ and $\beta'(\alpha) := |\{i \in [q] : c(v_{i+1}v_{i+2}) = \alpha\}|$. Then $\beta(\alpha) + \beta'(\alpha) = \ell$ for all $\alpha \in A_\ell$. Notice that for any integer $i \in [q]$, v_iv_i belongs to exactly two central 6-cycles and v_iv_{i+1} belongs to exactly four central 6-cycles. For any $\alpha \in A_\ell$, we see that

$$2\eta(\alpha) \leq 2\eta(\alpha) + \eta_1(\alpha) \leq \sum_{j \geq 1} j \eta_j(\alpha) = 2\beta(\alpha) + 4\beta'(\alpha) \leq 4\ell.$$

This implies that $\eta(\alpha) \leq 2\ell$. Notice that for any $\alpha \in A_2$, two edges of W_q colored by α can prevent at most three central 6-cycles from being rainbow under the coloring c, and so $\eta(\alpha) = \eta_2(\alpha) \leq 3$. Since each of the q central 6-cycles of W_q contains a color, say $\alpha \in [m]$, with $\eta(\alpha) \geq 1$, it follows that

$$q \leq \sum_{\ell \geq 2} \sum_{\alpha \in A_\ell} \eta(\alpha) \leq 3|A_2| + \sum_{\ell \geq 3} 2\ell |A_\ell|.$$
Thus $q/2 \leq 3|A_2|/2 + \sum_{\ell \geq 3} \ell |A_\ell|$. This, together with $2q = e(W_q) = \sum_{\ell \geq 1} \ell |A_\ell|$, implies that $2|A_1| + |A_2| \leq 3q$. Then

$$m = |A_1| + |A_2| + \sum_{\ell \geq 3} |A_\ell| \leq |A_1| + |A_2| + \sum_{\ell \geq 3} \ell |A_\ell|/3$$

$$= (2|A_1| + |A_2|)/3 + \sum_{\ell \geq 1} \ell |A_\ell|/3 = (2|A_1| + |A_2|)/3 + 2q/3 \leq 5q/3,$$

as desired.

Finally, we obtain new upper bounds for $ar_p(n, C_6)$ when $n \geq 8$ and $ar_p(n, C_7)$ when $n \geq 13$, respectively.

Theorem 3.7 $ar_p(n, C_6) \leq 17(n - 2)/6$ for all $n \geq 8$, and $ar_p(n, C_7) \leq (59n - 113)/20$ for all $n \geq 13$.

Proof. We first prove that $ar_p(n, C_6) \leq 17(n - 2)/6$ for all integers $n \geq 8$. Let $n \geq 8$ be given and let T be any plane triangulation on n vertices such that T contains C_6 as a subgraph. Let $c : E(T) \to [m]$ be any surjection such that T contains no rainbow C_6 under the coloring c. It suffices to show that $m \leq 17(n - 2)/6$. Since $e(T) = 3n - 6$ and $n \geq 8$, T must have at least two vertices each with degree at least five. Thus, $n_4(T) \leq n - 2 - n_3(T)$ and $n_3(T) \geq 0$. For any $v \in V(T)$, we see that $|c(v)| \leq e(W_{d_T(v)}; C_6) = 2d_T(v)$. But for any $v \in V(T)$ with $d_T(v) \geq 5$, by Theorem 3.6, $|c(v)| \leq ar_p(W_{d_T(v)}; C_6) = 5d_T(v)/3$. By Lemma 3.3

$$4m \leq \sum_{v \in V(T)} |c(v)| \leq 6n_3(T) + 8n_4(T) + \sum_{v \in V(T), d_T(v) \geq 5} 5d_T(v)/3$$

$$\leq n_3(T) + 4n_4(T)/3 + 5/3 \cdot \sum_{v \in V(T)} d_T(v)$$

$$\leq 4(n - 2)/3 - n_3(T)/3 + 5/3 \cdot 2(3n - 6) \leq 34(n - 2)/3,$$

which implies that $m \leq 17(n - 2)/6$, as desired.

It remains to prove that $ar_p(n, C_7) \leq (59n - 113)/20$ for all $n \geq 13$. The proof is similar to the proof of $ar_p(n, C_6) \leq 17(n - 2)/6$. We include a proof here for completeness. Let $n \geq 13$ be given and let T be any plane triangulation on n vertices such that T contains C_7 as a subgraph. Let $c : E(T) \to [m]$ be any surjection such that T contains no rainbow C_7 under the coloring c. It suffices to show that $m \leq (59n - 113)/20$. Since $e(T) = 3n - 6$ and $n \geq 13$, T must have at least one vertex of degree six. Thus, $n_5(T) \leq n - 1 - n_3(T) - n_4(T)$ and $n_i(T) \geq 0$ $(i = 3, 4)$. For any $v \in V(T)$, we see that $|c(v)| \leq e(W_{d_T(v)}; C_7) = 2d_T(v)$. But
for any $v \in V(T)$ with $d_T(v) \geq 6$, by Theorem 3.4, $|c(v)| \leq ar_p(W_{d_T(v)}, C_7) \leq \lfloor 9d_T(v)/5 \rfloor$.

By Lemma 3.3,

$$4m \leq \sum_{v \in V(T)} |c(v)| \leq 6n_3(T) + 8n_4(T) + 10n_5(T) + \sum_{v \in V(T), d_T(v) \geq 6} \lfloor 9d_T(v)/5 \rfloor \leq 3n_3(T)/5 + 4n_4(T)/5 + n_5(T) + 9/5 \cdot \sum_{v \in V(T)} d_T(v) \leq n - 1 - 2n_3(T)/5 - n_4(T)/5 + 9/5 \cdot 2(3n - 6) \leq 59(n - 2)/5 + 1,$$

which implies that $m \leq (59n - 113)/20$, as desired.

This completes the proof of Theorem 3.7.

Remark. A better upper bound for $ar_p(n, C_6)$ can be obtained using a result in [12] that $ex_p(n, C_6) \leq 18(n - 2)/7$ when $n \geq 6$. By Proposition 1.1 and Theorem 3.2, we see that $65(n - 2)/28 - 37r/28 \leq ar_p(n, C_6) \leq ex_p(n, C_6) \leq 72(n - 2)/28$ for all $n \geq 30$, where $r = (n - 2) \mod 28$.

Acknowledgments. Yongxin Lan and Yongtang Shi are partially supported by National Natural Science Foundation of China and Natural Science Foundation of Tianjin (No. 17JCQNJC00300).

References

[1] N. Alon, On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, J Graph Theory 7 (1983) 91–94.

[2] M. Axenovich, T. Jiang and A. Kündgen, Bipartite anti-Ramsey numbers of cycles, J Graph Theory 47 (2004) 9–28.

[3] C. Dowden, Extremal C_4-free/C_5-free planar graphs, J Graph Theory 83 (2016) 213–230.

[4] P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey theorems, Colloq Math Soc Janos Bolyai 10 (1975) 633–643.

[5] Z. Dvořák, D. Král’ and R. Škrekovski, Non-rainbow coloring 3-, 4- and 5-connected plane graphs, J Graph Theory 63 (2010) 129–145.

[6] M. Horňák, S. Jendrol’, I. Schiermeyer and R. Soták, Rainbow numbers for cycles in plane triangulations, J Graph Theory 63 (2010) 129–145.

[7] S. Jendrol’, J. Miškuf, R. Soták and E. Škrabul’áková, Rainbow faces in edge-colored plane graphs, J Graph Theory 62 (2009) 84–99.

[8] S. Jendrol’, I. Schiermeyer and J. Tu, Rainbow numbers for matchings in plane triangulations, Discrete Math. 331 (2014) 158–164.
[9] T. Jiang, Anti-Ramsey numbers of subdivided graphs, J Combin. Theory Ser. B 85 (2002) 361–366.

[10] T. Jiang and O. Pikhurko, Anti-Ramsey numbers of doubly edge-critical graphs, J Graph Theory 61 (2009) 210–218.

[11] Z. Jin and X. Li, Anti-Ramsey numbers for graphs with independent cycles, Electron. J Combin. 16 (2009) #R85.

[12] Y. Lan, S. O, Y. Shi and Z-X. Song, Planar Turán numbers for paths and cycles, to be submitted.

[13] J. J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey theorem, Combinatorica 22 (2002) 445–449.

[14] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286 (2004) 157–162.

[15] R. Ramamurthi and D. B. West, Maximum face-constrained coloring of plane graphs, Discrete Math. 274 (2004) 233–240.

[16] A. A. Zykov, Hypergraphs, Uspekhi Mat Nauk 29 (1974) 89–154.