PUSH-FORWARDS ON PROJECTIVE TOWERS

ANDREI NEGUT

Abstract. In this paper we derive a simple and useful combinatorial formula for the push-forwards of cohomology classes down projective towers, in terms of the push-forwards down the individual steps in the tower.

1. Introduction

1.1. Consider a proper map of algebraic varieties:

\[\pi : X' \to X. \]

Pick any class \(c \in A^*(X') \) and call it the tautological class of \(\pi \). Relative to this choice, we can define the Segre series of \(\pi \):

\[s(\pi, u) = \pi^* \left(\frac{1}{u - c} \right). \quad (1.1) \]

This series in \(u^{-1} \) has coefficients in \(A^*(X) \), and it encodes the push-forwards of all powers of the tautological class \(c \).

The terminology is motivated by the case when \(X' = \mathbb{P}_X V \) is the projectivization of a cone on \(X \). In this case, we let \(c = c_1(O(1)) \) and the above notion coincides (up to normalization) with the Segre class introduced by Fulton in [1]. In the particular case when \(V \) is a vector bundle, the Segre series equals the inverse of the (properly renormalized) Chern polynomial of \(V \).

1.2. The main subject of this paper are projective towers, namely compositions of proper maps of algebraic varieties:

\[\pi : X_k \xrightarrow{\pi^k} X_{k-1} \xrightarrow{\pi^{k-1}} \ldots \xrightarrow{\pi^2} X_1 \xrightarrow{\pi^1} X_0. \quad (1.2) \]

As before, pick \(c_i \in A^*(X_i) \) and call them the tautological classes of the tower. We want to encode the push-forwards of these tautological classes under \(\pi \), and the reasonable way to do this is to define the Segre series of the tower as:

\[s(\pi, u_1, \ldots, u_k) = \pi^* \left(\frac{1}{u_1 - c_1} \cdot \ldots \cdot \frac{1}{u_k - c_k} \right). \quad (1.3) \]

We suppress the obvious pull-back maps to \(X_k \), and hope that this will cause no confusion.
1.3. One of the main technical results of [2] involves studying a particular projective tower (1.2). One needs to derive a closed formula for the Segre series of the whole tower π from the Segre series of the individual maps π^i. The assumption we make on these individual Segre series is that:

$$s(\pi^i, u) = \prod_{m_i} Q_{m_i}(u + m_i^{i-1}c_{i-1} + ... + m_i^1c_1),$$

(1.4)

for some series Q_{m_i} with coefficients in $A^*(X_0)$, where the product goes over finitely many vectors $m_i = (m_i^1, ..., m_i^{i-1})$ of integers. This assumption will be motivated in section 2.1, based on the particular example of a tower of projective bundles. Then our main Theorem 2.3 below implies that:

$$s(\pi, u_1, ..., u_k) = \left[\prod_{i=1}^k \prod_{m_i} Q_{m_i}(u_i + m_i^{i-1}u_{i-1} + ... + m_i^1u_1) \right]^{-}$$

(1.5)

The notation $[...]^{-}$ means that we expand each Q_{m_i} in non-negative powers of $u_{i-1}, ..., u_1$, and then we only keep the monomials with all negative exponents in the resulting formula.

1.4. The basic idea, naturally, is to successively push forward the tautological classes from X_k to X_{k-1} to $...$ to X_1 to X_0, and assumption (1.4) provides the means for this recursion. However, if one carried out this procedure straightforwardly, one would not obtain a closed formula. The reason why formula (1.5) looks so nice is that we are adding terms with non-negative exponents, only to get rid of them when we apply $[...]^{-}$ at the very end.

This closed formula is very useful in the papers [2] and [3]. In the present note, we will present a baby case of the main technical computation of these papers: we will rederive a closed formula for integrals on the complete flag variety of vector subspaces of a fixed vector space.

I would like to thank Mircea Mustata, Aaron Silberstein and Aleksander Tsymbaliuk for useful discussions.

2. Tautological Classes

2.1. Consider the special case of (1.2) where $X_i = \mathbb{P}_{X_{i-1}} \mathcal{V}_i$ for some vector bundle \mathcal{V}_i of rank r_i on X_{i-1}, and $c_i = c_1(\mathcal{O}_i(1))$ is the first Chern class of the tautological line bundle. It is well-known ([1], Section 3.2) that the individual Segre classes are equal to the inverse Chern classes:

$$s(\pi^i, u) = c^{-1}(\mathcal{V}_i, u) \quad \text{where} \quad c(\mathcal{V}_i, u) = u^{r_i} \cdot \sum_{k=0}^{r_i} u^{-k}c_k(\mathcal{V}_i).$$

(2.1)

The above Chern classes only depend on the class of \mathcal{V}_i in the $K-$theory of X_{i-1}. We will make the following assumption on this class:
\[[V_i] = \sum_{m_i} [V_{m_i}] \otimes [\mathcal{O}_1(m_i^1)] \otimes \ldots \otimes [\mathcal{O}_{i-1}(m_i^{i-1})], \]

in \(K \)-theory, where the sum goes over finitely many vectors \(m_i = (m_i^1, \ldots, m_i^{i-1}) \) of integers and \([V_{m_i}] \in K(X_0)\) are arbitrary classes (we are suppressing the obvious pull-back maps, and hope that this will cause no confusion). In other words, we assume that in \(K \)-theory each \(V_i \) is constructed by twisting bundles on the lower steps in the tower by various tautological line bundles. Then the Whitney sum formula tells us that:

\[s(V_i, u) = \prod_{m_i} s(V_{m_i}, u + m_i^{i-1}c_{i-1} + \ldots + m_1^1c_1), \]

where the Segre series \(s(V_{m_i}, u) \) now have coefficients in \(A^*(X_0) \). This setup justifies our assumption (1.4).

2.2

Let us now go to a general projective tower (1.2) that satisfies assumption (1.4). Along with the variable \(u_i \), for each \(i \in \{1, \ldots, k\} \) pick an extra set of variables \(A_i \). Then our main result is the following theorem:

Theorem 2.3. We have the following relation:

\[\pi_* \prod_{i=1}^k \left(\frac{1}{u_i - c_i} \prod_{u \in A_i} \frac{1}{u - c_i} \right) = \]

\[= \prod_{i=1}^k \prod_{m_i} Q_{m_i}(u_i + m_i^{i-1}u_{i-1} + \ldots + m_1^1u_1) \prod_{u \in A_i} \frac{1}{u - u_i} \]

(2.2)

where we expand each \(Q_{m_i} \) in non-negative powers of \(u_{i-1}, \ldots, u_1 \), and each \((u - u_i)^{-1} \) in non-negative powers of \(u_i \). The notation \(\ldots \ldots \ldots \ldots \) means that we only keep the terms for which all the \(u_i \)'s and \(u \)'s have negative exponents.

Relation (1.5) is simply the case when all the \(A_i \) are empty. Though the difference between (1.5) and (2.2) is a purely formal manipulation of series, we are working with this more general format for the purposes of [2].

Proof For each \(i \) between 0 and \(k \), let us define the quantity:

\[Z_j = \pi_1^1 \ldots \pi_j^j \left[\prod_{i=1}^j \left(\frac{1}{u_i - c_i} \prod_{u \in A_i} \frac{1}{u - c_i} \right) \right]. \]

\[\cdot \prod_{i=j+1}^k \prod_{m_i} Q_{m_i}(u_i + m_i^{i-1}u_{i-1} + \ldots + m_i^{j+1}u_{j+1} + m_i^jc_j + \ldots + m_1^1c_1) \prod_{u \in A_i} \frac{1}{u - u_i} \]

It is easy to see that \(Z_k \) is the LHS and \(Z_0 \) is the RHS of (2.2). Therefore, to complete the proof of our theorem, we need to show that \(Z_j = Z_{j-1} \), or in other words that:

\[\prod_{i=j+1}^k \prod_{m_i} Q_{m_i}(u_i + m_i^{i-1}u_{i-1} + \ldots + m_i^{j+1}u_{j+1} + m_i^jc_j + \ldots + m_1^1c_1) \prod_{u \in A_i} \frac{1}{u - u_i} \]

\[= \prod_{i=j+1}^k \prod_{m_i} Q_{m_i}(u_i + m_i^{i-1}u_{i-1} + \ldots + m_i^{j}u_{j+1} + m_i^jc_j + \ldots + m_1^1c_1) \prod_{u \in A_i} \frac{1}{u - u_i} \]

...
\[
\pi^j_* \left[\left(\frac{1}{u_j - c_j} \prod_{u \in A_j} \frac{1}{u - c_j} \right) \cdot \frac{1}{u_j - c_j} \prod_{i = j+1}^k \prod_{m_i} Q_{m_i}(u_i + \ldots + m_j^i c_j + \ldots m_1^i c_1) \right] = \\
= \left[\prod_{u \in A_j} \frac{1}{u - u_j} \prod_{i = j}^k \prod_{m_i} Q_{m_i}(u_i + \ldots + m_j^i u_j + \ldots + m_1^i c_1) \right]
\] \hspace{1cm} (2.3)

To prove this relation, it is enough to assume \(Q_{m_i}(u) = u^{\alpha_{m_i}} \) and then the LHS becomes

\[
\pi^j_* \left[\sum_{\beta_j, \beta_u, \beta_{m_i}} \frac{\beta_j u_j - \sum \beta_u + \sum \beta_{m_i}}{u_j - \sum \beta_u \prod_{i \geq j} (m_i^j)^{\beta_{m_i}} u_i + \ldots + m_j^i u_j + \ldots + m_1^i c_1)} \left(\prod_{u \in A_j} \frac{1}{u - u_j} \prod_{i = j}^k \prod_{m_i} Q_{m_i}(u_i + \ldots + m_j^i u_j + \ldots + m_1^i c_1) \right) \right] -
\]

where all the \(\beta \)'s range over the non-negative integers, \(u \) ranges over \(A_j \) and \(i \) ranges over \(\{ j + 1, \ldots, k \} \). Now if we denote by \(\gamma \) the exponent of \(c_j \) and solve for \(\beta_j \), the above becomes:

\[
\pi^j_* \left[\sum_{\gamma, \beta_u, \beta_{m_i}} \frac{\beta_j u_j - \gamma - 1}{u_j - \gamma - 1} \prod_{u \in A_j} (\frac{\beta_u - \gamma - 1}{u_j - \gamma - 1}) \prod_{i > j} (m_i^j)^{\beta_{m_i}} u_i + \ldots + m_j^i u_j + \ldots + m_1^i c_1)} \left(\prod_{u \in A_j} \frac{1}{u - u_j} \prod_{i = j}^k \prod_{m_i} Q_{m_i}(u_i + \ldots + m_j^i u_j + \ldots + m_1^i c_1) \right) \right] -
\]

The condition that \(\beta_j \geq 0 \), which was lost when we replaced it by the variable \(\gamma \), is recovered by the condition \([\ldots]\). Since \(\gamma \) and the \(\beta \)'s sum independently, the above equals:

\[
\left[\left(\frac{1}{u_j - c_j} \prod_{u \in A_j} \frac{1}{u - u_j} \prod_{i = j+1}^k \prod_{m_i} Q_{m_i}(u_i + \ldots + m_j^i u_j + \ldots + m_1^i c_1) \right) \right] -
\]

Then if we replace \(\pi^j_*(u_j - c_j)^{-1} \) by (1.4), the above yields the RHS of (2.3), thus completing the proof.

\[\square\]

3. A Basic Example

Theorem (2.3) works equally well if we replace Chow rings by cohomology rings. For a simple example, let us consider the variety \(F \) of complete flags in \(\mathbb{C}^{k+1} \):

\[
V_1 \subset \ldots \subset V_k \subset \mathbb{C}^{k+1},
\]

where \(V_i \) is an \(i \)-dimensional subspace. On \(F \), we will consider the universal vector bundle \(\mathcal{V}_i \) whose fiber over (3.1) is \(V_i \), and also the tautological line bundle:

\[
\mathcal{O}_i(1) = \mathcal{V}_{k+1-i}/\mathcal{V}_{k+1-i}.
\]

(3.2)
It is well known that \(c_i = c_1(\mathcal{O}_i(1)) \) as \(i \in \{1,\ldots,k\} \) generate the cohomology of \(F \). Then we have the following result:

Proposition 3.1. The following identity tells us how to integrate any cohomology class on \(F \):

\[
\int_F \frac{1}{(u_1 - c_1) \cdots (u_k - c_k)} = (u_1 \cdots u_k)^{-k-1} \prod_{1 \leq i < j \leq k} (u_j - u_i).
\]

Proof If we let \(F_i \) parametrize flags:

\[
V_{k+1-i} \subset \ldots \subset V_k \subset \mathbb{C}^{k+1},
\]

where each \(V_j \) still has dimension \(j \), then \(F_0 = \text{pt} \) and \(F_k = F \). All these spaces fit into a projective tower:

\[
\pi : F_k \xrightarrow{\pi^k} F_{k-1} \xrightarrow{\pi^{k-1}} \ldots \xrightarrow{\pi^2} F_1 \xrightarrow{\pi^1} F_0 = \text{pt}.
\]

It is easy to see that \(F_i = \mathbb{P}_{F_i} (V_{k+2-i}^{\vee}) \), so this realizes the flag variety as a tower of projective bundles over the point. It’s easy to see that \(\mathcal{O}_i(1) \) of this tower are precisely the line bundles (3.2), and therefore we have the following equality in the Grothendieck group of \(F_i \):

\[
[V_{k+2-i}^{\vee}] = [\mathcal{O}_i^{k+1}] - [\mathcal{O}_1(-1)] - \ldots - [\mathcal{O}_{i-1}(-1)],
\]

By the Whitney sum formula and (2.1), one therefore has:

\[
s(\pi^i, u) = \frac{(u - c_1) \cdots (u - c_{i-1})}{u^{k+1}},
\]

Then (1.5) implies the desired result. We do not need the \([\ldots]\) anymore, because all terms only consist of negative monomials already.

\[\square\]

References

[1] Fulton W. *Intersection Theory*, Springer-Verlag, 1998
[2] Negut A. *Yangians of \(\hat{\mathfrak{gl}}_n \) and Affine Laumon Spaces*, work in progress
[3] Negut A. *Affine Laumon Spaces and Integrable Systems*, work in progress

Harvard University, Department of Mathematics, Cambridge, MA 02138, USA

Simion Stoilow Institute of Mathematics, Bucharest, Romania

E-mail address: andrei.negut@gmail.com