PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS ELECTRON–ION SHOCKS

LORENZO SIRONI AND ANATOLY SPITKOVSKY

Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001, USA; lsironi@astro.princeton.edu; anatoly@astro.princeton.edu

Received 2010 August 31; accepted 2010 November 4; published 2010 December 16

ABSTRACT

We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron–ion shocks by means of 2.5-dimensional particle-in-cell simulations with ion-to-electron mass ratios \(m_i/m_e \) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In “subluminal” shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via the first-order Fermi process. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains \(\sim 5\% \) of ions and \(\sim 30\% \) of ion energy. Its slope is \(-2.1 \pm 0.1 \). The scattering is provided by short-wavelength non-resonant modes produced by Bell’s instability, whose growth is seeded by the current of shock-accelerated ions that propagate ahead of the shock. Upstream electrons enter the shock with lower energy than ions (albeit by only a factor of \(\sim 5 \ll m_i/m_e \)), so they are more strongly tied to the field. As a result, only \(\sim 1\% \) of the incoming electrons are accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope \(-3.5 \pm 0.1 \)). For “superluminal” shocks, where relativistic particles cannot outrun the shock along the field, the self-generated turbulence is not strong enough to permit efficient Fermi acceleration, and the ion and electron downstream spectra are consistent with thermal distributions. The incoming electrons are heated up to equipartition with ions, due to strong electromagnetic waves emitted by the shock into the upstream. Thus, efficient electron heating (\(\gtrsim 15\% \) of the upstream ion energy) is the universal property of relativistic electron–ion shocks, but significant nonthermal acceleration of electrons (\(\gtrsim 2\% \) by number, \(\gtrsim 10\% \) by energy, with slope flatter than \(-2.5 \)) is hard to achieve in magnetized flows and requires weakly magnetized shocks (magnetization \(\sigma \lesssim 10^{-3} \)), where magnetic fields self-generated via the Weibel instability are stronger than the background field. These findings place important constraints on the models of gamma-ray bursts and jets from active galactic nuclei that invoke particle acceleration in relativistic magnetized electron–ion shocks.

Key words: acceleration of particles – cosmic rays – galaxies: jets – gamma-ray burst: general – shock waves

Online-only material: color figures

1. INTRODUCTION

Nonthermal emission from pulsar wind nebulae (PWNe), jets from active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and supernova remnants (SNRs) is usually modeled as synchrotron or inverse Compton radiation from a power-law population of electrons accelerated at collisionless shocks. The slope of the power-law tail and the acceleration efficiency, i.e., the fraction of particles and energy stored in the tail, are usually parameterized ad hoc to fit the observations, due to the lack of a fully self-consistent theory of particle acceleration in shocks.

When encountering a collisionless shock, charged particles may be accelerated by means of two basic mechanisms. In first-order Fermi acceleration (or diffusive shock acceleration, DSA), particles diffuse back and forth across the shock front and gain energy by scattering from magnetic turbulence embedded in the converging flows (e.g., Blandford & Ostriker 1978; Bell 1978; Drury 1983; Blandford & Eichler 1987). Alternatively, in magnetized flows, particles may also gain energy directly from the background motional electric field \(E = -\beta \times B \), while they gyrate around the shock. The latter process is given different names depending on the barrier that reflects the particles back upstream, thereby allowing for multiple energizations. If the reflecting barrier is magnetic, due to the shock compression of

1 The second-order Fermi process, where acceleration of particles is due to stochastic encounters with randomly propagating waves, does not involve a shock. In this work, we only discuss the first-order Fermi mechanism, which we simply call “the Fermi process.”
downstream; and (2) there are appreciable fluctuations of the magnetic field at the shock that may create local “subluminal” configurations where particle acceleration can occur. In both cases, the final outcome is difficult to predict. In support of the pre-heating scenario, a candidate mechanism has been proposed for electron heating in magnetized oblique shocks. The synchrotron maser instability at relativistic shock fronts (Langdon et al. 1988) generates a coherent train of intense electromagnetic “precursor” waves propagating upstream, which push on electrons and make them lag behind ions. The difference in bulk velocities between electrons and ions generates longitudinal electrostatic oscillations (Lyubarsky 2006) that eventually dissipate by heating the upstream electrons (Hoshino 2008). However, it is not clear if this will result in electron acceleration, besides heating. Moreover, if the incoming electrons are too hot, the synchrotron maser instability may be suppressed, thereby self-limiting the whole process.

Alternatively, as mentioned above in (2), particle acceleration in superluminal shocks may be permitted if a sufficiently strong turbulence reorients the field at the shock, opening subluminal channels where particles can return upstream. If the pre-shock medium is not turbulent by itself, such magnetic field fluctuations need to be generated by shock-accelerated particles that escape upstream across field lines. However, the existence of these particles is not obvious a priori, since in turn it requires sufficient magnetic turbulence to mediate their acceleration. In any case, the highly nonlinear problem of wave generation and particle heating and acceleration needs to be addressed with a self-consistent approach.

Fully kinetic particle-in-cell (PIC) simulations provide a powerful tool for exploration of the structure of collisionless shocks from first principles, thus determining self-consistently the interplay between shock-generated waves and accelerated particles. As opposed to semi-analytic kinetic theory methods (e.g., Kirk & Heavens 1989; Ballard & Heavens 1991; Achterberg et al. 2001; Kesht & Waxman 2005) or Monte Carlo test-particle simulations (e.g., Bednarz & Ostrowski 1998; Niemiec & Ostrowski 2004; Ellison & Double 2004; Baring 2010), PIC simulations can tackle the problem of particle acceleration in shocks without the need for simplifying assumptions about the nature of the magnetic turbulence or the details of wave–particle interactions.

Multi-dimensional PIC simulations of relativistic unmagnetized shocks have been presented by Spitkovsky (2005) for electron–positron flows (see also Chang et al. 2008; Kesht et al. 2009; Haugboelle 2010), and by Spitkovsky (2008a) for electron–ion flows. Spitkovsky (2008b) and Martins et al. (2009) have shown, respectively for electron–positron and electron–ion plasmas, that unmagnetized shocks naturally produce accelerated particles as part of the shock evolution. A comprehensive study of particle acceleration in relativistic magnetized electron–positron shocks has been performed by Sironi & Spitkovsky (2009a, hereafter SS09) by means of multi-dimensional PIC simulations. In agreement with earlier one-dimensional (1D) results (Langdon et al. 1988; Gallant et al. 1992), they found that particle acceleration in superluminal pair shocks is extremely inefficient, meaning that self-generated turbulence is not strong enough to allow for significant particle diffusion across field lines.

In this work, we extend the analysis of SS09 by investigating via 2.5-dimensional (2.5D) PIC simulations the properties of relativistic magnetized electron–ion shocks. In particular, we explore how the level of electron heating (namely, the fraction of pre-shock bulk kinetic energy transferred to post-shock electrons) and the efficiency of particle acceleration depend on the upstream bulk Lorentz factor, magnetization, and magnetic obliquity. We find that electrons are heated up to a few tens of percent of the upstream ion energy, regardless of the upstream conditions, and they can even reach equipartition with ions in high-obliquity magnetized shocks. With regard to particle acceleration, efficient nonthermal energization of ions (and electrons, to a lesser degree) via the first-order Fermi process is observed for subluminal configurations. The pressure of shock-accelerated ions propagating ahead of the shock can substantially perturb the incoming flow and alter the shock structure. In contrast, the downstream spectrum of both ions and electrons in superluminal shocks does not show any signature of acceleration to nonthermal energies, in agreement with the results of SS09 for electron–positron shocks.

This work is organized as follows. In Section 2, we discuss the setup of our simulations and the magnetic field geometry. In Section 3, the shock structure and internal physics are investigated for one representative subluminal and one superluminal obliquity; for the same angles, in Section 4 we explore the mechanisms responsible for particle heating and acceleration. The main results of our work, concerning the efficiency of electron heating and particle acceleration as a function of bulk Lorentz factor, magnetization, and magnetic obliquity, are presented in Section 5. We summarize our findings in Section 6 and comment on the application of our results to astrophysical scenarios.

2. SIMULATION SETUP

We use the three-dimensional (3D) electromagnetic PIC code TRISTAN-MP (Spitkovsky 2005), which is a parallel version of the publicly available code TRISTAN (Buneman 1993) that was optimized for studying collisionless shocks. Our simulation setup parallels SS09 very closely, which we repeat here for completeness.

The shock is set up by reflecting a cold electron–ion “upstream” flow from a conducting wall located at $x = 0$ (Figure 1). The interaction between the incoming beam (that propagates along $-\hat{x}$) and the reflected beam triggers the formation of a shock, which moves away from the wall along $+\hat{x}$. This setup is equivalent to the head-on collision of two identical plasma shells, which would form forward and reverse shocks and a contact discontinuity. Here, we follow only one of these shocks, and replace the contact discontinuity with the conducting wall. The simulation is performed in the “wall” frame, where the “downstream” plasma behind the shock has zero x-velocity. Since the downstream plasma is at rest, no extra boosts are needed to study the spectra.
We perform simulations in both 2D and 3D computational domains, and find that most of the shock physics is well captured by 2D simulations. Therefore, to follow the shock evolution for longer times with fixed computational resources, we mainly utilize 2D runs. All three components of particle velocities and electromagnetic fields are tracked, however. So, our simulations are effectively “2.5D,” i.e., 2D in physical space but 3D in momentum space.

We use a rectangular simulation box in the xy plane, with periodic boundary conditions in the y direction (Figure 1). Each computational cell is initialized with two electrons and two ions, but we also performed limited experiments with a larger number of particles per cell (up to eight per species), obtaining essentially the same results. The relativistic electron skin depth for the incoming plasma \(c/\omega_{pe}\) is resolved with 10 computational cells and the simulation time step is \(\Delta t = 0.045 \omega_{pe}^{-1}\). Here, \(\omega_{pe} \equiv (4\pi e^2 n_e/m_e)^{1/2}\) is the relativistic electron plasma frequency for the upstream flow, with electron number density \(n_e\) (measured in the wall frame) and bulk Lorentz factor \(\gamma_0\). We employ a reduced mass ratio \(m_i/m_e = 16\), which allows us to follow the shock evolution for longer times (in units of \(\omega_{pe}^{-1} = (m_i/m_e)^{1/2} \omega_{pe}^{-1}\)), while still clearly separating the ion and electron dynamical scales. As shown in Appendix A, we obtain essentially the same results when using higher mass ratios (we tried \(m_i/m_e = 100\), and up to \(m_i/m_e = 1000\) in some cases), which suggests that a mass ratio \(m_i/m_e = 16\) is already “large” enough to capture the correct acceleration physics in our shocks. In units of the relativistic ion skin depth \(c/\omega_{pi} = (m_i/m_e)^{1/2}c/\omega_{pe}\), the computational domain is \(\sim 25 c/\omega_{pi}\) wide (along y), which corresponds to 1024 cells for \(m_i/m_e = 16\) and 3072 cells for \(m_i/m_e = 100\). We also tried larger domains, up to 4096 cells wide (or \(\sim 100 c/\omega_{pi}\) for \(m_i/m_e = 16\)), obtaining similar results. Our computational box expands along x at the speed of light (see below), reaching the length of \(\sim 10,000 c/\omega_{pe}\) (or \(\sim 400,000\) cells for \(m_i/m_e = 16\)) at the final time of our longest simulation.

The incoming electron–ion stream is injected along \(-\hat{x}\) with the bulk Lorentz factor \(\gamma_0 = 15\) and a small thermal spread \(\Delta \gamma = 10^{-4}\). As we comment in Section 5, our results can be rescaled to account for a different \(\gamma_0\) (we explore a wide range in \(\gamma_0\), from 3 to 50). The upstream flow is seeded with a background magnetic field \(B_0\) such that the ratio of magnetic to kinetic energy density is \(\sigma = B_0^2/4\pi \gamma_0 m_i n_i c^2 = 0.1\), where \(n_i\) \((=n_e)\) is the number density of incoming ions.\(^2\) In Section 5, we show how our results change for lower magnetizations, down to \(\sigma = 10^{-5}\), at which point the shock properties approach the unmagnetized case discussed by Spitkovsky (2008a). The magnetized regime we explore here may be relevant for internal shocks in GRBs and AGN jets, as we discuss in Section 6.

For each value of the magnetization, we explore a range of magnetic inclinations by varying the angle \(\theta\) between the shock direction of propagation \(+\hat{x}\) and the upstream magnetic field \(B_0\) (Figure 1). The magnetic obliquity angle \(\theta\) is measured in the wall frame. We vary \(\theta\) from \(\theta = 0^\circ\), which corresponds to a “parallel” shock, with the magnetic field aligned with the shock normal, up to \(\theta = 90^\circ\), i.e., a “perpendicular” shock, with the magnetic field along the shock front. For \(\theta \neq 0^\circ\), in the upstream medium we also initialize a motional electric field \(E_\parallel = -\beta_\parallel \times B_0\), where \(\beta_\parallel = -\beta_0 \hat{x}\) is the 3-velocity of the injected plasma. As we show in Appendix B, our results do not depend on the orientation of the magnetic field with respect to the simulation plane, as parameterized by the azimuthal angle \(\varphi\) shown in Figure 1 (\(\varphi = 0^\circ\) for field in the xy plane of the simulations, \(\varphi = 90^\circ\) for field in the xz plane).

As a byproduct of the shock evolution, particles and electromagnetic waves may propagate upstream from the shock at the speed of light. To ensure that the long-term evolution of the shock is captured correctly, they should not be removed from the computational domain; otherwise, we would artificially suppress any feedback they may have on the shock. For this reason, we employ a “moving injector” (receding from the wall at the speed of light) and an expanding simulation box (see SS09 for details). This permits us to follow the shock evolution as far as the computational resources allow, preserving all the particles and waves generated by the shock.

However, since the shock velocity is smaller than the speed of light, the distance between the injector and the shock increases linearly with time. In all PIC codes, a numerical heating instability arises when cold relativistic plasma propagates for large distances over the numerical grid (Dieckmann et al. 2006). For electron–positron shocks, in order to suppress this instability we let our moving injector periodically jump backward (i.e., toward the wall), so that the distance between the shock and the injector stayed roughly constant (see the “jumping injector” technique in SS09). However, for electron–ion shocks this is not a viable solution, since the incoming flow is heavily influenced by particles and waves generated by the shock, as we show in Section 3. By resetting the position of the injector, we would discard such particles and waves, thus dramatically interfering with the long-term evolution of the shock. Instead, we notice that the onset of the numerical instability is significantly delayed if we reduce the transverse size of our simulations. For long \((>2000 \omega_{pe}^{-1})\) simulations of strongly magnetized high-obliquity shocks, which are more affected by the numerical instability, we then employ a computational box with only 256 transverse cells (down to 64, in some cases). At \(\omega_{pe}t \lesssim 2000\) (i.e., before the growth of the instability), the results from such small simulations are identical to our “fiducial” runs with 1024 transverse cells, showing that the relevant 2D properties of the shock are still preserved. For \(m_i/m_e = 16\), a transition to the 1D regime is observed only for computational boxes with less than 32 transverse cells.

3. SHOCK STRUCTURE

We now describe the structure and internal physics of relativistic magnetized electron–ion shocks. In this section, as well as in Section 4, we fix the upstream bulk Lorentz factor \((\gamma_0 = 15)\) and magnetization \((\sigma = 0.1)\), and investigate two representative magnetic inclination angles: \(\theta = 15^\circ\) and \(75^\circ\). The dependence of our findings on the bulk Lorentz factor, magnetization, and magnetic obliquity of the upstream flow is discussed in Section 5.

According to the criterion anticipated in Section 1, a shock is “superluminal” if particles cannot escape ahead of the shock by sliding along the magnetic field. In the upstream frame, this corresponds to magnetic inclinations \(\theta^\prime\) such that \(\cos \theta^\prime > \cos \theta_{\parallel,0}^\prime = \beta_\parallel^\prime\), where \(\beta_\parallel^\prime\) is the shock speed in the upstream frame. In the simulation frame, the critical obliquity angle that separates subluminal and superluminal configurations

\(^2\) The magnetization parameter as defined above pertains to ions. For electrons, \(\sigma_{e,0} = (m_i/m_e)\sigma\) at injection, where the electron kinetic energy is \(\gamma_0 m_e c^2\). So, it seems that the electron magnetization would depend on \(m_i/m_e\), for fixed \(\sigma\). However, on their way to the shock, electrons increase their average energy up to a fraction \(\alpha\) of the initial ion energy \(\gamma_0 m_i c^2\), where \(\alpha\) is independent of \(m_i/m_e\) (see Appendix A). So, the “effective” electron magnetization \(\sigma_{e,eff} = (1/\alpha)\sigma\) does not depend on the mass ratio.
will be $\theta_{\text{crit}} = \arccot \gamma_{sh}(\beta_0 + \beta_{sh})$, where β_0 and γ_{sh} are the shock velocity and Lorentz factor in the simulation frame (see SS09 for a detailed discussion). For $\gamma_0 = 15$ and $\sigma = 0.1$, the critical obliquity angle is $\theta_{\text{crit}} \approx 34^\circ$, and it stays confined within a relatively narrow range (between $\sim 26^\circ$ and $\sim 42^\circ$) for relativistic ($\gamma_0 \gtrsim 2$) flows with moderate magnetization ($\sigma \lesssim 1.0$), as shown in Figure 2 of SS09. It follows that $\theta = 15^\circ$ is a subluminal shock, and $\theta = 75^\circ$ is superluminal.

Figures 2–6 present the internal structure of the shock as a function of the longitudinal coordinate x. For the subluminal angle $\theta = 15^\circ$, Figure 2 covers the whole longitudinal extent of the simulation domain, whereas Figure 3 focuses on a smaller region around the shock, as delimited by the vertical dashed red lines in the first panel of Figure 2. Both figures refer to $\omega_{\pi f} = 2250$, when the shock is already fully developed. The temporal evolution of the shock, from the early stages up to the self-similar state approached at $t \sim 750$ already captures the main properties of the long-term evolution of the shock.

This section is organized as follows. In Section 3.1, we present a general description of the structure of relativistic magnetized shocks in electron–ion plasmas. We focus on the properties they share with electron–positron shocks, and emphasize the differences. Then, we separately discuss the cases of subluminal (in Section 3.2, for $\theta = 15^\circ$) and superluminal (in Section 3.3, for $\theta = 75^\circ$) shocks, describing how the obliquity of the field affects the shock structure.

3.1. Magnetized Relativistic Electron–Ion Shocks: General Overview

For all oblique magnetic configurations (i.e., with the exception of strictly parallel and perpendicular shocks), a fluid structure with two shocks (a strong “fast” shock and a weak “slow” shock) is seen in our PIC simulations of both electron–positron (SS09) and electron–ion flows, as expected from analytic theory (Majorana & Anile 1987) and MHD calculations (Komissarov 2003). The incoming fluid does not stop completely at the fast shock. The residual bulk velocity is larger than the local slow magnetosonic speed, and a slow shock is formed behind the fast shock (i.e., closer to the wall, in our simulations). The slow shock transition in our PIC simulations is not as sharp as MHD would predict, due to insufficient dissipation along the magnetic field. The slow shock becomes slower and weaker as θ approaches either 0° or 90°, and relatively stronger and faster for intermediate obliquities. For oblique configurations, we will neglect the slow shock and refer to the fast shock simply as “the shock.”

The jump in density and electromagnetic fields at the fast shock, as well as the shock velocity, is in agreement with MHD calculations and with PIC simulations of electron–positron shocks (see Table 1 in SS09). As observed in pair shocks, at low obliquities ($\theta \lesssim 45^\circ$) the effective adiabatic index of the downstream plasma is $\gamma = 4/3$, as in a 3D relativistic gas, whereas for $\theta \gtrsim 45^\circ$ it tends to $3/2$, as in a 2D fluid. In fact, right behind the shock the particle motion is mostly confined to the plane orthogonal to the field, which for large inclination angles is nearly degenerate with the direction of propagation of the incoming flow. This prevents efficient isotropization along the field and results in a 2D adiabatic index. Isotropization proceeds with distance behind the shock, and the particle distribution far downstream is roughly isotropic.

The mechanism that mediates randomization of particles at the shock varies depending on the field obliquity. In electron–positron magnetized plasmas, SS09 found that low-obliquity shocks are mediated by Weibel-like filamentation instabilities (Weibel 1959; Medvedev & Loeb 1999; Gruzinov & Waxman 1999), as happens for unmagnetized shocks (e.g., Spitkovsky 2005). The free energy for the instability comes from the counter-streaming between the incoming flow and the shock-accelerated particles propagating upstream.

Low-obliquity shocks in electron–ion magnetized plasmas are still mediated by counter-streaming instabilities, but the nature of the instability is different. For our fiducial values $\gamma_0 = 15$ and $\sigma = 0.1$, the shock evolution at early times ($\omega_{\pi f} \lesssim 300$) is governed by the electron Weibel instability, which has the largest growth rate ($\sim \omega_{pe} \gg \omega_{\pi f}$). Later on, the so-called Bell’s current-driven instability develops (Bell & Lucek 2001; Bell 2004; Reville et al. 2006), and the shock results from nonlinear steepening of the circularly polarized Alfven-type waves associated with the instability (see Section 3.2 for details). The source for the instability is the electric current of shock-accelerated ions that propagate ahead of the shock, and the polarization of the resulting modes is non-resonant with respect to the ion gyromotion. As we argue in Appendix C, Bell’s instability governs the evolution of the shock only for a limited range of magnetizations ($10^{-2} \lesssim \sigma \lesssim 0.3$, for fixed $\gamma_0 = 15$). If $\sigma \gtrsim 0.3$, the polarization of the dominant mode changes, and the waves are now generated via gyrofrequency resonance with the high-energy ions heading upstream (Kulsrud & Pearce 1969). For $\sigma \lesssim 10^{-2}$, the magnetic field is dynamically unimportant, and the shock is mediated by the ion Weibel instability (as in unmagnetized shocks; see Spitkovsky 2008a).

In contrast, high-obliquity shocks are mediated by magnetic reflection of the incoming flow off the shock-compressed magnetic field (Alsop & Arons 1988; SS09), for both electron–positron and electron–ion plasmas. The coherent gyration of the incoming particles at the shock triggers the so-called synchrotron maser instability (Hoshino & Arons 1991), where the ring of gyrating particles in the shock transition breaks up into bunches of charge. The bunches radiate a coherent train of electromagnetic waves propagating into the upstream (Gallant et al. 1992; Hoshino et al. 1992; Spitkovsky 2005), with the wavelength comparable to the Larmor radius of incoming electrons in the shock-compressed fields. For electron–positron shocks, this “precursor wave” does not have a significant impact on the upstream plasma (SS09). In electron–ion flows, the guiding-center velocity of the incoming electrons decreases, since they experience relativistic transverse oscillations in the strong field of the precursor wave. Due to their high mass, ions are less affected by the wave, and proceed at close to their initial velocity. The resulting difference in bulk velocity between the two species will generate a longitudinal electric field (Lyubarsky

3. We remark that this effect is not an artificial consequence of the reduced dimensionality of our computational domain, but it also holds for 3D simulations. Yet, it is more severe for 2D simulations with out-of-plane fields, since in this case the plane perpendicular to the field almost coincides with the simulation plane, and particle isotropization is even less efficient (see Appendix B).

4. More precisely, the instability results from the coupling of the electromagnetic filamentation (Weibel) instability with the electrostatic two-stream instability, as explained by Bret (2009). The resulting modes are oblique with respect to the streaming direction.
so that electrons are boosted toward the shock, whereas ions are deboosted. As a result, energy equipartition between electrons and ions may be achieved even before the flow arrives at the shock front, as we discuss in Section 3.3.

On the other hand, if the efficiency of ion-to-electron energy transfer in the upstream is moderate or negligible, the incoming ions will enter the shock with bulk energy much larger than electrons, so that they will penetrate deeper into the shock-compressed field (roughly, in proportion to the ratio of ion-to-electron Larmor radii). The resulting charge separation establishes a net electrostatic field at the shock pointing toward the upstream. The associated cross-shock electric potential attracts the incoming electrons into the downstream and decelerates the incoming ions, so that electrons may still end up with a significant fraction of the ion energy.

3.2. Subluminal Shocks: \(0^\circ < \theta < \theta_{\text{crit}}\)

In this section, we describe the internal structure of subluminal magnetized electron–ion shocks. We take \(\theta = 15^\circ\) as a representative case, but our results will apply to the whole range of subluminal angles, unless otherwise noted. In both electron–positron and electron–ion plasmas, subluminal shocks are characterized by the presence of a diffuse stream of shock-reflected particles that propagate ahead of the shock. The counter-streaming between these “returning” particles and the incoming flow triggers the generation of waves in the upstream medium, which in turn affect the structure of the shock and the process of particle acceleration.

The longitudinal ion phase space in Figure 2(e) shows the injected ions as a cold dense beam with \(\gamma_i \beta_i \simeq -15\). In the shock transition layer (located at \(\sim 730/c/\omega_{pi}\) for \(\omega_{pi} = 2250\)), the incoming ions are isotropized and thermalized. A diffuse population of high-energy ions moves ahead of the shock with \(\gamma_i \beta_i > 0\), following the upstream magnetic field; as we show in Section 4.1.2, these “returning” ions have been accelerated at the shock. In the upstream ion spectrum (red lines in Figures 2(b) and (i)), they appear as a high-energy broad bump, whereas the low-energy narrow peak is populated by the incoming particles. If transmitted downstream, the shock-accelerated ions will populate a power-law nonthermal tail, which is seen in the energy spectrum of Figure 2(g) (red line) beyond the thermal distribution.

In contrast, very few electrons propagate back upstream from the shock (see the longitudinal phase space of electrons in Figure 2(f)). This anticipates that in subluminal magnetized shocks electrons are accelerated with lower efficiency than ions. Despite the lack of returning electrons, the electron spectrum downstream from the shock (blue line in panel (g)) deviates from a purely thermal distribution, which suggests that some electrons may be accelerated to suprathermal energies as they cross the shock from upstream to downstream. We refer to Section 4.1 for a detailed discussion of electron acceleration.

The fact that returning ions greatly outnumber electrons has multiple effects on the structure of the shock, which were absent in electron–positron flows. First, the positively charged cloud of returning ions perturbs the incoming flow, causing significant transfer of energy from ions to electrons. At the leading edge of the population of returning ions (\(x \sim 1800/c/\omega_{pi}\)), the incoming particles cross a kind of double layer, where ions are boosted toward the shock and electrons are deboosted (see the average particle energy in Figure 2(d), at \(x \sim 1700/c/\omega_{pi}\); red for ions, blue for electrons). Beyond that point, electrons are significantly heated (see Figure 2(f) at \(800/c/\omega_{pi} < x < 1500/c/\omega_{pi}\), possibly via small-scale plasma oscillations (A. Spitkovsky et al. 2010, in preparation). The average electron energy increases toward the shock at the expense of the ion bulk energy, reaching up to \(\sim 15\%\) of the kinetic energy of injected ions (blue line in Figure 2(d)). However, electrons still enter the shock with lower average energy than ions. The resulting charge separation in the shock-compressed magnetic field generates a net cross-shock electrostatic field (\(E_x > 0\), seen at \(x \sim 730/c/\omega_{pi}\) in Figure 2(c)). The associated cross-shock potential further increases the average electron energy; in the downstream, electrons have \(\sim 30\%\) of the initial ion energy.

Furthermore, the imbalance between returning ions and electrons establishes a net (ion-driven) current in the upstream medium. The compensating current by the incoming electrons triggers the growth of the so-called Bell’s instability, which is expected in this regime of shock parameters (Bret 2009; Lemoine & Pelletier 2010). As shown in panel (e) (for \(B_x\)) and panel (f) (for \(B_y\)) of Figure 3, the instability generates circularly polarized Alfvénic-type waves in the upstream medium, with wavevector along the background field. The polarization of the waves is such that they are non-resonant with respect to the returning ions, and their wavelength (\(\sim 25/c/\omega_{pi}\)) is much smaller than the Larmor radius of the highest-energy particles. As shown in Figure 3(g) (solid for \(B_x\), dotted for \(B_y\)), the amplitude of the waves increases as they approach the shock, reaching up to \(\sim 4\) times the strength of the initial field (measured in the simulation frame). Right before the shock (\(x \sim 730/c/\omega_{pi}\)), more than \(50\%\) of the bulk kinetic energy of the upstream flow has been converted into wave magnetic energy (see the magnetic energy fraction \(\epsilon_B \equiv B^2/2\pi \rho m_i n_i c^2\) in Figure 3(d)). After the shock, the flow isotropizes, the electric current required to drive the instability vanishes, and the waves dissipate their energy into particle energy. The importance of Bell’s waves for ion acceleration will be discussed in Section 4.1.2.

In the vicinity of the shock (\(730/c/\omega_{pi} \lesssim x \lesssim 790/c/\omega_{pi}\)), the pressure of returning ions is so large that they heavily impact the structure of the transition region and the dynamics of the incoming flow. Due to the push of the returning ions, the incoming plasma slows down significantly, by more than \(50\%\), well before the shock front (see the jump in the average x-momentum of incoming ions at \(x \sim 790/c/\omega_{pi}\), the red line in Figure 3(i)). The deceleration and consequent compression of the incoming fluid produce spikes in the number density and the magnetic energy, as observed at \(x \sim 790/c/\omega_{pi}\) in Figures 3(a)–(d). Such spikes are transient quasi-periodic structures, which get advected downstream after \(\sim 100/\omega_{pi}\) (or \(\sim 30/c/\omega_{pi}\)) with the relativistic ion Larmor frequency \(\omega_{ci} \equiv \sqrt{\sigma \omega_{pi}}\), and then reform at a slightly larger distance from

\[\text{References}\]

\[\text{Sironi & Spitkovsky}\]

\[\text{The Astrophysical Journal, 726:75 (25pp), 2011 January 10}\]
the shock.\footnote{They resemble the so-called Short Large-Amplitude Magnetic Structures, or SLAMS, observed at the Earth’s bow shock (e.g., Schwartz et al. 1992).} This is the characteristic signature of the so-called “shock reformation” process. Evidence of shock modification by the accelerated particles may also be seen in the ion energy spectrum, as we discuss in Section 4.1.1.

3.2.1. Time Evolution

The picture outlined above refers to $\omega_{pi} t = 2250$, when the number of shock-accelerated ions ahead of the shock is already large enough to affect the structure of the transition region. Figure 4 follows the shock evolution from $\omega_{pi} t = 562$ to $\omega_{pi} t = 2250$, showing how the y-averaged profiles of number density (panel (a)), magnetic energy fraction $\epsilon_b \equiv B^2/8\pi \gamma m_i n_i c^2$ (panel (b)), and transverse magnetic field B_z (panel (c)) change with time.

At early times ($\omega_{pi} t = 562$; blue line), when the pressure of returning ions is negligible with respect to the ram pressure of the incoming flow, the density jump occurs on the scale of a few ion Larmor radii, like an ideal MHD shock. The magnetic field at the shock ($\epsilon_b \sim 0.15$, blue line in panel (b)) mostly results from the compression of the upstream field, with a minor contribution from counter-streaming instabilities.

Starting from $\omega_{pi} t = 1125$ (yellow line), the shock structure changes. For $\theta = 15^\circ$, the leading edge of the population of shock-accelerated ions recedes from the shock with x-velocity $\approx 0.86 c$ (corresponding to particles moving along the background field at the speed of light). Since the shock speed is $\approx 0.32 c$, the distance between the shock and the head of returning ions increases with time. Bell’s instability, which at earlier times was suppressed by advection into the shock, can now amplify the field to highly nonlinear values (B_z up to a factor of ~ 4 larger than B_0; see the green and red lines in panel (c); similar values for B_y). The magnetic energy at the shock saturates at

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Internal structure of a $\theta = 15^\circ$ subluminal shock at $\omega_{pi} t = 2250$. As a function of the longitudinal coordinate x, the following quantities are plotted: (a) y-averaged particle number density, in units of the upstream value; (b) y-averaged magnetic energy fraction $\epsilon_b \equiv B^2/8\pi \gamma m_i n_i c^2$; (c) y-averaged longitudinal electric field E_x, normalized to the upstream magnetic field B_0; (d) mean particle energy (red for ions, blue for electrons) for particles moving toward the shock, in units of the bulk energy of injected ions (green line includes also the reflected ions; the equivalent for electrons overlaps with the blue line); longitudinal phase space of ions (e) and electrons (f); (g)–(i) particle energy spectra (red for ions, blue for electrons), at three locations across the flow, as marked by arrows at the bottom of panel (f). (A color version of this figure is available in the online journal.)}
\end{figure}
Figure 3. Internal structure of a $\theta = 15^\circ$ subluminal shock at $\omega_\pi t = 2250$, zooming in on a region around the shock, as delimited by the vertical dashed red lines in Figure 2(a). The shock is located at $x \sim 730 c/\omega_\pi$. As a function of the longitudinal coordinate x, the following quantities are plotted: particle number density, in units of the upstream value (2D plot in the xy simulation plane, panel (a); 1D y-averaged profile, panel (b)); magnetic energy fraction $\epsilon_b \equiv B^2 / 8\pi \gamma_0 m_i c^2$ (2D in (c), 1D in (d)); 2D plots of B_z (e) and B_y (f), normalized to the upstream magnetic field B_0; (g) corresponding 1D profiles, for B_z (solid) and B_y (dashed); (h) 1D profile of the longitudinal electric field E_x, in units of B_0; (i) mean particle x-momentum (red for ions, blue for electrons) for particles in the bulk (i.e., neglecting accelerated particles), in units of the momentum of injected ions (green line includes also the accelerated ions; the equivalent for electrons overlaps with the blue line); longitudinal phase space of ions (j) and electrons (k).

(A color version of this figure is available in the online journal.)

equipartition with the upstream kinetic energy ($\epsilon_b \sim 0.5$, the green and red lines in panel (b)).

The increase in the strength of Bell’s waves is driven by the growth of the population of returning ions. At late times (green for $\omega_\pi t = 1687$, red for $\omega_\pi t = 2250$), the shock transition region becomes much wider (panel (a)), due to the increasing push of the returning ions on the incoming flow. The time-averaged density profile (see the thin black line in panel (a) for $\omega_\pi t = 2250$) displays the typical structure of “cosmic-ray-modified” shocks (e.g., Berezhko & Ellison 1999), with a smooth density increase (the “cosmic-ray precursor”) ahead of the main shock (here properly called “subshock”), now located at $x \sim 730 c/\omega_\pi$. The magnetic energy stays large ($\epsilon_b \sim 0.5$) across the whole transition region, with two characteristic peaks, one at the head of the cosmic-ray precursor, where the incoming plasma is first decelerated and compressed, and the other at the subshock, where the flow comes to rest (see the green and red lines in panel (b)). As clarified by panel (c), most of the magnetic energy in the region between the peaks results from the compression of Bell’s waves.
In Figure 5 no particles are seen ahead of the shock with injection ($x \sim 1200 \omega_{pi}/c$ in Figure 5), the difference between the bulk velocities of ions and electrons generates a longitudinal “wakefield” $E_x > 0$ (Lyubarsky 2006), so that electrons are initially boosted toward the shock, whereas ions are deboosted (see the average particle energy in Figure 5(d) at $x \gtrsim 1150 \omega_{pi}/c$; red for ions, blue for electrons). This initiates electrostatic wakefield oscillations in the incoming plasma (see E_x wiggles in Figure 5(c) at $600 \omega_{pi}/c \lesssim x \lesssim 900 \omega_{pi}/c$) that mediate a quasi-periodic exchange of energy between ions and electrons in the upstream (see analogous wiggles in Figure 5(d)).

If the strength of the precursor were uniform throughout the upstream region, after each wakefield oscillation the electron Lorentz factor would come back to the value γ_0 at injection (Lyubarsky 2006). Instead, we observe a secular increase in the average energy of electrons (and decrease for ions) as the incoming flow approaches the shock (Figure 5(d) at $600 \omega_{pi}/c \lesssim x \lesssim 1100 \omega_{pi}/c$). This corresponds to a gradient in the amplitude of the precursor waves, which are stronger in the vicinity of the shock. Their radiative push on the incoming electrons will then be larger right in front of the shock, and weaker farther upstream. This imbalance establishes a net wakefield $E_x > 0$ throughout the upstream region (in addition to the oscillations discussed above), which results in a systematic increase of the average electron energy toward the shock, as seen in Figure 5(d). Alternatively, one could define a “ponderomotive” electric potential (proportional to the radiative push of the precursor), whose increase toward the shock would explain the profile of average electron energy in Figure 5(d) (Hoshino 2008).

As a result, electrons and ions enter the shock with roughly the same energy. Given the resulting absence of electron–ion charge separation at the shock, no significant cross-shock electric field is generated, so that the electron and ion average energies do not appreciably change across the shock (Figure 5(d) at $x \sim 600 \omega_{pi}/c$). So, in high-obliquity shocks the upstream ponderomotive potential turns out to be more important than the cross-shock potential; yet, it is not included in most models of relativistic magnetized shocks (e.g., Gedalin et al. 2008).

The increase in electron bulk energy toward the shock is accompanied by substantial electron heating, i.e., broadening of the electron distribution. In the upstream, the electron spectrum shows two components (see blue line in Figures 5(h) and (i)). The low-energy “thermal” part, which contains most of the particles, broadens and shifts to higher energies as the flow propagates toward the shock (the shift corresponds to the secular increase in electron energy of Figure 5(d)). The high-energy component, which gets more populated in the vicinity of the shock, extends a factor of ~ 10 higher in energy than the thermal peak. It is seen in the electron phase space of Figure 5(f) as a diffuse beam moving toward the shock, with much higher x-momentum than the bulk flow. In the downstream spectrum, this extra component survives as a tail at high energies (blue line in Figure 5(g)).

As we discuss in Section 4.2.1, this high-energy component should be interpreted as a separate hotter (but still thermal) population, rather than as a nonthermal tail of accelerated particles. It is populated by electrons that, on their way to

At later times (we follow the shock evolution up to $\omega_{pi}t = 5062$), the shock structure does not qualitatively change, but the thickness of the transition region (where $\epsilon_k \sim 0.5$) still expands at $\approx 0.1 \omega_x$. A detailed study of the relation between shock width and mean free path of diffusively accelerated ions will be presented elsewhere.

3.3. Superluminal Shocks: $\theta < \theta_c \lesssim 90^\circ$

We now turn to the structure of a shock with obliquity $\theta = 75^\circ$, as a representative example of superluminal shocks. In such shocks, particles following the magnetic field cannot propagate back from the shock into the upstream. In fact, in Figure 5 no particles are seen ahead of the shock with positive x-momentum (neither ions nor electrons; phase spaces in Figures 5(e) and (f), respectively). The shock transition region (located at $x \sim 600 \omega_{pi}/c$ for $\omega_{pi}t = 1350$), which is not perturbed by the pressure of energetic ions, is much thinner than for $\theta = 15^\circ$, on the scale of a few Larmor radii of the incoming ions (compare the density profile in panel (b) between Figures 3 and 6). Despite the absence of returning particles, the incoming flow can still be perturbed by the presence of the shock, e.g., via electromagnetic waves emitted by the shock into the upstream.

As discussed in Section 3.1, coherent Larmor gyration of the incoming electrons in the shock-compressed field triggers the synchrotron maser instability (Hoshino & Arons 1991), which creates a train of transverse electromagnetic waves propagating into the upstream. These “precursor” waves can be barely seen as short-scale ripples stretched along y in the upstream region of Figure 6(c) (for ϵ_x) and Figure 6(e) (for B_y), especially in the vicinity of the shock.

The incoming electrons oscillate in the transverse field of the precursor waves, and their guiding-center velocity decreases. Since ions have larger inertia, their speed is not appreciably altered by the waves. Behind the head of the precursor ($x \sim 1200 \omega_{pi}/c$, Figure 5), the difference between the bulk velocities of ions and electrons generates a longitudinal “wakefield” $E_x > 0$ (Lyubarsky 2006), so that electrons are initially boosted toward the shock, whereas ions are deboosted (see the average particle energy in Figure 5(d) at $x \gtrsim 1150 \omega_{pi}/c$; red for ions, blue for electrons). This initiates electrostatic wakefield oscillations in the incoming plasma (see E_x wiggles in Figure 5(c) at $600 \omega_{pi}/c \lesssim x \lesssim 900 \omega_{pi}/c$) that mediate a quasi-periodic exchange of energy between ions and electrons in the upstream (see analogous wiggles in Figure 5(d)).

If the strength of the precursor were uniform throughout the upstream region, after each wakefield oscillation the electron Lorentz factor would come back to the value γ_0 at injection (Lyubarsky 2006). Instead, we observe a secular increase in the average energy of electrons (and decrease for ions) as the incoming flow approaches the shock (Figure 5(d) at $600 \omega_{pi}/c \lesssim x \lesssim 1100 \omega_{pi}/c$). This corresponds to a gradient in the amplitude of the precursor waves, which are stronger in the vicinity of the shock. Their radiative push on the incoming electrons will then be larger right in front of the shock, and weaker farther upstream. This imbalance establishes a net wakefield $E_x > 0$ throughout the upstream region (in addition to the oscillations discussed above), which results in a systematic increase of the average electron energy toward the shock, as seen in Figure 5(d). Alternatively, one could define a “ponderomotive” electric potential (proportional to the radiative push of the precursor), whose increase toward the shock would explain the profile of average electron energy in Figure 5(d) (Hoshino 2008).

As a result, electrons and ions enter the shock with roughly the same energy. Given the resulting absence of electron–ion charge separation at the shock, no significant cross-shock electric field is generated, so that the electron and ion average energies do not appreciably change across the shock (Figure 5(d) at $x \sim 600 \omega_{pi}/c$). So, in high-obliquity shocks the upstream ponderomotive potential turns out to be more important than the cross-shock potential; yet, it is not included in most models of relativistic magnetized shocks (e.g., Gedalin et al. 2008).

The increase in electron bulk energy toward the shock is accompanied by substantial electron heating, i.e., broadening of the electron distribution. In the upstream, the electron spectrum shows two components (see blue line in Figures 5(h) and (i)). The low-energy “thermal” part, which contains most of the particles, broadens and shifts to higher energies as the flow propagates toward the shock (the shift corresponds to the secular increase in electron energy of Figure 5(d)). The high-energy component, which gets more populated in the vicinity of the shock, extends a factor of ~ 10 higher in energy than the thermal peak. It is seen in the electron phase space of Figure 5(f) as a diffuse beam moving toward the shock, with much higher x-momentum than the bulk flow. In the downstream spectrum, this extra component survives as a tail at high energies (blue line in Figure 5(g)).

As we discuss in Section 4.2.1, this high-energy component should be interpreted as a separate hotter (but still thermal) population, rather than as a nonthermal tail of accelerated particles. It is populated by electrons that, on their way to
the shock, happen to receive a substantial kick toward the upstream by the wakefield oscillations mentioned above. At first, the energy of these electrons will decrease, because the kick is opposite to their x-momentum. As explained in 4.2.2. the electron energy will then oscillate with the gyropioiderically reaching a maximum that, for strong kicks, may be much larger than the characteristic energy of electrons in the bulk (see Figure 5(f)). In support of this interpretation, we see in the phase space of Figure 5(f) that injection of electrons into the high-energy component starts at $x \sim 1050 \frac{c}{\omega_{pi}}$, right behind the location where the average electron energy is driven to a minimum (Figure 5(d) at $x \sim 1100 \frac{c}{\omega_{pi}}$) by the wakefield oscillations in Figure 5(c). Closer to the shock, where the wakefield oscillations are stronger (Figure 5(c) at $600 \frac{c}{\omega_{pi}} \lesssim x \sim 900 \frac{c}{\omega_{pi}}$), more electrons are kicked back upstream and injected into the high-energy spectral component. This explains why the electron high-energy tail gets more populated toward the shock (compare Figures 5(h) and (i)). In the following, since the high-energy component in the electron spectrum is ultimately powered by the dissipation of wakefield oscillations, we shall refer to this process as “wakefield heating.”

In contrast, ions are not significantly affected by the wakefield oscillations, due to their larger mass. The upstream ion spectrum is then consistent with a single component (red line in Figures 5(h) and (i)), which results in a purely Maxwellian spectrum. This is then consistent with a single component (red line in Figure 5(g)).

We remark that the main features discussed here for $\theta = 75^\circ$, and in particular the emergence of a separate component of hot electrons in the upstream, are common to all superluminal configurations, up to $\theta = 90^\circ$.

4. PARTICLE ACCELERATION

In this section, we discuss particle acceleration in subluminal and superluminal shocks. We fix the magnetization ($\sigma = 0.1$) and bulk Lorentz factor ($\gamma_i = 15$) of the upstream flow, and investigate one representative subluminal ($\theta = 15^\circ$, in Section 4.1) and one superluminal ($\theta = 75^\circ$, in Section 4.2) magnetic obliquity. For each case, we describe the time evolution of the downstream energy spectrum and the mechanism responsible for particle energization. All particle spectra presented in this section, as well as in Section 5, are extracted from a $100 \frac{c}{\omega_{pi}}$-wide slab centered at a fixed distance of $150 \frac{c}{\omega_{pi}}$ behind the shock.

4.1. Subluminal Shocks: $0^\circ \leq \theta < \theta_{\text{crit}}$

4.1.1. Time Evolution

Figure 7 shows the time evolution of the ion (upper panel) and electron (lower panel) energy spectrum for $\theta = 15^\circ$. As shown in panel (c), the spectrum of both ions (red) and electrons (blue) clearly deviates from a Maxwellian (dashed), with a substantial population of nonthermal particles arranged in a power-law tail (dot-dashed).

The high-energy tail in the ion spectrum (upper panel) grows with time as more and more particles are shock-accelerated. At late times (red curve for $\omega_{pi}t = 5062$), the slope approaches -2, which corresponds to equal energy contributions by each decade in the Lorentz factor. It follows that, as the upper cutoff of the spectrum increases linearly in time (red line in panel (b)), the energy content of the ion nonthermal tail steadily grows, reaching $\sim 30\%$ of the total ion energy at $\omega_{pi}t = 5062$. By number, the tail is still dominated by the lower energies, and its fractional contribution to the ion census saturates at $\sim 5\%$.

At late times (e.g., $\omega_{pi}t = 5062$), the tail does not resemble a simple power law with a constant slope, but it seems to be somewhat concave, which may be due to the modification of the shock by accelerated ions (see Section 3.2), as discussed for non-relativistic shocks in SNRs by Amato & Blasi (2005, 2006).

As more ion energy is stored in the nonthermal tail, the peak of the ion thermal distribution shifts to lower energies. A similar trend is observed for electrons (lower panel in Figure 7), with the thermal bump moving to lower Lorentz factors as the acceleration efficiency increases. However, the tail in the electron spectrum contains less particles ($\sim 2\%$) and energy ($\sim 10\%$) than the ion tail, it is much steeper (with slope -3.5 ± 0.1 at $\omega_{pi}t = 5062$), and its upper energy cutoff does not grow very fast in time (blue line in panel (b), multiplied by 5 for clarity). Most importantly, as discussed in Section 3.2, no electrons are seen to propagate back upstream from the shock, as opposed to the large population of returning ions (compare the phase spaces in panels (e) and (f) of Figure 2). This suggests that there should be a substantial difference between the acceleration process of ions and electrons, as we now describe.

4.1.2. Energization Mechanism

The orbit of a representative high-energy ion from the simulation of a subluminal shock ($\theta = 15^\circ$) is plotted in Figure 8. For $\omega_{pi}t \lesssim 1200$, the particle is approaching the shock from upstream with bulk x-momentum $\sim -\gamma_0 \beta_0 \sim -15$. From $\omega_{pi}t \sim 1200$ to $\omega_{pi}t \sim 2100$, it stays at the shock gyrating around the mean magnetic field (see the ion x-location relative to the shock in panel (b)), and its Lorentz factor increases up to $\gamma_i \sim 600$ (panel (a)). Energy gain occurs primarily when the ion is in the upstream region, whereas its Lorentz factor does not significantly change while downstream (e.g., from $\omega_{pi}t \sim 1700$ to $\omega_{pi}t \sim 1850$). As the particle energy grows, its Larmor radius also proportionally increases (see the particle trajectory in panel (d)). The selected ion is finally transmitted downstream at $\omega_{pi}t \sim 2100$, where it will populate the nonthermal tail seen in the ion spectrum of Figure 7. In contrast, the shock-accelerated ions that are eventually reflected back upstream will contribute to the beam of returning ions seen in Figure 2(e), which are responsible for triggering the growth of Bell’s instability (see Section 3.2). In turn, the waves generated by the instability mediate the process of ion acceleration, as we now describe.

In panel (a), different colors show which component of the electric field governs the energy change. We see that energy gain is primarily associated with E_y (green) and E_z (red), which are indeed the two components associated with Bell’s circularly polarized waves (see Figure 3(g)). From the 1D profiles of E_y time-stacked in panel (b), we see that the wavelength of Bell’s modes is typically smaller than the ion Larmor radius (compare with blue line in panel (b)). It follows that the interaction between the selected ion and the waves will be non-resonant, i.e.,

\[\text{We note that, whereas the partition of energy between the thermal peak and the nonthermal tail changes with time, the average electron energy (that includes both components) stays relatively constant, at $\sim 30\%$ of the initial ion energy (blue line in Figure 7(a)).} \]

\[\text{We point out that, for subluminal configurations, by “shock” we actually mean the subshock, located at $x \sim 730 \frac{c}{\omega_{pi}}$ in Figure 3. Strictly speaking, “upstream” and “downstream” are then defined with respect to the subshock.} \]

\[\text{This is a consequence of our choice for the simulation frame, which coincides with the downstream plasma frame. It follows that, in the downstream region, no motional electric field is present, and the particle energy does not appreciably change. In the shock frame, energy change would be seen on both sides of the shock.} \]
The Astrophysical Journal, 726:75 (25pp), 2011 January 10
Sironi & Spitkovsky

Figure 5. Internal structure of a $\theta = 75^\circ$ superluminal shock at $\omega_{pi}t = 1350$. See the caption of Figure 2 for details. Here, the slow shock can be seen at $x \lesssim 50c/\omega_{pi}$ as an increase in density (panel (a)) and decrease in magnetic energy (panel (b)).

(A color version of this figure is available in the online journal.)

during the half Larmor period when the ion is in the upstream, it will encounter multiple wave fronts, resulting in repeated accelerations and decelerations on a sub-Larmor scale. This is clearly shown in the energy evolution of panel (a) and in the 4-velocities of panel (c), where Bell’s waves cause short-scale wiggles superimposed over the (otherwise smooth) Larmor gyration.

The overall energy gain results from favorable encounters (i.e., with the ion velocity locally aligned with the wave electric field) being more frequent than unfavorable ones. In particular, significant energization may occur when the ion is crossing the shock from upstream to downstream, as seen at $\omega_{pi}t \sim 1675$ and $\omega_{pi}t \sim 2075$ (compare panels (a) and (b)). In this case, the ion can remain in phase with the waves for a larger fraction of its orbit, since both the ion and the waves are moving toward the shock. Efficient acceleration results if the wave electric field is aligned with the ion velocity (mostly oriented along $+\hat{z}$ in this phase, for a positively charged particle gyrating around the mean magnetic field). Overall, the character of the energization process points toward a Fermi-like acceleration mechanism (or DSA), driven by non-resonant interactions of the ion with the self-generated Bell’s waves.12 Strictly speaking, the ion in Figure 8 only experiences the early stages of DSA, since it never penetrates farther than one Larmor radius into the upstream, before being advected downstream. Yet, a fraction of the high-energy ions extracted from our simulation do diffuse far upstream before being scattered back toward the shock, as expected for DSA.

During the acceleration process shown in Figure 8, the ion gyrocenter moves predominantly along the mean magnetic field (in the xz plane, for $\varphi = 90^\circ$), as shown by the time evolution of x_i (blue) and z_i (red) in panel (d). In addition, a clear drift can be seen in y_i (green) toward negative values, i.e., in the direction

12 We remark that the detailed nature of the waves is not instrumental in the process of ion acceleration, since the Fermi mechanism only requires a sufficient power in turbulent fluctuations, regardless of their origin. Yet, the details of wave–particle interactions (e.g., resonant versus non-resonant) may be important for the rate of acceleration.
Figure 6. Internal structure of a $\theta = 75^\circ$ superluminal shock at $\omega_{\pi}t = 1350$, zooming in on a region around the shock, as delimited by the vertical dashed red lines in Figure 5(a). See the caption of Figure 3 for details.

(A color version of this figure is available in the online journal.)

of the background E_0 (see SS09 for an analogous effect for positrons in pair shocks).

As explained in Section 1, particles reflected by the shock can be accelerated by the background motional electric field E_0 while drifting along the shock surface. Here, we do not differentiate between SDA and SSA, but we generically term this energization mechanism as “direct acceleration” (as opposed to “diffusive acceleration”) or “E_0-driven acceleration.” We remind readers that $E_0 = -\beta_0 \times B_0$ is the motional field at injection, and it does not include any contribution from self-generated turbulence.

In Figure 9, we quantify the relative importance of this E_0-driven acceleration mechanism with respect to the DSA process discussed above. For each of the high-energy ions extracted from the simulation, we measure the total energy gain $\Delta \gamma_i$ and the drift Δx_{E_0} along the upstream field E_0. For each bin in $\Delta \gamma_i$, the average value of Δx_{E_0} is shown as a black dot with error bars. From Δx_{E_0}, we can compute the expected energy gain $\Delta \gamma_{E_0} = (q/mc^2) E_0 \Delta x_{E_0}$ due to direct acceleration by the E_0 field.13 We see that the resulting $\Delta \gamma_{E_0}$ (solid cyan line) is much lower than the actual energy gain (black dots), which suggests that DSA in Bell’s waves plays a major role in the energization of ions. In fact, E_0-driven acceleration contributes at most $\sim 50\%$ of the total energy gain (see the dashed cyan line, which is the predicted $\Delta \gamma_{E_0}$ if the field E_0 were twice as large).

13 This formula assumes that most of the energy gain occurs in the upstream medium (where the background field is E_0), which is correct since in the simulation frame no motional electric fields should persist in the downstream region.
A separate argument needs to be made for electrons, whose acceleration path cannot be exactly the same as for ions, given the different spectrum (Figure 7), and above all the absence of returning electrons (compare phase spaces for ions and electrons in panels (j) and (k) of Figure 3, respectively). In Figure 10, we plot the orbit of a representative high-energy electron in a $\theta = 15^\circ$ subluminal shock. The upstream trajectory of the electron gets perturbed (see panels (b) and (d) at $\omega_{pi}t \sim 2000$) even before entering the shock by the density spike formed $\sim 50c/\omega_{pi}$ ahead of the shock by the pressure of returning ions. The electron energy (panel (a)) does not appreciably change before reaching the shock at $\omega_{pi}t \sim 2050$. Hereafter, the electron bounces several times across the shock transition layer (from $\omega_{pi}t \sim 2050$ to $\omega_{pi}t \sim 2175$), gaining energy by scattering off Bell’s waves (whose wavelength imprints the short-scale modulation seen in the 4-velocities of panel (c) for $2050 \lesssim \omega_{pi}t \lesssim 2125$), similar to what happens for ions.

The final energy of the selected electron ($\gamma_e m_e/m_i \sim 120$) is much smaller than the downstream energy of the representative ion followed in Figure 8 ($\gamma_i \sim 600$). This reflects the lower bulk energy (smaller by a factor of ~ 5; see Figure 2(d)) with which electrons enter the shock, with respect to ions. Due to their smaller Larmor radius, they are confined closer to the shock, and do not penetrate very far upstream, where the electric field of Bell’s waves would be stronger (or, in the standard Fermi picture, they do not sample the full velocity difference of the converging flows). Also, since they are more strongly tied to the magnetic field, they leave the acceleration region earlier by advection into the downstream (the electron in Figure 10 stays at the shock for $\omega_{pi} \Delta t \sim 125$, as opposed to $\omega_{pi} \Delta t \sim 900$ for the ion in Figure 8), which justifies the scarcity of returning electrons. In summary, electrons display a lower energy gain per acceleration cycle (relative to ions), and a higher escape probability from the acceleration region. The combination of these two effects explains why in Figure 7 electrons present a power-law tail much steeper than ions.

As a side note, we point out that the density profiles stacked in panel (b) of Figure 10 clearly show the process of shock

Figure 7. Time evolution of the downstream energy spectrum in a $\theta = 15^\circ$ subluminal shock, for ions (upper panel) and electrons (lower panel): $\omega_{pi}t = 562$ (black), $\omega_{pi}t = 1687$ (blue), $\omega_{pi}t = 2812$ (green), $\omega_{pi}t = 3937$ (yellow), and $\omega_{pi}t = 5062$ (red). Subpanels: (a) time evolution of the downstream mean particle energy (red for ions, blue for electrons), in units of the bulk energy of injected ions, with the horizontal dashed blue line showing the value expected for electrons in the absence of any ion-to-electron energy transfer ($= m_e/m_i \simeq 0.06$); (b) time evolution of the downstream maximum particle energy (red for ions; blue for electrons, multiplied by 5 for clarity); (c) fit to the electron (blue) and ion (red) spectrum at $\omega_{pi}t = 5062$, with a low-energy Maxwellian (dashed) plus a high-energy power law (dot-dashed). In panel (c), axes are the same as in the main plot.

(A color version of this figure is available in the online journal.)

14 Electrons are also attracted into the downstream by the cross-shock electric field $E_x > 0$, created by electron–ion charge separation at the shock. We clearly see this effect for some electrons, but not for the particle in Figure 10.
the wall frame, but shifted along \(x\) (c): time evolution of the particle 4-velocity, with the same color coding as in panel (a). We remind that in this case (\(\omega = 90^\circ\)) the upstream background electric field \(E_0\) is along \(-\hat{y}\).

(A color version of this figure is available in the online journal.)

Figure 9. Relative contribution of different acceleration mechanisms, for high-energy ions (such that \(\gamma_i/\gamma_{p,0} > 4\) at \(\omega_{pi}t = 2250\)) in a \(\theta = 15^\circ\) subluminal shock. Here, \(\Delta Y_{\text{HE}}\) is the ion displacement along \(E_0\), and \(\Delta Y_\gamma\) is the overall change in the Lorentz factor. The 2D histogram shows the ion phase space density \(N(\Delta Y_\gamma, \Delta Y_{\text{HE}})\). For each bin in \(\Delta Y_\gamma\), the value of \(\Delta Y_{\text{HE}}\) expected from direct acceleration by \(E_0\) is the solid cyan line. The dashed cyan line is the predicted \(\Delta Y_{\text{HE}}\) if the field \(E_0\) were twice as large.

(A color version of this figure is available in the online journal.)

reformation discussed in Section 3.2. We see a density spike emerging ahead of the shock and then being advected into the shock on a typical timescale of \(\sim 100\omega_{pi}^{-1}\). Then, a new spike forms, at a slightly larger distance (in fact, the shock transition region widens with time), and the whole process starts again.

4.2.2. Time Evolution

Figure 11 follows the time evolution of the ion (upper panel) and electron (lower panel) downstream spectrum in a \(\theta = 75^\circ\) superluminal shock. At all times, the ion spectrum is consistent with a purely Maxwellian distribution, i.e., nonthermal acceleration of ions is suppressed in superluminal shocks. The location of the thermal peak varies depending on the amount of ion energy transferred to electrons before the shock, via the mechanism described in Section 3.3.

The electron spectrum at early times (\(\omega_{pi}t = 562\), black curve) is also compatible with a single Maxwellian distribution, but at later times (blue for \(\omega_{pi}t = 2250\), green for \(\omega_{pi}t = 3937\)), a separate component emerges at high energies. We interpret this component as the result of extra heating of some electrons by the wakefield oscillations described in Section 3.3, rather than as nonthermal acceleration, for two main reasons. First, in any model of electron acceleration, we would expect a steady increase in the maximum electron Lorentz factor, at odds with what we observe in the blue line of panel (b). Also, we find that the downstream electron spectrum can be well fitted with two Maxweillianians (panel (c)), with the hotter Maxwellian (dotted line, with a temperature \(\sim 3\) times higher than the low-energy Maxwellian) accounting for the high-energy component. A fit that employs a low-energy Maxwellian plus a power law with exponential cutoff is less satisfactory.

The appearance of the high-energy component is accompanied by an increase in the average electron energy, at the expense of ions (panel (a) for \(\omega_{pi}t \lesssim 3000\); red for ions, blue for electrons). For \(\omega_{pi}t \gtrsim 3000\), the mean electron energy decreases (panel (a)), and the high-energy component recedes (\(\omega_{pi}t = 5625\), yellow curve), until it finally disappears (\(\omega_{pi}t = 7312\), red curve). The similarity between the time evolution of the average electron energy in panel (a) and the maximum electron Lorentz factor in panel (b) (a good proxy for the importance of the high-energy component) sug-
gests that a common mechanism should regulate both the low-energy "thermal" part and the high-energy tail, as we now describe.

At the beginning, electrons enter the shock with x-momentum $\equiv -\gamma_0 \beta_0 \equiv -15$ and a small thermal spread. The synchrotron maser instability at the shock front produces powerful electromagnetic waves (Poynting flux in excess of $c E_0^2/4\pi$) that illuminate the upstream flow, causing efficient transfer of bulk momentum from ions to electrons (see Section 3.3). As electrons with larger bulk energy enter the shock, the synchrotron maser instability is more efficient in producing strong precursor waves, and the transfer of energy from ions to electrons in the upstream becomes even more significant. This self-reinforcing cycle repeats until electrons reach energy equipartition with ions (panel (a), at $\omega_{pi} t \sim 2500$). As the strength of the electromagnetic precursor increases, wakefield oscillations of larger amplitude are generated in the upstream (Lyubarsky 2006). As anticipated in Section 3.3, their dissipation then results in a more pronounced high-energy component in the electron spectrum. This explains why the maximum electron Lorentz factor increases for $\omega_{pi} t \gtrsim 3000$ (blue line in panel (b)).

Heated by the upstream wakefield oscillations, electrons now enter the shock much hotter than before, i.e., their comoving momentum spread is larger. In such conditions, the growth of the synchrotron maser instability is quenched (Hoshino & Arons 1991), and the electromagnetic precursor becomes less powerful. This reduces the transfer of bulk energy from ions to electrons in the upstream, causing the decrease in average electron energy observed at $\omega_{pi} t \gtrsim 3000$ in panel (a). Also, the upstream wakefield oscillations now become weaker, so that fewer electrons are injected into the high-energy spectral component, and the maximum electron Lorentz factor decreases (panel (b), at $\omega_{pi} t \gtrsim 3000$).

In our simulation, we find that the electron spectrum approaches a steady state for $\omega_{pi} t \gtrsim 7000$ (we followed the shock evolution up to $\omega_{pi} t \sim 10,000$). However, since the incoming electrons are now colder, we cannot exclude that at later times the whole process may repeat, with efficient transfer of energy to electrons accompanied by the emergence of a new high-energy spectral component. Instead, we do not expect the ion spectrum

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{Time evolution of the downstream energy spectrum in a $\theta = 75^\circ$ superluminal shock, for ions (upper panel) and electrons (lower panel): $\omega_{pi} t = 562$ (black), $\omega_{pi} t = 2250$ (blue), $\omega_{pi} t = 3937$ (green), $\omega_{pi} t = 5625$ (yellow), and $\omega_{pi} t = 7312$ (red). Subpanels as in the caption of Figure 7, but here the electron spectrum in panel (c) is fitted with two Maxwellians. (A color version of this figure is available in the online journal.)}
\end{figure}

\footnote{This effect has been verified with controlled numerical experiments, in which we initialized the incoming particles with a larger thermal spread than the usual $\Delta \gamma = 10^{-4}$. For $\Delta \gamma \gtrsim 10^{-1}$, both the power of the electromagnetic precursor and the upstream ion-to-electron energy transfer are gradually suppressed, as well as the high-energy component in the electron spectrum.}
preserve the relevant 2D properties of the shock. The fluid quantity plotted in panel (b) is \(E_x\). Also, the electron Lorentz factor and dimensionless momentum have been divided by the mass ratio, although not indicated in the plot labels. We remind readers that in this case (\(\phi = 0^\circ\)), the upstream background electric field \(E_0\) is along \(\hat{z}\).

A color version of this figure is available in the online journal.

to deviate from a Maxwellian distribution, since ions are not significantly affected by the upstream wakefield oscillations, due to their larger inertia.

Finally, we comment on the difference between our 2D simulations and the 1D results presented by Hoshino (2008) that reported nonthermal acceleration of electrons in perpendicular magnetized electron–ion shocks. First, we find that 1D simulations overestimate the power of the electromagnetic precursor, since they cannot resolve variations along the shock surface (Figure 6(c) shows that the strength of the electromagnetic precursor is not uniform in \(y\)). As a result, 1D runs tend to overestimate the efficiency of ion-to-electron energy transfer, and the importance of the high-energy component in the electron spectrum. For \(m_i/m_e = 16\), computational domains with more than 64 transverse cells are required to obtain consistent 2D results.\(^{16}\)

Second, Hoshino (2008) followed the shock evolution only up to \(\omega_{pi} t \sim 850\), a timespan too short to appreciate the saturation and decrease in the maximum electron Lorentz factor shown in panel (b). As mentioned above, this piece of evidence is essential for our interpretation of the high-energy spectral component as a result of wakefield heating, rather than acceleration.

4.2.2. Energization Mechanism

The trajectory of a representative high-energy electron in a superluminal shock (\(\theta = 75^\circ\)) is presented in Figure 12. Panel (a) shows that all of the energy gain, up to \(\gamma_e m_e c^2 / m_e \sim 70\), occurs in the upstream region before the electron encounters the shock at \(\omega_{pi} t \sim 1050\) (see the electron \(x\)-location relative to the shock in panel (b)). After that, the electron is advected downstream, with no appreciable change in energy.

For \(\omega_{pi} t \lesssim 850\), the electron is first boosted and then deboosted (see energy, panel (a); or \(x\)-momentum, blue line in panel (c)), in response to the wakefield wiggle seen at \(\sim 350 c/\omega_{pi}\) ahead of the shock (\(E_x\) in panel (b)). So far, the trajectory of the electron in Figure 12 presents no qualitative difference from the bulk of incoming electrons. But at \(\omega_{pi} t \sim 850\), presumably due to a strong upstream-oriented kick imparted by the wakefields, the energy of the selected electron becomes so small that it can easily decouple from the bulk flow. As anticipated in Section 3.3, this is the “injection” step for all the electrons that will end up in the high-energy spectral component seen in Figure 11.

After decoupling from the bulk flow, the electron gyrocenter starts moving with the drift velocity \(E_0 \times B_0 / B_0^2\), for which the field configuration employed here (\(\phi = 0^\circ\)) corresponds to a straight path in the \(xy\) plane (see \(\gamma_e\) in panel (d) for \(\omega_{pi} t \gtrsim 850\)). At the same time, the electron gets pulled by the upstream motional electric field \(E_0\), and it performs a series of Larmor cycles (see energy in panel (a) and 4-velocity in panel (c), for \(\omega_{pi} t \gtrsim 850\)). When the electron velocity is aligned with \(-E_0\) the particle energy grows, but it decreases by the same amount when the two are oppositely directed (see the red segments in panel (a)). Overall, no net energy gain is expected from \(E_0\) during a complete Larmor cycle. In fact, as seen from the upstream frame, the electron motion is just a Larmor gyration around the background magnetic field, with energy determined by the magnitude of the kick imparted by the wakefields.

The final electron energy is determined by the combination of two factors: (1) the amplitude of the energy oscillations seen in panel (a) and (2) the gyrophase with which the particle enters the shock. Regarding (1), secular variations (i.e., averaged over gyrophase) in the electron energy are determined by the kicks imparted by the wakefields. In particular, the electron will be most sensitive to such kicks when its energy is smaller. At this point, as seen from the upstream frame, the electron is moving away from the shock. If \(E_x < 0\), the electron will receive a kick in the same direction of its momentum, and its upstream-frame energy will increase. As seen from the downstream frame, this corresponds to a larger amplitude of the resulting energy oscillation (e.g., at \(x \sim 960 c/\omega_{pi}\) in panel (a)). The opposite occurs if the phase of wakefield oscillations is such that \(E_x > 0\), so that the following energy oscillation will have a smaller amplitude (e.g., at \(x \sim 900 c/\omega_{pi}\) in panel (a)). As a confirmation of the importance of wakefields, we see that the amplitude of the energy oscillations in panel (a) increases dramatically for \(\omega_{pi} t \gtrsim 925\), when the selected electron enters a region with strong wakefields (\(E_x\) in panel (b), following the particle track for \(\omega_{pi} t \gtrsim 925\)).

On the other hand, depending on the gyrophase with which the particle encounters the shock (point (2) above), the electron will end up in a different energy bin of the downstream high-energy Maxwellian (dot-dashed line in Figure 11(c)).

Finally, we remark that, despite the significant wakefield heating experienced in the upstream, which could possibly serve as pre-injection for a Fermi-like process, the electron in Figure 12 does not bounce back from the shock into the upstream, due to insufficient turbulence on the downstream side. In fact, in our simulations of superluminal shocks, we do not find any evidence for returning electrons (see the electron phase space in Figure 5(f)), confirming that Fermi acceleration is suppressed for superluminal configurations.

5. Dependence on Upstream Conditions

Armed with a better understanding of the energization mechanisms that operate in relativistic magnetized electron–ion shocks, we now explore how the efficiency of ion-to-electron energy transfer and of particle acceleration depends on the
conditions of the upstream flow. First, keeping the bulk Lorentz factor ($\gamma_0 = 15$) and magnetization ($\sigma = 0.1$) fixed, as we did so far, we investigate the transition between subluminal and superluminal shocks by exploring the full range of magnetic obliquities, from $\theta = 0^\circ$ to $\theta = 90^\circ$ (in Section 5.1). Then, for the two representative obliquities discussed above (one subluminal, $\theta = 15^\circ$; one superluminal, $\theta = 75^\circ$), we extend our analysis to different values of the magnetization (in Section 5.2) and bulk Lorentz factor (in Section 5.3).

For different upstream parameters, we compare the particle energy spectrum computed at a distance of $150/c/\omega_{pi}$ behind the shock (averaged over a 100/c/\omega_{pi}-wide slab) at the fixed time $\omega_{pi}t = 2250$. Yet, as shown in Figures 7 and 11, the downstream particle spectrum is not in steady state. In subluminal shocks (Figure 7), the nonthermal tail grows with time, so that the acceleration efficiency we compute at $\omega_{pi}t = 2250$ should be taken as a lower limit. In superluminal shocks (Figure 11), the electron high-energy component is most pronounced between $\omega_{pi}t \sim 2000$ and $\omega_{pi}t \sim 3000$, and then it disappears, although a cyclical behavior is likely, yet undemonstrated (see Section 4.2.1). At $\omega_{pi}t = 2250$, we are capturing this high-energy component when it is close to its maximum, and more likely to result in an observational signature.

In the following, we fit the downstream particle spectrum with a three-dimensional Maxwellian plus a power-law tail with an exponential cutoff. This is not strictly appropriate for superluminal magnetized shocks, where the high-energy component of the electron spectrum is better fitted with a second (hotter) Maxwellian, as discussed in Section 4.2.1. Although this component actually results from heating (rather than acceleration), in this section we treat it as a nonthermal tail, for easier comparison with observations.\(^{17}\)

The form chosen for our fitting function allows us to split the particle population into a thermal and a nonthermal components, and to follow how the relative importance of the two sub-populations changes with the upstream parameters. In Figures 13–17, panel (a) presents the mean downstream particle energy (red for ions, blue for electrons) in units of the bulk energy of injected ions, including both thermal and nonthermal particles. Panels (b)–(d) provide a better characterization of the nonthermal component: panel (b) shows the slope p of the best-fitting power law, such that $dN_{\gamma}(\gamma)/d\gamma \propto \gamma^{-p}$; panels (c) and (d) present, respectively, the fraction of particles and energy contained in the nonthermal tail (red for ions and blue for electrons, relative to the total number or energy of that species).\(^{18}\)

In subpanels (b)–(d), the dotted lines (instead of the usual solid lines) mark the cases in which a nonthermal power-law tail is not a physically motivated model for the high-energy component (i.e., for electrons in superluminal magnetized shocks, as discussed above).

5.1. Dependence on Magnetic Obliquity θ

Figure 13 presents the downstream particle spectrum at $\omega_{pi}t = 2250$ (upper panel for ions, lower panel for electrons), for a sample of magnetic obliquities covering the full range from $\theta = 0^\circ$ to 90°. In this section, we describe how the efficiency of particle acceleration and electron heating depends on magnetic inclination, emphasizing the importance of the critical boundary $\theta_{crit} \sim 34^\circ$ between subluminal and superluminal configurations.

The ion spectrum in subluminal shocks (blue curve for $\theta = 0^\circ$, green for $\theta = 15^\circ$, red for $\theta = 30^\circ$) shows a prominent nonthermal tail at high energies, together with a thermal bump at low energies. Instead, for superluminal shocks (black for $\theta = 45^\circ$, yellow for $\theta = 75^\circ$, purple for $\theta = 90^\circ$), the ion spectrum does not appreciably deviate from a Maxwellian distribution. As shown in panels (c) and (d), the efficiency of ion acceleration (red lines) abruptly drops between $\theta = 30^\circ$ and 35°, as the magnetic obliquity passes the critical value $\theta_{crit} \sim 34^\circ$.

For subluminal configurations, the ion nonthermal tail shows a non-monotonic behavior with angle. Ion acceleration is most efficient for $\theta = 15^\circ$, with a fraction $\sim4\%$ of particles and $\sim22\%$ of energy contained in the tail at $\omega_{pi}t = 2250$ (red dots for $\theta = 15^\circ$ in panels (c) and (d)). As discussed in Section 4.1.1, at $\omega_{pi}t = 5062$ the ion acceleration efficiency reaches as much as $\sim5\%$ by number and $\sim30\%$ by energy (red crosses in panels (c) and (d)). By comparison, at $\omega_{pi}t = 2250$ the ion nonthermal tail for $\theta = 0^\circ$ only accounts for $\sim2\%$ of particles and $\sim10\%$ of ion energy, whereas the acceleration efficiency for $\theta = 30^\circ$ ($\sim4\%$ by number, $\sim20\%$ by energy) is comparable to $\theta = 15^\circ$, but the tail extends to smaller Lorentz factors. Also, the ion tail is flatter for $\theta = 15^\circ$, with a slope $p \sim 2.2$, compared to $p \sim 3.5$ for $\theta = 0^\circ$ and $p \sim 2.5$ for $\theta = 30^\circ$ (red line in panel (b)).

At earlier times (e.g., $\omega_{pi}t = 1125$, not shown here), the trend was different, with larger angles (yet still subluminal) showing flatter ion tails that extended to higher Lorentz factors and contained more particles and energy. In fact, this was the hierarchy that SS09 observed in electron–positron shocks (see Figure 11 in SS09, same colors as here). In SS09, such trend was attributed to a change in the dominant acceleration mechanism, with DSA prevailing in quasi-parallel shocks and SDA most efficient for $15^\circ \lesssim \theta \lesssim \theta_{crit}$. In electron–ion shocks, as we have shown in Section 4.1.2, magnetic turbulence created by the returning ions (in the form of Bell’s waves) can dramatically affect the acceleration process, much more than in electron–positron shocks, where the amplitude of self-generated upstream turbulence was much lower (see SS09). The hierarchy seen in the subluminal ion spectra of Figure 13 will then reflect the influence of magnetic inclination on the strength of Bell’s waves.

Since the gyrocenters of returning particles tend to move along the upstream field, for higher (yet subluminal) obliquities the returning ions will be confined closer to the shock. This has two opposite consequences. First, since the returning ions are responsible for triggering Bell’s instability, at larger obliquities its growth is more likely to be suppressed by advection into the shock. In fact, at $\omega_{pi}t = 2250$, Bell’s modes are already fully developed for $\theta = 15^\circ$, whereas for $\theta = 30^\circ$ they are just starting to grow, and the acceleration process is still governed by SDA, as in electron–positron flows (SS09). On the other hand, Bell’s instability saturates when the self-generated magnetic energy approaches the energy density of returning ions (Riquelme & Spitkovsky 2009), which is larger for higher obliquities since the returning particles accumulate in a smaller region ahead of the shock, as discussed above. It follows that Bell’s waves are stronger for $\theta = 15^\circ$ than for $\theta = 0^\circ$. Overall, the best compromise at $\omega_{pi}t = 2250$ is achieved for

\(^{17}\) Observationally, a suprathermal component in the radiation spectrum will most likely be ascribed to nonthermal acceleration of particles and fitted as a power law.

\(^{18}\) For instance, to obtain the fraction of energy in nonthermal electrons relative to the bulk energy of injected ions (which is often required in phenomenological models of GRBs and AGN jets), the value read from the blue line in panel (d) should be multiplied by the value of the blue line in panel (a).
Figure 13. Downstream particle spectrum at $\omega_{pi}t = 2250$ (upper panel for ions, lower panel for electrons) for different magnetic obliquities, from $\theta = 0^\circ$ (parallel shock) to $\theta = 90^\circ$ (perpendicular shock). In subpanels, subluminal and superluminal geometries are separated by a vertical dotted black line, corresponding to the critical angle $\theta_{\text{crit}} \approx 34^\circ$. Subpanels: (a) downstream ion (red) and electron (blue) average energy, in units of the bulk energy of injected ions, with the horizontal dashed blue line showing the value expected for electrons in the absence of any ion-to-electron energy transfer ($= m_e/m_i \approx 0.06$); (b) power-law slope of the nonthermal tail (red for ions, blue for electrons); (c) fraction of ions (red) or electrons (blue) in the nonthermal tail; and (d) fraction of energy in the ion (red) or electron (blue) nonthermal tail, with respect to the total kinetic energy of that species. In subpanels (b)-(d), the dotted blue lines mark the cases in which a nonthermal power-law tail is not a physically motivated model for the electron high-energy component (see the text). Crosses for $\theta = 15^\circ$ (red for ions, blue for electrons) correspond to values measured at $\omega_{pi}t = 5062$ (instead of $\omega_{pi}t = 2250$) to show how the nonthermal tail changes in time. (A color version of this figure is available in the online journal.)

$\theta = 15^\circ$, where the waves are both powerful and rapidly growing (compared to advection).

At later times, the situation may change. The growth of Bell’s waves for $\theta = 30^\circ$ will no longer be limited by advection, and the turbulence will saturate at higher amplitudes than for $\theta = 15^\circ$, giving efficient ion acceleration via DSA. Therefore, the trend in acceleration efficiency observed for subluminal electron–positron shocks by SS09 may eventually be restored for ions in electron–ion shocks as well. However, here it will be driven by the increase with the angle in the self-generated turbulence that mediates DSA, whereas in electron–positron flows it follows the amplitude of the background motional electric field responsible for SDA.

As discussed in Section 4.1, acceleration of electrons in subluminal shocks is depressed with respect to ions. For nearly parallel shocks (blue curve for $\theta = 0^\circ$, green for $\theta = 15^\circ$), a minor fraction (~1%) of the incoming electrons are accelerated during their passage through the shock, as explained in Section 4.1.2. In the downstream, they populate a steep ($p \sim 5$) power-law tail which only contains ~3% of the total electron energy. The tail may get somewhat flatter with time, thus accounting for more particles and energy (see blue crosses in panels (b)-(d), for $\theta = 15^\circ$), but the acceleration efficiency for electrons remains smaller than for ions by at least a factor of three. Close to the critical obliquity $\theta_{\text{crit}} \approx 34^\circ$ (see $\theta = 30^\circ$, red curve), a more pronounced tail appears in the electron spectrum, populated by particles accelerated at the shock via the SDA mechanism, in analogy to what happens in electron–positron flows (SS09). However, despite extending to high energies (up to $\gamma_e m_e/m_i \sim 400$ at $\omega_{pi}t = 2250$), the electron tail for $\theta = 30^\circ$ only contains ~1% of particles and ~2% of electron energy.

Instead, a prominent high-energy tail is observed in the electron spectrum of superluminal shocks, beyond the thermal bump. As the obliquity angle increases from $\theta = 75^\circ$ (yellow curve) to $\theta = 90^\circ$ (purple), the tail stretches to higher Lorentz factors (maximum $\gamma_e m_e/m_i$ from ~95 to ~150), and it contributes a larger fraction of electrons (from ~2% to ~13%) and electron energy (from ~6% to as much as ~35%). If this
high-energy component is fitted with a power law (but a fit with a second Maxwellian is actually more physically motivated, see Section 4.2.1), we find that it gets flatter for higher obliquities (from $\sigma \sim 2.3$ for $\theta = 75^\circ$ to $\sigma \sim 1.5$ for $\theta = 90^\circ$).

As explained in Section 4.2.2, this high-energy component results from extra heating of some electrons by the upstream wakefield oscillations described in Section 3.3, which are ultimately generated by the radiative push of the precursor wave on the incoming flow. Since the amplitude of wakefield oscillations increases with the strength of the precursor wave (Lyubarsky 2006), which is larger for higher obliquities (roughly $\propto E_0^2 \propto \sin^2 \theta$), the electron high-energy component will be more pronounced for quasi-perpendicular shocks, as seen in Figure 13. Since it is due to heating, rather than acceleration, we do not expect the electron tail in superluminal shocks to extend with time to higher Lorentz factors. Rather, it may recede to lower energies, and possibly be hidden by the low-energy thermal bump, as shown in Section 4.2.1 for $\theta = 75^\circ$.

In superluminal shocks, the electromagnetic precursor wave also causes efficient transfer of energy from ions to electrons ahead of the shock (see Section 3.3). As a result, in the downstream region the electron and ion average energies are comparable (see Figure 13(a), for $35^\circ \lesssim \theta \lesssim 75^\circ$), or electrons may be even hotter than ions (for $75^\circ \lesssim \theta \lesssim 90^\circ$). In subluminal shocks ($0^\circ \lesssim \theta \lesssim 30^\circ$), electrons are boosted and heated ahead of the shock, as a result of the perturbation induced on the incoming flow by the cloud of returning ions (see Section 3.2). With respect to superluminal angles, here the downstream electron energy is a smaller fraction ($\sim 20\%–30\%$) of the initial ion bulk energy, but still much in excess of electron energy (from $\sim 6\%$ to $\sim 15\%$, for $m_i/m_e = 16$), the value we would expect in the absence of any ion-to-electron energy transfer.

In Appendix A, we show that the values quoted here for the efficiency of electron heating and of particle acceleration are essentially unchanged for larger (and more realistic) mass ratios.

5.2. Dependence on Magnetization σ

In this section, we explore the dependence of shock thermalization and acceleration upon the magnetization of the upstream flow. We keep the magnetic obliquity fixed and vary the magnetization from $\sigma = 10^{-5}$, a virtually unmagnetized shock, up to $\sigma = 1.0$, where the upstream field is in equipartition with the kinetic energy of injected particles. We discuss separately the cases of subluminal (in Section 5.2.1, for $\theta = 15^\circ$) and superluminal (in Section 5.2.2, for $\theta = 75^\circ$) shocks.

5.2.1. Subluminal Shocks: $0^\circ \lesssim \theta < \theta_{\text{crit}}$

Figure 14 presents the downstream particle spectrum of a $\theta = 15^\circ$ subluminal shock, for different magnetizations. The ion spectrum (upper panel) shows in all cases a pronounced nonthermal tail, whereas a significant high-energy component appears for electrons (lower panel) only at $\sigma \lesssim 10^{-2}$. This corresponds to a change in the mechanism that mediates the shock.

For $\sigma \lesssim 10^{-2}$ (blue curve for $\sigma = 10^{-2}$), the shock is mediated by the filamentation (Weibel) instability, as in strictly unmagnetized flows (Spitkovsky 2005, 2008a). The free energy for the instability comes from the counter-streaming between the incoming plasma and the shock-accelerated particles that propagate ahead of the shock. In turn, magnetic turbulence generated by the instability mediates nonthermal acceleration of particles at the shock front, via a Fermi-like mechanism (Spitkovsky 2008b; Martins et al. 2009).

In fact, the ion spectrum in such shocks shows a prominent nonthermal tail. As the magnetization decreases below $\sigma = 10^{-2}$, the tail becomes flatter (from $p \sim 2.5$ at $\sigma = 10^{-2}$ to $p \sim 1.5$ at $\sigma = 10^{-3}$, the red line in Figure 14(b)), and it contains a larger fraction of ions (from $\sim 1\%$ to $\sim 5\%$, Figure 14(c)) and ion energy (from $\sim 17\%$ to $\sim 24\%$, Figure 14(d)). Similarly, the electron spectrum for $\sigma \lesssim 10^{-2}$ presents a significant high-energy tail, comparable to the ion tail in slope (compare red and blue lines in panel (b), for $\sigma \lesssim 10^{-2}$) and maximum Lorentz factor. The acceleration efficiency for electrons is not much smaller than for ions, at most a factor of two (compare the red and blue lines in panels (c) and (d), for $\sigma \lesssim 10^{-2}$).

The similarity between the acceleration properties of electrons and ions in weakly magnetized flows ($\sigma \lesssim 10^{-2}$) comes from the fact that the two species enter the shock with comparable bulk energy (compare the red and blue lines in panel (a), for $\sigma \lesssim 10^{-2}$), due to efficient transfer of energy from ions to electrons ahead of the shock (A. Spitkovsky et al. 2010, in preparation). The Fermi mechanism, which only depends on the particle Larmor radius (i.e., on particle energy, rather than mass), will then proceed in a similar way for ions and electrons.

The situation changes for $\sigma \gtrsim 10^{-2}$. Here, the magnetic field is strong enough so that filamentation of the upstream plasma is prohibited, and the growth of Weibel instability is suppressed. In

19 For both electrons and ions, the downstream spectrum at even lower magnetizations (we explored down to $\sigma = 10^{-3}$) is identical to the case $\sigma = 10^{-3}$ shown here, which is therefore a good representation of weakly magnetized (and unmagnetized) shocks.
these conditions, the current of shock-accelerated ions moving ahead of the shock can trigger Bell’s instability, as discussed in Section 3.2. For $10^{-2} \leq \sigma \leq 0.3$, the waves generated by Bell’s mechanism are responsible for mediating the shock and driving the acceleration of ions. They are most powerful for $\sigma \sim 0.1$ (black curve), which then corresponds to a peak in the ion acceleration efficiency ($\sim 4\%$ by number, $\sim 22\%$ by energy) and a flatter nonthermal tail ($\rho \sim 2.2$).

In contrast, acceleration of electrons is depressed in highly magnetized flows (black curve for $\sigma = 0.1$), as discussed in Section 4.1. As the magnetization increases, returning particles are confined closer to the shock (in units of c/ω_{pe}, but same distance in Larmor radii), so their perturbation to the incoming flow extends over a smaller length. It follows that the transfer of energy from ions to electrons in the upstream has less time to proceed, and it is therefore less efficient (see panel (a), from $\sigma = 10^{-3}$ to $\sigma = 0.1$). For $\sigma = 0.1$, electrons enter the shock with $\sim 15\%$ of the initial ion energy (see Section 3.2), so their Larmor radius is small compared to ions. Then, only a small fraction of electrons ($\sim 1\%$, panel (c)) are accelerated at the shock before being advected downstream, where they populate a steep nonthermal tail ($\rho \sim 4.5$, panel (b)).

At even higher magnetizations ($\sigma \geq 0.3$; yellow curve for $\sigma = 0.3$), the instability that mediates the shock changes again, and the dominant mode is now generated via gyrofrequency resonance with the returning ions (see Appendix C). However, the overall shape of the electron and ion spectrum does not significantly change (compare black, for $\sigma = 0.1$, and yellow, for $\sigma = 0.3$), showing that, despite the different polarization of the dominant mode (now resonant, as opposed to Bell’s non-resonant waves), the physics of the acceleration is not significantly altered. However, the level of magnetic turbulence generated by the instability becomes smaller for $\sigma \geq 0.1$, which explains the observed decrease in acceleration efficiency, especially for ions (Figure 14(c) and (d), for $\sigma \geq 0.1$).

The results presented in Figure 14 refer to $\omega_{pe}t = 2250$. At later times, the nonthermal tail will extend to higher Lorentz factors in all cases, yet at a different rate for different magnetizations. Since ion acceleration is basically regulated by the degree of magnetic turbulence, which is the largest for $\sigma \sim 0.1$, the fastest evolution in the ion spectral tail will be observed for $\sigma \sim 0.1$ (black curve), which in fact extends to the highest energy. Instead, the electron tail evolves more rapidly for moderate magnetizations ($\sigma = 10^{-2}$ in blue), since electron acceleration in high-σ flows is impeded by advection into the downstream (see Section 4.1). In general, the hierarchy in maximum energy observed in Figure 14 as a function of σ corresponds to an analogous trend in the rates of acceleration.

Finally, we remark that the results reported here for $\theta = 15^\circ$ are representative of the general behavior of low-obliquity shocks.

5.2.2. Superluminal Shocks: $\theta_{crit} < \theta \leq 90^\circ$

The downstream particle spectrum at different magnetizations for a superluminal shock with $\theta = 75^\circ$ is shown in Figure 15. The ion spectrum (upper panel) is always consistent with a purely Maxwellian distribution, with no evidence for nonthermal particles, except for the lowest magnetization ($\sigma = 10^{-5}$, green curve). The non-Maxwellian shape of the ion spectrum for $\sigma = 10^{-3}$ (red curve) results from incomplete ion thermalization at the shock front, and it will eventually relax to a Maxwellian distribution further downstream from the shock. In contrast, a prominent high-energy component appears in the electron spectrum (lower panel) for both very low (green for $\sigma = 10^{-5}$) and very high (black for $\sigma = 0.1$, yellow for $\sigma = 0.3$) magnetizations, but not in between. However, the mechanism that regulates the electron high-energy tail is markedly different between low and high magnetizations, as we now describe.

In high-σ flows ($\sigma \gtrsim 0.1$; the black curve for $\sigma = 0.1$, the yellow curve for $\sigma = 0.3$), the electromagnetic precursor wave generated by the synchrotron maser instability ensures efficient transfer of energy from ions to electrons ahead of the shock, as discussed in Section 3.3. For $\sigma \gtrsim 0.1$, the precursor is strong enough to drive electrons up to energy equipartition with ions (compare the red and blue lines in panel (a) for $\sigma \gtrsim 0.1$). As described in Section 4.2, powerful wakefield oscillations excited by the precursor wave in the upstream region dissipate their energy by producing a pronounced high-energy tail in the electron spectrum (black for $\sigma = 0.1$, yellow for $\sigma = 0.3$). The tail contains $\sim 2\%$ of electrons and $\sim 8\%$ of electron energy (blue line in panels (c) and (d), respectively). Again, we remind that in superluminal magnetized shocks ($\sigma \gtrsim 0.1$), the electron high-energy tail is due to wakefield heating (rather than acceleration), and it does not extend in time to higher Lorentz factors (see Figure 11, for $\sigma = 0.1$).

At intermediate magnetizations ($10^{-3} \lesssim \sigma \lesssim 0.1$; blue curve for $\sigma = 10^{-2}$, red for $\sigma = 10^{-3}$), the synchrotron maser instability is gradually suppressed, since it is harder for the electron motion at the shock to stay coherent on the longer gyration time. It follows that the electromagnetic precursor is weaker (Gallant et al. 1992), and ion-to-electron energy transfer in the upstream is suppressed. As a result, the electron spectrum shifts to lower energies, whereas ions get hotter (see panel (a), from $\sigma = 0.1$ down to $\sigma = 10^{-3}$). A minor
high-energy component, still due to wakefield heating, survives in the electron spectrum at \(\sigma = 10^{-2}\) (blue curve), but it disappears for \(\sigma = 10^{-3}\) (red curve). Despite the inefficiency of electron heating upstream of the shock, for \(\sigma = 10^{-3}\) the downstream electron population still contains as much as \(\sim 20\%\) of the initial ion kinetic energy (blue line in panel (a)). This is considerably in excess of \(m_i/m_e \sim 6\%\) (dashed blue line in panel (a)), the value we would expect in the absence of any ion-to-electron energy transfer.\(^{20}\) In this regime, electrons gain energy not in the upstream region, but directly at the shock front by the cross-shock potential in the ion foot.

At lower magnetizations \((10^{-5} \lesssim \sigma \lesssim 10^{-3};\) purple for \(\sigma = 10^{-4}\), the ion foot, whose scale is set by the Larmor radius of incoming ions in the shock-compressed field, becomes wider, so that electron heating by the cross-shock potential is more efficient (panel (a), for \(\sigma \lesssim 10^{-3}\)). Finally, for \(\sigma \lesssim 10^{-5}\) (we have tested down to \(\sigma = 10^{-7}\)), the ion foot is so wide that the counter-streaming between incoming and reflected ions can trigger the Weibel instability, before the upstream flow gets advected into the shock. As observed for unmagnetized shocks (Spitkovsky 2008a), this is accompanied by strong electron heating in the Weibel filaments and electron and ion acceleration via a Fermi-like mechanism. This explains the nonthermal tail seen in the electron and ion spectra of low-\(\sigma\) flows (green curve for \(\sigma = 10^{-5}\)). For ions, the tail is relatively flat \((p \sim 2.7,\) panel (b)) and it contains \(\sim 3\%\) of ions and \(\sim 13\%\) of ion energy (panels (c) and (d), respectively). The acceleration efficiency for electrons is smaller by roughly a factor of two (compare red and blue lines in panels (c) and (d), for \(\sigma = 10^{-5}\)). Unlike in high-\(\sigma\) shocks, here the ion and electron nonthermal tails extend with time to higher energies.

For \(\sigma = 10^{-3}\), the ion and electron spectra in Figure 15 approach the results obtained for \(\theta = 15^\circ\) at low magnetizations (e.g., \(\sigma = 10^{-3};\) red curve in Figure 14). Independently of magnetic obliquity, the shock now behaves as the unmagnetized case discussed by Spitkovsky (2008a). We find that the transition to the unmagnetized regime occurs at lower magnetizations for higher obliquities \((\sigma \sim 10^{-2} \text{ for } \theta = 15^\circ, \sigma \sim 10^{-4} \text{ for } \theta = 75^\circ)\), when the self-generated Weibel fields are comparable to the transverse component of the background field \((\propto \sqrt{\sigma} \sin \theta).\) Neglecting the obliquity dependence, \(\sigma \sim 10^{-3}\) may be taken as a representative value for the transition point.

We remark that the results presented here for \(\theta = 75^\circ\) are a good representation of the overall behavior of superluminal shocks, up to the perpendicular case \(\theta = 90^\circ\).

5.3. Dependence on Bulk Lorentz Factor \(\gamma_0\)

In this section, we keep the magnetization fixed at \(\sigma = 0.1\) and explore the dependence of our results upon the upstream bulk Lorentz factor, from \(\gamma_0 = 3\) to \(\gamma_0 = 50\). We analyze separately the case of subluminal \((\theta = 15^\circ,\) in Section 5.3.1) and superluminal \((\theta = 75^\circ,\) in Section 5.3.2) shocks.

5.3.1. Subluminal Shocks: \(0^\circ \leq \theta < \theta_{\text{crit}}\)

Figure 16 shows the downstream particle spectrum of a \(\theta = 15^\circ\) subluminal shock, for different upstream bulk Lorentz factors. Spectra are shifted along the \(x\)-axis by \(15/\gamma_0\) to facilitate comparison with the reference case \(\gamma_0 = 15\) discussed in the previous sections. Once normalized in this way, the spectra for \(\gamma_0 \gtrsim 15\) overlap almost perfectly (black for \(\gamma_0 = 15\), blue for \(\gamma_0 = 50\), red for \(\gamma_0 = 3\), green for \(\gamma_0 = 0\)).

\(^{20}\) This result has been confirmed with larger mass ratios, up to \(m_i/m_e = 1000\).

\(\gamma_0 = 30,\) red for \(\gamma_0 = 50),\) suggesting that the physics that regulates the acceleration of particles (both ions and electrons) is insensitive to the upstream bulk Lorentz factor, for highly relativistic flows. In fact, in our simulations we find that for \(\gamma_0 \gtrsim 15\) the waves generated by Bell’s instability have the same power and wavelength, once their power is normalized to the upstream bulk kinetic flux and the wavelength is measured in units of the upstream ion skin depth (or Larmor radius). The scaling seen in Figure 16 for \(\gamma_0 \gtrsim 15\) then follows from the fact that Bell’s modes are of paramount importance for particle acceleration in subluminal shocks (see Section 4.1.2).

Spectra for lower Lorentz factors (green for \(\gamma_0 = 5\), yellow for \(\gamma_0 = 3\)) still share the same overall properties of \(\gamma_0 = 15\), albeit with a tendency for lower high-energy cutoffs and cooler electron distributions. Overall, the properties of \(\gamma_0 \gtrsim 3\) subluminal shocks seem to be well captured by our representative case \(\gamma_0 = 15\).

In mildly relativistic magnetized flows \((\gamma_0 \lesssim 2,\) for \(\sigma = 0.1),\) the shock is mediated by a different process, such that the dominant mode is now generated by gyrofrequency resonance with the returning ions, rather than by Bell’s non-resonant instability (see Appendix C). This may change the efficiency of particle acceleration. Such trans-relativistic regime is not the subject of this work and will be addressed elsewhere.

5.3.2. Superluminal Shocks: \(\theta_{\text{crit}} < \theta < 90^\circ\)

As shown in Figure 17, the spectrum of \(\theta = 75^\circ\) superluminal shocks presents a much more complicated dependence on the
upstream bulk Lorentz factor. The ion spectrum (upper panel) is consistent with a thermal distribution in the whole range of γ_0 we explore (from $\gamma_0 = 3$ to $\gamma_0 = 50$), but for $\gamma_0 \lesssim 5$ (green for $\gamma_0 = 5$, yellow for $\gamma_0 = 3$) the ion Maxwellian is much hotter than for $\gamma_0 \gtrsim 10$ (black for $\gamma_0 = 15$, blue for $\gamma_0 = 30$, red for $\gamma_0 = 50$). Correspondingly, the electron distribution (lower panel), which peaks at roughly the same energy as ions for $\gamma_0 \gtrsim 10$, shifts to much lower energies for $\gamma_0 \lesssim 5$.

Lyubarsky (2006) argues that the synchrotron maser instability should only operate for $\gamma_0 \gtrsim (m_i/m_e)^{1/3}$. In this regime, the shock-compressed field grows on a scale smaller than the electron Larmor radius, and the non-adiabatic motion of incoming electrons into the shock will result in a ring-like distribution in phase space, which is synchrotron-maser unstable. It follows that a powerful electromagnetic precursor will only be generated in high-γ_0 shocks. Our results show that, for $m_i/m_e = 16$, the transition occurs at $\gamma_0 \sim 10$. For $\gamma_0 \gtrsim 10$, when the precursor wave is strong, electrons reach energy equipartition with ions ahead of the shock. As discussed in Section 4.2, powerful electrostatic oscillations generated in the wake of the precursor dissipate their energy by heating a fraction of the incoming electrons that eventually populate the high-energy component seen for $\gamma_0 \gtrsim 10$ in the electron spectrum of Figure 17. Instead, for $\gamma_0 \lesssim 10$, wakefield oscillations are much weaker, so that the electron high-energy component tends to disappear (green for $\gamma_0 = 5$, yellow for $\gamma_0 = 3$). Also, since the precursor is less powerful in low-γ_0 flows, ion-to-electron energy transfer in the upstream is suppressed, and the downstream electron spectrum shifts to lower energies. Yet, the downstream electron population still contains an appreciable fraction ($\sim 15\%$) of the initial ion energy, due to significant electron energization by the cross-shock potential.

A note of caution is required concerning the electron high-energy tail for $\gamma_0 \gtrsim 10$. As shown in Figure 11, this component grows in time up to a maximum (reached between $\omega_{pi}t \sim 2000$ and $\omega_{pi}t \sim 3000$), and then it recedes (although we cannot exclude a cyclical behavior). The growth-time scales with the wavelength of wakefield oscillations, which is longer (in units of c/ω_{pe}) for larger bulk Lorentz factors (Lyubarsky 2006). It follows that at fixed $\omega_{pi}t = 2250$, while $\gamma_0 = 15$ (black curve in Figure 17) is already at maximum, the electron high-energy population is still building up for $\gamma_0 = 30$ (blue curve) and $\gamma_0 = 50$ (red curve). At later times (not shown in Figure 17), the electron spectrum for $\gamma_0 = 30$ and $\gamma_0 = 50$ will roughly resemble the case $\gamma_0 = 15$ presented here.

In summary, our results for $\gamma_0 = 15$ are a good proxy for highly relativistic flows ($\gamma_0 \gtrsim 10$), but they do not apply to mildly relativistic shocks.

6. SUMMARY AND DISCUSSION

We have explored by means of 2.5D PIC simulations the internal structure and acceleration properties of relativistic collisionless shocks propagating in a magnetized electron–ion plasma. This work complements the study of SS09, which analyzed relativistic shocks in magnetized electron–positron plasmas. To investigate how the shock properties depend on the conditions of the upstream flow, we vary the bulk Lorentz factor γ_0, the magnetization σ, and the angle θ between the upstream magnetic field and the shock normal. Our results, confirmed by extensive convergence studies, can be summarized as follows.

1. For $\sigma \sim 0.1$, the magnetic field is so strong that charged particles are constrained to move along the field lines, which are advected downstream from the shock. If the magnetic obliquity $\theta < \theta_{crit} \simeq 34^\circ$ (“subluminal” shocks), downstream particles can return upstream by following the magnetic field. In this case, the electric current of “returning” ions can trigger the so-called Bell’s instability (Bell 2004), which generates powerful circularly polarized Alfvén-type waves in the upstream. The shock results from the nonlinear steepening of such waves, which occurs quasi-periodically every few ion gyrotimes (the so-called “shock reformation” process). Instead, for $\theta > \theta_{crit}$ (“superluminal” shocks), no particle can propagate ahead of the shock along the field, and counter-streaming instabilities are suppressed. In this case, the shock is mediated by magnetic reflection of the incoming flow off the shock-compressed field (e.g., Alsop & Arons 1988). In short, the dichotomy between subluminal and superluminal configurations, presented by SS09 for electron–positron flows, still holds in electron–ion shocks.

2. If particle acceleration requires repeated bounces back and forth across the shock, as in the standard first-order Fermi picture, only subluminal shocks should be efficient accelerators, or, as measured in the upstream frame, the magnetic field needs to be within an angle $\sim \theta_{crit}/\gamma_0 \simeq 34^\circ/\gamma_0$ from the shock normal. In subluminal shocks, particles are accelerated mostly via non-resonant interactions with Bell’s waves (a Fermi-like process), although for $30^\circ \lesssim \theta \lesssim \theta_{crit}$ acceleration by the upstream motional electric field may be important as well (shock drift/surfing acceleration; see...
SS09 for similar conclusions). In the downstream spectrum, the shock-accelerated particles populate a power-law nonthermal tail. For our representative case $\theta = 15^\circ$, the ion tail contains $\sim 5\%$ of ions and $\sim 30\%$ of ion energy, and its slope is -2.1 ± 0.1. The tail stretches linearly with time to higher Lorentz factors. Electrons enter the shock with a significant fraction ($\sim 15\%$) of the initial ion energy; yet their Larmor radius is still small compared to ions, and they are rapidly advected downstream with the magnetic field. It follows that the acceleration of electrons is less efficient ($\sim 2\%$ by number and $\sim 10\%$ by energy, with a steep tail of slope -3.5 ± 0.1). In the upstream, the pressure of shock-accelerated ions (in fact, few electrons propagate back upstream) can significantly alter the structure of the shock, forming a smooth density “precursor” ahead of the actual “subshock” (this is the characteristic profile of “cosmic-ray-modified” shocks). The overall width of the shock layer increases with time at $\sim 0.1 \, c$.

3. In superluminal shocks, the synchrotron maser instability (Hoshino & Arons 1991) generates a train of transverse electromagnetic “precursor” waves propagating into the upstream, which push on the incoming electrons, making them lag behind ions. This initiates longitudinal “wakefield” oscillations in the upstream that transfer energy from ions to electrons (Lyubarsky 2006). In high-obliquity shocks, electrons enter the shock with bulk energy comparable to ions. So, electrons acquire most of their energy in the upstream rather than at the shock, in contrast to what is assumed in models that only consider the cross-shock potential (e.g., Gedalin et al. 2008). A few percent of the incoming electrons receive an extra amount of heating from the dissipation of wakefield oscillations. They eventually populate a prominent high-energy feature in the downstream electron spectrum, which may resemble a (short) power-law tail. However, we remark that it results from heating, and not acceleration (as argued by Hoshino 2008), and it does not extend in time to higher energies. Rather, as the incoming electrons get hotter, the generation of electromagnetic precursor waves is suppressed (Hoshino & Arons 1991), and the electron high-energy component recedes to lower energies. Hereafter, a cyclic behavior is likely, though undemonstrated. Despite the significant wakefield heating experienced in the upstream, which may facilitate injection into a diffusive acceleration process, no signature of Fermi-accelerated electrons is seen in magnetized superluminal shocks (see also SS09).

4. The properties of magnetized subluminal shocks do not significantly depend on the upstream bulk Lorentz factor in the relativistic regime $\gamma_0 \gtrsim 3$ we explore. For superluminal angles, the synchrotron maser instability is suppressed for $\gamma_0 \lesssim 10$ (Lyubarsky 2006). So, for low-γ_0 shocks, the electromagnetic precursor is weaker, and transfer of energy from ions to electrons in the upstream is much less efficient. Yet, downstream electrons still account for as much as $\sim 15\%$ of the initial ion energy, due to significant electron energization by the cross-shock potential in the ion foot.

5. For lower magnetizations ($\sigma \lesssim 10^{-3}$), the incoming plasma can undergo filamentation, and the shock is mediated by the ion Weibel instability (Weibel 1959; Medvedev & Loeb 1999; Gruzinov & Waxman 1999), which ensures strong electron heating and efficient particle acceleration, for both ions and electrons (Spitkovsky 2008a; Martins et al. 2009). The nonthermal tail in the downstream ion spectrum contains $\sim 5\%$ of ions and $\sim 20\%$ of ion energy, and its slope is -2.5 ± 0.1. A similar tail is present in the electron spectrum, with a comparable slope but a smaller particle ($\sim 2\%$) and energy ($\sim 10\%$) content. For magnetizations $\sigma \lesssim 10^{-3}$, the fields generated by the Weibel instability are stronger than the background field, and no difference persists between subluminal and superluminal configurations.

6. An important question is whether our 2.5D simulations can capture the relevant three-dimensional physics of electron–ion shocks. We performed a limited number of 3D experiments with relatively small computational grids (~ 3 ion skin depths along each transverse dimension), obtaining essentially the same results as in our 2.5D simulations. Yet, large 3D runs are certainly desirable to confirm the overall picture presented here.

Our findings may constrain the composition, Lorentz factor, and magnetization of jets in AGNs and GRBs. Synchrotron and inverse Compton emission from the core of blazar jets are usually attributed to high-energy electrons accelerated in mildly relativistic internal shocks ($\gamma_0 \sim 2$ in the jet comoving frame). Such shocks should be quasi-perpendicular, since polarization measurements of radio knots (Gabuzda et al. 2004; Pushkarev et al. 2005) indicate that the magnetic field is mostly transverse to the jet axis. Electron acceleration in internal shocks is also invoked to explain the prompt emission of GRBs (e.g., Piran 2004). If the jet flow carries a substantial toroidal field, internal shocks in GRBs will be magnetized and quasi-perpendicular. For both AGNs and GRBs, it is inferred that the emitting electrons should contain a substantial fraction ($\epsilon_e \sim 10\%$) of the flow energy, and their spectrum is usually modeled as a power law extending over several decades in energy.

We find that significant heating of electrons is a universal property of relativistic magnetized shocks. The mechanism involved may vary depending on magnetization and magnetic obliquity, but post-shock electrons account for at least $\sim 20\%$ of the bulk pre-shock energy, regardless of the upstream conditions. Although the agreement between this lower limit and the observational requirement mentioned above is surely encouraging, we remark that most of our downstream electrons belong to the thermal component, whereas the emitting particles from AGNs and GRBs are usually thought to be nonthermal. Yet, our findings are important to constrain the characteristic downstream electron energy to be $\gtrsim 0.2 \, \gamma_0 m_e c^2$, with the following two implications. First, this rules out models of GRB emission (e.g., Bykov & Meszaros 1996) which assume that only a small fraction of electrons are accelerated up to high energies (and share the whole ϵ_e), whereas the bulk of electrons remain cold (at $\sim 0.2 \, \gamma_0 m_e c^2$). Second, the minimum Lorentz factor of a hypothetical power-law tail will be $\gtrsim 0.2 \, \gamma_0 m_e / m_i$. For models of GRB and AGN emission that require a power-law distribution starting from smaller Lorentz factors, this would suggest that electron–positron pairs may be a major component of the flow (see SS09).

Regarding nonthermal acceleration of electrons, we find that quasi-perpendicular magnetized shocks are inefficient particle accelerators, in contrast to what is required in the models of GRBs and AGN jets. However, the high-energy component...
that we find in the electron spectrum of high-obliquity shocks, which actually results from heating (and not acceleration), may be (mis)interpreted as a short power-law tail. In fact, this component might reasonably explain the emission from AGN jets, which often requires an electron distribution extending only for one decade in energy (Celotti & Ghisellini 2008). Otherwise, our findings imply that the jet pre-shock flow should be weakly magnetized ($\sigma \lesssim 10^{-3}$), or maybe seeded with strong small-scale magnetic turbulence, which could facilitate the Fermi process even in superluminal shocks (Sironi & Goodman 2007). Alternatively, electron acceleration may occur not in shocks but in reconnection layers of a Poynting-dominated jet (e.g., Lyutikov & Blandford 2003; Giannios & Spruit 2006).

Finally, if internal shocks in AGNs and GRBs are the sources of High Energy Cosmic-ray ions (e.g., Sironi & Socrates 2010), then the pre-shock magnetic field needs to be nearly aligned with the shock normal, within an angle $\sim \theta_{\text{crit}} / \gamma_0 \simeq 34^\circ / \gamma_0$ (as measured in the upstream fluid frame), for the shock to be “subluminal.” Alternatively, the acceleration of cosmic-ray protons may occur at weakly magnetized shocks, like GRB external shocks or the termination shock (“hot spot”) of AGN jets, or in the jet “sheath,” where interaction of the jet with the surrounding medium may create subluminal configurations. In any case, we find that ion acceleration is always accompanied by substantial magnetic field amplification, especially ahead of the shock. In the presence of accelerated electrons, the upstream region may then contribute considerably to the observed emission. Synthetic spectra extracted from PIC simulations of shocks (as done in unmagnetized pair shocks by Sironi & Spitkovsky 2009b) may possibly reveal characteristic signatures that could observationally distinguish such upstream emission from the downstream-based models that are usually employed.

We thank J. Arons, A. Beloborodov, R. Blandford, L. Gar-gate, D. Giannios, M. Lyutikov, M. Medvedev, G. Pelletier, M. Riquelme, and R. Romani for insightful comments. L.S. gratefully thanks the Osservatorio Astronomico di Brera for hospitality and G. Ghisellini for stimulating discussions. This research was supported by NSF grant AST-0807381 and NASA grant NNX10AI19G. The simulations presented in this article were performed on computational resources supported by the PICSciE-OIT High Performance Computing Center and Visualization Laboratory. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract No. DE-AC02-05CH11231.

APPENDIX A

DEPENDENCE ON THE MASS RATIO

The reliability of our results may be questioned based on the artificially small mass ratio ($m_i / m_e = 16$) that we employ in most of our simulations. However, as we show here, for the parameters considered in the present work, a mass ratio of $m_i / m_e = 16$ is already large enough to separate the electron and ion scales, and capture the relevant physics of electron–ion shocks.

Figure 18 compares the downstream particle spectra for three representative magnetic obliquities ($\theta = 15^\circ$, 30°, and 75°), with $\gamma_0 = 15$ and $\sigma = 0.1$) between two values of the mass ratio: $m_i / m_e = 16$ (dashed lines) and $m_i / m_e = 100$ (solid lines). The black vertical lines (dashed for $m_i / m_e = 16$, solid for $m_i / m_e = 100$) correspond to $\gamma_0 m_i / m_e$, i.e., the location expected for the peak of the electron distribution in the absence of any ion-to-electron energy transfer.

Very good agreement is obtained in all cases, for both ions and electrons. The downstream electron spectrum peaks at much higher energies than expected in the absence of any ion-to-electron energy transfer (compare with black vertical lines; dashed for $m_i / m_e = 16$, solid for $m_i / m_e = 100$), and the location of the peak is roughly independent of the mass ratio. It follows that the “effective” electron mass, including the average electron Lorentz factor, is a substantial fraction of $\gamma_0 m_i$, independent of m_i / m_e (for $m_i / m_e \gtrsim 16$). The electron physics will then evolve on the ion time and length scales, which explains the similarity in Figure 18 between electron spectra with different m_i / m_e, in terms of both the low-energy thermal part and the high-energy component.

Various tests, for mass ratios up to $m_i / m_e = 1000$ and for different upstream parameters (we changed both σ and γ_0), confirm the overall picture presented here.

APPENDIX B

DEPENDENCE ON THE FIELD ORIENTATION WITH RESPECT TO THE SIMULATION PLANE

We now assess the robustness of our results upon the orientation of the upstream magnetic field B_0 with respect to the 2D simulation plane. In Figure 19 (upper panel for ions, lower panel for electrons), we plot with the red lines the downstream spectrum if B_0 is in the simulation plane (i.e., $\varphi = 0^\circ$), whereas...
the black lines are for \mathbf{B}_0 lying in a plane perpendicular to the simulation plane (i.e., $\varphi = 90^\circ$).

For low-obliquity shocks (e.g., $\theta = 15^\circ$, left panel), our results are independent of the angle φ. However, for shocks in which the obliquity is close to the critical boundary $\theta_{\text{crit}} \simeq 34^\circ$ between subluminal and superluminal configurations, we observe a substantial suppression of SDA for in-plane magnetic fields, both in electron–positron and electron–ion flows (see $\theta = 30^\circ$ in Figure 21(b) of SS09, for pair shocks). As discussed in SS09, the case with $\varphi = 90^\circ$ is in better agreement with 3D simulations. For this reason, in the whole range of subluminal angles presented in the current work, we employ $\varphi = 90^\circ$.

For high-obliquity shocks (e.g., $\theta = 75^\circ$, right panel), the agreement between in-plane and out-of-plane results is also remarkably good. The only appreciable difference is in the low-energy part of the ion spectrum (upper right panel). For $\varphi = 90^\circ$, the plane perpendicular to the magnetic field (where downstream particle orbits would tend to lie) is almost degenerate with the simulation plane, resulting in a downstream ion distribution that is closer to a 2D (rather than 3D) Maxwellian. Instead, for $\varphi = 0^\circ$ the two planes are well separated, and ion isotropization in three dimensions is favored. For this reason, we preferentially employ $\varphi = 0^\circ$ for superluminal shocks.

APPENDIX C

ION COUNTER-STREAMING INSTABILITIES

In both unmagnetized and subluminal magnetized shocks, the interaction between the incoming flow and the shock-accelerated particles that propagate back upstream is a potential source of counter-streaming plasma instabilities. In this section, we determine how the nature of the instability depends on the upstream parameters (bulk Lorentz factor γ_0 and magnetization σ, choosing $\theta = 0^\circ$ as a representative subluminal obliquity). Primed quantities are measured in the upstream fluid frame, whereas unprimed quantities in the downstream (simulation) frame.

Let $\zeta_{\text{cr}} \equiv n_{\text{cr}}/n_i$ be the ratio of cosmic-ray number density to number density of incoming ions. By “cosmic rays,” we mean the shock-accelerated ions moving ahead of the shock (we neglect the returning electrons, since their contribution is usually smaller). In the upstream frame, $\zeta_{\text{cr}} = \gamma_{0c}^2 \zeta_{\text{cr}}$, given that the population of returning ions is roughly isotropic in the simulation frame. Similarly, we define $\epsilon_{\text{cr}} \equiv U_{\text{cr}}/(\gamma_0 m_i n_i c^2)$ as the ratio of cosmic-ray energy density to kinetic energy density of the injected ions, such that the average cosmic-ray Lorentz factor is $\gamma_{\text{cr}} = \gamma_0(\epsilon_{\text{cr}}/\zeta_{\text{cr}})$. In the upstream frame, $\epsilon_{\text{cr}} = \gamma_{0c}^2 \epsilon_{\text{cr}}$ and $\zeta_{\text{cr}} = \epsilon_{\text{cr}}/\zeta_{\text{cr}} = \gamma_0 \gamma_{\text{cr}}$. Informed by Figures 14 and 16, we can assume to a first approximation that ζ_{cr} and ϵ_{cr} (as measured in the downstream frame) do not significantly depend on γ_0 or σ.

The maximum growth rate of Bell's instability ($\omega_{\text{Bell}} \simeq 1/2 \omega_{\text{Bell}} c_{\text{ph}}$) is achieved for a characteristic wavelength $\lambda_{\text{Bell}} \simeq 4\pi(\sqrt{\sigma}/\zeta_{\text{cr}}) c/\omega_{\text{ph}}$ (Reville et al. 2006). Here, σ' is the magnetization parameter as defined in the upstream frame ($\sigma' = \gamma_0^2 \sigma$, for $\theta = 0^\circ$). The corresponding Larmor frequency of background ions is $\omega_{\text{L}} = \gamma_0 \omega_{\text{L}}$.

Bell’s instability governs the evolution of the shock if the following two conditions are simultaneously satisfied: (1) its characteristic wavelength λ_{Bell} is smaller than r_{cr}, the Larmor
radius of cosmic-ray ions; and (2) its growth rate is smaller than the Larmor frequency of background ions ($\omega_{i0}^{' CR} \lesssim \omega_i$), i.e., the upstream plasma is magnetized. Since $r_{l,cr} = \gamma_{cr} / \sqrt{\sigma \gamma}$, the first condition can be rewritten as $2 \sigma \lesssim \gamma_{cr} \epsilon_{cr}$ in the upstream fluid frame, which corresponds, in terms of quantities in the simulation frame, to

$$2 \sigma \lesssim \gamma_0^2 \epsilon_{cr}.$$ \hspace{1cm} (C1)

When the above inequality is broken (either for large σ or small γ_0, at fixed ϵ_{cr}), the physics of the instability changes. The dominant mode is now generated via gyrofrequency resonance with the cosmic rays (as opposed to Bell’s instability, which produces non-resonant modes). We observe this change of polarization in the dominant mode for magnetizations $\sigma \gtrsim 0.3$ (with fixed $\gamma_0 = 15$) and for bulk Lorentz factors $\gamma_0 \gtrsim 2$ (with fixed $\gamma = 0.1$).

Condition (2), that the upstream ions stay magnetized on the growth time of Bell’s instability, can be rewritten as $\gamma_0 \epsilon_{cr} \lesssim \sqrt{\sigma}$ in the upstream frame. In the simulation frame,

$$\gamma_0 \epsilon_{cr} \lesssim \sqrt{\sigma}.$$ \hspace{1cm} (C2)

For lower magnetizations, or higher bulk Lorentz factors, the upstream plasma can undergo filamentation, and the ion Weibel instability dominates. For $\gamma_0 = 15$, this transition occurs in our simulations around $\sigma \sim 10^{-2}$.

REFERENCES

Achterberg, A., Gallant, Y. A., Kirk, J. G., & Guthmann, A. W. 2001, MNRAS, 328, 393
Alsop, D., & Arons, J. 1988, Phys. Fluids, 31, 839
Amato, E., & Arons, J. 2006, ApJ, 653, 325
Amato, E., & Blasi, P. 2005, MNRAS, 364, L76
Amato, E., & Blasi, P. 2006, MNRAS, 371, 1251
Ballard, K. R., & Heavens, A. F. 1991, MNRAS, 251, 438
Baring, M. G. 2010, arXiv:1002.3848
Baring, M. G., & Eichler, D. 2009, ApJ, 699, 990

Buneman, O. 1993, in Computer Space Plasma Physics, ed. H. Matsumoto & Y. Omura (Tokyo: Terra Scientific), 67

Bykov, A. M., & Meszaros, P. 1996, ApJ, 461, L37
Celotti, A., & Ghisellini, G. 2008, MNRAS, 385, 283
Chang, P., Spitkovsky, A., & Arons, J. 2008, ApJ, 674, 378
Chen, G., & Armstrong, T. F. 1975, in Proc. 14th ICRC (Munich), vol. 5, 1814
Dieckmann, M. E., Frederiksen, J. T., Bret, A., & Shukla, P. K. 2006, Phys. Plasmas, 13, 12110
Drury, L. O. 1983, Rep. Prog. Phys., 46, 973
Ellison, D. C., & Double, G. P. 2004, Astropart. Phys., 22, 323
Gabuzda, D. C., Murray, E., & Cronin, P. 2004, MNRAS, 351, L89
Gallant, Y. A., Hoshino, M., Langdon, A. B., Arons, J., & Max, C. E. 1992, ApJ, 391, 73
Gedalin, M., Balikhin, M. A., & Eichler, D. 2008, Phys. Rev. E, 77, 026403
Giannios, D., & Spruit, H. C. 2006, A&A, 450, 887
Gruzinov, A., & Waxman, E. 1999, ApJ, 511, 852
Haugboelle, T. 2010, arXiv:1007.5082
Hoshino, M. 2008, ApJ, 672, 940
Hoshino, M., & Arons, J. 1991, Phys. Fluids B, 3, 818
Hoshino, M., Arons, J., Gallant, Y. A., & Langdon, A. B. 1992, ApJ, 390, 454
Hoshino, M., & Shimada, N. 2002, ApJ, 572, 880
Keshet, U., Katz, B., Spitkovsky, A., & Waxman, E. 2009, ApJ, 693, L127
Kirk, J. G., & Heavens, A. F. 1989, MNRAS, 239, 995
Komsarov, S. S. 2003, MNRAS, 341, 717
Kulsrud, R., & Pearce, W. P. 1969, ApJ, 156, 445
Langdon, A. B., Arons, J., & Max, C. E. 1988, Phys. Rev. Lett., 61, 779
Lee, M. A., Shapiro, V. D., & Sagdeev, R. Z. 1996, J. Geophys. Res., 101, 4777
Lemoine, M., & Pelletier, G. 2010, MNRAS, 402, 321
Lyubarsky, Y. 2006, ApJ, 652, 1297
Lyutikov, M., & Blandford, R. 2003, arXiv:astro-ph/0312347
Majorana, A., & Anile, A. M. 1987, Phys. Fluids, 30, 3045
Martins, S. F., Fonseca, R. A., Silva, L. O., & Mori, W. B. 2009, ApJ, 695, L189
Medvedev, M. V., & Loeb, A. 1999, ApJ, 526, 697
Niemiec, J., & Ostrowski, M. 2004, ApJ, 610, 851
Piran, T. 2004, Rev. Mod. Phys., 76, 1143
Pushkarev, A. B., Gabuzda, D. C., Vetukhovskaya, Y. N., & Yakimov, V. E. 2005, MNRAS, 356, 859
Reville, B., Kirk, J. G., & Duffy, P. 2006, Plasma Phys. Control. Fusion, 48, 1741
Riquelme, M. A., & Spitkovsky, A. 2009, ApJ, 694, 626
Schwartz, S. J., Burgess, D., Wilkinson, W. P., Kessel, R. L., Dunlop, M., & Luehr, H. 1992, J. Geophys. Res., 97, 4209
Shapiro, V. D., & Ucer, D. 2003, Planet. Space Sci., 51, 665
Sironi, L., & Socrates, A. 2010, ApJ, 710, 891
Sironi, L., & Spitkovsky, A. 2009a, ApJ, 698, 1523 (SS09)
Sironi, L., & Spitkovsky, A. 2009b, ApJ, 707, L92
Spitkovsky, A. 2005, in AIP Conf. Ser. 801, Astrophysical Sources of High Energy Particles and Radiation, ed. T. Bulik, B. Rudak, & G. Madejski (Melville, NY: AIP), 345
Sironi, L., & Spitkovsky, A. 2008a, ApJ, 673, L39
Sironi, L., & Spitkovsky, A. 2008b, ApJ, 682, L5
Webb, G. M., Axford, W. I., & Terasawa, T. 1983, ApJ, 270, 537
Weibel, E. S. 1959, Phys. Rev. Lett., 2, 83