Lung cancer screening: the way forward

JK Field*1 and SW Duffy2
1Department of Surgery and Oncology, Roy Castle Lung Cancer Research Programme, University of Liverpool Cancer Research Centre, Liverpool L3 9TA, UK; 2Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Charterhouse Square, London EC1M 6BQ, UK

To take lung cancer screening into national programmes, we first have to answer the question whether low-dose computed tomography (LDCT) screening and treatment of early lesions will decrease lung cancer mortality compared with a control group, to accurately estimate the balance of benefits and harms, and to determine the cost-effectiveness of the intervention.

Keywords: lung cancer; screening; chest X-ray; CT screening; cost-effectiveness; risk modelling

Lung cancer kills more people worldwide than other malignancy. The number of deaths in the western world has fallen in the past years and this is likely to be due to a greater public awareness as well as successes in smoking cessation programmes. Unfortunately, the tobacco epidemic is still growing in Southeast Asia and China as the tobacco industry has now concentrated its sales in these regions. However, there is now a large ex-smoking population in the United States and Europe, who remain at a very high risk of developing lung cancer, which is dependent on their smoking duration before tobacco cessation. This group of individuals now exceeds current smokers in both the United States and Europe and will continue to do so over the next two to three decades. National health-care programmes would have a responsibility, if there were a proven screening tool, to provide a mechanism by which these high-risk individuals are identified and targeted for lung cancer screening. Screening must be instigated before patients develop any symptoms, as surgical resection at an early stage of the disease remains the only realistic option for a cure.

CHEST X-RAY AND SPUTUM CYTOLOGY LUNG CANCER SCREENING

The earliest lung screening trial was undertaken in London with over 55000 individuals randomised to chest X-ray every 6 months for 3 years or chest X-ray at the beginning and end of the 3-year period (Brett, 1969). No mortality difference was found between the two groups. Three major trials in the United States and one in Czechoslovakia were developed in the 1970s, as outlined in Table 1. The results of these large trials were disappointing as none of these criticisms have now been taken on board by the current lung cancer screening trials.

LOW-DOSE COMPUTED TOMOGRAPHY LUNG CANCER SCREENING: OBSERVATIONAL STUDIES

Low-dose computed tomography (LDCT) offers a major advance in imaging technology, which was first introduced in the 1990s (Naidich et al, 1990) and later by Reeves and Kostis (2000). This is more sensitive than chest X-ray and has enabled the detection of lung tumours less than 1 cm; thus, allowing a complete scan on the thorax in less than 30 s. Randomised trials of this technology as a screening tool have not as yet been completed, but there have been a number of demonstration projects (Table 2). Early studies of note include the Early Lung Cancer Action Project (ELCAP) (Henschke et al, 1999) in 1000 high-risk smokers; the Mayo Clinic Project with 1520 individuals aged 50 years having annual sputum cytology and spiral CT screening (Swensen et al, 2000); and a 3-year mass screening programme using a mobile CT unit in Japan (Sone et al, 1998).

The ELCAP study enroled 1000 symptom-free individuals aged 60 years or more with >10 pack-years history of smoking, who were fit to undergo surgery into a study. All individuals underwent an annual spiral CT and chest X-ray. The lung cancer detection rate was 2.7% in the first year and 0.7% in the second year (incidence), and this study also demonstrated that the sensitivity of low-dose spiral CT for early lung cancer was far greater than for chest X-rays. The majority of 'screen-detected' tumours were at an early stage and suitable for surgery. This seminal paper by Henschke and co-workers (Henschke et al, 1999) re-ignited interest and debate in developing new lung cancer screening trials in the United States and Europe. Other demonstration projects found similar results (Table 2). The Early Lung Cancer Action Project has since been expanded to a major international collaboration, I-ELCAP, with more than 30000 screenees (see below), with similar findings to the
Table 1 Chest X-ray +/- sputum cytology lung cancer screening trials

Lung cancer screening trial	Trial design	No. of participants	Lung cancer detected	Lung cancer mortality^a	Reference
London	Chest X-ray, 6 months, 3 years vs chest X-ray only at the end of year 3	29723	132	2.1	Brett (1969)
MSKCC Lung Cancer Screening Programme	A chest X-ray and sputum cytology, every 4 months vs chest X-ray annually	4968	144	2.7	Melamed et al (1984)
Johns Hopkins Lung Project	A chest X-ray and sputum cytology every 4 months vs chest X-ray annually	5072	144	2.7	Frost et al (1984)
Mayo Lung Project	Chest X-ray and sputum cytology every 4 months, 6 years vs chest X-ray and sputum cytology annually	4618	160	3.9	Marcus et al (2000)
Czechoslovakia	Chest X-ray and sputum cytology every 6 months, 3 years vs chest X-ray and sputum cytology beginning of first year and the end of third year	4593	39	3.6	Kubik et al (2000)
PLCO	Lung aspect of trial: chest X-ray; smokers had test at the entry and annually for 3 years. Never smokers had the test at the entry and annually for 2 years vs usual care	77469	Not published		Gohagan et al (2000)

^aPer 1000 person-years.

Table 2 LDCT lung cancer screening in observational studies

Reference	No. of participants	Smokers (PKS)	No. of non-calcified nodules	No. of lung cancers	
Henschke (2000)	1000	Smokers PYS >10 Asbestos 14%	233	63 (incidence)	7 (incidence)
Sone et al (1998)	5483	Smokers ~ 50% PYS >1	279		
Swensen et al (2002)	1520	Smokers PYS >20	2244	588 (incidence)	25
Sobue et al (2002)	1611	Smokers ~ 85% PYS 50%	186	721 (incidence)	14
Tiitola et al (2002)	602	Smokers > 95% PYS> 10 Asbestos 100%	111		5
Nawa et al (2002)	7956	Smokers > 60% PYS = 50%	2865		41
Diederich et al (2002)	817	Smokers 100% PYS >20	858	174 (incidence)	12
MacRedmond et al (2004)	449	Smokers 100% PYS >10 Asbestos 7.6%	155		2
Stephenson et al (2005)	87	Smokers 100% PYS >20	2255		11
Chong et al (2005)	6406	Smokers 100% PYS >20			
Henschke et al (2006)	31567	Smokers PYS 15–40	ND		484

LDCT = low-dose computed tomography; ND = not determined; PKS = pack years; PYS = pack-years. Table is adapted from Rossi et al (2005) and Yau et al (2007).
The authors also estimated a very high case survival rate for stage I tumours undergoing surgery. There is, however, considerable debate around the interpretation of increased survival in LDCT-diagnosed cancers, as longer survival does not necessarily equate to reduced mortality (Twombly, 2007). In addition to concerns about self-selection for surgery (or for no surgery) among stage 1 patients, the major reservation relates to overdiagnosis of tumours, which would not have been life threatening and would never have come to clinical attention in the absence of screening. The previous generation of chest X-ray trials suggested a measure of overdiagnosis (Kubik et al, 2000; Marcus et al, 2000). The much greater sensitivity of LDCT has, in turn, led to fears of an increased risk of overdiagnosis. The most balanced arguments to date concerning the IELCAP findings have been in a recent BMJ editorial (McMahon and Christiani, 2007). The authors’ view is that the objective of lung cancer screening is to reduce lung cancer mortality, and it is not possible to confidently conclude this from the IELCAP study.

The one other large observational analysis is by Bach et al (2007) whose conclusions were diametrically opposed to those from the IELCAP Consortium. Bach and colleagues used data from 3246 current or former smokers who entered into screening studies in the United States and in Italy, with follow-up for a median of 3.9 years. They used a model of predicted risk of lung cancer mortality to estimate the expected numbers of lung cancer deaths and compared these with the corresponding observed deaths; they found no decrease in the number of diagnoses of advanced lung cancers or deaths from lung cancer (38 deaths due to lung cancer observed and 38.8 expected; RR 1.0; 95% CI: 0.7 – 1.3; P = 0.90). The authors concluded that there was no evidence of a mortality advantage with LDCT screening from this study. However, their exclusion of deaths from tumours diagnosed early in the period of observation has been criticised, as have been various other assumptions and procedures in their approach.

LDCT LUNG CANCER SCREENING: RANDOMISED TRIALS

The EU-US spiral CT Collaboration was initiated in 2001 in the United States and in Italy, with follow-up for a median of 3.9 years. They used a model of predicted risk of lung cancer mortality to estimate the expected numbers of lung cancer deaths and compared these with the corresponding observed deaths; they found no decrease in the number of diagnoses of advanced lung cancers or deaths from lung cancer (38 deaths due to lung cancer observed and 38.8 expected; RR 1.0; 95% CI: 0.7 – 1.3; P = 0.90). The authors concluded that there was no evidence of a mortality advantage with LDCT screening from this study. However, their exclusion of deaths from tumours diagnosed early in the period of observation has been criticised, as have been various other assumptions and procedures in their approach.

Table 3 LDCT RCT lung cancer screening trials

Country	Study name	LDCT	Control	Study design	Selection of participants	Report date	Publications
The Netherlands and Belgium	NELSON	8000*	8000*	LDCT vs no intervention	Smokers and ex-smokers with a history PKS > 30 years	Recruitment completed, Report 2015	van Iersel et al (2007)
Denmark	NELSON	2000*	2000*	LDCT vs no intervention	Smokers and ex-smokers with a history PKS > 30 years	Recruitment underway, Report 2015	Pedersen et al (2002)
Italy	ITALI LUNG DANTE	1500	1500	LDCT vs no intervention	Smokers and ex-smokers PKS > 30 years	Report 2005	Picozzi et al (2005)
France (pilot)	DepiScan	1276	1196	Chest X-ray and sputum cytology for all patients in year 1. LDCT vs yearly review	Smokers and ex-smokers PKS > 20 years	Report 2007	Infante et al (2007)
United States	LSS Feasibility Study	330	291	LDCT vs chest X-ray	Smokers PKS	Report 2006	Blanchon et al (2007)
USA	NLST	1600	1658	LDCT vs chest X-ray	Smokers PKS	Report 2005	Gohagan et al (2005)
USA	NLST	26500	26500	LDCT vs chest X-ray	Current and ex-smokers PKS	Recruitment completed	http://www.cancer.gov/NSLT; Ford et al (2003)

LDCT = low-dose computed tomography; PKS = pack years. *Planned recruitment.
cancer mortality rate. In this trial, LDCT screening takes place in years 1, 2, and 4, with 10 years of follow-up. The trial has 20,000 individuals randomised in equal numbers to LDCT or 'usual care'.

A number of small trials have been initiated in anticipation of combination with partner studies or a future meta-analysis. These include the ItaLung and Dante Trials in Italy (Picozzi et al, 2005; Infante et al, 2007).

The French randomised pilot study, Depiscan, comparing LDCT and chest X-ray recently reported its baseline findings (Blanchon et al, 2007); in this the selection of participants was undertaken by General Practitioners (GPs) and occupational physicians. Eligible subjects were males and females aged 50–75 years with either a current or former smoking history of at least 15 cigarettes per day for 20 years. The screening was undertaken annually for 2 years. The objective was to enrol 1,000 subjects; 765 have been recruited with 621 of these having complete imaging baseline data. Non-compliance was an important issue in this study and the recruitment took twice as long as envisaged. Eight lung cancers were detected in the LDCT arm (2.4%) and one (1.3%) in the chest X-ray arm.

NATIONAL LUNG CANCER SCREENING PROGRAMME

To date, we do not have the results of any randomised trials, which can provide adequate evidence to justify the instigation of a national screening programme. The results of the NLST and NELSON studies are eagerly awaited. The unanswered question that remains in the United Kingdom is whether either of these studies will provide adequate information on their own to justify the implementation of a UK National Screening Programme? Although the combined US study is large and should have precise results, the use of an active screening regime in the control group may raise problems of interpretation. The NELSON study has adequate power for a substantial benefit in a high-risk group, but a lower baseline lung cancer mortality or smaller benefit than anticipated may jeopardise a conclusive result.

The UK National Screening Committee has determined 22 criteria for the viability, effectiveness, and appropriateness of a screening programme (http://www.nsc.nhs.uk.uk_nsc/uk_nsc_ind.htm); 20 of which are relevant to LDCT lung cancer screening. Black et al (2007) have undertaken a systematic review of the literature to ascertain whether there was evidence for any clinical effectiveness utilising LDCT for lung cancer screening. This extremely detailed review was undertaken at the time when there was a paucity of real data, and thus their conclusions were drawn from two small trials with very variable results. Not surprisingly, their conclusion stated that there was insufficient evidence at the time to support LDCT screening.

The current lack of evidence and the possibility of inconclusive results from relatively small group of current trials would suggest that a UK trial would make a valuable contribution to the research effort worldwide and answer questions particularly pertinent to the UK smoking environment. It is a salutary fact that four decades after the development of this ‘technology’, we still do not have experimental evidence for or against the implementation of this screening modality. Lung cancer kills more individuals in the United Kingdom than any other malignancy. Our responsibility is not only to determine whether LDCT screening and treatment of early lesions will decrease lung cancer mortality compared with a control group without screening but also to test this against the criteria outlined by the UK Screening Committee, especially those concerning cost-effectiveness. A useful aid to cost-effectiveness is the ability to select a population at sufficiently high risk to give a substantial harvest of tumours in return for the screening activity. The Liverpool Lung Project Risk Model provides an opportunity for this (Field et al, 2007; Cassidy et al, 2008). The risk groups selected are those for whom the benefits of the screening will outweigh the likely harms.

The cost-effectiveness of lung cancer LDCT screening has been estimated by a number of groups, which were reviewed by Black et al (2006), who found the current estimates difficult to interpret and certainly not definitive. In response to a request from the UK National Cancer Research Institute, Whyynes (2008) developed a simple and transparent economic model based on UK costs and the empirical clinical data are currently available. The UK cost-effectiveness model used a simple, deterministic approach to the modelling of a screening regimen. The model required only a limited number of parameters. The expected mortality gain as a result of screening was estimated by combining published survival data from screened and unscreened cohorts with routinely published national mortality figures. Conservative costs were estimated where there was uncertainty over any specific parameter, thus probably resulting in less cost-effective screening. The incremental cost-effectiveness ratio of a single CT screen among a high-risk male population was calculated to be around £14,000 per quality-adjusted life year gained, if the anticipated mortality benefit was indeed observed. Sensitivity analysis was carried out with a range of differing assumptions, providing a range of cost-effectiveness ratios as high as £21,000 or as low as around £600. In the United Kingdom, the National Institute and Clinical Excellence (NICE) evaluated both clinical and cost-effectiveness when deciding on recommendations to implement new interventions. Currently, NICE considered ICERs below £20,000 per QUALY as definitely acceptable and costs up to £30,000 as suitable for consideration.

The approval of any future lung cancer screening trial will evidently be dependent on costings in line with current political health economics; however, this defining factor was not applicable for either breast cancer screening, which was set up after the Forest Report in 1985 (Gerard et al, 1997), or cervical cancer screening, which was set up in 1992 (Quinn et al, 1999). The most efficient way of controlling cost, however, will be to screen those individuals who are at high risk of developing the disease. There has been increasing interest in developing methods for individual risk prediction for lung cancer. Models have been developed for use within high-risk groups (Bach et al, 2003), and for the general population (van Klaveren et al, 2002), which rely only on age and smoking. Epidemiological risk factors usually show poor discrimination between those ‘who do’ and ‘do not’ develop disease (Wald et al, 1999), but lung cancer is an exception, in that a high proportion of cases are attributable to one risk factor, smoking. The predictive accuracy of lung cancer risk models may be further improved by the addition of other epidemiological risk factors, including smoking history variables, environmental tobacco smoke, family history of cancer, prior respiratory disease, and occupational exposures (dust and asbestos) (Cassidy et al, 2007, 2008; Spitz et al, 2007). The Liverpool Lung Project (LLP) (Field et al, 2005) has recently developed a method to calculate absolute risk of lung cancer over a defined period, based on data from a case-control study of lung cancer in Liverpool. Significant risk factors in the final model were smoking duration, family history of lung cancer, history of non-pulmonary malignant tumour, history of pneumonia, and occupational exposure to asbestos. These factors were combined with published age- and sex-specific incidence rates to give absolute probability of lung cancer development within 5 years. In comparison with previous lung cancer prediction models, the LLP risk model has distinctive strengths. First, the predictor variables are all explicitly defined and can be readily assessed at the time of patient presentation, and secondly, patients can be assigned to their appropriate risk class on the basis of information from the initial history alone. The LLP Risk Model requires rigorous validation in a separate population.
CONCLUSION
Currently, the treatment of advanced lung cancer is inadequate and, thus, there is an urgent pressure to implement screening programmes in many countries. In the United Kingdom, no decision will be made until we have the results of the current international RCT trials and, hopefully, those from a future UK lung cancer screening RCT. However, time is not on our side with over 32,000 individuals a year dying from lung cancer in the United Kingdom, and this statistic alone should accelerate progress in reaching a conclusion concerning the feasibility of lung cancer screening.

ACKNOWLEDGEMENTS
This work was supported by the Roy Castle Lung Cancer Foundation and CRUK.

REFERENCES
Bach PB, Jett JR, Pastorino U, Tockman MS, Swensen SJ, Begg CB (2007) Computed tomography screening and lung cancer outcomes. JAMA 297: 953 – 961
Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ, Hsieh LJ, Begg CB (2003) Variations in lung cancer risk among smokers. J Natl Cancer Inst 95: 470 – 478
Black C, Bagust A, Boland A, Walker S, McLeod C, De Verteuil R, Ayres J, Bain L, Thomas S, Godden D, Waugh N (2006) The clinical effectiveness and cost-effectiveness of computed tomography screening for lung cancer: systematic reviews. Health Technol Assess 10(3): iii – iv, ix – x, 1 – 90
Black C, de Verteuil R, Walker S, Ayres J, Boland A, Bagust A, Waugh N (2007) Population screening for lung cancer using computed tomography, is there evidence of clinical effectiveness? A systematic review of the literature. Thorax 62: 131 – 138
Blanchon T, Brechot JM, Grenier PA, Ferretti GR, Lemarie E, Milleron B, Black C, de Verteuil R, Walker S, Ayres J, Boland A, Bagust A, Waugh N (2008) Lung cancer screening: the way forward. British Journal of Cancer (2008) 99(4), 557 – 562

© 2008 Cancer Research UK

British Journal of Cancer (2008) 99(4), 557 – 562
Sobue T, Moriyama N, Kaneko M, Kusumoto M, Kobayashi T, Tsuchiya R, Kakinuma R, Ohmatsu H, Nagai K, Nishiyama H, Matsui E, Eguchi K (2002) Screening for lung cancer with low-dose helical computed tomography: anti-lung cancer association project. *J Clin Oncol* 20: 911 – 920

Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y, Hasegawa M, Yamanda T, Kubo K, Hanamura K, Asakura K (1998) Mass screening for lung cancer with mobile spiral computed tomography scanner. *Lancet* 351: 1242 – 1245

Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, Shete S, Etzel CJ (2007) A risk model for prediction of lung cancer. *J Natl Cancer Inst* 99: 715 – 726

Stephenson SM, Mech KF, Sardi A (2005) Lung cancer screening with low-dose spiral computed tomography. *Am Surg* 71: 1015 – 1017

Swensen SJ, Jett JR, Sloan JA, Midthun DE, Hartman TE, Sykes AM, Aughenbaugh GL, Zink FE, Hillman SL, Noetzel GR, Marks RS, Clayton AC, Pairolero PC (2002) Screening for lung cancer with low-dose spiral computed tomography. *Am J Respir Crit Care Med* 165: 508 – 513

Swensen SJ, Viggiano RW, Midthun DE, Muller NL, Sherrick A, Yamashita K, Naidich DP, Patz EF, Hartman TE, Muhm JR, Weaver AL (2000) Lung nodule enhancement at CT: multicenter study. *Radiology* 214: 73 – 80

Tiitola M, Kivisaari MS, Koskinen H, Koskinen H, Lehtola H, Zitting A, Vehmas T (2002) Computed tomography screening for lung cancer in asbestos-exposed workers. *Lung Cancer* 35: 17 – 22

Twombly R (2007) Lung cancer screening debate continues despite international CT study results. *J Natl Cancer Inst* 99: 190 – 195

van Iersel CA, de Koning HJ, Draisma G, Mali WP, Scholten ET, Nackaerts K, Prokop M, Habbema JD, Oudkerk M, van Klaveren RJ (2007) Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON). *Int J Cancer* 120: 868 – 874

van Klaveren RJ, de Koning HJ, Mulshine J, Hirsch FR (2002) Lung cancer screening by spiral CT. What is the optimal target population for screening trials? *Lung Cancer* 38: 243 – 252

Wald NJ, Hackshaw AK, Frost CD (1999) When can a risk factor be used as a worthwhile screening test? *BMJ* 319: 1562 – 1565

Whyynes DK (2008) Could CT screening for lung cancer ever be cost effective in the United Kingdom? *Cost Eff Resour Alloc* 6: 5

Yau G, Lock M, Rodrigues G (2007) Systematic review of baseline low-dose CT lung cancer screening. *Lung Cancer* 58: 161 – 170