Facile synthesis of novel hybrid POSS biomolecules via “Click” reactions†

Youssef El Aziz,*a Nazia Mehrban,b Peter G. Taylor,b ‡ Martin A. Birchall,b James Bowen, c † Alan R. Bassindale,a Mateusz B. Pitakc and Simon J. Colesc

A novel alkyne-terminated cubic-octamerotic POSS was synthesised in high yield (82–90%). The X-ray crystal structure revealed intra- and intermolecular hydrogen bonding between the amide groups of the arms. Hybrid biomaterials were synthesised in nearly quantitative yields via a click reaction with (i) azido-N-Fmoc-norleucine and (ii) 3’-azido-3’-deoxythymidine.

Among the most studied scaffolds for developing hybrid biomaterials is polyhedral oligomeric silsesquioxane (POSS). POSS units are symmetrical, three-dimensional cubic molecules, which are unique nanometer-sized hybrid inorganic–organic materials with the formula (RSiO₃)ₙ, known as Tₘ POSS. POSS contains an inorganic inner siloxane nanocore, with the possibility of chemical functionalisation at each of the eight corners of the cubic unit. POSS units have been used extensively as scaffolds for the development of liquid crystals, biocompatible materials, catalysts and dendrimers and can also be used in cross-linking polymers. Functionalisation of Tₘ with different substitutents has usually been achieved by hydro-silylation, Heck, and cross-metathesis reactions.

Copper-catalyzed Azide–Alkyne Cycloaddition (CuAAC), ‘click’ chemistry, is a simple method for coupling organic molecules containing azide and alkyne functional groups in high yields and its use in the fields of peptide and protein biomedical and material sciences is accelerating. The click reaction has been used to synthesise POSS biomaterials such as octa(3-azidopropyl)polyhedral oligomeric silsesquioxane POSS-(N₃)₈ (Fig. 1) and its reaction with a variety of alkynes.

Fig. 1 Octa(3-azidopropyl) POSS.
presents a particularly versatile route which provides a facile and convenient way to functionalise a cubic silsesquioxane core with biomolecules that are more readily available as their azido derivative than their alkyne derivative.

Compound 2 was prepared in one step from commercially available materials; octa(3-aminopropyl)octasilsesquioxane (1) and 5-hexynoic acid (Scheme 1), in 82–90% yield. Product 2 was isolated and purified by column chromatography, followed by characterisation using standard techniques (see ESI†). The crystal structure determined by X-ray crystallography (Fig. 2) suggests that intra- and inter-molecular hydrogen bonding between the arms were a fundamental driving force for the formation of a well-defined crystal structure.‡

The length of intramolecular nitrogen–hydrogen (N–H) bonds varies between 2.09(3) and 2.12(3) Å, whereas for an intermolecular bond the distance is 1.87(3) Å.

The completion of the cycloaddition reaction was confirmed by MALDI-TOF and the reaction progress was monitored by observing the disappearance of the azide asymmetric stretch at 2093 cm⁻¹ and the triple bond C≡C asymmetric stretch of T₈-[propylhex-5-ynamide]₈ (2) at 2100 cm⁻¹ by FT-IR spectroscopy together with monitoring the disappearance in the ¹³C-NMR spectrum of the two peaks (89.20 and 76.56 ppm) representing the triple bond of 2.

Compounds 3 and 4 have been analysed and characterised using NMR (¹H, ¹³C and ²⁹Si) spectroscopy, infrared and MALDI-TOF mass spectrometry in positive ion mode with a DHB matrix.

Trastoy et al. have reported an efficient preparation of highly functionalised cubic-octameric POSS frameworks by click chemistry and the highest yield (96%) was obtained with the CuSO₄·H₂O/sodium ascorbate precatalyst system using a biphasic organic solvent/water mixture at room temperature for 24 hours. We have used these reaction conditions for the functionalisation of the octa-alkyne-terminated POSS with azido-N-Fmoc-norleucine and 3₀-azido-3₀-deoxythymidine (Scheme 2).

The MALDI-TOF MS of compound 3 and 4 revealed that the octa-alkyne-terminated POSS has been fully functionalised with azido-N-Fmoc-norleucine for 3 and 3₀-azido-3₀-deoxythymidine for 4. The molecular ion peak of 3 observed at found 4787 Da is attributed to [M + H]⁺ and 4 observed at 3835.3 Da is attributed to [M + Cu]⁺.

‡ Crystal data of compound 2: C₇₂H₁₁₂N₈O₂₀Si₈ (M = 1634.41 g mol⁻¹); triclinic, space group P1 (no. 2), α = 9.6202(3) Å, β = 14.1254(3) Å, γ = 17.6565(6) Å, α = 71.392(2)°, β = 74.675(2)°, γ = 70.560(2)°, V = 2110.47(12) Å³, Z = 1, T = 100.15 K, μ(Mo Kα) = 0.198 mm⁻¹, D calc = 1.286 g cm⁻³, 28 211 reflections measured (6.088 ≤ 2θ ≤ 50.054°), 7434 unique (R int = 0.0375, R indices = 0.0368) which were used in all calculations. The final R₁ = 0.0459 (I > 2σ(I)) and wR₂ = 0.1280 (all data).
Conclusions
In this study we have described a novel, efficient method for the synthesis of 3D radially symmetrical biomolecule-POSS hybrids. We have developed a one-step synthesis of 2 from commercially available octakis(3-aminopropyl)octa-silsesquioxane (1) with high yield (82–90%). The X-ray crystal structure shows that compound 2 exhibits plane-to-plane stacking with an intra- and inter-molecular hydrogen bond network. The octa-alkyne-terminated POSS was efficiently and regioselectively octa-functionalised with two azido-R species (where R are Fmoc-Leu and thymidine) by copper(I)-catalysed 1,3-dipolar azide–alkyne cycloaddition (CuAAC) under biphasic conditions. This led to new hybrid biofunctional nanocages 3 and 4 in high yield. This new strategy of functionalisation of terminated alkyne-POSS via CuAAC opens many possibilities for the efficient and controlled assembly of new hybrid biomaterials with a high degree of symmetry and with carefully tailored functional properties.

Acknowledgements
We thank the EPSRC National Mass Spectrometry Service Centre (NMSSC) at Swansea and MEDAC Ltd. of Brunel University for elemental analysis. We thank the EPSRC UK National Crystallography Service at the University of Southampton for the collection of the crystallographic data.

Notes and references
1 S. Fabritz, S. Horner, O. Avrutina and H. Kolmar, *Org. Biomol. Chem.*, 2013, **11**, 2224–2236.
2 C. P. Teng, K. Y. Mya, K. Y. Win, C. C. Yeo, M. Low, C. He and M.-Y. Han, *NPG Asia Mater.*, 2014, **6**, e142.
3 Y.-C. Lin and S.-W. Kuo, *J. Polym. Sci., Part A: Polym. Chem.*, 2011, **49**, 2127–2137.
4 H. Ghanbari, B. G. Cousins and A. M. Seifalian, *Macromol. Rapid Commun.*, 2011, **32**, 1032–1046.
5 D. B. Cordes, P. D. Lickiss and F. Rataboul, *Chem. Rev.*, 2010, **110**, 2081–2173.
6 P. D. Lickiss and F. Rataboul, in *Adv. Organomet. Chem.*, ed. F. H. Anthony and J. F. Mark, Academic Press, 2008, vol. 57, pp. 1–116.
7 I. M. Saez and J. W. Goodby, *Liq. Cryst.*, 1999, **26**, 1101–1105.
8 Elsa, G. H. Mehl, J. W. Goodby and D. J. Photinos, *Chem. Commun.*, 2000, 851–852.
9 F. J. Feher, K. D. Wyndham and M. A. Scialdone, *Chem. Commun.*, 1998, 1469–1470.
10 L. A. Bivona, O. Fichera, L. Fusaro, F. Giacalone, M. Buiakisogo, M. Gruttadauria and C. Aprile, *Catal. Sci. Technol.*, 2015, 5, 5000–5007.
11 C.-H. Lu and F.-C. Chang, *ACS Catal.*, 2011, **1**, 481–488.
12 I. M. Saez, J. W. Goodby and R. M. Richardson, *Chem.–Eur. J.*, 2001, 7, 2758–2764.
13 I. A. Zucchi, M. J. Galante and R. J. J. Williams, *Eur. Polym. J.*, 2009, **45**, 325–331.
14 L. Zheng, R. J. Farris and E. B. Coughlin, *Macromolecules*, 2001, **34**, 8034–8039.
15 M. F. Roll, M. Z. Asuncion, J. Kampf and R. M. Laine, *ACS Nano*, 2008, 2, 320–326.
16 G. Cheng, N. R. Vautravers, R. E. Morris and D. J. Cole-Hamilton, *Org. Biomol. Chem.*, 2008, **6**, 4662–4667.
17 C. M. Brick, R. Tamaki, S. G. Kim, M. Z. Asuncion, M. Roll, T. Nemoto, Y. Ouchi, Y. Chujo and R. M. Laine, *Macromolecules*, 2005, **38**, 4655–4660.
18 A. Sellsinger, R. Tamaki, R. M. Laine, K. Ueno, H. Tanabe, E. Williams and G. E. Jabbour, *Chem. Commun.*, 2005, 3700–3702.
19 S. Sulaiman, A. Bhaskar, J. Zhang, R. Guda, T. Goodson and R. M. Laine, *Chem. Mater.*, 2008, **20**, 5563–5573.
20 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, *Angew. Chem., Int. Ed.*, 2002, **41**, 2596–2599.
21 C. W. Tornoe, C. Christensen and M. Meldal, *J. Org. Chem.*, 2002, **67**, 3057–3064.
22 K. Nwe and M. W. Brechbiel, Cancer Biother. Radiopharm., 2009, 24, 289–302.
23 J.-F. Lutz and Z. Zarafshani, Adv. Drug Delivery Rev., 2008, 60, 958–970.
24 X. Pan, H. Gao, G. Fu, Y. Gao and W. Zhang, RSC Adv., 2016, 6, 23471–23478.
25 Z. Wang, Y. Li, X.-H. Dong, X. Yu, K. Guo, H. Su, K. Yue, C. Wesdemiotis, S. Z. D. Cheng and W.-B. Zhang, Chem. Sci., 2013, 4, 1345–1352.
26 H. Su, J. Zheng, Z. Wang, F. Lin, X. Feng, X.-H. Dong, M. L. Becker, S. Z. D. Cheng, W.-B. Zhang and Y. Li, ACS Macro Lett., 2013, 2, 645–650.
27 H. B. Tinmaz, I. Arslan and M. A. Tasdelen, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 1687–1695.
28 B. Trastoy, D. A. Bonsor, M. E. Pérez-Ojeda, M. L. Jimeno, A. Méndez-Ardoy, J. M. García Fernández, E. J. Sundberg and J. L. Chiara, Adv. Funct. Mater., 2012, 22, 3191–3201.
29 X. Feng, S. Zhu, K. Yue, H. Su, K. Guo, C. Wesdemiotis, W.-B. Zhang, S. Z. D. Cheng and Y. Li, ACS Macro Lett., 2014, 3, 900–905.
30 S. Fabritz, D. Heyl, V. Bagutski, M. Empting, E. Rikowski, H. Frauendorf, I. Balog, W.-D. Fessner, J. J. Schneider, O. Avrutina and H. Kolmar, Org. Biomol. Chem., 2010, 8, 2212–2218.
31 G. M. Ziarani, M. S. Nahad, N. Lashgari and A. Badiei, Acta Chim. Slov., 2015, 62, 709–715.
32 B. Trastoy, M. E. Pérez-Ojeda, R. Sastre and J. L. Chiara, Chem.–Eur. J., 2010, 16, 3833–3841.
33 V. Ervithayasuporn, X. Wang and Y. Kawakami, Chem. Commun., 2009, 5130–5132.
34 Z. Ge, D. Wang, Y. Zhou, H. Liu and S. Liu, Macromolecules, 2009, 42, 2903–2910.
35 A. Blazquez-Moraleja, M. Eugenia Perez-Ojeda, J. R. Suarez, M. Luisa Jimeno and J. L. Chiara, Chem. Commun., 2016, 52, 5792–5795.
36 W. Zhang and A. H. E. Müller, Polymer, 2010, 51, 2133–2139.
37 W. Zhang and A. H. E. Müller, Macromolecules, 2010, 43, 3148–3152.
38 M. Niu, R. Xu, P. Dai and Y. Wu, Polymer, 2013, 54, 2658–2667.