Magnetic and transport behaviors of non-centrosymmetric Nd7Ni2Pd

Arjun K. Pathak
SUNY Buffalo State

Yaroslav Mudryk
Ames Laboratory, slavkomk@ameslab.gov

A. Provino
University of Genova

P. Manfrinetti
University of Genova

Vitalij K. Pecharsky
Iowa State University and Ames Laboratory, vitkp@ameslab.gov

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts
Part of the *Materials Science and Engineering Commons*

Recommended Citation
Pathak, Arjun K.; Mudryk, Yaroslav; Provino, A.; Manfrinetti, P.; and Pecharsky, Vitalij K., "Magnetic and transport behaviors of non-centrosymmetric Nd7Ni2Pd" (2020). *Ames Laboratory Accepted Manuscripts*. 578.
https://lib.dr.iastate.edu/ameslab_manuscripts/578

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Abstract
Crystallographic, magnetic, electrical transport and thermodynamic properties of pseudo-binary Nd7Ni2Pd compound have been studied using temperature-dependent x-ray powder diffraction and physical property measurements. Compared to the ferromagnetic parent Nd7Pd3, the ground state of Nd7Ni2Pd is antiferromagnetic, and it exhibits strong metamagnetism. The measurements indicate two antiferromagnetic transitions in fields less than 8 kOe: a second-order paramagnetic to antiferromagnetic at TN2 = 29 K and a weak first-order antiferromagnetic to antiferromagnetic transition at TN1 = 24.5 K. The compound becomes ferromagnetic in fields of 8 kOe and higher with TC = 30 K. Temperature dependence of lattice parameters is anomalous, most prominently in the basal plane at ~30 K; however, there is no detectable structural distortion or clear volume discontinuity around 25 K, suggesting a significant weakening of the first-order transition when compared to the binary Nd7Pd3.

Disciplines
Materials Science and Engineering
Magnetic and transport behaviors of non-centrosymmetric Nd$_7$Ni$_2$Pd

Cite as: AIP Advances 10, 015103 (2020); https://doi.org/10.1063/1.5129907
Submitted: 02 October 2019. Accepted: 21 November 2019. Published Online: 02 January 2020

Arjun K. Pathak, Y. Mudryk, A. Provino, P. Manfrinetti, and V. K. Pecharsky

COLLECTIONS

Paper published as part of the special topic on 64th Annual Conference on Magnetism and Magnetic Materials and Collection
Note: This paper was presented at the 64th Annual Conference on Magnetism and Magnetic Materials.

ARTICLES YOU MAY BE INTERESTED IN

Managing hysteresis of Gd$_5$Si$_2$Ge$_2$ by magnetic field cycling
Journal of Applied Physics 126, 243902 (2019); https://doi.org/10.1063/1.5129660

Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier
Review of Scientific Instruments 91, 013102 (2020); https://doi.org/10.1063/1.5121425

Reevaluating teacher evaluations in higher education
Physics Today 73, 24 (2020); https://doi.org/10.1063/PT.3.4386

AVS Quantum Science
Magnetic and transport behaviors of non-centrosymmetric Nd₇Ni₂Pd

Arjun K. Pathak,¹, ³ Y. Mudryk,² A. Provino,³, ⁴ P. Manfrinetti,³, ⁴ and V. K. Pecharsky², ⁵

AFFILIATIONS
¹ Department of Physics, SUNY Buffalo State, Buffalo, New York 14222, USA
²The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, USA
³Department of Chemistry, University of Genova, 16146 Genova, Italy
⁴Institute SPIN-CNR, 16152 Genova, Italy
⁵Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA

Note: This paper was presented at the 64th Annual Conference on Magnetism and Magnetic Materials.

Corresponding author: pathakak@buffalostate.edu

ABSTRACT
Crystallographic, magnetic, electrical transport and thermodynamic properties of pseudo-binary Nd₇Ni₂Pd compound have been studied using temperature-dependent x-ray powder diffraction and physical property measurements. Compared to the ferromagnetic parent Nd₇Pd₃, the ground state of Nd₇Ni₂Pd is antiferromagnetic, and it exhibits strong metamagnetism. The measurements indicate two antiferromagnetic transitions in fields less than 8 kOe: a second-order paramagnetic to antiferromagnetic at TN₁ = 29 K and a weak first-order antiferromagnetic to antiferromagnetic transition at TN₁ = 24.5 K. The compound becomes ferromagnetic in fields of 8 kOe and higher with TC = 30 K. Temperature dependence of lattice parameters is anomalous, most prominently in the basal plane at ~30 K; however, there is no detectable structural distortion or clear volume discontinuity around 25 K, suggesting a significant weakening of the first-order transition when compared to the binary Nd₇Pd₃.

INTRODUCTION
Rare earth (R) intermetallic compounds are central to the condensed matter physics, solid-state chemistry, and materials science communities because of peculiar physical properties arising from the interplay between the localized and delocalized electronic states, which can be manipulated by tailoring their chemical and crystallographic makeups.⁶-⁷ Among a broader class of rare-earth-based materials, compounds lacking the center of inversion are rather rare but they often exhibit physical behaviors of both fundamental and practical significance.⁸-¹⁰ In particular, R3Pd₃ compounds with R = La-Nd, Sm, Gd crystallize in the hexagonal Th₂Fe₃ structure type described by the non-centrosymmetric space group symmetry P6₃mc. In this type of crystal structure, the Pd atoms reside on a single 6c site, while the R atoms occupy three different crystallographic sites (2×6c and 2b), resulting in three different magnetic sub-lattices formed by the lanthanide atoms.¹¹

The magnetic and electrical properties of Nd₇Pd₃¹²-¹⁵ show that upon cooling the compound undergoes at least two phase transitions: a second-order paramagnetic (PM) – antiferromagnetic (AFM) ordering at TN ~ 37 K, which is followed by an anhysteretic first-order phase transition from the AFM to a ferromagnetic (FM) state at TC ~ 33 K. Recently it was demonstrated that the first-order transition at TC is a symmetry-driven magneto-structural transformation between the high-temperature hexagonal and the low-temperature orthorhombic (space group Cmc2₁) crystal structures.¹⁶ The structural distortion in Nd₇Pd₃ occurs because the non-centrosymmetric P6₃mc adopted by both PM and AFM parents does not support a stable FM state; on the other hand, Cmc2₁, which is a subgroup of P6₃mc, makes a collinear arrangement of the three independent Nd sublattices in the FM state possible. It is worth noting, however, that even though the first-order character of the AFM-FM transition in Nd₇Pd₃ is clearly established, the distortion itself is subtle: it could not be detected with laboratory x-ray diffraction...
or with high-resolution neutron diffraction and was only observed using high-resolution synchrotron data.10 Even though physical properties of R\textsubscript{5}Pd\textsubscript{3} with different R have been studied in the past,9,11,12 the influence of partial substitution of the 4\textit{d} Pd with a 3\textit{d} element on the magnetism and transport has been not, leaving a wealth of potentially interesting magnetism unexplored. Since the 3\textit{d} electrons of, e.g. Ni, are less localized, than 4\textit{d} electrons of Pd17 and, especially, than 4\textit{f} electrons of Nd, one may expect varying competition of localized and itinerant magnetism, and even more complex magnetic structures in Nd\textsubscript{7}Ni\textsubscript{3}Pd\textsubscript{3-\textit{x}} than in the binary Nd\textsubscript{2}Pd\textsubscript{3}. With this in mind, we report crystallographic, magnetic, transport, and calorimetric investigation of pseudo-binary Nd\textsubscript{7}Ni\textsubscript{2}Pd compound, where 2/3 of Pd atoms are randomly substituted by chemically similar Ni atoms.

EXPERIMENTAL TECHNIQUES

Polycrystalline Nd\textsubscript{7}Ni\textsubscript{2}Pd was prepared by arc melting stoichiometric amounts of the constituent elements in an argon atmosphere, followed by annealing at 750 °C for one week and slow cooling to room temperature. Room-temperature crystal structure and phase purity were determined using x-ray powder diffraction (XRPD) using a PANalytical X'Pert diffractometer. XRPD measurements as a function of temperature at H = 0 and 20kOe were carried out on a Rigaku TTRAX rotating anode powder diffractometer as described in Ref. 18. Both ac and dc magnetization measurements were performed in a superconducting quantum interference device magnetometer (Quantum Design) and a physical property measurement system (PPMS, Quantum Design). Heat capacity...
(\(C_p(T)\)) and ac electrical transport measurements were performed using PPMS.

RESULTS AND DISCUSSION

The XRPD data at \(T = 300\text{K}\) show that Nd\(_7\)Ni\(_2\)Pd is practically single phase with hexagonal Th\(_7\)Fe\(_3\)-type structure (\(hP20, P6_3mc, \text{No. 186}\)). The only Bragg reflection not matching the Nd\(_7\)Ni\(_2\)Pd phase corresponds to a very weak peak at \(2\theta = 32.4^\circ\) (Fig. 1a), which may be attributed to a trace amount of NdNi\(_{1-x}\)Pdx. The obtained values of lattice parameters are \(a = 9.9716(2)\ \text{Å}\), and \(c = 6.3231(2)\ \text{Å}\), lower than those of the Nd\(_7\)Pd\(_3\). They, as well as the unit cell volume, lie on straight lines connecting the corresponding values of Nd\(_7\)Pd\(_3\) and Nd\(_7\)Ni\(_3\), as expected for a Ni/Pd composition ratio of 2/1 (Fig. 1b).

The zero-field cooled (ZFC), field-cooled cooling (FCC), and field-cooled warming (FCW) magnetization \(M(T)\) data measured at \(H = 0.01\), and 10 kOe are shown in Fig. 2. The substitution of Ni for Pd in Nd\(_7\)Pd\(_3\) leads to an AFM ground state with AFM transitions at \(T_{N1} = 24.5\text{K}\) and \(T_{N2} = 29\text{K}\). The transition at \(T_{N1}\) (see \(C_p(T)\) below) is likely weakly first-order transformation. With increasing magnetic field, \(M(T)\) anomaly at \(T_{N1}\) becomes more pronounced than the one at \(T_{N2}\), and both peaks disappear at \(H \geq 10\text{kOe}\) when the compound becomes FM (Fig. 2b). The Curie temperature, \(T_C\), obtained from \(M(T)\) data at \(H = 10\text{kOe}\) and defined as the minimum value of \(dM/dT\), is 30K. The inverse dc magnetic susceptibility

FIG. 3. \(M(H)\) measured at (a) \(T = 5\) K and (b) \(T = 13\) K. The magnetization was measured up to ±90 kOe but only the low field data are shown for clarity. The hysteresis loops were recorded after cooling the sample in a zero magnetic field followed by changing the magnetic field from 0 to 90 kOe (1st cycle), then 90 → 90 kOe (2nd, and 3rd cycle), then -90 → +90 kOe (4th, and 5th cycle), and finally +90 → 0 kOe (6th cycle).

FIG. 4. (a-f) Heat capacity \(C_p\) of Nd\(_7\)Ni\(_2\)Ni measured in magnetic fields up to 10 kOe.
(χ"-1" = H/M) follows the Curie-Weiss law. The effective magnetic moments, \(p_{\text{eff}} \), and Weiss temperature, \(\theta_p \), are 3.58 \(\mu_B/\text{Nd} \) and 30 K, respectively. The former is in a very good agreement with the \(g[J(J+1)]^{1/2} = 3.62 \mu_B \) value of \(\text{Nd}^{3+} \) while the positive \(\theta_p \) value that is identical to \(T_C \) points to the dominance of FM interactions in the compound. Ac magnetic susceptibility measured in an ac field of 1 Oe with zero bias dc magnetic field at different frequencies shown in Fig. 2d. Consistent with M(T), a real part of ac susceptibility shows two AFM transitions \(T_{N1} = 24.5 \) K and \(T_{N2} = 29 \) K and an additional peak at 20.5 K, which is different from that observed in \(\text{Nd}_7\text{Pd}_3 \), where it occurs at 16 K and is due to the NdPd impurity. \(^{19}\) Fillion et al. \(^{20}\) reported that \(\text{NdNi} \) orders FM at 28K, suggesting the peak at 20.5K observed in \(\text{Nd}_7\text{Ni}_2\text{Pd} \) is due to a pseudo-binary \(\text{NdNi}_{1-x}\text{Pd}_x \) phase, also detected in the XRPD data.

M(H), at \(T = 5 \) and 13 K measured on a ZFC sample is shown in Fig. 3. Consistent with low-field M(T) data, ZFC M(H) clearly shows the AFM ground state both at \(T = 5 \) and 13 K. When the magnetic field increases, M(H) at 5 K indicates a robust meta-magnetic behavior with a critical field \(\sim 4 \) kOe, and the compound becomes FM with magnetization approaching saturation when H reaches and exceeds \(8 \) kOe. The metamagnetic behavior is also observed at 13 K (Fig. 3b) and the critical field decreases to about \(3 \) kOe. The saturation magnetization is 2.03 \(\mu_B/\text{Nd}^{3+} \), which is slightly higher compared to that of \(\text{Nd}_7\text{Pd}_3 \) (1.8 \(\mu_B/\text{Nd}^{3+} \)). \(^{12,16}\)

Heat capacity, \(C_p(T) \), measured at various external magnetic fields (illustrated as \(C_p/T \) in Fig. 4) clearly shows two peaks corresponding to \(T_{N1} \) and \(T_{N2} \) observed in M(T) data. The relatively sharp and rather narrow peak at \(T_{N1} \) suggests a first-order phase transition at \(T_{N1} \). Both peaks at \(T_{N1} \) and \(T_{N2} \) remain practically unchanged up to 5 kOe, but the two anomalies merge into a single broad maximum when the applied field \(H = 10 \) kOe, which is typical for second-order phase transitions. The absence of \(C_p/T \) anomaly at \(T = 16 \) K confirms that the corresponding peak seen in the ac magnetic susceptibility data of Fig. 2d is likely from a minor impurity.

The electrical resistivity, \(\rho(T) \), is nearly temperature independent at \(T \lesssim 7 \) K (Fig. 5), increasing afterward, indicating metallic behavior. The anomaly is observed near \(T_{N1} = 29 \) K and a minor peak is observed at \(T_{N2} = 23 \) K. \(\rho(H) \) shows a sharp change when the sample transforms from the AFM to FM state and it saturates when the compound is firmly in the FM state for \(H \geq 10 \) kOe. The magnetoresistance (Fig. 5, inset) reaches -12%. Incomplete reversibility of magnetoresistance is related to similar irreversibilities seen in M(H) data at 5 K, Fig. 3a.

The temperature dependent XRPD at \(H = 0 \) and 20 kOe show that the compound crystallizes in the \(\text{Th}_7\text{Fe}_3 \) structure type in the whole temperature region. However, considering that the structural distortion was not observed with laboratory XRPD in \(\text{Nd}_7\text{Pd}_3 \), we cannot rule out that a similar weak distortion also occurs in \(\text{Nd}_7\text{Ni}_2\text{Pd} \). If fact, given that FM state is not supported by the hexagonal \(P6_3mc \), it is nearly certain that the structural distortion is indeed present in \(\text{Nd}_7\text{Ni}_2\text{Pd} \); high-resolution synchrotron XRPD
measurements are likely required to demonstrate this symmetry altering transition. At the same time, partial substitution of Pd with Ni in Nd₇Ni₃Pd practically removes the discontinuous behavior of lattice parameters, both at 0 and 20 kOe (Fig. 6), which explains the very weak first-order character of the low-temperature transition. However, the contraction along c-axis as well as the expansion along the a-axis, and the resulting decrease of the c/a ratio and the increase of the unit cell volume in the magnetically ordered state are observed in both the parent Nd₇Pd₃ and in the Ni substituted Nd₇Ni₃Pd. The application of the magnetic field has a negligible effect on the lattice parameters.

SUMMARY

We show that partial substitution of Pd with Ni changes the ground state from FM in Nd₇Pd₃ to AFM in Nd₇Ni₃Pd. The AFM transition that occurs upon cooling at Tₐ₁ = 24.5 K is weakly first order, and it is preceded by a second-order AFM ordering at Tₐ₂ = 29 K. The ρ(T,H) show metallic behavior with magnetoresistance reaching -12% at H = 30 kOe and T = 2 K. Temperature-dependent XRPD reveals anomaly in the lattice parameter a at ~30 K, however, there is no detectable structural distortion or volume discontinuity around 25 K, suggesting a significant weakening of the first-order transition compared to the binary Nd₇Pd₃. Compared to Nd₇Pd₃, Nd₇Ni₃Pd exhibits strong metamagnetic behavior with the application of an external magnetic field.

ACKNOWLEDGMENTS

The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University of Science and Technology under contract No. DE-AC02-07CH11358. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division. APK acknowledges the start-up funding from SUNY Buffalo State to present this work. AP and PM acknowledge the Institute SPIN of the CNR, the Department of Chemistry of the University of Genova and the NEWS project (No. 734303) to support their stay at the Ames Laboratory.

REFERENCES

1. S. Xu, F. Jia, Y. Yang, L. Qiao, S. Hu, D. J. Singh, and W. Ren, Phys. Rev. B 100, 104408 (2019).
2. C. Shekhar, N. Kumar, V. Grinenko, S. Singh, R. Sarkar, H. Luetkens, S. Wu, Y. Zhang, A. C. Komarek, E. Kampert, Y. Skourski, J. Wosnitza, W. Schnelle, A. McCollam, U. Zeitler, J. Kübler, B. Yan, H.-H. Klauss, S. S. P. Parkin, and C.Felser, PNAS 115, 9140 (2018).
3. E. Gratzi, J. Mag. Mag. Mater. 254, 1 (1981).
4. A. Kowalczyk, T. Tolinski, B. Andrzejewski, and A. Szafer, J. Alloys Compd. 413, 1 (2006).
5. A. V. Morozkin, R. Nirmala, J. Yao, Y. Mozharivskyi, and O. Isnard, J. Solid State Chem. 196, 93 (2012).
6. P. Shiv Halasyamani and K. R. Poeppelmeier, Chem. Mater. 10, 2753 (1998).
7. A. N. Bogdanov, U. K. Rößler, M. Wolf, and K.-H. Müller, Phys. Rev. B 66, 214410 (2002).
8. Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rennow, D. Morikawa, Y. Taguchi, and Y. Tokura, Nat. Comms 6, 7638 (2015).
9. J. M. Moreau and E. Parthé, J. Less-Comm. Mat. 32, 91 (1973).
10. V. Florio, N. C. Baenziger, and R. E. Rundle, Acta Cryst. 9, 367 (1956).
11. H. Kadomatsu, K. Kuwano, K. Urmeo, Y. Itoh, and T. Tokunaga, J. of Mag. and Mag. Mat. 189, 335 (1998).
12. N. K. Singh, P. Kumar, Z. Mao, D. Paudyal, V. Neu, K. G. Suresh, V. K. Pecharsky, and K. A. Gschneidner, Jr., J. Phys.: Condens. Matter 21, 456004 (2009).
13. T. Matsushita, K. Shimomura, and T. Tsutsaoka, J. Korean Physical Society 63, 559 (2013).
14. P. Kumar, P. Jaina, and R. Kumar, RSC Advances 5, 58928 (2015).
15. F. Canepa, M. Napoletano, and S. Cirafici, Intermetallics 10, 731 (2002).
16. P. Mudryk, C. Ritter, D. Paudyal, A. Provino, S. K. Dhar, P. Manfrinetti, and V. K. Pecharsky, J. Phys.: Condens. Mater 31, 265801 (2019).
17. R. Coles and D. Phil, Platinum Metal Rev 8(1), 9 (1964).
18. A. P. Holm, V. K. Pecharsky, K. A. Gschneidner, R. Rink, and M. N. Jirmanus, Rev. Sci. Instrum. 754, 1081 (2004).
19. V. Dhar and A. Provino, Solid State Comm. 142, 46 (2016).
20. G. Fillion, D. Gignoux, F. Givord, and R. Lemaire, J. Magn. Magn. Mat. 44. 173 (1984).
21. T. Tsutsaoka, Y. Andoh, S. Kawano, G. Nakamoto, D. T. Kim Anh, M. Kurisu, and T. Tokunaga, J. Alloys Compd. 408, 181 (2006).