Quasar Jets and their Fields

BY ROGER BLANDFORD

Caltech, Pasadena, CA 91125, USA

Observations of jets from quasars and other types of accreting black hole are briefly summarized. The importance of beaming and γ-ray observations for understanding the origin of these jets is emphasised. It is argued that both the power source and the collimation are likely to be magnetic in origin, although the details remain controversial. Ultrarelativistic jets may be formed by the spinning hole and collimated by a hydromagnetic disc wind. Progress in understanding jets has been handicapped by our inadequate knowledge of how magnetic field really behaves under cosmic conditions. Fortunately, significant insights are coming from solar observations, numerical simulation and laboratory plasma experiments. Some possible, evolutionary ramifications are briefly discussed and it is suggested that it is the mass of the black hole relative to that of the galaxy which determines the eventual galaxy morphology.

Keywords: quasars, accretion discs, magnetic fields, jets

1. Quasars, Seyferts and Extragalactic Radio Sources

(a) Quasars

When the universe was about a quarter of its present age, the nucleus of roughly one out of every five hundred bright galaxies (at any time) was so bright that it outshone the surrounding stars. For historical reasons these nuclei are called quasistellar objects or quasars for short. These quasars are generally recognised by their unusually blue optical continua and resulting broad emission lines. They also are powerful X-ray sources. Roughly ten percent of these quasars are designated “radio-loud”, like the first example discovered, 3C 273, because they also possess powerful radio sources; the remainder are “radio-quiet”, (though not silent). The separation between these two classes is pretty clean, with relatively few intermediate cases. Roughly ten percent of the radio-quiet quasars also exhibit broad absorption lines and are called BALQs. (For more detailed discussion of much of what follows as well as an extensive bibliography of original references that cannot be reproduced here, see eg Krolik 1999, Robson 1996.)

Radio-loud quasars are further sub-divided into “compact” and “extended” radio sources. The former group are dominated by flat spectrum radio nuclei that dominate the emission at cm wavelengths. The extended sources invariably comprise two “lobes” of steep spectrum radio emission straddling the galaxy and located beyond the observed stars. We now know that, when observed with greater sensitivity and particularly at lower frequency, the compact sources also have extended components, and, correspondingly, the extended radio sources have cores that are more prominent at high frequency.
(b) Active Galactic Nuclei

Quasars are really just the brightest members (with powers in excess of $\sim 10^{37}$ W), of a larger class of “active galactic nuclei” or AGN (circumventing some ambiguities). In fact, it appears that the majority of “normal” galaxies exhibit some form of nuclear activity. One particularly important type of AGN is the Seyfert galaxy, first identified as a class in the 1940s. Seyfert galaxies come in two basic types. Type 1 Seyferts (eg NGC 4151) exhibit both broad and narrow optical emission lines and powerful soft X-ray emission, whereas Type 2 Seyferts (eg NGC 1068) only show the narrow lines directly and are weak soft X-ray sources. Seyfert galaxies are often considered to be the low power extension of the quasar luminosity function, but there are several important differences: they are never powerful radio sources, they appear to be associated mostly with spiral galaxies while quasars may reside in giant ellipticals, Seyfert 1 galaxies are more powerful in X-rays relative to UV emission and Seyferts never show very broad absorption lines.

(c) Radio galaxies

Powerful radio sources were first identified with giant elliptical galaxies in the 1950s. Like the quasars they can be extended, (eg Cygnus A), or core-dominated, (eg BL Lac, the eponymous “blazar”). These radio sources are supplied with energy, momentum and magnetic field through a pair of jets that emerge from a source smaller than the compact radio components. The extended radio galaxies are further divided into the weaker “Fanaroff-Riley” (or FR) Class 1 objects like Centaurus A and the more powerful FR2 objects like Cygnus A. It is found that the brightest radio emitting region is located at the extremities of the source in FR2 radio galaxies but near the center of the source in FR1s.

(d) Unification

If all of this sounds a bit confusing, it should. In fact, the classification of AGN is much more complicated than I have described. (The subject is closer in spirit to clinical psychology than elementary particle physics!) However, there has been some progress in bringing order to the field through a process called “Unification”. There are at least four types of unification that have been examined. The best established is that compact radio sources are extended radio sources viewed along their relativistic jets. Essentially what we are seeing is the relativistically Doppler-boosted emission from the innermost parts of the jet outshining the unboosted emission from the surrounding extended radio source. (We know that relativistic motions are present in the compact cores because radio astronomers can image features moving across the sky with apparent “superluminal” speed.) This explains why, when we observe compact radio sources at low radio frequency, we see faint, low surface brightness halos surrounding the compact source.

Almost as well-established is the notion that Seyfert 2 galaxies are similar to Seyfert 1 galaxies except that they are observed through a warped equatorial disc, or torus, that prevents direct view of the broad emission lines and UV- soft X-ray spectrum. Here the confirmation is provided by detection of broad emission lines from Seyfert 2 galaxies in polarised radiation. This has, presumably, been scattered in our direction so as to avoid the disc.
Thirdly, it appears to be the case that many of the powerful FR2 radio galaxies are actually radio-loud quasars that would be classified as such if we were not viewing them through an obscuring, dusty gas.

Finally, there is fairly good evidence that most radio-quiet quasars produce radiatively-driven, equatorial outflows and we only classify them as BALQ when our line of sight intersects these flows.

2. Observations of Black Holes

(a) Black holes as prime movers of nuclear activity.

Ever since quasars were first discovered in 1963, black holes have provided one of the most popular explanations for their activity. (eg Lynden-Bell 1969). They naturally produced high radiative efficiency, rapid variation, long-term source axes and relativistic outflow speeds as the observations required. However, it is only in recent years that the positive, observational evidence for the presence of black holes in the nuclei of the majority of regular galaxies has become overwhelming. As with stellar-sized black holes, the only sure approach is dynamical. Both stars and gas have had their speeds measured and the combination of speed and size suffices to estimate the central mass. It has been possible to measure about 25 hole masses. These range all the way from $\sim 10^6 M_\odot$ to $\sim 3 \times 10^9 M_\odot$ and have been localised in volumes that, in several cases, are too small to allow a long-lived star cluster. (The most celebrated is now NGC 4258, Moran, these proceedings, which has a mass of $3.9 \times 10^7 M_\odot$.) Beyond all reasonable doubt, these are black holes. In other words, this part of the story is on much firmer footing than the rest of what I shall say.

(b) The Galactic center

A good example is our Galactic centre. Recently, Ghez et al (1998) and Genzel & Eckart (1997) have been able to measure the motion of stars close to the hole’s location, as determined by radio astronomy. As they are also able to measure the speed of the stars along the line of sight, it will soon be possible to reconstruct their individual orbits and verify directly that the central mass is point-like. The existing data are consistent with a black hole of mass $2.6 \times 10^6 M_\odot$ and essentially nothing else. One important feature of the Galactic centre black hole is that it is surprisingly under-luminous relative to the gas supply. Specifically, it seems that $\sim 10^{19}$ kg s$^{-1}$ of gas are supplied to the black hole. However, the bolometric luminosity appears to be not much more than $\sim 10^{29}$ W and the quotient gives us $\sim 10^{10}$ J kg$^{-1} \sim 10^{-7} c^2$, hardly a good advertisement for gravity power!

(c) M87

Another good example is M87, a galaxy in the Virgo cluster. Here, the speed of the gas orbiting the black hole is measured and implies a large black hole mass, $\sim 3 \times 10^9 M_\odot$ (see Richstone et al 1998 for a general review). Again, both the power and radiative efficiency are found to be low. M87 is also a FR1 radio source with a single jet inclined at an angle $\sim 30^\circ$ to the line of sight. (There is, presumably, a counter-jet that is rendered invisible by Doppler beaming.) Despite its low power, features have been reported to be moving with apparent speeds $\sim 6c$, perhaps
associated with some relativistic gas stream deflected slightly closer to the line of sight. In a triumph of precision astronomy, Junor & Biretta (1995) have traced this jet to $\sim 100m \sim 5 \times 10^{11}$ km from the hole. This is the best direct evidence that we have that relativistic jets are formed close to black holes.

\begin{itemize}
\item[(d)] \textit{Spin}
\end{itemize}

The mass m of a black hole, expressed in geometrical units, just determines a scale of length and time. Of more physical interest is a second parameter which measures the shape of the surrounding spacetime. It is convenient to choose this to be the spin angular velocity of the hole, Ω. This has a maximum value $1/2m$, corresponding to an extreme Kerr hole. The most convincing case, presented to date for having measured this quantity has been given for MCG 6-30-15 (Tanaka et al. 1995) where the shape of the measured ~ 7 keV Fe line profile is similar to that expected to be produced by an accretion disc extending down to its limiting, least stable, circular orbit from a hole that is spinning nearly maximally. Unfortunately this is not the only interpretation of this profile (Reynolds & Begelman 1997).

\begin{itemize}
\item[(e)] \textit{X-ray binaries}
\end{itemize}

Although these are not quasars, there are at least nine X-ray binaries where the mass of the compact object exceeds the maximum mass of a neutron star or white dwarf. Particularly prominent among these objects are the microquasars, discussed here by Mirabel. Several of these sources exhibit “quasi-periodic oscillations” or QPOs, presumably originating from short-lived disc modes. The frequencies of these modes must measure the hole mass and spin, though it has not yet been possible to explain how in a convincing manner.

3. Observations of Jets

\begin{itemize}
\item[(a)] \textit{The γ-ray revolution}
\end{itemize}

The general existence of jets, similar to those previously observed in M87 and 3C273, was inferred in extragalactic, double radio sources from the demonstrated need for a continuous supply of energy and linear momentum (Rees 1971). Bipolar outflows are now known to be a common feature of accreting objects, specifically, they have also been found in association with microquasars, young stellar objects and neutron star binaries. Until about eight years ago, this subject was the almost exclusive province of the radio astronomer. However, with the success of the EGRET instrument on Compton Gamma Ray Observatory, (Hartmann et al 1999), it has become apparent that the radio emission is often, and probably always, a bolometrically insignificant part of the jet luminosity. (The great strength of radio observations is that they enable us to image jets directly in fine detail.)

Extragalactic jets (eg Hughes et al 1991, Ostrowski et al 1997) present the cleanest challenge to astrophysicists. Let us draw together the evidence from several well-studied black holes sources and gamble that they are fundamentally similar structures. We can then formulate a general model of jet formation and collimation. From the M87 observation, it appears that jets are formed as collimated ultrarelativistic outflows on scales smaller than $\sim 100m$. Their initial composition is not
known, but they quickly become prodigious emitters of GeV γ-rays and are variable on time scales as short as \(\sim 30m \) (Wehrle et al 1998). If we correct for relativistic kinematics, then the GeV γ-ray emission region is probably located at radii \(\lesssim 10^{3-4}m \).

An important, energy-dependent radius is that of the “γ-sphere”, where the optical depth for a γ-ray to create pairs by combining with X-rays is unity (Blandford & Levinson 1995). A second important radius is the “annihilation radius”, within which electrons and positrons can cool to subrelativistic energies and annihilate in one expansion time. If efficient particle acceleration occurs between the annihilation radius and the \(\sim 0.5 \text{ MeV} \) γ-sphere, then the jet is likely to comprise electron-positron pairs at larger radii. (Whether or not there is evidence for this is an interesting controversy at the present time, Wardle et al 1998.) However, the inner jet cannot comprise only pairs. There must be a second agency to carry the momentum and to overcome radiative drag so that the jet can persist to larger radii, as observed. The two candidates are electromagnetic field and protons, with the former being preferred because any scheme to create a directed proton beam would probably require invoking an even larger electromagnetic energy density.

The γ-ray spectrum extends up to \(\gtrsim 1 \text{TeV} \) (Quinn et al 1996) and is produced by inverse Compton scattering of soft photons that are probably created within the jet by the synchrotron process, although they may also be part of the ambient radiation field. (TeV sources are rapidly variable but can only be observed out to \(z \lesssim 0.1 \), because of absorption on the cosmic infrared background.) The inner jet must therefore be capable of accelerating electrons to energies \(\gtrsim 1 \text{ TeV} \). It is hard to estimate accurately the jet beaming factor and efficiency and the amount of obscuration, but it appears that a typical ultrarelativistic jet carries a time-averaged power that is significant fraction, perhaps a few percent, of the total emitted power of the underlying quasar or AGN. In a few cases, (eg Cygnus A), this fraction may be more than a half.

(b) Radio observations

At larger jet radii, \(\sim 10^{5-6}m \), the outflow is essentially adiabatic. Initially the radio synchrotron emission is self-absorbed and unresolved - the radio core. However, at larger radii, the emission is optically thin and radio astronomers are able to track the motion of relativistic shocks, the superluminally expanding features, travelling along the jet accelerating high energy electrons as they go. Optical and X-ray synchrotron emission is observed out to quite large radii (\(\sim 10^7m \)) in a few sources (eg M87), implying that these shocks are capable of accelerating \(\sim 100 \text{ TeV} \) electrons.

We know enough about the physical conditions in the radio-emitting regions to place a lower bound on the internal pressure and to compare this with the maximum external gas pressure at the same radius, deduced on the basis of X-ray observations. In the most powerful sources, the jet appears to be overpressured by factors \(\sim 10-100 \). This disparity provides one of the strongest reasons for invoking magnetic collimation and confinement of jets.

A major uncertainty in our understanding of jets is the bulk Lorentz factor of the outflow, \(\Gamma \). This is important because the observed flux density from a coherent feature moving towards us increases \(\propto \Gamma^2 \), at the transformed frequency and

Article submitted to Royal Society
so a relatively insignificant part of a poorly collimated outflow can outshine all of the rest of the jet for selected observers. (Note that Γ refers to the motion of the emitting material, not the motion of the peak of the emission. In a shock, these are distinct.) Furthermore, although it has long been thought that the observation of superluminal expansion speeds $\lesssim 10c$ suggested that $\Gamma \lesssim 10$, typically, we are now beginning to suspect that values an order of magnitude higher may be present. This is because of the discovery of intraday variability of the cm emission in several sources. If this is intrinsic to a synchrotron source, it implies that $\Gamma \gtrsim 1000$ in some cases and requires unreasonably large jet powers (Kedziera-Chudzczer et al 1997). A more reasonable explanation of these variations is refractive scintillation in our interstellar medium. However, there may still be a problem because scintillation cannot change the source brightness temperature which has been measured to be as large as $\sim 10^{14}$ K two orders of magnitude in excess of the value needed to match the inverse Compton emission to the synchrotron emission. As brightness temperatures are boosted by one power of the Doppler factor in relativistic expansion, this suggests that $\Gamma \gtrsim 100$. A second reason for considering larger Lorentz factors is that the precedent has already been set by models of the most energetic γ-ray bursts which suggest that they are beamed towards us with $\Gamma \sim 300$. All of this discussion has prompted a re-examination of coherent emission mechanisms which are not subject to these constraints, though are subject to other limitations.

(c) What do we know about jet magnetic fields?

Radio polarisation observations indicate that the magnetic field in a jet is relatively ordered. On arcsecond scales, a characteristic pattern is observed with the more powerful FR2 radio galaxies exhibiting a parallel magnetic field while the less powerful FR1 source show perpendicular magnetic field, (although parallel fields are sometimes seen at small radii and at the outer edges of resolved jets). The interpretation is straightforward. The magnetic field direction reflects the rate of shear of the velocity field, with the parallel case arising when there is a significant velocity gradient across the jet or in a boundary layer and the perpendicular field predominating when the transverse expansion is most important, that is to say after internal velocity gradients have been erased. Note that we are supposing that the mean field component along the jet is very small. This is reasonable on general grounds because the associated magnetic flux would otherwise be very large and, as it is only likely to decrease along the jet, it would be associated with an unreasonable magnetic pressure close to the black hole.

There are also patterns on the milliarcsecond scales probed by VLBI observations (eg Gabuzda et al 1999). These show similar patterns to observations on larger angular scales and are also consistent with emission from travelling internal shocks.

(d) Do discs launch hydromagnetic jets and, if so, how?

Having described the magnetic field that we observe directly, what about the field that we cannot see? There are three distinct processes to which it may be contributing: launching of a powerful outflow close to the hole, collimation of this outflow into the narrow jets observed at somewhat larger distance and confinement
of these jets on all scales out to the extended radio components. We have already attributed confinement on VLBI scales to magnetic stress. Can invisible magnetic field lines, initially frozen into a highly conducting accretion disc close to the black hole, wrapped around the jet, and each other, by the differential rotation do the rest of the job?

Several general collimation mechanisms have been described (cf. Pudritz, these proceedings, e.g. Mestel 1998, Königl & Pudritz 1999 and references therein.) In particular, if there is a strong, ordered magnetic field, the tension associated with its azimuthal component creates a collimating and confining “hoop” stress. The gradient in the magnetic pressure may help. Magnetic field attached to an accretion disc also provides a means of launching a jet because it will exert a torque on the disc and extract some of the binding energy released by the infalling gas. A hydromagnetic wind may also remove a significant fraction of the accreting mass because, if the field direction subtends an angle of more than $\pm 30^\circ$ to the rotation axis, then gas will be flung away from the disc by centrifugal force. The resulting, collimated, hydromagnetic outflow is likely to have an asymptotic speed a few times the escape velocity at the magnetic footpoint on the disc. This elementary mechanism is straightforward to describe and analyse using similarity methods (e.g. Ostriker 1997).

Another type of ordered MHD outflow model has been developed by Shu et al (1994), more specifically for application to young stellar objects (cf. Pringle, these proceedings). Here, it is proposed that essentially all of the magnetic flux in the magnetosphere emanates from the innermost radii of the disc. One concern with this model is that some of these field lines must lie on the surface of the accretion disc and be subject to rapid reconnection as they sweep by loops and prominences attached to the disc. If this happens, the flux will migrate radially outward very quickly.

An organised field need not be unipolar. Lynden-Bell (1996) has developed quasi-static, force-free models in which a poloidal magnetic loop is twisted by a differentially rotating disk and rapidly expands outwards creating toroidal field of one sign. One possible problem with this mechanism is that it is assumed that the Alfvén speed v_A is infinite, whereas, in practice, matter is likely to be flung out as well so as to lower the Alfvén speed below the rotational speed close to the disk and the outflow velocity far from the disk. However, the foot points of a given loop will be differentially rotating and although the field line attached to the inner footpoint trails, the field line at the outer footpoint leads. Now a leading field line looses causal contact with the disk above a height $\sim v_A/\Omega$ where it must be dragged by the returning field from the inner footpoint. The whole loop must therefore be sub-Alfvénic. Loops that become super-Alfvénic are presumably unstable and will shock, reconnect and detach.

Magnetic field can also be responsible for powering jets in a less organised manner. As discussed here by Brandenburg, the magnetorotational instability drives a non-helical dynamo (Balbus & Hawley 1998) and ensures that accretion discs are able to regenerate radial and toroidal magnetic field on an orbital timescale and build up an internal disc field that is supposed to be much stronger than any ordered, vertical field that leaves the disc surface. Under these circumstances, loops of field of size comparable with the disc thickness (or more relevantly, the pressure scale height) will be continuously released by buoyancy and reconnection from the
disc surface into an active corona in much the same way as is envisaged to happen at the surfaces of stars and the Galactic disc (Miller & Stone 1999 and references therein). Not only does this process seem unavoidable, it also provides a suitable power source for the X-ray emission of Seyfert galaxies and other AGN. However, it does not automatically lead to a collimated outflow. Tout & Pringle (1996) have suggested that these small loops can grow through an inverse cascade to a size $\sim r$ and that these larger loops can provide enough tension to effect collimation despite the reversals in the sign of the azimuthal field with cylindrical radius and the isolation from the underlying rotating disk. In an alternative description, Heinz & Begelman (1999) have suggested that the field is disordered on small scales and that its dynamical effect may be approximated by a local mean stress tensor. In a hybrid model (Blandford & Payne 1982, Emmering et al 1992), the rms coronal field is supposed to be larger than the mean vertical field and constantly changing on timescales shorter than an orbital period through reconnection. This allows matter to be injected, intermittently, onto open field lines and flung out into a wind where the field becomes relatively organised and smoothly varying.

A key difference in approach underlying these models is whether the mean field at high altitude is unipolar and established through a balance between advection by the inflowing disk from large radius (where most of the flux resides) and escape through reconnection or whether it is created locally by dynamo action so that the horizontal correlation length is $\lesssim r$. What happens is unclear. On the one hand, van Ballegooijen (1989) argued that the advection rate is slower than the escape rate by a factor $O(r/H Pr_m)$, where H is the disc thickness and Pr_m is the effective, magnetic Prandtl number. Therefore if $Pr_m < r/H$, and it is traditionally set to unity in a turbulent medium, then any large scale field must escape. Alternatively, we can express the mean inflow rate in the disk as $t^{-1} \sim \alpha \Omega$, where $\alpha \sim 0.1$ is the assumed coefficient of proportionality between the shear stress and the pressure, and observe that, to within a numerical factor of order unity, this is the rate at which magnetic field will random walk out of the disk by reconnecting on flux loops of size $\sim H$ every Ω^{-1}.

Of course, the polarity of the field associated with the accreting gas is likely to change. This does not preclude confinement by the hoop stress associated with the toroidal field, for which the polarity must also change. To see this, consider an elementary model in which an axial current I flows along a jet. There is an axisymmetric, toroidal field of strength $\mu_0 I/2\pi r$. Now let there be axisymmetric, axial currents of strength $2I$ and alternating sign flowing within thin cylindrical sheaths of radius r_1, r_2, \ldots. The toroidal field magnitude will be unchanged but the sign will reverse. The stress acting on the current sheets $\mu_0 I^2/8\pi^2 r_i^2$, will be balanced across them and will steadily decrease until it can be matched onto an ambient gas pressure. Stress balance within the current sheets must be achieved either with gas pressure or a rotating magnetic field. This configuration is presumably tearing mode unstable and magnetic energy will be steadily dissipated through reconnection. However, it should persist for long enough in a super-Alfvénic outflow to allow jet collimation.

As must be clear by now, this is a contentious subject. As has also been true of cosmology, there are several different elementary models that are amenable to applied mathematical analysis without any guarantee that their underlying assumptions are relevant to the application. We simply do not understand MHD
well enough yet to know what are the correct assumptions to use and this is a prerequisite to answering the big astrophysical questions. We need to know the ratio of the internal torque transporting angular momentum radially outward through the disk to the external torque applied to the disk surface and responsible for carrying off angular momentum in the wind. (Note that if the mean vertical field threading the disc is large, then the magnetorotational instability is likely to be suppressed.) Furthermore, we want to understand the magnetic structure and energy balance of the disk corona. Presumably it is a low β plasma which can be approximated as force-free, in contrast to the disk field. Stability is another issue. For example, simple prescriptions for specifying the rate at which mass is loaded onto open field lines lead to the conclusion that a centrifugally-driven wind is unstable (Lubow et al. 1994); alternative prescriptions lead to stationary, self-adjusting flows (Königl & Wardle 1996, Krasnopolsky 1999, in preparation). Another difficult issue is the nature of the boundary conditions to apply at large and small cylindrical radius. In a similarity solution the difficulty is finessed. However, in a finite disk the ultimate collimation can be strongly influenced by what is assumed (Okamoto 1999 and references therein).

However, the situation is not hopeless. There are at least three lines of inquiry that are helping a lot. Before I explain why, though, I would like to discuss two further, relevant questions.

4. Is Adiabatic Accretion Conservative?

In recent years, there has been renewed interest in what happens when gas accretes at a slow rate or, more specifically at low density (relative to Eddington accretion). Under these circumstances there is the possibility that the flow is adiabatic (in the sense that it does not cool on a dynamical timescale). This can surely happen if the only coupling between the ions and the electrons is through Coulomb scattering. When the mass accretion rate in units of the Eddington rate, $(4\pi GM/c\kappa T)$, denoted \dot{m} is $\gtrsim 0.3\alpha^2$, then cooling will be ineffective and the disc is likely to inflate as a consequence of its large internal energy. There has been a lot of work in recent years describing conservative flows (called ADAFs, eg Narayan, Mahadevan & Quataert 1998, Kato et al. 1998 and references therein) that carry all the supplied mass down the black hole with negligible radiative loss. Fitting the emissivity computed from these flows to diverse, observed sources has been a relatively successful enterprise.

However, there are some fundamental, dynamical problems with ADAF solutions. The gas is formally unbound, mainly because the viscous torque that allows them to proceed, transports energy as well as angular angular momentum and this must be dissipated in a differentially rotating disc. To be specific, if there is an extensive, adiabatic, conservative, viscous disc flow, then it can be shown that the specific energy of the gas is twice its orbital kinetic energy. The model, as it stands, does not appear to be self-consistent without becoming quasi-spherical and then the gas close to the rotation axis is unsupported.

For these and other reasons, Blandford & Begelman (1999) have proposed that adiabatic accretion always be accompanied by outflows which carry off energy, angular momentum, mass etc in unspecified amounts that are sufficient to allow the gas to accrete on bound orbits. The outflows may be gas dynamical or hydromagnetic. In these “ADIOS” solutions, the rate at which gas actually accretes onto the
black hole can be orders of magnitude less than the rate at which it is supplied. If this view of adiabatic accretion ultimately prevails, and there are some ways by which it can be distinguished observationally from ADAF flows, then there will be a good dynamical reason why accretion is often accompanied by outflow.

A second mode of adiabatic accretion can occur when the gas is supplied at a rate far in excess of the Eddington rate ($\dot{m} \gtrsim 10$). Under these circumstances, there is no difficulty in emitting radiation. The problem arises when the photons try to escape (Begelman & Meier 1982). It turns out that they will be trapped in the accreting gas and advected in toward the hole faster than they can diffuse away. Again the flow is likely to be effectively adiabatic and is likely to drive an outflow for the same reason as a sub-critical inflow. If this view turns out to be correct, it will be hard for black holes to accrete mass at a rate that is much larger than roughly ten times the Eddington rate. These outflows, launched initially by Thomson scattering and then further accelerated by resonance line scattering may be associated with the absorbing gas in BALQs.

5. Are Quasar Jets Powered by Black Hole Spin Energy?

When a black hole spins and its spacetime is described by the Kerr metric, a fraction, ≤ 0.29 of its mass energy can be associated with its spin and is extractable. A gedanken experiment to do just this was performed by Penrose (1969). For the $\sim 3 \times 10^9 \, M_\odot \equiv 5 \times 10^{56} \, J$, black hole in M87, perhaps $\sim 10^{56} \, J$ of energy can realistically have been tapped over its life which is ample to account for an extremely profligate youth.

(a) How to get Blood out of a Stone

The most natural way to tap this energy is by using large scale magnetic field (Blandford & Znajek 1977, Thorne et al 1986, Lee, Wijers & Brown 1999). Currents flowing in the inner accretion disc can support a significant amount of magnetic flux (typically $\Phi \sim 10^{25} \, \text{Wb}$ threading the hole. Now the hole can be considered to be a good, though not perfect, electrical conductor, with a surface conductance of $(E/H)_{\text{horizon}} = Z_0 = 377 \Omega$. Therefore, when the hole spins, it can act as a unipolar inductor and create an emf $E \sim \Omega \Phi \sim 10^{20} \, \text{V}$, (just about sufficient to accelerate the UHE cosmic rays). This emf can drive a closed, field-aligned current circuit that dissipates both within the horizon of the hole (the internal resistance of the circuit) and in the particle acceleration region at the base of the jet (the load). As the total resistance of the circuit is $\sim 100 \, \Omega$, the current, in this example, is $\sim 10^{18} \, \text{A}$ and the power $\sim 10^{38} \, \text{W}$. The power can be thought of as being transported away from the horizon in the form of a Poynting flux. (The “no-hair” theorem is not violated because the flux of energy is only conserved in the frame that is not-rotating with respect to infinity. Observers that hover just above the horizon must rotate with respect to this frame and they would observe an inwardly-directed energy flux.) The electromagnetic power scales according to the memorable relation, $L \propto a^2 B^2 c$, where B is the field that threads the hole. (This stipulation is important because magnetic flux is unable to penetrate the horizon when the rotation rate is nearly maximal and so the electromagnetic power is reduced).
This mechanism has recently attracted attention because of its possible role in powering γ-ray bursts. The magnetic field is quite likely to be separated from the accreting gas so that the resulting outflow can move ultrarelativistically. Similar, though less extreme, conditions are required in quasar jets. However, it has also been argued that the power extracted from the hole is likely to be much less than that extracted hydromagnetically from the inner disc, mainly because the area of the latter is larger (Livio, Ogilvie & Pringle 1999). This is probably true, at least for a thin disk (cf Blandford & Znajek 1977). However, quasar jet powers are only a fraction of the bolometric power, as a comparison of the γ-ray background with the quasar light background affirms and they can still have a black hole origin. Furthermore, in a thick disk, perhaps associated with an adiabatic inflow, a funnel can form and the jet power fraction can plausibly become quite large (eg Rees et al 1982).

Another objection has been put forward by Natarajan & Pringle (1998) who have presented a new analysis of the Bardeen-Petterson mechanism whereby a spinning hole will interact dynamically with a misaligned outer disk. They conclude that black holes will align more rapidly than previously estimated and, if the plane of the gas supply keeps changing, the hole will spin down faster than accretion will cause it to spin up. (Note that this alignment is coupled with a quite large release of energy in the outer disk $O(m^3 \omega_{BP} \theta^2)$, where ω_{BP} is the Keplerian angular velocity at the warp radius and θ is the misalignment between the hole spin and the outer disk angular momentum.) The estimated alignment timescales typically fall between the jet transit times to the outer lobes of radio sources and the overall radio source lifetimes consistent with the “dentist’s drill” model of lobe advance. VLBI observations are already resolving scales $\sim r_{BP}$ and may soon determine if the jet axis is determined by the hole or the disc.

Despite all these concerns, there is still a particularly good reason for invoking the extraction of electromagnetic energy from a spinning hole to power quasar and similar jets. This is because, as I have emphasized, they are ultrarelativistic and, initially, probably magnetically-dominated. The hydromagnetic winds from the surface of a disc are unlikely to avoid being loaded with plasma and, consequently, will be unlikely to achieve high terminal Lorentz factors. No such drawback attends the field lines that thread the surface of a black hole!

(b) Flogging a Dead Horse

In a variant of this mechanism, that has also just been resurrected, it may be possible to transfer angular momentum from the hole directly to the disc. Krolik (1999) and Gammie (1999) have considered magnetic field in the plane of the disc within the innermost stable circular orbit and shown that it is possible for magnetic torque to carry an energy flux outward along a magnetic flux tube, at least outside the ingoing Alfvén critical point and, in this manner, increase the specific energy release from the disc to a value above that associated with the binding energy at the innermost stable circular orbit. The extra power is, again, derived from the spin of the hole. One particular concern about this mechanism is that the infalling gas remain magnetically attached to the disc. It seems quite likely that both senses of radial field will be present within the transition region between the disc and the hole and that magnetic reconnection will happen quite freely. An alternative way

Article submitted to Royal Society
to model this interaction (Blandford & Spruit, in preparation), is to suppose that magnetic flux tubes connect the disc surface to the event horizon at intermediate latitude, extracting energy and angular momentum from the hole. Note that, in this case, the magnetic field is tied to the orbiting gas not the central object - the opposite of what happens with accreting neutron stars.

6. Laboratories for Studying MHD

As I have already emphasized, we are seriously handicapped by our ignorance of how magnetic field actually behaves in cosmic environments. Fortunately there are three promising approaches to improving our understanding.

(a) Cosmic laboratories

The first of these is direct observation of dynamical magnetic fields.

(i) Solar wind

Observations of the solar photosphere and corona by YOHKOH, SOHO and TRACE, as reported here by Title, have led to a revolution in our general perspective on MHD. No longer is the observed as having a bland surface occasionally ruptured by coronal arches. Instead, it is a tightly interwoven, largely invisible tapestry of moving magnetic field, energised by the underlying convection and held together for as long (typically 1-2 d) as reconnection and intercommutation of magnetic field lines can be staved off. The observed corona is maintained at a temperature of $\sim 1 - 2 \times 10^6$ K, probably by reconnecting nanoflares, though the detailed calorimetry is still a matter of controversy. The magnetic field dominates the energy density. By contrast, $\beta > 1$ below the photosphere, where it has just been found that a dynamo may be operating, in addition to the dynamo located at the base of the convection zone that produces the field of sunspots.

Observations during solar minimum of the high latitude wind at $\sim 1 - 2$ AU by Ulysses have been no less instructive (eg Fisk 1998). The wind and its associated flux emanate from giant coronal holes located near the poles. The radial magnetic field at 1 AU has a steady value of about 4 nT and satisfies an inverse square variation with radius indicating that it more or less fills most of a hemisphere in a uniform manner. The total field pattern executes a Parker spiral, although it is slightly over-wound at the poles. The density is $\sim 3 \times 10^{-21}$ kg m$^{-3}$ and again is pretty constant with time and latitude, satisfying an inverse square variation with radius suggesting that the surprisingly large and uniform outflow speed of ~ 800 km s$^{-1}$ is also achieved well before ~ 1 AU.

The wind cannot be thermally-driven; instead, it is supposedly energised by Alfvén waves close to the corona. We can actually use this information to estimate the torque that the solar wind exerts upon the sun at this time. If we approximate the wind as spherical and the radial velocity as pretty constant, then the torque is given by

$$G \sim 2\pi r^4 v_r \rho \Omega \sim \frac{2\pi B_r^2 r^4 \Omega}{\mu_0 v_r} \quad (6.1)$$
evaluated at the Alfvén radius, where \(v_r = \frac{B_r (\mu_0 \rho)^{-1/2}}{2} \). This is given by \(G \sim 10^{23} \) Nm and the Alfvén radius evaluates to \(\sim 12 \) R\(\odot \). The solar angular momentum is, for comparison, \(\sim 1.6 \times 10^{44} \) kg m\(^2\) s\(^{-1}\) and so the characteristic slowing down time is now \(\sim 30 \) Gyr, consistent with expectation.

A more sophisticated comparison is certainly possible and would have to take into account that the coronal hole axis is inclined with respect to the spin axis, that there is a separate slow wind at low latitude, that there is a significant amount of Alfvén turbulence, that the sun differentially rotates, that there is a solar cycle and so on (cf Fisk 1996). However even though the sun is slow rotator relative to an accretion disk, it clearly has much to teach us as we try to model hydromagnetic winds from accretion disks. In particular it may already have told us that simple, stationary, axisymmetric models of disk winds are a good starting point.

(ii) **Crab Nebula**

Recent HST observations of the Crab Nebula also have some lessons for us. The main reason is that a similar path is being followed by the energy: ordered rotational energy \(\rightarrow \) electromagnetic energy \(\rightarrow \) relativistic electron energy \(\rightarrow \) non-thermal radiation. Moving features have been observed associated with the famous wisps, which may coincide with the strong relativistic shock formed where the momentum flux in the outflow matches the ambient nebula pressure (Gallant & Arons 1994). Our understanding remains somewhat sketchy, but this is the closest we are ever likely to be to particle acceleration in an ultrarelativistic plasma, so it is worth persisting. It ought to be possible to understand the speed and composition of the outflow and whether or not a strong collisionless shock is really formed. The absence of a narrow jet may well point to the importance of having an extended disc for forming jets.

(iii) **X-ray astronomy**

The next eight months, will see the launch of three complementary X-ray telescopes Chandra, XMM and ASTRO-E. They should improve our understanding of the structure of jets, discs and the cosmological distribution of quasars in much the same way that YOHKOH, SOHO and TRACE have so enriched our view of the sun.

(b) **Numerical MHD laboratories**

The second laboratory is computational. As we have seen from Brandenburg’s talk (and his cited references), the capability to perform relatively high dynamic range, three dimensional numerical MHD is already here and there have already been serious attempts to expand this capability into the realm of special and general relativity. This facilitates a variety of numerical experiments. For example Stone et al (1999) have recently carried out a series of two dimensional simulations of adiabatic accretion in which they consider purely hydrodynamical flows and introduce a variety of \textit{ad hoc} prescriptions for the viscosity. They find that the gas becomes strongly convective with the mean specific angular momentum being constant on isentropes and the mean mass flow through radius \(r \) settling down to a non-conservative variation, \(\dot{M} \propto r \), consistent with the predictions of a limiting
ADIOS solution. However, instead of creating a supersonic wind, the outflow is subsonic and is mostly confined to the surface of the disc. This highlights that an extra source of entropy must be present at the disc surface for a disc to create a supersonic outflow purely hydrodynamically. Furthermore, by contrasting these simulations with their hydromagnetic counterparts (Hawley, 1999, in preparation), it has become clear that the dissipation associated with the magnetic torque must be handled very carefully numerically and that the character of the flow may depend upon what is assumed. For example, the magnetic field may create a turbulence spectrum that is absorbed roughly volumetrically at some inner scale through transit time damping (Gruzinov 1998, Quataert 1998), or the entropy may be produced in a small fraction of the total volume if reconnection at current sheets dominates (Bisnovatyi-Kogan & Lovelace 1997). Although in both cases the dissipation is local, the latter assumption is likely to lead to higher temperatures and a different emissivity than the former. Alternatively, most of the energy may be transported hydromagnetically from the disc to the corona so that there is little local dissipation. These assumptions may lead to quite different flows.

\((c)\) Plasma physics laboratories

We have already mentioned several instances where magnetic reconnection can have a major role in determining the energy release and the details of the flow. As described here by Parnell, we still do not have a confident understanding of this important process and some novel reconnection modes are currently under serious consideration. The way reconnection works in two dimensions is now well understood and the emphasis has shifted towards studying ways in which it may operate in three dimensions (eg Priest & Titov 1996, Galsgaard & Nordlund 1997). Another way to approach this problem is through laboratory experimentation. Although the magnetic Reynolds’ numbers are never as high in the laboratory as one would like, it is still possible to perform instructive experiments and then to scale with the relevant dimensionless numbers (eg Brown et al 1998) so as to learn how astrophysical reconnection occurs under differing conditions.

7. What Next?

In this review, I have tried to consider the problem of understanding powerful, relativistic, quasar jets in a general context. An outline of one solution, in which an electromagnetic core is collimated by a non-relativistic, hydromagnetic wind, has existed for twenty years. However, it has not been satisfactorily verified observationally and there are several, genuine physical difficulties that are not understood. There is still a chance that a quite different and essentially non-magnetic mechanism might be at work. However, as I have emphasised, the powerful combination of numerical simulation and direct observation of “real” plasma is forcing us to become much more sophisticated and further important insights are likely over the next few years.

I would like to conclude by mentioning some speculative extensions of this model to a “grand unified theory” of AGN that attempts to give a comprehensive interpretation of all of the principal modes of nuclear activity that are observed. This is stimulated by two recent observational claims. Firstly, Magorrian et al (1998)
have argued that the black hole mass in local, dormant galaxies is proportional to the mass of the “bulge”. (Ellipticals are all bulge; spirals have progressively smaller bulges as the type changes from Sa to Sd.) Secondly, McLure et al (1999) have presented evidence that quasars are surrounded by elliptical galaxies, not spirals as once thought.

Suppose that black holes grow, as argued above, at an Eddington-limited rate early in the life of a galaxy. The rate of mass supply should decline with time, whereas the Eddington limit grows with mass. It is possible that the hole will grow with an e-folding timescale \(\sim 30 \text{ Myr} \) until it reaches a mass somewhat below its present value. When the mass supply is super-Eddington, and the hole mass exceeds \(\sim 10^8 \, M_\odot \), the object will form a radio-quiet quasar and produce a high speed, radiatively-driven wind. During the final e-folding of hole mass, this wind will deposit \(\sim 10^{53} (m/10^8 M_\odot) \) J of energy in the outer parts of the galaxy and, presumably, will drive a blast wave into the infalling gas. If we assume that the escape velocity is \(\sim 300 \, \text{km s}^{-1} \) up to \(10^{12} (m/10^8 M_\odot) \) M_\odot of gas can be driven away. Allowing for inefficiency and radiative loss, there is enough energy to expel the gas and forestall the formation of a disk if \(m \gtrsim 10^8 \, M_\odot \). In other words, relatively big black holes lead to elliptical galaxies. We know that BAL outflows are not seen when the luminosity is less than that associated with a quasar. (The explanation may be a subtle effect associated with opacity.) It is then possible that smaller holes cannot expel the infalling gas and that a disc will form. In other words galaxies form around black holes, not vice versa.

One key observation that must still be explained is that low mass holes / spirals / Seyfert galaxies do not create powerful, ultrarelativistic jets. Perhaps accretion continues for much longer at an intermediate rate as the supply of gas is not shut down and this is sufficient to drive the spin of the hole to nearly its maximal value, (as reported for MCG 6-30-15). This will prevent the hole from forming a powerful, relativistic jet. Alternatively, the collimating hydromagnetic disc wind may just not be produced at an intermediate accretion rate. By contrast, with a high mass hole / elliptical / quasar, the mass supply may quickly decline below Eddington and perhaps become adiabatic close to the hole. A radio-loud quasar or FR2 radio galaxy can then form. This will persist while the spin energy is depleted and the central jet becomes progressively less powerful. Eventually, the jet thrust becomes less than that associated with the disc wind and, although the observed jet may be formed with speed \(\sim c \), it will soon be decelerated by interacting with the more slowly moving wind. This is an FR1 radio galaxy. If nothing else happens, the jet and nuclear activity will finally decline to dormancy. However, if two old galaxies and their black holes subsequently merge, a fairly rapidly spinning hole may ensue and a powerful radio source will be re-born (Wilson & Colbert 1995).

These speculations have clear, observable implications.

I thank the Royal Society for support and the other attendees for instruction and suggestions. I also thank participants in the Black Hole Astrophysics Program at the Institute for Theoretical Physics, Santa Barbara, notably, for many discussions of these and related topics. This research was also supported by the Beverly and Raymond Sackler Foundation, NSF grants AST 95-29170, 99-00866, PHY 94-07194 and NASA grant 5-2837.

Article submitted to Royal Society
References

Balbus, S. A. & Hawley, J. F. 1998 RMP 70 1
Begelman, M. C. & Meier, D. L. 1982 ApJ 253 873
Bisnovatyi-Kogan, G. S. & Lovelace, R. V. E. 1997 ApJ 486 L43
Blandford, R. D. & Begelman, M. C. 1999 MNRAS 303 L1
Blandford, R. D. & Levinson, A. 1995 ApJ 441 79
Blandford, R. D. & Payne, D. G. 1982 MNRAS 199 883
Blandford, R. D. & Znajek, R. L. 1977 MNRAS 179 433
Brown, M. R. et al 1998 BAPS 43 1661
Emmering, R. T., Blandford, R. D. & Shlosman, I. 1992 ApJ 385 460
Fink, L. A. 1996 JGR 101 15547
Fisk, L. A. 1998 Proc, 25th Int. Cosmic Ray Conf
Gabuzda, D. et al 1999 MNRAS 303 515
Gallant, Y. & Arons, J. 1994 ApJ 435 230
Galsgaard, K. & Nordlund, A. 1997 JGR 102 231
Gammie, C. F. 1999 ApJ (in press).
Genzel, R., Eckart, A., Ott, T. & Eisenhauer, F. 1997 MNRAS 291 219
Ghez, A. M. et al 1998 ApJ 509 678
Gruzinov, A. 1998 ApJ 501 787
Hartmann, R. C. et al 1999 ApJS (in press)
Heinz, J. & Begelman, M. C. 1999 ApJ (submitted)
Hughes, P. A. et al 1991 Beams and Jets in Astrophysics Cambridge: Cambridge University Press
Junor, W. & Biretta, J. A. 1995 AJ 109 500
Kato, S., Fukue, J. & Mineshige, S. 1998, Black Hole Accretion Disks Kyoto: Kyoto University Press
Kedziora-Chudczer, L. et al 1997 ApJ 490 9
Königl, A. & Pudritz, R. E. 1999 in Protostars and Planets IV ed. V. Mannings A. P. Boss & Russell, S. S. Tucson: University of Arizona Press
Königl, A. & Wardle, M. 1996 MNRAS 279 L61
Krolik, J. H. 1998 Active Galactic Nuclei Princeton: Princeton University Press
Krolik, J. H. 1999 ApJ in press
Lee, H. K. Wijers, R. A. M. J. & Brown, G. E. Phys. Rep. submitted
Livio, M., Ogilvie, G. I. & Pringle, J. E. 1998 MNRAS in press
Lubow, S. H., Papaloizou, J. C. B. & Pringle, J. E. 1994 MNRAS 268 1010
Lynden-Bell, D. 1969 Nature 223 690
Lynden-Bell, D. 1996 ApJ 279 389
Magorrian, J. et al 1998 AJ 115 2285
McClure, R. J. et al 1999 ApJ (in press)
Mestel, L. Cosmic Magnetic Fields Cambridge: Cambridge University Press
Miller, K. A. & Stone, J. M 1999 ApJ submitted
Narayan, R., Mahadevan, R. & Quataert, E. 1998 Theory of Black Hole Accretion Discs ed. M. A. Abramowicz, G. Björnsson & J. E. Pringle p148
Natarajan, P. & Pringle, J. E. 1998 ApJ 506 L97
Okamoto, I. 1999 MNRAS in press
Ostriker, E. C. 1997 ApJ 486 291
Ostrowski, M. et al 1997 Relativistic Jets in AGNs Kraków
Penrose, R. 1969 Riv. Nuovo Cimento 1 252

Article submitted to Royal Society
Quasar Jets and their Fields

Priest, E. R. & Titov, V. S. 1996 Phil. Trans. Roy. Soc. 354 2951
Quataert, E. 1998 ApJ 500 978
Quinn, J. et al 1996 ApJ 456 L83
Reynolds, C. & Begelman, M. C. 1997 ApJ 488 109
Rees, M. J. 1971 Nature 229 312
Rees, M. J. et al 1982 Nature 295 17
Richstone, D. O. it et al 1998 Nature 395 14
Robson, I. 1996 Active Galactic Nuclei Chichester: John Wiley
Shu, F. H. et al 1994 ApJ 429 781
Silk, J. I. & Rees, M. J. 1998 A& A 331 L1
Stone, J. M., Pringle, J. E. & Begelman, M. C. 1999 MNRAS in press
Tanaka, Y. et al 1995 Nature 375 659
Thorne, K. S., Price, R. M. & MacDonald 1986 Black Holes: The Membrane Paradigm
 New Haven: Yale University Press
Tout, C. A. & Pringle, J. E. 1996 MNRAS 281 219
van Ballegooijen, A.A. 1989 in Accretion Disks and Magnetic Fields in Astrophysics Dor-
drecht: Kluwer p99
Wardle, J. F. C. et al 1998 Nature 395 457
Wehrle, A. E. et al 1998 ApJ 497 178
Wilson, A. & Colbert, E. J. M. 1995 ApJ 438 62