Educational Objectives Of Different Laboratory Types:
A Comparative Study

Yasser .H. Elawady
Faculty of computers and Information systems
Taif University,
Taif, KSA.
y.alawadi@tu.edu.sa

A.S. Tolba
Faculty of Computer Studies
Arab Open University,
HQ, Kuwait.
a.tolba@arabou.edu.kw

Abstract— Lab courses play a critical role in scientific education. Modern technology is changing the nature of the laboratories, and there is a great comparison between hands-on, simulated and remote laboratories. The remote lab technology has brought a significant improvement in communication within the Academic community and has improved students' learning experiences. There are different educational objectives as criteria for judging the laboratories: Hands-on labs increase the Ability to design and investigate (design skills), while remote labs focus on conceptual understanding. Remote laboratories offer all the advantages of the new technology, but are often a poor replacement for real laboratory work. Remote laboratories are similar to simulation techniques in that they require minimal space and time, because the experiments can be rapidly configured and run over the Internet [Web]. But unlike simulations, they provide real data. This paper presents a comparative analysis for the educational objectives of the three laboratory techniques; hands-on, simulated, and remote laboratories. In addition, it proposes enhancements for the remote lab activities leading to improving its performance.

Keywords- Hands-on laboratory, Remote laboratory, Virtual laboratory, distance learning, E-learning.

I. INTRODUCTION

Different educational objectives are used as criteria for judging the laboratories: Hands-on advocates emphasize design skills, while remote lab advocates focus on conceptual understanding. Nersessian [1991] goes so far as to claim that “hands-on experience is at the heart of science learning” and Clough [2002] declares that laboratory experiences “make science come alive.” Lab courses have a strong impact on students’ learning outcomes, according to Magin et al. [1986].

This domain of study ranges across many disciplines, and is challenging to survey. In order to find the existing literature, we focused on three electronic databases: ACM, IEEE, and Science Direct. As a result, 60 articles were selected for a full-text review and coding (20 publications for each; hands-on labs, simulated labs, and remote labs). These articles are listed in the Appendix.

Most of the literature focuses on engineering laboratories as the engineering discipline contains the biggest portion of laboratory studies. Engineering professors may also see the labs as connected to future employment [Faucher 1985]. In other words, engineering is an applied science. Alternatively, the impetus for the creation of a remote laboratory may come from an engineer’s desire to build something. This paper presents a comparative analysis for the educational objectives of the three laboratory techniques; hands-on, simulated, and remote laboratories. In addition, it proposes enhancements for the remote lab activities leading to improving its performance.

The rest of this paper is organized as follows: Section II introduces Comparison of Different Laboratory Types. Section III introduces analysis and discussion of the educational Objectives. Section IV presents our conclusion. Finally, section V concludes our Recommendations for enhancing the performance of remote laboratories.

II. COMPARISON OF DIFFERENT LABORATORY TYPES

The three types of labs are sometimes compared to each other, while in other cases the labs are merged. The integrated teaching and learning (ITL) program at the University of Colorado at Boulder provided an example of how to combine hands-on practice with simulation experience and remote experimentation [Schwartz and Dunkin 2000]. A handful of articles evaluated remote laboratories in comparison to hands-on laboratories [Sicker et al. 2005] or simulated laboratories in comparison to hands-on laboratories [Engum et al. 2003]. Engum et al. [2003] showed that hands-on labs were more effective than simulated.
A summarized description of the three types of labs is described below.

- **Hands-On Labs**: Hands-on labs involve a physically real investigation process. Two characteristics distinguish hands-on from the other two labs: (1) All the equipment required to perform the laboratory is physically set up; and (2) the students who perform the laboratory are physically present in the lab. On the other hand, hands-on experiments are seen as too costly. Hands-on labs put a high demand on space, instructor time, and experimental infrastructure, all of which are subject to rising costs [Farrington et al. 1994]. Also, due to the limitation of space and resources, hands-on labs are unable to meet some of the special needs of disabled students [Colwell et al. 2002] and distant users [Watt et al. 2002]. Additionally, students’ assessments suggest that students are not satisfied with current hands-on labs [Dobson et al. 1995].

- **Simulated Labs**: Simulated labs are the imitations of real experiments. All the infrastructure required for laboratories is not real, but simulated on computers. Some note that the cost of simulation is not necessarily lower than that of real labs [Canizares and Faur 1997]. Realistic simulations take a large amount of time and expense to develop and still may fail to faithfully model reality [Papathanassiou et al. 1999]. The theory of situated learning (e.g., McLellan [1995]) would suggest that what students learn from simulations is primarily how to run simulations.

- **Remote Labs**: Remote labs are characterized by mediated reality. Similar to hands-on labs, they require space and devices. What makes them different from real labs is the distance between the experiment and the experimenter. In real labs, the equipment might be mediated through computer control, but colocated. By contrast, in remote labs experimenters obtain data by controlling geographically detached equipment.

In other words, Reality in remote labs is mediated by distance. Remote labs are becoming more popular [Yoo and Hovis 2004]. They have the potential to provide affordable real experimental data through sharing experimental devices with a pool of schools [Sonnenwald et al. 2003]. Also, a remote lab can extend the capability of a conventional laboratory. Along one dimension, its flexibility increases the number of times and places a student can perform experiments [Canfora et al. 2004].

Along another, its availability is extended to more students [Cooper et al. 2002b]. Additionally, comparative studies show that students are motivated and willing to work in remote labs [Cooper et al. 2002b]. Some students even think remote labs are more effective than working with simulators [Scanlon et al. 2004].

III. Analysis and Discussion of the Educational Objectives

In order to study this hypothesis, first, the articles (in the appendix) are coded based on educational objectives. A four-dimensional goal model is developed for laboratory education (see Table I). This model is built starting with the educational goals proposed by the Accreditation Board for Engineering and Technology (ABET) [2005].

Lab Goals	Description	Goals from ABET
Conceptual understanding	Extent to which laboratory activities help students understand and solve problems related to key concepts taught in the classroom.	Illustrate concepts and principles.
Design skills	Extent to which laboratory activities increase student’s ability to solve open-ended problems through the design and construction of new artifacts or processes.	Ability to design and investigate.
Social skills	Extent to which students learn how to productively perform engineering-related activities in groups.	Understand the nature of science (Scientific mind).
Professional skills	Extent to which students become familiar with the technical skills they will be expected to have when practicing in the profession.	Social skills and other productive team behaviors (communication, team interaction and problem solving, leadership).

Figures 1, 2 and 3 shows the educational goals for each lab summarized from the articles reviewed.

![Educational Goals for Hands-on Lab](image-url)
Our research will contribute in enhancing both social and design skills by augmenting the remotely accessed lab with the second life.

Second Life (SL) is a virtual world developed by Linden Lab launched on June 23, 2003 and is accessible via the Internet. A free client program called the Second Life Viewer enables its users, called Residents, to interact with each other through avatars. Residents can explore, meet other residents, socialize, participate in individual and group activities, and create and trade virtual property and services with one another, or travel throughout the world, which residents refer to as the grid. [26]

The results from this sample of articles suggest the following possible explanation for the debate over laboratories. Adherents of hands-on laboratories find other laboratories to be lacking. They do not believe that alternative labs can be used in teaching design skills. By contrast, adherents of remote laboratories think the hands-on laboratory researchers are ignoring evidence which shows that remote laboratories are effective in teaching concepts. Remote laboratory adherents are evaluating their own efforts with respect to teaching concepts, not design skills.

On the other hand, researchers are confounding many different factors, and perhaps over-attributing learning success to the technologies used. There is much in the literature to suggest that both students’ preferences and learning outcomes are the result of many intertwined factors. Thus, it is sensible to suggest that researchers more carefully isolate and study the different factors which might interact with laboratory technology in determining educational effectiveness. However, such work is difficult. It is hard to perform large-scale educational tests and hold factors such as instructor ability constant. It is also difficult to compare studies which focus on different scientific domains. Thus, it is especially important that effort should be focused on areas that look the most promising.

- First, research may look at hybrids of laboratories that are designed to accomplish a portfolio of educational objectives. There is a fair amount of evidence that simulated and remote labs are effective in teaching concepts.
- Second, the effectiveness of laboratories may be affected by how much students believe in them. Therefore, an understanding of presence, interaction, and belief may lead to better interfaces.
- Third, research might pay more attention to collaboration and sense making. The technology may change the way we can and should coordinate our work.

The main advantages and disadvantages of each type of laboratory according to some features are summarized in Table II.
Table II. Comparative list of advantages and disadvantages of Real, Virtual and Remote laboratories.

Feature	Hands-on Labs	Simulated Labs	Remote Labs	
Access Mode	Adv.	Adv.	Adv.	
Physical access	Virtual access to experiments using simulation programs.	Using the internet and SW to access the lab remotely.		
to lab.				
• Realistic data.	• Good for concept validation.	• No time and space restrictions.		
• Interaction with real equipment.	• No time and physical restrictions.	• Realistic data.		
• Open ended experiments are possible.	• Feeling of reality.			
Infrastructure	Disadv.	Disadv.	Disadv.	
HW components and computers if required.	Simulation SW programs.	Hardware components, computers and communication media.		
Adv.	Adv.	Adv.		
• Offer students the sense of the reality.	• Good for conceptual understanding.	• Offer students to make the experiment more times.		
• Help students to connect the experiment under staff supervision.	• Secure if safety precautions are taken into account.	• Useful if more real results are required.		
Pedagogical	Disadv.	Disadv.	Disadv.	
HW components, computers and communication media.	Finite lifetime of the HW components.	Finite lifetime of the HW components.		
Adv.	Adv.	Adv.		
• Finite lifetime of the HW components.	Need SW update.	Need SW update.		
• Needs maintenance of the HW components.				
• Vulnerable to damage (misuse, theft,……).				
Economical	Adv.	Adv.	Adv.	
Physical access to lab.	Virtual access to experiments using simulation programs.	Using the internet and SW to access the lab remotely.		
Adv.	Adv.	Adv.		
• Students may not complete experiments in lab period.	Supervision of academic staff not available.	Need enhancing in both social and design skills.		
• Supervision required.	No sense with real equipment of the experiment.			
Expensive	Low cost	Medium cost if reduces the number of used labs.		(Disadv.)

IV. CONCLUSION

We found that most of the articles discussing the educational objectives of different laboratory types were engineering-related. Additionally, there were advocates and detractors for each different type of laboratory. We asked what might explain the continued unresolved debate. The debate can be partially explained by examining the educational objectives associated with each laboratory type. Hands-on lab adherents emphasize the acquisition of design skills as an important educational goal, while remote laboratory adherents do not evaluate their own technology with respect to this objective.

In conclusion, there is no simple answer to the question, which laboratory is the best for engineering students? All types of laboratories offer certain advantages. We believe that engineering students should be offered through the duration of their programs a balanced mixture of real, virtual and remote labs.

This paper provides a starting place for researchers involved in the discussion about the role and value of laboratory work. Perhaps a sense of reality can be achieved by students not only in hands-on experience, but also in virtual environments. It is sure with the proper mix of technologies we can find solutions that meet the economic constraints of laboratories by using simulations and remote labs to reinforce conceptual understanding, while at the same time providing enough open-ended interaction to teach design. Our review suggests that there
is room for research that seeks to create such a mix, which might be informed by studies of coordination as well as the interactions that lead students to a sense of immersion.

V. RECOMMENDATIONS FOR ENHANCING THE PERFORMANCE OF REMOTE LABS

- Improving social skills through constructing distributed remote labs.
- Improving design skills through constructing remote labs for the applications which basically depend on computers in real labs such as FPGA labs and other related labs.
- Development of Augmented Reality Labs. Augmented Reality Laboratories (ARLs) Combined Remote Lab Access with Second Life. Adobe Conferencing system with Webcam for lab visualization through the Web in Second life.

REFERENCES

[1] NERSESSIAN, N. J. 1991. Conceptual change in science and in science education. In History, Philosophy, and Science Teaching, M. R. Matthews, Ed. OSIE Press, Toronto, Canada, 133–148.
[2] CLOUGH, M. P. 2002. Using the laboratory to enhance student learning. In Learning Science and the Science of Learning, R. W. Bybee, Ed. National Science Teachers Association, Washington, DC, 85–97.
[3] MAGIN, D. J., CHURCHES, A. E., AND REIZES, J. A. 1986. Design and experimentation in undergraduate mechanical engineering. In Proceedings of a Conference on Teaching Engineering Designers. Sydney, Australia. Institution of Engineers, 96–100.
[4] FAUCHER, G. 1985. The role of laboratories in engineering education. Int. J. Mechanical Eng. Education 13, 195–198.
[5] SCHWARTZ, T. L. AND DUNKIN, B. M. 2000. Facilitating interdisciplinary hands-on learning using Lab View. Int. J. Eng. Education 16, 3, 218–227.
[6] SICKER, D. C., LOOKABAUGH, T., SANTOS, J., AND BARNES, F. 2005. Assessing the effectiveness of remote networking laboratories. In Proceedings of the 35th ASEE/IEEE Frontiers in Education Conference. Boulder, CO. 7–12.
[7] ENGUM, S. A., JEFFRIES, P., AND FISHER, L. 2005. Intravenous catheter training system: Computer-Based education versus traditional learning methods. American J. Surgery 186, 1, 67–74.
[8] FARRINGTON, P. A., MESSIMER, S. L., AND SCHROER, B. J. 1994. Simulation and undergraduate engineering education: The technology reinvestment project (TRP). In Proceedings of the 1994 Winter Simulation Conference. Lake Buena Vista, FL. J. D. Twe et al., Eds. 1387–1393.
[9] COLWELL, C., SCANLON, E., AND COOPER, M. 2002. Using remote laboratories to extend access to science and engineering. Computer. and Education 38, 1–3, 65–76.
[10] WATT, J. H., WALTHER, J. B., AND NOWAK, K. L. 2002. Asynchronous videoconferencing: A hybrid communication prototype. In Proceedings of the 35th Hawaii International Conference on System Sciences. Big Island, Hawaii. 1–9.
[11] DOBSON, E. L., HILL, M., AND TURNER, J. D. 1995. An evaluation of the student response to electronics teaching using a CAL package. Computer. and Education 25, 1–2, 13–20.

[12] CANIZARES, C. A. AND FAUR, Z. T. 1997. Advantages and disadvantages of using various computer tools in electrical engineering courses. IEEE Trans. Education 40, 3, 166–171.
[13] PAPATHANASSIOU, A., OSTER, J., AND BAIER, P. W. 1999. A novel simulation concept of reduced computational cost for TD-CDMA mobile radio systems with adaptive antennas. In Proceedings of the Vehicular Technology Conference (VTC 1999), Fall. Amsterdam, the Netherlands. 218–222.
[14] MCLELLAN, H. 1995. Situated Learning Perspectives. Educational Technology, Englewood Cliffs, NJ.
[15] YOO, S. AND HOVIS, S. 2004. Technical symposium on computer science education. In Proceedings of the 55th SIGCSE Technical Symposium on Computer Science Education. New York, NY. 311–314.
[16] SONNENWALD, D. H., WHITTON, M. C., AND MAGLAUGHLIN, K. L. 2003. Evaluating a scientific collaboratory: Results of a controlled experiment. ACM Trans. Computer. Hum. Interact 10, 2, 150–176.
[17] CANFORA, G., DAMONTE, P., AND RAPUANO, S. 2004. Remotely accessible laboratory for electronic measurement teaching. Computer. and Interfaces 26, 6, 489–499.
[18] COOPER, M., DONNELLY, A., AND FERREIRA, J. M. 2002b. Remote controlled experiments for teaching over the Internet: A comparison of approaches developed in the PEARL project. In Proceedings of the ASCILITE Conference 2002. Auckland, New Zealand. UNITEC Institution of Technology, M2D.1-M2D.9.
[19] CANFORA, G., DAMONTE, P., AND RAPUANO, S. 2004. Remotely accessible laboratory for electronic measurement teaching. Computer. and Interfaces 26, 6, 489–499.
[20] SCALON, E., COLWELL, C., COOPER, M., AND PAOLO, T. D. 2004. Remote experiments, reversioning and rethinking science learning. Computer. and Education 43, 1–2, 153–163.
[21] ABET. 2005. Criteria for accrediting engineering programs. Retrieved 10-25-05 from: http://www.abet.org/Linked%20DocumentsUPDATE/Criteria%20and%20PP/05-06-EAC%20Criteria.pdf.
[22] YOO, S. AND HOVIS, S. 2004. Remote Access Internetworking Laboratory. In Proceedings of the SIGCSE ’04 ,2004 ,Norfolk, Virginia, USA. copyright 2004 ACM 1-58113-798/2004.
[23] Landi C., Liccardo A., Polese N., ” remote laboratory activities to support experimental session for undergraduate measurements courses ," Instrumentation and Measurement Technology Conference , Proc. Of The 23rd IEEE. IMTC 2006.
[24] MA, J. AND NICKERSON, J. V. “ Hands-On, Simulated, and Remote Laboratories: A Comparative Literature Review .” ACM Computing surveys, 2006. 38(3).
[25] Kirchen,j.p. and Hilmi,j. “ remote labs in the online environment : Indicators for success.” In Proceedings of the SIGITE ’08 ,2008 ,Cincinnati,Ohio, USA., copyright 2008 ACM 978-1-60558-329-7/08/10.
[26] http://en.wikipedia.org/wiki/Second_Life
[27] NEDIC, Z., MACHOTKA, J., AND NAFALSKI, A. 2003. Remote laboratories versus virtual and real laboratories. In Proceedings of the 2003 33rd Annual ASEE/ IEEE Frontiers in Education Conference. Boulder, CO. T3E.1-T3E.6.
[28] Shapran R. Jernigan, Yusef Fahmy, Senior Member, IEEE, and Gregory D. Buckner “Implementing a Remote Laboratory Experience Into a Joint Engineering Degree Program: Aerodynamic Levitation of a Beach Ball ”,IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 2, MAY 2009 – 205
[29] Catalin Buit, Member, IEEE, “Design and Evaluation of an Integrated Online Motion Control Training Package “,IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 3, AUGUST 2009 – 385
[30] Z. Aydogmus and O. Aydogmus, “A Web-Based Remote Access Laboratory Using SCADA” IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 1, FEBRUARY 2009.
APPENDIX

I. TABLES OF EDUCATIONAL OBJECTIVES AND ARTICLES

Acc.&Flex.: Accessibility & Flexibility	Phy: Physiology
Art.: Article	Subject (sub.)
AE: Aeronautical Engineering	ME: Mechanical Engineering P: Physic
B: Biology	MME: Mechanical and Manufacturing Engineering
CE: Chemical Engineering	C.U.: Conceptual Understanding D.S.: Design Skills
Clm: Climatology	C.U.
CS: Computer Science	C.U.
CVE: Civil Engineering	C.U.
EE: Electrical Engineering	C.U.
EES: Environmental and ecological science	C.U.
INS: Interdisciplinary IS: Internet Science	C.U.
Objectives	C.U.

Table IV. Simulated Laboratory Article Objectives

Art.	Sub.	Meth.	Constraints	Educational Objectives				
			Time & Cost	Acc. & Flex.	C.U.	P.S.	D.S.	S.S.
[1]	EE	T	√	√	√	√	√	√
[2]	TE	T	√	√	√	√	√	√
[3]	EE	T	√	√	√	√	√	√
[4]	EE	T	√	√	√	√	√	√
[5]	ME	T	√	√	√	√	√	√
[6]	EE	Q	√	√	√	√	√	√
[7]	CE	T	√	√	√	√	√	√
[8]	ME	Q	√	√	√	√	√	√
[9]	ME	Q	√	√	√	√	√	√
[10]	Phi	Q	√	√	√	√	√	√
[11]	ME	Q	√	√	√	√	√	√
[12]	INS	T	√	√	√	√	√	√
[13]	CE	T	√	√	√	√	√	√
[14]	B	T	√	√	√	√	√	√
[15]	Clm	Q	√	√	√	√	√	√
[16]	CVE	T	√	√	√	√	√	√
[17]	ME	T	√	√	√	√	√	√
[18]	PE	T	√	√	√	√	√	√
[19]	PE	T	√	√	√	√	√	√
[20]	PE	T	√	√	√	√	√	√
SUM			13 11 20 16 9 5					

Table V. Remote Laboratory Article Objectives

Art.	Sub.	Meth.	Constraints	Educational Objectives				
			Time & Cost	Acc. & Flex.	C.U.	P.S.	D.S.	S.S.
[1]	ME	Q	√	√	√	√	√	√
[2]	ME	Q	√	√	√	√	√	√
[3]	ME	E	√	√	√	√	√	√
[4]	ME	Q	√	√	√	√	√	√
[5]	EE	Q	√	√	√	√	√	√
[6]	MME	Q	√	√	√	√	√	√
[7]	ME	E	√	√	√	√	√	√
[8]	SE	Q	√	√	√	√	√	√
[9]	CE	E	√	√	√	√	√	√
[10]	B	Q	√	√	√	√	√	√
[11]	EE	Q	√	√	√	√	√	√
[12]	EE	Q	√	√	√	√	√	√
[13]	CE	Q	√	√	√	√	√	√
[14]	P	Q/T	√	√	√	√	√	√
[15]	CE	Q	√	√	√	√	√	√
[16]	P	Q	√	√	√	√	√	√
[17]	AE	Q	√	√	√	√	√	√
[18]	EES	Q	√	√	√	√	√	√
[19]	CE	Q	√	√	√	√	√	√
[20]	ME	Q	√	√	√	√	√	√
SUM			6 2 20 15 13 8					
II. ARTICLES ON HANDS-ON LABS

[1] GRANT, A. 1995. The effective use of laboratories in undergraduate courses. Int. J. Mechanical Eng. Education 95–101.
[2] COLLINS, J. J. 1986. Reflections on teaching experimentation to “applications” engineering undergraduate's. Int. J. Mechanical Eng. Education 14, 175–182.
[3] FISHER, B. C. 1977. Evaluating mechanical engineering laboratory work. Int. J. Mechanical Eng. Education 5, 147–157.
[4] FAUCHER, G. 1985. The role of laboratories in engineering education. Int. J. Mechanical Eng. Education 13, 195–198.
[5] EDWARD, N. S. 2002. The role of laboratory work in engineering education: Student and staff perceptions. Int. J. Electrical Eng. Education 39, 1, 11–19.
[6] MAGIN, D. J. AND KANAPATHIPILLAI, S. 2000. Engineering students’ understanding of the role of experimentation. European J. Eng. Education 25, 4, 351–358.
[7] MAGIN, D. J. 1984. Confidence and critical awareness as factors in the development of experimentation skills in laboratory courses. Higher Education 13, 275–288.
[8] ELTON, L. 1983. Improving the cost-effectiveness of laboratory teaching. Studies in Higher Education 8, 79–85.
[9] BERG, C. A., BERGENDAHL, V. C. B., LUNDBERG, B. K. S., AND TIBELL, L. A. E. 2003. Benefiting from an open ended experiment? A comparison of attitudes to, and outcomes of, an expository versus an open-inquiry version of the same experiment. Int. J. Sci. Education 25, 3, 351–372.
[10] TAPPER, J. 1999. Topics and manner of talk in undergraduate practical laboratories. Int. J. Sci. Education 21, 4, 447–464.
[11] MARTIN, D. G. AND LEWIS, J. C. 1968. Effective laboratory teaching. Bulletin of Mechanical Eng. Education 7, 51–57.
[12] MARTIN, D. G. 1969. Ends and means in laboratory teaching. Bulletin of Mechanical Eng. Education 8, 185–189.
[13] MILLER, R. L., ELY, J. F., BALDWIN, R. M., AND OLDS, B. M. 1998. Higher-Order thinking in the unit operations Laboratory. Chemical Eng. Education 32, 2, 146–151.
[14] BECK, H. V. 1963. Practical class work at the Cavendish laboratory. Contemporary Phy. 4, 206–220.
[15] DRAKE, B. D., ACOSTA, G. M., WINGARD, D. A., AND R. L. SMITH, J. 1994. Improving creativity, solving problems And communications with peers in engineering science laboratories. J. Chemical Education 71, 7, 592–596.
[16] ROTH, W. M., MCROBBIE, C. J., LUCAS, K. B., AND BOUTONNE, S. 1997. The local production of order in traditional science laboratories: A phenomenological analysis. Learning and Instruction 7, 2, 107–136.
[17] WENTZ, W. H. AND SNYDER, M. H. 1974. Teaching research in an undergraduate laboratory. Eng. Education 65, 247–250.
[18] SCHABBLE, L., GLASER, R., DUSCHL, R. A., SCHULZE, S., AND JOHN, J. 1995. Students’ understanding of the Objectives and procedures of experimentation in the science classroom. J. Learning Sci. 4, 2, 131–166.
[19] KOZMA, R., CHIN, E., RUSSELL, I., AND MARX, N. 2000. The roles of representations and tools in the chemistry Laboratory and their implications for chemistry learning. J. Learning Sci. 105–143.
[20] FEISEL, L. D. AND ROSA, A. J. 2005. The role of the laboratory in undergraduate engineering education. J. Eng. Education, 121–130.

III. ARTICLES ON SIMULATED LABS

[1] CHETTY, M. AND DABKE, K. P. 2000. Towards a web-based control engineering. Int. J. Electrical Eng. Education 37, 1, 3947.
[2] FERNANDEZ-INGELIAS, M. J., GONZALEZ-CASTANO, F. J., AND POUSADA-CARBALLO, J. M. 2000. An undergraduate low-level computer communications laboratory oriented towards industry. Int. J. Electrical Eng. Education 37, 2, 146–156.

[3] SEHATI, S. 2000. Re-engineering the practical laboratory session. Int. J. Electrical Eng. Education 37, 1, 86–94.
[4] ERTUGRUL, N. 1998. New era in engineering experiments: An integrated and interactive teaching/learning approach, and real-time visualizations. Int. J. Eng. Education 14, 5, 344–355.
[5] WICKER, R. B. AND LOYA, H. I. 2000. A vision-based experiment for mechanical engineering laboratory courses. Int. J. Eng. Education 16, 3, 193–201.
[6] SMITH, P. R. AND POLLARD, D. 1986. The role of computer simulations in engineering education. Com. and Edu. 10, 3, 335–340.
[7] GARCYA-LUQUE, E., ORTEGA, T., FORJA, J. M., AND GOMEZ-PARRA, A. 2004. Using a laboratory simulator in the teaching and study of chemical processes in estuarine systems. Computer. And Education 43, 81–90.
[8] EDWARD, N. S. 1996. Evaluation of computer based laboratory simulation. Computer. And Education 26, 1–3, 123–130.
[9] DOBSON, E. L., HILL, M., AND TURNER, J. D. 1995. An evaluation of the student response to electronics teaching using a CAL package. Computer. And Education 25, 1–2, 13–20.
[10] MCATEER, E., NEIL, D., BARR, N., BROWN, M., DRAPER, S., AND HENDERSON, F. 1996. Simulation software in a life sciences practical laboratory. Computer. And Education ,102–112.
[11] MAGIN, D. J. AND REZES, J. A. 1990. Computer simulation of laboratory experiments: An unrealized potential. Computer. And Education 14, 3, 263–270.
[12] SHIN, D., YOON, E. S., LEE, K. Y., AND LEE, E. S. 2002. A web-based, interactive virtual laboratory system for unit operations and process systems engineering education: Issues, design and implementation. Computers and Chemical Eng. 26, 2, 319–330.
[13] GOMES, V. G., CHOI, B., BARTON, G. W., AND ROMAGNOLI, J. A. 2000. Web-based courseware in teaching laboratory-based courses. Global J. Eng. Education 4, 1, 65–71.
[14] RAINERI, D. 2001. Virtual laboratories enhance traditional undergraduate biology laboratories. Biochemistry and Molecular Biology Education 29, 4, 160–162.
[15] EDLESON, D. C., GORDIN, D. N., AND PEA, R. D. 1999. Addressing the challenges of inquiry-based learning through technology and curriculum design. J. Learning Sci. 391–450.
[16] BUDHU, M. 2000. Interactive multimedia web-based courseware with virtual laboratories. In Proceedings of the CATE Computers and Advanced Technology in Education 2000 Conference. Cancun, Mexico. 19–25.
[17] ERTUGRUL, N. 2000a. Cost effective and advanced teaching laboratory development at the University of Adelaide. In Proceedings of the IASTED International Conference on Computers and Advance Technology in Education. Cancun, Mexico. 188–193.
[18] KARADY, G. G., HEYDT, G. T., OLEJNICEK, K. J., MANTOOTH, H. A., IWAMOTO, S., AND CROW, M. L. 2000a. Role of laboratory education in power engineering: Is the virtual laboratory feasible? III. In Proceedings of the 2000 IEEE Power Engineering Society Summer Meeting. 1471–1477.
[19] KARADY, G. G., RETA-HERNANDEZ, M., AND BOSE, A. 2000b. Role of laboratory education in power engineering: Is the virtual laboratory feasible? II. In Proceedings of the 2000 IEEE Power Engineering Society Summer Meeting. 1478–1483.
[20] SAKIS MELIOPoulos, A. P. AND COKKINIDES, G. J. 2000. Role of laboratory education in power engineering: Is the virtual laboratory feasible? III. Virtual power system laboratories: Is the technology ready. In Proceedings of the 2000 IEEE Power Engineering Society Summer Meeting. 1484–1489.

IV. ARTICLES ON REMOTE LABS

[1] TAN, K. K., LEE, T. H., AND LEU, F. M. 2000. Development of a distant laboratory using lab VIEW. Int. J. Eng. Education 16, 3, 273–282.
[2] HUTZEL, W. J. 2002. A remotely accessed HVAC laboratory for distance education. Int. J. Eng. Education 18, 6: 711–716.
[3] GUSTAVSSON, I. 2003. A remote access laboratory for electrical circuit experiments. Int. J. Eng. Education 19, 3: 409–419.
[4] VIAL, P. J. AND DOULAI, P. 2003. Using embedded Internet devices in an Internet engineering laboratory set-up. Int. J. Electrical Eng. Education 19, 3: 441–444.
[5] NAGHDY, F., VIAL, P., AND TAYLOR, N. 2003. Embedded Internet laboratory. Int. J. Electrical Eng. Education, 427–432.
[6] KREHBIEL, D., ZERGER, R., AND PIPER, J. K. 2003. A remote-access Lab VIEW-Based laboratory for environmental and ecological science. Int. J. Eng. Education 19, 3: 495–502.

SHEN, H., XU, Z., DALAGER, B., KRISTIANSEN, V., STROM, O., SHUR, M. S., FJELDLY, T. A., LU, J.-Q., AND YTTERDAL, T. 1999. Conducting laboratory experiments over the Internet. IEEE Trans. Education 42, 3: 180–185.

[8] ARPAIA, P., BACCIGALUPI, A., CENNAMO, F., AND DAPONTE, P. 2000. A measurement laboratory on geographic network for remote test experiments. IEEE Trans. Instrumentation and Measurement 49, 5: 992–997.

[9] FERRERO, A., SALICONE, S., BONORA, C., AND PARMIGIANI, M. 2003. ReMLab: A Java-Based remote, didactic measurement laboratory. IEEE Trans. Instrumentation and Measurement 52, 3: 710–715.

[10] ALBU, M. M., HOLBERT, K. E., HEYDT, G. T., GRIGORESCU, S. D., AND TRUSCA, V. 2004. Embedding remote experimentation in power engineering education. IEEE Trans. Power Syst. 19, 1: 139–143.

[11] GUSTAVSSON, I. 2002. Remote laboratory experiments in electrical engineering education. In Proceedings of the 4th International Caracas Conference on Devices, Circuits and Systems (ICCDCS 2002). Aruba.1025.1–1025.5.

[12] BAUCHSPIESS, A., GUIMARAES, B., AND GOSMANN, H. L. 2003. Remote experimentation on three coupled water reservoirs. In Proceedings of the 2003 IEEE International Symposium on Industrial Electronics. 572–577.

[13] COLWELL, C., SCANLON, E., AND COOPER, M. 2002. Using remote laboratories to extend access to science and Engineering. Computer. And Education 38, 1–3: 65–76.

[14] SCANLON, E., COLWELL, C., COOPER, M., AND PAOLO, T. D. 2004. Remote experiments, reversioning and rethinking science learning. Computer. And Education 43, 1–2: 153–163.

[15] ZIMMERL, S., STEINEMANN, M.-A., AND BRAUN, T. 2003. Educational environments: Resource management Portal for laboratories using real devices on the Internet. ACM SIGCOMM Computer. Commun. Review 53, 3: 145–151.

[16] ARPAIA, P., BACCIGALUPI, A., CENNAMO, F., AND DAPONTE, P. 1997. A remote measurement laboratory for educational experiments. Measurement 21, 4: 157–169.

[17] THAKKAR, U., CARRAGHER, B., CARROLL, L., CONWAY, C., GROSSER, B., KISSEBERTH, N., POTTER, C., ROBINSON, S., SINNHALON, J., STONE, D., ANDWEBER, D. 2000. Formative evaluation of a bugoscope: A sustainable world wide laboratory for K-12. Retrieved 07-1900 from http://www.itg.uiuc.edu/publications/techreports/00-008/.

[18] KO, C. C., CHEN, B. M., CHEN, S. H., RAMAKRISHNAN, V., CHEN, R., HU, S. Y., AND ZHUANG, Y. 2000. A large-scale web-based virtual oscilloscope laboratory experiment. Eng. Sci. Education J. 9, 2: 69–76.

[19] ROHRIG, C. AND JOCHHEIM, A. 2001. Group-Based learning using a remote laboratory. In Proceedings of the 2001 American Control Conference. 1153–1154.

[20] KOLBERG, S. AND FJELDLY, T. A. 2004. Web services remote educational laboratory. In Proceedings of the International Conference on Engineering Education. Gainestv.

Yasser . H. Elawady is a Lecturer in the Department of Computer Engineering, Faculty of Computers and Information Systems, Taif University, Taif, KSA. He received his M.Sc. from the Department of Computer Engineering, Faculty of Engineering, Mansoura university, Mansoura, Egypt, in 2003. His subject of interest includes Remote Access, FPGA programming, computer architecture and organization and Networking.

A. S. Tolba is a full professor at Mansoura University, Egypt. He is a professor of Computer Science and Engineering. Professor Tolba holds a PhD in Computer Vision from Wuppertal University in Germany. He is the author of over 70 papers that have been published in refereed international Journals (Computers in Industry, Cybernetics and Systems, Digital Signal Processing, Pattern Analysis and Applications, Biomedical Research, International Journal of Hybrid Intelligent Systems, International Journal of signal Processing, International Journal of Computers and Applications and IJCNS International Journal of Computer Science and Network Security) and conferences in the areas of Face Recognition, Neural Networks, Glove-Based Gesture Recognition, Speaker Recognition, MRI Compression, Data mining, Automated Visual Inspection of Flat Surfaces, Combined Classifiers, Signature Recognition and eLearning. He has served as the director of the national project "ICT in Higher Education Development in the Egyptian Universities". He is the founder and director of the eLearning Center at Mansoura University, Egypt during the period (2005-2007) and served as the Director of the National eLearning Center (2006-2007). Professional activities include Deputy Dean of Graduate Studies and Research (2003), Dean of the Faculty of Computer Science and Information Systems in Mansoura University (2004-2007) and he is currently, the Dean of the Faculty of Computer Studies at the Arab Open University, Kuwait. He served as an IT and Educational Technology consultant for the minister of general education in Egypt in 2006. He served also as a reviewer in many international Journals: IEEE Transaction on Pattern Analysis and Machine Intelligence, Image Processing and Vision Computing. He has published books in Computer Vision and Robotics, Edited Book, 1990 (Kluwer Academic Publishers), Lasers in Computing and Health (ALESCO, Morocco, 1997), ICTs and Higher Education in Africa,2007, Published under a Creative Commons License, 2007, and E-learning in General Education, 2008 (The Arab network for Open and Distance Education, National Library, Jordan).