MINI-REVIEW

Generation of stable homozygous transformants of diploid yeasts such as Xanthophyllomyces dendrorhous

Gerhard Sandmann

Received: 4 May 2022 / Revised: 22 June 2022 / Accepted: 26 June 2022 / Published online: 14 July 2022
© The Author(s) 2022

Abstract
The nonconventional yeast Xanthophyllomyces dendrorhous is an established platform for genetic pathway modification. A genetic tool box is available and can be used extensively to select from for different engineering strategies. Due to the diploid nature of X. dendrorhous, genetic transformation typically results in heterozygous lines. They are genetically unstable and lose their phenotypes caused by mitotic recombination. In addition, targeted integration for inactivation of genes of the carotenoid pathway resulted in an intermediary phenotype of incomplete pathway disruption. This issue is the main scope of this review. It is illustrated by using genetic modification of the carotenoid pathway of X. dendrorhous as a model system with a focus on the demonstration of how to solve these problems by generation of homozygous lines. They can be selected from heterozygous transformants after spontaneous mitotic recombination and selection or after induced meiotic recombination. Corresponding methods of how to proceed including the initiation of a sexual cycle are described. The selected segregated lines are stable in fermenter cultures without the need of selection pressure. This is an essential requirement for any industrial application.

Key points
• Genetic interventions of diploid yeasts result in heterozygous transformants that are unstable without selection pressure.
• This is due to mitotic recombination leading to the elimination of inserted DNA.
• Stable homozygous lines can be obtained and selected after either meiotic or mitotic recombination.

Keywords Carotenoid biosynthesis · Ploidy · Genetic engineering, Heterozygosity, Mitotic recombination · Sexual cycle

Introduction
Xanthophyllomyces dendrorhous is a heterobasidiomycetous budding yeast belonging to the order Cystofilobasidiales (Webster and Weber 2007). Different strains were isolated from exudates of beach or birch trees (Libkind et al. 2007). This nonconventional yeast was first described as Rhodozyma montanae and later renamed as Phaffia rhodozyma in its anamorph form (Golubev 1995). The perfect state, X. dendrorhous, is homothallic and grows diploid in its vegetative phase (Kucsera et al. 1998; Webster and Weber 2007). A sexual cycle can be initiated by cultivation with polyols as sole carbon source combined with nitrogen limitation. It involves cell fusion to a tetraploid zygote and formation of a holobasidium with diploid spores after meiosis (Golubev 1995).

X. dendrorhous is of special interest since it is the only fungus able to synthesise the carotenoid astaxanthin, which is of great commercial value (Sandmann 2014). Astaxanthin is a powerful antioxidant and a feed additive for pigmentation in salmon farming. This application promoted the development of X. dendrorhous as a platform for the production of lipophilic carotenoids by genetic pathway intervention. In addition to the engineering of strains for high-yield astaxanthin synthesis and other valuable carotenoids (Sandmann et al. 2021), X. dendrorhous was genetically modified for the synthesis of α-cuprenene (Melillo et al. 2013) and long-chain polyunsaturated fatty acids (Sandmann et al. 2021). In recent years, proteomic, transcriptomic, and metabolomic techniques, reviewed by Barredo et al. (2017), including metabolic profiling (Alcalde and Fraser 2018) have been adapted to X. dendrorhous which is useful to analyse
metabolic variations affecting other unrelated pathways in these mutants and in the genetically modified strains.

Under selection pressure, transformants of *X. dendrorhous* are stable retaining their genetic modification and their phenotype. However, in fermenter cultures without the selection agents, cells revert fast to the wild-type phenotype and overgrow the transgenic cells. This effect originates from the heterozygosity of the transformants of this diploid yeast strain and is caused by a high mitotic recombination rate (Niklitschek et al. 2008; Pollmann et al. 2017a). Mitotic recombination also affects the stability of classical mutants due to their heterozygosity (Medwid 1998; Sandmann et al. 2021). This process is a disadvantage for the utilisation of the generated and selected astaxanthin hyper-producing mutants (Torres-Haro et al. 2021). In addition to instability, gene inactivation failed to result in the desired complete pathway disruption.

X. dendrorhous is the only diploid yeast for which the problems of instability and insufficient pathway disruption arising in the course of genetic engineering have been pointed out. Recent reviews on carotenoid synthesis of genetically engineered microorganism including *X. dendrorhous* have ignored this aspect (Li et al. 2020; Zhang et al. 2020). Therefore, this review is focussed on the problems encountered on genetic engineering of the carotenoid pathway of diploid *X. dendrorhous*. It also includes and illustrates different procedures to generate stable transformants in the absence of selection agents by converting the heterozygous into homozygous lines, which should also be applicable for other diploid yeasts. This is a precondition for high-density fermenter cultures necessary for industrial production of interesting compounds from engineered *X. dendrorhous* strains.

Strategies for genetic pathway engineering with *X. dendrorhous*

X. dendrorhous was primarily used to engineer the carotenoid pathway in order to obtain different commercially interesting carotenoids. This was achieved with different strategies: the increase of existing carotenoid synthesis by pathway enhancement, accumulation of intermediated of the pathway, or the generation of novel structures by pathway extension (Sandmann et al. 2021).

For genetic modification of *X. dendrorhous*, all necessary genetic techniques and tools are available. A protocol for efficient transformation by electroporation has been published (Visser et al. 2005). Genes have been integrated into the rDNA of the genome with suitable plasmids. The first four different plasmids were constructed with different selection markers (Gassel et al. 2014). Each of them is able to carry and insert two individual genes under strong constitutive promoters. Theoretically, up to 61 copies of this type of plasmid can be integrated (Wery et al. 1997). Two other integrative plasmids for the transformation of *X. dendrorhous* include one or three sites for insertion of genes under different promoters (Hara et al. 2014). The availability of the genome sequences of two *X. dendrorhous* strains (Sharma et al. 2015; Bellora et al. 2016) helps to identify target genes for knockout involved in pathways to be modified.

The astaxanthin concentrations of *X. dendrorhous* wild-type strains of around 200 µg/g dry weight (Sandmann 2014) are too low for commercial exploitation. Therefore, molecular genetic modification aimed at the increase of astaxanthin synthesis by overexpression of genes of limiting pathway enzymes. Among them were the gateway enzymes of the general terpenoid pathway and of the specific carotenoid pathway (Gassel et al. 2014). Alternatively, three genes of the mevalonate pathway, which provides the precursors for carotenoid synthesis to improve astaxanthin production, were overexpressed (Hara et al. 2014).

The *X. dendrorhous* transformant with enhanced carotenoid metabolism mentioned above was utilised continuously for the accumulation of carotenoid pathway intermediates by gene inactivation (Niklitschek et al. 2008). By homologous recombination with a cassette with sequences of the target gene and a selection marker in this gene, the phytoene desaturase gene was knocked-out (Pollmann et al. 2017a). Blocking the pathway at this stage, the carotene phytoene becomes the end-product of the truncated pathway. This approach can be advanced by knock-in a gene of interest into the target gene to be knocked-out (Breitenbach et al. 2019). It was used for the extension of the carotenoid pathway of *X. dendrorhous* from accumulating β-carotene to the formation of zeaxanthin, which was followed further on by transformation with a combination of several genes for the synthesis of novel multi-oxygenated carotenoids (Pollmann et al. 2017b). It is also possible to eliminate selectable markers from the *X. dendrorhous* genome by the Cre-loxP system as shown recently (Zhang et al. 2019).

Ploidy of *X. dendrorhous* and its effect on transgene stability

For the stability of a genetically modified transformant and of the engineered phenotype, the ploidy of the recipient organisms is decisive. The ploidy of *X. dendrorhous* was initially regarded as haploid (Wery et al. 1997) but this was ruled out by Medwid (1998). The haploid nature of *X. dendrorhous* was further challenged by a spore segregation experiments by Kucsera et al. (1998) which pointed at diploidy. This result led to the establishment of a life cycle for homothallic *X. dendrorhous* with a vegetative diploid phase, cell fusion to a tetraploid zygote, and formation of a holobasidium where meiosis generates diploid basidiospores (Fig. 1). Finally, these spores germinate to vegetative cells, which multiply by budding.
The most direct results unequivocally demonstrating a diploid nature were obtained from knock-out experiments of genes of the carotenoid pathway of strain ATCC 24230 initially resulting in transformants with an unchanged phenotype (Niklitschek et al. 2008). This finding was further substantiated with inactivation of two carotenogenic genes (Pollmann et al. 2017a; Breitenbach et al. 2019) in X. dendrorhous strain CBS6938 resulting in an intermediate phenotype. In both cases, the presence of different allele sizes has been shown demonstrating that both transformed strains were heterozygous. This was also the case after integration of a bacterial gene to extend the carotenoid pathway (Pollmann et al. 2017c). A consequence of the diploid character of X. dendrorhous is the formation of heterozygous transformants (Hermosilla et al. 2003). This situation promotes the loss of integrated trans genes by non-reciprocal DNA transfer between homologous chromosomes resulting in a decreasing carotenoid production.

Mitotic recombination: disadvantage and advantage for stability of transgenic lines

Mitotic recombination is a mechanism for DNA reconstitution, which is well documented in yeasts (Prado et al. 2003). During mitosis in vegetative diploid cells, chromosomal exchange between homologous DNA sequences located at allelic positions in homologous chromosomes occurs resulting in loss of heterozygosity (Jinks-Robertson and Petes 2021). This process eliminates mutations and integrated exogenous DNA from the genome, which in the case of the X. dendrorhous transformants are the cassettes with the integrated carotenogenic and antibiotic resistance genes. This event is demonstrated in Fig. 2: A yellow β-carotene accumulating X. dendrorhous strain was transformed with a cassette containing an astaxanthin synthase and a hydromycin-resistance gene. In the presence of the selection agent, red astaxanthin-accumulating transformants survive exclusively. However, omission of hygromycin from a culture originating from a red transformant leads to the enrichment of yellow non-transgenic cells, especially in fermenter cultures where they more and more overgrow the transgenic cells. Reversion of the transgenic status is caused by mitotic homologous recombination due to the two different templates of the heterozygous line, one of genetically modified genomic region and one of the corresponding wild-type allele (Dutta et al. 2021). The rate for mitotic recombination of the inactivated phytoene desaturase gene crtI in X. dendrorhous of 0.3% (Pollmann et al. 2017a) is comparably high (Thornton and Johnston 1971). In addition, homozygous transgenic cells are also generated. In general, mitotic recombination is not only an obstacle causing a vanishing phenotype but can also be used for the selection of stable transgenic lines. In the example of Fig. 2, this was achieved after plating the transformant on a non-selective medium and picking a red colony, which may be either heterozygous or homozygous. Repeated plating of red colonies will finally result in a plate with red colonies exclusively, which resemble homozygous lines. This procedure was successful in the generation of stable transgenic lines (Niklitschek et al. 2008) applicable for the production of carotenoids in fermenter cultures (Pollmann et al. 2017a). An alternative way to select homozygous lines of transgenic X. dendrorhous succeeding mitotic recombination is by growth with increasing concentration of the selection agent (Niklitschek et al. 2012). By application of this procedure following inactivation of the C-22 sterol desaturase gene, only homozygous lines with both disrupted alleles finally survived (Yamamoto et al. 2016).

Sexual cycle for the generation of homozygous transformants

A specific problem of gene inactivation emerges in diploid yeasts: Both copies of the gene have to be inactivated to avoid heterozygosity resulting otherwise in incomplete pathway disruption. An example is illustrated in Fig. 3. After
transformation targeting the phytoene desaturase gene \textit{crtI} involved in phytoene conversion, the initial knock-out transformant (IT) contains not only colourless phytoene in contrast to the wild type but also astaxanthin, the end-product of the pathway, as indicated by its yellowish pigmentation (Fig. 3A). The separated amplified DNA of this culture exhibits two \textit{crtI}-related bands, the intact \textit{crtI} gene (also present in the wild type) and \textit{crtI} with the inserted resistance gene (Fig. 3B). For complete blockage of phytoene conversion and its exclusive accumulation, this demonstrated heterozygous state of \textit{crtI} has to be changed to homozygosity. As in Fig. 2B, a wild-type and a knocked-out allele has also been obtained in each case when several other carotenogenic genes were inactivated (Niklitschek et al. 2008).

A promising way for getting homozygous transgenic transformants is self-mating. This can be initiated with the homothallic \textit{X. dendrorhous} by application of ribitol as the exclusive carbon source and growth on plates at 10 °C (Goldubev 1995). The details of how to induce the sexual cycle are described in Pollmann et al. (2017c). Two heterozygous diploid cells fuse to a tetraploid zygote. After meiosis, a holobasidium with diploid basidiospores is formed (Fig. 3C). Segregation produces diploid basidiospores, which are either homozygous for \textit{crtI}, homozygous for inactivated \textit{crtI} with the inserted hygR cassette, or heterozygous. Germinating basidiospores were collected and after growth white colonies selected (Fig. 3C). In the segregated lines of the white phenotype (ST), the \textit{crtI} band is absent (Fig. 3C) demonstrating their homozygous state. In fermenter cultures, these homozygous phytoene-accumulating transformants were stable for more than 20 generations under production conditions in the absence of selection pressure (Sandmann et al. 2021).

Another strategy for complete gene inactivation in a diploid yeast is by consecutive double transformation to target each allele with insertion of different selectable markers. This approach was used to inactivate the \textit{asy} gene (Breitenbach et al. 2019) in \textit{X. dendrorhous} and to modify its sterol pathway (Loto et al. 2012). The latter approach resulted in transformants, which were homozygous for the inactivated sterol desaturase gene but heterozygous for both selection markers. There is nothing known about the long-term stability of this type of transformants.

Conclusion

The carotenoid metabolism of diploid \textit{X. dendrorhous} was genetically engineered by gene integration to overcome limiting steps in the pathway and by gene inactivation to accumulate pathway intermediates. Integration of exogenous
DNA into a diploid yeast produces heterozygous transformants. As exemplified for Xanthophyllomces dendrorhous and generation of homozygous lines through a sexual cycle corresponding to Pollmann et al. (2017c). A Inactivation of the gene of the phytoene-metabolising enzyme, crr1, resulting in yellowish transformants (IT).

Fig. 3 Formation of an intermediate phenotype due to heterozygosity after gene inactivation of Xanthophyllomces dendrorhous and generation of homozygous lines through a sexual cycle corresponding to Pollmann et al. (2017c). A Inactivation of the gene of the phytoene-metabolising enzyme, crr1, resulting in yellowish transformants (IT). B Demonstration of the presence of the wild type together with the inactivated gene (lane IT) in the transformant. C Different stages of the sexual cycle of the diploid heterozygous transformant and selection of segregated, white lines (ST) which are homozygous for the inactivated gene (part B, lane ST).

Genetic pathway engineering of so far unnoticed nonconventional yeasts including diploid species offers promising opportunities for new industrial production processes. The described methods for obtaining homozygous transformants are applicable in combination with any genetic intervention of diploid yeasts. They may be specifically useful for diploid strains of Rhodospiridium toruloides (also known as Rhodorula toruloides) (Liu et al. 2017) and Candida utilis (Liang and Bennett 2020) which similar to X. dendrorhous are already of interest for genetic engineering of the carotenoid biosynthesis pathway (Shimada et al. 1998; Wen et al. 2020) or for diploid dairy isolates of Kluyveromyces marxianus (Ortiz-Merino et al. 2018). A future application of obtaining homozygous transgenic may be the CRISPR/Cas9 system for genespecific genome interventions (Hsu et al. 2014). This technique has been used for integration of carotenogenic genes into Yarrowia lipolytica (Schwartz et al. 2017). A first attempt applying this technique to X. dendrorhous has been successful (Hong et al. 2021). Future developments may demonstrate its potential in pathway modifications of X. dendrorhous and other diploid yeasts.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.
Conflict of interest The author has declared no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alcalde E, Fraser PD (2018) Extending our tools and resources in the non-conventional industrial yeast Xanthophyllomyces dendrorhous through the application of metabolite profiling methodologies. Metabolomics 2018:30

Barreiro JL, García-Estrada C, Kosalkova K, Barreiro C (2017) Bio-synthesis of astaxanthin as a main carotenoid in the heterobasidiomycete yeast Xanthophyllomyces dendrorhous. J Fungi 3:44

Bellora N, Moliné M, David-Palma M, Coelho MA, Hittinger CD, Sampaio JP, Gonçalves P, Libkind D (2016) Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited treemellicocytes: Phaffia rhodozyma. BMC Genomics 17:901

Breitenbach J, Pollmann H, Sandmann G (2019) Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: engineering of a high-yield zeaxanthin strain. J Biotechnol 289:112–117

Dutta A, Dutreux F, Schacherer J (2021) Loss of heterozygosity results in rapid but variable genome homogenization across yeast genetic backgrounds. eLife 10:e70339

Gassel S, Breitenbach J, Sandmann G (2014) Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 98:345–350

Golubev WI (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11:101–110

Hara KY, Morita T, Mochizuki M, Yamamoto K, Ogino C, Araki M, Kondo A (2014) Development of a multi-gene expression system in Xanthophyllomyces dendrorhous. Microb Cell Factories 13:175

Hermosilla G, Martínez C, Retamales P, León R, Cifuentes V (2003) Genetic determination of ploidy level in Xanthophyllomyces dendrorhous. Antonie van Leeuwenhoek 84:279–287

Hong J, Meng Z, Zhang Z, Su H, Fan Y, Huang R, Ding R, Zhang N, Li F, Wang S (2021) The cause of on-target point mutations generated by CRISPR-Cas9 treatment in the yeast Xanthophyllomyces dendrorhous. bioRxiv https://doi.org/10.1101/2021.08.31.458371

Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

Jinks-Robertson S, Petes TD (2021) Mitotic recombination in yeast: what we know and what we don’t know. Curr Opin Genetics Develop 71:78–85

Kucsera J, Pfeiffer I, Ferenczy L (1998) Homothallic life cycle in the diploid red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Antonie van Leeuwenhoek 73:163–168

Li C, Swoford CA, Sinksy AJ (2020) Modular engineering for microbial production of carotenoids. Metabolic Engineering Communications 10:e00118

Liang S-H, Bennett RJ (2020) The Impact of gene dosage and heterozygosity on the diploid pathobiont Candida albicans. J Fungi 6:10

Likhind D, Ruffini A, van Broock M, Alves L, Sampaio JP (2007) Biogeography, host specificity, and molecular phylogeny of the basidiomycete yeast Phaffia rhodozyma and its sexual form, Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:1120–1125

Liu H, Jiao X, Wang Y, Yang X, Sun W, Wang J, Zhang S, Zhao ZK (2017) Fast and efficient genetic transformation of oleaginous yeast Rhodospirillum toruloides by using electroporation. FEMS Yeast Res 17:fox017

Loto I, Gutiérrez MS, Barahona S, Sepúlveda D, Martínez-Moya P, Baeza M, Cifuentes V, Alcaíno J (2012) Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiol 12:235

Medwid RD (1998) Phaffia rhodozyma is polyplid. Ind Microbiol Biotechnol 21:228–232

Melillo E, Sroikromo R, Quax WJ, Kayser O (2013) Production of alphacarotenene in Xanthophyllomyces dendrorhous: a step closer to a potent terpene biofactory. Microb Cell Factory 12:13–17

Niklitschek M, Alcaíno J, Barahona S, Sepúlveda D, Lozano C, Carmona M, Marcoleta A, Martínez C, Lodato P, Baeza M, Cifuentes V (2008) Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous. Biol Res 41:93–108

Niklitschek M, Baeza M, Fernández-Lobato M, Cifuentes V (2012) Generation of astaxanthin mutants in Xanthophyllomyces dendrorhous using a double recombination method based on hygroycin resistance. Methods Mol Biol 898:219–234

Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuippers NGA, Geertman JM, Wolfe KH, Morrissey JP (2018) Ploidy variation in Kluyveromyces marxianus separates dairy and non-dairy isolates. Front Genet 9:94

Pollmann H, Breitenbach J, Sandmann G (2017) Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene. J Biotechnol 247:34–41

Pollmann H, Breitenbach J, Wolff H, Bode HB, Sandmann G (2017) Combinatorial biosynthesis of novel multi-hydroxy carotenoids in the red yeast Xanthophyllomyces dendrorhous. J Fungi 3:9

Pollmann H, Breitenbach J, Sandmann G (2017) Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin. Appl Microbiol Biotechnol 101:103–111

Prado F, Cortés-Ledesma F, Huertas P, Aguillera A (2003) Mitotic recombination in Saccharomyces cerevisiae. Curr Genet 42:85–198

Sandmann G (2014) Carotenoids of biotechnological importance. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids, advances in biochemical engineering/biotechnology. Springer-Publisher, Berlin Heidelberg, pp 449–467

Sandmann G, Pollmann H, Gassel S, Breitenbach J (2021) Xanthophyllomyces, a versatile platform for the production of carotenoids and other acetyl-CoA-derived compounds. Adv Exp Med Biol 1261:137–151

Schwartz C, Shabbir-Hussain M, Froguke K, Blenner M, Wheeldon I (2017) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol 6:402–409

Sharma R, Gassel S, Steiger S, Xiu A, Bauer R, Sandmann G, Thines M (2015) The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of agaricomyco- cotina. BMC Genomics 16:233

Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680
Thornton RJ, Johnston JR (1971) Rates of spontaneous mitotic recombination in Saccharomyces cerevisiae. Genet Res 18:147–151
Torres-Haro A, Verdin J, Kirchmayr MR, Arellano-Plaza M (2021) Metabolic engineering for high yield synthesis of astaxanthin in Xanthophyllomyces dendrorhous. Microb Cell Fact 20:175
Visser H, Sandmann G, Verdoes JC (2005) Xanthophylls in fungi: metabolic engineering of the astaxanthin biosynthetic pathway in Xanthophyllomyces dendrorhous. In: Barredo J (ed) Methods in biotechnology: microbial processes and products. Humana Press, Totowa NJ, pp 257–272
Webster J, Weber R (2007) Introduction to fungi. Cambridge University Press
Wen Z, Zhang S, Odoh CK, Jin M, Zhao ZK (2020) Rhodosporidium toruloides – a potential red yeast chassis for lipids and beyond. FEMS Yeast Res 20:foaa038.
Wery J, Gutker D, Renriers AC, Verdoes JC, van Ooyen AJ (1997) High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. Gene 184:89–97
Yamamoto K, Hara KY, Morita T, Nishimura A, Sasaki D, Ishii J, Ogino C, Kizaki N, Kondo A (2016) Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Microb Cell Fact 15:155
Zhang N, Li J, Li F, Wang S (2019) Selectable marker recycling in the nonconventional yeast Xanthophyllomyces dendrorhous by transient expression of Cre on a genetically unstable vector. Appl Microbiol Biotechnol 103:963–971
Zhang C, Chen X, Too H (2020) Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol 104:5725–5737

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.