The algebra of row monomial matrices

A.N. Trahtman*

Bar-Ilan University, Dep. of Math., 52900, Ramat Gan, Israel

Abstract. A word w of letters on edges of underlying graph Γ of deterministic finite automaton (DFA) is called synchronizing if w sends all states of the automaton to a unique state ($|R(w)| = 1$. J. Černy discovered in 1964 a sequence of n-state complete DFA possessing a minimal synchronizing word of length $(n - 1)^2$. The hypothesis, well known today as the Černy conjecture, claims that $(n - 1)^2$ is also precise upper bound on the length of such a word for a complete DFA. The hypothesis was formulated in 1966 by Starke. The problem has motivated great and constantly growing number of investigations and generalizations.

The class of row monomial matrices (one unit and rest zeros in every row) with some non-standard operations of summation and usual multiplication is our main object. These matrices generate a space with respect to the mentioned operations. Every row monomial matrix is defined by word of path on DFA.

The proof of the conjecture is based on connection between length of words of row monomial matrices and dimension of the space generated by row monomial matrices of prefixes of synchronizing word.

Introduction

The long and fascinating history of state machine synchronization and the problems around was reflected in hundreds articles. The problem of synchronization of finite automata is a natural one and various aspects of this problem have been touched in the literature. Different problems of synchronization and achievements one can find in surveys [5], [7] and works [13], [10], [14].

The synchronizing word limits the propagation of errors for a prefix code. Deterministic finite automaton is a tool that helps to recognized language in a set of DNA strings.

A problem with a long story is the estimation of the minimal length of synchronizing word. J. Černy in 1964 [3] found the infinite sequence of n-state complete DFA with shortest synchronizing word of length $(n - 1)^2$ for an alphabet of size two. Since then, only 27 small automata of length $(n - 1)^2$ for $n \leq 6$ have been added to the single Černy sequence [14].

The hypothesis, well known today as the Černy’s conjecture, claims that this lower bound on the length of the synchronizing word of aforementioned automaton is also the upper bound for the length of synchronizing word of any n-state complete DFA.

* Email: avraham.trakhtman@gmail.com
Conjecture 1 The deterministic complete n-state synchronizing automaton over alphabet Σ has synchronizing word in Σ of length at most $(n-1)^2$ \cite{12} (Starke, 1966).

The problem can be reduced to automata with a strongly connected graph \cite{3}.

We consider a class of matrices M_u of mapping induced by words u in the alphabet of letters on edges of the underlying graph Γ. The matrix M_u of word u belongs to the class of matrices with one unit in every row and rest zeros (row monomial).

Initially found upper bound for the minimal length of synchronizing word was big and has been consistently improved over the years by different authors. The upper bound found by Frankl in 1982 \cite{4} is equal to $(n^3 - n)/6$. The result was reformulated in terms of synchronization in \cite{11} and repeated independently in \cite{6}. The cubic estimation of the bound exists since 1982.

An attempt to prove the Černy conjecture is proposed below.

Preliminaries

We consider a complete n-state DFA with strongly connected underlying graph Γ over a fixed finite alphabet Σ of labels on edges of Γ of an automaton A. The trivial cases $n \leq 2$, $|\Sigma| = 1$ and $|A_\sigma| = 1$ for $\sigma \in \Sigma$ are excluded.

The restriction on strongly connected graphs is based on \cite{3}. The states of the automaton A are considered also as vertices of the graph Γ.

If there exists a path in an automaton from the state p to the state q and the edges of the path are consecutively labelled by $\sigma_1, ..., \sigma_k$, then for $s = \sigma_1...\sigma_k \in \Sigma^+$ let us write $q = ps$.

Let Px be the set of states $q = px$ for all p from the subset P of states and $x \in \Sigma^+$. Let Ax denote the set Px for the set P of all states of the automaton.

A word $s \in \Sigma^+$ is called a synchronizing (reset, magic, recurrent, homing) word of an automaton A with underlying graph Γ if $|As| = 1$. The word s below denotes minimal synchronizing word such that for a state q $As = q$.

The states of the automaton are enumerated, the state q has number one.

An automaton (and its underlying graph) possessing a synchronizing word is called synchronizing.

Let us consider a linear space generated by row monomial (one unit and rest of zeros in every row) $n \times n$-matrices.

We connect a mapping of the set of states of the automaton made by a word u of $n \times n$-matrix M_u such that for an element $m_{i,j} \in M_u$ takes place

$$m_{i,j} = \begin{cases} 1, & q_iu = q_j; \\ 0, & \text{otherwise}. \end{cases}$$

Any mapping of the set of states of the automaton A can be presented by some word u and by a corresponding row monomial matrix M_u. For instance,
Let us call the matrix M_u of the mapping induced by the word u, for brevity, the matrix of word u.

$M_u = \begin{pmatrix}
0 & 0 & 1 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0
\end{pmatrix}$

$M_u M_v = M_{uv}$ [2].

The set of nonzero columns of M_u (set of second indexes of its elements) of M_u is denoted as $R(u)$ of size $|R(u)|$.

For linear algebra terminology and definitions, see [3], [9].

1 Some properties of row monomial matrices

Remark 1 The invertible matrix M_a does not change the number of units of every column of M_u in its image of the product $M_u M_a$.

Every unit in the product $M_u M_a$ is the product of two units, first unit from nonzero column of M_u and second unit from a row with one unit of M_a.

Remark 2 The columns of the matrix $M_u M_a$ are obtained by permutation of columns M_u. Some columns can be merged (units of columns are moved along row to a common column) with $|R(ua)| < |R(u)|$.

The rows of the matrix $M_u M_a$ are obtained by permutation of rows of the matrix M_u. Some of these rows may disappear and replaced by another rows of M_u.

Lemma 1 The number of nonzero columns $|R(b)|$ is equal to the rank of M_b.

$|R(ua)| \leq |R(u)|$

and

$R(au) \subseteq R(u)$. For invertible matrix M_a we have $R(au) = R(u)$ and $|R(ua)| = |R(u)|$.

Nonzero columns of M_{ua} have units also in M_a.

Proof. The matrix M_b has submatrix with nonzero determinant having only one unit in every row and in every nonzero column. Therefore $|R(b)|$ is equal to the rank of M_b.

The matrix M_u in the product $M_u M_a$ shifts column of M_u to columns of $M_u M_a$ without changing the column itself by Remark [2] or merging, some columns of M_u.

In view of possible merged columns, $|R(ua)| \leq |R(u)|$.

Some rows of M_u can be replaced in $M_u M_a$ by another row and therefore some rows from M_u may be changed, but zero columns of M_u remain in $M_u M_a$ (Remark 1).

Hence $R(au) \subseteq R(u)$ and $|R(ua)| \leq |R(u)|$.

For invertible matrix M_a we have $R(au) = R(u)$ and $|R(ua)| = |R(u)|$.

Nonzero columns of M_{ua} have units also in M_a in view of $R(ua) \subseteq R(u)$. For invertible matrix M_a we have $R(au) = R(u)$ and $|R(ua)| = |R(u)|$.
Corollary 1 All matrices of prefixes of synchronizing row monomial matrix s also have at least one unit in nonzero column of s.

Corollary 2 The invertible matrix M_a keeps the number of units of any column of M_u in corresponding column of the product $M_a M_u$.

1.1 Necessary conditions of the operation of summation in the class of row monomial matrices

Lemma 2 Suppose that for row monomial matrices M_i and M

\[M = \sum_{i=1}^{k} \lambda_i M_i, \quad (1) \]

with coefficients λ from Q.

Then the sum $\sum_{i=1}^{k} \lambda_i = 1$ and the sum S_j of values in every row j of the sum in (1) also is equal to one.

If $\sum_{i=1}^{k} \lambda_i M_i = 0$ then $\sum_{i=1}^{k} \lambda_i = 0$ and $S_j = 0$ for every j with $M_u = 0$.

If the sum $\sum_{i=1}^{k} \lambda_i$ in every row is not unit [zero] then $\sum_{i=1}^{k} \lambda_i M_i$ is not a row monomial matrix.

Proof. The nonzero matrices M_i have n cells with unit in the cell. Therefore, the sum of values in all cells of the matrix $\lambda_i M_i$ is $n \lambda_i$.

For nonzero M the sum is n. So one has in view of $M = \sum_{i=1}^{k} \lambda_i M_i$

\[n = n \sum_{i=1}^{k} \lambda_i, \]

whence $1 = \sum_{i=1}^{k} \lambda_i$.

Let us consider the row j of matrix M_j in (1) and let 1_j be unit in the row j. The sum of values in a row of the sum (1) is equal to unit in the row of M. So $1 = \sum_{i=1}^{k} \lambda_i 1_i = \sum_{i=1}^{k} \lambda_i$.

\[\sum_{i=1}^{k} \lambda_i M_i = 0 \] implies $S_j = \sum_{i=1}^{k} \lambda_i 1_i = \sum_{i=1}^{k} \lambda_i = 0$ for every row j.

If the matrix $M = \sum_{i=1}^{k} \lambda_i M_i$ is a matrix of word or zero matrix then $\sum_{i=1}^{k} \lambda_i \in \{0, 1\}$. If $\sum_{i=1}^{k} \lambda_i \notin \{0, 1\}$ or the sum in 0, 1 is not the same in every row then we have opposite case and the matrix does not belong to the set of row monomial matrix.

Remark 3 The set of row monomial matrices with considered summation operation and zero matrix together with multiplication generate a space.

1.2 Linear independence and dimension of the space

Lemma 3 The set V of all row monomial $n \times k$-matrices (or $n \times n$-matrices with zeros in fixed $n - k$ columns for $k \leq n$) has at most $n(k - 1) + 1$ linear independent matrices.
Proof. Let us consider distinct \(n \times k \)-matrices of word with at most only one nonzero cell outside the last nonzero column \(k \).

Let us begin from the matrices \(V_{i,j} \) with unit in \((i,j) \) cell \(j < k \) and units in \((m,k) \) cells for all \(m \) except \(i \). The remaining cells contain zeros. So we have \(n-1 \) units in the \(k \)-th column and only one unit in remaining \(k-1 \) columns of the matrix \(V_{i,j} \). Let the matrix \(K \) have units in the \(k \)-th column and zeros in the other columns. There are \(n(k-1) \) matrices \(V_{i,j} \). Together with \(K \) they belong to the set \(V \). So we have \(n(k-1)+1 \) matrices. For instance,

\[
V_{1,1} = \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix}, \quad V_{3,2} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

The first step is to prove that the matrices \(V_{i,j} \) and \(K \) generate the space with the set \(V \). For arbitrary matrix \(T \) of word from \(V \) for every \(t_{i,j} \neq 0 \) and \(j < k \), let us consider the matrices \(V_{i,j} \) with unit in the cell \((i,j) \) and the sum of them \(\sum V_{i,j} = Z \).

The first \(k-1 \) columns of \(T \) and \(Z \) coincide. Hence in the first \(k-1 \) columns of the matrix \(Z \) there is at most only one unit in any row. Therefore in the cell of \(k \)-th column of \(Z \) one can find only value of \(m \) or \(m-1 \). The value of \(m \) appears if there are only zeros in other cells of the considered row. Therefore \(\sum V_{i,j} - (m-1)K = T \). Thus every matrix from the set \(V \) is a span of \((k-1)n+1 \) matrices from \(V \).

It remains now to prove that the set of matrices \(V_{i,j} \) and \(K \) is a set of linear independent matrices.

If one excludes a certain matrix \(V_{i,j} \) from the set of these matrices, then it is impossible to obtain a nonzero value in the cell \((i,j) \) and therefore to obtain the matrix \(V_{i,j} \). So the set of matrices \(V_{i,j} \) is linear independent. Every non-trivial linear combination of the matrices \(V_{i,j} \) equal to a matrix of word has at least one nonzero element in the first \(k-1 \) columns. Therefore, the matrix \(K \) could not be obtained as a linear combination of the matrices \(V_{i,j} \). Consequently the set of matrices \(V_{i,j} \) and \(K \) forms a basis of the set \(V \).

Corollary 3 The set of all row monomial \(n \times (n-1) \)-matrices of words has \((n-1)^2 \) linear independent matrices.

The set of row monomial \(n \times n \)-matrices has at most \(n(n-1)+1 \) linear independent matrices.

There are at most \(n+1 \) row monomial linear independent matrices of words in the set of matrices with 2 nonzero columns and at most \(n \) linear independent matrices in the set of matrices with one common nonzero column.

Corollary 4 There exists a sequence of length at most \(n(n-1)+1 \) of distinct subspaces ordered by inclusion of row monomial matrices for \(n \times n \) automaton. Zero matrix also presents a subspace, say, first in the sequence. Hence we have a sequence of non-trivial subspaces ordered by inclusion of length at most \(n(n-1) \).
1.3 The equation with unknown matrix L

The row monomial solution L of the equation

$$M_u L = M_s$$

for matrix M_s with all units in one column q, row monomial matrix M_u, words $u, s \in \Sigma$ and $As = q$. M_u must have some units in the column q.

Definition 1 If the set of cells with units in the column q of the matrix M_v is a subset of the analogous set of the matrix M_u then we write

$$M_v \subseteq_q M_u$$

Lemma 4 Every equation $M_u L = M_s$ has a solution L with at least $|R(u)| > 0$ units in column q. Every nonzero column j of M_u corresponds a unit in the cell j of column q of matrix L.

For solution L with only $|R(u)|$ units in column q (a minimal solution) $L \subseteq_q N$ for any other solution N of (2).

Proof. The matrix M_s of rank one has nonzero column of the state q.

For every nonzero column j of M_u with elements $u_{i,j} = 1$ and $s_{i,q} = 1$ in the matrix M_s the cell (j,q) must have unit in the matrix L. So the unit in the column q of matrix M_s is a product of every unit from the column j of M_u and unit in the cell j of column q of L.

The set $R(u)$ of nonzero columns of M_u corresponds the set of cells of the column q with unit of minimal L and the minimal solution L has in the column q $|R(u)|$ units.

So to the column q of every solution belong at least $|R(u)|$ units. The remaining units of the solution L_x belong to columns arbitrarily, but only one unit in a row. The remaining cells obtain zero.

Lastly every solution L is a row monomial matrix.

Zeros in the column q of minimal L correspond zero columns of M_u. Therefore for matrix N such that $L \subseteq_q N$ we have $M_u N = M_s$. On the other hand, every solution L must have units in cells of column q that correspond nonzero columns of M_u.

Thus minimal L has $|R(u)|$ units in column q and the equality $M_u L = M_u N = M_s$ is equivalent to $L \subseteq_q N$.

The matrix M_u has set $R(u)$ of units in the column q of minimal L.

2 Theorems

Theorem 1 The deterministic complete n-state synchronizing automaton A with strongly connected underlying graph over alphabet Σ has synchronizing word in Σ of length at most $(n - 1)^2$.
Proof. Let synchronizing word S have length at least $(n - 1)^2$. We consider the set of solutions L_i of $(n - 1)^2 - 1$ first prefixes $R(u_i)$ of word S.

Assume that $|R(u)| > 1$ in $(n - 1)^2 - 1 = n(n - 2)$ first prefixes. In opposite case some prefix M_s is a synchronizing word.

All solutions L_i (minimal and not minimal) have one unit in every row as monomial matrices and have at least $|R(u)| > 1$ units in column q. The remaining units can be placed free by Lemma 4. We restrict this placing only to first $n - 1$ columns.

By Corollary 3 of Lemma 3, $n \times (n - 1)$-matrix can allocate at most $n \times (n - 2) + 1 = (n - 1)^2$ linear independent matrices. We consider below a possible way of allocation of $n(n - 2)$ matrices L_i of first prefixes of S with $|R(u)| \geq 2$ and also matrix S.

For all $n(n - 2)$ cells in columns from two to $n - 1$ we choose one unit from free placing of L_i and fill by them all $n(n - 2)$ cells, one unit in one cell. Each such unit of the matrix, if necessary, can be shifted along its column. The matrix L_i remains to be solution of equation (2) for M_i.

It is desirable to start the process with matrices L_i with large $|R(u)|$.

Then the remaining units of every solutions L_i are allocated in column q, also every unit in its own row. So we obtain from L_i corresponding not minimal solution. Hence all new solutions L_i are linear independent because all matrices have cells with its own unit.

For the same reason, the matrix M_s cannot be a linear combination of the matrices L_i, and therefore it can be added to the list of linearly independent L_i.

The solutions L_i correspond sequence of $n(n - 2)$ prefixes u_i of matrices with $|R(u_i)| > 1$. Corresponding $n(n - 2)$ L_i are linear independent and number of them except M_s is maximal. Hence for matrices of next words $u_i |R(u_i)| = 1$.

By Corollary 3 there exists a sequence of length at most $n(n - 1)$ of distinct non-trivial subspaces ordered by inclusion of row monomial matrices for $n \times n$ automaton.

Consequently corresponding matrix M_u of word $u_{(n-1)^2}$ of length $(n - 1)^2$ (or earlier) is synchronizing.

Theorem 2 The deterministic complete n-state synchronizing automaton A with underlying graph over alphabet Σ has synchronizing word in Σ of length at most $(n - 1)^2$.

Follows from Theorem 1 because the restriction for strongly connected graphs can be omitted due to 3.

References

1. R.L. Adler, B. *Similarity of automorphisms of the torus*, Memoirs of the Amer. Math. Soc., 98, Providence, RI, 1970.
2. M.-P. Béal, *A note on Černy Conjecture and rational series*, technical report, Inst. Gaspard Monge, Univ. de Marne-la-Vallee, 2003.
3. J. Černy, *Poznamka k homogenym eksperimentom s konechnymi automatami*, Math.-Fyz. Čas., 14(1964), 208-215.
4. P. Frankl, *An extremal problem for two families of sets*. Eur. J. Comb., 3(1982), 125-127.
5. H. Jurgensen, *Synchronization*. Inf. and Comp. 206(2008), 9-10, 1033-1044.
6. A.A. Klijachko, I.K. Rystsov, M.A. Spivak, *An extremely combinatorial problem connected with the bound on the length of a recurrent word in an automata*. Kybernetika. 2(1987), 16-25.
7. J. Kari, M. V. Volkov, *Černy’s conjecture and the road coloring problem*. Handbook of Automata, 2013.
8. P. Lankaster, *Theory of matrices*. Acad. Press, 1969.
9. A. I. Malcev, *Foundations of linear algebra*. San Francisco, Freeman, 1963. (Nauka, 1970, in Russian.)
10. A. Mateescu and A. Salomaa, *Many-Valued Truth Functions, Černy’s conjecture and road coloring*. Bulletin EATCS, 68 (1999), 134-148.
11. J.E. Pin, *On two combinatorial problems arising from automata theory*. Annals of Discrete Math., 17(1983), 535-548.
12. P. H. Starke, *Eine Bemerkung ueber homogene Experimente*. Elektronische Informationverarbeitung und Kybernetik, 2(1966), 257-259.
13. A.N. Trahtman, *Synchronizing Road Coloring*. *Fifth Ifip Int. Conf.*, *TCS-WCC*, 2008, 43-53.
14. A.N. Trahtman, *Some new Features of Row Monomial Matrices for the Study of DFA*. Recent Advances in Math. Res. and CS. V 9, 2022, 126-137.