Different segmental resection techniques and postoperative complications in patients with colorectal endometriosis: A systematic review

Ezgi Darici1,2 | Mohamed Salama3 | Attila Bokor2,4 | Engin Oral2,5 | Bernhard Dauser6 | Gernot Hudelist2,7

1Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Zeynep Kamil Women and Children’s Diseases Training and Research Hospital, Istanbul, Turkey
2European Endometriosis League, Bordeaux, France
3Department of Thoracic Surgery, Nord Hospital, Vienna, Austria
4Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
5Department of Obstetrics and Gynecology, Bosphorus University, Istanbul, Turkey
6Department of General Surgery, Center for Endometriosis, Hospital St. John of God, Vienna, Austria
7Center for Endometriosis and Minimal Invasive Surgery, Hospital St. John of God, J. Gott Platz 1, 1020 Vienna, Austria

Correspondence
Gernot Hudelist, Center for Endometriosis and Minimal Invasive Surgery, Hospital St John of God, J. Gott Platz 1, 1020 Vienna, Austria.
Email: gernot.hudelist@meduniwien.ac.at

Abstract
Introduction: The aim of this study was to analyze the available literature by conducting a systematic review to assess the possible effects of nerve-sparing segmental resection and conventional bowel resection on postoperative complications for the treatment of colorectal endometriosis.

Material and methods: Pubmed, Clinical Trials.gov, Cochrane Library, and Web of Science were comprehensively searched from 1997 to 2021 in order to perform a systematic review. Studies including patients undergoing segmental resection for colorectal endometriosis including adequate follow-up, data on postoperative complications and postoperative sequelae were enrolled in this review. Selected articles were evaluated and divided in two groups: Nerve-sparing resection (NSR), and conventional segmental resection not otherwise specified (SRNOS). Within the NSRs, studies mentioning preservation of the rectal artery supply (artery and nerve-sparing SR – ANSR) and not reporting preservation of the artery supply (NSR not otherwise specified – NSRNOS) were further analyzed. PROSPERO ID: CRD42021250974.

Results: A total of 7549 patients from 63 studies were included in the data analysis. Forty-three of these publications did not mention the preservation or the removal of the hypogastric nerve plexus, or main rectal artery supply and were summarized as SRNOS. The remaining 22 studies were listed under the NSR group. The mean size of the resected deep endometriosis lesions and patients' body mass index were comparable between SRNOS and NSR. A mean of 3.6% (0–16.6) and 2.3% (0–10.5%) of rectovaginal fistula development was reported in patients who underwent SRNOS and NSR, respectively. Anastomotic leakage rates varied from 0% to 8.6% (mean 1.7 ± 2%) in SRNOS compared with 0% to 8% (mean 1.7 ± 2%) in patients undergoing NSR. Urinary retention (4.5% and 4.9%) and long-term bladder catheterization (4.9% and 5.5%) were also comparable between the two groups.

Abbreviations: ANSR, artery and nerve-sparing resection; DE, deep endometriosis; LARS, low anterior resection syndrome; NSR, nerve-sparing resection; NSRNOS, NSR not otherwise specified; SRNOS, conventional segmental resection not otherwise specified.

Ezgi Darici and Mohamed Salama contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
1 | INTRODUCTION

Intestinal involvement is estimated to affect 3.8%–37% of the patients diagnosed with endometriosis. Treatment of coloRECTal endometriosis is very challenging and commonly preferred methods include medical therapy and surgical interventions. Medical therapies offer a valuable therapeutic option in some cases but are not curative. Bowel resection for deep endometriosis (DE) provides a treatment that is associated with improved quality of life by reduction of pain symptoms and may enhance fertility. However, surgical management of bowel endometriosis is also a point of clinical controversy and there are various approaches including rectal shaving, disc resection and segmental resection techniques; however, there are no universal guidelines as to which excision technique is optimal.

Segmental resection appears as the most radical approach and is usually chosen for DE lesions exceeding 3 cm in diameter or multifocal disease. Compared with rectal shaving, segmental resection and disc resection have been associated with a higher risk of rectovaginal fistula development and bowel leakage. After the first reports on colorectal resection for the treatment of endometriosis more than a century ago, the nerve-sparing technique avoiding possible damage of the inferior hypogastric plexus by dissection and laterization of nerve bundles was first described in a large series of colorectal cancer patients by Heald et al. in 1982 and was further adopted for the treatment of colorectal DE with segmental resection. This technique involves the limited resection of a bowel segment with preservation of all adjacent structures, mainly the autonomic pelvic nerve plexus and vessel supply. On may expect that preservation of these structures contributes to optimized wound healing and therefore lower severe complication rates such as anastomotic leakage and fistula formation. Furthermore, some authors advocate additional preservation of the rectal artery supply by preserving the mesenteric inferior and rectal arteries, suggesting a possible benefit regarding the perfusion of the anastomosis. However, the relation between these variations of segmental resection techniques and subsequent surgical outcomes have not been systematically evaluated to date. The present systematic review aims to search the literature for surgical outcomes of different segmental resection techniques for bowel endometriosis and to evaluate the associated perioperative morbidity, postoperative early-late complications and recurrence rates.

Key message

There is no proven difference in clinical outcomes of different segmental resection techniques including nerve-vessel sparing, nerve-sparing and classical colorectal segmental resection performed in patients with colorectal deep endometriosis.

2 | MATERIAL AND METHODS

2.1 | Study design

A systematic review was conducted in accordance with the Preferred Reported Items for Systematic Reviews and Meta-analyses guidelines (PRISMA) guidelines (Figure 1) and registered with the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42021250974).

2.2 | Search strategy and selection criteria

Publications on segmental resection for colorectal endometriosis published between 1997 and 2021 were comprehensively reviewed. The following databases were used to search for relevant keywords: PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science. The MESH (Medical Subject Headings) terms “bowel endometriosis”, “colorectal endometriosis” combined with “segmental resection”, “colorectal resection”, “radical surgery” and “treatment”, “outcomes”, “complications” were utilized, combining terms with the search functions “AND” and “OR”. An independent investigator (ED) screened titles, keywords and abstracts for relevant indicators. The selected data by the author (ED) were then checked by the remaining authors (GH, AB, EO, BD). A second, full-text screening of all identified studies and the included manuscripts was subsequently performed for the qualifying entries according to the criteria below. To be included, studies had to concern patients undergoing segmental resection for colorectal endometriosis and contain an adequate follow-up phase describing data on at least one of the following terms: early and late postoperative complications including anastomotic leakage.
rectovaginal fistula, anastomotic stenosis and postoperative urogenital function.

A total of 5536 potential records were identified with the electronic-based search. After removing duplicates (n = 4137) in Endnote X9 (Clarivate Analytics, Philadelphia, PA, USA), 1399 records were screened by title and abstract. Full text screening for eligibility was done for the remaining 269 records and 63 records were included in the systematic review (Figure 1). Of these, 206 articles were excluded because 23 had an unclear definition of the surgical management, 60 were case reports, reviews or introduced a new surgical technique, 92 had missing data, 2 were video articles, 12 were in languages other than English (French, Chinese, German), 15 were QoL studies and 2 were retracted from the literature.

2.3 | Data collection and analysis

Selected articles were divided into two groups, namely, conventional segmental resection not otherwise specified (SRNOS) and nerve-sparing resection (NSR). Papers reporting on conventional segmental resection, ie segmental resection without dissection and neither preservation nor removal of the hypogastric nerves and/or not explicitly mentioning the nerve-sparing technique, remained and were classified as segmental resection not otherwise classified (SRNOS). Papers containing a clear description of the surgical technique sparing the pelvic splanchnic nerves were listed under the NSR group. The papers included in the NSR group reporting to spare both pelvic splanchnic nerves and the superior and inferior hypogastric plexus with inferior mesenteric and middle and inferior rectal arteries to sustain an adequate blood flow during the dissection, were classified as a subgroup—artery and nerve-sparing segmental resection (ANSR)—for a further subgroup analysis in which we compared patients undergoing ANSR with women undergoing NSR not otherwise classified, ie not mentioning the preservation of the inferior mesenteric and/or rectal artery supply (NSR not otherwise specified [NSRNOS]), presuming a lack of preservation of these structures.

The following data were extracted: author, publication date, study type, number of the patients, mean size of the nodule (cm), operating time (min), surgery type (laparoscopic, laparotomic or robotic), length of the resected segment (cm), type of the anastomosis, mean distance of anastomosis from anus (cm), low- and ultra-low anterior resection rates, vaginal resection, diverting stoma, estimated blood loss (ml). Cochrane’s formula was then used to calculate the combined mean of each parameter. Surgical complications included rectovaginal fistula, anastomotic leakage, pelvic abscess, bowel obstruction, late bowel perforation requiring and non-requiring colostomy, intraoperative and delayed hemorrhage, urinary complications; urinary retention <30 days, long-term bladder catheterization, ureteral leakage, low anterior resection syndrome, anastomotic stenosis, Clavien–Dindo I–II, Clavien–Dindo III–IV, and recurrent rectal endometriosis rates. Complications were reported in all publications as a percentage of the cohort. These data were combined and presented as a percentage of the combined population.
2.4 | Risk of bias

The quality of included studies was assessed by the Study Quality Assessment Tools (https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools). Studies were rated as "good" when at least 70% of 9, 12 or 14 assessment criteria were fulfilled, "fair" when at least 50% of the criteria were fulfilled and "poor" when less than 50% of the criteria were fulfilled. Conflicts regarding study quality were resolved by the authors.

2.5 | Statistical analyses

Data were represented by descriptive statistics. Meta-analysis could not be performed due to inadequate numbers of high-quality publications comparing the different surgical techniques with each other (NSR vs SRNOS). Data were extracted from the included publications and Cochrane's formula was used to calculate the combined mean of each parameter. Data are presented as mean ± SD. Analyses were performed using the SPSS system for Windows, version 21 (SPSS, IBM, Armonk, NY, USA).

3 | RESULTS

3.1 | Study characteristics

A total number of 63 publications were included in this comprehensive review: 26 were prospective \(^{1,19-42}\) and 36 were retrospective studies. \(^{1,17,43-75}\) A total of 7549 patients presented across the 63 studies underwent segmental resection applying different techniques for colorectal endometriosis. Details of the study characteristics, surgical details and intraoperative interventions are outlined in Table 1. All included studies fulfilled more than 70% of the criteria of the Study Quality Assessment Tools and were rated as good. There were no conflicts between the authors.

3.2 | Surgical technique, patient characteristics and intraoperative findings

In total, 43 publications comprising 5006 patients did not mention the preservation or removal of the hypogastric nerve plexus or main rectal artery supply (SRNOS). The remaining 22 studies comprised 2543 patients listed under the NSR group. Eight studies in the NSR group with 424 patients were reported under ANSR and 2119 patients were reported under the NSRNOS technique. Although two papers \(^{19,25}\) of the 63 compared both techniques (NSR and SRNOS), it was not possible to conduct a meta-analysis due to their non-randomized prospective design. Moreover the study group of the latter published paper \(^{25}\) was derived from the previously conducted study and therefore analyzed the same study group. \(^{19}\)

3.3 | Size of the resected nodule and body mass index (BMI)

The mean size of the resected nodules was 3.1 ± 0.8 (95% CI 2.7–3.5) cm in the whole study population, 3.2 ± 0.8 cm (95% CI 2.7–3.7) in SRNOS, 3 ± 0 cm in the NSR group, 3.4 ± 1.2 cm (95% CI 2–3.49) in ANSR, and 2.7 ± 0.6 cm (95% CI 2.1–3.3) in NSRNOS. Moreover, patients' BMI were 24 ± 3 kg/m\(^2\) (95% CI 22–25) in SRNOS, 23 ± 1 kg/m\(^2\) (95% CI 21–26) in NSR and 23 ± 1 kg/m\(^2\) and 22 ± 1 kg/m\(^2\) (95% CI 21–24) in ANSR and NSRNOS, respectively.

3.4 | Size of the resected segment

The mean size of the resected segment was 18 ± 19 cm (95% CI 7–30) in all patients. The conventional resection group exhibited a mean size of 19 ± 8 cm (95% CI 1–38). The respective size in the NSR group was 18 ± 22 cm (95% CI 3–34). The ANSR subgroup exhibited a mean size of 10 ± 3 cm (95% CI 4–17) compared with 22 ± 26 cm (95% CI 0–46) in the NSRNOS subgroup.

3.5 | Previous surgery for endometriosis and hospital stay

More than half (54.6%) of the patients, regardless of surgical technique, had a history of previous surgery for endometriosis. However, the length of hospital stay was comparable regardless of surgical technique: 6.9 ± 3 days (95% CI 5.4–8.5) in SRNOS, 7.2 ± 1 days (95% CI 5.2–9.3) in NSR; 7.2 ± 1 days (95% CI 5.2–9.5) in ANSR and 8 ± 1 days (95% CI 6.6–9.4) in NSRNOS.

3.6 | Intraoperative and delayed hemorrhage

Few publications reported data on the amount of intraoperative blood loss, which was comparable regardless of surgical technique. Intraoperative hemorrhage occurred in 0.9% (0–8.4%) in SRNOS, 0.8% (0–4.6%) in NSR, 1.4% (0–2.4%) in ANSR and 0.5% (0–4.6%) in NSRNOS. Delayed hemorrhage was reported as 3.9% (0–16.6%) in SRNOS, 3.8% (0–28%) in NSR, 4.6% (0–10.8%) in ANSR and 3.6% (0–28%) in NSRNOS. Intraoperative hemorrhage and delayed hemorrhage were frequently reported in patients undergoing artery and nerve-sparing techniques as compared with other surgical techniques. (Table 2).

3.7 | Postoperative complications and sequelae

3.7.1 | Rectovaginal fistula and anastomotic leakage rates

As listed in Table 2, rectovaginal fistula rates varied from 0% to 16.6% (mean 3.6 ± 4%, 95% CI 2.3–4.8) in SRNOS compared with
TABLE 1 Study characteristics and intraoperative findings

Authors	Year	Study type	n	Operating time (min)	Surgery type	Length of resected segment (cm)	Type of anastomosis	Mean distance of anastomosis from anus (cm)	LAR %	U-LAR %	Vaginal resection %	Diverting stoma %	Estimated blood loss (ml)
Nerve-sparing resection (NSR)													
Passover et al.	2000	Retrospective	34	185.6	LS and LT	NR	NR	4	NR	NR	100	NR	NR
Landi et al.	2006	Prospective	25	314	LS	NR	328						
Mereu et al.	2007	Prospective	192	326.7	LS	NR	NR	NR	NR	NR	31.2	NR	2.5 g
Ferrero et al.	2009	Prospective	46	NR	71% LS and 29% LT	NR	EE	NR	NR	NR	NR	2.2	NR
Minelli et al.	2009	Prospective	357	300	LS	10.2 (6-15)	EE	NR	83.5	7.6	31.7	11.5	250
Dousset et al.	2010	Prospective	100	320	LT	18 (14-41)	EE	3.6 ± 1	NR	NR	64	96	NR
Ruffo et al.	2011	Prospective	436	312	LS	NR	EE	NR	78.7	9.4	2	14	250
Meuleman et al.	2012	Prospective	61	301	LS	13 (8-22)	93% EE	NR	6.6	0	16	2.2	NR
Ceccaroni et al.	2014	Prospective	19	370	ROBOTIC-HYBRID	13	EE	NR	15.7	0	21	NR	150
Mangler et al.	2014	Prospective	71	162	LS	7.5	NR						
Akhaldos et al.	2015	Retrospective	41	210	LS	13 (4-27)	EE	NR	9.7	41.4	9.7	NR	
Malzoni et al.	2016	Retrospective	248	169	LS	11.8	NR	NR	NR	71	6	NR	1.6
Jayot et al.	2017	Retrospective	31	180	LS	NR	NR	NR	NR	NR	32	29	NR
Erdem et al.	2018	Retrospective	66	309	94% LS - 6% LT	NR	85% EE	7	NR	9	10.6	280	
Hudelist et al.	2018	Prospective	102	210.5	99% LS and 0.98% LT	NR	EE	<7 (27.4%) and 7-25 (61.8%)	NR	NR	27.5	11.8	1.76 g
Raffaeli et al.	2018	Prospective	62	NR	LS	10	EE	8	NR	NR	NR	8.1	NR
Roman et al.	2018	RCT	33	270	97% LS	80 (50-150)	EE	NR	NR	NR	60.6	63.7	200
Bokor et al.	2018	Prospective	CO: 60	121	LS	10 (5-29)	EE	NR	52	NR	NR	35	
NOSE:30	96	LS	7 (5-17)	EE	NR	57	NR	NR	0.03	15			
Abrao et al.	2019	Retrospective	71	188	LS	NR	NR	10.5	NR	NR	32.4	NR	<500
Bassi et al.	2019	Retrospective	413	NR	LS	11.4 (5.2-22)	NR	10.2	NR	NR	NR	0	NR

(Continues)
Authors	Year	Study type	n	Operating time (min)	Surgery type	Length of resected segment (cm)	Type of anastomosis	Mean distance of anastomosis from anus (cm)	LAR %	U-LAR %	Vaginal resection %	Diverting stoma %	Estimated blood loss (ml)
Bokor et al.	2020	Retrospective	139	225		97.1% LS and 2.9% LT	EE	NR	NR	NR	NR	NR	NR
Verspyck et al.	1997	Retrospective	6	NR	LT	NR	NR (83%)	NR	NR	NR	NR	NR	NR
Jerby et al.	1999	Prospective	7	240	LS	NR	EE	NR	NR	NR	NR	NR	NR
Redwine and Wright	2001	Prospective	6	NR	LS	NR	NR	NR	NR	NR	NR	NR	NR
Duepree et al.	2002	Retrospective	18	200	LS	NR	NR	EE	NR	NR	NR	NR	175
Fleisch et al.	2005	Retrospective	23	343	LT	NR	EE (78.3%) – NR (21.7%)	NR	78.3	0	NR	0	2.4 g
Keckstein and Wiesenger	2005	Retrospective	202	180	LS	NR	NR	NR	NR	NR	NR	NR	NR
Mohr et al.	2005	Retrospective	47	NR	LS	NR	EE	NR	NR	NR	NR	NR	NR
Dubernard et al.	2006	Prospective	58	NR	LS	NR	EE	NR	NR	NR	21	NR	NR
Jatan et al.	2006	Retrospective	14	NR	71.4% LT - 28.6% LS	NR	NR	100	0	NR	NR	NR	
Landi et al.	2006	Prospective	45	348	LS	NR	NR	NR	NR	NR	NR	NR	314
Brouwer and Woods et al.	2007	Retrospective	137	NR	11.6% LS - 56% Pfannenstiel assisted LS and 29.9% LT	NR	NR	82	9	NR	5	NR	
Darai et al.	2007	Prospective	71	366	LS	10 (4–20)	NR	NR	NR	NR	NR	29.5	7
Seracchioli et al.	2007	Prospective	22	192.8	LS	NR	EE	NR	NR	NR	NR	NR	NR
Ghezzi et al.	2008	Prospective	33	290	LS	NR	NR	NR	NR	NR	NR	NR	NR
Kössi et al.	2008	Prospective	31	253.5	LS	NR	NR	NR	NR	NR	NR	NR	NR
Juhasz-Böss et al.	2009	Retrospective	6	201	LS	NR	EE	NR	NR	NR	N3	0	0
Tarjanne et al.	2009	Retrospective	54	145	LT	NR	NR	NR	NR	NR	NR	NR	NR

Segmental resection NOS (SRNOS)

TABLE 1 (Continued)
Authors	Year	Study type	n	Operating time (min)	Surgery type	Length of resected segment (cm)	Type of anastomosis	Mean distance of anastomosis from anus (cm)	LAR %	U-LAR %	Vaginal resection %	Diverting stoma %	Estimated blood loss (ml)				
Fanfai et al.	2010	Prospective	88	300	LS	NR	EE	NR	NR	NR	NR	NR	34.1				
Kondo et al.	2010	Retrospective	25	371.4	LS	NR	NR	NR	NR	NR	NR	NR	68				
Roman et al.	2010	Retrospective	15	NR	LS	NR	NR	NR	NR	NR	NR	NR	100				
Ceccaroni et al.	2011	Prospective	65	351.8	LS	NR	EE	NR	NR	NR	NR	NR	29.2				
Moawad et al.	2011	Retrospective	14	426	NR	NR	NR	NR	NR	NR	NR	NR	276.9				
Wolthuis et al.	2011	Prospective	21	90	LS	NR	EE	NR	NR	NR	NR	NR	12				
Ruffo et al.	2012	Prospective	750	255	LS	NR	EE	NR	NR	92.5	7.5	25.5	14.5				
Belghiti et al.	2014	Prospective	198	NR	LS	NR	EE	NR	NR	43	32	27	NR				
Kondo et al.	2014	Retrospective	59	160	NR	NR	NR	NR	NR	NR	NR	NR	100				
Ruffo et al.	2014	Retrospective	774	NR	LS	NR	EE	NR	NR	NR	NR	NR	21.3				
Milone et al.	2015	Prospective	90	206	85 LS	NR	NR	NR	NR	NR	NR	NR	24				
Afors et al.	2016	Retrospective	30	184.2	NR	NR	NR	NR	NR	NR	NR	NR	59.9				
Michalak et al.	2016	Retrospective	11	NR	72% LT - 28% LS	NR	NR	NR	NR	NR	NR	18	NR	33	5.3	283.1	Abbreviations: CO, conventional; EE, end-to-end; LAR, low anterior resection; LS, laparoscopy; LT, laparatomy; NOSE, natural orifice specimen extraction; NR, not reported; RCT, randomized controlled trial; ROB, robotic; ULAR, ultra-low anterior resection.

TABLE 1 (Continued)
TABLE 2 Early and late complications

Author	Rectovaginal fistulas, %	Anastomotic leakage, %	Pelvic Abscess	Bowel obstruction	Late bowel perforation requiring colostomy	Late bowel perforation not requiring colostomy	Hemorrhage, %
Nerve–sparing resection (NSR)							
Passover et al.^[43]	0	0	0	0	NR	NR	0
Landi et al.^[18]	0	8	0	0	0	0	0
Mereu et al.^[19]	2.7	4.7	0.5	0.5	0.5	NR	0.8
Ferrero et al.^[20]	2.2	2.2	2.2	2.2	NR	NR	10.8
Minelli et al.^[21]	3.9	1.1	0.8	0.6	NR	0.6	NR
Doussset et al.^[22]	4	2	NR	NR	NR	0	2
Ruffo et al.^[23]	3.2	2.1	NR	NR	NR	NR	2.1
Ceccaroni et al.^[24]	3.3	0	0	0	0	0	4.6
Meuleman et al.^[1]	0	0	NR	NR	NR	NR	0
Cassini et al.^[25]	10.5	0	0	0	0	0	0
Mangler et al.^[26]	NR	NR	NR	NR	NR	NR	1.4
Akkados et al.^[44]	2.4	2.4	2.4	2.4	NR	NR	2.4
Malzoni et al.^[45]	2.4	1.6	0	0	NR	NR	0
Jayot et al.^[46]	0	3.2	6	0	NR	NR	NR
Erdem et al.^[47]	1.5	0.15	0	0	0	0	0
Hudelist et al.^[4]	0.98	1.9	0	0	NR	NR	2.9
Raffaelli et al.^[27]	1.6	1.6	0	0	NR	NR	0
Roman et al.^[42]	0	NR	NR	NR	NR	NR	3
Bokor et al.^[15]	1.7	3.3	0	0	NR	NR	NR
Abrao et al.^[48]	0	0	NR	0	NR	NR	1.6
Bassi et al.^[49]	0.7	0	0	0.25	0	0	1.4
Bokor et al.^[16]	3.6	1.4	2.1	0	NR	NR	NR
Segmental resection NOS (SRNOS)							
Verspyck et al.^[50]	16.6	0	0	0	0	0	0
Jerby et al.^[28]	14.2	0	NR	14.2	NR	NR	NR
Redwine and Wright et al.[29]	0	0	0	0	NR	NR	0
Duepree et al.^[31]	NR	NR	NR	NR	NR	NR	NR
Darai et al.^[30]	7.5	0	2.5	0	NR	NR	0
Fleisch et al.^[52]	0	4.3	0	0	NR	NR	8.7
Keckstein and Wiesenger^[33]	0	3	1	0	NR	NR	NR
Mohr et al.^[34]	0	2	0	0	0	0	2
Dubernard et al.^[31]	10.3	0	1.7	0	NR	NR	NR
Jatan et al.^[35]	0	0	0	NR	0	0	NR
Landi et al.^[78]	0	4.4	0	0	0	0	6.6
Brouwer and Woods^[56]	0	0.7	0	0.7	NR	0.7	0
Darai et al.^[32]	8.4	0	4.2	0	NR	NR	8.4
Seracchioli et al.^[33]	0	4.5	0	0	NR	4.5	NR
Ghezzi et al.^[34]	0	0	NR	NR	NR	NR	NR
Kössi et al.^[35]	3.2	3.2	0	0	0	0	0
Juhasz-Böss^[57]	0	0	0	0	0	0	16.6

NR: Not reported
Table 2

Urinary retention <30 days	Long-term bladder catheterization	Ureteral leakage	LARS, %	Anastomotic stenosis, %	Clavien-Dindo I-II (%)	Clavien-Dindo III-IV (%)	Recurrent rectal endometriosis, %
0	0	0	0	NR	NR	NR	NR
NR	4	0	NR	0	NR	NR	NR
NR	4.7	1.5	NR	2.6	10.4	26	NR
NR	4.3	0	NR	NR	17.3	19.5	NR
11	9.5	0.6	NR	2	NR	NR	NR
NR	16	NR	NR	NR	NR	NR	NR
NR	9.5	0.9	NR	3.7	NR	NR	NR
NR	6.1	NR	NR	NR	NR	NR	NR
0	2.2	0	NR	NR	NR	NR	NR
0	0	0	NR	0	NR	10.5	NR
NR	NR	NR	NR	NR	NR	NR	NR
9.7	0	2.4	NR	NR	12.1	14.4	2.4
0	0	0	NR	NR	NR	8	0
22	22	NR	NR	NR	29	10.3	NR
3	1.9	1.5	NR	1.5	NR	NR	NR
5.9	NR	NR	7.4	1.2	8.8	6.9	NR
NR	NR	NR	NR	NR	96.8	3.2	NR
9.1	3.6	NR	NR	NR	48.5	30.2	NR
3.3	NR	0	NR	NR	NR	NR	1.7
3	NR	0	NR	NR	NR	NR	0
0	NR	NR	0	9.9	4.2	NR	NR
0.5	NR	0.5	NR	1.4	2.7	3.4	NR
6.49	NR	0.7	31.6	0	11.5	9.3	NR
0	NR	0	NR	NR	NR	NR	0
NR	NR	0	NR	NR	NR	NR	NR
0	0	0	NR	NR	NR	NR	NR
NR	NR	NR	NR	NR	NR	NR	NR
17.5	0	NR	NR	NR	NR	NR	0
0	NR	0	NR	NR	NR	NR	NR
NR	NR	0	NR	3	NR	NR	NR
2	0	2	NR	NR	25	12.5	NR
NR	NR	NR	NR	NR	NR	15.5	NR
NR	NR	0	NR	7.1	NR	0	NR
NR	6.6	0	NR	0	NR	NR	NR
NR	1.4	0	NR	NR	NR	NR	3
NR	NR	0	NR	NR	12.6	0	NR
9	13.6	0	NR	NR	NR	NR	0
3	6	NR	NR	0	NR	NR	NR
NR	NR	0	NR	0	19.2	6.4	NR
0	0	0	NR	0	0	NR	NR
DARICI et Al.

0% to 10.5% (mean 2 ± 2%, 95% CI 0.98–3.1) in patients undergoing NSR. In the subgroup analysis of ANSR and NSRNOS cohorts, the rectovaginal fistula rate varied from 0% to 3.6% (mean 1.5 ± 1%, 95% CI 0.32–2.8) and 0% to 10.5% (mean 2.26 ± 3%, 95% CI 0.7–3.8), respectively. Anastomotic leakage rates varied from 0% to 8.6% (mean 1.7 ± 2%, 95% CI 1–2.5) in SRNOS compared with 0% to 8% (mean 1.7 ± 2%, 95% CI 0.8–2.6) in patients undergoing NSR. In contrast, anastomotic leakage rates in the ANSR and NSRNOS cohorts varied from 0% to 3.2% (mean 1.8 ± 1%, 95% CI 0.9–2.7) and 0% to 8% (mean 1.6 ± 2%, 95% CI 0.3–3), respectively.

3.7.2 Urinary retention and long-term bladder catheterization

Postoperative urinary retention rates varied from 0% to 20% (mean 4.5 ± 6%, 95% CI 0.8–8.4) in SRNOS compared with 0% to 22% (mean 4.9 ± 6%, 95% CI 1.6–8.3) in patients undergoing NSR. Furthermore, ANSR and NSRNOS cohorts were associated with postoperative urinary retention rates of 0% to 22% (mean 8.8 ± 8%, 95% CI 1.3 to 19) and 0% to 11% (mean 2.9 ± 4%, 95% CI 0.1–5.9), respectively. Long-term bladder catheterization rates varied from 0% to 17.5% (mean 4.9 ± 6%, 95% CI 1.8–8) in SRNOS compared with 0% to 22% (mean 5.6 ± 6%, 95% CI 1.7–9.4) in patients undergoing NSR. In line with this, ANSR and NSRNOS cohorts showed long-term bladder catheterization rates varying from 0% to 22% (mean 8.8 ± 11%, 95% CI –20 to 37) and 0% to 16% (mean 4.7 ± 5%, 95% CI 1.3–8.1), respectively. Postoperative urinary retention and long-term bladder catheterization were frequently reported in all groups.

3.7.3 Bowel obstruction and bowel perforation

Bowel obstruction rates varied from 0% to 14% (mean 0.7 ± 3%, 95% CI –0.59 to 1.9) in the SRNOS group as compared with 0% to 0.6% (mean 0.08 ± 0.2%, 95% CI –0.02 to 0.17) in the NSR group. Bowel obstruction was not reported in ANSR, but was reported to be 0% to 0.6% (mean 0.1 ± 0.2%, 95% CI –0.03 to 0.27) in NSRNOS.
No patient in the SRNOS group had late bowel perforation requiring colostomy. However, in the NSR group, there was a mean rate of 0.6% (0%–4.5%, 95% CI −0.3 to 1.5) for late bowel perforation not requiring colostomy compared with a mean rate of 0.1% (0%–0.5%, 95% CI −0.1 to 0.3) for late bowel perforation requiring colostomy and 0.1% (0–0.6%, 95% CI −0.2 to 0.4) for late bowel perforation not requiring colostomy.

3.7.4 Low anterior resection syndrome (LARS) and anastomotic stenosis

There was no information regarding postoperative LARS rates in SRNOS, but LARS rates varied from 0% to 31.6% (mean 13 ±16%, 95% CI −28 to 54) in NSR. Postoperative LARS rates varied from 7.4% to 31.6% (mean 19.5 ±17%, 95% CI −134 to 173) in ANSR. No information was available on this, for the NSRNOS group. Anastomotic stenosis rates varied from 0% to 13.8% (mean 3.6 ±4%, 95% CI 0.5–6.8) in SRNOS compared with 0% to 3.7% (mean 1.2 ±1%, 95% CI 0.3–2.2) in patients undergoing NSR. Moreover, ANSR and NSRNOS cohorts had anastomotic stenosis rates that varied from 0% to 1.2% (mean 0.4 ±1%, 95% CI 0.4–2.8), respectively. Although the mean follow-up time for most of the patients was above 30 months, there was not sufficient information about pain or the recurrence rates.

4 DISCUSSION

The present work is the first of its kind to systematically review the available literature on the postoperative outcomes of different techniques applied for performing segmental bowel resection in patients with DE. We were unable to perform a meta-analysis due to a lack of high-quality data comparing different techniques head-to-head. Furthermore, we were unable to find prospective studies comparing the variants of segmental resection techniques. The results of this systematic review pooling data from trials either reporting on
various patient cohorts undergoing different techniques for bowel resection, ie shaving and discoid resection, or segmental resection demonstrate that there is no obvious difference in intraoperative or postoperative complications when applying conventional SRNOS or NSR. Mean rates of rectovaginal fistula were lower in NSR groups (ANSR 1.5%, NSRNOS 2.3%) than in the SRNOS group (3.6%). In addition, similar leakage rates were observed in both groups. Furthermore, postoperative voiding dysfunction and bowel function reflected by LARS scores were similar in patients managed with nerve-sparing techniques and the conventional method (SRNOS).

When compared with segmental resection, conservative resection techniques for colorectal DE such as rectal shaving or discoid resection were advocated by several authors based on lower complication rates regarding anastomotic leakage and postoperative bowel stenosis. Segmental resection is the recommended treatment method in extensive, multifocal diseases where conservative approaches are technically difficult to perform. However, the only prospective randomized trial comparing segmental resection with conservative, full-thickness discoid resection was unable to demonstrate significant advantages of omitting segmental resection, although it did demonstrate a higher risk for bowel stenosis leading to repeated surgical interventions in the segmental resection group. To decrease the morbidity of segmental resection regarding autonomous nerve function and risk of anastomotic leakage, nerve-sparing techniques and vessel-sparing variants have been suggested by several authors.

The results of the present systematic review do not suggest a relevant advantage of these approaches over the conventional method. However, our results have to be interpreted with caution because of the heterogeneity of the studies included, the human factor of surgical experience and possible effects of volume activity and caseloads.

Furthermore, large prospective randomized controlled trials and comparative observational studies are lacking. The only available literature comparing SRNOS and NSR derive from non-randomized retrospective cohort studies from the same group and do not allow sufficient conclusions. In addition, there are several known additional factors with a proven influence on leakage rates and rectovaginal fistula development: the length of the resected segment, height of the surgical anastomosis, vaginal opening and presurgical morbidity of the patient. As a consequence, the ideal study setting would comprise patients undergoing different segmental resection techniques with DE lesions situated at the same anatomical height and similar rates of concomitant vaginal involvement. Finally, nerve-sparing techniques are sometimes difficult to apply in surgical reality due to extension of DE into parietal tissues, application of traction and thermal damage causing nervous damage despite formal use of so-called nerve-sparing approaches. It also has to be stated that we cannot fully exclude that those papers reporting on segmental resection which lacked otherwise specified information on dissection procedures of nerva structures and vessels included in the SRNOS group, did indeed spare autonomous nerve plexuses during resection of DE.

The strength of this work is that we utilized an extensive search strategy including four databases and that this is the first systematic review on the subject of differences in outcomes of various techniques for segmental resection. The results do not suggest a relevant difference of one approach over the other; however, based on the available literature, a possible advantage of NSR techniques cannot be excluded in light of the limitations of the quality of evidence reviewed. In the ideal scenario, future prospective trials are would be needed to increase the level of evidence for or against nerve-sparing resection methods for segmental resection in women with colorectal DE. These studies would need to include patients with similar baseline surgical risk factors (height of lesion from the anal verge, vaginal opening, parametrial involvement, length of resected segment, etc.) and would also have to take into account surgical experience with adequate patient numbers. This could only be achieved in a standardized multicenter setting with strict inclusion and exclusion criteria.

5 | CONCLUSION

Current data describe the outcomes of different segmental resection techniques. However, the data are inhomogeneous and are not sufficient to reach a conclusion regarding a possible advantage of one technique over the other.

ACKNOWLEDGMENTS

This work and associated APCs were supported by the European Endometriosis League.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTIONS

ED: project development, data collection and management. MS: data analysis, manuscript writing/editing. AB and EO: data collection and management, manuscript writing/editing. BD: manuscript writing/editing, data analysis. GH: Project development, manuscript writing/editing.

ORCID

Ezgi Darici https://orcid.org/0000-0001-9570-1165
Attila Bokor https://orcid.org/0000-0001-9416-2438
Gernot Hudelist https://orcid.org/0000-0002-9424-2208

REFERENCES

1. Meuleman C, Tomassetti C, D’Hoore A, et al. Clinical outcome after CO2 laser laparoscopic radical excision of endometriosis with colorectal wall invasion combined with laparoscopic segmental bowel resection and reanastomosis. Hum Reprod. 2011;26:2336-2343.
2. Meuleman C, Tomassetti C, D’Hoore A, et al. Surgical treatment of deeply infiltrating endometriosis with colorectal involvement. Hum Reprod Update. 2011;17:311-326.
3. Iversen ML, Seyer-Hansen M, Forman A. Does surgery for deep infiltrating bowel endometriosis improve fertility? A systematic review. Acta Obstet Gynecol Scand. 2017;96:688-693.

4. Hudelist G, Aas-Eng MK, Birsan T, et al. Pain and fertility outcomes of nerve-sparing, full-thickness disk or segmental bowel resection for deep infiltrating endometriosis—a prospective cohort study. Acta Obstet Gynecol Scand. 2018;97:1438-1446.

5. Nezhat C, Li A, Falik R, et al. Bowel endometriosis: diagnosis and management. Am J Obstet Gynecol. 2018;218:549-562.

6. Alabiso G, Alio L, Arena S, et al. How to manage bowel endometriosis: the ETIC approach. J Minim Invasive Gynecol. 2015;22:517-529.

7. Hernández Gutiérrez A, Spagnolo E, Zapardiel I, et al. Post-operative complications and recurrence rate after treatment of bowel endometriosis: comparison of three techniques. Eur J Obstet Gynecol Reprod Biol X. 2019;4:100083.

8. Abrão MS, Petraglia F, Falcone T, Keckstein J, Osuga Y, Chapron C. Deep endometriosis infiltrating the recto-sigmoid: critical factors to consider before management. Hum Reprod Update. 2015;21:329-339.

9. Vanhie A, Meuleman C, Tomassetti C, et al. Consensus on recording bowel endometriosis surgery: the CORDES statement. Hum Reprod. 2016;31:1219-1223.

10. Bendifallah S, Puchar A, Vesale E, Moawad G, Darai E, Roman H. Surgical outcomes after colorectal surgery for endometriosis: a systematic review and meta-analysis. J Minim Invasive Gynecol. 2021;28:453-466.

11. Hudelist G, Keckstein J, Wright JT. The migrating adenomyoma: past views on the etiology of adenomyosis and endometriosis. Fertil Steril. 2009;92:1536-1543.

12. Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery--the clue to pelvic recurrence? Br J Surg. 1982;69:613-616.

13. De Cicco C, Corona R, Schonman R, Mailova K, Ussia A, Koninckx P. Bowel resection for deep endometriosis: a systematic review. BJOG. 2011;118:285-291.

14. Redwine DB, Sharpe DR. Laparoscopic segmental resection of the sigmoid colon for endometriosis. J Laparoendosc Surg. 1999;11:217-220.

15. Bokor A, Lukovich P, Csibi N, et al. Natural orifice specimen extraction during laparoscopic bowel resection for colorectal endometriosis: technique and outcome. J Minim Invasive Gynecol. 2018;25:1065-1074.

16. Bokor A, Hudelist G, Dobó N, et al. Low anterior resection syndrome following different surgical approaches for low rectal endometriosis: a retrospective multicenter study. Acta Obstet Gynecol Scand. 2021;100:860-867.

17. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.

18. Altman DG, Machin D, Bryant T, Gardner MJ. Statistics with Confidence: Confidence Intervals and Statistical Guidelines. Wiley; 2013.

19. Landi S, Ceccaroni M, Perutelli A, et al. Laparoscopic nerve-sparing complete excision of deep endometriosis: is it feasible? Hum Reprod. 2006;21:774-781.

20. Mereu L, Ruffo G, Landi S, et al. Laparoscopic treatment of deep endometriosis with segmental colorectal resection: short-term morbidity. J Minim Invasive Gynecol. 2007;14:463-469.

21. Ferrero S, Anserini P, Abbamonte LH, Ragni N, Camerini G, Remorgida V. Fertility after bowel resection for endometriosis. Fertil Steril. 2009;92:41-46.

22. Minelli L, Fanfani F, Fagotti A, Ruffo G, Ceccaroni M, Mereu L, Landi S, Pomini P, Scambia G. Laparoscopic colorectal resection for bowel endometriosis: feasibility, complications, and clinical outcome. Arch Surg 2009;144:234–9; discussion 9.

23. Dousset B, Leconte M, Borghezio B, et al. Complete surgery for low rectal endometriosis: long-term results of a 100-case prospective study. Ann Surg. 2010;251:887-895.

24. Ruffo G, Scopelliti F, Scioscia M, Ceccaroni M, Mainardi P, Minelli L. Laparoscopic colorectal resection for deep infiltrating endometriosis: analysis of 436 cases. Surg Endosc. 2010;24:63-67.

25. Ceccaroni M, Clarizia R, Bruni F, et al. Nerve-sparing laparoscopic eradication of deep endometriosis with segmental rectal and parametrical resection: the Negrar method. A single-center, prospective, clinical trial. Surg Endosc. 2012;26:2029-2045.

26. Cassini D, Cerullo G, Miccini M, Manoocchehi F, Ercoli A, Baldazzi G. Robotic hybrid technique in rectal surgery for deep pelvic endometriosis. Surg Innov. 2014;21:52-58.

27. Mangler M, Herbstleb J, Mechsnr S, Bartley J, Schneider A, Köhler C. Long-term follow-up and recurrence rate after mesorectum-sparing bowel resection among women with rectovaginal endometriosis. Int J Gynaecol Obstet. 2014;125:266-269.

28. Raffaelli R, Garzon S, Baglio S, et al. Mesenteric vascular and nerve-sparing surgery in laparoscopic segmental intestinal resection for deep infiltrating endometriosis. Eur J Obstet Gynecol Reprod Biol. 2018;231:214-219.

29. Jerby BL, Kessler H, Falcone T, Milsom JW. Laparoscopic management of colorectal endometriosis. Surg Endosc. 1999;13:1125-1128.

30. Redwine DB, Wright JT. Laparoscopic treatment of complete obliteration of the cul-de-sac associated with endometriosis: long-term follow-up of en bloc resection. Fertil Steril. 2001;76:358-365.

31. Darai E, Thomassini I, Barranger E, et al. Feasibility and clinical outcome of laparoscopic colorectal resection for endometriosis. Am J Obstet Gynecol. 2005;192:394-400.

32. Dubernard G, Piketty M, Rouzier R, Houry S, Bazot M, Darai E. Quality of life after laparoscopic colorectal resection for endometriosis. Hum Reprod. 2006;21:1243-1247.

33. Darai E, Ackerman G, Bazot M, Rouzier R, Dubernard G. Laparoscopic segmental colorectal resection for endometriosis: limits and complications. Surg Endosc. 2007;21:1572-1577.

34. Seracchilli R, Poggio G, Pierangeli F, et al. Surgical outcome and long-term follow up after laparoscopic rectosigmoid resection in women with deep infiltrating endometriosis. BJOG. 2007;114:889-895.

35. Ghezzi F, Croni A, Ciravolo G, Rampinelli F, Braga M, Boni L. A new laparoscopic-transvaginal technique for rectosigmoid resection in patients with endometriosis. Fertil Steril. 2008;90:1964-1968.

36. Kössi J, Setälä M, Enholm B, Luostarinen M. The early outcome of laparoscopic sigmoid resection for colorectal endometriosis. Colorectal Dis. 2010;12:232-235.

37. Fanfani F, Fagotti A, Gagliardi ML, et al. Discoid or segmental rectosigmoid resection for deep infiltrating endometriosis: a case-control study. Fertil Steril. 2010;94:444-449.

38. Wolthus AM, Meuleman C, Tomassetti C, et al. Laparoscopic sigmoid resection with transrectal specimen extraction: a novel technique for the treatment of bowel endometriosis. Hum Reprod. 2011;26:1348-1355.

39. Ruffo G, Sartori A, Crippa S, et al. Laparoscopic rectal resection for severe endometriosis of the mid and low rectum: technique and operative results. Surg Endosc. 2012;26:1035-1040.

40. Belghiti J, Ballester M, Zilberman S, et al. Role of protective defunctioning stoma in colorectal resection for endometriosis. J Minim Invasive Gynecol. 2014;21:472-479.

41. Milone M, Vignali A, Milone F, et al. Colorectal resection in deep pelvic endometriosis: surgical technique and post-operative complications. World J Gastroenterol. 2015;21:13345-13351.

42. Byrne D, Curnow T, Smith P, Cutner A, Saridogan E, Clark TJ. Laparoscopic excision of deep rectovaginal endometriosis in BSGE endometriosis centres: a multicentre prospective cohort study. BJM Open. 2018;8:e018924.

43. Roman H, Bubenheim M, Huet E, et al. Conservative surgery vs colorectal resection in deep endometriosis infiltrating the rectum: a randomized trial. Hum Reprod. 2018;33:47-57.
44. Possover M, Dieboldner H, Plau K, Schneider A. Laparoscopically assisted vaginal resection of rectovaginal endometriosis. Obstet Gynecol. 2000;96:304-307.

45. Akladios C, Messori P, Faller E, et al. Is ileostomy always necessary following rectal resection for deep infiltrating endometriosis? J Minim Invasive Gynecol. 2015;22:103-109.

46. Malzoni M, Di Giovanni A, Exacoustos C, et al. Feasibility and safety of laparoscopic-assisted bowel segmental resection for deep infiltrating endometriosis: a retrospective cohort study with description of technique. J Minim Invasive Gynecol. 2016;23:512-525.

47. Jayot A, Nyangoh Timoh K, Bendifallah S, Ballester M, Darai E. Comparison of laparoscopic discoid resection and segmental resection for colorectal endometriosis using a propensity score matching analysis. J Minim Invasive Gynecol. 2018;25:440-446.

48. Erdem S, Imboden S, Papadia A, et al. Functional outcomes after rectal resection for deep infiltrating pelvic endometriosis: long-term results. Dis Colon Rectum. 2018;61:733-742.

49. Abrão MS, Andres MP, Barbosa RN, Bassi MA, Kho RM. Optimizing perioperative outcomes with selective bowel resection following an algorithm based on preoperative imaging for bowel endometriosis. J Minim Invasive Gynecol. 2020;27:883-891.

50. Bassi MA, Andres MP, Bassi CM, Neto JS, Kho RM, Abrão MS. Postoperative bowel symptoms improve over time after Rectosigmoidectomy for endometriosis. J Minim Invasive Gynecol. 2020;27:1316-1323.

51. Verspyck E, Lefranc JP, Guyard B, Blondon J. Treatment of bowel endometriosis: a report of six cases of colorectal endometriosis and a survey of the literature. Eur J Obstet Gynecol Reprod Biol. 1997;71:81-84.

52. Duepree HJ, Senagore AJ, Delaney CP, Marcello PW, Brady KM, Falcone T. Laparoscopic resection of deep pelvic endometriosis with rectosigmoid involvement. J Am Coll Surg. 2002;195:754-758.

53. Fleisch MC, Xafis D, De Bruyne F, Hucke J, Bender HG, Dall P. Radical resection of invasive endometriosis with bowel or bladder involvement—long-term results. Eur J Obstet Gynecol Reprod Biol. 2005;123:224-229.

54. Keckstein J, Wiesinger H. Deep endometriosis, including intestinal involvement—the interdisciplinary approach. Minim Invasive Ther Allied Technol. 2005;14:160-166.

55. Mohr C, Nezhat CR, Nezhat CH, Seidman DS, Nezhat CR. Fertility considerations in laparoscopic treatment of infiltrative bowel endometriosis. JSLS. 2005;9:16-24.

56. Jatan AK, Solomon MJ, Young J, Cooper M, Pathna-Nathan N. Laparoscopic management of rectal endometriosis. Dis Colon Rectum. 2006;49:169-174.

57. Brouwer R, Woods RJ. Rectal endometriosis: results of radical excision and review of published work. ANZ J Surg. 2007;77:562-571.

58. Juhasz-Böss I, Ittach C, Fürst A, Malik E, Ortman O. Severe endometriosis: laparoscopic rectum resection. Arch Gynecol Obstet. 2010;281:657-662.

59. Tarjanne S, Jöberg J, Heikinheimo O. Rectovaginal endometriosis—characteristics of operative treatment and factors predicting bowel resection. J Minim Invasive Gynecol. 2009;16:302-306.

60. Kondo W, Bourdel N, Tamburro S, et al. Complications after surgery for deeply infiltrating pelvic endometriosis. BJOG. 2011;118:292-298.

61. Roman H, Rozsnyai F, Puscasiu L, et al. Complications associated with two laparoscopic procedures used in the management of rectal endometriosis. JSLS. 2010;14:169-177.

62. Moawad NS, Guido R, Ramanathan R, Mansuria S, Lee T. Comparison of laparoscopic anterior discoid resection and laparoscopic low anterior resection of deep infiltrating rectosigmoid endometriosis. JSLS. 2011;15:331-338.

63. Kondo W, Ribeiro R, Zomer MT. Fast-track surgery in intestinal deep infiltrating endometriosis. J Minim Invasive Gynecol. 2014;21:285-290.

64. Ruffo G, Scopelliti F, Manzoni A, Sartori A, Rossini R, Cecconari M, Minelli L, Crippa S, Partelli S, Falconi M. Long-term outcome after laparoscopic bowel resections for deep infiltrating endometriosis: a single-center experience after 900 cases. Biomed Res Int 2014;2014:463058, 1, 5.

65. Afors K, Centini G, Fernandes R, et al. Segmental and discoid resection are preferential to bowel shaving for medium-term symptomatic relief in patients with bowel endometriosis. J Minim Invasive Gynecol. 2016;23:1123-1129.

66. Michalak KA, Cameron-Jeffs R, Yen AHW, et al. Impact of bowel endometriosis surgery on bowel and bladder function, pain symptoms and quality of life. J Endometriosis Pelvic Pain Disorders. 2016;8:55-61.

67. Bourdel N, Comptour A, Bouchet P, et al. Long-term evaluation of painful symptoms and fertility after surgery for large rectovaginal endometriosis nodule: a retrospective study. Acta Obstet Gynecol Scand. 2018;97:158-167.

68. Renner SP, Kessler H, Topal N, et al. Major and minor complications after anterior rectal resection for deeply infiltrating endometriosis. Arch Gynecol Obstet. 2017;295:1277-1285.

69. Abo C, Moatassim S, Marty N, et al. Postoperative complications after bowel endometriosis surgery by shaving, disc excision, or segmental resection: a three-arm comparative analysis of 364 consecutive cases. Fertil Steril. 2018;109:172-8.e1.

70. Mabrouk M, Raimondo D, Altieri M, et al. Surgical, clinical, and functional outcomes in patients with rectosigmoid endometriosis in the gray zone: 13-year long-term follow-up. J Minim Invasive Gynecol. 2019;26:1110-1116.

71. Bonin E, Bridoux V, Chati R, et al. Diverting stoma-related complications following colorectal endometriosis surgery: a 163-patient cohort. Eur J Obstet Gynecol Reprod Biol. 2019;232:46-53.

72. Gornes H, Vayssé C, Leguevaque P, et al. Identification of a group with high risk of postoperative complications after deep bowel endometriosis surgery: a retrospective study on 164 patients. Arch Gynecol Obstet. 2020;302:383-391.

73. Braund S, Hennetier C, Klaczyński C, et al. Risk of postoperative stenosis after segmental resection vs disk excision for deep endometriosis infiltrating the rectosigmoid: a retrospective study. J Minim Invasive Gynecol. 2021;28:50-56.

74. Roman H, Bridoux V, Merlot B, et al. Risk of bowel fistula following surgical management of deep endometriosis of the rectosigmoid: a series of 1102 cases. Hum Reprod. 2020;35:1601-1611.

75. Bafor C, van Elst B, Neutens S, et al. Outcome after surgery for deep endometriosis infiltrating the rectum. Fertil Steril. 2020;113:1319-27.e3.

76. Donnez O, Roman H. Choosing the right surgical technique for deep endometriosis: shaving, disc excision, or bowel resection? Fertil Steril. 2017;108:931-942.

77. Bendifallah S, Roman H, Rubod C, et al. Impact of hospital and surgeon case volume on morbidity in colorectal endometriosis management: a plea to define criteria for expert centers. Surg Endosc. 2018;32:2003-2011.

78. Vigueras Smith A, Sumak R, Cabrera R, Kondo W, Ferreira H. Bowel anastomosis leakage following endometriosis surgery: an evidence based analysis of risk factors and prevention techniques. Facts Views Vis Obgyn. 2020;12:207-225.

79. Roman H, Bridoux V, Merlot B, et al. Risk of rectovaginal fistula in women with excision of deep endometriosis requiring concomitant vaginal and rectal sutures, with or without preventive stoma. A before-and-after comparative study. J Minim Invasive Gynecol. 2022;29:56-64.e1.