Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Full length Article

COVID-19 Sentiment and the Chinese Stock Market: Evidence from the Official News Media and Sina Weibo

Yuejiao Duan, Lanbiao Liu, Zhuo Wang

School of Finance, Nankai University, Tianjin, 300350, China

ARTICLE INFO

JEL Classifications:
G12
G17
G41

Keywords:
Novel Coronavirus 2019 (COVID-19)
Sentiment
Chinese stock market
Official News Media
Sina Weibo

ABSTRACT

This study quantitatively measures the Chinese stock market’s reaction to sentiments regarding the Novel Coronavirus 2019 (COVID-19). Using 6.3 million items of textual data extracted from the official news media and Sina Weibo blogsite, we develop two COVID-19 sentiment indices that capture the moods related to COVID-19. Our sentiment indices are real-time and forward-looking indices in the stock market. We discover that stock returns and turnover rates were positively predicted by the COVID-19 sentiments during the period from December 17, 2019 to March 13, 2020. Consistent with this prediction, margin trading and short selling activities intensified proactively with growth sentiment. Overall, these results illustrate how the effects of the pandemic crisis were amplified by the sentiments.

1. Introduction

The Novel Coronavirus 2019 (COVID-19) represents an unprecedented threat to human health and the prosperity of the world. This outbreak is a shock to both financial markets and investors. In the World Economic Forum’s Global Risk Report (2020), the topic of “infectious diseases” was ranked number 10 in terms of impact. On March 11, the World Health Organization (WHO) officially characterized COVID-19 as a pandemic. As of March 16, there were 80,881 confirmed cases in China, with 68,679 patients having been cured. Similar to the COVID-19, researchers find that the SARS in 2002 produces tremendous effects on the economy (e.g., Siu and Wong, 2004; Chen et al., 2007). Therefore, it is important to analyze the impact of this pandemic from the economic perspective.

Literature documents that information may affect corporate behaviors (e.g., Grullon et al., 2002; Hirshleifer and Teoh, 2003; Hirshleifer and Shumway, 2003; Bushee et al., 2010). Chan (2003) finds that investors react to news in the stock market, especially for the bad news. Kaplanski and Levy (2010) analyzes whether sentiments may affect stock returns. Fang and Peress (2009) examines the relationship between media coverage and stock returns, supporting the hypothesis that information dissemination may affect stock returns. This strand of literature indicates that media reports may affect investors’ behavior, and by observing market sentiments, it is possible to predict stock market volatility to some extent. But it should be noted that the information dissemination methods is changing with the development of information technology. Therefore, how the media reports will affect the financial market in this new era is still a question.

Recently, many pioneering studies regarding stock price reactions to the COVID-19 have emerged in the literature (Ashraf, 2020; Baker et al., 2020; Ramelli and Wagner, 2020). In terms of the relatively complete containment of COVID-19 in China, this study

* The views expressed are those of the authors and do not represent the views of the Nankai University.
* Corresponding author.
E-mail address: dyj@nankai.edu.cn (Y. Duan).

https://doi.org/10.1016/j.ribaf.2021.101432
Received 30 June 2020; Received in revised form 12 May 2021; Accepted 15 May 2021
Available online 2 June 2021
0275-5319/© 2021 Elsevier B.V. All rights reserved.
This study contributes to the existing literature in three ways. One is in terms of the data and methodology used. We collect 6.3 million texts from the official news media and Sina blogs and trained the attitude of full articles and blog content with manual interpretation and SVM algorithms. Further, our sentiment indices are constructed to reflect the public’s mood in response to the COVID-19 pandemic based on two large-scale public platforms in China. The period from December 17, 2019 to March 13, 2020 covers incubation, outbreak, fever, and well-controlled. Our analysis of Chinese stock prices considers reactions to official news and private discussions. In addition, our sentiments positively predict returns for margin trading and short selling activities. Moreover, we measure...
| Panel A: Top 60 media websites |
|-----------------------------|
| Rank | Media website | N | Rank | Media website | N  |
| 1    | Sohu.com      | 126821 | 31   | mirachaber    | 8405 |
| 2    | Sina.com.cn   | 115927 | 32   | GxWest        | 8320 |
| 3    | NetEase       | 59942  | 33   | Rednet.cn     | 8143 |
| 4    | People.cn     | 57210  | 34   | Leju.com      | 7843 |
| 5    | ZAKER         | 48434  | 35   | China.com     | 7267 |
| 6    | Workercn.cn   | 30493  | 36   | Scol.com.cn   | 7178 |
| 7    | QQ.com        | 30253  | 37   | Gog.cn        | 7089 |
| 8    | Ifeng.com     | 29848  | 38   | Anhuinews.com | 6565 |
| 9    | Chinanews.com | 28702  | 39   | Hnrr.cn       | 6537 |
| 10   | Nxzwellnews.net | 28591 | 40   | Cnr.cn        | 6411 |
| 11   | Ofcn          | 26528  | 41   | Gxnews.com.cn | 6329 |
| 12   | 360doc.com    | 21383  | 42   | Crl.cn        | 6314 |
| 13   | Wenming.cn   | 21328  | 43   | Iweihai.cn    | 6310 |
| 14   | IOjuska.com.cn | 20492 | 44   | Ce.cn         | 6236 |
| 15   | Xinhuai.net.com | 19412 | 45   | Newssc.org    | 6204 |
| 16   | ThePaper.cn  | 19212  | 46   | Sdnews.com.cn | 6147 |
| 17   | Dszww.com    | 18348  | 47   | Weixu.net     | 5985 |
| 18   | China.com.cn | 15846  | 48   | Jiemen.com    | 5896 |
| 19   | Jxnews.com.cn | 15354  | 49   | Hlwainet.cn   | 5728 |
| 20   | Mnw.cn       | 15291  | 50   | Iqilu.com     | 5642 |
| 21   | JRL.com      | 12621  | 51   | Cngold.org    | 5204 |
| 22   | Hexun.com    | 12562  | 52   | Huatu.com     | 5181 |
| 23   | EastMoney.com | 12120  | 53   | Ihsjy         | 5106 |
| 24   | Qianlong.com | 10711  | 54   | Huangqiu.com  | 5048 |
| 25   | SinaMobile   | 10483  | 55   | Zjol.com.cn   | 5039 |
| 26   | Enorth.com   | 9932   | 56   | Southcn.com   | 4984 |
| 27   | Beijing news | 9394   | 57   | Voc.com.cn    | 4969 |
| 28   | Fjsen.com    | 9008   | 58   | Cspa          | 4943 |
| 29   | Southmoney.com | 8910  | 59   | Shukong.net   | 4928 |
| 30   | Twoeggz.com  | 8737   | 60   | Yingshan.coo.cn | 4925 |

| Panel B: COVID-19 sentiment keywords |
|--------------------------------------|
| Rank | Keyword | Frequency | Rank | Keyword | Frequency |
| 1    | Infection | 417587   | 29   | human-to-human | 92914 |
| 2    | Bushmeat   | 354027   | 30   | Huang gang | 92886 |
| 3    | Prevention and control | 345617 | 31   | Goggles | 67961 |
| 4    | Facemask   | 334603   | 32   | Vulcan mountain | 58492 |
| 5    | Pandemic   | 296164   | 33   | Hospital | 57965 |
| 6    | Confirmed case | 286308 | 34     | Clove doctor | 54059 |
| 7    | A new type of pneumonia | 285677 | 35    | Kam Tin Hospital | 46686 |
| 8    | Suspected  | 283937   | 36   | Li Lanjuan | 41172 |
| 9    | 3M         | 277426   | 37   | The thor mountain | 38595 |
| 10   | Fight disease | 251470 | 38    | Travel control | 35675 |
| 11   | Wuhan      | 247817   | 39   | Extension of school | 34813 |
| 12   | novel coronavirus | 245263 | 40    | Public health emergency | 27430 |
| 13   | Wei Jian Wei | 215366 | 41    | The virus nucleic acid | 21241 |
| 14   | COVID-19   | 192912   | 42   | Gao Fu      | 21058 |
| 15   | SARS       | 154644   | 43   | Xiao tang shan | 20916 |
| 16   | Disease control | 149458 | 44    | Seafood Market | 19816 |
| 17   | affected area | 145563 | 45    | Shuang Huang Lian | 17967 |
| 18   | Lockdown   | 140646   | 46   | Stay at home | 17614 |
| 19   | heroes in harm’s way | 136255 | 47    | KN95      | 17421 |
| 20   | Zhong Nanshan | 134559 | 48    | Red Cross Society | 16750 |
| 21   | Health Crisis | 127271 | 49    | Union Hospital | 14381 |
| 22   | The WHO    | 125181   | 50   | Shanghai Institute of Medicine | 12616 |
| 23   | Protective suit | 121870 | 51    | Emergency supplies | 12389 |
| 24   | Donations  | 119888   | 52   | Viral RNA   | 12145 |
| 25   | N95        | 116529   | 53   | Hardcore    | 5213 |
| 26   | SARS       | 105127   | 54   | Tang Zhihong | 3999 |
| 27   | Support of Wuhan | 99004  | 55    | Hubei Red Cross Society | 1199 |
| 28   | Isolation  | 98366    | 56   | Pharmaceutical Research Institute | 1019 |
traditional investors’ sentiment using the Chinese daily market-based series constructed by Baker and Wurgler (2006, 2007) and Baker et al., (2012). Their composite sentiment index captures six factors, including the value-weighted average closing price on closed-end mutual funds, turnover, annual number and first-day returns of initial public offerings (IPOs), gross annual equity share divided by total issuance, and year-end market-to-book ratios. We discover that the traditional sentiment measure is not as stable or statistically significant or as predictive as our COVID-19 sentiment indices.

The remainder of the paper proceeds as follows. Section 2 describes the dataset and COVID-19 sentiment indices. Section 3 outlines the empirical methodology. Section 4 investigates how the stock market responds to the COVID-19 and BW sentiments and examines margin trading and short selling activities in response to sentiment. Section 5 concludes the paper and offers thoughts on the pandemic sentiment.

Panel C: The performance of text classification

The algorithms used to classify the text are naive Bayes, Support Vector Machine (SVM), and XGBoost. The SVM learning algorithm is better in the “R²,” “Precision,” “Recall,” and “F1-score,” where “Precision” means how many of the samples predicted to be positive are truly positive samples, “Recall” indicates the total number of samples that were predicted correctly, and “F1-score” indicates the harmonic mean of “Precision” and “Recall.”

| Algorithm | R²   | Precision | Recall | F1-score |
|-----------|------|-----------|--------|----------|
| SVM       | 0.963| 0.73      | 0.71   | 0.70     |
| Naive Bayes | 0.815| 0.72      | 0.65   | 0.61     |
| XGboost   | 0.984| 0.62      | 0.62   | 0.62     |

Fig. 1. Screenshots of our textual database. The top screenshot (a) is from the official news media with Chinese keywords such as “lockdown”, “COVID-19”, “Zhong Nanshan”, “SARS”, “WHO”, “Isolation” etc. The bottom screenshot (b) is from Sina Weibo’s microblogs.
2. Data and sample

2.1. COVID-19 sentiment

This section describes how sentiments change with the keywords discussed on COVID-19. Table 1, Panel A presents the top 60 official news media websites. Fig. 1 presents screenshots of the official news media and Sina Weibo content in our MySQL database. Based on the long-term accumulation of multi-sourced textual big data, 20 million text items are collected and stored from between December 17, 2019 to March 13, 2020. We delete duplicate universal resource locators and remove the stop Chinese words to clean up the dataset. Finally, 1,815,179 pieces of news and 4,519,293 microblogs from Sina Weibo are obtained to sum up 6,334,472 texts related to COVID-19. Clustering methods show that topics regarding public discussion of the pandemic continued changing over time. Applying dynamic word frequency analysis, the first 56 high-frequency vocabulary words are finally selected as text screening standards to clean the news media and Sina blog content (Table 1, Panel B).

We randomly select 10,000 news items and 10,000 blogs as the training sets and manually read the 20,000 items. The attitude reflected in the news or on blogs was judged by manual reading. All the texts were divided into the following tags: optimistic (+1), neutral (0), and pessimistic (−1). To ensure robustness, we perform the tests using Naive Bayes, SVM, and XGboost for the 20,000 training dataset and compare their performance on the test sets (Table 1, Panel C).

The training results of the three algorithms are relatively reliable, as the R-squared values of the SVM and XGboost algorithms are both over 0.95. Table 1, Panel C shows that SVM is better in its classification performance of “Precision,” “Recall,” and “F1-score,” where the results are all over 70%. Therefore, the SVM algorithm is selected to classify all the textual data.

Similar to Antweiler and Frank (2004), we develop our COVID-19 sentiment index using the following model.

\[
\text{sent}^\text{plat} = \ln \left( \frac{1 + N^\text{plat}_{\text{opt}}}{1 + N^\text{plat}_{\text{pes}}} \right)
\]

(1)

where “plat” is md (the official news media) or wb (the Sina Weibo), representing the amount of news or blogs reflecting an optimistic mood from the md or wb source, and \(N^\text{plat}\) represents the number of news or blog sources reflecting emotions. The constructed sentiment indices are shown in Fig. 2. Our COVID-19 sentiment indices are continuous variables. The higher the index, the more optimistic the mood.

Compared to Sina Weibo, the official news media is more optimistic. The Topics discussed on Sina Weibo are diverse and pessimistic, and negative emotions spread quickly. Moreover, the number of microblogs grew larger than previous times as people had to stay home for social distancing measures. This phenomenon is observable in Fig. 1. The COVID-19 sentiment variable of the Sina Weibo platform is significantly lower than that of the official news media. Furthermore, we find that most blogs were posted on the Internet after 3:00 pm when the Chinese stock market closes. The sentiment regarding COVID-19 can be observed on the second trading day.

To examine the differences between traditional BW sentiment and our COVID-19 sentiments, we measure the daily BW sentiment using six factors—the value-weighted average closing price on closed-end mutual funds, turnover, the annual number and first-day...
Table 2
Variable definitions and summary statistics.

| Panel A: Variable Definitions | Source | Definition |
|-------------------------------|--------|------------|
| **Key dependent variables**   |        |            |
| $R_i$                         | Wind Database | Daily returns of Chinese stock market listed firms |
| Turnover                      | Wind Database | Daily turnover rates of Chinese listed firms |
| $Net_{margin}$                | Wind Database | Daily net value amount of margin trading activity |
| $Net_{short}$                 | Wind Database | Daily net volume of short-selling activity |
| Turnover_margin               | Wind Database | Daily net turnover of margin trading activity |
| Turnover_short                | Wind Database | Daily net turnover of short-selling activity |
| **Key independent variables** |        |            |
| $Sent_{md}$                   | Official media | Daily COVID-19 sentiment developed from news media |
| $Sent_{wb}$                   | Sina Weibo | Daily COVID-19 sentiment developed from Sina Weibo |
| $Sent_{Baker}$                | Wind Database | Baker and Wurgler (2006, 2007) |
| $mdPos$                       | Official media | Daily proportion of optimistic news on the official media |
| $mdNeu$                       | Official media | Daily proportion of neutral news on the official media |
| $mdNeg$                       | Official media | Daily proportion of pessimistic news on the official media |
| $wbPos$                       | Sina Weibo | Daily proportion of optimistic news on Sina Weibo |
| $wbNeu$                       | Sina Weibo | Daily proportion of neutral news on Sina Weibo |
| $wbNeg$                       | Sina Weibo | Daily proportion of pessimistic news on Sina Weibo |
| **Main control variables**   |        |            |
| $Rm$                          | Wind Database | Daily value-weighted returns of the Chinese stock market |
| Gold                          | Wind Database | Daily returns of AU.SHF |
| Cash                          | Wind Database | Cash holdings and equivalents divided by total assets (2019Q4) |
| Leverage                      | Wind Database | Interest-bearing bonds divided by total assets (2019Q4) |
| Roa                           | Wind Database | Return on total assets (2019Q4) |
| $Mkt_{cap}$                   | Wind Database | Logarithm of the market value of firms (2019Q4) |
| $BM$                          | Wind Database | The book-to-market ratio of listed firms (2019Q4) |

Panel B: Summary Statistics

This table reports the summary statistics for the variables in our analysis.
It contains the P25, P50, P75 percentiles, means, standard deviations (Sd) and the number of observations.

| Variables | P25 | P50 | P75 | Mean | Sd | N  |
|-----------|-----|-----|-----|------|----|----|
| $R_i$     |    |     |     | 1.503 | 0.142 | 1.672 | 0.132 | 3.408 | 208481 |
| Turnover  |    |     |     | 0.919 | 1.948 | 4.243 | 3.425 | 4.067 | 208481 |
| $Sent_{md}$ |    |     |     | 0.440 | 0.986 | 0.853 | 1.047 | 0.346 | 210843 |
| $Sent_{wb}$ |    |     |     | 0.719 | 0.112 | 0.671 | 0.013 | 0.367 | 210843 |
| $Sent_{Baker}$ |    |     |     | 0.249 | 0.148 | 0.516 | 0.000 | 1.000 | 210843 |
| $mdPos$    |    |     |     | 0.383 | 0.541 | 0.630 | 0.519 | 0.130 | 210843 |
| $mdNeu$    |    |     |     | 0.168 | 0.240 | 0.431 | 0.300 | 0.133 | 210843 |
| $mdNeg$    |    |     |     | 0.154 | 0.163 | 0.199 | 0.181 | 0.044 | 210843 |
| $wbPos$    |    |     |     | 0.308 | 0.398 | 0.459 | 0.385 | 0.097 | 210843 |
| $wbNeu$    |    |     |     | 0.165 | 0.200 | 0.255 | 0.226 | 0.085 | 210843 |
| $wbNeg$    |    |     |     | 0.346 | 0.377 | 0.431 | 0.389 | 0.065 | 210843 |
| $Rm(value-weighted)$ |    |     |     | 0.355 | 0.354 | 0.989 | 0.0754 | 1.711 | 210843 |
| $Rm(Equal-Weighted)$ |    |     |     | 0.548 | 0.304 | 1.290 | 0.159 | 2.015 | 210843 |
| Gold       |    |     |     | 0.338 | 0.210 | 0.506 | 0.093 | 1.092 | 210843 |
| Cash       |    |     |     | 0.109 | 0.183 | 0.297 | 0.224 | 0.159 | 210558 |
| Leverage   |    |     |     | 0.022 | 0.129 | 0.263 | 0.168 | 0.292 | 210558 |
| Roa        |    |     |     | 1.220 | 3.830 | 7.442 | 2.733 | 14.427 | 210615 |
| $Mkt_{cap}$ |    |     |     | 21.786 | 22.352 | 23.155 | 22.557 | 1.069 | 210444 |
| $BM$       |    |     |     | 0.246 | 0.397 | 0.630 | 0.462 | 0.356 | 207993 |

Table 3
Correlation matrix.

| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|-----------|-----|-----|-----|-----|-----|-----|
| $R_i$     | 1   |     |     |     |     |     |
| $Rm$      | 0.452*** | 1   |     |     |     |     |
| Turnover  | 0.186*** | 0.028*** | 1   |     |     |     |
| $Sent_{md}$ | -0.095*** | -0.280*** | -0.022*** | 1   |     |     |
| Gold      | 0.126*** | 0.297*** | 0.064*** | -0.044*** | 1   |     |
| $Sent_{wb}$ | 0.036*** | 0.102*** | 0.102*** | -0.126*** | 0.581*** | 1   |

This table exhibits the correlations between the main variables, where $Sent_{md}$ and $Sent_{wb}$ represent the COVID-19 sentiments of media news and Sina Weibo, respectively. *** indicates a 1% significance level.
Table 4
Effects of COVID-19 and BW sentiments on the Chinese stock market.

| PANEL A: DEPENDENT VARIABLE: RETURNS |
|--------------------------------------|
| **Sent_md**<sub>1-t</sub> | 1.035*** | 0.990*** |
| (68.74) | (72.22) |
| **Sent_wb**<sub>1-t</sub> | 0.539*** |
| (29.62) |
| **Sent_Baker**<sub>1-t</sub> | 0.014 |
| | (−0.85) |
| **R**<sub>i,t-1</sub> | 0.059*** |
| (13.74) |
| **R**<sub>m,t-1</sub> | 0.127*** |
| (16.23) |
| **Gold**<sub>1-t</sub> | −0.024** |
| (−2.54) |
| **Cash** | −0.014 |
| (−0.27) |
| **Leverage** | −0.010 |
| (−0.28) |
| **Roa** | 0.003*** |
| (3.90) |
| **Mkt_cap** | 0.040*** |
| (5.98) |
| **BM** | −0.094*** |
| (−4.65) |
| **constant** | 0.805*** |
| (30.96) |
| **firm FE** | YES |
| **N** | 208481 |
| **adj. R**<sup>2</sup> | 0.039 |
| (1) | (2) | (3) | (4) | (5) | (6) |
| 0.096*** | 0.207*** |
| (10.76) | (12.41) |
| 0.207*** | 0.025** |
| (14.93) | (2.14) |
| 0.025** | 0.046*** |
| | (4.93) |
| **Turnover**<sub>i,t-1</sub> | 0.845*** |
| (221.61) |
| **Gold**<sub>1-t</sub> | 0.073*** |
| (10.98) |
| **Cash** | 0.001*** |
| (3.31) |
| **Roa** | −0.048*** |
| (−12.75) |
| **BM** | −0.095*** |
| (−29.43) |
| **constant** | 3.082*** |
| (109.63) |
| **firm FE** | YES |
| **N** | 208481 |
| **adj. R**<sup>2</sup> | 0.023 |
| (1) | (2) | (3) | (4) | (5) | (6) |
| | 0.024 |
| | (0.13) |
| | 0.013 |
| | 0.074 |
| | 208481 |
| | 208481 |
| 0.024 |
| (0.13) |
| | 207010 |
| | 207010 |
| | 0.741 |
| | 0.741 |
| | 0.739 |

This table shows the results of OLS regressions regarding the impact of COVID-19 sentiments on Chinese stock market returns and turnover rates. The dependent variables are returns in Panel A and turnover rates in Panel B. Sent_md<sub>1-t</sub> is the COVID-19 sentiment constructed on the official news media. Sent_wb<sub>1-t</sub> is the COVID-19 sentiment constructed on the Sina Weibo microblogs. Sent_Baker<sub>1-t</sub> is the BW sentiment. R<sub>i,t-1</sub> represents the returns of a firm listed on the Chinese stock market and R<sub>m,t-1</sub> is daily value-weighted returns among all Chinese listed firms’ returns. Gold<sub>1-t</sub> is the returns on AU.SHF. Firm control variables include Cash, Leverage, Roa, Mkt_cap, and BM. This table shows the predictive effect of COVID-19 sentiments on the trading activity of the Chinese stock market the next day. t-statistics based on robust standard errors appear in parentheses. *p < 0.1, ** p < 0.05, *** p < 0.01.
was 1.047. The standard deviations of COVID-19 on constructed by the official news media and December 17, 2019 to March 13, 2020 using individual fixed effects; 207,010 daily observations using firm-level characteristic control variables. 

or weekends, so the sentiments COVID-19 on market fundamentals. We also extract data on cash reserves and leverage from 2019Q4 reports. We determine that the companies are selected as the key dependent variables of the Chinese stock market, and value-weighted returns are selected to assess calculated as the logarithm of market equity.

control for div by total assets. These two firm-level control variables represent various financial strengths when COVID-19 spreads. We also average of cash reserves and leverage was down in the latest 2020Q1 reports.

sentiment based on Chinese stock market indicators, but our sentiments are based on COVID-19 discussions. Daily stock returns and turnover rates were retrieved for the period from December 17, 2019 to March 13, 2020 from the Wind database. We exclude financial companies from all A-share listed companies, as non-financial and financial firms are hardly com

Table 2 presents the definitions and sources of the variables.

This table shows the results of OLS regressions regarding the impact of changes in COVID-19 sentiments on Chinese stock market returns. The dependent variables are returns, Dsent_md_t is the first-order difference of the official media’s COVID-19 sentiment. Dsent wb_t is the changes in the Sina Weibo’s COVID-19 sentiment. Dsent Baker_t is changes in the BW sentiment. R_m,t-1 is the daily value-weighted return among all Chinese listed firms’ returns. Gold_t is returns on AU.SHF. Firm control variables include Cash, Leverage, Roa, Mkt_cap, and BM. This table shows the effect of changes in the COVID-19 sentiments on Chinese stock market returns. T-statistics based on robust standard errors appear in parentheses. *p < 0.1, ** p < 0.05, *** p < 0.01.

returns of IPOs, gross annual equity share divided by total issuance, and year-end market-to-book ratios. The BW index is a measure of sentiment based on Chinese stock market indicators, but our sentiments are based on COVID-19 discussions.

2.2. Stock returns, turnover rates, and control variables

Daily stock returns and turnover rates were retrieved for the period from December 17, 2019 to March 13, 2020 from the Wind database. We exclude financial companies from all A-share listed companies, as non-financial and financial firms are hardly comparable (Fama and French, 1992). Our main sample consists of 3,699 listed companies. Daily returns and turnover rates of listed companies are selected as the key dependent variables of the Chinese stock market, and value-weighted returns are selected to assess market returns. Table 2 presents the definitions and sources of the variables.

We control for the price of gold, which is a safe haven asset sought under conditions of increased risk, to capture the impact of COVID-19 on market fundamentals. We also extract data on cash reserves and leverage from 2019Q4 reports. We determine that the average of cash reserves and leverage was down in the latest 2020Q1 reports. Cash is calculated by dividing cash reserves by total assets. Firms hoard cash for precautionary motives (Almeida et al., 2004; Hadlock and Pierce, 2010). Leverage is equal to long-run debt divided by total assets. These two firm-level control variables represent various financial strengths when COVID-19 spreads. We also control for Roa, return on assets, which is computed as quarterly income before extraordinary items over total assets.

The daily COVID-19 sentiment is merged to firms’ daily stock returns. Stock market data are not available for the Chinese New Year or weekends, so the sentiments’ missing stock values were dropped. The final dataset consists of 208,481 daily observations from December 17, 2019 to March 13, 2020 using individual fixed effects; 207,010 daily observations using firm-level characteristic control variables.

The summary statistics of the above variables are reported in Panel B of Table 2, which demonstrates that the two sentiments constructed by the official news media and Sina microblogs differ significantly. Compared with the news media, discussion about COVID-19 on Sina Weibo (Sent wb) is more negative. The mean of Sent wb also had a negative value (−0.013), whereas that of Sent_md was 1.047. The standard deviations of Sent_md and Sent wb were 0.346 and 0.367, respectively.
variable is the daily returns of listed firms. In table,
regression model.

3. Methodology

This table exhibits the results of the robustness tests of predictive effect of COVID-19 sentiments on Chinese stock market returns. The dependent variable is the daily returns of listed firms. In table, \( mdPos, mdNeu, \) and \( mdNeg \) represent the proportion of optimistic, neutral, and pessimistic news, respectively, which are obtained by dividing the total number of news items reported by the official media. \( R_{\text{mt-}1} \) represents daily value-weighted returns of the Chinese stock market. \( Gold_{t-1} \) is the returns on AU.SHF. Firm-level characteristics control variables include \( Cash, Leverage, Roa, Mkt\_cap, \) and \( BM. \) T-statistics based on robust standard errors appear in parentheses. \( *p < 0.1, **p < 0.05, ***p < 0.01. \)

| Dependent Variable: Returns | (1)          | (2)          | (3)          | (4)          | (5)          | (6)          |
|-----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| \( mdPos_{t-1} \)           | 14.495***    | (91.17)      |              | 14.566***    | (94.57)      |              |
| \( mdNeu_{t-1} \)           | –10.142***   | (–63.35)     |              | –16.216***   | (–64.12)     |              |
| \( mdNeg_{t-1} \)           |              |              |              |              |              | –16.225***   |
| \( R_{\text{mt-}1} \)       | 0.040***     | (4.71)       | 0.038***     | (4.56)       | 0.039***     | (4.66)       |
| \( R_{\text{mt-}1} \)       | –0.064***    | (–5.43)      | 0.046***     | (3.96)       | 0.137***     | (11.64)      |
| \( Gold_{t-1} \)            | –0.061***    | (–6.79)      | –0.211***    | (–22.39)     | 0.170***     | (17.15)      |
| \( Cash \)                   | –0.015       |              | –0.015       |              | –0.014       |              |
| \( Leverage \)               | –0.010       |              | –0.010       |              | –0.010       |              |
| \( Roa \)                    | 0.003***     | (3.88)       | 0.000***     | (3.93)       | 0.003***     | (3.90)       |
| \( Mkt\_cap \)              | 0.040***     | (6.02)       | 0.040***     | (5.93)       | 0.040***     | (5.92)       |
| \( BM \)                     | –0.094***    | (–4.69)      | –0.094***    | (–4.63)      | –0.094***    | (–4.58)      |
| \( constant \)              | –5.541***    | (–80.13)     | 4.448***     | (66.89)      | 2.924***     | (65.37)      |
| \( adj. R^2 \)               | 0.091        | 0.056        | 0.056        | 0.095        | 0.059        | 0.058        |

For trading activity, we test the association between the listed firms’ turnover rates and COVID-19 sentiments using a similar regression model.

\[
\text{turnover}_{t,i} = \alpha_0 + \alpha_1 \cdot \text{sent}_{t-1}^{\text{plat}} + \beta_1 \cdot R_{t-1} + \beta_2 \cdot \text{Gold}_{t-1} + \beta_3 \cdot \text{X}_i + \gamma \cdot \text{TIME}_{t} + \epsilon_{t,i}
\]

(3)

Furthermore, to study the impact of sentiment changes on stock returns, the following model is designed.

\[
\text{R}_{t,i} = \alpha_0 + \alpha_1 \cdot \text{Dsent}_{t-1}^{\text{plat}} + \beta_1 \cdot R_{t-1} + \beta_2 \cdot \text{Gold}_{t-1} + \gamma \cdot \text{TIME}_{t} + \epsilon_{t,i}
\]

(4)

As opposed to Model (2), this model replaces the sentiment variables with the first-order difference of the sentiment indices. Therefore, when the variable \( \text{Dsent}_{t-1}^{\text{plat}} \) is greater than 0, it means that public sentiment about COVID-19 is causing a positive shift. This could have a significant impact on stock returns.

Similarly, we performed a robustness check using variables \( mdPos, mdNeu, mdNeg, wbPos, wbNeu, \) and \( wbNeg \), which are the proportions of messages to the three different sentiment tags over the total official news media (md) and Sina Weibo (wb) blogs to the sentiment indices instead. We also use equal-weighted returns among all listed firms as an alternative proxy to the market.
4. Empirical results

4.1. Main results and robustness tests

Table 3 shows the correlations between the key variables. Both the COVID-19 sentiment indices have strong positive correlations with stock market returns and turnover rates, as expected.

When COVID-19 is discussed positively and optimistically on one day, the listed firms have higher average returns the next trading day over the entire sample period (Table 4). As seen in Panel A of Table 4, Columns (1) and (4) present the fact that more optimistic discussions about COVID-19 in the official news media result in higher returns the next day. The results exhibited in the first four columns include firm fixed effects instead of the firm-level control variables. Compared to the sentiment from Sina Weibo in Columns (2) and (5), the official media’s effects were stronger than those of private microblogs. For example, the results in Column (4) imply that a one standard deviation higher exposure to media-generated COVID-19 sentiment was associated with 24.88% (i.e., 0.99*0.259) higher returns for the sentiment on the Sina Weibo sentiment. For Columns (3) and (6), the sentiment is not stable for one day predictions of stock turnover rates. However, for the daily BW index, the result is not significant during this extreme period.

Panel B of Table 4 analyzes stock turnover rates in response to the COVID-19 and BW sentiments. Columns (1) and (4) show that more optimistic discussion of COVID-19 in the official news media results in higher turnover rates the next day. When we add the control variables and time fixed effects, the results remain significant for both sentiments. The higher the sentiments on COVID-19, for example, “No more deaths reported,” the higher the stock turnover rates. Next, Columns (2) and (5) indicate that similar results are obtained using the Sina Weibo sentiment. For Columns (3) and (6), the BW sentiment is not stable for one day predictions of stock turnover rates.

Table 5 presents the fact that changes in COVID-19 and BW sentiments are positively associated with stock markets. Interestingly, changes in Sina Weibo’s sentiment has a somewhat greater effect on the stock market than those of the official news media and BW sentiments. The official news media is relatively traditional, objective, and credible in terms of public psychological cognition, while Sina Weibo is a popular self-media platform that has become popular in recent years. The shift in Sina Weibo’s sentiment is rapid and intense. As expected, compared with Columns (2) and (5), the impact of differences in Senta wb is greater on firm returns, as shown in Columns (1), (3), (5), and (6).

Finally, instead of sentiment indices, we consider the proportion of news in various emotions as a robustness test. Panel A of Table 6 presents the fact that changes in COVID-19 and BW sentiments are positively associated with stock markets.
Table 8
Margin trading and short-selling activities.

|               | (1)       | (2)       | (3)       | (4)       | (5)       | (6)       | (7)       | (8)       |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Net_margin    | 0.053***  | 0.049***  | 0.223***  | 0.215***  |           |           |           |           |
|               | (9.97)    | (8.78)    | (4.48)    | (4.26)    |           |           |           |           |
| Sent_md_t-1   | 0.015**   | 0.028***  |           |           | 0.156**   |           | 0.191***  |           |
|               | (2.00)    | (3.85)    |           |           | (2.18)    |           | (2.61)    |           |
| R_t-1         | 0.030***  | 0.030***  |           |           |           |           |           |           |
|               | (12.85)   | (12.84)   |           |           |           |           |           |           |
| R_m,t-1       | −0.012*** | −0.008**  |           |           |           |           |           |           |
|               | (−3.09)   | (−2.13)   |           |           |           |           |           |           |
| Cash          | −0.063**  | −0.063**  |           |           | −0.143    |           | −0.143    |           |
|               | (−2.45)   | (−2.45)   |           |           |           |           |           |           |
| Leverage      | −0.001    | −0.001    |           |           |           |           | 0.037     |           |
|               | (−0.14)   | (−0.14)   |           |           |           |           |           |           |
| Roa           | −0.000    | −0.000    |           |           | −0.001    | −0.001    |           |           |
|               | (−1.43)   | (−1.43)   |           |           | (−0.47)   | (−0.47)   |           |           |
| Mkt_cap       | 0.061***  | 0.061***  | 0.156**   | 0.191***  |           |           |           |           |
|               | (6.33)    | (6.33)    | (2.18)    | (2.61)    |           |           |           |           |
| BM            | −0.049**  | −0.049**  |           |           | 0.145     |           | 0.145     |           |
|               | (−4.83)   | (−4.83)   |           |           | (1.12)    |           | (1.12)    |           |
| constant      | 0.141***  | 0.108***  | −1.195**  | 0.001     | −0.050    | −0.401    | −0.403    |           |
|               | (12.32)   | (8.66)    | (5.72)    | (0.01)    | (−0.42)   | (−0.29)   | (−0.29)   |           |
| Time FE       | YES       |           |
| Firm FE       | YES       | NO        | NO        | YES       | NO        | NO        | YES       |           |
| N             | 210843    | 210843    | 207010    | 207010    | 210843    | 210843    | 207010    | 207010    |
| adj. R²       | 0.002     | 0.001     | 0.006     | 0.005     | 0.001     | 0.001     | 0.001     | 0.001     |

This table shows the regression results for the value of margin trades and the volume of short-selling. Both COVID-19 sentiments were able to predict the Yuan volume of margin trading and volume of short-selling activities. The results indicate that the net value of margin trading increased as historical individual returns, while the volume of short-selling decreased as past individual returns. Firm-level characteristics control variables include Cash, Leverage, Roa, Mkt_cap, and BM. T-statistics based on robust standard errors appear in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 9
Margin trading and short-selling turnover.

|               | (1)       | (2)       | (3)       | (4)       | (5)       | (6)       | (7)       | (8)       |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Turnover_margin | 6.071***  | 5.797***  | 0.098***  | 0.089***  |           |           |           |           |
|               | (22.10)   | (21.55)   | (6.99)    | (6.65)    |           |           |           |           |
| Turnover_short | 4.650***  | 5.728***  |           |           | 0.030*    |           |           |           |
|               | (17.50)   | (19.44)   |           |           | (1.82)    |           |           |           |
| R_t-1         | 0.689***  | 0.688***  |           |           | −0.016*** | −0.016*** |           |           |
|               | (17.10)   | (17.04)   |           |           | (−4.30)   | (−4.31)   |           |           |
| R_m,t-1       | 0.698***  | 1.278***  |           |           | 0.055***  | 0.062***  |           |           |
|               | (9.89)    | (15.59)   |           |           | (10.14)   | (10.94)   |           |           |
| Cash          | −0.125    | −0.127    | (−0.21)   | (−0.21)   | −0.526*** | −0.526*** |           |           |
|               | (−1.83)   | (−1.83)   | (−5.31)   | (−5.31)   | (−5.31)   | (−5.31)   |           |           |
| Leverage      | 0.127     | 0.126     |           |           | −0.037*   | −0.037*   |           |           |
|               | (0.50)    | (0.50)    |           |           | (−1.83)   | (−1.83)   |           |           |
| Roa           | 0.051***  | 0.051***  |           |           | 0.001***  | 0.001***  |           |           |
|               | (6.24)    | (6.22)    |           |           | (3.10)    | (3.10)    |           |           |
| Mkt_cap       | −0.627*** | −0.627*** |           |           | −0.056*** | −0.056*** |           |           |
|               | (−6.47)   | (−6.46)   |           |           | (−5.38)   | (−5.38)   |           |           |
| BM            | −2.616*** | −2.616*** |           |           | 0.013     | 0.013     |           |           |
|               | (−7.62)   | (−7.62)   |           |           | (0.50)    | (0.50)    |           |           |
| constant      | 1.611***  | 0.574**   | 17.308*** | 17.831*** | −0.224*** | −0.283*** | 1.160***  | 1.132***  |
|               | (6.18)    | (2.03)    | (8.07)    | (8.28)    | (−8.44)   | (−10.17)  | (4.99)    | (4.88)    |
| Time FE       | YES       |           |
| Firm FE       | YES       | NO        | NO        | YES       | NO        | NO        | YES       |           |
| N             | 210751    | 210751    | 206921    | 206921    | 210824    | 210824    | 206992    | 206992    |
| adj. R²       | 0.012     | 0.006     | 0.017     | 0.013     | 0.001     | 0.001     | 0.002     | 0.002     |

This table shows the regression results for margin trade and short-selling turnover. Both COVID-19 sentiments were able to predict the turnover. These results indicate that both turnover rates are increasing as the sentiment increases, but short-selling the stock is more constrained, as shown in Columns (5)–(8). Firm-level characteristics control variables include Cash, Leverage, Roa, Mkt_cap, and BM. T-statistics based on robust standard errors appear in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
shows that the three different sentiments all have significant predictive power. Columns (1) and (4) present that the higher proportion of optimistic news in total, the higher the returns the next trading day. However, stock market returns respond negatively to the proportions of both neutral and pessimistic news. This suggests that “No good news is bad” during the fearsome period while the pandemic was spreading, as indicated in Columns (2) and (5).

Panel B of Table 6 shows the robustness for the Sina Weibo’s sentiment. The effect is less than the sentiment of the official media news. Moreover, Columns (2) and (5) confirm that neutral blogs drove up the negativity.

Furthermore, we test robustness with the equally weighted returns among the listed banks (Table 7), where sentiment is still significant at the 1% level for prediction.

4.2. Margin trading and short selling activities

All columns in Table 8 show the regression of the value of margin trades and volume of short selling. Both the COVID-19 sentiments could predict the Yuan volume of margin trading and number volume of short selling activities. These are impacted by heterogeneous beliefs. Optimistic investors expect that the price will rise continuously, while investors with pessimistic valuation may think that the “infectious diseases” would continue to bring negative effects to firms. Since the current pandemic is a serious health crisis, which is different from the past financial crises. The spread of the virus forced governments to implement significant containment measures such as social distancing, lockdowns, and business shutdowns, which in turn resulted in adverse economic effects on firms and industries. Government implemented strict containment measures to halt the spread of the virus, resulting an increase in sentiment, decline in economic activities and severe loss of revenue and income for businesses. Pessimistic investors expect that firms would face significant revenue drops during the pandemics, so that they may establish short positions in the stocks of firms. Furthermore, the results show that the net value of margin trading increases as the historical individual returns (Columns (3) and (4)), while the number volume of short selling decreases as the past individual returns, as presented in Columns (7) and (8).

Table 9 shows the regression of the turnover of margin trades and short selling. Both the COVID-19 sentiments could predict the turnover rates. Official orders and containment measures are efficient to reduce the confirmed cases. The mood of investors change from panic to optimism so that both buying and selling become active. The results show that both the turnover rates are increasing as the sentiment increases, but selling the stock short is more constrained, as shown in Columns (5)–(8).

5. Conclusion

In this paper, we construct COVID-19 sentiment indices using 6.3 million textual data from the official news media and Sina Weibo (microblog). Over the period from December 17, 2019 to March 13, 2020, COVID-19 is widely reported and discussed. Our aim is to diagnose the impact of media sentiment regarding COVID-19 on the Chinese stock market.

Assistants are employed to carefully read 10,000 news and 10,000 blogs. The attitude reflected in the news or on blogs is judged vis-a-vis manual reading. To ensure robustness, we apply Naive Bayes, SVM, and XGboost processing algorithms for training. Finally, SVM is selected to process the entire dataset because of its superior performance and then measure the panic sentiment in response to COVID-19 as two continuous variables.

Considering the differences of opinion between the official media sources and Sina Weibo, we discover that the Chinese stock market returns and turnover rates were positively predicted by our sentiments with both platforms. We further find that stock markets reacted proactively to growth sentiments. However, the traditional BW sentiment could not predict Chinese stock market activity during the pandemic period. Moreover, margin trading and short-selling activities increased with the increase of sentiments. Specifically, the optimistic guidance of Sina Weibo further increased returns. Overall, these results illustrate how the effects of the health crisis were amplified through the official media sentiments.

Acknowledgement

This document is the results of the research project funded by the National Natural Science Foundation of China under Grant No. 71873070 and by the Nankai University, Grant No. ZB21BZ0308.

References

Almeida, H., Campello, M., Weisbach, M.S., 2004. The cash flow sensitivity of cash. J. Finance 59 (4), 1777–1804.
Antweiler, W., Frank, M.Z., 2004. Is all that talk just noise? The information content of internet stock message boards. J. Finance 59 (3), 1259–1294.
Ashraf, B.N., 2020. Stock Markets’ Reaction to COVID-19: Cases or Fatalities? Res. Int. Bus. Financ. 54, 54.
Baker, M., Wurgler, J., 2006. Investor sentiment and the cross section of stock returns. J. Finance 61 (4), 1645–1680.
Baker, M., Wurgler, J., 2007. Investor sentiment in the stock market. J. Econ. Perspect. 21 (2), 129–151.
Baker, M., Wurgler, J., Yuan, V., 2012. Global, local, and contagious investor sentiment. J. financ. econ. 104 (2), 272–287.
Baker, S.R., Bloom, N., Davis, S.J., Kost, K., Sammon, M., Viratyosin, T., 2020. The Unprecedented Stock Market Impact of COVID-19. NBER. Working Paper No. w26945.
Barber, B.M., Odean, T., 2000. Trading is hazardous to your wealth: the common stock investment performance of individual investors. J. Finance 55 (2), 773–806.
Barber, B.M., Odean, T., Zhu, N., 2009. Do Retail Trades Move Markets? Rev. Financ. Stud. 22 (1), 151–186.
Bushee, B.J., Core, J.E., Guay, W., Hamm, S.J.W., 2010. The Role of the Business Press as an Information Intermediary. J. Account. Res. 48 (1), 1–19.
Chan, W.S., 2003. Stock price reaction to news and No-News: drift and reversal after headlines. J. financ. econ. 70 (2), 223–260.
Chen, M.H., Jang, S.C., Kim, W.G., 2007. The impact of the SARS outbreak on Taiwanese hotel stock performance: an event-study approach. Int. J. Hosp. Manag. 26 (1), 0–212.
Dellavigna, S., Pollet, J.M., 2009. Investor inattention and Friday earnings announcements. J. Finance 64 (2), 709–749.
Edmans, A., Garcia, D., Norli, O., 2007. Sports sentiment and stock returns. J. Finance 62 (4), 1967–1998.
Fama, E.F., French, K.R., 1992. The cross-section of expected stock returns. J. Finance 47 (2), 427–465.
Fang, L., Peress, J., 2009. Media coverage and the cross-section of stock returns. J. Finance 64 (5), 2023–2052.
Fang, L.H., Peress, J., Zheng, L., 2009. Does Your Fund Manager Trade on the News? Media Coverage, Mutual Fund Trading and Performance. Social science Electronic Publishing, pp. 3441–3466.
Grullon, G., Kanatas, G., Weston, J., 2002. Advertising, breadth of ownership, and liquidity. Social Science Electron. J. Publishing 17 (2), 439–461.
Hadlock, C.J., Pierce, J.R., 2010. New evidence on measuring financial constraints: moving beyond the kz index. Rev. Financ. Stud. 23 (5), 1909–1940.
Hirshleifer, D., Shumway, T., 2003. Good day sunshine: stock returns and the weather. J. Finance 58 (3), 1009–1032.
Hirshleifer, D., Teoh, S.H., 2003. Limited attention, information disclosure, and financial reporting. J. Account. Econ. 36 (1–3), 337–386.
Kaplanski, G., Levy, H., 2010. Sentiment and stock prices: the case of aviation disasters. J. Financ. Econ. 95 (2), 174–201.
Loughran, T., McDonald, B., 2011. When is a liability not a liability? Textual analysis, dictionaries, and 10-ks. J. Finance 66 (1), 35–65.
Ramelli, S., Wagner, A.F., 2020. Feverish stock price reactions to COVID-19. Review of Corporate Finance Studies. Swiss Finance Institute Research Paper No. 20-12.
Shiller, R.J., 1981. Do Stock Prices Move Too Much to Be Justified by Subsequent Changes in Dividends? NBER. Working Paper No. w0456.
Siu, A., Wong, Y.C.R., 2004. Economic impact of SARS: the case of Hong Kong. Asian Econ. Pap. 3 (1), 62–83.
Tetlock, P.C., 2007. Giving content to investor sentiment: the role of media in the stock market. J. Finance 62 (3), 1139–1168.
Tetlock, P.C., 2010. Does Public Financial News Resolve Asymmetric Information? Rev. Financ. Stud. 23 (9), 3520–3557.
Tetlock, P.C., Saar-Tsechansky, M., Macskassy, S., 2008. More than words: quantifying language to measure firms’ fundamentals. J. Finance 63, 1437–1467.