A new generalization of Mittag-Leffler function via q-calculus

Raghib Nadeem, Talha Usman, Kottakkaran Sooppy Nisar and Thabet Abdeljawad

Abstract
The present paper deals with a new different generalization of the Mittag-Leffler function through q-calculus. We then investigate its remarkable properties like convergence, recurrence relation, integral representation, q-derivative formula, q-Laplace transformation, and image formula under q-derivative operator. In addition to this, we consider some specific cases to give the utilization of our main results.

MSC: 33C05; 33C45; 33C47; 33C90

Keywords: q-gamma functions; q-beta functions; Mittag-Leffler function

1 Introduction
The Swedish mathematician Gösta Mittag-Leffler discovered a special function in 1903 (see [12, 13]) defined as

$$E_\eta(u) = \sum_{m=0}^{\infty} \frac{u^m}{\Gamma(\eta m + 1)m!}, \quad (\eta, u \in \mathbb{C}; \Re(\eta) > 0),$$

(1.1)

where $\Gamma(\cdot)$ is a classical gamma function [17]. The special function defined in (1.1) is called the Mittag-Leffler function.

For the very first time, in 1905, Wiman [21] firstly proposed the generalization of the Mittag-Leffler function $E_{\eta, \kappa}(u)$ as follows:

$$E_{\eta, \kappa}(u) = \sum_{m=0}^{\infty} \frac{u^m}{\Gamma(\eta m + \kappa)m!}, \quad (\eta, \kappa \in \mathbb{C}; \Re(\eta) > 0, \Re(\kappa) > 0).$$

(1.2)

Subsequently, the generalized form of series (1.1) and (1.2) was studied by Prabhakar [16] in 1971:

$$E_{\eta, \kappa}^{\sigma}(u) = \sum_{m=0}^{\infty} \frac{u^m(\sigma)_m}{\Gamma(\eta m + \kappa m!)(\sigma)_m}, \quad (\eta, \kappa, \sigma \in \mathbb{C}; \Re(\eta) > 0, \Re(\kappa) > 0, \Re(\sigma) > 0),$$

(1.3)

where $(\sigma)_m = \frac{\Gamma(\sigma + m)}{\Gamma(\sigma)}$ denotes the Pochhammer symbol [17].
The Mittag-Leffler function plays a vital role in the solution of fractional order differential and integral equations. It has recently become a subject of rich interest in the field of fractional calculus and its applications. Nowadays some mathematicians consider the classical Mittag-Leffler function as the queen function in fractional calculus. An enormous amount of research in the theory of Mittag-Leffler functions has been published in the literature. For a detailed account of the various generalizations, properties, and applications of the Mittag-Leffler function, readers may refer to the literature (see [3, 8–10, 14, 15, 18, 20]).

The q-calculus is the q-extension of the ordinary calculus. The theory of q-calculus operators has been recently applied in the areas of ordinary fractional calculus, optimal control problem, in finding solutions of the q-difference and q-integral equations, and q-transform analysis.

In 2009, Mansoor [11] proposed a new form of q-analogue of the Mittag-Leffler function given as

$$e_{\eta,\kappa}(u; q) = \sum_{m=0}^{\infty} \frac{u^m}{\Gamma_q(\eta m + \kappa)}, \quad (|u| < (1 - q)^{-\eta}),$$

(1.4)

where $\eta > 0, \kappa \in \mathbb{C}$.

For other analogues of the Mittag-Leffler functions on the quantum time scale by means of the linear Caputo q-fractional initial value problems and of better imitation to the theory of time scales, we refer the reader to Definition 10 and Remark 11 in [1]. For the Kilbas–Saigo q-analogue of the Mittag-Leffler function, we refer to [2].

Recently, Sharma and Jain [19] introduced the following q-analogue of the generalized Mittag-Leffler function:

$$E_{\eta,\kappa}^\sigma(u; q) = \sum_{m=0}^{\infty} \frac{(q^\sigma; q)_m u^m}{(q; q)_m \Gamma_q(\eta m + \kappa)},$$

(1.5)

$$\left(\eta, \kappa, \sigma \in \mathbb{C}; \Re(\eta) > 0, \Re(\kappa) > 0, \Re(\sigma) > 0, |q| < 1 \right).$$

2 Prelude

In the theory of q-series (see [6]), for complex λ and $0 < q < 1$, the q-shifted factorial is defined as follows:

$$\lambda; q)_m = \begin{cases} 1; & m = 0, \\
(1 - \lambda)(1 - \lambda q) \cdots (1 - \lambda q^{m-1}); & m \in \mathbb{N}, \end{cases}$$

(2.1)

which is equivalent to

$$\lambda; q)_m = \frac{(\lambda; q)_{\infty}}{(\lambda q^m; q)_{\infty}}$$

(2.2)

and its extension naturally is

$$\lambda; q)_{\eta} = \frac{(\lambda; q)_{\infty}}{(\lambda q^{\eta}; q)_{\infty}}, \quad \eta \in \mathbb{C},$$

(2.3)

where the principal value of q^η is taken.
For \(s, t \in \mathbb{R} \), the \(q \)-analogue of the exponent \((s - t)^m\) is

\[
(s - t)^{(m)} = \begin{cases}
1; & m = 0, \\
\prod_{i=0}^{m-1} (s - tq^i); & m \neq 0
\end{cases}
\]

and connected by the following relationship:

\[
(s - t)^{(m)} = s^m(t/s;q)_m \quad (s \neq 0).
\]

Obviously, its expansion for \(t \in \mathbb{R} \) is as follows:

\[
(s - t)^{(m)} = \frac{s^m(t/s;q)_{\infty}}{(q^m t/s;q)_{\infty}}, \quad (s;q)_r = \frac{(s;q)_{\infty}}{(sq^r;q)_{\infty}}.
\]

Note that

\[
(s - t)^{(r)} = s^r(t/s;q)_r.
\]

The \(q \)-analogue of binomial coefficient is defined for \(s, t > 0 \) as

\[
\binom{s}{t}_q = \frac{(s)_q!}{(t)_q!(s-t)_q!} = \frac{(s;q)_r}{(t;q)_{r-t}(q;q)_{r-t}} = \binom{s}{t}_q.
\]

The definition can be generalized in the following way. For arbitrary complex \(r \), we have

\[
\binom{r}{m}_q = \frac{(q^{-r};q)_m(-1)^m(q^{-r})_{m-r}}{(q;q)_m} = \frac{\Gamma_q(r + 1)}{\Gamma_q(m + 1)\Gamma_q(r - m + 1)}.
\]

where \(\Gamma_q(u) \) is the \(q \)-gamma function.

The \(q \)-gamma and \(q \)-beta functions [6] are defined by

\[
\Gamma_q(u) = \frac{(q;u)_\infty}{(q^{1-u};q)_\infty},
\]

for \(u \in \mathbb{R} \setminus \{0, -1, -2, -3, \ldots\}; |q| < 1 \).

Clearly,

\[
\Gamma_q(u + 1) = [u]_q \Gamma_q(u)
\]

and

\[
B_q(\eta, \kappa) = \frac{\Gamma_q(\eta)\Gamma_q(\kappa)}{\Gamma_q(\eta + \kappa)} = \int_0^1 u^{\eta-1} (qu; q)_\infty \frac{d_u u}{(q^\kappa u;q)_\infty} = \int_0^1 u^{\eta-1} (qu; q)_{\kappa-1} \frac{d_q u}{(q^\kappa u;q)_\infty}.
\]

Also, the \(q \)-difference operator and \(q \)-integration of a function \(f(u) \) defined on a subset of \(\mathbb{C} \) are given by [6] respectively:

\[
D_q f(u) = \frac{f(u) - f(uq)}{u(1 - q)} \quad (u \neq 0, q \neq 1), (D_q f)(0) = \lim_{u \to 0} (D_q f)(u)
\]

(\(\Re(\eta), \Re(\kappa) > 0 \)).
and

\[\int_0^u f(t) d(t; q) = u(1 - q) \sum_{m=0}^{\infty} q^m f(uq^m). \] (2.12)

3 Generalized q-Mittag-Leffler function and its properties

In this section, we generalize definition (1.5) by introducing the following relation for \((qc, q)m\):

\[\frac{(qc; q)_m}{(q; q)_m} = \frac{B_q(\sigma, c - \sigma)}{B_q(\sigma, c - \sigma)}. \] (3.1)

Now, we define the generalization of Mittag-Leffler function (1.5) using the above relation as follows:

\[E^{(\sigma; \eta, \kappa)}_{(c; q)}(u; q) = \sum_{m=0}^{\infty} \frac{B_q(\sigma + m, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{u^m}{(q; q)_m \Gamma_q(\eta m + \kappa)}, \] (3.2)

where \(B_q(\cdot)\) is the \(q\)-analogue of beta function.

We enumerate the relations as particular cases of \(q\)-analogue of the generalized Mittag-Leffler function with other special functions as given below.

(i) On setting \(c = 1\) in (3.2), we obtain

\[E^{(\sigma; 1)}_{(1; q)}(u; q) = \sum_{m=0}^{\infty} \frac{(q^c; q)_m}{(q; q)_m} \frac{u^m}{\Gamma_q(\eta m + \kappa)} = E^{(\sigma; \eta, \kappa)}_{(1; q)}(u; q), \] (3.3)

which is given by equation (1.5).

(ii) Again, on setting \(\sigma = 1\) in (3.2), we obtain

\[E^{(1; \eta, \kappa)}_{(c; q)}(u; q) = \sum_{m=0}^{\infty} \frac{u^m}{\Gamma_q(\eta m + \kappa)} = e_{\eta, \kappa}(u; q), \] (3.4)

the function \(e_{\eta, \kappa}(u; q)\) can be termed as \(q\)-analogue of the Mittag-Leffler function defined in (1.4).

(iii) On setting \(\eta = \kappa = \sigma = 1\), in (3.2), we obtain

\[E^{(1; 1)}_{(1; q)}(u; q) = \sum_{m=0}^{\infty} \frac{(q^c; q)_m}{(q, q)_m} \frac{u^m}{(q; q)_m} = \varphi_0(q^c; -; q, u), \] (3.5)

where the function \(\varphi_0(q^c; -; q, u) = (1 - q)^{-c}\) can be termed as \(q\)-binomial function.

(iv) On setting \(c = c + \sigma\), in (3.2), we obtain \(q\)-analogue of the Mittag-Leffler function \(E^{(\sigma; \eta, \kappa)}_{(c; q)}(u; q)\) defined in (1.5).

4 Convergence of \(E^{(\sigma; \eta, \kappa)}_{(c; q)}(u; q)\)

Theorem 4.1 The \(q\)-analogue of the generalized Mittag-Leffler function defined by the summation formula (3.2) converges absolutely for \(|u| < (1 - q)^{-\eta}\) provided that \(0 < q < 1\), \(\eta > 0\), \(\Re(\sigma) > \Re(\eta)\), \(c, \sigma \in \mathbb{C}\).
Proof Writing the summation formula (3.2) as \(E^{(\sigma, c)}_{\eta, \kappa}(u; q) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \) and by applying the ratios formula, we find

\[
\lim_{m \to \infty} \frac{s_{m+1}}{s_m} = \lim_{m \to \infty} \frac{B_q(\sigma + m + 1, c - \sigma)}{B_q(\sigma + m, c - \sigma)} \frac{(q', q)_{m+1}}{(q', q)_m} \frac{(q, q)_m}{\Gamma_q(\eta m + \kappa)} = \frac{1}{\Gamma_q(\kappa)} + \sum_{m=1}^{\infty} \frac{B_q(\sigma + m, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(1 - q') (q' + m)}{(q, q)_m} \frac{u^m}{\Gamma_q(\eta m + \kappa)}.
\]

Since \((1 - q') = (1 - q'^{m+1}) - q' (1 - q')\), the above equation reduces to

\[
E^{(\sigma, c)}_{\eta, \kappa}(u; q) = \frac{1}{\Gamma_q(\kappa)} + \sum_{m=1}^{\infty} \frac{B_q(\sigma + m, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(1 - q'^{m+1}) (q'^{m+1})_m}{(q, q)_m} \frac{u^m}{\Gamma_q(\eta m + \kappa)} + \frac{q'}{\Gamma_q(\kappa)} \sum_{m=1}^{\infty} \frac{B_q(\sigma + m, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(1 - q^{m+1}) (q^{m+1})_m}{(q, q)_m} \frac{u^m}{\Gamma_q(\eta m + \kappa)}.
\]

On replacing \(m\) with \(m + 1\) in the second summation, it becomes

\[
E^{(\sigma, c)}_{\eta, \kappa}(u; q) = \frac{1}{\Gamma_q(\kappa)} + \sum_{m=1}^{\infty} \frac{B_q(\sigma + m + 1, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(q'^{m+1})_m}{(q, q)_m} \frac{u^{m+1}}{\Gamma_q(\eta m + \kappa)} + \frac{q'}{\Gamma_q(\kappa)} \sum_{m=1}^{\infty} \frac{B_q(\sigma + m, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(q^{m+1})_m}{(q, q)_m} \frac{u^m}{\Gamma_q(\eta m + \eta + \kappa)},
\]

which leads to the required result (5.1).

5 Recurrence relations
Theorem 5.1 If \(\eta, \kappa, \sigma \in \mathbb{C}, \Re(\eta) > 0, \Re(\kappa) > 0, \Re(\sigma) > 0, \) and \(\sigma \neq c,\) then

\[
E^{(\sigma, c + 1)}_{\eta, \kappa}(u; q) = E^{(\sigma, c + 1)}_{\eta, \kappa}(u; q) - u q^{\sigma} E^{(\sigma, c + 1)}_{\eta, \kappa}(u; q).
\]

Proof Using definition (3.2), we obtain

\[
E^{(\sigma, c)}_{\eta, \kappa}(u; q) = \sum_{m=0}^{\infty} \frac{B_q(\sigma + m, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(q', q)_m}{(q, q)_m} \frac{u^m}{\Gamma_q(\eta m + \kappa)}.
\]

6 Some elementary properties of the generalized \(q\)-Mittag-Leffler function
We begin with the following theorem, which shows the integral representation of the generalized \(q\)-Mittag-Leffler function.
Theorem 6.1 (Integral representation) For the generalized q-Mittag-Leffler function, we have

$$E_{\eta,\kappa}^{(\sigma,\nu)}(u; q) = \frac{1}{B_q(\sigma, c - \sigma)} \int_0^1 t^{\sigma-1} \frac{(tq; q)_\infty}{(tq^{-\sigma}; q)_\infty} E_{\eta,\kappa}^{(c)}(tu; q) \, dq \, t,$$

(6.1)

provided that $\eta, \kappa, \sigma \in \mathbb{C}$, $\Re(\eta) > 0$, $\Re(\kappa) > 0$, $\Re(\sigma) > 0$, and $\sigma \neq c$.

Proof By the definition of q-analogue of beta function, we can rewrite equation (3.2) as follows:

$$E_{\eta,\kappa}^{(\sigma,\nu)}(u; q) = \sum_{m=0}^{\infty} \left\{ \int_0^1 t^{\sigma+1+m} \frac{(tq; q)_\infty}{(tq^{-\sigma}; q)_\infty} \, dq \, t \right\} \frac{1}{B_q(\sigma, c - \sigma)} \times \frac{(q^\nu; q)_m}{\Gamma_q(\eta m + \kappa)} \frac{u^m}{(q; q)_m}$$

which leads to the required result (6.1). □

Theorem 6.2 For $\eta, \kappa, \sigma \in \mathbb{C}$, $\Re(\eta) > 0$, $\Re(\kappa) > 0$, $\Re(\sigma) > 0$, $c \neq \sigma$, then for any $m \in \mathbb{N}$, we have

$$D_q^m[u^{\sigma-1} E_{\eta,\kappa}^{(\sigma,\nu)}(\lambda u^n; q)] = u^{\sigma-m-1} E_{\eta,\kappa}^{(\sigma,\nu)}(\lambda u^n; q).$$

(6.2)

Proof By considering the function

$$f(u) = u^{\sigma-1} E_{\eta,\kappa}^{(\sigma,\nu)}(\lambda u^n; q).$$

In view of (2.11) and using definition (3.2), we obtain

$$D_q[f(u)] = \sum_{m=0}^{\infty} \frac{B_q(\sigma + m + 1, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(q^\nu; q)_m}{(q; q)_m} \times \frac{\lambda^m}{1-q} \frac{u^{\sigma+m+1}}{\Gamma_q(\eta m + \kappa + 1)}.$$

Since, according to the functional equation (2.9), the right-hand side of the above expression can be written as

$$\sum_{m=0}^{\infty} \frac{B_q(\sigma + m + 1, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(q^\nu; q)_m}{(q; q)_m} \frac{\lambda^m}{1-q} \frac{u^{\sigma+m+1}}{\Gamma_q(\eta m + \kappa + 1)} = u^{\sigma-2} E_{\eta,\kappa}^{(\sigma,\nu)}(\lambda u^n; q).$$

Conclusively, we obtain

$$D_q[f(u)] = u^{\sigma-2} E_{\eta,\kappa}^{(\sigma,\nu)}(\lambda u^n; q).$$

Iterating the above result $m - 1$ times, we obtain the required result (6.2). □
Theorem 6.3 Let $\xi, \zeta, \sigma, \kappa \in \mathbb{C}; \Re(\xi), \Re(\kappa), \Re(\sigma) > 0; \xi \neq 0, -1, -2, \ldots$, then

$$
\int_{0}^{1} u^{\xi-1} (1 - qu)^{(\zeta-1)} E_{\eta, \kappa}^{(\sigma; q)} (xu^\rho; q) \, dq \, du
$$

\begin{equation}
= \sum_{m=0}^{\infty} B_{q}(\sigma + m, c - \sigma)(q^\zeta; q)_m \frac{x^m \Gamma_q(\xi + \rho m) \Gamma_q(\xi)}{B_q(\sigma, c - \sigma)(q; q)_m} \frac{\Gamma_q(\eta m + \kappa) \Gamma_q(\xi)}{\Gamma_q(\eta m + \kappa + \rho m)}.
\end{equation}

(6.3)

In particular,

$$
\int_{0}^{1} u^{\xi-1} (1 - qu)^{(\zeta-1)} E_{\eta, \kappa}^{(\sigma; q)} (xu^\rho; q) \, dq \, du = \Gamma_q(\xi) E_{\eta, \kappa+\xi}(x; q).
$$

(6.4)

Proof By using definition (3.2), the left-hand side of equation (6.3) can be written as

$$
\int_{0}^{1} u^{\xi-1} (1 - qu)^{(\zeta-1)} \sum_{m=0}^{\infty} B_{q}(\sigma + m, c - \sigma)(q^\zeta; q)_m \frac{u^m x^m}{B_q(\sigma, c - \sigma)(q; q)_m} \frac{\Gamma_q(\eta m + \kappa) \Gamma_q(\xi)}{\Gamma_q(\eta m + \kappa + \rho m)} \, dq \, du.
$$

Interchanging the order of summation and integration and in view of equation (2.10), we obtain the required result (6.3).

In equation (6.3) replacing $\eta = \rho$, $\xi = \kappa$, then in view of equation (3.2), we can clearly obtain (6.4). \(\square\)

Theorem 6.4 (q-Laplace transform) The q-analogue of the generalized Laplace transform is defined as follows:

$$
qL_s \left[E_{\eta, \kappa}^{(\sigma; q)} (xu^\rho; q) \right] = \frac{1}{s} \sum_{m=0}^{\infty} B_{q}(\sigma + m, c - \sigma)(q^\zeta; q)_m \frac{\Gamma_q(1 + \rho m)}{B_q(\sigma, c - \sigma)(q; q)_m} \frac{u^m x^m}{\Gamma_q(\eta m + \kappa)} \left(\frac{1 - q}{s^\rho}\right)^m
$$

provided that $\kappa, \sigma, s \in \mathbb{C}; \Re(\beta), \Re(\kappa), \Re(s) > 0$.

Proof The q-Laplace transform of a suitable function is given by means of the following q-integral [7]:

$$
qL_s \{f(u)\} = \frac{1}{(1 - q)} \int_{0}^{s^{-1}} \frac{E_{q}^{mu}(u)}{E_{q}^{mu}(u)} \, dq \, du
$$

(6.6)

The q-extension of the exponential function [6] is given by

$$
E_{q}^{u} = \phi_0(-,-; q, -u) = \sum_{m=0}^{\infty} q^{(m)} u^m (q; q)_m = (-u; q)_\infty
$$

(6.7)

and

$$
e_{q}^{u} = \phi_0(0,-; q, -u) = \sum_{m=0}^{\infty} \frac{u^m (q; q)_m}{(q; q)_m} = \frac{1}{(u; q)_\infty}, \quad |u| < 1.
$$

(6.8)
By using the above q-exponential series and the q-integral equation (2.12), we can write equation (6.6) as

$$qL_s\{f(u)\} = \frac{(q; q)_\infty}{s} \sum_{j=0}^{\infty} \frac{q^{j+1}}{(q; q)_j} f(s^{-1}q^j). \quad (6.9)$$

Using definition (3.2) and the definition of q-Laplace transform, we obtain

$$qL_s\left[E_{\eta, \kappa}(\sigma; c)(u; q) \right] = \frac{(q; q)_\infty}{s} \sum_{j=0}^{\infty} \frac{q^j}{(q; q)_j} \times \sum_{m=0}^{\infty} \frac{B_q(\sigma + m, c - \sigma) (q^m; q)_m [u(s^{-1}q^j)^\sigma]^m}{B_q(\sigma, c - \sigma) (q; q)_m} \frac{u^{\eta m + \kappa}}{\Gamma_1(q^{\eta m + \kappa})}. \quad (7.1)$$

On interchanging the order of summation and writing the j series as ϕ_0, which can be summed up as $\frac{1}{(q; q)_\infty}$, and after some simplifications, we obtain the required result (6.5).

7 Kober-type fractional q-calculus operators

Agarwal [4] established Kober-type fractional q-integral operator in the following manner:

$$(I_q^{\nu, \mu} f)(u) = \frac{u^{\nu-\mu}}{\Gamma_q(u)} \int_0^u (u - t q)^{\nu-1} t^{\nu-\mu} f(t) \, dq, \quad (7.1)$$

where $\Re(\mu) > 0$. Also, Garg et al. [5] introduced Kober fractional q-derivative operator given by

$$(D_q^{\nu, \mu} f)(u) = \prod_{i=0}^{m-1} \left([v + i]_q + u q^{\nu+i} D_q I_q^{\nu, \mu} f(t) \right)(u), \quad (7.2)$$

where $m = [\Re(\mu)] + 1, m \in \mathbb{N}$.

The image formulas of the power function u^m under the above operators [5] are given as follows:

$$I_q^{\nu, \mu} \left\{ u^m \right\} = \frac{\Gamma_q(v + m + 1)}{\Gamma_q(v + \mu + m + 1)} u^m, \quad (7.3)$$

$$D_q^{\nu, \mu} \left\{ u^m \right\} = \frac{\Gamma_q(v + \mu + m + 1)}{\Gamma_q(v + m + 1)} u^m. \quad (7.4)$$

Theorem 7.1 The following assumption holds true:

$$I_q^{\nu, \mu} \left[E_{\eta, \kappa}^{(\sigma, \rho)}(u; q) \right] = \sum_{m=0}^{\infty} \frac{B_q(\sigma + m, c - \sigma) (q^m; q)_m}{B_q(\sigma, c - \sigma) (q; q)_m} \times \frac{\Gamma_q(v + m + 1)}{\Gamma_q(v + \mu + m + 1)} \frac{u^{\eta \rho + m + \kappa}}{\Gamma_1(q^{\eta \rho + m + \kappa})}, \quad (7.5)$$

particularly,

$$I_q^{\nu, \mu} E_{\eta, \kappa}^{(\nu+1, 1)}(u; q) = \frac{\Gamma_q(v + 1)}{\Gamma_q(v + \mu + 1)} E_{\eta, \kappa}^{(\nu+1, 1)}(u; q), \quad (7.6)$$

provided that if $\eta, c > 0, \kappa, \sigma, u \in \mathbb{C}; \Re(\kappa), \Re(\sigma) > 0$.

Proof The proof of (7.5) can easily be obtained by making use of definition (3.2) and result (7.3).

Now, on setting $\sigma = v + \mu$ in definition (3.2), we obtain result (7.6).

Theorem 7.2 The following assumption holds true:

$$D^\nu_{q}\{E_{\nu,k}(u,q)\} = \sum_{m=0}^{\infty} \frac{B_q(\sigma + m, c - \sigma)}{B_q(\sigma, c - \sigma)} \frac{(q^m u)^m}{(q^m u)^m} \frac{\Gamma_q(v + \mu + m + 1)}{\Gamma_q(v + \mu + m + 1)} \frac{\Gamma_q(\eta m + \kappa)}{\Gamma_q(\eta m + \kappa)},$$

(7.7)

particularly,

$$D^\nu_{q}\{E_{\nu,k}^{(v+1;1)}(u,q)\} = \frac{\Gamma_q(v + \mu + 1)}{\Gamma_q(v + 1)} E_{\nu,k}^{(v+\mu;1)}(u,q)$$

(7.8)

provided that if $\eta, c > 0, \kappa, \sigma, u \in \mathbb{C}; \Re(k), \Re(\sigma) > 0$.

Proof The proof of (7.7) can easily be obtained by making use of definition (3.2) and result (7.4). Similarly, on setting $\sigma = v + 1$ in definition (3.2), we obtain result (7.8).

Acknowledgements

None.

Funding

The author T. Abdeljawad would like to thank Prince Sultan University for funding this work through the research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All the authors contributed equally and they read and approved the final manuscript for publication.

Author details

1Department of Applied Mathematics, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, 202002 Aligarh, India. 2Department of Mathematics, School of Basic and Applied Sciences, Lingaya’s Vidyapeeth, 121002 Faridabad, India. 3Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, 11991 Wadi Aldawaiser, Kingdom of Saudi Arabia. 4Department of Mathematics and General Sciences, Prince Sultan University, 11588 Riyadh, Kingdom of Saudi Arabia. 5Department of Medical Research, China Medical University, 40402 Taichung, Taiwan. 6Department of Computer Science and Information Engineering, Asia University, 40402 Taichung, Taiwan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 September 2020 Accepted: 1 December 2020 Published online: 09 December 2020

References

1. Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4662–4688 (2011)
2. Abdeljawad, T., Benli, B., Baleanu, D.: A generalized q-Mittag-Leffler function by q-caputo fractional linear equations. Abstr. Appl. Anal. 2012, Article ID 546062 (2012). https://doi.org/10.1155/2012/546062
3. Agarwal, P., Chand, M., Certain, J.S.: Integrals involving generalized Mittag-Leffler functions. Proc. Natl. Acad. Sci. India Sect. A 85(3), 359–371 (2015)
4. Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Math. Proc. Camb. Philos. Soc. 66, 365–370 (1969)
5. Gang, M., Chanchlani, L.: Kober fractional q-derivative operators. Matematiche 66(1), 13–26 (2011)
6. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 96. Cambridge University Press, Cambridge (2004)
7. Hahn, W.: Zur Theorie der Heineschen Reihen, die 24 Integrale der hypergeometrischen \(q \)-Differenzenungleichung, das \(q \)-Analogon der Laplace Transformation. Math. Nachr. 2, 340–379 (1949)
8. Kilbas, A.A.: Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 8(2), 113–126 (2005)
9. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2014)
10. Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118(1–2), 283–299 (2000)
11. Mansour, Z.S.I.: Linear sequential \(q \)-difference equations of fractional order. Fract. Calc. Appl. Anal. 12(2), 159–178 (2009)
12. Mittag-Leffler, G.: Sur la nouvelle fonction \(E_{\eta}(u) \). C. R. Acad. Sci. Paris 137, 554–558 (1903)
13. Mittag-Leffler, G.: Une generalisation de l'integrale de Laplace–Abel. C. R. Acad. Sci. Ser. 137, 537–539 (1903)
14. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)
15. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)
16. Prabhakar, T.R.: A singular equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19(4), 7–15 (1971)
17. Rainville, E.D.: Special Functions. Macmillan Co., New York (1960). Reprinted by Chelsea, Bronx, New York, 1971
18. Saxena, R.K., Kalla, S.L., Saxena, R.: Multivariate analogue of generalized Mittag-Leffler function. Integral Transforms Spec. Funct. 22(7), 533–548 (2011)
19. Sharma, S.K., Jain, R.: On some properties of generalized \(q \)-Mittag Leffler function. Math. Æterna 4(6), 613–619 (2014)
20. Souayah, N., Camargo, R.F., de Oliveira, E.C., Vaz Jr., J.: Theorem for series in three parameter Mittag-Leffler function. Fract. Calc. Appl. Anal. 13(1), 9–20 (2010)
21. Wiman, A.: Über den fundamental satz in der theoret der funktionen \(E_{\eta}(u) \). Acta Math. 29, 191–201 (1905)