A PTAS for Capacitated Vehicle Routing on Trees

Claire Mathieu
CNRS Paris, France

Hang Zhou
École Polytechnique, France

ICALP 2022
Capacitated vehicle routing

Input:
- depot O
- n terminals
- tour capacity k

Minimize total length of tours

Fundamental problem in operations research
e.g., more than 4000 articles on vehicle routing on DBLP
Capacitated vehicle routing

well-studied problem

- general metric
- Euclidean space
- planar graph
- graph of bounded highway dimension
- graph of bounded treewidth

Polynomial time approximation scheme (PTAS) only for small capacity k.
Iterated tour partitioning [Haimovich and Rinnooy Kan]

1. Compute a traveling salesman tour

2. Partition the tour into segments of at most k terminals each

3. Connect the endpoints of each segment to the depot

Approximation ratio $\approx 1 + \alpha_{\text{TSP}} \geq 2$
Iterated tour partitioning [Haimovich and Rinnooy Kan]

1. Compute a traveling salesman tour

2. Partition the tour into segments of at most k terminals each

3. Connect the endpoints of each segment to the depot

Approximation ratio $\approx 1 + \alpha_{TSP} \geq 2$
1. Compute a traveling salesman tour

2. Partition the tour into segments of at most k terminals each

3. Connect the endpoints of each segment to the depot

Approximation ratio $\approx 1 + \alpha_{TSP} \geq 2$
Iterated tour partitioning [Haimovich and Rinnooy Kan]

1. Compute a traveling salesman tour

2. Partition the tour into segments of at most k terminals each

3. Connect the endpoints of each segment to the depot

Approximation ratio $\approx 1 + \alpha_{\text{TSP}} \geq 2$
Capacitated vehicle routing on trees

NP-hard [LLM 1991]

Approximation algorithms:
- 1.5-approximation [HK 1998]
- 1.351-approximation [AKK 2001]
- 1.333-approximation [Bec 2018]
- bicriteria PTAS [BP 2019]
- QPTAS [JS 2022]

Our Result

PTAS for Capacitated Vehicle Routing on Trees

*Note: First PTAS for general capacity k.***
Jayaprakash and Salavatipour [SODA 2022]:

“it is not clear if it (the QPTAS) can be turned into a PTAS without significant new ideas.”
Preprocessing: bounded distance property

Can assume: \[
\frac{\text{minimum distance}}{\text{maximum distance}} > \epsilon.
\]
Decomposing the tree into components

Inspiration: clusters decomposition [Becker and Paul]

Each component has:
- $\approx \frac{k}{\epsilon}$ terminals
- 1 root vertex
- ≤ 1 exit vertex

Structure Theorem

There is a near-optimal solution such that each subtour in a component visits either 0 or at least $\epsilon \cdot k$ terminals.
Definition: a subtour in a component is **small** if it visits more than 0 but less than $\epsilon \cdot k$ terminals.

Elimination of small subtours

1. Detach small subtours
2. Combine small subtours within components
3. Reassign combined subtours [Becker and Paul]

Difficulty: after reassignment some tours may exceed capacity
4. Remove some subtours

5. Include spine subtours

brown & green: traveling salesman tour covering the red terminals
However, the traveling salesman tour may exceed capacity.

Our approach: **iterated tour partitioning**

- Add connections to the depot (blue & orange)
Extra cost is negligible:

- **green**: properties of components
- **blue & orange**: bounded distance property

Structure Theorem

There is a near-optimal solution such that each subtour in a component visits either 0 or at least $\epsilon \cdot k$ terminals.
First attempt for the dynamic program

1. Computing solutions inside each component: polynomial time

2. Combining solutions from different components bottom-up: exponential time

Q: How to improve the running time?

A: Adaptive rounding to reduce the number of subtour demands.
Adaptive rounding [Jayaprakash and Salavatipour]

At each vertex:

1. **Sort** subtour demands

2. **Make groups** of equal cardinality

3. **Round up** to maximum demand in group
Theorem [Jayaprakash and Salavatipour]
There is a near-optimal solution in which the subtour demands can be rounded up to \textit{polylogarithmic} many values.

\iffalse(QPTAS)\fi

Our Theorem
There is a near-optimal solution in which the subtour demands can be rounded up to \textit{constant} many values.

\iffalse(PTAS)\fi

How do we bound the extra cost?
- Structure Theorem
- bounded distance property
- bounded height of components
Bounded height of components

Transform the tree of components so that:

each leaf-root path traverses a bounded number of components
Transform the tree of components so that:

each leaf-root path traverses a bounded number of components

Extra cost of the tour is negligible:

- Structure Theorem
- bounded distance property
Dynamic programming and adaptive rounding

Dynamic program order of computation:

1. each component
2. subtrees rooted at \(d\) and \(e\) by adaptive rounding
3. subtrees rooted at \(b\) and \(c\)
4. subtree rooted at \(a\) by adaptive rounding

Polynomial time to obtain a \((1 + \epsilon)\)-approximate solution
Summary

1. Preprocessing \implies Bounded distance
2. Decomposing the tree into components \implies Structure Theorem
3. Transforming the tree \implies Bounded height of components
4. Adaptive Rounding \implies Constant many subtour demands
5. Dynamic programming \implies $(1 + \epsilon)$-approximate solution

Our Result

PTAS for Capacitated Vehicle Routing on Trees

Thank you!