Laurson, L.; Miguel, M.C.; Alava, M.J.

Dynamical Correlations near Dislocation Jamming

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.105.015501

Published: 01/01/2010

Please cite the original version:
Laurson, L., Miguel, M. C., & Alava, M. J. (2010). Dynamical Correlations near Dislocation Jamming. Physical Review Letters, 105(1), 1-4. [015501]. https://doi.org/10.1103/PhysRevLett.105.015501
Dynamical Correlations near Dislocation Jamming

Lasse Laurson,1 M.-Carmen Miguel,2 and Mikko J. Alava3

1ISI Foundation, Viale S. Severo 65, 10133 Torino, Italy
2Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
3Department of Applied Physics, Aalto University, P.O. Box 14100, 00076 Aalto, Espoo, Finland

(Received 11 February 2010; published 28 June 2010)

Dislocation assemblies exhibit a jamming or yielding transition at a critical external shear stress value \(\sigma = \sigma_c \). Here we study the heterogeneous and collective nature of dislocation dynamics within a crystal plasticity model close to \(\sigma_c \), by considering the first-passage properties of the dislocation dynamics. As the transition is approached in the moving phase, the first-passage time distribution exhibits scaling, and a related peak dynamical susceptibility \(\chi_2 \) diverges as \(\chi_2 \sim (\sigma - \sigma_c)^{-\alpha} \), with \(\alpha = 1.1 \). We relate this scaling to an avalanche description of the dynamics. While the static structural correlations are found to be independent of the external stress, we identify a diverging dynamical correlation length \(\xi \), in the direction perpendicular to the dislocation glide plane.

DOI: 10.1103/PhysRevLett.105.015501 PACS numbers: 61.72.Lk, 68.35.Rh, 81.40.Lm

The mechanical behavior of crystalline solids subject to an external shear stress \(\sigma \) is controlled by a finite yield stress \(\sigma_c \). For stresses below it, only elastic or reversible deformation of the material takes place, while sustained plastic or irreversible deformation mediated by dislocation motion is observed for \(\sigma > \sigma_c \). The basic phenomenology of two states with different rheology is similar also for many amorphous materials ranging from foams to amorphous and granular media, even though the microscopic mechanisms responsible for a transition to “flow” are not yet well understood. The concept of jamming has been introduced to comprehend the observed phenomenology: In a finite region of the parameter space (spanned by control variables such as temperature, density, and an external force), due to a “cage effect,” or self-induced constraints on the motion of the system constituent particles, the phase space dynamics gets restricted, i.e., jammed [1–4]. For two-dimensional ensembles of crystal dislocations, a yielding transition at a finite \(\sigma_c \) has been established, even in the absence of any external sources of disorder [5]. The crucial mechanism here is the generation of effective disorder in the local stress field, due to constrained dislocation motion by the combined effect of the slip geometry and the long-range anisotropic dislocation-dislocation interactions. These are also manifest in the formation of metastable structures such as dislocation dipoles and walls.

On approaching the jamming transition from the moving phase, the dynamics generally becomes increasingly heterogeneous. A growing dynamical correlation length characterizing spatial and temporal correlations has been observed for granular systems [6,7], as well as on approaching the glass transition of molecular liquids and colloidal suspensions [8]. In this work, we consider dislocation jamming in a similar vein. Known features of the 2D discrete dislocation dynamics (DDD) model studied here are a relaxation of the strain rate or an Andrade law: Close to \(\sigma = \sigma_c \), it follows a power law \(\dot{\varepsilon} \sim t^{-\theta} \), \(\theta = 2/3 \) [5]. The steady state strain rate displays a nonlinear rheological behavior, \(\dot{\varepsilon} \sim (\sigma - \sigma_c)^\beta \), with \(\beta = 1.8 \) [5]. The model also reproduces the experimentally observed scale-free size distributions of avalanches of plastic deformation [9]. Similar DDD models are used also in many materials science applications [10]. The question is now whether one can establish the jamming or yielding transition as a second-order phase transition. This would imply the existence of a length scale, the correlation length, diverging at the transition point. The dislocation system nonequilibrium transition is particular, since the temperature is included only indirectly via the dislocation mobility and is thus irrelevant.

The avalanches exhibited by dislocation assemblies [9] are suitable candidates for fundamental “dynamical heterogeneities” or localized events. We define appropriate statistical quantities to characterize the dynamics via time-dependent first-passage probabilities, which measure the likelihood that a dislocation becomes liberated from the confining stress field over an observation scale. The first-passage distributions are found to display scaling close to the transition, and, analogously to other jamming systems, the peak value of a dynamical susceptibility and a dynamical correlation length grow on approach and diverge at \(\sigma = \sigma_c \). At the same time, static correlations describing the dislocation structures are found to be virtually independent of the external stress. We also connect the results to an avalanche description of the dynamics.

The DDD model represents a 2D cross section (xy plane) of a 3D single crystal with a single slip geometry [5,9,11]. The dislocations are straight parallel edge ones, with the dislocation lines along the z axis. The \(N \) pointlike dislocations glide along directions parallel to their Burgers vectors \(\vec{b}_n = s_n \vec{b}_1 \), with \(s_n = \pm 1 \) and \(\vec{b}_1 \), the unit vector in the
x direction. Equal numbers of dislocations with positive and negative Burgers vectors are considered. Dislocation climb is excluded for simplicity. The dislocations interact with each other through their anisotropic long-range stress fields, \(\sigma (\mathbf{r}) = D b x (x^2 - y^2)/(x^2 + y^2)^2 \), where \(D = \mu/2\pi(1-\nu) \), with \(\mu \) the shear modulus and \(\nu \) the material’s Poisson ratio. The dynamics is taken to be overdamped with a linear force-velocity relation, with the equations of motion

\[
\frac{\chi_d v_n}{b} = s_n b \left[\sum_{m \neq n} s_m \sigma_m (\mathbf{r}_{nm}) + \sigma \right],
\]

where \(v_n \) is the velocity of the \(n \)th dislocation, \(\chi_d \) is the dislocation mobility, \(s_n \) is the sign of the Burgers vector of the \(n \)th dislocation, and \(\sigma \) is the applied external shear stress. The long-range interaction forces are computed by imposing periodic boundary conditions in both \(x \) and \(y \) directions. The equations of motion are integrated numerically with an adaptive step size fifth-order Runge-Kutta algorithm in dimensionless units by measuring lengths in units of \(b \), times in units of \(1/(\chi_d Db) \), and stresses in units of \(D \). If the distance between two dislocations of opposite sign gets smaller than \(2b \), they are removed, a process reminiscent of the annihilations occurring in real crystals.

The simulations are started from a random initial configuration of \(N_0 \) dislocations within a square cell of linear size \(L \). The system is first let to relax with \(\sigma = 0 \), until it reaches a metastable dislocation arrangement. During this relaxation, a significant fraction gets annihilated. We take \(L = 200b \) and \(300b \), with \(N_0 = 1600 \) and 3600, respectively. After the relaxation, the external stress is switched on, and the evolution of the system is monitored. For \(\sigma > \sigma_c = 0.025 \) [12], the system eventually reaches a steady state, with the strain rate \(\dot{\epsilon} = -\sum_n b_n v_n \) fluctuating around a constant mean value. The steady state consists of \(N = 375 \) dislocations for \(L = 200b \) and \(N = 850 \) for \(L = 300b \) [13].

To characterize the heterogeneous dynamics we first consider the first-passage time \(\langle t_{fp} \rangle \) distribution of dislocations in the moving steady state. \(t_{fp} \) is defined as the time at which a dislocation first moves across a distance \(l \) from some initial position and thus becomes liberated from a confining stress field at this scale. Given the nonlinear stress dependence of the steady state strain rate [5], the mean first-passage time is expected to behave like \(\langle t_{fp} \rangle \sim l/\langle \dot{\epsilon} \rangle \sim l(\sigma - \sigma_c)^{-\beta} \). Assuming \(\delta t_{fp} \sim \langle t_{fp} \rangle \), one can write

\[
P(t_{fp}; l, \sigma) = \frac{1}{l(\sigma - \sigma_c)^{-\beta}} \mathcal{F} \left[\frac{l - l(\sigma - \sigma_c)^{-\beta}}{l(\sigma - \sigma_c)^{-\beta}} \right].
\]

Figure 1 shows a data collapse according to Eq. (2) with \(\beta = 1.8 \), in good agreement with the scaling of strain rate with the applied stress [5]. The scaling function \(\mathcal{F}(x) \) exhibits a maximum and a tail, which does not contribute much to the typical escape characteristics.

A cumulative version of \(P(t_{fp}) \) is the instantaneous self-overlap order parameter [7] \(Q(l, \tau) = 1/N \sum_{n=1}^{N} w_n \), where \(w_n = 1 \) if the displacement of dislocation \(n \) remains less than \(l \) across the time interval \(t \rightarrow t + \tau \) and equals 0 otherwise. The first two moments

\[
Q(l, \tau) = \langle Q(l, \tau) \rangle,
\]

\[
\chi_4(l, \tau) = N[\langle Q(l, \tau)^2 \rangle - \langle Q(l, \tau) \rangle^2] \quad (4)
\]

of \(Q(l, \tau) \) (calculated from sample-to-sample fluctuations) are then used to characterize the dynamics. As is customary for similar problems, we consider here only samples that are still active at the observation time [14]. By construction, \(Q(l, \tau) \) decays from one to zero as a function of \(\tau \), while the four-point dynamic susceptibility \(\chi_4(l, \tau) \) exhibits a peak at an intermediate \(\tau = \tau^*_l \) and vanishes for both early and late times; see Fig. 2. \(Q^* = Q(l, \tau^*_l) \approx 0.5 \) is

\[
\begin{align*}
\chi_4(l, \tau) = N & \left[\langle Q(l, \tau)^2 \rangle - \langle Q(l, \tau) \rangle^2 \right] \\
F(l, \tau) = & \int_0^\infty dt_{fp} P(t_{fp}; l, \sigma) \langle t_{fp} \rangle \chi_4(l, \tau^*_l)
\end{align*}
\]

FIG. 2 (color online). Top: The average self-overlap order parameter \(Q(l, \tau) \) for various values of \(\sigma \) as a function \(\tau \), for \(l = 1 \). Bottom: The corresponding four-point dynamic susceptibilities \(\chi_4(l, \tau) \). The inset shows evidence of a data collapse of \(\chi_4(l, \tau) \), obtained by rescaling the data with the scaling forms of \(\langle t_{fp} \rangle \) and \(\chi_4 \). with \(\alpha = 1.1 \) and \(\beta = 1.8 \).
nearly a constant. The peak value $\chi_4^*\equiv\chi_4(l,\tau)$ depends on
the proximity of the critical stress σ_c, and has been argued to
be related to the typical number of particles (here dislocations) in
a correlated fast-moving domain or heterogeneity [7].

In the simulations, we observe a growing χ_4^* as σ is
approached from above, with an apparent divergence at
$\sigma = \sigma_c = 0.025$; see Fig. 3. For external stresses $\sigma \leq 0.07$, the
stress dependence of χ_4^* can be characterized by a
power law $\chi_4^* \sim (\sigma - \sigma_c)^{-\alpha}$, with $\alpha = 1.1$. This result
does not exhibit any significant l dependence. The scaling
of χ_4^* can be connected to the avalanche dynamics close to
the transition by directly computing the variance of $Q(l,\tau)$ at τ_c^*.
Consider the distribution of avalanche sizes s with a
σ-dependent cutoff: $P(s) = s^{-\epsilon} f([s/(\sigma - \sigma_c)]^{-\gamma})$. By
assuming that the number of dislocations n swept to a
distance l during an avalanche obeys $\langle n \rangle \sim \langle s \rangle$ and using
the condition $\bar{M}(n) = N/2$ (arising from the observation that $Q^* = 0.5$) to estimate the number M of independent
avanches occurring up to the delay time τ_c^*, we
obtain $\chi_4^* = N(\delta Q^*)^2 \sim N(\bar{M}(n)/N)^2 \sim \langle n \rangle/2 \sim (\sigma - \sigma_c)^{1-\gamma}$. As $\langle n \rangle$ grows on approaching σ_c, the number
M of heterogeneities contributing to χ_4^* decreases: An
estimate for $L = 300b$ leads to $M = 19$ for $\sigma = 0.06$
and $M = 6$ for $\sigma = 0.037$. As the avalanche size exponent
is close to the mean field $\tau = 1.5$ [11], $\alpha = 1$ would
give $\gamma = 2$, again consistent with the mean-field-like
scenario [15]. Incorporating a frictional stress σ_F to model
the Peierls barrier (relevant for bcc metals), the same
results hold qualitatively true up to a σ_F comparable to
the yield stress σ_c. The yield stress for $\sigma_F > 0$ is simply
shifted such that $\hat{\sigma}_c = \sigma_c + \sigma_F$ [16].

To further explore the possibility of identifying a divergent
nonequilibrium correlation length, we consider the
conditional probability $g_d(\tilde{r}, \tilde{l}) = P[w(\tilde{r}, \tau_c^*) = \tilde{l}]W(\tilde{l}, \tau_c^*, 0) = w(l, \tau_c^*, 0) = 0]$
that a dislocation at a position \tilde{r} has
moved at least a distance l up to a delay time τ_c^*,
given that a dislocation at the origin has done so. $g_d(\tilde{r}, l)$
provides a measure of the spatial structure of the typical heterogeneities
contributing to χ_4^*. Figure 4(a) and 4(b) shows
examples of this dynamical correlation function for stress
values $\sigma = 0.06$ and $\sigma = 0.04$, respectively. We focus
here for simplicity on the case $l = 1$. Notice that closer
to jamming, correlations clearly extend further in the y
direction, while we could not identify a clear trend in the x
direction. At the same time, the static density-density
correlation function $g(\tilde{r})$, computed from snapshots of
the dislocation configurations in the steady state, does
not show any significant dependence on σ [17,18]. To
estimate the dynamical correlation length, we fitted an
exponential function $\exp(-y/\xi_y)$ to the $g_d(\tilde{r})$ data
averaged over a narrow strip along the y direction [19].
This leads to a divergent stress dependence of
$\xi_y \sim (\sigma - \sigma_c)^{-\nu_y}$, with $\nu_y \approx 1$; see Fig. 5. A similar analysis in the x
direction is less conclusive. Because of the tendency
of dislocations to form wall-like structures, the statistics
is significantly worse in the x direction, and no clear trend is
visible for the evolution of ξ_x with σ (inset in Fig. 5): ξ_x
appears to have a relatively large stress-independent value
around $\xi_x = 35b$ [20]. In 3D DDD simulations [21],
avanches have been observed to be characterized by a lamellar
shape, something that could be related to this large
value of ξ_x. Indications of similar anisotropic avalanches
have been observed in a continuum model of yielding [22].

![FIG. 3 (color online). The peak value χ_4^* of the dynamic
susceptibility as a function of the distance from the critical stress
for different system sizes L and length scale parameters l.
The solid line corresponds to a power law $\chi_4^* \sim (\sigma - \sigma_c)^{-\alpha}$, with $\alpha = 1.14$. The inset shows the same data as a function of σ with a linear scale.](image)

![FIG. 4 (color online). The dynamic and static correlation
functions ($L = 300b$ and $l = 1$). In (a) and (b) we show the
dynamic correlation functions $g_d(\tilde{r}, l = 1)$ for $\sigma = 0.06$ and
$\sigma = 0.04$, respectively. (c) and (d) show the static correlation
function $g(\tilde{r})$ for the same stress values [\sigma = 0.06 in (c) and
$\sigma = 0.04$ in (d)].](image)
that, contrary to many other systems where here. This indicates that the same scale-free property
independent of
accompanied by any large scale grain structures. The ob-
formed by their nearest neighbors, a process that is not
arising from the combination of anisotropic long-range
dislocation-dislocation interactions and restricted disloca-
motion of various metastable dislocation structures (di-
the dislocation system the dynamics stops due to the for-
granular media, there are also significant differences: In
also for plasticity of amorphous solids [23]. Notice that,
true nonequilibrium second-order phase transition. It
exponent values
In summary, we have shown that the dislocation jam-
transition is accompanied by a divergent dynamic
susceptibility and a divergent correlation length. This scal-
ing transition is accompanied by a divergent dynamic
015501 (2010)
week ending
2 JULY 2010
FIG. 5 (color online). Main figure: The dynamic correlation
length \(\xi_y\) in the \(y\) direction, exhibiting a power law divergence
close to \(\sigma_c\). Inset: The dynamic correlation length \(\xi_x\) in the \(x\) direction. The length scale parameter \(l = 1\) is used.
Notice also that the observed scaling of \(\xi_y\) is consistent
with the mean field cutoff scaling of the avalanche size
distribution, assuming that \(\xi_y\) measures the linear size of a
typical avalanche in the \(y\) direction.
In summary, we have shown that the dislocation jamping
transition is accompanied by a divergent dynamic
susceptibility and a divergent correlation length. This scal-
ing, which we relate to the avalanche dynamics of the
system, is purely dynamical in nature: The static correla-
tion function characterizing the dislocation structures does
not exhibit any significant dependence on \(\sigma\). The observed
exponent values \(\alpha = \nu_j = 1\) indicate that the heterogene-
ities are compact and characterized by a single diverging
correlation length in the \(y\) direction, thus clearly demon-
strating that the dislocation jamming transition is indeed a
true nonequilibrium second-order phase transition. It
would be interesting to test similar avalanche-based ideas
also for plasticity of amorphous solids [23]. Notice that,
despite similarities with other relevant systems such as
granular media, there are also significant differences: In
the dislocation system the dynamics stops due to the for-
formation of various metastable dislocation structures (di-
poles, walls, and more complicated multipolar structures)
 arising from the combination of anisotropic long-range
dislocation-dislocation interactions and restricted disloca-
tion motion along a single slip direction. On the other hand,
e.g., in granular systems, jamming takes place when grains
get stuck by short-range contact forces within cages
formed by their nearest neighbors, a process that is not
accompanied by any large scale grain structures. The ob-
servation that in the present case the results seem to be
independent of \(l\) close enough to the transition suggests
that, contrary to many other systems where \(l\) needs to be
tuned to a specific value related to an underlying “cage
size,” such a typical microscopic length does not exist
here. This indicates that the same scale-free property
would apply also for the force landscape experienced by
the dislocations, with the first-passage properties related to
the time it takes for the force landscape to deform on the
observation scale, due to the avalanche dynamics.
D. J. Durian and M. Zaiser are thanked for useful com-
ments. We acknowledge the support of the Academy of
Finland (via a postdoctoral grant and via the Center of
Excellence program) and the European Commissions
NEST Pathfinder program TRIOS under Contract
No. NEST-2005-PATH-COM-043386. M.-C. M. acknowl-
edges the support of the Ministerio de Educació y Ciencia
(Spain) under Grant No. FIS2007-66485-C02-02 and the
Generalitat de Catalunya and the Ministerio de Educació
y Ciencia (Programa I3).