Enrichment of Variations in KIR3DL1/S1 and KIR2DL2/L3 among H1N1/09 ICU Patients: An Exploratory Study

David La1, Chris Czarnecki1, Hani El-Gabalawy3, Anand Kumar4, Adrienne F. A. Meyers1,2, Nathalie Bastien1, J. Neil Simonsen1, Francis A. Plummer1,2, Ma Luo1,2*

1 National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada, 2 Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, 3 Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada, 4 Section of Critical Care Medicine, Health Sciences Centre and St. Boniface Hospital, University of Manitoba, Winnipeg, Canada

Abstract

Background: Infection by the pandemic influenza A (H1N1/09) virus resulted in significant pathology among specific ethnic groups worldwide. Natural Killer (NK) cells are important in early innate immune responses to viral infections. Activation of NK cells, in part, depend on killer-cell immunoglobulin-like receptors (KIR) and HLA class I ligand interactions. To study factors involved in NK cell dysfunction in overactive immune responses to H1N1 infection, KIR3DL1/S1 and KIR2DL2/L3 allotypes and cognate HLA ligands of H1N1/09 intensive-care unit (ICU) patients were determined.

Methodology and Findings: KIR3DL1/S1, KIR2DL2/L3, and HLA -B and -C of 51 H1N1/09 ICU patients and 105 H1N1-negative subjects (St. Theresa Point, Manitoba) were characterized. We detected an increase of 3DL1 ligand-negative pairs (3DL1/S1 Bw6/ Bw4), and a lack of 2DL1 HLA-C2 ligands, among ICU patients. They were also significantly enriched for 2DL2/L3 ligand-positive pairs (P < 0.001, P < 0.001, Odds Ratio: 6.3158, CI95%: 2.481–16.078). Relative to St. Theresa aboriginals (STh) and Venezuelan Amerindians (VA), allotypes enriched among aboriginal ICU patients (Ab) were: 2DL3 (Ab > VA, P < 0.024, P < 0.047, Odds Ratio: 2.563, CI95%: 1.109–5.923), 3DL1*0101 (Ab > VA, P < 0.001, P < 0.001), 3DL1*01502 (Ab > STh, P < 0.034, P < 0.268), and 3DL1*029 (Ab > STh, P < 0.039, P < 0.301). Aboriginal patients ligand-positive for 3DL1/S1 and 2DL1 had the lowest probabilities of death (RA = 28%), compared to patients that were 3DL1/S1 ligand-negative (RA = 52%) or carried 3DL1*029 (RA = 52%). Relative to Caucasoids (CA), two allotypes were enriched among non-aboriginal ICU patients (NAb): 3DL1*00401 (NAb > CA, P < 0.001, P < 0.001) and 3DL1*01502 (CA < NAb, P = 0.012, P = 0.156). Non-aboriginal patients with ligands for all three KIRs (3DL1/S1, 2DL2/L3, and 2DL1) had the lowest probabilities of death (RA = 36%), compared to subjects with 3DL1*01502 (RA = 48%) and/or 3DL1*00401 (RA = 58%).

Conclusions: Specific KIR3DL1/S1 allotypes, 3DL1/S1 and 2DL1 ligand-negative pairs, and 2DL2/L3 ligand-positive pairs were enriched among ICU patients. This suggests a possible association with NK cell dysfunction in patients with overactive immune responses to H1N1/09, leading to severe disease.

Introduction

The recent pandemic influenza A (H1N1/09) virus, relative to seasonal influenza, was observed to have higher transmissibility, albeit with lower mortality rates [1,2]. Although there were more than 622,482 reported cases worldwide as of November 2009 [3,4], overactive immune responses to H1N1/09 infections leading to significant pathology were reported to be highly prevalent among youths and young adults. Recently, the basis for this observation was suggested to be a lack of antigenic site recognition for the hemagglutinin structure among those age groups [5,6]. Nonetheless, those of specific ethnic backgrounds were also observed to be disproportionately affected, namely aboriginal and minority groups [7–11]. Although the factors behind the disproportionate impact of H1N1/09 remain to be fully elucidated, there is some evidence to suggest a role for natural killer (NK) cells in the control of influenza viral loads.

The importance of NK cells was suggested in a recent study, where NK cell frequencies were found to be significantly reduced in patients with severe responses to H1N1/09 infections, relative to mild cases and healthy controls [12]. On the other hand, CD8 effector T cells, regardless of patient disease status, were detected at normal levels. A study of NK cells in infected mice also showed that reduced NK cell activity in the earlier stages led to significantly increased viral growth [13].

NK cells function as the primary innate immune response against viruses and tumours and are capable of inducing stimulatory and regulatory effects on the adaptive immune response [14–16]. Their functions are determined by a broad array of activating and inhibitory receptors [17]. Killer-cell immunoglobulin-like receptors...
(KIR) are a large family of receptors comprised mainly of those with inhibitory capacities that recognize HLA Class I ligands [18,19], along with a few variants that possess activating functions. In the context of all known KIR variants in humans, the KIR3DL1/S1 subset is widespread and encode for both an inhibitory (3DL1) and activating (3DS1) receptor [19]. KIR3DL1 receptors recognize class I HLA-B proteins that carry a Bw4 motif [20], while HLA-B Bw4-001 proteins are the putative ligands of KIR3DS1 [21]. Analogous inhibitory KIR subsets, such as KIR2DL1 and KIR2DL2/L3, recognize HLA-C2 and HLA-C1 ligands, respectively [22,23]. Given the independent diversities of KIR and HLA, there likely exist combinations which can variably influence the efficacy of NK cell responses in the control of viral infections due to the presence of certain NK cell receptor/ligand pairs [24–26].

To date, there have been no published reports pertaining to KIR receptors and their ligands, in relation to NK cell dysfunction, in severe cases of H1N1/09 infections. Identification of potential associations of specific KIR allotypes and their ligands with severe responses to H1N1/09 infections may assist in the predetermination of populations most at risk via information on frequencies of molecular immune response allotypes. In this study, we compared H1N1/09 ICU patients with H1N1-negative subjects from St. Theresa Point and similar world populations.

Results

KIR3DL1/S1 allotype and KIR2DL2/L3 frequencies of H1N1/09 ICU patients

The KIR3DL1/S1 and KIR2DL2/L3 frequencies of ICU patients are summarized in Table 1. In total, fourteen 3DL1 and two 3DS1 allotypes were detected. 3DS1*01301 was the most prevalent (26.5%), followed by 3DL1*00101 (15.7%), 3DL1*01502 (15.7%), 3DL1*00401 (9.8%), and 3DL1*00501 (8.8%). Three allotypes, 3DS1*01301, 3DL1*00101, and *01502, were found to account for 70% of allotypes among ICU patients of aboriginal descent (Ab). Greater diversity was found among patients of non-aboriginal descent (NAb), as five allotypes accounted for a combined frequency of 77%: 3DS1*01301, 3DL1*00401, *00101, *01502, and *002.

KIR2DL2/L3 were detected in all patients, with a high number of patients carrying only 2DL3 allotypes (Ab, 70%; NAb, 54.8%). Patients with only 2DL2 were rare among both ICU subgroups (Ab, 5%; NAb, 3.2%). These results were consistent with another study on First Nations KIR gene profiles [28]. Differences in 2DL2/L3 distributions between Ab and St. Theresa Point (STh) subjects were not statistically significant.

Enrichment of KIR3DL1/S1 allotypes in H1N1/09 ICU patients of aboriginal descent

In order to further characterize the diversity and distribution of allotypes among Ab patients, we compared those with high frequencies to St. Theresa Point subjects. This was a viable group

ICU Patients, C
All (2n = 102)

KIR Allele 2n

3DL1*00101 16
3DL1*002 7
3DL1*00401 10
3DL1*00402 2
3DL1*00501 9
3DL1*007 4
3DL1*008 1
3DL1*009 1
3DL1*01501 0
3DL1*01502 16
3DL1*019 0
3DL1*020 1
3DL1*029 4
3DL1*051 1
3DS1*010 3
3DS1*01301 27
3DL1 72
3DS1 30
2DL2 22
2DL3 80

AF, allele frequency; Ab, Aboriginal; NAb, Non-aboriginal. STh, St. Theresa aboriginals; C, H1N1 confirmed cases.

1Odds Ratio:3.031(CI95%:1.199–7.663);
2Odds Ratio:4.556(CI95%:1.167–17.779).

doi:10.1371/journal.pone.0029200.t001
for comparison, as STh subjects were highly susceptible to severe responses during the first wave of the pandemic [29,30]. Because aboriginal ICU patient samples were derived from hospitals across the country, they were assumed to be more ethnically diverse than St. Theresa aboriginals. This was confirmed when their distributions of HLA-B and C were compared.

Nine different allotypes were detected between Ab and STh (Table 1). 3DS1*01301 and 3DL1*00101 were especially widespread among both groups. Similar to Ab patients, a lack of diversity was detected among the STh subjects, as three allotypes (3DS1*01301, 3DL1*00101, and *01501) accounted for a combined frequency of 86.7%.

Prior to correction for multiple comparisons, two allotypes were found to be significantly enriched among Ab patients: 3DL1*01502 (Ab>STh, \(P = 0.034 \), \(\text{OR} = 3.031 \), CI95%:1.199–7.663) and 3DL1*029 (Ab>STh, \(P = 0.039 \), \(\text{OR} = 3.031 \), CI95%:1.199–7.663) and 3DS1*01301 (Ab>STh, \(P = 0.039 \), CI95%:1.199–7.663) and 3DL1*029 (Ab>STh, \(P = 0.039 \), CI95%:1.199–7.663), respectively. Overall, compared to STh subjects, 3DL1 ligand-negative pairs were found to be proportionally higher in H1N1/09 ICU patients (ICU>STh, \(P = 0.009 \)); albeit not statistically different due to the small sample size. In contrast, 3DL1/S1-Bw4 pairs were common among the healthy STh subjects (81%). Of the highly prevalent 3DL1/S1 allotypes that were common among both groups, the frequencies of several ligand-negative pairs (3DL1*00101, 3DL1*01502, 3DS1*010, and 3DS1*01301) were much higher among the H1N1/09 patient groups.

Lack of KIR3DL1/S1 and HLA-B Bw4 ligand pairs in H1N1/09 ICU patients

In the absence of cognate ligands, the presence and function of KIR3DL1/S1 receptors are deemed negligible, due to their inability to elicit a relevant response within NK cells [18,20,21]. Subjects detected as KIR3DL1/S1 "ligand-negative" were considered to be ligand-negative. To determine the relative degree of ligand-negative pairs present among ICU patients, we considered to be ligand-negative. To determine the relative degree of ligand-negative pairs present among ICU patients, we determined the prevalence of 3DL1/S1 and their cognate ligands (Bw4*), among the ICU patients and St. Theresa subjects. Overall, compared to STh subjects, 3DL1 ligand-negative pairs were found to be proportionally higher in H1N1/09 ICU patients (ICU>STh, \(P = 0.009 \); (Table 2), albeit not statistically different due to the small sample size. In contrast, 3DL1/S1-Bw4* pairs were among the healthy STh subjects (81%). Of the highly prevalent 3DL1/S1 allotypes that were common among both groups, the frequencies of several ligand-negative pairs (3DL1*00101, 3DL1*01502, 3DS1*010, and 3DS1*01301) were much higher among the H1N1/09 patient groups.

Enrichment of KIR2DL2/L3 and HLA-C C1 ligand pairs among H1N1/09 ICU patients

In order to further determine the frequency of other functional KIR ligand-ligand relationships, the distribution of KIR2DL2/L3 and HLA-C1/C2 were determined. Subjects with 2DL2/L3* C1* C2/* were considered to be ligand-positive (Table 2). All NAb patients were ligand-positive. Compared to STh subjects, ligand-positive pairs were significantly higher in H1N1/09 ICU patients (ICU>STh, \(P = 0.001 \); (Table 2), Conversely, there was a significant lack of C2 allotypes (KIR2DL2 ligands) among NAb patients, as compared to both Ab and STh subjects (NAb (12.9%)<Ab (50.0%)<STh (68.1%); \(P_{\text{NAb vs Ab}} <0.001 \), \(P_{\text{NAb vs STh}}<0.001 \), \(P_{\text{Ab vs STh}}<0.001 \). (Table 2).

Comparison of KIR3DL1/S1 and KIR2DL2/L3 frequencies between H1N1/09 ICU subgroups and world populations

During the initial waves of the H1N1/09 pandemic, several populations were disproportionately affected by overactive immune responses to infections. We compared the frequencies of KIR3DL1/S1 allotypes enriched among the ICU subgroups (Ab and NAb) to that of analogous populations in the world; the Venezuelan Amerindians (VA) and Caucasoids (CA) of various countries [31]. The VA group consisted of three Amerindian tribes: the Yucpa, Bari, and Warao [32]. The CA group consisted mainly of six different populations: England, Georgia, Spain, Turkey, USA California, and USA European [33,34].

The Amerindian tribes were similarly found to lack diversity in 3DL1/S1 and their most prevalent allotypes were 3DS1*01301, 3DL1*00501, and *01502 (Table 1, 3). 3DL1*00101, common to both Ab and STh subjects, was absent in VA subjects (VA<Ab,

Table 2. Comparison of KIR3DL1/S1 allotypes in the presence or absence of their ligands within H1N1-confirmed ICU patients and St. Theresa aboriginals.

KIR Allele	ICU patients, Confirmed		
Ab	Nab	STh	
3DL1*000101			
Bw6*	5 (71.4%)	5 (62.5%)	37 (86.0%)
Bw6*, Bw4*	2 (28.6%)	3 (37.5%)	6 (14.0%)
3DL1*002			
Bw4*	0 (0%)	4 (66.7%)	1 (100%)
Bw6*, Bw4*	0 (0%)	2 (33.3%)	0 (0%)
3DL1*00501			
Bw4*	2 (66.7%)	4 (66.7%)	25 (69.4%)
Bw6*, Bw4*	1 (33.3%)	2 (33.3%)	11 (30.6%)
3DL1*01502			
Bw4*	4 (57.1%)	5 (71.4%)	15 (93.7%)
Bw6*, Bw4*	3 (42.9%)	2 (28.6%)	1 (6.3%)
3DS1*10			
Bw4*	1 (33.3%)	0 (0%)	5 (100%)
Bw6*, Bw4*	2 (66.7%)	0 (0%)	0 (0%)
3DS1*01301			
Bw4*	9 (90.0%)	9 (75.0%)	56 (77.8%)
Bw6*, Bw4*	1 (10.0%)	3 (25.0%)	16 (22.2%)
3DL1			
Bw4*	13 (72.2%)	18 (64.3%)	63 (79.8%)
Bw6*, Bw4*	5 (27.8%)	10 (35.7%)	16 (20.3%)
3DS1			
Bw4*	10 (76.9%)	9 (75.0%)	61 (79.2%)
Bw6*, Bw4*	3 (23.1%)	3 (25.0%)	16 (20.8%)
3DL1*			
Bw4*	31 (67.4%)	85 (81.0%)	85 (81.0%)
Bw6*, Bw4*	15 (32.6%)	20 (19.0%)	20 (19.0%)
2DL2			
C1*	4 (66.7%)	14 (100%)	14 (45.2%)
C1*, C2*	2 (33.3%)	0 (0%)	17 (54.8%)
2DL3			
C1*	13 (68.4%)	30 (100%)	57 (54.3%)
C1*, C2*	6 (31.6%)	0 (0%)	48 (45.7%)
2DL2/L3*			
C1*	45 (88.2%)	57 (54.3%)	57 (54.3%)
C1*, C2*	6 (11.8%)	48 (45.7%)	48 (45.7%)

Ab, Aboriginal; Nab, Non-aboriginal; STh, St. Theresa aboriginals. **\(P<0.001 \), \(\text{OR}<0.001 \). P<0.10. doi:10.1371/journal.pone.0029200.t002

Ab, Aboriginal; Nab, Non-aboriginal; STh, St. Theresa aboriginals. **\(P<0.001 \), \(\text{OR}<0.001 \). P<0.10. doi:10.1371/journal.pone.0029200.t002
KIR3DL1/S1 and KIR2DL2/L3 among H1N1/09 ICU Patients

Table 3. Comparison of KIR3DL1/S1 allele frequencies between ICU patients and analogous world populations.

KIR Allele	ICU Patients, C	Ethnic Groups	P (Pc)	
	Ab	NAb	VA	Ca
3DL1*001	0.200	0.129	0.000	0.162
3DL1*002	0.000	0.113	0.000	0.120
3DL1*00401	0.000	0.161	0.002	0.034
3DL1*00402	0.000	0.033	0.000	0.119
3DL1*005	0.075	0.097	0.128	0.145
3DL1*007	0.025	0.048	0.002	0.033
3DL1*008	0.000	0.016	0.005	0.051
3DL1*009	0.000	0.016	0.000	0.020
3DL1*101501	0.000	0.000	0.000	0.004
3DL1*101502	0.200	0.129	0.373	0.064
3DL1*019	0.000	0.000	0.000	0.001
3DL1*020	0.000	0.016	0.000	0.008
3DL1*029	0.100	0.000	0.065	0.001
3DS1*10301	0.300	0.242	0.407	0.333
3DL2	0.175	0.242	0.352	0.320
3DL3	0.825	0.758	0.648	0.680

Ab, Aboriginal; NAb, Non-aboriginal; VA, Venezuelan Amerindian; CA, Caucasian.

P<0.001, Pr<0.001; Odds Ratio: infinite. In Ab patients, KIR2DL2 and KIR2DL3 allotypes were found to be significantly reduced and enriched, respectively, in comparison to VA subjects (Ab>VA, P=0.024, Pr=0.047; Odds Ratio:2.563, CI95%:1.109–5.923).

World Caucasoids were highly diversified for 3DL1/S1 (Table 3). Eighty-seven percent of NAb ICU patients were Caucasoids and when compared to the CA group, 3DL1*00401 was significantly found to be enriched (CA<NAb, P<0.001, Pr<0.001; Odds Ratio:5.460, CI95%:2.717–10.970). Prior to correction for multiple comparisons, 3DL1*01502 was also markedly enriched in NAb (CA<NAb, P=0.012, Pr=0.156; Odds Ratio:2.163, CI95%:1.019–4.593). Differences in 2DL2/L3 between NAb patients and the CA group were not statistically significant.

APACHE II score comparison between H1N1/09 ICU subgroups and allotype/ligand pairs

APACHE II is a severity of disease classification system, commonly used for ICU patients, which calculates risk of hospital death on the basis of twelve routine physiologic measurements and their degree of divergence from typical thresholds [35]. Total APACHE II scores were calculated for all H1N1/09 ICU patients and probabilities of death (Rd) were determined (Table 4). Because KIR3DS1 has only been shown to bind to Bw4-80T ligands [26], 3DS1+/3DL1− Bw4-80T 80I− pairs were considered to be ligand-negative, when correlating allotype-ligand pairs with APACHE II scores.

Among Ab patients, the mean probability of death was 38% (Range: 8%–75%). Low death rates were consistently observed in subjects that were 3DL1/S1 Bw4+ ligand-positive and in combination with HLA-C2 (Rd = 28%). No notable differences were found based solely on the presence of 2DL2/L3 C1+/2 pairs.

Of the 3DL1 allotypes enriched in aboriginal patients, only 3DL1*029, which was rare in most ethnic groups with exception to the Yucpa Amerindians from Venezuela [31], was associated to a higher probability of death (Rd = 52%). Because of the variations in binding affinity of 2DL2 and 2DL3 to HLA-C1 [36], the disease severities between patients with these allotypes were compared. Differences in death rates were found between 2DL2+ (Rd = 21%) and 2DL3+2DL2 patients (Rd = 46%).

Non-aboriginal ICU patients had slightly higher probabilities of death with a mean of 40% (Range: 8%–80%). All NAb patients were 2DL2/L3 C1+ ligand-positive. Contrary to Ab patients, low probabilities of death (Rd = 39%) were found in 3DL1/S1 Bw6+ ligand-negative pairs. However, a comparable death rate (Rd = 36%) was also observed in 3DL1/S1 Bw4+ HLA-C2− subjects, which may indicate either a lack of effect by 3DL1/S1 on disease severity in non-aboriginals, or confounding due to an absence of 2DL2/L3 C1+ ligand-negative patients. Patients with ligands for all three KIRs
differences in disease severity between 2DL2 (Rd = 4.8%) and 2DL3 (Rd = 58%), respectively. There were no significant differences in disease severity between aboriginal and non-aboriginal patients, were correlated with high disease severity mediated NK cell dysfunction and lead to the development of severe responses to H1N1/09 in ICU patients. In summary, among ICU patients with severe responses to H1N1/09, 2DL1 and 2DL2/2DL3 distributions between all other groups were similar and were consistent with the report from a study on KIR profiles in First Nations and Caucasoids of European Descent [28].

Highly expressed allotypes of KIR3DL1 (3DL1*0001, *002, *01502), defined by their expression levels and/or inhibitory capacities [40–42], were common to both healthy St. Theresa and H1N1/09 ICU subjects. Yet among the ICU patients, these allotypes were frequently found ligand-negative. Overall, there was a larger proportion of 3DL1 ligand-negative ICU patients, relative to St. Theresa subjects. Although presumptive, it is highly possible then that, in conjunction with their cognate ligands, KIR3DL1 may play a partial role in preventing infection or inhibiting the development of severe responses.

Conversely, the significant enrichment of 2DL2/L3 ligand-positive pairs in ICU patients, in comparison to St. Theresa subjects, may imply that 2DL2/L3-ligand interactions contribute to greater disease severity. APACHE II scores (probability of hospital death) and available KIR/ligand data further suggested this possibility. Interestingly, correlations between disease severity and absence of 3DL1/S1 ligands and 2DL2 allotypes, were evident in aboriginal ICU patients only. The lack of clarity among non-aboriginal patients may be due to a lack of C2 ligands that was specifically observed in non-aboriginal ICU patients, and the expected high prevalence of their corresponding 2DL1 allotypes in both First Nations and Caucasoids of European descent [29,31]. Nonetheless, the small proportion of non-aboriginal patients with ligands for all three KIR subtypes had the least severe responses.

Taken together, severe responses to H1N1/09, among other factors, may be dependent on 3DL1/S1, 2DL1, and 2DL2 ligand interactions, at least in the case of aboriginal patients. On the other hand, non-aboriginal patients may be affected by specific 3DL1 allotypes and a lack of 2DL1 allotype-ligands interactions. In future studies, it would be interesting to determine the distribution of specific 2DL1 and 2DL2/L3 allotypes, in conjunction with their ligands, for a larger sample of H1N1/09 ICU patients. This would allow for further clarification and characterization of the function, or lack thereof, of NK cells in patients with severe responses.

Lastly, marked differences were found in the frequencies of two synonymous allotypes, 3DL1*00041 and 3DL1*00042, between non-aboriginal ICU patients and Caucasoids. Although highly speculative, the mutations could produce two different proteins, possibly via changes in mRNA stability or alternative splice sites [43,44]. Their phenotypic effects, if any, will need to be further investigated.

In summary, among ICU patients with severe responses to H1N1/09, 3DL1*00101, 3DL1*01502, and 3DL1*0029, were enriched in aboriginal ICU patients, while 3DL1*00041 and 3DL1*01502 were enriched in non-aboriginal ICU patients. Likewise, the ligand-negative pairs KIR3DL1/S1 Bw6/Bw4 and KIR2DL2 C2 C1*, and ligand-positive pair KIR2DL3 C1*, were also observed to be proportionally higher in ICU patients, relative to healthy St. Theresa controls. As such, the study shows that the enrichment of specific allotypes and a disproportional distribution of cognate HLA class I ligands are likely factors that mediated NK cell dysfunction and lead to the development of severe responses to H1N1/09 in ICU patients.

Discussion

The objective of this study was to identify KIR3DL1/S1 and KIR2DL2/L3 allotypes, and corresponding ligands, enriched in aboriginal and non-aboriginal H1N1/09 ICU patients from the initial 2009 H1N1 pandemic waves. The premise was that specific allotypes and/or ligand combinations could predispose patients towards severe responses to H1N1/09 infections. In a general population, only a small proportion of individuals will develop such overactive immune responses [37–39]. The enrichment of specific KIR allotypes was evident when viewed in comparison to an H1N1-negative control population, St. Theresa Point; a First Nations community that was severely impacted during the first and second wave of the pandemic [29,30]. Specific KIR allotype enrichment was also present, relative to Amerindians and world Caucasoids. Despite the small sample size of the ICU patients, several significant differences between groups were observed. As this is an exploratory study, further confirmation of the findings in future studies will be necessary.

In general, patients and populations of aboriginal descent were all found to lack 3DL1/S1 diversity, relative to world Caucasoids and ICU non-aboriginal patients. Although nine allotypes were detected, four allotypes accounted for the majority among all aboriginal subjects. This relatively low degree of diversity may nonetheless confer a greater susceptibility to infectious diseases, in general [11]. Additionally, 2DL3 allotypes were prevalent among ICU and St. Theresa subjects, in addition to a lack of 2DL2/2DL2 (homozygous) allele carriers, especially among St. Theresa subjects. Enrichment of 2DL3 was also detected in aboriginal patients, in comparison to Venezuelan Amerindians. However, the 2DL2/L3 distributions between all other groups were similar and were consistent with the report from a study on KIR profiles in First Nations and Caucasoids of European Descent [28].

Allele/Ligand	Aboriginal	Non-Aboriginal		
	n	Death Rate (%)	n	Death Rate (%)
2DL1/L3 C1het	8 (40%)	36	9 (29%)	40
2DL1/L3 C1hom	6 (30%)	43	22 (71%)	40
2DL1/L3 C2hom	6 (30%)	38	-	-
2DL2/L3 C1+	14 (70%)	39	9 (29%)	40
2DL2/L3 C1*	3 (15%)	21	12 (39%)	38
2DL2/L3 C1+	10 (50%)	46	19 (61%)	42
2DL1/S1 Bw4het	10 (50%)	29	15 (48%)	41
2DL1/S1 Bw4hom	4 (20%)	41	2 (7%)	48
2DL1/S1 Bw4het	6 (30%)	52	11 (36%)	39
2DL1/S1 Bw4+	14 (70%)	34	17 (55%)	43
Bw4+ and C1+	5 (25%)	35	-	-
Bw4+ and C1*	5 (25%)	52	10 (32%)	38
Bw4+ and C2+ C1+/+	9 (45%)	28	6 (19%)	36
Bw4+ and C2+ C1+/−	4 (20%)	51	1 (3%)	55
Bw4+ and C1+ C2+	5 (25%)	27	6 (19%)	36
3DL1*000101 Bw4+	5 (25%)	40	5 (16%)	37
3DL1*01502 Bw4+	4 (20%)	33	5 (16%)	48
3DL1*0029 Bw4+	3 (15%)	52	-	-
3DL1*000401 Bw4+	-	-	5 (16%)	58
3DS1*01301 Bw4-Bw6	9 (45%)	32	8 (26%)	48

In general, patients and populations of aboriginal descent were all found to lack 3DL1/S1 diversity, relative to world Caucasoids and ICU non-aboriginal patients. Although nine allotypes were
Materials and Methods

Study Population
The study used data from two separate cohorts with a total of 156 subjects (125 Aboriginal, 27 Caucasian, 2 South Asian, and 2 unknown/mix ethnicities). The first cohort consisted of 51 H1N1/09 intensive-care unit (ICU) patients with severe cases of infection. The second included 105 aboriginal H1N1-negative subjects from St. Theresa Point. Screening of the St. Theresa Point population was undertaken by analyzing DNA samples obtained in 2007–09, in the context of a study evaluating the prevalence of rheumatoid arthritis (RA) risk factors in the community. Individuals aged 18–55 were randomly selected from the community at large based on their willingness to participate in the RA study. All ICU patients were H1N1-confirmed by RT-PCR testing.

Ethics Statement. Permission to use the St. Theresa Point samples for the H1N1/09 study was specifically obtained from the Research Ethics Board of the University of Manitoba and from the leadership of the community through the Band Council. The study of ICU patients was approved using a full consent process through the Research Ethics Board of the University of Manitoba. The data were analyzed anonymously.

KIR3DL1/S1 and HLA Genotyping
Genomic DNA was isolated from whole blood samples that were stored in PAXgene Blood RNA tubes (PreAnalytix) using a QIAmp DNA Mini Kit and the EZ1 BioRobot (QIAgen Inc, Mississauga, Ontario, Canada).

PCR amplification. KIR3DL1/S1 exons 1–5, 7, and 9, KIR2DL2/L3 exon 4 [45], and HLA-B exons 2 and 3 [46] were amplified using genomic DNA with gene-specific primers (Table 5). PCR amplifications were confirmed by 1% agarose gel electrophoresis with ethidium bromide. PCR products were purified using Agencourt AMPure XP Kits (Beckman Coulter) and resuspended in Tris-EDTA buffer (pH 8.0).

Sequencing. PCR products were sequenced using BigDye™ Terminator Cycle Sequencing Kits (Applied Biosystems) V1.1. Purified PCR products were analyzed using an ABI PRISM 3130 Genetic Analyzer (Applied Biosystems) and genotyped using Codon Express™, a taxonomy-based sequencing analysis software, with the KIR and HLA databases from IMGT/HLA and IPD/KIR, respectively [47–49].

Statistical Analysis
Frequency analysis was performed using SPSS 13.0 for Windows. The statistical significance of difference between allele frequencies were calculated using Fisher’s Exact Test for small numbers via Microsoft Research and VassarStats [50,51]. Correct P values (Pc) were obtained using the Sidak method by calculating 1-(1-P)n, where n is the number of alleles analyzed in each group. A P value of less than 0.05 was considered significant.

Table 5. Amplification and sequencing primers for KIR3DL1/S1 typing.

Name	Specificity	Primer Sequence (5’ 3’)	Location	Annealing Temperature
L1S1-1FPCR	5’ Exon 1	CGAGGTGTCAATTCTAGTGAGAG	Intron 1	61 to 51°C
L1S1-1RPCR	3’ Exon 1	CATCTCAGCCCAATACTCCCAC	Intron 2	61 to 51°C
L1S1-1SEQ	Exon 1	CGAGGTGTCAATTCTAGTGAGAG	Intron 1	53.0°C
L1S1-1RSEQ	Exon 1	CTTAGCCCATATCCTTACCTCC	Intron 2	55.0°C
L1S1-2-3FPCR	5’ Exon 2	GAGATCGTGAAAACTGGGG	Intron 2	56.2°C
L1S1-2-3RPCR	3’ Exon 3	CGTCGCTCCTCCCACTACAC	Intron 3	56.2°C
L1S1-2SEQ	Exon 2	GAGGGTCCGAGAGTATTTAC	Intron 2	56.9°C
L1S1-2SEQ	Exon 2	GAGGGTCCCCTCCCACTAGTG	Intron 3	55.0°C
L1S1-3SEQ	Exon 3	GTGGAATGGGAAGATCTTCTGG	Intron 3	55.0°C
L1S1-3SEQ	Exon 3	CAGAAGCTCTGGATTACG	Intron 4	58.0°C
L1S1-4FPCR	5’ Exon 4	CATGCGAGCTGTCTCCTTC	Intron 4	57.6°C
L1S1-4RPCR	3’ Exon 4	ACACCGGACCTGATTACG	Intron 5	57.6°C
L1S1-4SEQ	Exon 4	GGGAGAGAGGAGAGAGACAG	Intron 4	53.0°C
L1S1-4SEQ	Exon 4	GAGACCTCAAGAAGGCAC	Intron 5	52.0°C
L1S1-5FPCR	5’ Exon 5	GACAGAGAGGAGAGAGG	Intron 5	64 to 54°C
L1S1-5RPCR	3’ Exon 5	CTGACTCGCGCTGCCACCTG	Intron 6	64 to 54°C
L1S1-5SEQ	Exon 5	GAGAGAGAGGAGAGAGATTAG	Intron 5	55.0°C
L1S1-5SEQ	Exon 5	CTCGACGCTCGCTCCAGTTTTC	Intron 6	55.0°C
L1S1-7-9FPCR*	5’ Exon 7	GCTATAACTGAGAAAGGAGG	Intron 7	64 to 54°C
L1S1-7-9RPCR*	3’ Exon 9	CATTGTGAACCAAGWAGGAGGAC	Intron 9	64 to 54°C
L1S1-7SEQ*	Exon 7	GGCTGTGGTCGCCAAAGAGAGYC	Intron 7	58.9°C
L1-9SEQ*	Exon 9	CACTCAGATTCTCCCTCCCTAC	Intron 9	54.4°C
L1-9SEQ*	Exon 9	GGCTGTGGTCGCCAAAGAGAGG	Intron 10	58.0°C

*Does not amplify 3DL1*059, 3DL1*060, 3DL1*061.
**3DL1 only.
*Touchdown PCR temperature range.
doi:10.1371/journal.pone.0029200.t005
Acknowledgments
We thank Nicole Marten (St. Boniface General Hospital and Grace Hospital) and Wendy Janz (Winnipeg Health Sciences Centre) for collecting and cataloguing samples from ICU patients across the country, and Nathalie Bastien and her staff in the Influenza and Respiratory Virus Section (National Microbiology Laboratory) for confirming H1N1-positive patients. In addition, we thank Shahfquat Siddiqi and his staff, and Don Ashley (National Microbiology Laboratory) for maintaining and preparing the database for all ICU patient samples.

Author Contributions
Conceived and designed the experiments: DL, CC, ML. Performed the experiments: NB, DL, CC. Analyzed the data: DL, CC, ML. Contributed reagents/materials/analysis tools: HEK, AM, NB. JNS, FAP, ML. Wrote the paper: DL, ML. Supervised: HEK AG, JNS FAP ML.

References
1. Presanis AM, Angelis DD, The New York City Swine Flu Investigation Team, Hsu A, Reed E, et al. (2009) The severity of pandemic H1N1 influenza in the United States, from April to July 2009: A Bayesian analysis. PLoS Med 6: e1000207.
2. Paine S, Mercer GN, Kelly PM, Bandaranayake D, Baker MG, et al. (2010) Transmission of 2009 pandemic influenza A (H1N1) in New Zealand: Effective reproduction number and influence of age, ethnicity and importations. Euro Surveill 15: 19591.
3. World Health Organization (WHO) (2009) Pandemic (H1N1) 2009 - update 76. Available: http://www.who.int/csr/don/2009_11_27/en/index.html. Accessed 2010 Oct 19.
4. World Health Organization (WHO) (2010) Pandemic (H1N1) 2009 - update 112. Available: http://www.who.int/csr/don/2010_08_06/en/index.html. Accessed 2010 Oct 19.
5. Turner SJ, Dolerty PC, Kelso A (2010) Q&A: H1N1 pandemic influenza—what’s new? BMJ 340: i817-7-0.130.
6. Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE, Jr., et al. (2010) Structural basis of receptor binding and by functional transfer. Immunity 3: 801–809.
7. Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE, Jr., et al. (2010) Structural basis of receptor binding and by functional transfer. Immunity 3: 801–809.
8. Lu R, Prinssen A, Turcotte SA, Drucenikowski JK, Heffernan RT, Davison JP (2010) Immunodominance and clinical features among patients hospitalized in Wisconsin with 2009 H1N1 influenza A virus infections, April to August 2009. WMJ 109: 201–209.
9. Chinnis AS, Truelove SA, Druckenmiller JK, Heffernan RT, Davison JP (2010) Immunodominance and clinical features among patients hospitalized in Wisconsin with 2009 H1N1 influenza A virus infections, April to August 2009. WMJ 109: 201–209.
10. Zarychanski R, Stuart TL, Kumar A, Dourouss E, Elliott I, et al. (2010) Correlates of severe disease in patients with 2009 pandemic H1N1 (H1N1) virus infection. CMJ 182: 257–264. 10.1503/cmaj.091884.
11. Liu B, Mori I, Hossain MJ, Hossain MJ, Takeda K, et al. (2004) Interleukin-18 synergizes with CD8+ T cell epitopes in the induction of systemic inflammation and lethal influenza virus infection. CMAJ 165: 1198–1206.
12. Wagtmann N, Borsellino G, Falco M, Ferrar GB, Stoeberling J (1995) Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 3: 801–809.
13. Kulkarni S, Martin MP, Carrington M (2008) The yin and yang of HLA and KIR expression. Semin Immunol 20: 543–552. 10.1016/j.seminimunol.2008.06.003.
14. Khakoo SI, Carrington M (2006) KIR and disease: A model system or system of models? Immunol Rev 214: 108–201. 10.1111/j.1600-065X.2006.00459.x.
15. Jamiel KM, Khakoo SI (2011) KIR/HLA interactions and pathogen immunity. J Biomed Biotechnol 2011: 298348. 10.1155/2011/298348.
16. Lutz CT, Smith KD, Greazel NA, Mace BE, Jensen DA, et al. (1994) Bw4- reactive and Bw6-reactive antibodies recognize multiple distinct HLA structures that partially overlap in the alpha-1 helix. J Immunol 153: 4099–4110.
47. Robinson J, Malik A, Parham P, Bodmer JG, Marsh SGE (2000) IMGT/HLA - a sequence database for the human major histocompatibility complex. Tissue Antigens 55: 280–287.

48. Robinson J, Waller MJ, Steehr P, Marsh SGE (2005) IPD - the immunopolymorphism database. Nucleic Acids Research 331: D523–D526.

49. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, et al. (2011) The IMGT/HLA database. Nucleic Acids Research 39: D1171–D1176.

50. Carlson JM, Heckerman D, Shani G (2009) Estimating false discovery rates for contingency tables (MSR-TR-2009-53). Available: http://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/FalseDiscoveryRate. Accessed 2010 Oct 19.

51. Lowry R (2011) VassarStats: Website for statistical computation. Available: http://faculty.vassar.edu/lowry/odds2x2.html. Accessed 2011 Jun 22.