Comparison of the design acceleration response spectra in Riau Province between SNI 1726:2019 and SNI 1726:2012 methods

Z A Jauhari1, Armada1, F Ananda1 and R A Fitrah2

1Civil Engineering Department, Bengkalis State Polytechnic, Sungai Alam, Bengkalis, Riau, Indonesia
2Civil Engineering Department, Dharma Andalas University, Sawahan, Padang, West Sumatera, Indonesia

Corresponding author: zevaljauhari@polbeng.ac.id

Abstract. The current SNI 1726:2012 code was developed to be the new Indonesian Seismic Design Code, SNI 1726:2019 based on the 2017 Indonesian Seismic Hazard Maps and the ASCE 7-16. It has a direct impact on the development of seismic resistance code for building design in Indonesia. The new 2019 risk targeted ground motion of spectral acceleration (S_a and S_1), and risk coefficients, for both short ($T = 0.2s$) and 1-second ($T = 1s$) periods, respectively have been published. The paper discusses the difference of the design response spectra for building design of seven districts of Riau Province, Indonesia, according to those standard codes. The analysis was performed for three different site soil classes, that is hard (SC), medium (SD), and soft soil (SE). The design response spectra comparison of SNI 1726:2019 and SNI 1726:2012 of even districts in Riau Province, namely Bangkinang, Bengkalis, Pekanbaru, Tembilahan, Pasir Pangaraiian, Dumai, Teluk Kuantan, and Siak were considered to represent the entire territory of Riau, from North to South that chosen as samplings. The purpose of this study is to evaluate the direct impact of the new code SNI 1726:2019 on design response spectra (DRS). Based on the analysis conducted at 8 cities/ districts, the improvement of DRS 2019 compared to DRS 2012 for site classes SC, SD and SE are less than 0.1g except for all site class at Tembilahan and Teluk Kuantan.

1. Introduction

The Ministry of Public Works and Public Housing formed the 2017 Indonesian Earthquake Map Renewal Team and the Preparation of the National Earthquake Study Centre in 2016. One of his tasks is to update the 2010 Indonesian Earthquake Hazard Map. And in 2017 the team has compiled a "2017 Earthquake and Hazard Map of Indonesia" [1]. With the updating of the 2017 Indonesian Earthquake Hazard Map referring to the current conditions, it is necessary to study the differences in the response spectrum between the SNI 2012 Earthquake Map and the 2017 Earthquake Map in the province. Earthquake resistant structure planning must take into account the effect of an earthquake that has occurred on the structure to be planned [2]. This is to anticipate if a similar earthquake occurs, the planned structure will not experience structural damage. The procedure for planning earthquake resistance for building structures and buildings, namely SNI 1726:2019 is a revision of SNI 1726:2012 [3, 4]. The construction industry always welcomes the revised Indonesian Seismic Design Code with...
great enthusiasm. They always want to know immediately, how much the load difference and the changes in the provisions relating to the design and construction. Commercial building developers may immediately take a decision to speed up the project design and construction process if it turns out that the seismic design load rises and/or the requirements are more stringent [5].

One of the important pieces of information needed for building resistance design is the design acceleration response spectrum at the location of building. Peak Ground Acceleration (PGA) or accelerated bedrock acceleration and response spectrum acceleration for short periods (0.2 seconds) and 1 second periods with a probability of 10% exceeding in 50 years (500 year return period), and maybe 2% exceeding in 50 years (2500 year return period) [6]. The source of seismicity used as a Probabilistic Seismic Hazard Analysis input was 81 faults. In SNI 1726:2012, the earthquake plans are set with a probability of exceeding the magnitude of the life span of a 50-year building structure of 2% or an earthquake with a return period of 2500 years. The bedrock acceleration of SNI 2012 can also be done online which is posted on the page http://puskim.pu.go.id/Aplikasi/desain_spektra_indonesia_2011/. In SNI 1726:2019, the PGA or acceleration of bedrock and acceleration of the response spectrum for short periods (0.2 seconds) and 1 second periods with a probability of 7% exceeded in 75 years (1000 return period years), and a 2% probability is exceeded in 50 years (2500 year return period) [7, 8]. The source of seismicity as a Probabilistic Seismic Hazard Analysis (PSHA) input was 251 faults. This paper is intended as a "review" which shows the difference of the design response spectra according to SNI 1726:2019 and SNI 1726:2012 of 8 major cities/ districts which are considered to represent the entire territory of Riau Province, Indonesia, based on verified data provided in condition of the design response spectra of the site class SC (hard soil), SD (medium soil), and SE (soft soil).

2. Spectra response of acceleration refer to SNI 03-1726-2019

The response spectrum is a fundamental tool in earthquake engineering research and practice, because it shows the maximum dynamic response of single degree of freedom (SDOF) system subjected to specified earthquake ground motion and its time period and damping ratio [9]. The new Indonesian seismic code introduces a long transition period (T_L) for developing the new DRS 2019. The MCE$_R$ (risk-targeted maximum considered earthquake) maps were developed with a grid interval of 0.1° and consist of approximately 96,000 data for each spectral response acceleration at short periods, S_r and for spectral response acceleration at a 1-second period, S_I. This MCE$_R$ map will be refined and posted on the PU PUSKIM (Center for Research and Development on Housing of the Ministry of Public Works) website to be freely used by public, namely http://rsapuskim2019.litbang.pu.go.id. By using the weighted average of soil parameters for a total depth of not more than 30 m, the definition of Hard Soil, Medium Soil and Soft Soil is shown in Table 1. Values of short-period site coefficient (F_a), long period site coefficient (F_v), and PGA site coefficient at proposed SNI-1726-2019 have been updated with partial reference to ASCE 7-16 [10, 11]. The updated values of F_a, F_v, and F_{PGA} coefficient are shown in Table 2 to 4. In principle, the spectral response acceleration values, S_r and S_I, are obtained from the MCE$_R$ maps for 0.2 seconds periods (Figure 1) and a 1-second period (Figure 2), which are then multiplied by the seismic amplification factors F_a and F_v producing the spectral response acceleration parameters corresponding to the soil site class, namely S_{MS} and S_{M1}, as illustrated in Equations 1 and 2. The value of the design spectral response acceleration at short periods (S_{DS}), and the value at a 1-second period (S_{DI}) illustrated in Equations 3 and 4.

$$S_{MS} = F_a \cdot S_r$$
$$S_{M1} = F_v \cdot S_r$$
$$S_{DS} = \frac{2}{3} S_{MS}$$
$$S_{DI} = \frac{2}{3} S_{M1}$$

The DRS for building resistance design is developed using two S_{DS} and S_{DI} values which represent short and long period design spectra acceleration respectively. For periods smaller than T_{05}, the spectral response acceleration S_r is calculated using Equation 5.

$$S_r = \frac{1}{2} F_a \cdot S_{DS}$$

$$S_I = \frac{2}{3} F_v \cdot S_{DI}$$
\[S_a = S_{DS} \left(0.4 + 0.6 \frac{T}{T_0} \right) \] \hspace{1cm} (5)

For periods greater than or equal to \(T_0 \) and smaller or equal to \(T_S \), the \(S_a \) is equal to \(S_{DS} \). For periods greater than the \(T_S \), the \(S_a \) is taken based on Equation 6.

\[S_a = \frac{S_{D1}}{T} \] \hspace{1cm} (6)

For periods greater than \(T_L \), the \(S_a \) is taken based on Equation 7.

\[S_a = \frac{S_{D1}T_L}{T^2} \] \hspace{1cm} (7)

\(S_{DS} \) is an acceleration response spectra parameter in short period, \(S_{D1} \) is an acceleration response spectra parameter at a period of 1 second, \(T \) is a fundamental vibration period of structure, and

\[T_0 = 0.2 \frac{S_{D1}}{S_{DS}} \] \hspace{1cm} (8)

\[T_S = \frac{S_{D1}}{S_{DS}} \] \hspace{1cm} (9)

Design spectra in SNI 1726:2019 can be determined by referring to Figure 3, where the abscissa is the period of structural vibration, \(T \), and the ordinate is the maximum response in the form of maximum acceleration (spectral acceleration, \(S_a \)) [12].

Figure 1. Map of spectral acceleration at \(t = 0.2s \) of Indonesia for 2% probability of exceedance in 50 year. \(s_s \) mce, ground motion parameter for Indonesia for 0.2 s spectral response acceleration (5% of critical damping), site class b [4].

Figure 2. Map of spectral acceleration at \(t = 1.0s \) of Indonesia for 2% probability of exceedance in 50 year. \(s_s \) mce, ground motion parameter for Indonesia for 1.0 s spectral response acceleration (5% of critical damping), site class b [4].
Table 1. Soil categories (SNI 1726-2019) [4].

Soil Category	Average shear wave velocity vs v_s (m/sec)	Average standard penetration N	Average undrained shear strength S_u (kPa)
SC (Hard Soil)	$350 \leq v_s < 750$	$N > 50$	$S_u \geq 100$
SD (Medium Soil)	$175 \leq v_s < 350$	$15 \leq N \leq 50$	$50 \leq S_u < 100$
SE (Soft Soil)	$v_s < 175$	$N < 15$	$S_u < 50$
SF (Special Soil)	Or, any soil profile with more than 3 m of soft clays with PI > 20, wn $\geq 40\%$ and $S_u < 25$		

Table 2. Short-period site coefficient, F_a (SNI 1726-2019) [4].

Site Class	Mapped Risk-Targeted Maximum Considered Earthquake (MCE$_R$) Spectral Response Acceleration Parameter at Short Period, $T = 0.2s$					
	$S_r \leq 0.25$	$S_r = 0.5$	$S_r = 0.75$	$S_r = 1.0$	$S_r = 1.25$	$S_r \geq 1.5$
SA	0.8	0.8	0.8	0.8	0.8	0.8
SB	0.9	0.9	0.9	0.9	0.9	0.9
SC	1.3	1.3	1.2	1.2	1.2	1.2
SD	1.6	1.4	1.2	1.1	1.0	1.0
SE	2.4	1.7	1.3	1.1	0.9	0.8

Table 3. 1-Second Period Site Coefficient, F_v (SNI 1726-2019) [4].

Site Class	Mapped Risk-Targeted Maximum Considered Earthquake (MCE$_R$) Spectral Response Acceleration Parameter at 1-Second Period, $T = 1s$					
	$S_1 \leq 0.1$	$S_1 = 0.2$	$S_1 = 0.3$	$S_1 = 0.4$	$S_1 = 0.5$	$S_1 \geq 0.6$
SA	0.8	0.8	0.8	0.8	0.8	0.8
SB	0.8	0.8	0.8	0.8	0.8	0.8
SC	1.5	1.5	1.5	1.5	1.5	1.4
SD	2.4	2.2	2.0	1.9	1.8	1.7
SE	4.2	3.3	2.8	2.4	2.2	2.0

Table 4. Site Coefficient, F_{PGA} (SNI 1726-2019) [4].

Site Class	PGA ≤ 0.1	PGA $= 0.2$	PGA $= 0.3$	PGA $= 0.4$	PGA $= 0.5$	PGA ≥ 0.6
SA	0.8	0.8	0.8	0.8	0.8	0.8
SB	0.9	0.9	0.9	0.9	0.9	0.9
SC	1.3	1.2	1.2	1.2	1.2	1.2
SD	1.6	1.4	1.3	1.2	1.1	1.2
SE	2.4	1.9	1.6	1.4	1.2	1.1
3. Spectra response design of cities and districts in Riau Province based on site classes

The design response spectrum plots based on SNI 1726:2019 and SNI 1726:2012 for two cities and six districts selected in Riau Province are presented simultaneously in Figures 5 to 12. The design response spectra of the SNI 1726:2019 are shown in solid curve lines, while the design response spectra of the SNI 1726:2012 are shown in intermittent curve lines. Blue, green, and red curves represent hard soil (SC), medium soil (SD), and soft soil (SE) site classes, respectively.

As can be seen in Figure 6, there is no significant improvement in the DRS for Bengkalis for site class SC, SD, and SE. For site class SC and SD the DRS 2019 are slightly bigger than the DRS 2012, with an increase around 0.017g and 0.007g, respectively (1g = 9.81 m/s²). However, for site class SE, the DRS 2019 are slightly lower than the DRS 2012.

As can be seen in Figure 7, for site class SD and SE the DRS 2019 for Dumai are slightly lower than for DRS 2012. For site class SC the DRS 2019 of Dumai are bigger than the DRS 2012. The improvement of the DRS 2019 compared to the DRS 2012 for site class SC is less than 0.01g. However, the maximum reduction of DRS 2019 compared to DRS 2012 for site class SD and SE is less than 0.05g. The calculation of S_{DS} and S_{DY} for the development of DRS 2019 depends not only on the S_3 and S_I values but also depends on the site factor F_a and F_v values. The F_a and F_v value for
specific site soil class (SC, SD, and SE) are usually developed by linear interpolation and depends on the S_S and S_1 values.

In Figure 8, for site class SC and SE the DRS 2019 of Pasir Pangaraian are slightly bigger than the DRS 2012. However, for site class SD, the DRS 2019 is slightly lower than the DRS 2012. The maximum improvement (increasing or decreasing) of DRS 2019 compared to DRS 2012 is less than 0.1 g. The improvement of DRS for Tembilahan is slightly bigger than Pasir Pangaraian. Table 5 shows ratio of S_S, S_1, and PGA calculation for eight cities/districts in Riau Province. By using SNI 1726:2019, the S_S, S_1, and PGA values of Tembilahan are 0.249g, 0.225g, and 0.125g respectively. The S_S, S_1, and PGA values of Pasir Pangaraian are 0.741g, 0.418g, and 0.324g respectively. The S_S, S_1, and PGA values of Siak are 0.252g, 0.229g, and 0.128g respectively.

Table 6 illustrates the improvement of S_{DS}, S_{D1}, T_0 and T_s values for site classes SC, SD and SE respectively and calculated for developing DRS 2019 and DRS 2012 for cities/districts in Riau Province. Compared to S_{DS} 2012, the S_{DS} 2019 of Teluk Kuantan is increasing 16% and 5% for site classes SC and SE respectively. However, for site class SC the S_{DS} value for Pekanbaru is decreases 2%. For Tembilahan the S_{DS} 2019 value for site classes SC, SD and SE are decreased 67%, 54% and 48%, respectively. Compared to DRS 2012, the S_{D1} values for site class SC, SD and SE of DRS 2019 for Bengkalis are increased 12%, 4% and -1% respectively. For Pasir Pangaraian, the S_{D1} value for DRS 2019 increased by 9%, 1% and 8% for site classes SC, SD and SE respectively. The S_{DS} and S_{D1} values of DRS 2019 at these three cities (Pasir Pangaraian, Teluk Kuantan and Tembilahan) are larger than the S_{DS} and S_{D1} of DRS 2012. The S_{DS} values are increased in between 0.005g and 0.086g and the S_{D1} values are increased in between 0.005g and 0.1g. The most significant improvement is detected at site class SC. However, the improvements of S_{DS} and S_{D1} for site classes SD and SE at the cities are smaller than for site class SC and it is lower than 0.08g. All three cities are located less than 50 km distance from the West Sumatera Province (high seismic zone). Dumai, Tembilahan, Siak, Pekanbaru, and Bengkalis are located at the east of Riau Province. However, another three cities, Teluk Kuantan, Bangkinang and Pasir Pangaraian are located at the west of Riau Province. As can be seen in Table 6 the largest improvement of S_{DS} value at Tembilahan is close to 0.1 g (57%) and the improvement of S_{D1} value at this city is 0.102 g (38.7%).

Figure 5. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Bangkinang. Figure 6. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Bengkalis.
Figure 7. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Dumai.

Figure 8. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Pasir Pangaraian.

Figure 9. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Pekanbaru.

Figure 10. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Teluk Kuantan.

Figure 11. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Tembilahan.

Figure 12. DRS adopting SNI 1726:2012 and SNI 1726:2019 for Siak.
Table 6. The ratio of spectrum parameter value between SNI 1726:2019 with SNI 1726:2012 for Cities/Districts in Riau Province.

Cities/ Districts	Spectrum Response Parameter	Hard Soil (SC) for SNI 1726	Medium Soil (SD) for SNI 1726	Soft Soil (SE) for SNI 1726					
	2019 (a)	2012 (b)	Ratio (a/b)	2019 (c)	2012 (d)	Ratio (c/d)	2019 (e)	2012 (f)	Ratio (e/f)
Bangkinang									
S_{DS} (g)	0.463	0.446	1.04	0.493	0.511	0.97	0.590	0.593	0.99
S_{D1} (g)	0.367	0.331	1.11	0.473	0.390	1.21	0.620	0.599	1.03
T_{0} (sec)	0.159	0.149	1.06	0.192	0.153	1.25	0.210	0.202	1.04
T_{S} (sec)	0.793	0.743	1.07	0.959	0.763	1.26	1.051	1.009	1.04
Bengkalis									
S_{DS} (g)	0.157	0.140	1.12	0.193	0.186	1.04	0.289	0.291	0.99
S_{D1} (g)	0.183	0.177	1.03	0.272	0.233	1.17	0.421	0.358	1.18
T_{0} (sec)	0.233	0.254	0.92	0.283	0.250	1.13	0.291	0.246	1.18
T_{S} (sec)	1.167	1.269	0.92	1.413	1.250	1.13	1.456	1.232	1.18
Dumai									
S_{DS} (g)	0.226	0.221	1.02	0.276	0.291	0.95	0.412	0.445	0.93
S_{D1} (g)	0.217	0.220	0.98	0.313	0.274	1.14	0.465	0.438	1.06
T_{0} (sec)	0.192	0.199	0.96	0.226	0.189	1.20	0.226	0.197	1.15
T_{S} (sec)	0.960	0.996	0.96	1.132	0.943	1.20	1.129	0.985	1.15
Pasir Pangaraiy									
S_{DS} (g)	0.594	0.545	1.09	0.596	0.596	1.00	0.649	0.602	1.08
S_{D1} (g)	0.418	0.379	1.10	0.524	0.433	1.21	0.658	0.653	1.01
T_{0} (sec)	0.140	0.139	1.01	0.176	0.145	1.21	0.203	0.217	0.93
T_{S} (sec)	0.702	0.695	1.01	0.879	0.726	1.21	1.014	1.086	0.93
Pekanbaru									
S_{DS} (g)	0.401	0.409	0.98	0.441	0.476	0.93	0.557	0.573	0.97
S_{D1} (g)	0.337	0.304	1.11	0.441	0.364	1.21	0.596	0.565	1.05
T_{0} (sec)	0.168	0.148	1.14	0.200	0.153	1.31	0.214	0.197	1.09
T_{S} (sec)	0.840	0.742	1.13	1.000	0.765	1.31	1.070	0.986	1.09
Teluk Kuantan									
S_{DS} (g)	0.497	0.428	1.16	0.522	0.495	1.06	0.612	0.584	1.05
S_{D1} (g)	0.403	0.312	1.29	0.510	0.372	1.37	0.644	0.576	1.12
T_{0} (sec)	0.162	0.146	1.11	0.195	0.151	1.29	0.210	0.197	1.07
T_{S} (sec)	0.811	0.729	1.11	0.976	0.753	1.30	1.052	0.986	1.07
4. Conclusions

The design acceleration response spectrum for eight cities/districts in Riau Province, Indonesia, was performed in this study due to the improvement of the Seismic Hazard Maps of Indonesia 2017. The design response spectrum (DRS) 2019 for site classes SC, SD, and SE were developed using the same method proposed by SNI 1726:2012 and ASCE/SEI 7-16. On average the DRS 2019 developed at eight cities/districts in Riau Provinces are almost equal compared to the DRS 2012. Based on the analysis, the improvement of the DRS 2019 compared to the DRS 2012 for site classes SC, SD and SE are less than 0.1 g except for site class SC at Tembilahan and Teluk Kuantan. The largest improvement of S_{DS} value at Tembilahan is close to 0.1 g (57%) and the improvement of S_{D1} value at this city is 0.102 g (38.7%).

5. References

[1] Bambang S, Sulastri, Dwikorita K, Urip H, Supriyanto R, Sigit P and Ari S 2019 Acceleration response spectra for M 7.4 Donggala earthquake and comparison with design spectra Journal of sustainable engineering: proceedings series 1 (1) 20-26
[2] Windu P, Masyhur I, I W S, Asrurifak, Frida K and Undayani C S 2019 Development of design acceleration response spectrum for building based on new Indonesian seismic hazard maps 2017 Proceedings of AICEE’19 lecture notes in civil engineering 53 91-104
[3] National Standardization Agency 2012 SNI 03-1726 - 2012 Procedures for earthquake resistance planning for building and non-building structures Jakarta
[4] National Standardization Agency 2019 SNI 1726: 2019 Procedures for earthquake resistance planning for building structures and non-buildings Jakarta
[5] Lalu M, Atika U J 2016 The earthquake ground motion and response spectra design for Sleman, Yogyakarta, Indonesia with probabilistic seismic hazard analysis and spectral matching in time domain American journal of civil engineering 4 (6) 298-305
[6] Wayan S, Indra D S, Andri M, Muhammad A and Daniel H 2016 Development of risk coefficient for input to new Indonesian seismic building codes J. Eng. Technol. Sci. 48 (1) 49-65.
[7] Bambang S, Sulastri, Dwikorita K, Urip H, Supriyanto R, Sigit P and Ari S 2019 Acceleration response spectra for M 7.4 Donggala earthquake and comparison with design spectra Journal of sustainable engineering 1 (1)
[8] Kukuh KDS 2019 Response spectra for Yogyakarta, Surakarta, and Semarang City earthquake based on 2012 SNI earthquake map and 2017 earthquake map JUTEKS - Civil Engineering Journal IV (1) 39 - 44
[9] Sari FS 2020 Calculation of the response spectra for the acceleration of the Palembang City earthquake based on SNI 1726: 2019 as a revision of SNI 1726: 2012 TEKNIKA: Scientific Journal 6 2 167-177
[10] I W S, Masyhur I, Indra D S, Andri M, Muhamad A, Daniel H, and Windu P 2020 New 2019 risk-targeted ground motions for spectral design criteria in Indonesian seismic building code E3S Web of Conferences 156 03010

[11] A S Bawono, M I Ali, and F Ma’arif 2019 A comparison method for calculating ground shaking case study: Yogyakarta earthquake 2006 IOP Conf. Series: Earth and environmental science 366 012014

[12] Suradjin S and Indrawati S 2019 Comparison of the RSNI 1726:2018 and the SNI 1726:2012 design response spectra of 17 major cities in Indonesia IOP Conf. Series: Materials Science and Engineering 650 012032

Acknowledgments

This research was financially supported by P3M, Bengkalis State Polytechnic Indonesia through Research Grant 2020.