Review Article

A Comprehensive Review on Phytochemical, Pharmacological and Future Prospective of Dietary Medicinal Plant *Cinnamomum osmophloeum* Kanehira

Shui-Tein Chen*, Yerra Koteswara Rao*

ALPS Biotech Co., Ltd., National Biotechnology Research Park, Nangang, Taipei-11571, Taiwan

'Corresponding authors: Shui-Tein Chen and Yerra Koteswara Rao, ALPS Biotech Co., Ltd., National Biotechnology Research Park, Nangang, Taipei-11571, Taiwan.

Citation: Chen S-T, Rao YK (2022) A Comprehensive Review on Phytochemical, Pharmacological and Future Prospective of Dietary Medicinal plant *Cinnamomum osmophloeum* Kanehira. Curr Res Cmpl Alt Med 6: 160. DOI: 10.29011/2577-2201.100060

Received Date: 25 August 2022; Accepted Date: 2 September 2022; Published Date: 8 September 2022

Abstract

Background: The plants belonging to the genus *Cinnamomum* traditionally used as an ethnomedicine in Asia, Europe, and North America. *Cinnamomum osmophloeum* Kanehira, is an endemic and economic medicinal plant of Taiwan. It is traditionally used as an antibacterial, antifungal, anti-termite, antidiabetic, anti-hyperuricemia, antiinflammatory, and antioxidant agent. Despite these attributes, *C. osmophloeum* is not enough explored scientifically. This review updated the essential oils and other secondary metabolites, and the pharmacological activities of *C. osmophloeum*, as well as its other economic benefits. **Methods:** The information in the review is extracted from the major scientific databases, such as PubMed, BioMed Central, Google scholar, Elsevier, ACS publications, MDPI, Taylor and Francis, Wiley Online Library, Scopus, Springer, and Web of Science, using journals, dissertations, books and/or chapters, and conference proceedings. **Results:** Various secondary metabolites including essential oil components, flavonoids, lignans, and benzenoids are reported from the extracts of *C. osmophloeum*. The review established a wide range of pharmacological properties including, antibacterial, antidiabetic, anti-fungal, anti-inflammatory, antioxidant, antitermitic, anti-tyrosinase, anti-xanthine oxidase, anxiolytic, cytotoxic, hepatoprotective, and mosquito larvicidal properties of extracts, as well as essential oils and other secondary metabolites of *C. osmophloeum*. **Conclusions:** The present review provides a scientific basis for future studies and necessary information for the development of *C. osmophloeum* based therapeutic agents.

Keywords: *Cinnamomum osmophloeum*; Current Research; Complementary & Alternative Medicine; Essential oils; Non-essential oil metabolites; Biological activities; Analyses

Introduction

The genus *Cinnamomum* belongs to the plant family of Lauraceae. It comprises about 250 species, which are distributed in tropical and subtropical Asia, Australia, Pacific islands [1]. The inner bark of the *Cinnamomum* trees is known as cinnamon [1]. Commercial cinnamons are obtained from various *Cinnamomum* species, such as Ceylon cinnamon and Cassia cinnamon. The Ceylon cinnamon usually refers to the dried bark of *C. verum* Berchthold and Presl. (*syn* *C. zeylanicum*), and it is indigenous to Sri Lanka and southern India [1]. Cassia cinnamons are differ from Ceylon cinnamon, which are usually known as Chinese cassia (*C. cassia* (L.) Berchthold and Presl.), Saigon cassia (*C. loureiroi* Nees, Vietnamese cinnamon), and Indonesian cassia (*C. burmannii*) [1]. The species of *Cinnamomum* are cultivated as landscape plants and...
sidewalk trees, and used in traditional medicine, timber, as well as edible fruits. Importantly, cinnamon is commonly used as a spice in food to give aroma taste and flavor, and to act as a preservative [1]. Other folk uses of cinnamon include applying its essential oil as a fragrance in cosmetics, perfumes, and cigarettes [1].

Although people used cinnamon for quite a long time, however, the hepatotoxic compound, coumarin is found in cinnamon in various amounts [2]. Coumarin is a natural flavoring molecule used as an ingredient in foods, alcoholic beverages, tobaccos, toothpastes, and detergents. In this connection, it is interesting to note that the coumarin contents of Cassia cinnamons are generally higher (~40–12180 mg/kg), than that of Ceylon cinnamon (~0–486 mg/kg) [3,4]. However, the use of coumarin as a food flavoring agent is prohibited in the 1950s due to its hepatotoxicity. In this connection, it is necessary to found the alternative source for the safer cinnamons with low coumarin content, which can be beneficial to the global spice market.

Cinnamomum osmophloeum Kanehira is a native tree species in Taiwan, commonly known as pseudo cinnamon or indigenous cinnamon [5]. Eight of 14 Cinnamomum species in Taiwan are endemic, including C. osmophloeum [5]. It is a small evergreen tree that grows in the mountainous area of Po-Li, Taiwan [6]. The plant C. osmophloeum grows to 12 m in height and about 40 cm in diameter, and normally inhabits in Taiwan’s natural hardwood forests at elevations between 400 and 1500 m [6]. The leaves of C. osmophloeum are traditionally used in Taiwanese folk medicines as an antibacterial, antifungal, antistermite, anti-diabetic, anti-hyperuricemia, anti-inflammatory, and antioxidant agent [5]. Additionally, C. osmophloeum leaves are used in food, flavoring agent, spices, beverages, medical products, and perfumes. The leaves of C. osmophloeum has nine chemotypes with various secondary metabolite profiles, which are discussed later of this review. It is interesting to note that the leaf essential oil of C. osmophloeum is similar to those of commercial C. cassia bark essential oil [2]. However, the Cassia cinnamon bark samples contain higher level of coumarin, whereas the C. osmophloeum leaf samples comparatively contains the lower levels of coumarin [2]. Taste-wise, C. osmophloeum leaves are milder than ceylon cinnamon, and less heavy on the spicy notes with wafts of vanilla. The plant C. osmophloeum is cultivated in the large areas in Taiwan. A recent review reported that the potential use of C. osmophloeum in the alleviation of oral mucositis [7]. However, the chemical structures of the compounds and their complete pharmacological activities are not fully displayed. Therefore, the present review reported the phytochemical constituents and their potential pharmacological activities, analyses methods, as well as other economic benefits of C. osmophloeum.

Literature Methodology

Relevant information about C. osmophloeum is obtained from ancient books, records, doctoral and master’s theses, and scientific search engines including, PubMed, SciFinder, Web of Science, Science Direct, Google Scholar, and so on. The literature search is carried out to gather all relevant information about the traditional uses, phytochemicals and pharmacological activities, and underlying mechanism of action, toxicological and safety considerations of C. osmophloeum. All chemical structures were drawn using ChemDraw 17.0 software.

Specific Identification of C. osmophloeum

Many Cinnamomum plants are morphologically similar [1]. The hepatotoxic adulterant Cinnamomum species, such as C. burmannii, C. loureiroi, and C. cassia, are easily confused with that of non-hepatotoxic C. osmophloeum. Therefore, specific differentiation of C. osmophloeum is critical to avoid toxic issues associated with fraudulent adulteration. In this connection, it is reported that the genetic variation and taxonomic relationship of C. osmophloeum, C. macrostemon and C. insulari [8]. The linalool synthase (LIS) genes are isolated from different provenances of C. osmophloeum [9], and the cinnamaldehyde is increased in 4-coumaryl-CoA reductase (CoCCR) transgenic plants [10].

Further, the Cinnamomum species, C. burmannii (Nees & T. Nees) Blume, and C. insularimontanum Hayata are morphologically similar with C. osmophloeum [11,12]. However, the leaves of C. burmannii and C. insularimontanum contains lower amount of cinnamaldehyde as compared with the leaves of C. osmophloeum [12]. Therefore, quantitative determination of cinnamaldehyde is an optional method for the identification of C. osmophloeum from C. burmannii and C. insularimontanum [12]. On the other hand, a novel method using leaf images and deep convolutional neural networks (CNN), is reported for the distinction of C. burmannii, C. insularimontanum and C. osmophloeum [12]. To continue, a novel DNA sequence comparisons of internal transcribed spacer 2 (ITS2) method is also reported for the identification of gene resources, genetic diversity, and nucleotide sequence polymorphisms for 73 geographical strains of C. osmophloeum [13].

Recently, Yang et al., developed a polymerase chain reaction based restriction fragment length polymorphism (PCR-RFLP) method for rapid identification C. osmophloeum from adulterant Cinnamomum species by DNA polymorphism analysis [14].

Chemical Constituents of C. osmophloeum

Essential oil components

Essential oils (EOs) are colorless volatile liquids with a characteristic feature of strong odor. Hence, they are widely used in aromatherapy and cosmetics industry [15]. The EOs comprising the aromatic and volatile compounds naturally present in all parts of the plants including seeds, flowers, peel, stem, bark and whole plants [15]. EOs are freely soluble in various solvents such as hydrocarbons, alcohols, esters, and ketones.
as alcohol, ether, and fixed oils, but insoluble in water [15]. In general, EOs display similar chemical composition and biological activities when obtained from a single plant species grown under similar climate, edaphic conditions and common harvest season. However, the quality and quantity of EOs are vary depends on plant organ, age of trees, chemotypes, growing season, methods of preparation, soil type and climatic conditions [15]. The GC and GC/MS analyses methods are widely used to identify the leaf EO components of C. osmophloeum. The chemical components of leaf EOs are different from various C. osmophloeum clones found in different regions in Taiwan [16-20]. It is interesting to note that the chemical constituents of C. osmophloeum leaf EOs are similar to those of C. cassia bark oil with cinnamaldehyde as the major component [21]. C. cassia bark oil has commercial value, and generally used in food and beverages.

Hu et al., (1985) [22], established an indigenous cinnamon clonal orchard with cuttings of trees from 13 natural populations from central, eastern and southern regions of Taiwan, and analyzed the composition of the EOs of C. osmophloeum leaves [22]. They found that C. osmophloeum leaves from certain provenances contain cinnamaldehyde as the major constituent, whereas linalool is a major compound in some other provenances. Based on the abundances of each individual constituent, it is classified the C. osmophloeum leaf EOs into nine types: cassia type, cinnamaldehyde type, coumarin type, linalool type, eugenol type, camphor type, 4-terpineol type, linalool/terpineol type, and mixed type [22]. The GC/MS analysis of volatile oil obtained from the steam distillation of C. osmophloeum leaves, resulted in the identification of EOs components, such as α-pinene (EO14), camphene (EO15), benzaldehyde (EO1), etc. (Figure 1, Table 1) [22]. Fang et al., (1989) [24] reported that the quantitative analysis of EOs components from the bark and leaves of C. osmophloeum (Table 1)[24]. They identified that the component, trans-cinnamaldehyde (EO6), as a major constituents in the EO of the both the bark and leaves (~85%) [24]. Furthermore, the five years old plantation trees gives the EOs with an yield of 0.88%, and 0.16% from the leaves and bark, respectively [24]. It is reported that EOs of clones A and B are different, where A belongs to the mixed type, whereas B belongs to the cinnamaldehyde type [25,26]. Further, Cheng et al., (2004) [19] classified the C. osmophloeum leaf EOs of eight provenances into five chemotypes namely, cinnamaldehyde type, linalool type, camphor type, cinnamaldehyde/cinnamyl acetate type, and mixed type [19]. To continue, based on the abundance the leaf EOs are classified into six chemotypes namely, cinnamaldehyde type, cinnamaldehyde/cinnamyl acetate type, cinnamyl acetate type, linalool type, camphor type, and mixed type [27,28]. It is identified that the EOs and key constituents from the leaves of two C. osmophloeum clones are belongs to two different chemotypes, which are classified as the cinnamaldehyde type and camphor type [29]. Cheng et al. (2012) [30], reported that the content of linalool (EO12) varied from 28.8 to 35.1 mg/g, in the EOs of C. osmophloeum ct. linalool leaves collected from various plants and seasons [30]. Lee et al., identified the chemotype of major C. osmophloeum leaf EOs are linalool type (40.24%), followed by trans-cinnamyl acetate (EO10, 11.71%), camphor (EO38, 9.38%), cinnamaldehyde (EO6, 6.87%), etc. (Figure 1, Table 1) [31]. This chemotype, contains relatively small amount of cinnamaldehyde as compared with linalool (6.87% vs 40.24%) [31]. To continue, C. osmophloeum leaf EOs are obtained by hydrodistillation, and the GC-MS analysis indicates that the trans-cinnamaldehyde (70.20%) as the major one, while the caryophyllene oxide (EO11, 0.08%) is the least abundant [32]. These above previous reports indicates that the leaf EOs of C. osmophloeum contains numerous volatile compounds, including monoterpenes, sesquiterpenes, and their oxygenated derivatives and, alcohols, phenols, aldehydes, ketones, esters, acids, and other miscellaneous compounds (Figure 1, Table 1). It is also observed that the major components of C. osmophloeum leaf EOs are, trans-cinnamaldehyde, cinnamyl acetate, linalool and eugenol (Table 1).

On the other hand, EOs from the twigs of C. osmophloeum constituents various components including trans-cinnamaldehyde (EO6) (Table 1) [41]. The thermal stability results of C. osmophloeum leaf EOs indicated that trans-cinnamaldehyde content in eugenol-free EO is affected by high temperatures, however, the stability of EO improved by adding appropriate amounts of eugenol [33]. The identified chemical structures of the EOs from the C. osmophloeum are presented as in Figure 1, and the components names are listed in Table 1.
Figure 1: Chemical structures of essential oil components from C. osmophloeum.
NO.	Name	Ref.	NO.	Name	Ref.
	From Leaves		EO1	β-Caryophyllene	[19],[24],[34]
EO1	Benzaldehyde	[19], [23–26], [31], [32],		α-Caryophyllene	[19]
		[34–37]			
EO2	Benzenepropanal	[29], [32], [34], [37]		Valencene	[19]
EO3	2-methyl benzofuran	[32], [35], [36]		γ-elemene	[19], [36]
EO4	p-allylanisole, Estragole	[19], [23], [24], [29],		α-guaiene	[19]
		[31], [32], [34–36]			
EO5	cis-cinnamaldehyde	[19], [24], [26], [31],		Labda-8(20),12,14-triene	[19]
		[32], [34–37]			
EO6	trans-cinnamaldehyde	[19], [23–26], [29], [31],		Verticiol	[19], [36]
		[32], [35–37]			
EO7	L-bornyl acetate	[29], [32], [34], [35]		Kaur-16-ene	[19]
EO8	Eugenol	[19], [23–26], [31], [32],		Limonene	[23], [24]
		[34–37]			
EO9	trans-β-caryophyllene	[29], [31], [32], [36]		Furfural, 2-Furaldehyde	[24]
EO10	trans-cinnamon acetate	[24–26], [29], [31], [32],		Linalool acetate, Bergamol	[24]
		[34], [35], [38]			
EO11	Caryophyllene oxide	[19], [24], [29], [31],		Copacamphene	[24]
		[32], [35],[36],[39]			
EO12	Linalool	[19], [24–26], [31], [35],		Menthone	[24]
		[36], [40]			
EO13	Bornyl acetate	[19], [24], [31], [36],		Citronellyl acetate	[24]
		[40]			
EO14	α-pinene	[23], [24], [31], [35], [37]		Isoborneol, Isocamphol	[24]
EO15	Camphene	[19], [23], [24], [31], [35], [36], [37]		α-terpinyl acetate	[24]
EO16	β-pinene	[19], [23], [24], [31], [36], [37]		Piperitone, Carvomenthenone	[24]

Citation: Chen S-T, Rao YK (2022) A Comprehensive Review on Phytochemical, Pharmacological and Future Prospective of Dietary Medicinal plant Cinnamomum osmophloeum Kanehira. Curr Res Cmpl Alt Med 6: 160. DOI: 10.29011/2577-2201.100060
EO17	Isobornylacetate	[37]	EO133	d-carvone, (S)-(+) - Carvone	[24]
EO18	*cis*-Cinnamyl acetate	[19], [26], [34], [35], [36], [37]	EO134	2,2,6-trimethyl-6vinyltetrahydropyran-3-ol	[24]
EO19	Ethylbenzene, Styrene	[31]	EO135	γ-cadinene	[24], [36]
EO20	Tricyclene	[31]	EO136	Citronellol, or dihydrogeraniol	[24]
EO21	α-thujene	[31]	EO137	Cuminaldehyde	[24]
EO22	α-fenchene	[19], [31], [36]	EO138	Nerol	[24], [35]
EO23	Sabinene	[31], [39]	EO139	Safrole, Safrol, Shikimole	[24]
EO24	β-myrcene	[24], [31], [35]	EO140	2-hydroxy-1,8-cineol	[24]
EO25	α-phellandrene	[31]	EO141	2-Phenylethanol	[24]
EO26	3-carene	[31]	EO142	*cis*-jasmone	[24]
EO27	α-terpinene	[19], [24], [31]	EO143	Elemol	[24]
EO28	*p*-cymene	[19], [23], [24], [31], [36]	EO144	Cedrol	[24]
EO29	Salicylaldehyde	[19], [31], [35], [36]	EO145	Vanillin	[24]
EO30	1,8-cineole	[24–26], [31], [35], [39]	EO146	Ascabiol, benzyl benzoate	[24]
EO31	Limonene	[19], [31], [35]	EO147	Coumarin	[19], [24–26], [29], [35], [36]
EO32	*trans*-α-ocimene	[31]	EO148	Geranyl formate	[35]
EO33	β-ocimene	[24], [31]	EO149	Cinnamyl formate	[35]
EO34	γ-terpinene	[31]			
EO35	cis-linalool oxide	[19], [24], [31], [35], [39]	From Bark		
------	-------------------	-----------------------------	-----------		
EO36	trans-linalool oxide	[24], [31], [35], [39]	EO1 Benzaldehyde [24]		
EO37	Terpinolene	[24], [31]	EO4 Estragole, p-allylanisole [24]		
EO38	Camphor	[19], [29], [31], [35], [36]	EO5 cis-cinnamaldehyde [24]		
EO39	Benzylacetaldehyde	[19], [23], [31], [35], [36]	EO6 trans-cinnamaldehyde [24]		
EO40	Cinnamyl alcohol	[24], [31], [35]	EO8 Eugenol [24]		
EO41	4-terpineol	[19], [23], [24], [31], [35], [36]	EO10 trans-cinnamyl acetate [24]		
EO42	Octyl acetate	[31]	EO11 Caryophyllene oxide [24]		
EO43	cis-citral, Neral	[19], [24–26], [31], [35], [36]	EO12 Linalool [24]		
EO44	Chavicol, or 4-allyphenol	[19], [31]	EO13 Bornyl acetate [24]		
EO45	trans-anethol	[19], [31], [36]	EO14 α-pinene [24]		
EO46	Cinnamyl alcohol	[19], [31]	EO15 Camphene [24]		
EO47	cis-cinnamic acid	[24], [31]	EO16 β-pinene [24]		
EO48	α-cubebene	[19], [31], [34], [36]	EO24 β-myrcene [24]		
EO49	Geranyl acetate	[24–26], [31], [35], [36], [39]	EO27 α-terpinene [24]		
EO50	(+)-cyclosativene	[19], [31]	EO28 p-cymene [24]		
EO51	α-ylangene	[31]	EO30 1,8-cineole [24]		
EO52	Isoledene	[19], [31], [36]	EO33 β-ocimene [24]		
EO	Component	References	EO	Component	References
-----	-----------------------------------	------------	-----	-----------------------------------	------------
EO53	Copaene	[19], [31]	EO36	trans-linalool oxide	[24]
EO54	α-bourbonene	[31]	EO37	Terpinolene	[24]
EO55	β-cubebene	[31], [38]	EO40	Cinnamyl alcohol	[24]
EO56	β-elemene	[31]	EO41	4-terpineol	[24]
EO57	(cis,trans)-α-farnesene	[31]	EO43	cis-citral, Neral	[24]
EO58	Aromadendrene	[31], [36]	EO47	cis-cinnamic acid	[24]
EO59	α-humulene	[19], [24], [31]	EO49	Geranyl acetate	[24]
EO60	α-acoradiene	[31]	EO59	α-humulene	[24]
EO61	Alloaromadendrene	[19], [31]	EO71	γ-murroline	[24]
EO62	α-amorphone	[31]	EO75	α-calacorene	[24]
EO63	α-curcumene	[31]	EO78	(+) spathulenol	[24]
EO64	Germacrene-d	[31], [39]	EO87	τ-cadinol	[24]
EO65	β-selinene	[31]	EO90	Methyl eugenol	[24]
EO66	α-murroline	[19], [31]	EO101	Phytol	[24]
EO67	α-zingibirene	[31]	EO108	α-terpineol	[24]
EO68	β-patchouline	[31]	EO111	cis-geraniol	[24]
EO69	Acetylcyglenol	[31]	EO117	β-Caryophyllene	[24]
EO70	β-bisabolene	[31]	EO125	Limonene	[24]
EO71	\(\gamma \)-murrolene	[19], [24], [31], [39]	EO126	Furfural	[24]
------	-------------------------	------------------------	------	----------	------
EO72	1S, cis-calamenene	[31]	EO127	Linalool acetate, Bergamol	[24]
EO73	\(\delta \)-cadinene	[19], [31], [35], [36], [39]	EO128	Copacamphene	[24]
EO74	Cadina-1,4-diene	[31]	EO129	Menthone	[24]
EO75	\(\alpha \)-calacorene	[24], [31]	EO130	Citronellyl acetate	[24]
EO76	(+)-nerolidol	[31]	EO131	Isoborneol, Isocamphol	[24]
EO77	Lauric acid	[31]	EO132	\(\alpha \)-terpinyl acetate	[24]
EO78	(+) spathulenol	[24], [31], [35], [39]	EO133	Piperitone, 3- Carvomenthenone	[24]
EO79	(+)-ledol	[31]	EO134	\(d \)-carvone, (S)-(+) Carvone	[24]
EO80	Guaiol	[19], [31]	EO135	2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol	[24]
EO81	Humulene oxide II	[31]	EO136	\(\gamma \)-cadinene	[24]
EO82	Alloaramadendrene oxide (I)	[31]	EO137	Citronellol, or dihydrogeraniol	[24]
EO83	Ledene oxide (II)	[31]	EO138	Cuminaldehyde	[24]
EO84	6-cadinol	[19], [31], [39]	EO139	Nerol	[24]
EO85	10,10-dimethyl-2,6-dimethylenebicycle[7.2.0]undecan-5-ol	[31]	EO140	Safrole, Safrol, Shikimole	[24]
EO86	Isoaromadendrene epoxide	[31]	EO141	2-hydroxy-1,8-cineol	[24]
EO87	\(\rho \)-cadinol	[24], [29], [31], [35], [36], [39]	EO142	2-Phenylethanol	[24]
EO88	\(O \)-methoxy cinnamyl acetate	[31]	EO143	\(cis \)-jasmone	[24]
EO89	α-cadinol	[19], [31], [35], [36], [39]	EO144	elemol	[24]
-------	--------------------	-------------------------------	-------	-------------------------	------
EO90	Methyl eugenol	[24], [31]	EO145	Cedrol	[24]
EO91	Zerumbone	[31]	EO146	Vanillin	[24]
EO92	Farnesyl acetate	[31]	EO147	Ascabiol, benzyl benzoate	[24]
EO93	6,10,14-trimethylpentadecan-2-one	[31]	From twigs		
EO94	Farnesol	[31]			
EO95	Rimuene	[19], [31], [36]	EO4	4-allylanisole, or p-allylanisole	[41]
EO96	ent-pimara-8(14),15-diene	[31]	EO6	trans-cinnamaldehyde	[41]
EO97	Hexadecanoic acid	[31]	EO8	Eugenol	[41]
EO98	Bornyl cinnamate 1	[31]	EO10	trans-cinnamyl acetate	[41]
EO99	Manoyl oxide	[31]	EO11	Caryophyllene oxide	[41]
EO100	(−)-kaurene	[31]	EO13	Bornyl acetate	[41]
EO101	Phytol	[24], [31]	EO53	Copaeene	[41]
EO102	Linolenic acid	[31]	EO63	α-curcumene	[41]
EO103	Oleic acid	[31]	EO73	δ-cadinene	[41]
EO104	Octadecanoic acid	[31]	EO75	α-calacorene	[41]
EO105	6-camphenol	39	EO76	(+)-nerolidol	[41]
EO106	Santolina triene	39	EO78	(+) spathulenol	[41]
EO107	1-butenylidene-cyclohexane	39	EO87	r-cadinol	[41]
EO108	α-terpineol	[19],[24–26], [29], [35], [36], [39]	EO108	α-terpineol	[41]
Cinnamon (C. cassia) is a common spice with sweet, spicy, and special flavor. It has been widely used in bakeries, drinks, desserts, and cuisines. The main constituent of essential oil from cinnamon bark is trans-cinnamaldehyde (EO06). The leaf EOs of indigenous cinnamon (C. osmophloeum) contains higher amount of EO06 as compared with Cinnamon (C. cassia) [2]. In particular, the C. osmophloeum leaf EOs contains ~80% (w/w) of trans-cinnamaldehyde (EO06), and these values ranged from 769 to 809 g/kg of EOs, which correspond to about 8.9−26.1 g/kg of sample [2]. Additionally, the cinnamaldehyde content of the cinnamon bark EOs is ~325 g/kg, which is much lower than the cinnamaldehyde contents of the C. osmophloeum leaf EOs (769 to 809 g/kg). Therefore, C. osmophloeum leaves can be considered a good quality and has a potential cinnamon substitute source to replace commercial bark cinnamons [2].

Further, a recent report indicates that the relative content of trans-cinnamaldehyde in the leaves of C. osmophloeum ct. cinnamaldehyde has the seasonal variation, which is relatively lower (32.2%) in the month of May as compared with the rest of the months (>76.3%) [42]. On the other hand, the leaf EOs of C. osmophloeum contains comparatively lower level of coumarin (0.29–13.99 mg/kg), as compared with the EOs of Cassia cinnamon (26.8–97.4 mg/kg) [2]. Therefore, it is reasonable to suggest that the C. osmophloeum as a safer spice substitute for C. cassia.

Table 1: The essential oil components of C. osmophloeum

EO109	α-campholenal	[39]	EO115	(+)-Borneol	[41]
EO110	trans-verbénol	[39]	EO117	β-Caryophyllene	[41]
EO111	cis-geraniol	[19], [24–26], [35], [36], [39]	EO150	Elemicin, 3,4,5 Trimethoxyallylbenzene	[41]
EO112	2,4,4-trimethylcyclohex-1-enecarboxylic acid	[39]	EO151	trans-β-Elemenone	[41]
EO113	τ-cadinene	[39]	EO152	γ-Eudesmol, Selinenol, Uncineol	[41]
EO114	Benzyl alcohol, phenylmethanol	[19]	EO153	Cadalin	[41]
EO115	(+)-Borneol	[19], [25], [26], [35]	EO154	Guaiol acetate	[41]

Other (Non-essential oil) metabolites of C. osmophloeum

Flavonoids are a class of secondary metabolites that consist of more than 7000 structures with fifteen carbon atoms. This class of compound have a wide-range of bioactive properties, including antioxidant, protective against inflammatory processes, hypertension, arthritis and AIDS, and so on. The flavonoid glycosides compounds, kaempferitrin (F1) and kaempferol-7-O-α-rhamnose (F10) along with coumarin, fumaric acid are reported from the leaves of C. osmophloeum (Figure 2, Table 2) [43]. Chemical examination of the 80% methanolic extract from C. osmophloeum leaves, resulted in the isolation of highly sweet constituent, trans-cinnamaldehyde (in 1.03% yield, w/w) [23]. Phytochemical investigation on the n-butanol fraction of methanol extract from C. osmophloeum leaves, resulted in the isolation of four kaempferol glycosides (F1 – F4), including a novel one, kaempferol 3-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-7-O-α-L-rhamnopyranoside (F2) (Figure 2, Table 2) [44]. It is interesting to mention that the compound kaempferitrin (F1) is obtained in an appreciable quantity of 0.2428% (w/w) from the leaves of C. osmophloeum [44]. The hot water extract of leaves of C. osmophloeum resulted in the identification of F1 and F3 [37]. The ethanolic extract of twigs from C. osmophloeum led to the isolation of kaempferol glycosides, F1 – F3, and F5 – F10 (Figure
2, Table 2) [45]. Chemical examination of water extract of *C. osmophloeum* leaves resulted in the isolation of kaempferol glycosides F1 and F10 (Figure 2, Table 2) [46]. To continue, chemical investigations of the CHCl₃- and n-BuOH-soluble layer of the methanolic extract of the stems of *C. osmophloeum* resulted in the isolation of flavonoids, lignans, and benzenoids (Figure 2, Table 2) [47].

Figure 2: Chemical structures of non-essential oil metabolites from *C. osmophloeum*
On the other hand, lignans are an important part of the secondary metabolites of *Cinnamomum* species, which have high content and abundant structural types. The phytochemical investigations of the ethanol extracts of *C. osmophloeum* heartwood and roots, resulted in the isolation of various lignans including three novel structurally related lignan esters, one secolignan ester (L3) and two cyclolignan (or aryltetralin lignan) esters (L4 and L5) (Figure 2, Table 2) [48]. Chemical examination of the n-butanol soluble fraction of 70% acetone extract from *C. osmophloeum* twig extracts, resulted in the isolation and structure identification of proanthocyanidins, cinnamtannin B1 (A1) and parameritannin A1 (A2) (Figure 2, Table 2) [49]. Recently, a novel cyclopropanoid, 4(2-(benzo[d][1,3]dioxol-5-yl)cyclopropoxy)-2,6-dimethoxyphenol (B5) is reported from the stems of *C. osmophloeum* (Figure 2, Table 2) [50].

No.	Name	Source / Extraction method	Ref.
Flavonoids			
F1	Kaempferol 3,7-dirhamnoside or Kaempferitrin	Leaves / n-butanol fraction of methanol extract	[43‒45]
		Leaves / Water extract	[46]
		Leaves / hot water extract	[71]
		Stems / CHCl₃- and n-BuOH fractions of methanolic extract	[47]
F2	Kaempferol 3-O-β-D-glucopyranosyl(1→4)-α-L-rhamnopyranosyl-7-O-α-Lrhamnopyranoside	Leaves / n-butanol fraction of methanol extract	[44], [45]
F3	Kaempferol 3-O-β-D-apiofuranosyl(1→2)-α-L-arabinofuranosyl-7-O-α-Lrhamnopyranoside	Leaves / n-butanol fraction of methanol extract	[44], [45]
		Leaves / hot water extract	[71]
F4	Kaempferol 3-O-β-D-apiofuranosyl(1→4)-α-L-rhamnopyranosyl-7-O-α-Lrhamnopyranoside	Leaves / n-butanol fraction of methanol extract	[44]
F5	Kaempferol 3-O-β-D-xylopyranosyl(1→2)-α-L-arabinofuranosyl-7-O-α-Lrhamnopyranoside	Twigs / 70% ethanol	[45]
F6	Kaempferol 3-O-β-D-xylopyranosyl(1→2)-α-L-rhamnopyranosyl-7-O-α-Lrhamnopyranoside	Twigs / 70% ethanol	[45]
F7	Kaempferol 3-O-β-D-glucopyranosyl(1→2)-α-L-arabinofuranosyl-7-O-α-Lrhamnopyranoside	Twigs / 70% ethanol	[45]
F8	Kaempferol 3-O-α-Lrhamnopyranosyl-(1→2)-α-Larabinofuranosyl-7-O-α-Lrhamnopyranoside	Twigs / 70% ethanol	[45]
F9	Kaempferol 3-O-β-D-glucopyranosyl(1→2)-α-L-rhamnopyranosyl-7-O-α-Lrhamnopyranoside	Twigs / 70% ethanol	[45]
F10	Kaempferol 7-O-α-L-rhamnopyranoside	Twigs / ethanol	[43], [81]
		Stems / CHCl₃- and n-BuOH fractions of methanolic extract	[47]
		Leaves / water extract	[46]
F11	Kaempferol 3-O-α-L-rhamnopyranoside	Stems / CHCl₃- and n-BuOH fractions of methanolic extract	[47]
F12	Kaempferol	Stems / CHCl₃- and n-BuOH fractions of methanolic extract	[47]
Reference Key	Compound Description	Source of Isolation	Method of Isolation
---------------	---	--	--
F13	Kaempferol 3-0-α-Lrhamnopyranosyl-(1→2)-α-Lrhamnopyranoside	Stems / CHCl₃- and n-BuOH fractions	methanolic extract [47]
F14	Dihydrokaempferol	Stems / CHCl₃- and n-BuOH fractions	methanolic extract [47]
A1	Cinnamattannin B1	Twigs / n-butanol fraction of 70% acetone extract	[49]
A2	Paramerittannin A1	Twigs / n-butanol fraction of 70% acetone extract	[49]
A2	Proanthocyanidins		
B1	Fumaric acid	Stems / CHCl₃- and n-BuOH fractions	methanolic extract [43], [47]
B2	p-hydroxybenzamidehyde	Stems / CHCl₃- and n-BuOH fractions	methanolic extract [47]
B3	p-hydroxybenzoic acid	Stems / CHCl₃- and n-BuOH fractions	methanolic extract [47]
EO49	Cinnamic acid	Stems / CHCl₃- and n-BuOH fractions	methanolic extract [47]
EO15	Coumarin	Stems / CHCl₃- and n-BuOH fractions	methanolic extract [47]
L1	Secoisolariciresinol	Heartwood and roots/ethanol	[48]
L2	9,9′-di-O-feruloyl secoisolariciresinol	Heartwood and roots/ethanol	[48]
L3	9,9′-di-O-feruloyl-(+)-5,5′-dimethoxy secoisolariciresinol	Heartwood and roots/ethanol	[48]
L4	(7′S,8′R,9′R)-lyoniresinol-9-O-(E)-feruloyl ester	Heartwood and roots/ethanol	[48]
L5	(7′S,8′R,9′R)-lyoniresinol-9,9′-di-O-(E)- feruloyl ester	Heartwood and roots/ethanol	[48]
L6	(−)-lyoniresinol	Heartwood and roots/ethanol	[48]
L7	(+)-yangambin	Stems / CHCl₃- and n-BuOH fractions of methanolic extract	[47]
L8	(+)-sesamin	Stems / CHCl₃- and n-BuOH fractions of methanolic extract	[47]
EO39	Camphor	Leaves	[40]
Jurkat (IC50 = 0.057µM) and U937 (IC50 = 0.076µM) cell viability, cinnamaldehyde showed potent inhibitory activity against trans and 250 µg/ml, respectively (Table 3) [25]. The compounds, trans-cinnamaldehyde, T-cadinol, and α-cadinol are the major components of leaf EOs to the observed anti-inflammatory activity of C. osmophloeum in the endotoxin-treated RAW 264.7 macrophages [52]. The leaf EO components showed in vivo hepatoprotective effects through reduction in serum levels of AST, ALT, TNF-α, and IL-6, as well as hepatic inflammation and, necrotic and apoptotic tissue injury in lipopolysaccharide/Dgalactosamine (LPS/D-GalN)-treated mice [53]. The compound trans-cinnamaldehyde (EO06, 1 mg/kg) showed in vivo cytokine modulatory effects through increased serum concentrations of IL - 2, IL - 4 and IL - 10, but not IFN - γ in ovalbumin (OVA) - primed balb/c mice [54]. The EOs from C. osmophloeum leaves exert in vivo antioxidant [29], and in vivo anti-diabetic effect through improved insulin secretion [31]. The linalool chemotype leaf EOs from C. osmophloeum showed, in vivo protective effect in the endotoxin-induced systemic inflammatory response through suppression of the TLR4 and NLRP3 signaling pathways [55]. The leaf EOs (13 mg/kg body weight) of C. osmophloeum reduced the endotoxin-induced systemic inflammation through the inhibition of the expression of molecules in both TLR4 and NLRP3 signaling pathways [40]. Additionally, it is confirmed that both cinnamaldehyde (EO06) and linalool (EO12) are the responsible active compounds for the observed biological activity [40]. The thermos-stability of cinnamaldehyde-chemotype C. osmophloeum leaf EOs is stabilized by microencapsulation with β-cyclodextrin, and the microencapsulated oil showed superior xanthine oxidase inhibitory activity [56]. The C. osmophloeum ct. linalool leaf oil showed in vivo antidepressant and motor coordination activities in a rodent animal model [57]. Additionally, the thermal degradation of linalool-chemotype C. osmophloeum leaf EOs is stabilized by its microencapsulation with β-cyclodextrin [58]. On the other hand, twigs EOs and its major constituents from the twigs of C. osmophloeum showed anti-inflammatory activity through reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production in activated RAW 264.7 macrophages [41]. The reported pharmacological activities of C. osmophloeum EOs and their major constituents are presented as in Table 3.

Table 2: The reported non-essential oil metabolites of C. osmophloeum

Pharmacological Activities of C. osmophloeum Extracts and Compounds

Pharmacological potential of essential oils (EOs)/components

Most of the chemical components in EOs of C. osmophloeum are low-molecular weight compounds, which can easily diffuse across cell membranes to induce biological reactions [7]. A couple of studies have proposed cinnamaldehyde to be a major functional compound for the antidiabetic activity of cinnamon [1]. The antibacterial activities of the EOs from leaves of two C. osmophloeum clones (A and B) were examined against nine strains of bacteria. The results showed that the MICs (minimum inhibitory concentrations) of the B leaf oil were 500 µg/ml against both Klebsiella pneumoniae and Salmonella sp. and 250 µg/ml against the other 7 strains of bacteria (Table 3) [25]. The MICs of cinnamaldehyde against the Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, MRSA, K. pneumoniae, Salmonella sp., and Vibrio parahemolyticus are 500, 1000, 250, 250, 250, 250, 1000, 500, and 250 µg/ml, respectively (Table 3) [25]. The compound trans-cinnamaldehyde showed potent inhibitory activity against Jurkat (IC50=0.057µM) and U937 (IC50=0.076µM) cell viability, without affecting the viability of primary purified T cells and macrophages (Table 3) [51]. The leaf EOs from various geographical provenances showed potential antifungal effect against tree pathogens Rhizoctonia solani, Collectotrichum gloeosporioides, Ganoderma australe and Fusarium solani [36], and inhibit the expression of pro-IL-1β, IL-1β and IL-6 in endotoxin-induced J774A.1 macrophages [39]. The leaf EOs of 92 cutting clones from a clonal orchard of C. osmophloeum showed antioxidant activity [38]. The EOs of C. osmophloeum leaves showed potential xanthine oxidase (XOD) inhibition and anti-hyperuricaemia effect in mice [37], and the major component in it EO06 showed inhibitory effect in controlling the red imported fire ant [34]. The mosquito larvicidal activity of leaf EOs and their constituents from six chemotypes of C. osmophloeum is examined against the three mosquito species, and the results demonstrated that the cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type showed superior inhibitory effect against Aedes albopictus larvae [35]. The compounds, trans-cinnamaldehyde, T-cadinol, and α-cadinol are the major components of leaf EOs to the observed anti-inflammatory activity of C. osmophloeum in the endotoxin-treated RAW 264.7 macrophages [52]. The leaf EO components showed in vivo hepatoprotective effects through reduction in serum levels of AST, ALT, TNF-α, and IL-6, as well as hepatic inflammation and, necrotic and apoptotic tissue injury in lipopolysaccharide/Dgalactosamine (LPS/D-GalN)-treated mice [53]. The compound trans-cinnamaldehyde (EO06, 1 mg/kg) showed in vivo cytokine modulatory effects through increased serum concentrations of IL - 2, IL - 4 and IL - 10, but not IFN - γ in ovalbumin (OVA) - primed balb/c mice [54]. The EOs from C. osmophloeum leaves exert in vivo antioxidant [29], and in vivo anti-diabetic effect through improved insulin secretion [31]. The linalool chemotype leaf EOs from C. osmophloeum showed, in vivo protective effect in the endotoxin-induced systemic inflammatory response through suppression of the TLR4 and NLRP3 signaling pathways [55]. The leaf EOs (13 mg/kg body weight) of C. osmophloeum reduced the endotoxin-induced systemic inflammation through the inhibition of the expression of molecules in both TLR4 and NLRP3 signaling pathways [40]. Additionally, it is confirmed that both cinnamaldehyde (EO06) and linalool (EO12) are the responsible active compounds for the observed biological activity [40]. The thermos-stability of cinnamaldehyde-chemotype C. osmophloeum leaf EOs is stabilized by microencapsulation with β-cyclodextrin, and the microencapsulated oil showed superior xanthine oxidase inhibitory activity [56]. The C. osmophloeum ct. linalool leaf oil showed in vivo antidepressant and motor coordination activities in a rodent animal model [57]. Additionally, the thermal degradation of linalool-chemotype C. osmophloeum leaf EOs is stabilized by its microencapsulation with β-cyclodextrin [58]. On the other hand, twigs EOs and its major constituents from the twigs of C. osmophloeum showed anti-inflammatory activity through reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production in activated RAW 264.7 macrophages [41]. The reported pharmacological activities of C. osmophloeum EOs and their major constituents are presented as in Table 3.
Comp. NO or Tested Sample	Reported activity	Ref.
EO1 (benzaldehyde)	Mosquito larvicidal activity against *Aedes albopictus*, LC_{50}=47.0µg/ml, LC_{90}=85.5µg/ml	[35]
EO6 (trans-cinnamaldehyde)	Antibacterial against *E. coli*, *P. aeruginosa*, *E. faecalis*, *S. aureus*, *S. epidermidis*, MRSA, *K. pneumoniae*, *Salmonella sp.*, and *V. parahemolyticus*	[25]
	Cytotoxic effect against Jurkat (IC_{50} =0.057µM) and U937 (IC_{50} =0.076µM) cell viability, without affecting the viability of primary purified T cells and macrophages (Fang et al., 2004).	[51]
	Mosquito larvicidal activity (LC_{50}=29ppm, LC_{90}=48ppm)	[19]
	Antioxidant activity determined using DPPH assay. IC_{50}=11 µg/ml	[38]
	Cytotoxicity against human leukemia K562 cells, induce apoptosis through ROS production, glutathione depletion, and caspase activation	[59]
	Inhibit xanthine oxidase (XOD) activity (IC_{50} = 8.4 µg/ml). *In vivo* - 150 mg/kg, oral administration reduced the serum uric acid by 84.48% as compared to the hyperuricemic control mice.	[37]
	Inhibits proinflammatory cytokines secretion from activated macrophages through suppression of intracellular signaling	[60]
	Inhibitory effect in controlling the red imported fire ant. LT_{50} = 32.2 min	[34]
	Mosquito larvicidal activity against *Aedes albopictus*, LC_{50}=48.1µg/ml, LC_{90}=89.1µg/ml	[35]
	Antipathogenic against plant pathogenic fungus *Rhizoctonia solani* IC_{50}=56.4µg/mL	[61]
	In vivo 100 µmol/kg, hepatoprotective effect, attenuated LPS/D-GalN-induced liver injury, reduced the serum AST, ALT, TNF-α, IL-6	[53]
	In vivo 1 mg/kg, cytokine modulatory effect	[54]
	In vivo anti-inflammatory through reduced TLR4 and/or NLRP3 signaling pathways	[40]
Essential Oil	Activity / Effect	Reference
--------------	-------------------	-----------
EO8 (Eugenol)	Mosquito larvicidal activity against *Aedes albopictus*, LC₅₀ = 67.4 µg/ml.	[35]
EO10 (trans-cinnamyl acetate)	Antioxidant activity determined using DPPH assay. IC₅₀ = 10.4 µg/ml	[38]
EO11 (Caryophyllene oxide)	Mosquito larvicidal activity against *Aedes albopictus*, LC₅₀ = 65.6 µg/ml.	[35]
EO12 (Linalool)	Mosquito larvicidal activity against *Aedes albopictus*, LC₅₀ = 70.7 µg/ml.	[35]
EO45 (cis-citral, Neral)	Mosquito larvicidal activity against *Aedes albopictus*, LC₅₀ = 67.4 µg/ml.	[35]
EO57 (β-cubebene)	Antioxidant activity determined using DPPH assay. IC₅₀ = 19.3 µg/ml	[38]
EO60 (Aromadendrene)	*In vivo* 100 µmol/kg, hepatoprotective effect, attenuated LPS/D-GalN-induced liver injury, reduced the serum AST, ALT, TNF-α, IL-6	[53]
EO90 (τ-cadinol)	*In vivo* 100 µmol/kg, hepatoprotective effect, attenuated LPS/D-GalN-induced liver injury, reduced the serum AST, ALT, TNF-α, IL-6	[53]
EO92 (α-cadinol)	*In vivo* 100 µmol/kg, hepatoprotective effect, attenuated LPS/D-GalN-induced liver injury, reduced the serum AST, ALT, TNF-α, IL-6	[53]
Leaf essential oils	Antibacterial against *Escherichia coli*, *Pseudomonas aeruginosa*, *Enterococcus faecalis*, *Staphylococcus aureus*, *S. epidermidis*, methicillinresistant *S. aureus* (MRSA), *Klebsiella pneumoniae*, *Salmonella* sp., and *Vibrio parahaemolyticus*.	[25]
Leaf essential oils	Antitermitic activity against *Coptotermes formosanus*	[26]
Leaf essential oils	Antimite activity	[63]
Leaf essential oils	Antifungal activities against tree pathogenic fungi, *Rhizoctonia solani*, *Collectotrichum gloeosporioides*, *Ganoderma australa* and *Fusarium solani*.	[36]
---------------------	--	------
Leaf essential oil	Mosquito larvicidal activity against larvae of *Aedes aegypti*. LC$_{50}$ for cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type in 24 h were 36 ppm (LC$_{50}$=79 ppm) and 44 ppm (LC$_{50}$=85ppm), respectively.	[19]
Leaf essential oil	Anti-inflammatory- 60 µg/mL, inhibited IL-1β and IL-6 but not for TNF-α in LPS-treated J774A.1 murine macrophage	[39]
Leaf essential oils of 92 cutting clones from a clonal orchard	Antioxidant activities determined using DPPH assay	[38]
Leaf essential oils	*In vitro* xanthine oxidase inhibition (IC$_{50}$=16.3 µg/ml)	[37]
Leaf essential oils	Inhibitory effect in controlling the red imported fire ant. LT$_{50}$ of 2% leaf essential oil is 105.0 min	[34]
6 chemo types of leaf essential oil	Mosquito larvicidal activities against *Aedes albopictus*, *Culex quinquefasciatus*, and *Armigeres subalbatus* larvae. The LC$_{50}$ of cinnamaldehyde and cinnamaldehyde/cinnamyl acetate type against *A albopictus* larvae are 40.8 µg/ml (LC$_{50}$ = 81.7 µg/ml) and 46.5 µg/ml (LC$_{50}$ = 83.3 µg/ml), respectively	[35]
Leaf essential oil	Anti-inflammatory activity in endotoxin-treated RAW 264.7 macrophages	[52]
Leaf essential oil	Antipathogenic against plant pathogenic fungus *Rhizoctonia solani* IC$_{50}$=79.3μg/mL	[61]
Leaf essential oil	*In vivo* antioxidant activity against juglone-induced oxidative stress in *Caenorhabditis elegans*. Enhanced of antioxidant-genes, SOD-3, GST-4	[29]
Leaf essential oil	*In vivo* antidiabetic activity in STZ-induced rats. 12.5 mg/(kg bw)- reduced fasting blood glucose, fructosamine and, elevated plasma and pancreatic insulin levels. However, 25 and 50 mg/(kg bw) shown to be less effective than that of 12.5 mg/(kg bw). Ameliorated oxidative stress and proinflammatory environment in the pancreas.	[31]
Leaf essential oils	Larvicidal activity against *An. gambiae* s.s. Dose and time dependent. The LC$_{50}$ = 22.18 to 58.15 µg/ml (in laboratory), 11.91 to 63.63 µg/ml (in semi-field environments).	[32]
Essential oil alloaromadendrene from mixed-type leaves	*In vivo* antioxidant activities against juglone-induced oxidative stress on *Caenorhabditis elegans*. Prolongs the Lifespan in *C. elegans*	[64]
trans-cinnamaldehyde chemotype leaf essential oils	Anti-inflammatory, inhibit *H. pylori* growth and postinfectiously inhibit IL-8 mRNA and protein expression in *H. pylori* and IL-1β-pretreated AGS cells	[65]
Linalool chemotype leaf essential oils	6.5, 13, or 26 mg/kg, *in vivo* protective effect in endotoxin-induced systemic inflammatory response through suppression of the TLR4 and NLRP3 signaling pathways	[55]
S-(+)-linalool and essential oil from leaves	*In vivo* leaf essential oil-250, 500 mg/kg, S-(+)-linalool (500 mg/kg), R-(−)-linalool (500 mg/kg). anxiolytic properties- reduced serotonin, dopamine, and norepinephrine in mice brain	[66]
S-(+)-linalool and essential oil from leaves

Pharmacological activities of *C. osmophloeum* crude extracts
Studies are reported that *C. osmophloeum* crude extracts showed various pharmacological activities such as antioxidant, anti-inflammatory, anti-tyrosinase, anti-obesity, and anti-diabetic, and wound-healing effects. Diabetes mellitus (DM) is a chronic disease that affects about 7% of the world's people and it is expected to increase by 5.5% in 2025 [69]. DM type 2 (T2DM) accounts for 85–90% of all diagnosed diabetic patients with high medical and social costs [69]. Cinnamon also has a long history of therapeutic use for various health problems including diabetes [1]. However, it was not until the past decade that the possible antidiabetic role of cinnamon in humans and in experimental animals has been investigated scientifically [1]. The results of the antidiabetic effect of cinnamon are inconsistent [1]. Although several clinical studies and a few meta-analyses have confirmed the usefulness of cinnamon as an antidiabetic agent, the results of other clinical studies and meta-analysis have shown cinnamon to be ineffective in oral glucose tolerance, insulin sensitivity, fasting blood glucose, glycated hemoglobin, lipid profile, or peripheral insulin levels in type 2 diabetes patients [1].

Rao et al., (2007) [70] reported that the chloroform and methanol extracts of *C. osmophloeum* bark showed anti-inflammatory and anti-cancer properties through the reduced inflammatory mediators (NO, TNF-α and IL12) production in activated macrophages, and tumor cells proliferation, respectively [70]. Oral administration of *C. osmophloeum* leaves hot-water extracts, reduced the total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL-C) levels in hyperlipidemic hamsters [71]. The phenolic content of *C. osmophloeum* water extracts is 160.9 mg/g, which showed a potential antioxidant activity with an IC₅₀ values of 10.3 and 16.9 μg/mL, for DPPH and superoxide radical scavenging assays, respectively (Table 4) [46]. The ethanolic extract of *C. osmophloeum* leaves, dose-dependently (10, 25, 50, 100, and 200 μg/mL) reduced the cell viability, tyrosinase activity and melanin content in melanoma B16-F10 cells (Table 4) [72]. Additionally, the ethanolic extract also showed *in vivo* wound-healing activity [72]. To continue, the ethanolic extract from the leaves showed skin whitening and protective properties through decreased tyrosinase activity and melanin content in IBMX-induced B16-F10 cells [73]. The proanthocyanidin-rich *n*-butanol soluble fractions of 70% acetone extract from *C. osmophloeum* twig extracts, showed anti-hyperglycemic effects through reduced α-glucosidase, α-amylase and protein tyrosine phosphatase 1B [49,74]. Additionally, the twig extracts showed better α-glucosidase and amylase activities than leaf, 2-cm branch and 5-cm branch extracts [74]. Furthermore, the proanthocyanidin-rich *n*-butanol soluble fractions of 70% acetone extract also showed antihyperglycemic activity in high-fat diet and streptozotocin-induced hyperglycemic rats [75]. The ethanolic... |
extract from the *C. osmophloeum* leaves showed liver protective property through induced the *ghrelin* gene variant 1 but not variant 3, mRNA and ghrelin hormone expression in D-ribose-treated HepG2 cells [76]. Recently, the water extract of *C. osmophloeum* (COK) leaves are confirmed to be useful to treat hair loss [77]. The *in vitro* bioassays suggested that COK water extract significantly promoted the proliferation of human hair dermal papilla cells (hDPCs) via up-regulating mRNA levels of some hair growth-related factors covering vascular endothelial growth factor, keratinocyte growth factor (KGF) and transforming growth factor-β2 [77]. Besides, the *in vivo* assays showed that COK leaf extract promoted the anagen phase in the hair growth cycle in hair removal C57BL/6 mouse model [77]. The hydrosol obtained from the steam distillation of *C. osmophloeum* leaves, reduced oxidative stress and melanogenesis in B16F10 melanoma cells and protect against DNA damage [78]. A recent *in vivo* study indicated that 95% ethanolic extract from *C. osmophloeum* leaves had a therapeutic effect against 5-fluororacil-induced oral mucositis in rats [79]. On the other hand, the water-soluble fractions from ground wood of *C. osmophloeum*, enhanced the cultured mycelia of *Antrodia camphorata* and its anti-inflammatory potential through reduced ROS production in human leukocytes [80].

Table 4

Tested Sample / Extract	Reported Activity	Ref.
Water-soluble fractions from ground wood	Enhanced the cultured mycelia of *Antrodia camphorata* and its anti-inflammatory potential through reduced ROS production in human leukocytes	[80]
Bark/ hexane, ethyl acetate and methanol extracts	*In vitro*-reduced inflammatory mediators NO, iNOS, TNF-α and IL-12 in LPS/IFN-γ activated murine peritoneal macrophages, and tumor cells proliferation	[70]
Twigs / ethanolic extract	Antioxidant- DPPH, NBT, reducing power, lipid peroxidation	[81]
Leaves / water extract	Antioxidant- DPPH, reducing power	[46]
leaf powder (CoLP)/	Larvicidal activity against *An. gambiae* s.s. Dose and time dependent. The LC₅₀ = 22.18 to 58.15 μg/ml (in laboratory), 11.91 to 63.63 μg/ml (in semi-field environments).	[32]
Leaves / ethanolic extract	*In vitro* anti-tyrosinase activity, antioxidant. *In vivo* wound-healing activity	[72]
Leaves / ethanolic extract	Skin-whitening and protective properties through decreased tyrosinase activity and melanin content in IBMX-induced B16-F10 cells	[73]
Twigs/ n-butanol fractions of 70% acetone extract	*In vitro* anti-hyperglycemic effects through reduced α-glucosidase, α-amylase and protein tyrosine phosphatase 1B	[49]
Leaves/ ethanolic extract	Liver protective property through induced *ghrelin* gene variant 1 but not variant 3, mRNA and ghrelin hormone expression in D-ribose-treated HepG2 cells	[76]
Twig extracts/ n-butanol fractions of 70% acetone ext.	*In vivo* (30, 150 mg/kg bw), antihyperglycemic- improved glucose tolerance, decreased weight of visceral fats and lower atherogenic index, weight gain	[75]
Leaves / water extract Promote hair growth in vitro and in vivo C57BL/6 mice. Hair growth-related factors- vascular endothelial growth factor, keratinocyte growth factor (KGF), and transforming growth factor-β2 increased in the cultured human hair dermal papilla cells (hDPCs) [77]

Leaves/ hydrosol from Decreased melanin synthesis in B16-F10 melanoma cells, antioxidant, anti-tyrosinase, steam distillation anti-melanogenesis, and DNA protective activities. [78]

Leaves/ 95% ethanol In vivo anti-inflammatory against 5-FU-induced oral mucositis in rats. 100 mg/mL, inhibit major proinflammatory cytokines [79]

Table 4: The reported biological activities of C. osmophloeum crude extracts.

Pharmacological activities of non-essential oil secondary metabolites

Lignan esters (L3, L4, L5) showed cytotoxicities against human liver carcinoma cells HepG2, Hep3B, and Ca9-22 cancer cells [48] (Table 5). It is reported that kaempferitrin (F1) showed anti-inflammatory activity through reduced pro-inflammatory mediators such as nitric oxide, TNF-α and IL-12 in activated-macrophages [44] (Table 5). Diabetes mellitus is characterized by an altered metabolism (of carbohydrates, lipids, and lipoproteins) and chronic hyperglycemia resulting from pancreatic β-cell dysfunction, insulin production deficiency, insulin resistance in key target tissues and impaired glycemic index control [69]. These alterations cause severe complications in the functioning of the cardiovascular system, as well as hypertension and dyslipidemia that are risk factors for stroke and myocardial infarction [69]. The major constituent of C. osmophloeum leaves, kaempferitrin activates the insulin signaling pathway and stimulates secretion of adiponectin in 3T3-L1 adipocytes [82] (Table 5). The compounds F2 and F3 showed insulin-like anti-diabetic activity in mouse 3T3-L1 adipocytes, through enhanced adiponectin secretion, activation of insulin signaling pathway, GLUT4 translocation activity, phosphorylation of IR and activation of phosphatidylinositol-3 kinase (PI3K) [83] (Table 5).

NO.	Reported activitya	Ref.
F1	Anti-inflammatory against LPS/IFN-γ-stimulated peritoneal macrophages. Inhibit NO (IC₅₀ = 40µM), TNF-α, IL-12	[44]
	Anti-diabetic activity. Activates the insulin signaling pathway and stimulates secretion of adiponectin.	[82]
F2	Insulin-like anti-diabetic activity in mouse 3T3-L1 adipocytes. At 5µM, increase adiponectin secretion, phosphorylation of IRβ, GLUT4 translocation	[83]
F3	Anti-inflammatory against LPS/IFN-γ-stimulated peritoneal macrophages. Inhibit NO (IC₅₀ = 15µM), TNF-α, IL-12	[44]
F4	Anti-inflammatory against LPS/IFN-γ-stimulated peritoneal macrophages. Inhibit NO (IC₅₀ = 20µM), TNF-α, IL-12	[44]
K10	Anti-inflammatory against LPS-stimulated NO generation in RAW 264.7 macrophages. Inhibit NO (IC₅₀ = 41.2 µM). At 50 µM, decreased PGE₂ production by 26%.	[45]

Table 5: The reported biological activities of non-essential oil compounds of C. osmophloeum. NO: nitric oxide; TNF-α: tumor necrosis factor-α; IL-12: interleukin-12
Analyses of Secondary Metabolites, and Formulations of C. osmophloeum

A simple and accurate reversed-phase high-performance liquid chromatographic (RP-HPLC) separation method is developed for the determination of bioactive flavanol glycosides, namely kaempferol-3,7-O-α-L-rhamnopyranoside (kaempferitin, F1), and kaempferol 3-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-7-O-αL-rhamnopyranoside (F2), from the leaves of C. osmophloeum [84]. Separation of these two compounds is achieved with a Hypersil BDS C18 column by gradient elution using acetonitrile-water (30:70, v/v) containing 0.1% trifluoroacetic acid as a mobile phase. The flow rate and detection wavelength was set at 0.8 ml/min and 265 nm, respectively [84]. A HPLC method is used for the identification of F1 and kaempferol 3 - O - β - D - apiouforanosyl(1→2) - α - L - arabinofuranosyl - 7 - O - α - L - rhamnopyranoside (F3), from the hot - water extracts of C. osmophloeum leaves [74]. A simple HPLC separation method is reported for the quantitative determination trans-cinnamaldehyde (EO06) from the leaves of C. osmophloeum [51,54]. On the other hand, a recent study reported an ultrasound-assisted microextraction method for the rapid determination of essential oil, S(+)−linalool (EO12) from the leaves of C. osmophloeum ct. linalool [85]. The secondary metabolites of C. osmophloeum leaves, kaempferol glycosides are transformed into aglycone kaempferol during the 8 week ensilaged storage at 37°C [86]. A formulation developed by using the hot water extract of C. osmophloeum and the ethanolic extract from the solidstate cultured Antrodia cinnamomea mycelia, attenuated the metabolic syndrome through improved the abnormal blood glucose and balance the gut microbiota in high-fat diet-induced mouse model [87].

Conclusions/Future Prospects

The major compounds of C. osmophloeum are essential oils, and flavonoids. Based on a recent report, Cinnamomum essential oil containing cinnamaldehyde might be useful as a food preservative [88]. The self-life of C. osmophloeum essential oil is comparatively longer than that of C. cassia bark oil due to the existence of both eugenol and cinnamaldehyde in C. osmophloeum. Therefore, C. osmophloeum essential oil might useful as a natural food products preservative. The different clones (cultivars) may provide different amount of essential oil and flavonoids as well as the biological activities. Thus, the cultivars of C. osmophloeum need to take into account for the future medical and pharmaceutical research studies. It is interesting to mention that the C. osmophloeum leaves are rich source for the flavonoid compound, kaempferitin (kaempferol 3,7-dirhamnosside, 0.2428%, w/w) [44]. Kaempferitin (F1) has various interesting biological activities such as insulin-mimetic in glucose homeostasis, anti-inflammatory, anti-convulsant, anti-depressant, antihelmintic, and osteoporosis [89]. Kaempferitin also improves the meat quality of broiler chickens [89]. On the other hand, the C. osmophloeum leaves compounds, kaempferol 3-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-7-O-α-L-rhamnopyranoside (F2) and kaempferol 3-O-β-D-apiouforanosyl-(1→2)-α-L-arabinofuranosyl-7-O-α-L-rhamnopyranoside (F3) had an important role on the insulin signaling pathway through insulin-mimetic potential, stimulate the glucose transporter-4 (GLUT4), phosphorylation of IRβ, and activation of PI3-K, which are important for the treatment of diabetes and insulin resistance [89]. Therefore, C. osmophloeum extract enriched these compounds has the potential to be used as a new drug, or as a lead to develop novel therapeutic antidiabetic drugs. Although, various pharmacological activities are reported from the C. osmophloeum leaves, however, little is known about the specific active substances and their pharmacological action mechanisms. Therefore, systematic in vivo studies of can be done to better interpret the traditional usage of C. osmophloeum for diabetes, and to develop as a dietary supplement. Additionally, further in vivo studies are need to investigate the bioavailability, distribution and metabolism of C. osmophloeum.

References

1. Sharif-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, et al. (2021) Cinnamomum species: Bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front. Pharmacol. 12: 600139.
2. Yeh TF, Lin CY, Chang ST (2014) A potential low-coumarin cinnamon substitute: Cinnamomum osmophloeum leaves. J. Agric. Food Chem. 62:1706-1712.
3. Wang YH, Avula B, Nanayakkara NPD, Zhao JP, Khan IA (2013) Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J. Agric. Food Chem. 61:4470-4476.
4. Woehrlin F, Fry H, Abraham K, Preiss-Weigert A (2010) Quantification of flavoring constituents in cinnamon: high variation of coumarin in cassia bark from the German retail market and in authentic samples from Indonesia. J. Agric. Food Chem. 58:10568-10575.
5. Huang TC: In: Huang, T.C., Hsieh, C.F., Boufford, D.E., Kuoh, C.S., Ohashi, H., Peng, C.I., Tsai, J.L., Yang, K.C., Hsiao, A., Tsai, J.M. (Eds.) (2003) Flora of Taiwan, 2nd ed. National Science Council of the Republic of China, Taipei. 437–448.
6. Liu YC, Lu FY, Ou CH. Trees of Taiwan. Monographic Publication No 7, College of Agriculture, National ChungHsing University, Taichung, Taiwan, 1998: 136.
7. Bakar A, Yao PC, Ningrum V, Liu CT, Lee SC (2020) Beneficial biological activities of Cinnamomum osmophloeum and its potential use in the alleviation of oral mucositis: A systematic review. Biomedicines 8:3.
8. Ho KY (2006) Genetic variation and taxonomic relationship of Cinnamomum osmophloeum, C. macrolemon and C. insularianum (Lauraceae) in Taiwan. BioFormosa 41: 93-102.
9. Lin YL, Lee YR, Huang WK, Chang ST, Chu FH (2014) Characterization of S(+)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genetics & Genomes 10:75-86.
24.

Hsu KH, Huang WK, LinYL, Chang ST, Chu FH (2012) A genetic marker of 4-coumarate: coenzyme A ligase gene in the cinnamaldehyde-chemotype Cinnamomum osmophloeum. Holzforschung 66:897-904.

11.

Ho KY, Lee SC, Shiue SW, Hwang CC (2015) A comparison of nrDNA internal transcribed spacer (ITS) loci for phylogenetic inference and authentication among Cinnamomum osmophloeum and related species in Taiwan. Afr. J. Biotechnol 14:1088-1096.

12.

Yang HW, Hsu HC, Yang CK, Tsai MJ, Kuo YF (2019) Differeniating between morphologically similar species in genus Cinnamomum (Lauraceae) using deep convolutional neural networks. Comput Electron Agric 162:739-748.

13.

Hsu WK, Lee SC, L PL (2019) A useful technical application of the identification of nucleotide sequence polymorphisms and gene resources for Cinnamomum osmophloeum Kaneh. (Lauraceae). Forests 10:306.

14.

Yang BC, Lee MS, Sun FC, Chao HH, Chang WT, et al. (2020) Rapid identification of the indigenous medicinal crop Cinnamomum osmophloeum from various adulterant Cinnamomum species by DNA polymorphism analysis. Phcog. Mag. 16:64-68.

15.

Sadjrove NJ, Padilla-González GF, Phumthum M (2022) Fundamental chemistry of essential oils and volatile organic compounds, methods of analysis and authentication. Plants (Basel) 11:789.

16.

Wang CL, Yin HW (1991) The locational and seasonal variations of leaf essential oil from cultivated Cinnamomum osmophloeum Kaneh. Bull Taiwan Fores Res Ind New Ser 6:313-328.

17.

Yin HW (1991) Yield and composition variation of essential oil from leaves of different Cinnamomum osmophloeum Kanehira clones in Taiwan. Quart J Chin For 24:83-104.

18.

Lee HC, Cheng SS, Liu JY, Chang ST (2003) Chemical polymorphism of leaf essential oils from different geographical provenances of indigenous cinnamon (Cinnamomum osmophloeum). Quart J Chin For 36:411-422.

19.

Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395-4400.

20.

Wang SY, Chen PF, Chang ST (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology 96:813-818.

21.

Lin ZP (1992) The specific topic publication of Cinnamomum osmophloeum. Taipei: Taiwan Forestry Research Institute.

22.

Hu TW, Lin YT, Ho CK (1985) Natural variation of chemical components of the leaf oil of Cinnamomum osmophloeum Kaneh. Bull Taiwan For Res Inst Eng 76:296-313.

23.

Hussain RA, Kim J, Hu TW, Pezzuto JM, Soejarto DD, et al. (1986) Isolation of a highly sweet constituent from Cinnamomum osmophloeum leaves. Planta med 403-404.

24.

Fang JM, Chen SA, Cheng YS (1989) Quantitative analysis of the essential oil of Cinnamomum osmophloeum Kanehira. J Agric Food Chem 37:744-746.

25.

Chang ST, Chen PF, Chang SC (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77:123-127.

26.

Chang ST, Cheng SS (2002) Antitermitic activity of leaf essential oils and components from Cinnamomum osmophloeum. J Agric Food Chem 50:1389-1392.

27.

Cheng SS, Liu JY, Hsui YR, Chang ST (2006) Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioressour. Technol. 97:306-312.

28.

Lee SC, Chiu SJ, Yen JH, Lin TY, et al. (2010) DNA Barcoding Cinnamomum osmophloeum Kaneh based on the partial non-coding ITS2 region of ribosomal genes. J. Food Drug Anal. 18:7.

29.

Hsu FL, Li WH, Yu CW, Hsieh YC, Yang YF, et al. (2012) In vivo antioxidant activities of essential oils and their constituents from leaves of the Taiwanese Cinnamomum osmophloeum. J Agric Food Chem 60:3092-3097.

30.

Cheng BH, Lin CY, Yeh TF, Cheng SS, Chang ST (2012) Potential source of S-(-)-Linalool from Cinnamomum osmophloeum cl. linalool leaf. Essential oil profile and enantiomeric purity. J Agric Food Chem 60:7623-7628.

31.

Lee SC, Xu WX, Lin LY, Yang JJ, Liu CT (2013) Chemical composition and hypoglycemic and pancreasprotective effect of leaf essential oil from indigenous Cinnamon (Cinnamomum osmophloeum Kanehira). J Agric Food Chem 61:4905-4913.

32.

Mdoe FP, Cheng SS, Msangi S, Nkwengulila G, Chang ST, et al. (2014) Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae s.s. Parasites Vectors 7:209.

33.

Yeh HF, Luo CY, Lin CY, Cheng SS, Hsu YR et al. (2013) Methods for thermal stability enhancement of leaf essential oils and their main constituents from indigenous cinnamon (Cinnamomum osmophloeum). J Agric Food Chem 61:6293-6298.

34.

Cheng SS, Liu JY, Lin CY, Hsui YR, Lu MC, et al. (2008) Terminating red imported fire ants using Cinnamomum osmophloeum leaf essential oil. Bioresour Technol 99:889-893.

35.

Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, et al. (2009) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol 100:457-464.

36.

Lee HC, Cheng SS, Chang ST (2005) Antifungal property of the essential oils and their constituents from Cinnamon osmophloeum leaf against tree pathogenic fungi. J Sci Food Agric 85:2047-2053.

37.

Wang SY, Yang CW, Liao JW, Zhen WW, Chu FH, et al. (2008) Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytochemistry 15:940-945.

38.

Lin KH, Yeh SY, Lin MY, Shih MC, Yang KTU, et al. (2007) Major chemotypes and antioxidative activity of the leaf essential oils of Cinnamomum osmophloeum Kanehira. from a clonal orchard. Food Chemistry 105:133-139.

39.

Chao LK, Hua KF, Hsu HY, Cheng SS, Liu JY, et al. (2005) Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J Agric Food Chem 53:7274-7278.

40.

Lee SC, Wang SY, Li CC, Liu CT (2018) Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice. J Food Drug Anal 26: 211-220.
41. Tung YT, Chua MT, Wang SY, Chang ST (2008) Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioreosour Technol 99: 3908-3913.

42. Lin CY, Yeh TF, Cheng SS, Chang ST (2019) Complementary relationship between trans-cinnamaldehyde and trans-cinnamyl acetate and their seasonal variations in Cinnamomum osmophloeum ct. cinnamonaldehyde. Ind Crops Prod 127:172-178.

43. Wu TS, Chen ZS (1977) Constituents of Cinnamomum osmophloeum Kanehira. J Taiwan Pharm Assoc 29: 15-18.

44. Fang SH, Rao YK, Tzeng YM (2005) Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ-activated murine macrophages. Bioorg Med Chem 13:2381-2388.

45. Lin HY, Chang ST (2012) Kaempferol glycosides from the twigs of Cinnamomum osmophloeum and their nitr oxide production inhibitory activities. Carbohydr Res 364:49-53.

46. Wu CL, Chang HT, Hsui YR, Hsu YW, Liu JY, et al. (2013) Antioxidant-enriched leaf water extracts of Cinnamomum osmophloeum from eleven provenances and their bioactive flavonoid glycosides. BioResources 8:571-580.

47. Chen CY, Hsieh SL, Hsieh MM, Hsieh SF, Hsieh TJ (2004) Substantive chemical shift of rhamnosides from the stems of Cinnamomum osmophloeum. Chin Pharm J 56:141-146.

48. Chen TH, Huang YH, Lin JJ, Liao BC, Wang SY, et al. (2010) Cytotoxic lignan esters from Cinnamomum osmophloeum. Planta Med 76:613-619.

49. Lin GM, Lin HY, Hsu CY, Chang ST (2016) Structural characterization and bioactivity of proanthocyanidins from indigenous cinnamon (Cinnamomum osmophloeum). J Sci Food Agric 96:4749-4759.

50. Chen CY, Kao CL, Yeh HC, Wu HM, Li HT (2021) A novel cyclopropenone from Cinnamomum osmophloeum. Chem Nat Compd 57:848-850.

51. Fang SH, Rao YK, Tzeng YM (2004) Cytotoxic effect of trans-cinnamaldehyde from Cinnamomum osmophloeum leaves on human cancer cell lines. Int J Appl Sci Eng 2:136-147.

52. Tung YT, Yen PL, Lin CY, Chang ST (2010) Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon (Cinnamomum osmophloeum) leaves. Pharrm Biol 48:1130-1136.

53. Tung YT, Huang CC, Ho ST, Kuo YH, Lin CC, et al. (2011) Bioactive phytochemicals of leaf essential oils of Cinnamomum osmophloeum prevent lipopolysaccharide/d-galactosamine (LPS/d-GalN)-induced acute hepatitis in mice. J Agric Food Chem 59:8117-8123.

54. Lin SS, Lu TM, Chao PC, Lai YY, Tsai HT, et al. (2011) In vivo cytokine modulatory effects of cinnamaldehyde, the major constituent of leaf essential oil from Cinnamomum osmophloeum Kaneh. Phytother Res 25:1511-1518.

55. Lee SC, Hsu JS, Li CC, Chen KM, Liu CT (2015) Protective effect of leaf essential oil from Cinnamomum osmophloeum Kanehira on endotoxin-induced intestinal injury in mice associated with suppressed local expression of molecules in the signaling pathways of TLR4 and NLRP3. PLoS One 10:e0120700.

56. Huang CY, Yeh TF, Hsu FL, Lin CY, Chang ST, et al. (2018) Xanthine oxidase inhibitory activity and thermobility of cinnamaldehyde-chemotype leaf oil of Cinnamomum osmophloeum microencapsulated with β-cyclodextrin. Molecules 23:1107.

57. Chang HT, Chang ML, Chen YT, Hsu FL, et al. (2021) Evaluation of motor coordination and antidepressant activities of Cinnamomum osmophloeum ct. Linalool leaf oil in rodent model. Molecules 26:3037.

58. Chang HT, Lin CY, Hsu LS, Chang ST (2021) Thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oil and its stabilization by microencapsulation with β-cyclodextrin. Molecules, 26:409.

59. Huang TC, Fu HY, Ho CT, Tan D, Huang YT, et al. (2007) Induction of apoptosis by cinnamaldehyde from indigenous cinnamon Cinnamomum osmophloeum Kaneh through reactive oxygen species production, glutathione depletion, and caspase activation in human leukemia K562 cells. Food Chemistry 103:434-443.

60. Chao LK, Hua KF, Hsu HY, Cheng SS, Lin IF, et al. (2008) Cinnamaldehyde inhibits proinflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem Toxicol 46:220-231.

61. Cheng SS, Chung MJ, Chang YJ, Chang ST (2011) Antiatherogenic activities and chemical composition of Cinnamomum osmophloeum and Cinnamomum zeylanicum leaf essential oils. J. Wood Chem. Technol. 31: 73-87.

62. Lin CY, Cheng SS, Wu CL, Chang ST (2020) Contact and fungitoxic actions of trans-cinnamaldehyde against wood-decay fungi evaluated by using solid-phase microextraction. Wood Sci Technol 54:237-247.

63. Chen PF, Chang ST, Wu HH, Chang ST (2002) Antimicrobial activity of essential oils and their components from Cinnamomum osmophloeum leaves. Quart. J. Chin. For. 35:397-403.

64. Yu CW, Li WH, Hsu FL, Yen PL, Chang ST, et al. (2014) Essential oil alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans. J Agric Food Chem 62:6159-6165.

65. Fang SB, Ko HY, Huang ST, Huang CH, Li LT, et al. (2015) Cinnamomum osmophloeum extracts inhibit growth of Helicobacter pylori and postinfectious interleukin-8 expression in human gastric epithelial cells. RSC Adv 5:22097-22105.

66. Cheng BH, Sheen LY, Chang ST (2014) Evaluation of anxiolytic potency of essential oil and S-(+)-linalool from Cinnamomum osmophloeum ct. linalool leaves in mice. J Tradit Complement Med 5:27-34.

67. Cheng BH, Sheen LY, Chang ST (2017) Hypolipidemic effects of S-(+)- linalool and essential oil from Cinnamomum osmophloeum ct. linalool leaves in mice. J Tradit Complement Med 8:46-52.

68. Cheng SS, Lin CY, Chung MJ, Chen YJ, Chang ST (2019) Potential source of environmentally benign antifungal agents from Cinnamomum osmophloeum leaves against Phellinus noxius. Plant Protect Sci 55: 43-53.

69. Ahmad R, Chowdhury K, Kumar S, Irfan M, Reddy GS, et al. (2022) Diabetes mellitus: A path to amnesia, personality, and behavior change. Biology 11:382.

70. Rao YK, Fang SH, Tzeng YM, (2007) Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 114:78-85.

71. Lin TY, Liao JW, Chang ST, Wang SY (2011) Antidyslipidemic activity of hot-water extracts from leaves of Cinnamomum osmophloeum Kaneh. Phytother Res 25:1317-1322.
72. Lee MG, Kuo SY, Yen SY, Hsu HF, Leung CH, et al. (2015) Evaluation of Cinnamomum osmophloeum Kanehira extracts on tyrosinase suppressor, wound repair promoter, and antioxidant. Scientific World J 2015; 303415.

73. Lee SC, Chen CH, Yu CW, Chen HL, Huang WT, et al. (2016) Inhibitory effect of Cinnamomum osmophloeum Kanehira ethanol extracts on melanin synthesis via repression of tyrosinase expression. J Biosci Bioeng 122:263-269.

74. Lin, GM, Chen YH, Yen PL, Chang ST (2016) Anthyperglycemic and antioxidant activities of twig extract from Cinnamomum osmophloeum. J Tradit Complement Med 6:281-288.

75. Lin GM, Hsu CY, Chang ST (2018) Anthyperglycemic activities of twig extract of indigenous cinnamon (Cinnamomum osmophloeum) on high-fat diet and streptozotocin-induced hyperglycemic rats. J Sci Food Agric 98:5908-5915.

76. Liu SY, Huang CH, Shieh JC, Lee TL (2017) Cinnamomum osmophloeum Kanehira ethanol extracts prevents human liver-derived HepG2 cell death from oxidation stress by induction of ghrelin gene expression. J Biosci 42:439-448.

77. Wen TC, Li YS, Rajamani K, Harn HJ, Lin SZ, et al. (2018) Effect of Cinnamomum osmophloeum Kanehira leaf aqueous extract on dermal papilla cell proliferation and hair growth. Cell Transplant. 27:256-263.

78. Ho YS, Wu JY, Chang CY (2019) A new natural antioxidant biomaterial from Cinnamomum osmophloeum Kanehira leaves represses melanogenesis and protects against DNA damage. Antioxidants 8:474.

79. Bakar A, Ningrum V, Lee SC, Li CT, Hsieh CW, et al. (2021) Therapeutic effect of Cinnamomum osmophloeum leaf extract on oral mucositis model rats induced by 5-fluororacil via influencing IL-1β and IL-6 levels. Processes 9:615.

80. Shen YC, Chou CJ, Wang YH, Chen CF, Chou YC, et al. (2004) Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol. Lett. 231:137-143.

81. Chua MT, Tung YT, Chang ST (2008) Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresource Technol 99:1918-1925.

82. Tzeng YM, Chen K, Rao YK, Lee MJ (2009) Kaempferitrin activates the insulin signaling pathway and stimulates secretion of adiponectin in 3T3-L1 adipocytes. Eur J Pharmacol 607:27-34.

83. Lee MJ, Rao YK, Chen K, Lee YC, Tzeng YM (2009) Effect of flavonol glycosides from Cinnamomum osmophloeum leaves on adiponectin secretion and phosphorylation of insulin receptor-β in 3T3-L1 adipocytes. J Ethnopharmacol 128:79-85.

84. Rao YK, Geethangili M, Chan HS, Wu WS, Tzeng YM (2009) High-performance liquid chromatographic determination of kaempferol glycosides in Cinnamomum osmophloeum leaves. Int J Appl Sci Eng 7:1-9.

85. Chang TK, Lin, CY, Chen YJ. Chang ST (2020) Rapid determination of S- (+)-linalool in leaf of Cinnamomum osmophloeum ct. linalool using ultrasound-assisted microextraction. J Anal Sci Technol 11: 36.

86. Kurniawati AD, Huang TC, Kusnadi J (2017) Effect of fermentation on compositional changes of Cinnamomum osmophloeum Kaneh leaves. IOP Conf Ser: Mater Sci Eng 193:012013.

87. Wang YY, Hsieh YH, Kumar KJS, Hsieh HW, Lin CC, et al. (2020) The regulatory effects of a formulation of Cinnamomum osmophloeum Kaneh and Taiwanofungus camphoratus on metabolic syndrome and the gut microbiome. Plants 9:383.

88. Cava-Roda R, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB, Marín-Iniesta F (2021) Synergistic antimicrobial activities of combinations of vanillin and essential oils of cinnamon bark, cinnamon leaves, and cloves. Foods 10:1406.

89. Patel DK (2021) Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc Hematol Disord Drug Targets 21:104-114.