Evidence of unconventional pairing in the quasi two-dimensional \(\text{CuIr}_2\text{Te}_4 \) superconductor

T. Shang,\(^1,\,#1 \) Y. Chen,\(^2,\) W. Xie,\(^3,\,#4 \) D. J. Gawryluk,\(^5 \) R. Gupta,\(^6 \) R. Khasanov,\(^6 \) X. Y. Zhu,\(^1 \) H. Zhang,\(^1 \) Z. X. Zhen,\(^1 \) B. C. Yu,\(^7 \) Y. Zhou,\(^7 \) Y. Xu,\(^8 \) Q. F. Zhan,\(^1 \) E. Pomjakushina,\(^1 \) H. Q. Yuan,\(^2 \) and T. Shiroka\(^6,\,#8 \)

\(^1\)Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
\(^2\)Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China
\(^3\)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
\(^4\)Spallation Neutron Source Science Center, Dongguan 523803, China
\(^5\)Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
\(^6\)Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
\(^7\)Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), CAS, Suzhou 215123, China
\(^8\)Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland

The \(\text{CuIr}_2\text{Ru}_x\text{Te}_4 \) superconductors (with a \(T_c \) around 2.8 K) can host charge-density waves, whose onset and interplay with superconductivity are not well known at a microscopic level. Here, we report a comprehensive study of the \(x = 0 \) and 0.05 cases, whose superconductivity was characterized via electrical-resistivity-, magnetization-, and heat-capacity measurements, while their microscopic superconducting properties were studied via muon-spin rotation and relaxation (\(\mu SR \)). In \(\text{CuIr}_2\text{Ru}_x\text{Te}_4 \), both the temperature-dependent electronic specific heat and the superfluid density (determined via transverse-field \(\mu SR \)) are best described by a two-gap (\(s + d \))-wave model, comprising a nodeless gap and a gap with nodes. The multigap superconductivity is also supported by the temperature dependence of the upper critical field \(H_{c2}(T) \). However, under applied pressure, a charge-density-wave order starts to develop and, as a consequence, the superconductivity of \(\text{CuIr}_2\text{Te}_4 \) achieves a more conventional \(s \)-wave character. From a series of experiments, we provide ample evidence that the \(\text{CuIr}_2\text{Ru}_x\text{Te}_4 \) family belongs to the rare cases, where an unconventional superconducting pairing is found near a charge-density-wave quantum critical point.

1. INTRODUCTION

The interplay between different electronic ground states is one of the fundamental topics in current condensed-matter physics. Notably, the materials exhibiting high-temperature- or unconventional superconductivity (SC), as e.g., heavy fermions, cuprates, or iron-based superconductors [1–4], are particularly relevant in this respect since, in most of them, the different types of order are closely related or even competing. Materials which sustain a charge-density-wave (CDW) order are renowned as suitable systems for investigating the coexistence and interplay between these different ground states [5–9]. The \(A\text{T}X_4 \) chalcogenides (with \(A, T = \text{transition metals, and } X = \text{O, S, Se, Te} \)) belong to this class and exhibit varied crystal structures with intriguing electronic properties. In particular, the \(\text{CuT}X_4 \) family has attracted special attention, due to its multifaceted ground states, including also SC and CDW. For instance, \(\text{CuIr}_2\text{S}_4 \) undergoes a metal-to-insulator transition at 230 K [10–12], which is suppressed via Cu/Zn substitution to give rise to a dome-like SC phase (with maximum \(T_c = 3.4 \) K) [13]. Similarly, in the \(\text{CuIr}_2\text{Se}_4 \) case, superconductivity with \(T_c = 1.76 \) K can be induced via Ir/Pt substitution [14]. Further, \(\text{CuV}_2\text{S}_4 \) is known to exhibit three different CDW transitions (between 55 and 90 K), before it enters the SC phase at \(T_c = 4.4 \) K [15]. Although hundreds of \(A\text{T}X_4 \)-type materials have been discovered and examined, superconductivity has only been found in Cu-based sulpho- or seleno-spinels. An exception to this are telluride spinels (yet another chalcogen), which adopt lower dimensional crystal structures compared to the S- or Se based-spinels, with \(\text{CuIr}_2\text{Se}_4 \) recently shown to display SC [16]. Since, unlike its preceding group-16 elements, Te is a metalloid, we expect its properties to differ from those of S- or Se cases.

\(\text{CuIr}_2\text{Te}_4 \) crystallizes in a disordered trigonal structure with space group \(\text{P}3\text{m}1 \) (No. 164), where the Cu atoms and vacancies are randomly distributed in the Cu layers. \(\text{CuIr}_2\text{Te}_4 \) exhibits a quasi-two-dimensional crystal structure, where IrTe\(_2\) layers are intercalated by Cu planes (see inset in Fig. 1). Such “sandwich”-like structure is also encountered in \(\text{Cu}_{1-x}\text{Bi}_x\text{Se}_3 \) [17], a prime example of topological superconductor [18]. \(\text{CuIr}_2\text{Te}_4 \) undergoes a first-order CDW transition around 250 K, where both the electrical resistivity and magnetization exhibit clear anomalies, with a significant temperature hysteresis [16, 19]. More interestingly, by further decreasing the temperature below \(T_c = 2.5 \) K, \(\text{CuIr}_2\text{Te}_4 \) becomes a superconductor [16]. Upon substituting Ir with Ru, in \(\text{CuIr}_{2-x}\text{Ru}_x\text{Te}_4 \), the CDW order is quickly suppressed at \(x = 0.03 \), while the superconducting transition temperature increases up to 2.8 K (for \(x = 0.05 \), see Fig. 1) [20]. Similar features have been found also in Al-, Ti-, and Zr-substituted \(\text{CuIr}_2\text{Te}_4 \) [21–23]. Although at low doping Cr-substituted \(\text{CuIr}_2\text{Te}_4 \) samples show similar behavior to the above families, once the Cr-content is above 0.25 (i.e., \(x > 0.25 \)), a ferromagnetic order occurs [24]. Such dome-like superconducting phase resembles that of unconventional superconductors [1–4] and transition-metal dichalcogenides [5, 6]. As in them, also in \(\text{CuIr}_2\text{Te}_4 \), the dome may signal the presence of a CDW quantum critical point (QCP), with the increase in \(T_c \) reflecting the enhanced quantum fluctuations near the QCP. Upon increasing the Ru content above \(x = 0.3 \), the SC is destroyed. According to electronic band-structure calculations, the density of states near the Fermi level consists mostly of Te-p and Ir-d orbitals [16], both experiencing a large spin-orbit coupling, potentially leading to unconventional superconducting properties. Here, the competition between CDW and SC is possibly tuned by modifications of the density of states and Fermi

\[^{\#1}\) Corresponding author:
\[^{\#4}\) These authors contributed equally
\[^{\#8}\) These authors contributed equally
surface via chemical doping.

Since, in CuIr$_2$Te$_4$, both CDW and SC can be easily tuned via chemical substitution, this represents an ideal system for investigating the interplay between the two. Although certain properties of CuIr$_2-x$Ru$_x$Te$_4$ family have been examined, and electronic band-structure calculations are available, at a microscopic level, its superconducting properties, in particular the superconducting order parameter, have not been explored and await further investigation.

In this work, after synthesizing CuIr$_2$Ru$_x$Te$_4$ ($x = 0$ and 0.05) samples, we systematically studied their superconducting properties by means of electrical-resistivity-, magnetization-, and heat-capacity measurements, complemented by muon-spin relaxation and rotation (μSR) method. Certain measurements were also performed under external pressure (up to 2.5 GPa). Both the superfluid density and the electronic specific heat of CuIr$_2$Ru$_x$Te$_4$ are best described by a two-gap model, consisting of a nodeless gap and a gap with nodes. The evidence of a nodal gap is our key observation, which suggests the CuIr$_2-x$Ru$_x$Te$_4$ family as a remarkable system where competing orders can lead to unconventional SC behavior.

II. EXPERIMENTAL DETAILS

Polycrystalline CuIr$_2-x$Ru$_x$Te$_4$ samples, with $x = 0$ and 0.05, were prepared by the solid-state reaction method (the details can be found in Ref. 20). The crystal structure and phase purity were checked by powder x-ray diffraction, confirming the trigonal structure of CuIr$_2$Ru$_x$Te$_4$ (P$\bar{3}$m1, No. 164). The superconductivity was characterized by electrical-resistivity-, heat-capacity-, and magnetization measurements, performed on a Quantum Design physical property measurement system (PPMS) and a magnetic property measurement system (MPMS), respectively. For the electrical-resistivity- and ac-susceptibility measurements under pressure we employed a BeCu piston-cylinder cell, with Daphne oil 7373 used as the pressure transmitting medium.

The bulk μSR measurements were carried out at the multipurpose surface-muon spectrometer (Dolly) of the Swiss muon source at Paul Scherrer Institut, Villigen, Switzerland. In this study, we performed mostly transverse-field (TF-) μSR measurements, which allowed us to determine the temperature evolution of the magnetic penetration depth and thus, of the superfluid density. All the μSR spectra were collected upon heating and were analyzed by means of the musrfit software package [25].

III. RESULTS AND DISCUSSION

A. Lower- and upper critical fields

The bulk superconductivity of CuIr$_2-x$Ru$_x$Te$_4$ was first characterized by magnetic-susceptibility measurements, using both field-cooled (FC) and zero-field-cooled (ZFC) protocols in an applied field of 1 mT. As shown in Fig. 2(a), a clear diamagnetic signal appears below the superconducting transition at $T_c = 2.85$ and 2.7 K for CuIr$_2$Te$_4$ and CuIr$_{1.95}$Ru$_{0.05}$Te$_4$, respectively. The rather sharp transitions (with a $\Delta T \sim 0.1$ K, three times smaller than in a previous work [16]) indicate a good sample quality. After accounting for the demagnetizing factor, the superconducting shielding fraction of both samples is ~100%, indicative of bulk SC, as further confirmed by heat-capacity- and μSR measurements (see below). To determine the lower critical field H_{c1}, essential for performing μSR measurements on type-II superconductors, the field-dependent magnetization $M(H)$ was collected at various temperatures. The $M(H)$ curves are shown in Fig. 2(c) and 2(d) for CuIr$_2$Te$_4$ and CuIr$_{1.95}$Ru$_{0.05}$Te$_4$, respectively. The estimated H_{c1} values (accounting for the demagnetization factor) as a function of temperature are summarized in Fig. 2(b). They result in $\mu_0H_{c1}(0) = 13.5(3)$ and 11.9(3) mT for the pure and the Ru-substituted sample, respectively.

To investigate the upper critical field H_{c2} of CuIr$_2-x$Ru$_x$Te$_4$, measurements of the temperature-dependent electrical resis-
The analogous results for CuIr$_{1.95}$Ru$_{0.05}$Te$_4$. For the $\rho(T,H)$ measurements, T_c was defined as the onset of zero resistivity; while for the $C(T,H)/T$ measurements, T_c was defined as the midpoint of the superconducting transition (marked by dashed lines). As indicated by arrows in panels (c) and (f), H_{c2} was chosen as the field where the diamagnetic response in $M(H,T)$ vanishes.

The distinct specific-heat jump at T_c confirms again the bulk nature of SC in CuIr$_{2-x}$Ru$_x$Te$_4$. Upon increasing the magnetic field, the superconducting transition in $\rho(T)$ and $C(T)/T$ shifts to lower temperatures. In the $M(H,T)$ data, the diamagnetic signal vanishes once the applied magnetic field exceeds the upper critical field H_{c2}, as indicated by the arrows in Fig. 3(b) and 3(f). We found that the onset of zero resistivity corresponds to the midpoint of the superconducting transition in the specific heat (indicated by dashed lines in Fig. 3).

The upper critical fields H_{c2} vs. the reduced superconducting temperatures $T_c/T_c(0)$ are summarized in Figs. 4(a) and 4(b) for CuIr$_2$Te$_4$ and CuIr$_{1.95}$Ru$_{0.05}$Te$_4$, respectively. To determine the upper critical field at 0 K, the $H_{c2}(T)$ data were first analyzed by means of a Werthamer–Helfand–Hohenberg (WHH) model [26]. As shown by the solid lines in Fig. 4, the WHH model can describe the experimental data reasonably well up to 0.075 T. At higher magnetic fields, though, this model fails to follow the data and underestimates H_{c2} values. By contrast, $H_{c2}(T)$ seem to show a linear temperature dependence. As indicated by the dash-dotted lines, a linear fit agrees remarkably well with the experimental data and provides $\mu_0H_{c2}(0) = 0.212(1)$, and 0.241(1) T for CuIr$_2$Te$_4$ and CuIr$_{1.95}$Ru$_{0.05}$Te$_4$, respectively. Both H_{c2} values are well below the weak-coupling Pauli-limit value (i.e., $1.86T_c \approx 5$ T), suggesting that the orbital pair-breaking effect is dominant in CuIr$_{2-x}$Ru$_x$Te$_4$ superconductors. A linear $H_{c2}(T)$ over a wide temperature range is uncommon. Recently, e.g., it has been observed in infinite-layer nickelates La$_{1-x}$(Sr,Ca)$_x$NiO$_2$ and in noncentrosymmetric ThCO$_{1-x}$Ni$_x$C$_2$ superconductors [27–29], the latter exhibiting line nodes in the superconducting gap [30]. A linear $H_{c2}(T)$ deviates significantly from what is expected from a conventional BCS superconductor. As such, it strongly suggests an unconventional superconducting pairing in CuIr$_{2-x}$Ru$_x$Te$_4$.

In addition, in a single-band s-wave superconductor, the superfluid density is almost independent of temperature for $T < 1/3T_c$. As a result, in general, H_{c2} saturates at low temperatures, as clearly illustrated by the WHH model in Fig. 4. Conversely, in a multiband superconductor, the superfluid density in the non-dominant band (typically the one with the smaller gap) increases with decreasing temperature (even below $1/3T_c$), thus leading to a continuously increasing H_{c2}. For example, typical multiband superconductors, such as MgB$_2$ [31] and Lu$_2$Fe$_2$Si$_2$ [32], exhibit a non-saturating and almost linear $H_{c2}(T)$. Based on this, we also analyzed $H_{c2}(T)$ using a two-band (TB) model [33]. As indicated by dotted lines in Fig. 4, the TB model, too, shows a good agreement with the experimental data and yields comparable $H_{c2}(0)$ values. The multiband nature of CuIr$_{2-x}$Ru$_x$Te$_4$ is further confirmed by the temperature-dependent superfluid density and electronic specific heat (see below), as well as by electronic band-structure calculations, where multiple bands are identified to cross the Fermi level [16].
B. Transverse-field- and zero-field μSR

Since our pure- and Ru-doped CuIr₂Te₄ samples share similar features and there is no clear CDW transition in the pure case (see below), most of our μSR measurements were performed on CuIr₂Te₄. To investigate its superconducting pairing, we carried out systematic temperature-dependent TF-μSR measurements in applied magnetic fields of 30 and 80 mT. After cooling in an applied field, the TF-μSR spectra were collected upon heating. Representative TF-μSR spectra in the superconducting- and normal states of CuIr₂Te₄ are shown in Fig. 5 for TF-30 mT, while the TF-80 mT μSR spectra are reported in the Appendix A. In both cases, the normal-state spectra show essentially no damping, thus reflecting a uniform field distribution. Conversely, in the superconducting state (e.g., at 0.3 K), the significantly enhanced damping reflects the inhomogeneous field distribution due to the development of a flux-line lattice (FLL) [34-36]. The broadening of the field distribution in the SC phase is clearly visible in Fig. 5(b), where the fast-Fourier transform (FFT) spectra of the corresponding TF-30 mT μSR data are shown.

To properly describe the field distribution, the TF-μSR spectra were modeled using [37]:

\[A_{\text{TF}}(t) = \sum_{i=1}^{n} A_i \cos(\gamma_i B_i t + \phi) e^{-\gamma_i^2 t^2/2} + A_{bg} \cos(\gamma_{bg} B_t t + \phi). \]

(1)

Here \(A_i \) (97%), \(A_{bg} \) (3%) and \(B_i, B_{bg} \) are the initial asymmetries and local fields sensed by implanted muons in the sample and sample holder, \(\gamma_i/2\pi = 135.53 \text{ MHz/T} \) is the muon gyromagnetic ratio, \(\phi \) is a shared initial phase, and \(\gamma_i \) is the Gaussian relaxation rate of the \(i \)th component. Here, we find that, while two oscillations (i.e., \(n = 2 \)) are required to properly describe the TF-30 mT μSR spectra, a single oscillation is sufficient for the 80-mT spectra (see details in Appendix A). In the 30-mT case, the dashed-, dash-dotted-, and dotted lines in Fig. 5(b) represent the two components at 0.3 K (\(A_1 \) and \(A_2 \)) and the background signal (\(A_{bg} \)), respectively. A similar behavior has been found in other superconductors, e.g., Mo₃P or ReBe₂ [38, 39], where the μSR spectra collected at higher magnetic fields exhibit a more symmetric field distribution. For TF-30mT μSR, the effective Gaussian relaxation rate \(\sigma_{\text{eff}} \) can be calculated from:

\[\sigma_{\text{eff}}^2/\gamma_0^2 = \sum_{i=1}^{n} A_i \frac{1}{\gamma_i^2 - (B_i - B)^2} A_{bg} \]

[37], where \(B = (A_1 B_1 + A_2 B_2)/A_{bg} \) and \(A_{bg} = A_1 + A_2 \). Considering the constant nuclear relaxation rate \(\sigma_n \) in the narrow temperature range investigated here, confirmed also by ZF-μSR measurements (see below), the superconducting Gaussian relaxation rate can be extracted using \(\sigma_{sc} = \sqrt{\sigma_{\text{eff}}^2 - \sigma_n^2} \). Then, the superconducting gap value and its symmetry can be investigated by measuring the temperature-dependent \(\sigma_{sc} \), which is directly related to the magnetic penetration depth and thus the superfluid density. Since the upper critical field of CuIr₂Te₄ (∼0.2 T) is not significantly large compared to the applied TF fields (30 and 80 mT), the effective penetration depth \(\lambda_{\text{eff}} \) had to be calculated from \(\sigma_{sc} \) by considering the overlap of the vortex cores. Consequently, in our case, \(\lambda_{\text{eff}} \) was calculated by means of:

\[\sigma_{sc} = 0.172 \frac{\gamma_0 \hbar}{\pi m^*}(1 - h)(1 + 1.21(1 - \sqrt{H/H_{c2}}))^2 \lambda_{\text{eff}}^2 \]

[40, 41], where \(H_{c2} \) is the upper critical field, \(H_{c1} \) is the lower critical field, and \(H_{c2} \) is the upper critical field.

The inverse square of the magnetic penetration depth \(\lambda_{\text{eff}} \) is proportional to the superfluid density, i.e., \(\rho_{\text{sc}}(T) \propto \lambda_{\text{eff}}^{-2}(T) \) vs. the reduced temperature \(T/T_c \). It is shown in Fig. 6(a) and 6(b) for TF-30 mT and TF-80 mT, respectively. In both cases, the superfluid density remains weakly temperature dependent down to the lowest temperature, i.e., below 1/3\(T_c \). Such behavior indicates the presence of low-energy excitations and, hence, of nodes in the superconducting gap. To get further insight into the pairing symmetry, the superfluid density \(\rho_{\text{sc}}(T) \) was analyzed using different models, generally
The suppression of the temperature dependence of the superfluid density at low-T, the 2-gapped wave model was fitted by a two-gap \(\rho_{sc}(T) \) in the superfluid density calculated by considering a two-gap \((s+d)\)-wave model, respectively. The dashed- and dash-dotted lines show the individual contributions from the \(s \)- and \(d \)-type SC gaps for the \((s+d)\)-wave model. The fitting parameters are listed in Table I.

Features more evident in the superfluid density, nevertheless, further low-T measurements (below 0.3 K) are crucial.

To search for a possible breaking of the time-reversal symmetry (TRS) in the superconducting state of CuIr\(_2\)Te\(_4\), zero-field (ZF) \(\mu \)-SR measurements were performed in its normal- and superconducting states. As shown in Fig. 7, neither coherent oscillations nor fast decays could be identified in the spectra collected below (0.3 K) and above (5 K), thus excluding any type of magnetic order or fluctuations. In case of nonmagnetic materials, the absence of applied fields, the depolarization of muon spins is mainly determined by the randomly oriented nuclear magnetic moments. In CuIr\(_2\)Te\(_4\), the depolarization shown in Fig. 7 is more consistent with a Lorentzian decay. This suggests that the internal fields sensed by the implanted muons arise from the diluted (and tiny) nuclear moments present in CuIr\(_2\)Te\(_4\). Thus, the solid lines in Fig. 7 are fits to a Lorentzian Kubo-Toyabe relaxation function \(A(t) = A_1 \left[\frac{1}{2} + \frac{1}{2}(1 - A_2 \Delta T) e^{-\Delta T / T} \right] + A_{bg} \). Here, \(A_1 \) and \(A_{bg} \) are the same as in the TF-\(\mu \)-SR case [see Eq. (1)], while \(A_2 \) represents the ZF Lorentzian relaxation rate.

The derived relaxation rates in the normal- and superconducting state are almost identical, i.e., \(A_2 = 0.0263(16) \mu s^{-1} \) at 0.3 K, and \(A_2 = 0.0267(14) \mu s^{-1} \) at 5 K, as also reflected in the overlapping datasets. The lack of additional \(\mu \)-SR relaxation below \(T_c \) excludes a possible TRS breaking in the superconducting state of CuIr\(_2\)Te\(_4\). As a consequence, by taking into account the preserved TRS in CuIr\(_2\)Te\(_4\), we have to exclude the \((s+p)\)-wave model, since only the \((s+d)\)-wave model is compatible with the experiment.

C. Electronic specific heat

To further validate the superconducting pairing of CuIr\(_{2+x}\)Ru\(_x\)Te\(_4\), its zero-field electronic specific heat \(C_e / T \)

- (0.3 K) and the normal (5 K) states of CuIr\(_2\)Te\(_4\). The practically overlapping datasets indicate the absence of TRS breaking, whose occurrence would have resulted in a stronger decay in the 0.3 K case.

\[
\rho_{sc}(T) = 1 + 2 \int_{\Delta_k}^{\infty} \frac{E}{\sqrt{E^2 - \Delta_k^2}} \frac{\partial f}{\partial E} dE_{FS} \tag{2}
\]

Here, \(f = 1 + e^{E/\hbar^2 T} \) is the Fermi function and \(\langle \psi_{FS} \rangle \) represents an average over the Fermi surface [42]. \(\Delta_k(T) \) is the product of \(\Delta(T) \), the temperature-dependent gap, and \(g_k \), the angular dependence of the gap (see details in Table I). The temperature dependence of the gap is assumed to follow \(\Delta(T) = \Delta_0 \tanh(1.82[1.018(T_c/T - 1)]^{0.511}) \) [42, 43], where \(\Delta_0 \) is the gap value at 0 K.

Five different models, including single-gap \(s \)-, \(p \)-, and \(d \)-wave, and two-gap \((s+s)\)- and \((s+d)\)-wave, were used to analyze the \(\Delta(T) \) data. The derived fitting parameters are listed in Table I. As can be clearly seen in Fig. 6(a), the weak temperature dependence of the superfluid density at low-T rules out a line-node \(d \)-wave model (see blue line). In case of an \(s \)- or \(p \)-wave model, we also find a poor agreement with the data below \(T_c/T \sim 0.3 \) (see green and yellow lines). For the two-gap scenario, we consider here the so-called \(\alpha \)-model. In this case, the superfluid density can be described by \(\rho_{sc}(T) = \rho_{sc}^{\Delta s}(T) + 1 - w \rho_{sc}^{\Delta d}(T) \), where \(\rho_{sc}^{\Delta s} \) and \(\rho_{sc}^{\Delta d} \) are the superfluid densities related to the first \((\Delta')\) and second \((\Delta')\) gaps, and \(w \) is a relative weight. For each gap, \(\rho_{sc}(T) \) is given by Eq. (2). The superfluid density is best fitted by a two-gap \((s+d)\)-wave model (see black line), while the \((s+s)\)-wave model (see red line) shows a clear deviation from the low-T data [see enlarged plot in the inset of Fig. 6(a)]. This is also reflected in the smallest \(\chi^2 \) value for the \((s+d)\)-wave model (see details in Table I). It is noted that, though in general the \((s+p)\)-wave model also can describe the data reasonably well, it is inconsistent with the preserved time-reversal symmetry (TRS) in the superconducting state of CuIr\(_2\)Te\(_4\) (see below). This is different from the case of CaPtAs superconductor, where the \((s+p)\)-wave model was proposed to account for both the gap nodes and broken TRS in the superconducting state [44]. In the TF-80 mT \(\mu \)-SR case [see Fig. 6(b)], the increased magnetic field suppresses the \(s \)-type gap from 1.75 to 1.3 \(k_B T \), while the \(d \)-type gap and its weight remain the same (see weights reported in Table I).

The separate \(s \)- and \(d \)-components of the superfluid density are shown by dotted- and dash-dotted lines in Fig. 6(b). The suppression of the \(s \)-type gap at 80 mT makes the nodal keram.
was analyzed using the aforementioned models. To subtract the phonon contribution from the specific heat, the normal-state specific heat was fitted to the expression $C/T = \gamma_n + \beta T^2 + \delta T^4$, with γ_n the normal-state electronic-specific-heat coefficient, β and δ the phonon specific-heat coefficients (see dashed lines in the insets of Fig. 8). From this, we derive $\gamma_n = 13.1(7)$ mJ/mol-K2, $\beta = 1.63(6)$ mJ/mol-K4, and $\delta = 0.010(1)$ mJ/mol-K6 for CuIr$_2$Te$_4$, while for CuIr$_{1.95}$Ru$_{0.05}$Te$_4$, $\gamma_n = 12.6(1)$ mJ/mol-K2, $\beta = 1.66(1)$ mJ/mol-K4, and $\delta = 0.011(1)$ mJ/mol-K6. After subtracting the phonon contribution ($\beta T^2 + \delta T^4$) from the raw data, the electronic specific heat divided by γ_n, i.e., $C_e/\gamma_n T$, is obtained. This is shown in Fig. 8 vs. the reduced temperature T/T_c for both CuIr$_2$Te$_4$ and CuIr$_{1.95}$Ru$_{0.05}$Te$_4$.

The contribution of the superconducting phase to entropy can be calculated following the BCS expression [42]:

$$S(T) = -\frac{6\gamma_n}{\pi^2 k_B} \int_0^\infty \left[f \ln f + (1 - f) \ln(1 - f) \right] d\epsilon,$$

where f is the same as in Eq. (2). Then, the temperature-dependent electronic specific heat in the superconducting state can be calculated from $C_e = T \frac{dS}{dT}$. In case of a multiplegap model, the electronic specific heat can be modeled by $C_e(T)/T = wc_{\Delta^1}T/(1 - w)c_{\Delta^s}T/(1 - w)c_{\Delta^d}T$ [45]. Here, each term represents the contribution to the specific heat of the individual gaps, with w, Δ^1, and Δ^s being the same parameters for the superfluid-density fits. To analyze the electronic specific heat, we employ the same models used to fit the superfluid density. The fit parameters obtained in both cases are listed in Table I. Also for the specific heat, the single-gap s-, p-, and d-wave models deviate significantly from the data, reflected in larger χ^2 values. Conversely, the multigap models exhibit a much better agreement with the experimental data across the full temperature range, with the $(s + d)$-wave model (solid-black lines) showing the smallest deviation (i.e., smallest χ^2). While the $(s + s)$-wave model (solid-green lines) reproduces the data for $T/T_c \gtrsim 0.6$, it deviates from them at low temperatures, hence yielding a slightly larger χ^2 than the two-gap $(s + d)$-wave model (see Table I). In summary, both the temperature-dependent superfluid density and electronic specific heat are well described by a two-gap $(s + d)$-wave model, hence providing strong evidence about nodal superconductivity in CuIr$_{1-x}$Ru$_x$Te$_4$. Incidentally, the multigap features are also reflected in the temperature-dependent upper critical field of CuIr$_{1-x}$Ru$_x$Te$_4$ (see details in Fig. 4).

Table I. Summary of the superfluid-density- and electronic specific-heat data analysis using different models for CuIr$_2$Te$_4$. In the gap function g_δ, θ and ϕ are the polar and azimuthal angles in k-space. The SC gap values are in meV units, while the zero-temperature magnetic penetration depths λ_0 are in nm. In the last column, the reduced least-square deviations χ^2 are reported for the TF-μSR (30 mT) and C_e/T data, respectively. The weights listed in table refer to the first s-wave component.

Model	g_δ function	Gap type	λ_0	$\Delta_c(TF-\mu$SR)	$\Delta_c(C_e/T)$	χ^2 (μSR / C_e/T)
s-wave	1	nodeless	183	0.36	0.43	6.4 / >30
p-wave	sinθ	point-node	179	0.46	0.51	7.8 / 14.4
d-wave	cos2ϕ	line-node	170	0.54	0.57	23.1 / >30
s + s (weighted)	1, 1	nodeless	183	0.13/0.37(0.1)	0.12/0.44(0.15)	6.3 / 9.5
s + d (weighted)	1, cos2ϕ	line-node	181	0.36/0.52(0.70)	0.45/0.54(0.57)	4.7 / 5.1

D. Pressure effects

We also investigated the pressure effects on the normal- and superconducting states of CuIr$_2$Te$_4$. As shown in Fig. 9, the temperature-dependent electrical resistivity was measured at various external pressures up to 2.5 GPa. At ambient pressure, $\rho(T)$ shows the typical behavior of metallic compounds, with no peculiar features related to possible phase transitions in the normal state. Previous studies report a dramatic jump in $\rho(T)$ near 250 K, attributed to the CDW transition [16, 19, 20]. In our case, the absence of a CDW anomaly might be due to a slightly different Cu-content. Indeed, our preliminary electrical-resistivity measurements on CuIr$_{0.8}$Ru$_{0.2}$Te$_4$ reveal a clear CDW transition at ~190 K (see bottom inset in Fig. 9). As the pressure increases to ~1.2 GPa, $\rho(T)$ exhibits a broad hump around 100 K, most likely related to the CDW transition. As the pressure increases further, the hump shifts to higher temperatures. The top inset in Fig. 9 summarizes the dependence of the 50-K electrical resistivity on external pressure. First, the electrical resistivity increases with pressure. Then, above 1.2 GPa, where the resistive hump becomes more evident, it starts to saturate. Such behavior is consistent with previous chemical-pressure studies on CuIr$_2$Te$_4$, indicating that both S/Te and Se/Te substitutions favor the CDW order [46, 47].

Figure 10 shows the low-T (below 4 K) electrical resistivity and ac susceptibility collected at various applied pressures. As the pressure increases, the superconducting transition,
in both \(\rho(T) \) and \(\chi'(T) \), becomes broader and \(T_c \) is progressively suppressed to lower temperatures. Similar to the ambient-pressure case (see details in Fig. 3), the \(T_c \) is again defined as the onset of zero resistivity. This coincides with the onset of superconducting transition in \(\chi'(T) \) and is indicated by dashed lines in the two panels of Fig. 10. These highly consistent \(T_c \) values versus the applied pressure are summarized in Fig. 11(a). The \(T_c(P) \) exhibits a decreasing nonlinear trend, starting at 2.85 K at ambient pressure to reach 1.72 K at 2.5 GPa. As shown in Fig. 11(b), we measured also the electrical resistivity at 2.2 GPa under increasingly higher magnetic fields, up to 0.15 T. Interestingly, the \(H_{c2}(T) \) under applied pressure is significantly different from the ambient-pressure case. \(H_{c2}(T) \) at 2.2 GPa is well described by the WHH model [see solid line in Fig. 11(c)], more consistent with a single-band \(s \)-wave superconductor. Conversely, at ambient pressure, the linear dependence of \(H_{c2}(T) \) is attributed to multiple gaps and unconventional pairing. This suggests that pressure most likely suppresses the nodal component of superconductivity, thus changing its character from partially nodal towards fully gapped.

E. Discussion

According to the temperature-dependent superfluid density and zero-field electronic specific-heat data, CuIr\(_2\)Te\(_4\) exhibits a multigap SC, best described by an \((s+d)\)-wave model. In both cases, the presence of gap nodes and thus, of low-energy excitations, is reflected in a weak (i.e., non-constant) temperature dependence for \(T < 1/3T_c \) (see details in Fig. 6 and Fig. 8). The multigap nature of SC is further confirmed by the temperature-dependent upper critical field (see Fig. 4). In both CuIr\(_2\)Te\(_4\) and CuIr\(_{0.95}\)Ru\(_{0.05}\)Te\(_4\), the two-band model is clearly superior to the WHH model in the low-\(T \) and/or high-field region. In the CuIr\(_2\)Te\(_4\) case, also the electronic band-structure calculations support a multigap SC, since they indicate that multiple bands cross the Fermi level \([16]\). In our case, a linear \(H_{c2}(T) \) over a wide temperature range departs significantly from the \(H_{c2}(T) \) of most BCS superconductors and is likely attributed to the presence of nodes in the superconducting gap. As recently shown in ThCo\(_{1−x}\)Ni\(_x\)C\(_2\) superconductors, a linear \(H_{c2}(T) \) was proposed to be closely related to a \(d \)-wave pairing \([29, 30]\). Which electronic bands account for the \(s \)-wave and \(d \)-wave pairing in CuIr\(_2\)Te\(_4\) is not yet known and requires further theoretical investigation.

\(H_{c2}(T) \) measured under applied pressure differs significantly from that measured at ambient pressure. For instance, at 2.2 GPa, \(H_{c2}(T) \) follows very well the WHH model [see details in Fig. 11(c)], more consistent with a single-band \(s \)-wave superconductor. As proposed in Fig. 11(a), in the low-pressure region, CuIr\(_2\)Te\(_4\) shows a pure superconducting phase below \(T_c \). As the pressure increases towards 1.2 GPa, a CDW order starts to develop and, at higher applied pressures, the SC phase might coexist with the CDW phase, hence, becoming more conventional. The dashed line in Fig. 11(a) separates these qualitatively different SC phases. Eventually, at even higher pressures (around 4.5 GPa) the CDW phase becomes dominant and entirely suppresses the SC phase (to be confirmed experimentally). A similar phase diagram is shown by the isostructural Ir\(_{0.95}\)Pt\(_{0.05}\)Te\(_2\) compounds, where again the external pressure suppresses the superconductivity and gives rise to a CDW order \([48]\). In the low-pressure region, the unconventional \((s+d)\)-wave pairing of CuIr\(_2\)Te\(_4\) might reflect the ubiquitous charge fluctuations near the CDW quantum critical point. A further increase in pressure quenches these fluctuations and makes the \(s \)-wave pairing more favorable. By contrast, in the (Ca\(_{1−x}\)Sr\(_x\))\(_2\)Ir\(_3\)Sn\(_{13}\)
family, despite a similar phase diagram to CuIr$_2$Te$_4$ [49], the superconducting order parameter of both the pure-SC and the SC+CDW phase maintains the same s-wave character [50]. Consequently, CuIr$_2$Te$_4$ might represent a rare case, where the SC and SC+CDW phases show different superconducting pairings. To prove such scenario, it would be interesting to investigate the evolution of the superconducting pairing in CuIr$_2$Te$_4$ under applied pressure, e.g., via TF-μSR measurements under pressure. Alternatively, TF-μSR measurements on CuIr$_{2-x}$Ru$_x$Te$_4$ exhibit bulk superconductivity with $T_c = 2.85$ and 2.7 K, respectively. Both the temperature-dependent superfluid density and the electronic specific heat are best described by a two-gap model [here, (s + d)-wave], comprising a nodeless gap and a gap with nodes, rather than by single-band models. The multigap SC in CuIr$_{2-x}$Ru$_x$Te$_4$ is further supported by the temperature dependence of the upper critical field $H_{c2}(T)$. The application of external pressure promotes the formation of CDW order and shifts CuIr$_2$Te$_4$ towards a conventional s-wave SC behavior. The unconventional superconducting pairing in CuIr$_{2-x}$Ru$_x$Te$_4$ seems closely related to the charge fluctuations occurring near the CDW quantum critical point. Finally, the absence of spontaneous magnetic fields below the onset of superconductivity, as inferred from zero-field μSR measurements, confirms that time-reversal symmetry is preserved in the superconducting state of CuIr$_{2-x}$Ru$_x$Te$_4$.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Shanghai (Grant Nos. 21ZR1420500 and 21JC140-2300), the Fundamental Research Funds for the Central Universities, and the Schweizerische Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF) (Grant Nos. 200021_188706 and 206021_139082). H.Q.Y. acknowledges support from the National Key R&D Program of China (No. 2017YFA0303100 and No. 2016YFA0300202), the Key R&D Program of Zhejiang Province, China (No. 2021C01002), the National Natural Science Foundation of China (No. 11974306).

Appendix A: TF-80 mT μSR spectra

![TF-80 mT μSR spectra](image)

FIG. 12. (a) TF-μSR spectra collected in an applied field of 80 mT in both the superconducting- and normal states for CuIr$_2$Te$_4$. The respective real part of the Fourier transforms of TF-80 mT μSR spectra are shown in (b) and (c) for 0.3 K and 3.0 K, respectively. Solid lines are fits to Eq. (1) using a single oscillation.

[1] P. Monthoux, D. Pines, and G. G. Lonzarich, Superconductivity without phonons, Nature 450, 1177 (2007).

[2] I. I. Mazin, Superconductivity gets an iron boost, Nature 464, 183 (2010).

[3] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518, 179 (2015).

[4] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, What drives nematic order in iron-based superconductors?, Nat. Phys. 10, 97 (2014).

[5] E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, Superconductivity in Cu$_x$TiSe$_2$, Nat. Phys. 2, 544 (2006).

[6] K. Cho, M. Koczynkowski, S. Teknowijoyo, M. A. Tanatar, J. Guss, P. B. Gartin, J. M. Wilde, A. Kreyssig, R. J. McQueeney, A. I. Goldman, V. Mishra, P. J. Hirschfeld, and R. Prozorov, Using controlled disorder to probe the interplay between charge order and superconductivity in NbSe$_2$, Nat. Commun. 9, 2796 (2018).

[7] B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarre, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, CsV$_3$Sb$_2$: A Z$_2$ Topological Kagome Metal with a Superconducting Ground State, Phys. Rev. Lett. 125, 247002 (2020).

[8] Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang, T. A. Cochran, D. Muler, M. Litskovich, J.-Z. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Neupert, S. D. Wilson, and M. Z. Hasan, Unconventional chiral charge order in kagome superconductor KV$_2$Sb$_3$, Nat. Mater. 20, 1353 (2021).

[9] L. Nie, K. Sun, W. Ma, D. Song, L. Zheng, Z. Liang, P. Wu, F. Yu, J. Li, M. Shan, D. Zhao, S. Li, B. Kang, Z. Wu, Z. Zhou, K. Liu, Z. Xiang, J. Ying, Z. Wang, T. Wu, and X. Chen, Charge-density-wave-driven electronic nematicity in a kagome superconductor, Nature 604, 59 (2022).

[10] S. Nagata, T. Hagino, Y. Seki, and T. Bito, Metal-insulator transition in thiospinel CuIr$_2$S$_4$, Physica B: Condens. Matter 194-196, 1077 (1994).

[11] T. Furubayashi, T. Matsumoto, T. Hagino, and S. Nagata, Structural and magnetic studies of metal-insulator transition in thiospinel CuIr$_2$S$_4$, J. Phys. Soc. Jpn. 63, 3333 (1994).

[12] S. Nagata, N. Matsumoto, Y. Kato, T. Furubayashi, T. Matsumoto, J. P. Sanchez, and P. Vulliet, Metal-insulator transition
in the spinel-type CuIr$_2$(S$_{1−x}$Te$_x$)$_4$ system, Phys. Rev. B 58, 6844 (1998).

[13] H. Suzuki, T. Furubayashi, G. Cao, H. Kitazawa, A. Kamimura, K. Hirata, and T. Matsumoto, Metal-insulator transition and superconductivity in spinel-type system Cu$_{1−x}$Zn$_x$Ir$_2$Se$_4$, J. Phys. Soc. Jpn. 68, 2495 (1999).

[14] H. Luo, T. Klimeczuk, L. Mühler, L. Schoop, D. Hirai, M. K. Fucillo, C. Felser, and R. J. Cava, Superconductivity in the Cu(Ir$_{1−x}$Pt$_x$)$_2$Se$_4$ spinel, Phys. Rev. B 87, 214510 (2013).

[15] R. M. Fleming, F. J. DiSalvo, R. J. Cava, and J. V. Waszczak, Observation of charge-density waves in the cubic spinel structure CuIr$_2$Se$_4$, Phys. Rev. B 24, 2850 (1981).

[16] D. Yan, Y. Zeng, G. Wang, Y. Liu, J. Yin, T.-R. Chang, H. Lin, M. Wang, J. Ma, S. Jia, D.-X. Yao, and H. Luo, CuIr$_2$Te$_2$: A quasi-two-dimensional ternary telluride chalcogenide superconductor, arXiv:1908.05438 [cond-mat] (2019), arXiv:1908.05438.

[17] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Superconductivity in Cu$_{1−x}$Bi$_x$Se$_3$ and its implications for pairing in the undoped topological insulator, Phys. Rev. Lett. 104, 057001 (2010).

[18] S. Sasaki, M. Krienker, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Topological superconductivity in Cu$_{1−x}$Bi$_x$Se$_3$, Phys. Rev. Lett. 107, 217001 (2011).

[19] S. Nagata, N. Kijima, S. Ikeda, N. Matsumoto, R. Endoh, S. Chikazawa, I. Shimono, and H. Nishihara, Resistance anomaly in CuIr$_2$Te$_2$, J. Phys. Chem. Solids 60, 163 (1999).

[20] D. Yan, L. Zeng, Y. Lin, J. Yin, Y. He, X. Zhang, M. Huang, B. Shen, M. Wang, Y. Wang, D. Yao, and H. Luo, Superconductivity in Ru-doped CuIr$_2$Te$_2$ telluride chalcogenide, Phys. Rev. B 100, 174504 (2019).

[21] L. Zeng, D. Yan, Y. He, M. Boubeche, Y. Huang, X. Wang, and H. Luo, Effect of Ti substitution on the superconductivity of CuIr$_2$Te$_2$ telluride chalcogenide, J. Alloys Compd. 885, 160981 (2021).

[22] D. Yan, L. Zeng, Y. Zeng, Y. Lin, J. Yin, M. Wang, Y. Wang, D. Yao, and H. Luo, Superconductivity in CuIr$_2$Te$_2$Al$_x$Te$_{1−x}$ telluride chalcogenides, Chin. Phys. B 31, 037406 (2022).

[23] L. Zeng, Y. Ji, D. Yu, S. Guo, Y. He, K. Li, Y. Huang, C. Zhang, P. Yu, S. Luo, H. Wang, and H. Luo, Negative chemical pressure effect on the superconductivity and charge density wave of Cu$_3$Ir$_2$Te$_2$, Z. Phys. Chem. 126, 3705 (2022).

[24] L. Zeng, X. Hu, N. Wang, J. Sun, P. Yang, M. Boubeche, S. Luo, Y. He, J. Cheng, D.-X. Yao, and H. Luo, Interplay between charge-density-wave, superconductivity, and ferromagnetism in CuIr$_2$Se$_3$–Cr$_x$Te$_{1−x}$ chalcogenides, J. Phys. Chem. Lett. 13, 2442 (2022).

[25] A. Suter and B. M. Wojek, Murffit: A free platform-independent framework for μSR data analysis, Phys. Procedia 30, 69 (2012).

[26] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Temperature and purity dependence of the superconductor critical field, H$_c2$, III. Electron spin and spin-orbit effects, Phys. Rev. 147, 295 (1966).

[27] W. Sun, Y. Li, R. Liu, J. Yang, J. Li, S. Yan, H. Sun, W. Guo, Z. Gu, Y. Deng, X. Wang, and Y. Nie, Evidence for quasi-two-dimensional superconductivity in infinite-layer nickelates, arXiv:2204.13264 [cond-mat] (2022), arXiv:2204.13264.

[28] L. E. Chow, K. Y. Yip, M. Pierre, S. W. Zeng, Z. T. Zhang, T. Heil, J. Deuschle, P. Nandi, S. K. Sudheesh, Z. S. Lim, Z. Y. Luo, L. Klimczuk, T. Sun, J. Sun, and A. Junod, Phenomenological two-gap model for the specific heat of MgB$_2$, Europhys. Lett. 56, 856 (2001).

[29] M. Boubeche, N. Wang, J. Sun, P. Yang, L. Zeng, Q. Li, Y. He, S. Luo, J. Cheng, Y. Peng, and H. Luo, Anomalous charge density wave state evolution and dome-like superconductivity in CuIr$_2$Te$_2$–Se$_{1−x}$ chalcogenides, Supercond. Sci. Technol. 34, 115005 (2021).

[30] M. Boubeche, N. Wang, J. Sun, P. Yang, L. Zeng, S. Luo, Y. He, J. Yu, M. Wang, J. Cheng, and H. Luo, Superconducting dome associated with the suppression and re-emergence of charge density wave states upon sulfur substitution in CuIr$_2$Te$_2$–S$_{1−x}$ chalcogenides, J. Phys. Condens. Matter 34, 205602 (2022).

[31] O. Iwashko, L. Yang, D. Estraz, E. Martino, Y. Chen, C. Y. Guo, H. Q. Yuan, A. Pisoni, P. Matus, S. Pyon, K. Kudo, M. Nohara, L. Forró, H. M. Rannou, M. Hücke, M. v. Zimmermann,
and J. Chang, Charge-stripe order and superconductivity in \(\text{Ir}_{1-x}\text{Pt}_x\text{Te}_2 \), Sci. Rep. 7, 17157 (2017).

[49] L. E. Klintberg, S. K. Goh, P. L. Alireza, P. J. Saines, D. A. Tompsett, P. W. Logg, J. Yang, B. Chen, K. Yoshimura, and F. M. Grosche, Pressure- and composition-induced structural quantum phase transition in the cubic superconductor \((\text{Ca,Str})_{3}\text{Ir}_4\text{Sn}_{13}\), Phys. Rev. Lett. 109, 237008 (2012).

[50] P. K. Biswas, Z. Guguchia, R. Khasanov, M. Chinotti, L. Li, K. Wang, C. Petrovic, and E. Morenzoni, Strong enhancement of \(s\)-wave superconductivity near a quantum critical point of \(\text{Ca}_3\text{Ir}_4\text{Sn}_{13}\), Phys. Rev. B 92, 195122 (2015).