Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

Richard J. Epstein
Laboratory of Computational Oncology, Department of Medicine, The University of Hong Kong, Hong Kong. Current address: Department of Medical Oncology, St Vincent’s Hospital, Sydney, Australia. Email: repstein@stvincents.com.au

Abstract: Two problems now threaten the future of anticancer drug development: (i) the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii) high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic) drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

Keywords: bibliometrics, medical informatics, drug development, clinical trials, oncology
Introduction
The development of massive online text archives and biomedical data warehouses over the last decade has created new opportunities to mine useful information from fuzzy datasets comprising both statistical and semantic information.1–3 Association rules have been developed to extend fuzzy set theory to text-mining; at the simplest level, identification of a given set (e.g. both A and B not C) at higher-than-expected frequency provides support for the probability of a causal link between A and B in the absence of C, albeit with varying confidence levels quantifiable as membership functions or degrees of truth. The non-digital algorithms so derived may generate value from masses of noisy data, in effect representing Bayesian interpretations of semantic information.4 Examples include tracking of influenza epidemics from search engine patterns,5 the epidemiologic surveillance of AIDS,6 monitoring of the blogosphere,7 academic publication analysis,8 and assessment of scientific merit based on impact factors.9

The causality of such associations gleaned from text-mining of the oncology literature is readily illustrated a posteriori. Based on existing knowledge we predict, for example, that the association of the string {papillomavirus} with {cervical cancer} will be greater than with {nasopharyngeal cancer}, whereas the reverse will be true for {Epstein-Barr virus}. Similarly, we may infer that lung cancer is more lethal than breast cancer, given that the texts {lung cancer} and {mortality} associate 50% more often than {breast cancer} and {mortality}, whereas the association between these diseases and {incidence} is similar ($\chi^2 = 1059.99$, df = 1, $p < 0.01$; Supplement S1). The “efficient citation hypothesis” so implied can be used to test research strategies that are becoming impractically slow and/or expensive to validate using historical approaches.

New anticancer drug development, by virtue of its target-specific nature, should readily lend itself to such semi-digital analysis.10 Returns on investment in applied cancer research have been declining in recent years due to a decline of blockbuster drug frequency.11 This has led in turn to progressive escalation of the cost for bringing a therapeutic to market, which now approaches US$1bn per FDA-licensed product;12 such expense is in turn handed on to the health-care consumer.13 Part of this cost relates to the inefficiency of the modern clinical trial system, for which problem many investigators are seeking fresh approaches such as multi-arm designs,14 personalized medicine or pharmacodiagnostics.15 A related problem specific to the cancer field is that selection of drugs for costly phase III trials remains based exclusively on demonstration of drug ‘activity’ quantified as tumor shrinkage, or response.16 This endpoint, although convincingly associated with short-term therapeutic benefit, may lack sensitivity for detecting the metastasis-inhibiting activity of non-tumorilytic drugs—which could well correlate strongly with survival benefit, and be better predicted by biomarker expression.17 Hence, the present study seeks to test how low-cost text-mining may improve applied cancer research feasibility while reducing investment risk.

Methods
Searches were undertaken using the latest text-based search-and-retrieval version of PubMed—a service of the National Library of Medicine developed by the National Center for Biotechnology Information used to integrate the major databases (including PubMed Central, Journals, Books, OMIM). The Entrez cross database search page was used to access the Entrez Global Query database search engine. A search across the Entrez database was performed by entering one or more search term(s) or phrase(s) to execute the search.

Using this approach, the PubMed database was serially interrogated using the terms representing both the primary set of interest (P) and the secondary sets of interest (S1, S2, etc.), resulting in identification of the common set of interest (C1, C2, etc.). Arithmetical correction was made for different frequencies of S1, S2, etc., permitting calculation of the expected value of C for a given S intersection given knowledge of previous values of C and assuming the null hypothesis. The ratio of C2 to C1 was then considered the multiplier (M2) by which the null hypothesis for S2 (compared to S1) was tested. Non-parametric statistical analysis was performed by chi-square calculation.

Results
An initial example of how disease biology or phenotype can be predicted by text-mining is presented in Figure 1 and Supplement S2, which illustrate that the clinical complication of finger clubbing is more often associated with lung tumors of either squamous
cell carcinoma or adenocarcinoma histology than with small-cell tumors ($\chi^2 = 37.96, df = 2, p < 0.01$). Similarly, it is possible to show that ‘brain metastasis’ text in breast cancer is 80-fold more strongly associated with tumor HER2 expression than with ER expression ($\chi^2 = 73.461, df = 1, p < 0.01; \text{Supplement S3A}$). By the same token, ‘peritoneal carcinomatosis’ is more often associated with primary invasive lobular cancers than with invasive ductal cancers ($\chi^2 = 18.75, df = 1, p < 0.01$), as is the molecule ‘E-cadherin’ ($\chi^2 = 92.98, df = 1, p < 0.01; \text{Supplement S3B}$), expression of which is known to be selectively lost in the former tumor type. In contrast, there is no significant difference between the frequency of association of ‘E-cadherin’ and ‘peritoneal metastases’ ($\chi^2 = 0.42, df = 1, p = 0.5169; \text{Supplement S3B}$), consistent with the possibility that these molecular and clinical terms are causal co-variables. Such text associations can thus generate or support hypotheses concerning biomarkers in a way that may be relevant to designing therapeutic strategies in clinical research.

Molecular biological issues may also be addressed by text-mining which shows, for example, that the p53 signalling (apoptotic) pathway is 70% more strongly associated with the ARF gene of the two-gene CDKN2A locus than is its INK4A partner ($\chi^2 = 63.19, df = 1, p < 0.01; \text{Supplement S4}$); this suggests that these two sub-genes mediate distinct cell choices relating to cell death vs. cell-cycle delay/repair, which could prove relevant to biomarker development. Such an approach can be extended to mapping multiple phenotypes, both clinical and molecular, as depicted in Figure 2; the ‘word picture’ so created by desktop text-mining is used here to polarize the phenotypes of two otherwise generic clinical entities, adenocarcinoma and squamous cell carcinoma.

This strategy can be further applied to questions relating to clinical trial design. Imagine, for example, that there are two novel candidate anticancer therapeutics: one is an antagonist to insulin-like growth factor-1 (IGF1), and the other an inhibitor of signalling via the hepatocyte growth factor (HGF, scatter factor, c-met ligand) pathway. A simple text-mining search shows that HGF is eight-fold more strongly associated with tumor metastasis, whereas IGF1 is three times more strongly associated with drug resistance ($\chi^2 = 564.15, df = 1, p < 0.01; \text{Supplement S5}$). Such data may reasonably suggest to an oncologist that clinical trials of the HGF antagonist should test the hypothesis that it reduces metastasis in one or more tissue sites—either by reducing time to progression and/or improving overall survival, perhaps when used as a maintenance or adjuvant therapy—rather than judging it solely on the basis of tumor shrinkage in progressive metastatic disease (see below). The IGF1 inhibitor, on the other hand, may be best used concurrently with chemotherapy as a sensitizer in metastatic or neoadjuvant settings, in which contexts tumor shrinkage may be a sensitive measure of its value.

Table 1 provides another illustration of hypothesis generation relevant to clinical trials using similar secondary data sets. In this case, a company has drugs of two classes, either tyrosine kinase inhibitors (TKIs) or metalloprotease inhibitors (MPIs). The question is again raised: is there any difference in the respective likelihoods that one drug class will be more active in causing tumor responses (i.e. antagonizing replication) while the other may be less active in its antimitogenic action but more active in suppressing metastasis? As shown, the text-mined association of MPIs with antitemetastatic (vs. antiproliferative) key words is 6.5-fold that of TKIs, whereas the reverse trend is true for antiproliferative terms ($\chi^2 = 2099.6, df = 1, p < 0.01$); the multiplicative difference of the two trends is about 15-fold (as is true for the strings {kinase} and {protease} alone, $\chi^2 = 4889.64, df = 1, p < 0.01; \text{Supplement S6}$). Hence, one could
reasonably hypothesise that clinical trials evaluating the anticancer efficacy of protease inhibitors may (i) best evaluate parameters relevant to metastasis prevention (e.g. time to progression) rather than response, and (ii) use maintenance/adjuvant rather than induction schedules in their clinical trial designs.

This approach could also be applied to prediction of targeted drug efficacy for different disease subtypes prior to the advent of a validated biomarker. Consider the scenario in which a company has a promising mTOR pathway inhibitor and is wanting to prioritise its phase 2–3 clinical trial strategy. Since the Akt proto-oncogene is an important node in the mTOR signalling network, we may begin by characterising the text-mined associations of different tumor subtypes with Akt; this analysis shows that the strongest association is with prostate cancer (Table 2).

In contrast, when assessing the associations of the mTOR pathway inhibitor temsirolimus, the strongest association is with its licensed indication in renal cell carcinoma. Although not surprising, this difference raises the commercially relevant hypothesis that a ‘second use’ for mTOR inhibitors could well be confirmed for other malignancies including, though not limited to, prostate cancer.

The associations of different treatment approaches with text-mined costs and benefits may also be compared using this seamless approach. Figure 3 shows the comparative quantitative associations of the secondary variable {overall survival benefit} with the primary variables of either {adjuvant cancer therapy} in column 1, {palliative cancer therapy} in column 2, {maintenance cancer therapy} in column 3, or {preventive cancer therapy} in column 4, and reveals a steady decline in that order. In contrast, this trend is reversed when {cost-effectiveness} is substituted as the secondary variable. This striking difference suggests that third-party payers could scrutinize the value of adjuvant treatment claims more intensively, while subsidizing preventive interventions for healthy individuals with greater enthusiasm. For companies under pressure to prove survival benefits for product licensing, on the other hand, these data suggest that drugs used in palliative or maintenance settings may deliver more easily defended ratios of QALY to unit cost than adjuvant studies (as well as being cheaper to conduct in the first instance). The possibility is also raised that biologically-targeted preventive agents could become the backbone of the blockbuster drug market.

Discussion

The central finding of this study is an exciting one for modern researchers: namely, that the sudden availability of huge online text-based databases permits novel, cheap and potentially important research to be conducted by computer-based researchers, thereby expanding the scope and accessibility of research methodology. Moreover, by extending this approach, innovative informatics strategies may be developed and automated over time to derive value from otherwise wasted informational resources. This is true not only for curiosity-driven academic research but, as shown here, also for commercially-driven applied science.
Online analysis of published research

Table 2. Association of tumor subtypes with a putative surrogate biomarker for the mTOR pathway, Akt, showing that the strongest association is with prostate cancer. As expected, the much stronger correlation of the mTOR inhibitor temsirolimus, which is already licensed for use in renal cell cancer, is with the latter malignancy. P, primary set size; C, intersecting set size.

	Breast cancer	Renal cancer	Colorectal cancer	Prostate cancer	Lung cancer	Endometrial cancer
P	196883	75450	117408	78484	166465	20194
AND Akt	1208	152	349	719	638	117
(100 × C)	0.61	0.20	0.30	0.92	0.38	0.58
AND temsirolimus	26	129	3	8	3	3
(100 × C)	0.01	0.17	0.003	0.01	0.002	0.015

It must be emphasized, however, that numerous pitfalls await the unwary who seek to ascribe causality to text associations without rigorous exclusion of confounders (to appreciate this, one has only to consider the famous ‘beer-and-diapers’ market research anecdote).¹⁹ The challenges include unambiguous identification of genes or other molecules, leading to false-positive data inclusions, and failure of current text-mining systems to achieve 100% recall, leading to false-negative loss of sensitivity. Hence, unless carefully excluded, synonyms and name variations may cause significant problems with the accuracy of text-based data mining.

An additional problem relates to system ‘noise’ which, in any text-mined database, may be expected to increase as the age of the data archive increases. To address the confounding effect of ageing data will involve inevitable compromises between database size and data novelty; on the other hand, more recent data may be subject to dispute or lack of replication, so may be less reliable than more durable (and hence, text-repetitive) data. A further limitation is that text terms may change over time, with molecules or drugs being renamed, or having different names in different languages or countries. Such limitations require prior knowledge on the part of the investigator(s) to enable corrective action in anticipation.

How can a purely text-mining approach distinguish positive and negative associations? A given article examining two variables may not report a simple positive association, but rather the lack of an association or even an inverse or negative association; text-mining will not distinguish these contingencies, however. In general, however, it is reasonable to assume that positive associations will vastly outnumber negative associations when measured by text-mining, if only because negative associations tend to be less interesting to readers (and hence to journals and publishers) who may in general be keener to understand causality than exceptions or confounders.

Notwithstanding these important caveats, it is becoming clear that improved knowledge management is essential to regaining momentum in pharmaceutical R&D,²⁰ and this unmet need requires fresh approaches. The advantages of the text-mining approach described here are that it is simple, cheap, fast, objective, and powerful. Its disadvantages are at least as plentiful, but perhaps the main ones are (i) that it is easily confounded by overlooking nonrandom associations which may not be obvious to all investigators, and (ii) that careful thought and broad

![Figure 3. Text-mined comparison of survival vs. cost data for different cancer treatment modes, suggesting that adjuvant therapies are most strongly linked to survival benefit (open columns) but least to cost-effectiveness (solid columns), whereas preventive treatments have the opposite associations. Palliative and maintenance treatments appear intermediate for both secondary endpoints.](image-url)
background knowledge are needed to frame a series of questions that can provide a useful association. These limitations are sufficiently serious to restrict the use of such approaches for now to hypothesis generation, but it seems reasonable to expect that methodologic refinement and practical experience will lead to far more sophisticated approaches that will eventually be incorporated into routine research practice. Indeed, it may even become possible to devise programs that scan scientific literature and experimental data in the background, generating associations and hypotheses at different thresholds of certainty and improbability (creativity). In some ways this would be an expected outcome of the information explosion which now produces more data than any individual can hope to absorb and evaluate.21

The examples given here relate to the field of oncology, but could just as readily be applied to other therapeutic areas such as cardiovascular or neurological disease. In the same way that credit card companies and search engines now scan electronic data for commercially useful patterns, so can scientists now begin looking beyond their own laboratory benches in an effort to exploit the informatic power of modern databases. Although the challenges of text-data specificity and sensitivity are not to be underestimated, we may discover that the fruits of the genomic revolution will be greater than any of us can yet conceive.

Acknowledgements
I thank Joyce Mak for statistical analysis, and Professors Karen Lam and Raymond Liang for support.

Conflict of Interest Statement
There is no conflict of interest.

References
1. Brossette SE, et al. Association rules and data mining in hospital infection control and public health surveillance. J Am Med Inform Assoc. 1998;5(4):373–81.
2. Delgado M, et al. Mining association rules with improved semantics in medical databases. Artif Intell Med. 2001;21(1–3):241–5.
3. Stilou S, et al. Mining association rules from clinical databases: an intelligent diagnostic process in healthcare. Stud Health Technol Inform. 2001; 84(Pt 2):1399–403.
4. Zadeh LA. From search engines to question-answering systems—the problems of word knowledge, relevance and deduction. In Fuzzy Logic and the Semantic Web (Sanchez E, ed.), Elsevier. 2006.
5. Ginsberg J, et al. Detecting influenza epidemics using search engine query data. Nature. 2008.
6. Macias-Chapula CA. AIDS in Haiti: a bibliometric analysis. Bull Med Libr Assoc. 2000;88(1):56–61.
7. Lazer D, et al. Social science. Computational social science. Science. 2009;323(5915):721–3.
8. Glazier R, et al. Arthritis and rheumatism are neglected health priorities: a bibliometric study. J Rheumatol. 2001;28(4):706–11.
9. Balila ML, et al. Can bibliometric indicators assess science and technology? The Western World, Italian institutions, and biophysics as test cases. Cell Biophys. 1989;14(1):99–116.
10. Simon R. The use of genomics in clinical trial design. Clin Cancer Res. 2008;14(19):5984–93.
11. Epstein RJ. Growth of the Asian health-care market: global implications for the pharmaceutical industry. Nat Rev Drug Discov. 2007;6(10):785–92.
12. Workman P. How much gets there and what does it do? The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des. 2003;9(11):891–902.
13. Wallner PE, Konski A. A changing paradigm in the study and adoption of emerging health care technologies: coverage with evidence development. J Am Coll Radiol. 2008;5(11):1125–9.
14. Parmar MK, et al. Speeding up the evaluation of new agents in cancer. J Natl Cancer Inst. 2008;100(17):1204–14.
15. Jorgensen JT. Are we approaching the post-blockbuster era? Pharmacodiagnostics and rational drug development. Expert Rev Mol Diagn. 2008;8(6):689–95.
16. El-Maraghi RH, Eisenhauer EA. Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol. 2008;26(8):1346–54.
17. Chau CH, et al. Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res. 2008;14(19):5967–76.
18. Epstein RJ. Maintenance therapy to suppress micrometastasis: the new challenge for adjuvant cancer treatment. Clin Cancer Res. 2005;11(15):5337–41.
19. Whitehorn M. (www.theregister.co.uk/2006/08/15/beer_diapers/) The parable of the beer and diapers: never let the facts get in the way of a good story. 2006.
20. Torr-Brown S. Advances in knowledge management for pharmaceutical research and development. Curr Opin Drug Discov Devel. 2005;8(3):316–22.
21. Epstein RJ. Learning from the problems of problem-based learning. BMC Med Educ. 2004;4:1.
Online analysis of published research

Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

Richard J. Epstein

Supplementary Data

Table S1. Data upon which the conclusions in paragraph 2 of the Introduction are based.

	AND incidence	AND mortality
Breast cancer	(197552)	39175
Lung cancer	(166982)	33320
	(39318)	(29348)
M	1.18 (NS)	1.49

Text associations suggesting that lung cancer is a significantly more lethal disease than is breast cancer ($\chi^2 = 1059.99$, df = 1, $p < 0.01$).

Table S2. Text data upon which figure 1 is based.

	AND	AND	M	
Lung cancer				
Squamous cell carcinoma	16493	Finger clubbing	54	3.27
Small-cell carcinoma	34255		42	1.23
Adenocarcinoma	28885		101	3.50

Text-mining data showing that (small-cell lung cancer) is significantly less often associated with (finger clubbing) than are the other two histologic labels ($\chi^2 = 37.96$, df = 2, $p < 0.01$).

Table S3A. Text-mined data alluded to in the text of para 1, Results. Text association of HER2 expression in breast cancer with brain metastasis.

	AND HER2-positive	AND ER-positive
Breast cancer	473	2037
AND Brain metastases	19	1
M1	4.02	0.05
M2		80.4

Data set showing a significantly stronger association of (brain metastases) in (breast cancer) associated with the term (HER2-positive) than with (ER-positive) ($\chi^2 = 73.461$, df = 1, $p < 0.01$).

Table S3B. Association of lobular breast cancer histology and (E-cadherin) text string with peritoneal metastasis.

	AND invasive ductal	AND invasive lobular
Breast cancer	13310	4649
AND Peritoneal metastases	28	30
Breast cancer	13310	4649
AND E-cadherin	243	209
E-cadherin	243	209
AND Peritoneal metastases	28	30

$\chi^2 = 18.75$, df = 1, $p < 0.01$.

Data showing stronger association of (invasive lobular cancer) with (peritoneal metastases) than with (invasive ductal cancer), while implicating (E-cadherin) as a molecular co-variable of this clinical relationship (see text).
Table S4. Text-mined data showing the association between ARF and p53, compared to that between INK4A and p53.

CDKN2A	AND INK4A	AND ARF
No p53	4794	772
+p53	1568	429

Text-mined data showing a significantly stronger association of (p53) with (ARF) than with (INK4A). (χ² = 63.19, df = 1, p < 0.01).

Table S5. Data suggesting a stronger association between HGF and metastasis, and between IGF-1 and drug resistance.

	Insulin-like growth factor-1	Hepatocyte growth factor
Drug resistance	319	100
Metastasis	100	815

Data showing significantly stronger association of (metastasis) with (HGF) than with (IGF1), but stronger association of (drug resistance) with IGF1 than with HGF (χ² = 564.15, df = 1, p < 0.01).

Table S6. Text comparison of ‘kinase’ and ‘protease’ strings as an association of pro-replicative vs. pro-metastatic terminology (see also Table 1).

	AND (growth OR replication OR mitosis)	AND (migration OR motility OR metastasis)
Kinase	147941	23748
Protease	44028	15732

Quantification of text-mined molecular phenotype: there is a greater than 16-fold difference in the association of ‘kinase’ with pro-mitogenic vs. pro-metastatic key words when compared with the corresponding associations of ‘protease’ (χ² = 4889.64, df = 1, p < 0.01).

Publish with Libertas Academica and every scientist working in your field can read your article

“I would like to say that this is the most author-friendly editing process I have experienced in over 150 publications. Thank you most sincerely.”

“The communication between your staff and me has been terrific. Whenever progress is made with the manuscript, I receive notice. Quite honestly, I’ve never had such complete communication with a journal.”

“LA is different, and hopefully represents a kind of scientific publication machinery that removes the hurdles from free flow of scientific thought.”

Your paper will be:

- Available to your entire community free of charge
- Fairly and quickly peer reviewed
- Yours! You retain copyright

http://www.la-press.com