Serological Diagnosis of Autoimmune Bullous Skin Diseases

Sandra Saschenbrecker*, Ingolf Karl, Lars Komorowski, Christian Probst, Cornelia Dähnrich, Kai Fechner, Winfried Stöcker and Wolfgang Schlumberger

Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany

Autoimmune bullous dermatoses (AIBD) encompass a variety of organ-specific autoimmune diseases that manifest with cutaneous and/or mucosal blisters and erosions. They are characterized by autoantibodies targeting structural proteins of the skin, which are responsible for the intercellular contact between epidermal keratinocytes and for adhesion of the basal keratinocytes to the dermis. The autoantibodies disrupt the adhesive functions, leading to splitting and blister formation. In pemphigus diseases, blisters form intraepidermally, whereas in all other disease types they occur subepidermally. Early identification of autoimmune bullous dermatoses is crucial for both treatment and prognosis, particularly as regards tumor-associated disease entities. The diagnosis is based on clinical symptoms, histopathology, direct immunofluorescence to detect antibody/complement deposits, and the determination of circulating autoantibodies. The identification of various target antigens has paved the way for the recent development of numerous specific autoantibody tests. In particular, optimized designer antigens and multiplex test formats for indirect immunofluorescence and ELISA have enhanced and refined the laboratory analysis, enabling highly efficient serodiagnosis and follow-up. This review elaborates on the current standards in the serological diagnostics for autoimmune bullous dermatoses.

Keywords: autoantibody, autoimmune bullous dermatosis, biochip, ELISA, indirect immunofluorescence, pemphigoid, pemphigus, serology

INTRODUCTION

Autoimmune bullous dermatoses (AIBD) are associated with autoantibodies that bind to structural proteins in the skin and mucous membranes, which are components of desmosomes (e.g., desmogleins, desmocollins, plakins) and hemidesmosomes (e.g., BP180, BP230, plectin, α6β4 integrin, laminin 332, laminin γ1, type VII collagen) [Figure 1, (1)]. These autoimmune reactions interfere with intercellular connections and anchoring mechanisms within the epidermis and dermal-epidermal junction, leading to the separation of skin layers and the formation of blisters and/or erosions (2, 3). The most important AIBD types and corresponding target antigens are summarized in Table 1.

Intraepidermal Blistering Diseases

In pemphigus diseases, the autoimmune system targets primarily the cadherin-type transmembrane adhesion molecules desmoglein (Dsg) 1 and 3. Desmogleins, together with desmocollins, provide cohesion between epidermal keratinocytes, and are linked intracellularly to the intermediate filament network via different types of plakins (Figure 1). In response to
autoantibody binding, cell metabolism, intracellular signaling and desmosome structure are subject to alterations that cause the loss of cell-to-cell adhesion (acantholysis) and intra-epidermal split formation, resulting in flaccid blisters and erosions in the skin and/or mucous membranes (4, 5).

The clinical phenotype of pemphigus (i.e., the site of blister formation) is determined by the underlying antibody profile and the normal tissue distribution of Dsg1 and Dsg3. Dsg1 is predominantly expressed on the surface of the epidermis, whereas Dsg3 accumulates mainly in deeper epidermal layers and in the mucous membranes. As pemphigus foliaceus (PF) is associated only with IgG autoantibodies against Dsg1, blistering is confined to the upper skin, while there is no apparent mucosal involvement. In pemphigus vulgaris (PV), Dsg3 is the major autoantigen, but 50–60% of patients have additional autoantibodies to Dsg1. PV manifests as three different subtypes (2): [i] in mucosal-dominant PV, antibodies are restricted to Dsg3 and induce blisters in deep layers of the oral mucosa; [ii] patients with mucocutaneous PV exhibit reactivity against both Dsg1 and Dsg3 and show involvement of the epidermis in addition to the mucous membranes; [iii] the cutaneous PV type is less frequent and associated with blistering in deep epidermal layers owing to anti-Dsg1 and pathogenically weak anti-Dsg3. In contrast to PF, acantholysis takes place in the lower skin layers (2, 6–11). PV is
TABLE 1 | Autoantibody specificities in autoimmune bullous dermatoses.

Blistering	Disease	Ig type	Target antigen
Intra-epidermal	Pemphigus foliaceus	IgG	Dsg1
	Pemphigus vulgaris	IgG	Dsg3, Dsg1
	IgA pemphigus	IgA	Dsg1, Dsg3, Dsc1, Dsc2, Dsc3
	Paraneoplastic pemphigus	IgG	Dsg1, Dsg3, envoplakin, periplakin, desmoplakin I, desmoplakin II, plectin, BP230, Dsc1, Dsc2, Dsc3, α2-macroglobulin-like protein 1
Sub-epidermal	Pemphigus vegetans	IgG	Dsg1, Dsg1, Dsc3
	Pemphigus erythematosus	IgG	Dsg1
	Pemphigus herpetiformis	IgG	Dsg1, Dsg3, Dsc1, Dsc3
	Drug-induced pemphigus	IgG	Dsg1
	Bullous pemphigoid	IgG	BP180*, BP230
	Pemphigoid gestationis	IgG	BP180*, BP230
	Linear IgA dermatosis	IgA	BP180*/BP230
	Mucous membrane pemphigoid	IgG/IgA	BP180*/BP230, laminin 332, BP230, α6β4 integrin
	Anti-laminin γ1/p200 pemphigoid	IgG	Laminin γ1 (p200)
	Lichen planus pemphigoides	IgG	BP180*, BP230
	Epidermolysis bullosa acquisita	IgG	Type VII collagen
	Dermatitis herpetiformis	IgA(IgG)	Epidermal transglutaminase, tissue transglutaminase, endomysium, deamidated gliadin

*Main target antigens are indicated in bold.

1Parameters for which commercial monospecific detection assays are not available are indicated in italics.

2Immunodominant regions: Dsg1: N-terminal ectodomain, Dsg3: N-terminal ectodomain, BP180: "NC16A"/"LABD97"/"LAD-1"/"C-terminal epitopes; BP230: globular C-terminal domain; type VII collagen: N-terminal NC1 domain.

IgA pemphigus (also referred to as "intercellular IgA dermatosis") (16, 17) has been found in association with serum IgA reactivity against desmosomal cadherins, i.e., Dsc1, Dsc2, Dsc3, Dsg1, and Dsg3 (18–21).

Paraneoplastic pemphigus is a life-threatening form of pemphigus that is associated with a neoplasm (e.g., non-Hodgkin’s lymphoma, chronic lymphocytic leukemia, Castleman tumor, thymoma, sarcoma, Waldenstrom’s macroglobulinemia) (22). Pathogenesis is based on a combination of humoral and cellular autoimmune responses (23). Circulating autoantibodies are directed against multiple antigens, including predominantly plakins (envoplakin, periplakin, desmoplakin I, desmoplakin II, plectin, BP230), but also cadherins (Dsg3, Dsg1, Dsc1, Dsc2, Dsc3), α2-macroglobulin-like-1 (24–34). Due to their high specificity (91–100%), anti-envoplakin autoantibodies are considered an important diagnostic marker for paraneoplastic pemphigus (35–38).

In addition, the pemphigus group includes several (atypical) variants, such as pemphigus vegetans (39), pemphigus erythematosus (40, 41), pemphigus herpetiformis (42), endemic pemphigus (fogo selvage etc.) (43), and drug-induced pemphigus (44, 45).

Subepidermal Blistering Diseases

The heterogenous group of pemphigoid diseases is characterized by subepidermal blister formation, which can occur in the skin and mucous membranes (3). Circulating autoantibodies target components of the dermal-epidermal junction (Figure 1) (46). As the targeted hemidesmosomal proteins and structural filaments provide contact between the epidermal cells and the basement membrane, the autoimmune reactions cause the epidermis to peel away from the underlying dermis.

Bullous pemphigoid (BP) is the most common AIBD and occurs primarily in the elderly (onset in the late 70s) (47). It manifests with tense, bulging blisters on inflamed or non-inflamed skin, while mucous membranes are rarely affected. Patient serum contains IgG targeting mainly the hemidesmosomal proteins BP180 and BP230. BP180 is a transmembrane glycoprotein whose major immunogenic epitopes are located in the extracellular 16th non-collagenous domain (BP180-NC16A) (48). Due to their high prevalence, anti-BP180 autoantibodies represent the most important serological marker for BP. BP230 is a cytoplasmic protein which interacts with BP180. Its globular C-terminal domain mediates the attachment of keratin filaments to the hemidesmosomal plaque and contains the majority of immunoreactive sequences (49). Anti-BP230 positivity occurs in a subset of anti-BP180 negative BP patients, making it an important additional marker (50–54). Many BP sera also exhibit reactivity against antigenic sites outside the immunodominant domains of BP180 and BP230, which should be addressed in those BP patients unreactive with the immunodominant domains (<10%) (52, 55).

Pemphigoid gestationis is a manifestation of BP occurring in pregnant women and in puerperium, presenting with urticarial plaques and/or tense blisters. BP180-NC16A is the main target (90%) of autoantibodies in patients with pemphigoid gestationis, while anti-BP230 reactivity is less prevalent (56, 57).

The serological hallmark in linear IgA dermatosis is anti-basement membrane reactivity of class IgA autoantibodies.
recognition of the 120 kDa ectodomain fragment of BP180, referred to as linear IgA disease antigen 1 (LAD-1) and a derivative thereof (linear IgA bullous disease antigen of 97 kDa, LABD97) (58–61). A small proportion of sera recognizes BP180-NC16A or BP230 (62–64).

Mucous membrane pemphigoid affects one or more mucous membranes (e.g., oral, ocular, genital, anal) and may also involve the skin. Patients exhibit low-titer IgG/IgA autoantibodies directed against components of the basement membrane zone, with BP180 and laminin 332 presenting the two major targets (65). Anti-BP180 reactivity is not only directed against the NC16A domain, but also against C-terminal extracellular epitopes (66–69). The identification of anti-laminin 332 positive patients is vitally important as they have an increased relative risk for cancer, with malignancies occurring in about 25–30% of cases (70–73). Furthermore, patients with mucous membrane pemphigoid may exhibit increased IgG/IgA against BP230 (74, 75) or α6β4 integrin, the latter indicating the presence of ocular lesions (76, 77).

In anti-laminin γ1/p200 pemphigoid, tense blisters can be found on erythematous or normal skin, with a high tendency to affect acral surfaces (78, 79). The associated autoantibodies target a 200-kDa basement membrane protein, referred to as laminin γ1 (80, 81).

Lichen planus pemphigoides emerges with bullous skin lesions in conjunction with lichen planus. Compared to BP, this disease has a much lower incidence, affects younger patients (onset 40–50 years), is usually less severe and arises mainly on the limbs (82). Serum reactivity is preferentially directed against C-terminal epitopes in the immunodominant NC16A domain of BP180 (83, 84).

Epidermolysis bullosa acquisita (EBA) is a rare, subepidermal blistering disease that can occur at any age. Patients suffer from chronic inflammation, blistering and scarring of the skin and mucous membranes. (85, 86). A characteristic feature is the presence of autoantibodies directed against type VII collagen, the main constituent of anchoring fibrils at the dermal-epidermal junction, with the major antigenic epitopes located within the amino-terminal non-collagenous domain (NC1) (87–90).

Dermatitis herpetiformis (Duhring's disease) is the cutaneous manifestation of coeliac disease (sprue, gluten-sensitive enteropathy), affecting about 10% of coeliac patients. It is characterized by blisters forming in deeper (subepidermal) layers of the skin, while the mucous membranes do not show any blistering. The targets of circulating IgA antibodies are epidermal/tissue transglutaminase, endomysium, and deamidated gliadin (91–95). Since the underlying gluten-sensitive enteropathy is frequently associated with selective IgA deficiency, the additional determination of class IgG antibodies can be diagnostically indicated (96).

DIAGNOSTIC APPROACH

The diagnosis of AIBD is detailed in recent publications (97–104). Commonly recommended approaches are based on several pillars that cover symptomatic evaluation and laboratory tests.

Firstly, the clinical characteristics have to be determined, including patient history, physical examination, and assessment of the disease activity (105).

Secondly, histopathology is performed on lesional skin or mucosal biopsy. Although of limited diagnostic value, the observation of intra-/subepidermal cleavage and inflammatory infiltrates can give a first information for differentiation between pemphigus and pemphigoid diseases.

Thirdly, direct immunofluorescence (DIF) microscopy using cryosections of perilesional biopsy specimens is performed to detect tissue-bound autoantibodies. This method is still the diagnostic gold standard, with a sensitivity in the range of 82–91% and a specificity of 98% (106–110), but it provides only limited information on the target antigens. DIF microscopy narrows down the diagnosis according to the deposited Ig subclass and binding pattern (103). For example, intercellular deposition of IgG and/or C3 in the epidermis is characteristic of PV, PF, and paraneoplastic pemphigus. By contrast, linear binding of IgG and/or C3 at the dermal-epidermal junction can be found in pemphigoid diseases, with further differentiation options based on the serration pattern (u-serration vs. n-serration) (103, 111). Granular IgA deposits along the basement membrane zone and at the dermal papillae tips are observed in dermatitis herpetiformis.

The fourth pillar addresses the serological detection and differentiation of circulating autoantibodies. Serology has the advantage of being minimally invasive, which is particularly helpful in cases where biopsy specimens cannot be obtained (children, uncooperative adults). In many cases, serological testing may even suffice to establish the diagnosis in conjunction with a compatible clinical picture (112). Serum analysis relies on indirect immunofluorescence (IIF) microscopy using native tissue sections and recombinant proteins as substrates. Recombinant antigens are also applied in immunoblot or immunoprecipitation analyses and in enzyme-linked immunosorbent assays (ELISA), the latter having additional relevance to the monitoring of disease activity. Conventionally, the serological diagnosis of AIBD follows a multi-step approach that is based on initial IIF screening using one or two tissue substrates, followed by individual antigen-specific assays (ELISA, immunoblot) that correspond to the clinical suspicion and the IIF screening results. Meanwhile, alternative approaches for highly efficient and expeditious testing are available utilizing multiparametric analysis tools (113, 114). In clinical practice, routine serological results should be interpreted with care, taking into consideration the possibility of discrepancies between IIF and ELISA or negative serology in biopsy-proven patients. Assay results may even be positive in cases without other laboratory or clinical evidence of pemphigus (109, 115). Such inconsistent findings complicate decision-making, bearing the risk of misdiagnosis. Where available, alternative serological methods (e.g., keratinocyte binding assay) may provide additional information to ascertain or rule out a diagnosis, especially when no biopsy is available (115).

Early diagnosis and differentiation of AIBD is crucial for the initiation of an appropriate treatment. In most AIBD entities (e.g., BP, linear IgA disease, anti-laminin γ1/p200
pemphigoid), systemic corticosteroids in combination with further immunosuppressants/-modulants are sufficient to induce clinical remission, whereas treatment of pemphigus remains challenging as reflected by a mortality of 8–42% in mucocutaneous PV (116). However, prognosis has improved due to the development of new therapy options, including immunoabsorption, intravenous immunoglobulins, and anti-CD20 monoclonal antibodies (2, 112, 116–124). In paraneoplastic pemphigus and anti-laminin 332 mucous membrane pemphigoid, the disease prognosis may be unfavorable due to associated neoplasia in 100% and in up to 30% of cases, respectively (73, 125).

SEROLOGICAL SCREENING USING TISSUE SUBSTRATES IN IIF

IIF microscopy using tissue substrates has traditionally been performed as a standard method for the detection of autoantibodies in AIBD. Due to their high sensitivity, these substrates have priority for screening purposes. However, they do not allow definite determination of the autoantibodies’ specificity (e.g., differentiation between anti-Dsg1 and anti-Dsg3).

Esophagus

Esophagus from monkey or guinea pig is a highly sensitive substrate. Two characteristic immunofluorescence patterns can be differentiated on this tissue. [i] Pemphigus-specific autoantibodies result in a honeycomb-like fluorescence of the intercellular substance in the stratum spinosum. These autoantibodies are directed against prickle cell desmosomes, reacting with surface antigens of keratinocytes (Figure 2A). [ii] A fine linear staining between the stratum basale and the connective tissue is caused by anti-basement membrane zone autoantibodies, which are associated with pemphigoid diseases or EBA (Figure 2B).

When pemphigus serum is applied, monkey esophagus yields a sensitivity of 81–100% and a specificity of 89–100%, making it the optimal substrate in the screening for intercellular antibodies in suspected cases of PV and PF (113, 126–132). This substrate has often been reported to be more sensitive for PV than for PF as monkey esophagus is a mucosal tissue with high expression of Dsg3, the major target in PV, in contrast to lower Dsg1 expression (132). The predictive value of a negative test result is highly reliable to exclude the diagnosis of pemphigus, and false-positive results (intercellular staining of non-pemphigus sera) is not associated with an increased risk of developing pemphigus subsequently (132). In BP, 68–73% of cases were reported positive for anti-basement zone antibodies, at a specificity of 97% (51, 106, 133). It should be taken into account that antibodies against blood group antigens A and B may lead to unspecific desmosome fluorescence on monkey esophagus, potentially leading to false positive results. As this interference may account for up to 10% of healthy blood donors, adsorption reagents should be applied in suspected cases (e.g., blocking with soluble A/B antigens or with red blood cells from an AB-positive donor) (134).

Salt-Split Skin

Skin, in which partial dermal-epidermal splitting is induced by incubation with a 1 M NaCl solution, presents the IIF substrate of choice when screening for autoantibodies in subepidermal AIBD (135, 136). It is optimally suited for the detection of anti-basement membrane zone autoantibodies, as reflected by a reported sensitivity of 73–96% and a specificity of 97% (106, 108, 133, 137). In addition, it allows the differentiation between autoantibodies with different antigenic binding properties. Anti-BP180, anti-BP230, and anti-α6β4 integrin stain the epidermal side of the artificial split (blister roof), as detectable in BP, pemphigoid gestationsis, linear IgA dermatisis, and anti-BP180-type mucous membrane pemphigoid (Figure 2C). In contrast, anti-type VII collagen, anti-laminin 332, and anti-laminin γ1 bind along the dermal side of the split (blister floor), pointing toward EBA, anti-laminin-332-type mucous membrane pemphigoid, and anti-laminin γ1/p200 pemphigoid, respectively (Figure 2D) (100, 138).

Urinary Bladder

In suspected cases of paraneoplastic pemphigus, IIF on rat (or monkey) urinary bladder is performed to detect autoantibodies against plakins and to distinguish paraneoplastic pemphigus from other pemphigus diseases. As envoplakin, periplakin, and desmoplakin (but not Dsg1 and Dsg3) are highly expressed in bladder tissue, and owing to the high specificity of this substrate (74% sensitivity, 99–100% specificity), positive IgG reactivity with the urothelium is considered a diagnostic indication of paraneoplastic pemphigus (38, 139) (Figure 2E). However, negative IIF on bladder does not exclude the diagnosis of paraneoplastic pemphigus and should entail other serological techniques (36, 38).

Liver

Tissue sections of primate liver are best suited to visualize autoantibodies (IgA) against endomysium in dermatitis herpetiformis. Positive reactivity is indicated by a fluorescent filamentous lining of the intralobular sinusoids (140) (Figure 2F).

ANTIGEN-SPECIFIC SEROLOGICAL ASSAYS

The identification of the autoantibodies’ target antigens can be accomplished using monospecific IIF, ELISA and/or immunoblot tests. For this purpose, many antigenic substrates have been made available by means of recombinant expression systems. By selecting only immunoreactive epitopes and deleting domains that cause unspecific reactions, the sensitivity and specificity of the resulting assay can often be improved (141). For example, a recombinant tetramer of the immunodominant NC16A domain of BP180, termed BP180-NC16A-4X, was designed to multiply the number of antibody binding sites per molecule, thereby optimizing the immunoreactivity and diagnostic efficiency in BP serology. A second example concerns a gliadin-analogous fusion peptide (GAF-3X), which contains three repetitive modified copies of formerly described peptides recognized...
FIGURE 2 | Indirect immunofluorescence staining of different tissue substrates in autoimmune bullous dermatoses. (A,B) Monkey esophagus, (C,D) monkey salt-split skin, (E) rat urinary bladder and (F) monkey liver. Graphics and annotations on the right indicate the staining patterns and possible underlying reactivities, reproduced and modified from Euroimmun customer leaflet, with permission of Euroimmun, Germany.
by autoantibodies in most patients with coeliac disease and dermatitis herpetiformis (142). After expression and purification from Escherichia coli, those two antigens were applied in IIF and ELISA (142–145).

Recombinant Monospecific Substrates in IIF

Compared to classic tissue sections that contain a multitude of different antigens and sometimes require specialist knowledge for reliable interpretation, recombinant substrates considerably simplify IIF evaluation and may allow a prima vista differentiation between AIBD-associated diseases. Recombinant IIF assays are based on BIOCHIP technology (Euroimmun, Lübeck, Germany), in which the substrates are coated onto millimeter-sized BIOCHIPS and arranged on the reaction fields of microscope slides. The slides are incubated using the Titerplane technique, which provides parallel incubation of multiple samples under standardized, identical conditions (146).

Two types of recombinant IIF substrates can be distinguished:

In the first case, the target antigen is expressed in the human cell line HEK293, which provides authentic conformational folding and post-translational modification (141, 147). Since transfected and mock-transfected control cells are coated onto the BIOCHIPS side by side, it is straightforward to distinguish true-positive sera containing antigen-specific antibodies (smooth to fine granular cytosolic fluorescence only in the subset of transfected cells) from sera reacting against other cell components (nuclear or cytoplasmic staining of all cells). Available recombinant cell-based substrates for AIBD serology include Dsg1, Dsg3, BP230, and type VII collagen (Figures 3A–D) (144, 149).

In the second case, purified recombinant antigens (e.g., BP180-NC16A-4X and GAF-3X) are coated directly onto the BIOCHIPS. If a positive serum sample is applied, the antigenic areas will fluoresce in a particular pattern (e.g., diamonds or circles) against a dark background (Figures 3E,F).

Multiparametric BIOCHIP Mosaics in IIF

The recombinant monospecific BIOCHIP substrates can be analyzed side by side with classic tissue sections in standardized BIOCHIP mosaics (Euroimmun; Figure 4). The combination of different substrates in the same test field allows autoantibody screening and confirmatory discrimination to be carried out in a single incubation, thus facilitating differential diagnosis among the various types of AIBD. Particularly in diagnostically difficult cases, this multiparametric technique is cost- and time-effective compared to the conventional multi-step approach (113, 150).

Several studies have been performed on the diagnostic performance of the mosaic-based IIF technique. Cumulative findings indicate that this method is highly sensitive and specific for pemphigus and BP (150–152). For example, monkey esophagus yielded sensitivities of 83–100% (PV), 98% (PF), and 69% (mixed pemphigus panel), with specificities in the range of 89–100%. Anti-Dsg1 was detectable with a sensitivity of 19–52% (PV), 90% (PF), and 38% (mixed pemphigus panel) and a specificity of ≥99%. The sensitivity of anti-Dsg3 detection amounted to 98–100% (PV) and 87% (mixed pemphigus panel), with specificities ranging from 97 to 100% (113, 152–154). In BP, basement membrane zone staining on esophagus and/or salt-split skin provided a sensitivity and specificity of 50–99 and 77–100%, respectively. The sensitivity and specificity for anti-BP180 detection were reported to be 83–100 and 97–100%, respectively, and for anti-BP230 detection 30–67 and 97–100%, respectively (113, 144, 152, 154, 155). van Beek et al. (113) compared the performance of the “Dermatology Mosaic 7” (Figure 4A) with the conventional multi-step procedure (156). Between both approaches, high diagnostic agreement (94%, kappa 0.88–0.97) was observed. In <5% of the cases, final diagnosis could only be made by using the appropriate assays within the multi-step approach, because additional substrates would have to be added to the standard IIF mosaic for these rare disorders. Meanwhile, however, further mosaics adjusted to the diagnosis of particular AIBD types have been evaluated, including the detection of [i] anti-BP180 in pemphigus gestationis (100% sensitivity, 100% specificity) (157), [ii] anti-type VII collagen NC1 in EBA (92% sensitivity, 100% specificity) (149), [iii] anti-laminin 332 in mucous membrane pemphigoid (77–84% sensitivity, 100% specificity) (72), and [iv] anti-Dsc in atypical pemphigus variants (158). Tampoia et al. compared the concordance between results obtained by mosaic-based IIF vs. ELISA (MBL/Euroimmun) and found excellent agreements for the determination of anti-Dsg3 (kappa 0.97–1.00) and anti-BP180 (kappa 0.94–0.90) (154). Özkesci et al. reported correlations between mosaic-based IIF and ELISA (Euroimmun) of 85% (anti-Dsg1), 94% (anti-Dsg3), and 98% (anti-BP180) (152).

Enzyme-Linked Immunosorbent Assays

ELISA systems based on recombinant target antigens are widely available and increasingly applied in the serological diagnosis of AIBD. They are used to confirm and differentiate autoantibody specificities, supporting the diagnostic attribution of AIBD subtypes. Moreover, ELISA allow quantitative measurement of antibody levels, enabling disease and therapy monitoring, as described below. In most cases, ELISA are sufficient to support the diagnosis and cheaper than other complex techniques. Further advantages include standardization, objective data, easy handling, automated processing, high throughput, and (for most parameters) commercial availability.

Commercial ELISA systems (MBL, Euroimmun) are available for the detection of autoantibodies against Dsg1 and Dsg3 in pemphigus (147, 159) and against envoplakin in paraneoplastic pemphigus (36). In pemphigoid diseases, commercial ELISA (MBL, Euroimmun) include BP180 (143, 160), BP230 (50, 54), and type VII collagen (149, 161). Importantly, the highest detection rate among BP patients is achieved by combining the ELISA results for anti-BP180 and anti-BP230 (87–100%), reflecting a diagnostic added value compared to mere anti-BP180 testing (50–54). Therefore, in cases with clinically suspected cases of BP, where anti-BP180 testing is negative, it is recommended to analyze serum reactivity against BP230 (97). Moreover, ELISA for the detection of autoantibodies against deamidated gliadin and transglutaminase (92) are available, supporting the diagnosis of dermatitis herpetiformis. Besides, less standardized in-house ELISA systems are applied in specialized laboratories, including...
FIGURE 3 | Detection and differentiation of autoantibodies in autoimmune bullous dermatoses using monospecific substrates for BIOCHIP-based indirect immunofluorescence, reproduced (in part) from Gosink and Schlumberger, MEDLAB Magazine 2016 (1) and from Gosink, MEDLAB Magazine 2013 (148) with permission of MEDLAB Magazine. (A–D) Substrates based on human embryonic kidney (HEK293) cells expressing recombinant immunodominant antigen domains: (A) Dsg1 (ectodomain), (B) Dsg3 (ectodomain), (C) BP230gC (globular C-terminal domain), (D) type VII collagen (NC1 domain). (E,F) Substrates generated by spotting purified recombinant protein: (E) BP180-NC16A-4X (tetrameric NC16A domain), (F) GAF-3X (trimeric deamidated gliadin-analogous fusion peptide).

rare parameters, such as anti-laminin γ1 (162), anti-desmocollin (20, 33), anti-laminin 332 (71, 163), and anti-BP180 (various forms) (52, 164). The diagnostic performance of commercial and in-house ELISA systems has been examined in numerous studies (Table 2) and discussed in reviews by Tampoia et al. (190) and Horvath et al. (165).

Although being highly sensitive and specific, ELISA may produce positive results without clinical or other laboratory evidence.

Multiparametric ELISA
In order to further improve and accelerate the routine serological diagnosis of AIBD, two profile ELISA systems have been developed that enable multiparametric antigen-specific testing for autoantibodies in adjacent wells of a microplate. By simultaneous processing of the diagnostically most relevant antigens, multiplex ELISA offer an alternative to IIF as serological first-line approach and to a multi-step single testing strategy.

Horvath et al. analyzed the diagnostic performance of the MESACUP Anti-Skin Profile (MBL), which covers five target antigens: Dsg1, Dsg3, BP180, BP230, and type VII collagen. They reported a 88% concordance with data obtained from the respective individual ELISA systems (MBL), resulting in sensitivities of 92% (anti-Dsg1, PF), 93% (anti-Dsg3, PV), 66% (anti-BP180, BP), 62% (anti-BP230, BP), and 81% (anti-type VII collagen, EBA), and specificities of 98–100% (165).

van Beek et al. validated the Dermatology Profile ELISA (Euroimmun), comprising the same five parameters plus additional envoplakin. They demonstrated sensitivities of 95% (anti-Dsg1, PF), 100% (anti-Dsg3, PV), 95% (anti-BP180, BP), 60% (anti-BP230, BP), 93% (anti-type VII collagen, EBA), and 86% (anti-envoplakin, paraneoplastic pemphigus), and
specificities in the range of 97–100% (114). These performance characteristics were also similar to those obtained with the individual ELISA (Euroimmun) (36, 54, 143, 147, 149). Comparison of the Dermatology Profile to the conventional multi-step approach yielded concordant results in 87%. Incongruent results were attributed to the lack of IgA detection and reactivity against antigens not included in the profile ELISA (114).

Immunoblotting

Immunoblotting and immunoprecipitation help to determine rather rare autoantibodies (e.g., anti-laminin γ1, anti-laminin 332, anti-LAD-1, anti-α6β4 integrin, anti-desmoplakin, anti-type VII collagen) and are based on recombinant proteins or cell extracts (e.g., epidermis, dermis, cultured keratinocytes) (28, 69, 80, 191–193). These tests, however, are time-consuming and available only as in-house assays in specialized laboratories. They allow for highly specific autoantibody detection, but have proven inadequate for targets with mainly conformational epitopes, such as Dsg1 and Dsg3 (127, 141, 194–196). Immunoblotting for anti-Dsg is thus not recommended in the diagnosis of PF/PV (97). In contrast, there are patients suspected of having pemphigoid disease who show positive DIF results in the absence of autoantibody reactivity by commercial ELISA systems. In such
Autoantibodies in several AIBD entities are directly pathogenic (4, 197–205). Their titers correlate with the disease activity over time, as reported for anti-Dsg1, anti-Dsg3 (147, 159, 166, 170, 206–209), anti-BP180 (51, 52, 143, 160, 210–214), and anti-type VII collagen (161, 183, 184, 215). By contrast, anti-BP230 reactivity appears not to fluctuate with changes in the clinical course of BP patients or only in a small subset of cases (50–52).

IIF evaluation is subjective and produces only semi-quantitative data, based on serial serum dilutions, with titers depending on the type of substrate due to variable antigen expression levels. As opposed to this, ELISA provide objective and quantitative scores, which tend to reflect the disease activity better than IIF titers (130, 160). Therefore, ELISA testing is routinely used in many laboratories for the monitoring of disease activity. However, the relationship is not always perfect as there are cases of active disease with negative ELISA results and vice versa, as well as cases where antibody levels do not fluctuate in correlation with clinical activity (116, 209).

As an adjunct to the paramount clinical assessment, the follow-up of autoantibody titers has relevance for disease monitoring and can be helpful in therapeutic decisions, such as adjusting the dose of immunosuppressants. For example, when lesions have healed, decreasing or undetectable autoantibody levels may indicate dosage reduction or omission, respectively. In addition, relapses may be anticipated by the detection of increased autoantibody levels (99).

However, the clinical judgement and the above-mentioned imperfections of the assays should always be taken into consideration (97, 116).

Table 2	Performance characteristics of reported ELISA systems for the detection of autoantibodies in autoimmune bullous dermatoses.			
ELISA^a	Disease	Sensitivity^b	Specificity^b	References
Anti-Dsg1^c	Pemphigus foliaceus	96–100%	96–100%	(147, 159, 165–169)
Anti-Dsg3^c	Pemphigus vulgaris	85–100%	96–100%	(147, 159, 165–173)
Anti-envoplakin^d	Paraneoplastic pemphigus	63–83%	91–98%	(36–38)
Anti-periplakin	Paraneoplastic pemphigus	74%	96%	(38)
Anti-desmocollin	Paraneoplastic pemphigus	80%	NA	(33)
Anti-BP180^e	Bullous pemphigoid	54–95%	90–100%	(50, 51, 53, 106, 143, 144, 160, 164, 165, 169, 173–181)
Anti-BP230^f	Bullous pemphigoid	48–82%	65–99%	(50, 51, 53, 54, 106, 144, 165, 175–177, 182)
Anti-laminin 332	Mucous membrane pemphigoid	20–75%	94–96%	(71, 163)
Anti-laminin γ1	Anti-laminin1/p200 pemphigoid	69%	99%	(162)
Anti-type VII collagen^g	Epidermolysis bullosa acquisita	86–100%	98–100%	(114, 149, 161, 183–186)
Anti-deamidated gliadin	Dermatitis herpetiformis, coeliac disease	84–95% (IgG)	86–93% (IgG)	(52, 143)
		80–99% (IgG)	93–94% (IgG)	
Anti-tissue transglutaminase	Dermatitis herpetiformis, coeliac disease	78–98%	96–99%	(92, 94, 145, 187–189)

^aParameters for which commercial ELISA systems are not available are indicated in italics.

^bIncluding performance data reported for commercial and in-house assays.

^cCommercial assays employ the ectodomains of Dsg1 and Dsg3 after recombinant expression in baculovirus (MBL) or HEK293 cells (Euroimmun).

^dCommercial assay based on the N-terminal envoplakin 1–481 fragment (Euroimmun).

^eCommercial assays employ a single recombinant NC16A domain (MBL) or a tetramer of four NC16A domains to increase epitope exposure (BP180-NC16A-4X, Euroimmun).

^fCommercial assays employ recombinant protein of both N- and C-terminal parts of BP230 (MBL) or only a fragment of the C-terminal domain (BP230_{236–264}, Euroimmun).

^gCommercial assays employ the NC1 and NC2 domains of type VII collagen (MBL) or only NC1 (Euroimmun).
40% of relapsing cases display positive and increasing anti-type VII collagen serum levels at the time of relapse (221).

In addition, the follow-up of molecules involved in inflammatory mechanisms can contribute to the prediction of BP outcome. Amongst others, this pertains to serum concentrations of the cytokines interleukin 17 (IL-17) and IL-23. The former shows significant decreases in patients with ongoing remission as well as constantly elevated levels prior to relapse, whereas the latter increases in early treatment stages in patients who later relapse (222). Similarly, an increased release of the chemokine CXCL10 favors BP relapse within the first year of treatment (223). These three inflammatory biomarkers all upregulate the secretion by leukocytes of matrix-metalloproteinase-9 (MMP-9), which was shown to decrease over time upon remission and to remain elevated in patients who relapse. Consequently, the follow-up of protease MMP-9 expression is regarded as another promising tool for the prediction of relapse in BP (222, 223). Also the serum concentrations of eosinophil cationic protein (ECP), as a measure of eosinophil activation, may help to predict a relapse as indicated by the absence of ECP alterations under treatment (224).

Moreover, an increased expression of the glucocorticoid receptor-beta in skin epithelial cells was suggested to be predictive of reduced treatment efficacy and increased risk of BP relapse (225). The presence of extensive disease (more than ten new blisters daily) at baseline and of neurological conditions associated with BP (e.g., dementia) may also play a role in the prediction of BP outcome (219).

In patients with PV, anti-Dsg3 positivity and, to a lesser extent, positive DIF results are predictors of relapse (226). Positivity for anti-Dsg1 and anti-Dsg3 was shown to provide high predictive values for the occurrence of relapses following treatment (209, 227). In addition, B-cell repopulation and low CD4+ T-cell count are associated with relapses in patients with pemphigus (227).

Altogether, this relatively new field warrants further investigation and holds the potential to benefit both clinicians and patients. In particular, to link cytokine/chemokine variations to clinical practice, large prospective studies will have to confirm the findings to date.

PERSPECTIVES

Accurate diagnosis and discrimination of the different AIBD forms is crucial for therapeutic decisions and prognosis. Owing to highly sensitive and specific assays, it is estimated that a serological diagnosis can be made in about 90% of patients, subject to clinical expression (99, 112). Both the increasingly aging population and the constantly improved diagnostics cause a steady growth in the incidence of AIBD. In Germany, the annual incidence doubled within a decade, meanwhile amounting to about 25–30 cases per million inhabitants (112, 228). Hence, the continuous development and application of serological assays for known and yet unknown parameters will play a crucial role in the future. Patient management will further benefit from ongoing basic research on pathophysiological mechanisms and from clinical trials on forthcoming treatment options (229). For example, there is a growing number of data regarding the potential pathogenic role of IgE class autoantibodies in BP and the option of anti-IgE treatment (230–233).

AUTHOR CONTRIBUTIONS

SS performed the literature research, acquired and modified the figures, and wrote the first manuscript draft. IK, LK, CP, CD, KF, WSt, and WSc critically revised the manuscript. All authors have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

1. Gosink J, Schlumberger W. Multiplex serological diagnostics in autoimmune skin blistering diseases. MEDLAB Magazine. (2016) 4:28–30.

2. Kasperkiewicz M, Ellebrecht CT, Takahashi H, Yamagami J, Zillikens D, Payne AS, et al. Pemphigus. *Nat Rev Dis Primers*. (2017) 3:17026. doi: 10.1038/nrdp.2017.27

3. Schmidt E, Zillikens D. Pemphigoid diseases. *Lancet Lond Engl*. (2013) 381:320–32. doi: 10.1016/S0140-6736(12)61140-4

4. Spindler V, Eming R, Schmidt E, Amagai M, Grando SA, Jonkman MF, et al. Mechanisms causing loss of keratinocyte cohesion in pemphigus. *J Invest Dermatol*. (2018) 138:32–7. doi: 10.1016/j.jid.2017.06.022

5. Di Zenzo G, Amber KT, Sayar BS, Muller EI, Borroardi L. Immune response in pemphigus and beyond: progresses and emerging concepts. *Semin Immunopathol*. (2016) 38:57–74. doi: 10.1007/s00281-015-0541-1

6. Amagai M, Koch PJ, Nishikawa T, Stanley JR. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. *J Invest Dermatol*. (1996) 106:351–5. doi: 10.1111/1523-1747.ep12343081

7. Amagai M. Pemphigus as a paradigm of autoimmunity and cell adhesion. *Keio J Med*. (2002) 51:133–9. doi: 10.2302/kjm.51.133

8. Shirakata Y, Amagai M, Hanakawa Y, Nishikawa T, Hashimoto K. Lack of mucosal involvement in pemphigus foliaceus may be due to low expression of desmoglein 1. *J Invest Dermatol*. (1998) 110:76–8. doi: 10.1046/j.1523-1747.1998.00085.x

9. Amagai M, Tsunoda K, Zillikens D, Nagai T, Nishikawa T. The clinical phenotype of pemphigus is defined by the anti-desmoglein autoantibody profile. *J Am Acad Dermatol*. (1999) 40:167–70. doi: 10.1016/S0190-9622(99)70183-0

10. Ding X, Aoki V, Mascaro JM Jr, Lopez-Swiderski A, Diaz LA, Fairley JA. Mucosal and mucocutaneous (generalized) pemphigus vulgaris show distinct autoantibody profiles. *J Invest Dermatol*. (1997) 109:592–6. doi: 10.1111/1523-1747.ep12337524

11. Mahoney MG, Wang Z, Rothenberger K, Koch PJ, Amagai M, Stanley JR. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. *J Clin Invest*. (1999) 103:461–8. doi: 10.1172/JCI15252

12. Kalantari-Dehaghi M, Anhalt GJ, Camilleri MJ, Chernyavsky AI, Chun S, Felgner PL, et al. Pemphigus vulgaris autoantibody profiling by proteomic technique. *PLoS ONE*. (2013) 8:e57587. doi: 10.1371/journal.pone.0057587

13. Amber KT, Valdebran M, Grando SA. Non-desmoglein antibodies in patients with pemphigus vulgaris. *Front Immunol*. (2018) 9:1190. doi: 10.3389/fimmu.2018.01190
30. Kiyokawa C, Ruhrberg C, Nie Z, Karashima T, Mori O, Nishikawa T, Aho S, Mahoney MG, Uitto J. Plectin serves as an autoantigen.

29. Amagai M, Nishikawa T, Nousari HC, Anhalt GJ, Hashimoto T. Antibodies to desmocollins 2 and 3 by paraneoplastic pemphigus.

28. Wieczorek M, Czernik A. Paraneoplastic pemphigus: a short review.

27. Anhalt GJ. Paraneoplastic pemphigus.

26. Schepens I, Jaunin F, Begre N, Laderach U, Marcus K, Hashimoto T, et al. Clinical and immunological findings in 104 cases of paraneoplastic pemphigus.

25. Ohzono A, Sogame R, Li X, Teye K, Tsuchisaka A, Numata S, et al. Clinical response in bullous pemphigoid.

24. Howell DW, Bayles DW, Tang L, Eisenberg SM. A novel method for detection of antibodies to the 230-kDa autoantigen in bullous pemphigoid.

23. Diercks GF, Kramer D, Schepens I, Klunder G, Hashimoto T, et al. Multicenter prospective study of the humoral autoimmune response in bullous pemphigoid.

22. Anhalt GJ. Paraneoplastic pemphigus.

21. Teye K, Numata S, Ohzono A, Ohyama B, Tsuchisaka A, Koga H, et al. Establishment of IgA ELISAs of mammalian recombinant proteins of human desmocollins 1–3. J Dermatol Sci. (2016) 83:75–7.

20. Ahnelt GJ. Paraneoplastic pemphigus. J Invest Dermatol (1998) 109:127–31. doi: 10.1111/j.1523-1747.1998.12519025.

19. Hashimoto T, Kiyokawa C, Mori O, Miyasato M, Chidgey MA, Garrod DR, et al. Enzyme-linked immunosorbent assays using baculovirus-expressed proteins, in atypical pemphigus but not in typical pemphigus.

18. Hisamatsu Y, Amagai M, Garrod DR, Kanzaki T, Hashimoto T. The detection of IgG antibodies to desmocollins 2 and 3 by paraneoplastic pemphigus.

17. Tsuruta D. Intercellular IgA dermatosis.

16. Ahmed AR, Carrozzo M, Caux F, Cirillo N, Dmochowski M, Alonso JB, et al. Differential IgG recognition of desmoglein 3 by paraneoplastic pemphigus and pemphigus vulgaris sera. J Invest Dermatol. (2012) 132:1738–41. doi: 10.1038/jid.2012.1
53. Roussel A, Benichou J, Randriamantany ZA, Gilbert D, Drenovska K, Houivet E, et al. Enzyme-linked immunosorbent assay for the combination of bullous pemphigoid antigens 1 and 2 in the diagnosis of bullous pemphigoid. *Arch Dermatol.* (2011) 147:293–8. doi:10.1001/archdermatol.2011.21

54. Blocker IM, Daha CB, Probst C, Komorowski L, Saschenbrecker S, Schlumberger W, et al. Epitope mapping of BP230 leading to a novel enzyme-linked immunosorbent assay for autoantibodies in bullous pemphigoid. *Br J Dermatol.* (2012) 166:964–70. doi:10.1111/j.1365-2133.2012.10820.x

55. Zillikens D, Herzele K, Georgi M, Schmidt E, Chmianovitch I, Schumann H, et al. Autoantibodies in a subgroup of patients with linear IgA disease react against BP180 or BP230 antigens. *J Invest Dermatol.* (2006) 126:1545–54. doi:10.1038/sj.jid.5502536

56. Zillikens D, Bertolaccini L, Scarpa E, Wesselmann U, Schmidt E, Prost C, et al. A sensitive and specific assay for the serological diagnosis of antilaminin 332 mucous membrane pemphigoid. *Br J Dermatol.* (2019) 180:149–56. doi:10.1111/bjd.17202

57. Egan CA, Lazarova Z, Darling TN, Yee C, Cote T, Yancey KB. Anti-epiligrin cicatricial pemphigoid and relative risk for cancer. *Lancet.* (2001) 357:1850–1. doi:10.1016/S0140-6736(01)04971-0

58. Bernard P, Prost C, Verdon L, Intrator L, Bedane C, et al. Studies of cicatricial pemphigoid autoantibodies using direct immunoelectron microscopy and immunoblot analysis. *J Invest Dermatol.* (1990) 94:630–5. doi:10.1111/j.1523-1747.19827606

59. Leverkus M, Bhol K, Hirako Y, Pas H, Sitaru C, Baier G, et al. Cicatricial pemphigoid with circulating autoantibodies to beta4 integrin, bullous pemphigoid 180 and bullous pemphigoid 230. *Br J Dermatol.* (2001) 145:998–1004. doi:10.1046/j.1365-2133.2001.04543.x

60. Bhol KC, Dans MJ, Simmons RK, Foster CS, Giancotti FG, Ahmed AR. The autoantibodies to alpha 6 beta 4 integrin of patients affected by ocular cicatricial pemphigard recognize predominantly epitopes within the large cytoplasmic domain of human beta 4. *J Immunol.* (2000) 165:2824–9. doi:10.4049/jimmunol.165.5.2824

61. Sansenbrecker et al. Serodiagnostics in Autoimmune Bullous Dermatoses

13 August 2019 | Volume 10 | Article 1974

Frontiers in Immunology | www.frontiersin.org

Saschenbrecker et al. Serodiagnostics in Autoimmune Bullous Dermatoses

62. D. Immunoblotting and enzyme-linked immunosorbent assay for the diagnosis of pemphigus gestationis. *Obstet Gynecol.* (2004) 103:757–63. doi:10.1097/01.AOG.000015566.76104.ad

63. Arechalde A, Braun RP, Calza AM, Hertl M, Didierjean L, Saurat JH. IgG anti-laminin-332 mucous membrane pemphigoid. *J Invest Dermatol.* (2012) 138:1333–8. doi:10.1038/sj.jid.5502938

64. D. Cicatricial pemphigoid: IgA and IgG autoantibodies target epitopes on both intra- and extracellular domains of bullous pemphigoid antigen 180. *Br J Dermatol.* (2001) 145:778–83. doi:10.1046/j.1365-2133.2001.04471.x

65. Lazarova Z, Salato VK, Lansenheuter CM, Janson M, Fairley JA, Yancey KB. IgG anti-laminin-332 autoantibodies are present in a subset of patients with mucous membrane, but not bullous, pemphigoid. *J Am Acad Dermatol.* (2008) 58:951–8. doi:10.1016/j.jaad.2008.02.035

66. Bekou T, Vlachou E, Klinck D, Wenschke T, Hunziker T, et al. Detection of laminin 5-specific auto-antibodies in mucous membrane and bullous pemphigoid sera by ELISA. *J Invest Dermatol.* (2005) 124:732–40. doi:10.1111/j.0022-202X.2005.23646.x
in epidermolysis bullosa acquies. N Engl J Med. (1984) 310:1007–13. doi: 10.1056/NEJM19841031016020

98. Jones DA, Hunt SW III, Prisaynah PS, Briggaman RA, Gammon WR. Immunodominant autoepitopes of type VII collagen are short, paired peptide sequences within the fibronecin type III homology region of the noncollagenous (NC1) domain. J Invest Dermatol. (1995) 104:233–5. doi: 10.1111/j.1523-1747.ep192780

99. Lapiere JC, Woodley DT, Parente MG, Iwasaki T, Wynn KC, Christiano AM, et al. Epitope mapping of type VII collagen. Identification of discrete peptide sequences recognized by sera from patients with acquired epidermolysis bullosa. J Clin Invest. (1993) 92:1831–9. doi: 10.1172/JCI16774

100. Chorzelski TP, Beutner EH, Sulej J, Tchorzewska H, Jablonska S, Kumar V, et al. IgA anti-endomysium antibody. A new immunological marker of dermatitis herpetiformis and coeliac disease. Br J Dermatol (1984) 111:395–402. doi: 10.1111/j.1365-2133.1984.tb06601.x

101. Kneisel A, Hertl M. Autoimmune bullous skin diseases. Part 1: diagnosis of autoimmune blistering skin diseases. J Dtsch Dermatol Ges. (2006) 4:231–48. doi: 10.1111/j.1612-8648.2006.tb00436.x

102. Murrell DF, Peña S, Joly P, Marinovic B, Hashimoto T, Diaz LA, et al. Prospective studies on the routine use of a novel multivariant enzyme-linked immunofluorescence assay for diagnosis of autoimmune bullous diseases. J Am Acad Dermatol. (2018) 78:754–9. doi: 10.1016/j.jaad.2017.11.029

103. Kamaguchi M, Iwata H, Ujiie I, Ujiie H, Sato J, Kitagawa Y, et al. Direct immunofluorescence using non-lesional buccal mucosa in mucous membrane pemphigoid. Front Med. (2018) 5:20. doi: 10.3389/fmed.2018.00020

104. Meijer JM, Atefi I, Diercks GFH, Jonkman MF, Pas HH. Serratia pattern analysis for differentiating epidermolysis bullosa acquies from other pemphigoid diseases. J Am Acad Dermatol. (2017) 76:889–94. doi: 10.1016/j.jaad.2016.11.002

105. Giurdanella F, Diercks GF, Jonkman MF, Pas HH. Identification of tissue transglutaminase as the autoantigen of celiac disease. J Clin Invest. (1993) 92:1831–9. doi: 10.1172/JCI116774

106. Kasperkiewicz M, Dahnrich C, Probst C, Komorowski L, Stocker W, Schlumberger W, et al. Novel assay for detecting celiac disease-associated autoantibodies in dermatitis herpetiformis using deamidated gliadin-antigen fusion peptides. J Am Acad Dermatol. (2012) 66:583–8. doi: 10.1016/j.jaad.2012.02.025

107. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. (1997) 3:797–801. doi: 10.1038/nm0797-797

108. Rose C, Armbruster FP, Rappert J, IgI BW, Zilkens D, ShimanoY. Autoantibodies against epidermal transglutaminase are a sensitive diagnostic marker in patients with dermatitis herpetiformis on a normal or gluten-free diet. J Am Acad Dermatol. (2009) 61:39–43. doi: 10.1016/j.jaad.2008.12.037

109. Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med. (2002) 195:747–75. doi: 10.1084/jem.20011299

110. Kamaguchi M, Iwata H, Ujiie I, Ujiie H, Sato J, Kitagawa Y, et al. Keratinocyte binding assay identifies anti-desmosomal pemphigus antibodies where other tests are negative. Front Immunol. (2018) 9:939. doi: 10.3389/fimmu.2018.00839

111. Meijer JM, Brown D, Exton LS, Groves RW, Hampton PJ, Mohd Mustapa MF, et al. British Association of Dermatologists’ guidelines for the management of pemphigus vulgaris 2017. Br J Dermatol. (2017) 177:1170–201. doi: 10.1111/bjd.15930

112. Kasperkiewicz M, Schmidt E, Zilkens D. Current therapy of the pemphigus group. Clin Dermatol. (2012) 30:84–94. doi: 10.1016/j.clindermatol.2011.03.014

113. Martin LK, Werth VP, Villaneuva EV, Murrell DF. A systematic review of randomized controlled trials for pemphigus vulgaris and pemphigus foliaceus. J Am Acad Dermatol. (2011) 64:903–8. doi: 10.1016/j.jaad.2010.04.039

114. Joly P, Roujeau JC, Benichou J, Delaporte E, D’Incan M, Dreno B, et al. A comparison of two regimens of topical corticosteroids in the treatment of patients with bullous pemphigoid: a multicenter randomized study. J Invest Dermatol. (2007) 129:1681–7. doi: 10.1097/CID.0b013e3180d84f12

115. Behzad M, Mobs C, Kneisel A, Moller M, Hoyer J, Hertl M, et al. Combined treatment with immunoadsorption and rituximab leads to fast and prolonged clinical remission in difficult-to-treat pemphigus vulgaris. Br J Dermatol. (2012) 166:844–52. doi: 10.1111/j.1365-2133.2011.07532.x

116. Enming R, Hertl M. Immunoadsorption in pemphigus. Autoimmunity. (2006) 39:609–16. doi: 10.1080/08916930600972040

117. Arin MJ, Engert A, Krieg T, Hunzelmann N. Anti-CD20 monoclonal antibody (rituximab) in the treatment of pemphigus. Br J Dermatol. (2005) 153:620–5. doi: 10.1111/j.1365-2133.2005.06651.x

118. Hertl M, Zilkens D, Borradori L, Bruckner-Tuderman L, Burckhard H, et al. Recommendations for the use of rituximab (anti-CD20 antibody) in the treatment of autoimmune bullous skin diseases. J Dtsch Dermatol Ges. (2008) 6:366–73. doi: 10.1111/j.1610-0387.2007.06602.x

119. Amagai M, Hashimoto T, Shimizu N, Nishikawa T. Absorption of pathogenic autoantibodies by the extracellular domain of pemphigus vulgaris antigen (Dsg3) produced by baculovirus. J Clin Invest. (1994) 94:39–67. doi: 10.1172/JCI117349

120. Anhalt GJ, Kim SC, Stanley JR, Korman NJ, Jabs DA, Kory M, et al. Paraneoplastic pemphigus. An autoimmune mucocutaneous disease associated with neoplasia. N Engl J Med. (1990) 323:1729–35. doi: 10.1056/NEJM19901223323503
for anti-TY 7 collagen autoantibodies: an Italian multicentre study. Br J Dermatol. (2013) 168:80–4. doi: 10.1111/bjd.12011

162. Groth S, Recke A, Vafia K, Ludwig RJ, Hashimoto T, Zillikens D, et al. Development of a simple enzyme-linked immunosorbent assay for the detection of autoantibodies in anti-p200 pemphigoid. Br J Dermatol. (2011) 164:76–82. doi: 10.1111/j.1365-2133.2010.09553.x

163. Bernard P, Antonicelli E, Bedane C, Joly P, Le Roux-Villet C, Duvert-Lehembre S, et al. Prevalence and clinical significance of anti-laminin 332 autoantibodies detected by a novel enzyme-linked immunosorbent assay in mucous membrane pemphigoid. JAMA Dermatol. (2013) 149:533–40. doi: 10.1001/jamadermatol.2013.1434

164. Hofmann S, Thoma-Uszynski S, Hunziker T, Bernard P, Koebnick C, Stauber A, et al. Severity and phenotype of bullous pemphigoid relate to autoantibody profile against the NH2- and COOH-terminal regions of the BP180 ectodomain. J Invest Dermatol. (2002) 119:1065–73. doi: 10.1046/j.1523-1747.2002.19529.x

165. Horvath ON, Varga R, Kaneda M, Schmidt E, Ruzicka T, Sardy M. Diagnostic performance of the “MESACUP anti-Skin profile TEST”. Eur J Dermatol. (2016) 26:56–63. doi: 10.1842/eijd.2015.2692

166. Amagai M, Komaia I, Hashimoto T, Shirakata Y, Hashimoto K, Yamada T, et al. Usefulness of enzyme-linked immunosorbent assay using recombinant desmogleins 1 and 3 for serodiagnosis of pemphigus. Br J Dermatol. (1999) 140:351–7. doi: 10.1046/j.1365-2133.1999.02752.x

167. Harman KE, Grattan MJ, Seed PT, Bhogal BS, Challacombe SJ, Black MM. Diagnosis of pemphigus by ELISA: a critical evaluation of two ELISAs for the detection of antibodies to the major pemphigus antigens, desmoglein 1 and 3. Clin Exp Dermatol. (2000) 25:236–40. doi: 10.1046/j.1365-2230.2000.00624.x

168. Huang CH, Chen CC, Wang CJ, Chang YT, Liu HN. Using desmoglein 1 and 3 enzyme-linked immunosorbent assay as an adjunct diagnostic tool for pemphigus. J Chin Med Assoc. (2007) 70:65–70. doi: 10.1016/S1726-4901(09)70304-1

169. D’Agosto G, Latini A, Carducci M, Mastroianni A, Vento A, Fei A, et al. Development of a novel ELISA system for detection of anti-BP180 IgG and characterization of autoantibody profile in bullous pemphigoid patients. Br J Dermatol. (2004) 151:1004–10. doi: 10.1111/j.1365-2133.2004.06245.x

170. Mariotti F, Grosso F, Tarranan M, Ruffelli M, Cordiali-Fei P, Sera F, et al. Development of a novel ELISA system for detection of anti-BP180 IgG and characterization of autoantibody profile in bullous pemphigoid patients. Br J Dermatol. (2004) 151:1004–10. doi: 10.1111/j.1365-2133.2004.06245.x

171. Barnadas MA, Rubiales MV, Gonzalez MJ, Puig L, Garcia P, Baselga E, et al. Enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence testing in a bullous pemphigoid and pemphigoid gestationis. Int J Dermatol. (2008) 47:1245–9. doi: 10.1111/j.1365-4632.2008.03824.x

172. Messingham KA, Noe MH, Chapman MA, Giudice GJ, Fairley JA. A novel ELISA reveals high frequencies of BP180-specific IgG production in bullous pemphigoid. J Immunol Methods. (2009) 346:18–25. doi: 10.1016/j.jim.2009.04.013

173. Kromminga A, Situ C, Haged C, Herzog S, Zillikens D. Development of an ELISA for the detection of autoantibodies to BP230. Clin Immunol. (2004) 111:146–52. doi: 10.1016/j.clim.2003.12.007

174. Schmidt T, Hoch M, Lotfi Jad SS, Solimani F, Di ZG, Marzano AV, et al. Serological diagnostics in the detection of IgG autoantibodies against human collagen VII in epidermolysis bullosa acqua: a multicentre analysis. Br J Dermatol. (2017) 177:1683–92. doi: 10.1111/bjd.15806

175. Saleh MA, Ishii K, Kim YJ, Murakami A, Ishii N, Hashimoto T, et al. Development of NC1 and NC2 domains of type VII collagen ELISA for the diagnosis and analysis of the time course of epidermolysis bullosa acqua patients. J Dermatol Sci. (2011) 62:169–75. doi: 10.1016/j.jdermsci.2011.03.003

176. Kim JH, Kim YH, Kim S, Noh EB, Kim SE, Vorobyev A, et al. Serum levels of anti-type VII collagen antibodies detected by enzyme-linked immunosorbent assay in patients with epidermolysis bullosa acqua is correlated with the severity of skin lesions. J Eur Acad Dermatol Venereol. (2013) 27:e224–30. doi: 10.1111/j.1468-3083.2012.04617.x

177. Chen M, Chan LS, Cai X, O’Toole EA, Sample JC, Woodley DT. Development of an ELISA for rapid detection of anti-type VII collagen autoantibodies in epidermolysis bullosa acqua. J Invest Dermatol. (1997) 108:68–72. doi: 10.1111/1523-1747.ep12285634

178. Sardy M, Odenthal U, Karpati S, Paulsson M, Smyth N. Recombinant human tissue transglutaminase ELISA for the diagnosis of gluten-sensitive enteropathy. Clin Chem. (1999) 45:2142–9.

179. Sardy M, Karpati S, Peterfy F, Rasky K, Tomsits E, Zagoni T, et al. Comparison of a tissue transglutaminase ELISA with the endomysium antibody test in the diagnosis of gluten-sensitive enteropathy. Z Gastroenterol. (2000) 38:381–7. doi: 10.1055/s-2000-14883

180. Manaki A, Sakkyl W, Landolsi H, Gueddah L, Sriha B, Ayadi A, et al. Tissue transglutaminase antibodies in celiac disease, comparison of an enzyme linked immunosorbent assay and a dot blot assay. Pathol Biol. (2005) 53:204–9. doi: 10.1016/j.pathbio.2004.07.022

181. Tampoia M, Giavarina D, Di Gi, Bizzaro N. Diagnostic accuracy of enzyme-linked immunosorbent assays (ELISA) to detect anti-skin autoantibodies in autoimmune blistering skin diseases: a systematic review and meta-analysis. Autoimmun Rev. (2012) 12:121–6. doi: 10.1016/j.autrev.2012.07.006

182. Hisamatsu Y, Nishiyama T, Amano S, Matsui C, Ghohestani R, Hisamoto Iizuka H, et al. Epidermolysis bullosa acquisita sera react with distinct epitopes of the NC1 and NC2 domains of type VII collagen: study using immunoblotting of domain-specific recombinant proteins and postembedding immunoelectron microscopy. Br J Dermatol. (2004) 150:843–51. doi: 10.1111/j.1365-2133.2004.03933.x
229. Izumi K, Bieber K, Ludwig RJ. Current clinical trials in pemphigus and pemphigoid. *Front Immunol*. (2019) 10:978. doi: 10.3389/fimmu.2019.00978

230. Hashimoto T, Ohzono A, Teye K, Numata S, Hiroyasu S, Tsuruta D, et al. Detection of IgE autoantibodies to BP180 and BP230 and their relationship to clinical features in bullous pemphigoid. *Br J Dermatol*. (2017) 177:141–51. doi: 10.1111/bjd.15114

231. van Beek N, Schulze FS, Zillikens D, Schmidt E. IgE-mediated mechanisms in bullous pemphigoid and other autoimmune bullous diseases. *Expert Rev Clin Immunol*. (2016) 12:267–77. doi: 10.1586/1744666X.2016.1123092

232. Fairley JA, Baum CL, Brandt DS, Messingham KA. Pathogenicity of IgE in autoimmunity: successful treatment of bullous pemphigoid with omalizumab. *J Allergy Clin Immunol*. (2009) 123:704–5. doi: 10.1016/j.jaci.2008.11.035

233. Dopp R, Schmidt E, Chimanovitch I, Leverkus M, Brocker EB, Zillikens D. IgG4 and IgE are the major immunoglobulins targeting the NC16A domain of BP180 in Bullous pemphigoid: serum levels of these immunoglobulins reflect disease activity. *J Am Acad Dermatol*. (2000) 42:577–83. doi: 10.1067/mjd.2000.103986

Conflict of Interest Statement: SS, IK, LK, CP, CD, and KF are employees of Euroimmun AG, a company that develops and manufactures immunoassays for the detection of disease-associated antibodies. WSt and WSc are board members of Euroimmun AG.

Copyright © 2019 Saschenbrecker, Karl, Komorowski, Probst, Dähnrich, Fechner, Stöcker and Schlumberger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.