Title
Ultrastructural features of primate granule cell bodies show important differences from those of rats: axosomatic synapses, somatic spines and infolded nuclei

Permalink
https://escholarship.org/uc/item/43n661h4

Journal
Brain Research, 569(2)

ISSN
1385-299X

Authors
Seress, László
Ribak, Charles E

Publication Date
1992

DOI
10.1016/0006-8993(92)90651-o

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Ultrastructural features of primate granule cell bodies show important differences from those of rats: axosomatic synapses, somatic spines and infolded nuclei

László Seress¹,² and Charles E. Ribak²

¹Department of Physiology, University Medical School, Pécs (Hungary) and ²Department of Anatomy and Neurobiology, University of California, Irvine, CA 92717 (U.S.A.)

(Accepted 8 October 1991)

Key words: Hippocampus; Granule cell; Monkey; Somal synapse

Granule cells of the primate dentate gyrus were examined in the electron microscope where they displayed significantly less axosomatic synapses than granule cells in rodents. In addition, primate granule cells frequently had infolded cell nuclei and somal spines which are features that are both rare in rodents. Since the granule cell body is an important site for γ-aminobutyric acid (GABA)ergic inhibitory control, the reduced number of axosomatic synapses in monkeys suggests that local inhibitory connections of primate granule cells are less than that of rodents. Together, these differences may indicate that the primate granule cells are physiologically more active than rat granule cells.

Granule cells of the dentate gyrus are regarded as a cell type with small variability in their morphological features in various species. However, recent studies of the monkey dentate gyrus have shown that primate granule cells display significant variability in light microscopic preparations. This variability includes granule cells with basal dendrites as well as differences in the length of apical dendrites and spine density.

In contrast to the light microscopic differences, the ultrastructure of granule cells has been found to be similar in rats and monkeys. Thus, granule cells display a round cell nucleus of about 10–12 μm in diameter, a thin rim of perikaryal cytoplasm and both symmetric and asymmetric axosomatic and axodendritic synapses. However, the analysis of monkey granule cells used exclusively Golgi-electron microscopic preparations and was limited to a sample of only 10 neurons. The Golgi-electron microscopic preparations do not allow for a detailed quantitative analysis of synapses because gold particles often obscure labeled synapses and the membranes are usually not preserved as well as that found in routine electron microscopic preparations. Therefore, the previous description of granule cells simply stated that asymmetric and symmetric axosomatic synapses were found but no attempt was made to determine their frequency.

In the present study, we wanted to determine the frequency of axosomatic synapses for primate granule cells and the relative numbers of symmetric and asymmetric synapses. Many of the terminals that form symmetric axosomatic synapses are derived from γ-aminobutyric acid (GABA)ergic basket cells. The proportion of GABAergic inhibitory neurons in the granule cell layer of monkeys is less than that of rats. Furthermore, the relative numbers of basket cells to granule cells is also much less for monkeys than rats. These data suggested that the inhibitory input to primate granule cells may be different than that for rats.

Two young, adult Rhesus monkeys (Macaca mulatta) were used in this experiment. The animals were transcardially perfused with a solution containing 4.0% paraformaldehyde, 1.25% glutaraldehyde, 0.002% calcium chloride in a 0.12 M phosphate buffer (pH 7.2). The brains were removed from the skull and kept overnight in the refrigerator before dissecting the hippocampus on the following day. Blocks of tissue obtained from the middle level of the main body of the hippocampus were processed for electron microscopy using a routine schedule that included post-staining with 2% OsO₄ and embedding in Medcast. Serial thin sections were obtained from the blocks. Formvar-coated slot grids (1 × 2 mm) were used because they facilitated the examination of large areas of the granule cell layer in a single thin section. The sections were stained with uranyl acetate and lead citrate and examined with a Phillips CM-10 electron microscope. The quantitative analysis of axosomatic synapses of granule cells used a goniometer stage.
to tilt the grids for the identification of synapses and their type. Synapses were classified as symmetric or asymmetric using the established criteria of postsynaptic density, width of synaptic cleft and the shape of synaptic vesicles.14

The granule cell layer of the primate dentate gyrus is densely packed with granule cells. Axon terminals formed both asymmetric (Fig. 1A) and symmetric (Fig. 1B) synapses with the somata of granule cells. Granule cells at the border with the molecular layer had slightly more axosomatic synapses than the granule cells at the hilar border. However, in both cases the number of axosomatic synapses was surprisingly low. The mean value of axosomatic synapses per granule cell per thin section was 0.67 ± 0.04 (S.E.M.). Although the number of synapses found on a single granule cell body per thin section ranged from 0 to 4, many granule cells did not display a single synapse (Fig. 2A). Although both types of synapse were found, the number of asymmetric axosomatic synapses was very small, amounting to about 3% of all axosomatic synapses of granule cells (Table I).

The nuclei of granule cells were round or ovoid and they often displayed small finger-like indentations (Fig. 2A). The frequency of these infoldings of nuclear membrane was greater for the granule cells that formed the border with the molecular layer (40%) than for those located deeper inside the granule cell layer or at the hilar border (18%).

Soma spines were commonly found for granule cells (Fig. 2B,C). They varied greatly in diameter and length. Also, they displayed a continuous membrane with the cell body but lacked polyribosomes and granular endoplasmic reticulum. The spines contained a fine, flocculent material that was clearly different from the cytoplasmic matrix (Fig. 2B,C). In this analysis, 239 granule cells from the entire depth of the granule cell layer were examined and 64 of them (27%) displayed a total of 89 spines. This reflected the fact that the number of spines for a single granule cell varied from one to 3. Only 4 of the 89 spines were observed to form synapses with axon terminals (Fig. 2B).

The main finding of the present study is that primate granule cells display a much lower number of symmetric axosomatic synapses per granule cell per thin section than rat granule cells. It is interesting to note that primate granule cells display about 25% of the number of

Fig. 1. Electron micrographs of axon terminals that form asymmetric (A) and symmetric (B) synapses (arrows) with the somata of granule cells. A, ×56,000; B, ×39,000.
Fig. 2. Electron micrographs of granule cells in the monkey dentate gyrus. The nuclei of granule cells frequently display finger-like infoldings (arrowheads) of different sizes (A). Somal spines (curved arrows in B and C) appear regularly and they may be apposed by axon terminals that form synapses (open arrow in B). A, ×13,500; B, ×39,000; C, ×32,000.
axosomatic synapses found for those in adult rats. This morphological difference between primate and rodent granule cells suggests a difference between the inhibitory control of these neurons in monkeys and rats because most of the terminals that form such synapses are derived from GABAergic inhibitory basket cells. Another important source of inhibition of granule cells is derived from the chandelier cell that forms GABAergic inhibitory axonal plexuses with the axon initial segments of granule cells. However, the present study did not analyze the axon initial segments of primate granule cells for synapses formed by this cell type.

The primate granule cells in the present study frequently displayed small nuclear infoldings whereas previous studies of granule cells in rats indicated that nuclear infoldings were rare. A previous study of the primate dentate gyrus showed similar finger-like indentations of nuclear membranes of granule cells but the frequency of infoldings was not provided. It is known that local circuit neurons in rats display multiple and deep nuclear infoldings and have much greater physiological activity (fast-spiking cells) than granule cells in rats. Therefore, the frequent appearance of nuclear infoldings for primate granule cells may indicate increased physiological activity.

Another feature commonly observed for the primate granule cell is the somal spine. In normal rats, somal spines are rare. However, mutant mice, transplanted cortex, II. Continuation of the study of the Ammonic system, J. Psychol. Neurol., 46 (1934) 113–177.
7 Ribak, C.E. and Anderson, L., Ultrastructure of the pyramidal basket cells in the dentate gyrus of the rat, J. Comp. Neurol., 192 (1980) 903–916.
8 Ribak, C.E. and Seress, L., Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopy study, J. Neurocytol., 12 (1983) 577–597.
9 Ribak, C.E., Nitsch, R. and Seress, L., Proportion of parvalbumin-positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation, J. Comp. Neurol., 300 (1990) 449–461.
10 Seress, L. and Frotscher, M., Morphological variability is a characteristic feature of granule cells in the primate fascia dentata: a combined Golgi/electron microscope study, J. Comp. Neurol., 293 (1990) 253–267.
12 Seress, L. and Mrzljak, L., Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations, *Brain Research*, 405 (1987) 169–174.

13 Seress, L. and Pokorny, J., Structure of the granular layer of the rat dentate gyrus: a light microscopic and Golgi study, *J. Anat.*, 133 (1981) 181–195.

14 Seress, L. and Ribak, C.E., A substantial number of asymmetric axosomatic synapses is a characteristic of the granule cells of the hippocampal dentate gyrus, *Neurosci. Lett.*, 56 (1985) 21–26.

15 Seress, L. and Ribak, C.E., Postnatal development of the light and electron microscopic features of basket cells in the hippocampal dentate gyrus of the rat, *Anat. Embryol.*, 181 (1990) 547–565.

16 Sørensen, T. and Zimmer, J., Ultrastructural organization of normal and transplanted rat fascia dentata. I. A quantitative analysis of intracerebral and intraocular grafts, *J. Comp. Neurol.*, 267 (1988) 15–42.

17 Soriano, E. and Frotscher, M., A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway, *Brain Research*, 503 (1989) 170–174.

18 Stirling, R.V. and Bliss, T.V.P., Observations on the commissural projection to the dentate gyrus in the reeler mutant mouse, *Brain Research*, 150 (1978) 447–465.