Quantum secret sharing using weak coherent states

Warren P. Grice1 and Bing Qi1,2

1Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA

(Dated: June 26, 2019)

Secret sharing allows a trusted party (the dealer) to distribute a secret to a group of players, who can only access the secret cooperatively. Quantum secret sharing (QSS) protocols could provide unconditionally secure keys based on fundamental laws in physics. While the general security proof has been established recently in an entanglement-based QSS protocol, the tolerable channel loss is unfortunately rather small. Here we propose a continuous variable QSS protocol using conventional laser sources and homodyne detectors. In this protocol, a Gaussian-modulated coherent state (GMCS) prepared by a player passes through the secure stations of the other players sequentially, and each of the other players injects a locally prepared, independent GMCS into the circulating optical mode. Finally, the dealer measures both the amplitude and phase quadratures of the receiving optical mode using double homodyne detectors. Collectively, the players can use their encoded random numbers to estimate the measurement results of the dealer and further generate a shared key. Unlike the existing single photon based sequential QSS protocol, our scheme is intrinsically immune to Trojan horse attacks. Furthermore, the additional loss introduced by each player’s system can be extremely small, which makes the protocol scalable to a large number of players. We prove the unconditional security of the proposed protocol against both eavesdroppers and dishonest players in the presence of high channel loss, and discuss various practical issues.

PACS numbers: 03.67.Dd

I. INTRODUCTION

Secret sharing is a cryptographic primitive with important practical applications [1–2]. In this protocol, a dealer distributes a secret message M to n players in such a way that at least $k \leq n$ players have to work together to decode the message. This is called a (k, n)-threshold scheme. In this paper, we will focus on (n, n)-threshold secret sharing protocol, which means all the n players have to work together to decode the dealer’s message.

If the dealer shares an independent secure key K_i ($i = 1, 2, \ldots, n$) with each player and the length of each key is the same as that of the message, then a (n, n)-threshold secret sharing scheme can be implemented as follows. The dealer first generates a new key $K = K_1 \oplus K_2 \oplus \ldots \oplus K_n$ where “\oplus” denotes addition modulo 2, then encodes message M using K and broadcasts the encrypted message $E = M \oplus K$. Obviously, only when the n players work together can they determine K and thus decode M from E.

The security of the above scheme relies on the security of each individual key. Two-party quantum key distribution (QKD) protocols can be employed to generate unconditional secure keys through insecure channels [3–9]. The dealer could establish a QKD link with each of the players and generate n individual keys before running the secure sharing protocol. However, such an implementation is rather inefficient for large n. Various quantum secret sharing protocols [7–13] have been proposed aiming at achieving both proven security and high efficiency.

The security of QSS is deeply connected to that of QKD. Nevertheless, in contrast to a point-to-point two-party QKD protocol, a QSS protocol typically involves more participants and some of them might be dishonest. This allows additional hacking strategies and makes the security analysis of a QSS protocol more demanding than that of QKD. In fact, the security proof of QSS against both eavesdroppers in the channels and dishonest players only appeared recently [14]. Like most other QSS protocols, the protocol studied in [14] is based on multi-party quantum entanglement which may be difficult to implement with today’s technology when n is large. Furthermore, the tolerable channel losses presented in [14] are quite small.

On another front, to ease the implementation difficulties, single qubit sequential QSS protocols have been proposed and experimentally demonstrated [15]. The basic idea is shown in Fig.1. A single photon prepared in an initial polarization state propagates from party to party sequentially. Each party independently applies a random BB84-type [16] polarization rotation on the same photon. Finally, the last recipient performs a polarization measurement. In half of the cases, the combination...
of the basis choices by all the parties results in a determinisitic measurement result at the last recipient. These instances could be used to implement secret sharing when equipped with an appropriate post-processing procedure. We remark that a similar design has been proposed and demonstrated in multi-user QKD [17, 18].

While the above scheme can significantly improve the feasibility of QSS, its general security is still under debate [19–21]. Furthermore such a design is vulnerable to Trojan-horse attacks where an malicious eavesdropper could send in multi-photon signals to the polarization rotation device of the targeted party and unambiguously determine the corresponding polarization rotation by measuring the output signals. We remark that in the context of QKD, a similar problem has been investigated in the so-called “plug-and-play” design [22], where Bob sends a strong un-modulated laser pulse to Alice through an insecure channel, who in turn encodes information and sends it back to Bob after attenuating it to single-photon level. Since the laser pulses from Bob to Alice are strong classical signals, the security issue due to the bidirectional feature of Alice’s system could be mitigated by characterizing the light pulses received by Alice using conventional photodetectors [23, 24]. However, it is more difficult to apply the same countermeasures in the case of single qubit sequential QSS, where the attacker can use a weaker probe signal. This is not only because the QSS design does not employ an attenuator (as in the plug-and-play design), but also because the attacker can make use of both ports of the QSS device rather than probing and detecting via a single port.

In this paper, we will address both the security and the practicability of QSS. We propose a continuous variable (CV) sequential QSS protocol based on conventional laser sources and homodyne detectors. The main idea is instead of modulating the quantum state of a “passing through” photon, each player injects a locally prepared quantum state into a circulating optical mode using a beam splitter. This prevents the eavesdroppers to access or interfere the quantum state preparation process and makes our scheme resilient to Trojan horse attacks. By choosing an appropriate beam splitting ratio, the additional loss introduced by each player’s system can be extremely small, making the protocol extendable to a large number of players. Furthermore, by extending the ideas introduced in [14], we prove the general security of the proposed protocol against both eavesdroppers and dishonest players in the presence of high channel loss.

FIG. 1: Single qubit sequential QSS protocol [15].

This paper is organized as follows: In Section II, we present details of the proposed QSS scheme and provide a general security proof. In Section III, we conduct numerical simulations based on practical system parameters to show its feasibility. In Section IV, we discuss various implementation issues and possible extensions.

II. THE PROTOCOL AND ITS SECURITY

Inspired by the single qubit sequential QSS protocol [13] and the GMCS QKD [25], we propose a CV-QSS protocol. As shown in Fig.2, n players and the dealer are connected by a single communication channel such as a telecom fiber. For each quantum transmission, the first player P_1 at one end of the link prepares a coherent state $|x_1 + ip_1\rangle$ and sends it to the adjacent player P_2. Here x_1 and p_1 are independent Gaussian random numbers with zero mean and a variance of V_1N_0, where V_1 is the modulation variance chosen by P_1, and $N_0 = 1/4$ denotes the shot-noise variance. The above coherent state passes through a highly asymmetric beam splitter (with a transmittance $t_B \approx 1$) located within the secure station of P_2, and continues its journey to the next player. In the mean time P_2 locally prepares an independent GMCS and couples it into the same spatio-temporal mode as the signal from P_1 via the second input port of the beam splitter. By carefully controlling the modulation variances and having knowledge of the reflectivity of the asymmetric beam splitter, P_2 can introduce phase-space displacements of $\{x_2, p_2\}$. All the other players perform similar operations. At the end, the quantum state that arrives at the dealer can be described by $|\sum_{k=1}^{n} \sqrt{\eta_k} x_k + i \sum_{k=1}^{n} \sqrt{\eta_k} p_k\rangle$, where η_k is the overall transmittance (including losses due to the channel and the beam splitters) experienced by the quantum signal from the k^{th} player. The dealer measures both the amplitude and phase quadratures of the received optical mode by performing double homodyne detection. Intuitively, all the players have to collaborate with each other to deduce the dealer’s measurement results and thus generate a shared key.

The QSS protocol is summarized as below:

Quantum stage

1. The first player P_1 draws a pair of Gaussian random numbers $\{x_1, p_1\}$, prepares a coherent state $|x_1 + ip_1\rangle$ and sends it to the adjacent player.

2. Using a highly asymmetric beam splitter, each player down the link injects a locally prepared GMCS into the same spatio-temporal mode as the signal from P_1.

3. The dealer measures the amplitude and phase quadratures of the received optical mode by performing double homodyne detection. The measurement results $\{x_d, p_d\}$ are kept as raw data.
4. The above procedure is repeated many times to generate enough raw data. This completes the quantum stage of the protocol.

Classical post-processing stage

5. The dealer randomly selects a subset of the raw data and requests all the players to announce the corresponding Gaussian random numbers. Combined with the corresponding measurement results, the channel transmittance \(\{\eta_1, \eta_2, \ldots, \eta_n\}\) can be determined \([20]\). All the parties discard the disclosed data.

6. The dealer assumes \(P_1\) is honest and all the other players are dishonest.

7. The dealer randomly selects a subset of remaining raw data and requests all the players except \(P_1\) to announce their corresponding raw data.

8. The dealer displaces the measurement results of the subset in step 7 using \(x_R = x_d - \sum_{k=2}^{n} \sqrt{\eta_k} x_k; p_R = p_d - \sum_{k=2}^{n} \sqrt{\eta_k} p_k\). From \(\{x_R, p_R\}\) and \(P_1\)'s raw data for the same subset, the dealer and \(P_1\) estimate a lower bound of secure key rate \(R_1\) of two-party QKD following the standard post-processing procedures in the GMCS QKD \([25, 27]\). All the parties discard the disclosed data.

9. The steps 6-8 are repeated \(n\) time. In each run, a different player is selected as the honest player. At the end, the dealer has \(n\) secure key rates \(\{R_1, R_2, \ldots, R_n\}\).

10. The dealer determines the secure key rate \(R\) of the QSS protocol as the minimum of \(\{R_1, R_2, \ldots, R_n\}\) and generates the final key from undisclosed data using reverse reconciliation scheme developed in GMCS QKD \([25, 27]\). Collaboratively, the \(n\) players can recover the secure key using their raw data and the classical information announced by the dealer. Any subgroup of \(n-1\) players (together with potential eavesdroppers in the channel) can only gain an exponentially small amount of information about the key.

The data reconciliation procedure in the last step of the protocol is the same as that in the standard GMCS QKD, see \([27]\) and the references therein. Note in the above protocol, we have implicitly assumed that all the parties share a phase reference. We will discuss how to establish such a phase reference in Section 4.

The security analysis of a QSS protocol is typically more involved than that of QKD. The general security proof against both eavesdroppers in the channels and dishonest players only appeared recently \([14]\). In \([14]\), the dealer prepares a multi-party continuous-variable entangled state, keeps one mode and distributes the other modes to the players. Homodyne detection is carried out by each party on the corresponding mode. One important idea in \([14]\) is to treat the measurement results announced by the players as input or output from uncharacterized devices while the dealer and the corresponding device are assumed to be trusted. This allows them to apply the tools developed in one-sided device-independent QKD \([28, 29]\) into the security analysis of QSS protocol. Nevertheless, the tolerable channel losses presented in \([14]\) are quite small.

In this paper, we follow the same security proof strategy as in \([14]\) by connecting the security of QSS with that of the underlying two-party QKD. One observation is that in an \((n, n)\)-threshold QSS protocol, at least one of the players besides the dealer is honest (otherwise there is no point to do secret sharing). It is thus reasonable to assume the device controlled by the honest player is trusted. This suggests that we can use the standard security proof of QKD with trusted devices to evaluate the secure key rate. Since the dealer does not know which player is honest, he (or she) can evaluate potential secure key rates of QKD with each individual player (by assuming all the other players are dishonest) and choose the smallest one among them as the secure key rate for the QSS [steps 6-9 in the protocol]. This guarantees the the security against the collaborating attacks between the eavesdropper and any \(n-1\) players. By employing the security proof of standard QKD, a highly efficient, loss-tolerant QSS can be achieved. We have adopted a similar security proof strategy in a recent entanglement based QSS demonstration \([30]\).

Next we will show how to evaluate the secure key rate of QKD between the dealer and a chosen player given all the other players are untrusted. Here, we use a security argument similar to the one used in \([31]\). As specified in steps 7-8 of the protocol, after the dealer has decided which player to conduct QKD with, he (or she) requests all the other players to announce encoded random numbers for a randomly chosen subset of the raw data. The dealer then displaces the corresponding measurement results using \(x_R = x_d - \sum_{k=2}^{n} \sqrt{\eta_k} x_k; p_R = p_d - \sum_{k=2}^{n} \sqrt{\eta_k} p_k\) and estimates a lower bound for the
QKD key rate with the player chosen above. Since the displacement operation commutes with homodyne detection, instead of displacing the measurement results, the dealer could perform phase-space displacements before double homodyne detection. We can further assume this virtual displacement operation is performed by the eavesdropper outside the dealer’s secure station without weakening the security of the protocol. In this picture, the actual protocol has been reduced to the standard QKD where all the operations by the dishonest players and the eavesdropper are conducted in the channel before the two QKD users start the post-processing process. Thus the standard security proof of the GMCS QKD can be applied.

Note in this paper, we have assumed that the dealer performs homodyne detection while the players prepare quantum states. In this scenario, the homodyne detector can be trusted and this allows us to apply the standard security proof of CV-QKD. Furthermore, we can apply the trusted detector noise model by assuming both the detector efficiency and detector noise are well calibrated and out of Eve’s control. This approach can typically lead to a better QKD performance and has been widely adopted in long-distance CV-QKD experiments [25,32–36]. We will discuss other possible arrangements in Section 4.

To evaluate the performance of the proposed QSS protocol, in next Section we conduct numerical simulations based on realistic system parameters.

III. NUMERICAL SIMULATIONS

We conduct numerical simulations based on a specific configuration: the distance between the dealer (Bob) and the farthest player (Alice) is \(L \). All the other \(n - 1 \) players are distributed between them with equal separation. According to the step 10 in the protocol, the secure key rate of the QSS protocol in the smallest secure key rate of two-party QKD evaluated between the dealer and each player. Under the assumption that each player introduces the same amount of noise (defined as \(\varepsilon_0 \) in the shot noise limit), the smallest QKD key rate will be the one between Alice and Bob. This is the key rate we will evaluate below.

The asymptotic secure key rate of two-party GMCS QKD, in the case of reverse reconciliation, is given by Refs. 32,37
\[
I_{AB} = f I_{AB} - \chi_{BE};
\]
where \(I_{AB} \) is the Shannon mutual information between Alice and Bob; \(f \) is the efficiency of the reconciliation algorithm; \(\chi_{BE} \) is the Holevo bound between Eve (including external eavesdroppers and the other \(n - 1 \) players) and Bob. \(I_{AB} \) and \(\chi_{BE} \) can be determined from the channel loss, observed noises, and other QKD system parameters.

We assume the quantum channel is telecom fiber with an attenuation coefficient of \(\gamma \). The channel transmittance of the \(k^{th} \) player is given by
\[
T_k = 10^{-\gamma d_k / 10},
\]
where \(d_k = n-k+1 \) is the distance between the dealer and the \(k^{th} \) player. Here without compromising the practicability, we have assumed the transmittance of the beam splitter at each player is \(t_D \approx 1 \).

The excess noise contributed by the \(k^{th} \) player, when referred to the channel input (at Alice), is given by
\[
\varepsilon_k = \frac{T_k}{T_1} \varepsilon_0.
\]
In the case of conjugate homodyne detection, the noise added by Bob’s detector (referred to Bob’s input) is given by [37]
\[
\chi_{het} = [1 + (1 - \eta_D) + 2 \nu_{el}] / \eta_D,
\]
where \(\eta_D \) and \(\nu_{el} \) are the efficiency and noise variance of Bob’s detector.

The channel-added noise referred to the channel input is given by
\[
\chi_{line} = \frac{1}{T_1} - 1 + \sum_{k=1}^{n} \varepsilon_k,
\]
where the term \(\frac{1}{T_1} - 1 \) represents vacuum noise due to the channel loss.

The overall noise referred to the channel input is given by
\[
\chi_{tot} = \chi_{line} + \frac{\chi_{het}}{T_1}.
\]
Since both quadratures can be used to generate secure key, the mutual information between Alice and Bob is given by
\[
I_{AB} = log_2 \frac{V + \chi_{tot}}{1 + \chi_{tot}},
\]
where \(V = V_A + 1 \), and \(V_A \) is Alice’s modulation variance.

To estimate \(\chi_{BE} \), we adopt the realistic noise model where loss and noise of Bob’s detector are assumed to be trusted and cannot be accessed by the eavesdropper [25,32,36]. Under this model, \(\chi_{BE} \) is given by Ref. 32
\[
\chi_{BE} = \frac{1}{2} \sum_{i=1}^{2} G \left(\frac{\lambda_i - 1}{2} \right) - \frac{5}{2} G \left(\frac{\lambda_i - 1}{2} \right),
\]
where \(G(x) = (x + 1)log_2(x + 1) - xlog_2x \).

\[
\chi_{1,2}^2 = \frac{1}{2} \left(A \pm \sqrt{A^2 - 4B} \right),
\]
where
\[
A = V^2(1 - 2T_1) + 2T_1 + T_1^2(V + \chi_{line})^2.
\]
FIG. 3: Simulation results of the secure key rate for $n=2$ (solid), $n=5$ (dash), $n=10$ (dash dot) and $n=20$ (dot). Simulation parameters: $\gamma = 0.2 \text{ dB/km}; \varepsilon_0 = 0.01; \nu_{el} = 0.1; \eta_D = 0.5; f = 0.95$.

$$B = T_1^2(V\chi_{line} + 1)^2. \quad (11)$$

$$\lambda_{3,4}^2 = \frac{1}{2} \left[C \pm \sqrt{C^2 - 4D} \right], \quad (12)$$

where

$$C = \frac{1}{(T_1(V + \chi_{tot}))^2} \left[A\chi_{het}^2 + B + 1 + 2\chi_{het} \right.$$

$$(V\sqrt{B} + T_1(V + \chi_{line})) + 2T_1(V^2 - 1)], \quad (13)$$

$$D = \left(\frac{V + \sqrt{B}\chi_{het}}{T_1(V + \chi_{tot})} \right)^2. \quad (14)$$

$$\lambda_5 = 1. \quad (15)$$

IV. DISCUSSION

Comparing with previous single qubit sequential QSS scheme [15], the CV-QSS proposed here is naturally resilient to Trojan horse attacks: the encoding modulators within the secure stations cannot be reached by the probing signals from external players or the eavesdropper. Furthermore, by using highly asymmetric beam splitters, the additional loss introduced by each player can be extremely small. This opens the door to large-scale implementations. As in the case of single qubit sequential QSS which can be easily changed into a configurable multiuser QKD network [18], it should be straightforward to implement CV-QKD based on the proposed CV-QSS design. Below we will address a few practical issues.

In Section 2, we have implicitly assumed that all the participants share a phase reference. This allows them to prepare quantum states and perform homodyne detection in the same reference frame. One immediate question is how to establish such a phase reference in practice? One possible solution is the pilot-aided phase recovery scheme proposed in CV-QKD [31, 38, 39]. The basic idea is that the first player generates a classical phase reference pulse using the same laser for quantum state generation. After applying a suitable multiplexing scheme (time, frequency, polarization, or a combination of them), the phase reference pulse propagates through the same optical path as the quantum signal. Each player down the link (and also the dealer) splits out a suitable portion of the phase reference pulse and interferes it with the local laser. This allows each player (and the dealer) to determine the phase difference ϕ_k between the local phase frame and that of the first player. After the quantum transmission stage, the $n-1$ players and the dealer first correct the raw
data by performing rotation \(x' = x_k \cos \phi_k - p_k \sin \phi_k; \)
\(p' = x_k \sin \phi_k + p_k \cos \phi_k, \) then they proceed with the
remaining steps of the protocol. This phase recovery scheme has been successfully demonstrated in CV-QKD
\[31\] \[32\] \[33\] \[34\] \[35\].

Note, the protocol presented here is based on the
GMCS QKD, which requires each player to generate
Gaussian distributed random numbers and to actively
modulate the output of a local laser using phase and
amplitude modulator. An alternative passive scheme
based on a thermal source has been proposed to simplify
the state preparation process in CV-QKD \[42\]. Such a
scheme can also be applied in the proposed CV-QSS pro-
tocol. In this case, the phase and amplitude measure-
ments can be carried out with high precision on the por-
tion of the state that is transmitted through the asym-
metric beam splitter, rather than on the weaker portion
coupled into the quantum channel.

As we noted in Section 2, in this paper we assume the
dealer performs the homodyne detection. This arrange-
ment allows us to apply the standard security proof of
CV-QKD and employ the trusted detector noise model.
Can we allow any participant in Fig.2 to be the dealer?
One trivial solution is to let each participant have both
source and detector. The one chosen as the dealer per-
forms measurement while the others prepare quantum
states. This solution requires modifications in the quan-
tum transmission stage and needs complicated system de-
signs and network re-routing. Can we achieve the same
goal by only changing the post-processing procedures?

Imagining that after the quantum stage, \(P_2 \) in Fig.2 de-
cides to be the dealer. \(P_2 \) could carry out the remain-
ing steps of the protocol as outlined in Section 2, with
help from the other participants. More specifically, \(P_2 \)
needs to estimate the potential QKD key rate with each
player under the assumption that all the other players are
dishonest. There are cases when the two trusted QKD
parties prepared quantum states while the measurement
was conducted by a dishonest player, a scenario as in
measurement-device-independent (MDI) QKD \[43\]. In
these cases, the security proof and key rate formulas de-
veloped in CV MDI-QKD \[44\] \[45\] could be applied di-
rectly. We remark that the existing schemes of CV MDI-
QKD require highly efficient homodyne detector and is
more sensitive to channel losses. We leave the feasibility
of CV-QSS based on CV MDI-QKD for future study.

In summary, we propose a CV-QSS protocol based on
practical laser sources and homodyne detectors, which is
intrinsically resilient to Trojan horse attacks. By con-
necting the CV-QSS to CV-QKD, we prove its security
against both eavesdroppers and dishonest players in the
presence of high channel loss.

This work was performed at Oak Ridge National Lab-
oratory (ORNL), operated by UT-Battelle for the U.S.
Department of Energy (DOE) under Contract No. DE-
AC05-00OR22725. The authors acknowledge supports
from DOE’s Cybersecurity for Energy Delivery Sys-
tems Program, Technology Commercialization Fund and
ORNL Technology Transfer and Economic Development
(Partnerships) Royalty Funds.
Smith, Two-Party secret key distribution via a modified quantum secret sharing protocol, Opt. Express 23, 7300 (2015).

[19] G. P. He, Comment on Experimental single qubit quantum secret sharing, Phys. Rev. Lett. 98, 028901 (2007).

[20] C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, H. Weinfurter, Reply to Comment on ‘Experimental Single Qubit Quantum Secret Sharing’, Phys. Rev. Lett. 98, 028902 (2007).

[21] G. P. He and Z. D. Wang, Single qubit quantum secret sharing with improved security, Quant. Inf. Comput. 10, 28 (2010).

[22] A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and Play” Systems for Quantum Cryptography, Appl. Phys. Lett. 70, 793 (1997).

[23] Y. Zhao, B. Qi, and H.-K. Lo, Quantum Key Distribution with an Unknown and Untrusted Source, Phys. Rev. A 77, 052327 (2008).

[24] Y. Zhao, B. Qi, H.-K. Lo, and L. Qian, Security Analysis of an Untrusted Source for Quantum Key Distribution: Passive Approach, New J. Phys. 12, 023024 (2010).

[25] F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and Ph. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421, 238 (2003).

[26] Other methods could be used to calibrate channel transmittance, for example by transmitting strong laser pulses.

[27] E. Diamanti and A. Leverrier, Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations, Entropy 17, 6072 (2015).

[28] M. Tomamichel and R. Renner, Uncertainty Relation for Smooth Entropies, Phys. Rev. Lett. 106, 110506 (2011).

[29] N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, and P. K. Lam, Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution, Optica 3, 634 (2016).

[30] B. P. Williams, J. M. Lukens, N. A. Peters, B. Qi, and W. P. Grice, Quantum Secret Sharing with Polarization-Entangled Photon Pairs, Phys. Rev. A 99, 062311 (2019).

[31] B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the Local Oscillator “Locally” in Continuous-Variable Quantum Key Distribution Based on Coherent Detection, Phys. Rev. X 5, 041009 (2015).

[32] J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tuvelle-Brouri, S. W. McLaughlin, and Ph. Grangier, Quantum key distribution over 25km with an all-fiber continuous-variable system, Phys. Rev. A 76, 042305 (2007).

[33] B. Qi, L.-L. Huang, L. Qian, and H.-K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76, 052323 (2007).

[34] P. Jouguet, S. Kunz-Jacques, A. Leverrier, Ph. Grangier, and E. Diamanti, Experimental demonstration of long-distance continuous-variable quantum key distribution, Nat. Photonics 7, 378 (2013).

[35] D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6, 19201 (2016).

[36] Y.-C. Zhang, Z. Li, Z. Chen, et al., Continuous-variable QKD over 50km commercial fiber, arXiv:1709.04618 (2017).

[37] S. Fossier, E. Diamanti, T. Debuisschert, R. Tuvelle-Brouri, and Ph. Grangier, Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers, J. Phys. B 42, 114014 (2009).

[38] D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-Referenced Continuous-Variable Quantum Key Distribution Protocol, Phys. Rev. X 5, 041010 (2015).

[39] B. Qi, Pilot-aided feedforward data recovery in optical coherent communications, US Patent 9,768,885 (2017).

[40] T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, High key rate continuous-variable quantum key distribution with a real local oscillator, Opt. Express 26, 2794 (2018).

[41] S. Kleis, M. Ruckmann, and C. G. Schaeffer, Continuous-variable quantum key distribution with a real local oscillator using simultaneous pilot signals, Opt. Lett. 42, 1588 (2017).

[42] B. Qi, P. Evans, and W. Grice, Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution, Phys. Rev. A 97, 012317 (2018).

[43] H.-K. Lo, M. Curty, and B. Qi, Measurement-Device-Independent Quantum Key Distribution, Phys. Rev. Lett. 108, 130503 (2012).

[44] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-Rate Measurement-Device Independent Quantum Cryptography, Nat. Photonics 9, 397 (2015).

[45] Z. Li, Y.-C. Zhang, F. Xu, X. Peng, and H. Guo, Continuous-Variable Measurement-Device-Independent Quantum Key Distribution, Phys. Rev. A 89, 052301 (2014).

[46] X.-C. Ma, S.-H. Sun, M.-S. Jiang, M. Gui, and L.-M. Liang, Gaussian-Modulated Coherent-State Measurement-Device Independent Quantum Key Distribution, Phys. Rev. A 89, 042335 (2014).