Activity of Cefiderocol Against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii Endemic to Medical Centers in New York City

Alejandro Iregui, Zeb Khan, David Landman, and John Quale

Therapeutic options for the treatment of infections owing to multidrug-resistant Gram-negative pathogens are often limited. Cefiderocol is a novel siderophore cephalosporin with activity against Gram-negative pathogens, including many multidrug-resistant strains. The activity of cefiderocol was examined against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii that included (1) a recent surveillance collection of clinical isolates, (2) a collection of carbapenem-resistant isolates from a previous surveillance study, and (3) a collection of well-characterized isolates. Susceptibility testing for cefiderocol was performed with iron-depleted cation-adjusted Mueller–Hinton broth. Cefiderocol minimum inhibitory concentrations (MICs) were correlated with resistance mechanisms in the well-characterized isolates. For the Enterobacterales, including a collection of KPC-possessing Klebsiella pneumoniae, cefiderocol MICs were all \(\leq 4 \) mg/L. Cefiderocol MICs were two- to fourfold higher in cephalosporin-resistant isolates. For K. pneumoniae, MICs did not correlate with expression of genes encoding porins or efflux systems. For P. aeruginosa, >99% of isolates were inhibited by \(\leq 4 \) mg/L, including the collection of carbapenem-resistant isolates. For P. aeruginosa, cefiderocol activity was not affected by expression of ampC, oprD, or several efflux systems. All the surveillance isolates of A. baumannii, and 88% of the collection of carbapenem-resistant isolates, had cefiderocol MICs \(\leq 4 \) mg/L. MICs were twofold higher in A. baumannii isolates with proven extended-spectrum beta-lactamases, and cefiderocol activity did not correlate with expression of efflux systems. Cefiderocol demonstrated potent activity against important nosocomial pathogens. Continued development of this agent as a therapeutic option against multidrug-resistant bacteria should be encouraged.

Keywords: Acinetobacter, Pseudomonas, Enterobacteriaceae

Introduction

The World Health Organization has declared antimicrobial resistance a global emergency and the development of new antimicrobials as a priority.1 Carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii are considered “critical” pathogens.1 The spread of multidrug-resistant Gram-negative pathogens has spurred the development of novel and potentially therapeutic agents. Next-generation aminoglycosides and \(\beta \)-lactamase inhibitors that have been recently brought into clinical practice are welcomed additions to our therapeutic armamentarium; however, resistance to these agents may limit their utility. For example, the diazabicyclooctanes are a new class of \(\beta \)-lactamase inhibitors that are active against many pathogens carrying serine \(\beta \)-lactamases.2 However, the currently available agents are not therapeutic options for isolates possessing metallo-\(\beta \)-lactamases. Clearly, alternative approaches are needed. Cefiderocol (previously S-649266) is novel siderophore cephalosporin with a catechol moiety at position 3 of the cephalosporin side chain. This moiety facilitates formation of chelated complexes with iron and crosses the outer membrane of Gram-negative bacilli through active iron transporters.3 Several studies have shown potent in vitro activity of cefiderocol against Enterobacterales, P. aeruginosa, and A. baumannii, including isolates resistant to carbapenems.4–8 The spectrum of activity of cefiderocol includes isolates harboring a wide range of carbapenemases, including serine (KPC, OXA-type) and metallo (VIM, IMP, NDM) \(\beta \)-lactamases.7–13 Finally, in one clinical trial cefiderocol was comparable with imipenem–cilastatin for treatment of complicated urinary tract infections owing to carbapenem-susceptible pathogens.14
In this report we examine the in vitro activity of cefiderocol against Enterobacteriales, P. aeruginosa, and A. baumannii endemic to New York City.

Materials and Methods

Isolates

Clinical isolates of Enterobacteriales, P. aeruginosa, and A. baumannii underwent susceptibility testing. Three groups of Enterobacteriales were included: (1) 2558 single-patient isolates of Escherichia coli, Enterobacter spp. (included in this group was Klebsiella aerogenes), and Klebsiella pneumoniae gathered during a 3-month surveillance study involving seven hospitals in Brooklyn, New York in 2017; (2) 111 carbapenem-resistant (and KPC-possessing) isolates of K. pneumoniae gathered from a similar surveillance study performed in 2013–2014; and (3) 34 well-characterized isolates of P. aeruginosa (n = 78) gathered during a 2013–2014 surveillance study, and (3) 33 isolates of P. aeruginosa and 34 isolates of A. baumannii that were previously characterized for mechanisms of antimicrobial resistance.19–21 For the last group, the presence of β-lactamases and genetic expression of blaKPC, ompK35, and acrB were previously determined.17 Multilocus sequence typing was performed on select isolates of K. pneumoniae according to established protocols.18

For P. aeruginosa and A. baumannii, a similar three groups of isolates were analyzed. These groups included (1) 269 single-patient isolates of P. aeruginosa and 46 isolates of A. baumannii collected during the 2017 surveillance study, (2) carbapenem-resistant isolates of P. aeruginosa (n = 130) and A. baumannii (n = 78) gathered during a 2013–2014 surveillance study, and (3) 33 isolates of P. aeruginosa and 34 isolates of A. baumannii that were previously characterized for mechanisms of antimicrobial resistance.19–21 For P. aeruginosa, the presence of β-lactamases and genetic expression of ampC, oprD, mexA, mexC, mexE, and mexX were analyzed.20 For the A. baumannii isolates, the presence of β-lactamases and genetic expression of ampC, oxa51, adeB, and abeM were determined, as previously described.21

Susceptibility testing

Cefiderocol minimum inhibitory concentrations (MICs) were performed in iron-depleted cation-adjusted Mueller–Hinton broth.22 MICs for the remaining antibiotics were performed by the agar dilution method with Mueller–Hinton agar according to established CLSI methods.23 Susceptibility rates were determined using CLSI criteria; for cefiderocol, the provisional breakpoint of 4 mg/L was used.24 Control strains included E. coli ATCC 25922 and 35218 and P. aeruginosa ATCC 27853.

Statistical analysis using the two-tailed Student’s t-test and multiple linear regression were used to compare MICs with characterized mechanisms of resistance. A value of p < 0.05 was considered significant.

Results

Enterobacteriales

Among the surveillance isolates gathered in 2017 (Table 1), all E. coli isolates (n = 1869) had cefiderocol MICs ≤2 mg/L. Among the ceftazidime-resistant isolates (n = 141), the MIC50/MIC90 values were 0.5/2 mg/L, which were fourfold higher compared with the values of the ceftazidime-susceptible isolates (0.12/0.5 mg/L). The mean cefiderocol MIC was higher in the group resistant to ceftazidime vs. the isolates susceptible to ceftazidime (0.55±0.51 vs. 0.16±0.17 mg/mL, p<0.001). Similarly, all the Enterobacter spp. (n = 172, including 58 isolates of K. aerogenes and 104 isolates of Enterobacter cloacae) had cefiderocol MICs ≤2 mg/L. For the Enterobacter isolates that were resistant to ceftazidime (n = 38), the MIC50/MIC90 values for cefiderocol were 0.25/1 mg/L, which were twofold higher than those values of the ceftazidime-susceptible isolates (0.12/0.5 mg/L).

Among the ceftazidime-resistant isolates (n = 130), the MIC50/MIC90 values for cefiderocol were 0.25/1 mg/L, which were twofold higher than those values of the ceftazidime-susceptible isolates (0.12/0.5 mg/L). In addition, the 18 isolates of Enterobacter that were nonsusceptible to piperacillin/tazobactam (and presumably AmpC hyperproducers) had MIC50/MIC90 values for cefiderocol that were twofold higher than that of the susceptible isolates (0.25/1 vs. 0.12/0.5 mg/L, respectively).

All the 2017 surveillance isolates of K. pneumoniae (n = 517) had cefiderocol MICs ≤2 mg/L, including 19 isolates with blaKPC. Of the 19 blaKPC-possessing isolates, 12 belonged to ST258, two belonged to ST340, and one each belonged to ST45, ST327, ST584, ST3359, and ST3369. Compared with the ceftazidime-susceptible isolates, the ceftazidime-resistant isolates (but lacking blaKPC) had greater mean cefiderocol MICs (0.43±0.46 vs. 0.21±0.20 mg/mL, p<0.001) and MIC50/MIC90 values (0.25/1 vs. 0.12/0.5 mg/L). For the 111 KPC-possessing isolates gathered in 2013–2014, the MIC50/MIC90 values for cefiderocol were 1 and 2 mg/L, and all had an MIC of ≤4 mg/L.

There were 34 previously characterized isolates of K. pneumoniae, including 14 with the carbapenemase KPC (Supplementary Table S1). The mean cefiderocol MIC for isolates (n = 10) that did not have an extended-spectrum beta-lactamase (ESBL) or KPC β-lactamase was 0.24±0.18 mg/L (range = 0.06–0.5 mg/L). The mean cefiderocol MIC for isolates (n = 10) that possessed only an ESBL (blaSHV) was 1.1 mg/L±0.09 mg/L (range = 0.25–4 mg/L; p = 0.04 compared with isolates lacking an ESBL). The one isolate in this group with an MIC = 4 mg/L also possessed an AmpC-type (ACT-1) enzyme. Four isolates with blaKPC but without an ESBL had cefiderocol MICs of 0.5–1 mg/L (mean 0.875 mg/L). The remaining 10 isolates possessed both an ESBL and KPC, with a mean cefiderocol MIC of 1.07±1.19 mg/mL (p = 0.07 compared with isolates lacking an ESBL, range = 0.06–4 mg/L). There was no correlation between cefiderocol MICs and expression of blaKPC, the efflux-related genes marA, ramA, soxS, and acrB, and the porin-related genes ompK35 or ompK36. Isolates with a frameshift mutation involving ompK35 had similar MICs as isolates without this mutation.

P. aeruginosa and A. baumannii

Pseudomonas aeruginosa. There were 269 isolates of P. aeruginosa gathered in the 2017 surveillance study (Table 2), and 99.6% had a cefiderocol MIC ≤4 μg/mL. Compared with the isolates susceptible to ceftazidime, the nonsusceptible isolates had MIC50/MIC90 values for cefiderocol that were twofold higher (0.54 vs. 0.25/2 mg/L), but mean values were similar (0.84±1.09 vs. 0.75±1.15 mg/L, p = NS). There were 130 carbapenem-nonsusceptible isolates gathered in the 2013–2014 surveillance study, and the MIC50/MIC90 values were 0.5/1 mg/L.

There were 33 characterized isolates of P. aeruginosa (Supplementary Table S2). Isolates with increased expression of ampC (>10 times control) had similar cefiderocol MICs...
MIC₅₀	MIC₉₀	Range	Susceptible, %	
2017 surveillance isolates				
Escherichia coli (*n* = 1869)				
Cefiderocol	0.12	0.5	≤0.03 to 2	100
Piperacillin/tazobactam	2/4	4/4	≤0.25/4 to >128/4	99
Ceftriaxone	≤0.06	16	≤0.06 to >32	88
Ceftazidime	0.25	2	≤0.12 to >32	92
Meropenem	≤0.12	≤0.12	≤0.12 to 4	99.9
Gentamicin	1	>16	≤0.25 to >16	86
TMP/SMX	≤0.25/4.75	>4/76	≤0.25/4.75 to >4/76	64
Ciprofloxacin	≤0.12	>4	≤0.12 to >4	67
Enterobacter spp. (*n* = 172)				
Cefiderocol	0.12	0.5	≤0.03 to 2	100
Piperacillin/tazobactam	4/4	32/4	≤0.25/4 to >128/4	90
Ceftriaxone	≤0.06	32	≤0.06 to >32	81
Ceftazidime	0.25	32	≤0.12 to >32	83
Meropenem	≤0.12	≤0.12	≤0.12 to >8	98
Gentamicin	1	1	≤0.25 to >16	94
TMP/SMX	≤0.25/4.75	>4/76	≤0.25/4.75 to >4/76	84
Ciprofloxacin	≤0.12	1	≤0.12 to >4	91
Klebsiella pneumoniae (*n* = 517)				
Cefiderocol	0.12	0.5	≤0.03 to 2	100
Piperacillin/tazobactam	4/4	8/4	≤0.25/4 to >128/4	96
Ceftriaxone	≤0.06	>32	≤0.06 to >32	83
Ceftazidime	0.25	16	≤0.12 to >32	84
Meropenem	≤0.12	≤0.12	≤0.12 to >8	96
Gentamicin	0.5	8	≤0.25 to >16	89
TMP/SMX	≤0.25/4.75	>4/76	≤0.25/4.75 to >4/76	79
Ciprofloxacin	≤0.12	>4	≤0.12 to >4	85
2013–2014 Carbapenem-resistant surveillance isolates				
K. pneumoniae (*n* = 111)				
Cefiderocol	1	2	≤0.03 to 4	100

TMP/SMX, trimethoprim sulfamethoxazole.

Table 2. Susceptibility Results Involving *Pseudomonas aeruginosa* and *Acinetobacter baumannii* from the 2017 Surveillance Collection and the 2013–2014 Carbapenem-Resistant Collection of Isolates

MIC₅₀	MIC₉₀	Range	Susceptible, %	
2017 surveillance isolates				
P. aeruginosa (*n* = 269)				
Cefiderocol	0.25	0.5	≤0.03 to 8	99.6
Piperacillin/tazobactam	8/4	128/4	2/4 to >128/4	75
Ceftazidime	4	32	1 to >32	83
Meropenem	1	8	≤0.12 to >8	76
Gentamicin	2	8	0.5 to >16	79
Ciprofloxacin	0.25	>4	≤0.12 to >4	69
2013–2014 Carbapenem-resistant surveillance isolates				
P. aeruginosa (*n* = 130)				
Cefiderocol	0.5	1	≤0.03 to 4	100
2017 surveillance isolates				
A. baumannii (*n* = 46)				
Cefiderocol	0.25	1	0.06 to 4	100
Piperacillin/tazobactam	32/4	>128/4	≤0.25/4 to >128/4	43
Ceftazidime	8	>32	≤0.12 to >32	54
Meropenem	4	8	≤0.12 to >8	48
Gentamicin	2	>16	0.5 to >16	70
Ciprofloxacin	>4	>4	≤0.12 to >4	46
2013–2014 Carbapenem-resistant surveillance isolates				
A. baumannii (*n* = 78)				
Cefiderocol	0.5	8	0.12 to >32	88
isolates lacking these enzymes.12 Our study also documented carbapenemase, or AmpC-type β-lactamases. Overall, the MICs of Enterobacterales were higher in ESBL-possessing isolates of K. pneumoniae when our collection of characterized isolates of A. baumannii, no correlation was found between ceferodrocol MICs and expression of the efflux genes adeB and adeM.

Our study reaffirms the activity of ceferodrocol against a large number of Gram-negative pathogens, including multiresistant isolates. However, our findings may not be generalized to other multiresistant pathogens, because only a limited variety of carbapenemases was identified (blaKPC in Enterobacterales and blaOXA-type in A. baumannii). Given the limited options available for many resistant nosocomial pathogens, our findings support the continued development of this agent.

Disclosure Statement
No competing financial interests exist.

Funding Information
Shionogi & Co., Ltd, Osaka, Japan provided financial support for these studies.

Supplementary Material
Supplementary Table S1
Supplementary Table S2
Supplementary Table S3

References
1. Tacconelli, E., E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet, C. Pulcini, G. Kahlmeter, J. Klyutmans, Y. Carmeli, M. Ouellette, K. Outterson, J. Patel, M. Cavaleri, E.M. Cox, C.R. Houchens, M.L. Grayson, P. Hansen, N. Singh, U. Theuretzbacher, N. Magrini, and the WHO Pathogens Priority List Working Group. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18:318–327.
2. Bush, K. 2015. A resurgence of β-lactamase inhibitor combinations effective against multiresistant Gram-negative pathogens. Int. J. Antimicrob. Agents. 46:483–493.
3. Ito, A., T. Sato, M. Ota, M. Takemura, T. Nishikawa, S. Harada, M. Hayashi, M. Fujita, Y. Yamano. 2018. In vitro antibacterial properties of ceferodrocol, a novel siderophore, against a large number of Gram-negative pathogens, including multiresistant isolates. However, our findings may not be generalized to other multiresistant pathogens, because only a limited variety of carbapenemases was identified (blaKPC in Enterobacterales and blaOXA-type in A. baumannii). Given the limited options available for many resistant nosocomial pathogens, our findings support the continued development of this agent.

Disclosure Statement
No competing financial interests exist.

Funding Information
Shionogi & Co., Ltd, Osaka, Japan provided financial support for these studies.

Supplementary Material
Supplementary Table S1
Supplementary Table S2
Supplementary Table S3

References
1. Tacconelli, E., E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet, C. Pulcini, G. Kahlmeter, J. Klyutmans, Y. Carmeli, M. Ouellette, K. Outterson, J. Patel, M. Cavaleri, E.M. Cox, C.R. Houchens, M.L. Grayson, P. Hansen, N. Singh, U. Theuretzbacher, N. Magrini, and the WHO Pathogens Priority List Working Group. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18:318–327.
2. Bush, K. 2015. A resurgence of β-lactamase inhibitor combinations effective against multiresistant Gram-negative pathogens. Int. J. Antimicrob. Agents. 46:483–493.
3. Ito, A., T. Sato, M. Ota, M. Takemura, T. Nishikawa, S. Harada, M. Hayashi, M. Fujita, Y. Yamano. 2018. In vitro antibacterial properties of ceferodrocol, a novel siderophore, against a large number of Gram-negative pathogens, including multiresistant isolates. However, our findings may not be generalized to other multiresistant pathogens, because only a limited variety of carbapenemases was identified (blaKPC in Enterobacterales and blaOXA-type in A. baumannii). Given the limited options available for many resistant nosocomial pathogens, our findings support the continued development of this agent.

Disclosure Statement
No competing financial interests exist.

Funding Information
Shionogi & Co., Ltd, Osaka, Japan provided financial support for these studies.

Supplementary Material
Supplementary Table S1
Supplementary Table S2
Supplementary Table S3

References
1. Tacconelli, E., E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet, C. Pulcini, G. Kahlmeter, J. Klyutmans, Y. Carmeli, M. Ouellette, K. Outterson, J. Patel, M. Cavaleri, E.M. Cox, C.R. Houchens, M.L. Grayson, P. Hansen, N. Singh, U. Theuretzbacher, N. Magrini, and the WHO Pathogens Priority List Working Group. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18:318–327.
2. Bush, K. 2015. A resurgence of β-lactamase inhibitor combinations effective against multiresistant Gram-negative pathogens. Int. J. Antimicrob. Agents. 46:483–493.
3. Ito, A., T. Sato, M. Ota, M. Takemura, T. Nishikawa, S. Harada, M. Hayashi, M. Fujita, Y. Yamano. 2018. In vitro antibacterial properties of ceferodrocol, a novel siderophore, against a large number of Gram-negative pathogens, including multiresistant isolates. However, our findings may not be generalized to other multiresistant pathogens, because only a limited variety of carbapenemases was identified (blaKPC in Enterobacterales and blaOXA-type in A. baumannii). Given the limited options available for many resistant nosocomial pathogens, our findings support the continued development of this agent.
cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother. 62:e01454-17.
4. Hackel, M.A., M. Tsuji, Y. Yamano, R. Echols, J.A. Karlowsky, and D.F. Sahm. 2017. *In vitro* activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 61:e00093-17.
5. Hackel, M.A., M. Tsuji, Y. Yamano, R. Echols, J.A. Karlowsky, and D.F. Sahm. 2018. *In vitro* activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of Gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 62:e01968-17.
6. Karlowsky, J.A., M.A. Hackel, M. Tsuji, Y. Yamano, R. Echols, and D.F. Sahm. 2018. *In vitro* activity of cefiderocol, a siderophore cephalosporin, against Gram-negative bacilli isolated by clinical laboratories in North America and Europe in 2015–2016: SIDERO-WT-2015. Int. J. Antimicrob. Agents 53:456–466.
7. Hsueh, S.C., Y.J. Lee, Y.T. Huang, C.H. Liao, M. Tsuji, and P.R. Hseuh. 2019. *In vitro* activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparators against *Pseudomonas aeruginosa* and *Acinetobacter baumannii*, and *Stenotrophomonas maltophilia*, all associated with bloodstream infections in Taiwan. J. Antimicrob. Chemother. 74:380–386.
8. Ito, A., N. Kohira, S.K. Bouchillon, J. West, S. Rittenhouse, H.S. Sader, P.R. Rhomberg, R.N. Jones, H. Yoshizawa, R. Nakamura, M. Tsuji, and Y. Yamano. 2016. *In vitro* antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J. Antimicrob. Chemother. 71:670–677.
9. Kohira, N., J. West, A. Ito, T. Ito-Horiyama, R. Nakamura, T. Sato, S. Rittenhouse, M. Tsuji, and Y. Yamano. 2016. *In vitro* antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother. 60:729–734.
10. Kazmierczak, K.M., M. Tsuji, M.G. Wise, M. Hackel, Y. Yamano, R. Echols, and D.F. Sahm. 2019. *In vitro* activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int. J. Antimicrob. Agents. 53:177–184.
11. Ito, A., T. Nishikawa, M. Ota, T. Ito-Horiyama, N. Ishibashi, T. Sato, M. Tsuji, and Y. Yamano. 2018. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of *Pseudomonas aeruginosa* and *Enterobacter cloacae*. J. Antimicrob. Chemother.73:3049–3052.
12. Jacobs, M.R., A.M. Abdelhamed, C.E. Good, D.D. Rhoads, A.M. Hujer, T.N. Domitrovic, S.D. Rudin, S.S. Richter, D. van Duijn, B.N. Kreiswirth, C. Greco, D.E. Fouts, and R.A. Bonomo. 2019. ARGONAUT-I: activity of cefiderocol (S-649266), a siderophore cephalosporin, against Gram-negative bacteria, including carbapenem-resistant non-fermenters and Enterobacteriaceae with defined extended-spectrum β-lactamases and carbapenemases. Antimicrob. Agents Chemother. 63:e01801-18.
13. Ito-Horiyama, T., Y. Ishii, A. Ito, T. Sato, R. Nakamura, N. Fukuhara, M. Tsuji, Y. Yamano, K. Yamaguchi, and K. Tateda. 2016. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrobial. Agents Chemother. 60:4384–4386.
14. Portsmouth, S., D. van Veenhuyzen, R. Echols, M. Machida, J.C.A. Ferreira, M. Ariyasu, P. Tenke, and T.D. Nagata. 2018. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 18:1319–1328.
15. Iregui, A., K. Ha, K. Meleny, D. Landman, and J. Quale. 2018. Carbapenemases in New York City: the continued decline of KPC-producing *Klebsiella pneumoniae*, but a new threat emerges. J. Antimicrob. Chemother. 73:2997–3000.
16. Abdallah, M., O. Olafisoye, C. Cortes, C. Urban, D. Landman, M. Ghitan, B. Collins, S. Bratu, and J. Quale. 2016. Rise and fall of KPC-producing *Klebsiella pneumoniae* in New York City. J. Antimicrob. Chemother. 71:2945–2948.
17. Landman, D., S. Bratu, and J. Quale. 2009. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing *Klebsiella pneumoniae*. J. Med. Microbiol. 58:1303–1308.
18. Institut Pasteur. Institut Pasteur MLST and whole genome MLST databases. Available at http://bigsdb.web.pasteur.fr/index.html.
19. Abdallah, M., O. Olafisoye, C. Cortes, C. Urban, C. Charles, D. Landman, and J. Quale. 2015. Reduction in the prevalence of carbapenem-resistant *Acinetobacter baumannii* and *Pseudomonas aeruginosa* in New York City. Am. J. Infect. Control. 43:650–652.
20. Quale, J., S. Bratu, J. Gupta, and D. Landman. 2006. Interplay of efflux system, *ampC*, and oprD expression in carbapenem resistance of *Pseudomonas aeruginosa* clinical isolates. Antimicrob. Agents Chemother. 50:1633–1641.
21. Bratu, S., D. Landman, D.A. Martin, C. Georgescu, and J. Quale. 2008. Correlation of antimicrobial resistance with β-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of *Acinetobacter baumannii* endemic to New York City. Antimicrob. Agents Chemother. 52:2999–3005.
22. Hackel, M.A., M. Tsuji, Y. Yamano, R. Echols, J.A. Karlowsky, and D.F. Sahm. 2019. Reproducibility of broth microdilution MICs for the novel siderophore cephalosporin, cefiderocol, determined using iron-depleted cation-adjusted Mueller-Hinton broth. Diagn. Microbiol. Infect. Dis. 94:321–325.
23. Clinical and Laboratory Standards Institute. 2013. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically- Ninth Edition: Approved Standard M07-A9. CLSI, Wayne, PA.
24. Clinical and Laboratory Standards Institute. 2018. Performance Standards for Antimicrobial Susceptibility Testing; 28th Informational Supplement, M100-S28. CLSI, Wayne, PA.
25. Ito, A., T. Nishikawa, S. Matsumoto, H. Yoshizawa, T. Sato, R. Nakamura, M. Tsuji, and Y. Yamano. 2016. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against *Pseudomonas aeruginosa*. Antimicrob. Agents Chemother. 60:7396–7401.

Address correspondence to: John Quale, MD
Division of Infectious Diseases
SUNY Downstate Medical Center
450 Clarkson Avenue
Brooklyn, NY 11203
USA
E-mail: john.quale@downstate.edu