Accepted Manuscript

Meteor showers from active asteroids and dormant comets in near-Earth space: A review

Quan-Zhi Ye

PII: S0032-0633(17)30451-8
DOI: 10.1016/j.pss.2018.04.018
Reference: PSS 4523

To appear in: Planetary and Space Science

Received Date: 21 November 2017
Revised Date: 17 April 2018
Accepted Date: 19 April 2018

Please cite this article as: Ye, Q.-Z., Meteor showers from active asteroids and dormant comets in near-Earth space: A review, Planetary and Space Science (2018), doi: 10.1016/j.pss.2018.04.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Meteor showers from active asteroids and dormant comets in near-Earth space: a review

Quan-Zhi Ye

Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Abstract
Small bodies in the solar system are conventionally classified into asteroids and comets. However, it is recently found that a small number of objects can exhibit properties of both asteroids and comets. Some are more consistent with asteroids despite episodic ejections and are labeled as “active asteroids”, while some might be aging comets with depleting volatiles. Ejecta produced by active asteroids and/or dormant comets are potentially detectable as meteor showers at the Earth if they are in Earth-crossing orbits, allowing us to retrieve information about the historic activities of these objects. Meteor showers from small bodies with low and/or intermittent activities are usually weak, making shower confirmation and parent association challenging. We show that statistical tests are useful for identifying likely parent-shower pairs. Comprehensive analyses of physical and dynamical properties of meteor showers can lead to deepen understanding on the history of their parents. Meteor outbursts can trace to recent episodic ejections from the parents, and “orphan” showers may point to historic disintegration events. The flourish of NEO and meteor surveys during the past decade has produced a number of high-confidence parent-shower associations, most have not been studied in detail. More work is needed to understand the formation and evolution of these parent-shower pairs.

Keywords:
Active asteroids, Dormant comets, Meteors, Meteor showers, Meteoroid streams, Solar system dynamics

1. Introduction

The term small solar system bodies includes most natural bodies in the solar system that are less than a few hundred kilometers in size such as asteroids and comets. Traditionally, the word asteroid refers to the rocky bodies that orbit the Sun between between the orbits of Mars and Jupiter and appear star-like, while the word comet refers to the icy bodies in planet-crossing orbits that exhibit fuzzy atmosphere (coma) and sometimes a tail as they approach the Sun. As it has been recently noticed, the boundary between asteroids and comets is blurry: some asteroidal objects can suddenly exhibit comet-like activities while objects in comet-like orbit appear asteroidal. It has been suggested that the activity from asteroids can be driven by sublimation of subterranean ice, impacts by a secondary body, as well as rotational or thermal excitation (Jewitt et al., 2015), while inactive objects in cometary orbits are thought to be ex-comets that have depleted their volatile ice (Weissman et al., 2002).

Active small body releases dust or meteoroids into interplanetary space, forming a meteoroid stream along the orbit. For small bodies in Earth-crossing orbits, the ejected meteoroids may find their way to the Earth and produce meteor showers as they plunge into Earth’s atmosphere. Observation of a meteor shower provides information about the past activity of its parent. Even if a small body is observationally inactive at the moment, detection of associated meteor activity can provide evidence of recent dust production of this body. This is particularly useful for the study of objects with intermittent activities and/or have recently ceased to be active.

Attempt to link meteor showers to observationally inactive bodies goes back to Whipple (1938). Readers may refer to Jenniskens (2008) for a historical account on this topic. More recently, the operation of dedicated near-Earth object (NEO) surveys has led to the discovery of a number of dual-designated objects that were initially identified as...
Table 1: Established showers likely related to asteroids and dual-status objects, order by dates of maximum.

Meteor shower	Parent body	Peak date (approx.)
Quadrantids	(196256) 2003 EH₁	Jan. 4
Northern δ Cancrids	(85182) 1991 AQ	Jan. 16
Southern δ Cancrids	2001 YB₅	Jan. 16
Daytime κ Aquariids	2002 EV₁₁	Mar. 20
Daytime April Piscids	(242643) 2005 NZ₆	Apr. 15
α Virginids	1998 SH₂	Apr. 21
Corvids	(374038) 2004 HW	Jun. 16
Daytime β Taurids	2004 TG₁₀	Jun. 28
ψ Cassiopeids	(5496) 1973 NA	Jul. 21
α Capricornids	169P/2002 EX₁₂ (NEAT), 2017 MB₁	Jul. 31
κ Cygnids	(153311) 2001 MG₁, (361861) 2008 ED₆⁹	Aug. 13
Northern τ Aquariids	(455426) 2003 MT₉	Aug. 20
Daytime Sextantids	(155140) 2005 UD	Sep. 30
Northern Taurids	2004 TG₁₀	Nov. 6
Southern χ Orionids	2002 XM₄₅, 2010 LU₁₀₈	Nov. 24
Phoenicids	289P/2003 WY₂₅ (Blanpain)	Dec. 5
Geminids	(3200) Phaethon	Dec. 14

Asteroids but were later found to exhibit cometary activity¹. Most of these objects are bona fide comets that are simply difficult to resolve at large distances due to low activity.

As of 2017 November, the IAU Meteor Data Center or MDC (Jopek and Jenniskens, 2011; Jopek and Kaňuchová, 2014, 2017) lists 703 meteor showers, among which 112 are considered as “established” while most others are considered in the working list. The established showers are of high confidence and therefore we only focus on these showers, though we note that promotions from working list to established showers happen once every 3 years (during the IAU General Assembly, with the next one in 2018), therefore our list might miss a few newly established showers. According to MDC, a total of 15 established showers have been proposed to associate to asteroids, in addition another 2 have been linked to dual-designated objects. We tabulate these linkages in Table 1 as listed on MDC, with the exception of the new linkage of α Capricornids — 2017 MB₁ which is not being listed as of this writing (see § 3).

In this review, we will focus on the meteor showers originated from active asteroids and possible dormant comets and discuss how they can help us to understand the evolution of their parent bodies. In § 2 we discuss the Dissimilarity Criterion and its usage in the identification of parent-shower association. In § 3 we review the linkages being proposed for established showers as summarized in Table 1. In § 4 we discuss how meteor observation can help us to understand comet evolution and highlight some of the recent advances. We conclude this review by a discussion of outstanding problems.

2. The Dissimilarity Criterion and Its Statistical Significance

The issue of comet/asteroid-shower association is not an easy one. Most modern search of comet/asteroid-shower association make use of the Dissimilarity Criterion or the D criterion, which was first proposed by Southworth and Hawkins (1963) and has been modified by others (e.g. Drummond, 1981; Jopek, 1993; Asher et al., 1994; Drummond, 2000). A smaller D indicates a higher degree of similarity between two orbits. It is not possible to derive a minimum cut-off of D that corresponds to definite associations, albeit an empirical cut-off of D ≈ 0.1 has been widely used. The issue is further complicated by the fact that the orbits of most showers-of-interest are not precisely known, and that the orbits of meteor showers are also evolving over time.

¹The International Astronomical Union (IAU)’s Minor Planet Center defines dual-designated objects as objects concurrently holds permanent designation of both comets and asteroids, http://www.minorplanetcenter.net/iau/lists/DualStatus.html. Here we use a more relaxed definition of dual-designation: any comets that hold asteroidal provisional designation are considered as dual-designated objects.
The original definition of the \(D \) criterion given by Southworth and Hawkins (1963) goes as

\[
D_{A,B}^2 = (q_B - q_A)^2 + (e_B - e_A)^2 + \left(2 \sin \frac{I}{2}\right)^2 + \left[(e_A + e_B) \sin \frac{\Pi}{2}\right] ^2
\]

(1)

where

\[
I = \arccos \left[\cos i_A \cos i_B + \sin i_A \sin i_B \cos (\Omega_A - \Omega_B) \right]
\]

(2)

\[
\Pi = \omega_A - \omega_B + 2 \arcsin \left[\cos \frac{i_A + i_B}{2} \sin \frac{\Omega_A - \Omega_B}{2} \sec \frac{I}{2} \right]
\]

(3)

and the subscripts \(A \) and \(B \) refer to the two orbits being compared. Here \(q \) is the perihelion distance in au, \(e \) is the eccentricity, \(i \) is the inclination, \(\Omega \) is the longitude of ascending node, and \(\omega \) is the argument of perihelion. The sign of the arcsin term in the equation for \(\Pi \) switches if \(|\Omega_A - \Omega_B| > 180^\circ \). Most of the later variants to the \(D \) criterion similarly rely on the conventional orbital elements.

Since the \(D \) criterion only measures the degree of (dis-)similarity of two orbits, it provides limited information on whether the two orbits are likely related. For example, it is common to find likely "parents" for ecliptic showers solely based on the \(D \) criterion and a simple cutoff at \(D = 0.1 \), since the orbits of most NEOs lie close to the ecliptic plane.

To solve this dilemma, we need to calculate the statistical significance of a given \(D \): consider the \(D \) criterion between the proposed parent-shower pair to be \(D_0 \), what is the expected number of parent bodies \(X \) that have orbits such that \(D < D_0 \), where \(D \) is the \(D \) criterion between the new parent and the shower?2

This topic was first explored by Wiegert and Brown (2004b) using a debiased NEO population model developed by Bottke et al. (2002). (Earlier, Drummond (2000) used similar technique to search for groupings of near-Earth asteroids.) More recently, Ye et al. (2016a) tested the statistical significances of 32 previously proposed parent-shower pairs with comet-like orbits and found that only 1 of them are statistically significant (i.e. \(\langle X \rangle \ll 1 \)). Here we repeat this test2 to all proposed pairs in Table 1 which includes both cometary and asteroidal showers, using shower orbits derived from contemporary radar and video meteor orbit surveys. \(\langle X \rangle \) is computed for NEO population of km-sized objects, since the small masses of objects \(\ll 1 \) km cannot sustain a detectable meteoroid stream (Hughes and McBride, 1989). For the interest of computing resource and time, we only test 1000 randomly generated NEO populations, therefore our sensitivity of \(\langle X \rangle \) only goes down to 0.001. We note, however, that this limit already reaches the 3\(\sigma \) level which we believe is sufficient to suggest a high confidence linkage.

As shown in Table 2, our calculation confirmed some of the well-known linkages such as the (3200) Phaethon — Geminids pair and the (196256) 2003 EH₂ — Quadrantids pair, while some of the linkages such as the (455426) 2003 MT₉ — Northern \(\iota \) Aquariids are found to be statistically unlikely. While the results derived from radar and video orbits agree in most cases, there are a few cases where radar result and video result deviates from each other, such as 2002 XM₃₅ — Southern \(\chi \) Orionids, 2001 YB₃ — Southern \(\delta \) Cancrids and (455426) 2003 MT₉ — Northern \(\iota \) Aquariids. Radar orbits of the first two showers are based on very small statistics which could explain the deviation from the video orbits. However, the shower for the last case, Northern \(\iota \) Aquariids, is a well-observed shower. It would be interesting to investigate the discrepancy between the the radar and the video orbits of Northern \(\iota \) Aquariids though it is beyond the scope of this review.

Before we discuss high confidence linkages, which we will do in the next section, let us reflect on the complication arisen from the dynamical evolution of the meteoroid stream, a process that dissociate parent-shower linkage over time. To understand how the dynamical evolution of meteoroid streams affects \(\langle X \rangle \), we conduct a simple experiment on four objects: (3200) Phaethon, (196256) 2003 EH₂, 2004 TG₁₀, and 209P/LINEAR, the latter of which is the parent of the Camelopardalid meteor shower on the IAU working list (Jenniskens, 2006; Ye and Wiegert, 2014). We select these four objects as they are well known as shower parents and cover a relatively wide orbital and \(\langle X \rangle \) spaces. For each object, one 1 mm particle representing the median of the associated meteoroid stream is released at zero speed with respect to the parent. The choice of 1 mm reflects the typical sizes of meteoroids detectable by most conventional techniques (Cepelucha et al., 1998) and is meant to simplify our discussion, though we note that \(\langle X \rangle \) (and also \(D \)) is

2The script that is used to calculate \(\langle X \rangle \) is available at the author's GitHub repository: https://github.com/Yeqzida/d-check.
Table 2: Statistical significance of the parent-shower linkages in Table 1 assuming that the parent is km-sized. The parent size assumption is valid for most parent bodies with the exception of 289P/Blanpain and 2002 XM35, which are \(~150\) m in diameter assuming a 5% albedo. \((X)\) for these two bodies appropriate to their sizes will be \(~10\) times larger than the values shown in the table. Reference abbreviations are: N64 – Nilsson (1964); G75 – Gartrell and Elford (1975); B08 – Brown et al. (2008); B10 – Brown et al. (2010); J16 – Jenniskens et al. (2016a); J16a – Jenniskens et al. (2016b); S17 – Sato et al. (2017). We note that the numbers for Southern \(\chi\) Orionids and Southern \(\delta\) Cancrids are uncertain as the orbits of 2001 YB5, 2002 XM35 and 2010 LU108 are poorly known.

Pair	Reference of parent's orbit	\((X)\) for radar orbit	\((X)\) for video orbit
(3200) Phaethon — Geminids	JPL 578	B10: 0.001	J16: 0.001
2017 MB1 — \(\alpha\) Capricornids	JPL 34	B08: 0.004	J16: 0.004
(1996256) 2003 EH1 — Quadrantids	JPL 29	B10: 0.009	J16: 0.005
289P/2003 WY23 (Blanpain) — Phoenicids	JPL 5	S17: 0.02	S17: 0.001
(155140) 2005 UD — Daytime Sextantids	JPL 66	B10: 0.1	J16: 0.05
(374038) 2004 HW — Corvids	JPL 60	–	J16: 0.1
1998 SH2 — \(\alpha\) Virginids	JPL 121	–	J16a: 0.2
2004 TG10 — Daytime \(\beta\) Taurids	JPL 25	B08: 0.2	–
2004 TG10 — Northern Taurids	JPL 25	B08: 0.3	J16: 0.1
169P/2002 EX12 (NEAT) — \(\alpha\) Capricornids	JPL 121	B08: 0.3	J16: 0.3
(85182) 1991 AQ — Northern \(\delta\) Cancrids	JPL 83	–	J16: 0.3
(242643) 2005 NZ6 — Daytime April Piscids	JPL 73	B10: 0.5	–
(153311) 2001 MG1 — \(\kappa\) Cygnids	JPL 63	–	J16: 0.8
(5496) 1973 NA — \(\psi\) Cassiopeiids	JPL 52	B08: 1	J16: 0.5
(361861) 2008 ED90 — \(\kappa\) Cygnids	JPL 36	–	J16: 2
2002 EV11 — Daytime \(\kappa\) Aquarids	JPL 20	G75: 2	–
2010 LU108 — Southern \(\chi\) Orionids	JPL 12	N64: 2	J16: 0.6
2002 XM15 — Southern \(\chi\) Orionids	JPL 7	N64: 4	J16: 0.5
2001 YB5 — Southern \(\delta\) Cancrids	JPL 6	N64: 9	J16: 0.4
(455426) 2003 MT0 — Northern \(\iota\) Aquariids	JPL 38	B10: 18	J16: 0.05
somewhat dependent on the size distribution of meteoroids. The parent and the particles are integrated forward for 10^4 yr using a tailored Mercury6 package (Chambers, 1999; Ye et al., 2016b), considering gravitational perturbation from major planets (with the Earth-Moon system represented by a single perturber), radiation pressure and Poynting-Robertson effect. Parents and all particles are considered massless and do not interact with each other. The choice of an integration duration of 10^4 yr is made considering the collisional lifetime of millimeter-sized meteoroids (Grun et al., 1985). Orbits of the parents and the particles are recorded every 100 yr with their $\langle X \rangle$ values being calculated following the aforementioned procedure.

In Figure 2 we show the evolution of $\langle X \rangle$ over 10^4 yr for each of the four targets being tested. Again, our sensitivity of $\langle X \rangle$ only goes down to 0.001 as we only test 1000 synthetic NEO populations. We find that meteoroid stream generated by (3200) Phaethon stay in a very stable orbit, allowing parent-shower association to be made beyond a timescale of 10^4 yr. This is likely due to the fact that the orbit of Phaethon prevents it from close approach with large major planets like Jupiter. The other three objects make regular approaches to Jupiter and therefore their streams are less stable. It only takes a few 10^3 yr for streams produced by (196256) 2003 EH$_1$ and 2004 TG$_{10}$ to become statistically detached from their parents, while the stream by 209P/LINEAR, which is known to be residing in a stable resonance point (Fernández and Sosa, 2015; Ye et al., 2016b), take over 10^4 yr to become decoherent with its parent. Nevertheless, our experiment suggests that parent-shower pairs similar to the cases of (3200) Phaethon, (196256) 2003 EH$_1$, 2004 TG$_{10}$, and 209P/LINEAR should remain statistically identifiable for at least a few 10^3 yr, a timescale consistent to the age of typical meteoroid streams (Pauls and Gladman, 2005), though very massive and Jupiter-approaching streams that can survive over 10^4 yr could indeed be detached from their parents, making parent-shower association very difficult.
3. High Confidence Parent-Shower Linkages

Here we review the high confidence parent-shower linkages identified in Table 2 order by their statistical significances.

(3200) Phaethon — Geminids. Identified in 1983 and being associated to one of the strongest annual meteor showers, the Phaethon — Geminids pair is the earliest identified and perhaps the best known asteroid-shower pair. We find the likelihood of chance alignment to be 1 in 1000 for both radar- and video-derived orbits, suggesting that the Phaethon — Geminids pair is likely to be genuine as expected. The formation mechanism of the Geminids is still under debate, with asteroidal collision (Hunt et al., 1986), cometary sublimation (Gustafson, 1989), and thermal evolution (Kasuga, 2009) having been proposed as likely driver. It has been recently found that Phaethon does currently show some weak activity at its extreme perihelion of $q = 0.14$ au (Jewitt and Li, 2010), albeit the dust production level is too small to explain the formation of the Geminid meteoroid stream.

2017 MB1 — α Capricornids. The α Capricornid meteor shower was originally associated to 169P/2002 EX12 (NEAT) (Wiegert and Brown, 2004b; Jenniskens and Vaubaillon, 2010; Kasuga et al., 2010) with a likelihood of chance alignment to be 1 in 3. However, a recently-found asteroid, 2017 MB1, appears to be a much better parent candidate (Wiegert et al., 2017), with a 1 in 250 chance to be coincidence. 169P/NEAT is a weakly active comet while 2017 MB1 has not been found to be currently active. Numerical simulation shows that, assuming 169P/NEAT and α Capricornids is physically related, a major disruption took place on the comet about 4500–5000 years ago that lead to the formation of the meteoroid stream. Dust released at an earlier or later epoch would not reach the Earth at the right time to be currently observable. An interesting possibility is that 169P/NEAT, 2017 MB1 and α Capricornids all belong to a larger progenitor that underwent a large fragmentation ~ 5000 years ago, though a critical examination is needed.

(196256) 2003 EH1 — Quadrantids. The Quadrantids is the second identified asteroidal shower after the Geminids (Jenniskens, 2004; Williams et al., 2004). Our calculated likelihood of chance alignment is 1 in 100–200, much higher than the 1 in 2 million rate given by Jenniskens (2008), but still within reasonable range that suggests a likely linkage.

(196256) 2003 EH1 is about 2 km in size and has an orbit comparable to most short-period comets, yet none of the attempts to search for cometary activity have been successful (Kasuga and Jewitt, 2015). The young dynamical age of the Quadrantid meteoroid stream, which is 200–500 yr (Wiegert and Brown, 2004a; Abedin et al., 2015), implies that (196256) 2003 EH1 (or its true parent) must have been active within the recent a few hundred years. More broadly, the (196256) 2003 EH1 — Quadrantids pair joins several other notable comet/asteroid-shower pairs to become what is known as the Machholz complex, named after comet 96P/Machholz. It is believed that this renown complex is originated from cascading fragmentation of 96P/Machholz over the previous ~ 10^4 yr (Abedin et al., 2018).

289P/2003 WY25 (Blanpain) — Phoenicids. Independently identified by Micheli (2005) and Jenniskens and Lytten (2005), this linkage convincingly resolves the mysteries over the long-lost comet D/1819 W1 (Blanpain) and origin of the Phoenicid meteor shower. It is hypothesized that the progenitor of 289P/Blanpain experienced a series of fragmentation events in 1817–1819, which produced a large amount of dust that helped its discovery, as well as at least one smaller remnant that is currently known as 289P/Blanpain. Dust released in 1819 approached the Earth in 1956 and 2014, with heighten meteor activity confirmed by meteor observations (Watanabe et al., 2005; Sato and Watanabe, 2010; Sato et al., 2017). The likelihood of chance alignment is calculated to be 1 in 50–1000, supporting the idea that 289P/Blanpain and the Phoenicids are related. It has been found that 289P/Blanpain is still weakly active, at a level that is too low to replenish the Phoenicid stream (Jewitt, 2006).

(155140) 2005 UD — Daytime Sextantids. The (155140) 2005 UD — Daytime Sextantids pair joins the Phaethon—Geminids and asteroid (225416) 1999 YC, forming the so-called Phaethon-Geminids Complex (PGC) (Ohtsuka et al., 2006; Ryabova, 2008; Kasuga, 2009). It has been proposed that these bodies and streams were formed as a result of thermal disintegration of a much larger progenitor Kasuga (2009). Our calculation shows a likelihood of chance alignment for the (155140) 2005 UD — Daytime Sextantids pair to be 1 in 10–20. Study of the Daytime Sextantids is scarce despite the fact that the shower is quite strong and has been observed by both radar and video techniques (Brown et al., 2010; Jenniskens et al., 2016a).
(374038) 2004 HW — Corvids. The Corvids was reported only by Hoffmeister (1948) based on visual data before the recent confirmation by the Cameras for Allsky Meteor Surveillance (CAMS) network based on 12 meteors (Jenniskens et al., 2016a). Its southerly radiant, combining with a very low geocentric encounter speed (~ 9 km/s), making detection and confirmation difficult. Our calculation shows a likelihood of chance alignment to be 1 in 10. More orbit measurement is encouraged in order to further verify this linkage.

2004 TG10 — Northern Taurids. As a member of the Taurid Complex, the Northern Taurids is typically being associated to comet 2P/Encke, though more than 10 asteroids have been proposed to be members of this complex, including 2004 TG10 (Porubčan et al., 2006; Babadzhanov et al., 2008; Olech et al., 2017; Spurný et al., 2017). (The Daytime β Taurid meteor shower in Table 2 is also a member of the Taurid Complex.) Our calculation shows a moderate chance for Northern Taurids — 2004 TG10 to be a chance alignment (1 in 10 to 1 in 3). However, this number should be taken cautiously due to the complicated dynamical history of the Taurid Complex.

4. Meteor Observation as a Tool to Understand Comet Evolution

Since meteors are related to previous activities of the parent, they provide some information about the history of the parent. These information can be very valuable if they are from times that the parent had not yet been discovered. However, we also need to recognize that meteor observation can only provide a very skewed picture of what has happened to the parent: only the dust that are presently intercepting Earth’s orbit can be detected as meteors.

The case of the now-defunct comet 3D/Biela is the earliest and the perhaps the best example of what meteor observation can do to help understand comet evolution. Biela’s Comet was initially discovered by Jacques Leibax Montaigne in 1772 and was named after its orbit computer Wilhelm von Biela (Kronk, 1999, 2003). The comet was found to have split during its 1846 perihelion and was lost after its 1852 perihelion. However, spectacular meteor storms radiating from the constellation of Andromeda was observed in 1872 and 1885, with orbits consistent with Biela’s Comet, suggesting a complete disintegration of the comet (Olivier, 1925). Recent observation of the Andromedids, coupled with dynamical simulation, suggests that Biela’s Comet had been active for at least ~ 200 yr before its final disintegration (Wiegert et al., 2013). A comprehensive analysis of the remaining mass of dust in the Andromedid meteoroid stream suggests that some larger fragments of Biela’s Comet may have survived the disintegration and is now hiding as a dormant comet, though such fragments (if exist) are yet to be found (Jenniskens and Vaubaillon, 2007).

The case of 289P/Blanpain, introduced in the previous section, is another example. Compared to the case of 3D/Biela, a large remnant that survived the fragmentation has actually been recovered and still exhibits some very low activity (Jewitt, 2006). A comprehensive analysis that make use of the available telescopic and meteor data, coupled with dynamical simulation, should provide a better picture of the fragmentation process. Events like 3D/Biela and 289P/Blanpain are unique as they allow us to directly sample the dust deposited by the parent, providing useful analogues to events like the fragmentation of 332P/Ikeya-Murakami (Ishiguro et al., 2014; Jewitt et al., 2016; Kleya et al., 2016; Hui et al., 2017), that can only be studied by telescopic observations as the parents do not approach the Earth.

Meteors observation can also reveal historic episodic ejection of now-dormant parents. One of the examples is the 2006 outburst of June α Virginids, likely associated to asteroid (139359) 2001 ME1 with a chance alignment rate of 1 in 100 (Ye et al., 2016a). This event can be considered as an analogue to the possible transient ejection of 107P/(4015) Wilson-Harrington in 1949 (Fernández et al., 1997).

Meteors surveys also find a number of orphan showers that cannot be associated to any known asteroids or comets. We cannot exclude the possibility that the parent bodies are yet to be found, but given that our knowledge of km-sized near-Earth objects are now > 90% complete (Jedicke et al., 2015), it is likely that at least some of the short-period showers are originated from catastrophic disintegration of comets or asteroids. It has been suggested that near-Sun asteroids could disrupt due to intense thermal effects, leaving behind orphan streams (Granvik et al., 2016). Examination of telescopic survey data also suggest that comet disruptions may be common (Ye, 2017). In theory, meteor data could provide an independent constraint of the number of near-Earth asteroids or comets that have recently disintegrated.
5. Future Work

A lot of exciting advancements have been made since the review of Jenniskens (2008). Four large video surveys have since been built or greatly expanded, providing almost 1 million new video meteoroid orbits compared to less than 80,000 ten years ago (Jenniskens, 2017). Video networks specifically aiming at meteorite recovery have been built or greatly expanded (Bland et al., 2012; Madiedo et al., 2014b; Colas et al., 2016), enhancing our chances of recovering meteorites from slow showers such as the Geminids and the Taurids (Madiedo et al., 2013, 2014a). The Canadian Meteor Orbit Radar (CMOR) has been upgraded and has measured 14 million meteoroid orbit since 2002 (Ye et al., 2013, 2016a). The Southern Argentina Agile Meteor Radar (SAAMER) has been set up to patrol the southern sky (Janches et al., 2013, 2014, 2015). Various radar systems occasionally conduct meteor observations (Janches et al., 2008; Kero et al., 2012; Younger et al., 2015). The rapid increase of meteor orbit data is particularly encouraging for the studies of weakly active showers likely originated from active asteroids and dormant comets.

One major problem that is yet to be convincingly solved is the identification of weakly active showers. Traditional practice of manually identifying radiant “clusters” is difficult to cope with the large data rate of modern meteor surveys. Methods that are widely used by modern surveys include wavelet transformation (Brown et al., 2008, 2010) and clustering linkage (Rudawska et al., 2015; Jenniskens et al., 2016a). However, both techniques still rely on a number of unconstrained free parameters such as radiant sizes and velocity spreads, therefore unique identification is difficult for very weak showers close to the background. New techniques, such as a variable critical D criterion (Moorhead, 2016) and comparison with synthetic orbits (Vida et al., 2017), are being explored to overcome this problem.

Contemporary NEO surveys have found a number of intriguing objects like (3200) Phaethon, (196256) 2003 EH1 and others, many with (or likely to have) associated meteoroid streams. Besides a few notable ones, most of these complexes are poorly understood. For example, studies remain scarce for the members in the Phaethon-Geminid Complex besides Phaethon — Geminids itself; most objects and meteor showers in various sungrazing and sunskirting families remain to be characterized (Sekhar and Asher, 2014).

Acknowledgment

I thank David Asher and an anonymous reviewer for their comments that help improve this manuscript. This work is supported by the GROWTH project funded by the National Science Foundation under Grant No. 1545949.

Abedin, A., Špurný, P., Wiegert, P., Pokorny, P., Borovička, J., Brown, P., 2015. On the age and formation mechanism of the core of the Quadrantid meteoroid stream. Icarus 261, 100–117.
Abedin, A., Wiegert, P., Janches, D., Pokorny, P., Brown, P., Hornaenea, J. L., 2018. Formation and past evolution of the showers of 96P/Machholz complex. Icarus 300, 360–385.
Asher, D. J., Clube, S. V. M., Napier, W. M., Steel, D. I., 1994. Coherent catastrophism. Vistas in Astronomy 38, 1–27.
Babadzhanov, P. B., Williams, I. P., Kohroiva, G. I., May 2008. Near-Earth Objects in the Taurid complex. MNRAS386, 1436–1442.
Bland, P. A., Špurný, P., Bevan, A. W. R., Howard, K. T., Towner, M. C., Benedict, G. K., Greenwood, R. C., Shheny, L., Franchi, I. A., Deacon, G., Borovička, J., Cephecha, Z., Vaughan, D., Hough, R. M., Mar. 2012. The Australian Desert Fireball Network: a new era for planetary science. Australian Journal of Earth Sciences 59, 177–187.
Bottke, W. F., Morbidelli, A., Jedidic, R., Petit, J.-M., Levison, H. F., Michel, P., Metcalfe, T. S., Apr. 2002. Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects. Icarus 156, 399–433.
Brown, P., Weryk, R. J., Wong, D. K., Jones, J., May 2008. A meteoroid stream survey using the Canadian Meteor Orbit Radar. I. Methodology and radiant catalogue. Icarus 195, 317–339.
Brown, P., Wong, D. K., Weryk, R. J., Wiegert, P., May 2010. A meteoroid stream survey using the Canadian Meteor Orbit Radar. II: Identification of minor showers using a 3D wavelet transform. Icarus 207, 66–81.
Cephecha, Z., Borovička, J., Elford, W. G., Revelev, D. O., Hawkes, R. L., Porubčan, V., Šimek, M., Sep. 1998. Meteor Phenomena and Bodies. Space Sci. Rev.84, 327–471.
Chambers, J. E., Apr. 1999. A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS304, 793–799.
Colas, F., Zanda, B., Bouley, S., Vaubaillon, J., Marno, C., Audureau, Y., Kwon, M.-K., Rault, J.-L., Vernazza, P., Gattacceca, J., Caminade, S., Birlan, M., Maquet, L., Egal, A., Rotaru, M., Jordà, L., Birnbaum, C., Blanpain, C., Malgoyre, A., Locuhin, J., Cellino, A., Gadril, D., Di Martino, M., Nitschelm, C., Camargo, J., Valenzuela, M., Ferrer, L., Poliscu, M., Louzau, D., Jan. 2016. FRISON network status. In: Roggemans, A., Roggemans, P. (Eds.), International Meteor Conference Egmond, the Netherlands, 2-5 June 2016. p. 55.
Drummond, J. D., Mar. 1981. A test of comet and meteor shower associations. Icarus 45, 545–553.
Drummond, J. D., Aug. 2000. The D Discriminant and Near-Earth Asteroid Streams. Icarus 146, 453–475.
Fernández, J. A., Sosa, A., Dec. 2015. Jupiter family comets in near-Earth orbits: Are some of them interlopers from the asteroid belt? Planet. Space Sci.118, 14–24.
Fernández, Y. R., McFadden, L. A., Lisse, C. M., Helin, E. F., Chamberlin, A. B., 1997. Analysis of POSS images of comet-asteroid transition object 107P/1949 W1 (Wilson-Harrington). Icarus 128 (1), 114–126.

Gartrell, G., Elford, W. G., Oct. 1975. Southern Hemisphere meteor stream determinations. Australian Journal of Physics 28, 591–620.

Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W. F., Nesbø, E., Vokrouhlický, D., Delbò, M., Michel, P., Feb. 2016. Super-catastrophic disruption of asteroids at small perihelion distances. Nature530, 303–306.

Grun, E., Zook, H. A., Fechtig, H., Giese, R. H., May 1985. Collisional balance of the meteoric complex. Icarus 62, 244–272.

Gustafson, B. A. S., Nov. 1989. Geminid meteoroids traced to cometary activity on Phaethon. A&A225, 533–540.

Hoffmeister, C., 1948. Meteorstrome. Meteoric currents.

Hughes, D. W., McBride, N., Sep. 1989. The mass of meteoroid streams. MNRAS240, 73–79.

Hui, M.-T., Ye, Q.-Z., Wiepert, P., Jan. 2017. Constraints on Comet 332P/Ikeya-Murakami. AJ153, 4.

Hunt, J., Fox, K., Williams, I. P., 1986. Asteroidal Origin for the Geminid Meteor Stream. In: Lagerkvist, C.-I., Rickman, H., Lindblad, B. A., Lundstedt, H. (Eds.), Asteroids, Comets, Meteors II.

Ishiguro, M., Jewitt, D., Hananyama, H., Usui, F., Sekiguchi, T., Yanagisawa, K., Kuroda, D., Yoshiida, M., Ohta, K., Kawai, N., Miyaji, T., Fukushima, H., Watanabe, J.-i., May 2014. Outbursting Comet P/2010 V1 (Ikeya-Murakami): A Miniature Comet Holmes. Ap1787, 55.

Janches, D., Close, S., Fentzke, J. T., Jan. 2008. A comparison of detection sensitivity between ALTFAIR and Areóbo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes. Icarus 193, 105–111.

Janches, D., Close, S., Hornaemchea, J. L., Swarnalingam, N., Murphy, A., O’Connor, D., Vandepe, B., Fuller, B., Friths, D. C., Bruni, C., Aug. 2015. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky. ApJ809, 36.

Janches, D., Hocking, W., Ptito, S., Hornaemchea, J. L., Friths, D. C., Bruni, C., Michell, R., Samara, M., Mar. 2014. Interferometric meteor head echo observations using the Southern Argentina Agile MEteor Radar (SAAMER). Journal of Geophysical Research (Space Physics) 119, 2269–2287.

Janches, D., Hornaemchea, J. L., Bruni, C., Hocking, W., Friths, D. C., Apr. 2013. An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina Agile Meteor Radar (SAAMER). Icarus 223, 677–683.

Jedicke, R., Granvik, M., Micheli, M., Ryan, E., Spahr, T., Yeomans, D. K., 2015. Surveys. Astrometric Follow-Up, and Population Statistics. pp. 795–813.

Jenniskens, P., May 2004. 2003 EH2 Is the Quadrantid Shower Parent Comet. AJ127, 3018–3022.

Jenniskens, P., Sep. 2006. Meteor Showers and their Parent Comets.

Jenniskens, P., Jun. 2008. Mostly Dormant Comets and their Disintegration into Meteoroid Streams: A Review. Earth Moon and Planets 102, 505–520.

Jenniskens, P., Sep. 2017. Meteor showers in review. Planet. Space Sci.143, 316–124.

Jenniskens, P., Lyttinen, E., 2005. Meteor showers from the debris of broken comets: D/1819 W1 (Blanpain), 2003 WY25, and the Phoenicianids.

The Astronomical Journal 130 (3), 1286.

Jenniskens, P., Nénon, Q., Albers, J., Haberman, B., Holman, D., Morales, R., Grigsby, B. J., Samuels, D., Johannink, C., Mar. 2016a.

The established meteor showers as observed by CAMS. Icarus 260, 331–354.

Jenniskens, P., Nénon, Q., Gural, P. S., Albers, J., Haberman, B., Holman, D., Morales, R., Grigsby, B. J., Samuels, D., Johannink, C., Mar. 2016b. CAMS confirmation of previously reported meteor showers. Icarus 266, 355–370.

Jenniskens, P., Vaubaillon, J., Sep. 2007. 3D/Biela and the Andromedids: Fragmenting versus Sublimating Comets. AJ134, 1037–1045.

Jenniskens, P., Vaubaillon, J., 2010. Minor planet 2002 EX12 (= 169P/NEAT) and the Alpha Capricornid shower. The Astronomical Journal 139 (5), 1822.

Jewitt, D., Apr. 2006. Comet D/1819 W1 (Blanpain): Not Dead Yet. AJ131, 2327–2331.

Jewitt, D., Hsieh, H., Agarwal, J., 2015. Asteroids IV. The University of Arizona Press, Ch. The Active Asteroids, pp. 221–241.

Kasuga, T., Balam, D. D., Wiegert, P. A., 2010. Comet 169P/2002 W2 (Tu–Komeda). ApJ829, 182.

Kasuga, T., Sep. 2009. Thermal Evolution of the Phaethon-Geminid Stream Complex. Earth Moon and Planets 105, 321–326.

Jopek, T. J., Kaňuchová, Z., Jul. 2014. Current status of the IAU MDC Meteor Showers Database. Meteoroids 2013, 353–364.

Jopek, T. J., Kaňuchová, Z., Sep. 2017. IAU Meteor Data Center—the shower database: A status report. Planet. Space Sci.143, 3–6.

Kasuga, T., Sep. 2009. Thermal Evolution of the Phaethon-Geminid Stream Complex. Earth Moon and Planets 105, 321–326.

Kasuga, T., Balam, D. D., Wiepert, P. A., 2010. Comet 169P/NEAT (= 2002 EX12): the parent body of the α-Capricornid meteoroid stream. The Astronomical Journal 140 (6), 1806.

Kasuga, T., Jewitt, D., 2015. Physical Observations of (196256) 2003 EH1, Presumed Parent of the Quadrantid Meteoroid Stream. The Astronomical Journal 150 (5), 152.

Kervo, J., Fujiwara, Y., Abo, M., Sazas, C., Nakamura, T., Aug. 2012. MU radar head echo observations of the 2011 October Draconids. MNSSA424, 1799–1806.

Kleyna, J. T., Ye, Q.-Z., Hui, M.-T., Meech, K. J., Wainscoat, R., Micheli, M., Keane, J. V., Weaver, H. A., Weryk, R., Aug. 2016. The Progressive Fragmentation of 332P/Ikeya-Murakami. Ap827, 126.

Kronk, G. W., Sep. 1999. Cometography: A Catalog of Comets, Volume 1: Ancient-1799.

Kronk, G. W., Dec. 2003. Cometography: A Catalog of Comets, Volume 2: 1800-1899.

Madiedo, J. M., Ortiz, J. L., Trigo-Rodríguez, J. M., Dergham, J., Castro-Tirado, A. J., Cabrera-Caño, J., Pujols, P., Mar. 2014a. Analysis of bright Taurid fireballs and their ability to produce meteorites. Icarus 231, 356–364.

Madiedo, J. M., Ortiz, J. L., Trigo-Rodríguez, J. M., Zamorano, J., Konовалова, N., Castro-Tirado, A. J., Ocaña, F., Sánchez de Miguel, A., Izquierdo, J., Cabrera-Caño, J., May 2014b. Analysis of two superbolides with a cometary origin observed over the Iberian Peninsula. Icarus 233, 27–35.
Micheli, M., 2005. Possibile correlazione tra l’asteroide 2003 WY25, la cometa D/1819 W1 (Blanpain) e due sciami meteorici occasionali. Astronomia. La rivista dell’Unione Astrofili Italiani 1, 47–53.

Moorhead, A. V., Feb. 2016. Performance of D-criteria in isolating meteor showers from the sporadic background in an optical data set. MNRAS445, 4329–4338.

Nilsson, C. S., Jun. 1964. A southern hemisphere radio survey of meteor streams. Australian Journal of Physics 17, 205.

Ohstsuka, K., Sekiguchi, T., Kimoshita, D., Watanabe, J.-I., Ito, T., Arakida, H., Kasuga, T., May 2006. Apollo asteroid 2005 UD: split nucleus of (3200) Phaethon? A&A450, L25–L28.

Oehler, A., Zoldek, P., Wozniowski, M., Tymiński, Z., Słazar, M., Beben, M., Dorosz, D., Fajfer, T., Fietkiewicz, K., Gawroński, M., Gozdalski, M., Kahuzy, M., Krasnowski, M., KrygIEL, H., Krzyżanowski, T., Kwiata, M., Lojek, T., Maciejewski, M., Mierucki, S., Myszkiwecz, M., Nowak, P., Polak, K., Polakowski, K., Laskowski, J., Szlagor, M., Tissler, G., Suchodolski, T., Węgryzik, W., Woźniak, P., Zaręba, P., Aug. 2017. Enhanced activity of the Southern Taurids in 2005 and 2015. MNRAS469, 2077–2088.

Oliver, C. P., 1925. Meteors.

Ohtsuka, K., Sekiguchi, T., Kasuga, T., Muraoka, S., Feb. 2005. Photographic meteor studies, I. Proceedings of the American Philosophical Society, 499–548.

Olivier, C. P., 1925. Meteors.

Pauls, A., Gladman, B., Aug. 2005. Decoherence time scales for “meteoroid streams”. Meteoritics and Planetary Science 40, 1241.

Porubčan, V., Kornoš, L., Williams, I. P., Jun. 2006. The Taurid complex meteor showers and asteroids. Contributions of the Astronomical Observatory Skalnate Pleso 36, 103–117.

Rudawska, R., Maltović, P., Tóth, J., Kornoš, L., Dec. 2015. Independent identification of meteor showers in EDMOND database. Planet. Space Sci.118, 38–47.

Ryabova, G. O., Jun. 2008. Origin of the (3200) Phaethon - Geminid meteoroid stream complex. In: European Planetary Science Congress 2008.

Ryabova, G. O., Jun. 2008. Origin of the (3200) Phaethon - Geminid meteoroid stream complex.

Sato, M., Watanabe, J.-i., 2010. Forecast for Phoenicids in 2008, 2014, and 2019. Publications of the Astronomical Society of Japan 62 (3), 509–513.

Sato, M., Watanabe, J.-i., Tsuchiya, C., Moorhead, A. V., Moser, D. E., Brown, P. G., Cooke, W. J., Sep. 2017. Detection of the Phoenicids meteor shower in 2014. Planet. Space Sci.143, 132–137.

Seckar, A., Asher, D. J., Jan. 2014. Meteor showers on Earth from sungrazing comets. MNRAS437, L71–L75.

Southworth, R. B., Hawkins, G. S., 1963. Statistics of meteor streams. Smithsonian Contributions to Astrophysics 7, 261.

Southworth, R. B., Hawkins, G. S., 1963. Statistics of meteor streams. Smithsonian Contributions to Astrophysics 7, 261.

Spurný, P., Borovička, J., Mucke, H., Svoret, J., Sep. 2017. Discovery of a new branch of the Taurid meteoroid stream as a real source of potentially hazardous bodies. A&A605, A68.

Vida, D., Brown, P. G., Campbell-Brown, M., Nov. 2017. Generating realistic synthetic meteoroid orbits. Icarus 296, 197–215.

Watanabe, J.-i., Sato, M., Kasuga, T., 2005. Phoenicids in 1956 revisited. Publications of the Astronomical Society of Japan 57 (5), L45-L49.

Weissman, P. R., Bottke, Jr., W. F., Levison, H. F., Mar. 2002. Evolution of Comets into Asteroids. pp. 669–686.

Whipple, F. L., 1938. Photographic meteor studies, I. Proceedings of the American Philosophical Society, 499–548.

Wiegert, P., Brown, P., Dec. 2004a. The Return of the Andromedids Meteor Shower. AJ145, 70.

Wiegert, P., Brown, P., Weryk, R. J., Wong, D. K., Mar. 2013. The Return of the Andromedids Meteor Shower. AJ145, 70.

Wiegert, P., Brown, P., Weryk, R. J., Wong, D. K., Mar. 2013. The Return of the Andromedids Meteor Shower. AJ145, 70.

Watanabe, J.-i., Sato, M., Kasuga, T., 2005. Phoenicids in 1956 revisited. Publications of the Astronomical Society of Japan 57 (5), L45-L49.

Ye, Q., Wiegert, P. A., Feb. 2014. Will comet 209P/LINEAR generate the next meteor storm? MNRAS437, 3283–3287.

Ye, Q.-Z., 2017. A search of reactivated comets. The Astronomical Journal 153 (5), 207.

Ye, Q.-Z., Brown, P. G., Pokorny, P., Nov. 2016a. Dormant comets among the near-Earth object population: a meteor-based survey. MNRAS462, 3511–3527.

Ye, Q.-Z., Hui, M.-T., Brown, P. G., Campbell-Brown, M. D., Pokorny, P., Wiegert, P. A., Gao, X., Jan. 2016b. When comets get old: A synthesis of comet and meteor observations of the low activity comet 209P/LINEAR. Icarus 264, 48–61.

Younger, J. P., Reid, I. M., Li, G., Ning, B., Hu, L., Jun. 2015. Observations of the new Camelopardalids meteor shower using a 38.9 MHz radar at Mohe, China. Icarus 253, 25–30.