Neurologic complications in common wrist and hand surgical procedures

Nicole Verdecchia,1 Julie Johnson,2 Mark Baratz,2 Steven Orebaugh1
1Department of Anesthesiology, and 2Department of Orthopedic Surgery, University of Pittsburgh Medical Center, PA, USA

Abstract

Nerve dysfunction after upper extremity orthopedic surgery is a recognized complication, and may result from a variety of different causes. Hand and wrist surgery require incisions and retraction that necessarily border on small peripheral nerves, which may be difficult to identify and protect with absolute certainty. This article reviews the rates and ranges of reported nerve dysfunction with respect to common surgical interventions for the distal upper extremity, including wrist arthroplasty, wrist arthrodesis, wrist arthroscopy, distal radius open reduction and internal fixation, carpal tunnel release, and thumb carpometacarpal surgery. A relatively large range of neurologic complications is reported, however many of the studies cited involve relatively small numbers of patients, and only rarely are neurologic complications included as primary outcome measures. Knowledge of these neurologic outcomes should help the surgeon to better counsel patients with regard to perioperative risk, as well as provide insight into workup and management of any adverse neurologic outcomes that may arise.

Introduction

Nerve dysfunction after upper extremity orthopedic surgery is a recognized complication. Neural complications may be the result of trauma or neurotoxicity during regional anesthesia. However, they may also be the sequelae of intraoperative injury such as compression from patient or retractor positioning, or a direct laceration during the procedure. Hand and wrist surgery require incisions and retraction that necessarily border on small peripheral nerves, which may be difficult to identify and protect with absolute certainty. The reported frequency of neurologic complications is likely to vary based on a myriad of factors, including the extent of follow up.

The purpose of this narrative review article is to summarize the incidence of nerve dysfunction for common surgical procedures of the forearm, wrist, and hand, as well as their purported mechanisms of injury, and the duration of symptoms, when reported. Outcomes are reported with respect to the type and location of the procedure, and the type of anesthetic utilized, if specified. Knowledge of these neurologic outcomes will help the surgeon to better counsel patients with regard to perioperative risk, as well as provide insight into workup and management of any adverse neurologic outcomes that may arise.

Materials and Methods

The authors conducted searches in MEDLINE and Cochrane Review databases,1 from 1975 to the present, for articles reporting neurologic outcomes and complications after common hand, wrist and forearm surgical procedures. The searches incorporated the following key words: hand, wrist, metacarpal, carpal, radius, ulna; arthroscopy, arthroplasty, arthrodesis, fixation, repair, replacement, surgery; nerve injury, neurologic, complications, neuropathy. References from applicable citations were evaluated manually for completeness, and were included if appropriate.

Our primary outcome is the mean incidence, as well as the range of reported incidence, of postoperative neurologic complaints in forearm and wrist surgery. Secondly, we evaluated the risk of nerve dysfunction for these procedures when the anesthetic type was specified as peripheral nerve blockade, versus other types of anesthesia. Studies considered acceptable for this report included large observational or cohort studies that provided the incidence of neurologic outcomes or injury, related to six commonly performed surgical procedure types for forearm and wrist pathology (wrist arthroplasty, wrist arthrodesis, wrist arthroscopy, carpal tunnel release, distal forearm fracture and thumb carpometacarpal joint surgery). Studies related to traumatic injury were included, as this makes up a significant portion of hand surgery cases. Case reports were excluded, as were reports specific to pediatric hand surgery. Several anatomic, cadaver-based articles are referenced in the text in order to provide perspective and help to elucidate the mechanism of injury of nerves in relationship to surgical incisions, though these did not factor into the determination of actual clinical risk of postoperative neurologic disorders. Nerve dysfunction was not a primary outcome for the great majority of the studies cited, given the scarcity of such investigations in the hand surgery literature. Instead, neurologic dysfunction was typically reported as a secondary outcome by the various investigators, among other complications encountered. The specifics of type of anesthesia, mechanism of injury and time to resolution are noted in the tables, when these were reported by the authors of the individual studies.

The mean incidence rates of neurologic dysfunction, along with 95% confidence intervals, are reported for each surgical type, as well as the range reported in the studies included. Confidence intervals were determined using an online calculator (www.Vassarstats.net).

Correspondence: Nicole Verdecchia, University of Pittsburgh School of Medicine Department of Anesthesiology, 910 L.S. Kaufmann Building, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA. Tel.: +1.412.692.4503 - Fax: +1.412.692.4515.
E-mail: verdecchianm@upmc.edu

Key words: Wrist, hand, thumb, surgery, neurologic, complication, outcome.

Acknowledgements: the authors gratefully acknowledge the efforts of Tammy Bregon, Joelle Tighe and Lindsay Hess in the preparation of this manuscript.

Contributions: NV conducted a substantial portion of the literature review and reference search, as well as writing of the introduction and methods; JJ contributed to the reference list and editing of the manuscript; MB contributed to the reference list, editing of the manuscript, and expertise on hand surgery; SO contributed substantially to the literature review, reference search, and writing of the entire paper.

Conflict of interest: the authors declare no potential conflict of interest.

Funding: none.

Received for publication: 11 December 2017. Accepted for publication: 18 January 2018.

This work is licensed under a Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0).

©Copyright N. Verdecchia et al., 2018 Licensee PAGEPress, Italy Orthopedic Reviews 2018;10:7355 doi:10.4081/or.2018.7355
Wrist arthroplasty

Wrist arthroplasty is a procedure designed to relieve pain and preserve wrist motion in patients with pathology involving the entire wrist joint. It is an alternative to wrist arthrodesis, maintaining a greater degree of function. Arthroplasty helps to preserve quality of life for afflicted patients, and is indicated for treating destructive wrist joint pathology due to trauma, long-term overuse, or inflammatory processes. However, the long-term durability of arthroplasty remains limited compared to fusion, and this surgery is often confined to older patients and those who place fewer demands on the wrist. Wrist arthroplasty is often utilized for severe arthritis and intractable wrist pain, in situations in which arthrodesis may have previously been provided. It is not clear whether this more extensive procedure increases the risk of nerve injury. In some comparative studies, the likelihood of injury has been quite similar. In a systematic review of studies comparing wrist arthroplasty and wrist arthrodesis for rheumatoid arthritis, Cavaliere and Chung (2008) reported a similar incidence of overall complications, though major complications, requiring surgical correction (including median nerve compression) were more common with the various types of arthroplasty. Overall, neurologic dysfunction has been reported in a range of 0 to 16.7% after wrist arthroplasty (Table 1), with a mean incidence of 4.6%.

Table 1. Neurologic complications reported in wrist arthroplasty.

Author	Design	Approach	N.	Rate/NI	Nerves	Perm	Anesthesia	Remarks
Murphy 2003	R	Universal vs Arthrodesis	27	3 (11.1)	Median	1	NS	CTS
Van Haringen	P	3rd Generation	32	3 (9.4)	Median,	UNS	NS	CTS, Ulnar N. sensory loss
Kretzner	P	Remotion Prothesis	215	8 (3.7)	Median	NS	NS	CTS
Cooney 2012	R	Resection vs Resurfacing	46	0 (0)			Na	Ax Block
Gellman 1997	R	Volar Prothesis	14	0 (0)			Na	NS
Nydick 2012	R	Maestro	23	0 (0)			Na	UE Block
Gaspar 2016	R	Partial vs Total Arthroplasty	105	5 (4.9)	Median,	NS	NS	CTS, Guyon’s canal syndrome
Dennis 1986	R	Volar Arthroplasty	30	4 (13.3)	Median	NS	NS	CTS
Takwale 2002	B	Bialar Prothesis	66	0 (0)			NS	CTS
Rahimtoola 2003	P	RWS Prosthesis	27	3 (11.1)	Median	0	0	CTS

Rate/NI denotes absolute number and (%) of reported nerve dysfunction; Perm denotes number of permanent injuries reported; R denotes retrospective; P denotes prospective; CTS denotes carpal tunnel syndrome; NA denotes not applicable; NS denotes not specified by authors.
Wrist arthroscopy

Wrist Arthroscopy has been utilized for over three decades, evolving from a primarily diagnostic method to an important therapeutic intervention for a large variety of wrist complaints. Indications include diagnosis of joint pathology, staging of the severity of wrist maladies, and surgical intervention. Specific disorders for which arthroscopy is indicated to evaluate and treat patients include tears of the triangular fibrocartilage complex (TFCC), articular fractures involving the distal radius or carpal bones, carpal instability, and arthritis of the wrist joint. Several different ports for wrist arthroscopy are typically placed; these are named/numbered in relationship to the extensor tendon compartments on the back of the wrist. Volar portals are also described, but are used less frequently.

Wrist arthroscopy provides a means for hand surgeons to address intra-articular pathology with a minimally invasive technique that allows for limited incision size and more rapid rehabilitation. Abnormal neurologic outcomes related to this arthroscopic technique are reported to be between 0 and 14% (Table 2), with a mean incidence of 3.6% [95% CI 2.4-5.3]. Ports on the radial aspect of the joint are in proximity to the dorsal sensory branch of the radial nerve, while those on the ulnar aspect are close to the dorsal branches of the ulnar nerve. In addition, mid-carpal portals are placed in close association to the distal, sensory portion of the posterior interosseous nerve. When arthroscopy is applied for repair of tears of the triangular fibrocartilage within the wrist joint, both internal-external and all-internal techniques can be associated with post-operative dysfunction of the DSBN.45,46

Table 2. Neurologic complications reported in wrist arthroscopy.

Author	Design	Approach	N.	Rate/Nl	Nerves	Perm	Anesthesia	Remarks
Estrella 2007	P	TFCC Repair	35	6	Ulnar	1	NS	Sens. Disturb, DSBN
Darlis 2005	R	SL Ligament Repair	16	1	Median	0	NS	CTS
Nagle 1992	R	Dx, Staging and Therapeutic	84	0	AX 54, GA 30			
Hofmeister 2001	P	Midcarpal and Radiocarpal ports	89	0	GA or Reg			
Trumble 1997	P	TFCC Repair	24	1	Ulnar	0	NS	Paresthesia of DSBN
Grecenig 1999	P	Dx, Staging and Therapeutic	96	4	Median	1	NS	Irritation of DSBN
Beredjiklian 2004	R	Dx, Therapeutic	211	4	Ulnar	0	Reg 52, GA 159	DSBN and Ulnar Neurapraxia
Cobb 2011	P	Resection Arthroplasty	35	5	Radial	0	NS	Paresthesia SBRN
Doi 1999	P/RCT	Arthroscopic vs Open Fracture repair	82	3	Median	NS	NS	CTS

TFCC denotes triangular fibrocartilage complex; SL denotes scapholunate; Dx denotes diagnosis; Sens. Denotes sensory; AX denotes axillary block; GA denotes general anesthesia; Reg denotes unspecified regional block; RCT denotes randomized controlled trial.

Carpal tunnel release

Carpal tunnel release (CTR) is one of the most frequently performed surgeries in the United States; it is estimated to affect up to 10% of those over 40 years of age. The release of the flexor retinaculum to reduce pressure on the median nerve may be conducted by either open or endoscopic carpal tunnel release (ECTR). With the use of the open or the endoscopic technique, postoperative neurologic symptoms occur in the range of 0 to 7.5% for open procedures, and 0 to 6.8% for endoscopic ones (Table 3). The mean reported incidence of nerve dysfunction after all types of CTR is 0.5% [95% CI 0.4-0.6]. Either type of CTR may result in dysfunction of the median, ulnar or digital nerves. The median nerve, and its palmar cutaneous branch (PCBMN), appear to be the most frequently affected with this surgical procedure. In direct comparisons of the open and the endoscopic techniques, the frequency of neurologic complications has been similar, with a higher likelihood of temporary dysfunction occurring with endoscopic surgery. In a meta-analysis of over 27,000 cases, Benson et al noted an overall rate of nerve injury of 1.58% for ECTR and 0.35% for open CTR. However, some authors have reported a significantly higher risk of nerve injury. Muller et al. (2000) noted 10 cases of ulnar neuropraxia along with 2 digital nerve injuries among 100 cases released endoscopically (Table 3). At the other extreme, in a retrospective analysis of 9,675 patients who underwent ECTR, Pajardi et al. (2008) reported only 6 injuries—a rate of 0.07%. As with most surgically-associated neurologic complications, the great majority appear to be temporary. In a study of cadaveric anatomy, Boughton et al. (2010) noted that open CTR with incision in the axis of the ring finger increases the risk to branches of the ulnar nerve.

Distal forearm fracture

Distal forearm fractures-usually involving the radius—are one of the most common traumatic injuries treated by orthopedists and represent the most common fracture of the upper extremity. The elderly are particularly at risk when falling on outstretched arms. Neurologic compromise is common, with either nonoperative or surgical therapy. Operative intervention may involve either open reduction with plates and screws, or placement of Kirschner wires or external fixators. The nerves which may be affected by such procedures vary with different management techniques. Nerve dysfunction in the wake of surgical intervention is reported in a rather large range, from 0-22%, with a mean of 5.8% [95% CI 5.2-8.8]. Dorsal plate fixation, as opposed to volar plating, may allow for a lower incidence of neurologic compromise.

Median nerve involvement, with acute or long-term development of carpal tunnel syndrome (CTS), is most commonly cited, followed by dysfunction of the SBRN (Table 4). Other nerves that may be affected include the PCBMN, ulnar nerve and LABCN, though these are much less common. Prophylactic CTR during operative fixation of distal radius fracture may reduce risk to the median nerve for patients who show evidence of nerve compromise acutely in the wake of the fracture.

Anatomic studies in cadavers emphasize the close proximity of the superficial nerves about the wrist to sites of placement of pins and K-wires, particularly the...
Table 3. Neurologic Complications Reported in Carpal Tunnel Release.

Author	Design	Approach	N.	Rate/NI	Nerves	Perm	Anesthesia	Remarks
Shinya 1995	P	ECTR, Single Portal	107	0 (0)	NA	NS	Regional	Temporary loss of interosseous muscle fnx
Chow 1990	R	ECTR, Single Portal	142	1 (0.7)	Ulnar	0	Local	Numbness index finger
Brown 1993	P-RCT	Open vs ECTR	169	2 (1.2)	Digital, Ulnar	0	Regional	Digital N. contusion; Ulnar N. neurapraxia
Uchiyama 2007	P	ECTR, modified Chow technique	119	1 (2)	Median	0	Local	Mumbness, Weakness
Nagle 1996	P	ECTR extra- versus transbursal	640	14 (2.2)	Median, Ulnar, Digital	NS	Local	Neurapraxia
Pajardi 2008	R	ECTR	12,702	6 (0.05)	Median, Digital	NS	Local	Neuroma PCBMN ‘complete’ digital
MacDonald 1978	R	Open	186	11 (5.9)	Median	NS	NS	PCBMN
Lichtman 1979	P	Open	100	2 (2)	Median	NS	Local	Neuroma PCBMN
Sennewald 1995	P-RCT	ECTR vs Open	47	1 (2.1)	Digital	NS	Regional	Neurapraxia
Ferdinand 2002	P-RCT	ECTR vs Open	50	1 (2.0)	Median	NS	General	likely PCBMN injury
Agee 1995	P	ECTR	883	11 (1.2)	Median, Digital	1	AX, Bier, GA, Local	Abnormal Sensation
Muller 2000	P	ECTR	100	12 (12)	Ulnar, Digital	0	NS	Ulnar N. neurapraxia, Digital N. contusion
Agee 1992	P-RCT	ECTR vs Open	147	2 (1.4)	Ulnar	0	GA or Regional	Ulnar N. neurapraxia
Saw 2003	P-RCT	ECTR vs Open	150	1 (0.7)	Median	0	Local	Transient Numbness Index Finger
Erdmann 1994	P-RCT	ECTR vs Open	105	1 (0.95)	Ulnar	0	NS	Paresthesia
Helm 2003	P-RCT	Kniefelight vs Open	82	1 (1.2)	Median	0	Local	Numbness index finger
Jacobsen 1996	P-RCT	ECTR	32	5 (9.4)	Median	0	Bier	Numbness ring finger
Bhattacharya 2004	P-RCT	Kniefelight vs Open	52	1 (1.9)	Median	0	Local	Palmar Numbness

ECTR denotes endoscopic carpal tunnel release; fn denotes function; PCBMN denotes palmar cutaneous branch of median nerve; local denotes local anesthesia; Bier denotes intravenous regional anesthesia.
Further, one large retrospective study of CTR markedly skewed the results or the non-regional group of studies, and with exclusion of this study, the likelihood of nerve dysfunction was essentially the same with or without regional anesthesia [2.0% (1.0-3.9) vs. 1.9% (1.1-3.1)].

Discussion and Conclusions

Numerous surgical procedures exist to treat pathology at the distal forearm or wrist. Each approach carries a unique potential for neurologic dysfunction, varying with anatomy, mechanism and severity of injury. Nerve injury during wrist surgery can be related to regional anesthesia, positioning, or surgical factors. Understanding of both surgical-related and nerve block-related neurologic occurrences will aid in diagnosis. For example, after brachial plexus blockade, if a single peripheral nerve is injured, it is more likely to be related to a

Table 4. Neurologic complications reported in distal forearm/wrist fracture.

Author	Design	Approach	N.	Rate/NI	Nerves	Perm	Anesthesia	Remarks	
Lee 2003 [94]	P	Volar Plate	22	3 (13.6)	Radial	0	NS	numbness/SBRN	
Henry 2007 [84]	P	Various Surgeries (pins, screws, plates)	374	0 (0)					
Knudsen 2014 [95]	R	Volar Plate	165	12 (7.3)	Median	NS	NS	CTS	
Ho 2011 [96]	R	Volar Plate	282	24 (8.5)	Median	1	NS	CTS, Median N. neuropathy	
Rampoldi 2007 [87]	R	Volar Plate	90	1 (1.1)	Median	0	Reg	CTS	
Vu 2011 [98]	R	Volar or Dorsal Plate	104	4 (3.9)	Median, Ulnar	NS	NS	CTS, Ulnar entrapment	
Ruch 2006 [96]	R	Volar vs Dorsal Plate	34	2 (5.9)	Median	NS	NS	Median N. neuropathy	
Richard 2011 [81]	R	Ex Fix vs Volar Plate	115	11 (9.6)	Median, Radial	NS	NS	Median neuropathy; SBRN	
Tarallo 2013 [99]	R	Volar Plate	303	5 (1.7)	Median	NS	NS	CTS, Median N. neuropathy	
Eisenwein 2013 [77]	R	Volar Plate	665	22 (3.3)	Median	NS	NS	CTS	
Singh 2005 [100]	P	K-wire	40	3 (7.9)	Median, Ulnar	1	Reg	CTS, SBRN	
Hoe 1997 [101]	P	ORIF Dorsal Plate	31	3 (9.7)	Median	NS	NS	SBRN	
Drobetz 2003 [102]	P	Volar Plate	50	1 (2)	Median	NS	GA or BP block	CTS	
Zylak 2011 [103]	P	ORIF Dorsal Plate	115	1 (2)	Median	NS	NS	CTS	
Chapman 1982 [80]	R	Pins	80	11 (15.8)	Median	NS	NS	CTS, Ulnar N. paresthesias	
Arora 2007 [104]	P	Volar Plate	114	3 (2.6)	Median	NS	GA or BP block	CTS	
Biyani 1995 [93]	R	ORIF or Ex Fix Radius plus Ulna	19	2 (10.5)	Median	0	NS	CTS	
Dennisson 2007 [92]	R	Volar Plate, Radius plus Ulna	5	2 (40)	Radial	0	NS	Paresthesia of SBRN	
Eged 2010 [105]	R	Case Control (Surgery vs Casting)	90	6 (6.7)	Median	1	NS	CTS	
Arora 2011 [106]	P	Volar Plate nonoperative	73	1 (1.4)	Median	NS	BP block, GA or Local	CTS	
Lattmann 2011 [107]	P	Volar Plate	245	11 (4.5)	Median	NS	NS	CTS, Median N. irradiation	
Kukla 2003 [107]	P	Bridging vs Nonbridging Ex Fix	75	4 (5.5)	Median	NS	NS	SBRN	
Lutz 2014 [78]	R	ORIF vs Nonoperative	258	27 (10.5)	Median, Ulnar, Radial	NS	NS	CTS, Ulnar neuropaxia, SBRN	
Abbasazadehn 2010 [108]	P	Ex Fix vs Cas	47	1 (2.1)	Radial	0	Local or Bier	Sensory disturbance SBRN	
Aroshi 2006 [109]	P	Ex Fix, Bridge vs Nonbridging	38	1 (2.6)	Radial	0	Reg or GA	Numbness SBRN	
Webster 2005 [110]	P	Ex Fix, 5 Pin vs 4 Pin	50	1 (2.0)	Median	0	GA	Paresthesia Thumb, Index, Long Finger	
Sommerkamp 1994 [111]	P	Ex Fix, Dynamic vs Static	50	0 (0)	Median	Radial	0	GA or AX	Median N. dysfunction SBRN neuritis
Krishnan 2003 [112]	P	Ex Fix, Dynamic vs Static	60	3 (5.0)	Radial	NS	NS	SBRN Irritation	
McQueen 1995 [113]	P	ORIF, Ex Fix or casting	120	8 (6.7)	Median	NS	NS	CTS, Neurapraxia SBRN	
Rodriguez-Merchan 1997 [114]	P	Cast vs Pinning	40	1 (2.5)	Median	1	Local, GA, or BP block	Median neuropathy	
Stoffelen 1988 [115]	P	Cast vs Pinning	98	8 (8.2)	Median	1	NS	Median N. contusion SBRN injury	
Howard 1989 [116]	P	Cast vs Pinning	50	10 (20)	Median, Ulnar	NS	NS	Median and SBRN neuritis Ulnar N. compression	
Home 1990 [117]	P	Cast vs Pinning	29	4 (13.8)	Radial	NS	BP Block	SBRN Irritation	
Lesnobile 1995 [118]	P	Pin Fixation (two types)	96	11 (11.5)	Radial	11	GA or Regional	SBRN	
Casteley 1992 [119]	P	K-wire vs Rods	30	2 (6.7)	Median	0	GA or Regional	CTS	

Ex fix denotes external fixation; ORIF denotes open reduction-internal fixation; BP block denotes unspecified brachial plexus block; comp denotes comparative (but nonrandomized) study.
surgical or positioning factor, rather than a nerve block etiology. A plexus injury would be more likely to be of nerve block etiology, but a positioning etiology should also be considered.

The current review offers insight into neurologic risk related to surgical factors for six common procedures performed by hand surgeons about the forearm, wrist, and hand. In our analysis, we found that the mean incidence of reported nerve dysfunction after these surgical procedures varied significantly with the type of procedure, from 0.5% for carpal tunnel release to 7.9% for thumb CMC surgery. As one would expect, the types of reported injuries were typically related to the sites of incision for these procedures. The overall mean incidence of expected nerve dysfunction for the amalgam of these procedures is relatively low, at 2.1% [2.0-2.3].

Table 5. Neurologic complications reported in Thumb CarpoMetacarpal Surgery.

Author	Design	Approach	N.	Rate/NI	Nerves	Perm	Anesthesia	Remarks
Lee 2003 [94]	P	Volar Plate	22	3 (13.6)	Radial	0	NS	numbness/SBRN
Henry 2007 [84]	P	Various Surgeries (pins, screws, plates)	374	0 (0)			NS	
Knuusen 2014 [95]	R	Volar Plate	165	12 (7.3)	Median	NS	NS	CTS
Ho 2011 [96]	R	Volar Plate	282	24 (8.5)	Median	1	NS	CTS, Median N. neuropathy
Rampoldi 2007 [97]	R	Volar Plate	90	1 (1.1)	Median	0	Reg	CTS
Yu 2011 [98]	R	Volar vs Dorsal Plate	104	4 (3.9)	Median Ulnar	NS	NS	CTS, Ulnar entrapment
Ruch 2006 [86]	R	Volar vs Dorsal Plate	34	2 (5.9)	Median	NS	NS	Median N. neuropathy
Richard 2011 [81]	R	Ex Fix vs Volar Plate	115	11 (9.6)	Median	NS	Median N. neuropathy, SBRN	
Tarallo 2013 [99]	R	Volar Plate	303	5 (1.7)	Median	NS	NS	CTS, Median N. neuropathy
Esbenweiss 2013 [77]	R	Volar Plate	665	22 (3.3)	Median	NS	NS	CTS
Singh 2005 [100]	P	K-wire	40	8 (20)	Radial	NS	NS	SBRN
Hove 1997 [101]	P	ORIF Dorsal Plate	31	3 (9.7)	Median	1	Reg	CTS
Droberz 2003 [102]	P	Volar Plate	50	1 (2)	Median	NS	GA or BP block	CTS
Zytk 2011 [103]	P	ORIF Dorsal Plate	101	9 (9)	Median	5	NS	CTS
Chapman 1982 [80]	R	Pins	80	11 (13.8)	Median Ulnar	NS	NS	CTS, Ulnar paresthesias
Arora 2007 [104]	P	Volar Plate	114	3 (2.6)	Median	NS	GA or BP block	CTS
Bujani 1995 [95]	R	ORIF or Ex Fix Radius plus Ulna	19	2 (10.5)	Median	0	NS	CTS
Dennison 2007 [92]	R	Volar Plate, Radius plus Ulna	5	2 (40)	Radial	0	NS	Paresthesia of SBRN
Ego 2010 [105]	R	Case Control (Surgery vs Casting)	90	6 (6.7)	Median	1	NS	CTS
Arora 2011 [106]	P-RCT	Volar Plate vs nonoperative	73	1 (1.4)	Median	NS	BP block, GA or Local	CTS
Lattmann 2011 [107]	P	Volar Plate	245	11 (4.5)	Median	NS	NS	CTS, Median N. irritation
Krukhaug 2009 [79]	P-RCT	Bridging vs Nonbridging Ex Fix	75	4 (5.5)	Radial	NS	NS	SBRN
Lutz 2014 [78]	R	ORIF Nonoperative	258	27 (10.5)	Median, Ulnar, Radial	NS	NS	CTS, Ulnar neurapraxia, SBRN
Abbassadegan 1990 [108]	P-RCT	Ex Fix vs Cast	47	1 (2.1)	Radial	0	Local or Bier	Sensory disturbance SBRN
Atoshi 2006 [109]	P-RCT	Ex Fix, Bridge vs Nonbridging	38	1 (2.6)	Radial	0	Reg or GA	Numbness SBRN
Werber 2003 [110]	P-RCT	Ex Fix, 5 Pin vs 4 Pin	50	1 (2.0)	Median	0	GA	Paresthesia Thumb, Index, Long Finger
Sommerkamp 1994 [111]	P-RCT	Ex Fix, Dynamic vs Static	50	10 (20)	Median	0	GA or AX	Median N. dysfunction SBRN neuritis
Krishnan 2003 [112]	P-RCT	Ex Fix, Dynamic vs Static	60	3 (5.0)	Radial	NS	NS	SBRN Irritation
McQueen 1995 [113]	P-RCT	ORIF, Ex Fix or casting	120	8 (6.7)	Median	NS	NS	CTS, Neurapraxia SBRN
Rodriguez-Merchan 1997 [114]	P-RCT	Cast vs Pinning	40	1 (2.5)	Median	1	Local, GA, or BP block	Median neuropathy
Stoffelen 1998 [115]	P-RCT	Cast vs Pinning	98	8 (8.2)	Median	1	NS	Median N. contusion SBRN injury
Howard 1998 [116]	P-RCT	Cast vs Pinning	50	10 (20)	Median, Radial, Ulnar	NS	NS	Median and SBRN neuritis Ulnar N. compression
Horne 1990 [117]	P-RCT	Cast vs Pinning	29	4 (13.8)	Radial	NS	BP Block	SBRN Irritation
Lenoble 1995 [118]	P-Comp	Pin Fixation (two types)	96	11 (11.5)	Radial	11	GA or Regional	SBRN
Castellon 1992 [119]	P-RCT	K-wire vs Ribs	30	2 (6.7)	Median	0	GA or Regional	CTS

Ex Fix denotes external fixation; ORIF denotes open reduction-internal fixation; BP block denotes unspecified brachial plexus block; comp denotes comparative (but nonrandomized) study.
However, the considerable range of reported neurologic injury related to surgical intervention in the studies cited suggests that simple prediction of injury is difficult, as a myriad of patient and surgical factors provide variability in outcome. While we found that transient nerve dysfunction resulting from wrist and hand surgery is not rare, the likelihood of permanent nerve injury is small. In addition, the limited number of studies that specified the actual type of anesthetic used makes it difficult to make any definitive conclusions about the impact of this factor on reported nerve dysfunction.

This narrative review is limited by the nature of the literature itself: there are countless small studies and case series in the hand/wrist surgical literature, which defy comprehensive reporting in a single article. We sought to summarize a representative range of reported neurologic complications without citing every existing study; thus some degree of bias could exist in this narrative review. A further limitation is the manner in which neurologic compromise is described in this literature: it is frequently reported as a secondary outcome, making searches challenging and requiring considerable use of secondary and tertiary citations extracted manually from the investigations identified by search services. Finally, the retrospective nature of many of these studies may underestimate the presence of nerve injuries, which are more commonly identified when sought actively and in prospective fashion.

Understanding the patterns of iatrogenic nerve dysfunction associated with common foream and wrist and hand procedures is important for orthopedic and hand surgeons. This knowledge is also beneficial for anesthesiologists when planning the most appropriate regional techniques, and may assist in the diagnosis and guide therapy when neurologic complications arise. Although it may be impossible to determine the exact cause of neurologic compromise, knowing the most common presentation with respect to specific procedures may aid in overall patient care, and in obtaining informed consent for anesthetic and operative procedures.

References

1. Hadzic A, Arliss J, Kerimoglu B, et al. A comparison of infraclavicular block versus general anesthesia for hand and wrist day-case surgeries. Anesth 2004;101:127-32.
2. Lipira AB, Sood RF, Tatman PD, et al. Complications within 30 days of hand surgery: An analysis of 10,646 patients. J Hand Surg Am 2015;40:1852-9.
3. Figus A, Iwuagwu FC, Elliot D. Subacute nerve compression after trauma and surgery of the hand. Plast Reconstr Surg 2007;120:705-12.
4. Antoniadis G, Kretschmer T, Pedro MT, et al. Iatrogenic nerve injuries. Dtsch Arztebl Int 2014;111:273-9.
5. Kretschmer T, Antoniadis G, Borm W, et al. Iatrogenic nerveverletzungen. Chirurg 2004;75:1104-12.
6. Kretschmer T, Antoniadis G, Braun V, et al. Evaluation of iatrogenic lesions in 722 surgically treated cases of peripheral nerve trauma. J Neurosurg 2001;94:905-12.
7. Ferreres A, Lluch A, del Valle M. Universal total wrist arthroplasty: Midterm follow up study. J Hand Surg Am 2011;36A:967-73.
8. Gaspar MP, Lou J, Kane PM, et al. Complications following partial and total wrist arthroplasty: A single-center, retrospective review. J Hand Surg Am 2016;41:47-53.
9. Cooney W, Manuel J, Froelich J, Rizzo M. Total wrist replacement: A retrospective comparative study. J Wrist Surg 2012;1:165-72.
10. Murphy DM, Khoury JG, Imbriglia JE, Adams BD. Comparison of arthroplasty and arthrodesis for the rheumatoid wrist. J Hand Surg Am 2003;28A:570-6.
11. Cavaliere CM, Chung KC. A systematic review of total wrist arthroplasty compared with total wrist arthrodesis for rheumatoid arthritis. Plast Reconstr Surg 2008;122:831-25.
12. Van Harlingen D, Heesterbeek PJC, de Vos MJ. High rate of complications and radiographic loosening of the biaxial total wrist arthroplasty in rheumatoid arthritis. Acta Orthopaedica 2011;82:721-6.
13. Herzberg G, Boeckstyns M, Sorensen A, et al. Remotion total wrist arthroplasty: Preliminary results of a prospective international multicenter study of 215 cases. J Wrist Surg 2012;1:17-22.
14. Gellman H, Hontas R, Brumfield RG, et al. Total wrist arthroplasty in rheumatoid arthritis. Clin Orthopl Res 1997;342:71-6.
15. Nydick JA, Greenberg SM, Stone JD, et al. Clinical outcomes of total wrist arthroplasty. J Hand Surg Am 2012;37A:1580-4.
16. Dennis DA, Ferlic DC, Clayton ML. Volz. total wrist arthroplasty in rheumatoid arthritis: A long-term review. J Hand Surg Am 1986;11A:483-90.
17. Takwale VJ, Nuttall D, Trail IA, Stanley JK. Biaxial total wrist replacement in patients with rheumatoid arthritis. J Bone Joint Surg Br 2002;84B:692-9.
18. Rahimtooza ZO, Rozing PM. Preliminary results of total wrist arthroplasty using the RWS prosthesis. J Hand Surg Br 2003;28B:54-60.
19. Wysocki RW, Cohen MS. Complications of limited and total wrist arthrodesis. Hand Clin 2010;26:221-8.
20. Gaspar MP, Kane PM, Shin EK. Management of complications of wrist arthroplasty and wrist fusion. Hand Clin 2015;31:277-92.
21. Field J, Herbert TJ, Prosser R. Total wrist fusion. J Hand Surg Br 1996;21B:429-33.
22. Ekerot L, Jonsson K, Eiken O. Median nerve compression complicating arthrodesis of the rheumatoid wrist. Scan J Plast Reconstr Surg 1983;17:257-62.
23. Vance MC, Hernandez Jd, DiDonna ML, Stern PJ. Complications and outcome of four-corner arthrodesis: Circular plate fixations versus traditional techniques. J Hand Surg Am 2005;30A:1122-7.
24. Hastings II H, Weiss APC, Quenzer D, et al. Arthrodesis for the wrist for post-traumatic disorders. J Bone Joint Surg Am 1996;78A:897-902.
25. Mok D, Nikolis A, Harris PG. The cutaneous innervation of the dorsal hand: Detailed anatomy with clinical implications. J Hand Surg Am 2006;31A:565-74.
26. Zachary SV, Stern PJ. Complications following AO/ASIF wrist arthrodesis. J Hand Surg Am 1995;20A:339-44.
27. Bolano LE, Green DP. Wrist arthrodesis in post-traumatic arthritis: A comparison of two methods. J Hand Surg Am 1993;18A:786-91.
28. Ishida O, Tsai T-M. Complications and results of scaphotrapeziotrapezoid arthrodesis. Clin Ortho Rel Res 1993;287:125-30.
29. Meier R, Van Griesen M, Krümmer H. Scaphotrapeziotrapezoid (STT)-arthrodesis in Kienböck’s disease. J Hand Surg Br 2004;29B:580-4.
30. Beer TA, Turner RH. Wrist arthrodesis for failed wrist implant arthroplasty. J Hand Surg Am 1997;22A:685-93.
31. Carlson JR, Simmons BP. Wrist arthrodesis after failed wrist implant arthroplasty. J Hand Surg Am 1998;23A:893-8.
32. Clendenin MB, Green DP. Arthrodesis of the wrist-complications and their management. J Hand Surg 1981;6:253-7.
33. Nydick JA, Watt JF, Garcia MJ, et al. Clinical outcomes of arthrodesis and arthroplasty for the treatment of post-traumatic wrist arthritis. J Hand Surg Am 2013;38A:899-903.
34. Rauhaniemi J, Tiusanen H, Sipola E. Total wrist fusion: A study of 115 patients. J Hand Surg Br 2005;30B:217-9.
35. Solem H, Berg NJ, Finsen V. Long term results of arthrodesis of the wrist: A 6-15 year follow up of 35 patients. Scand J Plast Reconstr Surg Hand Surg 2006;40:175-8.
36. Masada K, Yasuda M, Takeuchi E, Hashimoto H. Technique of intramedullary fixation for arthrodesis of the wrist in rheumatoid arthritis. Scand J Plast Reconstr Hand Surg 2003;37:155-8.
37. Nagle DJ, Benson LS. Wrist arthroscopy: Indications and results. Arthroscopy 1992;8:198-203.
38. Beredjiklian PK, Bozentka DJ, Leung YL, Bonaghan BA. Complications of wrist arthroscopy. J Hand Surg Am 2004;29A:406-11.
39. Slutsky DJ, Nagle DJ, Benson LS. Wrist arthroscopy: Current concepts. J Hand Surg Am 2008;33A:1228-44.
40. Kilic A, Kale A, Usta A, et al. Anatomic course of the superficial branch of the radial nerve in the wrist and its location in relation to wrist arthroscopy portals: A cadaveric study. Arthroscopy 2009;25:1260-4.
41. Grechenig W, Peicha G, Fellinger M, et al. Anatomical and safety considerations in establishing portals used for wrist arthroscopy. Clin Anat 1999;12:179-85.
42. Esplugas M, Lluch A, Garcia-Elias M, Liussa-Perez M. How to avoid ulnar nerve injury when setting the 6U wrist arthroscopy portal. J Wrist Surg 2014;3:128-31.
43. El-Gazzar Y, Baker III CL, Baker Jr. CL. Complications of elbow and wrist arthroscopy. Sports Med Arthrosc Rev 2013;21:80-8.
44. Shyamalan G, Jordan RW, Kimani PK, et al. Assessment of the structures at risk during wrist arthroscopy: A cadaveric study and systematic review. J Hand Surg (European) 2016;41:1-7.
45. McAdams TR, Hentz VR. Arthroscopic repair of ulnar-sided triangular fibrocartilage tears using an inside-out technique: A cadaver study. J Hand Surg Am 2002;27A:840-4.
46. Waterman SM, Slade D, Masini BD, Owens BD. Safety analysis of all-inside arthroscopic repair of peripheral triangular fibrocartilage complex. Arthroscopy 2010;26:1474-7.
47. Estrella EP, Hung LK, Ho PC, Tse WL. Arthroscopic repair of triangular fibrocartilage complex tears. Arthroscopy 2007;23:729-37.
48. Darlis NA, Weiser RW, Sotereanos DG. Partial scapholunate ligament injuries treated with arthroscopic debridement and thermal shrinkage. J Hand Surg Am 2005;30A:908-14.
49. Hofmeister EP, Dao KD, Glowacki KA, Shin AY. The role of midcarpal arthroscopy in the diagnosis of disorders of the wrist. J Hand Surg Am 2001;26A:407-14.
50. Trumble TE, Gilbert M, Vedder N. Isolated tears of the triangular fibrocartilage: Management by early arthroscopic repair. J Hand Surg Am 1997;22A:57-65.
51. Cobb TK, Berner SH, Badia A. New frontiers in hand arthroscopy. Hand Clin 2011;27:383-94.
52. Doi K, Hattori Y, Otsuka K, et al. Intra-articular fractures of the distal aspect of the radius: Arthroscopically assisted reduction compared with open reduction internal fixation. J Bone Joint Surg Am 1999;81A:1093-110.
53. Erdmann MWH. Endoscopic carpal tunnel decompression. J Hand Surg Br 1994;19B:5-13.
54. Palmer AK, Toivonen DA. Complications of endoscopic and open carpal tunnel release. J Hand Surg Am 1999;24A:561-5.
55. Louis DS, Greene TL, Noellert RC. Complications of carpal tunnel surgery. J Neurosurg 1985;62:352-6.
56. MacDonald RI, Lichtman DM, Hanlon JJ, Wilson JN. Complications of surgical release for carpal tunnel syndrome. J Hand Surg 1978;3:70-6.
57. Kretschmer T, Antoniadis G, Richter H-P, Konig RW. Avoiding iatrogenic nerve injury in endoscopic carpal tunnel release. Neurosurg Clin N Am 2009;20:65-71.
58. Benson LS, Bare AA, Nagle DJ, et al. Complications of endoscopic and carpal tunnel release. Arthroscopy 2006;22:919-24.
59. Muller LP, Rudig L, Degreif J, Rommens PM. Endoscopic carpal tunnel release: Results with special consideration to possible complications. Knee Surg Sports Traumatol, Arthrosc 2000;8:166-72.
60. Pajardi G, Pegoli L, Pavito G, Perviniani P. Endoscopic carpal tunnel release: Our experience with 12,702 cases. Hand Surg 2008;13:21-6.
61. Chow JCY. Endoscopic release of the carpal ligament for carpal tunnel syndrome: 22 month clinical result. Arthroscopy 1990;6:288-94.
62. Bociekstyns MEH, Sorensen AI. Does endoscopic carpal tunnel release have a higher rate of complications than open carpal tunnel release? J Hand Surg Br 1999;24B:9-15.
63. Boughton O, Addis PJ, Jayasinghe JAP. The potential complications of open carpal tunnel release surgery to the ulnar neurovascular bundle and its branches. Clin Anat 2010;23:545-51.
64. Shinya K, Lanzetta M, Conolly WB. Risk and complications in endoscopic carpal tunnel release. J Hand Surg Br 1995;20B:222-7.
65. Brown RA, Gelberman RH, Seiler III JG, et al. Carpal tunnel release. J Bone Joint Surg Am 1993;75A:1265-75.
66. Uchiyama S, Yasutomi T, Fukuzawa T, et al. Reducing neurologic and vascular complications of endoscopic carpal tunnel release using a modified Chow technique. Arthroscopy 2007;23:816-21.
67. Nagle DJ, Fischer T, Harris GD, et al. A multicenter prospective review of 640 endoscopic carpal tunnel releases using the transbursal and extrabursal Chow techniques. Arthroscopy 1996;12:139-43.
68. Lichtman DM, Florio RL, Mack GR. Carpal tunnel release under local anesthesia: Evaluation of the outpatient procedure. J Hand Surg 1979;4:544-6.
69. Sennwald GR, Benedetti R. The value of one-portal endoscopic carpal tunnel release: A prospective, randomized study. Knee Surg, Sports Traumatol, Arthroscopy 1995;3:113-6.
70. Ferdinand RD, MacLean JGB. Endoscopic versus open carpal tunnel release in bilateral carpal tunnel syndrome. J Bone Joint Surg Br 2002;84B:375-9.
71. Agee JM, Peimer CA, Pyrek JD, Walsh WE. Endoscopic carpal tunnel release: A prospective study of complications and surgical experience. J Hand Surg Am 1995;20A:165-71.
72. Agee JM, McCarron Jr. HR, Tortosa RD, et al. Endoscopic release of the carpal tunnel: A randomized prospective multicenter study. J Hand Surg Am 1992;17A:987-95.
Am Acad Orthop Surg 2009;17:369-77.
88. Santoshi JA, Chaware PN, Pakhare AP, Rathinam BAD. An anatomic study to demonstrate the proximity of Kirschner wires to structures at risk in percutaneous pinning of distal radius fractures. J Hand Microsurg 2015;7:73-8.
89. Korcek L, Wongworawat M. Evaluation of the safe zone for percutaneous Kirschner wire placement in the distal radius: A cadaver study. Clin Anat 2011;24:1005-9.
90. Hochwald NL, Levine R, Tonretta P. The risks of Kirschner wire placement in the distal radius: A comparison of techniques. J Hand Surg Am 1997;22A:580-4.
91. Richards TA, Deal N. Distal ulna fractures. J Hand Surg Am 2014;39:385-91.
92. Dennison DG. Open reduction and internal locked fixation of unstable distal ulna fractures with concomitant distal radius fractures. J Hand Surg Am 2007;32A:801-5.
93. Biyani A, Simison AJM, Kleinerman L. Fractures of the distal radius and ulna. J Hand Surg Br 1995;20B:357-64.
94. Ho AWH, Ho ST, Koo SC, Wong KH. Fixation of distal radius fractures: Analysis of the complications of volar plate fixation for the treatment of displaced intra-articular fractures of the distal radius. Acta Orthop 2005;36:330-2.
95. Tarallo L, Mugnai R, Zambianchi F, et al. Volar plate fixation for the treatment of distal radius fractures: Analysis of adverse events. J Orthop Trauma 2013;27:746-50.
96. Singh S, Trikha P, Twyman R. Volar plate fixation for the treatment of distal radius fractures in patients aged 65 years and older. J Bone Joint Surg Am 2010;92:1851-7.
97. Arora R, Lutz M, Deml C, et al. A prospective randomized trial comparing nonoperative treatment with volar locking plate fixation for displaced and unstable distal radius fracture in patients sixty-five years of age and older. J Bone Joint Surg Am 2011;93:2146-53.
98. Sommekamp TG, Seemann M, Silliman J, et al. Dynamic external fixation of unstable fractures of the distal part of the radius. J Bone Joint Surg Am 1994;76A:1149-61.
99. Krishnan J, Wigg AER, Walker RW, Slavotinek J. Intra-articular fractures of the distal radius: A comparative randomized controlled trial comparing static bridging and dynamic non-bridging external fixation. J Hand Surg Br 2003;28B:417-21.
100. McQueen MM, Hadkucka C, Court-Brown CM. Redisplaced unstable fractures of the distal radius. J Bone Joint Surg Br 1996;78B:404-9.
101. Rodriguez-Merchan EC. Plaster cast...
versus percutaneous pin fixation for comminuted fractures of the distal radius in patients between 46 and 65 years of age. J Orthop Trauma 1997;11:212-7.

115. Stoffelen DVC, Broos PL. Kapandji pinning or closed reduction for extra-articular distal radius fractures. J Trauma 1998;45:753-7.

116. Howard PW, Stewart HD, Hind RE, Burke FD. External fixation or plaster for severely displaced comminuted Colles’ fractures? J Bone Joint Surg Br 1989;71B:68-73.

117. Horne JG, Devane P, Purdie G. A prospective randomized trial of external fixation and plaster cast immobilization in the treatment of distal radial fractures. J Orthop Trauma 1990;4:30-4.

118. Lenoble E, Dumontier C, Goutallier D, Apoil A. Fracture of the distal radius. J Bone Joint Surg Br 1995;77B:562-7.

119. Casteleyn PP, Handelberg F, Haentjens P. Biodegradable rods versus Kirschner wire fixation of wrist fractures. J Bone Joint Surg Br 1992;74B:858-61.

120. Maqsood M, Kumar C, Noorpuri BSW. Interposition arthroplasty for osteoarthritis of the trapeziometacarpal joint: Results of a modified incision and technique of interposing with early mobilization. Hand Surg 2002;7:201-6.

121. Rizzo M, Moran SL, Shin AY. Long-term outcomes of trapeziometacarpal arthrodesis in the management of trapeziometacarpal arthritis. J Hand Surg Am 2009;34A:20-6.

122. Hartigan BJ, Stern PJ, Kiefhaber TR. Thumb carpalmetacarpal osteoarthritis: Arthrodesis compared with ligament reconstruction and tendon interposition. J Bone Joint Surg Am 2001;83A:1470-8.

123. Mureau MAM, Rademaker RPC, Verhaar JAN, Hovius SER. Tendon interposition arthroplasty versus arthrodesis for the treatment of trapeziometacarpal arthritis: A retrospective comparative follow-up study. J Hand Surg Am 2001;26A:869-76.

124. Garcia-Mas R, Molins XS. Partial trapeziectomy with ligament reconstruction-tendon interposition in thumb carpometacarpal osteoarthritis. A study of 112 cases. Chir Main 2009;28:230-8.

125. Weilby A. Tendon interposition arthroplasty of the first carpometacarpal joint. J Bone Joint Surg Br 1988;13B:421-5.

126. Forseth MJ, Stern PJ. Complications of trapeziometacarpal arthrodesis using plate and screw fixation. J Hand Surg Am 2003;28A:342-5.

127. Fulton DB. Trapeziometacarpal arthrodesis in primary osteoarthritis: A minimum two year follow-up study. J Hand Surg Am 2001;26A:109-14.

128. Galan A, Arenas JR, del Aguila B, et al. Trapeziometacarpal arthrodesis: Procedure and results. Eur J Orthop Surg Traumatol 2015;25:483-8.

129. Hollevoet N, Kinnen L, Moermans JP, Ledoux P. Excision of the trapezium for osteoarthritis of the trapeziometacarpal joint of the thumb. Int J Orthop Traumatol 1998;1:31-38.

130. Belcher HJCR, Nicholl JE. Comparison of trapeziometacarpal joint osteoarthritis: Is it improved by ligament reconstruction and temporary Kirschner wire insertion? J Hand Surg Br 1995;20B:138-44.

131. Conolly WB, Lanzetta M. Surgical management of arthritis of the carpometacarpal joint of the thumb. Aust N Z J Surg 1993;63:596-603.

132. Lehmann O, Herren DB, Simmen BR. Comparison of tendon suspension-interposition and silicon spacers in the treatment of degenerative osteoarthritis of the base of the thumb. Ann Chir Main 1998;17:25-30.

133. Pellegrini VD, Burton RI. Surgical management of basal joint arthritis of the thumb. Part I. Long-term results of silicone implant arthroplasty. J Hand Surg Am 1986;11A:309-24.