A counterexample to a geometric Hales-Jewett type conjecture

Vytautas Gruslys*

October 13, 2014

Abstract

Pór and Wood conjectured that for all $k, l \geq 2$ there exists $n \geq 2$ with the following property: whenever n points, no $l + 1$ of which are collinear, are chosen in the plane and each of them is assigned one of k colours, then there must be a line (that is, a maximal set of collinear points) all of whose points have the same colour. The conjecture is easily seen to be true for $l = 2$ (by the pigeonhole principle) and in the case $k = 2$ it is an immediate corollary of the Motzkin-Rabin theorem. In this note we show that the conjecture is false for $k, l \geq 3$.

1 Introduction

Given a finite set S in the plane, we will use the term line to denote any maximal set of collinear points of S. Pór and Wood posed the following conjecture.

Conjecture 1 (Pór and Wood [4]). For all integers $k \geq 1$ and $l \geq 2$, there is an integer n such that for every finite set S of size $|S| \geq n$ in the plane \mathbb{R}^2, if each point of S is assigned one of k colours, then

- S contains $l + 1$ collinear points, or
- S contains a monochromatic line.

*Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom; e-mail: v.gruslys@dpmms.cam.ac.uk
The motivation for this conjecture comes from the Hales-Jewett theorem. By a combinatorial line in the grid \([l]^n \subset \mathbb{R}^n\) (where \([l]\) stands for the set \(\{1, 2, \ldots, l\}\)) we mean a set of the form
\[
\{(x_1, \ldots, x_n) \in [l]^n : x_i = x_j \text{ for all } i, j \in I\}
\]
for fixed \(I \subset [n], I \neq \emptyset\) and fixed \(x_i, i \in [n] \setminus I\). Now the Hales-Jewett theorem can be stated as follows.

Theorem 2 (Hales and Jewett [1]). For all integers \(k, l \geq 1\), there is an integer \(n\) such that whenever each of the points in \([l]^n \subset \mathbb{R}^n\) is given one of \(k\) colours, there is a monochromatic combinatorial line.

Conjecture 1 is a natural geometric version of this theorem, where the lines are not necessarily parallel to a fixed set of axes, and the ambient set can be any set without many collinear points.

For \(l = 2\) the result is trivial: we may take \(n = k + 1\) and by the pigeonhole principle there is a line containing two points of the same colour. The case \(k = 2\) is a special case of the Motzkin-Rabin theorem that was proved in [3]. In this paper we demonstrate by a counterexample that the conjecture is false in the next smallest case \(k = l = 3\), and hence it is false whenever \(k, l \geq 3\).

Theorem 3. For any \(n \geq 2\), there is a set \(S \subset \mathbb{R}^2\) of size \(n\) satisfying:

- no four points of \(S\) are collinear, and
- the points of \(S\) can be coloured using three colours in such a way that no line is monochromatic.

2 Proof of Theorem 3

We start by noting that it is sufficient to find a set with the required properties in the projective plane \(\mathbb{R}P^2\). Indeed, given a finite set \(S \subset \mathbb{R}P^2\), one can choose a line \(l \subset \mathbb{R}P^2\) that does not meet \(S\) and apply a projective transformation that sends \(l\) to the line at infinity. The image of \(S\) under this transformation is contained in the affine plane \(\mathbb{R}^2\) while the collinearity relations of the original set \(S\) are preserved.

Our counterexample is a finite subset of the irreducible cubic curve \(y^2 = x^3 - x^2\). More specifically, we will use a subset of the set of its non-singular points \(\Gamma = \{(x, y) \in \mathbb{R}^2 : y^2 = x^3 - x^2, x \neq 0\} \cup \{O\} \subset \mathbb{R}P^2\) where \(O\) is a point at infinity that is contained in all lines parallel to the \(y\)-axis and in
the line at infinity. By the Bézout theorem, \(\Gamma \) does not contain a set of four collinear points. Moreover, it is a well known fact in algebraic geometry that \(\Gamma \) forms an abelian group with the property that distinct points \(P, Q, R \in \Gamma \) are collinear if and only if \(P + Q + R = 0 \), and that \(\Gamma \) is isomorphic to the circle group \(\mathbb{R}/\mathbb{Z} \) (see [2], p. 19–20).

In fact, any choice of an elliptic curve whose group is isomorphic to \(\mathbb{R}/\mathbb{Z} \) would do. However, we choose this particular cubic curve (which is not an elliptic curve as it contains a singular point \((0,0)\)) because it admits a simple explicit group isomorphism \(\phi : \mathbb{R}/\mathbb{Z} \to \Gamma \), given by

\[
\phi(x) = \begin{cases}
(cot(\pi x)^2 + 1, cot(\pi x)(cot(\pi x)^2 + 1)) & \text{if } x \neq 0, \\
O & \text{if } x = 0.
\end{cases}
\]

This enables us to give a self-contained proof of the theorem without referring to any results from algebraic geometry. However, the reader familiar with elliptic curves can skip the proof of the following proposition.

Proposition 4. Let \(x, y \) and \(z \) be distinct elements of \(\mathbb{R}/\mathbb{Z} \). Then the points \(\phi(x), \phi(y) \) and \(\phi(z) \) are collinear if and only if \(x + y + z = 0 \). Moreover, \(\phi : \mathbb{R}/\mathbb{Z} \to \Gamma \) is a well defined bijection.

Proof. The fact that \(\phi \) is a well defined bijection follows from the basic properties of the cotangent function. To prove the equivalence of the geometric and algebraic relations, we will use the identity

\[
\cot(x + y) = \frac{\cot(x)\cot(y) - 1}{\cot(x) + \cot(y)},
\]

which holds whenever \(x + y \neq 0 \). Given a real number \(r \notin \mathbb{Z} \), define \(c_r = \cot(\pi r) \).

If one of \(x, y, z \in \mathbb{R}/\mathbb{Z} \) is 0 (say, \(x = 0 \)) then \(\phi(z) \) is collinear with \(\phi(x) = O \) and \(\phi(y) \) if and only if \(\phi(z) \) is the reflection of \(\phi(y) \) in the \(x \)-axis, that is, \(z = -y \). Similarly, if two of the numbers (say, \(x \) and \(y \)) sum to 0, then the three points are collinear if and only if \(\phi(z) = O \), that is, \(z = 0 \). Now we can assume that \(x, y, z \) are all non-zero and that no two of them sum to 0. Then the points \(\phi(x), \phi(y) \) and \(\phi(z) \) are collinear if and only if

\[
\frac{c_z(c_y^2 + 1) - c_x(c_x^2 + 1)}{(c_y^2 + 1) - (c_x^2 + 1)} = \frac{c_x(c_x^2 + 1) - c_y(c_y^2 + 1)}{(c_x^2 + 1) - (c_y^2 + 1)},
\]

which after rearrangement becomes

\[
c_z = \frac{c_x c_y - 1}{c_x + c_y}.
\]
Notice that \(z = -x - y \) is a solution by (1), and it is unique in \(\mathbb{R}/\mathbb{Z} \) as \(\cot \) is injective on \((0, \pi)\).

Now we are ready to finish the proof of the theorem.

Proof of Theorem 3. As noted before, it is enough to construct a set \(S' \subset \mathbb{RP}^2 \) with the two required properties, and take a projective transformation that maps \(S' \) into \(\mathbb{R}^2 \).

For the set \(S' \) (see Fig. 1 and 2) we will take \(S' = \{ \phi(i/n) : i = 0, \ldots, n-1 \} \). Notice that by Proposition 4 there are no four collinear points in \(S' \). Indeed, if \(\phi(x), \phi(y), \phi(z) \) and \(\phi(w) \) were distinct and collinear, then \(z = -x - y = w \) in \(\mathbb{R}/\mathbb{Z} \), giving a contradiction. Colour \(\phi(i/n) \)

- red if \(0 \leq i < \frac{n}{3} \),
- green if \(\frac{n}{3} \leq i < \frac{2n}{3} \),
- blue if \(\frac{2n}{3} \leq i < n \).

![Figure 1: The set \(S' \) with \(n = 16 \). The sixteenth point is at infinity, and has red colour. The framed section is shown in smaller scale in Fig. 2.](image)
Suppose for contradiction that there is a monochromatic line l. It must pass through two distinct points $\phi(i/n)$ and $\phi(j/n)$, $0 \leq i, j < n$. There is an integer $0 \leq k < n$ such that $k \equiv -i - j \pmod{n}$, possibly $k = i$ or $k = j$. Then $i/n + j/n + k/n = 0$ in \mathbb{R}/\mathbb{Z}, and so by Proposition 4 either $\phi(i/n), \phi(j/n)$ and $\phi(k/n)$ are distinct colinear points, or $\phi(k/n)$ coincides with one of the other two points. In either case l passes through all of these points, and hence they have the same colour.

Now write $i/n = x + \alpha$, $j/n = x + \beta$ and $k/n = x + \gamma$, where $x \in \{0, \frac{1}{3}, \frac{2}{3}\}$ and $\alpha, \beta, \gamma \in [0, \frac{1}{3})$. Considered as real numbers, $3x$ and $i/n + j/n + k/n = 3x + \alpha + \beta + \gamma$ are integers, so $\alpha + \beta + \gamma$ is also an integer. But $0 \leq \alpha, \beta, \gamma < \frac{1}{3}$, so this is only possible if $\alpha = \beta = \gamma = 0$. In particular, $i/n = j/n$, contradicting the assumption that $\phi(i/n) \neq \phi(j/n)$.

This finishes the proof.

\begin{flushright}
\Box
\end{flushright}

References

[1] A.W. Hales and R.I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229.

[2] D. Husemoller, Elliptic curves (2nd ed., Springer, 2004).

[3] T.S. Motzkin, Nonmixed connecting lines, Notices Amer. Math. Soc. 14 (1967), 837.

[4] A. Pór and D.R. Wood, On visibility and blockers, J. Computational Geometry 1 (2010), 29–40.