Expression Profiling of Preadipocyte MicroRNAs by Deep Sequencing on Chicken Lines Divergently Selected for Abdominal Fatness

Weishi Wang†, Zhi-Qiang Du‡, Bohan Cheng, Yuxiang Wang, Jing Yao, Yumao Li, Zhiping Cao, Peng Luan, Ning Wang*, Hui Li*

Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China

‡ These authors contributed equally to this work.
* wayane123@aliyun.com (NW); lihui@neau.edu.cn (HL)

Abstract

Through posttranscriptional gene regulation, microRNA (miRNA) is linked to a wide variety of biological processes, including adipogenesis and lipid metabolism. Although miRNAs in mammalian adipogenesis have been worked on extensively, their study in chicken adipogenesis is still very limited. To find miRNAs potentially important for chicken preadipocyte development, we compared the preadipocyte miRNA expression profiles in two broiler lines divergently selected for abdominal fat content, by sequencing two small RNA libraries constructed for primary preadipocytes isolated from abdominal adipose tissues. After bioinformatics analyses, from chicken miRNAs deposited in miRBase 20.0, we identified 225 miRNAs to be expressed in preadipocytes, 185 in the lean line and 200 in the fat line (derived from 208 and 203 miRNA precursors, respectively), which corresponds to 114 miRNA families. The let-7 family miRNAs were the most abundant. Furthermore, we validated the sequencing results of 15 known miRNAs by qRT-PCR, and confirmed that the expression levels of most miRNAs correlated well with those of Solexa sequencing. A total of 33 miRNAs was significantly differentially expressed between the two chicken lines (P <0.05).

Gene ontology analysis revealed that they could target genes enriched in the regulation of gene transcription and chromatin function, response to insulin stimulation, and IGF-1 signaling pathways, which could have important roles in preadipocyte development. Therefore, a valuable information and resource of miRNAs on chicken adipogenesis were provided in this study. Future functional investigations on these miRNAs could help explore related genes and molecular networks fundamental to preadipocyte development.
Introduction

As small non-coding RNA molecules, ~22 nucleotides in length, microRNAs (miRNAs) can regulate their RNA targets by either direct degradation or translational inhibition through partial complementary sequence recognition and binding. Detailed studies on miRNA genomics, evolution and function revealed that they are involved in a wide variety of biological processes, such as cell differentiation, proliferation, disease development [1, 2], as well as adipogenesis and lipid metabolism [3–23].

Adipogenesis is orchestrated by a fine balance of molecular and cellular signals, the disruption of which could change adipocyte size or number, and the ensuing expansion or contraction of white adipose tissue will happen [3]. In mammals, a number of miRNAs have been demonstrated to target genes involved in adipogenesis and lipid metabolism, such as the regulation on the proliferation of adipose tissue-derived mesenchymal stem cells by miR-21 and miR-196a [4–6]; the enhancement of adipogenesis by miR-103, miR-224 and the miR-17–92 cluster [7–9]; the impairment of adipogenesis by the let-7 family, miR-448, miR-15a and miR-27 [10–13]; the regulation of adipocyte lipid metabolism by miR-27a and miR-143 [13–15]; and the important role of miR-33 on the repression of sterol transporters reported in numerous studies [16–24].

In chickens, a majority of the miRNA studies have been performed to examine their roles in growth performance, reproduction and disease resistance [25–31]. However, very few studies for chicken adipogenesis were conducted. One study examined the role of miR-33 on the regulation of FTO gene, which is important in adipose tissue development [24]. Two other studies were limited in the identification of miRNAs, one in muscle and adipose tissues [32], and the other in preadipocytes obtained from Arbor Acres (AA) broilers reported previously by our group [33].

In order to better understand miRNAs involved in chicken adipogenesis, we used the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHL), which showed marked difference in abdominal fat content between the two lines, and have been studied extensively in searching for genetic factors underlying the development of adipose tissue [34–36]. Small RNA libraries were constructed and sequenced, using primary preadipocytes collected from abdominal fat tissues. After comparison between the fat and lean broiler lines, a total of 33 miRNAs were found to be significantly differentially expressed. Furthermore, gene ontology analyses showed that the target genes of these differentially expressed miRNAs were enriched in pathways potentially related to adipocyte development and lipid metabolism, such as transcription regulation, chromatin regulator, response to insulin stimulation, and more interestingly, IGF-1 signalling pathway and epigenetic regulation of gene expression. We found that most of these miRNAs could be important to adipogenesis, by extensive literature mining and a combined analysis of gene expression profiling on chicken preadipocytes. Future investigation on the relationship between the function of these miRNAs and preadipocyte development is still warranted, which could help explore related genes and molecular networks fundamental to preadipocyte development.

Results

We sequenced two small RNA libraries built from lean and fat broiler preadipocytes, which contained 14,146,164 and 15,723,681 raw reads, respectively. In the lean chicken line, 80.60% of total reads and 53.65% of unique reads could be mapped to the chicken reference genome, and for the fat chicken line, the proportions were 82.96% and 46.68%, respectively.

After quality control procedures (see Methods), 13,463,693 and 12,490,340 short reads were kept for further analyses for the lean and fat chicken lines, respectively (Table 1). We found that 8.58% and 8.45% of the clean reads correspond to miRNAs for the lean and fat chicken lines, respectively. The remaining clean reads could be mapped to other genomic locations,
Table 1. Summary of short reads produced by small RNA sequencing after data cleaning procedure in each sample.

Type	Lean line	Fat line		
	Count	Percentage	Count	Percentage
3'-adapter	127,283	0.92	418,321	2.70
Insert	86,270	0.62	1,719,912	11.12
5'-adapter	104,238	0.75	140,980	0.91
<18 nt	73,063	0.53	698,054	4.51
polyA	698	0.01	899	0.01
Clean reads	13,463,693	97.17	12,490,340	80.75
High-quality reads	13,855,245	100	15,468,506	100
Total reads	14,146,164		15,723,681	

doi:10.1371/journal.pone.0117843.t001

Fig 1. Length distribution of small RNA read sequences in fat and lean chicken lines.

doi:10.1371/journal.pone.0117843.g001
corresponding to other different kinds of small RNAs, including repeats, snRNA, snoRNA, rRNA and tRNA (S1 Table). In agreement with the definition of miRNA, it is clear that in the length range of 18 to 30 nucleotides (nt), reads of 22 nt are the most abundant, distributed with a percentage of 16% and 18% in the lean and fat chicken lines, respectively (Fig. 1).

Fig 2. Circular view of miRNAs identified in the chicken genome. Data tracks viewed from outside inwards: 1) chicken chromosomes; 2) and 3) miRNAs abundantly expressed in the lean and fat chicken lines, respectively; 4) miRNA labels; 5) link lines for miRNA paralogs found to be expressed in chicken preadipocytes. Details on the sequence alignment between miRNA precursors for these miRNA paralogs (chromosome coordinates and sequence identity) can be found in S2 Table.

doi:10.1371/journal.pone.0117843.g002
Identification of miRNAs in the two chicken lines

Of the 996 *Gallus gallus* mature miRNAs deposited in miRBase 20.0, 225 were identified in our two libraries (185 in the lean line and 200 in the fat line) (Fig. 2), which belonged to a total of 114 miRNA families, and were derived from 208 and 203 miRNA precursors (pre-miRNAs) in the lean and fat lines, respectively. The top 10 abundant miRNAs included the let-7 miRNA family (let-7a, j, b, f, c, and k), gga-miR-148a, gga-miR-146c, gga-miR-10a, and gga-miR-21. The let-7 miRNA family was the most abundant, representing 83.3% and 79.46% of the total reads in lean and fat broilers, respectively. Moreover, gga-let-7a and gga-let-7j were the most frequently sequenced miRNA in both lines (>18%) (Figs. 2 and 3). Three other miRNAs, gga-miR-148a, gga-miR-146c and gga-miR-10a were more abundant in the lean line than in the fat line. In contrast, gga-miR-21 was more abundant in the fat line.

Among the 225 miRNAs identified, 33 were significantly differentially expressed between the two chicken lines (P <0.05), in which 26 miRNAs were highly expressed (up-regulated), and 7 miRNAs were lowly expressed (down-regulated) in the fat chicken line. The most significantly differentially expressed were gga-miR-206 (3.5-fold), gga-miR-31 (2.5-fold), gga-miR-3535 (2.5-fold), gga-miR-17-3p (2.3-fold), gga-miR-429 (2.3-fold) and gga-miR-200b (2.2-fold), and in comparison, gga-miR-454 (-2.9-fold) and gga-miR-1b (-2.7-fold) were those mostly down-regulated in the fat line (Fig. 4). Among the 33 significantly differentially expressed miRNAs, gga-miR-101 had the largest number of reads in both fat and lean lines.
In addition, in searching for novel miRNAs, we adopted the three-step approach, including the control on number of short reads, prediction of hairpin structure, and constraints on both number of short reads and locations corresponding to novel miRNAs (details as in Methods). A total of 107 and 571 novel miRNAs were found in the lean and fat chicken lines, respectively (S3 Table and S4 Table). Only were three novel miRNAs found to be in common in both lines (gga01:118610977–118611076, gga11:552873–552951, and gga26:640852–640926).

Verification of sequencing results

To validate the results obtained from high-throughput sequencing, we selected 15 miRNAs already known in miRBase and 22 novel miRNAs detected in this study for validation by qRT-PCR, respectively. Firstly, for the 15 known miRNAs, we extracted RNA from primary...
preadipocytes isolated from abdominal tissues for a total of 10 birds (5 from each of the two NEAUHL chicken lines at 16th generation), and each bird was assayed individually and in triplicate. These miRNAs were divided into three groups according to their expression levels in the fat broiler line, 4 highly expressed (gga-miR-21, gga-miR-148a, gga-miR-103, gga-miR-101) \((2^{\Delta Ct}>0.7)\), 4 moderately expressed (gga-miR-100, gga-miR-146a, gga-miR-92, gga-miR-2188) \((0.7>2^{\Delta Ct}>0.08)\), and 7 lowly expressed (gga-miR-1a, gga-miR-130a, gga-miR-221, gga-miR-19a, gga-miR-181b, gga-miR-458, gga-miR-17–3p) \((2^{\Delta Ct}<0.08)\) (Table 2). Four miRNAs significantly differentially expressed between the fat and lean chicken lines detected by deep sequencing were included in the list, i.e. gga-miR-101, gga-miR-2188, gga-miR-1a and gga-miR-17–3p. After qRT-PCR analyses, gga-miR-101 was also found to be significantly differentially expressed, and gga-miR-1a and gga-miR-17–3p were suggestively significant. Consequently, our qRT-PCR analyses confirmed that the expression level of most of the 15 miRNAs correlated well with those of Solexa sequencing (S1 Fig.). Furthermore, we found that two miRNAs, gga-miR-92 and gga-miR-221, were significantly differentially expressed between the two chicken lines by qRT-PCR analyses. The discrepancy of the significance of miRNA expression between the two lines could be possibly due to that animals from different generations were assayed, and individually (see Methods) (Fig. 5).

Secondly, for the 22 novel miRNAs selected for validation, we found that 17 of them (77.27%) did exist. These 17 miRNAs expressed with relatively low abundance, which was in accordance with the low number of short reads in the miRNA sequencing data (Fig. 6, Table 3).

Gene ontology analyses

We searched the target genes of the 33 significantly differentially expressed miRNAs. In total, 2,097 and 1,212 genes were found to be targeted by the 26 up-regulated miRNAs and the other 7 down-regulated miRNAs in the fat broiler line, respectively. Within these two sets of genes, 853 were common.

Table 2. Number of reads and expression levels of the 15 miRNAs chosen for qRT-PCR validation.

miRNA	Number of reads in the lean line	\(2^{\Delta Ct}\) in the lean line (Mean±SD)	Number of reads in the fat line	\(2^{\Delta Ct}\) in the fat line (Mean±SD)	p-value
gga-miR-21	2115	2.06±0.15	3391	2.79±0.58	0.06
gga-miR-148a	3326	1.01±0.32	3000	0.53±0.10	0.04
gga-miR-103	875	0.99±0.18	1289	0.91±0.23	0.56
gga-miR-101	446	0.26±0.09	1272	0.73±0.04	0.0001
gga-miR-100	373	0.59±0.15	215	0.32±0.09	0.02
gga-miR-92	78	0.25±0.03	99	0.15±0.03	0.002
gga-miR-146a	105	0.17±0.15	158	0.15±0.06	0.89
gga-miR-2188	27	0.05±0.05	104	0.09±0.03	0.20
gga-miR-130a	55	0.09±0.02	71	0.05±0.01	0.03
gga-miR-1a	36	0.02±0.01	122	0.07±0.04	0.06
gga-miR-19a	15	0.04±0.01	18	0.02±0.01	0.01
gga-miR-221	25	0.03±0.003	37	0.02±0.004	0.003
gga-miR-17–3p	4	0.008±0.002	22	0.01±0.003	0.09
gga-miR-181b	6	0.006±0.003	6	0.006±0.001	0.93
gga-miR-458	6	0.001±0.0003	2	0.0004±0.0002	0.39

doi:10.1371/journal.pone.0117843.t002
Gene ontology analyses were performed by the DAVID approach on all the 2,456 genes targeted by the 33 significantly differentially expressed miRNAs. Genes predicted to be targeted by those 33 differentially expressed miRNAs were significantly enriched in several biological processes, including transcription regulation, chromatin regulator, cell morphogenesis, cellular response to insulin stimulus, mesenchymal cell differentiation, and the regulation of programmed cell death (Fig. 7). Furthermore, the separate gene ontology analyses identified three interesting biological pathways, i.e. cytoskeleton regulation, IGF-1 signaling pathway and epigenetic regulation of gene expression, which appeared to be targeted specifically by miRNAs up-regulated in the fat broilers. These biological processes could potentially contribute to explaining the different levels of fatness in the two divergently selected chicken lines.

Fig 5. qRT-PCR validation of miRNAs in the preadipocytes of the lean and fat chicken lines. miRNA expression levels were normalized, and were selected at high, intermediate and low levels according to their number of reads by Solexa sequencing. Seven miRNAs (gga-miR-148a, gga-miR-101, gga-miR-100, gga-miR-92, gga-miR-130a, gga-miR-19a and gga-miR-221) with significantly differential expression levels were found (* P<0.05; ** P<0.01). Inset shows the enlarged view of the five lowly expressed miRNAs.
Discussion

In the current study, we compared miRNA expression profiles for preadipocytes collected from fat and lean broilers divergently selected for abdominal fat content, and identified 225 known miRNAs. We further validated the sequencing results of 15 known miRNAs by qRT-PCR, and confirmed the expression level of most miRNAs correlated well with those of Solexa sequencing. Gene ontology analysis revealed that 33 significantly differentially expressed miRNAs between the two chicken lines could participate in a variety of biological processes potentially important to preadipocyte development.

Adipocyte differentiation is a complex process requiring fine-tuning of a series of cellular and molecular events orchestrated by transcription factors and other regulatory elements, which can be further complicated by an extra layer of regulation posed upon by epigenetic regulators and endocrine signals [37–39]. Interestingly, our gene ontology analyses on genes targeted by the 33 significantly differentially expressed miRNAs identified several biological
processes, including cellular response to insulin stimulus, mesenchymal cell differentiation, transcription regulation and chromatin regulator, cell morphogenesis and the regulation of programmed cell death. It is well recognized that insulin is directly related to the regulation of glucose level, and insulin resistance brings detrimental effects to cellular metabolism, leading to metabolic diseases, e.g. obesity [40–42]. Adipocytes can be differentiated from mesenchymal stem cells, and the regulation on this process and the ensuing cell morphogenesis and cell death pathway will definitely affect the development of adipose tissue [43–45]. Chromatin modification and transcription regulation, such as gene methylation and histone modifications, were also found to be important to adipogenesis [46–48]. Recently, miR-148a was found to be able to target DNMT1, affecting the methylation status of adipocytes [49].

Three biological processes targeted specifically by up-regulated miRNAs in the fat chicken line, cytoskeleton regulation, IGF-1 signalling pathway and epigenetic regulation of gene expression, are bona fide molecular pathways demonstrated to be fundamental to adipocyte development. Cytoskeleton remodeling through acetyltransferase MEC-17, BSCL2/seipin and oxygen levels were recently found to be related to adipogenesis [50–52]. IGF-1 has long been regarded as one of the adipocyte differentiation stimulators, and extensive studies have been conducted to study its exact roles on growth, obesity and disease development [53–56]. In chickens, it was shown to be related to growth and abdominal fat content [57,58], and in our divergently selected chicken lines, the genomic region containing IGF-1 on chicken chromosome 1 was also shown to be under selection by selective sweep analysis [35]. The epigenetic effects on gene transcription, and its potential relationship to adipogenesis were also reported previously [46–49].

In addition, we searched the genes targeted by down-regulated miRNAs in the fat broiler lines for enriched biological processes. However, we did not find any interesting significant processes, possibly due to the few number of genes (a total of 105).

Table 3. Expression level of 17 novel miRNAs validated.

Number of reads in the lean line	\(2^{-\Delta Ct}\) in the lean line	Number of reads in the fat line	\(2^{-\Delta Ct}\) in the fat line	Fold-change*	
II-0414	0	1.07E-03	86	3.68E-03	3.44
I-0182	47	2.42E-04	0	1.74E-03	7.19
II-1249	0	5.33E-04	35	1.68E-03	3.15
II-0766	0	3.10E-04	30	5.32E-04	1.72
I-0056	52	6.51E-05	0	2.63E-04	4.04
I-0038	10	2.02E-04	0	2.53E-04	1.25
I-0199	155	1.43E-04	0	2.51E-04	1.76
II-0731	0	8.57E-05	10	2.51E-04	2.93
I-0426	37	6.54E-05	0	2.50E-04	3.82
II-0166	0	6.35E-05	15	2.20E-04	3.46
I-1005	0	7.17E-05	68	1.91E-04	2.66
I-0094	23	9.30E-05	0	1.54E-04	1.66
I-0188(II-0689)	57	6.15E-05	12	1.08E-04	1.76
I-0254	20	8.53E-06	0	3.89E-05	4.56
I-0194	68	7.90E-06	0	2.92E-05	3.70
I-0252	220	7.39E-06	0	1.70E-05	2.20
I-0276	66	3.82E-06	0	1.23E-05	3.22

Note: * indicates the fold changes of \(2^{-\Delta Ct}\) values in the fat line against the lean line.

doi:10.1371/journal.pone.0117843.t003
After exhaustive literature mining, among the 33 significantly differentially expressed miRNAs, a total of 21 miRNAs have been demonstrated to be involved in (pre-)adipocyte development and metabolism (details in S5 Table). The most interesting miRNA could be miR-33, reported in a number of studies [16–24], which is highly important on cholesterol homeostasis by repressing sterol transporters. For miR-222, a known regulator of kit ligand signaling during the recruitment and maintenance of precursor hematopoietic cells, it has been described to be related to adipose tissue development in mice treated with conjugated linoleic acid [59].
the highest number of reads in both chicken lines among the significantly differentially expressed miRNAs, miR-101 was found previously to be able to induce the differentiation of 3T3-L1 [60]. As a member of the miR-17–92 cluster, miR-17–3p can target RB and fatty acyl desaturase genes [61,62], and enhance 3T3-L1 differentiation [9]. Through the regulation of DLK1 level, miR-15a could disrupt adipogenic differentiation [12]. miR-15a can also target Foxo1, and participate in the disruption of adipogenic differentiation and the regulation of insulin synthesis [63–65]. miR-22 can regulate the PTEN/AKT pathway and target HDAC6 [66–68]; miR-206 and miR-1a can suppress hepatic lipogenesis [69]; miR-29b and miR-9 are involved in insulin sensitivity and diabetes [70,71]; miR-31 and miR-32 participate in differentiation of stem cells into adipocyte and lipid metabolism in oligodendrocytes [72,73]. Last but not least, expression levels of 10 miRNAs can be perturbed in animals when fed with high-fat diet (miR-142–5p and miR-101) [74–78], or with obesity or obesity-related diseases (miR-10a, miR-218, miR-429, miR-200a, miR-200b, miR-451, miR-142–3p, and miR-454) [77,79–85], which indicates that they could be potentially related to adipogenesis.

However, among the remaining 12 miRNAs, we found that miR-2188 affects embryonic development in fishes [86,87]; miR-1306 is related to Alzheimer’s disease by targeting ADAM10 [88]; miR-1684 was differentially expressed in chicken lines selected for necrotic enteritis [89]; miR-1b could be potentially related to immunity genes in insects [90]; no literature was found for the other 8 miRNAs (miR-3535, miR-1434, miR-1805–3p, miR-1551, miR-1563, miR-1653, miR-1416, miR-460a). Though no direct evidence on their roles in adipogenesis or lipid metabolism was found, we still could not exclude the possibility of their involvement.

We further analyzed gene expression data for birds from a time-course transcriptome profiling project performed previously in our lab (GEO accession number: GSE51330), in which a similar procedure for collecting chicken preadipocytes was used, and both broiler lines were analyzed. As a result, among all genes targeted by the 33 differentially expressed miRNAs, 262 genes significantly differentially expressed had the same trend of expression levels, i.e. genes targeted by up-regulated miRNAs having lower expression levels, and vice versa (S2 Fig., S6 Table). After gene ontology analysis, these 262 genes were also found to be significantly enriched in cytoskeleton regulation and chromatin regulator pathways.

In addition, 107 and 571 novel miRNAs were found in the lean and fat chicken lines, respectively. We found 17 of 22 novel miRNAs selected for validation (77.3%) expressed in the same RNA sample used for miRNA sequencing, but all with a relatively low level of expression. In another study, 50 out of 53 novel miRNAs discovered in lancelet were verified by expression analysis, after using the same software MIREAP in predicting novel miRNAs [91]. Furthermore, 18 of 25 (72.0%) novel miRNAs were confirmed in mice with ectopic expression analysis [92]; 23 of 30 (76.6%) were verified in a pig study with direct PCR amplification [93]; 12 of 17 (70.6%) were detected by northern blot analysis in a human study [94]. All these studies have a comparable success rate of novel miRNA validation with ours. We failed to validate 5 novel miRNAs, possibly due to prediction accuracy, or limitation of experimental techniques to detect these novel miRNAs [93,95]. Another possibility could be that the 5 novel miRNAs were simply not real miRNAs, since 2 of them could not be amplified, and the remaining 3 had an irregular melting curve when performing qRT-PCR.

Conclusions

Taken together, in this study, the expression profiling of abundantly and differentially expressed miRNAs in preadipocytes derived from two divergently selected chicken lines were performed. Some miRNAs such as gga-miR-101 and gga-miR-1a were significantly differentially expressed between the fat and lean chicken lines. After exhaustive literature mining and gene
ontology analyses, the 33 differentially expressed miRNAs were found to potentially play important roles in several biological processes, such as chromatin regulator, cell morphogenesis, cellular response to insulin stimulus, mesenchymal cell differentiation, which could be involved in preadipocyte development. Our results will provide valuable resources and information for further functional investigation on the relationship between miRNA function and chicken adipogenesis.

Materials and Methods

Ethics statement
Animal work was conducted following the guidelines for the care and use of experimental animals established by Ministry of Science and Technology of People’s Republic of China (approval number: 2006–398), and also approved by Laboratory Animal Management Committee of Northeast Agricultural University.

Animals and cell culture
Broilers for miRNA expression profiling were selected from the 15th generation population of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHL), which showed 4.58 times difference in abdominal fat percentage between the fat and lean lines. Both chicken lines were kept in the same environmental conditions, and had access to feed and water ad libitum. Details on the selection program of the two lines can be found in our previous report [34].

Chicken preadipocytes for miRNA sequencing library construction were collected according to previously described methods with a few modifications [96,97], as well as a recent method published by our group [98]. Briefly, abdominal adipose tissue was taken from 12 fourteen-days-old male broilers (6 each for the fat and lean lines) by sterile dissection following rapid decapitation, and then pooled together, respectively. Tissues were minced with scissors, then digested in 2 mg/ml collagenase type I (Invitrogen, Carlsbad, CA, USA) for 65 min at 37°C with shaking. Followed by filtration through a 20-μm screen and centrifugation at 300g for 10 min at room temperature, the pellets (preadipocytes) were suspended in the Trizol Reagent (Invitrogen, Carlsbad, CA, USA), and used directly for total RNAs extraction by the Trizol method following the manufacturer’s protocols (Invitrogen, Carlsbad, CA, USA).

RNA sample preparation and sequencing
Subsequently, total RNAs were separated on a 15% polyacrylamide gel, and RNA molecules in the range of 18–30 nt were cut from the gel, extracted and ligated with appropriate adapters to the 5’ and 3’ termini. A reverse transcription reaction followed by PCR of low cycle number was performed to obtain sufficient products for Solexa sequencing (BGI, Shenzhen, China).

Bioinformatics analyses
Raw short reads were passed through a quality control procedure, including trimming adapters, discarding sequences shorter than 18 nt, eliminating low-quality sequences and adaptor-adaptor ligation, and removing all the repetitive and adaptor sequences. Data can be accessed at NCBI SRA archive (SRR1562981 and SRR1563007). Generated clean short reads were mapped onto the G. gallus genome (NCBI : GCA_000002315.2) using SOAP [99]. To identify already known miRNAs, perfectly matched short reads were then aligned to the G. gallus miRNA precursors deposited in the miRBase (release 20.0). The criteria used in the process were: 1) the unique sequence must be in perfect alignment with the precursor; 2) The start
position of the alignment must be within +2 and -2 nt of the mature miRNA located in the precursor. To identify degenerated fragments of mRNA or other non-coding RNAs, such as rRNA, tRNA, and snoRNA, unique reads were screened against *G. gallus* non-coding RNA (excluding miRNA), and the annotated or predicted genes in the chicken reference genome (GenBank and Rfam). Reads that matched perfectly with over 20 locations in the genome were removed.

The remaining short reads that could not be matched to known chicken miRNA precursors were searched against the metazoan mature miRNAs in the Sanger miRBase (20.0) [100], using the program Patscan to identify conserved miRNAs, with two mismatches allowed.

To find new miRNAs, we first removed those short reads sequenced less than twice in both libraries, and the remaining short reads were checked using the software Einverted of Emboss, to find step-loops or hairpin structures [101]. Secondly, an approach based on the characteristic hairpin structure of miRNA precursor was used to predict novel miRNAs. Mireap, developed by BGI of China (http://sourceforge.net/projects/mireap/), was used to perform the analysis, in which two constraints were used to detect novel miRNAs, the number of reads (>5), and the number of locations mapped onto these miRNAs in the chicken genome (<10) [91,102].

Differentially expressed miRNA analysis

For each miRNA, numbers of reads were normalized to the total number of reads in each library, respectively. A web tool IDEG6 (http://telethon.bio.unipd.it/bioinfo/IDEG6/) was applied to detect differentially expressed miRNAs between the two chicken lines, and the Fisher’s exact test was used [103], which has been widely used in several other studies [104,105]. Circos was used to plot the differentially expressed miRNA, and read numbers of identified miRNAs in the two chicken lines as well [106].

qRT-PCR verification of sequencing results

Primers for 15 known miRNAs were designed, according to a previously published method [107], to verify the sequencing results using quantitative RT-PCR method (S7 Table). From the fat and lean broiler lines at the 16th generation, 5 chickens (14 days old) from each line were selected, respectively. For each animal, preadipocytes from the abdominal adipose tissue were collected, following the same procedure as described previously. Total RNA was extracted from these individual preadipocyte samples. A total of 1μg RNA for each sample was reverse-transcribed to cDNA using Reverse Transcription kits (TIANGEN Beijing, China). The real-time RT-PCR was performed on ABI 7500 system using SYBR Green PCR Kit from Takara (Dalian, China), with each miRNA checked in triplicate.

We selected 22 novel miRNAs for validation. According to their number of sequencing reads, these miRNAs were divided into three groups, high, medium and low. For each group, 4 miRNAs for each line were selected, respectively, which included 2 miRNAs common to both lines (S8 Table). Primers were designed for the regular stem-loop RT-PCR. The same RNA samples as used in miRNA sequencing were analyzed here again for novel miRNA validation. Kits for RNA reverse transcription and the real-time RT-PCR were from Promega (Madison, WI, USA) and Roche (Indianapolis, IN, USA), respectively.

The chicken small nuclear RNA U6 was used as the internal control, and the relative expression level of each miRNA was calculated using the 2^{-ΔCt} method, based on our experimental design. The t-test was used to determine the significance level of qRT-PCR expression level of 15 known miRNAs between the lean and fat chicken lines in the R statistical environment [108].
Target gene prediction and gene ontology analysis

To predict genes targeted by miRNAs, TargetScan (http://www.targetscan.org/) was used [109], and the relationship between miRNA and mRNA interaction was analyzed and plotted by Cytoscape [110]. Gene ontology (GO) analyses of target genes were conducted by DAVID (http://david.abcc.ncifcrf.gov/) [111].

Supporting Information

S1 Fig. Linear regression analysis of gene expression from qRT-PCR and Solexa sequencing. (EPS)

S2 Fig. Network relationship between miRNAs and their target genes significantly differentially expressed in chicken preadipocytes. miR-200b and miR-429 share the biggest number of common genes. (EPS)

S1 Table. Distribution of number of short reads for different types of RNAs (DOCX)

S2 Table. Sequence similarity between miRNA precursors for the miRNA paralogs detected to be expressed in chicken preadipocytes. These miRNA paralogs have exactly the same mature miRNA sequences, and have already been detected and deposited in miRBase 20.0. Most of them are interchromosomal duplications, and can be divided into 3 groups according to their identity percentage between precusor sequences of miRNA paralogs. The first group are those perfectly matched to each other, the second group with >80% identity, and the third group with relatively low identity. (DOC)

S3 Table. Novel miRNAs discovered in the fat broiler line. Locations of miRNA in the chicken genome, their mature sequences, secondary structure, and counts of corresponding short reads were described. (TXT)

S4 Table. Novel miRNAs discovered in the lean broiler line. Locations of miRNA in the chicken genome, their mature sequences, secondary structure, and counts of corresponding short reads were described. (TXT)

S5 Table. MiRNAs reported previously to be potentially related to adipogenesis. (DOCX)

S6 Table. Relationship between expression levels of miRNAs and their target genes. Upregulated miRNAs target genes with lower expression levels, and vice versa. On average, 6% of all genes targeted by the 33 miRNAs between the two broiler lines follow this trend. These genes targeted by miRNAs were significantly differentially expressed in preadipocytes (unpublished data). (DOCX)

S7 Table. Information for primers used for 15 known miRNAs by qRT-PCR. (DOCX)

S8 Table. Information for primers used for 22 novel miRNAs by qRT-PCR. (DOCX)
Author Contributions
Conceived and designed the experiments: HL NW. Performed the experiments: WSW. Analyzed the data: WSW ZQD. Contributed reagents/materials/analysis tools: BHC YXW JY YML ZPC PL. Wrote the paper: ZQD WSW HL NW. Read and approved the final manuscript: HL WSW ZQD BHC YXW JY YML ZPC PL NW.

References
1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297. PMID: 14744438
2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326
3. Moreno-Navarrete JM, Fernández-Real JM (2012) Adipocyte differentiation. In: Symonds M, editors: Adipose tissue biology. Springer. pp. 17–38.
4. Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, et al. (2012) MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 227: 183–193. doi: 10.1002/jcp.22716 PMID: 21381024
5. Kim YJ, Hwang SJ, Bae YC, Jung JS (2009) MiR-21 Regulates Adipogenic Differentiation through the Modulation of TGF-β Signaling in Mesenchymal Stem Cells Derived from Human Adipose Tissue. Stem Cells 27: 3093–3102. doi: 10.1002/stem.22716 PMID: 19816956
6. Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS (2009) miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 24: 816–825. doi: 10.1359/jbmr.081230 PMID: 19063684
7. Wilfred BR, Wang W-X, Nelson PT (2007) Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 91: 209–217. PMID: 17521938
8. Peng Y, Xiang H, Chen C, Zheng R, Chai J, et al. (2013) MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 45: 1585–1593. doi: 10.1016/j.biocel.2013.04.029 PMID: 23665235
9. Wang Q, Li YC, Wang J, Kong J, Qi Y, et al. (2008) miR-17–92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 105: 2889–2894. doi: 10.1073/pnas.0800178105 PMID: 19287052
10. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ (2009) MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 23: 925–931. doi: 10.1210/me.2008-0298 PMID: 19324969
11. Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, et al. (2010) Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol 24: 1978–1987. doi: 10.1210/me.2010-0054 PMID: 20719859
12. Andersen DC, Jensen CH, Schneider M, Nosseent AY, Eskildsen T, et al. (2010) MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res 316: 1681–1691. doi: 10.1016/j.yercr.2010.04.002 PMID: 20385127
13. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276: 2349–2358. PMID: 19348006
14. Kim SY, Kim AY, Lee HW, Son YH, Lee HY, et al. (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem Biophys Res Comm 392: 323–328. doi: 10.1016/j.bbrc.2010.01.012 PMID: 20660380
15. Esaua C, Kang X, Peralta E, Hanson E, Marcusson EG, et al. (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279: 52361–52365. PMID: 15504739
16. Najafi-Shoushtari NH, Kristo F, Li Y, Shioda T, Cohen DE, et al. (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328: 1566–1569. doi: 10.1126/science.1189123 PMID: 20468882
17. Gerin I, Clerbaux L-A, Haumont O, Lanthier N, Das AK, et al. (2010) Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation. J Biol Chem 285: 33652–33661. doi: 10.1074/jbc.M110.152090 PMID: 20732877
18. Raynor KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, et al. (2010) MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science 328: 1570–1573. doi: 10.1126/science.1189862 PMID: 20468885
19. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, et al. (2011) Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478: 404–407. doi: 10.1038/nature10486 PMID: 22012398

20. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, et al. (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121: 2921–2931. doi: 10.1172/JCI57275 PMID: 22164721

21. Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Josepa Salvado M, et al. (2012) Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res 56: 1636–1646. doi: 10.1002/mnr.20023 PMID: 22965541

22. Inukai S, Slack FJ (2012) MiR-33 connects cholesterol to the cell cycle. Cell Cycle 11: 1060–1061. doi: 10.4161/cc.11.6.19786 PMID: 22391211

23. Baselga-Escudero L, Arola-Arnal A, Pascual-Serrano A, Ribas-Latre A, Casanova E, et al. (2013) Chronic Administration of Proanthocyanidins or Docosahexaenoic Acid Reverses the Increase of miR-33a and miR-122 in Dyslipidemic Obese Rats. PLoS One 8:e69817. doi:10.1371/journal.pone.0069817 PMID: 23922812

24. Shao F, Wang X, Yu J, Jiang H, Zhu B, et al. (2014) Expression of miR-33 from an SREBF2 Intron Targets the FTO Gene in the Chicken. PLoS One 9:e91236. doi:10.1371/journal.pone.0091236 PMID: 24626192

25. Zhang S, Li S, Chen W, Lu W, Huang Y (2013) A single-nucleotide polymorphism in the 3′ untranslat-ed region of the LPIN1 gene and association analysis with performance traits in chicken. Br Poult Sci 54:312–318. doi: 10.1080/00071668.2013.791383 PMID: 23796115

26. Li H, Sun GR, Tian YD, Han RL, Li GX, et al. (2013) MicroRNAs-1614–3p gene seed region polymor-phisms and association analysis with chicken production traits. J Appl Genet 54:209–213. doi: 10.1007/s13353-013-0142-4 PMID: 23456846

27. Li H, Tian YD, Han RL, Li GX, et al. (2013) MicroRNAs-1614–3p gene seed region polymorphisms and association analysis with chicken production traits. J Appl Genet 54:209–213. doi: 10.1007/s13353-013-0142-4 PMID: 23456846

28. Lin S, Li H, Mu H, Luo W, Li Y, et al. (2012) Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens. BMC Genomics 13: 306. doi:10.1186/1471-2164-13-306 PMID: 22781587

29. Kang L, Cui X, Zhang Y, Yang C, Jiang Y (2013) Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing. BMC Genomics 14: 352. doi:10.1186/1471-2164-14-352 PMID: 23565801

30. Rengaraj D, Park TS, Lee SI, Lee BR, Han BK, et al. (2013) Regulation of Glucose Phosphate Isomerase by the 3′UTR-Specific miRNAs miR-302b and miR17–5p in Chicken Primordial Germ Cells. Biol Reprod 89:33. doi: 10.1095/biolreprod.112.105692 PMID: 23825378

31. Wang Q, Gao Y, Ji X, Qiu X, Qin L, et al. (2013) Differential expression of microRNAs in avian leukosis virus subgroup J-induced tumors. Vet Microbiol 162:232–238. doi:10.1016/j.vetmic.2012.10.023 PMID: 23157947

32. Wang X, Yu J, Zhang Y, Gong D, Gu Z (2012) Identification and characterization of microRNA from chicken adipose tissue and skeletal muscle. Poult Sci 91:139–149. doi:10.3382/ps.2011-01656 PMID: 22184439

33. Yao J, Wang Y, Wang W, Wang N, Li H (2011) Solexa Sequencing Analysis of Chicken Pre-Adipocyte MicroRNAs. Biosci Biotechnol Biochem 75:54–61. PMID: 21228487

34. Guo L, Sun B, Shang Z, Leng L, Wang Y, et al. (2011) Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness. Poult Sci 90:2024–2034. doi:10.3382/ps.2010-00863 PMID: 21844269

35. Zhang Q, Li H, Wang X, Zhang Y, Wang S, et al. (2012) Selection signature analysis implicates the PC1/PCSK1 region for chicken abdominal fat content. PLoS One 7:e40736. doi: 10.1371/journal.pone.0040736 PMID: 22792402

36. Zhang Q, Du ZQ, Dong JQ, Wang HX, Shi HY, et al. (2014) Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. BMC Genomics 15:517. doi: 10.1186/1471-2164-15-517 PMID: 24962627

37. Tang QQ, Lane MD (2012) Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 81:715–736. doi:10.1146/annurev-biochem-052110-115718 PMID: 22463691

38. Rangwala SM, Lazar MA (2000) Transcriptional control of adipogenesis. Annu Rev Nutr 20: 535–559. PMID: 10940345

39. Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12: 722–734. doi: 10.1038/nrm3198 PMID: 21952300
40. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell. 148:852–871. doi: 10.1016/j.cell.2012.02.017 PMID: 22385956

41. Seino S, Shibusaki T, Minami K (2011) Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest. 121:2118–2125. doi: 10.1172/JCI45680 PMID: 21633180

42. Benninger RK, Piston DW (2014) Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab. 25:399–406. doi: 10.1016/j.tem.2014.02.005 PMID: 24679927

43. Hemming S, Cakouros D, Isenmann S, Cooper L, Menicanin D, et al. (2014) EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells. 32:802–815. doi: 10.1002/stem.1573 PMID: 24123378

44. Kim J, Ko J (2014) A novel PPARgamma(2) modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation. Cell Death Differ. doi: 10.1038/cdd.2014.80 PMID: 25613381

45. Wei J, Li H, Wang S, Li T, Fan J, et al. (2014) let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev. 23:1452–1463. doi: 10.1089/scd.2013.0600 PMID: 24617339

46. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, et al. (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet. 383:1990–1998. doi: 10.1016/S0140-6736(13)62674-4 PMID: 24630777

47. Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA. 12:1626–1632. PMID: 16870994

48. Zhang Q, Xie D, Wang S, You C, Monroig O, et al. (2014) miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: Effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Biochim Biophys Acta 1841: 934–943. doi: 10.1016/j.bbabio.2014.03.009 PMID: 24681164

49. Londoño Gentile T, Lu C, Lodato PM, Tse S, Olejniczak SH, et al. (2013) DNMT1 is regulated by ATP-citrate lyase and maintains methylation patterns during adipocyte differentiation. Mol Cell Biol. 33:3864–3878. doi: 10.1128/MCB.01495-12 PMID: 23897429

50. Yang W, Guo X, Thein S, Xu F, Sugii S, et al. (2013) Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MECl-17-dependent acetylation of α-tubulin. Biochem J 449: 605–612. doi: 10.1042/BJ20121121 PMID: 23126280

51. Schiller ZA, Schiele NR, Sims JK, Lee K, Kuo CK (2013) Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro. Stem Cell Res Ther 4:79. doi: 10.1186/scrt230 PMID: 23838354

52. Zhang Q, Xie D, Wang S, You C, Monroig O, et al. (2014) miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: Effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Biochim Biophys Acta 1841: 934–943. doi: 10.1016/j.bbabio.2014.03.009 PMID: 24681164

53. Tseng Y-H, Butte AJ, Kokkotou E, Yechoor VK, Taniguchi CM, et al. (2005) Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol 7: 601–611. PMID: 15895078

54. LeRoith D, Yakar S (2007) Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 3: 302–310. doi: 10.1038/ncleen.2007.99 PMID: 17315038

55. Klötzing N, Koch L, Wunderlich T, Kern M, Ruschke K, et al. (2008) Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes 57:2074–2082. doi: 10.2337/db07-1538 PMID: 16870994

56. Poult Sci 84: 212-219. PMID:15742956

57. Zhou H, Mitchell A, McMurtry J, Ashwell C, Lamont S (2005) Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult Sci 84: 212–219. PMID: 15742956

58. Ikeobi C, Woolliams J, Morrice D, Law A, Windsor D, et al. (2002) Quantitative trait loci affecting fatness in the chicken. Anim Genet 33: 428–435. PMID: 12464017

59. Parra P, Serra F, Palou A (2010) Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One 5: e13005. doi: 10.1371/journal.pone.0013005 PMID: 20886002

60. Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA. 12:1626–1632. PMID: 16870994

61. Zhang Q, Xie D, Wang S, You C, Monroig O, et al. (2014) miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: Effects on liver expression of a fatty acyl desaturase in the marine
teleost Siganus canaliculatus. Biochim Biophys Acta 1841: 934–943. doi: 10.1016/j.bbalip.2014.03.009 PMID: 24681164

62. Chen F, Zhao X, Peng J, Bo L, Fan B, et al. (2014) Integrated microRNA-mRNA analysis of coronary artery disease. Mol Biol Rep. 41:5505–5511. doi: 10.1007/s11033-014-3426-9 PMID: 24913032

63. Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, et al. (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract. 91:94–100. doi: 10.1016/j.diabres.2010.11.006 PMID: 21146880

64. Joglekar MV, Parekh VS, Mehta S, Bhone RR, Hardikar AA (2007) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol. 311:603–612. PMID: 17936263

65. Dong P, Mai Y, Zhang Z, Mi L, Wu G, et al. (2014) MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1. Acta Biochim Biophys Sin (Shanghai). 46:565–571. doi: 10.1093/abbs/gmu043 PMID: 24862853

66. Bar N, Dikstein R (2010) miR-22 Forms a Regulatory Loop in PTEN/AKT Pathway and Modulates Signaling Kinetics. PLoS One 5:e10859. doi: 10.1371/journal.pone.0010859 PMID: 20523723

67. Huang S, Wang S, Bian C, Yang Z, Zhou H, et al. (2012) Upregulation of miR-22 Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells by Repressing HDAC6 Protein Expression. Stem Cells Dev 21: 2531–2540. doi: 10.1089/scd.2012.0014 PMID: 22375943

68. Kaur K, Pandey AK, Srivastava S, Srivastava AK, Datta M (2011) Comprehensive miRNome and in silico analyses identify the Wnt signaling pathway to be altered in the diabetic liver. Mol Biosyst. 7:3234–3244. doi: 10.1039/c1mb05041a PMID: 21968817

69. Zhong D, Huang G, Zhang Y, Zeng Y, Xu Z, et al. (2013) MicroRNA-1 and microRNA-206 suppress LXR alpha-induced lipogenesis in hepatocytes. Cell Signal 25: 1429–1437. doi: 10.1016/j.cellsig.2012.05.017 PMID: 23499676

70. He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol. 21:2785–2794. PMID: 17652184

71. Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interscib Rev RNA. doi: 10.1002/wrna.1274 PMID: 25515586

72. Tang Y-F, Zhang Y, Li X-Y, Li C, Tian W, et al. (2009) Expression of miR-31, miR-125b-5p, and miR-326 in the Adipogenic Differentiation Process of Adipose-Derived Stem Cells. OMICS 13: 331–336. doi: 10.1089/omi.2009.0017 PMID: 19422302

73. Shin D, Howng SYB, Ptacek LJ, Fu YH (2012) Mir-32 and its target SLC45A3 regulate the lipid metabolism of oligodendrocytes and myelin. Neuroscience 213: 29–37. doi: 10.1016/j.neuroscience.2012.03.054 PMID: 22521588

74. Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, et al. (2012) Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One. 7:e34872. doi: 10.1371/journal.pone.0034872 PMID: 22496873

75. Collares CV, Evangelista AF, Xavier DJ, Rassi DM, Arns T, et al. (2013) Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes. 6:491. doi: 10.1186/1756-0500-6-491 PMID: 24279768

76. Meale SJ, Romao JM, He ML, Chaves AV, McAllister TA, et al. (2014) Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues. J Anim Sci. doi: 10.2527/jas.2014-7873 PMID: 25549983

77. Simionescu N, Niculescu LS, Sanda GM, Margina D, Sima AV (2014) Analysis of circulating microRNAs that are specifically increased in hyperlipidemic and/or hyperglycemic sera. Mol Biol Rep. PMID: 25502405

78. Ortega FJ, Mercader JM, Catalán V, Moreno-Navarrete JM, Pueyo N, et al. (2013) Targeting the circulating microRNA signature of obesity. Clin Chem. 59:781–792. doi: 10.1373/clinchem.2012.195776 PMID: 23396142

79. Sun X, Feinberg MW (2014) MicroRNA-Management of Lipoprotein Homeostasis. Circ Res. 115:2–6. doi: 10.1161/CIRCRESAHA.114.304228 PMID: 24951757

80. Crépin D, Benomar Y, Riffault L, Amine H, Gertler A, et al. (2014) The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment. Mol Cell Endocrinol. 384:1–11. doi: 10.1016/j.mce.2013.12.016 PMID: 24394757
81. Zhang Q, Kandic I, Kutryk MJ (2011) Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun. 405:42–46. doi: 10.1016/j.bbrc.2010.12.119 PMID: 21195052

82. Shende VR, Goldrick MM, Ramani S, Earnest DJ (2011) Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One. 6:e22586. doi: 10.1371/journal.pone.0022586 PMID: 21799909

83. Tan X, Zhang P, Zhou L, Yin B, Pan H, et al. (2012) Clock-controlled mir-142–3p can target its activator, Bmal1. BMC Mol Biol. 13:27. doi: 10.1186/1471-2199-13-27 PMID: 22958478

84. Shende VR, Neuendorff N, Earnest DJ (2013) Role of miR-142-3p in the post-transcriptional regulation of the clock gene Bmal1 in the mouse SCN. PLoS One. 8:e65300. doi:10.1371/journal.pone.0065300 PMID: 23755214

85. Vuppalanchi R, Liang T, Goswami CP, Nalamasu R, Li L, et al. (2013) Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis. PLoS One. 8:e74471. doi:10.1371/journal.pone.0074471 PMID: 24058572

86. Bizuayehu TT, Babiak J, Norberg B, Fernandes JM, Johansen SD, et al. (2012) Sex-biased miRNA expression in Atlantic halibut (Hippoglossus hippoglossus) brain and gonads. Sex Dev. 6:257–266. doi:10.1159/000341378 PMID: 22846363

87. Soares AR, Reverendo M, Pereira PM, Nivelles O, Pendeville H, et al. (2012) Dre-miR-2188 targets Nrp2a and mediates proper intersegmental vessel development in zebrafish embryos. PLoS One. 7:e39417. doi:10.1371/journal.pone.0039417 PMID: 22761789

88. Augustin R, Endres K, Reinhardt S, Kuhn PH, Lichtenhals SF, et al. (2012) Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. BMC Med Genet. 13:35. PMID:22594617

89. Dinh H, Hong YH, Lillehoj HS (2014) Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility. Vet Immunol Immunopathol. 159:74–82. doi: 10.1016/j.vetimm.2014.02.003 PMID: 24629767

90. Zhang X, Zheng Y, Jagadeeswaran G, Ren R, Sunkar R, et al. (2014) Identification of conserved and novel microRNAs in Manduca sexta and their possible roles in the expression regulation of immunity-related genes. Insect Biochem Mol Biol. 47:12–22. doi:10.1016/j.ibmb.2014.01.008 PMID: 24508515

91. Chen X, Li Q, Wang J, Guo X, Jiang X, et al. (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol. 10:R78. doi:10.1186/gb-2009-10-7-r78 PMID: 19615057

92. Bentwich I (2005). Prediction and validation of microRNAs and their targets. FEBS Lett. 579: 5904–5910. PMID:16214134

93. Ramsay TG, Rosebrough RW (2003) Hormonal regulation of postnatal chicken preadipocyte differentiation in vitro. Comp Biochem Physiol B Biochem Mol Biol.136:245–253. PMID: 14529750

94. Hansen TB, Bramsen JB, Kjems J (2010) Re-inspection of small RNA sequence datasets reveals several novel human miRNA genes. PLoS One. 5:e10961. doi:10.1371/journal.pone.0010961 PMID: 20532037

95. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714. doi: 10.1093/bioinformatics/btn205 PMID: 1827114

96. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154–D158. PMID: 17991681

97. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16: 276–277. PMID: 10827456

98. Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, et al. (2012) Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res. 40:4298–4305. doi: 10.1093/nar/gks043 PMID: 22287634
103. Romualdi C, Bortoluzzi S, d’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12: 159–162. PMID: 12429865

104. Luo C, Zhang Q, Luo Z (2014) Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol. BMC Genomics 15: 112. doi:10.1186/1471-2164-15-112 PMID: 24507483

105. Chen Y, Mao Y, Liu H, Yu F, Li S, et al. (2014) Transcriptome Analysis of Differentially Expressed Genes Relevant to Variegation in Peach Flowers. PLoS One 9: e90842. doi:10.1371/journal.pone.0090842 PMID: 24603808

106. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. doi:10.1101/gr.092759.109 PMID: 19541911

107. Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta. 232:1281–1288. doi:10.1007/s00425-010-1253-3 PMID: 20725738

108. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. doi:10.3758/s13428-013-0330-5 PMID: 23519455

109. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. PMID: 15652477

110. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. doi: 10.1093/bioinformatics/btq675 PMID: 21149340

111. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: P3. PMID: 12734009