The Alpha-fetoprotein Serum is still Reliable as a Biomarker for the Surveillance of Hepatocellular Carcinoma in Indonesia

CURRENT STATUS: UNDER REVIEW

BMC Gastroenterology

Chyntia Olivia Maurine Jasirwan chynmadu@gmail.com
Hepatobiliary Division
Corresponding Author
ORCID: 0000-0001-5950-8245

Alessa - Fahira
Rumah Sakit Dr Cipto Mangunkusumo

Lianda - Siregar
Rumah Sakit Dr Cipto Mangunkusumo

Imelda - Loho
Rumah Sakit Dr Cipto Mangunkusumo

DOI:
10.21203/rs.2.24011/v1

SUBJECT AREAS
Gastroenterology & Hepatology

KEYWORDS
α-fetoprotein, hepatocellular carcinoma, surveillance, biomarker
Abstract

Background and Aims: Hepatocellular carcinoma (HCC), the most common type of liver cancer, is one of the leading causes of cancer-related death worldwide with an inferior prognosis. In Indonesia, the average life expectancy is less than 3 months, with most patients being in an advanced stage where in the survival rate is very low. Early detection through surveillance program is very crucial. HCC guidelines worldwide have provided surveillance recommendation through the examination of α-fetoprotein (AFP) and ultrasound for patients at risk in developing HCC. However, there have been some controversies regarding the usage of AFP concerning its low sensitivity and specificity in detecting HCC. Therefore, the effectiveness of AFP in the surveillance of HCC patients and identifying the parameters most associated with the increase of AFP≥10 ng/ml in Indonesia should be evaluated.

Methods: We analysed medical records of HCC patients and those at high-risk of developing HCC through cross-sectional study, including patients with cirrhosis and hepatitis B and C, from 2015 to 2017 who underwent treatment at the Cipto Mangunkusumo National Hospital and Dharmais National Cancer Hospital, Indonesia.

Results: The sensitivity and specificity of AFP in the surveillance of HCC in Indonesia with a cut-off of 10 ng/ml were 82.6% and 68.9%, respectively. The parameters most associated with the increase of AFP ≥10 ng/ml according to multivariate analysis were the etiology of hepatitis B, the stage of Barcelona Clinic Liver Cancer B and C, and the presence of cirrhosis, respectively.

Conclusion: AFP can still be used in the surveillance of HCC in Indonesia for its high sensitivity value.

Introduction
Liver cancer is known to be a significant cause of cancer-death worldwide—owing to the death of 800,000 patients each year.¹ Ninety percent of all liver cancer cases in the world are in the form of hepatocellular carcinoma (HCC), making it the most common form of liver cancer.² HCC is a significant health problem worldwide because of the constant risk of its known etiologies, including hepatitis B (especially in developing countries), hepatitis C, and the alarming increase of metabolic syndrome cases such as obesity and high alcohol consumption—both of which correlate with the increasing incidence of fatty liver disease.

Furthermore, HCC is regarded as deadly due to its poor prognosis. In Indonesia, the median for the survival of HCC patients in the period from 1998 to 1999 was 138 days, and in the period from 2013 to 2014 was 146³—showing that patients would, in average, only have a 3-months life expectancy which also shows a very low improvement of survival despite being 15 years apart. This happens because of the patient’s tendency to seek treatment only reaching the advanced stage, wherein the survival of patients with HCC is very low. Thus, early detection through HCC surveillance program is believed to be an indisputable strategy to prevent the patient is coming at an advanced stage.⁴

A surveillance method that has been widely recommended in several guidelines globally utilizes α-fetoprotein (AFP) biomarker and abdominal ultrasonography (USG).⁵,⁶ In the Cipto Mangunkusumo National General Hospital (RSCM), the surveillance of HCC is routinely held every 6 months for patients at risk of developing HCC. Surveillance of HCC is conducted by examining the liver using USG and measuring AFP in blood. The cut-off used in Indonesia and many other countries is 10 ng/ml or if there is an elevation of AFP levels compared with the previous examination. Patients who are suspected of having HCC are further diagnosed.⁷ However, in recent years, there have been studies showing
controversies regarding the use of AFP in clinical settings—because of the low sensitivity and specificity of AFP when used to screen HCC.8 It has been stated in some studies that patients with HCC may not experience any elevation of AFP at all. Conversely, patients who were not diagnosed with HCC but were diagnosed with cirrhosis, cholangiocarcinoma or other tumours were found to have elevated AFP.9–12 Recommendation regarding the use of AFP for HCC screening was thus excluded from the American Association for the Study of Liver Diseases guideline in the year 2010.13 AFP was also regarded as neither being sensitive nor specific for use as a diagnostic tool in the guideline published by European Association for the Study of the Liver in the year of 2012.14 Nevertheless, some countries in Asia still recommend the use of AFP along with USG for the screening of HCC in the guideline published by Asian Pacific Association for the Study of the Liver in the year 201015, and the guideline published by China (2011)16 and Japan (2013).17 There have been no previous studies which evaluate the use of AFP in the surveillance of HCC in the Indonesian population. Therefore, this study tried to assess the sensitivity and specificity of AFP in Indonesia, where population includes patients who undergo treatment in the Cipto Mangunkusumo National General Hospital and Dharmais National Cancer Hospital, Indonesia.

Materials And Methods

2.1 Study Design and Population

This cross-sectional study was conducted using the HCC-based registry from 2015 to 2017. The diagnosis of HCC for the patients in Dr. Cipto Mangunkusumo General National Hospital, Jakarta (RSCM) and Dharmais National Cancer Hospital, Jakarta (RSKD) was confirmed using serum AFP examination and multiphase abdominal CT scan or MRI. In some cases, HCC was confirmed by histological examination. Etiologies of HCC included in
this study were separated into viral (hepatitis B and hepatitis C, or both) and non-viral (non-hepatitis B and C). Hepatitis B and C serology markers were examined. Hepatitis B was detected through the presence of hepatitis B (HB) surface antigen and hepatitis B virus (HBV) DNA, while hepatitis C was detected through the presence of hepatitis C virus antibody (HCV) and HCV RNA. The presence of cirrhosis in patients was evaluated through clinical symptoms, abdominal ultrasonography and transient elastography.

2.2 Data Collection

All patients with HCC diagnosed in RSCM and RSKD between July 2015 and June 2017, whose data were recorded in the HCC registry, were analysed (Figure 1). Patients included in this study were HCC patients (n = 132) and high-risk populations including patients with cirrhosis (n = 66), hepatitis B patients with the absence of cirrhosis (n = 66), and hepatitis C patients with the absence of cirrhosis (n = 66). Patients with other malignancies were excluded from this study. This research was conducted in the Division of Hepatobiliary, Cipto Mangunkusumo National General Hospital. Subjects were selected by computer-based randomized sampling using the SPSS application from the existing registry. The independent variable of this study was the AFP level below and above the cut-off of 10 ng/ml with 10 dependent variables including age, sex, etiology of HCC, number of nodules, nodule size, cirrhosis, portal venous thrombus, metastasis, Child–Pugh score and the staging of BCLC.

2.3 Statistical Analysis

Data processing was carried out using the IBM Statistical Package for the Social Sciences software version 21 for Mac, which included the (1) calculation of the AFP tests and gold standards to obtain sensitivity and specificity and (2) exploration of factors that might affect AFP levels in patients HCC through bivariate and multivariate analysis. The categorical variables were compared by using the chi-square test, Fisher’s test or Mann-
Whitney test, if appropriate. Variables with a value of \(P \leq 0.25 \) in bivariate analysis were included in multivariate logistic regression analysis.

2.4 Ethics Approval

This study was approved by the ethics committee of The Faculty of Medicine, University of Indonesia with the letter number of 0514/UN2.F1/ETIK/2018.

Results

This study included 132 HCC patients and 198 patients at risk in developing HCC (66 cirrhotic patients, 66 non-cirrhotic hepatitis B patients, and 66 non-cirrhotic hepatitis C patients). The characteristic of HCC patients is portrayed in Table 1 and the AFP distribution in HCC patients and control is shown in Figure 2. AFP levels above 10 ng/ml were seen in 83% HCC patients and 27% non HCC patients. The result of this study shown the sensitivity levels of 82.6%, specificity levels of 68.9%, the positive predictive value of 72.6%, the negative predictive value of 79.8% and the positive likelihood ratio of 2.65 (Table 2).

Bivariate analysis, shown in Table 3, revealed a significant relationship between AFP levels above or below 10 ng/ml and the etiology of HCC \((p = 0.011) \) and cirrhosis \((p = 0.016) \), yet we found no significant association with other variables. Multivariate analysis, portrayed in Table 4, revealed the parameter most associated with the risk of having an AFP level above 10 ng/ml was patients within the stage C of BCLC \((OR = 16.0; p = 0.002) \), followed by patients the HCC etiology of hepatitis B \((OR = 6.35; p = 0.005) \), cirrhosis \((OR = 4.31; p = 0.016) \), and within the stage B of BCLC \((OR = 5.99; p = 0.019) \), respectively.

Discussion

The population of patients at risk of developing HCC will undergo surveillance through the measurement of AFP levels and evaluation of the liver by USG every 6 months. The
population at risk includes patients with liver cirrhosis of any etiology and hepatitis B patients. In the Indonesian National Consensus of the Management of Hepatocellular Carcinoma population at risk in developing HCC also includes chronic hepatitis C patients who developed fibrosis, but this population of patients has not yet been included in the current surveillance program in clinical practice.

In our study, we found the sensitivity, specificity, positive predictive value, negative predictive value, and likelihood ratio for positive test results of AFP in the surveillance of HCC of AFP (with a cut-off of 10 ng/ml) was 82.6%, 68.9%, 72.6%, 79.8% and 2.77, respectively. Interestingly, this result was in accordance with that of a study conducted in a population of 805 patients of Asian ethnicity by Chan SL, et al.18, showing the AFP sensitivity and specificity values of 82.6% with a specificity of 70.4% (with a similar cut-off of 10 ng/ml), with the results of positive predictive values and negative predictive values obtained as 86.6% and 63.6%, respectively. On the other hand, research conducted by Biselli, et al.19 in a population of HCC patients in Italy showed an AFP sensitivity with a cut-off of 10 ng/ml was 66.3% with a specificity of 80.6%. It should be of note that the study conducted by Chan SL18 in Asian patients had higher sensitivity levels than that conducted by Biselli, et al.19 Sensitivity of the AFP test in Asian countries, predominantly in developing countries such as in Indonesia, is believed to be higher because the prevalence of HCC with the etiology of hepatitis B tends to be higher—partly due to the lower coverage of hepatitis B immunization in newborns.20

We concluded that with a sensitivity of 82.6% and a specificity of 68.9%, HCC surveillance using AFP test with a cut-off of 10 ng/ml is still useful due to its high sensitivity—as sensitivity levels above 80% still appear to be adequate for screening programs. High specificity, on the other hand, is more useful in establishing a diagnosis, so the specificity
of 68.9% is still considered sufficient in the HCC surveillance program. That being said, we still recommend the use of AFP test to also be carried out along with USG to reach a higher sensitivity and specificity level in HCC surveillance.

In our study, it was found that etiology was one of the factors that was statistically significant \((p = 0.011)\) in its probability to cause AFP levels of HCC patients to rise above 10 ng/ml. It can be seen from Table 1 that the highest aetiological prevalence of HCC in the patient population in this study was hepatitis B, which was followed by hepatitis C, and this is as per the current data that shows that there are 400 million patients infected with HBV, 75% of whom are Asian.\(^{21}\) This significant result is also similar to that of a study conducted by Murugavel KG, et al\(^ {22} \) which explained that there was a higher proportion of AFP elevation in HCC patients with the etiology of hepatitis B compared with other viral etiologies. Similar to the study conducted by Liu C, et al\(^ {23} \), this study showed an increase of AFP level in cases of HCC caused by HBV compared with non-hepatitis cases of HCC.

Also, a study conducted by Hann, et al\(^ {24} \) showed that an increase in serum AFP in hepatitis B is in line with an increased risk for HCC.

We found that in HCC patients with the etiology of hepatitis B, 88.1% of patients had an increased level of AFP above 10 ng/ml cut-off with an odds ratio (OR) of 5.92, which was statistically significant \((p = 0.019)\). According to Li M, et al\(^ {25} \), this tendency of an elevated AFP level in HBV-infected patients was due to the presence of HBV protein (HBx) which could induce AFP receptor regulation, thereby increasing AFP expression in HCC due to HBV infection. Research conducted by Zhang C, et al\(^ {26} \) and Yao M, et al\(^ {27} \) also showed that HBV co-transcription factors could directly bind to AFP gene promoters, hence increasing its expression.

In the population of HCC patients with hepatitis C aetiology, higher levels of AFP (above
cut-off) were also found (with the OR 5.067) compared with the population of non-hepatitis HCC patients, although this OR was not statistically significant. Studies show that a significant increase in AFP was less common in patients with HCC with hepatitis C etiology. Studies conducted in Egypt, the country known to have the highest prevalence of hepatitis C, showed that the prevalence of an increase in AFP levels above 10 ng/ml in HCC patients with etiology of hepatitis C was proven to be less frequent, occurring only in 11.6% patients. These results were similar to those of a research conducted in western countries with a higher prevalence of hepatitis C compared to hepatitis B, wherein AFP elevation above cut-off occurred only in 10%–43% patients. This study also showed a statistically significant difference in the proportion of HCC patients with cirrhosis and non-cirrhosis, when compared with AFP levels above and below 10 ng/ml (p = 0.016). There were 55.3% (n = 73) patients with cirrhosis in this study. We also found that HCC patients with cirrhosis would have a higher risk of having an elevated AFP level above cut-off (OR 3.508, p = 0.011). These results were similar to those of previous studies, as cirrhosis is one of the main known risk factors for HCC, and is found in 80%–90% of all HCC cases. HCC is also one of the causes of death in patients with cirrhosis of the liver, with the rate of developing HCC in patients with liver cirrhosis per year being 5%. This causes all patients with cirrhosis with any etiology to be recommended through surveillance of KSH. Pathological study has shown that patients with chronic liver disease can express AFP without prior development of HCC. The study by Harada T, et al showed that approximately 40% of all cirrhotic patients will have AFP levels higher than 20 ng/ml. An increase in AFP levels (between 10 and 500 ng/ml, and sometimes up to 1000 ng/ml) can be seen in adult patients with hepatitis or cirrhosis with any aetiology. Also, the frequency of elevated AFP levels (> 10 ng/mL) was
reported in 20% cases of chronic hepatitis and 40% cases of cirrhosis.40

This study also found that BCLC stage C (p = 0.002), etiology of hepatitis B KSH (p = 0.005), cirrhosis (p = 0.016) and BCLC B stage (p = 0.019) were all independent predictors of elevated AFP levels above 10 ng/ml. The BCLC C classification, which was considered an advanced stage, classified patients who had already developed tumours invading the portal vein and those who had already developed extrahepatic dissemination, and have clinically shown impairment in their daily activities (ECOG performance status 1–2). The condition of the spread of these tumours, according to types of literature, was related to higher AFP levels, although this was not statistically proven in this study. It has been previously explained that the protein possessed by HBV (HBx) can increase regulation of AFP receptors to increase its production. The co-transcription factor possessed by HBV can also directly bind to AFP gene promoters and increase AFP secretion.26,27 Interestingly, HCC patients with the etiology of hepatitis B had a higher risk of having an elevated AFP level above cut-off when compared with HCC patients with cirrhosis. This was presumably due to other aetiologies outside of hepatitis B that may produce a lower level of AFP.26,27

Conclusion

The sensitivity level of 82.6% and specificity level of 68.9% in the surveillance of HCC using AFP with a cut-off of 10 ng/ml are considered useful in Indonesia. The multivariate analysis showed the factors most associated with an increase in AFP levels above 10 ng/ml were BCLC C (p = 0.002), the etiology of hepatitis B (p = 0.005), cirrhosis (p = 0.016) and BCLC B (p = 0.019).

Declarations

Conflict of Interests
Declaration of potential conflict of interest: This study did not received any grant. There are no conflict of interest in this study.

Sources of Funding

There’s no funding to declare

Acknowledgements

This study did not receive any grant supports. The authors would like to thank Gita Aprilicia and Dr. Rahmanandhika Swadari who provided commendable assistance in this study. We would also like to thank Dr. Dewi Friska from the Department of Community Medicine, Faculty of Medicine, Universitas Indonesia for all the support from the beginning until the completion of this study.

References

1. Llovet J, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2016;2:16018.

2. Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int 2015;35:2155–66.

3. Indonesia Cancer Country Profile [Internet]. Who.int. 2014 [cited 29 April 2018]. Available from: http://www.who.int/cancer/country-profiles/idn_en.pdf

4. Mulyana E. Analisis Kesintasan Pasien Hepatoma di RSUPN-CM Jakarta. [Tesis]. Jakarta: Departemen Ilmu Penyakit Dalam Fakultas Kedokteran Universitas Indonesia; 2001.

5. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 2008;134:1752–63.

6. Song P, Tobe RG, Inagaki Y, Kokudo N, Hasegawa K, Sugawara Y, at al. The
management of hepatocellular carcinoma around the world: a comparison of guidelines from 2001 to 2011. Liver Int 2012;32:1053-63.

7. Lesmana LA, Waspodo AS, Gani RA, Hasan I, Siregar L, Sulaiman AS. Konsensus Nasional Penatalaksanaan Karsinoma Sel Hati. Jakarta: Perhimpunan Peneliti Hati Indonesia; 2017.

8. Asrih M, Lenglet S, Mach F, Montecucco F. Alpha-fetoprotein: A controversial prognostic biomarker for small hepatocellular carcinoma. World J Gastroenterol: WJG 2013;19:328.

9. Song PP, Xia JF, Inagaki Y, Hasegawa K, Sakamoto Y, Kokudo N, Tang W. Controversies regarding and perspectives on clinical utility of biomarkers in hepatocellular carcinoma. World J Gastroenterol 2016;22:262.

10. Bertino G, Neri S, Bruno CM, Ardiri AM, Calvagno GS, Malaguarnera M, et al. Diagnostic and prognostic value of alpha-fetoprotein, des-γ-carboxy prothrombin and squamous cell carcinoma antigen immunoglobulin M complexes in hepatocellular carcinoma. Minerva Med 2011;102:363-71.

11. Gopal P, Yopp AC, Waljee AK, Chiang J, Nehra M, Kandunoori P, et al. Factors that affect accuracy of α-fetoprotein test in detection of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol 2014;12:870-7.

12. Di Carlo I, Mannino M, Toro A, Ardiri A, Galia A, Cappello G, et al. Persistent increase in alpha-fetoprotein level in a patient without underlying liver disease who underwent curative resection of hepatocellular carcinoma. A case report and review of the literature. World J Surg Oncol 2012;10:79.

13. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-2.

14. European Association For The Study Of The Liver. EASL-EORTC clinical practice
guidelines: management of hepatocellular carcinoma. J Hepatol 2012;56:908-43.

15. Omata M, Lesmana LA, Tateishi R, Chen PJ, Lin SM, Yoshida H, et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int 2010;4:439-74.

16. Xie DY, Ren ZG, Zhou J, Fan J, Gao Q. Critical appraisal of Chinese 2017 guideline on the management of hepatocellular carcinoma. Hepatobiliary Surg Nutr 2017;6:387.

17. Kokudo N, Hasegawa K, Akahane M, Igaki H, Izumi N, Ichida T, et al. Evidence-based clinical practice guidelines for hepatocellular carcinoma: The Japan society of hepatology 2013 update (3rd JSH-HCC guidelines). Hepatol Res 2015;45.

18. Chan SL, Mo F, Johnson PJ, Siu DY, Chan MH, Lau WY, et al. Performance of serum α-fetoprotein levels in the diagnosis of hepatocellular carcinoma in patients with a hepatic mass. HPB 2014;16:366-72.

19. Biselli M, Conti F, Gramenzi A, Frigerio M, Cucchetti A, Fatti G, et al. A new approach to the use of α-fetoprotein as surveillance test for hepatocellular carcinoma in patients with cirrhosis. Br J Cancer 2015;112:69.

20. Kew MC. Hepatocellular carcinoma in developing countries: Prevention, diagnosis and treatment. World J Hepatol 2012;4:99.

21. Gust ID. Epidemiology of hepatitis B infection in the Western Pacific and South East Asia. Gut 1996;38:S18-23.

22. Murugavel KG, Mathews S, Jayanthi V, Shankar EM, Hari R, Surendran R, et al. Alpha-fetoprotein as a tumor marker in hepatocellular carcinoma: investigations in south Indian subjects with hepatotropic virus and aflatoxin etiologies. Int J Infect Dis 2008;12:e71–6.

23. Liu C, Xiao GQ, Yan LN, Li B, Jiang L, Wen TF, et al. Value of α-fetoprotein in association with clinicopathological features of hepatocellular carcinoma. World J
24. Hann HW, Fu X, Myers RE, Hann RS, Wan S, Kim SH, et al. Predictive value of alpha-fetoprotein in the long-term risk of developing hepatocellular carcinoma in patients with hepatitis B virus infection—results from a clinic-based longitudinal cohort. Eur J Cancer 2012;48:2319–27.

25. Li M, Zhu M, Li W, Lu Y, Xie X, Wu Y, et al. Alpha-fetoprotein receptor as an early indicator of HBx-driven hepatocarcinogenesis and its applications in tracing cancer cell metastasis. Cancer Lett 2013;330:170–80.

26. Zhang C, Chen X, Liu H, Li H, Jiang W, Hou W, et al. Alpha-fetoprotein mediates HBx induced carcinogenesis in the hepatocyte cytoplasm. Int J Cancer 2015;137:1818–29. doi: 10.1002/ijc.29548.

27. Yao M, Zhao J, Lu F. Alpha-fetoprotein still is a valuable diagnostic and prognosis predicting biomarker in hepatitis B virus infection-related hepatocellular carcinoma. Oncotarget 2016;7:3702.

28. Furui J, Furukawa M, Kanematsu T. The low positive rate of serum alpha-fetoprotein levels in hepatitis C virus antibody-positive patients with hepatocellular carcinoma. Hepato-gastroenterology 1995;42:445–9.

29. Peng YC, Chan CS, Chen GH. The effectiveness of serum alpha-fetoprotein level in anti-HCV positive patients for screening hepatocellular carcinoma. Hepato-gastroenterology 1999;46:3208–11.

30. Kobeisy MA, Morsy KH, Galal M, Sayed SK, Ashmawy MM, Mohammad FM. Clinical significance of elevated alpha-fetoprotein (AFP) in patients with chronic hepatitis C without hepatocellular carcinoma in upper EGYPT. Arab J Gastroenterol 2012;13:49–53.

31. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P, et al. Morbidity
and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. Gastroenterology 1997;112:463–72.

32. Sato Y, Nakata K, Kato Y, Shima M, Ishii N, Koji T, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med 1993;328: 1802-6.

33. Tong MJ, El Farra NS, Reikes AR, Co RL. Clinical outcomes after transfusionassociated hepatitis C. N Engl J Med 1995;332:1463-66.

34. Aguayo A, Patt YZ. Liver cancer. Clin Liver Dis 2001;5:479-508.

35. Chang TS, Wu YC, Tung SY, Wei KL, Hsieh YY, Huang HC, et al. Alpha-fetoprotein measurement benefits hepatocellular carcinoma surveillance in patients with cirrhosis. Am J Gastroenterol 2015;110:836.

36. Chang TS, Wu YC, Tung SY, Wei KL, Hsieh YY, Huang HC, et al. Alpha-fetoprotein measurement benefits hepatocellular carcinoma surveillance in patients with cirrhosis. Am J Gastroenterol 2015;110:836.

37. Singal A, Volk ML, Waljee A, Salgia R, Higgins P, Rogers MA, et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharm Ther 2009;30:37-47.

38. Grizzi F, Colombo P, Taverna G, Chiriva-Internati M, Cobos E, Graziotti P, et al. Geometry of human vascular system: is it an obstacle for quantifying antiangiogenic therapies? Appl Immunohisto M M 2007;15:134–9.

39. Harada T, Shigeta K, Noda K, Fukumoto Y, Nishimura H, Mizuta M, et al. Clinical implications of alpha-fetoprotein in liver cirrhosis: five-year follow-up study. Hepatogastroenterology 1980;27:169-75.

40. Johnson PJ. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. Clin Liver Dis 2001;5:145-59.
Tables

Due to technical limitations, Tables 1 - 4 are only available for download from the Supplementary Files section.

Figures

Figure 1. The selection process of subjects in each category. Subjects were first selected by excluding duplicates (not shown in the figure) and continued with the exclusion of incomplete data.

- **HCC patients selection**
 - 154 selected patients data in the registry of RSCM
 - 5 data were excluded due to incomplete data
 - 66 HCC patients selected

- **Cirrhosis patients selection**
 - 156 selected patients data in the registry of RSCM
 - 73 data were excluded due to incomplete data
 - 66 cirrhosis patients selected

- **Hepatitis B patients selection**
 - 234 selected patients data in the registry of RSCM
 - 8 data were excluded due to incomplete data
 - 66 hepatitis B patients selected

- **Hepatitis C patients selection**
 - 75 selected patients data in the registry of RSCM
 - No data were excluded
 - 66 hepatitis C patients selected

Figure 1

The selection process of subjects in each category. Subjects were first selected by excluding duplicates (not shown in the figure) and continued with the exclusion of incomplete data.
Figure 2. AFP distribution in HCC patients and controls. HCC patients are portrayed with the colour of black and controls (population at risk in developing HCC) which include cirrhosis, hepatitis B and hepatitis C are depicted with dots, horizontal lines and solid white, respectively.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Table.docx