Pseudotensor Applied to Numerical Relativity in Calculating Global Quantities

Chung-Chin Tsai,1 Chun-Yu Lin,2 and Hwei-Jang Yo3

1Department of Physics, National ChangHua University of Education, ChangHua City, Taiwan, Republic of China
2National Center for High-Performance Computing, Hsinchu 300, Taiwan, Republic of China
3Department of Physics, National Cheng-Kung University, Tainan City, Taiwan, Republic of China

(Received July 29, 2015)

In this work we apply the Landau-Lifshitz pseudotensor flux formalism to the calculation of the total mass and the total angular momentum during the evolution of a binary black hole system. We also compare its performance with the traditional integrations for the global quantities. The results show that the advantage of the pseudotensor flux formalism is the smoothness of the numerical value of the global quantities, especially of the total angular momentum. Although the convergence behavior of the global quantities with the pseudotensor flux method is only comparable with that of the traditional method, the smoothness of its numerical value allows using a larger radius for the surface integration to obtain a more accurate result.

DOI: 10.6122/CJP.20150903 PACS numbers: 04.25.D-, 04.25.dg, 04.25.Nx, 04.70.-s

I. INTRODUCTION

Since the breakthrough by Pretorius [1] in 2005, the inspiral, merger, and ringdown of binary compact objects (including binary black holes, i.e., BBHs, binary neutron stars, and black hole-neutron star binaries) has been successfully simulated to high accuracy. The emphasis in the field has now turned to extracting astrophysical information from these simulations. Therefore, it will be useful in validation to measure one physical quantity with different methods.

The pseudotensor formalisms (see, e.g., Chapter 20 in [2]) and the quasilocal quantities [3, 4] arise from viewing general relativity as a nonlinear field theory in a fixed background reference, especially in a flat auxiliary spacetime. These formalisms have been used to explore the nonlinear dynamics of spacetime, for example, dynamical horizons [5], the distribution and flow of linear momentum in strongly nonlinearly curved spacetimes [6], and black hole spin measurement [7]. The results show the usefulness of these formalisms and also shed light on their possibly broader applications as analytical tools in various numerical simulations.

In this work we try an alternative method in calculating the total mass and the total angular momentum with the Landau-Lifshitz pseudotensor formalism [8]. The motivation comes from the imperfection of the commonly used method, i.e., Eqs. (34) and (35), in calculating the Arnowitt-Deser-Misner (ADM) mass and the angular momentum. The
calculation of these two global quantities basically executes an integration over a two-sphere on the spatial domain. Due to the limit of the grid resolution, the numerical values of these two quantities, especially the one for the angular momentum, fluctuate around the average values. The numerical fluctuation makes it difficult to tell the numerical value accurately. Differing from the ADM mass and the angular momentum, the calculation of the momentum flux from the Landau-Lifshitz pseudotensor formalism includes not only an integration over a two-sphere on the spatial domain, but also an integration over the time domain. We expect that this method with the extra integration will give smoother global quantity curves with respect to time, and be at least as accurate as the one for the ADM mass and the angular momentum.

The rest of this work is organized as follows: In the next section, we give a description of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation commonly used in numerical relativity. We then describe the methods used in this work for the calculation of the global quantities, i.e., the total mass and the angular momentum, in Sec. III. This section, besides the usual ADM and the angular momentum calculation, gives the integral formulas of these global quantities with the Landau-Lifshitz pseudotensor. We then report on the numerical comparison between these two different methods in the simulation of a BBH with spin in Sec. IV. And the discussion and summary will be presented in the Sec. V.

Throughout the paper, geometric units with $G = c = 1$ are used. The Einstein summation rule is adopted unless stated explicitly.

II. THE BSSN FORMULATION

The metric in the ADM form is
\[ds^2 = -\alpha^2 dt^2 + \gamma_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt), \]
wherein α is the lapse function, β^i is the shift vector, and γ_{ij} is the spatial three-metric. Throughout this paper, Latin indices are spatial indices and run from 1 to 3, whereas Greek indices are space-time indices and run from 0 to 3.

Einstein’s equations can then be decomposed into the Hamiltonian constraint H and the momentum constraints M_i:
\[H \equiv R - K_{ij}K^{ij} + K^2 = 0, \]
\[M_i \equiv \nabla_j K_{ij}^j - \nabla_i K = 0, \]
and the evolution equations:
\[\frac{d}{dt} \gamma_{ij} = -2\alpha K_{ij}, \]
\[\frac{d}{dt} K_{ij} = -\nabla_i \nabla_j \alpha + \alpha(R_{ij} - 2K_{ik}K^{kj} + K K_{ij}). \]
Here we have assumed vacuum $T_{\alpha\beta} = 0$ and have used

$$
\frac{d}{dt} = \frac{\partial}{\partial t} - \mathcal{L}_{\beta},
$$

(6)

where \mathcal{L}_{β} is the Lie derivative with respect to β^i. ∇_i is the covariant derivative associated with γ_{ij}, R_{ij} is the three-dimensional Ricci tensor

$$
R_{ij} = \frac{1}{2} \gamma^{k\ell} (\gamma_{kj,i\ell} + \gamma_{i\ell,kj} - \gamma_{i\ell,jk} - \gamma_{kj,\ell}) + \Gamma^m_{ijk} \Gamma^m_{jk} - \Gamma_{ij} \Gamma^m_{mk},
$$

(7)

where

$$
\Gamma^i_{jk} = \frac{1}{2} \gamma^{i\ell} (\gamma_{\ell j,k} + \gamma_{\ell k,j} - \gamma_{\ell j,k} - \gamma_{\ell k,j}).
$$

(8)

And R is its trace $R = \gamma^{ij} R_{ij}$.

In the BSSN formalism [9], the above ADM equations are rewritten by introducing the conformally related metric $\tilde{\gamma}_{ij}$

$$
\tilde{\gamma}_{ij} = e^{-4\phi} \gamma_{ij},
$$

(9)

with the conformal exponent ϕ chosen so that the determinant $\tilde{\gamma}$ of $\tilde{\gamma}_{ij}$ is unity

$$
e^{4\phi} = \gamma^{1/3},
$$

(10)

where γ is the determinant of γ_{ij}. The traceless part of the extrinsic curvature K_{ij}, defined by

$$
A_{ij} = K_{(ij)} = K_{ij} - \frac{1}{3} \gamma_{ij} K,
$$

(11)

where K_{ij} with two indices between $\langle \rangle$ is the symmetric and traceless part of K_{ij}, and $K = \gamma^{ij} K_{ij}$ is the trace of the extrinsic curvature, is conformally decomposed according to

$$
\tilde{A}_{ij} = e^{-4\phi} A_{ij}.
$$

(12)

The conformal connection functions $\tilde{\Gamma}^i$, initially defined as

$$
\tilde{\Gamma}^i \equiv \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} = -\tilde{\gamma}^{ij}_{\ j},
$$

(13)

are regarded as independent variables in this formulation.
The evolution equations of the BSSN formulation can be written as

\[
\frac{d}{dt}\phi = -\frac{1}{6} \alpha K, \quad (14)
\]

\[
\frac{d}{dt}\tilde{\gamma}_{ij} = -2\alpha \tilde{A}_{ij}, \quad (15)
\]

\[
\frac{d}{dt}K = \alpha \left(\tilde{A}_{ij} \tilde{A}^{ij} + \frac{1}{3} K^2 \right) - \nabla^2 \alpha, \quad (16)
\]

\[
\frac{d}{dt}\tilde{A}_{ij} = \alpha \left(K \tilde{A}_{ij} - 2\tilde{A}_{ik} \tilde{A}^{kj} \right) + e^{-4\phi}(\alpha R_{ij} - \nabla (\nabla_j \alpha)), \quad (17)
\]

\[
\partial_t \tilde{\Gamma}^i = 2\alpha \left(\tilde{\Gamma}^i_{jk} \tilde{A}^{jk} - \frac{2}{3} \tilde{\gamma}^{ij} K_{,j} + 6\tilde{A}_{ij} \phi_{,j} \right) - 2\tilde{\gamma}^{ij} \alpha_{,j} + \beta^i \tilde{\Gamma}^j_{,i} + \tilde{\gamma}^{kj} \beta^i_{,jk} + \frac{1}{3} \tilde{\gamma}^{ij} \beta^k_{,jk}. \quad (18)
\]

The Ricci tensor \(R_{ij} \) can be written as a sum of two pieces

\[
R_{ij} = \tilde{R}_{ij} + R_{ij}^\phi, \quad (19)
\]

where \(R_{ij}^\phi \) is given by

\[
R_{ij}^\phi = -2\tilde{\nabla}_i \tilde{\nabla}_j \phi - 2\tilde{\gamma}_{ij} \tilde{\nabla}^2 \phi + 4\tilde{\nabla}_i \phi \tilde{\nabla}_j \phi - 4\tilde{\gamma}_{ij} \tilde{\nabla}^k \phi \tilde{\nabla}_k \phi, \quad (20)
\]

where \(\tilde{\nabla}_i \) is the covariant derivative with respect to \(\tilde{\gamma}_{ij} \), while, with the help of the \(\tilde{\Gamma}^i \), \(\tilde{R}_{ij} \) can be expressed as

\[
\tilde{R}_{ij} = -\frac{1}{2} \tilde{\gamma}^{mn} \tilde{\gamma}_{ij, mn} + \tilde{\gamma}_{k(i} \tilde{\Gamma}^{k}_{j)} + \tilde{\Gamma}^{k}_{ij} k + 2\tilde{\Gamma}^{k}_{(i} \tilde{\Gamma}^{j)k} + \tilde{\Gamma}^{k}\tilde{\Gamma}^{i}_{k j}. \quad (21)
\]

The new variables are tensor densities, so that their Lie derivatives are

\[
\mathcal{L}_\beta K = \beta^k K_{,k}, \quad (22)
\]

\[
\mathcal{L}_\beta \phi = \beta^k \phi_{,k} + \frac{1}{6} \beta^i_{,k}, \quad (23)
\]

\[
\mathcal{L}_\beta \tilde{\gamma}_{ij} = \beta^k \tilde{\gamma}_{ij,k} + 2\tilde{\gamma}_{k(i} \beta^k_{j)} - \frac{2}{3} \tilde{\gamma}_{ij} \beta^k_{,k}, \quad (24)
\]

\[
\mathcal{L}_\beta \tilde{A}_{ij} = \beta^k \tilde{A}_{ij,k} + 2\tilde{A}_{k(i} \beta^k_{j)} - \frac{2}{3} \tilde{A}_{ij} \beta^k_{,k}. \quad (25)
\]

The Hamiltonian and momentum constraints (2) and (3) can be rewritten as

\[
\mathcal{H} = e^{-4\phi}(\tilde{R} - 8\tilde{\nabla}^2 \phi - 8\tilde{\nabla}^i \phi \tilde{\nabla}_i \phi) + \frac{2}{3} K^2 - \tilde{A}_{ij} \tilde{A}^{ij} = 0, \quad (26)
\]

\[
\mathcal{M}_i = \tilde{\nabla}_j \tilde{A}^{ij} + 6\phi_{,j} \tilde{A}^j - \frac{2}{3} K_{,i} = 0, \quad (27)
\]

where \(\tilde{R} = \tilde{\gamma}^{ij} \tilde{R}_{ij} \).
III. CALCULATION OF GLOBAL QUANTITIES

III-1. ADM mass and angular momentum

The ADM mass is defined in terms of a surface integral at spatial infinity. In numerical simulations, this integral can be approximated by an integral evaluated on a surface near the outer boundaries of the grid. In Cartesian coordinates, the ADM mass is defined by a surface integral at spatial infinity
\[M = \frac{1}{16\pi} \int_{\infty} \gamma^{im} \gamma^{jn} (\gamma_{mn,j} - \gamma_{jn,m}) d^2\Sigma_i, \]
where \(d^2 \Sigma_i \equiv (1/2) \sqrt{\gamma} \epsilon_{ijk} dx^j dx^k \) is the surface element and \(\epsilon_{ijk} \) is the Levi-Civita alternating symbol. We now perform a conformal decomposition
\[\gamma_{ij} = \psi^4 \tilde{\gamma}_{ij} \]
where \(\psi = e^{\phi} \). Assuming the asymptotic behavior
\[\psi \sim 1 + O\left(\frac{1}{r} \right) \quad \text{when} \quad r \to \infty, \]
and
\[\tilde{\gamma}_{ij} \sim \delta_{ij} + O\left(\frac{1}{r} \right) \quad \text{when} \quad r \to \infty, \]
we can rewrite (28) as
\[M = \frac{1}{16\pi} \int_{\infty} \psi^{-2} \tilde{\gamma}^{im} \tilde{\gamma}^{jn} \left[\psi^4 (\tilde{\gamma}_{mn,j} - \tilde{\gamma}_{jn,m}) + 4\psi^3 (\psi_{,j} \tilde{\gamma}_{mn} - \psi_{,m} \tilde{\gamma}_{jn}) \right] d^2\tilde{\Sigma}_i
= \frac{1}{16\pi} \int_{\infty} \tilde{\gamma}^{im} \left[\tilde{\gamma}^{jn} (\tilde{\gamma}_{mn,j} - \tilde{\gamma}_{jn,m}) - 8\psi_{,m} \right] d^2\tilde{\Sigma}_i
= \frac{1}{16\pi} \int_{\infty} (\tilde{\Gamma}^i - \tilde{\Gamma}^{ij,j} - 8\tilde{\nabla}^i \psi) d^2\tilde{\Sigma}_i = \frac{1}{16\pi} \int_{\infty} (\tilde{\Gamma}^i - 8\tilde{\nabla}^i e^{\phi}) d^2\tilde{\Sigma}_i. \]

Here the conformal surface element is defined as \(d^2\tilde{\Sigma}_i = (1/2)\epsilon_{ijk} dx^j dx^k \) since \(\tilde{\gamma} = 1 \), we use the abbreviations \(\tilde{\Gamma}^i \equiv \tilde{\gamma}^{jk} \tilde{\Gamma}^i_{jk} \) and \(\tilde{\Gamma}^{ij} \equiv \tilde{\gamma}^{jk} \tilde{\Gamma}^{ij}_{kj} = 0 \), and \(\tilde{\nabla}_i \) is the three-covariant derivative with respect to the metric \(\tilde{\gamma}_{ij} \).

We define the angular momentum \(J^i \) as (compare [11, 12])
\[J_i \equiv \frac{1}{8\pi} \epsilon_{ijk} \int_{\infty} x^j A_k^\ell d^2\Sigma_\ell = \frac{1}{8\pi} \epsilon_{ijk} \int_{\infty} x^j e^{6\phi} \tilde{A}_k^\ell d^2\tilde{\Sigma}_\ell, \]
where the indices of \(\epsilon_{ijk} \) are raised and lowered with the flat metric \(\delta_{ij} \), \(d^2\Sigma_i = e^{6\phi} d^2\tilde{\Sigma}_i \), and \(A_k^j = \tilde{A}_k^j \).
Therefore, the surface integrals of the ADM mass and the angular momentum (in vacuum) are respectively [13]:

\[
M = \frac{1}{16\pi} \int_{\partial \Omega} (\tilde{\Gamma}^i - 8\tilde{\nabla}^i e^\phi) d^2\tilde{\Sigma}_i, \tag{34}
\]

\[
J_i = \frac{1}{8\pi} \epsilon_{ij}^k \int_{\partial \Omega} e^{6\phi} x^j \tilde{A}_k d^2\tilde{\Sigma}_k. \tag{35}
\]

These two global quantities are useful tools for the system diagnostics to validate the calculations.

III-2. Pseudotensor and momentum flux

In this section, we briefly review the Landau-Lifshitz formulation of gravity and the statement of four-momentum conservation within this theory. The Landau-Lifshitz formulation has been described in [2, 8] to reformulate general relativity as a nonlinear field theory in flat spacetime. Here we follow closely to the content in [6]. In this formalism, an arbitrary asymptotically Lorentz coordinate is firstly built on a given curved (but asymptotically-flat) spacetime. Then the coordinate is used to map the curved (i.e., physical) spacetime onto an auxiliary flat spacetime by enforcing the coordinates on this spacetime to be globally Lorentz. The auxiliary flat metric takes the Minkowski form, \(\eta_{\mu \nu} = \text{diag}(-1, 1, 1, 1) \).

Gravity is described, in this formulation, by the physical metric density

\[
g^{\mu \nu} \equiv \sqrt{-g} g^{\mu \nu}, \tag{36}
\]

where \(g \) is the determinant of the covariant components of the physical metric, and \(g^{\mu \nu} \) are the contravariant components of the physical metric. In terms of the superpotential

\[
H^{\mu \alpha \nu \beta} \equiv g^{\mu \nu} g^{\alpha \beta} - g^{\mu \alpha} g^{\nu \beta}, \tag{37}
\]

the Einstein field equations take the field-theory-in-flat-spacetime form

\[
H^{\mu \alpha \nu \beta \cdot \cdot \cdot \beta} = 16\pi \tau^{\mu \nu}. \tag{38}
\]

Here \(\tau^{\mu \nu} = (g)(T^{\mu \nu} + t_{\text{LL}}^{\mu \nu}) \) is the total effective stress-energy tensor, indices after the comma denote partial derivatives (covariant derivatives with respect to the flat auxiliary metric), and the Landau-Lifshitz pseudotensor \(t_{\text{LL}}^{\mu \nu} \) (actually a real tensor in the auxiliary flat spacetime) is given by

\[
16\pi (-g) t_{\text{LL}}^{\mu \nu} = g^{\mu \nu, \lambda} g^{\lambda \sigma, \sigma} - g^{\mu \lambda} g^{\nu \sigma, \sigma} + \frac{1}{2} g^{\mu \nu} g_{\lambda \sigma} g^{\lambda \rho \rho, \rho} - 2 g^{(\mu | \lambda} g_{\tau \sigma g^{(\nu) \sigma, \sigma} g^{\tau \rho, \rho} + g_{\lambda \sigma} g^{\tau \rho, \tau} g^{\nu \sigma, \rho} \\
+ \frac{1}{8} (2 g^{\mu \lambda} g^{\nu \sigma} - g^{\mu \nu} g^{\lambda \sigma})(2 g_{\tau \rho} g_{\kappa \eta} - g_{\rho \kappa} g_{\eta \tau})(\tilde{g}_{\tau \rho, \lambda} \tilde{g}_{\kappa \eta, \sigma}). \tag{39}
\]

The Landau-Lifshitz pseudotensor can also be expressed in terms of the 4-metric \(g_{\mu \nu} \) and the 4-connection \(\Gamma_{\mu \nu \sigma} \) as

\[
16\pi t_{\text{LL}}^{\mu \nu} = 2 \Gamma^{(\mu | \nu)} (\Gamma^{\sigma - L^{\sigma}}) + 2 \Gamma^{\sigma \mu \nu} L_{\sigma} - (\Gamma^{\mu - L^{\mu}})(\Gamma^{\nu - L^{\nu}}) + \Gamma_{\lambda \sigma} \Gamma^{\nu \lambda \sigma} \\
- 2 \Gamma^{(\mu | \lambda \sigma} \Gamma^{\nu \lambda \sigma)} - \Gamma_{\lambda \sigma} \Gamma^{\nu \lambda} + \tilde{g}^{\nu \mu} (L_{\sigma} L^{\lambda}_{\sigma} - 2 L_{\sigma} \Gamma^{\sigma \lambda} + \Gamma_{\lambda \sigma \rho} \Gamma^{\sigma \lambda \rho}), \tag{40}
\]
where $I^\mu = g^{\lambda\sigma} I^\mu_{\lambda\sigma}$, $L_\mu = I^\sigma_{\mu\sigma}$. With the relation equations in Appendix A, these equations can be easily re-expressed in terms of $3 + 1$ quantities. By virtue of the symmetries of the superpotential (which are the same as those of the Riemann tensor), the field equations in the form (38) imply the differential conservation law for four-momentum:

$$\tau_{\mu\nu, \nu} = 0,$$

which is equivalent to $T_{\mu\nu, \nu} = 0$ (where the semicolon denotes a covariant derivative with respect to the physical metric).

It is shown in [2, 8] that the total four-momentum of any isolated system as measured gravitationally in the asymptotically flat region far from the system is

$$p_{\mu}^{\text{tot}} = \int_{V} \tau^{\mu 0} d^3 x.$$ (42)

Thus

$$\frac{dp_{\mu}^{\text{tot}}}{dt} = \frac{d}{dt} \int_{V} \tau^{\mu 0} d^3 x = \int_{V} \tau^{\mu 0}_{\ 0} d^3 x = - \int_{V} \tau^{\mu j}_{\ j} d^3 x = - \oint_{S} \tau^{\mu j} d^2 \Sigma_j,$$ (43)

where $d^2 \Sigma_j \equiv (1/2) \epsilon_{ijk} dx^j dx^k$ is the surface-area element (defined by using the flat auxiliary metric), the integral is over an arbitrarily large closed surface S surrounding the system, and Eq. (41) has been used. Therefore, the total momentum flux across the 2-surface within $[t_1, t_2]$ is

$$\Delta p_{\mu}^{\text{tot}} \equiv p_{\mu}^{\text{tot}}(t_2) - p_{\mu}^{\text{tot}}(t_1) = - \int_{t_1}^{t_2} \oint_{S} \tau^{\mu j} d^2 \Sigma_j dt.$$ (44)

With $p_{\mu}^{\text{tot}}(0) = M$, this leads to

$$M(t) = M(0) - \int_{0}^{t} \oint_{S} \tau^{0 j} d^2 \Sigma_j dt,$$ (45)

where $M(0)$ can be obtained by using Eq. (34) at $t = 0$.

The total angular momentum of any isolated system as measured gravitationally in the asymptotically flat region far from the system is

$$J_{\mu \nu}^{\text{tot}} = 2 \int_{V} x^{[\mu} \tau_{\nu]}^{0} d^3 x.$$ (46)

Thus

$$\frac{dJ_{\mu \nu}^{\text{tot}}}{dt} = 2 \frac{d}{dt} \int_{V} x^{[\mu} \tau_{\nu]}^{0} d^3 x = 2 \int_{V} (x^{[\mu} \tau_{\nu]}^{0})_{0} d^3 x = 2 \int_{V} (\delta^{[\mu}_{0} \tau_{\nu]}^{0} + x^{[\mu} \tau_{\nu]}^{0})_{0} d^3 x$$

$$= 2 \int_{V} \tau^{[\mu}_{\nu]} - (x^{[\mu} \tau_{\nu]}^{0})_{j} d^3 x = - \oint_{S} (x^{\mu} \tau_{\nu} - x^{\nu} \tau_{\mu}) d^2 \Sigma_j.$$ (47)
Therefore, the total angular momentum flux across the 2-surface S within $[t_1, t_2]$ is
\[\Delta J_{\mu \nu}^{\text{tot}} = J_{\mu \nu}^{\text{tot}}(t_2) - J_{\mu \nu}^{\text{tot}}(t_1) = - \int_{t_1}^{t_2} \oint_S (x^{\mu} \tau^{\nu j} - x^{\nu} \tau^{\mu j}) d^2\Sigma_j dt, \] (48)
and for $J_z = \epsilon_{xyz} J_{xy}$,
\[J_z(t) = J_z(0) - \int_0^t \oint_S (x^{\tau 2}_j - y^{\tau 1}_j) d^2\Sigma_j dt, \] (49)
where $J_z(0)$ can be obtained by using Eq. (35) at $t = 0$.

We will use Eqs. (45) and (49) to calculate the mass and the angular momentum and compare them with the results from Eqs. (34) and (35).

IV. NUMERICAL RESULT

The AMSS-NCKU code with the standard moving box style mesh refinement [14–16] is used in this work. We used 10 mesh levels, and the finest 3 levels are movable in evolving the binary black holes (BBHs). In each fixed level, we used one box with $128 \times 128 \times 64$ grids with assumed equatorial symmetry. The outermost physical boundary is $512M$ and this makes the finest resolution to be $h = M/64$. For the movable levels, two boxes with $64 \times 64 \times 32$ grids are used to cover each black hole. In the time direction, the Berger-Oliger numerical scheme is adopted for the levels higher than four.

The moving puncture gauge condition
\[\partial_t \alpha = \beta^i \alpha_{,i} - 2\alpha K, \] (50)
\[\partial_t \beta^i = \frac{3}{4} B^i + \beta^j \beta_{,j}^i, \] (51)
\[\partial_t B^i = \partial_t \Gamma^i - \eta B^i + \beta^j B_{,j}^i - \beta^j \Gamma_{,j}^i, \] (52)
is used; it has been shown to give good behavior for the black hole simulations in [14]. In this paper we use $\eta = 2M$ with M being the ADM mass of the given configuration.

In this section we apply the analysis tools described in the above section to the inspiralling binary black hole systems. We present two cases in this paper. One corresponds to initially spinless binary black holes. The other one corresponds to two initially fast-spinning black holes. The two individual black holes in the binary are identical in the both cases. In the fast-spinning case, the spin parameter for each black hole is $a = 0.9$. And the spin is aligned with the orbital angular momentum. For the detailed description of the initial data construction, the grid setting for the numerical evolution, and the involved numerical tricks, we refer our readers to [17].

In Fig. 1 we compare the binary's mass and its angular momentum calculated with the traditional integrations, i.e., Eqs. (34) and (35), and the pseudotensor flux integrations, i.e., Eqs. (45) and (49). We show the results for three different extraction radii $r = 50$, 80, and 120, respectively. In the both BBH cases, the physical quantities calculated with
FIG. 1: Comparisons of the physical quantities calculated with the traditional integration and the pseudotensor flux integrations for the spinless BBH case. The left column corresponds to the masses M measured at the radii $r = 50$, 80, and 120, respectively. The right column corresponds to the angular momenta J_z of the spacetime measured at the same radii as in the left column.
FIG. 2: Same as in Fig. 1, except that these plots are for the BBH case with spin $a = 0.9$.

the traditional integration have larger fluctuations which come from the numerical error. For the convenience of comparison, we smooth the traditional data by averaging within each time range $5M$. In the figure, we denote the data as “ADM after smooth”. And the
FIG. 3: Comparison of the effect of the finite extraction radius on the value of mass calculated with the traditional integration and the pseudotensor flux integration for the spinless BBH case. The data for the ADM masses here have been smoothed as explained in Fig. 1. The data marked with “ADM” corresponds to the raw data. The data after smoothing becomes much smoother. However, a comparison with the quantities from the pseudotensor flux integrations shows that the smoothed data still fluctuates more. In the plot of mass, such fluctuations appear after the junk radiation reaches the extraction sphere. We consider such fluctuations as the gauge adjustment resulting from the junk radiation. The numerical error could also come from reflection of the junk radiation via the mesh refinement boundary, and thus contributes to the fluctuation. As we can see from Fig. 1, for the traditional integration, the angular momentum is even more sensitive to these factors. So even after the junk radiation passes away, the angular momentum still fluctuates mildly due to the numerical error from the mesh refinement boundary reflection. Interestingly, the quantities calculated with the pseudotensor flux integrations seem immune to these factors. Figure 2 gives a similar result, but for the fast-spinning BBH case. For the fast-spinning BBH case, the gauge dynamics is more complicated. So we can see that the fluctuation of the
FIG. 4: Same as in Fig. 3, except that these plots are for the BBH case with spin $a = 0.9$.

The traditional integration is more drastic than for the spinless case. The result from the pseudotensor flux calculation still works smoothly in this extreme configuration. Except for those fluctuations in the traditional integration, the results of these two analysis tools are consistent with each other in both Fig. 1 and 2.

The global quantities are formally defined at infinity. However, we can only calculate them at some finite radius in practice. This may cause some ambiguity. In principle, the sequence corresponding to different extraction radii should converge to the quantities defined at infinity. To be a good analysis tool, we expect that the method gives a fast convergence. In Fig. 3 we compare the convergence behavior of the mass integral with respect to different extraction radii with the traditional integration and the pseudotensor flux integration for the spinless BBH case. During the junk radiation period, the convergence of the pseudotensor flux method is roughly two times better than the traditional integration. But during the merger part, the convergence of the traditional integration method is two times better than the pseudotensor flux method. Considering that the junk radiation is unphysical, we conclude that the traditional integration method is a better analysis tool in
this aspect. In Fig. 4, we did the same investigation for the fast-spinning BBH case. For the junk radiation part the same result can be seen as for the spinless case. For the merger part, the fast-spinning BBH configuration introduces some challenge to the numerical evolution as explained in \[17\]. So as one expects, the convergence behaviors for both analysis methods are equally bad, although they are consistent with each other. As for the angular momentum, the result from the traditional integration fluctuates so much that it does not make sense to compare it with the one from the pseudotensor flux integration.

V. SUMMARY

In this work we apply the Landau-Lifshitz pseudotensor flux formalism as an alternative method for calculating the total mass and the total angular momentum during the evolution of a binary black hole system. We also compare its performance with the traditional integrations for the global quantities. Due to the gauge choice employing a flat spacetime background in the Landau-Lifshitz pseudotensor formalism, it is not expected that the result from this method will be accurate enough if the radius for integration is not far from the singularity. However, we find that the overall result with the method is consistent with the one with the traditional integration.

The advantage of the pseudotensor flux formalism is the smoothness of the global quantities, especially of the total angular momentum. The fluctuation and inaccuracy of the numerical value of the total angular momentum calculated with the traditional integration has been a plague for a long time, especially when the grid resolution is, as usual, low since the radius of the surface integration is large. In this work it is shown that this problem can be solved with the pseudotensor flux method. The reason mainly comes from the integrations along the time domain in Eqs. (45) and (49). Therefore, although the convergence behavior of the global quantities with the pseudotensor flux method is only comparable with that of the traditional method, the smoothness of its numerical value allows using a larger radius for surface integration to obtain a more accurate result.

As shown in \[18\] and \[17\], the total angular momentum calculated with the traditional method usually decays after the merger in the fast-spinning BBH cases. In our BBH simulations, it seems that the total angular momentum with the pseudotensor flux method is conserved much better than the one with the traditional method. However, a further detailed investigation might be needed to confirm this point.

This work shows that the pseudotensors (and quasi-local quantities) could be very useful analysis tools in numerical relativity. Therefore, we plan to study the usefulness of different pseudotensors/quasi-local quantities, and also the advantage of different spacetime backgrounds, e.g., the Schwarzschild spacetime or the Kerr spacetime, in numerical relativity in the future.
Acknowledgments

CCT is grateful to Prof. Shih-Yuin Lin and Prof. I-Ching Yang for their useful discussions. This work was supported in part by the National Science Council under Grants No. NSC102-2112-M-006-014-MY2, by the Ministry of Science and Technology under Grant No. MOST104-2112-M-006-020, and by the Headquarters of University Advancement at the National Cheng Kung University, which is sponsored by the Ministry of Education, Taiwan, ROC. We are grateful to the National Center for High-performance Computing for the use of their computer time and facilities. We are also grateful to the Academia Sinica Computing Center for providing computing resource. HJY thanks Dr. Zhoujan Cao for his helpful discussions and comments.

APPENDIX A: SPACETIME 4-CONNECTION IN 3+1 EXPRESSION

The 4-metric $g_{\mu\nu}$ can be constructed out of the 3-metric γ_{ij} and the lapse α and shift functions β^i as

$$g^{00}g^{0k} - g^{00}g^{jk} = \beta^j \beta_k - \alpha^2 \beta_k,$$

$$g^{00}g^{jk} = \frac{1}{\alpha^2} \gamma_{jk} - \frac{\beta^j \beta^k}{\alpha^2},$$

where $\beta_i = \gamma_{ij} \beta^j$.

From Appendix B of [19] we can obtain the following expressions for the 4-connection
in terms of 3+1 quantities:

\[R^0_{ij} = - \frac{1}{\alpha} K_{ij}, \] (A3)

\[R^0_{0i} = \frac{1}{\alpha} (\nabla_i \alpha - K_{im} \beta^m) = \nabla_i \ln \alpha + \Gamma^0_{im} \beta^m, \] (A4)

\[R^0_{00} = \frac{1}{\alpha} (\partial_t \alpha + \beta^m \nabla_m \alpha - K_{mn} \beta^n) = \partial_t \ln \alpha + \beta^m \Gamma^0_{0m}, \] (A5)

\[R^{i}_{jk} = \Gamma^i_{jk} + \frac{\beta^i}{\alpha} K_{jk} = \Gamma^i_{jk} - \beta^i \Gamma^0_{jk}, \] (A6)

\[R^i_{0j} = \nabla_j \beta^i - \alpha K^i_j + \frac{\beta^i}{\alpha} (K_{jm} \beta^m - \nabla_j \alpha) = \nabla_j \beta^i - \alpha K^i_j - \beta^i \Gamma^0_{0j}, \] (A7)

\[R^i_{00} = \partial_t \beta^i + \beta^m \nabla_m \beta^i + \alpha (\nabla^i \alpha - 2 K^i_m \beta^m) \]

\[+ \frac{\beta^i}{\alpha} (K_{mn} \beta^m \beta^n - \partial_t \alpha - \beta^m \nabla_m \alpha) \]

\[= \partial_t \beta^i + \beta^m \Gamma^0_{0m} + (\alpha^2 \gamma^{im} + \beta^i \beta^m) \Gamma^0_{0m} - \beta^i \Gamma^0_{00}, \] (A8)

where \(\nabla_i \) is the covariant derivative associated with the 3-metric \(\gamma_{ij} \), and the corresponding 3-connection \(\Gamma^i_{jk} \). For \(\Gamma^\mu \equiv g^{\lambda \sigma} \Gamma^\mu_{\lambda \sigma} \), \(L_\mu \equiv \Gamma^\sigma_{\mu \sigma} \),

\[L_0 = \partial_t \ln \alpha + \nabla_m \beta^m - \alpha K, \] (A9)

\[L_i = \partial_i \ln \alpha + \Gamma^m_{mi}, \] (A10)

\[\Gamma^0 = \frac{1}{\alpha^2} (\beta^m \partial_m \alpha - \partial_t \alpha - \alpha^2 K), \] (A11)

\[\Gamma^i = \Gamma^i - \frac{1}{\alpha^2} (\partial^i \alpha - \beta^i K) - \frac{1}{\alpha^2} (\partial_t \beta^i - \beta^m \partial_m \beta^i) + \frac{\beta^i}{\alpha^2} (\partial_t \alpha - \beta^m \partial_m \alpha), \] (A12)

where \(\Gamma^i \equiv \gamma^{jk} \Gamma^i_{jk} \).

References

[1] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005). doi: 10.1103/PhysRevLett.95.121101

[2] C. W. Misner, K. Throne, and J. A. Wheeler, Gravitation, (Freeman, San Francisco, 1973).

[3] L. B. Szabados, Living Rev. Relativity 7, 4 (2004). doi: 10.12942/lrr-2004-4

[4] C. M. Chen, J. M. Nester, and R. S. Tung, Phys. Rev. D 72, 104020 (2005). doi: 10.1103/PhysRevD.72.104020

[5] A. Ashtekar and B. Krishnan, Living Rev. Relativity 7, 10 (2004). doi: 10.12942/lrr-2004-10

[6] D. Keppel et al., Phys. Rev. D 80, 124015 (2009); doi: 10.1103/PhysRevD.80.124015G. Lovelace et al., ibid. 82, 064031 (2010). doi: 10.1103/PhysRevD.82.064031

[7] V. Mewes, J. A. Font, and P. J. Montero, arXiv:1505.07225.

[8] L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, (Addison Wesley, Reading Mass., 1962).

[9] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995); doi: 10.1103/PhysRevD.52.5428.

T. W. Baumgarte and S. L. Shapiro, ibid. 59, 024007 (1998). doi: 10.1103/PhysRevD.59.024007
[10] N. Ó Murchadha and J. W. York, Jr. Phys. Rev. D 10, 2345 (1974). doi: 10.1103/PhysRevD.10.2345
[11] J. W. York, Jr. in *Sources of Gravitational Radiation*, edited by L.L. Smarr (Cambridge Univ. Press, Cambridge, 1979).
[12] J. M. Bowen and J. W. York, Jr. Phys. Rev. D 21, 2047 (1980). doi: 10.1103/PhysRevD.21.2047
[13] H. J. Yo, T. W. Baumgarte, and S. L. Shapiro, Phys. Rev. D 66, 084026 (2002). doi: 10.1103/PhysRevD.66.084026
[14] Z. Cao, H. J. Yo, and J. P. Yu, Phys. Rev. D 78, 124011 (2008). doi: 10.1103/PhysRevD.78.124011
[15] P. Galaviz, B. Brügmann, and Z. Cao, Phys. Rev. D 82, 024005 (2010). doi: 10.1103/PhysRevD.82.024005
[16] H. J. Yo, C. Y. Lin, and Z. Cao, Phys. Rev. D 86, 064027 (2012). doi: 10.1103/PhysRevD.86.064027
[17] H. J. Yo, Z. Cao, C. Y. Lin, and H. P. Pan, Phys. Rev. D 92, 024034 (2015). doi: 10.1103/PhysRevD.92.024034
[18] P. Marronetti, W. Tichy, B. Bruegmann, J. Gonzalez, and U. Sperhake, Phys. Rev. D 77, 064010 (2008). doi: 10.1103/PhysRevD.77.064010
[19] M. Alcubierre, *Introduction to 3+1 Numerical Relativity*, (Oxford University Press, 2008). doi: 10.1093/acprof:oso/9780199205677.003.0001