The Crystal Structure of the SV40 T-Antigen Origin Binding Domain in Complex with DNA

Gretchen Meinke¹, Paul Phelan¹, Stephanie Moine¹, Elena Bochkareva², Alexey Bochkarev², Peter A. Bullock¹, Andrew Bohm¹*

¹ Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America, ² Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada

DNA replication is initiated upon binding of “initiators” to origins of replication. In simian virus 40 (SV40), the core origin contains four pentanucleotide binding sites organized as pairs of inverted repeats. Here we describe the crystal structures of the origin binding domain (obd) of the SV40 large T-antigen (T-ag) both with and without a subfragment of origin-containing DNA. In the co-structure, two T-ag obds are oriented in a head-to-head fashion on the same face of the DNA, and each T-ag obd engages the major groove. Although the obds are very close to each other when bound to this DNA target, they do not contact one another. These data provide a high-resolution structural model that explains site-specific binding to the origin and suggests how these interactions help direct the oligomerization events that culminate in assembly of the helicase-active dodecameric complex of T-ag.

Introduction

Viral DNA replication involves a sequence of carefully orchestrated steps including recognition of the origin by a protein (the initiator) or proteins, melting of the origin DNA, replication protein A (RPA)-dependent unwinding of the DNA, and recruitment of polymerase and other replication factors (for reviews, see [1–3]). Study of this process in eukaryotes has been hampered by uncertainty regarding the eukaryotic origin sequences and by the complexity of the proteins involved in eukaryotic origin recognition. While origin sequences have been identified for Saccharomyces cerevisiae, they are not yet identified in the genomes of higher eukaryotes [4,5]. In contrast, replication of small DNA tumor viruses such as SV40 and papilloma virus involves well-defined origin sequences and requires far fewer proteins for formation of the preinitiation complex. In the case of SV40, a single virally encoded initiator, large T-antigen (T-ag), can bind the SV40 origin, assemble as a set of two hexameric rings, and cause local distortions (ie, melting) of the DNA [6]. In the presence of the single-stranded binding protein (SSB) human RPA [6], SV40 T-ag also unwinds origin containing DNA. Once assembled on the origin, SV40 T-ag also recruits host machinery to replicate the viral DNA (for reviews, see [1–3]).

Prokaryotic and viral origins contain multiple initiator binding sites. For DNA viruses, these binding sites consist of short DNA sequences, often organized as pairs of inverted repeats. The SV40 core origin is a 64-bp sequence that contains four such binding sites, termed P1 through P4 (collectively referred to as S or Site II). Each repeat has the sequence GAGGC. These pentameric sequences appear as a pair of inverted repeats, with a 1-bp spacer between each repeat (Figure 1A). The four GAGGC sequences are flanked by an early palindrome region on one side and an AT-rich region on the other side. There are, however, significant variations among viral origins in the spacing, the orientation within the origin, and the sequence of the binding sites. In the case of the related DNA tumor virus, bovine papilloma virus (BPV), the origin contains two pairs of imperfect repeats, and these are organized in a much more compact manner, such that the individual repeats overlap [7,8].

SV40 T-ag is a 708-amino acid protein containing at least three independent functional domains: an N-terminal J domain (amino acids 1–130), a central origin binding domain (obd) (amino acids 131–260), and a C-terminal helicase domain (amino acids 266–625). A flexible linker connects the obd to the helicase domain [9]. While there is no atomic resolution structure of the intact SV40 T-ag, structures of these individual domains are available. The crystal structure of the J domain has been solved in complex with retinoblastoma protein [10]. The crystal structure of the C-terminal helicase domain has been determined in the presence and absence of adenosine nucleotides [9,11] and with p53 [12]. Structural data of the T-ag obd in the absence of DNA include an NMR structure of a T-ag obd monomer [13] and a crystal structure of the T-ag obd in an open-ring form (spiral) having six subunits per turn [14].

Cryoelectron microscopy and biochemical studies of the full-length T-ag indicate that T-ag forms a “double donut” of hexameric rings in the presence of origin-like DNA and adenosine nucleotides [15,16]. In electron microscopy reconstructions, the J domains and the obds are near the center,
Author Summary

How DNA replicates is a critical question for understanding life. DNA replication remains difficult to investigate in eukaryotes, where it involves a complex, multi-protein apparatus which initiates replication at multiple poorly-defined DNA sequences. This process is far easier to study in viral systems, where the DNA sequences at the origin of replication are well-defined and only one or two proteins are required to initiate replication. In simian virus 40 (SV40), the large T-antigen protein (T-ag) is responsible for recognizing DNA sequences required to start replication, called the origin of replication. SV40 T-ag can also cause DNA to melt or unwind. We report here the crystal structure of the DNA-binding domain of SV40 T-ag on a DNA fragment derived from the viral origin of replication. The structure shows that although T-ag and its functionally analogous protein, papilloma virus E1, share no detectable sequence homology in this region, the two domains bind the DNA in similar ways. In both cases, DNA binding is thought to initiate assembly of a complex of the full-length proteins on DNA. Interestingly, SV40 T-ag DNA-binding domains do not interact with one another when bound to DNA. In addition to describing the molecular details of the DNA–protein interactions and the alterations in protein structure induced by DNA binding, we present a model describing the subsequent assembly events.

Protein–DNA footprinting experiments have delineated the regions of the SV40 origin that are protected by T-ag. 1,10-Phenanthroline–copper footprinting data of DNA from the SV40 core origin complexed to either full-length T-ag or just the T-ag obd show similar protection patterns [28]. Such studies demonstrate that the DNA at P2 is protected by T-ag obd even when the P2 sequence is altered and that the DNA at P4 is less protected than sites P1 through P3, despite having the identical pentamer sequence. As assembly of double hexamers of T-ag on DNA requires only P1 and P3 [28], it appears that P2, and perhaps P4, is not essential for initial assembly in vitro. These data coupled with electron microscopic and mutagenesis data suggest that the obd bound to sites P1 and P3 could perhaps interact and guide subsequent assembly events.

Despite this wealth of biochemical and structural knowledge surrounding T-ag, it is unclear how the T-ag obd site-specifically recognizes the origin, whether DNA distortions are induced by this interaction, or how the obd participates in assembly of the double hexamer. Our recent crystal structure of the T-ag obd “spiral hexamer” [14] detailed the obd–obd interactions that occur upon formation of a single hexamer as well as the interactions between obds on opposing hexameric rings that could occur in the context of a double hexamer; however, it provided no insights into the T-ag obd–DNA interactions required for site-specific binding to the origin. To address these issues, we have solved two crystal structures of T-ag obds oriented head-to-head; with and without a DNA target.

The structures of four other DNA binding domains from viral initiator proteins have also been determined (reviewed in [29]), and although they share no apparent sequence homology with T-ag, the obds from SV40 T-ag [13,14], BPV E1 [30,31] and human papilloma virus E1 [32], the Rep proteins from adeno-associated virus 5 [33], and tomato yellow leaf curl virus [34] share a common fold. The SV40 T-ag is most closely related to BPV E1, but whereas SV40 large T-ag can bind to its origin DNA on its own, the BPV initiator E1 requires a loader or “matchmaker” protein, E2. Three crystal structures of the BPV E1 obd have been solved: the E1 obd dimer [30], the E1 obd monomer on DNA, and the E1 obd “tetramer” (two dimers) on DNA [31].

T-ag and E1 both form hexameric and double-hexameric helicase complexes on DNA, and their structural conservation suggests similarities in their mechanism of origin binding and helicase activity. However, there are significant differences in the architecture of these two viral origins. Thus, our structures of the SV40 T-ag obd have allowed us to differentiate aspects of origin recognition and helicase assembly that are specific to the individual viruses from those which are general and may be applicable to eukaryotic systems. Herein, we present the structural determinants of SV-40 origin recognition and a model of the structural rearrangements that accompany the transition from origin recognition of duplex DNA to formation of the dodecameric helicase.

Results/Discussion

Overview

In this paper we describe two crystal structures of the SV40 large T-ag obd: one in complex with duplex DNA and one as a...
dimer in the absence of DNA. The DNA oligomer used in the first crystallographic study contains two pentameric sites, P1 and P3, with P2 altered (Figure 1B). The second crystal structure is that of a T-ag obd dimer containing an intermolecular disulfide bridge between two Cys216 residues. Though the disulfide we observe may well be an artifact of crystallization, both of the structures reported here contain two T-ag obds arranged in a head-to-head orientation reminiscent of that seen in the structures of papilloma virus E1 obd. Thus, the subunits we see would presumably belong to opposing hexamers upon subsequent formation of double hexamers of large T-ag.

Overall Structure of T-ag obd–DNA Complex

The crystal structure of the SV40 T-ag obd (amino acids 131–260) with duplex DNA containing two high-affinity binding sites, P1 and P3 (Figure 1), was refined to 2.4-Å resolution (Table 1). Pentanucleotide binding site P2 has been altered to abrogate site-specific binding. Longer DNA fragments having the same mutated P2 site as in our crystals have previously been shown to support assembly of double hexamers of T-ag [28,35]. The asymmetric unit contains two T-ag obd subunits and a DNA duplex 21 nucleotides long. The T-ag obd construct used in this study is shown in Figure 1D with the secondary structural elements and protein–DNA and protein–protein contacts indicated. In the crystal, the DNA stacks along its helical axis and forms a pseudo-continuous helix. The DNA oligomer used in crystallization of the T-ag obd–DNA complex. This 21-mer contains the palindromic binding sites P1 and P3 and a mutated pentamer P2 site. The GAGGC sequences and their complements are indicated by magenta and cyan boxes, respectively. The altered P2 pentamer is indicated by hash-marks in magenta and cyan. As above, the arrows indicate the 5’ → 3’ direction of the pentanucleotide sequences, and the red X indicates that the P2 sequence is altered.

(C) The BPV origin shows the E1 binding sites termed E1–1 through E1–4. The E1 binding sites are imperfect 5’-ATTGTT-3’ hexameric sequences. Boxes outline each binding site, and the binding sites are labeled. The arrows indicate the 5’ → 3’ direction of the binding site. The direct repeats (sites E1–1 and E1–2 or sites E1–3 and E1–4) overlap by 3 bp. The ATTGTT sequence (magenta) and its complement (cyan) are indicated. Lowercase letters are used for the portion of binding sites that do not overlap.

(D) Structure-based sequence alignment of SV40 T-ag obd with BPV E1 obd. The secondary structure elements of the T-ag obd are shown above its amino acid sequence. Every tenth residue is indicated with a dot. T-ag obd residues that make base-specific contacts in the DNA co-structure are indicated by cyan boxes. T-ag obd residues that make phosphate interactions are indicated by red triangles above the amino acid sequence. There are two types of T-ag obd–obd interactions: the “head-to-head” type seen in the disulfide-linked dimer (possibly important in double-hexamer formation), and the “side-to-side” type (important in single-hexamer formation) seen in the spiral hexamer. T-ag obd residues that form the protein–protein interface in the disulfide-linked dimer structure are indicated by yellow boxes. T-ag obd residues that comprise the protein–protein interface in the spiral hexamer are indicated by an asterisk (*). Residues for BPV E1 obd that make base-specific contacts or phosphate contacts or participate in its dimer interface are indicated by pink boxes, magenta triangles below the E1 sequence, and green boxes, respectively. The information for E1 was obtained from the crystal structures of E1-obd with and without DNA. doi:10.1371/journal.pbio.0050023.g001
the obsd such that the residues within the B3 loop (amino acids 213–220) are facing each other in an antiparallel fashion, with Phe218 from one monomer and Thr217 from the other are close to one another but not quite contacting. The electron density of the side chain of Phe218 is not clear, suggesting this side chain is flexible, and it could contact the second obsd molecule in certain orientations.

T-ag obsd–DNA Interactions

Consistent with the observation that the nucleotides flanking the individual GAGGC sequences have little effect on binding affinity [36], all sequence-specific interactions in this crystal structure occur within the GAGGC sequence. Also in keeping with previous biochemical studies [37,38], each obsd interacts with the DNA in the major groove primarily through the A1 (amino acids 147–159) and B2 (203–207) loops (Figures 2 and 3). A subset of residues within the A1 loop (amino acids 147–155) contacts both the phosphate backbone and the bases. Two residues within this motif, Asn153 and Arg154, make most of the base-specific interactions, with the pentanucleotide binding sites (P1 or P3). Residues adjacent or within the B2 loop (amino acids 202–204) interact primarily with the DNA phosphate backbone, with only Arg204 making sequence-specific interactions. For simplicity, we will continue to refer to the DNA binding loops as A1 (amino acids 147–155) and B2 (amino acids 202–204), although the precise definition of the residues within these loops differs somewhat from that described in the original biochemical work [25].

The site-specific binding of the T-ag obsd to DNA buries approximately 1,600 Å² per GAGGC pentamer (Figure 3C). This large buried surface area is consistent with the high affinities (Kd of approximately 60 nM [36]) of the T-ag obsd for the GAGGC sequence. The nucleotides in the structure are numbered in Figure 3B, but we will refer to a given nucleotide within the GAGGC (or its complement, GCCTC) by decreasing the font of the other nucleotides. For example, GAGGC refers to the adenosine in position 2. The two residues from the A1 loop, Asn153 and Arg154, are situated deep in the major groove with the side chain of Asn153 extending toward the 3’ end and the side chain of Arg154 pointed toward the 5’ end of the GAGGC pentamer. Remarkably, these two residues interact with four of the five GAGGC nucleotides (GAGGc) in a sequence-specific manner through

Table 1. Data Collection and Refinement Statistics

Data Collection and Refinement	Statistic	Subcategory	T-ag obsd-DNA*	T-ag obsd Dimer*
Data collection	Space group	P, 2, 2, 2	C2	
Cell dimensions	a, b, c (Å)	64.49, 68.34, 97.26	68.46, 63.98, 63.23	
Resolution (Å)	38.84–2.4	38.84–2.4 (2.49–2.4)		
Rmerge b	7.4 (30.2)	12.6 (21.5)		
Completeness (%)	90.1 (58.9)	85.1 (53.3)		
Refinement	Resolution (Å)	38.84–2.40	38.63–2.6	
No. reflections	14,921	7,009		
Rwork/Rfree	20.5/28.7	20.82/29.58		
Protein	2,050	2,144		
Ligand/ion/DNA	855			
Water	70	51		
B-factors	Protein	50.83	28.5	
DNA	49.53			
Water	49.6	24.35		
RMS deviations	Bond lengths (Å)	0.016	0.012	
Bond angles (°)	2.013	1.463		

*aOne crystal used for each structure.

*bHighest resolution shell is shown in parentheses.

doi:10.1371/journal.pbio.0050023.t001

Figure 2. Overall Architecture of T-ag obsds Bound to P1 and P3 of the Origin of Replication

A ribbon diagram shows two T-ag obsd monomers bound to the 21-mer DNA. The coloring of the DNA is the same as in Figure 1A. A ribbon diagram of an idealized B-form DNA is shown in orange superimposed on one binding site. The T-ag obsd is colored as follows: red (A1 loop, amino acids 147–155), purple (B2 loop, amino acids 202–204), green (helix C), blue (helix B), orange (B3 loop amino acids 213–218), and yellow (Cys216 and the rest of the molecule). This orientation shows two T-ag obsds arranged in a head-to-head fashion while engaged with DNA binding sites P3 and P1. This view shows A1 and B2 of each T-ag obsd in the major groove of the DNA. All figures of molecules were generated with the molecular graphics program PyMOL [60].

doi:10.1371/journal.pbio.0050023.g002

T-ag obsd–DNA Interactions

Consistent with the observation that the nucleotides flanking the individual GAGGC sequences have little effect on binding affinity [36], all sequence-specific interactions in this crystal structure occur within the GAGGC sequence. Also in keeping with previous biochemical studies [37,38], each obsd interacts with the DNA in the major groove primarily through the A1 (amino acids 147–159) and B2 (203–207) loops (Figures 2 and 3). A subset of residues within the A1 loop (amino acids 147–155) contacts both the phosphate backbone and the bases. Two residues within this motif, Asn153 and Arg154, make most of the base-specific interactions, with the pentanucleotide binding sites (P1 or P3). Residues adjacent or within the B2 loop (amino acids 202–204) interact primarily with the DNA phosphate backbone, with only Arg204 making sequence-specific interactions. For simplicity, we will continue to refer to the DNA binding loops as A1 (amino acids 147–155) and B2 (amino acids 202–204), although the precise definition of the residues within these loops differs somewhat from that described in the original biochemical work [25].

The site-specific binding of the T-ag obsd to DNA buries approximately 1,600 Å² per GAGGC pentamer (Figure 3C). This large buried surface area is consistent with the high affinities (Kd of approximately 60 nM [36]) of the T-ag obsd for the GAGGC sequence. The nucleotides in the structure are numbered in Figure 3B, but we will refer to a given nucleotide within the GAGGC (or its complement, GCCTC) by decreasing the font of the other nucleotides. For example, GAGGC refers to the adenosine in position 2. The two residues from the A1 loop, Asn153 and Arg154, are situated deep in the major groove with the side chain of Asn153 extending toward the 3’ end and the side chain of Arg154 pointed toward the 5’ end of the GAGGC pentamer. Remarkably, these two residues interact with four of the five GAGGC nucleotides (GAGGc) in a sequence-specific manner through
backbone and side chain interactions. Ser152 also makes sequence-specific contacts with GAGGC (A27 or A4). The B2 loop residue Arg204 contacts the nucleotide G CCTC (G15 or G38) at both the base and the backbone. In terms of sequence specificity, both the N7 and O6 atoms (hydrogen bond acceptors) of the three guanines (GAGGC) participate in hydrogen bonds, explaining the importance of having a G at those positions. Indeed, two of these guanines have been shown to be essential (GAGGC) [39]. Conversely, only the N7 atom of the adenine (GAGGC) accepts a hydrogen bond, suggesting that a guanine would also be tolerated at this position, as is the case in other polyomavirus origins [40].

Figure 3. T-ag obd–DNA Interactions
(A) Three close-up views of the protein–DNA interaction observed in the T-ag obd–DNA co-structure. In this figure, the GAGGC duplex is numbered and colored as shown in the boxed sequence. The top view shows both the A1 and B2 loops in the major groove of the DNA. The A1 and B2 loops are shown as sticks colored by atom type (carbon green, nitrogen blue, oxygen red). The DNA is shown as sticks with a translucent molecular surface and is colored as in Figure 2A. Red dashed lines indicate hydrogen bonds or electrostatic interactions. Residues are labeled. The middle and bottom views show the protein–DNA contacts from the A1 loop and the B2 loop, respectively. Atoms from the DNA involved in hydrogen bonds (yellow dashed lines) are shown as spheres: phosphate (red), oxygen (orange), and nitrogen (blue).

(B) Schematic representation of protein–DNA interactions in the crystal structure. The DNA is numbered as shown. The GAGGC sequences of P1 and P3 are colored pink and their complements are colored cyan. The mutated P2 sequence is shown with the same coloring but with hash-marks. The P1 and P3 pentamers are placed in a yellow box. Arrows indicate the 5′ → 3′ direction of the GAGGC sequence. The red dotted lines indicate contacts with the phosphate backbone, and the blue solid arrows indicate sequence-specific H-bonds or salt-bridges. Blue dashed lines indicate observed water (W) mediated hydrogen bonds. (The dash-dot-dash line from Arg 202 indicates a phosphate interaction that could easily occur between the guanidinium group and a phosphate but is not observed in the structure.)

(C) T-ag obd–DNA interface. The T-ag obd and DNA molecules are separated to show the interaction surface. Residues of T-ag obd which interact with DNA (and vice versa) are shown in green, and the rest of the T-ag obd molecule is magenta. The DNA is colored as in Figure 2A, but the surfaces which interact with T-ag obd are colored green. This exploded view clearly shows the two buried interaction surfaces (one for each T-ag obd) fill the major groove of the pentameric binding sites and that they occur on the same face of the DNA.

doi:10.1371/journal.pbio.0050023.g003
Finally, both the N7 and O6 of the guanine on the complementary strand (which base paired with the cytosine GAGGC) participate in hydrogen bonds with Arg204, again, explaining a preference for a C-G base pair at this position (GAGGC). There are no sequence-specific interactions between the obd and the altered P2 site.

The majority of the protein–DNA interactions from the A1 loop occur on the DNA strand that contains the sequence GAGGC. The protein–DNA interactions are summarized in a schematic in Figure 3B. In addition to the nucleotide-specific interactions, there are approximately ten hydrogen bonds and salt-bridges between the obd and nonbridging phosphate oxygen atoms per GAGGC sequence (Figure 3B). Most of these are from residues in the A1 loop (Ser147, His148, Val150, and Phe151) or the B2 loop (His203 and Arg204), but a few occur outside these loops (Asn210, Asn227, and Lys228). His203 has been previously shown to hydrogen bond with the phosphate backbone of GAGGC-containing dsDNA by NMR titration experiments [41]. Only one interaction is seen between a ribose oxygen O5, and that occurs between Arg202 and G CCTC (G15 or G38). A number of van der Waals (ie, carbon–carbon) interactions (less than 4 Å) between the obd and DNA help stabilize the complex. Interestingly, most of these interactions occur between residues in the A1 motif (149, 151, 152, 153, 154, and 155) and with the base or the sugar carbons of the GAGGC-containing strand. van der Waals interactions occur outside of the GAGGC pentamer as well, at one nucleotide upstream of the pentamer XGAGGC (C2 or A25) and one nucleotide upstream of the complement pentamer XGCCCT (G14 or T37). Five water-mediated protein–DNA interactions (donor–acceptor distance less than 3.5 Å) are observed in the co-structure (Figure 3B). These interactions differ between the obds, and thus it is not clear that these are important specificity determinants.

The interaction of the two obds on P1 and P3 induces a 17-degree bend in the DNA. This bend allows the two obds to be significantly closer to one another than would be possible if the DNA were straight. Only a minor alteration in the DNA or protein structure would be needed for the obds to interact with one another, and perhaps nucleate subsequent double-hexamer formation. The most severe distortions from canonical B-DNA are the compression of the minor groove and the phosphorous–phosphorous distance between the pentameric sequences P1 and P3 is 9.4 Å (versus 12.8 Å for standard B-form DNA). As changes from the natural sequence at site P2 could affect the DNA conformation, we cannot conclude that the native origin DNA is bent by the T-ag obd. We can, however, say with confidence that significant DNA deformation would be required for the T-ag obds to interact, a major departure from the picture presented in the structures of BPV E1 obd in complex with DNA derived from the BPV origin [31].

T-ag obd–DNA Complex and E1 obd–DNA Complex Comparison

The BPV E1 origin also contains two inverted repeats (Figure 1C), but unlike the SV40 origin, the repeats in the...
BPV origin are overlapping and imperfect. This results in a much closer arrangement of the obds on their respective binding sites. Nonetheless, these two systems are grossly similar in the way they bind DNA. Both interact in the major groove via the same two loops. Both exhibit significant shape complementarity at the DNA–protein interface, and both obds use at least one residue(s) that participate in the interface shown. (C) Schematic of dimer interface. The residues (less than 4 Å apart) involved in the dimer interface are shown. The disulfide bond is shown as a yellow line connecting the two Cys residues. The hydrogen bonds are indicated as red dashed lines, and van der Waals (carbon–carbon) interactions are depicted by solid green lines.

doi:10.1371/journal.pbio.0050023.g005

Structure of the T-ag obd Dimer

The second crystal structure we report is that of a T-ag obd dimer in the absence of DNA. This structure has been refined to 2.6-Å resolution (Table 1). The asymmetric unit contains two T-ag obd molecules linked together by a disulfide bond. Although the presence of the disulfide bond is likely an artifact of crystallization, we include it here because it facilitates our description of structural changes associated with DNA binding. Perhaps coincidentally, the obds in this dimer are oriented in a head-to-head contact in another using the same loops which mediate the inter-obd interactions in the structures of BPV E1 (Figure 1B). As shown in Figure 5A, the monomers are related by a pseudo 2-fold symmetry axis with a rotation of 178° between the molecules. The dimer interface contains a mixture of hydrophobic and hydrophilic interactions and buries a surface area of approximately 740 Å^2. For comparison, the E1 obd dimer interface, an interface which is seen in crystal structures with and without DNA, buries only approximately 500 Å^2. The T-ag obd–obd interface is nearly symmetric with almost identical residues (18 total) from each monomer contributing atoms to the interaction surface. These residues are from helix 2B (Glu166, Leu170, Lys173, and Lys174), residues at the end of helix 3C, and residues from the B3 loop (amino acids 213–218) (Figure 5B and 5C). Interestingly, T-ag mutants within the B3 loop (Q213H, L215V, and F220Y) are impaired in their ability to form double hexamers, and mutation of other residues nearby (K167R and A168V) is impaired in both double-hexamer formation and unwinding duplex DNA [19].

face of the DNA (Figure 4B). In contrast, the analogous direct repeats in E1 overlap by three nucleotides, and the inverted repeats are separated by only three nucleotides (Figure 4B). Thus, it is not surprising that the E1 obds interact with each other upon binding DNA, whereas the T-ag obds do not. This difference in origin architecture is noteworthy because E1 dimerization upon the BPV origin is thought to be an important event in nucleation of the E1 double hexamer [42]. As discussed below, we believe that in the case of SV40, this dimerization event either occurs later in the assembly process, when the obds are no longer engaged with the GAGGC sequence, or is accompanied by significant DNA deformation.

The dissociation constant of the T-ag obd for DNA containing both pentamers P1 and P3 is 60 nM, very similar to that for a single GAGGC sequence within a larger DNA oligomer (K_d = 57 to 150 nM) [36]. This is in contrast to the much weaker affinity of the BPV E1 obd for a single site (K_d = 517 nM) and a comparable affinity for two correctly spaced E1 sites (32 nM) [43]. Consistent with its more numerous DNA contacts, the SV40–T-ag obd–DNA interaction buries a larger surface area (approximately 1,600 Å^2 per obd–GAGGC interaction, shown in Figure 3C) than the analogous E1 obd–DNA interaction (approximately 1,000 Å^2 for E1/ATTGT1). This could help explain the higher affinity of T-ag obd for its DNA target site. In addition, T-ag obd binds approximately 10-fold more tightly to its specific binding site than to random DNA [36], whereas E1 binds less than 2-fold more tightly [43]. These data may also explain why DNA binding by T-ag obd is more specific than that of the E1 obd and why E1 requires a helper protein (E2) to load it onto the DNA and T-ag does not.
In addition, the cysteine residue bridging the two obds (Cys216) is completely conserved across the Polyoma virus family, and the C216G mutation in T-ag has been shown to be defective in unwinding closed circular DNA [44]. In summary, although the existing literature clearly indicates that the residues at the protein–protein interface observed in the disulfide-linked dimer are important for T-ag assembly and helicase function, this similarity could be coincidental. Furthermore, while we believe that something like the dimeric structure we observe may well be important for stabilization of the T-ag double hexamer, the structure we present cannot be considered evidence of this.

Changes in obd Conformation upon DNA Binding

Our previously published crystal structure of T-ag obd in the absence of DNA showed an open-ring conformation having six obds per turn [14]. Together with the two crystal structures presented here, each with two copies of the obd in the asymmetric unit cell, we now have five crystallographically independent structures of T-ag obd monomers for comparison. Interestingly, the B2 loop, which makes the majority of the DNA contacts, is virtually identical with and without the DNA (Figure 6A). Pairwise least-squares superpositions of these T-ag obd monomers reveal root-mean-square deviations in Cα positions of 0.4–1 Å. The superposition, shown in Figure 6A, reveals that the most dramatic difference in the structures occurs in the A1 loop and that the amino acid that varies most is Phe151 (approximately 4 Å Cα–Cα distance, approximately 7 Å tip–tip distance). Although there are five crystallographically independent molecules, only two conformations are seen. The two obds from the DNA complex structure have the A1 loop in one orientation (“down”), while the three obds crystallized in the absence of DNA have the A1 loop in another conformation (“up”). There is no steric clash of the A1 loop that would force this change in conformation (from “up” to “down”) upon binding DNA. Rather, shape and charge complementarity appear to favor the “down” orientation in the presence of DNA. Phe151 comprises an integral portion of the protein–protein interface observed in the spiral t r u c t u r e a n dp e r h a p sp l a y sar o l ei nt h es t r u c t u r a l reorganization of the obds from origin recognition to oligomerization. Interestingly, in the portion of the A1 loop that provides sequence-specific interactions, namely Asn153 and Arg154, the position of the Cα hardly changes between the DNA-bound and DNA-unbound forms. This indicates that the sequence-specific determinants for DNA binding are preformed in the absence of DNA. The residues in loop B3 also exhibit some differences among the three structures, but the electron density in this region was poor in all structures except the disulfide-linked one.

Relative Orientation of T-ag obd Monomers

While the structures of the individual monomers of T-ag obd are very similar, there are significant differences in the relative orientation of the monomers in the two crystal structures reported here. Both the co-structure and the dimer structure are oriented in a head-to-head fashion with the B3 loops pointed toward one another, but when one superimposes one monomer of the disulfide-linked dimer onto a DNA-bound monomer, the second set of monomers differ in orientation by 104° (Figure 6B). The molecular orientations
in these two structures also differ significantly from that seen in the spiral ring of obd subunits, and from our model of the head-to-head interaction of these spirals. These differences reinforce our prediction that the T-ag obd spiral seen in the previous crystal structure of this domain cannot exist at the same time as the T-ag obd–DNA–specific complex. If the DNA travels down the center of the spiral structure, the A1 and B2 loops in the spiral are neither close enough nor oriented properly to engage the GAGGC sequences as seen in the co-structure (Figure 7, right). Significant structural rearrangement would be required, and the consequences of these rearrangements are considered below.

A Model of T-ag Assembly and DNA Threading

In this paper we present crystal structures of the SV40 T-ag obd in the presence and absence of DNA. Together, with the previously solved high-resolution “spiral hexamer” of T-ag obd, these results provide a structural framework upon which to describe the molecular events require for initiation of SV40 DNA replication. Formation of the helicase-competent T-ag–DNA complex involves at least four molecular events: monomer recognition of the dsDNA at the origin, assembly of hexamers and double hexamers on DNA, DNA melting, and threading of the DNA through the T-ag complex. Although the sequence of these events remains unclear, and some steps may occur simultaneously, the extensive literature on T-ag and related systems allows us to propose a temporal context for the crystal structures presented here (Figure 8).

In our model, the initial step in origin recognition involves formation of a complex very similar to that seen in our DNA co-structure. Although the helicase domain can bind DNA [45–47], only the obds contain significant nucleotide sequence specificity, and it is thus reasonable to propose that binding of individual obds to individual GAGGC binding sites occurs first in the assembly process. As suggested by earlier studies involving T-ag (reviewed in [1]) and those involving papillomavirus E1 [31], the T-ag obds occupying P1 and P2 would ultimately belong to one hexamer, while those occupying P3 and P4 would belong to the other hexamer (Figure 7). A single pentameric sequence is statistically likely to occur once every 512 base pairs [(4^5)/2] and does not in itself provide much selectivity. Two correctly spaced pentamers should, however, occur only once every 500,000 base pairs. Consistent with this idea, an individual GAGGC sequence supports single-hexamer formation of T-ag [28], but occupancy of at least two correctly spaced binding sites (eg, the inverted repeats P1 and P3) is required for double-hexamer formation [28,35,48].

Within a single hexamer, the dominant T-ag–T-ag interaction likely occurs through the helicase domains (an interaction that buries 4,344 Å² in the presence of ATP [11]). Whereas these domains readily form hexamers in the absence of the obd [49], isolated obds have little propensity to interact with one another in solution, and in the crystal structure of the obds arranged in a 6-fold symmetric spiral, the buried surface area between these domains is only 1,300 Å² [14]. Nonetheless, mutation of residues within the obd at positions F183 and S185 disrupts formation of T-ag hexamers, suggesting that the obds are also important to the integrity of the hexameric complex [50]. Both of these residues occur at or near the T-ag DNA binding loops.
does not seem likely during the very early stages of assembly. These domains (in either single- or double-hexamer formation) thus, while interactions among the obds may be isolated obds exhibit no cooperativity in their DNA binding bound to DNA. This is consistent with the observation that presented here, obds do not interact with one another while origin recognition involves the binding of obd subunits to complex. As described above, we believe that the first step in important for the integrity of the double-hexamer T-ag impairs double-hexamer formation [19]. Thus, several lines of evidence suggest that interaction among obd subunits may be important for the integrity of the double-hexamer T-ag complex. As described above, we believe that the first step in origin recognition involves the binding of obd subunits to unmelted GAGGC pentamers, and in the co-structure presented here, obds do not interact with one another while bound to DNA. This is consistent with the observation that isolated obds exhibit no cooperativity in their DNA binding [36]. Thus, while interactions among the obds may be important later in the assembly process, interaction among these domains (in either single- or double-hexamer formation) does not seem likely during the very early stages of assembly.

The model in which the obds bind to their respective GAGGC sites before other assembly events is attractive in a number of respects, most importantly, because it suggests an explanation for how the DNA is threaded through the T-ag double hexamer. In this model, double-hexamer assembly and DNA threading occur simultaneously. The obd of T-ag serves to anchor and orient the complex at a distinct location on the DNA, and strand selection occurs as a consequence of this location, the nature of the protein–DNA interactions, and the dynamics of the spontaneous ring formation of the helicase domains. Similar models have been presented (reviewed in [51]); however, given the structures presented here and recent developments in our understanding of helicase domain–ssDNA interactions [20,26,47], we believe these models need some modification. As pointed out by Emmark et al. [20], the diameter of the central channel of the T-ag helicase domains is too small to accommodate dsDNA, but it can accommodate ssDNA. Thus, we believe that DNA strand separation occurs as a consequence of the hexamerization of the helicase domains around a single DNA strand. Binding of a single strand is supported by the crystal structure of the BPV E1 helicase domain in complex with ssDNA [20], and our model of SV40 assembly is also in line with the steric exclusion mechanism used by other hexameric helicases such as the Escherichia coli transcriptional terminator Rho [52].

Once the proper strands have been selected and assembly of the double hexamer is under way, T-ag must release the double-stranded GAGGC binding sites to which it is attached. In our model, once the obds are no longer needed for origin recognition, they transition into a double-ring structure, and we believe this structure helps to hold together the T-ag double hexamer. This model positions the amino acids in helix αB (K167) and in loop B3 (Q213, L215, and F220), which when mutated result in defects in double-hexamer formation [19], opposite one another on two head-to-head rings composed of obds, and is consistent with electron microscopic images showing the obds at the hexamer–hexamer interface [15].

We envision that the DNA containing the pentamers is melted at this point, with opposing strands passing through each of the two helicase domain rings. The diameter of the inner channel (approximately 30 Å) of the T-ag obd spiral hexamer crystal structure is sufficiently large to accommodate either dsDNA or two single strands of DNA. In the obd spiral structure, the DNA-binding regions (the A1 and B2 loops) are rotated away from the DNA axis and thus can no longer engage the pentamers in a sequence-specific manner. This structural rearrangement explains how the same residues on the T-ag obd can be responsible for both base-specific DNA recognition of the duplex and nonspecific duplex and ssDNA binding [26].

It has been shown that assembly of the double hexamer of T-ag causes DNA strand separation of the early palindrome region (reviewed in [6]) and, presumably, melting of the AT flanking sequences would follow. If the assembly of the double hexamer of T-ag causes DNA strand separation on either side of Site II (within the flanking sequences), the structural transition of the obds from origin recognition to formation of a hexameric ring could be promoted by melting of the DNA within the obd binding sites. The high local concentration of obds resulting from formation of this dodecameric complex also might be expected to shift the

Figure 8. Schematic of SV40 T-ag Assembly on Origin DNA

The SV40 origin dsDNA is depicted as two ribbons. The SV40 T-ag N-terminal J domain is omitted for clarity. The SV40 T-ag domains are depicted as follows: the obd (yellow spheres), the helicase domain (yellow ellipsoids), and the flexible linker that connects them (green). (A) The T-ag obd binds its high-affinity GAGGC sites. The T-ag obd anchors the protein on the four GAGGC pentamers and thus orients the helicase domain for appropriate DNA strand selection in the subsequent steps. The obds on P2 and P4 are shown as transparent spheres to indicate that they are not crucial for single-hexamer formation but are required for unwinding. The helicase domains may interact as monomers with the DNA in a non-sequence-specific manner at this point. (B) Once the origin has been recognized by the obds, the two helicase domains each hexamericize around one strand of DNA. As a result, one strand goes through the central channel of the helicase domain, and the other traverses the surface of the helicase domain. This is consistent with the crystal structure of the E1 helicase domain with ssDNA [20], and this model is similar to that proposed for other hexameric helicases [50]. It is not known whether the DNA at site II is melted at this point or not. Twelve obds are now in close proximity and may now interact with one another despite relatively weak affinities. (C) Interaction between the two hexamers could occur through a series of obd–obd structural rearrangements wherein these domains transition from the site-specific complex with the A1 and B2 loops fully engaged with the DNA, to a structure where loop B3 makes contacts across a pair of obds (possibly as spirals). The A1 and B2 loops are now oriented away from the central channel (and are proximal to the helicase domains). The open ring spiral hexamer of the T-ag obd would allow access of ssDNA from the outside surface of the helicase domain to the center of the channel. This channel is positively charged and sufficiently wide (approximately 30 Å) to accommodate two ssDNA strands moving in opposite directions. It is likely that the obds are dynamic and fluctuate between differing states of interaction, including aclosed hexameric ring, depending on the requirement to interact with ssDNA, dsDNA, or other factors, such as the SSB hRPA. The double hexamer is now assembled and ready to recruit other host factors necessary for replication (for a review, see [3]).

doi:10.1371/journal.pbio.0050023.g008
equilibrium in favor of ring formation of the obs, despite their weak propensity for self-association (Figure 8).

Many of the same residues of T-ag obd that bind the DNA have also been shown to bind the ssDNA binding-protein human RPA [27], an interaction that is likely to cause steric clashes in the spiral hexamer unless one or more of the obs rotate out from the central ring so as to more fully expose their A1 and B2 loops. While the spiral already provides a “gap” for the ssDNA strand to exit the ring, such a rotation of obs away from the DNA would allow both easier access for accessory proteins such as hRPA and easier egress for ssDNA. This model suggests that the region in the center of the T-ag double hexamer is dynamic and would lack the distinct, 6-fold symmetric symmetry present in the helicase domains, a picture consistent with the results of recent single particle analysis. In BPV, the obd-binding sites analogous to the DNA would allow both easier access for ssDNA and refine our understanding of this complex system.

Conclusion

In conclusion, the various structures of the SV40 T-ag obd on and off its DNA target have delineated the atomic determinants of DNA binding and have allowed us to propose a model of the rearrangements that the obd undergoes as T-ag progresses from origin recognition to formation of the dodecameric complex. Despite the gross similarities between SV40 T-ag and BPV E1, there appear to be some significant differences in the modes of assembly between the two systems. First, the BPV E1–E1 dimer interface has been shown to be important for E1 to bind its DNA target [30]. Interaction between SV40 T-ag obs on DNA is not observed in our crystal structure, and such interactions cannot occur without significant DNA deformation. Second, the BPV E1 is thought to form head-to-head double trimers on DNA prior to forming double hexamers [42]. In BPV, the obd-binding sites analogous to P1 and P2 are separated by approximately 120° along the DNA helical axis, and it is easy to see how a trimmer of obs on DNA might form. The architecture of the SV40 origin, however, places sites P1 and P2 roughly 180° apart. Thus, from a structural standpoint, a 3-fold symmetric intermediate of T-ag on DNA is hard to justify. Furthermore, biochemical studies suggest that T-ag forms only monomers, hexamers, and, in the presence of an appropriate DNA, double hexamers [49].

Recent progress has provided atomic-resolution pictures of a number of key interactions among T-ag domains and with DNA. Among these are the interaction between obd monomers that facilitate their assembly into open rings containing a 30-Å inner diameter [14], the interactions between the helicase domain subunits that allow these domains to assemble into 6-fold symmetric machine that couples ATP hydrolysis to DNA translocation [9,11], the interactions between the related BPV E1 helicase rings and ssDNA [20], and the interactions between the obds and dsDNA that explain how origins are recognized. While some aspects, most notably, the determinants holding together the double hexamers, remain uncertain, this collection of high-resolution structures has allowed us to develop very specific predictions which can now be probed experimentally to test and refine our understanding of this complex system.

Materials and Methods

Protein expression and purification. The SV40 T-ag obd (amino acids 131–260) was overexpressed in *E. coli* as a GST-fusion and purified as previously described [14]. The purified protein was dialyzed into storage buffer (10 mM Tris [pH 7.5], 50 mM NaCl, 10% glycerol, 1 mM DTT), concentrated by ultrafiltration using a VivaSpin 500 (VivaScience, http://www.vivascience.com), aliquoted and flash-frozen in liquid nitrogen, and stored at −80 °C.

DNA purification. Synthetic DNA oligonucleotides were synthesized by the Applied Biosystems phosphoramidite method (Keddy Faculty, Yale University, New Haven, Connecticut, United States). The oligomers were cleaved and depurinated while in the cartridge. The oligomers were detritylated and purified in a single step using a semipreparative DNApure column (Rainin Instruments, http://www.rainin.com). Oligomers were lyophilized to dryness and resuspended in 10 mM Tris (pH 7.5), 50 mM NaCl.

DNA duplex formation and crystallization. Duplex DNA was formed by mixing a 1:1 ratio of complementary oligomers in annealing buffer (10 mM Tris [pH 8], 50 mM NaCl) based on the calculated extinction coefficient at 260 nm. The concentration of DNA was approximately 0.1 mM. The mixture was heated in a water bath to 94 °C and allowed to cool slowly over several hours to 4 °C. The duplex DNA was stored at −20 °C until ready for use.

The T-ag obd-DNA complex was prepared in a 2:1.1 molar ratio by slowly adding duplex DNA (approximately 0.1 mM) to the T-ag obd (approximately 5 to 8 mg/ml). The result mixture was further concentrated to a T-ag obd concentration approximately 20 mg/ml by ultrafiltration using a VivaSpin 500 (VivaScience). The complex was then flash-frozen in liquid nitrogen and stored at −80 °C. The T-ag obd in complex with the 21-mer duplex DNA were grown at 4 °C under paraffin oil in sitting drops using a microbatch optimization strategy [53]. From 3 to 6 μl of crystallization solution (0.12 M sodium cacodylate [pH 6.3], 0.24 M calcium acetate, 14% v/v PEG 8000) were mixed with 5 μl of the T-ag obd-DNA complex in a 150-μl PCR tube. This mixture was placed in a sitting drop under paraffin oil.

Crystals grew in approximately 5 d as thin plates. Crystals of the T-ag obd dimer (in the absence of DNA) were grown by vapor diffusion using the hanging drop method at 20 °C. Then 1 μl of the T-ag obd (8.8 mg/ml) in storage buffer was mixed with 1 μl of a reservoir solution consisting of 30% PEG 4000, 0.1 M sodium citrate (pH 5.6), and 0.2 M ammonium acetate. The drop was equilibrated over a 0.4 ml reservoir solution. Crystals grew in approximately 1 wk.

Structure determination and refinement. For the DNA complex, single crystals were harvested and slowly transferred to a final cryogenic solution (0.1 mM sodium cacodylate [pH 6.3], 0.1 M calcium acetate, 30% v/v PEG 8000, 20% glycerol) and flash-frozen in liquid nitrogen, and stored at −80 °C.

A molecular replacement search model based upon coordinates of a T-ag obd in complex with a 5-bp duplex GAGGC (Alexey Bochkarev, personal communication) was constructed. Molecular replacement was performed with the program Phaser [50] in all primitive orthorhombic space groups. Phaser identified the space group as P2₁2₁2₁, and positioned two molecules of the T-ag obd in the asymmetric unit. The missing DNA was visible in the resulting electron density map and was built using the molecular graphics program COOT [57]. Although the protein in these crystals has a unique orientation, the DNA can be positioned in two different orientations without changing the R-factor. As the DNA sequence is pseudo-palindromic, this static disorder in our crystals had no deleterious effect on the quality of the electron density at the Cα/C of repeats or at the DNA phosphate backbone. The density for the bases outside of the protein-binding sites, however, was equally consistent with either of the two possible DNA orientations. As attempts to model both DNA orientations simultaneously (each with half occupancy) did not significantly reduce either the working or the free R-factor, only one of the two orientations is present in our final model of the DNA-protein complex. In addition, no sequence-specific protein–DNA contacts occur outside the GAGGC sequences. Multiple rounds of building and simulated annealing were performed with the program CNS [58] or REFMAC [59]. A simulated annealing omit map is shown in Figure S2A. The final rounds of refinement with CNS included TLS refinement. The final model consists of two molecules of T-ag obd, one 21-mer duplex DNA, and 70 water molecules. The final R-factor and R-free are 20.5% and 29.0% (from REFMAC). Refinement statistics for the final 2.4-A model are summarized in Table I.

For the T-ag obd dimer crystal, single crystals were harvested, slowly transferred to a final cryogenic solution (0.1 M sodium citrate [pH 5.6], 0.2 M ammonium acetate, 30% PEG 4000, 20% glycerol) and flash-frozen in LN2. Data to 2.6 Å were collected at Beamline X29 at the Department of Energy’s Advanced Photon Source (Argonne, IL). The data were processed with HKL2000 [54] and scaled with SCALA [55].

A molecular replacement search model based upon coordinates of a T-ag obd in complex with a 5-bp duplex GAGGC (Alexey Bochkarev, personal communication) was constructed. Molecular replacement was performed with the program Phaser [50] in all primitive orthorhombic space groups. Phaser identified the space group as P2₁2₁2₁, and positioned two molecules of the T-ag obd in the asymmetric unit. The missing DNA was visible in the resulting electron density map and was built using the molecular graphics program COOT [57]. Although the protein in these crystals has a unique orientation, the DNA can be positioned in two different orientations without changing the R-factor. As the DNA sequence is pseudo-palindromic, this static disorder in our crystals had no deleterious effect on the quality of the electron density at the Cα/C of repeats or at the DNA phosphate backbone. The density for the bases outside of the protein-binding sites, however, was equally consistent with either of the two possible DNA orientations. As attempts to model both DNA orientations simultaneously (each with half occupancy) did not significantly reduce either the working or the free R-factor, only one of the two orientations is present in our final model of the DNA-protein complex. In addition, no sequence-specific protein–DNA contacts occur outside the GAGGC sequences. Multiple rounds of building and simulated annealing were performed with the program CNS [58] or REFMAC [59]. A simulated annealing omit map is shown in Figure S2A. The final rounds of refinement with CNS included TLS refinement. The final model consists of two molecules of T-ag obd, one 21-mer duplex DNA, and 70 water molecules. The final R-factor and R-free are 20.5% and 29.0% (from REFMAC). Refinement statistics for the final 2.4-A model are summarized in Table I.
the National Synchrotron Light Source at a wavelength of 0.9791 Å, at 100K, and using a Quantum 315 detector. The data were processed with HKL2000 and scaled with SCALAL. The crystals were characterized as having the space group C2 with two molecules in the asymmetric unit. A molecular replacement search model from the x-ray coordinates of the T-ag obd was made. The structure was solved by molecular replacement using the program PHASER. The resulting electron density showed clear density for a disulfide bridge between the two monomers. The model was built and refined using the molecular graphics program COOT. Several rounds of building and simulated annealing were performed with the program CNS or REFMAC. The final model consists of two molecules of T-ag obd and 51 waters. The final R factor and Rfree values are 29.82% and 29.58% (from REFMAC). Refinement statistics are summarized in Table 1.

Figures were made using the molecular graphics program PyMOL [60]. The DNA structure was analyzed using the programs 3DNA [61] and MADDEN [62].

Supporting Information

Figure S1. Simulated Annealing Omit Map of a GAGGC Duplex

To remove phase bias, this region of our model (a GAGGC duplex) was removed and the remaining atoms were subjected to simulated annealing refinement in CNS prior to map calculation. The electron density of the F₁–F₂ map is contoured at 2σ. The GAGGC strand is colored pink and its complement is cyan.

Found at doi:10.1371/journal.pbio.0050023.sg001 (565 KB PPT).

References

1. Bullock PA (1997) The initiation of simian virus 40 DNA replication in vitro. Crit Rev Biochem Mol Biol 32: 563–568.
2. Fanning E, Knippers R (1992) Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem 61: 55–85.
3. Simmons DT (2000) SV40 large T antigen functions in DNA replication and transcription. Adv Virus Res 55: 75–111.
4. Robinson NP, Bell SD (2005) Origins of DNA replication in the three domains of life. FEBS J 272: 3757–3766.
5. Mendez J, Stiffler B (2005) Perpetuating the double helix: Molecular machines at eukaryotic DNA replication origins. Bioessays 25: 1138–1147.
6. Borowiec JA, Dean FB, Bullock PA, Hurwitz J (1999) Binding and unwinding—How T antigen engages the SV40 origin of DNA replication. Cell 90: 181–184.
7. Chen G, Stenlund A (1998) Characterization of the DNA-binding domain of the bovine papillomavirus replication initiator E1. J Virol 72: 2567–2576.
8. Chen G, Stenlund A (2001) The E1 initiator recognizes multiple overlapping sites in the papillomavirus origin of DNA replication. J Virol 75: 2952–2962.
9. Li D, Zhao R, Lilestrom W, Gai D, Zhang R, et al. (2005) Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423: 512–518.
10. Kim HY, Ahn BY, Cho Y (2001) Structural basis for the inactivation of reniformin tumor suppressor by SV40 large T antigen. EMBO J 20: 295–304.
11. Gai D, Zhao R, Li D, Finkelstein CV, Chen XS (2004) Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119: 47–60.
12. Lilestrom W, Klein MG, Zhang R, Joachimiak A, Chen XS (2006) Crystal structure of SV40 large T-antigen bound to p53: Interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev 20: 2373–2382.
13. Luo X, Sanford DG, Bullock PA, Bachovchin WW (1996) Structure solution of the origin DNA-binding domain of SV40 T-antigen. Nat Struct Biol 3: 1034–1039.
14. Menke G, Bullock PA, Bohm A (2006) Crystal structure of the simian virus 40 large tumor antigen binding domain. J Virol 80: 4304–4312.
15. Valle M, Gruss C, Halmer L, Carazo JM, Donate LE (2000) Large T-antigen and single stranded DNA provides insights into DNA unwinding and initiation of DNA replication. J Virol 64: 1973–1983.
16. Reese DK, Meinke G, Kumar A, Moine S, Chen K, et al. (2005) Analyses of the interaction between the origin binding domain from simian virus 40 T-antigen and single stranded DNA provides insights into DNA unwinding and initiation of DNA replication. J Virol 80: 12248–12259.
17. Arun Kumar AI, Klimovich V, Jiang X, Ott RD, Mizoue I, et al. (2005) Insights into hRPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol 12: 332–339.
18. Valle M, Chen XS, Donate LE, Fanning E, Carzo JM (2006) Structural basis for the cooperative assembly of large T-antigen on the origin of replication. J Mol Biol 357: 1295–1305.
19. Simmons DT, Loeger G, Tegtmeyer P (1999) Four major sequence elements of simian virus 40 large T-antigen coordinate its specific and nonspecific DNA binding. J Virol 64: 1973–1983.
20. Reese DK, Meinke G, Kumar A, Moine S, Chen K, et al. (2006) Analyses of the interaction between the origin binding domain from simian virus 40 T-antigen and single stranded DNA provides insights into DNA unwinding and initiation of DNA replication. J Virol 80: 12248–12259.
21. Arun Kumar AI, Klimovich V, Jiang X, Ott RD, Mizoue I, et al. (2005) Insights into hRPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol 12: 332–339.
22. Joo WS, Kim HY, Purviance JD, Sreekumar KR, Bullock PA (1998) Assembly of T-antigen double hexamers on the simian virus 40 core origin requires only a subset of the available binding sites. Mol Cell Biol 18: 2677–2687.
23. Stenlund A (2005) Initiation of DNA replication: Lessons from viral initiator proteins. Nat Rev Mol Cell Biol 4: 777–785.
24. Enemark EJ, Chen G, Vaughan DF, Stenlund A, Joshua-Tor L (2000) Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus. Mol Cell 6: 149–158.
25. Enemark EJ, Stenlund A, Joshua-Tor L (2000) Crystal structure of two intermediates in the assembly of the papillomavirus replication initiation complex. EMBO J 21: 1487–1496.
26. Amster AS, Joshua-Tor L (2004) The DNA-binding domain of human papillomavirus type 18 E1. Crystal structure, dimerization, and DNA binding. J Biol Chem 279: 3733–3742.
27. Hickman AB, Ronning DR, Kotin RM, Dyda F (2002) Structural unity among viral origin binding proteins. Crystal structure of the nucleosome domain of adenoaden-associated virus Rep. Mol Cell 10: 327–337.
28. Campos-Ortiz R, Louis JM, Clerot D, Gronenborn B, Gronenborn AM (2002) The structure of a replication initiator imitates diverse aspects of nucleosome and metazoan histone H2A. Proc Natl Acad Sci U S A 99: 10310–10315.
29. Sreekumar KR, Prack AE, Winters DR, Barbaro BA, Bullock PA (2006) The simian virus 40 core origin contains two separate sequence modules that support T-antigen double-hexamer assembly. J Virol 74: 8589–8600.

Acknowledgments

We thank Michael Becker and Howard Robinson at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, for help with data collection at beamlines X25 and X29. The NSLS is funded by the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and by the National Center for Research Resources of the National Institutes of Health. We thank Kathryn Heard for help with refinement of the T-ag obd dimer structure.

Author contributions. GM and PAB conceived and designed the experiments, GM and A. Bohm performed the experiments and analyzed the data, GM, PP, SM, EB, and A. Bochkarev contributed reagents/materials/analysis tools. GM, PAB, and A. Bohm wrote the paper.

Funding. This work was supported by National Institutes of Health grants RO1 GM055397–12 and RO1 GM055397-12S1 (PAB).

Competing interests. The authors have declared that no competing interests exist.

Accession Numbers

Protein Data Bank (http://www.rcsb.org/pdb) accession numbers for the coordinates of the T-ag obd co-structure and disulphide-linked dimer are 2NTC and 2IF9, respectively, and for the T-ag obd residues that comprise the protein–protein interface in the spiral hexamer, 2FU. The information for E1 was obtained from the crystal structures of E1-obd with and without DNA (Protein Data Bank accession numbers 1F08, 1KSY, and 1KXS).
36. Titolo S, Welchner E, White PW, Archambault J (2003) Characterization of the DNA-binding properties of the origin-binding domain of simian virus 40 large T antigen by fluorescence anisotropy. J Virol 77: 5512–5518.
37. Jones KA, Tjian R (1984) Essential contact residues within SV40 large T antigen binding sites I and II identified by alkylation-interference. Cell 36: 155–162.
38. SenGupta DJ, Borowiec JA (1994) Strand and face: The topography of interactions between the SV40 origin of replication and T-antigen during the initiation of replication. EMBO J 13: 982–992.
39. Wright PJ, DeLucia AL, Tegtmeyer P (1984) Sequence-specific binding of simian virus 40 A protein to nonorigin and cellular DNA. Mol Cell Biol 4: 2631–2638.
40. Pipas JM (1992) Common and unique features of T antigens encoded by the polyomavirus group. J Virol 66: 3979–3985.
41. Bradshaw EM, Sanford DG, Luo X, Sudmeier JL, Gurard-Levin ZA, et al. (2004) T antigen origin-binding domain of simian virus 40: Determinants of specific DNA binding. Biochemistry 43: 6928–6936.
42. Schuck S, Stenlund A (2005) Assembly of a double hexameric helicase. Mol Cell 20: 377–389.
43. Titolo S, Brault K, Majewski J, White PW, Archambault J (2003) Characterization of the minimal DNA binding domain of the human papillomavirus E1 helicase: Fluorescence anisotropy studies and characterization of a dimerization-defective mutant protein. J Virol 77: 5178–5191.
44. Wun-Kim K, Upson R, Simmons DT (1993) Biochemical analysis of mutants with changes in the origin-binding domain of simian virus 40 tumor antigen. J Virol 67: 4227–4236.
45. Patel SS, Donmez I (2006) Mechanisms of helicases. J Biol Chem 281: 18265–18268.
46. Walmacq C, Rahmouni AR, Boudvillain M (2006) Testing the steric exclusion model for hexameric helicases: Substrate features that alter RNA-DNA unwinding by the transcription termination factor rho. Biochemistry 45: 5883–5893.
47. Rayment I (2002) Small-scale batch crystallization of proteins revisited: An underutilized way to grow large protein crystals. Structure 10: 147–151.
48. Emsley P, Cowtan K (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.
49. Murshudov GN, Vagin A, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255.
50. DeLano WL (2002) The PyMOL user’s manual. San Carlos (California): DeLano Scientific LLC. Available: http://pymol.sourceforge.net. Accessed 7 December 2006.
51. Lu XJ, Olson WK (2003) 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31: 5108–5121.
52. Stracholl DD, Schlick T (2000) A-tract bending: Insights into experimental structures by computational models. J Mol Biol 301: 643–663.

Note Added in Proof:
Reference 63 is cited out of order in the article because it was added while the article was in proof.

53. Jiang X, Klimovich V, Arunkumar AL, Hysinger EB, Wang Y (2006) Structural mechanism of RPA loading on DNA during activation of a simple pre-replication complex. EMBO J 25: 1–11.