A vanishing theorem for quadratic intersection multiplicities

Niels Feld

Abstract

We study intersection theoretic problems in the setting of Chow-Witt groups with coefficients in a fixed Milnor-Witt cycle algebra over a perfect field. We prove that the product maps on such groups satisfy the following property: given two points in a regular local scheme with supports which do not intersect properly, their product vanishes. This gives an analogue of Serre’s vanishing result for intersection multiplicities.

MSC—14C17, 14C35, 11E81

1 Introduction

1.1 Current work

Classical intersection theory [Ful98] stands on the study of cycles in Chow groups. Thus, many classical results could be reinterpreted in the new context given by Chow-Witt groups. For example, if R is a regular local ring of dimension d, and M and N are two R-modules of finite type such that the product $M \otimes N$ has a finite length, then Serre defines an intersection multiplicity

$$\chi_R(M, N) = \sum_{i=0}^{d} (-1)^i \lg_R(Tor_i^R(M, N)),$$

where \lg_R is the length of an R-module of finite type. Serre vanishing conjecture states that if $\dim M + \dim N < d$, then $\chi_R(M, N) = 0$ (see the work of Roberts [Rob85], and Gillet-Soulé [GS85, GS87] for a proof in the general case). The appeal of Serre’s multiplicities comes from the fact that they can be used to compute the product of cycles in the Chow ring of a variety.

Following ideas of [FS08], we would like to have a similar description of the intersection product defined for Milnor-Witt cycle modules in [Fel20, Section 11]. In particular: does the intersection multiplicities of Serre have a quadratic interpretation? The question is difficult. Nevertheless, keeping in mind Serre vanishing conjecture and [FS08] Conjecture 1, the following result seems plausible:

Conjecture 1. Let (R, \mathfrak{m}) a regular local ring of dimension n. Let Z and T be two closed subsets of Spec R such that $\dim Z + \dim T < n$ and $Z \cap T = \mathfrak{m}$. Then the multiplication [Fel20, Section 11]

$$\overline{CH}_Z^i(R) \times \overline{CH}_T^j(R) \to \overline{CH}_{i+j}^\mathfrak{m}(R)$$
is zero for any natural numbers $i, j \in \mathbb{N}$.

As evidence, we have the following theorem (see Subsection 1.2 and Appendix A for the notations and more details about the definitions).

Theorem 2 (see Theorem 2.2.1). Let M be a Milnor-Witt cycle algebra over a fixed perfect field k. Let X be a regular local scheme of dimension n over k and denote by x_0 its closed point. Let V_X be a virtual vector bundle over X. Let Z and T be closed subsets of X such that $Z \cap T = \{x_0\}$. Then the intersection product

$$A^i_Z(X, M, V_Z) \times A^j_T(X, M, V_T) \to A^{i+j}_{x_0}(X, M, V_{x_0})$$

is zero for any $i, j \in \mathbb{Z}$.

In particular for $M = K^{MW}$, this is true for the intersection product defined on the Chow-Witt ring of X. More generally, the theorem apply to any ring spectrum M according to Theorem A.2.2.

In the future, we hope to extend Theorem 2 to more general schemes X/k (the theory of Milnor-Witt cycle modules can be defined over a large class of base scheme S, see [DFJ22]). Another direction would be to consider effective MW-cycle modules in the sense of [Fel21b].

Finally, we add that Conjecture 1 remains unclear if we do not assume the existence of a base field. Nevertheless, following the ideas of Gillet-Soulé [GS85], a proof may still be obtained by studying analogues of the Adams operations (see [FH20]).

1.2 Notation

Throughout the paper, we fix a perfect field k.

We denote by Grp and Ab the categories of (abelian) groups.

We consider only schemes that are essentially of finite type over k. All schemes and morphisms of schemes are defined over k. The category of smooth k-schemes of finite type is denoted by Sm_k and is endowed with the Nisnevich topology (thus, sheaf always means sheaf for the Nisnevich topology).

Let X be a scheme and x a point of X. We define the codimension of x in X to be $\dim(O_{X, x})$, the dimension of the localisation ring of x in X (see also [Sta18, TAG 02l2]). If n a natural number, we denote by $X(n)$ (resp. $X^{(n)}$) the set of point of dimension n (resp. codimension n) of X (this makes sense even if X is not smooth).

By a field E over k, we mean a k-finitely generated field E. Since k is perfect, notice that $\text{Spec } E$ is essentially smooth over S. We denote by \mathcal{F}_k the category of such fields.

Let $f : X \to Y$ be a (quasi)projective lci morphism of schemes (e.g. a morphism between smooth schemes). Denote by \mathcal{L}_f (or $\mathcal{L}_{X/Y}$) the virtual vector bundle over Y associated with the cotangent complex of f defined as follows: if $p : X \to Y$ is a smooth morphism, then \mathcal{L}_p is (isomorphic to) $\Omega_{X/Y}$ the space of (Kähler) differentials. If $i : Z \to X$ is a regular closed immersion, then \mathcal{L}_i is the normal cone $\mathcal{N}_Z X$. If f is the composite $Y \longrightarrow \mathbb{P}^n_X \overset{p} \longrightarrow X$ with p and i as previously (in other words, if f is lci projective), then \mathcal{L}_f is isomorphic to the virtual tangent bundle $i^*\Omega_{\mathbb{P}^n_X/X} \simeq \mathcal{N}_Y (\mathbb{P}^n_X)$ (see also [Fel20, Section 9]). Denote by ω_f (or $\omega_{X/Y}$) the determinant of \mathcal{L}_f.

2
Let X be a scheme and $x \in X$ a point, we denote by $L_x = (\mathfrak{m}_x/\mathfrak{m}_x^2)^{\vee}$ and $\omega_x/X = \omega_x$ its determinant. Similarly, let v a discrete valuation on a field, we denote by ω_v the line bundle $(\mathfrak{m}_v/\mathfrak{m}_v^2)^{\vee}$.

Let E be a field (over k) and v a valuation on E. We will always assume that v is discrete. We denote by ω its valuation ring, by \mathfrak{m}_v its maximal ideal and by $\kappa(v)$ its residue class field. We consider only valuations of geometric type, that is we assume: $k \subset \mathfrak{O}_v$, the residue field $\kappa(v)$ is finitely generated over k and satisfies $\text{tr.deg}_k(\kappa(v)) + 1 = \text{tr.deg}_k(E)$.

Let E be a field. We denote by $\text{GW}(E)$ the Grothendieck-Witt ring of symmetric bilinear forms on E. For any $a \in E^*$, we denote by $\langle a \rangle$ the class of the symmetric bilinear form on E defined by $(X, Y) \mapsto aXY$ and, for any natural number n, we put $n\varepsilon = \sum_{i=1}^{n} (-1)^{i-1}$. Recall that, if n and m are two natural numbers, then $(nm)\varepsilon = n\varepsilon m\varepsilon$.

Acknowledgement
I deeply thank Frédéric Déglise, Jean Fasel, Marc Levine, Paul Arne Østvær, Bertrand Toën, Fangzhou Jin and Baptiste Calmès.

2 Main theorem

We fix M a Milnor-Witt cycle algebra over the perfect base field k. We start with proving some geometric lemmas about the Chow-Witt groups with coefficients in M.

2.1 Geometric lemmas

Lemma 2.1.1. Let $g : Y \to X$ be a smooth morphism of finite type schemes of constant fiber dimension 1, $\sigma : X \to Y$ a section of g and \mathcal{V}_X a virtual vector bundle over X. Let $i : Z \to X$ be a closed immersion and consider $\bar{Z} = g^{-1}(Z)$ the pullback along g. The induced map $\bar{\sigma} : Z \to \bar{Z}$ is such that the pushforward $\bar{\sigma}^* : C_\bullet(Z, M, \mathcal{V}_Z) \to C_\bullet(\bar{Z}, M, \mathcal{V}_{\bar{Z}})$ is zero on homology.

Proof. See [Fel21a, Lemma 4.1.5].

Definition 2.1.2. If $k[x_1', \ldots, x_m'] \to k[[x_1, \ldots, x_n]]$ is a morphism between power series algebras over k induced by $x'_i \to \sum a_{ij}x_j$ for some $a_{ij} \in k$, we call the induced map $\text{Spec}(k[x_1', \ldots, x_m']) \to \text{Spec}(k[[x_1, \ldots, x_n]])$ a linear projection. Such linear projection are determined by points in $\mathbb{A}_k^{mn}(k)$.

Lemma 2.1.3. Let $X = \text{Spec}(k[x_1, \ldots, x_n])$ and $Y = \text{Spec}(k[z_1, \ldots, z_{n-1}])$. Let $Z, T \subset X$ be closed subsets such that $\dim Z + \dim T < \dim X$ and $Z \cap T$ is supported on the closed point. Then for any sufficiently general\footnote{See [Mat86] Theorem 14.14} linear projection $p : X \to Y$, we have:

- $Z \neq p^{-1}(p(Z))$
• $p^{-1}(p(Z)) \cap T$ is also supported on the closed point.

Proof. See [FS08, Corollary 2.4].

Lemma 2.1.4. Let $X = \text{Spec}(k[x_1, \ldots, x_n])$ and $Y = \text{Spec}(k[z_1, \ldots, z_{n-1}])$. Let $Z \subset X$ be a proper closed subset. Then for any integer i and any sufficiently general linear projection $p : X \to Y$, then extension of support

$$A^i_Z(X, M, *) \to A^i_{p^{-1}(p(Z))}(X, M, *)$$

is zero.

Proof. (see also [FS08]) As Z is a proper closed subset of X, there exists a nonzero non-unit $t \in k[x_1, \ldots, x_n]$ such that $Z \subset V(t)$. Let $j : V(t) \to X$ be the inclusion. Any sufficiently general linear projection $p : X \to Y$ is flat and has the property that $p|_{V(t)} : V(t) \to Y$ is finite. Consider the following fibre product:

\[
\begin{array}{ccc}
X' & \xrightarrow{f} & X \\
p' \downarrow & & \downarrow p \\
V(t) & \xrightarrow{j} & Y.
\end{array}
\]

The inclusion $j : V(t) \to X$ induces a closed immersion $i' : V(t) \to X'$ such that $f i' = j$. Observe that $V(t)$ is also a principal divisor in X' (see [Sri96, Theorem 5.23]). As closed subsets, we have $p^{-1}(p(Z)) = f p'^{-1}(Z)$ and then it is enough to show that

$$A^i_Z(X, M, *) \to A^i_{p'^{-1}(p(Z))}(X, M, *)$$

is zero to get the result. The following diagram

\[
\begin{array}{ccc}
A^i_Z(X, M, *) & \xrightarrow{\epsilon} & A^i_{f(p')^{-1}(Z)}(X, M, *) \\
\downarrow j_* & & \downarrow f_* \\
A^i_{p^{-1}}(V(t), M, *) & \xrightarrow{(i')_*} & A^i_{p'^{-1}(Z)}(X', M, *).
\end{array}
\]

is commutative, where ϵ is the extension of support. We can see that j_* is an isomorphism. Therefore, Lemma 2.1.4 shows that

$$A^i_{p'(Z)}(X', M, *) \to A^i_{p'^{-1}(Z)}(X', M, *)$$

is zero.

□

Lemma 2.1.5. Let X be a scheme over k and $g : X_{k(t)} \to X$ be the (smooth) base change. Then

$$g^* : A^*(X, M, *) \to A^*(X_{k(t)}, M, - \mathcal{L}_{X_{k(t)}/X} + *)$$

is injective.

Proof. See [Fel20, Theorem 8.3].
2.2 Proof of the main theorem

Theorem 2.2.1. Let M be a Milnor-Witt cycle algebra. Let X be a regular local scheme of dimension n over k and denote by x_0 its closed point. Let V_X be a virtual vector bundle over X. Let Z and T be closed subsets of X such that $Z \cap T = \{x_0\}$. Then the intersection product

$$A^j_Z(X, M, V_Z) \times A^j_T(X, M, V_T) \to A^{i+j}_{x_0}(X, M, V_{x_0})$$

is zero for any $i, j \in \mathbb{Z}$.

In particular for $M = k^{MW}$, this is true for the intersection product defined on the Chow-Witt ring of X.

Proof. Let \hat{X} be the completion of the local ring X (for the x_0-adic valuation). By definition, we have $A^n_{x_0}(X, M, V_{x_0}) \simeq A^n_{\hat{x}_0}(\hat{X}, M, V_{x_0})$ for any integer n, and the following diagram

$$\begin{array}{ccc}
A^j_Z(X, M, V_Z) \times A^j_T(X, M, V_T) & \to & A^{i+j}_{x_0}(X, M, V_{x_0}) \\
\downarrow & & \downarrow \\
A^j_Z(\hat{X}, M, V_Z) \times A^j_T(\hat{X}, M, V_T) & \to & A^{i+j}_{\hat{x}_0}(\hat{X}, M, V_{x_0})
\end{array}$$

is commutative, where the vertical arrows are induced by the completion. Hence, it is enough to prove the result for a complete regular local scheme and we may assume that X is the spectrum of the ring $A = k[x_1, \ldots, x_n]$.

By Lemma 2.1.5, we may also assume that k is infinite. Now, put $B = k[z_1, \ldots, z_{n-1}]$, and apply Lemma 2.1.3 and 2.1.4 there exists a linear projection $p : X \to \text{Spec}(B)$ such that:

1. The extension of support $\epsilon : A^j_Z(X) \to A^j_{p^{-1}(\rho(Z))}(X)$ is zero.
2. $p^{-1}(\rho(Z)) \cap T = x_0$.

The conclusion follows from the following commutative diagram:

$$\begin{array}{ccc}
A^j_Z(X, M, V_Z) \times A^j_T(X, M, V_T) & \to & A^{i+j}_{x_0}(X, M, V_{x_0}) \\
\downarrow_{\epsilon \times \text{id}} & & \downarrow \\
A^i_{p^{-1}(\rho(Z))}(X, M, V_{p^{-1}(\rho(Z))}) \times A^j_T(X, M, V_T) & \to & A^{i+j}_{x_0}(X, M, V_{x_0}).
\end{array}$$

\[\square\]

A Recollection in motivic homotopy theory

A.1 Milnor-Witt cycle modules

We denote by \mathcal{S}_k the category whose objects are the couple (E, V_E) where E is a field over k and $V_E \in \mathfrak{V}(E)$ is a virtual vector space (of finite dimension over F). A morphism $(E, V_E) \to (F, V_F)$ is the data of a morphism $E \to F$ of fields over k and an isomorphism $V_E \otimes E F \simeq V_F$ of virtual F-vector spaces.

A morphism $(E, V_E) \to (F, V_F)$ in \mathcal{S}_k is said to be finite (resp. separable) if the field extension F/E is finite (resp. separable).
We recall that a Milnor-Witt cycle modules M over k is a functor from \mathfrak{G}_k to the category $\mathcal{A}b$ of abelian groups equipped with data.

D1 (restriction maps) Let $\varphi : (E, V_E) \to (F, V_F)$ be a morphism in \mathfrak{G}_k. The functor M gives a morphism $\varphi_* : M(E, V_E) \to M(F, V_F)$.

D2 (corestriction maps) Let $\varphi : (E, V_E) \to (F, V_F)$ be a morphism in \mathfrak{G}_k where the morphism $E \to F$ is finite. There is a morphism $\varphi^* : M(F, \Omega_{F/k} + V_F) \to M(E, \Omega_{E/k} + V_E)$.

D3 (Milnor-Witt K-theory action) Let (E, V_E) and (E, W_E) be two objects of \mathfrak{G}_k. For any element x of $\mathbb{K}^{MW}(E, W_E)$, there is a morphism

$$\gamma_x : M(E, V_E) \to M(E, W_E + V_E)$$

so that the functor $M(E, -) : \mathfrak{G}(E) \to \mathcal{A}b$ is a left module over the lax monoidal functor $\mathbb{K}^{MW}(E, -) : \mathfrak{G}(E) \to \mathcal{A}b$ (see [Yet03, Definition 39]).

D4 (residue maps) Let E be a field over k, let v be a valuation on E and let V be a virtual projective \mathcal{O}_v-module of finite type. Denote by $V_E = V \otimes_{\mathcal{O}_v} E$ and $V_{\kappa(v)} = V \otimes_{\mathcal{O}_v} \kappa(v)$. There is a morphism

$$\partial_v : M(E, V_E) \to M(\kappa(v), -N_v + V_{\kappa(v)}),$$

and satisfying compatibility rules (R1a), . . . , (R4a). Moreover, a Milnor-Witt cycle module M satisfies axioms FD (finite support of divisors) and C (closedness) that enable us to define a complex $(C_p(X, M, V_X), d_p)_{p \in \mathbb{Z}}$ for any scheme X and virtual bundle V_X over X where

$$C_p(X, M, V_X) = \bigoplus_{x \in X(p)} M(\kappa(x), \Omega_{\kappa(x)/k} + V_x).$$

Example A.1.1. The main example of MW-cycle module is given by Milnor-Witt K-theory \mathbb{K}^{MW} (see [Fe20, Fe21c] for more details).

A.1.2. The complex $(C_p(X, M, V_X), d_p)_{p \in \mathbb{Z}}$ is called the Milnor-Witt complex of cycles on X with coefficients in M and we denote by $A_p(X, M, V_X)$ the associated homology groups (called Chow-Witt groups with coefficients in M). We can define five basic maps on the complex level (see [Fe20, Section 4]):

Pushforward Let $f : X \to Y$ be a k-morphism of schemes, let V_Y be a virtual bundle over the scheme Y. The data $[D2]$ induces a map

$$f_* : C_p(X, M, V_X) \to C_p(Y, M, V_Y).$$

Pullback Let $g : X \to Y$ be an essentially smooth morphism of schemes. Let V_Y a virtual bundle over Y. Suppose X connected (if X is not connected, take the sum over each connected component) and denote by s the relative dimension of g. The data $[D1]$ induces a map

$$g^* : C_p(Y, M, V_Y) \to C_{p+s}(X, M, -L_{X/Y} + V_X).$$

Multiplication with units Let X be a scheme of finite type over k with a virtual bundle V_X. Let a_1, \ldots, a_n be global units in \mathcal{O}_X. The data $[D3]$ induces a map

$$[a_1, \ldots, a_n] : C_p(X, M, V_X) \to C_p(X, M, (n) + V_X).$$
Multiplication with \(\eta \) Let \(X \) be a scheme of finite type over \(k \) with a virtual bundle \(\mathcal{V}_X \). The Hopf map \(\eta \) and the data \([D3] \) induces a map

\[
\eta : C_p(X, M, \mathcal{V}_X) \to C_p(X, M, -\mathbb{A}^1_X + \mathcal{V}_X).
\]

Boundary map Let \(X \) be a scheme of finite type over \(k \) with a virtual bundle \(\mathcal{V}_X \), let \(i : Z \to X \) be a closed immersion and let \(j : U = X \setminus Z \to X \) be the inclusion of the open complement. The data \([D4] \) induces a map

\[
\partial = \partial^j_i : C_p(U, M, \mathcal{V}_U) \to C_{p-1}(Z, M, \mathcal{V}_Z).
\]

These maps satisfy the usual compatibility properties (see \cite{Fel20} Section 5). In particular, they induce maps \(f_*, g^*, [u], \eta, \partial^j_i \) on the homology groups \(A_*(X, M, \cdot) \).

Definition A.1.3. A pairing \(M \times M' \to M'' \) of MW-cycle modules over \(k \) is given by bilinear maps for each \((E, \mathcal{V}_E), (E, \mathcal{W}_E) \) in \(\mathfrak{A}_k \)

\[
M(E, \mathcal{V}_E) \times M'(E, \mathcal{W}_E) \to M''(E, \mathcal{V}_E + \mathcal{W}_E)
\]

\[
(\rho, \mu) \mapsto \rho \cdot \mu
\]

which respect the \(K^{MW} \)-module structure and which are compatible with the data \(D1, D2, D3 \) and \(D4 \) in the sense of \cite{Fel20} Definition 3.21].

A ring structure on a MW-cycle module \(M \) is a pairing

\[
M \times M \to M
\]

(in the sense of \cite{Fel20} Definition 3.21]) which induces on

\[
\bigoplus_{\mathcal{V}_E \in \mathfrak{V}(E)} M(E, \mathcal{V}_E)
\]

an associative and \(\varepsilon \)-commutative ring structure. In that case, we may say that \(M \) is an algebra.

Example A.1.4. By definition, a Milnor-Witt cycle module \(M \) comes equipped with a pairing \(K^{MW} \times M \to M \). When \(M = K^{MW} \), this defines a ring structure on \(M \).

A.1.5. Cross Products. Let \(M \) be a Milnor-Witt cycle module with a ring structure \(M \times M \to M \) (see \cite{Fel20} Definition 3.21]). Let \(Y \) and \(Z \) be two essentially smooth schemes over \(k \) equipped with virtual vector bundles \(\mathcal{V}_Y \) and \(\mathcal{W}_Z \). We define the cross product

\[
\times : C_p(Y, M, \mathcal{V}_Y) \times C_q(Z, M', \mathcal{W}_Z) \to C_{p+q}(Y \times Z, M'' \mathcal{V}_Y \times \mathcal{W}_Z + \mathcal{W}_Y \times Z)
\]

as follows. For \(y \in Y \), let \(Z_y = \text{Spec} \kappa(y) \times Z \), let \(\pi_y : Z_y \to Z \) be the projection and let \(i_y : Z_y \to Y \times Z \) be the inclusion. For \(z \in Z \) we understand similarly \(Y_z, \pi_z : Y_z \to Y \) and \(i_z : Y_z \to Y \times Z \). We give the following two equivalent definitions:

\[
\rho \times \mu = \sum_{y \in Y(q)} (i_y)_*(\rho_y \cdot \pi_y^*(\mu)),
\]

\[
\rho \times \mu = \sum_{z \in Z(q)} (i_z)_*(\pi_z^*(\rho) \cdot \mu).
\]

The cross product satisfies the expected properties (associativity, graded-commutativity, chain rule; see \cite{Fel20} Section 11]).
A.1.6. Intersection. For \(X \) smooth, the product induces a map
\[
A^p(X, M, V_X) \times A^q(X, M, W_X) \to A^{p+q}(X \times X, M, V_{X \times X} + W_{X \times X}).
\]

By composing with the Gysin morphism
\[
\Delta^* : A^{p+q}(X \times X, M, V_{X \times X} + W_{X \times X}) \to A^{p+q}(X, M, -\mathcal{T}_\Delta + V_X + W_X)
\]
induced by the diagonal \(\Delta : X \to X \times X \), we obtain the map
\[
A^p(X, M, V_X) \times A^q(X, M, W_X) \to A^{p+q}(X, M, -\mathcal{T}_\Delta + V_X + W_X).
\]

The preceding considerations and the functoriality of the Gysin maps prove the following theorem.

Theorem A.1.7. If \(M \) is a MW-cycle module with a ring structure and \(X \) a smooth scheme over \(k \), the intersection product turns
\[
\bigoplus_{V_X \in \mathcal{V}(X)} A^*(X, M, V_X)
\]
into a graded commutative associative algebra over
\[
\bigoplus_{V_X \in \mathcal{V}(X)} A^*(X, K^{MW}, V_X).
\]

In particular, we obtain a product on the Chow-Witt ring \(\widetilde{\text{CH}}(X) \) which coincides with the intersection product (defined in [Fas20, §3.4], see also [Fas08]). Indeed, our construction of Gysin morphisms follows the classical one (using deformation to the normal cone) and our cross products correspond to the one already defined for the Milnor-Witt K-theory (see [Fas20, §3]).

A.2 Homotopy modules

A.2.1. We denote by \(\text{SH}(k) \) the stable homotopy category over \(k \). It is equipped with the *homotopy* t-structure given by the full subcategory \(\text{SH}_{\geq 0}(k) \) (resp. \(\text{SH}_{\leq 0}(k) \)) consisting of \(\mathbb{P}^1 \)-spectra \(M \) with
\[
\pi_n(M)_m = 0
\]
for each \(m \in \mathbb{Z} \) and \(n < 0 \) (resp. \(n > 0 \)) (see [Mor03, §5.2]).

The heart \(\text{SH}(k)^{\heartsuit} \) of this t-structure is equivalent to the category of homotopy modules which, by definition, are Nisnevich sheaves from the category of smooth schemes over \(k \) to the category of \(\mathbb{Z} \)-graded abelian groups satisfying the \(\mathbb{A}^1 \)-homotopy invariance property. The main theorem of [Fel21a] is the following:

Theorem A.2.2. The category of Milnor-Witt cycle modules over \(k \) (denoted by \(\mathcal{M}^{MW}(k) \)) is equivalent to the category of homotopy modules (or, equivalently, the heart of the stable homotopy category equipped with its homotopy t-structure):
\[
\mathcal{M}^{MW}(k) \simeq \text{SH}(k)^{\heartsuit}.
\]
References

[DFJ22] F. Déglise, N. Feld, and F. Jin. Perverse homotopy heart and mw-modules. in preparation, 2022.

[Fas08] J. Fasel. Groupes de Chow-Witt. Mémm. Soc. Math. Fr., Nouv. Sér., 113:vi+197 pp., 2008.

[Fas20] J. Fasel. Lectures on Chow-Witt groups. "Motivic homotopy theory and refined enumerative geometry", Contemp. Math. 745, 2020.

[Fel20] N. Feld. Milnor-Witt cycle modules. (English) Zbl 07173201 J. Pure Appl. Algebra 224, No. 7, Article ID 106298, 44 p., 2020.

[Fel21a] N. Feld. Morel homotopy modules and Milnor-Witt cycle modules. Doc. Math. 26, 617-659, 2021.

[Fel21b] N. Feld. MW-homotopy sheaves and Morel generalized transfers. Adv. Math. 393, Article ID 108094, 46 p., 2021.

[Fel21c] N. Feld. Transfers on Milnor-Witt K-theory. arXiv:2011.01311 [math.AG], to appear in Tohoku Mathematical Journal, 2021.

[FH20] J. Fasel and O. Haution. The stable adams operations on hermitian k-theory. arXiv:1708.06098, 2020.

[FS08] J. Fasel and V. Srinivas. A vanishing theorem for oriented intersection multiplicities. Math. Res. Lett., (3):447–458, 2008.

[Ful98] W. Fulton. Intersection theory. 2nd ed., volume 2. Berlin: Springer, 2nd ed. edition, 1998.

[GS85] H. Gillet and C. Soulé. K-théorie et nullité des multiplicités d’intersection. C. R. Acad. Sci.Paris Ser. I Math.300(1985), no. 3, 71–74, 1985.

[GS87] H. Gillet and C. Soulé. Intersection theory using adams operations. Invent. Math.90(1987), no. 2, 243–277, 1987.

[Mat86] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986.

[Mor03] Fabien Morel. An introduction to \mathbb{A}^1-homotopy theory. In Contemporary developments in algebraic K-theory. Proceedings of the school and conference on algebraic K-theory and its applications, ICTP, Trieste, Italy, July 8–19, 2002. Dedicated to H. Bass on the occasion of his 70th birthday, pages 361–441. Trieste: ICTP - The Abdus Salam International Centre for Theoretical Physics, 2003.

[Rob85] P. Roberts. The vanishing of intersection multiplicities of perfect complexes. Bull. Amer. Math.Soc. (N.S.)13(1985), no. 2, 127–130, 1985.

[Sri96] V. Srinivas. Algebraic K-theory. Vol. 90 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, second edition, ISBN 0-8176-3702-8, 1996.

[Sta18] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu 2018.
[Yet03] D. N. Yetter. Abelian categories of modules over a (lax) monoidal functor.
Adv. Math., 174(2):266–309, 2003.