ERGONOMIC DISPLAY DESIGN FOR BUS ROUTE

Hartomo S* and Musyarofah M

Industrial Engineering Department, Faculty of Industrial Technology, Universitas Islam Indonesia, Yogyakarta, Indonesia

* Corresponding author: Hartomo Soewardi
Email: hartomo@ui.ac.id

ABSTRACT

Public transportation is one of the most important services in supporting the smooth running of community activities in cities where people most commonly use a bus to reach a destination. Consequently, it requires a clear travel route so passengers find it easy to go on a trip. Display is a device for providing information. However, the existing display receives some complaints where more than 60% of passenger experience difficulty in reading what is shown, taking more time for them to understand the information. It is evidence that the device is not effective and efficient to use. Thus, development of a new display is crucial. The purpose of this study was to design an innovative display that is more ergonomic in displaying bus route information. Survey was conducted to identify user requirement. Axiomatic design method was applied to determine the design parameters of the display by mapping process from customer attribute and functional requirement on the basis of the ergonomic principles. Statistical analysis was conducted to test hypothesis. The result of this study showed that the display developed is valid to meet customer criteria at 5% of significant level, covering the criteria of being informative (0.144), comfortable (0.063), digitalized (0.070), and easy to access (0.378). Thus, it is more effective and efficient for passengers to gain any information needed.

Keywords: Display, information, ergonomics, axiomatic design, bus route

INTRODUCTION

Currently, industrial development has come to industry 4.0 eras, whose one of the most important elements is digitalization of system. Furthermore, explain that synthesis of digital technology and physical cyber enable to connect users with such technology. Using the same token in the transportation industry, digital system especially for display, has become significant. It is related to some information that people search for such as travel route and traffic condition.

According to display is a device to provide information to users so the device should be clear and easy to understand. Expresses that the guidelines to design the display can be grouped into four principles namely perceptual principles, mental model principles, principles based on attention, and working memory principles. Perceptual principles include (a) easy to deliver information and clear, including the colour and font size. (b) Easy to interpret based on past experience. (c) Redundancy and distinction that is the combination of letter and image, image and sound. Mental model principles are related with (a) pictorial realism of information description, (b) movement of object or elements. Meanwhile, the principles based on attention are about (a) minimizing the time to access information, (b) conformity of information, c) delivering various information. Finally, working memory principles encompass (a) reducing the load of memory visually, (b) providing a guide to future conditions and (c) consistency.

However, the existing display in transportation terminal is still complex yet plain, thus causing difficulty for passengers to read and understand information, and requiring longer time. Based on the preliminary study it is found that 60% of passengers experienced difficulties in interpreting the information displayed. As said by, the current display system on public transportation was still inadequate for user. Thus, it is necessary to improve the system by referring to ergonomic principles.

Some previous studies on ergonomic display design have been done by studied the use of various backgrounds and text for readability. Investigated the colour for images where full colour is more significant for working memory than partial colours. In addition, the study of favourite colour for virtual static object and motion object in display design was conducted by. Meanwhile found in his study that there are four categories that must be considered for the development of public displays in public transport i.e. visibility, positioning, content and functionality. designed an effective and ergonomic display for tourist parks.

The objective of this study was to develop an innovative and ergonomic display design for public transportation that satisfies passenger’s requirements.

METHODS AND MATERIALS

Paper-based survey was conducted in this study to identify customer criteria for designing the ergonomic display of bus route. Questionnaires
were distributed to more than 50 passengers. The respondent where people who commonly used bus to travel. Their ages ranged from 15 to 50 years old.

Some devices used in this study to gather and process the data are below:
1. Questionnaires were used to gain some user criteria of the design being developed and to validate the proposed design.
2. IBM SPSS software version 22.0 was used to process statistical data.
3. CorelDraw application software version 2018 was used to design a virtual prototype of the developed display design.

12 explained that axiomatic design method is applied to develop a product that satisfies customer needs. This method can be used to design various types of systems, including simple and complex ones. 6 identified that axiomatic design method is often used in 1 product design, 2 decision making, 3 software design, 4 system design, 5 manufacturing system design, and others. The method consists of four domains namely customer attributes (CA), functional requirements (FR), design parameters (DP), and process variable (PV). 7,12 The mapping process among domains can be seen in Figure 1.

![Fig. 1. The Concept of Axiomatic Design](image)

This process starts by determining the attributes of design that customers require. Then functional requirement is developed to satisfying the customer attribute. Design parameters are determined to meet the functional requirement. Finally, the last step is the process variable, i.e. how to create a product based on the design parameter determined.

Conceptual design was developed based on the result of the mapping process that is design parameter of display. The CorelDraw application software was used to create a virtual design.

Non parametric statistical analysis was used in this study. Spearman Rank Correlation test was conducted to test the validity of the attributes10. Then Cronbach Alpha was used to determine the reliability of the attributes15. Meanwhile Stuart-Maxwell Test of Marginal Homogeneity was used to test the hypothesis. The hypothesis is there is no significant difference between the proposed design and the criteria.

RESULTS

Table 1 shows the result of customer survey where four groups of attribute of the design were found. They are informative, comfortable, digitizing system, and easy to access.

Table. 1 Customer attribute

Customer Requirements	Code	Validity Score	Reliability Score	Customer Attribute
Informative	P1	0.524	0.788	Informative
Use of symbols	P2	0.602	0.773	
Color contrast	P3	0.684	0.761	Comfortable
Easy to read	P4	0.692	0.760	
Attractive design	P5	0.741	0.751	
Not complicated	P6	0.811	0.736	
Use of letters on design	P7	0.647	0.770	
Digital system	P8	0.467	0.809	Digital system
Easily accessible	P9	0.353	0.799	Easy to Access

Informative design is one feature of a good display1. This attribute is required to allow passengers get complete information easily and accurately without experiencing confusion. Thus, it can help passengers make a decision.

Comfortable is an attribute that passengers need in design. This attribute requires the use of any symbol and letters for objects and sentences with colours that are contrast with the background, making them easy to read and attractive.

The attributes of digital system are needed by passengers in order to be able to access information easily, anywhere, anytime. This is because the system involves cyberspace which allows passengers to search for information more effectively and efficiently by using internet.

Table 2 to Table 5 present the result of the mapping process of the display design. Table 2 describes the design parameters that satisfy the informative attribute. Table 3 shows the design parameters that refer to the comfortable attribute. Table 4 shows the design parameters of digital system. While Table 5 explains the use of the display in term of passengers’ ease of access.
Table. 2 Informative ergonomic display design of bus route

Code	Customer Attribute	Functional Requirements	Co de	Design Parameters
FR	Providing complete and accurate information	DP	Ergonomic display design	
FR	Providing the information needed by passengers	DP	Travel information design to and from	
FR	Showing information for passengers to go accurately	DP	Information about routes, fleets, departures, destinations, estimated time, transit, delay	
FR	Reducing errors in reading information	DP	Design of typographic for display	
FR	Providing ease of read about the information needed	DP	Times New Roman font size 30	

Table. 3 Comfortable ergonomic display design of bus route

Code	Customer Attribute	Functional Requirements	Co de	Design Parameters
CA	Improving passengers ability to read information	D P	Ergonomic display design	
FR	Providing appealing interface for passengers	D P	Attractive interface design	
FR	Increasing the calm and cool feeling for passengers to read	D P	Blue color (R: 53 G: 157 B: 215) for background	
FR	Improving clarity for passengers to read	D P	White color (R: 247 G: 251 B: 254) and/or black color (R: 54 G: 52 B: 53) for letters and numbers	

Table. 4 Digital system of ergonomic display design of bus route

Code	Customer Attribute	Functional Requirements	Co de	Design Parameters
CA	Digital system	Making it easy for passengers to access information about bus routes in anywhere any time	DP	Ergonomic digitized system of display design
FR	Providing information about bus routes quickly and accurately	DP	Ergonomic web design	
FR	Providing information of about bus routes in detail	DP	Table of information	

Table. 5 Easy to access ergonomic display design of bus route

Code	Customer Attribute	Functional Requirements	Co de	Design Parameters
CA	Easy to Access	Reducing passengers search activity to find the information needed	D P	Ergonomic design of search menu
FR	Easy searching	D P	Command button	
FR	Providing the continuity of information search	D P	Layer displays	

The conceptual design or prototype of the display can be seen in Figure 3, Figure 4, Figure 5 and Figure 6 below.
Fig. 2. Parameter Design Representation

Fig. 3. Layer 1 of Bus Display Information

Fig. 4. Layer 2 of Bus Display Information
The result of the marginal homogeneity test using Stuart Maxwell method is presented in Table 6 where the Z values for each customer attribute are 0.144 for informative, 0.063 for comfortable, 0.070 for digitalized system, and 0.378 for easy to access.

Table. 6 Result of Stuart Maxwell of Marginal Homogeneity test

Customer Attributes	Z values
Informative	0.144
Comfortable	0.063
Digitalized System	0.070
Easy to Access	0.378

The test showed that the null hypothesis is accepted at 5% of significance level for all the attributes.

DISCUSSION

This study hypothesizes that the displays are not yet effective and efficient in providing information to the prospective passengers, because it still makes them having the difficulties in reading the information. Previous studies explained that a display is a device used to provide information to passengers so as it must be clear and easy to understand. Another study explained that the confusion and the discomfort in getting information was not expected by passengers when reading.

Result of this study founded there are 4 attributes in developing the displays in order that satisfying passengers need. They are informative, comfortable, digitizing the system, and easy to access.

Ergonomic design parameter of display (DP 1) should provide complete and accurate information (FR 1) to passengers which encompasses routes, fleets, departures, destinations, estimated time, transit, delay (DP 1.1.1). This aim to allow passengers to gain any information they need to go. In addition to avoiding mistakes in reading the information, its description should be clear and easy to read by applying the font size of 30 Times New Roman (DP 1.2.1). Thus, these parameters are expected to satisfy customer need for being informative.

Besides, the ergonomic display design should also be able to improve the ability (FR 2) and easiness (FR 2.1.3) of passengers to read and understand the information displayed. Hence the design must be clear and easy to read (FR 2.1.2), provide appealing interface (FR 2.1) and increase the calm and cool feeling (FR 2.1.1) for passengers as well as not complex (FR 2.1.4). Thus the design parameter should be attractive (DP 2.1) and simple (DP 2.1.4) by using blue colour for the background (DP 2.1.1), and white and/or black colour for letters and numbers (DP 2.1.2) based on the proximity, similarity, symmetry and continuity of the display element (DP 2.1.4).

Digital system (Table 4) of display is a system that passengers require. Thus, the design parameter should be ergonomic (DP 3) and able to ease passengers to access information about bus routes anywhere and anytime (FR 3). This parameter must use web system (DP 3.1) and the information should be displayed in tables (DP 3.2) providing bus routes information quickly, accurately, and in detail (FR 3.2). Hence the system has ease the passengers in searching the menu (DP 4). It is to reduce search activity (FR 4) and ease (FR 4.1) passengers to get information continuously (FR 4.1.1). The command button (DP 4.1) is designed and layer system has to be applied (DP 4.1.1).

The statistical analysis showed that the proposed display design is a significat valid to meet the passengers’ requirements which it was more informative, more comfortable, easier to access and more effective and more efficient.

CONCLUSION

It can be concluded as follows:

1) The attributes of the display design for bus route are informative, comfortable, digital systems and easy to access.

2) The design parameters of the display should be ergonomic, encompassing:
 a. The design contains route, fleet, departure, destination, estimated time, transit and delay elements and also uses the font size of 30 Times New Roman for letters.
 b. The design should use blue colour (R:53 G:157 B:215) for the background, white (R: 247 G:251 B:254) and/or black (R: 54 G:52 B:53) for letters and numbers, and the proximity, similarity, symmetry, and
continuity of the display elements as well as independent simple route.

c. The design should use an ergonomic web design and also present description using tables.

d. The design consists of several layers to provide continuity of information retrieval from the command button.

3) The proposed display design for bus route is valid to meet passenger’s criteria at 5% significance level.

ACKNOWLEDGEMENTS

We wish to acknowledge the Directorate of Student Development Islamic University of Indonesia Yogyakarta Indonesia for supporting this project.

REFERENCES

1. Bridger, R. (1995). Introduction to Ergonomics. Singapore: Mc-Graw-Hill, Inc.

2. Horold, S., Mayas, C., & Kromer, H. (2015). Interactive Displays in Public Transport Challenges and Expectations. International Conference on Applied Human Factors and Ergonomics (AHFE 2015).

3. Januar, M. I., Lati, G. M., Panduwiranita, R. R., & Kurnia, R. D. (2013). Implementation of Technology-Based Transjogja Stop Facilities as an Effort to Improve the Quality of Regional Transportation Services in Yogyakarta. Khazanah, 6(1).

4. Kagermann, H., Lukas, W., & Wahlster, W. (2013). Final Report: Recommendations for Implementing The Strategic Initiative Industrie 4.0. Industrie 4.0 Working Group.

5. Kim, D.-Y. (2010). The Interactive Effects of Colors on Visual Attention and Working Memory: Incase of Images of Tourist Attraction. International CHRIE Conference-Referred Track.

6. Kulak, O., Cebi, S., & Kahraman, C. (2010). Applications Of Axiomatic Design Principles: a Literature Review. Expert Systems with Applications, 37(9), 6705-6717.

7. Lee, D., & Suh, N. (2006). Axiomatic Design and Fabrication of Composite Structures: Application in Robots, Machine Tools and Automobiles. New York: Oxford University Press.

8. Murch, G. (1987). Color Graphics:Blessing or Bally-Hoo? The Visual Channel in Baeccker, R., M. & Buxton, W.A.S. Readings in Human-Computer Interaction: A Multidisiplinary Approach, 333-341.

9. Pratiwi, G. D., & AH, D. S. (2016). Analysis of Community Demand for Public Transportation in Banda Aceh (Case Study of Trans Koetaradja). Student Scientific Journal (JIM), 1(1), 46-55.

10. Sheskin, D. (2004). Handbook of Parametric and Non Parametric Statistical Procedures (Third ed.). Washington: Chapman & Hall/CRC.

11. Soewardi, H., Abdianto, R. U., & Sari, A. D. (2016). Development of Effective Displays Design for Tourism Park. Malaysian Journal of Public Health Medicine, 16, 44-49.

12. Suh, N. (2009). Axiomatic Design - Advances and Applications. New York: Oxford University Press.

13. Taha, Z., Soewardi, H., & Dawal Md Zawiah, S. (2012). Color Preference of the Malay Population in the Design of a Virtual Environment. IEEE, 545-548.

14. Wickens, C., & Hollands, J. (2004). An Introduction to Human Factors Engineering (2nd ed.). New Jersey, USA: Prentice Hall.

15. Yamin, S., & Kurniawan, H. (2009). SPSS Complete. Jakarta: Salemba Empat.
PROOFREADER STATEMENT
The information appearing herein has been read & evaluated in grammar & punctuation without changing the meaning & information from the original document by Center for International language & Cultural Studies of Islamic University of Indonesia CILACS UII
Jl. DEMANGAN BARU NO 24
YOGYAKARTA, INDONESIA.
Phone/Fax: 0274 540 255