The tumor genetics of acral melanoma: What should a dermatologist know?

Bianca M. Tod, MMed (Derm), FCDerm, a Johann W. Schneider, FCPath (SA) Anat, MMed (Anat Path),b Anne M. Bowcock, PhD, c Willem I. Visser, MMed (Derm), MFamMed, a and Maritha J. Kotze, PhD d

Cape Town, South Africa; and New York, New York

Dermatologists stand at the gateway of individualization of classification, treatment, and outcomes of acral melanoma patients. The acral melanoma genetic landscape differs in vital ways from that of other cutaneous melanomas. These differences have important implications in understanding pathogenesis, treatment, and prognosis. The selection of molecularly targeted therapy must be adapted for acral melanoma. It is also critical to recognize that tumor development is far more complex than an isolated event, reliably treated by a medication acting on a single target. Tumors exhibit intratumor genetic heterogeneity, metastasis may have different genetic or epigenetic features than primary tumors, and tumor resistance may develop because of the activation of alternative genetic pathways. Microenvironmental, immune, and epigenetic events contribute and sustain tumors in complex ways. Treatment strategies with multiple targets are required to effectively disrupt the tumor ecosystem. This review attempts to translate the current molecular understanding of acral melanoma into digestible concepts relevant to the practice of dermatology. The focus is tumor genetics defining potentially treatable cancer pathways, contextualized within the relevant pathologic and molecular features. (JAAD Int 2020;1:135-47.)

Key words: acral melanoma; dermatology; genetics; melanoma; molecular; oncology; tumor genetics.

INTRODUCTION

Acral melanoma is a unique tumor within the melanoma spectrum. Its molecular features are gradually being unraveled. Molecularly targeted therapies have revolutionized melanoma management by offering unprecedented responses in some patients. As such treatments become increasingly available, dermatologists should have a working understanding of these concepts. Melanoma classification will increasingly include, and likely be determined by, molecular findings. The molecular characteristics of acral melanoma will contribute to understanding its pathogenesis, enabling potentially preventive actions and therapies.

Vagaries and misconceptions have impaired our understanding of acral melanoma. Acral melanoma here refers specifically to melanoma on the palms, soles, and nail unit (sun-protected sites). Melanoma on the dorsal surface of the hands and feet should be grouped with other more common forms of melanoma. The content and findings reported are the sole deduction, view, and responsibility of the researchers and do not reflect the official position and sentiments of these funding agencies. Conflicts of interest: None disclosed. Accepted for publication July 8, 2020. Correspondence to: Bianca M. Tod, MMed (Derm), FCDerm, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Academic Hospital, Cape Town; and Departments of Dermatology, Oncological Sciences and Genetics and Genome Science, Icahn School of Medicine at Mount Sinai, New York. Funding sources: Funding was received from the NIH/NCI (CA161870). Research reported in this review provides the background for development of an adaptive pathology-supported genetic testing framework for research translation supported by the Cancer Association of South Africa (S006385).

The content and findings reported are the sole deduction, view, and responsibility of the researchers and do not reflect the official position and sentiments of these funding agencies. Conflicts of interest: None disclosed. Accepted for publication July 8, 2020. Correspondence to: Bianca M. Tod, MMed (Derm), FCDerm, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa. E-mail: biancatod@gmail.com.

2666-3287 © 2020 by the American Academy of Dermatology, Inc. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
https://doi.org/10.1016/j.jdin.2020.07.004
cutaneous melanoma, frequently driven by ultraviolet (UV) radiation exposure. Traditional classification systems of melanoma have resulted in the misconception that all acral melanomas are acral lentiginous melanomas. Although the most common histologic subtype, not all acral melanomas take the lentiginous form. Many studies focus on acral lentiginous melanoma, omitting an important subgroup of acral melanoma. Whether subungual melanoma is a separate entity from other acral melanoma variants remains uncertain. A differentiation between melanomas arising from the nail matrix (initially linear melanonychia) and those arising on dorsal, sun-exposed skin of nail folds may be necessary.

A clear approach to the clinical, pathologic, and molecular subgrouping of acral melanomas will identify acral melanoma patients eligible for targeted therapies based on pharmacogenomic markers. Clarification of these acral melanoma subgroups is incomplete. This review presents an update on acral melanoma tumor genetics as it applies to the practice of dermatology. Clinical applications of this knowledge are presented together with a brief contextualization of tumor genetics within the larger tumor ecosystem. This overview first presents data to facilitate cursory reading about acral melanoma; second, more specific detail for specialized readers.

TUMOR GENETICS OF ACRAL MELANOMA

Relevant pathways in melanoma development

Tumorigenesis is a result of complex interactions between genetic changes in the tumor and the patient and environmental (including microenvironmental) factors. Table 1 summarizes important cellular pathways in acral melanoma. Separation of these pathways gives the impression they are discrete, parallel processes; however, there are many interactions between them.

In acral melanoma, cancer pathways are activated in different ways from UV radiation–induced cutaneous melanoma. They interact with one another in complex ways. Inhibiting one pathway may result in deviation to another. How aberration in specific pathways is more conducive to development of different acral melanoma subgroups, such as acral lentiginous melanoma, nodular acral melanoma, or nail melanoma, is unclear.

Genetic changes observed in acral melanoma tumors

Driver mutations. Driver mutations vary significantly among melanoma subtypes. Whole exome sequencing (analysis of the entire coding portion) of tumor DNA often leads to the identification of many mutations. The identification of driver mutations leading to tumorigenesis (as opposed to passenger mutations) is challenging. This is particularly problematic in cutaneous melanoma, in which the mutagenic effects of UV radiation result in a high mutational burden. Many driver mutations are current or potential targets of molecular therapies. Acral melanomas have significantly lower mutational burdens than cutaneous melanomas. It is unknown whether this applies to different subgroups and stages of acral melanoma.

Intratumoral and intertumoral heterogeneity must also be considered. Analysis of a single clone of tumor cells may disregard important driver mutations in other tumor clones. Molecular alterations leading to tumor progression and metastases are poorly understood.

The genomic classification of melanomas by the Cancer Genome Atlas identifies 4 subtypes of melanomas based on their driver mutations: **BRAF, RAS, NF1**, and the triple wild type. These typically result in dysfunction of the mitogen-activated protein kinase pathway. Each group has distinct clinical and genetic features. Approximately half (42%-55%) of acral melanomas studied to date have **BRAF, RAS**, or **NF1** mutations; the others fall into the triple-wild-type group. **BRAF, NRAS**, and **NF1** alterations were mutually exclusive in 1 acral lentiginous melanoma study. Subungual and interdigital melanomas display the most diverse driver mutations. Absence of **BRAF, RAS**, or **NF1** hot-spot mutations defines the triple-wild-type group (ie, all 3 “typical” melanoma mutations are wild type or normal). Mitogen-activated protein kinase pathway activation still occurs in most triple-wild-type melanomas. Triple-wild-type driver mutations are observed in 45% to 58% of acral melanoma cases. These include
Table I. Cellular pathways with a pathogenetic role in acral melanoma

Pathway	Cellular activity	Role in acral melanoma
MAPK	Cellular proliferation, differentiation, and survival	Activated in more than 90% of melanomas \(^7\) Stimulated by activating BRAF and NRAS mutations and inactivating NF1 mutations \(^5\) Stimulated by upstream receptor tyrosine kinases (eg, KIT) \(^8\) Collateral effects allow tumor to evade immune system \(^5\) Constitutive activation of this pathway demonstrated in ALM (in situ and invasive) and the AM group as a whole \(^5, 9\)
PI3K/AKT/PTEN \(^6\)	Permits cellular survival (antiapoptotic) \(^10\)	PTEN antagonizes the PI3K/AKT/mTOR pathway, acts as a tumor suppressor \(^10\) Stimulated by upstream receptor tyrosine kinases (eg, KIT) \(^8\)
JAK/STAT3 \(^5\)	Regulates cellular proliferation, differentiation, migration, and survival (context dependent) \(^11\)	Regulates the PD-1 immune checkpoint, a mechanism of immune escape for melanomas \(^12\) May correlate with more advanced AM \(^5\) TERT activation essential in tumor development Confers immortality to melanoma cells by maintaining telomere length \(^13\) Abnormally activated in 37% of AM patients in 1 study \(^14\)
TERT \(^5\)	Regulates telomere maintenance \(^13\)	TERT activation essential in tumor development Confers immortality to melanoma cells by maintaining telomere length \(^13\) Abnormally activated in 37% of AM patients in 1 study \(^14\)
CDK4/CDKN2A \(^5\)	Directs the cell cycle \(CDK4 = \) an oncogene \(CDKN2A = \) a tumor suppressor gene that encodes p16 \(RB1\) and \(p53\) also involved in this pathway Also stimulated by the MAPK pathway via cyclin D1 \(^15\)	CDK4 exhibits rare germline mutations leading to melanoma, whereas germline CDKN2A mutations detected in 10%–25% of melanoma-prone families \(^16\) Nongermline aberrations also critical: Activation in AM, especially in subungual/interdigital melanomas \(^17, 18\) Pathway abnormally activated in 51% of AM patients in 1 study \(^14\)
MDM2/TP53 \(^5\)	Determines senescence and apoptosis \(^14\) \(P53\) inhibited by MDM, supporting oncogenesis \(MDM\) and \(p53\) interact in complex ways \(^19\)	Abnormal activation identified in 17% of AM in 1 study \(^14\)
WNT signaling \(^4\)	Determines cellular proliferation, migration, polarity, and fate \(^4\) Interacts with MITF \(^20\)	Exact role in melanoma unclear \(^21\) Mutated CTNNB1 in an AM raises the possibility \(^21\)
MCR1-MITF	Interaction between cellular activities such as melanin synthesis and the oncogene MITF, as well as the CDK4/CDKN2A pathway	Germline MCR1 variants associated with increased melanoma risk in general \(^8\) A subtype of AM shows MITF aberrations \(^22\)

ALM, Acral lentiginous melanoma; *AM*, acral melanoma; *MAPK*, mitogen-activated protein kinase.

Genetic alterations in a variety of genes, including *KIT, CCND1, CTNNB1, KDR (VEGFR2), MDM2, BCL2, AKT3, IDH1, GNAQ* (uveal melanoma), *GNAS, CDK4, CDKN2A, MITF, PTEN, RB1, TP53, APC, ERBB2, ERBB3, NUAK2, ABCB5*, and *TERT*. \(^3, 22, 26, 31, 34-39\)

Deleterious *KIT* mutations or amplifications are frequently an early event in acral melanoma development (3%-36%), specifically directing lentiginous growth. \(^3, 22, 40\) *KIT* mutations activate both the mitogen-activated protein kinase and PI3K/AKT pathways. \(^41\) Most *KIT* mutations described in acral
melanoma are in exons 9, 11, 13, 17, and 18.23,26 \textit{PDGFRA} is often coamplified with \textit{KIT}, although the converse is also reported.3,36 It appears to be a critical event in acral melanoma.3 \textit{NF1} and \textit{SPRED1} losses may occur with or without \textit{KIT} driver mutations.34

\textit{BRAF} variants play a smaller role in acral melanoma (10%-35% of cases).12,22 Both typical V600E and other mutations (eg, V600L) are reported.45 Alternative \textit{BRAF} mutations to V600E occurred in 5% of cases in a recent study.44 A molecular subclassification of acral melanoma based on \textit{BRAF} mutation was proposed: acral melanoma with typical \textit{BRAF} mutations observed in cutaneous melanoma, potentially responsive to \textit{BRAF} inhibitors; and acral melanoma with non-\textit{BRAF} mutations with other potentially actionable targets. This study also found that acral melanomas with \textit{BRAF} mutations were less likely to be of the acral lentiginous melanoma subtype.

\textit{NF1} driver mutations are observed in 11% to 23% of acral melanomas.12,22 \textit{NF1} is a tumor suppressor; therefore, alterations leading to loss of function of this gene need to arise on both chromosomes. \textit{NF1} mutant tumors are generally associated with poor prognosis.31,32 Homozygous \textit{NF1} deletions were more common than point mutations in an acral lentiginous melanoma study.14

\textit{RAS} genetic alterations are observed in 9% to 22% of cases.12,22 \textit{NRAS} mutations are at the same nucleotide positions as observed in cutaneous melanoma.5

Melanoma genetics studies tend to originate from a few centers, and it is uncertain whether their findings apply to other geographic regions and understudied population groups.22 Lower prevalences of \textit{KIT}, \textit{NRAS}, and \textit{BRAF} are reported in acral melanoma in some populations.21 The main findings of acral melanoma cohorts sequenced to date are summarized in Table II.

\textbf{Mutational burden.} Because acral melanomas are not typically UV radiation induced, they have lower mutational burdens.23,26 High tumor mutational burden theoretically improves responses to immunotherapies.51 In practice, case series show similar efficacy in cutaneous melanoma and acral melanoma.22

\textbf{Mutational signatures.} In cutaneous melanoma, high levels of cytosome to thymine mutations are observed. These frequently show UV radiation mutational signatures not observed in acral melanoma, even if cytosome to thymine mutations are observed.26 Mutational signatures in acral melanoma are different and are reported in other cancers, but not cutaneous melanoma.25 Rates of non—cytosome to thymine mutations (guanine to adenine) are also lower in acral melanoma.26 The presence of specific mutational signatures has prognostic implications in cutaneous melanoma.52 Whether this extends to non-UV radiation signatures in acral melanoma is uncertain.

UV radiation signatures are identified in only a small proportion of acral melanoma.14,50,53,54 In accordance with the relatively more frequent occurrence and worse prognosis of acral melanoma in people with darker Fitzpatrick skin types compared with that for other types of melanoma, authorities have justified the use of aggressive sun protection in this group. This approach is questionable because acral melanoma is not commonly associated with UV radiation—induced mutations.

UV radiation signatures in subungual melanomas are reported, whereas it has been shown that the nail plate blocks the majority of UV radiation.22,53,55

\textbf{Structural variants.} Structural variants represent genetic variation larger than 50 base pairs.56 Acral melanoma shows a higher frequency of structural variants than cutaneous melanoma23,57 because of entirely different mutational processes that occur in acral melanoma.23,31 Subungual and interdigital melanomas have more copy number aberrations compared with both volar and dorsal melanomas of acral skin (\textit{CDK4} and cyclin D1).17 Copy number gains in \textit{BIRC2, BIRC3}, and \textit{BIRC5} (antiapoptosis genes) correlate with poor melanoma-specific survival.57 Amplifications in \textit{PAK1, GAB2, and IL7R} are identified in acral melanoma.14,44,58 \textit{ALK} break points occurred in 6.9% of acral melanomas in 1 study.59 \textit{CDKN2A} deletions are common (15.8%-35%).14,23,35

\textbf{Telomere length and pathway alterations.} Alterations in telomere length do not correlate with melanoma subtype.52 An association was detected between short telomeres (and \textit{TERT} aberrations) and poor melanoma survival.22,60 Telomerase pathway alterations are reported in 9% to 45% of acral melanoma.22 \textit{TERT} promoter variants are less common in acral melanoma (9%-41%) than in cutaneous melanoma (more than 50%).12 However, in 45% of acral melanoma with \textit{TERT} aberrations, \textit{TERT} copy number gains are noted (as opposed to point mutations typically observed in cutaneous melanoma).22,61 A high frequency of \textit{TERT} promoter mutations was reported in acral melanomas involving the digit and nail (38.8%).1

\textbf{Gene fusions.} Gene fusions occur when 2 previously independent genes are joined. When an upstream gene is turned on in the tumor cell, this can activate a downstream gene.62 Kinase fusions activate the mitogen-activated protein kinase
Study	Cases, no.	KIT, %	BRAF, %	NF1, %	RAS, %	Other
Curtin et al\(^6\) 2005 (targeted sequencing)	36	Not sequenced	23	Not sequenced	10	Structural changes, amplifications in 89%; CDK4 amplifications, CDKN2A losses more common than other CM
Krauthammer et al\(^7\) 2012	17 (9 metastases)	29.4	0	0	11.8	1 RAC1 mutation Copy gains in 5p13, 11q13 and 12q14 more common than other CM
Zebary et al\(^8\) 2013 (targeted sequencing)	88 ALMs	15	17	Not sequenced	15	4% PTEN mutations (25 tumors sequenced)
Furney et al\(^9\) 2014	5 (all metastases)	40	40	0	0	0% TERT promoter mutations
Puntervoll et al\(^10\) 2014 (targeted sequencing)	36 (24 Tanzanian)	11.1	11.1	Not sequenced	11.1 NRAS	—
De Lima Vazquez et al\(^11\) 2016 (targeted sequencing)	61 ALM	20.7	10.3	0	7.5 NRAS	9.3% TERT promoter mutations PDGFRα mutation in 14.8%
Liang et al\(^12\) 2017	34 ALM (17 metastases)	2.6	18.4 (and 2.6 homozygous deletions)	7.9 (loss/homozygous deletions)	10.5 NRAS, 5.3 KRAS 2.6% TERT promoter mutations (and 2.6 amplifications)	10.5% TERT amplifications PAK1 copy gains in 15% Substantially more complex structural rearrangements
Shim et al\(^13\) 2017 Composite of Asian cases reported	10.2 (51/498)	10.4 (40/383)	—	—	6.6 NRAS (18/273)	— Substantially more complex structural rearrangements CCND1 rearrangements 39.5% CDK4 gain
Hayward et al\(^14\) 2017	35	8.6	22.8	25.7	17.1	11 NRAS Substantially more complex structural rearrangements
Kong et al\(^15\) 2017	514	—	—	—	—	— Substantially more complex structural rearrangements

Continued
Study	Cases, no.	*KIT*, %	*BRAF*, %	*NF1*, %	*RAS*, %	Other
Roh et al⁴⁹	46	—	—	—	—	10.9% TERT promoter mutations
2017						17.2% GNAQ
Moon et al³⁵	64	10.9	34.4	17.2	21.9	22.9 NRAS
2018						17.2%
Haugh et al¹⁷	22 (9 volar, 13 nail unit/interdigital)	4.5	13.6	4.5 loss	22.7	9.1% TERT gains 22.7% CCND1 gains 13.6% CDK4 gains 13.6% PAK1 gains 18.2% GAB2 gains 7.5% PTEN mutations
2018						
Gao et al⁴⁵	40	Not sequenced	30	Not sequenced	10	NRAS
2018 (targeted sequencing)						
Yeh et al⁴⁴	122	11.5 (and 2.5 fusions)	21.3	14.8 (inactivation)	27.9	NRAS
2019 (targeted sequencing)						
Zaremba et al¹	50 (including dorsal lesions)	6 (not clear whether it includes dorsal lesions)	21.7	17.3	39.1	8.6% TERT promoter mutation 68.9% with cell cycle aberrations (CDK4/6, CCND1/2, CDKN2A) 35.6% with other receptor tyrosine kinase gains (eg, EGFR, PDGFRA) 33.3% with antiapoptosis gains (eg, BIRC 2, 3, 5) 10.3% CDKN2A mutations 17.2% CDKN2A losses 6.9% TERT promoter mutations 13.8% TERT copy number variants 6.9% fusions
2019						
Sheen et al³⁷	45	24.4	8.9	11.0	26.7	KRAS
2019						
Shi et al⁵⁰	29	13.8	27.6, 3.4 gains	10.3 mutations	10.3	NRAS
2019						

ALM, Acral lentiginous melanoma; CM, cutaneous melanoma; —, not available.
pathway in acral melanoma through mechanisms other than \textit{BRAF}, \textit{RAS}, or \textit{KIT} mutations. Kinase fusion genes seem to play a particular role in melanomas lacking common coding mutations (pan-negative melanoma, lacking \textit{BRAF}, \textit{NRAS}, \textit{KRAS}, \textit{HRAS}, \textit{NFI}, \textit{KIT}, \textit{GNAQ}, and \textit{GNA11})62. Kinase gene fusions reported in acral melanoma include \textit{PAK1}, \textit{DGKB}, \textit{RET}, and \textit{NTRK1}25,62. Receptor tyrosine kinase fusions were found in 4%, fusions of \textit{BRAF} in 3%, and \textit{protein kinase C} fusions in 1% of acral melanomas in a recent study44. These gene fusions present potentially actionable targets62.

Intratumor heterogeneity

Intratumor heterogeneity is the morphologic and genetic variation of different clones of tumor cells...
Target	Treatments	Agents	Responses	Known resistance mechanisms
Genetic pathway				
MAPK	BRAF inhibitors (BRAF mutation)	Vemurafenib*	ORR alone in AM 61.5%	Intrinsic and acquired resistance
		Dabrafenib mesylate*	Combination BRAF/MEK inhibition in AM up to 79%	Development of new mutations, epigenetic and transcriptome alterations
		Encorafenib*		Paradoxic reactivation of MAPK pathway
	MEK inhibitors (BRAF mutation)	Trametinib*	BRAF/MEK inhibition in AM up to 79%	Upregulation of PI3K and Ral pathways
		Cobimetinib*		
		Binimetinib*		
	RTK inhibitors (KIT mutation)	Imatinib	Response rates up to 27%	Rapid development of resistance
		Dasatinib		Downstream activation of various kinases
		Nilotinib		
		Sunitinib		Upregulation of receptor tyrosine kinases
	ERK inhibitors	Ulixertinib	Clinical trials	
		Ravoxertinib		
PI3K/AKT/PTEN	PI3K/Akt/mTOR inhibitors	Sirolimus (rapamycin)	Investigational	
		Everolimus		
		AZD3563		
		LY294002		
JAK/STAT3	RTK inhibitors	As above	Investigational, no clinical trials on melanoma to date	
	TERT	May inhibit this pathway too		Clinical trials
	TERT or telomerase inhibitors	EGCG		
CDK4/CDKN2A	CDK inhibitors	Abemaciclib	Clinical trials	
		Palbociclib		
		Dinaciclib		
MDM2/TP53	MDM2/p53	AMG232	Clinical trials	
	Interaction inhibitors	Actinomycin D		
WNT signaling	WNT modulators	LGK974	Clinical trial	
MCR1-MITF	P300/CBP inhibitors	A-485	Investigational	
within a single tumor. This is a possible mechanism for failure of targeted therapy, including the development of recurrences. It was detected in acral melanoma during assessment of BRAF and KIT mutations. It is an extensive and early event in acral melanoma development. Thus, the concept of “treating a single mutation” is an oversimplification.

Mutations in metastases and recurrences
Discordance has been reported between mutations detected in primary acral melanomas, their metastases, and recurrences (intrapatient intertumoral heterogeneity). This phenomenon has important implications when targeted therapies are used and advocates for multimodal therapy in patients with advanced disease.

CLINICAL APPLICATIONS OF TUMOR GENETICS
Diagnosis
Fluorescence in situ hybridization can detect acral melanoma-specific genetic alterations to assist diagnosis of early or equivocal lesions. The analysis of genes such as RREB1, CEP6, MYB, and CCND1 provides valuable ancillary information. Single-nucleotide polymorphism arrays also provide a mechanism by detecting copy number changes in areas characteristic of melanoma. Mutational analyses may identify the primary tumor site in metastatic disease with uncertain primary, as described in ocular melanoma, in which distinguishing between conjunctival, uveal, and cutaneous primaries is relevant to treatment and follow-up.

Excision margin assessment
CCND1 amplifications are described in otherwise normal melanocytes surrounding acral melanoma. Isolated melanocytes showing gene amplifications may occur up to 3 mm from the histologic tumor-free surgical excision margin.

Classification: correlation between genotype and phenotype in acral melanoma
Clinical and pathologic features will be integrated to inform targeted sequencing of melanomas and identify suitable therapies. Extensive sequencing of tumors (whole exome or whole genome sequencing) is not practical, cost-effective, or easily interpreted on the clinical front line. An algorithm incorporating relevant variables such as age, UV radiation exposure status, and histologic subtype will direct genetic investigations in a way similar to that of pathology-supported genetic testing in breast cancer (Fig 1). Table III shows examples of

Immune system	Vaccine
Immune checkpoint inhibitors	Cytokine
Ipilimumab*	IL-2 (high dose)*
Nivolumab*	Talimogene laherparepvec
Pembrolizumab*	

Reduced TIL in AM
Reduced PD-L1 expression in AM
Lower somatic mutation rate in AM
ORR with nivolumab or pembrolizumab in AM up to 32%*
Durable RR 16.3%*
clinical and pathologic factors associated with specific genotypes. The incorporation of genomics could refine traditional clinicopathologic classifications of melanoma.75

Treatment: targeted therapies

In 1 large study of melanoma, including acral melanoma, the majority of tumors contained a potentially actionable target with currently available therapies.23 At present, treatment of *BRAF*-mutated melanoma with a combination of *BRAF* and *MEK* inhibitors offers rapid, albeit partial, responses in many cases.12 This pathway is less relevant to the treatment of acral melanoma. Less is known about the role of therapies targeted against other melanoma mutations, although studies show some efficacy (eg, *KIT*-mutated melanoma treated with tyrosine kinase inhibitors).12 Although these therapies are currently prohibitively expensive in many settings, patients may access them through clinical trials, and they are likely to become standard of care. Table IV refers to current and potential treatment strategies for melanoma. A combination of agents will better address the complexity of tumor and host biology. Agents currently under development may have a place in acral melanoma treatment.18,22,31,44,62,89

Prognosis

Individualized prognostication in melanoma will incorporate genetic analysis.90 At present, certain genetic lesions found in melanoma confer worse prognosis; for example, *NF1* mutations, *TERT* amplifications and mutations, *AURKA* copy gain, and some mutational signatures.22,32,54,62,89

Prevention

Specific recommendations for the prevention of acral melanoma remain elusive. No major mutagenic driver is confirmed, as in UV-induced cutaneous melanoma.13 Predispositions such as a history of penetrating injury or physical strain are proposed.5,92 Multiple melanocytic nevi on the foot was identified as a risk factor; however, it is unusual for acral melanomas to arise in existing melanocytic nevi.5,92

OTHER MOLECULAR AND MICROENVIRONMENTAL FEATURES

Although not the focus of this review, microenvironmental factors have an important role in explaining acral melanoma pathogenesis, treatment response, and prognosis. This ecosystem includes epigenetics, proteomics, metabolomics, the tumor microenvironment, and the host’s immunologic response, germline mutations, and even microbiome.4,12,15,31,67,93-102 Of particular importance are immunology and germline mutations.

A critical step in melanoma development is the ability of the tumor to evade detection by the immune system. This pathway is exploited by immune checkpoint inhibitors in the treatment of melanoma.12 Coordination of the immune response with therapies targeting oncogenes is a possible treatment strategy.12,89

CDKN2A, *CDK4*, *MCR1*, *BAP1*, and *TERT* promoter germline mutations increase melanoma risk within families.15,96,97 No specific germline mutation is associated with acral melanoma yet; in fact, *MCR1* variants were less common in acral lentiginous melanoma patients in a Swedish study.103 An increased risk of melanoma in general (but not acral lentiginous melanoma specifically) was observed in families of acral lentiginous melanoma patients.104 One study showed a similar prevalence of acral lentiginous melanoma in a cohort of melanoma patients with familial *CDKN2A* mutations compared with a group without.5,105 Patients with multiple primary acral melanomas (but no family history) have been reported.106 An uncommon association of melanoma and some forms of inherited palmoplantar keratoderma has been reported (Mal de Meleda, Papillon-Lefèvre syndrome, Nagashima-type disease, and Greither disease).106-110 Mutations identified include *SLURP-1* (Mal de Meleda), *CTSC* (Papillon-Lefèvre syndrome), and *SERPINB7* (Nagashima-type disease). It is not clear whether these cases were a result of inherited predisposition to melanoma or another intrinsic susceptibility.

CONCLUSION

Critical knowledge gaps in the tumor genetics of acral melanoma remain. Complete molecular characterization of acral melanoma subsets, including different anatomic and histologic subgroups, is necessary. The development of pathology-supported genetic testing algorithms will herald the age of precision medicine in the treatment of acral melanoma. Clarity about the molecular events leading to progression and metastases, and whether these are unique in acral melanoma or even in acral melanoma subsets, will be helpful to explain treatment success and failure. Understanding how intratumoral and intertumoral heterogeneity leads to the biological behavior of acral melanoma is critical. The ultimate goal is unraveling the molecular events leading to acral melanoma development in the first place and to apply this knowledge to prevention and treatment.
REFERENCES

1. Zaremba A, Murali R, Jansen P, et al. Clinical and genetic analysis of melanomas arising in acral sites. Eur J Cancer. 2019;119:66-76.
2. Ravaiolli G, Dika E, Lamberti M, Chessa M, Fanti P, Patrizi A. Acral melanoma: correlating the clinical presentation to the mutational status. G Ital Dermatol Venereol. 2019;154(5):567-572.
3. Merkel EA, Gerami P. Malignant melanoma of sun-protected sites: a review of clinical, histological, and molecular features. Lab Invest. 2017;97(6):630-635.
4. Paluncic J, Kovačević Z, Jansson PJ, et al. Roads to melanoma: key pathways and emerging players in melanoma progression and oncogenic signaling. Biochim Biophys Acta Mol Cell Res. 2016;1863(4):770-784.
5. Chen YA, Teer JK, Eroglu Z, et al. Translational pathology, genomics and the development of systemic therapies for acral melanoma. Semin Cutan Med Surg. 2020;6(1):149-157.
6. Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol. 2012;4(11):a011254.
7. Fernandez M, Barcelos D, Comodo AN, et al. Acral lentiginous melanomas harbour intratumor heterogeneity in BRAF exon 15, with mutations distinct from V600E/V600K. Am J Dermatopatol. 2019;41(10):733-740.
8. Bologna J, Schaffer J, Cerroni L. Dermatology. 4th ed. London, UK: Elsevier; 2018.
9. Fernandes JD, Hsieh R, De Freitas LAR, et al. MAP kinase pathways: molecular roads to primary acral lentiginous melanoma. Am J Dermatopatol. 2015;37(12):892-897.
10. Georgescu MM. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer. 2010;1(12):1170-1177.
11. Harrison D. The JAK/STAT pathway fact sheet. Cold Spring Harb Perspect Biol. 2012;4(3):a011205.
12. Schadendorf D, van Akkooi ACJ, Berking C, et al. Melanoma. Lancet. 2018;392(10151):971-984.
13. Bell RJA, Rube HT, Xavier-Magalhães A, et al. Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res. 2016;14(4):315-323.
14. Liang WS, Hendricks W, Kiefer J, et al. Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma. Genome Biol. 2017;27(4):524-532.
15. Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging target in melanoma. Clin Cancer Res. 2013;19(19):5230-5238.
16. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst. 2000;92(12):1006-1010.
17. Haugh AM, Zhang B, Quan VL, et al. Distinct patterns of acral melanoma based on site and relative sun exposure. J Invest Dermatol. 2018;138(2):384-393.
18. Kong Y, Sheng X, Wu X, et al. Frequent genetic aberrations in the CDK4 pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin Cancer Res. 2017;23(22):6946-6957.
19. Nog S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res. 2013;27(4):254-271.
20. Ploper D, Taelman VF, Robert L, et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Natl Acad Sci U S A. 2015;112(5):E420-E429.
21. Shim JH, Shin HT, Park J, et al. Mutational profiling of acral melanomas in Korean populations. Exp Dermatol. 2017;26(10):883-888.
22. Rabbie R, Ferguson P, Molina-Aguilar C, Adams DJ, Robles-Espinosa CD. Melanoma subtypes: genomic profiles, prognostic molecular markers and therapeutic possibilities. J Pathol. 2019;247(5):539-551.
23. Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175-180.
24. Pon J, Marra M. Driver and passenger mutations in cancer. Annu Rev Pathol. 2015;10:25-50.
25. Reddy B, Miller D, Tsao H. Somatic driver mutations in melanoma. Cancer. 2017;123:2104-2117.
26. Furney SJ, Turajlic S, Stamp G, et al. The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res. 2014;27(5):835-838.
27. Hodi E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251-263.
28. Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006-1014.
29. Dai B, Cai X, Kong YY, et al. Analysis of KIT expression and gene mutation in human acral melanoma: with a comparison between primary tumors and corresponding metastases/reurrences. Hum Pathol. 2013;44(8):1472-1478.
30. Grzywa TM, Paskal W, Włodarski PK. Intratumor and inter-tumor heterogeneity in melanoma. Transl Oncol. 2017;10(6):956-975.
31. Akbani R, Akdemir KC, Aksoy BA, et al. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681-1696.
32. Cirenajwis H, Lauss M, Ekedahl H, et al. NF1-mutated melanoma cells. Annu Rev Pathol. 2017;12:438-451.
33. Kosman J. Melanoma: what every physician needs to know. Available at: https://www.canccertreatmentadvisor.com/home/decision-support-in-medicine/imaging/melanoma/; 2017. Accessed March 14, 2019.
34. Leichsenring J, Stögbauer F, Volckmar AL, et al. Genetic profiling of melanoma in routine diagnostics: assay performance and molecular characteristics in a consecutive series of 274 cases. Pathology. 2018;50(7):703-710.
35. Moon KR, Choi YD, Kim JM, et al. Genetic alterations in primary acral melanoma and acral melanocytic nevus in Korea: common mutated genes show distinct cytomorphological features. J Invest Dermatol. 2018;138(4):933-945.
36. Darmawan CCC, Gwanghyun J, Montenegro SSE, et al. Early detection of acral melanoma: a review of clinical, dermoscopic, histopathologic, and molecular characteristics. J Am Acad Dermatol. 2019;81(3):805-812.
37. Sheen Y, Tan K, Tse K, et al. Genetic alterations in primary melanoma in Taiwan. Br J Dermatol. 2020;182(5):1205-1213.
38. Namiki T, Coelho SG, Hearing VJ. NUAK2: an emerging acral melanoma driver. PLoS Pathol. 2017;13(8):e1006587.
39. Vásquez-Moctezuma I, Meraz-Rios M, Villanueva-López C, et al. ATP-binding cassette transporter ABCB5 gene is expressed with variability in malignant melanoma. Oncotarget. 2011;2(9):695-704.
40. Yun J, Lee J, Jang J, et al. KIT amplification and gene mutations in acral/mucosal melanoma in Korea. J Pathol. 2014;232(1):120-127.
41. Desai A, Ugurji R, Khachemoune A. Acral melanoma foot lesions. Part 1: epidemiology, aetiology, and molecular pathology. Clin Exp Dermatol. 2017;42(8):845-848.
42. Slipicevic A, Herlyn M. KIT in melanoma: many shades of gray. Pigment Cell Melanoma Res. 2014;27(5):835-838.
44. Niu HT, Jorgenson E, Shen L, et al. Targeted genomic profiling of acral melanoma. J Natl Cancer Inst. 2019;111:1-10.
45. Gao HW, Tsai WC, Perng CL, Wang WM, Chiang CP. Distinct MAPK and PI3K pathway mutations in different melanoma types in Taiwanese individuals. Eur J Dermatol. 2018;28(4):509-518.
46. Curtin JA, Fridyland J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135-2147.
47. Zebary A, Omholt K, Vassilaki I, et al. KIT, NRAS, BRAF and PTEN mutations in a sample of Swedish patients with acral lentiginous melanoma. J Dermatol Sci. 2013;72(3):284-289.
48. De Lima Vazquez V, Vicente AL, Carloni A, et al. Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res. 2016;26(2):93-99.
49. Roh MR, Park KH, Chung KY, Shin SJ, Rha SY, Tsao H. Telomere length, telomerase reverse transcriptase (TERT) promoter mutations, and oncogenic mutation profiles in acral/mucosal melanomas. Pigment Cell Melanoma 2009;15(13):4288-4291.
50. Shi K, Zhang B, Kong BY, et al. Distinct genomic features in a retrospective cohort of mucosal, acral and vulvovaginal melanomas. J Am Acad Dermatol. 2019. https://doi.org/10.1016/j.jaad.2019.07.017.
51. Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16(11):2598-2608.
52. Trucco LD, Mundra PA, Hogan K, et al. Ultraviolet radiation-induced DNA damage is prognostic for outcome in melanoma. Nat Med. 2019;25(2):221-224.
53. Rawson RV, Johansson PA, Hayward NK, et al. Unexpected UVR and non-UVR mutation burden in some acral and cutaneous melanomas. Lab Invest. 2017;97(2):130-145.
54. Liu L, Zhang W, Gao T, Li C. Is UV an etiologic factor of acral melanoma? J Exp Sci Environ Epidemiol. 2016;26(6):539-545.
55. Stern DK, Creasey AA, Quijije J, Lebwohl MG. UV-A and UV-B penetration of normal human cadaveric fingernail plate. Arch Dermatol. 2011;147(4):439-441.
56. Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med. 2018;50(8):98.
57. Cheng PF. Medical bioinformatics in melanoma. Curr Opin Oncol. 2018;30(2):113-117.
58. Chemoff KA, Bordone L, Horst B, et al. GAB2 amplifications refine molecular classification of melanoma. Clin Cancer Res. 2009;15(13):4288-4291.
59. Niu HT, Zhou QM, Wang F, et al. Identification of anaplastic lymphoma kinase break points and oncogenic mutation profiles in acral/mucosal melanomas. Pigment Cell Melanoma Res. 2013;26(5):646-653.
60. Rachakonda S, Kong H, Srinivas N, et al. Telomere length, telomerase reverse transcriptase promoter mutations, and melanoma risk. Genes Chromosomes Cancer. 2018;57(11):564-572.
61. Carrera C, Puig-Butilé JA. Clinical, epidemiological, and molecular heterogeneity in acral melanoma. J Invest Dermatol. 2018;138(2):254-255.
62. Turner J, Couts K, Sheren J, et al. Kinase gene fusions in defined subsets of melanoma. Pigment Cell Melanoma Res. 2017;30(1):53-62.
63. Comodo-Navarro AN, Fernandes M, Barcelos D, et al. Intra-tumor heterogeneity of KIT gene mutations in acral lentiginous melanoma. Am J Dermatopathol. 2020;42(4):265-271.
64. Zhang X, Peng Y, Li C, et al. Genomic heterogeneity and branched evolution of early stage primary acral melanoma shown by multiregional microdissection sequencing. J Invest Dermatol. 2019;139(7):1526-1534.
65. Su J, Yu W, Liu J, et al. Fluorescence in situ hybridisation as an ancillary tool in the diagnosis of acral melanoma: a review of 44 cases. Pathology. 2017;49(7):740-749.
66. Díaz A, Puig-Butillé JA, Valera A, et al. TERT and AURKA gene copy number gains enhance the detection of acral lentigious melanomas by fluorescence in situ hybridization. J Mol Diagn. 2014;16(2):198-206.
67. Donnelly D, Aung PP, Jour G. The ‘‘-omics’’ facet of melanoma: heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin Cancer Biol. 2019;59:165-174.
68. Griewank KG, Schilling B, Scholz SL, et al. Oncogenec status as a diagnostic tool in ocular and cutaneous melanoma. Eur J Cancer. 2016;57:112-117.
69. Bastian BC, Kashani-Sabet M, Hamm H, et al. Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res. 2000;60(7):1968-1973.
70. Grant KA, Apffelstaedt JP, Wright C, et al. Mammaprint Pre-screen Algorithm (MPA) reduces chemotherapy in patients with early-stage breast cancer. S Afr Med J. 2013;103(8):522-526.
71. Grant KA, Myburgh EJ, Murray E, et al. Reclassification of early stage breast cancer into treatment groups by combining the use of immunohistochemistry and microarray analysis. S Afr J Sci. 2019;115(3/4):2-7.
72. Hong JW, Lee S, Kim DC, Kim KH, Song KH. Prognostic and clinicopathologic associations of BRAF mutation in primary acral lentiginous melanoma in Korean patients: a preliminary study. Ann Dermatol. 2014;26(2):195-202.
73. Shitara D, Tell-Marti G, Badenas C, et al. Mutational status of naeovus-associated melanomas. Br J Dermatol. 2015;173(3):671-680.
74. Choi YD, Chun SM, Jin SA, Lee JB, Yun SJ. Amelanotic acral melanomas: clinicopathological, BRAF mutation, and KIT aberration analyses. J Am Acad Dermatol. 2013;69(5):700-707.
75. Scloyer RA, Long GV, Thompson JF. Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Mol Oncol. 2011;5(2):124-136.
76. Savola P, Fava P, Casoni F, Cremona O. Targeting the ERK signaling pathway in melanoma. Int J Mol Sci. 2019;20:1-37.
77. Cosgarea I, Ritter C, Becker JC, Schadendorf D, Ugelre S. Update on the clinical use of kinase inhibitors in melanoma. J Dtsch Dermatol Ges. 2017;15(9):887-893.
78. Domingues B, Lopes J, Soares P, Populo H. Melanoma treatment in review. Immunotargets Ther. 2018;7:35-49.
79. Wu X, Yu J, Yan J, et al. PI3K/akt/mTOR pathway inhibitors inhibit the growth of melanoma cells with mTOR H2189Y mutations in vitro. Cancer Biol Ther. 2018;19(7):584-589.
80. Delyon J, Chevret S, Jouary T, et al. STAT3 mediates nilotinib induced DNA damage is prognostic for outcome in melanoma. J Am Acad Dermatol. 2014;60(1):196-198.
81. Yu J, Yu J, Wu X, et al. The TERT copy number gain is sensitive for the treatment of melanoma: a phase II multicenter trial of the French Skin Cancer Network. J Invest Dermatol. 2018;138(1):58-67.
82. Yu J, Yu J, Wu X, et al. The TERT copy number gain is sensitive to telomerase inhibitors in human melanoma. Clin Sci. 2020;134(2):193-205.
83. Lee B, McArthur GA. CDK4 inhibitors an emerging strategy for the treatment of melanoma. Melanoma Manag. 2015;2(3):255-266.
84. Sanz G, Singh M, Peugeot S, Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol. 2019;11(7):586-599.
84. Goldsberry WN, Londoño A, Randall TD, Norian LA, Arend RC. A review of the role of Wnt in cancer immunomodulation. *Cancers (Basel).* 2019;11(6):1-19.

85. Wang R, He Y, Robinson V, et al. Targeting lineage-specific MITF pathway in human melanoma cell lines by A-485, the selective small-molecule inhibitor of p300/ CBP. *Mol Cancer Ther.* 2018;17(12):2543-2550.

86. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. *J Clin Oncol.* 2015;33(25):2780-2788.

87. Davar D, Ding F, Saul M, et al. High-dose interleukin-2 (HD IL-2) for advanced melanoma: a single center experience from the University of Pittsburgh Cancer Institute. *J Immunother Cancer.* 2017;5(1):1-10.

88. National Cancer Institute. Drugs approved for melanoma. Available at: https://www.cancer.gov/about-cancer/treatment/drugs/melanoma; 2019. Accessed June 9, 2020.

89. Veatch JR, Lee SM, Fitzgibbon M, et al. Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. *J Clin Invest.* 2018;128(4):1563-1568.

90. Gershenwald JE, Scolyer RA, Faries MB, Kirkwood JM, McArthur GA. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. *CA Cancer J Clin.* 2017;67(6):472-492.

91. Chan E, Patel R, Nallur S, et al. MicroRNA signatures differentiate melanoma subtypes. *Cell Cycle.* 2011;10(11):1845-1852.

92. Durbec F, Martin L, Derancourt C, Grange F. Melanoma of the hand and foot: epidemiological, prognostic and genetic features. A systematic review. *Br J Dermatol.* 2012;166(4):727-739.

93. Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. *Cold Spring Harb Mol Case Stud.* 2015;1(1):a000588.

94. Kim HY, Lee H, Kim SH, Jin H, Bae J, Choi HK. Discovery of potential biomarkers in human melanoma cells with different metastatic potential by metabolic and lipidomic profiling. *Sci Rep.* 2017;7(1):1-14.

95. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. *Science.* 2018;359(6371):97-103.

96. Betti M, Aspeli A, Biasi A, et al. CDKN2A and BAP1 germline mutations predispose to melanoma and mesothelioma. *Cancer Lett.* 2016;378(2):120-130.

97. Rojek NW, Korcheva V, Leachman SA. A large skin-colored nodule on the plantar foot: a quiz. *Acta Derm Venereol.* 2017;97(10):1265-1266.

98. Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. *Semin Cancer Biol.* 2018;51:80-88.

99. Hammerling H, Schaeider H. Epigenetics in melanoma development and drug resistance. In: Blumenberg M, ed. *Human Skin Cancers - Pathways, Mechanisms, Targets and Treatments.* IntechOpen; 2017:3-24. https://doi.org/10.5772/intechopen.70983.

100. Chan E, Patel R, Nallur S, et al. MicroRNA signatures differentiate melanoma subtypes. *Cell Cycle.* 2011;10(11):1845-1852.

101. Shruthi B, Vinodhkumar P, Selvamani M. Proteomics: a new perspective for cancer. *Adv Biomed Res.* 2016;5(1):67.

102. Sengupta D, Tackett AJ, Rock L, Rock L. Proteomic findings in melanoma. *J Proteomics Bioinform.* 2016;9(4):1-7.

103. Höiom V, Tuominen R, Käller M, et al. MC1R variation and melanoma risk in the Swedish population in relation to clinical and pathological parameters. *Pigment Cell Melanoma Res.* 2009;22(2):196-204.

104. Fallah M, Pukkala E, Sundquist K, et al. Familial melanoma by histology and age: joint data from five Nordic countries. *Eur J Cancer.* 2014;50(6):1176-1183.

105. Van Der Rhee JI, Krijnen P, Gruis NA, et al. Clinical and pathological parameters. *Adv Biomed Res.* 2016;5(1):67.

106. Lacruz G, Cárdenas J, Carrera C, et al. Multiple primary acral melanomas in two young Caucasian patients. *Dermatology.* 2014;228(4):307-310.

107. Bergquist C, Kadara H, Hamie L, et al. SLURP-1 is mutated in melanoma patients. *Int J Dermatol.* 2017;56(2):281-288.

108. Nakajima K, Nakano H, Takiyoshi N, et al. Papillon-Lefèvre syndrome and malignant melanoma: a high incidence of melanoma development in Japanese palmoplantar keratodermat patients. *Dermatology.* 2008;217(1):58-62.

109. Kogame T, Kaku Y, Endo Y, et al. Multiple primary acral melanomas in a patient with Nagashima-type palmoplantar keratosis: validation of SERPINB7 mutation and local recurrence. *Eur J Dermatol.* 2018;28(4):519-520.

110. Seike T, Nakanishi H, Urano Y, Arase S. Malignant melanoma developing in an area of palmoplantar keratoderma (Grether’s disease). *J Dermatol.* 1995;22(1):55-61.