ON LOCAL TAMENESS OF CERTAIN GRAPHS OF GROUPS

RITA GITIK

Abstract. Let G be the fundamental group of a finite graph of groups with Noetherian edges and locally tame vertices. We prove that G is locally tame. It follows that if a finitely presented group H has a non-trivial JSJ-decomposition over the class of its $VPC(k)$ subgroups for $k = 1$ or $k = 2$, and all the vertex groups in the decomposition are flexible, then H is locally tame.

Keywords: Noetherian group, locally tame group, graph product, JSJ-decomposition, covering space, fundamental group.

1. Introduction

Let H be a subgroup of a group G given by the presentation $G = \langle X | R \rangle$. Let K be the standard presentation 2-complex of G, i.e. K has one vertex, K has an edge, which is a loop, for every generator $x \in X$, and K has a 2-cell for every relator $r \in R$. The Cayley complex of G, denoted by $\text{Cayley}_2(G)$, is the universal cover of K. Denote by $\text{Cayley}_2(G, H)$ the cover of K corresponding to a subgroup H of G.

Definition 1. cf. [2] and [7].

A finitely generated subgroup H of a finitely presented group G is tame in G if for any finite subcomplex C of $\text{Cayley}_2(G, H)$ and for any component C_0 of $\text{Cayley}_2(G, H) - C$ the group $\pi_1(C_0)$ is finitely generated.

A manifold M is called a missing boundary manifold if it can be embedded in a compact manifold \overline{M} such that $\overline{M} - M$ is a closed subset of the boundary of \overline{M}. Simon conjectured in [11] that if M_0 is a compact orientable irreducible 3-manifold, and M is the cover of M_0 corresponding to a finitely generated subgroup of $\pi_1(M_0)$, then M is a missing boundary manifold. Perelman’s solution of Thurston’s Geometrization Conjecture in 2003 implies that Simon’s conjecture holds for all compact orientable irreducible 3-manifolds, cf. [1] and [5].

Tucker proved in [12] that a non-compact orientable irreducible 3-manifold M is a missing boundary manifold if and only if the trivial subgroup is tame in the fundamental group of M.

It is not known if there exists a finitely generated subgroup H of a finitely presented group G such that H is not tame in G.

Tameness of a subgroup is connected to other properties which have been studied for a long time.

It is shown in [8] that if the trivial subgroup is tame in G then $\pi_1^\infty(G)$ (the fundamental group at infinity of G) is pro-finitely generated. It is shown in [7]...
that if a finitely generated subgroup H is tame in G then $\pi_1^\infty(G, H)$ is pro-finitely generated.

It is shown in [8] that if the trivial subgroup is tame in G then G is QSF (Quasi-Simply-Filtrated).

The following definition was given in [3].

Definition 2. A group G is locally tame if all finitely generated subgroups of G are tame in G.

Recall that a group is called Noetherian or slender if all its subgroups are finitely generated. A group is polycyclic if it is Noetherian and solvable. For $n \geq 0$ a group G is VPC(n), (virtually polycyclic of length n) if it has $n+1$ subgroups, G_0, \cdots, G_n such that G_{i+1} is a normal subgroup of G_i for $0 \leq i \leq n-1$, the quotient groups G_i/G_{i+1} are isomorphic to \mathbb{Z} for $0 \leq i \leq n-1$, G_n is the trivial subgroup, and G_0 has finite index in G.

Note that VPC(0) groups are finite, VPC(1) groups are finite extensions of \mathbb{Z}, and VPC(2) groups are finite extensions of an extension of \mathbb{Z} by \mathbb{Z}. There are only two non-isomorphic extensions of \mathbb{Z} by \mathbb{Z}, namely the fundamental group of a torus and the fundamental group of a Klein bottle.

It is unknown whether all finitely presented Noetherian groups are virtually polycyclic (question 11.38 from the Kourovka Notebook [6]), however there exist finitely generated Noetherian groups that are not virtually polycyclic, for example the Tarski monster.

The main results of this paper is the following theorem.

Theorem 1. Let G be a finitely presented group which is the fundamental group of a finite graph of groups with Noetherian edge groups. If all the vertex groups of G are locally tame then G is locally tame.

Recall that a subgroup H is elliptic in a graph of groups G if H is contained in a conjugate of a vertex group. A vertex group K of a JSJ-decomposition of G which fails to be elliptic in some other JSJ-decomposition of G is called flexible, cf. [4].

Theorem 1 implies the following interesting result.

Lemma 1. If a finitely presented group G has a non-trivial JSJ-decomposition over the class of its VPC(k) subgroups for $k = 1$ or $k = 2$, and all the vertex groups in the decomposition are flexible, then G is locally tame.

Corollary 1. Let G be the fundamental group of a finite graph of groups which has all the vertex groups homeomorphic to $\mathbb{Z}^n \times$ (surface group) and all the edge groups homeomorphic to \mathbb{Z}^{n+1}. Then G is locally tame.

Remark 1. Let G be a finitely presented group which has a JSJ-decomposition over the class of its VPC($n+1$) subgroups. Let K be a flexible vertex group of this decomposition. Then K is either VPC($n+1$) or K has a finite index subgroup L such that L has a normal VPC(n) subgroup N with L/N the fundamental group of a surface. Furthermore, if L/N is the fundamental group of a closed surface, then $K = G$.

Conjecture. If a finitely presented group G has a non-trivial JSJ-decomposition over the class of its VPC($n+1$) subgroups for $n \geq 0$, and all the vertex groups in the decomposition are flexible, then G is locally tame.
2. Proof of Theorem 1

We need the following notation.
Let $X^* = \{x, x^{-1} | x \in X\}$. For $x \in X$ define $(x^{-1})^{-1} = x$.

Let G be a group generated by a set X and let H be a subgroup of G. Let $\{H^g\}$ be the set of right cosets of H in G.

The coset graph of G with respect to H, denoted $Cayley(G, H)$, is the oriented graph whose vertices are the cosets $\{H^g\}$, the set of edges is $\{H^g\} \times X^*$, and an edge (H^g, x) begins at the vertex H^g and ends at the vertex H^{gx}. Denote the Cayley graph of G by $Cayley(G)$. Note that $Cayley(G, H)$ is the quotient of $Cayley(G)$ by left multiplication by H. Also note that the 1-skeleton of $Cayley_2(G)$ is $Cayley(G)$, and the 1-skeleton of $Cayley_2(G, H)$ is $Cayley(G, H)$.

Let G be generated by a disjoint union of sets $X_i, 1 \leq i \leq n$. We call a connected subcomplex C of $Cayley(G, H)$ an X_i-component, if all edges of C have the form (H^g, x) with $x \in X_i^*$.

Proof of Theorem 1.

Let G be a finite graph of groups with vertex groups $V_i, 1 \leq i \leq n$ and edge groups $E_j, 1 \leq j \leq m$. As G is finitely presented and all the edge groups are Noetherian, hence finitely generated, it follows that all the vertex groups are finitely presented. Let the vertex group V_i be generated by a finite set X_i such that the sets X_i and X_k are disjoint for $i \neq k$.

Consider a finitely generated subgroup H of G. Note that H is the fundamental group of a (possibly infinite) graph of groups which has the vertex groups isomorphic to subgroups of conjugates of V_i and the edge groups isomorphic to subgroups of conjugates of E_j. [10].

As the edge groups of G are Noetherian, the edge groups of H are also Noetherian and the vertex groups of H are finitely generated.

Note that all maximal X_i-components of $Cayley_2(G, H)$ have fundamental groups which are subgroups of conjugates of V_i, hence the maximal X_i-components of $Cayley_2(G, H)$ are homeomorphic to $Cayley_2(V_i, U_i)$, with U_i a finitely generated subgroup of V_i.

As H is finitely generated, there exists a finite connected subcomplex $(K, H \cdot 1)$ of $Cayley_2(G, H)$ such that the inclusion map of $(K, H \cdot 1)$ in $Cayley_2(G, H)$ induces an isomorphism of $\pi_1(K, H \cdot 1)$ with $\pi_1(Cayley_2(G, H), H \cdot 1) = H$.

Let C be a compact subcomplex of $Cayley_2(G, H)$. Note that C has non-empty intersection with only finitely many maximal X_i-components of $Cayley_2(G, H)$. The complex K can be enlarged to contain C. It can be enlarged more, so it consists of finitely many maximal X_i-components of $Cayley_2(G, H)$ which have non-trivial intersection with C and the 2-cells with boundaries in the union of those X_i-components. By construction, $K = C$ has a finite number of connected components.

As the vertex groups V_i are locally tame, the fundamental group of each component of the complement of C in any maximal X_i-component is finitely generated, hence the fundamental group of each component of $K - C$ is finitely generated.

Note that $(Cayley_2(G, H) - C) = (Cayley_2(G, H) - K) \cup (K - C)$. Let W be a connected component of the closure of $Cayley_2(G, H) - K$. Then $W \cap K$ is connected and $\pi_1(W \cap K)$ is isomorphic to $\pi_1(W)$ because K carries the fundamental group of $Cayley_2(G, H)$. So for each component K_i of $K - C$ which intersects W non-trivially, $\pi_1(K_i \cap W) = \pi_1(W)$. Let W^i be the (possibly infinite) union
of all components of $\text{Cayley}_2(G, H) - K$ which have non-trivial intersection with K_i. Then $\pi_1(W^i \cup K_i) = \pi_1(K_i)$ which is finitely generated. Hence the fundamental group of each component of $\text{Cayley}_2(G, H) - C$ is finitely generated, proving Theorem 1.

3. Proof of Lemma 1

Remark 2. The following result was proved in [3]. Let K_0 be a finite index subgroup of a finitely presented group K. A finitely generated subgroup H of K is tame in K if and only if $H \cap K_0$ is tame in K_0.

It follows that virtually locally tame groups are locally tame.

Remark 3. Note that the fundamental group of a surface is locally tame.

It is shown in [3] that finitely generated free groups are locally tame. Indeed, for any free group F and its finitely generated subgroup H the complex $\text{Cayley}_2(F, H)$ is one-dimensional. When H is finitely generated, $\text{Cayley}_2(F, H)$ is homotopic to a wedge of finitely many circles. It follows that the fundamental group of a non-closed surface is tame.

It is shown in [3] that finitely generated abelian groups are locally tame, hence the fundamental group of a torus is locally tame.

Note that the fundamental group of a closed orientable surface of genus greater than one can be written as a double of a free group over a cyclic subgroup. Hence Theorem 1 implies that fundamental groups of closed orientable surfaces of genus greater than one are locally tame.

As closed orientable surfaces are double covers of non-orientable closed surfaces of the same genus, Remark 2 implies that the fundamental groups of non-orientable closed surfaces are locally tame.

Proof of Lemma 1.

Consider, first, the case when a finitely presented group G has a non-trivial JSJ-decomposition over the class of its $\text{VPC}(1)$ subgroups and all the vertex groups in the decomposition are flexible. Note that $\text{VPC}(1)$ groups are Noetherian.

The flexible vertex groups in such JSJ-decomposition are either $\text{VPC}(1)$ or virtually($\text{fundamental group of surfaces}$), cf. [9] and [4]. Furthermore, if a vertex group M in that decomposition is virtually($\text{the fundamental group of a closed surface}$), then $G = M$.

Hence Remark 2 and Remark 3 imply that the group G satisfies the conditions of Theorem 1, therefore it is locally tame.

Next, consider the case when a finitely presented group G has a non-trivial JSJ-decomposition over the class of its $\text{VPC}(2)$ subgroups and all the vertex groups in the decomposition are flexible. Note that $\text{VPC}(2)$ subgroups are Noetherian.

The flexible vertex groups in such JSJ-decomposition are either $\text{VPC}(2)$ or virtually-($\text{cyclic-by-a surface group}$), cf. [9] and [4]. Furthermore, if a flexible vertex group K in that decomposition is virtually-($\text{cyclic-by-a closed surface group}$), then $G = K$.

If a group L is ($\text{cyclic-by-a surface group}$) then there exists a surface M and a normal cyclic subgroup N of L such that the following sequence is exact.

$$1 \to N \to L \to \pi_1(M) \to 1$$

and L is the fundamental group of a bundle X over M with fiber S^1.

If H is a finitely generated subgroup of L then either $H \cap N = \{1\}$ or $H \cap N$ is isomorphic to \mathbb{Z}. Let K be the image of H in $\pi_1(M)$. Note that K is finitely generated. Let M_K be the cover of M with fundamental group K. Then H is the fundamental group of a bundle X_H over M_K with fiber either S^1 if $H \cap N = \mathbb{Z}$ or fiber \mathbb{R} if $H \cap N = \{1\}$. As K is finitely generated, M_K is a missing boundary surface. It follows that, in either case, X_H is a missing boundary 3-manifold, so L is locally tame.

If a group L is VPC(2) then it is virtually either the fundamental group of a torus or the fundamental group of a Klein bottle, hence Remark 3 implies that L is locally tame.

Therefore, Remark 2 implies that the group G satisfies the conditions of Theorem 1, so it is locally tame.

4. Acknowledgement

The author would like to thank Mike Mihalik and Peter Scott for helpful discussions.

References

[1] L. Bessieres, G. Besson, M. Boileau, S. Maillot, and J. Porti, Geometrization of 3-manifolds, EMS Tracts in Mathematics, 13(2010), European Mathematical Society, Zurich.

[2] R. Gitik, Tameness and Geodesic Cores of Subgroups, J. Austral. Math. Soc (Series A), 69(2000), 153-161.

[3] R. Gitik, On Tame Subgroups of Finitely Presented Groups, to appear.

[4] V. Guirardel and G. Levitt, JSJ Decompositions of Groups, to appear in Astérisque.

[5] B. Kleiner and J. Lott, Notes on Perelman’s papers, Geometry and Topology, 12(2008), pp. 2587-2858.

[6] E. I. Khukhro and V. D. Mazurov, Unsolved Problems in Group Theory. The Kourovka Notebook, arXiv:1401.0300v13.

[7] M. Mihalik, Compactifying Coverings of 3-Manifolds, Comment. Math. Helv., 71(1996), 362-372.

[8] M. Mihalik and S. Tschantz, Tame Combinations of Groups, Trans. AMS, 349(1997), 4251-4264.

[9] P. Scott and G. A. Swarup, Regular Neighborhoods and Canonical Decompositions for Groups, Astérisque, 289(2003).

[10] G. P. Scott and C. T. C. Wall, Topological Methods in Group Theory, in Homological Group Theory, London Math. Soc. Lecture Notes Series, 36(1979), 137-214.

[11] J. Simon, Compactification of Covering Spaces of Compact 3-Manifolds, Mich. Math. J., 23(1976), 245-256.

[12] T. W. Tucker, Non-Compact 3-Manifolds and the Missing Boundary Problem, Topology, 13(1974), 267-273.

E-mail address: rita@gmail.com

Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109