Laparoscopy/Robotics

Retropubic Versus Robot-Assisted Laparoscopic Prostatectomy for Prostate Cancer: A Comparative Study of Postoperative Complications

Jeman Ryu, Taekmin Kwon, Yoon Soo Kyung¹, Sungwoo Hong², Dalsan You, In Gab Jeong, Choung-Soo Kim

Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, ¹Department of Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, ²Department of Urology, Dankook University College of Medicine, Cheonan, Korea

Purpose: To compare the complications of radical retropubic prostatectomy (RRP) with those of robot-assisted laparoscopic prostatectomy (RALP) performed by a single surgeon for the treatment of prostate cancer.

Materials and Methods: The postoperative complications of 341 patients who underwent RRP and 524 patients who underwent RALP for prostate cancer at the Asan Medical Center between July 2007 and August 2012 were retrospectively reviewed and compared. Complications were classified according to the modified Clavien classification system.

Results: RALP was associated with a shorter length of hospital stay (mean, 7.9 days vs. 10.1 days, p < 0.001) and duration of urethral catheterization (6.2 days vs. 7.5 days, p < 0.001) than RRP. Major complications (Clavien grade III–IV) were less common in the RALP group than in the RRP group (3.4% vs. 7.6%, p=0.006). There were no significant differences in medical complications between procedures. Considering surgical complications, urinary retention (7.0% vs. 2.7%, p=0.002) and wound repair (4.1% vs. 0.2%, p < 0.001) were more common after RRP than after RALP. Extravasation of contrast medium during cystography was more common in the RRP group than in the RALP group (10.0% vs. 2.1%, p < 0.001).

Conclusions: RALP is associated with a lower complication rate than RRP.

Keywords: Complications; Prostate; Prostate neoplasms; Prostatectomy

INTRODUCTION

Prostate cancer is the most common solid organ malignancy in men in the United States and the second leading cause of cancer death [1]. Over the past 80 years, radical retropubic prostatectomy (RRP) has been the most common form of surgical treatment for prostate cancer. However, in the last 8 years, there has been a paradigm shift in surgically treated prostate cancer with the adaptation of robot-assisted laparoscopic prostatectomy (RALP). Because of the presence of three-dimensional magnification and tools with 7 degrees of freedom that can duplicate hand movements with high accuracy, RALP has gained notable popularity in both the United States and Europe; furthermore, it is estimated that more than 75% of radical prostatectomies are performed by use of the da Vinci robotic platform (Intuitive Surgical Inc., Sunnyvale, CA, USA) [2,3].

The feasibility, safety, and early functional efficacy of RALP have been well documented. A recent population-based analysis comparing RALP and RRP procedures undertaken between 2003 and 2005 concluded that men undergoing RALP experienced significantly fewer 30-day complications, blood transfusions, and anastomotic stric-
tures and shorter lengths of stay [4]. In another study, postoperative pain scores were less with RALP than with RRP [5]. Other studies have also consistently shown that blood loss and length of hospital stay are less in patients who undergo RALP than in those who undergo RRP [5,6]. However, there is lack of uniformity in documenting and reporting complications that may result in incomplete capture of data and may make comparisons among different surgical approaches or institutional series problematic. Menon et al. [7] compared the complications at one institution between RRP performed by one group of surgeons and RALP performed by a different group of surgeons. Although the study was prospective and covered the same period, inter-surgeon differences in technique may have weakened the ability to objectively compare differences in complications. Moreover, most studies did not use a formal reporting system for complications or a uniform grading system. In this study, we compared the complications of RRP with RALP performed by a single surgeon using the modified Clavien system.

MATERIALS AND METHODS

1. Patients

Three hundred forty-one RRPs and 524 RALPs were performed by a single surgeon (C.S.K.) between July 2007 and August 2012. The conducting surgeon had substantial experience with RRP but no experience with RALP at the start of the study period; in fact, he did not have any experience with laparoscopic radical prostatectomy. In Korea, the cost to the hospital for RALP is much greater than that for RRP because RRP is covered by national insurance, whereas RALP is not. Therefore, the choice of surgical method was made on the basis of counseling with patients, considering the severity and extent of their disease and their characteristics.

The preoperative workup for both groups consisted of serum prostate-specific antigen measurement, 10- to 12-core biopsies for cancer detection, magnetic resonance imaging, and a bone scan. Prostate volume and clinical stage were evaluated by transrectal ultrasonography and digital rectal examination, respectively. The risk of disease progression was classified by using the D'Amico risk classification [8]. Comorbidities (e.g., diabetes mellitus, hypertension, chronic obstructive pulmonary disease, and cardiovascular disease) and social history were assessed. Anesthesiologists within our institution determined the patients' American Society of Anesthesiologists scores [9].

Tumors were graded histologically according to the Gleason grading system [10], and the pathological stage was defined according to the TNM staging classification [11]. On the fifth to sixth postoperative day, cystography with anteroposterior and lateral views was performed to evaluate the anastomotic tightness. If there was no leak as evidenced by cystography, the urethral catheter was removed.

2. Surgical techniques

The RRP entailed a modification of the Walsh "anatomical radical retropubic prostatectomy" [12]. Briefly, a lower midline abdominal incision was made, entering the space of Retzius. Bilateral pelvic lymph node dissection was then performed. The endopelvic fascia was opened from the base of the prostate to the apex. The dorsal venous complex was then ligated and transected. Thereafter, for the cases in which a nerve-sparing procedure was attempted, the surgeon dissected the lateral aspects from the prostate allowing the neurovascular bundles to retract laterally. The urethra was then transected following exposure of its anterior surface. Ligation of the prostatic pedicles was then performed. The attachments between the bladder and the prostate were then divided and the surgical specimen was removed. The vesicourethral anastomosis with six separate sutures was typically performed over a 20-Fr urethral catheter.

In RALP, pneumoperitoneum was established by using a Veress needle and five trocars were then inserted. Bladder mobilization allowed entry into the space of Retzius. Bilateral pelvic lymph node dissection was performed for sampling purposes in all patients. The endopelvic fascia was then incised. The prostate was dissected with an antegrade approach, beginning with a bladder neck-sparing procedure. For all potent patients, the neurovascular bundles were spared athermally on sides not suspicious for cancer extension. A continuous suture was performed during the creation of the vesicourethral anastomosis with two 3-0 Monocryl sutures tied together, as described by van Velthoven [13].

3. Evaluation of complications

Medical and surgical complications were retrospectively collected for all patients through a combination of institutional electronic medical records, including operative and nursing notes, discharge summaries, outpatient and emergency room visits, and written correspondence with patients regarding complications. Any complications that occurred within 90 days of surgery were analyzed and categorized as either medical or surgical. Complications were classified according to the modified Clavien system [14]. This system determines the severity of a complication by using a scale with five grades. Grade I complications are designated as any deviation from the normal postoperative course that do not require extra therapy (with the exception of antiemetic, antipyretic, analgesic, and antidiarrheal drugs). Grade II complications necessitate pharmacologic treatment with drugs other than the drugs mentioned for the grade I complications. This grade includes the need for blood transfusion or hyperalimentation. Grade III complications are defined as complications necessitating surgical, endoscopic, or radiologic intervention. This grade is subdivided into grades IIIa and IIIb on the basis of the need for general anesthesia. Grade IV complications are life-threatening and necessitate intensive care, often leaving the patient with residual disability. A grade V complica-
TABLE 1. Characteristics of the 341 patients who underwent radical retropubic prostatectomy and the 524 patients who underwent robot-assisted laparoscopic prostatectomy

Characteristic	RRP	RALP	p-value
No. of patients	341	524	
Age (y)	64.9±6.7	64.9±7.0	0.255
Diabetes mellitus	55 (16.1)	77 (14.7)	0.566
Hypertension	154 (45.2)	217 (41.4)	0.276
Chronic obstructive pulmonary disease	14 (4.1)	20 (3.8)	0.831
Cardiovascular disease	39 (11.4)	58 (11.1)	0.867
History of previous operation	63 (18.5)	97 (18.5)	0.989
Smokers	145 (42.5)	255 (48.7)	0.077
Alcohol drinkers	193 (56.6)	289 (55.2)	0.676
ASA score			0.766
1/2	333 (97.7)	510 (97.3)	
3	8 (2.3)	14 (2.7)	
Body mass index (kg/m²)	24.7±2.7	24.6±2.7	0.645
Prostate-specific antigen (ng/mL)	9.7±11.2	10.1±11.4	0.188
Prostate volume (gm)	36.2±17.8	36.0±16.9	0.579
D’Amico classification			0.263
Low	110 (32.3)	171 (32.6)	
Intermediate	115 (33.7)	200 (38.2)	
High	116 (34.0)	153 (29.2)	
Neoadjuvant hormone therapy	28 (8.2)	41 (7.8)	0.837
Operation time (min)	170.8±61.3	146.4±47.4	0.211
Hospital stay (d)	10.1±3.2	7.9±5.1	<0.001
Mean duration of catheterization (d)	7.5±2.4	6.2±2.6	<0.001
Pathologic stage			0.816
Organ-confined	220 (64.5)	347 (66.2)	
Extracapsular extension	90 (26.4)	135 (25.8)	
Seminal vesicle invasion	31 (9.1)	42 (8.0)	
Pathologic Gleason score			0.820
≤6	27 (7.9)	33 (6.3)	
≥7	58 (18.5)	83 (16.9)	
≥8–10	189 (60.2)	305 (62.1)	
Pathologic lymph node involvement			0.158
Nx	31 (9.1)	27 (5.1)	
N0	295 (86.5)	484 (92.4)	
N1	15 (4.4)	13 (2.5)	

Values are presented as mean±standard deviation or number (%).
RRP, radical retropubic prostatectomy; RALP, robot-assisted laparoscopic prostatectomy; ASA, American Society of Anesthesiologists.

4. Statistical analysis
Patient characteristics are reported as the mean and standard deviation. The two-tailed Pearson chi-square test was used to assess differences in the variables between the RRP and RALP groups. A p-value less than 0.05 was considered statistically significant in these comparisons. All statistical analyses were performed by using IBM SPSS ver. 21.0 (IBM Co., Armonk, NY, USA).

RESULTS
The demographic and clinical characteristics of the two groups are shown in Table 1. The clinical stage, D’Amico classification, pathological stage, pathological Gleason grade, and treatment characteristics of all patients are also shown in Table 1. The patients’ characteristics were not significantly different between treatment approaches. The mean hospital stay (7.9 days vs. 10.1 days, p < 0.001) and mean urethral catheter duration (6.2 days vs. 7.5 days, p < 0.001) were significantly shorter in the RALP group than in the RRP group, respectively.

The postoperative complications for the two groups by use of the Clavien classifications are shown in Table 2. The complication rate of the RALP group was lower than that of the RRP group (27.3% vs. 68.0%, respectively). Among them, there were more major complications defined as Clavien grade III or more in the RRP group (3.4% vs. 7.6%,...
The incidence of medical complications (Table 3) was not significantly different between the two groups. The rates of cardiac problems, pneumonia, urinary tract infections, respiratory distress, respiratory failure, acute renal failure, and cerebrovascular accidents were similar in both groups. Myocardial infarction and pulmonary thromboembolism did not occur in any patient.

The incidence of surgical complications is listed in Table 4. Urinary retention was more common in the RRP group (7.6%) than in the RALP group (2.7%; p=0.002). The need for perioperative blood transfusion was also significantly higher in the RRP group (42.2% vs. 6.3%, respectively; p<0.001). Conversely, wound repairs (4.1% vs. 0.2%, p<0.001) and extravasation of contrast medium at cystography (10.0% vs. 2.1%, p<0.001) were more common in the RRP group than in the RALP group, respectively. There was no significant difference in femoral neuropathy (RRP, 2.1%; RALP, 2.5%; p=0.682), postoperative ileus (RRP, 1.8%; RALP, 2.3%; p=0.593), reoperation (RRP, 0.6%; RALP, 0.4%; p=0.664), or postoperative ICU care (RRP, 0.3%; RALP, 0.6%; p=0.554) rates between the groups.

DISCUSSION

Reports from several centers have demonstrated the superiority of RALP over open and laparoscopic prostatectomy with respect to surgical outcomes [15-17]. Menon et al. [7] compared RRP and a robotic approach (30 patients in each group) and reported transfusion rates (17% and 7%, respectively). However, in the aforementioned studies, multiple surgeons performed RRP and RALP procedures, and the perioperative complication rates (6% and 6%, respectively) were not classified by use of the Clavien system. Philippou et al. [20] compared complications arising from RRP and RALP procedures performed by the same surgeon; however, the study was limited by a small sample size.

We found that the incidence of Clavien grade III-IV complications was significantly lower in the RALP group (3.4%) than in the RRP group (7.6%). This finding is notable because of the large sample size, the inclusion of a single sur-

Table 2. Complications by Clavien classification in patients undergoing radical retropubic prostatectomy and robot-assisted laparoscopic prostatectomy

Variable	RRP (n)	RALP (n)	p-value
Overall complications	232 (68.0)	143 (27.3)	
Clavien grade			
I	55 (16.1)	84 (16.0)	
II	151 (44.3)	41 (7.8)	
IIIa	10 (2.9)	11 (2.1)	
IIIb	15 (4.4)	4 (0.8)	
IV	1 (0.3)	3 (0.6)	

Values are presented as number (%).

RRP: radical retropubic prostatectomy; RALP: robot-assisted laparoscopic prostatectomy.

Table 3. Frequency of medical complications in patients undergoing radical retropubic prostatectomy and robot-assisted laparoscopic prostatectomy

Variable	RRP (n)	RALP (n)	p-value
Cardiac problem	5 (1.5)	3 (0.6)	0.180
Myocardial infarction	0 (0)	0 (0)	
Pneumonia	2 (0.6)	1 (0.2)	0.333
Urinary tract infection	3 (0.9)	1 (0.2)	0.144
Respiratory distress	3 (0.9)	3 (0.6)	0.595
Respiratory failure	1 (0.3)	0 (0)	0.215
Acute renal failure	3 (0.9)	3 (0.6)	0.595
Pulmonary thromboembolism	0 (0)	0 (0)	
Cerebrovascular accident	2 (0.6)	1 (0.2)	0.333

Values are presented as number (%).

RRP: radical retropubic prostatectomy; RALP: robot-assisted laparoscopic prostatectomy.

Table 4. Frequency of surgical complications in patients undergoing radical retropubic prostatectomy and robot-assisted laparoscopic prostatectomy

Variable	RRP (n)	RALP (n)	p-value
Femoral neuropathy	7 (2.1)	13 (2.5)	0.682
Urinary retention	24 (7.0)	14 (2.7)	0.002
Transfusion	144 (42.2)	33 (6.3)	<0.001
Postoperative ileus	6 (1.8)	12 (2.3)	0.593
Extravasation of contrast medium at cystography	34 (10.0)	11 (2.1)	<0.001
Wound repair	14 (4.1)	1 (0.2)	<0.001
Reoperation	2 (0.6)	2 (0.4)	0.664
ICU care	1 (0.3)	3 (0.6)	0.554

Values are presented as number (%).

RRP: radical retropubic prostatectomy; RALP: robot-assisted laparoscopic prostatectomy ICU, intensive care unit.
and cultural backgrounds, Korean patients often stay in the hospital until the urinary catheter is removed, whereas the prostatectomy allowed early catheter removal [26]. Running anastomotic suture of laparoscopic prostatectomy could lead to an earlier decrease in edema. Our suggestion is supported by a previous study showing that running anastomotic suture of laparoscopic prostatectomy was more likely in the RALP group despite the inclusion of a learning curve. Therefore, there were fewer patients with urinary extravasations than in the RRP group. Similarly, the urinary retention rate of the RRP group (7.0%) was significantly higher than that of the RALP group (2.7%). Khemees et al. [25] reported that patient- or surgery-specific risk factors for urinary retention were not identified, but they suggested that acute urinary retention develops as the result of edema at the anastomosis. We believe that the running anastomotic suture of RALP might facilitate initial voiding because earlier healing to a watertight state could lead to an earlier decrease in edema. Our suggestion is supported by a previous study showing that running anastomotic suture of laparoscopic prostatectomy allowed early catheter removal [26].

Considering the duration of hospitalization, our values were far longer in both study arms than those reported in series from the United States [15], which probably reflected the different pathways of management. Specifically, owing to the differences in economic health systems and cultural backgrounds, Korean patients often stay in the hospital until the urinary catheter is removed, whereas patients in the United States are usually discharged quickly in the case of an uneventful early postoperative course.

Hemorrhage is the most common intraoperative complication associated with RRP. Comparing transfusion rates from different hospitals can be misleading, because the indication for blood transfusion may vary with clinical practice, but the transfusion rate of the RRP group in our study was much higher than that reported in other studies [6,18]. Blood transfusion rates of between 3% and 34% have been reported in RRP patient series [27-29]. Arai et al. [30] reported that only 6.9% of patients who had predonated an autologous blood subsequently received an autologous transfusion in an RRP series. By contrast, among the patients who donated no autologous blood before RRP, 45% subsequently received an autologous transfusion. It is likely that the transfusion rate of our study was high because the patients did not receive autologous transfusion, granulocyte-stimulating factor, or cell saver. Moreover, in the early phase of this study, the patients tended to receive transfusion for rapid recovery if their hemoglobin was lower than 10 g/dL after surgery, even though postoperative bleeding was not suspected. However, more recently, patients underwent blood transfusion only when their postoperative hemoglobin was lower than 8 g/dL or had a tendency to decrease. Thus, the transfusion rates of the RRP and RALP group were decreased to 18.8% and 0% in the last 50 cases. Irrespective of the change in the transfusion rate, the difference in transfusion rate between the RRP and RALP groups was significant in our study. One explanation for the seven times lower transfusion rate in the RALP group (6.3%) than in the RRP group (42.2%) could be a tamponading effect resulting from the pneumoperitoneum, which is beneficial in preventing venous bleeding, the most common source of blood loss during RRP. Loss of refinement in the technique of vascular control during RRP may also have contributed to the result.

This study was limited by the lack of randomization. The selection of treatment method was based mainly on the preferences of the patients. There are challenges in implementing a randomized trial because patients are usually unwilling to be randomly assigned to different treatments and may only accept robotic surgery. However, the clinical characteristics of the patients were not significantly different between the two groups in the present study. A further limitation was that there were fewer patients in the RRP group. This could, of course, have influenced the results, but this must be considered unlikely as an explanation of the difference in complications between these two groups. As previously discussed, the lack of surgical experience with RALP compared with the significant experience with RRP must also be considered when reviewing the outcomes from this study. Furthermore, only complications that occurred within 90 days of the surgery were included in this report. Late complications such as bladder neck contractures and the need for further surgery for urinary incontinence should be considered in further studies.
CONCLUSIONS

The introduction of RALP at our institution resulted in a decreased number of patients with urinary retention, extravasation of contrast medium during cystography, and wound repair after surgery. Blood transfusion was less common with RALP patients than with RRP patients. Our results show that RALP is associated with a lower complication rate than is RRP, especially the rate of major complications.

CONFLICTS OF INTEREST

The authors have nothing to disclose.

REFERENCES

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012;62:10-29.
2. Mottrie A, Ficarra V. Can robot-assisted radical prostatectomy still be considered a new technology pushed by marketers? The IDEAL evaluation. Eur Urol 2010;58:525-7.
3. Mottrie A, De Neayer G, Novara G, Ficarra V. Robotic radical prostatectomy: a critical analysis of the impact on cancer control. Curr Opin Urol 2011;21:179-84.
4. Hu JC, Hevelone ND, Ferreira MD, Lipsitz SR, Choueiri TK, Sanda MG, et al. Patterns of care for radical prostatectomy in the United States from 2003 to 2005. J Urol 2008;180:1969-74.
5. Tewari A, Srivasatava A, Menon M; Members of the VIP Team. A prospective comparison of radical retropubic and robot-assisted prostatectomy: experience in one institution. BJU Int 2003;92:205-10.
6. Farnham SB, Webster TM, Herrell SD, Smith JA Jr. Intraoperative blood loss and transfusion requirements for robotic-assisted radical prostatectomy versus radical retropubic prostatectomy. Urology 2006;67:360-3.
7. Menon M, Tewari A, Baize B, Guillonneau B, Vallancien G. Prospective comparison of radical retropubic prostatectomy and robot-assisted anatomic prostatectomy: the Vattikuti Urology Institute experience. Urology 2002;60:864-8.
8. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998;280:1432-6.
9. Owens WD, Felts JA, Spitznagel EL Jr. ASA physical status classifications: a study of consistency of ratings. Anesthesiology 1978;49:239-43.
10. Epstein JI, Amin MB, Egevad L, Eerola E,ers, and ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol 2005;29:1228-42.
11. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, eds. AJCC cancer staging manual. 7th editions. New York: Springer; 2010:457-468.
12. Walsh PC. Anatomic radical prostatectomy: evolution of the surgical technique. J Urol 1998;160(6 Pt 2):2418-24.
13. Van Velthoven RF, Ahlering TE, Peltier A, Skarecky DW, Clayman RV. Technique for laparoscopic running urethrovaginal anastomosis: the single knot method. Urology 2003;61:699-702.
14. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240:205-13.
15. Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graeven M, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol 2009;55:1037-63.
16. Herrmann TR, Rabenalt R, Stolzenburg JU, Liatsikos EN, Imkamp F, Tetzlaff H, et al. Oncological and functional results of open, robot-assisted and laparoscopic radical prostatectomy: does surgical approach and surgical experience matter? World J Urol 2007;25:149-60.
17. Boris RS, Kaul SA, Sarle RC, Stricker HJ. Radical prostatectomy: a single surgeon comparison of retropubic, perineal, and robotic approaches. Can J Urol 2007;14:3568-70.
18. Ahlering TE, Woo D, Eichel L, Lee DI, Edwards R, Skarecky DW. Robot-assisted versus open radical prostatectomy: a comparison of one surgeon’s outcomes. Urology 2004;63:819-22.
19. Ficarra V, Novara G, Fracalanza S, D’Elia C, Secco S, Iafriate M, et al. A prospective, non-randomized trial comparing robot-assisted and laparoscopic and retropubic radical prostatectomy in one European institution. BJU Int 2009;104:534-9.
20. Philippou P, Waine E, Rowe E. Robot-assisted laparoscopic prostatectomy versus open: comparison of the learning curve of a single surgeon. J Endourol 2012;26:1002-8.
21. Kirsh EJ, Worwag EM, Sinner M, Chodak GW. Using outcome data and patient satisfaction surveys to develop policies regarding minimum length of hospitalization after radical prostatectomy. Urology 2000;56:101-6.
22. Leibman BD, Dillioglugil O, Abbas F, Tanli S, Kattan MW, Scardino PT. Impact of a clinical pathway for radical retropubic prostatectomy. Urology 1998;52:94-9.
23. Yamamoto S, Kunishima Y, Kanamur S, Ito N, Kinoshita H, Kamioto T, et al. A multi-center prospective study for antibiotic prophylaxis to prevent perioperative infections in urologic surgery. Hinyokika Kiyo 2004;50:673-83.
24. Arai Y, Egawa S, Tobisu K, Sagiyama K, Hashine Y, Hashine K, et al. Radical retropubic prostatectomy: time trends, morbidity and mortality in Japan. BJU Int 2000;85:287-94.
25. Khemees TA, Novak R, Abaza R. Risk and prevention of acute urinary retention after robotic prostatectomy. J Urol 2013;189:1432-6.
26. Nadu A, Salomon L, Hoznek A, Olsson LE, Saint F, de La Taille A, et al. Early removal of the catheter after laparoscopic radical prostatectomy. J Urol 2001;166:1662-4.
27. Rubbani F, Unis LH, Pinochet R, Nogueira L, Vora KC, Eastham JA, et al. Comprehensive standardized report of complications of retropubic and laparoscopic radical prostatectomy. Eur Urol 2010;57:371-88.
28. Carlsson S, Nilsson AE, Schumacher MC, Jonsson MN, Volz DS, Steinbeck G, et al. Surgery-related complications in 1253 robot-assisted and 485 open retropubic radical prostatectomies at the Karolinska University Hospital, Sweden. Urology 2010;75:1092-7.
29. Krambeck AE, DiMarco DS, Rangel LJ, Bergstrahl EJ, Myers RP, Blute ML, et al. Radical prostatectomy for prostate adenocarcinoma: a matched comparison of open retropubic and robot-assisted techniques. BJU Int 2009;103:448-53.
30. Arai Y, Okada T, Egawa S, Matsumoto K, Tobisu K, Sagiyama K, et al. Radical retropubic prostatectomy: time trends, morbidity and mortality in Japan. Prostate Cancer Prostatic Dis 1999;2(S3):S4.