If \((M, \xi)\) is a compact connected co-oriented contact 3-manifold whose boundary \(\partial M\) is diffeomorphic to the 2-torus, then \(\partial M\) is said to admit a contact embedding into \((\mathbb{R}^3, \xi_{st})\) if there exists a co-orientation preserving contact embedding \(\varphi\) of a neighborhood \(U \subset (M, \xi)\) of \(\partial M\) into \((\mathbb{R}^3, \xi_{st})\) such that (i) the interior of \(\varphi(U)\) is mapped into the bounded component of \(\mathbb{R}^3 \setminus \varphi(\partial M)\) and (ii) affine lines parallel to the \(z\)-axis intersect \(\varphi(\partial M)\) in at most two points. A contact form \(\alpha\) is called aperiodic if the associated Reeb vector field \(\xi = \ker \alpha\) does not have any periodic solution. A contact form \(\alpha\) on \(M\) is called standard near the boundary if the restriction of \(\varphi\) to a possibly smaller neighborhood \(U\) of \(\partial M\) pulls \(\alpha_{st}\) back to \(\alpha|_U\). If \((M', \xi')\) is a closed connected contact 3-manifold and \(K \subset (M', \xi')\) is a transverse knot, then there exists a contact embedding \(f : (S^1 \times \mathbb{R}^2, \xi_{st}) \to (M', \xi')\) that is positive and sends \(S^1 \times \{0\}\) to \(K\). The image of the restriction of \(f\) to \(S^1 \times D^2\) is the tubular neighborhood \(\nu K = f(S^1 \times D^2) \subset M'\), which is unique up to smooth isotopies. The exterior of the transverse knot \(K \subset (M', \xi')\) is defined as \(M = M'|_{\text{Int}(\nu K)}\). The boundary \(\partial M \subset (M, \xi)\) of any knot exterior admits a contact embedding into \((\mathbb{R}^3, \xi_{st})\). If \(K\) is a knot in a closed connected oriented 3-manifold \(M'\), then \(M'\) admits infinitely many positively co-oriented contact structures such that \(K\) is a transverse knot. In other words, any knot appears as a transverse knot for a certain contact structure.

In this paper, the authors characterize the unknot in \(S^3\) uniquely in terms of symplectic dynamics on the knot exterior. The main result of the paper states that if \(K\) is a transverse knot in a closed connected co-oriented contact 3-manifold \((M', \xi')\) and the knot exterior \((M, \xi)\) of \(K \subset (M', \xi')\) admits an aperiodic \(\xi\)-defining contact form \(\alpha\) such that \(\alpha\) is Euclidian near the boundary \(\partial M\), then \((M', K)\) is diffeomorphic to \((S^3, \{z_1 = 0\})\) with orientations preserved so that \(K\) is the unknot.

Reviewer: Andrew Bucki (Edmond)

MSC:

- 57K10 Knot theory
- 57K33 Contact structures in 3 dimensions
- 53D35 Global theory of symplectic and contact manifolds

Keywords:

- exterior of knot; near the boundary form; aperiodic contact form

Full Text: DOI arXiv

References:

[1] Barth, K.; Schneider, J.; Zehmisch, K., Symplectic dynamics of contact isotropic torus complements, Münster Journal of Mathematics, 12, 31-48 (2019) · Zbl 1422.53067
[2] Eliashberg, Y., New invariants of open symplectic and contact manifolds, Journal of the American Mathematical Society, 4, 513-520 (1991) · Zbl 0708.58011 · doi:10.1090/S0894-0347-1991-1082580-2
[3] Eliashberg, Y.; Hofer, H., A Hamiltonian characterization of the three-ball, Differential and Integral Equations, 7, 1303-1324 (1994) · Zbl 0803.58045
[4] Eliashberg, Y.; Kim, S. S.; Polterovich, L., Geometry of contact transformations and domains: orderability versus squeezing, Geometry and Topology, 10, 1635-1747 (2006) · Zbl 1134.53044 · doi:10.2140/gt.2006.10.1635
[5] Etnyre, J.; Ghrist, R., Contact topology and hydrodynamics. II. Solid tori, Ergodic Theory and Dynamical Systems, 22, 819-833 (2002) · Zbl 1098.76011 · doi:10.1017/S0143385702000408
[6] Geiges, H., An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, Vol. 109 (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1153.53002
[7] Geiges, H.; Zehmisch, K., Reeb dynamics detects odd balls, Annali della Scuola Normale Superiore di Pisa, 15, 663-681 (2016) · Zbl 1356.53080
[8] Geiges, Hansjörg; Zehmisch, Kai, Odd-symplectic forms via surgery and minimality in symplectic dynamics, Ergodic Theory
and Dynamical Systems, 40, 3, 699-713 (2018) · Zbl 1437.53068 · doi:10.1017/etds.2018.60

[9] Hofer, H., Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Inventiones Mathematicae, 114, 515-563 (1993) · Zbl 0797.58023 · doi:10.1007/BF01232679

[10] Makar-Limanov, S., Tight contact structures on solid tori, Transactions of the American Mathematical Society, 350, 1013-1044 (1998) · Zbl 0894.53036 · doi:10.1090/S0002-9947-98-01822-4

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.