Linear bounds for levels of stable rationality

Fedor Bogomolov1,2, Christian Böhning3,4, Hans-Christian Graf von Bothmer4‡

1 Courant Institute of Mathematical Sciences, 251 Mercer St., New York, NY 10012, USA
2 Laboratory of Algebraic Geometry, GU-HSE, 7 Vavilova Str., 117312, Moscow, Russia
3 Fachbereich Mathematik der Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
4 Mathematisches Institut der Georg-August-Universität Göttingen, Bunsenstr. 3-5, 37073, Göttingen, Germany

Received 4 March 2011; accepted 29 July 2011

\textbf{Abstract:} Let G be one of the groups $\text{SL}_n(\mathbb{C})$, $\text{Sp}_{2n}(\mathbb{C})$, $\text{SO}_m(\mathbb{C})$, $\text{O}_m(\mathbb{C})$, or G_2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if $V/G \times \mathbb{P}^N$ is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.

\textbf{MSC:} 14E08, 14M20, 14L24

\textbf{Keywords:} Rationality • Stable rationality • Linear group quotients

\section{Introduction}

In the birational geometry of algebraic varieties, an important problem consists in determining the birational types of quotient spaces V/G, where V is a generically free linear representation of the linear algebraic group G, both defined over \mathbb{C}, which will be our base field. We will suppose in the sequel that G is connected. The quotient V/G is said to be stably rational of level N if $V/G \times \mathbb{P}^N$ is rational. Whether or not V/G is stably rational (of some level) is a property of the group G and not of the particular generically free representation V by the no-name lemma [6].
It will be desirable to obtain good bounds on levels of stable rationality N for V/G as above, for a given G and a class \mathcal{C} of generically free G-representations V as large as possible. By this we generally understand that one wants to determine an explicit function $N = N(r, V)$ of r and V (in the given class \mathcal{C}) such that $V/G \times \mathbb{P}^N$ is rational, and $N = N(r, V)$ is small, where r is the rank of G. More precisely, if G is a group running through one of the infinite series of simple groups of type A_i, B_i, C_i, D_i (of some fixed isogeny type), one would like to determine a function $N = N(r)$ which gives a level of stable rationality for generically free G-quotients V/G, uniformly for all V in some fixed large class \mathcal{C}, and such that the asymptotic behaviour of $N(r)$ is $N(r) = O(r)$ (Landau symbol). This is what is meant by “linear bounds” in the title. For exceptional groups of types G_2, F_4, E_6, E_7 and E_8 one would like to find a small constant N that gives a level of stable rationality. Let us also mention that results in this direction have applications to the rationality question for algebraic varieties because many varieties X can be fibred over generically free linear group quotients V/G, with rational general fibre, so that the total space is birational to the product of base and fibre.

We will obtain $N(r) = O(r)$ for the groups $\text{SL}_n(\mathbb{C}), \text{Sp}_{2n}(\mathbb{C}), \text{SO}_n(\mathbb{C})$, and also the nonconnected groups $\text{O}_n(\mathbb{C})$, for large classes of representations \mathcal{C}. Moreover, we will improve the bound for G_2 somewhat. Before describing the results in more detail, we mention that previously one only had $N(r) = O(r^2)$ for these classical groups. To be precise, what was known previously, at least to us, can be summarized in the following table (the class \mathcal{C} this applies to is the class of all generically free G-representations):

Group G	Level of stable rationality N
$\text{SL}_n(\mathbb{C})$	$n^2 - 1$
$\text{SO}_{2n+1}(\mathbb{C})$	$2n^2 + 3n + 1$
$\text{Sp}_{2n}(\mathbb{C})$	$2n^2 + n$
$\text{SO}_{2n}(\mathbb{C})$	$2n^2 + n$
G_2	17

Stable rationality was also known for the orthogonal groups $\text{O}_{2n}(\mathbb{C})$ and $\text{O}_{2n+1}(\mathbb{C})$, with the same levels as for the special orthogonal groups, and for the simply connected exceptional groups F_4, E_6, E_7, cf. [3]. We point out that stable rationality remains open for the spin groups, and for E_8. Our methods here do not seem to yield substantial improvements for F_4, E_6, E_7. Let us comment briefly on how the results in the table are obtained: $\text{SL}_n(\mathbb{C})$ and $\text{Sp}_{2n}(\mathbb{C})$ are special groups (every étale locally trivial principal bundle for them is Zariski locally trivial), so for a generically free representation V the quotient is stably rational of level their dimension. For $\text{SO}_n(\mathbb{C})$ one considers the action on a variety X which is birational to a tower of equivariant vector bundles over an $\text{SO}_n(\mathbb{C})$-representation as base: X consists of orthogonal m-frames (v_1, \ldots, v_m) in \mathbb{C}^n with $\langle v_i, v_j \rangle \neq 0$. Note that $\dim X = \dim \text{SO}_n(\mathbb{C}) + m$, which is the value given in the table. In fact, $V/\text{SO}_n(\mathbb{C}) \cong (V \times X)/\text{SO}_n(\mathbb{C})$ by the no-name lemma (\cong indicates birational isomorphism), and in X there is a $(\text{SO}_n(\mathbb{C}), H)$-section Π where H is an elementary abelian 2-group and Π is a product of general lines (see e.g. the survey [7] for the notion of (G, H)-section; it is also recalled below in Definition 2.1). So $(V \times X)/\text{SO}_n(\mathbb{C}) \cong (V/H) \times \Pi$ is rational. For G_2 the argument is similar, but for X one takes instead

$$X = \{(A, B, C) : A \perp B, A, B, AB \perp C \text{ and } A, B, C \text{ of nonzero norm}\}$$

as a subset of \mathbb{O}^3, where \mathbb{O} are traceless octonions. The action of G_2 is free on X. See [3] for details.

Let us now describe our results in more detail. Let G be one of the groups $\text{SL}_n(\mathbb{C}), \text{Sp}_{2n}(\mathbb{C}), \text{SO}_n(\mathbb{C}), \text{O}_n(\mathbb{C})$ or G_2. We will first narrow down the class of representations \mathcal{C} of these groups which we will consider and make a statement about them. Namely, \mathcal{C} contains precisely the G-representations V of the form $V = W \oplus S^c$, where W is an irreducible representation of G whose ineffectivity kernel (a finite central subgroup) coincides with the stabilizer in general position. S is a standard representation for each of the groups involved, namely \mathbb{C}^n for $\text{SL}_n(\mathbb{C}), \mathbb{C}^{2n}$ for $\text{Sp}_{2n}(\mathbb{C}), \mathbb{C}^n$ for $\text{SO}_n(\mathbb{C})$ and $\text{O}_n(\mathbb{C})$, C^2 for G_2. Here $c \in \{0, 1\}$, and $c = 0$ if and only if W is already G-generically free. Thus V will always be G-generically free. The following table summarizes our main results, i.e., Theorems 2.4, 4.5, 5.5, 5.12, 6.2.