Yaglom limit for unimodal Lévy processes

Gavin Armstronga, Krzysztof Bogdanb,\textasteriskcentered Tomasz Grzywnyb,\textdagger Łukasz Leźajb,\textdoubleasteriskcentered and Longmin Wangc

aMathematics Department, Central Washington University, 400E University Way, Ellensburg, WA 98926, USA, E-mail: gavin.armstrong@cwu.edu
bDepartment of Mathematics, Wrocław University of Science and Technology, pl. Wyspiańskiego 27, 50-370 Wrocław, Poland, E-mail: krzysztof.bogdan@pwr.edu.pl; tomasz.grzywny@pwr.edu.pl; lukasz.lezaj@pwr.edu.pl
cSchool of Statistics and Data Science, Nankai University, Tianjin 300071, P.R. China, E-mail: wanglm@nankai.edu.cn

Abstract. We prove universality of the Yaglom limit of Lipschitz cones among all unimodal Lévy processes sufficiently close to the isotropic α-stable Lévy process.

Résumé. On prouve l’universalité de la limite de Yaglom dans les cônes de Lipschitz parmi tous les processus de Lévy unimodaux suffisamment proches du processus de Lévy isotrope α-stable.

MSC2020 subject classifications: Primary 60G51, 60J50; secondary 60G18, 60J35

Keywords: Yaglom limit, Lévy process, Lipschitz cone, boundary limit

1. Introduction

Let $d \geq 1$ and $X = (X_t : t \geq 0)$ be a pure-jump isotropic unimodal Lévy process in \mathbb{R}^d with non-integrable Lévy density ν and the characteristic exponent ψ. Thus,

$$\mathbb{E}e^{i \xi \cdot X_t} = e^{-t\psi(\xi)}, \quad \xi \in \mathbb{R}^d, \quad t \geq 0,$$

where

$$\psi(\xi) = \int_{\mathbb{R}^d} \left(1 - \cos \xi \cdot z\right) \nu(z) \, dz, \quad \xi \in \mathbb{R}^d,$$

$$\int_{\mathbb{R}^d} \nu(z) \, dz = \infty \quad \text{and} \quad \int_{\mathbb{R}^d} \left(|z|^2 \wedge 1\right) \nu(z) \, dz < \infty,$$

and $\nu(z)$ is a radial function, non-increasing in $|z|$. For normalization we also assume that $\psi(1) = 1$. We let Γ be an arbitrary Lipschitz cone on \mathbb{R}^d with the vertex at the origin and we denote by τ_Γ the first exit time from the cone,

$$\tau_\Gamma = \inf\{t > 0 : X_t \notin \Gamma\}.$$

Our main objective is to determine under which conditions there exist a function $g : [0, \infty) \rightarrow (0, \infty)$ and a probability measure μ on Γ such that

$$\lim_{t \rightarrow \infty} \mathbb{P}_x \left(\frac{X_t}{g(t)} \in A \bigg| \tau_\Gamma > t\right) = \mu(A), \quad x \in \Gamma, A \subset \Gamma.$$
Accordingly, the random time which defines the conditioning in (1.4) and in similar expressions is sometimes referred to as absorption time. For example, in the one-dimensional case, the absorption time is usually the first hitting time of the origin, see, e.g., Haas and Rivero [34], or the first hitting time of the negative half-line \((−∞, 0)\), see, e.g., A. Kyprianou and Palmowski [43]. Over the last years the interest in the existence of Yaglom limits and quasi-stationary distributions was steadily growing. This is due to the fact that the topic is mathematically challenging and in various applications it is natural to ask about the limiting behaviour conditional on non-extinction. However, so far the existence of the Yaglom limit for Lévy processes was studied mainly in the one-dimensional setting or in the finite volume setting, with the notable exception of the result Bogdan, Palmowski and Wang [15] explained below, which we extend in this work.

We write \(ν(r) := ν(x)\) if \(|x| = r\) for some \(x ∈ \mathbb{R}^d\) (the radial profile of the Lévy density). The following additional assumptions on \(X\) will be explicitly made when needed:

A1 There is \(β ∈ (0, 2)\) and \(M > 1\) such that

\[
\frac{ν(r_1)}{ν(r_2)} ≤ M \left(\frac{r_1}{r_2}\right)^{-d-β}, \quad 0 < r_1 < r_2 < ∞.
\]

A2 \(ν(r)\) is regularly varying at infinity with index \(-d − α\) for some \(α ∈ (0, 2)\).

A3 There exists \(t_0 > 0\) such that \(e^{-t_0ψ} ∈ L^1\).

If A1, A2 and A3 are satisfied, then we say in short that A holds. We remark that the condition A1 is important in the probabilistic potential theory, in particular for estimating the Dirichlet heat kernel for \(X\), see Bogdan, Grzywny and Ryznar [11]. Assumption A2 is crucial for asymptotic analysis, in particular it puts the one-dimensional distributions of \(X\) in the domain of attraction of the isotropic \(α\)-stable law. By Cygan, Grzywny and Trojan [19, Theorem 7 and Proposition 2], A2 is equivalent to \(ψ\) being regularly varying at 0 with index \(α\). The condition A3 allows to formulate our results in terms of convergence of probability densities. Noteworthy, by Knopova and Schilling [39, the proof of Lemma 2.6] and (1.1), A3 is equivalent to the boundedness of the transition density of \(X\) for some (large) time \(t\).

For example, the geometric \(α\)-stable Lévy process with \(α ∈ (0, 2)\) satisfies A, since A2 and A3 follow from the formula \(ψ(x) = \log(1 + |ξ|^α)\) and A1 follows from Grzywny and Ryznar [30, p. 10]; see Grzywny, Ryznar and Trojan [31] and Šikić, Song and Vondraček [59] for further properties of this important process.

The focal point of our discussion, however, is the isotropic \(α\)-stable process in \(\mathbb{R}^d\) with \(α ∈ (0, 2)\), which we denote by \(X^α = (X^α_t : t ≥ 0)\) [10], see also below. Of course, the Lévy-Khinchine exponent of \(X^α\) is \(ψ(ξ) = |ξ|^α\) and the process satisfies A. For the sake of clarity and consistency, the objects pertaining to \(X^α\) will be marked by a superscript \(α\), which is then not an exponent. For instance, we write \(τ^α_t = τ^α(X^α)\). Let \(μ^α\) be the Yaglom limit of the isotropic \(α\)-stable process for the Lipschitz cone \(Γ\), given in [15, Theorem 1.1]:

\[
\lim_{t → ∞} \mathbb{P}_x \left(t^{-1/α} X^α_t ∈ A \mid τ^α_t > t \right) = μ^α(A), \quad A ⊂ Γ, \ x ∈ Γ.
\]

By [15, Theorem 3.3], the probability measure \(μ^α\) has a density \(n^α\) with respect to the Lebesgue measure and the following convergence of densities holds,

\[
n^α(y) = \lim_{Γₚx → 0} \frac{p^Γₚ.α(x, y)}{\mathbb{P}_x(τ^α_t > 1)}, \quad y ∈ Γ,
\]

\(p^Γₚ.α\) being the Dirichlet heat kernel of the cone \(Γ\) for \(X^α\), see (2.3).

Here is the main result of the paper. As usual, we let

\[
ψ^{-1}(u) = \sup\{r ≥ 0 : ψ(r) = u\}, \quad u ≥ 0.
\]

Theorem 1.1. Let \(X\) be a pure-jump isotropic unimodal Lévy process with characteristic exponent \(ψ\). Assume A. Let \(Γ\) be a Lipschitz cone with vertex at the origin. Then,

\[
\lim_{s → ∞} \mathbb{P}_x(ψ^{-1}(1/s)X_s ∈ A \mid τ_1 > s) = μ^α(A), \quad x ∈ Γ, \ A ⊂ \mathbb{R}^d.
\]

For example, the rescaling factor is \(ψ^{-1}(1/s) = (e^{1/s} - 1)^{1/α}\) for the geometric \(α\)-stable Lévy process. A qualitatively different rescaling can be found in Example 4.14, so the universality of the Yaglom limit for the considered class of processes refers to the limit but not the rescaling. The proof of Theorem 1.1 is given at the end of Section 4.4. In fact, the whole paper is devoted to this proof, but the setting and some auxiliary results may be of independent interest, e.g.,
the fact that in general X is not self-similar but we have pointwise convergence of density functions and uniformity of potential-theoretic estimates and asymptotics for the rescaled processes $(\psi^{-1}(1/s)X_{st} : t > 0)$ parametrized by $s \geq 1$.

We note in passing that (1.8) also holds for $\Gamma = \mathbb{R}^d$, as a consequence of Lemma 4.2 and Scheffé’s lemma, which may also be of interest.

Let us discuss in more detail some classical results on quasi-stationary distributions. The seminal work of Yaglom appeared in 1947. Since then a huge number of papers have dealt with this problem; a comprehensive survey is given by van Doorn and Pollet [58]. In particular, the discrete-time Markov chains were analysed by Seneta and Vere-Jones [54] in 1967 and by Tweedie [56] in 1974. In 1995 Jacka and Roberts [37] studied the continuous-time case. In 1971 E. Kyprianou [44] considered a conditional limit distribution for the virtual waiting time in queues with Poisson arrival. Quasi-stationary distributions for Markov chains on non-negative integers with absorption at the origin were considered by Ferrari et al. [22], Flaspohler and Holmes [24], [54] and van Doorn [57].

In general, studies on quasi-stationary distributions are model specific — each class of stochastic processes is treated in a different way. Let us further mention the quasi-birth-and-death processes (see, e.g., Bean et al. [3–5]), Fleming-Viot processes (Asselah et al. [1] or Ferrari and Marič [23]) and branching processes (Lambert [45], see also Ren et al. [50, 51] and Harris et al. [35] for the so-called critical neutron transport), which are the continuous-space-time analogues of the Bienaymé-Galton-Watson process. Finally, Bean et al. [6] gave Yaglom limits for stochastic fluid models.

Let us turn our attention back to Lévy processes. The case of the Brownian motion with drift was resolved by Martínez and San Martín [47] in 1994. The result is an analogue of the random walk case studied by Iglehart [36] in 1974. The case of the so-called spectrally one-sided Lévy processes was investigated in [43] in 2006, using the Wiener-Hopf factorisation.

The absorption time in [43] is taken as the first ruin time:

$$\tau_0^- = \inf\{t \geq 0 : X_t < 0\}.$$

A similar problem was investigated by Czarna and Palmowski [20] for the Parisian ruin,

$$\tau^\theta = \inf\{t > 0 : t - g_t > \theta^\theta\}.$$

Here $g_t = \sup\{s \leq t : X_s \geq 0\}$ and θ^θ is an independent exponential random variable with intensity $\theta > 0$, so the ruin occurs if negative values of X persist longer than $\exp(\theta)$.

The spectrally one-sided Lévy processes were also considered by Mandles et al. in [46] and Palmowski and Vlasiou [48] provided the speed of convergence to the quasi-stationary distribution, which turned out surprisingly slow.

Limits similar to (1.4) for self-similar Markov processes in the one-dimensional case were studied by Haas and Rivero [34]. Note that the normalization by g in [34] strongly depends on the tails of the Lévy measure.

To the best of our knowledge, the only study of Yaglom limits for unbounded sets in the multidimensional case is [15], except for results similar to Zhang et al. [61] on Markov processes killed upon leaving a set of bounded volume. The volume boundedness allows to employ the first eigenfunction, however it is a prohibitive restriction in our setting.

Finally, let us note that the conditioning defined by (1.4) is related to but different than the conditioning of the process to stay forever in a set; we refer to Bertoin and Doney [8] for the case of random walks and to Bertoin [7], Chaumont [16] and Chaumont and Doney [17] for the case of continuous-time processes.

The proof of Theorem 1.1 is inspired by [15], the limit resulting from boundary asymptotics of Green potentials, but there are fundamental difficulties to overcome, mostly the lack of self-similarity (exact scaling) of X, low regularity of the heat kernel of the process, highly non-trivial uniform in $s \geq 1$ estimates for the rescaled processes $(\psi^{-1}(1/s)X_{st} : t > 0)$, and delicate considerations related to continuity of their random functionals, mainly the first exit time of Γ, in the Skorohod topology as $s \to \infty$. A crucial step in our development is Theorem 4.7, which establishes stability or uniformity, of limits of ratios of harmonic functions at the boundary of the cone. Namely, we refine the already general statement of Kwaśnicki and Juszczyszyn [42], by proving that for the rescaled processes the ratios converge uniformly. Furthermore, we avoid superfluous technical assumptions on ν – this makes the arguments on convergence of integrals tricky, but statements simple. Of course, a number of further questions is now open: the case of non-Lipschitz cones Γ, the Yaglom limit for anisotropic stable Lévy processes (even for processes with independent components) and universality classes for Yaglom limits in each such case.

The structure of the paper is as follows. In Section 2 we discuss definitions and basic results. In Section 3 we give estimates of the (Dirichlet) heat kernel of Γ for the process X. In Section 4 we analyse the effects of rescaling of X, including the convergence of densities of the rescaled processes. In particular, Section 4.2 is devoted to estimates of harmonic functions and oscillation-reduction, uniform for the rescaled processes, and in Section 4.3 we verify the convergence of the survival probabilities. In Section 4.4 we obtain normalized limits of Green potentials, expressed in terms of the Martin kernel, which we then bootstrap to the level of the heat kernel and the heat kernel conditioned by the survival probability, to finally prove Theorem 1.1 using the uniformity of relative estimates and asymptotics with respect to the scaling parameter s, as $s \to \infty$.

Yaglom limit for unimodal Lévy processes
2. Notation and preliminaries

By \mathcal{R}_α^0 we denote the class of (positive) functions $f : (0, \infty) \mapsto (0, \infty)$ which are regularly varying at the origin with index α. Thus, $f \in \mathcal{R}_\alpha^0$ if for every $\lambda > 0$,

$$\lim_{x \to 0^+} \frac{f(\lambda x)}{f(x)} = \lambda^\alpha.$$

Furthermore, we say that f is regularly varying at infinity with index α and we write $f \in \mathcal{R}_\alpha^\infty$ if for every $\lambda > 0$,

$$\lim_{x \to \infty} \frac{f(\lambda x)}{f(x)} = \lambda^\alpha.$$

Notation $c = c(a, b, \ldots)$ means that number $c \in (0, \infty)$, called constant, may be so chosen to depend only on a, b, \ldots.

For non-negative functions f, g we use the notation $f \lesssim g$ if there is a constant $c > 0$ such that $f \leq cg$ and we write $f \approx g$ if $c^{-1}g \leq f \leq cg$. If the constant c is not important, we may write $f \approx g$. As usual, $B(x, r) = \{y \in \mathbb{R}^d : |y - x| < r\}$ is the open ball in \mathbb{R}^d with radius $r > 0$ and center $x \in \mathbb{R}^d$. We let $B_r := B(0, r)$. For $x \in D \subset \mathbb{R}^d$ we let $\delta_D(x) = \inf\{|y - x| : y \in D^c\}$. All the considered sets, measures and functions are tacitly assumed Borel.

As in Introduction, $X = (X_t : t \geq 0)$ is a non-trivial pure-jump isotropic unimodal Lévy process in \mathbb{R}^d with $d \geq 1$. The Lévy density ν is non-integrable but satisfies the Lévy measure condition in (1.3) and the Lévy-Khinchine exponent ψ is given by (1.2). The Lévy-Khinchine formula (1.1) relates the distribution of X_t to ψ and ν. Since X is isotropic unimodal and has infinite Lévy measure, the distribution of X_t is absolutely continuous if $t > 0$. We denote the density by p_t. In fact, due to Kulczycki and Ryznar [40, Lemma 2.5], p_t is continuous on $\mathbb{R}^d \setminus \{0\}$. We define

$$p_t(x, y) = p_t(y - x) \quad \text{and} \quad \nu(x, y) = \nu(y - x), \quad t > 0, \ x, y \in \mathbb{R}^d,$$

the heat kernel (the transition probability density) and the jumping kernel of X, correspondingly. Of course, $p_t(x, y) = p_t(y, x)$ and $\nu(x, y) = \nu(y, x)$. Let

$$P_t(x, A) = \int_A p_t(x, y) \, dy, \quad t > 0, \ x \in \mathbb{R}^d, \ A \subset \mathbb{R}^d.$$

It is the transition probability of X. We also define the operator semigroup

$$P_t f(x) = \int_{\mathbb{R}^d} f(y) p_t(x, y) \, dy, \quad f \in C_0(\mathbb{R}^d), \ x \in \mathbb{R}^d, \ t > 0.$$

Its infinitesimal generator is

$$\mathcal{L} \varphi(x) = \lim_{\varepsilon \to 0^+} \int_{|y| > \varepsilon} (\varphi(x + y) - \varphi(x)) \nu(y) \, dy,$$

for $\varphi \in C_c^\infty(\mathbb{R}^d)$, see, e.g., Sato [52, Theorem 31.5]. In particular, we let

$$\nu^\alpha(y) = A(d, \alpha)|y|^{-d-\alpha}, \quad y \in \mathbb{R}^d,$$

where $\alpha \in (0, 2)$ and

$$A(d, \alpha) = \frac{\alpha 2^{\alpha-1} \Gamma((d + \alpha)/2)}{\pi^{d/2} \Gamma(1 - \alpha/2)}.$$

Then,

$$\psi(\xi) = \psi^\alpha(\xi) = \int_{\mathbb{R}^d} (1 - \cos(\xi \cdot y)) \nu^\alpha(y) \, dy = |\xi|^\alpha, \quad \xi \in \mathbb{R}^d,$$

and $\mathcal{L} = \Delta^{\alpha/2} := -(-\Delta)^{\alpha/2}$, the fractional Laplacian; see, e.g., Kwaśnicki [41].

For an open non-empty set $D \subset \mathbb{R}^d$ we let

$$\tau_D = \inf\{t > 0 : X_t \notin D\}.$$
the first exit time from D. The transition density of the process killed on exiting D is defined by Hunt’s formula:

\begin{equation}
\label{eq:1.1}
p_t^D(x, y) := p_t(x, y) - \mathbb{E}_x[\tau_D < t; p_{t-\tau_D}(X_{\tau_D}, y)], \quad t > 0, \; x, y \in \mathbb{R}^d.
\end{equation}

We have $0 \leq p_t^D(x, y) \leq p_t(x, y)$ for all $t > 0$ and $x, y \in \mathbb{R}^d$. It is well known that p_t^D is symmetric: $p_t^D(x, y) = p_t^D(y, x)$ for all $x, y \in \mathbb{R}^d$ and $t > 0$. Moreover, the Chapman-Kolmogorov equations (semigroup property) hold for p_t^D:

\[p_{t+s}^D(x, y) = \int_{\mathbb{R}^d} p_t^D(x, z)p_s^D(z, y) \, dz, \quad t, s > 0, \; x, y \in \mathbb{R}^d.\]

For every non-negative or bounded function f we let

\[P_t^D f(x) = \mathbb{E}_x[\tau_D > t; f(X_t)] = \int_{\mathbb{R}^d} p_t^D(x, y) f(y) \, dy, \quad x \in \mathbb{R}^d, \; t > 0.\]

A function $u : \mathbb{R}^d \to \mathbb{R}$ is called harmonic with respect to X on an open set $D \subset \mathbb{R}^d$ if

\[u(x) = \mathbb{E}_x u(X_{\tau_D}), \quad x \in B,\]

for all open bounded sets B such that $\overline{B} \subset D$. Here we assume that the integral on the right-hand side is absolutely convergent. The function u is called regular harmonic in D if the identity above is satisfied with $B = D$. The concept of regular harmonicity is related to the notion of harmonic measure $P_D(x, \cdot)$, i.e., the distribution of X_{τ_D}:

\[P_D(x, A) = \mathbb{P}_x(X_{\tau_D} \in A), \quad A \subset \mathbb{R}^d, \; x \in \mathbb{R}^d.\]

Namely, a function u regular harmonic on D satisfies

\[u(x) = \int_{D^c} u(y) P_D(x, dy), \quad x \in D.\]

The density of the harmonic measure on $\overline{D^c}$ is called the Poisson kernel and is denoted by $P_D(x, z)$ for $x \in D$, $z \in \overline{D^c}$ (see also (2.7) below). For simplicity we write $P_{B^c} := P_{\cdot}$. The Green function of D is given by

\[G_D(x, y) = \int_0^\infty p_t^D(x, y) \, dt, \quad x, y \in \mathbb{R}^d.\]

In the case of $D = \mathbb{R}^d$ we write $U := G_{\mathbb{R}^d}$ and U is then called the potential kernel of X. Note that in view of (2.1) we may write $U(x, y) = U(y - x)$ for $x, y \in \mathbb{R}^d$. If $\psi \in \mathcal{S}'(\mathbb{R}^d)$ for $\alpha \in (0, 2)$, and $d \geq 2$, then by the Chung-Fuchs criterion (see, e.g., [52, Corollary 37.6]), X is transient and the potential kernel is finite a.e. The Green function gives rise to the Green operator, defined as

\[G_D f(x) = \int_D G_D(x, y) f(y) \, dy, \quad x \in \mathbb{R}^d,\]

for non-negative or integrable functions f. Then, by the Fubini’s theorem,

\[\mathbb{E}_x \int_0^{\tau_D} f(X_t) \, dt = \int_D G_D(x, y) f(y) \, dy.\]

In particular, by letting $f = 1$ we obtain $G_D 1(x) = \mathbb{E}_x \tau_D$.

For $x \in D$, the distribution of $(\tau_D, X_{\tau_D^+})$ restricted to the event $\{X_{\tau_D^+} \neq X_{\tau_D}\}$ has the following density function:

\[(0, \infty) \times D \times D^c \ni (u, y, z) \mapsto \nu(y, z) p_u^D(x, y),\]

that is for $I \subset (0, \infty)$, $A \subset D$ and $B \subset D^c$ we have

\begin{equation}
\label{eq:1.3}
\mathbb{P}_x(X_{\tau_D^+} \neq X_{\tau_D}, \tau_D \in I, X_{\tau_D^+} \in A, X_{\tau_D} \in B) = \int_I \int_A \int_B p_u^D(x, y) \nu(y, z) \, dz \, dy \, du.
\end{equation}
This is called the Ikeda-Watanabe formula. Denote
\[\kappa_D(y) = \int_{D^c} \nu(y, z) \, dz, \quad y \in D. \]

We call \(\kappa_D \) the killing intensity.

Recall that the set \(D \subset \mathbb{R}^d \) is called Lipschitz if there are numbers \(R_0 > 0 \) and \(\lambda > 0 \) such that for every \(Q \in \partial D \) there exist an orthonormal coordinate system \(CS_Q \) and a Lipschitz function \(f_Q : \mathbb{R}^{d-1} \to \mathbb{R} \) with Lipschitz constant \(\lambda \) such that if \(y = (y_1, \ldots, y_n) \) in \(CS_Q \) coordinates, then
\[
D \cap B(Q, R_0) = \{ y : y_n > f_Q(y_1, \ldots, y_{n-1}) \} \cap B(Q, R_0).
\]

Every Lipschitz set \(D \) is \(\kappa \)-fat, i.e., there exists \(\kappa \in (0, 1) \) and \(R > 0 \) such that for every \(r \in (0, R) \) and \(Q \in \overline{D} \) there is a point \(A = A_r(Q) \in D \cap B(Q, r) \) such that \(B(A, \kappa r) \subset D \cap B(Q, r) \). The pair \((\kappa, R)\) is sometimes called the characteristics of a \(\kappa \)-fat set \(D \). Note that usually \(A_r(Q) \) is not uniquely determined.

If the set \(D \) is Lipschitz, then, by Sztonyk [55, Theorem 1], for all \(x \in D \) we have \(\mathbb{P}_x(X_{\tau_D} = \partial D) = 0 \) and
(2.5) \[\mathbb{P}_x(X_{\tau_D} = X_{\tau_D}) = 0. \]

Letting \(I = (t, \infty), A = D \) and \(B = D^c \) in (2.4), by Chapman-Kolmogorov equations,
\[
\mathbb{P}_x(\tau_D > t) = \int_0^\infty \int_D \int_D p^D_u(x, y) \kappa_D(y) \, dy \, du = \int_0^\infty \int_D \int_D p^D_u(x, w) p^D_t(w, y) \, dw \kappa_D(y) \, dy \, du = G_D P^D_t \kappa_D(x), \quad x \in D.
\]

Furthermore, \(\mathbb{P}_x \)-a.s. we have \(\tau_D = 0 \) for every \(x \in D^c \), so
(2.6) \[\mathbb{P}_x(\tau_D > t) = G_D P^D_t \kappa_D(x), \quad x \in \mathbb{R}^d. \]

The following identities, also known as Ikeda-Watanabe formulae, are vital for our development. Namely, by setting \(I = (0, \infty) \) and \(A = D \) in (2.4) we obtain
(2.7) \[P_D(x, z) = \int_D G_D(x, y) \nu(y - z) \, dy, \quad x \in D, z \in \overline{D^c}. \]

Consequently, for every function \(u \) regular harmonic in \(D \) with respect to \(X \) we have
(2.8) \[u(x) = \int_{D^c} P_D(x, z) u(z) \, dz, \quad x \in D. \]

As in Introduction, \(\Gamma \in \mathbb{R}^d \) is a Lipschitz cone with vertex at the origin, i.e., (non-empty) open Lipschitz set such that \(0 \in \partial \Gamma \) and \(r\gamma \in \Gamma \) whenever \(y \in \Gamma \) and \(r > 0 \). Note that in this way we exclude \(\Gamma = \mathbb{R}^d \) and \(\Gamma = \emptyset \) from our discussion (but see a remark following Theorem 1.1). Without essential loss of generality we may and do assume that \(1 := (0, \ldots, 0, 1) \in \Gamma \). We note that if \(d = 1 \), then necessarily \(\Gamma = (0, \infty) \) and our results do not cover \(\Gamma = \mathbb{R} \setminus \{0\} \). We also observe that \(\Gamma \) is \(\kappa \)-fat with characteristics \((\kappa, R)\) for every \(R > 0 \), with \(\kappa \) independent of \(R \).

We further note that \(\mathbb{P}_x(\tau = 0) = 1 \) for \(x \in \Gamma^c \) by the exterior cone condition and the Blumenthal 0-1 law, which implies \(p^\Gamma_t(x, y) = 0 \) whenever \(x \in \Gamma^c \) or \(y \in \Gamma^c \), and consequently,
(2.9) \[\mathbb{P}_x(\tau > t) = \int_\Gamma p^\Gamma_t(x, y) \, dy, \quad x \in \mathbb{R}^d, \ t > 0. \]

A particular role in this paper will be played by the Green function of \(\Gamma \). Let \(r > 0 \) and consider the truncated cone:
\[\Gamma_r = \Gamma \cap B_r. \]

The strong Markov property implies that for all \(t > 0 \) and \(x, y \in \mathbb{R}^d \),
\[p^\Gamma_t(x, y) = p^\Gamma_t(x, y) + \mathbb{E}_x \left[\tau_{\Gamma_r} < t; p^\Gamma_{t - \tau_{\Gamma_r}}(X_{\tau_{\Gamma_r}}, y) \right]. \]
Integrating the identity with respect to dt we obtain
\[(2.10) \quad G_{\Gamma}(x, y) = G_{\Gamma}(x, y) + \mathbb{E}_x G_{\Gamma}(X_{\tau_{\Gamma}}, y), \quad x, y \in \mathbb{R}^d.\]
It follows that $x \mapsto G_{\Gamma}(x, y)$ is regular harmonic on Γ, if $|y| \geq r$.

After Pruitt [49], we define the concentration functions for the Lévy density ν,
\[K(r) = r^{-2} \int_{B_r} |z|^2 \nu(z) \, dz \quad \text{and} \quad h(r) = \int_{\mathbb{R}^d} \left(\frac{|z|^2}{r^2} \wedge 1\right) \nu(z) \, dz, \quad r > 0.\]
We note that h is strictly decreasing and for all $r > 0$ and $\lambda \leq 1$,
\[(2.11) \quad \lambda^2 h(\lambda r) \leq h(r) \leq h(\lambda r).\]
In particular, h is doubling on $(0, \infty)$. Furthermore, by Grzywny [27, Lemma 4],
\[(2.12) \quad \frac{1}{8(1 + 2d)} h(1/r) \leq \psi^*(r) \leq 2h(1/r), \quad r > 0,\]
where ψ^* is the radially non-decreasing majorant of ψ, i.e.,
\[\psi^*(r) = \sup_{|z| \leq r} \psi(z), \quad r \geq 0.\]
By Bogdan, Grzywny and Ryznar [12, Proposition 2],
\[(2.13) \quad \psi(r) \leq \psi^*(r) \leq \pi^2 \psi(r), \quad r \geq 0,\]
where $\psi(r) := \psi(|x|)$ for $r = |x|$ and $x \in \mathbb{R}^d$.

We conclude this section by collecting some consequences of A1, A2 or A3. First we observe that A1 implies that for every $r_0 > 0$ there is $c = c(r_0)$ such that
\[(2.14) \quad c \nu(r) \leq \nu(r + 1) \leq \nu(r), \quad r > r_0.\]
Next, note that the monotonicity of the Lévy density entails that
\[(2.15) \quad \nu(r) \leq c(d) K(r) r^{-d}, \quad r > 0.\]

Proposition 2.1. Assume A1. For every $\lambda \leq 1$ and $r > 0$,
\[K(\lambda r) \leq M \lambda^{-\beta} K(r).\]
Furthermore,
\[\nu(r) \approx r^{-d} K(r), \quad r > 0,\]
with the comparability constant depending only on d, M and β. If we additionally assume A2, then for every $R > 0$ there exists constant $c > 0$ such that
\[h(r) \leq c K(r), \quad r \geq R.\]

Proof. The assumption A1 together with Grzywny and Szczypkowski [33, Lemma A.3] immediately imply the first claim. For large $R > 0$ the last claim is a consequence of A2, Potter bounds for ν and Grzywny and Szczypkowski [32, Lemma 2.5]. Using positivity and monotonicity of ν it is easy to make the threshold $R > 0$ arbitrary. \(\square\)

Lemma 2.2. Assume A1. If $d \geq 2$, then there is a constant $c = c(d, M, \beta)$ such that
\[U(x) \leq \frac{c}{h(|x|)|x|^d}, \quad x \neq 0.\]
For $d = 1$ we have
\[G_{(0, \infty)}(x, y) \leq \frac{c}{y \sqrt{h(x)h(y)}}, \quad 0 < x < y.\]
Theorem 1.9. From [28] we have \(R \). By [28, Remark 1.10d] we get that \(C \) with (2.13) we have, for \(s > 1 \) and \(x \in \mathbb{R}^d \),

\[
\psi(sx) \leq cMs^\beta \psi(s),
\]

where \(c \) depends only on \(d \). Then the claim is a consequence of Bogdan, Grzywny and Ryznar [13, Lemma 5.6] and [27, Theorem 3]. If \(d = 1 \), then the assumption \(A_1 \) implies global scale invariant Harnack inequality for the process due to Grzywny and Kwaśnicki [28, Theorem 1.9 and Remark 1.10 e)]. With this in hand one can repeat the proof of Corollary 5.6 and the upper bound in Corollary 5.5 in Grzywny, Leżaj and Miśta [29] to get the claim.

Proposition 2.3. Assume \(A_2 \). Then \(h^{-1} \) has doubling property on \((0, r) \) for every \(r > 0 \). Furthermore, for every \(r > 0 \) there is a constant \(c > 0 \) such that

\[
\frac{c^{-1}}{h^{-1}(u)} \leq \psi^{-1}(u) \leq \frac{c}{h^{-1}(u)}, \quad u < r.
\]

Proof. Observe that the regular variation of \(\psi \) together with (2.13) entails \(B_3 \) in [32, Lemma 2.5]. Thus, the first claim follows by a standard extension argument and monotonicity of \(c \). Next observe that by (2.12),

\[
\frac{1}{h^{-1}(r/2)} \leq \psi^{-1}(r) \leq \frac{1}{h^{-1}(8(1+2d)r)}, \quad r > 0.
\]

Now we may apply the doubling property of \(h^{-1} \) to conclude the proof.

Now let \(u \) be a harmonic function with respect to \(X \) in an open set \(D \). By the Poisson formula (2.8),

\[
u(x) = \int_{|z| > r} \mathbb{P}_r(0, z) u(x + z) \, dz,
\]

if only \(\overline{B(x, r)} \subset D \). Recall that \(\mathbb{P}_r(x, \cdot) \) is the Poisson kernel for the ball \(B_r \). Then [28, Lemma 2.2] entails

\[
u(x) \geq \frac{c}{h(r)} \int_{|z| > r} \nu(y) u(x + z) \, dz
\]

for some constant \(c \in (0, 1] \). Therefore, using (2.14) we conclude that

\[
\int_{\mathbb{R}^d} u(x) (1 \wedge \nu(x)) \, dx < \infty.
\]

Let \(D \) be an arbitrary open set.

Proposition 2.4. Assume \(A_1 \) and let \(x_0 \in \mathbb{R}^d \) and \(r > 0 \). Suppose that non-negative functions \(f, g \) are regular harmonic in \(D \cap B(x_0, 2r) \) and vanish on \(D^c \cap B(x_0, 2r) \). Then

\[
f(x) \overset{\tilde{C}_{\text{BHI}}}{\approx} \mathbb{E}_{x \in D \cap B(x_0, 4r/3)} \int_{\mathbb{R}^d \setminus B(x_0, 5r/3)} f(y) \nu(|y - x_0|) \, dy
\]

for \(x \in D \cap B(x_0, r) \), where \(\tilde{C}_{\text{BHI}} = \tilde{C}_{\text{BHI}}(d, M, \beta) \), and

\[
f(x) g(y) \leq C_{\text{BHI}} f(y) g(x), \quad x, y \in D \cap B(x_0, r),
\]

with \(C_{\text{BHI}} = \tilde{C}_{\text{BHI}}^d \).

Proof. By [28, Remark 1.10d] we get that \(\tilde{C}_{\text{BHI}} \) depends only on the characteristics of the process \(X \). With the notation from [28] we have \(R_\infty = \infty, \alpha = \beta, \) and \(M \) in \(A_1 \) is the same as in [28]. Therefore, \(\tilde{C}_{\text{BHI}} = \tilde{C}_{\text{BHI}}(d, M, \beta) \) by [28, Theorem 1.9].

Proposition 2.5. Assume \(A_1 \) and let \(\phi \in C_c^\infty(\Gamma) \). Then \(G_T \mathcal{L} \phi \) is well defined and

\[
G_T \mathcal{L} \phi(x) = -\phi(x), \quad x \in \mathbb{R}^d.
\]
Proof. Since ν is symmetric, for every $y \in \mathbb{R}^d$ we have

$$|\mathcal{L}\phi(y)| \leq \|\phi\|_{C^2(\mathbb{R}^d)} \int_{\mathbb{R}^d} (1 \wedge |z|^2) \nu(z) \, dz < \infty.$$

Fix $x \in \mathbb{R}^d$. Choose R_1 so that $\text{supp } \phi \subset B_{R_1}$ and set $R = 2R_1 + |x|$. By Dynkin’s formula [21, (5.8)], for $r > 2R$ we have

$$-\phi(x) = \mathbb{E}_x \int_0^{\tau_r} \mathcal{L}\phi(X_t) \, dt = \int_0^{\tau_r} \mathbb{E}_x[\mathcal{L}\phi(X_t) \mid \mathcal{T}_r > t] \, dt = \int_{\mathbb{R}^d} G_{\mathbb{T}_r}(x, y) \mathcal{L}\phi(y) \, dy.$$

The application of the Fubini theorem is justified by the facts that $\mathcal{L}\phi$ is bounded on \mathbb{R}^d and $\mathbb{E}_x \tau_{\mathbb{T}_r} < \infty$ (see, e.g., [13]). We split the integral as follows:

$$-\phi(x) = \int_{\Gamma_R} G_{\mathbb{T}_r}(x, y) \mathcal{L}\phi(y) \, dy + \int_{\Gamma_R \setminus \Gamma_{2R}} G_{\mathbb{T}_r}(x, y) \mathcal{L}\phi(y) \, dy =: I_1(r) + I_2(r).$$

By Proposition 2.4, for $y \in \Gamma_R$ and $v \in \Gamma \setminus \Gamma_{2R}$ and some fixed $y_1 \in \Gamma_R$ and $y_2 \in \Gamma \setminus \Gamma_{2R}$,

$$\frac{G_{\mathbb{T}_r}(v, y)}{G_{\mathbb{T}_r}(y_2, y)} \leq C_{BH} \frac{G_{\mathbb{T}_r}(v, y_1)}{G_{\mathbb{T}_r}(y_1, y_2)}.$$

This and (2.10) imply that

$$G_{\mathbb{T}_r}(x, y) = G_{\mathbb{T}_{2R}}(x, y) + \mathbb{E}_x G_{\mathbb{T}_r}(X_{\tau_{\mathbb{T}_{2R}}}, y)$$

$$\leq G_{\mathbb{T}_{2R}}(x, y) + \mathbb{E}_x G_{\mathbb{T}_{2R}}(X_{\tau_{\mathbb{T}_{2R}}}, y_1) \cdot \frac{G_{\mathbb{T}_r}(y, y_2)}{G_{\mathbb{T}_r}(y_1, y_2)}$$

$$\leq G_{\mathbb{T}_{2R}}(x, y) + c G_{\mathbb{T}_r}(x, y_1) \cdot \frac{G_{\mathbb{T}_r}(y, y_2)}{G_{\mathbb{T}_r}(y_1, y_2)}.$$

Since $G_{\mathbb{T}_r}(y, y_2)$ is regular harmonic on Γ_{2R} and vanishes on Γ^c, it is bounded on Γ_R by Proposition 2.4. Therefore, by the boundedness of $\mathcal{L}\phi$, (2.17) and the dominated convergence theorem,

$$\lim_{r \to \infty} I_1(r) = \int_{\Gamma_R} G_{\mathbb{T}_r}(x, y) \mathcal{L}\phi(y) \, dy.$$

Note that by Proposition 2.1, for $y \in \Gamma_R^c$,

$$|\mathcal{L}\phi(y)| \leq \int_{B_{R_1}} |\phi(z)| \nu(y-z) \, dz \leq \|\phi\|_{L^1} |B_{R_1}| \nu(|y|-R_1) \leq \nu(|y|/2) \leq \frac{K(|y|)}{|y|^d}.$$

This and Lemma 2.2 yield

$$G_{\mathbb{T}_r}(x, y) |\mathcal{L}\phi(y)| \lesssim |y|^{-2d}.$$

Now, the dominated convergence theorem implies that

$$\lim_{r \to \infty} I_2(r) = \int_{\Gamma_R \setminus \Gamma_R} G_{\mathbb{T}_r}(x, y) \mathcal{L}\phi(y) \, dy.$$

Combining (2.18) and (2.20) we complete the proof.

3. Heat kernel estimates

We apply to Γ standard geometric considerations on κ-sets, see Bogdan, Grzywny and Ryznar [10, Definition 2] and Chen, Kim and Song [18, Figure 1]. Namely, for $x \in \Gamma$ and $r > 0$ we let

$$U^{x,r} = B(x, |x - A_r(x)| + \kappa r/3) \cap \Gamma, \quad B^{x,r}_1 = B(A_r(x), \kappa r/3),$$
so that $B_{1}^{x,r} \subset U^{x,r}$. There is also $A_{r}'(x)$ and $B_{2}^{x,r} = B(A_{r}'(x), \kappa r/3) \subset B(A_{r}(x), \kappa r) \setminus U^{x,r}$ and consequently $\text{dist}(U^{x,r}, B_{2}^{x,r}) \geq \kappa r/6$, see Figure 1.

![Figure 1. Geometric setting for κ-fat sets](image)

We next focus on sharp estimates of the heat kernels p_{t} and p_{t}^{Γ}.

Proposition 3.1. Assume A. There exists $T_{1} > 0$ such that

$$p_{t}(x) \approx p_{t}(0) \wedge t\nu(x) \approx \left(\psi^{-1}(1/t)\right)^{d} \wedge t\nu(x), \quad x \in \mathbb{R}^{d}, \ t \geq T_{1}.$$

Proof. Since X_{t} is symmetric, by [31, Theorem 5.4] and Proposition 2.1 we get

$$p_{t}(x) \leq p_{t}(0) \wedge c_{1} dK(|x|)|x|^{-d} \lesssim p_{t}(0) \wedge t\nu(x), \quad t > 0, \ x \in \mathbb{R}^{d}.$$

Next, note that (2.13) and the Potter bounds for ψ imply the condition D3 in [32, Theorem 3.12]. This, in view of Proposition 2.3, entails the existence of $T_{1} > 0$ such that the claimed upper bound of $p_{t}(x)$ holds for $t \geq T_{1}$.

Furthermore, [31, Proposition 5.3] gives us

$$(3.1) \quad p_{t}(x) \geq c_{1} t\nu(x)e^{-c_{2}t\psi(1/|x|)}, \quad t > 0, \ x \in \mathbb{R}^{d}.$$

By Proposition 2.1, (2.12) and (2.13) we have $t\nu(x) \approx \left(\psi^{-1}(1/t)\right)^{d}$ if $t\psi(1/|x|) = 1$ and $t \geq T_{1}$. This and the radial monotonicity of p_{t} imply the lower bound. \qed

Proposition 3.2. Assume A1 and A2. For every $T > 0$ there is $c > 0$ such that

$$(3.2) \quad \mathbb{E}_{z}^{\tau_{B(z,r) \cap \Gamma}} \leq c t\mathbb{P}_{z}(\tau_{\Gamma} > t), \quad z \in \Gamma, \ t \geq T,$$

where $r = 1/\psi^{-1}(1/t)$. Furthermore,

$$(3.3) \quad \mathbb{P}_{z}(\tau_{\Gamma} > t/2) \approx \mathbb{P}_{z}(\tau_{\Gamma} > t), \quad z \in \Gamma, \ t \geq T.$$
Proof. Let \(r = 1/\psi^{-1}(1/t) \). Set \(D = B(z, r) \cap \Gamma \) and \(A = A_{3r/\kappa}(z) \). First let us consider the case \(|z - A| \leq r\). Then \(D = B(z, r) \), and Pruitt’s estimates \[49\] and (2.12) yield,

\[
\mathbb{E}_z \tau_D \leq \frac{c}{h(r)} \leq 2ct, \quad t > 0,
\]

where \(c \) depends only on \(d \). Furthermore, by \[31, \text{Proposition 5.2}\],

\[
\mathbb{P}_z(\tau_D > t) \geq c_1 e^{-c_2 t \psi(1/r)} = c(d), \quad t > 0.
\]

Since \(\mathbb{P}_z(\tau_D > t) \leq \mathbb{P}_z(\tau_T > t) \), we get (3.2) in this case.

Now suppose that \(|z - A| > r\). Let \(V \subset D^c \). By the Ikeda-Watanabe formula,

\[
\mathbb{P}_z(X_{\tau_D} \in V) = \int_D G_D(x, w)\nu(V - w)dw \geq \inf_{w \in D} \nu(V - w)\mathbb{E}_z \tau_D.
\]

The condition \(|z - A| > r\) allows for \(A' \in B(A, 3r) \) such that \(B(A', 2r) \subset B(A, 3r) \setminus D \). Hence, for \(V = B(A', r) \) we get, with the aid of Proposition 2.1 and A1,

\[
\inf_{w \in D} \nu(V - w) \geq \nu(r(2 + 3/\kappa)) |V| \approx K(r) \approx t^{-1},
\]

the last comparability resulting from Proposition 2.1 and (2.12). Thus, by (3.6) and (3.5),

\[
\mathbb{E}_z \tau_D \lesssim \mathbb{P}_z(X_{\tau_D} \in V) \lesssim \mathbb{E}_z \left[X_{\tau_D} \in V ; \mathbb{P}_{X_{\tau_D}}(\tau_{B(X_{\tau_D}, r)} > t) \right] \leq t \mathbb{P}_z(\tau_T > t),
\]

so (3.2) is proved.

We now turn our attention to the proof of (3.3). In the first case \(|z - A| \leq r\), by (3.5),

\[
1 \geq \mathbb{P}_z(\tau_T > t/2) \geq \mathbb{P}_z(\tau_T > t) \geq \frac{1}{2}.
\]

Next, note that for every \(z \in \Gamma \) we have from \[13, \text{Lemma 2.1}\] and (2.12),

\[
\mathbb{P}_z(X_{\tau_D} \in \Gamma) \leq \mathbb{P}_z\left(|X_{\tau_D} - z| \geq r\right) \leq 24h(r)\mathbb{E}_z \tau_D \leq C(d) t^{-1} \mathbb{E}_z \tau_D, \quad t > 0.
\]

Therefore, in the case \(|z - A| > r\), by Markov inequality and (3.8),

\[
\mathbb{P}_z(\tau_T > t/2) \leq \mathbb{P}_z(\tau_D > t/2) + \mathbb{P}_z(X_{\tau_D} \in \Gamma) \leq ct^{-1} \mathbb{E}_z \tau_D.
\]

The application of (3.2) yields (3.3). \(\square \)

The next proposition provides lower estimates on the Dirichlet heat kernel. Recall that \(\delta_T(x) = \text{dist}(x, \Gamma^c) \).

Proposition 3.3. Assume A1 and A2. For every \(T > 0 \) there is \(b \geq 1 \) and \(c > 0 \) such that for all \(x, y \in \Gamma \) and \(t \geq T \) satisfying \(\delta_T(x) \wedge \delta_T(y) \geq b/\psi^{-1}(1/t) \),

\[
p^\Gamma_t(x, y) \geq c(\psi^{-1}(1/t))^d \quad \text{if} \quad |x - y| \leq b/\psi^{-1}(1/t),
\]

and

\[
p^\Gamma_t(x, y) \geq ct \nu(x - y) \quad \text{if} \quad |x - y| \geq b/\psi^{-1}(1/t).
\]

Proof. Set \(r = 1/\psi^{-1}(1/t) \). First we consider \(|x - y| \leq br\). The Hunt formula (2.3) is

\[
p^\Gamma_t(x, y) = p_t(y - x) - \mathbb{E}_x[\tau_T < t; p_{t - \tau_T}(y - X_{\tau_T})], \quad x, y \in \mathbb{R}^d.
\]

By the radial monotonicity of \(p_t \) and (3.1), for every \(t > 0 \),

\[
p_t(y - x) \geq p_t(br) \geq c_1 t \nu(br) e^{-c_2 t \psi(1/t)/b} \gtrsim t \nu(br),
\]

where \(c \) depends only on \(d \).
with the implied constant depending only on \(d\). Furthermore, by [31, Theorem 5.4], Proposition 2.1 and monotonicity of \(\nu\),

\[
\mathbb{E}_x \left[\tau_T < t; p_{t - \tau_T} (y - X_{\tau_T}) \right] \lesssim \mathbb{E}_x \left[\tau_T < t; (t - \tau_T) \nu (y - X_{\tau_T}) \right] \\
\leq t \nu (\delta_T (y)) \mathbb{P}_x (\tau_T < t) \\
\leq t \nu (br) \mathbb{P}_x (\tau_{B(x, \delta_T (x))} < t) \\
\leq t \nu (br) \mathbb{P}_x (\tau_{B(x, br)} < t).
\]

By Potter’s bounds for \(\psi\), there exists \(w > 0\) such that

\[
\psi (u) \leq 2 \left(\frac{w}{s} \right)^{3/4} \psi (s), \quad u \leq s \leq w.
\]

Set \(\lambda = \min \{1, w/\psi^{-1}(1/T)\}\). The above inequality, Pruitt’s estimates [49] and (2.11) together with (2.12) imply, for \(t \geq T\),

\[
P_0 (\tau_{B_{br}} \leq t) \leq c_1 th(br) \leq c_2 t \lambda^{-2} \psi^* (\lambda \psi^{-1}(1/t)/b) \\
\leq 2c_2 t \lambda^{-2} b^{-3/4} \psi^* (\lambda \psi^{-1}(1/t)) \leq 2c_2 \lambda^{-2} b^{-3/4},
\]

where \(c_2\) depends only on \(d\). Thus, by fixing \(b\) large enough and putting together (3.10) with (3.11) we conclude that for \(t \geq T\),

\[
p_1^\Gamma (x, y) \gtrsim t \nu (br) \geq M^{-1} t b^{-d-\beta} \nu (r).
\]

By Proposition 2.1 and (2.12) we get the first claim.

Now assume that \(|x - y| \geq br\). By [11, Lemma 1.10] with \(D_1 = B(x, br/2)\) and \(D_3 = B(y, br/2)\) we have

\[
p_1^\Gamma (x, y) = t \mathbb{P}_x (\tau_{D_1} > t) \mathbb{P}_y (\tau_{D_3} > t) \inf_{u \in D_1, z \in D_3} \nu (u - z).
\]

Observe that by (2.11) and (2.12),

\[
th (br/2) \approx th (r) \approx t \psi^* (\psi^{-1}(1/t)) \lambda \approx 1,
\]

with comparability constants depending only on \(d\) and \(T\). Thus, in view of [31, Proposition 5.2], with constant depending only on the dimension we have the comparison:

\[
\mathbb{P}_x (\tau_{D_1} > t) \approx 1.
\]

Similarly, \(\mathbb{P}_y (\tau_{D_3} > t) \approx 1\). Moreover, for \(u \in D_1\) and \(z \in D_3\) we clearly have \(|u - z| \leq |x - y| + br \leq 2|x - y|\). From the monotonicity of the Lévy density and A1,

\[
\inf_{u \in D_1, z \in D_2} \nu (u - z) \gtrsim \nu (2|y - x|) \gtrsim \nu (|y - x|),
\]

with comparability constant depending only on \(d\), \(M\) and \(\beta\). The proof is complete. \(\square\)

Proposition 3.4. Assume A1 and A2. For each \(T > 0\) there is \(c > 0\) such that

\[
\mathbb{P}_x (\tau_{T \cap B(x, r)} > t) \geq c \mathbb{P}_x (\tau_T > t), \quad x \in \Gamma, \ t \geq T,
\]

where \(r = 1/\psi^{-1}(1/t)\).

Proof. We follow the proof of [10, Lemma 1]. Let \(A = A_r (x), A' = A'_r (x)\) and denote \(D = \Gamma \cap B(x, r)\). If \(|x - A| \leq kr/2\) then \(B(x, kr/2) \subset D\). Since \(th(kr/2) \approx 1\) (see the proof of Proposition 3.3), by [31, Proposition 5.2] we get that \(\mathbb{P}_x (\tau_{B(x, kr/2)} > t) \approx 1\). Hence

\[
\mathbb{P}_x (\tau_T > t) \approx \mathbb{P}_x (\tau_D > t), \quad t > 0.
\]
We thus assume that $|x - A| > k\nu/2$. For simplicity we write $U = U^{x,r}$, $B_1 = B_1^{x,r}$ and $B_2 = B_2^{x,r}$. By the Ikeda-Watanabe formula (2.7) we see that, for $t \geq T$ and $y \in U$,

$$P_y(X_{\tau U} \in B_2) = \int_U G_U(y, w)\nu(B_2 - w)\,dw$$

(3.12)

$$\approx r^d\nu(r)E_y\tau_U$$

$$\approx t^{-1}E_y\tau_U,$$

where the last two comparisons follow from Proposition 2.1. Next, by Proposition 2.4,

$$P_x(X_{\tau U} \in \Gamma) \leq C_{BHI}P_A(X_{\tau U} \in \Gamma)$$

$$\leq C_{BHI}P_x(X_{\tau U} \in B_2) \leq C_{BHI}P_A(X_{\tau U} \in B_2).$$

By Pruitt’s estimates we obtain $E_A\tau_U \approx t$. It follows that

(3.13)

$$P_x(X_{\tau U} \in \Gamma) \lesssim P_x(X_{\tau U} \in B_2).$$

Thus, by the Markov inequality, (3.13) and (3.12),

(3.14)

$$P_x(\tau_T > t) \leq P_x(\tau_U > t) + P_x(X_{\tau U} \in \Gamma) \lesssim t^{-1}E_x\tau_U.$$

Moreover, by the verbatim repetition of the argument from [18, (4.8)–(4.9)] we get

$$P(\tau_{B^{x,|x - A| + k\nu}} > t)P_x(X_{\tau U} \in B_2) \leq P_x(\tau_V > t)$$

with $V = B(x, |x - A| + k\nu) \cap \Gamma$. Therefore, combining [31, Proposition 5.2], (3.12) and (3.14) we obtain the claim. □

Lemma 3.5. Assume A. Then there exists $T_2 > t_0$ such that

$$p_t^\Gamma(x, y) \approx P_x(\tau_T > t)P_y(\tau_T > t)p_t(y - x), \quad x, y \in \mathbb{R}^d, \ t \geq T_2,$$

Proof. First we focus on the upper bound. Observe that by the semigroup property,

$$p_t^\Gamma(x, y) \leq p_{t/2}(0)P_x(\tau_T > t/2), \quad x, y \in \Gamma, \ t > 0.$$

Thus, by Potter bounds for ψ^{-1} together with Propositions 3.1 and 3.2, for $t \geq 2T_1$,

$$p_t^\Gamma(x, y) \leq p_t(0)P_x(\tau_T > t), \quad x, y \in \Gamma.$$

Set $r = 1/(4\psi^{-1}(1/t))$. Let us consider the case $t\psi^*(1/|x - y|) \leq 1$. Note that this implies that $|x - y| \geq 4r$. Let $D_1 = B(x, r) \cap \Gamma, D_2 = \Gamma \setminus B(x, |x - y|/2)$ and $D_2 = \Gamma \setminus (D_1 \cup D_3)$. Then by radial monotonicity, [31, Theorem 5.4], Proposition 2.1 and A1,

(3.15)

$$\sup_{s < t, z \in D_2} p_s(z, y) \leq \sup_{s \leq t} p_s(|x - y|/2) \leq C(d)tu(|x - y|).$$

Moreover, by A1 we get

(3.16)

$$\sup_{z \in D_1, w \in D_3} \nu(z - w) \leq \nu(|x - y|/4) \leq C(d, M, \beta)\nu(|x - y|).$$

Thus, using [11, Lemma 1.10], (3.15) and (3.16) we obtain

$$p_t^\Gamma(x, y) \leq c(d, M, \beta) \left(tP_x(X_{\tau_{D_1}} \in D_2) + E_x\tau_{D_1}\right)\nu(|x - y|).$$

Therefore, by (3.8) and Proposition 3.2 we conclude that for $t\psi^*(1/|x - y|) \leq 1$,

$$p_t^\Gamma(x, y) \leq c(d, M, \beta)p_t(\tau_T > t)\nu(|x - y|).$$
By Proposition 2.1, (2.12) and [19, Remark 2], $\nu(|x-y|) \approx p_t(0)$ for $t\psi(1/|x-y|) \approx 1$, so Proposition 3.1 entails

$$p^\Gamma_t(x,y) \leq c(d,M,\beta)\mathbb{P}_\tau(t^r \cap |x-y| > t)p_t(x-y), \quad x,y \in \Gamma, \quad t \geq 2T_1.$$

Applying symmetry of p^Γ_t, the semigroup property and Proposition 3.2, we arrive at the desired upper bound.

Now we turn to the lower bound. This part of proof is inspired by the proofs of [10, Lemma 5] and [18, Theorem 1.3]. Let b be taken from Proposition 3.3 and set $r_1 = 6br/\kappa$ with $r = 1/\psi^{-1}(1/t)$. By the semigroup property,

$$p^\Gamma_t(x,y) = \int_{\Gamma \times \Gamma} p^\Gamma_t(x,u)p^\Gamma_t(u,v)p^\Gamma_t(v,y) \, du \, dv$$

$$\geq \int_{B^r_2 \times \Gamma \times \Gamma} p^\Gamma_t(x,u)p^\Gamma_t(u,v)p^\Gamma_t(v,y) \, du \, dv$$

$$\geq \inf_{u \in B^r_2, v \in B^r_2} \int_{B^r_2} p^\Gamma_t(x,u) \, du \, \int_{B^r_2} p^\Gamma_t(u,v) \, du \, \int_{B^r_2} p^\Gamma_t(v,y) \, dv.$$

Note that by the definition of r_1 we have $\delta_1(u) \wedge \delta_1(v) \geq b/\psi^{-1}(1/t)$. Thus, by Proposition 3.3 and 3.1 there is $c > 0$ such that for $t \geq T_1$,

$$\inf_{u \in B^r_2, v \in B^r_2} p^\Gamma_t(u,v) \geq c \left((\psi^{-1}(1/t))^d \wedge \nu(y-x) \right) \geq c p_t(y-x), \quad x,y \in \Gamma.$$

By [11, Lemma 1.10], for $x \in \Gamma, \, u \in B^r_2, \, D_1 = U^r_{x, r_1}$ and $D_3 = B(A_1^r, (x, \kappa r_1/4))$ we get

$$p^\Gamma_t(x,u) \geq c t\mathbb{P}_u(\tau_{D_1} > t/3)\mathbb{P}_u(\tau_{D_2} > t/3) \inf_{z \in D_1, w \in D_3} \nu(w-z).$$

By the radial monotonicity of ν, A1, Proposition 2.1 and (2.12),

$$\inf_{z \in D_1, w \in D_3} \nu(w-z) \geq t\nu(br/(2\kappa))$$

$$\geq c(d,M,\beta)\nu(1/\psi^{-1}(1/t))$$

$$\geq c(\psi^{-1}(1/t))^d, \quad t > T_1.$$

Next, we observe that by the same argument as in the proof of (3.5),

$$\mathbb{P}_u(\tau_{D_3} > t) \geq \mathbb{P}_u(\tau_{B(u, \kappa r_1/12)} > t) \geq 1, \quad t > 0, \quad u \in B^r_2.$$

Furthermore, since for $r_2 = 1/\psi^{-1}(3/t)$ we have $r_1 \geq r \geq r_2$, by Proposition 3.4,

$$\mathbb{P}_u(\tau_{D_1} > t/3) = \mathbb{P}_u(\tau_{D \cap B(x,r_1)} > t/3)$$

$$\geq \mathbb{P}_u(\tau_{D \cap B(x,r_2)} > t/3)$$

$$\geq c\mathbb{P}_u(\tau_D > t/3)$$

$$\geq c\mathbb{P}_u(\tau_D > t)$$

for $t \geq T_1$, with $c > 0$. Thus, combining (3.18), (3.19) and (3.20) we conclude that

$$\int_{B^r_2} p^\Gamma_t(x,u) \, du \geq c|B^r_2| (\psi^{-1}(1/t))^d \mathbb{P}_x(\tau_D > t) = c\mathbb{P}_x(\tau_D > t)$$

for $t \geq T_1$. In the same spirit we prove that

$$\int_{B^r_2} p^\Gamma_t(y,v) \, dv \geq c\mathbb{P}_x(\tau_D > t), \quad t \geq T_1.$$

Putting this together with (3.17) completes the proof. \qed
4. Rescaled process

Let $s \geq 1$. As aforementioned in Introduction, we define the rescaled process $X^s = \{X^s_t: t \geq 0\}$ by setting

$$X^s_t = \psi^{-1}(1/s)X_{st}.$$

For the sake of clarity and consistency of notation, every object corresponding to the rescaled process X will be marked by a superscript s. For instance, we write ψ^s for the characteristic exponent of X^s_t. Observe that for every $\xi \in \mathbb{R}^d$,

$$\mathbb{E}e^{i\xi X^s_t} = \mathbb{E}e^{i\psi^{-1}(1/s)X_{st}} = e^{-s\nu\psi^{-1}(1/s)\xi}.$$

Thus,

$$\psi^s(\xi) = s\psi\left(\psi^{-1}(1/s)\xi\right), \quad \xi \in \mathbb{R}^d. \quad (4.1)$$

The reader may also easily verify that

$$\nu^s(x) = \frac{s}{(\psi^{-1}(1/s))^d}\nu\left(\frac{x}{\psi^{-1}(1/s)}\right), \quad x \in \mathbb{R}^d. \quad (4.2)$$

Let us collect some basic properties of X^s. First, observe that $A1$ holds for ν^s with the same constant M (this simple observation will have profound implications). Next, since $A2$ implies that $\psi \in \mathcal{R}_0^\alpha$ (see the discussion after introducing assumptions $A1 – A3$), it follows that for every $\xi \in \mathbb{R}^d$,

$$\lim_{s \to \infty} \psi^s(\xi) = \frac{\psi\left(\psi^{-1}(1/s)\xi\right)}{\psi\left(\psi^{-1}(1/s)\right)} = |\xi|^\alpha. \quad (4.3)$$

Furthermore, under $A2$ for every $x \in \mathbb{R}^d \setminus \{0\}$ we have

$$\lim_{s \to \infty} \nu^s(x) = c_{d,\alpha}|x|^{-d-\alpha}. \quad (4.4)$$

Indeed,

$$\nu^s(x) = \frac{s}{(\psi^{-1}(1/s))^d}\nu\left(\frac{x}{\psi^{-1}(1/s)}\right) = |x|^{-d}\frac{\nu\left(\frac{x}{\psi^{-1}(1/s)}\right)}{\nu\left(\psi^{-1}(1/s)\right)} \cdot \frac{\psi\left(\psi^{-1}(1/s)\right)}{\psi\left(\psi^{-1}(1/s)\right)}.$$

Therefore, the claim follows by [19, Theorem 7(iii)] and the fact that $\psi \in \mathcal{R}_0^\alpha$.

Proposition 4.1. Assume $A2$. Then for every $x \in \Gamma$,

$$\lim_{s \to \infty} \kappa^s_\Gamma(x) = \kappa^0_\Gamma(x).$$

Furthermore, if we additionally assume $A1$, then for every $r > 0$,

$$\lim_{s \to \infty} h^s(r) = h^0(r).$$

Proof. Fix $x \in \Gamma$ and $r > 0$. Recall that

$$\kappa^s_\Gamma(x) = \int_\Gamma \nu^s(y - x) \, dy.$$

Since $\nu \in \mathcal{R}_{d-\alpha}^\infty$, by Potter’s bounds there is $r > 0$ such that for all $|z_1| \geq |z_2| \geq r$,

$$\frac{\nu(z_1)}{\nu(z_2)} \leq 2\left(\frac{|z_1|}{|z_2|}\right)^{-d-\alpha/2}.$$

Therefore, due to definition of ν^s (4.2) there is $s_0 \geq 1$ such that for all $s \geq s_0$,

$$\frac{\nu^s(z_1)}{\nu^s(z_2)} \leq 2\left(\frac{|z_1|}{|z_2|}\right)^{-d-\alpha/2}.$$
for all \(|z_1| \geq |z_2| \geq \delta_T(x)|. Therefore, for \(s \geq s_0,\)
\[
\nu^s(y - x) \leq 2\delta_T(x)^{d+\alpha/2}\nu^s(\delta_T(x))|y - x|^{-d-\alpha/2}, \quad y \in \Gamma^c.
\]
Moreover, by (4.4) we get that \(\nu^s(\delta_T(x)) \leq 2\nu^s(\delta_T(x))\) for \(s\) large enough, so an application of the dominated convergence theorem finishes the proof of the first part.

Next, observe that for every \(s \geq 1,\)
\[
h^s(r) = K^s(r) + \int_{|x| > r} \nu^s(z) \, dz, \quad r > 0.
\]
The convergence of the second component is established in the same way as \(\kappa^*\). Furthermore, by A1,
\[
|y|^2 \nu^s(y) \leq M\nu^s(r)s^{d+\beta}|y|^{-d-\beta+2}, \quad |y| \leq r.
\]
Since \(\nu^s(r) \leq 2\nu^s(r)\) due to (4.4) for \(s\) large enough, another application of the dominated convergence theorem finishes the proof. \(\Box\)

We define
\[
\psi^{-1,s}(u) = \sup\{r > 0: \psi^{*,s}(r) = u\},
\]
where \(\psi^{*,s}(r) = \sup_{|z| \leq r} \psi^s(z)\). Then,
\[
\lim_{s \to \infty} \psi^{-1,s}(u) = u^{1/\alpha}.
\]
Indeed,
\[
\psi^{*,s}(r) = s \sup_{|z| \leq r} \psi(s^{-1}(1/s)z) = s\psi^{*,s}(\psi^{-1}(1/s)r),
\]
therefore,
\[
\psi^{-1,s}(u) = \sup\{r > 0: s\psi^{*}(\psi^{-1}(1/s)r) = u\} = \frac{\psi^{-1}(u/s)}{\psi^{-1}(1/s)}.
\]
Since \(\psi^{-1} \in R^0_{1/\alpha}\), by [9, the proof of Theorem 1.5.12], we obtain (4.5).

Let us derive a formula for the heat kernel \(p^s_t\). We have
\[
\int_{\mathbb{R}^d} e^{i\xi \cdot x} p^s_t(x) \, dx = e^{-t\psi^s(\xi)} = e^{-t\psi(\psi^{-1}(1/s))}\xi} = \int_{\mathbb{R}^d} e^{i\psi^{-1}(1/s)\xi \cdot x} p^s_t(x) \, dx.
\]
By a change of variables we get
\[
\int_{\mathbb{R}^d} e^{i\xi \cdot x} p^s_t(x) \, dx = \frac{1}{(\psi^{-1}(1/s))^d} \int_{\mathbb{R}^d} e^{i\xi \cdot x} p^s_t\left(\frac{x}{\psi^{-1}(1/s)}\right) \, du,
\]
thus,
\[
p^s_t(x) = \frac{1}{(\psi^{-1}(1/s))^d} p^s_t\left(\frac{x}{\psi^{-1}(1/s)}\right).
\]

Our next goal is to prove that the heat kernel of the rescaled process converges to the heat kernel of the limiting \(\alpha\)-stable Lévy process.

4.1. Convergence of the heat and potential kernels

With the tools from the previous subsection at hand, we are now able to prove the convergence of heat kernels. In fact, we will prove that the same holds for the Dirichlet heat kernel of \(\Gamma\) and the Green function of \(\Gamma\).

Lemma 4.2. Assume A2 and A3. Then, for every \(t > 0\) and \(x \in \mathbb{R}^d,\)
\[
\lim_{s \to \infty} p^s_t(x) = p^0_t(x).
\]
Proof. Fix \(t > 0 \). By a change of variables, we get that \(e^{-t \psi} \in L^1(\mathbb{R}^d) \) for \(s > t_0/t \). Thus, by the Fourier inversion formula,

\[
p_t^s(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\xi \cdot x} e^{-t \psi}(\xi) \, d\xi, \quad x \in \mathbb{R}^d,
\]

if \(s \) is large enough. For any given \(\delta, s > 0 \) we split the above integral according to:

\[
\mathbb{R}^d = \{ \xi : \psi^{-1}(1/s) |\xi| < \delta \} \cup \{ \xi : \psi^{-1}(1/s) |\xi| \geq \delta \} = D_1(\delta, s) \cup D_2(\delta, s).
\]

Let us first consider \(D_1(\delta, s) \). Since \(\psi \in \mathcal{R}_\alpha^0 \), by Potter’s bounds there exists \(\delta_1 > 0 \) such that, for all \(0 < |x|, |y| \leq \delta_1 \),

\[
(4.9) \quad \psi(y) \geq \frac{1}{2} \psi(x) \left(\frac{|y|}{|x|} \right)^{\alpha} \min \left\{ \frac{|y|}{|x|}, \frac{|x|}{|y|} \right\}^{\alpha/2}.
\]

If \(s \geq 1/\psi(\delta_1) \), then we can let \(x = \psi^{-1}(1/s) 1 \) and \(y = \psi^{-1}(1/s) \xi \) with \(\xi \in D_1(\delta_1, s) \), so

\[
 ts\psi(\psi^{-1}(1/s) \xi) \geq \frac{1}{2} t |\xi|^{\alpha} \min \{ |\xi|, |\xi|^{-1} \}^{\alpha/2}.
\]

Thus,

\[
(4.10) \quad e^{-ts\psi(\psi^{-1}(1/s) \xi)} \leq e^{-\frac{1}{2} t |\xi|^\alpha \min \{ |\xi|, |\xi|^{-1} \}^{\alpha/2}}
\]
on \(D_1(\delta_1, s) \), provided that \(s \geq 1/\psi(\delta_1) \).

Next, we turn our attention to the second integral for \(\delta = \delta_1 \). Using the substitution \(u = \psi^{-1}(1/s) \xi \) and applying (2.13) we obtain

\[
\left| \int_{\psi^{-1}(1/s)|\xi| \geq \delta} e^{-i\xi \cdot x} e^{-ts\psi(\psi^{-1}(1/s) \xi)} \, d\xi \right| \leq \int\int_{|u| \geq \delta} \frac{e^{-ts\psi(u)}}{\psi^{-1}(1/s)^d} \, du \, d\xi
\]

\[
\leq (\psi^{-1}(1/s))^{\alpha} \int\int_{|u| \geq \delta} e^{-ts\psi(u)/\pi^2} \, du \, d\xi
\]

\[
\leq (\psi^{-1}(1/s))^{\alpha} \int\int_{|u| \geq \delta} e^{-st\psi(u)/\pi^2} \, du \, d\xi.
\]

Recall that the assumption \(\psi \in \mathcal{R}_\alpha^0 \) implies that \(\psi^{-1} \in \mathcal{R}_1^{0} \). It follows by \(A_3 \) that the above integral tends to 0 when \(s \) goes to infinity. This, the dominated convergence theorem, (4.3) and the Fourier inversion formula yield

\[
\lim_{s \to \infty} p_t^s(x) = p_t^0(x),
\]
as claimed. \(\square \)

Now we turn our attention to uniform estimates for the heat kernel of \(X^s \).

Lemma 4.3. Assume A. For all \(s \geq 1 \) we have

\[
p_t^s(x) \approx p_t^0(0) \land t\nu^s(x) \approx (\psi^{-1,s}(1/t))^d \land t\nu^s(x), \quad x \in \mathbb{R}^d, t \geq T_1/s,
\]

with the same comparability constant as in Proposition 3.1.

Proof. First, observe that the case \(s = 1 \) is the contents of Proposition 3.1. We will extend the result to arbitrary \(s \geq 1 \). Observe that by (4.2), (4.6), (4.7) and Proposition 3.1 we have

\[
p_t^s(x) = \frac{1}{(\psi^{-1}(1/s))^d} \Psi_{st} \left(\frac{x}{\psi^{-1}(1/s)} \right)
\]

\[
\approx \frac{1}{(\psi^{-1}(1/s))^d} \left((\psi^{-1}(1/(st)))^d \land t\nu \left(\frac{x}{\psi^{-1}(1/s)} \right) \right)
\]

\[
= \psi^{-1,s}(1/t) \land t\nu^s(x), \quad t \geq T_1/s,
\]
with the implied constant independent of \(s \). The proof is completed.

We next deal with the Dirichlet heat kernel. Since \(\Gamma \) is a cone,

\[
(4.11) \quad \tau^n_\Gamma = \inf \{ t > 0 : \psi^{-1}(1/s)X_{ts} \notin \Gamma \} = \frac{\tau^n_\Gamma}{s},
\]
so

\[
(4.12) \quad \mathbb{P}_x(\tau^n_\Gamma > t) = \mathbb{P}_{x/\psi^{-1}(1/s)}(\tau_\Gamma > st).
\]

Here and below we write \(\tau^n_\Gamma = \tau_\Gamma(X^n) \) to point out that the functional \(\tau_\Gamma \) is applied to the rescaled process. By (4.7), (4.11) and the Hunt formula,

\[
p^\Gamma(x,y) = p^\Gamma_0(x,y) - \mathbb{E}_x \left[\tau^n_\Gamma < t; p^\Gamma_{t - \tau^n_\Gamma}(X^n_{\tau^n_\Gamma}, y) \right]
= \frac{1}{\psi^{-1}(1/s)}dP^s_{x} \left(\frac{y - x}{\psi^{-1}(1/s)} \right)
- \mathbb{E}_{x/\psi^{-1}(1/s)} \left[\tau_\Gamma < st; \frac{1}{\psi^{-1}(1/s)}dP^s_{st - \tau_\Gamma} \left(\frac{\psi^{-1}(1/s)X_{\tau_\Gamma} - y}{\psi^{-1}(1/s)} \right) \right]
= \frac{1}{\psi^{-1}(1/s)}d\left(P^s_{x} \left(\frac{y - x}{\psi^{-1}(1/s)} \right) - \mathbb{E}_{x/\psi^{-1}(1/s)} \left[\tau_\Gamma < st; P^s_{st - \tau_\Gamma} \left(\frac{X_{\tau_\Gamma} - y}{\psi^{-1}(1/s)} \right) \right] \right),
\]

therefore,

\[
(4.13) \quad p^\Gamma(x,y) = \frac{1}{\psi^{-1}(1/s)}d p^\Gamma_{st} \left(\frac{x}{\psi^{-1}(1/s)}; \frac{y}{\psi^{-1}(1/s)} \right).
\]

Lemma 4.4. Assume A2 and A3. Then for every \(t > 0 \) and \(x, y \in \Gamma \), we have

\[
\lim_{s \to \infty} p^\Gamma(x,y) = p^{\Gamma,\alpha}(x,y).
\]

Proof. Fix \(t > 0 \) and \(x, y \in \Gamma \). By [12, Corollary 7], (2.13) and (4.1), we have that

\[
p^\Gamma(u) \leq Cst\left(\psi^{-1}(1/s)/|u| \right) \frac{1}{|u|^d}.
\]

Since \(\psi \in \mathcal{R}^d_{\alpha} \), from Potter’s theorem there is \(s_0 \) such that

\[
s\psi \left(\psi^{-1}(1/s)/|u| \right) \leq 2|u|^{-\alpha/2}, \quad |u| \geq \delta_\Gamma(y),
\]

if only \(s > s_0 \). Therefore for \(s \) large enough,

\[
(4.14) \quad p^\Gamma(u) \leq \frac{Ct}{|u|^{d+\alpha/2}}, \quad |u| \geq \delta_\Gamma(y).
\]

Next, note that \(|X^n_{\tau^n_\Gamma} - y| \geq \delta_\Gamma(y) \). It follows that

\[
(4.15) \quad \mathbb{E}_x \left[t - \tau^n_\Gamma \leq \varepsilon; p^\Gamma_{t - \tau^n_\Gamma}(X^n_{\tau^n_\Gamma}, y) \right]
\]
is uniformly small provided \(\varepsilon \) is small enough. We have also from (4.14) that

\[
(4.16) \quad \mathbb{E}_x \left[|X^n_{\tau^n_\Gamma}| > R; p^\Gamma_{t - \tau^n_\Gamma}(X^n_{\tau^n_\Gamma}, y) \right] \to 0 \quad \text{as} \quad R \to \infty
\]
uniformly in \(s \) large enough. Recall that by the proof of Lemma 4.2,
\[p_t^s(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\xi \cdot x} e^{-t\psi^s(\xi)} \, d\xi \]

for \(s \) large enough. Then,

\[\frac{\partial}{\partial t} p_t^s(x) + |\nabla p_t^s(x)| \leq \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-t\psi^s(\xi)} (\psi^s(\xi) + |x||\xi|) \, d\xi, \]

is uniformly bounded for \(\varepsilon \leq t \leq T \) and \(|x| \leq R \) by the same arguments as in the proof of Lemma 4.2. Therefore, the functions \(\{ p_t^s(\cdot) : s \geq s_0 \} \) are equicontinuous for \(\varepsilon \leq t \leq T \), \(|x| \leq R \) and some \(s_0 \geq 1 \), hence

\[\lim_{s \to \infty} p_t^s(x) = p_t^\alpha(x) \]

uniformly in \(\varepsilon \leq t \leq T \) and \(|x| \leq R \). This and (4.16) imply that

\[\mathbb{E}_x \left[\tau_t^s < t - \varepsilon; p_{t-\tau_t^s}^s \left(X_{\tau_t^s}^s, y \right) \right] - \mathbb{E}_x \left[\tau_t^s < t - \varepsilon; p_{t-\tau_t^s}^\alpha \left(X_{\tau_t^s}^\alpha, y \right) \right] \to 0 \]

as \(s \to \infty \). Now, in view of (4.3) and Jacod and Shiryaev [38, Corollary VII.3.6], the distribution of \(X^s \) converges weakly in \(D_{[0,T]} \) to the distribution of \(X^\alpha \). Thus, by Proposition A.1 and Corollary A.2 we have for every \(\varepsilon > 0 \) that

\[\mathbb{E}_x \left[\tau_t^s < t - \varepsilon; p_{t-\tau_t^s}^s \left(X_{\tau_t^s}^s, y \right) \right] \to \mathbb{E}_x \left[\tau_t^\alpha < t - \varepsilon; p_{t-\tau_t^\alpha}^\alpha \left(X_{\tau_t^\alpha}^\alpha, y \right) \right] \]

as \(s \to \infty \). Therefore, combining (4.15), (4.16), (4.17) and (4.18) we arrive at

\[\mathbb{E}_x \left[\tau_t^s < t; p_{t-\tau_t^s}^s \left(X_{\tau_t^s}^s, y \right) \right] \to \mathbb{E}_x \left[\tau_t^\alpha < t; p_{t-\tau_t^\alpha}^\alpha \left(X_{\tau_t^\alpha}^\alpha, y \right) \right], \]

and by the Hunt formula (2.3) with Lemma 4.2,

\[\lim_{s \to \infty} p_t^{\Gamma,s}(x,y) = p_t^{\Gamma,\alpha}(x,y). \]

\[\square \]

\textbf{Lemma 4.5. Assume A.} For all \(s \geq 1 \) we have

\[p_t^{\Gamma,s}(x,y) \approx \mathbb{P}_x (\tau_t^s > t) \mathbb{P}_y (\tau_t^s > t) p_t^\alpha (y - x), \quad x, y \in \Gamma, t \geq T_2/s, \]

where the comparability constant is taken from Lemma 3.5.

\textbf{Proof.} The case \(s = 1 \) follows from Lemma 3.5. Now we use the same extension technique as in the proof of Lemma 4.3. By (4.7), (4.12), (4.13) and Lemma 3.5, for all \(t \geq T_2/s \),

\[p_t^{\Gamma,s}(x,y) = \frac{1}{(\psi^{-1}(1/s))^d} p_t^{\Gamma} \left(\frac{x}{\psi^{-1}(1/s)}, \frac{y}{\psi^{-1}(1/s)} \right) \approx \frac{1}{(\psi^{-1}(1/s))^d} \mathbb{P}_{x/\psi^{-1}(1/s)} (\tau_t^\Gamma > st) \mathbb{P}_{y/\psi^{-1}(1/s)} (\tau_t^\Gamma > st) p_{st} \left(\frac{y - x}{\psi^{-1}(1/s)} \right) \]

\[= \mathbb{P}_x (\tau_t^s > t) \mathbb{P}_y (\tau_t^s > t) p_t^\alpha (x,y), \]

with the implied constant independent of \(s \).

\[\square \]

\textbf{Proposition 4.6. Assume A. If \(d \geq 2 \) then for every \(x \in \mathbb{R}^d \),}

\[\lim_{s \to \infty} U^s(x) = U^\alpha(x). \]

\textit{Furthermore, for} \(d \geq 1 \),

\[\lim_{s \to \infty} G_t^s(x,y) = G_t^\alpha(x,y), \]

\textit{for all} \(x, y \in \Gamma \).
Proof. The first claim is an easy consequence of [19, Corollary 3] for \(d \geq 3 \). Since \(\alpha < 2 \), one can obtain the similar result also for \(d = 2 \). The proof of the second claim is similar to that of Lemma 4.4. Recall that we adopt the notation \(U^s(x, y) = U^s(x - y) = \int_0^\infty p_t^s(x - y) \, dt \). Then by the Hunt formula we have

\[
G_t^s(x, y) = U^s(x, y) - \mathbb{E}_x \left[U^s \left(X_{T_1}^s, y \right) \right].
\]

We first refine (4.19) and prove that \(U^s(u) \) in fact converges uniformly on compact subsets of \(\mathbb{R}^d \setminus \{0\} \) to \(U^\alpha(u) \) as \(s \to \infty \). By (4.14), we have that

\[
\lim_{s \to \infty} \int_0^\varepsilon p_t^s(u) \, dt = 0
\]
uniformly in \(|u| \geq \delta \eta(y) \). Next, note that Lemma 4.3 implies, for \(T \geq T_1/s \),

\[
\int_T^{\infty} p_t^s(u) \, dt \lesssim \int_T^{\infty} |\psi^{-1,s}(1/t)|^d \, dt.
\]

Since \(\psi^{-1} \in \mathcal{R}^\alpha_1 \), using (4.6) and Potter’s bounds for every \(\eta > 0 \), we get the existence of \(\delta > 0 \) with

\[
\psi^{-1,s}(1/t) = \psi^{-1}(1/(st)) = 2 \left(\frac{u}{T} \right)^{1/\alpha - \eta}, \quad t \geq u \geq 1/(s\delta).
\]

Hence,

\[
\int_T^{\infty} p_t^s(u) \, dt \lesssim T \left(\psi^{-1,s}(1/T) \right)^d \leq 2T \left(\psi^{-1,s}(1) \right)^d T^{-d/\alpha + d\eta} \leq 4T^{-d/\alpha + 1 + d\eta},
\]

which tends to 0 as \(T \to \infty \) uniformly in \(u \), provided \(d \geq 2 \) and \(\eta < 1/\alpha - 1/d \).

Now, proceeding as in the proof of Lemma 4.4 we conclude that for every \(R > 2|y| \),

\[
\lim_{s \to \infty} \mathbb{E}_x \left[|X_{T_1}^s| \right] \leq R; U^s(X_{T_1}^s, y) = \mathbb{E}_x \left[|X_{T_1}^s| \right] \leq R; U^\alpha(X_{T_1}^\alpha, y) \).
\]

The unimodality of the potential kernel and the fact that \(\lim_{|u| \to \infty} U^\alpha(u) = 0 \) ends the proof in the case \(d \geq 2 \).

If \(d = 1 \), then \(\Gamma = (0, \infty) \); therefore, by Lemma 4.5 and 4.3 together with [13, Proposition 2.6] and (2.12),

\[
p_t^\Gamma(x, y) \lesssim \frac{1}{\sqrt{h^\alpha(x) h^\alpha(y)}} \frac{1}{t} \psi^{-1,s}(1/t), \quad x, y > 0, \quad t \geq T_2/s.
\]

Hence, for sufficiently large \(s \), we have, by Proposition 4.1 and (4.22),

\[
p_t^\Gamma(x, y) \lesssim (xy)^{\alpha/2} t^{-1/\alpha - \eta}, \quad x, y > 0, \quad t \geq 1.
\]

This together with (4.14) allow us to use the dominated convergence theorem and the claim in this case follow by Lemma 4.4.

\[\square \]

4.2. Uniform BHP and estimates of harmonic functions

Let us turn to the boundary Harnack inequality and its consequences for harmonic functions. A very general version of BHP was proved by Bogdan, Kumagai and Kuwaśnicki [14]. It was later simplified in [28] in the case of unimodal Lévy processes. Therefore, we will rather use the results from [28], as they better serve our purpose. Next, using ideas from [42] we will show that the boundary limits of ratios of harmonic functions exist and are uniform in the sense of [42].
Remark 3. This observation will be crucial in the proof of Lemma 4.10, which in turn is essential for Lemma 4.11 to hold.

First we prove the uniform boundary Harnack inequality and generalize [42, Remark 3] to the whole family of Lévy processes \(\{X^s : s \geq 1\} \). To this end we closely examine assumptions imposed in [14], [28] and [42] and verify that constants appearing therein are in fact independent of \(s \). First, let us show that the boundary Harnack inequality holds with the same constant for every \(X^s \). Recall that A1 holds true for all \(X^s \) for all \(s \geq 1 \) with the same parameters \(M \) and \(\beta \). Therefore, by Proposition 2.4, \(C_{\text{BHI}} \) is also independent on \(s \). In particular, the uniform boundary Harnack inequality holds: for all \(s \geq 1 \), \(x_0 \in \partial D \) and two functions \(f^s, g^s \geq 0 \) which are regular harmonic with respect to \(X^s \) in \(D \cap B(x_0, 2r) \) and vanish on \(\partial D \cap B(x_0, 2r) \),

\[
\begin{align*}
\frac{f^s(x)}{g^s(x)} &\leq C_{\text{BHI}} \frac{f^s(y)}{g^s(y)}, \quad x, y \in D \cap B(x_0, r),
\end{align*}
\]

with \(C_{\text{BHI}} = \tilde{C}_{\text{BHI}}^s \). For the existence of the boundary limits we verify the assumptions of [42, Theorem 2]. Assumption (i) therein is satisfied for every unimodal Lévy process. Our goal is to prove that (ii) and (iii) hold uniformly in \(s \). First, we check that for every \(R > 0 \), the constant \(C_{\text{BHI}}^s(r, R) \) satisfying

\[
\nu^s(t - r) \leq C_{\text{BHI}}^s(r, R) \nu^s(t + r),
\]

for all \(t > R \), may be chosen independent of \(s \) (which justifies writing \(C_{\text{BHI}}^s = C_{\text{BHI}} \)). Indeed, assume A1 and A2. We clearly have \(C_{\text{BHI}}^s(r, R) \geq 1 \) for all \(0 < r < R \) and \(s \geq 1 \). Furthermore,

\[
C_{\text{BHI}}^s(r, R) = \sup_{t \geq R} \frac{\nu^s(t - r)}{\nu^s(t + r)} \leq M \sup_{t \geq R} \left(\frac{t + r}{t - r} \right)^{d + \beta} = \left(\frac{R + r}{R - r} \right)^{d + \beta} M,
\]

which proves the independence of the constant from \(s \). In particular, by setting \(R = 2r \) we see that the condition (iii) holds uniformly in \(s \). Finally, we note that condition (iv) actually holds independently of \(s \) since the only ingredient in the proof of [28, Theorem 1.11] is the scaling condition A1, which is independent of \(s \).

Therefore, by [42, Theorem 2 and Remark 1] we have the following.

Theorem 4.7. Assume A. Let \(D \) be an open Lipschitz set, \(x_0 \in \partial D \) and \(R > 0 \). Then

\[
\lim_{r \to 0^+} \sup_{s \geq 1} \sup_{f^s, g^s} \inf_{x \in D \cap B(x_0, r)} \frac{f^s(x) / g^s(x)}{\sup_{x \in D \cap B(x_0, r)} f^s(x) / g^s(x)} = 1,
\]

where \(\sup_{f^s, g^s} \) is taken over all non-negative functions \(f^s, g^s \) that are regular harmonic in \(D \cap B(x_0, R) \) with respect to \(X^s \) and are equal to zero in \(B(x_0, R) \setminus D \).

Proof. Without loss of generality we may and do assume that \(x_0 = 0 \). First of all, we show that \(x_0 \in \partial D \) is an accessible boundary point (see [42, Remark 1]) and then the proof will follow by inspection of the proof of Theorem 2 therein in the case of accessible boundary points in [42, Section 4.3]. We remark that in this case the assumption (ii) of [42, Theorem 2] is redundant. Namely, since \(D \) is a Lipschitz set, there exists \(R > 0 \) and an open right circular cone \(\Gamma \) with apex at \(x_0 \) such that \(\Gamma \setminus D \) is accessible boundary points. By isotropy of \(X \) we may and do assume that the axis of \(\Gamma \) is the line \(\ell = \{t \Omega : t \in \mathbb{R}\} \). By \(\kappa \)-fatness of \(\Gamma \) and due to the Pruitt bounds we have, for all \(y \in \Gamma \) with \(\text{dist}(y, \ell) \leq \kappa |y| / 2 \) that

\[
\mathbb{E}_y \tau^s_{D \cap B_R} \geq C_d \tau^s_{\Gamma \setminus D} \geq C_d \tau^s_{B(y, \kappa |y| / 2)} \geq \frac{c(d)}{h^s(\kappa |y| / 2)} \geq \frac{c(d)}{4h^s(|y|)}.
\]

Hence, by Proposition 2.1 and the isotropy of \(X \), for large \(s \) and small \(\delta \),

\[
\begin{align*}
\int_{D \cap B_R \setminus B_\delta} \mathbb{E}_y \tau^s_{D \cap B_R} \nu^s(y) dy &\geq c(d, M, \beta, \kappa) \int_{B_{R/2} \setminus B_{2\delta}} \frac{1}{h^s(|y|)} \frac{K^s(|y|)}{|y|^d} dy \\
&= c \int_{2\delta}^{R/2} \frac{1}{h^s(u)} \frac{K^s(u)}{u^d} du \\
&= c (\ln h^s(2\delta) - \ln h^s(R/2)).
\end{align*}
\]
Observe that, since h^s blows up as $\delta \to 0^+$, x_0 is an accessible boundary point for X^s. We will now prove that the blow-up is uniform in s. Indeed, suppose that

$$\sup_{\delta<h^s \geq 1} \inf_{\delta<h^s} h^s(2\delta) < \infty.$$

(4.25)

Note that

$$\frac{h^s(2\delta)}{h^s(R/2)} = \frac{h^s(2\delta/\psi^{-1}(1/s))}{h(R/(2\psi^{-1}(1/s)))}.$$

(4.26)

By Proposition 4.1 and continuity of h, for all small enough $\delta > 0$ there is $s = s(\delta)$ with

$$\lim_{\delta \to 0^+} \sup_{\delta<h^s \geq 1} \frac{h^s(\delta)}{h^s(R/2)} < \infty.$$

Moreover, we observe that the expression $\delta/\psi^{-1}(1/s(\delta))$ is bounded in s. Indeed, should the converse be true, (4.26), (2.12) and (2.13) would imply that

$$\frac{h^s(\delta)}{h^s(R/2)} \geq \frac{\psi^{-1}(1/s(\delta))/\delta}{\psi^{-1}(1/s(\delta))/R} \geq \delta^{-a/2},$$

where the last step follows by A2 together with Potter bounds on ψ, and we would arrive at a contradiction. Now, since $\psi^{-1}(1/s(\delta)) \leq 1$, there are two possible scenarios: either $s(\delta)$ is bounded or not. If it is bounded, then we observe that $h(R/(2\psi^{-1}(1/s)))$ in (4.26) is bounded as well, but since $h(2\delta/\psi^{-1}(1/s))$ blows up, we get the contradiction with (4.25). If it is unbounded, then we infer that $h(2\delta/\psi^{-1}(1/s(\delta)))$ is bounded below by a positive constant, but $h(R/(2\psi^{-1}(1/s(\delta))))$ goes to 0 as $\delta \to 0^+$ and again we get the contradiction. Hence, for every $R > 0$,

$$\sup_{\delta<h^s \geq 1} \inf_{\delta<h^s} h^s(2\delta) = \infty,$$

so x_0 is an accessible boundary point for X^s and the lower bounds above is independent of s. This implies that every constant that appears in Section 4.3 in [42] is in fact independent of s and therefore the limit proven there is uniform with respect to s and functions f^s and g^s.

\begin{lemma}
Let D be a κ-fat set. Assume A1. There is a constant $C = C(d, M, \beta, \kappa)$ such that for all $s \geq 1$, $Q \in \partial D$, $r > 0$ and non-negative functions u^s regular harmonic in $D \cap B(Q, 2r)$ with respect to X^s and vanishing on $D^c \cap B(Q, 2r)$,

$$u^s(x) \leq Cu^s(A_r(Q)), \quad x \in D \cap B(Q, r).$$

\end{lemma}

\begin{proof}
By Proposition 2.4 and discussion before (BHP) we get

$$\frac{u^s(x)}{u^s(A_r(Q))} \leq C_{BHI} \frac{E_xT_{D\cap B(Q, 4r/3)}}{E_{A_r(Q)}T_{D\cap B(Q, 4r/3)}}.$$

By Pruitt’s estimates,

$$E_xT_{D\cap B(Q, 4r/3)} \leq \frac{c(d)}{h(4r/3)}$$

and

$$E_{A_r(Q)}T_{D\cap B(Q, 4r/3)} \geq \frac{c(d)}{h(kr)}.$$

An application of (2.11) yields the claim.

\end{proof}
4.3. Uniform integrability

Since a dilation of a Lipschitz set is Lipschitz, by (2.5) we get $\mathbb{P}_x(X_{\tau_D}^s = X_{\tau_D}^s) = 0$. Thus, by (2.4), and analogous results for X^α we have

\begin{equation}
(4.27) \quad 1 = \int_0^\infty \int_{\Gamma^s} \int_{\Gamma^s} p_{u}^{\Gamma, s}(x, y) \nu^s(y, z) \, dz \, dy \, du \quad \xrightarrow{s \to \infty} \quad 1 = \int_0^\infty \int_{\Gamma^s} \int_{\Gamma^s} p_{u}^{\Gamma, \alpha}(x, y) \nu^\alpha(y, z) \, dz \, dy \, du \quad \text{as } s \to \infty.
\end{equation}

Here and below $x \in \Gamma$ is fixed but arbitrary, and we consider the integrands as functions parametrized by $s \to \infty$. Due to Lemma 4.4 and (4.4), the integrands converge, too, so by Vitali’s convergence theorem, the integrand in (4.27) is uniformly integrable, see, e.g., [53, Chapter 22]. Conversely, by Vitali’s theorem and uniform integrability, for each bounded function f,

\begin{equation}
(4.28) \quad \xrightarrow{s \to \infty} \quad \int_0^\infty \int_{\Gamma^s} \int_{\Gamma^s} p_{u}^{\Gamma, \alpha}(x, y) f(u, y, z) \nu^\alpha(y, z) \, dz \, dy \, du.
\end{equation}

For instance, taking arbitrary $t \geq 0$ and letting $f = 1_{u \geq t}$, we get

\begin{equation}
(4.29) \quad \mathbb{P}_x(\tau_{\Gamma}^s > t) \to \mathbb{P}_x(\tau_{\Gamma}^\alpha > t) \quad \text{as } s \to \infty.
\end{equation}

Lemma 4.9. For all $x \in \Gamma$ and $t > 0$,

$$\lim_{s \to \infty} P_{t}^{\Gamma, s} \kappa_{\Gamma}^s(x) = P_{t}^{\Gamma, \alpha} \kappa_{\Gamma}^\alpha(x).$$

Proof. By the semigroup property,

\begin{equation}
(4.30) \quad P_{t}^{\Gamma, s} \kappa_{\Gamma}^s(x) = \int_{\Gamma} \int_{\Gamma^s} p_{t}^{\Gamma, s}(x, y) \nu^s(y, z) \, dz \, dy = \frac{2}{t} \int_0^{t/2} \int_{\Gamma} \int_{\Gamma} \int_{\Gamma} p_{t}^{\Gamma, s}(x, v) p_{u}^{\Gamma, s}(v, y) \nu^s(y, z) \, dz \, dy \, du.
\end{equation}

We claim that there is an integrable function $g \geq 0$ on \mathbb{R}^d such that

\begin{equation}
(4.31) \quad p_{t}^{\Gamma, s}(x, v) \leq g(v), \quad r \in (t/2, t), v \in \mathbb{R}^d,
\end{equation}

if s is large enough. Indeed, by Lemma 4.3 and (2.14) there is $c = c(d, M, \beta, x)$ such that

\begin{equation}
(4.32) \quad p_{t}^{\Gamma, s}(x, v) \leq p_{t}^{r}(x, v) \leq cp_{t}^{r}(v).
\end{equation}

Next, again by Lemma 4.3, monotonicity of $\psi^{-1, s}$ and (4.5),

\begin{equation}
(4.33) \quad p_{t}^{s}(v) \leq c \left(\psi^{-1, s}(1/r) \right)^d \leq c \left(\psi^{-1, s}(2/t) \right)^d \leq 2c \left(\psi^{-1, \alpha}(2/t) \right)^d
\end{equation}

for s large enough. Thus, with the aid of (4.14) we conclude (4.31). Note that

\begin{equation}
(4.34) \quad \int_{\Gamma} \int_0^\infty \int_{\Gamma} \int_{\Gamma} g(v) p_{u}^{\Gamma, s}(v, y) \nu^s(y, z) \, dz \, dy \, du \, dv = \int_{\Gamma} g(v) \, dv \rightarrow \int_{\Gamma} g(v) \, dv = \int_{\Gamma} \int_0^\infty \int_{\Gamma} g(v) p_{u}^{\Gamma, \alpha}(v, y) \nu^\alpha(y, z) \, dz \, dy \, du \, dv.
\end{equation}

Therefore the integrand in (4.32) is uniformly integrable, and so is the integrand in (4.30). The integrand in (4.30) converges everywhere, and the proof is completed by another application of Vitali’s theorem. \qed
4.4. The proof of the main result

We define the Martin kernel for isotropic α-stable process at 0 for Γ by setting

$$M_0^\alpha(y) = \lim_{r \to 0^+} \frac{G_\alpha^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)}, \quad y \in \mathbb{R}^d \setminus \{0\}. $$

A discussion about Martin kernel for stable case may be found in [15]. In particular, by [15, eq. (2.18)] we get that M_0^α is homogeneous of degree $\alpha - d - \tilde{\beta}$, i.e.

$$M_0^\alpha(x) = |x|^{\alpha - d - \tilde{\beta}} M_0^\alpha(x/|x|),$$

where $0 < \tilde{\beta} < \alpha$ is the homogeneity degree of the Martin kernel at infinity for Γ (see [15, (2.17)]). Furthermore, since the Martin kernel at infinity for Γ is locally bounded in \mathbb{R}^d (see Bañuelos and Bogdan [2, Theorem 3.2]), by [15, (2.18)] we get that M_0^α is locally bounded on $\mathbb{R}^d \setminus \{0\}$.

Lemma 4.10. Assume A. For every $y \in \Gamma$,

$$\lim_{s \to \infty} \frac{G_\Gamma^\Gamma(x \psi^{-1}(1/s), y)}{G_\Gamma^\Gamma(x \psi^{-1}(1/s), 1)} = M_0^\alpha(y).$$

Proof. Fix $y \in \Gamma$. We will prove the lemma by verifying that

$$\lim_{(r, s) \to (0, 0)} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} = \lim_{r \to 0^+} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} = \lim_{r \to 0^+} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} = M_0^\alpha(y).$$

To this end we will justify the application of the Moore-Osgood theorem. First we observe that in view of Proposition 4.6, for every $x \in \Gamma$,

$$\lim_{s \to \infty} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} = \frac{G_\Gamma^\alpha(x, y)}{G_\Gamma^\Gamma(x, 1)}.$$

Next, we note that Theorem 4.7 yields

$$\lim_{r \to 0^+} \sup_{x \in \Gamma_r} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} = 1.$$

That is, for every $\eta > 0$ there exists $r = r(\eta)$ such that

$$\left| \sup_{x \in \Gamma_r} G_\Gamma^\Gamma(x, y) - \inf_{x \in \Gamma} G_\Gamma^\Gamma(x, 1) \right| \leq \eta \inf_{x \in \Gamma} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)}, \quad r < r(\eta), s \geq 1.$$

We claim that $G_\Gamma^\alpha(x, y)/G_\Gamma^\Gamma(x, 1)$ converges as $\Gamma \ni x \to 0$, uniformly in $s \geq s_0$ for some $s_0 \geq 1$. Fix $x_0 \in \Gamma_{|y|/2}$. By (BHP),

$$\sup_{x \in \Gamma_r} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} \leq c_1 G_\Gamma^\Gamma(x_0, y),$$

if r is small enough. Since both y and $x_0 = x_0(y)$ are fixed, Proposition 4.6 entails that

$$\sup_{x \in \Gamma_r} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} \leq 2c_1 \frac{G_\Gamma^\alpha(x_0, y)}{G_\Gamma^\Gamma(x_0, 1)} = c_2,$$

if $r > 0$ is small enough and $s \geq s_0$, for s_0 large enough. We note that both c_0 and c_2 depend only on y and in particular do not depend on r. Now, if we fix $\varepsilon > 0$ and set $\eta = \varepsilon/c_2$ then, using (4.35) and (4.36) for $|x_1|, |x_2| < r(\eta(\varepsilon)) = r(\varepsilon)$, we obtain for $s \geq s_0$,

$$\left| \frac{G_\Gamma^\alpha(x_1, y)}{G_\Gamma^\Gamma(x_1, 1)} - \frac{G_\Gamma^\alpha(x_2, y)}{G_\Gamma^\Gamma(x_2, 1)} \right| \leq \left| \sup_{x \in \Gamma_{r(\varepsilon)}} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} - \inf_{x \in \Gamma_{r(\varepsilon)}} \frac{G_\Gamma^\Gamma(x, y)}{G_\Gamma^\Gamma(x, 1)} \right|$$
Lemma 4.10. Assume \(\mathcal{A} \). Let \(f^* \) be a family of measurable non-negative functions which are uniformly bounded on \(\Gamma_r \), for each \(r \geq 1 \) and \(s \geq s_0 \) with some \(s_0 \geq 1 \). Suppose that \(f^* \to f^\alpha \) a.e. \(\Gamma \) as \(s \to \infty \). We also assume that \(G^s f^s \) are uniformly bounded on \(\Gamma \) and there is \(x_0 \in \Gamma \) such that \(\lim_{s \to \infty} G^\Gamma f^s(x_0) = G^\Gamma f^\alpha(x_0) \). Then \(\int_\Gamma M_0^\alpha(y) f^\alpha(y) dy < \infty \) and for every \(x \in \Gamma \),

\[
\lim_{s \to \infty} \frac{G^\Gamma f^s(\psi^{-1}(1/s)x)}{G^\Gamma(x_0, 1)} = \int_\Gamma M_0^\alpha(y) f^\alpha(y) dy.
\]

(4.37)

We closely follow the proof of [15, Lemma 3.5] and adapt it to our setting. Fix \(x \in \Gamma \), let \(0 < \delta < R \) and denote \(x_s = x \psi^{-1}(1/s) \). By (BHP) we have, for large enough \(s > s_0 = s_0(\delta) \) and some \(x_1 \in \Gamma_{\delta/2} \),

\[
G^s(x_s, y) \leq C_{\text{BHI}} G^s(x_1, y) \quad \text{on} \quad \mathcal{R},
\]

(4.38)

Next, by Proposition 4.6 we have \(G^\Gamma(x_1, 1) \geq \frac{1}{2} G^\Gamma(x_1, 1) \) for sufficiently large \(s \geq s_0 \). Furthermore, by (4.33) and local boundedness on \(\mathbb{R}^d \setminus \{0\} \) we get that \(M_0^\alpha \) is integrable at the origin; thus, by (4.38) with \(\delta = 1 \), the assumption of uniform boundedness of \(f^s \) on \(\Gamma_1 \) and Fatou’s lemma,

\[
\int_\Gamma M_0^\alpha(y) f^\alpha(y) dy \leq c \left(\int_{\Gamma_1^\mathcal{R}} M_0^\alpha(y) dy + \frac{1}{G^\Gamma(x_1, 1)} \liminf_{s \to \infty} \int_\Gamma G^\Gamma(x_s, y) f^s(y) dy \right) < \infty,
\]

which proves that the right-hand side of (4.37) is finite.

Now, we split the integral as follows:

\[
\frac{G^\Gamma f^s(x_s)}{G^\Gamma(x_s, 1)} = \int_{\Gamma_1} G^\Gamma(x_s, y) f^s(y) dy = \left(\int_{\Gamma_\delta} + \int_{\Gamma_\delta \setminus \Gamma_{\delta/2}} + \int_{\Gamma \setminus \Gamma_\delta} \right) G^\Gamma(x_s, y) f^s(y) dy =: I_1(s) + I_2(s) + I_3(s).
\]

For \(d \geq 2 \), by (4.38) and Proposition 4.6 we have, for \(s \) large enough and \(|y| > \delta \),

\[
\frac{G^\Gamma(x_s, y)}{G^\Gamma(x_1, 1)} \leq \frac{U^s(x_1 - y)}{G^\Gamma(x_1, 1)} \leq \frac{U^s(\delta/2)}{G^\Gamma(x_1, 1)} \leq c \frac{U^\alpha(\delta/2)}{G^\Gamma(x_1, 1)}
\]

for some \(c = c(\delta) \). A similar bound, for \(d = 1 \), is a consequence of Lemma 2.2, Proposition 4.1 and the fact that \(u \mapsto u^2 h(u) \) is non-decreasing. Therefore, since \(f_s \) are uniformly bounded on \(\Gamma_R \), by the dominated convergence theorem and Lemma 4.10,

\[
\lim_{s \to \infty} I_2(s) = \lim_{s \to \infty} \int_{\Gamma_\delta \setminus \Gamma_{\delta/2}} G^\Gamma(x_s, y) f^s(y) dy = \int_{\Gamma_\delta \setminus \Gamma_{\delta/2}} M_0^\alpha(y) f^\alpha(y) dy.
\]

(4.39)

Next, let \(x_0 \) be such that

\[
\lim_{s \to \infty} G^\Gamma f^s(x_0) = G^\Gamma f^\alpha(x_0).
\]

We may and do assume that \(R > 2|x_0| \). Again by (BHP), for \(s \) large enough,

\[
\frac{G^\Gamma(x_s, y)}{G^\Gamma(x_1, 1)} \leq C_{\text{BHI}} \frac{G^\Gamma(x_0, y)}{G^\Gamma(x_0, 1)}, \quad |y| \geq R.
\]
Therefore, by Proposition 4.6,
\[
I_3(s) = \int_{\Gamma \setminus \Gamma_R} \frac{G^s_\Gamma(x_s,y)}{G^s_\Gamma(x_s,1)} f^s(y) \, dy \leq C_{\text{BHI}} \int_{\Gamma \setminus \Gamma_R} \frac{G^s_\Gamma(x_0,y)}{G^s_\Gamma(x_0,1)} f^s(y) \, dy
\]
\[
\leq \frac{c}{G^s_\Gamma(x_0,1)} \int_{\Gamma \setminus \Gamma_R} G^s_\Gamma(x_0,y) f^s(y) \, dy,
\]
for large enough \(s \geq s_0 \). Denote \(c_1 = c/G^\alpha(x_0,1) \). By the Fatou lemma,
\[
\limsup_{s \to \infty} I_3(s) \leq c_1 \left(\limsup_{s \to \infty} G^s_\Gamma f^\alpha(x_0) - \liminf_{s \to \infty} \int_{\Gamma_R} G^\alpha_\Gamma(x_0,y) f^\alpha(y) \, dy \right)
\]
\[
(4.40)
\]
\[
= c_1 \int_{\Gamma \setminus \Gamma_R} G^\alpha_\Gamma(x_0,y) f^\alpha(y) \, dy.
\]

It remains to estimate \(I_1(s) \). Note that, by symmetry, \(y \mapsto G^\alpha_\Gamma(v,y) \) is regular harmonic on \(\Gamma_\delta \) when \(v \in \Gamma \setminus \Gamma_{2\delta} \). Using (BHP) we obtain, for \(y \in \Gamma_\delta \) and \(v \in \Gamma \setminus \Gamma_{2\delta} \),
\[
\frac{G^\alpha_\Gamma(v,y)}{G^\alpha_\Gamma(y,2\delta \cdot 1)} \leq C_{\text{BHI}} \frac{G^\alpha_\Gamma(v,\delta/2 \cdot 1)}{G^\alpha_\Gamma(\delta/2 \cdot 1, 2\delta \cdot 1)}.
\]
(4.41)

Therefore, for \(s \) large enough and \(y \in \Gamma_\delta \), by (4.41) and (2.10),
\[
G^\alpha_\Gamma(x_s,y) = G^\alpha_{\Gamma_{2\delta}}(x_s,y) + \mathbb{E}_{x_s} G^\alpha_\Gamma(x^s_{\Gamma_{2\delta}},y)
\]
\[
\leq G^\alpha_{\Gamma_{2\delta}}(x_s,y) + c \mathbb{E}_{x_s} \left[G^\alpha_\Gamma(x^s_{\Gamma_{2\delta}},\delta/2 \cdot 1) \right] \cdot \frac{G^\alpha_\Gamma(y,2\delta \cdot 1)}{G^\alpha_\Gamma(\delta/2 \cdot 1, 2\delta \cdot 1)}
\]
\[
\leq G^\alpha_{\Gamma_{2\delta}}(x_s,y) + c G^\alpha_\Gamma(x_s,\delta/2 \cdot 1) \cdot \frac{G^\alpha_\Gamma(y,2\delta \cdot 1)}{G^\alpha_\Gamma(\delta/2 \cdot 1, 2\delta \cdot 1)}.
\]
(4.42)

Thus, by uniform boundedness of \(f_s \) on \(\Gamma_\delta \) and (4.42),
\[
\int_{\Gamma_s} G^\alpha_\Gamma(x_s,y) f^s(y) \, dy \leq c \left(\int_{\Gamma_s} G^\alpha_{\Gamma_{2\delta}}(x_s,y) \, dy + \frac{G^\alpha_\Gamma(x_s,\delta/2 \cdot 1)}{G^\alpha_\Gamma(\delta/2 \cdot 1, 2\delta \cdot 1)} \int_{\Gamma_s} G^\alpha_\Gamma(y,2\delta \cdot 1) \, dy \right).
\]
(4.43)

Lemma 4.8 implies
\[
\int_{\Gamma_s} G^\alpha_\Gamma(y,2\delta \cdot 1) \, dy \leq c_5 \delta^{\tilde{\kappa}} G^\alpha_\Gamma(\delta/2 \cdot 1, 2\delta \cdot 1).
\]
(4.44)

Indeed, observe that there is \(\alpha \leq \kappa \) such that \(B(1/2 \cdot 1, \alpha) \subset \Gamma_1 \), thus after a possible change of \(\kappa \) we may and do assume that \(A_1(0) = 1/2 \cdot 1 \). Since \(\Gamma_1 \) is a cone, it follows immediately that \(A_3(0) = \delta/2 \cdot 1 \). Moreover, observe that \(\Gamma_\delta \) is created from \(\Gamma_1 \) by scaling and the Lipschitz constant as well as \(\kappa \) are not affected by the operation; therefore, \(c_5 \) is independent of \(\delta \). Furthermore, we have by Proposition 2.4,
\[
\int_{\Gamma_s} G^\alpha_{\Gamma_{2\delta}}(x_s,y) \, dy \leq \tilde{c}_{\text{BHI}} \frac{\mathbb{E}_{x_s} \Gamma^\alpha_{\Gamma_{2\delta}}}{\Gamma^\alpha_\Gamma(1 \cdot 1) \nu^\alpha(y) \, dy}
\]
(4.45)

We claim that
\[
G^s_\Gamma(y,1) \approx \mathbb{E}_y \tau^s_{\Gamma_{2/3}}
\]
for large \(s \) and \(y \in \Gamma_{1/2} \), with the implied constant independent of \(s \). Indeed, by (BHP) we have,
\[
G^s_\Gamma(y,1) \approx \mathbb{E}_y \tau^s_{\Gamma_{2/3}} \int_{\Gamma_{1/6}} G^s_\Gamma(w,1) \nu^s(w) \, dw,
\]
(4.47)
thus it is enough to show that the integral in (4.47) is uniformly bounded. For the lower bound we use the monotonicity
of the Lévy density, (4.4), Pruitt estimates [49] and Proposition 4.1, and we get
\[
\int_{\Gamma_{5/6}} G^*_\Gamma(w,1)\nu^\ast(w)\,dw \geq \int_{B(1,1/6)} G^*_{B(1,1/6)}(w,1)\nu^\ast(w)\,dw \geq \nu^\ast(7/6 \cdot 1)E\tau_{B_{1/6}}^\ast \geq \frac{\nu^\ast(7/6 \cdot 1)}{h^\ast(1/6)} \geq 1,
\]
if \(s \) is large enough. For the upper bound we first note that by Propositions 4.1 and 4.6,
\[
\int_{\Gamma_2} G^*_\Gamma(w,1)\nu^\ast(w)\,dw \leq U^\ast(1) \int_{\Gamma_2} \nu^\ast(w)\,dw \leq U^\ast(1)h^\ast(2) \leq 1
\]
provided that \(d \geq 2 \) and \(s \) is large enough. Moreover, monotonicity of \(\nu^\ast \) and \(U^\ast \) together with [27, Proposition 2], (2.12) and Proposition 4.1 give
\[
\int_{\Gamma_2 \setminus \Gamma_{5/6}} G^*_\Gamma(w,1)\nu^\ast(w)\,dw \leq \nu^\ast(5/6 \cdot 1) \int_{B_2} \nu^\ast(w)\,dw \lesssim \frac{\nu^\ast(5/6 \cdot 1)}{h^\ast(2)} \lesssim 1,
\]
uniformly in \(s \), if \(d \geq 3 \). For \(d = 2 \) we apply a comment at the very end of [27] and note that, in view of A2, the constants in the definitions of almost monotonicity of the function \(r \mapsto r^{2-\psi}(1/r) \) are independent of \(s \). Consequently, [27, Proposition 2] may be applied in the case \(d = 2 \) as well, with the implied constant independent of \(s \). Finally, \(d = 1 \) follows by a similar calculation and an application of Propositions 4.1 and 4.6. Putting all together, we eventually arrive at (4.46).

Now, by (4.46) we obtain
\[
(4.48) \quad \int_{\Gamma_{5/6} / \Gamma_{2/3}} G^*_\Gamma(y,1)\nu^\ast(y)\,dy \geq c \int_{\Gamma_{1/2} \setminus \Gamma_{3/4}} \mathbb{E}_y \tau_{\Gamma_{2/3}}^\ast \nu^\ast(y)\,dy \geq c \ln \frac{h^\ast(3d)}{h^\ast(1/2)},
\]
where the last inequality is a consequence of (4.24). Thus, using (4.43), (4.44) and (4.45) together with (4.48) we infer that
\[
I_1(s) \leq c_6 \left(\frac{1}{\ln \frac{h^\ast(3d)}{h^\ast(1/2)}} + \delta^d \frac{G^*_\Gamma(x_s, \delta/2 \cdot 1)}{G^*_\Gamma(x_s, 1)} \right).
\]
Lemma 4.10 and the fact that \(h^\alpha(\rho) = c\rho^{-\alpha} \) now yield
\[
\limsup_{s \to \infty} I_1(s) \leq c_7 \left(-\frac{1}{\ln \delta} + \delta^d \zeta^\alpha(\delta/2 \cdot 1) \right).
\]
Finally, using the homogeneity of \(M^\alpha_\Gamma \) (4.33) we get
\[
(4.49) \quad \limsup_{s \to \infty} I_1(s) \leq c_7 \left(-\frac{1}{\ln \delta} + \delta^{\alpha - \beta} \zeta^\alpha(1) \right).
\]
Now, by (4.39), (4.40), (4.49) and the Fatou lemma,
\[
\int_{\Gamma \setminus \Gamma_{1/2}} M^\alpha_\Gamma(y)f^\alpha(y)\,dy \leq \liminf_{s \to \infty} \frac{G^*_\Gamma f^\alpha(x_s)}{G^*_\Gamma(x_s, 1)} \leq \limsup_{s \to \infty} \frac{G^*_\Gamma f^\alpha(x_s)}{G^*_\Gamma(x_s, 1)}
\]
\[
\leq c_8 \left(-\frac{1}{\ln \delta} + \delta^{\alpha - \beta} \right) + \int_{\Gamma_R \setminus \Gamma_{1/2}} M^\alpha_\Gamma(y)f^\alpha(y)\,dy + c_1 \int_{\Gamma \setminus \Gamma_R} G^*_\Gamma(x_0, y)f^\alpha(y)\,dy.
\]
Recalling that \(\alpha > \tilde{\beta} \) and letting \(\delta \to 0 \) and \(R \to \infty \) we end the proof. \(\square \)

Theorem 4.12. Assume A. Let \(x_s = x\psi^{-1}(1/s) \). For every \(t > 0 \) we have
\[
\lim_{s \to \infty} \frac{P_{x_s}(\tau_{\Gamma}^\ast > t)}{G^*_\Gamma(x_s, 1)} = C_t,
\]
where \(C_t \in (0, \infty) \) is given by
\[
C_t = \int_{\Gamma} \int M^\alpha_\Gamma(y)P_t^{\Gamma, \alpha}(y, z)\kappa^\alpha(z)\,dz\,dy = \int_{\Gamma} M^\alpha_\Gamma(y)P_t^{\Gamma, \alpha}(y)\,dy.
\]
Theorem 4.13. Let \(\Gamma_t^\alpha \) be a pure-jump isotropic unimodal Lévy process. Assume A. Let \(\Gamma \) be a Lipschitz cone. Then the following limit exists

\[
\lim_{s \to \infty} \frac{p_{\Gamma_t^\alpha}(x, y)}{\mathbb{P}_x(\tau_{\Gamma_t^\alpha}^s > t)} = n^\alpha(y),
\]

where \(n^\alpha(y) \) is the function from (1.7).

Proof. The proof follows directly the proof of [15, Theorem 3.3]. Fix \(x \in \Gamma \) and \(t > 0 \). Consider the family of measures defined as follows,

\[
\mu_t^s(A) = \int_A f_t^s(y) \frac{dy}{\mathbb{P}_x(\tau_{\Gamma_t^\alpha}^s > t)}, \quad A \subset \mathbb{R}^d,
\]

with \(x_s = \psi^{-1}(1/s)x \). We claim that the family \(\{\mu_t^s : s \geq s_0\} \), where \(s_0 \) will be specified later in the proof, is tight. Indeed, proceeding as in the proof of Proposition 4.1 and applying (4.5) we have that

\[
\left(\psi^{-1,s}(1/t)\right)^d \wedge t \nu^s(y) \lesssim 1 \wedge \nu^s(y) \lesssim 1 \wedge |y|^{-d-\alpha/2}, \quad s \geq s_0, y \in \mathbb{R}^d,
\]

for some \(s_0 > 1 \), with the implied constant independent of \(s \). It follows from Lemma 4.3 and 4.5, and (2.14) that we may bound the densities \(f_t^s \) by a fixed integrable function, i.e.,

\[
\frac{p_{\Gamma_t^\alpha}(x, y)}{\mathbb{P}_x(\tau_{\Gamma_t^\alpha}^s > t)} \approx \mathbb{P}_y(\tau_{\Gamma_t^\alpha}^s > t)p_t^s(y - x_s) \lesssim p_t^s(y) \lesssim 1 \wedge |y|^{-d-\alpha/2}, \quad s \geq s_0, y \in \mathbb{R}^d.
\]

Recall that \(t \) is fixed and the implied constant depends only on \(d, M \) and \(\beta \). Consider an arbitrary sequence \(\{s_n\} \) with \(\lim_{n \to \infty} s_n = \infty \). By the Prokhorov theorem, there is a subsequence \(\{s_{nk}\} \) such that \(\mu_t^{s_{nk}} \) converges weakly to a probability measure \(\mu_t \) as \(k \to \infty \).
Let $\phi \in C_c^\infty(\Gamma)$ and set $u^s_\phi = -L^s\phi$. For every $s \geq 1$, u^s_ϕ is bounded, continuous, and, in view of Proposition 2.5, $G^s_t u^s_\phi(y) = \phi(y)$ for $y \in \mathbb{R}^d$. By (2.19),

$$|L^s\phi(y)| \lesssim 1 \wedge \nu^s(y), \quad y \in \mathbb{R}^d.$$ \hspace{1cm} (4.53)

In view of Lemma 4.3 and (4.5), $|u^s_\phi(y)| \leq cp^s_t(y)$. Note that c here may depend on s but it is irrelevant for the proof of (4.54). It follows that

$$P_t^{\Gamma,s}u^s_\phi(y) \leq cp^s_{t+1}(y),$$

and consequently, for every $y \in \Gamma$,

$$G^s_t P_t^{\Gamma,s}u^s_\phi(y) \leq c \int_{\mathbb{R}^d} G^s_t(y, z) p^s_{t+1}(z) \, dz < \infty,$$

where the last inequality follows from Lemma 4.3 and (2.16). By the Fubini-Tonelli theorem, for every $s \geq 1$,

$$G^s_t P_t^{\Gamma,s}u^s_\phi(y) = P_t^{\Gamma,s} G^s_t u^s_\phi(y) = P_t^{\Gamma,s} \phi(y).$$ \hspace{1cm} (4.54)

Next, observe that by A1, (4.4) and (4.51), for s large enough,

$$|\phi(y + z) - \phi(y)| \nu^s(z) \leq ||\phi||_{C^2(\mathbb{R}^d)} (|z|^2 \wedge 1) \nu^s(z) \lesssim |z|^{2-d-\beta}1_{B_1}(z) + |z|^{-d-\alpha/2}1_{B_1}(z), \quad y, z \in \mathbb{R}^d,$$

with the implied constant independent of s. Thus, the dominated convergence theorem entails that for every $y \in \Gamma$,

$$\lim_{s \to \infty} u^s_\phi(y) = u_\phi(y) = -\Delta^{\alpha/2}\phi(y).$$

Moreover, in view of (4.51) we may refine (4.53) so that

$$|L^s\phi(y)| \leq c \left(1 \wedge |y|^{-d-\alpha/2}\right), \quad y \in \mathbb{R}^d,$$

for s large enough with $c = c(d, M, \beta)$. Thus, by Lemma 4.3, (4.5) and the dominated convergence theorem, for every $y \in \Gamma$,

$$\lim_{s \to \infty} P_t^{\Gamma,s}u^s_\phi(y) = P_t^{\Gamma,\alpha}u^\alpha_\phi(y).$$

The same argument yields that $P_t^{\Gamma,s}u^s_\phi$ are uniformly bounded and that $G^s_t P_t^{\Gamma,s}u^s_\phi = P_t^{\Gamma,s}\phi$ are uniformly bounded. We also get that

$$\lim_{s \to \infty} G^s_t P_t^{\Gamma,s}u^s_\phi(y) = \lim_{s \to \infty} P_t^{\Gamma,s} \phi(y) = P_t^{\Gamma,\alpha} \phi(y) = G^\alpha_t P_t^{\Gamma,\alpha}u^\alpha_\phi(y), \quad y \in \Gamma.$$

Thus, by Lemma 4.11,

$$\lim_{s \to \infty} \frac{P_t^{\Gamma,s} \phi(x_s)}{G^\alpha_t(x_s, 1)} = \lim_{s \to \infty} \frac{G^s_t P_t^{\Gamma,s}u^s_\phi(x_s)}{G^\alpha_t(x_s, 1)} = \int_{\Gamma} M^\alpha_t(y) P_t^{\Gamma,\alpha}u^\alpha_\phi(y) \, dy,$$

If we denote $\mu^\alpha_t(\phi) = \int_{\Gamma} \phi(y) \, \mu^\alpha_t(dy)$, then by Theorem 4.12 and the identity above we conclude that there is a finite limit

$$\lim_{s \to \infty} \mu^\alpha_t(\phi) = \lim_{s \to \infty} \int_{\Gamma} P_t^{\Gamma,s} \phi(x_s) \, dy = \int_{\Gamma} M^\alpha_t(y) P_t^{\Gamma,\alpha}u^\alpha_\phi(y) \, dy = \int_{\Gamma} M^\alpha_t(y) P_t^{\Gamma,\alpha}\kappa^\alpha_t(y) \, dy.$$

In particular, $\mu^\alpha_t(\phi) = \lim_{s \to \infty} \mu^s_{n_k}(\phi)$ does not depend on the choice of subsequence s_{n_k}. Therefore, μ^α_t converges weakly to μ_α as $s \to \infty$.

Moreover, we observe that for $t = 1$ the limit measure μ_1 is exactly the same as the one in the proof of [15, Theorem 3.3]. By a repetition of the arguments in the proofs of [15, (3.16), Theorem 3.1 and Theorem 3.3] one can conclude that the same holds true for every $t > 0$, i.e., the measures

$$\bar{\mu}_{x,t}(A) = \frac{\int_A P_t^{\Gamma,\alpha}(x, y) \, dy}{P_t(x, \tau^\alpha_t > t)}.$$

Yaglom limit for unimodal Lévy processes
Recall that the convergence theorem, \(\lim_{t \to 0} \frac{p_t(x, y)}{P_x(t^2 > t)} \) exists and is the density function of the measure \(\mu_t^\alpha \). Note here that \(f_t^\alpha = n^\alpha \). We now prove that

\[
\lim_{s \to \infty} f^\alpha_s(y) = \lim_{s \to \infty} \frac{p^\alpha_s(x, y)}{P_x(x, t^2 > t)} = n^\alpha(y), \quad y \in \Gamma.
\]

Indeed, fix \(y \in \Gamma \) and we denote \(\phi^\alpha_s(\cdot) = p^\alpha_s(\cdot, y) \). By the Chapman-Kolmogorov equation,

\[
p^\alpha_s(u, y) = \int_{\Gamma} p^\alpha_s(u, z)p^\alpha_s(z, y)dz = p^\alpha_s(\phi^\alpha_s(u), \ u \in \mathbb{R}^d.
\]

Thus,

\[
\frac{p^\alpha_s(x, y)}{P_x(x, t^2 > t)} = \frac{P_x^\alpha(\phi^\alpha_s(x))}{P_x(x, t^2 > t)} = \mu^\alpha_s(\phi^\alpha_s).
\]

We claim that

\[
\lim_{s \to \infty} \mu^\alpha_s(\phi^\alpha_s - \phi^\alpha_0) = 0,
\]

where \(\phi^\alpha_0(\cdot) = p^\alpha_0(\cdot, y) \). Since, by the weak convergence of measures, \(\lim_{s \to \infty} \mu^\alpha_s(\phi^\alpha_s) = \mu^\alpha_s(\phi^\alpha_0) \), it remains to prove that \(\mu^\alpha_s(\phi^\alpha_s - \phi^\alpha_0) \to 0 \) as \(s \to \infty \). Since, in view of Lemma 4.3 and (4.5), \(\phi^\alpha_s \) and \(\phi^\alpha_0 \) are uniformly bounded by a constant \(c_1 \) independent of \(s \), the dominated convergence theorem implies that

\[
\lim_{s \to \infty} \mu^\alpha_s(\phi^\alpha_s - \phi^\alpha_0) = 0.
\]

Thus, in order to get (4.56) we need to show that

\[
\lim_{s \to \infty} \mu^\alpha_s(\phi^\alpha_s - \phi^\alpha_0(\cdot)) = 0.
\]

Recall that \(\mu^\alpha_s(dz) = f^\alpha_s(z)dz \) and \(\mu^\alpha_s(dz) = f^\alpha_s(z)dz \). Thus, we may write

\[
\left| \mu^\alpha_s(\phi^\alpha_s - \phi^\alpha_0(\cdot)) - \mu^\alpha_s(\phi^\alpha_0 - \phi^\alpha_0(\cdot)) \right| \leq \int_{\Gamma} |\phi^\alpha_s(z) - \phi^\alpha_0(z)| |f^\alpha_s(z) - f^\alpha_0(z)| dz.
\]

By (4.52) and [15, (4.16)] we see that \(f^\alpha_s \) and \(f^\alpha_0 \) are uniformly bounded by a fixed bounded integrable function \(g(z) = 1 \wedge |z|^{-d+\alpha/2} \), if only \(s \) is large enough. Thus, for every \(R > 0 \) we have, by Lemma 4.4, (4.5) and the dominated convergence theorem,

\[
\limsup_{s \to \infty} \int_{\Gamma_R} |\phi^\alpha_s(z) - \phi^\alpha_0(z)| |f^\alpha_s(z) - f^\alpha_0(z)| dz
\]

(4.58)

\[
\leq c \limsup_{s \to \infty} \int_{\Gamma} |\phi^\alpha_s(z) - \phi^\alpha_0(z)| dz = 0.
\]

Moreover,

\[
\int_{\Gamma \setminus \Gamma_R} |\phi^\alpha_s(z) - \phi^\alpha_0(z)| |f^\alpha_s(z) - f^\alpha_0(z)| dz \leq 4c_1 \int_{\Gamma \setminus \Gamma_R} g(z) dz.
\]

(4.59)

Now, (4.58) together with (4.59) yield that for every \(R > 0 \),

\[
\limsup_{s \to \infty} \left| \mu^\alpha_s(\phi^\alpha_s - \phi^\alpha_0(\cdot)) - \mu^\alpha_s(\phi^\alpha_0 - \phi^\alpha_0(\cdot)) \right| \leq 4c_1 \int_{\Gamma \setminus \Gamma_R} g(z) dz.
\]
By letting R to infinity, we obtain (4.57), so (4.56) follows.

We thus have proved that the left-hand side limit in (4.55) exists for all $y \in \Gamma$. Let us denote $\lim_{y \to \infty} f_n^\alpha(y) = \bar{n}(y)$ for $y \in \Gamma$. By weak convergence, (4.52) and the dominated convergence theorem, for every bounded continuous function ϕ we have

$$\int_{\Gamma} n^\alpha(y) \phi(y) \, dy = \mu^\alpha(\phi) = \lim_{s \to \infty} \int_{\Gamma} p_1^{\Gamma,s}(x,s,y) \phi(y) \, dy = \int_{\Gamma} \bar{n}(y) \phi(y) \, dy.$$

Therefore, $n^\alpha = \bar{n}$ and (4.55) follows.

We are ready to prove the main result of the paper.

Proof of Theorem 1.1. Using (4.13), (2.9) and changing variables we get, for $x \in \Gamma$ and $s \geq 1$,

$$\mathbb{P}_x \left(\psi^{-1}(1/s) X_s \in A \mid \tau_T > s \right) = \frac{\mathbb{P}_x(\psi^{-1}(1/s) X_s \in A, \tau_T > s)}{\mathbb{P}_x(\tau_T > s)} = \frac{\int_{A/\psi^{-1}(1/s)} p_1^s(x,y) \, dy}{\int_{\Gamma} p_1^s(x,y) \, dy} = \frac{\int_A p_1^{\Gamma,s}(x,y) \, dy}{\int_{\Gamma} p_1^{\Gamma,s}(x,y) \, dy} = \frac{\int_A p_1^{\Gamma,s}(x,y) \, dy}{\mathbb{P}_x^s(\tau_T^s > 1)} = \mu^\alpha_s(A).$$

By (4.55) and (4.52) and an application of [15, Lemma 4.1] we conclude that

$$\lim_{s \to \infty} \mathbb{P}_x \left(\psi^{-1}(1/s) X_s \in A \mid \tau_T > s \right) = \int_A n^\alpha(y) \, dy = \mu^\alpha(A).$$

The proof is complete.

Example 4.14. Consider the Lévy density $\nu(x) = A(d, \alpha) \ln^d(e + |x|)/|x|^{d+\alpha}$ on \mathbb{R}^d, with $\beta \in \mathbb{R}$ and, of course, $\alpha \in (0, 2)$. Then A is satisfied, for instance $\psi(r) \sim r^\alpha \ln^d(1/r)$ for small $r > 0$, see [19, Proposition 2]. In this case, the rescaling in Theorem 1.1 is by $\psi^{-1}(1/s) \sim s^{-1/\alpha} \ln^{-\beta/\alpha}(s^{1/\alpha})$, which is qualitatively different than in (1.6).

Appendix A: Weak convergence and continuity in the Skorokhod topology

This appendix is devoted to weak convergence and continuity in the Skorokhod topology.

Let us recall the Skorokhod topology and its basic properties. The main references here are the books [38] and Gihman and Skorokhod [25]. In view of [38, Theorem VI.1.14], the space $\mathcal{D}(\mathbb{R}^d) = \mathcal{D}_{[0,\infty)}(\mathbb{R}^d)$ of all càdlàg functions $\omega : [0, \infty) \to \mathbb{R}^d$, may be endowed with a topology for which it is a complete separable metric space. The notion of convergence is described as follows: let Λ be a set of strictly increasing continuous functions $\lambda : [0, \infty) \to [0, \infty)$ such that $\lambda(0) = 0$ and $\lambda(t) \to \infty$ as $t \to \infty$. Then ω_n converges to ω in $\mathcal{D}(\mathbb{R}^d)$ as $n \to \infty$ if and only if there is a sequence $\{\lambda_n : n \in \mathbb{N}\} \subset \Lambda$ such that

$$\lim_{n \to \infty} \sup_{t \in [0, \infty)} |\lambda_n(t) - t| = 0,$$

(A.1)

and

$$\lim_{n \to \infty} \sup_{t \leq T} |\omega_n(\lambda_n(t)) - \omega(t)| = 0 \quad \text{for every } T > 0.$$

(A.2)

Let Y be the canonical projection or a coordinate process in $\mathcal{D}(\mathbb{R}^d)$, i.e.

$$Y_t = Y_t(\omega) = \omega(t).$$

Yaglom limit for unimodal Lévy processes
for $t \geq 0$ and $\omega \in D(\mathbb{R}^d)$. As before, we define for open set $D \subset \mathbb{R}^d$,

$$\tau_D(\omega) = \inf\{t > 0 : \omega(t) \notin D\}.$$

Let \mathbb{P}_x be a probability measure on $D(\mathbb{R}^d)$ such that $\mathbb{P}_x(Y_0 = x) = 1$. We assume throughout this appendix that the process Y is quasi-left-continuous under \mathbb{P}_x and for every $x \in D$, $\mathbb{P}_x(Y_{\tau_D} \in \partial D) = 0$.

Proposition A.1. Let \mathbb{D} be the set of discontinuities of the functionals τ_D, τ_{τ_D-} and τ_{τ_D} on $D(\mathbb{R}^d)$. Then $\mathbb{P}_x(\mathbb{D}) = 0$ for all $x \in D$.

Proof. For $m \geq 1$ we define $D_m = \{x \in D : \text{dist}(x, D^c) > 1/m\}$ and $\tau_m = \inf\{t : Y_t \notin D_m\}$. Of course, $\tau_m \leq \tau_D$. If $\tau_\infty := \lim_{m \to \infty} \tau_m = \infty$, then $\tau_D = \tau_\infty$. On $\{\tau_\infty < \infty\}$ we have from the quasi-left-continuity of Y that $\lim_{m \to \infty} Y_{\tau_m} = Y_{\tau_\infty}$ a.s. It follows that $\tau_\infty \in D^c$, hence $\tau_\infty \geq \tau_D$ and so $\tau_\infty = \tau_D$. Thus, $\lim_{m \to \infty} \tau_m \uparrow \tau_D$.

By our assumption, $\mathbb{P}_x\left(Y_{\tau_D} \in D, Y_{\tau_D} \in D^c\right) = 1$. Fix $\omega \in D(\mathbb{R}^d)$ such that $Y_{\tau_D}(\omega) \in D$, $Y_{\tau_D} \in D^c$ and $\lim_{m \to \infty} \tau_m(\omega) = \tau_D(\omega)$. We will prove that the functionals τ_D, τ_{τ_D-} and τ_{τ_D} are continuous at ω.

Let $\{\omega_n : n \in \mathbb{N}\}$ be a sequence in $D(\mathbb{R}^d)$ such that $\omega_n \to \omega$ as $n \to \infty$. By the definition of the Skorokhod topology, there exist $\{\lambda_n : n \in \mathbb{N}\} \subset \Lambda$ such that $\sup_{s > 0} |\lambda_n(s) - s| \to 0$ and $\sup_{s \leq T} |Y_{\lambda_n}(\omega_n) - Y_s(\omega)| \to 0$ as $n \to \infty$ for every $T > 0$. Let $t = \tau_D(\omega)$ and $t_n = \lambda_n(t)$. Then $t_n \to t$, $Y_{t_n}(\omega_n) \to Y_t(\omega)$ and $Y_{t_n}(\omega_n) \to Y_t(\omega)$ as $n \to \infty$.

Since $Y_t(\omega) \in D^c$, we have $Y_{t_n}(\omega_n) \in D$ so $\tau_D(\omega_n) \leq t_n$ for n large enough. Therefore,

$$\limsup_{n \to \infty} \tau_D(\omega_n) \leq \tau_D(\omega).$$

(A.3)

For every $\varepsilon > 0$, there exists m_0 such that $t - \varepsilon < \tau_{m_0}(\omega) \leq t$. Note that for n sufficiently large, $\sup_{u \leq t - \varepsilon} |\lambda_n(u) - u| < \varepsilon$ and $\sup_{u \leq t - \varepsilon} |Y_{\lambda_n}(\omega_n) - Y_u(\omega)| < 1/m_0$. Since $Y_u(\omega) \in D_{m_0}$, we have $Y_{\lambda_n}(\omega_n) \in D$ for every $u \leq t - \varepsilon$. Therefore $\tau_D(\omega_n) \geq \lambda_n(t - \varepsilon) \geq t - 2\varepsilon$. As ε is arbitrary, $\liminf_{n \to \infty} \tau_D(\omega_n) \geq t$. This and (A.3) prove the continuity of τ_D at ω.

Note that we have shown that $\lim_{n \to \infty} \tau_{\tau_D-}(\omega_n) = t$ and for n large enough, $\tau_D(\omega_n) \leq t$. Applying [38, Proposition VI.2.1 (b.2)] we get that $\lim_{n \to \infty} Y_{\tau_{\tau_D-}}(\omega_n) = Y_{\tau_{\tau_D-}}(\omega)$.

If $\tau_{\tau_D}(\omega_n) < t_n$ for a subsequence $\{n_k : k \in \mathbb{N}\}$, then, by [38, Proposition VI.2.1 (b.1)], we have $\lim_{k \to \infty} Y_{\tau_{\tau_D}}(\omega_{n_k}) = Y_{\tau_{\tau_D}}(\omega)$. This contradicts the facts that $Y_{\tau_{\tau_D}}(\omega_n) \in D^c$ and $Y_{\tau_{\tau_D}-}(\omega) \in D$. So we must have that $\tau_D(\omega_n) = t_n$ for n large enough. Therefore, $\lim_{n \to \infty} Y_{\tau_{\tau_D}}(\omega_n) = Y_{\tau_{\tau_D}}(\omega)$. \hfill \square

Corollary A.2. For every $t > 0$, $\mathbb{P}_x\left(\partial\{\tau_D > t\}\right) = 0$.

Proof. The boundary of $\{\tau_D > t\}$ in the Skorokhod topology is contained in $\mathbb{D} \cup \{\tau_D = t\}$, where \mathbb{D} is the set of discontinuities of τ_D. By Proposition A.1 we have that $\mathbb{P}_x(\mathbb{D}) = 0$. Since $Y_{t-} = Y_t$ a.s., we have that $\mathbb{P}_x(\tau_D = t) \leq \mathbb{P}_x(Y_{\tau_D} \in \partial D) = 0$. \hfill \square

Now assume that, under \mathbb{P}_x, Y is a pure-jump Lévy process in \mathbb{R}^d with Lévy exponent ψ. For $s \geq 1 \leq \{Y^s : t \geq 0\}$ be a Lévy processes with Lévy exponent ψ^s. Set

$$\tau^D_s = \inf\{t > 0 : Y^s_t \notin D\}.$$

Suppose that for each $\xi \in \mathbb{R}^d$, $\psi^s(\xi) \to \psi(\xi)$ as $s \to \infty$. Then Y^s converges in distribution to Y_1. It follows from [38, Corollary VII.3.6] that Y^s converges in distribution to Y in the Skorokhod space $D(\mathbb{R}^d)$ as $s \to \infty$. By Corollary A.2 we have the following result.

Corollary A.3. Let D be an open subset of \mathbb{R}^d such that $\mathbb{P}_x(\tau_{\tau_D} \in \partial D) = 0$. Then for every $t > 0$ and $x \in D$,

$$\lim_{s \to \infty} \mathbb{P}_x(\tau^{D^s}_t > t) = \mathbb{P}_x(\tau_D > t).$$

Funding

Gavin Armstrong, Tomasz Grzywny and Łukasz Leżyń were partially supported by the National Science Centre (Poland): grant 2016/23/B/ST1/01665. Krzysztof Bogdan was partially supported by the National Science Centre (Poland): grant 2017/27/B/ST1/01339. Longmin Wang was partially supported by the National Natural Science Foundation of China: Grant 11801283.
References

[1] ASSELAH, A., FERRARI, P. A., GROISMAN, P. and JONCKHEERE, M. (2016). Fleming–Viot selects the minimal quasi-stationary distribution: The Fleming–Watson case. *Ann. Inst. Henri Poincaré Probab. Stat.* 52 647–668. MR3498004

[2] BAÑUELOS, R. and BOGDAN, K. (2004). Symmetric stable processes in cones. *Potential Anal.* 21 263–288. MR2075671

[3] BEAN, N. G., BRIGHT, L., LATOUCHE, G., PEARCE, C. E. M., POLLETT, P. K. and TAYLOR, P. G. (1997). The quasi-stationary behavior of quasi-birth-and-death processes. *The Annals of Applied Probability* 7 134 – 155. MR1428753

[4] BEAN, N. G., POLLETT, P. K. and TAYLOR, P. G. (1998). The quasistationary distributions of level-independent quasi-birth-and-death processes. *Communications in Statistics. Stochastic Models* 14 389–406. Special issue in honor of Marcel F. Neuts. MR1617603

[5] BEAN, N. G., POLLETT, P. K. and TAYLOR, P. G. (2000). Quasistationary distributions for level-dependent quasi-birth-and-death processes. *Communications in Statistics. Stochastic Models* 16 511–541.

[6] BEAN, N. G., O’REILLY, M. M. and PALMOWSKI, Z. (2021). Yaglom limit for stochastic fluid models. *Adv. Appl. Probab.* 53 1–35. MR4322399

[7] BERTOIN, J. (1993). Splitting at the inﬁnites and excursions in half-lines for random walks and Lévy processes. *Stochastic Process. Appl.* 47 17–35. MR1232850

[8] BERTOIN, J. and DONET, R. A. (1994). On conditioning a random walk to stay nonnegative. *Ann. Probab.* 22 2152–2167. MR1331218

[9] BINGHAM, N. H., GOLDIE, C. M. and TEUGELS, J. L. (1989). *Regular variation*. Encyclopedia of Mathematics and its Applications 27. Cambridge University Press, Cambridge. MR1015093 (90i:26003)

[10] BOGDAN, K., GRZYWNY, T. and RYZNAR, M. (2010). Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. *Ann. Probab.* 38 1901–1923. MR2722789

[11] BOGDAN, K., GRZYWNY, T. and RYZNAR, M. (2014). Dirichlet heat kernel for unimodal Lévy processes. *Stochastic Process. Appl.* 124 3612–3650. MR3249349

[12] BOGDAN, K., GRZYWNY, T. and RYZNAR, M. (2014). Density and tails of unimodal convolution semigroups. *J. Funct. Anal.* 266 3543–3571. MR3615234

[13] BOGDAN, K., GRZYWNY, T. and RYZNAR, M. (2015). Barriers, exit time and survival probability for unimodal Lévy processes. *Probab. Theory Related Fields* 162 155–198. MR3350043

[14] BOGDAN, K., KUMAGAI, T. and KWAŚNICKI, M. (2015). Boundary Harnack inequality for Markov processes with jumps. *Trans. Amer. Math. Soc.* 367 477–517. MR3271268

[15] BOGDAN, K., PALMOWSKI, Z. and WANG, L. (2018). Yaglom limit for stable processes in cones. *Electron. J. Probab.* 23 1–19. MR3771748

[16] CHAUVENT, L. (1996). Conditionings and path decompositions for Lévy processes. *Stochastic Process. Appl.* 64 39–54. MR1419491

[17] CHAUVENT, L. and DONET, R. A. (2005). On Lévy processes conditioned to stay positive. *Electron. J. Probab.* 10 no. 28, 948–961. MR2164035

[18] CHEN, Z.-Q., KIM, P. and SONG, R. (2014). Dirichlet heat kernel estimates for rotationally symmetric Lévy processes. *Proc. Lond. Math. Soc. (3)* 109 90–120. MR3237737

[19] CYGAN, W., GRZYWNY, T. and TROJAN, B. (2017). Asymptotic behavior of densities of unimodal convolution semigroups. *Trans. Amer. Math. Soc.* 369 5623–5644. MR3646773

[20] CZARNA, I. and PALMOWSKI, Z. (2017). Parisian quasi-stationary distributions for asymmetric Lévy processes. *Statist. Probab. Lett.* 127 75–84. MR3648297

[21] DYNKIN, E. B. (1965). *Markov processes*. Vols. I, II. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. *Die Grundlehren der Mathematischen Wissenschaften, Band 121*. Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg. MR0193671

[22] FERRARI, P. A., KESTEN, H., MARTINEZ, S. and PICCO, P. (1995). Existence of quasi-stationary distributions. A renewal dynamical approach. *Ann. Probab.* 23 501–521. MR1334159

[23] FERRARI, P. A. and MARIC, N. (2007). Quasi stationary distributions and Fleming-Viot processes in countable spaces. *Electron. J. Probab.* 12 no. 24, 684–702. MR2318407

[24] FLASPOHLER, D. C. and HOLMES, P. T. (1972). Additional quasi-stationary distributions for semi-Markov processes. *J. Appl. Probability* 9 671–676. MR349392

[25] GHAN, I. I. and SKOROHOD, A. V. (1980). *The theory of stochastic processes*. I, english ed. *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]* 210. Springer-Verlag, Berlin-New York Translated from the Russian by Samuel Kotz. MR0636254

[26] GRAVES, L. M. (1946). *The Theory of Functions of Real Variables*. McGraw-Hill Book Co., Inc., New York. MR0018708

[27] GRZYWNY, T. (2014). On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes. *Potential Anal.* 41 1–29. MR3225805

[28] GRZYWNY, T. and KWAŚNICKI, M. (2018). Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes. *Stochastic Process. Appl.* 128 1–38. MR3729529

[29] GRZYWNY, T., LEZAJ, Ł. and MISTA, M. (2021). Hitting probabilities for Lévy processes on the real line. *ALEA Lat. Am. J. Probab. Math. Stat.* 18 727–760. MR4243514

[30] GRZYWNY, T. and RYZNAR, M. (2012). Potential theory of one-dimensional geometric stable processes. *Colloq. Math.* 129 7–40. MR3007664

[31] GRZYWNY, T., RYZNAR, M. and TROJAN, B. (2019). Asymptotic behaviour and estimates of slowly varying convolution semigroups. *Int. Math. Res. Not. IMRN* 23 7193–7258. MR4039012

[32] GRZYWNY, T. and SZCZYRKOWSKI, K. (2020). Lévy processes: concentration function and heat kernel bounds. *Bernoulli* 26 3191–3223. MR4140542

[33] GRZYWNY, T. and SZCZYRKOWSKI, K. (2021). Estimates of heat kernels of non-symmetric Lévy processes. *Forum Math.* 33 1207–1236. MR4308627

[34] HAAS, B. and RIVERO, V. (2012). Quasi-stationary distributions and Yaglom limits of self-similar Markov processes. *Stochastic Process. Appl.* 122 4054–4095. MR2971725

[35] HARRIS, S. C., HORTON, E., KYPRIANOU, A. E. and WANG, M. Yaglom limit for critical neuron transport. Preprint, 2021. ArXiv:2103.02237v2.

[36] IGLEHART, D. L. (1974). Random walks with negative drift conditioned to stay positive. *J. Appl. Probability* 11 742–751. MR368168
[37] Jacka, S. D. and Roberts, G. O. (1995). Weak convergence of conditioned processes on a countable state space. *J. Appl. Probab.* **32** 902–916. MR1363332

[38] Jacod, J. and Shiryaev, A. N. (1987). *Limit theorems for stochastic processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]* **288**, Springer-Verlag, Berlin. MR0959133

[39] Knapova, V. and Schilling, R. L. (2013). A note on the existence of transition probability densities of Lévy processes. *Forum Math.* **25** 125–149. MR3010850

[40] Kulczycki, T. and Ryznar, M. (2016). Gradient estimates of harmonic functions and transition densities for Lévy processes. *Trans. Amer. Math. Soc.* **368** 281–318. MR3413864

[41] Kwaśnicki, M. (2017). Ten equivalent definitions of the fractional Laplace operator. *Fract. Calc. Appl. Anal.* **20** 7–51. MR3613319

[42] Kwaśnicki, M. and Juszczyński, T. (2017). Martin Kernels for Markov Processes with Jumps. *Potential Anal.* **47** 313–335. MR3713580

[43] Kyprianou, A. E. and Palmowski, Z. (2006). Quasi-stationary distributions for Lévy processes. *Bernoulli* **12** 571–581. MR2248228

[44] Kyprianou, E. K. (1971). On the quasi-stationary distribution of the virtual waiting time in queues with Poisson arrivals. *J. Appl. Probability* **8** 494–507. MR292201

[45] Lambert, A. (2007). Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. *Electron. J. Probab.* **12** no. 14, 420–446. MR2299923

[46] Mandjes, M., Palmowski, Z. and Rolski, T. (2012). Quasi-stationary workload in a Lévy-driven storage system. *Stoch. Models* **28** 413–432. MR2959448

[47] Martínez, S. and San Martín, J. (1994). Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. *J. Appl. Probab.* **31** 911–920. MR1303922

[48] Palmowski, Z. and Vlasiou, M. (2020). Speed of convergence to the quasi-stationary distribution for Lévy input fluid queues. *Queueing Syst.* **96** 153–167. MR4171931

[49] Pruitt, W. E. (1981). The growth of random walks and Lévy processes. *Ann. Probab.* **9** 948–956. MR632968

[50] Ren, Y.-X., Song, R. and Sun, Z. (2018). A 2-spine decomposition of the critical Galton-Watson tree and a probabilistic proof of Yaglom’s theorem. *Electron. Commun. Probab.* **23** Paper No. 42, 12. MR3841403

[51] Ren, Y.-X., Song, R. and Sun, Z. (2020). Limit theorems for a class of critical superprocesses with stable branching. *Stochastic Process. Appl.* **130** 4358–4391. MR4102269

[52] Satô, K.-i. (1999). *Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics* **68**, Cambridge University Press, Cambridge Translated from the 1990 Japanese original, Revised by the author. MR1739520

[53] Schilling, R. L. (2017). *Measures, integrals and martingales*, Second ed. Cambridge University Press, Cambridge. MR3644418

[54] Seneta, E. and Vere-Jones, D. (1966). On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. *J. Appl. Probability* **3** 403–434. MR207047

[55] Słomiński, P. (2000). On harmonic measure for Lévy processes. *Probab. Math. Statist.* **20** 383–390. MR1825650

[56] Tweedie, R. L. (1974). Quasi-stationary distributions for Markov chains on a general state space. *J. Appl. Probability* **11** 726–741. MR443090

[57] Van Doorn, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. *Adv. in Appl. Probab.* **23** 683–700. MR1133722

[58] Van Doorn, E. A. and Pollett, P. K. (2013). Quasi-stationary distributions for discrete-state models. *European J. Oper. Res.* **230** 1–14. MR3063313

[59] Šišić, H., Song, R. and Vondraček, Z. (2006). Potential theory of geometric stable processes. *Probab. Theory Related Fields* **135** 547–575. MR2204700

[60] Yaglom, A. M. (1947). Certain limit theorems of the theory of branching random processes. *Doklady Akad. Nauk SSSR (N.S.)* **56** 795–798. MR0022045

[61] Zhang, J., Li, S. and Song, R. (2014). Quasi-stationarity and quasi-ergodicity of general Markov processes. *Sci. China Math.* **57** 2013–2024. MR3247530