A single-variable proof of the omega SPT congruence family over powers of 5

Nicolas Allen Smoot

Received: 26 March 2020 / Accepted: 24 April 2023 / Published online: 28 June 2023
© The Author(s) 2023

Abstract
In 2018, Liuquan Wang and Yifan Yang proved the existence of an infinite family of congruences for the smallest parts function corresponding to the third-order mock theta function $\omega(q)$. Their proof took the form of an induction requiring 20 initial relations, and utilized a space of modular functions isomorphic to a free rank 2 $\mathbb{Z}[X]$-module. This proof strategy was originally developed by Paule and Radu to study families of congruences associated with modular curves of genus 1. We show that Wang and Yang’s family of congruences, which is associated with a genus 0 modular curve, can be proved using a single-variable approach, via a ring of modular functions isomorphic to a localization of $\mathbb{Z}[X]$. To our knowledge, this is the first time that such an algebraic structure has been applied to the theory of partition congruences. Our induction is more complicated, and relies on sequences of functions which exhibit a somewhat irregular 5-adic convergence. However, the proof ultimately rests upon the direct verification of only 10 initial relations, and is similar to the classical methods of Ramanujan and Watson.

Keywords
Partition congruences · Modular functions · Mock theta functions · Smallest parts functions · Polynomial localization · Modular curve · Riemann surface · Genus

Mathematics Subject Classification
Primary 11P83 · Secondary 30F35

The research was funded by the Austrian Science Fund (FWF):W1214-N15, Project DK6, and by the Strategic Program “Innovatives Oö 2010 plus” by the Upper Austrian Government. My fondest thanks to the Austrian Government for their generous support.

Nicolas Allen Smoot
nsmoot@risc.uni-linz.ac.at

1 Johannes Kepler University Linz, Research Institute for Symbolic Computation, Linz, Austria
1 Introduction

In 2018, Liuquan Wang and Yifan Yang proved [19] the existence of an infinite family of congruences for the smallest parts function for the mock theta function $\omega(q)$. Wang and Yang’s proof employed methods developed by Paule and Radu. However, the author has discovered that this family of congruences lends itself to a single-variable proof similar in theory to the classical methods of Ramanujan and Watson. In such a proof certain very interesting algebraic intricacies emerge, which—to our knowledge—are different from all known proofs of partition congruence families. The purpose of this paper is to elaborate this alternative proof.

The congruence family in question was originally conjectured by Wang in 2017 [18], [19, Conjecture 1], and concerns the $\omega(q)$ mock theta function analog to the partition spt function studied by Andrews [1].

Theorem 1.1 Let $\lambda_\alpha \in \mathbb{Z}$ be the minimal positive solution to $12x \equiv 1 \pmod{5^\alpha}$. Then

$$\operatorname{spt}_\omega \left(2 \cdot 5^\alpha n + \lambda_\alpha \right) \equiv 0 \pmod{5^\alpha}. \quad (1.1)$$

Wang and Yang prove this theorem [19] by relating $\operatorname{spt}_\omega$ to the spt functions for certain Bailey pairs C_1, C_5 studied by Garvan and Jennings-Shaffer [7], as well as the function c, defined by

$$\sum_{n=0}^{\infty} c(n)q^n := \frac{2E_2(2\tau) - E_2(\tau)}{(q^2; q^2)_{\infty}}, \quad (1.2)$$

with $q := e^{2\pi i \tau}$, $\tau \in \mathbb{H}$, and $E_2(\tau)$ defined as the normalized weight 2 Eisenstein series (disregarding the nonholomorphic term):

$$E_2(\tau) := 1 - 24 \sum_{n=1}^{\infty} \frac{nq^n}{1 - q^n}.$$

Wang and Yang then show that Theorem 1.1 is a consequence of the following:

Theorem 1.2 Let $12n \equiv 1 \pmod{5^\alpha}$. Then $c(n) \equiv 0 \pmod{5^\alpha}$.

This family of congruences has a form which is common to the field; in addition to Ramanujan’s iconic congruences [3, 8, 16, 20], an enormous number of similar results have been found; recent results include [6, 11, 17]. The proof of each of these results generally involves an induction argument which takes advantage of some algebraic structure on the associated space of modular functions.

In the case of Ramanujan’s classical result for powers of 5, one works over the congruence subgroup $\Gamma_0(5)$ and an associated space of modular functions under specific meromorphic conditions. Because the algebraic structure of this space of functions is isomorphic to $\mathbb{Z}[X]$, the full family of congruences may be proved by a straightforward process. This is similarly true for Ramanujan’s modified congruence family...
for powers of 7. The general technique was first published by Watson [20], although Ramanujan appears to have been the first to understand it [4].

However, Ramanujan’s congruence family for powers of 11 is more difficult to prove. This is owed in large measure to the fact that the underlying modular curve $X_0(11)$ associated with $\Gamma_0(11)$ has genus 1. To compare, $X_0(5)$ and $X_0(7)$ each have genus 0. This fact ensures that, as a consequence of the Weierstrass gap theorem [12], the necessary space of functions on $\Gamma_0(11)$ is isomorphic not to $\mathbb{Z}[X]$, but rather to a rank 2 $\mathbb{Z}[X]$-module.

The necessary modification of Ramanujan and Watson’s approach was first developed by Atkin [3]. Later families of congruences associated with a genus 1 modular curve include the Andrews–Sellers conjecture, proved by Paule and Radu [11], and the Choi–Kim–Lovejoy conjecture, proved by the author [17]. The method used for both of these proofs was developed by Paule and Radu as an important modification of Atkin’s approach.

Wang and Yang also employ this method. In particular, they develop a sequence of weakly holomorphic modular forms $(L_\alpha)_{\alpha \geq 1}$ such that

$$L_\alpha = \Phi_\alpha \cdot \sum_{n=0}^{\infty} c (5^\alpha n + \lambda_\alpha) q^{n+1},$$

with Φ_α an integer power series with constant term 1, and λ_α the minimum positive solution to $12x \equiv 1 \pmod{5^\alpha}$ (see Sect. 2). They show that

$$\frac{L_\alpha}{5^\alpha \cdot F} = f_{0,\alpha}(t) + \rho \cdot f_{1,\alpha}(t), \tag{1.3}$$

in which $f_{i,\alpha} \in \mathbb{Z}[X]$, $F := F(\tau) = \frac{1}{24} (50E_2(10\tau) - 25E_2(5\tau) - 2E_2(2\tau) + E_2(\tau))$ is a weight 2 holomorphic modular form, and t, ρ are modular functions which take the form of eta quotients with integer expansions in the Fourier variable q. The relevant congruence subgroup is $\Gamma_0(10)$.

This is standard to Paule and Radu’s approach. Note the free rank 2 $\mathbb{Z}[X]$-module structure of (1.3), which is characteristic of the method.

However, Paule and Radu developed their method in order to overcome the complications which arise from a congruence family in which the associated modular curve has nonzero genus. The genus of $X_0(10)$ is 0.

It is this extremely important and telling fact that drove us to attempt a more classical proof of Wang and Yang’s theorem.

As an example, we take the first case of Theorem 1.2. Define

$$L_1 = (q^{10}; q^{10})_\infty \sum_{n=0}^{\infty} c (5n + 3) q^{n+1}, \tag{1.4}$$
in a manner standard to the theory (see Sect. 2). Wang and Yang prove that $L_1 \equiv 0 \pmod{5}$ by showing that

$$L_1 = F \cdot \left((245t + 3750t^2 + 15625t^3) - \rho \cdot (125t + 3125t^2) \right), \quad (1.5)$$

with t and ρ defined as in (1.3). However, we were able to find a function y, also modular on $I_0(10)$, with the following:

$$L_1 = \frac{F}{(1 + 5y)^3} \cdot \left(120y + 1805y^2 + 12,050y^3 + 39,500y^4 + 50,000y^5 \right). \quad (1.6)$$

Since F expands into an integer power series in the Fourier variable q with the constant term 1, and 5 cannot divide $1 + 5y$, we need only examine the remaining portion of the expression—a single-variable polynomial in y—to determine divisibility.

An interesting complication emerges in the factor $(1 + 5y)^{-3}$. One might correctly guess that our relevant space of modular functions for all $\alpha \geq 1$ is isomorphic to a localization of $\mathbb{Z}[X]$, rather than to $\mathbb{Z}[X]$ itself. Indeed, we have the following remarkable result, the principal theorem of this paper:

Theorem 1.3 Let

$$\psi(\alpha) := \left\lfloor \frac{5\alpha}{12} \right\rfloor + 1.$$

Then for all $\alpha \geq 1$,

$$\frac{(1 + 5y)^{\psi(\alpha)}}{5^\alpha \cdot F} \cdot L_\alpha \in \mathbb{Z}[y]. \quad (1.7)$$

We are not aware of any other congruence families in which the proof necessitates such a ring structure, and it would be interesting to know whether any additional examples exist.

What makes this theorem especially interesting is that the algebraic structure of the representation of L_α reveals not only important arithmetic information (i.e., divisibility by 5^α), but also topological information relating to the underlying modular curve—in this case, $X_0(10)$. Certainly, the single-variable representation suggests that the curve has genus 0, since any modular function with a pole only at a single cusp must have a polynomial expression in a Hauptmodul (see Sect. 6).

More interesting still is the fact that L_α requires a rational polynomial expression in the Hauptmodul y. This indicates that L_α has poles at more than one cusp, which in turn suggests that $X_0(10)$ has more than two cusps; in fact, the curve has four. Thus, the arithmetic properties of $c(n)$ and the topology of $X_0(10)$ are given together in the algebraic structure of Theorem 1.3.

Silviu Radu and I have developed some algorithmic machinery [15], using the theory of modular functions, which might easily be modified to examine identities with a form similar to (1.6). On a more ambitious note, the steps in this proof are straightforward,
despite their complexity. Because so much of the key algebraic structure derives from
the modular curve, which itself can be quickly identified from the initial cases of
the congruence family, this technique may prove to be completely general, especially
when the associated modular curve has a cusp count greater than 2.

The author strongly believes that localized rings may yet prove to be an enormously
productive environment in which to examine new arithmetic properties in partition
theory, especially for situations in which more traditional methods fail.

Another interesting difficulty arises in the somewhat irregular 5-adic convergence
of each term of L_ω under repeated application of the corresponding U_5 operators. In
particular, in mapping $L_{2\alpha-1}$ to $L_{2\alpha}$, the individual components of the linear coefficient
do not increase piecewise with respect to their 5-adic value—rather, the components
must be shown to sum to the necessary multiple of 5 (see Definition 4.3 and Theorem
4.4).

Such a strange complication necessitates a very precise manipulation on the 5-
adic convergence of our critical functions, together with a careful examination of
the coefficients in our auxiliary functions modulo 5. As in the matter of localization,
we are unaware of any other examples of congruence families which demand such a
constructive method of verifying divisibility by 5.

A final complication emerges in the base cases of our key lemmas. We require the
verification of 50 initial relations. However, we can show that these 50 are algebraically
dependent, and that a total of only 10 initial relations need be directly established. This
stands in contrast to the 20 that Wang and Yang require for their proof. From these 10
relations, the 50 relations necessary for our induction may be assembled and verified
with relative ease through a computer algebra system. The computational complexity
is striking; nevertheless, the reliance (in principle, at least) upon so few relations,
together with the single-variable approach, compels us to call our proof classical, or
perhaps “semiclassical.”

In total, these complications seem overwhelming, and it is understandable that a
single-variable proof has not been found before now. It seems that the genus of the
underlying modular curve alone is sufficient to compel a single-variable proof, in spite
of the many considerable difficulties.

The remainder of our paper is outlined as follows: in Sect. 2 we define the neces-
sary functions L_ω, along with certain auxiliary functions. We also define the modular
function y, from which we will develop certain modular equations. In Sect. 3 we will
develop some important module structures, including our polynomial localization. Fol-
lowing this, we develop our modified U_5 operators, and prove certain key properties
of U_5 on our localized ring, including some important arithmetical information.

In Sect. 4, we carefully demonstrate 5-adic convergence of our relevant space of
functions. In particular, we impose certain additional arithmetic constraints on our
functions in order to control the somewhat irregular behavior of our 5-adic conver-
gence, especially over the coefficients of the smaller powers of y. This culminates
in the proof of our Main Theorem. As a reference, we provide certain useful 5-adic
valuation tables in “Appendix I.”

In Sect. 5, we outline the proof of our fundamental relations, and the algebraic
method by which we may verify the 50 initial relations needed for the induction
of our Main Lemma. The proof of the ten fundamental relations is based on the
cusp analysis established from the theory of modular functions. We give these ten fundamental relations in “Appendix II.” However, for want of space, we will post the computations of our 50 initial relations (along with our cusp analysis calculations, and some miscellaneous calculations) in an Online Mathematica Supplement, which can be found at https://www3.risc.jku.at/people/nsmoot/online3.nb.

The importance of a computational approach to this problem cannot be overstated. Not only was there a need to calculate certain relations to complete our induction (most of which would prove too tedious to demonstrate by hand); but many of our results which can in principle be proved without any reliance on computation (e.g., the sufficiency of the additional conditions imposed in Definition 4.3) were only found through many weeks of exhaustive experimentation.

In our final section, we attempt to provide some insight as to why our technique may be more difficult to apply to a family of congruences in which the associated modular curve has genus 1, e.g., the Andrews–Sellers family.

2 Key functions

Hereafter, we denote \(q := e^{2\pi i \tau} \), for \(\tau \in \mathbb{H} \). We begin by defining an important auxiliary function:

\[
Z := Z(\tau) = \frac{\eta(50\tau)}{\eta(2\tau)}.
\]
(2.1)

Here \(Z(\tau) \) is a modular function on \(\Gamma_0(50) \) (see Sect. 5).

We will now define our key generating functions, and their behavior under the standard \(U_5 \) operator.

2.1 Generating functions

Our main generating functions \(L_\alpha \) for each case of Theorem 1.2 are defined as follows:

\[
L_0 := 2E_2(2\tau) - E_2(\tau),
\]
(2.2)

\[
L_{2\alpha-1} := (q^{10}; q^{10})_\infty \sum_{n=0}^{\infty} c\left(5^{2\alpha-1}n + \lambda_{2\alpha-1}\right)q^{n+1},
\]
(2.3)

\[
L_{2\alpha} := (q^2; q^2)_\infty \sum_{n=0}^{\infty} c\left(5^{2\alpha}n + \lambda_{2\alpha}\right)q^{n+1},
\]
(2.4)

with the \(\lambda_\alpha \) defined as

\[
\lambda_{2\alpha-1} := \frac{1 + 7 \cdot 5^{2\alpha-1}}{12},
\]
(2.5)

\[
\lambda_{2\alpha} := \frac{1 + 11 \cdot 5^{2\alpha}}{12}.
\]
(2.6)
In either case, \(\lambda_\alpha \in \mathbb{Z} \) are the minimal positive solutions to

\[
12x \equiv 1 \pmod{5^\alpha}.
\]

Therefore, one could write \(L_\alpha \) in the form

\[
L_\alpha = \Phi_\alpha(q) \cdot \sum_{12n \equiv 1 \pmod{5^\alpha}} c(n)q^{\left\lfloor \frac{n}{5^\alpha} \right\rfloor}.
\]

We now define the standard Hecke \(U_5 \) operator:

Definition 2.1 Let \(f(q) = \sum_{m \geq M} a(m)q^m \). Then define

\[
U_5(f(q)) = \sum_{5m \geq M} a(5m)q^m.
\] (2.7)

We list some of the important properties of \(U_5 \). The proofs are straightforward, and can be found in [2, Chap. 10] and [8, Chap. 8].

Lemma 2.2 Given two functions

\[
f(q) = \sum_{m \geq M} a(m)q^m, \quad g(q) = \sum_{m \geq N} b(m)q^m,
\]

any \(\alpha \in \mathbb{C} \), a primitive fifth root of unity \(\zeta \), and the convention that \(q^{1/5} = e^{2\pi i \tau / 5} \), we have the following:

1. \(U_5(\alpha \cdot f + g) = \alpha \cdot U_5(f) + U_5(g) \);
2. \(U_5(f(q^5)g(q)) = f(q)U_5(g(q)) \);
3. \(5 \cdot U_5(f) = \sum_{r=0}^4 f(\zeta^r q^{1/5}) \).

The \(U_5 \) operator provides us with a convenient means of accessing \(L_{\alpha+1} \) from \(L_\alpha \), as the following lemma shows:

Lemma 2.3 For all \(\alpha \geq 0 \), we have

\[
L_{2\alpha} = U_5(L_{2\alpha-1}),
\] (2.8)

\[
L_{2\alpha+1} = U_5(Z \cdot L_{2\alpha}).
\] (2.9)

Proof For any \(\alpha \geq 1 \),

\[
U_5(L_{2\alpha-1}) = U_5\left((q^{10}; q^{10})_\infty \sum_{n \geq 0} c \left(5^{2\alpha-1}n + \lambda_{2\alpha-1} \right) q^{n+1} \right)
\]

\[
= (q^2; q^2)_\infty \cdot U_5\left(\sum_{n \geq 1} c \left(5^{2\alpha-1}(n-1) + \lambda_{2\alpha-1} \right) q^n \right)
\]
\[= (q^2; q^2)_\infty \cdot \sum_{5n \geq 1} c \left(5^{2\alpha-1}(5n - 1) + \lambda_{2\alpha-1} \right) q^n\]

\[= (q^2; q^2)_\infty \cdot \sum_{n \geq 1} c \left(5^{2\alpha} n - 5^{2\alpha-1} + \lambda_{2\alpha-1} \right) q^n\]

\[= (q^2; q^2)_\infty \cdot \sum_{n \geq 0} c \left(5^{2\alpha} n + 5^{2\alpha - 5^{2\alpha-1} + \lambda_{2\alpha-1}} \right) q^{n+1}\]

Similarly,

\[U_5 (Z \cdot L_{2\alpha}) = U_5 \left(\frac{q^2 (q^{50}; q^{50})_\infty (q^2; q^2)_\infty \sum_{n \geq 0} c \left(5^{2\alpha} n + \lambda_{2\alpha} \right) q^{n+1}}{(q^2; q^2)_\infty \sum_{n \geq 0} c \left(5^{2\alpha} n + \lambda_{2\alpha} \right) q^{n+1}} \right)\]

\[= (q^{10}; q^{10})_\infty \cdot U_5 \left(\sum_{n \geq 3} c \left(5^{2\alpha} (n - 3) + \lambda_{2\alpha} \right) q^n\right)\]

\[= (q^{10}; q^{10})_\infty \cdot \sum_{5n \geq 3} c \left(5^{2\alpha} (5n - 3) + \lambda_{2\alpha} \right) q^n\]

\[= (q^{10}; q^{10})_\infty \cdot \sum_{n \geq 1} c \left(5^{2\alpha+1} n + 3 \cdot 5^{2\alpha} + \lambda_{2\alpha} \right) q^{n+1}\]

\[= (q^{10}; q^{10})_\infty \cdot \sum_{n \geq 0} c \left(5^{2\alpha+1} n + \lambda_{2\alpha+1} \right) q^{n+1}.\]

\[\Box\]

2.2 The modular equations

Our most important functions are the following:

\[x = x(\tau) := \prod_{m=1}^{\infty} \frac{(1 - q^{2m})^5(1 - q^{5m})}{(1 - q^m)^5(1 - q^{10m})} = \frac{\eta(2\tau)^5 \eta(5\tau)}{\eta(\tau)^5 \eta(10\tau)}, \quad (2.10)\]

\[y = y(\tau) := q \prod_{m=1}^{\infty} \frac{(1 - q^{2m})(1 - q^{10m})^3}{(1 - q^m)^3(1 - q^{5m})} = \frac{\eta(2\tau) \eta(10\tau)^3}{\eta(\tau)^3 \eta(5\tau)}. \quad (2.11)\]

Notice that, by the Freshman’s Dream,

\[(1 - q^m)^5 \equiv 1 - q^{5m} \pmod{5},\]
\[(1 - q^{2m})^5 \equiv 1 - q^{10m} \pmod{5}.\]

This yields
\[
\prod_{m=1}^{\infty} \frac{(1-q^{2m})^5 (1-q^{5m})}{(1-q^m)^5 (1-q^{10m})} \equiv 1 \pmod{5}.
\] (2.12)

It is not difficult to verify that
\[
\frac{x - 1}{5} = q \prod_{m=1}^{\infty} \frac{(1-q^{2m})(1-q^{10m})^3}{(1-q^m)^3(1-q^{5m})},
\] (2.13)
from which \(x = 1 + 5y\) follows.

Theorem 2.4 Define
\[
\begin{align*}
a_0(\tau) &= -y - 5 \cdot 4 \cdot y^2 - 5^2 \cdot 6 \cdot y^3 - 5^3 \cdot 4 \cdot y^4 - 5^4 \cdot y^5, \\
a_1(\tau) &= -5 \cdot 3y - 5 \cdot 61 \cdot y^2 - 5^2 \cdot 93 \cdot y^3 - 5^3 \cdot 63 \cdot y^4 - 5^4 \cdot 16 \cdot y^5, \\
a_2(\tau) &= -5 \cdot 17 \cdot y - 5^3 \cdot 14 \cdot y^2 - 5^2 \cdot 541 \cdot y^3 - 5^3 \cdot 372 \cdot y^4 - 5^4 \cdot 96 \cdot y^5, \\
a_3(\tau) &= -5 \cdot 43 \cdot y - 5^2 \cdot 179 \cdot y^2 - 5^3 \cdot 56 \cdot y^3 - 5^4 \cdot 976 \cdot y^4 - 5^5 \cdot 256 \cdot y^5, \\
a_4(\tau) &= -5 \cdot 41 \cdot y - 5^2 \cdot 172 \cdot y^2 - 5^3 \cdot 272 \cdot y^3 - 5^4 \cdot 192y^4 - 5^4 \cdot 256 \cdot y^5,
\end{align*}
\]
Then we have
\[
y^5 + \sum_{j=0}^{4} a_j(5\tau)y^j = 0.
\] (2.14)

Proof Because \(y(5\tau)\) is a modular function with only one pole, we may prove this equation using cusp analysis. See the end of Sect. 5.

Theorem 2.5 Define
\[
\begin{align*}
b_0(\tau) &= -x^5, \\
b_1(\tau) &= 1 + 5x + 5x^2 + 5x^3 + 5x^4 - 16x^5, \\
b_2(\tau) &= -4 - 5 \cdot 3 \cdot x + 5 \cdot 2 \cdot x^2 + 5 \cdot 7 \cdot x^3 + 5 \cdot 12 \cdot x^4 - 96x^5, \\
b_3(\tau) &= 6 + 5 \cdot 3 \cdot x - 5 \cdot 7x^2 + 5 \cdot 8x^3 + 5 \cdot 48 \cdot x^4 - 256x^5, \\
b_4(\tau) &= -4 - 5x + 5 \cdot 4 \cdot x^2 - 5 \cdot 16 \cdot x^3 + 5 \cdot 64 \cdot x^4 - 256x^5.
\end{align*}
\]
Then we have
\[
x^5 + \sum_{k=0}^{4} b_k(5\tau)x^k = 0.
\] (2.15)
Proof Simply substitute $y = (x - 1)/5$ into (2.14), and simplify. \[\square \]

For convenience of notation, in later sections we will define $b_5(\tau) := 1$.

3 Algebra structure

3.1 Localized ring

We will begin to construct the algebra structure needed for our proof, beginning with the peculiar localization property. Define the multiplicatively closed set

$$S := \{(1 + 5y)^n : n \in \mathbb{Z}_{n \geq 0}\}. \quad (3.1)$$

We will prove that for every $\alpha \geq 1$, L_α is a member of the localization of $\mathbb{Z}[y]$ at S, which we will denote by $\mathbb{Z}[y]_S$. Notice that because $1/x^n = 1/(1 + 5y)^n$ is an eta quotient with an integer power series expansion in $q = e^{2\pi i \tau}$ for every $n \geq 1$, we can expand every element of the localization into an integer power series in q, i.e., $\mathbb{Z}[y]_S \subseteq \mathbb{Z}[[q]]$.

We need to define two general classes of subsets of $\mathbb{Z}[y]_S$. But first, we need a key definition:

Definition 3.1 Let $n \geq 1$. A function $s : \mathbb{Z} \to \mathbb{Z}$ is discrete if $s(m) = 0$ for sufficiently large m. A function $h : \mathbb{Z}^n \to \mathbb{Z}$ is a discrete array if for any fixed $(m_1, m_2, \ldots, m_{n-1}) \in \mathbb{Z}^{n-1}, h(m_1, m_2, \ldots, m_{n-1}, m)$ is discrete with respect to m.

We now need to construct suitable sets to contain our L_α. Due to a somewhat irregular pattern of 5-adic convergence, we must define our 5-adic valuation function very carefully.

$$\theta(m) := \begin{cases} \frac{5m - 5}{6}, & 1 \leq m \leq 2, \\ \frac{5m - 5}{6} - 1, & m \geq 3, \end{cases}$$

$$\phi(m) := \begin{cases} \frac{5m - 5}{6}, & 1 \leq m \leq 3, \\ \frac{5m - 5}{6} - 1, & m \geq 4. \end{cases}$$

Now we take an arbitrary $n \geq 1$, and define the following:

$$\gamma_n^{(0)} := \left\{ \frac{1}{(1 + 5y)^n} \sum_{m \geq 1} s(m) \cdot 5^{\theta(m)} \cdot y^m : s \text{ is discrete} \right\}, \quad (3.2)$$

$$\gamma_n^{(1)} := \left\{ \frac{1}{(1 + 5y)^n} \sum_{m \geq 1} s(m) \cdot 5^{\phi(m)} \cdot y^m : s \text{ is discrete} \right\}. \quad (3.3)$$
3.2 Recurrence relation

We now define the following maps:

\[U^{(1-i)}(f) := \frac{U_5 \left(F \cdot Z^i \cdot f \right)}{F}, \quad (3.4) \]

for \(i = 0, 1 \).

Now we are ready to utilize our modular equations, together with our \(U^{(i)} \) operators to build certain helpful recurrence relations.

Lemma 3.2 For all \(m, n \in \mathbb{Z} \), and \(i \in \{0, 1\} \), we have

\[U^{(i)} \left(\frac{y^m}{(1 + 5y)^n} \right) = \frac{1}{(1 + 5y)^5} \sum_{j=0}^{4} \sum_{k=1}^{5} a_j(\tau) b_k(\tau) \cdot U^{(i)} \left(\frac{y^{m+j-5}}{(1 + 5y)^{n-k}} \right). \quad (3.5) \]

Proof We can write

\[b_0(\tau) = -\sum_{k=1}^{5} b_k(\tau) x^k, \]

\[1 = \frac{-1}{b_0(\tau)} \sum_{k=1}^{5} b_k(\tau) x^k, \]

\[x^{-n} = \frac{-1}{b_0(\tau)} \sum_{k=1}^{5} b_k(\tau) x^{-(n-k)}. \quad (3.6) \]

for \(n \geq 1 \). Writing \(x \) in terms of \(y \), we have

\[(1 + 5y)^{-n} = \frac{-1}{b_0(\tau)} \sum_{k=1}^{5} b_k(\tau)(1 + 5y)^{-(n-k)}. \quad (3.7) \]

If we multiply both sides by \(y^m \) for some \(m \geq 1 \), then

\[\frac{y^m}{(1 + 5y)^n} = \frac{-1}{b_0(\tau)} \sum_{k=1}^{5} b_k(\tau) \cdot \frac{y^m}{(1 + 5y)^{n-k}} \]

\[= \frac{1}{(1 + 5y(\tau))^{5}} \sum_{k=1}^{5} b_k(\tau) \cdot \frac{y^m}{(1 + 5y)^{n-k}}. \quad (3.8) \]

Now we expand each power of \(y \) with its modular equation and rearrange

\[\frac{y^m}{(1 + 5y)^n} = \frac{-1}{b_0(\tau)} \sum_{k=1}^{5} b_k(\tau) \cdot \sum_{j=0}^{4} a_j(\tau) \frac{y^{m+j-5}}{(1 + 5y)^{n-k}}. \]
\[
\frac{1}{(1 + 5y(5\tau))^5} \sum_{j=0}^{4} \sum_{k=1}^{5} a_j(5\tau)b_k(5\tau) \cdot \frac{y^{m+j-5}}{(1 + 5y)^{n-k}}. \tag{3.9}
\]

Now multiply both sides by \(F \cdot Z^{1-i}\):

\[
F \cdot Z^{1-i} \cdot \frac{y^m}{(1 + 5y)^n} = \frac{-F \cdot Z^{1-i}}{b_0(5\tau)} \sum_{k=1}^{5} b_k(5\tau) \cdot \sum_{j=0}^{4} a_j(5\tau) \cdot \frac{y^{m+j-5}}{(1 + 5y)^{n-k}}
\]

\[
= \frac{1}{(1 + 5y(5\tau))^5} \sum_{j=0}^{4} \sum_{k=1}^{5} a_j(5\tau)b_k(5\tau) \cdot F \cdot Z^{1-i} \cdot \frac{y^{m+j-5}}{(1 + 5y)^{n-k}}. \tag{3.10}
\]

We are now ready to take the \(U_5\) operator. Recall that by Line 2 of Lemma 2.2, for any functions \(f(\tau), g(\tau)\),

\[
U_5(f(5\tau) \cdot g(\tau)) = f(\tau) \cdot U_5(g(\tau)).
\]

This gives us

\[
U_5 \left(F \cdot Z^{1-i} \cdot \frac{y^m}{(1 + 5y)^n} \right)
\]

\[
= \frac{1}{(1 + 5y)^5} \sum_{j=0}^{4} \sum_{k=1}^{5} a_j(\tau)b_k(\tau) \cdot U_5 \left(F \cdot Z^{1-i} \cdot \frac{y^{m+j-5}}{(1 + 5y)^{n-k}} \right). \tag{3.11}
\]

Dividing both sides by \(F\), we achieve our formula. \(\square\)

3.3 Main lemma

We need to provide certain general relations for \(U^{(i)} \left(\frac{y^m}{(1+5y)^\tau} \right)\). For this, we will define the following:

\[
\pi_1(m, r) := \begin{cases}
0, & 1 \leq m \leq 2, \text{ and } r = 1, \\
3, & 1 \leq m \leq 2, \text{ and } r = 3, \\
\frac{5r+1}{6}, & 1 \leq m \leq 2, \text{ and } r \geq 3, \text{ and } r \neq 3, \\
2, & m = 3, \text{ and } r = 2, \\
\frac{5r-2}{6}, & m = 3, \text{ and } r \neq 2, \\
\frac{5r-1}{6}, & m \geq 4;
\end{cases}
\]

\(\copyright\) Springer
\(\pi_0(m, r) := \begin{cases} \frac{5r+1}{6}, & m = 1, \\ \frac{5r+1}{6}, & m = 2, \text{ and } r \neq 3, 4, 5, \\ \frac{5r-5}{6}, & m = 2, \text{ and } 3 \leq r \leq 5, \\ \frac{5r-m-2}{6}, & m \geq 3. \end{cases} \)

Theorem 3.3 There exist discrete arrays \(h_1, h_0 : \mathbb{Z}^3 \to \mathbb{Z} \) such that

\[
U^{(1)} \left(\frac{y^m}{(1 + 5y)^n} \right) = \frac{1}{(1 + 5y)^{5n-4}} \sum_{r \geq \lceil m/5 \rceil} h_1(m, n, r) \cdot \pi_1(m, r) \cdot y^r, \quad (3.12)
\]

\[
U^{(0)} \left(\frac{y^m}{(1 + 5y)^n} \right) = \frac{1}{(1 + 5y)^{5n-2}} \sum_{r \geq \lceil (m+2)/5 \rceil} h_0(m, n, r) \cdot \pi_0(m, r) \cdot y^r. \quad (3.13)
\]

Notice that

\[
\pi_1(m, r) \geq \left\lfloor \frac{5r - m + 1}{6} \right\rfloor, \quad (3.14)
\]

\[
\pi_0(m, r) \geq \left\lfloor \frac{5r - m - 2}{6} \right\rfloor. \quad (3.15)
\]

We will, therefore, begin by proving the following:

Lemma 3.4 Let \(\kappa, \delta \in \mathbb{Z}_{\geq 0} \) and \(\mu \in \mathbb{Z} \) be fixed, and fix \(i \) to either 0 or 1. If there exists a discrete array \(h_i \) such that

\[
U^{(i)} \left(\frac{y^m}{(1 + 5y)^n} \right) = \frac{1}{(1 + 5y)^{5n-\kappa}} \sum_{r \geq \lceil \frac{m+i}{5} \rceil} h_i(m, n, r) \cdot 5^{\pi_i(m, r)} \cdot y^r, \quad (3.16)
\]

for \(1 \leq m \leq 5, \, 1 \leq n \leq 5 \), then such a relation can be made to hold for all \(m \geq 1, \, n \geq 1 \).

Lemma 3.5 Let \(\kappa, \delta \in \mathbb{Z}_{\geq 0} \) and \(m_0 \in \mathbb{Z}_{\geq 1} \) be fixed, and fix \(i \) to either 0 or 1. If there exists a discrete array \(h_i \) such that

\[
U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^n} \right) = \frac{1}{(1 + 5y)^{5n-\kappa}} \sum_{r \geq \lceil \frac{m_0+i}{5} \rceil} h_i(m_0, n, r) \cdot 5^{\pi_i(m_0, r)} \cdot y^r \quad (3.17)
\]

for \(1 \leq n \leq 5 \), then such a relation can be made to hold for all \(n \geq 1 \).

We may verify Theorem Lemma 3.5 for \(1 \leq m_0 \leq 4 \), since for any larger \(m \), (3.14), (3.15) are equalities. If Lemma 3.4 is also satisfied, then Theorem 3.3 follows.
Proof of Lemma 3.4 We will use induction. Suppose that the relation holds for all positive integers \(m, n\) strictly less than some \(m_0, n_0 \in \mathbb{Z}_{\geq 6}\), respectively. We want to show that the relation can be made to hold for \(m_0\) and \(n_0\). We have

\[
U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0}} \right) = -\frac{1}{(1 + 5y)^5} \sum_{j=0}^{4} \sum_{k=1}^{5} a_j(\tau) b_k(\tau) \cdot U^{(i)} \left(\frac{y^{m_0+j-5}}{(1 + 5y)^{n_0-k}} \right) \tag{3.18}
\]

\[
= -\frac{1}{(1 + 5y)^5} \sum_{j=0}^{4} \sum_{k=1}^{5} a_j(\tau) b_k(\tau) \cdot \left(1 + 5y\right)^{5(n_0-k)-k} \times \sum_{r \geq \lceil (m_0+j-5+\delta)/5 \rceil} h_i(m_0+j-5, n_0-k, r) \cdot 5^\left\lfloor \frac{5r-(m_0+j-5)+\mu}{6} \right\rfloor \cdot y^r \tag{3.19}
\]

\[
= \frac{1}{(1 + 5y)^{5n_0-k}} \sum_{j=0}^{4} \sum_{k=1}^{5} w(j, k) \times \sum_{r \geq \lceil (m_0+j-5+\delta)/5 \rceil} h_i(m_0+j-5, n_0-k, r) \cdot 5^\left\lfloor \frac{5r-(m_0+j-5)+\mu}{6} \right\rfloor \cdot y^r, \tag{3.20}
\]

with

\[
w(j, k) := -a_j(\tau) b_k(\tau) \left(1 + 5y\right)^{5(k-1)} = \sum_{l=1}^{25} v(j, k, l) \cdot 5^{\left\lfloor \frac{5l+j}{6} \right\rfloor} \cdot y^l. \tag{3.21}
\]

This can be demonstrated by a simple expansion of \(a_j(\tau) b_k(\tau) \left(1 + 5y\right)^{5(k-1)}\). Expanding \(w(j, k)\), we have

\[
U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0}} \right) = \frac{1}{(1 + 5y)^{5n_0-k}} \sum_{j=0}^{4} \sum_{k=1}^{5} \sum_{l=1}^{25} v(j, k, l) \cdot h_i(m_0+j-5, n_0-k, r) \cdot 5^\left\lfloor \frac{5r-(m_0+j-5)+\mu}{6} \right\rfloor \cdot 5^\left\lfloor \frac{5l+j}{6} \right\rfloor \cdot y^r+l. \tag{3.22}
\]

Notice that for any \(M, N \in \mathbb{Z}\),

\[
\left\lfloor \frac{M}{6} \right\rfloor + \left\lfloor \frac{N}{6} \right\rfloor \geq \left\lfloor \frac{M + N - 5}{6} \right\rfloor.
\]
Because of this,
\[
\left[\frac{5r - (m_0 + j - 5) + \mu}{6} \right] + \left[\frac{5l + j}{6} \right] \geq \left[\frac{5(r + l) - m_0 + \mu}{6} \right].
\]
(3.23)

Notice that
\[
r + l \geq \left[\frac{m_0 + j - 5 + \delta}{5} \right] + l \geq \left[\frac{m_0 + \delta}{5} - \frac{5 - j}{5} \right] + l \geq \left[\frac{m_0 + \delta}{5} \right] - 1 + l \geq \left[\frac{m_0 + \delta}{5} \right].
\]
(3.27)

We now have
\[
U^{(i)}\left(\frac{y^{m_0}}{(1 + 5y)^{m_0}} \right) = \frac{1}{(1 + 5y)^{5m_0-k}} \sum_{0 \leq j \leq 4, 1 \leq k \leq 5, 1 \leq l \leq 25} h_i(m_0 + j - 5, n_0 - k, r)
\cdot 5^{\left[\frac{5r - (m_0 + j - 5) + \mu}{6} \right] + \left[\frac{5l + j}{6} \right] - \left[\frac{5r - m_0 + \mu}{6} \right]} y^{r+l},
\]
(3.28)

here, we extend to \(h_i(m_0, n_0, r) \) by defining
\[
h_i(m_0, n_0, r) := \sum_{j=0}^{4} \sum_{k=1}^{5} \sum_{l=1}^{25} H(i, j, k, l, r),
\]
(3.29)

where
\[
H(i, j, k, l, r) := \begin{cases}
 v(j, k, l) \cdot h_i(m_0 + j - 5, n_0 - k, r - l) \cdot 5^{\epsilon(i, j, l, m_0, r)}, & r \geq l, \\
 0, & r < l,
\end{cases}
\]
(3.30)

and
\[
\epsilon(i, j, l, m, r) := \left[\frac{5(r - l) - (m + j - 5) + \mu}{6} \right] + \left[\frac{5l + j}{6} \right] - \left[\frac{5r - m_0 + \mu}{6} \right].
\]

Notice that
\[
\left[\frac{5r - (m + j - 5) + \mu}{6} \right] + \left[\frac{5l + j}{6} \right] \geq \left[\frac{5(r + l) - m_0 + \mu}{6} \right].
\]
so that $\epsilon(i, j, l, m, r) \geq 0$.

After relabeling our powers of y, we have

$$U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0}} \right) = \frac{1}{(1 + 5y)^{5n_0 - \kappa}} \times \sum_{r \geq \left\lceil \frac{n_0 + 8}{5} \right\rceil} h_i(m_0, n_0, r) \cdot 5^{\left\lfloor \frac{5r - m_0 + \mu}{6} \right\rfloor} \cdot y^r. \quad (3.31)$$

Proof of Lemma 3.5 We will again use induction, though only over n, while holding m_0 fixed. Suppose that the relation holds for all positive integers n strictly less than some $n_0 \in \mathbb{Z}_{\geq 6}$. We want to show that the relation can be made to hold for n_0.

$$U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0}} \right) = \frac{1}{(1 + 5y)^{5n_0 - \kappa}} \sum_{k=1}^{5} b_k(\tau) \cdot U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0 - k}} \right) = \frac{1}{(1 + 5y)^{5n_0 - \kappa}} \sum_{k=1}^{5} b_k(\tau) \cdot \sum_{r \geq 1} h_i(m_0, n_0 - k, r) \cdot 5^{\pi_i(m_0, r)} \cdot y^r. \quad (3.32)$$

with

$$\hat{w}(k) := b_k(\tau)(1 + 5y)^{5(k-1)} = \begin{cases} \sum_{l=0}^{20} \hat{w}(k, l) \cdot 5^{\left\lfloor \frac{5l + 10}{6} \right\rfloor} \cdot y^l, & k < 5, \\ 1 + \sum_{l=1}^{20} \hat{w}(5, l) \cdot 5^{\left\lfloor \frac{5l + 10}{6} \right\rfloor} \cdot y^l, & k = 5. \end{cases} \quad (3.35)$$

This can be demonstrated with a simple expansion of $\hat{w}(k)$. Expanding, we have

$$U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0}} \right) = \frac{1}{(1 + 5y)^{5n_0 - \kappa}} \times \left(\sum_{\substack{1 \leq k \leq 4, \\ 0 \leq l \leq 20, \\ r \geq \left\lceil \frac{n_0 + 8}{5} \right\rceil}} \hat{w}(k, l) \cdot h_i(m_0, n_0 - k, r) \cdot 5^{\pi_i(m_0, r)} \cdot \left\lfloor \frac{5r - m_0 + \mu}{6} \right\rfloor \cdot y^{r+l} \right) + \sum_{\substack{1 \leq l \leq 20, \\ r \geq \left\lceil \frac{n_0 + 5}{5} \right\rceil}} \hat{w}(5, l) \cdot h_i(m_0, n_0 - 5, r) \cdot 5^{\pi_i(m_0, r)} \cdot \left\lfloor \frac{5r - m_0 + \mu}{6} \right\rfloor \cdot y^{r+l}. \quad (3.36)$$
\[+ \sum_{r \geq \left\lceil \frac{m_0 + \delta}{5} \right\rceil}^r h_i(m_0, n_0 - 5, r) \cdot 5^{\pi_i(m_0, r)} \cdot y^r. \] \quad (3.38)

With a change of index, we have
\[U(i) \left(\frac{y^{m_0}}{(1 + 5y)^{n_0}} \right) = \frac{1}{(1 + 5y)^{5n_0 - \kappa}} \times \left(\sum_{1 \leq k < 4, 0 \leq l < 20, \ r \geq l + \left\lceil \frac{m_0 + \delta}{5} \right\rceil} \hat{v}(k, l) \cdot h_i(m_0, n_0 - k, r - l) \cdot 5^{\pi_i(m_0, r - l) + \left\lceil \frac{5l + 10}{6} \right\rceil} \cdot y^r
+ \sum_{r \geq l + \left\lceil \frac{m_0 + \delta}{5} \right\rceil}^r \hat{v}(5, l) \cdot h_i(m_0, n_0 - 5, r - l) \cdot 5^{\pi_i(m_0, r - l) + \left\lceil \frac{5l + 10}{6} \right\rceil} \cdot y^r
+ \sum_{r \geq \left\lceil \frac{m_0 + \delta}{5} \right\rceil}^r h_i(m_0, n_0 - 5, r) \cdot 5^{\pi_i(m_0, r)} \cdot y^r \right). \]

Now,
\[\pi_i(m_0, r - l) + \left\lceil \frac{5l + 10}{6} \right\rceil \geq \pi_i(m_0, r). \] \quad (3.39)

This ensures that the smallest powers of 5 dividing the coefficients of \(U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0}} \right) \) derive precisely from the sum
\[\frac{1}{(1 + 5y)^{5n_0 - \kappa}} \sum_{r \geq \left\lceil \frac{m_0 + \delta}{5} \right\rceil}^r h_i(m_0, n_0 - 5, r) \cdot 5^{\pi_i(m_0, r)} \cdot y^r
= U^{(i)} \left(\frac{y^{m_0}}{(1 + 5y)^{n_0 - 5}} \right). \] \quad (3.40)

Therefore, if our relation is established for \(1 \leq n \leq 5 \), then it must be true for all \(n \geq 6 \) as well.

We may now rearrange our sum and define a new discrete array in a manner similar to (3.29) to finish the proof. \(\square \)

Proof of Theorem 3.3 These relations arise as consequences of Lemmas 3.4, 3.5, provided that the cases for \(1 \leq m \leq 5, \ 1 \leq n \leq 5 \) are established. The computations needed to verify these relations are given in Sect. 5. See our Mathematica Supplement for the detailed computation. \(\square \)

As an additional consequence of Lemmas 3.4, 3.5, we have the following important result on the behavior of the coefficients in these expansions:
Corollary 3.6 For all \(n \in \mathbb{Z}_{\geq 1} \) we have:

\[
\begin{align*}
 h_0(1, n, 1) &\equiv 1 \pmod{5}, \\
 h_0(2, 5n - 4, 1) &\equiv 0 \pmod{5}, \\
 h_0(3, n, 1) &\equiv 1 \pmod{5}, \\
 h_0(1, n, 2) &\equiv 4 \pmod{5}, \\
 h_0(2, 5n - 4, 2) &\equiv 4 \pmod{5}, \\
 h_0(3, n, 2) &\equiv 4 \pmod{5}, \\
 h_0(2, 5n - 4, 3) &\equiv 1 \pmod{5}.
\end{align*}
\]

For all \(n \in \mathbb{Z}_{\geq 1} \) and \(1 \leq m \leq 3 \) we have:

\[
 h_1(m, n, 1) \equiv 1 \pmod{5}.
\]

Proof We will first prove (3.41)–(3.43). Let us reexamine (3.36), (3.37), (3.38). Notice that whenever (3.39) is strict, i.e.,

\[
 \pi_i(m_0, r - l) + \left\lfloor \frac{5l + 10}{6} \right\rfloor > \pi_i(m_0, r), \tag{3.49}
\]

we must have \(h_i(m_0, n, r) \equiv h_i(m_0, n - 5, r) \pmod{5} \). We, therefore, need only establish that (3.49) is true in all relevant cases. Thereafter, we can simply compute the relevant coefficients for five consecutive values of \(n \).

We note that for (3.37), \(r \geq 1 \) and \(l \geq 1 \). Because of this, \(r + l \geq 2 \), and (3.37) will contribute nothing to the linear coefficient. On the other hand, for (3.36), the only possibility is for \(l = 0 \) and \(r = 1 \). Because \(\left\lfloor \frac{5(0)+10}{6} \right\rfloor > 1 \), we easily get (3.49).

Therefore, we must have

\[
\begin{align*}
 h_0(1, n, 1) &\equiv h_0(1, n - 5, 1) \pmod{5}, \\
 h_0(2, n, 1) &\equiv h_0(2, n - 5, 1) \pmod{5}, \\
 h_0(3, n, 1) &\equiv h_0(3, n - 5, 1) \pmod{5}.
\end{align*}
\]

With our Mathematica Supplement https://www3.risc.jku.at/people/nsmoot/online3.nb, we find that

\[
 h_0(1, n, 1) \equiv h_0(3, n, 1) \equiv 1 \pmod{5} \text{ for } 1 \leq n \leq 5. \quad \text{Therefore, (3.41), (3.43) must be true for all } n. \quad \text{On the other hand, } h_0(2, n, 1) \text{ varies regularly by the residue class modulo } 5, \quad \text{and } h_0(2, n, 1) \equiv 0 \pmod{5} \text{ for } n \equiv 1 \pmod{5}.
\]

To prove (3.44), (3.45), (3.46), we note that we may directly compute \(\pi_0(m, r) \). Notice that the only way for \(r + l = 2 \) to be true is for \(r = l = 1 \) or \(r = 2 \) and \(l = 0 \).

For the first case, we have

\[
 \pi_0(1, 2 - 1) + \left\lfloor \frac{5(1)+10}{6} \right\rfloor = 1 + 2 = 3 > 1 = \pi_0(1, 1). \tag{3.50}
\]
\[
\pi_0(2, 2 - 1) + \left\lfloor \frac{5(1) + 10}{6} \right\rfloor = 1 + 2 = 3 > 1 = \pi_0(2, 1), \quad (3.51)
\]
\[
\pi_0(3, 2 - 1) + \left\lfloor \frac{5(1) + 10}{6} \right\rfloor = 1 + 2 = 3 > 0 = \pi_0(3, 1). \quad (3.52)
\]

Here, (3.39) is strict; for the second case, i.e., for \(r = 2 \) and \(l = 0 \), (3.39) follows immediately. Once again, we need only examine each case for five consecutive values of \(n \).

To prove (3.47), we take into account that there are three different ways for \(r + l = 3 \) to be true. Either \(r = 1 \) and \(l = 2 \), or \(r = 2 \) and \(l = 1 \), or \(r = 3 \), \(l = 0 \). We, therefore, have

\[
\pi_0(2, 3 - 2) + \left\lfloor \frac{5(2) + 10}{6} \right\rfloor = 1 + 3 = 4 > 1 = \pi_0(2, 1), \quad (3.53)
\]
\[
\pi_0(2, 3 - 1) + \left\lfloor \frac{5(1) + 10}{6} \right\rfloor = 1 + 2 = 3 > 1 = \pi_0(2, 2), \quad (3.54)
\]

and the inequality is again trivially true in the case that \(l = 0 \). Because the inequality holds in both cases, we can again simply examine each case for five consecutive values of \(n \).

Finally, to prove (3.48), we first note that for \(m \) fixed, we may use the same reasoning as was used to prove (3.42)–(3.43). To see how \(h_1(m, n, 1) \) (mod 5) varies with \(m \), let us reexamine (3.22). Notice that for \(m_0 \geq 6 \), \(U(i) \left(\frac{\gamma^{m_0}}{(1+5y)^{m_0}} \right) \) only possesses contributions for \(U(i) \left(\frac{y^{r+l}}{(1+5y)^{m_0}} \right) \), in which \(r \geq 1 \) and \(l \geq 1 \). In other words, for \(m \geq 6 \), no contribution to the coefficient of \(U(i) \left(\frac{y^1}{(1+5y)^r} \right) \) can be made.

As only five values of \(m \) will contribute to the coefficient that we want, we, therefore, only need to check (3.48) for \(1 \leq m \leq 5 \), and for \(1 \leq n \leq 5 \).

\[
\Box
\]

4 Main theorem

With the necessary relations established for \(U(i) \left(\frac{\gamma^m}{(1+5y)^m} \right) \), we can now work towards the main theorem. We begin with the following theorem:

Theorem 4.1

For every \(f \in V_0^{(0)} \cdot \frac{1}{5} \cdot U(0) \), \(f \in V_5^{(1)} \).

(4.1)

Proof Let \(f \in V_0^{(0)} \). Then we can express \(f \) as

\[
f = \frac{1}{(1+5y)^m} \sum_{m \geq 1} s(m) \cdot 5^\phi(m) \cdot y^m.
\]

Springer
Using Theorem 3.3, we write

\[U^{(0)}(f) = \sum_{m \geq 1} s(m) \cdot 5^{\phi(m)} \cdot U^{(0)} \left(\frac{y^m}{(1 + 5y)^n} \right) \] \hspace{1cm} (4.2)

\[= \frac{1}{(1 + 5y)^{5n-2}} \sum_{m \geq 1} \sum_{r \geq \lceil (m+2)/5 \rceil} s(m) \cdot h_0(m, n, r) 5^{\phi(m)+\pi_0(m, r)} \cdot y^r \] \hspace{1cm} (4.3)

\[= \frac{1}{(1 + 5y)^{5n-2}} \sum_{r \geq 1} \sum_{m \geq 1} s(m) \cdot h_0(m, n, r) 5^{\phi(m)+\pi_0(m, r)} \cdot y^r. \] \hspace{1cm} (4.4)

We examine \(\phi(m) + \pi_0(m, r) \) for \(r \geq \lceil (m + 2)/5 \rceil \) and \(m \geq 1 \):

For \(m = 1 \):

\[\phi(1) + \pi_0(1, r) = 0 + \left\lceil \frac{5r + 1}{6} \right\rceil \geq \theta(r) + 1. \]

For \(m = 2 \):

\[\phi(2) + \pi_0(2, r) = \begin{cases}
0 + \left\lceil \frac{5r + 1}{6} \right\rceil, & 1 \leq r \leq 2 \text{ or } r \geq 6, \\
0 + \left\lceil \frac{5r - 5}{6} \right\rceil, & 3 \leq r \leq 5.
\end{cases} \]

In both cases, \(\phi(2) + \pi_0(2, r) \geq \theta(r) + 1. \)

For \(m = 3 \):

\[\phi(3) + \pi_0(3, r) = 1 + \left\lceil \frac{5r - 5}{6} \right\rceil \geq \theta(r) + 1. \]

For \(m = 4 \):

\[\phi(4) + \pi_0(4, r) = 1 + \left\lceil \frac{5r - 6}{6} \right\rceil = \left\lceil \frac{5r}{6} \right\rceil \geq \theta(r) + 1 \]

(remembering that \(m \geq 4 \) cannot contribute to the coefficient of \(U^{(0)} \left(\frac{y^1}{(1 + 5y)^n} \right) \) since \(\lceil (4 + 2)/5 \rceil = 2 \)).

For \(m \geq 5 \):

\[\phi(m) + \pi_0(m, r) = \left\lceil \frac{5m - 5}{6} \right\rceil - 1 + \left\lceil \frac{5r - m - 2}{6} \right\rceil \]

\[\geq \left\lceil \frac{5r + 4m - 12}{6} \right\rceil - 1 \]

\[= \left\lceil \frac{5r + 4m - 18}{6} \right\rceil \]

\[\geq \left\lceil \frac{5r + 2}{6} \right\rceil \]
\[\left\lfloor \frac{5r - 4}{6} \right\rfloor + 1 \geq \theta(r) + 1. \]

Notice that, in all cases,
\[\phi(m) + \pi_0(m, r) \geq \theta(r) + 1, \]
so that \(\frac{1}{5} U^{(0)}(f) \in \mathcal{V}_{5n-2}. \)

Theorem 4.2 Let \(f \in \mathcal{V}_n^{(1)} \) and denote
\[U^{(1)}(f) = \sum_{r \geq 1} \tilde{s}(r) \frac{y^r}{(1 + 5y)^{5n-4}}. \] (4.5)

Then
\[\frac{1}{5} \left(U^{(1)}(f) - \frac{1}{2} \tilde{s}(1) \frac{y}{(1 + 5y)^{5n-4}} \right) \in \mathcal{V}_{5n-4}. \] (4.6)

Proof Let \(f \in \mathcal{V}_n^{(1)} \). Then we can express \(f \) as
\[f = \frac{1}{(1 + 5y)^n} \sum_{m \geq 1} s(m) \cdot 5^{\theta(m)} \cdot y^m. \]

We write
\[U^{(1)}(f) = \sum_{m \geq 1} s(m) \cdot 5^{\theta(m)} \cdot U^{(1)} \left(\frac{y^m}{(1 + 5y)^n} \right) \] (4.7)
\[= \frac{1}{(1 + 5y)^{5n-4}} \sum_{m \geq 1} \sum_{r \geq [m/5]} s(m) \cdot h_1(m, n, r) 5^{\theta(m) + \pi_1(m, r)} \cdot y^r \] (4.8)
\[= \frac{1}{(1 + 5y)^{5n-4}} \sum_{r \geq 1} \sum_{m \geq 1} s(m) \cdot h_1(m, n, r) 5^{\theta(m) + \pi_1(m, r)} \cdot y^r. \] (4.9)

Let us denote the coefficient of \(\frac{y^r}{(1+5y)^{5n-4}} \) by \(\tilde{s}(r) \). Now we examine the 5-adic valuation of each component.

Beginning with \(1 \leq m \leq 2 \),
\[\theta(1) + \pi_1(1, r) = \begin{cases}
0, & r = 1, \\
3, & r = 3, \\
\left\lfloor \frac{5r+1}{6} \right\rfloor, & r = 2 \text{ or } r \geq 4.
\end{cases} \] (4.10)
With $m = 3$,

$$
\theta(3) + \pi_1(3, r) = \begin{cases}
0, & r = 1, \\
2, & r = 2, \\
\left\lfloor \frac{5r-2}{6} \right\rfloor, & r = 3 \text{ or } r \geq 4.
\end{cases}
$$

(4.11)

Notice that for $1 \leq m \leq 3$, $\theta(m) + \pi_1(m, r) \geq \phi(r) + 1$ except when $r = 1$.

Finally, for $m \geq 4$,

$$
\theta(m) + \pi_1(m, r) = \left\lfloor \frac{5m-5}{6} \right\rfloor - 1 + \left\lfloor \frac{5r-m+1}{6} \right\rfloor \geq \left\lfloor \frac{5r+4m-9}{6} \right\rfloor - 1 \geq \left\lfloor \frac{5r-5}{6} \right\rfloor + \left\lfloor \frac{4m-4}{6} \right\rfloor - 1 \geq \phi(r) + 1.
$$

(4.12) \quad (4.13) \quad (4.14) \quad (4.15) \quad (4.16)

We, therefore, have a 5-adic increase in the valuation of each component of $U^{(1)} (f)$ except for the coefficient of $\frac{y}{(1 + 5y)^{5n-4}}$. If we remove this component from $U^{(1)} (f)$ and then divide by 5, what remains is indeed a member of $V^{(0)}_{5n-4}$.

Our last two theorems are very nearly sufficient to give us the 5-adic increase we need, with the notable exception of the components which contribute to the coefficient of $\frac{y}{(1 + 5y)^{5n-4}}$. Indeed, the individual components need not be divisible by 5 at all.

We, therefore, need one additional condition for our purposes.

Definition 4.3

$$
V^{(1)}_n := \left\{ \frac{1}{(1 + 5y)^n} \sum_{m \geq 1} s(m) \cdot 5^{\theta(m)} \cdot y^m \in V^{(1)}_n : \sum_{m=1}^{3} s(m) \equiv 0 \ mod \ 5 \right\}.
$$

(4.17)

This small additional condition is at last sufficient for our purposes. Not only do we need to prove that this allows 5-adic convergence upon application of $U^{(1)}$, but that the condition is stable, i.e., that

$$
U^{(0)} \circ U^{(1)} \left(V^{(1)}_n \right) \subseteq W^{(1)}_{25n-22}.
$$
Theorem 4.4 Suppose \(f \in \mathcal{W}_n^{(1)} \). Then

\[
\frac{1}{5} \left(U^{(1)}(f) \right) \in \mathcal{W}_{5n-4}^{(0)},
\]

\[
\frac{1}{5^2} \left(U^{(0)} \circ U^{(1)}(f) \right) \in \mathcal{W}_{25n-22}^{(1)}.
\]

Proof Let \(f \in \mathcal{W}_n^{(1)} \) such that

\[
f = \frac{1}{(1+5y)^n} \sum_{m \geq 1} s(m) \cdot 5^\theta(m) \cdot y^m.
\]

We then have

\[
U^{(1)}(f) = \frac{1}{(1+5y)^{5n-4}} \sum_{m \geq 1} \sum_{r \geq \lfloor m/5 \rfloor} s(m) \cdot h_1(m, n, r) \cdot 5^\theta(m) + \pi_1(m, r) \cdot y^r.
\]

\[
= \frac{1}{(1+5y)^{5n-4}} t(1) \cdot 5^{\phi(1)} \cdot y + \frac{1}{(1+5y)^{5n-4}} \sum_{r \geq 2} t(r) \cdot 5^{\phi(r)+1} \cdot y^r,
\]

with

\[
t(r) = \begin{cases}
\sum_{1 \leq m \leq 5} s(m) \cdot h_1(m, n, 1) \cdot 5^\theta(m) + \pi_1(m, 1) - \phi(r), & r = 1, \\
\sum_{1 \leq m \leq 5r} s(m) \cdot h_1(m, n, r) \cdot 5^\theta(m) + \pi_1(m, r) - \phi(r)-1, & r \geq 2.
\end{cases}
\]

We first prove (4.18). Notice that

\[
t(1) = \sum_{m=1}^{5} s(m) \cdot h_1(m, n, 1) \cdot 5^\theta(m) + \pi_1(m, 1),
\]

since \(\phi(1) = 0 \). Moreover, \(\theta(4), \theta(5) \geq 1 \), and \(\theta(m) + \pi_1(m, 1) = 0 \) for \(1 \leq m \leq 3 \), so that

\[
t(1) \equiv \sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \pmod{5}.
\]

Taking advantage of (3.48), we have

\[
t(1) \equiv \sum_{m=1}^{3} s(m) \equiv 0 \pmod{5}.
\]

If we were now to write

\[
\tilde{t}(r) := \begin{cases}
\frac{1}{5} \cdot t(1) \in \mathbb{Z}, & r = 1, \\
t(r), & r \neq 1,
\end{cases}
\]
then we have

\[U^{(1)}(f) = \frac{1}{(1 + 5y)^{5n - 4}} \sum_{r \geq 1} \tilde{t}(r) \cdot 5^{\theta(r) + 1} \cdot y^r, \]

so that

\[\frac{1}{5} \left(U^{(1)}(f) \right) \in \mathcal{V}_{5n - 4}^{(0)}. \]

We now prove (4.19). Taking \(U^{(0)} \) and dividing by 5², we find

\[\frac{1}{5^2} \cdot \left(U^{(0)} \circ U^{(1)}(f) \right) = \frac{1}{(1 + 5y)^{25n - 22}} \times \sum_{r \geq 1} \sum_{w \geq [(r+2)/5]} \tilde{t}(r) \cdot h_0(r, 5n - 4, w) \cdot 5^{\pi_0(r, w) + \phi(r) - 1} \cdot y^w \]

with

\[q(w) = \frac{5w - 2}{5w - 2} \sum_{r=1}^{5w - 2} \tilde{t}(r) \cdot h_0(r, 5n - 4, w) \cdot 5^{\pi_0(r, w) + \phi(r) - \theta(w) - 1} \]

\[= \sum_{r=1}^{5w - 2} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, w) \cdot 5^{\theta(m) + \pi_1(m, r) + \pi_0(r, w) - \theta(w) - 2}. \]

In particular, since \(\theta(w) = 0 \) for 1 ≤ w ≤ 3,

\[q(1) = \sum_{r=1}^{3} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, 1) \cdot 5^{\theta(m) + \pi_1(m, r) + \pi_0(r, 1) - 2}, \]

\[q(2) = \sum_{r=1}^{8} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, 2) \cdot 5^{\theta(m) + \pi_1(m, r) + \pi_0(r, 2) - 2}, \]

\[q(3) = \sum_{r=1}^{13} \sum_{m=1}^{5r} s(m) \cdot h_1(m, n, r) \cdot h_0(r, 5n - 4, 3) \cdot 5^{\theta(m) + \pi_1(m, r) + \pi_0(r, 3) - 2}. \]

We want to show that \(q(1) + q(2) + q(3) \equiv 0 \pmod{5} \). In the first place, we may remove all cases in which \(\theta(m) + \pi_1(m, r) + \pi_0(r, w) - 2 \geq 1 \). A quick estimation shows that

\[\theta(m) + \pi_1(m, r) + \pi_0(r, w) - 2 \]
\[
\begin{align*}
&\geq \left\lfloor \frac{5m - 5}{6} \right\rfloor - 1 + \left\lfloor \frac{5r - m + 1}{6} \right\rfloor + \left\lfloor \frac{5r - w - 2}{6} \right\rfloor - 2 \\
&\geq \left\lfloor \frac{5r + 4m - 9}{6} \right\rfloor + \left\lfloor \frac{5r - w - 2}{6} \right\rfloor - 3 \\
&\geq 2 \left\lfloor \frac{5r - 5}{6} \right\rfloor + \left\lfloor \frac{4m - 4}{6} \right\rfloor - 3 \\
&\geq 1,
\end{align*}
\]

for \(m \geq 7 \) or \(r \geq 4 \). We, therefore, need to examine the cases for \(1 \leq m \leq 6 \) and \(1 \leq r \leq 3 \). We provide three tables in “Appendix I” which compute \(\theta(m) + \pi_1(m, r) + \pi_0(r, w) - 2 \geq 1 \) over this range.

Examining Table 1, we see that we get a value of 0 for \((r, m) = (1, 4), (2, 1), (2, 2), (3, 3)\).

Moreover, we get a value of \(-1\) for \((r, m) = (1, 1), (1, 2), (1, 3)\).

Examining Table 2, we see that we get a value of 0 for \((r, m) = (1, 4), (2, 1), (2, 2), (3, 3)\), and a value of \(-1\) for \((r, m) = (1, 1), (1, 2), (1, 3)\).

Finally, examining Table 3, we see that we get a value of 0 for \((r, m) = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2)\), and no negative values.

Taking \(q(1) + q(2) + q(3) \pmod{5} \), we, therefore, have

\[
q(1) + q(2) + q(3) \\
\equiv \frac{1}{5} \cdot \sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \cdot h_0(1, 5n - 4, 1) \\
+ s(4) \cdot h_1(4, n, 1) \cdot h_0(1, 5n + 4, 1) \\
+ \sum_{m=1}^{2} s(m) \cdot h_1(m, n, 2) \cdot h_0(2, 5n - 4, 1) \\
+ s(3) \cdot h_1(3, n, 3) \cdot h_0(3, 5n - 4, 1)
\]
\[+ \frac{1}{5} \cdot \sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \cdot h_0(1, 5n - 4, 2) \\
+ s(4) \cdot h_1(4, n, 1) \cdot h_0(1, 5n + 4, 2) \\
+ \sum_{m=1}^{2} s(m) \cdot h_1(m, n, 2) \cdot h_0(2, 5n - 4, 2) \\
+ s(3) \cdot h_1(3, n, 3) \cdot h_0(3, 5n - 4, 2) \\
+ \sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \cdot h_0(1, 5n - 4, 3) \\
+ \sum_{m=1}^{2} s(m) \cdot h_1(m, n, 2) \cdot h_0(2, 5n - 4, 3) \pmod{5} \]

Rearranging, we have

\[
q(1) + q(2) + q(3) \\
\equiv \frac{1}{5} \cdot \left(\sum_{j=1}^{2} h_0(1, 5n - 4, j) \right) \cdot \left(\sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \right) \pmod{5} \tag{4.20}
\]

\[
+ h_0(1, 5n - 4, 3) \cdot \left(\sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \right) \pmod{5} \tag{4.21}
\]

\[
+ \left(\sum_{j=1}^{2} h_0(1, 5n - 4, j) \right) \cdot s(4) \cdot h_1(4, n, 1) \pmod{5} \tag{4.22}
\]

\[
+ \left(\sum_{j=1}^{3} h_0(2, 5n - 4, j) \right) \cdot \sum_{m=1}^{2} s(m) \cdot h_1(m, n, 2) \pmod{5} \tag{4.23}
\]

\[
+ \left(\sum_{j=1}^{2} h_0(3, 5n - 4, j) \right) \cdot s(3) \cdot h_1(3, n, 3) \pmod{5} \pmod{5} \tag{4.24}
\]

It now remains to demonstrate that this expression is \(0 \pmod{5}\).

We have placed parentheses around each sum which is divisible by 5. In the first place, \(h_1(m, n, 1) \equiv 1 \pmod{5}\) by (3.48). Therefore,

\[
\sum_{m=1}^{3} s(m) \cdot h_1(m, n, 1) \equiv \sum_{m=1}^{3} s(m) \equiv 0 \pmod{5},
\]

\(\heartsuit\) Springer
since \(f \in \mathcal{W}_n^{(1)} \). Moreover,
\[
\sum_{j=1}^{2} h_0(1, 5n - 4, j) \equiv 0 \pmod{5}
\]
by (3.41), (3.44). Therefore, (4.20) is 0 (mod 5).

In like manner, we have the parenthesized sums in (4.21) equivalent to 0 (mod 5) by (3.48); (4.22) equivalent to 0 (mod 5) by (3.41) and (3.44); (4.23) equivalent to 0 (mod 5) by (3.42), (3.45), and (3.47); (4.24) equivalent to 0 (mod 5) by (3.43) and (3.46).

We then have
\[
\frac{1}{5^2} \cdot \left(U^{(0)} \circ U^{(1)} (f) \right) = \frac{1}{(1 + 5y)^{25n-22} 120y + 1805y^2 + 12, 050y^3 + 39, 500y^4 + 50, 000y^5}\]
with \(q(1) + q(2) + q(3) \equiv 0 \pmod{5} \), i.e.,
\[
\frac{1}{5^2} \cdot \left(U^{(0)} \circ U^{(1)} (f) \right) \in \mathcal{W}^{(1)}_{25n-22}.
\] (4.25)

At last, we have enough to prove Theorem 1.3:

Proof of Theorem 1.3 In Sect. 5 we will demonstrate that
\[
L_1 = \frac{F}{(1 + 5y)^3} \cdot \left(120y + 1805y^2 + 12, 050y^3 + 39, 500y^4 + 50, 000y^5 \right)
= \frac{5 \cdot F}{(1 + 5y)^{\psi(1)}} \cdot \left(24y + 361y^2 + 2410y^3 + 7900y^4 + 10, 000y^5 \right).
\]

Notice that this implies that
\[
\frac{(1 + 5y)^{\psi(1)}}{5 \cdot F} \cdot L_1 \in \mathbb{Z}[y],
\]
giving us the first case of Theorem 1.3. More specifically, by examining the coefficients of \(\frac{(1 + 5y)^{\psi(1)}}{5 \cdot F} \cdot L_1 \), we know that
\[
\frac{1}{5 \cdot F} \cdot L_1 = f_1 \in \mathcal{W}_3^{(1)}.
\]

Suppose that for some \(\alpha \in \mathbb{Z}_{\geq 1} \), we have
\[
\frac{1}{5^{2\alpha - 1} \cdot F} \cdot L_{2\alpha - 1} \in \mathcal{W}_n^{(1)},
\]
for some \(n \in \mathbb{Z}_{\geq 1} \). Then

\[
L_{2\alpha-1} = F \cdot 5^{2\alpha-1} \cdot f_{2\alpha-1},
\]

(4.26)

with \(f_{2\alpha-1} \in \mathcal{W}_n^{(1)} \). Now,

\[
L_{2\alpha} = U_5 (L_{2\alpha-1}) = U_5 \left(F \cdot 5^{2\alpha-1} \cdot f_{2\alpha-1} \right) = F \cdot 5^{2\alpha-1} \cdot U^{(1)} (f_{2\alpha-1}).
\]

(4.27)

By (4.18) of Theorem 4.4, we know that there exists some \(f_{2\alpha} \in \mathcal{V}_{5n-4}^{(0)} \) such that

\[
U^{(1)} (f_{2\alpha-1}) = 5 \cdot f_{2\alpha}.
\]

(4.28)

Therefore,

\[
L_{2\alpha} = F \cdot 5^{2\alpha} \cdot f_{2\alpha}.
\]

(4.29)

Moreover,

\[
L_{2\alpha+1} = U_5 (Z \cdot L_{2\alpha}) = U_5 \left(F \cdot 5^{2\alpha} \cdot Z \cdot f_{2\alpha} \right) = F \cdot 5^{2\alpha} \cdot U^{(0)} (f_{2\alpha}).
\]

(4.30)

By (4.19) of Theorem 4.4, we know that there exists some \(f_{2\alpha+1} \in \mathcal{V}_{25n-22}^{(1)} \) such that

\[
U^{(0)} (f_{2\alpha}) = 5 \cdot f_{2\alpha+1}.
\]

(4.31)

Therefore,

\[
L_{2\alpha+1} = F \cdot 5^{2\alpha+1} \cdot f_{2\alpha+1}.
\]

(4.32)

This shows that

\[
\frac{(1+5y)^{n(\alpha)}}{5^\alpha \cdot F} \cdot L_{\alpha} \in \mathbb{Z}[y],
\]

for some integer sequence \(n(\alpha) \). We now verify that \(n(\alpha) = \psi(\alpha) \). It is a fact of elementary number theory that for all \(\alpha \geq 1 \),

\[
5^{2\alpha-1} \equiv 5 \pmod{12},
\]

\[
5^{2\alpha} \equiv 1 \pmod{12},
\]

and therefore that

\[
\left\lceil \frac{5^{2\alpha-1}}{12} \right\rceil = \frac{5^{2\alpha-1}}{12} - \frac{5}{12}.
\]
\[
\left\lfloor \frac{s^{2\alpha}}{12} \right\rfloor = \frac{s^{2\alpha}}{12} - \frac{1}{12}.
\]

Let us suppose, then, that

\[
\frac{L_{2\alpha-1}}{s^{2\alpha-1} \cdot F} \in W_{\psi(2\alpha-1)}^{(1)}.
\]

On applying \(U^{(1)}\), Theorem 3.3 shows that our localizing factor \((1 + 5y)^{\psi(2\alpha-1)}\) increases to \((1 + 5y)^{s^{2\alpha} \psi(2\alpha-1)^{-4}}\). We, therefore, have

\[
5 \cdot \psi(2\alpha - 1) - 4 = 5 \cdot \left(\left\lfloor \frac{s^{2\alpha}}{12} \right\rfloor + 1 \right) - 4
\]
\[
= 5 \cdot \left(\frac{s^{2\alpha}}{12} - \frac{1}{12} + 1 \right) - 4
\]
\[
= \frac{s^{2\alpha+1}}{12} - \frac{5}{12} + 1
\]
\[
= \left\lfloor \frac{s^{2\alpha+1}}{12} \right\rfloor + 1
\]
\[
= \psi(2\alpha).
\]

Thus,

\[
\frac{L_{2\alpha}}{s^{2\alpha} \cdot F} \in V_{\psi(2\alpha)}^{(0)}.
\]

In similar fashion, it can be proved that if

\[
\frac{L_{2\alpha}}{s^{2\alpha} \cdot F} \in V_{\psi(2\alpha)}^{(0)},
\]

then by Theorem 3.3, applying \(U^{(0)}\) will increase the power of our localizing factor from \((1 + 5y)^{\psi(2\alpha)}\) to \((1 + 5y)^{s^{2\alpha} \psi(2\alpha)^{-2}}\), and it can be quickly proved that

\[
5 \cdot \psi(2\alpha) - 2 = \psi(2\alpha + 1).
\]

This is compatible with the increase in the localizing powers in Theorem 3.3. Finally, \(\psi(1) = 3\) is the localizing power for \(L_1\).

5 Initial relations

For \(i\) fixed, our theorem for expanding \(U^{(i)}\left(\frac{y^m}{(1+5y)^n} \right)\) requires 25 initial relations to be justified. However, these relations are ultimately dependent on far fewer relations,
since one can very quickly verify that

$$U^{(i)} \left(\frac{y^m}{(1+5y)^n} \right) = \frac{1}{5^m} \cdot U^{(i)} \left(\frac{(x-1)^m}{x^n} \right) \quad (5.1)$$

$$= \frac{1}{5^m} \sum_{r=0}^{m} (-1)^{m-r} \binom{m}{r} \cdot U^{(i)} \left(x^{r-n} \right) \quad (5.2)$$

$$= \frac{1}{5^m} \sum_{r=0}^{m} (-1)^{m-r} \binom{m}{r} \cdot U^{(i)} \left((1+5y)^{r-n} \right). \quad (5.3)$$

We can very quickly compute any value of $U^{(i)} \left(\frac{y^m}{(1+5y)^n} \right)$, provided we have exact expressions for $U^{(i)} \left((1+5y)^r \right)$ for $-n \leq r \leq m-n$.

To compute $U^{(i)} \left(\frac{y^m}{(1+5y)^n} \right)$ for $1 \leq m, n \leq 5$, we need to have expressions for $U^{(i)} \left((1+5y)^r \right)$ for $-5 \leq r \leq 4$. However, we have the degree 5 modular equation for $x = 1 + 5y$, which yields

$$U^{(i)} \left((1+5y)^n \right) = -\sum_{k=0}^{4} b_k(\tau) \cdot U^{(i)} \left((1+5y)^{k+n-5} \right). \quad (5.4)$$

Moreover, for $n \geq 0$ we obviously have

$$U^{(i)} \left((1+5y)^n \right) = \sum_{k=0}^{n} \binom{n}{k} \cdot 5^k \cdot U^{(i)} \left(y^k \right), \quad (5.5)$$

and y follows a degree 5 modular equation.

Therefore, in order to determine $U^{(i)} \left(\frac{y^m}{(1+5y)^n} \right)$ for any $m, n \in \mathbb{Z}$ and i fixed at 0 or 1, we only need to determine relations for $U^{(i)} \left(y^k \right)$ for five consecutive values of k. For both values of i, that makes 10 relations. Once these relations are established, verification of the 50 initial relations follows as a relatively simple, if somewhat tedious, computational exercise.

Theorem 5.1 The relations from Theorem 3.3, together with the congruence conditions of Corollary 3.6, hold for $1 \leq m \leq 5$, and $1 \leq n \leq 5$.

The calculation is straightforward, but we detail it in the Mathematica Supplement to this paper, which can be found online at https://www3.risc.jku.at/people/nsmooot/online3.nb.

We choose to justify these ten relations using finiteness conditions from the theory of modular functions.

This approach is useful, given that the right-hand sides of eight of the ten relations below are already modular functions with a pole only at a single cusp of $X_0(10)$ (the remaining two can become such functions with a slight adjustment). The remaining task is merely to verify that the left-hand side of each relation is also a modular function.
with a pole at the same cusp, and then to compare the principal parts from either side. Because it is slightly easier to expand both sides of each relation with respect to the pole at \(\infty \), we will divide by a sufficient power of \(y \) to induce a pole at \(\infty \) rather than at 0.

We will provide some, though not all, details to our cusp analysis computations here. The full computations are detailed in our Online Mathematica Supplement.

We preface our results with a brief overview of the theory of modular forms. For a classic review of the theory, see [8]. For a more modern treatment, see [5].

5.1 Preliminaries

We denote \(\mathbb{H} \) as the upper half complex plane, and \(\hat{\mathbb{H}} := \mathbb{H} \cup \{ \infty \} \cup \mathbb{Q} \). We also define \(\hat{\mathbb{Q}} := \mathbb{Q} \cup \{ \infty \} \), with \(a/0 = \infty \) for any \(a \neq 0 \).

We denote \(\text{SL}(2, \mathbb{Z}) \) as the set of all \(2 \times 2 \) integer matrices with determinant 1. For any given \(N \in \mathbb{Z}_{\geq 1} \), let

\[
\Gamma_0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}(2, \mathbb{Z}) : N|c \right\}.
\]

We define a group action

\[
\Gamma_0(N) \times \hat{\mathbb{H}} \longrightarrow \hat{\mathbb{H}},
\]

\[
\left(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \tau \right) \longrightarrow \frac{a\tau + b}{c\tau + d}.
\]

If \(\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \) and \(\tau \in \hat{\mathbb{H}} \), then we write

\[
\gamma \tau := \frac{a\tau + b}{c\tau + d}.
\]

The orbits of this action are defined as

\[
[\tau]_N := \{ \gamma \tau : \gamma \in \Gamma_0(N) \}.
\]

Definition 5.2 For any \(N \in \mathbb{Z}_{\geq 1} \), we define the classical modular curve of level \(N \) as the set of all orbits of \(\Gamma_0(N) \) applied to \(\hat{\mathbb{H}} \):

\[
X_0(N) := \left\{ [\tau]_N : \tau \in \hat{\mathbb{H}} \right\}.
\]

The group action applied to \(\hat{\mathbb{H}} \) can be restricted to \(\hat{\mathbb{Q}} \); that is, for every \(\tau \in \hat{\mathbb{Q}} \), \([\tau]_N \subseteq \hat{\mathbb{Q}} \). There are only a finite number of such orbits [5, Sect. 3.8].

Definition 5.3 For any \(N \in \mathbb{Z}_{\geq 1} \), the cusps of \(X_0(N) \) are the orbits of \(\Gamma_0(N) \) applied to \(\hat{\mathbb{Q}} \).
The detailed properties of \(X_0(N) \), including its Riemann surface structure, are given in [5, Chaps. 2, 3]. For want of space, we will only add that \(X_0(N) \) possesses a unique nonnegative integer \(g (X_0(N)) \) called its genus. This number is referenced in the Introduction, and may be computed using Theorem 3.1.1 of [5, Chap. 3]. For an understanding of the connection of the genus to module rank, e.g., via the Paule–Radu method, see Sect. 6.

Definition 5.4 Let \(f : \mathbb{H} \longrightarrow \mathbb{C} \) be holomorphic on \(\mathbb{H} \). Then \(f \) is a weakly holomorphic modular form of weight \(k \in \mathbb{Z} \) on \(\Gamma_0(N) \) if the following properties are satisfied for every \(\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}(2, \mathbb{Z}) \):

1. For \(f \) not the 0 function, we have
 \[
 f(\gamma \tau) = (c\tau + d)^k \sum_{n=n_\gamma}^{\infty} \alpha_\gamma(n)q^{n \gcd(c^2, N)/N},
 \]
 with \(n_\gamma \in \mathbb{Z} \), and \(\alpha_\gamma(n_\gamma) \neq 0 \). If \(n_\gamma \geq 0 \), then \(f \) is holomorphic at the cusp \([a/c]_N\). Otherwise, \(f \) has a pole of order \(n_\gamma \), and principal part
 \[
 -\sum_{n=n_\gamma}^{-1} \alpha_\gamma(n)q^{n \gcd(c^2, N)/N}, \quad (5.6)
 \]
 at the cusp \([a/c]_N\).

2. If \(\gamma \in \Gamma_0(N) \), we have \(f(\gamma \tau) = (c\tau + d)^k f(\tau) \).

We refer to \(\text{ord}_{a/c}^{(N)}(f) := n_\gamma(f) \) as the order of \(f \) at the cusp \([a/c]_N\). If \(f \) is holomorphic at every cusp, then \(f \) is a holomorphic modular form. If \(k = 0 \), then \(f \) is a modular function.

We now define the relevant sets of all modular functions:

Definition 5.5 Let \(\mathcal{M}_k (\Gamma_0(N)) \) be the set of all weight \(k \) holomorphic modular forms on \(\Gamma_0(N) \), and let \(\mathcal{M}(\Gamma_0(N)) \) be the set of all modular functions on \(\Gamma_0(N) \), and \(\mathcal{M}^{a/c} (\Gamma_0(N)) \subset \mathcal{M}(\Gamma_0(N)) \) to be those modular functions on \(\Gamma_0(N) \) with a pole only at the cusp \([a/c]_N\). These are all commutative algebras with 1, and standard addition and multiplication [14, Sect. 2.1].

Due to its precise symmetry on \(\Gamma_0(N) \), any modular function \(f \in \mathcal{M}(\Gamma_0(N)) \) induces a well-defined function

\[
\hat{f} : X_0(N) \longrightarrow \mathbb{C} \cup \{\infty\} \\
: [\tau]_N \longrightarrow f(\tau).
\]

The notions of pole order and cusps of \(f \) used in Definition 5.4 have been constructed so as to coincide with these notions applied to \(\hat{f} \) on \(X_0(N) \). In particular, (5.6) represents
the principal part of \hat{f} in local coordinates near the cusp $[a/c]_N$. Notice that as $\tau \to i\infty$, we must have $\gamma\tau \to a/c$, and $q \to 0$.

Because f is holomorphic on \mathbb{H} by definition, any possible poles for \hat{f} must be found for $[\tau]_N \subseteq \mathbb{Q}$. The number and order of these poles is of paramount importance to us.

We now give an extremely important result [9, Theorem 1.37] in the general theory of Riemann surfaces:

Theorem 5.6 Let X be a compact Riemann surface, and let $\hat{f} : X \to \mathbb{C}$ be analytic on all of X. Then \hat{f} must be a constant function.

The importance of this theorem cannot be overstated. As an immediate consequence we have

Corollary 5.7 For a given $N \in \mathbb{Z}_{\geq 1}$, if $f \in \mathcal{M} (\Gamma_0(N))$ has no poles at any cusp of $\Gamma_0(N)$, then f must be a constant.

This is immensely useful for verifying that two modular functions over the same space are equivalent. For example, let us take $f, g \in \mathcal{M}_\infty (\Gamma_0(N))$. Then this means that f, g both have principal parts only at a single cusp.

If these principal parts of each function match, then $f - g \in \mathcal{M} (\Gamma_0(N))$ can have no poles at any cusp. This implies that $\hat{f} - \hat{g}$ is analytic on the whole of $X_0(N)$, which forces $\hat{f} - \hat{g}$, and therefore, $f - g$, to be a constant. If the constants of f and g also match, then $f - g = 0$, i.e., $f = g$.

We now give two key theorems that will prove useful in checking the modularity of certain functions. We will use Dedekind’s eta function [8, Chap. 3]:

$$\eta(\tau) := e^{\pi i \tau/12} \prod_{n=1}^{\infty} \left(1 - e^{2\pi in\tau}\right).$$

The first is a theorem by Newman [10, Theorem 1]:

Theorem 5.8 Let $f = \prod_{\delta | N} \eta(\delta \tau)^{\hat{r}_\delta}$, with $\hat{r} = (r_\delta)_{\delta | N}$ an integer-valued vector, for some $N \in \mathbb{Z}_{\geq 1}$. Then $f \in \mathcal{M} (\Gamma_0(N))$ if and only if the following apply:

1. $\sum_{\delta | N} r_\delta = 0$;
2. $\sum_{\delta | N} \delta r_\delta \equiv 0 \pmod{24}$;
3. $\sum_{\delta | N} N r_\delta \equiv 0 \pmod{24}$;
4. $\prod_{\delta | N} \delta^{\mid r_\delta \mid}$ is a perfect square.

To study the order of an eta quotient at a given cusp, we make use of a theorem that can be found in [14, Theorem 23], generally attributed to Ligozat:

Theorem 5.9 If $f = \prod_{\delta | N} \eta(\delta \tau)^{r_\delta} \in \mathcal{M} (\Gamma_0(N))$, then the order of f at the cusp $[a/c]_N$ is given by the following:

$$\text{ord}_{[a/c]_N} (f) = \frac{N}{24 \gcd (c^2, N)} \sum_{\delta | N} r_\delta \frac{\gcd (c, \delta)^2}{\delta}.$$
5.2 Computing the initial cases

Despite its apparent recondite nature, the theory above imposes various finiteness conditions which can be used to a computational advantage. Our initial relations consist of

\[U^{(i)}(y^l) = p_{i,l}(y) \in \mathbb{Z}[y], \quad (5.7) \]

for \(1 \leq l \leq 4 \), and

\[(1 + 5y) \cdot U^{(i)}(1) = p_{i,0}(y) \in \mathbb{Z}[y] \quad (5.8) \]

(in both cases, \(0 \leq i \leq 1 \)).

Recalling the definition of \(U^{(i)} \), and multiplying through by \(F \), the relations have the form

\[U_5 \left(F(\tau) \cdot Z(\tau)^{1-i} \cdot y(\tau)^l \right) = F(\tau) \cdot p_{i,l}(y), \quad (5.9) \]

\[(1 + 5y) \cdot U_5 \left(F(\tau) \cdot Z(\tau)^{1-i} \right) = F(\tau) \cdot p_{i,0}(y). \quad (5.10) \]

Using Newman’s theorem, we can prove that

\[y \in \mathcal{M}(\Gamma_0(10)) \]
\[Z \in \mathcal{M}(\Gamma_0(50)). \]

More difficult is the function \(F \), which is a modular form of weight 2 [6, Corollary 2.3]. We want to convert \(F \) to modular functions. We have

\[L_0(\tau) := 2E_2(2\tau) - E_2(\tau), \]

so that

\[F(\tau) := \frac{1}{24} (25L_0(5\tau) - L_0(\tau)). \]

Now, through [5, Sect. 1.2] and [13, Eq. (83.5)] it can be shown that

\[L_0(\tau) = 2\theta_3(\tau)^4 - \theta_4(\tau)^4, \quad (5.11) \]

in which

\[\theta_3(\tau) = \sum_{n=-\infty}^{\infty} q^n, \]
\[\theta_4(\tau) = \sum_{n=-\infty}^{\infty} (-1)^n q^n, \]
are Jacobi’s theta functions. Moreover, these functions can be expanded [13, Sect. 78] so that

\[L_0 = 2 \frac{(q^2; q^2)^{20}_\infty}{(q; q)^8_\infty (q^4; q^4)^8_\infty} - \frac{(q; q)^8_\infty}{(q^2; q^2)^4_\infty}. \]

(5.12)

Define

\[\phi(\tau) := \frac{\eta(2\tau)^4}{\eta(\tau)^8} = \frac{(q^2; q^2)^4_\infty}{(q; q)^8_\infty}. \]

From here, we can show that

\[\phi(\tau) \cdot L_0(\tau) \in \mathcal{M}(\Gamma_0(4)) \]

by applying Newman’s theorem to

\[\frac{(q^2; q^2)^4_\infty}{(q; q)^8_\infty}, \frac{(q^2; q^2)^{20}_\infty}{(q; q)^8_\infty (q^4; q^4)^8_\infty}, \frac{(q^2; q^2)^4_\infty}{(q; q)^8_\infty}, \frac{(q^2; q^2)^4_\infty}{(q^2; q^2)^4_\infty}. \]

Similarly, by Newman’s theorem again,

\[\phi(\tau) \cdot L_0(5\tau) \in \mathcal{M}(\Gamma_0(20)), \]
\[\phi(5\tau) \cdot L_0(\tau) \in \mathcal{M}(\Gamma_0(20)), \]
\[\phi(5\tau) \cdot L_0(5\tau) \in \mathcal{M}(\Gamma_0(20)). \]

This shows that

\[\phi(\tau) \cdot F(\tau) \in \mathcal{M}(\Gamma_0(20)), \]
\[\phi(5\tau) \cdot F(\tau) \in \mathcal{M}(\Gamma_0(20)). \]

Therefore, we can multiply either side of (5.9), (5.10) by \(\phi(\tau) \). Our left-hand sides now have the form

\[\phi(\tau) \cdot U_5 \left(F(\tau) \cdot Z(\tau)^{1-i} \cdot y(\tau)^l \right) = U_5 \left(\phi(5\tau) F(\tau) \cdot Z(\tau)^{1-i} \cdot y(\tau)^l \right), \]
\[\phi(\tau) \cdot (1 + 5y) \cdot U_5 \left(F(\tau) \cdot Z(\tau)^{1-i} \right) \]
\[= (1 + 5y) \cdot U_5 \left(\phi(5\tau) F(\tau) \cdot Z(\tau)^{1-i} \cdot y(\tau)^l \right). \]

The interior functions are modular on \(\Gamma_0(100) \). On the other hand, the right-hand sides of (5.9), (5.10) are modular functions on \(\Gamma_0(20) \).

To verify equality of both sides, we can multiply each side by a sufficiently large power of an eta quotient \(\mu \) on \(\Gamma_0(20) \) with a pole only at \([\infty] \), and positive order at
every other cusp. A standard computational procedure gives us

\[\mu(\tau) := \frac{\eta(4 \tau)^4 \eta(10 \tau)^8}{\eta(20 \tau)^{12}} = \frac{(q^4; q^4)^4 (q^{10}; q^{10})^8}{q^6 (q^{20}; q^{20})_{\infty}^{12}}. \]

So for a chosen power \(k \), our relations have the form

\[U_5 \left(\mu(5 \tau)^k \cdot \phi(5 \tau) \cdot F(\tau) \cdot Z(\tau)^{1-i} \cdot y(\tau)^i \right) = \mu(\tau)^k \cdot \phi(\tau) \cdot F(\tau) \cdot p_{i,l}(y), \]

\[(1 + 5y) \cdot U_5 \left(\mu(5 \tau)^k \cdot \phi(5 \tau) \cdot F(\tau) \cdot Z(\tau)^{1-i} \right) = \mu(\tau)^k \cdot \phi(\tau) \cdot F(\tau) \cdot p_{i,0}(y). \]

(5.13)

(5.14)

If we first examine the behavior of the functions on the right-hand sides of our relations, we find that

\[\text{ord}_{\infty}^{(20)}(y) = 1, \]
\[\text{ord}_{1/10}^{(20)}(y) = 1, \]
\[\text{ord}_{1/5}^{(20)}(y) = 0, \]
\[\text{ord}_{1/4}^{(20)}(y) = 0, \]
\[\text{ord}_{1/2}^{(20)}(y) = 0, \]
\[\text{ord}_{0}^{(20)}(y) = -2. \]

The highest power of \(y \) on the right-hand side of the relations is 17. To examine the behavior of \(\phi(\tau) \cdot F(\tau) \), we denote

\[\phi(\tau) \cdot F(\tau) = \frac{1}{24} \left(25 \left(\frac{q^2; q^2}{q; q}_{\infty}^4 \cdot \frac{(q^{10}; q^{10})_{\infty}^{20}}{(q^5; q^5)^{8}_{\infty} (q^{20}; q^{20})_{\infty}^8} \right) \right. \]
\[- \left(\frac{(q^2; q^2)}{q; q}_{\infty}^4 \cdot \frac{(q^5; q^5)^{8}_{\infty}}{(q^{10}; q^{10})^4_{\infty}} \right) \]
\[- \left(2 \cdot \frac{(q^2; q^2)}{q; q}_{\infty}^4 \cdot \frac{(q^2; q^2)^{20}_{\infty}}{(q; q)^{8}_{\infty} (q^4; q^4)^{8}_{\infty}} - \frac{(q^2; q^2)}{q; q}_{\infty}^4 \cdot \frac{(q^2; q^2)^{8}_{\infty}}{(q^4; q^4)^8_{\infty}} \right) \]
\[= \frac{1}{24} \left(25 \cdot (2 \cdot f_1 - f_2) - (2 \cdot f_3 - 1) \right). \]

If we compute the orders of \(f_1, f_2, f_3 \) at the cusps of \(X_0(20) \), we have

\[\text{ord}_{\infty}^{(20)}(f_1) = 0, \quad \text{ord}_{\infty}^{(20)}(f_2) = 0, \quad \text{ord}_{\infty}^{(20)}(f_3) = 0, \]
\[\text{ord}_{1/10}^{(20)}(f_1) = 5, \quad \text{ord}_{1/10}^{(20)}(f_2) = 0, \quad \text{ord}_{1/10}^{(20)}(f_3) = 1, \]
\[\text{ord}_{1/5}^{(20)}(f_1) = -1, \quad \text{ord}_{1/5}^{(20)}(f_2) = 4, \quad \text{ord}_{1/5}^{(20)}(f_3) = -1, \]
\[\text{ord}_1^{(20)}(f_1) = 0, \quad \text{ord}_1^{(20)}(f_2) = 0, \quad \text{ord}_1^{(20)}(f_3) = 0, \]
\[\text{ord}_{1/2}^{(20)}(f_1) = 1, \quad \text{ord}_{1/2}^{(20)}(f_2) = 0, \quad \text{ord}_{1/2}^{(20)}(f_3) = 5, \]
\[\text{ord}_0^{(20)}(f_1) = -5, \quad \text{ord}_0^{(20)}(f_2) = -4, \quad \text{ord}_\infty^{(20)}(f_3) = -5. \]
\[\text{ord}_\infty^{(20)}(\mu) = -6, \]
\[\text{ord}_{1/10}^{(20)}(\mu) = 1, \]
\[\text{ord}_{1/5}^{(20)}(\mu) = 1, \]
\[\text{ord}_{1/4}^{(20)}(\mu) = 2, \]
\[\text{ord}_{1/2}^{(20)}(\mu) = 1, \]
\[\text{ord}_0^{(20)}(\mu) = 1. \]

There are various different ways of pushing the right-hand sides of our relations to \(\mathcal{M}_\infty(\Gamma_0(20)) \). The simplest is push our power of \(\mu \) to 39, to overpower the orders of the highest possible power of \(y \), as well as the orders of \(f_1, f_3 \).

\[U_5 \left(\mu(5\tau)^{39} \cdot \phi(5\tau) \cdot F(\tau) \cdot Z(\tau)^{1-i} \cdot y(\tau)^i \right) = \mu(\tau)^{39} \cdot \phi(\tau) \cdot F(\tau) \cdot p_{i,f}(y), \]

(5.15)

\[U_5 \left(x(5\tau) \cdot \mu(5\tau)^{39} \cdot \phi(5\tau) \cdot F(\tau) \cdot Z(\tau)^{1-i} \right) = \mu(\tau)^{39} \cdot \phi(\tau) \cdot F(\tau) \cdot p_{i,0}(y). \]

(5.16)

The right-hand sides now have a pole only at \([\infty] \) for each relation.

We now need to examine the left-hand side of our prospective relations. Certainly for \(Z \), we can verify that

\[\text{ord}_\infty^{(100)}(Z) = 2, \]
\[\text{ord}_{1/50}^{(100)}(Z) = 2, \]
\[\text{ord}_{1/25}^{(100)}(Z) = 2, \]
\[\text{ord}_{1/4}^{(100)}(Z) = -2, \]
\[\text{ord}_{1/2}^{(100)}(Z) = -2, \]
\[\text{ord}_0^{(100)}(Z) = -2, \]

and that \(Z \) has order 0 at every other cusp. Moreover,

\[\text{ord}_\infty^{(100)}(y) = 1, \]
\[\text{ord}_{1/50}^{(100)}(y) = 1, \]
\[\text{ord}_{1/20}^{(100)}(y) = 1, \]
\[\text{ord}_{1/10}^{(100)}(y) = 1, \]
$\text{ord}_{3/20}^{(100)}(y) = 1,$
$\text{ord}_{3/10}^{(100)}(y) = 1,$
$\text{ord}_{7/20}^{(100)}(y) = 1,$
$\text{ord}_{9/20}^{(100)}(y) = 1,$
$\text{ord}_{7/10}^{(100)}(y) = 1,$
$\text{ord}_{9/10}^{(100)}(y) = 1,$
$\text{ord}_{0}^{(100)}(y) = -10,$

and y has order 0 at every other cusp. Notice that on the left-hand sides, the highest power of y is 4.

Next, we consider $\phi(5 \tau) \cdot F(\tau)$. Expanding and labeling

$$\phi(5 \tau) \cdot F(\tau) = \frac{1}{24} \left(25 \left(\frac{(q^{10} ; q)_{\infty}}{(q^5 ; q^5)_{\infty}^8} \cdot \frac{(q^{10} ; q_{\infty}^{20})_{\infty}}{(q^5 ; q_{\infty}^{20}^5)^8} - (q^{10} ; q_{\infty}^{4^5})_{\infty} \cdot \frac{(q^5 ; q^5)_{\infty}^8}{(q^{10} ; q^{10}_{\infty}^2)} \right) - \left(2 \frac{(q^{10} ; q_{\infty}^{4^5})_{\infty}}{(q^5 ; q^5)_{\infty}^8} \cdot \frac{(q^7 ; q^7_{\infty}^{20})_{\infty}}{(q^5 ; q_{\infty}^{20}^5)^8} - (q^{10} ; q_{\infty}^{4^5})_{\infty} \cdot \frac{(q ; q^2)_{\infty}^8}{(q^2 ; q^2_{\infty}^4)} \right) \right)$$

we can quickly verify that

$\text{ord}_{1/50}^{(100)}(f_4) = 5,$ $\text{ord}_{1/50}^{(100)}(f_5) = 1,$ $\text{ord}_{1/50}^{(100)}(f_6) = 0,$

$\text{ord}_{1/25}^{(100)}(f_4) = -5,$ $\text{ord}_{1/25}^{(100)}(f_5) = -5,$ $\text{ord}_{1/25}^{(100)}(f_6) = -4,$

$\text{ord}_{1/10}^{(100)}(f_4) = 5,$ $\text{ord}_{1/10}^{(100)}(f_5) = 1,$ $\text{ord}_{1/10}^{(100)}(f_6) = 0,$

$\text{ord}_{1/5}^{(100)}(f_4) = -5,$ $\text{ord}_{1/5}^{(100)}(f_5) = -5,$ $\text{ord}_{1/5}^{(100)}(f_6) = -4,$

$\text{ord}_{3/10}^{(100)}(f_4) = 5,$ $\text{ord}_{3/10}^{(100)}(f_5) = 1,$ $\text{ord}_{3/10}^{(100)}(f_6) = 0,$

$\text{ord}_{2/5}^{(100)}(f_4) = -5,$ $\text{ord}_{2/5}^{(100)}(f_5) = -5,$ $\text{ord}_{2/5}^{(100)}(f_6) = -4,$

$\text{ord}_{1/2}^{(100)}(f_4) = 5,$ $\text{ord}_{1/2}^{(100)}(f_5) = 25,$ $\text{ord}_{1/2}^{(100)}(f_6) = 0,$

$\text{ord}_{3/5}^{(100)}(f_4) = -5,$ $\text{ord}_{3/5}^{(100)}(f_5) = -5,$ $\text{ord}_{3/5}^{(100)}(f_6) = -4,$

$\text{ord}_{7/10}^{(100)}(f_4) = 5,$ $\text{ord}_{7/10}^{(100)}(f_5) = 1,$ $\text{ord}_{7/10}^{(100)}(f_6) = 0,
A single-variable proof of the omega SPT congruence family...

\[\text{ord}_{4/5}(f_4) = -5, \quad \text{ord}_{4/5}(f_5) = -5, \quad \text{ord}_{4/5}(f_6) = -4, \]
\[\text{ord}_{9/10}(f_4) = 5, \quad \text{ord}_{9/10}(f_5) = 1, \quad \text{ord}_{9/10}(f_6) = 0, \]
\[\text{ord}_0(f_4) = -5, \quad \text{ord}_0(f_5) = -5, \quad \text{ord}_0(f_6) = 20, \]

with order 0 at all other cusps. This indicates that the maximum pole order of \(\phi(5\tau) \cdot F(\tau) \) at any cusp is \(-5\). We can also prove that

\[\text{ord}_{1/4}(x(5\tau)) = 5, \]
\[\text{ord}_{1/2}(x(5\tau)) = 5, \]
\[\text{ord}_0(x(5\tau)) = -10, \]

and that \(x(5\tau) \) has order 0 at every other cusp. With all of this in mind, we can verify that

\[\mu(5\tau) \in M^\infty(\Gamma_0(100)). \]

We, therefore, need to take \(\mu(5\tau)^{40+5+2} = \mu(5\tau)^{47} \) to account for the possible poles of \(\phi(5\tau) \cdot F(\tau) \) together with possible powers of \(y \) and \(Z \). If we multiply both sides of our prospective relations, we have

\[U_5 \left(\mu(5\tau)^{47} \cdot \phi(5\tau) \cdot F(\tau) \cdot Z(\tau)^{1-i} \cdot y(\tau)^l \right) = \mu(5\tau)^{47} \cdot \phi(\tau) \cdot F(\tau) \cdot p_{i,l}(y), \tag{5.17} \]
\[U_5 \left(x(5\tau) \cdot \mu(5\tau)^{47} \cdot \phi(5\tau) \cdot F(\tau) \cdot Z(\tau)^{1-i} \right) = \mu(5\tau)^{47} \cdot \phi(\tau) \cdot F(\tau) \cdot p_{i,0}(y). \tag{5.18} \]

This is the complete form for our verification process. On the left-hand side, we take \(0 \leq i \leq 1 \) and \(1 \leq l \leq 4 \). On the right-hand side, we take the polynomials \(p_{i,l}(y) \) to be the right-hand side of the relation for \(U^{(i)}_l(x^l) \) for \(1 \leq l \leq 4 \) [and the numerator of the right-hand side in the case of \(U^{(i)}_l(1) \)]. Both sides are modular functions on \(\Gamma_0(20) \) with a pole only at the cusp \([\infty]_{20}\). We simply compare the principal parts on either side.

The explicit constructions above, including order computation and principal part comparison, are given in our Mathematica Supplement.

This approach can also be used to prove (1.6). In this case, we want to prove that

\[U_5 \left(\phi(5\tau) \cdot L_0(\tau) \cdot Z(\tau) \cdot x(5\tau)^3 \right) = \phi(\tau) \cdot F(\tau) \cdot \left(120y + 1805y^2 + 12,050y^3 + 39,500y^4 + 50,000y^5 \right). \tag{5.19} \]
Adjusting with $\mu(\tau)^{5+2+30}$ to account for possible poles, we have

$$U_5 \left(\mu(5\tau)^{37} \cdot \phi(5\tau) \cdot L_0(\tau) \cdot Z(\tau) \cdot x(5\tau)^3 \right)$$

$$= \mu(\tau)^{37} \cdot \phi(\tau) \cdot F(\tau)$$

$$\cdot \left(120y + 1805y^2 + 12,050y^3 + 39,500y^4 + 50,000y^5 \right).$$

(5.20)

As a final application, we consider the proof of (2.14). We can use Ligozat’s theorem to determine that $y(5\tau)^{-1} \in M^\infty(\Gamma_0(50))$, and that $y(5\tau)^{-5} \cdot y(\tau) \in M^\infty(\Gamma_0(50))$. As such, the principal part and constant of

$$y(5\tau)^{-25} \cdot \left(y^5 + \sum_{j=0}^{4} a_j(5\tau)y^j \right)$$

(5.21)

can quickly be verified to be 0, thus, giving us (2.14).

Both of these applications are also given in our Mathematica supplement.

6 Necessity of the Paule–Radu technique For genus 1 surfaces

The proof strategy used above was able to give a single-variable proof of Theorem 1.2. We certainly believe that such a strategy can be extended to other families of congruences over any genus 0 curve. It is tempting to try a similar proof for any family of congruences over a genus 1 curve in which the standing proof employs the Paule–Radu technique, e.g., the proof of the Andrews–Sellers theorem. This is a much more difficult problem, and we will try to briefly explain why. For a more in-depth discussion of the relationship between genus and the rank of the $\mathbb{Z}[X]$ modules of interest to us, see [12].

Wang and Yang define [19] the functions

$$\rho = \frac{\eta(2\tau)^2 \eta(5\tau)^4}{\eta(\tau)^4 \eta(10\tau)^2} \in M^0(\Gamma_0(10)), \quad t = \frac{\eta(5\tau)^2 \eta(10\tau)^2}{\eta(\tau)^2 \eta(2\tau)^2} \in M(\Gamma_0(10)).$$

They go on to demonstrate that for all $\alpha \geq 1$,

$$\frac{L_\alpha}{F} \in \mathbb{Z}[t] \oplus \rho \mathbb{Z}[t].$$

This is indicative of the machinery of the Paule–Radu technique, which has been successfully applied in cases such as proving the Andrews–Sellers conjecture [11] and the Choi–Kim–Lovejoy conjecture [17]. These latter problems could not be solved by the classical techniques developed by Watson in 1938 (and indeed, known by Ramanujan himself some decades prior), in which the relevant functions L_α are understood as elements of $\mathbb{Z}[t]$, for a given modular function t.
In the case of the Andrews–Sellers conjecture, the necessary spaces of functions are free rank 2 \(\mathbb{Z}[X] \)-modules. Why does the Andrews–Sellers conjecture necessitate this more complex module structure while the functions associated with \(\text{spt}_\omega(n) \) can be described with the simpler localized ring \(\mathbb{Z}[X]_S \)?

To understand this, consider the order of the functions \(t, \rho \) over the cusps of \(X_0(10) \):

\[
\begin{align*}
\text{ord}_{\infty}^{(10)}(t) &= 1, & \text{ord}_{\infty}^{(10)}(\rho) &= 0, & \text{ord}_{\infty}^{(10)}(x) &= 0, \\
\text{ord}_0^{(10)}(t) &= -1, & \text{ord}_0^{(10)}(\rho) &= -1, & \text{ord}_0^{(10)}(x) &= -1, \\
\text{ord}_{1/2}^{(10)}(t) &= -1, & \text{ord}_{1/2}^{(10)}(\rho) &= 0, & \text{ord}_{1/2}^{(10)}(x) &= 1, \\
\text{ord}_{1/5}^{(10)}(t) &= 1, & \text{ord}_{1/5}^{(10)}(\rho) &= 1, & \text{ord}_{1/5}^{(10)}(x) &= 0.
\end{align*}
\]

Notice that \(xt, \rho \in \mathcal{M}^0(\Gamma_0(10)) \), with \(\text{ord}_0^{(10)}(xt) = -2, \) \(\text{ord}_0^{(10)}(\rho) = \text{ord}_0^{(10)}(x) - 1 \). Since \(x \) has order \(-1\) at the cusp \([0]_{10}\) and is holomorphic everywhere else, we have

\[\mathcal{M}^0(\Gamma_0(10)) = \mathbb{C}[x], \]

ensuring that \(\rho \in \mathbb{C}[x] \) and \(t \in \mathbb{C}[x^{-1}, x] \).

Because \(\rho \) has order \(-1\) at \([0]_{10}\), we know that we should be able to write

\[\rho = a_1 + b_1 x, \]

for some \(a_1, b_1 \in \mathbb{C} \). These can easily be computed by giving the \(q \)-expansion of \(\rho \) and \(x \) and constructing an ansatz.

Similarly, we can surmise that

\[xt = a_2 + b_2 x + c_2 x^2, \]

for some complex numbers \(a_2, b_2, c_2 \in \mathbb{C} \) which are similarly easy to compute. Doing so, and isolating \(t \), we get

\[
\rho(\tau) = \frac{1}{5} \left(4 \cdot x(\tau) + 1 \right), \\
t(\tau) = \frac{1}{25} \left(-x(\tau)^{-1} - 3 + 4 \cdot x(\tau) \right).
\]

Our first attempt to describe \(L_1 \) in terms of a single function arose from these substitutions into (1.5).

Notice that \(h \) is a Hauptmodul, i.e., \(\mathcal{M}^\infty(\Gamma_0(10)) = \mathbb{C}[h] \). In the case of the Andrews–Sellers congruences, the corresponding functions are modular over \(X_0(20) \), which has genus 1. By the Weierstrass gap theorem, we cannot reduce \(\mathcal{M}^\infty(\Gamma_0(20)) \) to a 1-variable polynomial ring; indeed, \(\mathcal{M}^\infty(\Gamma_0(20)) \) must be isomorphic to a rank 2 module \(<1, h_3>_{\mathbb{C}[h_2]} \), for \(\text{ord}_{10}^{(10)}(h_2) = -2, \) \(\text{ord}_{10}^{(10)}(h_3) = -3 \).
Because of this, we are forced to take a rank 2 module, and therefore, a two-variable system. From this, the necessity of the Paule–Radu apparatus must follow.

As a final important note on the potential of our technique to produce new results, we give a very brief description of how we discovered that a localized ring structure was more useful than the standard polynomial ring. Our initial attempt to describe L_α in terms of the function x failed almost immediately: one can verify that with the appropriate substitutions of the function x into (1.5), we get

$$L_1 F = -\frac{624}{625x^3} - \frac{2487}{625x^2} + \frac{801}{625x} - \frac{422}{125} - \frac{3148}{125} - \frac{19}{625} + \frac{904}{625} + \frac{512x^3}{625} - \frac{256x^4}{625}. \quad (6.1)$$

This clearly does not work.

However, at the advice of Silviu Radu, we attempted to adjust our function x. We discovered the appropriate substitution in the form of $x = 1 + 5y$. Substituting into (6.1) and simplifying, we derive (1.6).

The critical point is that we would prefer the function needed to annihilate the poles of L_α to be equal to (or a power of) the function used to describe the right-hand side of the witness identity. This is the situation that the author has studied, together with Radu [15]. It is of course far more probable that these functions are not equal. Nevertheless, if the function used on the right-hand side, e.g., y, is a Hauptmodul, then we could still use this function to describe our prefactor function (e.g., $x = 1 + 5y$). This necessarily induces a localized ring.

Such ring structure may appear more complicated, and more daunting, than that of the traditional methods. Nevertheless, as we hope to have shown, the resulting complications and fears can be overcome.

Acknowledgements A huge thanks to the anonymous referee, whose advice substantially improved the form of the paper. I am extremely grateful to Liuquan Wang and Yifan Yang for their work on this family of congruences, without which this project would never have developed. I am enormously grateful to Drs. Cristian-Silviu Radu and Johannes Middeke for their advice on technical matters, and to Koustav Banerjee for calming my doubts and insisting that my insights were worth investigating. Finally, an enormous thanks to Professor Peter Paule for his patience, as the prospects of this project waxed and waned time and again.

Funding Open access funding provided by Austrian Science Fund (FWF).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Table 1 Value of
$\theta(m) + \pi_1(m, r) + \pi_0(r, 1) - 2$
with $1 \leq m \leq 6$, $1 \leq r \leq 3$

m	$r = 1$	$r = 2$	$r = 3$
1	-1	0	1
2	-1	0	1
3	-1	1	0
4	0	1	1
5	1	2	1
6	2	2	2

Table 2 Value of
$\theta(m) + \pi_1(m, r) + \pi_0(r, 2) - 2$
with $1 \leq m \leq 6$, $1 \leq r \leq 3$

m	$r = 1$	$r = 2$	$r = 3$
1	-1	0	1
2	-1	0	1
3	-1	1	0
4	0	1	1
5	1	2	1
6	2	2	2

Table 3 Value of
$\theta(m) + \pi_1(m, r) + \pi_0(r, 3) - 2$
with $1 \leq m \leq 6$, $1 \leq r \leq 3$

m	$r = 1$	$r = 2$	$r = 3$
1	0	0	2
2	0	0	2
3	0	1	1
4	1	1	2
5	2	2	2
6	2	3	3

Appendix I

We provide the tables used in the proof of Theorem 4.4. These can easily be constructed by hand. We provide additional details on this and other computations in our Mathematica Supplement at https://www3.risc.jku.at/people/nsmoot/online3.nb.

Appendix II

Below we list the ten fundamental relations that are justified using our cusp analysis in Sect. 6. For the complete derivation of the 50 relations used in Theorem 3.3, see our Mathematica Supplement Online at https://www3.risc.jku.at/people/nsmoot/online3.nb.
Group I:

\[U^{(1)}(1) = \frac{1}{1+5y} \left(1 + 5^2 y + 16 \cdot 5 \cdot y^2 \right), \quad (6.2) \]

\[U^{(1)}(y) = y, \quad (6.3) \]

\[U^{(1)}(y^2) = 51y + 471 \cdot 5 \cdot y^2 + 1364 \cdot 5^2 \cdot y^3 + 1776 \cdot 5^3 \cdot y^4 + 1088 \cdot 5^4 \cdot y^5 + 256 \cdot 5^5 \cdot y^6, \quad (6.4) \]

\[U^{(1)}(y^3) = 41y + 2474 \cdot 5 \cdot y^2 + 29193 \cdot 5^2 \cdot y^3 + 152248 \cdot 5^3 \cdot y^4 + 2231024 \cdot 5^3 \cdot y^5 + 814336 \cdot 5^5 \cdot y^6 + 4833536 \cdot 5^5 \cdot y^7 + 3753984 \cdot 5^6 \cdot y^8 + 1847296 \cdot 5^7 \cdot y^9 + 524288 \cdot 5^8 \cdot y^{10} + 65536 \cdot 5^9 \cdot y^{11}, \quad (6.5) \]

\[U^{(1)}(y^4) = 11y + 3981 \cdot 5 \cdot y^2 + 138181 \cdot 5^2 \cdot y^3 + 8956203 \cdot 5^2 \cdot y^4 + 62033852 \cdot 5^3 \cdot y^5 + 53739872 \cdot 5^5 \cdot y^6 + 791357952 \cdot 5^5 \cdot y^7 + 1662808832 \cdot 5^6 \cdot y^8 + 2561985536 \cdot 5^7 \cdot y^9 + 14663327744 \cdot 5^7 \cdot y^{10} + 2496888832 \cdot 5^9 \cdot y^{11} + 7817854976 \cdot 5^9 \cdot y^{12} + 3503816704 \cdot 5^{10} \cdot y^{13} + 1065353216 \cdot 5^{11} \cdot y^{14} + 197132288 \cdot 5^{12} \cdot y^{15} + 16777216 \cdot 5^{13} y^{16}, \quad (6.6) \]

Group II:

\[U^{(0)}(1) = \frac{1}{1+5y} \left(-5y - 4 \cdot 5 \cdot y^2 \right), \quad (6.7) \]

\[U^{(0)}(y) = 5y + 4 \cdot 5 \cdot y^2, \quad (6.8) \]

\[U^{(0)}(y^2) = 5y + 153 \cdot 5 \cdot y^2 + 3956 \cdot 5 \cdot y^3 + 8528 \cdot 5^2 \cdot y^4 + 9152 \cdot 5^3 \cdot y^5 + 4864 \cdot 5^4 \cdot y^6 + 1024 \cdot 5^5 \cdot y^7, \quad (6.9) \]

\[U^{(0)}(y^3) = y + 1874y^2 + 40101 \cdot 5 \cdot y^3 + 309864 \cdot 5^2 \cdot y^4 + 1252624 \cdot 5^3 \cdot y^5 + 3071232 \cdot 5^4 \cdot y^6 + 4892928 \cdot 5^5 \cdot y^7 + 26039296 \cdot 5^5 \cdot y^8 + 18464768 \cdot 5^6 \cdot y^9 + 8404992 \cdot 5^7 \cdot y^{10} + 2228224 \cdot 5^8 \cdot y^{11} + 262144 \cdot 5^9 \cdot y^{12}, \quad (6.10) \]

\[U^{(0)}(y^4) = 329 \cdot 5 \cdot y^2 + 116926 \cdot 5 \cdot y^3 + 2285653 \cdot 5^2 \cdot y^4 + 21410212 \cdot 5^3 \cdot y^5 + 119101984 \cdot 5^4 \cdot y^6 + 438497152 \cdot 5^5 \cdot y^7 + 45458688 \cdot 5^8 \cdot y^8 + 2150618112 \cdot 5^7 \cdot y^9 + 3033554944 \cdot 5^8 \cdot y^{10} + 3217784832 \cdot 5^9 \cdot y^{11} + 12811829248 \cdot 5^9 \cdot y^{12} + 37793038336 \cdot 5^9 \cdot y^{13} + 16051601408 \cdot 5^{10} \cdot y^{14} \]
\[\begin{align*}
+ 4647288832 \cdot 5^{11} \cdot y^{15} + 822083584 \cdot 5^{12} \cdot y^{16} \\
+ 67108864 \cdot 5^{13} \cdot y^{17}. \tag{6.11}
\end{align*} \]

References

1. Andrews, G.E.: The number of smallest parts in the partitions of \(n \). J. Reine Angew. Math. \textbf{624}, 133–142 (2008)
2. Andrews, G.E.: The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, vol. 2. Addison-Wesley (1976). Reissued, Cambridge (1998)
3. Atkin, A.O.L.: Proof of a conjecture of Ramanujan. Glasg. Math. J. \textbf{8}(1), 14–32 (1967)
4. Berndt, B.C., Ono, K.: Ramanujan’s unpublished manuscript on the partition and tau functions. In: The Andrews Festschrift, pp. 39–110. Springer, Berlin (2001)
5. Diamond, F., Shurman, J.: A First Course in Modular Forms, 4th Printing. Springer, New York (2016)
6. Garvan, F.G.: Congruences for Andrews’ SPT-function modulo powers of 5, 7, and 13. Trans. Am. Math. Soc. \textbf{364}(9), 4847–4873 (2012)
7. Garvan, F., Jennings-Shaffer, C.: Exotic Bailey–Slater SPT-functions II: Hecke–Rogers-type double sums and Bailey Pars from groups A, C, E. Adv. Math. \textbf{299}, 605–639 (2016)
8. Knopp, M.: Modular Functions in Analytic Number Theory, 2nd edn. AMS Chelsea Publishing, Rhode Island (1993)
9. Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence (1995)
10. Newman, M.: Construction and application of a class of modular functions (II). Proc. Lond. Math. Soc. \textbf{83}(3), 373–387 (1959)
11. Paule, P., Radu, S.: The Andrews–Sellers family of partition congruences. Adv. Math. \textbf{230}(3), 819–838 (2012)
12. Paule, P., Radu, S.: A proof of the Weierstrass gap theorem not using the Riemann–Roch formula. Ann. Comb. \textbf{23}, 963–1007 (2019)
13. Rademacher, H.: Topics in Analytic Number Theory. Die Grundlehren der mathematischen Wissenschaften, Bd. 169, Springer, Berlin (1973)
14. Radu, S.: An algorithmic approach to Ramanujan–Kolberg identities. J. Symb. Comput. \textbf{68}(1), 225–253 (2015)
15. Radu, S., Smoot, N.: A method of verifying partition congruences by symbolic computation. J. Symb. Comput. \textbf{104}, 105–133 (2021)
16. Ramanujan, S.: Some properties of \(p(n) \), the number of partitions of \(n \). Proc. Camb. Philos. Soc. \textbf{XIX}, 207–210 (1919)
17. Smoot, N.: A family of congruences for Rogers–Ramanujan subpartitions. J. Number Theory \textbf{196}, 35–60 (2019)
18. Wang, L.: New congruences for related to Mock Theta functions. J. Number Theory \textbf{175}, 51–65 (2017)
19. Wang, L., Yang, Y.: The smallest parts function associated with \(\omega(q) \). Int. J. Number Theory \textbf{18}(10), 2279–2297 (2022)
20. Watson, G.N.: Ramanujans Vermutung über Zerfallungsanzahlen. J. Reine Angew. Math. 97–118 (1938)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.