Links Between N^6-Methyladenosine and Tumor Microenvironments in Colorectal Cancer

Yundi Zhang1†, Ke Zhang2†, Haoming Gong3, Qin Li4, Lajie Man3, Qingchang Jin3, Lin Zhang5* and Song Li6*

1National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2Department of General Practice, Qilu Hospital, Cheelpo College of Medicine, Shandong University, Jinan, China, 3Department of Physiology, School of Basic Medical Sciences, Cheelpo College of Medicine, Shandong University, Jinan, China, 4Department of General Surgery, Qilu Hospital, Cheelpo College of Medicine, Shandong University, Jinan, China, 5Department of Radiation Oncology, Qilu Hospital, Cheelpo College of Medicine, Shandong University, Jinan, China, 6Department of Medical Oncology, Qilu Hospital, Cheelpo College of Medicine, Shandong University, Jinan, China

N^6-methyladenosine (m6A) is a critical epigenetic modification for tumor malignancies, but its role in regulating the tumor microenvironments (TMEs) has not been fully studied. By integrating multiple data sets and multi-omics data, we comprehensively evaluated the m6A “writers,” “erasers,” and “readers” in colorectal cancer and their association with TME characteristics. The m6A regulator genes showed specific patterns in co-mutation, copy number variation, and expression. Based on the transcriptomic data of the m6A regulators and their correlated genes, two types of subtyping systems, m6AregCluster and m6AsigCluster, were developed. The clusters were distinct in pathways (metabolism/inflammation/extracellular matrix and interaction), immune phenotypes (immune-excluded/immune-inflamed/immune-suppressive), TME cell composition (lack immune and stromal cells/activated immune cells/stromal and immune-suppressive cells), stroma activities, and survival outcomes. We also established an m6Ascore associated with molecular subgroups, microsatellite instability, DNA repair status, mutation burdens, and survival and predicted immunotherapy outcomes. In conclusion, our work revealed a close association between m6A modification and TME formation. Evaluating m6A in cancer has helped us comprehend the TME status, and targeting m6A in tumor cells might help modulate the TME and improve tumor therapy and immunotherapy.

Keywords: colorectal cancer, immunotherapy, N^6-methyladenosine, tumor microenvironments, molecular classification

INTRODUCTION

Colorectal cancer (CRC) is a major cause of cancer-related death worldwide (Siegel et al., 2020). Limited by treatment strategies, late-stage CRC has a 5-year survival rate of approximately 10% (Kuipers et al., 2015). In recent years, the therapeutic targets shifted from tumor cells to the tumor microenvironment (TME), consisting of a heterogeneous complex of immune cells, stromal cells, and extracellular matrix (Joyce and Pollard, 2009; Quail and Joyce, 2013). The anti-TME strategies, such as anti-angiogenic drugs, immune checkpoint inhibitors (ICIs), and their combinations (e.g., ICI plus angiogenesis or chemotherapy), were beneficial to only a part of patients (Tapia Rico and Price, 2018; Eng et al., 2019; Bourhis et al., 2021). It is essential to understand and evaluate the
composition and activities of TMEs to guide clinical practice when using these treatments. A case in point in CRC is the immunoscore, which is calculated based on the TME cells and helps predict responses to chemotherapy or ICIs (Angell et al., 2020; Bruni et al., 2020).

6-Methyladenosine (m6A) is the most frequent epigenetic modification of RNA in eukaryotic cells (Frye et al., 2018). This process was reversibly regulated by its “writers,” “erasers,” and “readers.” It has multifaceted effects in deciding RNA fates, such as RNA transcription, splicing, structure, and translation, and participates in almost all physiological and pathological bioprocesses, including cancer development (Gaikwad et al., 2020). A connection between the m6A and TME is also present in some cancers. Based on multi-omics data, two
studies evaluated the landscape of m6A modulators and found they were associated with immune cell infiltration in the TME and efficacies of ICIs in gastric cancer and renal carcinoma (Zhang et al., 2020a; Zhong et al., 2021). Recently, a specific study focusing on “writers” of four types of RNA modification and their relationship with immunotherapy efficacy was conducted in CRC (Chen et al., 2021a). However, a comprehensive study of three kinds of m6A regulators, including “writers,” “erasers,” and “readers,” in CRC has not been reported.

In the present study, we integrated the multi-omics and clinical data of seven CRC cohorts to evaluate the m6A modification patterns, TME characteristics, and their associations.

MATERIALS AND METHODS

Data Sets

Level 3 data from The Cancer Genome Atlas (TCGA), including expression, mutation, copy number variations, and clinical annotation, were downloaded from the TCGA database (https://tcga-data.nci.nih.gov/tcga/). The expression data and clinical information from six CRC cohorts (GSE17536, GSE29621, GSE3113, GSE37892, GSE38832, and GSE39582) were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo). The GEO data were merged by R package “dplyr” and batch normalized by R package “sva.” The data from the two cohorts with ICI treatment, IMvigor210 and GSE78220, were obtained from the IMvigor210CoreBiology package and GEO website, respectively. The study design and workflow are outlined in Figure 1A.

Clustering According to N6-Methyladenosine Regulators

The gene expression data of m6A regulators, including eight “writers” (METTL3, METTL14, RBM15, RBM15B, WTAP, KIAA1429, CBLLI1, and ZC3H13), three “erasers” (ALKBH3, ALKBH5, and FTO), and 13 “readers” (YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, and ELAVL1) were used for unsupervised clustering analysis. Cluster number determination and the following clustering were performed using the R package “ConsensusClusterPlus,” with 1000 times repetition. This method was used for clustering of m6AregClusters in the meta-GEO cohort, single GEO cohorts, and the TCGA cohort.

Enrichment Analysis

Single-sample gene-set enrichment analysis and gene set variation analysis (GSVA) were used to quantify cell composition, immune checkpoints, CD8+ T-effector signature, epithelial–mesenchymal transition (EMT), angiogenesis, pan-fibroblast TGFβ response signature (Pan-F-TBRS), WNT targets, DNA damage repair, mismatch repair, nucleotide excision repair, DNA replication, and antigen processing and presentation. The gene sets were derived from previous studies (Rosenberg et al., 2016; Şenbabaoglu et al., 2016; Charoentong et al., 2017; Mariathasan et al., 2018) and have been summarized in a previous paper (Zhang et al., 2020a). The gene signatures of KEGG analysis were downloaded from the Molecular Signatures Database (http://www.gsea-msigdb.org/gsea/msigdb). The R package “gsea” was used.

N6-Methyladenosine Gene Signatures and m6AregClusters

The differentially expressed genes (DEGs) were identified by pairwise comparisons of three m6AregClusters by the “limma” R package. The overlapped genes among them were defined as m6A gene signatures. Tumors were unsupervised and clustered into three m6AregClusters by the R package “ConsensusClusterPlus” according to the expression levels of the m6A signature genes.

Immune Cell Estimation

An abundance of 22 types of infiltrated immune cells were estimated by the software CIBERSORT (Newman et al., 2015) from the transcriptome data of CRC cohorts.

Generation of m6Ascore

The m6Ascore was developed as follows: first, univariate Cox regression was performed for each m6A signature gene. Second, the dimensionality of the significant genes was reduced to two by principal component analysis (PCA) using the prcomp function in R. Third, PCA1 and PCA2 were summed up to get the m6Ascore for each patient.

Survival Analysis

Survival outcomes were compared by log-rank regression and univariable COX regression. Confounding factors of survival prognosis were analyzed by multivariable COX regression. The Kaplan–Meier method and log-rank tests were performed by the R package “survminer.” The function “surv-cutpoint” was used for the determination of cut-off values in the cohorts.

Statistical Analysis

The categorical variables were compared by Chi-square or Fisher’s exact tests. The continuous variables between the two groups were compared by t-test. The continuous variables among multiple groups were compared by one-way ANOVA or Kruskal–Wallis tests. The Benjamini–Hochberg methods were used to correct p-values for multiple testing. The survival distributions were compared by log-rank regression and COX regression. Correlations were calculated by linear regressions. The data were analyzed with the R (version 3.6.3) and R Bioconductor packages. A p-value < 0.05 was considered statistically significant.

RESULTS

Landscape of N6-Methyladenosine Regulator Gene Mutation, Copy Number, and Expression in Colorectal Cancer

According to previous reports, a total of 24 m6A regulators, including eight “writers” (METTL3, METTL14, WTAP, RBM15,
FIGURE 2 | Clustering of m6A regulator–based subtypes in meta-data of six Gene Expression Omnibus cohorts. (A) Hazard ratio of m6A regulators in predicting survivals in CRC patients. (B) Interaction among m6A regulators in colorectal cancer. Line colors represent positive or negative correlation, and thickness represents correlation strength. Colored circles indicate the types of m6A regulators, and circle sizes indicate prognostic ability. (C) Unsupervised clustering based on 24 m6A regulators. Three clusters, termed m6AregC1–3, were defined. (D–E) Differential biological pathways between m6A regulator–based clusters. The pathways were quantified by gene set variation analysis enrichment and compared between C1 and C2 (D) and C2 and C3 (E). (F) Abundance of tumor-infiltrating cells in three subtypes. (G) Enrichment of stroma-activated pathways in three subtypes. One-way ANOVA tests compared the three groups in (F,G). *p < 0.05; **p < 0.01; ***p < 0.001.
Figure 1C, Figure 1F)

A frequency of 24.11% had at least one mutation on the m6A regulators. The “readers” such as ZC3H13, YTHDC2, YTHDC1, YTHDF3, and YTHDF2 were the most frequently mutated genes, while most “writers” (except RBM15) and “erasers” were less mutated (Figure 1B).

Copy number variations were significantly in some m6A regulators (Figure 1D, Supplementary Figure S1). Changes of YTHDF1/3, HNRNPA2B1, IGF2BP2/3, CBL1, KIAA1429, ZC3H13, and FTO were dominantly gains, while those of YTHDF2, ALKBH5, RBM15, METTL14, YTHDC1, HNRNPC, METTL3, and YTHDC2 were dominantly losses (Figure 1D).

The RNA levels of most m6A regulators were significantly different between normal and tumor samples, with 22 genes upregulated and ALKBH5 downregulated in tumor tissues (Figure 1E). The PCA of RNA expression distinctly distinguished tumor from normal samples (Figure 1F).

Clustering Colorectal Cancer by N6-Methyladenosine Regulators

A total of six GEO data sets (GSE17536, GSE29621, GSE33113, GSE37892, GSE38832, and GSE39582), including 1066 CRC patients, were pooled for survival analysis. About 11 of the 24 m6A regulators had prognostic roles in patients by univariate Cox regression (Figure 2A). Among them, the “erasers” ALKBH5 and FTO had a significantly high hazard ratio of death, while nine “readers” and “writers” were associated with better survival (Figure 2A).

Based on prognostic values of m6A regulator RNA levels and their intercorrelations, a correlation network was constructed (Figure 2B). Positive correlations were prevalent among m6A regulators. The highest correlations were found between RBM15B and IGF2BP3, KIAA1429 and FTO, and YTHDC2 and IGF2BP1 (Figure 2B). Negative correlations also occurred among the three groups (Figure 2B). These indicated a cross talk between the m6A regulators.

Under unsupervised clustering, the patients were classified into three subgroups with different m6A regulator expression patterns, named m6A regulator–based Cluster 1–3 (m6ARegC1–3) (Figure 2C and Supplementary Figure S2). Cluster 1 was characterized with high expression of IGF2BP3, and C3 was characterized with overexpression of ALKBH5 and FTO and downregulation of the other regulators (Figure 2C, Supplementary Figure S3). C2 was characterized by the low expression of ALKBH5, and high levels of some readers, including FMR1, LRPPRC, HNRNPA2B1, and YTHDF1 and 3 (Figure 2C, Supplementary Figure S3). The three clusters showed different survivals, C1 and C2 showing better outcomes than C3 (Supplementary Figure S4).

N6-Methyladenosine Regulator–Based Subtypes Are Different in Tumor Microenvironment Composition

Activation of pathways within the three m6A regulator–based subtypes was analyzed by GSVA. Comparing C1 and C2, C1 was characterized by the inflammation pathways, including pattern recognition (RIG I, NOD-like, and Toll-like receptor pathways), cytotoxicity (NK cell–mediated cytotoxicity and FCy-mediated phagocytosis), and chemokines (chemokine signaling pathway, cytokine–cytokine receptor interaction, and leukocyte transendothelial migration; Figure 2D), while C2 was characterized by metabolism (selenoamino acid metabolism, histidine metabolism, fatty acid metabolism, butanoate metabolism, and propanoate metabolism) (Figure 2D). When we compared cluster C2 and C3, C2 was still enriched in metabolic pathways (pentose phosphate pathway, purine metabolism, butanoate metabolism, citrate cycle–TCA cycle, pyruvate metabolism, and riboflavin metabolism), while C3 was characterized with cell–extracellular matrix and cell–cell connections (gap junction, focal adhesion, and tight junction; Figure 2E).

Due to the prominent differences in inflammation and ECM connections, we then used CIBERSORT to evaluate the TME composition in these subtypes. Like immune inflamed cancer, C1 showed activated DC cells, M1 macrophage, activated NK cells, activated CD4+ T memory cells, CD8+ cells, and follicular T cells (endothelial cells, fibroblasts), resting cells (monocytes, M0 macrophages, resting DC cells, resting NK cells), and immune suppressive cells (M2 macrophages and regulatory T cells), representing an excluded immunity (Figure 2F). Further GSVA showed an enhanced stromal activity in C3, including signatures of angiogenesis, EMT 1–3, and pan-fibroblast TGFβ responses (Figure 2G). By contrast, C1 had the highest CD8+ T-effector signature (Figure 2G). C2 was likely immune-ignored cancer due to a lack of all types of immune and stromal cells (Figure 2G).

N6-Methyladenosine Regulator–Based Subtypes Are Related to Clinical Features

To validate and further explore the clinical features of the three subtypes, we used the GSE39582 cohort with detailed clinical and molecular information for further analyses. Unsupervised clustering with m6A regulators showed an optimal reclassification of the three subgroups (Figures 3A, B). C1 had more CpG island methylator phenotype (CIMP) status (Figure 3C). C3 had less microsatellite instability (MSI) status and more chromosomal instability (CIN) status than the other two subgroups (Figure 3B). The mutation rates of BRAF, KRAS, and TP53 were similar among C1–3 (Figure 3B). With another molecular subtype system, the Cartes d’Identité des Tumeurs classification system, C1 patients were characterized with more dMMR and fewer CIN patients, while C2 had the most CIN subtypes (Figure 3C). In addition, Kaplan–Meier revealed survival differences among the three subtypes, with m6ARegC3
with an inferior prognosis (Figure 3D). The validation was also performed on TCGA, which was also divided into three clusters with survival differences (Supplementary Figure S5A and Supplementary Figure S5B).

Figure 3 | Association between m^6^A regulator–based subtypes and tumor microenvironment composition. (A) Unsupervised clustering based on m^6^A regulators with n = 2 to 5 in the GSE39882 data set. (B) Clustering m^6^A regulators into three subtypes. Distribution of molecular subtypes (chromosomal instability, CpG island methylator phenotype, and microsatellite instability) and driver mutations (KRAS, RBAF, and TP53) were provided. (C) Distribution of genetic change types in three m^6^A regulator–based subtypes. (D) Kaplan-Meier curves of the three m^6^A regulator–based subtypes.

Generation of N^6^-Methyladenosine–Related Gene Signatures and Signature-Based Clusters

To define a gene signature related to the m^6^A regulators, we examined the DEGs among them. In total, 738 genes were shared among the DEGs by pairwise comparisons of three m^6^A^reg^Clusters, which were termed m^6^A-related gene signatures (Figure 4A). The signature genes were enriched in pathways related to RNA metabolism, validating the roles of the m^6^A regulators on RNA fates. They were also enriched in terms related to immunity (tumor necrosis factor, T-cell receptor signaling, innate immune responses, and antigen processing and presentation), DNA damage responses (signal transduction in response to DNA damage, regulation of responses to DNA damage stimulus, DNA recombination, nucleotide–excision repair complex, and DNA damage checkpoint), and cell cycle (e.g., cell cycle checkpoint, cell cycle arrest, and metaphase/anaphase transition of cell cycles; Figure 4B). These indicated that immunity, DNA damage responses, and cell cycles might be regulated by m^6^A modification.

To further evaluate this m^6^A regulator–related signature, we performed further unsupervised clustering and got three m^6^A signature–based clusters (m^6^A^sig^C1–3; Figure 4C, Supplementary Figure S6). The three signature-based subgroups overlapped with the m^6^A regulator–based subgroups well (Figures 4C,D) and showed
Figure 4 | Construction of m6A signature-based clusters. (A) Overlaps of differential expression genes among the three m6A regulator–based subtypes. (B) Gene Ontology enrichment of the m6A signature genes. (C) Clustering patients based on m6A signature genes into three subtypes termed m6AsigC1–3. (D) Alluvial diagram connecting m6AregClusters, m6AsigClusters, gene mutation subtypes, and m6Ascores. (E) Kaplan–Meier curves of the three m6A signature-based subtypes. (F) Expression levels of m6A regulators in three m6A signature–based subtypes. (G–I) Signatures of stromal activation (G), immune activation (H), and immune checkpoints (I) in three m6A signature–based subtypes. *p < 0.05; **p < 0.01; ***p < 0.001.
similar clinical features (Figures 4C,D). The m^6^A^sig^C1 showed superior survival outcomes than m^6^A^sig^C2 and C3 (Figure 4E). In addition, they had different expression levels of 23/24 mA regulators (Figure 4F).

By evaluating pre-defined signatures, we found the m^6^A^reg^C1 was characterized with immune activation, with high CD8^+ effector T cells (Figure 4G), transcripts of immune activation (Figure 4H), and immune checkpoints (Figure 4I). By contrast, C3 was characterized with stromal components, including angiogenesis and Pan-F-TBRS (Figure 4G).

Generation of N^6^-Methyladenosine Score and Its Predictive Ability of Tumor Microenvironment and Clinical Feature

To quantify mA modification patterns, we defined an mA score based on the mA signature genes. The majority of mA^reg^C1 and mA^sig^C1 had a low mA score, while patients with high scores were mainly mA^reg^C2/3 or mA^sig^C2/3 (Figure 4D). Correspondingly, mA^reg^C1 and mA^sig^C1 both showed a lower median mA than the other two groups (Figures 5A,B). The mA^sig^ positively correlated with stromal signatures, including endothelial cells, angiogenesis, EMT 1/2/3, Pan-F-TBRS, and fibroblasts. We found an inverse correlation with signatures of immune activation (CD8^+ T, antigen processing, immune checkpoints) and DNA damage responses (DNA replication, mismatch repair, nucleotide excision repair, homologous recombination, DNA damage repair, and Fanconi anemia), suggesting that a low mA^score^ was linked with immune activation, while a high mA^score^ was linked with stromal activation (Figure 5C). Consistent with this, patients with a high mA^score^ had a low CD8^+ T score but enhanced activation of the stromal pathways (Figure 5D).

In addition, most dMMR patients had a low mA^score^ (Figure 4D) and a lower median mA^score^ than the other groups (Figure 5E). By contrast, the CSC-subtype patients had the highest mA^score^ (Figure 5E). The mA^score^ was also associated with many clinical features; younger patients (age <65 years), high AJCC stages, distal location, and pMMR were significantly associated with a higher mA^score^ (Figure 5F). By univariate analysis, patients with a low mA^score^ showed a remarkably superior survival than the mA^score^-high group, with a hazard ratio of death of 0.2474 (95% CI, 0.172–0.3561) and p-value < 0.001 (Figure 5G). A multivariate cox regression model was also used to exclude the confounding factors for patients’ survival, including chemotherapy, gender, age, stage, tumor location, MMR status, and molecular subtype (Figure 5H). The results also showed that mA^score^ is still an independent prognostic biomarker for evaluating patient outcomes, with a hazard ratio of death of 3.95 (95% CI, 2.71–5.70 and p-value < 0.001; Figure 5H).

Validation of N^6^-Methyladenosine Score in The Cancer Genome Atlas and Five Gene Expression Omnibus Data Sets

We then validated the prognostic value of mA^score^ in the TCGA data set. When stratifying patients by molecular subtypes, the MSI/CIMP patients showed the lowest mA^score^, and CIN patients showed the highest mA^score^ (Figure 6A). The mA^score^ was also associated with the MSI status and tumor stages; the MSI-H and stage I/II patients had a low mA^score^ (Figure 6B).

The mutation landscapes were compared between low-mA^score^ and high-mA^score^ patients (Figure 6C). Frequencies of the top 20 mutations were similar, except of KRAS, which occurred more frequently in the mA^score^-high patients (44.7% vs. 32.6%; Figure 6D). The mA^score^ and TMB were negatively correlated (Figure 6D), with higher TMB in low-mA^score^ tumors than in mA^score^-high tumors (Figure 6E). Patients with a low mA^score^ also showed prolonged survival compared to patients with a high mA^score^, with a hazard ratio of death of 0.5345 (95% CI, 0.3137–0.9109) and p-value 0.014 (Figure 6F).

We further evaluated the prognostic ability of the mA^score^ in TCGA and the other cohorts (GSE17536, GSE29621, GSE33113, GSE37892, and GSE38832; Figures 7A–G) to validate its stability. The low-mA^score^ was associated with more prolonged relapse-free survival (Figure 7A) and overall survival (Figure 7B) in the combined cohorts. The area under the curve to predict 3-year and 5-year survivals was 0.719 and 0.733, respectively (Figures 7H, I).

Prediction of Immunotherapy Outcomes by N^6^-Methyladenosine Score

Due to the close association between the mA status and immunotherapy biomarkers (MSI, DDR, TMB, immune checkpoints, and stromal scores), we evaluated the ability of the mA^score^ to predict responses to ICIs, using two cohorts (IMvigor210 and GSE78220), with ICI treatment. The IMvigor210 cohort included 310 PD-L1-treated patients, who were classified into three immune subgroups, including “ignored,” “excluded,” and “inflamed” (Rosenberg et al., 2016). In accordance with the former study, patients with a low mA^score^ showed higher expression of PD-L1 (Figure 8A) and lower expression of stromal signatures (angiogenesis, EMT 1/2/3, and Pan-F-TBRS; Figure 8B) than patients with a high mA^score^. The “inflamed” patients showed a significantly higher mA^score^ than the other two subtypes (Figure 8C). Clinically, patients with a low mA^score^ exhibited more prolonged survival (hazard ratio, 0.58; 95% CI, 0.40–0.83; p-value = 0.003; Figure 8D) and a higher response rate (29.56 vs. 8.42%, Figure 8E) than patients with a high mA^score^. Correspondingly, the patients with complete and partial responses showed a significantly lower mA^score^ than patients with stable or progressing disease (Figure 8F). The prognostic value of the mA^score^ in ICI-treated patients was also validated in GSE78220, although the differences were not statistically significant due to limited sample sizes (Figures 8G–I).

DISCUSSION

mA is a critical epigenetic mechanism for regulating tumor malignancies by promoting proliferation, migration, stenness,
drug sensitivity, and resistance (Lan et al., 2021). Nonetheless, its role in TME regulation has been less studied. This needs a comprehensive analysis of both m6A and TME components simultaneously. In this study with multi-omics data, we revealed a specific pattern in co-mutation, copy number variation, and expression of m6A “writers”, “erasers”, and “readers” in the CRC samples. Molecular differences between colon and rectal cancers were not seen. In unsupervised clustering, two types of subtyping methods—m6AreCluster and m6AsigCluster—were distinct in the pathways, TME cell
compliance, immune phenotypes, stroma activities, and survival outcomes (Figure 8). Based on the m^6A regulator-related signatures, we also established an m^6A score associated with molecular subtyping, MSI and DNA repair status, tumor mutation burdens, survival, and responses to immunotherapy. These results indicated a close relationship between m^6A modification and anti-tumor immunity in CRC, shedding light on a future direction to evaluate and modulate TME by targeting m^6A.

This connection was not unique in CRC, since such phenomenon was also found in other types of cancers, such as gastric cancer (Zhang et al., 2020a). Pan-cancer analyses also showed that the m^6A regulators, mainly “writers” and “erasers,” were differentially expressed in different TME subtypes (Zhu et al., 2020). Recently, a study focusing on “readers” of RNA modification and their relationship with TME was conducted in CRC (Chen et al., 2021a). Indeed, our study found a genetic pattern of m^6A regulators, especially the “readers.” For example, “reader-writer” and “reader-eraser” co-mutations were frequent, while “writer-eraser” co-mutation was not found, suggesting an important role of “readers” in tumorigenesis and potential driving ability of “writer-reader” or “eraser-reader” communications. Consistent with this, many studies revealed that “writers” or “erasers” regulate tumor malignancies in a “reader”-dependent manner (Li et al., 2019). Copy numbers of two main “erasers,” ALKBH5 (loss) and FTO (gain), were inversely related. Accordingly, their relative expression levels compared to normal tissue were also inversely related (ALKBH5 down and FTO up). The different targets and functions between them have been reported by previous studies (Wei et al., 2018). This imbalance of “erasers” might be another mechanism in CRC tumorigenesis and targeted by specific inhibitors, such as meclofenamic acid (Huang et al., 2015). In this study, we found ALKBH5 and FTO had parallel values in predicting outcomes of patients and were both highly expressed in m^6AregC3, suggesting these two erasers cooperate in shaping the RNA modification patterns and impacting patients’ survival.

Despite the genetic patterns that were different from normal tissues, heterogeneity of m^6A regulator expressions was found among patients. By clustering with m^6A regulators or m^6A signature genes, three clusters were obtained. The heterogeneity has also been observed by other groups. For example, Ogino and Goel (2008), De Sousa E Melo et al. (2013), Sadanandam et al. (2013), Marisa et al. (2013), and Roepman et al. (2014) provided their classification systems to divide the CRC patients into three to six subtypes, yet being different in methodology, inclusion criteria, and interpretations (Singh et al., 2021). In 2015, a consensus of molecular subtypes of CRC was raised based on large patient cohorts and CRC was categorized into five subtypes (Guinney et al., 2015). Different from these previous subtyping methods, which mainly used mutation and epigenetics data (Singh et al., 2021), our subtyping method was based on the transcriptomic data of limited genes (22 or 738). Our method had a strong ability to predict survival outcomes, was reliable across multiple cohorts, and overlapped with other classification systems well. These findings suggest that subtyping by m^6A regulators or m^6A signatures was meaningful and clinically feasible.

In this era of immunotherapy, exploring immune TME is becoming a hot issue these days. The initial work on ICI in CRC showed limited success (Topalian et al., 2012). The following studies discriminate the dMMR/MSI-H patients with high responses to ICI...
Combination with other therapeutic regimens, such as regorafenib, FOLFOX, or cetuximab, was also beneficial to a part of microsatellite stable (MSS) patients (Tapia Rico and Price, 2018; Eng et al., 2019; Bourhis et al., 2021).

Therefore, subtyping CRC in the aspect of immune activity or TME is important for identifying “hot” tumors that may benefit from immunotherapy in MSS CRC. Becht et al. (2016) characterized the immune and stromal features of 1,388 CRC and found that...
they were highly correlated with the CRC subtypes. Our subgroups also have a potent ability to differentiate immune orientations. The m6A$_{reg}$C1 and m6A$_{sig}$C1 were likely “hot” tumors, characterized by the activation of inflammation pathways, the infiltration of active immune cells, and a lack of stromal components. This subtype represents an inflammatory type of cancer that responds well to immunotherapy. The m6A$_{reg}$C3 and m6A$_{sig}$C3 were characterized by high stroma activity, immune-suppressive cells, and resting immune cells, which might represent the immune-exclusive type and respond to immunotherapy only in case of immunity inducers, such as chemotherapy, radiation, or target therapy (Chen and Mellman, 2017). The third subtype was characterized by metabolism pathways and a lack of immune cells, thus representing the immune-ignored tumors, which might not benefit from immunotherapy and should be treated with cytotoxic and targeting medicines (Chen and Mellman, 2017). These results provide information for personalized therapy.

Besides subtyping, a scoring system to describe CRC features and guide treatment is also an interesting issue. For example, the immunoscore is a prognostic marker in CRC based on quantifying the lymphocyte populations at tumor centers and invasive margins (Bruni et al., 2020). This score correlates with neoantigen load, WNT/β-catenin signaling pathways, gut microbiota, and, most importantly, response to ICIs (Angell et al., 2020). Our m6Ascore also has a similar ability. A low m6Ascore indicated defective DNA response, high CD8$^+$ T cells, low stromal activity, high mutation burdens, and prolonged survival. Although we do not have CRC cohorts treated with ICI, in two cohorts beyond CRC, the m6Ascore showed a prognostic value in terms of objective response, progression-free survival, and overall survival. Our m6Ascore might be used for clinical decisions as immunoscore, MSI, or RAS mutation. Signatures that predict the immune status or response to immunotherapy were also found in previous studies for CRC. For example, a STING-related prognostic score (Chen et al.,...
2021b) or an immune-related gene signature (Zhang et al., 2020b) has been shown to provide insights into immunotherapy. They were derived from existing gene pools. Unlike them, our m6A score was derived from m6A modulator–related genes. Some studies also utilized m6A regulators for signature construction. Zhang et al. (2020c) used two m6A readers, YTHDC2 and IGF2BP3, to construct a prognostic model in CRC. Jiang et al. (2021) found that an m6A-related lncRNA-based signature was associated with tumor-infiltrating immune cells. Chong et al. (2021) used a similar method to ours to construct an m6A score, but their study was confined to colon cancer and used fewer cohorts. These studies support our result of a close link between m6A and immune TME. Unfortunately, all these signatures were only studied by association to indirect factors favoring immunotherapy, but none were validated in the CRC-ICI cohorts.

This study also has several limitations. First, the m6A regulators were based on known genes with functions related to m6A modification. Clustering with a more comprehensive range of m6A regulators or signatures may result in better clinical values. Second, the subtyping and scoring systems were based on transcriptomic data. Methods based on PCR or immunostaining would be more feasible in clinical practice. Third, this study is retrospectively based on published cohorts. A prospective study is needed for medical translation in the future. Last, because there were no transcriptomic data from a CRC cohort with ICI treatment, we used two non-CRC cohorts for validation of m6A score in predicting responses to immunotherapy. Such an investigation in CRC patients would be of greater value.

In conclusion, we established a connection between m6A modification and the TME status in CRC. The m6A-based subtyping and scoring systems stratified CRC patients with different tumor immunity, molecular features, and clinical outcomes and have potential clinical implications in clinical decisions.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

All authors contributed to the article and approved the submission. SL and LZ designed this study. YZ and KZ performed the main parts of the analysis and wrote the manuscript. HG, QL, LM, and QJ helped with data collection and analysis. LZ revised the manuscript.

FUNDING

This work was supported by the Foundation of Shandong University Clinical Research Center (2020SDDCRC0011).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.807129/full#supplementary-material

REFERENCES

Angell, H. K., Bruni, D., Barrett, J. C., Herbst, R., and Galon, J. (2020). The Immunoscore: Colon Cancer and beyond. Clin. Cancer Res. 26 (2), 332–339. doi:10.1158/1078-0432.CCR-18-1851

Becht, E., de Reyniés, A., Giraldó, N. A., Pilati, C., Buttard, B., Lacroix, L., et al. (2016). Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin. Cancer Res. 22 (16), 4057–4066. doi:10.1158/1078-0432.CCR-15-2879

Bourhis, J., Stein, A., Paul de Boer, J., Van Den Eynde, M., Gold, K. A., Stintzing, S., et al. (2021). Avelumab and Cetuximab as a Therapeutic Combination: An Overview of Scientific Rationale and Current Clinical Trials in Cancer. Cancer Treat. Rev. 97, 102172. doi:10.1016/j.ctrv.2021.102172

Bruni, D., Angell, H. K., and Galon, J. (2020). The Immune Contexture and Immunoscore in Cancer Prognosis and Therapeutic Efficacy. Nat. Rev. Cancer 20 (11), 662–680. doi:10.1038/s41568-020-02857-5

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., et al. (2017). Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 18 (1), 248–262. doi:10.1016/j.celrep.2016.12.019

Chen, D. S., and Mellman, I. (2017). Elements of Cancer Immunity and the Cancer–Immune Set point. Nature 541 (7637), 321–330. doi:10.1038/nature21349

Chen, H., Yao, J., Bao, R., Dong, Y., Zhang, T., Du, Y., et al. (2021). Cross-talk of Four Types of RNA Modification Writers Defines Tumor Microenvironment and Pharmacogenomic Landscape in Colorectal Cancer. Mol. Cancer 20 (1), 29. doi:10.1186/s12943-021-01322-w

Chen, S.-Y., Chen, S., Feng, W., Li, Z., Luo, Y., and Zhu, X. (2021). A STING-Related Prognostic Score Predicts High-Risk Patients of Colorectal Cancer and Provides Insights into Immunotherapy. Ann. Transl. Med. 9 (1), 14. doi:10.21037/atm-20-2430

Chong, W., Shang, L., Liu, J., Fang, Z., Du, F., Wu, H., et al. (2021). m6A Regulator-Based Methylation Modification Patterns Characterized by Distinct Tumor Microenvironment Immune Profiles in colon cancerA Regulator-Based Methylation Modification Patterns Characterized by Distinct Tumor Microenvironment Immune Profiles in colon Cancer. Theranostics 11 (5), 2201–2217. doi:10.7150/thno.52717

Chung, K. Y., Gore, I., Fong, L., Venook, A., Beck, S. B., Dorazio, P., et al. (2010). Phase II Study of the Anti-cytotoxic T-Lymphocyte-Associated Antigen 4 Monoclonal Antibody, Tremelimumab, in Patients with Refractory Metastatic Colorectal Cancer. J. Clin. Oncol. 28 (1), 3485–3490. doi:10.1200/JCO.2010.28.3994

De Sousa E Melo, F., Wang, X., Iansen, M., Fessler, E., Trinh, A., de Rooij, L. P. M., et al. (2013). Poor-prognosis colon Cancer Is Defined by a Molecularly Distinct Subtype and Develops from Serrated Precursor Lesions. Nat. Med. 19 (5), 614–618. doi:10.1038/nm.3174

Eng, C., Kim, T. W., Bendell, J., Argiòs, G., Tebbutt, N. C., Di Bartolomeo, M., et al. (2019). Atezolizumab with or without Cobimetinib versus Regorafenib in Previously Treated Metastatic Colorectal Cancer (IMblaze370): a Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. Lancet Oncol. 20 (6), 849–861. doi:10.1016/S1470-2045(19)30027-0

Frye, M., Harada, B. T., Behm, M., and He, C. (2018). RNA Modifications Modulate Gene Expression during Development. Science 361 (6409), 1346–1349. doi:10.1126/science.aau1646

Gaikwad, S. M., Phyo, Z., Arteaga, A. Q., Gorjifard, S., Calabrese, D. R., Connors, D., et al. (2020). A Small Molecule Stabilizer of the MYC G4-Quadruplex...
Induces Endoplasmic Reticulum Stress, Senescence and Pyrotosis in Multiple Myeloma. *Cancers* 12 (10), 2952. doi:10.3390/cancers12102952

Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C., et al. (2015). The Consensus Molecular Subtypes of Colorectal Cancer. *Nat. Med.* 21 (11), 1350–1356. doi:10.1038/nm.3967

Huang, Y., Yan, J., Li, Q., Li, J., Gong, S., Zhou, H., et al. (2015). Meclofenamic Acid Selectively Inhibits FTO Demethylation of m6A over ALKBH5. *Nucleic Acids Res.* 43 (1), 373–384. doi:10.1093/nar/gku1276

Jiang, Z., Zhang, Y., Chen, K., Yang, X., and Liu, J. (2021). Integrated Analysis of the Immune Infiltrates and PD-L1 Expression of N6-Methyladenosine-Related Long Non-coding RNAs in Colorectal Cancer. *Ijgm* 14, 5017–5028. doi:10.2147/ijgm.S327765

Joyce, J. A., and Pollard, J. W. (2009). Microenvironmental Regulation of Metastasis. *Nat. Rev. Cancer* 9 (4), 239–252. doi:10.1038/nrc2618

Kuipers, E. J., Grady, W. M., Lieberman, D., Seufferlein, T., Sung, J. J., Boelens, P. G., et al. (2015). Colorectal Cancer. *Nat. Rev. Dis. Primers* 1, 15065. doi:10.1038/nrdp.2015.65

Lan, Q., Liu, P. Y., Bell, J. L., Wang, J. Y., Hüttelmaier, S., Zhang, X. D., et al. (2021). Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. *N. Engl. J. Med.* 366 (26), 2443–2454. doi:10.1056/NEJMoa120690

Wei, J., Liu, F., Lu, Z., Fei, Q., Ai, Y., He, P. C., et al. (2018). Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. *Mol. Cell* 71 (6), 973–985. doi:10.1016/j.molcel.2018.08.011

Zhang, B., Wu, Q., Li, B., Wang, D., Wang, L., and Zhou, Y. L. (2020). m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization in Gastric cancer A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration Characterization in Gastric Cancer. *Mol. Cancer* 19 (1), 53. doi:10.1186/s12943-020-01170-0

Zhang, J., Cheng, X., Wang, J., Huang, Y., Yuan, J., and Guo, D. (2020). Gene Signature and Prognostic merit of M6a Regulators in Colorectal Cancer. *Exp. Biol. Med. (Maywood)* 245 (15), 1344–1354. doi:10.1177/15353702024301645

Zhang, X., Zhao, H., Shi, X., Jia, Y., and Yang, Y. (2020). Identification and Validation of an Immune-Related Gene Signature Predictive of Overall Survival in cancer. *Aging* 12 (24), 26095–26120. doi:10.18632/aging.202317

Zhong, J., Liu, Z., Cai, C., Duan, X., Deng, T., and Zeng, G. (2021). m6A Modification Patterns and Tumor Immune Landscape in clear Cell Renal Carcinoma. *J. Immunother.* 9 (2), e001646. doi:10.1136/jitc-2020-001646

Zhu, J., Xiao, J., Wang, M., and Hu, D. (2020). Pan-Cancer Molecular Characterization of m6A Regulators and Immunogenomic Perspective on the Tumor Microenvironment. *Front. Oncol.* 10, 618374. doi:10.3389/fonc.2020.618374

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhang, Zhang, Gong, Li, Man, Jin, Zhang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.