The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses at the GUT scale

Hiroyuki Abe*, Junichiro Kawamura† and Hajime Otsuka‡

Department of Physics, Waseda University, Tokyo 169-8555, Japan

Abstract

We identify a parameter region where the mass of the lightest CP-even Higgs boson resides in $124.4 - 126.8$ GeV, and at the same time the degree of tuning a Higgsino-mass parameter (so-called μ-parameter) is relaxed above 10 % in the minimal supersymmetric standard model (MSSM) with soft supersymmetry breaking terms, by solving the full set of one-loop renormalization group equations numerically. It is found that certain nonuniversal values of gaugino-mass parameters at the so-called grand unification theory (GUT) scale $\sim 10^{16}$ GeV are important ingredients for the MSSM to predict, without a severe fine-tuning, the Higgs boson mass ~ 125 GeV indicated by recent observations at the Large Hadron Collider. We also show a typical superparticle spectrum in this parameter region.

*E-mail address: abe@waseda.jp
†E-mail address: junichiro-k@ruri.waseda.jp
‡E-mail address: hajime.13.gologo@akane.waseda.jp
Contents

1 Introduction ... 1
2 Implications of nonuniversal gaugino masses 2
3 The Higgs mass and the naturalness 4
4 Conclusions and discussions 8
A Boundary conditions at the GUT scale 9
B RGEs relevant to the Higgs mass 12
1 Introduction

The low-energy supersymmetry is one of the most promising candidates for a new physics beyond the standard model (SM) of elementary particles due to the absence of quadratic divergences. The supersymmetric partners of SM particles cancel the radiative corrections to the mass of Higgs bosons, then protect the electroweak (EW) scale $M_{EW} \sim 10^2$ GeV against the huge corrections. The lightest supersymmetric particle (LSP) can be a candidate for the dark matter required from cosmological observations. Moreover, the minimal supersymmetric standard model (MSSM) predicts that three gauge coupling constants are unified at a high-energy scale around $M_{GUT} \simeq 2 \times 10^{16}$ GeV, and the electroweak symmetry is broken in a wide range of the parameter space of the MSSM with soft supersymmetry breaking terms, due to logarithmic radiative corrections that cause sizable running of parameters from M_{GUT} to M_{EW}. (See, for a review, Ref. [1].)

On a stable vacuum where the EW symmetry is broken successfully, the mass of Z-boson is determined by

$$m_Z^2 = \frac{|m_{H_u}^2(M_{EW}) - m_{H_d}^2(M_{EW})|}{\sqrt{1 - \sin^2(2\beta)}} - m_{H_u}^2(M_{EW}) - m_{H_d}^2(M_{EW}) - 2 |\mu(M_{EW})|^2 \simeq -2 |\mu(M_{EW})|^2 - 2m_{H_u}^2(M_{EW}),$$

(1)

where $\mu(M_{EW})$ and $m_{H_u}(M_{EW})$ are supersymmetric and soft supersymmetry breaking masses, respectively, for the Higgs field evaluated at M_{EW}. The Higgsino mass is also given by μ and we refer to this parameter as μ-parameter. The above mentioned radiative EW breaking roughly means $m_{H_u}^2(M_{EW}) < - |\mu(M_{EW})|^2 < 0$ even with $m_{H_u}^2(M_{GUT}) > 0$ at M_{GUT}. The observed value $m_Z = 91.2$ GeV indicates $|\mu(M_{EW})| \sim |m_{H_u}(M_{EW})| \sim M_{EW}$, otherwise a fine-tuning is required between parameters μ and m_{H_u}. One of the guiding principles toward a more fundamental theory beyond the MSSM can be provided by an argument of the naturalness. Because the mass parameters μ and m_{H_u} should have essentially different origins from the viewpoint of supersymmetry, there is no reason that these parameters are closely related.

However, from the recent results in the search for Higgs and supersymmetric particles at the Large Hadron Collider (LHC), the mass of scalar quarks (squarks) in the first and the second generation is indicated above about 1.3 TeV [2], and the allowed region of the mass of the lightest CP-even Higgs boson has been reported in between 124.4 and 126.8 GeV [3]. The latter implies a large radiative correction for the mass of the Higgs boson which is lighter than the Z-boson at the tree-level [4]. In this case the mass of scalar top quarks must be much heavier than M_{EW} which dominantly contribute to such a correction due to a large top Yukawa coupling. These observations indicate that the mass scale of soft supersymmetry breaking parameters tends to be much larger than m_{Z}, which in general cause the fine-tuning problem mentioned above.

It was pointed out in Ref. [5] that certain nonuniversal gaugino masses at M_{GUT} relax the degree of the above mentioned fine-tuning in the MSSM. In this paper, we update the analysis based on the recent experimental data[2]. Because the latest Higgs mass bound shown above

\[^{1}\text{Similar analysis is performed recently in Ref. [6].}\]
indicates a larger value of $\tan \beta$ than the value adopted in Ref. [5], in the following analysis, we solve the full set of one-loop renormalization group equations (RGEs), in contrast to the previous analysis in Ref. [5] where all the Yukawa (and scalar trilinear) couplings are neglected except for those involving only (scalar) top quarks.

The following sections are organized as follows. In Sec. 2, we roughly estimate the effects of certain nonuniversal gaugino masses on the mass of the lightest CP-even Higgs boson and on the degree of tuning the μ-parameter. Based on these implications, in Sec. 3, we perform a full numerical analysis at the one-loop level and identify a parameter region where the Higgs mass resides in $124.4 - 126.8$ GeV and the degree of tuning is relaxed above 10% at the same time. Finally, Sec. 4 is devoted to conclusions and discussions. In Appendix A, we show the boundary conditions for RGEs at the GUT scale adopted in this paper. The relevant RGEs for analyzing the Higgs mass are exhibited in Appendix B.

2 Implications of nonuniversal gaugino masses

The superpotential and soft supersymmetry breaking terms in the MSSM are shown in Eqs. (7) and (8) in Appendix A, respectively. We use the notations and the conventions adopted in Appendix A throughout this paper.

The radiative corrections to the Higgs mass are dominated by loops of scalar top quarks. With an approximation that the mass eigenstates of top squarks are nearly degenerate, the mass of the lightest CP-even Higgs boson is evaluated as [7]

$$m_h^2 \simeq m_Z^2 \cos^2(2\beta) \left(1 - \frac{3}{8\pi^2} \frac{m_t^2}{v^2} t \right) + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[\frac{1}{2} X_t + t + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3 \right) (X_t t + t^2) \right],$$

with

$$X_t = \frac{2\tilde{A}_t^2}{M_{st}^2} \left(1 - \frac{\tilde{A}_t^2}{12M_{st}^2} \right), \quad \left\{ \begin{array}{c} \tilde{A}_t \equiv A_t(m_Z) - \mu(m_Z) \cot \beta \\ M_{st}^2 \equiv \sqrt{m_{Q_{33}}^2(m_Z) m_{Q_{33}}^2(m_Z)} \end{array} \right\},$$

where $m_t = 165$ GeV is the top quark mass, $y_t \equiv y_{t33}$ is the top Yukawa coupling, $a_{33}^t \equiv y_t A_{33}^t$ is the scalar trilinear coupling involving only top squarks, $m_{Q_{33}}^2 \equiv (m_{Q_{33}}^2)^{33}$, $(m_{U_{33}}^2)^{33}$ is the left-(right-)handed top squark mass square, and $t = \ln(M_{st}^2/m_t^2)$. Here $v = 174$ GeV is related to the VEVs of up- and down-type Higgs fields h_u and h_d as $v_u = v \sin \beta$ and $v_d = v \cos \beta$, respectively. As is well known, the value of X_t is maximized with $|\tilde{A}_t| \sim \sqrt{6}M_{st}$, and then the loop corrections are enhanced in Eq. (2).

If all the Yukawa (and scalar trilinear) couplings are neglected except for those involving only (scalar) top quarks, the one-loop RGEs show that the soft supersymmetry breaking parameters...
evaluated at the Z-boson mass scale m_Z are related to those at M_{GUT} as

\[m_{Q_3}^2(m_Z) \simeq -0.02 M_1^2 + 0.38 M_2^2 - 0.02 M_1 M_3 - 0.07 M_2 M_3 + 5.63 M_3^2
+ (0.02 M_2 + 0.09 M_3 - 0.02 A_t) A_t
- 0.14 m_{H_u}^2 + 0.86 m_{Q_3}^2 - 0.14 m_{U_3}^2, \]

\[m_{U_3}^2(m_Z) \simeq 0.07 M_1^2 - 0.01 M_1 M_2 - 0.21 M_2^2 - 0.03 M_1 M_3 - 0.14 M_2 M_3 + 4.61 M_3^2
+ (0.01 M_1 + 0.04 M_2 + 0.18 M_3 - 0.05 A_t) A_t
- 0.27 m_{H_u}^2 - 0.27 m_{Q_3}^2 + 0.73 m_{U_3}^2, \]

\[A_t(m_Z) \simeq -0.04 M_1 - 0.21 M_2 - 1.90 M_3 + 0.18 A_t, \]

(3)

where the soft parameters without any arguments in the right-handed sides represent those evaluated at M_{GUT}. Here the numerical values of the MSSM gauge couplings and the top Yukawa coupling are chosen in such a way that these values become the observed ones at low energies, and we take $\tan \beta = 15$ as declared at the end of Appendix A. The numerical values of the coefficients in Eq. (3) suggest $|\tilde{A}_t|/M_{\text{st}} < 1$ for soft parameters of the same orders of magnitude at M_{GUT}, without any cancellation between terms in the right-handed sides of Eq. (3).

This insists that a certain cancellation is required in Eq. (3) in order to enhance radiative corrections in Eq. (2) for obtaining a heavier Higgs mass. We find that the gluino mass-square term with the largest coefficient can be cancelled by the wino mass-square term in $m_{U_3}^2(m_Z)$ with the ratio $M_2/M_3 \sim \sqrt{4.6/0.21} \sim 4.8$, and then $0 < m_U(m_Z) < |A_t(m_Z)|$ is realized. This phenomenon can be understood as follows. The gaugino masses and soft scalar masses act as positive and negative driving forces, respectively, in the renormalization group evolution of soft scalar mass square from the GUT to the EW scale. The relevant RGEs are shown in Appendix A. Therefore, the mass square of the left-handed scalar quark $m_{Q_3}^2$ tends to increase for a larger wino mass $M_2/M_3 > 1$, and then the mass square of the right-handed squark $m_{U_3}^2$ tends to decrease with the increasing $m_{Q_3}^2$. The averaged top squark mass M_{st} decreases because the increasing contribution from $m_{Q_3}^2$ is dominated by the decreasing one from $m_{U_3}^2$. As we can estimate in Eq. (3), the contribution from the wino mass satisfying $2 \lesssim M_2/M_3 \lesssim 5$ to reduce $m_{U_3}^2$ dominates the one to increase $m_{Q_3}^2$, and then $|\tilde{A}_t|/M_{\text{st}} > 1$ is achieved.

The above rough estimation can be verified numerically. Fig. 1 shows contours of M_{st}/m_{Q_3} (the left panel) and those of $r_a \equiv |\tilde{A}_t|/M_{\text{st}}$ (the right panel) in the (r_1, r_2) plane, evaluated by a numerical solution for the full set of one-loop RGEs with the boundary conditions at the GUT scale shown in Appendix A where the bino-gluino and the wino-gluino mass ratios at the GUT scale are denoted respectively by

\[r_1 \equiv M_1/M_3, \quad r_2 \equiv M_2/M_3. \]

The ratios r_1 and r_2 are varied in the following analysis. From Fig. 1 we find M_{st} decreases and then $|\tilde{A}_t|/M_{\text{st}}$ increases as the wino mass parameter M_2 increases, assuring the above rough estimation.

On the other hand, concerning about the fine-tuning, a smaller absolute value of the soft scalar mass square for the up-type Higgs $m_{H_u}^2$ is favored. A similar relation to the ones in
Figure 1: Contours of M_{st}/m_{Q_3} (the left panel) and those of $r_a \equiv |\tilde{A}_t|/M_{st}$ (the right panel) in the (r_1, r_2) plane, evaluated by a numerical solution for the full set of one-loop RGEs with the boundary conditions at the GUT scale shown in Appendix A.

Eq. (3) is obtained for $m^2_{H_u}$ as

$$m^2_{H_u}(m_Z) \simeq -0.01 M_1 M_2 + 0.17 M_2^2 - 0.05 M_1 M_3 - 0.20 M_2 M_3 - 3.09 M_3^2$$

$$+ (0.02 M_1 + 0.06 M_2 + 0.27 M_3 - 0.07 A_t) A_t$$

$$+ 0.59 m^2_{H_u} - 0.41 m^2_{Q_3} - 0.41 m^2_{U_3}. \quad (4)$$

The numerical values of the coefficients suggest that $m^2_{H_u}(m_Z)$ is of the order of soft parameters for those of the same orders of magnitude at M_{GUT}, without any cancellation between terms in the right-handed side of Eq. (4).

This insists again that a certain cancellation is required in Eq. (4) in order to realize $-m^2_{H_u}(m_Z) \sim m^2_Z$ to reduce the fine-tuning required by Eq. (1). We find that the gluino mass-square term with the largest coefficient can be cancelled by the wino mass-square term in $m^2_{H_u}(m_Z)$ with the ratio $M_2/M_3 \sim \sqrt{3.1}/0.17 \sim 4.3$, that is within the range $2 \lesssim M_2/M_3 \lesssim 5$ required for $|\tilde{A}_t|/M_{st} > 1$.

3 The Higgs mass and the naturalness

Motivated by the above rough estimations based on Eqs. (2), (3) and (4), we search a parameter space of the MSSM with soft terms, especially a region of gaugino mass ratios, where the mass of the lightest CP-even Higgs boson m_h resides in 124.4 – 126.8 GeV and at the same time the degree of tuning the μ-parameter is relaxed above 10%. Because we take $\tan \beta = 15$ as
declared at the end of Appendix A, the effect of the other Yukawa couplings than the top one, especially the bottom Yukawa coupling, can induce sizable corrections, we numerically solve the full set of one-loop RGEs including all the Yukawa couplings. (The complete set of the MSSM RGEs are found, e.g., in Ref. [9] at the two-loop level.)

By utilizing the numerical solutions of RGEs, we evaluate the Higgs mass m_h based on the mass matrix with one- and two-loop contributions from top and bottom squarks, respectively, derived in Ref. [7]. Here we do not adopt the approximated expression (2) because left- and right-handed top squarks are not degenerate in the favored region $2 \lesssim M_2/M_3 \lesssim 5$ with the maximal-mixing of top squarks. Although the above rough estimation is based on Eq. (2), it turns out to be valid and consequently a heavier Higgs mass can be obtained in the full numerical analysis as we will see later.

We assume a certain mechanism of supersymmetry breaking which determines soft supersymmetry breaking parameters at the GUT scale, and then the ratios among these parameters are fixed with an accuracy. The μ-parameter in the MSSM superpotential (6) is in general independent to the mechanism of supersymmetry breaking. As a measure of the degree of tuning the μ-parameter at the GUT scale, we adopt a parameter Δ_μ defined by

$$\Delta_\mu = \frac{|\mu|}{2m_Z^2} \frac{\partial m_Z^2}{\partial |\mu|},$$

which represents a sensitivity [10] of the Z-boson mass m_Z at the EW scale on the μ-parameter at the GUT scale. The degree of tuning to obtain $m_Z = 91.2$ GeV is then estimated as $100 \times |\Delta_\mu^{-1}|$ %. It seems that, with the current experimental status, $|\Delta_\mu| > 100$ is inevitable with universal values of soft parameters at the GUT scale, which requires more severe fine-tuning than the degree of 1 %.

The results from the direct search at the LHC set the lower bounds of the mass of gluino 860 GeV and of the masses of squarks in the first and the second generations 1320 GeV [2]. We adopt the severest bound although it may be lowered in models with some nonuniversal gaugino mass ratios [11]. Taking these stringent bounds and the other experimental bounds for top squarks, neutralinos and charginos [12] into account, we fix numerical values of the other soft parameters than wino and bino masses at the GUT scale as shown in Appendix A and vary gaugino mass ratios r_1, r_2 at the GUT scale in the evaluation of the Higgs mass m_h and the parameter $|\Delta_\mu|$. Fig. 2 shows contours of m_h [GeV] and $100 \times |\Delta_\mu^{-1}|$ (%) in the parameter space (r_1, r_2).

From Fig. 2 we find that the mass of the Higgs boson resides in $124.4 - 126.8$ GeV in the region $3.0 \lesssim r_2 \lesssim 5.5$ for the wide range of $r_1 \gtrsim -3$. Moreover we emphasize that the region is overlapped with $5.2 \lesssim r_2 \lesssim 5.5$ where the degree of tuning the μ-parameter is relaxed above 10 %. Therefore we find a parameter region where the Higgs boson mass ~ 125 GeV indicated by recent LHC observations is predicted in a natural MSSM with certain nonuniversal gaugino masses at the GUT scale. Compared with Ref. [5], here the Higgs boson mass above 115 GeV

2 Although the effects of light generations are negligible, for concreteness, we input numerical values of all the Yukawa couplings determined by Froggatt-Nielsen mechanism [8] at the GUT scale, shown in Appendix A. Also, our calculation covers the situation that the scalar charm quark masses are about 10^2 times higher than scalar top quark masses and the correction to $m_{H_u}^\text{running}$ is sizable, as can be seen in Appendix B.
is achieved by a larger value of \(\tan \beta = 15 \), that is one of the reason we employed the full set of MSSM RGEs including all the Yukawa couplings. Although the overlapped region is not so wide, the required accuracy for the ratios of the gaugino masses are not so stringent. There would exist some supersymmetry breaking and the mediation mechanisms that fix the gaugino mass ratios to the above numerical values favored by the naturalness. For example, concrete fixed values of the ratios are shown in Ref. [13] for various breaking and mediation mechanisms.

A typical superparticle spectrum at the EW scale and the masses of neutral and charged Higgs bosons are shown in Tables 1 and 2 by setting the gaugino mass ratios \((r_1, r_2) = (11, 5.4)\) inside the favored region found above. From these tables, we find all the experimental lower bounds on the masses of gluinos, neutralinos, charginos, squarks and sleptons as well as neutral and charged Higgs bosons can be satisfied with 12.84\% tuning of the \(\mu \)-parameter. With this parameter choice, Fig. 3 shows the running of gaugino and soft scalar masses from the GUT to the EW scale. We find that gaugino masses tend to degenerate at low energies, that is a typical signal of this parameter region as discussed in Ref. [5].

Here we comment on charge and color breaking minima [14]. If we take \(A_t \) larger than \(M_{\text{st}} \), there is a possibility that such minima appear along the direction satisfying \(|\tilde{q}_3| = |\tilde{u}_3| = |h_u|\) in the field space. The minima exist unless the following condition,

\[
|A_t|^2 \leq 3 \left(m_{Q_3}^2 + m_{U_3}^2 + m_{H_u}^2 + |\mu|^2 \right),
\]

is satisfied. It has been noted that the parameters yielding \(r_a \approx \sqrt{6} \) are dangerous with the parameters satisfying \(m_{Q_3} = m_{U_3} \) due to the inequality [6] [15]. On the other hand, in our analysis, the important region \(\sqrt{5} \lesssim r_a \lesssim \sqrt{7} \) shown in Fig. 1 appears with the parameters satisfying \(|A_t(m_Z)| \sim m_{Q_3}(m_Z) \) and \(0 < m_{U_3}(m_Z) < m_{Q_3}(m_Z) \), and then the inequality [6] is guaranteed.
Table 1: A typical superparticle (sparticle) spectrum at the EW scale for \((r_1, r_2) = (11, 5.4)\). The subscripts label the mass eigenstates for the up \((\tilde{u})\), down \((\tilde{d})\), charm \((\tilde{c})\), strange \((\tilde{s})\), top \((\tilde{t})\), bottom \((\tilde{b})\) squarks, the scalar electron \((\tilde{e})\), muon \((\tilde{\mu})\), tauon \((\tilde{\tau})\), the neutralino \((\tilde{\chi}_0)\) and the chargino \((\tilde{\chi}^\pm)\).

sparticle	mass [GeV]	sparticle	mass [GeV]
\(\tilde{u}_1\)	2007	\(\tilde{c}_1\)	2119
\(\tilde{u}_2\)	2198	\(\tilde{\mu}_1\)	2104
\(\tilde{c}_2\)	2194	\(\tilde{\mu}_2\)	2132
\(\tilde{t}_1\)	505.9	\(\tilde{\tau}_1\)	1492
\(\tilde{t}_2\)	1337	\(\tilde{\tau}_2\)	1511
\(\tilde{d}_1\)	1812	\(\tilde{\chi}_1^0\)	1588
\(\tilde{d}_2\)	2200	\(\tilde{\chi}_2^0\)	1558
\(\tilde{s}_1\)	1786	\(\tilde{\chi}_3^0\)	176.6
\(\tilde{s}_2\)	2196	\(\tilde{\chi}_4^0\)	182.1
\(\tilde{b}_1\)	941.8	\(\tilde{\chi}_1^\pm\)	179.0
\(\tilde{b}_2\)	1317	\(\tilde{\chi}_2^\pm\)	1558

Table 2: The masses of neutral and charged Higgs bosons as well as the gaugino masses at the EW scale for \((r_1, r_2) = (11, 5.4)\). The degree of tuning the \(\mu\)-parameter, \(100 \times |\Delta^{-1}_\mu|\) (%), is also shown.

\(m_h\) [GeV]	\(m_H\) [GeV]	\(m_A\) [GeV]	\(m_{H^\pm}\) [GeV]		
126.0	1415	1415	1417		
100 \times	\(\Delta^{-1}_\mu\)	(%)	\(M_1(m_Z)\) [GeV]	\(M_2(m_Z)\) [GeV]	\(M_3(m_Z)\) [GeV]
12.84	1587	1554	1003		

Finally, we mention about the next to minimal supersymmetric standard model (NMSSM). When a singlet chiral multiplet is added, the MSSM superpotential can be modified to have a positive correction to the Higgs mass square at the tree level. There is, however, another negative contribution to the Higgs mass square induced by a mixing with the singlet field. The latter negative contribution also becomes larger in general when the parameters are chosen to make the former positive contribution larger. This fact makes the analysis of the NMSSM complicated (see for a review, Ref. [16]). We would not be able to make a definitive statement, at the current stage, that the NMSSM is better than the MSSM from the viewpoint of both the Higgs mass and the naturalness, even though there have been interesting studies concerning those issues in the NMSSM [17].
Figure 3: The running of gaugino, soft scalar masses and the parameter $M_{H_{u,d}} = (|\mu|^2 + m_{H_{u,d}}^2)^{\frac{1}{2}}$ from the GUT to the EW scale for $(r_1, r_2) = (11, 5.4)$.

4 Conclusions and discussions

By solving the full set of one-loop RGEs numerically for all the parameters in the MSSM with soft supersymmetry breaking terms, we identified a parameter region where the mass of the lightest CP-even Higgs boson resides in 124.4 – 126.8 GeV indicated by the recent LHC results, and at the same time the degree of tuning the μ-parameter is relaxed above 10%. The region is characterized by certain nonuniversal values of gaugino mass parameters at the GUT scale as indicated in Ref. [5] before the LHC observations. We have confirmed that, even after the LHC results, the main suggestions in Ref. [5] are still valid with a larger value of $\tan \beta$ based on more accurate analyses than those in Ref. [5].

We also derived a superparticle spectrum for a typical parameter choice inside the identified region. We find all the experimental lower bounds on the masses of gluinos, neutralinos, charginos, squarks and sleptons as well as neutral and charged Higgs bosons can be satisfied. One of the outstanding features of the spectrum is the degenerate gaugino masses at low energies as a consequence of a particular choice of gaugino mass ratios at the GUT scale favored by the naturalness, as mentioned in Ref. [5]. It would be interesting to study cosmological features in detail in this parameter region of the MSSM.

One of the important guiding principles for the physics beyond the MSSM is provided by the

3 A possibility of the neutralino dark matter was studied in Ref. [18] based on Ref. [5] before the LHC results.

4 Candidates for a dark matter in this region are the gravitino, the right-handed sneutrino, and the Higgsino-like neutralino. In the third case, the Higgsino-like neutralino dark matter would be possible due to an enhancement from a non-thermal decay (gravitino [19], Axino [20] or moduli decay [21]), although the thermal abundance of Higgsino-like neutralino is sub-dominant to explain the current dark matter abundance.
argument of its naturalness. The EW scale is unstable under a tiny numerical deviation of the \(\mu \)-parameter when a severe tuning is required to realize the observed mass of \(W \) and \(Z \) bosons. Therefore the underlying theory free from such a fine-tuning is desirable, which becomes a strong guiding principle when we study particle physics models at a more fundamental level. We adopted Eq. (5) as the measure of the degree of tuning. The measure can be extended to include all the other soft supersymmetry breaking parameters like, e.g., in Ref. [22]. However, we have assumed that the ratio between the breaking parameters are fixed with an enough accuracy by a concrete supersymmetry breaking and the mediation mechanism. Even in this situation, the supersymmetric parameter \(\mu \) would be independent to the other parameters, and the issues of the fine-tuning should be concerned about the \(\mu \)-parameter.

There would exist some supersymmetry breaking and the mediation mechanisms that fix the gaugino mass ratios [13] to the favored numerical values by the naturalness. One of such candidates is a mirage mediation model [23], where the gaugino mass ratio at the GUT scale is determined by the ratio of contributions to gaugino masses from the modulus and the anomaly mediated supersymmetry breaking [24]. Issues of fine-tuning in this model are studied in Ref. [25]. Another and more general origin of nonuniversal gaugino masses is moduli-mixing gauge kinetic functions, which appear even at the tree level in a certain effective supergravity action. For example, in some superstring models, such moduli-mixings appear from nontrivial D-brane configurations where the gaugino mass ratios are determined by, e.g., numbers of windings, intersections and magnetic fluxes of D-branes [26] (see, for a review, Ref. [27]). Even without mentioning superstrings, in a minimal extension of the MSSM with a single extra dimension, namely, in five-dimensional supergravity models, the situation is similar and the gaugino mass ratios can be determined by data of the very special manifold governing the structure of \(\mathcal{N} = 2 \) vector multiplets [28]. In all the cases with moduli-mixing gauge kinetic functions, the mechanism of moduli stabilization is important to determine the gaugino mass ratios [29].

The LHC is now exploring the parameter space of the MSSM and the other supersymmetric models. It would be possible that the recent and near-future observations guide us in a direction toward a more fundamental theory of the nature through the results obtained here.

Acknowledgement

The authors would like to thank T. Higaki for stimulating discussions. The work of H. A. was supported by the Waseda University Grant for Special Research Projects No.2012B-151.

A Boundary conditions at the GUT scale

In this appendix we show numerical values of parameters in the MSSM with soft supersymmetry breaking terms selected as a boundary condition at the GUT scale, \(M_{\text{GUT}} = 2 \times 10^{16} \text{ GeV} \), for our numerical analysis of the full set of MSSM one-loop RGEs.

For the chiral multiplets \(Q_i, U_i, D_i, L_i \) and \(E_i \) carrying the \(i \)th generation of the left-handed quark doublet, the right-handed up quark, the right-handed down quark, the left-handed lepton
doublet and the right-handed electron, and those H_u and H_d containing the up- and the down-type Higgs doublet, respectively, the MSSM superpotential is given by

$$W_{\text{MSSM}} = \mu H_u H_d + y_{ij}^u H_u Q_i U_j + y_{ij}^d H_d Q_i D_j + y_{ij}^e H_d L_i E_j,$$

where $y_{ij}^{u,d,e}$ are Yukawa coupling constants, and μ is the Higgsino mass parameter referred to as μ-parameter. The summations over the generation indices $i, j = 1, 2, 3$ are implicit. The soft supersymmetry breaking terms are defined by

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} \left(\sum_{a=1}^{3} M_a \text{tr} \lambda^a \lambda^a + \text{h.c.} \right) - \sum_{\Phi} (m_{\Phi}^2)_{ij} \tilde{\phi}_i \tilde{\phi}_j - m_{H_u}^2 |h_u|^2 - m_{H_d}^2 |h_d|^2 - \left(a_{ij}^u h_u \tilde{q}_i \tilde{u}_j + a_{ij}^d h_d \tilde{d}_i \tilde{d}_j + a_{ij}^e h_d \tilde{e}_i \tilde{e}_j + B \mu h_u h_d + \text{h.c.} \right),$$

where $\tilde{\phi} = \tilde{q}, \tilde{u}, \tilde{d}, \tilde{l}, \tilde{e}$ and h_u, h_d represent the scalar components of the chiral multiplets $\Phi = Q, U, D, L, E$ and H_u, H_d, respectively, and λ^3, λ^2 and λ^1 are gaugino fields in the vector multiplets for $SU(3)_C$, $SU(2)_L$ and $U(1)_Y$ gauge groups of the MSSM, respectively. The gaugino masses M_a, the soft scalar masses $(m_{\Phi}^2)_{ij}$ and the scalar trilinear couplings $a_{ij}^{u,d,e}$ as well as the parameter $B \mu$ in Eq. (8) are called soft supersymmetry breaking parameters. Note that the MSSM singlet chiral multiplet carrying a right-handed neutrino could be introduced without affecting the basic results of this paper, which is omitted just for simplicity.

As for supersymmetric parameters, three gauge coupling constants g_3, g_2 and g_1 for $SU(3)_C$, $SU(2)_L$ and $U(1)_Y$ gauge groups in the MSSM, respectively, are given at the GUT scale as

$$g_3 = 0.720, \quad g_2 = 0.719, \quad g_1 = 0.719,$$

determined by the observed values at low energies. The Yukawa coupling matrices at the GUT scale are chosen for generation indices $i, j = 1, 2, 3$ as

$$y_{ij}^u = \begin{pmatrix} 0.963 \times \epsilon^5 & 0.457 \times \epsilon^{3.5} & 0.397 \times \epsilon^{2.5} \\ 0.546 \times \epsilon^4 & 0.481 \times \epsilon^{2.5} & 0.670 \times \epsilon^{1.5} \\ 0.153 \times \epsilon^{2.5} & 0.334 \times \epsilon^1 & 0.595 \times \epsilon^0 \end{pmatrix},$$

$$y_{ij}^d = \begin{pmatrix} 0.294 \times \epsilon^4 & 0.496 \times \epsilon^{4.5} & 0.468 \times \epsilon^{3.5} \\ 0.156 \times \epsilon^3 & 0.172 \times \epsilon^{3.5} & 0.304 \times \epsilon^{2.5} \\ 0.527 \times \epsilon^{1.5} & 0.775 \times \epsilon^2 & 0.456 \times \epsilon^1 \end{pmatrix},$$

$$y_{ij}^e = \begin{pmatrix} 0.573 \times \epsilon^6 & 0.404 \times \epsilon^4 & 0.946 \times \epsilon^4 \\ 0.404 \times \epsilon^5 & 1.02 \times \epsilon^3 & 0.274 \times \epsilon^3 \\ 0.686 \times \epsilon^{3.5} & 0.690 \times \epsilon^{1.5} & 0.718 \times \epsilon^{1.5} \end{pmatrix},$$

which can be realized by the Froggatt-Nielsen mechanism [8] or quasi-localized matter fields in five-dimensional spacetime [30, 31] yielding observed masses and mixings of quarks and charged leptons at the EW scale. Here $\epsilon = 0.225$ represents the magnitude of mixing by
Cabibbo angle. Note that these numerical values of the elements involving light generations are just for concreteness of the numerical evaluation, and these concrete values for the light generations are not essential for our results. The basic results are valid for the other ansatz of Yukawa matrices that generate observed quark and lepton masses and mixings as long as it coincides with a value of $\tan \beta \gtrsim 10$ as will be selected in Eq. (9).

The parameters in soft supersymmetry breaking terms are selected as follows. The gluino mass is chosen as

$$M_3 = 350 \text{ GeV},$$

which is almost the lowest value satisfying the experimental lower bound at the EW scale. Note that the gaugino mass ratios r_1 and r_2, namely the bino mass M_1 and the wino masses M_2, are varied at the GUT scale with the above fixed gluino mass M_3 in our numerical analysis. The soft scalar masses and the scalar trilinear couplings at the GUT scale are fixed as

$$\sqrt{(m^2_3)_{ij}} = \begin{cases} 1500 \text{ GeV} & (i = j = 1, 2) \\ 200 \text{ GeV} & (i = j = 3) \\ 0 \text{ GeV} & (i \neq j) \end{cases}, \quad \Phi = Q, U, D, L, E,$$

$$m_{H_u} = m_{H_d} = 200 \text{ GeV},$$

and

$$a_{ij}^{u,d,e} = y_{ij}^{u,d,e} A_{ij}^{u,d,e}, \quad A_{ij}^{u,d,e} = -400 \text{ GeV}, \quad i, j = 1, 2, 3.$$

Although we adopt vanishing off-diagonal elements of the soft scalar mass matrices for simplicity, these essentially do not affect the main results of this paper.

We choose the following ratio:

$$\tan \beta \equiv v_u/v_d = 15,$$

where $v_u = v \sin \beta$ and $v_d = v \cos \beta$ are the VEVs of up- and down-type Higgs fields, h_u and h_d, respectively, and $v = 174$ GeV. The smaller value of $\tan \beta$ makes the Higgs mass tend to be below 120 GeV in the MSSM. The larger value makes the hierarchy between v_u and v_d severer, that is unfavorable form the viewpoint of the naturalness. The μ-parameter in the MSSM superpotential (7) as well as the $B\mu$-parameter in the soft supersymmetry breaking terms (8) is determined at the GUT scale in such a way that the correct Z boson mass is realized at the EW scale with the above set of the other parameters. Note that the numerical values of these parameters changes as r_1 and r_2 vary.
B RGES relevant to the Higgs mass

In this appendix, we show the one-loop RGES relevant to our discussion for the mass of the lightest CP-even Higgs boson:

\[
\frac{dm_Q}{dt} = -\frac{1}{4\pi^2} \left(\frac{8}{3} g_2^2 |M_3|^2 + \frac{3}{2} g_2^2 |M_2|^2 + \frac{1}{30} g_1^2 |M_1|^2 - \frac{1}{20} g_1^2 S \right) \hat{t} \\
+ \frac{1}{8\pi^2} \left(\frac{1}{2} y^u(y^u)^\dagger m_Q^2 + \frac{1}{2} m_Q^2 y^u(y^u)^\dagger + y^u m_U^2(y^u)^\dagger + (m_{H_u}) y^u(y^u)^\dagger + A^u(A^u)^\dagger \right) \\
+ \frac{1}{8\pi^2} \left(\frac{1}{2} y^d(y^d)^\dagger m_U^2 + \frac{1}{2} m_U^2 y^d(y^d)^\dagger + y^d m_D^2(y^d)^\dagger + (m_{H_d}) y^d(y^d)^\dagger + A^d(A^d)^\dagger \right),
\]

\[
\frac{dm_U}{dt} = -\frac{1}{4\pi^2} \left(\frac{8}{3} g_2^2 |M_3|^2 + \frac{8}{15} g_2^2 |M_1|^2 + \frac{1}{5} g_1^2 S \right) \hat{t} \\
+ \frac{1}{4\pi^2} \left(\frac{1}{2} (y^u)^\dagger y^u m_U^2 + \frac{1}{2} m_U^2(y^u)^\dagger y^u + (y^u)^\dagger m_U^2 y^u + (m_{H_u}) (y^u)^\dagger y^u + (A^u)^\dagger A^u \right),
\]

\[
\frac{dm_{H_u}}{dt} = -\frac{1}{4\pi^2} \left(\frac{3}{2} g_2^2 |M_2|^2 + \frac{3}{10} g_2^2 |M_1|^2 - \frac{3}{20} g_1^2 S \right) \\
+ \frac{3}{8\pi^2} \text{tr} \left\{ y^u m_Q^2(y^u)^\dagger + y^u m_U^2(y^u)^\dagger + m_{H_u}^2 y^u(y^u)^\dagger + A^u(A^u)^\dagger \right\},
\]

where \(t = \ln \left(E/M_{\text{GUT}} \right) \) is a logarithmic energy scale measured by \(M_{\text{GUT}} = 2 \times 10^{16} \) GeV, and \(\hat{t} \) is a 3 \times 3 unit matrix. The complete set of the MSSM RGES are found, e.g., in Ref. [9] at the two-loop level.

References

[1] S. P. Martin, In *Kane, G.L. (ed.): Perspectives on supersymmetry II* 1-153 [hep-ph/9709356].

[2] G. Aad et al. [ATLAS Collaboration], arXiv:1208.0949 [hep-ex].

[3] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B arXiv:1207.7214 [hep-ex]; S. Chatruchyan et al. [CMS Collaboration], Phys. Lett. B arXiv:1207.7235 [hep-ex].

[4] Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1.

[5] H. Abe, T. Kobayashi and Y. Omura, Phys. Rev. D 76 (2007) 015002 [hep-ph/0703044 [hep-ph]].

[6] S. Antusch, L. Calibbi, V. Maurer, M. Monaco and M. Spinrath, arXiv:1207.7236 [hep-ph].

[7] M. S. Carena, M. Quiros and C. E. M. Wagner, Nucl. Phys. B 461 (1996) 407 hep-ph/9508343.
[8] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147 (1979) 277.

[9] S. P. Martin and M. T. Vaughn, Phys. Rev. D 50 (1994) 2282 [Erratum-ibid. D 78 (2008) 039903] [hep-ph/9311340].

[10] R. Barbieri and G. F. Giudice, Nucl. Phys. B 306 (1988) 63.

[11] S. Caron, J. Laamanen, I. Niessen and A. Strubig, JHEP 1206 (2012) 008 [arXiv:1202.5288 [hep-ph]].

[12] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86 (2012) 010001; G. Aad et al. [ATLAS Collaboration], [arXiv:1208.1447 [hep-ex]].

[13] K. Choi and H. P. Nilles, JHEP 0704 (2007) 006 [hep-ph/0702146 [hep-ph]].

[14] J. M. Frere, D. R. T. Jones and S. Raby, Nucl. Phys. B 222 (1983) 11; J. A. Casas, A. Lleyda and C. Munoz, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294].

[15] F. Brummer, S. Kraml and S. Kulkarni, JHEP 1208 (2012) 089 [arXiv:1204.5977 [hep-ph]].

[16] U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785 [hep-ph]].

[17] J. -J. Cao, Z. -X. Heng, J. M. Yang, Y. -M. Zhang and J. -Y. Zhu, JHEP 1203 (2012) 086 [arXiv:1202.5821 [hep-ph]]; M. Asano and T. Higaki, [arXiv:1204.0508 [hep-ph]]; T. Kobayashi, H. Makino, K. -i. Okumura, T. Shimomura and T. Takahashi, [arXiv:1204.3561 [hep-ph]].

[18] H. Abe, Y. G. Kim, T. Kobayashi and Y. Shimizu, JHEP 0709 (2007) 107 [arXiv:0706.4349 [hep-ph]].

[19] K. Kohri, M. Yamaguchi and J. -i. Yokoyama, Phys. Rev. D 72 (2005) 083510 [hep-ph/0502211].

[20] K. -Y. Choi, J. E. Kim, H. M. Lee and O. Seto, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491 [hep-ph]].

[21] T. Moroi and L. Randall, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527].

[22] S. Cassel, D. M. Ghilencea and G. G. Ross, Nucl. Phys. B 835 (2010) 110 [arXiv:1001.3884 [hep-ph]]; D. M. Ghilencea, H. M. Lee and M. Park, JHEP 1207 (2012) 046 [arXiv:1203.0569 [hep-ph]].

[23] M. Endo, M. Yamaguchi and K. Yoshioka, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036]; K. Choi, K. S. Jeong and K. -i. Okumura, JHEP 0509 (2005) 039 [hep-ph/0504037].
[24] K. Choi, A. Falkowski, H. P. Nilles, M. Olechowski and S. Pokorski, JHEP 0411 (2004) 076 [hep-th/0411066]; K. Choi, A. Falkowski, H. P. Nilles and M. Olechowski, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216].

[25] K. Choi, K. S. Jeong, T. Kobayashi and K. -i. Okumura, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029]; R. Kitano and Y. Nomura, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039].

[26] D. Lust, P. Mayr, R. Richter and S. Stieberger, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134].

[27] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445 (2007) 1 [hep-th/0610327].

[28] A. Ceresole and G. Dall’Agata, Nucl. Phys. B 585 (2000) 143 [hep-th/0004111].

[29] H. Abe, T. Higaki and T. Kobayashi, Phys. Rev. D 73 (2006) 046005 [hep-th/0511160]; Nucl. Phys. B 742 (2006) 187 [hep-th/0512232].

[30] N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417].

[31] D. E. Kaplan and T. M. P. Tait, JHEP 0006 (2000) 020 [hep-ph/0004200].