A SUZAKU DISCOVERY OF A SLOWLY VARYING HARD X-RAY CONTINUUM FROM THE TYPE I SEYFERT GALAXY NGC 3516

HIROFUMI NODA1, KAZUO MAKISHIMA2,3,4, KAZUHIRO NAKAZAWA2, and SHIN’YA YAMADA3

1 Department of Astronomy, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2 Department of Physics, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
3 Cosmic Radiation Laboratory, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
4 Research Center for the Early Universe, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

ABSTRACT

The bright type I Seyfert galaxy NGC 3516 was observed by Suzaku twice, in 2005 October 12–15 and 2009 October 28–November 2, for a gross time coverage of 242 and 544 ks and a net exposure of 134 and 255 ks, respectively. The 2–10 keV luminosity was 2.8 × 1041 erg s−1 in 2005 and 1.6 × 1041 erg s−1 in 2009. The 1.4–1.7 keV and 1.7–10 keV count rates both exhibited peak-to-peak variations of a factor of ∼2 in 2005 and ∼4 in 2009. In both observations, the 15–45 keV count rate was less variable. The 2–10 keV spectrum in 2005 was significantly more convex than that in 2009. Through a count–count plot technique, the 2–45 keV signals in both sets of data were successfully decomposed in a model-independent way into two distinct broadband components. One is a variable emission with a featureless spectral shape, and the other is a non-varying hard component accompanied by a prominent Fe-K emission line at 6.33 keV (6.40 keV in the rest frame). The former was successfully fitted by an absorbed power-law model, while the latter requires a new hard continuum in addition to a reflection component from distant materials. The spectral and variability differences between the two observations are mainly attributed to long-term changes of this new hard continuum, which was stable on timescales of several hundreds of kiloseconds.

Key words: galaxies: active – galaxies: individual (NGC 3516) – galaxies: Seyfert – X-rays: galaxies

Online-only material: color figure

1. INTRODUCTION

In X-ray signals from active galactic nuclei (AGNs), the primary continuum is presumably generated in a corona by the inverse Compton scattering process (e.g., Haardt et al. 1994). Part of this emission region is sometimes covered by absorbers (either neutral or ionized) to produce the so-called partial absorption condition (e.g., Holt et al. 1980; Miller et al. 2008). When the primary emission is Compton-scattered or photo-absorbed in materials surrounding the central black hole (BH), a reflection component is generated (George & Fabian 1991). Some of these secondary photons that are generated in central regions are subject to relativistic effects of the central BH and appear as a relativistic reflection (Fabian & Miniutti 2005). Thus, a typical X-ray spectrum of an AGN has been interpreted as a mixture of a primary continuum often modified by partial absorption, a distant neutral reflection with a narrow Fe-K line, and a relativistically blurred ionized reflection with a broad Fe-K line.

In the above consensus view, the primary continuum from the “central engine” has been assumed as a single power law (PL), while any spectral feature deviating from this modeling has been interpreted as due to its modification (e.g., by a partial absorber) or reprocessing (e.g., relativistically blurred reflection). This simplification, equivalent to an assumption of a single homogeneous corona, is necessitated by heavy degeneracy of various spectral components, particularly in hard X-ray bands that lack sharp spectral features. However, the central engine in reality would be significantly more complex, considering, e.g., strong radial gradients in the gravity and in physical conditions of the accreting matter. Then, timing information becomes important to identify individual spectral components and overcome this ambiguity, because variations are expected to differ from one component to another. Therefore, the AGN variability has long been employed in attempts to decompose the overall emission into different components.

To extract the main variable component incorporating timing information, we can, e.g., employ the difference spectrum analysis method, subtracting spectra between high-intensity and low-intensity periods (e.g., Miniutti et al. 2007; Noda et al. 2011a). When the emission is considered to include several variable components, principal component analysis is useful (e.g., Miller et al. 2008; Noda et al. 2011a). These studies have revealed that the main variable component of many AGNs, which is usually regarded as constituting their primary emission, indeed takes the form of a single PL of photon index ∼2 (e.g., Risaliti & Elvis 2004). Although this apparently justifies the use of a single PL with a high-energy cutoff to approximate the primary continuum from the central engine, it is not obvious whether the primary emission as a whole can be represented by this variable component.

Variability-assisted studies of stable (or gradually varying) components, in principle, are often more difficult. The popular root mean square (rms) variability analysis (e.g., Nandra et al. 1997; Markowitz et al. 2003) does not allow us to distinguish whether an energy-dependent relative variation is caused, e.g., by the presence of constant signals in some energy bands, or by shape changes in the variable components. Similarly, the reverberation technique, which can tell us the distance between the primary continuum source and the reflecting materials (e.g., Fabian et al. 2009; Zoghbi et al. 2012), becomes ineffective if the primary variation is smeared out by light travel delays across the reflector so that the reflected signals lose time variability. As a result, the nature and composition of stable signals from AGNs have remained much less well understood.

In this paper, we employ an intensity-assisted timing analysis called the count–count correlation with positive offset (C3PO) method, which was first developed to extract variable and stable...
signals from an X-ray spectrum of the leading BH binary Cygnus X-1 (Churazov et al. 2001), and later tried on Seyferts (Taylor et al. 2003). Applying this method to a soft X-ray band of Suzaku data, Noda et al. (2011b, 2013) successfully revealed that the soft X-ray excess phenomena, widely seen in various types of disk-dominated AGNs, originate, at least in some cases, as a relatively stable emission produced via thermal Comptonization in a corona that differs from the PL-generating one. When applied to a harder/broader X-ray band, this method is expected to allow us to decompose broad-band spectra of AGNs into variable and stationary parts; here, the latter will include the cold reflection component generated at large distances from the central BH, and possibly an additional new primary component as revealed by Noda et al. (2011a) in the hard (3–45 keV) band of MCG–6-30-15. Because the C3PO method is suited for AGNs with large X-ray variation amplitudes, we chose, in this paper, the typical and bright type I Seyfert galaxy NGC 3516 at a redshift of \(z = 0.00885 \) and analyzed archival Suzaku data of this AGN acquired on two occasions. Unless otherwise stated, the errors in this paper refer to 90% confidence limits.

2. OBSERVATION

NGC 3516 was observed by Suzaku twice, first on 2005 October 12–15 during the Performance Verification phase, and again on 2009 October 28–November 2 based on an AO7 key project that focused on broad Fe-K\(_\alpha\) emission lines. The XIS and HXD on board Suzaku were operated in their normal modes on both occasions, and the source was placed at the XIS and HXD nominal positions in 2005 and 2009, respectively. The 2005 observation had a gross time coverage of 242 ks, with a net exposure of 134 ks with the XIS and 123 ks with the HXD; those of the 2009 observation were 544 ks, 251 ks, and 191 ks, net exposure of 134 ks with the XIS and 123 ks with the HXD.

The 2005 Suzaku data were already utilized by Markowitz et al. (2008), who reported the presence of a broad iron line with complex absorption. Patrick et al. (2011) analyzed the 2009 data and found no strong requirements for extremely broadened Fe-K lines. Analyzing the two Suzaku data sets, together with those of XMM-Newton, Turner et al. (2011) reported negative hard lags (unlike many Seyferts) and variable soft X-ray absorption. According to these reports, the 2–10 keV intensity of NGC 3516 varied during the Suzaku observations by a factor of 2 or more. This makes both data sets appropriate for the C3PO method.

In this paper, the XIS and HXD-PIN data prepared via version 2.0 and 2.4 processing were utilized for the 2005 and 2009 observations, respectively. We added the data from XIS 0, 2, and 3 of 2005 and XIS 0 and 3 of 2009, and refer to them as XIS FI data, while we did not use those from XIS 1. On-source XIS FI events were accumulated over a circular region of 120″ radius centered on the source, while background events were taken from a surrounding annular region, with inner and outer radii of 180″ and 270″, respectively. The response matrices and ancillary response files were made by \texttt{xismfgen} and \texttt{xissimarfgen} (Ishisaki et al. 2007), respectively. The HXD-PIN events were prepared in a similar way. Non X-ray background (NXB) included in the HXD-PIN data was estimated by analyzing fake events created by a standard NXB model (Fukazawa et al. 2009), and the contribution from the cosmic X-ray background (CXB; Boldt 1987) was calculated based on the spectral CXB brightness model, \(9\times 10^{-9}(E/3\text{keV})^{-0.20}\exp(-E/40\text{keV})\text{erg cm}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{keV}^{-1} \) (Gruber et al. 1999). They were then subtracted from the on-source events. In this paper, we do not use the HXD-GSO data in either observation.

3. TRADITIONAL TIMING ANALYSIS

3.1. Light Curves and Root Mean Square Spectra

Figure 1 shows the XIS FI (in two bands) and HXD-PIN light curves of NGC 3516 in 2005 and 2009. Here and hereafter, we present the XIS light curves as a sum of two cameras, with the 2005 counts (sum of three cameras) multiplied by a factor of \(~1/2\) (including a nominal-position correcting factor). When compared to the source intensity in 2009, that in 2005 was higher by a factor \(~1.5\) in the middle band, and \(~2\) in the HXD band, but \(~2.5\) times lower in the lowest energies. Therefore, the overall spectrum in 2005 is considered to be significantly more intense than in 2009.
convex than that in 2009. Characteristics of time variations are also somewhat different between them. The 2005 light curves fluctuate around the average count rates, while those in 2009 show a more monotonic decrease. The 1.4–1.7 keV band count rate varied by 50% (peak-to-peak) in 2005 and a factor of ~ 4 in 2009. That of the 1.7–10 keV band is slightly smaller in both observations, and the 15–45 keV variation is even smaller. To investigate more quantitatively the soft X-ray variability, a popular timing analysis method, root mean square (rms) analysis (e.g., Nandra observations, and the 15–45 keV variation is even smaller.

Below 1.4 keV, the two rms spectra both decrease presumably because of the presence of stable signals including thin thermal plasma emission from the host galaxy (George et al. 2002). To obtain a difference spectrum, we divided the 0.5–10 keV broad band into 21 finer bands with boundaries at 0.5, 0.8, 1.0, 1.2, 1.4, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.25, 6.5, 6.75, 7.0, 7.5, 8.0, and 10.0 keV. The energy intervals were thus set narrower across the Fe-K line energy region (6.0–7.0 keV). The rms spectra derived from the two observations are shown in Figure 2. As expected from the light curves, the 2005 variability was less than ~30% of that in 2009. However, the rms spectral shape is similar between the two in energies above 2.5 keV. The most variable band in both observations is around 1.4–1.7 keV, while the least variable one is ~ 6.33 keV due to an Fe-Kα line at (6.40 keV in the rest frame), which is thus inferred to be less variable than the continuum.

Below 1.4 keV, the two rms spectra both decrease presumably because of the presence of stable signals including thin thermal plasma emission from the host galaxy (George et al. 2002). To exclude such soft X-ray contaminants, we hereafter choose the most variable 1.4–1.7 band as a reference and study the source behavior in energies above 2 keV.

3.2. Difference Spectrum Analysis

To conventionally extract variable components, we applied the difference spectrum analysis (Section 1) to the two Suzaku data sets. As shown in Figure 1 by a dotted line, we divided the whole observation into two phases in which the 1.4–1.7 keV count rate is higher (denoted as the High phase) and lower (Low phase) than the average. Then, the spectrum accumulated over the Low phase was subtracted from that over the High phase to obtain a difference spectrum.

Figure 2. 0.5–10 keV rms spectra from the 2005 (filled squares) and 2009 (open squares) observations.

Figure 3 (black) shows the difference spectra thus derived from the 2005 and 2009 data. First, we fitted them with an absorbed cutoff PL model, $wabs0 * cutoffPL0$, where $wabs0$ represents a sum of the intrinsic and the Galactic absorption, to be applied hereafter to all model components from the AGN. The fits were both acceptable with $\chi^2/dof = 21.4/31$ in 2005 and $\chi^2/dof = 42.2/43$ in 2009, and gave the column density N_{H0} of $wabs0$ and the photon index Γ_0 of $cutoffPL0$ as $2.7^{+0.4}_{−1.3} \times 10^{22}$ cm$^{-1}$ and $1.91^{+0.42}_{−0.36}$ in 2005, respectively, and $0.7^{+0.5}_{−0.2} \times 10^{22}$ cm$^{-1}$ and $1.66^{+0.13}_{−0.12}$ in 2009, respectively. The neutral column density is thus significantly higher in 2005 than in 2009, while the spectral shape is not significantly different between the two spectra.

Although the fits with the absorbed PL model are successful, we find negative residuals at ~ 6.5–7 keV, which can be identified with the ionized Fe absorption features reported by Turner et al. (2008, 2011). Thus, we refitted the difference spectra with a model of the form $model_v = wabs0 * zxipcf * cutoffPL0$, where $zxipcf$ represents the ionized absorption.

To more systematically decompose the 3–45 keV emission into the variable and stationary components, the C3PO method (Noda et al. 2011b, 2013) provides a powerful tool. We chose the 1.4–1.7 keV band as a reference, because the variability was largest there in both data sets. We divided the 3–10 keV XIS
Figure 3. Difference spectra (black) and the C3PO-derived variable components (green), in the 2005 (panel (a)) and 2009 (panel (b)) observations, presented in their deconvolved νF_ν form. The fitted model is commonly $\text{model}_v = \text{wabs0} \times \text{zxipcf} \times \text{cutoffPL0}$ (see the text).

Figure 4. Six CCPs of the 2005 (black) and 2009 (red) observations, in which the abscissa gives the NXB-subtracted XIS FI count rate (per two cameras) in 1.4–1.7 keV, while the ordinate that in the (a) 2.5–3 keV, (b) 3.5–4 keV, (c) 5.5–6 keV, (d) 6.5–6.75 keV, (e) 7–7.5 keV, and (f) 8–10 keV band count rates. All data are binned into 25 ks. The 2005 data are shown after being corrected for differences of the number of CCD cameras, the difference in pointing positions, and slight response changes between the two epochs. The error bars represent statistical ±1σ range. The dotted straight line refers to Equation (1). The χ^2/dof values are shown in each panel in black (for 2005) and red (2009).

band into 13 finer bands with the same boundaries as the rms spectra, while the 15–45 keV HXD-PIN data was divided into 3 bands with boundaries at 15.0, 20.0, 30.0, and 45.0 keV. Then, as shown in Figure 4, we made 16 count–count plots (CCPs), in which the ordinate (denoted as y) gives the NXB-subtracted XIS FI or HXD-PIN count rates in these bands, while the abscissa (denoted as x) gives those in the 1.4–1.7 keV band used as the reference. The CCPs all exhibit a linear correlation, but those in 2009 have much larger variation amplitudes than those in 2005, as expected from the light curves (Figure 1) and the rms spectra (Figure 2). Compared to the 2009 CCPs, those in 2005 show much steeper slopes and larger y intercepts.
The Astrophysical Journal, 771:100 (13pp), 2013 July 10

NODA ET AL.

Table 1

Component	Parameter	Difference	Variable±a
wabs0	N_Bh b	3.0 ± 1.4	0.6 ± 0.5
	N_L b	89.4 ± 3.56	254.2 ± 57.4
log ξ		3.55 ± 0.02	<4.40
cutoffPL0	Γ_0	2.05 ± 0.40	1.59 ± 0.12
	E_c (keV)	240 ± 43	150 (fix)
	N_L c	1.67 ± 1.61	1.25 ± 0.31
		0.92 ± 0.38	0.31 ± 0.06
x²/dof		17.5/29	40.9/41

Notes.

a The variable spectra refer to the case with C = 0.
b Equivalent hydrogen column density in 10^22 cm⁻².
c The power-law normalization at 1 keV, in units of 10⁻³ photons keV⁻¹ cm⁻² s⁻¹ at 1 keV.

Following the recipe of the C3PO method, the data distribution in each CCP was fitted with one straight line, expressed by

\[y = Ax + B, \]

in which the slope A and the offset B were both left free. Regressions in the fits were performed by the Bivariate Correlated Errors and Intrinsic Scatter (BCES) algorithm (Akritas & Bershady 1996) to consider both the x and y errors. As shown in Table 2, the linear fits are all acceptable, and the slopes and offsets obtained in the 2005 CCPs are indeed larger than those in 2009.

The value of B in Equation (1) would mean a stationary signal in this band, if x, the reference band signal, eventually vanishes. However, x in reality is considered to have an unknown intensity floor, C, which represents the non-varying component in the reference band. Then, Equation (1) can be rewritten as

\[y = A(x - C) + B', \]

with

\[B' = B + AC. \]

Since AC is always positive, B' takes a larger positive value than B in any band. The quantity C has an uncertainty over the range of 0 ≤ C ≤ C_max, where C_max is the maximum floor allowed by the data, which is equivalent to the minimum count rate recorded in the reference band; C_max ~ 0.03 counts s⁻¹ in 2005 and ~0.04 counts s⁻¹ in 2009. An important issue in our subsequent analysis is how to deal with this uncertainty.

4.2. A Variable Spectrum in the 2–45 keV Band

The 2–45 keV variable spectrum can be constructed by multiplying the slope A of Equation (2) by x0 – C, where x0 ~ 0.04 counts s⁻¹ in 2005 and ~0.1 counts s⁻¹ in 2009 are the average count rate in the 1.4–1.7 keV reference band, and dividing by the corresponding energy interval. The results for C = 0 and C = C_max are plotted in Figures 3 and 5 (both in green), respectively, in the form of ratios to Γ = 2 PL. As the value of C becomes larger, the normalization of the variable spectrum decreases and becomes minimum at C = C_max. This is simply because the entire spectrum scales with x0 – C.

Because the variable spectrum keeps its shape as C is varied, below we analyze the case with C = 0. Because of the obvious resemblance to the difference spectra (Figure 3), we fitted the variable spectra with the same model_v = wabs0 * zxpfc * cutoffPL0 as defined in Section 3.2, and obtained results as shown in Figure 3 and Table 1. The fits were both successful with all parameters consistent with those in the fits to the difference spectra, except for the normalization. Thus, as expected from the difference spectrum analyses, the variable components have been reproduced with a single PL with the ionized absorption.

4.3. A Stable Component in the 2–45 keV Band

The C3PO method is powerful to determine the non-varying component, as well as the variable part. This can be carried out by dividing the values of B' in Equation (2) by the corresponding energy intervals. However, unlike the case of Section 4.2, both intensities and spectral shapes of the derived stable components are sensitive to the intensity floor of the reference band, C; the higher C becomes, the softer and brighter the stable spectrum becomes due to the addition of the AC term to the value of

Table 2

Range	2005	2009				
	A × 10	B × 10	B' max × 10²	A × 10	B × 10²	B' max × 10²
(keV)						
2–2.5	1.42 ± 0.10	0.03 ± 0.06	0.42 ± 0.02	0.76 ± 0.02	0.06 ± 0.02	0.31 ± 0.01
2.5–3	1.69 ± 0.14	0.02 ± 0.08	0.48 ± 0.02	0.58 ± 0.02	0.09 ± 0.02	0.27 ± 0.01
3–3.5	1.69 ± 0.15	0.09 ± 0.12	0.59 ± 0.03	5.41 ± 0.15	0.62 ± 0.14	2.36 ± 0.10
3.5–4	1.49 ± 0.14	0.27 ± 0.08	0.67 ± 0.02	4.81 ± 0.18	0.73 ± 0.16	2.28 ± 0.11
4–4.5	1.41 ± 0.11	0.30 ± 0.06	0.68 ± 0.02	4.21 ± 0.16	0.67 ± 0.15	2.02 ± 0.10
4.5–5	1.26 ± 0.14	0.33 ± 0.08	0.67 ± 0.03	3.54 ± 0.12	0.66 ± 0.13	1.80 ± 0.09
5–5.5	1.10 ± 0.18	0.35 ± 0.10	0.65 ± 0.03	2.98 ± 0.13	0.76 ± 0.12	1.72 ± 0.08
5.5–6	1.05 ± 0.12	0.29 ± 0.06	0.57 ± 0.02	2.51 ± 0.12	0.64 ± 0.12	1.45 ± 0.09
6–6.25	0.34 ± 0.09	0.22 ± 0.05	0.31 ± 0.01	1.02 ± 0.08	0.51 ± 0.08	0.83 ± 0.05
6.25–6.5	0.26 ± 0.09	0.32 ± 0.05	0.39 ± 0.01	1.11 ± 0.11	1.10 ± 0.11	1.46 ± 0.07
6.5–6.75	0.20 ± 0.07	0.16 ± 0.04	0.22 ± 0.01	0.72 ± 0.06	0.35 ± 0.05	0.58 ± 0.04
6.75–7	0.15 ± 0.05	0.15 ± 0.03	0.19 ± 0.01	0.57 ± 0.08	0.30 ± 0.07	0.48 ± 0.05
7–7.5	0.35 ± 0.04	0.17 ± 0.03	0.26 ± 0.01	1.09 ± 0.08	0.48 ± 0.08	0.83 ± 0.06
7.5–8	0.24 ± 0.06	0.11 ± 0.04	0.18 ± 0.01	0.79 ± 0.06	0.15 ± 0.06	0.40 ± 0.38
8–10	0.49 ± 0.08	0.20 ± 0.05	0.34 ± 0.01	1.56 ± 0.10	0.44 ± 0.09	0.94 ± 0.06
15–20	0.06 ± 0.20	0.68 ± 0.11	0.69 ± 0.04	1.41 ± 0.32	2.57 ± 0.32	3.03 ± 0.23
20–30	0.10 ± 0.30	0.53 ± 0.17	0.55 ± 0.06	0.74 ± 0.31	2.56 ± 0.41	2.78 ± 0.32
30–45	0.04 ± 0.27	0.16 ± 0.15	0.18 ± 0.05	0.78 ± 0.97	0.03 ± 0.95	0.25 ± 0.68
B in Equation (3). As in the two extreme cases, the stable components for $C = 0$ and $C = C_{\text{max}}$ are shown in Figure 5. All of them exhibit hard continua and an intense Fe-Kα line at 6.33 keV (6.40 keV in the rest frame). This energy, together with an insignificant width ($\sigma < 190$ eV) when fitted locally with a Gaussian, means that the line is mostly coming via fluorescence from distant, nearly neutral matter. Hereafter, we call the stationary spectra in 2005 with $C = 0$ and $C = C_{\text{max}}$ the 2005 min and the 2005 max cases, respectively. In the same way, the stationary spectra in 2009 with $C = 0$ and $C = C_{\text{max}}$ are called the 2009 min and the 2009 max cases, respectively.

To interpret the stationary spectra, reflection from neutral and/or ionized materials is considered the most natural, because reflected signals will be less variable than the primaries due to large distances to the reflectors or other effects and will inevitably be accompanied by iron fluorescence lines. Thus, first we fitted the spectra with an absorbed neutral-disk reflection model, $wabs0 \ast pexmon$, where $wabs0$ is the same absorption as introduced in Section 3.2, with the column density N_{H} fixed to the values obtained in Section 4.2, and $pexmon$ in XSPEC12 represents cold reflection, which consists of a Compton-scattered continuum and self-consistent Fe and Ni fluorescence lines (Nandra et al. 2007). Furthermore, the photon index Γ_0 of the primary continuum in $pexmon$ was fixed at 2.12 in 2005 and 1.75 in 2009, so as to be consistent with Γ_0 of the C3PO-derived variable spectra (Section 4.2). The cutoff energy of the primary continuum, the inclination, the Fe abundance, and the redshift in $pexmon$ were fixed at 150 keV, 60°, 1 solar, and 0.00885, respectively, while the normalization was left free. However, as shown in Table 3, the fits were all unsuccessful, with very large χ^2 values. These are mainly because the neutral disk reflection is too hard to explain the soft energy part of these stationary spectra, leaving positive residuals therein.

To improve the fits particularly in the soft energy bands, second, we changed the neutral-disk reflection model into an ionized-disk one, reflionx (Ross & Fabian 2005), and fitted the same stable spectra with $wabs0 \ast reflionx$. The reflionx parameters were treated in the same way as those for the preceding $pexmon$ case, with an additional free parameter, the ionized parameter ξ. As shown in Table 3, the fits were somewhat improved, but still unsuccessful with χ^2/dof $\gtrsim 2.4$, except for the 2009 min case. This is because the positive residuals still remain in the soft band or in the Fe-Kα band. The soft-band residuals could be reduced by increasing ξ, but then the narrow Fe-Kα core becomes difficult to reproduce. Thus, a single reflection component, either neutral or ionized, cannot reproduce the non-variable spectra.

As a third step, we combined the neutral- and ionized-disk reflection models, and fitted the stable components with
Table 3

Component	Parameter	2005	2009
wabs0	$N_{ ext{H}}^b$	3.6 (fix)	0.9 (fix)
pexmon	Γ_{ref}	2.12 (fix)	1.75 (fix)
	E_{cut} (keV)	150 (fix)	150 (fix)
	A_{Fe} (Z_\odot)	1 (fix)	1 (fix)
	f_ext ($\Omega/2\pi$)	1 (fix)	1 (fix)
	I (degree)	60 (fix)	60 (fix)
	N_{ref}^d	0.72	13.42
	χ^2/dof	66.00/17	4802.81/17

wabs0	N_{H}^b	3.6 (fix)	0.9 (fix)
refiixon	Γ_{ref}	2.12 (fix)	1.75 (fix)
	A_{Fe} (Z_\odot)	1 (fix)	1 (fix)
	ξ (erg cm s$^{-1}$)	14.1	125.9
	N_{ref}^d	67.94	8.63
	χ^2/dof	48.64/16	775.23/16

Notes.

- The errors refer to 90% confidence ranges.
- b Equivalent hydrogen column density in 10^{22} cm$^{-2}$.
- c The pexmon normalization at 1 keV, in units of 10^{-2} photons keV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 keV.
- d The refiixon normalization, in units of 10^{-6}.

wabs0 * (pexmon + refiixon), under the same parameter conditions as before. As shown in Table 3 and Figure 6, the fit remained successful in the 2009 min case, while still unsuccessful in the other cases. Although the positive residuals in the soft energy band seen in the previous fits became smaller, the concave shape of the stable component (in particular in 2005) in the 2–6 keV range cannot be explained by reflection models which have power-law-like or even concave shapes in this band.

To enable the model to have more convex shapes as required by the data, we replaced the refiixon component with an empirical absorbed cutoff-PL model, denoted by cutoffPL1, and fitted the stationary spectra with a model of the form $\text{model}_1 = \text{wabs0} * (\text{pexmon} + \text{wabs1} * \text{cutoffPL1})$. The column density N_{H1} of the newly introduced absorption factor wabs1 was left independent of the N_{H0} parameter in wabs0, and the slope Γ_1 of cutoffPL1 was also set separate from Γ_{ref} of the primary continuum in pexmon, but the cutoff energy of cutoffPL1 was fixed at 150 keV as in pexmon. As shown in Table 4 and Figure 7, the fits have become successful, except for the 2005 max case which still had χ^2/dof > 8 (not given in Table 4).

Finally, let us consider how the 2005 max spectrum can be reproduced. When C is increased, the variable spectrum decreases in normalization according to Equation (2), and the stationary one, B' of Equation (3), increases by AC. It is hence most natural to assume that the stable spectrum contains a fraction of the component that constitutes the varying spectrum. Therefore, to the model_1 defined above, we added zxipcf * cutoffPL2 which was found to be successful in Figure 3 to represent the variable signals. The column density N_1 and the ionized parameter ξ of zxipcf, as well as the photon index Γ_2 of cutoffPL2 were left free, while the high-energy cutoff of cutoffPL2 and the redshift of zxipcf were fixed at 150 keV and 0.00885, respectively. We then fitted the 2005 max stable spectrum with wabs0 * (pexmon + wabs1 * cutoffPL1 + zxipcf * cutoffPL2). As a result, the fit has become acceptable as shown in Figure 7 and Table 4, and the parameter values of wabs1 * cutoffPL1 were found to

Table 4

Component	Parameter	2005	2009
wabs0	N_{H}^b	3.6 (fix)	0.90 (fix)
pexmon	Γ_{ref}	2.12 (fix)	1.75 (fix)
	E_{cut} (keV)	150 (fix)	150 (fix)
	A_{Fe} (Z_\odot)	1 (fix)	1 (fix)
	f_ext ($\Omega/2\pi$)	1 (fix)	1 (fix)
	I (degree)	60 (fix)	60 (fix)
	N_{ref}^d	1.18 ± 0.50	1.25 ± 0.31
	χ^2/dof	67.95/17	4801.17

Notes.

- The errors refer to 90% confidence ranges.
- b Equivalent hydrogen column density in 10^{22} cm$^{-2}$.
- c The pexmon normalization at 1 keV, in units of 10^{-2} photons keV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 keV.
- d The cutoffPL normalization, in units of 10^{-6}.
be essentially independent of C (i.e., the same between the
min and max cases within errors). In addition, N_i and Γ_2 of
zxipcf * cutoffPL2 became consistent with those in the fits to
the variable components. These results just reconfirm our
prediction that the stationary spectrum with $C = C_{\text{max}}$ should
be obtained by adding a fraction of the variable spectrum to the
$C = 0$ stationary one.

To realize the convex spectral shape, a relativistically blurred
reflection component can be considered as an alternative to
wabs1 * cutoffPL1 in the previous fits. Hence, we incorpor-
ated a relativistic kernel, kdblur, and fitted the stable com-
ponents with model_s’ ≡ wabs0 * (pexmon + kdblur *
reflionx), to find that the fits to the 2005 min and 2009 min
cases are successful, while the others are not. Thus, we fitted
the stationary components in the 2005 and 2009 max cases with
wabs0 * (pexmon + kdblur * reflionx + zxipcf *
cutoffPL2) as an analogy to the previous attempt. As a re-

sult, the fits all became successful as shown in Figure 8 and
Table 4, with N_i, ξ, and Γ_2 all consistent with those in
Section 4.2. Therefore, it is not only model_s employing the
absorbed cutoff PL component, but also model_s’ involving the
relativistic ionized reflection, that remain as candidates to
explain the stationary components detected in the two data sets
with the C3PO method.

4.4. Time-averaged Spectrum Analysis

In Section 4.2, the variable spectra were successfully repro-
duced with model_v = wabs0 * zxipcf * cutoffPL0. On the other hand, in Section 4.3, the stationary emission has
been explained by either model_s or model_s’ (sometimes
with the addition of a fraction of model_v). We hence ex-
pect the time-averaged spectra to be explained with model_v +
model_s or model_v + model_s’. To verify this, we tried
simultaneous fits to the time-averaged, the variable, and the
stationary spectra with the two model forms.

First, employing the model_v + model_s combination, we
fixed the variable component with model_v, the stable
component with model_s, and the time-averaged spectrum with
model_v + model_s. Here, a gsMOOTH model with σ left free
was involved to smear pexmon, because the time-averaged spec-
tra have much finer bin sizes than the stationary components,
and hence could be subject to some relativistic effects. Based
on the results obtained in Section 4.3, the value of C was chosen
to be 0 (i.e., the min case), because cases with $C \neq 0$ will
be explained simply by changing the intensity of model_v. In
the fits, the parameter conditions in model_v and model_s are
the same as those in Sections 4.2 and 4.3, respectively, except
the Fe abundance in pexmon was left free here. As a result, the
triplet spectra have been simultaneously reproduced successfully,
with χ^2/doF = 790.2/741 in 2005 and 500.3/487 in 2009.
However, at ~6.93 keV, negative residuals still remained, espe-
cially in 2005. This structure was already reported by Turner
et al. (2008) utilizing the Chandra HETG. We therefore intro-
duced into model_v a negative Gaussian with its center energy
fixed at $E_c = 6.93$ keV and σ fixed at 0.01 keV, and repeated
the fitting using model_v = wabs * (zxipcf * cutoffPL -
gausa) plus model_s. As shown in Table 5 and Figure 9, the fit
in 2005 was significantly improved to 749.1/740; the presence of
the additional absorption line at 6.93 keV (6.99 keV in rest
frame) is significant in 2005. (This feature was not significant
in the 2009 spectrum.) Thus, the inclusion of the absorbed-PL
component has been confirmed to give a successful and self-
consistent explanation to the two Suzaku data sets.

Component	Parameter	2005	2009
wabs0	N_{H^0}	3.3 ± 0.4	0.8$^{+0.2}_{-0.5}$
zxipcf	N_i^b	38.5$^{+7.4}_{-6.4}$	<2.4
	log ξ	3.07 ± 0.06	>4.19
cutoffPL0	Γ_0	2.21 ± 0.15	1.72$^{+0.08}_{-0.12}$
	E_{cut} (keV)	150 (fix)	
	N_{PL}	1.37$^{+0.16}_{-0.28}$	3.18$^{+0.19}_{-0.57}$
gaussian	N_{gaus}	$-6.88^{+1.79}_{-0.70}$	>2.98
gsMOOTH	σ (keV)	0.059 ± 0.008	<0.038
pexmon	Γ_0	2.16$^{+0.02}_{-0.03}$	1.85 ± 0.04
	E_{cut} (keV)	150 (fix)	
	N_{PL}	1.20$^{+0.31}_{-0.26}$	0.36 ± 0.02
gaussian	N_{gaus}	$-6.30^{+2.00}_{-1.49}$	>3.96
gsMOOTH	σ (keV)	0.053$^{+0.012}_{-0.010}$	<0.037
pexmon	Γ_0	2.16$^{+0.02}_{-0.03}$	1.85 ± 0.04
	E_{cut} (keV)	150 (fix)	
	N_{PL}	1.20$^{+0.31}_{-0.26}$	0.36 ± 0.02
kdblur	ξ (erg cm$^{-1}$)	<12.3	67.4$^{+124.8}_{-133.8}$
reflionx	Γ_0	81.3$^{+2.13}_{-6.81}$	1.14$^{+0.31}_{-0.25}$

Notes.

- The errors refer to 90% confidence ranges.
- Equivalent hydrogen column density in 1022 cm$^{-2}$.
- The cutoffPL normalization at 1 keV, in units of 10^{-2} photons
 keV$^{-1}$ cm$^{-2}$s$^{-1}$ at 1 keV.
- The D gaussian normalization in units of 10^{-6} photons keV$^{-1}$ cm$^{-2}$ s$^{-1}$.
- The reflionx normalization in units of 10^{-6}.

Next, we replaced model_s with model_s’ to examine the
relativistic reflection interpretation. We again included
gsMOOTH with σ left free into model_s’, and a negative Gaussian
with the fixed E_c and the fixed σ into model_v. As shown in
Table 5 and Figure 10, the simultaneous fitting result in 2009
was successful as in the case utilizing model_s, while that in 2005
was somewhat worse than the previous fit, giving χ^2/doF >
1.16 (or $\Delta\chi^2 = 110.9$ against $\Delta\nu = -1$). In the latter case, χ^2/
doF values contributed by the variable, stationary, and the time-
averaged spectrum are 14.25/18, 10.15/18, and 835.64/703,
respectively. Therefore, the χ^2 increase is mainly due to the
time-averaged spectrum, where the model left positive residuals
especially in ~8–10 keV (Figure 10a). The data thus favor
The Astrophysical Journal, 771:100 (13pp), 2013 July 10

Noda et al.

Figure 6. C3PO-derived stable component (red crosses), in νF_ν form, in (a) the 2005 min, (b) the 2005 max, (c) the 2009 min, and (d) the 2009 max cases. They are fitted with the sum of a distant cold reflection (blue) and an ionized reflection (cyan), namely, $\text{wabs}0 \ast (pexmon + reflionx)$. (A color version of this figure is available in the online journal.)

5. DISCUSSION AND CONCLUSION

5.1. Summary of the Results

In addition to the traditional rms and difference spectrum techniques, we employed the C3PO method (Noda et al. 2011b, 2013) and successfully decomposed the 2–45 keV emission into the variable and stationary parts. Further applying spectral model fits to these two partial spectra, dealing simultaneously with the entire time-averaged spectrum, we have revealed that the overall X-ray emission of NGC 3516, obtained on the two occasions, can be decomposed into the following three components.

1. A single cutoff PL (cutoffPL0) with $\Gamma_0 \sim 2.2$ (2005) or ~ 1.7 (2009), with a relatively low absorption with $N_{\text{H0}} \sim 3.3 \times 10^{22}$ cm$^{-2}$ (2005)/$\sim 0.8 \times 10^{22}$ cm$^{-2}$ (2009). In the 2005 data, it is subject to an ionized absorption with $N_i \sim 4 \times 10^{23}$ cm$^{-2}$ and $\log \xi \sim 3.1$. This component, expressed by model_v, is variable on timescales of several hundreds of kiloseconds or less, and constitutes the entire variable spectrum. It also explains some fraction of the stationary spectrum, particularly if C is chosen to be high.

2. A reflection component from (nearly) neutral materials ($\sigma < 0.07$ keV in Table 5). It includes a narrow Fe-Kα emission line, of which the intensity constrained the Fe abundance as \sim1 solar (Table 5). It remained unchanged during the 2005 and 2009 observations, for a gross time span of 255 ks and 544 ks, respectively. Its intensity, if calculated against the first component (model_v), means a very large solid angle of reflection, $(4–5)\pi$ (Table 5). This issue is discussion in Section 5.3.

3. A hard PL (cutoffPL1) with $\Gamma_1 \sim 1.1$, strongly absorbed by $N_{\text{H2}} \sim 8 \times 10^{22}$ cm$^{-2}$ (in addition to N_{H0}), which was particularly strong in 2005. Although kept stable in the individual observations (like the second component), it decreased significantly from 2005 to 2009, so it is variable on a much longer timescale than the first component. Together with the second component, it constitutes the stationary emission, model_s. This absorbed-PL modeling
5.2. The Variable Emission

The variable spectra (the first component in Section 5.1) were well reproduced with a PL-shaped continuum model (model_v). The 2005 and 2009 data show the significantly different PL photon indices, ~ 2.2 and ~ 1.7, respectively. The latter is consistent with the typical photon indices of AGNs long observed (e.g., Tucker et al. 1973; Mushotzky 1976), and with those of BH binaries in the low/hard state (e.g., Remillard & McClintock 2006). This value is also similar to a theoretical expectation (e.g., Haardt et al. 1993, 1994). The 2005 photon index, in contrast, is somewhat larger than the typical value. Such steeper PL slopes have often been observed from many narrow-line Seyfert I galaxies (e.g., Laor et al. 1994; Boller et al. 1996) and from some broad-line Seyfert I galaxies including, in particular, MCG–6–30–15 (e.g., Miniutti et al. 2007). Turner et al. (2011) already reported a similar result on NGC 3516, and the present result on the 2005 data reconfirms their report.

The variable PL spectrum in 2005 is subject to both neutral absorption and highly ionized ($\log \xi > 3$) absorption, with a column density of $\sim 3.3 \times 10^{22}$ cm$^{-2}$ and $\sim 4 \times 10^{23}$ cm$^{-2}$, respectively. Furthermore, an additional absorption line at a rest-frame energy of 6.99 keV was needed. This means that the neutral and warm absorbers are distributed in multiple zones presumably at different distances from the BH (Turner et al. 2008, 2011). These features decreased significantly from 2005 to 2009; the distributions of the neutral and warm absorbers must have changed during four years, like in other Seyfert galaxies (e.g., Miller et al. 2007).

5.3. The Stationary Emission

As one of the most important results of the present study, the stationary component, model_s, has been extracted successfully with the C3PO technique. Furthermore, it has been further decomposed into the distant reflection (the second component in Section 5.1) and the highly absorbed hard continuum (the third in Section 5.1). While the former clearly represents reprocessed signals, the latter, without sharp spectral features, leaves several possibilities, including a relativistically blurred reflection and an additional primary PL. These two components both stayed constant for several hundreds of kiloseconds during the individual observations, but varied on longer timescales. Below, we discuss them separately.

5.3.1. The Distant Reflection

As in many other AGNs, this component (the second one in Section 5.1), modeled by pexmon in our analysis, is characterized by the narrow Fe-K emission line and the hard X-ray hump.
The relativistic smearing effect working on this component has been confirmed to be rather low (Gaussian σ in Table 5). This, together with the line center energy (consistent with that of the neutral Fe-Kα line) and the lack of fast variability, clearly indicates that this component is produced via reflection/fluorescence in materials located at large distances (≥5000R_g where R_g ~ 10^{12} cm is the gravitational radius) from the central BH. Furthermore, thanks to C3PO assistance, the iron abundance of the reprocessor has been constrained to be 1.3 ± 0.5 in 2005 and 1.2 ± 0.5 in 2009 (in solar units; Table 5). That is, the abundance is consistent with 1 solar.

In the 2009 spectrum, this component contributed about half the HXD-PIN signals (Figure 9(b)), regardless of the C value. As a result, the reflector solid angle Ω, calculated against the model_v primary, becomes very large, ~4π (Table 5). However, this apparent discrepancy can be solved if we consider the fact that the source was rather dim in this particular observation, and that the illuminating primary X-ray flux in its long-term average must have been considerably higher (as in 2005). In the 2005 data, when the source was brighter, the value of Ω is still very large, ~4π (Table 5). This problem is solved in Section 5.3.2.

5.3.2. The Strongly Absorbed Hard Continuum

This is a newly identified component (the third in Section 5.1) and is empirically represented by a strongly absorbed cutoff PL (cutoffPL1). It is characterized by a much harder slope (Γ₁ ~ 1.1) than the model_v continuum, a higher absorption (N_H2 ~ 8 × 10^{22} cm² in 2005), and a lack of fast variations. The overall spectral shape change between the two observations are mainly attributed to long-term changes of this component.

In previous AGN studies that are based on “static” X-ray spectrum analysis, the new stationary component is very likely to have been recognized as “partial absorption,” namely, a fraction of the primary emission that reached us though a thick absorber. However, our “dynamical” analysis no longer supports this traditional view (at least in its simplest form), since such a partially absorbed component would have the same variation characteristics (and the same spectral slopes) as the non-absorbed primary emission, and hence would not contribute to the C3PO-derived stationary emission. Then, what is the nature of this component? Generally speaking, it may be explained as either a secondary component, or a part of the primary radiation.

Let us consider the secondary interpretation, including in particular Compton scattering process by some material located at certain distances from the BH. The lack of time variability may be explained by placing the material farther away from the BH, and the absorbed hard spectral shape may also be reproduced by adjusting its spatial distribution and ionization state. However, such a secondary interpretation meets two difficulties. One is
that such signals must inevitably be accompanied by Fe-K lines (e.g., Sim et al. 2010), and would take up the Fe-K line flux observed in the C3PO-derived stationary spectra. This would reduce the Fe-K flux share attributable to the distant reflector (the second component in Section 5.1) and would make its Fe abundance unrealistically low. The other problem of such a secondary interpretation is that the too large a reflection solid angle ($\sim 4\pi$) of the distant reflector in 2005 (Section 5.3.1) would remain unexplained. The first problem could be avoided by placing the reprocessor very close to the BH, as supported by the relatively successful fit with $model_{1-s}'$, and further invoking the strong "light bending effects" to suppress the variability (Miniutti & Fabian 2004). However, the second problem will still persist.

The above problem of too large a reflector solid angle suggests that the new absorbed PL (the third component in Section 5.1), which was particularly strong in 2005, is, in reality, a primary emission. In fact, when this component is considered to contribute an additional illuminating X-ray flux, the solid angle for the distant reflection reduces to $\Omega \sim 2.2\pi$, which is quite reasonable. One possible scenario for such an additional primary component might be provided by the multi-zone Comptonization view developed, e.g., by Makishima et al. (2008) for Cyg X-1 and Noda et al. (2011b) for Mrk 509 to explain the soft excess. That is, the central engine (Comptonizing coronae) of an AGN may well consist of multiple zones with significantly different physical parameters. Since the photon index of the strongly absorbed PL is flatter than that of the rapidly varying PL, the region emitting the former is considered to have a higher electron temperature and/or a higher optical depth than that for the latter. However, it is not obvious how this condition can be reconciled with the remaining two conditions required for this component, i.e., the slower variation and the apparently stronger absorption. It may even be conceivable that the low-energy drop of this component is in reality not due to absorption, but instead caused, e.g., by some non-trivial shapes of the seed photons or by some anisotropy in the hot electron distributions in the Comptonizing corona. Further examination of the origin of this component is beyond the scope of this paper and will be discussed elsewhere.
We thank all members of the Suzaku hardware and software teams and the Science Working Group. H.N., K.M., and S.Y. are supported by the Japan Society for the Promotion of Science (JSPS) Research Fellowship for Young Scientists, the Grant-in-Aid for Scientific Research (A) (23244024) from JSPS, and the Special Postdoctoral Researchers Program in RIKEN, respectively.

REFERENCES

Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706
Boldt, E. 1987, PhR, 146, 215
Bohlin, T., Brandt, W. N., & Fink, H. 1996, A&A, 305, 53
Churazov, E., Gilfanov, M., & Revnivtsev, M. 2001, MNRAS, 321, 759
Fabian, A. C., & Miniutti, G. 2005, arXiv:astro-ph/0507409
Fabian, A. C., Zoghbi, A., Ross, R. R., et al. 2009, Natur, 459, 540
Fukazawa, Y., Mizuno, T., Watanabe, S., et al. 2009, PASJ, 61, 17
George, I. M., & Fabian, A. C. 1991, MNRAS, 249, 352
George, I. M., Turner, T. J., Netzer, H., et al. 2002, ApJ, 571, 265
Gruber, D. E., Matteson, J. L., Peterson, L. E., & Jung, G. V. 1999, ApJ, 520, 124
Haardt, F., Maraschi, L., & Ghisellini, G. 1993, ApJ, 413, 507
Haardt, F., Maraschi, L., & Ghisellini, G. 1994, ApJ, 432, 95
Holt, S. S., Mushotzky, R. F., Boldt, E. A., et al. 1980, ApJ, 241, 13
Ishisaki, Y., Maeda, Y., Fujimoto, R., et al. 2007, PASJ, 59, S113
Laor, A., Fiore, F., Elvis, M., Wilkes, B. J., & McDowell, J. C. 1994, ApJ, 435, 611
Makishima, K., Takahashi, H., Yamada, S., et al. 2008, PASI, 60, 585
Markowitz, A., Edelson, R., & Vaughan, S. 2003, ApJ, 598, 935
Markowitz, A., Reeves, J. N., Miniutti, G., et al. 2008, PASJ, 60, S277
Matsumoto, C., & Inoue, H. 2003, PASJ, 55, 625
Miller, L., Turner, T. J., & Reeves, J. N. 2008, A&A, 483, 437
Miller, L., Turner, T. J., Reeves, J. N., et al. 2007, A&A, 463, 131
Miniutti, G., & Fabian, A. C. 2004, MNRAS, 349, 1435
Miniutti, G., Fabian, A. C., Anabuki, N., et al. 2007, PASJ, 59, S315
Mushotzky, R. F. 1976, PhD thesis, California Univ.
Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., & Yaqoob, T. 1997, ApJ, 476, 70
Nandra, K., O’Neill, P. M., George, I. M., & Reeves, J. N. 2007, MNRAS, 382, 194
Noda, H., Makishima, K., Nakazawa, K., et al. 2013, PASJ, 65, 4N
Noda, H., Makishima, K., Uehara, Y., et al. 2011a, PASJ, 63, 449
Noda, H., Makishima, K., Yamada, S., et al. 2011b, PASJ, 63, S925
Patrick, A. R., Reeves, J. N., Lobban, A. P., Porquet, D., & Markowitz, A. G. 2011, MNRAS, 416, 2725
Remillard, R. A., & McClintock, J. E. 2006, ARA&A, 44, 49
Risaliti, G., & Elvis, M. 2004, arXiv:astro-ph/0403618
Ross, R. R., & Fabian, A. C. 2005, MNRAS, 358, 211
Sim, S. A., Proga, D., Miller, L., Long, K. S., & Turner, T. J. 2010, MNRAS, 408, 1396
Taylor, R. D., Uttley, P., & McHardy, I. M. 2003, MNRAS, 342, L31
Tucker, W., Kellogg, E., Gursky, H., Giacconi, R., & Tananbaum, H. 1973, ApJ, 180, 715
Turner, T. J., Miller, L., Kraemer, S. B., & Reeves, J. N. 2011, ApJ, 733, 48
Turner, T. J., Reeves, J. N., Kraemer, S. B., & Miller, L. 2008, A&A, 483, 161
Zoghbi, A., Fabian, A. C., Reynolds, C. S., & Cackett, E. M. 2012, MNRAS, 422, 129