Purely Four-dimensional Viable Anomaly Mediation

Roni Harnik
Department of Physics, University of California, Berkeley, CA 94720, USA

Hitoshi Murayama and Aaron Pierce
Department of Physics, University of California, Berkeley, CA 94720, USA and
Theory Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: November 2, 2018)

Anomaly mediation of supersymmetry breaking solves the supersymmetric flavor problem thanks to its ultraviolet-insensitivity. However, it suffers from two problems: sleptons have negative mass-squared, and there are likely bulk moduli that spoil the framework. Here, we present the first fully ultraviolet-insensitive model of anomaly mediation with positive slepton masses-squared in a purely four-dimensional framework. Our model is based on the additional $D$-term contributions to the sparticle masses, and the conformal sequestering mechanism.

I. INTRODUCTION

The absence of superpartners with masses degenerate to those of the Standard Model particles assures us that supersymmetry (SUSY) is broken if it is present in nature. However, arbitrary patterns of supersymmetry breaking masses give flavor-changing neutral current rates in gross violation of current experimental bounds. This is known as the SUSY flavor problem.

Anomaly-mediated supersymmetry breaking [1, 2] represents an attractive solution to this problem. In anomaly mediation, the breaking of scale invariance mediates supersymmetry breaking between the visible and the hidden sectors. (For an expanded review of this point, see [3]). As a result, the supersymmetry breaking terms can be written entirely in terms of beta functions and anomalous dimensions at any given energy. This means that the SUSY breaking terms are independent of any flavor-dependent physics that might occur at high scales. This is the anomaly-mediated solution to the SUSY flavor problem. While the anomaly-mediated contribution to supersymmetry breaking is always present, its effect can be sub-dominant. For the anomaly mediation to solve the SUSY flavor problem, other contributions to supersymmetry breaking must be somehow suppressed. In its original incarnation, this suppression was accomplished through a spatial separation of the visible and hidden sectors in an extra-dimension, which was thought to have the effect of “sequestering” the hidden sector [1].

The theory of anomaly mediation as described above suffers from two difficulties. First, as was shown in detail in [4], the geometric separation of the visible and hidden sectors is insufficient to sequester the hidden sector. In fact in most cases, the exchange of fields in the bulk supergravity multiplet is sufficient to generate a contribution to universal scalar masses at the tree level, completely swamping the anomaly-mediated piece. Perhaps the simplest counter-example to geometric sequestering appeared in the model of radion-mediated supersymmetry breaking [5]. The second problem facing anomaly mediation is a direct result of its ultraviolet (UV) insensitivity. This property renders anomaly mediation an extremely predictive framework, considered to be a desirable feature. However, one prediction is a negative mass squared for the sleptons, rendering the theory phenomenologically inviable.

Neither of the above problems are insurmountable. In [3, 4], it was shown that the sequestering could take place in a completely four dimensional framework where the problem of bulk moduli is absent, using conformal field theories. In this case, the sequestering remains effective as long as there are no moduli coupled to both the hidden and the MSSM sectors. This four dimensional solution is reviewed in Section II. The problem of tachyonic sleptons has also been overcome [1, 3, 4, 10, 11]. However, no explicit model exists that both effectively sequesters the supersymmetry breaking sector and provides a phenomenologically viable spectrum. In this paper we provide the first such model, a viable model of anomaly mediation in four dimensions.

To provide the masses for the sleptons, we select the mechanism of [10, 11], which gives masses through the addition of $D$-terms. We find this mechanism particularly attractive, as it gives masses without sacrificing the property of UV insensitivity. We review this mechanism in Section III, before moving on and presenting our model in Section IV.

II. 4D ANOMALY MEDIATION

The concerns about geometric sequestering raised in [4] can be addressed by utilizing the framework of Luty and Sundrum [1, 5], in which the sequestering of anomaly mediation is realized in a completely four-dimensional way. This framework is inspired by the AdS/CFT correspondence [12], which conjectures that a 5D theory of gravity in anti-deSitter space is dual to a four dimensional conformal field theory. One can hope that this duality can be stretched further to a duality between the five dimensional brane world scenario and a four dimensional conformal field theory. With this in mind we can expect that the sequestering attempted in [4] with an extra...
dimension might be realized in a 4D model in which the hidden sector is conformal. Luty and Sundrum showed this is indeed the case by looking at 4D theory with the hidden sector being SUSY QCD with \( \frac{3}{2} N_c \leq N_f \leq 3 N_c \) (i.e. the theory is in the Seiberg conformal window\([3]\)).

The main goal of sequestering is to suppress flavor violating operators of the form

\[
\int d^4 \theta \frac{c_i}{M_*^2} T^i_J Q^i Q^j \tag{1}
\]

that might lead to large flavor-changing effects. Here \( T^i_J \) are fields in the (conformal) hidden sector, \( Q^i \) are fields in the visible sector, and \( M_* \) can be the reduced Planck scale. It is convenient to treat such a term as a correction to the hidden sector UV Kähler potential

\[
\mathcal{L}_{\text{hid}} \supset \int d^4 \theta Z_0 T^i_J Q^i, \quad Z_0 = 1 + \frac{c_i}{M_*^2} Q^i Q^j. \tag{2}
\]

Below a certain energy, the gauge coupling, \( g \), of the hidden sector nears its fixed point value, \( g_* \), allowing us to keep only the leading order in \( (g^2 - g_*^2) \) in the renormalization group equations for the coupling and the wavefunction renormalization. Defining \( \gamma \equiv \partial \log Z / \partial \log \mu \), the expansion yields:

\[
\beta = \beta_4^* (g^2 - g_*^2), \quad \gamma = \gamma_* + \gamma'_4 (g^2 - g_*^2), \tag{3}
\]

where \( \beta'_4 \) and \( \gamma'_4 \) are positive critical exponents, due to the fact that they describe dynamics near an infrared fixed point. For simplicity we will assume Eq. (3) is valid already at \( M_* \); this assumption will not change the final result of sequestering. The conformal symmetry will eventually be broken by one of the fields in the hidden sector getting a vacuum expectation value (VEV), \( \langle X \rangle \), away from the origin of the moduli space.

Now, we can proceed to demonstrate the sequestering. If at the scale \( M_* \), we were already at the fixed point, \( g = g_* \), integrating Eq. (3) would give

\[
Z(\mu) = \left( \frac{\mu}{M_*} \right)^{\gamma_*}. \tag{4}
\]

When considering small perturbations about the fixed point, \( \Delta g^2 = g^2 - g_*^2 \), it is convenient to factor out the above fixed point running by defining

\[
\Delta \ln Z = \ln Z - \gamma_* \ln \left( \frac{\mu}{M_*} \right). \tag{5}
\]

After integrating Eq. (3) down to the scale of conformal symmetry breaking, \( \langle X \rangle \), we find that the dependence of \( \Delta \ln Z(\mu) \) on \( Z_0 \) is highly suppressed. This is simply a restatement of the fact that until the symmetry is broken, the theory is nearly conformal, so that deformations introduced at the high scale quickly become irrelevant as the theory is driven toward its fixed point.

In particular, if we make the choice that the value of the holomorphic gauge coupling \([23]\) at the Planck scale is equal to its value at the fixed point, which can be done without a loss of generality, we can write:

\[
\Delta \ln Z(\langle X \rangle) = \left( \frac{\langle X \rangle}{M_*} \right)^{\beta'_4} \Delta \ln Z_0. \tag{6}
\]

The flavor violating operators in Eq. (6) are therefore power suppressed and the hidden sector is sequestered. For details of this derivation, see References [1, 2].

In [7] a model of a conformally sequestered hidden sector is achieved completely naturally, generating all hierarchies dynamically. In the sections that follow, we will assume that the hidden sector is sequestered by this mechanism, leaving anomaly mediation as the leading contribution to visible sector soft masses.

### III. VIABLE ANOMALY MEDIATION

For anomaly mediation to be viable, the tachyonic sleptons must be eliminated. This may be accomplished by adding \( D \)-terms for \( B - L \) and hypercharge. In Reference [1] the generation of a \( D \)-term for \( U(1)_{B-L} \) is accomplished by appealing to an extra-dimensional framework. We have already mentioned that the extra-dimensional framework is problematic as a realization of anomaly mediation, so we will have to modify this mechanism, which we do in Section IV.

The extra-dimensional set-up of [1] contains three branes: a visible sector, a sequestered sector, and a sector responsible for the breaking of \( U(1)_{B-L} \). The \( U(1)_{B-L} \) gauge field is allowed to propagate in the bulk, but is broken at a high scale unlike in the gaugino-mediation models [13]. We now review the process by which the \( U(1)_{B-L} \) breaking sector provides a \( D \)-term. The \( U(1)_{B-L} \) consists of the superpotential

\[
W = \lambda X (\phi \phi - \Lambda^2). \tag{7}
\]

Here, the \( \phi \) and \( \bar{\phi} \) fields have \( U(1)_{B-L} \) charge +1 and −1, respectively, while \( X \) is \( U(1)_{B-L} \) neutral. In the supersymmetric limit, \( \langle \phi \rangle = \langle \bar{\phi} \rangle = \Lambda \). As long as \( \phi \) and \( \bar{\phi} \) have different soft supersymmetry breaking masses, perhaps from additional Yukawa couplings not shown in Eq. (6), their VEVs will shift by different amounts after the effects of supersymmetry breaking are included [6]. The \( D \)-term is found to be proportional to the difference in the VEVs, so

\[
D_{B-L} \sim \langle \phi \rangle^2 - \langle \bar{\phi} \rangle^2 \sim \tilde{m}^2 - \tilde{m}^2. \tag{8}
\]

Generically, the \( D \)-term will be of the same order of the soft masses-squared, which is the necessary condition for a viable spectrum. The \( D \)-term contributes to the scalar masses-squared for all fields charged under the relevant symmetry, in this case, \( B - L \).

The unique feature of this solution to the problem of tachyonic sleptons is its insensitivity to physics in the
ultraviolet. More precisely, the new expressions for the soft masses:

\[ m_i^2 \equiv \tilde{m}_i^2 - q_i D, \]

remain on renormalization group trajectories. This can be shown by either explicitly examining the form of the renormalization group equations \(^\text{[10]}\), or by a spurion argument \(^\text{[11]}\). The spurion argument also shows clearly that soft parameters remain on RGE trajectories even as heavy particle thresholds are crossed.

As mentioned above, D-terms for both U(1)\(_{B-L}\) and U(1)\(_Y\) are needed to generate a viable spectrum \(^\text{[10]}\). However, once a D-term for U(1)\(_{B-L}\) is generated, a D-term for U(1)\(_Y\) is naturally generated by including a term for kinetic mixing in the Lagrangian, \(\mathcal{L} \ni \int d^2 \theta W_{B-L} \Phi_Y\). Therefore, it is sufficient to consider a mechanism to generate D\(_{B-L}\).

The “anomaly mediation plus D-terms” scenario above was originally envisaged in an extra-dimensional framework. If we transport this scenario to a four-dimensional setup, we will have three sectors: a visible sector containing the MSSM, a nearly conformal hidden sector, and a gauge group that develops a \(D\)-term \(^\text{[25]}\). To cancel the anomalies for the SU(4) \(\times\) SU(2) \(\times\) U(1) symmetry, we introduce four copies of anti-flavors \(Q\) transforming as a \(4\) under a flavor SU(4)\(_g\) global symmetry but not charged under the strong Sp(2) gauge group.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Sp(2)} & SU(6) & SU(4) \times SU(2) \times U(1) & SU(4)\_g \\
\hline
Q & 4 & 6 = (4, 1)_{1} + (1, 2)_{-2} & 1 \\
\hline
\bar{Q} & 1 & 6 = (4, 1)_{-1} + (1, 2)_{2} & 4 \\
\hline
M & 1 & 15 = (6, 1)_{2} + (4, 2)_{-1} + (1, 1)_{-4} & 1 \\
\hline
\end{array}
\]

TABLE I: Particle content of the U(1) breaking sector and associated mesons.

The superpotential of the model is

\[
W = \frac{1}{M_*} (Q^i Q^j) Q_i \bar{Q}_j + \frac{1}{M_*^2} Q^6 + \frac{1}{M_*^2} \bar{Q}^6, \tag{11}
\]

which is the most general superpotential up to order \(1/M_*^2\) consistent with the symmetries described above. The indices run from 1 to 6 over all three flavors. However, the terms do not have to be fully SU(6) symmetric, but symmetric only under SU(4) \(\times\) SU(2) \(\times\) U(1), i.e. different coefficients for independent invariants are allowed in the last two terms.

The dynamics of the Sp(2) gauge group leads to the quantum modified constraint \(^\text{[17]}\)

\[
Pf M = \Lambda^6, \tag{12}
\]

where the meson is made of quarks \(M^{ij} = Q^i Q^j\). Because the quarks are in \((4, 1)_{1} + (1, 2)_{-2}\) representations, the mesons transform as \((6, 1)_{2} + (4, 2)_{-1} + (1, 1)_{-4}\). The quantum modified constraint can be satisfied consistently with vanishing SU(4) \(\times\) SU(2) \(\times\) U(1) D-terms with

\[
M_{(6,1)2} = (\sqrt{2} V^2, 0, 0, 0, 0, 0), \quad M_{(1,1)_{-4}} = V^2, \tag{13}
\]

where \(V^6 = \Lambda^6\). The first meson VEV breaks SU(4) to Sp(2) (or equivalently SO(6) to SO(5)), and both of them break U(1). Most of the mesons in the \((6, 1)_{2} + (1, 1)_{-4}\) representations are eaten by the broken gauge multiplets, and one of them is eliminated due to the quantum modified constraint. The \((4, 2)_{-1}\) mesons do not acquire mass because of the “accidental” SU(6) symmetry in Sp(2) dynamics and are pseudo-Nambu–Goldstone fields. The second term in Eq. \(^\text{[11]}\) then breaks the “accidental” SU(6) and gives the \((4, 2)_{-1}\) mesons masses of order \(\Lambda^4/M_*^2\). On the other hand, the first term in Eq. \(^\text{[11]}\) gives mass of order \(\Lambda^2/M_*\) to all of the anti-flavors. As a result, all fields that we have
introduced acquire supersymmetric masses. There are no new light fields in our model.

We claim that, in the presence of soft supersymmetry breaking induced by anomaly mediation, this model develops a $D$-term for the $U(1)$.

Unfortunately, this model is incalculable because the mesons become composite and condense at the same scale, and we do not know if the description in terms of meson degrees of freedom is appropriate to work out the soft supersymmetry breaking effects. Of course, once the dynamical degrees of freedom are identified, anomaly mediation gives a unique prediction for their soft parameters. However, we do not know if mesons can be regarded as dynamical degrees of freedom or composite order parameters at this stage.

We make this model calculable, in the same spirit as in [18], by deforming the theory while remaining in the same universality class. The model becomes calculable if two energy scales are separated: the scale where mesons become composite $\Lambda$, and the scale where $U(1)$ is broken $V$. We identify two deformations which achieve $\Lambda \gg V$ or $\Lambda \ll V$. We will find that a $D$-term of the correct order of magnitude is successfully generated in either case. We view this as compelling evidence for the generation of a $D$-term when $\Lambda \sim V$, which is the actual situation in the model we have presented.

A. $\Lambda \gg V$

The first limit, $\Lambda \gg V$, is achieved by introducing an additional flavor, $Q_7, Q_8$. No corresponding anti-flavor is necessary as the additional flavor is not charged under any gauge group except the strong $Sp(2)$. The extra flavor is massive. When its mass $m \gg \Lambda$, we can integrate out the extra flavor first, and the theory goes back to the original model. On the other hand, by taking $m \ll \Lambda$, the $Sp(2)$ dynamics changes at the dynamical scale. The theory has 4 flavors and hence confines with a dynamical superpotential [17]. Together with the mass term,

$$\Delta W = -m M^{78} + \frac{\text{Pf} M}{\Lambda^5}. \quad (14)$$

The meson $M$ includes the 4th flavor, while we keep the notation $M$ for the first three flavors. Below the scale $\Lambda$, the confined mesons are dynamical degrees of freedom, as suggested by the non-trivial anomaly matching conditions.

At the scale $V = (m\Lambda^5)^{1/6}$, we solve for $M^{78}$ and find

$$\text{Pf} M = m\Lambda^5 = V^6. \quad (15)$$

which sets $\Lambda \gg V$ because $m \ll \Lambda$. The mesons acquire expectation values in the same fashion as in Eq. (13), breaking $U(1)$ and $SU(4) \rightarrow Sp(2)$.

The superpotential of Eq. (11) becomes Yukawa couplings among mesons and anti-flavor quarks

$$W = \frac{1}{M^6} M^{ij} \bar{Q}_i Q_j + \frac{1}{M^2} M^3. \quad (16)$$

Once mesons acquire VEVs, the first term gives the anti-flavors masses, and the second term gives masses to the $(4, 2)_{-1}$ mesons. The size of Yukawa couplings can be seen by scaling the meson fields to canonical normalization $M \approx \Lambda M$ up to unknown $O(1)$ constants.

The main point of this deformation is that physics between the compositeness scale, $\Lambda$, and the $U(1)$-breaking scale, $V$, is given in terms of composite mesons and their soft supersymmetry breaking can be obtained by the standard formulae of anomaly mediation. Yukawa couplings from the non-renormalizable superpotential are suppressed by $\Lambda / M$, and we ignore them. Then the only contribution to their soft masses come from $SU(4) \times SU(2) \times U(1)$ gauge interactions. The relevant soft masses for the mesons are determined by the expression $\tilde{m}^2 = (-\gamma/4)[m_{3/2}]^2$, where $\gamma \equiv (\partial \log Z / \partial \log \mu)$. Calculating in the gauge theory, we find:

$$\tilde{m}^2_{(6, 1)_{2}} = \frac{m_{3/2}^2}{(16\pi^2)^2}(20g_1^4 - 384g_1^4), \quad (17)$$

$$\tilde{m}^2_{(1, 1)_{-4}} = \frac{m_{3/2}^2}{(16\pi^2)^2}(-1536g_1^4). \quad (18)$$

In the presence of soft terms, we have to re-minimize the potential obtained from the superpotential Eq. (14). The vacuum configuration for the new potential shifts slightly from that in Eq. (13). And the $D$-term, which is given in terms of the shifts in the meson VEVs, can be given by:

$$D = 8g_1(\delta M_{(6, 1)_{2}} - \delta M_{(1, 1)_{-4}}) = \frac{\tilde{m}^2_{(1, 1)_{-4}} - \tilde{m}^2_{(6, 1)_{2}}}{6g_1}. \quad (19)$$

As an aside, we note that the potentially large $A$-terms that result from inserting powers of the chiral compensator in Eq. (14), do not contribute to the $D$-term. We have checked that this is the case using the methods of [18]. Now, substituting in the expressions of Eqs. (17) and (18), the final value for the $D$-term in this case are given by:

$$D = -\frac{|m_{3/2}|^2}{(16\pi^2)^2} \frac{192g_1^4 + \frac{10}{3}g_1^4}{g_1}, \quad (20)$$

so a $D$-term of the correct order of magnitude is successfully generated in this limit.

B. $\Lambda \ll V$

The second limit $\Lambda \ll V$ is achieved by introducing an additional flavor, $Q_7, Q_8$, and extending the strong gauge group to $Sp(3)$. Because we are extending the gauge group to $Sp(3)$, now six copies of the anti-flavors are necessary. We assign the extra fourth flavor the $Sp(3)$ gauge group to $\text{Sp}(3)$. Because we are extending the strong gauge group to $Sp(3)$.

The superpotential of Eq. (11) becomes Yukawa couplings among mesons and anti-flavor quarks

$$\Delta W = \lambda Y (Q_i^7 Q^8 - v^2) + \lambda' Y_{ij} Q_i Q^j. \quad (21)$$
Here, \( i = 1, \ldots, 6 \) and \( \alpha = 7,8 \). We also extend the original superpotential by letting the indices in Eq. (1) run over \( 1, \ldots, 8 \). When \( v \gg \Lambda \), the extra flavor condenses and breaks the gauge group \( Sp(3) \rightarrow Sp(2) \), while it is eaten by the gauge multiplet. The extra color degrees of freedom of the remaining 3 flavors are made massive by the second term in Eq. (21). The first term in Eq. (11) makes the extra anti-flavors massive. Therefore the theory reduces to the original model.

When \( v \ll \Lambda \), on the other hand, it yields a calculable model of \( D \)-term generation with the scale of \( U(1) \) breaking \( V \gg \Lambda \). The soft masses can be calculated from anomaly mediation, the corresponding shift in the VEVs can be computed, and the \( D \)-term can be identified. The quick way to see that the model is still the same universality class is by using the dynamical superpotential. Together with the quantum modified constraint,

\[
\Delta W = \lambda Y (\mathcal{M}^{\alpha} - v^2) + \lambda Y_{\alpha} \mathcal{M}^{\alpha} + X(Pf_{\mathcal{M}} - \Lambda^2),
\]

The meson \( \mathcal{M} \) includes the 4th flavor, while we keep the notation \( M \) for the first three flavors. We can immediately conclude that \( \mathcal{M}^{\alpha} = v^2 \), \( M^{\alpha} = 0 \). Therefore, \( Pf_{\mathcal{M}} = (Pf \mathcal{M})_{\mathcal{M}}^{\alpha} = 0 \). The last term in the superpotential of Eq. (22) then determines \( Pf_{\mathcal{M}} = \Lambda^2/v^2 \). Therefore the meson VEV breaks \( SU(4) \times SU(2) \times U(1) \rightarrow Sp(2) \times SU(2) \) just as before. What is important is the scale of the VEVs: when \( v \ll \Lambda \), \( Pf\mathcal{M} \gg \Lambda^2 \), and hence the meson VEVs corresponding to the \( U(1) \) breaking scale, \( V \), can be regarded as classical expectation values of quark fields. Therefore we can calculate the effects of soft parameters using the anomaly mediation formula for quark fields instead of composite fields.

At the scale \( (\Lambda^4/v)^{1/3} \), we look at classical flat direction

\[
Q = \begin{pmatrix} V & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & V & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & V & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & V & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & V & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & V & 0 & 0 \end{pmatrix}.
\]

In this notation, the \( Sp(3) \) gauge group acts from the left, while the \( SU(4) \times SU(2) \times U(1) \) gauge groups act from the right on the quark multiplets. Because \( V, V' \sim (\Lambda^4/v)^{1/3} \gg \Lambda \), it is a conventional Higgs mechanism that breaks \( Sp(3) \times SU(4) \times SU(2) \times U(1) \rightarrow Sp(2) \times SU(2) \). Out of 6 \times 8 = 48 components of the quark multiplets, \( (21+15+3+1)-(10+3) = 27 \) components are eaten. The 12 components in the fourth flavor become massive together with \( Y_{\alpha} \) due to the second term in Eq. (21). The \( (4,2) \) components acquire mass from the second term in Eq. (11). This leaves only one light degree of freedom, namely the direction of \( V \) itself. We, however, leave the possibility that \( V \neq V' \) in the above expression. This is justified when the \( U(1) \) coupling is small. The \( D \)-flatness is imposed because the \( D \)-non-flat direction acquires a mass of order \( g_1 V \). When \( g_1 \ll 1 \) we can consider a low-energy effective theory where all particles of mass \( \sim V \) are integrated out but those of mass \( g_1 V \) are not. We can minimize the potential with respect to \( V \) and \( V' \) later.

Along this flat direction, we need to consider the instanton effect of partially broken gauge groups [9]. Because \( \pi_3((Sp(3) \times SU(4) \times SU(2) \times U(1))/(Sp(2) \times SU(2))) = \mathbb{Z} \), there are instanton effects that are present in the \( Sp(3) \times SU(4) \times SU(2) \times U(1) \) which are not part of the low-energy \( Sp(2) \times SU(2) \) theory. Such effects have to be included in writing down the low-energy theory. In our case, it is

\[
\mathcal{M}^{\alpha} = \frac{\Lambda^4}{V^4 V'^2}.
\]

This makes the first term in the superpotential Eq. (21)

\[
W = \lambda Y \left( \frac{\Lambda^4}{V^4 V'^2} - v^2 \right)
\]

while the second term had already been used to integrate out the fourth flavor.

Therefore, the low-energy effective theory we need to solve is given by the directions \( V \) and \( V' \) of the elementary quarks together with the superpotential Eq. (23) and soft supersymmetry breaking effects calculated in the quark language.

Calculating in this framework, we find that the \( D \)-term can be given in terms of the quark soft masses as

\[
D = \frac{\tilde{m}^2_{(1,2,-2)} - \tilde{m}^2_{(4,1,1)}}{3g_1^2}.
\]

The quark soft masses themselves arise from anomaly mediation and are given by:

\[
\tilde{m}^2_{(4,1,1)} = \frac{|m_{32}|^2}{(16\pi^2)^2} \left( \frac{45}{4} g_1^2 - 144 g_1^4 \right) + m^2_{Sp(3)},
\]

\[
\tilde{m}^2_{(1,2,-2)} = \frac{|m_{32}|^2}{(16\pi^2)^2} \left( -576 g_1^4 \right) + m^2_{Sp(3)}.
\]

Where we have denoted the universal contribution coming from the \( Sp(3) \) gauge interactions as \( m^2_{Sp(3)} \). Note that the \( SU(2) \) theory is conformal at one-loop, so its coupling does not contribute to \( \tilde{m}^2_{(1,2,-2)} \). The final expression for the \( D \)-term in this case is then

\[
D = -\frac{|m_{32}|^2}{g_1^2 (16\pi^2)^2} \left( \frac{15}{4} g_1^2 + 144 g_1^4 \right).
\]

We view the fact that a \( D \)-term is generated in both deformations (with the same sign, no less) as compelling evidence for existence of a \( D \)-term in the case \( \Lambda \sim V \), which is the situation in our model for \( D \)-term generation.
Unfortunately, I can't provide a natural text representation of this document as it contains mathematical equations and symbols that are not displayed in the image. I recommend using a PDF viewer to access and read the content accurately.
tazzi, JHEP 9812, 027 (1998) arXiv:hep-ph/9810443.
[3] E. Boyda, H. Murayama and A. Pierce, arXiv:hep-ph/0107256.
[4] A. Anisimov, M. Dine, M. Graesser and S. Thomas, arXiv:hep-th/0201256.
[5] Z. Chacko and M. A. Luty, JHEP 0105, 067 (2001) arXiv:hep-ph/0008103.
[6] M. A. Luty and R. Sundrum, Phys. Rev. D 65, 066004 (2002) arXiv:hep-th/0105137.
[7] M. Luty and R. Sundrum, arXiv:hep-th/0111231.
[8] A. Pomarol and R. Rattazzi, JHEP 9905, 013 (1999) arXiv:hep-ph/9903448.
[9] E. Katz, Y. Shadmi and Y. Shirman, JHEP 9908, 015 (1999).
[10] I. Jack and D. R. Jones, Phys. Lett. B 482, 167 (2000) arXiv:hep-ph/0003081.
[11] N. Arkani-Hamed, D. E. Kaplan, H. Murayama and Y. Nomura, JHEP 0102, 041 (2001) arXiv:hep-ph/0012103.
[12] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) Int. J. Theor. Phys. 38, 1113 (1998) arXiv:hep-th/9711200.
[13] N. Seiberg, Nucl. Phys. B 435, 129 (1995) arXiv:hep-th/9411149.
[14] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 229, 407 (1983); N. Arkani-Hamed and H. Murayama, Phys. Rev. D 57, 6638 (1998) arXiv:hep-th/9705189.
[15] D. E. Kaplan, G. D. Kribs and M. Schmaltz, Phys. Rev. D 62, 035010 (2000) arXiv:hep-ph/9911293; Z. Chacko, M. A. Luty, A. E. Nelson and E. Ponton, JHEP 0001, 003 (2000) arXiv:hep-ph/9911323.
[16] Y. Kawamura, H. Murayama and M. Yamaguchi, Phys. Rev. D 51, 1337 (1995) arXiv:hep-ph/9406243.
[17] K. A. Intriligator and P. Pouliot, Phys. Lett. B 353, 471 (1995) arXiv:hep-th/9505006.
[18] H. Murayama, Phys. Lett. B 355, 187 (1995) arXiv:hep-th/9505082.
[19] C. Csaki and H. Murayama, Nucl. Phys. B 532, 498 (1998) arXiv:hep-th/9804061.
[20] M. Kawasaki and T. Moroi, Prog. Theor. Phys. 93, 879 (1995) arXiv:hep-ph/9403364.
[21] T. Yanagida, in Proc. of the Workshop on the Unified Theory and Baryon Number in the Universe, ed. O. Sawada and A. Sugamoto (KEK report 79-18, 1979), p. 95; M. Gell-Mann, P. Ramond and R. Slansky, in Supergavity, ed. P. van Nieuwenhuizen and D.Z. Freedman (North Holland, Amsterdam, 1979), p. 315.
[22] N. Arkani-Hamed, L. J. Hall, H. Murayama, D. R. Smith and N. Weiner, Phys. Rev. D 64, 115011 (2001) arXiv:hep-ph/0006313; F. Borzumati and Y. Nomura, Phys. Rev. D 64, 053005 (2001) arXiv:hep-ph/0007018.
[23] This is the gauge coupling whose running is exhausted at one loop [14], and is related to the canonical gauge coupling by $1/g_{\text{can}}^2 = Re(1/g_{\text{hol}}^2) - F \ln Z / 8 \pi^2 - N m_{\text{can}}^2 / 8 \pi^2$ in the NSVZ scheme.
[24] Alternatively, these could simply be additional fields charged under the $U(1)$ symmetry whose Yukawa couplings to $\phi$ and $\bar{\phi}$ give those fields different soft masses.
[25] A similar attempt using $Sp(1)$ with 2 flavors runs into the difficulty that the mesons have identical charges under the $SU(3) \times U(1) \subset SU(4)$ flavor symmetry, so it is not entirely clear that a $D$-term is generated.