Homogenization of periodic and random ferroelectric-dielectric composites

Benjamin Vial and Yang Hao
School of Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS, United Kingdom
(Dated: October 18, 2018)

We investigate the homogenized permittivity of ferroelectric-dielectric mixtures under a static electric field. A refined model is used to take into account the coupling between the electrostatic problem and the electric field dependent permittivity of the ferroelectric material. Periodic and random structures in one and two dimensions are investigated and we study the effective permittivity, losses, electrically induced anisotropy and tunability of the homogenized materials.

Ferroelectric materials play a crucial role in tunable microwave devices, with typical applications including antenna beam steering, phase shifters, tunable power splitters, filters, voltage controlled oscillators and matching networks. Both bulk ceramics and thin films have been employed to design frequency agile components and metamaterials. The main reason of using ferroelectric materials is their strong dependence of their permittivity on an applied electric field, which is measured by their tunability defined as $n = \frac{\varepsilon(0)}{\varepsilon(E)}$. The key requirements for antenna and microwave applications are large tunability and low losses. These two characteristics are correlated and one has to find a trade-off for optimal device performance, which can be quantified by the so called commutation quality factor $K = (n - 1)^2/(n \tan \delta(0) \tan \delta(E))$, where $\tan \delta$ is the loss tangent. These materials have usually high permittivity values, often leading to slow response time and impedance mismatch, which can be an issue in some practical applications. Thus, it has been considered to mix ferroelectric ceramics to low-index and low-loss non-tunable dielectrics in order to reduce both permittivity value and losses. The effective parameters of those composites have been investigated and it has been found that the permittivity can be greatly reduced while losses and tunability are much less sensitive to the dielectric phase addition. This study investigates the effective permittivity of di-electric/ferroelectric composites by using a two-scale convergence method. The originality lies in the fact that a fully coupling model is employed to calculate the electrostatic field distribution when a uniform biasing field is applied on the structures, which will result in a local modification of the permittivity in the ferroelectric phase due to the microstructure. As compared to a simple uncoupled model where the ferroelectric phase is only modified through the biasing field, the resulting effective permittivity, dielectric losses, tunability and anisotropy significantly differ.

We first study a simple one-dimensional model of layered composites, then move on to two-dimensional model of metamaterials made of parallel rods with circular cross section, considering both periodic and random distributions.

THEORY AND NUMERICAL MODEL

We consider a composite made of a ferroelectric material with anisotropic permittivity $\varepsilon^f(E)$ that is dependent on an applied electric field E, and a non-tunable dielectric of permittivity ε^d, which are both non-magnetic. The structures under study are invariant along the z direction, which leads to the standard decomposition of the wave equation in the transverse electric case (TE, electric field parallel to the direction of invariance) and the transverse magnetic case (TM, magnetic field parallel to the direction of invariance). A uniform biasing field is applied to the sample in order to be able to tune the permittivity of the dielectric phase. Modelling homogenized properties of this type of mixtures can be done by assuming that the electric field distribution is uniform throughout the sample, so that the study of the tunability is essentially achieved by changing the value of the properties in the ferroelectric phase and computing the effective permittivity of the composite. We refer this approach as to the uncoupled model in the following. However, a more accurate description is to take into account the change of the electric field by the microstructure, if any. We therefore need to solve an electrostatic equation to find the field distribution within the material, but its solution depends on the permittivities of both materials, and the permittivity in the ferroelectric phase depends on this induced electric field: this leads to a strongly coupled problem.

Permittivity model

We use barium strontium titanate (BST) as our ferroelectric material. Microwave measurements at 10 GHz where performed and the normalized permittivity value as a function of biasing field are reported on Fig. 1. To describe the permittivity, we make use of the Landau potential given by $F(P,E) = F_0 + aP^2/2 + bP^4/4 + cP^6/6 - EP$, where E is the applied electric field and P is the polarization. Variations of the permittivity with the temperature can be taken into account through the coefficients a, b and c, but we assume we are work-
where each of the diagonal components have the corresponding bias electric field components of the permittivity tensor are only function of the coordinate directions, and that the diagonal components of the ferroelectric material are oriented in the paraelectric state. Furthermore, assuming the crystalline principal axes of the ferroelectric material are oriented in the coordinate directions, and that the diagonal components of the permittivity tensor are only function of the corresponding bias electric field components, we have:

\[
\varepsilon^f(E) = \begin{pmatrix}
\varepsilon_{xx}^f(E_x) & 0 & 0 \\
0 & \varepsilon_{yy}^f(E_y) & 0 \\
0 & 0 & \varepsilon_{zz}^f(E_z)
\end{pmatrix}
\]

where \(\beta = 3b\varepsilon_0\varepsilon^f(0)/a \) and \(\gamma = 5\varepsilon_0\varepsilon^f(0)/a \). The permittivity without bias \(\varepsilon^f(0) \) was measured to be 120 and the fitting parameters are \(a = 0.992/\varepsilon_0 \), \(b = 0.086/(\varepsilon_0 E^2_{\text{ref}}) \), \(c = 0.014/(\varepsilon_0 E^4_{\text{ref}}) \), \(E_{\text{ref}} = 1 \text{kV/mm} \). As the norm of the field increases, the permittivity decreases with a characteristic bell curve typical for a ferroelectric material in its paraelectric state. Furthermore, assuming the crystalline principal axes of the ferroelectric material are oriented in the coordinate directions, and that the diagonal components of the permittivity tensor are only function of the corresponding bias electric field components, we have:

\[
\varepsilon^f(E) = \begin{pmatrix}
\varepsilon_{xx}^f(E_x) & 0 & 0 \\
0 & \varepsilon_{yy}^f(E_y) & 0 \\
0 & 0 & \varepsilon_{zz}^f(E_z)
\end{pmatrix}
\]

In the following, we consider two different cases for the biasing field. Because of the form (2) assumed for the ferroelectric permittivity tensor, \(\varepsilon_{zz} \) will not be changing for a field in the plane orthogonal to the \(z \) axis. This is the only component being relevant for TE polarization, so we consider in this case a uniform biasing electric field applied along the direction of invariance \(E_0 = E_0 e_z \). On the other hand, the in-plane components of \(\varepsilon^f \) are tuned by \(E_x \) and \(E_y \), therefore, without loss of generality, we consider a uniform applied electric field directed along the \(x \) axis \(E_0 = E_0 e_x \) for the TM polarization case. To calculate the total electric field in the material, one has to solve the electrostatic equation for the potential \(V \):

\[
\nabla \cdot (\varepsilon_0 \varepsilon \nabla V) = 0
\]

Note that for the TE case, the solution is straightforward since the structures are invariant along \(z \), so that the electric field is equal to the uniform biasing field. However in the TM case, the situation is much more complex: this is a coupled problem since the electric field \(E = -\nabla V \) derived from the solution of Eq. (3) depends on the permittivity distribution, which itself depends on the electric field. The coupled system formed of Eqs. (2) and (3) is solved iteratively until there is convergence on the norm of the electric field. Here we would like to emphasise that the permittivity in the ferroelectric material, although uniform initially, will be spatially varying due to the non-uniform distribution of the total electric field.

Homogenization

The effective permittivity for TM polarization is calculated using two scale homogenization technique. For this purpose, one has to find the solutions \(\psi_j \) of two annex problems \(\psi_j, j = \{1,2\} \):

\[
\nabla \cdot [\varepsilon^{-1} \nabla (\psi_j + r_j)] = 0,
\]

where \(\mathbf{r} = (x,y)^T \) is the position vector in the \(xy \) plane. Finally the homogenized permittivity \(\varepsilon_{TM} \) satisfies:

\[
\varepsilon^{-1}_{TM} = \langle \varepsilon^{-1} \rangle + \phi,
\]

where \(\langle \cdot \rangle \) denotes the mean value over the unit cell. The elements of the matrix \(\phi \) represent correction terms and are given by \(\phi_{ij} = \langle \varepsilon^{-1} \nabla \psi_i \rangle_j \).

On the other hand, the TE case is fairly easy to handle since the homogenized permittivity is simply the average of the permittivity in the unit cell:

\[
\varepsilon_{TE} = \langle \varepsilon \rangle.
\]

Numerical setup

In the TM case, equations (3) and (4) are solved with a Finite Element Method using the open source packages...
Gmsh15 and GetDP16. In both cases we use a square unit cell Ω of length d with periodic boundary conditions along x and y. Second order Lagrange elements are used and the solution is computed with a direct solver (MUMPS17).

NUMERICAL RESULTS

In the following numerical results, the dielectric phase is supposed to be lossless with $\varepsilon^d = 3$ while the ferroelectric material follows the permittivity described in section and has a constant loss tangent $\tan \delta^f = 10^{-2}$.

One dimensional periodic layers

As a first example we study the case of a one dimensional (1D) stack of layers alternating periodically along the x-axis with lattice constant d between a ferroelectric (thickness d^f) and dielectric material (thickness d^d). It is easy to check that in this particular case (see e.g.18), the effective permittivity along the direction of the layers is simply the harmonic mean $\tilde{\varepsilon}_{xx} = (\varepsilon_{xx}^{-1})^{-1}$ whereas the components in the planes orthogonal to the layer are given by the arithmetic mean, i.e. $\tilde{\varepsilon}_{yy} = \langle \varepsilon_{yy} \rangle$ and $\tilde{\varepsilon}_{zz} = \langle \varepsilon_{zz} \rangle$.

In the TM case (magnetic field in the plane of the layers), we assume the biasing field is directed along the x axis $E_0 = E_0 e_z$. Expressing the potential V as $V(x) = V_1(x) = v(x) + V_0$, with $E_0 = -dV_0/dx$, Eq. (4) becomes:

$$\frac{d}{dx} \left(\varepsilon(E_0) \frac{dv}{dx} \right) = \frac{d}{dx} (\varepsilon(E_0) E_0),$$

where we set $\varepsilon = \varepsilon_{xx}$ to simplify the notations. This gives immediately:

$$-e_1 = \frac{dv}{dx} = E_0 + C_0 \varepsilon^{-1}. \quad (8)$$

Now due to the periodicity of v, we have $\langle dv/dx \rangle = 0$, which gives the value of $C_0 = -E_0/(\varepsilon(E_0))^{-1}$. Thus the electric field is given by

$$E_1 = E_0 + e_1 = \frac{\varepsilon(E_0)^{-1}}{\langle \varepsilon(E_n)^{-1} \rangle} E_0. \quad (9)$$

By reapplying the above reasoning at iteration n, we obtain the recurrence relation:

$$E_{n+1} = E_n + e_{n+1} = \frac{\varepsilon(E_n)^{-1}}{\langle \varepsilon(E_n)^{-1} \rangle} E_0. \quad (10)$$

It is straightforward to see that $\forall n \in \mathbb{N}$, $\langle E_n \rangle = \langle E_0 \rangle = E_0$ so that for $n \to +\infty$, the limit electric field (if it exists), satisfies:

$$E_{\infty} = \frac{\varepsilon(E_{\infty})^{-1}}{\langle \varepsilon(E_{\infty})^{-1} \rangle} E_0. \quad (11)$$

We see that the electric field is constant in both layers and discontinuous across the boundary. In the ferroelectric region, at order zero $\varepsilon^f(E_\infty) \simeq \varepsilon^f(E_0) \gg \varepsilon^d$, so that $E_{\infty} \ll E_0$, meaning that the tunability of the composite will be weaker than the bulk at low bias field. Due to the non-linear variation of the permittivity with the electric field as given by Eq. (1), Eq. (11) is not tractable in closed form so we solve it numerically using a root finding algorithm. However, besides the zero order approximation mentioned previously, we consider the first order Taylor expansion of the ferroelectric permittivity around E_0:

$$\varepsilon^f(E) \simeq \varepsilon^f(E_0) + (E - E_0) \frac{d\varepsilon^f}{dE}(E_0).$$

Inserting this expansion in Eq. (11) we obtain the expression for the electric field in the ferroelectric region:

$$E \simeq \frac{E_0}{2(\sigma - 1)} \left(\sigma + \eta + \sqrt{(\sigma + \eta)^2 + 4 \frac{\sigma - 1}{f - 1}} \right)$$

with $\eta = (1/f - 1) \varepsilon^d/\varepsilon^f(E_0)$ and $\gamma = 1 - E_0 \frac{d \varepsilon^f}{dE}(E_0)$. The results of the zero and first order approximation for the effective permittivity are calculated for two filling fraction $f = d^d/d$ of the dielectric material (see Fig. (2)). At low biasing fields, both agree well with the exact solution calculated from Eq. (11), whereas there is a significant error for higher biasing field. As a sanity check, we also computed the effective permittivity with the same FEM model we will be using for the next section on 2D structures: the results match extremely well for the two different method (see full lines and dots on Fig. (2)).

![FIG. 2. Effective permittivity as a function of the applied electric field for $f = 0.1$ (top) and $f = 0.5$ (bottom).](image-url)
The effective parameters of the composites have been computed from Eq. (11) for different values of filling fraction and results are displayed on Fig. 3. One notice that the uncoupled model calculations departs significantly from the coupled model for non-zero biasing field: the latter overestimates the tunability and underestimates the effective permittivity, loss tangent and anisotropy of the composites. The dilution of ferroelectric in the homogenized materials results in a diminution of the effective permittivity whereas losses are virtually unaffected, except for high filling fraction where it is reduced (by 20% for \(f = 0.9 \)). For the range of biasing field studied here, the tunability is drastically reduced as compared to bulk ferroelectric for all filling fraction, due to the fact that the electric field is concentrated in low index layers. For low filling fraction however, one can observe that the composite is tunable but that a higher bias field is required to obtain the same tunability as the bulk (see the orange curve on Fig. 3(c) for \(f = 0.1 \) where the normalized tunability reaches a minimum around \(E_0 = 4 \text{kV/mm} \) and increases above this value). Writing explicitly the temperature dependence of the coefficient \(a = (T - T_C)/(C\varepsilon_0) \) (where \(C \) is the Curie constant of the material and \(T_C \) is the Curie-Weiss temperature), this threshold effect for low dilution is formally equivalent to a ferroelectric with a reduced Curie-Weiss temperature \(T_C = T_C - f C/\varepsilon_0 \). Finally, the composites have a strong anisotropy mostly due to the layered nature of the structures, but also because of the anisotropy of the ferroelectric material. As the dielectric concentration increases from low values, the effective anisotropy factor \(\tilde{\rho} = \tilde{\varepsilon}_{xx}/\tilde{\varepsilon}_{yy} \) increases until \(f = 0.5 \) where it is maximal and then decreases. It is also weakly dependent on the applied electric field except at low filling fraction. In particular, for \(f = 0.1, \rho < 1 \) for \(E_0 > 8 \text{kV/mm} \): this means the effective permittivity in the direction of periodicity is now smaller than the permittivity orthogonal to it. This happens because of the particular form of the ferroelectric tensor and the biasing field direction along \(x \): \(\varepsilon^f_{xx} \) is tunable whereas \(\varepsilon^f_{yy} \) is not. At some point, the effect of ferroelectric anisotropy overcomes the geometrical effective anisotropy. This interesting effect can be used to design composites with tunable artificial anisotropy. We calculated also the commutation quality factor for those composites, and found that it is drastically reduced for every concentration of dielectric except at very low values (cf. Fig. 4).

For TE polarization (incident electric field in the plane of the layers), the applied electrostatic field is along \(z \) and is constant through the structure, so the problem is not coupled. As seen on Fig. 4, the permittivity is decreased with dilution of the ferroelectric and keeps a good tunability, while losses are less affected. When adding more dielectric material, the anisotropy increases, and for every concentration the anisotropy is tunable with an applied electric field for the same reasons as in the TM polarization. A simple calculation shows that if the dielectric phase is lossless (as in our case), the quality commutation factor of the homogenized material is equal to the one for bulk ferroelectric i.e. \(K_{TE} = K \).

Two dimensional periodic metamaterial

Let us now consider infinitely long dielectric rods of circular cross section of radius \(r \) embedded in a ferroelectric matrix. We first study the convergence of the coupled problem on the particular case with dielectric filling fraction \(f = \pi r^2/d^2 = 0.5 \) and \(E_0 = 2 \text{kV/mm} \). Figures 5(a) and 5(b) show the convergence of the real part and loss tangent of the components of the homogenized permittivity tensor, respectively. The \(yy \) components converge very quickly and are almost unaffected by the coupling pro-
process whereas the xx components change drastically from the initial conditions. This is due to the effect of the distribution of the electrostatic field within the unit cell (see Figs. 5(c) and 5(d)), where the x component of the electric field is still much stronger than the y component, even if it is spatially varying in the ferroelectric medium. At equilibrium, the electric field is concentrated close to the y axis in between two neighbouring rods. This in turn affects the permittivity distribution (see Figs. 5(c) and 5(d)), and the homogenized properties of the composite.

We computed the effective parameters of these metamaterial structures for different radii of the rods and studied their behaviour when subjected to an external electrostatic field (see Fig. 7). As in the 1D case, the results of our coupled model differ significantly from the uncoupled one. Increasing the dielectric fraction lowers the effective permittivity while the losses are slightly reduced but much less sensitive. Due to the inhomogeneous redistribution of the permittivity over the ferroelectric domain, the overall tunability changes. In the case studied here, effective tunability is reduced with increasing dielectric concentration. There are two concurrent effect at stake here: on the one hand the dilution of ferroelectric makes the composite less tunable, but on the other hand, the rearrangement of the electrostatic field surrounding the inclusion and its concentration in some region will cause a higher permittivity change locally. The relative strength of those phenomena is governed by the shape of the inclusion and its permittivity and so it is envisioned that the performance of the composites might be enhanced by engineering their microstructure. The geometry of the unit cell is symmetric so the homogenized material is isotropic when no field is applied. But when the sample is biased, the permittivity distribution becomes asymmetric due to the inhomogeneity of the electric field, thus making the effective material properties anisotropic. This geometric effect is added to the anisotropy arising from the material properties of the ferroelectric phase, and depending on the topology and permittivity of the rods, one effect would be predominant. Those subtle phenomena can only be rigorously taken into account by employing a coupling formalism and are responsible for the difference observed when compared to a simple uncoupled model. To finish, we notice that the TE case in 1D and 2D are formally equivalent, so the results discussed in section 4.4 are allowed to overlap. An example of distribution for their behaviour when subjected to an external electric field, for various filling fraction of dielectric, TE polarization. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor.

![FIG. 5. Effective parameters of the 1D composites as a function of the applied electric field for various filling fraction of dielectric, TE polarization. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor.](image)

![FIG. 6. Convergence of the coupled problem in the TM polarization case. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i. The distribution of the electric field (colormap: magnitude, arrows: direction) and of the xx component of the permittivity tensor are shown for $i = 1$ (c and d) and $i = 29$ (e and f).](image)

Random case

We finally study the effect of random particle distribution on the effective parameters of the composites. This is an important point as fabrication of randomly dispersed inclusions is much more easy from a technological perspective. For each filling fraction of the dielectric, we generated 21 numerical samples with inclusions of circular cross section of average radius $r = d/20$ that can vary by $\pm 30\%$. Their centre is chosen randomly and the rods are allowed to overlap. An example of distribution for $f = 0.5$ is given on Fig. 8. The effective material properties are plotted on Fig. 9. Similarly to the periodic case, the permittivity decreases with increasing dilution of ferroelectric, but for identical filling fraction, the permittivity is lower as compared to the periodic array, and the smaller the dielectric concentration the larger is the difference. Losses decrease as well and the reduction is
substantially larger than the periodic case, with higher variation from sample to sample as f increases. The tunability is reduced as one adds more dielectric, but is slightly greater than that in the periodic case. The redistribution of electric field, permittivity and convergence of the effective parameters are displayed in Fig. 10. The effect of disorder plays an important role here: the electrostatic field gets concentrated in between neighbouring inclusions and the smaller the gap the higher the field, hence a greater local permittivity change. In addition, even if the distribution of particle is random, one expects that the anisotropy due to geometry would cancel for a sufficiently large number of particles (which is the case as the mean anisotropy factor is close to 1 when no bias field is applied). However, the anisotropy due to ferroelectric properties is important in this case as well, as both the x and y components of the electrostatic field are playing a role. This result in an anisotropy factor that might be greater than 1, but with high variability from sample to sample. However, on average, the anisotropy factor increases with increasing dielectric concentration, and the smaller the concentration the more tunable it will be.

CONCLUSION

We have studied the homogenized properties of dielectric/ferroelectric mixtures using a rigorous model that takes into account the coupling between the electrostatic field distribution and the field dependant ferroelectric permittivity tensor. After convergence of the coupled problem, the effective permittivity tensor is calculated using two scale convergence homogenization theory. The results obtained by this model differ significantly from a simple assumption that the permittivity of the ferroelectric respond just to the uniform biasing field. We have considered multilayered periodic composites in 1D and both periodic and random arrays of dielectric rods in a ferroelectric matrix in 2D, and studied their effective properties for TE and TM polarization as a function of dielectric concentration and bias field. Importantly, adding...
The properties of the composites are affected by multiple factors: geometry and the spatially dependent electric field that will induce locally a tunable, anisotropic response in the ferroelectric phase depending on its amplitude and direction. This suggest that the performances of the composites may be enhanced by distributing the two phases in an optimal way to get high tunability and low losses. Further work in that direction is needed as well as extending this study to 3D media. Finally, because the permittivity of the dielectric is much smaller than the ferroelectric one, it would be of great interest to use high contrast homogenization theory19,20 to study this kind of mixtures. This would reveal the frequency dependent artificial magnetism due to "micro-resonances" in the high index phase and potentially lead to composites with tunable effective permeability.

ACKNOWLEDGMENTS

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC), UK, under a grant (EP/P005578/1) ‘Adaptive Tools for Electromagnetics and Materials Modelling to Bridge the Gap between Design and Manufacturing (AOTOMAT)’. The authors would like to thanks Henry Giddens for performing the measurements of ferroelectric permittivity used in this paper.

1. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceram. 11, 5 (2018).
2. O. Vendik, E. Hollmann, A. Kozyrev, and A. Prudan, Journal of Superconductivity 12, 325 (1999).
3. M. Lancaster, J. Powell, and A. Porch, Superconductor Science and Technology 11, 1323 (1998).
4. X. Xi, H.-C. Li, W. Si, A. Sirenko, I. Akimov, J. Fox, A. Clark, and J. Hao, Journal of Electroceramics 4, 393 (2000).
5. T. H. Hand and S. A. Cummer, Journal of Applied Physics 103, 066105 (2008).
6. H. Zhao, L. Kang, J. Zhou, Q. Zhao, L. Li, L. Peng, and Y. Bai, Applied Physics Letters 93, 201101 (2008).
7. V. O. Sherman, A. K. Tagantsev, N. Setter, D. Iddles, and T. Price, Journal of Applied Physics 99, 074104 (2006).
8. L. Jylha and A. H. Sihvola, Progress in Electromagnetics Research 78, 189 (2008).
9. V. O. Sherman, A. K. Tagantsev, and N. Setter, in 14th IEEE International Symposium on Applications of Ferroelectrics, 2004, ISAF-04, 2004 (2004) pp. 33–38.
10. K. Astafiev, V. Sherman, A. Tagantsev, and N. Setter, Journal of the European Ceramic Society 23, 2381 (2003), microwave Materials and Applications.
11. G. Allaire, SIAM Journal on Mathematical Analysis 23, 1482 (1992).
12. S. Guenneau and F. Zolla, Journal of Electromagnetic Waves and Applications 14, 529 (2000).
13. K. Zhou, S. A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, and S. P. Alpay, Applied Physics Letters 93, 102908 (2008).
14. C. M. Krowne, M. Daniel, S. W. Kirchoefer, and J. A. Pond, IEEE Transactions on Microwave Theory and Techniques 50, 537 (2002).
15. C. Geuzaine and J.-F. Remacle, International Journal for Numerical Methods in Engineering 79, 1309.
16. P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, IEEE Transactions on Magnetics 34, 3395 (1998).
17. P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, SIAM Journal on Matrix Analysis and Applications 23, 15 (2001).
18. S. Guenneau, R. Craster, T. Antonakakis, E. Skelton, K. Cherednichenko, and S. Cooper, in Gratings: Theory and Numeric Applications, edited by E. Popov (Presses Universitaires de Provence, 2014) 2nd ed., Chap. 11, pp. 411–445.
19. G. Bouchitt and D. Felbacq, Comptes Rendus Mathematique 339, 377 (2004).
20. K. Cherednichenko and S. Cooper, Mathematika 61, 475500 (2015).