Cohomological constraint to deformations of compact Kähler manifolds

Marco Manetti
Università di Roma “La Sapienza”, Italy

Abstract
We prove that for every compact Kähler manifold \(X \) the cup product
\[
H^*(X, T_X) \otimes H^*(X, \Omega_X^*) \to H^*(X, \Omega_X^{*-1})
\]
can be lifted to an \(L_\infty \)-morphism from the Kodaira-Spencer differential graded Lie algebra to the suspension of the space of linear endomorphisms of the singular cohomology of \(X \). As a consequence we get an algebraic proof of the principle “obstructions to deformations of compact Kähler manifolds annihilate ambient cohomology”.
Mathematics Subject Classification (2000): 32G05

Introduction
In this paper we give an algebraic proof of the principle “obstructions to deformations of compact Kähler manifolds annihilate ambient cohomology” recently proved, in a different way, by Herb Clemens [4] and Ziv Ran [18].

Let \(X \) be a fixed compact Kähler manifold of dimension \(n \) and consider the graded vector space \(M_X = \text{Hom}_C(H^*(X, \mathbb{C}), H^*(X, \mathbb{C})) \) of linear endomorphisms of the singular cohomology of \(X \). The Hodge decomposition gives natural isomorphisms
\[
M_X = \bigoplus_i M_i^X, \quad M_i^X = \bigoplus_{r+s=p+q+i} \text{Hom}_C(H^p(\Omega_q^X), H^r(\Omega_s^X))
\]
and the composition of the cup product and the contraction operator \(T_X \otimes \Omega_X^p \to \Omega_X^{p-1} \) gives natural linear maps
\[
\theta_p : H^p(X, T_X) \to \bigoplus_{r,s} \text{Hom}_C(H^r(\Omega_s^X), H^{r+p}(\Omega_s^{*-1}_X)) \subset M[-1]^p = M_{X}^p.
\]
The Dolbeaut’s complex of the holomorphic tangent bundle \(T_X \)
\[
KS_X = \bigoplus_p KS_X^p, \quad KS_X^p = \Gamma(X, \mathcal{A}^{0,p}(T_X))
\]
has a natural structure of differential graded Lie algebra (DGLA), \([3], [8], [11, 3.4.1]\), called the Kodaira-Spencer algebra of \(X \). By Dolbeaut’s theorem \(H^*(KS_X) = H^*(X, T_X) \) and then the maps \(\theta_i \) give a morphism of graded vector spaces \(\theta : H^*(KS_X) \to M[-1] \). This morphism is generally nontrivial: consider for instance a Calabi-Yau manifold where the map \(\theta_p \) induces an isomorphism \(H^p(X, T_X) = \text{Hom}_C(H^0(\Omega^p_X), H^p(\Omega_X^{*-1})) \).

*Partially supported by Italian MURST-PRIN ‘Spazi di moduli e teoria delle rappresentazioni’. Member of GNSAGA of CNR.
Theorem A. In the above notation, consider \(M[-1]_X \) as a differential graded Lie algebra with trivial differential and trivial bracket. Every choice of a Kähler metric on \(X \) induces a canonical lifting of \(\theta \) to an \(L_\infty \)-morphism from \(K\mathcal{S}_X \) to \(M[-1]_X \).

The above theorem, together some standard and purely formal results in Schlessinger’s theory, gives immediate applications to the study of deformations of \(X \). In fact the deformations of \(X \) are governed by the Kodaira-Spencer differential graded Lie algebra \(K\mathcal{S}_X \) and every \(L_\infty \)-morphism between DGLAs induces a natural transformation between the associated deformation functors. The triviality of the DGLA structure on \(M[-1]_X \) allows to prove easily the following:

Corollary B. Let \(f: \mathcal{Y} \to \mathcal{B} \) be the semiuniversal deformation of a compact Kähler manifold \(Y \) and let \(X \xrightarrow{\pi} Y \) be a finite unramified covering. For every \(p \geq 0 \) denote by \(\alpha_p \), the composite linear map

\[
\alpha_p: H^p(Y, T_Y) \xrightarrow{\pi^*} H^p(X, T_X) \xrightarrow{\theta_p} \bigoplus_{r,s} \text{Hom}_\mathbb{C}(H^r(\Omega^s_X), H^{r+p}(\Omega^{s-1}_X)).
\]

Then:

1. If \(\alpha_1 \) is injective then \(f: \mathcal{Y} \to \mathcal{B} \) is universal.

2. There exists a morphisms of complex analytic singularities \(q: (H^1(Y, T_Y), 0) \to (\ker \alpha_2, 0) \) such that \(\mathcal{B} \) is isomorphic to \(q^{-1}(0) \). In particular if \(\alpha_2 \) is injective then \(\mathcal{B} \) is smooth.

As an example, if \(Y \) is a projective manifold with torsion canonical bundle and \(\pi: X \to Y \) is the canonical covering, then all the maps \(\alpha_p \) are injective.

Probably the main interesting aspect of Theorem A is that it gives a concrete construction of a morphism whose existence is predicted by the general philosophy of extended deformation theory.

Roughly speaking, to every deformation problem over a field of characteristic 0, it is associated a differential graded Lie algebra \(L \), unique up to quasiisomorphism, and a formal pointed quasismooth dg-manifold \(M \) quasiisomorphic to \(L \) as \(L_\infty \)-algebra. The differential graded Lie algebra \(L \) governs the deformation problem via the solutions Maurer-Cartan modulo gauge action and the truncation in degree 0 of \(M \) is the classical moduli space (cf. [15], Section 2 of [3] and references therein).

Moreover, according to this general philosophy, every natural morphism between moduli spaces (e.g. the period map from deformations of a compact Kähler manifold to deformations of its Hodge decomposition) should extend to a morphism of their extended moduli spaces and therefore induces an \(L_\infty \)-morphism between the associated differential graded Lie algebras.

The author thanks A. Canonaco for his useful help in the preparation of the paper.

Notation

For every holomorphic vector bundle \(E \) on a complex manifold we denote by \(\mathcal{A}^{p,q}(E) \) the sheaf of differential \((p,q)\)-forms with coefficients in \(E \).

For every vector space \(V \) and every linear functional \(\alpha: V \to \mathbb{C} \) we denote by \(\alpha \vdash: \bigwedge^k V \to \bigwedge^{k-1} V \) the contraction operator

\[
\alpha \vdash (v_1 \wedge \ldots \wedge v_k) = \sum_{i=1}^k (-1)^{i-1} \alpha(v_i) v_1 \wedge \ldots \wedge \widehat{v_i} \wedge \ldots \wedge v_k.
\]
We point out for later use that \(\alpha \) is a derivation of degree \(-1\) of the graded algebra \((\Lambda^* V, \wedge)\).

We denote by \(\Sigma_m \) the symmetric group of permutations of the set \(\{1, 2, \ldots, m\} \) and, for every \(0 \leq p \leq m \) by \(S(p, m - p) \subset \Sigma_m \) the set of unshuffles of type \((p, m - p) \). By definition \(\sigma \in S(p, m - p) \) if and only if \(\sigma_1 < \sigma_2 < \ldots < \sigma_p \) and \(\sigma_{p+1} < \sigma_{p+2} < \ldots < \sigma_m \).

1 \textbf{ } \(L_\infty \)-morphisms

Let \(V = \oplus V^i \) be a \(\mathbb{Z} \)-graded vector space, for every integer \(n \) we denote by \(V[n] = \oplus V^i \) the graded vector space where \(V[n]^i = V^{n+i} \). The space \(V[-1] \) is also called the suspension of \(V \) and \(V[1] \) the unsuspension.

The graded \(m \)-th symmetric power of \(V \) is denoted by \(\bigodot^m V \). If \(\sigma \in \Sigma_m \) and \(a_1, \ldots, a_m \in V \) are homogeneous elements, the Koszul sign \(\epsilon(V, \sigma; a_1, \ldots, a_m) = \pm 1 \) is defined by the rule

\[
\epsilon(V, \sigma; a_1, \ldots, a_m) = \sigma_1 \odot \cdots \odot a_{\sigma_m} = \epsilon(V, \sigma; a_1, \ldots, a_m) a_1 \odot \cdots \odot a_m \in \bigodot^m V.
\]

For simplicity of notation we write \(\epsilon(V, \sigma) \) when the elements \(a_1, \ldots, a_m \) are clear from the context. If \(a \in V \) is homogeneous we denote by \(\deg(a, V) \) its degree; we also write \(\deg(a, V) = \pi \) when there is no ambiguity about \(V \). Note that \(\deg(a, V[n]) = \deg(a, V) - n \).

We denote by \(C(V) \) the reduced graded symmetric coalgebra generated by \(V[1] \); more precisely it is the graded vector space

\[
C(V) = \overline{S}(V[1]) = \bigoplus_{m=1}^{\infty} \bigodot^m V[1] \end{align*}
\]

endowed with the coproduct \(\Delta: C(V) \to C(V) \otimes C(V) \), \(\Delta(a) = 0 \) for every \(a \in V[1] \) and

\[
\Delta(a_1 \odot \cdots \odot a_m) = \sum_{r=1}^{m-1} \sum_{\sigma \in S(r, m-r)} \epsilon(V[1], \sigma)(a_{\sigma_1} \odot \cdots \odot a_{\sigma_r}) \odot (a_{\sigma_{r+1}} \odot \cdots \odot a_{\sigma_m})
\]

for every \(a_1, \ldots, a_m \in V[1], m \geq 2 \).

Assume now that \(V \) has a structure of differential graded Lie algebra with differential \(d \) and bracket \([, ,]\), then the linear map

\[
Q: \bigodot^2 V[1] \to V[1], \quad Q(a \odot b) = (-1)^{\deg(a, V[1])}[a, b]
\]

has degree 1 and the map \(\delta: C(V) \to C(V) \) defined by

\[
\delta(a_1 \odot \cdots \odot a_m) = \sum_{\sigma \in S(1, m-1)} \epsilon(V[1], \sigma; a_1, \ldots, a_m) da_{\sigma_1} \odot a_{\sigma_2} \odot \cdots \odot a_{\sigma_m}
\]

\[
+ \sum_{\sigma \in S(2, m-2)} \epsilon(V[1], \sigma; a_1, \ldots, a_m) Q(a_{\sigma_1} \odot a_{\sigma_2}) \odot a_{\sigma_3} \odot \cdots \odot a_{\sigma_m}
\]

is a codifferential of degree 1 on the coalgebra \(C(V) \). The differential graded coalgebra \((C(V), \delta)\) is called the \(L_\infty \)-algebra associated to the DGLA \((V, d, [\ ,\ ,])\).

By definition, an \(L_\infty \)-morphism between two DGLA \(V, V' \) is a morphism of differential graded coalgebras \(\Theta: (C(V), \delta) \to (C(V'), \delta') \).

It is easy to check that if \(f: V \to V' \) is a morphism of differential graded Lie algebras then the linear map

\[
(C(V), \delta) \to (C(V'), \delta'), \quad a_1 \odot \cdots \odot a_m \to f(a_1) \odot \cdots \odot f(a_m)
\]
is an L_{∞}-morphism. We refer to [1], [2], [3], [4] for the general theory of L_{∞}-morphisms.

In this paper we are interested only in the particular and simple case when V' has trivial differential and trivial bracket: under these assumption $\delta' = 0$ and there exists a bijection between the set of L_{∞}-morphism $\Theta: (C(V), \delta) \to (C(V'), 0)$ and the set of morphisms of graded vector spaces $F: C(V) \to V'[1]$ such that $F \circ \delta = 0$. The bijection is given by the formulas

$$
F = p_1 \circ \Theta, \quad p_1: C(V') \to \bigodot^1 V'[1] = V'[1] \quad \text{the projection}
$$

$\Theta = \sum_{m=1}^{\infty} \frac{1}{m!} F^{\otimes m} \circ \Delta_{C(V)}^{m-1}: C(V) \to C(V')$

where $F^{\otimes m}$ is the composition of $F^{\otimes m}: \bigotimes^n C(V) \to \bigotimes^n (V'[1])$ with the projection onto the symmetric product $\bigotimes^n (V'[1]) \to \bigotimes^n (V'[1])$.

Let $F_1: V[1] \to V'[1]$ the composition of F with the inclusion $V[1] \to C(V)$. Just to explain the statement of Theorem A we observe that the condition $F \circ \delta = 0$ implies $F_1 \circ d = 0$ and then F_1 induce a map in cohomology $\theta: H^*(V) \to H^*(V') = V'$.

2 Proof of Theorem A

Let X be a complex manifold of dimension n; consider the graded vector space $L = \oplus L^p$, where $L^p = \Gamma(X, A^{p,0+1}(T_X))$, $-1 \leq p \leq n-1$, and two linear maps of degree +1, $d: L \to L$, $Q: \bigotimes L \to L$ defined in the following way: if z_1, \ldots, z_n are local holomorphic coordinates, then

$$
d \left(\frac{\partial}{\partial z_i} \right) = (\partial \phi) \frac{\partial}{\partial z_i}, \quad \phi \in A^{0,*}.
$$

If I, J are ordered subsets of $\{1, \ldots, n\}$, $a = f \partial^{z_I} \frac{\partial}{\partial z_i}$, $b = g \partial^{z_J} \frac{\partial}{\partial z_j}$, $f, g \in A^{0,0}$ then

$$
Q(a \circ b) = (-1)^{\overline{\pi}} \partial^{z_I} \wedge \partial^{z_J} \left(f \frac{\partial g}{\partial z_i} \frac{\partial}{\partial z_j} - g \frac{\partial f}{\partial z_j} \frac{\partial}{\partial z_i} \right), \quad \overline{\pi} = \deg(a, L).
$$

The equation (1), with L in place of $V[1]$, gives a codifferential δ of degree 1 on $\overline{S}(L)$ and the differential graded coalgebra $(\overline{S}(L), \delta)$ is exactly the L_{∞}-algebra associated to the Kodaira-Spencer DGLA KS_X.

If $\text{Der}^p(A^{*,*}, A^{*,*})$ denotes the vector space of \mathbb{C}-derivations of degree p of the sheaf of graded algebras $(A^{*,*}, \wedge)$, where the degree of a (p, q)-form is $p + q$ (note that $\partial, \overline{\partial} \in \text{Der}^1(A^{*,*}, A^{*,*})$), then we can define a morphism of graded vector spaces

$$
L \longrightarrow \text{Der}^* (A^{*,*}, A^{*,*}) = \bigoplus_p \text{Der}^p (A^{*,*}, A^{*,*}), \quad a \to \widehat{a}
$$

given in local coordinates by

$$
\widehat{\phi} \frac{\partial}{\partial z_i} (\eta) = \phi \wedge \left(\frac{\partial}{\partial z_i} \mid \eta \right).
$$

If $\overline{\pi} = p$ then \widehat{a} is a bihomogeneous derivation of bidegree $(-1, p+1)$: in particular $\widehat{a}(A^{0,*}) = 0$.

4
Lemma 2.1. If [,] denotes the standard bracket on \(\text{Der}^*(A^{*+}, A^{*-}) \), then for every pair of homogeneous \(a, b \in L \) we have:

1. \(\widehat{da} = [\partial, \widehat{a}] = \partial a - (-1)^{|\partial|}\widehat{a}\partial \).
2. \(Q(a \odot b) = -[[\partial, \widehat{a}], \widehat{b}] = (-1)^{|\partial|}\widehat{a}\partial \widehat{b} + (-1)^{|\partial|+|\widehat{b}|}\partial \widehat{a} \pm \partial \widehat{b} \pm \widehat{a}\partial \).

Proof. By linearity we may assume \(a = f dz_i \frac{\partial}{\partial z_i}, b = gdz_j \frac{\partial}{\partial z_j} \), \(f, g \in \mathcal{A}^{0,0} \). Moreover all the four expressions are derivations vanishing on the subalgebra \(\mathcal{A}^{0,*} \) and therefore it is sufficient to check the above equalities when computed on the \(dz_i \)'s; since \(\partial dz_i = \partial \overline{dz}_i = \overline{a} \overline{b} dz_i = 0 \), the computation becomes straightforward and it is left to the reader.

Remark. The apparent asymmetry in the right hand side of Item 2 of the above lemma is easily understood: in fact \([\partial, \widehat{a}] = 0 \) and then by Jacobi identity

\[
0 = [\partial, [\partial, \widehat{b}]] = [[\partial, \widehat{a}], \widehat{b}] - (-1)^{|\partial|}[\partial, \widehat{b}](\partial \widehat{a}).
\]

Assume now that \(X \) is compact Kähler, fix a Kähler metric on \(X \) and denote by: \(\mathcal{A}^{p,q} = \Gamma(X, A^{p,q}) \) the vector space of global \((p,q) \)-forms, \(\overline{\partial}: \mathcal{A}^{p,q} \to \mathcal{A}^{p,q-1} \) the adjoint operator of \(\overline{\partial} \), \(\Delta_{\overline{\partial}} = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial} \) the \(\overline{\partial} \)-Laplacian, \(G_{\overline{\partial}} \) the associated Green operator, \(\mathcal{H} \subset \mathcal{A}^{*,*} \) the graded vector space of harmonic forms, \(i: \mathcal{H} \to \mathcal{A}^{*,*} \) the inclusion and \(h = Id - \Delta_{\overline{\partial}} G_{\overline{\partial}} = Id - G_{\overline{\partial}} \Delta_{\overline{\partial}}: A^{*,*} \to \mathcal{H} \) the harmonic projector.

We identify the graded vector space \(M_X \) with the space of endomorphisms of harmonic forms \(\text{Hom}_{KS}(\mathcal{H}, \mathcal{H}) \). We also denote by \(N = \text{Hom}_{KS}(A^{*+}, A^{*+}) \) the graded associative algebra of linear endomorphisms of the space of global differential forms on \(X \).

For notational simplicity we identify \(\text{Der}^*(A^{*+}, A^{*+}) \) with its image into \(N \).

Setting \(\tau = G_{\overline{\partial}} \overline{\partial} \partial \in N^0 \) we have by Kähler identities (cf. \([10], [21]\)):

\[
\partial \overline{\partial} = \partial h = h \tau = h \tau = \partial \overline{\partial} = \tau \overline{\partial} = 0.
\]

\[
[\partial, \overline{\partial}] = [\partial, G_{\overline{\partial}}] = [\overline{\partial}, G_{\overline{\partial}}] = 0, \quad [\overline{\partial}, \tau] = \overline{\partial} G_{\overline{\partial}} \overline{\partial} - G_{\overline{\partial}} \overline{\partial} \overline{\partial} = G_{\overline{\partial}} \Delta_{\overline{\partial}} \overline{\partial} = \partial.
\]

We introduce the morphism

\[
F_1: L \to M_X, \quad F_1(a) = h \widehat{a}^i.
\]

We note that \(F_1 \) is a morphism of complexes, in fact \(F_1(da) = h \widehat{a}^i = h(\overline{\partial} \widehat{a} \pm \overline{a} \partial) = 0 \). Next we define, for every \(m \geq 2 \), the morphisms of graded vector spaces

\[
f_m: \otimes^m L \to M_X, \quad F_m: \bigodot^m L \to M_X, \quad F = \sum_{m=1}^{\infty} F_m: \mathcal{S}(L) \to M_X,
\]

\[
f_m(a_1 \odot a_2 \odot \ldots \odot a_m) = h \widehat{a_1} \tau \widehat{a_2} \tau \widehat{a_3} \ldots \tau \widehat{a_m_i}.
\]

\[
F_m(a_1 \odot a_2 \odot \ldots \odot a_m) = \sum_{\sigma \in \Sigma_m} \epsilon(L, \sigma; a_1, \ldots, a_m) f_m(a_{\sigma_1} \odot \ldots \odot a_{\sigma_m}).
\]

Theorem 2.2. In the above notation \(F \circ \delta = 0 \) and therefore

\[
\Theta = \sum_{m=1}^{\infty} \frac{1}{m!} F_m \circ \Delta_{\overline{\partial}}^{m-1}: (C(KS_X), \delta) \to (C(M[-1]^1), 0)
\]

is an \(L_\infty \)-morphism with linear term \(F_1 \).
Proof We need to prove that for every \(m \geq 2 \) and \(a_1, \ldots, a_m \in L \) we have

\[
F_m \left(\sum_{\sigma \in S(1, m-1)} \epsilon(L, \sigma) da_{\sigma_1} \odot a_{\sigma_2} \odot \ldots \odot a_{\sigma_m} \right) =

= -F_{m-1} \left(\sum_{\sigma \in S(2, m-2)} \epsilon(L, \sigma) Q(a_{\sigma_1} \odot a_{\sigma_2}) \odot a_{\sigma_3} \odot \ldots \odot a_{\sigma_m} \right),
\]

where \(\epsilon(L, \sigma) = \epsilon(L, \sigma; a_1, \ldots, a_m) \).

It is convenient to introduce the auxiliary operators \(q: \bigotimes^2 L \to N[1], q(a \otimes b) = (-1)^{\overline{a} \overline{b}} \hat{a} \hat{b} \).

On the other hand

\[
g_m(a_1 \otimes \ldots \otimes a_m) = - \sum_{i=0}^{m-2} (-1)^{\overline{a} \overline{i} + \overline{i} \overline{a} + \overline{a} \overline{a}} h_{\overline{a} \overline{i}} \tau \ldots \hat{a}_i \tau a_{\overline{i}+1} \hat{\tau} \overline{a}_{\overline{i}+1} \tau \ldots \tau \overline{a}_m i.
\]

Since for every choice of operators \(\alpha = h, \tau \) and \(\beta = \sigma, i \) and every \(a, b \in L \) we have

\[
\alpha Q(a \otimes b) \beta = \alpha ((-1)^{\overline{a} \overline{b}} \hat{a} \hat{b} + (-1)^{\overline{a} \overline{b} + \overline{b} \overline{a}} \beta) = \alpha (q(a \otimes b) + (-1)^{\overline{a} \overline{b}} q(b \otimes a)) \beta,
\]

a straightforward computation about symmetrization and unshuffles gives

\[
\sum_{\sigma \in \Sigma_m} \epsilon(L, \sigma) g_m(a_{\sigma_1} \otimes \ldots \otimes a_{\sigma_m}) = -F_{m-1} \left(\sum_{\sigma \in S(2, m-2)} \epsilon(L, \sigma) Q(a_{\sigma_1} \odot a_{\sigma_2}) \odot a_{\sigma_3} \odot \ldots \odot a_{\sigma_m} \right).
\]

On the other hand

\[
f_m \left(\sum_{i=0}^{m-1} (-1)^{\overline{a} \overline{i} + \overline{i} \overline{a} + \overline{a} \overline{a}} a_1 \otimes \ldots \otimes a_i \otimes da_{i+1} \otimes \ldots \otimes a_m \right) =

= \sum_{i=0}^{m-1} (-1)^{\overline{a} \overline{i} + \overline{i} \overline{a} + \overline{a} \overline{a}} h_{\overline{a} \overline{i}} \ldots \hat{a}_i \tau(d \overline{a}_{i+1} - (-1)^{\overline{a} \overline{i} + \overline{i} \overline{a} + \overline{a} \overline{a}} \hat{d}) \tau \ldots \tau \overline{a}_m i

= \sum_{i=0}^{m-2} (-1)^{\overline{a} \overline{i} + \overline{i} \overline{a} + \overline{a} \overline{a}} h_{\overline{a} \overline{i}} \ldots \hat{a}_i \tau(-(-1)^{\overline{a} \overline{i} + \overline{i} \overline{a} + \overline{a} \overline{a}} \hat{d} \overline{a}_{i+1} \tau \overline{a}_{i+1} + (-1)^{\overline{a} \overline{i} + \overline{i} \overline{a} + \overline{a} \overline{a}} \hat{d} \overline{a}_{i+1} \tau \overline{a}_{i+1} \tau \overline{a}_m i

= g_m(a_1 \otimes \ldots \otimes a_m).
\]

Taking the symmetrization of this equality we get

\[
\sum_{\sigma \in \Sigma_m} \epsilon(L, \sigma) g_m(a_{\sigma_1} \otimes \ldots \otimes a_{\sigma_m}) = F_m \left(\sum_{\sigma \in S(1, m-1)} \epsilon(L, \sigma) da_{\sigma_1} \odot a_{\sigma_2} \odot \ldots \odot a_{\sigma_m} \right).
\]

Since it is clear that \(F_1 \) is a morphism of complexes inducing the morphism \(\theta \) in cohomology, Theorem \(\Box \) is proved.

Remark. If \(X \) is a Calabi-Yau manifold with holomorphic volume form \(\Omega \), then the composition of \(F \) with the evaluation at \(\Omega \) induces an \(L_\infty \)-morphism \(C(KS_X) \to C(\mathcal{H}[n-1]) \). For every \(m \geq 2 \), \(\text{ev}_\Omega \circ F_m: \bigotimes^m L \to \mathcal{H}[n] \) vanishes on \(\bigotimes^m \{ a \in L \mid \partial(a + \Omega) = 0 \} \).

The following corollary gives a formality criterion:

Corollary 2.3. In the notation of introduction, if \(\theta: H^*(X, T_X) \to M[-1]^X \) is injective, then \(KS_X \) is \(L_\infty \)-quasiiisomorphic to an abelian differential graded Lie algebra.
2.11 of \[19\].

Therefore also \(t_r\) relative to the small extension primary obstruction map (cf. \[19, 2.15\]) of

\[
\text{Art}
\]

\[
\text{Def}
\]

\[
\text{Set}
\]

Let \(\text{Art}\) be the category of local Artinian \(C\)-algebras \((A, m_A)\) with residue field \(A/m_A = \mathbb{C}\). Following \[19\], by a functor of Artin rings we intend a covariant functor \(\mathcal{F}: \text{Art} \rightarrow \text{Set}\) such that \(\mathcal{F}(\mathbb{C}) = \{0\}\) is a set of cardinality 1.

With the term Schlessinger’s condition we mean one of the four conditions \((H_1), \ldots, (H_4)\) described in Theorem 2.11 of \[19\].

Lemma 3.1. Let \(\alpha: \mathcal{F} \rightarrow \mathcal{G}\) be a natural transformation of functors of Artin rings; if \(\mathcal{F}\) satisfies Schlessinger’s conditions \((H_1)\) and \((H_2)\), \(\mathcal{G}\) is prorepresentable and \(\alpha: t_{\mathcal{F}} \rightarrow t_{\mathcal{G}}\) is injective, then also \(\mathcal{F}\) is prorepresentable.

Proof Since \(\mathcal{G}\) is prorepresentable its tangent space \(t_{\mathcal{G}}\) is finite dimensional and then the same holds for \(t_{\mathcal{F}}\). Moreover for every small extension \(0 \rightarrow J \rightarrow A \rightarrow B \rightarrow 0\) there exists a natural transitive free action (cf. \[19\]) of \(t_{\mathcal{G}} \otimes J\) on the nonempty fibres of \(\mathcal{G}(A) \rightarrow \mathcal{G}(B)\).

Therefore also \(t_{\mathcal{F}} \otimes J\) acts without fixed points on \(\mathcal{F}(A)\) and then, according to Theorem 2.11 of \[19\], \(\mathcal{F}\) is prorepresentable. \(\square\)

For every differential graded complex Lie algebra \(K = \oplus K^i\), we denote respectively by \(\text{MC}_K, \text{Def}_K: \text{Art} \rightarrow \text{Set}\) the associated Maurer-Cartan and deformation functors (cf. \[2\], \[3\], \[10\]):

\[
\text{MC}_K(A) = \left\{ a \in K^1 \otimes m_A \mid da + \frac{1}{2}[a, a] = 0 \right\}, \quad \text{Def}_K(A) = \frac{\text{MC}_K(A)}{\exp(K^0 \otimes m_A)}.
\]

The functors \(\text{MC}_K\) and \(\text{Def}_K\) are functors of Artin rings satisfying the Schlessinger’s conditions \((H_1), (H_2)\) (cf. \[10\], \[11\]), the projection \(\text{MC}_K \rightarrow \text{Def}_K\) is smooth and the tangent space \(t_{\text{Def}_K}\) of \(\text{Def}_K\) is naturally isomorphic to \(H^1(K)\).

Example 3.2.
1. If \(K\) has trivial bracket and trivial differential then the gauge action is trivial and therefore, for every \((A, m_A) \in \text{Art}\), \(\text{Def}_K(A) = \text{MC}_K(A) = K^1 \otimes m_A\); in particular if \(K^1\) is finite dimensional then \(\text{Def}_K\) is prorepresented by a smooth germ.

2. If \(K = KS_X\) is the Kodaira-Spencer DGLA of a compact complex manifold \(X\) then \(\text{Def}_K\) is isomorphic to the functor \(\text{Def}_X\) of infinitesimal deformations of \(X\) (cf. \[10\]).

The functor \(\text{Def}_K\) has a natural obstruction theory with obstruction space \(H^2(K)\): this means that for every small extension \(\epsilon: 0 \rightarrow J \rightarrow A \xrightarrow{p} B \rightarrow 0\) in the category \(\text{Art}\) it is given an “obstruction map” \(\text{ob}_\epsilon: \text{Def}_K(K^2) \otimes J\) such that an element \(b \in \text{Def}_K(B)\) lifts to \(\text{Def}_K(A)\) if and only if \(\text{ob}_\epsilon(b) = 0\). Moreover all the obstruction maps behave functorially with respect to morphisms of small extensions (cf. e.g. \[10\], \[11\]).

By definition the primary obstruction map is the obstruction map \(q_2 = \text{ob}_\epsilon: H^1(K) \rightarrow H^2(K)\) relative to the small extension

\[
\epsilon: 0 \rightarrow \mathbb{C} \xrightarrow{\epsilon^2} \mathbb{C}[t] \left(\frac{t^3}{(t^3)}\right) \xrightarrow{\mathbb{C}[t]} \mathbb{C}[t] \left(\frac{t^2}{(t^2)}\right) \rightarrow 0.
\]
Concretely, if $b \in MC_K(B)$ and $a \in K^1 \otimes m_A$ is a lifting of b, then by the Jacobi identity $h = da + [a, a]/2 \in K^2 \otimes J$ is a cocycle and its cohomology class $ob_e(b) = [h] \in H^2(K) \otimes J$ does not depend from the choice of a. It is easy to prove that $ob_e(b) = 0$ if and only if b can be lifted to $MC_K(A)$.

The map ob_e is invariant under the gauge action (this follows from a general result [3, 7.5] but it is also easy to prove directly) and then factors to a map $ob_e : Def_K(B) \to H^2(K) \otimes J$. Since the projection $MC_K \to Def_K$ is smooth, we have that the class of b lifts to $Def_K(A)$ if and only if $ob_e(b) = 0$.

The obstruction space $O_K \subset H^2(K)$ is by definition the vector space generated by the images of the maps $(Id \otimes f) \circ ob_e$, where $f \in \text{Hom}_\mathbb{C}(J, \mathbb{C})$ and e ranges over all small extension in Art.

Remark. If the DGLA K is not formal, it may happen that the primary obstruction map vanishes but $O_K \neq 0$. If $O_K' \subset O_K$ denotes the subspace generated by the obstructions coming from all the curvilinear small extensions

$0 \to C[t] \xrightarrow{t^n} C[t][t^n] \to C[t]/(t^n) \to 0$

then, by the (abstract) T^1-lifting theorem [3], Def_K is smooth if and only if $O_K' = 0$ but in general $O_K' \neq O_K$ (cf. [3, 5.7]).

Given two differential graded Lie algebras K, M, every L_∞-morphism $\mu : C(K) \to C(M)$ induces a natural transformation $\widetilde{\mu} : Def_K \to Def_M$ (see e.g. [11], [15]). Writing $\mu = \sum_{i \leq j} \mu_{i,j}, \mu_{i,j} : \Omega^i K[1] \to \Omega^j M[1]$, the morphism $\mu_{i,j}$ is a morphism of complexes, $H^1(\mu_{i,j}) : H^1(K) \to H^1(M)$ equals the restriction of $\widetilde{\mu}$ on tangent spaces and $H^2(\mu_{i,j}) : H^2(K) \to H^2(M)$ commutes with $\widetilde{\mu}$ and all the obstruction maps.

Proposition 3.3. Let K be a differential graded Lie algebra, $M \oplus M^1$ be a graded vector space considered as a differential graded Lie algebra with trivial bracket and differential and let $\mu = \sum_{i \leq j} \mu_{i,j} : C(K) \to C(M)$ be an L_∞-morphism. Then:

1. If M^1 is finite dimensional and $H^1(\mu_{1,1})$ is injective then Def_K is prorepresentable.

2. The obstruction space O_K is contained in the kernel of $H^2(\mu_{1,1}) : H^2(K) \to M^2$.

Proof The first part follows immediately from Lemma [3.3]. The second part follows from the fact that all the obstruction maps of the functor Def_M are trivial.

If X is a compact Kähler manifold we have, in the notation of the Introduction and Section 2, for every $A \in \text{Art}$,

$$Def_X(A) = \text{Def}_{KS_X}(A) = \left\{ a \in L^0 \otimes m_A \mid da + \frac{1}{2} Q(a \otimes a) = 0 \right\} / \exp(L^{-1} \otimes m_A),$$

$$\text{Def}_{M[-1]|X}(A) = M^1_X \otimes m_A$$

and the natural transformation $\widetilde{\Theta} : \text{Def}_{KS_X} \to \text{Def}_{M[-1]|X}$ associated to the L_∞-morphism Θ of Theorem 2.2 is induced by

$$\widetilde{\Theta}(a) = \sum_{m=1}^{\infty} \frac{1}{m!} F_m(a^{\otimes m}) = F(\exp(a) - 1), \quad a \in L^0 \otimes m_A.$$
Corollary 3.4. Let X be a compact Kähler manifold and denote by O the kernel of
$$\theta_2: H^2(X, T_X) \to \bigoplus_{r,s} \operatorname{Hom}_C^r(H^r(\Omega^s_X), H^{r+2}(\Omega^{s-1}_X)).$$
Then for every small extension $e: 0 \to J \to A \to B \to 0$ and every $b \in \operatorname{Def}_X(B)$, the obstruction $ob_e(b)$ belongs to $O \otimes J$.

Proof of Corollary \[3\] We first recall that, if $Y \to B$ is the Kuranishi family of a compact complex manifold Y and $O \subset H^2(Y, T_Y)$ is the subspace generated by all the obstruction to the deformations of Y, then the singularity B is analytically isomorphic to $q^{-1}(0)$, where $q: (H^1(Y, T_Y), 0) \to (O, 0)$ is the Kuranishi map.

The pull-back of forms and vector fields give a morphism of differential graded Lie algebras $\pi^*: KS_Y \to KS_X$. The composition of π^* with Θ gives an L_∞-morphism from KS_Y to $M[-1, X]$. It is now sufficient to apply Proposition \[3\].

Example 3.5. Let Z be a projective Calabi-Yau manifold of dimension $n \geq 3$ with $H^2(O_Z) = 0$ and let $\pi: Y \to Z$ be a smooth Galois double cover. Denoting by $D \subset Z$ the branching divisor, $R \subset Y$ the ramification divisor and $\pi_* O_Y = O_Z \oplus O_Z(-L)$ the eigensheaves decomposition we have (cf. \[3\], \[4\]) $O_Y(R) = K_Y = \pi^* O_Z(L)$, $O_Z(D) = O_Z(2L)$, an exact sequence of sheaves over Y
$$0 \to T_Y \to \pi^* T_Z \to O_R(2R) \to 0$$
and, for every i, $H^i(\pi^* T_Z) = H^i(T_Z) \oplus H^i(T_Z(-L))$, $H^i(O_R(2R)) = H^i(O_D(D))$.

If L is sufficiently ample then $H^1(O_D(D)) = H^2(O_Z) = 0$, $H^2(T_Z(-L)) = 0$ and then $H^2(T_Y)$ injects into $H^2(T_Z)$. Therefore the cup product with the pull-back of the holomorphic volume form of Z is nondegenerate and then $\theta_2: H^2(T_Y) \to M^1$ is injective. Applying Corollary \[3\] (with $X = Y$) we get that Y is unobstructed.

References

[1] M. Artin: Versal deformations and algebraic stacks. Invent. Math. 27 (1974) 165-189.
[2] P. Bressler, Y. Soibelman: Mirror symmetry and deformation quantization. Preprint hep-th/0202128.
[3] F. Catanese: Moduli of algebraic surfaces. Springer L.N.M. 1337 (1988) 1-83.
[4] H. Clemens: Cohomology and obstructions, I: on the geometry of formal Kuranishi theory. preprint math.AG/9901084.
[5] B. Fantechi, M. Manetti: Obstruction calculus for functors of Artin rings, I. Journal of Algebra 202 (1998) 541-576.
[6] B. Fantechi, M. Manetti: On the T^1-lifting theorem. J. Alg. Geom. 8 (1999) 31-39.
[7] W.M. Goldman, J.J. Millson: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Publ. Math. I.H.E.S. 67 (1988) 43-96.
[8] W.M. Goldman, J.J. Millson: The homotopy invariance of the Kuranishi space. Ill. J. Math. 34 (1990) 337-367.
[9] M. Grassi: L_∞-algebras and differential graded algebras, coalgebras and Lie algebras. In: Seminari di Geometria Algebrica 1998-1999 Scuola Normale Superiore (1999).
[10] P. Griffiths, J. Harris: *Principles of Algebraic Geometry*. Wiley-Interscience publication (1978).

[11] M. Kontsevich: *Deformation quantization of Poisson manifolds, I*. gr-qc/9709040.

[12] T. Lada, M. Markl: *Strongly homotopy Lie algebras*. Comm. Algebra 23 (1995) 2147-2161.

[13] T. Lada, J. Stasheff: *Introduction to sh Lie algebras for physicists*. Int. J. Theor. Phys. 32 (1993) 1087-1104.

[14] M. Manetti: *Deformation theory via differential graded Lie algebras*. In *Seminari di Geometria Algebrica 1998-1999* Scuola Normale Superiore (1999).

[15] M. Manetti: *Extended deformation functors*. Internat. Math. Res. Notices 14 (2002) 719-756

[16] R. Pardini: *Abelian covers of algebraic varieties*. J. Reine Angew. Math. 417 (1991), 191-213.

[17] D. Quillen: *Rational homotopy theory*. Ann. of Math. 90 (1969) 205-295.

[18] Z. Ran: *Universal variations of Hodge structure and Calabi-Yau-Schottky relations*. Invent. Math. 138 (1999) 425-449.

[19] M. Schlessinger: *Functors of Artin rings*. Trans. Amer. Math. Soc. 130 (1968) 208-222.

[20] M. Schlessinger, J. Stasheff: *Deformation Theory and Rational Homotopy Type* Preprint.

[21] A. Weil: *Introduction à l’étude des variétés Kählériennes*. Hermann Paris (1958).

Marco Manetti

Dipartimento di Matematica “G. Castelnuovo”,
Università di Roma “La Sapienza”,
Piazzale Aldo Moro 5, I-00185 Roma, Italy.
manetti@mat.uniroma1.it, http://www.mat.uniroma1.it/people/manetti/