Abstract

I find an explicit description of modular units in terms of Siegel functions for the modular curves $X^+_{ns}(p^k)$ associated to the normalizer of a non-split Cartan subgroup of level p^k where $p \neq 2,3$ is a prime. The Cuspidal Divisor Class Group $\mathcal{C}^+_{ns}(p^k)$ on $X^+_{ns}(p^k)$ is explicitly described as a module over the group ring $R = \mathbb{Z}[(\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\}]$. In this paper I give a formula involving generalized Bernoulli numbers $B_{2,\chi}$ for $|\mathcal{C}^+_{ns}(p^k)|$.

1 Motivation and overview

Let $X^+_{ns}(n)$ be the modular curve associated to the normalizer of a non-split Cartan subgroup of level n. One noteworthy reason for studying these curves is the Serre’s uniformity problem over \mathbb{Q} stating that there exists a constant $C > 0$ so that, if E is an elliptic curve over \mathbb{Q} without complex multiplication, then the Galois representation:

$$\rho_{E,p} : \text{Gal}(\overline{\mathbb{Q}}, \mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{F}_p)$$

attached to the elliptic curve E is onto for all primes $p > C$ (see [16] and [7, pag. 198]). If the Galois representation were not surjective, its image would
be contained in one of the maximal proper subgroups of $\text{GL}_2(\mathbb{F}_p)$. These subgroups are:

1. A Borel subgroup;
2. The normalizer of a split Cartan subgroup;
3. The normalizer of a non-split Cartan subgroup;
4. A finite list of exceptional subgroups.

Serre himself showed that if $p > 13$ the image of $\rho_{E,p}$ is not contained in an exceptional subgroup. Mazur in [12] and Bilu-Parent-Rebolledo in [2] presented analogous results for Borel subgroups and split Cartan subgroups respectively. The elliptic curves over \mathbb{Q} for which the image of the Galois representation is contained in the normalizer of a non-split Cartan subgroup are parametrized by the non-cuspidal rational points of $X_{ns}^+(p)$. Thus the open case of Serre’s uniformity problem can be reworded in terms of determining whether there exist \mathbb{Q}-rational points on $X_{ns}^+(p)$, that do not arise from elliptic curves with complex multiplication.

This paper focuses on an aspect of the curves $X_{ns}^+(p^k)$ that has never been treated before: their Cuspidal Divisor Class Group $\mathcal{C}_{ns}^+(p^k)$, a finite subgroup of the Jacobian $J_{ns}^+(p^k)$ whose support is contained in the set of cusps of $X_{ns}^+(p^k)$. Let $\mathfrak{D}_{ns}^+(p^k)$ be the free abelian group generated by the cusps of $X_{ns}^+(p^k)$, let $\mathfrak{D}_{ns}^+(p^k)_0$ be its subgroup consisting of elements of degree 0 and let $\mathfrak{I}_{ns}^+(p^k)$ be the group of divisors of modular units of $X_{ns}^+(p^k)$, i.e. those modular functions on $X_{ns}^+(p^k)$ in the modular function field F_{p^k}, which have no zeros and poles in the upper-half plane. We define:

$$\mathcal{C}_{ns}^+(p^k) := \mathfrak{D}_{ns}^+(p^k)_0 / \mathfrak{I}_{ns}^+(p^k).$$

In [8] Kubert and Lang gave an explicit and complete description of the group of modular units of $X(p^k)$ in terms of Siegel functions $g_a(\tau)$ (see [9] or [13]) with $a \in \frac{1}{p^k} \mathbb{Z}^2 \setminus \mathbb{Z}^2$. We will define the set of functions

$$\{G_h^+ (\tau)\}_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*)/\{\pm 1\}}$$

in terms of classical Siegel functions and we will prove the following result:

Theorem 6.5 If $p \neq 2, 3$, the group of modular units of the modular curve $X_{ns}^+(p^k)$ consists (modulo constants) of power products:

$$g(\tau) = \prod_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*)/\{\pm 1\}} G_h^{n_h^+} (\tau)$$
Cuspidal divisor class groups of non-split Cartan curves

where

\[G_h^+ (\tau) = \prod_{t \in (\mathcal{O}_K/p^k \mathcal{O}_K)^*/\{\pm 1\}, \pm |t| = h} g_t(\tau) \]

and \(d = \frac{12}{\gcd(12, p+1)}\) divides \(\sum_h n_h^+\).

In [7, Chapter 5] Kubert and Lang studied the Cuspidal Divisor Class Group on the modular curve \(X(p^k)\). Since their description utilizes the parametrization of the set of cusps of \(X(p^k)\) by the elements of the quotient \(C_{ns}(p^k)/\{\pm 1\}\), it appears natural to develop and extend their techniques to non-split Cartan modular curves. Kubert and Lang proved the following:

Theorem 4.6 If \(p \geq 5\) consider \(R := \mathbb{Z}[C_{ns}(p^k)/\{\pm 1\}]\) and let \(R_0\) be the ideal of \(R\) consisting of elements of degree 0. The Cuspidal Divisor Class Group \(\mathfrak{C}_{p^k}\) on \(X(p^k)\) is an \(R\)–module, more precisely there exists a Stickelberger element \(\theta \in \mathbb{Q}[C_{ns}(p^k)/\{\pm 1\}]\) such that, under the identification of the group \(C_{ns}(p^k)/\{\pm 1\}\) with the set of cusps at level \(p^k\), the ideal \(R \cap R\theta\) corresponds to the group of divisors of units in the modular function field \(F_{p^k}\) and:

\[\mathfrak{C}_{p^k} \cong R_0/R \cap R\theta. \]

In this theorem the authors exhibited an isomorphism reminding to a classical result in cyclotomic fields theory. Let \(J\) be a fractional ideal of \(\mathbb{Q}(\zeta_m)\) and \(G = \text{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^*\). Consider \(\mathbb{Z}[G]\) acting on the ideals and ideal classes in the natural way: if \(x = \sum_{\sigma} x_{\sigma} \sigma\) then \(J^x := \prod_{\sigma} (J^\sigma)^{x_{\sigma}}\). We have the following result:

Stickelberger’s Theorem [20, pag. 333] Define the Stickelberger element:

\[\theta = \sum_{a \mod m, (a, m) = 1} \left\langle \frac{a}{m} \right\rangle \sigma_a^{-1} \in \mathbb{Q}[G]. \]

The Stickelberger ideal \(\mathbb{Z}[G] \cap \theta \mathbb{Z}[G]\) annihilates the ideal class group of \(\mathbb{Q}(\zeta_m)\).

Along these lines, the main result can be summarized as follows:

Main Theorem [7,1] Consider \(p \geq 5\), \(H := (\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\}\) and \(w\) a generator of \(H\). There exists a Stickelberger element

\[\theta := \left(\frac{p^k - 1}{2} \right) \sum_{i=1}^{\frac{p^k - 1}{2}} \sum_{\pm |s| = w^i, s \in ((\mathcal{O}_K/p^k \mathcal{O}_K)^*/\{\pm 1\})} B_2 \left(\left\langle \frac{1}{2} (s + \overline{s}) \right\rangle \frac{p^k}{s} \right) w^{-i} \in \mathbb{Q}[H] \]
such that, under the identification of the group \(H \) with the set of cusps of \(X_{ns}^+(p^k) \), the ideal \(\mathbb{Z}[H] \theta \cap \mathbb{Z}[H] \) represents the group of divisors of units of \(X_{ns}^+(p^k) \). The Cuspidal Divisor Class Group on \(X_{ns}^+(p^k) \) is a module over \(\mathbb{Z}[H] \) and, more precisely, we have:

\[
\mathfrak{C}_{ns}^+(p^k) \cong \mathbb{Z}_0[H]/(\mathbb{Z}[H] \theta \cap \mathbb{Z}[H]).
\]

From the previous statement we will show another result which has a counterpart in cyclotomic field theory.

Theorem 7.4 For any character \(\chi \) of \(C_{ns}(p^k)/\{\pm I\} \) (identified with an even character of \(C_{ns}(p^k) \)), we let:

\[
B_{2,\chi} = \sum_{\alpha \in C_{ns}(p^k)/\{\pm I\}} B_2 \left(\left\langle \frac{T(\alpha)}{p^k} \right\rangle \right) \chi(\alpha)
\]

where \(B_2(t) = t^2 - t + \frac{1}{6} \) is the second Bernoulli polynomial and \(T \) is a certain \((\mathbb{Z}/p^k\mathbb{Z})\)-linear map. Then we have:

\[
|\mathfrak{C}_{ns}^+(p^k)| = 24 \prod_{\chi \text{ odd}} \frac{B_{2,\chi}}{\gcd(12, p+1)(p-1)p^{k-1}}
\]

where the product runs over all nontrivial characters \(\chi \) of \(C_{ns}(p^k)/\{\pm I\} \) such that \(\chi(M) = 1 \) for every \(M \in C_{ns}(p^k) \) with \(\det M = \pm 1 \).

In particular, for \(k = 1 \) let \(\omega \) be a generator of the character group of \(C_{ns}(p) \) and \(v \) a generator of \(\mathbb{F}_{p^2}^* \). Then:

\[
|\mathfrak{C}_{ns}^+(p)| = \frac{24}{(p-1) \gcd(12, p+1)} \prod_{j=1}^{p-3} \frac{B_{2,\omega^{(2p+2)j}}}{p} =
\]

\[
\begin{align*}
&= 576 \det \left[\frac{p}{2} \sum_{l=0}^{p} B_2 \left(\left\langle \frac{1}{p} \text{Tr} \left(v^{i-j+l\frac{p-1}{2}} \right) \right\rangle - \frac{p+1}{6} \right) \right]_{1 \leq i,j \leq \frac{p-1}{2}} \\
&= \frac{576 \det \left[\frac{p}{2} \sum_{l=0}^{p} B_2 \left(\left\langle \frac{1}{p} \text{Tr} \left(v^{i-j+l\frac{p-1}{2}} \right) \right\rangle - \frac{p+1}{6} \right) \right]}{(p-1)^2p(p+1) \gcd(12, p+1)}
\end{align*}
\]

This theorem could be considered analogous to the relative class number formula [20 Theorem 4.17]:

\[
h_m = Qw \prod_{\chi \text{ odd}} \frac{1}{2} B_{1,\chi}
\]
where $Q = 1$ if m is a prime power and $Q = 2$ otherwise, w is the number of roots of unity in $\mathbb{Q}(\zeta_m)$ and we encounter the classical generalized Bernoulli numbers:

$$B_{1,\chi} := \sum_{a=1}^{m} \chi(a)B_1 \left(\frac{a}{m} \right) = \frac{1}{m} \sum_{a=1}^{m} \chi(a)a \text{ for } \chi \neq 1.$$

In the last section we will explicitly calculate $|\mathcal{E}_{ns}^+(p)|$ for some $p \leq 101$. Consider the isogeny (cfr. [4, Paragraph 6.6]):

$$J_0^{+new}(p^2) \to \bigoplus_f A'_{p,f}$$

where the sum is taken over the equivalence classes of newforms $f \in S_2(\Gamma_0^+(p^2))$. From Theorems 8.3, 8.4 and 8.5 we deduce that:

$$|\mathcal{E}_{ns}^+(p)| \text{ divides } \prod_f \gcd_{q \text{ prime, } q \nmid |\mathcal{E}_{ns}^+(p)|, \ q \equiv \pm 1 \mod p} |A'_{p,f}(\mathbb{F}_q)|.$$

Using the modular form database of W.Stein, we will find out that for $p \leq 31$:

$$|\mathcal{E}_{ns}^+(p)| = \prod_f \gcd_{q < 500 \text{ prime, } \ q \equiv \pm 1 \mod p} |A'_{p,f}(\mathbb{F}_q)|.$$

2 Galois groups of modular function fields

Following [19, Chapter 1], let $\mathbb{H} = \{x + iy \mid y > 0; x, y \in \mathbb{R}\}$ be the upper-half plane and n a positive integer. The principal congruence subgroup of level n is the subgroup of $SL_2(\mathbb{Z})$ defined as follows:

$$\Gamma(n) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : a \equiv d \equiv 1, \ b \equiv c \equiv 0 \mod n \right\}.$$

Then the quotient space $\Gamma(n)/\mathbb{H}$ is complex analytically isomorphic to an affine curve $Y(n)$ that can be compactified by considering $\mathbb{H}^* := \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$ and by taking the extended quotient:

$$X(n) = \Gamma(n)/\mathbb{H}^* = Y(n) \cup \Gamma(n)/(\mathbb{Q} \cup \{\infty\}).$$

The points $\Gamma(n)\tau$ in $\Gamma(n)/(\mathbb{Q} \cup \{\infty\})$ are called the cusps of $\Gamma(n)$ and can be described by the fractions $s=\frac{a}{c}$ with $0 \leq a \leq n - 1$, $0 \leq c \leq n - 1$ and $\gcd(a,c)=1$. As a consequence, it is not difficult to infer that $X(n)$ has

$$\frac{1}{2} n^2 \prod_{p|n} \left(1 - \frac{1}{p^2} \right)$$

cusps.
Let \(F_{n,\mathbb{C}} \) the field of modular functions of level \(n \). A classical result states that \(F_{1,\mathbb{C}} = \mathbb{C}(j) \) where \(j \) is the Klein’s \(j \)-invariant. We shall now find generators for \(F_{n,\mathbb{C}} \). Consider:

\[
 f_0(w; \tau) = -2^7 3^5 g_2(\tau) g_3(\tau) \frac{\Delta(\tau)}{\Delta(\tau_0)} \wp(w; \tau, 1),
\]

where \(\Delta \) is the modular discriminant, \(\wp \) is the Weierstrass elliptic function, \(\tau \in \mathbb{H}, w \in \mathbb{C} \) and \(g_2 = 60G_4 \) and \(g_3 = 140G_6 \) are constant multiples of the Eisenstein series:

\[
 G_{2k}(\tau) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(m+n\tau)^{2k}}.
\]

For \(r, s \in \mathbb{Z} \) and not both divisible by \(n \) we define \(f_{r,s} = f_0(\frac{r\tau+s}{n}; \tau) \). Whereas the Weierstrass \(\wp \)-function is elliptic with respect to the lattice \([\tau, 1] \) it follows that \(f_{r,s} \) depends only on the residue of \(r, s \) mod \(n \). Thus, it is convenient to use a notation emphasizing this property. If \(a = (a_1, a_2) \in \mathbb{Q}^2 \) but \(a \not\in \mathbb{Z}^2 \) we call the functions \(f_a(\tau) = f_0(a_1\tau+a_2; \tau) \) the Fricke functions. They depend only on the residue class of \(a \) mod \(\mathbb{Z}^2 \).

Theorem 2.1. We have:

\[
 \text{Gal} (F_{n,\mathbb{C}}, F_{1,\mathbb{C}}) \cong SL_2(\mathbb{Z}/n\mathbb{Z})/\{\pm I\}.
\]

Proof. There is a surjective homeomorphism (see [4, pag.279] and [9, pag.65]):

\[
 \theta : SL_2(\mathbb{Z}) \longrightarrow \text{Aut} (\mathbb{C}(X(n))),
 \gamma \longmapsto (f \longmapsto f(\theta(\gamma)) = f \circ \gamma).
\]

From \(\text{Ker}(\theta) = \pm \Gamma(n) \) and the relations \(f_a(\gamma(\tau)) = f_{a\gamma}(\tau) \) it follows easily that \(\text{Gal}(F_{n,\mathbb{C}}, F_{1,\mathbb{C}}) \cong \Gamma(1)/\pm \Gamma(n) \cong SL_2(\mathbb{Z}/n\mathbb{Z})/\{\pm I\}. \quad \square \)

We say that a modular form in \(F_{n,\mathbb{C}} \) is defined over a field if all the coefficients of its \(q \)-expansion lie in that field and analogously for every \(\text{Gal}(F_{n,\mathbb{C}}, F_{1,\mathbb{C}}) \)-conjugate of the form. Let:

\(F_n = \text{function field on } X(n) \) consisting of those functions which are defined over the \(n \)-th cyclotomic field \(\mathbb{Q}_n = \mathbb{Q}(\zeta_n) \).

Theorem 2.2. The field \(F_n \) has the following properties:

1. \(F_n \) is a Galois extension of \(F_1 = \mathbb{Q}(j) \).
2. \(F_n = \mathbb{Q}(j, f_{r,s})_{\forall (r,s) \in \mathbb{Z}^2 \setminus \mathbb{Z}^2} \).
3. For every \(\gamma \in GL_2(\mathbb{Z}/n\mathbb{Z}) \) the map \(f_a \mapsto f_{a\gamma} \) gives an element of
Gal(F_n, $\mathbb{Q}(j)$) which we write $\theta(\gamma)$. Then $\gamma \mapsto \theta(\gamma)$ induces an isomorphism of $GL_2(\mathbb{Z}/n\mathbb{Z})/\pm I$ to Gal(F_n, $\mathbb{Q}(j)$). The subgroup $SL_2(\mathbb{Z}/n\mathbb{Z})/\pm I$ operates on a modular function by composition with the natural action of $SL_2(\mathbb{Z})$ on the upper half-plane \mathbb{H}.

Furthermore the group of matrices $\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$ operates on F_n as follows:

for $d \in (\mathbb{Z}/n\mathbb{Z})^*$ consider the automorphism σ_d of \mathbb{Q}_n such that $\sigma_d(\zeta_n) = \zeta_d^n$. Then σ_d extends to F_n by operating on the coefficients of the power series expansions:

$$\sigma_d(\sum a_i q^{i/n}) = \sum \sigma_d(a_i) q^{i/n} \text{ with } q = e^{2\pi i \tau}.$$

If $(r, s) \in \frac{1}{n} \mathbb{Z}^2 \setminus \mathbb{Z}^2$, we have: $\sigma_d(f_{r,s}(\tau)) = f_{r,sd}(\tau)$.

Proof. [17, Theorem 6.6] \hfill \Box

3 Modular Units and Manin-Drinfeld Theorem

In this paper we will focus our attention on the modular units of $X(n)$. In other words, the invertible elements of the integral closure of $\mathbb{Q}[j]$ in F_n. The only pole of $j(\tau)$ is at infinity. So, from the algebraic characterization of the integral closure as the intersection of all valuation subrings containing the given ring, the modular units in F_n are exactly the modular functions which have poles and zeros exclusively at the cusps of $X(n)$.

Let $\mathcal{D}_n \cong \bigoplus_{\text{cusps}} \mathbb{Z}$ be the free abelian group of rank $\frac{1}{2} n^2 \prod_{p|n} (1 - \frac{1}{p^2})$ generated by the cusps of $X(n)$. Let $\mathcal{D}_{n,0}$ be its subgroup consisting of elements of degree 0 and let \mathfrak{D}_n be the subgroup generated by the divisors of modular units in the modular function field F_n. The quotient group:

$$\mathcal{C}_n := \mathcal{D}_{n,0} / \mathfrak{D}_n$$

is called the Cuspidal Divisor Class Group on $X(n)$. The previous definition generalizes mutatis mutandis to every modular curve X_Γ where Γ is a modular subgroup. Manin and Drinfeld proved that:

Theorem 3.1. If Γ is a congruence subgroup then all divisors of degree 0 whose support is a subset of the set of cusps of X_Γ have a multiple that is a principal divisor. In other word if $x_1, x_2 \in X_\Gamma$ are cusps, then $x_1 - x_2$ has finite order in the jacobian variety $\text{Jac}(X_\Gamma)$.

Proof. Let \(x_1, x_2 \) two cusps in \(X_\Gamma \). Denote by \(\{ x_1, x_2 \} \in (\Omega^1(X_\Gamma))^* \) the functional on the space of differential of the first kind given by:

\[
\{ x_1, x_2 \} : \omega \mapsto \int_{x_1}^{x_2} \omega.
\]

A priori we have \(\{ x_1, x_2 \} \in H_1(X_\Gamma, \mathbb{R}) \). Manin and Drinfeld showed that it lies in \(H_1(X_\Gamma, \mathbb{Q}) \). Cf. [5], [10, Chapter IV] and [11]. \(\square \)

4 Siegel Functions and Cuspidal Divisor Class Groups

Let \(n = p^k \) with \(p \geq 5 \) prime. Following [7] we will give an explicit description of modular units of \(X(n) \) and its cuspidal divisor class group.

Let \(L \) a lattice in \(\mathbb{C} \). Define the Weierstrass sigma function:

\[
\sigma_L(z) = z \prod_{\omega \in L, \omega \neq 0} \left(1 - \frac{z}{\omega} \right) e^{z/\omega + \frac{1}{2}(z/\omega)^2},
\]

which has simple zeros at all non-zero lattice points. Define:

\[
\zeta_L(z) = \frac{d}{dz} \log(\sigma_L(z)) = \frac{1}{z} + \sum_{\omega \in L, \omega \neq 0} \left[\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right],
\]

\[
\wp_L(z) = -\zeta'_L(z) = -\frac{1}{z^2} + \sum_{\omega \in L, \omega \neq 0} \left[\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right].
\]

If \(\omega \in L \), by virtue of the periodicity of \(\wp_L \) we obtain \(\frac{d}{dz} \zeta_L(z + \omega) = \frac{d}{dz} \zeta_L(z) \), whence follows the existence of a \(\mathbb{R} \)-linear function \(\eta_L(z) \) such that:

\[
\zeta_L(z + \omega) = \zeta_L(z) + \eta_L(\omega).
\]

For \(L = [\tau, 1] \) (with \(\tau \in \mathbb{H} \)) and \(a = (a_1, a_2) \in \mathbb{Q}^2 \setminus \mathbb{Z}^2 \) we define the Klein forms:

\[
\wp_a(\tau) = e^{-\eta_L(a_1\tau + a_2)} \sigma_L(a_1\tau + a_2).
\]

Note that \(z = a_1\tau + a_2 \notin L = [\tau, 1] \) so we know directly from their definition that the Klein forms are holomorphic functions which have no zeros and poles on the upper half plane.

When \(\Gamma \) is a congruence subgroup and \(k \) is an integer, we will say that a holomorphic function \(f(\tau) \) on \(\mathbb{H} \) is a nearly holomorphic modular form for
Cuspidal divisor class groups of non-split Cartan curves

Γ of weight k if:
(i) \(f(\gamma(\tau)) = (r\tau + s)^k f(\tau) \) for all \(\gamma = \left(\begin{array}{cc} p & q \\ r & s \end{array} \right) \in \Gamma; \)
(ii) \(f(\tau) \) is meromorphic at every cusp.

Proposition 4.1. Let \(a = (a_1, a_2) \in \mathbb{Q}^2 \setminus \mathbb{Z}^2 \) and \(b = (b_1, b_2) \in \mathbb{Z}^2 \). The Klein Forms \(\mathfrak{e}_a(\tau) \) have the following properties:
(1) \(\mathfrak{e}_{-a}(\tau) = -\mathfrak{e}_a(\tau) \);
(2) \(\mathfrak{e}_{a+b} = \epsilon(a, b) \mathfrak{e}_a(\tau) \) with \(\epsilon(a, b) = (-1)^{b_1b_2+b_1+b_2}e^{-\pi i (b_1a_2-b_2a_1)} \);
(3) For every \(\gamma = \left(\begin{array}{cc} p & q \\ r & s \end{array} \right) \in \text{SL}_2(\mathbb{Z}) \) we have:
\[
\mathfrak{e}_a(\gamma(\tau)) = \mathfrak{e}_a \left(\frac{p\tau + q}{r\tau + s} \right) = \mathfrak{e}_{a\gamma}(\tau) = \mathfrak{e}_{a_1p+a_2r,a_1q+a_2s}(\tau);
\]
(4) If \(n \geq 2 \) and \(a \in \frac{1}{n}\mathbb{Z}^2 \setminus \mathbb{Z}^2 \) then \(\mathfrak{e}_a(\tau) \) is a nearly holomorphic modular form for \(\Gamma(2n^2) \) of weight -1.
(5) Let \(n \geq 3 \) odd and \(\{m_a\}_{a \in \frac{1}{n}\mathbb{Z}^2 \setminus \mathbb{Z}^2} \) a family of integers such that \(m_a \neq 0 \) occurs only for finitely many \(a \). Then the product of Klein form:
\[
\prod_{a \in \frac{1}{n}\mathbb{Z}^2 \setminus \mathbb{Z}^2} \mathfrak{e}_a^{m_a}(\tau)
\]
is a nearly holomorphic modular form for \(\Gamma(n) \) of weight \(-\sum_a m_a \) if and only if:
\[
\sum_a m_a (na_1)^2 \equiv \sum_a m_a (na_2)^2 \equiv \sum_a m_a (na_1)(na_2) \equiv 0 \pmod{n}.
\]

Proof. Property (2) is nothing more than a reformulation of the Legendre relation: \(\eta_{[r,1]}(\tau) - \eta_{[\tau,1]}(\tau) = 2\pi i \). Property (5) is discussed in [7, Chapter 3, Paragraph 4].
For more details see: [7, Chapters 2 and 3] or [9, Chapter 19].

We are now ready to define the Siegel function:
\[
g_a(\tau) = \mathfrak{e}_a(\tau)\Delta(\tau)^{1/12},
\]
where \(\Delta(\tau) \) is the square of the Dedekind eta function \(\eta(\tau) \) (not to be mistaken for the aforementioned \(\eta_L(\tau) \)):
\[
\eta(\tau)^2 = 2\pi i q^{1/12} \prod_{n=1}^{\infty} (1 - q^n)^2 \text{ with } q = e^{2\pi i \tau}.
\]
Proposition 4.2. The set of functions \(\{ h_a(\tau) = g_a(\tau)^{12n} \}_{a \in \frac{1}{n} \mathbb{Z}^2 \setminus \mathbb{Z}^2} \) constitute a Fricke family. Just like the Fricke functions \(f_a(\tau) \) of Theorem 2.2 we have: \(h_a(\tau) \in F_n \), for every \(\gamma \in SL_2(\mathbb{Z}) \) we have \(h_a(\gamma(\tau)) = h_{a\gamma}(\tau) \) and in addition if \(\sigma_d \in \text{Gal}(\mathbb{Q}_n, \mathbb{Q}) \) then \(\sigma_d(h_{a_1,a_2}(\tau)) = h_{a_1,a_2}(\tau) \). In other words, the Siegel functions, raised to the appropriate power, are permuted by the elements of the Galois Group \(\text{Gal}(F_n, \mathbb{Q}(j)) \).

Proof. \cite{7} Chapter 2] or \cite{18}.

Theorem 4.3. Assume that \(n = p^k \) for \(p \neq 2, 3 \). Then the units in \(F_n \) (modulo constants) consist of the power products:

\[
\prod_{a \in \frac{1}{n} \mathbb{Z}^2 \setminus \mathbb{Z}^2} g_a^{m_a}(\tau)
\]

with:

\[
\sum_a m_a(na_1)^2 \equiv \sum_a m_a(na_2)^2 \equiv \sum_a m_a(na_1)(na_2) \equiv 0 \mod n
\]

and

\[
\sum_a m_a \equiv 0 \mod 12.
\]

In addition, if \(k \geq 2 \) it is not restrictive to consider power products of Siegel functions \(g_a \) with primitive index \(a = (a_1, a_2) \), namely such that \(p^{k-1}a \not\in \mathbb{Z}^2 \).

Proof. See \cite{5}, \cite{7} Theorem 3.2, Chapter 2], \cite{7} Theorem 5.2, Chapter 3] and \cite{7} Theorem 1.1, Chapter 4]. The last assertion is a consequence of the distribution relations discussed in \cite{7} pp. 17-23].

Following \cite{7} it will be useful to decompose \(\text{Gal}(F_p^k, \mathbb{Q}(j)) \). Let \(\mathfrak{o}_p \) the ring of integers in the unramified quadratic extension of the \(p \)-adic field \(\mathbb{Q}_p \). The group of units \(\mathfrak{o}_p^* \) acts on \(\mathfrak{o}_p \) by multiplication and after choosing a basis of \(\mathfrak{o}_p \) over the \(p \)-adic ring \(\mathbb{Z}_p \), we obtain an embedding:

\[
\mathfrak{o}_p^* \rightarrow GL_2(\mathbb{Z}_p).
\]

We call the image in \(GL_2(\mathbb{Z}_p) \) the Cartan Group at the prime \(p \) and indicate it by \(C_p \). It is worth noting that the elements of \(\mathfrak{o}_p^* \), written in terms of a basis of \(\mathfrak{o}_p \) over \(\mathbb{Z}_p \), are characterized by the fact that at least one of the two coefficients is a unit.

Consider now \(GL_2(\mathbb{Z}_p) \) as operating on \(\mathbb{Z}_p^2 \) on the left and denote by \(G_{p,\infty} \) the isotropy group of \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \). Obviously we have:
Cuspidal divisor class groups of non-split Cartan curves

\[G_{p, \infty} = \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \middle| b \in \mathbb{Z}_p, d \in \mathbb{Z}_p^* \right\}. \]

Since \(C_p \) operates simply transitively on the set of primitive elements (that is: vectors whose coordinates are not both divisible by \(p \)) we have the following decomposition:

\[GL_2(\mathbb{Z}_p)/\{\pm I\} = (C_p/\{\pm I\})G_{p, \infty}. \]

For each integer \(k \) we define the reduction of the Cartan Group \(C_p \mod p^k \):

\[C(p^k) = C_p/p^k C_p \]

and let \(G_{\infty}(p^k) \) the reduction of \(G_{p, \infty} \mod p^k \):

\[G_{\infty}(p^k) = \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \middle| b \in \mathbb{Z}/p^k \mathbb{Z}, d \in (\mathbb{Z}/p^k \mathbb{Z})^* \right\}. \]

We can now reformulate the previous decomposition as follows:

\[\text{Gal}(F_{p^k}, \mathbb{Q}(j)) \simeq GL_2(\mathbb{Z}/p^k \mathbb{Z})/\{\pm I\} = (C(p^k)/\{\pm I\})G_{\infty}(p^k). \]

The embedding:

\[F_{p^k} \hookrightarrow \mathbb{Q}(\zeta_{p^k})(q^{1/p^k}) \]

enables us to measure for each modular function \(f(\tau) \in F_{p^k} \) its order at \(\Gamma(p^k)\infty \) in terms of the local parameter \(q^{1/p^k} \).

Proposition 4.4. If \(a \in \frac{1}{p^k} \mathbb{Z}^2 \setminus \mathbb{Z}^2 \), the \(q \)-expansion of the Siegel functions shows that:

\[\text{ord}_{\infty}(g_a(\tau))^{12p^k} = 6p^{2k}B_2(\langle a \rangle) \]

where \(B_2(X) = X^2 - X + \frac{1}{6} \) is the second Bernoulli polynomial and \(\langle X \rangle \) is the fractional part of \(X \).

Proof. [9, Chapter 19].

For every automorphism \(\sigma \in \text{Gal}(F_{p^k}, \mathbb{Q}(j)) \) and each \(h(\tau) \in F_{p^k} \) we have the prime \(\sigma^{-1}(\infty) \) which is such that:

\[\text{ord}_{\sigma^{-1}(\infty)}(h(\tau)) = \text{ord}_{\infty}\sigma(h(\tau)) \]

and if \(\sigma \in G_{\infty}(p^k) \):

\[\text{ord}_{\infty}(h(\tau)) = \text{ord}_{\infty}\sigma(h(\tau)). \]
so we may identify the cusps of $X(p^k)$ with the elements of the Cartan Group (viewing it as a subgroup of $\text{Gal}(F_{p^k}, \mathbb{Q}(j))$). From now on, we will indicate the cusp $\sigma^{-1}(\infty)$ simply by σ^{-1}.

We may also index the primitive Siegel function by elements of the Cartan Group. Following [7], if $\alpha \in C(p^k)/\{\pm I\}$ we put:

$$g_\alpha = g_{e_1\alpha} \text{ where } e_1 = (\frac{1}{p^k}, 0).$$

It should be noted that g_α is defined up to a root of unity (this follows from Proposition 4.1, second claim). Nonetheless, $g_{12p^k}^\alpha$ is univocally defined as well as its divisor:

Proposition 4.5. We have:

$$\text{div } g_{12p^k}^\alpha = 6p^{2k} \sum_{\beta \in C(p^k)/\{\pm I\}} B_2 \left(\left\langle \frac{T(\alpha\beta^{-1})}{p^k} \right\rangle \right) \beta$$

where the map T on 2×2 matrices is defined as follows:

$$T : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto a.$$

Proof. See [7, Paragraph 5.1] \hfill \square

The first part of [7] culminates with the theorem below. The computation of the order of the cuspidal divisor class group on $X(p^k)$ could be considered analogous to that in the study of cyclotomic fields: instead of the generalized Bernoulli numbers $B_{1,\chi}$ encountered in the latter case, in the former we will define the second generalized Bernoulli numbers $B_{2,\chi}$.

Theorem 4.6. Let p a prime ≥ 5. Let $R := \mathbb{Z}[C(p^k)/\{\pm 1\}]$ and R_0 the ideal of R consisting of elements of degree 0. The Cuspidal Divisor Class Group \mathfrak{f}_{p^k} is an R–module, more precisely there exists a Stickelberger element

$$\theta = \frac{p^k}{2} \sum_{\beta \in C(p^k)/\{\pm I\}} B_2 \left(\left\langle \frac{T(\beta^{-1})}{p^k} \right\rangle \right) \beta^{-1} \in \mathbb{Q}[C(p^k)/\{\pm 1\}]$$

such that:

$$\mathfrak{f}_{p^k} \cong R_0/R \cap R\theta.$$

For any character χ of $C(p^k)/\{\pm I\}$ (identified with an even character of $C(p^k)$) we let:

$$B_{2,\chi} = \sum_{\alpha \in C(p^k)/\{\pm I\}} B_2 \left(\left\langle \frac{T(\alpha)}{p^k} \right\rangle \right) \chi(\alpha).$$
The order of the cuspidal divisor class group on $X(p^k)$ is:

$$|\mathcal{C}_{p^k}| = \frac{12p^{3k}}{|C(p^k)|} \prod_{\chi \neq 1} \frac{p^k}{2} B_{2, \chi}.$$

Proof. [7, Chapter 5].

5 Non-split Cartan Groups

Following [11] or [15, pag. 194], let n a positive integer and let A be a finite free commutative algebra of rank 2 over $\mathbb{Z}/n\mathbb{Z}$ with unit discriminant. Fixing a basis for A we can use the action of A^* on A to embed A^* in $GL_2(\mathbb{Z}/n\mathbb{Z})$.

If for every prime $p|n$ the \mathbb{F}_p algebra A/pA is isomorphic to \mathbb{F}_p^2, the image of A^* just now described is called a non-split Cartan subgroup of $GL_2(\mathbb{Z}/n\mathbb{Z})$.

Therefore, such a group G has the property that for every prime p dividing n the reduction of G mod p is isomorphic to \mathbb{F}_p^*. All the non-split Cartan subgroups of $GL_2(\mathbb{Z}/n\mathbb{Z})$ are conjugate and so are their normalizers.

In this paper we are interested in the case $n = p^k$ and $p \neq 2, 3$. The cases $p = 2$ and $p = 3$ are essentially equal but require more cumbersome calculations (see [7, Theorem 5.3, Chapter 3] and [7, Theorem 1.3, Chapter 4]). Choose a squarefree integer $\epsilon \equiv 3 \mod 4$ and such that its reduction modulo p is a quadratic non-residue. If $p \equiv 3 \mod 4$, a canonical choice could be $\epsilon = -1$. Let $K = \mathbb{Q}(\sqrt{\epsilon})$ and $O_K = \mathbb{Z}[\sqrt{\epsilon}]$ its ring of integers. After choosing a basis for O_K over \mathbb{Z} we can represent any element of $(O_K/p^kO_K)^*$ with its corresponding multiplication matrix in $GL_2(\mathbb{Z}/p^k\mathbb{Z})$ with respect to the chosen basis. This embedding produces a non-split Cartan subgroup of $GL_2(\mathbb{Z}/p^k\mathbb{Z})$ and we will denote it by $C_{ns}(p^k)$. Notice that such a group is isomorphic to the already introduced $C(p^k)$.

To describe the normalizer $C_{ns}^+(p^k)$ of $C_{ns}(p^k)$ in $GL_2(\mathbb{Z}/p^k\mathbb{Z})$ it will suffice to consider the following group automorphism induced by conjugation by a fixed $c \in C_{ns}^+(p^k)$:

$$\phi_c : C_{ns}(p^k) \longrightarrow C_{ns}(p^k)$$

$$x \longmapsto \phi_c(x) = cxc^{-1}.$$

The group automorphism ϕ_c extends to a ring automorphism of $(O_K/p^kO_K) \cong (\mathbb{Z}/p^k\mathbb{Z})[\sqrt{\epsilon}]$ so if ϕ_c is not the trivial automorphism we necessarily have $\phi_c(\sqrt{\epsilon}) = -\sqrt{\epsilon}$.
Proposition 5.1. If \(p \neq 2 \) we have the following isomorphism:

\[
C_{ns}(p^k) \simeq \mathbb{Z}/p^{k-1}\mathbb{Z} \times \mathbb{Z}/p^{k-1}\mathbb{Z} \times \mathbb{Z}/(p^2 - 1)\mathbb{Z},
\]

\[
C_{ns}^+(p^k) \simeq (\mathbb{Z}/p^{k-1}\mathbb{Z} \times \mathbb{Z}/p^{k-1}\mathbb{Z} \times \mathbb{Z}/(p^2 - 1)\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}.
\]

Proof. Let \(a_1 + \sqrt[\p]{a_2} \in (\mathcal{O}_K/p^k\mathcal{O}_K) \): it is invertible if and only if \((a_1, a_2)\) is primitive or in other words \(p \) does not divide both \(a_1 \) and \(a_2 \) so we have \(|C_{ns}(p^k)| = p^{2k-2}(p^2 - 1) \). Consider the reduction \(\text{mod} \ p \):

\[
C_{ns}(p^k) \longrightarrow \mathbb{F}^*_{p^2}
\]

\[
a_1 + \sqrt[\p]{a_2} \longmapsto \overline{a_1} + \sqrt[\p]{\overline{a_2}}.
\]

The map is surjective and let \(B \) its kernel:

\[
B := \{ x \in (\mathcal{O}_K/p^k\mathcal{O}_K)^* \text{ such that } x \equiv 1 \pmod{p} \}.
\]

\(|B| = p^{2k-2} \): it remains to check that \(B \cong \mathbb{Z}/p^{k-1}\mathbb{Z} \times \mathbb{Z}/p^{k-1}\mathbb{Z} \). Let \(k \geq 2 \) and \(p \neq 2 \). First, we check that for all \(x \in \mathcal{O}_K \) we have \((1+xp)^{p^{k-2}} \equiv 1+xp^{k-1} \pmod{p^k} \). In case \(k = 2 \) there is nothing to prove. We proceed by induction on \(k \): suppose the claim is true for some \(k \geq 2 \). We have:

\[
(1+xp)^{p^{k-2}} = 1 + xp^{k-1} + yp^k,
\]

\[
(1+xp)^{p^{k-1}} = \sum_{j=0}^{p^{k-1}} \binom{p}{j} (1+xp^{k-1})^{p-1-j}(yp^k)^j \equiv (1+xp^{k-1})^p \pmod{p^{k+1}},
\]

\[
(1+xp^{k-1})^p = \sum_{j=0}^{p} \binom{p}{j} (xp^{k-1})^j \equiv 1 + xp^k \pmod{p^{k+1}}.
\]

In conclusion: \((1+xp)^{p^{k-1}} \equiv 1 + xp^k \pmod{p^{k+1}} \). From the previous claim follows that if \(h \leq k-1 \) is such that \(x \in p^h\mathcal{O}_K \setminus p^{h+1}\mathcal{O}_K \) then the reduction of \(1+xp \) in \(B \) has order \(p^{k-1-h} \). So \(B \) has \(p^{2k-2} - p^{2k-4} \) elements of order \(p^{k-1} \) and the proposition is proved. The second isomorphism follows immediately.

\(\square \)

We present now the modular curves \(X_{ns}(n) \) and \(X_{ns}^+(n) \) associated to the subgroups \(C_{ns}(n) \) and \(C_{ns}^+(n) \). First of all, \(Y(n) \) (the non-cuspidal points of \(X(n) \)) are isomorphism classes of pairs \((E, (P, Q))\) where \(E \) is a complex elliptic curve and \((P, Q)\) constitute a \(\mathbb{Z}/n\mathbb{Z} \)-basis of the \(n \)-torsion subgroup \(E[n] \) with \(e_n(P, Q) = e^{2\pi i/n} \) where \(e_n \) is the Weil pairing discussed in details in [4], Chapter 7. By definition, two pairs \((E, (P, Q))\) and \((E', (P', Q'))\) are considered equivalent in \(Y(n) \) if and only if there exists an isomorphism
between \(E\) and \(E'\) taking \(P\) to \(P'\) and \(Q\) to \(Q'\). Notice that the definition is well-posed since the Weil pairing is invariant under isomorphism, i.e. if \(f : E \to E'\) is an isomorphism of elliptic curves and \(e'_n\) is the Weil pairing on \(E'\) we have:

\[
e'_n(f(P), f(Q)) = e_n(P, Q).
\]

Since \(GL_2(\mathbb{Z}/n\mathbb{Z})\) acts on \(E[n]\) and since for every \(\gamma \in GL_2(\mathbb{Z}/n\mathbb{Z})\) we have \(e_n(\gamma(P, Q)) = e_n(P, Q)^{det \gamma}\), the group \(SL_2(\mathbb{Z}/n\mathbb{Z})\) acts on \(Y(n)\) on the right in the following way:

\[
\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \cdot (E, (P, Q)) = (E, (aP + cQ, bP + dQ)).
\]

Define:

\[
C'_{ns}(n) := C_{ns}(n) \cap SL_2(\mathbb{Z}/n\mathbb{Z}),
\]

\[
C'^{+}_{ns}(n) := C^{+}_{ns}(n) \cap SL_2(\mathbb{Z}/n\mathbb{Z}),
\]

\[
\Gamma_{ns}(n) := \{M \in SL_2(\mathbb{Z}) \text{ such that } M \equiv M' \mod n \text{ for some } M' \in C'_{ns}(n)\},
\]

\[
\Gamma'^{+}_{ns}(n) := \{M \in SL_2(\mathbb{Z}) \text{ such that } M \equiv M' \mod n \text{ for some } M' \in C'^{+}_{ns}(n)\}.
\]

A possible explicit description for these groups is:

\[
C_{ns}(p^k) = \left\{ M_s = \left(\begin{array}{cc} a & b \\ eb & a \end{array} \right) \in GL_2(\mathbb{Z}/p^k\mathbb{Z}) \text{ with } s = a + \sqrt{e}b \in (O_K/p^kO_K)^* \right\},
\]

\[
C'^{+}_{ns}(p^k) = \left\{ \left(\begin{array}{cc} a & b \\ eb & a \end{array} \right) \in C_{ns}(p^k), C = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right\}.
\]

If \(s \in (O_K/p^kO_K)^*\) we define \(|s| := ss \in (\mathbb{Z}/p^k\mathbb{Z})^*\) where \(s\) is the conjugate of \(s\). So we have:

\[
C'_{ns}(p^k) = \left\{ M_s = \left(\begin{array}{cc} a & b \\ eb & a \end{array} \right) \in C_{ns}(p^k) \text{ such that } |s| = |a + \sqrt{e}b| = 1 \mod p^k \right\},
\]

\[
C'^{+}_{ns}(p^k) = C'_{ns}(p^k) \cup \left\{ M_sC = \left(\begin{array}{cc} a & -b \\ eb & -a \end{array} \right) \text{ with } |s| = |a + \sqrt{e}b| = -1 \mod p^k \right\}.
\]

Points in \(Y_{ns}(n)\) are nothing but orbits of \(Y(n)\) under the action of \(C_{ns}(n)\) and similarly for \(Y'^{+}_{ns}(n)\) and \(C'^{+}_{ns}(n)\). The above-mentioned action extends uniquely to \(X(n)\). The quotients \(X_{ns}(n)\) and \(X'^{+}_{ns}(n)\) are isomorphic as Riemann surfaces to \(\mathbb{H}*/\Gamma_{ns}(n)\) and \(\mathbb{H}*/\Gamma'^{+}_{ns}(n)\) respectively.

Using the identification of the cusps of \(X(p^k)\) with the elements of \(C(p^k)/\{-I\}\) explained in the previous section we obtain a shorter proof of the first claim of Proposition 7.10:
Proposition 5.2. We identify the cusps of $X_{ns}(p^k)$ with $(\mathbb{Z}/p^k\mathbb{Z})^*$ and the cusps of $X_{ns}^+(p^k)$ with $H = (\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\}$. So $X_{ns}(p^k)$ has $p^{k-1}(p - 1)$ cusps and $X_{ns}^+(p^k)$ has $p^{k-1}\frac{p-1}{2}$ cusps.

Proof. We identify the cusps of $X(p^k)$ with the elements of $C(p^k)/\{\pm 1\} \cong C_{ns}(p^k)/\{\pm 1\} \cong (O_K/p^kO_K)^*/\{\pm 1\}$. Bearing this in mind, it is clear that $\pm M_r, \pm M_r' \in C_{ns}(p^k)/\{\pm 1\}$ represent the same cusp in $X_{ns}(p^k)$ if and only if there exists $s \in (O_K/p^kO_K)^*$ with $|s| = 1$ such that $\pm r = \pm sr'$. But this is equivalent to say that $|r| = |sr'| = |r'|$ or $\det M_r = \det M_r' \mod p^k$ and consequently we may identify the cusps of $X_{ns}(p^k)$ with $(\mathbb{Z}/p^k\mathbb{Z})^*$. For the same reason $\pm M_r, \pm M_r' \in C_{ns}(p^k)/\{\pm 1\}$ are indistinguishable in $X_{ns}^+(p^k)$ if and only if they were already indistinguishable in $X_{ns}(p^k)$ or there exists $s' \in (O_K/p^kO_K)^*$ with $|s'| = -1$ such that $\pm r = \pm s'r'$ that is equivalent to say $|r| = |s'r'| = -|r'|$ or $\det M_r = -\det M_r' \mod p^k$. In conclusion we may identify the cusps of $X_{ns}^+(p^k)$ with $H = (\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\}$.

Furthermore, we can deduce that the covering $\pi : X_{ns}(p^k) \to X(p^k)$ is not ramified above the cusps. So the ramification degree of a cusp of $X_{ns}(p^k)$ under the covering projection $\pi' : X_{ns}(p^k) \to SL_2(\mathbb{Z})\backslash \mathbb{H}^*$, is equal to the one of a cusp of $X(p^k)$ respect to $\pi'' : X(p^k) \to SL_2(\mathbb{Z})\backslash \mathbb{H}^*$ that is p^k. The same happens for $X_{ns}^+(p^k)$.

6 Modular units on non-split Cartan curves

Let $t \in ((O_K/p^kO_K)^*/\{\pm 1\})$: write it in the form $t = a_1 + \sqrt{a_2}$ choosing $a_1, a_2 \in \mathbb{Z}$ such that $0 \leq a_1 \leq \frac{p^{k-1}}{2}, 0 \leq a_2 \leq p^k - 1$ and $a_2 \leq \frac{p^{k-1}}{2}$ if $a_1 = 0$.

Define:

$$[t] := \frac{1}{p^k}(a_1, a_2).$$

If $s \in (O_K/p^kO_K)^*$ we define $[s] := \{|s\}|$. Notice that if $s, t \in (O_K/p^kO_K)^*$, $|s| = 1$ and $\gamma_s \in \Gamma_{ns}(p^k)$ lifts M_s we have:

$$[t]\gamma - [ts] \in \mathbb{Z}^2 \text{ or } [t]\gamma + [ts] \in \mathbb{Z}^2.$$

Analogously if $|s| = -1$ and γ lifts M_sC to $\Gamma_{ns}^+(p^k)$ we have:

$$[t]\gamma - [ts] \in \mathbb{Z}^2 \text{ or } [t]\gamma + [ts] \in \mathbb{Z}^2.$$

These relations together with Proposition 4.1 imply:
Proposition 6.1. The Klein forms: $\xi_{[t]_\gamma}(\tau)$ and $\xi_{[ts]}(\tau)$ up to a $2p^k$-th root of unity represent the same function in the sense that:

$$\xi_{[t]_\gamma}(\tau) = c\xi_{[ts]}(\tau)$$

for some $c \in \mu_{2p^k}$. Similarly, for the Klein forms $\xi_{[t]}(\tau)$ and $\xi_{[ts]}(\tau)$ we have:

$$\xi_{[t]}(\tau) = c'\xi_{[ts]}(\tau)$$

for some $c' \in \mu_{2p^k}$.

For $h \in (\mathbb{Z}/p^k\mathbb{Z})^*$ we define the following complex-valued functions on \mathbb{H}:

$$T_h(\tau) := \prod_{t \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm1\}, |t| = h} \xi_{[t]}(\tau),$$

$$G_h(\tau) := T_h(\tau)(\Delta(\tau))^{p^{k-1}\frac{p+1}{2}} = \prod_{t \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm1\}, |t| = h} g_{[t]}(\tau).$$

For $h \in (\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm1\}$ consider:

$$T_h^+(\tau) := \prod_{t \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm1\}, \pm |t| = h} \xi_{[t]}(\tau),$$

$$G_h^+(\tau) := T_h^+(\tau)(\Delta(\tau))^{p^{k-1}\frac{p+1}{2}} = \prod_{t \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm1\}, \pm |t| = h} g_{[t]}(\tau).$$

Proposition 6.2. Let $p \neq 2, 3$ a prime. Consider:

$$g(\tau) = \prod_{x \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm1\})} g_{[x]}^{m(x)}(\tau)$$

and suppose that it is a modular unit on $X(p^k)$ (or equivalently that it satisfies the conditions of Theorem 4.3). If $g(\tau)$ is a modular unit on $X_{ns}(p^k)$ there exist integers $\{n_h\}_{h \in (\mathbb{Z}/p^k\mathbb{Z})^*}$ such that:

$$g(\tau) = \prod_{h \in (\mathbb{Z}/p^k\mathbb{Z})^*} G_h^{n_h}(\tau).$$

Similarly, if the function $g(\tau)$ is a modular unit on $X_{ns}^+(p^k)$, there exist integers $\{n_h^+\}_{h \in (\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm1\}}$ such that:

$$g(\tau) = \prod_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm1\})} G_h^{n_h}(\tau).$$
Proof. We look for conditions on the exponents \(\{m(x)\}_{x \in (O_K/p^kO_K)^*/\{\pm 1\}} \) that guarantee:

\[
\frac{g(\sigma^{-1}(\tau))}{g(\tau)} \in \mathbb{C} \text{ for every } \sigma \in \Gamma_{ns}(p^k) \text{ (respectively } \Gamma_{ns}^{+}(p^k)\text{).}
\]

From Proposition 4.1, assertion (3), the fact that \(\Delta(\tau) \) is weakly modular of weight 12 and that by hypotesis 12 divides \(\sum m(x) \) we have:

\[
g(\sigma^{-1}(\tau)) = (\Delta(\sigma^{-1}(\tau)))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\sigma^{-1}(\tau)) =
\]

\[
= (\Delta(\tau))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\tau).
\]

By Proposition 5.1, \(C'_{ns}(p^k) \) is a cyclic group with \((p + 1)p^{k-1} \) elements. Let \(M_r \) be a generator where \(r \) is a generator of:

\[
\{s \in (O_K/p^kO_K)^* \text{ with } |s| = 1 \}.
\]

Every \(S \in C'_{ns}^+(p^k) \setminus C'_{ns}(p^k) \) is of the form \(M_tC \) where \(t \in (O_K/p^kO_K)^* \) and \(|t| = -1 \). Fix \(S \) and choose \(\gamma_t \) lifting \(M_r \) in \(\Gamma_{ns}(p^k) \) and \(\gamma_t \) lifting \(M_t \) in \(GL_2(\mathbb{Z}) \) with \(\det \gamma_t = -1 \). Of course \(\gamma_tC \) lifts \(S \) in \(\Gamma_{ns}^{+}(p^k) \).

For every \(j \) we have that:

\[
((\lfloor x \rfloor \mod \mathbb{Z}^2)/\{\pm 1\}) \mapsto (\lfloor xr^j \rfloor \mod \mathbb{Z}^2)/\{\pm 1\}) \text{ and }
\]

\[
((\lfloor x \rfloor \mod \mathbb{Z}^2)/\{\pm 1\}) \mapsto (\lfloor xr^j r \rfloor \mod \mathbb{Z}^2)/\{\pm 1\})
\]

are permutations of the primitive elements in \(((\frac{1}{p^k}\mathbb{Z})^2 \mod \mathbb{Z}^2)/\{\pm 1\} \).

As a consequence of these observations and Proposition 6.1, taking \(\sigma = (\gamma_t)^j \) we have:

\[
(\Delta(\tau))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\tau) = (\Delta(\tau))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\tau) =
\]

\[
= c_j(\Delta(\tau))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\tau) = c_j \prod g_{[x]}^{m(x)}(\tau),
\]

where \(\{c_j\} \) are \(2p^k \)-th roots of unity. Taking \(\sigma = (\gamma_t)^j \gamma_t C \) we obtain:

\[
(\Delta(\tau))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\tau) = (\Delta(\tau))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\tau) =
\]

\[
= d_j(\Delta(\tau))^{\frac{1}{12}} \sum m(x) \prod_{[x]} t_{m(x)}^{m(x)}(\tau) = d_j \prod g_{[x]}^{m(x)}(\tau),
\]

where \(\{d_j\} \) are \(2p^k \)-th roots of unity. Consider the following expression:

\[
\frac{g(\gamma_t^{-1}(\tau))}{g(\tau)} = c_1 \prod g_{[x]}^{m(x)-m(x)}(\tau).
\]
By the independence of Siegel functions [7, p.42 or p.120] a product $\prod g_{[x]}^{l(x)}$ is constant if and only if the exponents $l(x)$ are all equal. So the previous quotient is constant if and only if:

$$a(xr^j) = m(xr^{j+1}) - m(xr^j)$$

satisfy $a(xr^j) = a(xr^l)$ for all $j, l \in \mathbb{Z}$.

But $(\gamma_r)^{\frac{p^k-1}{p-1}} \equiv -1 \mod p^k$ and $r^{\frac{p^k-1}{p-1}} = -1 \mod p^k$. So we have that

$$\sum_{j=1}^{\frac{p^k-1}{p-1}} a(xr^j) = 0$$

and consequently $a(xr^j) = 0$ for every j, which implies that $m(xr^j)$ does not depend on j. Since $g(\tau)$ is $\Gamma(p^k)$-invariant and every element in $\Gamma_{ns}(p^k)$ can be written in the form $\gamma \gamma_r^j$ with $\gamma \in \Gamma(p^k)$, we conclude that if $g(\sigma^{-1}(\tau))/g(\tau) \in \mathbb{C}$ for every $\sigma \in \Gamma_{ns}(p^k)$, this implies that if $|x| = |y|$ then $m(x) = m(y)$. For each h invertible mod p^k choose x with $|x| = h$, put $n_h := m(x)$ and the first claim follows.

Consider now:

$$\frac{g((C\gamma_t^{-1})(\tau))}{g(\tau)} = d_0 \prod g_{[x]}^{m(x)-m(x)}(\tau).$$

If this quotient is constant the exponent of $g_{[x]}(\tau)$ is equal to the exponent of the Siegel function $g_{[\tau t]}(\tau)$. So:

$$m(\overline{xt}) - m(x) = m(x\overline{t^2}) - m(\overline{xt})$$

or equivalently:

$$m(\overline{xt}) + m(\overline{xt}) = m(x) + m(x\overline{t^2}).$$

But $|rt\overline{t}^{-1}| = 1$ so $m(\overline{xt}) = m(\overline{xt})$ and $|\overline{t^2}| = 1$ so $m(x) = m(x\overline{t^2})$. Hence $m(x) = m(x\overline{t})$ and observe that $|x| = -|\overline{xt}|$. So, in consideration of the previous result, we can conclude that $g(\sigma^{-1}(\tau))/g(\tau) \in \mathbb{C}$ for every $\sigma \in \Gamma_{ns}^+(p^k)$ implies that if $|x| = |y|$ or $|x| = -|y|$ then $m(x) = m(y)$. For every $h \in (\mathbb{Z}/p^k\mathbb{Z})^* \{\pm 1\}$ choose x such that $\pm |x| = h$ and define $n_h^+ := m(x)$ and the second claim follows.

Proposition 6.3. The product:

$$\prod_{h \in (\mathbb{Z}/p^k\mathbb{Z})^*} T_h^{n_h}(\tau)$$

is a nearly holomorphic modular form for $\Gamma(p^k)$ if and only if p divides $\sum_h n_h h$.

Proof. First of all, for every h invertible mod p^k:

$$\sum_{\pm s \in [(O_K/p^kO_K)^*/\{\pm 1\}]} \left(\frac{1}{2}(s + \overline{s})\right)^2 = \frac{h}{4}(p + 1)p^{k-1} \mod p^k,$$
\[
\sum_{\pm s \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm 1\})} \left(\frac{1}{2\sqrt{\epsilon}}(s - \overline{s}) \right)^2 = -\frac{h}{4\epsilon}(p + 1)p^{k-1} \pmod{p^k},
\]

and
\[
\sum_{\pm s \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm 1\})} \left(\frac{1}{2}(s + \overline{s}) \right) \left(\frac{1}{2\sqrt{\epsilon}}(s - \overline{s}) \right) = 0 \pmod{p^k}.
\]

We prove only the first assertion because the other statements can be shown by the same argument. Every \(s \in (\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm 1\} \) with \(|s| = h \) can be written as \(s = r^i\alpha_h \) where \(r \) is a generator of the subgroup \(\{t \in (\mathcal{O}_K/p^k\mathcal{O}_K)^* \mid |t| = 1\} \) and \(\alpha_h \) are fixed elements such that \(|\alpha_h| = h \).

\[
\sum_{|s| = h} \frac{1}{2}(s + \overline{s})^2 = \sum_{i=0}^{\frac{p+1}{2}p^{k-1} - 1} \left(\frac{1}{2}\alpha^{-i}_h + \frac{1}{2}\alpha^{i}_h \right)^2 = \frac{\alpha^2_h}{4} \sum_{i=0}^{\frac{p+1}{2}p^{k-1} - 1} (-2i) + \frac{\alpha^2_h}{4} \sum_{i=0}^{\frac{p+1}{2}p^{k-1} - 1} (2i) + \frac{\alpha_h\alpha^*_h}{4}(p + 1)p^{k-1}
\]

and the assertion (1) follows because:

\[
\sum_{i=0}^{\frac{p+1}{2}p^{k-1} - 1} r^{2i} = \sum_{i=0}^{\frac{p+1}{2}p^{k-1} - 1} r^{-2i} = \frac{1 - r^{(p+1)p^{k-1}}}{1 - r^2} = 0 \pmod{p^k}
\]

To prove this proposition we apply Proposition 4.1 to the product \(\prod_h T_h^{p^k}(\tau) \). Considering that for every \(s = a_1 + \sqrt{\epsilon}a_2 \in (\mathcal{O}_K/p^k\mathcal{O}_K)^* \) we have:

\[
p^k[s] \equiv (a_1, a_2) \pmod{(p^k\mathbb{Z})^2} \text{ or } p^k[s] \equiv -(a_1, a_2) \pmod{(p^k\mathbb{Z})^2}
\]

and reformulating condition (5) of Proposition 4.1 in terms of assertions (1), (2) and (3) we attain the desired result.

From this proposition it follows immediately that the functions \(T_h^+(\tau) \) are nearly holomorphic for \(\Gamma(p^k) \). We will examine them further in details.

For every \(s = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \) define:

\[
J_s(\tau) = (c\tau + d)^{(p+1)p^{k-1}}, \tau \in \mathbb{H}.
\]
Proposition 6.4. For every prime $p \equiv 3 \mod 4$, for every $h \in ((\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\})$ and for every $s \in \Gamma_{ns}^+(p^k)$ we have:

$$T_h^+(s(\tau)) = J_s(\tau)T_h^+(\tau)$$

in other words $T_h^+(\tau)$ is a nearly holomorphic modular form for $\Gamma_{ns}^+(p^k)$ of weight $-(p + 1)p^{k-1}$.

If $p \equiv 1 \mod 4$ and $s \in \Gamma_{ns}^+(p^k)$ we have:

$$T_h^+(s(\tau)) = J_s(\tau)T_h^+(\tau)$$

in other words $T_h^+(\tau)$ is a nearly holomorphic modular form for $\Gamma_{ns}^+(p^k)$ of weight $-(p + 1)p^{k-1}$.

If $p \equiv 1 \mod 4$ and $s \in \Gamma_{ns}^+(p^k) \setminus \Gamma_{ns}(p^k)$ we have:

$$T_h^+(s(\tau)) = -J_s(\tau)T_h^+(\tau).$$

Proof. It is clear from Proposition 6.1 that for every $s \in \Gamma_{ns}^+(p^k)$ there exists a $2p^k$-th root of unity c such that: $T_h^+(s(\tau)) = cT_h^+(\tau)J_s(\tau)$ so it is natural to define:

$$C_h(s) = \frac{T_h^+(s(\tau))}{T_h^+(\tau)J_s(\tau)} \in \mu_{2p^k}.$$

On the one hand:

$$T_h^+((ss')(\tau)) = C_h(ss')T_h^+(\tau)J_{ss'}(\tau),$$

on the other hand:

$$T_h^+(s(s'(\tau))) = C_h(s)T_h^+(s'(\tau))J_s(s'(\tau)) = C_h(s)C_h(s')J_s(s'(\tau))J_s(\tau)T_h^+(\tau).$$

Considering that $J_{ss'}(\tau) = J_s(s'(\tau))J_{s'}(\tau)$ we have:

$$C_h(ss') = C_h(s)C_h(s').$$

From Proposition 5.3 we deduce easily that $C_h(\pm \Gamma(p^k)) = 1$ for every h. So C_h are characters of $\Gamma_{ns}^+/(p^k)/\pm \Gamma(p^k)$. Since this quotient is isomorphic to $C_{ns}^+(p^k)/\{\pm I\}$ and since for every $\alpha \in C'_{ns}^+(p^k) \setminus C''_{ns}^+(p^k)$ we have $\alpha^2 = -I$, by Proposition 5.1 we obtain that $\Gamma_{ns}^+(p^k)/\pm \Gamma(p^k)$ is a dihedral group of $(p+1)p^{k-1}$ elements. These observations entail $ipso facto$ that $C_h(s) \in \{\pm 1\}$.

As in Proposition 6.2 choose a matrix $\gamma_r \in SL_2(\mathbb{Z})$ lifting $M_r \in C''_{ns}(p^k)$ where r generates the subgroup of $(O_K/p^kO_K)^*$ of elements of norm 1.

Choose $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $\Gamma_{ns}^+(p^k) \setminus \Gamma_{ns}(p^k)$. It is not restrictive to suppose that $a = d \mod 2$. If this did not happen we would alternatively choose:

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & p^k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & ap^k + b \\ c & cp^k + d \end{pmatrix}. $$
If \(a \neq d \mod 2 \) then \(b \) and \(c \) are inevitably odd because \(ad - bc = 1 \) so the new coefficients on the diagonal verify \(a \equiv cp^k + d \mod 2 \).

Notice that \(\{\gamma \gamma' \gamma^{-1}, \gamma \gamma' \} \) is a set of representatives of cosets for the quotient group \(\Gamma_{ns}^+(p^k) / \pm \Gamma(p^k) \). Furthermore if \(h \in (\mathbb{Z}/p^k\mathbb{Z})^* / \{\pm 1\} \) and \(s \in (\mathcal{O}_K/p^k\mathcal{O}_K)^* / \{\pm 1\} \) with \(\pm |s| = h \), there exists a \(2p^k \)-th root of unity \(c' \) such that:

\[
T^+_h(\tau) = c' \prod_{j=1}^{\frac{p+1}{2}p^{k-1}} \varepsilon_{\gamma \gamma' \gamma^{-1}}(\tau) \prod_{j=1}^{\frac{p+1}{2}p^{k-1}} \varepsilon_{\gamma \gamma' \gamma}(\tau).
\]

We calculate:

\[
T^+_h(\gamma(\tau)) = c' J_\gamma(\tau) \prod_{j=1}^{\frac{p+1}{2}p^{k-1}} \varepsilon_{\gamma \gamma' \gamma}(\tau) =
\]

\[
= c'(-1)^{\frac{p+1}{2}p^{k-1}} J_\gamma(\tau) \prod_{j=1}^{\frac{p+1}{2}p^{k-1}} \varepsilon_{\gamma \gamma' \gamma}(\tau) \prod_{j=1}^{\frac{p+1}{2}p^{k-1}} \varepsilon_{-\gamma \gamma' \gamma}(\tau).
\]

But \(\gamma \gamma' \gamma^{-1} \equiv -\gamma \gamma' \gamma \mod p^k \) and \(\gamma^{-1} + \gamma \) (in agreement with the previous convention) has all even coefficients so:

\[
[s, \gamma \gamma' \gamma^{-1}] - [s, \gamma \gamma' \gamma] = [s, \gamma \gamma' (-1 + \gamma)] \in (2\mathbb{Z})^2
\]

and considering Proposition 4.1 part (2) we have:

\[
\frac{\varepsilon_{-s, \gamma \gamma' \gamma}}{\varepsilon_{s, \gamma \gamma' \gamma^{-1}}} \in \mu_{p^k}.
\]

Therefore:

\[
C_h(\gamma) = (-1)^{\frac{p+1}{2}p^{k-1}} \prod_{j=1}^{\frac{p+1}{2}p^{k-1}} \frac{\varepsilon_{-s, \gamma \gamma' \gamma}}{\varepsilon_{s, \gamma \gamma' \gamma^{-1}}},
\]

so \(C_h(\gamma) (-1)^{\frac{p+1}{2}p^{k-1}} \in \mu_{p^k} \cap \{\pm 1\} \), we have necessarily \(C_h(\gamma) = (-1)^{\frac{p+1}{2}p^{k-1}} \) for every \(\gamma \in \Gamma_{ns}^+(p^k) \setminus \Gamma_{ns}(p^k) \) and the proposition follows. \(\square \)

Theorem 6.5. If \(p \neq 2, 3 \) the subgroup of modular units in \(\mathcal{E}_{p^k} \) of \(X_{ns}^+(p^k) \) consists (modulo constants) of power products:

\[
g(\tau) = \prod_{h \in (\mathbb{Z}/p^k\mathbb{Z})^* / \{\pm 1\}) G^+_h(\tau)
\]

where \(d = \frac{12}{\gcd(12, p+1)} \) divides \(\sum_h n^+_h \).
Proof. By Proposition 6.2 and Theorem 4.3, every modular unit on $X_{ns}^+(p^k)$ can be written in the above indicated way. In fact, $d|\sum n^+_h$ is equivalent to saying: $12|(p+1)p^{-1}\sum n^+_h$.

By Proposition 6.4 all the functions of this form are modular units of $X_{ns}^+(p^k)$. In fact, if $p \equiv 3 \pmod{4}$, the functions $T_n^+(\tau)$ are nearly holomorphic modular forms for $X_{ns}^+(p^k)$. If $p \equiv 1 \pmod{4}$, even if the functions $T_n^+(\tau)$ are not nearly holomorphic modular forms for $X_{ns}^+(p^k)$, the product $\prod n^+_h T_n^+(\tau)$ has this property, because $\sum n^+_h$ is even in this case.

Notice that such a writing for $g(\tau)$ is not unique because of the fact that the following product is constant:

$$\prod_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\})} G^+_h(\tau) = \prod_{t \in (\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm 1\}} g_t(\tau).$$

Remark 6.6. Let g be a generator of $((\mathbb{Z}/p^k\mathbb{Z})^*$). Choose $s \in (\mathcal{O}_K/p^k\mathcal{O}_K)^*$ with $|s| = g$ and denote with $\rho \in \text{Gal}(F_{p^k}, \mathbb{Q}(j))$ the automorphism corresponding to the matrix M_s respect to the isomorphism $\text{Gal}(F_{p^k}, \mathbb{Q}(j)) \cong \text{GL}_2(\mathbb{Z}/p^k\mathbb{Z})/\pm 1$ described in Theorem 2.2. Let $F_{ns}^+(p^k)$ be the subfield of F_{p^k} fixed by $C_{ns}^+(p^k)/\pm 1$. Choose $\sigma \in \text{Gal}(F_{p^k}, \mathbb{Q}(j))$. From Galois theory we have:

$$\text{Gal}(F_{p^k}, \sigma(F_{ns}^+(p^k))) = \sigma \text{Gal}(F_{p^k}, F_{ns}^+(p^k)) \sigma^{-1}$$

thus saying that $\sigma(F_{ns}^+(p^k)) = F_{ns}^+(p^k)$ amounts to say that σ belongs to the normalizer of $C_{ns}^+(p^k)/\pm 1$, in other words we have: $\sigma \in C_{ns}^+(p^k)/\pm 1$.

Consider $\sigma_1, \sigma_2 \in C_{ns}^+(p^k)/\pm 1$. We have $\sigma_1(f(\tau)) = \sigma_2(f(\tau))$ for every $f(\tau) \in F_{ns}^+(p^k)$ if and only if $\sigma_1 \sigma_2^{-1} \in C_{ns}^+(p^k)/\pm 1$ or equivalently $\det \sigma_1 = \det \sigma_2$. So every automorphism $\sigma \mid F_{ns}^+(p^k): F_{ns}^+(p^k) \to F_{ns}^+(p^k)$ fixing $\mathbb{Q}(j)$ can be written in the form $\sigma = \rho^j$ for some $0 \leq j \leq \varphi(p^k) - 1$. Notice that if

$$f(\tau) = \prod_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\})} G^+_h(\tau)$$

and

$$h(\tau) = \prod_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\})} G^+_h(\pm g)(\tau)$$

are modular units on $X_{ns}^+(p^k)$, from Proposition 4.2 we have:

$$(\rho(f(\tau)))^{12p^k} = \rho(f(\tau))^{12p^k} = \rho \left(\prod_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\})} G^+_h(12p^k)(\tau) \right) =$$

$$= \prod_{h \in ((\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\})} G^+_h(12p^k)(\tau) = (h(\tau))^{12p^k}.$$
So $\rho(f(\tau)) = ch(\tau)$ for some $c \in \mathbb{Q}(\zeta_{p^k})$ and all the functions $\rho^i(f(\tau))$ are modular units. Choosing $j = \frac{1}{2} \varphi(p^k)$ we deduce that for every modular unit $f(\tau)$ on $X_{ns}(p^k)$ there exist $c' \in \mathbb{Q}(\zeta_{p^k})$ such that:

$$c'f(\tau) \in \mathbb{Q}\left(\cos \left(\frac{2\pi}{p^k}\right) ((q^{p^{-k}})) \right) \text{ with } q = e^{2\pi i \tau}.$$

7 Cuspidal Divisor Class Group of non-split Cartan curves

Let $p \geq 5$ a prime and let $R = \mathbb{Z}[H]$ be the group ring of $H = (\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\}$ over \mathbb{Z}. Let w be a generator of H. For $\alpha \in \mathbb{Z}/p^k\mathbb{Z}$, let be $a \in \mathbb{Z}$ congruent to $\alpha \mod p^k$. We define:

$$\left< \frac{\alpha}{p} \right> := \left< \frac{a}{p} \right>.$$

Define the Stickelberger element:

$$\theta = \frac{p^k}{2} \sum_{i=1}^{p^k-1} \sum_{s \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm 1\})_1} B_2 \left(\left< \frac{\frac{1}{2}(s + \bar{s})}{p^k} \right> \right) w^{-i} \in \mathbb{Q}[H].$$

Define the ideals:

$$R_0 := \left\{ \sum b_j w^j \in R \text{ such that } \deg \left(\sum b_j w^j \right) = \sum b_j = 0 \right\},$$

$$R_d := \left\{ \sum b_j w^j \in R \text{ such that } d \text{ divides } \deg \left(\sum b_j w^j \right) = \sum b_j \right\}.$$

Now we can state the main result:

Main Theorem 7.1. The group generated by the divisors of modular units in F_{p^k} of the curve $X_{ns}(p^k)$ can be expressed both as $R_d \theta$ and as Stickelberger module $R\theta \cap R$. The Cuspidal Divisor Class Group on $X_{ns}(p^k)$ is a module over $\mathbb{Z}[H]$ and we have the following isomorphism:

$$\mathcal{C}^+(p^k) \cong R_0/R_d \theta.$$

Proof. For every $i \in \mathbb{Z}/\varphi(p^k)\mathbb{Z}$ define:

$$a_i = \frac{p^k}{2} \sum_{s \in ((\mathcal{O}_K/p^k\mathcal{O}_K)^*/\{\pm 1\})_1} B_2 \left(\left< \frac{\frac{1}{2}(s + \bar{s})}{p^k} \right> \right).$$
We identify the cusps of \(X_{ns}^+(p^k) \) with the elements in \(H = (\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\} \) as explained in Proposition 5.2. In consideration of Proposition 4.5 we obtain:

\[
\text{div} \ G_{\omega}^+ d \left(\tau \right) = d \sum_{i=1}^{p^k - 1} a_i w^{i-1}.
\]

If \(p \not\equiv 11 \mod 12 \), the function \(G_{\omega}^+ \left(\tau \right) \) is not \(\Gamma_{ns}^+ (p^k) \)–invariant but with a slight abuse of notation we write:

\[
\text{div} \ G_{\omega}^+ \left(\tau \right) = \sum_{i=1}^{p^k - 1} a_i w^{i-1}.
\]

It is clear that \(\text{div} \ G_{\omega}^+ \left(\tau \right) \in \mathbb{Q}[H] \) and \(d \text{ div} \ G_{\omega}^+ \left(\tau \right) \in R. \) Consider the Stickelberger element:

\[
\text{div} \ G_{\omega}^+ \left(\tau \right) = \frac{p^k - 1}{2} \sum_{i=1}^{p^k - 1} \sum_{s|w^i} B_2 \left(\frac{1}{2} \left(s + \frac{s}{p^k} \right) \right) w^{-i} = \theta.
\]

Notice that: \(\text{div} \ G_{\omega}^+ \left(\tau \right) = w^j \theta. \) By Theorem 6.5 a \(\Gamma_{ns}^+ (p^k) \)–invariant function \(g(\tau) \in F_{p^k}^+ \) is a modular unit of \(X_{ns}^+(p^k) \), if and only if \(\text{div} g(\tau) \in R_d \theta. \) By [7, Proposition 2.3, Chapter 5] we have \(R_d \theta = R \theta \cap R. \)

Remark 7.2. Following Remark 6.6 consider \(G := \frac{C_{ns}^+(p^k)/\pm I}{C_{ns}^+(p^k)/\pm I} \cong (\mathbb{Z}/p^k\mathbb{Z})^* \) and let \(\rho \) be a generator of \(G/\{\pm 1\} \) with \(\pm \det \rho = w. \) We may identify the group \(H \) parameterizing the cusps of \(X_{ns}^+(p^k) \) with \(G/\{\pm 1\} \) observing that for every automorphism \(\rho^j \in G/\{\pm 1\} \) and each modular unit \(h(\tau) \in F_{ns}^+(p^k) \) we have:

\[
\text{ord}_{w^{-j}}(h(\tau)) = \text{ord}_{\rho^{-j}(\infty)}(h(\tau)) = \text{ord}_{\infty} \rho^j(h(\tau))
\]

and

\[
\text{div}(\rho^j(h(\tau))) = w^j \text{div}(h(\tau)).
\]

If \(\sum a_j \rho^j \in \mathbb{Z}[G/\{\pm 1\}] \cong \mathbb{Z}[H] \) we define

\[
\left(\sum a_j \rho^j \right) (h(\tau)) = \prod \rho^j(h(\tau))^{a_j}
\]

and clearly we have:

\[
\text{div} \left(\prod \rho^j(h(\tau))^{a_j} \right) = \left(\sum a_j \rho^j \right) \text{div}(h(\tau))
\]
so \(C_{n,s}^+(p^k) \) has a natural structure of \(\mathbb{Z}[H] \)-module which emphasizes the analogy with the classical theory of cyclotomic fields recalled in the introductory section.

Define:

\[
\theta' = \theta - \frac{(p+1)p^{2k-1}}{12} \sum_{i=1}^{\frac{p-1}{2}p^{k-1}} w^i
\]

and observe that \(\theta' \in R \) and \(\deg(\theta') = -\frac{p^2-1}{24}p^{3k-2} \).

Proposition 7.3. We have:

\[
R_0 \cap \left(R\theta' + p^{2k-1}R \sum_{i=1}^{\frac{p-1}{2}p^{k-1}} w^i \right) = R_d \theta.
\]

Proof. Let \(\alpha, \beta \in R \) such that:

\[
\alpha \theta' + p^{2k-1} \beta \sum_{i=1}^{\frac{p-1}{2}p^{k-1}} w^i \in R_0.
\]

Then

\[
-(\deg(\alpha))\frac{p^2-1}{24}p^{3k-2} + p^{2k-1} \deg(\beta)\frac{p-1}{2}p^{k-1} = 0
\]

implies \((p+1)\deg(\alpha) = 12\deg(\beta) \). This is equivalent to say:

\[
d = \frac{12}{\gcd(12, p+1)} \text{ divides } \deg(\alpha)
\]

and

\[
\alpha \theta' + p^{2k-1} \beta \sum w^i = \alpha \theta' + \frac{(p+1)p^{2k-1}\deg(\alpha)}{12} \sum w^i = \alpha \theta.
\]

Theorem 7.4. We have:

\[
|C_{n,s}^+(p^k)| = \frac{|\det A_{\theta'}|}{p^{2k-1}p^{k-1}e} = 24 \frac{\prod \frac{p^k}{2}B_{2,\chi}}{\gcd(12, p+1)(p-1)p^{k-1}},
\]

where \(A_{\theta'} \) is a circulant Toeplitz matrix, \(e = p^{3k-2}\frac{p-1}{24} \) and the product runs over all nontrivial characters \(\chi \) of \(C(p^k)/\pm I \) such that \(\chi(M) = 1 \) for every \(M \in C(p^k) \) with \(\det M = \pm 1 \).
Proof. From Proposition 7.3 and the following isomorphism:

\[
\frac{R_0}{(R_0 \cap (R\theta' + p^{2k-1}R \sum w^i))} \cong \left(\frac{R_0 + R\theta' + p^{2k-1}R \sum w^i}{(R\theta' + p^{2k-1}R \sum w^i)}\right)
\]

we deduce that

\[
|\mathcal{C}_n^+(p^k)| = \left(\frac{R_0 + R\theta' + p^{2k-1}R \sum w^i}{(R\theta' + p^{2k-1}R \sum w^i)}\right).
\]

From the following chain of consecutive inclusions:

\[
R \supset R_0 + R\theta' + p^{2k-1}R \sum w^i \supset R\theta' + p^{2k-1}R \sum w^i \supset R\theta'
\]

we obtain

\[
|\mathcal{C}_n^+(p^k)| = \left(\frac{R : R\theta'}{(R : R_0 + R\theta' + p^{2k-1}R \sum w^i) : (R\theta' + p^{2k-1}R \sum w^i) : R\theta'}\right).
\]

Define

\[
e := \gcd\left(\deg(\theta'), p^{2k-1}\deg\left(\sum w^i\right)\right) = p^{3k-2} \gcd\left(\frac{p^2 - 1}{24}, \frac{p - 1}{2}\right) = p^{3k-2} \frac{p - 1}{2d}.
\]

It is clear that

\[
R_0 + R\theta' + p^{2k-1}R \sum w^i = R_e,
\]

where by \(R_e\) we mean the ideal of \(R\) consisting of elements whose degree is divisible by \(e\). So

\[
\left(\frac{R : (R_0 + R\theta' + p^{2k-1}R \sum w^i)}{(R\theta' + p^{2k-1}R \sum w^i) : R\theta'}\right) = e.
\]

Regarding \((R\theta' + p^{2k-1}R \sum w^i) : R\theta'\), we observe that

\[
\left(\frac{R\theta' + p^{2k-1}R \sum w^i}{R\theta'}\right) \cong \left(\frac{p^{2k-1}R \sum w^i}{(p^{2k-1}R \sum w^i) \cap R\theta'}\right).
\]

But \(\prod_h G_{n_h}^{+n_h^+}\) is constant if and only if all \(n_h^+\) are the same and so

\[
\text{div} \prod_h G_{n_h}^{+n_h^+} = \left(\sum n_h^+ h\right) \theta = \sum n_h^+ h \left(\theta' + \frac{(p + 1)p^{2k-1}}{12} \sum_{i=1}^{p^{k-1}} w^i\right) = 0
\]

implies

\[
\left(\sum n_h^+ h\right) \theta' = -\frac{(p + 1)p^{2k-1}}{12} \sum n_h^+ \sum w^i \iff n_w^+ = n_{w^2}^+ = n_{w^3}^+ = ... = n_{w^k}^+.
\]
But
\[(\sum w^i)\theta' = \deg(\theta') \sum w^i = -\frac{p^2 - 1}{24} p^{3k-2} \sum w^i\]
so:
\[(R\theta' + p^{2k-1} R \sum w^i) : R\theta' = \frac{p^2 - 1}{24} p^{k-1}.\]
The last index we need to compute is \((R : R\theta').\) Write \(\theta' = \sum a_i' w^{-i}\) and \(a_i' = a_i - \frac{p+1}{12} p^{2k-1}.\) Define the following matrix:
\[
A_{\theta'} = \begin{pmatrix}
 a_0' & a_1' & a_2' & \ldots & a'_{\frac{p-1}{2}p^{k-1}-2} & a'_{\frac{p+1}{2}p^{k-1}-1} \\
 a'_0 & a_0' & a_1' & \ldots & a'_{\frac{p-1}{2}p^{k-1}-3} & a'_{\frac{p-1}{2}p^{k-1}-2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 a'_1 & a'_2 & a'_3 & \ldots & a'_0 & a'_1
\end{pmatrix}
\]
We have: \((R : R\theta') = |\det A_{\theta'}|.\) The matrix \(A_{\theta'}\) is a circulant Toeplitz matrix, in other words the coefficients \((A_{\theta'})_{i,j}\) depend only on \(i-j \mod \frac{p-1}{2}p^{k-1}.\)
This is the matrix of multiplication by \(\theta'\) in \(\mathbb{C}[H],\) so we easily deduce that for \(n = 1, 2, \ldots, \frac{p-1}{2}p^{k-1}\) the eigenvalues of \(A_{\theta'}\) are:
\[
\lambda_n = \sum_{j=1}^{\frac{p-1}{2}p^{k-1}} a'_j e^{\frac{4\pi i j n}{(p-1)p^{k-1}}}
\]
with corresponding eigenvectors:
\[
v_n = \sum_{j=1}^{\frac{p-1}{2}p^{k-1}} e^{\frac{4\pi i j n}{(p-1)p^{k-1}}} w^j.
\]
Observe that \(\lambda_{\frac{p-1}{2}p^{k-1}} = \sum a'_i = \deg(\theta') = -\frac{p^2 - 1}{24} p^{3k-2}\) and that according to the definition of Theorem 4.6, the others \(\lambda_n\) correspond to the generalized Bernoulli number \(\frac{p}{2} B_{2,\chi}\) where \(\chi\) runs over the nontrivial characters of \(C(p^k)/\pm I\) such that \(\chi(M) = 1\) for every \(M \in C(p^k)\) with \(\det M = \pm 1.\)

Gathering all this information together we obtain the desired result.

\[\square\]

8 Explicit calculation

In this section we examine the curve \(X^+_{ns}(p)\) more in details. Denote with \(v\) a generator of the multiplicative group of \(\mathbb{F}_{p^2}\) and indicate with \(\omega\) a generator
of the character group \(\mathbb{F}^\times_{p^2} \) viewing \(C(p) \cong \mathbb{F}^\times_{p^2} \). By Theorem 7.4 in this case we have:

\[
B_{2,\chi} = \sum_{x \in \mathbb{F}^\times_{p^2}/\pm 1} B_2 \left(\left\lfloor \frac{1}{2} \text{Tr}(x) \right\rfloor \pmod{p} \right) \chi(x),
\]

\[
|C_{ns}^+(p)| = \frac{24}{(p-1)\gcd(12, p+1)} \prod_{j=1}^{\frac{p-3}{2}} B_{2, \omega^{(2p+2)j}} = \frac{576}{(p-1)^2p(p+1)\gcd(12, p+1)} \det \left[\frac{p}{2} \left(\sum_{i=0}^{p} B_2 \left(\left\lfloor \frac{1}{2} \text{Tr}(p^{i-j}(p^j-1)) \right\rfloor \pmod{p} \right) - \frac{p+1}{6} \right) \right]_{1 \leq i, j \leq \frac{p-1}{2}}.
\]

In the following table we show the factorization of the orders of cuspidal divisor class groups \(C_{ns}^+(p) \) for some primes \(p \leq 101 \):

| \(p \) | \(|C_{ns}^+(p)| \) |
|--------|--------------------------|
| 5 | 1 |
| 7 | 1 |
| 11 | 11 |
| 13 | 7 \cdot 13^2 |
| 17 | 2^4 \cdot 3 \cdot 17^3 |
| 19 | 3 \cdot 19^3 \cdot 487 |
| 23 | 23^4 \cdot 37181 |
| 29 | 2^6 \cdot 5 \cdot 7^2 \cdot 29^6 \cdot 43^2 |
| 31 | 2^2 \cdot 5 \cdot 7 \cdot 11 \cdot 31^6 \cdot 2302381 |
| 37 | 3^4 \cdot 7^2 \cdot 19^3 \cdot 37^8 \cdot 577^2 |
| 41 | 2^6 \cdot 5^2 \cdot 7 \cdot 31^4 \cdot 41^9 \cdot 431^2 |
| 43 | 2^2 \cdot 19 \cdot 29 \cdot 43^9 \cdot 463 \cdot 1051 \cdot 416532733 |
| 53 | 3^2 \cdot 13^2 \cdot 53^{12} \cdot 96331^2 \cdot 379549^2 |
| 59 | 59^{14} \cdot 9988553613691393812358794271 |
| 67 | 67^{16} \cdot 193 \cdot 661^2 \cdot 2861 \cdot 8009 \cdot 11287 \cdot 9383200455691459 |
| 71 | 31 \cdot 71^{16} \cdot 113 \cdot 211 \cdot 281 \cdot 701^2 \cdot 12713 \cdot 13070849919225655729061 |
| 73 | 2^2 \cdot 3^4 \cdot 11^2 \cdot 73^{17} \cdot 79^2 \cdot 241^2 \cdot 3341773^2 \cdot 11596933^2 |
| 83 | 83^{19} \cdot 17210653 \cdot 151251379 \cdot 18934761332741 \cdot 48833370476331324749419 |
| 89 | 2^2 \cdot 3 \cdot 5 \cdot 11^2 \cdot 13^2 \cdot 89^{21} \cdot 4027^2 \cdot 262504573^2 \cdot 15354699728897^2 |
| 101 | 5^4 \cdot 17 \cdot 101^{24} \cdot 52951^2 \cdot 54371^2 \cdot 58884077243434864347851^2 |

We recall the following result of [1]:

Theorem 8.2. The genera of \(X_{ns}^+(p) \) are:

\[
g(X_{ns}^+(p)) = \frac{1}{24} \left(p^2 - 10p + 23 + 6 \left(\frac{-1}{p} \right) + 4 \left(\frac{-3}{p} \right) \right).
\]
Proof. It is a consequence of Hurwitz’s formula [17, Proposition 1.40]:

\[g(\Gamma) = 1 + \frac{d}{12} - \frac{e_2}{4} - \frac{e_3}{3} - \frac{e_\infty}{2}. \]

In this case: \(d := [\text{SL}_2(\mathbb{Z}) : \Gamma_{ns}^+(p)] = \frac{p(p-1)}{2} \), \(e_\infty = \frac{p-1}{2} \) is the number of cusps (see Proposition 5.2), \(e_2 \) and \(e_3 \) denote the number of elliptic points of period 2 and 3. We have (cfr. [13, Proposition 12]):

\[e_2 = \frac{p+1}{2} - \left(\frac{-1}{p} \right) \quad \text{and} \quad e_3 = \frac{1}{2} - \frac{1}{2} \left(\frac{-3}{p} \right). \]

By Theorem 8.2 we have \(g(X_{ns}^+(5)) = g(X_{ns}^+(7)) = 0 \) so it will not be surprising to find out that \(\mathcal{C}_{ns}^+(5) \) and \(\mathcal{C}_{ns}^+(7) \) are trivial.

For \(11 \leq p \leq 31 \) we provide further corroborative evidence of Table 8.1.

From [15, p. 195] we have:

Theorem 8.3. The modular curve \(X_{ns}^+(p) \) associated to the subgroup \(\mathcal{C}_{ns}^+(p) \) is a projective non-singular modular curve which can be defined over \(\mathbb{Q} \). The cusps are defined over \(\mathbb{Q}(\cos(\frac{2\pi}{p})) \), the maximal real subfield of the \(p \)-th cyclotomic field.

From [3] we have the following result:

Theorem 8.4. The jacobian of \(X_{ns}^+(p) \) is isogenous to the new part of the Jacobian \(J_0^+(p^2) \) of \(X_0^+(p^2) \).

From [14, Chapter 12] we have this interesting corollary of the Eichler-Shimura relation [4, pag. 354]:

Theorem 8.5. Let \(q \) be a prime that does not divide \(N \) and let \(f(x) \) the characteristic polynomial of the Hecke operator \(T_q \) acting on \(S_{2}^{new}(\Gamma_0^+(N)) \). Then:

\[|J_0^{+\text{new}}(N)(\mathbb{F}_q)| = f(q + 1). \]

Choose a prime \(q \equiv \pm 1 \mod p \) that does not divide \(|\mathcal{C}_{ns}^+(p)| \). From the previous theorems, the cuspidal divisor class group \(\mathcal{C}_{ns}^+(p) \) injects into \(J_0^{+\text{new}}(\mathbb{F}_q) \). So we expect that \(|\mathcal{C}_{ns}^+(p)| \) divides \(|J_0^{+\text{new}}(p^2)(\mathbb{F}_q)| = f_{q,p^2}(q + 1) \) where \(f_{q,p^2} \) is the characteristic polynomial of the Hecke operator \(T_q \) acting on \(S_{2}^{new}(\Gamma_0^+(p^2)) \). From the modular form database of W.Stein we have:

\[|J_0^{+\text{new}}(11^2)(\mathbb{F}_{23})| = f_{23,121}(24) = 3 \cdot 11, \]
\[|J_0^{+\text{new}}(11^2)(\mathbb{F}_{43})| = f_{43,121}(44) = 2^2 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{67})| = f_{67,121}(68) = 5 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{89})| = f_{89,121}(90) = 3^2 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{109})| = f_{109,121}(110) = 2 \cdot 5 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{131})| = f_{131,121}(132) = 2^2 \cdot 3 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{197})| = f_{197,121}(198) = 2 \cdot 3^2 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{199})| = f_{199,121}(200) = 2^2 \cdot 5 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{241})| = f_{241,121}(242) = 2 \cdot 11^2, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{263})| = f_{263,121}(264) = 2^3 \cdot 3 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{307})| = f_{307,121}(308) = 2^2 \cdot 7 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{331})| = f_{331,121}(332) = 3^3 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{353})| = f_{353,121}(354) = 3 \cdot 11^2, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{373})| = f_{373,121}(374) = 2 \cdot 11 \cdot 17, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{397})| = f_{397,121}(398) = 2^2 \cdot 3^2 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{419})| = f_{419,121}(420) = 2^2 \cdot 3^2 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{439})| = f_{439,121}(440) = 2^3 \cdot 5 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{461})| = f_{461,121}(462) = 2 \cdot 3 \cdot 7 \cdot 11, \]
\[|J_0^{\text{new}}(11^2)(\mathbb{F}_{463})| = f_{463,121}(464) = 3^2 \cdot 5 \cdot 11, \]

\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{53})| = f_{53,169}(54) = 7 \cdot 13^2 \cdot 127, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{79})| = f_{79,169}(80) = 7 \cdot 13^2 \cdot 449, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{103})| = f_{103,169}(104) = 7 \cdot 13^2 \cdot 967, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{131})| = f_{131,169}(132) = 7 \cdot 13^5, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{157})| = f_{157,169}(158) = 7^2 \cdot 13^2 \cdot 503, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{181})| = f_{181,169}(182) = 7 \cdot 13^2 \cdot 4327, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{233})| = f_{233,169}(234) = 7 \cdot 13^2 \cdot 11731, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{311})| = f_{311,169}(312) = 7 \cdot 13^3 \cdot 26249, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{313})| = f_{313,169}(314) = 7 \cdot 13^2 \cdot 29443, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{337})| = f_{337,169}(338) = 7 \cdot 13^2 \cdot 35449, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{389})| = f_{389,169}(390) = 2^3 \cdot 7 \cdot 13^2 \cdot 71 \cdot 83, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{443})| = f_{443,169}(444) = 2^3 \cdot 7 \cdot 13^3 \cdot 643, \]
\[|J_0^{\text{new}}(13^2)(\mathbb{F}_{467})| = f_{467,169}(468) = 7 \cdot 13^2 \cdot 93199, \]

\[|J_0^{\text{new}}(17^2)(\mathbb{F}_{67})| = f_{67,289}(68) = 2^8 \cdot 3 \cdot 17^5 \cdot 71, \]
\[|J_0^{\text{new}}(17^2)(\mathbb{F}_{101})| = f_{101,289}(102) = 2^4 \cdot 3^2 \cdot 7 \cdot 17^3 \cdot 19 \cdot 79 \cdot 181, \]
\[|J_0^{\text{new}}(17^2)(\mathbb{F}_{103})| = f_{103,289}(104) = 2^7 \cdot 3^4 \cdot 17^4 \cdot 1601, \]
\[|J_0^{\text{new}}(17^2)(\mathbb{F}_{137})| = f_{137,289}(138) = 2^6 \cdot 3^8 \cdot 17^4 \cdot 181, \]
\[|J_0^{\text{new}}(17^2)(\mathbb{F}_{239})| = f_{239,289}(240) = 2^8 \cdot 3^2 \cdot 17^3 \cdot 373 \cdot 48871, \]
\[|J_0^{\text{new}}(17^2)(\mathbb{F}_{271})| = f_{271,289}(272) = 2^5 \cdot 3^9 \cdot 5^3 \cdot 17^4 \cdot 53, \]
\begin{align*}
|J_0^{\text{new}}(17^2)(\mathbb{F}_{307})| &= f_{307,289}(308) = 2^6 \cdot 3^5 \cdot 5 \cdot 17^3 \cdot 23 \cdot 71 \cdot 1423, \\
|J_0^{\text{new}}(17^2)(\mathbb{F}_{373})| &= f_{373,289}(374) = 2^4 \cdot 3^4 \cdot 17^3 \cdot 23 \cdot 73 \cdot 101 \cdot 2789, \\
|J_0^{\text{new}}(17^2)(\mathbb{F}_{409})| &= f_{409,289}(410) = 2^7 \cdot 3^5 \cdot 17^3 \cdot 23 \cdot 53 \cdot 71 \cdot 359, \\
|J_0^{\text{new}}(17^2)(\mathbb{F}_{443})| &= f_{443,289}(444) = 2^5 \cdot 3^2 \cdot 13 \cdot 17^4 \cdot 19 \cdot 79 \cdot 15263, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{37})| &= f_{37,361}(38) = 2 \cdot 3 \cdot 19^3 \cdot 37 \cdot 487 \cdot 5441, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{113})| &= f_{113,361}(114) = 2^5 \cdot 3^7 \cdot 19^7 \cdot 487, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{151})| &= f_{151,361}(152) = 2^4 \cdot 3^3 \cdot 17 \cdot 19^4 \cdot 487 \cdot 1459141, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{191})| &= f_{191,361}(192) = 3^2 \cdot 11^5 \cdot 19^6 \cdot 73 \cdot 487, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{227})| &= f_{227,361}(228) = 2^2 \cdot 3^4 \cdot 19^3 \cdot 487 \cdot 971 \cdot 7323581, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{229})| &= f_{229,361}(230) = 3 \cdot 11 \cdot 17 \cdot 19^3 \cdot 467 \cdot 487 \cdot 2819^2, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{379})| &= f_{379,361}(380) = 2^6 \cdot 3 \cdot 5 \cdot 19^3 \cdot 179 \cdot 487 \cdot 4019 \cdot 33247, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{419})| &= f_{419,361}(420) = 2^6 \cdot 3^2 \cdot 3^3 \cdot 19^3 \cdot 487 \cdot 599^2 \cdot 16487, \\
|J_0^{\text{new}}(19^2)(\mathbb{F}_{457})| &= f_{457,361}(458) = 2^4 \cdot 3 \cdot 5^4 \cdot 19^3 \cdot 487 \cdot 521^2 \cdot 65629, \\
|J_0^{\text{new}}(23^2)(\mathbb{F}_{47})| &= f_{47,529}(48) = 2^3 \cdot 3^3 \cdot 7^4 \cdot 11 \cdot 13 \cdot 23^4 \cdot 8117 \cdot 37181, \\
|J_0^{\text{new}}(23^2)(\mathbb{F}_{137})| &= f_{137,529}(138) = 2^4 \cdot 3^6 \cdot 23^3 \cdot 2399 \cdot 37181 \cdot 75553, \\
|J_0^{\text{new}}(23^2)(\mathbb{F}_{139})| &= f_{139,529}(140) = 2^4 \cdot 3^8 \cdot 23^9 \cdot 107^2 \cdot 109 \cdot 37181, \\
|J_0^{\text{new}}(23^2)(\mathbb{F}_{229})| &= f_{229,529}(230) = 2^6 \cdot 11 \cdot 23^6 \cdot 43 \cdot 67 \cdot 37181 \cdot 325729 \cdot 1296721, \\
|J_0^{\text{new}}(23^2)(\mathbb{F}_{277})| &= f_{277,529}(278) = 2^8 \cdot 3^{10} \cdot 23^7 \cdot 113^2 \cdot 331 \cdot 7193 \cdot 37181, \\
|J_0^{\text{new}}(23^2)(\mathbb{F}_{367})| &= f_{367,529}(368) = 2^4 \cdot 23^5 \cdot 67^2 \cdot 193 \cdot 1847 \cdot 37181 \cdot 44617 \cdot 8643209, \\
|J_0^{\text{new}}(23^2)(\mathbb{F}_{461})| &= f_{461,529}(462) = 3^6 \cdot 7^4 \cdot 23^7 \cdot 43^2 \cdot 67 \cdot 199 \cdot 2857^2 \cdot 37181, \\
|J_0^{\text{new}}(29^2)(\mathbb{F}_{59})| &= f_{59,841}(60) = 2^8 \cdot 3^2 \cdot 5 \cdot 7^2 \cdot 11^2 \cdot 17 \cdot 23^2 \cdot 29^6 \cdot 43^2 \cdot 569 \cdot 967^2 \cdot 2999 \cdot 11695231, \\
|J_0^{\text{new}}(29^2)(\mathbb{F}_{173})| &= f_{173,841}(174) = 2^{10} \cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 29^6 \cdot 31 \cdot 41^2 \cdot 43^2 \cdot 89 \cdot 419^2 \cdot 719 \cdot 1061 \cdot 36571 \cdot 1269691 \cdot 1909421, \\
|J_0^{\text{new}}(29^2)(\mathbb{F}_{233})| &= f_{233,841}(234) = 2^{10} \cdot 3^2 \cdot 5 \cdot 2^7 \cdot 29^6 \cdot 43^2 \cdot 167^2 \cdot 211^2 \cdot 421 \cdot 1049 \cdot 3989 \cdot 317321 \cdot 422079165281099, \\
|J_0^{\text{new}}(29^2)(\mathbb{F}_{347})| &= f_{347,841}(348) = 2^8 \cdot 3^{12} \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 23^2 \cdot 29^6 \cdot 31 \cdot 43^2 \cdot 71 \cdot 127^2 \cdot 967^2 \cdot 9601 \cdot 783719 \cdot 7292886801, \\
|J_0^{\text{new}}(29^2)(\mathbb{F}_{349})| &= f_{349,841}(350) = 2^8 \cdot 5^9 \cdot 7^2 \cdot 13^2 \cdot 19 \cdot 23 \cdot 29^7 \cdot 43^2 \cdot 83^2 \cdot 103 \cdot 211 \cdot 3786151 \cdot 92610181 \cdot 3477902249, \\
|J_0^{\text{new}}(29^2)(\mathbb{F}_{463})| &= f_{463,841}(464) = 2^{13} \cdot 5^7 \cdot 7^7 \cdot 29^6 \cdot 43^3 \cdot 59 \cdot 97^3 \cdot 461^3 \cdot 1459 \cdot 23656223369 \cdot 230667656992649, \\
|J_0^{\text{new}}(31^2)(\mathbb{F}_{61})| &= f_{61,961}(62) = 2^{10} \cdot 5 \cdot 7 \cdot 11 \cdot 31^7 \cdot 137 \cdot 179 \cdot 1249 \cdot 10369 \cdot \ldots
\end{align*}
Cuspidal divisor class groups of non-split Cartan curves

26699 · 38177 · 2302381 · 24080801,

\[|J_0^{\text{new}}(31^2)(\mathbb{F}_{311})| = f_{311,961}(312) = 2^8 \cdot 3^2 \cdot 5 \cdot 7^2 \cdot 11 \cdot 31 \cdot 409 \cdot 3793^2 \cdot 51551^2 \cdot 162691 \cdot 2302381 \cdot 22340831 \cdot 24037019, \]

\[|J_0^{\text{new}}(31^2)(\mathbb{F}_{373})| = f_{373,961}(374) = 2^4 \cdot 5 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 31^6 \cdot 251 \cdot 449 \cdot 366424077359 \cdot 13600706515978033^{2}, \]

\[|J_0^{\text{new}}(31^2)(\mathbb{F}_{433})| = f_{433,961}(434) = 2^6 \cdot 3^6 \cdot 7 \cdot 11 \cdot 17 \cdot 31^{11} \cdot 53053053405791. \]

For \(11 \leq p \leq 23 \) we have:

\[\gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod p} |J_0^{\text{new}}(p^2)(\mathbb{F}_q)| = |\mathcal{C}_n^+(p)|. \]

For \(p = 29 \) and \(p = 31 \) we have:

\[\gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod p} |J_0^{\text{new}}(p^2)(\mathbb{F}_q)| = 4|\mathcal{C}_ns^+(p)|. \]

We can improve the result by using the isogeny (cfr. Paragraph 6.6]):

\[J_0^{\text{new}}(p^2) \rightarrow \bigoplus_f A'_{p,f} \]

where the sum is taken over the equivalence classes of newforms \(f \in S_2(\Gamma_0^+(p^2)) \).

Two forms \(f \) and \(g \) are declared equivalent if \(g = \sigma f \) for some automorphism \(\sigma : \mathbb{C} \rightarrow \mathbb{C} \). Denote with \(K_f \) the number field of \(f \). We have:

\[\gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod 29} |A'_{29,f_1}(\mathbb{F}_q)| = 7^2 \text{ where } K_{f_1} = \mathbb{Q}(\sqrt{2}), \]

\[\gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod 29} |A'_{29,f_2}(\mathbb{F}_q)| = 29 \text{ where } K_{f_2} = \mathbb{Q}(\sqrt{5}), \]

\[\gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod 29} |A'_{29,f_3}(\mathbb{F}_q)| = \gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod 29} |A'_{29,f_4}(\mathbb{F}_q)| = 2^3 \cdot 43 \]

where \(K_{f_3} = K_{f_4} \) and \([K_{f_3} : \mathbb{Q}] = 3, \)

\[\gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod 29} |A'_{29,f_5}(\mathbb{F}_q)| = 5 \cdot 29^2 \text{ where } [K_{f_5} : \mathbb{Q}] = 6, \]

\[\gcd_{q \text{ prime}, \: q \equiv \pm 1 \mod 29} |A'_{29,f_6}(\mathbb{F}_q)| = 29^3 \text{ where } [K_{f_6} : \mathbb{Q}] = 8. \]
\[\gcd_{q < 500 \text{ prime}, \ q \equiv \pm 1 \mod 31} |A'_{31,g_1}(\mathbb{F}_q)| = 2^2 \cdot 7 \text{ where } \mathbb{K}_{g_1} = \mathbb{Q}(\sqrt{2}), \]

\[\gcd_{q < 500 \text{ prime}, \ q \equiv \pm 1 \mod 31} |A'_{31,g_2}(\mathbb{F}_q)| = 5 \cdot 11 \text{ where } \mathbb{K}_{g_2} = \mathbb{Q}(\sqrt{5}), \]

\[\gcd_{q < 500 \text{ prime}, \ q \equiv \pm 1 \mod 31} |A'_{31,g_3}(\mathbb{F}_q)| = 2302381 \text{ where } [\mathbb{K}_{g_3} : \mathbb{Q}] = 8, \]

\[\gcd_{q < 500 \text{ prime}, \ q \equiv \pm 1 \mod 31} |A'_{31,g_4}(\mathbb{F}_q)| = 31^6 \text{ where } [\mathbb{K}_{g_4} : \mathbb{Q}] = 16. \]

So for \(p = 29 \) and \(p = 31 \) we have:

\[\prod_f \gcd_{q < 500 \text{ prime}, \ q \equiv \pm 1 \mod p} |A'_{p,f}(\mathbb{F}_q)| = |\mathcal{C}^+_{ns}(p)| \]

where the product runs over all equivalence classes of newforms.

Acknowledgements

I would like to express my gratitude to my advisor Prof. René Schoof for his valuable remarks during the development of this research work, especially for the last section.

References

[1] B. Baran, Normalizers of non-split Cartan subgroups, modular curves and the class number one problem, Journal of Number Theory, vol. 130, 2010, 2753–2772.

[2] Y. Bilu, P. Parent and M. Rebolledo, Rational points on \(X_0(p^r) \), Ann. Inst. Fourier.

[3] I. Chen, The Jacobian of non-split Cartan modular curves, Proc. London Math. Soc. (3) 77 (1998), no.1, 1–38.

[4] F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, vol.228, Springer Verlag, New York, 2005.

[5] V.G. Drinfeld, Two theorems on modular curves, Functional Analysis and its applications, Vol.7 No.2, translated from the Russian, April-June 1973, pp. 155–156.
[6] H. Iwaniec, *Topics in Classical Automorphic Forms*, American Mathematical Society: Providence 1997.

[7] D. Kubert and S. Lang, *Modular Units*, Grundlehren der mathematischen Wissenschaften 244, Springer Verlag, New York-Berlin, 1981.

[8] D. Kubert and S. Lang, *Units in the modular function field IV, The Siegel functions are generators*, Math. Ann. 227 (1977) pp. 223–242.

[9] S. Lang, *Elliptic functions*, Addison Wesley, 1974.

[10] S. Lang, *Introduction to Modular Forms*, Springer Verlag, 1977.

[11] J. Manin, *Parabolic points and zeta functions of modular curves*, Izv.Akad.Nauk SSSR, Vol.6 No.1 (1972) American Mathematical Society translation pp. 19–64.

[12] B. Mazur, *Rational isogenies of prime degree*, Inv. Math. 44 (1978), 129–162.

[13] M. Rebolledo and C. Wuthrich, *A moduli interpretation for the non-split modular curve*, 2014.

[14] K.A. Ribet and W.A. Stein, *Lectures on Modular Forms and Hecke Operators*, 2011.

[15] J.P. Serre, *Lectures on the Mordell-Weil Theorem*, third ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997.

[16] J.P. Serre, *Propropriétés galoisienne des points d’ordre fini des courbes elliptiques*, Invent. Math. 15, 259–331, 1972.

[17] G. Shimura, *Introduction to the Arithmetic Theory of Automorphic Functions*, Iwanami Shoten and Princeton University Press, 1971.

[18] C.L. Siegel, *Lectures on advanced analytic number theory*, Tata Institute Lecture Notes, 1961, 259–331.

[19] J. Silverman, *Advanced topics in the arithmetic of elliptic curves*, Graduate Texts in Mathematics 151 (1994), Springer

[20] L.C. Washington, *Introduction to Cyclotomic Fields*, Volume 83 of Graduate Texts in Mathematics, Springer-Verlag, 1982.