Microwave Performance, Microstructure, and Crystallization of (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_y$TiO$_3$ Ilmenite Ceramics

Chun-Hsu Shen 1, Chung-Long Pan 2, Shih-Hung Lin 1,* and Cheng-Che Ho 1,*

Abstract: The sintering behavior, microstructure analysis, crystallization, and microwave performance of (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_y$TiO$_3$ ($y = 0.01–0.2$) ceramics, processed with raw powders of MgO, NiO, ZnO, and TiO$_2$ via the conventional solid-state method, are investigated. The main phases of (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_y$TiO$_3$ ceramics were obtained. With partial replacement by Ni$^{2+}$, the (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ could be well sintered at 1200 $^\circ$C, and the microwave performance was shown to be positively correlated with sintering temperature. The permittivity (ε_r) saturated at 18.7–19.3, and the quality factor (Qf) values approached 72,000–165,000 (GHz) as the sintering temperatures increase from 1125 to 1250 $^\circ$C. The temperature coefficient of resonance frequency (τ_f) falls in a stable range of -62.9 to -66 ppm/$^\circ$C as sintering temperature rising. A permittivity (ε_r) of 19.3, a maximum Qf value of 165,000 (GHz), and a temperature coefficient (τ_f) of -65.4 ppm/$^\circ$C were measured for the samples at 1200 $^\circ$C/4 h. (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ material system shows high potential for applications of high frequency-selection components in satellite communication and 5G wireless telecommunication systems.

Keywords: dielectric materials; microwave properties; microstructure; low loss

1. Introduction

Recent demands for high-frequency electronic components are increasing, and ceramic-based compositions are extensively used in satellite communications, including DBS TV, GPS, Internet of Things (IoT), etc., and 5G telecommunications, cell phone, cell site, etc. Furthermore, microwave dielectric ceramics are widely used for filters, resonators, and mixers in wireless communication systems [1–4]. In microwave telecommunications, microwave resonators fabricated by dielectric ceramics result in the miniaturization of microwave devices.

Materials possessing the following dielectric properties are suitable for dielectric resonators [5–8]: (1) Permittivity (ε_r) > 20: The permittivity is an essential factor for component size reduction. (2) Quality factor (tanδ, the inverse of the dielectric loss) > 30,000 (GHz): Lower insertion loss and steeper cut-off can be obtained due to a higher Qf value, which ensured the lower dielectric loss of components. (3) Temperature coefficient of resonance frequency (τ_f) < ±10 ppm/$^\circ$C: A near-zero τ_f value (<±10 ppm/$^\circ$C) is necessary for the stability of device performance even temperature changes enormously in the environment. Generally speaking, three parameters strongly affect the size, frequency selectivity, and temperature stability of the device to the system, respectively.

MgTiO$_3$-based ceramics, which possessed an ilmenite-type structure and trigonal space group R-3 have caught much attention and typical applications as dielectric resonators [9], filters, antennas, and so on for microwave communication systems due to its good microwave dielectric performance recently. MgTiO$_3$ sintered at 1350 $^\circ$C was demonstrated excellent dielectric performance in microwave frequency: ε_r ~17, Qf value ~160,000
(at 7 GHz) and temperature coefficients of resonance frequency (τ_f) \sim 51 ppm/°C [10]. Furthermore, (Mg$_0.6$Zn$_{0.4}$)TiO$_3$ sintered at 1200 °C with ε_r \sim 19.8, Qf value \sim 144,000 and τ_f \sim 66 ppm/°C have also been demonstrated as promising titanate candidate for broad applications in this microwave frequency. Some researchers pay attention to comprehensively investigate the effects of relative contents between Mg and Zn in (Mg$_{0.5}$Zn$_{0.5}$)TiO$_3$ system [11,12]. As a result, microwave dielectric performance of (Mg$_{0.5}$Zn$_{0.5}$)TiO$_3$ highly depended on the content of Mg.

It was reported that the partial replacement of Mg by B$^{2+}$ (B$^{2+}$ = Co, Ni, and Zn) increases the structural densification and upgrades the dielectric performance of MgTiO$_3$. (Mg$_{0.95}$B$^{2+0.05}$)TiO$_3$ with an ilmenite-type structure has been documented to possess excellent dielectric performance [8,13,14]. Since the ionic radii of B$^{2+}$ (0.0745 nm of Co$^{2+}$, 0.068 nm of Ni$^{2+}$, and 0.082 nm of Zn$^{2+}$) approach to that of Mg$^{2+}$ (0.072 nm), Mg$^{2+}$ ions can be replaced by B$^{2+}$ ions to form (Mg, B$^{2+}$)TiO$_3$ compound. However, the (Mg$_{0.95}$ B$^{2+0.05}$)TiO$_3$ shows a negative temperature coefficient (τ_f). In the previous study, combining some large positive τ_f compensator with (Mg$_{0.95}$ B$^{2+0.05}$)TiO$_3$ is effective to obtain near-zero τ_f value in the whole material system [14–21]. It is noted that the second phase of Mg$_{0.95}$B$^{2+0.05}$TiO$_3$ (B$^{2+}$ = Co, Ni, and Zn) might deteriorate the dielectric performance of the (Mg$_{0.95}$ B$^{2+0.05}$)TiO$_3$ system, and we could not precisely evaluate the effect of Mg$_{0.95}$B$^{2+0.05}$TiO$_3$ phase [22–27].

In this paper, with partial substitution of Mg$^{2+}$ (0.072 nm) by Ni$^{2+}$ (0.069 nm), the microstructure densification of (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ was observed, and microwave dielectric performance of that was also further improved compared to (Mg$_{0.6}$Zn$_{0.4}$)TiO$_3$. The (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ were fabricated via a solid-state method. The microwave dielectric performance was investigated according to the densification, the x-ray diffraction (XRD) analysis, and the samples’ microstructures (SEM and EDS). The correlation between the microstructure and the Qf value was also investigated in detail.

2. Experimental Analysis

Conventional solid-state methods were utilized to synthesize samples of (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_{y}$TiO$_3$ ($y = 0.01–0.2$) from high-purity oxide powders (>99.9%): MgO, NiO, and TiO$_2$. Raw MgO powder was fired at 600 °C/1h to avoid moisture retention due to its hygroscopic characteristic. (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_{y}$TiO$_3$ ($y = 0.01–0.2$) compounds were made from mixed oxides stoichiometrically and ground in distilled water for 24 h in a ball mill with agate balls. The mixed solution was dried in the oven and calcined at 1100 °C for 4 h in a high-temperature furnace. A 3.5 wt% of a 12% PVA solution as a binder (Polyvinyl alcohol 500, Showa) was added into the calcined powder, granulated by sieving through a 100 mesh, and pressed into pellets, 11 mm in diameter and 5 mm in thickness, under 200 MPa pressure. The pellets were sintered at temperatures ranging from 1125 to 1250 °C for 4 h in the atmosphere. The heating and cooling rates of a high-temperature furnace were both set at 10 °C/min to obtain high-quality samples.

The crystalline phases of the calcined powder and the sintered ceramics were distinguished by X-ray diffraction (XRD) using CuKa ($\lambda = 0.15406$ nm) radiation with a Siemens D5000 diffractometer (Siemens, Berlin/Munich, Germany). Scanning electron microscopy (SEM; Philips, Amsterdam, The Netherlands) was utilized to observe the sintered surface’s microstructure, and an energy-dispersive X-ray spectrometer (Philips) was used to identify the existence of secondary phases. Calculation of lattice parameter was performed with the Rietveld method to fit at least five peaks from measured X-Ray patterns. The apparent densities were measured using the Archimedes method with the three sintered samples under the same process and average measured data to calculate relative densities. The permittivity (ε_r) and the quality factor (Q) at microwave frequencies were measured by the Hakki–Coleman dielectric resonator method [28,29]. This method utilizes parallel conducting plates and coaxial probes in TE$_{011}$ mode, where TE represented transverse electric waves, the first two subscript integers denote the waveguide mode, and the third integer subscript indicates the order of resonance in an increasing set of discrete resonant
lengths. The measurement system was connected to Anritsu network analyzer with model MS46122B. The measurement technique for the temperature coefficient of resonance frequency (τ_f) is almost the same as that of the quality factor measurement except for using a thermostat. The τ_f at microwave frequencies was measured, and note change of resonance frequency from 30 °C to 80 °C. The following formula can calculate the τ_f value (ppm/°C),

$$\tau_f = \frac{f_2 - f_1}{f_1(T_2 - T_1)}$$ \hspace{1cm} (1)

where f_1 and f_2 mean the resonance frequencies at $T_1 = 25$ °C and $T_2 = 80$ °C, respectively.

3. Results and Discussion

Figure 1 shows the room-temperature XRD analysis of (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_y$TiO$_3$ ($y = 0.01–0.2$) sintered at 1200 °C for 4 h. The (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ with an ilmenite-type structure, the same as (Mg$_{0.6}$Zn$_{0.4}$)$_{0.6}$TiO$_3$: trigonal (ICDD #01-073-7752), were identified as the main phase associated with the apparent second phase (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$Ti$_2$O$_5$ identical to MgTi$_2$O$_5$ (JCPDS File No. 82-1125). MgTi$_2$O$_5$, called the second phase, is typically formed as an intermediate phase during the crystal growth of what is challenging to eliminate from the sample when MgO and TiO$_2$ react in a 1:2 molar ratio [30–32].

The formation of (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$Ti$_2$O$_5$ might degrade the microwave dielectric performance of (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ ceramics. As expected, the second phase (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ was enhanced at high temperatures since the Mg$_{0.6}$Zn$_{0.4}$Ni$_{0.05}$Ti$_2$O$_5$ requires a high sintering temperature of 1450 °C [26,33]. In other words, less (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$Ti$_2$O$_5$ phase would exist at lower sintering temperatures [34]. Similar XRD analysis was identified for the samples with $y = 0.05$ sintering at 1125–1250 °C for 4 h (Figure 2).

The lattice parameters of (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_y$TiO$_3$ ceramics sintered at 1200 °C for 4 h with various y values were also calculated for further structure investigation and forming of solid solution (Table 1). A decrease in the lattice parameters was observed for (Mg$_{0.6}$Zn$_{0.4}$)$_{1-y}$Ni$_y$TiO$_3$ ceramics compared to that of (Mg$_{0.6}$Zn$_{0.4}$)$_{0.6}$TiO$_3$ (ICDD #01-073-7752). The results explain that (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ would form a solid solution due to the replacement of Mg$^{2+}$, Zn$^{2+}$ by 0.05 mole Ni$^{2+}$. Formation of (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ would result in a fluctuation in the lattice parameters because the smaller Ni$^{2+}$ ions (radii = 0.069 nm) relative to the size of the Mg$^{2+}$ ions (radii = 0.072 nm) and Zn$^{2+}$ ions (0.082 nm) are added in (Mg$_{0.6}$Zn$_{0.4}$)$_{0.6}$TiO$_3$, lead to the lattice of (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ locally distorted in A-site. These data indicated that with the partial replacement of Mg$^{2+}$, Zn$^{2+}$ by 0.05 mole Ni$^{2+}$, formation of (Mg$_{0.6}$Zn$_{0.4}$)$_{0.95}$Ni$_{0.05}$TiO$_3$ solid solution would...
demonstrate a decrease in the lattice parameters from \((a = 0.5064, \text{ and } c = 1.3918 \text{ nm})\) in \((\text{Mg}_{0.6}\text{Zn}_{0.4})\text{TiO}_3\) to \((a = 0.5063, \text{ and } c = 1.3912 \text{ nm})\).

![Graphical representation of XRD analysis](image)

Figure 2. XRD analysis of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) sintered at 1125–1250 °C for 4 h. [+: \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\), O: \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{Ti}_2\text{O}_5\)].

Table 1. The calculated lattice parameter of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3\) ceramic with \(y = 0.01–0.2\).

\(y\)	Sintering	\(a (\text{nm})\)	\(c (\text{nm})\)
Value	Temperature (°C)		
\(0.01\)	1175	0.50656 ± 0.00051	1.39113 ± 0.00082
	1200	0.50702 ± 0.00090	1.39242 ± 0.000146
	1225	0.50481 ± 0.00055	1.38946 ± 0.00089
\(0.03\)	1175	0.50650 ± 0.00079	1.39209 ± 0.000170
	1200	0.50713 ± 0.00057	1.39041 ± 0.000121
	1225	0.50689 ± 0.00054	1.39147 ± 0.000087
\(0.05\)	1175	0.50671 ± 0.00057	1.39158 ± 0.000122
	1200	0.50670 ± 0.00032	1.39196 ± 0.000069
	1225	0.50545 ± 0.00063	1.39144 ± 0.000103
\(0.07\)	1175	0.50632 ± 0.00045	1.39188 ± 0.000096
	1200	0.50585 ± 0.00106	1.38861 ± 0.000227
	1225	0.50565 ± 0.00039	1.39175 ± 0.000064
\(0.1\)	1200	0.50577 ± 0.00068	1.39031 ± 0.000110
\(0.2\)	1200	0.50593 ± 0.00090	1.38992 ± 0.000146

The micrographs of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) sintered at different temperatures for 4 h are revealed in Figure 3. The microstructures of samples were not dense at 1125 °C. The growth of rod-shaped grain was enhanced at temperatures higher than 1225 °C and possibly the second phase. EDS analysis for Spot A–D and E–F identified the quantity composition of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) sintered at 1200 °C and \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{Ti}_2\text{O}_5\) sintered at 1250 °C for 4 h, as shown in Figure 4a,b, respectively. Two kinds of grains possessed Mg, Zn, Ni, Ti, and O ions with different stoichiometric compositions \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) and \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{Ti}_2\text{O}_5\), respectively, were clearly distinguished in the multiphase ceramics. The grain composition analysis observed from points A–F demonstrated that \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) and \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{Ti}_2\text{O}_5\) form solid solutions to a certain degree, which is consistent with XRD analysis.
Figure 3. SEM photographs of \((\text{Mg}_{0.6}Zn_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) sintered at temperature range (a) 1125, (b) 1150, (c) 1175, (d) 1200, (e) 1225 and (f) 1250 °C for 4 h.

Figure 4. The EDS analysis of (a) \((\text{Mg}_{0.6}Zn_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) sintered at 1200 °C (b) \((\text{Mg}_{0.6}Zn_{0.4})_{0.95}\text{Ni}_{0.05}\text{Ti}_2\text{O}_5\) sintered at 1250 °C for 4 h.
The apparent and relative density of the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3\) with \(y = 0.01–0.2\) sintered at different temperatures (1125–1250 °C) for 4 h is demonstrated in Figure 5. The relative density of the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3\) exceeded 91.6% of the theoretical density (TD) in all specimens. The apparent density of the samples increased when the temperature increased from 1125 to 1200 °C. This increase in the apparent density can be attributed to the formation of dense microstructures, as observed in Figure 3d. The apparent density decreased when the temperature exceeded 1200 °C.

![Figure 5. Dependent relationship of apparent density (g/cm³) and relative density (%) of the (Mg_{0.6}Zn_{0.4})_{1-y}Ni_yTiO_3 ceramics with y = 0.01–0.2 under 1125–1250 °C.](image)

This decrease in the apparent density could result from the formation of a porous microstructure with large pores, as observed in Figure 3e,f. The apparent density and its corresponding TD increased from 4.15 g/cm³ (94.32% TD) to its maximum value of 4.39 g/cm³ (99.77% TD), and then decreased to 4.33 g/cm³ (98.41% TD) for the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) ceramics.

The permittivity and quality factor \((Q_f)\) of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3\) ceramics sintered at temperatures for 4 h with various \(y\) values \((0.01–0.2)\) are shown in Figure 6. The relationship between permittivity \((\varepsilon_r)\) values and temperature reveals the same trend between densities and temperature since higher density means lower porosity inside samples. The permittivity increased with increasing temperature, reaching a maximum of 19.3 at 1200 °C and after that decreasing. Thus, increasing sintering temperature does not always result in a higher permittivity \((\varepsilon_r)\). The permittivity of the well-sintered \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) ceramics ranged from 17.9 to 19.3 at 1125–1200 °C. A maximum \(\varepsilon_r\) value of 19.3 was reached for the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) sintered at 1200 °C for 4 h.

The \(Q_f\) value is a crucial index for microwave dielectric ceramics applications because a high \(Q_f\) value represented a lower dielectric loss for microwave devices. \(Q_f\) values increased when temperature increased from 1125 °C to 1200 °C (Figure 6), consistent with the variation of bulk density, as shown in Figure 5. The increase of \(Q_f\) value at low temperatures is attributed to the rise in density identical to grain growth uniformity, as shown in Figure 3. A maximum \(Q_f\) value of 165,000 (GHz) was observed for the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) ceramics sintered at 1200 °C for 4 h. \(Q_f\) value reached a maximum at 1200 °C, and after that, it decreased. The \(Q_f\) value degraded due to the inhomogeneous grain growth, which leads to a reduction of density, as mentioned in Figure 3. There are several possible mechanisms to cause microwave dielectric loss, such as the lattice vibrational modes, the pores, second phases, impurities, and lattice defects [35]. Furthermore, apparent density also closely affects the dielectric loss and has also been demonstrated in microwave dielectric mate-
The Qf value and the variation of density of the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3 \) show a similar trend, and hence apparent density is one of the dominant factors to cause the dielectric loss in this ceramic system.

As illustrated in Figure 7, the temperature coefficient of resonance frequency (\(\tau_f \)) of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3 \) at temperatures ranging from 1125 to 1250 °C with \(x = 0.01–0.2 \). \(\tau_f \) values fluctuate slightly at the whole temperature range. As expected, the synthesized composition persisted unchanged, and hence no noticeable fluctuation of the \(\tau_f \) value was shown. As we know, \(\tau_f \) is positively related to the synthesized composition, the second phase, and the material’s additive. The measured \(\tau_f \) values were from \(-62.9\) to \(-66\) ppm/°C as the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3 \) sintered at 1125–1250 °C. At 1200 °C, a \(\tau_f \) of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3 \) with 4 h sintering time was measured around \(-65.4\) ppm/°C. From the above discussion, microwave dielectric performance of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3 \) with various \(y \) value sintered at 1200 °C for 4 h was shown in Table 2 further demonstrated that best performance was found for \(y = 0.05 \). We also observed that Qf value is sensitive to Ni content, and however, permittivity and \(\tau_f \) remain slightly fluctuate with varied Ni content. The sintering temperature affects the permittivity and Qf value to some extent. However, \(\tau_f \) is not sensitive to sintering temperature. Table 3 revealed the comparison of the proposed dielectric with other similar documented dielectric ceramics. Among these three compositions, \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3 \) can be sintered under the lowest thermal budget (12.5% reduction as compared to \(\text{MgTiO}_3 \)) and measured highest Qf value (14.5% boost as compared to \((\text{Mg}_{0.6}\text{Zn}_{0.4})\text{TiO}_3 \)) with comparable \(\varepsilon_r \) and \(\tau_f \) value. Overall, \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3 \) was demonstrated with excellent microwave performance and possible to manufacture high-performance substrates utilized in the microwave devices and circuits.

As mentioned previously, a dielectric resonator’s thermal stability is defined by the temperature coefficient of the resonance frequency. Dielectric materials systems with near-zero \(\tau_f \) are crucial to fabricate substrates used in microwave frequency. In order to obtain near-zero \(\tau_f \) dielectric material, \(\text{SrTiO}_3 \) [34] possessed ultrahigh positive \(\tau_f \) (\(\varepsilon_r \sim 205 \), Qf value \(-4200\) and \(\tau_f \sim 1700\) ppm/°C under 1350 °C) was chosen to mix with \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3 \) (\(\tau_f \sim -66\) ppm/°C under 1200 °C). According to the mixture rules for \(\tau_f \) 0.94\((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3 \) \(-0.06\text{SrTiO}_3 \) was fabricated and analyzed in advance. Figure 8 shows \(\tau_f \) ranging from +46.6 to 68.5 ppm/°C under 1125–1225 °C. Thus,
we believe a near-zero τ_f dielectric material with excellent microwave performance will be realized possibly after stoichiometry calculation and experiments in future work.

![Figure 7. τ_f Value VS Sintering Temperature of ($\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3$ with $y = 0.01$–0.2.](image)

Table 2. Microwave dielectric performance of ($\text{Mg}_{0.6}\text{Zn}_{0.4})_{1-y}\text{Ni}_y\text{TiO}_3$ with various y values sintered at their optimized temperature for 4 h.

y Value	S.T.	Density	ε_r	Q_f	τ_f
0.01	1200 °C/4 h	4.35	18.7	120,000	−66.5
0.03	1200 °C/4 h	4.36	18.8	140,000	−67.4
0.05	1200 °C/4 h	4.39	19.3	165,000	−65.4
0.07	1200 °C/4 h	4.37	19	155,000	−66
0.1	1200 °C/4 h	4.27	18.9	135,000	−59.7
0.2	1200 °C/4 h	4.25	18.6	90,000	−57.6

Table 3. Comparison of the proposed dielectric with other similar documented dielectric ceramics.

Composition	S.T.	ε_r	Q_f	τ_f	Ref
MgTiO_3	1350 °C/4 h	17	160,000	−51	[10]
($\text{Mg}_{0.6}\text{Zn}_{0.4})\text{TiO}_3$	1200 °C/4 h	19.8	144,000	−66	[12]
($\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3$	1200 °C/4 h	19.3	165,000	−65.4	This work

![Figure 8. Microwave Performance of 0.94($\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3$ – 0.06SrTiO$_3$ Mixture.](image)
4. Conclusions

The performance of the \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1−y}\text{Ni}_y\text{TiO}_3\) at microwave frequency was investigated and analyzed. The dielectric ceramics with an ilmenite-type structure belonging to the trigonal space group R-3 could be found in all samples. With the substitution of \(\text{Ni}^{2+}\) for \(\text{Mg}^{2+}\) and \(\text{Zn}^{2+}\), the densification of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{1−y}\text{Ni}_y\text{TiO}_3\) was significantly enhanced. Compared to the documented dielectric ceramics, excellent microwave performance can be demonstrated for \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) sintered at 1200 °C/4h with \(ε_r\sim19.3, Q_f\) value ~165,000 (GHz) and \(τ_f\sim−65.4\ ppm/°C\). \(τ_f\) of \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) ~0.06SrTiO~3 shows ~ +68.5 ppm/°C and, thus, a near-zero mixture could be obtained in future work. The \((\text{Mg}_{0.6}\text{Zn}_{0.4})_{0.95}\text{Ni}_{0.05}\text{TiO}_3\) microwave dielectric material system shows ultrahigh potential for applications in devices and systems of satellite and wireless communications.

Author Contributions: Conceptualization, C.-H.S.; methodology, S.-H.L.; validation, C.-H.S. and C.-L.P.; formal analysis, C.-H.S.; investigation, S.-H.L.; data curation, C.-C.H. and C.-L.P.; writing—original draft preparation, C.-H.S. and S.-H.L.; writing—review and editing, S.-H.L.; visualization, S.-H.L.; supervision, S.-H.L.; project administration, S.-H.L.; funding acquisition, S.-H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology, Taiwan, under Grant No. MOST 108-2221-E-224-050, MOST 109-2622-E-224-013, and industrial cooperation with Live Strong Optoelectronics under contract no. Yuntech 109-3019-1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Acknowledgments: The authors acknowledge the technical support from the Advanced Instrumentation Center of National Yunlin University of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sebastian, M.T.; Ubic, R.; Jantunen, H. Low-loss dielectric ceramic materials and their properties. \textit{Int. Mater. Rev.} \textbf{2015}, \textit{60}, 392–412. [CrossRef]
2. Itaalit, B.; Mouyane, M.; Bernard, J.; Womes, M.; Houivet, D. Effect of Post-Annealing on the Microstructure and Microwave Dielectric Properties of Ba(Co\(_0.7\)Zn\(_{0.3}\))\(_{1−y}\)Nb\(_2\)O\(_5\) Ceramics. \textit{Appl. Sci.} \textbf{2016}, \textit{6}, 2. [CrossRef]
3. Guha, D.; Gajera, H.; Kumar, C. Cross-Polarized Radiation in a Cylindrical Dielectric Resonator Antenna: Identification of Source, Experimental Proof, and Its Suppression. \textit{IEEE Trans. Antennas Propag.} \textbf{2015}, \textit{63}, 1863–1867. [CrossRef]
4. Achouri, K.; Yahyaoui, A.; Gupta, S.; Rmili, H.; Caloz, C. Dielectric resonator metasurface for dispersion engineering. \textit{IEEE Trans. Antennas Propag.} \textbf{2016}, \textit{62}, 673–680. [CrossRef]
5. Weng, M.H.; Liauh, C.T.; Lin, S.M.; Wang, H.H.; Yang, R.Y. Sintering Behaviors Microstructure and Microwave Dielectric Properties of CaTiO\(_3\)-LaAlO\(_3\) Ceramics Using CuO/B\(_2\)O\(_3\) Additions. \textit{Materials} \textbf{2019}, \textit{12}, 4187. [CrossRef]
6. Belous, A.; Ovchar, O.; Jancar, B.; Sprietzer, M.; Annino, G.; Grebennikov, D.; Mascher, P. The Effect of Chemical Composition on the Structure and Dielectric Properties of the Columbites A\(^{2+}\)Nb\(_2\)O\(_6\). \textit{J. Electrochem. Soc.} \textbf{2009}, \textit{156}, 206–212. [CrossRef]
7. George, S.; Sebastian, M.T. The Effect of Added Sintering Aids on Microwave Dielectric Properties of Li\(_2\)(Zn\(_{0.6}\)Ca\(_{0.4}\))\(_3\)Ti\(_3\)O\(_8\) Ceramics and Applications. \textit{J. Eur. Ceram. Soc.} \textbf{2010}, \textit{30}, 2585–2592. [CrossRef]
8. Shen, C.H.; Pan, C.L.; Lin, S.-H. A Study of the Effect of Sintering Conditions of Mg\(_{0.95}\)Ni\(_{0.05}\)Ti\(_3\) on Its Physical and Dielectric Properties. \textit{Molecules} \textbf{2020}, \textit{25}, 5988. [CrossRef][PubMed]
9. Zhang, M.; Li, L.; Xia, W.; Liao, Q. Structure and properties analysis for MgTiO\(_3\) and (Mg\(_{0.97}\)M\(_{0.03}\))TiO\(_3\) (M = Ni, Zn, Co and Mn) microwave dielectric materials. \textit{J. Alloy. Compd.} \textbf{2012}, \textit{537}, 76–79. [CrossRef]
10. Wakino, K. Recent development of dielectric resonator materials and filters in Japan. \textit{Ferroelectrics} \textbf{1989}, \textit{91}, 69–86. [CrossRef]
11. Kim, H.T.; Byun, J.D.; Kim, Y. Microstructure and Microwave Dielectric Properties of Modified Zinc Titanates (I). \textit{Mater. Res. Bull.} \textbf{1998}, \textit{33}, 963–973. [CrossRef]
12. Kim, H.T.; Nahm, S.; Byun, J.D.; Kim, Y. Low-Fired (Zn, Mg)TiO\(_3\) Microwave Dielectrics. \textit{J. Am. Ceram. Soc.} \textbf{1999}, \textit{82}, 3476–3480. [CrossRef]
13. Sohn, J.H.; Inaguma, Y.; Yoon, S.O.; Itoh, M.; Nakamura, T.; Yoon, S.J.; Kim, H.J. Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values. \textit{Ipn. J. Appl. Phys.} \textbf{1994}, \textit{33}, 5466–5470. [CrossRef]
14. Jo, H.J.; Kim, J.S.; Kim, E.S. Microwave dielectric properties of MgTiO\(_3\)-based ceramics. \textit{Ceram. Int.} \textbf{2015}, \textit{41}, 530–553. [CrossRef]
15. Huang, C.L.; Shen, C.H. Dielectric Properties and Applications of Low Loss (1-x)(Mg_{0.95}Co_{0.05})TiO_3-xCa_{0.8}Sm_{0.4/3}TiO_3 Ceramic System at Microwave Frequency. *J. Alloy. Comp.* 2009, 468, 516–521. [CrossRef]

16. Tang, B.; Xiang, Q.; Fang, Z.; Zhang, X.; Xiong, Z.; Lü, H.; Yuan, C.; Zhang, S. Influence of Cr3+ substitution for Mg2+ on the crystal structure and microwave dielectric properties of CaMg_{1-x}Cr_{2x/3}SiO_3 ceramics. *Ceram. Int.* 2019, 45, 11484–11490. [CrossRef]

17. Chen, C.H.; Huang, C.L. Microwave dielectric properties and sintering behaviors of (Mg_{0.95}Ni_{0.05})TiO_3-CaTiO_3 ceramic system. *J. Alloy. Comp.* 2009, 472, 451–455. [CrossRef]

18. Chen, Y.B.; Tseng, Z.L.; Chen, L.C.; Lin, C.C.; Miao, H.Y.; Liu, J.H.; Lin, S.H. Crystal structure and microwave dielectric properties of [Mg_{0.6}Zr_{0.4}Co_{0.05}]_2TiO_4-modified Ca_{0.8}La_{0.4}TiO_3 cordierite ceramics with a near-zero temperature coefficient. *J. Mater. Sci. Mater. Electron.* 2018, 29, 10709–10714. [CrossRef]

19. Huang, C.L.; Tseng, Y.W. A low-loss dielectric using CaTiO_3-modified Mg_{1.8}Ti_{1.1}O_4 ceramics for applications in dielectric resonator antenna. *IEEE Trans. Dielectr. Electr. Insul.* 2014, 21, 2293–2300. [CrossRef]

20. Huang, C.L.; Tseng, C.F.; Chen, Y.B.; Cheng, Y.C. New dielectric material system of (Mg_{0.95}Zn_{0.05})TiO_3-Ca_{0.61}Nd_{0.26}TiO_3 at microwave frequency. *J. Alloys Comp.* 2008, 453, 337–340. [CrossRef]

21. Lin, S.H.; Chen, Y.B. Structure and characterization of BaO modified yNd(Mg_{1/2}Ti_{1/2})O_3-(1-y)Ca_{0.8}Sr_{0.2}TiO_3 ceramics with a near-zero temperature coefficient at microwave frequency. *Ceram. Int.* 2017, 43, 2368–2371. [CrossRef]

22. Yang, W.R.; Huang, C.L.; Chen, Y.R. Microwave and Optical Technology Letters, John Wiley. In Proceedings of the IEEE APMC, Yokohama, Japan, 12–15 December 2006; pp. 1398–1401.

23. Fiedziuszko, S.J. Dielectric materials, devices, and circuits. *IEEE Trans Microw. Theory Tech.* 2002, 50, 706–720. [CrossRef]

24. Nakagoshi, Y.; Suzuki, Y. Dimensional change behavior of porous MgTi_2O_5 in reactive sintering. *Ceram. Int.* 2017, 43, 5541–5546. [CrossRef]

25. Suzuki, Y.; Suzuki, T.S.; Shinoda, Y.; Yoshida, K. Uniformly porous MgTi_2O_5 with narrow pore-size distribution: XAFS Study, Improved in situ synthesis, and new in situ surface coating. *Adv. Eng. Mater.* 2012, 14, 1134–1138. [CrossRef]

26. Shen, C.H.; Huang, C.L. Phase Evolution and Dielectric Properties of (Mg_{0.95}M^{2+}_{0.05})TiO_3 (M^{2+} = Co, Ni, and Zn) Ceramics at Microwave Frequencies. *J. Am. Ceram. Soc.* 2009, 92, 384–388.

27. Kuszyk, J.A.; Bradt, R.C. Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi_2O_5. *J. Am. Ceram. Soc.* 1973, 56, 420–423. [CrossRef]

28. Hakki, B.W.; Coleman, P.D. A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. *IEEE Trans. Microw. Theory Tech.* 1960, 8, 402–410. [CrossRef]

29. Courtney, W.E. Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators. *IEEE Trans. Microw. Theory Tech.* 1970, 18, 476–485. [CrossRef]

30. Liao, J.; Senna, M. Crystallization of titania and magnesium titanate from mechanically activated Mg(OH)2 and TiO2 gel mixture. *Mater. Res. Bull.* 1995, 30, 385–392. [CrossRef]

31. Huang, C.L.; Pan, C.L. Low Temperature Sintering and Microwave Dielectric Properties of (1-x)MgTiO_3-xCaTiO_3 Ceramics Using Bismuth Additions. *Jpn. J. Appl. Phys.* 2002, 41, 707–711. [CrossRef]

32. Nakagoshi, Y.; Sato, J.; Morimoto, M.; Suzuki, Y. Near-zero volume-shrinkage in reactive sintering of porous MgTi_2O_5 with pseudobrookite-type structure. *Ceram. Int.* 2016, 42, 9139–9144. [CrossRef]

33. Lin, S.H.; Chen, Y.B. Crystal structure and microwave dielectric properties of [(Mg_{0.6}Zn_{0.4})_{0.95}Co_{0.05}]_2TiO_4 modified Ca_{0.8}Sm_{0.4/3}TiO_3 ceramics. *Ceram. Int.* 2017, 43, 296–300. [CrossRef]

34. Silverman, B.D. Microwave Absorption in Cubic Strontium Titanate. *Phys. Rev.* 1962, 125, 1921. [CrossRef]

35. Penn, S.J.; Alford, N.M.; Templeton, A.; Wang, X.; Xu, M.; Reese, M.; Schrapel, K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. *J. Am. Ceram. Soc.* 1997, 80, 1885–1888. [CrossRef]

36. Cho, W.W.; Kakimoto, K.; Sato, H.O. High-Q Microwave Dielectric SrTiO_3-Doped MgTiO_3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency. *Jpn. J. Appl. Phys.* 2004, 43, 6221–6224. [CrossRef]