Research Article

TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses

Qing Yang, Tian-Tian Liu, Heng Lin, Man Zhang, Jin Wei, Wei-Wei Luo, Yun-Hong Hu, Bo Zhong, Ming-Ming Hu, Hong-Bing Shu

1 Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China, 2 Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China

* mmhu@whu.edu.cn (MMH); shuh@whu.edu.cn (HBS)

Abstract

Toll-like receptor (TLR)-mediated signaling are critical for host defense against pathogen invasion. However, excessive responses would cause harmful damages to the host. Here we show that deficiency of the E3 ubiquitin ligase TRIM32 increases poly(I:C)- and LPS-induced transcription of downstream genes such as type I interferons (IFNs) and proinflammatory cytokines in both primary mouse immune cells and in mice. Trim32−/− mice produced higher levels of serum inflammatory cytokines and were more sensitive to loss of body weight and inflammatory death upon Salmonella typhimurium infection. TRIM32 interacts with and mediates the degradation of TRIF, a critical adaptor protein for TLR3/4, in an E3 activity-independent manner. TRIM32-mediated as well as poly(I:C)- and LPS-induced degradation of TRIF is inhibited by deficiency of TAX1BP1, a receptor for selective autophagy. Furthermore, TRIM32 links TRIF and TAX1BP1 through distinct domains. These findings suggest that TRIM32 negatively regulates TLR3/4-mediated innate immune responses by targeting TRIF to TAX1BP1-mediated selective autophagic degradation.

Author summary

TLR3/4-mediated signaling needs to be effectively terminated to avoid excessive immune responses and harmful damages to the host. In this study, we provide genetic evidence to show that the E3 ubiquitin ligase TRIM32 negatively regulates TLR3/4-mediated innate immune and inflammatory responses. Trim32−/− mice are more sensitive to the inflammatory death upon Salmonella typhimurium infection. We found that TRIM32-TAX1BP1-dependent selective autophagic degradation of the adaptor protein TRIF effectively turned off TLR3/4-mediated innate immune and inflammatory responses. Our findings reveal a novel mechanism for terminating innate immune and inflammatory responses mediated by TLR3/4.
Introduction

The innate immune system is the first line of host defense against pathogen invasion. After detection of structurally conserved components of the invading pathogens by so-called pathogen recognition receptors (PRRs), the host cells initiate a series of signaling cascades which ultimately induce the transcription of downstream antiviral genes, such as type I interferons (IFNs) and inflammatory cytokines, to induce innate immune and inflammatory responses as well as facilitate adaptive immunity [1,2,3,4]. However, excessive immune and inflammatory responses cause tissue damages and serious diseases such as septic shock [5].

Toll-like receptors (TLRs) are evolutionarily conserved PRRs that play critical roles in host defense against various pathogens. TLRs contain an extracellular domain, a transmembrane domain, and a conserved cytoplasmic toll/IL-1 receptor (TIR) domain. Upon ligand stimulation, the TIR domains of TLRs mediate their homo- or hetero-dimerization [6], and act as platforms to recruit downstream TIR domain-containing adaptor proteins and other signaling molecules, leading to the activation of transcription factors such as IRF3 and NF-κB. These transcription factors collaborate to induce the transcription of a series of downstream antiviral genes [7]. Most TLRs except TLR3 and TLR4 signal through the TIR-containing adaptor MyD88. TLR3, which recognizes viral dsRNA and plays important roles in innate antiviral responses, signals through the TIR-containing adaptor TRIF but not MyD88 [8]. TLR4, which recognizes LPS of bacteria and is essential for innate and inflammatory responses to infected bacteria, signals through MyD88 to activate NF-κB and TRIF to activate NF-κB and IRF3 [9]. Double knockout of TRIF and MyD88 results in completely abolishment of LPS-induced activation of NF-κB, whereas TRIF-deficiency results in abolishment of LPS-induced activation of IRF3 [9].

Protein degradation is one of the main strategies which have been employed by host cells to inactivate proteins in biological processes. Autophagy is an essential homeostatic process by which damaged organelles, protein aggregates, and invading cytoplasmic microbes are sequestered in double-membraned autophagosomes and delivered to the lysosome for degradation [10]. There are growing evidences that autophagy can be highly selective [11]. Selective autophagy depends on the cargo receptors, including p62, TAX1BP1, NDP52 and so on, which are able to bind to special cargoes and dock onto the forming phagophores [11]. Certain selective autophagy receptors have been reported to be involved in regulation of immune responses. For examples, the cytosolic DNA viral sensor cGAS and intracellular Salmonella typhimurium can be degraded via p62- and TAX1BP1-dependent selective autophagy respectively [12,13]. Whether selective autophagy is involved in the regulation of other immune processes are unknown.

The tripartite motif-containing proteins (TRIMs) of E3 ubiquitin ligase families have been demonstrated to play critical regulatory roles in regulation of immune responses [14,15]. TRIM32 has been reported to mediate K63-linked polyubiquitination of MITA/STING and regulates innate immune responses to RNA and DNA viruses in human cell lines [7]. In this study, we generated TRIM32-deficient cells and Trim32 knockout mice, and found that TRIM32 negatively regulated TLR3/4-mediated innate immune and inflammatory responses. Biochemical and cellular analysis revealed that TRIM32 mediated selective autophagic degradation of TRIF through TAX1BP1. Our findings suggest that TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF is an important negative regulatory mechanism of TLR3/4-mediated innate immune and inflammatory responses.
Results

TRIM32 negatively regulates TLR3/4-mediated signaling in primary mouse cells

Previously, it has been demonstrated that TRIM32 mediates K63-linked polyubiquitination of MITA/STING and regulates virus-triggered induction of downstream antiviral genes in human cell lines [7]. To investigate the functions of TRIM32, we utilized TRIM32 gene knockout mice (S1A & S1B Fig). We found that TRIM32-deficiency had no marked effects on the mRNA levels of downstream antiviral genes \textit{Ifnb1} and \textit{Isg56} as well as inflammatory cytokine genes \textit{Tnfa} and \textit{Il6} induced by Sendai virus (SeV) or herpes simplex virus 1 (HSV-1) in mouse embryonic fibroblasts (MEFs), bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) (S1C Fig), suggesting that TRIM32 does not regulate virus-triggered signaling in primary mouse cells. However, we found that TRIM32-deficiency potentiated poly(I:C) (a synthetic dsRNA ligand for TLR3)- and LPS (a ligand for TLR4)- but not PGN (a ligand for TLR2)- or R848 (a ligand for TLR7)-induced transcription of downstream genes \textit{Ifnb1}, \textit{Isg56}, \textit{Tnfa} and \textit{Il6} in BMDMs, BMDCs and mouse lung fibroblasts (MLFs) (Fig 1A). Consistently, poly(I:C)- and LPS-induced phosphorylation of IRF3 and I\kappa B\alpha (hallmarks for IRF3 and NF-\kappa B activation respectively) was dramatically increased in \textit{Trim32}−/− MLFs in comparison to their wild-type counterparts (Fig 1B). LPS has been reported to induce both MyD88- and TRIF-dependent signaling, which usually results in serious harmful inflammation \textit{in vivo}. Monophosphoryl lipid A (MPLA), a derivate of LPS, mainly induces TRIF- but not MyD88-dependent signaling, leading to some protective immune responses \textit{in vivo} instead [16,17,18]. Interestingly, TRIM32-deficiency also increased MPLA-induced transcriptions of these genes in BMDMs (Fig 1C). These results suggest that TRIM32 negatively regulates TLR3/4- but not TLR2/7-mediated signaling in primary mouse cells. Consistently, overexpression of TRIM32 markedly inhibited poly(I:C)- and LPS-induced activation of the IFN-\beta promoter, ISRE and NF-\kappa B in human HEK293-TLR3 and HEK293-TLR4 cells respectively in reporter assays (Fig 1D). In similar experiments, TRIM32 did not inhibit IFN\gamma-induced activation of the IRF1 promoter (Fig 1E).

TRIM32 negatively regulates TLR3/4-mediated innate immune and inflammatory responses \textit{in vivo}

To investigate the role of TRIM32 in TLR3/4-mediated innate immune and inflammatory responses \textit{in vivo}, age- and sex-matched \textit{Trim32}+/+ and \textit{Trim32}−/− mice were intraperitoneally injected with poly(I:C) plus D-galactosamine or LPS. D-galactosamine is an agent usually used to enlarge inflammatory damage of liver, since poly(I:C) alone is insufficient to cause inflammatory death of mice. As shown in Fig 2A, poly(I:C)- and LPS-induced production of IFN-\beta, TNF\alpha, and IL-6 was significantly increased in the sera of \textit{Trim32}−/− compared to \textit{Trim32}+/+ mice. Consistently, more serious inflammation was observed in the lungs of \textit{Trim32}−/− mice injected with poly(I:C) plus D-galactosamine or LPS (Fig 2B). \textit{Trim32}−/− mice showed an early death onset and a significantly higher percentage of lethality within 40 hours in comparison with their wild-type counterparts after injection of poly(I:C) plus D-galactosamine (Fig 2C) or LPS (Fig 2D). It has been reported that poly(I:C) and LPS are able to induce TRIF-dependent cell death which might contribute to poly(I:C)- and LPS-induced death of mice [19,20]. Therefore, we also explored whether TRIM32 is involved in TLR3/4-mediated and TRIF-dependent cell necrosis. The results showed that TRIM32-deficiency had no marked effects on poly(I:C)- and LPS-induced cell death in cell viability assays (S2 Fig). We have also explored the role of TRIM32 in MPLA-induced TRIF-dependent protective immune response in mice. Unlike
Fig 1. TRIM32-deficiency potentiates TLR3/4-mediated signaling. (A) Effects of TRIM32-deficiency on poly(I:C)-, LPS-, PGN-, or R848-induced transcription of *Ifnb1*, *Isg56*, *Tnfa* and *Il6* in BMDMs, BMDC and MLFs. *Trim32*+/+ and *Trim32*−/− cells were stimulated with poly(I:C) (50 μg/ml), LPS (50 ng/ml), R848 (20 nM) or PGN (20 μg/ml) for the indicated times before qPCR was performed. (B) Effects of TRIM32-deficiency on poly(I:C)- and LPS-

TRIM32 negatively regulates TLR3/4 signaling pathways
induced phosphorylation of IRF3 and IκBα in MLFs. Wild-type and Trim32−/− MLFs were stimulated with poly(I:C) (100 μg/ml) or LPS (100 ng/ml) for the indicated times before immunoblots were performed with the indicated antibodies. (C) Effects of Trim32-deficiency on MPLA-induced transcriptions of Ifnb1, Isg56, Tnfa and Il6 genes in BMDMs. Trim32+/+ and Trim32−/− BMDMs were stimulated with MPLA (100 ng/ml) for the indicated times before qPCR was performed. (D) Effects of Trim32 on poly(I:C)- or LPS-triggered activation of IFN-β, ISRE and NF-κB. HEK293-TLR3 cells or HEK293-TLR4 cells (1x10⁵) were transfected with the indicated luciferase plasmid (0.1 μg) and an HA-tagged expression plasmid for murine Trim32 (0.05 μg). Twenty hours after transfection, cells were treated with poly(I:C) (50 ng/mL) or LPS (100 ng/ml) for 10 hours before luciferase assays were performed. (E) Effects of Trim32 on IFNγ-induced activation of the IRF1 promoter. HEK293 cells were transfected with the IRF1 promoter reporter plasmid (0.1 μg) and the indicated amounts of HA-tagged murine Trim32 expression plasmids (0.05 μg). Twenty hours after transfection, cells were treated with IFNγ (100 ng/ml) or left untreated for 10 hours before luciferase assays were performed. n.s., Not Significant. * p<0.05; ** p<0.01.

LPS, MPLA does not cause much inflammatory response, and MPLA alone is insufficient to cause inflammatory death of mice. Therefore, we used D-galactosamine to enlarge the inflammatory response induced by MPLA. Interestingly, though MPLA-induced increased transcriptions of type I IFNs and inflammatory genes in Trim32−/− cells (Fig 1C), MPLA plus D-galactosamine-induced serum inflammatory cytokine levels and inflammatory death were markedly decreased in Trim32−/− mice (Fig 2E & 2F), suggesting that Trim32 plays an important role in MPLA-induced TRIF-dependent protective immune response in vivo.

We have also explored the role of Trim32 in immune and inflammatory responses to Salmonella typhimurium infection. As shown in Fig 3A, Trim32−/− mice carried less Salmonella typhimurium in their livers and spleens compared with that of their wild-type littermates at 8 days post oral administration of Salmonella typhimurium, suggesting that Trim32−/− mice exhibited more efficient clearance of invaded Salmonella typhimurium than the wild-type mice. Consistently, a larger number of viable immune cells existed in the spleens of Trim32−/− mice (Fig 3B). Trim32−/− mice produced much higher levels of inflammatory cytokines including TNF-α and IL-6 (Fig 3C) and showed much more serious inflammatory damage of their small intestinal villus (Fig 3D) after oral administration of Salmonella typhimurium, which led to a higher sensitivity to Salmonella typhimurium-induced loss of body weight and inflammatory death of Trim32−/− mice (Fig 3E & 3F). These results suggest that Trim32 negatively regulatesTLR3/4-mediated innate immune and inflammatory responses in vivo.

TRIM32 destabilizes TRIF independent of its E3 ligase activity

We next investigated the molecular mechanisms of TRIM32 in the regulation of TLR3/4-mediated signaling. Reporter assays showed that TRIM32 inhibited TRIF-, but not TBK1- and IRF3-mediated activation of ISRE (Fig 4A). Furthermore, both overexpression and endogenous communoprecipitation experiments indicated that TRIM32 interacted with TRIF (Fig 4B and 4C). In addition, we routinely found that TRIM32 dramatically destabilized TRIF but not TRAF3, TBK1 or IRF3 in our co-transfection experiments (Fig 4D). Endogenous experiments indicated that TRIM32-deficiency markedly attenuated poly(I:C)-induced degradation of TRIF in MLFs (Fig 4E). These results suggest that TRIM32 mediates the down-regulation of TRIF, which is an adaptor protein specifically utilized by TLR3/4 but not other TLRs.

Since Trim32 is an E3 ubiquitin ligase, we examined whether TRIM32 destabilizes TRIF via the ubiquitin-proteasomal pathway. Unexpectedly, the E3 enzyme-inactive mutants of Trim32, Trim32(C40S) and Trim32(ΔRING), destabilized TRIF as efficient as the wild-type Trim32 (Fig 4F). Furthermore, Trim32 failed to catalyze polyubiquitination of TRIF (Fig 4G). Consistently, reconstitution of either wild-type Trim32 or Trim32(ΔRING) in Trim32−/− cells could inhibit poly(I:C)- and LPS-induced transcription of Ifnb1, Tnfa and Il6 genes to similar levels (Fig 4H). These data suggest that Trim32 mediates the down-regulation of TRIF independent of its E3 ligase activity.
Fig 2. TRIM32-deficiency potentiates TLR3/4-mediated immune responses in vivo. (A) Serum cytokine concentrations in Trim32+/+ and Trim32−/− mice. Sex- and age-matched Trim32+/+ and Trim32−/− mice (n = 6) were injected intraperitoneally with poly(I:C) plus D-galactosamine or LPS for the indicated times and the concentrations of IFN-β, TNFα and IL-6 in the serum were determined by ELISA. (B) Effects of TRIM32-deficiency on poly(I:C)
TRIM32 mediates autophagic degradation of TRIF

Protein degradation is one of the main strategies involved in inactivating proteins in biological processes. Two major systems exist for protein degradation, including the ubiquitin-proteasome and autophagy-lysosome pathways. We found that TRIM32-mediated degradation of TRIF could be inhibited by the lysosomal inhibitor NH₄Cl and the autophagic inhibitor 3MA but not the proteasomal inhibitor MG132 (Fig 5A), suggesting that TRIM32 probably mediates degradation of TRIF via an autophagic pathway. Confocal microscopy experiments showed that poly(I:C) stimulation caused aggregation of GFP-LC3 (a marker of autophagy) in HEK293-TLR3 cells (Fig 5B). Poly(I:C) stimulation also caused colocalization of TRIF with GFP-LC3 in HEK293-TLR3 cells (Fig 5C). To further confirm that autophagic degradation pathway is involved in TRIF degradation upon stimulation, we used MG132 and 3MA to pre-treat Trim32+/+ and Trim32−/− BMDMs for 2 hours before poly(I:C) stimulation. The results showed that 3MA pre-treatment had no marked effects on TRIF level in both un-stimulated Trim32+/+ and Trim32−/− cells, but attenuated poly(I:C)-induced degradation of TRIF in Trim32+/+ but not Trim32−/− cells (Fig 5D). MG132 pre-treatment markedly increased TRIF level in un-stimulated cells and also attenuated poly(I:C)-induced degradation of TRIF in both Trim32+/+ and Trim32−/− cells (Fig 5D). TRIF has been reported to be degraded by TRIM38 via the ubiquitin-proteasome dependent pathway, and TRIM38-deficiency increases TRIF level in un-stimulated cells and attenuates poly(I:C)-induced degradation of TRIF [21]. Consistently, knockdown of TRIM38 increased TRIF level in un-stimulated Trim32−/− cells, and also attenuated poly(I:C)-induced degradation of TRIF to a larger extent in these cells (Fig 5E). Taken together, these results suggest that TRIM32 is involved in the autophagic degradation of TRIF induced by poly(I:C) stimulation. Additional experiments showed that knockdown of LC3B, which is an important marker of autophagy and is required for fusion to the lysosomes, markedly inhibited TRIM32-mediated degradation of TRIF (Fig 5F), whereas overexpression of TRIM32 dramatically enhanced the interaction of TRIF with LC3B-II (Fig 5G), which is a basic membrane component of autophagosomes and derived from LC3B-I during autophagy [22]. In similar experiments, overexpression of TRIM32 did not cause the conversion of LC3B-I to LC3B-II (Fig 5H). Moreover, deficiency of ATG7, which is an essential E1 ligase for LC3B-II formation, inhibited poly(I:C)- and LPS-induced degradation of TRIF (Fig 5I). These results suggest that TRIM32 mediates degradation of TRIF through the autophagy-lysosome pathway. Consistently, pre-treatment of cells with balifomycin, an inhibitor for fusion of autophagosomes and lysosomes, markedly attenuated poly(I:C)-induced down-regulation of TRIF (Fig 5J). Endogenous TRIM32 constitutively associated with TRIF in un-stimulated cells, and their association slowly decreased following poly(I:C) stimulation (Fig 5J), suggesting that TRIM32 disassociates from TRIF-containing autophagosomes at the later stage of stimulation.

https://doi.org/10.1371/journal.ppat.1006600.g002
TRIM32 negatively regulates TLR3/4 signaling pathways

TRIM32 is degraded by TRIM32-TAX1BP1-mediated selective autophagy

The autophagic pathways can be distinguished as the canonical or the selective autophagic pathway. The selective autophagy receptors deliver cargoes to the autophagosomes for selective degradation.

Fig 3. TRIM32-deficiency potentiates Salmonella typhimurium-induced immune responses in vivo. (A) Effects of TRIM32-deficiency on clearance of Salmonella typhimurium in vivo. Sex- and age-matched Trim32+/+ and Trim32−/− mice were orally infected with Salmonella typhimurium, and bacterial loads were assessed in the indicated tissues 8 days post infection. (B) Effects of TRIM32-deficiency on Salmonella typhimurium-induced lymphocyte activation. Sex- and age-matched Trim32+/+ and Trim32−/− mice were orally infected with Salmonella typhimurium, and viable cell numbers of spleen were counted 6 days post infection. (C) Effects of TRIM32-deficiency on Salmonella typhimurium-induced secretion of inflammatory cytokines. Sex- and age-matched Trim32+/+ and Trim32−/− mice (n = 3) were orally infected with Salmonella typhimurium for 6 days, followed by measurement of the levels of inflammatory cytokines in the sera. (D) Effects of TRIM32-deficiency on Salmonella typhimurium-induced inflammatory damage of the intestines of mice. Sex- and age-matched Trim32+/+ and Trim32−/− mice were orally infected with Salmonella typhimurium, and the intestines of mice were used for histological analysis (H&E staining). (E) Effects of TRIM32-deficiency on Salmonella typhimurium-induced loss of body weight. Sex- and age-matched Trim32+/+ (n = 11) and Trim32−/− (n = 7) mice were orally infected with Salmonella typhimurium, and their body weight were monitored every day for 7 days. (F) Effects of TRIM32-deficiency on Salmonella typhimurium-induced inflammatory death. Sex- and Trim32+/+ (n = 6) and Trim32−/− mice (n = 7) were infected with Salmonella typhimurium, and the survival rates of the mice were monitored every day for 20 days.

*\(\leq 0.05; **\(\leq 0.01.

https://doi.org/10.1371/journal.ppat.1006600.g003
Fig 4. TRIM32 destabilizes TRIF independent of its E3 ligase activity. (A) Murine TRIM32 inhibited TLR3- and TRIF-mediated ISRE activation in mammalian overexpression system. HEK293 cells were transfected with the indicated adaptor plasmid and ISRE.
It has been shown that ULK1/2, FIP200 and ATG13 are critical for initiation of the classical autophagic pathway [23]. We found that deficiency of ULK1/2, FIP200 or ATG13 had no marked effects on the degradation of TRIF induced by poly(I:C) or LPS treatment (Fig 6A–6C), suggesting that poly(I:C)- and LPS-induced degradation of TRIF is not via the canonical autophagic pathway. It has been shown that NDP52 serves as a selective receptor for TRIF and TRAF6 for their selective autophagic degradation [24]. However, in our experiments, we observed that NDP52 failed to interact with and promote degradation of TRIF (Fig 6D & 6E). In similar experiments, NDP52 promoted the degradation of TRAF6 (Fig 6D). Instead, we found that TRIF interacted with other selective receptors including TAX1BP1, OPTN and p62 (Fig 6E), but only overexpression of TAX1BP1, but not OPTN or p62 downregulated the level of TRIF (Fig 6F). Consistently, knockdown of TAX1BP1 inhibited TRIM32-mediated degradation of TRIF (Fig 6G). In addition, knockdown of TAX1BP1 but not NDP52 attenuated poly(I:C)-induced degradation of TRIF (Fig 6H). Furthermore, knockdown of TAX1BP1 markedly impaired endogenous association of TRIF with LC3 induced by poly(I:C) stimulation (Fig 6I). These results suggest that TAX1BP1 but not NDP52 mediates the selective autophagic degradation of TRIF. Consistent with the biochemical results, qPCR experiments showed that knockdown of TAX1BP1 potentiated poly(I:C)-induced transcription of Ifnb1, Cxcl10 and Il6 genes (Fig 6J).

To explore the mechanism of TRIM32- and TAX1BP1-mediated autophagic degradation of TRIF, we tested a straightforward hypothesis that TRIM32 acts as a bridge protein for TRIF-TAX1BP1 interaction. Confocal microscopy indicated that overexpression of TRIM32 promoted colocalization of TRIF and TAX1BP1 in certain aggregates that were positive for the autophagosome marker GFP-LC3 (Fig 7A) or lysosome marker GFP-LAMP1 (Fig 7B). Endogenous coimmunoprecipitation experiments indicated that TRIM32-deficiency abolished poly(I:C)-induced association of TRIF with TAX1BP1 as well as attenuated poly(I:C)-induced degradation of TRIF (Fig 7C). These results suggest that TRIM32 act as a bridge protein for TRIF-TAX1BP1 interaction following poly(I:C) stimulation.

Domain mapping experiments indicated that the NHL (aa360-655) and BBOX (aa66-139) domains of TRIM32 are required for its interaction with TAX1BP1 and TRIF respectively (Fig 7D). Similar experiments indicated that TRIM32 interacted with the middle TIR domain (aa386-475) of TRIF (Fig 7E), whereas TAX1BP1 interacted most strongly with the C-terminal domain (aa476-732) of TRIF (Fig 7E). These results suggest that TRIM32 links TAX1BP1 and TRIF through distinct domains (Fig 7F).

Additionally, we have also explored whether TRIM32 and TAX1BP1 are recruited to lipid rafts of membrane where TLR3/4 recruits TRIF for signaling. Cellular fractionation
TRIM32 promotes TAX1BP1-mediated selective autophagic degradation of TRIF. (A) Effects of different inhibitors on TRIM32-mediated destabilization of TRIF. HEK293 cells were transfected with the indicated plasmids for 20 hours and then treated with the
TRIM32 negatively regulates TLR3/4 signaling pathways

It has been shown that TRIM32 is an E3 ubiquitin ligase which regulates both DNA- and RNA viruses-triggered induction of type I IFNs in several human cell lines [7]. The current study indicates that TRIM32 is not required for induction of downstream antiviral genes induced by both DNA and RNA viruses in primary mouse cells or in mice. It is possible that TRIM32 functions in different cellular processes between human and mouse cells. TRIM proteins belong to the largest E3 ubiquitin ligase family in mammals, and it has been previously shown that some TRIM family members have distinct functions between human and mouse [25]. In contrast with the observations that the E3 ligase activity of TRIM32 is required for its roles in virus-triggered signaling in human cell lines [7], several results from the current study suggest that the E3 ligase activity of murine TRIM32 is not required for its negative regulatory roles in TLR3/4-mediated signaling. Firstly, the E3 enzyme-inactive mutants of TRIM32 destabilized TRIF as efficiently as the wild-type protein. Second, reconstitution of both the wild-type and E3 enzyme-inactive TRIM32 into Trim32+/− cells inhibited the transcription of downstream genes induced by poly(I:C) and LPS. TRIF is a critical adaptor protein for TLR3/
TRIM32 negatively regulates TLR3/4 signaling pathways

A

B

C

D

E

F

G

H

I

J

TRIM32:

poly(I:C): 0 0.1 0.2 0.4 (μg)

-TRIF
-HA-TRIF
-Flag-NDP52
-HA-TRIF
-Flag-TAX1BP1
-HA-β-actin

-Flag-TRIF
-HA-β-actin
-Flag-TAX1BP1
-Flag-OPTN
-Flag-p62
-Flag-TRIF
-Flag-OPTN
-Flag-p62

Mock
poly(I:C)
-TRIF
-NDP52
-TRIF

-TRIF
-β-actin
-TRIF
-β-actin
"
Fig 6. TRIM32 promotes TAX1BP1-mediated selective autophagic degradation of TRIF. (A) Effects of ULK1/2-deficiency on poly(I:C)- or LPS-induced degradation of TRIF. *ULK1/2**−/− and *ULK1/2**+/− MEFs were left untreated or treated with poly(I:C) (50 μg/ml) or LPS (50 ng/ml) for the indicated times before immunoblotting analysis with the indicated antibodies. (B) Examination of the knockdown efficiency of FIP200-RNAi and ATG13-RNAi. HEK293-TLR3 cells (4 × 10⁵) were transfected with the indicated RNAi plasmids (1 μg each) for 36 hours before qPCR was performed. (C) Effects of FIP200-RNAi and ATG13-RNAi on poly(I:C)-induced degradation of TRIF. TRIF level in un-stimulated cells, whereas TRIM32 contributed to ligand-induced degradation of TRIF. Therefore, TRIM38 and TRIM32 regulate TRIF-mediated signaling through distinct mechanisms.

Several experiments suggest that the selective autophagic receptor TAX1BP1 but not NDP52 is involved in TRIM32-mediated autophagic degradation of TRIF. TAX1BP1 but not NDP52 interacted with TRIF. Overexpression of TAX1BP1 but not NDP52 promoted degradation of TRIF, whereas knockdown of TAX1BP1 but not NDP52 impaired TRIM32-mediated as well as poly(I:C)- and LPS-induced degradation of TRIF. Our results also indicated that TRIM32 but not TRIM32 down-regulated TRIF level in un-stimulated cells, whereas TRIM32 contributed to ligand-induced degradation of TRIF. Therefore, TRIM38 and TRIM32 regulate TRIF-mediated signaling through distinct mechanisms.

Our experiments suggest that TRIM32 acts as a link for TRIF and TAX1BP1. Confocal microscopy showed that TRIM32 promoted colocalization of TRIF and TAX1BP1 in certain aggregates which are positive for the autophagosome marker GFP-LC3 or the lysosome marker GFP-LAMP1, while TRIM32-deficiency abolished endogenous association of TRIF with TAX1BP1 induced by poly(I:C). Domain mapping experiments indicated that the BBOX and NHL domains of TRIM32 were required for its interaction with the TIR domain of TRIF and TAX1BP1 respectively, whereas TAX1BP1 interacted with the C-terminal domain of TRIF. These results suggest that TRIM32 links TRIF to the TAX1BP1 autophagosomes through distinct domains.
TRIM32 negatively regulates TLR3/4 signaling pathways

A

Vector

TRIM32

B

Vector

TRIM32

C

poly(I:C): 0 0.5 1 2 (N)

IP: α-TRIF

TRIM32

TRIF

D

TRIM32 mutants

1-655

1-139

1-300

66-655

139-655

360-655

IP: Flag-TRIF

Lysate

-HA-TRIM32: 1-855 1-139 1-300 66-655 139-655 360-655

E

TRIM32 mutants

1-732

1-475

386-732

476-732

Flag-TRIF: 1-732 1-385 1-475 386-732 476-732

IP: IgG αF IgG αF IgG αF IgG αF IgG αF

-HA-TRIM32

HA-TRIM32 mutants

Flag-TRIF

Lysate

Flag-TRIF

F

TRIM32

RING

BBOX

CC

NHL

BBOX

TRIF

Lysate

Flag-TRIF

G

Endosome

LPS

dRNA

TRIF

TRIM32

Cytoplasm

Expression of Immune and Inflammatory Genes

Nucleus

Lysoosomes

MyD88

TLR3

TAX1BP1

TRIF

LC3-associated autophagosome
Based on our data, we propose a working model on the regulatory role of TRIM32 in TLR3/4-mediated innate immune responses (Fig 7G). Ligand binding to TLR3/4 leads to the recruitment of the critical adaptor protein TRIF. TRIF in turn recruits downstream components, leading to activation of several transcription factors and ultimate induction of downstream innate immune and inflammatory genes. Upon activation, TRIF is recruited by TRIM32 to TAX1BP1-containing and LC3-associated autophagosomes for degradation, contributing to termination of TLR3/4-mediated innate immune and inflammatory responses. Our findings suggest that selective autophagic degradation is an important regulatory mechanism for timely termination of innate immune and inflammatory responses mediated by TLR3/4.

Materials and methods

Ethics statement

All animal experiments were performed in accordance with the Wuhan University animal care and use committee guidelines.

Reagents and antibodies

Mouse monoclonal antibodies against Flag (Sigma), HA (Origene), β-actin (Sigma), p-IκBα (CST), p-IRF3 (CST) and p-TBK1 (Abcam); poly(I:C) (Invivogen), LPS (Sigma), R848 (Invivogen), PGN (Invivogen), human IFN-γ (PeproTech), Bafilomycin (Sigma), Monophosphoryl lipid A (Sigma), Z-KAD-FMK (MCE) were purchased from the indicated companies. Luminescence cell viability assay kit (G7570) was purchased from Promega. Mouse antisera to TRIM32 and TRIF were raised against recombinant human TRIM32 and murine TRIF(1–475) respectively. Rabbit antisera to TAX1BP1 and NDP52 were raised against recombinant murine TAX1BP1 and NDP52(1–160) respectively.

Constructs

Mammalian expression plasmids for Flag- or HA-tagged murine TRIM32 and its mutants, TRIF and its mutants, TRAF6, TRAF3, TBK1, IRF3, TAX1BP1 and NDP52 were constructed by standard molecular biology techniques.

Mice and genotyping

Trim32 gene knockout mice with a CL7/B6 background were provided by Dr. Hong-Liang Li [27]. Genotyping by PCR was performed using the following two pairs of primers: WT-1: GGAGAGACACTATTTCTAAGTCA; WT-2: GTTCAGGTGAGAAGCTGCTGCA; MT: GGGACAGGATAATGACATCA.

Amplification of the wild-type allele with primers WT-1 and WT-2 results in a 250-bp fragment, whereas amplification of the disrupted allele with primers WT-1 and MT results in a 300-bp fragment.
Generation of BMDMs and BMDCs

BMDMs and BMDCs were generated as described [28]. The bone marrow cells (1×10^7) were cultured in RPMI medium 1640 containing 10% FBS and 10 ng/mL recombinant murine M-CSF (Peprotech) or GM-CSF-containing conditional medium in a 100-mm dish for 5 or 9 days for generation of BMDMs or BMDCs respectively.

Isolation of MLFs

Primary lung fibroblasts were generated as described [29]. Primary lung fibroblasts were isolated from approximately 4- to 6-week-old mice. Lungs were minced and digested in calcium and magnesium free HBSS containing 10 μg/ml type II collagenase (Worthington) and 20 μg/ml DNase I (Sigma-Aldrich) for 3 hours at 37˚C with shaking. Cell suspensions were filtered through progressively smaller cell strainers (100 and 40 μm) and then centrifuged at 1500 rpm for 4 min. The cells were then plated in culture medium (1:1 [v/v] DMEM/Ham’s F-12 containing 10% FBS, 15 mM HEPES, 2 mM L-glutamine, 50 U/ml penicillin, and 50 μg/ml streptomycin). After 1 hour, adherent fibroblasts were rinsed with HBSS and cultured in media.

Mouse poly(I:C) and LPS injection

Age- and sex-matched Trim32^+/+ and Trim32^-/- mice were injected intraperitoneally with poly(I:C) (5 μg/g body weight) plus D-galactosamine (1 mg/g body weight) or with LPS (10 μg/g body weight). The survival of the injected mice was monitored every 2 hours.

Mouse infection with *Salmonella typhimurium*

Age- and sex-matched Trim32^+/+ and Trim32^-/- mice were orally administrated with *Salmonella typhimurium* (1×10^7 pfu per mouse). The body weight and survival of the infected mice were monitored every day.

Measurement of cytokines

Blood from mice injected with poly(I:C) plus D-galactosamine or LPS was collected at the indicated times and the serum concentration of TNFα (Biolegend), IL-6 (Biolegend), and IFN-β (PBL) were measured by ELISA kits from the indicated manufacturers.

Transfection and reporter assays

Transfection and reporter assays were performed as previous described [30,31,32,33]. HEK293 cells were seeded on 24-well plates and transfected on the following day by standard calcium phosphate precipitation. Where necessary, empty control plasmid was added to ensure that each transfection receives the same amount of total DNA. To normalize for transfection efficiency, pRL-TK (Renilla luciferase) reporter plasmid (0.01 μg) was added to each transfection. Luciferase assays were performed using a dual-specific luciferase assay kit (Promega, Madison, WI). Firefly luciferase activities were normalized based on Renilla luciferase activities.

Coimmunoprecipitation, immunoblotting and ubiquitination assays

Coimmunoprecipitation, immunoblotting and ubiquitination assays were performed as previous described [34,35,36]. For ubiquitination assays, the immunoprecipitates were re-extracted in lysis buffer containing 1% SDS and denatured by heating for 5 min. The supernatants were diluted with regular lysis buffer until the concentration of SDS was decreased to 0.1%, followed
by re-immunoprecipitation with the indicated antibodies. The immunoprecipitates were analyzed by immunoblotting with the ubiquitin antibody.

qPCR
qPCR assays were performed as previously described [37,38,39,40]. Total RNA from mouse or human cells was isolated using the Trizol reagent (Invitrogen). After reverse-transcription with oligo(dT) primer using a RevertAidTM First Strand cDNA Synthesis Kit (Fermentas), aliquots of products were subjected to qPCR analysis to measure mRNA levels of the tested genes. Gapdh was used as a reference gene. Gene-specific primer sequences were previously described [33,41].

Immunohistochemistry analysis
Lungs or intestines from mice were fixed in formalin and embedded into paraffin blocks. The paraffin blocks were sectioned (5 μm) for H&E staining. The immunohistochemistry analysis was performed on the 5-μm sections. The sections were placed on polylysinecoated slides, deparaffinized in xylene, rehydrated through graded ethanol, quenched for endogenous peroxidase activity in 3% hydrogen peroxide, and processed for antigen retrieval by microwave heating for 7 min in 10 mM citrate buffer (pH 6.0). Sections were counterstained with hematoxylin (Zymed Laboratories) for 5 min and coverslipped. Pictures were acquired using a HistoFAXS system.

Subcellular fractionation
TRIF+/+ and TRIF−/− HEK293-TLR3 cells (5×10⁷) were treated with poly(I:C) for the indicated times, and then cells were harvested and lysed by douncing for 20 times in 2 ml homogenization buffer (10 mM Tris-HCl [pH 7.4], 2 mM MgCl₂, 10 mM KCl, and 250 mM sucrose). The homogenate was centrifuged at 500 g for 10 min for removal of the crude nuclei. The supernatant (S5) was centrifuged at 100,000 g for 2 hours for cytosol (S100K) and membrane (P100K) generation.

Statistical analysis
Differences between averages were analyzed by Student’s t-test. P value of less than 0.05 was considered significant.

Supporting information
S1 Fig. TRIM32-deficiency has no markedly effects on virus-triggered induction of downstream antiviral genes in primary mouse cells. (A) PCR genotyping of Trim32 gene knockout mice. (B) Detection of TRIM32 in Trim32+/- and Trim32−/− cells. Trim32+/- and Trim32−/− cells were lysed followed by immunoblotting analysis with the indicated antibodies. (C) Effects of TRIM32-deficiency on SeV- and HSV-1-induced transcription of Ifnb1, Isg56, Tnfa and Il6 in MEFs, BMDMs and BMDCs. Wild-type and Trim32−/− cells were infected with SeV or HSV-1 before qPCR analysis.

(TIF)

S2 Fig. TRIM32-deficiency has no marked effects on poly(I:C)- and LPS-induced cell death. Trim32+/- and Trim32−/− BMDMs were treated with DMSO, z-VAD (10 μM), poly(I:C) (50 μg/mL), poly(I:C) (50 μg/mL) plus z-VAD (10 μM), LPS (20 ng/mL) or LPS (20 ng/mL) plus z-VAD (10 μM) for 24 hours before cell viability assays.

(TIF)
S3 Fig. Analysis of the subcellular locations of TRIM32 and TAX1BP1 after poly(I:C) stimulation. TRIF+/+ and TRIF-/− HEK293-TLR3 cells were treated with poly(I:C) (50 ng/mL) for the indicated times before cell fractionation and immunoblotting analysis with the indicated antibodies.

(TIF)

Acknowledgments
We thank Dr. Hong-Liang Li for providing Trim32 gene knockout mice, Dr. Lin Guo for providing Salmonella typhimurium.

Author Contributions
Conceptualization: Qing Yang, Hong-Bing Shu.
Formal analysis: Qing Yang, Bo Zhong, Ming-Ming Hu, Hong-Bing Shu.
Funding acquisition: Hong-Bing Shu.
Investigation: Qing Yang, Tian-Tian Liu, Heng Lin, Man Zhang, Jin Wei, Wei-Wei Luo, Yun-Hong Hu, Ming-Ming Hu.
Project administration: Hong-Bing Shu.
Supervision: Hong-Bing Shu.
Writing – original draft: Qing Yang.
Writing – review & editing: Qing Yang, Ming-Ming Hu, Hong-Bing Shu.

References
1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801. https://doi.org/10.1016/j.cell.2006.02.015 PMID: 16497588
2. Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA (2014) Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 14: 361–376. https://doi.org/10.1038/nri3682 PMID: 24854588
3. Hiscott J (2007) Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18: 483–490. https://doi.org/10.1016/j.cytogfr.2007.06.002 PMID: 17706453
4. Gurtler C, Bowie AG (2013) Innate immune detection of microbial nucleic acids. Trends Microbiol 21: 413–420. https://doi.org/10.1016/j.tim.2013.04.004 PMID: 23726320
5. Negishi H, Yanai H, Nakajima A, Koshiba R, Atarashi K, et al. (2012) Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol 13: 659–666. https://doi.org/10.1038/ni.2307 PMID: 22610141
6. Jin MS, Lee JO (2008) Structures of the toll-like receptor family and its ligand complexes. Immunity 29: 182–191. https://doi.org/10.1016/j.immuni.2008.07.007 PMID: 18701082
7. Zhang J, Hu MM, Wang YY, Shu HB (2012) TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem 287: 28646–28655. https://doi.org/10.1074/jbc.M112.362608 PMID: 22745133
8. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738. https://doi.org/10.1038/35099560 PMID: 11607032
9. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640–643. https://doi.org/10.1126/science.1087262 PMID: 12855817
10. Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39: 211–227. https://doi.org/10.1016/j.immuni.2013.07.017 PMID: 23973220
11. Mijaljica D, Nazarko TY, Brumell JH, Huang WP, Komatsu M, et al. (2012) Receptor protein complexes are in control of autophagy. Autophagy 8: 1701–1705. https://doi.org/10.4161/auto.21332 PMID: 22874568

12. Chen M, Meng Q, Qin Y, Liang P, Tan P, et al. (2016) TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor p62 to Promote Innate Immune Responses. Mol Cell 64: 105–119. https://doi.org/10.1016/j.molcel.2016.08.025 PMID: 27666593

13. Tumbarrello DA, Manna PT, Allen M, Bycroft M, Arden SD, et al. (2015) The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy. PLoS Pathog 11: e1005174. https://doi.org/10.1371/journal.ppat.1005174 PMID: 26451915

14. Ozato K, Shin DM, Morse HC, 3rd (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8: 849–860. https://doi.org/10.1038/nri2413 PMID: 18836477

15. Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3: 799–808. https://doi.org/10.1038/nrmicro1248 PMID: 16175175

16. Tumbarrello DA, Manna PT, Allen M, Bycroft M, Arden SD, et al. (2015) The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy. PLoS Pathog 11: e1005174. https://doi.org/10.1371/journal.ppat.1005174 PMID: 26451915

17. Embry CA, Franchi L, Nunez G, Mitchell TC Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci Signal 4: ra28. https://doi.org/10.1126/scisignal.2001486 PMID: 21540455

18. Schulke S, Flaczyk A, Vogel L, Gaudenzio N, Angers I, et al. MPLA shows attenuated pro-inflammatory properties and diminished capacity to activate mast cells in comparison with LPS. Allergy 70: 1259–1268. https://doi.org/10.1111/all.12675 PMID: 26081583

19. He S, Liang Y, Shao F, Wang X Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108: 20054–20059. https://doi.org/10.1073/pnas.1116302108

20. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288: 31268–31279. https://doi.org/10.1074/jbc.M113.462341 PMID: 24019532

21. Hu MM, Xie XQ, Yang Q, Liao CY, Ye W, et al. (2015) TRIM38 Negatively Regulates TLR3/4-Mediated Innate Immun e and Inflammatory Responses by Two Sequential and Distinct Mechanisms. J Immunol 195: 4415–4425. https://doi.org/10.4049/jimmunol.1500859 PMID: 26392463

22. Kuma A, Matsuime M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3: 323–328. PMID: 17387262

23. Boyle KB, Randow F (2013) The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 16: 339–348. https://doi.org/10.1016/j.mib.2013.03.010 PMID: 23623150

24. Inomata M, Niida S, Shibata K, Into T (2012) Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell Mol Life Sci 69: 963–979. https://doi.org/10.1007/s00018-011-0819-y PMID: 21964925

25. Shi M, Deng W, Bi E, Mao K, Ji Y, et al. (2008) TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol 9: 369–377. https://doi.org/10.1038/ni1577 PMID: 18345001

26. Yang Y, Liao B, Wang S, Yan B, Jin Y, et al. (2013) E3 ligase WWP2 negatively regulates TLR3-mediated innate immune response by targeting TRIF for ubiquitination and degradation. Proc Natl Acad Sci U S A 110: 5115–5120. https://doi.org/10.1073/pnas.1220271110 PMID: 23479606

27. Chen L, Huang J, Ji Y, Zhang X, Wang P, et al. (2016) Tripartite motif 32 prevents pathological cardiac hypertrophy. Clin Sci (Lond) 130: 813–828.

28. Sun Q, Sun L, Liu HH, Chen X, Seth RB, et al. (2006) The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24: 633–642. https://doi.org/10.1016/j.immuni.2006.04.004 PMID: 16713980

29. Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, et al. (2016) Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity 45: 555–569. https://doi.org/10.1016/j.immuni.2016.08.014 PMID: 27637147

30. Zhang J, Hu MM, Shu HB, Li S (2014) Death-associated protein kinase 1 is an IRF3/7-interacting protein that is involved in the cellular antiviral immune response. Cell Mol Immunol 11: 245–252. https://doi.org/10.1038/cmi.2013.65 PMID: 24531619

31. Lei CQ, Zhong B, Zhang Y, Zhang J, Wang S, et al. (2010) Glycogen synthase kinase 3beta regulates IRF3 transcription factor-mediated antiviral response via activation of the kinase TBK1. Immunity 33: 878–889. https://doi.org/10.1016/j.immuni.2010.11.021 PMID: 21145761
32. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, et al. (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740. https://doi.org/10.1016/j.molcel.2005.08.014 PMID: 16153868

33. Hu MM, Yang Q, Zhang J, Liu SM, Zhang Y, et al. (2014) TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3. Proc Natl Acad Sci U S A 111: 1509–1514. https://doi.org/10.1073/pnas.1318227111 PMID: 24434549

34. Zhong B, Zhang L, Lei C, Li Y, Mao AP, et al. (2009) The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30: 397–407. https://doi.org/10.1016/j.immuni.2009.01.008 PMID: 19285439

35. Zhong B, Yang Y, Li S, Wang YY, Li Y, et al. (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550. https://doi.org/10.1016/j.immuni.2008.09.003 PMID: 18818105

36. Zhong B, Zhang Y, Tan B, Liu TT, Wang YY, et al. (2010) The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J Immunol 184: 6249–6255. https://doi.org/10.4049/jimmunol.0903748 PMID: 20483786

37. Luo WW, Lian H, Zhong B, Shu HB, Li S (2014) Kruppel-like factor 4 negatively regulates cellular antiviral immune response. Cell Mol Immunol.

38. Ran Y, Liu TT, Zhou Q, Li S, Mao AP, et al. (2011) SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation. J Mol Cell Biol 3: 283–292. https://doi.org/10.1093/jmcb/mjr020 PMID: 22028379

39. He X, Li Y, Li C, Liu LJ, Zhang XD, et al. (2013) USP2a negatively regulates IL-1beta- and virus-induced NF-kappaB activation by deubiquitinating TRAF6. J Mol Cell Biol 5: 39–47. https://doi.org/10.1093/jmcb/mjs024 PMID: 22611252

40. Yan J, Li Q, Mao AP, Hu MM, Shu HB (2014) TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol 6: 154–163. https://doi.org/10.1093/jmcb/mju005 PMID: 24755855

41. Zhou Q, Lin H, Wang S, Wang S, Ran Y, et al. (2014) The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe 16: 450–461. https://doi.org/10.1016/j.chom.2014.09.006 PMID: 25299331