Original Research Article

https://doi.org/10.20546/ijcmas.2019.812.042

Effect of Irrigation Levels, Nipping and Foliar Spray of Nutrients along with Growth Regulators on Growth Parameter of Transplanted Pigeonpea

N. Manjunatha*, A. S. Halepyati, B. M. Chittapur, B. G. Mastanreddy, A. Amaregouda and K. Narayana Rao

Department of Agronomy, College of Agriculture, University of Agricultural Sciences, Raichur- 584 101, India

*Corresponding author

Abstract

The experiment was conducted in split plot design with sixteen treatments combinations with three replications during kharif 2016-17 and 2017-18. The experiment consisted of two levels of irrigation as main factor, eight management practices, nipping and foliar application of fertilizer along with growth regulator as sub factor. The results revealed that among the different irrigation levels, irrigation each at pre-flowering and pod filling stage recorded significantly higher growth parameter via., plant height, number of leaves per plant, leaf area, leaf area index, leaf area duration and total dry matter production at harvest. Among the management practices, nipping +1% pulse magic +1 % 19:19:19 NPK Spray at flowering at flowering and 15 days after first flowering recorded higher plant and total dry matter production, Whereas number of leaves per plant, leaf area, leaf area index and leaf area duration were higher with nipping + 1% Pulse magic spray at flowering at flowering and 15 days after first flowering.

Keywords

Growth parameters, Transplanted pigeonpea, Irrigation, Nipping and foliar nutrition

Article Info

Accepted: 04 November 2019
Available Online: 10 December 2019

Introduction

Pigeonpea (*Cajanus cajan* (L.) Millsp.) is one of the protein rich pulse crops of the semi-arid tropics, grown predominantly under rainfed conditions. It has an important place in the farming systems adopted by dry land and rainfed farmers. People use the dry grain as dhal, the green seed as vegetable and the stalks as fuel wood. It improves soil conditions through addition of leaf fall and its deep and strong root system breaks the plough pans and improves the soil structure.

Hence, it is often called a “biological plough” and kalpavriksha of dry lands as all plant parts are useful. The productivity of pulses in India (640 kg ha⁻¹) is far below the average
productivity (848 kg ha\(^{-1}\)) of the world (Anon., 2014). Per capita availability of pulses has declined from 64 g per day in 1951-56 to less than 40 g per day as against FAO/WHO’s recommendation of 80 g per day (Ashtana and Chaturvedi, 2009).

In state of Karnataka pigeonpea is largely grown in Northern parts, especially in Kalaburgi, Vijayapur, Bidar and Raichur districts. In dry and rained farming areas of northern Karnataka, the rainfall is not only scanty but also erratic.

Thus, soil moisture becomes the most limiting factor in pigeonpea production (Sujatha and Babalad, 2018). Water is the most important inputs essential for the production of crops.

Plants need it continuously during their life and in huge quantities. It profoundly influences photosynthesis, respiration, absorption, translocation and utilization of mineral nutrients. Both its shortage and excess affects the growth and development of a plant directly.

Nipping is an important agronomic practice of removal of apical bud which helps to reduce the apical dominance, increases the number of branches and source-sink relationship and enhances the yield of a plant.

Foliar nutrition is designed to eliminate the problems like fixation and immobilization of nutrients.

Hence, foliar nutrition is recognized as an important method of fertilization in modern agriculture. This method provides for utilization of nutrients more efficiently and for correcting deficiencies rapidly.

Plant growth regulators are known to improve physiological efficiency including photosynthetic ability of plant and offer significant role in realizing higher crop yields. The plant growth regulators are also known to enhance the source sink relationship and stimulate the translocation of photo assimilates, thereby increase the productivity.

Raising pigeonpea seedlings well in advance and transplanting in the field on receipt of good rains would help in reaping the benefits of early sowing.

The transplanting has some advantages like maintenance of required healthy plant population by rejecting diseased and unhealthy seedlings, promotes better penetration of roots in the soil, better development of shoot system of plants, seedlings at the right spacing so as to ensure the uniform availability of water, nutrients, sunlight to the plants.

Very little information is available regarding combined agronomic production management practices via a supplemental irrigation, nipping, and foliar nutrition of macro and micronutrients and growth regulators on growth parameter in transplanted pigeonpea. Hence the present study on “Effect of irrigation levels, nipping and foliar spray of nutrients with growth regulators on growth parameters in transplanted pigeonpea.

Materials and Methods

A field experiment was conducted during *kharif*, 2016-17 and 2017-18 at the ICAR-KVK Farm, Kalaburgi, University of Agricultural Sciences, Raichur which is situated at a latitude of 17\(^{0}\) 36’ North, longitude of 76\(^{0}\)82’ East and an altitude of 478 meters above mean sea level.

The Krishi Vignan Kendra, Kalaburgi having semi-arid type of climate, characterized by short monsoon, mild winter and hot summer. The average rainfall in this region is 736.4
mm of which nearly 75 per cent of the rainfall occurs during South-West monsoon (June - September). The soils of the experimental site were belonging to Vertisols (medium black soils) with pH 8.16 and 0.37 % organic carbon. Soil is low in available nitrogen (231 kg ha\(^{-1}\)), medium in available phosphorus (44.5 kg ha\(^{-1}\)) and high in available potassium (474 kg ha\(^{-1}\)).

The experiment was laid out in split-plot design with sixteen treatment combination and three replications consisting of irrigation levels as main factor, I\(_0\) - no irrigation and I\(_1\) - Two irrigations at pre- flowering and pod filling stage and eight management practices as sub factor which includes M\(_1\): Control, M\(_2\): Nipping, M\(_3\): Nipping + 1% Pulse magic spray at flowering and pod filling stage, M\(_4\): Nipping + 2 % DAP spray at flowering and pod filling stage, M\(_5\): Nipping + 1 % 19:19:19 NPK spray at flowering and pod filling stage, M\(_6\): Nipping + 1% pulse magic +2 % DAP Spray at flowering and pod filling stage, M\(_7\): Nipping +1% pulse magic +1 % 19:19:19 NPK Spray at flowering and pod filling stage and M\(_8\): Nipping +2 % DAP spray + 1 % 19:19:19 NPK Spray at flowering and pod filling stage.

The height of the plant was measured from ground level to the tip of the main shoot. The plant height was measured at 75, 120, 165 DAS and at harvest. The mean of five plants in each plot was worked out and expressed in cm plant\(^{-1}\).

Total number of fully opened trifoliate leaves was counted in the five plants and their average was taken as number of leaves per plant.

The leaf area was worked out by disc method on dry weight basis at 75, 120, 165 DAS and at harvest as per the procedure suggested by Vivekanandan et al., (1972).

\[
LA = \frac{Wa \times A}{Wd}
\]

Where,

\(LA\) = Leaf area (dm\(^2\) plant\(^{-1}\))

\(Wa\) = Oven dry weight of all leaves (inclusive of 10 disc weight)

\(Wd\) = Oven dry weight of 10 discs in gram

\(A\) = Area of the 10 discs (dm\(^2\))

Leaf area index (LAI) was worked out by dividing the leaf area per plant by land area occupied by the plant (Sestak et al., 1971).

\[
LAI = \frac{A}{P}
\]

Where,

\(A\) = Leaf area per plant (dm\(^2\))

\(P\) = Land area occupied by the plant (dm\(^2\))

Leaf area duration (LAD) an integral of leaf area index over the growth period was worked out using the formula given by Power et al., (1967).

\[
LAD = \frac{[L_{1}+L_{2}]}{2} \times [t_{1} - t_{2}]
\]

Where,

\(LAD\) = Leaf area duration in days

\(L_{1}, L_{2}\) = LAI at stage 1 and stage 2

\(t_{1}\) and \(t_{2}\) = Time interval in days between stage 1 and stage 2

Total dry matter was calculated by adding the dry weights of different plant parts and expressed as grams per plant.
Results and Discussion

Effect of irrigation levels on growth parameters of transplanted pigeonpea

At harvest, significantly taller plant (190.20 cm) was recorded in treatment I₁-irrigation at pre-flowering and pod filling stage in comparison to I₀- no irrigation (185.60 cm) (Table 1). This might be due to application of water at appropriate stage, which provides convenient condition for metabolic and physiological activity. This in turn caused better growth and more cell division and elongation, resulting in taller plants in irrigation treatment (I₁). Similar results were obtained by Rao (1979), Sudhakar and Rao (1996), Gajera and Ahlawat (2006), Mula et al., (2011) and Saritha et al., (2012b).

Significant variations were also noticed with number of leaves plant⁻¹ with different irrigation levels and higher number of leaves plant⁻¹ at harvest were recorded by I₁-irrigation at pre-flowering and pod filling stage(856.10) which was significant in compared to I₀- no irrigation (622.45) in pooled data (Table 2).

Development of adequate leaf area is important in pigeonpea and has been shown to be closely related to final seed yield (Baligar and Fageria, 2007). Water stress reduces expansive growth of leaves and results in lower LAI (Bennett and Hammond, 1983).

The leaf area indicates the photosynthetic area available for synthesis of food. Higher the leaf area higher is the dry matter thus increasing the growth attribute like plant height and in turn higher transport to sink. In the present investigation, higher leaf area at harvest, in the pooled data was recorded with treatment I₁-irrigation at pre-flowering and pod filling stage (104.74 dm² plant⁻¹) compared to I₀- no irrigation (76.23) in pooled data (Table 3). The leaf area index also significantly differed due to different irrigation levels. The pooled data revealed that the significantly higher leaf area index was noticed in I₁-irrigation at pre-flowering and pod filling stage (0.932 plant⁻¹) when compared to I₀- no irrigation (0.678 plant⁻¹) (Table 4).

Among the irrigation levels, significantly higher leaf area duration at (165- harvest) was recorded in I₁- two irrigations at pre-flowering and pod filling stage (128.19) (Table 5) in comparison with I₀ - no irrigation (115.41). These results corroborate with the findings of Sondge et al., (1993), Reddy et al., (1998), Singh et al., (2004), Pothalkar (2007), Meena et al., (2011), Saritha et al.,(2012b.)

Transplanted pigeonpea with treatment two (I₁)irrigations one at pre- flowering and another at pod filling stage recorded significantly higher total dry matter production (812.71 g plant⁻¹) over I₀ - no irrigation (589.22 g plant⁻¹) (Table 6). Similar trend was observed during both the years of experimentation.

This might be due to availability of higher moisture and consequently photosynthates. Increase in the total biomass, total dry matter with increase in soil moisture was observed by other researchers (Sondge et al., (1993) Sudhakar and Praveen Rao (1996) and Reddy et al., (1998), Saritha et al., (2012b).

Effect of management practices on growth parameters of transplanted pigeonpea

At harvest, significantly higher plant height of transplanted pigeonpea (189.44 cm) was recorded with the treatment M₇ - nipping + 1 % pulse magic + 1 % 19:19:19 NPK spray at flowering and 15 days after first spray, which was found at par with M₃ -nipping + 1% pulse magic spray at flowering and 15 days then after (189.21 cm), M₅-nipping+1 % 19:19:19 NPK spray at flowering and 15 days then after
(188.76 cm) and M_1 -control-without nipping (188.46 cm). Significantly lower plant height was noticed in M_2-nipping (185.87 cm) in pooled data (Table 1).

Significantly higher number of leaves per plant (785.87) was recorded with nipping + pulse magic spray at flowering and 15 days after first spray over rest of the treatments in pooled data at harvesting stage (Table 2).

At harvest in pooled data, significantly higher leaf area (95.74 dm² plant⁻¹) was recorded with M_3- nipping+ 1 % pulse magic spray at flowering and 15 day after first spray over treatments M_1-control (75.29) and at par results were found with treatment M_6 - nipping +1 % pulse magic + 2 % DAP spray at flowering and 15 days after first spray (94.20) and M_5 -nipping+1 % 19:19:19 NPK spray at flowering and 15 days after first spray (94.64) (Table 3).

Pooled data on LAI of transplanted pigeonpea at harvest was varied significantly. Treatment M_3-nipping +1% pulse magic spray at flowering and fifteen days thereafter recorded significantly higher LAI (0.852) over the treatment M_1-control (0.668), which was found at par with treatment M_5(0.842) and M_6- nipping +1 % pulse magic + 2 % DAP spray at flowering at and 15 days after first spray (0.840) (Table 4).

Significantly higher leaf area duration (126.42 days) was recorded with M_3- nipping+ 1 % pulse magic spray at flowering and 15 days after first spray-nipping +1% pulse magic spray over M_1.control (98.34 days) and on par with treatments M_5-nipping+1 % 19:19:19 NPK spray at flowering and 15 days after first spray (126.25 days), M_6- nipping +1 % pulse magic + 2 % DAP spray at flowering and 15 days after first spray (94.20) (125.93 days) and M_7 -nipping +1% pulse magic + 1% 19:19:19 NPK spray at flowering and 15 days then after (124.97days) (Table 5). Similar increase in growth parameter due to nipping was reported by Sharma et al., (2003).

Total dry matter production plant⁻¹ was significantly higher in M_7-nipping +1% pulse magic +1% 19:19:19 NPK spray at flowering and 15 days after first spray (794.39 g plant⁻¹) which was found at par with M_3- nipping+ 1 % pulse magic spray at flowering and 15 days after first spray(776.93), M_5-nipping+1% 19:19:19 NPK spray at flowering and 15 days after first spray (758.94) (Table 6). Significantly lower dry matter was recorded with M_1-control without nipping (534.17).

These results are in conformity with of Manivannan et al., (2002) in blackgram, Jayarani Reddy et al., (2004) and Saravanan et al., (2012) they reported increase in growth parameter due to foliar nutrition and growth regulator application.

Interaction effect of irrigation levels and management practices on growth parameter

Interaction effect due to irrigation levels and management practices on plant height of transplanted pigeonpea was found to be non significant.

However, higher plant height (193.08 cm) was noticed with combination of I_1 X M_7 (two irrigations at pre-flowering and pod filling stage with nipping + 1 % pulse magic + 1 % 19:19:19 NPK spray at flowering and 15 days after first spray) (Table 1).

Pooled data on the interaction effect due to irrigation levels and management practices was found to be significant.
Table 1: Plant height of transplanted pigeonpea at different stages as influenced by irrigation levels, nipping and foliar nutrition management practices

| Treatments | Plant height (cm) | |
|------------|------------------|
| | At 75 DAS | At 120 DAS | At 165 DAS | At harvest |
| | 2016 | 2017 | Pooled |
| Irrigation (I) | | |
| I0-No Irrigation | 63.09 | 63.31 | 63.20 | 127.28 | 135.22 | 131.25 | 166.42 | 198.86 | 182.64 | 171.27 | 199.93 | 185.60 |
| I1-Two irrigations at pre-flowering and pod filling stage | 62.49 | 63.66 | 63.08 | 127.46 | 134.86 | 131.16 | 166.41 | 198.63 | 182.52 | 176.11 | 204.29 | 190.20 |
| S.Em.± | 0.013 | 0.22 | 0.08 | 0.05 | 0.36 | 0.17 | 0.14 | 0.06 | 0.11 | 0.70 | 0.35 | 0.52 |
| CD at 5% | NS | 4.58 | 2.29 | 3.38 |
| Management practices (M) | | | | | | | | | | | | | | | | |
| M1-Control-Without nipping | 63.77 | 65.39 | 64.58 | 131.51 | 138.10 | 134.81 | 169.82 | 199.03 | 184.43 | 174.73 | 202.19 | 188.46 |
| M2-Nipping | 62.60 | 63.20 | 62.90 | 126.87 | 133.98 | 130.43 | 165.74 | 197.83 | 181.79 | 171.07 | 200.66 | 185.87 |
| M3-Nipping + 1% Pulse magic* spray ** | 62.07 | 63.13 | 62.60 | 126.43 | 135.23 | 130.84 | 166.53 | 198.63 | 182.58 | 175.83 | 202.58 | 189.21 |
| M4-Nipping + 2 % DAP spray ** | 62.98 | 63.33 | 63.16 | 125.99 | 134.50 | 130.25 | 165.15 | 198.00 | 181.58 | 172.60 | 201.38 | 186.99 |
| M5-Nipping + 1 % 19:19:19 NPK spray ** | 62.83 | 63.47 | 63.15 | 126.75 | 134.23 | 130.50 | 166.32 | 198.74 | 182.53 | 175.25 | 202.27 | 188.76 |
| M6-Nipping + 1% pulse magic* +2 % DAP Spray** | 61.98 | 63.02 | 62.50 | 127.38 | 134.55 | 130.97 | 165.81 | 198.95 | 182.38 | 172.21 | 202.16 | 187.19 |
| M7-Nipping +1% pulse magic* +1 % 19:19:19 NPK Spray** | 63.12 | 63.29 | 63.21 | 127.31 | 134.92 | 131.12 | 166.05 | 200.06 | 183.06 | 174.97 | 203.90 | 189.44 |
| M8-Nipping +2 % DAP spray + 1 % 19:19:19 NPK Spray** | 62.95 | 63.07 | 63.01 | 126.70 | 134.80 | 130.76 | 165.92 | 198.69 | 182.30 | 172.88 | 201.76 | 187.32 |
| S.Em.± | 0.46 | 0.16 | 0.25 | 0.09 | 0.50 | 0.26 | 0.39 | 0.21 | 0.24 | 0.88 | 0.38 | 0.45 |
| CD at 5% | NS | 0.47 | 0.73 | 0.18 | 1.45 | 0.75 | 1.13 | 0.62 | 0.70 | 4.58 | 1.10 | 1.30 |
| Interactions (I X M) | | | | | | | | | | | | |
| I₀ x M₁ | 63.52 | 65.30 | 64.41 | 131.06 | 138.57 | 134.81 | 169.72 | 198.93 | 184.33 | 172.21 | 199.91 | 186.06 |
| I₀ x M₂ | 62.94 | 63.63 | 63.29 | 127.01 | 133.87 | 130.44 | 165.85 | 197.90 | 181.87 | 169.29 | 198.99 | 184.14 |
	I₀ x M₃	I₀ x M₄	I₀ x M₅	I₀ x M₆	I₀ x M₇	I₀ x M₈	I₁ x M₁	I₁ x M₂	I₁ x M₃	I₁ x M₄	I₁ x M₅	I₁ x M₆	I₁ x M₇	I₁ x M₈
	62.86	62.86	62.86	126.44	135.50	130.97	166.59	199.24	182.92	173.08	200.27	186.67	NS	
S.Em.±	0.36	0.61	0.21	0.33	1.02	0.49	0.39	0.16	0.32	1.98	0.99	1.46		
CD at 5%	NS	1.09	NS	0.76	NS									
	0.62	0.30	0.34	0.33	0.75	0.38	0.53	0.29	0.34	1.36	0.61	0.78		
	NS	1.45	NS	0.76	NS									

Management at same level of irrigation

Irrigation at same level or different level of management

Note: Pulse magic * (N -10%, P - 40%, PGR -20 ppm and micro nutrient 03 %). Spray** At flowering and pod filling stage.
Table 2: Number of leaves plant⁻¹ of transplanted pigeonpea as influenced by irrigation levels, nipping and foliar nutrition management practices

Treatments	Number of leaves plant⁻¹											
	At 75 DAS	At 120 DAS	At 165 DAS	At harvest								
	2016	2017	Pooled									
Irrigation (I)												
I₀-No Irrigation	31.15	46.29	38.72	462.62	681.33	571.98	1131.91	1441.26	1286.58	569.06	675.84	622.45
I₁-Two irrigations at pre-flowering and pod filling stage	30.99	46.26	38.63	452.61	691.53	572.07	1162.70	1445.86	1304.28	782.42	929.79	856.10
S.Em.±	0.39	0.23	0.28	13.47	4.07	8.75	2.72	1.45	1.49	9.38	48.33	28.29
CD at 5%	NS	NS	NS	NS	NS	NS	17.81	NS	9.78	61.47	NS	185.33
Management practices (M)												
M₁-Control-Without nipping	30.90	42.07	36.48	430.47	575.20	502.83	941.77	1032.00	986.88	561.93	668.37	615.15
M₂-Nipping	31.30	47.00	39.15	463.40	702.80	583.10	1170.40	1510.40	1340.40	689.27	768.93	729.10
M₃-Nipping + 1% Pulse magic* spray **	30.53	46.80	38.67	469.13	710.27	589.70	1173.67	1496.47	1335.07	696.03	875.70	785.87
M₄-Nipping + 2 % DAP spray **	31.80	46.83	39.32	454.93	697.57	576.25	1181.50	1500.83	1341.17	685.13	789.77	737.45
M₅-Nipping + 1 % 19:19:19 NPK spray**	30.47	46.77	38.62	460.20	691.47	575.83	1180.60	1501.07	1340.84	681.43	873.03	777.23
M₆-Nipping + 1% pulse magic* +2 % DAP Spray**	30.83	46.50	38.67	457.17	697.73	577.45	1173.23	1502.13	1337.68	688.20	856.80	772.50
M₇-Nipping +1 % pulse magic* +1 % 19:19:19 NPK Spray**	31.50	47.13	39.32	463.20	711.27	587.23	1178.77	1505.43	1342.10	704.90	793.63	749.27
M₈- Nipping +2 % DAP spray + 1 % 19:19:19 NPK Spray**	31.23	47.10	39.17	452.40	705.17	578.78	1170.50	1500.13	1335.32	699.00	796.30	747.65
S.Em.±	0.55	0.30	0.28	9.80	2.63	5.30	10.29	4.60	6.01	6.24	14.83	**7.62**
---	---	---	---	---	---	---	---	---	---	---	---	---
CD at 5%	NS	0.87	NS	NS	7.67	15.42	29.95	13.41	17.51	18.18	43.18	**22.20**

Interactions (I X M)

	I₀ x M₁	I₀ x M₂	I₀ x M₃	I₀ x M₄	I₀ x M₅	I₀ x M₆	I₀ x M₇	I₀ x M₈				
I₀ x M₁	30.93	41.87	36.40	430.67	539.00	484.83	899.20	1,035.27	967.23	427.07	506.13	**466.60**
I₀ x M₂	32.53	46.60	39.57	471.33	711.47	591.40	1,145.87	1,502.87	1,324.37	601.07	667.00	**634.03**
I₀ x M₃	30.00	46.93	38.47	472.67	709.33	591.00	1,164.07	1,478.13	1,321.10	597.27	781.80	**689.53**
I₀ x M₄	31.80	47.40	39.60	459.00	693.87	576.43	1,161.07	1,485.67	1,323.37	582.47	645.93	**614.20**
I₀ x M₅	30.87	46.87	38.87	466.53	693.73	580.13	1,171.00	1,501.00	1,336.00	578.93	801.07	**690.00**
I₀ x M₆	31.60	46.40	39.00	455.67	694.40	575.03	1,164.53	1,515.13	1,339.83	579.60	731.20	**655.40**
I₀ x M₇	31.27	47.20	39.23	474.47	704.80	589.63	1,177.20	1,511.07	1,344.13	591.80	613.13	**602.47**
I₀ x M₈	30.20	47.07	38.63	460.60	704.07	582.33	1,164.33	1,500.93	1,332.63	594.27	660.47	**627.37**

	I₁ x M₁	I₁ x M₂	I₁ x M₃	I₁ x M₄	I₁ x M₅	I₁ x M₆	I₁ x M₇	I₁ x M₈				
I₁ x M₁	30.87	42.27	36.57	430.27	611.40	520.83	984.33	1,028.73	1,006.53	696.80	830.60	**763.70**
I₁ x M₂	30.07	47.40	38.73	455.47	694.13	574.80	1,194.93	1,517.93	1,356.43	777.47	870.87	**824.17**
I₁ x M₃	31.07	46.67	38.87	465.60	711.20	588.40	1,183.27	1,514.80	1,349.03	794.80	969.60	**882.20**
I₁ x M₄	31.80	46.27	39.03	450.87	701.27	576.07	1,201.93	1,516.00	1,358.97	787.80	933.60	**860.70**
I₁ x M₅	30.07	46.67	38.37	453.87	689.20	571.53	1,190.20	1,501.13	1,345.67	783.93	945.00	**864.47**
I₁ x M₆	30.07	46.60	38.33	458.67	701.07	579.87	1,181.93	1,489.13	1,335.53	796.80	982.40	**889.60**
I₁ x M₇	31.73	47.87	39.40	451.93	717.73	584.83	1,180.33	1,499.80	1,340.07	818.00	974.13	**896.07**
I₁ x M₈	32.27	47.13	39.70	444.20	706.27	575.23	1,176.77	1,499.33	1,338.00	803.73	932.13	**867.93**

Management at same level of irrigation

S.Em.±	1.10	0.64	0.78	38.10	11.52	24.74	7.69	4.10	4.22	26.54	136.70	**80.02**
CD at 5%	NS	NS	NS	NS	18.67	NS	NS	20.23	NS	43.82	126.60	**66.21**

Irrigation at same level or different level of management

S.Em.±	0.82	0.46	0.48	18.70	5.36	11.21	13.88	6.26	8.09	12.50	52.16	**30.03**
CD at 5%	NS	NS	NS	NS	26.86	NS	NS	19.45	NS	62.03	314.86	**184.43**

Note: Pulse magic * (N -10%, P- 40%, PGR -20 ppm and micro nutrient 03 %). Spray** At flowering and pod filling stage.
Table 3 Leaf area of transplanted pigeonpea as influenced by irrigation levels, nipping and foliar nutrition management practices

Treatments	Leaf area (dm² plant⁻¹)	At 75 DAS	At 120 DAS	At 165 DAS	At harvest							
	2016	2017	Pooled									
Irrigation (I)												
I₀-No Irrigation	5.39	7.22	6.31	78.10	107.66	92.88	175.13	219.10	197.12	70.97	81.50	76.23
I₁-Two irrigations at pre-flowering and pod filling stage	5.47	7.21	6.34	76.65	109.27	92.96	177.96	219.80	198.88	97.71	111.78	104.74
S.Em.±	0.04	0.04	0.01	0.65	0.64	0.58	0.34	0.23	0.22	5.17	0.35	2.65
CD at 5%	NS	0.23	NS	NS	2.23	NS	1.45	NS	2.32	17.38		
Management practices (M)												
M₁-Control-Without nipping	5.41	6.56	5.98	74.39	90.89	82.64	158.31	156.90	157.61	70.21	80.38	75.29
M₂-Nipping	5.49	7.33	6.41	76.96	111.05	94.01	177.67	229.62	203.65	80.79	98.52	89.65
M₃-Nipping + 1% Pulse magic* spray **	5.30	7.30	6.30	77.96	112.23	95.09	179.87	227.49	203.68	91.99	99.52	95.74
M₄-Nipping + 2 % DAP spray **	5.46	7.30	6.38	78.22	110.22	94.22	179.43	228.16	203.79	82.99	98.03	90.51
M₅-Nipping + 1 % 19:19:19 NPK spray **	5.25	7.29	6.27	77.98	109.76	93.87	180.54	228.19	204.37	91.72	97.55	94.64
M₆-Nipping + 1% pulse magic* +2 % DAP Spray**	5.38	7.25	6.32	77.39	110.25	93.82	179.78	228.35	204.07	90.01	98.40	94.20
M₇-Nipping +1% pulse magic* +1 % 19:19:19 NPK Spray**	5.52	7.32	6.42	78.57	112.39	95.48	179.03	228.85	203.94	83.36	100.77	92.06
M₈- Nipping +2 % DAP spray + 1 % 19:19:19 NPK Spray**	5.51	7.31	6.41	78.04	111.42	94.73	177.73	228.05	202.89	83.67	99.93	91.79
S.Em.±	0.10	0.05	0.05	0.36	0.42	0.28	0.91	0.69	0.67	1.56	0.96	0.82
CD at 5%	NS	0.14	0.16	1.06	1.22	3.82	2.64	2.00	1.94	4.54	2.80	2.38
-----------------	-----	------	------	------	------	------	------	------	------	------	------	------
Interactions (I X M)												
I₀ x M₁	5.35	6.53	5.94	74.73	85.17	79.95	157.82	157.39	157.61	53.14	61.17	57.14
I₀ x M₂	5.73	7.26	6.50	78.03	112.42	95.22	175.50	228.47	201.99	70.05	86.00	78.02
I₀ x M₃	5.13	7.32	6.23	78.07	112.08	95.07	178.40	224.70	201.55	82.10	85.57	83.82
I₀ x M₄	5.38	7.39	6.39	78.41	109.64	94.03	177.90	225.85	201.87	67.83	83.47	75.66
I₀ x M₅	5.32	7.31	6.31	78.86	109.62	94.24	180.68	228.18	204.43	84.11	83.03	83.58
I₀ x M₆	5.44	7.23	6.34	77.64	109.72	93.68	178.43	230.33	204.39	76.80	83.03	79.90
I₀ x M₇	5.43	7.31	6.37	79.44	111.36	95.40	177.17	229.70	203.44	64.37	83.03	74.53
I₀ x M₈	5.39	7.30	6.35	79.58	111.25	95.41	175.17	228.18	201.67	69.36	85.00	77.17
I₁ x M₁	5.47	6.59	6.03	74.05	96.60	85.32	158.80	156.40	157.60	87.28	99.60	93.44
I₁ x M₂	5.26	7.39	6.32	75.90	109.68	92.79	179.84	230.76	205.30	91.52	111.03	101.28
I₁ x M₃	5.46	7.28	6.37	77.84	112.38	95.11	181.35	230.28	205.81	101.88	113.47	107.66
I₁ x M₄	5.53	7.21	6.37	78.02	110.80	94.41	180.96	230.46	205.71	98.14	113.47	105.36
I₁ x M₅	5.18	7.27	6.23	77.10	109.90	93.50	180.39	228.20	204.30	99.33	112.07	105.69
I₁ x M₆	5.31	7.27	6.29	77.13	110.77	93.95	181.12	226.37	203.74	103.23	113.77	108.50
I₁ x M₇	5.61	7.32	6.47	77.69	113.41	95.55	180.88	227.99	204.44	102.35	116.83	109.58
I₁ x M₈	5.62	7.32	6.47	76.50	111.59	94.05	180.29	227.93	204.11	97.98	114.87	106.41

| Management at same level of irrigation | S. Em. ± | 0.12 | 0.10 | 0.04 | 1.83 | 1.80 | 1.65 | 0.96 | 0.64 | 0.63 | 14.61 | 1.00 | 7.50 |
| CD at 5% | NS | NS | NS | 2.71 | 2.96 | 2.19 | NS | 3.04 | NS | 13.35 | 4.32 | 6.97 |

| Irrigation at same level or different level of management | S. Em. ± | 0.07 | 0.07 | 0.81 | 0.85 | 0.69 | 1.25 | 0.94 | 0.91 | 5.56 | 1.32 | 2.86 |
| CD at 5% | NS | NS | NS | 4.24 | 4.20 | 3.80 | NS | 2.93 | NS | 33.66 | 4.19 | 17.28 |

Note: Pulse magic * (N -10%, P- 40%, PGR -20 ppm and micro nutrient 03 %). Spray** At flowering and pod filling stage
Table 4 LAI (Leaf area index) of transplanted pigeonpea as influenced by irrigation levels, nipping and foliar nutrition management practices

Treatments	LAI At 75 DAS	LAI At 120 DAS	LAI At 165 DAS	LAI At harvest
	2016 2017	Pooled	2016 2017	Pooled
Irrigation (I)				
I₀-No Irrigation	0.05 0.065	0.059	0.656 0.957	0.807
	1.557 1.948	1.753	0.631 0.725	
I₁-Two irrigations at pre-flowering and pod filling stage	0.05 0.066	0.059	0.651 0.970	0.810
	1.582 1.954	1.768	0.868 0.993	
S.Em.±	0.001 0.001	0.001	0.005 0.005	0.006
	0.003 0.002	0.002	0.046 0.003	
CD at 5%	NS	NS	NS	NS
	0.019 NS	0.012 NS	0.018 NS	
Management practices (M)				
M₁-Control-Without nipping	0.05 0.058	0.053	0.608 0.808	0.707
	1.408 1.397	1.402	0.622 0.717	
M₂-Nipping	0.05 0.067	0.060	0.661 0.987	0.823
	1.578 2.040	1.812	0.718 0.873	
M₃-Nipping + 1% Pulse magic* spray **	0.05 0.067	0.058	0.667 0.998	0.833
	1.598 2.020	1.808	0.820 0.885	
M₄-Nipping + 2% DAP spray **	0.05 0.067	0.060	0.660 0.978	0.820
	1.595 2.027	1.812	0.737 0.872	
M₅-Nipping + 1% 19:19:19 NPK spray **	0.05 0.067	0.060	0.660 0.980	0.820
	1.603 2.030	1.817	0.815 0.867	
M₆-Nipping + 1% pulse magic* +2% DAP Spray**	0.05 0.067	0.060	0.663 0.980	0.822
	1.598 2.030	1.815	0.800 0.877	
M₇-Nipping +1% pulse magic* +1% 19:19:19 NPK Spray**	0.06 0.067	0.060	0.670 0.998	0.832
	1.592 2.037	1.813	0.742 0.895	
M₈- Nipping +2% DAP spray + 1% 19:19:19 NPK Spray**	0.05 0.067	0.060	0.658 0.988	0.823
	1.580 2.028	1.803	0.743 0.888	
S.Em.±	0.001 0.001	0.001	0.008 0.004	0.005
	0.008 0.006	0.006	0.014 0.009	
CD at 5%	NS	0.002	0.023 0.012	0.013
	0.019 0.018	0.018	0.040 0.018	
Interactions (I X M)				
I₀ x M₁	0.05 0.057	0.053	0.607 0.757	0.680
	1.403 1.400	1.400	0.470 0.547	
I₀ x M₂	0.06 0.067	0.063	0.667 0.984	0.827
	1.560 2.030	1.797	0.623 0.763	

S.Em.±: Standard error of the mean ± 0.01
CD at 5%: Critical difference at 5%
Management at same level of irrigation

| S.Em.± | 0.001 0.001 0.001 0.014 0.015 0.018 0.008 0.005 0.005 0.131 0.008 | 0.067 |
| CD at 5% | NS NS NS NS 0.027 0.031 NS 0.027 NS 0.118 0.039 | 0.062 |

Irrigation at same level or different level of management

| S.Em.± | 0.001 0.001 0.002 0.012 0.007 0.009 0.011 0.008 0.008 0.050 0.012 | 0.026 |
| CD at 5% | NS NS NS NS 0.036 0.041 NS 0.026 NS 0.301 0.037 | 0.155 |

Note: Pulse magic * (N-10%, P-40%, PGR-20 ppm and micro nutrient 03%). Spray** At flowering and pod filling stage
Table.5 Leaf area duration of transplanted pigeonpea as influenced by irrigation levels, nipping and foliar nutrition management

Treatments	Leaf area duration(days)	In (75-120 DAS)	At (120-165 DAS)	At (165- harvest)	Pooled	Pooled	Pooled	Pooled	Pooled
I_0-No Irrigation									
I_1-Two irrigations at pre- flowering and pod filling stage									
S.Em.±		0.14	0.11	0.13					
CD at 5%		NS	NS	NS					
Irrigation (I)									
M_1-Control-Without nipping		16.05	20.80	18.43					
M_2-Nipping		17.03	25.14	21.09					
M_3-Nipping + 1% Pulse magic* spray **		17.39	25.36	21.38					
M_4-Nipping + 2% DAP spray **		17.27	24.97	21.12					
M_5-Nipping + 1% 19:19:19 NPK spray **		17.10	25.77	21.44					
M_6-Nipping + 1% pulse magic* +2 % DAP Spray**		17.33	24.95	21.14					
M_7-Nipping +1% pulse magic* +1 19:19:19 NPK Spray**		17.51	25.42	21.46					
M_8-Nipping +2 % DAP spray + 1 % 19:19:19 NPK Spray**		17.22	25.22	21.22					
S.Em.±		0.18	0.32	0.12					
CD at 5%		0.53	0.59	0.34					
Interactions (I X M)									
I_o x M_1		16.04	19.65	17.84					
I_o x M_2		17.30	25.39	21.34					
I_o x M_3		17.33	25.34	21.33					
I_o x M_4		17.16	24.88	21.02					
I_o x M_5		17.14	25.85	21.00					

CD at 5% = 1.70, 6.86

Int.J.Curr.Microbiol.App.Sci (2019) 8(12): 304-322
Management at same level of irrigation

	S.Em.±											
	0.38	0.32	0.35	0.40	0.26	0.33	5.81	0.74				
CD at 5%	NS	0.59	0.72	NS	0.90	NS	6.50	NS				

Irrigation at same level or different level of management

	S.Em.±											
	0.28	0.16	0.20	0.33	0.27	0.26	2.31	0.76				
CD at 5%	NS	0.77	0.86	NS	0.90	NS	13.37	NS				

Note: Pulse magic * (N -10%, P - 40%, PGR -20 ppm and micro nutrient 03 %). Spray** At flowering and pod filling stage
Table 6 Total dry matter production plant\(^{-1}\) of transplanted pigeonpea as influenced by irrigation levels, nipping and foliar nutrition management

Treatments	Total dry matter production (g plant\(^{-1}\))	At 75 DAS	At 120 DAS	At 165 DAS	At harvest								
		2016	2017	Pooled	2016	2017	Pooled	2016	2017	Pooled			
Irrigation (I)													
I₀-No Irrigation		37.85	57.24	47.55	157.22	189.59	173.40	358.83	434.51	396.67	559.83	618.62	**589.22**
I₁-Two irrigations at pre-flowering and pod filling stage		38.68	57.35	48.02	156.30	192.00	174.15	369.58	442.30	405.94	740.59	884.83	**812.71**
Management practices (M)													
M₁-Control-Without nipping		37.03	52.95	44.99	146.22	175.17	160.69	287.67	337.70	312.68	488.57	579.77	**534.17**
M₂-Nipping		38.03	58.42	48.23	156.18	192.10	174.14	374.58	459.62	417.10	557.78	663.34	**610.56**
M₃-Nipping + 1% Pulse magic* spray **		38.18	57.57	47.88	159.43	193.60	176.52	376.72	450.03	413.38	715.62	838.23	**776.93**
M₄-Nipping + 2% DAP spray **		38.45	57.72	48.08	159.85	192.60	176.23	375.32	446.93	411.13	645.27	697.26	**671.27**
M₅-Nipping + 1% 19:19:19 NPK spray **		38.43	57.95	48.19	157.47	193.03	175.25	379.95	454.97	417.46	690.10	790.15	**740.13**
M₆-Nipping + 1% pulse magic* + 2% DAP Spray**		38.90	57.08	47.99	157.43	193.08	175.26	378.22	451.40	414.81	709.27	808.61	**758.94**
M₇-Nipping +1% pulse magic* +1% 19:19:19 NPK Spray**		38.63	58.65	48.64	159.32	193.38	176.35	374.35	453.03	413.69	734.90	853.89	**794.39**
M₈- Nipping +2 % DAP spray + 1% 19:19:19 NPK Spray**		38.45	58.05	48.25	158.15	193.40	175.78	366.80	453.58	410.19	660.17	782.53	**721.35**
S.Em.±	0.13	0.60	0.348	1.80	1.89	1.25	3.66	4.76	3.45	25.10	31.93	19.00	
---------	------	------	--------	------	------	------	------	------	------	-------	-------	-------	
CD at 5%	0.37	1.74	NS	5.25	5.49	3.65	10.64	13.86	10.06	73.10	92.96	55.31	

Interactions (I X M)

Iо x M1	36.37	53.00	44.68	145.97	165.10	155.53	284.77	340.53	312.65	382.37	468.17	425.27
Iо x M2	37.57	58.00	47.78	157.50	192.87	175.18	367.37	449.83	408.60	463.67	534.73	499.20
Iо x M3	37.80	57.73	47.77	160.10	193.93	177.02	370.90	433.43	402.17	624.80	736.33	680.57
Iо x M4	37.97	58.63	48.30	160.13	192.50	176.32	369.73	425.13	397.43	597.90	539.02	568.46
Iо x M5	38.43	57.00	47.72	157.40	191.80	174.60	381.50	452.73	417.12	650.37	700.47	675.42
Iо x M6	38.70	56.50	47.60	157.00	193.33	175.17	374.53	467.00	420.77	612.70	650.53	631.62
Iо x M7	37.70	58.97	48.33	160.60	193.33	176.97	366.23	457.47	411.85	587.80	667.97	627.89
Iо x M8	38.30	58.10	48.20	159.03	193.83	176.43	355.57	449.97	402.77	559.03	651.71	605.37
I1 x M1	37.70	52.90	45.30	146.47	185.23	165.85	290.57	334.87	312.72	594.77	691.37	643.07
I1 x M2	38.50	58.83	48.67	154.87	191.33	173.10	381.80	469.40	425.60	651.90	791.94	721.92
I1 x M3	38.57	57.40	47.98	158.77	193.27	176.02	382.53	466.63	424.58	806.43	940.13	873.29
I1 x M4	38.93	56.80	48.77	159.57	192.70	176.13	380.90	468.73	424.82	692.63	855.50	774.08
I1 x M5	38.43	58.90	48.67	157.53	194.27	175.90	378.40	457.20	417.80	729.83	879.82	804.83
I1 x M6	39.10	57.67	48.38	157.87	192.83	175.35	381.90	435.80	408.85	805.83	966.69	886.27
I1 x M7	39.57	58.33	48.95	158.03	193.43	175.73	382.47	448.60	415.53	882.00	1039.80	960.90
I1 x M8	38.60	58.00	48.30	157.27	192.97	175.12	378.03	457.20	417.62	761.30	913.34	837.33

Management at same level of irrigation

S.Em.±	1.36	2.07	0.984	4.56	1.69	3.05	3.79	1.29	1.30	51.38	95.71	62.32
CD at 5%	1.10	NS	NS	8.29	7.08	NS	19.72	14.40	NS	NS	NS	NS

Irrigation at same level or different level of management

S.Em.±	0.51	1.08	0.000	2.88	2.56	1.98	5.02	6.31	4.59	37.853	54.12	33.42
CD at 5%	3.13	NS	NS	7.97	7.91	NS	18.50	13.54	NS	NS	NS	NS

Note: Pulse magic * (N -10%, P- 40%, PGR -20 ppm and micro nutrient 03 %). Spray** At flowering and pod filling stage.
The treatment combination (I₈X₅₇) two irrigations at pre-flowering and pod filling stage along with nipping + 1% pulse magic + 1% 19:19:19 spray at flowering and 15 days then after, noticed significantly higher number of leaves (896.07) (Table 2), and found at par with treatments which received two irrigations at pre-flowering and pod filling stage with different management practices which was found at par with I₂X₅₈ (889.60), I₁X₅₃ (882.20), I₃X₅₃ (867.93), I₁X₅₅ (864.47), I₁X₅₄ (860.70), I₃X₅₂ (824.14) and I₁X₅₁ (763.79).

Significantly higher leaf area (109.58 dm² plant⁻¹) with (I₁X₅₇) over I₀xX₅₃ no-irrigation and no nipping (57.14) and found at par with treatment combinations which received two irrigations at flowering and pod filling stage (Table 3).

The treatment combination of (I₁X₅₇) two irrigations at pre-flowering pod filling stage with nipping+ 1% pulse magic + 1% 19:19:19 NPK spray at flowering and 15 days after first spray noticed higher LAI (0.973) compared to I₀ x M₁(0.507) (Table 4).

The treatment combination I₁xM₇ recorded significantly higher leaf area duration (132.58 days) over rest of treatment combinations except, I₂X₅₂ (129.44), I₁X₅₈ (131.11), (I₁X₅₄ (131.34), I₁X₅₃ (130.89), I₃X₅₆ (131.83) and I₁xM₁ (132.35) which were found at par with each other (Table 5). Interaction due to irrigation levels and management practices found non significant on total dry production at harvest (Table 6).

Based on the research results, it can be concluded that among the levels of irrigation providing two supplemental irrigations one at pre-flowering and another at pod filling stage resulted in higher growth parameters like plant height, number of leaves, leaf area, leaf area index, leaf area duration and total dry matter production. Among the management practices higher growth parameter like plant height and total dry matter was noticed (I₁X₅₇) two irrigations at pre-flowering pod filling stage with nipping+ 1% pulse magic + 1% 19:19:19 NPK spray at flowering and 15 days after first spray and number of leaves, leaf area, leaf area index, leaf area duration was noticed with M₃-nipping+ 1% pulse magic spray at flowering and 15 days after first spray-nipping +1% pulse magic spray. In interaction growth parameters higher in (I₁X₅₇) two irrigations at pre-flowering pod filling stage with nipping+ 1% pulse magic + 1% 19:19:19 NPK spray at flowering and 15 days after first spray.

References

Anonymous, 2014, All India area, production and yield of total pulses, 2014-15. *Ministry of Agriculture, Govt. of India.*

Ashtana, A. N. and Chaturvedi, S. K., 2009, A little impetus needed. *Surv. Indian Agric.*, The Hindu Year book, Chennai, pp. 61-65.

Baligar, V.C. and Fageria, N.K., 2007, Agronomy and Physiology of Tropical Cover Crops. *J. Plant Nutri.*, 30: 1287-1339.

Bennett, J. M. and Hammond, L. C., 1983, Grain yields of several corn hybrids in response to water stresses imposed during vegetative growth. *Proceedings of Soil and Crop Science Society of Florida*, 42: 107-111.

Gajera, M.S. and Ahlawat, R. P. S., 2006, Optimization of irrigation and evaluation of consumptive water use efficiency for *rabi* pigeonpea (*Cajanus cajan* (L) Millsp). *Legume. Res.*, 29: 140-142.

Jayarani Reddy, P. K., Narasimha rao, C. L. and Mahalakshmi, B. K., 2004, Effect of different chemicals on growth, yield and yield attributes of pigeonpea in *Vertisol*. *Ann. Plant Physiol.*, 17(2):120-124.

Manivannan, V., Thanunathan, K., Imayavaramban, V. and Ramanathan, N., 2002, Effect of foliar application of NPK and chelated micronutrients on rice-fallow urdbean. *Legume. Res.*, 25(4):270-272.

Meena, B. K., Hulihalli, U. K., Kumar, B. N. A. and Meena, M. K., 2011, Biomass Production, its distribution and yield of
hybrid pigeonpea as influenced by plant geometries and fertility levels. *Research J. Agric. Sci.*, 2: 833-836.

Mula, M. G., Saxena, K. B., Rathore, A. and Kumar, R. V., 2011, Influence of spacing and irrigation on seed production of medium duration pigeonpea hybrid. *Green fmg.*, 2(1): 24-26.

Pothalkar, S. M., 2007, Physiological investigations on drought tolerance in pigeonpea (*Cajanus cajan* L.) *Ph.D Thesis*. Univ. Agric. Sci., Dharwad, Karnataka, India-580005.

Power, J. F., Willis, W. O. and Reichman, G. A., 1967, Effect of soil temperature, P and plant age on growth analysis of barley. *Agron. J.*, 18:459-463.

Rao, G., 1979, Response of pigeonpea to irrigation scheduling in relation to rate and time of application of nitrogen. *Indian J. Agron.*, 24: 243-247.

Reddy, M. D., Srinivas, A. and Krishna, V. C., 1998, Studies on scheduling of irrigation on performance of post rainy season pigeonpea in Alfisols. *Legume. Res.* 21(2): 113-116.

Saravanan, M., Venkitaswamy, R. and Rajendran, K., 2012, Influence of foliar nutrition on seed cotton yield and quality of Bt-cotton. *Madras Agric. J.*, 99(4-6):332-334.

Saritha, K. S., Pujari, B. T., Basavarajappa, R., Naik, M. K., Babu, R. and Desai, B. K., 2012b, Growth of pigeonpea (*Cajanus cajan* (L.) Millsp.) and nutrient status of soil after the harvest of crop as influenced by plant densities, different irrigation and nutrient levels. *Karnataka J. Agric. Sci.*, 25(1): 134-136.

Sestak, Z., Castsky, J. and Jarvis, P. G., 1971, *Plant photosynthetic production*. Manual of methods (Ed.).W.JUNK, N. V., publication. The Hughes, pp. 343-381.

Sharma, A., Potdar, M. P., Pujari, B. T. and Dharmaraj, P. S., 2003, Studies on response of pigeonpea to canopy modification and plant geometry. *Karnataka J. Agric. Res.*, 16(1): 1-3.

Singh, V. K., Sidhu, P. S. and Sarvjeet, S., 2004, Relationship of morpho-physiological traits with yield and its components for identifying efficient plant type in pigeonpea. *J. Res.*, 41(2): 175-182.

Sondge, V. D., Rodge, R. P., Oza, S. R. and Dahlphale, V. V., 1993, Yield water relations in winter pigeonpea. *J. Maharashtra Agric. Univ.*, 18: 17-19.

Sudhakar, C. and Praveen Rao, V., 1996, Performance of different crops during post rainy season under varied moisture regimes in Southern Telangana region. *J. Res. Andhra Pradesh Agric. Univ.*, 22: 113-115.

Sujatha, H. T. and Babalad, H. B., 2018, System productivity and economics of transplanted and direct sown pigeonpea at different cropping geometry and intercropping systems. *Int. J. Pure App. Biosci.*, 6: 694-700.

Vivekanandan, A. S., Gounasena, H. P. M. and Shivananygan, T., 1972, Statistical evaluation of the occurring of three techniques used in the estimation of leaf area of crop plant. *Indian J. Agric. Sci.*, 42: 857-860.

How to cite this article:
Manjunatha, N., A. S. Halepyati, B. M. Chittapur, B. G. Mastanreddy, A. Amaregouda and Narayana Rao, K. 2019. Effect of Irrigation Levels, Nipping and Foliar Spray of Nutrients along with Growth Regulators on Growth Parameter of Transplanted Pigeonpea. *Int.J.Curr.Microbiol.App.Sci.* 8(12): 304-322. doi: https://doi.org/10.20546/ijcmas.2019.812.042