AUGMENTED X'-SCHEMES

Neculai CURTEANU

Institute for Computer Technique and Informatics *
IASI Branch, IASI
ROMANIA

Abstract

The paper presents an embedding of an original parsing strategy for Romanian, called Segmentation-Cohesion-Dependency (SCD), into Chomsky's well-known Government and Binding (GB) theory. In order to bring closer the SCD concepts and techniques to the GB theory, the following questions have had to be dealt with: (1) a specification of the Principle of Maximal Projection (PMP), (2) extending the X'-theory (X-bar) by introducing Augmented X' (AX')-schemes, these ones being obtained by (3) specific constraints imposed on the new shapes of X'-schemes. (4) The AX'-schemes can be represented in terms of a tree (parenthetical) language, whose translation in a logic programming language follows naturally.

1. Introduction

Our approach represents a theoretical adaptation of Chomsky's subset of theories to the practical results obtained from and designed for SCD parsing strategy /Curteanu 1986/, /Curteanu 1987/. Mainly designed for Romanian, this strategy proved to be effective (with some peculiarities) also for English /Curteanu 1986b/. Let us consider the classical notations: X'-the second level of X projection, X''-X'-the third (top) level of projection for X=N,V,A,P. Consider also S', S'' and PMP(X)=XP. We do not intend to discuss the problems of S''=PMP(S). We shall call X'-structures (middle level in the maximal projections) as "groups"; a group contains an overt or an empty head, wrapped by its specifiers (denoted Specif) and modifiers (denoted Modif) but without argument(s) (denoted Arg). Thus X=XG, NG=W is called Elemental Noun Group (ENG), Tensed Verbal Group (TVG) is V' with the (morphologic or syntactic) feature of being tensed. Non-tensed Verbal Group (NVG) is V' with the (morphologic) feature of being untensed. ECP abbreviates the Empty Category Principle. We note that X'-structures are naturally obtained by SCD rules.

As Chomsky remarks "...the distinction between modifiers and arguments is notoriously difficult in certain cases" /Chomsky 1982 p.44/. Giving a general solution for the distribution of the verbal nature modifiers, the AX'-schemes offer also the correct assignment of the functional dependencies between the head and its Modif, on the one hand, and the head and its Arg(s), on the other hand. The paper presents a PMP specification, which the adopted solutions are based on. It mainly says that not only V has subcategorization properties, but also some N and A (part of these verbal Ns or As being, in some languages, V). The new features of the AX'-schemes are: (1) an arbitrary number (n > 0) of Arg(s) are permitted, (2) the AP is always a Modif and (3) the PP is always an Arg in AX'-schemes whose overt or empty head is N,V,A. The subcategorization properties depend on an ad hoc assignment, at the dictionary level, of the lexical feature VERB of the category. (4) The overt or empty (PRO) subject is considered as a special argument of the tensed (S) or untensed (NP) maximal projections of V. (5) In the hypotheses (4) and (2) the traditional, formal VP is dissolved into S or complex, verbal NP. (6) The phenomena of binding and bounding are easily remarked and solved this way.

2. A Specification of PMP

We have shown in /Curteanu 1987/, /Curteanu 1986/ that, within the SCD parsing strategy, there are detached basic (middle level) structures of the form X' (like ENG, TVG, NVG). They are elements of the (tensed or untensed) clause relation predicate-arguments. For all these X'-structures we could find the same functional representation shape, written as a LISP tree. The new proposed AX'-schemes have their origin in the governing idea of the SCD strategy: the (maximal) use of the verbal character of, traditionally non-verbal (including for Romanian) categories, N and A. Let us consider the following PMP specification:

The subcategorization properties of the (consistent) syntactic categories N, V, A depend on the following lexical and, respectively, morphological features of these categories: Verbal, with the values ACT and EXIST, and Predicativity, with the values T and NIL.

Such a specification of the maximal projection function is necessary because in many languages (including Romanian) the verbal quality of the non-verbal categories like N or (sometimes) A has to be discovered and assigned at the dictionary level. E.g., for English, the nouns that "verbализе" in -ing have, of course, the VERB feature. There are, also, quite few participles which are not adjectives and fewer adjectives which are not participles, despite their VERB quality and thus, of the subcategorization property.

3. Augmented X'-Schemes

Before proposing the new AX'-schemes, we simply remark a (more adequate, at least for our approach) alternative shape to the classical X'-scheme. This should be:

Fig. 3.1.

3.1. In what follows, for convenience, we still use the classical shape (C).

Fig. 3.2.

The general form of the AX'-scheme is:
Such a scheme has as consequence the occurrence of the lexicon -1 feature V=NV and the arbitrary number of Arg(s). Let us further specify (A1) in.

The feature value ACT of the categories N and A (and implicitly V) is assigned when these categories correspond to complex, functional verbs. The value EXIST is implicitly or explicitly introduced by the forms and meanings of the verb "to be". For S we consider the AS'-scheme (Fig. 3.6).

The feature PRD is similar to the abstract category NL from (2.1) and (2.2) to a complex, verbal NP. In this way, the value X-N in (A1) is purely theoretical since the maximal projection of X is embedded into S or NP.

The theoretical arguments for the AX'-schemes are:

1. The special position of the (grammatical) subject in an S'-scheme is, in fact, an A- or a Gen- position. It becomes a right e-position only after syntactic and semantic analysis.

2. At the syntactic level, the subject position presents well-known ambiguities.

3. In models 1984, as well as in lexical-functional grammars (Zecchi, 1985) and unification-based grammar (Chomsky, 1986), there are adopted similar points of view. This option does not represent any impediment to apply specific mechanisms, e.g., control theory, to obtain the A- or O-position of the overt or empty subject.

4. Such a solution has as consequence the extension of the maximal projection of V to (tensed or untensed) sentential shapes, entailing the direct transition to the logical form and analysis of natural language, a profit incomparably greater than the formal losing (eschewing into S or NP) of the VP.

5. The binding and bounding phenomena are better revealed and translated, e.g., we are denoting, as bounding nodes, with tensed and untensed S.

Here there are some practical arguments.

4. Augmented X'-Schemes at Work

There are underlined the words having assigned the feature value ACT, and used the SCD segmentation rules.

Ex. 4.1.: floare albă /de circă/

Specif	N	Modif-AP	
[X]	floare albă	NIL	
[X]	NIL	EXIST Arg-P	NIL
[X]	NIL	EXIST Arg-N	NIL
[X]	NIL	EXIST Arg-NL	NIL

Ex. 4.2.: floare albă /de vînt/

Specif	N	Modif-AP	
[X]	floare albă	NIL	
[X]	NIL	EXIST Arg-white	NIL
[X]	NIL	EXIST Arg-N	NIL
[X]	NIL	EXIST Arg-NL	NIL

Ex. 4.3.: educat /de tată/ /correspondâtor/ /cu veche principii/ /by his father/ /accordingly/ /with old-fashioned principles/

Specif	N	Modif-AP	
[X]	educated by his father	NIL	
[X]	NIL	EXIST Arg-white	NIL
[X]	NIL	EXIST Arg-N	NIL
[X]	NIL	EXIST Arg-NL	NIL

Ex. 4.4.: Omul /cârnaia PRO/ /-em dat /

Specif	N	Modif-AP	
[X]	Omul /cârnaia PRO/	NIL	
[X]	NIL	EXIST Arg-white	NIL
[X]	NIL	EXIST Arg-N	NIL
[X]	NIL	EXIST Arg-NL	NIL

Ex. 4.5.: The man /whom/ /y swore/ the book/

Specif	N	Modif-AP	
[X]	The man /whom/	NIL	
[X]	NIL	EXIST Arg-white	NIL
[X]	NIL	EXIST Arg-N	NIL
[X]	NIL	EXIST Arg-NL	NIL

There are underlined the words having assigned the feature value ACT, and used the SCD segmentation rules.
5. Final Remarks

The main constraints on the λ-schemes are:

c1. The (abstract) feature VERS actions at the lexical level. It takes the values ACT or EXIST according to the verbal-semantic or (implicit or explicit) verbal-existential nature of its head.

c2. The (abstract) feature PRED is subsumed by the classical EML. It takes the values T and NIL. Other features, specific to EML (like AGH), could be added.

c3. The assignment of the modif role to AP (is particular to NV) is justified both by the ECP and the identic behaviour of AP in the frame of ENG and TVG-NVG.

c4. The assignment of the Arg role to TT is justified both by the ECP particularization to NP and by the ECP specification for the consistent categories N, V, A. P is considered to be "non-consistent" since, as a head, it cannot be properly "modified" (and "specified") but only "argumentized".

c5. The V-P (in fact, VG) embedding into S or NP was already justified in Section 3.

c6. The λ-scheme (A2.1) offers a very suitable frame for the ellipsis solving.

The specific inter- and intrapossitional structures (ENG, NVG) and relations are properly revealed by the SCU syntagms. The verbal-semantical or verbal-existential nature of the heads of such (middle level) λ-structures has to be functionally reflected. The λ-schemes could represent good premises for the maximality level of the verbal functionality use in syntax, hence in the lexical semantics. This has been the purpose of our paper.

Acknowledgements. I want to express my sincere thanks to prof. P. Szall and prof. E. Hajiboeva, Prague University, to prof. S. Marcus, Bucharest University, and to prof. E. Wehrli, Geneva University, for their constructive criticism of some ideas in the paper.

References

Chomsky, Noam (1982) 'Lectures on Government and Binding' Dordrecht, Foris Publications.
Curteanu,N. & O.Popârda & I.Oprescu (1986) 'Algoritmul de analizare a gr scopei nominal (Domn românesc)' Revue Roumaine de Linguistique, XXII, No. 2, p.171-19a, Bucharest.
Curteanu,N. & O.Popârda & I.Oprescu (1997) 'Algoritm el Description of the Behaviour of Several Non-Groups' Computers and Artificial Intelligence, Vol.6, No.1, p.17-36, Bucharest.
Curteanu,N. & O.Popârda (1988) 'Un algoritm de reprezentare de modificatoare de natura verbală' Revue Roumaine de Linguistique, XXXII, No.1, p. 45-54, Bucharest.
Curteanu,N. et al. (1986) 'INTERACTIVE System for Assisted Translation: English - Romanian' Research Contract, I.C.T.I. Iasi (In preparation).
Hajiboeva,E. & P. Szall (1986) 'The Ordering Principle' Prague Bulletin of Mathematical Linguistics, No. 49, p.1-26, Marcus,S.(Ed.) (1983) 'Contextual Ambiguities in Natural and Artificial Languages' Ghent, Belgium.
Stern-Disior,F. (1986) 'An Approach to Natural Language Sentences In Logic Programming' J. of Logic Prog., Vol.3, No.4, p.389-1356.
Sellas,F. (1985) 'Lectures on Contemporary Syntactic Theories' CSLI Lect. Notes No. 3, Stanford, California.
Shieber,S. (1986) 'Introduction to Unification-Based Approaches to Grammar' CSLI Lect. Notes No. 4, Stanford, California.
Wehrli,R. (1984) 'A Government-Binding Reform for French' University of Geneva, Working Paper 48.