Structural plasticity of histones H3–H4 facilitates their allosteric exchange between RbAp48 and ASF1

Wei Zhang1,7, Marek Tyl1,7, Richard Ward2, Frank Sobott3, Joseph Maman1, Andal S Murthy1, Aleksandra A Watson1, Oleg Fedorov4, Andrew Bowman5, Tom Owen-Hughes5, Hassane El Mkami6, Natalia V Murzina1, David G Norman2 & Ernest D Laue1

The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3–H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3–H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3–H4 complex has an unexpected structural plasticity, which is important for this exchange.

In all eukaryotes DNA is wrapped around an octamer of histone proteins to form nucleosomes, which fold to form higher-order chromatin structures. The nucleosome comprises two copies each of histones H3 and H4, which form a heterotetramer and bind DNA in the first step of nucleosome assembly. This (H3–H4)2–DNA complex (the tetrasome) subsequently binds two histone H2A–H2B heterodimers to form the nucleosome core particle (refs. 1, 2). There are distinct variants of histones H2A, H2B and H3, and all histones can also be post-translationally modified in multiple ways. The assembly of nucleosomes with variant and post-translationally modified histones at particular genomic locations is thought to constitute a ‘histone code’ that can be inherited in an epigenetic manner during DNA replication to establish and maintain transcriptional programs and cell identity3.

When DNA is replicated, nucleosomes need to be disassembled in front of the replication fork, and the histones must then be transferred to the newly duplicated strands for reassembly. Early biochemical studies showed that, during DNA replication, the ‘old’ parental nucleosomes segregate randomly onto the leading and lagging strands behind the replication fork, with the gaps being filled by the deposition of ‘new’ nucleosomes. Work from several groups using different approaches has shown that H3–H4 complexes involving the replication-dependent histone H3 variant (H3.1) are segregated as tetramers: that is, a mixture of ‘old’ and ‘new’ histone H3–H4 dimers is not used to generate new nucleosomes during DNA replication4,5. This view has recently been reaffirmed by MS studies showing that H3.1–H4 nucleosomes contain either ‘old’ or ‘new’ H3–H4 tetramers, but not a mixture6. Unexpectedly, however, studies of the in vivo composition of histone H3 complexes7, as well as structural studies of the ASF1–H3–H4 complex8,9, have shown that histone H3–H4 complexes are handled as dimers (for a review, see ref. 10). To understand how histones H3–H4 are disassembled and reassembled, we have studied their interactions with the retinoblastoma-associated proteins RbAp46 and RbAp48, histone chaperones that are key players in the assembly of nucleosomes.

RbAp46 and RbAp48 are highly homologous (90% identity) members of the WD40-repeat β-propeller structure proteins. RbAp46 is an essential subunit of the HAT1 histone-acetyltransferase complex, which acetylates newly synthesized histone H4 on Lys5 and Lys12 before nucleosome assembly11,12. In contrast, RbAp48 is a subunit of the chromatin-assembly factor-1 (CAF-1) complex, which assembles histones H3 and H4 onto newly replicated DNA to initiate nucleosome assembly13,14. In addition to having an essential role in replication-dependent nucleosome assembly, both RbAp46 and RbAp48 are also found in numerous other protein complexes involved in the regulation of chromatin structure. These include the Drosophila melanogaster nucleosome remodeling complex (NURF)15,16, the nucleosome remodeling and deacetylase complex (NuRD)17,18 and the Polycomb repressive complex 2 (PRC2)19. Both NuRD and PRC2 have key roles in maintaining the silent state of master regulatory genes during embryonic development and stem cell renewal20,21, and studies of an Arabidopsis thaliana homolog, AtMSI1, suggest that RbAp48 is also important in epigenetic inheritance during cell division22.

In all of these different protein complexes, RbAp46 and RbAp48 seem to act as chaperone proteins that bind to histone H3–H4 complexes,
although we note that RbAp48 and p55 (the *Drosophila* homolog of RbAp46 or RbAp48) also bind to Friend of GATA 1 (FOG-1)23 and one of the subunits from the *Drosophila* PRC2 complex (Su(z)12)24, respectively. Previous studies have shown how RbAp46 and p55 interact with the N-terminal helix in the core histone fold of H4 (refs. 25,26). More recently, p55 has also been shown to interact with the N-terminal tail of histone H3 (refs. 24,27). However, despite their central role, little is known about how RbAp46, RbAp48 or p555 functions in chromatin-associated processes. It is not even clear whether they interact with the intact histone H3–H4 complex or just with the isolated histone H3 or H4 proteins.

Here we show that RbAp48 does indeed bind the histone H3–H4 complex. We also show that there are major structural rearrangements in the core fold of the histone H3–H4 complex when it binds RbAp48. Notably, these results suggest that RbAp48 binding leads to conformational changes in the H3–H3 interface such that it binds to only H3–H4 dimers, rather than (H3–H4)_2 tetramers. Our studies suggest an unexpected degree of structural plasticity in the core histone H3–H4 structure, and we show that an allosteric mechanism facilitates the exchange of H3–H4 between the RbAp48 and ASF1 histone chaperones. The finding that RbAp48 binds histone H3–H4 heterodimers, but not histone (H3–H4)_2 heterotetramers, has implications for understanding the role(s) of these proteins and of histones H3–H4 in epigenetic inheritance.

RESULTS

Stoichiometry of RbAp48 interaction with H3–H4

Previously, we showed that both H3 and H4 interact with RbAp46 using gel filtration and cross-linking experiments26. However, these experiments did not exclude the possibility that RbAp46 interacts with only one of these histones at a time.

To investigate this further, we performed gel-filtration experiments using RbAp48 and globular forms of H3 (gH3) and H4 (gH4), which lack these histones’ flexible N-terminal tails (the first 26 residues and 19 residues of H3 and H4, respectively). (We studied the RbAp48–gH3–gH4 complex because it gave nanoelectrospray ionization (nano-ESI) mass spectra that were better resolved under nondissociating conditions (Fig. 1b).) The N terminus of unmodified H4 does not interact with RbAp46 or RbAp48 (refs. 12,26,27), but newly synthesized H4 is diacetylated at Lys5 and Lys12 by RbAp46–HAT1 before binding ASF1. Therefore, we also confirmed that an N-terminal Lys5–Lys12 diacetylated H4 peptide did not bind either RbAp48 or ASF1 (Supplementary Fig. 1). Size-exclusion chromatography experiments showed that the RbAp48–gH3–gH4 complex migrates only marginally faster through a gel-filtration column than does the tetramer (gH3–gH4)_2 complex alone (Fig. 1a). This is consistent with disruption of the (gH3–gH4)_2 tetramer (44.3 kDa) upon binding RbAp48, giving a 1:1 (RbAp48: gH3–gH4) complex (70 kDa), which is substantially smaller than would be expected for RbAp48 binding a (gH3–gH4)_2 tetramer (92 kDa). A similar result is observed for ASF1, where the 1:1 human ASF1:gH3–gH4 complex (40 kDa) migrates through a gel-filtration column more slowly than does the tetramer (gH3–gH4)_2 complex alone (44.3 kDa, Supplementary Fig. 2). This suggested that, as with ASF1, RbAp48 might bind to gH3–gH4 heterodimers, as opposed to (gH3–gH4)_2 heterotetramers, forming a 1:1 RbAp48:H3–H4 complex.

To verify whether RbAp48 binds H3–H4 heterodimers, we recorded nano-ESI mass spectra of the RbAp48–gH3–gH4 complex under non-dissociating conditions (Fig. 1b). Expansion of the m/z 3,500–5,500 region of the spectrum shows charge-state series consistent with the masses of RbAp48–gH3–gH4, RbAp48–gH3 and RbAp48–gH4 (Fig. 1b). Notably, no peaks consistent with the interaction of RbAp48 with a (gH3–gH4)_2 tetramer were present—even when we tuned the mass spectrometer to favor the observation of larger complexes. This suggests that RbAp48 exists in a 1:1 complex with gH3–gH4, where both H3 and H4 can dissociate to yield either RbAp48–gH3 or RbAp48–gH4 subcomplexes (Fig. 1b).

In a tandem MS (MS/MS) experiment in which a single charge state of the RbAp48–gH3–gH4 complex was fragmented by collision-induced dissociation with inert gas molecules, the gH4 protein dissociated from the complex more readily than gH3 (Fig. 1c). This suggests either that H3 associates more tightly with RbAp48, or that H4 is more exposed than H3 on the surface of the complex. Fragmentation of the RbAp48–gH3–gH4 complex always yielded some RbAp48–gH3 complex, showing that the H3 globular domain interacts directly with RbAp48. This rules out the possibility that H3 interacts with RbAp48 solely through the H3 N-terminal tail (because this experiment was carried out with tail-less gH3) or through interactions with H4.

We carried out similar experiments using intact H3 and H4 and, again, found no evidence for an interaction of RbAp48 with an H3–H4 tetramer (Supplementary Fig. 3). However, these studies did show that the intact H3–H4 complex interacts more stably with RbAp48 than does the gH3–gH4 complex, consistent with reports that the H3 N-terminal tail binds the *Drosophila* RbAp48 homolog p55 (refs. 24,27).

RbAp48 binds histone H3–H4 dimers

Our results suggested that RbAp48 interacts with H3–H4 dimers but not with (H3–H4)_2 tetramers. We next performed pulsed electron-electron double-resonance (PELDOR) experiments to study the structure of H3–H4 when bound to RbAp48. PELDOR experiments allow the measurement of distances in the range of 20–80 Å or longer between two spin-labeled cysteine residues. These labels were incorporated into full-length unmodified H3–H4 by site-directed mutagenesis at positions where side chains are solvent exposed and are not required for structural integrity30.

First we studied an H3–H4 complex in which H3 had been labeled with an MTSL ((1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate) spin label at a cysteine introduced at Gln125 (Fig. 2a). As shown previously, PELDOR experiments with the (H3–H4)_2 tetramer clearly showed a peak at just less than 30 Å, consistent with the distance expected between the two H3 Gln125 residues31. When RbAp48 was added, however, we saw little interaction between the two spin labels. Once again, this suggests that RbAp48 disrupts formation of the (H3–H4)_2 heterotetramer when it binds H3–H4 heterodimers—when bound to RbAp48, the spin-labeled cysteines of each H3 molecule are no longer close enough in space to generate a PELDOR signal (Fig. 2a). Additionally, the normalized intensity (I1) of the data for the Gln125-labeled H3–H4 tetramer (black trace, Fig. 2a) showed an oscillation depth of approximately 0.65, which suggests the interaction of two spins32. By contrast, upon addition of RbAp48, the oscillation depth increased to ~0.85, indicating that there are few interacting spin labels (blue trace, Fig. 2a). Consequently, and consistently with the gel-filtration and non-denaturing MS results, both the distance distributions and the oscillation depth of the PELDOR data suggest that RbAp48 binds H3–H4 dimers.

These results were further supported by a second experiment investigating the interaction of RbAp48 with intact H3–H4 labeled at Gln125 in H3 and Thr71 in H4 (black trace, Fig. 2b). In the absence of RbAp48, the oscillation depth was 0.45 (consistent with more than two interacting spins), and we observed a broad multiple-distance
distribution as expected for the three spin-label distances in (H3–H4)2 tetramers. When we added RbAp48, the oscillation depth increased to 0.6, which is consistent with a decrease in the number of interacting spins (blue trace, Fig. 2b) and an RbAp48 interaction with H3–H4 dimers. This experiment further suggested that the structure of H3 at the H3–H3 dimerization interface (that is, around Gln125) is disrupted and becomes more dynamic when RbAp48 binds because the transformed data suggest a number of different distances (Fig. 2b).

Taken together, these results suggest that RbAp48 forms a 1:1 complex with H3–H4—that is, that RbAp48 binds an H3-H4 heterodimer. The PELDOR data further suggest that RbAp48 binding destabilizes the structure of the H3–H3 interface in the (H3–H4)2 heterotetramer.

Figure 1 Stoichiometry of the RbAp48 interaction with the histone H3–H4 complex. (a) Refolded recombinant histones gH3 and gH4 were analyzed on a Superdex 200 size-exclusion column, either alone (red trace) or in the presence of RbAp48 in a 1:1 ratio (blue trace). Eluted complexes were analyzed by SDS-PAGE (right). (b) Nondenaturing nano-ESI mass spectrum of the RbAp48–gH3–gH4 complex. The m/z region 3,500–5,500 is expanded (below) to show the ion series for RbAp48–gH3–gH4 (~50% of total intensity), RbAp48–gH3 (~20%) and RbAp48–gH4 (~30%), represented by purple, green and orange dots, respectively. (c) The RbAp48–gH3–gH4 species was selected for collision-induced dissociation leading to release of either gH3 (~40%) or gH4 (~60%). (The remaining RbAp48–gH4 and RbAp48–gH3 complexes are above m/z 4,500 and are not shown.) A comparison of the experimental versus theoretical m/z values is provided in Supplementary Table 1.

Figure 2 RbAp48 binds to histone H3–H4 dimers. (a) Left, background-corrected PELDOR data for the H3Q125C spin-labeled (H3–H4)2 complex alone (black) and following the addition of two equivalents of RbAp48 (blue). Right, Tikhonov-derived distance distributions show a clear peak at ~30 Å for the H3Q125-labeled H3–H4 tetramer, but none for the RbAp48–H3–H4–gH3 complex. (b) Left, background-corrected PELDOR data for the H3–H4 complex. Both H3Q125C and H4T71C were spin-labeled before (black) and after (blue) the addition of two equivalents of RbAp48. Right, Tikhonov-derived distance distributions show peaks at ~20 Å, ~37 Å and ~56 Å for the H3–H4 tetramer and several overlapping peaks for the RbAp48 complex. In both a and b, the most appropriate time-trace simulation (obtained using Tikhonov regularization) is shown in red. A C110A mutation in H3 was used such that only the unique cysteine at Gln125 was labeled with MTSL.
Previous structural studies have shown that ASF1 interacts with the C-terminal regions of H3 and H4 (refs. 8,9), whereas RbAp46 and p55 interact with H4 helix 1 (refs. 25,26). This suggests that RbAp46 or RbAp48 and ASF1 might be able to bind simultaneously to opposite sides of the H3–H4 dimer. To test this, we performed further gel-filtration and nondenaturing ESI MS experiments. We mixed a refolded gH3–gH4 complex with RbAp48 in a 1:1 ratio together with an excess of ASF1$_{1-159}$ (18.1 kDa) and analyzed the complexes by gel filtration. We observed formation of a RbAp48–gH3–gH4–ASF1$_{1-159}$ quaternary complex (88 kDa), which elutes earlier from the column than either RbAp48–gH3–gH4 or ASF1$_{1-159}$–gH3–gH4 (retention volumes of 1.47 ml compared with 1.50 ml and 1.59 ml, respectively; compare Figure 4a with Figure 1a and Supplementary Figure 2). We confirmed formation of this complex was by gel filtration of intact H3–H4 mixed with ASF1$_{1-159}$ in a 1:1 molar ratio together with an excess of RbAp48 (Supplementary Fig. 5a). Under the same conditions, RbAp48 and ASF1 did not by themselves interact (Supplementary Fig. 5b), confirming that formation of the RbAp48–H3–H4–ASF1 complex is mediated by the histones.34

We further confirmed formation of the RbAp48–H3–H4–ASF1 complex using non-denaturing ESI MS (Fig. 4b). We identified species from RbAp48–H3–H4–ASF1, RbAp48 and ASF1, but not from RbAp48 or ASF1 with histones, suggesting that interactions of H3–H4 with each chaperone are destabilized in the presence of the other. (This may in turn lead to a loss of H3–H4 from solution under the lower salt conditions used for mass spectrometry.)

Allosteric exchange of H3–H4 between ASF1 and RbAp48

During nucleosome assembly, ASF1 is thought to pass H3–H4 to RbAp48 (when part of CAF-1) for subsequent deposition onto DNA (reviewed in ref. 35). Our non-denaturing MS studies suggested that interactions of H3–H4 with each chaperone are destabilized in the presence of the other, and the EPR experiments further suggested that the H3–H3 dimerization interface—the region that binds ASF1—is destabilized in RbAp48–H3–H4. This suggests that binding of RbAp48 to H3–H4 should destabilize the interaction with ASF1, thereby facilitating the exchange of H3–H4 between the two chaperones. To test this hypothesis directly, we carried out fluorescence polarization experiments to compare the affinity of ASF1 for the H3–H4 and RbAp48–H3–H4 complexes.

First we measured the affinities of both ASF1 and RbAp48 for H3–H4, where H3 had been labeled with the Cy3 fluorophore either at Gln125 (for measurement of the affinity of ASF1 binding) or at Leu65 (for measurement of the affinity of RbAp48 binding). We labeled H3

Figure 3 The H3–H4 complex undergoes substantial structural rearrangement upon binding of RbAp48. (a) Model of two possible conformations for H3–H4 in solution. The model was generated using PyMOL.42 Helix 1 from H4 may unfold to interact with the binding pocket of RbAp46 and RbAp48, as observed in the RbAp46–H4 crystal structure. (b) Left, background-corrected PELDOR data for an H3–H4 complex. H3L65C and H4N25C were spin-labeled before and after the addition of an equimolar amount of RbAp48, shown in black and blue, respectively. Right, distance distribution peaks are observed for the H3–H4 dimer (\sim30 Å) and for the RbAp48 complex (\sim55 Å). (c) Left, background-corrected PELDOR data for an H3–H4 complex. H3M90C and H4N25C were spin-labeled before and after the addition of an equimolar amount of RbAp48 (black and blue, respectively). Right, the distance distribution shows a predominant peak for the H3–H4 dimer (\sim23 Å) and a major peak (\sim61 Å) for the RbAp48 complex. In b and c, the most appropriate time-trace simulation (obtained using Tikhonov regularization) is shown in red. A C110E mutation in H3 was used to reduce H3–H4 tetramerization and create an obligate H3–H4 dimer.33

Figure 1 a H3–H4 inactive for RbAp46 binding b H3–H4 active for RbAp46 binding c H3–H4 active for RbAp48 binding
Figure 4 Both RbAp48 and ASF1 can simultaneously bind the histone H3–H4 complex. (a) gH3 and gH4 were refolded and mixed with RbAp48 in a 1:1 molar ratio together with excess ASF1 1–159 before analysis on a Superdex 200 size-exclusion column. The eluted proteins were analyzed by SDS-PAGE (right). (b) Nondenaturing nano-ESI mass spectrum of the RbAp48–gH3–gH4–ASF1 1–159 complex. The ion series from the RbAp48–gH3–gH4–ASF1 1–159– RbAp48 and ASF1 1–159 species are indicated by magenta, brown and light-green dots, respectively. A comparison of the experimental versus theoretical m/z values is provided in Supplementary Table 1. (The peak series marked with asterisks corresponds to a 1:2:2:2 RbAp48–H3–H4–ASF1 1–159 complex, which perhaps forms as a dimer36, simplifying the analysis.

at different positions to determine the affinities using fluorescence-intensity experiments (data not shown). ASF1 and RbAp48 bound H3–H4 with similar affinities—the apparent K_d values were 0.27 ± 0.11 nM and 0.61 ± 0.49 nM, respectively (Fig. 5a,b). At the concentrations of H3–H4 used in these experiments (20 nM for the ASF1 and 6 nM for the RbAp48 titrations, respectively), H3–H4 is present ten-fold higher than its K_d for binding to H3–H4. This experiment showed that the affinity of ASF1 for the RbAp48–H3–H4 complex was substantially lower than that for H3–H4 alone, with an apparent K_d of 7.1 ± 3.6 nM. To improve the statistics, we performed the fit using a Monte Carlo algorithm that corrected for a slight drift. This gave a lower apparent K_d of 3.0 nM (error analysis was not possible using this approach), but both fitting procedures clearly indicate that the affinity of ASF1 for RbAp48–H3–H4 is an order of magnitude weaker than that for H3–H4 alone (Fig. 5c).

The apparent K_d for binding of ASF1 to H3–H4 presented here (0.27 ± 0.11 nM) is lower than that reported for the binding of intact yeast Asf1 to H3–H4 (2.5 nM)36. This discrepancy could reflect the species difference or the different solution conditions or fluorescence

Figure 5 Comparison of the affinities of ASF1 for the histone H3–H4 and RbAp48–H3–H4 complexes. (a,b) The measured fluorescence anisotropy (r_{obs}) is plotted against increasing concentrations of either ASF1 1–159 or RbAp48 to demonstrate binding to H3–H4. H3 was labeled with the Cy3 fluorophore at either Gln125 or Leu65. (c) Plot of r_{obs} against increasing concentrations of ASF1 1–159 for binding to the RbAp48–H3–H4 complex, labeled with Cy3 at Gln125 on H3. In a and b, a ligand-depletion binding isotherm was fitted to the data using the Levenberg-Marquardt algorithm. In c, the data were fitted with a ligand-depletion binding isotherm using the Levenberg-Marquardt algorithm (dashed line) or with an anisotropy ligand-depletion binding isotherm (with drift) using a Monte Carlo algorithm (solid line). (Note that in b, the concentration of Cy3-labeled H3–H4 was lower than that in a and c, giving the curves a different appearance.) All experiments were carried out in triplicate; data points are the mean of three independent experiments, and error bars represent ±1 s.d. A C110A mutation in H3 was used such that only the unique cysteine was labeled with the fluorophore.
Our results show that binding of RbAp48 to the histone H3–H4 complex destabilizes the interaction of ASF1 with H3–H4. This reduction in affinity of ASF1 for H3–H4, when complexed with RbAp48, suggests that RbAp48 modifies the H3–H4 structure, reducing its affinity for ASF1 by an allosteric mechanism. This would facilitate transfer of H3–H4 from ASF1 to RbAp48 in CAF-1-mediated nucleosome assembly. In other words, when ASF1–H3–H4 binds to RbAp48, this weakens the interaction of H3–H4 with ASF1, allowing ASF1 to be released.

DISCUSSION

Recent purification of histone H3 complexes formed during the assembly and processing of histone H3–H4 has identified a number of distinct complexes on which H3–H4 are assembled. During the course of assembly, new H4 is acetylated on Lys5 and Lys12 through interactions with RbAp46-HAT1 before being transferred to ASF1 (refs. 35,37). Following nuclear import, the replication-dependent H3–H4 complex (H3.1–H4) is transferred from ASF1 to CAF-1 (ref. 7), which consists of RbAp48 in a complex with p60 and p150 (refs. 13,14), for subsequent deposition onto DNA (reviewed in ref. 35). Previous studies have shown that ASF1 interacts directly with the p60 subunit of CAF-1 (ref. 38) to deliver the H3–H4 complex to RbAp48 in CAF-1. Thus, RbAp46 and RbAp48 interact with the H3–H4 complex and ASF1 at two key stages of the pathway for deposition of newly synthesized H3–H4 during replication-dependent nucleosome assembly. (We note that these complexes also involve other chaperones, which for simplicity are not discussed here; see ref. 37.)

Using gel-filtration and non-denaturing MS, we have shown that RbAp48 makes direct contacts with both histones H3 and H4 in the H3–H4 complex. The results from our EPR experiments suggest an unexpected plasticity in the H3–H4 complex, with a structural rearrangement that is consistent with helix 1 in H4 becoming disengaged from the core H3–H4 fold in order to bind to RbAp48. Moreover, gel-filtration, non-denaturing MS and EPR experiments all showed that RbAp48 interacts with H3–H4 dimers, but not with histone (H3–H4)2 tetramers, and the EPR data suggest that this is because the H3–H3 interface is destabilized. These results suggest an allosteric model for the exchange of histones H3–H4 between the two chaperone proteins, whereby RbAp48 binding to H3–H4 weakens its interactions with ASF1. We obtained direct evidence for this model by comparing the binding affinities of ASF1 to either the H3–H4 or the RbAp48–H3–H4 complexes using fluorescence-polarization experiments. Because histones bind so tightly to these chaperones, it seems likely that the structural plasticity of H3–H4, and the allosteric mechanism that releases ASF1 when ASF1–H3–H4 binds to RbAp48, are functionally important for the transfer of these histones between the different complexes involved in chromatin assembly. In the future, it will also be interesting to carry out similar experiments with RbAp46, which instead transfers H3–H4 to ASF1.

A picture is emerging of dimeric histone H3–H4 complexes being exchanged between a series of chaperone complexes before their deposition onto nascent DNA. However, H3–H4 tetramers need to be formed at some point. Our results suggest that newly synthesized H3–H4 complexes are handled as dimers at all points until tetramer assembly on CAF-1. Alternatively, assembly of new nucleosomes during DNA replication might occur through sequential CAF-1-mediated deposition of two H3–H4 dimers onto DNA, a possibility that needs to be tested in future experiments. The finding that RbAp46 and RbAp48 bind to histone H3–H4 dimers, but not to histone H3–H4 tetramers, may have wider implications: RbAp46, RbAp48 and their homologs function in numerous complexes involved in chromatin assembly, remodeling and modification; therefore, in many other chromatin-related processes, histones H3 and H4 might be handled as dimers. More generally, it seems plausible that the presence of RbAp46 or RbAp48 in a diverse range of chromatin-related complexes may reflect a requirement for reconfiguring the H3–H4 fold in processes that include the post-translational modification of histones and the repositioning of nucleosomes.

Our findings also have several potentially important implications for the epigenetic inheritance of post-translationally modified versions of H3–H4. It is thought that during DNA replication nucleosomes are completely disassembled at the replication fork, and that ASF1, which can bind to only a dimer of H3–H4, is involved in the disassembly process through its association with the MCM2-7 helicase39. However, as discussed, all the evidence suggests that parental (H3–H4)2 is segregated as a tetramer during DNA replication (reviewed in ref. 10). For H3–H4 to segregate to the leading and lagging DNA strands as tetramers, parental histones need to be transferred from in front of the replication fork and redeposited in a process that excludes the incorporation of newly synthesized H3–H4 dimers. This could perhaps be facilitated by the localization of both ASF1 and CAF-1 to the replication fork, through their interactions with the MCM2-7 helicase39 and PCNA40, respectively, such that when ASF1–H3–H4 dissociates the histones have a greater tendency to bind to a CAF-1 complex that is in close spatial proximity. However, the assembly of ‘new’ nucleosomes might be somewhat separated from the segregation of ‘old’ nucleosomes from in front to behind the replication fork. For example, the latter process could involve histone chaperones that are known to bind H3–H4 as tetramers (see, for example, ref. 41), or it might involve some form of temporal separation.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Supplementary information is available in the online version of the paper.

ACKNOWLEDGMENTS

We thank I. Berger (European Molecular Biology Laboratory, Grenoble, France) for insect cell expression vectors, R. Marmoistie (Wistar Institute, Philadelphia, USA) for the plasmid expressing human ASF1, K. Luger (Colorado State University, Fort Collins, Colorado, USA) for advice on suitable buffers for fluorescence experiments, S. McLaughlin and N. Boyle for purification of preliminary samples of histones H3–H4 and ASF1, A. Murzin for helpful discussions and comments on the manuscript, the Protein & Nucleic Acid Chemistry Facility (PNAC; Department of Biochemistry, University of Cambridge), and J. McCullagh and C. Schofield (Chemistry Department, University of Oxford, UK) for access to the Synapt instrument for non-denaturing MS experiments. We thank the Welcome Trust, the Engineering and Physical Sciences Research Council (EPSRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) for their support of this research: 08/2010/7/Z/07/Z (E.D.L., N.V.M.) 09/2441/Z/10/Z (A.A.W.), BB/D526088/1 (M.T.), EC FP7 277899 (E.D.L., E.S.), BB/E022286/1 (D.G.N., R.W.).

AUTHOR CONTRIBUTIONS

W.Z., M.T., R.W., E.S., J.M., A.A.W. and O.F. performed experiments. A.S.M. expressed recombinant RbAp48 protein. A.B., T.O.-H., H.E.M., N.V.M. and
D.G.N. provided technical and conceptual advice. E.D.L. supervised the work and prepared the manuscript, with assistance from the other authors.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/nsmb.2446.
Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Guiss, C., Wu, J., Koller, T. & Sago, J.M. Disruption of the nucleosomes at the replication fork. *EMBO J.* **12**, 4533-4545 (1993).
2. Luiger, K., Rechsteiner, T.J., Flaus, A.J., Waye, M.M. & Richmond, T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. *J. Mol. Biol.* **272**, 301-311 (1997).
3. Straf, B.D. & Allis, C.D. The language of covalent histone modifications. *Nature* **403**, 41-45 (2000).
4. Prior, C.P., Cantor, C.R., Johnson, E.M. & Allfrey, V.G. Incorporation of exogenous pyrene-labeled histone into *Physarum* chromatin: a system for studying changes in nucleosomes assembled in vivo. *Cell* **20**, 597-608 (1980).
5. Jackson, V. Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. *Biochemistry* **27**, 2109-2120 (1988).
6. Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. *Science* **328**, 94-98 (2010).
7. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. *Cell* **116**, 51-61 (2004).
8. Englich, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. *Cell* **127**, 495-508 (2006).
9. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. *Nature* **446**, 338-341 (2007).
10. Annunziato, A.T. Split decision: what happens to nucleosomes during DNA replication? *J. Biol. Chem.* **280**, 12065-12068 (2005).
11. Parthun, M.R., Widom, J. & Gottschling, D.E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. *Cell* **87**, 85-94 (1996).
12. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human HAT1 acetyltransferase. *Curr. Biol.* **8**, 96-108 (1998).
13. Smith, S. & Stillman, B. Purification and characterization ofCAF-1, a human cell factor required for chromatin assembly during DNA replication in vitro. *Cell* **58**, 15-25 (1989).
14. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. *Cell* **87**, 95-104 (1996).
15. Martinez-Balbas, M.A., Tsukiyama, T., Gedula, D. & Wu, C. Drosophila NURF-55, a WD repeat protein involved in histone metabolism. *Proc. Natl. Acad. Sci. USA* **95**, 132-137 (1998).
16. Barak, D. et al. Isolation of human NURF: a regulator of Engrailed gene expression. *EMBO J.* **22**, 6089-6100 (2003).
17. Wade, P.A., Jones, P.L., Vermaak, D. & Wolfe, A.P. A multiple subunit Mi-2 histone deacetylase from *Xenopus laevis* cofractionates with an associated Snf2 superfamily ATPase. *Curr. Biol.* **8**, 843-846 (1998).
18. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. *Genes Dev.* **13**, 1924-1935 (1999).
19. Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. *Mol. Cell* **14**, 183-193 (2004).
20. Kaji, K., Nichols, J. & Hendrich, B. Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development **134**, 1123-1132 (2007).
21. Shen, X. et al. Junonius modulates polycomb activity and self-renewal versus differentiation of stem cells. *Cell* **139**, 1303-1314 (2009).
22. Henrich, L., Taranto, P., Walser, M., Schonrock, N. & Grusswam, W. Arabidopsis MS1 is required for epigenetic maintenance of reproductive development. Development **130**, 2555-2565 (2003).
23. Lejon, S. et al. Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbpAp48-FOG-1 complex. *J. Biol. Chem.* **286**, 1196-1203 (2011).
24. Schmitges, F.W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. *Mol. Cell* **42**, 330-341 (2011).
25. Song, J.J., Garlick, J.D. & Kingston, R.E. Structural basis of histone H4 recognition by p55. *Genes Dev.* **22**, 1313-1318 (2008).
26. Murzina, N.V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbpAp46. *Structure* **16**, 1077–1085 (2008).
27. Nowak, A.J. et al. Chromatin-modifying complex component Nurf55/p55 associates with histones H3, H4 and Polycomb Repressive Complex 2 subunit Suf2/d2 through partially overlapping binding sites. *J. Biol. Chem.* **286**, 23388-23396 (2011).
28. Ma, X.J., Wu, J., Altheim, B.A., Schultz, M.C. & Grunstein, M. Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. *Proc. Natl. Acad. Sci. USA* **95**, 6693-6698 (1998).
29. Shibahara, K., Verreault, A. & Stillman, B. The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1-mediated nucleosome assembly onto replicated DNA in vitro. *Proc. Natl. Acad. Sci. USA* **97**, 7766-7771 (2000).
30. Ward, R., Bowman, A., El-Mkami, H., Owen-Hughes, T. & Norman, D.G. Long distance PELDOR measurements on the histone core particle. *J. Am. Chem. Soc.* **131**, 1348-1349 (2009).
31. Bowman, A., Ward, R., El-Mkami, H., Owen-Hughes, T. & Norman, D.G. Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. *Nucleic Acids Res.* **38**, 695-707 (2010).
32. Bode, B.E. et al. Counting the monomers in nanometer-sized oligomers by pulsed electron-electron double resonance. *J. Am. Chem. Soc.* **129**, 6736-6745 (2007).
33. Banks, D.D. & Gloss, L.M. Folding mechanism of the (H3-H4)2 histone tetramer of the core nucleosome. *Protein Sci.* **13**, 1304-1316 (2004).
34. Jasencakova, Z. & Groth, A. Restoring chromatin after replication: how new and old histone marks come together. *Semin. Cell Dev. Biol.* **21**, 231-237 (2010).
35. Ransom, M., Dennehey, B.K. & Tyler, J.K. Chaperoning histones during DNA replication and repair. *Cell* **140**, 183-195 (2010).
36. Donham, D.C. II, Scorgie, J.K. & Churchill, M.E. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4 DNA complexes. *Nucleic Acids Res.* **39**, 5449-5458 (2011).
37. Campos, E.I. et al. The program for processing newly synthesized histones H3.1 and H4. Nat. Struct. Mol. Biol. **17**, 1343-1351 (2010).
38. Tang, Y. et al. Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. *Nat. Struct. Mol. Biol.* **17**, 921-929 (2010).
39. Groth, A. et al. Regulation of replication fork progression through histone supply and demand. *Science* **318**, 1928-1931 (2007).
40. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. *Cell* **96**, 575-585 (1999).
41. Bowman, A. et al. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation. *Mol. Cell* **41**, 398-408 (2011).
42. DeLano, W. *The PyMOL molecular graphics system* (DeLano Scientific, Palo Alto, California, USA, 2002).
We then added 50 µM ASF1 and refolded histone (H3–H4)2 tetramers (either by themselves or as complexes prepared by mixing the appropriate components in 0.5 M NaCl) were run in 20 nM HEPES, pH 7.5, 0.7 M NaCl and 1 mM EDTA at 4 °C on a Superdex 200 PC 3.2/30 analytical size-exclusion column connected to an Etan LC system (GE Healthcare). Fractions (80 µl) were collected and the resulting proteins were analyzed on 4–12% NuPAGE gels (Invitrogen). The apparent molecular masses of the complexes were estimated by interpolation from a standard linear-regression curve.

BioLayer Interferometry. BioLayer Interferometry (BLI) experiments were performed on a 16-channel ForteBio Octet RED 384 plate analysis instrument at 20 °C in 25 mM HEPES, pH 7.5, and 100 mM NaCl, using either 20 µM RbAp48 or ASF1. The data were processed with the OverlOd3 laboratory automation control software.

Non-denaturing mass spectrometry analysis. Samples were buffer exchanged into 200 mM ammonium acetate, pH 7.0, before MS analysis and were typically measured at concentrations of 5–20 µM. Nano-ESI was performed using a chip-based infusion device (Advinion Nanomat Triviera) with a spray voltage of 1.7–1.8 kV coupled to a Q-TOF mass spectrometer (Waters Synapt G1 T-wave IMS-MS/MS). Interface conditions on the mass spectrometer were chosen to effect gentle desolvation of native structures while maintaining noncovalent interactions in the complexes. Key experimental parameters were (mobility mode): sample and extractor cone voltages of 60–120 V and 0–1 V, respectively; trap and transfer collision energies of 6–25 V and 4–15 V, respectively; bias 15–30 V; and backing, source, trap and IMS pressures of 5e5, 5e-3, 3e-2 and 5e-1 mbar, respectively. Peak assignment was performed using the Masslynx 4.0 software and by manual fitting to calculate charge states.

Preparation of spin-labeled histone chaperone complexes. Spin-labeled H3–H4 complexes were prepared as described and mixed with concentrated RbAp48 to give 300–400 µM samples. These were exchanged into a buffer with 0.8 M sodium chloride made up in deuterium oxide, using multiple rounds of concentration and dilution in Amicon ultracentrifugal concentrators (Millipore). We then added 50 µl of 97% (v/v) 2H2O glycerol (Cambridge Isotope Laboratories) to give a final sodium chloride concentration of 0.4 M, before mixing and storing at −80 °C until measurement by EPR. Complexes containing ASF1 were prepared in the same way, except that the buffer exchange was carried out in 1 M sodium chloride, resulting in a final concentration of 0.5 M after addition of 50% (v/v) 2H2O glycerol.

Pulsed electron-electron double-resonance experiments. PELDOR experiments were carried out using a Bruker ELEXYS E850 spectrometer operating at the X band with a dielectric-ring resonator and a second 400-U Bruker microwave source. All measurements were made at 50 K with an over-coupled resonator, giving a Q factor of approximately 100. The video bandwidth was set to 20 MHz. A four-pulse, dead time–free PELDOR sequence was used with the pump pulse frequency positioned at the center of the nitroxide spectrum. The frequency of the observer pulses was increased by 80 MHz. The observer sequence used a 32-ns π-pulse, and the pump π-pulse was typically 16 ns. The experiment repetition time was 4.08 ms, and the number of scans used was sufficient to obtain a suitable quality signal (typically >400 scans) with 50 shots at each time point.

PELDOR data analysis. In brief, the experimentally obtained time-domain trace was processed so as to remove any unwanted intermolecular couplings arising from background decay. Tikhonov regularization was then used to simulate time-trace data, giving rise to distance distributions, P(r), of different peak width depending on the regularization factor, alpha. The alpha term used was judged by reference to a calculated L curve. The L curve is a parametric plot that compares smoothness of the distance distribution to the mean-square deviation. The most appropriate alpha term to be used is at the inflection of the L curve, as this provides the best compromise between smoothness (artefact suppression) and fit to the experimental data. PELDOR data were analyzed using the DeerAnalysis2006 software package. The dipolar-coupling evolution data were corrected for background echo decay using a homogeneous three-dimensional spin distribution. The starting time for the background fit was optimized to give the best fit to the Pake pattern in the Fourier-transformed data and the lowest r.m.s. deviation background fit.

Fluorescence-polarization experiments. H3 was labeled with Cy3 fluorescent dye (GE Healthcare) as described. H3 and H4 were then refolded into 10 mM Tris-HCl, pH 7.5, and 2 M KCl. ASF1 was mixed with the H3–H4 complex to give maximum concentrations of the histone chaperone and Cy3-labeled H3–H4 of 0.2 nM and 20 nM, respectively, in 10 mM Tris-HCl, pH 7.5, 150 mM KCl, 5% (v/v) glycerol, 0.01% (w/v) NP40 and 0.01% (w/v) CHAPS, before a serial dilution was carried out against the same buffer containing 20 mM Cy3-labeled H3–H4. For the RBaP48 titration, the H3–H4 concentration was 6 nM. Fluorescence-polarization measurements were recorded using a PHERAStar FS plate reader (BMG Labtech) equipped with a fluorescence-polarization optical module (excitation: 540 nm; emission: 590 nm). The anisotropy was measured at 20 °C in black-well half-area, flat-bottom NBS plates (Corning). The instrument was set in a top optical measurement mode, with 200 flashes per well. The gain and focal height were set using free fluorescein (Fluorescein Sodium; Fluka) in 50 mM Tris-HCl, pH 8.0 (mP = 35). Samples were incubated at 20 °C for at least 5 min before measurement to allow the binding to reach equilibrium, and at least three independent experiments were performed for each sample.

Fluorescence-polarization experimental data analysis. The fluorescence anisotropy data were analyzed using a simple 1:1 binding model (RbAp48 does not interact directly with ASF1) and the H3–H4 complex exists as a dimer at the concentrations used. Because the Cy3-labeled H3–H4 complexes were mixed in our experiments (to ensure an acceptable signal-to-noise ratio) are substantially larger than the measured Kd values, we performed nonlinear fits to the raw data of ligand-depletion binding isotherms adapted for fluorescence-anisotropy measurements using the ProFit package (Quantum Soft).

\[r_{obs} = r_0 + \Delta r (1 + K_d[P]_0) - \sqrt{(1 + K_d[P]_0)^2 - 4K_d[P]_0} \frac{2K_d[P]_0}{2D[P]_0} \]

where \(r_{obs} \) is the measured anisotropy, \(r_0 \) is the anisotropy of the Cy3-bound histone H3–H4 complex in the absence of ligand, \(\Delta r \) is the anisotropy amplitude of the ligand-saturated histone H3–H4 complex, \([P]_0 \) is the total concentration of the ligand, \(K_d \) is the total concentration of the Cy3-bound histone H3–H4 complex and \(K_d \) is the dissociation equilibrium constant. For the titration of ASF1 with the RbAp48–H3–H4 complex, a linear-drift term was added to the equation above. The nonlinear fits were initially performed using a Monte Carlo algorithm without error analysis, and the fitted parameters were used for fitting with a Levenberg-Marquardt algorithm with error analysis. The resulting errors (1 s.d.) are large because of the poor signal to noise. The quality of the fits was assessed by translating the \(x^2 \) values into probabilities (P). Because the P value for the titration of ASF1 with the RbAp48–H3–H4 complex was low, we repeated the fit using a Monte Carlo algorithm with a Lorentzian distribution of the errors to account for their non-Gaussian distribution (see Fig. 5c). The Kd values are reported as apparent Kd because the initial extent of ligand depletion exceeds 50% of the Kd value. We estimate that the true Kd values are lower (that is, the affinity is higher).

43. Sobott, F., McCammon, M.G., Hernandez, H. & Robinson, C.V. The flight of macromolecular complexes in a mass spectrometer. Philos. Trans. A Math. Phys. Eng. Sci. 363, 379–389 discussion 389–391 (2005).

44. Ward, R., Keeble, D.J., El-Mkami, H. & Norman, D.G. Distance determination in heterogeneous DNA model systems by pulsed EPR. ChemBioChem 8, 1957–1964 (2007).

45. Jeschke, G. et al. DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl. Magn. Reson. 30, 473–498 (2006).
46. Park, Y.J., Dyer, P.N., Tremethick, D.J. & Luger, K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J. Biol. Chem. 279, 24274–24282 (2004).

47. Kenakin, T.P. Pharmacological Analysis of Drug-Receptor Interaction 205–244 (Raven Press, New York, 1987).

48. Swillens, S. Interpretation of binding curves obtained with high receptor concentrations—practical aid for computer analysis. Mol. Pharmacol. 47, 1197–1203 (1995).

49. Hulme, E.C. & Trevethick, M.A. Ligand binding assays at equilibrium: validation and interpretation. Br. J. Pharmacol. 161, 1219–1237 (2010).