PATTERN DYNAMICS OF A DELAYED ECO-EPIDEMIOLOGICAL MODEL WITH DISEASE IN THE PREDATOR

JING LI

Department of Computer Science and Technology, North University of China
Taiyuan Shan’xi 030051, China
and Complex Systems Research Center, Shanxi University
Taiyuan Shan’xi 030051, China

ZHEN JIN*

Complex Systems Research Center, Shanxi University
Taiyuan Shan’xi 030051, China
and Department of Computer Science and Technology, North University of China
Taiyuan Shan’xi 030051, China

GUI-QUAN SUN

Complex Systems Research Center, Shanxi University
Taiyuan Shan’xi 030051, China

LI-PENG SONG

Department of Computer Science and Technology, North University of China
Taiyuan Shan’xi 030051, China

ABSTRACT. The eco-epidemiology, combining interacting species with epidemiology, can describe some complex phenomena in real ecosystem. Most diseases contain the latent stage in the process of disease transmission. In this paper, a spatial eco-epidemiological model with delay and disease in the predator is studied. By mathematical analysis, the characteristic equations are derived, then we give the conditions of diffusion-driven equilibrium instability and delay-driven equilibrium instability, and find the ranges of existence of Turing patterns in parameter space. Moreover, numerical results indicate that a parameter variation has influences on time and spatially averaged densities of pattern reaching stationary states when other parameters are fixed. The obtained results may explain some mechanisms of phenomena existing in real ecosystem.

2010 Mathematics Subject Classification. Primary: 35K57, 35B36; Secondary: 92D25, 92D30.
Key words and phrases. Eco-epidemiological model, spatial diffusion, time delay, pattern formation, Turing instability.

The work is supported by the National Natural Science Foundation of China under Grants (11331009, 11671241 and 11301490), 131 Talents of Shanxi University, Program for the Outstanding Innovative Teams (OIT) of Higher Learning Institutions of Shanxi, and Natural Science Foundation of Shanxi Province Grant no. 201601D021002.

* Corresponding author: Zhen Jin.
1. Introduction. From the earliest Kermack-McKendric compartment model, epidemiological studies have made great progress, which provides some guidance for the prevention and control of disease [20, 2, 4, 16, 8, 35, 56, 1]. The susceptible can be infected by direct contact with the infective, or by encountering with the free-living pathogen in the environment. In real ecosystems, species does not live alone. There are mutualistic symbiosis, competition and predation relationships between interacting species [7, 13, 9]. Thus, it is more biologically meaningful to consider the interactions between species. Now, the population dynamics represented by Lotka-Volterra system has received great attentions [47, 48, 12, 23, 33, 54, 37, 25]. Population dynamics provides some suggestions for the development and utilization of resources, conservation of biodiversity, and biological control. For example, A fishery’s model with two types of fishermen was proposed, which evaluated the effects of their activities on the sustainability to fishing stocks at the Amazonian floodplain lakes [34].

Most species suffer from various infectious disease, and these diseases have significant effects on population size. Therefore, the combination of epidemiology and the interacting species has aroused more and more interest, which produce a new branch of eco-epidemiology [45, 14, 10, 53]. For example, some scholars have studied how control the number of harmful insects by biologically-based technology. The combination of the prey-predator model and the epidemic model is one of the eco-epidemiology models. In recent decades, some scholars have considered that disease spreads only in the prey species [17, 50, 24], or only in the predator species [46, 53, 15], or in both the prey and the predator [19]. In this article, the classical Rosenzweig-MacArthur prey-predator model with Holling type II functional response is [31]:

\[
\begin{align*}
\frac{dP_1(t)}{dt} &= bP_1(t)\left(1 - \frac{P_1(t)}{K}\right) - \frac{aP_1(t)}{H + P_1(t)}N_1(t), \\
\frac{dN_1(t)}{dt} &= e\frac{aP_1(t)}{H + P_1(t)}N_1(t) - dN_1(t).
\end{align*}
\]

Hilker and Schmitz introduced a general SI epidemic model with standard incidence rate in Rosenzweig-MacArthur prey-predator model [18, 6], then a prey-predator model with disease in the predator species was formulated:

\[
\begin{align*}
\frac{dP_1(t)}{dt} &= bP_1(t)\left(1 - \frac{P_1(t)}{K}\right) - \frac{aP_1(t)}{H + P_1(t)}(S_1(t) + I_1(t)), \\
\frac{dS_1(t)}{dt} &= e\frac{aP_1(t)}{H + P_1(t)}(S_1(t) + I_1(t)) - dS_1(t) - \beta \frac{S_1(t)I_1(t)}{S_1(t) + I_1(t)}, \\
\frac{dI_1(t)}{dt} &= \beta \frac{S_1(t)I_1(t)}{S_1(t) + I_1(t)} - (d + \alpha)I_1(t).
\end{align*}
\]

Since most species live in spatial environments, they do not always stay in one place, but go to other places. In nature, a common phenomenon is that the predator searches for and catches the prey through movement, in turn the prey avoids being eaten by escape. So the diffusion of the species in space should be concerned. Previous papers considered the interactions between the species are independent of space position [22, 52, 17, 46, 18, 6]. In fact, the distribution of the population in space is not homogeneous because of the interactions between the dynamics and the movement of the species. The spatial distribution of the species may form a variety of patterns, such as spotted patterns, strip patterns, and the coexistence
of spotted and stripe patterns [30, 5, 13, 27, 38, 36, 42, 41]. However, most of the previous studies discussed spatial pattern formations for the two-variable system. Sun et al. investigated the spatiotemporal complexity in a predator-prey system with Holling-Tanner form, and they demonstrated that migration had important effect on the pattern formation of the population [13]. Since phenomena of the interactions among multiple species exist widely. Although some researchers have discussed the spatial pattern formations of the three-variable systems [12, 19, 51, 44]. In real ecosystem, predator can not immediately reproduce the next generation after eating prey [11, 29]. In this paper, we therefore introduce time delay into a spatial eco-epidemiological model with delay and disease in the predator.

The structure of this paper is as below. In section 2, a spatial eco-epidemiological model with delay and disease in the predator is formed. Moreover, we analyze the local stability of equilibria. In section 3, we derive the characteristic equation of the spatial eco-epidemiological model with delay and disease in the predator by the assumption of small time delay. The instability conditions of the positive constant stationary state are given. In section 4, numerical simulations exhibit patterns. Finally, we give some conclusions and discussion.

2. Mathematical modeling and analysis.

2.1. Model formulation. In real ecosystem, the growth of the species and the interactions between the species depend on the spatial environment. Hence, the spatial Rosenzweig-MacArthur prey-predator model with disease in the predator is considered. Since we are interested in the self-organization of patterns, then the nonzero initial condition and Neumann boundary conditions are chosen. Neumann boundary conditions denotes that the species lives in a closed space domain. It is well known that the predator takes some time to produce the next generation after eating the prey, that is, the growth rate of the predator depends on the number of the predator and of the prey at some previous time [11, 29]. So we introduce time delay into the interaction term between the predator and the prey in the healthy predator equation. By incorporating time delay into the spatial Rosenzweig-MacArthur prey-predator model with disease in the predator, the following model in two-dimensional space is formed:

\[
\begin{align*}
\frac{\partial P_1(x, y, t)}{\partial t} &= bP_1(x, y, t) \left(1 - \frac{P_1(x, y, t)}{K}\right) - \frac{aP_1(x, y, t)}{H + P_1(x, y, t)} (S_1(x, y, t) + I_1(x, y, t)), \\
\frac{\partial S_1(x, y, t)}{\partial t} &= \frac{aP_1(x, y, t - \tau)}{H + P_1(x, y, t - \tau)} (S_1(x, y, t - \tau) + I_1(x, y, t - \tau)) - dS_1(x, y, t), \\
\frac{\partial I_1(x, y, t)}{\partial t} &= \frac{P_1(x, y, t)}{S_1(x, y, t) + I_1(x, y, t)} + dS_1(x, y, t) - (d + a)I_1(x, y, t) + dS_1(x, y, t), \\
\end{align*}
\]

With initial conditions, \(P_1(x, y, 0) = \phi_1(x, y), S_1(x, y, 0) = \phi_2(x, y) \geq 0, I_1(x, y, 0) = \phi_3(x, y) \geq 0, \) \((x, y) \in \Omega \times [-\tau, 0]\), where \(\Omega \) is a bounded domain and \(\tau > 0\), and boundary conditions

\[
\begin{align*}
\frac{\partial P_1(x, y, t)}{\partial n} \bigg|_{\partial \Omega} &= 0, \\
\frac{\partial S_1(x, y, t)}{\partial n} \bigg|_{\partial \Omega} &= 0, \\
\frac{\partial I_1(x, y, t)}{\partial n} \bigg|_{\partial \Omega} &= 0, \quad t \geq 0,
\end{align*}
\]

(3)
where $P_1(x, y, t)$, $S_1(x, y, t)$, $I_1(x, y, t)$ represent the numbers of the prey, the healthy predator and the infected predator, respectively. b and K are the intrinsic growth rate and the carrying capacity of logistic equation, respectively. The functional response of predators is considered as Holling type II with a maximum consumption rate and the carrying capacity of logistic equation, respectively. The transmission rate is β, d denotes the natural mortality, and α is disease induced mortality. In order to describe the diffusion process, the usual Laplacian operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ in two-dimensional space is given. d_1, d_2 and d_3 are diffusion coefficients for different species. n is the outside normal vector of $\partial \Omega$. $\phi_1(x, y, t)$, $\phi_2(x, y, t)$, $\phi_3(x, y, t)$ denote the initial number of the prey, the healthy predator and the infected predator, respectively.

The above model is simplified through rescaling the model variables. Let $P = P_1/K$, $S = S_1/eK$, $I = I_1/eK$, $T = eat$, one can obtain:

\[
\begin{align*}
\frac{\partial P}{\partial T} &= rP(1 - P) - \frac{P}{h + P}(S + I) + D_1 \nabla^2 P, \\
\frac{\partial S}{\partial T} &= \frac{P(T - \bar{\tau})}{h + P(T - \bar{\tau})}(S(T - \bar{\tau}) + I(T - \bar{\tau})) - mS - \beta_1 \frac{SI}{S + I} + D_2 \nabla^2 S, \\
\frac{\partial I}{\partial T} &= \beta_1 \frac{SI}{S + I} - (m + \mu)I + D_3 \nabla^2 I,
\end{align*}
\]

where $r = b/ea$, $h = H/K$, $m = d/ea$, $\beta_1 = \beta/ea$, $\mu = \alpha/ea$, $D_1 = d_1/ea$, $D_2 = d_2/ea$, $D_3 = d_3/ea$, $\bar{\tau} = eat$, these parameters are positive constants.

2.2. Local stability. Next, system (4) in the absence of diffusion and delay is corresponding to the following ordinary differential system:

\[
\begin{align*}
\frac{dP}{dT} &= rP(1 - P) - \frac{P}{h + P}(S + I) \triangleq f_1(P, S, I), \\
\frac{dS}{dT} &= \frac{P}{h + P}(S + I) - mS - \beta_1 \frac{SI}{S + I} \triangleq f_2(P, S, I), \\
\frac{dI}{dT} &= \beta_1 \frac{SI}{S + I} - (m + \mu)I \triangleq f_3(P, S, I).
\end{align*}
\]

The system (5) has two equilibria, one is the predator without disease $E_1 = (-hm/m-1, -hr/hm+m-1, 0)$, which needs to be satisfied $m < 1/(h + 1)$. The other is the predator with disease equilibrium $E^* = (P^*, S^*, I^*)$, where

\[
\begin{align*}
P^* &= \frac{(\beta_1 - \mu)(\mu + m)}{\beta_1 - (\beta_1 - \mu)(\mu + m)}, \\
S^* &= \frac{r(h\mu + m)[\beta_1 - (1 + h)(\beta_1 - \mu)(\mu + m)]}{[\beta_1 - (\beta_1 - \mu)(\mu + m)]^2}, \\
I^* &= \frac{r(h\beta_1 - \mu - m)[\beta_1 - (1 + h)(\beta_1 - \mu)(\mu + m)]}{[\beta_1 - (\beta_1 - \mu)(\mu + m)]^2}.
\end{align*}
\]

And the condition of the existence of E^* is

$$\beta_1 \neq \mu, \ m < \min \left\{ \beta_1 - \mu, \frac{\beta_1}{(1 + h)(\beta_1 - \mu)} \right\}.$$

The jacobian matrix of the system (5) at E_1 is

\[
J_1 = \begin{pmatrix}
(hm + h + m - 1)mr/(m - 1) & -m & -m \\
-r(hm + m - 1) & 0 & m - \beta_1 \\
0 & 0 & \beta_1 - m - \mu
\end{pmatrix},
\]
the corresponding characteristic equation is

\[
(1-m)\lambda^2 + rm(hm + h + m - 1)\lambda + r(hm + m - 1)(m-1)m \times \left(\frac{-\lambda - \beta_1 - m - \mu}{m-1}\right) = 0,
\]

(6)

it is obvious that a eigenvalue is \(\lambda_{11} = \beta_1 - m - \mu\), the remaining two eigenvalues \(\lambda_{12}, \lambda_{13}\) are determined by

\[(1-m)\lambda^2 + rm(hm + h + m - 1)\lambda + r(hm + m - 1)(m-1)m = 0,
\]

one can obtain

\[
\lambda_{12} + \lambda_{13} = \frac{rm(1-m-hm-h)}{1-m}, \lambda_{12}\lambda_{13} = rm(1-hm) > 0.
\]

If the condition

\[
\max\left\{\beta_1 - \mu, \frac{1-h}{1+h}\right\} < m < \frac{1}{1+h}
\]

holds, then the predator without disease equilibrium \(E_1\) is locally asymptotic stability.

The Jacobian of system (5) around the predator with disease equilibrium \(E^*\) is given by

\[
J_2 = \begin{pmatrix}
 a_{11} & a_{12} & a_{12} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix},
\]

where

\[
a_{11} = \frac{\partial f_1}{\partial P} |_{E^*} = \frac{(-\beta_1 - (1+h)(\beta_1 - \mu)(\mu + m) + \beta_1 h)(\mu + m)(\beta_1 - \mu)r}{\beta_1}, a_{12} = \frac{\partial f_1}{\partial S} |_{E^*} = \frac{(1-hm-h)(\mu + m)}{\beta_1}, a_{13} = \frac{\partial f_1}{\partial I} |_{E^*} = \frac{1}{\beta_1},
\]

Further, we can get

\[
|\lambda E - J_2| = \begin{vmatrix}
 \lambda - a_{11} & -a_{12} & -a_{12} \\
 -a_{21} & \lambda - a_{22} & -a_{23} \\
 0 & -a_{32} & \lambda - a_{33}
\end{vmatrix} = \lambda^3 + a_1\lambda^2 + a_2\lambda + a_3,
\]

(7)

where

\[
a_1 = -(a_{11} + a_{22} + a_{33}), a_2 = a_{11}a_{22} + a_{11}a_{33} - a_{12}a_{21} + a_{22}a_{33} - a_{23}a_{32},
\]

\[
a_3 = -a_{11}a_{22}a_{33} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} - a_{12}a_{21}a_{32}.
\]

Moreover, it is easy to calculate

\[
a_1a_2 - a_3 = -a_{11}a_{22} - a_{11}a_{33} + a_{11}a_{21} - a_{11}a_{22} - 2a_{11}a_{32}a_{33} - a_{11}a_{33} + a_{12}a_{21}a_{22} + a_{21}a_{21}a_{32} - a_{22}a_{33} + a_{22}a_{23}a_{32} - a_{22}a_{33} + a_{23}a_{32}a_{33}.
\]

(8)

By Hurwitz criterion, the necessary and sufficient conditions, under which all the roots of the characteristic polynomial (7) have negative real parts, are given by

\[
a_1 > 0, \quad a_3 > 0, \quad a_1a_2 - a_3 > 0,
\]

which indicates that the equilibrium \(E^*\) is locally asymptotic stability.
3. Analysis of the delayed eco-epidemiological model with disease in the predator. In this section, we mainly analyze the stability of the predator with disease equilibrium $E^* = (P^*, S^*, I^*)$ in system (11). Based on the assumption of small time delay, $P(x, y, T - \bar{\tau}) = P(x, y, T) - \bar{\tau}\partial P(x, y, T)/\partial T$, $S(x, y, T - \bar{\tau}) = S(x, y, T) - \bar{\tau}\partial S(x, y, T)/\partial T$, $I(x, y, T - \bar{\tau}) = I(x, y, T) - \bar{\tau}\partial I(x, y, T)/\partial T$ [22] [26]. The following system is given by:

$$\begin{aligned}
\frac{\partial P}{\partial T} &= rP(1 - P) - \frac{P}{h + P}(S + I) + D_1\nabla^2 P, \\
\frac{\partial S}{\partial T} &= \left(\frac{P - \bar{\tau}\frac{\partial P}{\partial T}}{h + P} - \frac{\partial S}{\partial T}\right)(S - \bar{\tau}\frac{\partial S}{\partial T} + I - \bar{\tau}\frac{\partial I}{\partial T}) - mS - \beta_1 \frac{SI}{S + I} + D_2\nabla^2 S, \quad (9) \\
\frac{\partial I}{\partial T} &= \beta_1 \frac{SI}{S + I} - (\mu + m)I + D_3\nabla^2 I,
\end{aligned}$$

By using Taylor series, we expand the three equations of the system (9) in (P, S, I) and neglect the higher order nonlinear terms, the system (9) is transformed into:

$$\begin{aligned}
\frac{\partial P}{\partial T} &= rP(1 - P) - \frac{P}{h + P}(S + I) + D_1\nabla^2 P, \\
\frac{\partial S}{\partial T} &= g(P, S, I) - mS - \beta_1 \frac{SI}{S + I} + g_P\left(-\bar{\tau}\frac{\partial P}{\partial T}\right) + g_S\left(-\bar{\tau}\frac{\partial S}{\partial T}\right) + g_I\left(-\bar{\tau}\frac{\partial I}{\partial T}\right) + D_2\nabla^2 S, \\
\frac{\partial I}{\partial T} &= \beta_1 \frac{SI}{S + I} - (\mu + m)I + D_3\nabla^2 I,
\end{aligned}$$

(10)

where $g(P, S, I) = \frac{P}{h + P}(S + I)$, $g_P = \partial g(P, S, I)/\partial P$, $g_S = \partial g(P, S, I)/\partial S$, $g_I = \partial g(P, S, I)/\partial I$. The system (10) can be written as

$$\begin{aligned}
\frac{\partial P}{\partial T} &= f_1(P, S, I) + D_1\nabla^2 P, \\
\frac{\partial S}{\partial T} &= f_2(P, S, I) + g_P\left(-\bar{\tau}\frac{\partial P}{\partial T}\right) + g_S\left(-\bar{\tau}\frac{\partial S}{\partial T}\right) + g_I\left(-\bar{\tau}\frac{\partial I}{\partial T}\right) + D_2\nabla^2 S, \\
\frac{\partial I}{\partial T} &= f_3(P, S, I) + D_3\nabla^2 I.
\end{aligned}$$

(11)

Since the predator with disease equilibrium $E^* = (P^*, S^*, I^*)$ satisfies $f_1(P^*, S^*, I^*) = 0$, $f_2(P^*, S^*, I^*) = 0$ and $f_3(P^*, S^*, I^*) = 0$. By expanding the three equation of the system (11) with Taylor series in E^* and neglecting the higher order nonlinear terms, then the system (11) becomes

$$\begin{aligned}
\frac{\partial P}{\partial T} &= a_{11}(P - P^*) + a_{12}(S - S^*) + a_{13}(I - I^*) + D_1\nabla^2 P, \\
\frac{\partial S}{\partial T} &= a_{21}(P - P^*) + a_{22}(S - S^*) + a_{23}(I - I^*) + g_P\left(-\bar{\tau}\frac{\partial P}{\partial T}\right) + g_S\left(-\bar{\tau}\frac{\partial S}{\partial T}\right) + g_I\left(-\bar{\tau}\frac{\partial I}{\partial T}\right) + D_2\nabla^2 S, \\
\frac{\partial I}{\partial T} &= a_{32}(S - S^*) + a_{33}(I - I^*) + D_3\nabla^2 I,
\end{aligned}$$

(12)

where $g_P = a_{21}$, $g_S = g_I = -a_{12}$.

Let $\delta P = P^* + \delta P$, $\delta S = S^* + \delta S$ and $\delta I = I^* + \delta I$, where δP, δS and δI denote small spatiotemporal perturbations at homogenous steady state $E^* = (P^*, S^*, I^*)$.

Furthermore, one can derive:
\[
\begin{align*}
\frac{\partial \delta P}{\partial T} &= a_{11} \delta P + a_{12} \delta S + a_{12} \delta I + D_1 \nabla^2 \delta P, \\
\frac{\partial \delta S}{\partial T} &= a_{21} \delta P + a_{22} \delta S + a_{23} \delta I + a_{21} \left(-\frac{\partial \delta P}{\partial T} \right) - a_{12} \left(-\frac{\partial \delta I}{\partial T} \right) \quad \text{(13)} \\
\frac{\partial \delta I}{\partial T} &= a_{32} \delta S + a_{33} \delta I + D_2 \nabla^2 \delta S,
\end{align*}
\]

Under the Neumann boundary conditions, spatiotemporal perturbations \(\delta P, \delta S\) and \(\delta I\) can be expressed as the following forms:
\[
\begin{align*}
\delta P &= \delta P^* e^{\lambda t} \cos k_x x \cos k_y y, \quad \text{(14a)} \\
\delta S &= \delta S^* e^{\lambda t} \cos k_x x \cos k_y y, \quad \text{(14b)} \\
\delta I &= \delta I^* e^{\lambda t} \cos k_x x \cos k_y y. \quad \text{(14c)}
\end{align*}
\]

By inserting (14a)–(14c) into system (13), we can derive matrix equation with respect to eigenvalues:
\[
\begin{pmatrix}
\lambda - a_{11} + D_1 k^2 \\
(\lambda \tau - 1) a_{21} \\
0
\end{pmatrix}
\begin{pmatrix}
a_{12} \\
\lambda - a_{22} - a_{12} \lambda \tau + D_2 k^2 \\
a_{32}
\end{pmatrix}
\begin{pmatrix}
a_{21} \\
-a_{23} - a_{12} \lambda \tau \\
\lambda - a_{33} + D_2 k^2
\end{pmatrix}
\begin{pmatrix}
\delta P^* \\
\delta S^* \\
\delta I^*
\end{pmatrix} = 0,
\]

here \(k_x^2 + k_y^2 = k^2\).

Next, the characteristic equation of system (14) is derived:
\[
\lambda^3 + a_1(k, \tau) \lambda^2 + a_2(k, \tau) \lambda + a_3(k, \tau) = 0, \quad \text{(16)}
\]

where \(a_0 = -a_{12} \tau + 1 > 0\) because of \(a_{12} < 0\),
\[
a_1(k, \tau) = \frac{1}{a_0} \left[\left[-D_1 a_{12} \tau - D_3 a_{12} \tau + D_1 + D_2 + D_3 \right] k^2 + a_{12} \tau (a_{11} + a_{21} - a_{32} + a_{33}) + a_1 \right],
\]

\[
a_2(k, \tau) = \frac{1}{a_0} \left[\left[D_1 D_3 (1 - a_{12} \tau) + D_1 D_2 + D_2 D_3 \right] k^4 + (D_1 \tau a_{12} (a_{33} - a_{32})
+ D_3 \tau a_{12} (a_{11} + a_{21}) - D_1 (a_{22} + a_{33}) - D_2 (a_{11} + a_{33}) - D_3 (a_{11} + a_{22})) k^2
+ a_{12} \tau (a_{11} + a_{21}) (a_{32} - a_{33}) + a_2 \right], \quad \text{(17)}
\]

\[
a_3(k, \tau) = y_1 k^6 + y_2 k^4 + y_3 k^2 + y_4, \quad \text{(18)}
\]

here \(y_1 = D_1 D_2 / a_0 > 0, \quad y_4 = a_3 / a_0 > 0, \quad y_2 = -D_1 D_2 a_{33} + D_1 D_3 a_{22} + D_2 D_3 a_{11}) / a_0, \quad y_3 = (D_1 a_{22} a_{33} - D_1 a_{23} a_{32} + D_2 a_{11} a_{33} + D_3 a_{11} a_{22} - D_3 a_{12} a_{21}) / a_0.
\]

Then we can get that:
\[
a_1(k, \tau) a_2(k, \tau) - a_3(k, \tau) = \frac{1}{a_0^2} \left[p_1(\tau) k^6 + p_2(\tau) k^4 + p_3(\tau) k^2 + p_4(\tau) \right], \quad \text{(20)}
\]

where
\[
p_1(\tau) = D_1 D_3 a_{12}^2 (D_3 + D_1) \tau^2 - (D_3 + D_1) a_{12} (D_1 D_2 + 2 D_1 D_3 + D_2 D_3) \tau
+ (D_2 + D_3) (D_3 + D_1) (D_1 + D_2) > 0,
\]
\[p_2(\tau) = a_1^2 \tau^2 [D_1^2(a_{32} - a_{33}) - D_3^2(a_{11} + a_{21}) - 2D_1D_3(a_{11} + a_{21})] \]
\[+ a_1 \tau (D_2(a_1 + D_3)^2 - D_1^2(a_{32} - 2a_{33}) + D_3^2(a_{21} + a_{22}) + (D_1D_2 + 2D_3) \]
\[(a_{11} + a_{21} - a_{32} + a_{33})+ D_1D_3(a_{11} - a_{32} + a_{33}) \]
\[+ 2D_1D_3(a_{11} + a_{33}) + D_2D_3(a_{11} + a_{21} + a_{33})] - a_{22}(D_1 + D_3)^2 \]
\[- a_{33}(D_1 + D_2)^2 - a_{11}(D_2 + D_3)^2 - 2D_1D_2(a_{11} + a_{22}) \]
\[- 2D_1D_3(a_{11} + a_{33}) - 2D_2D_3(a_{22} + a_{33}), \]
\[p_1(\tau) = - a_1^2 \tau^2 [- D_1(a_{32} - a_{33})^2 + 2(D_1 + D_3)(a_{11} + a_{21})(a_{32} - a_{33}) \]
\[- a_{12} \tau [(D_1 + D_3)(2a_{11} + a_{21})(a_{22} + 2a_{33} - a_{32}) + (D_2a_{11} + D_2a_{33} \]
\[+ 2D_3a_{11})(a_{11} + a_{21}) + 2D_1(a_{33} - a_{32})(a_{22} + a_{33}) + (D_2a_{21} + D_2a_{11} \]
\[+ D_2a_{33} + D_3a_{22})(a_{33} - a_{32}) - D_1a_{12}a_{21} - D_2a_{11}a_{32} + D_3(a_{21}a_{22} \]
\[+ a_{22}a_{33} - a_{23}a_{32}) + D_1(a_{22} + a_{33})^2 + D_1(2a_{21}a_{22} + 2a_{11}a_{33} - a_{12}a_{21} \]
\[+ D_2(a_{11} + a_{33})^2 + D_2(2a_{11}a_{22} + 2a_{22}a_{33} - a_{12}a_{21} - a_{23}a_{32}) \]
\[+ D_3(a_{11} + a_{22})^2 + D_3(2a_{22}a_{33} + 2a_{11}a_{33} - a_{23}a_{32})] \]
\[p_4(\tau) = r_1 \tau^2 + r_2 \tau + r_3. \]

Here \(r_1 = a_1^2(a_{32} - a_{33})(a_{11} + a_{21})(a_{22} + a_{32}) + (2a_{11} + a_{21})(a_{33} - a_{32})(a_{22} + a_{33}) + (a_{33} - a_{32})(a_{11} + a_{21} + a_{22}a_{33} - a_{23}a_{32}) - a_{12}a_{21}(a_{11} + a_{21}) + a_{21}(a_{22}a_{33} - a_{23}a_{32}) \)
\[r_3 = a_1^2a_2 - a_3 > 0. \]

In the following, we define \(f(k, \tau) := a_1(k, \tau)a_2(k, \tau) - a_3(k, \tau). \)

Theorem 3.1. The system (4) without diffusion has a Hopf bifurcation at \(E^* \) if only if

(S1) \(a_{12}(a_{11} + a_{21} - a_{32} + a_{33}) \tau > -a_1 \)

and

(S2) \(r_1 \tau^2 + r_2 \tau + r_3 = 0. \)

Proof. For \(k = 0 \), it is well known that \(a_3(0, \tau) = a_3/a_0 > 0 \). By the theorem in paper [55], the necessary and sufficient condition for system (4) without diffusion to have a Hopf bifurcation at \(E^* \) is \(a_1(0, \tau) > 0, \ a_3(0, \tau) > 0 \) and \(f(0, \tau) = p_4(\tau)/a_0^2 = 0. \) If the condition (S1) is valid, then it is obvious to see \(a_1(0, \tau) > 0. \)

Further, the Hopf bifurcation function \(H \) is \(p_4(\tau) = r_1 \tau^2 + r_2 \tau + r_3 = 0. \)

3.1. **Diffusion induced instability.** The system \([4]\) in the absence of diffusion corresponds to the following characteristic equation:

\[\lambda^3 + a_1(0, \tau)\lambda^2 + a_2(0, \tau)\lambda + a_3(0, \tau) = 0, \]

where

\[a_1(0, \tau) = \frac{1}{a_0} [a_{12} \tau(a_{11} + a_{21} - a_{32} + a_{33}) + a_1], a_3(0, \tau) = y_4 > 0, \]
\[a_2(0, \tau) = \frac{1}{a_0} [a_{12} \tau(a_{11} + a_{21})(a_{32} - a_{33}) + a_2]. \]

Moreover, we get \(f(0, \tau) = \frac{p_4(\tau)}{a_0^2} = \frac{r_1 \tau^2 + r_2 \tau + r_3}{a_0^2}. \)

Theorem 3.2. If conditions

(S1) \(a_{12}(a_{11} + a_{21} - a_{32} + a_{33}) \tau > -a_1 \)

and

(S3) \(r_1 > 0, \ r_2 > 0, \ or \ r_1 > 0, \ r_2 < 0, \ 4r_1r_3 - r_2^2 > 0, \ or \)
\[r_1 > 0, \, r_2 < 0, \, 4r_1r_3 - r_2^2 = 0, \, \tau \in \left(0, -\frac{r_2}{2r_1} \right) \cup \left(-\frac{r_2}{2r_1}, +\infty \right), \text{ or} \]
\[r_1 > 0, \, r_2 < 0, \, 4r_1r_3 - r_2^2 < 0, \, \tau \in \left(0, -\frac{r_2 - \sqrt{-(4r_1r_3 - r_2^2)}}{2r_1} \right) \cup \left(-\frac{r_2 + \sqrt{-(4r_1r_3 - r_2^2)}}{2r_1}, +\infty \right), \text{ or} \]
\[r_1 < 0, \, 0 < \tau < -\frac{r_2 - \sqrt{-(4r_1r_3 - r_2^2)}}{2r_1} \]
hold, then the predator with disease equilibrium \(E^* \) is locally asymptotically stable.

Proof. According to Hurwitz criterion, the equilibrium \(E^* \) of system (4) without diffusion is locally asymptotically stable, which needs to satisfy \(a_1(0, \tau) > 0, p_4(\tau) > 0 \).

\(a_1(0, \tau) > 0 \) is corresponding to the condition (S1). Next, \(p_4(\tau) > 0 \) is discussed. It is obvious that \(r_3 > 0, \) so \(p_4(0) = r_3 > 0 \).

(i) If \(r_1 > 0 \) and \(r_2 > 0 \), then \(p_4(\tau) > 0 \) for all \(\tau > 0 \).

(ii) For \(r_1 > 0 \), \(\frac{dp_4(\tau)}{d\tau} = 0 \) deduces \(\tau_c = -\frac{r_2}{2r_1} \). The condition of \(\tau_c > 0 \) is \(r_2 < 0 \).

(a) If minimum value \(p_4(\tau_c) = \frac{4r_1r_3 - r_2^2}{4r_1} > 0 \), namely \(4r_1r_3 - r_2^2 > 0 \), which indicates \(p_4(\tau) > 0 \) for all \(\tau > 0 \).

(b) If \(4r_1r_3 - r_2^2 = 0 \), then \(p_4(\tau) > 0 \) for \(\tau \in (0, \tau_c) \cup (\tau_c, +\infty) \).

(c) If \(4r_1r_3 - r_2^2 < 0 \), according to \(p_4(\tau) = 0 \), we can get \(\tau_1 = -\frac{r_2 - \sqrt{-(4r_1r_3 - r_2^2)}}{2r_1} > 0, \tau_2 = -\frac{r_2 + \sqrt{-(4r_1r_3 - r_2^2)}}{2r_1} > 0, \) and \(\tau_1 < \tau_2 \). Then the condition of \(p_4(\tau) > 0 \) is \(\tau \in (0, \tau_1) \cup (\tau_2, +\infty) \).

(iii) For \(r_1 < 0 \), the roots of \(p_4(\tau) = 0 \) are \(\tau_1 = -\frac{r_2 - \sqrt{-(4r_1r_3 - r_2^2)}}{2r_1} \) and \(\tau_2 = -\frac{r_2 + \sqrt{-(4r_1r_3 - r_2^2)}}{2r_1} \). Since \(r_3 > 0 \), we obtain \(\tau_1 > 0 > \tau_2 \). From the biological meaning, we do not consider \(\tau_2 \). Because \(p_4(0) = r_3 > 0 \), and the parabola is going downwards, then the condition of \(p_4(\tau) > 0 \) is \(0 < \tau < \tau_1 \).

\(\square \)

Theorem 3.3. For the system (4), if at least one of the following conditions is satisfied

(S4) \(y_3 < 0, \quad -2(y_2^2 - 3y_1y_3)^2 + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_2^3 < 0, \) or
\(y_3 \geq 0, \quad y_2^2 - 3y_1y_3 > 0, \quad y_2 < 0, \quad -2(y_2^2 - 3y_1y_3)^2 + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_2^3 < 0, \)

(S5) \(p_3 < 0, \quad -2(p_2^2 - 3p_1p_3)^2 + 27p_1^2p_4 - 9p_1p_2p_3 + 2p_2^3 < 0, \) or
\(p_3 \geq 0, \quad p_2^2 - 3p_1p_3 > 0, \quad p_2 < 0, \quad -2(p_2^2 - 3p_1p_3)^2 + 27p_1^2p_4 - 9p_1p_2p_3 + 2p_2^3 < 0, \)
then the predator with disease equilibrium \(E^* \) loses stability.

Proof. \(a_1(k, \tau) > 0 \) because of \(a_{12} < 0 \). However, the signs of \(a_3(k, \tau) \) and \(f(k, \tau) \) are indefinite. If at least one of \(a_3(k, \tau) < 0 \) for some \(k \neq 0 \) and \(f(k, \tau) < 0 \) for some \(k \neq 0 \) is established, then the predator with disease equilibrium \(E^* \) is unstable based on Hurwitz criterion.

In the following, we only analyze the case of \(a_3(k, \tau) < 0 \) for some \(k \neq 0 \). It is similar for \(f(k, \tau) < 0 \) for some \(k \neq 0 \). Let \(k^2 = e > 0, \)
\[y(e) = y_1e^3 + y_2e^2 + y_3e + y_4, \]
where \(y_1 > 0, \quad y_4 > 0, \quad \frac{dy_1(e)}{de} = 3y_1e^2 + 2y_2e + y_3, \quad \frac{dy_4(e)}{de} = 0 \) can calculate the extreme points \(e_{y_1} = \frac{-y_2 + \sqrt{y_2^2 - 3y_1y_4}}{3y_1}, \quad e_{y_2} = \frac{-y_2 - \sqrt{y_2^2 - 3y_1y_4}}{3y_1}, \) and \(e_{y_1} > e_{y_2} \).
(a) If $y_3 < 0$ holds, then $c_{y_1} > 0$.
(b) For $y_3 = 0$, when $y_2 < 0$, then $c_{y_1} > 0$.
(c) For $y_3 > 0$, when $y_2^2 - 3y_1y_3 > 0$ and $y_2 < 0$, we can get $c_{y_1} > 0$.

Since $\frac{d^2y(e)}{de^2}|_{e=e_{y_1}} = 6y_1c_{y_1} + 2y_2 = 2\sqrt{y_2^2 - 3y_1y_3} > 0$, it is obvious that c_{y_1} is the minimum turning point in FIG. 1. If the minimum $y(e_{y_1}) = y_1c_{y_1}^3 + y_2c_{y_1}^2 + y_3c_{y_1} + y_4 < 0$, that is, $-2(y_2^2 - 3y_1y_3)^2 + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_2^2 < 0$, then there exist some $e > 0$ satisfying $y(e) < 0$.

By Theorem 3.3, $y(e_{y_1}) = y_1c_{y_1}^3 + y_2c_{y_1}^2 + y_3c_{y_1} + y_4 = 0$ is a critical function of existence of Turing bifurcation, we can further get Turing bifurcation function $T1$:

$$-2(y_2^2 - 3y_1y_3)^2 + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_2^2 = 0. \tag{23}$$

Analogously, the other Turing bifurcation function $T2$ is:

$$-2(y_2^2 - 3p_1p_3)^2 + 27p_1^2p_4 - 9p_1p_2p_3 + 2p_2^2 = 0. \tag{24}$$

On the basis of Theorem 3.2 and Theorem 3.3, the conditions of diffusion induced Turing instability can be given by:

$$\begin{cases} a_1 > 0, \quad a_3 > 0, \quad a_1a_2 - a_3 > 0, \\ S(1), \quad S(3), \\ S(4) \text{ or } S(5). \end{cases} \tag{25}$$

FIG. 2 shows the bifurcation diagram of system (4) for two sets of parameters. Hopf bifurcation function H and Turing bifurcation function $T1$ divide the parameter space $r - h$ into three parts in FIG. 2(a). In part 1, the positive constant stationary state E^* is unstable because of Hopf bifurcation instability. In part 2, Turing instability and Hopf bifurcation instability lead to instability of E^*. In part 3, diffusion induces the instability of E^*, which is Turing instability. FIG. 2(b) is divided into four regions by Hopf bifurcation function H and Turing bifurcation function $T1$. Since Turing instability and Hopf bifurcation instability occur in region 1, then E^* loses stability. E^* becomes unstable because of Turing instability in region 2. E^* is unconditional stable in region 3. E^* loses stability only for Hopf bifurcation instability in region 4.

According to Theorem 3.3, if at least one of the conditions $a_3(k, \tau) < 0$ for some values of $k \neq 0$ and $a_3(k, \tau)a_2(k, \tau) - a_3(k, \tau) < 0$ for some values of $k \neq 0$ holds, the parameter domains of Turing instability can be found. Thus, FIG. 3 and FIG. 4 give coefficients of the dispersion relation of the characteristic equation.
3.2. **Delay induced instability.** At first, the system (4) do not consider time delay, the following characteristic equation can be obtained:

\[
\lambda^3 + a_1(k,0)\lambda^2 + a_2(k,0)\lambda + a_3(k,0) = 0, \quad (26)
\]

under different parameters values. In FIG. 3(a) and FIG. 4(a), because the vertical coordinate values of \(a_1(k,\tau), a_3(k,\tau)\) and \(a_1(k,\tau)a_2(k,\tau) - a_3(k,\tau)\) are different, \(a_3(k,\tau) < 0\) for some \(k^2 \neq 0\) is not obvious, then FIG. 3(b) and FIG. 4(b) exhibit \(a_3(k,\tau) < 0\). From FIG. 3 and FIG. 4, it is easy to see that \(a_1(k,\tau)\) and \(a_1(k,\tau)a_2(k,\tau) - a_3(k,\tau)\) are always greater than 0 for all \(k^2 > 0\), but there exist some \(k^2 \neq 0\) satisfying \(a_3(k,\tau) < 0\).

Figure 2. The bifurcation diagram of system (4) in parameter space \(r-h\). (a) Parameters are \(\beta_1 = 1.8, \mu = 0.6, m = 0.8, D_1 = 1, D_2 = 0.03, D_3 = 2, \tau = 0.01\). (b) Parameters are \(\beta_1 = 1.8, \mu = 0.6, m = 0.7, D_1 = 10, D_2 = 0.1, D_3 = 4, \tau = 0.01\).

Figure 3. Coefficients of the dispersion relation of the characteristic equation (16) for \(r = 0.1, h = 0.07, \beta_1 = 1.8, \mu = 0.6, m = 0.8, D_1 = 1, D_2 = 0.03, D_3 = 2, \tau = 0.01\).

Figure 4. Coefficients of the dispersion relation of the characteristic equation (16) for \(r = 0.1, h = 0.1, \beta_1 = 1.8, \mu = 0.6, m = 0.7, D_1 = 10, D_2 = 0.1, D_3 = 4, \tau = 0.01\).
where

\[a_1(k,0) = \frac{1}{a_0} \left[(D_1 + D_2 + D_3)k^2 + a_1 \right] > 0, \]

\[a_2(k,0) = \frac{1}{a_0} \left[(D_1D_2 + D_1D_3 + D_2D_3)k^4 - (D_1a_{22} + D_1a_{33} + D_2a_{11} + D_2a_{33} + D_3a_{11} + D_3a_{22})k^2 + q_2 \right], \]

\[a_3(k,0) = y_1k^6 + y_2k^4 + y_3k^2 + y_4. \]

By calculation, we obtain

\[f(k,0) := a_1(k,0)a_2(k,0) - a_3(k,0) = \frac{1}{a_0^3} [q_1k^6 + q_2k^4 + q_3k^2 + q_4], \]

where

\[q_1 = (D_2 + D_3)(D_3 + D_1)(D_1 + D_2) > 0, \]

\[q_2 = a_{22}(D_1 + D_3)^2 - a_{33}(D_2 + D_3)^2 - a_{11}(D_2 + D_3)^2 - 2D_1D_2(a_{11} + a_{22}) - 2D_1D_3(a_{11} + a_{33}) - 2D_2D_3(a_{22} + a_{33}), \]

\[q_3 = D_1(a_{22} + a_{33})^2 + D_1(2a_{11}a_{22} + 2a_{11}a_{33} - a_{12}a_{21}) + D_2(a_{11} + a_{33})^2 + 2D_2(2a_{11}a_{22} + 2a_{22}a_{33} - a_{12}a_{21} - a_{23}a_{32}) + D_3(a_{11} + a_{22})^2 + D_3(2a_{22}a_{33} + 2a_{11}a_{33} - a_{23}a_{32}). \]

Theorem 3.4. Suppose that

\[
\text{(H1) } y_2^2 - 3y_1y_3 \leq 0, \text{ or } y_3 \geq 0, \quad y_2^2 - 3y_1y_3 > 0, \quad y_2 > 0, \\
\text{or } y_3 < 0, \quad -2(y_2^2 - 3y_1y_3)^2 + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_3^2 > 0, \\
\text{or } y_3 \geq 0, \quad y_2 < 0, \quad y_2^2 - 3y_1y_3 > 0, \quad -2(y_2^2 - 3y_1y_3)^2 + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_3^2 > 0, \\
\text{and} \\
\text{(H2) } q_2^2 - 3q_1q_3 \leq 0, \text{ or } q_3 \geq 0, \quad q_2^2 - 3q_1q_3 > 0, \quad q_2 > 0, \\
\text{or } q_3 < 0, \quad -2(q_2^2 - 3q_1q_3)^2 + 27q_1^2q_4 - 9q_1q_2q_3 + 2q_3^2 > 0, \\
\text{or } q_3 \geq 0, \quad q_2 < 0, \quad q_2^2 - 3q_1q_3 > 0, \quad -2(q_2^2 - 3q_1q_3)^2 + 27q_1^2q_4 - 9q_1q_2q_3 + 2q_3^2 > 0, \\
\text{are satisfied. Then the predator with disease equilibrium } E^* \text{ of system } (4) \text{ without time delay is locally asymptotically stable.} \]

Proof. On the basis of Hurwitz criterion, if \(a_3(k,0) > 0 \) and \(f(k,0) > 0 \) hold, then stability of the equilibrium \(E^* \) is proved. Next, we analyze the case of \(a_3(k,0) > 0 \).

\(f(k,0) > 0 \) is analyzed in the same way. Let \(k^2 = e > 0 \),

\[y(e) = y_1e^3 + y_2e^2 + y_3e + y_4, \]

where \(y_1 > 0, \quad y_4 > 0, \quad \frac{dy(e)}{de} = 3y_1e^2 + 2y_2e + y_3 = 0, \) we derive extreme points

\[e_{y_1} = \frac{-y_2 + \sqrt{y_2^2 - 3y_1y_4}}{3y_1}, \quad e_{y_2} = \frac{-y_2 - \sqrt{y_2^2 - 3y_1y_4}}{3y_1}, \]

and \(e_{y_1} > e_{y_2}).

(i) When \(y_2^2 - 3y_1y_3 \leq 0 \), it is easy to see that \(y(e) \) is increasing function in \(R \) based on graphs and properties of the cubic function in FIG. [5] Since \(y(0) = y_4 > 0 \), then \(y(e) > 0 \) is always established for \(\forall e > 0 \).

The following cases satisfy \(y_2^2 - 3y_1y_3 > 0 \), and are showed in FIG. [5].
(ii) if \(y_1 < 0 \), we give \(e_{y1} > 0 \) and \(e_{y2} < 0 \). \(\frac{d^2 y(e)}{de^2} \big|_{e=e_{y1}} = 6y_1e_{y1} + 2y_2 = 2\sqrt{y_2^2 - 3y_1y_3} > 0 \) implies that \(e_{y1} \) is the minimum turning point. If minimum \(y(e_{y1}) = y_1e_{y1}^3 + y_2e_{y1}^2 + ye_{y1} + y_4 > 0 \), namely \(-2(y_2^2 - 3y_1y_3)^{\frac{3}{2}} + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_2^3 > 0 \), because \(y(0) = y_1 > 0, y(e) > 0 \) is valid for \(\forall e > 0 \).

(iii) If \(y_3 = 0 \) and \(y_2 > 0 \), then \(e_{y1} = 0 \). Since \(y(0) = y_1 > 0, y(e) > 0 \) holds for \(\forall e > 0 \).

(iv) If \(y_3 = 0 \) and \(y_2 < 0 \), we can get \(e_{y1} > 0 \). \(e_{y1} \) is the minimum turning point because of \(\frac{d^2 y(e)}{de^2} \big|_{e=e_{y1}} = 0 \). When \(-2(y_2^2 - 3y_1y_3)^{\frac{3}{2}} + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_2^3 > 0 \), then \(y(e) > 0 \) for \(\forall e > 0 \).

(v) If \(y_3 > 0, y_2^2 - 3y_1y_3 > 0 \) and \(y_2 > 0 \) are satisfied, we derive \(e_{y1} < 0 \). Because \(y(0) = y_4 > 0, y(e) > 0 \) holds for \(\forall e > 0 \).

(vi) If \(y_3 > 0, y_2 < 0 \) and \(y_2^2 - 3y_1y_3 > 0 \), \(e_{y1} > 0 \) is obtained. \(\frac{d^2 y(e)}{de^2} \big|_{e=e_{y1}} > 0 \) also indicates that \(e_{y1} \) is the minimum turning point. If \(-2(y_2^2 - 3y_1y_3)^{\frac{3}{2}} + 27y_1^2y_4 - 9y_1y_2y_3 + 2y_2^3 > 0 \), then \(y(e) > 0 \) is valid for \(\forall e > 0 \).

\[
\begin{align*}
(a) & \quad (b) & \quad (c) \\
(d) & \quad (e) & \quad (f)
\end{align*}
\]

Figure 5. Schematic diagrams of the cubic function \(y(e) \) for \(y_1 > 0 \) in Theorem 3.4. (a) \(y_2^2 - 3y_1y_3 \leq 0 \). (b) \(y_1 > 0, y_2^2 - 3y_1y_3 > 0 \) and \(y_2 > 0 \). (c) \(y_3 = 0 \) and \(y_2 > 0 \). (d) \(y_3 < 0 \). (e) \(y_3 = 0 \) and \(y_2 < 0 \). (f) \(y_3 > 0, y_2^2 - 3y_1y_3 > 0 \) and \(y_2 < 0 \).

\[\Box\]

Theorem 3.5. The following assumption:

(H3) \(a_{11} + a_{21} - a_{32} + a_{33} < 0 \)

and

(S5) \(p_3 < 0, -2(p_2^2 - 3p_1p_3)^{\frac{3}{2}} + 27p_1^2p_4 - 9p_1p_2p_3 + 2p_2^3 < 0 \), or

\[p_3 \geq 0, p_2^2 - 3p_1p_3 > 0, p_2 < 0, -2(p_2^2 - 3p_1p_3)^{\frac{3}{2}} + 27p_1^2p_4 - 9p_1p_2p_3 + 2p_2^3 < 0 \]

hold, the equilibrium \(E^* \) of system (4) becomes unstable.

Proof. For \(a_{12} < 0 \), if the assumption (H3) holds, it is easy to see \(a_1(k, \tau) > 0 \) for \(\forall \tau \geq 0 \). Theorem 3.4 admits \(a_3(k, \tau) > 0 \). Next, we discuss \(f(k, \tau) < 0 \) for some \(k \neq 0 \). Let \(k^2 = e > 0 \),

\[z(e) = p_1e^3 + p_2e^2 + p_3e + p_4, \]
where \(p_1 > 0 \), \(\frac{dz}{de} = 3p_1e^2 + 2p_2e + p_3 = 0 \), we derive extreme points \(e_{z1} = \frac{-p_2 + \sqrt{p_2^2 - 3p_1p_3}}{2p_1} \), \(e_{z2} = \frac{-p_2 - \sqrt{p_2^2 - 3p_1p_3}}{2p_1} \), and \(e_{z1} > e_{z2} \). If \(p_3 < 0 \) holds, then \(e_{z1} > 0 \).

If \(p_3 \geq 0 \), \(p_2 < 0 \) and \(p_2^2 - 3p_1p_3 > 0 \), we can get \(e_{z1} > 0 \). \(\frac{dz}{de} \bigg|_{e=e_{z1}} = 0 \) means that \(e_{z1} \) is the minimum turning point. If minimum \(z(e_{z1}) = p_1e_{z1}^3 + p_2e_{z1}^2 + p_3e_{z1} + p_4 < 0 \), that is \(-2(p_2^2 - 3p_1p_3)\frac{3}{2} + 27p_1^2p_4 - 9p_1p_2p_3 + 2p_2^3 < 0 \), which indicates \(f(k, \tau) < 0 \) for some \(k \neq 0 \). According to Hurwitz criterion, these cases indicate that the equilibrium \(E^* \) of system (4) is unstable.

Consequently, the conditions of delay induced instability are:

\[
\begin{align*}
&\left\{ a_1 > 0, \ a_3 > 0, \ a_1a_2 - a_3 > 0, \\
&(H1), \ (H2), \ (H3), \ (S5). \\
\end{align*}
\]

4. Numerical simulations. In order to verify theoretical results of the stability of the positive constant stationary state \(E^* \) in system (4). Through using explicit Euler method, we have carried out a series of numerical simulations in two dimensional spaces. The reaction-diffusion system (1) is calculated in a discrete domain with \(N_x \times N_y \) lattice units, and the space between the lattice points is constant \(dx \). The time evolution is also discrete, that is, the time goes in steps of \(dt \). In numerical simulations, we set \(N_x = N_y = 200 \), grid space \(dx = 1.0 \) and time step \(dt = 0.01 \). We mainly focus on the distribution of healthy predator in two dimension space domain. Therefore, the pattern formations of healthy predator are presented. If simulation results reach stationary states or pattern behaviors do not change with time, then simulations finish. In the following figures, the scale of the colorbar denotes the density of healthy predator. The density of healthy predator increases with the color of the colorbar changing from blue to red.

In this section, diffusion-driven instability of the equilibrium \(E^* \) arises Turing patterns which is symmetry-breaking spatial structures. According to conditions (25), the following two sets of parameters are given by:

\[\beta_1 = 1.8, \ \mu = 0.6, \ m = 0.8, \ h = 0.07, \ D_1 = 1, \ D_2 = 0.03, \ D_3 = 2, \ \tau = 0.01. \]

In FIG. 6 we set \(r = 0.1 \) for FIG. 6(a) and \(r = 0.15 \) for FIG. 6(b). This set of parameters shows small “black-eye” patterns and the corresponding spatially averaged population densities for different the values of \(r \). At the initial time, the healthy predator uniformly distributes in space domain. As the time is being increased, the spatial distribution of the healthy predator changes. At last, the healthy predator gathers together, which forms small “black-eye” patterns. But there are some slight differences in the local space distributions of small “black-eye” patterns for (a) and (b). From figures of spatially averaged population densities, it can be found that the time and spatially averaged densities of pattern reaching stationary states are different.

\[\beta_1 = 1.8, \ \mu = 0.6, \ m = 0.7, \ r = 0.1, \ D_1 = 10, \ D_2 = 0.1, \ D_3 = 4, \ \tau = 0.01. \] This set of parameters presents big “black-eye” patterns and the corresponding spatially averaged population densities for different the values of \(h \) in FIG. 7. At first, the healthy predator is randomly distributed in space. The spatial distribution of healthy predator changes with time evolution. Finally, the healthy predator is aggregated, which gives rise to big “black-eye” pattern. Figures of spatially averaged population densities demonstrate that the time and spatially averaged densities of pattern reaching stationary states are not same. Moreover, the local space distributions of big “black-eye” patterns are slightly different.
Figure 6. Spatial patterns (top) and the corresponding spatially averaged population density (bottom). (a) Small “black-eye” pattern (r=0.1), (b) small “black-eye” pattern (r=0.15).

Figure 7. Spatial patterns (top) and the corresponding spatially averaged population density (bottom). (a) Big “black-eye” pattern (h=0.1), (b) big “black-eye” pattern (h=0.14).
5. Conclusions and discussion. The interacting species play important roles in real ecosystem. Furthermore, the disease widely exists in different species. Thus, the eco-epidemiology well combines population dynamics with epidemiology. In this paper, we consider a spatial eco-epidemiology with delay and disease in the predator species under the Neumann boundary condition, which is a three-variable reaction-diffusion system with delay. But a little attention had been paid to study the pattern dynamics of three-variable reaction-diffusion system with delay. Through analyzing the characteristic equation of system (4), diffusion and delay can lead to the results that the predator with disease equilibrium E^* loses stability, respectively. However, diffusion-driven instability and delay-driven instability is two different mechanisms. Besides, Turing pattern region is obtained in parameter space $r - h$, that is, we can find the parameter ranges of pattern formations. From numerical simulations, it is found that a parameter variation affects time and spatially averaged densities of pattern reaching stationary states when other parameters are fixed.

In this paper, in the process of analysis of instability of the equilibrium E^*, we derive the characteristic equation of system (2) by assuming small delay τ. But for general delay, the characteristic equation with $e^{-\lambda \tau}$ is derived, then it is difficult to analyze the conditions of the equilibrium losing stability. Hence, this work is worth investigating. Pattern phenomena widely exist in nature, such as, the patterns of animal skins, the regularly spatial structure distribution of the infected, mussel bed on intertidal flats and so on [3, 21, 28, 39, 38, 27, 40]. It is very meaningful to study the mechanism of the existence of various patterns in the natural world.

Acknowledgments. We would like to the reviewers for their comments and suggestions that helped to improve this paper greatly.

REFERENCES

[1] A. Abdelrazec, J. Bélair and C. Shan, et al., Modeling the spread and control of dengue with limited public health resources, Mathematical Biosciences, 271 (2016), 136–145.
[2] R. M. Anderson, R. M. May and B. Anderson, Infectious Diseases of Humans: Dynamics and Control, Oxford university press, Oxford, 1992.
[3] J. L. Aragon, C. Varea and R. A. Barrio, et al., Spatial patterning in modified Turing systems: Application to pigmentation patterns on marine fish, Forma, 13 (1998), 213–221.
[4] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, Charles Griffin and Company Ltd, Bucks, 1975.
[5] R. A. Barrio, C. Varea and J. L. Aragón, et al., A two-dimensional numerical study of spatial pattern formation in interacting Turing systems, Bulletin of mathematical biology, 61 (1999), 483–505.
[6] A. M. Bate and F. M. Hilker, Predator-prey oscillations can shift when diseases become endemic, Journal of Theoretical Biology, 316 (2013), 1–8.
[7] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998.
[8] C. Bowman, A. B. Gumel and P. Van den Driessche, et al., A mathematical model for assessing control strategies against West Nile virus, Bulletin of Mathematical Biology, 67 (2005), 1107–1133.
[9] L. W. Buss, Competitive intransitivity and size-frequency distributions of interacting populations, Proceedings of the National Academy of Sciences, 77 (1980), 5355–5359.
[10] J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 747–766.
[11] P. J. Cunningham and W. J. Cunningham, Time lag in prey-predator population models, Ecology, 38 (1957), 136–139.
[12] H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations, Mathematical Biosciences, 68 (1984), 213–231.
N. S. Goel, S. C. Maitra and E. W. Montroll, On the Volterra and other nonlinear models of interacting populations, Reviews of Modern Physics, 43 (1971), 231–276.

K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, Journal of Mathematical Biology, 27 (1989), 609–631.

M. Haque, A predator-prey model with disease in the predator species only, Nonlinear Analysis: Real World Applications, 11 (2010), 2224–2236.

H. W. Hethcote, A thousand and one epidemic models, in: S. A. Levin, Frontiers in mathematical biology, Lecture Notes in Biomathematics, Springer Berlin Heidelberg, Berlin, (1994), 504–515.

H. W. Hethcote, W. Wang and L. Han, et al., A predator-prey model with infected prey, Theoretical Population Biology, 66 (2004), 259–268.

F. M. Hilker and K. Schmitz, Disease-induced stabilization of predator-prey oscillations, Journal of Theoretical Biology, 255 (2008), 299–306.

Y. H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations, Mathematical Medicine and Biology, 25 (2008), 247–266.

K. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A, 115 (1927), 700–721.

C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science 284 (1999), 1826–1828.

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, Journal of Differential Equations, 231 (2006), 534–550.

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36 (1998), 389–406.

X. Li, G. Hu and Z. Feng, et al., A periodic and diffusive predator-prey model with disease in the prey, Discrete and Continuous Dynamical Systems-Series S, 10 (2017), 445–461.

L. Li, Z. Jin and J. Li, Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Applied Mathematical Modelling, 40 (2016), 4765–4771.

X. Lian, H. Wang and W. Wang, Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge, J. Stat. Mech., 4 (2013), P04006, 16 pp.

Q. X. Liu, P. M. J. Herman and W. M. Mooij, et al., Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems, Nature communications, 5 (2014), 1–7.

R. T. Liu, S. S. Liaw and P. K. Maini, Two-stage Turing model for generating pigment patterns on the leopard and the jaguar, Physical Review E, 74 (2006), 011914(1–8).

A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247–267.

M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993), 1–7.

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209–223.

S. Sen, P. Ghosh and S. S. Riaz et al., Time-delay-induced instabilities in reaction-diffusion systems, Phys. Rev. E, 80 (2009), 046212.

A. R. E. Sinclair, S. Mduma and J. S. Brashares, Patterns of predation in a diverse predator-prey system, Nature, 425 (2003), 288–290.

L. A. de Souza and C. E. de Carvalho Freitas, Fishing sustainability via inclusion of man in predator-prey models: A case study in Lago Preto, Manacapuru, Amazonas, Ecological Modelling, 221 (2010), 703–712.

Y. Su, S. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection, Journal of Mathematical Biology, 63 (2011), 557–574.

Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, Journal of Differential Equations, 247 (2009), 1156–1184.

G.-Q. Sun, Mathematical modeling of population dynamics with Allee effect, Nonlinear Dynamics, 85 (2016), 1–12.

G.-Q. Sun, Z. Jin and L. Li, et al., Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dynamics, 69 (2012), 1631–1638.

G. Sun, Z. Jin and Q.-X. Liu, et al., Pattern formation in a spatial S-I model with non-linear incidence rates, Journal of Statistical Mechanics: Theory and Experiment, 2007 (2007), P11011(1–14).
[40] G.-Q. Sun, M. Jusup and Z. Jin, et al., Pattern transitions in spatial epidemics: Mechanisms and emergent properties. *Physics of Life Reviews*, 19 (2016), 33–47.

[41] G.-Q. Sun, S.-L. Wang and Q. Ren, et al., Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. *Scientific Reports*, 5 (2015), 11246.

[42] G.-Q. Sun, Z.-Y. Wu and Z. Jin, et al., Influence of isolation degree of spatial patterns on persistence of populations. *Nonlinear Dynamics*, 83 (2016), 811–819.

[43] G.-Q. Sun, J. Zhang and L. P. Song, et al., Pattern formation of a spatial predator-prey system. *Applied Mathematics and Computation*, 218 (2012), 11151–11162.

[44] K. Uriu and Y. Iwasa, Turing pattern formation with two kinds of cells and a diffusive chemical. *Bulletin of Mathematical Biology*, 69 (2007), 2515–2536.

[45] E. Venturino, The influence of diseases on Lotka-Volterra systems. *Rocky Mountain Journal of Mathematics*, 24 (1994), 381–402.

[46] E. Venturino, Epidemics in predator-prey models: disease in the predators. *Mathematical Medicine and Biology*, 19 (2002), 185–205.

[47] V. Volterra, Fluctuations in the abundance of a species considered mathematically. *Nature*, 118 (1926), 558–560.

[48] V. Volterra, Variations and fluctuations of the number of individuals in animal species living together. *J. Cons. Int. Explor. Mer.*, 3 (1928), 3–51.

[49] K. A. J. White and C. A. Gilligan, Spatial heterogeneity in three species, plant-parasite-hyperparasite systems. *Philosophical Transactions of the Royal Society of London B*, 353 (1998), 543–557.

[50] Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey. *Mathematical Biosciences*, 171 (2001), 59–82.

[51] Y. Xiao and L. Chen, Analysis of a three species eco-epidemiological model. *Journal of Mathematical Analysis and Applications*, 258 (2001), 733–754.

[52] D. Xiao, W. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting. *Journal of Mathematical Analysis and Applications*, 324 (2006), 14–29.

[53] Y. Xiao and F. Van Den Bosch, The dynamics of an eco-epidemic model with biological control. *Ecological Modelling*, 168 (2003), 203–214.

[54] F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. *Journal of Differential Equations*, 246 (2009), 1944–1977.

[55] P. Yu, Closed-form conditions of bifurcation points for general differential equations. *International Journal of Bifurcation and Chaos*, 15 (2005), 1467–1483.

[56] J. Zhang, Z. Jin and G.-Q. Sun, et al., Modeling seasonal rabies epidemics in China. *Bulletin of Mathematical Biology*, 74 (2012), 1226–1251.

Received October 2016; revised January 2017.

E-mail address: jingli2016126.com
E-mail address: jinzha@263.net
E-mail address: quansun@126.com
E-mail address: Slp880@nuc.edu.cn