Additional File: Supplementary Data Description and Analysis.

Incidence and consequences of damage to insecticide-treated mosquito nets in Kenya

Thomas Smith1,2*, Adrian Denz1,2, Maurice Ombok3, Nabie Bayoh3, Hannah Koenker4, Nakul Chitnis1,2, Olivier Briet1,2, Joshua Yukich5, John E. Gimnig6

*Corresponding author, Thomas-A.Smith@unibas.ch

1 Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.

2 University of Basel, 4001 Basel, Switzerland.

3 Kenya Medical Research Institute (KEMRI), Kisumu, Kenya

4 Tropical Health LLP, Baltimore MD, USA.

5 Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA.

6 Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta GA, USA
Supplementary data description

Table S 1 gives a breakdown of the recorded information on the causes of attrition and reasons why nets were absent at the time of survey.

Table S 1. Classification of nets by status at cross-sectional surveys

Use Status	Number of survey points
In use	
In use last night	15,851
Not in use last night	2,350
Not in use	
Attrition	
Destroyed-Burned by fire	728
Discarded-Too torn¹	706
Discarded-Not killing mosquitoes	25
Other	
Absent	
Lost/Stolen	
Given away or sold	807
Household moved away	2,637
Total observations	29,959

¹Destructively sampled nets are listed under their status prior to being removed to the laboratory.

The analysis of reported reasons for attrition considers only nets classified as ‘Discarded-Too torn’ as reported damage.
Posterior densities and correlations from MCMC fitting

Figure S 1. Pairs plot of the Markov Chain Monte Carlo (MCMC) samples for ODE model parameters

The marginal distribution for each parameter is in the main diagonal. The entries above the main diagonal are scatters of paired samples from the posterior distributions. The entries below the main diagonal are the corresponding correlation coefficients. Correlation coefficients with magnitude greater than 0.3 are shown against a gray background.
Sensitivity analyses

Methods
The parameters of the ODE models were re-estimated with four distinct definitions of attrition (A1–A4), for different qualifying levels of damage (analysis A1_0), and for different assumptions about nets that were recorded as transitioning from damaged to undamaged (analysis A1_1) (Table S 2, Table S 3).

Table S 2. Sensitivity analyses

Analysis	Absent nets	Nets elsewhere	Damage cutoff	Coding of ‘repaired’ nets
A1 (Reference)	Attrition	Censoring	pHl=20	Damaged
A2	Censoring	Censoring	pHl=20	Damaged
A3	Censoring	Attrition	pHl=20	Damaged
A4	Attrition	Attrition	pHl=20	Damaged
A1R	Attrition	Recycled	pHl=20	Damaged
A1_0	Attrition	Censoring	pHl=0	Damaged
A1_1	Attrition	Censoring	pHl=20	Undamaged

A1 treats absent nets as attrition but nets elsewhere are not considered as attrition; rather they are treated as censored (i.e. having unknown status).

A2 considers as attrition only those nets that were reported as destroyed or repurposed (repurposed nets are included with destroyed nets for the purpose of this analysis). Intervals that ended with the net being sold, given away, or relocated were not included in this analysis (effectively treating such nets as remaining in the cohort. This model was used to estimate P_1, the proportion of destroyed nets that had been damaged before they were destroyed (see section Error! Reference source not found.). This gave the value:

$P_1 = 0.985$.

A3 considers as attrition nets that were recorded as elsewhere, in addition to those recorded as destroyed, where elsewhere encompasses sale, giving away, or relocation. This model was used to estimate P_2, the proportion of all these nets that had been damaged before attrition according to this broader definition:

$P_2 = 0.905$.

The questionnaire responses reported in Error! Reference source not found. provide an estimate of P_3, the proportion elsewhere among absent and destroyed nets,

$P_3 = 5687/(1750 + 5687) = 0.765$.

P_4 is defined as the proportion of nets elsewhere that were damaged before they were taken away, and can be obtained from simple probability calculations, since:

$P_2 = P_1(1 - P_3) + P_3P_4$,

which can be rearranged to give:

$P_4 = \frac{P_2 - P_1(1 - P_3)}{P_3} = 0.880$.

Page | 4
A4 considers as attrition all nets that were eligible to be followed up but were not present. In addition to destroyed and nets that were elsewhere, this includes nets that were absent for which there was no data, in those cases where the net did not reappear at a subsequent survey. This model was used to estimate \(P_5 \), the proportion of all nets that had been damaged before the survey where they did not appear. This gave the value:

\[P_5 = 0.834. \]

Table S 3. Classification of intervals analyzed by use status.

Initial status	Final status	Analysis			
		A1	A2	A3	A4
New	Last Night	2614			
Last Night	Last Night	9981			
Not Last Night	Last Night	736			
Not Use	Last Night	1705			
New	Not Last Night	349			
Last Night	Not Last Night	714			
Not Last Night	Not Last Night	259			
Not Use	Not Last Night	284			
New	Not Use	1106			
Last Night	Not Use	1745			
Not Last Night	Not Use	327			
Not Use	Not Use	1887			
New	Attrition	36	36	314	314
Last Night	Attrition	1267	293	1281	2255
Not Last Night	Attrition	151	44	196	303
Not Use	Attrition	485	177	796	1104

Recycling of nets

Treating absent nets as a mixture of destroyed and nets that were elsewhere, the mixing proportion was estimated by assuming the association between holes and the outcome (destruction or removal) to be the same in the absent nets as for those with explicit information about the outcome, and that this can be quantified by the odds ratio:

\[\Psi = \frac{P_4(1-P_3)}{P_1(1-P_4)} = 0.112. \]

The Markov property of the transition model justifies simulating nets that are elsewhere as returning either to compartment \(S_1 \) (if they are undamaged), or to compartment \(S_2 \) (if they are damaged). Recycling of absent nets was simulated using the A1 primary definition of attrition, but at each time, \(t \), returning a proportion \(P_3 \) of attrition to the forward simulations, where the allocation between compartments \(S_1 \) and \(S_2 \) was determined from the proportion of attrition arising from damaged nets, \(P_H(t) \), and the odds ratio, \(\Psi \), where:
\[P_H(t) = \frac{a_2S_2(t) + a_4S_4(t)}{a_1S_1(t) + a_2S_2(t) + a_3S_3(t) + a_4S_4(t)} \]

The allocation between \(S_1 \) and \(S_2 \) was determined from the 2 x 2 table classifying the attrition at any given time (Table S 4). Defining \(x \) as the (time dependent) proportion of attrition that both have holes and will be recycled (to \(S_2 \)):

Table S 4. Classification of attrition for simulating recycling

	Damaged	Not damaged
Recycled	\(x \)	\(P_3 - x \)
Destroyed	\(P_H - x \)	\(1 - P_3 - P_H + x \)

Where \(x \) is obtained as the solution of a quadratic equation, from:

\[\Psi = \frac{x(1 - P_3 - P_H + x)}{(P_3 - x)(P_H - x)} \]

So that the model equations (model A1R) become:

\[
\begin{align*}
\frac{dA}{dt} &= (a_1S_1 + a_2S_2 + a_3S_3 + a_4S_4)(1 - P_3) \\
\frac{dS_1}{dt} &= v_3S_3 - (u_1 + h_1 + a_1)S_1 + \left(\frac{P_3 - x}{1 - P_3} \right) \frac{dA}{dt} \\
\frac{dS_2}{dt} &= h_1S_1 + v_4S_4 - (u_2 + a_2)S_2 + \left(\frac{x}{1 - P_3} \right) \frac{dA}{dt} \\
\frac{dS_3}{dt} &= u_1S_1 - (v_3 + h_3 + a_3)S_3 \\
\frac{dS_4}{dt} &= h_3S_3 + u_2S_2 - (v_4 + a_4)S_4
\end{align*}
\]

Where the parameter vector \(\{ h_1, h_3, u_1, u_2, v_3, v_4, a_1, a_2, a_3, a_4 \} \) is that estimated with the A1 definition of attrition.

Results of sensitivity analyses

With the exception of the parameters measuring attrition rates, the fitted values for the parameter vector were similar for each of the analyses A1–A4, and for A1_0 and A1_1 (Table S 5). This was reflected in the derived values given in **Table S 6**, where substantial differences are seen only in the projected lifetimes of the nets. Simulation A1_0, in which the reference model (A1) was re-fitted, classifying nets with any holes as damaged (rather than requiring a PHI>20) gave very similar results to the original (A1). Similarly, the alternative coding of apparently repaired nets (A1_1), in which these were coded as undamaged at both start and end of the interval, made little difference to the projections from the model (Figure S 2).
The alternative definitions of attrition made considerable differences to the model predictions (Figure S 3). Analysis A2, which considers only explicitly destruction or repurposing as attrition, suggests a median net lifetime of 9.3 years (Table S 2); conversely, A3 and A4, which have more inclusive definitions of attrition, give rise to simulations with shorter lifetimes.

The simulation with recycling (A1R) gives similar results to A2. The definition of attrition made little difference to the simulated proportion of nets in the undamaged states (Figure S 3), and in all simulations by the age of three years almost all nets are classified as damaged, so the differences between simulations mainly relate to the question of how often damaged nets that are absent, or which are stated to have been moved elsewhere, remain in use.
Analysis	h_1 (h_3)	u_1	u_2	v_3	v_4	a_1	a_2	a_3	a_4	P_o	
A1	1.18 (0.98, 1.42)	0.87 (0.76, 0.98)	1.67 (1.40, 2.01)	1.30 (1.13, 1.47)	2.77 (2.45, 3.22)	0.44 (0.39, 0.51)	0.04 (0.01, 0.09)	0.37 (0.29, 0.47)	0.26 (0.20, 0.33)	0.26 (0.23, 0.30)	0.60 (0.59, 0.61)
A1_0	1.01 (0.81, 1.26)	0.79 (0.67, 0.90)	1.59 (1.32, 1.90)	1.33 (1.17, 1.51)	2.55 (2.25, 2.96)	0.44 (0.39, 0.49)	0.04 (0.01, 0.10)	0.36 (0.28, 0.44)	0.33 (0.25, 0.39)	0.24 (0.21, 0.27)	0.65 (0.63, 0.66)
A1_L	1.39 (1.13, 1.68)	1.09 (0.95, 1.25)	2.30 (1.86, 3.06)	1.21 (1.06, 1.37)	4.14 (3.47, 5.33)	0.42 (0.37, 0.48)	0.03 (0.00, 0.08)	0.35 (0.27, 0.43)	0.33 (0.26, 0.41)	0.25 (0.22, 0.28)	0.60 (0.59, 0.62)
A2	1.11 (0.89, 1.38)	0.87 (0.75, 1.00)	1.63 (1.35, 1.97)	1.30 (1.13, 1.50)	2.83 (2.49, 3.32)	0.44 (0.38, 0.51)	0.01 (0.00, 0.03)	0.14 (0.09, 0.20)	0.02 (0.00, 0.05)	0.06 (0.04, 0.08)	0.60 (0.59, 0.62)
A3	1.24 (0.98, 1.52)	0.88 (0.75, 1.00)	1.64 (1.36, 2.00)	1.25 (1.08, 1.43)	2.86 (2.50, 3.36)	0.46 (0.39, 0.52)	0.12 (0.04, 0.19)	0.55 (0.44, 0.66)	0.12 (0.05, 0.19)	0.22 (0.18, 0.26)	0.60 (0.59, 0.62)
A4	1.25 (1.01, 1.51)	0.88 (0.77, 1.00)	1.67 (1.41, 2.01)	1.25 (1.10, 1.43)	2.80 (2.47, 3.23)	0.46 (0.40, 0.52)	0.17 (0.08, 0.26)	0.71 (0.60, 0.83)	0.36 (0.27, 0.45)	0.41 (0.37, 0.46)	0.60 (0.59, 0.61)
Dawplus 2.0	0.62 (0.30, 1.07)	1.24 (0.93, 1.63)	0.91 (0.61, 1.28)	1.41 (0.93, 2.09)	1.70 (1.24, 2.28)	0.62 (0.44, 0.88)	0.03 (0.00, 0.11)	0.69 (0.41, 1.07)	0.42 (0.25, 0.61)	0.23 (0.12, 0.34)	0.65 (0.62, 0.68)
DuraNet	0.53 (0.15, 1.28)	0.56 (0.40, 0.77)	2.60 (1.55, 6.79)	0.46 (0.25, 0.79)	4.77 (3.17, 11.56)	0.30 (0.21, 0.42)	0.04 (0.00, 0.16)	0.22 (0.09, 0.45)	0.26 (0.11, 0.40)	0.22 (0.15, 0.31)	0.49 (0.46, 0.52)
Interceptor	0.61 (0.12, 1.20)	0.66 (0.44, 0.91)	0.58 (0.23, 1.07)	3.58 (2.37, 6.31)	1.91 (1.51, 2.40)	0.31 (0.18, 0.63)	0.07 (0.01, 0.17)	0.11 (0.01, 0.50)	0.21 (0.10, 0.33)	0.33 (0.25, 0.42)	0.59 (0.56, 0.63)
NetProtect	2.14 (1.26, 3.42)	0.85 (0.43, 1.20)	2.11 (1.08, 11.66)	1.63 (1.17, 2.27)	3.27 (2.24, 12.06)	0.76 (0.55, 1.05)	0.10 (0.01, 0.28)	0.36 (0.15, 0.60)	0.10 (0.01, 0.26)	0.26 (0.15, 0.38)	0.59 (0.55, 0.62)
Olyset	0.92 (0.53, 1.40)	1.41 (0.93, 1.95)	1.69 (1.17, 2.66)	0.77 (0.56, 1.04)	2.48 (1.62, 4.17)	0.80 (0.62, 1.04)	0.13 (0.02, 0.27)	0.35 (0.22, 0.52)	0.17 (0.02, 0.41)	0.27 (0.16, 0.38)	0.65 (0.62, 0.68)
PermaNet 2.0	0.45 (0.04, 1.06)	1.79 (1.26, 2.34)	2.08 (1.45, 5.01)	1.40 (0.81, 2.50)	1.83 (1.14, 5.73)	0.58 (0.36, 0.94)	0.12 (0.01, 0.29)	0.88 (0.50, 1.45)	0.22 (0.05, 0.44)	0.40 (0.23, 0.55)	0.61 (0.57, 0.64)
PermaNet 3.0	1.37 (0.86, 2.15)	0.71 (0.38, 1.02)	1.95 (1.08, 7.37)	2.06 (1.53, 2.73)	3.25 (2.24, 11.11)	0.29 (0.19, 0.43)	0.05 (0.01, 0.20)	0.15 (0.02, 0.38)	0.33 (0.15, 0.49)	0.19 (0.12, 0.26)	0.64 (0.61, 0.67)
Table S 6. Estimates of derived quantities for sensitivity analyses and net-type specific analyses.

	Median life of LLIN (years)	Reduction in net lifetime attributable to holes (years)	Proportion of lifetime of LLIN for which it is damaged	Proportion loss in net lifetime attributable to holes	Proportion of lifetime of LLIN for which it is in use1	Proportion of lifetime of LLIN for which it is in use2	Proportion of lack of use attributable to holes
A1	2.86 (2.68, 3.08)	2.88 (1.77, 4.34)	0.78 (0.75, 0.81)	0.49 (0.38, 0.58)	0.60 (0.58, 0.62)	0.56 (0.54, 0.58)	0.13 (-0.08, 0.30)
A1_0	3.03 (2.82, 3.26)	1.83 (1.04, 2.82)	0.77 (0.74, 0.80)	0.37 (0.26, 0.47)	0.61 (0.59, 0.63)	0.57 (0.55, 0.59)	-0.09 (-0.28, 0.11)
A1_I	2.90 (2.69, 3.13)	2.35 (1.40, 3.61)	0.82 (0.80, 0.84)	0.43 (0.32, 0.53)	0.61 (0.59, 0.63)	0.57 (0.55, 0.59)	-0.03 (-0.25, 0.17)
A2	9.34 (7.91, 11.40)	8.59 *	0.91 (0.89, 0.92)	0.40 (0.29, 0.48)	0.69 (0.66, 0.71)	0.64 (0.62, 0.67)	-0.15 (-0.40, 0.03)
A3	2.60 (2.41, 2.82)	3.24 (1.77, 5.98)	0.78 (0.74, 0.81)	0.53 (0.40, 0.65)	0.60 (0.57, 0.62)	0.56 (0.53, 0.58)	0.20 (-0.04, 0.42)
A4	1.74 (1.64, 1.85)	1.23 (0.77, 1.96)	0.69 (0.66, 0.72)	0.44 (0.34, 0.55)	0.54 (0.51, 0.56)	0.50 (0.48, 0.52)	0.13 (-0.06, 0.30)
Dawaplus 2.0	2.64 (2.21, 3.12)	2.19 (0.72, 4.94)	0.67 (0.57, 0.76)	0.49 (0.38, 0.58)	0.52 (0.46, 0.59)	0.49 (0.43, 0.55)	0.13 (-0.06, 0.29)
DuraNet	3.90 (3.03, 4.99)	1.62 (-0.01, 4.44)	0.70 (0.53, 0.83)	0.46 (0.21, 0.63)	0.48 (0.39, 0.55)	0.44 (0.36, 0.51)	0.05 (-0.47, 0.40)
Interceptor	3.40 (2.80, 4.25)	3.32 (1.00, 9.42)	0.67 (0.47, 0.80)	0.29 (-0.02, 0.53)	0.63 (0.53, 0.70)	0.59 (0.49, 0.66)	0.01 (-0.52, 0.41)
NetProtect	2.73 (2.25, 3.30)	3.57 (0.63, 13.23)	0.85 (0.79, 0.90)	0.49 (0.27, 0.67)	0.59 (0.53, 0.64)	0.55 (0.50, 0.60)	-0.49 (-2.20, 0.05)
Olyset	2.73 (2.31, 3.26)	1.85 (0.38, 5.56)	0.77 (0.71, 0.83)	0.49 (0.38, 0.58)	0.44 (0.39, 0.50)	0.41 (0.36, 0.46)	0.31 (-0.45, 0.64)
PermaNet 2.0	2.01 (1.74, 2.31)	2.06 (0.69, 5.79)	0.64 (0.55, 0.72)	0.37 (0.26, 0.47)	0.60 (0.55, 0.66)	0.56 (0.51, 0.61)	0.34 (-0.08, 0.62)
PermaNet 3.0	4.00 (3.26, 5.12)	0.47 (-1.29, 2.71)	0.86 (0.80, 0.90)	0.43 (0.32, 0.53)	0.75 (0.70, 0.79)	0.70 (0.65, 0.74)	0.45 (0.14, 0.70)

1As defined by ‘net in use’; 2As defined by ‘net in use last night’; *interval estimates outside the simulated range.