Comparison of Three-Dimensional Fluoroscopy versus Postoperative Computed Tomography for the Assessment of Accurate Screw Placement after Instrumented Spine Surgery

Sarah T. Garber ¹ Erica F. Bisson ¹ Meic H. Schmidt ¹

¹ Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States

Global Spine J 2012;2:95–98.

Introduction

The O-arm™ Surgical Imaging System first received clearance from the U.S. Food and Drug Administration in 2005 for use as an intraoperative imaging system able to produce both two-dimensional and three-dimensional anatomical views. The O-arm has proven to play a valuable role in neurosurgical, orthopedic, and otolaryngologic procedures by providing rapid, quality views of bony anatomy. In particular, three-dimensional fluoroscopy performed intraoperatively is often used as a means to evaluate screw placement during spinal instrumentation.¹ In a prospective interventional case study of 94 patients in 2009, the rate of screw misplacement with the use of intraoperative three-dimensional fluoroscopy was 4.8%, compared with 10% without the use of intraoperative three-dimensional fluoroscopy.¹

An O-arm image of the appropriate levels can be obtained before or after placement of spinal instrumentation, and the images are then transferred to the computer workstation where they are reconstructed into axial, sagittal, and coronal views of the spinal anatomy.² In addition, the O-arm allows for intraoperative navigation, further increasing the accuracy of screw placement.³ This has important ramifications as the use of three-dimensional fluoroscopy with or without surgical navigation may help decrease the number of patients who require additional surgery for repositioning of a misplaced screw.

Abstract

While intraoperative three-dimensional fluoroscopy does not possess the resolution and image quality of computed tomography (CT), it may provide adequate information about screw placement to guide intra- and postoperative decision making. We compared the accuracy of intraoperative three-dimensional fluoroscopy visualization of proper screw placement with that of postoperative CT. We retrospectively reviewed spinal instrumentation procedures done using the O-arm (Medtronic, Minneapolis, MN, USA) that also had postoperative CT. All screws were assessed for placement accuracy on O-arm and CT images on a 4-point scale. In this study, 20 cases met the inclusion criteria. Thirteen breaches (11 grade 1 and 2 grade 2) were identified on O-arm images, and 14 breaches (10 grade 1, 3 grade 2, and 1 grade 3) were identified on CT. Sensitivity, specificity, and positive and negative predictive values were 93, 99, 99, and 98%, respectively. The Kappa value (0.96) suggested a very high degree of agreement between three-dimensional fluoroscopy and CT in determining accuracy of screw placement. These findings may allow less frequent use of postoperative CT scans, improving cost effectiveness in patients who require spinal instrumentation procedures and potentially decreasing the number of patients who require replacement of an inappropriately positioned screw.

Keywords

► O-arm
► three-dimensional fluoroscopy
► computed tomography scan
► accuracy
► spinal instrumentation

Address for correspondence and reprint requests Meic H. Schmidt, M.D., Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, United States (e-mail: meic.schmidt@hsc.utah.edu).

received March 13, 2012
accepted after revision May 16, 2012

Copyright © 2012 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.
Tel: +1(212) 584-4662. DOI http://dx.doi.org/10.1055/s-0032-1319775.
ISSN 2192-5682.
screw.\(^4\) Finally, three-dimensional fluoroscopy also has the advantage of decreasing radiation exposure to both surgical staff and patients compared with that resulting from a standard computed tomography (CT) scan.\(^5\)–\(^8\)

At our institution, the O-arm is used for a wide variety of cases, including cervical, thoracic, and lumbar spinal instrumentation, thoracic disk herniations, spinal trauma, spinal deformity, and spinal tumors. Although postoperative imaging is often not routinely performed at every institution in the absence of a new neurological deficit, it is our standard to obtain a CT scan after instrumented spine surgery unless the procedure solely entails placement of cervical lateral mass screws. The goal of our study was to compare the images obtained using three-dimensional fluoroscopy intraoperatively with the images obtained on postoperative CT scan for equivalent visualization of instrumentation placement.

Methods

We retrospectively reviewed all neurosurgical spinal instrumentation procedures done at our institution by the senior authors using the O-arm from June 2009 to May 2010. Neither senior author evaluated their own cases. The primary author, who was not involved in any of the cases in this study, evaluated each procedure independently. All surgical approaches and instrumentation systems were included in this study. Cases in which no postoperative CT was obtained were excluded.

The placement of all screws was assessed on both the O-arm and CT images using the method described by Rao et al.\(^9\) to determine the number of violations of the pedicle (breaches) and their severity. The imaging data were obtained directly from the O-arm workstation, and screw placement was assessed independently by each author at separate times and locations to help avoid bias. Any discrepancies were reviewed by all three authors together, and the majority decision was used. The sensitivity, specificity, positive and negative predictive values, and Kappa value of the measurements were calculated. The Kappa value is a reliability test used to determine observed agreement between different measuring techniques.\(^10\) Our aim was to determine how these two methods for determining the accuracy of screw placement compared with one another.

Results

Of the 47 posterior spinal fusions done at our institution during the study period, 26 cases performed with O-arm fluoroscopic guidance were identified. We identified 20 cases in which both postinstrumentation O-arm images and postoperative CT images were available. These included eight cervical, four cervicothoracic, two thoracic, three thoraco-lumbar, and three lumbosacral cases. Six cases were identified in which no postoperative CT scan was obtained or the O-arm images could not be located for analysis and were excluded. Fifteen, 36, and 22 screws were placed in the cervical, thoracic, and lumbosacral spine, respectively, for a total of 73 screws. Cervical lateral mass screws were not included. We identified a total of 11 breaches (9 grade 1, 2 grade 2) on the O-arm, and 11 breaches (7 grade 1, 3 grade 2, and 1 grade 3) on postoperative CT scan (\(\text{ Figure 1 and 2}\)). These data were then grouped for statistical analysis evaluating accuracy of the O-arm in identifying screw breach compared with postoperative CT scan. Sensitivity and specificity for the use of three-dimensional fluoroscopy were 85 and 97%, respectively. Positive and negative predictive values were calculated to be 82 and 98%, respectively. The Kappa value was 0.79, suggesting a substantial degree of agreement.

Table 1 Rao Grading Scale for Assessment of Screw Placement\(^7\)

Grade	Description
0	No perforation of the pedicle (no breach)
1	<2 mm perforation with one screw thread out of the pedicle
2	2–4 mm perforation of the pedicle
3	>4 mm perforation

![Figure 1](image-url) (Left) O-arm fluoroscopic image showing breach of a T9 pedicle screw in a patient with a thoracic fusion. The breach was identified as grade 0. (Right) Computed tomography scan showing the same pedicle screw breach, which was identified as a grade 1 breach on this image.
between three-dimensional fluoroscopy and CT scan in determining accuracy of screw placement.

Discussion

Our results indicate that three-dimensional fluoroscopy was highly accurate in evaluating screw placement during neurosurgical spine procedures. Furthermore, there was a high level of agreement between the findings obtained using the O-arm and those obtained using CT scan. The discrepancies between the grades imply that the O-arm at picking up a subtle breach of the cortex; however, none of the patients in this study required a return trip to the operating room to adjust a malpositioned screw. This has important implications for patient safety as return trips to the operating room increase both cost and morbidity in patients undergoing spinal instrumentation procedures. In addition, visualizing screw placement intraoperatively could decrease the number of postoperative CT scans required and therefore decrease cost and radiation exposure to patients undergoing screw placement. With sensitivity and specificity of 85 and 97%, respectively, intraoperative fluoroscopy is highly accurate in determining correct screw placement in the operating room. In addition, a negative predictive value of 98% suggests that when intraoperative fluoroscopy showed that a screw was correctly placed, it was wrong only 2% of the time. These data are encouraging since proper screw placement is vital both for structural stability and to avoid crucial anatomical structures.

Another important benefit of the use of intraoperative three-dimensional fluoroscopy for evaluation of screw placement is that it potentially exposes the patient to less radiation than a postoperative CT scan. In a 2010 study done at a university hospital in England, Richards et al. calculated radiation dosage of lumbar and thoracic CT scans in mSv (estimated effective dose). Their results showed that imaging the thoracic spine exposed the patient to 10 mSv, while imaging the lumbar spine exposed the patient to 5.6 mSv. In a 2002 study, Rybicki et al. reported that imaging the cervical spine exposed the patient to 3.45 mSv. Zhang et al. investigated patient radiation dose using an O-arm imaging system versus a 64-slice CT imaging system. The Richards et al. and Zhang et al. studies both evaluated the use of these systems using synthetic spines instead of actual patients. Zhang et al. showed that when using the same scan length and identical radiographic techniques, the three-dimensional O-arm imaging system delivered approximately half the dose.
radiation dose of a 64-slice CT scanner, which is similar to the one used at our institution. The results of these two studies imply that using intraoperative three-dimensional imaging does impart less radiation to the patient than conventional CT.

A limitation of our study is the small number of patients at our institution for whom both intraoperative three-dimensional fluoroscopy and a postoperative CT scan were available. As stated earlier, postoperative CT scans are routinely obtained at our institution after instrumented spine surgery. One potential bias with a retrospective study such as this one is that cases that did not have a postoperative CT scan may have been considered safely performed surgical procedures, and therefore CT scan was only performed when the surgeon was concerned about a malpositioned screw. A diligent chart review was performed to determine that this was not the case based on postoperative notes and discharge summaries. However, as three-dimensional fluoroscopy grows in popularity, we hope to undertake a prospective comparative analysis that would eliminate this bias and lead to larger case series available for analysis.

Another limitation of this study is the difference in the number of posterior spinal fusions done during the study period (47) and the number of cases in which the O-arm was used intraoperatively (26). Of these 26 cases, 20 used both intraoperative O-arm and postoperative CT scan for evaluation of screw placement. It is quite possible that in some of the 20 cases, both intraoperative O-arm and postoperative CT scan were used because of a concern by the operating surgeon for a pedicle screw breach; this would account for the positive correlation between O-arm and CT scan in picking up a violation of the cortex. The degree of pedicle rupture was independently evaluated by three neurosurgeons (the authors of this study), so it is doubtful that error in pedicle breach grade could have made a significant contribution to the results obtained. Certainly, a prospective study whereby patients undergoing posterior spinal fusions were randomized to either intraoperative O-arm imaging or postoperative CT imaging to evaluate accuracy in screw placement would be valuable to help eliminate operating surgeon bias and establish whether one modality is superior to another in evaluating pedicle screw placement.

Conclusion

The results of our study show that intraoperative three-dimensional fluoroscopy was highly accurate in the evaluation of screw placement during neurosurgical spine procedures. We believe that this allows for the ability to correct screw trajectory intraoperatively, potentially decreasing the number of patients who might have to return to the operating room for repositioning of a misplaced screw identified on postoperative CT scans. In addition, our data may enable a decreased use of postoperative CT scans and further ensure both quality and safety in patients who require spinal instrumentation.

Acknowledgment

We thank Kristin Kraus, M.Sc., for editorial assistance.

Disclaimer

None of the authors involved in this study is affiliated with Medtronic, and no funding was received from Medtronic for use in this project.

Disclosures

Sarah T. Garber, None
Erica F. Bisson, None
Meic H. Schmidt, None

References

1. Zausinger S, Scheder B, Uhl E, Heigt J, Morhard D, Tonn JC. Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine (Phil Pa 1976) 2009;34(26):2919–2926
2. Holly LT, Foley KT. Image guidance in spine surgery. Orthop Clin North Am 2007;38(3):451–461, abstract viii
3. Geering J, Gösling T, Gösling A, et al. Navigated pedicle screw placement: experimental comparison between CT- and 3D fluoroscopy-based techniques. Comput Aided Surg 2008;13(3):157–166
4. Sugimoto Y, Ito Y, Tomioka M, et al. Clinical accuracy of three-dimensional fluoroscopy (Isoc-3D)-assisted upper thoracic pedicle screw insertion. Acta Med Okayama 2010;64(3):209–212
5. Kim CW, Lee YP, Taylor W, Oygar A, Kim WK. Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 2008;8(4):584–590
6. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phil Pa 1976) 2000;25(20):2637–2645
7. Smith HE, Welsch MD, Sasso RC, Vaccaro AR. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 2008;31(5):532–537
8. Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER. Dosimetric characterization of a cone-beam O-arm imaging system. J XRay Sci Technol 2009;17(4):305–317
9. Rao G, Brodke DS, Rondina M, Dailey AT. Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurg 2002;97(2, Suppl):223–226
10. Rao G, Brodke DS, Rondina M, Bacchus K, Dailey AT. Inter- and intraobserver reliability of computed tomography in assessment of thoracic pedicle screw placement. Spine (Phil Pa 1976) 2003;28(22):2527–2530
11. Nottmeier EW, Young PM. Image-guided placement of occipitocervical instrumentation using a reference arc attached to the headholder. Neurosurgery 2010;66(3, Suppl Operative):138–142
12. Richards PJ, George J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine (Phil Pa 1976) 2010;35(4):430–433
13. Rybicki F, Nawfel RD, Judy PF, et al. Skin and thyroid dosimetry in cervical spine screening: two methods for evaluation and a comparison between a helical CT and radiographic trauma series. AJR Am J Roentgenol 2002;179(4):933–937