Insecticidal Activities of Four Native Entomopathogenic Fungus Beauveria bassiana Bals. (Vuill) Isolates Against Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) Adults Under Laboratory Conditions

Seher Uçar1,a, Turgut Atay1,b,* Yusuf Yanar1,c

1Department of Plant Protection, Faculty of Agriculture, Tokat Gaziosmanpaşa University, 60250 Tokat, Turkey
bCorresponding author

A R T I C L E I N F O

Abstract

In this work, control capacity of the four isolates (GN22-1, HP15, HP5-2, HP3-1) of entomopathogenic fungus Beauveria bassiana Bals. (Vuill) were evaluated against Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) adults under laboratory conditions. To test the effect of each of the isolate on adults of T. castaneum were dipped into 1×10⁶ conidia/ml suspension of each isolate. The data for mortality was recorded after 3rd, 5th, 7th, 9th, 11th, 13th, 15th, 17th, 19th, 21st, and 23rd day. Thirteen days after application, isolates were listed as GN22-1 (72.85%), HP3-1 (48.88%), HP15 (47.37%) and HP5-2 (30.43%) based on the mortality rate they caused. Mortality rate was 83.52% at the end of the 23rd day with isolate GN22-1. While HP3-1 (53.74%) and HP15 (52.24%) caused more than 50% effect at the end of 23 days incubation period, the effect of HP5-2 remained only 32.51%. In addition, LT₉₀ and LT₅₀ rates were also determined. We arrive to the conclusion that especially GN22-1 isolate can has a potential in the control of this insect and may serve an alternative to chemical insecticides.

Introduction

Insect pest infestation can cause up to 40% loss in stored products worldwide. Red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) is a widespread and most destructive pest of stored products throughout the world. Both adults and larvae feed in a variety of materials containing flour, cereals, pasta, biscuits, beans, and nuts. Besides the product losses caused by feeding, this insect imparts a nauseous smell and taste to the infested material decreasing its nutritive value (Karunakaran et al., 2004). Attempts to control of stored products pests relies on physical control and mostly fumigants, such as methyl bromide or phosphine. Research has shown that synthetic insecticides are extremely toxic to non-target species and have harmful environmental impacts. Also, harmful insects have developed resistance to many pesticides. Hence, alternatives and more safer control methods should be developed (Upadhyay and Ahmad, 2011). Biological control efforts are the most important issue for achieve this goal. This method involves the use of natural enemies such as parasites, predators, and pathogens.

Entomopathogenic fungi (EPF) are widespread in terrestrial ecosystems and play an important role in the regulation of insect populations. There are about 90 genera and 700 species with entomopathogenicity (Roberts and Humber, 1981). Insect fungal pathogens have a wide variety of hosts, can be mass-produced simply, rapidly, economically, and can be used with the same technological means as traditional contact insecticides. In this context, Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschn.) Sorokin 1883 are the most studied fungal species for the control of stored-product insect species (Rumbos and Athanassiou, 2017). The anamorphic entomopathogenic fungus B. bassiana is natural enemies of a wide range of insects and arachnids and has a cosmopolitan distribution. This fungus has been documented to occur naturally in more than 700 species of insect hosts (Imoulan et al., 2017).
Beauveria bassiana has been tested against most of the major stored-product insect species (mostly coleopteran pest and only a few species lepidopteran pest), under various types of conditions and product in the world (Rumbos and Athanassiou, 2017). Some studies were performed to assess the ability of *B. bassiana* as a bioinsecticide for various stored product pests in Turkey. Most of these studies have mostly focused on coleopteran pests (Sevim et al., 2015; Er et al., 2016; Atay et al., 2017; Ak, 2019; Özdemir et al., 2020). This study was conducted to assess the efficacy of four entomopathogenic fungi *Beauveria bassiana* Bals. (Vuill) isolates (GN22-1, HP15, HP5-2, HP3-1) of 1×10⁸ conidia/ml concentrations against *Tribolium castaneum* adults under laboratory conditions.

Material and Methods

Insect Culture

Insects from a stock culture of *Tribolium castaneum* (Tokat Gaziosmanpasa University, Faculty of Agriculture, Department of Plant Protection in Tokat, Turkey) were obtained that reared in the laboratory on broken wheat at 28 ± 2°C and 65–75% R.H.

Fungal Isolates

For current study, 4 isolates of *B. bassiana* (GN22-1, HP15, HP5-2, HP3-1) were chosen from the fungal culture collection of the Mycology Laboratory at the Tokat Gaziosmanpasa University, Faculty of Agriculture, Department of Plant Protection in Tokat, Turkey. These isolates were originally isolated from naturally infected *Hypera postica* (Gyllenhal 1813) (Coleoptera, Curculionidae) and *Gonioctena fornicata* (Brüggemann 1873) (Coleoptera, Chrysomelidae) adults collected from alfalfa fields in Tokat Province, Turkey.

Inoculum Preparation from Entomopathogenic Fungal Isolates

Fungal isolates were cultured on Potato Dextrose Agar (PDA) in Petri dishes and incubated at 25±2°C with a 16/8 (L/D) photoperiod. Spores were harvested from 17-day-old cultures with 10 ml of sterilized water containing 0.02% Tween 80. The conidial suspensions were filtered through 3 sheets of sterile cheesecloth to eliminate particles and then spore suspension from each isolate was adjusted to 1×10⁸/ml concentration.

Results and Discussion

The four *Beauveria bassiana* fungal isolates were tested against *Tribolium castaneum* adults at a concentration of 1×10⁸ conidia/ml. Mortality of *T. castaneum* in all isolates was significantly different from each other. Table 1 shows that the entomopathogenic fungal isolates produced different insecticidal activity rates after 3 days post inoculation. Long exposure interval had a positive effect on the mortality rate of *T. castaneum*. Among the entomopathogenic fungal isolates, GN22-1 (51.07%) showed the highest insecticidal activity against *T. castaneum* at the end of day 9, followed by HP3-1 (44.37%), HP15 (40.67%), and HP5-2 (23.68%). Thirteen days after the application, isolates were listed as GN22-1 (72.85%), HP3-1 (48.88%), HP15 (47.37%), and HP5-2 (30.43%) according to the mortality rates they caused. Mortality rate of isolate GN22-1 was 83.52% at the end of the 23rd day. While HP3-1 (53.74%) and HP15 (52.24%) caused more than 50% effect at the end of 23 days incubation period, the effect of HP5-2 remained only 32.51% (Table 1).

Days/Isolates	HP5-2	HP3-1	GN22-1	HP-15	Control
3	2.03±1.01bcd**	13.01±0.18a	6.91±0.87ab	12.73±0.82a	0.00±0.00a
5	5.93±1.31b	26.05±0.49a	21.86±0.25a	23.93±0.39a	0.00±0.00a
7	14.20±1.75b	35.31±0.31a	38.76±0.23a	31.78±0.49a	0.00±0.00a
9	23.68±0.55b	44.37±0.28a	51.07±0.40a	40.67±0.83a	0.00±0.00a
11	28.30±0.52c	48.88±0.50ab	63.62±0.40a	43.98±0.99b	0.00±0.00d
13	30.43±0.63c	48.88±0.50b	72.85±0.56a	47.37±1.24b	0.00±0.00d
15	30.43±0.63c	50.05±0.65b	78.37±1.69a	47.37±1.24b	0.00±0.00d
17	31.46±0.76b	50.05±0.65b	81.69±1.66a	47.37±1.24b	0.51±0.71c
19	32.51±0.97b	51.34±0.91b	81.70±1.66a	47.38±1.24b	2.03±1.01c
21	32.51±0.97b	51.34±0.91b	82.68±1.57a	48.50±1.21b	3.16±1.01c
23	32.51±0.97b	53.74±1.08b	83.52±1.30a	52.24±0.81b	4.53±0.91b

* SEM: Standard error of the mean, ** Means in a line followed by the same letter are not significantly different (ANOVA, P<0.05; Tukey's test).
When the LT$_{50}$ values of the isolates applied in the study were analysed, the most effective isolate was GN22-1 (10.327 days) and this followed by HP-3 (17.186), HP-15 (18.615) and HP-5 (28.813), respectively. LT$_{50}$ rates were ranged like those of the LT$_{50}$ (Table 2).

Main effects of different EPF isolates and exposure intervals on percent mortality of T. castaneum were highly significant. The isolates used in this study did not cause mortality more than 39% on the 7th day. Akmal et al. (2020) observed a low effect (32.5%) against T. castaneum adults 7th day after the application with 5×108 spores/ml concentration of B. bassiana. GN22-1 has started to show a significant effect from the 13th day and this effect increased to over 80% on the 23rd day. The effect of all other isolates did not exceed 55% at the end of the 23rd day. Similarly, Moore et al. (2000) stated that the virulence of fungal strains differed significantly against stored grain insect pests. Padin et al. (2002) reported that B. bassiana had no significant insecticidal effect on T. castaneum by exposing pest-infested wheat and bean seeds to conidia of B. bassiana. Rice and Cogburn (1999), recorded an efficiency more than 80% B. bassiana isolate against T. castaneum adult at 21 days after treatment. Similarity, in this study we revealed 82% mortality with isolates GN22-1 at the end of 21 days. On the other hand, Rizwan et al. (2019) reported that B. bassiana-treated wheat gave mortality rate with 31.67% against T. castaneum at the highest concentration (1×106 conidia kg$^{-1}$ of wheat) after 21-day exposure time. Also, that study, revealed an additive effect of B. bassiana, when used with diatomaceous earth against adults of this pest. In our study all isolates used showed that more than effect 32.5% effect at the end of 21 days. These differences between two studies might be related to the variation in virulence of the isolates tested in both studies.

We arrive to the conclusion that especially GN22-1 isolate can has a potential in the control of this insect and may serve an alternative to chemical insecticides.

References

Ak K. (2019). Efficacy of entomopathogenic fungi against the stored-grain pests, Sitophilus granarius L. and S. oryzae L. (Coleoptera: Curculionidae). Egypt J Biol Pest Control, 29 (12): 1-7. DOI: https://doi.org/10.1186/s41938-019-0115-y

Akmal M, Freed S, Bilal M, Malik MN. (2020). A laboratory evaluation for the potential of entomopathogenic fungi against Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae). TURJAF, 8 (6): 1232-1235. DOI: https://doi.org/10.42945/turjafr.v8i6.1232-1235.1460

Atay T, Yanar D, Ertürk S, Yanar Y. (2017). Efficacy of entomopathogenic fungus Beauveria bassiana Bals. (Vuill) against Granary Weevil (Sitophilus granarius (L.) (Coleoptera: Curculionidae) under laboratory conditions. 6th Entomopathogens and Microbial Control Congress, Tokat 14-16 Eylül, p72.