Análise cladística dos gêneros de Segestriidae
(Araneae, Synspermiata, Dysderoidea)

Cladistic analysis of Segestriidae genera
(Araneae, Synspermiata, Dysderoidea)
1. Resumo

Segestriidae é atualmente representada por quatro gêneros compreendendo 130 espécies descritas de aranhas: Segestria, Ariadna, Gippsicola e Citharoceps. Esta família faz parte do clado Dysderoidea, que também inclui Dysderidae, Orsolobidae e Oonopidae – todas as quatro famílias apresentando o desenvolvimento de um receptáculo posterior em sua genitália interna feminina. Atualmente não existem hipóteses de parentesco entre as espécies dos quatro gêneros de segestiídeos, e a morfologia da genitália interna das fêmeas apenas recentemente começou a ser foco de atenção e de descrições detalhadas. Sendo assim, nós apresentamos a primeira análise cladística utilizando 43 terminais pertencentes aos quatro gêneros válidos de Segestriidae, e de possíveis gêneros novos, além de outros membros do clado Dysderoidea, mais Caponiidae. Além disso, nós examinamos e descrevemos a genitália interna das fêmeas pela primeira vez utilizando Micro-tomografia computadorizada de Raios-X (Micro-CT) para reconstrução 3-D. Nossa matriz de dados compreende 143 caracteres morfológicos e comportamentais. O consenso estrito dos cladogramas mais parcimoniosos sob pesagem implícita resultou em Segestriidae monofilético, grupo-irmão de Orsolobidae, e dividido em duas subfamílias: Segestriinae e Ariadninae. Segestria é parafilética, e Segestria saeva sendo transferida para Gippsicola. Gippsicola foi recuperado como monofilético, porém com baixo suporte. Ariadna é parafilética, com a derivação de um pequeno clado incluindo Ariadna burchelli, espécie-tipo do sinônimo-júnior Macedonia. Este sendo revalidado neste estudo. Citharoceps é um gênero monofilético, recuperado com bom suporte. Nós também recuperamos quatro gêneros novos, todos com sinapomorfias não-homoplásicas e alto suporte: Xenosegestria gen. n., Anjea gen. n., Cheliceronyx gen. n. e Vazimba gen. n.. Nós também apresentamos a terminologia e evolução de caracteres chave da genitália interna feminina.
2. Abstract

Segestriidae is nowadays represented by four genera encompassing 130 described spider species: *Segestria*, *Ariadna*, *Gippsicola* and *Citharoceps*. The family is a member of the Dysderoidea clade, which includes also Dysderidae, Orsolobidae and Oonopidae – all four families characterized by the development of a posterior receptaculum in the female internal genitalia. Currently there are no phylogenetic hypotheses including all segestriid genera, and its female genitalia morphology it is just recently receiving attention and detailed descriptions. Therefore, we present the first cladistic analysis including 43 terminals from all four valid segestriid genera, and of possible new genera, together with members of the Dysderoidea clade, plus Caponiidae. Also, we address for the first time the morphology of the female internal genitalia using Micro-computed X-ray Tomography (Micro-CT) for 3-D reconstruction. Our dataset comprises 143 morphological and behavioral characters. Strict consensus of the most-parsimonious trees under implied weighting resulted in a monophyletic Segestiidae, sister to Orsolobidae, and divided in two subfamilies: Segestriinae and Ariadninae. *Segestria* is paraphyletic, and *Segestria saeva* should be transferred to *Gippsicola*. *Gippsicola* is monophyletic, but recovered with low support. *Ariadna* is paraphyletic, with the derivation of a small clade comprising *Ariadna burchelli*, type species of the junior-synonym *Macedonia*. The latter is here revalidated. *Citharoceps* was recovered as monophyletic, with good support. We recovered four new genera, all with non-homoplasious synapomorphies and high support: *Xenosegestria* gen. n., *Anjea* gen. n., *Chelicerynx* gen. n. and *Vazimba* gen. n.. We also present terminology and the evolution of key characters of the female internal genitalia.
3. Introduction

The spider family Segestriidae Simon, 1893 currently comprises 130 described species, included in four genera: Segestria Latreille, 1804, Ariadna Audouin, 1826, Gippsicola Hogg, 1900 and Citharoceps Chamberlin, 1924 (World Spider Catalog, 2018). These are small to medium-sized spiders, with six eyes and the third pair of legs forth. With nocturnal and sedentary habit, they usually are found dwelling small holes or cracks in rocks and tree logs and bark. They build a silk funnel tube with irradiate silk threads to prey detection (Prandi, 1990; Capocasale, 1998; Grismado, 2008). Phylogenetically, Segestriidae is a member of the Dysderoidea clade, currently with four families (Wheeler et al., 2017): (Segestriidae (Oonopidae (Orsolobidae, Dysderidae))), which is supported by one putative synapomorphy, the development of a second portion (= posterior receptaculum, in Segestriidae) of the internal female genitalia, originated from the posterior wall of the bursal cavity (Forster & Platnick, 1985; Griswold et al., 2005; Jocqué & Dippenaar-Schoeman, 2006). The Dysderoidea clade is part of a clade called Synspermiata, comprising families of ecribellate haplogyne spiders presenting the fusion of two or more spermatids inside a conjugated spermatozoa (synspermia) (Michalik & Ramírez, 2014; Wheeler et al., 2017).

The genus Segestria comprises 19 described species, with a wide distribution mainly in the Holarctic region (World Spider Catalog, 2018). Brignoli (1976) published a study on the internal genitalia of segestriid spiders from Italy, presenting for the first time more accurate descriptions and drawings of the female internal genitalia of Italian species of Segestria and Ariadna. Also, the author discusses taxonomic remarks and distribution of worldwide Segestria species. Brigoli’s study was the first attempt to address the taxonomy of this genus. Recently, Giroti & Brescovit (2011) revised the South American species of Segestria, recording only the species S. florentina (Rossi, 1790), an introduced species from the Palearctic region in south of Brazil, Uruguay and east of Argentina, but this genus still needs a complete taxonomic revision, mainly for the Nearctic region.

Gippsicola currently presents four described species that occur only in Australia (Giroti & Brescovit, 2017; World Spider Catalog, 2018). Before its recent revision, the genus was represented
by only its type species, *Gippsicola raleighi* Hogg, 1900, described based on an immature from Gembrook, Victoria, Australia. Giroti & Brescovit (2017) described the males of *G. raleighi* and *G. minuta*, and both male and females of *G. robusta* and *G. lineata*, providing good quality descriptions and illustrations and addressing the diagnostic features for the genus.

The recently revalidated *Citharoceps* Chamberlin, 1924 (Giroti & Brescovit, 2015) is composed by two species, *Citharoceps fidicina* Chamberlin, 1924 and *Citharoceps cruzana* (Chamberlin & Ivie, 1935), occurring only from North California (USA) to Baja California region (Mexico). These species are mainly diagnosed by the conspicuous stridulatory apparatus, composed by patches of vertical ridges on both sides of the *pars cephalica* of the carapace (Giroti & Brescovit, 2015, figs 1A-B, 5A, F). These ridges are stroked by a pick (or thorn) located in the prolateral region of the femur I (Giroti & Brescovit, 2015, figs 2A-B, 5C), producing a buzzing sound, probably to avoid predation.

Ariadna stands out as the most diverse segestriid genus, with 103 species described, distributed in all continents (except Antarctic), with more diversity in the tropical and subtropical regions (World Spider Catalog, 2018). This genus was recently revised for the American continent by Giroti & Brescovit (2018), describing eight new species and proposing new synonymies for species previously in problematic position. Currently, there are three genera as junior-synonym of *Ariadna*: *Pylarus* Hentz, 1842, *Macedonia* Hogg, 1900 and *Segestriella* Purcell, 1904. Whereas the synonymy of *Pylarus* was already confirmed by Giroti & Brescovit (2018), the other still need to be revised.

3.1 Phylogenetic background

Currently, there are no data on the phylogenetic relationships of Segestriidae genera. Studies that used species belonging to this family restricted their goal trying to support the monophyly of Dysderoidea, using only a few segestriid terminals, and never from all four genera (Forster & Platnick, 1985; Platnick *et al.*, 1991; Griswold *et al.*, 2005; Izquierdo & Labarque, 2010; Platnick *et al*., 2018).
Griswold et al. (2005), based on previous studies, used 154 characters to present a cladistic hypothesis focusing mainly on more inclusive groups of the Entelegynae clade, using more basal araneomorphs (“Haplogynae”, currently Synspermiata (Michalik & Ramírez, 2014)), the families Filistatidae and Segestriidae, as part of the outgroup. In their matrix, Griswold et al. (2005) uses only one species of Ariadna, A. boesenbergi Keyserling, 1877, but also resort to the work of Millot (1931) on Segestria to comment on its codification of internal anatomy characters. Platnick et al. (1991) also compare their codification between three genera of Segestriidae, Segestria, Ariadna and Gippsicola, using mainly characters of the spinnerets, but only Segestria was used as a terminal, represented by S. senoculata (Linnaeus, 1758).

Currently, Segestriidae is taxonomically divided into two sub-families: Segestriinae Simon, 1893 and Ariadninae Wunderlich, 2004. Segestriinae comprises Segestria and the fossil genus Vetsegestria Wunderlich, 2004, but, as suggested by Giroti & Brescovit (2017), the genus Gippsicola may also be part of this subfamily. On the other hand, Ariadninae comprises only the genus Ariadna. Both subfamilies present distinctive morphological characters (Wunderlich, 2004: 657; Wunderlich, 2011: 175), but its monophyly was never corroborated by phylogenetic analysis.

The absence of previous delimited characters for Segestriidae represents one of the main problems for using this group in phylogenetic studies. Since the family has just recently received more attention for taxonomic revisions and morphological descriptions (Grismado, 2008; Giroti & Brescovit, 2011; 2015; 2017; 2018; Baehr & Whyte, 2016), there is still need for the establishment of the right terminology and homology for its characters.

3.2 The female genitalia of Segestriidae

Dysderoidea is one of the largest clades within Synspermiata (Michalik & Ramírez, 2014) – one of the main groups within Araneomorphae comprising 16 families of ecribellate spiders, which are characterized by so-called synspermia (sperm aggregates with fused spermatozoa) (Wheeler et
al., 2017). Furthermore, the female genitalia is usually haplogyne, which is defined by the absence of a fertilization duct and an external copulatory plate called *epigynum* as part of the female genitalia (Griswold et al., 2005). In females with this condition the insertion of the male palp occurs directly into the bursa copulatrix or spermatecae. The male and female genitalia of haplogyne taxa are often rather simple, without very conspicuous differences between species of the same genus or even within the family (Huber, 2004; Ramírez, 2014).

Detailed knowledge of the male and female genitalia of Dysderoidea is mainly based on histological and ultrastructural studies of some species of Dysderidae (Cooke, 1966; Uhl, 2000; Burger & Kropf, 2007), Orsolobidae (Izquierdo & Labarque, 2010; Lipke et al., 2014) and Oonopidae (Burger, 2009; 2010a; 2010b; 2011; 2013; Burger & Michalik, 2010). Contrary, Segestriidae genitalia was only described in a few studies on its gross morphology as e.g. Brignoli (1976), Huber (2004) and Grismado (2008), all of them trying to establish a consistent terminology and homology of the structures with detailed descriptions and illustrations, and only included two of the four known genera of the family: *Ariadna* (Brignoli, 1976; Grismado, 2008) and *Segestria* (Brignoli, 1976).

Here we addressed for the first time the female genitalia of all segestriid genera. We present detailed morphology of the internal female genitalia using non-destructive techniques as Micro-computed X-ray Tomography (Micro-CT) for 3D-reconstruction and well-established methods such as Scanning Electron Microscopy (SEM), aiming to unify terminology, and infer hypotheses of homology between target structures.
7. Conclusions

- We presented the first cladistic analysis including all valid genera of Segestriidae, together with four new genera;
- Segestriidae was recovered as a monophyletic clade, so it is considered valid taxonomically;
- Both subfamilies Segestiinae Simon, 1893 and Ariadninae Wunderlich, 2004 were recovered as monophyletic, and are now comprising more genera;
- **Segestria** is paraphyletic; **Segestria saeva** should be transferred to **Gippsicola**;
- **Gippsicola** is monophyletic, besides low support;
- **Ariadna** is paraphyletic;
- **Macedonia**, junior-synonym of **Ariadna** should be revalidated and comprising **Ariadna burchelli**, **Ariadna araucana**, **Ariadna lalen** and **Ariadna AUS sp. 1**;
- **Citharoceps** was recovered monophyletic and well-supported;
- Four new genera were diagnosed and will be fully described: **Xenosegestria** gen. n., **Anjea** gen. n., **Cheliceronyx** gen. n., **Vazimba** gen. n.;
- We addressed for the first time the terminology and described the evolution of key characters of the female internal genitalia of Segestiidae, using Micro-CT. Although its “simpler” appearance and less sclerotization, compared to other Dysderoidea families, we were able to extract important morphological characters for taxonomy and systematics.
8. References

Abrahim, N., Brescovit, A. D., Rheims, C. A., Santos, A. J., Ott, R. & Bonaldo, A. B. (2012) A revision of the Neotropical goblin spider genus *Neoxyphinus* Birabén, 1953 (Araneae, Oonopidae). *American Museum Novitates* 3743, 1–75.

Audouin, V. (1826) Explication sommaire des planches d'arachnides de l'Egypte et de la Syrie publiées ... in "Description de l'Egypte...". *Histoire Naturelle* 1(4), 1–339 (arachnids, pp. 99–186).

Baehr, B. C. & Whyte, R. (2016) The first described male tube-web spider for mainland Australia: *Ariadna kiwirrkurra* sp. nov. (Araneae: Segestriidae). *Zootaxa* 4189(3), 595–599.

Banks, N. (1902) Papers from the Hopkins Stanford Galapagos Expedition; 1898-1899. VII. Entomological Results (6). Arachnida. With field notes by Robert E. Snodgrass. *Proceedings of the Washington Academy of Sciences* 4, 49–86.

Beatty, J.A. (1970) The spider genus *Ariadna* in the Americas (Araneae, Dysderidae). *Bulletin of the Museum of Comparative Zoology* 139(8), 433–518.

Blackwall, J. (1858) Characters of a new genus and description of three recently discovered species of Araneida. *Annals and Magazine of Natural History* (3) 2, 331–335.

Bonnet, P. (1958) Bibliographia araneorum. *Toulouse* 2, 3027–4230.

Bremer, K. (1994) Branch support and tree stability. *Cladistics* 10, 295–304.

Brescovit, A.D., Bonaldo, A.B, Santos, A.J., Ott, R. & Rheims, C.A. (2012) The Brazilian goblin spiders of the new genus *Predatoroonops* (Araneae: Oonopidae). *Bulletin of the American Museum of Natural History* 370, 1–68.

Brignoli, P.M. (1976) Ragni d'Italia XXIV. Note sulla morfologia dei genitalia interni dei Segestriidae e cenni sulle specie italiane. *Fragmenta Entomologica* 12, 19–62.

Burger, M. (2009) Female genitalia of goblin spiders (Arachnida: Araneae: Oonopidae): a morphological study with functional implications. *Invertebrate Biology* 128(4), 340–358.

Burger, M. (2010a) Complex female genitalia indicate sperm dumping in armored goblin spiders.
Burger, M. (2010b) Goblin spiders without distinct receptacula seminis (Arachnida: Araneae: Oonopidae). *Journal of Morphology* 271, 1110–1118.

Burger, M. (2011) Structure and function of the female reproductive system in three species of goblin spiders (Arachnida: Araneae: Oonopidae). *Invertebrate Biology* 130(2), 148–160.

Burger, M. (2013) Genital morphology of female goblin spiders (Arachnida: Araneae: Oonopidae) with functional implications. *Acta Zoologica* 92: 280–290.

Burger, M., Nentwig, W. & Kropf, C. (2003) Complex genital structures indicate cryptic female choice in a haplogynae spider (Arachnida, Araneae, Oonopidae, Gamasomorphinae). *Journal of Morphology* 255, 80–93.

Burger, M. & Kropf, C. (2007) Genital morphology of the haplogyne spider *Harpactea lepida* (Arachnida, Araneae, Dysderidae). *Zoomorphology* 126, 45–52.

Burger, M., Izquierdo, M. & Carrera, P. (2010) Female genital morphology and mating behavior of *Orchestina* (Arachnida: Araneae: Oonopidae). *Zoology* 113, 100–109.

Capocasale, R.M. (1998) Arañas del Uruguay, VIII. Contribución al conocimiento de Segestria ruficeps Guérin (araneae, Segestiidae). *Comunicaciones Zoológicas del Museo de Historia Natural de Montevideo* 190, 1–12.

Chamberlin, R.V. (1924) The spider fauna of the shores and islands of the Gulf of California. *Proceedings of the California Academy of Sciences* 12, 561–694.

Chamberlin, R.V. & Ivie, W. (1935) Miscellaneous new American spiders. *Bulletin of the University of Utah, Biological Series* 26(4), 1–79.

Cooke, J. A. L. (1965). Spider genus *Dysdera* (Araneae, Dysderidae). *Nature* 205, 1027-1028.

Cooke, J.A.L. (1966) Synopsis of the structure and function of the genitalia in *Dysdera crocata* (Araneae, Dysderidae). *Senckenbergiana Biologica* 47, 35–43.

Davies, V.T. (1985) Araneomorphae (in part). *Zoological Catalogue of Australia* 3, 49–125.

Deeleman-Reinhold, C.L. & Deeleman, P.R. (1988). Revision des Dysderinae (Araneae,
Dysderidae), les espèces méditerranéennes occidentales exceptées. *Tijdschrift voor Entomologie* 131, 141–269.

Farris, J.S. (1969) A successive approximations approach to character weighting. *Systematic Zoology* 18, 374–385.

Farris, J.S. (1989) The retention index and the rescaled consistency index. *Cladistics* 5, 417–419.

Foelix, R.F. & Chu-Wang, I.-W. (1973) The morphology of spider sensilla II. Chemoreceptors. *Tissue & Cell* 5, 461–478.

Foelix, R., Erb, B. & Michalik, P. (2010) Scopulate hairs in male *Liphistius* spiders: probable contact chemoreceptors. *The Journal of Arachnology* 38, 599–603.

Forster, R.R. & Platnick, N.I. (1985) A review of the austral spider family Orsolobidae (Arachnida, Araneae), with notes on the superfamily Dysderoidea. *Bulletin of the American Museum of Natural History* 181, 1–230.

Giribet, G. (2003) Stability in phylogenetic formulations and its relationship to nodal support. *Systematic Biology* 52, 554–564.

Giroti, A.M. & Brescovit, A.D. (2011) The spider genus *Segestria* Latreille, 1804 in South America (Araneae: Segestriidae). *Zootaxa* 3046, 59–66.

Giroti, A.M. & Brescovit, A.D. (2015) Revalidation of the spider genus *Citharoceps* Chamberlin, 1924 (Araneae, Segestriidae). *ZooKeys* 495, 1–19. http://dx.doi.org/10.3897/zookeys.495.8950

Giroti, A.M. & Brescovit, A.D. (2017) Revision of the spider genus *Gippsicola* Hogg, 1900 (Araneae: Segestriidae). *Zootaxa* 4227, 390–406. https://doi.org/10.11646/zootaxa.4227.3.6

Giroti, A.M. & Brescovit, A.D. (2018) The taxonomy of the American *Ariadna* Audouin (Araneae: Synspermiata: Segestriidae). *Zootaxa* 4400(1), 1–114.

Goloboff, P.A. (1993) Estimating character weights during tree search. *Cladistics* 9, 83–91.

Goloboff, P.A. & Farris, J.S. (2001) Methods for quick consensus estimation. *Cladistics* 17, S26–S34.

Goloboff, P.A., Farris, J.S., Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis.
Grant, T. (2003) Against sensitivity analysis in phylogenetic systematics. Abstracts of the 21st annual meeting of the Willi Hennig Society. *Cladistics* 19, 153.

Grant, T. & Kluge, A.G. (2005) Stability, sensitivity, science and heurism. *Cladistics* 21, 597–604.

Grismado, C.J. (2008) A taxonomic revision of the spider genus *Ariadna* Audouin, 1826 in Argentina and Chile, with the description of five new species (Arachnida, Araneae, Segestriidae). *Zoosystema* 30(2), 333–360.

Griswold, C.E., Ramírez, M.J., Coddington, J.A. & Platnick, N.I. (2005) Atlas of Phylogenetic Data for Entelegynae Spiders (Araneae: Araneomorphae: Entelegynae) with Comments on their Phylogeny. *Proceedings of the California Academy of Sciences* 56 (suppl. II), 1–324.

Hentz, N.M. (1842) Descriptions and figures of the araneides of the United States. *Boston Journal of Natural History* 4, 54–57, 223–231.

Hogg, H.R. (1900) A contribution to our knowledge of the spiders of Victoria: including some new species and genera. *Proceedings of the Royal Society of Victoria* (N.S.) 13, 68–123.

Holmberg, E.L. (1876) Arácnidos argentinos. *Anales de Agricultura de la República Argentina* 4, 1–30.

Huber, B. A. (2004) Evolutionary Transformation From Muscular to Hydraulic Movements in Spider (Arachnida, Araneae) Genitalia: a Study Based on Histological Serial Sections. *Journal of Morphology* 261, 364–376.

Izquierdo, M. A. & Labarque, F. M. (2010) Description of the female of *Orsolobus pucara* Forster & Platnick 1985, with comments on the functional morphology of the female genitalia in Dysderoidea (Araneae: Dysderoidea: Orsolobidae). *Journal of Arachnology* 38(3), 511–520.

Izquierdo, M.A & Ramírez, M.J. (2017) Taxonomic revision of the jumping goblin spiders of the genus *Orchestina* Simon, 1882 in the Americas (Araneae: Oonopidae). *Bulletin of the American Museum of Natural History* 410, 1–362.

Jocqué, R. & Dippenaar-Schoeman, A.S. (2006) Phylogeny of spiders. In *Spider Families of the*
World. Royal Museum of Central Africa: 51–52.

Keyserling, E. (1877) Amerikanische Spinnenarten aus den Familien der Pholcoidae, Scytodoidae und Dysderoidae. *Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien* 27, 205–234.

Koch, C.L. (1838) *Die Arachniden*. Nürnberg, Vierter Band, pp. 109-144, Funfter Band, pp. 1–124.

Koch, C.L. (1843) *Die Arachniden*. Nürnberg, Zehnter Band, pp. 37–142.

Labarque, F.M., Wolff, J.O., Michalik, P., Griswold, C.E. & Ramírez, M.J. (2017) The evolution and function of spider feet (Araneae: Arachnida): multiple acquisitions of distal articulations. *Zoological Journal of the Linnean Society* XX, 1–34.

Lamb, J. (1911) Descriptions of some new Queensland Araneidae. *Annals of the Queensland Museum* 10: 169–174.

Latreille, P.A. (1804) *Histoire naturelle générale et particulière des Crustacés et des Insectes*. Paris, 7, 144–305.

Lawrence, R. F. (1952). New spiders from the eastern half of South Africa. *Annals of the Natal Museum* 12: 183–226.

Linnaeus, C. (1758). *Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus differentiis, synonymis, locis. Editio decima, reformata*. Holmia, 821 pp. (Araneae, pp. 619–624).

Lipke E., Ramírez M.J., Michalik P. (2014) Ultrastructure of spermatozoa of Orsolobidae (Haplogynae, Araneae) with implications on the evolution of sperm transfer forms in Dysderoidea. *Journal of Morphology* 275, 1238–1257. doi: 10.1002/jmor.20298

MacLeay, W.S. (1839) On some new forms of Arachnida. *Annals of Natural History* 2: 1–14.

Maddison, W.P. (1987) *Marchena* and other jumping spiders with an apparent leg-carapace stridulatory mechanism (Araneae: Salticidae: Heliophaninae and Thiodininae). *Bulletin of the British Arachnological Society* 7, 101–106.

Maddison, W.P. & Maddison, D.R. (2018). Mesquite: a modular system for evolutionary analysis. Version 3.40 http://mesquiteproject.org
Michalik, P., Conti, E., Lombardo, B.M. (2007) The female genital system of Namibian Ariadna species (Segestriidae, Araneae) – ultrastructure and functional implications. Presented as poster at the 17th International Congress of Arachnology, São Pedro, São Paulo, Brazil, pg. 137.

Michalik, P., Piacentini, L., Lipke, E. & Ramírez, M. J. (2013) The enigmatic Otway odd-clawed spider (Progradungula otwayensis Milledge, 1997, Gradungulidae, Araneae): Natural history, first description of the female and micro-computed tomography of the male palpal organ. ZooKeys 335: 101–112.

Michalik, P. & Ramírez, M. J. (2014) Evolutionary morphology of the male reproductive system, spermatozoa and seminal fluid of spiders (Araneae, Arachnida) – Current knowledge and future directions. Arthropod Structure & Development 43, 291–322.

Millot, J. (1931) Les diverticules intestinaux du cephalothorax chez les Araignées vrais. Zeitschrift Morphologie und Ökologie der Tiere 21, 740–764.

Millot, J. (1936) Métamérisation et musculature abdominale chez les araneomorphes. Bulletin de la Société Zoologique de France 61(1), 181–204.

Nicolet, A.C. (1849) Aracnidos. In Gay, C. (ed.), Historia física y política de Chile. Zoología, 3, 319–543.

Nixon, K. C. (2002) WinClada ver. 1.00.08. Published by the author, Ithaca, NY.

Pérez-Miles, F., Guadanucci, J. P. L., Jurgilas, J. P., Becco, R. & Perafán, C. (2017) Morphology and evolution of scopula, pseudoscorpula and claw tufts in Mygalomorphae (Araneae). Zoomorphology 136(4), 435–459.

Platnick, N.I., Coddington, J.A., Forster, R.R. & Griswold, C.E. (1991) Spinneret morphology and the phylogeny of Haplogynae spiders. American Museum Novitates 3016, 1–73.

Platnick, N.I. & Dupérré, N. (2009a) The goblin spider genera Opopaea and Epectris (Araneae, Oonopidae) in the New World. American Museum Novitates 3649, 1–43.

Platnick, N. I. & Dupérré, N. (2009b). The American goblin spiders of the new genus Escaphiella (Araneae, Oonopidae). Bulletin of the American Museum of Natural History 328, 1-151.

Platnick, N.I., Abraham, N., Álvarez-Padilha, F., Andriamalala, D., Baehr, B.C., Baert, L., Bonaldo,
A.B., Brescovit, A.D., Chousou-Polydouri, N., Dupérré, N., Eichenberger, B., Fannes, W., Gaublomme, E., Gillespie, R.G., Grismado, C.J., Griswold, C.E., Harvey, M.S., Henrard, A., Hormiga, G., Izquierdo, M.A., Jocqué, R., Kranz-Baltensperger, Y., Kropf, C., Ott, R., Ramírez, M.J., Raven, R.J., Rheims, C.A., Ruiz, G.R.S., Santos, A.J., Saucedo, A., Sierwald, P., Szuts, T., Ubick, D. & Wang, X. (2012) Tarsal organ morphology and the phylogeny of goblin spiders (Araneae, Oonopidae), with notes on basal genera. American Museum Novitates 3736, 1–52.

Prandi, L. (1990) El género Ariadna (Araneae, Segestriidae) en la Republica Oriental del Uruguay. Arachnologia 5 (Supplement), 1–10.

Purcell, W.F. (1904) Descriptions of new genera and species of South African spiders. Transactions of the South African Philosophical Society 15, 115–173.

Rainbow, W.J. (1911) A census of Australian Araneidae. Records of the Australian Museum 9, 107–319.

Ramírez, M.J. (2000) Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). The Journal of Arachnology 28, 149–157.

Ramírez, M.J. (2014) The morphology and phylogeny of Dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History 390, 1–374. http://dx.doi.org/10.1206/821.1

Rezác, M., Král, J., and Pekár, S. (2007). The spider genus Dysdera (Araneae, Dysderidae) in central Europe: revision and natural history. The Journal of Arachnology 35, 432–462.

Rezác, M., Arnedo, M.A., Opatova, V., Musilová, J., Rezácová, V. & Král, J. (2018) Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae: Dysderidae): sibling species with sympatric distributions. Invertebrate Systematics 32, 10–54.

Roewer, C.F. (1942) Katalog der Araneae von 1758 bis 1940. Bremen 1, 1–1040.

Rossi, P. (1790) Fauna etrusca: sistens insecta quae in Provinciis Florentina et Pisana praesertim collegit. Liburni, 2, 126–140.
Sánchez-Ruiz, A. (2004) Current taxonomic status of the family Caponiidae (Arachnida, Araneae) in Cuba with the description of two new species. *Revista Ibérica de Aracnología* 9, 95–102.

Sanders, J.G. (2010) Program note: Cladescan, a program for automated phylogenetic sensitivity analysis. *Cladistics* 26, 114–116.

Scopoli, J. A. (1763). *Entomologia carniolica, exhibens insecta carniolae indigena et distributa in ordines, genera, species, varietates. Methodo Linnaeana.* Vindobonae, 420 pp. (Araneae, pp. 392–404).

Simon, E. (1892). On the spiders of the island of St. Vincent. Part 1. *Proceedings of the Zoological Society of London* 59(4, for 1891): 549–575, Pl. XLII.

Simon, E. (1893a) *Histoire naturelle des araignées.* Paris, 1, 257–488.

Simon, E. (1907) Etude sur les araignées de la sous-section des Haplogynes. *Annales de la Société Entomologique de Belgique* 51, 246–264.

Simon, E. (1908) Araneae. 1re partie. In: Michaeisen & Hartmeyer (eds.) Die Fauna Südwest-Australiens. Jena 1(12), 359–446.

Uhl, G. (2000) Two distinctly different sperm storage organs in female *Dysdera erythrina* (Araneae: Dysderidae). *Arthropod Structure & Development* 29, 163–169.

Walckenaer, C.A. (1802). *Faune parisienne. Insectes. ou Histoire abrégée des insectes de environs de Paris.* Paris 2, 187–250.

Walckenaer, C.A. (1837). *Histoire naturelle des insectes. Aptères.* Paris 1, 1–682.

Wheeler, W.H., Coddington, J.A., Crowley, L.M., Dimitrov, D., Goloboff, P.A., Griswold, C.E., Hormiga, G., Prendini, L., Ramírez, M.J., Sierwald, P., Almeida-Silva, L., Álvarez-Padilla, F., Arnedo, M.A., Benavides, L.R.S., Benjamin, S.P., Bond, J.E., Grismado, C.J., Hasan, E., Hedin, M., Izquierdo, M.A., Labarque, F.M., Ledford, J., Lopardo, L, Maddison, W.P., Miller, J.A., Piacentini, L.N., Platnick, N.I., Polotow, D., Silva-Dávila, D., Scharff, N., Szuts, T., Ubick, D., Vink, C.J., Wood, H.M. & Zhang, J. (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. *Cladistics* 2016, 1–43.
Wilkinson, M. (1996) Majority-rule reduced consensus trees and their use in bootstrapping. *Molecular Biology and Evolution* 13(3), 437-444.

Wolff, J.O., Nentwig, W. & Gorb, S. N. (2013) The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders. *PLoS ONE* 8(5), e62682.

World Spider Catalog (2018) World Spider Catalog. Natural History Museum Bern, version 19.0. Available from: http://wsc.nmbe.ch/ (accessed on 22 April 2018).

Wunderlich, J. (2004) Fossil spiders (Araneae) of the superfamily Dysderoidea in Baltic and Dominican amber, with revised family diagnoses. *Beiträge zur Araneologie* 3, 633–746.

Wunderlich, J. (2011) Extant and fossil spiders (Araneae). *Beiträge zur Araneologie* 6, 1-640.