Review Article

Uterine Prolapse: From Antiquity to Today

Keith T. Downing

Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA

Correspondence should be addressed to Keith T. Downing, kdowning@montefiore.org

Received 2 June 2011; Revised 26 August 2011; Accepted 26 August 2011

Academic Editor: Hans Peter Dietz

Copyright © 2012 Keith T. Downing. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Uterine prolapse is a condition that has likely affected women for all of time as it is documented in the oldest medical literature. By looking at the watershed moments in its recorded history we are able to appreciate the evolution of urogynecology and to gain perspective on the challenges faced by today’s female pelvic medicine and reconstructive surgeons in their attempts to treat uterine and vaginal vault prolapse.

“He who cannot render an account to himself of at least three thousand years of time, will always grope in the darkness of inexperience”
Goethe, Translation of Panebaker

1. Introduction

This special issue provides urogynecologists with the opportunity to explore recent advances that have and will continue to propel our subspecialty forward. Simultaneously, it provides us with the opportunity to look back and appreciate the landmark moments that have led us to our current state of affairs. It is with this spirit, mindful of Goethe’s words, that this paper will focus its attention on a brief history of the management of uterine prolapse.

2. Antiquity to the Common Era

Uterine prolapse is an ailment that has seemingly affected women for all of time. In fact, the problem of uterine prolapse and its potential treatment is described in the oldest documented medical literature, the Egyptian Papyri, where it is written, “of a woman whose posterior, belly, and branching of her thighs are painful, say thou as to it, it is the falling of the womb,” (Kahun papyrus ca. 1835 B.C.E.) [1]. The Ebers papyrus goes on to recommend “to correct a displaced womb: with oil of earth (petroleum) with fedder (manure) and honey; rub the body of the patient,” (Ebers papyrus ca. 1550 B.C.E.) [2].

Over one thousand years later, during the time of Hippocrates (c. 460–377 B.C.E.) and the subsequent generations that he influenced, the prevailing medical thought was that the uterus acted as an animal unto itself. This concept led to treatments such as fumigation, in which pleasant fumes would be placed at a woman’s head and vile ones near her prolapsed womb, in order to stimulate the uterus to retreat. Polybus, a pupil of Hippocrates (and his son-in-law), wrote in his noted text “On Diseases of Women,” of other therapies for uterine prolapse including the application of an astringent to the womb followed by placement of a vinegar soaked sponge, or halved pomegranate. If these measures failed, women were subjected to succussion—the practice of tying a woman upside down by her feet to a fixed frame and bouncing her repeatedly until her prolapse reduced then leaving her bed bound for three days with her legs tied together [3].

However, a gradual shift in medical thought began to occur toward the end of the Hippocratic era. Medicine slowly began to free itself from the influence of theurgy. By the first century C.E. Soranus, the most notable gynecologist of antiquity, would rebuke the Hippocratic approaches to treating uterine prolapse. He considered fumigation nonsensical, regarded the use of pomegranates as bruising, and deemed
suckussion unbearable. Instead, in his monumental treatise, “Gynaecology,” Soranus prescribed the following: “… bathe the prolapsed part of the uterus with much lukewarm olive oil, and make a woolen tampon corresponding in shape and diameter to the vagina and wrap it in very thin clean linen… one should dip it briefly in vinegar… acacia juice… or wine, and apply it to the uterus and move the whole prolapsed part, forcing it up gently until the uterus has reverted to its proper place and the whole mass of wool is in the vagina” [4]. Yet, despite this therapeutic advance, outdated notions about the uterus would persist. As late as the second century C.E., prominent Greek physician Aretaeus the Cappadocian, in his “Causes and Indications of Acute and Chronic Diseases,” still described the uterus as, “an animal within an animal” [5].

Despite Soranus’s vast knowledge of obstetrics and gynecology, female pelvic anatomy remained poorly understood. Physicians of the age commonly referred to the uterus as mater (Latin for mother) or hystera (Greek for womb) in the plural form, believing the uterus consisted of more than one chamber [3]. Had it not been for Rome’s prohibition on the use of human cadavers, this belief might have been dispelled by the work of Galen, the Rome based physician and anatomist. However, Galen was left to extrapolate his understanding of human anatomy from dissections and vivisections of lower animals in which the finding of uterine horns was commonplace [3].

The Mediaeval era brought about a return to theurgy, and medicine, including the management of uterine prolapse, regressed. It was during the Middle Ages that fantastical concepts regarding female pelvic anatomy emerged. The seven cells doctrine was one such concept. It stated that the uterus consisted of seven compartments, three on each side and one in the middle and posited that female fetuses developed on the left, male fetuses on the right, hermaphrodites in the middle and posited that female fetuses developed on the left, male fetuses on the right, hermaphrodites in the middle [6]. Beliefs from the Hippocratic era resurfaced and as late as 1603, a text by Roderigo de Castro advised that the prolapsed uterus, “be attacked with a red-hot iron as if to burn, whereupon fright will force the prolapsed part to recede into the vagina” [3]. While the practice of medicine during the Middle Ages left much to be desired, in the middle of the fifteenth century changes in the way people thought about art and philosophy would soon lead to new ways of thinking in medicine.

The Renaissance grew out of Florence where a collection of artists and intellectuals began to focus on the works and ways of the classical age. This led to a renewed attention to the beauty of nature, including the human form [7]. Artists took part in private anatomic dissections to advance their training, sometimes physicians of that time had yet to do in a consistent way [3]. Unfortunately, drawings by master artists such as Leonardo di Vinci did not receive notice by the physicians of the era, but the works of others would. In the early sixteenth century, Berengario da Carpi, professor at Bologna and Pavia, would produce drawings of the female uterus and would be the first to state clearly that the uterus consisted of one cavity [3, 6]. Two decades later Andreas Vesalius, professor of anatomy at Padua, with the aid of his illustrator, John of Calcar, would produce his epochal, “De Corporis Humani Fabrica.” In this work, Vesalius would reproduce an accurate description of the entire female genital tract including the ligaments of the uterus [6]. With this accomplishment, Vesalius and his disciples lifted the veil that had obscured the intricacies of the female genitourinary tract, ultimately helping physicians to better understand female pelvic floor anatomy.

3. Evolution of the Pessary

By the close of the sixteenth century, the management of uterine prolapse became more firmly rooted in the use of pessaries. Pessaries would evolve from lint balls or halved fruit soaked in vinegar to something closer to their modern form. This shift was largely due to the inventiveness of France’s royal surgeon, Ambrose Paré. Paré devised oval shaped pessaries of brass and waxed cork. He attached thread to them to facilitate their removal, while others were to be worn with belts to help them remain in situ [8]. In the eighteenth century, Henrick van Deventer, who started his career as a goldsmith, made pessaries of various shapes and sizes out of waxed cork or wood, and metals such as silver and gold [9]. By the mid-nineteenth century, pessary use had become quite common. Yet, alternative methods of managing prolapse were still prescribed. These included the use of astringents such as tannin and alum; cold sitz baths, surf bathing, and sea-water douches; postural exercises; Brandt’s “uterine gymnastics” which embodied anointing, massage, and manual replacement of the prolapsed parts; leeching; torsion of the uterus; attempts to produce fibrosis of the surrounding tissues by the introduction of gonorrheal exudates into the vagina or the deliberate induction of pelvic peritonitis [10].

Hugh Hodge of Philadelphia (who was concerned with ailments he believed to be caused by uterine retroversion) was a major proponent of pessary use. He shared the sentiments of many gynecologists in the United States and abroad when, in 1860, he proclaimed pessary use to be the “sine qua non” for the treatment of uterine displacements [11]. He put forth the following as the ideal qualities for a pessary: it should be made of incorruptible material, maintain the normal uterine position, allow for natural movement, be worn without pain, and not excite leucorrhrea or menorrhagia [12]. The first of these, to be incorruptible, came to pass in 1844 when Charles Goodyear was granted U.S. patent no. 3,633 for the invention of vulcanized rubber [13]. Before then, pessaries had consisted of wax, wood, leather, glass, and metal. Now a material could be used that resisted decomposition. This ultimately led to the development of Hodge’s eponymous lever pessary and was followed by an explosion in the number and variety of pessaries put to use by gynecologists. It was said in those years that fortunes were made by two groups of gynecologists: those who inserted pessaries and those who removed them (a bit reminiscent of vaginal mesh use today) [12].

However, not everyone in the profession was so keen on pessary use. In 1866, during his satirical presidential address to the New Hampshire State Medical Society, W. D. Buck commented, “The Transactions of the National Medical Association for 1864 has figured one hundred and
twenty-three different kinds of pessaries, embracing every
variety, from a simple plug to a patent threshing machine,
which can only be worn with the largest hoops. They look
like the drawings of turbine water-wheels, or a leaf from a
work on entomology. Pessaries, I suppose, are sometimes
useful, but there are more than there is any necessity for. I
do think that this filling the vagina with such traps, making
a Chinese toy-shop of it, is outrageous” [14]. Despite this
sentiment, pessaries would remain popular throughout the
eighteen hundreds. However, with the discoveries in asepsis
by Lister and anesthesia by Morton, paired with advances
in suture materials and surgical instruments, surgery would
soon replace the pessary as the predominant method of
treating uterine prolapse.

4. The Rise of Surgery

The surgical management of uterine prolapse has been
recorded as far back as the second century C.E. Soranus
advised, “cutting off the black part,” when the prolapsed
uterus became gangrenous [4]. Similarly, Berengario claimed
he witnessed his father, a surgeon, remove a prolapsed uterus
by scalpel asserting that not only had the patient survived,
but also she was able to resume coitus. He later claimed
to have achieved the same outcome using strong twine as
an ecraseur [3]. Later, the prominent seventeenth century
Dutch gynecologist Hendrik van Roohnuyse reported a case
in which he extirpated a prolapsed uterus after multiple
attempts by other caregivers had failed to adequately restore
the organ (previously placed pessaries made of cork and wax
had led to ulcerations, pain, foul discharge, putrefaction, and
fever). The patient was reported to have survived, but van
Roohnuyse provided no details of his surgical technique or
of an anesthetic used, if any [3]. In these early reports it
remains unclear whether “hysterectomy” meant removal of
the cervix, the cervix and a portion of the uterus, or the
uterus in total.

During the mid to late 19th century, opening the peri-
toneum for any indication remained a risky endeavor and
was largely reserved for cases of presumed gynecologic
malignancy [15]. Consequently, surgical attempts to treat
uterine prolapse consisted of efforts such as narrowing
the vaginal vault (by colporrhaphy or the application of
cautery or astringents), performing a perineorrhaphy or
infibulation, or offering cervical amputation [10]. However,
as the 19th century progressed, notable advances would
take place. In 1877, the Frenchman LeFort—infuenced by
the works of German gynecologists such as Hegar, Simon,
and Spiegelberg, who had the idea of occluding the vaginal
introitus to restrain uterine prolapse—described the
principle of partial colpoclesis, the operation that has borne
his name since [16]. In 1886, Olshausen reported performing
a laparotomy solely for the purpose of uterine ventrofixation
[17]. In 1899, Watkins and Wertheim separately reported
on the use of uterine interposition to treat uterine prolapse
[12]. Although, by the end of the nineteenth century there
were several treatments for uterine prolapse, the ability to
achieve durable repairs remained elusive due to a limited
understanding of female pelvic floor anatomy.

5. Mechanisms of Uterine Support

In 1895, while practicing in Berlin, Alwin Mackenrodt
published his comprehensive, and accurate, description of
the female pelvic floor connective tissue. In regard to
what have become known as the Cardinal or Mackenrodt
ligaments he remarked: “This whole ligamentous apparatus
appears so excellent and extensive that it is quite sur-
prising that it has not been recognized previously” [12].
Shortly thereafter, Fothergill, building upon the work of
his senior colleague, the prominent Manchester obstetrician
gynecologist Archibald Donald, recognized the importance
of the Cardinal ligaments to uterine support and perfected
what became known as the Manchester-Fothergill surgery.
Fothergill’s procedure involved dissecting the bladder off
the lower uterine segment followed by plication of the
parametrial and paravaginal tissue at the anterior aspect of
the cervix, thus effectively shortening the uterine supports.
He would combine the aforementioned steps with an
anterior and posterior colporrhaphy and perineoplasty to
keep recurrence in check [12, 18] and later would advocate
cervical truncation as part of the surgery [19]. Fothergill
would become a vociferous proponent of the belief that the
parametrial (and paravaginal) fascia was the key structure
to maintaining uterine support [20]. Referring to Peter
Thompson’s research on the comparative morphology of
the levator ani muscles in tailed apes and man [21], he
considered the levator ani muscles withered muscle bodies
no longer required to carry out their original function (tail
movement) and therefore deemed them inadequate supports
for the uterine body. He remarked, “Injuries to the perineum
and levator ani doubtless straighten and widen the road
from the pelvic cavity to the exterior. But if the organs
remain firmly attached above, no mere enlargement of the
opening below will make them come down.” To bolster his
thesis, Fothergill was fond of noting, “The true supports of
the uterus can be seen at vaginal hysterectomy… Let him
incise… round the cervix, and… freely divide the posterior
attachments...Next let the operator deliver the fundus…this
affords another proof that the broad and round ligaments
have no value as suspenders... the uterus still remains
fixed by the tissue known as the parametrium, and by this
alone. Until this is divided... the organ is... as completely
supported as before an incision was made” [20].

In 1934, Bonney published, “The Principles that Should
Underlie All Operations for Prolapse.” Using basic analogies
such as an in-turned finger of a rubber glove and the securing
of stove piping in a metal box, Bonney was able to convey the
manner in which the pelvic viscera are supported [22]. These
concepts would later be refined by DeLancey and described
as levels of fascial supports: level I: proximal suspension; level
II: lateral attachments; level III: distal fusion [23].

In 1936, Mengert, inspired by 1858 cadaveric data from
Legendre and Bastien, published a simple but influential
study in which cadaveric uteri were subjected to traction with
a 1 kg weight while structures attached to the uterus were
severed in various sequences. The uterine descent observed
after incising the parametrial tissues reinforced Mackenrodt’s
anatomic research and Fothergill’s clinical observation,
sustaining the parametrial and paravaginal tissues (i.e.,
cardinal and uterosacral ligaments) were the primary
support structures for the uterus [24].

However, Mackenrodt and Fothergill were not lone
voices. In 1907, a gynecologist, Josef Halban, and anatomist,
Julius Tandler, professors at the famed Vienna Medical
School [25], published Anatomie und Atiologie der Genital-
prolapse beim Weibe [26]. Their thesis on uterine support
was quite contradictory to Mackenrodt and Fothergill’s.
Halban and Tandler maintained that the pelvic fascia was
like a spider’s web, able to bear the proper weight of the
spider, but incapable of supporting a greater, abnormal
burden [27]. Thus, it was the levator ani muscles that were
essential to maintaining uterine support. Like Fothergill,
they too turned to the comparative anatomic work of Peter
Thompson but drew a different conclusion. Consistent with
a prime tenet of the Vienna School, form follows function
[25], Halban and Tandler viewed the functional adaptation
of the levator ani muscles from their tail wagging purpose
to that of maintaining pelvic floor support as evidence they
were not superfluous muscle bodies (otherwise they would
have regressed with the tail), but significant [28]. Others who
were sympathetic to Halban and Tandler’s thesis would point
to the observation of large prolapses in patients with mal-
developed pelvic floor muscles from spina bifida, to the work
of Goff, who asserted that the “fascia” described in vaginal
plastic procedures was the “loosely arranged areolar type,” as
well as the work of Berglas and Rubin, who demonstrated the
complete absence of ligamentous material in the endopelvic
fascia [27, 29, 30]. In time, pelvic floor surgeons would
recognize the importance of both structures [31] influencing
new approaches to repair uterine prolapse.

6. Vaginal Hysterectomy and Vault Prolapse
Vaginal hysterectomy was first performed and developed in
attempts to treat cervical and uterine malignancies [15]. The
first vaginal hysterectomy for uterine prolapse was reported
by Choppin, of New Orleans, in 1861. The surgery was
conducted under chloroform and the removal of the uterus,
after it was dissected away from the bladder and rectum,
was excised using “Chassaignac’s Ecraseur.” A little more
than a month after the surgery, Choppin presented the
patient to the class of the New Orleans School of Medicine,
the patient holding the specimen in hand [32]. Choppin’s
success was a rarity. However, as the new century arrived
this fact would change. By 1915, Mayo would publish his
technique for vaginal hysterectomy [33], as would Bissell,
in 1918, coupling his technique of vaginal hysterectomy
with an anterior and posterior colporrhaphy [34]. The rapid rise
of surgery for the correction of uterine prolapse in the early
twentieth century left one American gynecologist to write in
1923, “Gynecology has become so predominantly a surgical
specialty... the young gynecologist of today frequently has
no conception of what the pessary is meant to do and he
is apt to be even irritated at the suggestion that such an
implement should be accorded at least a modest position
in his armamentarium” [35]. In the spring of 1937, at the
sixty-second Annual Meeting of the American Gynecological
Society, Baer and his colleagues reported on the type of
operations performed for uterine prolapse in 1928 compared
to those performed in 1937. They noted that by the latter
date vaginal hysterectomy had become the predominant
operation, replacing interposition [36]. Modifying the sur-
gical methods established by Mayo, and others, McCall, in
1957, published his technique of obliterating the cul-de-
sac of Douglas to cure an enterocoele and prevent subse-
quent vault prolapse [37]. By the mid-twentieth century,
vault vaginal prolapse had become a recognized sequela of
hysterectomy. Thus, in 1965, Symmonds and Sheldon were
able to report on the number of posthysterectomy vaginal
vault prolapse cases they had observed at the Mayo Clinic
[38].

Surgical attempts to correct posthysterectomy vault
prolapse were made as early as the nineteen twenties. In
1927, Miller described a technique to reduce vault prolapse
that amounted to a bilateral, transperitoneal iliococcygeus
suspension (or, depending upon the actual depth of suture
placement, a bilateral sacrospinous fixation) [39]. Others
would follow with modifications of established procedures
such as ventrofixation [40], with or without the use of a
biograft [41, 42]. However, it was Arthur and Savage from
Charing Cross Hospital in London who would make the
most lasting impact on the repair of apical defects. They
recognized that vault prolapse could occur after abdominal
or vaginal hysterectomy, total or subtotal: hysterectomy
alone would not cure uterine prolapse. They analyzed the
surgical techniques used at the time and noted the faults
of each. In 1957, they published their surgical technique
of sacral hysteropexy believing it to be a better anatomic
repair that would prove to have superior durability and
less risk of enterocoele formation. The description they
provided, save the use of a graft, is nearly identical to the
abdominal sacrocolpopexy performed today (they even
noted the importance of keeping the repair tension free while
using the sacral promontory as a fixation point) [43].

Long before the sacral promontory had been considered
a fixation point for correcting apical prolapse, Zweifel
of Germany, in 1892, commented on his attempts to correct
uterovaginal prolapse by using silkworm sutures to unilater-
ally affix the upper vagina to the sacrotuberous ligament
[44]. The use of the sacrotuberous ligament to anchor
vault prolapse was not attempted again until another Ger-
man, J. Amreich, in the 1950s, reported on his experience
using a transgluteal (Amreich I) and transvaginal (Amreich
II) approach to a vaginal-sacrocolpexy fixation [44]. Two
other German gynecologists, Sederl and Richter, avoided
the difficult-to-access sacrotuberous ligament in favor of
the sacrospinous ligament, while attempting to repair vault
prolapse transvaginally [45, 46]. Richter’s operative success
popularized his technique across Europe and also stimu-
lated the interest of two American gynecologists, Randall
and Nichols. In 1971, Randall and Nichols reported the
surgical outcomes of 18 patients who underwent transvaginal
sacrospinous fixation for vault prolapse performed over the
previous four years. They found the operation restored the
normal vaginal depth and felt it to be an effective operation
in women with vault prolapse and in those who were found
to have insufficient uterosacral or cardinal ligament strength at the time of vaginal hysterectomy [47].

Since Randall and Nichols’ 1971 publication, the procedure has changed little [48, 49]. The most notable modifications have been related to instrumentation: the introduction of the Miya Hook [50], the Shutt needle driver [51], and the Laurus needle driver, presently known as the Capio (Boston Scientific, Natick, MA) [52]. Other reported surgical approaches to correct vault and advanced uterine prolapse include the iliococcygeus fixation (first described by Inmon) [53], endopelvic fascia fixation [54, 55], coccygeous muscle fixation [56], high uterosacral ligament suspension [57, 58], and levator myorrhaphy [59]. Thus, upon exiting the twentieth century, it had been the effort and ingenuity of a multitude of accomplished surgeons, attempting to prevent and correct vaginal vault prolapse, which led to many of the surgical techniques presently used to correct advanced apical prolapse. Notably, of the surgeries established in the nineteenth century, only the LeFort colpocleisis has endured.

7. Quantifying Prolapse

In October 1995, the International Continence Society formally adopted the document that would introduce the Pelvic Organ Prolapse Quantification (POP-Q) to the larger gynecology community. This document, three years in the making, and validated in six centers in Europe and the United States, would replace Baden-Walker and other descriptive measures as the means to objectively report findings of pelvic organ prolapse [60]. Subsequently, the POP-Q has become the standard means by which to report pelvic organ prolapse in the international literature and has been increasingly embraced by physicians in their clinical practices [61]. However, the POP-Q is not without its potential confounders [62, 63]. Thus, both clinicians and clinical investigators have turned to the various imaging modalities that allow for in situ evaluation of the female pelvic organs and their supporting structures.

Imaging pelvic floor anatomy can be traced back to Berglas and Rubin’s method of levator myography in which they injected radio-opaque dye into the levator ani muscles, vagina, and endocervix, revealing by X-ray that the vagina did not rest at a steep incline, but rather lie almost horizontal, parallel to the levator plate [64]. Since that time, both magnetic resonance imaging (MRI) and sonography have advanced notably to better visualize the pelvic floor. Hedvig Hricak first described female pelvic anatomy by MRI in 1983 [65]; however, he was most concerned with its ability to differentiate benign versus malignant conditions involving the pelvic organs [66]. Yang and colleagues, in 1991, would introduce dynamic MRI. This would allow MR images to be taken during valsalva [67]. Further, 2D and 3D MRI has been used in research studies to evaluate levator ani status in women with and without pelvic floor disorders [68, 69].

The most recent advances in MRI technology, such as HASTE (half-Fourier-acquisition single shot turbo spin echo technology), FISP (fast imaging with steady-state free precession), and TSE (turbo spin-echo), allow for the fast acquisition of images simultaneously in all three compartments (anterior, central, and posterior), making MRI a valuable option to aid in the evaluation of pelvic floor disorders, including prolapse. Already, MRI is replacing fluoroscopy as the means to perform defecography studies in some institutions, and it continues to be evaluated in research protocols investigating its potential role in the clinical evaluation of pelvic organ prolapse [70].

Although MRI is fascinating technology, it has its flaws: exams are performed in the supine position, it does not allow for patient biofeedback during imaging, it may not be tolerated well by some patients, and it is costly. As an alternative, sonography which has been utilized to aid in evaluating the urogynecologic patient since the mid-1980s has the advantage of lower cost, relative ease of use, minimal patient discomfort, shorter study durations, and wide availability [71, 72]. The advent of 3D/4D sonographic imaging has improved the clinical utility of pelvic floor sonography, and the transperineal/translabial approach has made it more patient friendly. Dietz and colleagues have reported 3D/4D sonography to be more accurate than physical exam in detecting levator muscle injuries and that sonographic injuries to the levator muscles are associated with pelvic organ prolapse, including apical prolapse [73, 74]. Sonography has also been used to image vaginal mesh implants, as it is able to readily detect mesh size and position (as opposed to MRI or CT) [75].

8. Apical Prolapse Surgery in the 21st Century

Two major shifts have occurred in the surgical management of apical prolapse in current practice: the introduction of vaginal mesh and that of advanced endoscopic surgery.

Graft use in pelvic reconstructive surgery can be traced back to the early 1900s [76]. In 1955, Moore and colleagues reported the use of tantalum mesh in the repair of cystoceles [77]. The concept that pelvic organ prolapse is a type of hernia, comparable to other fascial defects, made attractive the idea of replacing weakened fascia of the pelvic floor with a more reliable biologic or synthetic material. Over the intervening years, a number of auto-, allo-, and xenografts have been used with this intent in pelvic floor repairs. However, the success general surgeons achieved using polypropylene mesh in the correction of incisional hernias significantly influenced the use of this mesh by pelvic floor surgeons (type I monofilament, macroporous polypropylene mesh becoming the standard) [78]. Additionally, the success of the tension-free transvaginal tape (TVT) mid-urethral sling with its facility of use, clinical effectiveness, and marketability as an all-inclusive “kit” demonstrated the potential for mesh to improve surgical outcomes and opened a market in women’s health care medical device manufacturers could exploit. In 2001, Petros introduced the infracoccygeal sacropexy (Intravaginal Slingplasty Tunneler, Tyco, USA) as a novel means to transvaginally correct vault prolapse using polypropylene mesh [79]. Petros’ mesh was multifilament and complications due to perirectal abscesses and fistula formation led to its removal from the market. However, since that time, a steady stream of mesh “kits” have been
engineered by medical device makers and have made their way into the hands of many pelvic floor surgeons for the purpose of correcting apical and other forms of prolapse. Yet controversy has and continues to surround the use of vaginal mesh particularly as its acceptance in clinical use has outpaced the development of well-designed clinical trials [80]. In 2006, the French Health Authorities (HAS) reported that mesh for transvaginal repair of pelvic organ prolapse should be limited to clinical research [81]. In 2008, the US Food and Drug Administration (FDA) issued a warning regarding the use of mesh for prolapse and incontinence repair [82], repeating that warning in 2011, although narrowing it to vaginal mesh used to correct pelvic organ prolapse (not for anti-incontinence procedures or when used abdominally) [83]. These warnings stemmed from concerns over mesh erosion through the vagina, pain, infection, bleeding, dyspareunia, organ perforation, and urinary problems. While many of these complications are common to all pelvic floor repairs, mesh erosion and some types of organ perforation are surely unique to mesh and the trocars used for its placement. Presently, with respect to apical prolapse, no published, well-designed, randomized controlled trials have established the superiority of vaginal mesh over native tissue repairs [84]. This is beginning to change with respect to the anterior compartment [85].

What the future holds for vaginal mesh in pelvic organ prolapse repairs is uncertain. Nevertheless, while biomaterials improve and the subspecialty weighs the appropriate indications for their use, advances in endoscopic repairs for apical prolapse surge forth.

It has been the efforts of many physicians from the global scientific community that have brought forth the modern state of laparoscopy in gynecologic surgery. The pioneering works of Georg Kelling, Hans Christian Jacobaeus, John C. Rudderock, Janos Verees, and Kurt Semm all deserve further mention; however, a discussion of their contributions is beyond the scope of this paper [86–88].

The recent advances in endoscopic technology have been remarkable, and they have allowed urogynecologists to make endoscopic surgery a primary tool in their surgical armamentarium. It has been of great benefit to patients that what many believe to be the most durable apical prolapse repair, abdominal sacrocolpopexy, is achievable via minimally invasive approaches [89]. Presently, a debate exists regarding what method of sacrocolpopexy (straight sticks versus robotic assisted) should become the predominant technique taught and performed by urogynecologist in light of differences in cost, patient safety, surgeon training, and surgical outcomes. Well-designed studies have started to shed light on this issue [90, 91], but it is a conversation that is only beginning. And yet, in the shadow of that debate gynecologists are already reporting their early experiences with single incision laparoscopic surgery (SILS, or LESS—laparoendoscopic single-site surgery) and natural orifice transluminal endoscopic surgery (NOTES) [92, 93]. Whether these new surgical approaches will be amenable to performing safe and timely apical and other prolapse repairs remains to be seen. Nevertheless, a SILS sacrocolpopexy has been reported [94].

9. Conclusion

Uterine prolapse is an age-old condition the treatment of which has evolved over thousands of years. It is a condition from which many women have suffered and that many physicians have attempted to treat. The slow historical progress of the field and the challenges that we face today in treating uterine prolapse reflect the very intricacies of this disorder that fascinate and inspire us. Today, not only do urogynecologists reap the benefits gleaned from the developments over the ages, but also from the advances in modern technology. We are now positioned to more effectively evaluate and treat this condition and to enhance our understanding of its causes through the pursuit of novel research.

References

[1] W. J. S. McKay, The History of Ancient Gynaecology, Balliere, Tindal and Cox, London, UK, 1901.
[2] C. P. Bryan, Ancient Egyptian medicine : The Papyrus Ebers, Ares Publishers, Chicago, Ill, USA, 1974.
[3] J. V. Ricci, The Genealogy of Gynaecology; History of the Development of Gynaecology Throughout the Ages, 2000 B. C. - 1800 A. D, 1950.
[4] Soranus and O. Temkin, Soranus’ Gynecology, Johns Hopkins University Press, Baltimore, Md, USA, 1991.
[5] F. Adams, The Extant Works of Areteus, Nabu Press, Cappadocia, Turkey, 2010.
[6] H. Speert, Iconographia Gyniatrica; A pictorial History of Gynecology and Obstetrics, F. A. Davis, Philadelphia, Pa, USA, 1973.
[7] E. H. Gombrich, A little History of the World, Yale University Press, New Haven, Conn, USA, 2005.
[8] A. Paré, The Works of That Famous Chirurgeon Ambrose Paré, Richard Cotes and Willi Du-Gard, London, UK, 1649.
[9] H. van Deventer, The Art of Midwifery Improved, E. Curll, London, UK, 1716.
[10] J. V. Ricci, One Hundred Years of Gynaecology 1800–1900 : A Comprehensive Review of the Specialty During Its Greatest Century with Summaries and Case Reports of All Diseases Pertaining to Women, The Blakiston Company, Philadelphia, Pa, USA, 1945.
[11] H. L. Hodge, On Diseases Peculiar to Women, Including Displacements of the Uterus, Blanchard and Lea, Philadelphia, Pa, USA, 1860.
[12] H. Speert, Obstetric and Gynecologic Milestones: Essays in Eponymy, Macmillan, New York, NY, USA, 1958.
[13] C. Goodyear, Inventor. Improvement in India-Rubber Fabrics. US patent 36331844.
[14] W. D. Buck, “Araid on the uterus,” New York Medical Journal, vol. 5, p. 464, 1867.
[15] R. Pichevin, “Vaginal hysterectomy,” The British Gynaecological Journal, vol. 11, 1985.
[16] L. LeFort, “Nouveau Procédé pour la guérison du prolapsus utérin,” Bulletin générale de Therapeutic, vol. 92, pp. 337–344, 1877.
[17] R. M. V. Olshausen, “Ueber ventrale Operation bei Prolapsus und Retroversio uteri,” Zentralblatt fur Gynakologie, vol. 13, 1886.
[18] L. Emge and R. B. Durfee, “Pelvic organ prolapse: four thousand years of treatment,” Clinical Obstetrics and Gynecology, vol. 9, no. 4, pp. 997–1032, 1966.
[19] W. E. Fothergill, “Anterior colporrhapy and amputation of the cervix combined as a single operation for use in the treatment of genital prolapse,” American Journal of Surgery, vol. 29, p. 161, 1915.

[20] W. E. Fothergill, “The supports of the pelvic viscera: a review of some recent contributions to pelvic anatomy, with a clinical introduction,” Proceedings of the Royal Society of Medicine, vol. 1, pp. 43–60, 1908.

[21] P. Thompson, “On the levator ani, or ischio-anal muscle of ungulates, with special reference to its morphology,” Journal of Anatomy and Physiology, vol. 33, part 3, pp. 423–433, 1989.

[22] V. Bonney, “The principles that should underlie all operations for prolapse,” The Journal of Obstetrics and Gynecology of the British Empire, vol. 41, no. 5, pp. 669–683, 1934.

[23] J. O. DeLancey, “Anatomic aspects of vaginal eversion after hysterectomy,” American Journal of Obstetrics and Gynecology, vol. 66, no. 6, part 1, pp. 1717–1728, 1992.

[24] W. F. Mengert, “Mechanics of uterine support and position. I. Factors influencing uterine support (an experimental study),” American Journal of Obstetrics and Gynecology, vol. 31, no. 5, pp. 775–782, 1936.

[25] E. Lesky, The Vienna Medical School of the 19th Century, Johns Hopkins University Press, Baltimore, MD, USA, 1976.

[26] J. Halban, Anatomie und Anatomologie der Gebeine und des Knochens, Leipzig, Germany, 1907.

[27] R. H. Paramore, “The supports-in-chief of the female pelvic viscera,” Proceedings of the Royal Society of Medicine, vol. 1, no. 4425, pp. 195–214, 1908.

[28] J. Halban and J. Tandler, “The anatomy and etiology of genital prolapse in women: the supporting apparatus of the uterus,” Obstetrics and gynecology, vol. 15, pp. 790–796, 1960.

[29] B. H. Goff, “An histologic study of the perivaginal fascia in a nullipara,” Journal of Surgery, Gynecology and Obstetrics, vol. 52, pp. 32–42, 1931.

[30] B. Berglas and I. C. Rubin, “Histologic study of the pelvic connective tissue,” Journal of Surgery, Gynecology and Obstetrics, vol. 97, no. 3, pp. 277–289, 1953.

[31] R. F. Porges, J. C. Porges, and G. Blinick, “Mechanisms of uterine support and the pathogenesis of uterine prolapse,” Obstetrics and Gynecology, vol. 15, pp. 711–726, 1960.

[32] S. Choppin, “Removal of the uterus and its appendages in a case of procidentia uteri, by means of the Ecraseur,” Southern Medical Journal, vol. 20, p. 841, 1866.

[33] C. H. Mayo, “Uterine prolapse associated with pelvic relaxation,” Journal of Surgery, Gynecology and Obstetrics, vol. 20, p. 257, 1915.

[34] D. Bissell, “Total hysterectomy, per vaginam, lapping of the anterior vaginal wall fascia and the approximation of the cardinal ligaments, for the cure of extreme procidencia uteri of long standing,” The American Journal of Obstetrics and Diseases of Women and Children, vol. 77, 1918.

[35] E. Novak, “The vaginal perivisceral fascia: its indications and limitations,” Journal of the American Medical Association, vol. 80, no. 18, pp. 1294–1298, 1923.

[36] J. L. Baer, R. A. Reis, and R. M. Laemle, “Prolapse of the uterus and its shifting trends in treatment,” American Journal of Obstetrics and Gynecology, vol. 34, no. 5, pp. 827–839, 1937.

[37] M. L. McCall, “Posterior culdoplasty; surgical correction of enterocele during vaginal hysterectomy; a preliminary report,” Obstetrics and gynecology, vol. 10, no. 6, pp. 595–602, 1957.

[38] R. E. Symmonds and R. S. Sheldon, “Vaginal prolapse after hysterectomy,” Journal of Obstetrics and Gynecology, vol. 25, pp. 61–67, 1965.

[39] N. F. Miller, “A new method of correcting complete inversion of the vagina,” Journal of Gynecology and Obstetrics, vol. 44, pp. 550–554, 1927.

[40] L. Brady, “An operation to correct genital prolapse following vaginal panhysterectomy,” American Journal of Obstetrics and Gynecology, vol. 32, no. 2, pp. 295–299, 1936.

[41] G. E. Ward, “Ox fascia lata for reconstruction of round ligaments in correcting prolapse of the vagina,” Archives of Surgery, vol. 36, no. 1, pp. 163–170, 1938.

[42] G. A. Williams and A. C. Richardson, “Transplantation of external oblique aponeurosis: an operation for prolapse of the vagina following hysterectomy,” American Journal of Obstetrics and Gynecology, vol. 64, no. 3, pp. 552–558, 1952.

[43] G. E. Arthur and D. Savage, “Uterine prolapse and prolapse of the vaginal vault treated by sacral hysteropexy,” The Journal of Obstetrics and Gynaecology of the British Empire, vol. 64, no. 3, pp. 555–560, 1957.

[44] P. Zweifel, Vorlesungen über Klinische Gynäkologie, Tübingen, 1892.

[45] J. Sederl, “Surgery in prolapse of a blind-end vagina,” Geburtshilfe Frauenheilkunde, vol. 18, no. 6, pp. 824–828, 1958.

[46] K. Richter, “The surgical anatomy of the vagina; the supporting apparatus of the uterus,” Geburtshilfe Frauenheilkunde, vol. 28, no. 4, pp. 321–327, 1968.

[47] C. L. Randall and D. H. Nichols, “Surgical treatment of vaginal inversion,” Obstetrics and Gynecology, vol. 38, no. 3, pp. 327–332, 1971.

[48] H. A. Winkler, J. E. Tomeszko, and P. K. Sand, “Anterior sacrosphincter vaginal vault suspension for prolapse,” Obstetrics and Gynecology, vol. 95, no. 4, pp. 612–615, 2000.

[49] R. Kearney and J. O. L. DeLancey, “Selecting suspension points and excising the vagina during Michigan four-wall sacrospinous suspension,” Obstetrics and Gynecology, vol. 101, no. 2, pp. 325–330, 2003.

[50] F. S. Miyazaki, “Miya Hook ligature carrier for sacrospinous ligament suspension,” Obstetrics and Gynecology, vol. 70, no. 2, pp. 286–288, 1987.

[51] T. R. Sharp, “Sacrospinous suspension made easy,” Obstetrics and Gynecology, vol. 82, no. 5, pp. 873–875, 1993.

[52] L. R. Lind, J. Choe, and N. N. Bhattacharya, “An in-line suture device to simplify sacrospinous vaginal vault suspension,” Obstetrics and Gynecology, vol. 89, no. 1, pp. 129–132, 1997.

[53] W. B. Inmon, “Pelvic relaxation and repair including prolapse of vagina following hysterectomy,” The Southern Medical Journal, vol. 56, pp. 577–582, 1963.

[54] L. E. Phaneuf, “Inversion of the vagina and prolapse of the cervix following supravaginal hysterectomy and inversion of the vagina following total hysterectomy,” American Journal of Obstetrics and Gynecology, vol. 64, no. 4, pp. 739–745, 1952.

[55] R. E. Symmonds and J. H. Pratt, “Vaginal prolapse following hysterectomy,” American Journal of Obstetrics and Gynecology, vol. 79, no. 5, pp. 899–909, 1960.

[56] W. N. Thornton Jr. and W. A. Peters, “Repair of vaginal prolapse after hysterectomy,” American Journal of Obstetrics and Gynecology, vol. 147, no. 2, pp. 140–148, 1983.

[57] G. R. Seigworth, “Vaginal vault prolapse with erosion,” Obstetrics and Gynecology, vol. 54, no. 2, pp. 255–260, 1979.

[58] B. L. Shull, C. Bachofen, K. W. Coates, and T. J. Kuehl, “A translabial approach to repair of apical and other associated sites of pelvic organ prolapse with uterosacral ligaments,” American Journal of Obstetrics and Gynecology, vol. 183, no. 6, pp. 1365–1374, 2000.
[91] J. M. M. Tan-Kim, A. Shawn, K. M. Luber et al., “Robotic-assisted and laparoscopic sacrocolpopexy: comparing operative times, costs and outcomes,” Female Pelvic Medicine and Reconstructive Surgery, vol. 17, no. 1, pp. 44–49, 2011.

[92] P. F. Escobar, D. Starks, A. N. Fader, M. Catenacci, and T. Falcone, “Laparoendoscopic single-site and natural orifice surgery in gynecology,” Fertility and Sterility, vol. 94, no. 7, pp. 2497–2502, 2010.

[93] S. Uppal, M. Frumovitz, P. Escobar, and P. T. Ramirez, “Laparoendoscopic single-site surgery in gynecology: review of literature and available technology,” Journal of Minimally Invasive Gynecology, vol. 18, no. 1, pp. 12–23, 2011.

[94] E. Drapier, “Transumbilical single port laparoscopic sacrocolpopexy using standard instruments,” 2011, http://www.wbsurg.com/ref/doi-vd01en3384.htm.