Prognosis and Complications of Hyperuricemia Patients Undergoing Isolated Carotid Endarterectomy

Haydar Yasa*

Department of Cardiovascular Surgery, Health Sciences University Evliya Celebi Education and Research Hospital, Turkey

*Corresponding author: Haydar Yasa, Department of Cardiovascular Surgery, Health Sciences University Evliya Celebi Education and Research Hospital, Kütahya, Turkey

Received: December 06, 2019
Published: January 06, 2020

Summary

Background: Despite the association of hyperuricemia with cardiovascular risk factors, it has remained controversial as to whether uric acid is an independent predictor of cardiovascular disease, with many studies in favor and others against. The results of this study are expected to enhance our knowledge regarding the role of uric acid level on outcomes of patients with carotid artery endarterectomy and thus can be used by clinician in determining patient’s prognosis.

Methods: Patients evaluation were performed by collecting prospective data on patients undergoing CEA at our hospital from September 2012 to May 2019, primary CEA was performed on 120 consecutive patients in the same surgical groups. From this sample, patients who underwent isolated CEA were selected, and this population was then divided into those with hyperuricemia (Group I) and those without hyperuricemia (Group II). Among the clinical complications that occurred following CEA, the following variables were analyzed: mortalite, x-clamp time, perioperative ICU (intensive care unit) times, entubation time, reentubation ratio, hospitalization time, rehospitalization ratio, neurological complications, infectious complications, wound infection failure occurring within 30 days after the surgery.

Results: The two groups were similar according to clinical characteristics such as age, risk factors, gender, smoking, using alcohol, BMI, previous myocardial infarction, dyslipidemia, previous cerebrovascular accident. There was longer carotid x-clamp time in group I versus group II. Twenty-seven patients in Group I and 53 patients in Group II had normal blood pressure on antihypertensive medication. In group 1, neurological complications were observed only in one patient in the form of a transient ischemic attack. Coronary artery lesions have more affected Group I than Group II and number of coronary artery disease have more Group I rather than Group II. There have wound infections in 3 patients group I and 2 patients in Group II but there haven’t statistical differantation.

Conclusion: Hyperuricemia, which has effects on kidney, liver, coronary vessels, carotid and other peripheral vessels, should be considered a metabolic disease, such as Diabetes Mellitus.

Keywords: Hyperuricemia; carotid; endarterectomy; prognosis; complication

Introduction

Hyperuricemia is associated with deleterious effects on endothelial dysfunction, oxidative metabolism, platelet adhesiveness, hemorheology, and aggregation. The atherosclerotic plaque contains a considerable amount of uric acid which may increase platelet adhesiveness and potentiate thrombus formation [1]. There is also increasing evidence that elevated serum uric acid levels may predict the development of type 2 diabetes [2]. Despite the association of hyperuricemia with cardiovascular risk factors, it has remained controversial as to whether uric acid is an independent predictor of cardiovascular disease, with many studies in favor [3-5] and others against [6,7]. Serum concentrations of uric acid, the product of the metabolism of purine compounds, above 7 mg/dL result in hyperuricemia, causally associated with gout as evidenced in randomized clinical trials using urate-lowering therapies [8]. One of the major causes of hypertension and negative effects at the same time during childhood is a disease in which the multiplication of those provided in the etiology of
Diabetes mellitus is present. It is possible to speculate that the effects of the early onset of the early onset have serious side effects, in particular cardiovascular system, hypertension, kidney function disorder, diabetes mellitus, and calcium turnover problems. There is insufficient study of the effects of hyperuricemia on carotid artery disease especially surgical carotid artery disease. The aim of our study was therefore to assess the operative and short-term prognosis of hyperuricemic who had Carotid Artery Surgery comparing non-hyperuricemic patients. The results of this study are expected to enhance our knowledge regarding the role of uric acid level on outcomes of patients with carotid artery endarterectomy (CEA) and thus can be used by clinician in determining patient's prognosis. To our knowledge, this is the first community-based study that explores the relationship between serum uric acid (SUA) levels and carotid endarterectomy surgical procedure.

Patients and Methods

Patient evaluation was performed by collecting prospective data on patients undergoing CEA at our hospital from September 2012 to May 2019, primary CEA was performed on 120 consecutive patients in the same surgical groups. One senior nurse at the hospital was trained to collect these data using prespecified settings. From this sample, patients who underwent isolated CEA were selected, and this population was then divided into those with hyperuricemia (group I) and those without hyperuricemia (group II). The excluded criteria; Patients were excluded if they had undergone any other cardiac surgery, Diabetes Mellitus Tip I, II, redo CEA, emergency cases, chronic obstructive lung disease, chronic renal disease, active gout attack and symptomatic patients (blood uric acid level ≥ 13 mg/dl). Patients have demographics, indications for surgery, severity of disease and clinical outcomes for the two groups were shown in Table 1. Surgical indication has shown Table 2. Serum samples were collected a median of 1 day (interquartile range 1–2 days) preoperatively, and uric acid measured using the ADVIA 1650 General Chemistry Analyzer (Siemens Diagnostics Solutions, Tarrytown, NY). Hyperuricemia was defined as 6.8 mg/dL in men and 6.0 mg/dL in women [7,8].

Surgical Technique

Standard CEA

The CCA, ICA, and ECA are exposed through an oblique incision parallel to the anterior border of the sternocleidomastoid muscle. Manipulation of the carotid body at the carotid bifurcation is avoided. After systemic heparinization, the CCA, ECA, and ICA are clamped. A longitudinal arteriotomy is made in the CCA and extended to the ICA distal to the end of the atherosclerotic plaque. This is followed by a meticulous CCA, ECA, and ICA endarterectomy. Based on the discretion of the surgeon, the ICA intima may be removed and/or a patch may be used for closure. After obtaining complete hemostasis, the incision is closed.

Eversion CEA

The E-CEA technique involves an oblique transection of the ICA from the common carotid artery at the bulb. After division, the ICA may appear redundant; a cephalad incision from the heel of the transected ICA may be used to shorten the artery. The ICA is everted over the atheroma core. It is important to remove the most external layers of the media when doing so to maintain eversion of the artery over the end of the atheroma. The endpoint is directly visualized and loose fragments are removed; 6-0 or 7-0 monofilament sutures can be placed distally, if necessary. After completion of the ICA endarterectomy, the arteriotomy can be extended to the common carotid artery to facilitate removal of the CCA and ECA plaque. The ICA can then be tailored and shortened if necessary for reanastomosis to the CCA. After obtaining complete hemostasis, the incision is closed.

Follow-up

Postoperative follow-up of patients in the first week, first month were recorded by outpatient visits, phone calls and home visits. Among the clinical complications that occurred following CEA, the following variables were analyzed: mortality, x-clamp time, perioperative ICU (intensive care unit) times, entubation time, reentubation ratio, hospitalization time, rehospitalization ratio, neurological complications, infectious complications, wound infection failure occurring within 30 days after the surgery. Postoperative uric acid level measured first visit and second visit. Ethical approval for the study was granted by the local research ethics committee. All of these patients gave their appropriate informed consent and were studied under the approval of the institutional review boards. Our study was conducted in accordance with the principles of Declaration of Helsinki.

Clinical and Uric Acid Data Collection

Data obtained from the medical records including history taking associated with carotid disease symptoms, head to toe physical examination, and laboratory examination. The laboratory examinations include peripheral blood examination, uric acid, blood urea nitrogen (BUN), creatinine, ALT, AST, random blood glucose, electrolyte, lipid profile. Other examinations assessed are electrocardiography, chest x-ray, echocardiography, and carotid digital angiography or conventional carotid angiography. All the hospital’s carotid surgery teams agreed to provide data for the development of the database.

Statistical Analysis

Initially, all variables were descriptively analyzed. For quantitative variables, analyses were carried out by observing minimum and maximum values and calculating the mean and standard deviation. For qualitative variables, absolute and relative frequencies were calculated. To compare the averages of the two groups, we used Student’s t test, and when the assumption of data normality was rejected, we used the nonparametric Mann-Whitney U test. To test the homogeneity between proportions, we used the chi-square test or the Fisher’s exact test. Two-sided P values were always computed, and differences were considered statistically significant at p ≤0.05. All analysis performed using statitical package for social solution (SPSS) software version 17.
Results

The two groups were similar according to clinical characteristics such as age, risk factors, gender, smoking, using alcohol, BMI, previous myocardial infarction, dyslipidemia, previous cerebrovascular accident, (Table 1). There were longer carotid x-clamp time (mean±SD) in group I versus group II (12.4±8.0, 11.1 ±7.2 p≤0.05) (Table 3). The gender distribution was similar in both groups (group 1: men: 90.6%; group 2: men: 82.1%, respectively). Twenty-seven patients in group 1 (64.3%) and 53 patients in group 2 (68.2%) had normal blood pressure (systolic blood pressure <140 mm Hg and diastolic pressure <90 mm Hg) on antihypertensive medication (Table 4). During the first six hours in the recovery room and after step-down to the surgical ward until discharge, the need for intravenous and oral vasodilators in group 2 was significantly higher than in group 1 (p < 0.05). In group 1, neurological complications were observed only in one patient in the form of a transient ischemic attack. None of the patients with post-operative HTN requiring pharmacologic treatment had a cardiac complication. The other complications are summarized in Table 1. There was no difference in the length of hospitalization of patients in either group. Coronary artery lesions have more affected Group I than Group II and number of coronary artery disease have more Group I rather than Group II (Table 2). Coronary angiographic have been evaluating Group C lesions more affected group I than group II (p≤0.05) (Table 2) and additionally periferal artery lesions have more affected Group I than Group II but there haven’t statistical differantation. All of the patients have heeling after 1 weeks postoperative period (Table 3).

Table 1: Demographics and clinical data of patients undergoing CEA.

Patients	Group 1 (n=42)	Group 2 (n=78)	P
Gender (M)	36 (78.1%)	64 (82.1%)	NS
Age (Mean ± SD, years)	69.2 ± 9.2	66.2 ± 7.9	NS
BSA	25.2	26.1	NS
Surgical site (left)	34 (70.1%)	53 (67.8%)	NS

Surgical technique

e-CEA	20	38	NS
e-CEA	22	40	0.04
HTN	35 (80.5%)	35 (80.5%)	0.04
CAD	12 (27.6%)	12 (27.6%)	0.03
DM	15 (37.5%)	24 (30.8%)	0.04
HLP	36 (78.1%)	66 (85.7%)	NS
PAD	4 (10.5%)	2 (2.5%)	0.04
COPD	4 (10.5%)	3 (7.5 %)	NS
C-rp (mg/dl) mean±SD	1.2±0.6	0.8±0.6	0.34
Nicotineuse	20 (46.8%)	39(50%)	NS
Alcoholuse	6 (16.6%)	8 (10.2%)	NS
Stenosis (% ± SS)	82.1 ± 6.8	76.8 ± 5.5	0.06

Contralateral stenosis

| | 50-69% | 11(26.1%) | 18 (23.3%) |
| Contralateral occlusion | 70-99% | 4(10.8%) | 7 (8.9%) |

Complications

	Mortality	Stroke	
	0	0	NS
	1	0	NS
Dysesthesiawoundareas | 8 | 4 | 0.03
---|---|---|---
Cranialnerveinjury | 0 | 0 | NS
Neckhematoma | 2 | 1 | NS
Shunting | 8 (18.4%) | 14 (21.5%) | NS

CAD*: Non-Surgicalcoronaryarterydisease; c-CEA, Conventional carotidendarterectomy; COPD: Chronic obstructivepulmonarydisease; DM: Diabetesmellitus; e-CEA, Eversion carotidendarterectomy; HLP: Hyperlipoproteinemia; HTN: Hypertension; PAD: Peripheralarterydisease; BSA: Body surfacearea, C-rp: c-Rekatif protein, SD: Standart Deviation

Table 2: Indication for surgery.

Surgical indication	Group I	Group II	p value
Patients	42	78	
Symptom free	26 (61.2%)	42 (56.7%)	0.072
Symptomatic patients	18 (39.8%)	31 (38.6%)	0.078
TIA	9 (21.9%)	16 (20.2%)	0.082
Stroke	5 (11.7%)	8 (10.3%)	0.065
Vertebobasilar Symptoms	2 (5.0%)	3 (3.84%)	0.067

Preoperative ultrasound

ICA velocity (cm/sec) | 410±120 | 405±110 | 0.098

Table 3: Operative variables results.

Variables	Group I (n=42)	Group II (n=78)	p	
Cross-clamp time(min) ± SD	12.4±8.0	11.1±7.2	0.034	
Time spent in the intensivecareunit± SD	1.6±0.9	1.6±1.4	ns[4]	
Prolonged mechanical ventilation n,%	1 (2.3)	none	0.806[1]	
Orotracheal reintubation during hospitalization, n,%	1 (2.3)	none	<0.001[2]	
Readmission to the intensivecareunit, n,%	1 (2.3)	1 (2.1)	0.856[2]	
Bleedinghemovacdrainagubes(ml) ± SD	150±80	130±60	0.032[4]	
Time of hospitalization(days) ± SD	3.9±2.7	3.8±2.6	0.088[4]	
Cerebrovascular accident, n, (%)	1 (0.5)	none	0.623[3]	
Acute renal failure n, (%)	1 (0.9)	none	1.000[3]	
Dialysis n, (%)	1 (0.5)	none	[3]	
Infections (wound) n, (%)	3 (6.5)	2 (7.4)	0.705[2]	
Urinarytract infection none	none	none		
Pneumonia none	none	none		
Arrhythmia n, (%)	2 (4.6)	3 (3.75)	0.892[2]	
Intraoperative death	none	none		
Death within 30 days none	none	none		

[1] Descriptive level of probability by the Student’s t-test.
[2] Descriptive level of probability by the chi-square test.
[3] Descriptive level of probability by the Fisher’ sexact test.
[4] Descriptive level of probability by the nonparametric Mann-Whitney U-test.
Discussion

Many studies have shown that elevated serum uric acid (SUA) levels are a component of metabolic syndrome and often accompanied by obesity, hypertension [9], hyperlipidemia [10], glucose intolerance [11], and cardiovascular risk factor clustering [12], all of which play a causal role in the pathogenesis of cardiovascular, carotid arterial and peripheric arterial diseases. Moreover, Gout is a painful inflammatory arthritis which can eventually lead to the decrease in quality of life [1,2]. The prevalence is reported to be increasing in many countries. In the USA the figure reached as much as 3.9 % (8.3 million inhabitants) during 2007-2008 [1]. Gout affects approximately 2% of men older than 30 years and 2% of women older than 50 years, and is the most common form of inflammatory joint disease in men older than 40 years. Serum uric levels are, on average, 0.5 to 1.0 mg/ dl higher in men than women, making male sex a risk factor for hyperuricemia and gout. Lower serum uric levels in women are associated with the presence of estrogen, which is thought to act as an antihyperuricemic [3]. The enzyme, xanthine oxidase, which is present in significant levels only in the liver and intestine, oxidizes hypoxanthine and xanthine to uric acid in the purine catabolic pathway. Xanthin oxidase inhibitors could be used clinically to block the final step in uric acid synthesis, thereby reducing the production of uric acid. To our knowledge, this is the first studies in a cohort carotid endarterectomy surgery patients admitted to assess whether high uric acid levels at admission might increase the risk for major adverse events during hospitalization, operation variables, using survival approach to describe and analyze the free survival between hyperuricemic and normouricemic groups.

There has not any study hyperuricemia and carotid endarterectomy in literature. There have a few research about hyperuricemia and coronary artery bypass surgery. One study, in 58 patients undergoing complicated cardiac surgery, found that preoperative uric acid >6.0 mg/dL was associated with a near-4 fold increased risk of Acut kidney injury (AKI) and a longer hospital stay than preoperative uric acid ≤6.0 mg/dL [13]. Another study, in 190 patients undergoing cardiovascular surgery, found that, after adjustment for confounders by multivariate logistic regression analysis, serum uric acid concentrations ≥7.0 mg/dL were associated with a 35-fold higher risk of AKI, and increased hospital stay and duration of mechanical ventilation support, than serum uric acid concentrations <7.0 mg/dL [14]. Our previous study in patients undergoing cardiovascular surgery also found that preoperative hyperuricemia was an independent risk factor of postoperative AKI and was related to poor outcomes [15]. Our findings are in agreement with those of the above studies. At the same time intubation time, the proportion of reentubation time, time spent in the intensive care, prolonged mechanical ventilation, orotracheal reintubation during hospitalization, readmission to the intensive care unit more Group I than Group II. However, no statistical difference was found between the reasons for the low number of cases.

It is very well known that there are certain risk factors such as genetic susceptibility, hypertension, hyperlipidemia, smoking, and diabetes mellitus, which may predispose an individual to artery disease. Additionally, hyperhomocysteinemia and metabolic syndromes have been identified as other risk factors for the disease as well as predictors of the success of the treatment and survival of the patients [1]. Recently, elevated serum uric acid level is identified as an independent risk factor for cardiovascular diseases [1,3-16]. Several prospective studies have shown an association between hyperuricemia and cardiovascular diseases and death [1,5-7,13,15]. In this study, the number of carotid artery involvement in hyperuricemic patients and Type C lesion in coronary arteries were statistically significant. Asymptomatic long-term follow-up of hyperuricemia is considered to be a factor in this issue. Interestingly, more prevalence of carotid artery disease was observed. However, velocity flowrates in the USG of preoperative carotid doppler were higher in group I.

Otherwise Hyperurisemia patients present an increased risk for pre- postoperative hypertension. Untreated hypertension is generally considered / presumed to be one of the independent risk factors for poor outcome following CEA. While certain studies describe a positive relation between perioperative hypertension and the risk of poor neurological outcome and / or death after CEA, other studies have not identified such a relationship (Table 4) [17,18].

Due to the current discussions and uncertainty concerning the effect of preoperative and postoperative hypertension on postoperative outcomes, patients with uncontrolled preoperative hypertension were excluded from the study. Hyperurisemia patients present an increased risk for postoperative infections due to depreciated host defense mechanisms, such as impaired as wound healing and granulocyte function, decreased cellular immunity, impaired complement function, and reduced immune response, which may be influenced by the gout control [19-23]. In this study,

| Table 4: Arterial pressures averaged at baseline, and postoperatively. |
|-------------------------|-----------------|-----------------|-----------------|-----------------|
| | Pre-Operative [median (IQR)] | Post-Operative 0-6 h [median (IQR)] | Post-Operative 6-24 [median (IQR)] | Post-Operative 72 h [median (IQR)] |
| | MAP | MAP | MAP | MAP |
| Group 1 | 94.87 (75.46-106.64) | 85.46 (80.32-98.68) | 89.42 (80.44-103.96) | 93.1 (73.64-104.04) |
| Group 2 | 92.54 (80.42-99.66) | 89.66 (79.42-102.84) | 98.68 (82.86-110.28) | 96.46 (69.78-108.54) |
| p | NS | 0.03 | 0.04 | 0.02 |

MAP: Mean arterial pressure.
follow-up and treatment should be informed about possible effects of hyperuricemia. We believe that there should be an entity that should be emphasized especially in terms of cardiovascular surgery.

References

1. Levy F, Anker S, Swan JW, Godlass IF, Wingrove CS, et al. (1997) Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur Heart J 18(5): 858-865.

2. Krishnan E, Kwoh K, Schumacher R, Kuller L (2007) Hyperuricemia and the incidence of hypertension among men without metabolic syndrome. Hypertension 49(2): 298-303.

3. Ejaz AA, Beaver TM, Shimada M, Sood P, Lingegowda V, et al. (2009) Uric acid: a novel risk factor for acute kidney injury in high-risk cardiac surgery patients? Am J Nephrol 30(5): 425-429.

4. Lapsia V, Johnson RJ, Dass B, Shimada M, Kambhampati G, et al. (2012) Elevated uric acid increases the risk for acute kidney injury. Am J Med 125(3): 9-17.

5. Jorg KW, Jo YJ, Kim WJ, Choi DK, Chin JL, et al. (2014) Association of preoperative uric acid and acute kidney injury following cardiovascular surgery. J Cardiothorac Vasc Anesth 28(6): 1440-1447.

6. Chuang S, Lee S, Hsiao Y, Pan W (2011) Trends in hyperuricemia and gout prevalence: nutrition and health survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr 20(2): 301-308.

7. Krishnan E, Baker JF, Furst DE, Schumacher HR (2006) Gout and the risk of acute myocardial infarction. Arthritis Rheum 54(8): 2688-2696.

8. Tavil Y, Sen N, Hizal F, Açıklıköz SK, Taşoğlu U, et al. (2008) Relationship between elevated levels of serum uric acid and saphenousveingraft disease. Turk Kardiyol Den Arş 36(1): 14-18.

9. Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, et al. (2001) Serum uric acid and the risk for hypertension and Type 2 diabetes in Japanese men: The Osaka Health Survey. J Hypertens 19(7): 1209-1215.

10. Millonis HJ, Kakafika AI, Tsoulis SG, Athyros VG, Bairaktari ET, et al. (2004) Effects of statin treatment on uric acid homeostasis in patients with primary hyperlipidemia. Am Heart J 148: 635-640.

11. Lee J, Sparrow D, Vokonas PS, Landsberg L, Weiss ST (1995) Uric acid and coronary heart disease risk: evidence for a role of uric acid in the obesity-insulin resistance syndrome. The Normative Aging Study. Am J Epidemiol 142(3): 285-294.

12. Cappuccio FP, Strazzullo P, Farinaro E, Trevisan M (1993) Uric acid metabolism and tubular sodium handling. Results from a population-based study. JAMA 270(3): 354-359.

13. Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131(1): 7-13.

14. Fang J, Alderman MH (2000) Serum uric acid and cardiovascular mortality than HANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA 283(18): 2404-2410.

15. Krishnan E, Baker JF, Furst DE, Schumacher HR (2006) Gout and the risk of acute myocardial infarction. Arthritis Rheum 54(8): 2688-2696.

16. Choi HK, Curhan G (2007) Independent impact of gout on mortality and risk for coronary heart disease. Circulation 116(8): 894-900.

17. Taurino M, Filippi F, Persiani E, Tirotti C, Dito R, et al. (2014) Hemodynamic Changes in Chevaller Eversion Versus Conventional Carotid Endarterectomy. Eur J Vasc Endovasc Surg 48(5): 514-520.

18. Bond R, Narayan SK, Rothwell PM, Warlow CP, European Carotid Surgery Trialists Collaborative Group (2002) Clinical and radiographic risk factors for operative stroke and death in the European carotid surgery trial. Eur J Vasc Endovasc Surg 23(2): 108-116.

19. Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, et al. (2009) Association between serum uric acid and development of type 2 diabetes. Diabetes Care 32(9): 1737-1742.

Citation: Haydar Yasa. Prognosis and Complications of Hyperuricemia Patients Undergoing Isolated Carotid Endarterectomy. Adv Card Res 2(5)- 2020. ACRR.MS.ID.000146. DOI: 10.32474/ACR.2020.02.000146
20. Suarna C, Dean RT, May J, Stocker R (1995) Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol 15(10): 1616-1624.

21. Tayar JH, Lopez Olivo MA, Suarez Almazor ME (2012) Febuxostat for treating chronic gout. Cochrane Database Syst Rev 11: CD008653.

22. Wallace KL, Riedel A, Ridge NJ, Wortmann R (2004) Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J Rheumatol 31(8): 1582-1587.

23. Nagahama K, Iseki K, Inoue T, Touma T, Ikemiyya Y, et al. (2004) Hyperuricemia and cardiovascular risk factor clustering in a screened cohort in Okinawa, Japan. Hypertens Res 27(4): 227-233.

24. Leibovici L, Yehezkel Y, Porter A, Regev A, Knause I, et al. (1996) Influence of diabetes mellitus and glycemic control on the characteristics and outcome of common infections. Diabet Med 13(5): 457-463.

25. Gallagher S, Kapur A, Lovell MJ, Jones DA, Kirkwood A, et al. (2014) Impact of diabetes mellitus and renal insufficiency on 5-year mortality following coronary artery bypass graft surgery: a cohort study of 4869 UK patients. European Journal of Cardio-Thoracic Surgery 45(6): 1075-1081.

26. Galletton BF, Larson MG, Kannel WB, Daniel Levy (1999) Serum uric acid and risk for cardiovascular disease and death: The Framingham Heart Study. Annals of Internal Medicine 131(1): 7-13.

27. Baker RA, Hallsworth IJ, Knight JL (2005) Stroke after coronary artery bypass grafting. Ann Thorac Surg 80(5): 1746-1750.

28. Zhu Y, Pandya BJ, Choi HK (2011) Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. American College of Rheumatology Arthritis & Rheumatism 63(10): 3136-3141.

Citation: Haydar Yasa. Prognosis and Complications of Hyperuricemia Patients Undergoing Isolated Carotid Endarterectomy. Adv Card Res 2(5)-2020. ACRR.MS.ID.000146. DOI: 10.32474/ACR.2020.02.000146