Using the Stokes V widths of Fe I lines for diagnostics of the intrinsic solar photospheric magnetic field

M. Gordovskyy1,⋆, S. Shelyag2, P.K. Browning1 and V.G. Lozitsky3

1 Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL, UK
2 Faculty of Science, Engineering and Built Environment, Deakin University, Melburn VIC 3125, Australia
3 Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Observatorna 3, Kyiv 04053, Ukraine

Preprint online version: December 10, 2019

ABSTRACT

\textbf{Aims.} The goal of this study is to explore a novel method for the solar photospheric magnetic field diagnostics using Stokes V widths of different magnetosensitive Fe I spectral lines.

\textbf{Methods.} We calculate Stokes I and V profiles of several Fe I lines based on a one-dimensional photospheric model VAL C using the NICOLE radiative transfer code. These profiles are used to produce calibration curves linking the intrinsic magnetic field values with the widths of blue peaks of Stokes V profiles. The obtained calibration curves are then tested using the Stokes profiles calculated for more realistic photospheric models based on MHD models of magneto-convection.

\textbf{Results.} It is shown that the developed Stokes V widths (SVW) method can be used with various optical and near-infrared lines. Out of six lines considered in this study, Fe I 6301 line appears to be the most effective: it is sensitive to fields over \(\sim 200 \text{ G}\) and does not show any saturation up to \(\sim 2 \text{ kG}\). Other lines considered can also be used for the photospheric field diagnostics with this method, however, only in narrower field value ranges, typically from about 100 G to 700–1000 G.

\textbf{Conclusions.} The developed method can be a useful alternative to the classical magnetic line ratio method, particularly when the choice of lines is limited.

\textbf{Key words.} Sun: photosphere Sun: magnetic fields Techniques: imaging spectroscopy

1. Introduction

Observations show that the solar photospheric magnetic field is inhomogeneous at spatial scales as short as 10 km, which are not resolved in most optical solar observations. Various observational and computational studies show that the photospheric magnetic flux is formed by small-scale magnetic fluxtubes with field strength of a few kG surrounded embedded into a much weaker (\(\sim 10–100 \text{ G}\)) ambient field (see Frazier and Stenflo, 1972; Solanki, 1993; De Wijn et al., 2009; Stenflo, 2011; Bellot Rubio & Orozco Suárez, 2019 for review).

The photospheric magnetic field is normally measured using the Zeeman effect, through Zeeman splitting of the sigma-components of spectral lines or through the amplitudes of Stokes V profiles. In the case of spatially-uniform magnetic fields, the measured values represent the longitudinal component of the field vector. However, when the magnetic field is not uniform on the scales not resolved by the instrument, the measured values also depend on the magnetic filling factor, the magnetic field gradient along the line-of-sight (LOS) and other factors which affect the profiles of spectral lines. In the first approximation, known as the two-component model with zero ambient field, the observed field values \(B_{\text{obs}}\) are determined by the actual (or intrinsic) magnetic field, corresponding to the small-scale fluxtubes \(B_{\text{real}}\), and the filling factor \(\alpha\):

\[B_{\text{obs}} = \alpha B_{\text{real}}.\]

Knowing the photospheric magnetic field is essential in many areas of solar physics, from observational helioseismology to the coronal magnetic field reconstruction. Some applications are not sensitive to the small-scale structure of the magnetic field. For instance, force-free coronal magnetic field reconstruction is normally sensitive only to the large-scale distribution of photospheric magnetic field (e.g. Wiegelmann & Sakurai, 2012). At the same time, there are characteristics which are very sensitive to the magnetic field filling factor. For instance, the Poynting flux and the magnetic energy density at the photosphere are often used for observational studies of the coronal heating and coronal magnetic field stability (Welsch, 2014; Jang, 2016). These values are proportional to \(\alpha B_{\text{real}}^2\) per pixel or, using the observed field values, \(B_{\text{obs}}^2/\alpha\). Another example is evaluation of the electric current and Ohmic dissipation in the photosphere and chromosphere (e.g. Musset et al., 2015). The current density is proportional to the spatial gradient of the magnetic field, which, in turn is proportional to \(B_{\text{obs}}/\alpha\). Hence, the energy deposition rate due to Ohmic heating should be also proportional to \(B_{\text{obs}}^2/\alpha\). (However, in this case energy dissipation would also depend on actual sizes of the small-scale magnetic elements, electric resistivity and other parameters.) Thus, ignoring the unresolved

* e-mail: mykola.gordovskyy @ manchester.ac.uk
Fig. 1. Sketch of line profiles, showing Stokes I profile (panel a), Stokes V (panel b), and Stokes I±V profiles (panel c), indicating the parameters used in this study.

Fig. 2. Calibration curves showing Stokes V width and magnetic line ratio values as functions of the intrinsic field B for different turbulent velocities, which determine \(W_i \). The turbulent velocities vary from 0 (blue lines) to 20 km/s (red lines). Panels (a-c), (d-f) and (g-i) correspond to 5247/5250, 6301/6302 and 15652/15649 pairs, respectively. The left column (panels a, d and g) show Stokes V widths for lines with lower Lande factors \(g \), the middle column (panels b, e and h) show Stokes V widths for lines with higher Lande factors \(g \), and the right column (panels c, f and i) shows MLR values.

Field structure (i.e. assuming \(\alpha = 1 \)) would lead to underestimation of the photospheric magnetic energy and of the Ohmic heating by factor of \(1/\alpha \). Therefore, evaluating the intrinsic magnetic field (or the filling factor) is one of the essential problems in interpreting magnetographic observations.

The most comprehensive method of the magnetic filling factor (or intrinsic magnetic field) diagnostics is the Stokes inversion (see e.g. Socas-Navarro 2001).
In this paper, we explore this new method by extending it to new lines often used for solar magnetic field measurements: optical Fe I 5247.1 Å and 5250.2 Å, and near-infrared Fe I 15648.5 Å and 15652.9 Å pair (15648/15652 pair, hereafter).

In Section 2, we calculate calibration curves for these lines, linking the intrinsic magnetic field values with the widths of blue peak of Stokes V components for different Stokes I widths. In Section 3, we test the reliability of this method using the synthetic profiles of the considered lines obtained from MHD magneto-convective simulations of the photosphere.

2. Synthetic Stokes profiles and calibration curves

In order to understand the effect of the magnetic field and thermodynamic conditions in the photosphere on the Stokes profiles, we calculate profiles of the six chosen spectral lines for different vertical magnetic field strengths \(B_z \) and isotropic micro-turbulent velocities \(v_{mic} \). We consider a plane-parallel model of the photosphere with the normal direction (\(Z \)) parallel to the line-of-sight (LOS). The magnetic field strength, determining the Zeeman effect, is varied in the range 0–2 kG, while the micro-turbulent velocities, affecting the line width, were varied between 0 and \(1 \times 10^3 \) m/s, which is the Alfvén speed for the magnetic field of 1 kG at the photospheric level. These values are set constant with depth. All other parameters (density, temperature, chemical composition, and ionisation) vary with depth according to the VAL C model (Vernazza et al. 1973).

The Stokes profiles are calculated using the NICOLE code (Socas-Navarro et al. 2000; Socas-Navarro 2011). The atomic parameters for the chosen lines are shown in Table 1. The profiles are calculated for the 64×64 parametric grid of \([B, V_{mic}]\). The obtained profiles are used to measure the required parameters: Stokes I width \(W_I \) (its full width at half maximum), Stokes V amplitude \(V \) (amplitude of Stokes V blue wing normalised on the Stokes I intensity of the continuum), Stokes V width \(W_V \) (the full width of Stokes V blue wing at its half maximum), and the splitting between centres of mass of the \(I+V \) and \(I-V \) profiles, \(\Delta_H \) (Zeeman splitting, hereafter) (Figure 1). Then, our parametric grid \([B, V_{mic}]\) is transformed to \([B, W_I]\), making it possible to link observable parameters – \(W_I, V, W_V, \Delta_H \) with the magnetic field characteristics.

Increase of magnetic field affects three observables: \(V, \Delta_H \), and \(W_V \) show noticeable increase. Because the \(V \) values for lines with higher Lande factor \(g \) saturate faster than in the lines with lower \(g \), the magnetic line ratios \(R_W = V_{lower}/V_{higher} \) also increase. Importantly, these parameters are proxies for different magnetic field characteristics. The Stokes V amplitude \(V \) and related to it Zeeman splitting \(\Delta_H \) are defined by the spatially-average magnetic field (or a magnetic flux per observational pixel), while the

Table 1. Atomic parameters of the six considered lines: wavelength, Lande factor, excitation potential of the lower level, transition probability, lower and upper term configurations.

\(\lambda, \text{Å} \)	\(g \)	\(\chi, \text{eV} \)	\(\log(g/f) \)	Lower term	Upper term
5247.1	2.00	0.087	-4.97	5D2	7D3
5250.2	3.00	0.121	-4.96	5D0	7D1
6301.5	1.67	3.654	-0.72	5P2	5D2
6302.5	2.50	3.686	-1.24	5P1	5D0
15648.5	3.00	5.426	-0.043	7D5	7D4
15652.9	1.53	6.246	-0.675	7D1	7D1
Let us consider the behaviour of the calibration curves, $R_{\text{MLR}}(B)$ and $W_{V}(B)$, for different line widths W_{I}. These parameters are plotted in Figure 2.

The calibration curves for MLR are very similar to those calculated in previous studies (e.g. [2007 Khomenko & Collados], [2017 Smitha and Solanki]). It can be seen that both characteristics, MLR and SVW, are proxies of B. However, the non-saturation ranges, where they can be effectively used for B estimations, and their sensitivities to the turbulent broadening are very different. As can be expected, in each pair, the line with lower Lande factor saturates at higher B values. For this reason, we will compare SVW calibration curves of the lower g lines with the MLR calibration curves in each pair.

The MLR curves for the 5247/5250 pair (Figure 2c) can be used in the range from about 100–200 G to 1100–1800 G, depending on the Stokes I profile width. The wider the line, the higher is the B value when MLR saturates, because the condition for $V(B)$ saturation is $\Delta \lambda_{H} > W_{I}$. SVW for the 5247 line can be used from 200–300 G (Figure 2 a-b), however, it saturates at larger values of B, 1700–2200 G, depending on the Stokes I width.

The 6301/6302 pair appears to have widest range of applicability, compared to the two other pairs. The SVW calibration curves for this pair show no saturation within the considered range, while the MLR calibration curves show very mild saturation around 2 kG. Furthermore, both MLR and SVW calibration curves for this pair show very weak dependence on the widths W_{I}, which, in principle, should result in smaller errors, because the error of W_{I} measurements is unimportant.

The MLR for the 15648/15652 pair (Figure 2i) has a smaller range of applicability, it saturates at lower B values, simply because W_{I}, which is determined by the Doppler effect, is proportional to λ, while Zeeman splitting is $\Delta \lambda_{H} \sim \lambda^{2}$. Thus, MLR for this pair can be used between 0 and 700–800 G, depending on the profile width W_{I}. Again, the SVW range for the 15652 line is bigger (Figure 2 g-h), it can be used from \sim 200 G to 800–1300 G, depending on W_{I}.

Therefore, based purely on the analysis of MLR and SVW calibration curves the 6301/6302 pair appears to be best both for MLR and SVW analysis, compared to the two other pairs, 5247/5250 and 15648/15652. However, these calibration curves are calculated using simplified photospheric models with vertically-uniform magnetic field B and zero macroscopic LOS velocities V_{LOS}. Presence of vertical gradients of B (which can be very substantial in the photosphere) and Doppler shifts due to V_{LOS} can substantially affect the Stokes profiles and, hence, results of the MLR and SVW analysis. For instance, it is well known that the MLR method for the 6301/6302 pair can yield substantial errors in the presence of LOS field gradient due to the substantial difference in the line formation depths. Therefore, it is necessary to test the SVW and MLR methods for the three considered line pairs using a realistic magneto-convective model of the photosphere.

The calibration curves are used to create tabulated functions (arrays) of $B_{\text{real}}(ij) = f(R_{\text{MLR}}, W_{I})$ and $B_{\text{real}}(ij) = f(W_{V}, W_{I})$, which can be directly applied to the observational data in order to estimate the intrinsic field values. It should be noted that it can be done only to limited ranges of R_{MLR}, W_{V} and W_{I}, where these functions are increasing monotonically in respect of both input pa-

Fig. 3. Magnetic field taken from MHD simulations: (a) line-of-sight magnetic field (in kG) with original resolution (5.5 km, please note, that the plots does not reflect the full resolution), (b) line-of-sight magnetic field (in kG) measured using Zeeman splitting in Fe I 6301 ˚A line with reduced spatial resolution (110 km), (c) magnetic filling factor corresponding to the spatial resolution of 110 km. The magnetic filling factor is shown only for $|B_{\text{obs}}|$ field values greater than 100 G.
rameters. Therefore, this calibration can only be applied to pixels within these ranges.

3. Testing MLR and SVW methods using an MHD model

Now let us compare the two methods using one of the high-resolution MHD models of magneto-convective simulation. This three-dimensional models has been developed using the MURAM code (see Schüssler et al., 2003; Shelyag et al., 2004; Vogler et al., 2005). Simulations have been performed using a box with a uniform grid of 960×960×400 elements with horizontal step of 5.5 km and vertical step of 5 km. The upper boundary of the domain corresponds to the temperature minimum level. The model consists of two stages: it starts with simulations of convection in the initially plane-parallel photosphere corresponding to the VAL model. Then, a uniform vertical magnetic field is added, and simulations are run for about five convective timescales (corresponding to 50 minutes of physical time).

The Stokes profiles of selected lines for this model have been calculated using the NICOLE code (see description in Section 2). In order to get magnetograms with limited spatial resolution, we degrade the Stokes I and V cubes corresponding to this MHD model using the same methodology as in Gordovskyy et al. (2018). The size of ‘degraded’ pixels is approximately 110–150 km (0.15 arcsec). The magnetic field taken from the MHD model, magnetic field measured using Zeeman effect with reduced spatial resolution, and corresponding magnetic filling factor are shown in Figure 3.

Obviously, in reality the magnetic field in each degraded pixel has not a single value of intrinsic field but a range of values (although, this range is rather narrow due to magneto-convective collapse, see discussions in Vogler et al. (2005) and Gordovskyy et al. (2018)). Therefore, we define the characteristic filling factor for each pixel using the definition in Gordovskyy et al. (2018).

Figure 4 compares the actual (i.e. taken from the MHD model) values of the intrinsic magnetic field with values evaluated using the MLR and SVW methods. For SVW estimations we use the line with lower Lande factor g in each pair. For the analysis we only use pixels where the observed field values (i.e. the field values measured using the degraded Stokes cubes) are above 100 G. Obviously, all calibration functions derived in Section 2 have limited applicability ranges (in terms of MLR, SVW and W_j values). Therefore, some ‘observed’ pixels with values outside of these ranges cannot be analysed. Furthermore, we do not analyse pixels showing abnormal spectral profiles (such as multi-lobe or extremely asymmetric Stokes V profiles). All these failed pixels are assigned default $B_{rec} = 0$ value. That is why all panels in Figure 4 show numerous pixels at the $B_{rec} = 0$ axis. The number of failed pixels is approximately 10% of the total pixel number. However, their proportion might be bigger if these methods are applied to the photosphere in active regions, with more fragmented velocity field, higher LOS velocity gradients, stronger turbulence and other factors.

The MLR method provides relatively good accuracy for estimations made using the 5247/5250 pair (Figure 4a). In the interval 500–1500 G the typical systematic error is about 100 G. However, below 500 G this method seems to overestimate the intrinsic field, and above 1600–1700 G it shows saturation, as predicted by the calibration (Figure 2). The point spread σ is very moderate, varying between 200–300 G in the 200–1800 G interval. In contrast, the SVW estimations using the 5247 line are much less reliable (Figure 4b): the point spread σ is around 300–400 G, and there is a substantial systematic error, with the intrinsic field in the range 1000–1500 G being underestimated by 300–500 G.

The SVW method with the 6301 line appears to be as reliable as MLR with 5247/5250 pair (Figure 4d), the estimations reveal typical point spread of around 200–250 G and the systematic error between 100–200 G. Importantly, these relatively low errors are nearly constant in a wide range of field values, from 200 to 1900 G. The MLR method with the 6301/6302 pair appears to be less reliable (Figure 4c), showing a slightly bigger spread, 250–350 G, and a noticeable systematic error: it seems to quickly saturate above ~ 1500 G. Still, the MLR estimations with this pair are acceptable in the range below 1200–1300 G. This is consistent with the earlier analysis by Gordovskyy et al. (2018), although quite surprising, taking into account the differences in line formation depths in this pair (see e.g. Khomenko & Collados, 2007).

The 15648/15652 pair yields relatively good results with the MLR method in the range below 700–800 G (Figure 4e). The intrinsic field values estimated using both the MLR and SVW methods with this pair of lines have a typical error of around 250 G. Above 1 kG there is a substantial systematic error due to saturation, which is predicted by the calibration (Section 2). The intrinsic field estimations using the SVW method with the 15648 line (Figure 4f) produces results with the point spread of 200–400 G in addition to the systematic error of approximately the same value. More importantly, because this line pair is more sensitive both to the magnetic field variation, and thermal and turbulent line broadening, it produces fewer ‘usable’ points, particularly below 1 kG. This is because many pixels have observed parameters outside of the acceptable parameter ranges (see Section 2). As the result, the estimations made with this line using the SVW method, should be taken with caution.

4. Summary and Discussion

Our study of three pairs of spectral lines commonly used in solar spectropolarimetry shows that all three pairs, in principle, can be used for the intrinsic magnetic field estimations. However, they provide different accuracy and have very different validity ranges. The 5247/5250 pair can be used both for MLR and SVW measurements. The MLR method is more reliable, yielding estimations with a typical error of 200–300 G, compared with the typical error of 300–350 G for the SVW method. Depending on the width of the Stokes I profile, the MLR method can be used for field values up to 1200–1600 G. The MLR method appears to be less reliable when applied to the ‘Hinode pair’, 6301/6302. The spread of points is bigger and there is a systematic error – above 1200 G the magnetic field is underestimated by 300–500 G. At the same time, the SVW method works well: it provides the intrinsic field estimations with the accuracy of about 150–250 G in the range from 200 G to at least 1800 G. The near-infrared pair 15648/15652 provides relatively accurate results, but only for low fields, below 700–800 G. This is not surprising, since the calibration curves show that this pair quickly saturates above ~ 700 G.
Gordovskyy et al.: Using Stokes V widths for the photospheric magnetic field diagnostics

Fig. 4. Values of intrinsic field calculated using MLR (left panels) and SVW (right panels) methods compared with the actual field values taken from the model. Panels (a-b), (c-d) and (e-f) correspond to the 5247/5250, 6301/6302 and 15652/15648 pairs, respectively. Solid green lines denote sliding average values (calculated with the 150 G windows); dashed green lines denote 1σ deviation from the sliding average values.

Overall, our analysis shows that the MLR method with the 5247/5250 pair and the SVW method with the 6301 line provides the most reliable estimations because they do not produce large systematic errors. It should be noted, however, that the analysis is done for one, randomly selected MHD model. Both methods need to be tested further using a number of MHD models of photospheric magneto-convection with different initial magnetic field and different atmospheric structure.

Of course, the reliability of the considered methods depends on the calibration. The calibration used in this and other similar studies (see Khomenko & Collados, 2007; Smitha and Solanki, 2017; Gordovskyy et al., 2018) is based on the vertically-uniform magnetic field. Taking into account that the magnetic field in the photosphere is expected to have substantial vertical gradients, this calibration may result in significant systematic error. This can be overcome by constructing the calibration curves using the MHD models of magneto-convection in the photosphere, similar to those used for testing in this and previous studies.

The main conclusion is that, generally, the SVW method is as good as MLR. The main drawback of the SVW method is that it requires resolved Stokes profiles with resolution of 20–30 mA in the green area and 40–50 mA in the near-infrared range. At the same time, the SVW method has an important advantage over MLR: it requires only one
spectral line and, hence, is not affected by the line formation difference. The latter is practically significant because a number of widely-used instruments observe only one spectral line, or observe a pair not suitable for using the MLR method (such as Hinode/SOT).

Using the SVW method for fast intrinsic magnetic field diagnostics requires spectropolarimetric observations with large field of view and reasonably good spectral resolution, but only moderate spatial resolution. Forthcoming DKIST (Tritschler et al., 2016) and future EST (Jurčák et al., 2019) solar telescopes are expected to provide this type of data in grating spectroscopy mode. The Stokes V Width is a new method and we plan additional tests of it involving high-resolution MHD models in order to investigate the influence of non-LTE effects on the reliability of this method, and by using actual spectropolarimetric data to further compare SVW and MLR.

Acknowledgements. MG and PKB are funded by Science and Technology Facilities Council (UK), grant ST/P000428/1. VGL is funded by Taras Shevchenko National University of Kyiv, project 19BF023-03. Simulations have been performed using DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility.

References
Bellot Rubio, L. and Orozco Suárez, D., 2019, Liv. Rev. Sol. Phys., 16, 1.
De Wijn, A.G., Stenflo, J.O., Solanki, S.K. and Tsuneta, S., 2009, Space Sci. Rev., 114, 275.
Frazier, E.N. and Stenflo, J.O., 1972, Solar Phys., 27, 330.
Gordovskyy, M. and Lozitsky, V.G., 2014, Solar Phys., 289, 3681.
Gordovskyy, M., Shelyag, S., Browning, P.K. and Lozitsky, V.G., 2018, A&A, 619, A164.
Jang, H., 2016, Solar Phys., 291, 3501.
Jurčák, J., Collados, M., Leenaarts, J., van Noort, M. and Schlichenmaier, R., 2019, Adv.Sp.Res., 63, 1389.
Kalewicz, T. and Bommier, V., 2019, A&A, 629, A138.
Kuckein, C., 2019, A&A, 630, A139.
Khomenko, E. and Collados, M., 2007, ApJ, 659, 1726.
Musset, S., Vilmer, N., Bommier, V., 2015, A&A, 580, A106.
Rachkovsky, D.N., Tsap, T.T. and Lozitsky, V.G., 2005, J. Astron. Astrophys., 26, 435.
Sanchez Almeida, J., Solanki, S.K., Collados, M., and del Toro Iniesta, J.C., 1988, A&A, 196, 266.
Schussler, M., Shelyag, S., Berdyugina, S., Vogler, A. and Solanki, S.K., 2003, ApJL, 597L, 173.
Shelyag, S., Schussler, M., Solanki, S.K., Berdyugina, S.V. and Vogler, A., 2004, A&A, 427, 335.
Smitha, H.N and Solanki, S.K., 2017, A&A, 608, A111.
Socas-Navarro, H., 2001, ASP Conf. Ser., 236, 487.
Socas-Navarro, H., Trujillo Bueno, J. and Ruiz Cobo, B., 2000, ApJ, 544, 1141.
Socas-Navarro, H., 2011, A&A, 529, A37.
Solanki, S.K., 1993, Space Sci. Rev., 63, 1.
Stenflo, J.O., 1973, Solar Phys., 32, 41.
Stenflo, J.O., 2011, A&A, 529, A42.
del Toro Iniesta, J.C. and Ruiz Cobo, B., 2016, Liv.Rev.Sol.Phys., 13, 4.
Tritschler, A., Rimmel, T.R., Berulof, S., Casini, R., Kuhn, J.R., Lin, H. et al., 2016, Astron.Nach., 337, 1064.
Vernazza, J.E., Avrett, E.H. and Loeser, R., 1973, ApJ, 184, 605.
Vogler, A., Shelyag, S., Schussler, M., Cattaneo, F., Emonet, T. and Linde, T., 2005, A&A, 429, 335.
Welsch, B.T., 2014, PASJ, 67, 18.
Wiegelmann, T. and Sakurai, T., 2012, Liv.Rev.Sol.Phys., 9, 5.