Materials Research Express

PAPER

Investigation of Caryota urens fibers on physical, chemical, mechanical and tribological properties for brake pad applications

G Sai Krishnan¹, L Ganesh Babu¹, P Kumaran², G Yoganjaneyulu¹ and Jegamohon Sudhan Raj²

¹ Department of Mechanical Engineering, Rajalakshmi Institute of Technology, Chennai, Tamil Nadu, India
² Department of Mechatronics Engineering, Tishk International University, Erbil, KRG, Iraq

E-mail: g.sakrishnan@gmail.com

Keywords: brake pad, Chase test, Caryota urens fibers

Abstract

The idealization of this research work is to extend the utilization of the naturally available fibers as a key ingredient in the development of a non-asbestos free brake pad. The fibers used in this work are Caryota urens, which is found all over the Asian regions and abundantly available. The compression molding machine was used to develop the non-asbestos free brake pad. The fibers were added in weight percentages of 5, 10 and 15. The various physical, chemical, and mechanical properties were evaluated. Chase test rig was used to evaluate the tribological properties. The combination of Caryota urens fiber with the barytes had a more significant influence on the tribological properties. The brake pad composites with ten weight percent of Caryota urens fibers based brake pads possessed a good coefficient of friction values with less fade values and less fluctuations. Increasing the weight percentage of Caryota urens fibers in the brake pad formulation had a decreasing trend in the wear performance but increased recovery properties.

1. Introduction

The purpose of brake is to stop or slow down the vehicle at the required period. The stopping of vehicles takes place due to the frictional surfaces between two mating services. Frictional and wear resistance are the important parameters of the brake pad for better operation [1]. The brake pad generally consists of 13–15 ingredients that are used to satisfy the required frictional properties [2, 3]. They are generally classified as binders, fillers, friction modifiers (abrasives and lubricants), and reinforcements. Fillers are used further classified as inert and functional. Initially, the era of brake pad started by using the asbestos as the predominant material. Later it was identified as carcinogenic, so replacement of asbestos came into existence. Owing to the concern about eco-friendliness many researchers are showing interest towards the natural fibers which are available and present abundantly. Due to its unique advantages as excellent mechanical properties, lightweight, low cost and high strength it has been selected as the best alternative for various synthetic fibers. In recent years many natural fibers were used in multiple applications such as automobile, household appliances, textile industries, aerospace industries, etc. The various natural fibers used for various applications are jute, kenaf, bamboo, hemp, flax, cotton, areca, Tridax procumbens, Cardiospermum Halicababum etc [4–7]. These natural fibers are selected based on the ease of availability and its effectiveness in its applications. It is used in different applications by changing the physical, chemical properties and biocompatibility nature [8, 9]. The different types of fibers were used, such as short fiber, long fiber and chopped short fiber for its applications. To have better wear resistant the short random fiber is appropriate. Though natural fibers have many advantages it also has various other disadvantages on the other hand such as decreased mechanical property, stiffness and varying strength which is enhanced using various techniques like chemical treatment [10, 11]. Suryarajan et al.[12] investigated the fade and recovery performance of the silane treated, alkali-treated and untreated Prosopis juliflora fibers based brake pads using
Chase test as per SAE J661a. It was found that silane treated Prosopis juliflora fibers based brake pads with five weight percent performed better tribological performance. Saikrishnan et al. [13] developed various weight percentages of areca sheath fiber-based brake pads for automobile applications. It was found that brake pads with five weight percent of areca sheath fibers showed excellent tribological properties compared to other brake pads. Tej Singh et al. [14] investigated the various weight percentages of ramie fibers on the tribological performance of brake friction composites using Chase test rig. The test results showed that five weight percent of ramie fibers based brake pads performed better in the tribological testing compared to other developed composites.

The CUS fibers are commonly called solitary fishtail palm, toddy palm, wine palm, or jaggery palm. It belongs to Arecaceae family and found in regions of South India and South Asia countries. It can grow up to a medium-sized of 20 m tall like palm which has branched and having an extension at internodes. The study on mechanical properties of the CUS fibers in the polyester composites was already explored. The current study is to investigate the CUS fiber as reinforcement in brake pad applications. The percentage of fibers were chosen based on the previous literature [15]. The brake pads were developed as per standard practice. The developed brake pads were analyzed for physical, chemical, mechanical and tribological properties as per industrial standards.

2. Materials and methods

2.1. CUS fiber extraction and brake pad development

The CUS fiber used in this work was sourced locally from Chennai, Tamilnadu, India. The extraction of fibers was done using water retting process. After extraction, the fibers which were at the inner side were again separated from the outer sheath manually. The CUS fibers were again thoroughly washed, and the moisture content was removed by heating in a hot air oven at 50 °C for 5 h. Then the brake pads were developed using a friction material formulation possessed 15 parental ingredients namely fibers with additives (11 weight%): acrylic fiber, rock wool fiber, steel fiber, hydrated lime, binders with additives (16 weight%): phenolic resin, NBR, crumb rubber, CaCO₃, frictional modifiers (18 weight%) graphite, silicon carbide, and fillers of (15 weight%) mica, friction dust, tin powder. The barytes, CUS Fibers are the varying ingredients and its formulation weight percentage are given in table 1. The conventional method was used to develop the brake pad, and its details are given in table 2 [16–20]. The developed brake pad is shown in figure 1.

Procedure	Conditions
Sequential mixing in plough shear (lodi-gee) mixer	Total duration 20 min, shovel and chopper speed: 140 and 2800 rpm. 1 kg mix was prepared. Mixing sequence is fibers (10 min), friction modifiers & fillers (6 min), binders (4 min).
Curing in hydraulic cure press	Compression Moulding machine with six mold cavities was used, Die temperature was set to 145 °C; Compression Pressure 13 MPa; Each cavity filled with 80 grams of mixture; Curing Time: 7 min; Five intermittent breathings for removing volatile gases evolved during curing
Post curing	5.5 h at 160 °C in a hot air oven
Finishing	Grinding of the baked pad in the belt grinder

2.2. Characterization of the developed brake pads

2.2.1. Physical, chemical and mechanical characterization of the developed brake pads

The physical and mechanical properties of the developed brake pad composites were assessed by using industrial standards and the details are given in table 3 [21–25].
2.2.2. Estimation of the tribological performance by using Chase test rig

The Chase test rig was used to determine the tribological properties of the developed brake pads. The IS2742 part 4 was followed for evaluating the tribological performances. Initially, the burnishing was carried out. In order to make good contact between the samples and drum burnishing was done. It was done at the standard 308 rpm for 20 min time until the saturation temperature reaches 93°C. After completing burnishing process the baseline cycle was initiated. A temperature between 82 to 104°C was maintained. It was done as per the procedure at 411 rpm and a load of 660 N. After that the speed and the load were kept constant, fade, and recovery were measured. The detailed procedure is presented in table 4\[13, 25, 26\]. Finally the wear loss was calculated as per the change in weight observed in the digital weighing balance.

3. Results and discussions

3.1. Physical, chemical and mechanical properties of CUS fibers based brake pads

The physical, chemical and mechanical properties of the CUS fibers based brake pads are evaluated and given in table 5. The CUB1 has the highest density of 2.39 g cm^{-1} which is higher compared to the other two composites. This is mainly due to the higher density of the barytes which is 4.1 g cm^{-1} that is higher than the natural fibers. This is in tandem with the literature findings of Lenin Singaravelu et al 2019 [27] where crab shell powders were replaced by synthetic barytes in the brake friction formulation. The increase in CUS fibers decreased the hardness which is due to the presence of barytes in less weight percentage that doesn’t fill the pores that are essential for effective braking. Similar results were seen in the literature findings of Lenin Singaravelu et al 2019 [18]. The better curing is seen in the CUB3 composite due to the less hardness that enables effective heat penetration during curing. This effect can be seen from the lower acetone extraction value. Ash content shows

Table 3. Measurement procedure of various Physical, Chemical And Mechanical properties [21–25].

Composite	Property	Procedure/Standard
CUS Brake Pad (CUB)	Density (Machine: Digital density measurement apparatus)	The test was performed as per IS 2742 Part 3 based on Archimedes principle
	Acetone extraction (Machine: Soxhlet extraction apparatus)	The test was performed as per IS 2742 Part 3 was the uncured resins percentage was found
	Ash content (Machine: Muffle furnace)	The test was performed as per IS 2742 Part 3 where the brake pads samples of 10 grams were placed in a muffle furnace for 2 h at 800 °C
	Hardness (Machine: Rockwell hardness tester)	The test was performed as per IS 2742 Part 3. K scale was considered in which the ball indenter was made of steel having dia 3.125 mm, the load applied was 1500 N at ten different portions. Average values were reported
	Porosity	This test was performed as per JIS D 4418. The samples were dipped in SAE 90 oil heated for 24 h and the weight was noted. Then it was wiped out with filter paper to remove the oil. Then the weight was noted. The difference was noted.
	Shear strength	Test carried out based on ISO-6312 at room temperature conditions. In this test, the developed brake pad with the backplate was placed in the shear testing fixture. A side load was applied to the brake pad surface while another load was applied in a perpendicular direction using a rammer. The load was applied gradually until failure.

Figure 1. Developed Brake Pads.
the decreasing trend value with increase in the fiber content. This is attributed due to the thermal stability of the barytes compared to the natural fibers [28]. It is a postulate that higher the density, hardness then there will be lower porosity [29, 30]. Similar behavior is seen in the current study, where the barytes being smaller in size fill the space thereby reducing the porosity in the case of CUB1, while the natural fibers which increase the volume show higher porosity as in the case of CUB3. The shear strength for CUB3 is higher compared to other two composites which are mainly due to the better adhesion of friction materials layer with the backplate caused by effective curing of the composite. These can be inferred from the literature findings of Vijay et al 2019 and Ganesh Babu, 2019 [19, 31].

3.2. Tribological properties of the developed CUS fibers based brake pads
The tribological properties of the developed brake pad composites are done with the help of the Chase test rig and the output graphs of fade and recovery are given in figure 2. Among the tested brake pads, CUB1 showed the constant frictional values till 177 °C and later got decreased. After this a gradual reduction is observed, and then it went down at the end of the test without much difference for the CUB2 composites. Thus there is the marginal difference among the composites, CUB3 showed increased frictional value till 149 °C and later it decreased down marginally. During the first fade rate the all the developed brake pads showed drastically μ decrease, whereas during the second fade rate all the brake pad composites had a high frictional value at the temperature above 250 °C and decreased slowly. Further, a slight decrease in the frictional values is observed above the 280 °C for all the three composites. In the second recovery, frictional values are higher till a temperature of 289 °C. CUB1 showed a marginal decrease in the frictional value above 260 °C, whereas the composites with CUB3 decreased vigorously. All the frictional values are within the industrial range (0.3 to 0.55) as per the literature [28]. The fade and recovery showed similar trends. Out of all the three composites the CUB1 and CUB2 had a slight decrease in the values above 260 °C whereas CUB3 showed a phenomenal reduction in the frictional values above 205 °C. This is mainly due to increase in μ during fade cycles is due to the least thermally stable natural fibers compared to more thermally stable barytes in the frictional formulation. But the trend got reversed in the recovery cycles since the porosity of the brake pads helped to regain the friction value drastically by removing the heat at the interface thereby sustaining the brake pads from transfer film formation by pyrolysis and other abrasive mechanisms. This is tandem with the literature findings of Manoharan et al 2019 and Vijay et al 2019 [23, 28].

3.2.1. Frictional performance parameters
The frictional behavior of all the developed composites is observed and given in figure 3. All the developed composites μ are well within the industrial range as specified in the literature [23]. The μ hot values will be lesser
than μ normal values as per the literature [22] similar trend is also seen in the current study. μ Performance was measured by taking the average of both fade and recovery test runs. The minimum coefficient of friction was taken from both the fade cycles and highest coefficient of friction was obtained recovery cycles. The μ performance and μ Fade are between 0.33–0.370 and 0.345–0.365 respectively and it showed decreasing trend on increasing the CUS fiber, and it is presented in the figure below. This is mainly due to degradation of least stable ingredients at higher temperatures. From figure 3, it is witnessed that the performance coefficient of friction and fade possessed increasing values for CUB1 and CUB2; later on it decreased by increasing the fiber content and reduction in thermally stable barytes [28]. This thermally stable barytes also plays a vital role in film formation that protects the braking interface prone to further degradation of least stable ingredients and contact plateaus.
from further disintegration. The μ recovery showed an increasing trend due to the better porosity which helped to prevent degradation causing pyrolysis [29, 30, 32].

3.3. Wear performance and worn surface morphology of the brake pads

The wear performance is a combination of different mechanisms that are thermally activated. In this work increasing the content of the CUS fibers increased the wear rate. The wear for all the composites remains in the range between 1.29 for CUB1 and 1.39 for CUB2 and 1.57 for CUB3. The increase in the wear is attributed due to the increasing content of the CUS fibers with the reduction in thermally stable barytes [28]. Thus optimal percentage of CUS fibers has beneficial effects on the wear performance. It can also be due to the more amount of CUS fibers that were added in CUB3, caused fibers agglomerated and peeled off, thereby increasing the wear rate. Higher the hardness increases the wear resistance in certain cases for brake pads; similar behavior is also seen in this study [31].

The worn surface analysis of the Chase tested brake pads are analyzed and discussed below in figures 4(a)–(c). The wear debris and small pits, grooves are observed in all the tested brake pads. It is formed due to the scattered particles. The formation of contact plateaus and transfer patches are mainly due to the fibers, thermally stable, and least stable ingredients which in turn control the tribological properties of the brake pads. The wear debris also depends on these fibers. The transfer patches are seen in all the composites but more in CUB3. This is due to the reduced wear resistance of CUB 3 when compared to CUB1. Thus CUB3 SEM images 4(c) shows a lot of wear debris and severe damages on the tested surface. While in the case of CUB1 as shown in figure 4(a), there exist transfer patches and film formation which helps to prevent the pyrolysis and further degradation of ingredients leading to good wear resistance. CUB2 as shown in figure 4(b) performed slightly lower than CUB1.

4. Conclusions

Caryota urens fibers based brake pads were fabricated by compression molding technique and physical, chemical mechanical and tribological properties were evaluated. The following conclusions were drawn.

- The density, hardness, ash content got decreased with an increase in *Caryota urens* fibers in the brake pads while the shear strength, porosity got increased.

Figure 4. SEM images of Chase tested brake pads (a) CUB 1; (b) CUB 2; (c) CUB 3.
The wear performance was better in the case of 5 weight percent *Caryota urens* fibers compared to the other two developed brake pads. This behavior can be seen from worn surface images that shows film and transfer patches.

Thus *Caryota urens* fibers can be optimally used in the brake friction materials formulation as a reinforcement.

ORCID iDs

G Sai Krishnan @ https://orcid.org/0000-0001-7828-8399

References

[1] Chan D and Stachowiak G W 2004 Review of automotive brake friction materials Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 218 953–66

[2] Vineeth Kumar V and Senthil Kumaran S 2019 Friction material composite: types of brake friction material formulations and effects of various ingredients on brake performance—a review Mater. Res. Express 6 082005

[3] Aranganathan N and Bijwe J 2016 Development of copper-free eco-friendly brake-friction material using novel ingredients Wear 352 79–91

[4] Vijay R, Lenin Singaravelu D, Vinod A, Sanjay M R, Siengchin S, Jawaid M, Khan A and Parameswaranpillai J 2019 Characterization of raw and alkali treated new natural cellulosic fibers from *Tridax procumbens* Int. J. Biol. Macromol. 125 99–108

[5] Jafer Daniel D, Sai Krishnan G and Velmurugan P 2019 Investigation on the characteristics of bamboo/jute reinforced hybrid epoxy polymer composites Mater. Res. Express 6 105346

[6] Jothibasu S, Mohanamurugan S, Vijay R, Lenin Singaravelu D, Vinod A and Sanjay M R 2018 Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications J. Ind. Text. 00 1–25

[7] Vinod A, Vijay R, Lenin Singaravelu D, Sanjay M R and Siengchin S 2019 Extraction and characterization of natural fiber from stem of *Caryota urens* halicabum J. Nat. Fibers 00 1–11

[8] Vijay R, Manoharan S, Vinod A, Lenin Singaravelu D, Sanjay M R and Siengchin S 2019 Characterization of raw and benzoyl chloride treated impomea pes-caprae fibers and its epoxy composites Mater. Res. Express 6 095307

[9] Vijay R, Lenin Singaravelu D, Vinod A, Paul Raj I F, Sanjay M R and Siengchin S 2019 Characterization of novel natural fiber from *saccharum bengalense* grass (Sarkandha) J. Nat. Fibers 00 1–9

[10] Vinod A, Vijay R, Lenin Singaravelu D, Sanjay M R, Siengchin S and Moure M M 2019 Characterization of untreated and alkali treated natural fibers extracted from the stem of *Catharanthus roseus* Mater. Res. Express 6 085406

[11] Vijay R, Lenin Singaravelu D, Vinod A, Sanjay M R and Siengchin S 2019 Characterization of alkali-treated and untreated natural fibers from the stem of parthenium hysterophorus J. Nat. Fibers 00 1–11

[12] Surya Rajan B, Saibalaji M A and Mohideen S R 2019 Tribological performance evaluation of epoxy modified phenolic FC reinforced with chemically modified Prosopis Juliflora bark fiber Mater. Res. Express 6 075313

[13] Sai Krishnan G, Jayakumari L S, Babu L G and Suresh G 2019 Investigation on the physical, mechanical and tribological properties of areca sheath fibers for brake pad applications Mater. Res. Express 6 085309

[14] Singh T, Kumar N, Grewal J S, Patnaik A and Fekete G 2019 Natural fiber reinforced non-asbestos brake friction composites: influence of ramie fiber on physico-mechanical and tribological properties Mater. Res. Express 6 115701

[15] Shetty R, Pai R, Barboza A B and Gandhi V P 2018 Processing, mechanical characterization and its tribological study of discontinuously reinforced *caryota urens* fibre polyester composites Journal of Engineering and Applied Sciences 13 3920–8

[16] Manoharan S, Shihab A I, Alendard A S A, Ganesh Babu L, Vijay R and Lenin Singaravelu D 2019 Influence of recycled basalt-aramide fibers integration on the mechanical and thermal properties of brake friction composites Mater. Res. Express 6 115310

[17] Lenin Singaravelu D, Vijay R and Rahul M 2015 Influence of crab shell on tribological characterization of eco-friendly products based non-asbestos brake friction materials SAE Technical Paper (https://doi.org/10.4271/2015-01-26)

[18] Lenin Singaravelu D, Vijay R and Filip P 2019 Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites Wear 426 1129–41

[19] Vijay R, Lenin Singaravelu D, Sanjay M R and Moure M M 2019 Characterization of untreated and alkali treated natural fibers from stem of *Caryota urens* Mater. Res. Express 6 085406

[20] Thiyagarajan V, Kalaichelvan K, Vijay R and Lenin Singaravelu D 2016 Influence of thermal conductivity and thermal stability on the fade and recovery characteristics of non-asbestos semi-metallic disc brake pad J. Braz. Soc. Mech. Sci. Eng. 38 1207–19

[21] Manoharan S, Vijay R, Lenin Singaravelu D and Kchaou M 2019 Experimental investigation on the tribo-thermal properties of brake friction materials containing various forms of graphite: a comparative study Arab. J. Sci. Eng. 44 1459–73

[22] Antonyraj J, Vijay R and Singaravelu D 2019 Influence of WS2/SnS2 on the tribological performance of copper-free brake pads Industrial Lubrication and Tribology 71 398–405

[23] Manoharan S, Sai Krishnan G, Babu L G, Vijay R and Singaravelu D L 2019 Synergistic effect of red mud-iron sulfide particles on fade-recovery characteristics of non-asbestos organic brake friction composites Mater. Res. Express 6 105311

[24] Manoharan S, Vijay R, Lenin Singaravelu D, Krishnrajar S and Suresha B 2019 Tribological characterization of recycled basalt-aramide fibre reinforced hybrid friction composites using grey-based Taguchi approach Mater. Res. Express 6 065301

[25] Saikrishnan G, Jayakumari L S, Vijay R and Lenin Singaravelu D 2019 Influence of iron–aluminum alloy on the tribological performance of non-asbestos brake friction materials—a solution for copper replacement Industrial Lubrication and Tribology 00 1–13

[26] Surya Rajan B, Balaji M A S and Mohamed Aslam Noorani A B 2019 Effect of slake surface treatment on the physico-mechanical properties of shell powder reinforced Epoxy modified phenolic friction composite Mater. Res. Express 6 065315
[27] Lenin Singaravelu D, Ragh R, Vijay R, Manoharan S and Kchaou M 2019 Development and performance evaluation of eco-friendly crab shell powder based brake pads for automotive applications International Journal of Automotive and Mechanical Engineering 16 6502–23

[28] Vijay R, Manoharan S and Lenin Singaravelu D 2019 Influence of natural barytes purity levels on the tribological characteristics of non-asbestos brake pads Industrial Lubrication and Tribology 00 1–10

[29] Vijay R, Lenin Singaravelu D and Jayaganthan R 2019 Development and characterization of stainless steel fiber-based copper-free brake liner formulation: a positive solution for steel fiber replacement Friction 00 1–25

[30] Vineeth Kumar V and Senthil Kumaran S 2019 Tribological performance evaluation of fused mullite-reinforced hybrid composite brake pad for defence application Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 179

[31] Ganesh Babu I. 2019 Influence of benzoyl chloride treatment on the tribological characteristics of Cyperus pangorei fibers based non-asbestos brake friction composites Mater. Res. Express 7 015303

[32] Manoharan S, Vijay R, Singaravelu D L and Kchaou M 2019 Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction composites Industrial Lubrication and Tribology 71 341–7