Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias

Citation for published version:
Stoeck, K, Sanchez-Juan, P, Gawinecka, J, Green, A, Ladogana, A, Pocchiari, M, Sanchez-Valle, R, Mitrova, E, Sklaviadis, T, Kulczycki, J, Slivarichova, D, Saiz, A, Calero, M, Knight, R, Aguzzi, A, Laplanche, J-L, Peoc'h, K, Schelzke, G, Karch, A, van Duijn, C&M & Zerr, I 2012, 'Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years' Brain, vol 135, no. 10, pp. 3051-3061. DOI: 10.1093/brain/aws238

Digital Object Identifier (DOI):
10.1093/brain/aws238

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Brain

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 23. Jul. 2018
Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years

Katharina Stoeck,1 Pascual Sanchez-Juan,2 Joanna Gawinecka,1 Alison Green,3 Anna Ladogana,4 Maurizio Pocchiari,4 Raquel Sanchez-Valle,5 Eva Mitrova,6 Theodor Sklaviadis,7 Jerzy Kulczycki,8 Dana Slivarichova,6 Albert Saiz,5 Miguel Calero,9 Richard Knight,3 Adriano Aguzzi,10 Jean-Louis Laplanche,11 Katell Peoc’h,11 Gabi Schelzke,1 Andre Karch,1 Cornelia M. van Duijn12 and Inga Zerr1

1 Department of Neurology, National Reference Centre for Transmissible Spongiform Encephalopathies, Georg-August-University, 37075 Göttingen, Germany
2 Department of Neurology, University Hospital Marqués de Valdecilla, Fundación Marqués de Valdecilla IFIMAV and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 39008 Santander, Spain
3 National CJD Surveillance Unit, University of Edinburgh, EH4 2XU, UK
4 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
5 Department of Neurology, Creutzfeldt–Jakob Disease Unit, Hospital Clinic, 08036 Barcelona, Spain
6 Institute of Preventive and Clinical Medicine, Slovak Medical University, 83301 Bratislava, Slovakia
7 Department of Pharmaceutical Sciences, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, EL 54124, Greece
8 1-st Neurological Department, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
9 National Centre of Microbiology, Carlos III Health Institute, 28220 Madrid, Spain
10 Institute of Neuropathology, University Hospital, 8091 Zurich, Switzerland
11 UF de Génétique Moléculaire, Laboratoire associé au CNR ‘ATNC’, Hôpital Lariboisière, 75010 Paris, France
12 Departments of Epidemiology and Biostatistics, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands

Correspondence to: Katharina Stoeck, MD, Department of Neurology, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
E-mail: epicjd@med.uni-goettingen.de

To date, cerebrospinal fluid analysis, particularly protein 14-3-3 testing, presents an important approach in the identification of Creutzfeldt–Jakob disease cases. However, one special point of criticism of 14-3-3 testing is the specificity in the differential diagnosis of rapid dementia. The constant observation of increased cerebrospinal fluid tests per year over the last years raises the concern of declining specificity due to higher number of cerebrospinal fluid tests performed in various neurological conditions. Within the framework of a European Community supported longitudinal multicentre study (‘cerebrospinal fluid markers’) we analysed the spectrum of rapid progressive dementia diagnoses, their potential influence on 14-3-3 specificity as well as results of other dementia markers (tau, phosphorylated tau and amyloid-β1–42) and evaluated the specificity of 14-3-3 in Creutzfeldt–Jakob disease diagnosis for the years 1998–2008. A total of 29 022 cerebrospinal fluid samples were analysed for 14-3-3 protein and other cerebrospinal fluid dementia markers in patients with rapid dementia and suspected Creutzfeldt–Jakob disease in the participating centres. In 10731 patients a definite diagnosis could be obtained. Protein 14-3-3 specificity was analysed for Creutzfeldt–Jakob disease with respect to increasing cerebrospinal fluid tests per year

Received February 28, 2012. Revised June 27, 2012. Accepted July 2, 2012
© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

The clinical diagnosis of Creutzfeldt–Jakob disease is based on clinical syndrome and results of established paraclinical tests (EEG, CSF analysis and cranial MRI) (Zerr et al., 2000a, 2009; Collins et al., 2006). The predominant clinical symptoms are characterized by rapid progressive dementia followed by development of neurological signs, e.g. ataxia and myoclonus (Gambetti et al., 2003). The disease is fatal and leads to death in a few months.

Detection of periodic sharp wave complexes on EEG substantiated the diagnosis of sporadic Creutzfeldt–Jakob disease for a long period of time (Masters et al., 1979; Zerr et al., 2000a, b). From 1995 onwards, detection of neuronal destruction markers in CSF have become more and more important. They have been established in diagnostic work-up, with protein 14-3-3 as the most promising surrogate marker finally included in the WHO criteria (Hsich et al., 1996; Zerr et al., 2000a). Because elevated levels of protein 14-3-3 are also reported in a range of non-prion-related diseases, mostly caused by an acute neurological event such as encephalitis, stroke, epileptic fit or tumour, positive results must be interpreted in the clinical context.

Another major step in the diagnosis of sporadic Creutzfeldt–Jakob disease was the introduction of MRI, where a specific pattern in patients with sporadic Creutzfeldt–Jakob disease, characterized by hyperintense signals in basal ganglia and cortical regions, was identified (Tschampa et al., 2007; Meissner et al., 2008). Especially sensitive MRI techniques such as FLAIR and diffusion-weighted MRI sequences allow a diagnosis of sporadic Creutzfeldt–Jakob disease with high sensitivity and specificity (Satoh et al., 2007; Meissner et al., 2009). As a result, a positive MRI scan was proposed to be included into the clinical criteria in 2009 (Zerr et al., 2009).

To date, CSF analysis, in particular protein 14-3-3 testing, presents an important approach in the identification of Creutzfeldt–Jakob disease cases and a request for CSF testing to specialized laboratories is frequently a major way to obtain referrals to surveillance centres. However, one special point of criticism of 14-3-3 testing was a potential loss of specificity and several reports on that have been published (Chohan et al., 2010; Coulthart et al., 2011; Perry and Geschwind, 2011). Within the framework of a European Community (EC) supported longitudinal multicentre study (‘CJD markers’) we evaluated the specificity of 14-3-3 in Creutzfeldt–Jakob disease diagnosis from the years 1998–2008. In addition we analysed the spectrum of rapid progressive dementia diagnoses, their potential influence on 14-3-3 specificity as well as results of related dementia markers (tau, phosphorylated tau, amyloid β42) in different forms of rapid dementias. We present results of regular ring trials conducted in participating surveillance laboratories to analyse inter-laboratory reliability (Supplementary material).

The term ‘rapid progressive dementia’ or shortened ‘rapid dementia’ we used in this study summarizes a condition of cognitive deterioration that can be attributed to either a neurological (most commonly neurodegenerative) or non-neurological disease (Geschwind et al., 2008). Potentially reversible conditions (e.g. acute delirium, pseudo-dementia in depression, CNS inflammation) can appear frequently and need to be considered in the diagnostic process.

Materials and methods

Patients

The study was conducted within the framework of an EC-supported multinational study (‘CJD markers’) (Sanchez-Juan et al., 2006).

Patients were referred to national surveillance units for detection of CSF 14-3-3 protein during the course of routine clinical diagnosis and surveillance. Samples were sent to the individual laboratories for the detection of CSF 14-3-3, further for CSF tau, phosphorylated tau and amyloid β42 in participating countries between 1998 and 2008. All countries collected clinical and neuropathological data from those patients with a clinical suspicion of Creutzfeldt–Jakob disease or related disorders. The corresponding diagnoses were obtained by follow-up.

Patient’s data collection and analysis

Clinical data such as age at onset, gender, disease duration, time point of lumbar puncture, final clinical and neuropathological diagnoses
were collected by each centre. A database was set up, which included detailed data on the CSF markers and patients’ characteristics for a total of 29,022 samples from patients with Creutzfeldt–Jakob disease and non-Creutzfeldt–Jakob disease (other rapid dementia) diagnoses. In 10,731 patients, a definite diagnosis could be obtained. From the remaining 18,291 samples, no further clinical data were available. In all participating centres, the diagnosis of Creutzfeldt–Jakob disease was made according to established, internationally agreed criteria (WHO, 1998; Zerr et al., 2009).

Control patients were those who proved an alternative diagnosis or in whom Creutzfeldt–Jakob disease was definitely excluded on clinical or pathological grounds. Diagnoses in control patients were based on neuropathology (whenever possible) and clinical follow-up information.

For calculation of 14-3-3 specificity we used a two-step approach: (i) analysis was restricted to patients with a definite diagnosis (n = 10,731) and (ii) total specificity was calculated using all available samples. When a clinical diagnosis was available, patients were assigned to one of the following groups: neurodegenerative, inflammatory, CNS tumour/paraneoplastic, stroke, psychiatric, metabolic and ‘other’ (Table 1).

Cerebrospinal fluid protein analysis

CSF was taken by lumbar puncture during the clinical investigation of the patient at the notifying hospital and sent to individual laboratories. Tests were conducted in each laboratory according to common agreed standards. CSF was stored at −80°C prior to analysis. CSF was analysed for 14-3-3, tau, phosphorylated tau, amyloid-β and non-Creutzfeldt–Jakob disease (other rapid dementia) diagnoses. In 10,731 patients, a definite diagnosis could be obtained. From the remaining 18,291 samples, no further clinical data were available. In all participating centres, the diagnosis of Creutzfeldt–Jakob disease was made according to established, internationally agreed criteria (WHO, 1998; Zerr et al., 2009).

Control patients were those who proved an alternative diagnosis or in whom Creutzfeldt–Jakob disease was definitely excluded on clinical or pathological grounds. Diagnoses in control patients were based on neuropathology (whenever possible) and clinical follow-up information.

For calculation of 14-3-3 specificity we used a two-step approach: (i) analysis was restricted to patients with a definite diagnosis (n = 10,731) and (ii) total specificity was calculated using all available samples. When a clinical diagnosis was available, patients were assigned to one of the following groups: neurodegenerative, inflammatory, CNS tumour/paraneoplastic, stroke, psychiatric, metabolic and ‘other’ (Table 1).

Table 1 Diagnostic spectrum of rapid dementia in CSF biomarkers from patients with definite clinical/neuro-pathological diagnosis

Diagnosis	n (%)
Sporadic Creutzfeldt–Jakob disease	3254 (30.3)
Genetic Creutzfeldt–Jakob disease	229 (2.1)
Iatrogenic Creutzfeldt–Jakob disease	46 (0.4)
Variant Creutzfeldt–Jakob disease	27 (0.3)
Gerstmann–Sträussler–Scheinker disease	17 (0.2)
Fatal Familial Insomnia	43 (0.4)
Neurodegenerative	3034 (28.3)
Inflammation	794 (7.4)
Paraneoplastic/CNS tumour	346 (3.2)
Stroke	583 (5.4)
Epileptic fit	218 (2.0)
Psychiatric	459 (4.3)
Metabolic	483 (4.5)
Other	1198 (11.2)
Total	10,731 (100.0)

Results

In total, CSF analysis of dementia markers (14-3-3, tau, phosphorylated tau, amyloid-β) were performed on 29,022 samples. The main analysis (patient’s with definite clinical diagnosis) comprised 3,616 samples from patients with various forms of transmissible spongiform encephalopathies (3,254 samples being from patients with sporadic Creutzfeldt–Jakob disease) and 7,115 from control subjects (Table 1).

Diagnoses of rapid progressive dementias in 14-3-3 test referrals

Table 1 demonstrates the rapid progressive dementia diagnoses in patients with suspected Creutzfeldt–Jakob disease referred for CSF protein 14-3-3 testing between the years 1998 and 2008. Differential diagnoses were divided into: prion disorders (n = 3,616), primary and secondary forms of neurodegenerative dementia (n = 3,034, including vascular dementia and normal
pressure hydrocephalus) and acute neurological disorders such as stroke, CNS inflammation, CNS tumour or epileptic fit (n = 1941). Non-neurological causes were from psychiatric (e.g. pseudo-dementia in depression) or metabolic origin (e.g. hyponatraemia) or related to ‘other diagnosis’ (n = 2140). The most frequent differential diagnosis was sporadic Creutzfeldt–Jakob disease with 30.3%, followed by neurodegenerative dementia with 28.3% and patients with ‘other diagnosis’ (11.2%). Regarding acute neurological disorders, the group of CNS inflammation was most frequent with 7.4%, followed by stroke (5.4%) and paraneoplastic/CNS tumour (3.2%). Rapid cognitive disturbance from a non-neurological cause comprised 4.3% psychiatric and 4.5% metabolic origin. If we exclude all patients with transmissible spongiform encephalopathies, the distribution was as follows: 42.6% neurodegenerative dementia, 27.3% acute neurological disease (most frequently: 11.2% CNS inflammation, 8.2% stroke) and 13.2% non-neurological, potentially treatable cognitive deterioration (6.8% metabolic and 6.4% psychiatric disease).

Cerebrospinal fluid dementia markers in rapid progressive dementias

In the individual reference laboratories we observed a trend towards increased 14-3-3 test referrals not only for Creutzfeldt–Jakob disease, but also in screening of CSF dementia markers in patients with rapid progressive dementia (Fig. 1A). Going along with this finding, we observed a decrease in our positive predictive values over time. The negative predictive value remains stable (Fig. 1C) Because of this trend, we were able to collect substantial data on dementia markers in these patients. Hereby, we analysed tau, phosphorylated tau and amyloid-β1–42 according to subgroups of neurodegenerative, acute neurological or non-neurological (potentially reversible) origin in a similar fashion to 14-3-3.

Table 2 summarizes collective data on 14-3-3, tau, phosphorylated tau and amyloid-β1–42. As previously described, 14-3-3 was negative in 93% of all patients with neurodegenerative disorders. The test became more often false positive in acute neurological events (inflammation 19.2%, stroke 15.2%, epileptic fits 17% and CNS tumour 18.4%) causing a drop in specificity than neurodegenerative and non-neurological forms of dementia. With respect to tau we observed a similar trend. Levels at a cut-off >1300 pg/ml are considered highly suggestive for Creutzfeldt–Jakob disease (Otto et al., 2002; Sanchez-Juan et al., 2006) and were referred to as ‘tau positive’ in our analysis. ‘Tau negative’ results were obtained in 95% of all patients with neurodegenerative disorders. ‘Tau positive’ results were similarly obtained as 14-3-3 in patients with epileptic fits (24%), CNS tumour/paraneoplastic (22%) and stroke (18.4%).

For phosphorylated tau and amyloid-β1–42 no particular cut-off points are established in Creutzfeldt–Jakob disease diagnosis. For
In the differentiation of Creutzfeldt-Jakob disease from other rapid dementias, the calculation of ‘false positive’ or ‘false negative’ results was not possible. However, patients with low amyloid-β1–42 and high phosphorylated tau levels are at a clear risk of Alzheimer’s disease (Hertz et al., 2010). We observed a pathologically elevated phosphorylated tau median (64.5 pg/ml) in the group with epileptic fits. For amyloid-β1–42, we found pathologically decreased levels in the group of neurodegenerative CNS diseases (413 pg/ml). This was expected as it represents a typical result in patients with Alzheimer’s disease (see later). Of interest, in non-neurological patients with the diagnosis ‘metabolic disorders’ we also detected decreased median levels of amyloid-β1–42 (418 pg/ml).

Table 2 Overview on 14-3-3 and levels of tau, phosphorylated tau, amyloid β1–42 in differential diagnosis of rapid dementia (excluding Creutzfeldt-Jakob disease)

Diagnosis	CSF all, n	14-3-3, n	14-3-3	Tau (pg/ml), median (min–max), positivity (%)	Phosphorylated tau (pg/ml), median (min–max)	Amyloid β1–42 (pg/ml), median (min–max)					
Neurodegenerative	3034	3009	2794/3009 (92.9)	142/3009 (4.7)	73/3009 (2.4)	375	224 (0–38 400) (5.1)	183	55 (10–202)	303	413 (55–1450)
Inflammation	794	785	601/785 (76.6)	151/785 (19.2)	33/785 (4.2)	93	221 (45–3156) (8.6)	13	38 (15–80)	41	491 (115–1094)
Paraneoplastic/CNS tumour	346	342	256/342 (74.9)	63/342 (18.4)	23/342 (6.70)	41	396 (70–29 000) (22)	12	37.5 (20–80)	24	474 (80–878)
Stroke	583	574	465/574 (81)	87/574 (15.2)	22/574 (3.60)	114	269 (41–14 659) (18.4)	37	49 (13–124)	96	478 (80–1481)
Epileptic fit	218	218	171/218 (78.4)	37/218 (17)	10/218 (4.60)	33	329 (75–5584) (24.2)	8	64.5 (20–132)	21	519 (217–1049)
Psychiatric	459	459	439/459 (95.6)	13/459 (2.8)	7/459 (1.5)	63	127 (0–1112) (0)	27	46 (16–215)	60	607 (77–1296)
Metabolic	483	481	438/481 (91.1)	36/481 (7.5)	7/481 (1.5)	42	188 (75–3472) (2.4)	17	39 (12–101)	40	418 (80–1494)

To illustrate our findings, we have grouped diseases according to similar pathology: (i) Alzheimer’s disease, (ii) vascular dementia, (iii) normal pressure hydrocephalus, (iv) neurodegenerative diseases, (v) vascular dementia and Alzheimer’s disease, (vi) neurodegenerative dementia and Alzheimer’s disease, (vii) neurodegenerative dementia and vascular dementia, (viii) neurodegenerative dementia and normal pressure hydrocephalus.

As predetermined cut-off values are not available for the majority of differential diagnoses in this study, the next analysis describes results of CSF dementia marker profiles in various neurodegenerative dementias. Data on CSF dementia markers (14-3-3, tau, phosphorylated tau and amyloid-β1–42) were evaluated in a total of 3034 patients (28.3% of the total group) with a neurodegenerative disease diagnosis. Out of these patients, 941 (37.4%) displayed a diagnosis of Alzheimer’s disease, followed by 486 patients (19.3%) with unclassified dementia, 362 patients with Lewy body disease (14.4%), 172 patients with vascular dementia (6.8%), 162 patients with frontotemporal dementia (6.4%), 142 patients with Parkinson’s disease (6.1%), 10 patients with motor neuron disease (0.4%) and 74 patients with multisystem atrophy (2.9%).

To determine cut-off values, we have used a positive 14-3-3 test in patients with vascular dementia (10.7%) followed by Alzheimer’s disease (5.8%) and Lewy body disease (5.6%) (Table 3). A positive tau (at Creutzfeldt–Jakob disease cut-off 41300 pg/ml) was obtained in vascular dementia (7.8%), Alzheimer’s disease (7.6%), Parkinson’s disease (2.0%) and Lewy body disease (1.8%) (Table 4). The median tau ranged highest in the group of Alzheimer’s disease (134 pg/ml) and Huntington’s disease (138 pg/ml) followed by amyloid-β1–42 (194 pg/ml) (Table 5). Median phosphorylated tau levels of other neurodegenerative dementias ranged at normal levels; however, all neurodegenerative disease groups displayed pathologically elevated phosphorylated tau levels at maximum range. For amyloid-β1–42, pathologically decreased levels (5450 pg/ml) were observed in Alzheimer’s disease (median 404 pg/ml), Lewy body disease (336 pg/ml) and Huntington’s disease (321 pg/ml) (Table 5).
dementia, (iii) \(\alpha \)-synucleinopathies including Parkinson’s disease, Lewy body disease and multisystem atrophy and (iv) tauopathies including frontotemporal dementia and progressive supranuclear palsy (Fig. 3A–C). Here we can show that median levels of tau and phosphorylated tau generally range higher in Alzheimer’s disease, vascular dementia and Lewy body disease whereby in contrast, median levels of amyloid-\(\beta_{1-42} \) are generally reduced in patients with Alzheimer’s disease and patients

Table 3 Results of positive 14-3-3 tests in neurodegenerative dementia (excluding Creutzfeldt-Jakob disease)

Protein 14-3-3	Diagnosis	Total n	Negative (%)	Positive (%)	Trace (%)
	Alzheimer’s disease	932	851 (91.3)	54 (5.8)	27 (2.9)
	Vascular dementia	169	144 (82.5)	18 (10.7)	7 (4.1)
	Lewy body disease	358	331 (92.5)	19 (5.3)	8 (2.2)
	Frontotemporal dementia	162	150 (92.6)	7 (4.3)	5 (3.1)
	Motor neuron disease	10	10 (100)	0 (0)	0 (0)
	Multisystem atrophy	74	68 (91.6)	2 (2.7)	4 (5.4)
	Corticobasal degeneration	57	56 (98.2)	1 (1.8)	0 (0)
	Huntington’s disease	32	32 (100)	0 (0)	0 (0)
	Normal pressure hydrocephalus	16	15 (93.8)	0 (0)	1 (6.3)
	Parkinson’s disease	140	134 (95.7)	6 (4.3)	0 (0)
	Progressive supranuclear palsy	62	60 (96.8)	2 (3.2)	0 (0)
Cerebrospinal fluid test referrals per year

We observed a constant increase in CSF test referrals per year between 1998 and 2008 that was seen in all participating countries (Fig. 1A). In spite of the increase in CSF tests, there was no increase in the total number of cases with identified transmissible spongiform encephalopathies. In the years 1998–2005 we identified between 330 and 422 cases with transmissible spongiform encephalopathies per year. Between 2005 and 2008, the number of cases with transmissible spongiform encephalopathies appeared reduced (139–194 cases per year), because collective data was not available from all participating countries during this time period.

Cerebrospinal fluid 14-3-3 specificity in sporadic Creutzfeldt–Jakob disease

Despite of the increasing number of CSF referrals per year for detection of 14-3-3 in suspected cases of Creutzfeldt–Jakob disease in the 10-year period, we calculated a stable and high specificity of 14-3-3 that ranged from 0.91 to 0.95 per year (Fig. 1B). The total 14-3-3 specificity for Creutzfeldt–Jakob disease during the observed time period was 0.92. When compared with all patients with definite diagnoses only, the specificity was slightly lower (0.90).

Influence of 14-3-3 specificity by differential diagnosis

The overall test specificity varied with respect to differential diagnosis. A lower 14-3-3 specificity was observed in discrimination to acute neurological events (82–87%), a high 14-3-3 specificity was obtained in neurodegenerative diseases (95–97%) and non-neurological conditions (91–97%) (Fig. 4 and Table 6).

Discussion

Rapid progressive dementia diagnosis

The spectrum of differential diagnosis of rapid dementia ranged from neurodegenerative, acute neurological (e.g. CNS inflammation, tumour, stroke) and non-neurological (e.g. psychiatric, metabolic) origin. The most frequent neurodegenerative disease diagnoses in our cohort were Alzheimer’s disease, Lewy body disease and vascular dementia. This follows a similar trend when compared to previous reports from longitudinal national surveillance studies (Van Everbroeck et al., 2004; Heinemann et al., 2007; Josephs et al., 2009; Chitravas et al., 2011). Likewise, we observed a significant ratio of potentially treatable forms of rapid dementia diagnoses that were previously identified as important differential diagnoses of suspected transmissible spongiform encephalopathies (Chitravas et al. 2011).

Table 5 Overview on levels of tau, phosphorylated tau and amyloid β_{1–42} in neurodegenerative dementia (excluding Creutzfeldt–Jakob disease)

Diagnosis	Tau (pg/ml)	Phosphorylated tau (pg/ml)*	Amyloid β_{1–42} (pg/ml)*			
	Total n	Median (min–max)	Total n	Median (min–max)	Total n	Median (min–max)
Alzheimer’s disease	132	314 (75–8766)	51	83 (19–202)	108	404 (80–1445)
Vascular dementia	64	206 (75–4878)	25	49 (17–110)	147	490 (80–1481)
Lewy body disease	55	214 (75–1395)	35	54 (10–182)	327	336 (89–1450)
Frontotemporal dementia	28	159 (70–554)	16	39 (18–105)	146	497 (110–865)
Multiple system atrophy	15	136 (70–740)	7	41 (17–72)	67	481 (93–852)
Corticobasal degeneration	4	219 (164–389)	3	60 (53–65)	54	457 (282–549)
Huntington’s disease	4	383 (75–933)	3	31 (20–123)	30	321 (222–1419)
Parkinson’s disease	51	179 (0–756)	37	55 (17–106)	105	476 (80–1304)
Progressive supranuclear palsy	11	131 (75–275)	9	38 (11–69)	53	524 (77–756)
Results of dementia markers in neurodegenerative dementias and rapid dementia from acute neurological diseases

Many studies on amyloid β₁₋₄₂, total tau levels and its phosphorylated isoforms have been performed in CSF biomarker-supported diagnosis of Alzheimer’s disease. The combined measurement of tau and amyloid β₁₋₄₂ in CSF has proven diagnostic accuracy for Alzheimer’s disease (Hulstaert et al., 1999). However, in most studies, the number of patients per group is limited and various criteria and diagnostic techniques have been applied (Zerr et al., 2011). Amyloid β₁₋₄₂ levels are decreased in patients with Alzheimer’s disease, but might also decrease in other types of dementia. Test sensitivity for amyloid β₁₋₄₂ alone is given from 60–96%, depending on the design of the study (Zerr et al., 2011). Elevated levels of tau and phosphorylated tau are recognized hallmarks in the CSF supported diagnosis of Alzheimer’s disease.
CSF tests per year—a phenomena experienced in all participating Creutzfeldt–Jakob disease diagnosis (Perry and Geschwind 2011). Subsequently led to question the value of this test in the diagnosis mostly of acute neurological origin. This observation was positive when 14-3-3 tests were related to non-Creutzfeldt–Jakob disease diagnoses. Specificities ranging from 84% (Zerr et al., 1996; Zerr et al., 1998; Lemstra et al., 2000; Van Everbroeck et al., 2003; Cuadrado-Corrales et al., 2006; Green et al., 2007). However, with increasing numbers of test referrals per year, we observed that a number of positive tests were related to non-Creutzfeldt–Jakob disease diagnosis mostly of acute neurological origin. This observation was supposed to impact on previously reported high specificity and subsequently led to question the value of this test in Creutzfeldt–Jakob disease diagnosis (Perry and Geschwind 2011).

With our analysis we provide evidence that in spite of increasing CSF tests per year—a phenomena experienced in all participating countries—the specificity of 14-3-3 remained highly stable an overall specificity of 92%. The number of patients with Creutzfeldt–Jakob disease diagnosis increased with time after this test became available but there was no further substantial increase in numbers after 2000.

Rapid dementia caused by acute neurological events (e.g. inflammation, stroke, CNS tumour or epileptic fits) is the main reason for a drop in test specificity from 92% to 82–85%. It is not clear why such CSF samples were referred for 14-3-3 testing since these conditions do not represent a Creutzfeldt–Jakob disease differential diagnosis. If tested in the context of neurodegenerative disease alone, the test specificity was high (95–97%).

A careful interpretation of a positive 14-3-3 test in the clinical context is therefore mandatory to exclude acute neurological events which is easily achieved taken together information on basic CSF results (e.g. cell count, total protein and oligoclonal bands) as well as imaging results (exclusion of tumour, encephalitis and stroke) and EEG (epileptic pattern) together with the thorough ascertainment of the patient’s clinical history.

Recent studies from UK and Canadian cohorts, however, reported discrepant lower results on 14-3-3 specificities ranging from 72% (Coulthart et al., 2011) to 74% (Chohan et al., 2010). Previous studies, including an earlier analysis of our multicentre consortium, identified influencing parameters on 14-3-3 test specificity such as time point of CSF analysis during disease course, thorough diagnostic work-up of related differential diagnoses and PRNP 129 genotype (Zerr et al., 2000b; Sanchez-Juan et al., 2006; Pennington et al., 2009). In this view, it is of consideration whether the reported lower 14-3-3 specificities were due to single centred cohorts or heterogeneous analysis of 14-3-3 results with regard to above mentioned influencing factors (e.g. clarification/follow up of disease diagnosis or timing). Also potential reasons might be differences in test methods (western blot versus immunoassay), variations in test protocols and verification of 14-3-3 results in ring trials in different centres.

In our study, we provide results on ‘total’ 14-3-3 specificity calculated on almost 30 000 CSF analyses. For various reasons (e.g. no information, patients lost at follow up and data protection regulations), the final diagnosis was not always available. We are aware that this might result in a selection bias in relation to the patients where a diagnosis was achieved. On the other hand, definite diagnoses of non-Creutzfeldt–Jakob disease cases in national reference centres are usually only obtained if the respective patient is seriously suspected to suffer from Creutzfeldt–Jakob disease. This is much more likely, when 14-3-3 testing shows a (false) positive result. The respective group with a definite diagnosis might therefore be even more prone to selection bias than a control group including all patients reported to the reference centres. Therefore we provided all figures to demonstrate that specificity figures were not affected much by this approach (total specificity 92%, in definite diagnoses specificity: 81–97%).

Conclusion

In conclusion, our multicentre longitudinal study demonstrates that CSF protein 14-3-3 detection remains an important test in the...
diagnosis of Creutzfeldt–Jakob disease. Due to a loss in specificity in acute neurological events, the interpretation of positive 14-3-3 results needs to be performed in the clinical context. The spectrum of differential diagnosis of rapid progressive dementia included those of neurodegenerative origin, dementia in acute neurological diseases as well as from non-neurological origin. Thus, a thorough clinical work-up of rapid dementia diagnosis should be performed to identify their origin especially with regard of potentially treatable forms. CSF biomarkers are helpful in differentiation of rapid dementia forms such as Creutzfeldt–Jakob disease, but also in solid identification of patients with Alzheimer’s disease. Furthermore, in some dementia due to inflammation, where a 14-3-3 test might be false positive, low levels of tau might be helpful in discriminating forms of neurodegenerative dementia.

Funding
This work was supported by grants from the European Programme (CJDmarkers (Early clinical diagnosis of human spongiform encephalopathies by analysis of biological fluids, QLGI3-CT-2002-81606), PRIORITY (Protecting the food chain from prions: shaping European priorities through basic and applied research, FP7-KBBE-2007-2A, project number 222887) DEMTEST (Biomarker based diagnosis of rapid progressive dementias-optimization of diagnostic protocols, 01ED1201A)).

Supplementary material
Supplementary material is available at Brain online.

References
Aksamit AJ Jr, Preissner CM, Hombre HA. Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease. Neurology 2001; 57: 728–30.
Beaudry P, Cohen P, Brandel JP, Delasnerie-Laupretre N, Richard S, Launay JM, et al. 14-3-3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 1999; 10: 40–6.

Gambetti P, Kong Q, Zou W, Parchi P, Chen SG. Sporadic and familial CJD: classification and characterisation. Br Med Bull 2003; 66: 213–39.

Geschwind MD, Shu H, Haman A, Seijar JJ, Miller BL. Rapidly progressive dementia. Ann Neurol 2008; 64: 97–108.
Green A, Sanchez-Juan P, Ladogana A, Cuadrado-Corrales N, Sanchez-Valle R, Mitrova E, et al. CSF analysis in patients with sporadic CJD and other transmissible spongiform encephalopathies. Eur J Neurol 2007; 14: 121–4.

Grossman M, Farmer J, Leight S, Work M, Moore P, Van Deerlin V, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol 2005; 57: 721–9.

Heinemann U, Krasianski A, Meissner B, Varges D, Bartl M, Stoeck K, et al. Creutzfeldt-Jakob disease in Germany: a prospective 12-years surveillance. Brain 2007; 130: 1350–59.

Hertz J, Minthon L, Zetterberg H, Vanmechelen E, Blennow K, Hansson OF. Evaluation of CSF biomarkers as predictors of Alzheimer’s disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis 2010; 21: 1119–28.

Hsich G, Kenney K, Gibbs Jr CJ, Lee KH, Harrington MG. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 1996; 335: 924–30.

Hu WT, Chen-Plotkin A, Grossman M, Arnold SE, Clark CM, Shaw LM, et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 2010; 75: 2079–86.

Hulstaert F, Blennow K, Ivanou I, Schroederwaldt HC, Riemenschneider M, de Deyn PP, et al. Improved discrimination of Alzheimer’s disease patients using the combined measure of beta-amyloid(1–42) and tau in CSF, a multicenter study. Neurology 1999; 52: 1555–62.

Josephs KA, Ahlskog JE, Parisi JE, Boeve BF, Crum BA, Giannini C, et al. Rapidly progressive neurodegenerative dementias. Arch Neurol 2009; 66: 201–7.

Kapaki EN, Paraskevas GP, Tzerakis NG, Sfagos C, Seretis A, Karazizou E, et al. Cerebrospinal fluid tau, phospho-tau 181 and beta-amyloid 1-42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. Eur J Neurol 2007; 14: 168–73.

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159–74.

Lemstra AW, van Meegen MT, Vreeling JP, Meijerink PH, Jansen GH, Bulk S, et al. 14-3-3 testing in diagnosing Creutzfeldt-Jakob disease: a prospective study in 112 patients. Neurology 2000; 55: 514–6.

Masters CL, Harris JO, Gadusek DC, Gibbs CJ, Bernoulli C, Asher DM. Creutzfeldt-Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann Neurol 1979; 5: 177–88.

Meissner B, Kallenberg K, Sanchez-Juan P, Krasianski A, Heinemann U, Varges D, et al. Isolated cortical signal increase on MR imaging as a frequent lesion pattern in sporadic Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol 2008; 29: 1519–24.

Meissner B, Kallenberg K, Sanchez-Juan P, Ramljak S, Krasianski A, Heinemann U, et al. MRI and clinical syndrome in dura mater-related Creutzfeldt-Jakob disease. J Neurol 2009; 256: 355–63.

Ott M, Wiltfang J, Cepek L, Neumann M, Mollenhauer B, Steinacker P, et al. Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 2002; 58: 192–7.

Pennington C, Chohan G, Mackenzie J, Andrews M, Will R, Knight R, et al. The role of cerebrospinal fluid proteins as early diagnostic markers for sporadic Creutzfeldt-Jakob disease. Neurosci Lett 2009; 455: 56–9.
Perry DC, Geschwind MD. Thorough work-up and new diagnostic criteria needed for CJD. Nat Rev Neurol 2011; 7: 479–80.
Sanchez-Juan P, Green A, Ladogana A, Cuadrado-Corrales N, Sanchez-Valle R, Mitrova E, et al. Cerebrospinal fluid tests in the differential diagnosis of CJD. Neurology 2006; 67: 637–43.
Sanchez-Juan P, Sanchez-Valle R, Green A, Ladogana A, Cuadrado-Corrales N, Mitrova E, et al. Influence of timing on CSF tests value for Creutzfeldt-Jakob disease diagnosis. J Neurol 2007; 254: 901–6.
Satoh K, Shirabe T, Tsujino A, Eguchi H, Motomura M, Honda H, et al. Total tau protein in cerebrospinal fluid and diffusion-weighted MRI as
van Harten AC, Kester MI, Visser PJ, Blankenstein MA, Pijnenburg YA, van der Flier WM, et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 2011; 49: 353–66.

WHO. Human transmissible spongiform encephalopathies. Wkly Epidemiol Rec 1998; 47: 361–5.

Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 1998; 43: 32–40.

Zerr I, Pocchiari M, Collins S, Brandel JP, de Pedro Cuesta J, Knight RSG, et al. Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 2000a; 55: 811–5.

Zerr I, Schulz-Schaeffer WJ, Giese A, Bodemer M, Schröter A, Henkel K, et al. Current clinical diagnosis in CJD: identification of uncommon variants. Ann Neurol 2000b; 48: 323–9.

Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 2009; 132: 2659–68.

Zerr I, Klaes L, Gawinecka J, Varges D. Cerebrospinal fluid based diagnosis in Alzheimer’s disease. In De La Monte S, editor. The clinical spectrum of Alzheimer’s disease the charge toward comprehensive diagnostic and therapeutic strategies. In Tech, Rijeka, 2011; 207–20. ISBN 978-953-307-993-6.