Systematics of 2_1^+ states in semi-magic nuclei

D.S. Delion1,2 and N.V. Zamfir1

1 “Horia Hulubei” National Institute of Physics and Nuclear Engineering, 407 Atoşiilor, Bucharest-Măgurele, 077125, România
2 Academy of Romanian Scientists, 54 Splaiul Independenţei, Bucharest, 050094, România

We propose a simple systematics of low lying 2_1^+ energy levels and electromagnetic transitions in semi-magic isotopic chains $Z=28,50,82$ and isotonic chains $N=28,50,82,126$. To this purpose we use a two-level pairing plus quadrupole Hamiltonian, within the spherical Quasiparticle Random Phase Approximation (QRPA). We derive a simple relation connecting the 2_1^+ energy with the pairing gap and quadrupole-quadrupole (QQ) interaction strength. It turns out that the systematics of energy levels and B(E2) values predicted by this simple model is fulfilled with a reasonable accuracy by all available experimental data. Both systematics suggest that not only active nucleons but also those filling closed shells play an important role.

PACS numbers: 21.10.Re, 21.60.Jz, 23.20.Lv
Keywords: energy levels, electromagnetic transitions, semi-magic nuclei, Quasiparticle Random Phase Approximation

Semi-magic nuclei are important for nuclear structure studies, due to the fact that relative simple shell-model configurations are used in describing collective states. The 2^+_1 energy in semi-magic nuclei within the generalized seniority scheme is constant along a given isotopic/isotonic chain [1]. Talmi’s classical example is Sn isotopic chain where the 2^+_1 energy is fairly constant throughout the complete shell from N=52 up to N=80 [2]. However, the 2^+_1 energy in other semi-magic nuclei is not a constant and depends on the matrix elements of the effective interaction.

There are several systematic studies concerning spectroscopic properties of even-even nuclei [3][4]. In this paper we will investigate low lying 2^+_1 states in semi-magic isotopic and isotonic chains, by using a spherically symmetric Hamiltonian with two levels, one for protons and one for neutrons. In our calculations we have used the experimental binding energies [2] in order to estimate the pairing gaps, which have nonvanishing values for magic proton or neutron numbers. Thus, we include both kinds of nucleons because not only active particles but also the particles filling the closed shell are important in describing low lying collective states. The Hamiltonian contains the most relevant degrees of freedom, given by the pairing and quadrupole-quadrupole (QQ) two body interactions. By using the standard quasiparticle representation one has

$$H = E_p N_p + E_n N_n - \frac{1}{2} (\kappa_p Q_p Q_p^\dagger + \kappa_n Q_n Q_n^\dagger) + \kappa_{pn} Q_p Q_n^\dagger + \kappa_{np} Q_n Q_p^\dagger,$$

(1)

where $E_\tau (\tau = p,n)$ denotes the quasiparticle energy, N_τ is the number of particles operator and

$$Q_\tau = \xi_\tau \left[A_{2\mu}^\dagger (\tau) + (-)^\mu A_{2\mu} (\tau) \right],$$

(2)

is the quadrupole operator written in terms of the normalized two quasiparticle excitation operator $A_{2\mu}^\dagger (\tau)$, defined in a standard way by the angular momentum coupling of two quasiparticle creation operators of the same kind. We describe low lying 2^+_2 excitations in terms of the QRPA phonon operator

$$\Gamma_2^\dagger = \sum_{\tau = p,n} X_\tau A_{2\mu}^\dagger (\tau) - Y_\tau (-)^\mu A_{2\mu} (\tau).$$

(3)

The QRPA equation of motion $[H, \Gamma_2^\dagger] = E_2^\dagger \Gamma_2^\dagger$ leads to the standard system of equations [10]. By introducing the following short hand notations

$$x_\tau = \kappa_\tau \xi_\tau \xi_\tau, \ \tau = p, n; \quad x_{pn} = \kappa_{pn} \xi_p \xi_n,$$

(4)

the QRPA roots can be written as follows

$$E_2^\dagger = 2 [E_p^2 + E_n^2 - E_p x_p - E_n x_n + \sqrt{(E_p^2 - E_n^2 - E_p x_p + E_n x_n)^2 + 4 E_p E_n x_{pn}^2}] .$$

(5)

In the absence of the proton-neutron interaction, i.e. $x_{pn} = 0$, one obtains two roots for neutron and proton systems separately

$$E_2^\dagger = 4 [E_\tau^2 - E_\tau x_\tau], \quad \tau = n, p .$$

(6)

By using the expression of the quasiparticle energy in terms of the Lagrange multiplier (we set the single particle energy to zero) and pairing gap, $E_\tau = \sqrt{\lambda_\tau^2 + \Delta_\tau^2}$, one obtains the following simple relation

$$(E_2^\dagger / 2)^2 - \Delta_\tau^2 = \lambda_\tau^2 - y_\tau \Delta_\tau ,$$

(7)

where the coefficient is given by

$$y_\tau = x_\tau f(z_\tau).$$

(8)

Here, we introduced the following universal function

$$f(z_\tau) = \frac{1}{\sqrt{1 + (\lambda_\tau / \Delta_\tau)^2}} = \frac{1}{\sqrt{2\tau (2 - z_\tau)}},$$

(9)

$$z_\tau \equiv N_\tau / \Omega_\tau ,$$
where we used the number of particles condition in terms of the valence particle number N_{τ}. This function is plotted in figure 1. One sees that around the middle of the shell ($N_{\tau} = \Omega_{\tau}$) this function has an almost constant value $f(z) \approx 1$. Actually for the regions of a shell where $f(z)$ varies a lot (that is near the beginning and end) the 2^+ states are not very collective so they are outside our perspective. Eq. (9) can be rewritten as follows

$$E_{2^+}^2 = 4[\Delta^2 - \Delta_f^2] \equiv \Delta_f f(z_{\tau}).$$

(10)

The fitting procedure of the general relation (10) showed that the proton-neutron interaction x_{pn} has vanishing values along various isotopic and isotonic chains, except for the $Z=28$ isotopic chain, because the proton-neutron interaction plays an important role for $N \approx Z$ nuclei.

Concerning the parameter y_{τ}, we considered two versions. In the first approximation we supposed a constant value of y_{τ} in Eq. (7). Later on, we will consider a mass dependent parameter.

In Ref. [11] the averaged two-body matrix elements in odd-odd nuclei extracted from experimental data versus the angle between the orbital angular momenta of the interacting particles were analyzed. As an interesting observation, it turns out that in most cases the shape of this dependence is proportional to the function $1/f(z_{\tau})$. Thus, in principle the function $f(z_{\tau})$ could be be compensated by the variation of the parameter x_{τ}, keeping in this way the parameter y_{τ} in Eq. (7) almost constant.

In figure 2 (a) one sees how the relation (7) is nicely fulfilled for the neutron-like root along various isotopic chains (even for $Z=28$). It is important to point out that the slope parameter y_{τ} has indeed an almost constant value.

Table I

Figure	λ^2	y_{τ}	σ	
2 (a)	n	1.267	2.040	0.128
2 (b)	n	2.434	2.832	0.298
3 (a)	p	2.451	3.023	0.118
3 (b)	p	2.038	2.476	0.188

An interesting fact is revealed by figure 3 (b), showing that the same relation is also fulfilled by the iso-
tonic chains, i.e., by those neutrons filling the corresponding closed shells. Thus, the pairing effects of these neutrons are also important in explaining the low lying 2_1^+ collective state.

The straight lines in figure 2 are defined by the fitting parameters λ^2 and y_τ, given in the Table I for isotopic (a) and isotonic (b) chains.

It is very important to stress on the fact that the same relation is also fulfilled for the corresponding proton-like root, as can be seen from figure 3. Thus, as in the previous case, for the isotopic chains (a) the proton pairing effects play an important role. It is interesting to point out that the best fit is given in figure 3(a), i.e., by protons filling a closed shell.

The next step is to consider a variable parameter y_τ, by using Eq. (10). In figure 4(a) we plotted by dark circles the parameter x_τ for various isotopic chains determined by this equation by considering $f(z_\tau) = 1$. In figure 4(b) the parameter x_p for various isotonic chains is given by dark circles. One sees that the fitting curve given by

$$y_\tau = x_\tau = 5.2 A^{-0.35},$$

approximates in a satisfactory way the computed values. We stress the fact that Eq. (10) with $f(z) = 1$ is a particular case of Eq. (7) with $\lambda_\tau = 0$, but with a variable parameter y_τ. Let us mention here that in Ref. [12] a much stronger dependence was derived, but only for the coupling strength $\kappa_\tau \sim A^{-2.2}$.

On the other hand, our analysis revealed that the values of the parameter x_p, for closed shell isotopic chains, and x_n for closed shell isotonic chains have much more scattered values than in figure 4. This means that the "natural" values of the parameter x_p along open shell isotonic chains and x_n along open shell isotonic chains are more appropriate to be used in our systematics.

By using the above scaling law (11) we plotted by open circles in figure 5(a) the energies computed according to Eq. (10) with $\tau = n$ for various isotopic chains. In figure 5(b) similar values with $\tau = p$ for various isotonic chains are given. One remarks that, except for $Z = 28$ isotopes and $N = 28$ isotones, the experimental values given by dark circles are satisfactorily reproduced.

The fact that both proton and neutron roots are important is also supported by an analysis of electromagnetic transitions. The E2 transition matrix element, connecting the excited state $|k\rangle$ with the ground state $|0\rangle$, is given by the following standard expression

$$\langle 0|T_2||k\rangle = \sum_{\tau=p,n} e_\tau \xi_\tau \left[X_\tau^{(k)} + Y_\tau^{(k)} \right]$$

where e_τ denote the effective proton and neutron charges. We compared experimental values with the quantity $B(E2 : k \rightarrow 0) = |\langle 0|T_2||k\rangle|^2$.

In conclusion, we have analyzed low lying collec-
FIG. 6: (a) B(E2) values versus neutron number for various isotopic chains. Experimental values are given by dark circles, while open circles denote the fit (12) with respect to parameters $a_\tau = \sqrt{2} e_\tau \xi_\tau$. (b) Same as in (a), but for various isotonic chains.

Table II

Chain	a_p	a_n	σ
Z=28	9.998	-6.185	0.041
Z=50	7.036	-3.499	0.131
Z=82	-2.169	2.950	0.253
N=50	-4.742	7.473	0.034
N=82	81.627	-84.446	0.084

Acknowledgments

This work was supported by the contracts IDEI-119 and IDEI-180 of the Romanian Ministry of Education and Research. We thank prof. R.F. Casten (Yale University), prof. J. Suhonen (Jyväskylä University), and prof. R.J. Liotta (KTH, Stockholm) for valuable comments.

[1] I. Talmi, Nucl. Phys. 172, 1 (1971).
[2] R.F. Casten, Nuclear Structure from a simple Perspective (Oxford University Press, Oxford, 2000).
[3] M.S. Antony, J. Britz, and J.B. Bueb, Il Nuovo Cim. 91 A, 283 (1986).
[4] T. Yamazaki, G.T. Ewan, and S.G. Prussin, Phys. Rev. Lett. 20, 1376 (1968).
[5] N. Sándulescu, et al., Phys. Rev. C 55, 2708 (1997).
[6] J. Terasaki, J. Engel, W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 66, 054313 (2002).
[7] S. Sarkar and M. Saha Sarkar, Phys. Rev. C 78, 024308 (2008).
[8] J.-P. Delaroche, et al., Phys. Rev. C 81, 014303 (2010).
[9] P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
[10] P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer-Verlag, Berlin, 1980).
[11] J.P. Schiffer and W.W. True, Rev. Mod. Phys. 48, 191 (1976).
[12] R.A. Uher and R.A. Sorensen, Nucl. Phys. 86, 1 (1966).