Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention

Aysegul Yildiz, Yesim Kaya, Ozgur Tanriverdi

1Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, 2Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Kocman University, 3Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey

Cancer is the most common cause of death worldwide. Annually, more than ten million new cancer cases are diagnosed, and more than six million deaths occur due to cancer. Nonetheless, over 80% of human cancer may be preventable through proper nutrition. Numerous nutritional compounds are effective in preventing cancer. Selenium and zinc are essential micronutrients that have important roles in reducing oxidative stress and protecting DNA from the attack of reactive oxygen species. Selenium is an essential trace element that possesses several functions in many cellular processes for cancer prevention. Meanwhile, zinc may have protective effects on tumor initiation and progression, and it is an essential cofactor of several mammalian proteins. Results show that both selenium and zinc provide an effective progression of DNA repair system; thus, cancer development that originated from DNA damage is decreased. Results mostly focus on the separate effects of these two elements on different cell types, tissues, and organs, and their combined effects are largely unknown. This review aimed to emphasize the joint role of selenium and zinc specifically on DNA repair for cancer prevention.

(J Cancer Prev 2019;24:146-154)

Key Words: Trace elements, Selenium, Zinc, DNA repair system, Cancer prevention

INTRODUCTION

According to several in vivo and in vitro studies, adequate nutrition is indeed vital for cells to function properly, given that nutrients have numerous active ingredients, such as proteins, essential minerals, vitamins, and carbohydrates. Clearly, the percentage of deaths, especially cancer deaths, may remarkably reduce by paying attention to healthy nutrition [1].

Selenium and zinc are two essential micronutrients that have well-known functions, such as alleviating oxidative stress and protecting DNA from reactive oxygen species (ROS) attack. Thus, investigation on the role of zinc and selenium micronutrition in preventing neoplastic diseases have gained considerable research interest [1,2].

Numerous dietary compounds have been implicated in the prevention of cancer. Among them, zinc is a key cofactor of many mammalian proteins that may have protective effects on tumor initiation and progression. Zinc is the most abundant trace intracellular element, playing an important role in both genetic stability and function. Several studies reported that the elderly population of Europe has considerable zinc deficiency as a result of perturbation of zinc homeostasis caused by aging [1,2].

Selenium is another essential trace element that is vital for various cellular processes and also frequently used in cancer prevention. It has an antineoplastic feature, largely because it can inhibit ROS production, thereby preventing oxidative DNA damage [3].

In addition, both selenium and zinc have a role in the efficient progression of DNA repair system, thereby alleviating DNA damage, which could otherwise result in cancer development [4].

Although many in vivo and in vitro studies were performed to determine the effect of separate administration of these two
elements on different cell types, tissues, and organs, their joint
effects on these tissues and organs are poorly known. Interactions that may have occurred between selenium and zinc
as a result of their bioaccumulation in tissues are important,
considering that they may have substantial adverse effects not
only on ROS generation via disrupting the metallothionein/thionein system, as shown by Maret [5], but also on the DNA
repair process.

This review aimed to emphasize the role of selenium and zinc
specifically on DNA repair for cancer prevention and chemotherapeutical efficiency and to explain possible interactions
between these two elements for their DNA repair role [5]. At first,
functions of selenium and zinc in the DNA repair system are
discussed separately on a molecular basis, followed by the effect
of their possible interaction on the DNA repair system in relation
to cancer development.

1. Selenium

Selenium is a trace element that is essential for various cellular
processes. At the beginning of the 20th century, selenium was
regarded as an undesired element because of its confirmed
toxicity [6].

However, in the late 20th century, the vitality of selenium for
human nutrition and health remarkably changed. The pioneering
work of Schwarz and Foltz [7] revealed that selenium at a low
concentration is an essential nutrient: the dietary value of
selenium comes from its incorporation into various essential
enzymes and proteins, such as the amino acid selenocysteine [7].

Apart from its essentiality as a micronutrient, selenium has
anticancer properties, as clearly shown in laboratory and clinical
studies [8-11]. Selenium in pharmacologically active dietary
concentrations can prevent cancer development, especially as a
chemoprotector against carcinogenic compounds [3]. However,
results of these previous studies are relatively conflicting,
probably because different inorganic and organic selenium
compounds (i.e., selenite and selenomethionine) and different
selenium concentrations were used, as well as studying either
with animal models or human subjects [3,9-11].

While selenium at low concentrations has protective effects
against cancer development, it may be genotoxic at high
concentrations [12]. Its high toxicity can be probably explained by
the generation of ROS and subsequent DNA oxidation in vivo
[13-17].

In addition to its anticarcinogenic properties, selenium has
antimetastatic effects in terms of cell migration, invasion, and
angiogenesis, especially in breast, colorectal, melanoma, liver,
lung, prostate, and brain glioma cancers [18].

Selenium has diverse anticancer mechanisms, such as ROS
production, thiol modification, chromatin binding/modification,
and DNA repair [19]. In this review, we focus on its role in DNA
repair mechanism as an anticarcinogen.

2. Anticarcinogenic role of selenium through the
DNA repair system

Although carcinogens induce genetic damage by forming
covalent DNA adducts, such formation is insufficient to initiate
carcinogenesis, which is rather a multistep process. To
understand the effect of selenium in this multistep DNA-adduct
formation process, researchers performed numerous in vitro
studies, mostly with rodents. In these studies, selenium was used
in the form of selenite, selenate, 1,4-phenylenebis(methylene)
selenocyanate, or diallyl selenide: these different selenium
compounds inhibit the initiation of carcinogenesis caused by
numerous carcinogens in the colon, lung, liver, and mammary
tissues in rats [9]. The possible rationale for this type of
carcinogen prevention is that selenium inhibits the cytochrome
P450 system Phase I enzymes, which normally convert chemical
carcinogens into reactive DNA-attacking adducts.

Moreover, selenium compounds can inhibit carcinogenesis in
the late initiation stages, suggesting an additional mechanism of
selenium for chemoprevention. This additional chemopreventive
mechanism of selenium compounds may be the inhibition of cell
growth with induction of tumorigenic cell apoptosis [20,21].
Selenium-mediated apoptosis may prevent the accumulation of
carcinogen-induced transformed cells and subsequent clonal
expansion of the transformed cell population [22]. In a study
conducted with cultured LNCaP prostate cells, researchers
focused on the protective role of selenium against genotoxicity
generated by multiple chemical agents [23]. When treated with
low concentrations of two different selenium compounds (i.e.,
sodium selenite and selenomethionine), LNCaP cells, which are
the wild types of p53 and Rb genes, showed a significant decrease
in oxidative DNA damage together with an improved DNA repair
capacity after H2O2 or UVA treatment.

Overall, selenium prevents carcinogenesis by protecting the
genome against oxidative damage and enhancing its repair.

In addition to the selenium’s abovementioned anticancer
activities such as carcinogen detoxification, inhibition of angiogenesis, and tumor cell invasion, selenium has an immune
boosting effect, which may reduce cancer risk; however, studies
on selenium and anticancer immunity are limited [24,25]. One of
these limited studies was performed by Kiremidjian-Schumacher

In addition to these limited studies was performed by Kiremidjian-Schumacher
et al. [26] in which they used small groups of human subjects receiving either selenium supplementation (200 µg/d) or placebo. They measured cytotoxic T lymphocyte-driven tumor lysis, mitogen-induced proliferation of lymphocytes, and mixed-lymphocyte-reaction proliferation of lymphocytes; all results suggested that selenium supplementation increased lymphocyte performance.

Studies conducted with selenium regarding cancer development are mainly focused on its chemopreventive role in cancer [11]. However, cancer chemotherapeutics is another potential area for selenium’s anticancer activity, and selenium has shown remarkable promise in preclinical trials. Recently, colloidal selenium nanoparticles have been used as carriers of chemotherapeutic agents to minimize the adverse effects of chemotherapeutic drugs and also to improve the effectiveness of anticancer activity by generating a synergetic effect between selenium and its chemotherapeutic cargo [27].

In several other studies using cultured cells and animal models, the presence of selenium yielded a positive effect on reducing DNA-adduct formation and chromosome breaks, which would otherwise contribute to carcinogenesis. This antiproliferative feature of selenium is attributed to being a critical constituent of certain selenoproteins, such as glutathione peroxidases and thioredoxin reductases, which are important for oxidative defense. Aside from its antioxidant activity, selenium may also exhibit protection against DNA damage by increasing the activity of DNA repair enzymes, such as DNA glycosylases, and repair pathways that involve members, such as p53 and BRCA1 [28].

p53 is an important member of these repair pathways, and it is controlled by the ataxia telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) protein kinases. When different types of cellular DNA damages occur, ATM and ATR respond via phosphorylation of the same substrates. In case of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs), ATM responds as a primary mediator. ATR does not only have a supporting role in the DSB response but also a directing principle response to UV damage. As a result, ATR stops DNA replication [29].

Moreover, p53 has a functional role in G1 cell cycle checkpoint. ATM and ATR kinases control the accumulation and activation of the p53 protein in the center of this checkpoint. p53 expression is maintained at a low level in normally growing cells by MDM2, which provides nuclear export of p53 to the cytoplasm, given that degradation is a general mechanism for regulating p53 levels [30]. Immediately after exposing the IR damage, ATM phosphorylates Chk2 at position T68, which activates p53 via phosphorylation residue S20. When p53 is phosphorylated at the S20 site, p53/MDM2 interaction is blocked, resulting in p53 accumulation. Thus, MDM2 is a p53 negative regulator. Meanwhile, ATM regulates p53 by phosphorylating MDM2 on S395 [31]. ATR also activates p53 with S20 phosphorylation by the phosphorylating ATR-dependent kinase Chk1 [32]. Activated p53 regulates numerous DNA repair enzymes that provide cell cycle arrest, DNA repair, and apoptosis in mammalian cells [33] (Fig. 1).

Among the major DNA repair pathways, nucleotide excision repair (NER) is the main way to eliminate bulky DNA lesions such as 6-4 photoproducts and cyclobutane pyrimidine dimers resulted from UV radiation. Likewise, NER repairs platinum-DNA adducts caused by platinum-containing cancer chemotherapeutics [34]. NER has two distinct repair pathways: one is the global genomic repair, and the other is transcription-coupled repair. Both pathways have the following three common steps: recognition of the damaged DNA region, excision of the damage, and resynthesis. The two pathways only differ in the initial recognition step.

In global genomic repair, p53 regulates damage recognition by transcriptionally controlling the DNA damage recognition proteins, namely, the xeroderma pigmentosum complement groups C (XPC) and E (XPE). In a study, p53 transcriptionally forced the expression of p48/XPE/DDB2, thereby enhancing the global genomic repair [35,36]. Similarly, in a p53- and DNA

Figure 1. Schematic representation of ataxia telangiectasia, mutated (ATM)/ATM and Rad3-related (ATR) kinase activation and subsequent p53 activity upon DNA damage.
damage-dependent manner, the mRNA and protein expression levels of XPC increased [37].

In a study conducted with selenomethionine as selenium source, selenium could only regulate and enhance DNA repair in cells with wild-type p53 [38]. For an efficient DNA damage protection, selenium requires redox factor 1 (Ref-1), which interacts with p53 to reduce p53 cysteine residues; this reduction requires an enzyme, that is, selenoprotein-containing thioredoxin reductase [38-40].

In another study, primary, low-passage mouse embryonic fibroblasts that are wild type or null for p53 genes were used to test the differential effects of selenium before exposure to UV radiation or UV-mimicking chemotherapy drugs; then, seleno-L-methionine pretreatment of cultured cells was performed. This pretreatment induced DNA repair response and prevented subsequent DNA damage by UV radiation or UV-mimicking chemotherapeutics only in cells with wild-type p53, not in p53-null cells [41].

In conclusion, selenium enhances DNA damage response by increasing the expression levels of DNA repair proteins. Another remarkable point is the p53 dependency of selenium to exhibit all these DNA repair-improving features. Considering that selenium did not induce the initial recognition step of NER without p53. Hence, selenium only protects genetically normal cells from DNA-damaging chemotherapeutics but has no protective effect on p53-null or p53-mutant cells [41]. Thus, selenium can be used in combination with cancer chemotherapeutics because of its protective effect on tissues from dose-limiting toxicity. Furthermore, selenium takes the advantage of not protecting p53-null or p53-mutated cancer cells from DNA damage, given that its DNA repair-enhancing activity is p53 dependent.

3. Zinc

Zinc has well-known functions in several cellular processes, such as reproduction, cell proliferation, immune function, and protection against free radicals [42,43]. Being the most abundant trace element, zinc generally participates in protecting genetic stability and function [44]. In in vivo and in vitro studies, zinc was predominantly found in cell nucleus, indicating a role for regulating gene expression [45]. Moreover, zinc has an effect on DNA by chromatin structure recruitment, DNA replication, and DNA repair [46]. Zinc is an essential component of more than 3000 transcription factors with zinc-finger DNA-binding domains. It is also a cofactor for more than 300 enzymes, such as copper/zinc superoxide dismutase (CuZnSOD) and various DNA repair proteins [47]. Clearly, zinc is vital for many cellular processes ranging from oxidative stress to DNA damage repair.

Antioxidant function of zinc can be first attributed to being a component of CuZnSOD enzyme, which is the cell’s leading defense enzyme against ROS attack. Second, zinc is the antioxidant of redox-active transition metals, such as copper or iron. and it prevents the oxidation of proteins’ sulfhydryl groups. This effect of zinc on sulfhydrlys can protect sulfhydryl-containing proteins (e.g., tubulin and zinc-finger proteins), alanyl tRNA synthetase from thiol oxidation, and disulfide formation. Enzymes are inactivated if zinc is eliminated [43,48,49].

Another antioxidant mechanism for zinc is its regulation of metallothionein metabolism. Metallothionein is a scavenger antioxidant protein with small molecular weight, and it regulates zinc homeostasis. Zinc directly binds and activates metal transcription factor 1, causing the induction of cysteine-rich metallothionein protein expression.

However, the only effect of zinc on DNA stability does not involve its antioxidant feature. Zinc also takes role in gene expression regulation via zinc-finger transcription factors, which are especially important for the regulation of DNA repair genes. Many DNA repair proteins contain zinc-finger domains [50].

4. Regulatory function of zinc in the DNA repair process

Both base excision repair (BER) and NER systems have zinc-finger or zinc-associated proteins. Zinc-finger motifs function in protein-protein and protein-nucleic acid interactions in several proteins, such as the DNA repair system members. The role of Zn(II) ion in this motif is that it binds to cysteine thiolates and histidine imidazole groups, thereby maintaining the structure and function of the domain. As a result of the oxidation of thiolate donors, Zn(II) can be substituted with other metal ions or can be released from the protein structure, finally distorting the zinc-finger motif. Concordantly, certain carcinogenic metals (e.g., cadmium, nickel, and arsenic) and potential carcinogens (e.g., lead), as well as endogenous oxidative substances, may disturb zinc-finger domains and inhibit the function of protein. Thus, this reactivity can be an alternative molecular mechanism in carcinogenesis [51].

As clearly depicted, zinc nutrition deficiency can be an important risk factor for DNA damage and subsequent cancer development because it is a key component of proteins functioning in antioxidant mechanism. DNA repair, and p53 protein expression. In a study examining the effect of zinc deficiency on DNA damage and expression of DNA repair enzymes in primary human lung fibroblasts, intracellular zinc
was depleted by different ways, such as growing cells in a zinc-deficient medium, thereby exposing cells to an intracellular zinc chelator [52]. Microarray analysis data revealed that genes related to oxidative stress and DNA repair were upregulated, whereas other DNA repair genes were downregulated. In addition, zinc deficiency caused oxidative stress, p53 overexpression, and generation of single-strand breaks on DNA. Thus, zinc deficiency does not only cause oxidative stress-mediated DNA damage but also disrupts the DNA repair ability of cells [52].

Hence, the tumor suppressor protein p53 is the key regulator of the DNA repair process. This protein is important in cell cycle progression, apoptosis, and DNA repair [53]. One of the major functions of p53 is to arrest the cell cycle in G1 phase, allowing cells to properly repair its DNA before cytokinesis. More than 50% of human malignancies contain a p53 mutation of which the majority are found in the DNA-binding domain gene-coding region [54-56]. Given that this binding region contains a zinc-binding domain, p53’s binding ability to DNA targets significantly declines in case of zinc deficiency [57]. Importantly, p53 is a transcription factor that has to have the ability to bind to DNA promoter regions to control certain events, such as DNA repair. Zinc-deficient cells cannot increase p53 expression because this p53 is, in fact, dysfunctional and cannot regulate the expression of DNA repair genes.

Same research group also investigated the effect of low zinc concentration on the expression of an important BER enzyme, that is, apyrimidinic endonuclease (APE) [58]. Oxidative DNA damage is primarily repaired by the base excision system [50]. In this pathway, APE (also known as Ref-1) cleaves the damaged sites in DNA. It is a multifunctional protein that also participates in controlling the DNA-binding activity of various transcription factors, such as AP-1 and P53, involved in carcinogenesis [59]. In zinc-deficient cells, same as in cancer cells, APE expression elevates, likely because of DNA damage caused by low intracellular zinc [57,60].

To demonstrate the importance of zinc concentration on DNA stability by analyzing changes in global gene expression and transcription factor-binding abilities in prostate tissue, researchers used normal prostate epithelial cells. In such cells that were grown in zinc-deficient media, more single-strand DNA breaks were present than those in cells grown in media with adequate amount of zinc for 7 days [61]. DNA repair genes such as the tumor protein p73, MRE11 meiotic recombination 11 homolog A, X-ray repair complementing defective repair in Chinese hamster cells 4, and breast cancer 2 were downregulated at first onset. Western blot also revealed that nuclear p53 levels were upregulated in zinc-deficient cells. However, the binding activity of p53 did not significantly change, indicating the impaired function of zinc-containing proteins involved in DNA repair [61].

As evidently depicted in the previous sections, both selenium and zinc are essential for the proper regulation of different DNA repair processes, such as BER and NER. Hence, an interaction between selenium and zinc may be present on the progression of DNA repair.

5. Importance of selenium and zinc interaction on DNA repair regarding cancer prevention

In addition to agents that directly or indirectly induce DNA damage, several agents, such as metal compounds, nickel, arsenic, cobalt, and cadmium, can directly interfere with the DNA repair process and especially inhibit the BER/NER pathways, thereby increasing the negative outcomes of DNA damage. Target molecules for these metal ions may possibly be the zinc-finger domains of DNA repair proteins [62,63]. Furthermore, zinc-finger motifs may be sensitive not only for toxic metal ions but also for some trace elements, such as selenium. In a study performed with two zinc-finger repair proteins, namely, bacterial formamidopyrimidine DNA glycosylase from the BER pathway and xeroderma pigmentosum group A protein (XPA) involved in NER, certain reducible selenium compounds decreased the activity of zinc-finger motifs and induced the release of zinc from these motifs [64].

These findings indicate that reducible selenium compounds may interfere and inhibit DNA repair response via the oxidation of zinc fingers in DNA repair proteins as well as in the transcriptional regulators of DNA repair genes, such as p53 [50]. In another study, osteosarcoma and lymphocytes treated with reducible selenium compounds clearly lost their abilities to repair UV-induced DNA damages, such as chromosome deletions and chromatin breaks [65]. Therefore, selenium may directly inhibit DSB repair and transcription-coupled repair systems.

Conversely, according to some other study results, DNA repair capacity increases in selenomethionine-treated human fibroblast cells exposed to UV radiation, and selenomethionine has a protective role against UV-induced DNA damage in keratinocytes [66,67]. The reason for these conflicting results might be the difference and complexity of forms and doses of selenium compounds. Moreover, these differences about selenium compounds have widely varied effects on DNA integrity and DNA repair processes: these effects include SH group oxidation and zinc release from zinc fingers in DNA repair proteins.

Although the effects of selenium + zinc supplementation on
the bioaccumulation and interaction of these two elements in tissues have remained unreported, selenium + zinc supplementation model is frequently used in different neoplastic diseases, especially in prostate cancer [68]. However, cellular and molecular studies show that selenium and zinc may interact with each other, allowing selenium to exert its antioxidant or pro-oxidant function interchangeably through differences in the levels of released zinc [69]. Impairment of zinc homeostasis can also be mediated by selenium, resulting in the disruption of the metallothionein system, which is very important in the oxidoreductive metabolism of cells. Metallothioneins are low-molecular-weight, sulphhydril-rich proteins that bind zinc predominantly. The binding of zinc ions allows metallothionein to play a central role in oxidoreductive cellular metabolism, cellular zinc distribution, and homeostasis [70]. Thus, when zinc homeostasis is disrupted by selenium, the metallothionein system is dysregulated, thereby losing its antioxidant feature. The downstream effect of the metallothionein system dysregulation is the modulation of transcription of the DNA repair gene p53 (Fig. 2).

CONCLUSION

As vital components of nutrition, approximately 40 micronutrients are needed for a healthy human diet. Deficiency of micronutrients (i.e., vitamins B12, B6, niacin, vitamin C, vitamin E, iron, and zinc) seriously disrupts DNA integrity through generating single-strand breaks/DSB and/or oxidative damage, leading to cancer development [71]. These micronutrient deficiencies may be as detrimental as the DNA-damaging agents, such as UV radiation and several chemicals: in some cases, such deficiencies are even more dangerous [72]. Therefore, selenium-generated deficiency in zinc homeostasis most likely has a significant impact on DNA stability and DNA repair ability of cells. Considering the multifaceted effect of selenium on intracellular antioxidant/pro-oxidant mechanisms, signaling pathways and DNA repair processes largely depend on both its different forms and different concentrations. Selenium can possibly make various interactions with other molecules, such as zinc, leading to positive or negative results on the abovementioned intracellular mechanisms. The reducible forms of selenium can interfere and inhibit the DNA repair process by oxidizing the zinc fingers of DNA repair genes as well as the transcriptional regulators of DNA repair genes. Depending on the concentration of selenium, zinc homeostasis may be interrupted; thus, the antioxidative metallothionein system is disrupted, leading to oxidative DNA damage and cancer. Therefore, controlling the balance between these two essential trace elements is extremely important.

Considering that different forms of selenium compounds are frequently used as pharmaceutical supplements at high doses, their possible pro-oxidant and DNA repair inhibitory effect needs great attention in terms of interaction with intracellular zinc. Moreover, selenium + zinc supplements are prescribed especially for the prevention of certain neoplastic diseases, such as prostate cancer. Using selenium + zinc preparations decreases the bioavailability of zinc in prostate tissue, and the highest zinc bioavailability is achieved by treating animals only with zinc [73]. This result also supports the findings of other studies implicating the presence of an adverse interaction between selenium and zinc.

In addition to pharmaceutical selenium preparations, recently, colloidal selenium nanoparticles have been used as a chemopreventative agent and also as a carrier of chemotherapeutic agents to minimize the adverse effects of chemotherapeutics and also to improve the effectiveness of anticancer activity by generating a synergistic effect between selenium and its chemotherapeutic cargo [27]. Thus, choosing appropriate dose and form of selenium is indeed important.
To sum up, selenium and zinc are two essential trace elements that are both vital micronutrients for human diet. However, selenium is in close interaction with zinc, leading to oxidation and release of zinc from zinc-finger motifs, especially in the DNA-binding sites of DNA repair proteins depending on selenium’s different forms and different concentrations; thus, this interaction poses a risk for unrepaired DNA damage and subsequent cancer development. In selenium- and zinc-rich diets, their supplements and also selenium-nanocarriers of chemotherapeutics are frequently used for their anticancer features. Their interaction in cells in terms of negative effects of this interaction on their bioaccumulation, bioavailability, and functions regarding impairments in DNA repair should be given importance. Otherwise, using inappropriate forms and concentrations of selenium compounds may cause disruption of zinc homeostasis, driving cells to a cancerous state as a result of unrepaired and accumulated DNA damage. Thus, additional experimental studies in vivo, in vitro, and also on human subjects are necessary to avoid a cancer-prone cellular environment while trying to prevent it. By this way, more efficient and beneficial dietary supplement combinations can be designed, aiming to provide protection against carcinogenesis and also to increase the effectiveness of used chemotherapeutics.

ETHICAL APPROVAL

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

REFERENCES

1. Kanoni S, Dedoussis GV, Herbein G, Pulop T, Varin A, Jafte J, et al. Assessment of gene-nutrient interactions on inflammatory status of the elderly with the use of a zinc diet score–ZINCAGE study. J Nutr Biochem 2010;21:526-31.
2. Dedoussis GV, Kanoni S, Mariani E, Cattini L, Herbein G, Pulop T, et al. Mediterranean diet and plasma concentration of inflammatory markers in old and very old subjects in the ZINCAGE population study. Clin Chem Lab Med 2008;46:990-6.
3. Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 2005;64:527-42.
4. Erkekoğlu P, Giray B, Rachidi W, Herbein G, Pulop T, et al. Mediterranean diet and plasma concentration of inflammatory markers in old and very old subjects in the ZINCAGE population study. Clin Chem Lab Med 2008;46:990-6.
5. Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 2000;130:1455S-88.
6. Oldfield JE. The two faces of selenium. J Nutr 1987;117:2002-8.
7. Schwarz K, Feltz CM. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 1957;79:3292-3.
8. Marshall JR. Larry Clark’s legacy: randomized controlled, selenium-based prostate cancer chemoprevention trials. Nutr Cancer 2001;40:74-7.
9. El-Rayoumy K. The protective role of selenium on genetic damage and on cancer. Mutat Res 2001:475:123-9.
10. Greenwald P. Clinical trials in cancer prevention: current results and perspectives for the future. J Nutr 2004;134:3507S-12S.
11. Meulliet E, Strattoon S, Prasad Cherukuri D, Goulet AC, Kagey J, Porterfield B, et al. Chemoprevention of prostate cancer with selenium: an update on current clinical trials and preclinical findings. J Cell Biochem 2004;91:449-58.
12. Spallholz JE. On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 1994;17:45-64.
13. Kramer GF, Ames BN. Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res 1988;201:169-80.
14. Spallholz JE. Free radical generation by selenium compounds and their prooxidant toxicity. Biomol Environ Sci 1997:10:260-70.
15. Seko Y. Imura N. Active oxygen generation as a possible mechanism of selenium toxicity. Biomol Environ Sci 1997:10:339-9.
16. Terada A, Yoshida M, Seko Y, Kobayashi T, Yoshida K, Nakada M, et al. Active oxygen species generation and cellular damage by additives of parenteral preparations: selenium and sulphhydril compounds. Nutrition 1999;15:651-5.
17. Spallholz JE. Palace VP, Reid TW. Methioninase and selenomethionine but not Se-methylselenocysteine generate methyl-selenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenomino acids. Biochem Pharmacol 2004;67:547-54.
18. Chen YC, Prabhu KS, Mastro AM. Is selenium a potential treatment for cancer metastasis? Nutrients 2013;5:1149-68.
19. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 2015;1850:1642-60.
20. Stewart E, Chapman CR, Al-Khodairy F, Carr AM, Enoch T, Porterfield B, et al. Chemoprevention of prostate cancer with selenium: an update on current clinical trials and preclinical findings. J Cell Biochem 2004;91:449-58.
21. Sinha R, El-Rayoumy K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr Cancer Drug Targets 2004;4:13-28.
22. Zhou N, Xiao H, Li TK, Nur-E-Kamal A, Liu LF. DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem 2003;278:29532-7.
23. Erkekoğlu P, Rachidi W, De Rosa V, Giray B, Favier A, Hinkel F. Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells. Free Radic Biol Med 2010;49:559-66.
24. Baliga MS, Wang H, Zhuo P, Schwartz JL, Diamond AM. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage. Biol Trace Elem Res 2007;115:227-42.
25. Venkateswaran V, Fleschner NE, Sugar LM, Klotz LH. Antioxidants block prostate cancer in lady transgenic mice. Cancer Res 2004;64:5891-6.
26. Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biol Trace Elem Res 1994;41:115-27.

27. Majoi F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond) 2017;12:1075-89.

28. Bera S, De Rosa V, Rachidi W, Diamond AM. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis 2013;28:127-34.

29. Kim ST, Lim DS, Canman CE, Kastan MB. Substrate specificity and identification of putative substrates of ATM kinase family members. J Biol Chem 1999;274:37538-43.

30. Alarcon-Vargas D, Ronai Z. p53-Mdm2—the affair that never ends. Carcinogenesis 2002;23:541-7.

31. Maya R, Balas M, Kim ST, Shkedy D, Leal JF, Shifman O, et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 2001;15:1067-77.

32. Shieh SY, Ahn J, Kaya T, Yaffe PR, C. The human homologs of checkpoint kinases Chk1 and Cdks1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 2000;14:289-300.

33. Arias-Lopez C, Lazaro-Trueba I, Kerr P, Lord CJ, Dexter T, Iravani S, et al. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev 1997;11:558-70.

34. Reed E. Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev 1998;24:331-44.

35. Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 1999;96:4248-53.

36. Nakamura M, Kawashima A, Morioka H, Linn S, Sancar A, Mori T, et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem 2002;277:1637-40.

37. Adimoolam S, Ford JM, p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A 2002;99:12865-90.

38. Seo YR, Kelley MR, Smith ML. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A 2002;99:14548-53.

39. Jayaraman L, Murthy KG, Zhu C, Curran T, Xanthoudakis S, et al. Effects of selenium on the expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A 2002;99:16770-5.

40. Evans AR, Limp-Foster M, Kelley MR, Garte MJ, Garte S, et al. Interaction hot spots. Genes Dev 1993;7:2556-64.

41. Yan M, Song Y, Wong CP, Hardin K, Ho E. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr 2008;138:667-73.

42. Hartwig A, Asmuss M, Blessing H, Hoffmann S, Jahnke G, Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev 1997;11:558-70.

43. Seemann S, Batu PA. Roles of thioridoxin reductase 1 and APE/Ref-1 in the control of basal p53 stability and activity. Oncogene 2005;24:3563-63.

44. Fischer JL, Mihalc EM, Pollok KE, Smith ML. Chemotherapeutic selectivity conferred by selenium: a role for p53-dependent DNA repair. Mol Cancer Ther 2007;6:355-61.

45. Bray TM, Better WP. The physiological role of zinc as an antioxidant. Free Radic Biol Med 1990;8:281-91.

46. Powell SR. The antioxidant properties of zinc. J Nutr 2000;130:1447S-54S.

47. Drocott IE. Zinc and the gene. Mutat Res 2001;475:161-7.

48. Cousins RJ. A role of zinc in the regulation of gene expression. Proc Nutr Soc 1998;57:307-11.

49. Falchuk KH. The molecular basis for the role of zinc in developmental biology. Mol Cell Biochem 1998;188:41-8.

50. Prasad AS. Zinc deficiency in humans: a neglected problem. J Am Coll Nutr 1998;17:542-3.
69. Maret W. Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 2008;43:363-9.
70. Bell SG, Vallee BL. The metallothionein/thionein system: an oxidoreductive metabolic zinc link. ChemBiochem 2009;10:55-62.
71. Ames BN. Wakimoto P. Are vitamin and mineral deficiencies a major cancer risk? Nat Rev Cancer 2002;2:694-704.
72. Courtemanche C, Huang AC, Elson-Schwab I, Kerry N, Ng BY, Ames BN. Folate deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a comparison. FASEB J 2004;18:209-11.
73. Daragó A, Sapota A, Nasiadek M, Klimczak M, Kilanowicz A. The effect of zinc and selenium supplementation mode on their bioavailability in the rat prostate. Should administration be joint or separate? Nutrients 2016;8:E601.