Subclinical Leber’s hereditary optic neuropathy with pediatric acute spinal cord onset: more than meets the eye

Eleonora Mauri1, Robertino Dilena2, Antonio Boccazzi3, Dario Ronchi1, Daniela Piga4, Fabio Triulzi5, Delia Gagliardi1, Roberta Brusa1, Irene Faravelli1, Nereo Bresolin1,4, Francesca Magri1,4, Stefania Corti1,4 and Giacomo P. Comi1,4*

Abstract

Background: Leber’s hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by visual loss consequent to optic nerve atrophy. In some cases, LHON is associated with heterogeneous neurological extraocular manifestations and is referred to as “Leber plus disease”; rarely it is associated with a multiple sclerosis (MS)-like syndrome known as Harding disease, but no pediatric extraocular acute spinal onset is reported.

Case presentation: We describe the case of a 5-year-old girl carrying the G3460A mtDNA mutation who was referred to clinical examination for bilateral upper and lower limb weakness with no sign of optic neuropathy. Spinal cord MRI showed hyperintense signal alterations in T2-weighted and restricted diffusion in DWI sequences in the anterior portion of the cervical and dorsal spinal cord resembling a spinal cord vascular injury. No association between this mutation and pediatric spinal cord lesions has previously been reported. Alternative diagnostic hypotheses, including infective, ischemic and inflammatory disorders, were not substantiated by clinical and instrumental investigations.

Conclusions: Our case reports a novel pediatric clinical manifestation associated with the m.3460G > A mtDNA mutation, broadening the clinical spectrum of this disease. Early identification of new cases and monitoring of carriers beginning in childhood is important to prevent neurological deterioration and preserve long-term function.

Keywords: Leber’s hereditary optic neuropathy, Spinal cord, Pediatric, Mitochondrial pathology

Background

Leber’s hereditary optic neuropathy (LHON) is a maternally inherited genetic disease that occurs due to a mitochondrial DNA (mtDNA) mutation that causes central, bilateral, painless, progressive visual loss due to optic nerve atrophy, particularly in young adult men [1]. Three disease-causing mutations that affect subunits of complex I of the mitochondrial respiratory chain (MTND1: m.3460G > A, MTND4: m.11778G > A, and MTND6: m.14484 T > C) are responsible for 90% of the cases. The extraocular manifestations of the disease, known as “Leber plus disease”, include movement disorders, mental retardation, seizures, cerebellar ataxia, and peripheral neuropathy [1]. Other associations, such as multiple sclerosis (MS)-like syndrome, referred to as “Harding disease” or “LHON-MS” [2], Leigh-like encephalopathy and MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes)/LHON overlap syndromes, have also been reported [3]. We describe a 5-year-old girl affected by an acute spinal cord lesion mimicking a vascular lesion. The patient had a family history of LHON due to the G3460A mtDNA mutation.

Case presentation

A 5-year-old girl was admitted to our Emergency Department after an episode of acute interscapular back pain occurring without trauma and followed by bilateral upper and lower limb weakness.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Her family history included 8 Italian members harboring the same homoplasmic m.3460G > A mtDNA (Table 1, Fig. 1a). All the family members presented headache poorly responsive to NSAIDs and, except for the girl and her mother, visual loss due to optic nerve pathology. The patient’s medical history was unremarkable.

The patient’s vital signs were normal and stable. At the neurological examination, her cognitive functions were normal. There were no cranial nerve lesions. No alterations in touch or pain sensitivity were present in the trunk and limbs. No concomitant signs of infection or inflammation were present, and no such signs had been reported in the previous weeks. Analyses of CSF pressure, glucose, protein, cell count, viral PCR, and culture were normal, and oligoclonal bands were absent (see timeline of events and treatment in Fig. 2). The patient underwent a spinal cord MRI; the results showed hyperintense signal alterations in T2-weighted sequences and restricted diffusion in diffusion weighted imaging (DWI) sequences in the anterior portion of the cervical and dorsal spinal cord, suggesting anterior spinal artery territory involvement (Fig. 1b). Computed tomography angiography (CT) imaging showed no arterial dissection or other vessel abnormalities. Visual evoked potentials were normal. Somatosensory evoked potentials in both legs showed decreased conduction velocities. Motor evoked potentials showed lower amplitude for cortical derivation, prolonged latency in the upper limbs and normal in the lower limbs. Central conduction time was increased in the upper limbs and normal at the lower limbs. Complete autoimmunity and thrombophilia screening were unremarkable. Testing for anti-AQP4 antibodies was negative, and anti-MOG antibodies were not significantly elevated. A cardiology consultation and echocardiography identified normal heart and aorta features. At the ophthalmological assessment, pupillary reactions were normal, the fundus oculi did not reveal pathological signs, and color vision was not affected. The visual acuity was 9/10 bilaterally. The digital visual field test displayed a mild defect in the peripheral portion of the visual field that was more evident in the left eye. Optical coherence tomography, visual evoked potential and electroretinograms were normal. As the child grows, her visual function will

Table 1 Clinical findings at prolonged follow-up of the entire family. No family member presented signs of a spinal cord lesion or pediatric onset of the symptoms. The individuals in the family pedigree are identified as follows: 1 Great-grandmother; 2, Uncle; 3, Uncle; 4, Grandmother; 5, Aunt; 6, Aunt; 7, Mother; 8, Proband

	1 Great grandmother	2 Uncle	3 Uncle	4 Grandmother	5 Aunt	6 Aunt	7 Mother	8 Proband				
Gender	F	M	F	F	F	F	F	F				
Mutation G3460A	Heteroplasmic	Homoplasmic	Homoplasmic	Homoplasmic	Homoplasmic	Homoplasmic	Heteroplasmic	Homoplasmic				
Age at onset -y	Unknown	Unknown	Unknown	30	21	9	–	5				
Signs of onset	Ipovisus	Ipovisus	lipovisus	Ipovisus Unilateral to bilateral optic neuritis	Ipovisus Unilateral optic neuritis	Ipovisus Bilateral optic neuritis	No signs at ophthalmologic visit 2011	Spinal cord lesion				
MRI brain signs	–	–	–	Multiple periventricular subcortical lesion	–	–	–	Negative				
OCB in CSF	–	–	–	Absent	–	–	–	Absent				
Progression of the disease	Blindness	Blindness	Headache	Blindness Psychiatric comorbidities	Vertigo	Tremor	Diplopia	Psychiatric trait	Bilateral scotoma Headache	Monolateral scotoma left eye; blind right eye	–	–
Disorders associated	Unknown	Unknown	Unknown	Rolandic epilepsy Pericarditis	ANA pos.	Osteoid osteoma	LLAC pos.	Connectivitis	Headache	Cutaneous mastocytosis		
Therapy	Ilebenon	–	–	Aspirin Corticosteroids	Ilebenon							
Follow-up duration	20 ys	20 ys	20 ys	20 ys	7 ys	14 ys	5y	1 y				
require careful monitoring, particularly when she reaches the adolescence.

After obtaining written informed consent consistent with the principles set forth in the Declaration of Helsinki, total DNA was isolated from the patient’s peripheral blood according to standard protocols. Full-length mitochondrial DNA sequencing was conducted according to a previously described protocol [4], and detected the haplogroup H27 was detected in the proband. The following variants were detected in the homoplasmic state: m.41C > T, m.73A > G, m.263A > G, m.1438A > G, m.3460G > A, m.4769A > G, m.8860A > G, m.11719G > A, m.15326A > G, m.16129G > A, m.16316A > G, m.16519 T > C. Based on the presence of the m.11719G > A and m.16316A > G nucleotide variants, the patient is predicted to belong to the H27 haplogroup. The m.3460G > A transition, a major mutation associated with LHON, was verified in blood-derived DNA of other family members by PCR-RFLP analysis.

Acetylsalicylic acid was administered at low doses (2.5 mg/kg daily), and high doses of methylprednisolone (20 mg/kg daily) were empirically administered for three days. Although no proven treatments for LHON are available, early treatment with idebenone is thought to limit the progression of the disease; the patient was administered 45 mg of idebenone three times daily. Within two days following this therapy, clinical manifestations improved, and the patient regained bladder control and

Fig. 1 Family pedigree and MRI spinal cord imaging. a. Family pedigree; the patient is number 8. b. Spinal cord MRI T2-weighted/DWI sequences indicating a hyperintense cervical-dorsal lesion. c. Spinal cord MRI T2-weighted/DWI sequences obtained 10 days later, showing regression of the hyperintense signal.
the ability to ambulate; within one week, the girl also re-
covered nearly normal strength in both arms. A control
spinal cord MRI together with 1H-MRS to study the lac-
tate peak was performed 10 days after hospital admission;
the results showed complete regression of the alterations
and no abnormal metabolites (Fig. 1c). The patient contin-
ued outpatient rehabilitation, and her motor functions im-
proved, resulting in an almost completely normalized
neurological examination after 2 months and preserving
these achievements at follow-up one year later.

Discussion
In the case described here, the acute onset associated
with back pain and the spinal cord MRI alteration in the
region of the anterior spinal cord artery could first sug-
gest an arterial infarction. Indeed, LHON can be associ-
ated with cardiac arrhythmias and can predispose
individuals to embolic events [5]. The patient’s symp-
toms improved rapidly after corticosteroid treatment,
and there was a significant reduction of the signal in the
spinal cord MRI ten days later, a pattern more consistent
with an inflammatory origin of the lesions. A condition
characterized by MS-like neuropathological and clinical
findings in the presence of an LHON mtDNA mutation
was described by Harding and referred to as “Harding
disease” or “LHON-MS”. LHON-MS is characterized by
recurrent episodes of visual loss associated with ocular
pain and central nervous system demyelination along
with unmatched cerebrospinal fluid oligoclonal bands. In
past years, authors have extensively discussed the possi-
bility that LHON-MS syndrome could be coincidental;
an interesting point addressed in these discussions was
whether and how the two diseases reciprocally influence
their natural histories [6]. Upregulation of mitochondrial
manganese superoxide dismutase and increased expres-
sion of inducible nitric oxide synthase within the inflam-
atory lesions have been described.

The 3460G > A mtDNA mutation occurs in the ND1
gene, which encodes a subunit of complex-I of the electron
transport chain, NADH: ubiquinone oxidoreductase; the
mutation reduces the rotenone- and ubiquinone-dependent
electron transfer activity of complex without affecting the
activity of proximal NADH dehydrogenase [7]. We specu-
late that the energy imbalance produced by this genetic de-
fect could lead to the spinal cord manifestations seen in
this patient due to the high energetic demand of the spinal
cord anterior horn. In some mitochondrial diseases (e.g.,
MELAS), stroke-like lesions in the brain are the conse-
quence of an energy imbalance between the demand for
and the availability of ATP in neurons, astrocytes and endo-
thelial cells [3]. Some MELAS/LHON cases have been re-
ported, but none of these cases had spinal cord
involvement. Some authors have suggested that the mito-
chondrial dysfunction acts as a driver of neurodegeneration
both in the classic LHON presentation and in the MS-like
pathology through energy deficiency, hypoxic-like tissue in-
jury and exposure of mtDNA-encoded proteins as histo-
compatibility antigens [1, 8]. A progressive metabolic
axonopathy was reported by Jaros [9] in a case of LHON as
a result of a lifelong pathology, and no evidence of demye-
lination was observed in the autopic spinal cord; it has
been speculated that different mtDNA mutations predis-
pose different neuronal types to specific susceptibility to
neurodegeneration [9–11]. Spinal cord involvement during
the onset of two cases of LHON mimicking neuromyelitis
optica has recently been described [12, 13], emphasizing
the necessity of better characterizing its early stages. We
acknowledge the possibility that our patient might have
co-occurrence of the LHON mutation and inflammatory CNS pathology; indeed, it is possible that the two diseases reciprocally influence each other’s natural history. However, neither the criteria of seronegative NMO nor the MS clinical diagnostic criteria were fulfilled at one-year follow-up [14, 15]. To our knowledge, this is the first reported case of a pediatric spinal cord acute lesion that could represent the onset of neurological manifestations in a patient carrying a typical LHON mutation. Incomplete penetrance is not uncommon in LHON, and factors including additional mtDNA variants [16] and mtDNA haplogroups [17] have been proposed to influence the onset and progression of disease in patients with the LHON mutation. Direct sequencing of full mtDNA in our case ruled out a synergic role of other mtDNA mutations, and no experimental data support a role of the predicted H27 haplogroup as a genetic modifier in LHON. We cannot exclude the possibility that other factors, such as nuclear background [18, 19], might be relevant to protecting our patient from optic nerve pathology or might influence the peculiar aspects of her clinical presentation.

Conclusions
A precise description of LHON patients presenting with extraocular neurological symptoms appears fundamental for clarifying the variability of different phenotypes and presentations and tailoring the therapeutic intervention. Early identification of new cases and monitoring of carriers beginning in childhood is important to prevent neurological and ophthalmological deterioration and preserve long-term function. Our case reports a novel pediatric clinical manifestation associated with the G3460A mtDNA mutation, broadening the clinical spectrum of this disease.

Abbreviations
1H-MRS: Proton magnetic resonance spectroscopy; CSF: Cerebrospinal fluid; DWI: Diffusion weighted imaging; ERG: Electroretinogram; LHON: Leber’s hereditary optic neuropathy; MELAS: Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; MRI: Magnetic resonance imaging; MS: Multiple sclerosis; mtDNA: Mitochondrial DNA; NMO: Neuromyelitis optica; PCR-RFLP: Polymerase chain reaction - restriction site length polymorphism; VEP: Visual evoked potential

Acknowledgments
The authors would like to thank the family members for their cooperation. The study was supported by Italian Telethon grant GSP16001 to G.P.C.

Funding
The authors have indicated they have no competing interests and no financial support to disclose.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
EM and RD were involved in the work-up of the patient, planning and conducting investigations, and providing clinical care; they planned the case report, reviewed and revised the manuscript and approved the final manuscript as submitted. AB was involved in the work-up of the patient. DR and DP performed the genetic tests. FT performed and provided the neuro-imaging. DG, RB, IF, SC, FM, NB and GPC reviewed and revised the manuscript and approved the final manuscript as submitted. All the authors read and approved the final manuscript.

Ethics approval and consent to participate
The collection of the data was conducted as set forth in the Declaration of Helsinki. All family members were informed and provided written consent to the collection of their data.

Consent for publication
Written informed consent to publication of this case report and any accompanying images was obtained from the patient’s parents and from cited family members; the involved parties understand that the text and any images published in the article will be freely available on the internet and may be seen by the general public.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy. 2Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Neurophysiopathology, Milan, Italy. 3Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Unit "Media Intensità di Cura", Milan, Italy. 4Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy. 5Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurooncology Unit, Milan, Italy.

Received: 12 April 2018 Accepted: 13 December 2018

Published online: 27 December 2018

References
1. Yu-Wai-Man P, Votruba M, Carelli V, et al. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132:789–806.
2. Harding AE, Sweeney MG, et al. Occurrence of a multiple-sclerosis-like illness in women who have Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain. 1992;115(Pt 4):799–89.
3. Kolovou H, Liskova P, Honzik T, et al. Unique presentation of LHON/MELAS overlap syndrome caused by m.13046T>C in MTND5. Ophth Genetic. 2016;37:419–23.
4. Ronchi D, Cosi A, Corni GP, et al. Clinical and molecular features of an infant patient affected by Leigh disease associated to m.14459G>a mitochondrial DNA mutation: a case report. BMC Neurol. 2011;11:85.
5. Nikoskelainen EK, et al. Pre-excitation syndrome in Leber hereditary optic neuropathy. Lancet. 1994;344(8926):857–8.
6. Pfeiffer G, Burke A, Yu-Wai-Man P, et al. Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology. 2013;812076–81.
7. Papa S, De Raso D. Complex I deficiencies in neurological disorders. Trends Mol Med. 2013;19(1):61–9.
8. Kovacs G, Jacob G, et al. Neuropathology of white matter disease in Leber’s hereditary optic neuropathy. Brain. 2005;128:35–41.
9. Jaros E, Mahad DJ, Hudson G, et al. Primary spinal cord degeneration in Leber hereditary optic neuropathy. Neurology. 2007;69:214–6.
10. Clarencou F, Touze E, Leroy-Willig A, et al. Spastic paraparesis as a manifestation of Leber’s disease. J Neurol. 2006;253:525–6.
11. Meier FM, Van Coster R, Cochaux P, et al. Neurological disorders in members of families with Leber’s hereditary optic neuropathy caused by different mitochondrial mutations. Ophthalmic Genet. 1995;16(3):119–26.
12. McClelland CM, Van Stavern GP, Taisel AC. Leber hereditary optic neuropathy mimicking neuromyelitis optica. J Neuroophthalmol. 2011;31(3):265–8.
13. Kassa R, Raslau F, Smith C, et al. Teaching NeurolImages: Leber hereditary optic neuropathy masquerading as neuromyelitis optica. Neurology. 2018;90(1):e94–e9.
14. Tardieu M, Banwell B, Wolinski et al. consensus definitions for pediatric MS and other demyelinating disorders in childhood. Neurology. 2016;87:58–S11.
15. Bennet L. Finding NMO: the evolving diagnostic criteria of Neuromyelitis Optica. Neuroophthalmol. 2016;36(3):238–45.
16. Achilli A, Iommairini L, Olivieri A, et al. Rare primary mitochondrial DNA mutations and probable synergistic variants in Leber's hereditary optic neuropathy. PLoS One. 2012;7(8):e42242.
17. Hudson G, Carelli V, Spruijt L, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am J Hum Genet. 2007;81(2):228–33.
18. Giordano C, Iommairini L, Giordano L, et al. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain. 2014;137(2):335–53.
19. Jiang P, Jin X, Peng Y, et al. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet. 2016;25(3):584–96.