A Systematic Review and Meta-Analysis of Studies Evaluating the Effect of Medication Treatment for Opioid Use Disorder on Infectious Disease Outcomes

Katelyn F. McNamara, BS²
Breanne E. Biondi, MPH³
Raúl U. Hernández-Ramírez, PhD⁴
Noor Taweh ⁵, ⁶
Alyssa A. Grimshaw, MSLIS⁶
Sandra A. Springer, MD¹

¹. Yale AIDS Program
 Department of Internal Medicine
 Section of Infectious Diseases,
 Yale School of Medicine
 New Haven, CT, USA
². Stritch School of Medicine,
 Loyola University Chicago
 Maywood, IL, USA
³. Department of Health Law, Policy, and Management
 Boston University School of Public Health
 Boston, MA, USA
⁴. Center for Methods in Implementation and Prevention Science,
 Center for Interdisciplinary Research on AIDS, and Department of Biostatistics,
 Yale School of Public Health
 New Haven, CT, USA
⁵. University of Connecticut
 Storrs, CT, USA
⁶. Harvey Cushing/John Hay Whitney Medical Library
 Yale University
 New Haven, CT, USA
Correspondence to: Sandra A. Springer, MD
Yale AIDS Program
135 College St, Suite 323
New Haven, CT 06510
United States of America

Email: sandra.springer@yale.edu
Phone: 203-687-6680
Fax: 203-737-4051

Key Points: There is significant support for the integration of MOUD with HIV treatment to improve viral suppression among persons with HIV (PWH) and OUD. Treatment of OUD among PWH should be a priority in order to combat the opioid and HIV epidemics.
Abstract

The opioid epidemic has fueled infectious disease epidemics. We determined the impact of medications for opioid use disorder (OUD; MOUD) on treatment outcomes of OUD-associated infectious diseases: antiretroviral therapy (ART) adherence, HIV viral suppression, hepatitis C (HCV) sustained virologic response, HCV re-infection, new HBV infections, and infectious endocarditis-related outcomes. Manuscripts reporting on these infectious disease outcomes in adults with OUD receiving MOUD compared with those with OUD not receiving MOUD were included. Initial search yielded 8,169 papers; 9 were included in the final review. The meta-analysis revealed that MOUD was associated with greater ART adherence (OR=1.55; 95%CI=1.12-2.15) and HIV viral suppression (2.19; 1.88-2.56). One study suggested a positive association between MOUD and HCV sustained virologic response. There is significant support for integrating MOUD with HIV treatment to improve viral suppression among persons with HIV (PWH) and OUD. Treatment of OUD among PWH should be a priority in order to combat the opioid and HIV epidemics.

Key Words: Opioid Use disorder; Medication treatment; HIV; HCV; endocarditis
Introduction

The increase of opioids prescribed for pain in the 1990s initiated the United States (U.S.) opioid epidemic, leading to an increase in persons diagnosed with opioid use disorder (OUD).\(^1\) Despite declines in opioid prescribing rates since 2012, injection of heroin and the synthetic opioid fentanyl has accelerated across the U.S.\(^1-3\) The Centers for Disease Control (CDC) reported 81,000 overdose deaths in May 2020, the highest number to be recorded in a 12-month period (>81,000), driven primarily by injection of synthetic opioids and stimulants.\(^2\) This increase in injection drug use (IDU) of heroin, fentanyl, and stimulants (methamphetamine and cocaine)\(^2\) combined with restrictions on syringe service programs (SSPs)\(^4\) has resulted in a surge of infectious diseases, including HIV, hepatitis C (HCV), and infectious endocarditis.\(^3,5\)

Shared or used injection equipment increases the transmission of blood-borne viral infections, such as HIV and hepatitis B and C, and increases the risk of bacterial and fungal infections that can cause endocarditis.\(^3,6\) In 2018, 10% of new HIV diagnoses were attributed to IDU or male-to-male sexual contact and IDU.\(^6\) In the past decade, viral hepatitis, HIV, and bacterial and fungal infections due to injection drug use (IDU) have increased.\(^7\) In a 2019 study, infective endocarditis accounted for 14% of bacterial or fungal infections in persons who inject drugs.\(^8\) In addition to syringe service programs (SSPs) that decrease outbreaks of infectious diseases,\(^4\) medication treatments for OUD (MOUD) have also been identified as avenues of infectious disease harm reduction.

MOUD is the most effective form treatment for OUD (e.g., buprenorphine, methadone and extended-release naltrexone (XR-NTX)), because they reduce opioid craving, use, overdoses, and death.\(^1\) However, only 15% of those with OUD receive MOUD,\(^9\) despite evidence that it can lead to reductions in HIV and HCV risk behaviors and bacterial and fungal infections. Further, few persons with OUD are offered MOUD with harm reduction.
Because of this, experts in addiction medicine and infectious disease recommend integrating MOUD with infectious disease prevention and treatment services to reduce incidence of new HIV, HCV and other related infections. MOUD improves adherence to antimicrobial treatment and reduces HIV risk behaviors, and improves adherence to HCV and HIV treatment. Thus, it is critical to understand the impact of MOUD on infectious disease-related outcomes.

We conducted an systematic review and meta-analysis to explore the relationship between MOUD and four of the most prevalent OUD-related infectious diseases that are published in the literature (HIV, hepatitis C Viral infection (HCV), hepatitis B Viral infection (HBV), and infection related endocarditis) and their associated treatment outcomes: ART adherence and HIV viral suppression in persons with HIV (PWH), sustained virologic response and re-infection in persons with HCV, and new HBV infections. For endocarditis, antimicrobial treatment completion, surgery and surgical outcomes, and re-infection were assessed. This systematic review and meta-analysis seeks to provide empirical evidence to supplement the expert recommendations that MOUD integrated with infectious disease prevention and treatment can lead to better infectious disease outcomes.

1. Methods

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statements for reporting were used for this study. The protocol was registered with PROSPERO before title and abstract review (CRD42020166964).
a. **Data Sources and Searches**

A systematic search of the literature was conducted in Cochrane Library, Google Scholar, Ovid Embase, Ovid Medline, Ovid PsychInfo, Pubmed, Scopus, and Web of Science Core Collection databases to find relevant articles published from inception of database to the date of final searches, June 25, 2020. The search was peer-reviewed by a second researcher using PRESS (Peer Review of Electronic Search Strategies).\(^\text{15}\) Databases were searched using combinations of controlled vocabulary and keywords for MOUD (buprenorphine, methadone, or extended-release naltrexone) and HBV, HCV, HIV, or endocarditis. Details of the full search strategy are in Appendix A.

b. **Study Selection and Inclusion Criteria**

All citations were imported into Endnote x9 (Clarivate Analytics), where duplicates were removed. The de-duplicated results were imported into Covidence\(^\text{16}\) for screening and data extraction. Studies were not limited to English language, and Google Translate was used in each step to read non-English texts. At least two independent screeners reviewed each study in title and abstract and full text screening for inclusion with a third reviewer to resolve conflicts.

The population studied in this review included patients with: 1) a diagnosis of OUD or opioid dependence and 2) at least one of the following infectious diseases: HIV, HCV, HBV, and/or endocarditis. Studies had to examine the effect of MOUD on ART adherence, HIV viral suppression, HCV sustained virologic response or re-infection, new HBV infection, or antimicrobial treatment completion, surgical outcomes, and re-infection for infection-related endocarditis. Studies were excluded if the population was defined as “PWID” or “IDU”, as several of these studies included persons who exclusively injected drugs other than opioids.
Studies were excluded if they did not have a comparison group of persons with OUD not on MOUD. Other filters included human subjects and subjects 18 years or older.

c. Data extraction

At least two independent reviewers extracted all study data: publication year, enrollment period, country, study design, study method, study population, setting of population, recruitment methods, number of participants, sex of participants, mean or median age of participants, duration of participation, and HCV and/or HIV treatment type, if applicable. Information on the type, frequency, duration, and compliance of MOUD, and infectious disease outcomes being studied was also extracted. A third reviewer resolved any discrepancies in the data extraction.

d. Risk of Bias

Risk of bias was independently assessed by at least two reviewers who reviewed the methodological quality of the studies included using the Newcastle-Ottawa Scale (NOS)17 for nonrandomized cohort studies and the Cochrane risk-of-bias tool (RoB2)18 for the RCT.19 The NOS is used for nonrandomized studies to assess the selection of the study groups, comparability of groups, and the ascertainment of the outcome of interest.17 The Cochrane RoB2 includes questions about randomization, deviations from intended interventions, missing outcome data, measurement of the outcome, selection of the reported result, and overall bias.18 Each domain was assessed as either “high” or “low” bias per study for each scale.
e. **Meta-Analysis**

Meta-analysis was possible for HIV viral suppression and ART adherence outcomes. Depending on the measure reported, we expressed the measures of the effect of MOUD on the different outcomes as risk ratios (RR) or odds ratios (OR). For studies that did not report these estimates, we calculated unadjusted RR/OR and their corresponding 95% confidence intervals (95%CI) based on available data. Using the METAANAL Macro in SAS 9.4, we used DerSimonian-Laird random-effects and fixed-effects models to conduct meta-analysis and the Q-test to test for heterogeneity. To assess publication bias, we conducted funnel plots and Egger’s and Begg’s tests in Stata/SE 16.1.

2. **Results and findings**

The search resulted in 17,180 articles; after duplicates were removed, 8,169 remained for title/abstract screening, and 364 articles met the criteria and were reviewed in full text (Figure 1). We included a total of 9 articles in the final review (Table 1).

For the HIV viral suppression outcome, the only outcome with relatively enough studies available to assess publication bias, the symmetry of the funnel plot (Supplemental Figure 1; p for Egger’s test=0.971 and for Begg’s test=0.851) suggested no evidence of publication bias. All of the cohort studies had good quality as rated by the NOS, and the one RCT was rated as low risk of bias overall (Supplemental Table 1). Results between studies were homogenous for the two outcomes for which meta-analysis was possible (Table 2): HIV viral suppression and ART adherence. This review did not identify any studies of the effect of MOUD on new HBV infections.
a. HIV Viral Load and Viral Suppression

All five studies that analyzed the effect of MOUD on HIV viral suppression reported a significant relationship (Table 1).19,22–25 Reddon and colleagues,22 Roux and colleagues,23 and Socías and colleagues24 reported significant effects of methadone treatment on viral suppression at 6 months. Both studies by Springer and colleagues19,25 reported viral suppression to be HIV-1 RNA <50 copies/mL with statistically significant improvement with buprenorphine (BPN) or XR-NTX. Springer and colleagues found that receiving methadone was not found to be significantly associated with achieving maximal viral suppression. Analyses of viral load values of <400 copies/mL were also used and found no significant differences between the non-buprenorphine/naloxone (BPN/NLX) group, the BPN/NLX group retained for 24 weeks, and the BPN group not retained for 24 weeks.25 Reddon and colleagues22 and Socías and colleagues24 used HIV-1 RNA <500 copies/mL as the cutoff for viral suppression. Roux and colleagues23 measured viral suppression to be “HIV-1 RNA level below the lower limit of detection of the assay,”; the assay used was not specified.

Springer and colleagues19 was the only RCT that met all the inclusion criteria for this review. This study reported a significant increase in viral suppression at six-month follow-up (60.6%) compared to baseline (37.9%) for participants randomized to XR-NTX. The placebo group showed decreased viral suppression levels after six-months, but this was not statistically significant (55.6% at baseline and 40.7% at six months). The full 24-week retention on BPN/NLX was statistically significantly associated with participants achieving viral suppression after being released from prison.19

Overall, our meta-analysis found that being on MOUD increased the odds of achieving viral suppression (OR 2.19; 95% CI 1.88-2.56; Q=3.78 \(p=0.580\), Table 2). We also conducted meta-analysis excluding Reddon and colleagues22 as their calculated effect estimates were unadjusted and based on data by HIV-RNA assessments instead of by subjects. After
excluding Reddon and colleagues, MOUD use remained significantly associated with viral suppression (OR=2.03; 95% CI 1.60-2.59).

b. Antiretroviral Treatment (ART) Adherence

Three studies discussed the effect of MOUD on ART adherence (Table 1). While two studies demonstrated a positive association between being on MOUD and adherence to ART, one study, that did not report effect estimates, found no significant relationship between MOUD treatment and adherence to ART.

Mazhnaya and colleagues and Uhlmann and colleagues defined being optimally adherent to ART as taking >95% of prescribed doses, while Roux and colleagues evaluated 100% adherence to ART. The methods of collecting ART adherence data also differed, although all used validated measures. Mazhnaya and Roux used validated self-report questionnaires for adherence over the past 30 days. Uhlmann and colleagues assessed ART adherence with prescription refill data from the past six months. Our meta-analysis found that being on MOUD increased the odds of being adherent to ART (OR 1.55; 95% CI 1.12-2.15, Table 2).

c. HCV Sustained Virologic Response

One study assessed the effects of buprenorphine on achieving HCV sustained virologic response (Table 1). Rosenthal and colleagues demonstrated that participants with HCV and OUD who started and continued buprenorphine were significantly more likely to achieve sustained virologic response (measured by HCV RNA level) at 12 weeks (92%) than those who were never on buprenorphine (64%) and those who started but stopped buprenorphine (63%). This remained true even after adjustment for HCV treatment adherence (p=0.008).
d. Infectious Endocarditis Readmission

One study investigated infectious endocarditis readmission rates or repeat episodes of endocarditis and their association with MOUD (Table 1). Suzuki and colleagues found that six (37.5%) of the 16 participants who initiated MOUD at their initial hospital admission for endocarditis had a repeat episode within the follow-up period (45 months). This did not significantly differ from those who declined MOUD during initial hospitalization and had a repeat episode (4/10, 40%). The groups were defined by who started MOUD during hospitalization, but 50% of those who declined MOUD at first admission were reported to be using MOUD during follow-up, and only 68.8% of those who started with MOUD during hospitalization continued it during follow-up.

e. Infectious Endocarditis Antimicrobial Completion

One study evaluated infectious endocarditis antimicrobial completion (Table 1). Suzuki and colleagues noted that there was no significant difference in completion of antimicrobial course for endocarditis in those on MOUD compared to those not on MOUD. Of the 16 participants who initiated MOUD at the index hospitalization, 14 (87%) completed the course of antimicrobials while all 10 (100%) of the non-MOUD participants completed the antimicrobial course. As previously mentioned for this study, 50% of the non-MOUD participants were on MOUD during follow-up, which may have affected these results.

3. Discussion

While opioid-related outcomes of MOUD have been extensively reported as well as the impact of MOUD on HIV risk behaviors, to our knowledge this is the first systematic review and meta-analysis to empirically analyze the impact of MOUD on ART adherence, HIV viral suppression, HCV sustained viral response, HCV re-infection, new HBV and endocarditis treatment completion and re-infection. Overall, we found a significant impact of MOUD on HIV viral suppression as well as ART adherence, which suggests that MOUD
increases the probability of a PWH achieving viral suppression and ART adherence. Despite our extensive search, we found too few or no articles to make conclusions on the effect of MOUD on HCV sustained virologic response, HCV re-infections, new HBV infections, endocarditis antimicrobial completion, or endocarditis readmission rates.

Our results support the importance of integrating HIV and OUD treatment to increase likelihood of achieving viral suppression. Persons who are actively using drugs are historically less likely to be adherent to ART, and the incorporation of OUD treatment in HIV care can be crucial to medication adherence and thus achieving viral suppression.30 Given the most important goal of HIV treatment is to attain viral suppression for reduction in individual morbidity and mortality and improvement of public health through reduction in transmission (Undetectable=Untransmittable, U=U), integration of OUD and HIV treatment is critical.3,10,12,13 This systematic review and meta-analysis adds to the existing compelling evidence that it is possible and encouraged to address the intersectionality of the opioid and HIV epidemics. Long-term care strategies and standardized guidelines have been suggested3,5 and should be utilized to integrate treatment for OUD and HIV to maximize treatment success and improve healthcare quality.

Improving ART adherence is a vital step toward combatting the HIV epidemic.3 Some studies did not meet our eligibility criteria for inclusion criteria but presented important results about the effect of MOUD on ART adherence that are worth mentioning. Palepu and colleagues., 200631 demonstrated that methadone maintenance therapy was significantly associated with ≥95% ART adherence, but they did not specify if the non-methadone group had OUD. Another study looked at how differences in methadone dosage affected ART adherence and found that those taking a higher dose (≥100mg/day) were significantly more likely to achieve ≥95% adherence to ART.32 Co-administration of ART and MOUD impacts
health outcomes in these vulnerable populations by improving adherence and viral suppression.32

Few studies were identified with our search inclusion criteria to evaluate the impact of MOUD on HCV sustained virologic response and re-infection. Several studies were not eligible due to the lack of a control group but demonstrated that sustained virologic response can be achieved in patients maintained on MOUD.33,34 People with OUD are suitable candidates for HCV treatment with curative direct-acting antivirals (DAA) and demonstrate comparable sustained virologic response post-treatment to those without OUD.34 Despite this evidence, few people with OUD and HCV are receiving DAA treatment, in part due to abstinence-based substance use restrictions for HCV DAA medication according to 2017 Medicaid regulations in several states.35 Government-funded resources and standardized care guidelines to integrate HCV and OUD care could allow for better treatment access.35

There were no studies identified that evaluated the effect of MOUD on HCV re-infection. Some studies, however, did find that persons who received MOUD experienced low rates of re-infection with HCV,36,37 though these studies were ineligible for our review because the population receiving MOUD was compared to those without OUD or among an entire study population of those on MOUD. In addition to integration of MOUD and HCV treatment, increases in SSPs could help to reduce re-infection rates35 especially given the increase in injection of stimulants like methamphetamine and cocaine, leading to new infectious disease epidemics across the US.2 To address both HCV and OUD, care should be integrated that includes MOUD, DAA and SSPs.5,35

Only one article was identified that discussed antimicrobial completion for infectious endocarditis and re-hospitalization outcomes. We did identify studies that reported promising
results despite not meeting our search criteria. Barocas and colleagues38 noted a significant difference in 1-year all-cause rehospitalization between persons with endocarditis who received MOUD and a group who did not receive MOUD. Another study39 reported that most persons who received buprenorphine hospitalized for an injection-related infection completed their antimicrobial course (19/20, 95%). Suzuki and colleagues40 reported no significant difference in 30-day readmission between those who were on MOUD before and/or during hospital stay and those who were not. These studies did not limit their results to endocarditis, and thus were excluded. Previous research, as described, suggests that receipt of MOUD can significantly improve endocarditis-related outcomes. More research for strategies to engage persons with OUD in MOUD during endocarditis hospitalization might prevent rehospitalization, increase antimicrobial completion, improve surgical outcomes, and reduce mortality.

This review did not identify any studies of the effect of MOUD on new HBV infections. Our criterion for new HBV infection studies included reporting a negative hepatitis B surface antigen (HBsAg) prior to MOUD initiation and then a new positive HBsAg after initiating MOUD. To our knowledge, only one study presented this data, but there was no control group.41

a. Limitations
This review has several strengths including the comprehensive search of multiple databases, the screening of 8,169 papers, and the risk of bias assessments. However, there are some limitations to this review. First, few studies compared our desired infectious disease outcomes among persons with OUD on MOUD compared to those not on MOUD. We found several articles pertaining to our outcomes in observational studies where all participants were on MOUD or studies that compared those on MOUD with non-OUD
populations. To assure specificity of our results, we excluded papers that did not clearly identify their population as having OUD or opioid dependence. These excluded studies described their population as “PWID” or “IVDU”, which may have included those who use cocaine or methamphetamine without any opioid use. These populations would not be an appropriate non-MOUD control to compare the effect of being on MOUD on infectious disease outcomes in persons with OUD, and would bias our results. Thus, additional data may exist that are not presented in this review due to our more specific search criteria. Notably, persons who opted out of MOUD likely were very different than those who chose to use MOUD for their OUD, leading to selection bias and distortion of true treatment effects. Ideally, more randomized controlled trials should be conducted to address this, however since MOUD is the recommended standard of care for treatment of OUD, it would be unethical to offer a non-MOUD control group. Furthermore, because of the small sample size, we were unable to conduct a meta-analysis on HCV sustained virologic response and endocarditis-related outcomes. Lastly, the purpose of this review was to determine the effectiveness of MOUD in general on infectious disease outcomes, not differences in type of MOUD on these outcomes. Future research could investigate comparative analyses of these infectious disease outcomes based on type of MOUD.

b. Conclusion

This systematic review found a significant impact of MOUD on HIV viral suppression and ART adherence. These results are particularly relevant given the intersecting opioid and HIV epidemics. There exists compelling evidence that MOUD treatment leads to improved HIV outcomes. Despite the extensive search, this review found too few articles for the effects of MOUD on HCV sustained virologic response, HBV infections, endocarditis antimicrobial completion, and endocarditis readmission rates to yield meaningful results. Some strategies for incorporation of OUD and infectious disease treatments include standardized OUD screening protocols in infectious disease prevention and treatment programs, linkage to or direct integrated provision of MOUD, increased access to SSPs, and integration of OUD and
infectious disease prevention and treatment training programs for all healthcare students and providers. Implementation research is needed to evaluate how to best of to improve such treatment integration within different contexts.

Contributors

S.A.S. conceived the idea of this systematic review and meta-analysis. S.A.S., K.F.M., B.E.B., and A.A.G. initiated the project and were responsible for the design of the protocol. A.A.G. performed the systematic search of databases. K.F.M., B.E.B., and N.T. reviewed the literature, collected the data, and assessed the quality of the studies. R.U.H.-R. conceived the statistical design and performed the analysis; K.F.M., B.E.B., and R.U.H.-R. interpreted the data. K.F.M. wrote the initial draft of the manuscript. S.A.S., B.E.B., R.U.H.-R., N.T., and A.A.G. provided critical revisions. All authors approved the final version submitted for publication.
Potential Conflicts of Interest

S.A.S. has received honoraria from Alkermes Inc for scientific consultation and has received in-kind study drug donations for NIH-sponsored studies from Alkermes Inc and Indivior Pharmaceutical Company.

Funding

This research was supported by funding from the National Institutes on Drug Abuse (K02 DA032322 for Springer) and the National Institute of Mental Health (Grant P30MH062294 for Hernández-Ramírez). The funders were not involved in the research design, analyses, interpretation of the data or the decision to publish the manuscript.

Acknowledgements

S.A.S is supported by National Institutes on Drug Abuse (NIDA) (K02 DA032322), R.U.H-R is supported by National Institute of Mental Health Grant (P30MH062294), and B.E.B is supported by NIDA (T32-DA041898). The researchers were independent from their sources of support, which had no role in this study. We thank Cynthia Frank, PhD and Steven Farber, PA-C of Yale School of Medicine for their contributions during the title and abstract review.

Patient Consent Statement

This systematic review and meta-analysis was non human subjects research. It conforms to the ethical standards currently applied within the United States.
Table 1. Summary of Included Studies

First Author	Study Design	Population Type	Population Number	Study Enrollment Period	MOUD evaluated	ID outcome evaluated	Results
Mazhnaya et al (2018)	Case Control/Cohort Study	PWID with HIV, OUD, and prescribed MOUD	520	2014-2015	Methadone and buprenorphine	ART Adherence	Receiving MOUD was associated with 4.29-fold increased odds for optimal ART adherence
Reddon et al (2014)	Case Control/Cohort Study	ART exposed PWH and history of opioid use	408	1996-2008	Methadone	Viral Suppression	678 (61.6%) of 1076 viral load assessments of those receiving ART and MTD achieved VS compared to 718 (65.81%) of 1091 assessments among those prescribed ART without MTD (p=0.001)
Rosenthal et al (2020)	Case Control/Cohort Study	OUD with chronic HCV, injection of opioid within 3 months	100	2017-2018	Methadone, buprenorphine, XR-Naltrexone	SVR	82/100 reached SVR, but not significantly associated with MOUD vs non-MOUD (62/68 on MOUD, 20/32 non-MOUD)
Roux et al (2009)	Case Control/Cohort Study	PWH as a result of IDU, receiving HAART, and indicated for MOUD	113	1995-1996	Methadone and buprenorphine	Viral Suppression and ART Adherence	Relationship between retention in MOUD and nonadherence was not statistically significant. Patients who received MTD were significantly more likely to achieve VS than those not on MOUD (OR no treatment = 1; OR MTD = 3.66 [1.39-9.61, p=0.01]). Patients who received BPN were more likely to achieve VS than those not on MOUD, but this was not significant (OR BPN = 1.75 [0.8-3.85, p=0.16]).
Socías et al (2016)	Case Control/Cohort Study	ART exposed PWH	397	2015-2014	Methadone	Viral Suppression	Being on MTD significantly increased patient odds of achieving viral suppression (OR = 1.99, 95% CI 1.49-2.66)
Springer et al (2018)	Randomized Controlled Trial	Incarcerated PWH, OUD, and willing to be randomized to receive XR-NTX	93	2010-2015	XR-Naltrexone	Viral Suppression	XR-NTX significantly improved to VS (HIV RNA <50 copies/mL) from baseline (37.9%) to 6 months (60.6%) (P = 0.002), whereas the placebo group did not (55.6% at baseline to 40.7% at 6 months, P=0.294)
Springer et al (2012)	Case Control/Cohort Study	Incarcerated PWH starting ART	94	2005-2010	Buprenorphine/Naloxone	Viral Suppression	Those who were retained on BPN/NLX for 24 weeks were significantly more likely to achieve maximal VS (14/17, 82.4%) than either the non-BPN/NLX group (24/44, 54.6%) or those who were not retained on BPN for the full 24 weeks (16/33, 48.5%); (OR 4.32; CI 1.15 – 16.2).
Table 1. Summary of Included Studies. OUD, opioid use disorder; PWID, people who inject drugs; PWH, persons with HIV; MOUD, medication for OUD; HCV, Hepatitis C virus; HAART, highly active antiretroviral therapy; ART, antiretroviral therapy; MTD, methadone; BPN, buprenorphine; XR-NTX, extended-release naltrexone; VS, viral suppression

Study	Study Type	Population Details	N	Study Period	Intervention	Outcome Details
Suzuki et al (2019)	Case Control/Cohort Study	OUD hospitalized with endocarditis	26	2013-2015	Methadone and buprenorphine	Completed endocarditis-antimicrobial course, endocarditis re-admission. No significant difference found in antibiotic completion (14/16 on MTD or BPN vs. 10/10 on no MOUD) or repeat episode of endocarditis (6/16 on MTD or BPN vs. 4/10 on no MOUD) between those on MTD or BPN and those not on MOUD.
Uhlmann et al (2010)	Case Control/Cohort Study	ART-naive PWH using opioids	231	1996-2008	Methadone	ART Adherence. MTD was significantly associated with antiretroviral adherence compared to those not on MTD (OR = 1.49 (95% CI: 1.07–2.08); P = 0.019)
Table 2. Meta-Analysis Results

Outcome and studies	Measure of association	Estimate (95% CI)	RE % weights*
HIV viral suppression			
Roux et al (2009)\(^b\) BUP	OR	1.81 (0.82, 4.00)	9.41
Roux et al (2009)\(^b\) MTD	OR	3.91 (1.48, 10.33)	6.26
Springer et al (2012)\(^c\)	OR	1.36 (0.59, 3.15)	8.42
Reddon et al (2014)\(^d\)	OR	2.30 (1.89, 2.81)	70.35
Socías et al (2016)\(^d\)	OR	1.99 (1.49, 2.66)	
Springer et al (2018)\(^e\)	OR	2.90 (1.04, 8.14)	5.56
FE Overall (Q=3.78, p=0.580)		2.19 (1.88, 2.56)	
RE Overall		2.19 (1.88, 2.56)	
FE Overall (excluding Reddon et al 2014\(^d\)) (Q=3.18, p=0.527)		2.03 (1.60, 2.59)	
RE Overall (excluding Reddon et al 2014\(^d\))		2.03 (1.60, 2.59)	
ART adherence			
Uhlmann et al (2010)\(^f\)	OR	1.49 (1.07, 2.08)	79.58
Mazhnaya et al (2018)\(^g\)	OR	4.29 (0.87, 22.59)	20.43
FE Overall (Q=1.55, p=0.212)		1.55 (1.12, 2.15)	
RE Overall		1.85 (0.80, 4.26)	
HCV sustained virologic response			
Rosenthal et al (2020)\(^h\)	RR	1.46 (1.10, 1.93)	NA
Endocarditis (readmission)			
Suzuki et al (2019)\(^g\)	RR	0.94 (0.35, 2.52)	NA
Table 2. Meta-analysis: Estimates and 95% confidence intervals for the associations between MOUD treatment and infectious disease outcomes.

OR, odds ratio; RR, risk ratio; 95% CI, 95% confidence interval; FE, fixed effects; RE, random effects; NA, not applicable; HIV, human immunodeficiency virus; ART, antiretroviral treatment; HCV, hepatitis C virus

a For viral suppression outcome, RE weights are presented after excluding Reddon et al (2014).20

b Unadjusted estimates and 95% CI calculated based on information presented in the article.

c Unadjusted estimates and 95% CI calculated using information from viral load assessments instead of subjects.
References

1. Lyden J, Binswanger IA. The United States opioid epidemic. *Semin Perinatol*. 2019;43(3):123-131. doi:10.1053/j.semperi.2019.01.001

2. Centers for Disease Control and Prevention. Coronavirus Disease 2019. Published December 21, 2020. Accessed January 9, 2021. https://www.cdc.gov/media/releases/2020/p1218-overdose-deaths-covid-19.html

3. Strathdee SA, Kuo I, El-Bassel N, Hodder S, Smith LR, Springer SA. Preventing HIV outbreaks among people who inject drugs in the United States: plus ça change, plus ça même chose. *AIDS*. 2020;34(14):1997-2005. doi:10.1097/QAD.0000000000002673

4. Gonsalves GS, Crawford FW. Dynamics of the HIV Outbreak and Response in Scott County, Indiana, 2011-2015: A Modeling Study. *Lancet HIV*. 2018;5(10):e569-e577. doi:10.1016/S2352-3018(18)30176-0

5. Springer SA, Korthuis PT, Del Rio C. Integrating Treatment at the Intersection of Opioid Use Disorder and Infectious Disease Epidemics in Medical Settings: A Call for Action After a National Academies of Sciences, Engineering, and Medicine Workshop. *Ann Intern Med*. 2018;169(5):335-336. doi:10.7326/M18-1203

6. Centers for Disease Control and Prevention. Injection Drug Use and HIV Risk. Published August 2019. https://www.cdc.gov/hiv/pdf/risk/cdc-hiv-idu-fact-sheet.pdf

7. Persons Who Inject Drugs (PWID) | CDC. Published October 10, 2019. Accessed May 12, 2021. https://www.cdc.gov/pwid/index.html

8. Hartnett KP. Bacterial and Fungal Infections in Persons Who Inject Drugs — Western New York, 2017. *MMWR Morb Mortal Wkly Rep*. 2019;68. doi:10.15585/mmwr.mm6826a2

9. Williams AR, Nunes EV, Bisaga A, Levin FR, Olfson M. Development of a Cascade of Care for Responding to the Opioid Epidemic. *Am J Drug Alcohol Abuse*. 2019;45(1):1-10. doi:10.1080/00952990.2018.1546862

10. Serota DP, Barocas JA, Springer SA. Infectious Complications of Addiction: A Call for a New Subspecialty Within Infectious Diseases. *Clin Infect Dis Off Publ Infect Dis Soc Am*. 2020;70(5):968-972. doi:10.1093/cid/ciz804

11. Rosenthal ES, Silk R, Mathur P, et al. Concurrent Initiation of Hepatitis C and Opioid Use Disorder Treatment in People Who Inject Drugs. *Clin Infect Dis*. 2020;71(7):1715-1722. doi:10.1093/cid/ciaa105

12. Springer SA, Merluzzi AP, del Rio C. Integrating Responses to the Opioid Use Disorder and Infectious Disease Epidemics: A Report From the National Academies of Sciences, Engineering, and Medicine. *JAMA*. 2020;324(1):37. doi:10.1001/jama.2020.2559

13. Springer SA, Barocas JA, Wurcel A, et al. Federal and State Action Needed to End the Infectious Complications of Illicit Drug Use in the United States: IDSA and HIVMA’s
Advocacy Agenda. *J Infect Dis*. 2020;222(Supplement_5):S230-S238. doi:10.1093/infdis/jiz673

14. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med*. 2009;151(4):264-269, W64. doi:10.7326/0003-4819-151-4-200908180-00135

15. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. *J Clin Epidemiol*. 2016;75:40-46. doi:10.1016/j.jclinepi.2016.01.021

16. Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia. Available at www.Covidence.Org

17. GA Wells, B Shea, D O’Connell, J Peterson, V Welch, M Losos, P Tugwell. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. *Ott Hosp Res Inst*. Accessed December 24, 2020. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

18. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019;366:l4898. doi:10.1136/bmj.l4898

19. Springer SA, Di Paola A, Azar MM, et al. Extended-Release Naltrexone Improves Viral Suppression Among Incarcerated Persons Living With HIV With Opioid Use Disorders Transitioning to the Community: Results of a Double-Blind, Placebo-Controlled Randomized Trial. *J Acquir Immune Defic Syndr* 1999. 2018;78(1):43-53. doi:10.1097/QAI.0000000000001634

20. Hertzmark, E, Speigelman, D. *The SAS METAANAL Macro.;* 2017.

21. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2

22. Reddon H, Milloy M-J, Simo A, Montaner J, Wood E, Kerr T. Methadone Maintenance Therapy Decreases the Rate of Antiretroviral Therapy Discontinuation Among HIV-Positive Illicit Drug Users. *AIDS Behav*. 2014;18(4):740-746. doi:10.1007/s10461-013-0584-z

23. Roux P, Carriero MP, Cohen J, et al. Retention in Opioid Substitution Treatment: A Major Predictor of Long-Term Virological Success for HIV-Infected Injection Drug Users Receiving Antiretroviral Treatment. *Clin Infect Dis*. 2009;49(9):1433-1440. doi:10.1086/630209

24. Socías ME, Wood E, Small W, et al. Methadone maintenance therapy and viral suppression among HIV-infected opioid users: The impacts of crack and injection cocaine use. *Drug Alcohol Depend*. 2016;168:211-218. doi:10.1016/j.drugalcdep.2016.09.013

25. Springer SA, Qiu J, Saber-Tehrani AS, Altice FL. Retention on buprenorphine is associated with high levels of maximal viral suppression among HIV-infected opioid dependent released prisoners. *PloS One*. 2012;7(5):e38335. doi:10.1371/journal.pone.0038335
26. Mazhnaya A, Marcus R, Bojko MJ, et al. Opioid Agonist Treatment and Improved Outcomes at Each Stage of the HIV Treatment Cascade in People Who Inject Drugs in Ukraine. *JAIDS J Acquir Immune Defic Syndr.* 2018;79(3):288-295. doi:10.1097/QAI.0000000000001827

27. Uhlmann S, Milloy M-J, Kerr T, et al. Methadone maintenance therapy promotes initiation of antiretroviral therapy among injection drug users. *Addict Abingdon Engl.* 2010;105(5):907-913. doi:10.1111/j.1360-0443.2010.02905.x

28. Suzuki J, Johnson JA, Montgomery MW, et al. Long-term Outcomes of Injection Drug-related Infective Endocarditis Among People Who Inject Drugs. *J Addict Med.* 2020;14(4):282-286. doi:10.1097/ADM.0000000000000572

29. Karki P, Shrestha R, Huedo-Medina TB, Copenhagen M. The Impact of Methadone Maintenance Treatment on HIV Risk Behaviors among High-Risk Injection Drug Users: A Systematic Review. *Evid-Based Med Public Health.* 2016;2. Accessed November 16, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824190/

30. Azar P, Wood E, Nguyen P, et al. Drug use patterns associated with risk of non-adherence to antiretroviral therapy among HIV-positive illicit drug users in a Canadian setting: a longitudinal analysis. *BMC Infect Dis.* 2015;15(1):193. doi:10.1186/s12879-015-0913-0

31. Palepu A, Tyndall MW, Joy R, et al. Antiretroviral adherence and HIV treatment outcomes among HIV/HCV co-infected injection drug users: The role of methadone maintenance therapy. *Drug Alcohol Depend.* 2006;84(2):188-194. doi:10.1016/j.drugalcdep.2006.02.003

32. Lappalainen L, Nolan S, Dobrer S, et al. Dose-response relationship between methadone dose and adherence to antiretroviral therapy among HIV-positive people who use illicit opioids: Methadone dose and ART adherence. *Addiction.* 2015;110(8):1330-1339. doi:10.1111/add.12970

33. Lalezari J, Sullivan JG, Varunok P, et al. Ombitasvir/paritaprevir/r and dasabuvir plus ribavirin in HCV genotype 1-infected patients on methadone or buprenorphine. *J Hepatol.* 2015;63(2):364-369. doi:10.1016/j.jhep.2015.03.029

34. Sylvester DL. Treating hepatitis C in methadone maintenance patients: an interim analysis. *Drug Alcohol Depend.* 2002;67(2):117-123. doi:10.1016/S0376-8716(02)00010-8

35. Springer SA. Hepatitis C Virus Reinfection Rate Among Persons Who Use Drugs and Are Maintained on Medication Treatment for Opioid Use Disorder. *Clin Infect Dis Off Publ Infect Dis Soc Am.* 2020;70(12):2703-2705. doi:10.1093/cid/ciz695

36. Marco A, Esteban JI, Solé C, et al. Hepatitis C virus reinfection among prisoners with sustained virological response after treatment for chronic hepatitis C. *J Hepatol.* 2013;59(1):45-51. doi:10.1016/j.jhep.2013.03.008

37. Dore G, Altice F, Litwin AH, et al. C-Edge Co-Star: Risk of Reinfection following Successful Therapy with Elbasvir and Grazoprevir in Persons who Inject Drugs (PWID) Receiving Opioid Agonist Therapy (OAT). *J Hepatol.* 2016;64(2):S771. doi:10.1016/S0168-8278(16)01503-8
38. Barocas JA, Morgan JR, Wang J, McLoone D, Wurcel A, Stein MD. Outcomes Associated With Medications for Opioid Use Disorder Among Persons Hospitalized for Infective Endocarditis. *Clin Infect Dis*. doi:10.1093/cid/ciaa062

39. Fanucchi L, Walsh S, Thornton A, Nuzzo P, Lofwall M. Do Persons With Opioid Use Disorder and Injection-Related Infections Really Need Prolonged Hospitalizations to Complete Intravenous Antibiotic Therapy? *Open Forum Infect Dis*. 2018;5(Suppl 1):S44. doi:10.1093/ofid/ofy209.105

40. Suzuki J, Robinson D, Mosquera M, et al. Impact of Medications for Opioid Use Disorder on Discharge Against Medical Advice Among People Who Inject Drugs Hospitalized for Infective Endocarditis. *Am J Addict*. 2020;29(2):155-159. doi:https://doi.org/10.1111/ajad.13000

41. Stimmel B. Hepatitis B surface antigen and antibody. A prospective study in asymptomatic drug abusers. *JAMA J Am Med Assoc*. 1975;234(11):1135-1138. doi:10.1001/jama.234.11.1135
Figure 1. PRISMA Flow Chart

Records identified through database searching (n = 17,183)

Records after duplicates removed (n = 8169)

Abstracts screened (n = 8169)

Abstracts excluded (n = 7805)

Full-text articles assessed for eligibility (n = 364)

Full-text articles excluded, with reasons (n = 355)
- 105 No comparison group
- 81 Wrong outcomes
- 71 Population not exclusively OUD
- 28 Duplicate study data
- 25 Wrong intervention
- 13 Wrong study design
- 10 No outcomes
- 6 Abstract only
- 6 Duplicate Citations
- 5 Includes wrong Maud
- 5 Wrong patient population

Studies included (n = 9)

Note. Adapted from Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.