Critical behavior of the SIS epidemic model with time-dependent infection rate

Nuno Crokidakis and Marcio Argollo de Menezes

Instituto de Física, Universidade Federal Fluminense and National Institute of Science and Technology for Complex Systems, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil
E-mail: nuno@if.uff.br and marcio@if.uff.br

Received 29 March 2012
Accepted 20 April 2012
Published 11 May 2012

Online at stacks.iop.org/JSTAT/2012/P05012
doi:10.1088/1742-5468/2012/05/P05012

Abstract. In this work we study a modified susceptible–infected–susceptible (SIS) model in which the infection rate λ decays exponentially with the number of reinfections n, saturating after $n = l$. We find a critical decaying rate $\epsilon_c(l)$ above which a finite fraction of the population becomes permanently infected. From the mean-field solution and computer simulations on hypercubic lattices we find evidence that the upper critical dimension is $d = 6$, like in the SIR model, which can be mapped in ordinary percolation.

Keywords: interacting agent models, stochastic processes, epidemic modelling

ArXiv ePrint: 1203.6673
1. Introduction

Epidemic models have long been studied in the physics community both to infer patterns and to develop policies to stop and prevent epidemics in natural environments \[1\]–\[4\] and as a playground to test theoretical ideas \[5\]–\[8\]. In the simplest models, individuals can be either susceptible or infected and, in the latter case, can infect others with a given infection rate. If, after some time, the infected individual is susceptible to reinfection the model is known as susceptible–infected–susceptible (SIS). If, otherwise, infected individuals become immune it is called the susceptible–infected–recovered (SIR) model. Despite the simplicity of these models, they have successfully modeled a varied class of diseases, like dengue \[9\]–\[11\], HIV \[12,13\] and influenza A (H1N1) \[1,2,14,15\].

A fundamental question in the analysis of epidemic models is whether a disease will spread through a finite fraction of the population or will it only affect a small fraction of the individuals. Also of great importance is the development of efficient immunization strategies, both answers depending fundamentally on the underlying topology of interconnections between individuals of the population \[16\].

Although one could create a variety of infection dynamics and network structures, an exact mapping of epidemic models onto reaction–diffusion models \[6\] and subsequent development of operator algebras and field theories \[17\]–\[19\] show that a small number of universality classes might exist, linking different models to the same quantitative behavior around the onset of the epidemic state \[18,20\]. Scaling analysis also reveals that an upper critical dimension might exist for each process, above which dimensional effects are irrelevant and critical exponents and amplitude ratios are the same as in the mean-field approximation (which mimics infinite-dimensional systems, as the number of individuals \(N \rightarrow \infty\)).

Effects of network topology might also affect the properties of epidemic models: while in networks with randomly connected agents there is a finite threshold separating epidemic from non-epidemic states, networks with large connectivity fluctuations, such as scale-free networks, lack epidemic thresholds in both SIS and SIR models \[7\], \[21\]–\[26\].

In this work we study a modified version of the SIS model. In particular, we consider a decaying infection rate \(\lambda\), i.e. each individual \(j\) that recovers from the infected state in a certain time step \(t\) decreases his probability to becomes infected again in the next
time step $t + 1$ in the form $\lambda_j(t + 1) = \epsilon \lambda_j(t)$, where ϵ is a parameter of the model. In addition, the decrease of the infection rate occurs only a limited number l of times. This type of infectivity has been known to occur both in plants [27] and in the Simian immunodeficiency virus infection [28]. We study the model on regular lattices and in the mean-field regime, and considering the above-mentioned modification, our results suggest that the system undergoes a phase transition at critical values $\epsilon_c(l)$ separating a phase where the disease reaches a finite fraction of the population ($\epsilon > \epsilon_c$) from a phase where the disease does not spread out ($\epsilon \leq \epsilon_c$). We also find that the upper critical dimension is six, as in the SIR model [6, 7].

2. Model and mean-field approach

The population is classified into two classes: susceptible (S) and infected (I). The transitions between the states S and I occur according to the following automata rules:

- if individual j is infected at time t, it is susceptible at time $t + 1$ with probability α;
- if, otherwise, individual j is susceptible at time t, then with probability λ it becomes infected at time $t + 1$ if it is in contact with an infected individual at the same time;
- each individual j starts with $\lambda(j, t = 0) = \lambda_0$, but λ depends on how many times the individual was infected before, i.e. if an individual j performed the transition $I \rightarrow S$ in a certain time step t, in the following time step $t + 1$ the infection rate λ will be updated in the following form:

$$\lambda(j, t + 1) = \epsilon \lambda(j, t), \quad (1)$$

where ϵ is a parameter less than 1 that controls the decaying of the infection rate;
- in addition, this decay in the infection rate occurs only a maximum number l of times, i.e. each individual has a limited capacity to decrease his probability of reinfection.

This dynamics can be relevant to describe diseases such as flu, for which our chance to be reinfected decreases with age. The above rules define a mean-field-like system because all individuals interact with all others. Thus, an analytic approach can be developed, based on the standard ordinary differential equations for SIS models. We can define S_k as the density of susceptible individuals that have recovered k times from the disease, with $\lambda_k = \epsilon^k \lambda_0$ being the corresponding infection rate of these individuals. Considering that after some time steps (nothing to do with the steady state of the system) all individuals will be in two states, I or S_I, we can see that the only important equation in the evolution of the system is the equation for S_I, i.e.

$$\frac{dS_I}{dt} = \alpha I - \lambda_I S_I I. \quad (2)$$

Taking into account that in the steady state, i.e. for $t \rightarrow \infty$, we have that $S_I = S_{\text{steady}}$ and $dS_I/dt = dS_{\text{steady}}/dt = 0$, equation (2) gives us

$$I_{\text{steady}} (\alpha - \epsilon \lambda_0 S_{\text{steady}}) = 0, \quad (3)$$

where we have used the notations S_{steady} and I_{steady} to represent the stationary density of susceptible and infected individuals, respectively, i.e. $S_{\text{steady}} = S(t \rightarrow \infty)$ and $I_{\text{steady}} = I(t \rightarrow \infty)$. There are two solutions of equation (3): $I_{\text{steady}} = 0$ and
Critical behavior of the SIS epidemic model with time-dependent infection rate

Figure 1. Density of susceptible individuals $S(t)$ (left side, from top to bottom: $\epsilon = 0.80, 0.85, \ldots, 1.00$) and density of infected individuals $I(t)$ (right side, from top to bottom: $\epsilon = 1.00, 0.98, \ldots, 0.80$) as functions of time t for a population of size $N = 10^5$, limiting parameter $l = 5$ and typical values of ϵ. Data are averaged over 200 realizations. In this case, for $\epsilon \lesssim 0.87$ the disease does not spread in the system. The parameters are: $\alpha = 0.05$ and $\lambda_0 = 0.1$.

$I_{\text{steady}} = 1 - (\alpha/\lambda_0)\epsilon^{-l}$, where we have used the relation $S + I = 1$. Notice that the nontrivial solution for I_{steady} vanishes for critical values of ϵ given by

$$\epsilon_c = \left(\frac{\alpha}{\lambda_0}\right)^{1/l}.$$ \hspace{1cm} (4)

Using this result, we can rewrite the expression for I_{steady} as

$$I_{\text{steady}} = 1 - \left(\frac{\epsilon}{\epsilon_c}\right)^l.$$ \hspace{1cm} (5)

In other words, we have a disease-free phase, where the disease disappears from the system, for $\epsilon \leq \epsilon_c(l)$, with the critical values $\epsilon_c(l)$ given by equation (4). On the other hand, for $\epsilon > \epsilon_c(l)$ we have an epidemic phase, where the disease survives and reaches a finite fraction of the population. Considering again the relation $S + I = 1$, we can obtain a power-law relation between the stationary density of susceptible individuals and the parameters of the system:

$$S_{\text{steady}} = \left(\frac{\alpha}{\lambda_0}\right) \epsilon^{-l}.$$ \hspace{1cm} (6)

After the development of the analytical solution of the problem, we can confront it with Monte Carlo simulations. We simulated populations of size $N = 10^5$, with probabilities $\alpha = 0.05$ and $\lambda_0 = 0.1$ and different values of ϵ and l. We considered that 2% of the individuals are initially infected in the population and all results were averaged over 200 realizations. Following the rules presented at the beginning of this section, the algorithm to simulate the problem is as follows: (i) at each time step, each infected individual j returns to the susceptible state with probability α and (ii) at the same time, each susceptible individual j becomes infected with probability λ_j if a randomly chosen node is infected. After each transition $I \rightarrow S$, the infection rate decreases in the form $\lambda_j \rightarrow \epsilon \lambda_j$.

In figure 1 we exhibit results for the density of susceptible individuals $S(t)$ and the density of infected individuals $I(t)$ as functions of the simulation time t for $l = 5$ and...
Critical behavior of the SIS epidemic model with time-dependent infection rate

Figure 2. Stationary density of susceptible individuals S_{steady} for $l = 5$ and some values of ϵ in the log–log scale. The straight line has slope -5 (left side). For the stationary density of infected individuals I_{steady} we do not have a power-law dependence on the parameter ϵ, as predicted analytically in equation (5). Thus we plot here $I^*_{\text{steady}} = 1 - I_{\text{steady}}$, and the slope of the straight line is -5 (right side). The parameters are: $N = 10^5$, $\alpha = 0.05$ and $\lambda_0 = 0.1$. Each point is averaged over 200 realizations.

typical values of ϵ. We can observe that the system reaches steady states for all values of ϵ, and that for $\epsilon \lesssim 0.87$ the disease disappears from the system, i.e. we have $I = 0$ for large t. Considering the mean-field calculations derived at the beginning of this section, the analytical prediction of equation (4) for this critical value is $\epsilon_c(l = 5) \approx 0.87055$, in excellent agreement with the numerical result.

We can analyze how the stationary values $S_{\text{steady}} = S(t \to \infty)$ depend on the parameter ϵ. For this purpose, we have considered time averages of the density of susceptible individuals (after the system reaches the steady state), and in addition these values were averaged over 200 realizations of the system, for each value of ϵ. We can observe the power-law behavior (see figure 2, left side)

$$S_{\text{steady}} \sim \epsilon^{-\nu}, \quad (7)$$

with $\nu = 5$ in this case ($l = 5$). Notice that this result is in agreement with the analytical prediction, equation (6). On the other hand, for the stationary values $I_{\text{steady}} = I(t \to \infty)$ we do not have a power-law behavior, as predicted analytically in equation (5). However, we can analyze the behavior of $I^*_{\text{steady}} = 1 - I_{\text{steady}}$, for which equation (5) gives us

$$I^*_{\text{steady}} = \left(\frac{\epsilon_c}{\epsilon} \right)^l, \quad (8)$$

or, in other words, $I^*_{\text{steady}} \sim \epsilon^{-l}$, the same behavior observed for S_{steady} (see equation (6)). Thus, in figure 2 (right side), we exhibit the simulation data for I^*_{steady} versus ϵ for $l = 5$. Fitting the data, we obtained1 $I^*_{\text{steady}} \sim \epsilon^{-5}$, in agreement with the analytical result, equation (8).

1 Since the behavior of S_{steady} and I^*_{steady} as functions of ϵ is the same, in the following we will analyze only the stationary density of susceptible individuals, S_{steady}.

doi:10.1088/1742-5468/2012/05/P05012
In figure 3 we show results for $l = 10$ and different values of ϵ. Again, the system reaches a steady state for all ϵ, but the disease spreads in the system only for $\epsilon \gtrsim 0.93$. Observe that this critical value $\epsilon_c(l = 10)$ is greater than the value $\epsilon_c(l = 5) \sim 0.87$, as expected, due to the greater capacity of the individuals to decrease their reinfection rates. The analytical result of equation (4) for this critical value is $\epsilon_c(l = 10) \approx 0.93303$, again in excellent agreement with the numerical result.

Considering the stationary values S_{steady} for different values of ϵ, we can also observe a power-law behavior $S_{\text{steady}} \sim \epsilon^{-\nu}$ (see figure 4), but now with a different exponent, $\nu = 10$. In other words, we have the general form

$$S_{\text{steady}} \sim \epsilon^{-\nu(l)},$$

(9)

doi:10.1088/1742-5468/2012/05/P05012
Critical behavior of the SIS epidemic model with time-dependent infection rate

Figure 5. Stationary density of susceptible individuals S_{steady} as a function of ϵ for different values of l. The straight lines are fittings, which give us $S_{\text{steady}} \sim \epsilon^{-\nu(l)}$, with $\nu(l) = l$ (left side). There is also shown the exponent ν as a function of l (right side). The squares were estimated from the fittings, whereas the line is the analytical prediction, equation (6). The parameters in both figures are $\alpha = 0.05$ and $\lambda_0 = 0.1$.

Figure 6. Phase diagram of the model in the plane ϵ versus l, separating the disease-free and the epidemic phases. The squares were estimated from the simulation data, whereas the full (red) line is the mean-field prediction, equation (4). The parameters are $\alpha = 0.05$ and $\lambda_0 = 0.1$.

with $\nu(l) = l$, which is supported by numerical results for other values of l (see figure 5, left side). In addition, the analytical prediction of equation (6) gives us the same behavior of the above numerical result, equation (9), as we can see in figure 5 (right side).

Taking into account the numerical results for $\alpha = 0.05$, $\lambda_0 = 0.1$ and different values of the parameters ϵ and l, we show in figure 6 the phase diagram of the model separating the disease-free and the epidemic phases. The squares are the critical values $\epsilon_c(l)$ estimated from the simulation data, whereas the curve is the analytical prediction of equation (4). We can observe an excellent agreement between the analytical and the Monte Carlo results.

In section 3 we will analyze how the presence of a regular topology affects the system and the mean-field results presented in this section.

doi:10.1088/1742-5468/2012/05/P05012
Critical behavior of the SIS epidemic model with time-dependent infection rate

3. Simulations on regular d-dimensional lattices

In this section we will analyze the same model presented in section 4, but now it will be defined on regular d-dimensional lattices of linear sizes L. The algorithm to simulate the problem is as follows: (i) at each time step, each infected individual j returns to the susceptible state with probability α; (ii) at the same time, each susceptible individual j becomes infected with probability $m\lambda(j, t)/z$, where $m = 0, 1, \ldots, z$ is the number of infected nearest neighbors of the individual j, z is the coordination number of the d-dimensional lattice ($z = 2d$) and $\lambda(j, t)$ is the infection probability of the individual j at a certain time step t. After each transition $I \rightarrow S$, the infection rate of an individual decreases in the form $\lambda \rightarrow \epsilon \lambda$.

Initially, we will consider a square lattice. Thus, we have $N = L^2$ individuals and each individual interact with four neighbors ($z = 4$). We have observed that the results do not depend strongly on the lattice size. Thus, we simulated populations of size up to $N = 10^6$ individuals, i.e. for linear sizes up to $L = 1000$, with probabilities $\alpha = 0.05$ and $\lambda_0 = 0.1$ and different values of ϵ and l. We have considered that 2% of the individuals are initially infected in the population. All results were averaged over 200 realizations.

In figure 7 we show results for the density of infected individuals as a function of time for $l = 2$ (left side) and $l = 5$ (right side). We can see that, at least qualitatively, the results are the same as in the mean-field limit. However, the critical values $\epsilon_c(l)$ are different. As examples, we can see in figure 7 that we have $\epsilon_c(l = 2) \sim 0.88$ and $\epsilon_c(l = 5) \sim 0.95$, whereas we have for the mean-field case $\epsilon_c(l = 2) \sim 0.71$ and $\epsilon_c(l = 5) \sim 0.87$. In other words, the difference between the two analyses increases for increasing values of l. This is a consequence of the presence of a topology (neighborhood) in the model.

Following the procedure of section 2, we can analyze the behavior of the stationary density of susceptible individuals S_{steady} as a function of ϵ, for different values of l. We show in figure 8 results for $l = 2$ (left side) and $l = 5$ (right side). We can observe

![Figure 7](image-url)
Critical behavior of the SIS epidemic model with time-dependent infection rate

Figure 8. Stationary density of susceptible individuals S_{steady} as a function of ϵ in the log–log scale for the model defined on a square lattice. The parameters are $l = 2$ (left side) and $l = 5$ (right side). Notice that the pure power-law behavior of equation (6) is not observed in the 2D case. However, there are two distinct power-law behaviors (full and dashed lines). We have used in these simulations $L = 1000$, $\alpha = 0.05$ and $\lambda_0 = 0.1$. Each point is averaged over 200 realizations.

Figure 9. Stationary density of susceptible individuals S_{steady} as a function of ϵ in the log–log scale for the model defined on a simple cubic lattice. The parameters are $l = 2$ (left side) and $l = 5$ (right side). Notice that the pure power-law behavior of equation (6) is not observed in the 3D case. However, there are two distinct power-law behaviors (full and dashed lines). We have used in these simulations $L = 50$, $\alpha = 0.05$ and $\lambda_0 = 0.1$. Each point is averaged over 200 realizations.

deviations of the single power-law behavior given by equation (6). The S_{steady} values follow power laws with two different exponents: one for values of ϵ near the critical point (bigger slope, dashed lines in figure 8) and another for intermediary and large values of ϵ, with a smaller slope (full lines in figure 8). The same behavior was observed for the system defined on a simple cubic lattice ($z = 6$), as we can see in figure 9. This may be viewed as a consequence of a small number of neighbors. In fact, if we consider higher-dimensional
Critical behavior of the SIS epidemic model with time-dependent infection rate

Figure 10. Stationary density of susceptible individuals S_{steady} as a function of ϵ in the log–log scale for the model defined on hypercubic lattices with dimensions $d = 4$ (left side) and $d = 6$ (right side). Notice that the pure power-law behavior of equation (6) is observed for $d \geq 4$, and that for $d = 6$ we have essentially the same behavior as in the mean-field case, i.e. we have $S_{\text{steady}} \sim \epsilon^{-l}$. The parameters used in the simulations are $\alpha = 0.05$ and $\lambda_0 = 0.1$, and the lattice sizes considered were $L = 20$ (for $d = 4$) and $L = 8$ (for $d = 6$). Each point is averaged over 200 realizations.

In higher-dimensional lattices we recover a similar mean-field behavior, i.e. a power-law dependence of the S_{steady} on the parameter ϵ (see figure 10). Considering for example $l = 5$, the numerical results give us $S_{\text{steady}}(l = 5) \sim \epsilon^{-5.8}$, $S_{\text{steady}}(l = 5) \sim \epsilon^{-5.6}$, $S_{\text{steady}}(l = 5) \sim \epsilon^{-5.4}$ and $S_{\text{steady}}(l = 5) \sim \epsilon^{-5.3}$ for $d = 4$, $d = 5$, $d = 6$ and $d = 7$, respectively. In other words, these results suggest that for $d \geq 6$ the system presents a similar behavior observed in the mean-field level, with a difference of about 7% in the exponent value (see equation (6)). A similar behavior was also observed for other values of the parameter l, as $l = 2$ and 10.

This picture becomes more clear if we estimate the critical values $\epsilon_c(l)$ for different dimensions d. In figure 11 we exhibit the phase diagram of the model for some values of d. Notice that the epidemic phase increases for increasing values of the dimensionality d. This is a consequence of the increasing number of neighbors (or the coordination number z) on higher-dimensional lattices: it is easier to infect an individual that has more neighbors. It can also be observed in figure 11 that the critical values of $\epsilon_c(l)$ for $d = 6$, $d = 7$ and for the mean-field case are indistinguishable, which reinforces that the upper critical dimension of the model is $d = 6$, as in the SIR model [6, 7]. This is due to the frozen state of the individuals with very low infectivity that results from multiple reinfections.

4. Conclusions

In this work we studied a modified susceptible–infected–susceptible (SIS) model in which we have considered that each individual in the population that recovered from the disease decreases his probability of reinfection. This decrease occurs a maximum number l of times for each individual. This dynamics can be relevant to describe diseases such as flu, for which our chance to be reinfected decreases with age.

doi:10.1088/1742-5468/2012/05/P05012
Firstly, we have analyzed the problem in the mean-field limit. In this case, every individual interacts with all others, and we studied the problem with numerical simulations and analytical calculations. Considering the initial infection rate λ_0 (for the transition $S \rightarrow I$) and the recovering rate α (for the transition $I \rightarrow S$), we have found a power-law dependence between the stationary density of susceptible individuals S_{steady} and the parameter ϵ that controls the decaying of the infection rate in the form $S_{\text{steady}} = (\alpha/\lambda_0)\epsilon^{-l}$. In addition, we showed that the system undergoes a phase transition at critical values $\epsilon_c(l) = (\alpha/\lambda_0)^{1/l}$ separating a phase where the disease reaches a finite fraction of the population (for $\epsilon > \epsilon_c$) from a phase where the disease does not spread out (for $\epsilon \leq \epsilon_c$). All results were confirmed by Monte Carlo simulations.

Considering d-dimensional regular lattices, we have studied the model only with numerical simulations. The evolution of the density of susceptible and infected individuals is qualitatively similar to the evolution obtained in the mean-field case, but the presence of a neighborhood modify some characteristics of the model. In particular, the critical values $\epsilon_c(l)$ are greater than in the mean-field case for $d < 6$, which implies that the epidemic phase decreases for decreasing values of d. However, for $d = 6$ and 7 we have obtained the same values of the critical points $\epsilon_c(l)$ as in mean-field calculations. The stationary density of susceptible individuals S_{steady} depends on the parameter ϵ in a power-law form only for $d > 3$, whereas for $d = 2$ and 3 we have the combination of two power laws. These numerical results suggest that the upper critical dimension of the model is $d = 6$ as in the SIR model, which can be mapped in ordinary percolation. This is possibly due to the frozen state of the individuals with very low infectivity that results from multiple reinfections. To answer this question one should study the finite-size scaling behavior of the model and compare the complete set of exponents obtained on larger lattices with the existing numerical and analytical results [29]–[32] for the SIR model.

Thus, the mean-field analytical calculations describe qualitatively well the model, providing us the phenomena that are expected to be observed, i.e. it predicts the phase...
Critical behavior of the SIS epidemic model with time-dependent infection rate

transition and the power-law dependence between some quantities of interest. However, it fails quantitatively, as it is common in mean-field approximations, because it predicts different values of the critical points and different power-law exponents.

Acknowledgment

The authors acknowledge financial support from the Brazilian funding agency CNPq.

References

[1] Smith A M and Perelson A S, 2011 WIREs: Syst. Biol. Med. 3 429
[2] Baccam P, Beauchemin C, Macken C A, Hayden F G and Perelson A S, 2006 J. Virol. 80 7590
[3] Gönci B, Németh V, Balogh E, Szabó B, Dénes A, Környei Z and Vícek T, 2010 PLoS ONE 5 e15571
[4] Anderson R M and May R M, 1991 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford University Press)
[5] Marro J and Dickman R, 1999 Nonequilibrium Phase Transitions in Lattice Models (Cambridge: Cambridge University Press)
[6] Hinrichsen H, 2000 Adv. Phys. 49 815
[7] Newman M E J, 2002 Phys. Rev. E 66 016128
[8] Bailey N T J, 1975 The Mathematical Theory of Infectious Diseases and its Applications (New York: Halter Press)
[9] Derouich M, Boutayeb A and Twizell E H, 2003 BioMed. Eng. 2 4
[10] Esteve L and Vargas C, 2003 J. Math. Biol. 46 31
[11] Nuraini N, Soewono E and Sidarto K A, 2007 Bull. Malays. Math. Sci. Soc. 30 143
[12] dos Santos R M Z and Coutinho S, 2001 Phys. Rev. Lett. 87 168102
[13] Baryarama F, Lubaobi L S and Mugisha J Y T, 2005 Am. J. Infect. Dis. 1 55
[14] Gordo I, Gomes M G M, Reis D G and Campos P R A, 2009 PLoS ONE 4 e4876
[15] Katriel G and Stone L, 2009 PLoS Curr. 1 RRN10460
[16] Cohen R, Havlin S and Ben-Avraham D, 2003 Phys. Rev. Lett. 91 247901
[17] Doi M, 1976 J. Phys. A: Math. Gen. 9 1479
[18] Janssen H K, 1981 Z. Phys. B 42 151
[19] Grassberger P and de la Torre A, 1979 Ann. Phys. 122 373
[20] Grassberger P, 1982 Z. Phys. B 47 365
[21] May R M and Lloyd A L, 2001 Phys. Rev. E 64 066112
[22] Moreno Y, Pastor-Satorras R and Vespignani A, 2002 Eur. Phys. J. B 26 521
[23] Pastor-Satorras R and Vespignani A, 2001 Phys. Rev. E 63 066117
[24] Pastor-Satorras R and Vespignani A, 2001 Phys. Rev. Lett. 86 3290
[25] Parshani R, Carmi S and Havlin S, 2010 Phys. Rev. Lett. 104 258701
[26] Boguñá M, Pastor-Satorras R and Vespignani A, 2003 Statistical Mechanics of Complex Networks (Lecture Notes in Physics vol 625) ed R Pastor-Satorras, M Rubi and A Díaz-Guilera (Berlin: Springer)
[27] Gilligan C A, Gubbins S and Simons S A, 1997 Phyil. Trans. R. Soc. B 352 353
[28] Vaidya N K, Ribeiro R N, Miller C J and Perelson A S, 2010 J. Virol. 84 4302
[29] Lalley S P, 2007 IMS Lecture Notes Monograph Series vol 55 (Institute of Mathematical Statistics) p 167
[30] Ben-Naim E and Krapivsky P L, 2004 Phys. Rev. E 69 050901(R)
[31] Kessler D A and Shnerb N M, 2007 Phys. Rev. E 76 010901(R)
[32] Dorogovtsev S N, Goltsev A V and Mendes J F F, 2008 Rev. Mod. Phys. 80 1275

doi:10.1088/1742-5468/2012/05/P05012