Evaluation of multi decked transported sheep in a hot and humid tropical environment

Lendrawati¹, R Priyanto², A Jayanegara², W Manalu³, Desrial⁴

¹ Faculty of Animal Science, Andalas University, Padang 25163, Indonesia
² Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
³ Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
⁴ Faculty of Agricultural Technology, IPB University, Bogor 16680, Indonesia

Abstract. Unavoidable transportation as a supporting factor in meat production is a common cause of stress that may affect economic loss and welfare concerns. This study was evaluated sheep's economic losses and physiological responses with two and three-level deck numbers. This study was used 127 heads of local Indonesian sheep, 8-10 months in age with 18-24 kg live body weight. A total of 72 heads of sheep were used for three deck levels (study 1) and 52 heads of two deck levels (study 2). All the sheep were loaded on the pick up at a 0.14 m²/head of density and transported for 22 hours without fed and water access during the journey. During the study, ambient temperature and relative humidity fluctuated between 29 and 34°C and 74 and 93%, indicating that the season was thermally stressful and unfavorable for sheep transport. The results showed that transported sheep using an open pick up for 20 hours in Indonesian conditions significantly affected physiological and blood parameters as indicator stress and inventory loss caused economic losses. It can be concluded that transported sheep into two or three levels of the deck in tropical climate had a high risk for sheep in terms of economic and animal welfare concerns.

1. Introduction

Nowadays, the optimization of ensuring animal welfare during transport for livestock animals has become a strong interest in many researchers worldwide [1]. Loading and unloading, stocking density, environmental temperature and humidity, road type, prolonged standing, unfamiliar mixing, hunger, thirst, and driver behavior are several stressors that influenced animal wellbeing during transport [2, 3, 4, 5, 6]. Stressed transport could significantly impact animal performance, increase mortality, and decrease meat quality [7], particularly in hot climates [9]. The sheep were put in a lying down position with high loading density without access to feed and water for more than 20 hours of road transport. As a result, there is no regulation and procedure of standard for transport animals in Indonesia.

Characteristics of the vehicle and the way are driven by two critical factors that influenced animal welfare during transport [8]. In Indonesia, sheep are frequently transported for long distances by multi-decked open-sided pick-up, relying on free ventilation due to vehicle movement. Moreover, poor ventilation may lead to heat stress, particularly in hot climates [9]. The sheep were put in a lying down position with high loading density without access to feed and water for more than 20 hours of road transport. As a result, there is no regulation and procedure of standard for transport animals in Indonesia.

Numerous study has examined the physiological responses of transported sheep in temperate and hot dry climates. However, there is very little information about road transported sheep in hot and humid
climates on physiological stress, particularly in the Indonesian condition. Applied this research can help to provide detailed scientific data to establish national regulation regarding animal welfare concerns and decreasing economic losses for long-distance transport. This study evaluated economic losses at habituated multi-deck sheep transported under the Indonesian condition and how that affected physiological and blood-stressed indicators.

2. Material and methods

2.1. Animal and management
A total of 228 healthy local Indonesian sheep 8-10 months of age with 18-24 kg live body weight was used in this study. Before the study, the animals were clinically examined, and healthy sheep were purchased. The completed fattening ration was fed to sheep twice a day, and water was supplied ad libitum.

2.2. Experimental design and treatment
This experiment was carried out in September-November 2019. We followed four times of habituated transport of supplied sheep in a commercial farm in Bogor, Indonesia. This journey was performed from Magetan to Bogor with two and three levels of the deck (two replicates in each) with a difference of two weeks between each journey. All the 228 sheep in four times the journey was used to evaluate economic losses, while physiological and the blood sample was taken from 10 sheep in each journey. Magetan and Bogor have temperatures from 26°C to 32°C and relative humidity 70 to 93%.

2.3. Transport vehicle, loading, and journey time
An open pick-up was used for the journey with a space allowance of 0.13-0.15 m² per head. The floor of the vehicle, measured 2.20 m (L) x 1.48 m (W) x 1.2 m (H) was covered with wood shavings without any bedding. The compartment of the vehicle was divided into two or three compartments using wooden panels. Live weight, physiological measurement (rectal temperature, respiration rate, and heart rate), and blood sample were measured 1 hour before loading every journey. All sheep were loaded into vehicles and transport for about 18-20 hours to sheep farming in Bogor with a total traveled distance was 684 km, mostly on national highways with heavy traffic and traffic light. The ambient temperature during loading for every journey was relatively similar was 30-32 °C. There was no access to feed and water throughout the journey.

2.4. Blood sample and physiological measurement
Blood samples and physiological (rectal temperature, respiration rate, and heart rate) were taken from 10 sheep in each journey before and immediately after transport. A total of 5 ml were collected from the jugular vein of sheep and put into two sterile tubes, one tube containing 0.14% anticoagulant (EDTA K3, Onemed Healthy Care, Australia) to determine hematological (red blood cell, hematocrit, white blood cell, neutrophil, lymphocyte, monocyte, and neutrophil: lymphocyte ratio) by using an automatic blood analyzer Abaxis Vetscan HM5 (American). The second tube without anticoagulants to get the serum. Blood serum was obtained by centrifugation at 3,000 rpm for 10 minutes and stored at -20 °C for analysis of blood metabolites. Serum cortisol hormone was measured by competitive ELISA method (Cat: EIA 1887 DRG, Instrument GmbH, Germany). Analyses for glucose and creatinine kinase were used an automatic spectrometer (Switzerland). After following blood sampling, individual rectal temperature was recorded using a digital thermometer Digital Omron thermometer, Model MC-246, Japan), respiration rate was measured with the help of flank movement, and pulse rate was recorded from the coccygeal artery with the help of a stethoscope. In contrast, body weight was measured by weighing the sheep using a digital hanging scale.
2.5. Economic losses
Economic loss measurement in this study was determined by counting all the inventory loss during transport (body weight losses, number of death, and exhausted sheep) for every two and three deck levels in the transport period.

2.6. Statistical analysis
ANOVA analyzed the differences between treatments and following a t-test for physiological and blood parameters data. At the same time, economic losses were measured by descriptive analysis with the help of SPSS software version 25.

3. Result and discussion
After 20 hours of transportation, body weight, physiological, and blood parameters values were changed, consequently impacting economic losses. Live body weight loss in two groups was 11.41% and 11.61% (Table 1). Inventory losses due to 20-h transport without access fed and water consists of body weight loss, death, exhausted or injury. Three deck compartments showed more significant total loss than two decks. It may cause two decks compartment had a lower transport cost.

Table 1. Journey description, transport risk, and economic loss for transported sheep.

Journey descriptive	Number of deck	
	2	3
Length of transport (km)	684	675
Duration (hour)	22	22
Number of sheep for transport (head)	52	72
Loading density (m²/head)	0.14	0.14
Transport risk of sheep		
Number of death	-	1
Number of exhausted	1	3
Number of injury	-	1
Inventory loss		
Body weight before transport (kg)	21.74	21.54
Body weight after transport (kg)	19.26	19.04
Body weight loss (kg/head)	2.48	2.50
Body weight loss (%)	11.41	11.61
Total body weight loss (kg)	128.96	180.00
Total body weight loss (IDR)	6448000	9000000
Death loss (IDR)	-	1077000
Transported cost (IDR)	4000000	4000000
Total economic loss (IDR)	10448000	14077000
Transported cost (Rp/kg body weight)	3538.32	2579.18
Body weight loss per kg body weight (IDR)	5703.77	5803.16
Total economic loss per kg BW (IDR)	9.242.09	8.382.34

Rectal temperature, respiration rate, and pulse rate are essential to physiological and an ideal indicator for assessing stress in animals [10]. Rectal temperature, respiration rate, and pulse rate were increased significantly (P<0.05) as a result of 20-h transportation in Indonesian condition both of two and threedock compartment group but, the differences between two groups were not significant (Table 2). Increasing rectal temperature, respiration rate, and pulse rate relate to heat stress during transport.
Table 2. Thermal physiological responses of sheep before and after transport.

Items	Before transport	After transport	2 number of deck	3 number of deck
Rectal temperature (°C)	39.00±0.29	39.48±0.20	39.60±0.33	
Respiration rate (beat/min)	44.67±3.21	74.00±4.12	78.67±4.11	
Pulse rate (beat/min)	92.80±4.92	130.00±6.20	132.00±6.40	

In the present study, transported sheep using an open pick up for 20-h led to increased cortisol, glucose, creatinin kinase, red blood cell, white blood cell, neutrophil, and N/L ratio than before transportation. Both groups decrease lymphocyte number (Table 3). The number of the deck on compartment significantly impacted of cortisol, glucose, creatinin kinase, red blood cell, and neutrophil: lymphocyte ratio (P<0.05). Cortisol, glucose, creatinin kinase, red blood cell, and N/L ratio were higher in three deck compartments than two deck compartments.

Table 3. Physiological welfare indicator of sheep before and after transport.

Items	Before transport	After transport	2 number of deck	3 number of deck
Hormone cortisol (ng/mg)	16.42±4.42	53.39±4.20	68.84±5.30	
Glucose (mg/dl)	49.62±3.90	68.90±4.24	77.48±5.34	
Creatinin kinase (U/L)	184±8.56	245±10.24	286±9.50	
Red blood cell (10^6/µl)	9.08±0.41	10.55±0.25	11.62±0.42	
Hematocrit (%)	28.39±0.98	30.29±1.80	31.23±1.24	
White blood cell (10^3/µl)	9.82±0.34	11.19±0.63	11.43±0.45	
Neutrophil (10^3/µl)	3.53±0.42	6.04±0.65	6.86±0.48	
Lymphocyte (10^3/µl)	6.32±0.46	5.08±0.62	4.50±0.82	
Monocyte (10^3/µl)	0.06±0.01	0.07±0.01	0.07±0.01	
Neutrophil:Lymphocyte	0.57±0.12	1.19±0.14	1.52±0.16	

In our results, N/L was significantly higher after transporting two and three decked of the compartment, probably associated with the stress-induced cortisol release that may cause neutrophilia and lymphopenia [18]. These findings suggest that prolonged exposure to transport in a lying-down position with high stocking density under Indonesian conditions can increase the probability of health problems and affect the sheep’s ability to cope with transport. In the event, the number of red blood cells, white blood cells, and hematocrit were within the average standard reference value for sheep [19].

Overall, the sheep in the three decks of the compartment had a higher level of cortisol, glucose, creatinin kinase, red blood cell, and N/L ratio suggested that they underwent more stress than two deck compartment sheep. Open pick-ups were designed to optimize space and stocking rates, but there is a
cost for sheep’s welfare and comfort during long distances. Moreover, Minka and Ayo [20] stated that using vehicles with poor design or doors that are too narrow and designed early to transport goods should be avoided.

4. Conclusion
These results indicated that transported sheep using an open pick up for 20 hours in Indonesian conditions significantly affected physiological and blood parameters as indicator stress and inventory loss that caused economic losses. A new design base on the results of further scientific studies should help alleviate those problems.

References
[1] Collins T, Stockman CA, Barnes AL, Miller DW, Wickham SL and Fleming PA 2018 Qualitative behavioral assessment as a method to identify potential stressors during commercial sheep transport Animals. 8 209. doi:10.3990/an9110209.
[2] Parrot, RF, Hall SJG, and Lloyd DM 1998 Herat rate and stress hormone responses of sheep to road transport following two different loading procedures Animal welfare.7 257-267.
[3] Tarrant PV, Kenny FJ, Harrington D and Murphy M 1992 Long distances transportation of steers to slaughter: effect of stocking density on physiology, behavior and carcass quality. Livest. Prod. Sci. 30 223-238.
[4] Fisher AD, Stewart M, Tacon J and Matthews LR 2002 The effect of stock crate design and stocking density on environmental conditions for lambs on road transport vehicles V. N. Vet. J. 50 148-153.
[5] Cockram MS, Baxter EM, Smith LA, Bell S, Howard CM, Prescott RJ and Mitchell MA 2004 Effect of driver behavior, driving events and road type on the stability and resting behavior of sheep in transit Anim. Sci. 79 165-176.
[6] Miranda-de la Lama GC, Monge P and Gregory NG 2011 Effect of road type during transport on lambs welfare and meat quality in dry, hot climates Trop. Anim. Health Prod. 43 915-922.
[7] Swanson JC and Morrow-Tesch T 2001 Cattle transport: historical, research, and future perspectives J. Anim. Sci. 79 E102-E109.
[8] Broom DM 2005 Effect of land transport on animal welfare. Revue Scientifique et Technique Office International desEpizooties. 24 683.
[9] Grandin T and Gallo C 2007 Cattle transport. In Livestock Handling and Transport; Grandin T.Ed CABIPublishing: Wallingford, UK. 134-154.
[10] Kassab Ay and Mohammed AA Ascorbic acid administration as anti-stress before transportation of sheep Egypt. J. Anim. Prod. 51(1):19–25.
[11] Tadich N, Gallo C, Brito M and Broom DM 2009 Effect of weaning and 48 h transport by road and ferry on some blood indicators of welfare in lambs Livestock Science. 12 132-136.
[12] Saeb M, Baghshani H, Nazifi S and Saeb S 2010 Physiological response of dromedary camels to road transportation in relation to circulating levels of cortisol, thyroid hormones and some serum biochemical parameters Trop. Anim. Health and Prod. 42 55-63.
[13] Knowles TG, Brown SN, Warris PD, Phillips AJ, Dolan SK, Hunt P, Ford JE, Edwards JE and Watkins PE 1995 Effects of sheep of transport by road for up to 24 hours Vet. Rec. 136 431-438.
[14] Earley B and Murray M 2010 The effect of road and sea transport on inflammatory, adrenocorticoid, metabolic and behavioral responses of weaning heifers Vet. Res. 36-48.
[15] Lambert EV, St Clair Gibbson A and Noakes TD 2005 Complex system model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans British. J. Sports. Med. 87 5-11.
[16] Yu H, Bao ED, Zhao RQ and Lv QX 2007 Effect of transportation stress on heat shock protein 70 concentration and mRNA expression in heart and kidney tissue and serum enzyme activities and hormone concentrations of pigs American.J. Vet. Res. 68 1145-1150.
[17] Miranda-de la Lama G, Rivero L, Chacon G, Garcia-Belenguer S, Villaroel M and Maria GA 2010 Effect of the preslaughter logistic chain on some indicators of welfare in lambs Liv. Sci. 128 52-59.
[18] Kannan G, Terril TH, Kouakou B, Gazal OS, Gelaye S, Amoah EA and Samake S 2000 Transportation of goats: effect on physiological stress responses and live body weight loss J. Anim. Sci. 78 1450-1457.
[19] Lepherd ML, Canfield PJ, Hunt GB, and Bosward KL 2009 Haematological, biochemical and selected acute-phase protein reference intervals for weaned female Merino Lambs Aust. Vet. J. 87 5-11.
[20] Minka NS and Ayo JO 2010 Physiological responses of food animals to road transportation stress. African. J. Biotech. 9 (40): 6601-6613.