Significant Climate Impact of Highly Hygroscopic Atmospheric Aerosols in Delhi, India

Yu Wang1 and Ying Chen2,3

1Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, University of Manchester, Manchester, UK, 2Lancaster Environment Centre, Lancaster University, Lancaster, UK, 3Data Science Institute, Lancaster University, Lancaster, UK

Abstract Hygroscopicity of aerosol (κ_chem) is a key factor affecting its direct and indirect climate effects, however, long-term observation in Delhi is absent. Here we demonstrate an approach to derive κ_chem from publicly available data sets and validate it (bias of 5%–30%) with long-term observations in Beijing. Using this approach, we report the first estimation of κ_chem in Delhi and discuss its climate implications. The bulk-averaged κ_chem of aerosols in Delhi is estimated to be 0.42 ± 0.07 during 2016–2018, implying a higher activation ability as cloud condensation nuclei in Delhi compared with Beijing and continental averages worldwide. To activate a 0.1-μm particle, it averagely requires just a supersaturation of ~0.18% ± 0.015% in Delhi but ~0.3% (Beijing), 0.28%–0.31% (Asia, Africa, and South America) and ~0.22% (Europe and North America). Our results imply that representing κ_chem of Delhi using Asian/Beijing average may result in a significant underestimation of aerosol climate effects.

Plain Language Summary Hygroscopic water uptake of aerosols can enhance its light extinction and cloud activation. Therefore, hygroscopicity of aerosol (κ_chem) is a key factor affecting its direct and indirect effects; however, long-term observation of κ_chem in Delhi is absent. Here we demonstrate an approach to retrieve κ_chem from publicly available data sets of PM2.5 and meteorology and report the first long-term estimation of κ_chem in Delhi is 0.42 ± 0.07 during 2016–2018. This value indicates only a supersaturation of ~0.18% ± 0.015% is required to activate a particle with 0.1-μm diameter in Delhi, in contrast to ~0.3% supersaturation is required for Beijing and Asian average. It implies a higher water uptake and cloud activation ability for Delhi aerosols. Therefore, using Asian/Beijing averaged κ_chem to represent Delhi aerosols would lead to a significant underestimation of aerosol climate effects.

1. Introduction

Aerosol particles in the atmosphere exert direct radiative forcing via scattering and absorbing solar radiation (Charlson et al., 1992) and also exert indirect radiative forcing and impact hydrologic cycle via serving as cloud condensation nuclei (CCN; Tang et al., 2016; Twomey, 1974; Wex et al., 2007, 2009; Yin et al., 2000; Zhao et al., 2006). The influences of anthropogenic aerosols on these direct and indirect effects contribute the largest uncertainty in climate change assessment (Attwood et al., 2014; IPCC, 2013; Nemesure et al., 1995). Hygroscopicity of aerosol, that is, interaction between aerosol and atmospheric water vapor, is one of the most important factors affecting these uncertainties (Kuang et al., 2016; Zhao et al., 2006). In addition to the climate concerns, hygroscopic water uptake increases aerosol water content as relative humidity (RH) increases. This can significantly influence the secondary particle formation (Chen, Wolke, et al., 2018; Cheng et al., 2016; Ervens et al., 2011; Hennigan et al., 2008; Wu et al., 2018), visibility (Charlson et al., 1967; Malm et al., 2000; Mukherjee & Toohey, 2016), aerosol optical depth and remote sensing measurements (Attwood et al., 2014; Brock et al., 2016; Crumeyrolle et al., 2014; Esteve et al., 2012), as well as directly influence the measurements of aerosol loading and chemical compositions (Chen, Wild, et al., 2018).

Traditionally, the hygroscopic property of aerosol can be described as the enhancement of light extinction/scattering (Wright, 1939) and the growth of geometrical size (Köhler, 1936) due to water uptake. The enhancement factor of aerosol light extinction/scattering coefficient (σ), defined as f (RH) = σ (RH)/σ (RH_{eq}), is a common way to describe aerosol hygroscopicity (Brock et al., 2016; Titos et al., 2016). In this definition, σ (RH) and σ (RH_{eq}) represent the σ at a certain RH and at the reference RH in low/dry humid condition (RH_{eq}), respectively. Humidified nephelometer system is commonly used to directly measure f...
(RH) (Covert et al., 1972; Pilat & Charlson, 1966). In term of geometrical growth, Petters and Kreidenweis (2007) introduced the κ-Köhler;hler theory to describe hygroscopic growth of particle diameter using a single parameter (κ), on the basis of the original Köhler theory (Köhler, 1936). This single parameter represents the dependence of hygroscopicity on chemical composition of particles, referred to as κ_{chem} in the following. The κ_{chem} of a multicomponent particle can be calculated as volume-weighted average of each component, that is, the Zdanovskii-Stokes-Robinson rule (Stokes & Robinson, 1966; Zdanovskii, 1948). The parameter κ_{chem} is widely used in laboratorial, field observational, and modelling studies, because it harmonizes the comparisons of hygroscopicity derived from different techniques and environments. The parameter κ_{chem} can be derived from diameter growth factor measured by Hygroscopic Tandem Differential Mobility Analyser (HTDMA) or CCN activity following the κ-Köhler theory (Liu et al., 2011; Liu et al., 2018; Petters & Kreidenweis, 2007; Wang et al., 2018; Wex et al., 2010) and can also be calculated with measurements of chemical components (Petters & Kreidenweis, 2007). A drawback of HTDMA method is missing the information of coarse particles (Titos et al., 2016), which could be highly hygroscopic (e.g., sea salt) and greatly contribute to hygroscopic growth (Chen, Wild, et al., 2018). The previous closure studies usually show reasonable agreements between HTDMA-derived, CCN-derived, and chemical-derived κ_{chem} values (Hansen et al., 2015; Wu et al., 2016; Yeung et al., 2014). The strong relationship between f (RH), hygroscopicity (κ_{chem}), particle composition, and CCN activation has been investigated in lots of previous studies since the works of Charlson et al. (1967), Covert et al. (1972), Ervens et al. (2007), and Pilat and Charlson (1966).

Hygroscopicity (κ_{chem}) measurements have been carried out worldwide during the past two decades, the observational results are compiled in previous works (Bhattu et al., 2016; Kreidenweis & Asa-Awuku, 2014; Swietlicki et al., 2008). Hygroscopicity of aerosols was mostly measured during short-intensive field campaigns due to high financial cost and complicated maintenance of instruments. A few previous long-term observational studies mainly focused on clean environments (Fors et al., 2011; Holmgren et al., 2014; Kammermann et al., 2010) and one long-term study focused on Beijing (Wang et al., 2018). To the best of our knowledge, no long-term observation of aerosol κ_{chem} in Delhi and National Capital Region of India was reported. Given the intensive solar radiation and the strong influence of the South Asia monsoon over Indian subcontinent, aerosol hygroscopicity assessment, especially based on long-term observations, is urgent and critical for the studies of radiative forcing and hydrologic cycle.

In this study, we demonstrate an approach for assessing long-term bulk-averaged aerosol hygroscopicity, based on data sets publicly available in a large spatial and temporal coverage. The bulk-averaged κ_{chem} of aerosols in Delhi is reported based on 3-year (2016–2018) ground observations. The corresponding climate implications are also discussed. The approach demonstrated here is also valuable for studies in the other regions where high-quality long-term observations of aerosol hygroscopicity are not available.

2. Materials and Methods

2.1. Observations

PM$_{2.5}$ mass loading is measured by a beta attenuation monitor (BAM-1020, MetOne) at the U.S. Embassy in Delhi during 2016–2018. BAM is a U.S. EPA (Environmental Protection Agency) equivalent reference method for continuous PM$_{2.5}$ monitoring and is used for over 80% of the state and local level observations in U.S. (EPA, 2015; Mukherjee & Toohey, 2016). PM$_{2.5}$ measured with BAM is not strongly influenced by aerosol associated water (Mukherjee & Toohey, 2016). The instruments are well maintained and calibrated; details of instrument technique, operation, and calibration are given in EPA (2009, 2015). Hourly PM$_{2.5}$ concentrations in Delhi are available from the AirNow platform (https://www.airnow.gov/) maintained by the U.S. EPA.

The hourly visibility and meteorological conditions are recorded at the Indira Gandhi International Airport (DEL) in Delhi. The hourly visibility is observed by a transmissometer (Drishi, Council of Scientific and Industrial Research-National Aerospace Laboratories; Khare et al., 2018), which is well calibrated and performs well at the airport as reported by India Meteorological Department (http://metnet.imd.gov.in/mausamdocs/16644_F.pdf). RH is calculated as the ratio between water vapor pressure and saturation vapor pressure, which are respectively derived from dew point temperature and temperature using the Magnus

10.1029/2019GL082339
formula (World Meteorological Organization (WMO), 2008). As one of the Integrated Surface Database stations, the measurements at DEL are well calibrated and quality controlled according to the regulation of National Oceanic and Atmospheric Administration, National Climatic Data Center (NOAA-NCDC; Neal Lott, 2004). These data sets are available from the NOAA-NCDC website (https://www.ncdc.noaa.gov/). A limited spatial inhomogeneity is expected in PM$_{2.5}$ concentrations and visibility between the U.S. Embassy and DEL. As shown in Figure S1 in the supporting information, the distance between them is only ~7 km, which is in the visibility measuring range. Furthermore, there is very slight variation in topography and anthropogenic PM$_{2.5}$ emission flux over the region between DEL and the U.S. Embassy in Delhi (Marrapu et al., 2014; Sahu et al., 2011).

2.2. Assessment of Aerosol Hygroscopicity

The f (RH) and κ_{chem} are parameters describing aerosol hygroscopicity. Here we briefly describe the approach in this study for deriving f (RH) and κ_{chem} using publicly available long-term data sets. The approach consists of two steps. First, estimate bulk-averaged f (RH) as a function of RH from the data sets of PM$_{2.5}$ loading and meteorology (Mukherjee & Toohey, 2016). Second, derive κ_{chem} from the function between f (RH) and RH (Brock et al., 2016; Kuang et al., 2017). We firstly validate the approach by measurements in Beijing, where extensive data sets of field campaigns have been published in recent years. And then the approach is applied to conduct the first estimation of aerosol hygroscopicity in Delhi.

First step, a recent study (Mukherjee & Toohey, 2016) demonstrated a method to derive the bulk-averaged f (RH) based on publicly available data sets: (i) PM$_{2.5}$ loading (units: μg/m3) from U.S. Embassy and (ii) RH (unit: %) and visibility (unit: km) from NOAA-NCDC. The total light extinction coefficient can be derived using Koschmieder’s equation from visibility (Koschmieder, 1924). As shown in equation (1), the PM$_{2.5}$ associated extinction coefficient (σ_{PM}, with units of km$^{-1}$) can be estimated as total σ deducted by air extinction (σ_{air}) and other factors (σ_{other}). As recommended by Mukherjee and Toohey (2016), (i) a constant empirical factor $\sigma_{\text{other}} = 0.064$ km$^{-1}$ is adopted to represent the influences of gaseous pollutants and coarse particles, and (ii) $\sigma_{\text{air}} = 0.056$ km$^{-1}$ is adopted in our study, corresponding to a maximum visibility of 70 km under clear-sky condition (Mukherjee & Toohey, 2016). Therefore, the data set consisting of pairs of RH, PM$_{2.5}$, and σ_{PM} can be prepared for analysis. Although the value of σ_{other} is adopted from an estimation for Beijing (Mukherjee & Toohey, 2016), this only introduces uncertainty to κ_{chem} estimation by less than 5% in general (details in Text S1). In the study of Mukherjee and Toohey (2016), the slope at RH$_{\text{ref}}$ (median RH 30%–40% for nephelometer and 40% as a maximum RH for the sampling flow) is used to assess dry mass extinction efficiency of PM$_{2.5}$. The ratios between slope (RH$_{\text{ref}}$) and the slopes of higher RH bins represent the enhancements of light extinction by aerosol liquid water. Finally, the unitless light extinction enhancement factors are derived by normalizing the slopes with slope at RH$_{\text{ref}}$, that is, f (RH) $=$ slope (RH)/slope (RH$_{\text{ref}}$). In our study and Mukherjee and Toohey (2016), we use median RH in the bin between 30% and 40% as RH$_{\text{ref}}$. Since WMO/GAW (2016) recommends a reference RH of 30%–40% for nephelometer and 40% as a maximum RH for the sampling flow, Mukherjee and Toohey (2016) validated this approach with other independent observation-based estimations. The slope at RH$_{\text{ref}}$ (3.7 ± 0.4 m2/g) is in a good agreement with an independent estimation (Wang et al., 2015) using IMPROVE algorithms I (3.2 m2/g) and II (4.1 m2/g) (Pitchford et al., 2007). The derived f (RH) values are also in a good agreement with the estimations in other studies, details shown in the Figure 6d of Mukherjee and Toohey (2016).

Second step, we further derive κ_{chem} from f (RH), following the works of Brock et al. (2016) and Kuang et al. (2017). Recently, Brock et al. (2016) proposed a single parameter (κ_{opt}, refer to κ value directly derived from optical method/data sets) to describe f (RH), and Kuang et al. (2017) further developed this parameterization with RH$_{\text{ref}}$ included, as shown in equation (2). They demonstrated that κ_{opt} can better describe f (RH) than the widely used “gamma” power-law approximation (Kasten, 1969). Following the works of Brock et al. (2016) and Chen et al. (2014), which are based on κ-Köhler-Mie theories, Kuang et al. (2017) proposed a physically based approach to derive the equivalent κ_{chem} from κ_{opt} with $R^2 = 0.97$. The derived κ_{chem} values (κ_{chem} in Kuang et al. (2017)) agree well ($R^2 = 0.77$) with measurements in Beijing using...
HH-TDMA, which is similar to HTDMA with capability of operating under higher RH. The ratio between κ_{opt} and $\kappa_{\text{chem}}(R_e)$ is influenced by particle number size distribution and chemical composition to some extent. R_e is in a range of 0.58–0.77 (0.69 on average) based on Beijing observations (Kuang et al., 2017). Furthermore, they simplified the influences of particle number size distribution and chemical composition on R_e as a function of Ångström exponent and κ_{opt} and provided a 2-D look-up table for R_e (Figure S2).

To validate our approach for deriving κ_{chem} from data sets of PM$_{2.5}$ loading and meteorology, we estimate a bulk-averaged κ_{chem} of 0.18–0.24 (0.2 on average, considering the variation of R_e) using the estimated f (RH) values in Beijing 2014, which is adopted from Mukherjee and Toohey (2016). Our results agree well with a long-term observation of κ_{chem} in Beijing 2014 (Wang et al., 2018). They conducted a 9-month HTDMA field measurement and reported that the averaged κ_{chem} in Beijing is in a range of 0.14–0.23 for dry particles with diameters of 50–350 nm, details in the Table 2 of Wang et al. (2018). An increase of κ_{chem} as particle size increases was found in their study. This may explain the slight overprediction of R_e (bias of 0.01–0.04, about 5%–30%) in our approach. Since HTDMA can only measure the κ_{chem} of particles at a certain size (usually smaller than 350 nm), however, our approach estimates a bulk κ_{chem} of the whole PM$_{2.5}$ population. These results strongly suggest that the approach we demonstrated here can estimate κ_{chem} value in a reasonable range.

\[
\sigma_{PM} = \frac{3.912}{\text{Visibility} - \sigma_{\text{air}} - \sigma_{\text{other}}}
\]

\[
f(RH) = \frac{1 + \kappa_{\text{opt}} \frac{RH - RH_{\text{100}}}{RH_{\text{100}} - RH_{\text{0}}} \cdot \frac{RH_{\text{100}} - RH_{\text{0}}}{R_e}}{1 + \kappa_{\text{opt}}}, \quad \kappa_{\text{chem}} = \frac{\kappa_{\text{opt}}}{R_e}
\]

where f (RH), κ_{chem}, κ_{opt}, and R_e are unitless variables.

The PM$_{2.5}$ and meteorological data sets during 2016–2018 in Delhi are used in this study for the assessment of κ_{chem}. We conduct the analysis using the visibility records in the range of 0–9 km, as recommended by Mukherjee and Toohey (2016). This makes the analysis of f(RH) more reliable, since all visibility with values greater than 10 km is recorded as 10 km. The data pairs with wind speed larger than 6.5 m/s (Kurosaki & Mikami, 2007; Tegen & Fung, 1994, 1995) alongside PM$_{2.5}$ concentration higher than 500 μg/m3 are excluded from analysis to minimize the uncertainties induced by dust. Additionally, we exclude the period with RH higher than 90%. This can minimize the uncertainties from noise signals caused by fog, cloud, precipitation, and low accuracy of RH sensor under high RH conditions. We project the data pairs of RH, PM$_{2.5}$, and σ_{PM} to eight RH bins (with borders of 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, and 90%) and estimate the bulk-averaged f (RH) of each RH bin where more than 300 pairs of data are available. Then κ_{opt} can be derived from the function between f (RH) and RH (equation (2)), and κ_{chem} can be estimated as R_e is given. We identify the R_e value for Delhi using the 2-D look-up table (Figure S2; Kuang et al., 2017) and perform Monte Carlo calculation (1 million random samples) to estimate the uncertainties of R_e (Figure S3a) and κ_{chem} (Figure S3b). Uncertainty estimation is detailed in Text S2 (long-term Ångström exponent for Delhi refer to Lodhi et al., 2013). Finally, the potential of CCN activation in Delhi is estimated using κ_{chem} and κ Köhler theory (Petters & Kreidenweis, 2008).

3. Results and Discussion

As shown in Figure 1, increased PM$_{2.5}$ loading and RH can lead to higher light extinction. The σ_{PM} shows a clear increase trend with increase of PM$_{2.5}$ and also progressively increases as increase of RH for a given PM$_{2.5}$. This is because hygroscopic growth of particle significantly enhances the light extinction. In order to estimate this enhancement effect, we derive the f (RH) as a function of RH (see Method) as shown in
Figure 2. Estimation of κ_{chem} and light extinction enhancement factor as a function of RH. The hourly values are projected to eight RH bins (see Method) for analysis. The annual bulk-averaged values are presented. The black line shows the mean results with variation range indicated by error bars. The estimated κ_{chem} (average ± standard deviation) are marked, uncertainty estimation is detailed in Text S2. RH = relative humidity.

The long-term bulk-averaged $f(\text{RH})$ monotonically increases with RH in general. The shapes of $f(\text{RH})$ curves are similar for each year during 2016–2018. In line with the works of Brock et al. (2016) and Kuang et al. (2017), the pattern of $f(\text{RH})$ follows equation (2) well with $R^2 > 0.95$. The $f(\text{RH} = 80\%–85\%)$ in Delhi is in the range of 1.7–2.3 during 2016–2018, with an average of ~2.0. This light extinction enhancement factor in Delhi is higher than the values measured in urban and rural regions of Beijing, where show a $f(\text{RH} = 80\%–85\%)$ of 1.3 in the clean conditions and 1.5 in the polluted conditions (Titos et al., 2016). But the $f(\text{RH} = 80\%–85\%)$ in Delhi is lower than the values measured over clean marine environments, for example, NY-Alesund (2.5–3.8), east Asia (2.2–2.8, clean), and Cabauw (~3.5, clean), whereas similar to the polluted or dust dominant marine environments, for example, Gosan, Jeju Island in Korea (1.8–2.2, dust), east Asia (2.0–2.3, polluted), and Cabauw (~2.0, polluted; Titos et al., 2016). These results indicate that the urban pollutants may moderate the hygroscopicity of marine aerosols, however, may enhance the hygroscopicity over inland regions, such as Delhi and Beijing. The higher hygroscopicity of aerosols in Delhi may also imply a more severe anthropogenic pollution than Beijing. This is in line with the database of WHO (http://www.who.int/airpollution/data/cities/en/), which shows a twice higher PM$_{2.5}$ loading in Delhi compared with Beijing. Furthermore, lots of previous studies (e.g., Titos et al., 2016; Wang et al., 2007; Zhang, Sun, et al., 2015) reported that $f(\text{RH} = 80\%–85\%)$ is inversely proportional to the mass fraction of organic matter (F_{OM}). Higher $f(\text{RH} = 80\%–85\%)$ in Delhi may indicate a lower F_{OM} compared to Beijing. This is consistent with a recent long-term observational study in Delhi (Sharma et al., 2018), which reported an annual averaged F_{OM} in PM$_{2.5}$ is in a range of 15%–20% during 2012–2016 (mass of organic matter is usually calculated as 1.4 times of organic carbon). However, the F_{OM} in Beijing is usually in a range of 20%–40% (Hu et al., 2015; Huang et al., 2014; Tao et al., 2017; Yang et al., 2017), where more than half of the organic matter originates from secondary organic aerosol (SOA; Hu et al., 2015; Huang et al., 2014; Jimenez et al., 2009). Stronger solar radiation in Delhi may increase photochemical reactions and oxidation of volatile organic compounds, therefore, may enhance SOA formation (Guo et al., 2014; Hu et al., 2019; McFiggans et al., 2019; Zhang, Wang, et al., 2015; Zhu et al., 2011). However, hotter weather in Delhi compared with Beijing could suppress the condensation of semivolatile organic compounds and compensate the enhancement of SOA formation. The lower F_{OM} in Delhi may be due to less SOA, resulting from the competition between the two effects above; however, more observational evidences are required. Moreover, in contrast to the rapid decrease of SO$_2$ emission in China over the past decade, the significant increase of SO$_2$ emission in India (Li et al., 2017) could lead to a great formation of highly hygroscopic particulate sulfate. This could be another reason of higher hygroscopicity and larger light extinction enhancement of aerosol in Delhi than in Beijing. The intensive field measurements of physicochemical properties of particulate matter and gaseous pollutants are scarce in Delhi; we highlight the urgency of these observational studies for better understandings of physical and chemical properties of aerosols in Delhi.

To facilitate the assessment of climate impact and comparison with other studies, we derive the κ_{chem} of aerosols in Delhi from $f(\text{RH})$ using equation (2). The annual bulk-averaged κ_{chem} in Delhi is about 0.42 ± 0.07 during 2016–2018. In line with above discussion, this value indicates higher (by ~100%) hygroscopicity in Delhi than in Beijing. The long-term HTDMA field observation in Beijing reports an averaged κ_{chem} in the range of 0.14–0.23 for particles within a size range of 50–350 nm (Wang et al., 2018). Given the absence of direct hygroscopicity measurements in Delhi, we compare our observation-based estimation with a global model study (Pringle et al., 2010). They show reasonable model results, with deviations between the modelled and observed κ_{chem} values less than 0.05 at 10 out of the 14 locations over the world. In line with our study, their model result of κ_{chem} in Delhi is about 50%–100% higher than the result in Beijing. Our estimated κ_{chem} in Delhi is much higher than averaged values of Asia (0.22), Australia (0.21), S. America (0.17), and Africa (0.15), however much lower than the averaged values of N. Atlantic (0.59) and Southern Ocean (0.92; Pringle et al., 2010). The κ_{chem} in Delhi is much higher (by about 100%) than...
Asian averages and Beijing observations. As discussed above, this is possibly resulting from less SOA or abundant anthropogenic sulfate aerosol in Delhi, which is also implied by Pringle et al. (2010).

4. Implication of Finding

Cloud formation exerts a significant impact on the radiative balance of the earth system (indirect radiative forcing) and hydrologic cycle. Cloud droplet number plays a crucial role in determining albedo and lifetime of cloud (Ming et al., 2006) and is very sensitive to κ_{chem} (Reutter et al., 2009). To further investigate the impact of κ_{chem} on aerosol-cloud interaction, we estimate the CCN activation ability of aerosols in Delhi using κ_{chem} following the works of Petters and Kreidenweis (2007, 2008) and compare it with the activation ability of other regions over the world and some typical constituents of atmospheric relevance (Figure 3). It is worth noting that κ_{chem} can be size-dependent, bulk-averaged κ_{chem} values are adopted and could introduce uncertainty in the following estimation. Long-term size-resolved particle hygroscopicity observations are required in future studies to quantify this uncertainty. The activation ability of aerosols in Delhi is much higher than some organic matters of atmospheric relevance, for example, oxidized dihexylethyle sebacate, fractionated fulvic acid, fulvic acid, mixture of levoglucosan with succinic and fulvic, and pure levoglucosan (Figure 3a; Svenningsson et al., 2006). However, the activation ability is lower than some typical inorganic matters of atmospheric relevance, for example, ammonium nitrate (Figure 3a). The activation ability of aerosols in Delhi is close to continental-polluted aerosol represented by a mixture of inorganic (70%) and organic matters (30%); detailed information of mixture is given in Petters and Kreidenweis (2007) and Svenningsson et al. (2006). This result may imply that the aerosol in Delhi is a mixture containing majority of inorganic and minority of organic species, and this is consistent with long-term measurements in Delhi (Khare et al., 2018; Sharma et al., 2018). In order to emphasize the importance of climate impacts of aerosols in Delhi (Figure 3b), we compare its activation ability with averaged values of Beijing (Wang et al., 2018) and continental averages worldwide (Pringle et al., 2010). A 0.1 μm particle can activate as a cloud droplet under a supersaturation of ~0.22% for Europe and North America, about 0.28%–0.31% for Asia, Australia, South America, and Africa, and ~0.3% for Beijing. However, only a supersaturation of ~0.18% ± 0.015% is required to activate 0.1 μm particles in Delhi on average. To activate a smaller particle possessing a diameter of 0.05 μm, it requires a supersaturation of ~0.51% ± 0.04% (Delhi), ~0.70% (Europe and North America), 0.80%–0.92% (Asia, Australia, South America, and Africa), and ~0.85% (Beijing), respectively. Therefore, the CCN activation ability of aerosols in Delhi is much higher than the continental averages and another Asian megacity, Beijing. This indicates a larger impact of aerosols in Delhi on climate and hydrologic cycle, even if under same meteorological conditions and same particle number concentration. Additionally, the frequent influence of monsoon and great PM$_{2.5}$ loading in Delhi make its climate impacts more remarkable (~125 μg/m3 on average during 2016–2018 and ~110 μg/m3 in 2015 as details given in Figure S1; van

Figure 3. Critical supersaturation for cloud condensation nuclei activation as a function of particle dry diameter. The estimated bulk-averaged values for Delhi (blue line with standard deviation in the pink shading area) is compared with values of other compounds (a) and values of continental regions worldwide (b). Panel (a) is modified from the Figure 2 of Petters and Kreidenweis (2007); dots indicate the experiment results taken from literatures therein and the dashed lines indicate the best fit for each particle type. Panel (b) is modified from the Figure 7a of Pringle et al. (2010). The figures are reused under the CC Attribution 3.0 License.
Donkelaar et al., 2015). Our results imply that using Asian average or measurements in other Asian megacities (e.g., Beijing) to represent the κ_{chem} in Delhi would lead to significant underestimation of its climate impacts.

Various parameterizations of cloud droplet nucleation are applied in general circulation models (GCMs; e.g., Ghan et al., 2011; Jiang et al., 2010; Jiang et al., 2012; Roelofs et al., 2006; Zhang et al., 2016). Some earlier cloud microphysical schemes empirically diagnose cloud droplet number concentration from aerosol mass (e.g., Boucher & Lohmann, 1995; Lohmann & Feichter, 1997; Menon et al., 2002) or aerosol number (e.g., Gultepe & Isaac, 1996) to account for aerosol-cloud interaction. However, these empirical relationships can vary largely over different regions (Ramanathan et al., 2001) and lead to substantial uncertainty. Later on, various Köhler-theory-based (Köhler, 1936) parameterizations (e.g., Abdul-Razzak & Ghan, 2000; Fountoukis & Nenes, 2005; Ming et al., 2006; Nenes & Seinfeld, 2003) have been applied in GCMs. For example, CMIP5-cm3 (Coupled Model Intercomparison Project; Jiang et al., 2012; Ming et al., 2006), CAM5 (Community Atmosphere Model; Abdul-Razzak & Ghan, 2000; Zhang et al., 2016), UKCA (UK Chemistry and Aerosols community model; Abdul-Razzak & Ghan, 2000; West et al., 2014), and MRI-ESM 1 (Meteorological Research Institute Earth System Model Version 1; Abdul-Razzak & Ghan, 2000; Yukimoto et al., 2012). However, the chemical complexity has an important impact on cloud activation and incorporating such complexity into these parameterizations is difficult (Fountoukis & Nenes, 2005). By introducing a new concept of “population splitting”, Fountoukis and Nenes (2005) and Nenes and Seinfeld (2003) take the soluble, slightly soluble, insoluble species, and organic surfactants into consideration. Recently, Chang et al. (2017) applied a κ-Köhler-based (Petters & Kreidenweis, 2007) parameterization in EMAC (ECHAM5-MESSy Atmospheric Chemistry model) to diagnose cloud activation efficiently and robustly, with consideration of aerosol chemical complexity but without the need of aerosol-specific information (e.g., Van’t Hoff factor and osmotic coefficient), which is required by Köhler-theory-based parameterizations. Chang et al. (2017) shows that using the model predicted region-dependent κ values can improve the cloud and climate simulations over polluted regions (e.g., India), compared with using prescribed κ value (continental average value). This indicates the regional variation of κ can substantially influence climate simulation, and using our long-term observation-based κ estimation to constraint climate models would improve the assessment of climate change.

5. Summary

Hygroscopicity of aerosol is an important parameter affecting its climate effects; however, the long-term observation of it in Delhi, one of the biggest cities in the world, is absent. In this study, we demonstrate an approach to derive the hygroscopicity (κ_{chem}) of aerosol in Delhi from publicly available data sets. This approach is well validated and shows a good agreement (bias of 0.01–0.04, 5%–30%) with long-term observations in Beijing.

We analyze the Delhi observations during 2016–2018 and estimate a long-term bulk-averaged κ_{chem} of 0.42 ± 0.07. This value is much higher (by about 100%) than the κ_{chem} of Beijing as reported from previous modelling and observational studies. This implies the difference in aerosol chemical composition between these two Asian megacities, Delhi, and Beijing. The possible reasons could be higher contribution from anthropogenic sulfate or lower contribution from SOA in Delhi; however, further evidences are still needed from direct measurements. To activate particles of 0.1 μm (0.05 μm) as cloud condensation nuclei, a supersaturation of $0.18\pm 0.015\%$ is required in Delhi, which is much lower than that in Beijing and the Asian average. Furthermore, the hygroscopicity-induced light extinction enhancement of aerosols in Delhi, that is, $f(\text{RH} = 80\%–85\%)$, is estimated to be in the range of 1.7–2.3, which is much higher than Beijing (1.3–1.5). The higher light extinction enhancement and easier cloud activation imply larger direct and indirect radiative forcing of aerosols in Delhi. These climate effects can be significantly underestimated if a hygroscopicity of Beijing or Asian average is used to represent the condition of Delhi. We highlight the urgency of direct hygroscopicity measurements in Delhi for a deeper understanding of human’s influences on cloud formation, climate change, and global hydrologic cycle. The approach we demonstrated in this study is also valuable for estimating aerosol hygroscopicity and its climate effects in other parts of the world where high-quality direct measurements are not available.
WANG AND CHEN

Author contributions
Y. C. conceived the study. Y. C. and Y. W. performed the analysis and interpreted the results. All authors discuss the results and cowrite the manuscript.

References
Abdul-Razzak, H., & Ghan, S. J. (2000). A parameterization of aerosol activation: 2. Multiple aerosol types. Journal of Geophysical Research, 105(DS), 6837–6844. https://doi.org/10.1029/1999JD901161
Atwood, A. R., Washenfelder, R. A., Brock, C. A., Hu, W., Baumann, K., Campuzano-Jost, P., et al. (2014). Trends in sulfate and organic aerosol mass in the Southeastern US: Impact on aerosol optical depth and radiative forcing. Geophysical Research Letters, 41, 7701–7709. https://doi.org/10.1002/2014GL061669
Bhattu, D., Tripathi, S. N., & Chakraborty, A. (2016). Deriving aerosol hygroscopic mixing state from size-resolved CCN activity and HR-ToF-AMS measurements. Atmospheric Environment, 142, 57–70.
Boucher, O., & Lohmann, U. (1995). The sulfate-CCN-cloud albedo effect. Tellus Series B: Chemical and Physical Meteorology, 47(3), 281–300.
Brock, C. A., Wagner, N. L., Anderson, B. E., Atwood, A. R., Beyersdorf, A., Campuzano-Jost, P., et al. (2016). Aerosol optical properties in the southeastern United States in summer—Part I: Hygroscopic growth. Atmospheric Chemistry and Physics, 16(8), 4987–5007. https://doi.org/10.5194/acp-16-4987-2016
Chang, D. Y., Lelieveld, J., Tost, H., Steil, B., Pozzer, A., & Yoon, J. (2017). Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. Atmospheric Environment, 162, 127–140.
Charlson, R. J., Horvath, H., & Pueschel, R. F. (1967). The direct measurement of atmospheric light scattering coefficients for studies of visibility and pollution. Atmospheric Environment, 1(4), 469–478.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423–430.
Chen, J., Zhao, C. S., Ma, N., & Yan, P. (2014). Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain. Atmospheric Chemistry and Physics, 14(15), 8105–8118.
Chen, Y., Wolke, R., Ran, L., Birmili, W., Spindler, G., Schröder, W., et al. (2018). A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: improvement of particulate nitrate prediction. Atmospheric Chemistry and Physics, 18(2), 673–689.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., et al. (2016). Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2(12), e1601530. https://doi.org/10.1126/sciadv.1601530
Covert, D. S., Charlson, R. J., & Ahlquist, N. C. (1972). A study of the relationship of chemical composition and humidity to light scattering by aerosols. Journal of Applied Meteorology, 11(6), 968–976.
Crumeyrolle, S., Chen, G., Zieba, L., Beyersdorf, A., Thornhill, L., Winstead, E., et al. (2014). Factors that influence surface PM2.5 values inferred from satellite observations: Perspective gained for the US Baltimore-Washington metropolitan area during DISCOVER-AQ. Atmospheric Chemistry and Physics, 14(4), 2139–2153.
EPA (2009). Standard operating procedure for the continuous measurement of particulate matter, (last access: 8 Nov. 2018).
EPA (2015). List of designated reference and equivalent methods, (Last access: 20 Nov. 2018).
Ervens, B., Cubison, M., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L., et al. (2007). Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity. Journal of Geophysical Research, 112, D10S32. https://doi.org/10.1029/2006JD007426
Ervens, B., Turpin, B. J., & Weber, R. J. (2011). Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 11(21), 11,069–11,102.
Estre, A. R., Ovchinnikov, M., Razzak, H., Nenes, A., Ming, Y., Holben, B. N., & Uttila, M. P. (2012). Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles. Atmospheric Chemistry and Physics, 12(6), 2987–3003.
Fors, E. O., Swietlicki, E., Stenningsson, B., Kristensson, A., Frank, G. P., & Sporre, M. (2011). Hygroscopic properties of the ambient aerosol over Central France—A two year study. Atmospheric Chemistry and Physics, 11(16), 8343–8366.
Fountoukis, C., & Nenes, A. (2005). Continued development of a cloud droplet formation parameterization for global climate models. Journal of Geophysical Research, 110, D11212. https://doi.org/10.1029/2004JD005591
Ghan, S. J., Abdul-Razzak, H., Nenes, A., Ming, Y., Liu, X., Ovchinnikov, M., et al. (2011). Droplet nucleation: Physically-based parameterizations and comparative evaluation. Journal of Advances in Modeling Earth Systems, 3, M10001. https://doi.org/10.1029/2011JMA007074
Gultepe, I., & Isaac, G. A. (1996). The relationship between cloud droplet and aerosol number concentrations for climate models. International Journal of Climatology, 16(8), 941–946.
Guo, S., Hu, M., Kamra, M. L., Peng, J., Shang, D., Zheng, J., et al. (2014). Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17,373–17,378. https://doi.org/10.1073/pnas.1419604111
Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirniö, A., Virtanen, A., et al. (2015). Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate. Atmospheric Chemistry and Physics, 15(24), 14,071–14,089.
Hennigan, C. J., Bergin, M. H., Dibb, J. E., & Weber, R. J. (2008). Enhanced secondary organic aerosol formation due to water uptake by fine particles. Geophysical Research Letters, 35, L18801. https://doi.org/10.1029/2008GL035046
Holmgren, H., Sellek, K., Hervo, M., Rose, C., Freney, E., Villani, P., & Laj, P. (2014). Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dôme (1465 m a.s.l.), France. Atmospheric Chemistry and Physics, 14(18), 9347–9354.
Hu, D., Chen, Y., Wang, Y., Daise, V., Idir, M., Yu, C., et al. (2019). Photocatalytic reaction playing a key role in particulate matter pollution over Central France: Insight from the aerosol optical properties. Science of the Total Environment, 657, 1074–1084.

Acknowledgments
The archived hourly measurements of PM2.5 recorded at the U.S. Embassy in Delhi are available through the AirNow platform maintained by the U.S. Department of State and the U.S. Environmental Protection Agency at https://www.airnow.gov/ website. The archived hourly measurements of visibility and meteorology variables recorded at the Delhi Indira Gandhi International Airport are available through the Integrated Surface Database—Surface Data Hourly Global data product maintained by the U.S. National Oceanic and Atmospheric Administration—National Climatic Data Center at https://www.ncdc.noaa.gov/ website. Y. W. would like to thank the support of the joint scholarship of China Scholarship Council and University of Manchester. Y. C. would like to thank the project funded by NERC, UK (NE/P01531X/1). The paper is based on interpretation of scientific results and in no way reflect the viewpoint of the funding agencies. The authors declare no competing financial interest.
Hu, G., Sun, J., Zhang, Y., Shen, X., & Yang, Y. (2015). Chemical composition of PM2.5 based on two-year measurements at an urban site in Beijing. *Aerosol and Air Quality Research, 15*(5), 1748-1759.

Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J. J., Han, Y., et al. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. *Nature, 514*(7521), 218-222. https://doi.org/10.1038/nature13774

IPCC (2013). *Climate Change 2013: The Physical Science Basis*. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In T. F. Stocker, et al. (Eds.) (1535 pp.). Cambridge, UK and New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324

Jiang, J. H., Su, H., Pawson, S., Liu, H. C., Read, W. G., Waters, J. W., et al. (2010). Five year (2004–2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses. *Journal of Geophysical Research, 115*, D15103. https://doi.org/10.1029/2009JD013256

Jiang, J. H., Su, H., Zhai, C., Perun, V. S., del Genio, A., Nazarenko, L. S., et al. (2012). Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. *Journal of Geophysical Research, 117*, D14105. https://doi.org/10.1029/2011JD017237

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., et al. (2009). Evolution of organic aerosols in the atmosphere. *Science, 326*(5959), 1525-1529. https://doi.org/10.1126/science.1180533

Kammermann, L., Gysel, M., Weingartner, E., & Baltensperger, U. (2010). 13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.). *Atmospheric Chemistry and Physics, 10*(22), 10,717–10,732.

Kasten, F. (1969). Visibility forecast in the phase of pre-condensation. *Tellus, 21*(5), 631–635.

Khare, M., Gargava, P., & Khan, A. A. (2018). Effect of PM2.5 chemical constituents on atmospheric visibility impairment AU-Khanna, Isha. *Journal of the Atmospheric Sciences, 68*, 430-437.

Kühler, H. (1936). The nucleus in and the growth of hygroscopic droplets. *Transactions of the Faraday Society, 32*, 1152–1161.

Koschmieder, H. (1924). Theorie der horizontalen Sichtweite. *Beiträge zur Physik der Freien Atmosphäre, 12*, 33–53.

Kreidenweis, S. M., & Asa-Awuku, A. (2014). 5.1.3 - Aerosol hygroscopicity: Particle water content and its role in atmospheric processes. In H. D. H. K. Turekian (Ed.), *Treatise on Geochemistry* (2nd ed., pp. 331–361). Oxford: Elsevier.

Kuang, Y., Zhao, C., Tao, J., Bian, Y., Ma, N., & Zhao, G. (2017). A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system. *Atmospheric Chemistry and Physics, 17*(11), 6651–6662.

Kuang, Y., Zhao, C. S., Ma, N., Liu, H. J., Bian, Y. X., Tao, J. C., & Hu, M. (2016). Deliquecent phenomena of ambient aerosols on the North China Plain. *Geophysical Research Letters, 43*, 8744–8750. https://doi.org/10.1002/2016GL070273

Kurosky, Y., & Mikami, M. (2006). Threshold wind speed for dust emission in east Asia and its seasonal variations. *Journal of Geophysical Research, 112*, D17202. https://doi.org/10.1029/2006JD007988

Li, C., McLinden, C., Fioletov, V., Kreistov, N., Caro, S., Joiner, J., et al., (2017). India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. *Scientific Reports, 7*(1), 14304. https://doi.org/10.1038/s41598-017-14639-8

Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., et al. (2018). Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter. *Nature Communications, 9*(1), 4076. https://doi.org/10.1038/s41467-018-06622-2

Liu, P. F., Zhao, C. S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., et al. (2011). Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. *Atmospheric Chemistry and Physics, 11*(7), 3479–3494. https://doi.org/10.5194/acp-11-3479-2011

Lodhi, N. K., Beegum, S. N., Singh, S., & Kumar, K. (2013). Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends, and source strengths. *Journal of Geophysical Research: Atmospheres, 118*, 1361–1375. https://doi.org/10.1002/jgrd.50165

Lohmann, U., & Feichter, J. (1997). Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM. *Journal of Geophysical Research, 102*(D12), 13,685–13,700. https://doi.org/10.1029/97JD00631

Malm, W. C., Day, D. E., & Kreidenweis, S. M. (2000). Light scattering characteristics of aerosols as a function of relative humidity: Part I—A comparison of measured scattering and aerosol concentrations using the theoretical models. *Journal of the Air & Waste Management Association, 50*(5), 666–700.

Marrapu, P., Cheng, Y., Beig, G., Sahu, S., Srinivas, R., & Carmichael, G. R. (2014). Air quality in Delhi during the Commonwealth Games. *Atmospheric Chemistry and Physics, 14*(19), 10,619–10,630.

McFiggans, G., Mentel, T. F., Wildt, J., Pullinen, I., Kang, S., Kleist, E., et al. (2019). Secondary organic aerosol reduced by mixture of atmospheric vapours. *Nature, 565*(7741), 587–593. https://doi.org/10.1038/s41586-018-0871-y

Menon, S., Genio, A. D. D., Koch, D., & Tsielisoudis, G. (2002). GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. *Journal of the Atmospheric Sciences, 59*(3), 692–713.

Ming, Y., Ramaswamy, V., Donner, L. J., & Phillips, V. T. J. (2006). A new parameterization of cloud droplet activation applicable to general circulation models. *Journal of the Atmospheric Sciences, 63*(4), 1348–1356.

Mukherjee, A., & Tooyee, D. W. (2016). A study of aerosol properties based on observations of particulate matter from the U.S. Embassy in Beijing, China. *Earth’s Future, 4*(8), 381–395.

Neal Lott, J. (2004). The quality control of the integrated surface hourly database, (last access: 08 Nov. 2018).

Nenes, S., Wagen, R., & Schwartz, S. E. (1995). Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity. *Journal of Geophysical Research, 100*(D12), 26,105–26,116. https://doi.org/10.1029/95JD02897

Nenes, A., & Seinfeld, J. H. (2003). Parameterization of cloud droplet formation in global climate models. *Journal of Geophysical Research, 108*(D7), 4415. https://doi.org/10.1029/2002JD002911

Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. *Atmospheric Chemistry and Physics, 7*(8), 1961–1971.

Petters, M. D., & Kreidenweis, S. M. (2008). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 2: Including solubility. *Atmospheric Chemistry and Physics, 8*(20), 6273–6279.

Pilat, M. J., & Charlson, R. J. (1966). Theoretical and optical studies of humidity effects on the size distribution of a hygroscopic aerosol. *Journal de Recherches Atmospheriques, 1*, 165–170.

Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., & Hand, J. (2007). Revised algorithm for estimating light extinction from IMPROVE particle speciation data. *Journal of the Air & Waste Management Association, 57*(11), 1326–1336.

Pringle, K. J., Tost, H., Pozzer, A., Pröschl, U., & Lelieveld, J. (2010). Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. *Atmospheric Chemistry and Physics, 10*(12), 5241–5255.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124.

Reutter, P., Su, H., Treutmann, J., Simmel, M., Rose, D., Gunthe, S. S., et al. (2009). Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size, and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmospheric Chemistry and Physics, 9(18), 7067–7080.

Roeßler, G. J., Stier, P., Feichter, J., Vignati, E., & Wilson, J. (2006). Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 6(9), 2389–2399.

Saha, S. K., Beig, G., & Parkhi, N. S. (2011). Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during Commonwealth Games 2010. Atmospheric Environment, 45(34), 6180–6190.

Sharma, S. K., Mandal, T. K., Sharma, A., Jain, S., & Saraswat (2018). Carbonaceous Species of PM2.5 in Megacity Delhi, India during 2012–2016. Bulletin of Environmental Contamination and Toxicology, 100(5), 695–701.

Stokes, R. H., & Robinson, R. A. (1966). Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. The Journal of Physical Chemistry, 70(7), 2126–2131.

Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., et al. (2006). Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmospheric Chemistry and Physics, 6(7), 1937–1952. https://doi.org/10.5194/acp-6-1937-2006

Swietlicki, E., Hansson, H. C., Hämmer, K., Svenningsson, B., Massling, A., McFiggans, G., et al. (2008). Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—A review. Tellus Series B: Chemical and Physical Meteorology, 60(3), 432–469. https://doi.org/10.1111/j.1600-0889.2008.00350.x

Tang, M., Cicci, D. J., & Grassian, V. H. (2016). Interactions of water with mineral dust aerosol: water adsorption, hygroscopicity, cloud condensation, and ice nucleation. Chemical Reviews, 116(7), 4205–4259.

Tao, J., Zhang, L., Cao, J., & Zhang, R. (2017). A review of current knowledge concerning PM2.5. Chemical composition, aerosol optical properties and their relationships across China. Atmospheric Chemistry and Physics, 17(15), 9485–9518.

Tegen, I., & Fung, I. (1994). Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. Journal of Geophysical Research, 99(D11), 22,897–22,914. https://doi.org/10.1029/94JD01128

Tegen, I., & Fung, I. (1995). Contribution to the atmospheric mineral aerosol load from land surface modification. Journal of Geophysical Research, 100(D9), 18,707–18,726. https://doi.org/10.1029/95JD02551

Titos, G., Casarola, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M. J., et al. (2016). Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources. Atmospheric Environment, 141, 494–507.

Twaynes, S. (1974). Pollution and the planetary albedo. Atmospheric Environment, 8(12), 1251–1256.

van Donkelaar, A., Martin, R. V., Brauer, M., & Boys, B. L. (2015). Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environmental Health Perspectives, 123(2), 135–143.

Wang, W., Rood, M. J., Carrico, C. M., Covert, D. S., Quinn, P. K., & Bates, T. S. (2007). Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study—Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition. Journal of Geophysical Research, 112, D10S02. https://doi.org/10.1029/2006JD007579

Wang, Y., Wu, Z., Ma, N., Wu, Y., Zeng, L., Zhao, C., & Wiedensohler, A. (2015). Aerosol chemical composition and hygroscopic properties and their relationships across China. Atmospheric Chemistry and Physics, 17(15), 9485–9518.

Wang, Y. H., Liu, Z. R., Zhang, J. K., Hu, R., Ji, D. S., Yu, Y. C., & Wang, Y. S. (2015). Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing. Atmospheric Chemistry and Physics, 15(6), 3205–3215.

Wesi, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., et al. (2014). The importance of vertical velocity variability for estimates of the indirect aerosol effects. Atmospheric Chemistry and Physics, 14(12), 6369–6393.

Wex, H., Hennig, T., Salma, I., Ockay, R., Kiselev, A., Henning, S., et al. (2007). Hygroscopic growth and measured and modeled critical supersaturations of an atmospheric HULIS sample. Geophysical Research Letters, 34, L02818. https://doi.org/10.1029/2006GL028260

Wex, H., McFiggans, G., Henning, S., & Stratmann, F. (2010). Influence of the external mixing state of atmospheric aerosol on derived CCN number concentrations. Geophysical Research Letters, 37, L10805. https://doi.org/10.1029/2010GL043337

Wex, H., M. D. Petters, C. M. Carrico, E. Hallbauer, A. Massling, G. R. McMeeking, et al. (2009). Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1—Evidence from measurements. Atmospheric Chemistry and Physics, 9(12), 3978-3997.

WMO/GAW (2016). WMO/GAW aerosol measurement procedures, guidelines and recommendations, GAW Report No. 227. Retrieved from https://library.wmo.int, (last access: 18 September 2018).

World Meteorological Organization (WMO) (2008). Guide to meteorological instruments and methods of observations, 7th edition, WMO No.8, (last access: 08 Nov 2018).

Wright, H. L. (1939). Atmospheric opacity: A study of visibility observations in the British Isles. Quarterly Journal of the Royal Meteorological Society, 65(281), 411–442.

Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., et al. (2018). Aerosol liquid water driven by anthropogenic inorganic salts: Implying its role in haze formation over the North China plain. Environmental Science & Technology Letters, 5(3), 160–166. https://doi.org/10.1021/acs.estlett.8b00021

Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., et al. (2016). Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmospheric Chemistry and Physics, 16(2), 1123–1138.

Yang, X., Cheng, S., Li, J., Lang, J., & Wang, G. (2017). Characterization of Chemical Composition in PM$_2.5$ in Beijing before, during, and after a Large-Scale International Event. Aerosol and Air Quality Research, 17(4), 896–907.

Yeung, M. C., Lee, B. P., Li, Y. J., & Chan, C. K. (2014). Simultaneous HTDMA and HR-ToF-AMS measurements at the HKUST Supersite in Hong Kong in 2011. Journal of Geophysical Research: Atmospheres, 119, 9864–9883. https://doi.org/10.1002/2013JD021146

Yin, Y., Levin, Z., Resins, T. G., & Trzív, S. (2000). The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmospheric Research, 53(1), 91–116.

Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hiramara, M., et al. (2012). A new global climate model of the meteorological research institute: MIR-CGCM3—Model description and basic performance. Journal of the Meteorological Society of Japan. Series II, 90A, 23–64. https://doi.org/10.2151/jmsj.2012-A02

Zdanovskii, A. B. (1948). Novyi metod rascheta rastvorimosti elektrolitov v mnogokomponentnykh sistemakh.1. Zhurnal Fizicheskoi Khimii, 22, 1478–1485.

Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., et al. (2015). Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmospheric Chemistry and Physics, 15(14), 8439–8454.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., et al. (2015). Formation of urban fine particulate matter. Chemical Reviews, 115(10), 3803–3855.

Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., et al. (2016). On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 16(5), 2765–2783. https://doi.org/10.5194/acp-16-2765-2016

Zhao, C., Tie, X., & Lin, Y. (2006). A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophysical Research Letters, 33, L11814. https://doi.org/10.1029/2006GL025959

Zhu, T., Shang, J., & Zhao, D. (2011). The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China Chemistry, 54(1), 145–153.