Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)

Steven Bouillon1, Athanase Yambélé2, David P. Gillikin3, Cristian Teodoru1, François Darchambeau4, Thibault Lambert4 & Alberto V. Borges4

1Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium, 2Service de l’Agrométéorologie et de Climatologie, Direction de la Météorologie Nationale, Bangui, Central African Republic, 3Department of Geology, Union College, Schenectady, NY, USA, 4University of Liége, Chemical Oceanography Unit, Liége, Belgium.

The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. δ13C of dissolved inorganic carbon ranged between -28.1‰ and -5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin.

The recognition that carbon (C) processing within inland waters could be a substantial component in C budgets at the catchment, regional, or global scale (e.g.1–4), has led to an increased momentum in studies on riverine biogeochemistry. Further constraining the role of river systems will only be possible by generating additional comprehensive datasets, in particular on systems or regions which are currently underrepresented. Of key importance are tropical and subtropical regions, which have been suggested to be of particular importance in terms of riverine transport of sediments and carbon (e.g.4–5), and have been suggested to show higher areal CO2 outgassing rates than their temperate or boreal counterparts3,6. Based on a long tradition of interdisciplinary studies, the Amazon often serves as a model system for the biogeochemical functioning of tropical river basins with African rivers being largely neglected. The Congo River basin is second to the Amazon in terms of discharge (1310 versus 6640 km² yr⁻¹) and catchment size (3.8 10⁶ versus 5.8 10⁶ km²), but is much less well characterized from a hydrological, physico-chemical, and biogeochemical point of view. The main biogeochemical studies on the Congo basin have focussed on dissolved and particulate erosion rates both on the main Congo River and in some of its major tributaries such as the Oubangui and Sangha (e.g.7–11). The synthesis of Laraque et al.11, however, shows that sampling efforts were concentrated on a limited number of sites, and these monitoring programmes were limited to a restricted number of basic parameters. For many stations, extrapolations needed to be made based on less than 5 samples (e.g. the upper Congo River and Kasai River12). Mariotti et al.13 provided the first stable isotope data on particulate organic carbon (POC) from the lower Congo River and some of its tributaries. More recently, some explorative work on the organic and inorganic C biogeochemistry of the lower Congo River has been presented14–46, and we reported results from a 1-year sampling programme on the Oubangui at Bangui (Central African Republic, CAR), focussing on the dynamics and annual export of different C pools and greenhouse gas (GHG) emissions47. Rivers in the Congo basin network, however, can be expected to show highly variable physico-chemical and biogeochemical characteristics, considering the range in geology, climatic conditions and land use/vegetation across the basin. Laraque et al.14 analysed the physico-chemical properties and major ion composition in different tributaries of the lower Congo, and found strong contrasts between those draining the
“Cuvette Congolaise” (mainly rainforest-dominated lowlands) and the “Téké plateaux”, where savannas form the main biome type. Similarly, Mann et al.19 recently demonstrate strong gradients in biogeochemical characteristics across rivers and streams in the Sangha and lower Oubangui catchment. The existence of a large gradient in biogeochemical characteristics is relatively well documented for some of the large South American basins (e.g.20), but comprehensive geochemical data from the Congo basin are still mostly limited to the mainstem in the Malebo Pool at Brazzaville and some of the main tributaries. During three sampling campaigns between 2010 and 2012, we sampled a number of tributaries of the Oubangui River, from savannah-dominated systems (Mbali River,Mpoko River) to those draining mainly humid rainforest ecosystems (Lobaye,Mbaéré,Bodingué, and some of their minor tributaries) in the Ngotto Forest (Figure 1). Here, we compare biogeochemical data from these tributaries with our own results from 2 years of high-frequency sampling on the mainstem Oubangui River at Bangui, and with available literature data on the wider Congo Basin.

Results

Material fluxes in the Oubangui River. A detailed discussion of results for the first year of monitoring was presented in Bouillon et al.17. While no direct DOC measurements are available for the 2nd year, we estimated DOC fluxes based on the relationship between a\textsubscript{350} and DOC observed in the tributaries (see Supplement Figure S1; unpublished data from other sites within the larger Congo Basin also follow this trend). The 2nd year of measurements was characterized by a markedly lower annual discharge (~30% lower), and for most elements, the annual transport fluxes were accordingly lower than those reported previously by 22% (for DIC) to 55% (for DOC, summarized in Table 1). As an illustration, the seasonal patterns over both years of sampling are presented in Figures 2–3 for TSM, TA, δ13C\textsubscript{DIC}, pCO\textsubscript{2}, CH\textsubscript{4} and N\textsubscript{2}O. The full data can be found in17 and in Supplementary Table 2. During the 2nd year, however, we also analysed spectral parameters of CDOM. The a\textsubscript{350} values exhibited a strong increase with increasing discharge, with values ranging from about 5 m-1 during base flow to > 20 m-1 during high flow (Figure 4). The a\textsubscript{250}:a\textsubscript{365} ratio values were relatively high during base flow (4.6–5.5) and dropped markedly during the ascending limb of the hydrograph to values close to 4.2 during high flow period (Figure 4). Opposite patterns were observed for the spectral slopes. S\textsubscript{275–295} values decreased with increasing discharge (from >0.016 nm-1 during base flow to 0.012 nm-1 during high flow) whereas S\textsubscript{350–400} values increased with increasing discharge (from 0.013 nm-1 during base flow to 0.016 nm-1 during high flow). Finally, spectral slope ratios (S\textsubscript{R}) exhibited a strong seasonal variation with markedly higher values during base flow period (>1.2) compared to high flow period (about 0.8).

Despite the lower transport fluxes, estimated CO\textsubscript{2} fluxes across the water-air interface were similar or slightly higher during 2011–2012 than during 2010–2011 (Table 1). Overall, the seasonality in concentrations and isotope ratios followed similar patterns during both years (Figures 2–3), hence we will not discuss these in detail but use the data mainly to examine overall patterns across the mainstem and tributaries.

Tributary characteristics. Tributaries showed a much wider range of values for most of the measured variables than recorded during the

Figure 1| Map showing the location of the Oubangui within the Congo Basin, and detailed map showing the tributary sampling sites (note that some sites represent small first order tributaries). Map produced using ArcGIS software.
2 years of monitoring on the mainstem Oubangui River. Biogeochemical signatures in the tributaries appear to be clustered according to the catchment characteristics. Specific conductivity generally showed very low values (average 14.6 μS cm⁻¹, with a minimum of 7.6 μS cm⁻¹) in many sites within the densely vegetated Ngotto Forest (Lobaye, Mbaére, Bodingué), and was higher in the more northern, savannah catchments (Mbali, Mpoko : 22–170 μS cm⁻¹) as well as in all left bank tributaries of the Lobaye river (average 89.4 μS cm⁻¹) which are situated at the rainforest/savannah transition. TA was generally well correlated with specific conductivity (Figure 5), and ranged between 0.009 and 1.791 mmol L⁻¹. The highly dilute rivers in rainforest-dominated catchments were also characterised by very low TSM concentrations (0.7–16.0 mg L⁻¹) while higher TSM loads were encountered in some of the tributaries of the Lobaye (9.4–44.4 mg L⁻¹) and in Mpoko River (78.0 mg L⁻¹). Rivers in the Ngotto Forest were also characterized by relatively lower pH values, but despite the visual appearance as ‘blackwater’ rivers (in particular the Mbaére and Bodingué), do not show substantially higher DOC concentrations (between 1 and 6 mg L⁻¹ for the majority of samples, Figure 6). The a350 values of the Oubangui tributaries were higher during the wet period (36.2 ± 14.0 m⁻¹) than during the dry period (22.9 ± 6.8 m⁻¹) (see Supplementary Tables) and are well correlated with DOC concentrations across the seasons (Figure S1). The variations of a350/a365 ratios were relatively limited within and across seasons, with a pattern of lower values during wet period (3.84 ± 0.16) compared to the dry period (4.02 ± 0.17). Spectral slopes over the range 275–295 nm (S275–295) decreased weakly between the dry and wet period, with mean values of 0.0124 ± 0.0004 nm⁻¹ and 0.0116 ± 0.0003 nm⁻¹, respectively. In contrast, S350–400 values tended to be higher during wet period (0.0152 ± 0.0011 nm⁻¹) compared to dry period (0.0147 ± 0.0009 nm⁻¹). The difference in the Sr ratio was however more marked between the two seasons, with lower values during the wet period (0.770 ± 0.049) compared to the dry period (0.845 ± 0.046). Note that the variations of DOM composition proxies were more marked when data are compared site to site. For example, the increase in a350 in the Mbaére from 10.5 to 35.0 m⁻¹ between dry and wet periods was related to clear decreases in the a250/a365 ratio (from 4.3 to 3.7), S275–295 (from 0.0131 to 0.0117 nm⁻¹) and Sr (from 0.860 to 0.799). Compared to the mainstem Oubangui River, δ13C values of DIC span a wide range of values and are typically more 13C-depleted, with very low values in the Mbaére (−23.5 ± 2.0%) and in its minor tributaries (−11.1 to −10.5%). δ13C values of POC and DOC fall within the range expected for vegetation (−31.2 to −25.8% for POC, −30.6 to −27.0 for DOC). The more turbid Mpoko River showed a δ13CPOC of −22.8%, indicating a substantial contribution from C4 vegetation in this subcatchment (no δ13CDOC data available for this site). δ13C values of POC and DOC pools were well correlated, and δ13CPOC values increased with TSM load (Figure 8).

Calculated pCO2 values for the different Oubangui tributaries were highly variable, ranging between 870 and 33500 ppm, being generally higher than those observed in the mainstem Oubangui River (Figure 9). Similarly, both dissolved CH4 and N2O concentrations were generally higher in tributaries than in the mainstem Oubangui River (Figure 9).

Discussion

Organic carbon. Rivers are often categorized in one of three types, mainly based on colour, distinguishing white-water rivers (alkaline to neutral pH, high sediment loads), black-water rivers (acidic, high DOC loads, very low sediment loads and dissolved ion concentrations), and clear-water rivers (low sediment loads but...
variable in terms of pH and alkalinity). This distinction is, however, not always straightforward (see e.g. 21). Consistent with the generally low mechanical erosion rates reported for the Congo Basin11, TSM concentrations in most of the tributaries were low. Only the Mpoko River which drains a wooded savannah region and some of the minor tributaries of the Lobaye, on the rainforest-savannah transition zone, showed slightly more elevated TSM concentrations (9.0–78.0 mg L\(^{-1}\)). While the Bodingué and Mbaër watersheds sampled here visually show characteristics of blackwater rivers, their DOC concentrations (1.5–7.1 mg L\(^{-1}\)) in the lower range of those found in the mainstem Oubanguí (Figure 8), and generally lower than those reported for the mainstem Congo River (6.2 to 17.6 mg L\(^{-1}\); 13,19) or the Epulu River in the upper Congo Basin (5.2–9.0 mg L\(^{-1}\); Spencer et al. 2010), and lower than the range reported for blackwater rivers in the Amazon (7–40 mg L\(^{-1}\), 21). In all of the sampled tributaries, DOC remained the dominant form of organic C (OC), representing 53–95% of the total OC pool. While sampling sites were not consistently similar between different sampling campaigns, DOC concentrations were generally higher during the 2012 wet season compared to the 2 dry season campaigns (e.g. for the mainstem Lobaye: 3.5 ± 0.9 mg L\(^{-1}\), n=5 during the wet season, 1.9 ± 0.1 mg L\(^{-1}\), n=5 during dry season; for the Mbaër: 6.4 ± 1.0 mg L\(^{-1}\), n=2 during the wet season, 2.4 ± 0.8 mg L\(^{-1}\), n=6 during dry season). Such higher DOC concentrations during wet conditions are in line with results from other sites in the Congo basin such as the mainstem Oubangui10,17, mainstem Congo10,16, and rivers in the Ituri Forest14.

The ratio of spectral slopes S\(_R\) and the a\(_{250}\):a\(_{365}\) ratio were developed as rapid and easy methods for characterizing cDOM. The S\(_R\) ratio has been correlated to molecular weight and sources, i.e samples of greater allochthonous contribution with higher molecular weight DOM have lower S\(_R\) values22. The a\(_{250}\):a\(_{365}\) ratio has been correlated with the molecular size and DOM aromaticity with decreasing values relating to increasing molecular size23. In a recent study focusing on cDOM properties in 30 U.S Rivers, Spencer et al.24 also showed that the a\(_{250}\):a\(_{365}\) ratio was inversely related to the hydrophobic organic acid fraction (HPOA) of DOM which represents the high molecular weight, aromatic-dominated fraction of DOM25. Therefore, low a\(_{250}\):a\(_{365}\) ratio values (high HPOA fraction)
indicate an allochthonous origin of DOM, whereas high \(a_{250}:a_{365} \) values (low HPOA fraction) suggest an autochthonous sources (algal or microbial) or photodegraded DOM\(^{26–27}\).

The ranges of \(S_{275–295} \), \(S_{350–400} \), and \(S_R \) in the Oubangui system are comparable to that from other allochthonous dominated freshwater systems including temperate, Arctic, and tropical rivers\(^{15,22,28–30}\). The range of the \(a_{250}:a_{365} \) ratio is comparable to that from other temperate and Arctic rivers\(^{15,28}\).

The large variations in stream \(S_R \) and \(a_{250}:a_{365} \) ratios that occurred along with changes in DOC concentrations and water discharge during the high flow period in the Oubangui River and its tributaries clearly indicate that DOM pools are being mobilized that are different than those typical of base flow conditions (Supplementary Tables 4 and 5). Similar changes in DOM optical properties across the hydrological cycle, especially in spectral slopes proxies, have also been reported in tropical\(^{14,29}\) and Arctic rivers\(^{28,30}\), as well as in an agricultural watershed in California\(^{11}\). Highest DOC concentrations were linked with lower \(S_R \) and \(a_{250}:a_{365} \) values, indicating an increase in the contribution of allochthonous sources to stream DOM due to greater surface runoff and leaching of organic rich layers during the high flow period\(^{14,30}\). However, lowest DOC concentrations were linked with higher \(S_R \) and \(a_{250}:a_{365} \) values, indicating that DOM is less aromatic in nature during the base flow period. This shift in DOM sources can be explained by the deepening of hydrologic flow paths through the soil profile and greater residences time of DOC in contact with soil subsurface microbial communities, leading to the mobilization of a more microbially processed DOM during base flow period\(^{14,30}\). However, combining optical and fluorescence properties of cDOM, Yamashita et al.\(^{29}\) proposed another explanation in the interpretation of the increase of \(S_R \) during base flow period reported in tropical rivers in Venezuela. These authors suggested that the increase of \(S_R \) values could potentially result from a higher contribution of autochthonous source by enhanced plankton primary productivity during the low turbidity period. However, based on the previous study of Bouillon et al.\(^{17}\), such autochthonous source has not been identified as contributor of DOC in the Oubangui River, supporting the hypothesis of a deepening of hydrological flow path as driver of changes in DOM sources.

The temporal variation observed in spectral slopes proxies in the Oubangui River are similar to those observed in the Epulu River\(^{14}\). During the wet period (April) the Epulu was characterized by lowest \(S_R \) values (0.834 ± 0.028) close to those measured in the Oubangui River during high flow period occurring from September to December (0.832 ± 0.041). In the Epulu River, \(S_R \) increased with decreasing discharge during post- and intermediary periods (November-February), with mean and maximal values of 0.962 ± 0.056 and 1.066, respectively. Mean value of \(S_R \) in the Oubangui River
during base flow periods was higher, about 1.180 ± 0.116, with a maximal SR value of 1.323. S350–400 values showed the same temporal variations in both rivers, with lowest values in the Oubangui River compared to the Epulu River. The main difference between these two tropical rivers is the variations in S275–295 values observed in the Oubangui River and to a lower extent in Oubangui tributaries. High flow period was associated with a clear decrease in S275–295, whereas Spencer et al.14 reported no seasonal variations in S275–295 across the hydrological cycle.

Despite the similar temporal variations in DOC concentrations and DOM composition, spatial differences can be observed between the Oubangui River and its tributaries. The Oubangui River is characterized by a more important range of variations in whole cDOM parameters, including absorption coefficient, $a_{250-365}$ (E2:E3), and spectral slope coefficients. This observation is quite different from those reported by Yamashita et al.29, where hydrological changes seem to affect cDOM properties in tributaries to a larger extent than the main river channels.

$\delta^{13}C_{POC}$ values showed a positive correlation with sediment loads (Figure 8), but were generally in the range expected for C3-dominated catchments. The $\delta^{13}C$ values in the rivers draining the Ngotto Forest are relatively low (-32.2 to -29.1%), but vegetation in these systems can be expected to have low $\delta^{13}C$ values given the effects of both high precipitation32 and relatively closed-canopy structure (e.g.,33). The increasing pattern in $\delta^{13}C_{POC}$ values with increased sediment loads (albeit still low on a global scale, 34) suggests higher sediment inputs in catchments where C4 vegetation is more substantial (i.e., from savannah landscapes). The negative relationship between TSM loads and %POC (the contribution of POC to the total particulate matter load, Figure 8) has been previously observed in a range of individual river basins (e.g.,35), and on a global scale (e.g.,45). In our case, this correlation can be interpreted as reflecting the continuum from 2 contrasting end-members: (i) direct litter or organic-rich surface soil layers as observed in the majority of the rainforest rivers, and (ii) more soil-derived sediments as observed in the more turbid systems, with correspondingly lower %POC.

Inorganic carbon. HCO$_3^-$ in rivers is mainly derived from the weathering of carbonate and silicate rocks, with the relative proportions depending to a very large extent on the lithology of the drainage basin37–38. Gaillardet et al. (39, based on data from 8) estimated the relative contributions of carbonate and silicate weathering to the bicarbonate load of the Congo River and some of its tributaries (Oubangui, Sangha, and Kasai) and found a contribution of silicate weathering generally between 50–60% except for the Sangha where carbonate dissolution dominated (only 9% resulting from silicate weathering). Since we do not have data on Cl$^-$ concentrations as required in their approach, we used the simple stoichiometric model of Garrels and Mackenzie37 whereby the contribution to TA from carbonate weathering (TA_{carb}) is computed from Ca$^{2+}$ and Mg$^{2+}$ concentrations and the contribution to TA from silicate weathering (TA_{sil}) is computed independently from dissolved silicon (Si) concentrations, according to:

$$TA_{carb} = 2\times([Ca^{2+}] + [Mg^{2+}] - [SO_4^{2-}])$$

Figure 8 | Relationship between total suspended matter concentrations (TSM) and (a) $\delta^{13}C$ signatures of particulate organic carbon ($\delta^{13}C_{POC}$), and (b) the contribution of particulate organic carbon (POC) to the TSM pool (%POC) for the mainstem Oubangui, tributaries of the Oubangui and samples collected throughout the Congo basin (literature data from Mariotti et al. 1991, Sigha-Nkamdjou et al. 1993, Coynel et al. 2005, Bouillon et al. 2012, Spencer et al. 2012).

Figure 9 | Boxplots of data on pCO$_2$, CH$_4$, and N$_2$O concentrations for the mainstem Oubangui River (data from 2 years of monitoring), and tributaries of the Oubangui (all sites and sampling seasons combined). pCO$_2$ data for the lower Congo River are from Wang et al. (2013). n indicates the number of data points.
SO$_4^{2-}$ allows to account for Ca$^{2+}$ originating from the dissolution of gypsum (CaSO$_4$), but this correction term was ignored in absence of SO$_4^{2-}$ data. In a companion study in the Tana basin (Kenya) we found SO$_4^{2-}$ to correspond to about 10% of Ca$^{2+}$ for a variety of streams and rivers39, which is likely an upper estimate for our study area given the more humid climate and the absence of evaporative streams and rivers40, which is likely an upper estimate for our study.

For the tributaries, there is a good linear regression between the modeled TA (TA$_{carb}$) and observed TA (TA$_{obs}$) (Figure 10A). In the Oubangui mainstream, the modeled TA is well correlated to the observed TA but markedly deviates from the 1:1 line as the values increase. The stoichiometric model of37 assumes that the weathering of silicate rocks leads to a release of HCO$_3^-$ and dissolved Si (DSi) according to a 1:2 ratio. This is true for common mineral forms such as olivine and albite, but the dissolution of some other mineral forms lead to a different HCO$_3^-$:DSi ratio. For instance, the weathering of plagioclase feldspar (NaCaAl$_3$Si$_2$O$_{10}$) leads to the release of HCO$_3^-$ and DSi in a 6:4 ratio. While no detailed information is available on the mineralogy of the underlying bedrock in our study catchments, they are underlain mostly by metamorphic rocks in which feldspars are likely to be common constituents. When we apply this ratio to the Oubangui mainstream data, the recomputed modeled TA in the high values range is in better agreement with observed TA, than based on the HCO$_3^-$:DSi ratio of 1:2 (Figure 10A). The contribution of carbonate rock weathering (%TA$_{carb}$) was estimated as the percentage of TA$_{carb}$ to total modeled TA (TA$_{carb}$ + TA$_{nil}$), and ranged between 30% and 94%, encompassing the range of %TA$_{carb}$ computed by Gaillardet et al.39 between 40% and 91%. %TA$_{carb}$ is positively correlated to TA indicating a lower contribution of carbonate rock weathering in the basins draining humid forest than savannah.

Carbon in HCO$_3^-$ originating from silicate rock weathering comes exclusively from CO$_2$, while 1/2 of the C in HCO$_3^-$ from carbonate rock comes from CaCO$_3$ and the other 1/2 from CO$_2$. If the CO$_2$ involved in the weathering comes from organic C degradation, δ^{13}C$_{DIC}$ should have a negative signature (as indicated by the δ^{13}C signatures of DOC and POC), while marine CaCO$_3$ has a δ^{13}C signature close to 0$^{\text{‰}}$.

This can explain the positive relationship between %TA$_{carb}$ and δ^{13}C$_{DIC}$ (Figure 10B). When applying a linear fit to these data ($R^2=0.69$), the extrapolated δ^{13}C$_{DIC}$ values for the end members where the contribution of carbonate weathering is 0 and 100% are -31.3 and $-1.5^\text{‰}$, respectively, which corresponds well with the expected values for terrestrial vegetation in the rainforest biome and marine carbonates. δ^{13}C$_{DIC}$ values as low as those found in some of the Ngotto forest rivers (as low as $-28.1^\text{‰}$) have, to the best of our knowledge, only been reported for a few rivers in the Amazon basin$^{42-43}$, and can only occur under conditions when alkalinity is extremely low and hence where silicate weathering dominates. The strong correlation between δ^{13}C$_{DIC}$ and pCO$_2$ (Figure 7) on the one hand, and the link between δ^{13}C$_{DIC}$ and carbonate weathering discussed above, suggest that the relative importance of silicate versus carbonate weathering may exert an important control on pCO$_2$ in the studied river systems. Such a mechanism is further suggested by the highly significant regressions ($p<0.0001$) between log(pCO$_2$) and the estimated contribution of carbonate weathering to TA ($R^2=0.38$), or with Si/Ca$^{2+}$ ratios ($R=0.35$), i.e., rock weathering would explain close to 35% of the variance of pCO$_2$. A recent analysis of factors controlling inorganic carbon speciation in North American rivers44 concluded that while much of the variation in the spatial patterns of TA and pH can be explained by catchment processes and characteristics related to chemical weathering (e.g., precipitation, proportion of carbonate rocks), spatial variations in pCO$_2$ were mainly governed by in-river processes only indirectly related to the catchments (e.g., temperature through its effect on respiration). At the scale of our study, where factors such as temperature are much more homogeneous spatially and seasonally, it appears that the weathering regime could exert a partial control on the inorganic carbon speciation, and hence influence pCO$_2$ and water-atmosphere CO$_2$ exchange. It should be noted, however, that our calculated pCO$_2$ data from rivers with low pH are likely to be overestimates, since a comparison of calculated pCO$_2$ data with those measured in the field with a direct headspace technique suggests that the former approach induces a substantial bias towards higher pCO$_2$ under conditions of low pH (<6.5) and/or very low TA (Abril et al., in preparation). While this compromises some of the absolute pCO$_2$ data from rivers in the Ngotto forest, it is unlikely to distort the overall patterns described above.

Methane and nitrous oxide. The data compilation by Bastviken et al.3 demonstrated the lack of CH$_4$ flux data from tropical systems, despite the fact that tropical freshwater systems are often claimed to show much higher CH$_4$ emissions than temperate or high-latitude systems. For the Oubangui tributaries, we have made no attempts to calculate diffusive CH$_4$ fluxes (due to the lack of data required to estimate gas exchange velocities, as outlined above for CO$_2$), yet it is evident that dissolved CH$_4$ concentrations are, on average, more than an order of magnitude higher than in the mainstream Oubangui River (Figure 9). Riverine CH$_4$ concentrations...
in the few African catchments studied so far range drastically, with reported values between 1 and 6730 nM in the Athi-Galana-Sabaki River46, between 48 and 870 nM in the Comoé, Bia and Tanoé rivers in Ivory Coast46, and between 25 and 505 nM in the Tana River.

Initiated in late March 2010, and was followed by approximately 2-weekly sampling. The Oubangui River (Figure 1) is the second largest tributary of the Congo River, which dominates the remaining catchment downstream towards the confluence with the Congo mainstem. The mean annual precipitation in the catchment is \(\sim 1400-1500 \text{ mm} \). The hydrological cycle of the Oubangui is characterized by a single main flood peak and maximum discharge typically in October-November. Annual discharge has fluctuated between 250 and 500 m\(^3\) s\(^{-1}\) for the period 1950–1984; data from the Global River Discharge Database (http://www.sage.wisc.edu/rivertag/, accessed February 2014). The Mbaéré and Bodingué rivers are the two main permanent rivers, which are both characterized by extensive aquatic vegetation. The Bodingué River joins the Mbaéré River prior to joining the Lobaye River, which lies on the northern side of the Ngotto Forest and represents the border towards drier, savannah landscapes to the North. The Lobaye River is an important tributary of the Oubangui River. The Ngotto Forest forms a protected area with high biodiversity, and very low land use and population densities47. The geology of the region is complex and includes igneous, metamorphic, and Mesoproterozoic-Neoproterozoic sedimentary formations that include calcareous sediments48.

Water temperature, conductivity, dissolved oxygen \((\text{O}_2) \) and \(\text{pH} \) were measured in situ with a YSI ProPlus multimeter, whereby the \(\text{O}_2 \) and \(\text{pH} \) probes were calibrated on each day of data collection using water saturated air and United States National Bureau of Standards buffer solutions (4 and 7), respectively. All sampling for larger rivers was performed from dugout canoes at \(\sim 0.5 \text{ m} \) below the water surface, in a few cases sampling was performed from a bridge (Mpoko) or from the river shore (Mbaï). Samples for dissolved gases (\(\text{CH}_4, \text{N}_2\text{O} \)) and the stable isotope composition of dissolved \(\text{HCO}_3^- \) and \(\text{CO}_2 \) were collected for all runs. Samples for dissolved gases were filtered through high pressure filters (Millipore) to remove \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) before storage. Isotope analyses were conducted using an isotope ratio mass spectrometer (EA-IRMS, ThermoFinnigan Flash HT and ThermoFinnigan DeltaV Advantage) for \(\delta^{13} \text{C} \) measurements.

For the analysis of \(\delta^{13} \text{C} \), a 2 ml helium (He) headspace was created, and \(\text{H}_2\text{PO}_4^- \) was added to convert all DIC species to \(\text{CO}_2 \). After overnight equilibration, part of the headspace was injected into the He stream of an elemental analyser–isotope ratio mass spectrometer (EA-IRMS, ThermoFinnigan Flash HT and ThermoFinnigan DeltaV Advantage) for \(\delta^{13} \text{C} \) measurements. The obtained \(\delta^{13} \text{C} \) data were corrected for the isotopic equilibration between gaseous and dissolved \(\text{CO}_2 \) as described in Gillikin and Bollon49.

Table 1: Summary of sampling stations for larger rivers.
abovementioned EA-IRMS using the thermal conductivity detector (TCD) signal of the EA to quantify POC and PN, and by monitoring m/z 44, 45, and 46 on the IRMS. An internally calibrated acetanilide and sucrose (IAEA-C6) were used to calibrate the δ13CPOC data, and quantified POC and PN, after taking filter blanks into account.

Reproducibility of δ13CPOC measurements was better than ±0.2%. Samples for DOC and δ13CDOC were analysed either on a Thermo HyperTOC-IRMS, or with an Aurora 100 TOC analyzer (OI Analytical) coupled to a Delta V Advantage IRMS. Typical reproducibility observed in duplicate samples was in most cases <±5% for DOC, and <±0.2% for δ13CDOC. For a subset of samples from the Ngoto Forest, we compared DOC concentrations and δ13C data for samples filtered on 0.2 μm (as described above) and only on 0.7 μm GF/F filters; for both variables no significant difference was found (n=15, two-tailed paired t-test, in both cases p<0.001 at 95% confidence interval, data in Supplementary Table 1).

Samples for major element concentrations and Si were filtered through a 0.45 μm polyethersulfone (PES) or polycarbonate (PC) filter, and measured by ICP-AES (Iris Advantage, Thermo) or ICP-MS (Perkin Elmer Elan 6100).

For the analyses of cDOM spectral characteristics were prepared similarly as for DOC analyses, but without H2PO4 addition. cDOM samples were stored in amber glass vials with PTFE-coated septa. Absorbance measurements were recorded on a Perkin-Elmer UV/Vis 6505 using a 1 cm quartz cuvette. Absorbance spectra were measured from 190 to 900 nm at 1 nm increments and noise instrument was assessed measuring Milli-Q water as blank. The correction for scattering, index of refraction and blank was performed by fitting the absorption spectra to the data over the range 200–700 nm according to the following equation:

\[
A_2 = A_0 e^{-\lambda I_0} + K,
\]

where \(A_0\) and \(A_0\) are the absorbance measured at defined wavelength \(\lambda\) (nm) and at reference wavelength \(\lambda_0 = 375\) nm, respectively, \(S\) is the spectral slope (nm⁻¹) that describes the approximate exponential decline in absorption with increasing wave-length, and \(K\) is a background offset. According to Johannessen and Miller²⁵, the offset value was then subtracted from the whole spectrum. The fit was not used for any purpose other than to provide an offset value. After correction, absorption coeffi-cients were calculated according to the relation:

\[
a_2 = 2.303 \times A_2 / \lambda,
\]

where \(a_2\) is the absorption coefficient (m⁻¹) at wavelength \(\lambda\). \(A_0\) is the absorbance corrected at wavelength \(\lambda\) and \(I_0\) the path length of the optical cell in meters (0.01 m).

Several optical indices were calculated to investigate cDOM properties, including spectral slope over the intervals 275–295 nm and 350–400 nm (\(S_{275-295}\) and \(S_{350-400}\), respectively) and the slope ratio (SR) and the 2₅₂₃₄₅₂₆ ratio. Spectral slopes were determined using linear regression for the log-transformed a spectra for the intervals 275–295 nm and 350–400 nm and the slope ratio SR was calculated as the ratio of \(S_{275-295}\) to \(S_{350-400}\). The 2₅₂₃₄₅₂₆ ratio (also called E₂:E₃ ratio) was calculating using absorption coefficients at the appropriate wavelength.

Literature data on specific parameters were obtained either from tabulated values in the relevant papers, data supplied by authors, or digitized from figures using PlotDigitizer v2.6.1 (http://plotdigitizer.sourceforge.net/).

1. Cole, J. J. et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. *Ecosystems* 10, 171–184 (2007).
2. Bastviken, D. et al. Freshwater methane emissions offset the continental carbon sink. *Science* 335, 50 (2011).
3. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters: Microbially driven and photochemical transformations. *J. Geophys. Res.* 112, G04S01, doi:10.1029/2006G04S013 (2007).
4. Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. *Chem. Geol.* 107, 553–969 (2008).
5. Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers within the Congo Basin. *Chem. Geol.* 287, 401–428 (2012).
6. Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. *Am. J. Sci.* 287, 401–428 (1987).
7. Guillard, R. R. & Hargrave, A. C. A global mass budget applied to the Congo River system: erosion rates and continental crust composition. *Geochim. Cosmochim. Acta* 59, 3469–3485 (1995).
8. Meybeck, M. The global hydrologic regime of dissolved organic carbon in an agricultural watershed. *Geochim. Cosmochim. Acta* 72, 5266–5277 (2008).
9. Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. *PNAS* 107, 10691–10695 (2010).
10. Aiken, G. R., Banta, G. R. & Kletschka, S. Processing of bioactive elements in the Amazon waters: Microbial contributions and photochemical transformations. *J. Geophys. Res.* 118, G00F10, doi:10.1002/jgrf.10063 (2013).
11. Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. *Am. J. Sci.* 282, 401–450 (1982).
12. Garrels, R. M. & Mackenzie, F. T. Evolution of Sedimentary Rocks (W.W. Norton, New York, 1971).
13. Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. *Am. J. Sci.* 287, 401–428 (1987).
14. Guillard, R. R. & Hargrave, A. C. A global mass budget applied to the Congo River system: erosion rates and continental crust composition. *Geochim. Cosmochim. Acta* 59, 3469–3485 (1995).
15. Meybeck, M. The global hydrologic regime of dissolved organic carbon in an agricultural watershed. *Geochim. Cosmochim. Acta* 72, 5266–5277 (2008).
16. Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. *Am. J. Sci.* 282, 401–450 (1982).
17. Garrels, R. M. & Mackenzie, F. T. Evolution of Sedimentary Rocks (W.W. Norton, New York, 1971).
18. Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. *Am. J. Sci.* 287, 401–428 (1987).
19. Guillard, R. R. & Hargrave, A. C. A global mass budget applied to the Congo River system: erosion rates and continental crust composition. *Geochim. Cosmochim. Acta* 59, 3469–3485 (1995).
20. Meybeck, M. The global hydrologic regime of dissolved organic carbon in an agricultural watershed. *Geochim. Cosmochim. Acta* 72, 5266–5277 (2008).
21. Garrels, R. M. & Mackenzie, F. T. Evolution of Sedimentary Rocks (W.W. Norton, New York, 1971).
22. Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. *Am. J. Sci.* 287, 401–428 (1987).
23. Guillard, R. R. & Hargrave, A. C. A global mass budget applied to the Congo River system: erosion rates and continental crust composition. *Geochim. Cosmochim. Acta* 59, 3469–3485 (1995).
45. Marwick, T. R. et al. Dynamic seasonal nitrogen cycling in response to anthropogenic N-loading in a tropical catchment, the Athi-Galana-Sabaki River, Kenya. *Biogeosciences* **11**, 443–460; DOI:10.5194/bg-11-443-2014 (2014).

46. Koné, Y. J. *et al.* Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). *Biogeochemistry* **100**, 21–37 (2010).

47. Bouillon, S. *et al.* Distribution, origin and cycling of carbon in the Tana River (Kenya): a dry season basin-scale survey from headwaters to the delta. *Biogeosciences* **6**, 2475–2493; DOI:10.5194/bg-6-2475-2009 (2009).

48. Baulch, H. M. *et al.* Nitrogen enrichment and the emissions of nitrous oxide from streams. *Glob. Biogeochem. Cycles* **25**, GB4013 (2011).

49. Regnier, P. *et al.* Anthropogenic perturbation of the carbon fluxes from land to ocean. *Nature Geoscience* **6**, 597–607 (2013).

50. Dudeviller, G. *et al.* Deforestation in Central Africa: estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. *Remote Sens. Environ.* **112**, 1969–1981 (2008).

51. Brugière, D., Sakom, D. & Gautier-Hion, A. The conservation significance of the proposed Mbaéré-Bodingué national park, Central African Republic, with special emphasis on its primate community. *Biodiversity and Conservation* **14**, 505–522 (2005).

52. Milesi, J. P. *et al.* An overview of the geology and major ore deposits of Central Africa: Explanatory note for the 1:4,000,000 map “Geology and major ore deposits of Central Africa”. *J. Afr. Earth Sci.* **44**, 571–595 (2006).

53. Abril, G., Commarieu, M. V. & Guérin, F. Enhanced methane oxidation in an estuarine turbidity maximum. *Limnol. Oceanogr.* **52**, 470–475 (2007).

54. Millero, F. J. The thermodynamics of the carbonic acid system in seawater. *Limnol. Oceanogr.* **21**, 1651–1661 (1977).

55. Lewis, E. & Wallace, D. W. R. Program developed for CO₂ system calculations (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 1998). Available online at http://cdiac.ornl.gov/oceans/co2rprt.html, accessed February 2014.

56. Gillikin, D. P. & Bouillon, S. Determination of δ¹³C of dissolved inorganic carbon using a simple modification of an elemental analyzer – isotope ratio mass spectrometer (EA-IRMS): an evaluation. *Rapid Comm. Mass Spectrom.* **21**, 1475–1478 (2007).

57. Weiss, F. R. & Price, B. A. Nitrous oxide solubility in water and seawater. *Mar. Chem.* **8**, 347–359 (1980).

58. Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. *J. Chem. Eng. Data* **21**, 78–80 (1976).

59. Johannessen, S. C. & Miller, W. L. Quantum yield for the photochemical production of dissolved inorganic carbon in seawater. *Mar. Chem.* **76**, 271–283 (2001).

Acknowledgments

This work was financially supported by the European Research Council (StG 240002: AFRIVAL: “African river basins: catchment-scale carbon fluxes and transformations”), two travel grants to S.B. from the Research Foundation Flanders (FWO-Vlaanderen), and a National Geographic Society Research and Exploration Grant (#8885-11) to D.P.G. and S.B. We thank Marc-Vincent Commarieu for analyses of TA, Zita Kelemen for IRMS support, Harold Hughes (Museum for Central Africa, Tervuren, Belgium) and Kristin Coorevits (KU Leuven) for ICP-MS analyses, and Christiane Lancelot for access to the Perkin-Elmer UV/Vis 650S. A.V.B. and T.L. are a senior research associate and postdoctoral researcher, respectively, with the Fonds National de la Recherche Scientifique (FNRS, Belgium). We thank all staff members of the ECOFAC (Ecosystems Forestiers d’Afrique Centrale) centre in Ngotto for their hospitality and assistance in the field, in particular Dennis Passy. A. Coynel and A. Wang kindly provided the raw data of their published work. J. Hartmann and Nils Moosdorf kindly shared their knowledge concerning the lithology of the study catchments.

Author contributions

S.B. and A.V.B. designed the research; S.B., A.Y. and D.P.G. conducted the field sampling, S.B., A.V.B., T.L., C.T. and F.D. analysed samples, S.B. drafted the manuscript with input from A.V.B., A.Y., D.P.G., T.L., C.T. and F.D.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

How to cite this article: Bouillon, S. *et al.* Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin). *Sci. Rep.* **4**, 5402; DOI:10.1038/srep05402 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/