Interfacial Water Many-body Effects Drive Structural Dynamics and Allosteric interactions in SARS-CoV-2 Main Protease Dimerization Interface

Dina El Ahdab, Louis Lagardère, Theo Jaffrelot Inizan, Frédéric Célerse, Chengwen Liu, Olivier Adjoua, Luc-Henri Jolly, Nohad Gresh, Zeina Hobaika, Pengyu Ren, Richard G. Maroun, and Jean-Philip Piquemal

†Sorbonne Université, LCT, UMR 7616 CNRS, 75005, Paris, France
‡Equipe Structure et Interactions des Macromolécules, UR EGP, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
¶Sorbonne Université, IP2CT, FR 2622 CNRS, 75005, Paris, France
§Sorbonne Université, IPCM, UMR 8232 CNRS, 75005, Paris, France
∥Current address: Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
⊥University of Texas at Austin, Department of Biomedical Engineering, Texas, USA

E-mail: jean-philip.piquemal@sorbonne-universite.fr

Abstract

Following our previous work (Chem. Sci., 2021, 12, 4889 – 4907), we study the structural dynamics of the SARS–CoV–2 Main Protease dimerization interface (apo
dimer) by means of μs adaptive sampling molecular dynamics simulations (50μs) using the AMOEBA polarizable force field (PFF). This interface is structured by a complex H-bond network that is only stable at physiological pH. Structural correlations analysis between its residues and the catalytic site confirms the presence of a buried allosteric site. However, noticeable differences in allosteric connectivity are observed between PFFs and non-PFFs. Interfacial polarizable water molecules are shown to appear at the heart of this discrepancy, since they are connected to the global interface H-bond network and able to adapt their dipole moment (and dynamics) to their diverse local physico-chemical micro-environments. The water-interface many-body interactions appear to drive the interface volume fluctuations and to therefore mediate the allosteric interactions with the catalytic cavity.

Introduction

In the context of COVID-19 drug discovery, both structural and non-structural proteins are considered as promising targets for the conception of antiviral agents against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).\(^1\) Specifically, SARS-CoV-2 M\(^{pro}\) plays a pivotal function in controlling viral replication and transcription through proteolytic processing of viral poly-proteins.\(^2\) Many studies on inhibitor ligands are based on active site pocket targeting. However, advancing a drug toward clinical trials remains a daunting task\(^3\) (as was the case for SARS-Cov1\(^4,5\)). In practice, due to the dimeric nature of M\(^{pro}\), another strategy can be employed to inhibit its activity through the development of dimerization inhibitors.\(^2,6\) Indeed, dimerization inhibitor design was previously reported for many viral enzymes such as the HIV reverse transcriptase, integrase, herpes simplex virus ribonucleotide reductase, and DNA polymerase.\(^6,7\) In fact, targeting dimerization could potentially affect the substrate pocket and thus inhibit the M\(^{pro}\) activity due to allosteric connectivity between the dimerization site and the catalytic site.\(^2,8\) Recently, we provided extensive simulations on M\(^{pro}\)\(^9\) using the AMOEBA polarizable force field (PFF)\(^10-12\) and a new highly parallel
GPUs-accelerated13,14 unsupervised adaptive sampling strategy.9 These multi-microsecond simulations and their associated conformational spaces were compared to available non-PFF long-timescale simulation data from D. E. Shaw Research (DESRES)15 and RIKEN Center for Biosystems Dynamics Research.16 It was found9 that AMOEBA results were closely correlated with experimental data, highlighting the observed strong flexibility of Mpro.17 However, important differences in structural dynamics were observed compared to non-PFFs in key areas of the protease. For example, the overall richer conformational space led to enhanced volume cavities and to different solvation patterns within the active site. In order to drive further our high-resolution Mpro analysis, we present here a study of the factors structuring the dimerization interface as a function of different pH and solvation patterns. We particularly focus on the study of the role of many-body effects in the modeling of interfacial water and on their impact in allosteric interactions of the dimerization interface with other cavities/sites. To do so, we analyze more than 50\(\mu\)s (including more than 12\(\mu\)s of new simulations produced for the study) of AMOEBA molecular dynamics simulations and more than 110\(\mu\)s additional non-PFF simulations from other available data sets. All simulation details can be found in the Technical Appendix at the end of this Letter.

Stability of the dimerization interface

To start our analysis of the Mpro structural dynamics at the dimerization interface, we determined the number of hydrogen bond (H-bond) interactions in order to evaluate the robustness of non-covalent interactions between the two protomers. Starting at physiological pH, we analyzed the DES-AMBER (DESRES), AMBER (RIKEN) and AMOEBA (Tinker-HP) trajectories (see technical appendix for details) provided within the available conformation ensembles. We found relatively similar H-bond interaction probability density functions between the three profiles (see Figure 1, a)) that all present strong stability of the dimerization interface. Comparing the physiological H-bond distribution to lower pH AMOEBA simulations (see Figure 1, b)), we found a transition from a sharp Gaussian distribution
centered at 14 H-bonds (pH 7.4) to a more diffuse one at pH 6 and below, exhibiting the involvements of weaker, disorganized, interactions. Clearly, our results show a collapse of the dimer interface at pH values lower than physiological as a consequence of the successive protonations of histidine residues (His172 then His163).9,18,19 Among the observed interactions (see Table 1, SI), Arg4 – Glu290 and Gly11 – Glu14 H-bond interactions have the highest probability density of all over DES-AMBER, AMBER and AMOEBA trajectories at physiological pH. Yet, these interactions are not detected at lower pH which is consistent with experimental studies reporting that low pH is responsible for the loss of the dimer interface.20,21 It is important to note here that protonation of His172 at lower pH has recently been shown9,17,19 to be the source of a partial collapse in the catalytic site as well. Since the dimer interface is known to be fully functional at physiological pH, our multi-pH results reinforce the critical role of the His172 protonation state and are consistent with Verma et al. findings19 of a non-protonated His172 at physiological pH. A detailed look at the H-bond interaction profile in Table 1 of the SI highlights the key role of Arg4 in maintaining the dimerization through several interactions, mainly with Glu290 but also with Lys137, Ser139, Glu288 and Asp289 at physiological pH. This is consistent with the description of key residues for the maintenance of SARS–CoV–2 Mpro dimerization in the experimental literature22: Arg4, Ser10, Gly11, Glu14, Asn28, Ser139, Phe140, Ser147, Glu166, Glu290, Arg298. These residues all appear along our analysis, except for Ser147. Nevertheless, we were capable here of expanding the list of these residues after a detailed analysis of DES-AMBER, AMBER and AMOEBA simulations. As shown in Table 1 (SI), AMOEBA predicts a richer, more exhaustive, list of dimerization-implied residues compared to AMBER and DES-AMBER. The detected special forms of H-bond and other interactions, at physiological pH, are highlighted in Figure 1, c). It is important to note that when successive histidine protonations occur, His172 and His163 switch from neutral histidines at pH=7.4 to positively charged at pH=6 and below, changing the nature of some of their interactions with other residues and water (for example moving from H-bonds to
salt-bridges in some cases9,23). Although pH lowering will affect also other residues that are not all considered in our computations,19 this physico-chemical change in the nature of the Histidines interactions is central to the weakening of the interface stability, forcing it to redistribute its H-bond network into a different and less structured configuration. Finally, Table 1 (SI) also reveals that the Arg4–Glu290 and Gly11–Glu14 interactions are the most important H-bonds responsible for the stabilization of the dimerization interface since they exhibit the highest densities at physiological pH and are absent of the lower pH simulations. Overall, these results highlight the fact that the complex H-bond network is the one of the driving force stabilizing the interface.

Allosteric interactions between the dimerization site and the catalytic site

To probe deeper into the complexity of the dimerization interface, we decided to look at its potential allosteric interactions within M\textsubscript{pro}. Allostery is referred to as conformational changes happening at one site of a protein and causing structural or dynamical changes at a topologically independent distant site. Such changes lead to a reduction or to an increase in catalytic activity among other structural rearrangements. Structure-based prediction of allosteric sites, modulators and communication pathway is important for a basic understanding of proteins and can lead drug discovery in order to regulate protein function.24,25 Since H-bonds play a very important role in the dimerization region, they may be able to influence its volume, which could also have structural effects on other protein surface pockets via allosteric correlations.24 The druggability of the dimerization interface has been discussed in the literature9,20 but fewer work looked at the potential allosteric interactions. Indeed, the importance of allosteric connectivity between allosteric and functional sites has been increasingly witnessed during recent years.26,27 Several potential allosteric sites were recently discussed in order to offer allosteric drug target strategies28–30 inside SARS–CoV–2 M\textsubscript{pro}. For example, Stromich et al.29 studied the scoring of putative allosteric sites and underlined
a zone located in the dimerization site showing a high connectivity towards the catalytic active site. They proposed the definition of a potential allosteric dimerization site formed by the six following residues of the interface: Arg131, Asp197, Thr199, Asp289 and Glu290 from chain A and Arg4 from chain B. Since several of these residues were shown by our simulations to be instrumental to the interface stabilization (see Table 1, SI and previous discussion), we decided to study this site. In order to assess for a potential allosteric connectivity of the allosteric dimerization site toward both chains of the catalytic active site and to analyze its structural dynamics, we resorted to extensive bond-to-bond propensity analysis. Using this approach, we measure the fluctuations of given sets of atom-atom interactions and analyze how they affect any other set of interactions located elsewhere within the protein, allowing therefore to measure their instantaneous connectivity at each moment of the dynamics. We calculated first the evolution of distances located inside the allosteric dimerization site with other characteristic distances implicated in the residues forming the catalytic dyad. That way, thanks to well-chosen reference atoms or residues, this study informs us indirectly on the co-evolution of the two cavity volumes. Indeed, comparing their volume fluctuations along trajectories can tell us about a possible allosteric connectivity between them. We show in Figure 2, a) and b) a 2D plot graphic of the distances separating the residues of the catalytic dyad for both chains A and B vs the distances between residues from the allosteric dimerization site: Arg4 chain B and Glu290 chain A since they present a robust interaction. AMOEBA trajectories show a high density of structures having both narrow catalytic and allosteric dimerization sites respectively around 4 Å and 3 Å as shown in Figure 2, a) and b). However we are also able to detect a different organization of the structures that are characterized by a narrow allosteric dimerization site and a relaxed catalytic site and conversely, proposing possible allosteric connectivity between the sizes of the catalytic and allosteric dimerization sites. This additional connectivity found in the AMOEBA simulations is not observed in DES-AMBER nor in AMBER simulations, Figure 2, c) and d). Within our adaptive sampling scheme, the score is defined as the ratio
between the probabilities to obtain the structure q_i in the biased simulation and in an un-
biased simulation. Here, we limit ourselves to structures with a reweighting score greater than
1 as they are more likely to be visited during a conventional MD simulation. In contrast,
frames with scores lower than 1 have been favored by the adaptive algorithm to maximize
exploration and are thus less physically relevant of the system statistic (more information
can be found in reference see 9). Thus, structures presented in orange in Figure 2, are more
representative of the true AMOEBA statistics. In this case, we detect mostly structures hav-
ing a relaxed catalytic site and a narrow allosteric dimerization site. This suggests that this
specific dependency is detected thanks to the use of the polarizable AMOEBA FF, whereas
the adaptive algorithm sampling is the one responsible for detecting structures associated to
both a narrow catalytic site and a relaxed allosteric dimerization site. Similar conclusions
can be made upon considering Arg131, Asp197 and Thr199 instead of Glu290, as shown
in Figure 1 of the SI. These observations demonstrate the importance of the coupling of
the adaptive sampling algorithm to the AMOEBA PFF for bringing out conformations that
have escaped non-polarizable standard MD simulations.

Since some allosteric connection was found between the dimerization and the active sites,
we decided to provide another view of the simulations differences observed with the different
force fields. To do so, we performed dynamic cross-correlation map (DCCM) analysis33,34 for
the three trajectories. DCCM allows to investigate the dynamical changes of the system over
time and to quantify the correlation coefficients of motions between atoms. The first result
to point out is that as previously, AMOEBA data differ from the AMBER/DES-AMBER
ones. DCCM shows more positive/negative values than those obtained from non-PFFs, in-
dicating a stronger correlated/anti-correlated atoms motions in PFF simulations (see Figure
3). It is worth mentioning that strong anti-correlation motions are observed between the
α-helical region of each protomer of Mpro (a region strongly participating to the dimerization,
i.e. residues range: 220-280 and 470-570) in AMOEBA trajectories. By contrast, the corre-
spending regions have much weaker (anti-)correlation in both DES-AMBER and AMBER
trajectories. Figure 2 (SI) proposes a closer analysis of the regions of interest for the allosteric interactions (i.e. the allosteric dimerization site) and reveals a more global anti-correlated motion between the residues of the allosteric dimerization site and the catalytic dyad of chain A than in AMBER/DES-AMBER. For chain B, this correlation is to be depending on the catalytic dyad residues. In all cases, the stronger correlation DDCM value are found within the AMOEBA simulation. The most positive correlation is found for Cys145 (chain B) and Arg4 (chain B) as the most negative correlation is found for Cy145 (chain A) and Glu290 (chain A). This further confirms the presence of an allosteric correlation between the sites and also supports the hypothesis of a strong asymmetry between protomers.9

Importance of solvation patterns and of many-body polarization effects in allosteric interactions between sites

As our previous analysis confirmed the differences between FFs simulations, resulting in different predictions of allosteric connections and correlated motions between sites, we attempted to trace-back the discrepancies studying the overall structural dynamics of the interface. As we explained in the first section, the dimerization interface overall stability is linked to a complex H-bond network that is exposed to the water solvent. Within Mpro, cavities and pockets volume fluctuations lead to water molecule traffic which is essential to maintain the protein structure. In a sense, the allosteric connection is performed “through water” and the resulting analysis of its presence is therefore impacted by the quality of water modeling. In practice, water molecules are commonly found within enzymatic sites and can form water bridges between the residues and thus maintain protein secondary structures via H-bond interactions (see35 and references therein). Using polarizable force fields, it has been demonstrated that some structural water molecules exhibit enhanced dipole moments, in kinase active sites for example.36 Our previous work on Mpro clearly also demonstrated a very different behavior of water molecules when they are modeled with the AMOEBA PFF, which takes into account many-body effects.9 Since water plays important role in structural
and functional activities, we looked for the water molecules present around some key interface residues at physiological pH. To do so, we considered a 3.5 Å radius sphere centered at the atom capable of being engaged in an hydrogen bonds with water for the most important residues involved in non-covalent interactions between protomers, namely: Arg4, Glu290, Gly11 and Glu14. The number of detected water molecules (see Figure 3, SI), presents notably different distribution profiles depending on the simulations: AMOEBA polarizable water, DES-AMBER(TIP4D) and AMBER (TIP3P). In fact, the number of water molecules detected strongly depends on the type of residue, on the considered M_pro chain and on the force field itself. Arg4 of chain A for example, is found to be mostly interacting with one water molecule for AMBER, 1-2 molecules for DES-AMBER and 2-3 molecules for AMOEBA. However Arg4 of chain B is found to interact mostly with 3 water molecules for AMBER and DES-AMBER and with 2 molecules for AMOEBA in line with the predicted asymmetry between protomers found in M_pro. Although water traffic is detected for all force fields, the solvation patterns and differences between force fields appear to be residue-dependent. Water molecules extracted from AMOEBA trajectories around the concerned residues are polarizable (and the water model is flexible) and therefore their distribution is mainly controlled by the physico-chemical nature of the residues (polar, apolar, positively/negatively charged etc...) generating specific polarizing fields. In practice, the AMOEBA bulk water average dipole moment amounts for 2.78 D, in nice agreement with experiment, whereas non-PFF models exhibit smaller fixed dipole moments of 2.40 D and 2.35 D for TIP4P-D and TIP3P respectively. Figure 4 (SI) shows the average dipole values for the water molecules in the vicinity of the targeted residues. Their mean values (around 2.6D in average) is below the bulk AMOEBA reference value. This result is consistent with the idea that the dense interface environment generates a global many-body depolarizing effect (compared to bulk water) influencing the water molecules induced dipoles. Overall, the interface H-bond network connects to the solvent own H-bond pattern forming a higher level of complexity. Clearly, the water molecule behavior is strongly influenced by the nature of the interface.
residues through many-body effects, generating various microsolvation patterns according to the local environment. These patterns are themselves affected by their interactions with the solvent in a self-consistent fashion.

In order to further evaluate the difference in solvation patterns, we focused on the previously introduced allosteric dimerization site, a specific location within the interface that allows for water molecules to circulate between the interface residues. To get a better understanding of what is happening, we have to evaluate the number of water molecules present and their lifetimes within this site. It is important to mention here that the six residues forming the allosteric site at the dimerization interface are either ionic or polar. Asp and Glu are negatively charged whereas His is positively charged. Side-chains such as Thr can retain water molecules inside the cavity. Black arrows in Figure 4 displays the flow of water molecules in the buried site. Since the highest distance separating Arg4 chain B and Glu290 chain A is around 24 Å, we defined a sphere with a (cutoff) radius of 10Å, centered at the geometrical center of the six residues forming the pocket at the allosteric dimerization site, and calculated the number of water molecules present within this sphere. Figure 4a) shows a striking difference between AMOEBA and non PFF simulations. PFF simulations give far less water molecules inside the allosteric dimerization site and a highest probability density of presence centered at 40, to be compared with 50 for AMBER and 55 for DES-AMBER.

We then measured the water lifetimes in the 10 Å sphere using the 400 ns CMD simulations produced with both the AMBER and AMOEBA force fields. We observed an average water lifetime of 0.171 ns for AMBER and a longer lifetime of 0.516 ns for AMOEBA. This clearly shows that many-body polarization effects tend to act as glue between the dimerization interface and the water molecules, specifically at the allosteric dimerization site, retaining them longer at the surface of the residues of the dimerization site (Figure 5, SI). Putting these two findings together allows us to better understand why the water dynamics outside the interface is so different from the (slower) dynamics found in the most confined part of the dimerization allosteric site. The smaller number of water molecules
inside the allosteric dimerization site reflects therefore a slower water traffic, since these polarized water molecules tend to move slowly, being engaged into many more H-bonds. Indeed, the AMOEBA diffusion constant is more in line with experiment than the TIP3P and TIP4-D models. However, as we discussed, the AMOEBA water dipole moment values can present strong local variations because of the local microsolvation patterns that cannot be captured by the mean-field approximation which is the basis of classical non-PFFs.35 As for the previous situation, Figure 4 display a rather underpolarized global situation for water that exhibits an average dipole moment lower than bulk. Nevertheless, Figure 4 also highlights the collection of multiple different situations where the microsolvation patterns tend to generate simultaneously partial distributions of highly polarized and underpolarized water molecules in the allosteric dimerization site since this distribution is mainly controlled by the physico-chemical nature of the residues. As shown in Figure 4, c) and in Figure 6 in the SI, mostly underpolarized water molecules are found in the most buried section of the allosteric dimerization site where confinement generates more depolarizing effects. These are well-known to decrease the average dipole moment values of confined waters and are observed here. Again, AMOEBA exhibits a higher probability density lower than bulk at 2.6D whereas DES–AMBER and AMBER water dipoles remain fixed respectively at 2.403D and 2.347D respectively (see Figure 4, b)). Figures 4b) also provides a view of the average dipole moments found after clusterization of the AMOEBA trajectories (see9 for more information about the 5 different clusters). The site maintains a relatively stable average dipole solvent value thanks to the fluctuation of both the volumes (i.e. different in the different clusters) and the number of water molecules (see Figure 7 in SI), highlighting the interconnection of the interface H-bond network and the solvent. This suggests that there is a complex interplay between the distribution of dipoles of polarizable water molecules and the residues (and associated volumes) of the dimerization allosteric site. This interaction network contributes to regulate the allosteric effects with the catalytic site of both protomers. Modeling such connections between cavities requires to capture the subtle equilibrium be-
tween the protein and solvent dynamics. The dipolar fluctuations of the water traffic tend to be extremely complex, leading to dramatically different behavior in different parts of the interface where the local water dynamics can be quite different (i.e., for the AMOEBA predicted dynamic slow-down within the buried allosteric dimerization site, etc...). Such a water traffic shapes the interface and participates into modulating the allosteric dimerization site structural “breathing” that is involved in the overall allosteric effects with the main catalytic site. Such critical involvement of “polarizable” water molecule within recognition or regulatory sites of proteins had been postulated before and it is clear that the number of water molecules within a binding site matters. Indeed, waters interacting with their close environment via through-water binding modes are common and able to strongly influence local electronic properties. Through-water configurations can mediate interactions between an inhibitor (see for example and indirectly bound residues of the recognition site. In such situations, also considered in the context of pFFs, an accurate count of water molecules can be critical since many-body effects (particularly the polarization energy) could tip the (free) energy balance between competing inhibitors. Missing this aspect within the modeling certainly results in a loss in the prediction of signal in the allosteric communication. It is also important to mention that beyond this energetical view of the phenomenon, the connection between interfacial water molecules and protein dynamics/flexibility has been extensively discussed in the experimental literature (see references and references therein): protein dynamics and solvation shell dynamics have been characterized regionally. More precisely, it has been observed that flexible regions of proteins generally encompass fast-moving waters, while stable regions are embedded into slower hydration layer water molecules. This is exactly what we see here and what is new in our results is that such regional dynamics modeling is shown to be strongly affected by many-body effects. Indeed, they strongly influence the dynamics of interfacial water molecules acting on their local “viscosity” and therefore local dynamics. As binding pockets and allosteric sites require to be reasonably stable over time to be targeted by drugs, in some situations, non-PFF simulations may tend to predict
solvation patterns associated to an excessive water traffic and to too fast-moving interfacial molecules. This could unfortunately lead to the destabilization of druggable hotspots that therefore would potentially remain unknown to molecular modelers.

To conclude, in order to propose a high quality model of the dimerization interface of SARS-CoV2 Mpro that could be used for further drug design, it is important to well understand and model its complex H-bonds network that is embedded within a dynamic dipolar water solvent network. Water appears to be a key player in the overall structural dynamics of the dimerization interface, being one building block of the global allosteric effects between sites through many-body polarization interactions with the interface residues. As we stressed before,9 Mpro is a difficult and complex molecular system that requires the simultaneous ability: i) to accurately describe all types of non-covalent interactions within the protein and solvent requiring therefore an accurate force field able to describe local many-body polarization effects; and ii) to perform extensive sampling going beyond the µs-timescale. Of course, we only analyzed here one example of allosteric interactions within Mpro and many other ones may remain to be discovered: we hope that these analyses and molecular dynamics trajectories (available via the BioExcel/MolSSI repository) will help drug hunters targeting Mpro dimerization interface.

Technical Appendix

To study the dimerization interface we extensively analyzed the all-atom conformation space produced previously9 using the AMOEBA polarizable force field (AMOEBA protein force field11,12 and AMOEBA03 flexible water model10) as well as the one provided by the RIKEN16 (using the AMBER ff14SB force field42 and the TIP3P water model43) and DESRES15 (using the DES-AMBER44 and TIP4P-D water model45) groups. Following the same simulation protocol (reference PDB structure 6LU746) proposed in our previous work,9 we performed separate additional runs of adaptive simulations for a total of 12 µs with AMOEBA to simulate low pH values. In this case, additional histidine residues proto-
nation occurs. Therefore to produce additional data to the pH=7.4 and pH=6 simulations proposed in our previous data set,9 we also successively protonated (2 X 6µs runs) the two His163 residues to simulate further pH lowering (see discussion and Table 2 in Reference 18). Further 800 ns AMOEBA and AMBER99SB conventional molecular dynamics simulations (400ns X2) were produced at physiological pH and restarting from starting points from our previous data set, taking a snapshot every 10 ps to enable an in-depth analysis of the role of the water solvent. All additional all-atom simulations were performed using the newly developed GPUs module14 within the Tinker–HP package,13 which is part of the Tinker 8 platform.47 This recently developed module is able to efficiently leverage mixed precision,14 offering a strong acceleration of simulations using GPUs. Periodic boundary conditions using a cubic box of side length of 100 Å were used. Langevin molecular dynamics simulations were performed using the BAOAB–RESPA1 integrator48 using a 10 fs outer timestep, a preconditioned conjugate gradient polarization solver (with a 10^{-5} convergence threshold), hydrogen–mass repartitioning (HMR) and random initial velocities. Periodic boundary conditions (PBC) were employed using the Smooth Particle Mesh Ewald (SPME) method with a grid of dimension 128 Å \times 128 Å \times 128 Å. The Ewald–cutoff was taken to 7 Å and the van der Waals cutoff to 9 Å. Post processing analysis were done using the MDTraj,49 Scikit-Learn50 and Scipy package.51 Dynamical Cross-Correlation Matrix - DCCMs were generated based on the C_α atom of each residue by using the functionality provided in MD-TASK package.52

Acknowledgement

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 810367), project EMC2 (JPP). DEA thanks funding from the Lebanese National Council for Scientific Research, CNRS-L. FC thanks funding from the French state funds managed by the
CalSimLab LABEX and the ANR within the Investissements d’Avenir program (reference ANR11-IDEX-0004-02) and support from the Direction Générale de l’Armement (DGA) Maîtrise NRBC of the French Ministry of Defense. Adaptive sampling computations have been performed at GENCI thanks to a COVID19 emergency allocation on the Jean Zay machine (IDRIS, Orsay, France) on grant no A0070707671 and on the Irene Joliot Curie machine thanks to a PRACE COVID-19 emergency grant (project COVID-HP). Additional conventional AMOEBA and AMBER MD simulations have been performed on the Amazon cloud platform thanks to a AWS COVID-19 special grant. The authors thank the Swiss National Supercomputing Center (CSCS) for hosting our data trough the FENIX infrastructure. JPP acknowledges a special COVID-19 funding from Sorbonne Université. PR is grateful for support by National Science Foundation (CHE-1856173) and National Institutes of Health (R01GM106137 and R01GM114237).

Supporting Information Available

- Table 1 presents all the residues implicated in H-bond interactions.
- Figure 1: 2D plot representation of distances His41_X–Cys145_X (X= chain A or chain B) versus distances Arg4_B–Arg131_A, Arg4_B–Asp197_A and Arg4_B–Thr199_A showing that allosteric connectivity are present.
- Figure 2: extracted values from dynamic cross-correlation maps revealing the cross-correlation between residues implicated in allosteric connectivity.
- Figure 3: Number of water molecules detected in a 3.5 Å radius from Arg4_X, Gly11_X, Glu14_X or Glu290_X (X= chain A or chain B)
- Figure 4: Dipole distribution of structural water molecules interacting with Arg4_X, Gly11_X, Glu14_X or Glu290_X (X= chain A or chain B)
- Figure 5: water lifetime distribution inside the allosteric dimerization site.
- Figure 6: Representation of the water dipole distribution inside the allosteric dimerization site, for 5.29Å and 8.7Å between Arg4 and Glu290.

15
Figure 7: 2D plot representation of the volume of the dimerization site vs. the number of water molecules inside the allosteric dimerization site; Schematic representation of the SARS–CoV–2 Mpro dimer showing the dimerization site and the allosteric dimerization site residues.

References

(1) Zumla, A.; Chan, J. F.; Azhar, E. I.; Hui, D. S.; Yuen, K.-Y. Coronaviruses-Drug Discovery and Therapeutic Options. Nat. Rev. Drug Discovery 2016, 15, 328–347.

(2) Ding, L.; Zhang, X.-X.; Wei, P.; Fan, K.; Lai, L. The interaction between severe acute respiratory syndrome coronavirus 3C-like proteinase and a dimeric inhibitor by capillary electrophoresis. Anal. Biochem. 2005, 434, 159–165.

(3) Cui, W.; Yang, K.; Yang, H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Front. Biosci. 2020, 7, 398.

(4) Pillaiyar, T.; Manickam, M.; Namasiyavam, V.; Hayashi, Y.; Jung, S.-H. An Overview of Severe Acute Respiratory Syndrome–Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J. Med. Chem. 2016, 59, 6595–6628.

(5) Kuo, C.; Liang, P. Characterization and Inhibition of the Main Protease of Severe Acute Respiratory Syndrome Coronavirus. ChemBioEng. Rev. 2015, 2, 118–132.

(6) Boggetto, N.; Reboud-Ravaux, M. Dimerization Inhibitors of HIV-1 Protease. Biol. Chem. 2002, 383, 1321 – 1324.

(7) Zutshi, R.; Brickner, M.; Chmielewski, J. Inhibiting the assembly of protein-protein interfaces. Curr. Opin. Chem. Biol. 1998, 2, 62–66.
(8) Wei, P.; Fan, K.; Chen, H.; Ma, L.; Huang, C.; Tan, L.; Xi, D.; Li, C.; Liu, Y.; Cao, A.;
Lai, L. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus
3C-like proteinase. Biochem. Biophys. Res. Commun. 2006, 20; 339(3): 865-72.

(9) Jaffrelot Inizan, T.; Célerse, F.; Adjoua, O.; El Ahdab, D.; Jolly, L.-H.; Liu, C.;
Ren, P.; Montes, M.; Lagarde, N.; Lagardère, L.; Monmarché, P.; Piquemal, J.-P.
High-resolution mining of the SARS-CoV-2 main protease conformational space:
supercomputer-driven unsupervised adaptive sampling. Chem. Sci. 2021, 12, 4889–4907.

(10) Ren, P. Y.; Ponder, J. W. “Polarizable Atomic Multipole Water Model for Molecular
Mechanics Simulation”. J. Phys. Chem. 2003, 107, 5933–5947.

(11) Shi, Y.; Xia, Z.; Zhang, J.; Best, R.; Wu, C.; Ponder, J. W.; Ren, P. Polarizable Atomic
Multipole-Based AMOEBA Force Field for Proteins. J. Chem. Theory. Comput. 2013,
9, 4046–4063, PMID: 24163642.

(12) Zhang, C.; Lu, C.; Jing, Z.; Wu, C.; Piquemal, J.-P.; Ponder, J. W.; Ren, P. AMOEBA
Polarizable Atomic Multipole Force Field for Nucleic Acids. J. Chem. Theory. Comput.
2018, 14, 2084–2108.

(13) Lagardère, L.; Jolly, L.-H.; Lipparini, F.; Aviat, F.; Stamm, B.; Jing, Z. F.; Harger, M.;
Torabifard, H.; Cisneros, G. A.; Schnieders, M. J.; Gresh, N.; Maday, Y.; Ren, P. Y.;
Ponder, J. W.; Piquemal, J.-P. Tinker-HP: a massively parallel molecular dynamics
package for multiscale simulations of large complex systems with advanced point dipole
polarizable force fields. Chem. Sci. 2018, 9, 956–972.

(14) Adjoua, O.; Lagardère, L.; Jolly, L.-H.; Durocher, A.; Very, T.; Dupays, I.; Wang, Z.;
Inizan, T. J.; Célerse, F.; Ren, P.; Ponder, J. W.; Piquemal, J.-P. Tinker-HP: Accelerating
Molecular Dynamics Simulations of Large Complex Systems with Advanced
Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems. J. Chem. Theory. Comput. 2021, 17, 2034–2053.

(15) DESRES-ANTON-10880334. DESRES: Molecular Dynamics Simulations Related to SARS-CoV-2 2020, DESRES-ANTON-10880334.

(16) Komatsu, T. S.; Koyama, Y.; Okimoto, N.; Morimoto, G.; Ohno, Y.; Taiji, M. COVID-19 related trajectory data of 10 microseconds all atom molecular dynamics simulation of SARS-CoV-2 dimeric main protease, V2. Mendeley Data 2020, 10, 17632.

(17) Kneller, D. W.; Phillips, G.; O’Neill, H. M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Structural plasticity of SARS-CoV-2 3CL pro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun. 2020, 11, 1–6.

(18) Tan, J.; Verschueren, K. H.; Anand, K.; Shen, J.; Yang, M.; Xu, Y.; Rao, Z.; Bigalke, J.; Heisen, B.; Mesters, J. R.; Chen, K.; Shen, X.; Jiang, H.; Hilgenfeld, R. pH-dependent Conformational Flexibility of the SARS-CoV Main Proteinase (Mpro) Dimer: Molecular Dynamics Simulations and Multiple X-ray Structure Analyses. J. Mol. Biol. 2005, 354, 25 – 40.

(19) Verma, N.; Henderson, J. A.; Shen, J. Proton-Coupled Conformational Activation of SARS Coronavirus Main Proteases and Opportunity for Designing Small-Molecule Broad-Spectrum Targeted Covalent Inhibitors. J. Am. Chem. Soc. 2020, 142, 21883–21890.

(20) Goyal, B.; Goyal, B. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. ACS. Comb. Sci. 2020, 22, 297–305.

(21) Chou, C.-Y.; Chang, H.-C.; Hsu, W.-C.; Lin, T.-Z.; Lin, C.-H.; ; Chang, G.-G. Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease. Biochemistry. 2004, 43, 14958–14970.
(22) Liang, J.; Karagiannis, C.; Pitsillou, E.; Darmawan, K. K.; Ng, K.; Hung, A.; Karagiannis, T. C. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Comput. Biol. Chem. 2020, 89, 1476–9271.

(23) Liao, S.-M.; Du, Q.-S.; Meng, J.-Z.; Pang, Z.-W.; Huang, R.-B. The multiple roles of histidine in protein interactions. Chem. Cent. J. 2013, 7, 44.

(24) Monod, J.; Wyman, J.; Changeux, J.-P. On the nature of allostery: a plausible model. J. Mol. Biol. 1965, 12, 88–118.

(25) Greener, J. G.; Sternberg, M. J. Structure-based prediction of protein allostery. Curr. Opin. Struct. Biol. 2018, 50, 1–8.

(26) RA, R. L.; Gerick, F.; Thornton, J. The structural basis of allosteric regulation in proteins. FEBS Lett. 2009, 583, 1682–8.

(27) D, D. S.; Švedas, V. Study of Functional and Allosteric Sites in Protein Superfamilies. Acta. Naturae. 2015, 7, 34–45.

(28) Günther, S. et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 2021,

(29) Strömich, L.; Wu, N.; Barahona, M.; Yaliraki, S. N. Allosteric Hotspots in the Main Protease of SARS-CoV-2. bioRxiv 2020,

(30) Carli, M.; Sormani, G.; Rodriguez, A.; Laio, A. Candidate Binding Sites for Allosteric Inhibition of the SARS-CoV-2 Main Protease from the Analysis of Large-Scale Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2021, 12, 65–72.

(31) Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities. Nat. Commun. 2016, 7, 12477.
(32) Sala, G. L.; Decherchi, S.; and Walter Rocchia, M. D. V. Allosteric Communication Networks in Proteins Revealed through Pocket Crosstalk Analysis. ACS. Cent. Sci. 2017, 3, 949–960.

(33) McCammon, J. A.; Harvey, S. C. Dynamics of proteins and nucleic acids; Cambridge University Press, 1988.

(34) Ichiye, T.; Karplus, M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991, 11, 205–217.

(35) Melcr, J.; Piquemal, J.-P. Accurate biomolecular simulations account for electronic polarization. Front. Mol. Biosci. 2019, 6, 143.

(36) de Courcy, B.; Piquemal, J.-P.; Garbay, C.; Gresh, N. Polarizable Water Molecules in Ligand-Macromolecule Recognition. Impact on the Relative Affinities of Competing Pyrrolopyrimidine Inhibitors for FAK Kinase. J. Am. Chem. Soc. 2006, 132, 3312–3320.

(37) de Courcy, B.; Pedersen, L. G.; Parisel, O.; Gresh, N.; Silvi, B.; Pilme, J.; Piquemal, J.-P. Understanding Selectivity of Hard and Soft Metal Cations within Biological Systems Using the Subvalence Concept. 1. Application to Blood Coagulation:Direct Cation–Protein Electronic Effects versus Indirect Interactions through Water Networks. J. Chem. Theory. Comput. 2010, 6, 1048–1063.

(38) Gresh, N.; de Courcy, B.; Piquemal, J.-P.; Foret, J.; Courtiol-Legourd, S.; Salmon, L. Polarizable Water Networks in Ligand–Metalloprotein Recognition. Impact on the Relative Complexation Energies of Zn-Dependent Phosphomannose Isomerase with d-Mannose 6-Phosphate Surrogates. J. Phys. Chem. B. 2011, 115, 8304–8316, PMID: 21650197.

(39) Dahanayake, J. N.; Mitchell-Koch, K. R. How Does Solvation Layer Mobility Affect Protein Structural Dynamics? Front. Biosci. 2018, 5, 65.
(40) Bellissent-Funel, M.-C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A. E. Water Determines the Structure and Dynamics of Proteins. *Chem. Rev.* **2016**, *116*, 7673–7697.

(41) Combet, S.; Zanotti, J.-M. Further evidence that interfacial water is the main “driving force” of protein dynamics: a neutron scattering study on perdeuterated C-phycocyanin. *Phys. Chem. Chem. Phys.* **2012**, *14*, 4927–4934.

(42) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. *J. Chem. Theory. Comput.* **2015**, *11*, 3696–3713.

(43) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys.* **1983**, *79*, 926–935.

(44) Piana, S.; Robustelli, P.; Tan, D.; Chen, S.; Shaw, D. E. Development of a Force Field for the Simulation of Single-Chain Proteins and Protein–Protein Complexes. *J. Chem. Theory. Comput.* **2020**, *16*, 2494–2507.

(45) Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. *J. Phys. Chem. B.* **2015**, *119*, 5113–5123.

(46) Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C., et al. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. *Nature.* **2020**, 1–5.

(47) Rackers, J. A.; Wang, Z.; Lu, C.; Laury, M. L.; Lagardère, L.; Schnieders, M. J.; Piquemal, J.-P.; Ren, P.; Ponder, J. W. Tinker 8: Software Tools for Molecular Design. *J. Chem. Theory and Comput.* **2018**, *14*, 5273–5289.
(48) Lagardère, L.; Aviat, F.; Piquemal, J.-P. Pushing the Limits of Multiple-Time-Step Strategies for Polarizable Point Dipole Molecular Dynamics. J. Phys. Chem. Lett. 2019, 10, 2593–2599.

(49) McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; Hernández, C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T. J.; Pande, V. S. MD-Traj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528 – 1532.

(50) Pedregosa, F. et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

(51) Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods. 2020, 17, 261–272.

(52) Brown, D. K.; Penkler, D. L.; Sheik Amamuddy, O.; Ross, C.; Atilgan, A. R.; Atilgan, C.; Tastan Bishop, O. MD–TASK: a software suite for analyzing molecular dynamics trajectories. J. Bioinform. 2017, 33, 2768–2771.
Figure 1: Histogram representation of H-bond probability density for a) DES-AMBER, AMBER and AMOEBA force fields at pH = 7.4 and for AMOEBA trajectories at pH 7.4, 6 and lower b) Representation of the most frequent H-Bond interactions at the dimerization interface. chain A and B are presented respectively in pink and in lime c).
Figure 2: 2D plot representation of **Arg4 chain B - Glu290 chain A** distances vs **His41 chain A - Cys145 chain A** distances a), c) and vs b), d) **His41 chain B - Cys145 chain B**. In c) and d) we have projected on the AMOEBA 15.14μs DES-AMBER 100μs, AMBER 10μs and AMOEBA frames with a re-weighting score greater than 1.
Figure 3: Dynamic cross-correlation maps using the C_{α} atom of each residue for a) AMOEBA, b) DES–AMBER and c) AMBER trajectories.
Figure 4: Representation of a) the probability of structural water molecules number inside the allosteric dimerization site and b) their dipoles distribution. c) Representation of the water dipole distribution inside the allosteric dimerization site. Water molecules layered with red have dipole moment ≤ 2.78 D, those layered with blue have dipole moment ≥ 2.78 D. Asp and Glu have electrically charged side chains (acidic). Arg have electrically charged side chains (basic). Thr has polar side chain. The distance between Arg4 and Glu290 is 5.29Å. Residues within 10Å of the allosteric dimerization site are presented in quicksurf mode in white. Black arrows show the flow of water molecules in this site. d) Global view of the Mpro, showing the catalytic site of both chain A and B and the allosteric dimerization site. Water molecules within 10Å of the allosteric dimerization site are presented in cpk mode.
Graphical TOC Entry