“Minimal geometric data” approach to Dirac algebra, spinor groups and field theories

Daniel Canarutto

Dipartimento di Matematica Applicata “G. Sansone”,
Via S. Marta 3, 50139 Firenze, Italia

http://www.dma.unifi.it/~canarutto

2nd revised version, 13 February 2008

Abstract

The three first sections contain an updated, not-so-short account of a partly original approach to spinor geometry and field theories introduced by Jadczynk and myself [3, 4, 5]; it is based on an intrinsic treatment of 2-spinor geometry in which the needed background structures have not to be assumed, but rather arise naturally from a unique geometric datum: a vector bundle with complex 2-dimensional fibres over a real 4-dimensional manifold. The two following sections deal with Dirac algebra and 4-spinor groups in terms of two spinors, showing various aspects of spinor geometry from a different perspective. The last section examines particle momenta in 2-spinor terms and the bundle structure of 4-spinor space over momentum space.

AMS 2000 MSC: 15A66, 83C22.

Keywords: Dirac algebra, spinor groups, two-spinors, Einstein-Cartan-Maxwell-Dirac fields

Acknowledgements: Thanks are due to Carlo Franchetti (Dipartimento di Matematica Applicata “G. Sansone”, Firenze) for useful discussions and suggestions.

Contents

1 Two-spinor geometry
1.1 Complex conjugated spaces .. 3
1.2 Hermitian tensors .. 4
1.3 Two-spinor space .. 5
1.4 2-spinors and Minkowski space ... 6
1.5 From 2-spinors to 4-spinors ... 7
1.6 Further structures .. 8
1.7 2-spinor groups .. 9
1.8 2-spinor groups and Lorentz group 10

2 Two-spinor bundles .. 11
2.1 Two-spinor connections .. 11
2.2 Two-spinor tetrad .. 13
CONTENTS

2.3 Cotetrad .. 14
2.4 Tetrad and connections 15
2.5 The Dirac operator 16

3 Two-spinors and field theories 16
3.1 The fields ... 16
3.2 Gravitational Lagrangian 17
3.3 Electromagnetic Lagrangian 18
3.4 Dirac Lagrangian 19
3.5 Field equations ... 20

4 Dirac algebra in two-spinor terms 21
4.1 Dirac algebra ... 21
4.2 Decomposition of End W and ε-transposition . 22
4.3 ε-adjoint and characterization of D 23

5 Clifford group and its subgroups 24
5.1 Clifford group ... 24
5.2 Pin and Spin ... 27

6 Spinors and particle momenta 29
6.1 Particle momentum in two-spinor terms 29
6.2 Bundle structure of 4-spinor space over momentum space 31

Introduction

The precise equivalence between the 4-spinor and 2-spinor settings for electrodynamics was exposed by Jadczyn and myself in \[2, 3, 4, 5\]. In summary one sees that, from an algebraic point of view, the only notion of a complex 2-dimensional vector space S yields, naturally and without any further assumptions, all the needed algebraic structures through functorial constructions; conversely in a 4-spinor setting, provided one makes the minimum assumptions which are needed in order to formulate the standard physical theory, the 4-spinor space naturally splits (Weyl decomposition) into the direct sum of two 2-dimensional subspaces which are anti-dual to each other. In a sense, which setting one regards as fundamental is then mainly a matter of taste. The 4-spinor setting is closer to standard notations, and some formulas can be written in a more compact way, while the relations among the various objects are somewhat more involved. The 2-spinor setting turns out to give a much more direct formulation, in which all the basic objects and the relations among them naturally set into their places; just from S one automatically gets exactly the needed algebraic structure, nothing more, nothing less: 4-spinor space W with the ‘Dirac adjoint’ anti-isomorphism, Minkowski space H and Dirac map $\gamma : H \to \text{End}(W)$ with the required properties. Further objects which are commonly considered depend on the choice of a gauge of some sort, whose nature is precisely described.

When we consider a vector bundle $S \to M$, where now the fibres are complex 2-dimensional and M is a real 4-dimensional manifold, then we don’t have to assign any further background structure in order to formulate a full Einstein-Cartan-Maxwell-Dirac theory. In fact we naturally get a vector bundle $H \to M$ whose fibres are
Minkowski spaces, a 4-spinor bundle \(W \to M \) and so on. Any object which is not determined by geometric construction from the unique geometric datum \(S \to M \) is a field of the theory, namely we consider: the tetrad \(\Theta : TM \to L \otimes H \), the 2-spinor connection \(\Gamma \), the electromagnetic and Dirac fields. (Even coupling factors naturally arise as covariantly constant sections of the real line bundle \(L \) of length units, which is geometrically constructed from \(S \).) The gravitational field is described by the tetrad (which can be seen as a ‘square root’ of spacetime metric) and by the connection induced by \(F \) on \(H \), while the remaining part of the spinor connection can be viewed as the electromagnetic potential. A natural Lagrangian density for all these fields is then introduced; the relations between metric and connection and between e.m. potential and e.m. field follow from the (Euler-Lagrange) field equations. All considered, this setting has some original aspects but is not in contrast to the (by now classical) Penrose formalism \([12]\).

In §4 and §5 I’ll show how the above said algebraic setting, and in particular the natural splitting of the 4-spinor space into the direct sum of its Weyl subspaces, enables us to examine the structures of the Dirac algebra, the Clifford group and its subgroups from a different perspective.

In §6 I’ll show the strict relation existing between the two-spinor setting and the geometry of particle momenta, in particular the bundle structure of \(W \) over the space of momenta. These results are a preparation to a 2-spinor formulation of quantum electrodynamics along lines of a previous paper \([6]\), in which the classical structure underlying electron states is a 2-fibred bundle over spacetime.

1 Two-spinor geometry

In this section we’ll see how all the fundamental geometric structures needed for Dirac theory naturally arise through functorial constructions from a two-dimensional complex vector space, with no further assumptions.

1.1 Complex conjugated spaces

If \(A \) is a set and \(f : A \to \mathbb{C} \) is any map, then \(\overline{f} : A \to \mathbb{C} : a \mapsto \overline{f(a)} \) is the conjugated map. Let \(V \) be a complex vector space of finite-dimension \(n \); its dual space \(V^* \) and antidual space \(\overline{V}^* \) are defined to be the \(n \)-dimensional complex vector spaces of all maps \(V \to \mathbb{C} \) which are respectively linear and antilinear. One then has the distinguished anti-isomorphism \(V^* \to \overline{V}^* : \lambda \mapsto \overline{\lambda} \).

Set now \(\overline{V} := V^{**} \), and call this the conjugate space of \(V \). One has the natural isomorphisms

\[V \cong V^{**} \cong \overline{V}^{**}, \quad \overline{V} := V^{**} \cong \overline{V}^{**}. \]

Summarizing, one one gets the four distinct spaces

\[V \leftrightarrow \overline{V}, \quad V^* \leftrightarrow \overline{V}^*, \]

where the arrows indicate the conjugation anti-isomorphisms.

Accordingly, coordinate expressions have four types of indices. Let \((b_A), 1 \leq A \leq n\), be a basis of \(V \) and \((b^A)\) its dual basis of \(V^* \). The corresponding indices in the conjugate spaces are distinguished by a dot, namely one writes

\[\bar{b}_A := \overline{b_A}, \quad \bar{b}^A := \overline{b^A}. \]
so that \(\{ b_\lambda \} \) is a basis of \(V \) and \(\{ b^A \} \) its dual basis of \(V^* \). For \(v \in V \) and \(\lambda \in V^* \) one has

\[
\begin{align*}
v &= v^A b_A, & \bar{v} &= \bar{v}^\lambda b_\lambda, \\
\lambda &= \lambda_A b^A, & \bar{\lambda} &= \bar{\lambda}_A \bar{b}^A,
\end{align*}
\]

where \(\bar{v}^A = \bar{v}^\lambda b_\lambda \), \(\bar{\lambda}_A := \bar{\lambda}_A \bar{b}^A \) and Einstein summation convention is used.

The conjugation morphism can be extended to tensors of any rank and type; if \(\tau \) is a tensor then all indices of \(\tau \) are of reversed (dotted/non-dotted) type; observe that dotted indices cannot be contracted with non-dotted indices. In particular if \(K \in \text{Aut}(V) \subset V \otimes V^* \) then \(\bar{K} \in \text{Aut}(V) \subset V^* \otimes V^* \) is the induced conjugated transformation (under a basis transformation, dotted indices transform with the conjugate matrix).

1.2 Hermitian tensors

The space \(V \otimes \bar{V} \) has a natural real linear (complex anti-linear) involution \(w \mapsto \bar{w} \), which on decomposable tensors reads

\[
(u \otimes \bar{v})^\dagger = v \otimes \bar{u}.
\]

Hence one has the natural decomposition of \(V \otimes \bar{V} \) into the direct sum of the real eigenspaces of the involution with eigenvalues \(\pm 1 \), respectively called the Hermitian and anti-Hermitian subspaces, namely

\[
V \otimes \bar{V} = (\bar{V} \wedge V) \oplus \mathbb{i}(V \wedge \bar{V}).
\]

In other terms, the Hermitian subspace \(V \wedge \bar{V} \) is constituted by all \(w \in V \otimes \bar{V} \) such that \(\bar{w} = w \), while an arbitrary \(w \) is uniquely decomposed into the sum of an Hermitian and an anti-Hermitian tensor as

\[
w = \frac{1}{2}(w + w^\dagger) + \frac{1}{2}(w - w^\dagger).
\]

In terms of components in any basis, \(w = w^{\alpha \beta} b_\alpha \otimes \bar{b}_\beta \) is Hermitian (anti-Hermitian) iff the matrix \((w^{\alpha \beta}) \) of its components is of the same type, namely \(\bar{w}^{\beta \alpha} = \pm w^{\alpha \beta} \).

Obviously \(V^* \otimes \bar{V}^* \) decomposes in the same way, and one has the natural isomorphisms

\[
(V \wedge \bar{V})^* \cong V^* \wedge \bar{V}^*, \quad (i V \wedge \bar{V})^* \cong i V^* \wedge \bar{V}^*,
\]

where * denotes the real dual.

A Hermitian 2-form is defined to be a Hermitian tensor \(h \in \bar{V}^* \wedge V^* \). The associated quadratic form \(v \mapsto h(v, v) \) is real-valued. The notions of signature and non-degeneracy of Hermitian 2-forms are introduced similarly to the case of real bilinear forms. If \(h \) is non-degenerate then it yields the isomorphism \(h^\#: \bar{V} \to V^* : \bar{v} \mapsto h(\bar{v}, \cdot) \); its conjugate map is an anti-isomorphism \(\bar{V} \to \bar{V}^* \) which, via composition with the canonical conjugation, can be seen as the isomorphism \(\bar{h}^\#: \bar{V} \to \bar{V}^* : v \mapsto h(\cdot, v) \). The inverse isomorphisms \(h^\# \) and \(\bar{h}^\# \) are similarly related to a Hermitian tensor \(h^{-1} \in \bar{V} \wedge V \). One has the coordinate expressions

\[
\begin{align*}
(h^\#(\bar{v}))_B &= h_{AB} \bar{v}^A, & (\bar{h}^\#(v))_A &= h_A^B v^B, \\
(h^\#(\lambda))^A &= h^{AB} \lambda_B, & (\bar{h}^\#(\lambda))^\lambda &= h_B^A \lambda_B \lambda^A,
\end{align*}
\]

where \(h^{CA} h_{CB} = \delta^A_B \), \(h^{AC} h_{BC} = \delta^A_C \).
1.3 Two-spinor space

Let S be a 2-dimensional complex vector space. Then $\wedge^2 S$ is a 1-dimensional complex vector space; its dual space $(\wedge^2 S)^\ast$ will be identified with $\wedge^2 S^\ast$ via the rule

$$\omega(s \wedge s') := \frac{1}{2} \omega(s, s') , \quad \forall \omega \in \wedge^2 S^\ast, \ s, s' \in S .$$

Any $\omega \in \wedge^2 S^\ast \setminus \{0\}$ (a ‘symplectic’ form on S) has a unique ‘inverse’ or ‘dual’ element ω^{-1}. Denoting by $\omega^b : S \rightarrow S^\ast$ the linear map defined by $\langle \omega^b(s), t \rangle := \omega(s, t)$ and by $\omega^\# : S^\ast \rightarrow S$ the linear map defined by $\langle \mu, \omega^\#(\lambda) \rangle := \omega^{-1}(\lambda, \mu)$, one has

$$\omega^\# = -(\omega^b)^{-1} .$$

The Hermitian subspace of $(\wedge^2 S) \otimes (\wedge^2 S^\ast)$ is a 1-dimensional real vector space with a distinguished orientation, whose positively oriented semispace

$$\mathbb{L}^2 := [(\wedge^2 S) \vee (\wedge^2 S^\ast)]^+ := \{w \otimes \bar{w}, \ w \in \wedge^2 S\}$$

has the square root semi-space \mathbb{L}, called the space of *length units*.\(^1\)

Next, consider the complex 2-dimensional space

$$U := \mathbb{L}^{-1/2} \otimes S .$$

This is our 2-spinor space. Observe that the 1-dimensional space

$$Q := \wedge^2 U = \mathbb{L}^{-1} \otimes \wedge^2 S$$

has a distinguished Hermitian metric, defined as the unity element in

$$\overline{Q}^\ast \vee Q^\ast \equiv (\wedge^2 U^\ast) \vee (\wedge^2 S^\ast) = \mathbb{L}^{-2} \otimes (\wedge^2 S^\ast) \vee (\wedge^2 S^\ast) \cong \mathbb{R} .$$

Hence there is the distinguished set of normalized symplectic forms on U, any two of them differing by a phase factor.\(^2\)

Consider an arbitrary basis (ξ_A) of S and its dual basis (x^A) of S^\ast. This determines the mutually dual bases

$$w := \varepsilon^{AB} \xi_A \wedge \xi_B, \quad w^{-1} := \varepsilon_{AB} x^A \wedge x^B ,$$

respectively of $\wedge^2 S$ and $\wedge^2 S^\ast$ (here ε^{AB} and ε_{AB} both denote the antisymmetric Ricci matrix), and the basis

$$l := \sqrt{w \otimes w} \text{ of } \mathbb{L} .$$

Then one also has the induced mutually dual, normalized bases

$$\left(\zeta_A\right) := (l^{-1/2} \otimes \xi_A) , \quad (z^A) := (l^{1/2} \otimes x^A) .$$

1. Here, $s \wedge s' := \frac{1}{2}(s \otimes s' - s' \otimes s)$. This contraction, defined in such a way to respect usual conventions in two-spinor literature, corresponds to $1/4$ standard exterior-algebra contraction.
2. A unit space is defined to be a 1-dimensional real semi-space, namely a positive semi-field associated with the semi-ring \mathbb{R}^+ (see [1, 2] for details). The square root $\mathbb{L}^{1/2}$ of a unit space \mathbb{L}, is defined by the condition that $\mathbb{L}^{1/2} \otimes \mathbb{L}^{1/2}$ be isomorphic to \mathbb{U}. More generally, any rational power of a unit space is defined up to isomorphism (negative powers correspond to dual spaces). In this article we only use the unit space \mathbb{L} of lengths and its powers; essentially, this means that we take $\hbar = c = 1$.
3. One says that elements of U and of its tensor algebra are ‘conformally invariant’, while tensorializing by \mathbb{L}^r one obtains ‘conformal densities’ of weight r.
of \mathbf{U} and \mathbf{U}^*, and also
\[
\varepsilon := l \otimes w^{-1} = \varepsilon_{AB} z^A \wedge z^B \in \mathbf{Q}^* \equiv \Lambda^2 \mathbf{U}^* ,
\]
\[
\varepsilon^{-1} \equiv l^{-1} \otimes w = \varepsilon^{AB} \zeta_A \wedge \zeta_B \in \mathbf{Q} \equiv \Lambda^2 \mathbf{U} .
\]

Remark. In contrast to the usual 2-spinor formalism, no symplectic form is fixed. The 2-form ε is unique up to a phase factor which depends on the chosen 2-spinor basis, and determines isomorphisms
\[
\varepsilon^b : \mathbf{U} \to \mathbf{U}^* : u \mapsto u^b , \quad \langle u^b, v \rangle := \varepsilon(u, v) \Rightarrow (u^b)_B = \varepsilon_{AB} v^A ,
\]
\[
\varepsilon^\#: \mathbf{U}^* \to \mathbf{U} : \lambda \mapsto \lambda^# , \quad \langle \lambda^#, \mu \rangle := \varepsilon^{-1}(\lambda, \mu) \Rightarrow (\lambda^#)_B = \varepsilon^{AB} \lambda_A .
\]
If no confusion arises, we’ll make the identification $\varepsilon^\# \equiv \varepsilon^{-1}$.

1.4 2-spinors and Minkowski space

Though a normalized element $\varepsilon \in \mathbf{Q}^*$ is unique only up to a phase factor, certain objects which can be expressed through it are natural geometric objects. The first example is the unity element in $\mathbf{Q}^* \otimes \overline{\mathbf{Q}^*}$, which can be written as $\varepsilon \otimes \overline{\varepsilon}$; it can also be seen as a bilinear form g on $\mathbf{U} \otimes \overline{\mathbf{U}}$, given for decomposable elements by
\[
g(p \otimes \overline{q}, r \otimes \overline{s}) = \varepsilon(p, r) \overline{\varepsilon}(\overline{q}, \overline{s}) .
\]

The fact that any ε is non-degenerate implies that g is non-degenerate too. In a normalized 2-spinor basis (ζ_A) one writes $w = w^{A\dot{A}} \zeta_A \otimes \overline{\zeta}_{\dot{A}} \in \mathbf{U} \otimes \overline{\mathbf{U}}$, $g_{A\dot{A}B\dot{B}} = \varepsilon_{AB} \overline{\varepsilon}_{A\dot{A}B\dot{B}}$ and
\[
g(w, w) = \varepsilon_{AB} \overline{\varepsilon}_{A\dot{A}B\dot{B}} w^{A\dot{A}} w^{B\dot{B}} = 2 \det w .
\]

Next, consider the Hermitian subspace
\[
\mathbf{H} := \mathbf{U} \vee \overline{\mathbf{U}} \subset \mathbf{U} \otimes \overline{\mathbf{U}} .
\]

This is a 4-dimensional real vector space; for any given normalized basis (ζ_A) of \mathbf{U} consider, in particular, the *Pauli basis* (τ_λ) of \mathbf{H} associated with (ζ_A), namely
\[
\tau_\lambda \equiv \tau^{A\dot{A}}_\lambda \zeta_A \otimes \overline{\zeta}_{\dot{A}} \equiv \frac{1}{\sqrt{2}} \sigma^{A\dot{A}}_\lambda \zeta_A \otimes \overline{\zeta}_{\dot{A}} , \quad \lambda = 0, 1, 2, 3 ,
\]
where $(\sigma^{A\dot{A}}_\lambda)$ denotes the λ-th Pauli matrix.\(^4\)

The restriction of g to the Hermitian subspace \mathbf{H} turns out to be a Lorentz metric with signature $(+, -, -, -)$. Actually, a Pauli basis is readily seen to be orthonormal, namely $g_{\lambda\mu} := g(\tau_\lambda, \tau_\mu) = \eta_{\lambda\mu} := 2 \delta^0_\lambda \delta^0_\mu - \delta_{\lambda\mu}$.

It’s not difficult to prove:

Proposition 1.1 An element $w \in \mathbf{U} \otimes \overline{\mathbf{U}} = \mathbb{C} \otimes \mathbf{H}$ is null, that is $g(w, w) = 0$, iff it is a decomposable tensor: $w = u \otimes \overline{s}$, $u, s \in \mathbf{U}$.

\(^4\) Note how $\det w \equiv \det(\overline{w^{A\dot{A}}})$ is intrinsically defined through ε, even if w is not an endomorphism.

\(^5\) $\sigma_0 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
A null element in $U \otimes \overline{U}$ is also in H iff it is of the form $\pm u \otimes \overline{u}$. Hence the null cone $N \subset H$ is constituted exactly by such elements. Note how this fact yields a way of distinguish between time orientations: by convention, one chooses the future and past null-cones in H to be, respectively,

$$N^+ := \{ u \otimes \overline{u}, \ u \in U \} , \quad N^- := \{ -u \otimes \overline{u}, \ u \in U \} .$$

Proposition 1.2 For each g-orthonormal positively oriented basis (e_λ) of H, such that e_0 is timelike and future-oriented, there exists a normalized 2-spinor basis (ζ_A) whose associated Pauli basis (τ_λ) coincides with (e_λ).

Remark. From the above proposition it follows that any future-pointing timelike vector can be written as $u \otimes \overline{u} + v \otimes \overline{v}$, for suitable $u, v \in U$.

1.5 From 2-spinors to 4-spinors

Next observe that an element of $U \otimes \overline{U}$ can be seen as a linear map $U^* \rightarrow U$, while an element of $U^* \otimes U^*$ can be seen as a linear map $U \rightarrow U^*$. Then one defines the linear map

$$\gamma : U \otimes \overline{U} \rightarrow \text{End}(U \oplus \overline{U}^*) : y \mapsto \gamma(y) := \sqrt{2} (y, y^\flat^*) ,$$

i.e.

$$\gamma(y)(u, \chi) = \sqrt{2}(y|\chi, u|y^\flat^*) ,$$

where $y^\flat := g^\flat(y) \in U^* \otimes \overline{U}^*$ and $y^\flat^* \in \overline{U}^* \otimes U^*$ is the transposed tensor. In particular for a decomposable $y = p \otimes \overline{q}$ one has

$$\tilde{\gamma}(p \otimes \overline{q})(u, \chi) = \sqrt{2}(\langle \chi, \overline{q} \rangle p, \langle p^\flat, u \rangle \overline{q}^\flat) .$$

Proposition 1.3 For all $y, y' \in U \otimes \overline{U}$ one has

$$\gamma(y) \circ \gamma(y') + \gamma(y') \circ \gamma(y) = 2g(y, y') 11 .$$

Proof: It is sufficient to check the statement’s formula for any couple of null i.e. decomposable elements in $U \otimes \overline{U}$. Using the identity

$$\varepsilon(p, q) r^\flat + \varepsilon(q, r) p^\flat + \varepsilon(r, p) q^\flat = 0 , \quad p, q, r \in U ,$$

which is in turn easily checked, a straightforward calculation gives

$$[\gamma(p \otimes \overline{q}) \circ \gamma(r \otimes \overline{s}) + \gamma(r \otimes \overline{s}) \circ \gamma(p \otimes \overline{q})](u + \chi) =$$

$$= 2 \varepsilon(p, r) \varepsilon(\overline{q}, \overline{s}) (u, \chi) = 2g(p \otimes \overline{q}, r \otimes \overline{s})(u, \chi) .$$

Now one sees that γ is a Clifford map relatively to g (see also §4.1); thus one is led to regard

$$W := U \oplus \overline{U}^*$$

as the space of Dirac spinors, decomposed into its Weyl subspaces. Actually, the restriction of γ to the Minkowski space H turns out to be a Dirac map.
The 4-dimensional complex vector space W is naturally endowed with a further structure: the obvious anti-isomorphism

$$W \to W^* : (u, \chi) \mapsto (\bar{\chi}, \bar{u}) .$$

Namely, if $\psi = (u, \chi) \in W$ then $\bar{\psi} = (\bar{u}, \bar{\chi}) \in \overline{W}$ can be identified with $(\bar{\chi}, \bar{u}) \in W^*$; this is the so-called ‘Dirac adjoint’ of ψ. This operation can be seen as the “index lowering anti-isomorphism” related to the Hermitian product

$$k : W \times W \to \mathbb{C} : \left((u, \chi), (u', \chi')\right) \mapsto \langle \bar{\chi}, u' \rangle + \langle \chi', \bar{u} \rangle ,$$

which is obviously non-degenerate; its signature turns out to be $(+ + - -)$, as it can be seen in a “Dirac basis” (below).

Let (ζ_α) be a normalized basis of U; the Weyl basis of W is defined to be the basis (ζ_α), $\alpha = 1, 2, 3, 4$, given by

$$(\zeta_1, \zeta_2, \zeta_3, \zeta_4) := (\zeta_1, \zeta_2, -\bar{z}_1, -\bar{z}_2) .$$

Above, ζ_1 is a simplified notation for $(\zeta_1, 0)$, and the like. Another important basis is the Dirac basis (ζ_α'), $\alpha = 1, 2, 3, 4$, where

$$\zeta_1' = \frac{1}{\sqrt{2}} (\zeta_1, \bar{z}_1) \equiv \frac{1}{\sqrt{2}} (\zeta_1 - \zeta_3) , \qquad \zeta_2' = \frac{1}{\sqrt{2}} (\zeta_2, \bar{z}_2) \equiv (\zeta_2 - \zeta_4) ,$$

$$\zeta_3' = \frac{1}{\sqrt{2}} (\zeta_1, -\bar{z}_1) \equiv (\zeta_1 + \zeta_3) , \qquad \zeta_4' = \frac{1}{\sqrt{2}} (\zeta_2, -\bar{z}_2) \equiv (\zeta_2 + \zeta_4) .$$

Setting

$$\gamma_\lambda := \gamma(\tau_\lambda) \in \text{End}(W)$$

one recovers the usual Weyl and Dirac representations as the matrices (γ_λ), $\lambda = 0, 1, 2, 3$, in the Weyl and Dirac bases respectively.

1.6 Further structures

Some other operations on 4-spinor space, commonly used in the literature, actually depend on particular choices or conventions. Similarly to the choice of a basis or of a gauge they are useful in certain arguments or calculations, but don’t need to be fixed in the theory’s foundations. I’ll describe the cases of a Hermitian form on U, of charge conjugation, parity and time reversal; I’ll show the relations among these objects and how they are related to the notion of observer.

A Hermitian 2-form h on U is an element in $\overline{U^*} \vee U^*$, hence it can be seen as an element in H^*; more precisely, $\bar{h} \in H^*$. One says that h is normalized if it is non-degenerate, positive and $g^\#(h) = h^{-1}$; the latter condition is equivalent to $g(h, h) = 2$. If h is normalized then it is necessarily a future-pointing timelike element in H^*. For example, consider the Pauli basis (τ_λ) determined by a normalized 2-spinor basis (ζ_λ), and let (t^A) be the dual basis; then $\sqrt{2} t^0 = \bar{z}_1 \otimes z^1 + \bar{z}_2 \otimes z^2$ is normalized; conversely, every positive-definite normalized Hermitian metric h can be expressed in the above form for some suitable normalized 2-spinor bases\(^6\)

\(^6\) Similarly, negative-definite Hermitian metrics correspond to past-pointing timelike covectors. Hermitian metrics of mixed signature $(1, -1)$ correspond to spacelike covectors; actually, such metrics can always be written as proportional to $\sqrt{2} t^0 = \bar{z}_1 \otimes z^1 - \bar{z}_2 \otimes z^2$, in appropriate normalized 2-spinor bases.
1.7 2-spinor groups

The basic observation resulting from the above discussion is that the assignments of an ‘observer’ in H and of a positive-definite Hermitian metric on U are equivalent; actually, the two objects are nearly the same thing. In 4-spinor terms, the above equivalence is only slightly less obvious. If h is assigned, then it extends naturally to a Hermitian metric h on W, which can be characterized by

$$h(ψ, φ) = k(γ_0ψ, φ).$$

Charge conjugation depends on the choice of a normalized 2-form $ω = e^{i t} ε ∈ \wedge^2 U^*$, and is defined as the anti-isomorphism

$$C_ω: W → W : ψ → C_ω(ψ) ≡ C(u, χ) = (ω^#(χ), −ω^♭(u)) = e^{−it} (ε^#(χ), −ε^♭(u)).$$

Thus $C_ω = e^{−it} C_ε$. One also gets

$$C_ω ◦ C_ω = 11_W,$$

$$γ_y ◦ C_ω + C_ω ◦ γ_y = 0 ⇔ C_ω ◦ γ_y ◦ C_ω = −γ_y, \quad y ∈ H.$$

Finally, parity is an isomorphism of W dependent on the choice of an observer, while time-reversal is an anti-isomorphism dependent on the choice of an observer and of a normalized 2-form; they are defined by

$$P := γ_0 ≡ γ(τ_0), \quad T_ω := γ_ηγ_0C_ω,$$

where the chosen observer is expressed as $τ_0$ in a suitable Pauli basis, and $γ_η$ is the canonical element of the Dirac algebra corresponding to the g-normalized volume form of H, and expressed in a Pauli basis as $γ_η = γ_0γ_1γ_2γ_3$ (see §4.1).

Remark. An observer, seen as a Hermitian metric on U, also determines an isomorphism $U ⊗ U^* → U ⊗ U^{∗} ≡ End(U)$. Through it, one can view ‘world spinors’ as endomorphisms, thus recovering the algebraic structure for the Galilean treatment of spin [1].

1.7 2-spinor groups

The group $Aut(S) ≅ Aut(U) ⊂ U ⊗ U^*$ has the natural subgroups

$$\text{Sl}(U) := \{ K ∈ Aut(U) : \det K = 1\}, \quad \dim_{\mathbb{C}} \text{Sl}(U) = 3,$$

$$\text{Sl}^c(U) := \{ K ∈ Aut(U) : |\det K| = 1\}, \quad \dim_{\mathbb{R}} \text{Sl}^c(U) = 7.$$

The former is the group of all automorphisms of S (of U) which leave any complex volume form invariant; the latter is the group of all automorphisms which leave any complex volume form invariant up to a phase factor, and thus it can be seen as the group which preserves the two-spinor structure. One has the Lie algebras

$$\mathfrak{L}\text{Sl}(U) ≅ \{ A ∈ End(U) : \text{Tr} A = 0\},$$

$$\mathfrak{L}\text{Sl}^c(U) ≅ \{ A ∈ End(U) : \Re \text{Tr} A = 0\} = i\mathbb{R} ⊕ \mathfrak{L}\text{Sl}(U).$$

7 In the traditional notation, $γ_λ^\dagger$ indicates the h-adjoint of $γ_λ$, and then depends on the chosen observer.
If \(h \in U^* \oplus \overline{U}^* \) is a positive Hermitian metric then one sets

\[
U(U, h) := \{ K \in \text{Aut}(U) : K^\dagger = K^{-1} \} \subset \text{Sl}(U),
\]

\[
SU(U, h) := \{ K \in \text{Aut}(U) : K^\dagger = K^{-1}, \quad \det K = 1 \} \subset \text{Sl}(U),
\]

where \(K^\dagger \) denotes the \(h \)-adjoint of \(K \). One gets the Lie algebras

\[
L U(U, h) = \{ A \in \text{End}(U) : A + A^\dagger = 0 \} = i \mathbb{R} \oplus L SU(U, h),
\]

\[
L SU(U, h) = \{ A \in \text{End}(U) : A + A^\dagger = 0, \quad \text{Tr} A = 0 \}.\]

Now observe that \(\text{End}(U) \) can be decomposed into the direct sum of the subspaces of all \(h \)-Hermitian and anti-Hermitian endomorphisms; the restriction of this decomposition to \(L \text{Sl}(U) \) gives then

\[
L \text{Sl}(U) = L SU(U, h) \oplus i L SU(U, h).
\]

When a 2-spinor basis is fixed, then one gets group isomorphisms \(\text{Sl}(U) \to \text{Sl}(2, \mathbb{C}), \text{SU}(U, h) \to \text{SU}(2) \) and the like.

1.8 2-spinor groups and Lorentz group

Up to an obvious transposition we can make the identification

\[
\text{End}(U) \otimes \text{End}(\overline{U}) \cong \text{End}(U \otimes \overline{U}).
\]

We then write

\[
(K \otimes \overline{H})^\lambda_A \tau^\mu_B = K^A_B \overline{H}^\lambda_B, \quad K \in \text{End}(U),
\]

\[
(K \otimes \overline{H}) \tau^\lambda_A \tau^\mu_B = K^A_B \overline{H}^\lambda_B \tau^\lambda_A \tau^\mu_B.
\]

The group \(\text{Aut}(U) \times \text{Aut}(\overline{U}) \) can be identified with the subgroup of \(\text{Aut}(U \otimes \overline{U}) \) constituted of all elements of the type \(K \otimes \overline{H} \) with \(K, H \in \text{Aut} U \). This subgroup is sometimes written as \(\text{Aut}(U) \otimes \text{Aut}(\overline{U}) \), which of course must not be intended as a true tensor product. It has the proper subgroup \(\text{Aut}(U) \culos \text{Aut}(\overline{U}), \) constituted of all automorphisms of the type \(K \otimes \overline{K} = K \in \text{Aut}(U) \).

Proposition 1.4 \(\text{Aut}(U) \culos \text{Aut}(\overline{U}) \) preserves the splitting \(U \otimes \overline{U} = H \oplus i H \) and the causal structure of \(H \).

Proof: There exist bases of \(H \) composed of isotropic elements; these are also complex bases of isotropic elements of \(U \otimes \overline{U} \). Then \(A \in \text{Aut}(U \otimes \overline{U}) \) preserves the splitting and the causal structure iff it sends any element of the form \(u \otimes \overline{u} \) in an element of the form \(v \otimes \overline{v} \). \(\square \)

\(^8 \) The elements of the dual Pauli basis can be written as \(t^\lambda = \tau^\lambda_A \overline{z}^A \otimes \overline{z}^\lambda B \) with \(\tau^\lambda_A = g_{\lambda \mu} \epsilon^{AB} \epsilon^{\lambda \rho} \tau^\rho_{\mu A B} \).
Accordingly, on sets
\[\text{Sl}^r(U) \vee \text{Sl}^r(U) = \text{Sl}(U) \vee \text{Sl}(U) := \{ K \otimes \bar{K} : K \in \text{Sl}(U) \} . \]
Since \(K \) preserves \(\varepsilon \) up to a phase factor, \(K \otimes \bar{K} \) preserves \(\varepsilon \otimes \bar{\varepsilon} \equiv g \); moreover it is immediate to check that any Pauli basis is transformed to another Pauli basis. From proposition \[\text{Lor}^r(U) \leftrightarrow \text{Lor}(U) \], it then follows that \(\text{Sl}(U) \vee \text{Sl}(U) \) restricted to \(H \) coincides with the special orthochronous Lorentz group \(\text{Lor}^r_+(H, g) \). Actually, the epimorphism \(\text{Sl}(U) \to \text{Lor}^r_+(H, g) \) turns out to be 2-to-1.

The Lie algebra of \(\text{Sl}(U) \vee \text{Sl}(U) \) is the Lie subalgebra of \(\text{End}(U) \otimes \text{End}(U) \) constituted by all elements which can be written in the form
\[A \otimes \mathbb{1}_U + \mathbb{1}_U \otimes \tilde{A}, \quad A \in \mathfrak{L} \text{Sl}(U). \]

One easily checks that these restrict to endomorphisms of \(H \), actually they constitute the vector space of all \(g \)-antisymmetric endomorphisms of \(H \) namely the Lie algebra \(\mathfrak{L} \text{Lor}(H, g) \). Let a normalized 2-spinor basis be fixed; then the isomorphism \(\mathfrak{L} \text{Sl}(U) \leftrightarrow \mathfrak{L} \text{Lor}(H, g) \), taking into account the isomorphism \(\mathfrak{L} \text{Lor}(H, g) \leftrightarrow \wedge^2 H^\ast \) induced by the Lorentz metric \(g \), associates the basis \((\nu_i; \tilde{\nu}_i) \) with the basis \((\rho_i; \tilde{\rho}_i) \), \(i = 1, 2, 3 \), where \[\nu_i := -i \tilde{\nu}_i, \quad \tilde{\nu}_i := \frac{1}{2} \sigma_i \equiv \frac{1}{2} \sigma^A \zeta_A \otimes \eta^0, \quad \rho_i := -i \tilde{\rho}_i, \quad \tilde{\rho}_i := 2 \epsilon^0 \wedge \epsilon^i. \]

A Hermitian metric \(h \) on \(U \), besides the above said \((\mathfrak{I}, \mathfrak{L}) \) splitting of \(\mathfrak{L} \text{Sl}(U) \), also determines an “observer” \(\tau_0 := \frac{1}{\sqrt{2}} \tilde{h}^\# \), hence also the splitting of \(\mathfrak{L} \text{Lor}(H, g) \) into “infinitesimal rotations” and “infinitesimal boosts” as
\[\mathfrak{L} \text{Lor}(H, g) = \mathfrak{L} \text{Lor}_r(H, g, \tau_0) \oplus \mathfrak{L} \text{Lor}_h(H, g, \tau_0). \]

If one chooses a normalized 2-spinor basis such that the element \(\tau_0 \) of the corresponding Pauli basis of \(H \) coincides with the given observer, then the bases \((\nu_i; \tilde{\nu}_i) \) and \((\rho_i; \tilde{\rho}_i) \) turn out to be adapted to the respective splittings.

Remark. On \(\mathfrak{L} \text{Lor}(H, g) \) one has the pseudo-metric induced by \(g \); moreover, consider the real symmetric 2-form
\[K_{\mathfrak{L} \text{Sl}} : \mathfrak{L} \text{Sl}(U) \times \mathfrak{L} \text{Sl}(U) \to \mathbb{R} : (A, B) \mapsto 2 \Re \text{Tr}(A \circ B). \]

Then it turns out that the bases \((\nu_i; \tilde{\nu}_i) \) and \((\rho_i; \tilde{\rho}_i) \) are orthonormal, and that the signature of both metrics is \((-, -, -), (+, +, +) \). So, the splittings of the two algebras determined by the choice of an “observer” can’t be into arbitrary subspaces: the two components must be mutually orthogonal subspaces of opposite signature.

2 Two-spinor bundles

2.1 Two-spinor connections

Consider any real manifold \(M \) and a vector bundle \(S \to M \) with complex 2-dimensional fibres. Denote base manifold coordinates as \((x^\alpha) \); choose a local frame

9 Here again \((\sigma^A_B) \) denotes the \(i \)-th Pauli matrix. \((\epsilon^1) \) is the dual Pauli basis. Also note that the Hodge isomorphism restricts to a complex structure on \(\wedge^2 H^\ast \).
(ξ_A) of S, determining linear fibre coordinates (x^A). According to the constructions of the previous sections, one now has the bundles Q, L, U, H over M, with smooth natural structures; the frame (ξ_A) yields the frames ε, l, (ξ_A) and (τ_A), respectively. Moreover for any rational number r ∈ Q one has the semi-vector bundle L^r.

Consider an arbitrary C-linear connection Γ on S → M, called a 2-spinor connection. In the fibred coordinates (x^A, x^A) Γ is expressed by the coefficients Γ^A_B : M → C, namely the covariant derivative of a section s : M → S is expressed as

\[\nabla s = (\partial a s^A - \Gamma^A_B s^B) dx^a \otimes \xi_A. \]

The rule \(\nabla s = \nabla s \) yields a connection \(\bar{\Gamma} \) on \(S \to M \), whose coefficients are given by

\[\bar{\Gamma}^A_{\dot{B}} = \Gamma^A_B. \]

Actually, Γ determines linear connections on each of the above said induced vector bundles over M (in particular, it is easy to see that any C-linear connection on a complex vector bundle determines a R-linear connection on the induced Hermitian tensor bundle). Denote by 2G and 2Y the connections induced on L and Q (this notation makes sense because the fibres are 1-dimensional), namely

\[\nabla l = -2G_a dx^a \otimes l, \quad \nabla \varepsilon = 2iY_a dx^a \otimes \varepsilon, \]
\[\nabla w^{-1} \equiv \nabla (l^{-1} \otimes \varepsilon) = 2(G_a + iY_a) dx^a \otimes l^{-1} \otimes \varepsilon \]

and the like. By direct calculation we find

\[G_a = \Re \left(\frac{1}{2} \Gamma^A_{\dot{A}} \right) = \frac{1}{4} (\Gamma^A_A + \bar{\Gamma}^A_{\dot{A}}), \]
\[Y_a = \Im \left(\frac{1}{2} \Gamma^A_{\dot{A}} \right) = \frac{1}{4i} (\Gamma^A_A - \bar{\Gamma}^A_{\dot{A}}). \]

Note that since Y_a are real the induced linear connection on Q is Hermitian (preserves its natural Hermitian structure).

The coefficients of the connection \(\tilde{\Gamma} \) induced on U are given by

\[\tilde{\Gamma}^A_{\dot{B}} = \Gamma^A_B - G_a \delta^A_B. \]

Let \(\tilde{\Gamma} \) be the connection induced on U ⊗ \overline{U}, and \(\Gamma' \) the connection induced on S ⊗ \overline{S}. Then

\[\Gamma'_{A \dot{A}}_{B \dot{B}} = \Gamma^A_B \delta^A_B + \delta^A_B \bar{\Gamma}^A_{\dot{B}}, \]
\[\tilde{\Gamma}'_{A \dot{A}}_{B \dot{B}} = \Gamma^A_B \delta^A_B + \delta^A_B \bar{\Gamma}^A_{\dot{B}} - 2G_a \delta^A_B \delta^A_B. \]

Since the above coefficients are real, Γ' and \(\tilde{\Gamma} \) turn out to be reducible to real connections on \(S \vee \overline{S} \) and \(H \equiv U \vee \overline{U} \), respectively. Moreover

Proposition 2.1 The connection \(\tilde{\Gamma} \) induced on H by any 2-spinor connection is metric, namely \(\nabla [\tilde{\Gamma}] g = 0 \).

Proof: The Lorentz metric g of H can be identified with the identity of the bundle \(\mathbb{L}^{-2} \), namely it is the canonical section \(1 \equiv \varepsilon^{-1} \otimes \varepsilon : M \to \mathbb{L}^{-2} \otimes \mathbb{L}^2 \equiv M \times \mathbb{R}^+ \), which obviously has vanishing covariant derivative. \(\square \)
Because of metricity the coefficients $\tilde{\Gamma}^\lambda_{a \mu}$ of $\tilde{\Gamma}$ in the frame (τ_λ) are antisymmetric and traceless, namely
\[
\tilde{\Gamma}^\lambda_a + \tilde{\Gamma}^\lambda_a = 0, \quad \tilde{\Gamma}^\lambda_a = 0
\]
(the second formula says $\nabla \eta = 0$, where η is the g-normalized volume form of H).

The above relations between Γ and the induced connections can be inverted as follows:

Proposition 2.2 One has

\[
\Gamma^A_a b = (-G_a + i Y_a) \delta^A_B + \frac{1}{2} \Gamma'_{ab}^{A\dot{A}} = (G_a + i Y_a) \delta^A_B + \frac{1}{2} \tilde{\Gamma}^\lambda_{a \mu} \delta^\lambda_B.
\]

In 4-spinor formalism the above relation reads

\[
\Gamma^\alpha_a \beta = (G_a + i Y_a) \delta^\alpha_{\beta} + \frac{1}{4} \tilde{\Gamma}^\lambda_{a \mu} (\gamma^\lambda \gamma_{\mu})_{\alpha \beta},
\]

where now $\Gamma^\alpha_a \beta$ stands for the coefficients of the naturally induced connection $(\tilde{\Gamma}, \bar{\tilde{\Gamma}})$ on $W \equiv U \oplus M \bar{U}^*$ in any 4-spinor frame, $\alpha, \beta = 1, \ldots, 4$.

A similar relation holds among the curvature tensors, namely

\[
R_a^{AB} = 2 (dG - i dY)_{ab} \delta^A_B + \frac{1}{2} R'_{ab}^{A\dot{A}} =
\]

\[
= -2 (dG + i dY)_{ab} \delta^A_B + \frac{1}{2} \tilde{R}_a^{A\dot{A}} + \dot{R}_a^{A\dot{A}},
\]

where R, R' and \tilde{R} are the curvature tensors of Γ, Γ' and $\tilde{\Gamma}$, respectively.

Remark. Under a local gauge transformation $K : M \to \text{Gl}(2, \mathbb{C})$ the above coefficients transform as

\[
\Gamma^A_a b \mapsto (K^{-1})^A_C K^C_B \Gamma^C_a D - (K^{-1})^A_C \partial_a K^C_B,
\]

\[
G_a \mapsto G_a - \frac{1}{2} \partial_a \log |\det K|, \quad Y_a \mapsto Y_a - \frac{1}{2} \partial_a \arg \det K,
\]

\[
\tilde{\Gamma}^\lambda_a \mu \mapsto (K^{-1})^\lambda_\nu K^\nu_\mu \tilde{\Gamma}_a^\nu - (K^{-1})^\lambda_\nu \partial_\mu K^\nu,
\]

2.2 **Two-spinor tetrad**

Henceforth I'll assume that M is a real 4-dimensional manifold. Consider a linear morphism

\[
\Theta : TM \to S \otimes \bar{S} = \mathbb{C} \otimes L \otimes H,
\]

namely a section

\[
\Theta : M \to \mathbb{C} \otimes L \otimes H \otimes T^* M
\]

(all tensor products are over M). Its coordinate expression is

\[
\Theta = \Theta^\lambda_a \tau_\lambda \otimes dx^a = \Theta^A_{\dot{A}} \zeta_A \otimes \dot{\zeta}_{\dot{A}} \otimes dx^a,
\]

with $\Theta^A_{\dot{A}} : M \to \mathbb{C} \otimes L$.

We'll assume that Θ is non-degenerate and valued in the Hermitian subspace $L \otimes H \subset S \otimes \bar{S}$; then Θ can be viewed as a 'scaled' tetrad (or soldering form, or vierbein); the coefficients Θ^λ_a are real (i.e. valued in $\mathbb{R} \otimes L$) while the coefficients $\Theta^A_{\dot{A}}$ are Hermitian, i.e. $\Theta^A_{\dot{A}} = \Theta^A_{\dot{A}}$.

In particular, one has

\[\wedge \Theta : M \to \mathbb{C} \otimes \mathbb{L}^2 \otimes T^*M \otimes T^*M, \]
\[\eta := \Theta^* \tilde{g} : M \to \mathbb{C} \otimes \mathbb{L}^4 \otimes ^4T^*M, \]
\[\gamma := \tilde{g} \circ \Theta : TM \to \mathbb{L} \otimes \text{End}(W), \]

which have the coordinate expressions

\[g = \eta_{\lambda \mu} \Theta^\lambda_b \Theta^\mu_c \, dx^a \otimes dx^b = \varepsilon_{AB} \varepsilon_{\lambda \mu} \Theta^A_b \Theta^\mu_c \, dx^a \otimes dx^b, \]
\[\eta = \text{det}(\Theta) \, dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3, \]
\[\gamma = \sqrt{2} \Theta^A_c (\zeta_A \otimes \tilde{\zeta}_A + \varepsilon_{AB} \varepsilon_{\lambda \mu} \tilde{z}^\mu \otimes z^\lambda) \otimes dx^a. \]

The above objects turn out to be a Lorentz metric, the corresponding volume form and a Clifford map. Moreover

\[\Theta^b_{\mu} := \Theta^\lambda_a \eta_{\mu \lambda} g^{ab} = (\Theta^{-1})^b_{\mu} : M \to \mathbb{C} \otimes \mathbb{L}^{-1}, \]
\[g^{ab} : M \to \mathbb{C} \otimes \mathbb{L}^{-2}. \]

A non-degenerate tetrad, together with a two-spinor frame, yields mutually dual orthonormal frames \((\Theta^\lambda)\) of \(\mathbb{L}^{-1} \otimes TM\) and \((\tilde{\Theta}^\lambda)\) of \(\mathbb{L} \otimes T^*M\), given by

\[\Theta^\lambda := \Theta^{-1}(\tau^\lambda) = \Theta^\lambda_a \, dx_a, \quad \tilde{\Theta}^\lambda := \Theta^* (\tau^\lambda) = \Theta^\lambda_a \, dx^a. \]

We also write

\[\gamma = \gamma^\lambda \otimes \tilde{\Theta}^\lambda = \gamma^a \otimes dx^a, \quad \gamma^\lambda := \gamma(\Theta^\lambda) : M \to \text{End}(W), \]
\[\gamma^a := \gamma(\partial x_a) = \Theta^\lambda_a \gamma^\lambda : M \to \mathbb{L} \otimes \text{End}(W). \]

2.3 Cotetrad

One defines a natural ‘exterior’ product of elements in the fibres of \(H \otimes_M T^*M\) by requiring that, for decomposable tensors, it is given by

\[(y_1 \otimes \alpha_1) \wedge (y_2 \otimes \alpha_2) = (y_1 \wedge y_2) \otimes (\alpha_1 \wedge \alpha_2), \quad \alpha_1, \alpha_2 \in T^*M, \; u_1, u_2 \in H. \]

We’ll consider the exterior products

\[\wedge^q \Theta : M \to \mathbb{C} \otimes \mathbb{L}^q \otimes \wedge^q H \otimes \wedge^q T^*M, \quad q = 1, 2, 3, 4. \]

In particular, one has \(\wedge^2 \Theta = \Theta \wedge \Theta\), that is

\[\wedge^2 \Theta(u \wedge v) = \Theta(u) \wedge \Theta(v) \Rightarrow \wedge^2 \Theta = \Theta^\lambda_a \Theta^\mu_b (\tau^\lambda \wedge \tau^\mu) \otimes (dx^a \wedge dx^b). \]
Next, consider the linear map over M

$$\tilde{\Theta} : (S \otimes \bar{S}) \otimes T^*M \rightarrow \mathbb{C} \otimes L^4 \otimes \wedge^4 T^*M$$

defined by

$$\tilde{\Theta}(\xi) := \frac{1}{3!} \tilde{\eta} \mid \langle \xi \wedge \Theta \wedge \Theta \wedge \Theta \rangle = \frac{1}{3!} \tilde{\eta} \mid [\xi \wedge (\wedge^3 \Theta)] .$$

Its coordinate expression is

$$\tilde{\Theta}(\xi) = \tilde{\Theta}^a_\lambda \xi^\lambda_a d^4x := \frac{1}{3!} \varepsilon^{abcd} \varepsilon_{\lambda\mu\nu\rho} \Theta^a_b \Theta^\rho_c \Theta^\mu_d \xi^\lambda_a d^4x ,$$

$$\xi = \xi^\lambda_a \tau_\lambda \otimes dx^a , \quad \xi^\lambda_a : M \rightarrow \mathbb{C} \otimes L .$$

Now $\tilde{\Theta}$ can be seen as a bilinear map $(S \otimes \bar{S}) \times T^*M \rightarrow \mathbb{C} \otimes L^4 \otimes \wedge^4 T^*M$ over M, or also as a linear map $S \otimes S \rightarrow \mathbb{C} \otimes L^4 \otimes \wedge^4 T^*M$ over M. Using the latter point of view, if Θ is non-degenerate then one has

$$\tilde{\Theta} = \Theta^{-1} \otimes \eta .$$

Namely, in general one may regard $\tilde{\Theta}$, which is called the co-tetrad, as a kind of ‘pseudo-inverse’ of Θ, defined even if Θ is degenerate.

The above construction can be easily generalized, for $p = 0, 1, 2, 3, 4$, to a map

$$\tilde{\Theta}^{(p)} : \wedge^p (S \otimes \bar{S}) \otimes (\wedge^p T^*M) \rightarrow \mathbb{C} \otimes L^4 \otimes \wedge^4 T^*M .$$

We’ll be concerned with $\tilde{\Theta}^{(1)} = \tilde{\Theta}$ and $\tilde{\Theta}^{(2)}$. Note that $\tilde{\Theta}^{(0)} = \eta$.

2.4 Tetrad and connections

If Γ is a complex-linear connection on S, and G and $\tilde{\Gamma}$ are the induced connections on L and H, then a non-degenerate tetrad $\Theta : TM \rightarrow L \otimes H$ yields a unique connection Γ on TM, characterized by the condition

$$\nabla|\Gamma \otimes \tilde{\Gamma}|\Theta = 0 .$$

Moreover Γ is metric, i.e. $\nabla|\Gamma|g = 0$. Denoting by $\Gamma^\lambda_{a\mu}$ the coefficients of Γ in the frame $\Theta^\lambda_\mu \equiv \Theta^{-1} (l \otimes \tau_\lambda)$ one obtains

$$\Gamma^\lambda_{a\mu} = \tilde{\Gamma}^\lambda_{a\mu} + 2 G_a \delta^\lambda_{\mu} .$$

The curvature tensors of Γ and $\tilde{\Gamma}$ are related by $R_{ab\mu}^\lambda = \tilde{R}_{ab\mu}^\lambda$, or

$$R_{ab\mu}^c = \tilde{R}_{ab\mu}^\lambda \Theta^\lambda_c \Theta^\mu_d .$$

Hence the Ricci tensor and the scalar curvature are given by

$$R_{ad} = \tilde{R}_{ad}^b = \tilde{R}_{ab\mu}^\lambda \Theta^b \Theta^\mu_d ,$$

$$R_a^a = \tilde{R}_{ab\mu}^\lambda \Theta^b \Theta^\mu .$$
In general, the connection Γ will have non-vanishing torsion\footnote{This is the tensor field $T : M \to TM \otimes \Lambda^2 T^*M$ defined by $T(u, v) = \nabla_u v - \nabla_v u - [u, v]$, where $u, v : M \to TM$ are any two vector fields, and has the coordinate expression $T^c_{ab} = -\Gamma^c_{ab} + \Gamma^c_{ba}$.} which can be expressed as

$$\Theta^\lambda T^c_{ab} = \partial^a \Theta^\lambda_{b} + \Theta^\mu_{[a} \tilde{\Gamma}^\lambda_{b] \mu} + 2 \Theta^\lambda_{[a} G_{b]}.$$

Remark. The torsion can be seen as the Frölicher-Nijenhuis bracket

$$\tilde{T} := T_j \Theta = [\Gamma', \Theta] : M \to \Lambda^2 T^*M \otimes H',$$

where $H' = \mathbb{L} \otimes H$, $\Gamma' : H' \to T^*M \otimes_{H'} T H'$ is the induced connection on $H' \to M$, and Θ is seen as a vertical-valued form $\Theta : H' \to T^*M \otimes_{H'} \mathbb{V}$.

2.5 The Dirac operator

Given a tetrad and a two-spinor connection, one introduces the Dirac operator acting on sections $\psi : M \to \Lambda^{-3/2} \otimes W$.

Writing $\tilde{\gamma}^\# : M \to H \otimes \text{End}(W)$, $\nabla \psi : M \to \Lambda^{-3/2} \otimes T^*M \otimes_M W$, one has

$$\tilde{\gamma}^\# \nabla \psi : M \to \Lambda^{-3/2} \otimes H \otimes T^*M \otimes W,$$

where contraction in W is understood. Next, one contracts the factors H and T^*M above via

$$\tilde{\Theta} : M \to \mathbb{C} \otimes \Lambda^3 \otimes H^* \otimes TM \otimes \Lambda^4 T^*M,$$

obtaining

$$\tilde{\nabla} \psi := \langle \tilde{\Theta}, \tilde{\gamma}^\# \nabla \psi \rangle : M \to \Lambda^{3/2} \otimes W \otimes \Lambda^4 T^*M,$$

which has the coordinate expression

$$\tilde{\nabla} \psi = \tilde{\Theta}^\lambda_{\mu} \left(\sigma^\lambda_{\mu\nu} \nabla_a \chi_{\nu} \zeta_{\lambda}, \sigma^\lambda_{\mu\nu} \nabla_a \dot{u} \bar{z}^\nu \right) \otimes d^4x.$$

This definition works even if Θ were degenerate; in the non-degenerate case one simply has $\tilde{\nabla} \psi = \nabla \psi \otimes \eta$.

3 Two-spinors and field theories

3.1 The fields

In this section I’ll present a “minimal geometric data” field theory: actually, the unique “geometric datum” is a vector bundle $S \to M$ with complex 2-dimensional fibres and real 4-dimensional base manifold. All other bundles and fixed geometric objects are determined just by this datum through functorial constructions, as we saw in the previous sections; no further background structure is assumed. Any considered bundle section which is not functorially fixed by our geometric datum is a field. In this way one obtains a field theory which turns out to be essentially equivalent to a classical theory of Einstein-Cartan-Maxwell-Dirac fields.

The fields are taken to be the tetrad Θ, the 2-spinor connection Γ, the electromagnetic field F and the electron field ψ. The gravitational field is represented by...
3.2 Gravitational Lagrangian

Θ (which can be viewed as a ‘square root’ of the metric) and the traceless part of \(\Gamma \), namely \(\tilde{\Gamma} \), seen as the gravitational part of the connection. If \(\Theta \) is non-degenerate one obtains, as in the standard metric-affine approach \([10, 11, 13, 18]\), essentially the Einstein equation and the equation for torsion; the metricity of the spacetime connection is a further consequence. But note that the theory is non-singular also in the degenerate case. The connection \(G \) induced on \(L \) will be assumed to have vanishing curvature, \(dG = 0 \), so that one can always find local charts such that \(G_a = 0 \); this amounts to gauging away the conformal (‘dilaton’) symmetry. Coupling constants will arise as covariantly constant sections of \(L \), which now becomes just a vector space.

The Dirac field is a section

\[
\psi : M \to \mathbb{L}^{-3/2} \otimes W := \mathbb{L}^{-3/2} \otimes (U \oplus U^*) ,
\]

assumed to represent a semiclassical particle with one-half spin, mass \(m \in \mathbb{L}^{-1} \) and charge \(q \in \mathbb{R} \).

The electromagnetic potential can be thought of as the Hermitian connection \(Y \) on \(\wedge^2 U \) determined by \(\tilde{\Gamma} \), whose coefficients are indicated as \(i Y_a \); locally one writes

\[
Y_a = q A_a ,
\]

where \(A : M \to T^* M \) is a local 1-form.

The electromagnetic field is represented by a spinor field

\[
\tilde{F} : M \to \mathbb{L}^{-2} \otimes \wedge^2 H^* \]

which, via \(\Theta \), determines the 2-form \(F := \Theta^* \tilde{F} : M \to \wedge^2 T^* M \). The relation between \(Y \) and \(F \) will follow as one of the field equations; note how this setting allows a first-order linear Lagrangian and non-singularity in the degenerate case also for the electromagnetic sector.

The total Lagrangian and the Euler-Lagrange operator will be the sum of a gravitational, an electromagnetic and a Dirac term

\[
\mathcal{L} = \mathcal{L}_g + \mathcal{L}_{\text{em}} + \mathcal{L}_D , \quad \mathcal{E} = \mathcal{E}_g + \mathcal{E}_{\text{em}} + \mathcal{E}_D .
\]

Observe that all Lagrangian 4-forms are defined in terms of the cotetrad \(\tilde{\Theta} \), while a direct translation of the standard formulation in terms of our fields would force one to use \(\Theta^{-1} \), resulting in a less simple and natural theory.

3.2 Gravitational Lagrangian

The tetrad \(\Theta \) and the curvature tensor \(\tilde{R} \) of \(\tilde{\Gamma} \) can be assembled into a 4-form \(\mathcal{L}_g \) which, in the non-degenerate case, turns out to be the usual gravitational Lagrangian density:

\[
\mathcal{L}_g := \frac{1}{4k} \tilde{\Theta}^{(2)}(\tilde{R}^\#) = \frac{1}{8k} \tilde{\eta} | (\tilde{R}^\# \wedge \Theta \wedge \Theta) : M \to \wedge^4 T^* M ,
\]

where \(\tilde{R}^\# : M \to \wedge^2 T^* M \otimes \wedge^2 H \) is the curvature tensor of \(\tilde{\Gamma} \) with one index raised via \(\tilde{g} \), and \(k \in \mathbb{L}^2 \) is Newton’s gravitational constant. Note how this is necessary in
order to obtain a true (non-scaled) 4-form on M and the correct coupling with the spinor field. One has the coordinate expression $L_g = \ell_g \, d^4x$ with

$$\ell_g = \frac{1}{8k} \varepsilon_{\lambda\mu\nu\rho} \varepsilon^{abcd} R_{ab}^{\lambda \mu} \Theta_c^\nu \Theta_d^\rho = \frac{1}{2k} R \det \Theta,$$

where R is the scalar curvature and the last equality holds if Θ is non-degenerate.

A calculation gives the Θ- and $\tilde{\Gamma}$-components of the gravitational part E_g of the Euler-Lagrange operator:

$$(E_g)^c\nu = \frac{1}{4k} \varepsilon_{\lambda\mu\nu\rho} \varepsilon^{abcd} R_{ab}^{\lambda \mu} \Theta_c^\nu \Theta_d^\rho,$$

$$(E_g)^a_{\lambda\mu} = \frac{1}{2k} \varepsilon_{\lambda\mu\nu\rho} \varepsilon^{abcd} (\partial_b \Theta_c^\nu + \Theta_e^\nu \tilde{\Gamma}_{c \sigma}^\nu) \Theta_d^\rho.$$

In the non-degenerate case these are essentially the Einstein tensor and the torsion of the spacetime connection, respectively. The first, in particular, can be written

$$(E_g)^c\nu = \frac{1}{4k} \Theta^a_{\lambda\mu} \Theta^b_{\nu} \Theta^c_{\rho} \det \Theta = \frac{1}{k} (R_{bc}^{\lambda \mu} - \frac{1}{2} R_{bd}^{\lambda \mu} \delta_{\lambda \sigma}) \Theta^a_{\nu} \det \Theta.$$

The $\tilde{\Gamma}$-component of E_g can be expressed in terms of the torsion as

$$(E_g)^a_{\lambda\mu} = \frac{1}{4k} \varepsilon_{\lambda\mu\nu\rho} \varepsilon^{abcd} \hat{T}^e_{bc} \Theta_e^\nu \Theta_d^\rho.$$

3.3 Electromagnetic Lagrangian

The electromagnetic potential and the Maxwell field will be considered independent fields. The former is represented by a local section $A : M \rightarrow T^*M$, related to the connection Y induced by F on $\wedge^2 U$ by the relation $Y = q A$. The Maxwell field is a section $\tilde{F} : M \rightarrow \Lambda^{-2} \otimes \wedge^2 H^*$, written in coordinates as $\tilde{F} = \tilde{F}^{\lambda \mu} t^\lambda \otimes t^\mu$. The e.m. Lagrangian density is defined to be

$$L_{em} = \ell_{em} \, d^4x = \left[-\frac{1}{2} \Theta^{(2)} (dA \otimes \tilde{F}) + \frac{1}{4} (\tilde{F} \cdot \tilde{F}) \right] \eta,$$

with coordinate expression

$$\ell_{em} = -\frac{1}{4} \varepsilon^{abcd} \varepsilon_{\lambda\mu\rho\sigma} \partial_a A_b \tilde{F}^{\lambda \mu} \Theta_c^\nu \Theta_d^\rho + \frac{1}{4} \tilde{F}^{\alpha \beta} \tilde{F}_{\alpha \beta} \det \Theta.$$

In the non-degenerate case, this turns out to be essentially the Lagrangian used in the ADM formalism.

Since \tilde{F} does not appear in the other terms of the total Lagrangian, the \tilde{F}-component of the field equations is immediately seen to yield

$$-\frac{1}{2} \varepsilon^{abcd} \varepsilon_{\lambda\mu\rho\sigma} \partial_a A_b \Theta_c^\nu \Theta_d^\rho + \tilde{F}_{\lambda \mu} \det \Theta = 0,$$

which in the non-degenerate case gives

$$F := \Theta^\nu \tilde{F} = 2 dA \quad \Rightarrow \quad L_{em} = -\frac{1}{4} F^2 \eta.$$

The A-component of the Euler-Lagrange operator is

$$(E_{em})^a = \frac{1}{2} \varepsilon^{abcd} \varepsilon_{\lambda\mu\rho\sigma} (\partial_b \tilde{F}^{\lambda \mu} \Theta_c^\nu \Theta_d^\rho + 2 \tilde{F}^{\lambda \mu} \partial_b \Theta_c^\nu \Theta_d^\rho) = \frac{1}{2} \varepsilon^{abcd} (d \ast F)_{bcd}.$$
The Θ-component is

\[(E_{em})^c_\nu = -\frac{1}{2} \epsilon^{abcd} \epsilon_{\mu\nu\rho} \partial_a A_b \tilde{F}^\lambda \Theta^d_\rho + \frac{1}{4} \tilde{F}^2 \tilde{\Theta}^c_\nu,\]

which in the non-degenerate case becomes essentially the usual Maxwell stress-energy tensor

\[(E_{em})^c_\nu = (F_{ab}F^{ac} - \frac{1}{4} F^2 \delta^c_\nu) \tilde{\Theta}^b_\rho.\]

3.4 Dirac Lagrangian

The Dirac spinor field and its ‘Dirac adjoint’ are sections

\[\psi = (u, \chi) : M \to \mathbb{L}^{-3/2} \otimes W = \mathbb{L}^{-3/2} \otimes (U \oplus U^*) ,\]

\[\bar{\psi} = (\bar{\chi}, \bar{u}) : M \to \mathbb{L}^{-3/2} \otimes (U^* \oplus U) = \mathbb{L}^{-3/2} \otimes W^*.\]

In coordinates:

\[u^A \zeta_A \quad, \quad \chi^A \bar{z}_A \quad, \quad u^A, \chi_A : M \to \mathbb{C} \otimes \mathbb{L}^{-3/2} \]

\[\langle \bar{\psi}, \psi \rangle = (\bar{u}^A \chi_A + \bar{\chi}_A u^A) : M \to \mathbb{C} \otimes \mathbb{L}^{-3} \]

The Dirac operator (§2.5) yields a section

\[\tilde{\nabla} \psi : M \to \mathbb{L}^{3/2} \otimes W \otimes \Lambda^4 T^* M ,\]

so that

\[\langle \bar{\psi}, \tilde{\nabla} \psi \rangle : M \to \mathbb{C} \otimes \Lambda^4 T^* M .\]

Now we introduce the scalar density

\[L_D = \frac{1}{2} \left(\langle \bar{\psi}, \tilde{\nabla} \psi \rangle - \langle \tilde{\nabla} \bar{\psi}, \psi \rangle \right) - m \langle \bar{\psi}, \psi \rangle \eta : M \to \Lambda^4 T^* M ,\]

where \(\tilde{\nabla} \psi := \overline{\nabla} \psi\), and \(m \in \mathbb{L}^{-1}\) is the described particle’s mass. This is a version of the Dirac Lagrangian which remains non-singular when Θ is degenerate. In the non-degenerate case one also has

\[L_D = \left[\frac{1}{2} \left(\langle \bar{\psi}, \nabla \psi \rangle - \langle \nabla \bar{\psi}, \psi \rangle \right) - m \langle \bar{\psi}, \psi \rangle \right] \eta ;\]

in 2-spinor terms this reads

\[L_D = \frac{1}{\sqrt{2}} \overline{\Theta}^a_A \left(\nabla a u^A \tilde{u}^A - u^A \nabla a \tilde{u}^A + \epsilon^{AB} \epsilon^{AD} \left(\tilde{\chi}_B \nabla a \chi^B - \nabla a \tilde{\chi}_B \chi^B \right) \right) - m \left(\langle \chi, \tilde{u} \rangle + \langle \tilde{\chi}, u \rangle \right) \eta ,\]

with the coordinate expression

\[L_D = \frac{1}{\sqrt{2}} \overline{\Theta}^a_A \left(\nabla a u^A \tilde{u}^A - u^A \nabla a \tilde{u}^A + \epsilon^{AB} \epsilon^{AD} \left(\tilde{\chi}_B \nabla a \chi^B - \nabla a \tilde{\chi}_B \chi^B \right) \right) - m \left(\langle \chi, \tilde{u} \rangle + \langle \tilde{\chi}, u \rangle \right) \det \Theta .\]

Next we compute the Euler-Lagrange operator \(E_D\). The \(\bar{u}\)-component is

\[(E_D)^{\bar{u}}_\nu = \sqrt{2} i \overline{\Theta}^a_A \nabla a u^A \det \Theta + \frac{1}{\sqrt{2}} T_{\bar{A}A} u^A ,\]
where $T_{AA} := \tilde{\Theta}^a_{AA} T^b_{ab}$ is used for replacing the term with $\partial_a \Theta^\mu_b$ (see §2.4).

The $\bar{\chi}$-component is

$$ (E_D)^A = \sqrt{2} i \tilde{\Theta}^\mu_{AA} \nabla_a \chi_a^\mu - m u^A \det \Theta + \frac{i}{\sqrt{2}} T^A_{AA} \chi^\mu_A, $$

with $\tilde{\Theta}^\mu_{AA} := \tilde{\Theta}^a_{AA} \varepsilon^{AB} \varepsilon^{B'A'}$ and $T^A_{AA} := \varepsilon^{BA} \varepsilon^{B'A'} T_{BB'}$.

The $\tilde{\Gamma}$-component is

$$ (E_D)^q_{\lambda \mu} = \frac{1}{4 \sqrt{2}} \left[(\tilde{\Theta}^a_{AC} \tau_{[\lambda} D_{\nu]} A - \tilde{\Theta}^a_{CA} \tau_{[\lambda} D_{\mu]} A) u^A \tilde{u}^A + (\tilde{\Theta}^a_{AC} \tau_{[\lambda} D_{\mu]} A - \tilde{\Theta}^a_{CA} \tau_{[\lambda} D_{\nu]} A) u^A \tilde{u}^A \right] =$$

$$ = \frac{1}{4} \varepsilon^{abcd} \varepsilon_{\lambda \mu \rho} \Theta^a_b \Theta^b_d \left(\tilde{\psi} \gamma^\lambda \gamma^\rho \psi - \tilde{\gamma}^\lambda \gamma^\rho \psi \right) - m \tilde{\psi} \psi \Theta^c_{\nu}. $$

The A-component is simply

$$ (E_D)'^a = \sqrt{2} q \tilde{\Theta}^a_{A'A} \left(u^A \tilde{u}^A + \varepsilon^{BA} \varepsilon^{B'A'} \bar{\chi}_B \chi_B' \right) = q \tilde{\Theta}^a_{A'A} \left(\tilde{\psi} \gamma^\lambda \psi \right). $$

3.5 Field equations

Having calculated the various pieces of $E = E_\xi + E_{em} + E_D$, writing down the field equations $E = 0$ is a simple matter. These equations are non-singular also when Θ is degenerate; in the non-degenerate case one expects this approach to reproduce essentially the usual Einstein-Cartan-Maxwell-Dirac field equations.

The Θ-component

$$ (E_\Theta)^e_{\nu} = - (E_{em} + E_D)^e_{\nu}, $$

corresponds to the Einstein equation; actually, as already discussed, in the non-degenerate case the left-hand side is essentially the Einstein tensor, while the right-hand side can be viewed as the sum of the energy-momentum tensors of the electromagnetic field and of the Dirac field.

The $\tilde{\Gamma}$-component gives the equation for torsion

$$ (E_{\tilde{\Gamma}})^a_{\lambda \mu} = - (E_D)^a_{\lambda \mu}. $$

From this one sees that the spinor field is a source for torsion, and that in this context one cannot formulate a torsion-free theory.

It was already seen (§3.3) that the \tilde{F}-component reads $F = 2 dA$ in the non-degenerate case, and of course this yields the first Maxwell equation $dF = 0$. The A-component is

$$ - \frac{1}{2} \varepsilon^{abcd} (d*F)_{bcd} + q \tilde{\Theta}^a_{\lambda \mu} (\tilde{\psi} \gamma^\lambda \psi) = 0 \quad \text{i.e.} \quad \frac{1}{2} c \varepsilon^{abcd} (d*F)_{bcd} = q \tilde{\Theta}^a_{\lambda \mu} (\tilde{\psi} \gamma^\lambda \psi). $$
In the non-degenerate case this gives the second Maxwell equation
\[\frac{1}{2} * d * F = j, \]
where \(j : M \to \otimes T^* M \) is the Dirac current, with coordinate expression
\[j := \frac{q}{c} \Theta_a^\lambda (\bar{\psi} \gamma_\lambda \psi) dx^a. \]

The \(\bar{u} \)- and \(\bar{\chi} \)-components \((\mathcal{E}_0)_A = 0 \) and \((\mathcal{E}_0)^B = 0 \) give the following generalized form of the standard Dirac equation:
\[
\begin{cases}
\sqrt{2} i \Theta_{Aa} \nabla_a u^A - m \chi^A \det \Theta + \frac{i}{\sqrt{2}} T_A u^A = 0 \\
\sqrt{2} i \Theta^{aA} \nabla_a \chi^A - m u^A \det \Theta + \frac{i}{\sqrt{2}} T^A \chi^A = 0
\end{cases}
\]

Denoting by \(\bar{T}^a \) the 1-form obtained from the torsion by contraction, with coordinate expression \(\bar{T}^a \equiv T_{ab} \), the above equation can be written in coordinate-free form as
\[\left(i \nabla - m + \frac{i}{2} \gamma^\# (\bar{T}) \right) \psi = 0. \]

4 Dirac algebra in two-spinor terms

4.1 Dirac algebra

If \(V \) is a finite-dimensional real vector space endowed with a non-degenerate scalar product, then its Clifford algebra \(C(V) \) is the associative algebra generated by \(V \) where the product of any \(u, v \in V \) is subjected to the condition
\[u v + v u = 2 u \cdot v, \quad u, v \in V. \]

The Clifford algebra fulfills the following universal property: if \(A \) is an associative algebra with unity and \(\gamma : V \to A \) is a linear map such that \(\gamma(v) \gamma(v) = v \cdot v \forall v \in V \), then \(\gamma \) extends to a unique homomorphism \(\tilde{\gamma} : C(V) \to A \). It turns out that \(C(V) \) is isomorphic, as a vector space, to the vector space underlying the exterior algebra \(\wedge V \); through this isomorphism one identifies \(v_1 \wedge \ldots \wedge v_p \) with the antisymmetrized Clifford product
\[\frac{1}{p!} (v_1 v_2 \cdots v_p - v_2 v_1 \cdots v_p + \cdots) \]
where the sum is extended to all permutations of the set \(\{1, \ldots, p\} \), with the appropriate signs. In other terms, one has two distinct algebras on the same underlying vector space: any element of \(C(V) \) can be uniquely expressed as a sum of terms, each of well-defined exterior degree. For example, one has \(u v = u \wedge v + u \cdot v \); from this one sees that the Clifford algebra product does not preserve the exterior algebra degree, but only its parity: \(C(V) \) is \(\mathbb{Z}_2 \)-graded. If \(\phi \in \wedge^r V, \theta \in \wedge^s V \), then the Clifford product \(\phi \theta \) turns out to be a sum of terms of exterior degree \(r+s, r+s-2, \ldots, |r-s| \).

The Clifford algebra \(D := C(H) \) of Minkowski space \(H \) (§1.4) is called the Dirac algebra. The Dirac map \(\gamma : H \to \text{End}(W) \) is a Clifford map, hence by virtue of the above said universal property one can see the Dirac algebra as a real vector
subspace $D \subset \text{End}(W)$ of dimension $2^4 = 16$. Since this coincides with the complex dimension of $\text{End}(W) \equiv W \otimes W^*$, one gets $\text{End}(W) = \mathbb{C} \otimes D$.

The Dirac algebra D is multiplicatively generated by $\gamma(H) \subset \text{End}(W)$, simply identified with H. One has the natural decompositions

$$D = D^{(+)} \oplus D^{(-)} = (\mathbb{R} \oplus \wedge^2 H \oplus \wedge^3 H) \oplus (H \oplus \wedge^3 H),$$

where $D^{(+)}$ and $D^{(-)}$ denote the even-degree and odd-degree subspaces, respectively (the former is a subalgebra). Also, one has the distinguished elements

$$1 \equiv 1_W \subset \mathbb{R} \subset D^{(+)} , \quad \eta^\# \subset \wedge^4 H \subset D^{(+)} ,$$

where $\eta^\# \equiv g^\#(\eta)$ is the contravariant tensor corresponding to the unimodular volume form η. One gets

$$\eta^\# \eta^\# = -1 , \quad \forall \theta \eta^\# = \ast \theta \quad \forall \theta \in \wedge H ,$$

where \ast is the Hodge isomorphism.

4.2 Decomposition of $\text{End} W$ and ε-transposition

One has the natural decomposition

$$\text{End}(W) \equiv \text{End}(U \oplus U^*) = (U \otimes U^*) \oplus (U \otimes U) \oplus (U^* \otimes U^*) \oplus (U^* \otimes U) .$$

Accordingly, any $\Phi \in \text{End}(W)$ is a 4-uple of tensors, which will be conveniently written in matricial form as

$$\Phi = \begin{pmatrix} K & P \\ Q & J \end{pmatrix} , \quad K \in U \otimes U^* , \quad P \in U \otimes U , \quad Q \in U^* \otimes U^* , \quad J \in U^* \otimes U .$$

We now introduce an operation which acts on each of the above 4 types of tensors in a similar way. This operation, called ε-transposition, is actually independent of the particular normalized $\varepsilon \in \wedge^2 U^*$ chosen; it is defined by

$$U \otimes U^* \rightarrow U^* \otimes U : K \mapsto \tilde{K} := \langle \varepsilon^b \otimes \varepsilon^\#, K \rangle = \varepsilon_{CA} K^{C}_{D} \varepsilon^{DB} z^A \otimes \zeta_B ,$$

$$U \otimes \bar{U} \rightarrow U^* \otimes U^* : P \mapsto \tilde{P} := \langle \varepsilon^b \otimes \bar{\varepsilon}^\#, P \rangle = \varepsilon_{CA} P^{C}_{D} \bar{\varepsilon}_{DB} z^A \otimes \bar{\zeta}_B ,$$

$$U^* \otimes U^* \rightarrow U \otimes U : Q \mapsto \tilde{Q} := \langle \varepsilon^\# \otimes \varepsilon^\#, Q \rangle = \varepsilon^{\#CA} Q_{CD} \varepsilon^{DB} \zeta_A \otimes \bar{\zeta}_B ,$$

$$U^* \otimes \bar{U} \rightarrow U \otimes U^* : J \mapsto \tilde{J} := \langle \varepsilon^\# \otimes \varepsilon^\#, J \rangle = \varepsilon^{\#CA} J_{C}^{D} \varepsilon_{DB} \bar{\zeta}_A \otimes \bar{\zeta}_B .$$

Namely, ε-transposition changes the position (either high or low) of both indices of the tensor it acts on. For elements in $U \otimes \bar{U}$ or $U^* \otimes U^*$ it essentially amounts to index lowering (resp. raising) by the Lorentz metric g in complexified Minkowski space; for invertible elements in $U \otimes U^* \equiv \text{End}(U)$ or $U^* \otimes \bar{U} \equiv \text{End}(U^*)$, ε-transposition amounts to

$$\tilde{X} = (\det X) (X^{-1})^\ast ,$$

where the superscript \ast denotes standard transposition.
4.3 \(\varepsilon \)-adjoint and characterization of \(D \)

It is clear that \(\varepsilon \)-transposition can be similarly defined\(^{12}\) on \(U^* \otimes U, U^* \otimes U^* \), \(\overline{U} \otimes U \) and \(U \otimes \overline{U}^* \), and in all cases one gets

\[
\tilde{X} = X, \quad (\tilde{X})^\ast = (X^*)^\sim, \quad \tilde{X} X^\ast = X^\ast \tilde{X} = (\det X) \mathbb{I}, \quad \det X = \det \tilde{X}.
\]

Remark. The determinant is uniquely defined, via any \(\varepsilon \), also for elements in \(U \otimes \overline{U}, U^* \otimes \overline{U}^*, \overline{U} \otimes U \) and \(U^* \otimes U^* \). In these cases, the determinant of a tensor equals one-half its Lorentz pseudo-norm.

Moreover, whenever the composition of tensors \(X \) and \(Y \) is defined, one has

\[
(X Y)^\sim = \tilde{X} \tilde{Y}, \quad \text{Tr}(\tilde{X} \tilde{Y}) = \text{Tr}(XY).
\]

Whenever \(A \) and \(B \) are tensors of the same type, one has

\[
\det(A + B) = \det(A) + \det(B) + \text{Tr}(A^\ast B),
\]

where the *scalar product* \((A, B) \mapsto \text{Tr}(A^\ast B) \) is *symmetric*\(^{13}\).

Proposition 4.1 Let \(\Phi = \begin{pmatrix} K & P \\ Q & J \end{pmatrix} \in W \otimes W^* \) be non-singular. Then

\[
\det \Phi = (\det K)(\det J) + (\det P)(\det Q) - \text{Tr}(K^\ast \tilde{P} J^\ast \tilde{Q}),
\]

\[
(\det \Phi) \Phi^{-1} = \begin{pmatrix} (\det J) \tilde{K}^\ast - \tilde{Q}^\ast J \tilde{P}^\ast & (\det P) \tilde{Q}^\ast - \tilde{K}^\ast P \tilde{J}^\ast \\ (\det Q) \tilde{P}^\ast - \tilde{J}^\ast Q \tilde{K}^\ast & (\det K) \tilde{J}^\ast - \tilde{P}^\ast K \tilde{Q}^\ast \end{pmatrix}.
\]

Proof: It can be checked by a direct calculation, taking into account the above identities. \(\square \)

4.3 \(\varepsilon \)-adjoint and characterization of \(D \)

If \(X \) is a tensor of any of the above types, then its \(\varepsilon \)-adjoint is the tensor

\[
X^\dagger := \tilde{X}.
\]

Using this operation one defines the real involution

\[
\dagger : W \otimes W^* \to W \otimes W^* : \begin{pmatrix} K & P \\ Q & J \end{pmatrix} \mapsto \begin{pmatrix} J^\dagger & Q^\dagger \\ P^\dagger & K^\dagger \end{pmatrix}.
\]

Proposition 4.2 \(D \) and \(iD \) are the eigenspaces of \(\dagger \) corresponding to eigenvalues \(+1\) and \(-1\), respectively. Namely, \(D \) is the real subspace of \(W \otimes W^* \) constituted by all endomorphisms which can be written in the form

\[
\begin{pmatrix} K & P^\dagger \\ P & K^\dagger \end{pmatrix}, \quad K \in U \otimes U^*, \quad P \in U \otimes \overline{U}.
\]

Moreover one has the following characterisations

\[
D^0 \equiv \mathbb{R} = \left\{ r \begin{pmatrix} \mathbb{I}_U & 0 \\ 0 & \mathbb{I}_{U^*} \end{pmatrix}, \quad r \in \mathbb{R} \right\},
\]

\(^{12}\) One could introduce \(\varepsilon \)-transposition on further spaces such as \(U \otimes U, U^* \otimes U^* \) and so on. These extensions however would depend from the chosen normalized \(\varepsilon \); phase factors cancel out only in the considered cases.

\(^{13}\) On \(U \otimes \overline{U} \) and \(\overline{U} \otimes U \) (resp. \(U^* \otimes U^* \) and \(\overline{U}^* \otimes U^* \)) this coincides with \(2g \) (resp. \(2g^\# \)).
\[D^1 \equiv H = \left\{ \begin{pmatrix} 0 & P \\ P^\dagger & 0 \end{pmatrix} , \quad P \in H \right\}, \]

\[D^2 \equiv \lambda^2 H = \left\{ \begin{pmatrix} K & 0 \\ 0 & K^\dagger \end{pmatrix} , \quad K \in U \otimes U^* , \quad \text{Tr } K = 0 \right\}, \]

\[D^3 \equiv \lambda^3 H = \left\{ \begin{pmatrix} 0 & P \\ P^\dagger & 0 \end{pmatrix} , \quad P \in iH \right\}, \]

\[D^4 \equiv \lambda^4 H = \left\{ \begin{pmatrix} 1r \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ U^* \end{pmatrix} \right) \right) , \quad r \in \mathbb{R} \right\}, \]

\[D^{(\pm)} = D^0 \oplus D^2 \oplus D^4 = \left\{ \begin{pmatrix} K & 0 \\ 0 & K^\dagger \end{pmatrix} , \quad K \in U \otimes U^* \right\}, \]

\[D^{(-)} = D^1 \oplus D^3 = \left\{ \begin{pmatrix} 0 & P \\ P^\dagger & 0 \end{pmatrix} , \quad P \in U \otimes \mathbb{U} \right\}. \]

Proof: The Dirac map \(\gamma : H \rightarrow \text{End } W \) can be written as

\[\gamma : v \mapsto \begin{pmatrix} 0 & \sqrt{2}v \\ \sqrt{2}v^\dagger & 0 \end{pmatrix}, \]

whence the characterization of \(D^1 \). It immediately follows that \(D^{(\pm)} \) is constituted by diagonal-block elements, while \(D^{(-)} \) is constituted by off-diagonal-block elements. The other characterizations can be checked by matrix calculations. \(\square \)

5 Clifford group and its subgroups

5.1 Clifford group

Let \(D^* := D \cap \text{Aut } W \) be the group of all invertible elements in \(D \). The Clifford group \(\text{Cl} \equiv \text{Cl}(W) \) is defined to be \([7, 9]\) the subgroup of \(D^* \) under whose adjoint action \(H \) is stable. In other terms, \(\Phi \in D^* \) is an element of \(\text{Cl} \) if

\[\text{Ad}[\Phi]v \equiv \Phi \gamma(v) \Phi^{-1} \in \gamma(H) , \quad \forall v \in H. \]

Using proposition 4.1 we write the adjoint action as

\[
\left(\det \Phi \right) \text{Ad}[\Phi]v = \begin{pmatrix} K & P \\ P^\dagger & K^\dagger \end{pmatrix} \begin{pmatrix} 0 & V \\ V^\dagger & 0 \end{pmatrix} \begin{pmatrix} X & Y \\ Y^\dagger & X^\dagger \end{pmatrix} = \begin{pmatrix} PV^\dagger X + KV Y^\dagger & PV^\dagger Y + KV X^\dagger \\ K^\dagger V^\dagger X + P^\dagger V Y^\dagger & K^\dagger V^\dagger Y + P^\dagger V X^\dagger \end{pmatrix},
\]

where \(V \equiv \sqrt{2}v \) and

\[X \equiv (\det K) K^* - \vec{P}^* \vec{K} \vec{P}^* , \quad Y \equiv (\det P) \vec{P}^* - \vec{K}^* P \vec{K}^* , \]

\[X^\dagger = (\det K) K^* - \vec{P}^* K \vec{P}^* , \quad Y^\dagger = (\det P) \vec{P}^* - \vec{K}^* P \vec{K}^* . \]
5.1 Clifford group

Lemma 5.1 An element of D^* which belongs to the Clifford group is necessarily either odd or even, so that the Clifford group is the disjoint union $\text{Cl} = \text{Cl}^{(+)} \cup \text{Cl}^{(-)}$ where $\text{Cl}^{(+)} = \text{Cl} \cap D^{(+)}$, $\text{Cl}^{(-)} = \text{Cl} \cap D^{(-)}$.

Proof: If Φ is in Cl then the $U \otimes U^*$-component of $\text{Ad}[\Phi]v$ vanishes for all $v \in H$, namely

$$KV\tilde{Y} = -P\tilde{V}X, \quad \forall V \in H.$$

Composing both sides with $\tilde{V}^*\tilde{K}^*$ on the left and with \tilde{X}^* on the right one finds

$$(\det K)(\det V)\tilde{Y}\tilde{X}^* = -(\det \Phi)(\det \tilde{K})\tilde{V}^*\tilde{K}^*P\tilde{V}.$$

Now the above equality is certainly fulfilled in the particular case when $\det \tilde{K} = 0$. Suppose $\det K \neq 0$ for the moment (the other case will be considered later). The left-hand side vanishes for all null elements $V \in H$, thus also $\tilde{V}^*\tilde{K}^*P\tilde{V}$ vanishes for all null vectors V; it's not difficult to see that this implies $\tilde{K}^*P = 0$, which on turn implies $P = 0$. Summarizing, if $\Phi \in \text{Cl}$ and $\det K \neq 0$ then $P = 0$. By a similar argument, composing the equation $KV\tilde{Y} = -P\tilde{V}X$ on the left by $\tilde{V}^*\tilde{P}^*$ and on the right by \tilde{Y}^*, one finds that if $\Phi \in \text{Cl}$ and $\det P \neq 0$ then $K = 0$.

The case which remains to be considered is that when $\det K = \det P = 0$. Since $\det P = \frac{1}{2}g(P, P)$, P is an isotropic element of $U \otimes \overline{U}$, and as such it is decomposable. Similarly, K is decomposable. Namely one can write

$$K = k \otimes \lambda, \quad P = p \otimes \tilde{q}, \quad V = s \otimes \tilde{s}, \quad k, p, q, s \in U, \quad \lambda \in U^*.$$

A little two-spinor algebra then yields

$$P\tilde{V}X + KV\tilde{Y} = \varepsilon(k, \tilde{p}) \left[\langle \lambda, q \rangle |\langle \lambda, s \rangle|^2 k \otimes k^b - \langle \lambda, \tilde{q} \rangle |\varepsilon(s, q)|^2 p \otimes p^b \right],$$

$$\det \Phi = -\text{Tr}(K\tilde{P}^*\tilde{K}^*\tilde{P}^*) = |\varepsilon(k, p)|^2 |\langle \lambda, q \rangle|^2.$$

Now one sees that in order that $\det \Phi \neq 0$ one must have $\langle \lambda, q \rangle \neq 0$ and $\varepsilon(k, p) \neq 0$. Thus $k \otimes k^b$ and $p \otimes p^b$ are linearly independent elements of $U \otimes U^*$ and, in order that $P\tilde{V}X + KV\tilde{Y}$ vanishes for all V, one must have $\langle \lambda, s \rangle = \varepsilon(q, s)$ for all $s \in U$, which implies $\lambda = 0$ and $q = 0$ that is $K = 0$ and $P = 0$, a contradiction. Thus the case $\det K = \det P = 0$ cannot yield an element $\Phi \in \text{Cl}$.

\[\square \]

Proposition 5.1

a) $\text{Cl}^{(+)}$ is the 7-dimensional real submanifold of $D^{(+)}$ constituted of all elements in $W \otimes W^*$ which are of the type

$$\begin{pmatrix} K & 0 \\ 0 & K^* \end{pmatrix}, \quad K \in U \otimes U^*, \quad \det K \in \mathbb{R} \setminus \{0\}.$$

b) $\text{Cl}^{(-)}$ is the 7-dimensional real submanifold of $D^{(-)}$ constituted of all elements in $W \otimes W^*$ which are of the type

$$\begin{pmatrix} 0 & P \\ p^t & 0 \end{pmatrix}, \quad P \in U \otimes \overline{U}, \quad \det P \in \mathbb{R} \setminus \{0\}.$$
PROOF:
a) Let $\Phi = \left(\begin{array}{cc} K & 0 \\ 0 & K^* \end{array} \right)$, $K \in U \otimes U^*$, $\det K \neq 0$. Then

$$(\det \Phi)\ Ad[\Phi]v = \left(\begin{array}{cc} 0 & (\det K)K V K^* \\ (\det K)\bar{V} & 0 \end{array} \right), \quad V \equiv \sqrt{2} v \in H.$$

For $Ad[\Phi]v$ to be in H, the two non-zero entries of the above matrix must be in $H \equiv U \lor U$ and in $U^* \lor U^*$, respectively. Consider the $U \otimes U$-entry. Since $\bar{V} = V^*$ because V is Hermitian, one finds

$$[(\det K)K V K^*]^{-\mathbf{T}} = (\det K)K V K^*,$$

and $(\det K)K V K^*$ is Hermitian for all $V \in H$ iff $\det K = \det \bar{K}$ (this argument gives the same result for the other non-zero entry).

b) Let $\Phi = \left(\begin{array}{cc} 0 & P \\ P^* & 0 \end{array} \right)$, $P \in U \otimes U^*$, $\det P = \frac{1}{2} g(P,P) \neq 0$. Then

$$(\det \Phi)\ Ad[\Phi]v = \left(\begin{array}{cc} 0 & (\det P)P \tilde{V} \tilde{P}^* \\ (\det P)\tilde{P} V & 0 \end{array} \right).$$

By the same argument as before, $\Phi \in \text{Cl}$ iff $\det P = \det \tilde{P}$. \square

Now it is not difficult to show that any complex 2×2-matrix with real determinant can be written as a product of Hermitian matrices. Using this, one recovers a well-known result:

Proposition 5.2 Cl is multiplicatively generated by $H^* \subset H$, the subset of all elements in H with non-vanishing Lorentz pseudo-norm.

Namely any element of Cl can be written as

$$\Phi = v_1 v_2 \ldots v_n, \quad v_j \in H, \quad g(v_j,v_j) \neq 0;$$

its inverse is

$$\Phi^{-1} = \frac{1}{\nu(\Phi)} v_n \ldots v_2 v_1, \quad \nu(\Phi) := g(v_1,v_1) g(v_2,v_2) \ldots g(v_n,v_n).$$

Setting now $V_i \equiv \sqrt{2} v_i$ one has $\det V_i = \det \tilde{V}_i = g(v_i,v_i)$, hence

$$\nu(\Phi) = \det(V_1 \tilde{V}_2 V_3 \tilde{V}_4 \ldots) = \prod_{i=1}^{n} \det(V_i).$$

Namely, if $\Phi = \left(\begin{array}{cc} K & 0 \\ 0 & K^* \end{array} \right) \in \text{Cl}^{(+)}$ then $\nu(\Phi) = \det K = \det K^*$; if $\Phi = \left(\begin{array}{cc} 0 & P \\ P^* & 0 \end{array} \right) \in \text{Cl}^{(-)}$ then $\nu(\Phi) = \det P = \det P^*$.

Remark. Actually, it can be seen that any complex 2×2-matrix with real determinant can be written as a product of just three Hermitian matrices (but not, in general, of two matrices). This implies that an element in $\text{Cl}^{(-)}$ can be written as $\left(\begin{array}{cc} 0 & P \\ P^* & 0 \end{array} \right)$ with $P = V_1 V_2^* V_3$, and an element in $\text{Cl}^{(+)}$ can be written as $\left(\begin{array}{cc} K & 0 \\ 0 & K^* \end{array} \right)$ with $K = V_1 V_2^* V_3 V_4^*$, $V_i \in H^*$.

5.2 Pin and Spin

The adjoint action of any \(w \in H \) on \(H \) is easily checked to be the negative of the reflection through the hyperplane orthogonal to \(w \). It follows that \(\text{Cl}^{(\pm)} \) is the subgroup of all elements in \(\text{Cl} \) whose adjoint action preserves the orientation of \(H \). Moreover, the subgroup

\[
\text{Cl}^\dagger := \{ \Phi \in \text{Cl} : \nu(\Phi) > 0 \}
\]

is constituted of all elements of \(\text{Cl} \) whose adjoint action preserves the time-orientation of \(H \). Its representation as \(\Phi = v_1 v_2 \ldots v_n \) has an even number of spacelike factors and any number of timelike factors.

The unit element of \(\text{Cl} \) is \(1 1 \in D(+) \subset D \). Thus the Lie algebra of \(\text{Cl} \) is a 7-dimensional vector subspace

\[
\mathfrak{L} \text{Cl} \subset D^{(+)} = \mathbb{R} \oplus \wedge^2 H \oplus \wedge^4 H \cong \mathbb{R} \oplus \hat{\gamma}(\wedge^2 H) \oplus \hat{\gamma}(\wedge^4 H).
\]

Now observe that \(\wedge^4 H \) is not contained in \(\mathfrak{L} \text{Cl} \) since \(t \in \mathbb{R} \Rightarrow \exp(t \eta^\#) = \exp \begin{pmatrix} -it & 0 & 0 \\ 0 & 0 & e^{it} \\ it & 0 & e^{-it} \end{pmatrix} \) is not in \(\text{Cl} \) because the two component endomorphisms \(e^{-it} 1 1 U \in U \otimes U^* \) and \(e^{it} 1 1 U^* \in U^* \otimes U \) have non-real determinant. Hence, just by a dimension argument, one finds

\[
\mathfrak{L} \text{Cl} = \mathbb{R} \oplus \wedge^2 H.
\]

5.2 Pin and Spin

If \(\Phi \in \text{Cl} \) and \(a \in \mathbb{R} \setminus \{0\} \) then \(\text{Ad}[a \Phi] = \text{Ad}[\Phi] : H \to H \). It is then natural to consider the subgroup

\[
\text{Pin} := \{ \Phi \in \text{Cl} : \nu(\Phi) = \pm 1 \},
\]

which is multiplicatively generated by all elements in \(H \) whose Lorentz pseudo-norm is \(\pm 1 \). It has the subgroups

\[
\text{Spin} := \text{Pin}^{(+)} \equiv \text{Pin} \cap \text{Cl}^{(+)} = \{ \Phi \in \text{Cl}^{(+)} : \nu(\Phi) = \pm 1 \},
\]

\[
\text{Pin}^\dagger := \text{Pin} \cap \text{Cl}^\dagger = \{ \Phi \in \text{Cl} : \nu(\Phi) = 1 \},
\]

\[
\text{Spin}^\dagger := \text{Spin} \cap \text{Cl}^\dagger = \{ \Phi \in \text{Cl}^{(+)} : \nu(\Phi) = 1 \}.
\]

These share the same Lie algebra

\[
\wedge^2 H = \mathfrak{L} \text{Pin} = \mathfrak{L} \text{Spin} = \mathfrak{L} \text{Pin}^\dagger = \mathfrak{L} \text{Spin}^\dagger.
\]

The automorphisms of \(U \) which have unit determinant constitute the group \(\text{Sl} \equiv \text{Sl}(U) \); thus

\[
\text{Cl}^{(+)} \cap \text{Cl}^\dagger = \{ \begin{pmatrix} K & 0 \\ 0 & K^\dagger \end{pmatrix} \in \text{End} W : K \in \mathbb{R}^+ \times \text{Sl} \},
\]

\[
\text{Spin}^\dagger = \{ \begin{pmatrix} K & 0 \\ 0 & K^\dagger \end{pmatrix} \in \text{End} W : K \in \text{Sl} \}.
\]
In particular, one has the isomorphism
\[\text{Spin}^\dagger \leftrightarrow \text{Sl} : \left(\begin{array}{cc} K & 0 \\ 0 & K^\dagger \end{array} \right) \leftrightarrow K. \]

Now remember that
\[\hat{\gamma}(\kappa^2 H) = \left\{ \left(\begin{array}{cc} A & 0 \\ 0 & A^\dagger \end{array} \right) \in \text{End} W : \text{Tr} A = 0 \right\}, \]
\[\hat{\gamma}(\mathbb{R} \oplus \kappa^2 H) = \left\{ \left(\begin{array}{cc} A & 0 \\ 0 & A^\dagger \end{array} \right) \in \text{End} W : \Im \text{Tr} A = 0 \right\}; \]
moreover \text{End} U can be decomposed into the direct sum of the subspace of all traceless endomorphisms, which is just \(\mathcal{L} \text{Sl} \), and the subspace \(\mathbb{C} \mathbb{I} \) generated by the identity. Then one has the Lie algebra isomorphisms
\[\mathcal{L} \text{Cl} = \mathcal{L} \text{Cl}^{(+)} = \mathbb{R} \oplus \kappa^2 H \rightarrow (\mathbb{R} \mathbb{I}) \oplus \mathcal{L} \text{Sl}, \]
\[\mathcal{L} \text{Pin} = \mathcal{L} \text{Spin}^\dagger = \kappa^2 H \rightarrow \mathcal{L} \text{Sl}. \]

Proposition 5.3 Let
\[\Phi = \left(\begin{array}{cc} K & 0 \\ 0 & K^\dagger \end{array} \right) \in \text{Spin}, \ v \in H, \ \gamma(v) = \left(\begin{array}{cc} V & 0 \\ 0 & V^\dagger \end{array} \right) \equiv \left(\begin{array}{cc} \sqrt{2} v & 0 \\ 0 & \sqrt{2} v^\dagger \end{array} \right). \]
Then
\[\text{Ad}[\Phi] \gamma(v) = \pm \begin{pmatrix} 0 & [K \otimes K](V) \\ ([K \otimes K](V))^\dagger & 0 \end{pmatrix}, \]
where the + sign holds iff \(\Phi \in \text{Spin}^\dagger \).

PROOF: Remembering the previous results one finds
\[\text{Ad}[\Phi] \gamma(v) = \frac{1}{\det K} \begin{pmatrix} 0 & KV \bar{K}^\ast \\ (KV \bar{K}^\ast)^\dagger & 0 \end{pmatrix}. \]
Moreover
\[(KV \bar{K}^\ast)^{\alpha \lambda} = K^A_B V^{\beta B \dagger} (\bar{K}^\ast)_B^{\dagger} = K^A_B V^{\beta B \dagger} \bar{K}^{\lambda} = (K \otimes \bar{K})^{\alpha \lambda}_{BB'} V^{B B'}. \]

Now remember (§1.8) that the group \(\{ K \otimes \bar{K} : K \in \text{Aut}(U) \} \) is constituted of automorphisms of \(U \otimes \bar{U} \) which preserve the splitting \(U \otimes \bar{U} = H \oplus i H \) and the causal structure of \(H \). Its subgroup \(\{ K \otimes \bar{K} : K \in \text{Sl}(U) \} \) coincides with \(\text{Lor}^+_+(H) \). Thus one sees that the group isomorphism \(\text{Sl} \rightarrow \text{Spin}^\dagger \) determines the 2-to-1 epimorphism \(\text{Spin}^\dagger \rightarrow \text{Lor}^+_+(H) \).

One also finds that \(\text{Spin}^\dagger \) is the subgroup of \(\text{End} W \) preserving \((\gamma, k, g, \eta, \epsilon) \) as well as time-orientation. Let’s review these properties in terms of two-spinors.
• Obviously, Spin$^+$ preserves the splitting $W = U \oplus \overline{U}^*$. If $\Phi = \begin{pmatrix} K & 0 \\ 0 & K^\dagger \end{pmatrix}$, $K \in \text{Sl}(U)$, then $\tilde{K} = K^{-1}$, so for $\psi \equiv (u, \chi), \psi' \equiv (u', \chi') \in W$ one gets
\begin{align*}
k(\Phi \psi, \Phi \psi') &= k((Ku, \chi \tilde{K}^{-1}), (Ku', \chi' \tilde{K}^{-1})) = \langle \chi \tilde{K}^{-1}, Ku \rangle + \langle \chi' \tilde{K}^{-1}, Ku' \rangle = \\
&= \langle \chi, u' \rangle + \langle \chi', \tilde{u} \rangle = k(\psi, \psi').
\end{align*}

• Since $K \otimes \tilde{K} : U \otimes \overline{U} \to U \otimes \overline{U}$ sends Hermitian tensors to Hermitian tensors and anti-Hermitian tensors to anti-Hermitian tensors, it preserves the splitting $U \otimes \overline{U} = H \oplus iH$. Also, remember that $K \otimes \tilde{K} = \text{Ad}[\Phi]$.

• $K \otimes \tilde{K} = \text{Ad}[\Phi] \in \text{Lor}^+_\uparrow (H)$, the subgroup of the Lorentz group which preserves orientation and time-orientation.

• Φ preserves the Dirac map γ. In fact if $y \in H$ then
\begin{align*}
\gamma[y] &= \begin{pmatrix} 0 & \sqrt{2} y^\dagger \\ \sqrt{2} y & 0 \end{pmatrix}, \quad y^\dagger \equiv \tilde{y} = \tilde{y}^* ,
\end{align*}

\begin{align*}
\text{Ad}[\Phi] \gamma[y] &= \begin{pmatrix} 0 & \sqrt{2} [K \otimes \tilde{K}] y \\ \sqrt{2} ([K \otimes \tilde{K}] y) & 0 \end{pmatrix} = \gamma[[K \otimes \tilde{K}] y].
\end{align*}

• If $K \in \text{Sl}$ then K preserves any symplectic form $\varepsilon \in \wedge^2 U^*$. Hence $\Phi \equiv \begin{pmatrix} K & 0 \\ 0 & K^\dagger \end{pmatrix} \in \text{Spin}^+$ preserves the corresponding symplectic form $(\varepsilon, \tilde{\varepsilon}^\#) \in \wedge^2 W^*$ and charge conjugation.

6 Spinors and particle momenta

6.1 Particle momentum in two-spinor terms

It has already been observed (§1.4) that any future-pointing non-spacelike element in H can be written in the form
\begin{align*}
&u \otimes \tilde{u} + v \otimes \tilde{v} , \quad u, v \in U .
\end{align*}

If u and v are not proportional to each other, that is $\varepsilon(u, v) \neq 0$, then the above expression is a timelike future-pointing vector; if $\varepsilon(u, v) = 0$, then it is a null vector. Future-pointing elements in H are a contravariant, “conformally invariant” version of classical particle momenta (translation to a scaled and/or covariant version, when needed, will be effortless).

Let K and N be the subsets of H constituted of all future-pointing timelike vectors and of all future-pointing null vectors, respectively; moreover, set $J := K \cup N$ (all these sets do not contain the zero element). Consider now the real quadratic maps
\begin{align*}
\tilde{p} : U \times U &\to J : (u, v) \mapsto \frac{1}{\sqrt{2}} (u \otimes \tilde{u} + v \otimes \tilde{v}) , \\
p : W \cong U \times \overline{U}^* &\to J : (u, \chi) \mapsto \frac{1}{\sqrt{2}} (u \otimes \tilde{u} + \tilde{\chi}^\# \otimes \chi^\#) .
\end{align*}

When a normalized symplectic form $\varepsilon \in \wedge^2 U^*$ is fixed, \tilde{p} and p are essentially the same objects, as one can represent a given element $\frac{1}{\sqrt{2}} (u \otimes \tilde{u} + v \otimes \tilde{v})$ of J by writing
$v \otimes \bar{v}$ as $(\bar{\chi} \otimes \chi)^\#$; here, $u, v \in U, \chi \in \overline{U}^*$. In such case I'll set

\[
v := -\bar{\chi}^\# \iff \chi = \bar{v}^\#, \\
\Rightarrow \langle \bar{\chi}, u \rangle = \langle v^\#, u \rangle = \varepsilon(v, u), \quad \langle \chi, \bar{u} \rangle = \langle \bar{v}^\#, \bar{u} \rangle = \bar{\varepsilon}(\bar{v}, \bar{u}).
\]

If $p = p(u, \chi) \equiv \bar{p}(u, v)$ then we'll use the shorthands

\[
\mu^2 := g(p, p) = 2|\varepsilon(u, v)|^2 = 2|\langle \bar{\chi}, u \rangle|^2,
\]

\[
h := \sqrt{\frac{2}{\mu}} p^\# = \frac{1}{|\langle \bar{\chi}, u \rangle|} (u^\# \otimes u^\# + \chi \otimes \bar{\chi}).
\]

Then, h can be seen as an ε-normalized Hermitian metric on U.

Proposition 6.1 Let $(u, \chi) \equiv (u, \bar{v}^\#) \in W, \langle \bar{\chi}, u \rangle \neq 0$; let $p \in K$. Then, the following conditions are equivalent:

i) $p = u \otimes \bar{u} + (\bar{\chi} \otimes \chi)^\#$,

ii) $\gamma(p)(u, \chi) = \mu (e^{-i\theta} u, e^{i\theta} \chi), \theta \in \mathbb{R}$,

iii) $h^\#(u) = e^{i\theta} \chi$,

iv) $h^\#(\chi) = e^{-i\theta} u$,

v) $h(\bar{u}, v) = 0$ and $|\langle \bar{\chi}, u \rangle| = h(\bar{u}, u)$,

v') $h(\bar{u}, v) = 0$ and $|\langle \bar{\chi}, u \rangle| = h(\bar{v}, v),$

where μ and h are defined in terms of (u, χ) as above.

Proof: By straightforward calculations one sees that condition i implies conditions ii, iii, iv and v. Moreover:

(ii \iff iii): It follows from $\gamma(\tau)(u, \chi) = \frac{1}{\sqrt{\varepsilon}} \gamma[h^\#](u, \chi) = (h^\#(\chi), h^\#(u))$.

(iii \iff iv): If $h^\#(u) = e^{i\theta} \chi$ then $u = h^\#(h^\#(u)) = h^\#(e^{i\theta} \chi) = e^{i\theta} h^\#(\chi)$. Similarly, if $h^\#(\chi) = e^{-i\theta} u$ then $\chi = h^\#(h^\#(\chi)) = h^\#(e^{-i\theta} u) = e^{-i\theta} h^\#(u)$.

(iv \Rightarrow v): $h(\bar{u}, v) = \langle h^\#(\bar{u}), -\bar{\chi}^\# \rangle = -\langle e^{-i\theta} \bar{\chi}, h^\#(\bar{u}) \rangle = e^{-i\theta} e^\#(\bar{\chi}, \bar{u}) = 0$.

Moreover $h(\bar{u}, u) = \langle \bar{h}^\#(\bar{u}), \bar{u} \rangle = \langle e^{i\theta} \chi, \bar{u} \rangle = \langle \bar{\chi}, u \rangle \langle \bar{\chi}, u \rangle / |\langle \bar{\chi}, u \rangle| = |\langle \bar{\chi}, u \rangle|$.

(v \Rightarrow iv): From $0 = h(\bar{u}, v) = \langle h^\#(\bar{u}), -\bar{\chi}^\# \rangle = -\varepsilon^\#(\bar{\chi}, h^\#(\bar{u}))$ one has $\bar{\chi} = ch^\#(\bar{u})$, $c \in \mathbb{C}$. Then $\langle \bar{\chi}, u \rangle = c h(\bar{u}, u) = c |\langle \bar{\chi}, u \rangle| \Rightarrow c = e^{i\theta}$.

(v \Rightarrow v'): From iv (equivalent to v) one has $h(\bar{v}, v) = \langle h, \chi^\# \otimes \bar{\chi}^\# \rangle = \langle h^\#(\chi), \bar{\chi} \rangle = e^{-i\theta} (\langle \chi, u \rangle) = |\langle \chi, u \rangle|$, hence also $h(\bar{v}, v) = |\langle \bar{\chi}, u \rangle|$

(v' \Rightarrow iv): As in v \Rightarrow iv one has $\bar{\chi} = ch^\#(\bar{u}), c \in \mathbb{C}$, or $u = \frac{1}{h^\#(\chi)}$. Then, from $\langle \bar{\chi}, u \rangle = \langle \bar{\chi}, \frac{1}{h^\#(\chi)} \rangle = \frac{1}{2} h^\#(\chi, \bar{\chi}) = \frac{1}{2} h^\#(\chi, \bar{\chi}) = \frac{1}{2} \bar{h}^\#(\bar{v}, v)$ one has $c = e^{-i\theta}$ i.e. $c = e^{i\theta}$.

(v \Rightarrow i): Using also v' (already seen to be equivalent to v) one sees that the couple $(\zeta_u, \zeta_v) \equiv \langle u, v \rangle / \sqrt{|\langle \bar{\chi}, u \rangle|}$ is an h-orthonormal basis of U; hence $h^\# = \zeta_u \otimes \zeta_u + \zeta_v \otimes \zeta_v = \frac{1}{|\langle \bar{\chi}, u \rangle|} (u \otimes u + v \otimes v)$. Condition i then follows. \qed
6.2 Bundle structure of 4-spinor space over momentum space

The previous results show that the restriction \(p : W \setminus \{0\} \rightarrow J \) is surjective. Since the Lorentz "length" of \(p(u, \chi) \) is \(\sqrt{2} \left| \langle \chi, u \rangle \right| \) one sees that the subset of all elements in \(W \) which project onto \(N \) is the 6-dimensional real submanifold

\[
W^0 := p^{-1}(N) = \left\{ (u, \chi) \in W \setminus \{0\} : \langle \chi, u \rangle = 0 \right\} \subset W.
\]

The subset of all elements in \(W \) which project onto \(K \) is the open submanifold

\[
W^\alpha := p^{-1}(K) = \left\{ (u, \chi) \in W : \langle \chi, u \rangle \neq 0 \right\},
\]

and one has

\[
W \setminus \{0\} = W^0 \cup W^\alpha.
\]

Moreover, consider the subsets \(W^+, W^- \subset W^\alpha \) defined to be

\[
W^\pm := \left\{ (u, \chi) \in W \setminus \{0\} : \langle \chi, u \rangle \in \mathbb{R}^\pm \right\}.
\]

Recalling condition ii of proposition 5.1 one has

\[
\gamma[\psi] = \mu \left(e^{-i\theta} u, e^{i\theta} \chi \right),
\]

which holds for every \(\psi \equiv (u, \chi) \in W \) (if \(\psi \in W^0 \) then \(\mu = 0 \)). In particular

\[
W^\pm = \left\{ \psi \equiv (u, \chi) \in W \setminus \{0\} : \gamma[\psi] = \pm \mu \psi, \mu \equiv |\langle \chi, u \rangle| \right\}.
\]

Next, consider the subset

\[
\tilde{W}^\alpha := \left\{ (u, v) : \varepsilon(u, v) \neq 0 \right\} \subset U \times U,
\]

and note that when a normalized symplectic form \(\varepsilon \in \wedge^2 U^* \) is fixed, \(\tilde{W}^\alpha \) can be identified with \(W^\alpha \) via the correspondence \(\tilde{v}^\alpha \leftrightarrow \chi \). \(\tilde{W}^\alpha \) is a fibred set over \(K \); for each \(p \in K \), the fibre of \(\tilde{W}^\alpha \) over \(p \) is the subset

\[
\tilde{W}_p^\alpha := \tilde{p}^{-1}(p) = \left\{ (u, v) \in \tilde{W}^\alpha : \frac{1}{\sqrt{2}}(u \otimes \bar{u} + v \otimes \bar{v}) = p \right\}.
\]

Proposition 6.2 \(\tilde{p} : \tilde{W}^\alpha \rightarrow K \) is a trivializable principal bundle with structure group \(U(2) \).

Proof: Let \(p = \tilde{p}(u, v) = \tilde{p}(u', v') \). From proposition 6.1 one then sees that \((u, v) \) and \((u', v') \) are orthonormal bases of \(U \) relatively to the Hermitian metric \(h \equiv \sqrt{2} \tilde{p}/\mu \). Then there exists a unique transformation \(K \in U(U, h) \) such that

\[
u' = K(u), \quad v' = K(v);
\]

hence, \(\tilde{W}_p^\alpha \) is a group-affine space, with derived group \(U(2) \).

Let now \((\zeta_\lambda) \) be an \(\varepsilon \)-normalized basis of \(U \) and \((\tau_\lambda) \) the associated Pauli frame. For each \(p \in K \) let \(L_p \in \text{Lor}_+^1(H) \) be the boost such that \(L_p \tau_0 = p/\mu \), where \(\mu^2 \equiv g(p, p) \); up to sign there is a unique \(B_p \in \text{Sl}(U) \) such that \(L_p = B_p \otimes B_p \), and a consistent smooth way of choosing one such \(B_p \) for each \(p \) can be fixed. It turns out that the basis \((\sqrt{\mu} B_p \zeta_\lambda) \) is orthonormal relatively to \(\sqrt{2} \tilde{p}/\mu \) seen as a Hermitian metric on \(U \), hence \(\tilde{p}(\sqrt{\mu} B_p \zeta_1, \sqrt{\mu} B_p \zeta_2) = p \). In this way one selects an “origin” element in each fibre of \(\tilde{p} \), so getting a trivialization \(\tilde{W}^\alpha \rightarrow K \times U(2) \). \(\square \)
Using a little two-spinor algebra it is not difficult to prove:

Proposition 6.3 Let \(\psi, \psi' \in W^\alpha \), \(\psi \equiv (u, \chi) \), \(\psi' \equiv (u', \chi') \); let \(K \in \text{Aut} U \) be the unique automorphism of \(U \) such that

\[
K u = u, \quad K \bar{\chi}^\# = \bar{\chi}'^\#.
\]

Then

\[
K = \frac{1}{\langle \bar{\chi}, u \rangle^2} \left[\langle \bar{\chi}, u' \rangle \bar{\chi} - \varepsilon^\#(\bar{\chi}, \chi') u \otimes u^b + \varepsilon(u, u') \bar{\chi}^\# \otimes \bar{\chi} + \langle \bar{\chi}', u \rangle \bar{\chi}^\# \otimes u^b \right].
\]

Moreover, one has

\[
\chi' = K^\dagger \chi.
\]

Conversely, the conditions \(u' = Ku \) and \(\chi' = K^\dagger \chi \) determine \(K \) uniquely.

The above expression for \(K \) is invariant relatively to the transformation \(\varepsilon \mapsto e^{i\theta} \varepsilon \); hence, \(K \) is independent of the particular normalized symplectic form \(\varepsilon \) chosen.

When a normalized \(\varepsilon \in \wedge^2 U^* \) is given, one has the real vector bundle isomorphism \(W^\alpha \leftrightarrow \tilde{W}^\alpha : (u, v) \leftrightarrow (u, \bar{v}) \). Through this correspondence, \(W^\alpha \rightarrow K \) turns out to be a trivializable principal bundle with structure group \(U(2) \). If \(\psi, \psi' \in W^\alpha_p \), let

\[
(K) = c \begin{pmatrix} a & \bar{b} \\ -b & \bar{a} \end{pmatrix} \in U(2), \quad a, b, c \in \mathbb{C} : |a|^2 + |b|^2 = |c|^2 = 1,
\]

be the matrix of \(K \in \text{Aut} U \) sending \(\psi \) to \(\psi' \) (according to proposition [6.3]) relatively to the basis \((u, v)\). Then

\[
\begin{align*}
u' &= c(au - bv), \\
v' &= c(bu + au).
\end{align*}
\]

\[
\begin{align*}
u' &= c(a \bar{u} + b \bar{\chi}^\#), \\
\chi' &= \bar{c}(a \chi + b \bar{\chi}^\#).
\end{align*}
\]

If you take a different normalized symplectic form \(\varepsilon \rightarrow e^{i\theta} \varepsilon \), then \(K \) does not change, while the corresponding matrix \((K) \in U(2)\) changes according to \(c \rightarrow c, \ a \rightarrow a, \ b \rightarrow e^{i\theta}b \).

The above \(U(2) \)-action does not preserve \(W^\pm \subset W^\alpha \). In fact it’s straightforward to prove:

Proposition 6.4 Let \(\psi, \psi' \in W^+_p \) (resp. \(\psi, \psi' \in W^-_p \)), \(\psi \equiv (u, \chi) \), \(\psi' \equiv (u', \chi') \); let \(K \) be the unique automorphism of \(U \) such that \(Ku = u \), \(K^\dagger \chi = \chi' \). Then \(K \in \text{SU}(U, h) \), where \(h \equiv \sqrt{-2} p^b / \mu \).

Hence, \(W^+ \rightarrow K \) and \(W^- \rightarrow K \) turn out to be trivializable principal bundles, with structure group \(\text{SU}(2) \).
References

[1] Canarutto, D., Jadczyk A. and Modugno, M.: ‘Quantum mechanics of a spin particle in a curved spacetime with absolute time’, Rep. Math. Phys. 36 (1995), 95–140.

[2] Canarutto, D. and Jadczyk A.: ‘Fundamental geometric structures for the Dirac equation in General Relativity’, Acta Appl. Math. 50 N.1 (1998), 59–92.

[3] Canarutto, D. and Jadczyk, A.: ‘Two-spinors and Einstein-Cartan-Maxwell-Dirac fields’, Il Nuovo Cimento 113 B (1997), 49–67.

[4] Canarutto, D.: ‘Possibly degenerate tetrad gravity and Maxwell-Dirac fields’, J. Math. Phys. 39, N.9 (1998), 4814–4823.

[5] Canarutto, D.: ‘Two-spinors, field theories and geometric optics in curved spacetime’, Acta Appl. Math. 62 N.2 (2000), 187–224.

[6] Canarutto, D.: Quantum bundles and quantum interactions, Int. J. Geom. Met. Mod. Phys., 2 N.5, (2005), 895–917.

[7] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras, Kluwer, Dordrecht (1990).

[8] Ferraris, M. and Kijowski J.: ‘Unified Geometric Theory of Electromagnetic and Gravitational Interactions’, Gen. Rel. Grav. 14, 1 (1982), 37–47.

[9] Greub, W.: Multilinear Algebra, Springer, New York (1978).

[10] Gronwald, F. and Hehl, F.W.: ‘On the Gauge Aspects of Gravity’, Proc. of the 14th Course of the School of Cosmology and Gravitation on Quantum Gravity, held at Erice, Italy, May 1995, P.G. Bergamann, V. de Sabbata and H.-J. Treder eds. World Scientific, Singapore (1996).

[11] Hehl, F.W., McCrea, J.D., Mielke, E.W. and Ne’eman, Y.: ‘Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance’, Phys. Rep. 258 (1995), 1–171.

[12] Penrose, R. and Rindler, W.: Spinors and space-time. I: Two-spinor calculus and relativistic fields, Cambridge Univ. Press, Cambridge (1984).

[13] Regge, T.: ‘The group manifold approach to unified gravity’, in Relativity, groups and topology II, Les Houches 1983, B.S. DeWitt and R. Stora editors, North-Holland, Amsterdam (1984), 933–1005.