Let \(f \) and \(g \) be differentiable functions defined on the interval \((a, b)\), where \(-\infty \leq a < b \leq \infty\), and let
\[
 r := \frac{f}{g} \quad \text{and} \quad \rho := \frac{f'}{g'}.
\]
It is assumed throughout that \(g \) and \(g' \) do not take on the zero value anywhere on \((a, b)\). The function \(\rho \) may be referred to as a derivative ratio for the “original” ratio \(r \). In [11], general “rules” for monotonicity patterns, resembling the usual l'Hospital rules for limits, were given. In particular, according to [11, Proposition 1.9 and Remark 1.14], one has the dependence of the monotonicity pattern of \(r \) (on \((a, b)\)) on that of \(\rho \) (and also on the sign of \(gg' \)) as given by Table 1. The vertical double line in the table separates the conditions (on the left) from the corresponding conclusions (on the right).

\(\rho \)	\(gg' \)	\(r \)
\(> 0 \)	\(> 0 \)	\(\uparrow \uparrow \)
\(\uparrow \)	\(> 0 \)	\(\uparrow \downarrow \)
\(\downarrow \)	\(< 0 \)	\(\downarrow \uparrow \)
\(\downarrow \)	\(< 0 \)	\(\downarrow \downarrow \)

Table 1. “Non-strict” general rules for monotonicity.

Here, for instance, \(\uparrow \uparrow \) means that there is some \(c \in [a, b] \) such that \(r \downarrow \) (that is, \(r \) is non-increasing) on \((a, c)\) and \(r \uparrow \) (\(r \) is non-decreasing) on \((c, b)\); in particular, if \(c = a \) then \(r \downarrow \) simply means that \(r \uparrow \) on the entire interval \((a, b)\); and if \(c = b \) then \(r \downarrow \) means that \(r \downarrow \) on \((a, b)\). Thus, if one also knows whether \(r \uparrow \) or \(r \downarrow \) in a right neighborhood of \(a \) and in a left neighborhood of \(b \), then Table 1 uniquely determines the “non-strict” monotonicity pattern of \(r \). (The “strict” counterparts of these rules, with terms “increasing” and “decreasing” in place of “non-decreasing” and “non-increasing” respectively, also hold, according to the same Proposition 1.9 of [11].)

Clearly, the stated l'Hospital-type rules for monotonicity patterns are helpful wherever the l'Hospital rules for limits are so, and even beyond that, because these monotonicity rules do not require that both \(f \) and \(g \) (or either of them) tend to 0 or \(\infty \) at any point. (Special rules for monotonicity, which do require that both \(f \) and \(g \) vanish at an endpoint of \((a, b)\), were given, in different forms and with different proofs, in [7, 9, 2, 10, 17].)
Thus, it should not be surprising that a wide variety of applications of the l’Hospital-type rules for monotonicity patterns were given: in areas of analytic inequalities [5, 10, 11, 14], approximation theory [12], differential geometry [6, 7, 8, 16], information theory [10, 11], (quasi)conformal mappings [1, 2, 3, 4], probability and statistics [9, 11, 12, 13, 18, 19, 20, 21], etc.

These rules for monotonicity could be helpful when \(f' \) or \(g' \) can be expressed simpler than or similarly to \(f \) or \(g \), respectively. Such functions \(f \) and \(g \) are essentially the same as the functions that could be taken to play the role of \(u \) in the integration-by-parts formula

\[
\int u \, dv = uv - \int v \, du;
\]

this class of functions includes algebraic, exponential, trigonometric, logarithmic, inverse trigonometric and inverse hyperbolic functions, and as well as non-elementary “anti-derivative” functions of the form \(x \mapsto c + \int_a^x h(u) \, du \) or \(x \mapsto c + \int_x^b h(u) \, du \).

“Discrete” analogues, for \(f \) and \(g \) defined on \(\mathbb{Z} \), of the l’Hospital-type rules for monotonicity are available as well [15].

In this paper, we describe different facets of the relation of the (maximal) interval(s) of constancy of the original ratio \(r \) with those of the derivative ratio \(\rho \).

In what follows, let us always assume that \(\rho \) is (not necessarily strictly) monotonic (that is, \(\rho' \) or \(\rho_\downarrow \)) on \((a, b)\).

Let us say that an interval \(I \subseteq (a, b) \) is an interval of constancy (i.c.) of a function \(h: (a, b) \to \mathbb{R} \) if \(I \) is of nonzero length and \(h \) is constant on \(I \). If an i.c. \(I \) is not contained in any other i.c., let us say that \(I \) is a maximal i.c. (m.i.c.) It is easy to see that any i.c. is contained in a unique m.i.c. (which is simply the union of all i.c.’s containing the given i.c.).

It is easy to see that every i.c. of \(r \) is an i.c. of \(\rho \). One might think that, if \(\rho \) has more than one m.i.c., then this can also be the case for the original ratio \(r \). It may therefore be surprising that the opposite is true, and even in the following strong sense.

Proposition 1. The rules given by Table 1 can be strengthened as shown in Table 2.

\(\rho' \)	\(gg' \)	\(r \)
\(> 0 \)	\(> 0 \)	\(\setminus \)
\(> 0 \)	\(< 0 \)	\(\setminus \)
\(< 0 \)	\(> 0 \)	\(\setminus \)
\(< 0 \)	\(< 0 \)	\(\setminus \)

Table 2. Improved “non-strict” general rules for monotonicity.

Here, for instance, \(r \setminus / \setminus \) means that there is a subinterval \([c, d] \subseteq [a, b]\) (possibly of length 0) such that \(r' < 0 \) on \((a, c)\), \(r \) is constant on \((c, d)\), and \(r' > 0 \) on \((d, b)\).

Why is this proposition true? The key notion here is that of the function

\[
\tilde{\rho} := r' \frac{g^2}{|g'|},
\]

introduced in [11] and further studied in [17]. The key lemma concerning \(\tilde{\rho} \) [17, Lemma 1 and Remark 4] states, as presented in Table 2 here, that the monotonicity pattern of \(\tilde{\rho} \) is the same as that of \(\rho \) if \(gg' > 0 \), and opposite to the pattern of \(\rho \) if \(gg' < 0 \).
\[
\begin{array}{|c|c|c|}
\hline
\rho & gg' & \tilde{\rho} \\
\hline
\ell' & > 0 & \ell' \\
\hline
\ell & > 0 & \ell \\
\hline
\ell' & < 0 & \ell' \\
\hline
\ell & < 0 & \ell \\
\hline
\end{array}
\]

Table 3. The monotonicity patterns of \(\rho \) and \(\tilde{\rho} \) mirror each other

From this relation between \(\rho \) and \(\tilde{\rho} \), the rules given by Table 1 can be easily deduced, since

\[\text{sign}(r') = \text{sign}\tilde{\rho}. \]

A simple but important observation is that the derivative ratio \(\rho \) and its counterpart \(\tilde{\rho} \) are continuous functions [17]. Since the ratio \(r \) is differentiable, it is continuous as well. Therefore, any m.i.c. \(I \) of \(r \) or \(\rho \) or \(\tilde{\rho} \) is closed (as a set) in \((a,b) \); that is, \(I \) has the form \([c,d]\) or \((a,c]\) or \([d,b)\) or \((a,b)\), for some \(c \) and \(d \) such that \(a < c < d < b \). Moreover, it is seen from Table 2 that the m.i.c.’s of \(\rho \) are the same as those of \(\tilde{\rho} \), because any real function \(h \) is constant on an interval \(I \) if and only if \(h \) is both non-decreasing and non-increasing on \(I \).

Proposition 1 now follows easily. Indeed, it suffices to consider only the first line of Table 2 (since the other three lines can then be obtained by “vertical” reflection \(f \leftrightarrow -f \) and/or “horizontal” reflection \(x \leftrightarrow -x \)). So, assume that \(\rho \neq 0 \) on \((a,b)\) and \(gg' > 0 \). Then \(\tilde{\rho} \neq 0 \) on \((a,b)\). If \(\tilde{\rho} > 0 \) and hence \(r' > 0 \) on the entire interval \((a,b)\), let \(c := d := a \), to obtain the conclusion that \(r < 0 \) on \((a,b)\). If \(\tilde{\rho} < 0 \) and hence \(r' < 0 \) on \((a,b)\), let \(c := d := b \). It remains to consider the case when the sign of \(\tilde{\rho} \) takes on at least two different values (of the set \(\{−1,0,1\} \) of all sign values). Then, since the function \(\tilde{\rho} \) is non-decreasing and continuous on \((a,b)\), the level-0 set \(f_0(\tilde{\rho}) := \{u \in (a,b) \colon \tilde{\rho}(u) = 0\} \) of \(\tilde{\rho} \) must be a non-empty interval (which in fact must be an m.i.c. of \(\tilde{\rho} \) and hence a set closed in \((a,b)\)); in this case, take \(c \) and \(d \) to be the left and right endpoints, respectively, of the interval \(f_0(\tilde{\rho}) \) (at that, it is possible that \(c = a \) and/or \(d = b \)). Then \(\tilde{\rho} < 0 \) and hence \(r' < 0 \) on \((a,c)\); \(\tilde{\rho} = 0 \) and hence \(r' = 0 \) and \(r = \text{const} \) on \((c,d)\); and \(\tilde{\rho} > 0 \) and hence \(r' > 0 \) on \((d,b)\).

By Proposition 1, \(r \) can have no more than one m.i.c. On the other hand, one has

Proposition 2. If \(r \) has an m.i.c. \(I \), then \(I \) must be an m.i.c. of \(\rho \) and \(\tilde{\rho} \) as well.

Indeed, suppose that \(I \) is the (necessarily unique) m.i.c. of \(r \), so that \(f/g = r = K \) on \(I \) for some constant \(K \). Then obviously \(\rho = K \) and \(\tilde{\rho} = 0 \) on \(I \), so that \(I \) is an i.c. of \(\rho \) and \(\tilde{\rho} \). Let then \(J \) be the unique m.i.c. of \(\rho \) such that \(J \supseteq I \), whence \(f/g = \rho = K_1 \) on \(J \) for some constant \(K_1 \), and so, \(f = K_1 g + C \) and \(r = K_1 + C/g \) on \(J \), and hence on \(I \), for some constant \(C \). But \(r \) is constant on the nonzero-length interval \(I \), while \(g \) is not constant on \(I \) (because \(g'(x) \neq 0 \) for any \(x \in (a,b) \)). It follows that \(C = 0 \) and thus \(r = K_1 \) on \(J \). Finally, since \(I \) is an m.i.c. of \(r \) and \(J \supseteq I \), one concludes that \(J = I \), and so, \(I \) is an m.i.c. of \(\rho \) and hence of \(\tilde{\rho} \).

We complete the description of the relation between the m.i.c.’s of \(r \) and \(\rho \) by observing that any one m.i.c. \(I \) of a given derivative ratio \(\rho \) is the m.i.c. of an appropriately constructed original ratio \(r \) (which must, in view of Proposition 1, depend on the choice of \(I \)):

\[
\frac{\rho}{g} = K_1 \quad \text{on} \quad I
\]

\[
\frac{\tilde{\rho}}{g} = K_1 + C \quad \text{on} \quad I
\]
Proposition 3. For

- any differentiable function \(g: (a, b) \to \mathbb{R} \) such that \(gg'(x) \neq 0 \) for each \(x \in (a, b) \),
- any (not necessarily strictly) monotonic continuous function \(\rho: (a, b) \to \mathbb{R} \), and
- any m.i.c. \(I \) of \(\rho \)

there exists a differentiable function \(f: (a, b) \to \mathbb{R} \) such that \(\frac{f'}{g'} = \rho \) and the only m.i.c. of \(r := \frac{f}{g} \) is \(I \).

Indeed, let \(g, \rho, \) and \(I \) satisfy the conditions listed in Proposition 3 so that \(\rho = K \) on \(I \) for some constant \(K \). Note that the condition on \(g \) implies that either \(g' > 0 \) on the entire interval \((a, b) \) or \(g' < 0 \) on \((a, b) \) (see e.g. [17, Remark 3]), so that \(g \) is monotonic and hence of locally bounded variation on \((a, b) \). Take any point \(z \) in the interval \(I \) (which is an i.c. and hence non-empty) and define \(f \) by the formula

\[
 f(x) := Kg(z) + \int_z^x \rho(u) d g(u)
\]

for all \(x \) in \((a, b) \), where the integral may be understood in the Riemann-Stieltjes sense, with the convention that \(\int_z^x := -\int_x^z \) if \(x < z \). Because \(\rho \) is continuous and \(g \) is differentiable, it follows that for the so defined function \(f \) one has \(\frac{f'}{g'} = \rho \); moreover, \(f = Kg \) on \(I \), so that \(I \) is an i.c. of \(r \). But any i.c. of \(r \) is also an i.c. of \(\rho \), and \(I \) was assumed to be an m.i.c. of \(\rho \). It follows that \(I \) is an m.i.c. (and hence the only m.i.c.) of \(r \).

Let us summarize our findings: (i) the set of all m.i.c.’s of \(\tilde{\rho} \) is the same as that of \(\rho \); (ii) \(r \) can have at most one m.i.c., and its m.i.c. must also be an m.i.c. of \(\rho \) and thus of \(\tilde{\rho} \); moreover, then the m.i.c. of \(r \) is the level-0 set of \(\tilde{\rho} \); (iii) any one m.i.c. of a given derivative ratio \(\rho \) is the m.i.c. of an appropriately constructed original ratio \(r \).

References

[1] G.D. Anderson, S.-L. Qiu, M.K. Vamanamurthy, and M. Vuorinen, Generalized Elliptic Integrals and Modular Equations, Pacific J. Math. 192 (2000), 1–37.
[2] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen, Inequalities for Quasiconformal Mappings in Space, Pacific J. Math. 160 (1993), 1–18.
[3] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, Wiley, New York 1997.
[4] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen, Topics in special functions, Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 5–26.
[5] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen, Monotonicity of some functions in calculus, this Monthly, 113 (2006), 805-816.
[6] I. Chavel, Riemannian Geometry – A Modern Introduction, Cambridge Univ. Press, Cambridge, 1993.
[7] J. Cheeger, M. Gromov, and M. Taylor, Finite Propagation Speed, Kernel Estimates for Functions of the Laplace Operator, and the Geometry of Complete Riemannian Manifolds, J. Diff. Geom., 17 (1982), 15–54.
[8] M. Gromov, Isoperimetric Inequalities in Riemannian Manifolds, Asymptotic theory of finite dimensional spaces, Lecture Notes Math., vol. 1200, Appendix I, Springer, Berlin, 1986, pp. 114–129.
[9] I. Pinelis, Extremal Probabilistic Problems and Hotelling’s T^2 Test under Symmetry Condition, *Preprint*, 1991. A shorter version of the preprint appeared in *Ann. Statist.*, 22 (1994), 357–368.

[10] I. Pinelis, L’Hospital Type Results for Monotonicity, with Applications, *J. Inequal. Pure Appl. Math.*, 3 1 (2002), Article 5, 5 pp. (electronic).

[11] I. Pinelis, L’Hospital Type Rules For Oscillation, with Applications, *J. Inequal. Pure Appl. Math.*, 2 3 (2001), Article 33, 24 pp. (electronic).

[12] I. Pinelis, Monotonicity Properties of the Relative Error of a Padé Approximation for Mills’ Ratio, *J. Inequal. Pure Appl. Math.*, 3 2 (2002), Article 20, 8 pp. (electronic).

[13] I. Pinelis, L’Hospital Type Rules for Monotonicity: Applications to Probability Inequalities for Sums of Bounded Random Variables, *J. Inequal. Pure Appl. Math.* 3 1 (2002), Article 7, 9 pp. (electronic).

[14] I. Pinelis, L’Hospital Rules for Monotonicity and the Wilker-Anglesio Inequality, this Monthly, 111 (2004) 905–909.

[15] I. Pinelis, L’Hospital-Type Rules for Monotonicity and Limits: Discrete Case, *Preprint*, 2005.

[16] I. Pinelis, L’Hospital-Type Rules for Monotonicity, and the Lambert and Saccheri Quadrilaterals in Hyperbolic Geometry, *J. Inequal. Pure Appl. Math.* 6 4 (2005), Article 99, 12 pp. (electronic).

[17] I. Pinelis, On L’Hospital-Type Rules for Monotonicity, *J. Inequal. Pure Appl. Math.* 7 2 (2006), Article 40, 19 pp. (electronic).

[18] I. Pinelis, Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above. *To appear in: IMS Lecture Notes-Monograph Series. High Dimensional Probability*. Vol. 51 (2006). Institute of Mathematical Statistics, 2006. DOI: 10.1214/074921706000000743. http://arxiv.org/abs/math.PR/0512301.

[19] I. Pinelis, Normal domination of (super)martingales. (2006) *To appear in: Electronic J. Probab.* http://arxiv.org/abs/math.PR/0512382.

[20] I. Pinelis, On inequalities for sums of bounded random variables. (2006) *Preprint*, http://arxiv.org/abs/math.PR/0603030.

[21] I. Pinelis, Toward the best constant factor for the Rademacher-Gaussian tail comparison. (2006) *Preprint*, http://arxiv.org/abs/math.PR/0605340.

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931

E-mail address: ipinelis@mtu.edu