Role of Adenosine Kinase in Sphingosine-1-Phosphate Receptor 1-Induced Mechano-Hypersensitivities

Filomena Lauro1,2, Luigino Antonio Giancotti1,2, Grant Kolar2,3, Caron Mitsue Harada1,2, Taylor A. Harmon4, Timothy J. Garrett5, Daniela Salvemini1,2

Received: 26 August 2021 / Accepted: 22 October 2021 / Published online: 13 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Emerging evidence implicates the sphingosine-1-phosphate receptor subtype 1 (S1PR1) in the development of neuropathic pain. Continued investigation of the signaling pathways downstream of S1PR1 are needed to support development of S1PR1 antagonists. In rodents, intrathecal (i.th.) injection of SEW2871, a selective S1PR1 agonist, activates the nod-like receptor family, pyrin domain containing 3 inflammasome, increases interleukin-1β (IL-1β) and causes behavioral hypersensitivity. I.th. injection of a IL-1β receptor antagonist blocks SEW2871-induced hypersensitivity, suggesting that IL-1β contributes to S1PR1’s actions. Interestingly, previous studies have suggested that IL-1β increases the expression/activity of adenosine kinase (ADK), a key regulator of adenosine signaling at its receptors (ARs). Increased ADK expression reduces adenosine signaling whereas inhibiting ADK restores the action of adenosine. Here, we show that SEW2871-induced behavioral hypersensitivity is associated with increased expression of ADK in astrocytes of the dorsal horn of the spinal cord. Moreover, the ADK inhibitor, ABT702, blocks SEW2871-induced hypersensitivity. These findings link ADK activation to S1PR1. If SEW2871-induced pain is mediated by IL-1β, which in turn activates ADK and leads to mechano-allodynia, then blocking ADK should attenuate IL-1β effects. In support of this idea, recombinant rat (rrIL-1β)-induced allodynia was blocked by at least 90% with ABT702, functionally linking ADK to IL-1β. Moreover, the selective A3AR antagonist, MRS1523, prevents the ability of ABT702 to block SEW2871 and IL-1β-induced allodynia, implicating A3AR signaling in the beneficial effects exerted by ABT702. Our findings provide novel mechanistic insight into how S1PR1 signaling in the spinal cord produces hypersensitivity through IL1-β and ADK activation.

Keywords Sphingosine-1-phosphate receptor 1 · Adenosine receptor subtype 3 · Adenosine kinase · Neuroinflammation · Mechano-hypersensitivities

Introduction
Recent epidemiological studies on chronic pain reveal that 50.0 million of U.S. adults (20.4%) have experienced chronic pain and 19.6 million (8.0%) have experienced high-impact chronic pain (Dahlhamer et al. 2016). Since pain drugs often fail to achieve adequate relief in patients, and opioid treatments are associated with abuse and addiction, developing new pain medicines is crucial. Over the last several years, the sphingosine-1-phosphate (S1P) receptor subtype 1 (S1PR1) has emerged as an attractive molecular target for therapeutic intervention (Squillace et al. 2020). Several studies found that alterations in sphingolipid metabolism in the spinal dorsal horn increase S1P production and contribute to hypersensitivity associated with cancer pain (Grenald et al. 2017), opioid-induced hyperalgesia (Muscoli et al. 2010);
Doyle et al. 2020a), neuropathic pain caused by chemotherapy (Stockstill et al. 2018; Janes et al. 2014), multiple sclerosis (Doolen et al. 2018) or traumatic peripheral nerve injury (Chen et al. 2019). Blocking S1PR1 with functional or competitive S1PR1 antagonists prevents and reverses neuropathic pain states of various etiologies (Chen et al. 2019; Janes et al. 2014; Stockstill et al. 2018, 2020). Moreover, studies in breast cancer patients showed that S1PR1 is a potential molecular driver of sensory peripheral neuropathy induced by chemotherapy (Chua et al. 2020). In the spinal cord, S1PR1 activation leads to the development of mechanical and thermal hypersensitivity through nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation and interleukin-1β (IL-1β) signaling (Doyle et al. 2019). IL-1β, a potent neuroexcitatory, inflammatory and pronociceptive cytokine (Rossi et al. 2014) has been linked to the development of S1PR1-induced hypersensitivity (Doyle et al. 2019), but the mechanisms whereby IL-1β contributes to S1PR1’s induced hypersensitivity are not known. Here, we provide evidence that IL-1β drives S1PR1’s effects through alterations in the adenosine pathway in the spinal cord that are dependent upon adenosine kinase. Our findings uncover the existence of a functional connection between S1PR1 and adenosine signaling.

Results and Discussion

Intrathecal (i.th.) injection of the highly selective S1PR1 agonist, SEW2871 (2 nmol (Sanna et al. 2004) activates NLRP3 in the dorsal horn of the spinal cord (DH-SC) and evokes significant mechano-allodynia that is maximal within 2 h post-injection in both female and male rats (Fig. 1a). NLRP3 is one of seven known nod-like receptors that form multimolecular inflammasome complexes (Kim et al. 2016; Davis et al. 2011) in the central nervous system (CNS) that function as intracellular sensors for infectious agents, as well as for host-derived danger signals (Voet et al. 2019; Tsuchiya and Hara 2014; Walsh et al. 2014). On activation, NLRP3 forms the inflammasome complex by binding and stimulating the autoactivation of the cysteine protease caspase-1 that catalyzes the cleavage of proIL-1β to the active form, IL-1β (Lopez-Castejon and Brough 2011; Franchi et al. 2009). At time of peak allodynia (Fig. 1a) and when compared with animals that received its vehicle, SEW2871 causes a significant increase in the expression of the NLRP3 subunit (Fig. 1b), cleaves caspase-1 (Fig. 1c) and increases IL-1β expression (Fig. 1d). IL-1β, a potent neuroexcitatory cytokine (Viviani et al. 2003) released from neurons, microglia and astrocytes (Ren and Torres 2009) contributes directly to S1PR1’s induced hypersensitivity (Doyle et al. 2019). Although the molecular mechanisms remain unexplored, we implicate roles for adenosine kinase (ADK), the key determinant of adenosine signaling (Boison 2013; Aronica et al. 2013). In the adult CNS, ADK is highly expressed in astrocytes and is upregulated in response to increased astrocyte reactivity (Boison et al. 2010). Noteworthy, S1PR1 is highly expressed on astrocytes (Healy and Antel 2016; Van Doorn et al. 2010). Astrocytes are a key cellular hub for the pharmacological actions of S1PR1 activity (Chen et al. 2019) and S1PR1 antagonism (Doyle et al. 2020a).

In vitro studies in astrocytes suggested that IL-1β increases the expression/activity of ADK (Aronica et al. 2011). It is well-documented that adenosine signaling is significantly reduced when ADK expression is increased (Boison 2013). We recently reported that activation of the A3AR subtype, one of adenosine’s four known receptors, inhibits behavioral hypersensitivities that accompany many pain states (Jacobson et al. 2020). Moreover, increased expression of ADK in the spinal cord has been linked to decreased adenosine-A3AR signaling and inhibiting ADK activity blocks the development of hypersensitivity in an A3AR-dependent manner (Little et al. 2015; Wahlman et al. 2018). Whether S1PR1-induced hypersensitivity is driven by IL-1β and effects downstream of ADK is not known.

Our immunofluorescence data show that the S1PR1 agonist, SEW2871, increases ADK expression in the dorsal horn lamina I and II of the DH-SC (Fig. 1g–i). This increase was associated with astrocytes identified by colocalization staining with the specific astrocyte marker, GFAP (Fig. 1h, i). We measured levels of adenosine and upstream metabolites (adenosine triphosphate, ATP; adenosine diphosphate, ADP; adenosine monophosphate, AMP) or breakdown products (inosine, AMP) using a ultra-high-performance liquid chromatograph/high-resolution mass spectrometry (UHPLC-MS/HRMS) assay in DH-SC in response to S1PR1 activation and found no changes (Supplementary Figs. 1–3, Table 1). The LC-HRMS/MS method developed was linear over the measured concentration range of 50 nM to 100 µM and we detected adenosine and inosine in each sample. It is possible that the enzymatic processes were not fully quenched, thus preventing any observation of changes in the tissue samples since these analytes are involved in rapid breakdown processes. In a separate assay, we also measured nicotinamide (NAM), nicotinamide mononucleotide (NMN), N1-methyl NAM, nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), ATP, guanosine triphosphate (GTP), cytidine triphosphate (CTP), thymidine triphosphate (TTP), uridine triphosphate (UTP), inosine monophosphate (IMP), AMP, cytidine monophosphate (CMP), guanosine monophosphate (GMP), uridine monophosphate (UMP) and thymidine monophosphate (TMP). Again, we found no significant differences (data not shown). However, S1PR1-induced ADK expression must have compromised endogenous adenosine signaling, since i.th. injection of the potent (IC50 = 1.7 nM) and

Springer
Fig. 1 ADK signaling in the dorsal horn of the spinal cord drives S1PR1-induced mechano-allodynia. When compared to its vehicle (3% DMSO in saline; n=6 males and n=4 females), i.th. administration of SEW2871 (2 nmol; n=6 males and n=4 females) induces mechano-allodynia in both male and female rats with peak effects reached at 2 h after injection (a). The development of mechano-allodynia was prevented by i.th. administration of the ADK inhibitor ABT702 (30 nmol; n=6 males and n=4 females). I.th. injection of the A3AR antagonist MRS1523 (3 nmol; n=4 males and n=4 females) blocked the beneficial effect induced by ABT702 (30 nmol) (a). Levels of NLRP3 (b, n=5), cleaved caspase-1 (c, n=5) and IL-1β (d, n=5) in DH-SC harvested from SEW2871-treated rats were significantly increased when compared to DH-SC harvested from rats 2 h after i.th. vehicle (b-d, n=5). Results are expressed as mean±SD for n rats and analyzed by one-way ANOVA with Tukey’s comparisons (b-f) or student’s t test (b-e). *p<0.05 vs vehicle, †p<0.05 vs SEW2871 (b-f). ADK protein expression (e, n=6) in DH-SC harvested from rIL-1β-treated rats were significantly increased when compared to DH-SC harvested from rats 1 h after i.th. vehicle (e, n=6). Results are expressed as mean±SD for n rats and analyzed by one-way ANOVA with student’s t test (e). When compared with its vehicle (3% DMSO in saline; n=7), i.th. administration of rrIL-1β (100 ng; n=7) induced mechano-allodynia with peak effects reached at 1 h after injection (f). The development of mechano-allodynia was prevented by i.th. administration of the adenosine kinase inhibitor ABT702 (30 nmol; n=7). I.th. injection of A3AR antagonist MRS1523 (3 nmol; n=4) blocked the beneficial effect induced by ABT702 (30 nmol) (f). Results are expressed as mean±SD for n rats and analyzed by one-way ANOVA with Tukey’s comparisons (f). *p<0.05 vs vehicle, †p<0.05 vs IL-1β. Representative images of the dorsal horn from immunofluorescence studies show increased ADK (red) expression in animals receiving intrathecal injection of SEW2871 (2 nmol; n=4) (h) compared to vehicle (3% DMSO in saline; n=5)-treated animals (g). This increase is particularly prominent among astrocytes (GFAP, green) (see inset in panels) from lamina I and II (approximately bounded by yellow box). ADK signal associated with astrocytes is significantly increased in SEW2871-treated animals compared to vehicle-treated animals (i). Results are expressed as mean±SD for n rats and analyzed by student’s t test (i). *p<0.5 vs vehicle.
highly selective non-nucleoside ADK inhibitor, ABT-702 (30 nmol) (Kowaluk et al. 2000) blocked SEW2871-induced hypersensitivity in both female and male rats (Fig. 1a). These findings establish a functional link of ADK activation to S1PR1. Moreover, the anti-allodynic effects of ABT-702 were significantly attenuated in both female and male rats in the presence of MRS1523 (3 nmol), a potent and selective A3AR antagonist (Little et al. 2015) (Fig. 1a, f), consistent with adenosine signaling at the A3AR. If SEW2871-induced pain is mediated by IL-1β, which in turn increases ADK expression/activation and leads to mechano-allodynia, then IL-1β should recapitulate the effects seen with SEW2817. In support of this idea, i.th. injection of recombinant rat IL-1β (rrIL-1β) increases ADK expression in the DH-SC (Fig. 1e) and mechano-allodynia (Fig. 1f). These effects are blocked with ABT702 by at least 90% (Fig. 1f) and MRS1523 attenuates ABT702’s ability to block IL-1β-induced allodynia (Fig. 1f), implicating A3AR signaling in the beneficial effects exerted by ABT702.

Collectively, these results suggest a model whereby S1PR1 activation engages NLPR3, leading to IL-1β formation, increased ADK expression/activation and reduced A3AR signaling. Blocking ADK engages A3AR signaling and prevents the development of S1PR1-evoked hypersensitivity. Our findings, which provide novel mechanistic insights into molecular signaling pathways engaged by S1PR1 in the spinal cord, in turn suggest that the beneficial effects of S1PR1 antagonists observed in neuropathic pain (Chen et al. 2019; Janes et al. 2014; Stockstill et al. 2018, 2020) may include their ability to restore A3AR signaling.

We tested this possibility in a well-characterized rat model of traumatic nerve injury neuropathic pain caused by chronic constriction of the sciatic nerve (CCI) (Bennett and Xie 1988). Two S1PR1 antagonists were used: the competitive S1PR1 antagonist, TASP0277308 (Fuji et al. 2012b) and FTY720, a functional S1PR1 antagonist (Brinkmann et al. 2010; Bigaud et al. 2014). We previously reported that in this model, ADK expression/activation increases in response to nerve injury in the DH-SC at the time of peak allodynia, and that systemic administration of an ADK inhibitor (ABT-70) reverses mechano-allodynia (Little et al. 2015). Moreover, i.th. injection of MRS1523 blocks the effects of ABT-702, consistent with adenosine signaling at the A3AR. Chronic constriction of the sciatic nerve leads to the development of mechano-allodynia, which peaks around 7 days (Chen et al. 2019). At time of peak mechano-allodynia (7 days after nerve injury), oral administration of TASP0277308 or FTY720 reverses mechano-allodynia in a time-dependent manner (Fig. 2a, b). These effects are abrogated by an i.p. injection of MRS1523 (Fig. 2b). In contrast, the anti-allodynic effects of morphine are not altered by MRS1523 (Fig. 2c), supporting previous findings (Doyle et al. 2020b). TASP0277308 or FTY720 were used at doses (3 mg/kg) used in previous studies (Chen et al. 2019). Moreover, we show that the beneficial effects observed with systemic administration of FTY720 are blocked by i.th. injection of MRS1523, implicating the DH-SC as a prominent site of action (Fig. 2d). In order to exclude any potential effects of MRS1523 as an S1PR1 antagonist, we performed a GPCR cell-based antagonist β-arrestin assay at Eurofins Discovery. MRS1523 did not inhibit S1PR1 agonist activity, confirming that it is not a S1PR1 antagonist (Fig. 2e).

In summary, we present the first evidence that S1PR1-induced behavioral hypersensitivity is mediated by an IL-1β-ADK-A3AR signaling pathway, bridging the gap in our understanding of the mode of action of S1PR1 antagonists.

Material and Methods

Animals

Female or male Sprague–Dawley rats (200–220 g) were purchased from Envigo Laboratories (Indianapolis, IN USA). Animals of the same sex were housed 3 per cage with 12-h light/dark cycles and food/water ad libitum. All experiments were conducted in accordance with the National Institutes of Health, the International Association for the Study of Pain guidelines for laboratory animal welfare, and following the Animal Utilization Protocol #2241 approved by the Saint Louis University Institutional Animal Care and Use Committee.

Test Compounds

Fingolimod (FTY720) and SEW2871 were purchased from Cayman Chemical (Ann Arbor, Michigan). Recombinant rat IL-1β (rrIL-1β) was purchased from Bio-Techne (Minneapolis, Minnesota), MRS1523, [3-propyl-6-ethyl-5[(ethylthio) carbonyl]-2-phenyl-4-propyl-3-pyridinecarboxylate] from Sigma (St. Louis, MO, USA), ABT-702 dihydrochloride (3-3-Bromophenyl)-7-[6-(4-morpholinyl)-3-pyrido[2,3-d] byrimidin-4-amine dihydrochloride was purchased from Tocris. TASP0277308 was synthesized as previously reported (Fuji et al. 2012a).

Drug Delivery

Drugs were co-administrated in a single i.th. injections performed using the Wilcox method (Hylden and Wilcox 1980): rats were lightly anesthetized with isoflurane and a 50 µL Hamilton syringe (Hamilton, Reno, NV USA) with a 25-ga needle was inserted between the L5/L6 vertebrae puncturing the dura (confirmed by presence of reflexive tail flick and hind limbs) and vehicle or test substance(s) (10 µL) was injected. The vehicle used for
all i.th. injections of test agents was 3% (for SEW2871, ABT702 and rrIL-1β), or 15% (for A-438079) dimethyl sulfoxide (DMSO) in saline. The vehicle used for all oral administration of test agents was 5% DMSO/0.5% methylcellulose in water (0.2-mL dosing volume). The vehicle used for i.p. injections was 50% DMSO/saline.

Estrus Smears

Rat vaginal smears were taken daily for 7 days before and after the experiment to verify normal cyclicity. Cells were placed on a glass slide and analyzed with a light microscope to determine their stage of estrus cycle as described (Byers et al. 2012). All animals displayed a normal 4- to 5-day estrus cycle.

Chronic Constriction Injury (CCI) Model of Neuropathic Pain

CCI to the sciatic nerve of the left hind leg in rats was performed under general anesthesia using the method described by Bennett et al. (Bennett and Xie 1988). Briefly, rats (weighing 200–250 g at the time of surgery) were anesthetized with 3% isoflurane/O₂ inhalation and maintained on 2% isoflurane/O₂ for the duration of surgery. The left thigh was shaved and scrubbed with dermaclор solution (0.2% chlorhexidine gluconate), and a small incision (1–1.5 cm in length) was made in the middle of the lateral aspect of the thigh to expose the sciatic nerve. The nerve was loosely ligated at 3 sites spaced 1 mm apart using 4.0 silk sutures. The surgical site was closed with a skin clip.
Behavioral Testing

Mechanical allodynia as a readout was assessed as the hind paw withdrawal response to von Frey hair stimulation using the up-and-down method (Dixon 1980). Briefly, the animals were first acclimatized (30 min) in individual clear Plexiglas boxes on an elevated wire mesh platform to facilitate access to the plantar surface of the hind paws. Subsequently, a series of von Frey hairs (1.4, 2, 4, 6, 8, 10, 15, 26 g; Stoelting, Wood Dale, IL USA) were applied perpendicular to the plantar surface of the hind paw, until the filament buckles, for 2–5 s. A test began with the application of the 4 g for rats. A positive response was defined as clear paw withdrawal or shaking. In the event of a positive response, the next lighter hair was applied, whereas the next heavier hair was applied in the event of a negative response. At least three readings are obtained after the first positive response and the pattern of response was converted to a 50% paw withdrawal threshold (PWT), using the method described by Chaplan et al. (1994). Mechano-allodynia was defined as a significant (2 SD) decrease in the measured behavior compared to the individual animal’s baseline behavior prior to mechanical or pharmacological pain induction.

Western Blot Analysis

Animals were sacrificed under anesthesia through transcardiac perfusion with cold phosphate-buffered saline (PBS). The dorsal lower lumbar enlargement (L4-L6) of the spinal cord was harvested and flash-frozen in liquid nitrogen. Samples were homogenized, and protein concentrations were determined by bicinchoninic acid (BCA) protein assay (Thermo-Fisher, Waltham, MA). Proteins were denatured in Laemmli buffer and boiled for 5 min. Equal amounts of proteins (50 µg or 10 µg) were loaded and resolved by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membranes. Membranes were blocked for 2 h at room temperature in 3% bovine serum albumin (BSA) in 1X TBS-T. Anti-NLRP3 (1:1000; Novus Biologicals, Littleton, Colorado, #NBP2-12446), anti-caspase 1 (p20) (1:1000; Santa Cruz Biotechnology, Santa Cruz, California, #sc-398715) and anti-IL-1β antibody (1:1000, Cell Signaling, Danvers, Massachusetts, #12242), anti-adenosine kinase (1:1000; Thermo Fisher Scientific, Waltham, Massachusetts, #PA5-27399) were diluted in 1.5% BSA in 1X TBS-T, and membranes were incubated overnight at 4 °C. The bound antibodies were visualized after incubation with peroxidase-conjugated goat anti-rabbit IgG (1:5000, Cell Signaling, #7074) or peroxidase-conjugated bovine anti-mouse IgG secondary antibody (1:5000, Jackson ImmunoResearch, #04-18-15) for 1 h at RT. Peroxidase-conjugated antibodies were visualized by enhanced chemiluminescence (Bio-Rad, Hercules, CA). Chemiluminescence antibody signals were documented using Chemidoc XRS + image system and ImageLab software (BioRad) using exposure settings and quantified for band densitometry. Each membrane was then probed for β-actin (1:5000, Sigma-Aldrich, St. Louis, MO, #A5441) as endogenous loading controls. The antibody used to probe for NLRP3, IL-1β, caspase 1 (p20), adenosine kinase detect the same bands as reported in a previous publications (Doyle et al. 2019; Wahlman et al. 2018). Relative protein expression was quantified by measuring band densitometry. Images for the blots of a protein of interest and their corresponding β-actin were selected for analyses and presentation based on a predetermined upper grayscale value (45,000–65,000 units) to assure linear densitometric values. Images were analyzed using the lane and band functions of the ImageLab™ software. For presentation purposes, the grayscale range was set between 0 units and the predetermined upper grayscale value (45,000–65,000 units) for the protein of interest and corresponding β-actin prior to exporting as an image file. Post-export modifications of the images were limited to cropping to the regions of interest.

Immunofluorescence

Immunofluorescence was performed using modifications of previously reported methods (Wahlman et al. 2018). After behavioral measurements, rats were perfused with 4% PFA and the lower lumbar enlargement of the spinal cord (L4-L6) was harvested. Tissue was fixed for 30 min with 4% PFA in 1X PBS, washed with PBS and cryoprotected in 30% sucrose before embedding in OCT, and frozen in 2-methylbutane and liquid nitrogen bath. Transverse sections (20 µm) were cut using a cryostat and collected on glass microscope slides. Spinal cord sections were fixed in 4% PFA (10 min), blocked (5% donkey serum, 0.5% bovine serum albumin in 1X PBS, for 1 h), and then immunolabeled using an 18-h incubation (4 °C) with rabbit polyclonal anti-ADK (1:100; Thermo Fisher Scientific, Waltham, Massachusetts, #PA5-27399) and anti-gilibrillary acidic protein (GFAP) (1:100; Sigma-Aldrich, St. Louis, MO, #G3893). After a series of PBS rinses, sections were incubated for 2 h with donkey antirabbit Alexa Fluor 594 conjugated (1:250; Jackson ImmunoResearch, #711-585-152) and antimouse Alexa Fluor 488 conjugated antibody (1:250; Jackson ImmunoResearch, #715-545-151). The coverslips were mounted with Prolong Gold antifade reagent containing DAPI [4,6-Diamidino-2-phenylindole, dihydrochloride] to label nuclei (Electron Microscopy Sciences, Hatfield, PA). Immunofluorescence images were captured on a Leica TCS SP8 Confocal microscope (Leica Microsystems, Exton, PA) using a 20× lens (0.75 NA) using the same laser power and detector gain for all animals. 8 bit images were collected at 1024×768 resolution and analyzed using the SVI Huygens.
Object Analysis module (SVI, Netherlands). GFAP and adenosine antibodies were used in a previous publication (Wahlman et al. 2018). GFAP signal in hand selected areas representing lamina 1 and 2 was used to create a ROI for measuring intensity and counting numbers of voxels corresponding to a volume of ADK encompassing the GFAP signal + 1 μm of surrounding area to approximate astrocytes. One animal from the SEW group was excluded as a clear outlier based on ADK signal out of observed ranges seen for either treatment group. Example images produced using Surface Visualization module of SVI Huygens with the same thresholding applied to both images.

Ultra‑High‑Performance Liquid Chromatography/High‑Resolution Mass Spectrometry (UHPLC‑MS/HRMS) Analysis for Adenosine and Inosine

All solvents were of liquid chromatography–mass spectrometry (LC–MS) or better quality. Water with 0.1% formic acid (FA) and methanol (MeOH) with 0.1% FA were purchased from Honeywell Chromasolv™ (Charlotte, NC, USA). Adenosine standard was purchased from ACROS Organics (New Jersey, USA). Inosine standard was purchased from Millipore Sigma (Darmstadt, Germany). Adenosine-13C5 was purchased from Toronto Research Chemicals (Toronto, ON, Canada). Inosine-15N4 was purchased from Cambridge Isotope Laboratories (Tewkesbury, MA, USA).

Combined adenosine and inosine stock solution was prepared in 17:3 H2O:MeOH + 0.1% FA at 1 mM from 5 mM individual stocks in same. Calibration standards were prepared in same from 50 nM to 100 μM in half-order of magnitude increments via serial dilution from combined stock (e.g. 50 nM, 100 nM, 500 nM, 1 μM, etc.), as were quality control (QC) standards at 2.5 and 25 μM.

The internal standard (IS) was made at 10 μg/mL in 17:3 H2O:MeOH + 0.1% FA from 1 mg/mL individual stocks of adenosine-13C5 and inosine-15N4 in 19:1 H2O:MeOH + 0.1% FA.

All samples were injected as extracted by third party (PCA protein precipitation and KOH neutralization), with the addition of IS 3:17 (IS:sample extract). All analyses were performed on a Dionex UltiMate™ 3000 UHPLC coupled to a Thermo Q Exactive™ Plus Hybrid Quadrupole-Orbitrap™ MS.

Column used was a Phenomenex Kinetex PFP, 1.7 μm, 2.1 × 50 mm. Mobile phase A was 0.1% FA in H2O; mobile phase B was 0.1% FA in MeOH. Isocratic elution at 15% B was accomplished in 2 min with a 500 μL/min flow rate and a column temperature of 45 °C. Injection volume was 2 μL.

Negative Heated ESI (HESI) parameters were as follows: − 3.0 kV spray voltage, 40% S-lens, 50 au sheath gas, 15 au auxiliary gas, 1 au sweep gas, 350 °C capillary temperature & 275 °C HESI probe temperature.

LC–MS/MS Assay for Nucleotides

The assay covered the analysis of NAM, NMN, 1-methyl NAM, NAD, NADPH, ATP, GTP, CTP, TTP, UTP, IMP, AMP, CMP, GMP, UMP, and TMP. Detailed protocols for LC–MS/MS assays of oxidized nucleotides were described elsewhere (Petucci et al. 2019).

An aliquot of biological fluid, cell homogenate, or tissue homogenate was quenched with equal volume of 1 M PCA and spiked with a mixture of heavy isotope-labeled, nucleotide internal standards followed by the addition of 1 M ammonium formate. Samples were vortexed and centrifuged at 18,000×g for 5 min at 10 °C. and then filtered through an AcroPrep Advance 3 K Omega Filter Plate (Pall Corporation) by centrifugation at 3500×g for 60 min prior to LC–MS/MS analysis. Metabolites were separated on a 2.1×50 mm, 3 μm Thermo Scientific Hypercarb column (T=30 °C) using a Dionex Ultimate 3000 UHPLC. The step gradient was 98% A (10 mM ammonium acetate, pH 9.5) and 2% B (ACN) to 64% A and 36% B over 6.3 min. The step gradient began at 2% B (0.6 mL/min flow rate) from 0 to 0.45 min, was increased from 2 to 36% B (0.6 mL/min flow rate) from 0.45 to 6.3 min, was increased from 36 to 95% B (0.8 mL/min flow rate) from 6.3 to 6.4 min, and was held until 8.4 min. Re-equilibration was performed at 2% B from 8.4 to 8.5 min (0.7 mL/min flow rate) and was held until 11.5 min. The flow returned to 0.6 mL/min at 11.6 min and was held until 11.7 min. Quantitation of pyridine nucleotides was achieved using single reaction monitoring (SRM) on a Thermo Scientific Quantiva triple quadrupole mass spectrometer (Thermo Scientific). The mass spectrometer was operated in positive ion mode using electrospray ionization with an ESI capillary voltage of 3500 V. The ion transfer tube temperature was 350 °C and vaporizer temperature was 350 °C. The ESI source sheath gas was set to 40, the auxiliary gas was set to 10, and the sweep gas was set to 1. The mass spectrometer was operated with a mass resolution of 0.7 Da, a cycle time of 0.3 s, and nitrogen collision gas of 1.5 mTorr for the generation and detection of product ions of each nucleotide. Collision energies to produce product ions ranged from 16 to 46 V with RF lens values ranging from 43 to 85 V.

S1PR1 Functional Assay

To evaluate the MRS1523 activity on S1PR1, S1PR1 Lysophospholipid (S1P) GPCR cell-based antagonist β-Arrestin assay (The PathHunter® β-Arrestin assay; Eurofins Discovery, Fremont, CA) was performed following the manufacturer's instructions. β-Arrestin recruitment was measured in cells expressing S1PR1. Data were normalized to the maximal and minimal response observed in the presence of EC80 ligand and vehicle. The following EC80
concentrations were used: mEDG1 Arrestin: 0.065 μM S1P (Fig. 2e). Percentage inhibition was calculated using the following formula: % Inhibition = 100% × (1 − (mean RLU of test sample − mean RLU of vehicle control)/(mean RLU of EC80 control − mean RLU of vehicle control)). Compound activity was analyzed using CBIS data analysis suite (ChemInnovation, CA).

Statistical Analysis

Data are expressed as mean ± standard deviation (SD). No differences were observed between male and female rats behavior (p < 0.05) and therefore, where indicated, data were expressed as a single group. Justification for animal numbers was consistent with NIH policy (NOT-OD-15-102), and experiments were randomized to blinded treatment groups, giving 80% power to detect a treatment effect size of 20% compared to a baseline response of 5% at a significance level of 0.05 (Andrews et al. 2016). Behavioral data were analyzed by student’s t test, one-way, two-way, or repeated measures ANOVA with Dunnett’s or Tukey’s pair-wise comparisons. Protein expression data were determined by two-tailed, one-way ANOVA with Tukey’s comparisons. All statistical analyses were performed using GraphPad Prism version 9.0 (Graph Pad Inc., San Diego, CA).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10571-021-01162-8.

Acknowledgements The authors thank Dr. Zhoumou Chen (Saint Louis University, St. Louis, Missouri, USA) for his technical support during the experiments and Dr. Joel Eisenberg (Saint Louis University, St. Louis, Missouri, USA) for editing the manuscript.

Funding This research was supported by Saint Louis University Start Up Fund (DS), NIH/NIDA grant R01DA043543 (DS) and Training Grant T32GM008306-28 (CMH).

Declarations

Conflict of interest DS has patents submitted by Saint Louis University that cover some of the intellectual property described in this manuscript (U.S. patent number 8,747,844 and its divisional, U.S. patent application number 8,945,549). All other authors declare no competing financial interests.

Ethical Approval All animal experiments were conducted in accordance with the National Institutes of Health, the International Association for the Study of Pain guidelines for laboratory animal welfare, and the Saint Louis University Institutional Animal Care and Use Committee.

References

Andrews NA, Latremoliere A, Basbaum AI, Mogil JS, Porreca F, Rice ASC, Woolf CJ, Currie GL, Dworkin RH, Eisenach JC, Evans S, Gewandter JS, Gover TD, Handwerker H, Huang W, Iyengar S, Jensen MP, Kennedy JD, Lee N, Levine J, Lidster K, Machin I, McDermott MP, McMahon SB, Price TJ, Ross SE, Scherrer G, Seal RP, Sena ES, Silva E, Stone L, Svensson CI, Turk DC, Whiteside G (2016) Ensuring transparency and minimization of methodologic bias in preclinical pain research: PPRECISe considerations. Pain 157(4):901–909. https://doi.org/10.1097/j.pain.0000000000004458

Aronica E, Zurolo E, Iyer A, de Groot M, Anink J, Carbonell C, van Vliet EA, Baayen JC, Boison D, Gorter JA (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52(9):1645–1655. https://doi.org/10.1111/j.1528-1167.2011.03115.x

Aronica E, Sandau US, Iyer A, Boison D (2013) Glial adenosine kinase—a neuropathological marker of the epileptic brain. Neurochem Int 63(7):688–695. https://doi.org/10.1016/j.neuint.2013.01.028

Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107

Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V (2014) Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta 1841(5):745–758. https://doi.org/10.1016/j.bbapal.2013.11.001

Boison D (2013) Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 65(3):906–943. https://doi.org/10.1124/pr.112.1060364

Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17(7):1071–1082. https://doi.org/10.1038/cdd.2009.131

Brinkmann V, Billich A, Baumberker T, Heining P, Schmouder R, Francis G, Aradhya S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9(11):883–897. https://doi.org/10.1038/nrd3248

Byers SL, Wiles MV, Dunn SL, Taft RA (2012) Mouse estrous cycle identification tool and images. PLoS ONE 7(4):e35538. https://doi.org/10.1371/journal.pone.0035538

Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

Chen Z, Doyle TM, Quong L, Largent-Milnes TM, Giancotti LA, Kolar G, Squillace S, Boccella S, Walker JK, Pendleton A, Spiegel S, Neumann WL, Vanderah TW, Salvemini D (2019) Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1820466116

Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, Lai D, S, Neumann WL, Vanderah TW, Salvemini D (2019) Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1820466116

Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, Lai D, Schneider BP, Rashkin SR, Witte JS, Friedman PN, Ratain MJ, McLeod HL, Rugo HS, Shulman LN, Kubo M, Owzar K, Kroetz DL (2020) Genomewide meta-analysis validates a role for S1PR1 in microtubule targeting agent-induced sensory peripheral neuropathy. Clin Pharmacol Ther 108(3):625–634. https://doi.org/10.1002/cpt.1958

Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, Kerns R, Von Korff M, Porter L, Helmick C (2018) Prevalence of chronic pain and high-impact chronic pain among adults—United States. Morb Mortal Wkly Rep 67(36):1001–1006. https://doi.org/10.15585/mmwr.mm6736a2

Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735. https://doi.org/10.1146/annurev-immunol-031210-101405

Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301

Springer
Doyle TM, Iannitti T, Donahue RR, Shaw BC, Grachen CM, Taylor BK (2018) Fingolimod reduces neuropathic pain behaviors in a mouse model of multiple sclerosis by a sphingosine-1-phosphate receptor 1-dependent inhibition of central sensitization in the dorsal horn. Pain 159(2):224–238. https://doi.org/10.1097/j.pain.0000000000001106

Doyle TM, Chen Z, Durante M, Salvemini D (2019) Activation of sphingosine-1-phosphate receptor 1 in the spinal cord produces mechanohypersensitivity through the activation of inflammasome and IL-1beta pathway. J Pain 20(8):956–964. https://doi.org/10.1016/j.jpain.2019.02.007

Doyle TM, Janes K, Chen Z, Grace PM, Esposito E, Cuzzocrea S, Largent-Milnes TM, Neumann WL, Watkins LR, Spiegel S, Vanderah TW, Salvemini D (2020a) Activation of sphingosine-1-phosphate receptor subtype 1 in the central nervous system contributes to morphine-induced hyperalgesia and antinociceptive tolerance in rodents. Pain. https://doi.org/10.1016/j.pain.2020.01.004

Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247. https://doi.org/10.1038/ni.1703

Fujii Y, Hiyarama T, Ohtake H, Ono N, Inoue T, Sakurai T, Takayama T, Matsumoto K, Tsukahara N, Hidano S, Harima N, Nakazawa K, Igarashi Y, Goitsuka R (2012a) Amelioration of collagen-induced arthritis by a novel S1P1 antagonist with immunomodulatory activities. J Immunol 188(1):206–215. https://doi.org/10.4049/jimmunol.1101537

Fujii Y, Ueda Y, Ohtake H, Ono N, Takayama T, Nakazawa K, Igarashi Y, Goitsuka R (2012b) Blocking S1P interaction with S1P1 receptor by a novel competitive S1P1-selective antagonist inhibits angiogenesis. Biochem Biophys Res Commun 419(4):754–760. https://doi.org/10.1016/j.bbrc.2012.02.096

Grenald SA, Doyle TM, Zhang H, Slosky LM, Chen Z, Largent-Milnes TM, Spiegel S, Vanderah TW, Salvemini D (2017) Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and neuroinflammation. Pain 158(9):1733–1742. https://doi.org/10.1007/j.10000.09.06

Healy LM, Antel JP (2016) Sphingosine-1-Phosphate Receptors in the Central Nervous and Immune Systems. Curr Drug Targets 17(16):1841–1850. https://doi.org/10.2174/138945011666615100112710

Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmocol 67(2–3):313–316. https://doi.org/10.1016/0014-2999(80)90515-4

Jacobson KA, Ianigato LA, Lauro F, Mufti F, Salvemini D (2020) Treatment of chronic neuropathic pain: purine receptor modulation. Pain. https://doi.org/10.1097/j.pain.000000000001857

James K, Little JW, Li C, Bryant L, Chen C, Chen Z, Kamocki K, Doyle T, Snider A, Esposito E, Cuzzocrea S, Biberich E, Obeid L, Petracek I, Nicol G, Neumann WL, Salvemini D (2014) The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem 289(30):21082–21097. https://doi.org/10.1074/jbc.M114.569574

Kim YK, Shin JS, Nahm MH (2016) NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 57(1):5–14. https://doi.org/10.3349/ymj.2016.57.1.5

Kowaluk EA, Mikusa J, Wismser CT, Zhu CZ, Schweitzer E, Lynch JJ, Lee CH, Jiang M, Bhagwat SS, Gomtsyan A, McKie J, Cox BF, Polakowski J, Reinhart G, Williams M, Jarvis MF (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine), a novel orally effective adenine kinase inhibitor with analgesic and anti-inflammatory properties. II. In vivo characterization in the rat. J Pharmacol Exp Ther 295(3):1165–1174

Little JW, Ford A, Symons-Liguori AM, Chen Z, Janes K, Doyle T, Xie J, Luong L, Tosh DK, Maione S, Bannister K, Dickenson AH, Vanderah TW, Porreca F, Jacobson KA, Salvemini D (2015) Endogenous adenose A3 receptor activation selectively alleviates persistent pain states. Brain 138(Pt 1):28–35. https://doi.org/10.1093/brain/awu330

Lopez-Castejon G, Brough D (2011) Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev 22(4):189–195. https://doi.org/10.1016/j.cytofgr.2011.10.001

Muscoli C, Doyle T, Dagostino C, Bryant L, Chen Z, Watkins LR, Ryser J, Biberich E, Neumann W, Salvemini D (2010) Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids. J Neurosci 30(46):15400–15408. https://doi.org/10.1523/JNEUROSCI.2391-10.2010

Petucci C, Culver JA, Kapoor N, Sessions EH, Divilanska D, Gardell SJ (2019) Measurement of pyridine nucleotides in biological samples using LC-MS/MS. In: Bhattacharya SK (ed) Metabolomics, methods and protocols. Springer, New York, pp 61–73. https://doi.org/10.1007/978-1-4939-9488-5

Ren K, Torres R (2009) Role of interleukin-1beta during pain and inflammation. Brain Res Rev 60(1):57–64. https://doi.org/10.1016/j.brainresrev.2008.12.020

Rossi S, Motta C, Studer V, Macchiariulo G, Volpe E, Barbieri F, Ruocco G, Buttari F, Finardi A, Mancino R, Weiss S, Battistini L, Martino G, Furlan R, Drulovic J, Centonze D (2014) Interleukin-1beta causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Mol Neurodegener 9:56. https://doi.org/10.1186/1750-1326-9-56

Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY, Peterson MS, Webb B, Lefebvre S, Chen J, Gray N, Rosen H (2004) Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 279(14):13839–13848. https://doi.org/10.1074/jbc.M311743200

Squillace S, Spiegel S, Salvemini D (2020) Targeting the sphingosine-1-phosphate axis for developing non-narcotic pain therapeutics. Trends Pharmacol Sci 41(11):851–867. https://doi.org/10.1016/j.tips.2020.09.006

Stockstill K, Doyle TM, Yan X, Chen Z, Janes K, Little JW, Braden K, Lauro F, Giancotti LA, Harada CM, Yadav R, Xiao WH, Lionberger JM, Neumann WL, Bennett GJ, Weng HR, Spiegel S, Salvemini D (2018) Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med 215(5):1301–1313. https://doi.org/10.1084/jem.20170584

Stockstill K, Wahlman C, Braden K, Chen Z, Yosten GL, Tosh DK, Jacobson KA, Doyle TM, Samson WK, Salvemini D (2020) Sexually dimorphic therapeutic response in bortezomib-induced neuropathic pain reveals altered pain physiology in female rodents. Pain 161(1):177–184. https://doi.org/10.1007/j.960000.0011697

Tsuchiya K, Hara H (2014) The inflammasome and its regulation. Crit Rev Immunol 34(1):41–80. https://doi.org/10.1615/CritRevimmunol.20130308686

Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Der Valk P, Reijerkerk A, Alewijnse AE, Peters SL, De Vries HE (2010) Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia 58(12):1465–1476. https://doi.org/10.1002/glia.21021

Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich.
M (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23(25):8692–8700

Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 11(6):e10248. https://doi.org/10.15252/emmm.201810248

Wahlman C, Doyle TM, Little JW, Luongo L, Janes K, Chen Z, Esposito E, Tosh DK, Cuzzocrea S, Jacobson KA, Salvemini D (2018) Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms. Pain 159(6):1025–1034. https://doi.org/10.1097/j.pain.0000000000001177

Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15(2):84–97. https://doi.org/10.1038/nrn3638

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.