Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Similarities between COVID-19 and systemic sclerosis early vasculopathy: A “viral” challenge for future research in scleroderma

Marco Matucci-Cerinica,b,*, Michael Hughesc, Gloria Talianid, Bashar Kahalehe

a Department of Experimental and Clinical Medicine, University of Florence & Division of Rheumatology AOUC, Florence, Italy
b Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
c Department of Rheumatology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
d Infectious Diseases Unit, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
e Division of Rheumatology, Allergy and Immunology, University of Toledo Medical Center, Toledo, OH, USA.

ARTICLE INFO

Keywords:
SarsCov2
COVID-19
Systemic sclerosis
Autoimmunity
Endothelial damage

ABSTRACT

Objective: To review similarities between COVID-19 and systemic sclerosis (SSc) early vasculopathy to provide novel insights into both diseases.

Methods: A narrative review of the literature supplemented with expert opinion.

Results: There is clear evidence that the endothelium is at the centre stage in SSc and COVID-19, with endothelial cell activation/injury and dysfunction creating the crucial evolving step in the pathogenesis of both diseases. The angiotensin system has also been implicated in the early stages of both COVID-19 and SSc. Autopic studies provide novel insights into the effects of SARS-CoV-2 on the endothelium. Normal endothelium and endothelial dysfunction in COVID-19 and SSc are discussed. It is debated whether SARS-CoV-2 infection triggers autoimmunity with production of autoantibodies which is of mechanistic interest because other viral illnesses are potentially involved in endothelial dysfunction and in SSc pathogenesis.

Conclusion: COVID-19 is due to a direct assault of SARS-CoV-2 on the vascular system as an acute infection, whereas SSc remains a chronic/sub-acute autoimmune disease of largely unknown etiology. Further study and exploration of the SARS-CoV-2 pathogenic mechanisms might provide further useful milestones in the understanding of the early SSc pathogenesis.

1. The SarsCov2 pandemic and the main pathogenetic mechanisms

The SARS-CoV-2 pandemic has swarmed worldwide and the COVID-19 has taken a significant death toll in all continents. In fact, the virus has a highly unrestrained replication capacity which is met with unbalanced immune response, a weak production of type I interferons (IFN-Is) and a brisk release of proinflammatory cytokines [1]. Apoptosis, autophagy and pyroptosis are upregulated [2], significant lymphopenia occurs, and NK and T cells become functionally deficient. In the meantime, there is an increase of angiotensin II (ANG II) levels with induction of interleukin-6 (IL-6) and other pro-inflammatory cytokines (IL-2, IL-7, IL-10, G-CSF, MCP-1, MIP-1A and TNF-alpha) that mediate lung injury in COVID-19 disease [3,4]. Moreover, activation of the coagulation cascade, which correlates with disease severity, is associated with high levels of D-dimers [5]. The Sars-Cov-2 invasion leads to the downregulation of angiotensin convertase enzyme-2 (ACE-2) and the intracellular accumulation of angiotensin II which promotes premature endothelial cells senescence along with dysfunctional coagulation and immunity [3]. Binding of SARS-CoV-2 to ACE-2 through the ectodomain of the trimeric spike protein is followed by endocytosis and translocation of the virus/ACE-2 complex with down regulation of ACE surface expression [6]. The specific link of the SarsCov2 for the ACE-2 receptor has opened a new area of investigation because this interaction leads to a functional inhibition of the enzyme with deleterious effects due to the loss of the protective role of ACE-2 in acute lung injury [7]. Therefore, ACE-2 downregulation may exacerbate lung inflammation, vascular damage, coagulation and altered immunity mediated by increased levels of ANGII [3] (Fig. 1). Accordingly, ANGII blockers might help, containing either the clotting process and/or the immune dysregulation [7,8] (Fig. 1), possibly changing the prognosis of severe COVID-19 patients.
Moreover, the role of complement activation during lung inflammation due to SARS-CoV-2 infection has been recently raised in the literature [9]. Complement plays an important role in the innate immune response to viruses and in the development of proinflammatory responses. Therefore, the virus may not only induce microangiopathy and activate homeostasis but also activate complement [10], in particular, the C3 signaling which is positioned upstream in the innate immunity cascade [11]. Recently, it has been reported that in lung tissue from patients with severe SARS-CoV-2 pneumonia C3a generation and C3-fragment deposition are associated with increased serum levels of C5a [12]. The N protein of SARS-CoV-2 binds to MASP-2, the key serine protease in the lectin pathway of complement activation, resulting in aberrant complement activation, thus contributing to aggravate inflammatory lung injury [12].

Eventually, the tight relationship between the SARS-CoV-2 and the endothelium has led to the suggestion that COVID19 is a vascular disease [11,12,13]. Recent histopathological studies have pointed out that both pulmonary type 2 alveolar epithelial cells and endothelial cells (ECs) equally contribute to the evolution of lung pathology and have a determinant role in vascular dysfunction, inflammation, and thrombosis that occur in SARS-Cov-2 infection [14]. In addition, autopsies demonstrated acute capillaritis in the lung with massive infiltration of neutrophils that extravasate into the alveolar space [15] and cause neutrophil extracellular traps (NETs) [16] which attach to the capillary endothelium, aggregate the platelets and induce coagulation. The damage to the alveolar-capillary barrier leads to vascular leakage, edema and finally ARDS [16] with pulmonary microembolism, detected in most of patients in spite of anticoagulation therapy [17]. Inflammatory activation and pyroptosis are under reported events that are central to COVID-19 pathogenesis. Pyroptosis, or caspase 1-dependent cell death, is inherently inflammatory form of cell death process [18]. Cell death occurs as the result of membranous pore formation and cytoplasmic swelling, and leakage of cytosolic contents. Pyroptotic cells may also display DNA fragmentation and nuclear condensation. Pyroptosis death, is inherently inflammatory form of cell death process [18].

Platelet-rich microthrombi consistent with coagulopathy are now well recognised in SARS-CoV-2 infection [23]. In a systematic review of pathological findings in SARS-CoV-2, almost two thirds of cases (n = 76/129, 59%) displayed a vascular pattern of lung injury, with features of vasculopathy which included microthrombi and proteinaceous and fibrinous exudates [24]. Furthermore, gross examination of the lungs from 92 patients revealed the presence of macroscopic pulmonary emboli in 9 cases (10%) [23]. Ongoing thrombosis has also been reported in the small to medium-sized pulmonary vessels [25]. In an autopsy study of the first consecutive 80 patients with SARS-CoV-19, 8 deaths were from pneumonia with fulminant pulmonary artery embolism, while peripheral pulmonary artery embolisms was found in another 9 cases [26]. Furthermore, deep vein thrombosis was detected in nearly half (40%) of cases [26]. Similarly, in another prospective cohort study, autopsies performed in 12 patients revealed the presence of deep vein thrombosis in 58% of patients, in whom venous thromboembolism was not suspected prior to death [27].

It is interesting to remark that abnormal neoangiogenesis has been observed in SARS-CoV-2 infection [21]: the amount of new blood vessel growth (which was mainly through intussusceptive angiogenesis) was 2.7 times as high as the lungs from patients with influenza H1N1 infection. Furthermore, the capillary structure was grossly abnormal with deformed and elongated capillaries, and evidence of ultrastructural endothelial damage [22].

Although the lung is considered a key site of SARS-CoV-2, pathological findings have been reported in other organs and tissues [24].

Fig. 1. SarsCov2 depletes ACE2 and devastates EC cells containing ACE2. Therefore, it promotes AT1R mediated inflammation, fibrosis and coagulation. Membrane-bound ACE2 is depleted as a result of this entry mechanism. The consequence is that the protective renin-angiotensin system (RAS), of which ACE2 is a fundamental component, is jeopardized due to lack of production of the angiotensin-1[1-7] and angiotensin-1[1-9], and consequently decreased stimulation of Mas (receptor Mas) and angiotensin AT2-receptors (AT2R), while angiotensin AT1-receptors (AT1R) are overstimulated due to less degradation of Ang II by ACE2. The role of Sartans is to prevent Angiotensin II from binding to AT1R on muscle cells regulating blood vessel contraction and reducing inflammation and evolution to fibrosis.
Viral presence has been also documented within the myocardium, but it is currently unclear whether this is associated with inflammatory cardiac disease (e.g. myocarditis) [28,29]. Variable renal vascular pathology has been also reported including (but not limited to) fibrin and hyaline thrombi, thrombotic angiopathy, and lymphocytic endotheliitis [24,30,31]. Gastrointestinal epithelial damage, prominent endotheliitis, and ischaemic enterocolitis have been reported [24,32–34]. Variable splenic involvement has been documented including necrosis, infarction, congestion, haemorrhage and atrophy [24,27,34]. Cutaneous manifestations with perivascular lymphocytic or neutrophilic infiltrates, have been described in SARS-CoV-19 infection [24,35–37].

Taken together, autoptic studies have provided novel insights into...

Fig. 2. Successive endothelial cells alteration in COVID-19 and in systemic sclerosis (SSc). Although the pace of vascular changes is strikingly different (acute in COVID-19 and chronic in SSc), the two tracks share common pathologic alterations that trigger similar pathways and molecules with similar pathologic consequence. In the early stages, both pathways share functional EC changes including increase in vascular permeability, adhesion molecule expression, platelet activation, coagulation, microthrombosis, fibrinolysis and increased D-dimer and PAI-1 levels. Yet, each pathway has unique characteristics as noted in the prominence of vascular fibrotic changes and diminished angiogenesis in SSc and enhanced angiogenesis and macrothrombosis in COVID-19. The initial trigger in SSc is not known but viral, environmental (silica), and antibodies all can lead to functional and ultrastructural changes resulting in EC apoptosis. In COVID-19, direct EC invasion by SARS-CoV-2 and inflammasome activation triggering neutrophils adhesion, and the formation of neutrophil extracellular traps that damage endothelial further culminating in EC pyroptosis. It is assumed that autoimmune reaction and the generation of autoantibodies follows pyroptosis, while both are very prominent early in SSc. The resulting vascular disorder is more fibrotic in SSc and more thrombotic in COVID. Nonetheless, the impact on surrounding tissues is the same with prominent tissue ischemia and organ underperfusion.
SARS-CoV-2 effects on EC and revealed key insights into disease pathogenesis.

3. Endothelial dysfunction, early similarities between COVID-19 and SSc

3.1. The Normal endothelium

The normal vascular endothelium is a single cell layer that actively participate and mediate remarkably crucial and diverse functions. It regulates tissue inflammation by limiting EC interactions with immune cells, and it also inhibits thrombosis and coagulation by preventing EC interactions with the platelets and by expressing coagulation inhibitors and blood clot-lysing enzymes with anti-coagulation properties. The EC also regulate vascular permeability, vascular tone and surrounding cell metabolism and nutrition. In the disease, EC dysfunction correlates with a pathologic shift in their functional profile from an anticoagulant, anti-inflammatory and vasorelaxant cell type to a procoagulant, vasoactive and proinflammatory phenotype. Today, it is well known that EC dysfunction is consistently linked with defective endothelial nitric oxide (NO) production which is related to repressed EC nitric oxide synthase (eNOS) gene expression [38]. Thus, NO generated constitutively by EC controls vascular tone, regulates blood pressure and acts as an antithrombotic and cytoprotective agent. Moreover, it inhibits adhesion molecule expression, platelet adhesion and aggregation and smooth muscle cell proliferation [39]. Clearly, NO released at basal levels protects the vascular endothelium against oxidation injury, a major component in the pathophysiology of vasculopathy of any etiology. Consequently, the reduced steady state of NO release would limit its ability as a free radical scavenger and a potent chemical barrier protecting the vascular endothelium from oxidation injury [40].

3.2. Endothelial dysfunction in SSc

The hallmarks of endothelial dysfunction in SSc are early EC apoptosis, vascular leakage and deficient NO release (Fig. 2) [41]. The latter leads to dysregulated vascular tone and increased endothelial adhesiveness and thickening of the vascular wall. Failure of endothelium-dependent vasodilatation in response to substance P and other mediators has been shown in the acral circulation, the kidneys and the lungs, suggesting failure of NO production at the endothelial level. A vicious cycle of oxidation injury, loss of EC adaptation and consequent functional alteration may enhance and/or follow deficiency in the basal protective effect of NO against oxidation injury, endothelial activation, and increased expression of a host of adhesion molecules including endothelial leucocyte adhesion molecule 1 (ELAM-1), intercellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), and E-selectin and P-selectin [42]. In the disease course, vascular leakage is an early event responsible for one of the first disease signs like “puffy fingers” [43]. In SSc, platelets are activated granular release as is evidenced in dermal EC in the skin lesions of children with chilblains, is a further confirmation that an EC dysfunction and damage may be induced by direct EC infection [66].

3.3. Endothelial dysfunction in COVID-19

It is clear now that SARS-CoV-2 infection affects the vasculature in the lung, heart, GI tract, kidney, and brain, resulting in a widespread EC dysfunction and severe injury. Widespread vascular thrombosis with microangiopathy and occlusion of alveolar capillaries have been described [50]. Vascular leakage in COVID-19 is the first manifestation of EC dysfunction. It is seen early and thought to be mediated by direct viral invasion “endotheliitis” and consequently resulting in EC apoptosis (Fig. 2). Therefore, there is a widespread vascular involvement and its effects on the cardiovascular system are clearly shown [51].

In the literature, a bulk of data indicate that viruses can infect EC, triggering different cascades and pathways. Among these mechanisms, the programmed cell death of pulmonary endothelial cells apoptosis seems one of the most significant events important for the viral life cycle. As an example, the coronavirus known as infectious bronchitis virus was able to induce an apoptotic process in the advanced phase of the disease [52], whereas the human influenza virus and the Zika viruses may induce apoptosis of human microvascular EC, thus fostering a peculiar capillary permeability [53-55]. In pulmonary EC, ACE2 induced apoptosis uses AT2 receptor 9. In COVID19, likely the SARS-CoV-2 entering into the cell may trigger apoptosis of microvascular EC exposing ACE2 receptors [31]. One of the most important mechanisms is linked to impaired ACE2 activity, leading to activation of the kallikrein–bradykinin pathway, contributing to vascular permeability in addition to the effects of inflammatory cells and cytokines already fostering vascular leaking [56].

The ACE2 receptor is a type-I transmembrane receptor with a catalytic extracellular domain, a single transmembrane domain and a cytoplasmic carboxyl domain. The ACE2 has a metalloprotease enzymatic activity regulating the effects of ANGII, generated by ACE by its fragmentation in two smaller peptides (Ang 1–9 and Ang 1–7. See Fig. 1). These peptides play, with the renin-angiotensin system, a critical role in the control of vascular tone and cardiovascular activity (Fig. 1) [57]. The ACE2 is expressed in EC and epithelial cells and is known to serve as a functional receptor for SARS-CoV mediating its entry in the cells (Fig. 1) [58,59]. This mechanism seems to be very relevant in triggering EC damage (Fig. 2), the hyperactivation of the immune response, and the consequent cytokine storm [60] culminating in the development of the acute respiratory distress syndrome (ARDS). The activation of coagulation pathways ensues because of EC barrier damage, which results in a thrombogenic surface, enhanced platelet binding and aggregation and the release of tissue factor [61]. Thrombosis will trigger the fibrinolytic system to dissolve fibrin-rich blood clots, resulting in high levels of fibrin breakdown products (D-dimers) [62]. In fact, markers of endothelial and platelet activation are significantly elevated in patients, including vWF antigen, soluble P-selectin and soluble thrombomodulin [62]. The proposed endothelial centered hypothesis for the pathogenesis of COVID [63,64] is also supported by the evidence that COVID-19 patients demonstrate microvascular abnormalities at nailfold capillaroscopy with acute and post-acute microvascular damage evident at capillaroscopy [65]. Moreover, the evidence that SARS-CoV-2 is present in dermal EC in the skin lesions of children with chilblains, is a further confirmation that an EC dysfunction and damage may be induced by direct EC infection [66].

4. Other viral illnesses potentially involved in endothelial dysfunction and in SSc pathogenesis

Today we are aware that the link between viral infections, inflammation and the activation/injury of the EC is a reality. It has been shown that the human herpes virus 8 may infect EC and foster vessel permeability and leaking, while the Dengue virus has a specific tropism for dendritic cells, monocyte and macrophages leading to an increased production of secretion and consequently the activation of EC and vessel leaking [67,68].
Human cytomegalovirus (hCMV), a beta herpesvirus which establishes a lifelong infection, may be present in EC, that serve as natural hosts in vivo. The infection with hCMV can induce an anti-migratory and anti-angiogenic EC phenotype, viral gene transcription dependent downregulation of the expression of angiogenesis-associated genes, including angiopoietin-2, TEK receptor and vascular endothelial growth factor receptors [69]. Also, CMV-EC infection enhances platelet binding to EC and in parallel increases the expression of VWF, ICAM-1, VCAM-1, E-selectin, and P-selectin [70]. Also in Dengue, Hematopoietic Necrosis Virus and Hematopoietic Necrosis Virus infection, EC dysfunction has been also described [71–73]. There is an indirect evidence that infectious agents may trigger SSC, and CMV is the virus which is postulated to play a role in SSC pathogenesis. Apparently, CMV may infect EC and monocytes/macrophages leading to dysregulation of the immune system, upregulating the expression of fibrogenic cytokines [74,75]. Moreover, CMV antibodies in SSC sera are associated with SSC specific autoantibodies [76]. Rat and mouse models show that CMV infection leads to formation of intimal lesions [77,78]. An immune suppressed mouse model of mCMV-induced neointima development shares many characteristics with SSC, including EC apoptosis, myofibroblast development, and increase TGF-β and PDGF expressions [79]. Blood samples from SSC patients were found to have anti-hCMV immune responses (IgM, IgG antibodies, and T cells reactive to peptide pools spanning most immunogenic HCMV proteins). Statistically significant increase of HCMV-specific CD8+ T cell responses in SSC patients vs. healthy subjects was also observed [80].

Parvovirus B19 has also been implicated is the pathogenesis of SSC, as it is much more commonly found as an active infection in SSC patients (4%) than in the general population (0.6%) [81]. Parvovirus B19 was detected in bone marrow biopsies from a high percentage of SSC patients (57%), who did not have an active B19 infection [82]. Further studies have found a correlation between B19 expression levels and severity of EC dysfunction in SSC [83]. This suggests a potential role for the virus in SSC pathogenesis.

Scleroderma-specific autoantibodies may arise through molecular mimicry, driven by the interaction of specific viral antigens with the corresponding HLA. A recent study demonstrated that immunodominant peptides of self-antigens have homology viral protein sequences from Mimiviridae and Phycodnaviridae families. This led to suggest that scleroderma-specific autoantibodies may arise through molecular mimicry, driven by the interaction of specific viral antigens with corresponding HLA [84].

Epstein Barr Virus is a herpesvirus which has a specific tropism for lymphocytes and which infect a large part of the population. In SSC patients, a persisting infection of skin fibroblasts and EC has been detected by the expression of the EBV noncoding small RNAs (EBERs) and the increased expression of immediate-early lytic and latency mRNAs and proteins [85]. Also the activation of an aberrant EBV may prompt the expression of selected IFN-regulatory factors (IRFs) and IFN-stimulated genes (ISGs), transforming growth factor-β1 (TGFβ1), and other FB activation markers like smooth muscle actin and Endothelin-1 [86]. This may thus explain how these genes may be involved in fostering the SSC-FB profibrotic phenotype. Therefore, EBV reactivation might trigger some mechanisms involved in the pathogenic fibrotic events in SSC.

It is well known that SSC is a complex autoimmune disease characterized by vascular damage, and tissue fibrosis [87]. Fibroblasts, and in particular myofibroblasts, have a fundamental role in the genesis of fibrosis in SSC [88,89]. Several decades ago, the hypothesis that viruses could trigger SSC and autoimmune diseases have been suggested and some viruses like CMV and EBV have been identified as potentially involved in SSC pathogenesis (see above). The question is now, after the evidence of the disruptive effect of SARS-CoV-2 on EC leading to early modifications similar to those found in SSC, whether viruses trigger the onset of SSC pathogenetic pathways, either in the diffuse or limited subset.

It is without doubt that the SARS-CoV-2 infection has raised a great interest in considering that COVID-19 can teach us about common and similar pathways leading to acute EC injury. It is clear that COVID-19 is an acute illness, while SSC, even in its more aggressive subset, is a sub-acute/chronic disease. Both diseases manifest significant lung inflammation with comparable HRCT imaging, and after sharing some early pathogenetical steps the two disorders take different pathways in their progression even if the final outcome (lung fibrosis) is very similar in both. However, both diseases share early pathogenetic steps that include targeting the vascular endothelium with subsequent vessel leakage, thrombosis and cellular apoptosis, using the host immune/inflammatory system to mediate tissue injury vasculopathy, ILD and lung fibrosis.

In SSC, lung inflammation is characterized by lymphocyte infiltration in pulmonary septa, along with capillary leaking, extravasation of neutrophils into the alveolar space, EC activation and injury leading eventually to vessel lumen obliteration. Contemporarily, a specific activation of EC leading to endothelial to mesenchymal transition into myofibroblasts [90] may take place accelerating the progression to interstitial fibrosis [91]. The lung parenchymal distortion (honey combing) is a final result of the disease progression which is rarely reversible. On the other hand, COVID19 is characterized by an acute scenario with massive neutrophil infiltration in pulmonary capillaries, capillaritis and capillary leaking with extravasation of neutrophils into the alveolar space [15,92].

5. Conclusions

It is abundantly clear now that the endothelium is at the centre stage in SSC and in COVID-19, with EC activation/injury and dysfunction creating the crucial evolving step in both pathogeneses (Fig. 2). Moreover, the immune activation and the ACE2 involvement are common key features of the early phase of both diseases, favouring the dysfunction and the presence of a “fragile” and damaged endothelium. It is interesting to note that both diseases meet at the crossroad of the enzymatic machinery of ACE devoted to the production of ANGII peptides. This evidence corroborates the hypothesis that the Angiotsin system should be an early target of the treatment to control, either in COVID19 and in SSC, the progression from alveolar inflammation to endothelial damage (Figs. 1 and 2) [12,93].

Yet, and despite the many similarities, COVID19 is due to a direct assault of SARS-CoV-2 on the vascular system as an acute infection, while SSC remains a chronic/sub-acute autoimmune disease of unknown etiology. Nonetheless, the question of a viral etiology for SSC is an important issue which was raised in the past and is now intensified after the current description of COVID-19 pathology. Is it possible that there is a viral infection in the asymptomatic very early phase of SSC? Can a dormant and concealed virus get activated at disease onset or does the elusive virus have to be present at disease onset? In the future, these questions and others need to be taken into account when we will search for a viral etiology of SSC.

It is now debated whether SarsCov2 is triggering autoimmunity with production of autoantibodies [94–99]. In patients that survived COVID19, the appearance of specific antibodies like MDAS and SSA may raise the suspicion that the virus may have a role in inducing autoimmunity, thus indicating a link between the viral infection and the onset of autoimmunity [99,100].

It has been suggested that molecular mimicry between Sars-Cov2 and human proteins may support the large part of pathogenetic events in the disease evolution [98,99]. However, the further study and exploration of the SarsCov2 pathogenetic mechanisms might provide further useful milestones in the understanding of the early SSC pathogenesis, either at alveolar and vascular level. A viral etiology for SSC has long been suggested and it is still a major challenge for the next future. Nonetheless, the COVID19 may have made this challenge less daunting. In SSC, it will be a “viral” challenge to understand whether an acute infectious disease may
eventually trigger a chronic inductive but progressive autoimmune systemic disease.

References

[1] Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lung ex vivo study with implications for the pathogenesis of COVID-19.Clin Infect Dis 2020. https://doi.org/10.1093/cid/ciaa410 [Online ahead of print].

[2] Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid mononuclear cells in COVID-19 patients. Emerg Microbes Infect 2020;9:761–70.

[3] Sfera A, Ossorio C, Jafri N, Diaz EL, Campo Maldonado JE. Intoxication with SARS-CoV-2. Virchows Arch [Internet] 2020 Jun;30:1

[4] Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M. IL-6/IL-6 receptor antagonist for COVID-19. Ann Intern Med [Internet] 2020 May 6. https://doi.org/10.7326/M20-2003. Available from.

[5] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven coronavirus inhibitor. Cell 2020;181:271–80.

[6] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395: 497–506.

[7] Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and possible mechanisms of disease progression. Mod Pathol [Internet] 2020. https://doi.org/10.1038/s41379-020-0603-3. Available from.

[8] Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil proteases enhancing ACE2. Eur J Pharmacol 2020;887:173545.

[9] Klok FA, Kruip MJHA, Van der Meer NJM, Arbous MS, DAMPJ Gommers, van den Bergh PAMHF, et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Postmortem examination of patients with COVID-19. JAMA Cardiol [Internet] 2020 Jun 27;5(7):785–7. Available from: https://doi.org/10.1001/jamacardio.2020.2185.

[10] Su H, Yang M, Wan C, Yi L-X, Tang F, Zhu H-Y, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int [Internet] 2020 Jul 1;98(1):219–27. Available from: http://dx.doi.org/10.1016/j.kint.2020.04.003.

[11] Varga Z, Flammer AJ, Steiger P, Habereck M, Andermart R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet (London, England) 2020;395:897–8. https://doi.org/10.1016/S0140-6736(20)30517-2.

[12] Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterol Int 2020 May;158(6):1831–3. e3. Available from: https://pubmed.ncbi.nlm.nih.gov/32147773.

[13] Pernaucia A, Mancini M, Rulo E, Bassi M, Di Giacomo L, Della Rocca C, et al. Early histologic findings of pulmonary SARS-CoV-2 infection detected in a surgical specimen. Virchows Arch 2020 Apr 1–6.

[14] Chen Y, Feng Z, Diao B, Wang R, Wang G, Wang C, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRxiv [Internet] 2020 Jan 1. https://doi.org/10.1101/2020.03.27.20045427. 2020.03.27.20045427. Available from: http://medrxiv.org/content/early/2020/03/27/2020.03.27.20045427.abstract.

[15] Magro C, Mutvey JJ, Berlin D, Nuovo G, Salvatore S, Hesp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transf Res (Internet) 2020;6(5): 489–92. Available from: https://pubmed.ncbi.nlm.nih.gov/32209776.

[16] Guazzetti R, Verardi S, Benvenuti G, Cimino M, Boggio C. Cutaneous clinic-pathological findings in three COVID-19-positive patients observed in the metropolitan area of Milan, Italy. Acta Derm Venereol 2020 Apr;100(3). adv0124.

[17] Kolivras A, Dehavy F, DelPLACE D, Feoli F, Meiers L, Milone L, et al. Coronavirus (COVID-19) infection-induced chilblains: a case report with histopathologic findings. JAAD Case Reports [Internet] 2020;6(6):489–92. Available from: https://pubmed.ncbi.nlm.nih.gov/32635225.

[18] Kahabale MB, Pan D. Down-regulation of nitric oxide synthase gene in microvascular endothelial cells from lesional scleroderma: assessment by quantitative RT-PCR and possible role for cytotoxic T cells. Arthritis Rheum 1998;41(Suppl):1. 469.

[19] Kahabale MB, Cervato RE, Burns J, Passini M, Cello J. Cytokines of relevance in the pathogenesis of systemic sclerosis. Rheumatology (Oxford) 2002;41(8):843–7.

[20] Gimbrone MA, García-Cardenas G. Endothelial cell dysfunction and the pathophysiology of atherothrombosis. Circ Res 2016 Feb 19;118(4):620–36. https://doi.org/10.1161/CIRCRESAHA.115.308795.

[21] Tousoulis D, Kampoli AM, Tentolouris C, Papagiorgiou N, Stefanidi C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012;10(1):1–8.

[22] Fatini C, Gemini F, Sticchi E, Battaglini B, Angotti C, Conforti ML, et al. High prevalence of polymorphisms of angiotensin-converting enzyme (I/D) and endothelial nitric oxide synthase (Glu298Asp) in patients with systemic sclerosis. Am J Med 2002;112(7):540–4. https://doi.org/10.1016/S0002-9343(02)00106-9.

[23] Blann AD, Constans J, Carpentier P, Renaud M, Stoger B, Günter V, et al. Soluble P selectin in systemic sclerosis: relationship with von Willebrand factor, autoantibodies and diffuse or localised/limited disease. Thromb Res 2003;109(4): 203–6. https://doi.org/10.1016/S0049-3848(03)00209-3.

[24] Fatini C, Frech T, Tavazzi F, Paolino E, et al. Vascular leaking, a pivotal and early Pathogenic event in systemic sclerosis: should the door be closed? Front Immunol 2018;9:2045.

[25] Anaya J, Sato S. Vasculopathy in scleroderma. Semin Immunopathol 2015;37(5): 489–500.

[26] Matsuoci-Merlins, Maffia A, Maffia B. Angiogenesis converting enzyme: an in vivo and in vitro marker of endothelial injury. J Lab Med 1992 Sep;16: 428–33.

[27] Lombardi A, Falci F, Pignone A, Trapani S, Leoncini G, Kahabale MB, et al. Angiogenesis converting enzyme as a new tool for the follow-up of endothelial injury in paediatric vasculitis. Br J Rheumatol 1994 Dec;33(12): 1197–203. https://doi.org/10.1093/bja/33.12.1197.

[28] Fatini C, Gemini F, Sticchi E, Battaglini B, Angotti C, Conforti ML, et al. High prevalence of polymorphisms of angiotensin-converting enzyme (I/D) and endothelial nitric oxide synthase (Glu298Asp) in patients with systemic sclerosis. Am J Med 2002;112(7):540–4. https://doi.org/10.1016/S0002-9343(02)00106-9.
M. Matucci-Cerinic et al.

Acupuncture in the treatment of COVID-19: a rapid systematic review and meta-analysis. Clin Cardiol 2020. https://doi.org/10.1002/clc.22805

Acharya D, Chakrabarti A, Shenoy U, Timpone S, Caprioli I, Appel C, et al. Epstein-Barr virus infection induces aberrant TLR activation pathway and fibroblast-myofibroblast conversion in scleroderma. J Invest Dermatol 2014 Apr;134(4):924–31. https://doi.org/10.1038/jid.2013.257.

Acharya D, Chakrabarti A, Shenoy U, Timpone S, Caprioli I, Appel C, et al. Epstein-Barr virus infection induces aberrant TLR activation pathway and fibroblast-myofibroblast conversion in scleroderma. J Invest Dermatol 2014 Apr;134(4):924–31. https://doi.org/10.1038/jid.2013.257.

Adams TJ, Liew FY, Fritz S, van Wissen SL, Edler L, Smith GL, et al. Rapid development of severe acute respiratory syndrome coronavirus 2 infection in immunocompetent individuals correlates with a poor systemic inflammatory response. J Infect Dis 2020;221(5):619–28. https://doi.org/10.1093/infdis/jiaa138.