We present two qualitative results concerning the solutions of the following equation:
\[\ddot{x}(t) + g(\dot{x}(t)) + b x(t - h) + \sigma x(t) \dot{\omega}(t) = p(t,x(t),\dot{x}(t),x(t-h)) ; \]
the first result covers the stochastic asymptotic stability of the zero solution for the above equation in case \(p \equiv 0 \), while the second one discusses the uniform stochastic boundedness of all solutions in case \(p \not\equiv 0 \). Sufficient conditions for the stability and boundedness of solutions for the considered equation are obtained by constructing a Lyapunov functional. Two examples are also discussed to illustrate the efficiency of the obtained results.

1. Introduction

During the last twenty years, the theory of stochastic differential equations has successfully attracted considerable attentions of scholars; for example, see [1–13]. Since then, the number of contributions to statistics, numerics, and control theory of stochastic differential equations has been rapidly increasing, since stochastic modelling plays an important role in formulation and analysis in modelling physical, technical, biological and economical dynamical systems in which significant uncertainty is present.

Stochastic delay differential equation, also known as stochastic functional differential equation, is a natural generalization of stochastic ordinary differential equation by allowing the coefficients to depend on the past values. The Razumikhin argument, generalized Itô formula, and Euler-Maruyama formula play an important role in studying stochastic differential equations. Unfortunately, it is generally not possible to give explicit expressions for the solutions to stochastic differential equations. Therefore, most of the papers are interested in being able to characterize at least qualitatively the behaviour of the solutions. Thus, Lyapunov theory is a powerful tool for qualitative analysis of stochastic differential equations, since the advantage of this method can judge the behaviour of systems without any prior knowledge of the explicit solutions, while the greatest disadvantage of the Lyapunov approach is that no universal method has been given, which enables us to find a Lyapunov function or determine that no such function exists.

It is worth mentioning that there are few results on the stability and boundedness of solutions for first-order stochastic delay differential equations; for example, see [8,14–18]. In 2004, Kolmanovskii and Shaikhet [8] investigated the conditions of asymptotic mean-square stability for first-order stochastic delay differential equation of neutral type:
\[\dot{x}(t) + ax(t) + bx(t-h) + cx(t-h) + \sigma x(t-\tau) \dot{\xi}(t) = 0 , \]
\[|c| < 1 , \]
where \(a \) and \(b \) are two positive constants and \(\xi(t) \) is a standard Wiener process.

Later, in 2006, Rodkina and Basin [17] obtained global asymptotic stability conditions for nonlinear stochastic systems with state delay as follows:
\[dx(t) = -aN(x(t)) dt - bN(x(t-h)) dt + \sigma(t,x(t)) d\omega(t), \]
\[x(s) = \phi(s), \quad s \in [-h,0) . \]

Copyright © 2015 A. M. A. Abou-El-Ela et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The Lyapunov–Krasovskii and degenerate functionals techniques are used. In addition, nontrivial examples of nonlinear systems satisfying the obtained stability conditions are given.

On the other hand, the corresponding problem for the stability and boundedness of solutions of second-order stochastic delay differential equations was studied far less often. So our main aim in this paper is to establish new results on the stability and boundedness for solutions of second-order stochastic delay differential equation of the type

$$\dot{x}(t) + g(x(t)) + bx(t) + ax(t-h) + \sigma x(t) \phi(t) = p(t, x(t), \dot{x}(t), x(t-h)), \quad t \geq 0,$$

(3)

where b and σ are two positive constants, and h is a positive constant delay; g and p are two continuous functions with $g(0) = 0$, $\omega(t) = (\omega_1(t), \omega_2(t), \ldots, \omega_m(t)) \in \mathbb{R}^m$ is an m-dimensional standard Brownian motion defined on the probability space (also called Wiener process), a stochastic process representing the noise [19].

2. Preliminaries and Stability Result

Consider the following nonautonomous n-dimensional stochastic delay differential equation (SDDE):

$$dx(t) = f(t, x(t), x(t-\tau)) \, dt + g(t, x(t), x(t-\tau)) \, dB(t), \quad t \geq 0,$$

(4)

where $f : \mathbb{R}^r \times \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^n$ and $g : \mathbb{R}^r \times \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^{n \times m}$ are given nonlinear continuous functions, $B(t) = (B_1(t), B_2(t), \ldots, B_m(t))$ is an m-dimensional standard Brownian motion, and $x(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \in \mathbb{R}^n$ is a solution of the stochastic delay differential equation (4) with initial data of $x(\theta) : -\tau \leq \theta \leq 0$, $x_0 \in \mathcal{C}(\mathbb{R}, \mathbb{R}^n)$. We assume that f and g satisfy the following conditions.

Standing Hypothesis (H1). Both f and g satisfy the local Lipschitz condition and for all given $b > 0$, $p \geq 2$, $f(t, 0, 0) \in \mathcal{L}^2([0,b]; \mathbb{R}^n)$, and $g(t, 0, 0) \in \mathcal{L}^2([0,b]; \mathbb{R}^{n \times m})$ (see [20]). Then, there must be a stopping time $\beta = \beta(\omega) > 0$ such that (4) with $x_0 \in \mathcal{C}_p^{\beta}$ has a unique maximal local solution for $t \in [t_0, \beta]$.

In this section, for the stability result, we impose Standing Hypothesis (H2):

$$f(t, 0, 0) = 0, \quad g(t, 0, 0) = 0, \quad \forall t \geq 0.$$

(5)

Hence, the stochastic delay differential equation (4) admits the zero solution $x(t; 0) \equiv 0$, for any given initial value $x_0 \in \mathcal{C}([-\tau, 0]; \mathbb{R}^n)$.

Definition 1. The zero solution of the stochastic differential equation is said to be stochastically stable or stable in probability, if for every pair of $\epsilon \in (0, 1)$ and $r > 0$, there exists a $\delta = \delta(\epsilon, r) > 0$ such that

$$P \left(\|x(t; x_0)\| < r \quad \forall t \geq 0 \right) \geq 1 - \epsilon, \quad \text{whenever } |x_0| < \delta.$$

(6)

Otherwise, it is said to be stochastically unstable.

Definition 2. The zero solution of the stochastic differential equation is said to be stochastically asymptotically stable, if it is stochastically stable, and moreover for every $\epsilon \in (0, 1)$, there exists a $\delta_0 = \delta_0(\epsilon) > 0$ such that

$$P \left(\lim_{t \to \infty} x(t; x_0) = 0 \right) \geq 1 - \epsilon, \quad \text{whenever } |x_0| < \delta_0.$$

(7)

Let \mathcal{X} denote the family of all continuous nondecreasing functions $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\rho(0) = 0$ and $\rho(r) > 0$, if $r > 0$. In addition, \mathcal{X}_{∞} denotes the family of all functions $\rho \in \mathcal{X}$ with $\lim_{r \to \infty} \rho(r) = \infty$. Let $\mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R}^n; \mathbb{R}^m)$ denote the family of nonnegative functions $V(t, x)$ defined on $\mathbb{R}^+ \times \mathbb{R}^n$ which are once continuously differentiable in t and twice continuously differentiable in x. For each $V \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R}^n; \mathbb{R}^m)$, define an operator $\mathcal{L}V : \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ by

$$\mathcal{L}V(t, x, y) = V_t(t, x) + V_x(t, x) f(t, x, y) + \frac{1}{2} \text{trace} \left[g^T(t, x, y) V_{xx}(t, x) g(t, x, y) \right],$$

(8)

where

$$V_t(t, x) = \frac{\partial V(t, x)}{\partial t},$$

$$V_x(t, x) = \left(\frac{\partial V(t, x)}{\partial x_1}, \ldots, \frac{\partial V(t, x)}{\partial x_n} \right),$$

$$V_{xx}(t, x) = \left(\frac{\partial^2 V(t, x)}{\partial x_i \partial x_j} \right)_{n \times n}.$$
Theorem 5. Further to the basic assumptions imposed on a, b, σ, h, g, and p, suppose that the following conditions are satisfied.

(i) $g(y)/y \geq a > 0$ for $y \neq 0$ and $|g'(y)| \leq l$, $l > 0$, for all y.

(ii) $a > b > 1$.

(iii) $b(a-1) - (l+1)\sigma > 0$.

Then, the zero solution of (3) is stochastically asymptotically stable, provided that

$$h < \min \left\{ \frac{b(a-1) - (l+1)\sigma}{2ab}, \frac{a(a-b) + a^2 - b}{2b(a+2l+2)} \right\}.$$

(12)

Proof of Theorem 5. In fact, (3) with $p = 0$ can be transformed into an equivalent system of the following form:

$$\dot{x} = y,$$

$$\dot{y} = -g(y) - bx + b \int_{t-h}^{t} y(s) \, ds - \sigma x \dot{\omega}(t).$$

(13)

Define the Lyapunov functional $V_1(x_t, y_t)$ as

$$V_1(x_t, y_t) = \int_{0}^{y} g(\eta) \, d\eta + bx^2 + \frac{1}{2} (y + ax)^2$$

$$+ y \int_{0}^{y} \int_{t-h}^{t} y^2(\phi) \, d\phi \, ds,$$

(14)

where $x_t = x(t+s)$, $s \leq 0$, and y is a positive constant, which will be determined later.

From (14) and (13) and by using Itô formula, we find

$$\mathcal{L}V_1(x_t, y_t) = ay^2 + a^2 xy - g^2(y) - bxg(y)$$

$$+ bg(y) \int_{t-h}^{t} y(s) \, ds - yg(y)$$

$$+ bxy + by \int_{t-h}^{t} y(s) \, ds - axg(y)$$

$$- abx^2 + abx \int_{t-h}^{t} y(s) \, ds + yhy^2(t)$$

$$- y \int_{t-h}^{t} y^2(\phi) \, d\phi + \frac{g'(y)}{2} \frac{1}{2} a^2 \dot{x}^2,$$

(15)

since $|g'(y)| \leq l$, $l > 0$ and $g(y)/y \geq a > 0$ by (i), then

$$\mathcal{L}V_1(x_t, y_t) \leq -a^2 y^2 - abx^2 + bly \int_{t-h}^{t} y(s) \, ds$$

$$+ bxy + by \int_{t-h}^{t} y(s) \, ds - abx^2$$

$$+ abx \int_{t-h}^{t} y(s) \, ds + yhy^2$$

$$- y \int_{t-h}^{t} y^2(\phi) \, d\phi + \frac{1}{2} \sigma^2 \dot{x}^2.$$

(16)

Thus, by using the inequality $|uv| \leq (1/2)(u^2 + v^2)$, we obtain

$$\mathcal{L}V_1(x_t, y_t) \leq - \left\{ \frac{b(a-1) - l + 1}{2} a^2 - \frac{abh}{2} \right\} x^2$$

$$- \left\{ \frac{a(a-b) + a^2 - b}{2} - \frac{bl + b}{2} + y \right\} y^2$$

$$+ \left\{ \frac{bl}{2} + \frac{ab}{2} + \frac{b}{2} - y \right\} \int_{t-h}^{t} y^2(s) \, ds.$$

(17)

Let us choose $y = b(l + a + 1)/2 > 0$. Then, it is easy to see that

$$\mathcal{L}V_1(x_t, y_t) \leq - \alpha \left(x^2 + y^2 \right),$$

(19)

provided that

$$h \leq \min \left\{ \frac{b(a-1) - (l+1)\sigma}{2ab}, \frac{a(a-b) + a^2 - b}{2b(a+2l+2)} \right\}.$$

(20)

Since $\int_{t-h}^{t} \int_{t-s}^{t} \dot{\omega}^2(\phi) \, d\phi \, ds$ is nonnegative, then we find

$$V_1(x_t, y_t) \geq \int_{0}^{y} g(\eta) \, d\eta + bx^2 + \frac{1}{2} (y + ax)^2,$$

(21)

from $g(y)/y \geq a > 0$, therefore, we get

$$V_1(x_t, y_t) \geq \frac{a}{2} y^2 + bx^2 + \frac{1}{2} (y + ax)^2.$$

(22)

Then, there exists a positive constant β such that

$$V_1(x_t, y_t) \geq \beta \left(x^2 + y^2 \right).$$

(23)

Also, since $|g'(y)| \leq l$, $g(0) = 0$, and by using the mean-value theorem, we get $g(y)/y \geq a > 0$. So we can rewrite (14) in the following form:

$$V_1(x_t, y_t) \leq \frac{1}{2} y^2 + bx^2 + \frac{1}{2} (y + ax)^2$$

$$+ y \int_{t-h}^{t} \int_{t-s}^{t} \dot{\omega}^2(\phi) \, d\phi \, ds.$$

(24)

It follows that, by using the inequality $2uv \leq u^2 + v^2$, we have

$$V_1(x_t, y_t) \leq \frac{1}{2} y^2 + bx^2 + \frac{1}{2} y^2 + \frac{a}{2} \left(x^2 + y^2 \right)$$

$$+ \frac{a^2}{2} x^2 + y \int_{t-h}^{t} (\theta - t + h) y^2(\theta) \, d\theta.$$

(25)
Therefore, we obtain
\[V_1(x_t, y_t) \leq \frac{a^2 + a + 2b}{2} \|x\|^2 + \frac{a + l + 1}{2} \|y\|^2 + \frac{a + l + 1}{2} \||x(0)||^2. \]

(26)

Then, there exists a positive constant \(v \) satisfying
\[V_1(x_t, y_t) \leq v(x^2 + y^2). \]

(27)

Thus, from the results (19), (23), and (27), we note that all the conditions of Theorem 4 are satisfied, and then the zero solution of (3) is stochastically asymptotically stable. This completes the proof of Theorem 5. \(\square \)

In the next section, we shall state and prove our main second result on boundedness of (3) with (28) satisfying Assumption 7, such that for all \((t, x) \in \mathbb{R}^+ \times \mathbb{R}^n \)

\[(i) \|x\|_{t_0} \leq V(t, x), \]

\[(ii) \mathcal{V}(t, x) \leq -\lambda(t)\|x\| + \eta(t), \]

\[(iii) V(t, x) - V^q(t, x) \leq \mu, \]

where \(\lambda, \eta \in C(\mathbb{R}^+; \mathbb{R}^+) \), \(q_1, q_2 \), and \(r \) are positive constants, \(q_1 \geq 1 \), and \(\mu \) is a nonnegative constant. Then, all solutions of (28) satisfy
\[E_t \mathcal{E}^x \left\| x(t; t_0, x_0) \right\| \leq \left\{ V(t_0, x_0) e^{-\int_{t_0}^{t} \lambda(s) ds} \right. \]

\[+ \left. \int_{t_0}^{t} (\mu \lambda(u) + \eta(u)) e^{-\int_{u}^{t} \lambda(s) ds} du \right\}^{1/q_1}. \]

(33)

for all \(t \geq t_0 \).

Theorem 9. Assume there exists a function \(V(t, x) \) in \(\mathcal{C}_{\mathcal{L}}(\mathbb{R}^+ \times \mathbb{R}^n; \mathbb{R}^+) \) satisfying Assumption 7, such that for all \((t, x) \in \mathbb{R}^+ \times \mathbb{R}^n \)

\[(i) \|x\|_{t_0} \leq V(t, x), \]

\[(ii) \mathcal{V}(t, x) \leq -\lambda(t)\|x\| + \eta(t), \]

\[(iii) \mathcal{V}(t, x) - \mathcal{V}^q(t, x) \leq \mu, \]

where \(\lambda, \eta \in C(\mathbb{R}^+; \mathbb{R}^+) \), \(q_1, q_2 \), and \(r \) are positive constants, \(q_1 \geq 1 \), and \(\mu \) is a nonnegative constant. Then, all solutions of (28) satisfy
\[E_t \mathcal{E}^x \left\| x(t; t_0, x_0) \right\| \leq \left\{ V(t_0, x_0) e^{-\int_{t_0}^{t} \lambda(s) ds} \right. \]

\[+ \left. \int_{t_0}^{t} (\mu \lambda(u) + \eta(u)) e^{-\int_{u}^{t} \lambda(s) ds} du \right\}^{1/q_1}. \]

(34)

for all \(t \geq t_0 \).
Corollary 11. (1) Assume that the hypotheses of Theorem 9 hold. In addition,
\[\int_{t_0}^{t} \{ \mu \lambda(u) + \eta(u) \} e^{-\int_{t_0}^{s} \lambda(s) ds} du \leq M, \quad \forall t \geq t_0 \geq 0, \tag{35} \]
for some positive constant \(M \); then, all the solutions of (28) are uniformly stochastically bounded.

(2) Assume that the hypotheses of Theorem 10 hold. If condition (35) is satisfied, then all the solutions of (28) are stochastically bounded.

The following theorem is the second main result for (3) with \(p \not\equiv 0 \).

Theorem 12. Let the conditions (i) and (ii) of Theorem 5 be satisfied. In addition, we assume that

(iii) \(\sigma^2 < (ab(2b-1) + b(2ab-1))/(3l + 2b + 1) \);

(iv) \(|p(t, x(t), \dot{x}(t), x(t-h))| \leq m \), for some \(m > 0 \).

Then, all the solutions of (3) are uniformly stochastically bounded, provided that
\[h < \min \left\{ \frac{ab(2b-1) + b(2ab-1) - (3l + 2b + 1)\sigma^2}{2ab(2b+1)}, \right. \]
\[\left. \frac{3a(2a-b) - b}{2b(6l + 4b + 2ab + a + 2)} \right\}. \tag{36} \]

Proof of Theorem 12. Equation (3) has the following equivalent system:
\[\dot{x} = y, \]
\[\dot{y} = -g(y) - bx + b \int_{t-h}^{t} y(s) ds \]
\[-axw(t) + p(t, x, y, x(t-h)). \tag{37} \]

Consider the Lyapunov functional \(V(x_t, y_t) \) as
\[V(x_t, y_t) = V_1(x_t, y_t) + V_2(x_t, y_t), \tag{38} \]
where \(V_1(x_t, y_t) \) is defined as (14) and \(V_2(x_t, y_t) \) is defined as
\[V_2(x_t, y_t) = a^2bx^2 + 2 \int_{t-h}^{t} g(\eta) d\eta + 2abxy + by^2 + b^2x^2. \tag{39} \]

From (14), (37), and (iv), we find
\[\mathcal{D}V_1(x_t, y_t) \leq - \left\{ \frac{b(a-1)}{2} - \frac{l + 1}{2}\sigma^2 - \frac{abh}{2} \right\} x^2 \]
\[- \left\{ \frac{a(a-b) + a^2 - b}{2} - \left(\frac{bl}{2} + \frac{bl + h}{2} \right) \right\} y^2 \]
\[+ \left(\frac{bl}{2} + \frac{bl + h}{2} - y \right) \int_{t-h}^{t} y^2(s) ds \]
\[+ am |x| + (l + 1) m |y|. \tag{40} \]

Also, from (39), (37), (i), and (iv), we obtain
\[\mathcal{D}V_2(x_t, y_t) \leq - \left\{ \frac{ab(2b-1) - (l + b) \sigma^2 - ab^2 h}{2} \right\} x^2 \]
\[- \left\{ a^2(2a-b) - b(l + b) h \right\} y^2 \]
\[+ \left(bl + b^2 + ab^2 \right) \int_{t-h}^{t} y^2(s) ds \]
\[+ 2abm |x| + 2(l + b) m |y|. \tag{41} \]

Therefore, from (38), (40), and (41), we obtain
\[\mathcal{D}V(x_t, y_t) \]
\[\leq - \left\{ \frac{ab(2b-1) + b(2ab-1)}{2} - \frac{3l + 2b + 1}{2} \sigma^2 - \frac{ab(2b+1)}{2} h \right\} x^2 \]
\[- \left\{ a^2(2a-b) - b(l + b) h \right\} y^2 \]
\[+ \left(bl + b^2 + ab^2 \right) \int_{t-h}^{t} y^2(s) ds \]
\[+ am (2b + 1) |x| + (3l + 2b + 1) m |y|. \tag{42} \]

If we take \(y = b(3l + 2b + 2ab + a + 1)/2 > 0 \), we can write (42) in the following form:
\[\mathcal{D}V(x_t, y_t) \]
\[\leq - \left\{ \frac{ab(2b-1) + b(2ab-1)}{2} - \frac{3l + 2b + 1}{2} \sigma^2 - \frac{ab(2b+1)}{2} h \right\} x^2 \]
\[- \left\{ a^2(2a-b) - b(l + b) h \right\} y^2 \]
\[+ am (2b + 1) |x| + (3l + 2b + 1) m |y|. \tag{43} \]

Therefore, if
\[h < \min \left\{ \frac{ab(2b-1) + b(2ab-1) - (3l + 2b + 1)\sigma^2}{2ab(2b+1)}, \right. \]
\[\left. \frac{3a(2a-b) - b}{2b(6l + 4b + 2ab + a + 2)} \right\}, \tag{44} \]
then we get
\[\mathcal{L} V (x_t, y_t) \leq -\theta (x^2 + y^2) + k\theta (|x| + |y|) \]
\[= -\frac{\theta}{2} (x^2 + y^2) \]
\[- \frac{\theta}{2} \left[((|x| - k)^2 + (|y| - k)^2) + 8k^2 \right] \]
\[\leq -\frac{\theta}{2} (x^2 + y^2) + \frac{\theta}{2} (|x| - k)^2 + \frac{\theta}{2} (|y| - k)^2, \quad \forall k, \theta > 0. \]
(45)

Thus, condition (ii) of Theorem 9 is satisfied by taking \(\lambda(t) = \frac{\theta}{2} \), \(\eta(t) = \frac{\theta k^2}{2} \), and \(r = 2 \). Also, we can easily check that conditions (i)–(iii) of Theorem 9 with \(q_1 = q_2 = 2 \) and \(\mu = 0 \) are satisfied, using the same techniques which have already been demonstrated in proof of Theorem 5. With \(\lambda(t) = \frac{\theta}{2} \), \(\eta(t) = \frac{\theta k^2}{2} \), and \(\mu = 0 \) and using them in (35), we note that
\[\int_{t_0}^t [\mu \lambda (u) + \eta (u)] e^{-\int_{t_0}^u \lambda (s) \, ds} \, du \]
\[= \frac{\theta k^2}{2} \int_{t_0}^t e^{-\left(\frac{\theta}{2} t \right)} \, du \leq 2k^2, \]
(46)
for all \(t \geq t_0 \geq 0 \). Thus, condition (35) holds. Now, since
\[g^T (0 - \sigma x), \]
\[V_x = (V_1)_x + (V_2)_x \]
\[= 2bx + ay + a^2 x + 2abx + 2aby + 2b^2 x, \]
(47)
\[V_y = (V_1)_y + (V_2)_y \]
\[= 3g (y) + ax + y + 2abx + 2by. \]

Then, we have
\[\left[V_x (t, x(t)) g_{x_t} (t, x(t)) \right] \leq \alpha \left[2ab + a + b + \frac{3l + 1}{2} \right] x^2 \]
\[+ \left[\frac{3l + 1}{2} + \beta \right] y^2 : = \chi (t). \]
(48)

Hence, the conditions (31) and (32) are satisfied. So by Corollary II(1), we find that all solutions of (3) are uniformly stochastically bounded and satisfy
\[E^x \| x (t; t_0, x_0) \| \leq C (x_0^2 + 2k^2)^{1/2}, \quad \forall t \geq t_0 \geq 0, \]
(49)
where \(C \) is a constant. This completes the proof of Theorem 12.

4. Illustrative Examples

In this section, we display two examples to illustrate the application of the results we obtained in the previous sections.

Example 1. As an application of Theorem 5, we consider the second-order stochastic delay differential equation
\[\ddot{x} (t) + 4 \dot{x} (t) + \sin \dot{x} (t) + 2x (t - h) + \frac{1}{2} x (t) \dot{\omega} (t) = 0. \]
(50)
The equivalent system of (50) is
\[\dot{x} = y, \]
\[\dot{y} = -(4y + \sin y) - 2x + 2 \int_{t-h}^t y (s) \, ds - \frac{1}{2} x (t) \dot{\omega} (t). \]
(51)
From (50), we have
\[g (y) = 4y + \sin y, \quad b = 2, \quad \sigma = \frac{1}{\sqrt{2}}. \]
(52)
It is obvious that
\[g (y) \frac{y}{y} = 4 + \sin \frac{y}{y} \geq 3 = a, \quad \forall y, \quad (y \neq 0), \]
\[\| g' (y) \| = 4 + \cos \frac{y}{y} \leq 5 = l, \]
\[\frac{b (a - 1)}{2} - \left(\frac{l + 1}{2} \right)^2 \sigma^2 = \frac{10}{8} > 0. \]
(53)
Thus,
\[\mathcal{L} V_1 (x_t, y_t) \leq -\left(\frac{10}{8} - \frac{7}{2} h \right) x^2 - \left(\frac{10}{8} - \left(\frac{12}{2} + \gamma \right) h \right) y^2 \]
\[+ \left(\frac{10}{8} + \frac{6}{2} + \frac{2}{2} - \gamma \right) \int_{t-h}^t y^2 (s) \, ds. \]
(54)

Let us choose \(\gamma = \frac{b (l + a + 1)}{2} = 9 > 0 \). Then, one can conclude for some positive constant \(\alpha \) that
\[\mathcal{L} V_1 (x_t, y_t) \leq -\alpha (x^2 + y^2), \]
(55)
provided that \(h < \min \{ 5/24, 5/30 \} \).
Since \(4 + \sin y/y \geq 3 = a > 0 \), therefore we get
\[V_1 (x_t, y_t) \geq \frac{3}{2} y^2 + 2x^2 + \frac{1}{2} (y + 3x)^2. \]
(56)
Then, there exists a positive constant \(\beta \) such that
\[V_1 (x_t, y_t) \geq \beta (x^2 + y^2). \]
(57)
Also, by using the fact that \(|4 + \cos y| \leq 5 = l \), we obtain
\[V_1 (x_t, y_t) \leq \frac{9 + 3 + 4}{2} \||x||^2 + \frac{1}{2} (1 + 3 + 5 + 9h^2) \|y\|^2. \]
(58)
So there exists a positive constant \(\nu \) satisfying
\[V_1 (x_t, y_t) \leq \nu (x^2 + y^2). \]
(59)
Thus, from the results (55), (57), and (59), we note that all the conditions of Theorem 4 are satisfied, so the zero solution of (50) is stochastically asymptotically stable.

Example 2. As an application of Theorem 12, consider the second-order stochastic delay differential equation

\[
\begin{align*}
\ddot{x}(t) + 4\dot{x}(t) + \sin x(t) + 2x(t - h) + \frac{1}{2} x(t) \dot{\omega}(t) = & \ p(t, x, \dot{x}, x(t - h)). \\
& \ \text{(60)}
\end{align*}
\]

The equivalent system of (60)

\[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= - (4y + \sin y) - 2x + 2 \int_{t-h}^{t} y(s) \, ds - \frac{1}{2} x(t) \dot{\omega}(t) + p.
& \ \text{(61)}
\end{align*}
\]

From (60), we have

\[
g(y) = 4y + \sin y, \quad b = 2, \quad \sigma = \frac{1}{2}. \quad \text{(62)}
\]

It is obvious that

\[
g(y) = 4 + \sin y \geq 3 = a, \quad \forall y, (y \neq 0),
\]

\[
\left|g'(y) \right| = \left|4 + \cos y\right| \leq 5 = l,
\]

\[
\frac{ab(2b - 1) + b(2ab - 1)}{3l + 2b + 1} = 2 > a^2 = \frac{1}{4},
\]

\[m = 0.02.\]

Thus,

\[
\mathcal{L}V(x_t, y_t) \leq - \left(\frac{35}{2} - \frac{30}{2}h\right)x^2 - \left(\frac{34}{2} - \frac{110}{2}h\right)y^2
\]

\[+ 0.3 |x| + 0.4 |y| . \quad \text{(64)}
\]

Since \(y = b(3l + 2b + 2ab + a + 1)/2 = 35 > 0,\) provided that \(h < \min\{35/60, 34/220\}.

If we take \(\theta = 8.5\) and \(k = 0.047.\) Thus, condition (ii) of Theorem 9 is satisfied by taking \(\lambda(t) = 4.25, \eta(t) = 0.019,\) and \(\gamma = 2.\) Also, we can easily check that the conditions (i)–(iii) of Theorem 9 with \(q_1 = q_2 = \gamma = 2\) and \(\mu = 0\) are satisfied, since

\[
\int_{t_0}^{t} \left[\mu \lambda(u) + \eta(u)\right] e^{\gamma \int_{t_0}^{u} \lambda(v) \, dv} \, du \leq 0.0044, \quad \text{(65)}
\]

for all \(t \geq t_0 \geq 0.\) Thus, condition (35) holds. Now since

\[
\left|V_{x_t}(t, x(t)) \right| \leq \frac{1}{2} \left[25x^2 + 10y^2\right] = \chi(t),
\]

hence the conditions (31) and (32) are satisfied. So by Corollary 11, all solutions of (60) with \(|p| \leq 0.02\) are uniformly stochastically bounded and satisfy

\[
\mathbb{E}^\infty \|x(t; t_0, x_0)\| \leq \left\{x_0^2 + 0.0044\right\}^{1/2}, \quad \forall t \geq t_0 \geq 0. \quad \text{(67)}
\]

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] L. Arnold, Stochastic Differential Equations: Theory and Applications, John Wiley & Sons, New York, NY, USA, 1974.

[2] A. Friedman, Stochastic Differential Equations and Their Applications, Academic Press, 1976.

[3] I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, Springer, Berlin, Germany, 1972.

[4] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, New York, NY, USA, 1993.

[5] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Germantown, Md, USA, 1980.

[6] V. B. Kolmanovskii and A. D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[7] V. Kolmanovskii and L. Shaikhet, “Construction of Lyapunov functionals for stochastic hereditary systems: a survey of some recent results,” Mathematical and Computer Modelling, vol. 36, no. 6, pp. 691–716, 2002.

[8] V. Kolmanovskii and L. Shaikhet, “About some features of general method of Lyapunov functionals construction,” Stability and Control: Theory and Applications, vol. 6, no. 1, pp. 49–76, 2004.

[9] S.-E. A. Mohammed, Stochastic Functional Differential Equations, vol. 99 of Research Notes in Mathematics, Pitman Publishing, 1984.

[10] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, New York, NY, USA, 2000.

[11] R. Reissing, E. Sansone, and R. Conti, Non-Linear Differential Equations of Higher-Order, Noordhoff International Publishing, Leyden, Mass, USA, 1974.

[12] U. H. Thygesen, “A survey of Lyapunov techniques for stochastic differential equations,” IMM Technical Report, 1997.

[13] C. Yuan and X. Mao, “Asymptotic stability and boundedness of stochastic differential equations with respect to semimartingales,” Stochastic Analysis and Applications, vol. 21, no. 3, pp. 737–751, 2003.

[14] X. Mao and L. Shaikhet, “Delay-dependent stability criteria for stochastic differential delay equations with Markovian switching,” Stability and Control: Theory and Applications, vol. 3, no. 2, pp. 88–101, 2000.

[15] X. Mao, “Some contributions to stochastic asymptotic stability and boundedness via multiple Lyapunov functions,” Journal of Mathematical Analysis and Applications, vol. 260, no. 2, pp. 325–340, 2001.

[16] R. Rezaeyan and R. Farnoosh, “Stochastic differential equations and application of the Kalman–Bucy filter in the modeling of RC circuit,” Applied Mathematical Sciences, vol. 4, no. 23, pp. 1119–1127, 2010.

[17] A. Rodkina and M. Basin, “On delay-dependent stability for a class of nonlinear stochastic delay-differential equations,” Mathematics of Control, Signals, and Systems, vol. 18, no. 2, pp. 187–197, 2006.
[18] S. Yi, J. Ming-Hui, and L. Xiao-Xin, “Asymptotic stabilities of stochastic functional differential equations,” *Applied Mathematics and Mechanics (English Edition)*, vol. 27, no. 11, pp. 1577–1584, 2006.

[19] E. Kolarova, “An application of stochastic integral equations to electrical networks,” *Acta Electrotechnica et Informatica*, vol. 8, no. 3, pp. 14–17, 2008.

[20] D. Y. Xu, B. Li, S. J. Long, and L. Y. Teng, “Corrigendum to ‘moment estimate and existence for solutions of stochastic functional differential equations’ [Nonlinear Anal.: TMA 108 (2014) 128–143],” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 114, pp. 40–41, 2015.

[21] X. Mao, *Stochastic Differential Equations and Their Applications*, Horwood Publishing, Chichester, UK, 1997.

[22] L. Y. Teng, S. J. Long, and D. Y. Xu, “On solvability of neutral stochastic functional differential equations with infinite delay,” *Communications on Pure and Applied Analysis*, vol. 18, pp. 325–344, 2014.

[23] R. Liu and Y. Raffoul, “Boundedness and exponential stability of highly nonlinear stochastic differential equations,” *Electronic Journal of Differential Equations*, vol. 143, pp. 1–10, 2009.
