ON PROBLEMS OF U. SIMON
CONCERNING MINIMAL SUBMANIFOLDS
OF THE NEARLY KAHLER 6-SPHERE
FRANKI DILLEN, LEOPOLD VERSTRAELEN AND LUC VRANCKEN

ABSTRACT. We classify the complete 3-dimensional totally real submanifolds with sectional curvature \(K > \frac{1}{16} \) in the nearly Kaehler 6-sphere \(S^6(1) \), and, as a corollary, we solve a problem for compact 3-dimensional totally real submanifolds of \(S^6(1) \) related to U. Simon's conjecture for compact minimal surfaces in spheres.

1. The nearly Kaehler 6-sphere. It is well known that a 6-dimensional sphere \(S^6 \) does not admit any Kaehler structure, and whether \(S^6 \) does or does not admit a complex structure, as far as we know, is still an open question. However, using the Cayley algebra \(\mathbb{O} \), a natural almost complex structure \(J \) can be defined on \(S^6 \) considered as a hypersurface in \(\mathbb{R}^7 \), which itself is viewed as the set \(\mathbb{O}_+ \) of the purely imaginary Cayley numbers (see, for instance, E. Calabi [1]). Together with the standard metric \(g \) on \(S^6 \), \(J \) determines a nearly Kaehler structure in the sense of A. Gray [9], i.e. one has \(\forall X \in \mathbb{O}(S^6): (\tilde{\nabla}_X J)(X) = 0 \), where \(\tilde{\nabla} \) is the Levi Civita connection of \(g \). For reasons of normalization only, in the following we will always work with this nearly Kaehler structure on the sphere \(S^6(1) \), of radius 1 and constant sectional curvature 1. The compact simple Lie group \(G_2 \) is the group of automorphisms of \(\mathbb{O} \) and acts transitively on \(S^6(1) \). Moreover, \(G_2 \) preserves both \(J \) and \(g \).

2. Special submanifolds of \((S^6(1), g, J) \). With respect to \(J \), two natural particular types of submanifolds \(M \) of \(S^6(1) \) can be investigated: those which are almost complex (i.e. for which the tangent space of \(M \) at each point is invariant under the action of \(J \)) and those which are totally real (i.e. for
which the tangent space of M at each point is mapped into the normal space by J). There only exist 2-dimensional almost complex submanifolds in $S^6(1)$, and these are always minimal [10]. Curvature properties for such surfaces were first obtained by K. Sekigawa [15]. Totally real submanifolds of $S^6(1)$ have either dimension 2 or 3. N. Ejiri [7] showed that every 3-dimensional totally real submanifold of $S^6(1)$ is orientable and minimal, and he first obtained curvature properties for such submanifolds. The 3-dimensional totally real submanifolds of $S^6(1)$ were also considered by J. B. Lawson Jr. and R. Harvey [11] in their study of calibrated geometries and by K. Mashimo [13] in his classification of such compact submanifolds which are orbits of closed subgroups of G_2. In our study of submanifolds of the nearly Kaehler 6-sphere, we concentrated on the following problems.

Problem A. Which real numbers can be realised as the constant sectional curvatures of almost complex or minimal totally real submanifolds M of $S^6(1)$?

Problem B. Let K_1 and K_2 be two consecutive numbers as in Problem A. Then, do there exist compact submanifolds M of $S^6(1)$ whose sectional curvatures K satisfy $K_1 \leq K \leq K_2$, other than those for which $K = K_1$ or $K = K_2$?

3. On minimal submanifolds of arbitrary spheres. For minimal surfaces in a unit sphere $S^n(1)$ of arbitrary dimension n, one has a complete answer to Problem A (given by O. Boruvka, E. Calabi and N. Wallach for the case of positive Gauss curvature, the solutions being $K = 2/m(m+1)$, $m \in \mathbb{N}_0$, and by R. Bryant, proving the nonexistence of minimal surfaces of constant negative Gauss curvature in any sphere). Concerning Problem B, U. Simon conjectured the following.

Conjecture of U. Simon [12]. Let M be a compact surface whose Gauss curvature K satisfies $2/m(m+1) \leq K \leq 2/m(m-1)$, for some $m \in \mathbb{N}\{0,1\}$, which is minimally immersed in $S^n(1)$. Then $K = 2/m(m+1)$ or $K = 2/m(m-1)$ (and hence M is a Boruvka sphere).

For $m = 2$ and $m = 3$, this conjecture is known to be true, as was shown by H. B. Lawson Jr., U. Simon, M. Kothe, K.-D. Semmler, K. Benko and M. Kozlowski. Recently, quite a number of people have been working on this problem; in particular, T. Ogata, S. Montiel, T. Itoh, G. Jensen, M. Rigoli, J. Bolton, L. Woodward and U. Simon, A. Schwenk, B. Opozda together with the present authors. As far as we know however, in general this conjecture is still open for $m \geq 3$. In view of U. Simon's conjecture, we would like to call problems of type A and B, as stated above for almost complex and totally real submanifolds of $S^6(1)$, "problems of U. Simon".

4. Solutions of problems A and B.

Theorem 1 [15]. If an almost complex surface M in $S^6(1)$ has constant Gauss curvature K, then either $K = 1$ (and M is totally geodesic) or $K = 0$.

Theorem 2 [4, 2]. Let M be a compact almost complex surface in $S^6(1)$ with Gauss curvature K.
(i) Let $\frac{1}{6} \leq K \leq 1$; then either $K \equiv \frac{1}{6}$ or $K \equiv 1$.

(ii) If $0 \leq K \leq \frac{1}{6}$, then either $K \equiv 0$ or $K \equiv \frac{1}{6}$.

THEOREM 3 [6]. If a minimal totally real surface M in $S^6(1)$ has constant Gauss curvature K, then either $K = 1$ (and M is totally geodesic) or $K = 0$.

THEOREM 4 [6]. For a compact minimal totally real surface M in $S^6(1)$ with nonnegative Gauss curvature K (or equivalently $0 \leq K \leq 1$), either $K \equiv 0$ or $K \equiv 1$.

In 1981, making use of a special choice of local orthonormal frames, N. Ejiri solved Problem A in the remaining case as follows.

THEOREM 5 [7]. If a 3-dimensional totally real submanifold M of $S^6(1)$ has constant sectional curvature K, then either $K = 1$ (and M is totally geodesic) or $K = \frac{1}{16}$.

Totally real 3-dimensional totally geodesic submanifolds in $S^6(1)$ are not hard to construct. On the other hand, N. Ejiri [8] proved that $S^3(\frac{1}{16})$ can be immersed totally real and isometrically in $S^6(1)$. K. Mashimo [13] found an orbit of a closed subgroup of G_2 with constant curvature $\frac{1}{16}$. Later we will explicitly describe these immersions, obtaining for instance as extra information that they are in fact 56-fold coverings of $S^3(\frac{1}{16})$. Compared to the solutions given in Theorems 2 and 4, the solution of Problem B seems more involved in the present case. In our approach, the solution represented by Theorem 6 is an immediate consequence of the Main Theorem.

THEOREM 6. A compact 3-dimensional totally real submanifold of $S^6(1)$ whose sectional curvature K satisfies $\frac{1}{16} \leq K \leq 1$ has constant sectional curvature $K = \frac{1}{16}$ or $K = 1$.

MAIN THEOREM. Let $x: M^3 \rightarrow S^6(1)$ be a totally real isometric immersion of a complete 3-dimensional Riemannian manifold M^3 into the nearly Kaehler 6-sphere $S^6(1)$. If the sectional curvatures K of M^3 satisfy $K \geq \frac{1}{16}$, then either M^3 is simply connected and x is G_2-congruent to $x_1: M_1 \rightarrow S^6(1)$ (in which case K attains all values in the closed interval $[\frac{1}{16}, \frac{24}{16}]$) or to $x_2: M_2 \rightarrow S^6(1)$ (in which case $K \equiv 1$), or else \tilde{x}, the composition of the universal covering map of M^3 with x, is G_2-congruent to $x_3: M_3 \rightarrow S^6(1)$ (in which case $K \equiv \frac{1}{16}$).

SKETCH OF PROOF (details will appear elsewhere [3]). As in our partial solution of Problem B [5], a crucial role is played by some integral formulas of A. Ros, of which we’ll state one next. We do believe that these formulas provide a powerful tool to study problems in global Riemannian geometry.

LEMMA OF A. ROS [14]. Let M be a compact Riemannian manifold, UM its unit tangent bundle and UM_p the fibre of UM over a point p of M. Let dp, du and du_p denote the canonical measures on M, UM and UM_p, respectively. For any continuous function $f: UM \rightarrow \mathbb{R}$, one has

$$\int_{UM} f \, du = \int_M \left\{ \int_{UM_p} f \, du_p \right\} \, dp.$$
Now, let T be any k-covariant tensor field on M. Then one has the integral formula

$$\int_M (\nabla T)(u, u, \ldots, u) \, du = 0,$$

where ∇ is the Levi Civita connection on M.

We apply this lemma for some particular tensors T constructed in terms of the second fundamental form h of the immersion π. Then, under the assumption $K \geq \frac{1}{16}$, amongst others, we obtain that

$$R(v, A_j v; A_j v, v) = \frac{1}{16} \{ \|A_j v\|^2 - \langle A_j v, v \rangle \}$$

for all $p \in M^3$ and all $v \in UM_p$, where R is the Riemann-Christoffel curvature tensor of M^3 and A is the Weingarten map with respect to a normal section ξ. From this, working with special frames, using the Gauss equation and with the help of computer manipulation of formulas, we can prove that at each point p the second fundamental form h_p has either one of three possible forms, leading respectively to the possibilities $K(p) \equiv 1$, $K(p) \equiv \frac{1}{16}$, and $K(p) \in [\frac{1}{16}, \frac{21}{16}]$, where $K(p)$ is the sectional curvature function of M^3 at p. In the following, we will give comments concerning only x_1 (x_2 is the totally geodesic case, and for x_3 we will confine ourselves to give precise formulas for the immersion). The existence of x_1 is guaranteed by the following result taken from a preprint by N. Ejiri.

Theorem of N. Ejiri [8]. Let M be a 3-dimensional simply connected Riemannian manifold with metric (\cdot, \cdot). Suppose there exist a $(1, 2)$-symmetric tensor field T on M such that

(i) $\text{Tr} T = 0$, $(T(X, Y), Z) = \langle T(X, Z), Y \rangle,$

(ii) $\langle R(X, Y)W, Z \rangle = (X, Z)\langle Y, W \rangle - (X, W)\langle Y, Z \rangle + \langle T(X, Z), T(Y, W) \rangle - \langle T(X, W), T(Y, Z) \rangle$,

(iii) $(\nabla_X T)(Y, Z) - (\nabla_Y T)(X, Z) + T(Z, X \wedge Y) = 0$, where \wedge is the vector product determined by some orientation on M.

Then, up to a transformation of G_2, there exists a unique isometric immersion x of M into S^6 as a totally real submanifold with second fundamental form $J(x^* T)$ and with normal connection D defined by $D_x J(x^* Y) = J(x, (\nabla_X Y + X \wedge Y))$.

Namely, on the unit sphere $S^3(1) = \{ y = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4 | \sum y_i^2 = 1 \}$ we can define a metrix (\cdot, \cdot), vector product \wedge and tensor field T satisfying the conditions of this theorem and for which K attains all values in $[\frac{1}{16}, \frac{21}{16}]$. This leads to the immersion $x_1: S^3(1) \subset \mathbb{R}^4 \to S^6(1) \subset \mathbb{R}^7: y \to z = (z_1, \ldots, z_7)$, where

$z_1(y) = \frac{1}{9} (5y_1^2 + 5y_2^2 - 5y_3^2 - 5y_4^2 + 4y_1),$

$z_2(y) = -\frac{2}{3} y_2, \quad z_3(y) = \frac{2\sqrt{5}}{9} (y_1^2 + y_2^2 - y_3^2 - y_4^2 - y_1),$

$z_4(y) = \frac{\sqrt{3}}{9\sqrt{2}} (-10y_1y_3 - 10y_2y_4), \quad z_5(y) = \frac{\sqrt{15}}{9\sqrt{2}} (2y_1y_4 - 2y_4 - 2y_2y_3),$

$z_6(y) = \frac{\sqrt{15}}{9\sqrt{2}} (2y_1y_3 - 2y_3 + 2y_2y_4), \quad z_7(y) = -\frac{\sqrt{3}}{9\sqrt{2}} (10y_1y_4 + 2y_4 - 10y_2y_3).$
In practice, x_1 was found solving the system of differential equations (1) on p. 67 of M. Spivak’s volume IV [16]; the rigidity of course follows from the fundamental theorem of submanifolds.

Finally, we mention the formulas of $X_3: S^3(\frac{1}{16}) = \{y \in \mathbb{R}^4 | \sum y_j^2 = 16\} \subset \mathbb{R}^4 \to S^6(1) \subset \mathbb{R}^7$: $y \mapsto z(y)$; we have

$$z_1(y) = \sqrt{15} \cdot 2^{-10} \cdot (y_1 y_3 + y_2 y_4) \cdot (y_1 y_4 - y_2 y_3)(y_1^2 + y_2^2 - y_3^2 - y_4^2),$$

$$z_2(y) = 2^{-12} \left[-\sum_j y_j^6 + 5 \sum_{i<j} y_i^2 y_j^2 (y_i^2 + y_j^2) - 30 \sum_{i<j<k} y_i^2 y_j^2 y_k^2 \right],$$

$$z_3(y) = 2^{-10}[y_3 y_4 (y_3^2 - y_4^2)(y_3^2 + y_4^2 - 5y_1^2 - 5y_2^2)
+ y_1 y_2 (y_1^2 - y_2^2)(y_1^2 + y_2^2 - 5y_3^2 - 5y_4^2)],$$

$$z_4(y) = 2^{-12}\{y_2 y_4 (y_2^2 + 3y_3^2 - y_4^2 - 3y_1^2) + y_1 y_3 (y_3^2 + 3y_4^2 - y_1^2 - 3y_4^2)
+ 2(y_1 y_3 - y_2 y_4)(y_2^2 + 4y_3^2 - y_3^2(y_2^2 + 4y_3^2))\},$$

$$z_5(y_1, y_2, y_3, y_4) = z_4(y_2, -y_1, y_3, y_4),$$

$$z_6(y) = \sqrt{6} \cdot 2^{-12} \cdot [y_1 y_3 (y_1^4 + 5y_2^2 - y_3^4 - 5y_4^2) - y_2 y_4 (y_2^4 + 5y_1^2 - y_4^4 - 5y_3^2)
+ 10(y_1 y_3 - y_2 y_4)(y_3^2 y_4^2 - y_1^2 y_2^2)],$$

$$z_7(y_1, y_2, y_3, y_4) = z_6(y_2, -y_1, y_3, y_4).$$

REFERENCES

1. E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 111-125.
2. F. Dillen, L. Verstraelen and L. Vrancken, On almost complex surfaces of the nearly Kaehler 6-sphere. II, Kodai Math. J. 10 (1987), 261-271.
3. ——, Classification of totally real 3-dimensional submanifolds of $S^6(1)$ with $K \geq \frac{1}{16}$, preprint.
4. F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken, On almost complex surfaces of the nearly Kaehler 6-sphere. I, Collection of Scientific Papers, Faculty of Science, Univ. of Kragujevac 8 (1987), 5-13.
5. ——, On totally real 3-dimensional submanifolds of the nearly Kaehler 6-sphere, Proc. Amer. Math. Soc. 99 (1987), 741-749.
6. ——, On totally real surfaces of the nearly Kaehler 6-sphere, Geom. Dedicata (to appear).
7. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
8. ——, Totally real submanifolds in a 6-sphere, preprint.
9. A. Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965), 273-287.
10. ——, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.
11. R. Harvey and H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
12. M. Kozlowski and U. Simon, *Minimal immersions of 2-manifolds into spheres*, Math. Z. 186 (1984), 377–382.

13. K. Mashimo, *Homogeneous totally real submanifolds of S^6*, Tsukuba J. Math. 9 (1985), 185–202.

14. A. Ros, *A characterization of seven compact Kaehler submanifolds by holomorphic pinching*, Ann. of Math. (2) 121 (1985), 377–382.

15. K. Sekigawa, *Almost complex submanifolds of a 6-dimensional sphere*, Kodai Math. J. 6 (1983), 174–185.

16. M. Spivak, *A comprehensive introduction to differential geometry*, vol. IV, Publish or Perish, Berkeley, 1979.

Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200B, 3030 Leuven, Belgium