The flux distribution of individual blazars as a key to understand the dynamics of particle acceleration

Atreyee Sinha1,2,\(*\), Rukaiya Khatoon3,\(†\), Ranjeev Misra1, Sunder Sahayanathan4, Soma Mandal5, Rupjyoti Gogoi3 and Nilay Bhatt4

1Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune-411007, India.
2Now at: APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
3Tezpur University, Napaam-784028, Assam, India.
4Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai - 400085, India.
5Government Girls’ General Degree College, Kolkata-700023, West Bengal, India.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
The observed log-normal flux distributions in the high energy emission from blazars have been interpreted as being due to variability stemming from non-linear multiplicative processes generated dynamically from the accretion disc. On the other hand, rapid minute scale variations in the flux point to a compact emitting region inside the jet, probably disconnected from the disc. In this work, we show that linear Gaussian variations of the intrinsic particle acceleration or escape time-scales can produce distinct non-Gaussian flux distributions, including log-normal ones. Moreover, the spectral index distributions can provide confirming evidence for the origin of the variability. Thus, modelling of the flux and index distributions can lead to quantitative identification of the micro-physical origin of the variability in these sources. As an example, we model the X-ray flux and index distribution of Mkn 421 obtained from ~ 9 years of MAXI observations and show that the variability in the X-ray emission is driven by Gaussian fluctuations of the particle acceleration process rather than that of the escape rate.

Key words: acceleration of particles–galaxies: active–(galaxies:) BL Lacertae objects: general–(galaxies:) BL Lacertae objects: individual: Mkn 421

1 INTRODUCTION
Blazars are a special class of radio-loud active galactic nuclei (AGNs) and their observed broadband spectra are dominated by non-thermal emission arising from radiative cooling of relativistic electron distributions in powerful Doppler-boosted jets (Urry & Padovani 1995). Additionally, blazar luminosity is observed to vary over time scales of years down to minutes and at all wavelengths across the electromagnetic spectrum. Despite many decades of observations, the cause of the underlying variability is poorly understood. The dominance of the non-thermal emission further hinders our understanding of the accretion disk-jet connection in these sources.

Irrespective of the origin, emission from blazars has been found to be stochastic in nature, similar to that seen in other AGNs and Galactic X-ray binaries (McHardy et al. 2006; Chatterjee et al. 2012; Nakagawa & Mori 2013; Sobolewska et al. 2014). Since the past decade, much work has been done to understand the flux distribution of the lightcurves. For a linear stochastic process, a Gaussian distribution of the flux is to be expected, with the width of the distribution determining the flux variation. However, for the case of the eponymous blazar BL Lac, a log-normal flux distribution was clearly evident in the long-term X-ray light curves, with the average amplitude of variability being proportional to the flux level (Giebels & Degrange 2009). Henceforth, this behaviour has been witnessed even in other blazars, and at different timescales and wavelengths (H.E.S.S. Collaboration et al. 2010; Sinha et al. 2016, 2017; Chevalier et al. 2015; Kushwaha et al. 2016; Shah et al. 2018). Such properties were initially observed in the X-ray emission of the galactic black hole binary Cygnus X-1 (Uttley & McHardy 2001), and are usually interpreted as arising from multiplicative processes which originate in the accretion disc (Lyubarskii 1997; Uttley et al. 2005; McHardy 2010). However, minute time scale variability as seen in many blazars (Gaidos et al. 1996; Aharonian et al. 2007; Albert et al. 2007; Paliya et al. 2015) is difficult to originate.
from the disc (Narayan & Piran 2012), and strongly favors the variability to originate within the jet.

On the other hand, additive processes can also result in such distributions under specific scenarios. Biteau & Giebels (2012) studied the statistical properties of the mini jets-in-a-jet model of Giannios et al. (2009) and showed that the total flux from randomly oriented mini jets will converge to an α-stable distribution. Further, inclusion of experimental uncertainties can imitate such a distribution as a log-normal one. In this work, we provide an alternate interpretation of the non-Gaussian signatures seen in blazar variability through linear fluctuations of the underlying particle acceleration and/or the diffusive escape rate of the emitting electrons. Such small Gaussian perturbations propagate to produce non-linear flux distributions and linear flux-lags relations at high frequencies. This can explain the log-normal behaviour in both the long term stationary time series and during blazar flares, while reproducing the observed flux-lags relations. Finally, this study is used to interpret a plausible cause of variability in light-curves obtained from the MAXI observations for the brightest TeV blazar, Mkn 421.

2 PERTURBATION ON THE INTRINSIC TIME SCALES

We consider a scenario where the non-thermal electrons responsible for the blazar emission are accelerated at a shock front (AR; the acceleration region). Subsequently, they diffuse downstream (CR; the cooling region), at a rate τ_e^{-1}, where they radiate through synchrotron and inverse Compton (IC) mechanisms (Kirk et al. 1998; Sahayanathan 2008). The kinetic equation describing evolution of the electrons in the AR can be written as (Kardashev 1962),

$$\frac{\partial n(y,t)}{\partial t} + \frac{\partial}{\partial y} \left(\gamma \frac{\partial n(y,t)}{\partial y} - A y^2 n(y,t) \right) + \frac{n(y,t)}{\tau_e} = Q(y)$$ \hspace{1cm} (1)

where, γ/τ_a is the electron acceleration rate and $A y^2$ is the radiative loss rate γ/τ_a. Together, they govern the maximum attainable Lorentz factor of the accelerated electrons, $\gamma_{max} = \frac{\pi}{\gamma \tau_a}$. The steady state solution of equation (1) for a mono energetic electron injection, $Q(y) = Q_0 \delta(y - \gamma_0)$, will be

$$n_0(y) = \frac{Q_0 \gamma_0}{\gamma_{max}} (1 - \frac{\gamma}{\gamma_{max}})^{\frac{\tau_e}{\tau_a} - 1} \frac{1}{\gamma_0 - \gamma_{max}}$$ \hspace{1cm} (2)

After injection into the CR, the evolution of these particles is governed by

$$\frac{\partial n_e(y,t)}{\partial t} = \frac{\partial}{\partial y} \left[B y^2 n_e(y,t) \right] + \frac{n(y,t)}{\tau_e} - \frac{n_e(y,t)}{\tau_e}$$ \hspace{1cm} (3)

where first term on the right hand side of equation (3) describes the radiative loss rate in the CR, and the last term is the escape of electrons from CR at a rate τ_e^{-1}. The steady state solution of the above equation will be a broken power law, with indices $\tau_a/\tau_e + 1$ and $\tau_a/\tau_e + 2$, and a break at energy $1/B\tau_e$. Since the indices of the particle spectrum do not depend on the intrinsic timescales of the CR, this will not introduce any additional non-linearity in the temporal behaviour. Moreover, as the radiative loss rate is $\propto y^2$, the resultant photon spectrum will again be a broken power law with indices $\tau_a/2\tau_e$ and $(\tau_a + \tau_e)/2\tau_e$ respectively. The narrow width of the single particle emissivity due to synchrotron and inverse Compton emission mechanisms, with respect to the power law electron distribution, further ensures that the photon spectrum will retain the temporal behaviour of the underlying particle distribution. In addition, the shape of the flux distribution due to synchrotron and inverse Compton scattering of an external photon field will be similar to that of electron number density since the corresponding emissivities are proportional to the number density, On the other hand, for synchrotron self Compton process, the emissivity will depend on the square of the electron distribution (Sahayanathan et al. 2018) and hence the variance of the distribution will be twice as that of the electron distribution.

2.1 Gaussian perturbation on τ_a

A small perturbation in the acceleration time scale can introduce variation in the accelerated particle number density. If we quantify this variation in τ_a as

$$\tau_a = \tau_{a0} + \Delta \tau_a$$ \hspace{1cm} (4)

where, τ_{a0} corresponds to the mean acceleration timescale, the change in the number density can be expressed as

$$\bar{n}(y) = \bar{n}_0(y) + \Delta \bar{n}(y)$$ \hspace{1cm} (5)

where, \bar{n}_0 is the steady state solution (equation (2)) corresponding to $\tau_a = \tau_{a0}$. Substituting equations (4) and (5) in the steady state form of equation (1), the fractional variability in $\bar{n}(y)$ can then be obtained as,

$$\frac{\Delta \bar{n}(y)}{\bar{n}_0(y)} = \frac{f(y) \Delta \tau_a}{\tau_a} + \frac{g(y) \Delta \tau_a}{\tau_e}$$ \hspace{1cm} (6)

where,

$$f(y) = \left(1 - \frac{1}{1 - \frac{\gamma}{\gamma_{max}}} \right)$$ \hspace{1cm} (7)

$$g(y) = \frac{\gamma_0 (1 - \frac{\gamma}{\gamma_{max}})}{\gamma (1 - \frac{\gamma_0}{\gamma_{max}})} \frac{1 - \frac{\gamma}{\gamma_{max}}}{1 - \frac{\gamma_0}{\gamma_{max}}}$$ \hspace{1cm} (8)

From equation (6), it is evident that the variability in $\bar{n}(y)$ is a linear combination of Gaussian and log-normal terms. The relative amplitudes of these terms are decided by the functions $f(y)$ and $g(y)$. For the case $\gamma_{max} \rightarrow \infty$, the log-normal term dominates when $\gamma \gg \gamma_0 \exp(\tau_e/\tau_0)$. Also in this case, the standard deviation of a normally distributed τ_a will be approximately $\tau_e \log(\gamma_0/\gamma)$ times that of $\log \bar{n}(y)$. Since the variability in photon index will be equal to $\Delta \tau_a/2\tau_e$, the standard deviation of the logarithm of the photon flux distribution will be $2\log(\gamma_0/\gamma)$ times the index distribution (in case of synchrotron and external Compton processes).

To quantify the deviation of $n(y,t)$ from a Gaussian, we simulate its temporal behaviour by solving equation (1) numerically using finite difference scheme. Gaussian perturbations of varying widths (σ_{τ_a}) are then introduced in τ_a and the time series spanning over 5000 points of $n(y)$ is computed.
The pink band shows the 1-σ error range for the observed value for Mkn421. To confirm this, we further fit the normalised distribution of the number densities with Gaussian and log-normal probability density functions (PDFs). We find that a log-normal PDF significantly fits the distribution better at high electron energies. In Figure 2(a), we show the normal and log-normal fit to the electron distribution corresponding to γ = 10^3 and σ_{\kappa_e}/τ_e = 0.1. Clearly, the fit statistics is better for a log-normal with a reduced chi-square, χ^2_reduced = 1.1 for 17 degrees of freedom (dof), than a Gaussian (χ^2_reduced ≈ 20.9 for 17 dof) PDF. The log-normal behaviour of the number density n at large γ lets us express the skewness of the distribution as

$$\kappa_n = \left(2 + e^{\sigma_{\log n}^2}\right)^{\frac{1}{2}} - 1$$

where, σ_{\log n} is the standard deviation of log n which can be approximated as

$$\sigma_{\log n} \approx \frac{g(\gamma)}{\tau_e}$$

The energy dependence of σ_{\log n} will cause the skewness (κ_n) to increase with energy which in turn can be an indicator for the energy of the emitting electrons. It is evident from equations (9) and (10) that for σ_{\kappa_e} → 0, the distribution of n will closely reflect a Gaussian behaviour.

A necessary feature of a log-normal behaviour is a linear dependence of the average flux on its excess (rms) variation (Vaughan et al. 2003). Consistently, the electron number density at high energies should reflect this behaviour and to examine this, we compute the average number density and its variation, for a given γ and σ_{\kappa_e}/τ_e, by dividing the corresponding time series into 50 equal time bins. In Figure 2(b), we show the distribution of the average number density and its variation for γ = 10^3 and σ_{\kappa_e}/τ_e = 0.1. A Spearman’s rank correlation study shows these quantities are significantly correlated with correlation coefficient ρ = 0.83 with null hypothesis probability P = 4 × 10^{-28}. In Figure 3(a), we plot the correlation coefficient with respect to σ_{\kappa_e}/τ_e for different values of γ. It can be noted that the correlation improves with the increasing value of γ, thereby supporting a log-normal behaviour.

2.2 Gaussian perturbation on τ_e

In addition to the acceleration rate, the observed photon spectral index will also depend on the confinement time of the electron distribution within AR. In other words, a
variability in the escape timescale in AR can introduce non-linearity in the electron distribution. To study this effect, we quantify the variation in escape time scale (τ_e) in AR as

$$\tau_e = \tau_{e0} + \Delta \tau_e$$

and the corresponding change in the electron number density as

$$\bar{n}(\gamma) = \bar{n}_0(\gamma) + \Delta \bar{n}(\gamma)$$

where, \bar{n}_0 is the steady state solution (equation (2)) corresponding to $\tau_e = \tau_{e0}$. Following the procedure similar to the case of τ_e (§2.1), substituting equations (11) and (12) in the steady state form of equation (1), the fractional variability in $\bar{n}(\gamma)$ can then be obtained as,

$$\frac{\Delta \bar{n}}{\bar{n}} = \frac{\Delta \tau_e}{\tau_e} f(\gamma)$$

where,

$$f(\gamma) = \log \frac{\gamma(1 - \gamma_{0}/\gamma_{max})}{\gamma_{0}(1 - \gamma/\gamma_{max})}$$

It is evident from equation (13), that while the resultant distribution will be neither normal nor log-normal, it will be a skewed one. Additionally, since the particle index $p \sim \frac{1}{\tau_e}$, the distribution of the spectral indices will also be skewed.

To further quantify the effect on the electron number density due to a Gaussian fluctuation in τ_e, we simulate the temporal behaviour of $n(\gamma,t)$ by solving equation (1) numerically (§2.1). In Figure 1(b), we show the skewness of the particle distribution (κ_3) as a function of σ_{τ_e}/τ_e, for different values of γ. The distributions are highly tailed for increasing values of γ supporting a non-Gaussian behaviour. A similar behaviour is also observed in case of the skewness of the logarithm of the number density ($\kappa_{3\log n}$) which is shown in Figure 1(d). These studies suggest that the resultant electron number density distribution is significantly skewed; however, it is neither normal nor log-normal.

We also perform the Anderson Darling test on the distribution of the electron number density for various γ. Consistent with our earlier study, both Gaussian and log-normal fits are strongly rejected. In Figure 4(a), we show the normalised histogram of the electron number density for $\gamma = 10^3$ and $\sigma_{\tau_e}/\tau_e = 0.1$ fitted with Gaussian and log-normal PDFs. Our fit result suggests both of these PDFs cannot represent the given distribution with $\chi^2_{\text{red}} \approx 6.7$ (dof=28) for the Gaussian PDF and $\chi^2_{\text{red}} \approx 3.7$ (dof=28) for log-normal one. To study the flux-rms relation, we divide the temporal evolution of the number density into 50 equal time bins (§2.1), the average number density and its rms variation corresponding to each bin is determined. In Figure 4(b), we show their distribution for the case of $\gamma = 10^3$ and $\sigma_{\tau_e}/\tau_e = 0.1$. A Spearman’s rank correlation study suggests mild positive correlation between these quantities with $\rho = 0.26$ and $P = 0.0071$.

The variation of the flux-rms correlation coefficient with respect to σ_{τ_e}/τ_e is shown in Figure 3(b) for different values of γ. The correlation improves with increasing value of γ; however, it is less significant than the case of the Gaussian perturbation on τ_e.

3 DISCUSSION

The flux-rms relation of individual blazars or the skewness shown by the distribution of the flux are interpreted by several authors as arising from multiplicative processes, favouring a variability stemming from the disk. Alternatively, Biteau & Giebels (2012) demonstrated that such behaviour can also arise from a collection of randomly oriented mini jets within the jet. They showed that the flux from a randomly oriented mini jet will follow a Pareto distribution which preserves the flux-rms relation. Further, the total flux due to several randomly oriented mini jets will be a sum of Pareto distributions that converge to an α-stable distribution. The resultant flux distribution still holds the flux-rms relation; however, will neither be normal nor log-normal one. Nevertheless, inclusion of experimental uncertainties may imitate the distribution as a log-normal one.

In the present work, we show that small temporal fluctuations in the intrinsic time scales in the AR is capable of producing particle distributions with non-Gaussian signatures and significant flux-rms correlations. The novelty of this work is that it connects the long term temporal behaviour of the blazars with the relatively shorter timescales of the acceleration process, and provide clues on electron energies responsible for the emission. To highlight this, we study the X-ray observations of the blazar Mkn 421 by MAXI satellite, spanning over 9 years ranging from 2009 to 2018 (Matsuoka et al. 2009). While the integrated counts obtained from a 10 days binned light curve showed a log-normal behaviour with $\chi^2_{\text{red}} = 1.43$ for 7 dof and $\alpha = 0.33 \pm 0.02$ over a Gaussian one with $\chi^2_{\text{red}} = 9.84$ for 7 dof (Figure 5(b)), the spectral indices estimated from the hardness ratio between 4–10 keV and 2–4 keV fluxes were normally distributed with $\chi^2_{\text{red}} \approx 0.81$ for 10 dof, mean $m_p = 2.1 \pm 0.022$ and standard deviation $\sigma_p = 0.31 \pm 0.096$ (Figure 5(a)). This suggests that the plausible physical process responsible for the observed flux variation is associated with the fluctuations in the particle acceleration rate. The fractional variation in acceleration timescale can then be identified from σ_p and m_p of the index distribution as $\sigma_{\tau_e}/\tau_e = 0.148 \pm 0.046$. A comparison of Figure 1(a) with this value and the observed skewness of $\kappa = 1.27 \pm 0.24$ suggests the emission to originate from electrons with γ range $\sim 10^2 - 10^5$. From Figure 3(a), we see that this value of γ is consistent with the observed correlation co-efficient $\rho = 0.74 \pm 0.04$. However, this
This discrepancy can be attributed to the broadening of the spectral bands due to the energy distribution of the emitting electrons. The best fit log-normal distribution is used to model the spectral energy distribution of blazars, whereas the best fit Gaussian function is used to model the distribution of the injection Lorentz factor. The skewness of the distribution is found to be a function of the injection Lorentz factor and the spectral index. The results obtained through spectral analysis of the X-ray data are consistent with the expectations from the models of electron acceleration in the blazar jet. The non-Gaussian nature of the flux distribution and the spectral energy distribution of blazars are also discussed in the paper.

ACKNOWLEDGEMENTS

We are thankful to the anonymous referee for valuable comments and suggestions. S. Mandal is thankful to ISRO (ISRO/RES/2/404/15-16) and R. Khatoon is thankful to CSIR, New Delhi (03/1412/17/EMR-II) for financial support. R. Gogoi would like to thank IUCAA, Pune for associated research.

REFERENCES

Abdo A. A., et al., 2011, ApJ, 736, 131
Aharanian, F., et al., 2007, ApJ, 664, L71
Albert J., et. al., 2007, ApJ, 669, 862
Biteau J., Giebels B., 2012 A&A, 548, A123
Chatterjee R., et al., 2012, ApJ, 749, 191
Chevalier J., Kastendieck M. A., Rieger F. M., Maurin G., Lenain J. P., Lamanna G., 2015, in 34th International Cosmic Ray Conference (ICRC2015). p. 829
Donnarumma I., et al., 2009, ApJ, 691, L13
Gaidos J. A., et al., 1996, Nature, 383, 319
Giannios D., Udendrys D. A., Begelman M. C., 2009, MNRAS, 395, L29
Giebels B., Degrange B., 2009, A&A, 503, 797
H.E.S.S. Collaboration et al., 2010, A&A, 520, A83
Kardashev N. S., 1962, Soviet Ast., 6, 317
Kirk J. G., Rieger F. M., Mastichiadis A., 1998, A&A, 333, 452
Kushwaha P., Chandra S., Misra R., Sahayanathan S., Singh K. P., Bahlani K. S., 2016, ApJ, 822, L13
Lyubarskii Y. E., 1997, MNRAS, 292, 679
Matsuoka M., et al., 2009, PASJ, 61, 999
McHardy I., 2010, in Belloni T., ed., Lecture Notes in Physics, Berlin Springer Verlag Vol. 794, Lecture Notes in Physics, Berlin Springer Verlag. p. 203, doi:10.1007/978-3-540-76937-8_8
McHardy I. M., Koerding E., Kuegge C., Uttley P., Fender R. P., 2006, Nature, 444, 730
Nakagawa K., Mori M., 2013, ApJ, 773, 177
Narayan R., Piran T., 2012, MNRAS, 420, 604
Paliya V. S., Böttcher M., Diltz C., Stalin C. S., Sahayanathan S., Ravikumar C. D., 2015, ApJ, 811, 143
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical recipes in FORTRAN. The art of scientific computing
Sahayanathan S., 2008, MNRAS, 388, L49
Sahayanathan S., Sinha A., Misra R., 2018, Research in Astronomy and Astrophysics, 18, 035
Shah Z., Mankuzhiyil N., Sinha A., Misra R., Sahayanathan S., Iqbal N., 2018, preprint, (arXiv:1805.04675)
Sinha A., et al., 2016, A&A, 591, A83
Sinha A., Sahayanathan S., Acharya B. S., Anupama G. C., Chitnis V. R., Singh B. B., 2017, ApJ, 836, 83
Sobolewska M. A., Siemiginowska A., Kelly B. C., Nalewajko K., 2014, ApJ, 796, 143
Urry C. M., Padovani P., 1995, PASP, 107, 803
Uttley P., McHardy I. M., 2001, MNRAS, 323, L26
Uttley P., McHardy I. M., Vaughan S., 2005, MNRAS, 359, 345
Vaughan S., Edelson R., Warwick R. S., Uttley P., 2003, MNRAS, 345, 1271
Zhu Q., Yan D., Zhang P., Yin Q.-Q., Zhang L., Zhang S.-N., 2016, MNRAS, 463, 4481

This paper has been typeset from a TeX/LATEX file prepared by the author.