Endobronchial brachytherapy combined with surgical procedure for synchronous multiple primary lung cancer: A case report

Kazuki Omori1 | Yoshihito Nomoto1 | Tomoko Kawamura1 | Makiko Kubooka1 | Koji Kawaguchi2 | Noriko Ii3 | Akinori Takada1 | Yutaka Toyomasu1 | Hajime Sakuma1

1Department of Radiology, Mie University, Tsu, Japan
2Department of Thoracic Surgery, Mie University, Tsu, Japan
3Department of Radiation Oncology, Ise Red Cross Hospital, Ise, Japan

Correspondence
Yoshihito Nomoto, Department of Radiology, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
Email: nomoto-y@clin.medic.mie-u.ac.jp

Abstract
The management of synchronous multiple primary lung cancer is a challenge. In this report, we describe our experience in a patient with three synchronous multiple cancers. The first lesion was completely surgically removed, the second lesion received postoperative irradiation, and the third lesion was treated with radiotherapy alone. Radiation therapies were performed using a combination of external irradiation and endobronchial brachytherapy. Endobronchial brachytherapy is an effective radiation therapy for endobronchial tumors owing to its advantage of high-dose concentration. However, adverse events (AEs) such as hemoptysis or severe bronchitis are a problem. Thus, we have developed an applicator to keep the radioactive source in the center of the bronchial lumen. A total of 28 months after treatment, the patient had not experienced any relapses or AEs. Endobronchial brachytherapy using an applicator can be an alternative treatment for cases in which surgery is expected to lead to pulmonary dysfunction.

Keywords
applicator, endobronchial brachytherapy, synchronous multiple primary lung cancer

INTRODUCTION
At present, surgery is considered as the first choice of treatment for multiple primary lung cancer (MPLC). However, surgery for all lesions may lead to loss of pulmonary function. On the other hand, endobronchial brachytherapy (EBBT) is able to minimize lung damage due to its high dose concentration. Historically, EBBT has often been used for palliative irradiation and has been found to be effective in improving bronchial stenosis and obstruction caused by tumors. Recently, several studies have reported the use of EBBT for radical irradiation to eliminate tumors (Table 1). However, adverse events (AEs) such as hemoptysis or severe bronchitis due to overdosing owing to uneven dose distribution in the bronchus have been a problem. Thus, we have developed an applicator (Figure 1(a)) to keep the radioactive source in the center of the bronchial lumen (Figure 1(b)) and attempted to improve the dose distribution in the bronchial lumen. This report describes a case of lung cancer with three MPLCs in which two of the lesions received radiotherapy (RT) using a combination of external irradiation and EBBT using a source-centralizing applicator.

CASE REPORT
A 72-year-old man was referred to a previous hospital with an abnormal chest roentgenogram following physical examination. Computed tomography (CT) showed a 2.2 cm nodule in the left upper lobe (S3). The lung with suggested pleural invasion. In addition, bronchoscopy revealed a 1.1 cm elevated lesion at the entrance of the left apical bronchus (B6) and a 0.3 cm mucosal abnormality of the spur...
between the right apical and posterior division bronchus (B1/2), suggestive of early stage lung cancer. Biopsy was performed, and squamous cell carcinoma was detected in all three lesions. Lymph node metastasis and distant metastasis were not detected on imaging examinations.

The patient underwent left S3 segmentectomy and left S6 sleeve segmentectomy and bronchoplasty. The left S3 tumor was completely resected, but the left S6 tumor remained in the mucosa of the bronchial anastomotic lesion. The patient was referred to our hospital for treatment of the remaining left S6 tumor (Figure 2(a)) and the right B1/2 tumor (Figure 2(b)) using RT including EBBT.

External RT for the two lesions was performed prior to EBBT. Using megavoltage equipment with 6 MV photon beams, five fractions of 2 Gy were applied weekly with a total dose of 40 Gy. The radiation field was limited to the primary lesion, without extension to the regional lymph nodes. The clinical target volume was delineated with reference to bronchoscopic findings. Subsequently, EBBT was performed using a high-dose-rate Ir-192 after-loading machine. We used an endobronchial applicator for every session. The prescription dose was 18 Gy/3 fr for the left post-bronchoplasty lesion (Figure 3(a)) and 20 Gy/4 fr for the right B1/2 lesion (Figure 3(b)). The reference dose points were 3–7 mm from the source axis according to the bronchial diameter measured on planning CT images. The irradiated length was 5 cm at the left post-bronchoplasty lesion and 4.5 cm at the right B1/2 lesion. After irradiation, the right B1/2 tumor disappeared. The patient was followed up using CT and bronchoscopy, and neither lesion recurred for 28 months with no AEs such as severe bronchitis or hemoptysis.

DISCUSSION

The most serious AEs of EBBT are fatal hemoptysis and severe bronchitis due to over irradiation. If EBBT is performed using only the source transfer tube, it may be placed at eccentric locations in the bronchial lumen, leading to localized hot spots on the bronchial mucous membrane. The applicator we have developed has two “wings” that open at the irradiation site and keep the radioactive source in the center of the lumen to prevent excessive irradiation to the bronchial mucosa. We reported that there were fewer AEs such as hemoptysis and bronchial stenosis using this applicator for EBBT.

FIGURE 1 Source-centralizing applicator. (a) The tip of the applicator. It has two wings to keep the source. (b) The applicator keeps the radioactive source in the center of the lumen.

Author	Number of cases	Dose of EBRT	Dose of EBBT	Local control rate	Overall survival
Hosni et al.	23	40–45 Gy	16 Gy/2 fr	89%, 2 years	67%, 2 years
Kawamura et al.	13	45 Gy	20 Gy/4 fr	86%, 2 years	92%, 2 years
Saito et al.	64	40 Gy	25 Gy (LDR)	87%, 5 years	72%, 5 years
Rochet et al.	35	50 Gy	15 Gy/3 fr	N/A	61%, 2 years
Murakami et al.	14	40–50 Gy	18 Gy/3 fr	92%, 2 years	82%, 2 years
Nomoto et al.	15	40 Gy	18 Gy/3 fr	100%, 3 years	79%, 3 years

Abbreviations: EBBT, endobronchial brachytherapy; EBRT, external beam radiotherapy; fr, fractions; LDR, low dose rate brachytherapy.
radical irradiation. For this tumor, EBBT was chosen as surgery was expected to cause pulmonary dysfunction. Since the right S1/2 tumor was superficially located in the bronchi and without extension to the outside of the bronchial wall, it was considered a good indication for EBBT.

These lesions have not recurred in the 28 months after irradiation with no AEs, such as hemoptysis or chronic bronchitis. Thus, we consider that EBBT using a source-centralizing applicator is an effective and safe treatment method for lung cancers, such as superficially located tumors and pathologically residual cancer at the bronchial anastomosis. Furthermore, EBBT is considered an effective alternative treatment for cases, such as with multiple lesions, in which surgery is expected to lead to pulmonary dysfunction.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

ORCID

Yoshihito Nomoto 🔗 https://orcid.org/0000-0003-4063-3067

REFERENCES

1. Chen TF, Xie CY, Rao BY, Shan SC, Zhang X, Zeng B, et al. Surgical treatment to multiple primary lung cancer patients: a systematic review and meta-analysis. BMC Surg. 2019;19(1):185.
2. de Aquino Gorayeb MM, Gregorio MG, de Oliveira EQ, Aisen S, Carvalho Hde A. High-dose-rate brachytherapy in symptom palliation due to malignant endobronchial obstruction: a quantitative assessment. Brachytherapy. 2013;12:471–8.

3. Skowronek J, Kubaszewska M, Kanikowski M, Chichel A, Mlynarczyk W. HDR endobronchial brachytherapy (HDRBT) in the management of advanced lung cancer—comparison of two different dose schedules. Radiother Oncol. 2009;93:436–40.

4. Zorlu AF, Selek U, Emri S, Gürkaynak M, Akyol FH. Second line palliative endobronchial radiotherapy with HDR Ir 192 in recurrent lung carcinoma. Yonsei Med J. 2008;49:620–4.

5. Kubaszewska M, Skowronek J, Chichel A, Kanikowski M. The use of high dose rate endobronchial brachytherapy to palliate symptomatic recurrence of previously irriadiated lung cancer. Neoplasma. 2008;55:239–45.

6. Hosni A, Beziak A, Rink A, Czarnecka K, McPartlin A, Patterson S, et al. High dose rate brachytherapy as a treatment option in endobronchial tumors. Lung Cancer Int. 2016;2016:3086148.

7. Kawamura H, Ebara T, Katoh H, Tamaki T, Ishikawa H, Sakurai H, et al. Long-term results of curative intraluminal high dose rate brachytherapy for endobronchial carcinoma. Radiat Oncol. 2012;7:112.

8. Saito M, Yokoyama A, Kurita Y, Uematsu T, Tsukada H, Yamanoi T. Treatment of roentgenographically occult endobronchial carcinoma with external beam radiotherapy and intraluminal low-dose-rate brachytherapy: second report. Int J Radiat Oncol Biol Phys. 2000;47:673–80.

9. Rochet N, Hauswald H, Stolber EM, Hensley FW, Becker HD, Debus J, et al. Primary radiotherapy with endobronchial high-dose-rate brachytherapy boost for inoperable lung cancer: long-term results. Tumori. 2013;99(2):183–90.

10. Murakami N, Kobayashi K, Nakamura S, Wakita A, Okamoto H, Tsuchida K, et al. A total EQD2 greater than 85 Gy for trachea and main bronchus D2cc being associated with severe late complications after definitive endobronchial brachytherapy. J Contemp Brachyther. 2015;7(5):363–8.

11. Nomoto Y, Ii N, Murashima S, Yamashita Y, Ochiai S, Takada A, et al. Endobronchial brachytherapy with curative intent: the impact of reference points setting according to the bronchial diameter. J Radiat Res. 2017;58:849–53.

12. Haru R, Itami J, Aruga T, Kozuka T, Nakajima K, Yamashita H, et al. Risk factors for massive hemoptysis after endobronchial brachytherapy in patients with tracheobronchial malignancies. Cancer. 2001;92:2623–7.

13. Lee SJ, Lee JY, Jung SH, Lee SN, Lee JH, Kim CW, et al. A case of radiation bronchitis induced massive hemoptysis after high-dose-rate endobronchial brachytherapy. Tuberc Respir Dis. 2012;73:325–30.

14. Nomoto Y, Shouji K, Toyota S, Sasaoka M, Murashima S, Ooi M, et al. High dose rate endobronchial brachytherapy using a new applicator. Radiother Oncol. 1997;45:33–7.