Complete nucleotide sequence of a novel botourmiavirus from the rice blast fungus *Magnaporthe oryzae* isolate SH05

Xuan Zhou¹ · Simnin Shuai¹ · Hong Zheng¹ · Hang Ding¹ · Hongliu An¹ · Shuyue Miao¹ · Shouguo Fang¹ · Songbai Zhang¹ · Qingchao Deng¹,²

Received: 9 December 2020 / Accepted: 4 February 2021 / Published online: 29 March 2021

© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract

A novel mycovirus with the proposed name “*Magnaporthe oryzae* botourmiavirus 9” (MoBV9) was found in the rice blast fungus *Magnaporthe oryzae* isolate SH05. The virus has a positive single-stranded RNA genome of 2,812 nucleotides and contains a single open reading frame predicted to encode an RNA-dependent RNA polymerase that is closely related to those of some unclassified viruses of the family *Botourmiaviridae*, including Plasmopara viticola lesion associated ourmiavirus 44, Plasmopara viticola lesion associated ourmia-like virus 47, and Cladosporium uredinicola ourmiavirus 1. Genome sequence comparisons and phylogenetic analysis supported the notion that MoBV9 is a new member of the family *Botourmiaviridae*.

Botourmiaviridae is a newly established virus family related to *Narnaviridae*, *Mitoviridae*, and *Leviviridae*, according to current taxonomic information from the International Committee on Taxonomy of Viruses (ICTV, Virus Taxonomy: 2019 Release). The family *Botourmiaviridae* includes four approved genera, *Botoulivirus*, *Magoulivirus*, *Scleroulivirus* and *Ourmiavirus*. Members of the genus *Ourmiavirus* are plant viruses with a bacilliform virion structure whose genome usually contains three (+) ssRNA segments, encoding an RNA-dependent RNA polymerase (RdRp), a coat protein (CP), and a movement protein (MP), respectively [6]. Since the MP and CP of ourmiaviruses show significant similarity to those of other plant viruses, including tombusviruses and sobemoviruses, it has been proposed that ourmiavirus might have evolved by reassortment of genomic segments from viruses infecting fungi and plants [15]. Members of the genera *Botoulivirus*, *Magoulivirus*, and *Scleroulivirus* are mycoviruses. Similar to narnaviruses and mitoviruses, only one (+) ssRNA segment, encoding the RdRp, has been identified in all of these ourmia-like mycoviruses, and this segment has been demonstrated to be sufficient for replication, infection, and transmission [20]. Ourmia-like mycovirus-associated satellite-like RNAs have also been identified in *Magnaporthe oryzae*, but these are not essential for virus replication [14].

The filamentous fungus *M. oryzae* (teleomorph) (Hebert) Barr (anamorph: *Pyricularia oryzae*) [2] causes rice blast disease, which is one of the most serious diseases of cultivated rice worldwide, resulting in approximately 30% annual yield loss [16]. Recently, a number of mycoviruses from different families have been identified in *M. oryzae*. *Magnaporthe oryzae* viruses 1, 2 and 3 (MoV1, MoV2, and MoV3) are dsRNA viruses belonging to the family *Totiviridae* [12, 17, 21], *Magnaporthe oryzae* chrysovirus 1 (MoCV1) is a dsRNA virus belonging to the family *Chrysoviridae* [4, 18, 19], *Magnaporthe oryzae* partitivirus 1 (MoPV1) is a dsRNA virus belonging to the family *Partitiviridae* [3], *Magnaporthe oryzae* narnavirus virus 1 (MoNV1) is a (+) ssRNA virus belonging to the family *Narnaviridae* [10], (+) ssRNA viruses belonging to the family *Botourmiaviridae* also have been identified in *M. oryzae*, including *Magnaporthe oryzae* ourmia-like viruses 1 and 4 (MOLV1 and MOLV4), *Pyricularia oryzae* ourmia-like viruses 1, 2, and 3 (PoOLV1, PoOLV2

Handling Editor: Ioly Kotta-Loizou.

Xuan Zhou and Simnin Shuai contributed equally to this work.

✉ Qingchao Deng
DengQingchao@yangtzeu.edu.cn

¹ College of Agriculture, Yangtze University,
Jingzhou 434005, Hubei, China

² Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou 434005, Hubei, China
and PoOLV3), and Magnaporthe oryzae botourmiaviruses 5, 6, and 7 (MoBV5, MoBV6 and MoBV7) [5, 9, 11, 14].

In this study, we report a novel mycovirus of the family Botourmiaviridae in M. oryzae strain SH05. Since eight viruses of the family Botourmiaviridae have been reported in M. oryzae, this virus was tentatively named “Magnaporthe oryzae botourmiavirus 9” (MoBV9).

M. oryzae strain SH05 was isolated from a lesion of a rice neck-panicle collected in Fujian province, China, in 2014, stored on rice stem nodes at –20 °C, and cultured on potato dextrose agar at 28 °C. dsRNA was extracted by the CF-11 cellulose chromatography method [13], and the 2.8-kb viral genomic dsRNA of MoBV9 was extracted from an agarose gel after electrophoresis, purified using an Agarose Gel DNA Purification Kit 2.0 (Takara), and treated with DNase I and S1 nuclease to eliminate contaminating DNA and ssRNA. cDNA was synthesized using a tagged random primer (5′-CGATCG ATCATGATGCAATGCNNNNN-3′) and amplified using a primer recognizing the tag sequence (5′-CGATCGATC ATGATGCAATGC-3′). The amplified cDNA products were cloned into the vector pMD19-T (Takara) and introduced by transformation into Escherichia coli strain Top10 for sequencing. To fill the gaps, the sequence data that were obtained were used to design dsRNA-specific primers, which were then used for RT-PCR. In order to determine the terminal sequences of the dsRNA, cDNA amplification of the 5′ and 3′ ends was performed using a ligase-mediated terminal amplification method as described previously [3, 10]. In both orientations, every base was determined by sequencing at least three independent overlapping clones. The complete nucleotide sequence of the MoBV9 genome has been deposited in the GenBank database with accession number MT995746.1. The amino acid (aa) sequence of the putative RdRp of MoBV9 was aligned with other virus RdRp sequences using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). RNA secondary structures of the termini of MoBV9 were predicted using the MFOLD web server (http://www.unafold.org/RNA_form. php) [22]. Conserved domains were identified using the NCBI Conserved Domain Database (CDD) (https://www.ncbi.nlm.nih.gov/cdd). On the basis of the aligned sequences, a phylogenetic tree was constructed by the neighbor-joining method using MEGA version 6.0 [8].

Sequence properties

dsRNA extraction and electrophoresis analysis showed that only one 2.8-kb dsRNA, representing the genome of MoBV9, could be detected in M. oryzae strain SH05 (Fig. 1A). The full-length nucleotide sequence of MoBV9 was determined and found to be 2,812 nucleotides (nt) long with a GC content of 54.1%. The 5′ untranslated region (UTR) is 179 nt long, and the 3′ UTR is 664 nt long, ending with a 9-nt poly (A) tail (Fig. 1B).

Using the standard genetic code, the MoBV9 genome was predicted to contain a single large open reading frame (ORF) on its positive strand, putatively encoding a 659-amino-acid (aa) protein with a molecular mass of 73.2 kDa (Fig. 1). A sequence search using BLASTp suggested that this 73.2-kDa protein is closely related to the RdRps of some unclassified viruses of the family Botourmiaviridae, including Plasmopara viticola lesion associated ourmia-like virus 44 (GenBank accession number QGY72574.1; identity, 62.6%; query coverage, 96%; e-value, 0), Plasmopara viticola lesion associated ourmia-like virus 47 (GenBank accession number QGY72577.1; identity, 60.4%; query coverage, 94%; e-value, 0), and Cladosporium uredinicola ourmiavirus 1 (GenBank accession number QDB75001.1; identity, 50.9%; query coverage, 97%; e-value, 0). A multiple aa sequence alignment showed that this 73.2-kDa protein contains eight typical
Fig. 2 Multiple alignment of the amino acid (aa) sequences of RdRPs encoded by MoBV9 and previously identified viruses of the family Botourmiaviridae from *M. oryzae* (MOLV1, MOLV4, PoOLV1, PoOLV2, PoOLV3, MoBV5, MoBV6, MoBV7). The eight conserved RdRP motifs are indicated by the Roman numerals I to VIII. The asterisks signify identical amino acid residues, colons signify highly conserved residues, and single dots signify less-conserved but related residues.

Fig. 3 Potential RNA secondary structures in the 5′- and 3′-terminal sequences of MoBV9. Stem-loop structures were predicted in the 5′ and 3′ termini of the MoBV9 genome, with ΔG values of −17.85 and −17.40 kcal/mol, respectively. Short lines in different colors indicate hydrogen bonds between different base pairs (red, G-C pairs; purple, A-U pairs; green, G-U pairs).

Conserved motifs of the RdRPs of (+) ssRNA viruses, including the highly conserved GDD motif (motif VI) associated with the catalytic site (Fig. 2) [7].

The potential terminal secondary structures of the 5′- and 3′-terminal regions of the MoBV9 genome were predicted using the MFold web server. The 5′-terminal sequence (nt positions 1–52) and the 3′-terminal sequence (nt positions 2756–2812) of MoBV9 could be folded into terminal stable stem-loop structures with ΔG values of −17.85 and −17.40 kcal/mol, respectively (Fig. 3). The typical terminal
The families Botourmiaviridae, Narnaviridae, and Mitoviridae were used as outgroups. The phylogenetic tree was constructed by the neighbor-joining method using the program MEGA 6.0. Bootstrap values (1000 replicates) are shown at the nodes, and the scale bar (0.1) corresponds to the genetic distance. The RdRp sequences were obtained from the GenBank database, and the accession numbers are shown before the taxon names. The position of MoBV9 is indicated by a red star, and the other eight viruses from M. oryzae belonging to the family Botourmiaviridae are indicated by blue stars.

To analyze the phylogenetic position of MoBV9, a molecular phylogenetic tree was constructed using aa sequences of the RdRp regions of MoBV9 and 73 other selected viruses of the families Botourmiaviridae, Narnaviridae, Mitoviridae, and Leviviridae. As shown in Fig. 4, the neighbor-joining tree strongly suggested that MoBV9 is a new member of the family Botourmiaviridae (Fig. 4).

Fig. 4 Phylogenetic analysis of the RdRp gene of MoBV9 and related viruses of the family Botourmiaviridae. Viruses of the families Narnaviridae, Mitoviridae, and Leviviridae were used as outgroups. The phylogenetic tree was constructed by the neighbor-joining method using the program MEGA 6.0. Bootstrap values (1000 replicates) are shown at the nodes, and the scale bar (0.1) corresponds to the genetic distance. The RdRp sequences were obtained from the GenBank database, and the accession numbers are shown before the taxon names. The position of MoBV9 is indicated by a red star, and the other eight viruses from M. oryzae belonging to the family Botourmiaviridae are indicated by blue stars.
References

1. Ai Y, Zhong J, Chen C, Zhu H, Gao B (2016) A novel single-stranded RNA virus isolated from the rice-pathogenic fungus *Magnaporthe oryzae*, with similarity to members of the family tombusviridae. Arch Virol 161:725–729

2. Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, *Magnaporthe oryzae*, from *M. grisea*. Mycologia 94:683–693

3. Du YN, He X, Zhou X, Fang SG, Deng QC (2016) Complete nucleotide sequence of *Magnaporthe oryzae* partitivirus 1. Arch Virol 161(11):3295–3298

4. Higashiura T, Katoh Y, Urayama S, Hayashi O, Aihara M, Fukuhara T, Fuji S, Kobayashi T, Hase S, ArieTohru T, Teraoka T, Komatsu K, Moriyama H (2019) *Magnaporthe oryzae* chrysovirus 1 strain D confers growth inhibition to the host fungus and exhibits multiformal viral structural proteins. Virology 535:241–254

5. Illana A, Marconi M, Rodriguez-Romero J, Xu P, Dalmay T, Wilkinson MD, Sesma A (2017) Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus *Magnaporthe oryzae*. Arch Virol 162:891–895

6. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Virus taxonomy: classification and nomenclature of viruses: 9th report of the International Committee on Taxonomy of Viruses. Academic Press, pp 1177–1180

7. Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72:2197–2206

8. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

9. Li C, Zhu J, Gao B, Zhu H, Zhou Q, Zhong J (2019) Characterization of a novel ourmia-like mycovirus infecting *Magnaporthe oryzae* and implications for viral diversity and evolution. Viruses 11:223

10. Lin Y, Zhou J, Zhou X, Shuai SM, Zhou RD, An HL, Fang SG, Zhang SB, Deng QC (2020) A novel narnavirus from the plant-pathogenic fungus *Magnaporthe oryzae*. Arch Virol 165:1235–1240

11. Liu Y, Zhang LY, Esmael A, Duan J, Bian XF, Jia JC, Xie JT, Cheng JS, Fu YP, Jiang DH, Lin Y (2020) Four novel botourmiaviruses co-Infecting an isolate of the rice blast fungus *Magnaporthe oryzae*. Viruses 12:138

12. Maejima K, Himeno M, Komatsu K, Kakizawa S, Yamaji Y, Hamamoto H, Namba S (2008) Complete nucleotide sequence of a new double-stranded RNA virus from the rice blast fungus, *Magnaporthe oryzae*. Arch Virol 153(2):389–391

13. Morris TJ, Dodds JA (1979) Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854–858

14. Ohkita S, Lee Y, Nguyen Q, Ikeda K, Suzuki N, Nakayashiki H (2019) Three ourmia-like viruses and their associated RNAs in *Pyricularia oryzae*. Virology 534:25–35

15. Rastgou M, Habib MK, Izadpanah K, Masenga V, Milne RG, Wolf YI, Koonin EV, Turzina M (2009) Molecular characterization of the plant virus genus Ourmiaviruses and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J Gen Virol 90(Pt 10):2525–2555

16. Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150

17. Tang LH, Yu YP, Liu LJ, Wu SS, Xie J, Cheng JS, Fu YP, Zhang GM, Ma JT, Wang YL, Zhang LY (2015) Genomic organization of a novel victorivirus from the rice blast fungus *Magnaporthe oryzae*. Arch Virol 160(11):2907–2910

18. Urayama S, Kato S, Suzuki Y, Aoki N, Le MT, Arie T, Teraoka T, Fukuhara T, Moriyama H (2010) Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus *Magnaporthe oryzae*. Arch Virol 164:891–895

19. Urayama S, Sakoda H, Takai R, Kato Y, Le Minh T, Fukuhara T, Arie T, Teraoka T, Moriyama H (2014) A dsRNA mycovirus, *Magnaporthe oryzae* chrysovirus 1-B, suppresses vegetative growth and development of the rice blast fungus. Virology 448(2):265–273

20. Wang Q, Mu F, Xie J, Cheng J, Jiang D (2020) A single ssRNA segment encoding RdRP is sufficient for replication, infection, and transmission of ourmia-like virus in fungi. Front Microbiol 11:379

21. Yokoi T, Yamashita S, Hibi T (2007) The nucleotide sequence and genome organization of *Magnaporthe oryzae* virus 1. Arch Virol 152(12):2265–2269

22. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.