In memoriam Yurii Fedorovich Smirnov: Some personal reminiscences on a great physicist
Maurice Robert Kibler

To cite this version:
Maurice Robert Kibler. In memoriam Yurii Fedorovich Smirnov: Some personal reminiscences on a great physicist. 2009. in2p3-00406139v1

HAL Id: in2p3-00406139
https://hal.in2p3.fr/in2p3-00406139v1
Preprint submitted on 21 Jul 2009 (v1), last revised 1 Feb 2010 (v2)
In memoriam Yurii Fedorovich Smirnov:
Some personal reminiscences on a great physicist

Maurice R Kiblera,b,c
aUniversité de Lyon, F–69622, Lyon, France
bUniversité Lyon 1, Villeurbanne, France
cCNRS/IN2P3, Institut de Physique Nucléaire de Lyon, France
E-mail: m.kibler@ipnl.in2p3.fr

It is a great honour for me to say a few words about the late Professor Yurii Fedorovich Smirnov.

My first contact with the work of Yurii Smirnov goes back to 1978 when my colleague J. Patera showed me, on the occasion of a NATO Advanced Study Institute organised in Canada by J.C. Donini, a beautiful book written by D.T. Sviridov and Yu.F. Smirnov[1]. This book dealt with the spectroscopy of \(d^N\) ions in inhomogeneous electric fields (a part of a disciplinary domain known as crystal- and ligand-field theory). In 1979, B.I. Zhilinskiï, while visiting Dijon and Lyon in France in the framework of an exchange programme between USSR and France, provided me with another interesting book, dealing with \(f^N\) ions in crystalline fields, written by D.T. Sviridov, Yu.F. Smirnov and V.N. Tolstoy[2]. At that time, the references for mathematical aspects of crystal- and ligand-field theory were based on works by Y. Tanabe, S. Sugano and H. Kamimura from Japan[3], J.S. Griffith from England[4], and Tang Au-chin and his collaborators from China[5] (see also some contributions by the present author[6]). The two above-mentioned books by Smirnov and his colleagues shed some new light on the mathematical analysis of spectroscopic and magnetic properties of partly filled shell ions in molecular and crystal surroundings. In particular, special emphasis was put on the derivation of the Wigner-Racah algebra of a finite group of molecular and crystallographic interest from that of the group \(SO(3) \sim SU(2)/\mathbb{Z}_2 \).

My second (indirect) contact with Yurii goes back to an invitation to participate in the fifth workshop on \textit{Symmetry Methods in Physics} in Obninsk in July 1991. Unfortunately, I did not get my visa on time so that my participation was reduced to a paper in the proceedings of the workshop edited by Yu.F. Smirnov and R.M. Asherova[7].

1Presented at the 13th International Conference on Symmetry Methods in Physics (SYMPHYS-XIII) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research and the International Center for Advanced Studies at Yerevan State University, held in Dubna, Russia, 6-9 July 2009.
In the beginning of the 1990's, I had a chance to get in touch with another facet of Yurii's work. In 1989, a Russian speaking student from Switzerland, C. Campigotto, spent one year in the group of Prof. Smirnov. He started working on the so-called Kustaanheimo-Stiefel transformation, an $\mathbb{R}^4 \to \mathbb{R}^3$ transformation associated with the Hopf fibration $S^3 \to S^2$ with compact fiber S^1. (Such a transformation makes it possible to connect the Kepler-Coulomb system in \mathbb{R}^3 to the isotropic harmonic oscillator in \mathbb{R}^4.) Then, Campigotto (well-prepared by Smirnov and his team, especially A.M. Shirokov and V.N. Tolstoy) came to Lyon to prepare a French doctorate thesis [8]. He defended his thesis in 1993 with G.S. Pogosyan (representing Yu.F. Smirnov) as a member of the jury.

A fourth opportunity to get involved with Yurii came from our mutual interest in quantum groups and in nuclear and atomic spectroscopy. I meet him for the first time in Dubna in 1992. We then started a collaboration (partly with R.M. Asherova) on q- and qq-boson calculus in the framework of Hopf algebras associated with the Lie algebras $su(2)$ and $su(1, 1)$ [9]. In addition, we pursued a group-theoretical study of the Coulomb energy averaged over the $n \in \mathbb{N}$–atomic states with a definite spin [10]. We also had fruitful exchanges in nuclear physics. Indeed, Prof. Smirnov and his colleagues D. Bonatsos (from Greece), S.B. Drenska, P.P. Raychev and R.P. Roussev (all from Bulgaria) developed a model based on a one-parameter deformation of $SU(2)$ for dealing with rotational bands of deformed nuclei and rotational spectra of molecules [11]. Along the same line, a student of mine, R. Barbier, developed in his thesis a two-parameter deformation of $SU(2)$ with application to superdeformed nuclei (in mass region $A \sim 130 - 150$ and $A \sim 190$) [12]. It was a real pleasure to receive Yurii in Lyon on the occasion of the defence of the Barbier thesis in 1995. Indeed, from 1992 to 1995, Yurii made several stays in Lyon (one with his wife and one with his daughter) and we jointly participated in several meetings, one in Clausthal in Germany (organised by H.-D. Doebner, V.K. Dobrev and A.G. Ushveridze) and two in Bregenz in Austria (organised by B. Gruber and M. Ramek).

I have not the shoulders to carry the weight of all the fields in which Yurii was recognized as a superb researcher. It is enough to say that he contributed to many domains of mathematical physics (e.g., finite groups embedded in compact or locally compact groups, Lie groups and Lie algebras, quantum groups, special functions) and theoretical physics (e.g., nuclear, atomic and molecular physics, crystal- and ligand-field theory). He was also an exceptional teacher. It was very pleasant, profitable and inspiring to be taught by Prof. Smirnov. I personally greatly benefited from discussions with Yurii Smirnov.

Yurii Fedorovich Smirnov will remain an example for many of us. We will remember the exceptional qualities of the man as a scientist, as a teacher and as a generous person. Yurii, we shall not forget you.
References

[1] D.T. Sviridov and Yu.F. Smirnov, Teoriya opticheskikh spektrov perekhodnykh metallov (Izd. Nauka, Moscow, 1977). See also: D.T. Sviridov and Yu. F. Smirnov,
Soviet. Phys. Doklady 13, 565 (1968); C.V. Vonsovski, C.V. Grimaiov, V.I. Tcherepanov, A.N. Meng, D.T. Sviridov, Yu. F. Smirnov and A.E. Nikiforov,
Crystal-field theory and optical spectra of partly filled d shell transition ions (Nauka, Moscow, 1969), in Russian; D.T. Sviridov, R.K. Sviridova and Yu.F. Smirnov, Optical
spectra of transition-metal ions in crystal (Nauka, Moscow, 1976), in Russian.

[2] D.T. Sviridov, Yu.F. Smirnov and V.N. Tolstoy, Spektroskopiya kristallov (Akad.
Nauk SSSR, Moscow, 1975).

[3] Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954); 9, 766 (1954); 11, 864
(1956). Y. Tanabe and H. Kamimura, J. Phys. Soc. Japan 13, 394 (1958). S. Sugano
and Y. Tanabe, J. Phys. Soc. Japan 13, 880 (1958). See also: S. Sugano, Y. Tanabe
and H. Kamimura, Multiplets of transition-metal ions in crystals (Academic Press,
New York, 1970).

[4] J.S. Griffith, Molec. Phys. 3, 79 (1960); 3, 285 (1960); 3, 457 (1960); 3, 477 (1960).
See also: J.S. Griffith, The theory of transition-metal ions (Cambridge Univ. Press,
Cambridge, 1961); The irreducible tensor method for molecular symmetry groups
(Prentice-Hall, Englewood Cliffs, 1962).

[5] Tang Au-chin, Sun Chia-chung, Kiang Yuan-sun, Deng Zung-hau, Liu Jo-chuang,
Chang Chian-er, Yan Go-sen, Goo Zien and Tai Shu-shan, Sci. Sinica (Peking) 15,
610 (1966). See also: Tang Au-chin, Sun Chia-chung, Kiang Yuan-sun, Deng Zung-
hau, Liu Jo-chuang, Chang Chain-er, Yan Guo-sen, Goo Zien and Tai Shu-shan,
Theoretical method of the ligand field theory (Science Press, Peking, 1979).

[6] M. Kibler, J. Molec. Spectrosc. 26, 111 (1968); Int. J. Quantum Chem. 3, 795 (1969);
C.R. Acad. Sci. (Paris), Ser. B 268, 1221 (1969). See also: M.R. Kibler, “Group theory
around ligand field theory” in: Group Theoretical Methods in Physics, eds. R.T.
Sharp and B. Kolman (Academic Press, New York, 1977); “Finite symmetry adap-
tation in spectroscopy” in: Recent Advances in Group Theory and Their Application
to Spectroscopy, ed. J.C. Donini (Plenum Press, New York, 1979).

[7] M. Kibler and M. Daoud, “Symmetry adaptation and two-photon spectroscopy of
ions in molecular or solid-state finite symmetry” in: Symmetry Methods in Physics,
eds. Yu.F. Smirnov and R.M. Asherova (Russian Federation Ministry of Atomic
Energy – Institute of Physics and Power Engineering, Obninsk, 1992).

[8] C. Campigotto, Doctorate thesis, Université Lyon 1, France, 1993. The thesis was
partly published in: C. Campigotto and Yu.F. Smirnov, Helv. Phys. Acta 64, 48
(1991); Gh.E. Drăgănescu, C. Campigotto and M. Kibler, Phys. Lett. A 170, 339
(1992); M. Kibler and C. Campigotto, Int. J. Quantum Chem. 45, 209 (1993); Phys.
Lett. A 181, 1 (1993); C. Campigotto, Yu.F. Smirnov and S.G. Emikeev, J. Comp.
Appl. Math. 57, 87 (1995); Yu.F. Smirnov and C. Campigotto, J. Comp. Appl. Math.
164–165, 643 (2004).

[9] Yu.F. Smirnov and M.R. Kibler, “Some aspects of q-boson calculus” in: Symme-
tries in Science VI: From the Rotation Group to Quantum Algebras, ed. B. Gruber
(Plenum Press, New York, 1993). M. Kibler, C. Campigotto and Yu.F. Smirnov,
“Recursion relations for Clebsch-Gordan coefficients of \(U_q(\mathfrak{su}_2) \) and \(U_q(\mathfrak{su}_{1,1}) \)” in: Symmetry Methods in Physics, eds. A.N. Sissakian, G.S. Pogosyan and S.I. Vinitsky
[10] M. Kibler and Yu.F. Smirnov, *Int. J. Quantum Chem.* **53**, 495 (1995).

[11] D. Bonatsos, S.B. Drenska, P.P. Raychev, R.P. Roussev and Yu.F. Smirnov, *J. Phys. G: Nucl. Part. Phys.* **17**, L67 (1991). See also: P.P. Raychev, R.P. Roussev and Yu.F. Smirnov, *J. Phys. G: Nucl. Part. Phys.* **16**, L137 (1990); D. Bonatsos, P.P. Raychev, R.P. Roussev and Yu.F. Smirnov, *Chem. Phys. Lett.* **175**, 300 (1990); B.I Zhilinskiï and Yu.F. Smirnov, *Sov. J. Nucl. Phys.* **54**, 10 (1991); A. Georgieva and Ts. Dankova, *J. Phys. A: Math. Gen.* **27**, 1251 (1994); A.I. Georgieva, J.D. Goleminov, M.I. Ivanov and H.B. Geyer, *J. Phys. A: Math. Gen.* **32**, 2403 (1999).

[12] R. Barbier, Doctorate thesis, Université Lyon 1, France, 1995. The thesis was partly published in: R. Barbier, J. Meyer and M. Kibler, *J. Phys. G: Nucl. Part. Phys.* **20**, L13 (1994); *Int. J. Mod. Phys. É* **4**, 385 (1995); R. Barbier and M. Kibler, “A system of interest in spectroscopy: The qp-rotor system” in: *Finite Dimensional Integrable Systems*, eds. A.N. Sissakian and G.S. Pogosyan (Joint Institute for Nuclear Research, Dubna, 1995); “On the use of quantum algebras in rotation-vibration spectroscopy” in: *Modern Group Theoretical Methods in Physics*, eds. J. Bertrand, M. Flato, J.-P. Gazeau, D. Sternheimer and M. Irac-Astaud (Kluwer, Dordrecht, 1995); *Rept. Math. Phys.* **38**, 221 (1996).