This paper proposes a step-by-step technique for combining basic models that forecast electricity consumption in an artificial neural network by the method of preliminary selection and further hybridization. The reported experiments were conducted using data on hourly electricity consumption at the metallurgical plant AO ArcelorMittal Temirtau in the period from January 1, 2019, to November 30, 2021. The current research is related to the planned introduction of a balancing electricity market. 96 combinations of basic models were compiled, differing in the type of neural network, the set of initial data, the order of lag, the learning algorithm, and the number of neurons in the hidden layer. It has been determined that the NARX-type network is the most optimal architecture to forecast electricity consumption. Based on experimental studies, the number of hidden neurons needed to form a planned daily profile should equal 3 or 4; it is recommended to use the conjugate gradient method as a learning algorithm. When selecting models from three groups, it was revealed that the conjugate gradient method produces better results compared to the Levenberg-Marquardt algorithm. It is determined that the values of the selected RMSE error indicator take values of 23.17, 22.54, and 22.56, respectively, for the first, second, and third data groups. The adaptive hybridization method has been shown to reduce the RMSE error rate to 21.73. However, the weights of the best models with values of 0.327 for the first group of data, and 0.336 for the second and third ones, show that the individual use of a separate combination of models is also applicable. The devised forecasting electricity consumption model can be integrated into an automated electricity metering system.

Keywords: short-term forecasting, weighted average forecast, hybrid model, neural network, electrical load.

References

1. On Electric Power Industry Law of the Republic of Kazakhstan dated 9 June 2004 No. 388. Available at: https://adilet.zan.kz/eng/docs/2040000588

2. Ob utverzhdenii Konseptsii razvitiya toplivno-energeticheskogo kompleksa Respubliki Kazakhstano 2030 goda. Postanovlenie Pravitel'stva Respubliki Kazakhstano 28 iyunya 2014 goda No. 724. Available at: https://adilet.zan.kz/ru/docs/P14000000724

3. Ob utverzhdenii Pravil funktsionirovaniya balansiruyushchego rynka elektricheskoj energii. Prikaz Ministra energetiki Respubliki Kazakhstano ot 20 fevralya 2015 goda No. 10532. Available at: https://adilet.zan.kz/ru/docs/1500010531

4. Ob utverzhdenii Pravil funktsionirovaniya balansiruyushchego rynka elektricheskoj energii. Prikaz Ministra energetiki Respubliki Kazakhstano ot 20 fevralya 2015 goda No. 112. Zaregistriruyan v Ministerstve yustitsii Respubliki Kazakhstano 26 marta 2015 goda No. 10532. Available at: https://adilet.zan.kz/ru/docs/V1500010531

5. Breido, J. V., Kalinin, A. A., Lisitsyn, D. V. (2018). Algorithms of Energy Efficient Control of Electric Technological Complex for Autonomous Heat Supply. EAI Endorsed Transactions on Energy Web, 5 (19), 155040. doi: https://doi.org/10.4108/eai.10-7-2018.155040

6. Li, W.-Q., Chang, L. (2018). A combination model with variable weight optimization for short-term electrical load forecasting. Energy, 164, 575–593. doi: https://doi.org/10.1016/j.energy.2018.09.027

7. Ibrayeva, G., Breido, I., Bulatbayeva, J. V. (2021). Application of NARX neural network for predicting a one-dimensional time series. Eastern-European Journal of Enterprise Technologies, 5 (4 (113)), 12–19. doi: https://doi.org/10.15587/1729-4061.2021.242442

8. Ahmad, T., Zhang, D., Shah, W. A. (2020). Efficient Energy Planning With Decomposition-Based Evolutionary Neural Networks. IEEE Access, 8, 134880–134897. doi: https://doi.org/10.1109/access.2020.3010782

9. Serikov, T., Zhetpisbayev, A., Mirzakulova, S., Zhetpisbayev, I., Ibrayeva, Z., Soboleva, L. et al. (2021). Application of the NARX neural network for forecasting model input data. Vestnik PGU, 2, 88–97. Available at: https://doi.org/10.3390/en13143680

10. Georgiou, G. S., Nikolaidis, P., Kalogirou, S. A., Christodoulides, P. (2020). A Hybrid Optimization Approach for Autonomy Enhancement of Nearly-Zero-Energy Buildings Based on Battery Performance and Artificial Neural Networks. Energies, 13 (14), 3680. doi: https://doi.org/10.3390/en13143680

11. Pan, L., Feng, X., Sang, F., Li, L., Leng, M., Chen, X. (2017). An improved back propagation neural network based on complexity decomposition technology and modified flower pollination optimization for short-term load forecasting. Neural Computing and Applications, 31 (7), 2679–2697. doi: https://doi.org/10.1007/s00521-017-3222-2

12. Moshbah, H., El-hawary, M. (2016). Hourly Electricity Price Forecasting for the Next Month Using Multilayer Neural Network. Canadian Journal of Electrical and Computer Engineering, 39 (4), 283–291. doi: https://doi.org/10.1109/ieee.2016.2586039

13. Lee, N. C., Leal, V. M. S., Dias, L. C. (2018). Identification of objectives for national energy planning in developing countries. En-
This paper considers the task of ensuring the energy and environmental security of regions under the conditions of shortage of traditional energy resources. The method of expert assessments has been applied to justify the choice of types of acceptable energy resources that provide an increase in the relative energy supply of the base region under consideration, such resources are nuclear, solar, wind, and hydropower.

A quantitative comparative analysis of available energy resources and technologies based on them was carried out. It is proposed to use the acceptability index and the environmental conservation index as a criterion for the preference of a resource. Index values equal to or greater than 1 indicate resource preference. It is shown that for the base region under consideration, such resources are nuclear, solar, wind, and hydropower.

The method of expert assessments makes it possible to get an objective idea of the acceptability of using a certain energy resource to ensure energy security, taking into consideration its environmental impact in a particular region of the country.

A quantitative comparative analysis of the state of the existing structure of energy resources in the region and their availability has been carried out.

To conduct a comparative analysis of acceptability by indicators and types of resources, a graphical and analytical methodology was used. The reliability of the results obtained was assessed using a concordance coefficient.

The results could be useful for devising projects for the development and ensuring the energy security of the regions in the context of reforms.

Keywords: expert assessments, applicability, energy resources, energy security, environmental friendliness, acceptability, environmental conservation index.

References

1. Karta raspolozheniya i soedineniya vsekh elektrostantsiy Ukrainy. Available at: https://www.imbl.org/karty/images/elektrostantsiy-ukrainy-hq.jpg
2. Kolycheva, Yu. A., Filyushina, K. E. (2012). Kompleksnaya otsenka Dubovskoy, S. V. (2008). Modern problems and prospects of ther Energy Strategy Reviews, 21, 218–232. doi: https://doi.org/10.1016/j.esr.2018.05.004
3. López, M., Valero, S., Rodriguez, A., Veiras, I., Senabre, C. (2018). New online load forecasting system for the Spanish Transport System Operator. Electric Power Systems Research, 154, 401–412. doi: https://doi.org/10.1016/j.epsr.2017.09.003
4. Jimenez J., Donado, K., Quintero, C. G. (2017). A Methodology for Short-Term Load Forecasting. IEEE Latin America Transactions, 15 (3), 400–407. doi: https://doi.org/10.1109/TLA.2017.8796718
5. Angamuthu Chinnathambi, R., Mukherjee, A., Campion, M., Salehfar, H., Hansen, T., Lin, J., Ranganathan, P. (2019). A Multi-Stage Price Forecasting Model for Day-Ahead Electricity Markets. Forecasting, 1 (1), 26–46. doi: https://doi.org/10.3390/forecast1010003
6. Vyacheslav Kovalchuk Odessa Polytechnic National University, Odessa, Ukraine
7. Oleksandr Klymchuk Odessa Polytechnic National University, Odessa, Ukraine
8. Olga Dorozh Odessa Polytechnic National University, Odessa, Ukraine
9. Inna Aksyonova Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine
10. Yuriy Elkin Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine

This paper considers the task of ensuring the energy and environmental security of regions under the conditions of shortage of traditional energy resources. The method of expert assessments has been applied to justify the choice of types of acceptable energy resources that provide an increase in the relative energy supply of the territories of the regions.

A list of factors from 6 groups has been devised and compiled that assess the importance of the indicator in the list have been determined.

The method of expert assessments is supplemented by a random number generator for the formation of an information field on the values of the characteristics of energy resources and statistical processing of data on acceptable energy resources under the conditions of the considered regions.

A quantitative comparative analysis of available energy resources and technologies based on them was carried out. It is proposed to use the acceptability index and the environmental conservation index as a criterion for the preference of a resource. Index values equal to or greater than 1 indicate resource preference. It is shown that for the base region under consideration, such resources are nuclear, solar, wind, and hydropower.

The method of expert assessments makes it possible to get an objective idea of the acceptability of using a certain energy resource to ensure energy security, taking into consideration its environmental impact in a particular region of the country.

A quantitative comparative analysis of the state of the existing structure of energy resources in the region and their availability has been carried out.

To conduct a comparative analysis of acceptability by indicators and types of resources, a graphical and analytical methodology was used. The reliability of the results obtained was assessed using a concordance coefficient.

The results could be useful for devising projects for the development and ensuring the energy security of the regions in the context of reforms.

Keywords: expert assessments, applicability, energy resources, energy security, environmental friendliness, acceptability, environmental conservation index.
COMPARISON OF THORIUM NITRIDE AND URANIUM NITRIDE FUEL ON SMALL MODULAR PRESSURIZED WATER REACTOR IN NEUTRONIC ANALYSIS USING SRAC CODE (p. 21–28)

Ratna Dewi Syarifah
Universitas Jember, Krajan Timur, Kecamatan Sumbersari, Kabupaten Jember, Jawa Timur, Indonesia
ORCID: https://orcid.org/0000-0001-9110-2093

Milad Hidayatul Aula
Universitas Jember, Krajan Timur, Kecamatan Sumbersari, Kabupaten Jember, Jawa Timur, Indonesia
ORCID: https://orcid.org/0000-0002-7356-8617

Andini Ardianingrum
Universitas Jember, Krajan Timur, Kecamatan Sumbersari, Kabupaten Jember, Jawa Timur, Indonesia
ORCID: https://orcid.org/0000-0003-0893-1857

Laela Nur Janah
Universitas Jember, Krajan Timur, Kecamatan Sumbersari, Kabupaten Jember, Jawa Timur, Indonesia
ORCID: https://orcid.org/0000-0002-5950-8023

Wenny Maulina
Universitas Jember, Krajan Timur, Kecamatan Sumbersari, Kabupaten Jember, Jawa Timur, Indonesia
ORCID: https://orcid.org/0000-0002-1854-7800

Comparison of thorium nitride (ThN) and uranium nitride (UN) fuel on small modular PWR in neutronic analysis has been carried out. PWR in module is one type of reactor that can be utilized because of its small size so that it can be placed on demand. Neutronic calculations were performed using SRAC version 2006, the data library using JENDL 4.0. The first calculation was fuel pin (PIJ) calculation with hexagonal fuel pin cell type. And the second calculation was reactor core (CITATION) calculation using homogeneous and heterogeneous core configurations. ThN and UN fuels use heterogeneous configurations with 3 fuel variations. The reactor geometry was used in two fuels are the same, with diameter and height active core was 300 cm and 100 cm. In this research, Np-237 was added as a minor actinide in the UN fuel to reduce the amount of Np-237 in the world and also reduce the k-eff value. For ThN fuel, Pa-231 also added in the fuel to reduce the k-eff value. The optimum configuration of UN fuel reached when used heterogeneous core configuration case four with percentage of U-235 in F1=5.5 %, F2=4 % and F3=8.5 % also with the addition of Np-237 0.2 % and fuel fraction 56 %. It has a maximum excess reactivity value 12.56 % of k-eff. And then, the optimum configuration of ThN fuel reached when used heterogeneous core configuration case three with percentage of U-233 in F1=2 %, F2=4 % and F3=6 % with the addition of Pa-231 0.5 % and fuel fraction 53 %. It has a maximum excess reactivity value 7.67 % of k-eff. The comparison of optimum design of UN and ThN fuel shows that the ThN fuel has the k-eff value closer to critical than UN fuel. Therefore, in this study, ThN fuel is more suitable for use in PWR reactors because it has a small excess value and can operate for 10 years without refueling.

Keywords: PWR, SRAC, thorium nitride, uranium nitride, modular reactor, excess reactivity.

References
1. Global electricity demand is growing faster than renewables, driving a strong increase in generation from fossil fuels (2021). IEA. Available at: https://www.iea.org/news/global-electricity-demand-is-growing-faster-than-renewables-driving-strong-increase-in-generation-from-fossil-fuels
2. IAEA Increases Projections for Nuclear Power Use in 2050 (2021). IAEA. Available at: https://www.iea.org/newcentre/pressreleases/iea-increases-projections-for-nuclear-power-use-in-2050
3. World Energy Outlook 2021. IEA. Available at: https://www.iea.org/reports/world-energy-outlook-2021
4. Outline History of Nuclear Energy (2020). World Nuclear Association. Available at: https://www.world-nuclear.org/information-library/current-and-future-generation/outline-history-of-nuclear-energy.aspx
5. Reactor Status Reports (2022). PRIS. Available at: https://pris.iea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx
6. Pressurized Water Reactor Simulator. Workshop Material (2005). Vienna, 91. Available at: https://www-pub.iea.org/MTCD/Publications/PDF/TCS-22_2nd_web.pdf
7. Dewita, E. (2012). Analisis Potensi Thorium Sebagai Bahan Baru Nuklir Alternatif Ptn. Jurnal Pengembangan Energi Nuklir, 14 (1), 45–56. Available at: https://media.neliti.com/media/publications/124548-nome-823ca08b.pdf
8. Syarifah, R. D., Sund, Z. (2015). The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized
water reactor. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4930788
9. Subhki, I., Pramudita, A., Rida, S. N. M., Su’ud, Z., Eka Sapta, R., Mah. Nurul, S. et. al. (2008). The utilization of thorium for long-life small thermal reactors without on-site refueling. Progress in Nuclear Energy, 50 (2-6), 152–156. doi: https://doi.org/10.1016/j.pnucene.2007.10.029
10. Subhki, M. N., Su’ud, Z., Waris, A. (2012). Design study of long-life PWR using thorium cycle. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4725443
11. Subhki, M. N., Su’ud, Z., Waris, A. (2013). Neutronic Design of Small Long-Life PWR Using Thorium Cycle. Advanced Materials Research, 772, 524–529. doi: https://doi.org/10.4028/www.scientific.net/AMR.772.524
12. Subhki, M. N., Suud, Z., Waris, A., Permana, S. (2015). Studi Desain Reaktor Air Bertekanan (PWR) Berukuran Kecil Berumur Panjang Berbahan Bakar Thorium. Jurnal ISTEK, 9 (1), 32–49. Available at: https://journal.iumsg.id/index.php/istik/article/view/169/185
13. Setiadipura, T., Astuti, Y., Su’ud, Z. (2005). Neutronic Design Study of Small Long-life PWR with (Th, U)O2 Fuel. Proceedings of GLOBAL, 510, 155–160.
14. Ardiansyah, H. (2018). Studi Parameter Desain Teras Integral Presurized Water Reactor Dengan Bahan Bakar Mixed Oxide Fuel Menggunakan Program SRAC. Jurnal Forum Nuklir, 12 (2), 61. doi: https://doi.org/10.17146/jfn.2018.12.2.3035
15. Lutfi, W., Pinem, S. (2020). Calculation of 2-Dimensional PWR MOX, UO2 Core Benchmark OECD NEA 6048 with SRAC Code. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 22 (3), 89–96. doi: https://doi.org/10.17146/tmd.2020.22.3.9355
16. Syarifah, R. D., Vulanto, Y., Su’ud, Z., Basar, K., Irwanto, D. (2017). Neutronic Analysis of Thorium Nitride (Th, U233)N Fuel for 500 MWe Gas Cooled Fast Reactor (GFR) Long Life without Refueling. Key Engineering Materials, 733, 47–50. doi: https://doi.org/10.4028/www.scientific.net/ken.733.47
17. Syarifah, R. D., Su’ud, Z., Basar, K., Irwanto, D., Pujitawadjie, S. C., Ilham, M. (2017). Comparison of uranium plutonium nitride (U-Pu-N) and thorium nitride (Th-N) fuel for 500 MWe gas-cooled fast reactor (GFR) long life without refueling. International Journal of Energy Research, 42 (1), 214–220. doi: https://doi.org/10.1002/er.3923
18. Syarifah, R. D., Arkundanto, A., Irwanto, D., Su’ud, Z. (2020). Neutronic analysis of comparison UN-PuN fuel and ThN fuel for 300MWe Gas Cooled Fast Reactor long life without refueling. Journal of Physics: Conference Series, 1436 (1), 012132. doi: https://doi.org/10.1088/1742-6596/1436/1/012132
19. Okumura, K., Kugo, T., Kaneko, K., Tsuchishishi, K. (2002). SRAC (Ver. 2002). The comprehensive neutronics calculation code system. Japan Atomic Energy Research Institute (JAERI).
20. Ardiasmita, M. S., Bunjamin, M. (2010). Komputasi dalam Ilmu Pengetahuan dan Teknologi Nuklir: Konsep Dasar & Model Matematik. Yogyakarta: BATAN, 161.

DOI: 10.15587/1729-4061.2022.255451

CREATION OF A HYBRID POWER PLANT OPERATING ON THE BASIS OF A GAS TURBINE ENGINE (p. 29–37)

Nassim Rustamov
Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish–Kazakh University, Turkestan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-6437-6600

Oksana Meirbekova
Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish–Kazakh University, Turkestan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-0949-1443

Adylkhan Kibishov
Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish–Kazakh University, Turkestan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-3056-2584

Shokhrul Babakan
Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish–Kazakh University, Turkestan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-7723-0045

Askhat Berguzinov
Turaighyrov University, Pavlodar, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-6954-8239

This paper considers the issue related to the use of jet gas turbine engines for the generation of thermal and electrical energy, defined as a hybrid energy system powered by biogas. Revealing the main vulnerable points of the use and operation of these systems, it is proposed to use biogas obtained from agricultural, crop and livestock waste as fuel for gas turbine engines.

Analyzing the work of gas turbine engines, it reveals not only the technological advantages of using biogas instead of fuel, but also reducing the cost of heat and electric energy obtained by obtaining a productive land biohumus. This will result, firstly, it is especially emphasized, the usefulness of the resulting ground humus as a waste material, when producing biogas as fuel, for the operation of a hybrid energy system operating on the basis of gas turbine engines. Secondly, during the operation of a hybrid power system, it is possible to simultaneously obtain thermal and electrical energy. Thirdly, the low cost of the heat and electric energy received.

The following are other useful applications of such a power system. The resulting thermal energy is used for heating the greenhouse, and the electrical energy obtained from the operation of the hybrid power system can be used not only for lighting the premises, but can be used for the needs of the greenhouse. It is shown that the proposed hybrid power system consists of two technological structures. The first design is to obtain fuel in the form of biogas for the operation of gas turbine engines, the second design is the connection of the first design with gas turbine engines. A schematic diagram of the general design of the proposed hybrid power system and the principle of its operation is proposed. The difficulties encountered in the design and operation of such hybrid power systems are noted.

Keywords: hybrid power system, gas turbine engine, greenhouse, thermal energy, electric energy, humus soil.

References
1. Yudaev, I., Daus, Yu., Gamaga, V. (2020). Vozobnovlyaemye istochniki energii. Moscow: Izd. Larn`, 328. Available at: https://cdn1.ozone.ru/s3/multimedia-l/6086254689.pdf
2. Rustamov, N. T. (2014). O sozdani i gribdirnykh energeticheskikh sistem, ispol’zuyuschikh vozobnovlyaemye istochniki energii (VIE). Vestnik Nacional’noy inzhenernokh akademii Respubliki Kazakhstan, 4 (54), 114–116.
3. Odso-Yorke, F., Owusu, J. J., Atepor, L. (2022). Composite decision-making algorithms for optimisation of hybrid renewable energy systems: Port of Takoradi as a case study. Energy Reports, 8, 2131–2150. doi: https://doi.org/10.1016/j.egyr.2022.01.118
4. Berrada, A., Loudiyi, K., El Mrabet, R. (2021). Introduction to hybrid energy systems. Hybrid Energy System Models, 1–43. doi: https://doi.org/10.1016/j.egyr.2022.01.118
5. Kavadias, K., Triantafyllou, P. (2022). Wind-Based Stand-Alone Hybrid Energy Systems. Comprehensive Renewable Energy, 749–793. doi: https://doi.org/10.1016/j.egyr.2022.01.118
6. Ahmad, J., Imran, M., Khalid, A., Iqbal, W., Ashraf, S. R., Adnan, M. et. al. (2018). Techno economic analysis of a wind-photovoltaic-bio-
mass hybrid renewable energy system for rural electrification. A case study of Kallar Kahar. Energy, 148, 208–234. doi: https://doi.org/10.1016/j.energy.2018.01.133

7. Sawle, Y., Gupta, S. C., Bhole, A. K. (2017). Optimal sizing of standalone PV/Wind/Biomass hybrid energy system using GA and PSO optimization technique. Energy Procedia, 117, 690–698. doi: https://doi.org/10.1016/j.egypro.2017.05.183

8. Musa, G., Alrashed, M., Muhammad, N. M. (2021). Development of big data lean optimization using different control mode for Gas Turbine engine health monitoring. Energy Reports, 7, 4872–4881. doi: https://doi.org/10.1016/j.egyrep.2021.07.071

9. Twaha, S., Raml, M. A. M. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320–331. doi: https://doi.org/10.1016/j.scs.2018.05.027

10. Aliyarov, B. K. (Ed.) (2009). Teoriya gazoturbinnykh dvigateley. Moskva, 608.

11. Korneev, V. M. (2019). Teoriya gazoturbinnykh dvigateley. Litagent Ridero.

12. Rustamov, N. T., Konusov, B. R., Rustamov, E. N. (2013). Sozdanie gidroelektricheskikh sistem. Tekhnika. Tekhnologii. Inzheneriya, 2, 33–35. doi: https://doi.org/10.15587/1729-4061.2013.4061.2018.127936

13. Rustamov, N. T., Meirbekova, O. D. (2021). Bioenergeticheskaya ustanovka. Ridero.

14. Medovschikov, Yu. V. (2018). Osnovy teplovochnykh dvigatelej vnutrennego sгорания. Moscow, 105.

15. Rustamov, N. T., Meirbekova, A. T., Salikhova, G. Kh., Tastekov, N. K., Asilbaeva, A. P. (2021). Pat. No 29833 RK. Bioenergeticheskaya ustanovka.

16. Erokhin, B. T. (2015). Teoriya i proektirovanie raketnykh dvigatelej. Moscow, 698.

17. Damenov, E. A., Rustamov, N. T. (2018). Sozdanie giberidnogo istochnika energii. Vestnik MKTU im. A. Yasau, 1 (81), 69–72.

18. Rustamov, N. T., Meyrbekov, A. T., Meyrbekov, S. A., Konusov, B. R. (2021). Pat. No 29833 RK. Bioenergeticheskaya ustanovka.

19. Bagish Yeritsyan
 National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
 ORCID: https://orcid.org/0000-0003-3535-9809

This paper considers partitioning parameters and the mutual arrangement of magnets in the rotor of the traction synchronous-jet engine with permanent partitioned magnets. The synthesis of geometrical parameters for the rotor of a synchronous reluctance motor with partitioned permanent magnets was proposed on the basis of reducing the problem of conditional optimization. To solve the synthesis problem, a mathematical model has been built to determine the electromagnetic momentum of a synchronous reluctance motor with partitioned permanent magnets. It is based on the calculation of the electromagnetic momentum of the engine employing the results of a finite-element analysis of the magnetic field in the flat-parallel state of the problem. The model is implemented in the finite-element analysis FEMM environment and makes it possible to determine the electromagnetic momentum of the engine with a variety of partitioning of permanent magnets. As an analysis problem, it is proposed to use a mathematical model of the magnetic field of the engine. The problem of conditional optimization of the rotor of a synchronous reluctance motor was stated according to the geometric criteria of the rotor. Restrictions are set on geometric, strength indicators, as well as on the level of electromagnetic moment. The chosen optimization method is the Nelder–Mead method.

Based on the results of solving the problem of synthesizing parameters for the partitioned rotor of the traction motor of trolleybus wheels, it was established that the volume of permanent magnets was reduced by 2.27 times compared to the base structure; their optimal geometric dimensions were determined (5 mm, 5.2 mm, and 5 mm), as well as the distance between them, 17.8 mm and 15.3 mm, and the engine load angle, which is 121.12 electrical degrees.

Based on the results of solving the problem of synthesizing parameters for the partitioned rotor of a trolleybus traction synchronous reluctance motor, its optimal geometric parameters have been determined.

Keywords: synchronous reluctance motor, Nelder–Mead method, finite-element method, partitioned permanent magnets.

References

1. Luvishis, A. L. (2017). Asinkhronn mashyny privod: nachalo puti. Lokomotiv, 1 (721), 44–46.

2. Goolak, S., Gerlici, J., Tkachenko, V., Sapronova, S., Lack, T., Kravchenko, K. (2019). Determination of Parameters of Asynchronous Electric Machines with Asymmetrical Windings of Electric Locomotives. Communications - Scientific Letters of the University of Zilina, 21 (2), 24–31. doi: https://doi.org/10.26552/com.c.2019.2.24-31

3. Liubarskyi, B., Demydiv, A., Yeritsyan, B., Nuriev, R., Iakunin, D. (2018). Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 29–39. doi: https://doi.org/10.15587/1729-4061.2018.127936

4. Basov, H. H., Yatsko, S. I. (2005). Rozvytok elektrychnoho motorvahohnoho rukhomoho skladu. Ch. 2. Kharkiv: «Apex», 248.

5. Bezruchenko, V. M., Varchenko, V. K., Chunak, V. V. (2003). Tialiovi elektrychni mashyny elektrurukhomo skladu. Dnipropetrovs’k: DNUZT, 252.

6. Liubarskyi, B., Riazov, I., Iakunin, D., Dubinina, O., Nikonov, O., Domansky, V. (2021). Determining the effect of stator groove

DOI: 10.15587/1729-4061.2022.254373

OPTIMIZING GEOMETRIC PARAMETERS FOR THE ROTOR OF A TRACTION SYNCHRONOUS RELUCTANCE MOTOR ASSISTED BY PARTITIONED PERMANENT MAGNETS (p. 38–44)

Borys Liubarskyi
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-2985-7345

Dmytro Iakunin
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-3995-3162

Oleh Nikonov
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-8878-4318

Dmytro Liubarskyi
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-3535-9809
Abstract and References. Energy-saving technologies and equipment

geometry in a traction synchronous reluctance motor with permanent magnets on the saw-shaped electromagnetic moment layer. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), 68–74. doi: https://doi.org/10.15587/1729-4061.2021.233270

7. Liubarsky, B. G., Overianova, L. V., Riabov, I. S., Iakunin, D. I., Ostroverkh, O. O., Voronin, Y. V. (2021). Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor. Electrical Engineering & Electromechanics, 2, 3–8. doi: https://doi.org/10.20998/2074-272X.2021.2.01

8. Stipetic, S., Zarko, D., Kovacic, M. (2016). Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical–finite element analysis based approach. IET Electric Power Applications, 10 (3), 330–338. doi: https://doi.org/10.1049/iet-epa.2015.0245

9. Viejo-Felipe, P. R., Pérez-Sanzluy, J. R., Sousa-Santos, V., Quispe-Oquenda, E. C. (2018). Motores sincrónicos de reluctancia asistidos por imán permanente: Un nuevo avance en el desarrollo de los motores eléctricos. Ingeniería, Investigación y Tecnología, 19 (3), 269–279. doi: https://doi.org/10.22201/a.23940753e.2018.19n3.023

10. Moghaddam, R.-R. (2011). Synchronous Reluctance Machine (SynRM) in Variable Speed Drives (VSD) Applications. Theoretical and Experimental Reevaluation. Stockholm, 260. Available at: http://www.diva-portal.org/smash/get/diva2:417890/FULLTEXT01.pdf

11. Liubarskyi, B., Iakunin, D., Nikonorov, O., Liubarskyi, D., Vasenko, V., Gasanov, M. (2021). Procedure for selecting optimal geometric parameters of the rotor for a traction non-partitioned permanent magnet-assisted synchronous reluctance motor. Eastern-European Journal of Enterprise Technologies, 6 (8 (114)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.247208

12. Wu, W., Zhu, X., Qian, L., Du, Y., Xiang, Z., Zhu, X. (2018). Design and Analysis of a Hybrid Permanent Magnet Assisted Synchronous Reluctance Motor Considering Magnetic Salience and PM Usage. IEEE Transactions on Applied Superconductivity, 28 (3), 1–6. doi: https://doi.org/10.1109/tasc.2017.2775384

13. Development of Main Circuit System using Direct Drive Motor (DDM). Available at: https://www.jreast.co.jp/e/development/tech/pdf/1/46_52techrev.pdf

14. Vaskovskyi, Yu. M., Haidenko, Yu. A., Rusiatynskyi, A. E. (2013). Mathematical modeling and selecting of construction parameters for traction synchronous motors with permanent magnets. Tekhniches na elektrodynamika, 6, 40–45. Available at: https://docplayer.com/38603915-Udlik-matematichesko-modelirovanie-i-vybor-konstruktivnyh-parametrov-tyagovogo-sinkrnohogo-elektrodvigatelya-s-post-oiamnymi-magnitami.html

15. Dehghan Ashkezari, J., Khajeroshanaee, H., Niasati, M., Jafar Tekhnichs https://doi.org/10.11591/ijpeds.v6.i4.pp860-868

16. Severin, V. P. (2005). Vector optimization of the integral quadratic estimates for automatic control systems. Journal of Computer and Systems Sciences International, 44 (2), 207–216.

17. Nikulina, E. N., Severyn, V. P., Kotsiuba, N. V. (2018). Optimization of direct quality indexes of automatic control systems of steam generator productivity. Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies, 21, 8–13. doi: https://doi.org/10.20998/2079-0023.2018.21.02

18. Kononenko, K. E., Kononenko, A. V., Krutsikshk, S. V. (2015). Parametricskaya geometriya povysheniya KPD asinkronnoggo dvigatelya s korotokozamknutnym rotorom. Elektroteknicheskie kompleksy i sistemy upravleniya, 2 (38), 45–49.

19. Usensky, B., Avramov, K., Liubarskyi, B., Andreiev, Y., Nikonov, O. (2019). Nonlinear torsional vibrations of electromechanical coupling of diesel engine gear system and electric generator. Journal of Sound and Vibration, 460, 114877. doi: https://doi.org/10.1016/j.jsv.2019.114877

20. Meeker, D. (2015) Finite Element Method Magnetics. Version 4.2. User’s Manual. Available at: http://www.femm.info/Archives/doc/manual42.pdf

21. Liubarskyi, B., Lukashova, N., Petrenko, O., Pavlenko, T., Iakunin, D., Vatsko, S., Vashchenko, Y. (2019). Devising a procedure to choose optimal parameters for the electromechanical shock absorber for a subway car. Eastern-European Journal of Enterprise Technologies, 4 (5 (100)), 16–25. doi: https://doi.org/10.15587/1729-4061.2019.176304

DOI: 10.15587/1729-4061.2022.253651

COOLING CAPACITY OF EXPERIMENTAL SYSTEM WITH NATURAL REFRIGERANT CIRCULATION AND CONDENSER RADIATIVE COOLING (p. 45–53)

Alexander Tsyo

Almaty Technological University, Almaty, Republic of Kazakhstan

ORCID: https://orcid.org/0000-0002-3073-6098

Dmitriy Koretskiy

Almaty Technological University, Almaty, Republic of Kazakhstan

ORCID: https://orcid.org/0000-0003-3110-8383

The surface of the Earth is a source of radiation of thermal energy, which, passing through the atmosphere, is partially absorbed while the bulk of the energy is released into the surrounding outer space. A cooling technique based on this physical phenomenon is known as radiative cooling (RC). It is possible to reduce the consumption of electricity for cooling, as well as to reduce capital costs, by integrating the radiative cooling directly into the circulation circuit of the refrigerator of the refrigeration machine. An experimental refrigeration system has been designed, in which in the cold periods of the year the removal of heat from the cooled object is carried out due to the mode of natural circulation of the refrigerant from the evaporator to the heat exchanger, cooled by radiative cooling. A refrigeration system with natural circulation and radiative cooling of the refrigerant R134a was experimentally studied during the autumn period in Almaty. The experimental study established that the chamber is cooled with the help of the examined system while the temperature in the cooled volume is maintained by 5...7 K above ambient air temperature at night. The dependence of the air temperature in the refrigerating chamber on the temperature of the atmospheric air has been determined. A procedure for assessing the cooling capacity of the system has been devised.

The study reported here demonstrated the possibility of using radiative cooling to remove heat under the mode of natural circulation of the refrigerator.

Key words: radiative cooling, effective radiation, natural circulation, refrigeration machine, thermosiphon system, energy saving.
References

1. Zhao, B., Hu, M., Ao, X., Chen, N., Pei, G. (2019). Radiative cooling: A review of fundamentals, materials, applications, and prospects. Applied Energy, 236, 489–513. doi: https://doi.org/10.1016/j.apenergy.2018.12.018

2. Liu, J., Zhou, Z., Zhang, J., Feng, W., Zuo, J. (2019). Advances and challenges in commercializing radiative cooling. Materials Today Physics, 11, 100161. doi: https://doi.org/10.1016/j.mattphys.2019.100161

3. Family, R., Mengiç, M. P. (2017). Materials for Radiative Cooling: A Review. Procedia Environmental Sciences, 38, 752–759. doi: https://doi.org/10.1016/j.proenv.2017.03.138

4. Samuel, D. G. L., Nagendra, S. M. S., Matiya, M. P. (2013). Passive alternatives to mechanical air conditioning of building: A review. Building and Environment, 66, 54–64. doi: https://doi.org/10.1016/j.buildenv.2013.04.016

5. Tevar, J. A. F., Castaño, S., Marijuan, A. G., Heras, M. R., Pistono, J. (2015). Modelling and experimental analysis of three radiative convective panels for night cooling. Energy and Buildings, 107, 37–48. doi: https://doi.org/10.1016/j.enbuild.2015.07.027

6. Man, Y., Yang, H., Qu, Y., Fang, Z. (2015). A Novel Nocturnal Cooling Radiator Used for Supplemental Heat Sink of Active Cooling System. Procedia Engineering, 121, 300–308. doi: https://doi.org/10.1016/j.proeng.2015.08.1072

7. Thomason, H. E. (1965). Pat. No. US295591A. Apparatus for cooling and solar heating a house. declared: 09.09.1965; published: 03.01.1967. Available at: https://patents.google.com/patent/US295591A

8. Bagiorgas, H. S., Mihalakakou, G. (2008). Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renewable Energy, 33 (6), 1220–1227. doi: https://doi.org/10.1016/j.renene.2007.04.015

9. Baer, S. C., Mingenbach, W. (2000). Pat. No. US6357512B1. Passive heating and cooling system. declared: 26.07.2000; published: 19.03.2002. Available at: http://www.google.com/patents/US6357512

10. Tsyo, A. P., Granovskiy, A. S., Tsyo, D. A. (2013). Pat. No. 30048 KZ. Sposob proizvodstva khlooda i ustroystvo dlya ego osuschestvleniya. No. 2013/0849 1; declared: 26.06.2013; published: 15.06.2015. Available at: https://gosreestr.kazpatent.kz/Invention/Details/docNumber=222328

11. McCann, N. (2007). Pat. No. US20090090488A1. Night sky cooling system. declared: 05.10.2007; published: 03.08.2008. Available at: https://www.google.com/patents/US20090090488

12. Tsyo, A. P., Baranenko, A. V., Granovsky, A. S., Tsyo, D. A., Dzhamasheva, R. A. (2020). Energy efficiency analysis of a combined cooling system with night radiative cooling. International Conference on Science and Applied Science (ICASAS2020). doi: https://doi.org/10.1063/5.0026908

13. Titlov, A., Osadchuk, E., Tsyo, A., Alimkeshova, A., Jamashova, R. (2019). Development of cooling systems on the basis of absorption water-ammonia refrigerating machines of low refrigeration capacity. Eastern-European Journal of Enterprise Technologies, 2 (8 (98)), 57–67. doi: https://doi.org/10.15587/1729-4061.2019.164301

14. Goldstein, E. A., Raman, A. P., Fan, S. (2017). Sub-ambient evaporative fluid cooling with the sky. Nature Energy, 2 (9), 61. doi: https://doi.org/10.1038/nenergy.2017.143

15. Tsyo, A. P., Granovsky, A. S., Tsyo, D. A. (2018). Pat. No. 4789. Sistema khloodasnabzheniya s radiatsionnym otvodom teplovy. No. 2020/0098.2. declared: 02.10.2018; published: 13.03.2020. Bul. 10. Available at: https://gosreestr.kazpatent.kz/Utilitymodel/Details?docNumber=325707

16. Ezekwe, C. I. (1990). Performance of a heat pipe assisted night sky radiative cooler. Energy Conversion and Management, 30 (4), 403–408. doi: https://doi.org/10.1016/0196-8904(90)90041-v

17. He, T., Mei, C., Longtin, J. P. (2017). Thermosyphon-assisted cooling system for refrigeration applications. International Journal of Refrigeration, 74, 165–176. doi: https://doi.org/10.1016/j.ijrefrig.2016.10.012

18. Lamaison, N., Marciniuch, B. J., Szczukiewicz, S., Thome, J. R., Beucher, P. (2015). Passive two-phase thermosyphon loop cooling system for high-heat-flux servers. Interfacial Phenomena and Heat Transfer, 3 (4), 369–391. doi: https://doi.org/10.1615/interfacphennethtrans.v2015015637

19. Cataldo, F., Thome, J. R. (2018). Experimental Performance of a Completely Passive Thermosyphon Cooling System Rejecting Heat by Natural Convection Using the Working Fluids R1234ze, R1234yf, and R134a. Journal of Electronic Packaging, 140 (2). doi: https://doi.org/10.1115/1.4039706

20. Tamura, Y., Koyatsu, M., Machida, A. (2002). Pat. No. US7293425B2. Thermo-siphon chiller refrigerator for use in cold district. declared: 13.05.2002; published: 13.11.2007. Available at: https://patents.google.com/patent/US7293425B2/

21. Sudnev, I. N., Brygalova, O. (2018). Kholodil’noe serdce Udmurtii. Kezkiyi syrayvod - zhcmuhzhina v korone energoeffektivnosti kom. Kholodil’naya Tekhnika, 2, 38–40.

22. Zhao, D., Aili, A., Zhai, Y., Lu, J., Kidd, D., Tan, G. et. al. (2019). Sub-ambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule, 3 (1), 111–123. doi: https://doi.org/10.1016/j.joule.2018.10.006

23. Chen, Z., Zhu, L., Raman, A., Fan, S. (2016). Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nature Communications, 7 (1). doi: https://doi.org/10.1038/ncomms13729

24. Nuzhdin, A. S., Uzhanskiy, V. S. (1986). Izmereniya v kholodil’noy tekhnike. Moscow: Agropromizdat, 368.
pay attention to designing new structures of energy-efficient grain dryers.

A structure of an energy-efficient grain dryer based on thermosiphons has been designed; its energy consumption is 3.5...6.8 MJ/kg depending on surface temperature and air flow rate. The dryer includes a layer heater, a drying chamber, a heat generator, a heater, a noria for loading the product, and fans. The structural features of the dryer allow the drying process to be carried out without direct contact between the combustion gases and the product.

The efficiency of the designed structure was evaluated for such indicators as heat transfer coefficients to the grain flow, specific energy costs, moisture content, the relative humidity of the air leaving the dryer.

The values of coefficients of the heat transfer to the grain flow vary within 36.5...58 W/m²K at speeds 2.5...8 m/s. An increase in the flow rate by 3.2 times leads to an increase in the heat transfer coefficient by 1.6 times.

The moisture content of the air at the outlet of the dryer reaches 60 g/kg, while the relative humidity is 90 %, which is several times higher than the parameters for convective mine grain dryers.

Energy consumption for drying at the surface temperature of thermosiphons $T_1=142.9 \degree C$ for various grain flow rates is close to a minimum. The energy consumption is lower than in existing convective dryers.

21 % is spent on heating grain in the dryer; 54 % – on moisture evaporation; and 23.6 % are losses. If we consider the energy spent on moisture evaporation usable, the efficiency of convective dryers is only 40 % while that of dryers based on thermosiphons is 54.1 %.

It is expected that the designed structure could be a solution for small farmers in the post-harvest drying process.

Keywords: thermosiphons, grain drying, specific energy consumption, air parameters, heat transfer coefficients, environmental friendliness.

References

1. Tracking Industry 2020. Available at: https://www.iea.org/reports/tracking-industry-2020
2. Ononogbo, C., Nwuofo, O. C., Nwakuba, N. R., Okoronkwo, C. A., Igboaku, J. O., Nwadiobi, P. C., Anyanwu, E. E. (2021). Energy parameters of corn drying in a hot air dryer powered by exhaust gas waste heat: An optimization case study of the food-energy nexus. Energy Nexus, 4, 100029. doi: https://doi.org/10.1016/j.nexus.2021.100029
3. Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology, 36 (1), 145–150. doi: https://doi.org/10.1590/1678-457x.0068
4. Wang, H., Mustaffar, A., Phan, A. N., Zivkovic, V., Reay, D., Law, R., Boodhoo, K. (2017). A review of process intensification applied to solids-handling. Chemical Engineering and Processing - Process Intensification, 118, 78–107. doi: https://doi.org/10.1016/j.cep.2017.04.007
5. Amer, B. M. A., Hossain, M. A., Gottschalk, K. (2010). Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conversion and Management, 51 (4), 813–820. doi: https://doi.org/10.1016/j.enconman.2009.11.016
6. Ononogbo, C. (2020). Equipment Sizing and Method for the Application of Exhaust Gas Waste Heat to Food Crops Drying Using a Hot Air Tray Dryer. Indian Journal of Science and Technology, 13 (5), 302–518. doi: https://doi.org/10.17485/ijst.2020/v13i05/145393
7. Alit, I. B., Susana, I. G. B., Mara, I. M. (2021). Thermal characteristics of the dryer with rice husk double furnace - heat exchanger for smallholder scale drying. Case Studies in Thermal Engineering, 28, 101563. doi: https://doi.org/10.1016/j.csite.2021.101563
8. Burdo, O., Bezbakh, I., Kepin, N., Zykov, A., Yarovyi, I., Gavrilov, A. (2014). Heat utilisation technologies: A critical review of heat pipes. Renewable and Sustainable Energy Reviews, 50, 615–627. doi: https://doi.org/10.1016/j.rser.2015.05.028
9. Carvajal-Mariscal, I., De León-Ruiz, J. E., Belman-Flores, J. M., Salazar-Huerta, A. (2022). Experimental evaluation of a thermosyphon-based waste-heat recovery and reintegration device: A case study on low-temperature process heat from a microbrewery plant. Sustainable Energy Technologies and Assessments, 49, 101760. doi: https://doi.org/10.1016/j.seta.2021.101760
10. Mathew, A. A., Thangavel, V. (2021). A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renewable Energy, 179, 1674–1693. doi: https://doi.org/10.1016/j.renene.2021.07.029
11. Mustaffar, A., Phan, A., Boodhoo, K. (2018). Hybrid heat pipe screw dryer: A novel, continuous and highly energy-efficient drying technology. Chemical Engineering and Processing - Process Intensification, 128, 199–215. doi: https://doi.org/10.1016/j.cep.2018.04.035
12. Gaponiuk, I. (2017). Improvement of grain drying technology through the rapid grain heating and heat recuperation of wet gases. Ukrainian Journal of Food Science, 5 (1). doi: https://doi.org/10.24263/2310-1008-2017-5-1-7
13. Tiusanen, M. J., Jokiniemi, H. T., Hautala, M. I. (2013). Grain drying: studies handling. Chemical Engineering and Processing, 128, 199–215. doi: https://doi.org/10.1016/j.cep.2017.04.007
14. Ononogbo, C., Nwuofo, O. C., Nwakuba, N. R., Okoronkwo, C. A., Igboaku, J. O., Nwadiobi, P. C., Anyanwu, E. E. (2021). Energy parameters of corn drying in a hot air dryer powered by exhaust gas waste heat: An optimization case study of the food-energy nexus. Energy Nexus, 4, 100029. doi: https://doi.org/10.1016/j.nexus.2021.100029
15. Mustaffar, A., Phan, A., Boodhoo, K. (2018). Hybrid heat pipe screw dryer: A novel, continuous and highly energy-efficient drying technology. Chemical Engineering and Processing - Process Intensification, 128, 199–215. doi: https://doi.org/10.1016/j.cep.2018.04.035
16. Gaponiuk, I. (2017). Improvement of grain drying technology through the rapid grain heating and heat recuperation of wet gases. Ukrainian Journal of Food Science, 5 (1). doi: https://doi.org/10.24263/2310-1008-2017-5-1-7
17. Tiusanen, M. J., Jokiniemi, H. T., Hautala, M. I. (2013). Grain dryer temperature optimisation with simulation and a test dryer. IFAC Proceedings Volumes, 46 (18), 12–17. doi: https://doi.org/10.3182/20130828-2-sf-3019.00025
18. Salazar-Huerta, A. (2022). Experimental evaluation of a thermosyphon-based waste-heat recovery and reintegration device: A case study on low-temperature process heat from a microbrewery plant. Sustainable Energy Technologies and Assessments, 49, 101760. doi: https://doi.org/10.1016/j.seta.2021.101760
19. Mathew, A. A., Thangavel, V. (2021). A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renewable Energy, 179, 1674–1693. doi: https://doi.org/10.1016/j.renene.2021.07.029
20. Mustaffar, A., Phan, A., Boodhoo, K. (2018). Hybrid heat pipe screw dryer: A novel, continuous and highly energy-efficient drying technology. Chemical Engineering and Processing - Process Intensification, 128, 199–215. doi: https://doi.org/10.1016/j.cep.2018.04.035
21. Gaponiuk, I. (2017). Improvement of grain drying technology through the rapid grain heating and heat recuperation of wet gases. Ukrainian Journal of Food Science, 5 (1). doi: https://doi.org/10.24263/2310-1008-2017-5-1-7
22. Tiusanen, M. J., Jokiniemi, H. T., Hautala, M. I. (2013). Grain dryer temperature optimisation with simulation and a test dryer. IFAC Proceedings Volumes, 46 (18), 12–17. doi: https://doi.org/10.3182/20130828-2-sf-3019.00025
23. Ropelewka, E. (2018). Effect of grinding on thermal properties of wheat grain. Journal of Consumer Protection and Food Safety, 14 (2), 139–146. doi: https://doi.org/10.1016/j.jcpcf.2008.07.018-1200-y
24. GOST ISO 712-2015. Cereals and cereal products. Determination of moisture content. Reference method. Available at: https://docs.cntd.ru/document/1200124060
АНОТАЦІЯ

ENRGY-SAVING TECHNOLOGIES AND EQUIPMENT

DOI: 10.15587/1729-4061.2022.254477

РОЗРОБКА АДАПТИВНОЇ ГІБРИДНОЇ МОДЕЛІ КОРОТКОСТРОКОВОГО ПРОГНОЗУВАННЯ ЕЛЕКТРОСПОЖИВАННЯ НА НЕЙРОННІЙ МЕРЕЖІ (с. 6–12)

Guinara Ibrayeva, Yuliya Bulatbayeva, Yermek Sarsikeyev

Запропоновано поетапний спосіб комбінування базових моделей прогнозування електроспоживання на штучній нейронній мере- жі методом попередньої селекції та подальшої гібридизації. Експерименти проводились з даними про погодинне електроспоживання металургійного комбінату АТ «АрселорМіттал Теміртау» у період з 1 січня 2019 року до 30 листопада 2021 року. Проведення досліджень позбавлене з запланованим балансуванням ринку електроенергії. Складено 96 комбінацій базових моделей, що відрізняються за типом нейронної мережі, набором вихідних даних, порядком відставання, алгоритмом навчання, числом нейронів у прихованому шарі. Визначено, що нейрона NARX є оптимальною архітектурою для прогнозування електроспоживання. На підставі експериментальних даних Алгоритм інвертує значення RMSE приймає значення 23,17, 22,54 та 22,56 відповідно для першої, другої та третьої групи даних. Доведено, що адаптивний метод гібридизації знижує показник RMSE до 21,73.

Ключові слова: короткострокове прогнозування, середньозважений прогноз, гібридна модель, нейронна мережа, електричне на- вантаження.

DOI: 10.15587/1729-4061.2022.255740

ОЦІНКА ЕНЕРГОРЕСУРСНОГО ЗАБЕЗПЕЧЕННЯ РЕГІОНУ (с. 13–20)

I. L. Kozlov, V. I. Kovalchuk, O. A. Klimchuk, O. A. Dorож, O. I. Siraл, I. M. Aksyonova, Ю. Г. Єлькін

Розглянуто проблему забезпечення енергетичної та екологічної безпеки регіонів у умовах дефіциту традиційних енерго- ресурсів. Застосовано метод експертних оцінок для обґрунтування вибору видів прийнятних енергоносіїв, які забезпечують підвищення відносної енергозабезпеченості територій регіонів.

Розроблено та сформовано перелік факторів, що включають 27 індикаторів, що характеризують технологічні, екологічні та інші споживчі характеристики доступних для застосування енергоносіїв.

Визначено максимальні та мінімальні значення бальних оцінок індикаторів, допустимі інтервали їх зміни та вагові коефіцієнти, що оцінюють важливість показника у переліку.

Метод експертних оцінок доповнений генератором випадкових чисел для формування інформаційного поля прийнятних енергоносіїв в умовах регіонів, що розглядаються.

Формуляції статистичного аналізу доступних енергоносіїв та технологій на їх основі. Запропоновано як критерій переваги ресурсу використовувати індекс прийнятності та індекс збереження середовища. Значення індексів рівних або перевищують 1 свідчить про перевагу ресурсу. Показано, що для базового регіону такими ресурсами є ядерна, сонячна, вітрова і гідроенергія.

Метод експертних оцінок дозволяє скласти об’єктивне уявлення про прийнятність застосування певного енергоносія для забезпечення енергобезпеки з урахуванням його екологічного впливу в конкретному регіоні країни.

Для проведення порівняльного аналізу стану існуючої структури енергоносіїв та їхньої доступності.

Результати корисні для розробки проектів розвитку енергобезпеки регіонів за умов проведення реформ.

Ключові слова: експертні оцінки, застосування, енергоносії, енергобезпека, екологія, прийнятність, індекс збереження середовища.

DOI: 10.15587/1729-4061.2022.255849

ПОРІВНЯННЯ ПАЛИВА З НІТРИДОМ ТОРІЯ І НІТРІДОМ УРАНУ НА МАЛОМУ МОДУЛЬНОМУ ВОДЯНОМУ РЕАКТОРІ ПІД ТИСКОМ В НЕЙТРОННОМУ АНАЛІЗІ З ВИКОРИСТАННЯМ КОДУ SRAC (c. 21–28)

Ratna Dewi Syarifah, Mila Hidayatul Aula, Andini Ardianingrum, Laela Nur Janah, Wenny Maulina

Проведено порівняння палива з нітриду торію (ThN) та нітриду урану (UN) на малому модульному водяних реакторах під тиском (BRT) у нейтронно-фізичному аналізі. BRT в модулі – це один тип реактора, який можна використовувати через його невеликий
ДОІ: 10.15587/1729-4061.2022.255451

ДОІ: 10.15587/1729-4061.2022.254373

СТВОРЕННЯ ГІБРИДНОЇ ЕНЕРГЕТИЧНОЇ УСТАНОВКИ НА БАЗІ ГАЗОТУРБІННОГО ДВИГУНА (с. 29–37)

Nassim Rustamov, Oksana Meirbekova, Adylkhan Kibishov, Shokhrux Babakhkan, Askhat Berguzinov

В роботі розглянуто параметри секціонування та взаємне розташування магнітів у роторі тягового синхронно-реактивного двигуна з постійними секціонованими магнітами. Запропоновано синтез геометричних параметрів ротору синхронно-реактивного двигуна з секціонованими постійними магнітами, яка отримується під час розрахунку розподілу продуктивного біогумусу землі. Звідси випливає, по-перше, особливо підкреслено, корисність одержуваного перегною як відходу, при отриманні біогазу як паливо, для вироблення теплової та електричної енергії.

В роботі розглянуто параметри секціонування та взаємне розташування магнітів у роторі тягового синхронно-реактивного двигуна з постійними секціонованими магнітами. Запропоновано синтез геометричних параметрів ротору синхронно-реактивного двигуна з секціонованими постійними магнітами, яка отримується під час розрахунку розподілу продуктивного біогумусу землі. Звідси випливає, по-перше, особливо підкреслено, корисність одержуваного перегною як відходу, при отриманні біогазу як паливо, для вироблення теплової та електричної енергії.

В роботі розглянуто параметри секціонування та взаємне розташування магнітів у роторі тягового синхронно-реактивного двигуна з постійними секціонованими магнітами. Запропоновано синтез геометричних параметрів ротору синхронно-реактивного двигуна з секціонованими постійними магнітами, яка отримується під час розрахунку розподілу продуктивного біогумусу землі. Звідси випливає, по-перше, особливо підкреслено, корисність одержуваного перегною як відходу, при отриманні біогазу як паливо, для вироблення теплової та електричної енергії.

В роботі розглянуто параметри секціонування та взаємне розташування магнітів у роторі тягового синхронно-реактивного двигуна з постійними секціонованими магнітами. Запропоновано синтез геометричних параметрів ротору синхронно-реактивного двигуна з секціонованими постійними магнітами, яка отримується під час розрахунку розподілу продуктивного біогумусу землі. Звідси випливає, по-перше, особливо підкреслено, корисність одержуваного перегною як відходу, при отриманні біогазу як паливо, для вироблення теплової та електричної енергії. У якості задачі аналізу запропоновано використовувати математичну модель магнітного поля двигуна. Проведено постановку задачі проектування та експлуатації таких гібридних енергосистем.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.

Затверджено, що пропонована гібридна енергосистема складається із двох технологічних структур. Перша та електрична енергія, яке визначається як гібридна енергетична система, що працює на основі газотурбінних двигунів.
Поверхня Землі є джерелом випромінювання теплової енергії, яка, проходячи через атмосферу, частково поглинається, а основна частина енергії йде в навколишній космічний простір. Спосіб охолодження, що базується на цьому фізичному явищі, відомий як радіаційне охолодження (РО). Зменшити витрати електроенергії на охолодження, а також скоротити капітальні витрати можна, якщо інтегрувати установку з радіаційним охолодженням безпосередньо в контур циркуляції холодоагенту холодильної машини. Розроблено експериментальну холодильно-теплову систему, в якій у холодні періоди року робота компресора відбивається в режим радіаційного охолодження. Проведено експериментальні дослідження холодильної системи з природною циркуляцією і радіаційним охолодженням холодоагенту R134a протягом осіннього періоду у місті Алмати. У ході експериментального дослідження встановлено, що залежно від температури поверхні атмосферного повітря в нічний час відбувається відведение теплоти в навколишнє середовище без роботи компресора. Енергоспоживання, екологія, якість продукту у процесах сушіння зернових – актуальні проблеми. Необхідно приділити увагу розробці нових конструкцій енергоефективних зерносушарок.

Проведено оцінку ефективності розробленої конструкції за такими показниками як: коефіцієнти тепловіддачі до зернового потоку; питомі енерговитрати; вологовміст, відносна вологість повітря, що видаляється із сушарки.

Значення коефіцієнтів тепловіддачі до зернового потоку змінюються в межах 36...58 Вт/м²⋅К при швидкостях 2,5...8 мм/с. Збільшення швидкості потоку в 3,2 рази призводить до збільшення коефіцієнта тепловіддачі у 1,6 рази.

Вологовміст повітря на виході з сушарки сягає 60 г/кг, при цьому відносна вологість – 90 %, що в кілька разів вище за параметри конвективних шахтних зерносушарок.

Енерговитрати на сушіння при температурі поверхні термосифонів $T_p=142,9 ^\circ C$ для різних витрат зерна наближаються до мінімуму. Енерговитрати нижче існуючих конвективних сушарок.

Очікується, що розроблені конструкції стануть рішенням для дрібних фермерів у процесі післязбирального сушіння.

Ключові слова: термосифони, сушіння зернових, питомі енерговитрати, параметри повітря, коефіцієнти тепловіддачі, екологічність.