Transverse momentum dependence of J/ψ polarization at midrapidity in $p+p$ collisions at $\sqrt{s} = 200$ GeV.

A. Adare, S. Afanasiev, C. Aidala, N.N. Ajitanand, A. Akiba, H. Al-Bataineh, J. Alexander, K. Aoki, L. Aphecetche, J. Asai, E.T. Atomssa, R. Averbeck, T.C. Awes, B. Azmoun, V. Babintsev, M. Bai, G. Baksay, L. Baksay, A. Baldissiri, K.N. Barish, P.D. Barnes, B. Bassalleck, A.T. Basyle, S. Bathe, S. Batsoulis, V. Baublis, C. Baumann, S. Balevsky, S. Belikov, R. Bennett, A. Berdnikov, Y. Berdnikov, A.A. Bickley, J.G. Boissevain, H. Borel, K. Boyle, M.L. Brooks, H. Buesching, V. Bumazhnikov, G. Bunce, S. Butsyk, C.M. Camacho, S. Campbell, B.S. Chang, W.C. Chang, J.-L. Charvet, S. Chernichenko, C.Y. Chi, M. Chiou, I.J. Choi, R.K. Choudhury, T. Chui, P. Chung, A. Chu, V. Cianciolo, Z. Citron, B.A. Cole, Z. Conesa del Valle, P. Constantin, M. Csanád, T. Csörgő, T. Dahms, S. Dairaku, K. Das, G. David, A. Denisov, D. d’Enterria, A. Deshpande, E.J. Desmond, O. Dietzel, A. Dion, M. Donadelli, O. Draper, A. Drees, K.A. Drees, A.K. Dubey, A. Durum, D. Dutta, V. Dzhordzhadze, Y.V. Efremenko, F. Ellinghaus, T. Engelmore, D. Enokido, H. En’yo, S. Esumi, K.O. Eyser, B. Fadem, D.E. Fields, M. Finger, M. Finger, F. Fleuret, S.L. Fokin, Z. Fraenkel, J.E. Frantz, A. Franz, A.D. Frawley, K. Fujiwara, Y. Fukao, T. Fusayasu, I. Garishvili, A. Glenn, H. Gong, J. Gong, J. Gosset, Y. Goto, R. Granier de Cassagnac, N. Grau, S.V. Greene, M. Grosse Perdekamp, T. Gunji, H.-A. Gustafsson, A. Hadj Henni, J.S. Hagerty, H. Hamagaki, R. Han, E.P. Hartoumi, K. Haruna, E. Hashim, R. Hayano, M. Heffner, T.K. Hemmick, T. Hester, X. He, J.C. Hill, M. Holznagel, W. Holzmann, K. Homma, B. Hong, T. Horaguchi, D. Hornback, S. Huang, T. Ichihara, Y. Ichimiya, Y. Ikeda, K. Imai, J. Imrek, M. Inaba, D. Isenhower, M. Ishihara, T. Isobe, M. Issah, A. Ivashov, D. Ivanichev, B.V. Jacak, J. Jia, J. Jin, B.M. Johnson, K.S. Joo, D. Jouan, F. Kajihara, S. Kameyama, N. Kamin, J. Kang, H.J. Kang, J. Kapustinsky, D. Kawall, A.V. Kazantsev, T. Kemple, A. Khanzadeev, K.M. Kijima, J. Kikuchi, B.I. Kim, D.H. Kim, J.D. Kim, E. Kim, S.H. Kim, E. Kinney, K. Kiriluk, A. Kiss, E. Kistenev, J. Klapisch, B. Kleeb, K. Klokhorst, B. Komsa, M. Konno, J. Koster, A. Kozlov, A. Král, A. Kravitz, D.J. Kunde, K. Kurita, M. Kurosawa, M.J. Kweon, Y. Kwon, G.S. Kyle, R. Lacey, Y.S. Lai, J.G. Lajoie, D. Layton, A. Lebedev, D.M. Lee, K.B. Lee, T. Lee, T. Leu, M.J. Leitch, M.A.L. Leite, B. Lenzi, P. Liebing, T. Liška, A. Litvinenko, H. Liu, M.X. Liu, X. Li, B. Love, D. Lynch, C.F. Maguire, Y.I. Makdisi, A. Malakhatkhuaja, M.D. Malik, V.I. Manko, E. Mannelli, Y. Mao, A. Mäsch, H. Masui, F. Matathias, M. McCumber, P.L. McGaughy, N. Means, B. Meredith, Y. Mikhailov, M. Mikhas, P. Milcs, K. Miki, A. Milov, M. Mishra, J.T. Mitchell, A.K. Mohanty, Y. Morino, A. Morreale, D.P. Morrison, T.V. Moukhanova, M. Mukhopadhyay, J. Murata, M. Nagami, J.L. Nagle, M. Naglis, M.I. Nagy, I. Nakagawa, Y. Nakai, T. Nakamura, K. Nakano, J. Newby, M. Nugent, T. Niita, R. Notter, A.S. Nyanin, E.O’Brien, S.X. Oda, C.A. Ogilvie, H. Okada, M. Okada, M. Oka, Y. Onuki, A. Oskarsson, M. Ouchida, K. Ozawa, R. Pak, A.P.T. Palomene, M. Pantel, V. Papavassiliou, J. Park, W.J. Park, S.F. Peate, H. Pei, J.-C. Peng, H. Pereira, V. Peresedov, D.Yu. Peressoukno, C. Pinkenburg, M.L. Purschke, A.K. Purwar, M. Qu, J. Rak, A. Rakotozafindrabe, I. Ravinovich, K.F. Read, R. Red, L. Rembacz, K. Reygers, V. Riabov, Y. Riabov, D. Roach, G. Roche, S.D. Rolnick, M. Rosati, S.E. Rosenberg, P. Rosnet, P. Rukoyatkin, P. Ružička, V.L. Rykov, B. Sahlmueller, N. Saito, T. Salgado, S. Salak, K. Sakashita, V. Samsonov, T. Sato, S. Sawada, K. Sedgwick, J. Seele, R. Seidl, A.Yu. Semenov, V. Semenov, R. Seto, D. Sharma, I. Shein, T.-A. Shibata, K. Shigaki, M. Shimomura, K. Shoji, S. Shukla, A. Sickles, C.L. Silva, D. Silvermyr, C. Silvestre, K.S. Sim, B.K. Singh, C.P. Singh, V. Singh, V. Slunečka, A. Soldatov, R.A. Soltz, W.E. Sondhelm, S.P. Sorensen, I.V. Sourikova, F. Staley, F.W. Stankus, E. Stenlund, M. Stepanov, A. Ster, S.P. Stoll, T. Sugitate, C. Sůra, A. Sukhanov, J. Szilak, E.T.M. Takagi, A. Taketani, R. Tanabe, Y. Tanaka, K. Tankó, M.J. Tannenbaum, A. Taranenko, P. Tarján, H. Themann, T.L. Thomas, M. Togawa, A. Toia, L. Tomášek, Y. Tomita, H. Torii, R.S. Towell, V.N. Trunin, I. Tsurutani, Y. Tsuchimoto, C. Vale, H. Valle, H.W. van Hecke, A. Veicht, J. Velkovska, R. Vertesi, A.A. Vinogradov, M. Virius, V. Vrba, E. Vznuzdaev, X.R. Wang, Y. Watanabe, F. Wei, J. Wessels, S.N. White, D. Winter, C.L. Woody, M. Wysocki, W. Xie, Y.L. Yamaguchi, K. Yamaura, R. Yang, A. Yanovich, J. Ying, S. Yokkaichi, G.R. Young, I. Younus, E.Y. Yushchenko, W.A. Zajc, O. Zautke, C. Zhang, S. Zhou, Z. Zollin
We report the measurement of the transverse momentum dependence of inclusive J/ψ polarization in $p + p$ collisions at $\sqrt{s} = 200$ GeV performed by the PHENIX Experiment at RHIC. The J/ψ polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for $p_T < 5$ GeV/c and $|y| < 0.35$. The polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models.

PACS numbers: 25.75.Dw

I. INTRODUCTION

Quarkonia production in high-energy hadronic collisions is an essential tool for investigating QCD. The QQ pair is produced in a hard scattering involving gluons, which is followed by a hadronization process that forms the bound state. These formation and hadronization steps are the subject of many studies. Initial tests of quarkonia production models using J/ψ cross sections measurements are still inconclusive [1], suggesting that other observables would be useful to challenge the different production models. For example, a key piece of information to help pin down the mechanism of heavy quarkonia ($c\bar{c}$ and $b\bar{b}$) production and the bound state formation is the angular distribution of its decay leptons.

The angular distribution of spin-$\frac{1}{2}$ lepton decay from quarkonium (spin 1) is derived from density matrix elements of the production amplitude and parity conservation rules [2,4]. The angular distribution integrated over the azimuthal angle is given by

$$\frac{d\sigma}{d\cos \theta^*} = A \left(1 + \lambda \cos^2 \theta^* \right),$$

where A is a normalization factor and θ^* is the angle between the momentum vector of one lepton in the polarization quarkonium rest frame and the longitudinal direction (\hat{z} coordinate) of a selected polarization vector (frame). The polarization parameter λ is related to the diagonal elements of the density matrix of the production amplitude and contains both the longitudinal (σ_L) and transverse (σ_T) components of the quarkonium cross section

$$\lambda = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L}. \hspace{1cm} (2)$$

The quarkonium polarization is longitudinal (transverse) in a given frame if λ is negative (positive).

The most common polarization frame used in analyses performed at collider experiments is where \hat{z} is the quarkonium momentum. Polarization measured in this manner is referred to as being in the helicity frame (HX) [2]. In fixed target experiments the most frequently used polarization frame has \hat{z} as one of the colliding hadrons momentum in the quarkonium rest frame, namely, the Gottfried-Jackson frame (GJ) [3]. Another polarization frame, used primarily for the studies of Drell-Yan production, is the Collins-Soper frame (CS) [4] that defines \hat{z} as the bisector between the directions of the first colliding parton and of the opposite of the second colliding parton in the dilepton rest frame. A diagram representing the three polarization frames is shown in Fig. 1. The amplitude and the sign of λ depend on the frame used in the measurement. The natural polarization axis for the production process can be defined as that where the lepton decay azimuthal angle distribution is symmetric and λ is maximum [5]. In such a frame, the density matrix of the production amplitude is diagonal.

Several quarkonium production models have been proposed to describe the perturbative terms which are relevant for QQ production, while other models include non-perturbative terms related to the formation of the bound state. The various models predict different polarizations and are described below.

In the Color Evaporation Model (CEM) [6], quarkonia production is assumed to be a fixed fraction of the pQCD cross section for invariant masses between twice the mass of the heavy quark (c or b) and twice the mass of the open heavy quark meson (D or B). This model has reasonable agreement with most of the measured quarkonia cross sections but no predictive power for the polar-

FIG. 1: Definition of the polarization frames: helicity (HX), Gottfried-Jackson (GJ) and Collins-Soper (CS) frames.
Calculations performed in \[22\] estimated and where the spectroscopic notation λ from the CDF cross section as the Color Octet Model (COM). Using constraints on the quark mass m_Q and an s-channel cut contribution that allows off-shell $c\bar{c}$ quarks to end up in the bound state \[19\]. These calculations show large changes in the yield and polarization relative to the earlier calculations. The new calculations of the J/ψ yield is closer to what is observed in PHENIX and CDF for $p_T < 10$ GeV/c. The J/ψ polarization is predominantly longitudinal in the HX frame according to these new calculations.

Non-relativistic QCD (NRQCD) effective theory \[20\] makes use of short distance (m_Q) and non-relativistic (m_Qv^2) terms, where v is the typical quark velocity in the quarkonium rest frame. A typical v for charm (bottom) is 0.3c (0.1c). The S-wave charmonium is described as a series of intermediate color singlet(\(^{1}\)) or color octet(\(^{8}\)) state contributions

\[
|\psi_Q\rangle = \mathcal{O}(1) |S_1^{(1)}\rangle + \mathcal{O}(\nu) |P_J^{(8)}\rangle
\]

where the spectroscopic notation $^{2S+1}L_J$ is used. The non-perturbative operators $\mathcal{O}(\nu)$ are parametrized using experimental results. Since the singlet state has a small contribution to the yield, this model is also referred as the Color Octet Model (COM). Using constraints from the CDF cross section J/ψ data, reasonable agreement is obtained with PHENIX yield results assuming J/ψ production is dominated by gluon fusion in the $^{1}S_0$ and $^{3}P_0$ intermediate states for $p_T < 5$ GeV/c \[13, 21\]. Calculations performed in \[22\] estimated $\lambda^{(1)S_0^{(8)}} = 0$ and $\lambda^{(3)P_0^{(8)}} = -0.05$ indicating a very small longitudinal polarization from direct J/ψ in this p_T range. Numerical estimations \[23, 24\] and subsequent NLO corrections \[25\] supports that the polarization for $p_T \gg M_{J/\psi}$, where production from gluon fragmentation is supposed to be important, is predominantly transverse in the HX frame.

The J/ψ polarization in hadronic collisions was studied in fixed target experiments at $\sqrt{s} \leq 39$ GeV \[24, 33\]. These experiments predominantly covered $|x_F| > 0$ and $p_T < 5$ GeV/c. In \[3\] it was noted that J/ψ polarization measured in the CS frame by HERA-B \[31\] and by E866/NuSea \[55\] smoothly changes from longitudinal to transverse with the total momentum. The polarization observed in CDF at $\sqrt{s} = 1.96$ TeV in midrapidity for $p_T > 5$ GeV/c showed a small longitudinal polarization in the HX frame \[34\]. This result contradicts the first LO CSM and COM expectations.

Complimentary J/ψ polarization measurements in $p+p$ collisions at $\sqrt{s} = 200$ GeV can help elucidate the production mechanism. Moreover, it is expected that the polarization of J/ψ is modified in the presence of nuclear matter effects in $d+Au$ collisions and hot and dense matter in $Au+Au$ collisions \[35\]. Thus future measurements of J/ψ polarization in $d+Au$ and $Au+Au$ at RHIC demands a good reference from $p+p$ collisions.

This paper reports the transverse momentum dependence of the J/ψ polarization for $|y| < 0.35$ in the HX, GJ and CS reference frames. The study was performed in the dielectron decay channel for $p_T < 5$ GeV/c. The experimental apparatus used to measure electron decays from J/ψ mesons is detailed in section II. The procedure followed to obtain the $\cos\theta^*\cos\phi$ distributions, the corresponding polarization parameters and their uncertainties are explained in section III. The results, comparison with measurements at other facilities and interpretation in the context of current theoretical models are presented in section IV.

II. EXPERIMENTAL APPARATUS AND J/ψ IDENTIFICATION

This analysis was performed with data collected in $p+p$ collisions at $\sqrt{s} = 200$ GeV during the 2006 RHIC Run with the PHENIX central arm detectors \[36\]. The geometrical coverage for single electrons corresponds to pseudorapidity $|\eta| < 0.35$. Each one of the roughly back-to-back two arms covers $\Delta \phi = \pi/2$.

Data were recorded using a minimum-bias trigger that required at least one hit in each of the two beam-beam counters (BBC) located at $3.0 < |y| < 3.9$ and scanning approximately 50% of the $p+p$ cross section. A dedicated trigger (EMCal RICH Trigger - ERT) was also used to select events with at least one electron candidate. The ERT required a minimum energy in any 2x2 group of the Electromagnetic Calorimeter (EMCal) towers \[1\] and associated hits in the Ring Imaging Čerenkov detector (RICH) in coincidence with the minimum-bias trigger condition. The EMCal energy threshold was set to 0.4 GeV and 0.6 GeV for two different periods during the data taking run.

Collisions within ± 30 cm of the center of the detector along the beam direction were used in this analysis. After data quality selection, the number of collisions sampled was 143 billion BBC triggers, corresponding to an integrated luminosity of $\int \mathcal{L} = (6.2 \pm 0.6)$ pb\(^{-1}\).

\[\text{1 Corresponding to } \Delta \eta \times \Delta \phi = 0.02 \times 0.02 \text{ rad}\]
Electron candidates were selected from tracks reconstructed in the Drift Chamber (DCH) and in the Pad Chamber (PC) with momentum larger than 0.5 GeV/c. Electron identification was achieved by requiring the tracks to be associated with at least one fired phototube within a ring radius 3.4 cm < \(R_{\text{ring}} \) < 8.4 cm centered on the projected track position in the RICH. In addition, the presence of a matching energy cluster in the EMCal was required within four sigma in both the position and expected energy/momentum ratio. Since the hadronic background in the \(J/\psi \) mass region is small in \(p+p \) collisions, only loose electron identification criteria were used.

Dielectron pairs from \(J/\psi \) decays were counted in the invariant mass range \(\in [2.9, 3.2] \) GeV/\(c^2 \). The combinatorial background was estimated using like-sign \((e^+e^+ \text{ and } e^-e^-) \) pairs. Since we evaluated the ERT efficiency using \(J/\psi \) simulation, we required that the ERT segment was fired by one of the \(J/\psi \) decayed electrons. Hence, only pairs with at least one electron matching geometrically the position of an actual ERT trigger in the event were accepted. The dielectron mass distribution in the \(J/\psi \) mass region is shown in Figure 2. The signal/(combinatorial background) ratio was 28. After combinatorial background subtraction, we counted 2442 ± 51 \(e^+e^- \) pairs with \(p_T < 5 \) GeV/\(c \) in the selected \(J/\psi \) mass range. These counts include a residual continuum background, which consists mainly of correlated open heavy quark decays to electrons. This background was found to be less than 10%.

FIG. 2: Invariant mass of dielectrons in the \(J/\psi \) mass range. Dashed lines represents the mass range used in the polarization analysis.

FIG. 3: Distribution of single electrons versus the \(Z \) coordinate of the track in the drift chamber for real (open boxes) and simulated (closed boxes) data for different sectors (0 is the bottom and 3 is the top ones) in the east (left) and west (right) detector arms. The box-height for each point corresponds to its statistical uncertainty.

III. ANALYSIS PROCEDURE

The angular dependence of the detector response for electrons from \(J/\psi \) decays was estimated using a full GEANT3 \([37]\) based detector simulation. Dead channels or malfunctioning regions were removed from the detector simulation and from the real data analysis. The experimental acceptance was checked by simulating single electrons with collision \(z \) vertex and \(p_T \) distributions weighted to reproduce observed distributions of electron candidates from real data. The simulated detector acceptance for these single electrons was compared to that for real data for different azimuthal sectors (see Fig. 3). Remaining differences in the acceptance between simulated and real data were attributed to conversions \(\gamma \rightarrow e^+e^- \) in the detector support structure at large \(z \) which were not included in the simulation. These differences were accounted for in the systematic uncertainty listed in Table I.

The detector response to electrons in the simulation was tuned to match the data. A clean sample of electrons in the data was obtained by selecting electrons from Dalitz decays and photon conversions in the beam pipe which were identified by their very low invariant mass \([38]\). Figure 4 shows the comparison between the momentum dependent electron identification efficiency \((\varepsilon_{\text{ID}}) \) for single electrons from fully reconstructed Dalitz and photon conversion decays in minimum-bias data and simulation. Good agreement above 0.5 GeV/\(c \) was achieved within the statistical uncertainties.

The \(p_T \) dependence of the ERT efficiency was estimated for each one of the 8 EMCal sectors by taking the fraction of minimum-bias single electron candidates
TABLE I: Systematic uncertainties in the p_T dependent polarization measurement in the helicity and Gottfried-Jackson (in parentheses) frames.

Description	[0, 1] GeV/c	[1, 2] GeV/c	[2, 5] GeV/c	[0, 5] GeV/c	
Acceptance	0.006 (0.036)	0.006 (0.012)	0.006 (0.008)	0.006 (0.024)	
Polarization bias in acceptance	0.022 (0.047)	0.0011 (0.005)	0.008 (0.031)	0.012 (0.032)	
Continuum fraction	$+0.033 (-0.091)$	$+0.023 (+0.032)$	$+0.014 (+0.023)$	$+0.019 (-0.022)$	
Input p_T in simulation	0.034 (0.062)	0.005 (0.049)	0.024 (0.028)	0.034 (0.054)	
Input y, Z vertex in simulation	0.000 (0.007)	0.000 (0.007)	0.000 (0.007)	0.000 (0.007)	
Run-by-run fluctuations	0.019 (0.123)	0.016 (0.035)	0.016 (0.020)	0.017 (0.050)	
ERT efficiency	0.017 (0.110)	0.015 (0.051)	0.018 (0.024)	0.015 (0.043)	
TOTAL	$+0.06 (+0.21)$	$+0.03 (+0.09)$	$-0.04 (-0.19)$	$+0.04 (+0.06)$	$-0.09 (-0.09)$

FIG. 4: Single electron identification efficiency estimated using full reconstructed Dalitz decays from real data (open circles) and simulation (full squares). Dotted line represents the minimum p_T for the electron used to reconstruct J/ψ decays.

FIG. 5: Fit to J/ψ yield times dielectron branching ratio (B) after detector acceptance and efficiency corrections for the real data with $A = 28.7 \pm 1.0$ nb/GeV/c, $b = 3.41 \pm 0.21$ GeV/c, and $n = 4.6 \pm 0.4$.

that fired the ERT. These efficiencies were used in the ERT simulation. Changes in the trigger thresholds and channel masks in the ERT during the run period were used in the simulation in order to reproduce realistic run conditions.

The tuned detector simulation was used to reproduce the measurement of J/ψ dielectron pairs and to match their momentum, rapidity and vertex distributions. The kinematics of the simulated J/ψ were estimated in four steps:

1. Unpolarized J/ψ e^+e^- pairs were generated with uniform distributions in rapidity ($|y| < 0.5$), p_T ($p_T < 7 \text{ GeV}$), azimuthal angle ($-\pi < \phi < \pi$), and collision vertex along the beam axis Z ($|Z_{vertex}| < 40 \text{ cm}$).

2. The J/ψ p_T distribution obtained after applying the efficiency and acceptance corrections agrees with the previous result $[1]$. A Kaplan function

$$\frac{d\sigma}{dp_T dy} = \frac{A p_T}{[1+(p_T/b)^2]^n}$$

was fit to the p_T distribution (Fig. 3), and a Gaussian function was fit to the rapidity dependence of the J/ψ yield reported in $[1]$ and to the collision Z vertex distribution.

3. The fitted p_T , rapidity and collision vertex functions were then used to re-weight the simulated J/ψ events. The top half of each plot in Figs. 6 and 7 shows the $\cos \theta^*$ distributions in the HX, GJ, and CS frames of e^+e^- pairs in the J/ψ mass range obtained in J/ψ simulation and real data 2 after combinatorial background subtraction. The simulated and real data distributions are functions of the detector acceptance and efficiency and the original $dN_{ee}/d\cos \theta^*$ in the J/ψ mass range. The bottom panels show the ratio between the real data and simulated $\lambda = 0$ distributions, corresponding to the acceptance corrected $\cos \theta^*$ distributions.

2 The $\cos \theta^*$ resolution estimated in the simulation was 0.08 in the HX, 0.025 in the GJ and 0.007 in the CS frames. These resolutions are much smaller than the bin width of the $\cos \theta^*$ distributions used in the polarization analysis.
Equation (1) was fitted to these acceptance corrected $\cos \theta^*$ distributions with no constraints on the parameters. Solid lines are the most likely fits and dashed lines represent 68% confidence level interval. In the CS frame, the fit returned a polarization which was out of the physical limits ($\lambda \in [-1, 1]$). This was a result of the small acceptance for the $\cos \theta^*$ distribution in the PHENIX
central arms for this frame, leading to a large statistical uncertainty on its polarization measurements. Thus, the CS frame is no longer considered in this article.

4. Any asymmetry in the electron decay distribution, i.e. \(\lambda \neq 0 \), can change the detector acceptance. Hence, the fourth and final step of the simulation was to apply a weight in \(\cos \theta^* \) to the simulated \(J/\psi \) by using the \(\lambda \) obtained in the third step. When using this realistic angular distribution for the \(p_T \) dependent acceptance, and the corresponding uncertainties, we obtained a variation in the yield up to \(\pm 8\% \) for \(p_T < 5 \text{ GeV}/c \) that corresponds to changes in polarization results no larger than 0.02 in the HX frame and 0.05 in the GJ frame. These variations were accounted for in the systematic uncertainties.

We also estimated the contribution to the \(J/\psi \) polarization from the continuum background by measuring \(\lambda \) in the dielectron mass range \([1.7, 2.3]\) \text{ GeV}/c\(^2\). The acceptance and efficiency corrections were performed using simulated \(D^+D^- \rightarrow e^+e^- \) decays, the dominant source of \(e^+e^- \) pairs in \([1.7, 2.3]\) \text{ GeV}/c\(^2\), according to the analysis in \([39]\). The polarization in this mass range is consistent with zero, with values between \(\pm 0.3 \) in the HX and \(\pm 0.9 \) in the GJ frame. The 10% continuum contribution can change the measured polarization in the \(J/\psi \) mass range by at most \(\pm 0.05 \) in HX frame and \(\pm 0.17 \) in GJ frame and was included in the systematic uncertainties.

The \(\lambda \) measurement is also sensitive to differences between acceptance in simulated and in real data, run-by-run condition variations, uncertainties in rapidity, \(Z \) vertex, and transverse momentum shape inputs to the simulation, as well as the ERT efficiency \(p_T \) shape. These uncertainties were introduced as variations in the efficiency and weighting parameters for different detector sectors in the simulation. Resulting variations in \(\lambda \) were accounted for as systematic uncertainties and are listed in Table \(\text{II} \). The systematic uncertainties are correlated between different \(p_T \) ranges. The total systematic uncertainty is taken to be the quadratic sum of these components, assuming they are uncorrelated. Additional checks included the variation of the minimum momentum requirement of the single electrons and the rejection of tracks going to the edges of the detector. These variations returned only statistical fluctuations in the polarization results.

IV. RESULTS

Figure 8 shows the transverse momentum dependence of the \(J/\psi \) polarization in the HX and JG frames. The uncertainties of the fit are larger in the JG frame given the smaller \(\cos \theta^* \) range compared to HX frame. The numerical values are listed in Table \(\text{II} \). For the HX frame also shown are currently available theoretical models: COM \([13]\] and the s-channel cut CSM \([19]\) calculated using the same polarization frame. There are no theoretical predictions for the GJ frame.

The measurements presented here are for inclusive \(J/\psi \). Feed-down from \(\chi_c \) and \(\psi' \) may also contribute to the observed polarization and are not separated out. The world average result for the feed-down contribution to the \(J/\psi \) yield is \(33 \pm 5\% \) \([10]\). The polarization of the indirect \(J/\psi \) should be smeared during the decay process. If the \(J/\psi \) from feed-down sources are unpolarized, the direct \(J/\psi \) may have a larger \(\lambda \) in magnitude than that reported here.

The \(J/\psi \) polarization is consistent with zero for all transverse momenta but exhibits a 1.8 sigma longitudinal

TABLE II: \(J/\psi \) polarization results in the helicity and Gottfried-Jackson frames. Transverse momentum is in \text{ GeV}/c. Uncertainties correspond to statistical and systematics respectively.

\(p_T \)	\(\langle \lambda \rangle \)	\(\lambda_{J/\psi}^{H_X} \)	\(\lambda_{J/\psi}^{G_J} \)
0-1	0.64	0.15±0.12	±0.06
1-2	1.47	-0.10±0.09	±0.03
2-5	2.85	-0.19±0.10	±0.04
0-5	1.78	-0.10±0.05	±0.09
FIG. 8: $\lambda_{J/\psi}$ polarization parameter ($\lambda_{J/\psi}$) versus transverse momentum (p_T). Boxes are correlated systematic uncertainties. (upper) Helicity frame data is compared with COM\cite{13} and s-channel cut CSM \cite{19} calculated in the same polarization frame, but there is no prediction for CEM. (lower) There are no theoretical predictions for the Gottfried-Jackson frame.

FIG. 9: x_F dependence of J/ψ polarization for $p_T < 5 \text{ GeV/c}$ measured by PHENIX, HERA-B \cite{31}, E771 \cite{32} and E866/NuSea (CS frame)\cite{33}.

Polarization at $p_T > 2 \text{ GeV/c}$ in the HX and GJ frame when the quadratic sum of the statistical and systematic uncertainties are considered. In the HX frame, the p_T dependent λ follows the s-channel cut CSM expectations for prompt J/ψ \cite{41}. Finally, the COM prediction \cite{13}, using the NRQCD matrix elements fitted to CDF data, is also consistent with our data over the p_T range covered by the calculation.

Figure\cite{33} shows that the polarization for $p_T < 5 \text{ GeV/c}$ follows what is observed in fixed target experiments for a more extended x_F range in the HX and GJ frames. Statistical and systematic uncertainties are quadratically summed for this comparison. Note that the E866/NuSea result was measured in the CS frame.

In principle, intermediate singlet and octet color states may be absorbed differently in the nuclear matter present for fixed target $p+A$ measurements, possibly changing the final J/ψ polarization. However, comparisons are limited by the uncertainties in the present data. The observed agreement between the $p+p$ results reported here and fixed target $p+A$ measurements are not yet able to determine the magnitude of nuclear matter effects on J/ψ polarization. Direct comparison between future high statistics p_T and rapidity dependence of the J/ψ polarization in $p+p$ and $d+Au$ collisions will provide a better picture for these effects.
V. CONCLUSIONS

We have presented the first \(J/\psi \) polarization measurement at RHIC for two different polarization frames. The observed \(p_T \)-dependent \(J/\psi \) polarization parameter in the HX frame is consistent with the s-channel cut CSM, COM and no polarization within current uncertainties. The integrated momentum polarization observed in both the HX and GJ frames are in good agreement with the results obtained at fixed target experiments collected in lower energy \(p+A \) collision in the same \(x_T \) region. Upcoming higher luminosity \(p+p \) data will allow more accurate measurements over the full decay angular distributions and over extended \(p_T \) and rapidity ranges.

Acknowledgments

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry of Industry, Science and Technologies, Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), National Research Foundation (Korea), Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation.

[1] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 232002 (2007).
[2] C. S. Lam and W.-K. Tung, Phys. Rev. D 18, 2447 (1978).
[3] K. Gottfried and J. D. Jackson, Nuovo Cim. 33, 309 (1964).
[4] J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219 (1977).
[5] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, Phys. Rev. Lett. 102, 151802 (2009).
[6] H. Fritzsch, Phys. Lett. B67, 217 (1977).
[7] R. Vogt, private communication (2009).
[8] J. F. Amundson, O. J. P. Eboli, E. M. Gregores, and F. Halzen, Phys. Lett. B390, 323 (1997).
[9] R. Baier and R. Ruckl, Phys. Lett. B102, 364 (1981).
[10] C. S. Lam and W.-K. Tung, Phys. Rev. D 18, 2447 (1978).
[11] J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219 (1977).
[12] R. Vogt, private communication (2009).
[13] J. F. Amundson, O. J. P. Eboli, E. M. Gregores, and F. Halzen, Phys. Lett. B390, 323 (1997).
[14] R. Baier and R. Ruckl, Phys. Lett. B102, 364 (1981).
[15] C. S. Lam and W.-K. Tung, Phys. Rev. D 18, 2447 (1978).
[16] J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219 (1977).
[17] R. Vogt, private communication (2009).
[18] J. F. Amundson, O. J. P. Eboli, E. M. Gregores, and F. Halzen, Phys. Lett. B390, 323 (1997).
[19] R. Baier and R. Ruckl, Phys. Lett. B102, 364 (1981).
Phys. Rev. Lett. 91, 211801 (2003).

[34] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 99, 132001 (2007).

[35] B. L. Ioffe and D. E. Kharzeev, Phys. Rev. C 68, 061902(R) (2003).

[36] S. S. Adler et al. (PHENIX Collaboration), Nucl. Instrum. Meth. A499, 560 (2003).

[37] GEANT 3.2.1, CERN Computing Library (1993), http://wwwasdoc.web.cern.ch/wwwasdoc/pdfdir/geant.pdf

[38] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 81, 034911 (2010).

[39] A. Adare et al. (PHENIX Collaboration), Phys. Lett. B670, 313 (2009).

[40] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wochri, JHEP 10, 004 (2008).

[41] J. P. Lansberg and H. Haberzettl, AIP Conf. Proc. 1038, 83 (2008).