Development and characterization of genomic SSR markers for *Tamarix chinensis* (Tamaricaceae)

Ruhua Zhang¹,4, Qiang Wen², and Li-an Xu³

Belonging to the family Tamaricaceae, *Tamarix chinensis* Lour. is an alkali- and salt-tolerant, loosely branched deciduous shrub or 3–6-m-tall tree. It is naturally distributed from the temperate to subtropical zones in China, Korea, and Japan, inhabiting riverbeds, sandy floodplains, deserts, and coastal tidal flats (Baum, 1978) and has been naturalized in much of the western United States since its introduction in the mid-nineteenth century (Whiticrt et al., 2007). The level of genetic diversity and mating system of the species are not well known. A few studies have focused on the genetic diversity and population genetic structure of *T. chinensis* using random amplified polymorphic DNA (RAPD) (Zhao et al., 2008) and inter-simple sequence repeat (ISSR) markers (Jiang et al., 2011). Codominant simple sequence repeat (SSR) markers are powerful tools for population variation analysis and for the estimation of gene flow through genotypic exclusion in a number of tree species (Vahdati et al., 2015). To date, expressed sequence tag (EST)–SSR markers have been developed through mining of EST databases of *Tamarix* L. spp., and the transferability across species including *T. chinensis*, *T. gallica* L., *T. aphylla* (L.) H. Karst, *T. jordania* Bois., *T. nilotica* (Ehrenb.) Bunge, and *T. tetragyna* Ehrenb. was tested (Terzoli et al., 2013). A set of 10 genomic microsatellites of *T. ramosissima* Ledeb. was isolated using the biotinylated-oligonucleotide capture method (Gaskin et al., 2006), two of which showed polymorphism in Chinese *T. chinensis* material (Zhang, 2011). Although microsatellite primers have been developed for some *Tamarix* spp., none have yet been identified specifically for *T. chinensis*. We obtained a large number of DNA sequences based on high-throughput sequencing and characterized SSRs distributed in the genome of *T. chinensis*. A set of 10 polymorphic SSR molecular markers of *T. chinensis* were developed and the transferability was tested in its congener *T. ramosissima*.

METHODS AND RESULTS

Fresh leaves of one *T. chinensis* individual from a natural population of Binzhou City, Shandong Province, China (Appendix 1), were collected for DNA extraction and Illumina sequencing. Genomic DNA was extracted using a DNeasy kit (QIAGEN, Venlo, The Netherlands). Genomic libraries were constructed using the method for RAD sequencing as described by Baird et al. (2008). A Qubit 2.0 kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA) was used to evaluate the quality of the libraries, and the Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, California, USA) was used to check the sizes of the libraries after they were diluted to 1 ng/μL. Sequencing was conducted on the
HiSeq 2500 high-throughput sequencing system (Illumina, San Diego, California, USA) to generate 125-bp paired-end reads by a commercial company (Novogene Co. Ltd., Beijing, China). Raw data were cleaned up by trimming the adapters and low-quality reads with a custom script by the company who did the sequencing, and by filtering reads with read depth of <10 and >400 using CD-HIT-EST (Li and Godzik, 2006) to avoid false positives.

Assembly of paired reads was performed using Velvet version 1.1.06 (Zerbino and Birney, 2008). Contigs with a length of less than 125 bp were deleted. Raw sequences were deposited to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA accession PRJNA492209). A total of 818,142 contigs were generated with an average length of 323 bp and an N50 length of 474 bp. The MISA perl script (Thiel et al., 2003) was used to search for SSRs with mono-, di-, tri-, tetra-, penta-, and hexanucleotide motifs with a minimum repeat number of 14, eight, six, five, four, and four, respectively. Compound microsatellites were defined as having two or more motifs separated by an interval of ≤100 bp. A total of 31,140 SSRs were identified using the MISA perl script for 28,454 contigs. There were 2567 contigs that contained more than one SSR, and there were 2027 compound SSRs. Di- and trinucleotide motifs were the most abundant, comprising 41.53% and 41.24%, respectively. SSR primers were designed with Primer3 version 1.1.4 (Rozen and Skaletsky, 1999) with the following qualifications: primer length range from 18 to 22 bp and annealing temperature 55–60°C. Twenty-four primers were synthesized by a commercial company (GenScript, Nanjing, China).

In total, 58 individuals of *T. chinensis* from four natural populations and 24 individuals of *T. ramosissima* from one population were sampled (Appendix 1). We collected no more than 20

TABLE 1. Characteristics of 21 novel genomic microsatellite markers developed for *Tamarix chinensis.*

Locus*	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	GenBank accession no.
TC1	F: ATGTGGGGAGGTGGAGTG	(CTT)$_{10}$	115–127 T. chinensis	MG856343
	R: AATGTAGGACGACAAGAGT		115–121 T. ramosissima	
TC3	F: AAACCGGAGTGGAGTGA	(TTA)$_{11}$	150–204 T. chinensis	MG856344
	R: ACACCCCTAATGCCATAAC		153–201 T. ramosissima	
TC4	F: ATCCCCAGGTTGTTAAAT	(AAT)$_{11}$	162–201 T. chinensis	MG856345
	R: GCTGCTGGTACCCCTAACA		162–186 T. ramosissima	
TC5	F: GTCTGCTAAGAAGTCGC	(TCTT)$_{8}$	189–221 T. chinensis	MG856346
	R: CGAAATAAACGAGAAGAT		186–218 T. ramosissima	
TC6	F: GATAAGCTTGTACGATT	(ATA)$_{11}$	158–236 T. chinensis	MG856347
	R: TCTAGTACACCTACCCC		158–230 T. ramosissima	
TC7	F: GGTCTTTTATGTTCTTCTC	(TATT)$_{6}$	194–214 T. chinensis	MG856348
	R: TATGGCTCTAATCTTCTT		194–206 T. ramosissima	
TC8	F: TTGAGCTTGAGTGAGTA	(AAT)$_{11}$	208–244 T. chinensis	MG856349
	R: GATGACCGGTGTTTAGT		208–238 T. ramosissima	
TC12	F: TAAGAAAGGTTAGAGGAGA	(AAG)$_{11}$	281–341 T. chinensis	MG856350
	R: TAATCAAAGTTCAACAGG		281–338 T. ramosissima	
TC17	F: AGTAGGCGCAAGGTATAT	(TG)$_{10}$	335–347 T. chinensis	MG856351
	R: CTCAGAAGCTTCCTAGA		332–344 T. ramosissima	
TC19	F: GAGGCTGGGCAAGAAATG	(TTA)$_{9}$	369–409 T. chinensis	MG856352
	R: TGGAGCAGCAAGATGTA		369–409 T. ramosissima	
TC2	F: CAGTGGTATGAGGGT	(AAT)$_{10}$	151 T. chinensis	MG856353
	R: GATGCGGTGACGGATG		151 T. ramosissima	
TC9	F: CGAACTAAATACCTCAA	(TTA)$_{10}$	205 T. chinensis	MG856354
	R: CTATCCCGAAGACTCAA		205 T. ramosissima	
TC10	F: CAACTTTTACCCCTCTTCT	(AT)$_{11}$	239 T. chinensis	MG856355
	R: ATTCGAGGCTACCTACA		239 T. ramosissima	
TC11	F: CAGTGGTATAGGAGGTT	(TTA)$_{10}$	256 T. chinensis	MG856356
	R: GATGCGGATTGGAGG		256 T. ramosissima	
TC13	F: TTCTAACCCTAAACTCCT	(TATT)$_{9}$	273 T. chinensis	MG856357
	R: A T G A A A T C T C T G T		273 T. ramosissima	
TC14	F: AAATGTGGTGCTTGTG	(AAG)$_{10}$	290 T. chinensis	MG856358
	R: TTTATAGCTTCTTGGG		290 T. ramosissima	
TC15	F: CTTAGCCCTAGCCTTGG	(TAT)$_{11}$	317 T. chinensis	MG856359
	R: TAACCTCCCTCTTACCC		317 T. ramosissima	
TC16	F: CTCTGGGCTTGGATAC	(CAG)$_{10}$	320 T. chinensis	MG856360
	R: TAAAGCTGGCTTGGGAG		320 T. ramosissima	
TC21	F: ATATCTCCACCTCGGACAA	(ATT)$_{11}$	382 T. chinensis	MG856361
	R: AACACCATCCTACCTACATC		382 T. ramosissima	
TC22	F: TTCCTTACCTTTCTTGC	(AAT)$_{10}$	383 T. chinensis	MG856362
	R: ATTCGAGCTCCACACACA		383 T. ramosissima	
TC24	F: TTATGCTGGAGTTGAGT	(ATT)$_{10}$	409 T. chinensis	MG856363
	R: GTGGTAATGTTGACGAAT		409 T. ramosissima	

Annealing temperature for all loci was 55°C.
TABLE 2. Level of polymorphism of 10 microsatellite loci developed for Tamarix chinensis in four T. chinensis populations and one T. ramosissima population.*

Locus	T. chinensis (KL, N = 18)	T. chinensis (HK, N = 13)	T. chinensis (LJ, N = 13)	T. chinensis (FS, N = 14)	T. ramosissima (CY, N = 24)											
	H_o	H_e	PIC													
TC1	3	0.558	0.517	0.469	3	0.364	0.310	0.478	3	0.556	0.526	0.594	3	0.300	0.455	0.566
TC3	10	0.812	0.794	0.803	5	0.677	0.593	0.612	7	0.524	0.616	0.673	8	0.626	0.723	0.717
TC4	4	0.414	0.507	0.516	3	0.337	0.415	0.468	4	0.384*	0.497	0.404	5	0.414*	0.535	0.487
TC5	6	0.667	0.583	0.632	6	0.660	0.678	0.669	7	0.750	0.726	0.723	4	0.556	0.562	0.605
TC6	11	0.607	0.733	0.645	7	0.541	0.501	0.627	9	0.653	0.582	0.605	11	0.549	0.645	0.653
TC7	4	0.632	0.568	0.603	3	0.548	0.337	0.606	4	0.621	0.678	0.717	3	0.523	0.585	0.568
TC8	8	0.717	0.634	0.622	6	0.562	0.667	0.636	7	0.613	0.546	0.608	8	0.701	0.757	0.628
TC12	8	0.596	0.515	0.502	6	0.659	0.553	0.597	6	0.549	0.512	0.504	7	0.624	0.657	0.663
TC17	3	0.222	0.204	0.264	3	0.283*	0.434	0.310	2	0.182	0.165	0.201	3	0.231	0.210	0.385
TC19	5	0.706	0.630	0.643	3	0.846*	0.541	0.512	3	0.538	0.494	0.584	4	0.636	0.645	0.693
Mean	6.2	0.593	0.543	0.570	4.3	0.548	0.542	0.572	5.2	0.537	0.534	0.561	5.6	0.516	0.577	0.597

Note: A = number of alleles; H_o = expected heterozygosity; H_e = observed heterozygosity; N = sample size for each population; PIC = polymorphism information content.

*Indicates that H_e departs significantly from H_o under Hardy–Weinberg equilibrium (P < 0.01).

Acknowledgments

This research was supported by the Doctoral Fund of Linyi University, China (grant no. 201500762). The authors thank Dr. Jianwen Wang for advice on experimental procedures and data analysis and Dr. Oliver Gailing for his careful reading of the manuscript.

CONCLUSIONS

This is the first report of genomic microsatellites for T. chinensis. The 10 polymorphic markers showed comparatively high genetic variation, transferability to congeneric species, little or no deviation from HWE, and were in linkage equilibrium. These properties make them especially useful for genetic analysis of population genetic structure, mating system, and gene flow in T. chinensis and its congeners.

ACKNOWLEDGMENTS

This research was supported by the Doctoral Fund of Linyi University, China (grant no. 201500762). The authors thank Dr. Jianwen Wang for advice on experimental procedures and data analysis and Dr. Oliver Gailing for his careful reading of the manuscript.
DATA ACCESSIBILITY

Raw sequences were deposited to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA accession PRJNA492209). Sequence information for the developed primers has been deposited to NCBI; GenBank accession numbers accession PRJNA492209). Sequence information for the developed primers has been deposited to NCBI; GenBank accession numbers are provided in Table 1.

LITERATURE CITED

Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. *PLoS ONE* 3(10): e3376.

Baum, B. R. 1978. The genus *Tamarix*. Israel Academy of Sciences and Humanities, Jerusalem, Israel.

Gaskin, J. E., A. E. Pepper, and J. M. Manhart. 2006. Isolation and characterization of ten polymorphic microsatellites in saltcedars (*Tamarix chinensis* and *Tamarix ramosissima*). *Molecular Ecology Notes* 6(4): 1147–1149.

Jiang, Z. M., Y. X. Chen, and Y. Bao. 2011. Genetic structure and population differentiation of *Tamarix chinensis* in Yellow River Delta. *Plant Diversity and Resources* 33(4): 403–408.

Kalinowski, S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. *Molecular Ecology* 16: 1099–1006.

Li, W., and A. Godzik. 2006. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22(13): 1658–1659.

Peakall, R., and P. E. Smouse. 2005. *GenALEx* 6: Genetic analysis in Excel. *Population Genetics software for teaching and research.*

Raymond, M., and F. Rousset. 1995. *GENEPOP* (Version 1.2): Population genetics software for exact tests and ecumenicism. *Journal of Heredity* 86: 248–249.

Rice, W. R. 1989. Analyzing tables of statistical tests. *Evolution* 43: 223–225.

Rozen, S., and H. J. Skaletsky. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], *Methods in molecular biology*, vol. 132: Bioinformatics: Methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

Terzoli, S., E. Gotten, M. Sabatti, R. Valentini, and A. Zilberstain. 2013. Primer Note: A novel set of EST-SSR markers in *Tamarix*: A resource to characterize this genus. *Silvae Genetica* 62(3): 104–109.

Thiel, T., W. Michalek, R. K. Varshney, and A. Graner. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). *Theoretical and Applied Genetics* 106(3): 411–422.

Vahdati, K., S. M. Pouraklu, R. Karimi, R. Barzehkar, R. Amiri, and M. Mozaffari. 2015. Genetic diversity and gene flow of some Persian walnut populations in southeast of Iran revealed by SSR markers. *Plant Systematics and Evolution* 301(2): 691–699.

Whitcraft, C. R., D. M. Talley, J. A. Crooks, J. Boland, and J. F. Gaskin. 2007. Invasion of tamarisk (*Tamarix spp.*) in a southern California salt marsh. *Biological Invasions* 9(7): 875–879.

Zerbino, D. R., and E. Birney. 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. *Genome Research* 18(5): 821–829.

Zhang, R. H. 2011. Study on the genetic variation of *Tamarix chinensis* Lour. population [D]. Ph.D. dissertation, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China.

Zhao, J. K., L. A. Xu, H. F. Xie, D. Y. Zhao, and M. R. Huang. 2008. RAPD analysis of population genetic diversity of *Tamarix chinensis* in Yellow River delta. *Journal of Nanjing Forestry University* 32(5): 56–60.

APPENDIX 1. Voucher and locality information for *Tamarix chinensis* and *T. ramosissima* used in this study.\(^4\)

Species	Locality	Geographic coordinates	Population code	N	Voucher specimen accession no.\(^2\)
T. chinensis Lour.	Kenli, Shandong, China	37°48′06″N, 119°02′17″E	KL	18	Tch-KL01-ZR
T. chinensis	Hekou, Shandong, China	38°13′19″N, 118°50′30″E	HK	13	Tch-HK02-ZR
T. chinensis	Lijing, Shandong, China	38°02′13″N, 118°4′30″E	LJ	13	Tch-LJ03-ZR
T. chinensis	Fangshan, Beijing, China	39°63′19″N, 115°7′30″E	FS	14	Tch-FS04-ZR
T. chinensis \(^3\)	Binzhou, Shandong, China	37°22′16″N, 118°03′22″E	BZ	1	Tch-BZ05-ZR
T. ramosissima Ledeb.	Changyi, Shandong, China	37°05′06″N, 119°21′22″E	CY	24	Tra-CY01-ZR

Note: N = number of individuals sampled.

\(^{\text{a}}\)Vouchers are deposited in Linyi University, Shandong Province, China.

\(^{\text{b}}\)All individuals were sampled from natural stands.

\(^{\text{c}}\)Binzhou, Shandong, China.

\(^{\text{d}}\)Individual used for DNA extraction and Illuma sequencing.