Impact Assessment of the Amur Sleeper *Perccottus glenii* Dybowski, 1877 on Amphibians in Samara Oblast

A I Fayzulin

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Togliatti, Russia

E-mail: labvolga@yandex.ru

Abstract. The author found that in the study area, an invasive alien species of fish, the Amur sleeper *Perccottus glenii*, lives in 35 amphibian habitats. Of these, 14 are large water bodies, coastal areas and bays of watercourses, 21 are small water bodies. Larval development is completed by 8 species of tailless amphibians when they have the same habitats with the Amur sleeper. In 4 out of 17 examined populations of the European fire-bellied toad *Bombina bombina*, the cessation of larval development is noted in syntopic habitats with the Amur sleeper. The author assumes that the distribution of this invasive species is one of the factors in the disappearance of the common newt *Lissotriton vulgaris* and the European fire-bellied toad *Bombina bombina* populations in the reservoirs of Samara and Samarskaya Luka National Park. In the natural biotopes the distribution of the Amur sleeper is slower due to the presence of predators-fish and fish-eating reptiles. The marsh frog and the pool frog co-exist with the Amur sleeper; the green toad successfully spawns and undergoes larval development. The absence of common species of helminths confirms the absence of trophic links between the populations of the Amur sleeper and Amphibians in natural habitats of the study area.

1. Introduction

Non-indigenous species of organisms that are not characteristic of a given territory (both intentional or accidental introduction) are an emerging issue and one of the significant factors affecting aboriginal ecosystems [1,2]. The Amur sleeper *Perccottus glenii* Dybowski, 1877 is one of the rapidly spreading invasive species in the European part of Russia [3]. It is able to inhabit almost all types of persistent water bodies suitable for spawning and larval development of amphibians.

The appearance of this fish species is associated with a decrease in the number of spawning amphibian species in Russia [4, 5], Western Ukraine [6] and Latvia [7]. The Amur sleeper is a widespread fish species on the territory of Samara Oblast, and was studied in the floodplain biocenoses of Samarskaya Luka National Park [8]. However, a comprehensive study of the influence of its dispersal on syntopic amphibian species has not previously been carried out.

The aim of the research is to assess the impact of the Amur sleeper *Perccottus glenii* Dybowski, 1877 on amphibian populations and the possibility of its larval development in water bodies colonized by this invasive species in Samara Oblast.

2. Materials and Methods

Data collection was carried out in 35 geographical points (localities) of Samara Oblast in the period from 1998 to 2019, including 8 geographical points on the territory of Samarskaya Luka National Park.
We used a hook tackle for catching fish; and a net in the thickets of coastal near-water vegetation. We used a net for catching amphibians. The identification of the latter was carried out according to the identification tables [11] using collection specimens. The reliability of the identification of the species of green frogs *Pelophylax esculentus* complex, including the hybridogenic form *Pelophylax esculentus* (Linnaeus, 1758), was confirmed by the methods of DNA analysis by flow cytometry and molecular genetic analysis [12].
Table 1. Geographical points of discovery of Amur sleeper *Percottus glenii* in in amphibian habitats

№	Geographical point	*P. glenii*	Coordinates	Year	
1	Klimovka village, Kuibyshev Reservoir shallow water	(+)	53°29'43"	49°00'37"	2005
2	Novodevichye village, Kuibyshev Reservoir shallow water	(+)	53°37'58"	48°51'12"	2011
3	Muranka village, Usa River shallow water	(+)	53°16'56"	49°00'19"	2011
4	Mokhovoe village, Bolshoy Cheremshan River floodplain	+d	54°23'30"	50°13'10"	2014
5	Verkhny Suskan village, Lake Karasevi	+	53°49'53"	49°19'50"	2010
6	Togliatti, Kuibyshev Reservoir shallow water	+	53°28'28"	49°18'48"	2019
7	Vasilyevka village, Lake Vasilyevskoe	+	53°31'52"	49°31'13"	2005
8	Togliatti, Lake Plyazhnoye	(+)	53°29'38"	49°30'13"	2005
9	Togliatti, Fedorovskie meadows, Lake Mashkino	+	53°28'16"	49°40'21"	2014
10	Zhigulevsk, Alexandrovskoe field a pond	+	53°21'21"	49°27'46"	2011
11	Zhiguli village, Usinsky Bay of Kuibyshev Reservoir	(+)	53°23'19"	49°17'53"	2003
12	Togliatti, lake on the Kopylovo peninsula	(+)	53°27'15"	49°33'49"	2005
13	Tornovoe village*	+	53°16'32"	49°58'18"	2011
14	Podgori village, Lake Kamennoe	+	53°19'39"	50°70'20"	2011
15	Mordova village, Lake Krugloe	+	53°10'44"	49°25'49"	1998
16	Mordova village, Lake Soldatskoe	+	53°10'32"	49°25'0"	1998
17	Mordova village, Koltsovskaya Volozhka*, a duct	+	53°09'1"	49°29'20"	1998
18	Vasilyevsky Islands, Saratov Reservoir shallow water	(+)	53°11'12"	49°21'33"	1998
19	Shelekhmet village, Lake Klyukvennoye	+	53°14'42"	49°51'2"	2009
20	Shelekhmet village, Lake Bolshe Shelekhmetskoe	+	53°14'20"	49°50'26"	2009
21	Samara, Lake Yaiskoe	+	53°06'27"	50°10'18"	2014
22	Samara, pond of the park "Metallurg"	+	53°14'17"	50°16'7"	2017
23	Samara, pond of the Gagarin park	+	53°13'46"	50°11'54"	2014
24	Samara, ponds of Botanical garden	+	53°12'59"	50°10'42"	2014
25	Samara, lakes "Voronezhskie"	+	53°14'27"	50°13'34"	2014
26	Samara, pond near the farm Volgar*	+	53°09'11"	50°05'1"	2014
27	Samara, pond near the shopping center "Colosseum"	+	53°14'53"	50°14'33"	2014
28	Samara, pond on 8 Proseka street	+	53°15'47"	50°11'39"	2014
29	neighborhood of the Petra Dubrava village, Lake Novoe Lemno	+	53°17'53"	50°22'53"	2013
30	Samara, pond in the area of 18 km*	+	53°16'23"	50°15'56"	2013
31	Rabochyi village, lake. in the floodplain of the Samara River	+	52°59'52"	51°33'43"	2011
32	Poplavsky village, Lake Chernoe	+	52°59'19"	50°49'8"	2011
33	Vetyanskoe water reservoi., neighborhood of the Vetlanka village	+	52°49'59"	51°07'51"	2011
34	neighborhood of the Obsharovka village, Lake Bestolkovoe	+	53°7'47"	48°54'53"	2011
35	Bolshaya Glushitsa village, lake in the floodplain of the Bolshoi Irigiz River	+	52°21'58"	50°28'52"	2011

a – reservoirs of Samarskaya Luka National Park,
b – the species is indicated according to published data [9]
c – the species is indicated according to published data [10]
d – "+", "-" indicate our data
We evaluated the successful development of amphibians by the presence of larvae (tadpoles) in the water body at late stages, metamorphosing individuals and underyearlings. In isolated water bodies, where there is no possibility of mass migration from other habitats, we took into account immature specimen that had undergone metamorphosis. Additionally, we used previously published data on extinct amphibian species in the region [13].

3. Results and Discussion
Embryonic and larval development of at least one of the spawning amphibian species proceeds successfully before metamorphosis in 35 studied amphibian habitats inhabited by the Amur sleeper. The species composition of amphibians taking into account this fish species is shown in table 2:

Species	Shallow water bodies (up to 8000 m²)	N₁	Large water bodies and coastal areas	N₂	N
	Locale №	Larvae, underyearlings	Adult specimen	Larvae, underyearlings	Adult specimen
L. vulgaris	7	1	–	–	0 1
B. bombina	5, 13, 14, 35	19	5 16, 20, 31, 32, 34	– 5 10	
P. vespertinus	3, 5, 13, 14, 35	19	5 17	– 1 6	
B. bufo	4	1	2	– 1 3	
B. viridis	13, 35	2	16, 17, 33, 34	– 4 6	
P. ridibundus	1, 3, 5, 14, 15, 19, 29, 35	9 16, 17, 18, 20, 31	– 8 17		
P. lessonae	5, 19	2	31	– 1 3	
P. esculentus	5, 19	2	20	– 1 3	
R. arvalis	1, 35	3	2, 16, 17, 20, 31	– 5 8	
R. temporaria	–	1	–	– 0 1	

Species	Shallow water bodies (up to 8000 m²)	N₁	Large water bodies and coastal areas	N₂	N
	Locale №	Larvae, underyearlings	Adult specimen	Larvae, underyearlings	Adult specimen
B. bombina	9	7, 26, 28	4 6, 12, 21	– 3 7	
P. vespertinus	7, 9, 26	3	11	– 1 4	
B. viridis	7, 9, 10, 22, 23, 24, 25, 26, 27, 28, 30	11	6, 8, 11, 12	– 4 15	
P. ridibundus	7, 9, 10, 22, 24, 26, 28, 30	8	6, 8, 11, 12, 21	– 5 13	
P. lessonae	7	–	–	– 0 1	
P. esculentus	7	–	–	– 0 1	
R. arvalis	9	–	12, 21	– 2 3	

* – the number of habitats for each species: N₁ - shallow water bodies, N₂ - large water bodies and coastal areas, N - total

According to our data, Percottus glenii lives together with amphibians in different types of water bodies: small (N₁), large, as well as the coastal areas of reservoirs (N₂).

Tadpoles of amphibians at the late stages of development and underyearlings were found both in small and large water bodies (table 2). Moreover, in several shallow water bodies, only adults were recorded - the common newt Lissotriton vulgaris (point 7), the common toad (point 1), the moor frog Rana arvalis (point 14), and the common frog Rana temporaria (point 1). We assume this can serve
both as an indicator of the absence or cessation of larval development, and the dispersal of amphibians from spawning reservoirs. On the other hand, we did not find any metamorphosing underyearlings during the observed reproduction and clutches of eggs for the European fire-bellied toad *Bombina bombina* (points 7, 19, 26, 28) (table 2).

According to the literature, the Amur sleeper is found in water bodies where the common and the northern crested newts, the common toad, the pool, the moor and the common frogs live and / or spawn in Moscow Oblast [4]; the marsh, the edible and the pool frogs in Samara Oblast [3]; the marsh frog, the European fire-bellied toad and the common newt in Romania [14]; the European fire-bellied toad in Latvia [7]. At the same time, it is known that introduction of invasive species leads to a significant suppression of the populations of native aquatic organisms, in particular, to the cessation of spawning and larval development in 5 species of amphibians [4]. In the reservoirs of the Upper Volga, inhabited by the Amur sleeper, most amphibian species (with the exception of the gray toad) cannot reproduce successfully: the common newt, the northern crested newt, the pool, the moor and the common frogs [4].

The introduction of *Perccottus glenii* into small isolated water bodies makes spawning and larval development of tailed amphibians impossible, which is most likely associated with their selective consumption [4]. We note the ability of the Amur sleeper to consume not only larvae, but even adults of the common newt, which, in turn, makes this species one of the most vulnerable.

At the process of introduction of the Amur sleeper first of all, water bodies of urbanized territories are populated, which, apparently, is due to the absence of predatory fish species. On the other hand, there is always the possibility of the release of this invasive species into water bodies by the local population [4]. In large cities of Samara Oblast and other parts of the Volga region (Moscow, Nizhniy Novgorod, Saransk, Ulyanovsk, Kazan), *Perccottus glenii* is recorded in most persistent water bodies [15]. Outside the Volga region it is distributed, according to the author's data, in the urbanized territories of the Southern Urals (in the cities of Chelyabinsk, Ufa, and Orsk) along with the marsh frog in relatively large water bodies. It is noted that the distribution of the Amur sleeper in urban water bodies is one of the main factors in the reduction of the common newt and the European fire-bellied toad populations within the city of Samara [13].

It is believed that the influence of this invasive fish species on the number of amphibians is associated with the consumption of the larvae of the latter, as well as adult news [5, 16]. In particular, in Moscow [17] and Tver [18] Oblasts, part of the Amur sleeper's diet includes amphibian tadpoles; similar data are obtained in the western part of the range of this fish species [19]. The proportion of amphibian larvae (metamorphosing tadpoles of the brown frogs *Rana* sp.) reaches about 25.0% in frequency of occurrence and 43.0% in weight [18]. However, in the natural range of *Perccottus glenii*, tadpoles of any amphibian species are not recorded in its diet [18]. According to other data, amphibians are not recorded in the food spectrum of *Perccottus glenii* both in its natural habitat range - Primorye [20] and in its established range: in Samara [3], Ulyanovsk, Nizhny Novgorod, Chelyabinsk Oblasts, the Republics of Bashkortostan [our data] and Mordovia [21], Moscow region [22].

We carried out a comparative helminthological analysis of the "lowervertebrates" fish and amphibians from the reservoirs of Samarskaya Luka National Park and found that the Amur sleeper [3, 10] and its cohabiting water frogs *Pelophylax esculentus* complex (*Pelophylax* spp.) have no common helminth species [3, 13].

On the one hand, this only confirms the fact that amphibians are absent in the diet of *Perccottus glenii*, and hence trophic links between them in the natural populations of the region. On the other hand, the supposed feeding of amphibian larvae in urban conditions may not be accompanied by the transfer of helminths and, accordingly, remain unnoticed in the helminthological aspect. For comparison, let us add that the Amur sleeper in the European part of Russia has only one common internal parasite with amphibians - the trematode *Opisthioglyphe ranae* (Frölich, 1791), whose metacercariae were localized on the gill arches and the operculum of the host [23].
4. Conclusion
The observed cases of interruption of larval development in the European fire-bellied toad and the moor frog are apparently caused by the introduction of the Amur sleeper into these reservoirs. The introduction and distribution of the Amur sleeper in urban water bodies can serve as one of the determining factors in the decline in amphibian populations in the context of urbanization.

According to our data, a significant reduction in amphibian spawning grounds (due to various factors) in Samara Oblast is observed exclusively in tailed amphibians and, in particular, in the common newt within the city of Samara. In the natural biotopes of Samarskaya Luka National Park, the distribution of the Amur sleeper is slower due to the presence of predators - fish and fish-eating reptiles [3, 13]. The absence of common species of helminths testifies against the existence of obvious trophic links between the Amur sleeper and amphibian populations in the natural habitats of the study area.

Funding
This work was carried out within the framework of the Program of Fundamental Research of the State Academies of Sciences in 2013-2020 (projects nos. AAAA-A17-117112040040-3 and AAAA-A17-117112040039-7).

References
[1] Everett R A 2000 Patterns and pathways of biological invasions Trends Ecol Evol 15 177–178
[2] Dgebuadze Yu Yu 2014 Invasions of alien species in Holarctic: some results and perspective of investigations Russian Journal of Biological Invasions 1 2–8
[3] Reshetnikov A N, Sokolov S G, Chikhlyaev I V, Fayzulin A I, Kirillov A A, Kuzovenko A E, Protasova E N and Skomorokhov M O 2013 Direct and indirect interactions between an invasive Alien Fish (Percottus glenii) and two native semi-aquatic snakes Copiea 1 103–110 DOI: 102307/41827124
[4] Reshetnikov A N 2003 Influence of Amur Sleeper, Percottus glenii, on amphibians in small water bodies The author’s abstract dis… Cand. Sc. (Moscow)
[5] Reshetnikov A N 2008 Does rotan Percottus glenii (Perciformes: Odontobutidae) eat the eggs of fish and amphibians? Journal of Ichthyology 48(4) 336-344
[6] Fedonyuk O V 2006 Trophic interrelationships between the fish-introduct Percottus glenii Dybowski (1877) and amphibian Youth and the progress of biology A collection of abstracts The second international scientific conference of students and postgraduates (Lviv) pp 264–266
[7] Pupiņš M 2012 Invasive fish Percottus glenii in biotopes of Bombina bombina in Latvia on the north edge of the Fire-Bellied toad’s distribution Acta Biol Univ Daugavp 3 82–90
[8] Ruchin A B, Osipov V V, Fayzulin A I, Tselsishcheva L G and Bayanov N G 2019 Chinese sleeper (Percottus glenii dybowskii, 1877) (Pisces, Odontobutidae) in the reserves and national parks of the Middle and Lower Volga (Russia): Mini-review AACL Bioflux 12(4) 1114-1124
[9] Evlanov I A, Kirilenko E V, Mineev A K, Mineeva O V, Mukhortova O V, Popov A I, Rubanova M V and Shemonaev E V 2013 The influence of alien species of hydrobionts on the structural-functional organization of the Saratov reservoir ecosystem Bulletin of the Samara Scientific Center of the RAS 15 (3–7) 2277–2286
[10] Rubanova M V 2013 Availability of characteristics of Percottus glenii (Osteichthyes, Odontobutidae) parasite fauna forstate bioindication of water bodies Water: chemistry and ecology 3 (57) 64–69
[11] Kuzmin S L 2012 Amphibians of the former Soviet Union (Moscow: KMK Scientific Press Ltd)
[12] Fayzulin A I et al 2018 Species composition and distributional peculiarities of green frogs
(Pelophylax esculentus complex) in protected areas of the Middle Volga region (Russia) Nature Conservation Research 3 (1) 1–16 https://doi.org/1024189/ncr2018056

[13] Fayzulin A I, Chikhlyaev I V and Kuzovenko A E 2013 Amphibians of Samara Province (Togliatti: Kassandra)

[14] Copilas-Ciocianu D and Parvulescu L 2011 New record of the Amur sleeper Percottus glenii Dybowski, 1877 (Pisces: Odontobutidae), the first record in the Romanian Mure River Basin Bihorean Biologist 5 (1) 73–74

[15] Artaev O N and Ruchin A B 2009 Some information on the distribution and biology of Amur sleeper Perccttus glenii in Saransk Mordovia University Bulletin 1 105–106

[16] Reshetnikov A N and Manteifel Y B 1997 Newt – fish interactions in Moscow province: a new predatory colonizer, Percottus glenii, transforms metapopulations of newts, Triturus vulgaris and T. cristatus Advances in amphibian research in the former Soviet Union 2 1–12

[17] Dgebuadze Yu Yu and Skomorokhov M O 2005 Some data on the lifestyle of Percottus glenii Dyb (Odontobutidae, Pisces) in lacustrine and pond populations Proceedings of the IIu Zograf hydrobiological station at the lake Glubokoe 9 212–231

[18] Plyusnina O V 2008 Nutrition of Amur sleeper – Percottus glenii Dybowski, 1877 (Odontobutidae, Pisces) in reservoirs of its native and invasion habitats Povolzhskiy Journal of Ecology 2120–125

[19] Grabowska J, Grabowski M, Gmur J and Pietraszewski D 2009 Non-selective predator – the versatile diet of Amur sleeper (Percottus glenii Dybowski, 1877) in the Vistula River (Poland), a new invaded ecosystem J Appl Ichthyol 25 451–459

[20] Sinelnikov A M 1976 Feeding Amur Sleeper in the floodplain reservoirs of the basin of the river Razdolnaya (Primorsky region) Biology of fish of the Far East (Vladivostok) pp 96–99

[21] Vechkanov V S and Ruchin A B 2007 About trophic communications of the Esox lucius, Perca fluviatilis and Rotan Percottus glenii at their joint dwelling in the floodplain closed lake Ichthyological studies in inland waters Proceedings of the International scientific conference (Saransk) pp 23–25

[22] Shcherbakova V D, Saynchuk A D, Samoilov K Y, Burmensky V A, Pavlov S D, Pivovarov E A and Senchukova A L 2017 The Chinese Sleeper (Percottus glenii Dybowski, 1877) in lake Sima (Odintsovskij District, Moscow region); the first data about new population of species Bulletin of Moscow Society of Naturalists, Biological Series 122 (6) 14–24

[23] Sokolov S G, Protasova E N and Kholin S K 2011 Parasites of the introduced Amur sleeper, Percottus glenii (Osteichthyes): Alpha-diversity of parasites and age of the host Biology Bulletin 38 (5) 500–508