Research on the Cost Control Model of Power Grid Maintenance Based on Fuzzy Pattern Recognition Theory

Xingbin Ma, Suiyu Zhang and Moxiao Li
Shandong University of Science and Technology, finance department, China

Abstract. The power grid lines and equipment maintenance of power enterprises is a complicated construction process, the cost of which is affected by meteorological and geographical factors, and the influence mode is uncertain. Using fuzzy clustering method and the threshold intervals of the objective function in clusters, this paper builds a predictive control model to control the project cost. This model uses relative fuzzy operator to build fuzzy matrix, construct correlation between factors, and describe the factors’ effect. Extracting the cluster’s eigenfunction, and defining the boundaries of various clusters, we determined the type of the predicted points and the range of the objective function. When the actual cost of the maintenance project is within the range calculated by the cost model, then it is normal. If the actual cost exceeds this range, then further analysis of all the aspects of the cost is needed to find out the reason.

Keywords: Cost management; predictive control; fuzzy clustering; control interval.

1. Introduction
Cost management is one of the main tasks of enterprise management, an important source of corporate profit, and a guarantee of the enterprise’s development. In regard of an engineering project, cost management ensures that projects are finished within the required time with both quality and quantity guaranteed, and controls and supervises all kinds of expenses, the measures taken, and the entire process of the project. Through long-term practices, a standard oversight process is developed, including resource planning, cost estimation, expense budget and cost control[1]. Due to the different emphasis of cost management, different administration method is formed. Enterprise-oriented cost management includes methods such as standard cost[2] and average cost; customer-oriented cost management includes methods such as quality cost, value engineering, life cycle cost etc.[3]; future-oriented cost management includes methods such as strategic cost management, and learning curve[4][5]. Regarding the methods of cost management, on the one hand, they base on the qualitative analysis and set up a scientific management system, in order to control the cost within the reasonable range. On the other hand they set up a standard for cost management, in order to test and supervise the effect of it.

Grid system is the main equipment of transmission system. Its maintenance accounts for more than 70% of the power enterprises’ productive task[6]. With the marketization of the power industry, maintenance and overhaul’s business mode is diversifying. Thus the control of the cost components is relatively weakened at the micro level, and the importance of the integral control of maintenance cost is highlighted. For a long time, due to the monopolistic nature of power industry and the complexity of the environment, there was no mature cost management method for the maintenance cost both domestic and abroad. The major control methods are standard cost methods and prediction control methods. The frequently-used prediction control methods include multiple regression method[7] and artificial neural networks[8]. This paper uses interval prediction method to control the maintenance cost of the power
grid’s complex equipment failures, and to achieve real-time control with the help of operating center’s data-mining.

2. Fuzzy Clustering and Pattern Recognition

In the process of data analysis, cluster analysis is an important method. Jain believes that data clustering analysis process has three important goals, (1) Data structure analysis, which means to divide the data into several different-featured types by using cluster analysis; (2) Analyze the level of similarity between various natural groups of data. (3) Classify and combine the data using the given cluster center[9]. Clustering method’s flexibility allows it to adapt to various objectives, and its application are more and more extensive. It is widely used in areas such as data mining, image processing, and biological science. The introduction of fuzzy sets enables the classification of data to better describe the uncertainty of it[10]. Comparing to hard clustering method, fuzzy clustering has better adaptability. Commonly used fuzzy clustering method is transitive closure method based on fuzzy equivalent relation[11], and clustering algorithm based on fuzzy relation and similarity relation. In order to achieve data dimensionality reduction and data clustering, typical matrix’s clustering properties and methods are promoted, and the definition of objective function is presented based on the data’s compactness[12]. Proposed by E. Ruspini and promoted to fuzzy clustering by J. C. Dunn, Fuzzy c-Mean(FCM) has become the most completed and widely used theory of algorithms[13]. The existence of eigenvalue and eigenfunctions not only optimizes the clustering process and reveals the differences between categories, but also can easily and accurately identify the type of predicted points[14]. According to the clustering result’s projection on the prediction axis, the characterization of various types can be extracted, and then construct eigenfunctions[15]. Using the range of the projection on the prediction axis as controlled interval, control models can be built.

Table 1. Process of Cost Control.
Step1
Step2
Step3
Step4

3. Select the Variables and Set up a Data Matrix

The goal of establishing a cost control system is not only to gradually reduce the cost of lines and equipment maintenance, but also to provide a standard price for the outsourcing business. Therefore when choosing variables, material costs, labor costs, machine-shift costs and other direct costs should be selected.

Given n variables X_1, X_2, \cdots, X_n, and m sets of observed data, build $m \times n$ matrix

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix} \tag{1}$$
In this matrix, x_{ij} is the ith observed value of jth variable.

There are many ways to select variables, and Delphi method is a simple and convenient one\cite{16}. But the defect is that the factors’ determination depends on the experts’ subjective judgement and lacks supporting data. It is normally used in the early stage of the system when there is less collected data. Set-valued statistic method is adapted when a certain amount of raw data is collected\cite{17}. This method is objective for it is supported by data, but the defect is that the original variables in the set value may be different from the variables that the model requires, and if they are different from each other, some factors will be omitted, which will affect the credibility and validity of the model. After years of hard working and learning, the State Grid Corporation of China had established monitoring indicators for grid operations, in order to roundly reflect the situation of the transmission network’s design, construction, maintenance, and operation, etc. The units can select which one to use according to their needs, and provide production and scientific research services. It is common to use correlation test in statistical analysis, or by examining the significance of each factor i’s impact on y, to further screen the factors and then get the result. Since electrical equipment’s maintenance can be influenced by many factors, here we abstract some of which that have relatively bigger impact to build the control model. There are mainly thirteen influencing factors, and they are divided into four types, which are process, transportation, weather and field, as shown in table 1 below.

Table 2. Index system of maintenance engineering.

Serial Number	Criterion Layer	Index Level	Symbol
1	Total costs		x_0
2	Voltage level		x_1
3	Maintenance level		x_2
4	Maintenance time		x_3
5	The distance to the site		x_4
6	The complexity to reach the site		x_5
7	The level of required vehicle		x_6
8	The type of the device		x_7
9	Air temperature		x_8
10	Air humidity		x_9
11	Staff composition		x_{10}
12	Fixation material		x_{11}
13	The length of replaced material		x_{12}
14	The weight of replaced material		x_{13}

The variable value mostly adopts the same categories used by the State Grid Corporation of China, such as the voltage level has 10kV, 35kV, 220kV and 500kV, and the job types are classified into overhaul, repair, urgent repair, test and so on, labeled according to the cost and complexity of projects, and therefore forms a raw data matrix both qualitative and quantitative.
4. Construct Fuzzy Matrix

4.1. Data Preprocessing
In order to make sure the data’s variation range is the same between factors and controlled variables, centralized and standardized methods are used to preprocess the raw data.

Let \(\bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t \); \(\bar{x}_i = \frac{1}{T} \sum_{t=1}^{T} x_{it} \)

Standard deviation \(s_y = \left[\frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})^2 \right]^{\frac{1}{2}} \)

\(s_{x_i} = \left[\frac{1}{T} \sum_{t=1}^{T} (x_{it} - \bar{x}_i)^2 \right]^{\frac{1}{2}} \)

Standardized transformation:

\(y'_t = \frac{y_t - \bar{y}}{s_y} \)

\(x'_{it} = \frac{x_{it} - \bar{x}_i}{s_{x_i}} \), \(i = 1, 2, \ldots, m \) \hspace{1cm} (2)

Central standardization and the data it processed has better statistical properties and it is widely applied

	\(x_0 \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x_6 \)	\(x_7 \)	\(x_8 \)	\(x_9 \)	\(x_{10} \)	\(x_{11} \)
1	70196	35	3	38	77.9	3	2	10	3	4.01	112	1.5
2	64122	22	1	22	56.3	5	1	4	4	2.96	0	2.9
3	70666	35	5	46	28.2	5	4	9	4	4.64	523	9
4	75368	35	5	63	54.5	4	4	9	3	5.95	3	471
5	72216	10	2	77	68.3	3	1	6	5	7.93	0	3.0
6	80464	22	2	84	77.1	7	3	4	6	7.09	0	3.5
7	91210	50	3	86	58.4	5	4	8	3	6.51	0	476
8	57000	10	4	81	69.7	3	4	5	4	3.04	0	488
9	82750	10	4	79	61.9	2	7	12	5	5.65	0	497
10	97743	22	5	85	8.5	7	7	3	7	7.77	0	2.3
11	110500	50	3	86	30.2	7	2	9	2	6.75	0	2.2
12	113768	22	4	81	15.1	6	2	10	1	6.69	1	476
13	106580	10	1	79	8.0	5	1	6	4	3.70	0	6.6
14	95277	35	5	91	3.0	7	7	6	5	9.80	0	415

Table 3. Maintenance Cost and Influencing Parameters.
in the engineering field. The processed data can be either positive or negative, but it doesn’t affect the result of the calculation. For convenience, we continue to record the processed data as

\[z'_t = (x_{i1}, x_{i2}, \ldots, x_{in}, y'_t), \quad t = 1, 2, \ldots, T \]

4.2. Calibrate Fuzzy Matrix

We are going to apply fuzzy clustering analysis on a fuzzy equivalent matrix \(R^* \), which is symmetric. First transform the standardized data into fuzzy matrix, that is to calibrate the data. As for domain \(U \), give a figure within the range [0,1] to represent the relationship between the element \(x_{ij} \), which is called a similarity coefficient. The numerical value represents the level of their similarity. Assume \(U = \{u_1, u_2, \ldots, u_n\} \) is all the things waiting to be classified, and \(u_i = \{x_{i1}, x_{i2}, \ldots, x_{in}\} \), \(x_{mi} \) is the characterization data of \(u_i \). Use \(r_{ij} \) to stand for the level of similarity between element \(u_i \) and \(u_j \), and \(0 \leq r_{ij} \leq 1 \) \((i, j = 1, 2, \ldots, T)\). If \(r_{ij} = 0 \), then element \(u_i \) and \(u_j \) has no relationship or no similarity at all; if \(r_{ij} = 1 \), then element \(u_i \) and element \(u_j \) are the same.

Here we use dot product method to transform the fuzzy matrix, that is,

\[
 r_{ij} = \begin{cases}
 1 & i = j \\
 \frac{1}{M} \sum_{k=1}^{T} x_{ik} x_{jk} & i \neq j
\end{cases}
\]

(3)

And \(M = \max \left\{ \sum_{k=1}^{T} x_{ik} x_{jk} \right\} \), \((i \neq j)\)

Get the fuzzy matrix

\[
 R = \begin{bmatrix}
 1 & 0.83 & 0.72 & 0.67 & 0.75 & 0.46 & 0.49 & 0.78 & 0.62 & 0.37 & 0.35 & 0.16 & 0.20 & 0.08 \\
 1 & 0.79 & 0.55 & 0.29 & 0.49 & 0.78 & 0.41 & 0.37 & 0.68 & 0.28 & 0.23 & 0.24 & 0.31 \\
 1 & 0.35 & 0.45 & 0.52 & 0.48 & 0.58 & 0.41 & 0.36 & 0.45 & 0.71 & 0.44 & 0.30 & 0.30 \\
 1 & 0.52 & 0.43 & 0.38 & 0.65 & 0.54 & 0.37 & 0.45 & 0.42 & 0.47 & 0.35 & 0.32 & 0.28 \\
 1 & 0.54 & 0.53 & 0.78 & 0.65 & 0.51 & 0.42 & 0.26 & 0.36 & 0.26 & 0.32 & 0.35 & 0.34 \\
 1 & 0.76 & 0.51 & 0.71 & 0.32 & 0.38 & 0.35 & 0.48 & 0.73 & 0.51 & 0.34 & 0.35 & 0.35 \\
 1 & 0.63 & 0.65 & 0.36 & 0.13 & 0.24 & 0.35 & 0.85 & 0.53 & 0.24 & 0.35 & 0.35 & 0.35 \\
 1 & 0.54 & 0.56 & 0.47 & 0.25 & 0.39 & 0.58 & 0.51 & 0.34 & 0.35 & 0.35 & 0.35 & 0.35 \\
 1 & 0.53 & 0.48 & 0.30 & 0.46 & 0.79 & 0.51 & 0.34 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 \\
 1 & 0.65 & 0.58 & 0.57 & 0.35 & 0.51 & 0.34 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 \\
 1 & 0.53 & 0.55 & 0.61 & 0.34 & 0.34 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 & 0.35 \\
 1 & 0.79 & 0.53 & 0.31 & 0.31 & 0.31 & 0.31 & 0.31 & 0.31 & 0.31 & 0.31 & 0.31 & 0.31 \\
 1 & \end{bmatrix}
\]

(4)

5. Fuzzy Clustering Analysis

5.1. Fuzzy Classification

Since the fuzzy similar matrix \(R \) may not be transitive, we need to use transitive closure method to substitute matrix \(T(R) \) for matrix \(R \) and transfer closure \(T(R) = R^2 \). The final result is when the transfer deviation is the minimum. The correlation matrix is denoted by \(R = (r_{ij})_{T \times T} \), given \(A_1^*, A_2^* \) as
the confidence interval, and then select the best clustering.

\[R^* = \begin{bmatrix}
1 & 0.72 & 0.72 & 0.55 & 0.72 & 0.46 & 0.43 & 0.72 & 0.57 & 0.21 & 0.21 & 0.08 & 0.20 & 0.21 \\
1 & 0.72 & 0.55 & 0.32 & 0.30 & 0.70 & 0.48 & 0.47 & 0.45 & 0.71 & 0.44 & 0.32 \\
1 & 0.42 & 0.43 & 0.40 & 0.43 & 0.51 & 0.21 & 0.45 & 0.38 & 0.47 & 0.21 \\
1 & 0.49 & 0.40 & 0.72 & 0.57 & 0.34 & 0.45 & 0.38 & 0.36 & 0.25 \\
1 & 0.70 & 0.47 & 0.71 & 0.34 & 0.34 & 0.38 & 0.48 & 0.71 \\
1 & 0.47 & 0.57 & 0.34 & 0.08 & 0.31 & 0.35 & 0.72 \\
1 & 0.51 & 0.47 & 0.34 & 0.31 & 0.39 & 0.47 \\
1 & 0.47 & 0.34 & 0.31 & 0.46 & 0.72 \\
1 & 0.57 & 0.57 & 0.57 & 0.45 \\
1 & 0.57 & 0.55 & 0.57 \\
1 & 0.72 & 0.57 \\
1 & 0.42 \\
1
\end{bmatrix} \]

By optimizing the clusters, get the optimal cluster: \(\hat{\lambda} = 0.7 \). Divide it into 5 categories, denoted by \(U_1, U_2, \ldots, U_m \).

Category	Factors
I	\(x_1, x_2, x_3, x_4, x_5, x_6, x_8 \)
II	\(x_6, x_7, x_9, x_{14} \)
III	\(x_{10}, x_{12}, x_{13} \)
IV	\(x_4 \)
V	\(x_{11} \)

5.2. Extract Eigenvalue

To all the clusters \(U_j \), project them on the factor axis \(X = X_1 \times X_2 \times \cdots \times X_m \), and get \(V_1, V_2, \ldots, V_m \). Corresponding to \(V_i \) (\(i = 1, 2, \ldots, m \)), build a fuzzy set \(A \in F(X) \) to reveal its character.

To any \(V_i \), let \(V_i = (x_{i1}, x_{i2}, \ldots, x_{in}) \)

\[
\bar{x}_j = \frac{1}{ki} \sum_{i=1}^{ki} x_{is}, \quad (i = 1, 2, \ldots, m) \tag{5}
\]

\[
\delta_{ij}^2 = \frac{1}{ki} \sum_{s=1}^{ki} (x_{ij} - \bar{x}_j)^2, \quad (j = 1, 2, \ldots, n) \tag{6}
\]

The eigenfunction of \(x = (x_1, x_2, \ldots, x_n) \in X \) is

\[
P_i(x) = \sum_{j=1}^{n} e^{-\frac{(x_j - \bar{x}_j)^2}{2\delta_{ij}^2}}, \quad (i = 1, 2, \ldots, m) \tag{7}
\]
Assume \(W_i = (y_{i1}, y_{i2}, \cdots, y_{im}) \), \((i = 1, 2, \cdots, m) \) is \(U_i \)'s projection on the prediction axis, so \((x_{is}, y_{is}) = z_i \in U_i, (s = 1, 2, \cdots, ki) \). Calculate,

\[
\bar{y}_i = \frac{1}{ki} \sum_{s=1}^{ki} y_{is}
\]

\[
\delta_i = \max_{1 \leq s \leq ki} |y_{is} - \bar{y}_i|
\]

Construct a triangular fuzzy numbers (orthostate fuzzy numbers) using \((\bar{y}_i, 3\delta_i)\) as the parameter.

\[
I(x) = \begin{cases}
\frac{x + \sigma - \alpha}{\sigma} & \alpha - \sigma \leq x \leq \alpha \\
\frac{-x + \sigma - \alpha}{\sigma} & \alpha \leq x \leq \alpha + \sigma
\end{cases}
\]

\[
\alpha, \sigma \text{ are real numbers, and so become triangular fuzzy numbers, denoted by } t(\alpha, \sigma).
\]

Corresponding to the category \((U_1, U_2, \cdots, U_m)\), we have

\[
\begin{bmatrix}
P_1 & P_2 & \cdots & P_m \\
I_1 & I_2 & \cdots & I_m
\end{bmatrix}
\]

Put the data into steps (5), (6), (7), then get the eigenfunctions of each clusters. We only take \(P_1, P_2, \) and \(P_3 \) for in other categories \(\sigma_i \approx 0 \), it’s meaningless and therefore can be ignored.

\[
P_1 = e^{\frac{(x_1-108332)^2}{9x_{1286617187}}} + e^{\frac{(x_2-3.420)^2}{9x_{8.352}}} + e^{\frac{(x_3-1.1433)^2}{9x_{3.6512}}} + e^{\frac{(x_4-81.214)^2}{9x_{84.576}}} + e^{\frac{(x_5-71.6712)^2}{9x_{8.563}}} + e^{\frac{(x_6-5.1264)^2}{9x_{4.536}}}
\]

\[
+ e^{\frac{(x_7-5.3200)^2}{9x_{2.354}}} + e^{\frac{(x_8-8.3254)^2}{9x_{3.1261}}} + e^{\frac{(x_9-5.8035)^2}{9x_{1.124}}} + e^{\frac{(x_{10}-5.3241)^2}{9x_{1.204}}} + e^{\frac{(x_{11}-4.735)^2}{9x_{13.141}}} + e^{\frac{(x_{12}-5.8306)^2}{9x_{8.3153}}} \tag{11}
\]

\[
P_2 = e^{\frac{(x_1-97475)^2}{9x_{8076582}}} + e^{\frac{(x_2-3.6132)^2}{9x_{8.352}}} + e^{\frac{(x_3-2.7441)^2}{9x_{2.9672}}} + e^{\frac{(x_4-71.423)^2}{9x_{79.823}}} + e^{\frac{(x_5-60.782)^2}{9x_{6.7163}}} + e^{\frac{(x_6-4.23465)^2}{9x_{9.26481}}}
\]

\[
+ e^{\frac{(x_7-3.9328)^2}{9x_{2.144}}} + e^{\frac{(x_8-6.2361)^2}{9x_{2.7427}}} + e^{\frac{(x_9-4.1332)^2}{9x_{1.2135}}} + e^{\frac{(x_{10}-4.2334)^2}{9x_{1.1876}}} + e^{\frac{(x_{11}-3.824)^2}{9x_{97.84}}} + e^{\frac{(x_{12}-4.7523)^2}{9x_{3.5023}}} \tag{12}
\]

\[
P_3 = e^{\frac{(x_1-71347)^2}{9x_{7817184}}} + e^{\frac{(x_2-3.2573)^2}{9x_{2.7427}}} + e^{\frac{(x_3-2.1364)^2}{9x_{1.2135}}} + e^{\frac{(x_4-63.397)^2}{9x_{1.1876}}} + e^{\frac{(x_5-53.6712)^2}{9x_{73.536}}} + e^{\frac{(x_6-4.1735)^2}{9x_{6.5326}}}
\]

\[
+ e^{\frac{(x_7-3.4354)^2}{9x_{8.362}}} + e^{\frac{(x_8-6.1222)^2}{9x_{27.740}}} + e^{\frac{(x_9-3.0365)^2}{9x_{1.1523}}} + e^{\frac{(x_{10}-3.73264)^2}{9x_{1.1258}}} + e^{\frac{(x_{11}-4.368)^2}{9x_{84.532}}} + e^{\frac{(x_{12}-4.1735)^2}{9x_{3.1537}}} \tag{13}
\]

Build triangular fuzzy numbers according to (8), (9), (10)

\[
I_1 = \begin{cases}
\frac{y}{653} - 26.43 & 83567 \leq y \leq 98564 \\
\frac{y}{653} + 32.47 & 98564 \leq y \leq 121362
\end{cases}
\]

\[
I_2 = \begin{cases}
\frac{y}{218} - 79.51 & 71815 \leq y \leq 75743 \\
\frac{y}{96} + 182.54 & 75743 \leq y \leq 87529
\end{cases}
\]
Therefore, the corresponding eigenfunctions and fuzzy numbers of categories U_1, U_2, and U_3 are
\[
\begin{align*}
I_1 &= \begin{cases}
\frac{y}{653} - 26.43 & 56331 \leq y \leq 66294 \\
\frac{y}{653} + 32.47 & 66294 \leq y \leq 76256
\end{cases} \\
I_2 &= \begin{cases}
32.47 & 66294 \leq y \leq 76256
\end{cases} \\
I_3 &= \begin{cases}
-26.43 & 56331 \leq y \leq 66294 \\
32.47 & 66294 \leq y \leq 76256
\end{cases}
\end{align*}
\]
(16)

Therefore, the corresponding eigenfunctions and fuzzy numbers of categories U_1, U_2, and U_3 are
\[
\begin{align*}
P_1 &= 0.56; \\
P_2 &= 0.73; \\
P_3 &= 0.61.
\end{align*}
\]

6. Confirm the Maintenance Cost’s Control Interval
For each cluster U_i, y’s variation range is $(y_i', 3\delta_i')$, which is the confidence interval of cost control.
Now we have a maintenance project that will start soon,

Table 5. The maintenance projects to be controlled.

x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}
Yuan	kV	h	km	Degr							
1	35	2	47	58	3	4	11	3	4.0	162	3.5

According to (11) (12) (13), we have $P_1 = 0.56; P_2 = 0.73, P_3 = 0.61$. In accordance with the maximum membership principle, the project belongs to U_2, the control range of the cost is interval $(71815, 87529)$. After the construction, if the actual cost falls into this range, the project cost is normal. If it exceeds the range, the cost analysis meeting is needed to find out the reason of this abnormality.

7. Conclusion
Power enterprises’ power supply network is distributed in many complex regions, therefore the maintenance is affected not only by the equipment’s intricacy and the condition of the malfunction, but also by geographical and meteorological factors. Because of uncertainties during the maintenance, it is needed to us the fuzzy clustering method to overcome these difficulties and have obtained satisfactory result. Fuzzy clustering and pattern recognition methods are also insensitive to the initialization and undemanding of the sample’s quantity and distribution, which increases the model’s adaptation. By extracting and judging the eigenvalue in the model, the clusters are more evident, and the classification of the sample data from the forecast period are much easier. This model can adapt to the characteristics of the projects’ cost, and make sure the cost’s control interval is within a reasonable range.

Acknowledgment
This work was supported by Natural Science Foundation of China, under the Grants 71071089; supported by Science and Technology Development Planning of Shandong, under the Grants 2012RKB01457.

References
[1] Hobbs, Peter. Essential Managers: Project Management. Beijing: China’s International Broadcasting Publishing House, 2003.
[3] Liu, Huifen. “The Appliance of Standard Cost Method In Cost Control Syste”. Journal of Industrial Technological Economics, 2002.3: 70-71
[3] Christopher P. Holland, Duncan R. Shaw, Peter Kawalek et al. BP’s multi-enterprise asset managementsystem[J]. Information and Software Technology,2005,47(15):999-1007
[4] Cooper, R. Cost management: From Frederick Taylor to the present[J]. Journal of Cost Management, 2000,12(3):34-36

[5] T.C. Berends, J. S. Dhillon. An Analysis of Contract Cost Phasing on Engineering Construction and Construction Projects[J]. The Engineering Economist, 2004, 4(23): 327-337.

[6] Ma, Xingbin, Meng Xiangjun et al. A Research On the Reliability, Adaptability and Economy of Power Grid Operation (M). Shandong University Press, 2014.8. 48-52.

[7] Chen, Yingchun, Song Yexin and Wu Xiaoping. “Cost Prediction of Warship Maintenance Based On Fuzzy Logic” [J]. Journal of Naval University of Engineering, 2002, 14(1): 6-9.

[8] Liu, Baoping, Sun Shengxiang et al. “The Appliance of ANFIS Network In Cost Prediction of Warship Maintenance.” Journal of Naval University of Engineering, 2004.8

[9] A. K. Jain. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31: 651-666.

[10] M. Falasconi, A. Gutierrez, M. Pardo, G. Sberveglieri, S. Marco. A stability based validity method for fuzzy clustering[J]. Pattern Recognition, 2010, 43(4): 1292-1305.

[11] Zkim Le. Fuzzy relation compositions and pattern recognition[J]. Information Sciences, 1996, 89: 107-130.

[12] K. L. Wu, J. Yu, M. S. Yang. A novel fuzzy clustering algorithm based on a fuzzyscatter matrix with optimality test [J]. Pattern Recognition Letters, 2005, 26(5): 639-652.

[13] Ruspini E H. A new approach to clustering [J]. Information and Control, 1969, 15(1): 22-32.

[14] Pal N R, Pal K, Bezdek J C, et al. A possibilistic fuzzy C-Means clustering algorithm[J]. IEEE Trans Fuzzy Systems, 2005, 13(4): 517-530.

[15] X. Z. Wang, Y. D. Wang, L. J. Wang. Improving fuzzy feature C-means clustering based on feature-weight learning[J]. Pattern Recognition Letters, 2004, 25(10): 1123-1132.

[16] Wang, Peizhuang. Project of Random Sets and Fuzzy Sets[M], Beijing Normal University Press: 1985. 58-66.

[17] Han, Liya. Fuzzy Valued Function’s Integration[J], Beijing Normal University Press: 1988(3)

[18] C. Ding, L. Tao. Adaptive dimension reduction using discriminant analysis and K-means clustering [A]. Proceedings of the 19th International Conference on Machine Learning [C]. Ghahramani Z, New York, ACM Press, 2007, 521-528.