Order of Commitments in Bayesian Persuasion with Partial-informed Senders

SHIH-TANG SU, VIJAY G. SUBRAMANIAN

The commitment power of senders distinguishes Bayesian persuasion problems from other games with (strategic) communication. Persuasion games with multiple senders have largely studied simultaneous commitment and signalling settings. However, many real-world instances with multiple senders have sequential signalling. In such contexts, commitments can also be made sequentially, and then the order of commitment by the senders – the sender signalling last committing first or last – could significantly impact the equilibrium payoffs and strategies. For a two-sender persuasion game where the senders are partially aware of the state of the world, we find necessary and sufficient conditions to determine when different commitment orders yield different payoff profiles. In particular, for the two-sender setting, we show that different payoff profiles arise if two properties hold: 1) the two senders are willing to collaborate in persuading the receiver in some state(s); and 2) the sender signalling second can carry out a credible threat when committing first such that the other sender’s room to design signals gets constrained.
1 INTRODUCTION

The cornerstone feature of Bayesian persuasion [16, 20] is the commitment power of the sender(s). Generalized from the seminal prosecutor-judge example in [16] with one sender and one receiver, Gentzkow and Kamanica in [11] introduced a more realistic scenario with a second sender, the defense attorney, who can also choose a signal to persuade the judge in addition to the prosecutor; this extended Bayesian persuasion models to multiple senders. A body of literature has since emerged along with two different directions within the context of fully-informed senders: competition and equilibrium under simultaneous signal revelation [2]; and (iterative) commitment derivation in sequential persuasion [18]. A general result in these works states that the competition (between senders) increases the extent of information revelation.

In a variety of real-world problems with multiple participants but only one decision maker – such as applying for a grant/scholarship, co-branding marketing, lobbying, and manufacturing process selection – the senders are not fully informed about the state of the world. However, each sender holds a piece of information about the state of the world, and learning other senders’ private information (from their signals) may lead to a more tailored signalling scheme. Hence, truthfully reporting her private information is usually not an optimal strategy for a Bayes-rational sender. The above scenarios can be modeled as a Bayesian persuasion problem with multiple partially informed senders. When senders are partially informed, the interactions of senders under simultaneous revelation and interactions under sequential revelation are essentially different. With sequential signal revelation and partially-informed senders, a sender who sends signals later on in the sequence can learn more about the state of the world by updating her belief using the earlier senders’ signals. Since these later on in the sequence senders can anticipate some revealed signals while sending their own signals, they can design signalling strategies conditional on the realization of early senders’ signals. On the other hand, when early senders foresee that their signals will be exploited to act against them, they will modify their commitment to preclude or minimize such behaviors. This iterative belief-updating procedure on commitments leads to the following questions in Bayesian persuasion with multiple partially informed senders context: will the commitment order of senders matter? If it matters, which sender should make her commitment first? In this paper, we study these questions, and start with a motivating example to help the reader better understand real-world scenarios that fit the Bayesian persuasion with multiple partially informed senders paradigm.

1.1 Motivating Example

Example. A company X searches for the most efficient way to produce its new product. For this purpose, it needs to decide between the following combinations: whether to apply a particular patent or not, and which manufacturing process (advanced or mature) it should adopt. The company sponsors a university lab Y to do some simulations for its decision on the patent application. Based on the simulation results, the company then ask its partner factory Z to do some trial runs to determine the manufacturing process. However, lab Y always prefers the patent to be applied, and the factory Z desires the advanced process to be adopted. Thus, Y may choose simulation environments in favor of the patent being applied, and Z may choose trial run parameters in favor of the advanced process. However, all the simulation and trial-run setups have to be submitted to the company beforehand. Then two questions arise: First, does the order of submission of proposals matter? Second, if it does, from company X’s perspective, which party should submit their proposal first, Y or Z?

In the above example, Y and Z play the role of senders with commitments, and X is the receiver. Since both senders only have partial (maybe correlated) information of the state of the world, the sender who sends the signal later, Z in the example, may be able to commit to a signalling scheme that depends on the state of the world and the realized signal of the other sender, Y in the example.
Note that when Z makes her commitment, she has not yet observed the signal sent from Y. Hence, her goal is to make a commitment on top of Y’s commitment (if Y commits first) to exploit the signal revealed from Y. However, whether the (potential) exploit of Y’s signal can hurt Y depends on the correlation of Y and Z’s private information and the relevant payoff matrices. Not only is our example plausible, similar scenarios with multiple partial-informed senders can be found in data markets [1, 10], corporate political actions [8], and stress testing [14]. Hence, our goal is to characterize broadly applicable conditions that determine when the commitment order matters. With this goal in mind, the two main contributions of this work are:

Contributions:

1. To the best of our knowledge, we are the first to identify the importance of the commitment order in multi-sender Bayesian persuasion problems. We show that when senders are partially informed and signals are realized sequentially, the commitment order may play a significant role in the equilibrium strategies (commitments), and hence, the payoffs of the agents.

2. In a two-sender setting, we present a set of sufficient conditions and a set of necessary conditions that can identify when the commitment order matters. An intuitive characterization of our conditions is the following – when both senders have a conflict of interest, and the sender signalling second can post a credible threat, the commitment order will matter.

1.2 Literature Review

The major distinction between Bayesian persuasion [16, 20] and other paradigms that study games with communication, e.g., cheap talk [9], signalling games [21], and mechanism design [13, 19], is the commitment power of the sender(s). With the commitment power in hand, each sender can influence the receiver’s (payoff-relevant) action by committing to her (verifiable) signalling scheme, which is typically a randomized mapping from states of the world to signals. Subsequently, the sender(s) receives some private information about the state of the world and applies the signalling scheme. After that, the receiver(s) choose actions. Seminal works of Kamenica and Gentzkow [16], Rayo and Segal [20], and Bergemann and Morris [4] established the research area of Bayesian persuasion, and since then there has been a large literature on both theoretical aspects and applications of Bayesian persuasion. To keep our discussion focused, we only discuss closely related work and refer the reader to survey articles [5, 15] for the broader literature.

The literature closest to our work studies Bayesian persuasion with multiple senders. Gentzkow and Kamenica [11] studied the model of fully-informed senders (symmetric information games) with simultaneous signal revelation. They identified conditions on the information environment such that the competition outcome is no less (Blackwell) informative than the collusive outcome, and those conditions were, later on, proved to be sufficient and necessary by Li and Norman [17]. Thereafter, Gentzkow and Kamenica [12] and Au and Kawai [2] both considered fully-informed senders with simultaneous signal revelation. The former proved that the concavification approach could be extended to multiple senders, and greater competition among senders tends to increase information revelation for the receiver. The latter further showed the existence of a unique symmetric equilibrium, and also that full disclosure (of every sender) occurs when the number of senders goes to infinity. In simultaneous commitment plus signal revelation models, the competition among senders becomes more sophisticated when senders are partially informed. In [7], Boleslavsky and Cotton studied two senders with independent partial information. They construct the equilibrium based on the result that each sender’s incentive is similar to that in an all-pay auction under complete information. Au and Kawai [3] considered multiple senders with correlated information, and presented two effects, namely the underdog-handicap effect and the good-news curse, that
drive the information disclosure. The former encourages more aggressive disclosure because of
the receiver’s bias towards a (ex-ante) stronger sender. But the latter disincentivizes the disclosure
because each sender using her favorable signal implies that their rival is more likely to generate
a strong competing signal in response. However, when senders are partially informed, interac-
tions among senders can incorporate not only competitions but also (partial) collaboration. The
simultaneous commitment plus signal revelation models essentially preclude\(^1\) collaboration among
partially informed senders since senders cannot learn (and tailor) their commitments using other
senders’ possible realized signals. Hence, to fully capture the interactions among partially-informed
senders, one should target settings beyond the simultaneous signal revelation paradigm.

Besides the simultaneous signal revelation setting, Li and Norman [18] consider a Bayesian
persuasion model with sequential signal revelation. In the Li-Norman model, senders commit
sequentially to post experiments, and every experiment is conditionally independent of each other
given the state. With this conditional independence, Li and Norman analyze optimal signalling
strategies for heterogeneous\(^2\) senders with same (and full\(^3\)) information about the state. Interestingly,
their result shows that sequential persuasion cannot yield a more informative equilibrium in
comparison to simultaneous persuasion [11] and is strictly less informative in binary state models.
Their result stands on the conditional independence of the experiments and the assumption that
the order of (senders’) commitments perfectly matches the order of signals/experiments. However,
in scenarios such as the motivating example above, this alignment may not hold, and the receiver
may have a choice about who should commit first. Besides, analogous to simultaneous Bayesian
persuasion, senders in sequential Bayesian persuasion may be partially informed. The sequential
revelation and partially informed senders assumptions distinguish our model from the existing
literature, and leads to interesting follow-up research questions on the optimal commitment order.

2 PROBLEM FORMULATION

There are two senders \(S_1, S_2\) and one receiver \(R\) in the game. The state space \(\Theta\) is finite, and the
receiver’s action space \(A\) is also finite. For simplicity of analysis, we assume that the state and
action space have the same size, i.e., \(|\Theta| = |A|\), and action \(a_\theta\) is the receiver’s unique best response
of state \(\theta \in \Theta\). To further simplify the analysis, we assume that the receiver only obtains (positive)
utility upon matching the state correctly, i.e.,

\[
U_R(\theta_i, a_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise}. \end{cases}
\]

Before the true state is realized (by nature), the senders and the receiver have a common prior belief
of the distribution of the state \(p \in \Delta(\Theta)\). However, both senders obtain some private information
about the state of the world when it is realized. To avoid some trivial cases and also to avoid overlap
with the existing literature, we make four assumptions on the senders’ private information:

Assumption 1. Each sender only has partial information of the true state. To avoid redundancy, we
assume each sender \(S_k\)’s information space \(I_k\) has the size \(|I_k| < |\Theta|, k \in \{1, 2\}\).

Assumption 2. Senders \(S_1\) and \(S_2\) have different private information, i.e., \(I_1 \neq I_2\).

1Except for senders with fully-aligned utilities, which will transform the multi-sender Bayesian persuasion problem to a
coordination game.

2Senders with different utility functions.

3The sender can access all possible experiments under the “reduced” state space obtained by merging each state set not
distinguishable by the sender to a single state.
The game in our model evolves as follows:

Assumption 3. Neither sender is more knowledgeable than the other, and the private information of each sender is generated via an onto function $F_k: \Theta \rightarrow I_k$. In other words, F_k is a partition of Θ, and neither F_1 is more Blackwell informative than F_2 nor F_2 is more Blackwell informative than F_1.

Assumption 4. The true state can be revealed under both senders’ truth-telling strategies. In other words, for every $\theta \in \Theta$, there exists an $I^x_1 \in I_1$ and an $I^y_2 \in I_2$ such that $\mathbb{P}(\theta|I^x_1, I^y_2) = 1$.

Given the procedure of the game, the receiver takes action after observing the realization of both S_1 and S_2. The receiver’s best response is presented below:

After both senders get their private information, S_1 sends a signal $\omega_1 \in \Omega_1$ to influence the receiver’s belief. After observing the signal ω_1, S_2 sends a signal $\omega_2 \in \Omega_2$ to influence the receiver’s belief. After receiving signals ω_1 and ω_2, the receiver has to take action $a \in A$. Extending the sender-preferred tie-breaking rules in [16], we assume that the receiver breaks a tie in favor of S_1 first. When the action set maximizing both S_1 and receiver’s utilities is not a singleton, the receiver takes an (arbitrary) action maximizing S_2’s utility from the set.

In this model, both senders commit to their respective signalling strategies before receiving their private information. Moreover, S_1 and S_2 make their commitment sequentially under a pre-determined order. That is to say, the sender who commits later can exploit another sender’s commitment to design her signalling strategy. We will first detail the game flow (when the order of commitment in steps 2 and 3 is determined), and then discuss how the sender’s commitment can depend on the other sender’s signalling strategy based on the commitment order.

2.1 Procedure of the game

The game in our model evolves as follows:

1. Prior belief of the state $p \in \Lambda(\Theta)$ is disclosed to all participants.
2. S_k commits her signalling strategy, where the index $k \in \{1, 2\}$ is determined beforehand and becomes common knowledge.
3. The other sender, $S_{k'}$, commits to her signalling strategy.
4. Nature chooses a realized state $\theta \in \Theta$.
5. S_1 gets her private information and sends a (randomized) signal ω_1 based on her commitment.
6. S_2 gets her private information and observes S_1’s realized signal ω_1. Then, she sends a (randomized) signal ω_2 according to her commitment.
7. The receiver observes the realized signals ω_1, ω_2 and takes action $a \in A$ to maximize the probability of matching the state.

2.2 Receiver’s best response

Given the procedure of the game, the receiver takes action after observing the realization of both senders’ signals, ω_1, ω_2. Given that her objective is to match the state correctly, the receiver’s best response is taking action $a^* \in A$ such that

$$a^* = \arg \max_{a \in A} \mathbb{E}_{p, \Gamma_1, \Gamma_2} [U_R(\theta, a)|\omega_1, \omega_2].$$

However, the tie-breaking rule, although indifferent to the receiver, plays a significant role on senders’ signalling strategy, especially when multiple senders are considered in the model. As mentioned above, we assume the receiver breaks a tie in favor of S_1 first and then S_2. The formal expression of the tie-breaking rule is presented below:

Let $A_R := \arg \max_{a \in A} \mathbb{E}_{p, \Gamma_1, \Gamma_2} [U_R(\theta, a)|\omega_1, \omega_2]$, $A_{S_1} := \arg \max_{a' \in A_R} \mathbb{E}_{p, \Gamma_1, \Gamma_2} [U_{S_1}(\theta, a')|\omega_1, \omega_2]$, $\mathbb{E}_{p, \Gamma_1, \Gamma_2} [U_{S_1}(\theta, a')|\omega_1, \omega_2] = \max_{a' \in A_R} \mathbb{E}_{p, \Gamma_1, \Gamma_2} [U_{S_1}(\theta, a')|\omega_1, \omega_2]. \quad (2)$

\footnote{In terms of Blackwell informativeness [6].}
After defining the receiver's best response, we detail why a sender ω's commitments are usually implemented via experiments (which can be operated/supervised by a

\begin{equation}
\mathbb{E}_{p, \Gamma_1, \Gamma_2} [U_S(\theta, a')|\omega_1, \omega_2] = \max_{a'' \in A_{S_1}} \mathbb{E}_{p, \Gamma_1, \Gamma_2} [U_S(\theta, a')|\omega_1, \omega_2].
\end{equation}

(3)

To avoid ambiguity, $\mathbb{E}_{p, \Gamma_1, \Gamma_2} [U(\theta, a)|\omega_1, \omega_2]$ represents the expected utility conditional on the realized signals ω_1 and ω_2 under the prior p, S_1's commitment Γ_1, and S_2's commitment Γ_2, given action a is taken. In short, the expectation is taken only on the prior. Equation (2) states that the receiver chooses an (arbitrary) action in the set which maximizes S_1's expected utility while she is indifferent. Equation (3) states if there is still a tie after maximizing both S_1 and receiver's expected utility, the receiver chooses an (arbitrary) action in the set which maximizes S_2's expected utility. For simplicity of representation, we abuse notation and let $a''(\omega_1, \omega_2)$ represents the receiver's best response under ω_1 and S_2's signal ω_2 hereafter.

2.3 Assumption on commitments

After defining the receiver’s best response, we detail why a sender S_k may be able to utilize another sender S_{-k}'s commitment when she commits later. The key is the pre-determined order of the sequential signalling. Since S_1 always sends her signal before S_2, the signalling schemes of the senders are asymmetric. In other words, S_1 cannot commit to a signalling scheme that depends on the realization of ω_2, but S_2 can commit to a signalling scheme based on the realization of ω_1. Next we clarify the information that S_2 can exploit while making her commitment. To avoid ambiguity, we discuss both commitment orders and will introduce our cornerstone assumption, namely permutation-free commitments. Before the discussion, we note that the superscript f, s of the commitment notation Γ_f, Γ_s denote the commitment order, and the subscript denote the sender and another sender’s commitment (if available), e.g., $\Gamma_{2, f}^s$ denotes S_2’s commitment when she commits after S_1 under S_1’s commitment Γ_1^f.

Case 1: S_1 commits to her signalling strategy first

- Since sender S_1 has no observation of sender S_2’s signal while sending her signal and has to commit first, her commitment Γ_1^f can be represented as a function $\Gamma_1^f: I_1 \rightarrow \Delta(\Omega_1)$, where $|\Omega_1| \leq |I_1|$. ω_1

- Sender S_2 can utilize sender S_1’s commitment and realized signal to make her commitment. Hence, sender S_2’s commitment Γ_2^s can be represented as a function $\Gamma_2^s: I_2 \times \Omega_1 \rightarrow \Delta(\Omega_2)$.

Case 2: S_2 commits to her signalling strategy first

- Even though sender S_1 knows S_2’s commitment Γ_2^s, she still has no observation of sender S_2’s signal while sending her signal. Hence, the commitment Γ_2^s is a function $\Gamma_2^s: I_1 \rightarrow \Delta(\Omega_1)$, where $|\Omega_1| \leq |I_1|$. In other words, sender S_1 can adjust her commitment based on S_2’s commitment, but cannot tailor her commitments by utilizing S_2’s realized signals.

- Sender S_2 wants to utilize S_1’s realized signal to make her (optimal) commitment. However, S_2 has to commit before sender S_1 in this case. Since we don’t want each signal token to possess an implied meaning, thereby allowing S_1 to act against S_2 by just reordering the signal tokens, we assume that the S_2 commits to a permutation-free commitment.

Definition 1. A commitment $\Gamma_2^f: I_2 \times \Omega_1 \rightarrow \Delta(\Omega_2)$ of S_1 is permutation-free if for every commitment Γ_1^s of S_1, there is no permutation matrix M such that

$\mathbb{E}_{p, \Gamma_1} [U_{S_1} | \Gamma_2^f (I_2, M(\omega_1))] > \mathbb{E}_{p, \Gamma_1} [U_{S_1} | \Gamma_2^f (I_2, \omega_1)].$

Next, we justify why we believe that the permutation-free assumption on commitments is appropriate when S_2 has to commit first. When we exploit Bayesian persuasion in real-world problems, commitments are usually implemented via experiments (which can be operated/supervised by

Shih-Tang Su, Vijay G. Subramanian

3 WHEN THE COMMITMENT ORDER MATTERS – SIMPLE CONDITIONS

third party). Hence, when S_2 has to commit first and wants to exploit S_1’s realized signal, she can propose different experiments depending on S_1’s signal realization. Unless we assume some signal tokens have implied meaning or S_2 has some prior knowledge, S_2 cannot know the mapping from signal ω_1 to the interim distribution of the states while making her commitments. However, when an experiment of S_2 has to be executed, S_1’s signal realization and her commitments are both common knowledge. Hence, S_1 can commit to experiments with her private signal and the mock signal realizations of S_2, and ask the operator of her experiments to use a permutation/reordering of S_1’s signal tokens that works best for her. These experiments can be appropriately executed, and this permutation-free commitment can be fulfilled. Moreover, not embracing the permutation-free property implies that S_1 and S_2 have an ex-ante consensus on the meaning of S_1’s signal tokens, but S_1 can violate their ex-ante consensus to act against S_2. If S_2 can lose by sender S_1 permuting her signal tokens, S_2’s experiments will reveal her (partial) private information only if S_1 cannot exploit this revelation against her via permutations. This will significantly reduce the utility of being able to choose the commitment order. To further illustrate this, a numerical example is presented in Appendix 6 where S_2’s optimal commitment ends up being independent of S_1’s signal realization when the permutation-free property is violated.

2.4 Objectives of senders

Before we proceed, we list the objective functions of senders for both commitment orders. For simplicity of representation, we abuse notations and let Γ^*_k denotes the optimal commitment when S_k commits first, and Γ^*_k denotes the optimal commitment when S_k commits last.

When S_1 commits first, the objective functions of S_1 and S_2 are the following:

$$\Gamma_1^* \in \arg \max_{\Gamma'_1 \in \Gamma_1} \mathbb{E}_{\rho, r'_1, r'_2}(\Gamma'_1)[U_{S_1}]$$

s.t. $\mathbb{E}_{\rho, r'_1, r'_2}(\Gamma'_1)[U_{S_2}] = \max_{\Gamma'_2 \in \Gamma_2} \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_2}], \quad (4)$

$$\Gamma_2^* \in \arg \max_{\Gamma'_2 \in \Gamma_2} \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_2}]. \quad (5)$$

When S_2 commits first with permutation-free commitments, the objective functions of S_1 and S_2 are the following:

$$\Gamma_1^* \in \arg \max_{\Gamma'_1 \in \Gamma_1} \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_1}] \text{ s.t. } \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_2}] = \max_{\Gamma'_2 \in \Gamma_2^M(\Gamma'_1)} \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_2}],$$

where $\Gamma_1^M(\Gamma'_1)$ is the set of commitments where the signals are permuted when compared to Γ'_1. \quad (6)

$$\Gamma_2^* \in \arg \max_{\Gamma'_2 \in \Gamma_2} \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_2}] \text{ s.t. } \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_1}] = \max_{\Gamma'_2 \in \Gamma_2} \mathbb{E}_{\rho, r'_1, r'_2}[U_{S_1}]. \quad (7)$$

3 WHEN THE COMMITMENT ORDER MATTERS – SIMPLE CONDITIONS

In Section 2.3, we discussed the rationale for why the permutation-free property (on commitments) is an appropriate assumption in sequential commitment problems. In this section, we will present an intuitive set of conditions when the commitment order matters, i.e., when different expected utilities are obtained for different commitment orders so that senders or the receiver would have a preference between them. We start by presenting a numerical example that shows that the commitment order can result in a credible threat even though the order of signalling stays unchanged.
3.1 Credible threats

Let’s consider a game with two senders and one receiver. There are 4 possible states of the world $\Omega = \{TL, TR, BL, BR\}$ (top-bottom and left-right). S_1 knows whether the state of the world is top or bottom, i.e., $I_1 = \{T, B\}$, and S_2 knows whether the state of the world is left or right, i.e., $I_2 = \{L, R\}$. S_1 can send signals $\omega_1 \in \{\omega_{1,1}, \omega_{1,2}\}$ and S_2 can send signals $\omega_2 \in \{\omega_{2,1}, \omega_{2,2}\}$ to influence the receiver’s action. The distribution of the state of the world (prior) is common knowledge, listed in Table 1a. The senders’ utilities are provided in Table 1b. The receiver’s goal is to guess the state of the world accurately; she receives payoff 1 when she guesses correctly and 0 otherwise.

	L	R
T	0.1	0.2
B	0.4	0.3

(a) Distribution of the states

	U_{TL}	U_{TR}	U_{BL}	U_{BR}
U_{S_1}	1.0	2.2	0.0	0.3
U_{S_2}				

(b) Utilities of senders

In this game, S_1 prefers top over bottom and S_2 prefers right over left. Now, we study the optimal commitments of S_1 and S_2 under different commitment orders. First, let’s start with the scenario where S_1 makes her commitment first.

3.1.1 S_1 commits first. If S_2 didn’t appear in the game, S_1 would act as if in a classical 1-sender Bayesian persuasion model: sending a signal which suggests action a_{TL} or a_{TR} when she knows the true state is in the top half and perform a mixed signalling strategy when the true state is in the bottom half. However, in the presence of S_2, S_1 knows that as long as she can guarantee that the posterior probability of BR is smaller than or equal to TR, S_2, for the sake of maximizing her expected payoff, will commit to a signalling strategy which helps S_1 since BL is inferior to TR for S_2. Bearing this in mind, S_1 will make the following commitment by anticipating S_2’s commitment.

S_1’s commitment: Send a suggestion of T with probability 1 when her private information is T and probability $\frac{3}{4}$ when her private information is B.

Now, since S_1 has made her commitment, S_2 makes her commitments on top of it.

S_2’s commitment:

- While observing S_1’s signal suggesting T, send a suggestion R with probability 1 when her private information is R and probability $\frac{3}{4} - \epsilon$ when her private information is L. And send a suggestion of L with probability $\frac{1}{4} + \epsilon$ while observing L, where ϵ is infinitesimal, i.e., $|\epsilon| \ll 1$.
- While observing S_1’s signal suggesting B, send a suggestion R with probability 1 when her private signal is R and probability $\frac{3}{4} - \epsilon$ when her private signal L. And send a suggestion of L with probability $\frac{1}{4} + \epsilon$ while observing L, where ϵ is infinitesimal, i.e., $|\epsilon| \ll 1$.

We notice that S_2’s commitment is independent of S_1’s realized signal. This is merely a happenstance in this example; this makes the analysis simpler too. Given the commitments above, the expected utilities of S_1, S_2 and the receiver are $[\mathbb{E}_p[U_{S_1}], \mathbb{E}_p[U_{S_2}], \mathbb{E}_p[U_R]] = [1.2, 1.8, \frac{1}{3}]^5$.

3.1.2 S_2 commits first. Now, consider the game where S_2 commits first. Although S_2 does not know S_1’s signalling strategy while making her commitment, her commitment can still use S_1’s signal realization. This is because, when her experiment is conducted, S_1’s signal realization is common knowledge. Therefore, she can commit to the following signal and use this to threaten S_1 credibly.

\footnote{See Appendix 7.5 for detailed calculation.}
Shih-Tang Su, Vijay G. Subramanian

\(S_2\)'s commitment

- While observing \(S_1\)'s suggestion of \(T\), send a suggestion \(R\) with probability 1, whatever her private information is.
- While observing \(S_1\)'s suggestion of \(B\), send a suggestion \(R\) with probability 1 when her private information is \(R\) and probability \(\frac{3}{4}\) when her private information is \(L\). And send a suggestion \(L\) otherwise.

Given this commitment of \(S_2\), \(S_1\), now, cannot hope that \(S_2\) will help her when \(S_1\) signals her private information is \(T\). Hence, \(S_1\) has to make a more conservative commitment.

\(S_1\)'s commitment

- Send a suggestion \(T\) with probability 1 when her private information is \(T\) and probability \(\frac{1}{2}\) when \(S_1\)'s private information is \(B\).
- Send a suggestion \(B\) otherwise.

Now, we have to check whether \(S_2\) will deviate from her original commitment to verify optimality from \(S_2\)'s perspective. Since the receiver breaks a tie in favor of \(S_1\) and then \(S_2\), using any signal \(L\) with probability \(> 0\) when \(S_1\) sends a suggestion \(T\) will strictly lower her expected utility. When \(S_1\) suggests \(B\), the true state is either \(BL\) or \(BR\), and her commitment already maximizes her expected utility by making the receiver weakly prefer \(a_{BR}\) (given the receiver’s tie-breaking rule and the indifference of \(S_1\)'s utility between \(a_{BL}\) and \(a_{BR}\)). Hence, her original commitment is the best response to the \(S_1\)'s commitment. By calculating\(^6\) the expected utility of agents, we obtain: \([\mathbb{E}_p[U_{S_1}], \mathbb{E}_p[U_{S_2}], \mathbb{E}_p[U_R]] = [1.1, 3, 0.4]\).

3.1.3 Comparison of utilities. Next, we compare the utilities for senders and the receiver between the two commitment orders and assess their value for each agent. Both senders want to commit first, and the receiver has a preference on letting \(S_2\) commit first. Moreover, if senders can trade their commitment order and \(S_1\) is initially endowed the first commitment slot, every transfer \(x \in (0.1, 0.2)\) from \(S_2\) to \(S_1\) makes both senders better off by trading the first commitment slot from \(S_1\) to \(S_2\). The example shows an interesting phenomenon: when senders only have partial information and have to send signals sequentially, they may collaborate on the signals they commit and collude on the order of commitment if there is a market for senders to trade their commitment position. For readers curious about whether there is a scenario that both senders and the receiver are better off after a transfer of the commitment slot, an example is provided in Section 4.1.

3.2 Collaborative States

Motivated by the above example, we first present an easily rationalized proposition capturing a set of scenarios where the commitment order matters and prove a generalized theorem afterward. The proposition captures scenarios similar to the example discussed above, wherein \(S_1\)'s and \(S_2\)'s interests are aligned if \(S_1\) reveals her private information truthfully. In these scenarios, both senders want to persuade the receiver to take the same action. This implies that senders can collaborate on their signalling strategies in some states. We call this type of states **collaborative states** and define them formally below.

Definition 2. A state \(\hat{\theta} \in \Theta\) is a collaborative state if the following two conditions hold:

1. \(\hat{\theta} \in \arg \max_{\theta \in \hat{I}_1} U_{S_1}(\theta, a_{\theta})\)
2. \(\hat{\theta} \in \arg \max_{\theta \in \hat{I}_1} U_{S_2}(\theta, a_{\theta})\)

where \(\hat{I}_1\) is the information set containing state \(\hat{\theta}\), i.e., \(\hat{I}_1 = F_1(\hat{\theta})\).

\(^6\)See Appendix 7.6 for detailed calculation.
Definition 2 states that when the S_1 reveals her private information truthfully while $\theta = \hat{\theta}$, S_2 is willing to collaborate with S_1 to persuade the receiver towards taking their most preferred action. Note the asymmetry of the definition vis-a-vis the sender identities. This occurs because S_1 signals before S_2. With the definition of collaborative states in place, we present a preliminary result about conditions when the commitment order matters.

Proposition 1. Given a prior p and both senders’ utility functions U_{S_1}, U_{S_2}, the commitment order matters if there exists a private information set $I_1 \in \mathcal{I}_1$ satisfying the following conditions:

1. **(Existence of collaborative state)** There exists a collaborative state $\hat{\theta} \notin I_1$ satisfying the following two inequalities:
 \begin{align*}
 U_{S_2}(\hat{\theta}, a_\hat{\theta}) &< \mathbb{E}_{p, \Gamma^*_1(I_1)}[U_{S_2}(\theta, a^*(I_1, \omega_2))|I_1] \quad (8) \\
 U_{S_1}(\hat{\theta}, a_\hat{\theta}) &> \mathbb{E}_{p, \Gamma^*_1(I_1)}[U_{S_1}(\theta, a^*(I_1, \omega_2))|I_1] \quad (9)
 \end{align*}
 where $\Gamma^*_2(I_1)$ denotes S_2’s optimal signalling strategy while S_1 truthfully reveals her private signal I_1, and $a^*(I_1, \omega_2)$ denotes the receiver’s best response under I_1 and S_2’s signal ω_2.

2. **(Demand of collaboration)** Let $\hat{\Gamma}_1$ be the set of commitments with a signal $\hat{\omega}_1 \in \Omega_1$ satisfying $\mathbb{P}(I_1|\hat{\omega}_1) = 1$. For any commitment order, the optimal commitment(s) of S_1 must belong to this set, i.e., $\Gamma^{fs}_1, \Gamma^{ss}_1 \subseteq \hat{\Gamma}_1$.

3. **(Existence of a credible threat)** The preference orders of S_1 and S_2 on $\Phi(I_1)$ are polar opposites, where $\Phi(I_1)$ is the receiver’s possible optimal action set given S_1’s private information I_1, i.e., $\Phi(I_1) = \{a_\theta | \theta \in I_1\}$.

We provide a detailed proof in Appendix 7.1. The core of the proof is to construct a credible threat using a collaborative state. To make the construction possible, we need the existence of another signal which gives S_1 a lower expected utility (based on the receiver’s best response). This other signal gives S_1 an incentive to commit to a mixed signalling strategy, which mixes this signal with the signal corresponding to the collaborative state. Otherwise, S_1’s private information can be elicited by S_2 when S_1’s private information contains the collaborative state, and credible threats are no longer needed since S_1’s and S_2’s interests are aligned. The existence of this other signal is implied by condition 2 in non-trivial scenarios, where the details are stated in Claim 1. Moreover, conditions 1 and 3 guarantee a conflict of interest between S_1 and S_2’s on mixing other states with the collaborative state. Hence, if S_1 gets to commit first, she can propose a more aggressive mixed strategy because the best commitment of S_2, after S_1’s commitment, is to collaborate with S_1’s mixed strategy. However, if S_2 can commit first, she is willing to collaborate, but she does not want S_1 to mix other states with this collaborative state. Hence, she can create a credible threat to reduce (but not eliminate) S_1’s strategy of mixing other states with the collaborative one. Hence, the commitment order matters.

Claim 1. When the inequality (9) holds, condition 2 in Proposition 1 implies that one of the following two conditions is true:

1. The signal $\hat{\omega}_1$ of condition 2 in Proposition 4 is not the signal realization which gives S_1 the highest expected utility in S_1’s optimal commitments.
2. Every signal realization gives S_1 the same expected utility.

4 GENERAL RESULTS ON WHEN THE COMMITMENT ORDER MATTERS

Note that while Proposition 1 provides a set of sufficient conditions when the commitment order matters in a constructive manner, each condition in Proposition 1 has its deficiency. First, the requirement of a collaborative state is a strong condition. S_2 may be willing to partially collaborate
with S_1 after she has maximized the probability of her most-preferred action under a given I_1. In other words, a collaboration may happen in a state where its corresponding action is S_2’s second-best action (under the given information set of S_1). Second, the verification of demand of collaboration requires knowledge about the commitment space’s structure\(^7\). When the state space grows, this can be a tedious task without additional constraints. Third, although the credible-threat condition guarantees the uniqueness of S_2’s optimal signalling strategy and a conflict of interest between S_1 and S_2 on I_1, a polar opposite preference ordering is only one type where a conflict of interest between S_1 and S_2 happens. As long as S_1 and S_2 have an opposite preference on a mixture of two information sets of S_1, S_2 may be able to construct a credible threat using this opposite preference. Before stating the generalized result, we start with an example where the commitment order matters but the conditions in Proposition 1 are violated in Section 4.1. Hence, to remove the need for the knowledge of the commitment space, the requirement of collaborative states, and the assumption of polar opposite preference ordering, we will present a set of sufficient conditions generalized from Proposition 1.

4.1 An example highlighting the lack of generality of Proposition 1

As mentioned above, we will present an example where the commitment order matters, but conditions in Proposition 1 are either violated or not needed. Besides, we utilize this example to demonstrates a scenario where transferring the commitment slot increases the utilities of both senders and also the receiver, i.e., the social welfare increases. In this example we highlight that a collaborative state is not necessary for S_1 to mix her private information sets. Besides, a conflict of interest between S_1 and S_2 on a mixture of a pair of S_1’s information sets does not demand (polar) opposite preference ordering (on corresponding actions) in any of S_1’s private information sets.

Although the smallest example that meets our need requires 7 states, to simplify the description of S_1’s and S_2’s private information structures, we add two dummy states with prior probability 0 and expand the example to a 9-state model, where each sender has three possible types. To avoid confusion and to simplify the discussion on sender’s preference ordering, we skip the definition of S_1’s and S_2’s utilities on dummy states.

Example. There are $3 \times 3 = 9$ states of the world $\theta_{XY} \in \Theta$, where $X \in \{T, M, B\}$ and $Y \in \{L, C, R\}$. S_1 knows the information of X and S_2 knows the information of Y, i.e., $I_1 = \{T, M, B\}$ and $I_2 = \{L, C, R\}$. The prior on the state is provided in Table 2a, and the utilities of S_1 and S_2 are provided in Table 2b. In this example, S_1 sends signals prior to S_2, and the receiver’s objective is to maximize the probability of guessing the true state. To make notation less cumbersome, we use a_{XY} to represent $a_{\theta_{XY}}$.

	L	C	R
T	0.05	0	0.05
M	0.12	0.2	0.02
B	0.35	0.21	0

(a) Distribution of the states

a_{TL}	a_{TR}	a_{ML}	a_{MC}	a_{MR}	a_{BL}	a_{BC}
(0.0, 5.5)	0.0	5.5	1.0	2.2	0.3	0.1

(b) Utilities of senders

In this example, we demonstrate that all the conditions in Proposition 1 are either violated or not needed. First, although there exists a (unique) collaborative state θ_{TR} satisfying condition 1, S_1’s and S_2’s preference order on states $\{\theta_{BL}, \theta_{BC}\}$ are fully aligned, instead of a polar opposite preference required by Proposition 1. Actually, persuading receiver to take action a_{TR} is best not only for S_1...

\(^7\)When the utilities can be written in a matrix form, it is usually straightforward to see whether there is an information set of S_1 that gives her a lower utility compared to the collaborative state.
but also for \(S_2 \). Hence, \(S_2 \) will not threaten \(S_1 \) on her signals suggesting \(a_{TR} \), and the signalling strategy on persuading \(a_{TR} \) will be independent of the commitment order. Second, although the second condition (a demand of collaboration) holds on \(S_1 \)’s private information \(I_1 = B \), Proposition 1 provides no guidance on how senders will collaborate without an effective collaborative state for the construction of collaborative signalling strategies. Thus, the second condition is not helpful without the existence of collaborative state. Third, none of the preference orders of \(S_1 \) and \(S_2 \) are polar-opposite under \(S_1 \)’s truthful report. Since all conditions are either defunct or violated, Proposition 1 cannot help determine whether the commitment order matters or not in this example.

In actuality though, the commitment order does matter here. Note that \(S_1 \) prefers a mixture of her private information \(M, B \) to persuade the receiver in taking action \(a_{MC} \), but \(S_2 \) prefers a separation of \(S_1 \)’s private information \(M \) and \(B \). This gives \(S_2 \) a chance to pose a credible threat. Note that \(\theta_{MC} \) is not a collaborative state because \(S_2 \) will first persuade the receiver to take \(a_{MR} \), and then help \(S_1 \) persuade the receiver to take \(a_{MC} \) when she cannot increase the value of \(\mathbb{P}(a_{MR}) \). To verify that the commitment order matters in this example, we calculate the utilities of the senders \(S_1, S_2 \) and the receiver under both commitment orders. For simplicity of representation, let \(\omega_1^X \) denote \(S_1 \)’s signal suggesting the action set \(\{a_{XL}, a_{XC}, a_{XR}\} \), \(X \in \{T, M, B\} \) and \(\omega_2^Y \) denote \(S_2 \)’s signal suggesting the action set \(\{a_{TY}, a_{MY}, a_{BY}\} \), \(Y \in \{L, C, R\} \). In other words, \(\omega_1^X \) implies \(\mathbb{P}(\theta_{XY}) = \max\{\mathbb{P}(\theta_{TY}), \mathbb{P}(\theta_{MY}), \mathbb{P}(\theta_{BY})\} \) for every \(Y \in \{L, C, R\} \) and \(\omega_2^Y \) implies \(\mathbb{P}(\theta_{XY}) = \max\{\mathbb{P}(\theta_{XLM}), \mathbb{P}(\theta_{XMC}), \mathbb{P}(\theta_{XMR})\} \) for every \(X \in \{T, M, B\} \). We will use \(\omega_1^X \) and \(\omega_2^Y \) to state the commitments in this example.

4.1.1 \(S_1 \) commits first. First, both \(S_1 \) and \(S_2 \) wants to maximize the probability of \(a_{TR} \) according to their utility functions. Hence, \(S_1 \) will first maximize the probability of signal \(\omega_1^T \).

- Send \(\omega_1^T \) with probability 1 when her private information \(I_1 = T \).
- Send \(\omega_1^T \) with probability 0.25 when her private information \(I_1 = M \).
- Send \(\omega_1^T \) with probability \(\frac{1}{2} \) when her private information \(I_1 = B \).

Now, conditional on \(S_1 \) not sending signal \(\omega_1^T \), the distribution of states reduces to Table 3, where \(w = 0.735 \) normalizes the total probability to be 1.

\(\omega_1 \neq \omega_1^T \)	\(L \)	\(C \)	\(R \)
\(T \)	0	0	0
\(M \)	0.09/\(w \)	0.15/\(w \)	0.015/\(w \)
\(B \)	0.3/\(w \)	0.18/\(w \)	0

According to Table 3, \(S_2 \) knows the true state is \(\theta_{MR} \) when her private information \(I_2 = R \), regardless of the signalling strategy \(S_1 \) uses to mix \(M \) and \(B \). Since \(S_2 \) prefers \(\theta_{MR} \), then \(\theta_{MC} \), and finally \(\theta_{ML} \), \(S_2 \) will first persuade the receiver on taking action \(a_{MR} \) when \(\omega_1 \neq \omega_1^T \). When \(S_2 \) has maximized the total probability of \(a_{MR} \) taken by receiver conditional on her signalling strategies, \(S_2 \) is willing to collaborate with \(S_1 \) on persuading the receiver to take action \(a_{MC} \) instead of \(a_{ML} \). Therefore, \(S_1 \)’s optimal mixture of information sets \(M \) and \(B \) is to maximize the conditional probability of \(B \) in her signal, while ensuring that the posterior belief of \(\theta_{MC} \) is no less than \(\theta_{MR} \). Using the concavification approach [15], the posterior beliefs of states conditional on \(S_1 \) sending signal \(\omega_1^M \) is presented in Table 4, where \(w = 0.655 \) normalizes the total probability to be one.

\(\omega_1 = \omega_1^M \)	\(L \)	\(C \)	\(R \)
\(T \)	0	0	0
\(M \)	0.09/\(w \)	0.15/\(w \)	0.015/\(w \)
\(B \)	0.25/\(w \)	0.15/\(w \)	0

Given \(S_1 \)’s signal which mixes information sets \(T, M \), and \(B \) and the optimal mixture of \(M \) and \(B \) derived above, \(S_1 \) still has a positive probability on information set \(B \) for which she has no choice
but to tell the truth. By calculating the conditional probabilities of each state conditional on S_1’s private information and her optimal signalling strategy presented above, we can find the complete commitment of S_1. We depict it in Figure 1a, where each number next to an arrow from S_1’s private signal (T, M, B) to a signal $(\omega_T^1, \omega_M^1, \omega_B^1)$ represents the conditional probability of sending a particular signal under that private information.

Given S_1’s optimal commitment, deriving S_2’s optimal commitment is equivalent to solving a classical single-sender Bayesian persuasion problem for each of S_1’s realized signals when S_2 commits after S_1. Thus, S_2’s optimal signalling strategy can be calculated in straightforward manner via the concavification approach that solves classical Bayesian persuasion problems. Since the result of concavification approach can be easily verified via calculating S_2’s utility change under small deviations, we omit the numerical computations of the concavification procedure and present S_2’s optimal commitment below:

- While observing ω_T^1, send ω_R^2 with probability 1, whatever her private information is.
- While observing ω_M^1, send signals using the following strategy:
 - Send ω_R^2 with probability 1 when her private information is R, with probability 0.1 when her private information is C, and with probability 0.06 when her private information is L.
 - Send ω_C^2 with probability 0.9 when her private information is C and with probability 0.54 when her private information is L.
 - Send ω_L^2 with probability 0.4 when her private information is L.
- While observing ω_B^1, send signals using the following strategy:
 - Send ω_C^2 with probability 1 when her private information is C and with probability 0.6 when her private information is L.
 - Send ω_L^2 with probability 0.4 when her private information is L.

We remark that S_1 plays an aggressive strategy which relies on S_2’s collaboration to persuade the receiver towards taking S_1’s preferred action. When S_1 sends ω_M^1, the interim belief of the state distribution is Table 4 presented earlier:

We notice that state θ_{BL} has the highest probability if S_2 stays silent. Without the signal of S_2, the receiver will take action a_{BL} and S_1 experiences the lowest utility. However, since a_{MC} gives S_2 a higher utility than a_{ML}, S_2 will collaborate with S_1 after she maximizes the total probability of a_{MR}. This allows S_1 to commit to the above signalling strategy. Last, we calculate (detailed in Appendix 7.7) the expected utility of agents and obtain $[\mathbb{E}_p[U_S], \mathbb{E}_p[U_{S1}], \mathbb{E}_p[U_R]] = [2.4336, 2.6884, 0.286]$.

![Fig. 1. Sender S_1’s optimal commitment](image-url)

4.1.2 S_2 commits first. Again, both S_1 and S_2 aim to maximize the probability of a_{TR} according to their utility functions. Hence, when S_1 maximizes the probability of signal ω_T^1, S_2 has no incentive...
to restrict her signal ω_1^T. Therefore, before S_2 makes her commitment, she knows S_1’s signalling strategy on ω_1^T below.

- Send ω_1^T with probability 1 when her private information $I_1 = T$.
- Send ω_1^T with probability 0.25 when her private information $I_1 = M$.
- Send ω_1^T with probability $\frac{1}{7}$ when her private information $I_1 = B$.

Now, conditional on S_1 not sending signal ω_1^T, the distribution of states reduces to Table 3 presented earlier. S_2’s problem then reduces to designing an optimal commitment under Table 3. Opposite to S_1, S_2 prefers a separation of S_1’s information sets M and B. Therefore S_2 will restrict S_1’s mixture of M and B in her signal ω_1^M as much as she can by posing a credible threat. Here we detail S_2’s thought process on designing her threat strategy.

Since S_1 will never use a signal ω_1 which mixes M and B such that $\mathbb{P}(MC|\omega_1) \leq \mathbb{P}(BC|\omega_1)$, S_2 can only restrict S_1’s mixture by tailoring her signal on her private signal L. Ideally, S_2 has two choices: (1) increase the probability of signal ω_1^B while receiving ω_1^M with private signal L, or (2) increase the probability of signal ω_1^C while receiving ω_1^M with private signal L. However, the first choice cannot threaten S_1 since S_1 has utility 0 under a_{MR}. This is because S_1 is better off when S_2 fails to persuade the receiver to take action a_{MR}

Thus, S_2 can only pick the second choice and tailor the probability of signal ω_1^C to restrict S_1. Given the inequality $\mathbb{P}(\theta_{BL}) > \mathbb{P}(\theta_{BC})$ from the prior, S_2 can reduce the probability $\mathbb{P}(\omega_1^C|\omega_1^M)$ to 0 to restrict S_1’s mixture of M and B. In other words, S_1 acknowledges that the receiver will take either a_{MR} or a_{MC} when ω_1^M is sent. Given the interim distribution of Table 3, S_2’s optimal signalling scheme (after using the concavification approach to derive ω_1^B) is to send signal ω_1^R with probability 0.1 and ω_1^C with probability 0.9 when she observes ω_1^M and her private information is L. Last, when S_2 observes ω_1^B, she immediately knows S_1’s private signal is B (because mixing T or M to suggest either a_{BL} or a_{BM} hurts S_1). Thus, S_2’s optimal commitment can be solved via a concavification approach analogous to the one-sender, binary-state Bayesian persuasion problem. To sum up, we list S_2’s optimal signalling strategy below:

- While observing ω_1^T, send ω_2^R with probability 1, whatever her private information is.
- While observing ω_1^M, send signals using the following strategy:
 - Send ω_2^R with probability 1 when her private information is R, with probability 0.1 when her private information is C, and with probability 0.1 when her private information is L.
 - Send ω_2^C with probability 0.9 when her private information is C or L.
- While observing ω_1^B, send signals using the following strategy:
 - Send ω_2^C with probability 1 when her private information is C and with probability 0.6 when her private information is L.
 - Send ω_2^L with probability 0.4 when her private information is L.

Based on S_2’s commitment, S_1 knows she cannot commit to an aggressive signalling strategy and wish S_2 to help her persuading the receiver to take action a_{MC}. Moreover, her maximum mixture of M and B is restricted by S_2 with the satisfaction of the inequality $\mathbb{P}(\theta_{BL}|\omega_1^M) \leq \mathbb{P}(\theta_{MC}|\omega_1^M)$. Thus, given the distribution presented in Table 3, S_1 can only send signal ω_1^M with probability $\frac{1}{2}$ when her private information is B and signal ω_1^T is not sent. In short, S_1’s optimal commitment is to first maximize ω_1^T, and then maximize ω_1^M under the restriction of S_2’s signalling strategy. After calculating the probability of ω_1^T and the conditional probability of ω_1^M, we summarize S_1’s optimal commitment below and a diagram in Figure 1b. By calculating the expected utility of agents (detailed in Appendix 7.8), we obtain $[\mathbb{E}_p[U_{S_1}], \mathbb{E}_p[U_{S_2}], \mathbb{E}_p[U_R]] = [2.207, 3.158, 0.35]$.

\[\text{8} \text{Otherwise, the receiver will never take action } a_{MC} \text{ suggested by } S_1.\]

\[\text{9} \text{In this case, the receiver will take action } a_{ML} \text{ instead of } a_{MR}, \text{ and } S_1 \text{ obtains a higher utility.}\]
4.1.3 Comparison of utilities. Similar to the example in Section 3.1, both senders want to commit first, and the receiver has a preference on letting S_2 commit first in this example. However, the unique collaborative state in this example violates conditions in Proposition 1 and the signalling strategies (the probability of suggesting s_{TR}) are the same in both commitment orders. However, the commitment order matters because of the collaboration in persuading a_{MC}, even though a_{MC} is not S_2’s most preferred action under $I_1 = M$. Moreover, if senders can trade their commitment order and S_1 is initially endowed the first commitment slot, every transfer $x \in (0.2266, 0.4616)$ from S_2 to S_1 makes both senders and the receiver better off by trading the first commitment slot from S_1 to S_2. If the transfer from the receiver to S_1 is also allowed (even though the receiver doesn’t participate in this trade), the maximum compensation S_1 could receive from giving out the first commitment slot grows to 0.5276. This example demonstrates a case where both senders’ and the receiver’s utilities can increase when the first commitment slot is transferred from S_1 to S_2.

4.2 General result: Sufficient conditions

With the example above, we learned that the commitment order matters in a more general scenarios than those presented in Proposition 1. The analysis in Example 4.1 suggests that when both a credible threat and a collaboration exist, the commitment order will matter. In order to know whether a (partial) collaboration is possible, we start by defining the conditional distribution of S_1’s information sets and use it to represent the best response signalling strategy of S_2 under an observed signal of S_1.

Definition 3. Given a prior p and S_1’s commitment Γ_1, a signal realization ω_1 indicates a conditional distribution of S_1’s information sets, $\Delta_{\Gamma_1}(I_1|\omega_1, p)$, which we denote as q^{ω_1}.

When two signals\(^{10}\) ω_1, ω'_1 have the same information set distribution, i.e., $q^{\omega_1} = q^{\omega'_1}$, the best response of the receiver will be identical for these two signals. Thus, to avoid duplication and for simplicity of comparing different signals, we abuse notation and use $a^*(q^{\omega_1}, \omega_2)$ to represent the receiver’s best response under given S_1’s information set distribution and ω_2, i.e., $a^*(\omega_1, \omega_2), a^*(\omega'_1, \omega_2)$. Since the receiver’s utility is a function of S_1’s information set distribution and S_2’s signal, we are ready to define S_2’s best response signalling strategies.

Definition 4. Given a prior p and a distribution of S_1’s information set $q^{\omega_1}, G(p, q^{\omega_1})$ represents the set of best response signalling strategies of S_2 while observing S_1’s information set distribution q^{ω_1}.

Mathematically, an element $g \in G(p, q^{\omega_1})$ is a function that maps $I_2 \in I_2$ to a signal distribution $r \in \Delta(\Omega_2)$ such that $\mathbb{E}_{p,g}[U_{S_2}|q^{\omega_1}, r] \geq \mathbb{E}_{p,g'}[U_{S_2}|q^{\omega_1}, r]$ for all $g' \notin G(p, q^{\omega_1})$. For simplicity of representation, $G(p, q^{\omega_1} + a(q^{\omega_1})$ denotes S_2’s best response under S_1’s mixed signal $\hat{\omega}_1$ such that $q^{\hat{\omega}_1} = \frac{1}{4\alpha_2} q^{\omega_1} + \frac{\alpha_2}{4\alpha_2} q^{\omega_1}$. Since S_2’s expected utility is maximized in every best response strategy $g \in G(p, q^{\omega_1})$, i.e., $\mathbb{E}_p[U_{S_2}|\omega_1, g] = \mathbb{E}_p[U_{S_2}|\omega_1, g']$ for all $g, g' \in G(p, q^{\omega_1})$, we again abuse notation and use $\mathbb{E}_p[U_{S_2}|\omega_1, G(p, q^{\omega_1})]$ to represent S_2’s expected utility under S_1’s information set distribution q^{ω_1}, prior p, and S_1’s signal ω_1.

Given the above definitions, we will present a set of sufficient conditions of when the commitment order matters that relies on two critical insights gained from Example 4.1:

1. Both senders are willing to (partially) collaborate on at least a particular private information state of S_1.
2. On such a “collaborative” information state, S_1 and S_2 have a conflict of interest on the level of collaboration, which allows S_2 to pose a credible threat.

\(^{10}\)Two signals need not be from the same commitment.
Theorem 1. Given a prior \(p \), the commitment order matters if there exists a pair of \(S_1 \)'s information sets \(I_t^x, I_t^y \) satisfying the following conditions:

1. There exist two parameters \(\alpha > \beta > 0 \) and a signalling strategy \(\hat{\Gamma}_2 \) satisfying the following conditions:
 (a) \(G(p, I_t^x + aI_t^y) = G(p, I_t^x + \beta I_t^y) \),
 (b) Let \(\omega^x_1, \omega^y_1 \) be two mock signals of \(S_1 \) such that \(\mathbb{P}(I_t^x | \omega^x_1) = \frac{1}{1+\alpha}, \mathbb{P}(I_t^y | \omega^y_1) = \frac{\alpha}{1+\alpha}, \mathbb{P}(I_t^x | \omega^x_1) = \frac{1}{1+\beta}, \mathbb{P}(I_t^y | \omega^y_1) = \frac{\beta}{1+\beta} \), then
 \[
 \hat{\Gamma}_2(p, \omega^y_1) \in G(p, I_t^x + \beta I_t^y) \quad \text{and} \quad \hat{\Gamma}_2(p, \omega^x_1) \notin G(p, I_t^x + \alpha I_t^y),
 \]
 (c) \(\mathbb{E}_p[U_S|I_t^x, \hat{\Gamma}_2] < \frac{\mathbb{P}(I_t^x + aI_t^y)}{\mathbb{P}(I_t^x) + a\mathbb{P}(I_t^y)} \mathbb{E}_p[U_S|\omega^x_1, \hat{\Gamma}_2] + \frac{(\alpha - \beta)\mathbb{P}(I_t^y)}{\mathbb{P}(I_t^x) + \alpha\mathbb{P}(I_t^y)} \mathbb{E}_p[U_S|I_t^y, \hat{\Gamma}_2],
 \]
 (d) \(\mathbb{E}_p[U_S|\omega^y_1, G(p, I_t^x + \beta I_t^y)] < \mathbb{E}_p[U_S|I_t^y, G(p, I_t^y)]. \)

2. Sender \(S_1 \) has a higher expected utility under \(I_t^x \) than \(I_t^y \), regardless of \(S_2 \)'s tie-breaking rule, i.e.,
 \[
 \min_{g \in G(p, I_t^x)} \mathbb{E}_{p, g}[U_S|I_t^x] > \max_{g' \in G(p, I_t^y)} \mathbb{E}_{p, g'}[U_S|I_t^y].
 \]

3. There is no commitment pair \((\Gamma_1, \Gamma_2) \) such that
 \[
 \sum_{\theta_t \in I_t^x} \mathbb{P}_{p, \Gamma_1, \Gamma_2}(a_t = 0) = 0 \quad \text{or} \quad \sum_{\theta_t \in I_t^y} \mathbb{P}_{p, \Gamma_1, \Gamma_2}(a_t = 0) = 0.
 \]

Although the conditions in Theorem 1 look technical, there are intuitions behind each condition. The first condition in Theorem 1 states that the sender \(S_2 \) prefers a separation of \(S_1 \)'s information sets \(I_t^x \) and \(I_t^y \). Moreover, if \(S_2 \) can commit first, she can make a credible threat on her commitment to constrain the mixing of \(I_t^x \) and \(I_t^y \) in \(S_1 \)'s signalling strategies. This generalizes condition 3 in Proposition 1. Besides, the combination of condition 1(a) and 1(d) guarantees that \(S_2 \) can collaborate with \(S_1 \), and this generalizes the collaborative state requirement in Proposition 1. The second condition in Theorem 1 states that the sender \(S_1 \) prefers a mixture of \(I_t^x \) and \(I_t^y \) in her signalling strategy. Combining the intuition behind the first two conditions, the two senders have opposite preferences on the mixture of \(I_t^x \) and \(I_t^y \). Based on the first two conditions, senders \(S_1, S_2 \) are already in a scenario where the sender \(S_2 \) is capable of constraining \(S_1 \)'s mixture of \(I_t^x \) and \(I_t^y \), and a collaboration between \(S_1 \) and \(S_2 \) is possible under \(I_t^x \). Hence, the proof of Theorem 1 shares the same general principle with the proof of Proposition 1, i.e., constructing a credible threat using an information set where both senders collaborate on persuasion. The third condition is a regularity condition which guarantees that the prior \(p \) has put enough probability mass in states \(\theta \in I_t^x \) and \(\theta \notin I_t^y \). This is to avoid corner cases where the senders \(S_1 \) and \(S_2 \) have opposite preferences on the mixture of \(I_t^x \) and \(I_t^y \), but their opposite preferences do not matter because the sender \(S_1 \) can commit to some signalling strategies which never suggests an action \(a_t \in \{a_t | \theta_t \in I_t^x \cup I_t^y \} \). The statement of condition 3 may demand a search of the whole space of possible commitments, which could make this theorem difficult to apply in models with a large state space. However, in most practical problems, verifying condition 3 can be done in straightforward manner by inspecting the prior distribution. Hence, we believe condition 3 doesn’t undermine the contribution of Theorem 1.

4.3 General result: Necessary conditions

The first two conditions in Theorem 1 capture the scenario when a credible threat by \(S_2 \) can be issued, hence constraining \(S_1 \)'s signalling strategies. This leads to the question of whether there are simpler and more basic requirements that make credible threats possible without analyzing the best response of commitments. Moreover, results in Theorem 1 and Proposition 1 depend on the
prior. Hence, we would also like to obtain more basic conditions that are prior independent. Last, we observe that different tie-breaking rules of the receiver may play a role in determining whether the commitment order matters. However, it is hard to determine the criticality of the receiver’s tie-breaking rule under sufficient conditions because each tie-breaking rule only plays a role under a small set of priors. With these considerations in mind, we present in the following theorem a set of necessary conditions of scenarios where the commitment order could matter.

Theorem 2. Given a prior \(p \) and both senders’ utility functions \(U_{S_1} \) and \(U_{S_2} \), if both conditions below are violated, then the commitment order does not matter:

1. There exists a set of states \((\theta_\alpha, \theta_\beta, \theta_\gamma)\) satisfying the following properties:

 (a) \(\theta_\alpha \) and \(\theta_\beta \) are in the same information set of \(S_1 \) but \(\theta_\gamma \) is not, i.e., \(\exists I^x_1 \ni \theta_\alpha, \theta_\beta \) and \(\theta_\gamma \notin I^y_1 \). Besides, \(\theta_\alpha \) and \(\theta_\beta \) are not in the same information set of \(S_2 \), i.e., \(\exists I^x_2 \neq I^y_2 \) s.t. \(\theta_\alpha \in I^x_2 \) and \(\theta_\beta \in I^y_2 \). But \(\theta_\gamma \) is in the same information set as either \(\theta_\alpha \) or \(\theta_\beta \), i.e., \(\theta_\gamma \in I^x_2 \) or \(\theta_\gamma \in I^y_2 \). An example relationship is depicted in Figure 2.

 ![Figure 2. An example information structure of a state tuple in condition (a)](image)

2. The receiver’s tie-breaking rule is belief dependent.

The first condition in Theorem 2 captures a requirement of an alignment between \(S_1 \)’s and \(S_2 \)’s utilities. The requirement is considerably weaker than the definition of collaborative states and condition 1 of Theorem 1. The commitment order may matter when both senders want to collaborate in a pair of states, but they have a conflict of interest on mixing a third state with this pair. When both senders have no conflicts of interest or never collaborate, then the commitment order will not matter. To avoid confusion, we note here that the violation of Theorem 2 does not demand fully-aligned preference orderings between \(S_1 \) and \(S_2 \), or polar opposite preference orderings between \(S_1 \) and \(S_2 \). Senders can still collaborate in a set of states and have a conflict of interest in another set of states, as long as these two sets do not intersect. The second condition states that if the receiver’s tie-breaking rule depends on her beliefs, then a sender may tailor her signalling strategies to make the tie-breaking rule favor her instead of the other sender. When this

\(^{11}\)This third state is in a different information set of \(S_1 \).
occurs, the sender committing first suffers due to the tie-breaking rule. The sender committing later can always tailor the receiver’s beliefs on top of the earlier sender’s commitment and make the tie-breaking rule favor her instead.

5 DISCUSSION

We present two examples in this discussion section to demonstrate interesting phenomena. The first example demonstrates an interesting scenario where the commitment order matters. In this scenario, the only reason that drives S_1 to get the first commitment slot is because she can stay silent while committing first. The second example compares sequential commitments with simultaneous commitments. In the second example, the sequential commitment setting gives the receiver higher expected utility and more informative signals than simultaneous commitments. Beside these two examples, we remark on the difficulty of developing general algorithms to derive the optimal commitments under incomplete information of senders to close the discussion section.

5.1 Silence is golden: commit to send a non-informative signal

We present an interesting example where commitment order matters, but senders commit completely opposite signalling strategies while committing first. When S_1 commits first, her optimal signalling strategy is either to stay silent or to send non-informative signals. However, when S_2 commits first, her optimal commitment is a truth-telling strategy, and her truth-telling strategy forces S_1’s optimal commitment to become truth-telling as well. Hence, in the example detailed below, if the receiver can choose the commitment order, she prefers S_2 committing first.

Example. The state space is ternary $\Theta = \{\theta_1, \theta_2, \theta_3\}$ with prior distribution $(P(\theta_1), P(\theta_2), P(\theta_3)) = (0.2, 0.5, 0.3)$. S_1 knows the state is θ_1 or not, but cannot distinguish θ_1 and θ_2, $I_1 = \{\{\theta_1, \theta_2\}, \{\theta_3\}\}$. S_2 knows the state is θ_1 or not, but cannot distinguish θ_2 and θ_3, $I_2 = \{\{\theta_1\}, \{\theta_2, \theta_3\}\}$. S_1 and S_2’s utilities only depend on the receiver’s action and are given by

$$[U_{S_1}(a_1), U_{S_1}(a_2), U_{S_1}(a_3)] = [3, 0, 1], \quad [U_{S_2}(a_1), U_{S_2}(a_2), U_{S_2}(a_3)] = [1, 0, 3].$$

The receiver gets utility 1 if the index of the state matches the action, and 0 otherwise.

When S_1 commits first, she knows that S_2 cannot distinguish θ_2 and θ_3. Hence, as long as the receiver will guess on a_2 as opposed to a_3 given the posterior belief of the states, S_2 is willing to collaborate with S_1 to suggest a_1. Hence, to maximize S_1’s expected utility, her optimal commitment is to stay silent, i.e., commit to a non-informative signal because $P(\theta_2) > P(\theta_3)$ in the prior. Given S_1’s non-informative commitment, S_2’s optimal commitment is to suggest a_1 while she knows the state is θ_1, and suggest a_1 with probability 0.4 when the state is either θ_2 or θ_3 (since S_2 cannot distinguish between θ_2 or θ_3).

When S_2 commits first, she knows S_1 is willing to help her to persuade the receiver to take a_2 when the information set contains only θ_2 and θ_3. Hence, her optimal commitment is, to tell the truth, sending a signal to reveal θ_1 when the true state is θ_1, and sending a signal to tell she knows the state is θ_2 or θ_3 otherwise. Given S_2’s truth-telling commitment and underlying prior, S_1 knows if she doesn’t reveal θ_2 when the true state is θ_2, the receiver will take a_3 when the state is θ_2. Hence, her optimal signalling strategy becomes a truth-telling strategy as well.

5.2 Comparison to simultaneous commitments

When senders only have partial information (of the state of the world), sequential commitments may bring more informative signals jointly for the receiver. This is different from the result in Li-Norman [18], where senders have complete information. Hence, we want to compare our example in Section 3.1 with simultaneous commitments (and simultaneous signalling) from the receiver’s
perspective. In order to make a fair comparison, the prior and sender’s utilities are the same as the example in Section 3.1.

Table 5. State distribution and senders’ utilities

	L	R
T	0.1	0.2
B	0.4	0.3

(a) Distribution of the states

	\(a_{TL}\)	\(a_{TR}\)	\(a_{BL}\)	\(a_{BR}\)
\((U_{S_1}, U_{S_2})\)	1.0	2.2	0.0	0.3

(b) Utilities of senders

From \(S_2\)’s perspective, since \(TR\) is better than \(TL\) and \(BR\) is better than \(BL\) based on her utility function, her commitment will try to persuade the receiver in the best possible manner for taking action \(TR\) or \(BR\), regardless of what \(S_1\) sends. Hence, \(S_2\)’s optimal commitment is the following:

- When her private information is \(R\), send a signal to suggest \(R\) w.p. 1.
- When her private information is \(L\), send a signal to suggest \(R\) with probability \(\frac{3}{4}\) and send a suggestion \(L\) with probability \(\frac{1}{4}\).

From \(S_1\)’s perspective, even though she cannot observe \(S_2\)’s commitment and signals, she can anticipate \(S_2\)’s optimal commitment via \(S_2\)’s utility function and the prior. Hence, although signals are sent and commitments are made simultaneously, \(S_1\) can use her inference on \(S_2\)’s optimal commitment to make her commitment. Thus, \(S_1\)’s commitment is the following:

- When her private information is \(T\), send a signal to suggest \(T\) w.p. 1.
- When her private information is \(B\), send a signal to suggest \(T\) with probability \(\frac{2}{3}\) and send a suggestion \(B\) with probability \(\frac{1}{3}\).

Given the above commitments, the receiver’s utility is calculated below:

\[
\mathbb{E}_\rho[U_R] = 0.1 \times 0 + 0.2 \times 1 + 0.4 \times \frac{1}{2} \times \frac{1}{4} + 0.3 \times \frac{1}{3} = \frac{1}{3}.
\]

In Section 3.1, the receiver’s utility is \(\frac{1}{3}\) while \(S_1\) commits first and 0.4 while \(S_2\) commits first. In this example, simultaneous commitment (and signalling) grants the receiver the same utility as the case where \(S_1\) commits first. However, it is still a lower utility compared to the case where \(S_2\) commits first. We note that even though the commitments are made simultaneously, and signals are sent simultaneously, the equilibrium commitment pairs may not be unique when senders only have partial information about the state of the world. The non-uniqueness of equilibrium commitment pairs makes it difficult to make a fair comparison since equilibrium selection is also needed.

5.3 Algorithmic challenges for deriving the optimal commitments

Finally, we conclude by remarking that a general algorithm that solves the optimal commitments in information design problems with multiple senders where each sender obtains incomplete private information is challenging to develop. The reason is that the (required) level of inference depends on the information structure of the problem. Even when the commitment order is aligned with the signalling order, the backward-iteration algorithm presented in [18] cannot solve for the optimal commitments with partially informed senders. In general, deriving the optimal commitments demands iterative reasoning of the other sender’s optimal signalling strategy under different interim beliefs of states. This process is straightforward when senders’ information spaces are binary, but becomes cumbersome when senders’ information spaces grow, even from binary to ternary as in Example 4.1. We believe deriving a general algorithm that iteratively reasons senders’ optimal signalling strategies under incomplete information, will lead to further significant contributions to the field of information design, but this is beyond the scope of this work.
REFERENCES

[1] Daron Acemoglu, Ali Makhdoumi, Azarakhsh Malekian, and Asuman Ozdaglar. 2019. Too much data: Prices and inefficiencies in data markets. Technical Report. National Bureau of Economic Research.

[2] Pak Hung Au and Keiichi Kawai. 2020. Competitive information disclosure by multiple senders. Games and Economic Behavior 119 (2020), 56–78.

[3] Pak Hung Au and Keiichi Kawai. 2021. Competitive disclosure of correlated information. Economic Theory 72, 3 (2021), 767–799.

[4] Dirk Bergemann and Stephen Morris. 2016. Bayes correlated equilibrium and the comparison of information structures in games. Theoretical Economics 11, 2 (2016), 487–522.

[5] Dirk Bergemann and Stephen Morris. 2019. Information design: A unified perspective. Journal of Economic Literature 57, 1 (2019), 44–95.

[6] David Blackwell. 1953. Equivalent comparisons of experiments. The annals of mathematical statistics (1953), 265–272.

[7] Raphael Boleslavsky and Christopher Cotton. 2018. Limited capacity in project selection: Competition through evidence production. Economic Theory 65, 2 (2018), 385–421.

[8] Mireille Chiroleu-Assouline and Thomas P Lyon. 2020. Merchants of doubt: Corporate political action when NGO credibility is uncertain. Journal of Economics & Management Strategy 29, 2 (2020), 439–461.

[9] Vincent P Crawford and Joel Sobel. 1982. Strategic information transmission. Econometrica: Journal of the Econometric Society (1982), 1431–1451.

[10] Alireza Fallah, Ali Makhdoumi, Azarakhsh Malekian, and Asuman Ozdaglar. 2022. Optimal and Differentially Private Data Acquisition: Central and Local Mechanisms.

[11] Matthew Gentzkow and Emir Kamenica. 2016. Competition in persuasion. The Review of Economic Studies 84, 1 (2016), 300–322.

[12] Matthew Gentzkow and Emir Kamenica. 2017. Bayesian persuasion with multiple senders and rich signal spaces. Games and Economic Behavior 104 (2017), 411–429.

[13] Leonid Hurwicz and Stanley Reiter. 2006. Designing economic mechanisms. Cambridge University Press.

[14] Nicolas Inostroza and Alessandro Pavan. 2021. Persuasion in global games with application to stress testing. (2021).

[15] Emir Kamenica. 2019. Bayesian persuasion and information design. Annual Review of Economics 11 (2019), 249–272.

[16] Emir Kamenica and Matthew Gentzkow. 2011. Bayesian persuasion. American Economic Review 101, 6 (2011), 2590–2615.

[17] Fei Li and Peter Norman. 2018. On Bayesian persuasion with multiple senders. Economics Letters 170 (2018), 66–70.

[18] Fei Li and Peter Norman. 2018. Sequential persuasion. Available at SSRN 2952606 (2018).

[19] Roger B Myerson. 1981. Optimal auction design. Mathematics of operations research 6, 1 (1981), 58–73.

[20] Luis Rayo and Ilya Segal. 2010. Optimal information disclosure. Journal of political Economy 118, 5 (2010), 949–987.

[21] Michael Spence. 1978. Job market signaling. In Uncertainty in economics. Elsevier, 281–306.

6 APPENDIX: AN EXAMPLE JUSTIFYING PERMUTATION-FREE COMMITMENTS

There are four possible states of the world \(\Theta = \{TL, TR, BL, BR\} \) (top-bottom and left-right) with prior distribution depicted in Table 1a. Sender \(S_1 \) knows whether the state of the world is top or bottom \(I_1 = \{T, B\} \) and sender \(S_2 \) knows whether the state of the world is left or right \(I_2 = \{L, R\} \). \(S_1 \) can send signals \(\omega_1 \in \{\omega_{1,1}, \omega_{1,2}\} \) and \(S_2 \) can send signals \(\omega_2 \in \{\omega_{2,1}, \omega_{2,2}\} \). We assume that both senders’ utilities are as given in Table 6b, and this example requires sender \(S_2 \) to commit before \(S_1 \).

All participants’ utility functions and the (prior) state distribution are common knowledge.

Table 6. State distribution and senders’ utilities

	L	R
T	0.1	0.2
B	0.5	0.2

(a) Distribution of the states

\(a_{TL} \)	\(a_{TR} \)	\(a_{BL} \)	\(a_{BR} \)	
(\(U_{S_1}, U_{S_2} \))	2.0	4.2	3.0	0.3

(b) Utilities of senders

Given the prior and the utility functions, sender \(S_1 \) and \(S_2 \)’s objective functions are the following:

\[\Gamma_{S_1}^{opt} \in \arg\max_{\Gamma_1} \mathbb{E}_p[U_{S_1}[\Gamma_1^S]] \]
\[
s.t. \mathbb{E}_p[U_{S_1} | \Gamma^*_1(\Gamma^*_2)] \geq \mathbb{E}_p[U_{S_1} | \Gamma^*_1(\Gamma^*_2)],
\]
where \(\Gamma^*_1\) is a commitment that swaps the signals of \(\Gamma^*_1\), i.e.,
\[
\mathbb{P}_{\Gamma^*_1}(\omega_1|T) = \mathbb{P}_{\Gamma^*_1^f}(\omega_1|T) \text{ and } \mathbb{P}_{\Gamma^*_1}(\omega_1|B) = \mathbb{P}_{\Gamma^*_1^f}(\omega_1|B).
\]
\[
\Gamma^*_2 \in \arg \max_{\Gamma^*_2 \in \Gamma^*_2} \mathbb{E}_p[U_{S_2} | \Gamma^*_1(\Gamma^*_2)]
\]

Since \(S_1\) cannot threaten \(S_2\) via signal reordering, \(S_2\) can commit to signalling strategies depending on the realization of \(S_1\)’s signal. For simplicity of the representation, let’s assume \(\omega_{1,1}\) has higher posterior belief on \(S_1\)’s private information \(T\) than \(\omega_{1,2}\). \(S_2\)’s optimal commitment is the following:

- While observing \(\omega_{1,1}\), send \(\omega_{2,1}\) with probability 1 no matter what private information she knows.
- While observing \(\omega_{1,2}\) and given her private information is \(R\), send \(\omega_{2,1}\) with probability 1.
- While observing \(\omega_{1,2}\) and given her private information is \(L\), send signal \(\omega_{2,1}\) with probability \(0.4 - \epsilon\) and \(\omega_{2,2}\) with probability \(0.6 + \epsilon\), where \(\epsilon\) is infinitesimal, i.e., \(|\epsilon| \ll 1\).

Given \(S_2\)’s commitment above, the optimal commitment of \(S_1\) is the following:

- Given her private information \(T\), send \(\omega_{1,1}\).
- Given her private information \(B\), send \(\omega_{1,1}\) 40% of the time and and send \(\omega_{1,2}\) 60% of the time.

Given this pair of commitments, the expected utilities of all the agents are given by \((U_{S_1}, U_{S_2}, U_R) = (2.86, 1.88, 0.5)\).

However, when \(S_2\) cannot commit to permutation-free commitments, \(S_1\)’s objective function changes to the following
\[
\Gamma^*_1 \in \arg \max_{\Gamma^*_1} \mathbb{E}_p[U_{S_1} | \Gamma^*_1]
\]

If \(S_2\) commits to the same signalling strategy, \(S_1\) can simply swap \(\omega_{1,1}\) with \(\omega_{1,2}\) to get a higher expected utility. Under the threat of \(S_1\)’s reordering of signals, \(S_2\)’s commitment reduces to the following form. No matter the signal sent by \(S_1\), \(S_2\) commits to the following signalling scheme:

- When \(S_2\)’s private information is \(R\), send \(\omega_{2,1}\) with probability 1.
- When \(S_2\)’s private information is \(L\), send signal \(\omega_{2,1}\) with probability \(40\% - \epsilon\) of the time and \(\omega_{2,2}\) 60% + \(\epsilon\) of the time, where \(\epsilon\) is infinitesimal, i.e., \(|\epsilon| \ll 1\).

Under \(S_2\)’s commitment above, \(S_1\)’s optimal commitment stays the same. However, the expected utility of agents changes to \((U_{S_1}, U_{S_2}, U_R) = (2.74, 1.76, 0.56)\).

In this example, when permutation-free commitments are not enforced, \(S_2\) is under the threat of \(S_1\)’s reordering of signals, so her optimal strategy is to make her commitment independent of \(S_1\)’s signal realizations. Here, both senders suffer (utility losses) from the lack of permutation-free commitments.

7 Appendix: Proofs and Calculations

7.1 Proof of Proposition 1

Proof. According to condition 2, we have a signal \(\hat{\omega}_1\) which tells \(S_1\)’s private information is \(I_1\), i.e., \(\mathbb{P}(I_1|\hat{\omega}_1) = 1\). First, we prove \(S_1\) does not prefer sending the signal \(\hat{\omega}_1\). When \(S_1\) sends signal \(\hat{\omega}_1\), \(S_2\) knows \(S_1\)’s private information is \(I_1\). Let \(\Gamma^*_{I_1}(I_1)\) denote \(S_2\)’s optimal signalling strategy while receiving \(\hat{\omega}_1\), inequality (9) states \(S_1\)’s utility under action \(a_\hat{\omega}_1\) is higher than her expected utility conditional on her signal \(\hat{\omega}_1\). Thus, \(S_1\) prefers a mixture of her information set \(I_1\) and the information set which contains the collaborative state \(\hat{\theta}\), called \(\hat{I}_1\).
We notice that if S_2’s optimal signalling strategy while receiving $\hat{\omega}_1$ is not unique, the conditional expectation $E_{p, \Gamma_2^*(I_1)} [U_{S_1}(\theta, a^*(I_1, \omega_2)) | I_1]$ may not be well-defined since different S_2’s tie-breaking strategies may vary S_1’s expected utility. To deal with the non-uniqueness of $\Gamma_2^*(I_1)$, we assume the polar opposite preference ordering on the receiver’s possible optimal action set given S_1’s private information I_1, called $\Phi(I_1)$ in condition 3. Therefore, when S_2 is indifferent between two different actions a_m and a_n where $a_m, a_n \in \Phi(I_1)$, S_1 is indifferent between a_m and a_n too. Thus, the conditional expectation $E_{p, \Gamma_2^*(I_1)} [U_{S_1}(\theta, a^*(I_1, \omega_2)) | I_1]$ in inequality (9) is well-defined, and S_1 prefers a mixture of I_1 and \hat{I}_1 when the inequality (9) holds.

Next, we prove S_2 prefers a separation of I_1 and \hat{I}_1. Given assumption 4 in the problem formulation, where the true state can be revealed under both senders’ truth-telling strategies, S_2 knows the true state while observing the signal realization $\hat{\omega}_1$ and her private information I_2, and her optimal signalling strategy under $\hat{\omega}_1$ can be calculated directly via the concavification approach — this is equivalent to solving classic Bayesian persuasion problem in [16] with finite states. According to the inequality 8 stated in condition 1 and the definition of collaborative state, for every $\theta_k \in \hat{I}_1$, the following inequality holds:

$$U_{S_2}(\theta_k, a_{\theta_k}) < E_{p, \Gamma_2^*(I_1)} [U_{S_2}(\theta, a^*(I_1, \omega_2)) | I_1].$$

Thus, S_2 enjoys a higher expected utility while observing $\hat{\omega}_1$ than observing the signal telling her S_1’s private information is I_1. Thus, S_2 prefers a separation of I_1 and \hat{I}_1.

When condition 3 in Proposition 1 holds, i.e., preference orders of senders on $\Phi(I_1)$ are polar opposite, S_2’s expected-utility maximization strategy (via the concavification approach) will directly minimize S_1 expected utility when $\hat{\omega}_1$ is realized. Therefore, from S_1’s objective, S_1 should minimize the probability $F(\hat{\omega}_1)$ to reduce the probability where S_2 observes $\hat{\omega}_1$. Hence, S_1 will increase $F(\omega_1 | I_1)$ for every ω_1 such that $E_p[U_{S_1} | \omega_1] > E_p[U_{S_1} | \hat{\omega}_1]$. This includes the signal which suggests the receiver to take the collaborative action $a_{\hat{\phi}}$. Hence, when S_1 commits first, she will maximize the probability of suggesting the collaborative state $\hat{\theta}$ via mixing I_1 with \hat{I}_1. Since $\hat{\theta}$ is a collaborative state, S_2 will collaborate with S_1 while observing S_1’s signal which suggests $a_{\hat{\phi}}$.

However, when sender S_2 commits first, the inequality (8) stated in condition 1, i.e., $U_{S_2}(\hat{\theta}, a_\hat{\theta}) < E_{p, \Gamma_2^*(I_1)} [U_{S_2}(\theta, a^*(I_1, \omega_2)) | I_1]$, guarantees that S_2 prefers the realized signal $\hat{\omega}_1$ instead of the realized signal which suggests her to collaborate toward $\hat{\theta}$ via a mixture of I_1 and \hat{I}_1. Therefore, when sender S_2 commits first, she will commit to a signalling strategy which minimizes the probability of I_1 mixed with \hat{I}_1 (in order to increase the total probability of observing $\hat{\omega}_1$). Since condition 2 guarantees that $F(\omega_1) > 0$ for every optimal commitments, we will never fall into the corner case where S_1 and S_2 have an opposite preference on the mixture of I_1 and \hat{I}_1, but one of the sender’s strategy of minimizing/maximizing the mixture of I_1 and \hat{I}_1 cannot be achieved owing to the low value of $F(I_1)$ under the given prior. Hence, according to the opposite strategies of S_1 and S_2 on the mixture of I_1 and \hat{I}_1, the commitment order matters.

\[\square\]

7.2 Proof of Claim 1

Proof. We prove this claim by contradiction. First, assume that both conditions are violated and the signal $\hat{\omega}_1$ revealing I_1 is the signal realization which gives S_1 the highest expected utility under an equilibrium derived by solving the objectives stated in Section 2.4, where each sender’s commitment is an optimal one under the given commitment order. Then, let signal ω_1 represents the signal that S_1 sends when the true state is $\hat{\theta}$, the violation of condition 2 guarantees that the following inequality holds

$$E_p[U_{S_1}(a^*_1, \Gamma_2(\omega_1, \omega_2))] > E_p[U_{S_1}(a^*_1, \Gamma_2(\omega_1, \omega_2))].$$
where $a^*_{\Gamma_1^*,\Gamma_2^*}(\omega_1, \omega_2)$ is the best response of the receiver under a realized pair of signal ω_1, ω_2 and both senders’ commitments Γ_1^* and Γ_2^*. Since the signal $\hat{\omega}_1$ reveals the private signal I_1, we can construct another commitment Γ_1' below, where $\epsilon \ll 1$:

1. $P(\hat{\omega}_1') = P(\hat{\omega}_1) + \epsilon P(\hat{\omega}_1)$ and $P(\theta|\hat{\omega}_1') = \frac{1-\epsilon}{1+\epsilon} P(\theta|\hat{\omega}_1) + \frac{\epsilon}{1+\epsilon} P(\theta|\hat{\omega}_1)$ for all $\theta \in \Theta$;
2. $P(\hat{\omega}_1') = (1-\epsilon)P(\hat{\omega}_1)$, and the interim beliefs of ω_1' and $\hat{\omega}_1$ are the same, i.e., $P_{\theta,\Gamma_1}(\theta|\hat{\omega}_1') = P_{\theta,\Gamma_1}(\theta|\hat{\omega}_1)$ for all $\theta \in \Theta$;
3. For every ω_1 under the commitment Γ_1' such that $\omega_1 \neq \hat{\omega}_1$ and $\omega_1 \neq \hat{\omega}_1$, $P_{\theta,\Gamma_1}(\omega_1) = P_{\theta,\Gamma_1}(\omega_1)$ and $P_{\theta,\Gamma_1}(\theta|\omega_1) = P_{\theta,\Gamma_1}(\theta|\omega_1)$ for all $\theta \in \Theta$.

As assumed earlier, $\hat{\omega}_1$ is the signal which gives S_1 the highest expected utility with $P(I_1|\hat{\omega}_1) = 1$, and ω_1 is the signal S_1 sends to collaborate with S_2 on persuading the receiver to take $a_{\hat{\theta}}$. Given the inequality (9), S_2’s optimal signalling strategy belongs to one of the following two cases:

Case 1: S_2 cannot elicit the collaborative state $\hat{\theta}$ under the signal $\hat{\omega}_1'$.

In this case, because $\epsilon \ll 1$, the optimal commitment of sender S_2 stays unchanged between Γ_1^* and Γ_1' since S_2 cannot successfully persuade the receiver to take $a_{\hat{\theta}}$ and she has already chosen her optimal partition of I_1 in her commitment. Therefore, when $\epsilon \ll 1$, changing the commitment from Γ_1^* to Γ_1' in this case will not affect S_2’s optimal signalling strategy. However, the revised commitment Γ_1' has a higher total probability of ω_1' compared to the signal $\hat{\omega}_1$ under Γ_1^*. Given the inequality $E_p[U_{S_1}(a^*_{\Gamma_1^*,\Gamma_2^*}(\hat{\omega}_1, \omega_2))] > E_p[U_{S_1}(a^*_{\Gamma_1',\Gamma_2^*}(\hat{\omega}_1, \omega_2))]$ and the knowledge that both the optimal commitments of S_2 and the receiver’s best response stay unchanged, S_1 will enjoy a higher expected utility under the the commitment Γ_1', which contradicts the assumption that Γ_1^* is the optimal commitment of S_1. Hence, one of conditions in Claim 1 must hold in this case.

Case 2: S_2 can elicit the collaborative state $\hat{\theta}$ under the signal $\hat{\omega}_1'$.

This case occurs when S_2’s private information set $I_2 \ni \hat{\theta}$ contains no state that belongs to S_1’s information set I_1, i.e., $\theta_1 \notin I_2, \forall \theta_1 \in I_1, \hat{\theta} \in I_2$. Therefore, even under the signal $\hat{\omega}_1'$ which mixes $\hat{\omega}_1$ with the signal containing the collaborative states, S_2 can still persuade the receiver to take $a_{\hat{\theta}}$ with some probability (according to the prior). Besides, persuading the receiver to take $a_{\hat{\theta}}$ benefits both senders. However, after maximizing the signal S_2 used to persuade the action $a_{\hat{\theta}}$, S_2’s optimal signalling strategy conditional on $a_{\hat{\theta}}$ not sent is the same as her optimal signalling strategy while receiving $\hat{\omega}_1$. Therefore, S_2’s optimal signalling changes by a small amount (because $\epsilon \ll 1$). Now, since $\hat{\theta}$ is a collaborative state, S_2’s adjustment on her optimal signalling strategy from $\hat{\omega}_1$ under Γ_1^* to ω_1' under Γ_1' not only benefits her but also benefits S_1. Moreover, after maximizing the probability of the signal persuading $a_{\hat{\theta}}$, S_2’s optimal signalling strategy stays unchanged (reduced to the case 1 scenario). Hence, S_1 enjoys a higher expected utility under the the commitment Γ_1' in this case (because S_2’s optimal signalling strategy gives S_1 a higher utility than the utility in case 1, and S_1 enjoys a higher expected utility in case 1).

In both cases, S_1’s expected utility increases. This violates the assumption that S_1 has the highest utility in $\hat{\omega}_1$ when condition 2 is violated. Hence, one of the conditions in Claim 1 must hold.

7.3 Proof of Theorem 1

First, let us review the statements in condition 1 for the readability of the proof.

Condition 1: There exist two parameters $\alpha > \beta > 0$ and a signalling strategy \hat{I}_2 satisfying the following conditions:

(a) $G(p, I_1^\alpha + \alpha I_2^\beta) = G(p, I_1^\alpha + \beta I_2^\beta)$,
Let ω_1^a, ω_1^b be two mock signals of S_1 such that $\mathbb{P}(I_1^y|\omega_1^a) = \frac{1}{1+\alpha}$, $\mathbb{P}(I_1^y|\omega_1^b) = \frac{\alpha}{1+\beta}$, and $\mathbb{P}(I_1^y|\omega_1^b) = \frac{\beta}{1+\beta}$, then
\[
\hat{I}_2(p, \omega_1^b) \in G(p, I_1^x + \beta I_1^y) \text{ and } \hat{I}_2(p, \omega_1^a) \notin G(p, I_1^x + \alpha I_1^y).
\]

\[
\mathbb{E}_p[U_{S_1}|\omega_1^a, \hat{I}_2] < \frac{\mathbb{E}_p[U_{S_1}|\omega_1^a, \hat{I}_2] + (\alpha - \beta) \mathbb{E}_p[U_{S_1}|I_1^y]}{\mathbb{E}_p[U_{S_1}|I_1^y] + \mathbb{E}_p[U_{S_1}|\omega_1^b, \hat{I}_2]} \leq \mathbb{E}_p[U_{S_1}|I_1^y, \hat{I}_2],
\]

\[
\mathbb{E}_p[U_{S_1}|\omega_1^a, G(p, I_1^x + \beta I_1^y)] < \mathbb{E}_p[U_{S_1}|I_1^y, G(p, I_1^x + \beta I_1^y)].
\]

Given (a), if S_1 commits first and the two mock signals ω_1^a, ω_1^b described in (b) are used in S_1’s signalling strategy, $G(p, I_1^x + \alpha I_1^y) = G(p, I_1^x + \beta I_1^y)$ states that the set of S_2’s optimal signalling strategies under ω_1^a is the same as the set of S_2’s optimal signalling strategies under ω_1^b. In other words, ω_1^a and ω_1^b are two different mixing schemes using S_1’s information sets I_1^x and I_1^y that elicit the same response from S_2. According to the statement of condition 2, i.e., $\min_{g \in G(p, I_1^x)} \mathbb{E}_{p,g}[U_{S_1}|I_1^x] \geq \max_{g' \in G(p, I_1^y)} \mathbb{E}_{p,g'}[U_{S_1}|I_1^y]$, when S_2’s action and the receiver’s action both stay unchanged, S_1 prefers signal ω_1^a over signal ω_1^b. Given (a), if S_1 commits first and the two mock signals ω_1^a, ω_1^b described in (b) are used in S_1’s signalling strategy, $G(p, I_1^x + \alpha I_1^y) = G(p, I_1^x + \beta I_1^y)$ states that the set of S_2’s optimal signalling strategies under ω_1^a is the same as the set of S_2’s optimal signalling strategies under ω_1^b. This implies that the receiver takes action $a \in I_1^x$ with a higher total probability. Based on the inequality $\min_{g \in G(p, I_1^x)} \mathbb{E}_{p,g}[U_{S_1}|I_1^x] \geq \max_{g' \in G(p, I_1^y)} \mathbb{E}_{p,g'}[U_{S_1}|I_1^y]$, increasing the total probability of a set of actions $a \in I_1^x$ by reducing the amount of probability on a set of actions $a' \in I_1^y$ benefits S_1; second, suppose the receiver takes action $a' \in I_1^y$ under both signal ω_1^a and signal ω_1^b, S_1 still prefers using the signal ω_1^a when condition 2 holds, since under this circumstance signal ω_1^a uses less probability mass of states in I_1^x than signal ω_1^b. In short, combining the statements in condition 1(a) and condition 2, we know S_1 prefers sending signal ω_1^a over signal ω_1^b. Furthermore, when we consider the statements in condition 1(c) and 2, the inequality in 1(c) implies S_1 can persuade the receiver to take action $a \in I_1^x$ under signal ω_1^b. (Otherwise, the inequality is violated since the receiver will take the same action $a' \in I_1^y$ under signal ω_1^a, signal ω_1^b, and the signal which reveals I_1^y.) Therefore, combining statements in condition 1(a), condition 1(c), and condition 2, we know S_1 can persuade the receiver taking actions $a \in I_1^x$ under signal ω_1^a and signal ω_1^b, and S_1 prefers sending signal ω_1^a.

Now let’s explore S_2’s preference on signals/information sets. Given condition 1(d), the inequality $\mathbb{E}_p[U_{S_1}|\omega_1^a, G(p, I_1^x + \beta I_1^y)] < \mathbb{E}_p[U_{S_1}|I_1^y, G(p, I_1^y)]$ states that S_2 prefers a (pure) signal elicitng S_1’s information I_1^y over a mixed signal ω_1^b. Moreover, condition 1(a) states that the set of S_2 optimal signalling strategies under ω_1^a is the same as the set of S_2 optimal signalling strategies under ω_1^b. Thus, with $\alpha > \beta$ and the inferred fact that S_1 can persuade the receiver taking action $a \in I_1^x$ under signal ω_1^a and signal ω_1^b, we can derive the inequality $\mathbb{E}_p[U_{S_1}|\omega_1^a, G(p, I_1^x + \alpha I_1^y)] < \mathbb{E}_p[U_{S_1}|I_1^y, G(p, I_1^y)]$ from $\mathbb{E}_p[U_{S_1}|\omega_1^a, G(p, I_1^x + \beta I_1^y)] < \mathbb{E}_p[U_{S_1}|I_1^y, G(p, I_1^y)]$. Combining the two inequalities derived above, we can write the following inequality:
\[
\max \left\{ \mathbb{E}_p[U_{S_1}|\omega_1^a, G(p, I_1^x + \alpha I_1^y)], \mathbb{E}_p[U_{S_1}|\omega_1^b, G(p, I_1^x + \beta I_1^y)] \right\} < \mathbb{E}_p[U_{S_1}|I_1^y, G(p, I_1^y)].
\]

Given the inequality (12), we can conclude that S_2 prefers a separation of S_1’s information sets I_1^x and I_1^y.

Now, condition 1(b) and condition 1(c) guarantee the existence of a signalling strategy \hat{I}_2 satisfying the following three conditions:

• $\hat{I}_2(p, \omega_1^b) \in G(p, I_1^x + \beta I_1^y)$,
when she commits first, and this makes the commitment order matter. Finally, condition 3 serves (signalling strategies that are incentive-compatible to the receiver). Given the first two conditions, if

\[S_1 \]

Therefore, \(\hat{I}_2 \) is a signalling strategy that can threaten \(S_1 \). Given \(\hat{I}_2 \), \(S_1 \) is better off by committing to signalling strategies using signal \(\omega_1^0 \) instead of signal \(\omega_1^\alpha \), guaranteed by the condition 1.(c). This increases the total probability of the signal which elicits \(S_1 \)'s information \(I_1^y \), and then increases \(S_2 \)'s expected utility (because \(S_2 \) prefers separation over mixture on the information sets \(I_1^\alpha \) and \(I_1^y \)). In summary, given conditions (a)-(d) in condition 1 and the inequality in condition 2, \(S_2 \) has a conflict of interest with \(S_1 \) on the mixture of \(I_1^\alpha \) and \(I_1^y \). However, \(S_2 \) is willing to (partially) collaborate with \(S_1 \) under \(I_1^\alpha \) when \(S_2 \) has no alternatives (because \(G(p, I_1^\alpha + \alpha I_1^y) = G(p, I_1^\alpha + \beta I_1^y) \)).

At a high level, a collaboration under \(I_1^\alpha \) benefits both \(S_1 \) and \(S_2 \) no matter who commits first. However, \(S_1 \) and \(S_2 \) hold different opinions on the scale of collaboration, where \(S_1 \) want to maximize the total probability of collaboration, but \(S_2 \) only wants to collaborate when she has no alternative (signalling strategies that are incentive-compatible to the receiver). Given the first two conditions, if the prior distribution supports it, then both senders will collaborate on \(I_1^\alpha \). Condition 1.(b) and 1.(c) guarantees that \(S_2 \) can construct a credible threat to reduce the total probability of collaboration when she commits first, and this makes the commitment order matter. Finally, condition 3 serves as a regularity condition which ensures that the prior distribution supports the collaboration and the (potential) credible threat. Hence, when three conditions in Theorem 1 hold, the commitment order matters.

7.4 Proof of Theorem 2

The idea of this proof is to prove that the commitment order may matter if one of the conditions is not violated.

First, if the receiver’s tie-breaking rule is belief-dependent, the sender who commits later can tailor the posterior beliefs to make the tie-breaking rule favor her. Hence, unless all tie-breaking decisions made by the receiver are indifferent to both senders \(S_1 \) and \(S_2 \), both prefer to commit last. In order to verify whether the commitment order matters when condition 1 holds, we assume that condition 2 is violated.

Suppose the receiver’s tie-breaking rule is belief independent; we then prove that satisfying condition 1 may make the commitment order matters. The idea of proving the above statement is to construct the minimum requirements such that (partial) collaboration and credible threats can both occur. We will illustrate the conditions required for a (partial) collaboration and a credible threat below, respectively.

First, we derive the minimum requirement of a (partial) collaboration. \(S_1 \) and \(S_2 \) will collaborate when their preferences (ordering) on at least a pair of states align, called \(\theta_\alpha \) and \(\theta_\beta \) hereafter for simplicity of representation. Moreover, if collaboration occurs in \(\theta_\alpha \) and \(\theta_\beta \), \(S_1 \) must be unable to distinguish \(\theta_\alpha \) and \(\theta_\beta \) using her private information, i.e., \(\exists! I_1^\alpha \ni \theta_\alpha, \theta_\beta \). Otherwise, \(S_1 \) will separate these two states herself (if it is best for her) and no collaboration occurs. Given assumption 4 in this chapter, \(S_2 \) can learn the true state via her private information when \(S_1 \) reveals her information truthfully. This demands \(\theta_\alpha \) and \(\theta_\beta \) must belong to different information sets of \(S_2 \). To make a collaboration on \(\theta_\alpha \) and \(\theta_\beta \) possible, \(S_1 \) and \(S_2 \) must have aligned preference orders on these two states. Without loss of generality, we assume \(U_{S_1}(a_\alpha) > U_{S_1}(a_\beta) \) and \(U_{S_2}(a_\alpha) > U_{S_2}(a_\beta) \). Collecting the points together, to construct a (partial) collaboration, we need the following conditions to hold:

- \(\exists! I_1^\alpha \ni \theta_\alpha, \theta_\beta \)
- \(\exists! I_2^\alpha \ni \theta_\alpha \) and \(\exists! I_2^\beta \ni \theta_\beta \) such that \(I_2^\alpha \neq I_2^\beta \).
- \(U_{S_1}(a_\alpha) > U_{S_1}(a_\beta) \)
Next, we derive the minimum requirements for a (potential) conflict of interest. Before the analysis, we pause to note that a conflict of interest is not guaranteed under our requirements, because we do not specify the utilities of S_1 and S_2 on the receiver’s best-response action corresponding to other states within the same information set of S_1 (if any). Precisely, when I_1^y is the information set involved in a (potential) conflict of interest between senders, we do not specify $U_{S_1}(\theta_r, a_r)$ and $U_{S_2}(\theta_r, a_r)$ for every state $\theta_r \in I_1^y$ not belonging to the set of states where we construct a (potential) conflict of interest.

A (potential) conflict of interest arises when S_1 and S_2 prefer different mixed strategies on a set of S_1’s information sets. Since we are interested in the minimum requirements, we search for conflict of interests on a pair of information sets, called I_1^x and I_1^y, where the information set I_1^x is the same set where collaboration may occur. (Because we demand the occurrence of collaboration and a conflict of interests. If only collaborations occur, S_1 and S_2 can reach a consensus on their (collectively) optimal commitments. If only a conflict of interests occurs, S_1 will commit to a maximin strategy, and S_2 will commit to a minimax strategy. This is because S_1 always sends signals before S_2.)

Before constructing a (potential) conflict of interest, we assume θ_r is a state that belongs to S_1’s information I_1^y. As presented earlier, a (potential) conflict of interest requires that S_1 and S_2 have different preference on a mixture of I_1^x and I_1^y. Here we assume S_1 prefers a mixture over separation and S_2 prefers a separation over mixture.

Since S_1 prefers a mixture of I_1^x and I_1^y, there must exists a state $S_\gamma \in I_1^y$ such that $U_{S_1}(a_\alpha) > U_{S_1}(a_\gamma)$, where $\theta_\alpha \in I_1^x$ as used earlier. Similarly, when S_2 prefers a separation over a mixture, there must exists a state $S_\gamma \in I_1^y$ such that $U_{S_2}(a_\alpha) < U_{S_2}(a_\gamma)$. To avoid a violation of assumption 1, i.e., each sender only has partial information about the state of the world, in a ternary state space corner case, we let θ_γ belongs to either I_2^x or I_2^y. To sum up, to construct a minimum (potential) conflict of interest on top of a partial collaboration, the following additional conditions hold:

- $U_{S_1}(a_\alpha) > U_{S_1}(a_\gamma)$
- $U_{S_2}(a_\alpha) < U_{S_2}(a_\gamma)$
- Either $\theta_\gamma \in I_2^x$ or $\theta_\gamma \in I_2^y$.

Now, we have constructed the minimum requirement of collaboration and the minimum requirement of a conflict of interest. The collection of information structure requirements is the statement of condition 1(a) in Theorem 2, and the requirements on S_1’s and S_2’s utilities are summarized in the inequalities in condition 1(b). Therefore, when condition 1 is satisfied, the commitment order may matter because of the co-occurrence of collaboration and a conflict of interest. Thus, when both conditions are violated, the commitment order does not matter.

7.5 Utility calculation of Example 3.1, Sender 1 commits first

\[
\begin{align*}
\mathbb{E}_p[U_{S_1}] &= (0.2 + 0.3 \times \frac{2}{3} + 0.4 \times \frac{2}{3} \times \frac{3}{4}) \times 2 + 0 = 1.2 \\
\mathbb{E}_p[U_R] &= 0.2 + 0.3 \times \frac{1}{3} + 0.4 \times \frac{1}{3} \times \frac{1}{4} = \frac{1}{3}
\end{align*}
\]

(13) For the opposite conflict of interest, i.e., S_1 prefers a separation over mixture and Sender2 prefers a mixture over separation, the whole analysis is exactly analogous with a swap of senders’ utility inequalities. The inequalities restricting S_1 will now restrict S_2, and vice versa. In short, we just swap S_1 with S_2 in condition 1(b).
7.6 Utility calculation of Example 3.1, Sender 2 commits first

\[E_p[U_{S_1}] = (0.2 + 0.3 \times \frac{1}{2} + 0.4 \times \frac{1}{2}) \times 2 + 0 = 1.1 \] (16)

\[E_p[U_{S_2}] = (0.2 + 0.3 \times \frac{1}{2} + 0.4 \times \frac{1}{2}) \times 2 + \frac{1}{2} \times (0.3 + 0.4 \times \frac{3}{4}) \times 3 \]

\[= 1.1 + 0.9 = 2 \] (17)

\[E_p[U_R] = 0.2 + 0.3 \times \frac{1}{2} + 0.4 \times \frac{1}{2} \times \frac{1}{4} = 0.4 \] (18)

7.7 Utility calculation of Example 4.1, Sender 1 commits first

\[E_p[U_{S_1}] = (0.05 + 0.05 + 0.03 + 0.05 + 0.005 + 0.05 + 0.03) \times 5 \]

\[+ (0.09 \times 0.54 + 0.15 \times 0.9 + 0.25 \times 0.54 + 0.15 \times 0.9) \times 2 \]

\[+ (0.25 \times 0.4 + 0.09 \times 0.46) + 0.03 \times 2 = 2.4336 \] (19)

\[E_p[U_{S_2}] = (0.05 + 0.05 + 0.03 + 0.05 + 0.005 + 0.05 + 0.03) \times 5 \]

\[+ (0.09 \times 0.54 + 0.15 \times 0.9 + 0.25 \times 0.54 + 0.15 \times 0.9) \times 2 \]

\[+ (0.015 \times 4 + 0.09 \times 0.06) \times 3 + 0.03 \times 2 \times 4 + 0.02 \]

\[= 2.6884 \] (20)

\[E_p[U_R] = 0.05 + 0.02 \times 0.75 + 0.2 \times 0.75 \times 0.9 + 0.12 \times 0.75 \times 0.36 \]

\[+ 0.35 \times \frac{1}{7} \times 0.4 + 0.21 \times \frac{1}{7} \approx 0.286. \] (21)

7.8 Utility calculation of Example 4.1, Sender 2 commits first

\[E_p[U_{S_1}] = (0.05 + 0.05 + 0.03 + 0.05 + 0.005 + 0.05 + 0.03) \times 5 \]

\[+ (0.09 \times 0.9 + 0.15 \times 0.9 + 0.15 \times 0.9 + 0.09 \times 0.9) \times 2 \]

\[+ (0.15 \times 0.6 + 0.09) = 2.207 \] (22)

\[E_p[U_{S_2}] = (0.05 + 0.05 + 0.03 + 0.05 + 0.005 + 0.05 + 0.03) \times 5 \]

\[+ (0.09 \times 0.9 + 0.15 \times 0.9 + 0.15 \times 0.9 + 0.09 \times 0.9) \times 2 \]

\[+ (0.015 \times 3 + 0.009 \times 2) \times 3 + 0.09 \times 2 \times 4 + 0.06 = 3.158 \] (23)

\[E_p[U_R] = 0.05 + 0.02 \times 0.75 + 0.2 \times 0.75 \times 0.9 \]

\[+ 0.35 \times \frac{3}{7} \times 0.4 + 0.21 \times \frac{3}{7} = 0.35. \] (24)