ON BLOCH NORM AND BOHR PHENOMENON FOR SIMPLY CONNECTED DOMAINS

VASUDEVARAO ALLU AND HIMADRI HALDER

ABSTRACT. In this article, we introduce the class $B_{H,\Omega}(\alpha)$ of harmonic α-Bloch-type mappings on Ω as a generalization of the class $B_{H,\Omega}(\alpha)$ of harmonic α-Bloch mappings on Ω, where Ω is arbitrary proper simply connected domain in the complex plane. We study several interesting properties of the classes $B_{H,\Omega}(\alpha)$ and $B_{H,\Omega}(\alpha)$ on arbitrary proper simply connected domain Ω and on the shifted disk Ω_γ, containing \mathbb{D}, where

$$\Omega_\gamma := \left\{ z \in \mathbb{C} : \left| z + \frac{\gamma}{1-\gamma} \right| < \frac{1}{1-\gamma} \right\}$$

and $0 \leq \gamma < 1$. We establish the Landau’s theorem for the harmonic Bloch space $B_{H,\Omega}(\alpha)$ on the shifted disk Ω_γ. For $f \in B_{H,\Omega}(\alpha)$ (respectively $B_{H,\Omega}(\alpha)$) of the form $f(z) = h(z) + g(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n$ in \mathbb{D} with Bloch norm $\|f\|_{H,\Omega,\alpha} \leq 1$ (respectively $\|f\|_{H,\Omega,\alpha} \leq 1$), we define the Bloch-Bohr radius for the space $B_{H,\Omega}(\alpha)$ (respectively $B_{H,\Omega}(\alpha)$) to be the largest radius $r_{\alpha,f} \in (0, 1)$ such that $\sum_{n=0}^{\infty} |a_n| + |b_n| r^{n} \leq 1$ for $r \leq r_{\alpha,f}$ and for all $f \in B_{H,\Omega}(\alpha)$ (respectively $B_{H,\Omega}(\alpha)$). We investigate Bloch-Bohr radius for the classes $B_{H,\Omega}(\alpha)$ and $B_{H,\Omega}(\alpha)$ on simply connected domain Ω containing \mathbb{D}.

1. INTRODUCTION

The Bloch spaces, pre-schwarzian and schwarzian norm, Bohr phenomenon and their various generalizations have become a central object of study and several outstanding problems remain unsolved in classical geometric function theory of the open unit disk $\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}$ in the complex plane \mathbb{C}. For $\alpha \in (0, \infty)$, an analytic function f in \mathbb{D} is called a α-Bloch function if

$$\beta(\alpha) := \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty.$$

The space of all α-Bloch functions is denoted by $B(\alpha)$. The space $B(\alpha)$ is a Banach space with respect to the Bloch norm $\| . \|_{B,\alpha}$, which is defined by $\|f\|_{B,\alpha} = |f(0)| + \beta(\alpha)$. The α-Bloch space is a generalization of classical Bloch space $B(1)$.

The definition of α-Bloch space can be generalized to an arbitrary proper simply connected domain Ω in \mathbb{C} by means of hyperbolic metric. The hyperbolic metric $\lambda_\Omega|dz|$ of Ω is defined by $\lambda_\Omega(z) = 1/(1 - |z|^2)$, $z \in \mathbb{D}$. Then the equivalent form of the norm $\beta(\alpha)$ in terms of hyperbolic density becomes

$$\beta(\alpha) = \sup_{z \in \mathbb{D}} \frac{|f'(z)|}{\lambda_\Omega^\alpha(z)}.$$

Let $\Omega \subseteq \mathbb{C}$ be a proper simply connected domain and $f : \Omega \to \mathbb{D}$ be a conformal mapping of \mathbb{D}. Then the hyperbolic metric $\lambda_\Omega(z)|dz|$ of Ω is defined by

$$\lambda_\Omega(z) := \lambda_\Omega(f(z))|f'(z)|, \quad z \in \Omega.$$

(1.1)
The definition \[\Box\text{1.1}\] is independent of the choice of conformal mapping of \(\Omega\) onto \(\mathbb{D}\). Let \(f\) be an analytic function in \(\Omega \subseteq \mathbb{C}\). Then \(f\) is said to be an \(\alpha\)-Bloch function in \(\Omega\) if

\[
\beta_\Omega(\alpha) := \sup_{z \in \Omega} |f'(z)| < \infty
\]

and the space of all \(\alpha\)-Bloch functions is denoted by \(B_\Omega(\alpha)\). We define the norm on \(B_\Omega(\alpha)\) by \(||f||_{\Omega,\alpha} = |f(0)| + \beta_\Omega(\alpha)\).

A complex-valued twice continuously differentiable function \(f\) defined in a simply connected domain \(\Omega \subseteq \mathbb{C}\) is said to be harmonic in \(\Omega\) if \(\Delta f = 4f_{zz} = 0\) for all \(z \in \Omega\), where \(\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2\). It is well-known that every harmonic mapping \(f\) in \(\Omega\) has the canonical decomposition \(f = h + \overline{g}\), where \(h\) and \(g\) are analytic functions in \(\Omega\) with \(g(0) = 0\). The Jacobian of \(f\) is defined by \(J_f = |h'|^2 - |g'|^2\). The function \(f = h + \overline{g}\) is locally univalent and sense-preserving in \(\Omega\) if, and only if, \(J_f > 0\) in \(\Omega\) i.e. \(|h'| > |g'|\) or \(|\omega_f| < 1\) in \(\Omega\), where \(\omega_f = g'/h'\) is the dilatation of \(f\).

For a given \(\alpha \in (0, \infty)\), a harmonic mapping \(f = h + \overline{g}\) in \(\mathbb{D}\) is called an \(\alpha\)-Bloch mapping if

\[
\beta_H(\alpha) := \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha (|h'(z)| + |g'(z)|) < \infty.
\]

Then \(\beta_H(\alpha)\) defines a semi-norm, and the space equipped with the norm \(||f||_{H,\alpha} = |f(0)| + \beta_H(\alpha)\) is called the harmonic \(\alpha\)-Bloch space, denoted by \(B_H(\alpha)\). The space \(B_H(\alpha)\) is a Banach space with respect to the norm \(||.||_{H,\beta,\alpha}\). In particular, when \(g \equiv 0\), the space \(B_H(\alpha)\) coincides with \(B(\alpha)\). Thus, \(B_H(\alpha)\) is a generalization of \(B(\alpha)\). In 1989, Colona \[\Box\text{29}\] studied extensively the space \(B_H(1)\), which is a generalization of the classical Bloch space \(B(1)\). The harmonic \(\alpha\)-Bloch space \(B_H(\alpha)\) is a generalization of \(B_H(1)\) (see \[\Box\text{27}\]). Motivated by the well-known results on analytic Bloch space, in 2016, Efraimidis et al. \[\Box\text{33}\] introduced harmonic 1-Bloch-type mappings. For a given \(\alpha \in (0, \infty)\), a harmonic mapping \(f\) in \(\mathbb{D}\) is called a harmonic \(\alpha\)-Bloch-type mapping if

\[
\beta^*_H(\alpha) := \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha \sqrt{|J_f(z)|} < \infty,
\]

where \(J_f\) is the Jacobian of \(f\) defined by \(J_f(z) = |h'(z)|^2 - |g'(z)|^2\). Let \(B^*_H(\alpha)\) be the space of all \(\alpha\)-Bloch-type mappings and \(||f||_{H,\alpha} := |f(0)| + \beta^*_H(\alpha)\) be the pseudo-norm of \(f\).

Motivated by the \(\alpha\)-Bloch mappings and \(\alpha\)-Bloch-type mappings in \(\mathbb{D}\), in this paper, we consider the \(\alpha\)-Bloch mappings and \(\alpha\)-Bloch-type mappings in an arbitrary simply connected domain \(\Omega \subseteq \mathbb{C}\).

Definition 1.1. For a given \(\alpha \in (0, \infty)\), a harmonic mapping \(f\) in a simply connected domain \(\Omega\) is called a harmonic \(\alpha\)-Bloch mapping if

\[
\beta_{\Omega,\alpha}(\alpha) := \sup_{z \in \Omega} \frac{|h'(z)| + |g'(z)|}{\lambda^\alpha_H(z)} < \infty.
\]

We define the class of all \(\alpha\)-Bloch mappings by \(B_{\Omega,\alpha}(\alpha)\) and the Bloch norm is defined by \(||f||_{\Omega,\alpha} := |f(0)| + \beta_{\Omega,\alpha}(\alpha)\).

Definition 1.2. For a given \(\alpha \in (0, \infty)\), a harmonic mapping \(f\) in a simply connected domain \(\Omega\) is called a harmonic \(\alpha\)-Bloch-type mapping if

\[
\beta^*_{\Omega,\alpha}(\alpha) := \sup_{z \in \Omega} \frac{\sqrt{|J_f(z)|}}{\lambda^\alpha_H(z)} < \infty.
\]
We define the class of all α-Bloch-type mappings by $B_{H,\Omega}^\ast(\alpha)$ and we denote the pseudonorm by $\|f\|_{H,\Omega,\alpha} := |f(0)| + \beta_{H,\Omega}(\alpha)$. Observe that for $\Omega = \mathbb{D}$, $B_{H,\Omega}(\alpha)$ and $B_{H,\Omega}^\ast(\alpha)$ coincide with the spaces $B_{H}(\alpha)$ and $B_{H}^\ast(\alpha)$ respectively. It is important to note that

$$\frac{\sqrt{|f_f(z)|}}{\lambda_\alpha^p(z)} \leq |h'(z)| + |g'(z)| \quad \text{for } z \in \mathbb{D},$$

which clearly shows that $B_{H,\Omega}(\alpha) \subseteq B_{H,\Omega}^\ast(\alpha)$ and hence, $B_{H,\Omega}^\ast(\alpha)$ is a generalization of $B_{H,\Omega}(\alpha)$. In particular, when $g \equiv 0 \text{ i.e.}, f$ is analytic in Ω, the spaces $B_{H,\Omega}(\alpha)$ and $B_{H,\Omega}^\ast(\alpha)$ coincide with analytic Bloch space $B_{\Omega}(\alpha)$. Therefore, we have

$$\|f\|_{H,\Omega,\alpha} = \|f\|_{H,\Omega,\alpha} = \|f\|_{\Omega,\alpha}.$$

Bohr’s famous power series theorem \cite{24} asserts that if f is an analytic function in \mathbb{D} with the power series expansion $f(z) = \sum_{n=0}^\infty a_n z^n$ in \mathbb{D} such that $|f(z)| < 1$, then

$$\sum_{n=0}^\infty |a_n|^n \leq 1 \text{ for } |z| = r \leq 1/3.$$

M. Riesz, Schur, and Weiner \cite{46} have independently shown that $1/3$ is the best possible constant. The inequality \eqref{1.2} is usually known as Bohr inequality and the constant $1/3$ is the Bohr radius for the class of analytic functions whose modulus is less than 1.

In 1995, Dixon \cite{32} used Bohr inequality in connection with the long-standing open problem of characterizing Banach algebras satisfying the von Neumann inequality. In 1997, Boas and Khavinson \cite{23} extended the Bohr inequality \eqref{1.2} to several complex variables. Indeed, Boas and Khavinson \cite{23} have introduced the Bohr radius K_n for the Hardy space $H^\infty(\mathbb{D}^n)$ of bounded holomorphic functions on the n-dimensional polydisc and proved that, if $n > 1$, then

$$\frac{1}{3\sqrt{n}} < K_n < \frac{2\sqrt{\log n}}{\sqrt{n}}.$$

The article \cite{23} by Boas and Khavinson, is a source of inspiration for many subsequent papers, connecting the asymptotic behaviour of K_n to various problems in functional analysis, for example, geometry of Banach spaces, unconditional basis constant of spaces of polynomials. Thus, in the recent years, there has been a big interest in determining the behaviour of K_n for the large values of n. In 2006, Defant and Frerick \cite{30} improved the left inequality of \eqref{1.3} to $K_n \geq c\sqrt{\log n/(n\log\log n)}$. Using the hypercontractivity of the polynomial Bohrenblust-Hille inequality, Defant et al. \cite{31} have proved that

$$K_n = b_n \sqrt{\frac{\log n}{n}} \quad \text{with} \quad \frac{1}{\sqrt{2}} + o(1) \leq b_n \leq 2.$$

In 2014, Bayart et al. \cite{19} obtained the exact asymptotic behaviour of K_n and showed that

$$K_n \sim +\sqrt{\frac{\log n}{n}} \quad \text{or} \quad \lim_{n \to \infty} \frac{K_n}{\sqrt{\frac{\log n}{n}}} = 1.$$

In 2019, Popescu \cite{47} extended the inequality \eqref{1.3} for free holomorphic functions to polyballs B_n, $n = (n_1, n_2, \ldots, n_k) \in \mathbb{N}^k$, which is a non-commutative analogue of the scalar polyball $(\mathbb{C}^{n_1} \times \cdots \times \mathbb{C}^{n_k}) \in \mathbb{N}^k$ and showed that

$$\frac{1}{3\sqrt{k}} < K_{m,h}(B_n) < \frac{2\sqrt{\log k}}{\sqrt{k}} \quad \text{for } k > 1.$$
where $K_{m,h}(B_n)$ is the Bohr radius associated with multi-homogeneous power series expansion of the free holomorphic functions. In 2021, Bhowmik and Das [22] extensively studied Bohr inequalities for operator valued functions, which can be viewed as the analogues of the free holomorphic functions. In Fournier and Ruscheweyh [35] have obtained the exact Bohr radius for the class (1.4)

$$
\sum_{n=1}^{\infty}(|a_n| + |b_n|)|z|^n \leq 1
$$

holds for $|z| \leq r_f$.

In 2010, Fournier and Ruscheweyh [35] estimated the Bohr radius in an arbitrary simply connected domain containing \mathbb{D}. Let $H(\Omega)$ be the class of analytic functions in Ω and let $B(\Omega)$ denote the class of functions $f \in H(\Omega)$ such that $f(\Omega) \subseteq \overline{\mathbb{D}}$. The Bohr radius B_Ω for the class $B(\Omega)$ is defined by

$$
B_\Omega := \sup \left\{ r \in (0, 1) : M_f(r) \leq 1 \text{ for all } f(z) = \sum_{n=0}^{\infty} a_n z^n \in B(\Omega), \ z \in \mathbb{D} \right\},
$$

where $M_f(r) := \sum_{n=0}^{\infty} |a_n|r^n$ is the associated majorant series of $f \in B(\Omega)$ in \mathbb{D}. Clearly, when $\Omega = \mathbb{D}$, $B_\mathbb{D} = 1/3$, which is the classical Bohr radius for the class $B(\mathbb{D})$.

For analytic functions f in a simply connected domain Ω containing \mathbb{D}, Fournier and Ruscheweyh [35] have estimated the Bohr radius B_Ω. For brevity, we recall the following result.

Theorem 1.1. [35] Let Ω be a simply connected domain which contains the unit disk \mathbb{D} and let

$$
\lambda := \lambda(\Omega) = \sup_{f \in B(\Omega), n \geq 1} \left\{ \frac{|a_n|}{1 - |a_0|^2} : a_0 \neq f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ for } z \in \mathbb{D} \right\}.
$$

Then $1/(1 + 2\lambda) \leq B_\Omega$ and the equality $\sum_{n=0}^{\infty} |a_n|(1/(1 + 2\lambda))^n = 1$ holds for a function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in $B(\Omega)$ if, and only if, $f \equiv c$ with $|c| = 1$.

In particular, when $\Omega = \Omega_\gamma$ is a disk containing \mathbb{D} defined by

$$
\Omega_\gamma := \left\{ z \in \mathbb{C} : \left| z + \frac{\gamma}{1 - \gamma} \right| < \frac{1}{1 - \gamma} \right\},
$$

Fournier and Ruscheweyh [35] have obtained the exact Bohr radius for the class $B(\Omega_\gamma)$.

Theorem 1.2. [35] For $0 \leq \gamma < 1$, let $f \in B(\Omega_\gamma)$, with $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in \mathbb{D}. Then,

$$
\sum_{n=0}^{\infty} |a_n|r^n \leq 1 \text{ for } r \leq \rho_\gamma := \frac{1 + \gamma}{3 + \gamma}.
$$

Moreover, $\sum_{n=0}^{\infty} |a_n|\rho_\gamma^n = 1$ holds for a function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in $B(\Omega_\gamma)$ if, and only if, $f(z) = c$ with $|c| = 1$.

Remark 1.1. (1) The sharp coefficients estimate play a vital role to obtain the sharp Bohr radius. The proofs of the inequality (1.2) relied on the sharp coefficient inequalities which may be obtained as an application of Pick’s invariant form of Schwarz’s lemma for $f \in H(\mathbb{D})$:

$$
|f'(z)| \leq \frac{1 - |f(z)|^2}{1 - |z|^2} \text{ for } z \in \mathbb{D}.
$$
In particular, $|f'(0)| = |a_1| \leq 1 - |f(0)|^2 = 1 - |a_0|^2$ and hence from this, the sharp inequality $|a_n| \leq 1 - |a_0|^2$ follows for $n \geq 1$. On the other hand, the proof of Theorem 1.2 follows from the sharp coefficients estimate $|a_n| \leq (1 - |a_0|^2)/(1 + \gamma)$ (see [35]).

(2) It is pertinent to note that there is no assurance that the Bohr radius exists for every class of functions. For instance, Aizenberg [10] has shown that Bohr radius does not exist for the space of analytic functions defined in the annulus $\{ z \in \mathbb{C} : t < |z| < 1, 0 < t < 1 \}$.

The sharp coefficient bounds for the Bloch spaces $B_{H}(\alpha), B_{H}^{*}(\alpha), B_{H,\Omega}(\alpha)$ and $B_{H,\Omega}^{*}(\alpha)$ are not yet known. Thus, the above two discussion led to the following question.

Question 1.6. Let the function f belongs $B_{H,\Omega}(\alpha)$ (respectively $B_{H,\Omega}^{*}(\alpha)$) with the restriction to \mathbb{D} i.e., $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ in \mathbb{D} such that $||f||_{H,\Omega,\alpha} \leq 1$ ($||f||_{H,\Omega,\alpha} \leq 1$). Can we establish the inequality (1.4) for $|z| = r \leq r_f \in (0, 1)$, for all functions $f \in B_{H,\Omega}(\alpha)$ (respectively $B_{H,\Omega}^{*}(\alpha)$) without knowing the upper bounds for $|a_n|$ and $|b_n|$?

The answer to Question 1.6 is affirmative, which we discuss in Section 4. When such radius r_f exits for $B_{H,\Omega}(\alpha)$ (respectively $B_{H,\Omega}^{*}(\alpha)$), we call it as Bloch-Bohr radius for class $B_{H,\Omega}(\alpha)$ (respectively $B_{H,\Omega}^{*}(\alpha)$).

It is important to note that Ω_{γ} contains \mathbb{D} and is increasing in $\gamma \in [0, 1)$. Here Ω_{γ} is increasing in the sense that if $\gamma_1, \gamma_2 \in [0, 1)$ such that $\gamma_1 \leq \gamma_2$, then $\Omega_{\gamma_1} \subseteq \Omega_{\gamma_2}$. Figure 1 shows that the pictures of the circles $C_\gamma : |z + \gamma/(1 - \gamma)| = 1/(1 - \gamma)$ for certain values of $\gamma \in [0, 1)$.

Figure 1. The graph of C_γ when $\gamma = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6$.

From Theorem 1.2, we have Bohr radius $\rho_\gamma = (1 + \gamma)/(3 + \gamma)$ for the restriction map f in \mathbb{D}, when $f \in B(\Omega_{\gamma})$. We calculate Bohr radius ρ_γ for certain values of $\gamma \in [0, 1)$ in Table 1

From Table 1 and Figure 2, we observe that ρ_γ is increasing in $\gamma \in [0, 1)$. Indeed, $\rho_\gamma = 2/(3 + \gamma)^2 > 0$ for $\gamma \in [0, 1)$ and hence ρ_γ is increasing in $\gamma \in [0, 1)$. We note that when $\gamma_1 \leq \gamma_2$, $\Omega_{\gamma_1} \subseteq \Omega_{\gamma_2}$, that is, Ω_{γ} is increasing when γ is increasing. Therefore, when Ω_{γ} is increasing then Bohr radius is also increasing accordingly. This fact leads us to consider the following questions.
Let Ω be a family of harmonic mappings in \mathbb{D}.

Proposition 2.1. The families $B_{H,\Omega}(\alpha)$ and $B^*_H,\Omega(\alpha)$ are affine invariant.

Proof. Let $f \in B_{H,\Omega}(\alpha)$ be given by $f = h + \overline{g}$. Then for $a, b \in \mathbb{C}$, we have

$$F = af + b\overline{f} = ah + bg + \overline{ag} + \overline{bh} := H + \overline{G},$$

where $H = ah + bg$ and $G = \overline{ag} + \overline{bh}$. Therefore,

$$|H'(z)| + |G'(z)| = |ah'(z) + bg'(z)| + |\overline{ag}'(z) + \overline{bh}'(z)|$$

$$\leq (|a| + |b|)(|h'(z)| + |g'(z)|), \quad z \in \Omega.$$
It is easy to see that
\[
(2.2) \quad \frac{|H'(z)| + |G'(z)|}{\lambda_\Omega(z)} \leq \frac{(|a| + |b|(|h'(z)| + |g'(z)|))}{\lambda_\Omega(z)}, \quad z \in \Omega,
\]
where \(\lambda_\Omega(z)\) is the hyperbolic density at \(z \in \Omega\) and \(\alpha \in (0, \infty)\). Hence, from (2.2), \(f \in \mathcal{B}_{H,\Omega}(\alpha)\) implies that \(F = af + bf \in \mathcal{B}_{H,\Omega}(\alpha)\). On the other hand, the Jacobian of \(F\) is given by \(J_F(z) = |H'(z)|^2 - |G'(z)|^2 = (|a|^2 - |b|^2)J_f(z)\). Thus, the conformal metrics \(\lambda_F = \sqrt{|J_F|}\) and \(\lambda_f = \sqrt{|J_f|}\) are homothetic i.e., \(\lambda_F = c\lambda_f\) for some \(c > 0\). Therefore, if \(f \in \mathcal{B}_{H,\Omega}^*(\alpha)\) then \(F = af + bf \in \mathcal{B}_{H,\Omega}^*(\alpha)\).

For each \(\alpha > 0\), both \(\mathcal{B}_{H,\Omega}^*(\alpha)\) and \(\mathcal{B}_{H,\Omega}(\alpha)\) are Banach spaces. In the following example, we see that \(\mathcal{B}_{H,\Omega}^*(\alpha)\) is not a linear space, which shows that some functions in \(\mathcal{B}_{H,\Omega}^*(\alpha)\) may grow arbitrarily fast. Therefore, in order to study certain properties of functions in \(\mathcal{B}_{H,\Omega}(\alpha)\), we shall restrict harmonic mappings to be sense-preserving.

Example 2.1. Let \(f = h + \overline{h}\), where
\[
h(z) = \frac{(1 - ((1 - \gamma)z + \gamma))^{1-\beta}}{\beta - 1}, \quad z \in \Omega\gamma,
\]
and for some \(\beta > 2\alpha + 1\). It is not difficult to see that \(f\) and identity function \(I(z) = z\) belong to \(\mathcal{B}_{H,\Omega}^*(\alpha)\). But we see that \(F(z) = f(z) + z\) does not belong to \(\mathcal{B}_{H,\Omega}^*(\alpha)\). Indeed,
\[
J_F(z) = |h'(z) + 1|^2 - |h'(z)|^2 = 1 + 2\Re(h'(z)).
\]
Now we wish to find the hyperbolic density \(\lambda_\Omega\) on \(\Omega\gamma\). For that we observe that \(\phi: \Omega\gamma \to \mathbb{D}\) define by \(\phi(z) = (1 - \gamma)z + \gamma\) is a conformal mapping in \(\Omega\gamma\). Thus, by the definition (1.1), we obtain the hyperbolic density for \(\Omega\gamma\) at the point \(z\) is
\[
\lambda_{\Omega\gamma}(z) = \frac{1 - \gamma}{1 - |(1 - \gamma)z + \gamma|^2}, \quad z \in \Omega\gamma.
\]
Therefore, for \(0 < x < 1\), we have
\[
\frac{|J_F(x)|}{\lambda_{\Omega\gamma}^\alpha(x)} = \frac{1 + ((1 - \gamma)x + \gamma)^{2\alpha}}{(1 - \gamma)^{2\alpha}} \left(1 + 2(1 - \gamma) \left(1 - ((1 - \gamma)x + \gamma)^{-\beta}\right)\right)
\]
\[
= \left(\frac{1 + ((1 - \gamma)x + \gamma)^{2\alpha}}{(1 - \gamma)^{2\alpha}} \left(1 - ((1 - \gamma)x + \gamma))^{\beta/2} + 2(1 - \gamma)\right)\right),
\]
which tends to infinity as \(x \to 1^-\).

In the next result, we discuss inclusion relations on Bloch spaces. We shall make use of the Comparison Principle for hyperbolic metrics, which we state here only for simply connected region in complex plane. This Principle allows us to estimate the hyperbolic metric of regions in terms of other hyperbolic metrics which are known, or can be estimated easily. It is worth mentioning that it is not always possible to explicitly calculate the density of hyperbolic metric, therefore estimates are useful.

Theorem 2.1. \([20]\) [Theorem 8.1, Comparison Principle] Suppose that \(\Omega_1\) and \(\Omega_2\) are proper simply connected regions in \(\mathbb{C}\). If \(\Omega_1 \subseteq \Omega_2\), then \(\lambda_{\Omega_2} \leq \lambda_{\Omega_1}(z)\) on \(\Omega_1\). Further, if \(\lambda_{\Omega_1}(z) = \lambda_{\Omega_2}(z)\) at any point \(z\) of \(\Omega_1\), then \(\Omega_1 = \Omega_2\) and \(\lambda_{\Omega_1} = \lambda_{\Omega_2}\).

In a better way, the Comparison Principle demonstrates that the hyperbolic metric on a simply connected domain decreases as the the region increases. Using this fact, we obtain the inclusion result \(\mathcal{B}_{H,\Omega_2}(\alpha) \subseteq \mathcal{B}_{H,\Omega_1}(\alpha)\) whenever \(\Omega_1 \subseteq \Omega_2\).
Proposition 2.3. For $\alpha \in (0, \infty)$, we have

1. $B_{\mathcal{H}, \Omega}^{\beta}(\alpha) \subseteq B_{\mathcal{H}, \Omega}(\alpha)$ whenever $\Omega \subseteq \Omega_2$,
2. $B_{\Omega, \gamma}(\alpha) \subseteq B_{\mathcal{H}, \Omega}(\alpha) \subseteq B_{\mathcal{H}, \Omega}^{\beta}(\alpha)$.

Proof.

1. Let Ω_1 and Ω_2 be two simply connected domains in \mathbb{C} such that $\Omega_1 \subseteq \Omega_2$. Let $f \in B_{\mathcal{H}, \Omega}^{\beta}(\alpha)$. Then

$$\frac{|h'(z)| + |g'(z)|}{\lambda_{\Omega}^{\alpha}(z)} < \infty \text{ for } z \in \Omega_2.$$ \hspace{4cm} (2.4)

Since $\Omega_1 \subseteq \Omega_2$, by the Comparison principle, we have $\lambda_{\Omega_2}(z) \leq \lambda_{\Omega_1}(z)$ for $z \in \Omega_1$. Thus, $\lambda_{\Omega_2}(z) \leq \lambda_{\Omega_1}(z)$, $z \in \Omega_1$ for each $\alpha \in (0, \infty)$ which leads to

$$\frac{|h'(z)| + |g'(z)|}{\lambda_{\Omega_1}^{\alpha}(z)} \leq \frac{|h'(z)| + |g'(z)|}{\lambda_{\Omega_2}^{\alpha}(z)} \text{ for } z \in \Omega_1.$$ \hspace{4cm} (2.5)

We observe that (2.4) holds for $z \in \Omega_2$ and thus, (2.4) also holds for $z \in \Omega_1$. This shows that

$$\frac{|h'(z)| + |g'(z)|}{\lambda_{\Omega_1}^{\alpha}(z)} < \infty \text{ for } z \in \Omega_1,$$ \hspace{4cm} (2.6)

which infers that $f \in B_{\mathcal{H}, \Omega}^{\beta}(\alpha)$. Hence, $B_{\mathcal{H}, \Omega}^{\beta}(\alpha) \subseteq B_{\mathcal{H}, \Omega}(\alpha)$.

2. For each $\alpha > 0$, it is enough to find a function f_{α} such that $f_{\alpha} \in B_{\mathcal{H}, \Omega}^{\beta}(\alpha)$ but $f_{\alpha} \notin B_{\mathcal{H}, \Omega}(\alpha)$. We consider the following one parameter family of functions

$$F_{\alpha, t}(z) = H_{\alpha, t}(z) + G_{\alpha, t}(z) = h_{\alpha, t}(\phi(z)) + g_{\alpha, t}(\phi(z)), \quad t \in [0, 1], \quad z \in \Omega_\gamma,$$

where $h_{\alpha, t}$ and $g_{\alpha, t}$ are defined for $z \in \mathbb{D}$ by

$$h_{\alpha, t}(z) = \begin{cases} 1 - \log (1 - z) & \alpha = 1/2, \\ \frac{1}{(1 - z)^{1/2 - \alpha - 1}} & \alpha \neq 1/2, \end{cases}$$

and

$$g_{\alpha, t}(z) = \begin{cases} \frac{1}{1 - t} (1 - z) + (1 - t) \log (1 - z) & \alpha = 3/2, \\ \frac{1}{\gamma - 1} (1 - z)^{1/2 - \alpha - 1} - (1 - t) \frac{1}{\gamma} (1 - \phi(z))^{3/2 - \alpha - 1} & \beta \neq 1/2, 3/2 \end{cases}$$

with $\phi : 1 - \gamma \to \mathbb{D}$ defined by $\phi(z) = (1 - \gamma) z + \gamma$. A simple computation shows that the dilatation $w_{F_{\alpha, t}}(z) = t + (1 - t)((1 - \gamma) z + \gamma)$ for $z \in \Omega_\gamma$ and each $\alpha > 0$. Then

$$\sqrt{|J_{F_{\alpha, t}}(z)|} = \frac{(1 - |(1 - \gamma) z + \gamma|^2)^{\alpha}}{(1 - \gamma)^{\alpha}} \sqrt{|J_{F_{\alpha, t}}(z)|}$$

$$= \frac{(1 - |(1 - \gamma) z + \gamma|^2)^{\alpha}}{(1 - \gamma)^{\alpha}} \frac{(1 - \gamma)}{|1 - ((1 - \gamma) z + \gamma)^{1/2 + \alpha/4}|^2} \sqrt{1 - |w_{F_{\alpha, t}}(z)|^2}$$

$$= \frac{(1 - |\phi(z)|^2)^{\alpha}}{(1 - \gamma)^{\alpha}} \frac{(1 - \gamma)}{|1 - \phi(z)|^{1/2 + \alpha/4}} \sqrt{1 - |w_{F_{\alpha, t}}(z)|^2}$$

$$= \frac{(1 + |\phi(z)|)^{\alpha} (1 - |\phi(z)|)^{\alpha}}{(1 - \gamma)^{\alpha} |1 - \phi(z)|^{1/2 + \alpha/4}} \sqrt{1 - |\phi(z)|^2 - 2t \Re(e^{\phi(z)}(1 - \phi(z))) - t^2 |1 - \phi(z)|^2}$$

$$\leq \frac{1}{(1 - \gamma)^{\alpha} |1 - \phi(z)|^{1/2 + \alpha/4}} \sqrt{1 + t}, \quad z \in \Omega_\gamma,$$
which shows that \(F_{\alpha,t} \in B^*_{H,\Omega,\gamma}(\alpha) \) for each \(\alpha > 0 \). For \(x \in (0, 1) \), we have
\[
\frac{|H'_{\alpha,t}(x)|}{\lambda^{\alpha}_{H,\Omega,\gamma}(x)} = \frac{(1 - ((1 - \gamma)x + \gamma)^2)^\alpha}{(1 - \gamma)^{\alpha - 1}} e^{\frac{1 + \phi(x)}{1 - \phi(x)}} \frac{2(1 - \gamma)}{(1 - \phi(x))^2} e^{\frac{1 + \phi(x)}{1 - \phi(x)}} \\
= \frac{(1 - ((1 - \gamma)x + \gamma)^2)^\alpha}{(1 - \gamma)^{\alpha - 1}} \frac{2}{(1 - \phi(x))^2} e^{\frac{1 + \phi(x)}{1 - \phi(x)}}, \quad \text{where } \phi(x) = (1 - \gamma)x + \gamma
\]

as \(x \to 1^- \),

which shows that for each \(\alpha > 0 \), \(H'_{\alpha,t} \notin B_{\Omega,\gamma}(\alpha) \) and hence, \(F_{\alpha,t} \notin B_{H,\Omega,\gamma}(\alpha) \). This completes the proof. \(\square \)

The following result explains the structure of the set \(B^*_{H,\Omega,\gamma}(\alpha) \setminus B_{H,\Omega,\gamma}(\alpha) \).

Proposition 2.8. Let \(f = h + \overline{g} \) be harmonic mapping in \(\Omega, \gamma \). Then \(f \in B_{H,\Omega,\gamma}(\alpha) \) if, and only if, \(f \in B^*_{H,\Omega,\gamma}(\alpha) \) and either \(h \in B_{\Omega,\gamma}(\alpha) \) or \(g \in B_{\Omega,\gamma}(\alpha) \). Furthermore, we have
\[
B^*_{H,\Omega,\gamma}(\alpha) \setminus B_{H,\Omega,\gamma}(\alpha) = \left\{ f = h + \overline{g} \in B^*_{H,\Omega,\gamma}(\alpha) : h \notin B_{\Omega,\gamma}(\alpha) \text{ and } g \notin B_{\Omega,\gamma}(\alpha) \right\}.
\]

Proof. For any harmonic mapping \(f = h + \overline{g} \) in \(\Omega, \gamma \), we have
\[
|h'(z)| \leq \sqrt{|J_f(z)|} + |g'(z)| \quad \text{and} \quad |g'(z)| \leq \sqrt{|J_f(z)|} + |h'(z)|, \ z \in \Omega, \gamma.
\]

From (2.9), it is easy to see that if \(f \in B^*_{H,\Omega,\gamma}(\alpha) \) and one of \(h \) and \(g \) belongs to \(B_{\Omega,\gamma}(\alpha) \), then \(f \in B_{H,\Omega,\gamma}(\alpha) \). \(\square \)

It is natural to ask the following question.

Question 2.10. If \(f \in B^*_{H,\Omega,\gamma}(\alpha) \) then does there exist a constant \(M(\alpha) \), which depends only on \(\alpha \), such that \(f \in B_{H,\Omega,\gamma}(M(\alpha)) \)?

In the following example, we point out that for a function \(f \in B^*_{H,\Omega,\gamma}(\alpha) \), whose Jacobian \(J_f(z) = 0 \), does not belong to \(B_{H,\Omega,\gamma}(\alpha) \) for any \(\alpha > 0 \).

Example 2.2. Let \(f = h + \overline{h} \), where
\[
h(z) = \exp \left(\frac{1 + \phi(z)}{1 - \phi(z)} \right) \quad \text{with} \quad \phi(z) = (1 - \gamma)z + \gamma, \ z \in \Omega, \gamma.
\]

Since \(J_f(z) = |h'(z)|^2 - |h'(z)|^2 = 0 \) for \(z \in \Omega, \gamma \), \(f \in B^*_{H,\Omega,\gamma}(\alpha) \) for all \(\alpha > 0 \).

For \(x \in (0, 1) \), a simple computation shows that
\[
\frac{|h'(x)|}{\lambda^{\alpha}_{H,\Omega,\gamma}(x)} = \frac{(1 - ((1 - \gamma)x + \gamma)^2)^\alpha}{(1 - \gamma)^{\alpha - 1}} e^{\frac{1 + \phi(x)}{1 - \phi(x)}} \frac{2(1 - \gamma)}{(1 - \phi(x))^2} e^{\frac{1 + \phi(x)}{1 - \phi(x)}} \\
= \frac{(1 - ((1 - \gamma)x + \gamma)^2)^\alpha}{(1 - \gamma)^{\alpha - 1}} \frac{2}{(1 - \phi(x))^2} e^{\frac{1 + \phi(x)}{1 - \phi(x)}}, \quad \text{where } \phi(x) = (1 - \gamma)x + \gamma
\]

Since \(\phi(x) \to 1^- \) as \(x \to 1^- \), we obtain
\[
\frac{|h'(x)|}{\lambda^{\alpha}_{H,\Omega,\gamma}(x)} \to \infty \quad \text{as} \quad x \to 1^-.
\]

Therefore, \(h \notin B_{\Omega,\gamma}(\alpha) \) and hence, \(f \in B_{H,\Omega,\gamma}(\alpha) \) for any \(\alpha > 0 \).
From the above example, it is worth to mention that \(f \) is not locally univalent in \(\Omega_\gamma \). Therefore, to give an affirmative answer to the Question 2.6, we need some additional conditions, namely locally univalent.

Proposition 2.11. Let \(f \) be a locally univalent harmonic mapping in \(\Omega_\gamma \). If \(f \in B^*_{\mathcal{H}\Omega_\gamma}(\alpha) \), then \(f \in B_{\mathcal{H}\Omega_\gamma}(\alpha + 1/2) \). Furthermore, the constant \(1/2 \) is sharp for each \(\alpha > 0 \).

Proof. Since \(f \in B_{\mathcal{H}\Omega_\gamma}(\alpha) \) (respectively \(B^*_{\mathcal{H}\Omega_\gamma}(\alpha) \)) if, and only if, \(\overline{f} \in B_{\mathcal{H}\Omega_\gamma}(\alpha) \) (respectively \(B^*_{\mathcal{H}\Omega_\gamma}(\alpha) \)), without loss of generality, we assume that \(f = h + \overline{g} \) is sense-preserving in \(\Omega_\gamma \). Then, we have

\[
g'(z) = \omega(z)h'(z) \quad \text{and} \quad J_f(z) = |h'(z)|^2(1 - |\omega(z)|^2) \quad \text{i.e.} \quad |h'(z)| = \sqrt{\frac{|J_f(z)|}{1 - |\omega(z)|^2}},
\]

where \(\omega : \Omega_\gamma \to \mathbb{D} \) is the dilation of \(f \).

Now, we consider the function \(\psi : \mathbb{D} \to \Omega_\gamma \) by \(\psi(z) = (z - \gamma)/(1 - \gamma) \) so that \(\omega \circ \psi : \mathbb{D} \to \mathbb{D} \) is an analytic function. Then, in view of the Schwarz-Pick lemma, we have

\[
|\omega(\psi(z))| \leq \frac{|z| + |\omega(\psi(0))|}{1 + |\omega(\psi(0))||z|}, \quad z \in \mathbb{D},
\]

i.e.

\[
|\omega(\psi(z))| \leq \frac{|z| + |\omega\left(\frac{\gamma}{1 - \gamma}\right)|}{1 + |\omega\left(\frac{\gamma}{1 - \gamma}\right)||z|} = \frac{|z| + \omega_0}{1 + \omega_0|z|},
\]

where \(\omega_0 = |\omega(\gamma/(1 - \gamma))| \). Therefore,

\[
(2.12) \quad |\omega(z)| \leq \frac{|(1 - \gamma)z + \gamma| + \omega_0}{1 + \omega_0|(1 - \gamma)z + \gamma|} = \frac{\phi(z) + \omega_0}{1 + \omega_0|\phi(z)|}, \quad z \in \Omega_\gamma,
\]

where \(\phi(z) = (1 - \gamma)z + \gamma \) for \(z \in \Omega_\gamma \). Since \(f \in B^*_{\mathcal{H}\Omega_\gamma}(\alpha) \), we have

\[
(2.13) \quad \frac{\sqrt{|J_f(z)|}}{\lambda^\alpha_{\Omega_\gamma}(z)} \leq \beta^*_{\mathcal{H}\Omega_\gamma}(\alpha) < \infty, \quad z \in \Omega_\gamma.
\]
Using (2.12) and (2.13), we obtain

\[|h'(z)| = \sqrt{\frac{|J_f(z)|}{1 - |\omega(z)|^2}} \]

\[\leq \beta_{H,\Omega,\gamma}^*(\alpha) \frac{\lambda_{\alpha,\gamma}(z)}{1 - |\alpha|^2} \frac{1}{\sqrt{1 - |\omega(z)|^2}} \]

\[= \frac{\beta_{H,\Omega,\gamma}^*(\alpha)(1 - \gamma)^\alpha}{(1 - |(1 - \gamma)z + \gamma|^2)^\alpha} \frac{1}{\sqrt{1 - |\omega(z)|^2}} \]

\[\leq \frac{\beta_{H,\Omega,\gamma}^*(\alpha)(1 - \gamma)^\alpha}{(1 - |\phi(z)|^2)^\alpha} \frac{1 + \omega_0 |\phi(z)|}{\sqrt{(1 - |\phi(z)|^2)(1 - \omega_0^2)}} \]

\[\leq \frac{\beta_{H,\Omega,\gamma}^*(\alpha)(1 - \gamma)^\alpha}{(1 - |\phi(z)|^2)^\alpha} \frac{1 + \omega_0}{\sqrt{(1 - |\phi(z)|^2)(1 - \omega_0^2)}} \text{ since } |\phi(z)| \leq 1 \]

\[= \frac{\beta_{H,\Omega,\gamma}^*(\alpha)}{\sqrt{1 - \gamma}} \frac{1 + \omega_0}{1 - \omega_0} \left(\frac{(1 - \gamma)^{\alpha + \frac{1}{2}}}{(1 - |\phi(z)|^2)^{\alpha + \frac{1}{2}}} \right) \]

which shows that \(h \in B_{H,\Omega,\gamma}(\alpha + 1/2) \). Since \(f \) is sense-preserving \(i.e. \ |g'(z)| < |h'(z)| \) in \(\Omega_\gamma \), \(g \) also belongs to \(B_{H,\Omega,\gamma}(\alpha + 1/2) \). Thus, \(f \in B_{H,\Omega,\gamma}(\alpha + 1/2) \).

In order to show that the constant \(1/2 \) is sharp, we consider the function \(F_{\alpha,0} \) given by (2.7). The function \(F_{\alpha,0} \in B_{H,\Omega,\gamma}^*(\alpha) \) and is sense-preserving in \(\Omega_\gamma \). It is easy to see that \(H_{\alpha} \in B_{\Omega,\gamma}(\alpha + 1/2) \), which implies \(G_{\alpha,0} \in B_{\Omega,\gamma}(\alpha + 1/2) \). Hence, \(F_{\alpha,0} \in B_{H,\Omega,\gamma}(\alpha + 1/2) \). A simple computation shows that \(H_{\alpha} \notin B_{\Omega,\gamma}(p) \) for any \(0 < p < \alpha + 1/2 \). Thus, \(F_{\alpha,0} \notin B_{H,\Omega,\gamma}(p) \). Therefore, the constant \(\alpha + 1/2 \) is sharp for each \(\alpha > 0 \). \(\square \)

3. **Landau’s Theorem for Harmonic Bloch Mappings on the Disk \(\Omega_\gamma \)**

The classical Landau Theorem for bounded analytic functions states that if \(f \) is analytic in \(\mathbb{D} \) with the normalizations \(f(0) = 0 \) and \(f'(0) = 1 \) such that \(|f(z)| < M \) in \(\mathbb{D} \), then \(f \) is univalent in the disk \(\mathbb{D}_\rho := \{ z : |z| < \rho \} \) with \(\rho = 1/(M + M^2 - 1) \) and \(f(\mathbb{D}_\rho) \) contains a disk \(\mathbb{D}_R \) with \(R = M^2 \rho^2 \) (see [44]). Chen et al. [25] have obtained an analogue of the Landau theorem for bounded harmonic mappings in \(\mathbb{D} \). Several authors have considered Landau-type theorems for harmonic mappings afterwards and improved their result (see [28] [43] [44] [49] [50]). Landau’s Theorem has also been extended for the classes of biharmonic mappings (see [1] [26]). Several authors have investigated the Landau-Bloch type theorems for polyharmonic mappings (see [18] [28]). We have the following inequality due to Ruscheweyh [48].

Lemma 3.1. [48] For an analytic function \(f : \mathbb{D} \to \mathbb{D} \), we have

\[\frac{|f^{(n)}(a)|}{n!} \leq \frac{1 - |f(a)|^2}{(1 - |a|)^{n-1}(1 - |a|^2)} \]
for each \(n \geq 1 \) and \(a \in \mathbb{D} \). Moreover, for each fixed \(n \geq 1 \) and \(a \in \mathbb{D} \),
\[
\sup_{f} (1 - |a|)^{n-1} \frac{|f^{(n)}(a)|}{n!} \leq \frac{1 - |a|^2}{1 - |f(a)|^2} = 1,
\]
where the supremum is taken over all nonconstant analytic functions \(f : \mathbb{D} \to \mathbb{D} \).

We shall make use of the inequality (3.2) to prove the following lemma.

Lemma 3.3. Let \(f_1 = h_1 + \overline{g_1} \) be a harmonic mapping in \(\mathbb{D} \) with
\[
h_1(z) = \sum_{n=1}^{\infty} \alpha_n (z - \gamma)^n \quad \text{and} \quad g_1(z) = \sum_{n=1}^{\infty} \beta_n (z - \gamma)^n \quad \text{for} \ |z - \gamma| < 1 - \gamma.
\]
If \(\lambda_f(\gamma) = \beta \) for some \(\beta \in (0, 1) \) and \(||f||_{H, \mathbb{D}}(\alpha) \leq M(1 - \gamma)^{\alpha} \) for \(M > 0 \), then
\[
|\alpha_n| + |\beta_n| \leq \inf_{0 < r < 1} \mu(r) \quad \text{for} \ n \geq 2,
\]
where
\[
\mu(r) = \frac{m^2(r, \gamma) - \beta^2}{r^{n-1}(1 - \gamma)^{n-1}(1 - \gamma^2)m(r, \gamma)} \quad \text{and} \quad m(r, \gamma) = \frac{M(1 - \gamma)^{\alpha}}{(1 - (1 - \gamma)^2)^{\alpha}}.
\]

Proof. For a fixed \(r \in (0, 1) \), let \(F(\xi) = r^{-1} f(r(\xi - \gamma)) \). Observe that \(F(\xi) = H(\xi) + G(\xi) \), where
\[
H(\xi) = \frac{h_1(r(\xi - \gamma))}{r} \quad \text{and} \quad G(\xi) = \frac{g_1(r(\xi - \gamma))}{r}, \quad \xi \in \mathbb{D}.
\]
Then \(F \) has the following form
\[
F(\xi) = \sum_{n=1}^{\infty} r^{n-1} \alpha_n (\xi - \gamma)^n + \sum_{n=1}^{\infty} r^{n-1} \beta_n (\xi - \gamma)^n \quad \text{for} \ |\xi - \gamma| < 1 - \gamma \quad \text{and} \ \xi \in \mathbb{D}.
\]
It is easy to see that \(H'(\xi) = h'(r(\xi - \gamma)) \) and \(G'(\xi) = g'(r(\xi - \gamma)) \) for \(\xi \in \mathbb{D} \).

In view of the assumption \(||f||_{H, \mathbb{D}}(\alpha) \leq M(1 - \gamma)^{\alpha} \), we have
\[
\frac{|h'_1(z)| + |g'_1(z)|}{\lambda^2_2(z)} \leq M(1 - \gamma)^{\alpha}
\]
i.e.,
\[
|h'_1(z)| + |g'_1(z)| \leq M(1 - \gamma)^{\alpha} \lambda^2_2(z) = M \frac{(1 - \gamma)^{\alpha}}{(1 - |z|^2)^{\alpha}}, \quad z \in \mathbb{D}.
\]
Using (3.5), we obtain
\[
|H'(\xi) + G'(\xi)| \leq M \frac{(1 - \gamma)^{\alpha}}{(1 - r^2|\xi - \gamma|^2)^{\alpha}}, \quad \xi \in \mathbb{D},
\]
\[
\leq M \frac{(1 - \gamma)^{\alpha}}{(1 - r^2(1 - \gamma)^2)^{\alpha}}, \quad \text{using} \quad |\xi - \gamma| < 1 - \gamma,
\]
\[
:= m(r, \gamma), \quad \xi \in \mathbb{D}.
\]
For an arbitrary \(\epsilon \) with \(|\epsilon| = 1 \), we set
\[
\tilde{F}(\xi) = \frac{H'(\xi) + \epsilon G'(\epsilon)}{m(r, \gamma)}, \quad \xi \in \mathbb{D},
\]
where \(m(r, \gamma) \) is given by (3.6). From (3.4), we see that
\[
\tilde{F}(\xi) = \frac{1}{m(r, \gamma)} \sum_{n=1}^{\infty} n(\alpha_n + \epsilon \beta_n) r^{n-1}(\xi - \gamma)^{n-1} \quad \text{for} \ |\xi - \gamma| < 1 - \gamma,
\]
which is analytic in \mathbb{D} and by (3.6), $|\tilde{F}(\xi)| \leq 1$ in \mathbb{D}. Thus, in view of Lemma 3.1 we obtain

\begin{equation}
\frac{nr^{n-1}|\alpha_n + \epsilon\beta_n|}{m(r, \gamma)} \leq \frac{1 - |\tilde{F}(\gamma)|^2}{(1 - \gamma)^{n-1}(1 - \gamma^2)}
\end{equation}

For $n > 1$, a simple computation shows that

\[
\frac{|\alpha_n| + |\beta_n|}{nr^{n-1}(1 - \gamma)^{n-1}(1 - \gamma^2)m(r, \gamma)} = \mu(r)
\]

for $n \geq 2$.

Using Lemma 3.3, we obtain the following coefficient estimates for α-Bloch harmonic mappings.

Theorem 3.1. Let $f = h + \overline{g}$ be a harmonic mapping in Ω, such that

\[h(z) = \sum_{n=1}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_n z^n \quad \text{in} \quad \mathbb{D}. \]

If $\lambda_f(0) = \lambda$ and $||f||_{H^\infty, \Omega}(\alpha) \leq L$, then

\begin{equation}
|a_n| + |b_n| \leq C_{n,M}(\alpha, \lambda, \gamma) \quad \text{for} \quad n \geq 2,
\end{equation}

where

\[
C_{n,M}(\alpha, \lambda, \gamma) = \inf_{0 < r < 1} \frac{m^2(r, \gamma) - \beta^2}{nr^{n-1}(1 + \gamma)m(r, \gamma)} \quad \text{and} \quad m(r, \gamma) = \frac{L}{1 - \gamma} \frac{(1 - \gamma)^n}{(1 - (1 - \gamma)^2r^2)^\alpha}.
\]

Proof. Let $\psi : \mathbb{D} \to \Omega$, be defined by $\psi(z) = (z - \gamma)/(1 - \gamma)$. Then the composition $T \circ \psi$ is harmonic in \mathbb{D} such that $T(z) = h(\psi(z)) + \overline{g(\psi(z))}$ with

\begin{equation}
T(z) = \sum_{n=1}^{\infty} \frac{a_n}{(1 - \gamma)^n} (z - \gamma)^n + \sum_{n=1}^{\infty} \frac{b_n}{(1 - \gamma)^n} (z - \gamma)^n \quad \text{for} \quad |z - \gamma| < 1 - \gamma, \ z \in \mathbb{D}.
\end{equation}

Set

\[
h_T(z) = h \left(\frac{z - \gamma}{1 - \gamma} \right) \quad \text{and} \quad g_T(z) = g \left(\frac{z - \gamma}{1 - \gamma} \right).
\]

Then $T(z) = h_T(z) + g_T(z)$ for $z \in \mathbb{D}$. Clearly,

\begin{equation}
h_T'(z) = \frac{1}{1 - \gamma} h' \left(\frac{z - \gamma}{1 - \gamma} \right) \quad \text{and} \quad g_T'(z) = \frac{1}{1 - \gamma} g' \left(\frac{z - \gamma}{1 - \gamma} \right), \ z \in \mathbb{D}.
\end{equation}
Since $\lambda_f(0) = \lambda$, we obtain

\[(3.11) \quad \lambda_T(\gamma) = ||h_T'(\gamma)| - |g_T'(\gamma)|| = \frac{1}{1 - \gamma} ||h'(0)| - |g'(0)|| = \frac{\lambda_f(0)}{1 - \gamma} = \frac{\lambda}{1 - \gamma} = \beta \text{ (say)}.\]

In view of the assumption $||f||_{H,\Omega,}(\alpha) \leq L$, we have

\[(3.12) \quad |h'(z)| + |g'(z)| \leq \frac{L(1 - \gamma)^{\alpha}}{(1 - |(1 - \gamma)z + \gamma|^2)^{\alpha}}, \quad z \in \Omega.\]

Then, from (3.10) and (3.12), we obtain

\[(3.13) \quad |h_T'(z)| + |g_T'(z)| \leq \frac{1}{1 - \gamma} \frac{L(1 - \gamma)^{\alpha}}{(1 - |z|^2)^{\alpha}}, \quad z \in \mathbb{D}.\]

In view of (3.11), (3.13) and setting $\beta = \lambda/(1 - \gamma)$ and $M = L/(1 - \gamma)$, applying Lemma 3.3 to the function T, we obtain

\[
\frac{1}{(1 - \gamma)^{\alpha}}(|a_n| + |b_n|) \leq \inf_{0 < r < 1} \frac{m^2(r, \gamma) - \left(\frac{\lambda}{1 - \gamma}\right)^2}{nr^{n-1}(1 - \gamma)^{n-1}(1 + \gamma^2)m(r, \gamma)},
\]

where

\[m(r, \gamma) = \frac{L}{1 - \gamma} \frac{(1 - \gamma)^{\alpha}}{(1 - (1 - \gamma)^2r^2)^{\alpha}}, \quad r \in (0, 1).\]

Therefore,

\[|a_n| + |b_n| \leq \inf_{0 < r < 1} \frac{m^2(r, \gamma) - \left(\frac{\lambda}{1 - \gamma}\right)^2}{nr^{n-1}(1 + \gamma)m(r, \gamma)} := C_{n,M}(\alpha, \gamma, \lambda).\]

This completes the proof.\[\square\]

By making use of Theorem 3.1, we establish the Landau’s Theorem for the bounded normalized functions in $B_{H,\Omega,}(\alpha)$.

Theorem 3.2. Let $f = h + \overline{g}$ be a harmonic mapping in Ω, with $f(0) = \lambda_f(0) - \lambda = 0$ and $||f||_{H,\Omega,}(\alpha) \leq M$ such that

\[h(z) = \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=1}^{\infty} b_n z^n \text{ in } \mathbb{D}.\]

Then f is univalent in $\mathbb{D}_{\rho_0} := \{z : |z| < \rho_0\}$, where ρ_0 is the unique root of

\[(3.14) \quad \sum_{n=2}^{\infty} C_{n,M}(\alpha, \lambda, \gamma) nr^{n-1} = \lambda\]

in $(0, 1)$. Moreover, $f(\mathbb{D}_{\rho_0})$ contains the disk \mathbb{D}_ρ, where

\[\rho = \lambda \rho_0 - \sum_{n=2}^{\infty} C_{n,M}(\alpha, \lambda, \gamma) \rho_0^n.\]

Proof. Let $z_1, z_2 \in \mathbb{D}_r$, $r < 1$, where $0 < r < r_{\rho_0}$ and $z_1 \neq z_2$. Since $\lambda_f(0) = \lambda$, we have

\[(3.15) \quad \lambda_f(0) = ||a_1| - |b_1|| = \lambda.\]

In view of Theorem 3.1, we have

\[(3.16) \quad |a_n| + |b_n| \leq C_{n,M}(\alpha, \lambda, \gamma) \text{ for } n \geq 2.\]
By making use of (3.15) and (3.16), we obtain

\[
|f(z_1) - f(z_2)| = \left| \int_{[z_1,z_2]} f_z(z) \, dz + f_{\bar{z}}(z) \, d\bar{z} \right|
\]

\[
\geq \left| \int_{[z_1,z_2]} f_z(0) \, dz + f_{\bar{z}}(0) \, d\bar{z} \right|
\]

\[
- \left| \int_{[z_1,z_2]} (f_z(z) - f_z(0)) \, dz + (f_{\bar{z}}(z) - f_{\bar{z}}(0)) \, d\bar{z} \right|
\]

\[
> |z_1 - z_2| \lambda_f(0) - |z_1 - z_2| \sum_{n=2}^{\infty} (|a_n| + |b_n|) n r^{n-1}
\]

\[
= |z_1 - z_2| \left[\lambda - \sum_{n=2}^{\infty} C_{n,M}(\alpha, \lambda, \gamma) n r^{n-1} \right]
\]

\[
:= |z_1 - z_2| \psi(r).
\]

Now see that \(\psi \) is continuous and differentiable in \((0,1)\) and

\[
\psi'(r) = - \sum_{n=2}^{\infty} C_{n,M}(\alpha, \lambda, \gamma) n (n-1) r^{n-2} < 0
\]

for \(r \in (0,1) \), which shows that \(\psi \) is decreasing in \((0,1)\). It is important to note that \(\psi(0) = \lambda > 0 \) and \(\lim_{r \to 1^-} \psi(r) = -\infty \), which ensures that \(\psi \) has the unique root in \((0,1)\) and choose that to be \(\rho_0 \). Then, from (3.17), we deduce that \(|f(z_1) - f(z_2)| > 0 \) for any \(0 < r < \rho_0 \). This shows that \(f \) is univalent in \(D_{\rho_0} \).

Clearly, \(f(0) = 0 \). Then, for \(z' = \rho_0 e^{i\theta} \in \partial D_{\rho_0} \), we have

\[
|f(z')| \geq \left| a_1 z' + \overline{b_1} \overline{z'} \right| - \sum_{n=2}^{\infty} \left| a_n z'^n + \overline{b_n} \overline{z'}^n \right|
\]

\[
\geq \lambda_f(0) \rho_0 - \sum_{n=2}^{\infty} (|a_n| + |b_n|) \rho_0^n
\]

\[
\geq \lambda \rho_0 - \sum_{n=2}^{\infty} C_{n,M}(\alpha, \lambda, \gamma) \rho_0^n.
\]

Therefore, (3.18) shows that \(f(D_{\rho_0}) \) contains the disk \(D_\rho \), where

\[
\rho = \lambda \rho_0 - \sum_{n=2}^{\infty} C_{n,M}(\alpha, \lambda, \gamma) \rho_0^n.
\]

This completes the proof.

In the next Theorem, we obtain the coefficient estimates for the bounded functions in \(B_{H,\Omega}(\alpha) \). In particular, we obtain the coefficient estimates when \(\Omega = \Omega_\gamma \) and \(\Omega = \mathbb{D} \).
Thus, we now only need to show that

$$h(z) = \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=1}^{\infty} b_n z^n \text{ in } \mathbb{D}.$$ \hspace{1cm} (3.20)

Then the following inequality

$$|a_n|^2 + |b_n|^2 \leq A_n(\Omega, M) \hspace{1cm} \text{holds for all } n \geq 1,$$

where

$$A_n(\Omega, M) := \frac{M^2}{n^2} \inf_{0 < t < 1} \frac{1}{2\pi t t^{2(n-1)}} \int_{|z|=t} \lambda^{2\alpha}_\Omega(z) \, |dz|.$$ \hspace{1cm} (3.19)

Moreover, \(|a_n| + |b_n| \leq \sqrt{2A_n(\Omega, M)}\) for \(n \geq 1\). In particular, we have

1. If \(\Omega \neq \Omega_\gamma\), then \(|a_n|^2 + |b_n|^2 \leq C_n(\alpha, \gamma, M)\) for \(n \geq 1\), where

$$C_n(\alpha, \gamma, M) := \frac{M^2}{n^2} \inf_{0 < t < 1} \frac{(1 - \gamma)^{2\alpha}}{t^{2(n-1)}(1 - ((1 - \gamma)t + \gamma)^{2\alpha})}.$$ \hspace{1cm} (3.21)

2. If \(\Omega = \mathbb{D}\), then \(|a_n|^2 + |b_n|^2 \leq C_n(\alpha, 0, M) := C_n(\alpha, M)\) for \(n \geq 1\) and \(\lim_{n \to \infty} C_n(\alpha, 0, M) = 0\) for each \(\alpha \in (0, 1)\). If \(\alpha \geq 1\), then

$$C_n(\alpha, M) \leq \frac{M^2}{(2\alpha)^{2\alpha}} \left(1 + \frac{2\alpha}{n-1}\right)^{n-1} \frac{(n-1 + 2\alpha)^{2\alpha}}{n^2} = O(n^{2\alpha-2}).$$

Proof. The assumptions \(f(0) = 0\) and \(\|f\|_{H,\Omega}(\alpha) \leq M\) show that

$$|h'(z)| + |g'(z)| \leq M\lambda^\alpha_\Omega(z), \ z \in \Omega.$$ \hspace{1cm} (3.22)

It is easy to see that

$$|h'(z)|^2 + |g'(z)|^2 \leq (|h'(z)| + |g'(z)|)^2 \leq M^2 \lambda^{2\alpha}_\Omega(z), \ z \in \Omega.$$ \hspace{1cm} (3.23)

Integrating the inequality \((3.20)\) over the circle \(|z| = t < 1\), we obtain

$$2 \pi t \sum_{n=1}^{\infty} n^2 (|a_n|^2 + |b_n|^2) t^{2(n-1)} \leq M^2 \int_{|z|=t} \lambda^{2\alpha}_\Omega(z) \, |dz|, \ z \in \mathbb{D}. \hspace{1cm} (3.21)$$

Thus, from \((3.21)\), it follows that

$$|a_n|^2 + |b_n|^2 \leq \frac{M^2}{2\pi t t^{2(n-1)}} \int_{|z|=t} \lambda^{2\alpha}_\Omega(z) \, |dz| = \frac{M^2}{n^2} \Psi_1(t),$$

where

$$\Psi_1(t) = \frac{1}{2\pi t t^{2(n-1)}} \int_{|z|=t} \lambda^{2\alpha}_\Omega(z) \, |dz|.$$ \hspace{1cm} (3.24)

Thus, we now only need to show that \(\inf_{0 < t < 1} \Psi_1(t)\) exists. To prove this, we make use of the comparison principle of hyperbolic density function to the domains \(\mathbb{D}\) and \(\Omega\): if \(\mathbb{D} \subseteq \Omega\) then

$$\lambda_\Omega(z) \leq \lambda_\mathbb{D}(z), \ z \in \mathbb{D}. \hspace{1cm} (3.25)$$

The inequality \((3.25)\) leads to

$$\Psi_1(t) = \frac{1}{2\pi t t^{2(n-1)}} \int_{|z|=t} \lambda^{2\alpha}_\Omega(z) \, |dz| \leq \frac{1}{2\pi t t^{2(n-1)}} \int_{|z|=t} \lambda^{2\alpha}_\mathbb{D}(z) \, |dz| := \Psi_2(t), \ z \in \mathbb{D}. \hspace{1cm} (3.26)$$
A simple computation using the fact $\lambda_D(z) = 1/(1 - |z|^2)$, shows that

$$
\Psi_2(t) = \frac{1}{2\pi t t^{2(n-1)}} \int_{|z|=t} |dz| (1 - |z|^2)^{2\alpha}
$$

$$
= \frac{1}{2\pi t t^{2(n-1)}} \int_{\theta=0}^{2\pi} \frac{t}{(1 - |te^{i\theta}|^2)^{2\alpha}} d\theta
$$

$$
= \frac{1}{2\pi} \frac{1}{t^{2(n-1)} (1 - t^2)^{2\alpha}}
$$

From (3.24), we note that

$$
\lim_{t \to 0} \Psi_2(t) = \lim_{t \to 1} \Psi_2(t) = +\infty,
$$

which ensures that $\inf_{0 < t < 1} \Psi_2(t)$ exists and hence, by (3.23), $\inf_{0 < t < 1} \Psi_1(t)$ exists. Therefore, we have

$$
|a_n|^2 + |b_n|^2 \leq A_n(\Omega, M), \quad n \geq 1,
$$

where

$$
A_n(\Omega, M) = \frac{M^2}{n^2} \inf_{0 < t < 1} \frac{1}{2\pi t t^{2(n-1)}} \int_{|z|=t} \lambda^{2\alpha}_D(z) |dz|.
$$

We note that

$$
|a_n| + |b_n| \leq \sqrt{2(|a_n|^2 + |b_n|^2)} \leq \sqrt{2A_n(\Omega, M)} \quad \text{for } n \geq 1.
$$

If $\Omega = \Omega_\gamma$, then

$$
\lambda_\Omega(z) = \lambda_{\Omega_\gamma}(z) = \frac{(1 - \gamma)^{2\alpha}}{(1 - |(1 - \gamma)z + \gamma|^2)^{2\alpha}} \leq \frac{(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)|z| + \gamma)^2)^{2\alpha}}
$$

Using (3.21) and (3.26), we obtain

$$
2\pi t \sum_{n=1}^{\infty} n^2 (|a_n|^2 + |b_n|^2) t^{2(n-1)} \leq M^2 \int_{|z|=t} \frac{(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)|z| + \gamma)^2)^{2\alpha}} |dz|
$$

$$
= M^2 \int_{\theta=0}^{2\pi} \frac{t(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)|te^{i\theta}| + \gamma)^2)^{2\alpha}} d\theta
$$

$$
= M^2 \frac{2\pi t(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)t + \gamma)^2)^{2\alpha}}
$$

and therefore, we can express (3.27) as

$$
|a_1|^2 + |b_1|^2 + 2^2 (|a_1|^2 + |b_1|^2) t^2 + \cdots \leq \frac{M^2 (1 - \gamma)^{2\alpha}}{(1 - \gamma)^{2\alpha} + A_1 t + \cdots}.
$$

Thus, from (3.28), we deduce that

$$
|a_1|^2 + |b_1|^2 \leq \frac{M^2}{(1 + \gamma)^{2\alpha}}.
$$
Using (3.25), we have

(3.29) \[A_n(\Omega, M) = \frac{M^2}{n^2} \inf_{0 < t < 1} \frac{1}{2\pi t^2 t^{2(n-1)}} \int_{|z|=t} \frac{(1 - \gamma)^{2\alpha}}{(1 - |1 - \gamma|z + \gamma^2)^{2\alpha}} |dz| \]
\[\leq \frac{M^2}{n^2} \inf_{0 < t < 1} \frac{1}{2\pi t^2 t^{2(n-1)}} \int_{|z|=t} \frac{(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)t + \gamma^2)^2\alpha) |dz|} \]
\[= \frac{M^2}{n^2} \inf_{0 < t < 1} \frac{(1 - \gamma)^{2\alpha}}{t^{2(n-1)}(1 - ((1 - \gamma)t + \gamma^2)^2\alpha) |dz|} \]
\[=: C_n(\alpha, \gamma, M). \]

Let
\[\mu(t) = \frac{(1 - \gamma)^{2\alpha}}{t^{2(n-1)}(1 - ((1 - \gamma)t + \gamma^2)^2\alpha)}, \quad t \in (0, 1). \]

For \(n \geq 2 \), we can see that
\[\lim_{t \to 0^+} \mu(t) = \lim_{t \to 1^-} \mu(t) = +\infty. \]

This observation shows that the infimum of \(\mu(t) \) must exists in \((0, 1)\). For \(n \geq 2 \), we compute that
\[\mu'(t) = (1 - \gamma)^{2\alpha} \left(\frac{1}{t^{2(n-1)}} \frac{4\alpha(1 - \gamma)((1 - \gamma)t + \gamma)}{(1 - ((1 - \gamma)t + \gamma^2)^2\alpha)^{2\alpha+1}} - \frac{2(n - 1)}{t^{2(n-1)+1}} \frac{1}{(1 - ((1 - \gamma)t + \gamma^2)^2\alpha)} \right). \]

For each \(0 < \alpha < 1 \), \(\mu'(t) = 0 \) has the following roots
\[t_1 = \frac{-\gamma(n - 1 + \alpha) + \sqrt{\alpha^2 \gamma^2 + (n - 1)(n - 1 + 2\alpha)}}{(1 - \gamma)(n - 1 + 2\alpha)} < 1 \]
and
\[t_2 = \frac{-\gamma(n - 1 + \alpha) - \sqrt{\alpha^2 \gamma^2 + (n - 1)(n - 1 + 2\alpha)}}{(1 - \gamma)(n - 1 + 2\alpha)} < 0 \]
such that \(t_1 \in (0, 1) \) and \(t_2 < 0 \) for each \(\alpha \in (0, \infty) \), and thus, we obtain that
\[\inf_{0 < t < 1} \mu(t) = \mu(t_1). \]

It follows from (3.29) that

(3.30) \[C_n(\alpha, \gamma, M) \leq \frac{M^2}{n^2} \mu(t_1). \]

We observe that \(\Omega_n \) reduces to \(\mathbb{D} \) for \(\gamma = 0 \). Then \(t_1 = \sqrt{(n - 1)/(n - 1 + 2\alpha)} \) and

(3.31) \[C_n(\alpha, 0, M) := C_n(\alpha, M) \]
\[= \frac{M^2}{n^2} \left(1 + \frac{2\alpha}{n - 1} \right)^{n-1} \frac{(n - 1 + 2\alpha)^{2\alpha}}{(2\alpha)^{2\alpha}} \]
\[= \frac{M^2}{(2\alpha)^{2\alpha}} \left(1 + \frac{2\alpha}{n - 1} \right)^{n-1} \frac{(n - 1 + 2\alpha)^{2\alpha}}{n^2}. \]

We see that if \(0 < \alpha < 1 \), \(C_n(\alpha, M) \to 0 \) as \(n \to +\infty \). If \(\alpha = 1 \), then
\[C_n(\alpha, M) = \frac{M^2}{4} \left(1 + \frac{2}{n - 1} \right)^{n-1} \left(\frac{n + 1}{n} \right)^2. \]
If $\alpha > 1$, then
\[
C_n(\alpha, M) \leq \frac{M^2}{(2\alpha)^{2\alpha}} \left(1 + \frac{2\alpha}{n - 1} \right)^{n-1} \frac{(n - 1 + 2\alpha)^{2\alpha}}{n^2} = O\left(n^{2\alpha-2}\right).
\]
This completes the proof. \qed

4. Bohr inequality for Bloch spaces

In this section, we study Bloch-Bohr radius for the Bloch spaces. We first obtain the Bloch-Bohr radius for $B_\Omega(\alpha)$, when Ω is arbitrary proper simply connected domain in \mathbb{C}.

Theorem 4.1. Let Ω be a proper simply connected domain containing \mathbb{D}. Let $f \in B_\Omega(\alpha)$ with $||f||_{\Omega, \alpha} \leq 1$ such that $f(z) = \sum_{n=0}^\infty a_n z^n$ in \mathbb{D}. Then $\sum_{n=0}^\infty |a_n|r^n \leq 1$ for $|z| = r \leq r_\Omega(\alpha)$, where $r_\Omega(\alpha)$ is the smallest root of
\[
I(r) := \frac{r}{2\pi} \int_{|z|=r} \lambda^2_\Omega(z) \, |dz| = \frac{6}{\pi^2}
\]
in $(0,1)$, provided $\lim_{r \to 1^-} I(r) > 6/\pi^2$.

Proof. Let $f \in B_\Omega(\alpha)$ with $||f||_{\Omega, \alpha} \leq 1$. Then
\[
|f(0)| + \sup_{z \in \Omega} \frac{|f'(z)|}{\lambda^2_\Omega(z)} \leq 1,
\]
which implies that $|f'(z)| \leq (1 - |a_0|) \lambda^2_\Omega(z)$, $z \in \Omega$. Therefore,
\[
|f'(z)|^2 \leq (1 - |a_0|)^2 \lambda^2_\Omega(z) \quad \text{for} \quad z \in \Omega.
\]
Since $f(z) = \sum_{n=0}^\infty a_n z^n$ in \mathbb{D}, from (4.1), we obtain
\[
\sum_{n=1}^\infty n a_n z^{n-1} \leq (1 - |a_0|)^2 \lambda^2_\Omega(z) \quad \text{for} \quad z \in \mathbb{D}.
\]
Integrating (4.2) over the circle $|z| = r < 1$, we obtain
\[
2\pi r \sum_{n=1}^\infty n^2 |a_n|^2 r^{2(n-1)} \leq (1 - |a_0|)^2 \int_{|z|=r} \lambda^2_\Omega(z) \, |dz| \quad \text{for} \quad z \in \mathbb{D},
\]
which leads to
\[
\sum_{n=1}^\infty n^2 |a_n|^2 r^{2n} \leq (1 - |a_0|)^2 \frac{r}{2\pi} \int_{|z|=r} \lambda^2_\Omega(z) \, |dz| \quad \text{for} \quad z \in \mathbb{D}.
\]
In view of the classical Cauchy-Schwartz inequality and (4.3), we obtain
\[
|a_0| + \sum_{n=1}^\infty |a_n|r^n \leq |a_0| + \sqrt{\sum_{n=1}^\infty n^2 |a_n|^2 r^{2n}} \sqrt{\frac{\pi^2}{6}}
\]
\[
\leq |a_0| + (1 - |a_0|) \sqrt{\frac{r}{2\pi} \int_{|z|=r} \lambda^2_\Omega(z) \, |dz|} \sqrt{\frac{\pi^2}{6}}.
\]
We note that the right hand side of (4.4) less than or equals to 1 if
\[
\sqrt{\frac{r}{2\pi}} \int_{|z|=r} \lambda_{11}^{2\alpha}(z) \frac{|dz|}{\sqrt{\frac{\pi^2}{6}}} \leq 1,
\]
or equivalently, if
\[
\frac{r}{2\pi} \int_{|z|=r} \lambda_{11}^{2\alpha}(z) \frac{|dz|}{\sqrt{\frac{\pi^2}{6}}} \leq \frac{6}{\pi^2},
\]
which holds for \(r \leq r_\Omega(\alpha) \), where \(r_\Omega(\alpha) \) is the smallest root of
\[
I(r) := \frac{r}{2\pi} \int_{|z|=r} \lambda_{11}^{2\alpha}(z) \frac{|dz|}{\sqrt{\frac{\pi^2}{6}}} = \frac{6}{\pi^2}
\]
in \((0, 1)\). In order to prove the existence of the root \(r_\Omega(\alpha) \) in \((0, 1)\), we consider the function \(H : [0, 1) \to \mathbb{R} \) defined by
\[
H(r) = I(r) - \frac{6}{\pi^2} = \frac{r}{2\pi} \int_{|z|=r} \lambda_{11}^{2\alpha}(z) \frac{|dz|}{\sqrt{\frac{\pi^2}{6}}} - \frac{6}{\pi^2}.
\]
It is easy to see that \(H \) is continuous in \([0, 1)\) with
\[
H(0) = I(0) - \frac{6}{\pi^2} = -\frac{6}{\pi^2} < 0
\]
and
\[
\lim_{r \to 1^-} H(r) = \lim_{r \to 1^-} I(r) - \frac{6}{\pi^2} > 0 \quad \text{(by the assumption } \lim_{r \to 1^-} I(r) > 6/\pi^2\text{).}
\]
Therefore, in view of (4.6) and (4.7), we conclude that \(H \) has a root in \((0, 1)\) and choose the smallest root to be \(r_\Omega(\alpha) \). Thus, from (4.4), we deduce that \(\sum_{n=0}^\infty |a_n|r^n \leq 1 \) for \(r \leq r_\Omega(\alpha) \). This completes the proof.

In the next result, we independently obtain the Bloch-Bohr radius for \(\mathcal{B}_{\Omega, \gamma}(\alpha) \).

Theorem 4.2. For \(0 \leq \gamma < 1 \), let \(f \in \mathcal{B}_{\Omega, \gamma}(\alpha) \) with \(||f||_{\Omega, \gamma, \alpha} \leq 1 \) such that \(f(z) = \sum_{n=0}^\infty a_n z^n \) in \(\mathbb{D} \). Then \(\sum_{n=0}^\infty |a_n|r^n \leq 1 \) for \(|z| = r \leq r_{\gamma}(\alpha) \), where \(r_{\gamma}(\alpha) \) is the unique root of \(H_{\gamma, \alpha}(r) = 0 \) in \((0, 1)\), where
\[
H_{\gamma, \alpha}(r) := 6(1 - ((1 - \gamma)r + \gamma)^2)^{2\alpha} - \pi^2 (1 - \gamma)^{2\alpha} r^2.
\]
Moreover, the radius \(r_{\gamma}(\alpha) \) cannot be replaced by a number greater than \(R_{\gamma}(\alpha) \) when \(\alpha > 1 \), where
\[
R_{\gamma}(\alpha) = \frac{1}{1 - \gamma} \left(-\gamma + \sqrt{1 - (1 - \gamma)(1 + \gamma)^{1-\alpha} + 2(\alpha - 1))^{\frac{1}{1-\alpha}}} \right).
\]

Proof. The hyperbolic density for \(\Omega_{\gamma} \) at \(z \) is
\[
\lambda_{\Omega_{\gamma}}(z) = \frac{1 - \gamma}{1 - |(1 - \gamma)z + \gamma|^2}, \quad z \in \Omega_{\gamma}.
\]
Then, by the hypothesis \(||f||_{\Omega, \gamma, \alpha} \leq 1 \), we obtain
\[
|f'(z)| \leq (1 - |a_0|) \frac{(1 - \gamma)^\alpha}{(1 - |(1 - \gamma)z + \gamma|^2)^\alpha}
\]
\[
\leq (1 - |a_0|) \frac{(1 - \gamma)^\alpha}{(1 - ((1 - \gamma)|z| + \gamma)^2)^\alpha}, \quad z \in \Omega_{\gamma}.
\]
and thus,

\[(4.8) \quad \left| \sum_{n=1}^{\infty} na_n z^{n-1} \right|^2 = |f'(z)|^2 \leq (1 - |a_0|)^2 \frac{(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)|z| + \gamma)^{2\alpha}}, \quad z \in \mathbb{D}. \]

Integrating (4.8) over the circle \(|z| = r < 1\), we obtain

\[2\pi r \sum_{n=1}^{\infty} n^2 |a_n|^2 r^{2(n-1)} \leq (1 - |a_0|)^2 \int_{|z|=r} \frac{(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)|z| + \gamma)^{2\alpha}} |dz| \]

\[= (1 - |a_0|)^2 \int_{\theta=0}^{2\pi} \frac{(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)r + \gamma)^{2\alpha}} r \, d\theta \]

\[= (1 - |a_0|)^2 \frac{(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)r + \gamma)^{2\alpha}} 2\pi r, \]

which is equivalent to

\[(4.9) \quad \sum_{n=1}^{\infty} n^2 |a_n|^2 r^{2n} \leq (1 - |a_0|)^2 \frac{(1 - \gamma)^{2\alpha} r^2}{(1 - ((1 - \gamma)r + \gamma)^{2\alpha}}. \]

Using Cauchy-Schwartz inequality and (4.9), we obtain

\[(4.10) \quad |a_0| + \sum_{n=1}^{\infty} |a_n|r^n \leq |a_0| + \sqrt{\sum_{n=1}^{\infty} n^2 |a_n|^2 r^{2n}} \sqrt{\frac{\pi^2}{6}} \]

\[\leq |a_0| + (1 - |a_0|) \frac{(1 - \gamma)^{\alpha} r}{(1 - ((1 - \gamma)r + \gamma)^{2\alpha}} \sqrt{\frac{\pi^2}{6}} \leq 1, \]

provided

\[(4.11) \quad \frac{(1 - \gamma)^{\alpha} r}{(1 - ((1 - \gamma)r + \gamma)^{2\alpha}} \sqrt{\frac{\pi^2}{6}} \leq 1. \]

Now (4.11) holds for \(r \leq r_\gamma(\alpha)\), where \(r_\gamma(\alpha) \in (0, 1)\) is the smallest root of

\[\frac{(1 - \gamma)^{\alpha} r}{(1 - ((1 - \gamma)r + \gamma)^{2\alpha}} \sqrt{\frac{\pi^2}{6}} = 1, \]

or equivalently

\[6(1 - ((1 - \gamma)r + \gamma)^{2\alpha} - \pi^2 (1 - \gamma)^{2\alpha} r^2 = 0. \]

To prove the existence of the root \(r_\gamma(\alpha)\), we consider the function \(H_{\gamma,\alpha} : [0, 1] \rightarrow \mathbb{R}\) defined by

\[H_{\gamma,\alpha}(r) = 6(1 - ((1 - \gamma)r + \gamma)^{2\alpha} - \pi^2 (1 - \gamma)^{2\alpha} r^2. \]

Clearly, \(H_{\gamma,\alpha}\) is continuous in \([0, 1]\) and satisfies the conditions

\[(4.12) \quad H_{\gamma,\alpha}(0) = 6(1 - \gamma)^{2\alpha} > 0 \quad \text{and} \quad H_{\gamma,\alpha}(1) = -\pi^2 (1 - \gamma)^{2\alpha} r^2 < 0. \]

Thus, applying the Intermediate value theorem to the continuous function \(H_{\gamma,\alpha}\) in \([0, 1]\), we can easily see that \(H_{\gamma,\alpha}\) has a root in \((0, 1)\) and choose the smallest root to be \(r_\gamma(\alpha)\).

Hence, from (4.10), we obtain \(\sum_{n=0}^{\infty} |a_n|r^n \leq 1\) for \(r \leq r_\gamma(\alpha)\).

In order to obtain the upper bound of \(r_\gamma(\alpha)\) when \(\alpha > 1\), we consider the function

\[f_{\gamma,\alpha}(z) = (1 - \gamma)^{\alpha-1} \frac{(1 - ((1 - \gamma)z + \gamma)^{1-\alpha} - (1 - \gamma^{2\alpha})^{1-\alpha}}{2(\alpha - 1)}, \quad z \in \Omega_\gamma. \]
We see that
\[f'_{\gamma,\alpha}(z) = \frac{(1 - \gamma)^{\alpha-1}(\alpha - 1)(1 - \gamma)((1 - \gamma)z + \gamma)}{2(\alpha - 1)(1 - ((1 - \gamma)z + \gamma)^2)^\alpha}, \quad z \in \Omega_\gamma. \]
and hence we compute that \(|f_{\gamma,\alpha}|_{\Omega_{\gamma,\alpha}} = 1\) when \(\alpha > 1\). It is easy to see that \(f_{\gamma,\alpha} = f_{\alpha} \circ \phi\) for \(z \in \Omega_\gamma\), where \(f_{\alpha} : \mathbb{D} \rightarrow \mathbb{C}\) is analytic in \(\mathbb{D}\) and defined by
\[
(4.13) \quad f_{\alpha}(z) = \frac{(1 - z^2)^{1-\alpha} - 1}{2(\alpha - 1)} = \sum_{n=1}^{\infty} b_{\alpha,n} z^n, \quad z \in \mathbb{D}
\]
and \(\phi : \Omega_\gamma \rightarrow \mathbb{D}\) defined by \(\phi(z) = (1 - \gamma)z + \gamma\). We point out that all the Taylor’s coefficients \(b_{\alpha,n}\) of \(f_{\alpha}(z)\) in (4.13) are non-negative real numbers for \(\alpha > 1\) and also, the Taylor’s coefficients of \(\phi(z)\) are non-negative for each \(0 \leq \gamma < 1\). Then if \(f_{\gamma,\alpha}(z) = \sum_{n=1}^{\infty} b_{\alpha,\gamma,n} z^n\) in \(\mathbb{D}\), we observe that all the Taylor’s coefficients \(b_{\alpha,\gamma,n}\) of \(f_{\gamma,\alpha}(z)\) are also non-negative for each \(\alpha > 1\) and \(0 \leq \gamma < 1\). Therefore, for \(\alpha > 1\), we obtain
\[
(4.14) \quad \sum_{n=1}^{\infty} b_{\alpha,\gamma,n} r^n = (1 - \gamma)^{\alpha-1} \frac{(1 - ((1 - \gamma)r + \gamma)^2)^{1-\alpha} - (1 - \gamma^2)^{1-\alpha}}{2(\alpha - 1)}, \quad 0 < r < 1.
\]
Now we wish to find the smallest \(r\) such that \(\sum_{n=1}^{\infty} b_{\alpha,\gamma,n} r^n = 1\), which gives
\[
(4.15) \quad (1 - \gamma)^{\alpha-1} \frac{(1 - ((1 - \gamma)r + \gamma)^2)^{1-\alpha} - (1 - \gamma^2)^{1-\alpha}}{2(\alpha - 1)} = 1.
\]
A simple computation using (4.15) shows that
\[
r = \frac{1}{(1 - \gamma)} \left(\gamma + \sqrt{1 - (1 - \gamma)[(1 + \gamma)^{1-\alpha} + 2(\alpha - 1)]^{\frac{1}{\alpha}}} \right) := R_{\gamma}(\alpha).
\]
Therefore, the radius \(r_{\gamma}(\alpha)\) cannot be replaced by a number greater than \(R_{\gamma}(\alpha)\). \(\Box\)

\(\alpha\)	\(r_{0.1}(\alpha)\)	\(r_{0.4}(\alpha)\)
(0, 0.5)	(0.779697 \(\approx\) 0.619322)	(0.779697 \(\approx\) 0.631373)
(0.5, 1)	(0.619322 \(\approx\) 0.554985)	(0.631373 \(\approx\) 0.576500)
(1, 1.5)	(0.554985 \(\approx\) 0.514933)	(0.576500 \(\approx\) 0.544243)
(1.5, 2)	(0.514933 \(\approx\) 0.48638)	(0.544243 \(\approx\) 0.522310)
(2, 2.5)	(0.48638 \(\approx\) 0.464523)	(0.522310 \(\approx\) 0.506191)
(2.5, 3)	(0.464523 \(\approx\) 0.447025)	(0.506191 \(\approx\) 0.493744)

Table 2. Values of \(r_{0.1}(\alpha)\) and \(r_{0.4}(\alpha)\) for various values of \(\alpha\).

\(\alpha\)	\(r_{0.7}(\alpha)\)	\(r_{0.9}(\alpha)\)
(0, 0.5)	(0.779697 \(\approx\) 0.641889)	(0.779697 \(\approx\) 0.648220)
(0.5, 1)	(0.641889 \(\approx\) 0.594235)	(0.648220 \(\approx\) 0.604518)
(1, 1.5)	(0.594235 \(\approx\) 0.567402)	(0.604518 \(\approx\) 0.580481)
(1.5, 2)	(0.567402 \(\approx\) 0.549746)	(0.580481 \(\approx\) 0.564932)
(2, 2.5)	(0.549746 \(\approx\) 0.537110)	(0.564932 \(\approx\) 0.553950)
(2.5, 3)	(0.537110 \(\approx\) 0.527566)	(0.553950 \(\approx\) 0.545743)

Table 3. The Values of \(r_{0.7}(\alpha)\) and \(r_{0.9}(\alpha)\) for various values of \(\alpha\).
From Table 1, Table 2 and Table 3, we observe that Bloch-Bohr radius is greater than Bohr radius for each $\alpha \in (0, \infty)$ and $\gamma \in [0, 1)$. In the Table 2 and Table 3 the notation $(r_{0.1}(\alpha_1) \searrow r_{0.1}(\alpha_2)]$ means that the value of $r_{0.1}(\alpha)$ is monotonically decreasing from $\lim_{\alpha_1 \to \alpha} = r_{0.1}(\alpha_1)$ to $r_{0.1}(\alpha_2)$ when $\alpha_1 < \alpha \leq \alpha_2$. From Table 2 and Table 3 it is easy to see that the Bloch-Bohr radius is monotonically decreasing in α. We also observe that, from Table 2 and Table 3 the Bloch-Bohr radius is monotonically increasing in γ. This observation leads us to compare the Bloch-Bohr radius for $B_{\Omega_1}(\alpha)$ and $B_{\Omega_2}(\alpha)$, where Ω_1 and Ω_2 are proper simply connected domains containing \mathbb{D} such that $\Omega_1 \subseteq \Omega_2$.

Corollary 4.16. Let Ω_1 and Ω_2 be two proper simply connected domains in \mathbb{C} containing \mathbb{D} such that $\Omega_1 \subseteq \Omega_2$. Suppose that Bloch-Bohr radius exists for both $B_{\Omega_1}(\alpha)$ and $B_{\Omega_2}(\alpha)$, and call them as r_1 and r_2 respectively. Then $r_1 \leq r_2$.
Proof. In view of the comparison principle, we have \(\lambda^{\Omega_1}_{\Omega_2}(z) \leq \lambda^{\Omega_2}_{\Omega_1}(z) \) for \(z \in \Omega_1 \). Then, in view of the inequality (4.14) in Theorem 4.1, we obtain
\[
\sum_{n=0}^{\infty} |a_n|r^n \leq |a_0| + (1 - |a_0|) \left(\frac{r}{2\pi} \int_{|z|=r} \lambda^{\Omega_2}_{\Omega_1}(z) |dz| \right) \sqrt{\frac{\pi^2}{6}} \leq |a_0| + (1 - |a_0|) \left(\frac{r}{2\pi} \int_{|z|=r} \lambda^{\Omega_2}_{\Omega_1}(z) |dz| \right) \sqrt{\frac{\pi^2}{6}}
\]
for each \(r \in (0,1) \). This shows that Bloch-Bohr radius \(r_1 \) for \(B_{\Omega_1}(\alpha) \) is less than or equals to Bloch-Bohr radius \(r_2 \) for \(B_{\Omega_2}(\alpha) \). \(\square \)

As a consequence of Corollary 4.16 for simply connected domains \(\Omega_1, \Omega_2, \ldots, \Omega_n \) such that \(\Omega_1 \subseteq \ldots \subseteq \Omega_n \), we obtain the following result.

Corollary 4.17. Let \(\Omega_1, \Omega_2, \ldots, \Omega_n \) be finite n- proper simply connected domains in \(\mathbb{C} \) containing \(\mathbb{D} \) such that \(\Omega_1 \subseteq \Omega_2 \subseteq \ldots \subseteq \Omega_n \). Suppose that Bloch-Bohr radius exists for all \(B_{\Omega_1}(\alpha), B_{\Omega_2}(\alpha), \ldots, B_{\Omega_n}(\alpha) \), and call them as \(r_1, r_2, \ldots, r_n \) respectively. Then \(r_1 \leq r_2 \leq \ldots \leq r_n \).

In the next result, for \(p \geq 1 \), we obtain \(p \)-Bloch-Bohr radius for \(B_{\mathcal{H},\Omega_1}(\alpha) \). For functions \(f = h + \bar{g} \) of the form (4.18), for each \(p \geq 1 \), we define \(p \)-Bloch-Bohr radius for \(B_{\mathcal{H},\Omega_1}(\alpha) \) to be the largest radius \(r(p) \) \(\in (0,1) \) such that
\[
|a_0| + \sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)^{1/p} r^n \leq 1 \quad \text{for} \quad |z| = r \leq r(p).
\]
When \(f \) is analytic we can obtain analytic \(p \)-Bloch-Bohr radius. In particular, for \(p = 1 \), analytic \(p \)-Bloch-Bohr radius coincides with Bohr radius.

Theorem 4.3. Let \(f = h + \bar{g} \in B_{\mathcal{H},\Omega_1}(\alpha) \) such that \(||f||_{\mathcal{H},\Omega_1}(\alpha) \leq 1 \) with
\[
h(z) = \sum_{n=1}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_n z^n \quad \text{in} \quad \mathbb{D}.
\]
Then, for each \(p \geq 1 \), we have
\[
|a_0| + \sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)^{1/p} r^n \leq 1
\]
for \(|z| = r \leq r_{\gamma}(\alpha, p) \), where \(r_{\gamma}(\alpha, p) \) is the smallest root of \(H_1(r) = 0 \) in \((0,1) \), where
\[
H_1(r) = 6(1 - ((1 - \gamma)r + \gamma)^2)^{2\alpha} - K_p \pi^2 (1 - \gamma)^{2\alpha} r^2
\]
and \(K_p = \max\{2^{(2/p)-1}, 1\} \).

Proof. Since \(||f||_{\mathcal{H},\Omega_1}(\alpha) \leq 1 \), we obtain
\[
|h'(z)| + |g'(z)| \leq \frac{(1 - |a_0|)(1 - \gamma)^{\alpha}}{(1 - (1 - \gamma)z + |\gamma|^2)^{\alpha}} \leq \frac{(1 - |a_0|)(1 - \gamma)^{\alpha}}{(1 - ((1 - \gamma)|z| + |\gamma|^2)^{2\alpha}}, \quad z \in \Omega_1
\]
and hence
\[
|h'(z)|^2 + |g'(z)|^2 \leq (|h'(z)| + |g'(z)|)^2 \leq \frac{(1 - |a_0|^2)(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)|z| + \gamma)^2)^{2\alpha}}, \quad z \in \Omega.
\]
Integrating the inequality \((4.19)\) over the circle \(|z| = r < 1\), we obtain
\[
(4.20) \quad \sum_{n=1}^{\infty} n^2(|a_n|^2 + |b_n|^2)r^{2(n-1)} \leq \frac{(1 - |a_0|)^2(1 - \gamma)^{2\alpha}}{(1 - ((1 - \gamma)r + \gamma)^2)^{2\alpha}}.
\]

Using the classical Cauchy-Schwartz inequality and \((4.20)\), we obtain
\[
(4.21) \quad |a_0| + \sum_{n=1}^{\infty} \left(|a_n|^p + |b_n|^p\right)^{1/p} r^n \leq |a_0| + \sqrt{K_p \sum_{n=1}^{\infty} n^2(|a_n|^2 + |b_n|^2)r^{2n}} \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^2}}
\]
\[
\leq |a_0| + \sqrt{K_p} \frac{(1 - |a_0|)(1 - \gamma)^\alpha r}{(1 - ((1 - \gamma)r + \gamma)^2)^\alpha} \sqrt{\frac{\pi^2}{6}}
\]
which is less than or equals to 1 for \(r \leq r_\gamma(\alpha, p)\), where \(r_\gamma(\alpha, p)\) is the smallest root of
\[
\sqrt{K_p}(1 - \gamma)^\alpha r \frac{\sqrt{\pi^2}}{\sqrt{6}} = 1,
\]
or equivalently,
\[
(4.22) \quad 6(1 - ((1 - \gamma)r + \gamma)^2)^{2\alpha} - K_p \pi^2 (1 - \gamma)^{2\alpha} r^2 = 0
\]
in \((0, 1)\). Using the same lines of argument as in the proof of Theorem 4.2, we can show that \((4.22)\) has a root in \((0, 1)\) and choose \(r_\gamma(\alpha, p)\) to be the smallest root in \((0, 1)\). This completes the proof. \(\square \)

| \(|a_0|, (\alpha, 1)\) | \(|b_0|, (\alpha, 1)\) |
|-------------------|-------------------|
| (0.1, 0.5) | (0.551329, 0.489073) |
| (0.5, 1) | (0.489073, 0.454081) |
| (1, 1.5) | (0.454081, 0.430126) |
| (1.5, 2) | (0.430126, 0.412188) |
| (2, 2.5) | (0.412188, 0.398028) |
| (2.5, 3) | (0.398028, 0.386449) |

Table 5. Values of \(r_0.1(\alpha, 1)\) and \(r_0.4(\alpha, 1)\) for various values of \(\alpha\).

Figure 5. The graph of \(H_{0.1, \alpha}(r, 1)\) and \(H_{0.4, \alpha}(r, 1)\) when \(\alpha = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0\).
By adopting the similar arguments as in Corollary 4.16 and using Comparison Principle 2.1, we obtain the following Corollary.

Corollary 4.23. Let $\Omega_1, \Omega_2, \ldots, \Omega_n$ be finite n-proper simply connected domains in \mathbb{C} containing \mathbb{D} such that $\Omega_1 \subseteq \Omega_2 \subseteq \ldots \subseteq \Omega_n$. Suppose that Bloch-Bohr radius exists for all $B_{\mathbb{H},\Omega_1}(\alpha), B_{\mathbb{H},\Omega_2}(\alpha), \ldots, B_{\mathbb{H},\Omega_n}(\alpha)$, and call them as $r_1, r_2 \leq \ldots \leq r_n$ respectively. Then $r_1 \leq r_2 \leq \ldots \leq r_n$.

Now we see that the p-Bohr radius for functions in $B_{\mathbb{H},\Omega_n}(\alpha)$ is 0. To see this, we consider the function

$$f_\gamma(z) = h(z) + \overline{g(z)} = \frac{1}{(1 - \gamma)(1 - z)} + \frac{z}{(1 - \gamma)(1 - z)}, \quad z \in \Omega_\gamma$$

so that $f_\gamma(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n$ in \mathbb{D}, where $a_0 = 1/(1 - \gamma)$, $a_n = b_n = 1/(1 - \gamma)$ for $n \geq 1$. It is easy to see that $f_\gamma \in B^p_{\mathbb{H},\Omega_n}(\alpha)$ and $\|f\|^p_{\mathbb{H},\Omega_n,\alpha} = |a_0| = 1/(1 - \gamma)$ for $\alpha > 0$. Therefore, we obtain

$$|a_0| + \sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)^{1/p} r^n = \frac{1}{1 - \gamma} + \sum_{n=1}^{\infty} \frac{2^{1/p}}{1 - \gamma} r^n > \frac{1}{1 - \gamma} = \|f\|^p_{\mathbb{H},\Omega_n,\alpha}$$

for all $r \in (0, 1)$, which shows that the p-Bohr radius for f is 0. But, if we consider an additional condition, namely sense-preserving to the functions in $B^p_{\mathbb{H},\Omega_n}(\alpha)$, then the p-Bohr radius exists and is obtained in the following result.

Theorem 4.4. Let $f = h + \overline{g} \in B^p_{\mathbb{H},\Omega_n}(\alpha)$ be a sense-preserving harmonic mapping such that $\|f\|^p_{\mathbb{H},\Omega_n}(\alpha) \leq 1$. If $|g'(z)| \leq k|h'(z)|$ in \mathbb{D} and

$$h(z) = \sum_{n=1}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=1}^{\infty} b_n z^n \text{ in } \mathbb{D},$$

TABLE 6. Values of $r_{0.7}(\alpha, 1)$ and $r_{0.9}(\alpha, 1)$ for various values of α.

α	$r_{0.7}(\alpha, 1)$	$r_{0.9}(\alpha, 1)$
(0, 0.5)	(0.551329, 0.520253)	(0.551329, 0.528847)
(0.5, 1)	(0.520253, 0.505149)	(0.528847, 0.518328)
(1, 1.5)	(0.495956, 0.495956)	(0.518328, 0.512104)
(1.5, 2)	(0.495956, 0.489709)	(0.512104, 0.507962)
(2, 2.5)	(0.489709, 0.485167)	(0.507962, 0.504999)
(2.5, 3)	(0.485167, 0.481766)	(0.504999, 0.502771)
then, for each $p \geq 1$, we have

$$|a_0| + \sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)^{1/p} r^n \leq 1$$

for $|z| = r \leq r_0^*(\alpha, p, d)$, where $r_0^*(\alpha, p, d)$ is the smallest root of $H_2(r) = 0$ in $(0, 1)$, where $H_2(r) = 6(1 - ((1 - \gamma) r + \gamma)^2) \alpha \left((1 + dr)^2 - k^2 (r + d)^2 \right) - K_p (1 + k^2)^2 (1 + d)^2 (1 - \gamma)^2 r^2$, $d = \frac{|g'(0)|}{k |h'(0)|}$, and $K_p = \max\{2^{(2/p) - 1}, 1\}$.

Proof. For the sense-preserving harmonic mapping $f = h + \overline{g}$ in Ω, satisfying $|g'(z)| \leq k|h'(z)|$ in \mathbb{D}, the dilation $\omega = \omega_f = g'/h'$ satisfies $|\omega_f(z)| \leq k < 1$ for $z \in \mathbb{D}$. If ω_f is non-constant, then by the maximum modulus principle, $|\omega_f(z)| < k$ for all $z \in \mathbb{D}$. Thus, if we assume that ω_f is non-constant then there exists an analytic function $\psi_\omega : \mathbb{D} \to \mathbb{D}$ such that $\psi_\omega = \omega_f/k$ in \mathbb{D} i.e. $g'(z) = k \psi_\omega(z) h'(z)$ for $z \in \mathbb{D}$. Therefore,

$$J_f(z) = |h'(z)|^2 (1 - |\omega(z)|^2) \quad i.e., \quad |h'(z)| = \sqrt{\frac{|J_f(z)|}{1 - |\omega(z)|^2} = \sqrt{\frac{|J_f(z)|}{1 - k^2 |\psi_\omega(z)|^2}}, \quad z \in \mathbb{D}. $$

Since $|\psi_\omega(z)| < 1$ in \mathbb{D}, from Pick’s conformally invariant form of the Schwarz lemma, we have

$$|\psi_\omega(z)| \leq \frac{|z| + |\psi_\omega(0)|}{1 + |\psi_\omega(0)||z|}, \quad z \in \mathbb{D}. \quad (4.24)$$

The given assumption $||f||_{A, \lambda, \gamma}^\alpha (\alpha) \leq 1$ gives

$$\sqrt{\frac{J_f(z)}{\lambda_\Omega^\alpha(z)}} \leq 1 - |a_0|, $$

which is equivalent to

$$ (1 - ((1 - \gamma) |z| + \gamma)^2) \alpha \sqrt{J_f(z)} \leq (1 - \gamma)^\alpha (1 - |a_0|), \quad z \in \Omega. \quad (4.25) $$

Since (4.25) holds for all $z \in \Omega$ and $\mathbb{D} \subseteq \Omega$, then (4.25) also holds for all $z \in \mathbb{D}$. Thus, from (4.24) and (4.25), we obtain

$$|h'(z)| = \sqrt{\frac{|J_f(z)|}{1 - k^2 |\psi_\omega(z)|^2}} \leq \frac{(1 - \gamma)^\alpha (1 - |a_0|)}{(1 - ((1 - \gamma) |z| + \gamma)^2) \alpha} \frac{1}{\sqrt{1 - k^2 |\psi_\omega(z)|^2}} \leq \frac{(1 - \gamma)^\alpha (1 - |a_0|)}{(1 - ((1 - \gamma) |z| + \gamma)^2) \alpha} \frac{1}{\sqrt{(1 + |\psi_\omega(0)||z|)^2 - k^2 (|z| + |\psi_\omega(0)|)^2}} \leq \frac{(1 - \gamma)^\alpha (1 - |a_0|)}{(1 - ((1 - \gamma) |z| + \gamma)^2) \alpha} \frac{1 + |\psi_\omega(0)||z|}{\sqrt{(1 + |\psi_\omega(0)||z|)^2 - k^2 (|z| + |\psi_\omega(0)|)^2}}, \quad z \in \mathbb{D}. \quad (4.26)$$

Since $|g'(z)| \leq k |h'(z)|$ in \mathbb{D} then $|h'(z)|^2 + |g'(z)|^2 \leq (1 + k^2) |h'(z)|^2$. Using the fact $|h'(z)|^2 + |g'(z)|^2 \leq (|h'(z)| + |g'(z)|)^2$, the inequality (4.26) leads to

$$|h'(z)|^2 + |g'(z)|^2 \leq \frac{(1 + k^2)(1 - \gamma)^{2\alpha} (1 - |a_0|^2)}{(1 - ((1 - \gamma) |z| + \gamma)^2) 2 \alpha} \frac{(1 + |\psi_\omega(0)||z|)^2}{(1 + |\psi_\omega(0)||z|)^2 - k^2 (|z| + |\psi_\omega(0)|)^2} \quad (4.27)$$
in \(\mathbb{D} \). Integrating (4.27) over the circle \(|z| = r < 1 \), we obtain
\[
(4.28) \quad \sum_{n=1}^{\infty} n^2(|a_n|^2 + |b_n|^2)r^{2(n-1)} \\
\leq \frac{(1 + k^2)(1 - \gamma)^{2\alpha}(1 - |a_0|^2)}{(1 - ((1 - \gamma)r + \gamma)^{2\alpha})(1 + |\psi_0(0)|r)} \left(\frac{1 + |\psi_0(0)|r}{1 + |\psi_0(0)|r - k^2(r + |\psi_0(0)|)^2} \right).
\]
Using the Cauchy-Schwarz inequality and (4.28), we obtain
\[
(4.29) \quad |a_0| + \sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)^{1/p} r^n \\
\leq |a_0| + \sum_{n=1}^{\infty} n^2(|a_n|^p + |b_n|^p)^{1/p} \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^2}} \\
\leq |a_0| + \sqrt{K_p \sum_{n=1}^{\infty} n^2(|a_n|^2 + |b_n|^2)} r^{2n} \sqrt{\frac{\pi^2}{6}} \\
\leq |a_0| + \sqrt{K_p(1 + k^2)(1 - \gamma)^{\alpha}(1 - |a_0|)} \frac{(1 + |\psi_0(0)|r)}{\sqrt{(1 + |\psi_0(0)|r^2 - k^2(r + |\psi_0(0)|)^2)} \sqrt{\frac{\pi^2}{6}}} \\
\leq 1,
\]
provided \(r \leq r_\gamma^*(\alpha, p) \), where \(r_\gamma^*(\alpha, p) \) is the smallest root of
\[
\sqrt{K_p(1 + k^2)(1 - \gamma)^{\alpha}} \frac{(1 + |\psi_0(0)|r)}{\sqrt{(1 + |\psi_0(0)|r^2 - k^2(r + |\psi_0(0)|)^2)} \sqrt{\frac{\pi^2}{6}}} = 1,
\]
or equivalently,
\[
(4.30) \quad 6(1 - ((1 - \gamma)r + \gamma)^{2\alpha}((1 + dr)^2 - k^2(r + d)^2) - K_p(1 + k^2)\pi^2(1 + d)^2(1 - \gamma)^{2\alpha}r^2 = 0
\]
in \((0, 1)\), where \(d = |\psi_0(0)| = |g'(0)|/(k|h'(0)|) \). Using the similar lines of argument as in the proof of Theorem 4.2, we can show that (4.30) has root in \((0, 1)\) and choose \(r_\gamma^*(\alpha, p) \) to be the smallest root in \((0, 1)\). This completes the proof. \(\square \)

It is worth to point out that \(k \to 1 \) corresponds to the sense-preserving harmonic mappings. Hence, by taking \(k \to 1 \) in Theorem 4.4, we obtain the following corollary.

Corollary 4.31. Let \(f = h + \overline{g} \in \mathcal{B}_{H,\Omega^*}^*(\alpha) \) with \(||f||_{H,\Omega^*}^*(\alpha) \leq 1 \). Let \(h(z) = \sum_{n=1}^{\infty} a_n z^n \), \(g(z) = \sum_{n=1}^{\infty} b_n z^n \) in \(\mathbb{D} \) and \(f = h + \overline{g} \) is sense-preserving in \(\mathbb{D} \). Then, for each \(p \geq 1 \), we have
\[
|a_0| + \sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)^{1/p} r^n \leq 1
\]
for \(|z| = r \leq r_\gamma^*(\alpha, p, d_1) \), where \(r_\gamma^*(\alpha, p, d_1) \) is the smallest root of \(H_3(r) = 0 \) in \((0, 1)\), where
\[
H_3(r) := 6(1 - ((1 - \gamma)r + \gamma)^{2\alpha}((1 + d_1)^2 - (r + d_1)^2) - 2K_p\pi^2(1 + d_1)^2(1 - \gamma)^{2\alpha}r^2 \\
and d_1 = |g'(0)|/|h'(0)| \text{ and } K_p = \max\{2^{(2/p) - 1}, 1\}.
\]
The graph of $H_{0.1, \alpha}(r, 1, 0)$ and $H_{0.4, \alpha}(r, 1, 0)$ when $\alpha = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0$.

The graph of $H_{0.7, \alpha}(r, 1, 0)$ and $H_{0.9, \alpha}(r, 1, 0)$ when $\alpha = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0$.

α	$r_{0.1}^*(\alpha, 1, 0)$	$r_{0.4}^*(\alpha, 1, 0)$	$r_{0.7}^*(\alpha, 1, 0)$	$r_{0.9}^*(\alpha, 1, 0)$
0.0	0.363223	0.363223	0.363223	0.363223
0.5	0.350178	0.367185	0.381675	0.390276
1.0	0.340148	0.370061	0.394452	0.408503
2.0	0.325437	0.373934	0.410547	0.430636
2.5	0.319806	0.375294	0.415868	0.437722
3.0	0.314962	0.376408	0.420088	0.443260

Table 7. Values of $r_{\gamma}^*(\alpha, p, d_1)$ for different values of γ, α when $p = 1, d_1 = 0$.

Denote $H_3 = H_{\gamma, \alpha}(r, p, d_1)$. In Table 7 for $p = 1$ and $d_1 = 0$, we compute p-Bloch-Bohr radius $r_{\gamma}^*(\alpha, p, d_1)$ for $f \in B_{H, \Omega_{\gamma}}^*(\alpha)$ which is sense-preserving in \mathbb{D}. From Table 7 we observe that $r_{\gamma}^*(\alpha, p, d_1)$ is increasing in γ for fixed values of α and p.

By using the similar arguments as in Corollary 4.16 and using the Comparison Principle 2.2 we obtain the following Corollary.

Corollary 4.32. Let $\Omega_1, \Omega_2, \ldots, \Omega_n$ be finite n-proper simply connected domains in \mathbb{C} containing \mathbb{D} such that $\Omega_1 \subseteq \Omega_2 \subseteq \ldots \subseteq \Omega_n$. Suppose that Bloch-Bohr radius exists for all $B_{H, \Omega_1}^*(\alpha), B_{H, \Omega_2}^*(\alpha), \ldots, B_{H, \Omega_n}^*(\alpha)$, and call them as $r_1^*, r_2^*, \ldots, r_n^*$ respectively. Then $r_1^* \leq r_2^* \leq \ldots \leq r_n^*$.

We note that $K_p = \max\{2^{(2/p)-1}, 1\} = 1$ when $p > 1$. Then, for $p > 1$, we have the following result.
Corollary 4.33. Let $f = h + \overline{g} \in B^*_{\mathcal{H}, \Omega_\gamma}(\alpha)$ with $\|f\|^*_{\mathcal{H}, \Omega_\gamma}(\alpha) \leq 1$. If $h(z) = \sum_{n=1}^{\infty} a_n z^n$, $g(z) = \sum_{n=1}^{\infty} b_n z^n$ in \mathbb{D} and $f = h + \overline{g}$ is sense-preserving in \mathbb{D} then, for each $p \geq 2$, we have

$$|a_0| + \sum_{n=1}^{\infty} (|a_n|^p + |b_n|^p)^{1/p} r^n \leq 1$$

for $|z| = r \leq r_\gamma^*(\alpha, p, d_1)$, where $r_\gamma^*(\alpha, p, d_1)$ is the smallest root of $H_4(r) = 0$ in $(0, 1)$, where

$$H_4(r) := 6(1 - ((1 - \gamma)r + \gamma)^2(1 + d_1 r)^2 - (r + d_1)^2(1 - \gamma)^2 r^2 - 2\pi^2(1 + d_1)^2(1 - \gamma)^2 r^2$$

and $d_1 = |g'(0)|/|h'(0)|$ and $K_p = \max\{2^{(2/p) - 1}, 1\}$.

An observation of Corollary 4.33 shows that the p-Bohr radius $r_\gamma^*(\alpha, p, d_1)$ depends on d_1 i.e., on $|\omega_f(0)|$, which can be seen from the following example.

Example 4.1. Let $\gamma = 0$ i.e., $\Omega_\gamma = \mathbb{D}$. Fix $\lambda \in [1/2, 1)$. We consider the following one parameter family of functions F_λ in \mathbb{D} defined by

$$F_\lambda(z) = H_\lambda(z) + G_\lambda(z) \quad \text{for } z \in \mathbb{D},$$

where

$$H_\lambda(z) = 1 - 2\sqrt{\lambda - \lambda^2} + \frac{1}{2} \log \frac{1 + z}{1 - z}$$

and

$$G_\lambda(z) = \frac{\lambda - 1}{2} \log(1 - z^2) + \frac{\lambda}{2} \log \frac{1 + z}{1 - z}.$$

Furthermore, let

$$F_\lambda(z) = \sum_{n=0}^{\infty} a_{n,\lambda} z^n + \sum_{n=1}^{\infty} b_{n,\lambda} z^n \quad \text{for } z \in \mathbb{D}.$$

A simple computation shows that

$$H'_\lambda(z) = \frac{1}{1 - z^2} \quad \text{and} \quad G'_\lambda(z) = \frac{(1 - \lambda)z + \lambda}{1 - z^2} \quad \text{for } z \in \mathbb{D}.$$

Then the dilation $\omega_{F_\lambda}(z) = (1 - \lambda)z + \lambda$ and $|\omega_{F_\lambda}(z)| < 1$ in \mathbb{D}. Hence, F_λ is sense-preserving in \mathbb{D}. Now, we see that

$$(4.34) \quad |G'_\lambda(z)| \geq \frac{\lambda - (1 - \lambda)|z|}{|1 - z^2|} \geq \frac{2\lambda - 1}{|1 - z^2|} \quad \text{for } z \in \mathbb{D}.$$

Thus, from (4.34), we obtain

$$(1 - |z|^2) \sqrt{J_{F_\lambda}(z)} \leq (1 - |z|^2) \sqrt{\frac{1}{|1 - z^2|^2} - \frac{(2\lambda - 1)^2}{|1 - z^2|^2}} \leq 2\sqrt{\lambda - \lambda^2}, \quad z \in \mathbb{D},$$

which shows that $F_\lambda \in B^*_{\mathcal{H}}(1)$. Furthermore, for $x \in (-1, 0)$, we have

$$(1 - |x|^2) \sqrt{J_{F_\lambda}(x)} \to 2\sqrt{\lambda - \lambda^2}$$

as $x \to -1^+$, which implies that $\beta^*_H(\alpha) = 2\sqrt{\lambda - \lambda^2}$ and hence, $\|F_\lambda\|_{B^*_{\mathcal{H}}(1)} = 1$. A simple computation shows that

$$|a_{0,\lambda}| + \sum_{n=1}^{\infty} (|a_{n,\lambda}|^p + |b_{n,\lambda}|^p)^{1/p} r^n > |a_{0,\lambda}| = 1 - 2\sqrt{\lambda - \lambda^2}$$
for each $r \in (0, 1)$. Now, we observe that $|\omega_{F_{\lambda}}(0)| = |G_{\lambda}'(0)||H_{\lambda}'(0)| = \lambda$. By taking $\lambda \to 1^-$, we see that $1 - 2\sqrt{\lambda - \lambda^2} \to 1 = ||F_{\lambda}||_{S_p(1)}$, which shows that p-Bohr radius for F_{λ} tends to 0 when $\lambda \to 1^-$. Therefore, the p-Bohr radius depends on $|\omega_{F_{\lambda}}(0)|$.

Acknowledgment: The first author is supported by SERB-CDRE Grant, and second author is supported by CSIR (File No: 09/1059(0020)/2018-EMR-I), New Delhi, India.

REFERENCES

[1] Z. Abdulhadi and Y. Abu-Muhanna, Landau’s theorem for biharmonic mappings, J. Math. Anal. Appl. 338 (2008), 705–709.
[2] Y. Abu-Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ. 55 (2010), 1071–1078.
[3] Y. Abu-Muhanna and R. M. Ali, Bohr’s phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl. 379 (2011), 512–517.
[4] Y. Abu Muhanna, R. M. Ali, Z. C. Ng and S. F. M Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Appl. 420 (2014), 124–136.
[5] M. B. Ahamed, V. Allu and H. Halder, The Bohr Phenomenon for analytic functions on simply connected domains, Ann. Acad. Sci. Fenn. Math. (2021), To appear.
[6] M. B. Ahamed, V. Allu and H. Halder, Bohr radius for certain classes of close-to-convex harmonic mappings, Anal. Math. Phys. 11 (111) (2021).
[7] L. Aizenberg, Multidimensional analogues of Bohr’s theorem on power series, Proc. Amer. Math. Soc. 128 (2000), 1147–1155.
[8] L. Aizenberg, A. Aytuna and P. Djakov, Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, J. Math. Anal. Appl. 258 (2001), 429–447.
[9] L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math. 180 (2007), 161–168.
[10] L. Aizenberg, Remarks on the Bohr and Rogosinski phenomena for power series, Anal. Math. Phys. 2 (2012), 69–78.
[11] S. A. Alkhaleefah, I. R. Kayumov and S. Ponnusamy, On the Bohr inequality with a fixed zero coefficients, Proc. Amer. Math. Soc. 147 (12) (2019), 5263–5274.
[12] R. M. Ali, R.W. Barnard and A.Yu. Solynin, A note on Bohr’s phenomenon for power series, J. Math. Anal. Appl. 449 (2017), 154–167.
[13] S. A. Alkhaleefah, I.R. Kayumov and S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, Proc. Amer. Math. Soc. 147 (2019), 5263–5274.
[14] V. Allu and H. Halder, Bhor phenomenon for certain subclasses of Harmonic Mappings, see https://arxiv.org/pdf/2006.11622.pdf.
[15] V. Allu and H. Halder, Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl. 493(1) (2021), 124519.
[16] V. Allu and H. Halder, Bohr phenomenon for certain close-to-convex analytic functions, Comput. Methods Funct. Theory (2021), To appear.
[17] A. Aytuna and P. Djakov, Bohr property of bases in the space of entire functions and its generalizations, Bull. London Math. Soc. 45(2)(2013), 411–420.
[18] X.-X. Bai, D. Pellegrino, and J. B. Seoane-Sepúlveda, Landau-type theorems for polyharmonic mappings and log-p-harmonic mappings, Complex Anal. Oper. Theory 13 (2019), 321–340.
[19] F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to $\sqrt{(\log n)/n}$, Adv. Math. 264 (2014), 726–746.
[20] A. F. Beardon and D. Minda, The hyperbolic metric and geometric function theory, Proceedings of the International Workshop on Quasiconformal Mappings and their Applications (IWIQMA05).
[21] C. Béchéau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4(1) (2004), 1-19.
[22] B. Bhowmik and N. Das, Bohr phenomenon for operator-valued functions, Proc. Edinburgh Math. Soc., https://doi.org/10.1017/S0013091520000395.
[23] H.P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc 125 (1997), 2975–2979.
[24] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. s2-13 (1914), 1–5.
[25] H. Chen, P. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128 (2000), 3231–3240.
[26] S. Chen, S. Ponnusamy and X. Wang, Landau’s theorem for certain biharmonic mappings, *Appl. Math. Comput.* **208** (2009), 427-433.

[27] S. Chen, S. Ponnusamy and X. Wang, Landau’s theorem and Marden constant for harmonic ν-Bloch mappings, *Bull. Aust. Math. Soc.* **84** (2011), 19-32.

[28] J. Chen, A. Rasila and X. Wang, Landau’s theorem for polyharmonic mappings, *J. Math. Anal. Appl.* **409** (2014), 934-945.

[29] F. Colonna, The Bloch constant of bounded harmonic mappings, *Indiana Univ. Math. J.* **38** (1989), 829–840.

[30] A. Defant and L. Frerick, A logarithmic lower bound for multi-dimensional bohr radii, *Israel J. Math.* **152** (2006), 17–28.

[31] A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials in hypercontractive, *Ann. of Math.* **174** (2011), 512–517.

[32] P. G. Dixon, Banach algebras satisfying the non-unital von Neumann inequality, *Bull. London Math. Soc.* **27** (4) (1995), 359–362.

[33] I. Efraimidis, J. Gaona, R. Hernández and O. Venegas, On harmonic Bloch-type mappings, *Complex Var. Elliptic Equ.* **62** (2017), 1081–1092.

[34] M. S. Liu, Landau’s theorems for planar harmonic mappings, *Comput. Math. Appl.* **57** (2009), 1142–1146.

[35] M. S. Liu and S. Ponnusamy, Multidimensional analogues of refined Bohr’s inequality, *Proc. Amer. Math. Soc.* (2020) (to appear).

[36] G. Popescu, Bohr inequalities for free holomorphic functions on polyballs, *Adv. Math.* **347** (2019), 1002-1053.

[37] J. F. Zhu: Landau theorem for planar harmonic mappings, *Complex Anal. Oper. Theory* **9** (2015), 1819–1826.

[38] J. Zhu, Coefficients estimate for harmonic ν-Bloch-mappings and harmonic K-quasiconformal mappings, *Bull. Malays. Math. Sci. Soc.* **39** (2016), 349–358.

Vasudevarao Allu, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.

Email address: avrao@iitbbs.ac.in

Himadri Halder, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.

Email address: hh11@iitbbs.ac.in