Research article

Complexity trees of the sequence of some nonahedral graphs generated by triangle

S.N. Daouda,b,*, Wedad Saleha

a Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah 41411, Saudi Arabia
b Department of Mathematics and Computer Science, Faculty of Science, Menoufi University, Shebin El Kom 32511, Egypt

ARTICLE INFO

Keywords:
Mathematics
Number of spanning trees
Entropy
Electrically equivalent transformations

ABSTRACT

Calculating the number of spanning trees of a graph is one of the widely studied graph problems since the Pioneer Gustav Kirchhoff (1847). In this work, using knowledge of difference equations we drive the explicit formulas for the number of spanning trees in the sequence of some Nonahedral (nine faced polyhedral) graphs generated by triangle using electrically equivalent transformations and rules of the weighted generating function. Finally, we evaluate the entropy of graphs in this manuscript with different studied graphs with an average degree being 4, 5 and 6.

1. Introduction

The trouble of counting spanning trees turns to be essential and more importantly, interesting. For instance, it has been shown, that if the graph represents an electrical community with each edge a unit resistor, the effective resistance of an edge is equal to the proportion of spanning trees that the edge is in. Also, the wide variety of spanning trees is used as an invariant for computing the entropy of certain networks related to physical processes. In addition, there are various applications of the wide variety of spanning trees within mathematics as well [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

A spanning tree of a connected graph is a subgraph that is a tree reaching all vertices. There exist numerous strategies for finding the number of spanning trees \(\tau(G) \) of a graph \(G \).

A classic technique called the matrix tree theorem, also called Kirchhoff’s matrix-tree theorem [13] which states that the number of nonidentical spanning trees of a graph \(G \) is same to any cofactor of its Laplacian matrix \(L = D - A \), in which \(D \) is the degree matrix and \(A \) is the adjacency matrix of the graph \(G \).

Another method to count this number is using Laplacian eigenvalues. Kelmans and Chelnoknov \cite{14} derived the following formula:

\[
\tau(G) = \frac{1}{\lambda_1} \prod_{i=1}^{p-1} \lambda_i, \tag{1.1}
\]

where \(G \) is a connected graph with \(p \) vertices and \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p = 0 \) are the eigenvalues of the Laplacian matrix \(L \).

One popular technique for finding the number of spanning trees, \(\tau(G) \), is the deletion-contraction method. This technique is a reliable method which lets into enumerate the number of spanning trees of a multigraph \(G \). This method makes use of the fact that

\[
\tau(G) = \tau(G - e) + \tau(G/e) \tag{1.2}
\]

where \(G - e \) denotes the graph obtained by deleting an arbitrary edge \(e \), and \(G/e \) denotes the graph obtained by contracting an arbitrary edge \(e \) \cite{15, 16}. For more results, see \cite{17, 18, 19, 20}.

2. Electrically equivalent transformations

An electrical network is an interconnection of electrical components (e.g. inductors, capacitors, batteries, resistors, switches, etc).

Kirchhoff’s motivation was studied of electrical networks: an edge-weighted graph can be regarded as an electrical network, where weights are the conductance of the respective edges. The effect conductance between two specific nodes \(u, v \) can be written as the quotient of (weighted) number of spanning trees and the (weighted) number of so called thickets, i.e., spanning forests with exactly two components and property that each of the components contains precisely one of the nodes \(u, v \) \cite{21, 22}. Next, we list the effect of some simple transformations on the number of spanning trees, suppose that \(G \) is an edge weighted

* Corresponding author.
E-mail address: salamadaoud@gmail.com (S.N. Daoud).

https://doi.org/10.1016/j.heliyon.2020.e04786
Received 29 February 2020; Received in revised form 9 June 2020; Accepted 20 August 2020
2405-8440/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Theorem 1. The number of spanning trees in the sequence of the graph G_n, where $n \geq 1$, is given by

$$2^{-3} (97 + 17\sqrt{33})^2 \left(-1 + \left(\frac{1}{2} \left(329 - 57\sqrt{33} \right) \right)^2 \right) \left(19 - 3\sqrt{33} \right)^6 \left(33 + \sqrt{33} \right) - (33 + \sqrt{33})^6 \left(19 + 3\sqrt{33} \right)^6 \right)^2$$

$$3267 \left(8(29 + 5\sqrt{33}) + 32 \left(329 + 57\sqrt{33} \right)^{1-n} \right)^2$$

Proof: Let us be using the electrically equivalent transformation to transform G_i to G_i. Figure 2 clarifies the transformation process from G_2 to $G_1 = K_3$.

By utilizing the properties that are given in section 2, the following the transformations are given:

$$r(G_i) = \frac{1}{27} r(G_2), \ r(G_i) = \frac{1}{27} r(G_1), \ r(G_i) = 9k_i r(G_i), \ r(G_i) = \frac{3}{9k_i + 8} r(G_i), \ r(G_i) = \frac{9k_i + 8}{72k_i} r(G_i)$$

Merging these seven transformations, we get

$$r(G_i) = 8(9k_i + 8)^3 r(G_i).$$

Moreover,

$$r(G_n) = \prod_{i=2}^{n} (9k_i + 8)^3 r(G_i) = 3 \times 8^{n-1} k_i^2 \left(\prod_{i=2}^{n} (9k_i + 8) \right)^2$$

where $k_i = \frac{11k_i + 8}{9k_i + 8}$, we have

$$k_{i-1} - 1 - \frac{1}{\sqrt{33}} \left(\frac{9k_i + 8}{9k_i + 8} \right) = \left(19 - 3\sqrt{33} \right) \left(\frac{1}{k_i} \right) \frac{33}{2(9k_i + 8)}$$

Then by Eqs. (3.3) and (3.4), we get $h_{i-1} = \left(\frac{299\sqrt{33} - 32}{32} \right) h_i$ and $h_i = \left(\frac{299\sqrt{33} - 32}{32} \right)^{n-i} h_n$.

Thus $k_i = \frac{\left(\frac{299\sqrt{33} - 32}{32} \right)^{n-i} h_{i-1}}{h_i}$. Therefore,
Figure 2. The transformations from G_2 to G_1.

$S.N. Daoud, W. Saleh$

Heliyon 6 (2020) e04786
\[k_i = \frac{\frac{2\sqrt{3} + \sqrt{33}}{32} \right)^{n-1}}{\left(\frac{2\sqrt{3} + \sqrt{33}}{32} \right)^{n-1} \xi_{n-1} - 1}. \tag{3.5} \]

Utilizing the expression \(k_{n-1} = \frac{11k_n + 8}{9k_n + 8} \) and indicating the coefficients of 11\(k_n \) + 8 and 9\(k_n \) + 8 as \(a_n \) and \(b_n \), we obtain

\[\tau(G_n) = 3 \times 8^{-1} k_i^2 \left[\left(\frac{561 + 97\sqrt{33}}{66} \right) \left(\frac{19 + 3\sqrt{33}}{2} \right)^{n-2} + \left(\frac{561 - 97\sqrt{33}}{66} \right) \left(\frac{19 - 3\sqrt{33}}{2} \right) \right]^2, \quad n \geq 2. \tag{3.11} \]

When \(n = 1 \), \(\tau(G_1) = 3 \) which verifies Eq. (3.11). Thus, the number of spanning trees in the sequence of the graph \(G_n \) is given by

\[\tau(G_n) = 3 \times 8^{-1} k_i^2 \left[\left(\frac{561 + 97\sqrt{33}}{66} \right) \left(\frac{19 + 3\sqrt{33}}{2} \right)^{n-2} + \left(\frac{561 - 97\sqrt{33}}{66} \right) \left(\frac{19 - 3\sqrt{33}}{2} \right) \right]^2, \quad n \geq 1. \tag{3.12} \]

\[k_i = \frac{\frac{2\sqrt{3} + \sqrt{33}}{32} \right)^{n-1}}{\left(\frac{2\sqrt{3} + \sqrt{33}}{32} \right)^{n-1} \xi_{n-1} - 1}, \quad n \geq 1. \tag{3.13} \]

Putting Eq. (3.13) into Eq. (3.12), the result is obtained.

Consider the sequence of graphs \(H_1 = K_3, H_2, \ldots, H_n \) formed as illustrated in Figure 3.

According to this formation, the number of total vertices \(|V(H_n)| \) and edges \(|E(H_n)| \) are \(|V(H_n)| = 6n - 3, |E(H_n)| = 12n - 9, n = 1, 2, \ldots \) It is obvious that the average degree is convergently 46or a large \(n \).

Theorem 2. The number of spanning trees in the sequence of the graph \(H_n \), where \(n \geq 1 \), is given as

\[\tau(H_n) = 9k_2\tau(H_2), \quad \tau(H_2) = \frac{1}{(3k_2 + 1)^2} \left(\sum_{i=1}^{n-2} \left(\frac{3k_2 + 1}{9k_2} \right)^i \right), \quad \tau(H_1) = \frac{1}{3k_2 + 1}. \]
Merging these nine transformations, we get

\[\tau(H_s) = 2(18k_t + 5)^2 \tau(H_t). \]

(3.14)

Moreover,

\[\tau(H_s) = \prod_{i=1}^{n} 2(18k_t + 5) \tau(H_t) = 3 \times 2^{n-1} k_t \left(\prod_{i=1}^{n} (18k_t + 5) \right)^2 \]

(3.15)

where \(k_{i-1} = \frac{11k_i+3}{18k_i+5} \) and \(n = 2, 3, \ldots, n \).

Its characteristic equation is \(6x^2 - 2x - 1 = 0 \) which has two roots \(x_1 = \frac{1 + \sqrt{7}}{6} \) and \(x_2 = \frac{1 - \sqrt{7}}{6} \). Subtracting these two roots into both sides of \(k_{i-1} = \frac{11k_i+3}{18k_i+5} \), we get

\[k_{i-1} = \frac{1 - \sqrt{7}}{6} \frac{11k_i + 3}{18k_i + 5} \Rightarrow 1 - \sqrt{7} = \left(8 + 3\sqrt{7} \right) \frac{k_i - \frac{1 + \sqrt{7}}{6}}{18k_i + 5} \]

(3.16)

\[k_{i-1} = \frac{1 + \sqrt{7}}{6} \frac{11k_i + 3}{18k_i + 5} \Rightarrow 1 + \sqrt{7} = \left(8 - 3\sqrt{7} \right) \frac{k_i - \frac{1 + \sqrt{7}}{6}}{18k_i + 5} \]

(3.17)

Let \(h_i = \frac{\frac{1 + \sqrt{7}}{6} k_{i-1}}{18k_i + 5} \). Then by Eqs. (3.16) and (3.17), we get \(h_{i-1} = \frac{127 + 48\sqrt{7}}{18k_i + 5} h_i \).

Thus

\[k_{i-1} = \frac{1 \pm \sqrt{7}}{6} \frac{11k_i + 3}{18k_i + 5} \Rightarrow \frac{1 \pm \sqrt{7}}{6} = \left(8 \pm 3\sqrt{7} \right) \frac{k_i - \frac{1 + \sqrt{7}}{6}}{18k_i + 5} \]

(3.18)

Utilizing the expression \(k_{i-1} = \frac{11k_i+3}{18k_i+5} \) and indicating the coefficients of \(11k_i + 3 \) and \(18k_i + 5 \) as \(a_i \) and \(b_i \), we obtain

\[\tau(H_s) = 3 \times 2^{n-1} k_t \left[\left(\frac{161 + 61 \sqrt{7}}{14} \right) \left(8 + 3\sqrt{7} \right)^{n-2} + \left(\frac{161 - 61 \sqrt{7}}{14} \right) \left(8 - 3\sqrt{7} \right)^{n-2} \right]^2, n \geq 2. \]

(3.24)
Figure 4. The transformations from H_2 to H_1.
When \(n = 1 \), \(\tau(H_1) = 3 \) which verifies Eq. (3.24). Thus, the number of spanning trees in the sequence of the graph \(H_n \) is given by

\[
\tau(H_n) = 3 \times 2^{n-1} k_1^n \left(\frac{161 + 61\sqrt{7}}{14} \right) \left(8 + 3\sqrt{7} \right)^{-2} + \left(\frac{161 - 61\sqrt{7}}{14} \right) \left(8 - 3\sqrt{7} \right)^{-2}, \quad n \geq 1.
\]

(3.25)

where

\[
k_1 = \frac{\left(127 + 48\sqrt{7} \right)^{n-1} \left(\frac{1+\sqrt{7}}{2} \right) - (1 - \sqrt{7})}{2\left(127 + 48\sqrt{7} \right)^{n-1} \left(\frac{1+\sqrt{7}}{2} \right) - 6}.
\]

(3.26)

Putting Eq. (3.26) into Eq. (3.25), we obtain the result.

Consider the sequence of graphs \(T_1 = K_3, T_2, ..., T_n \) as formed in Figure 5. According to this formation, the number of total vertices \(|V(T_n)| \) and edges \(|E(T_n)| = 6n - 3 \) for \(|E(T_n)| = 2 \) is shown in Table 3. It is obvious that the average degree is convergently 4 for a large \(n \).

Theorem 3. The number of spanning trees in the sequence of the graph \(T_n \), where \(n \geq 1 \), is given by

\[
\tau(T_n) = 9k_2^2 \tau(T_1), \tau(T_2) = \left(\frac{3k_2 + 2}{18k_2} \right)^3 \tau(T_1), \tau(T_3) = \left(\frac{9k_5 + 5}{18k_5 + 2} \right) \tau(T_2) \text{ and } \tau(T_1) = \tau(T_1)
\]

Merging these nine transformations, we get

\[
\tau(T_n) = 2(9k_2 + 5)^2 \tau(T_1)
\]

(3.27)

Moreover,

\[
\tau(T_n) = \prod_{i=2}^{n} (2(9k_2 + 5)^2 \tau(T_1)) = 3 \times 2^{n-1} k_1^n \left(\frac{11k_2 + 6}{9k_2 + 5} \right)^2
\]

(3.28)

where

\[
k_{i-1} = \frac{11k_2 + 6}{9k_2 + 5}, \quad i = 2, 3, ..., n.
\]

Its characteristic equation is \(3x^2 - 2x - 2 = 0 \) which has two roots \(x_1 = \frac{-1 + \sqrt{7}}{3} \) and \(x_2 = \frac{-1 - \sqrt{7}}{3} \). Subtracting these two roots into both sides of \(k_{i-1} = \frac{11k_2 + 6}{9k_2 + 5} \), we have

\[
k_{i-1} = \frac{11k_2 + 6}{9k_2 + 5}.
\]

(3.29)

Let \(h_1 = \frac{1 - \sqrt{7}}{3}, h_2 = \frac{1 + \sqrt{7}}{3} \). Then by Eqs. (3.29) and (3.30), we have \(h_{i-1} = (127 + 48\sqrt{7})h_i \) and \(h_i = (127 + 48\sqrt{7})^{n-1}h_1 \).

Thus

\[
k_i = \frac{(127 + 48\sqrt{7})^{n-1} \left(\frac{1 + \sqrt{7}}{3} \right) + \left(\frac{1 - \sqrt{7}}{3} \right)}{(127 + 48\sqrt{7})^{n-1} \left(\frac{1 + \sqrt{7}}{3} \right) + 1}.
\]

(3.31)

Utilizing the expression \(k_{i-1} = \frac{11k_2 + 6}{9k_2 + 5} \) and indicating the coefficients of \(11k_2 + 6 \) and \(9k_2 + 5 \) as \(a_r \) and \(b_r \), we obtain

\[
k_2 + 5 = a_0(11k_2 + 6) + b_0(9k_2 + 5),
\]

(3.32)

\[
k_{n-1} = a_1(11k_2 + 6) + b_1(9k_2 + 5)
\]

(3.33)

\[
k_{n-2} = a_2(11k_2 + 6) + b_2(9k_2 + 5)
\]

(3.34)

\[
k_{n-3} = a_3(11k_2 + 6) + b_3(9k_2 + 5)
\]

(3.35)

\[
k_{n-4} = a_4(11k_2 + 6) + b_4(9k_2 + 5)
\]

(3.36)

\[
k_{n-5} = a_5(11k_2 + 6) + b_5(9k_2 + 5)
\]

(3.37)

Thus, we get

\[
k_{i-1} = \frac{11k_2 + 6}{9k_2 + 5}.
\]

(3.29)
\[
\tau(T_n) = \left(3 \cdot 2^{n-1} k_i^2 \left[a_{n-2}(11k_n + 6) + b_{n-2}(9k_n + 5) \right] \right)^2
\] (3.34)

where \(a_0 = 0, b_0 = 1 \) and \(a_1 = 9, b_1 = 5 \). By the expression \(k_{n-1} = \frac{11k_n + 6}{9k_n + 5} \) and Eqs. (3.32) and (3.33), we obtain

\[
a_{n+1} = 16a_n - a_{n-1}; b_{n+1} = 16b_n - b_{n-1}
\] (3.35)

The characteristic equation of Eq. (3.35) is \(y^2 - 16y + 1 = 0 \) which has two roots \(y_1 = 8 + 3\sqrt{7} \) and \(y_2 = 8 - 3\sqrt{7} \). The general solution of Eq. (3.35) are \(a_i = \lambda_1 y_1^i + \lambda_2 y_2^i; b_i = \mu_1 y_1^i + \mu_2 y_2^i \).

Utilizing the initial conditions \(a_0 = 0, b_0 = 1 \) and \(a_1 = 9, b_1 = 5 \), yields

\[
a_i = \frac{3\sqrt{7}}{14} (8 + 3\sqrt{7})^i - \frac{3\sqrt{7}}{14} (8 - 3\sqrt{7})^i; b_i = \left(1 - \frac{\sqrt{7}}{14}\right)(8 + 3\sqrt{7})^i + \left(1 + \frac{\sqrt{7}}{14}\right)(8 - 3\sqrt{7})^i
\] (3.36)

If \(k_n = 1 \), yields \(T_n \) has no any electrically equivalent transformation. Substituting Eq. (3.36) into Eq. (3.34), we get

\[
\tau(T_n) = 3 \cdot 2^{n-1} k_i^2 \left(\frac{98 + 37\sqrt{7}}{14} (8 + 3\sqrt{7})^{n-2} + \frac{98 - 37\sqrt{7}}{14} (8 - 3\sqrt{7})^{n-2} \right)^2, n \geq 2.
\] (3.37)

When \(n = 1 \), \(\tau(T_1) = 3 \) which verifies Eq. (3.37). Thus, the number of spanning trees in the sequence of the graph \(H_n \) is given by

\[
\tau(T_i) = 3 \cdot 2^{n-1} k_i^2 \left(\frac{98 + 37\sqrt{7}}{14} (8 + 3\sqrt{7})^{n-2} + \frac{98 - 37\sqrt{7}}{14} (8 - 3\sqrt{7})^{n-2} \right)^2, n \geq 1.
\] (3.38)

Its characteristic equation is \(9x^2 - 12x - 16 = 0 \) which has two roots \(x_1 = \frac{2+2\sqrt{5}}{3} \) and \(x_2 = \frac{2-2\sqrt{5}}{3} \). Subtracting these two roots into both sides of \(k_{i-1} = \frac{2k_i+16}{9k_i+8} \), we have

\[
k_{i-1} = \frac{2 - 2\sqrt{5}}{3} = \frac{20k_i + 16}{9k_i + 8} - \frac{2 - 2\sqrt{5}}{3} = 2\left(7 + 3\sqrt{5}\right) \frac{a_i - \frac{2-2\sqrt{5}}{3}}{9k_i + 8}
\] (3.42)

\[
k_{i-1} = \frac{2 + 2\sqrt{5}}{3} = \frac{20k_i + 16}{9k_i + 8} - \frac{2 + 2\sqrt{5}}{3} = 2\left(7 - 3\sqrt{5}\right) \frac{k_i - \frac{2+2\sqrt{5}}{3}}{9k_i + 8}
\] (3.43)

Proof: The electrically equivalent transformation to transform \(X_i \) to \(X_{i+1} \) is using Figure 8 clarifies the transformation process from \(X_2 \) to \(X_1 = K_3 \).

By utilizing the properties that are given in section 2, the following the transformations are given:

\[
\tau(X_i) = \frac{1}{27} \tau(X_1), \tau(X_1) = \tau(X_1), \tau(X_1) = 9k_2 \tau(X_1), \tau(X_1) = \left(\frac{3}{9k_2 + 8}\right) \tau(X_1), \tau(X_1), \tau(X_1) = \left(\frac{9k_2 + 8}{72k_1}\right) \tau(X_1) \text{ and } \tau(X_i) = \tau(X_i).
\]

Merging these seven transformations, we get

\[
\tau(X_i) = \frac{8(9k_2 + 8)^2 \tau(X_1)}{27}
\]

Moreover,

\[
\tau(X_i) = \prod_{i=2}^{n} (8(9k_2 + 8)^2 \tau(X_1)) = 3 \times 8^{n-1} k_i^2 \left(\prod_{i=2}^{n} (9k_2 + 8)\right)^2
\] (3.41)

where

\[
k_{i-1} = \frac{20k_i + 16}{9k_i + 8}, i = 2, 3, ..., n.
\]
Let \(h_t = \frac{h_{t-1} + \sqrt{h_{t-1}^2 + 4}}{2} \). Then by Eqs. (3.42) and (3.43), we get

\[
9k_{n-1} + 8 = \frac{a_1(20k_n + 16) + b_1(9k_n + 8)}{a_{n-1}(20k_n + 16) + b_{n-1}(9k_n + 8)}
\]

(3.45)

\[
9k_{n-2} + 8 = \frac{a_2(20k_n + 16) + b_2(9k_n + 8)}{a_{n-2}(20k_n + 16) + b_{n-2}(9k_n + 8)}
\]

(3.46)

Thus, we obtain

\[
\tau(X_n) = 3 \times 8^{n-1} k_1^2 \left[\left(\frac{85 + 37\sqrt{5}}{10} \right) \left(14 + 6\sqrt{5} \right)^{n-2} + \left(\frac{85 - 37\sqrt{5}}{10} \right) \left(14 - 6\sqrt{5} \right)^{n-2} \right]^2, n \geq 2.
\]

(3.50)

Utilizing the initial conditions \(a_0 = 0, b_0 = 1 \) and \(a_1 = 9, b_1 = 8 \), by the expression \(k_{n-1} = \frac{20k_n + 16}{9k_n + 8} \) and Eqs. (3.45) and (3.46), we get

\[
a_{n+1} = 28b_n - 16a_n; b_{n+1} = 28b_n - 16b_{n-1}
\]

(3.48)

The characteristic equation of Eq. (3.48) is \(y^2 - 28y + 16 = 0 \) which has two roots \(y_1 = 14 + 6\sqrt{5} \) and \(y_2 = 14 - 6\sqrt{5} \). The general solution of Eq. (3.48) are

\[
a_t = a_t y_1^t + \beta y_2^t; b_t = \mu y_1^t + \nu y_2^t.
\]

Utilizing the initial conditions \(a_0 = 0, b_0 = 1 \) and \(a_1 = 9, b_1 = 8 \), yields

\[
a_t = \frac{3\sqrt{5}}{20} \left(14 + 6\sqrt{5} \right)^t; b_t = \frac{3\sqrt{5}}{20} \left(14 - 6\sqrt{5} \right)^t;
\]

(3.49)

If \(k_1 = 1 \), yields \(X_n \) has no any electrically equivalent transformation. Substituting Eq. (3.49) into Eq. (3.47), we get

\[
\tau(X_n) = 3 \times 8^{n-1} k_1^2 \left[\left(\frac{85 + 37\sqrt{5}}{10} \right) \left(14 + 6\sqrt{5} \right)^{n-2} + \left(\frac{85 - 37\sqrt{5}}{10} \right) \left(14 - 6\sqrt{5} \right)^{n-2} \right]^2, n \geq 1.
\]

(3.51)
Figure 6. The transformations from T_2 to T_1.
When \(n = 1 \), \(r(X_1) = 3 \) which verifies Eq. (3.50). Thus, the number of spanning trees in the sequence of the graph \(X_n \) is given by

\[
\tau(X_n) = \prod_{i=0}^{n-1} 2(18k_i + 11)^2 \tau(Y_i) = 3 \times 2^{n-1} k_1^2 \left[\prod_{i=0}^{n-1} (18k_i + 11)^2 \right] \tag{3.54}
\]

where \(k_{i+1} = \frac{23k_i + 14}{18k_i + 11} \) and \(k_0 = 3 \). Subtracting these two roots into both sides of \(k_{i+1} \), we have

\[
k_{i+1} = \frac{1 - 2\sqrt{3}}{3} = \frac{23k_i + 14}{18k_i + 11} - \frac{1 - 2\sqrt{3}}{3} = \left(17 + 12\sqrt{3} \right) \frac{k_i - \frac{1 + 2\sqrt{3}}{3}}{18k_i + 11} \tag{3.55}
\]

Moreover,

\[
\tau(Y_i) = \prod_{n=0}^{\infty} 2(18k_i + 11)^2 \tau(Y_i) = \frac{2^{n-5} \left((10 + 7\sqrt{2}) (17 - 12\sqrt{2})^4 + (10 - 7\sqrt{2}) (17 + 12\sqrt{2})^4 \right)^3 \left(1055 + 746\sqrt{2} - (11 + 8\sqrt{2})(577 + 408\sqrt{2}) \right)^3}{3 (577 + 408\sqrt{2} + (3 + 2\sqrt{2})(577 + 408\sqrt{2})^3} \text{ (3.57)}
\]

Proof: The electrically equivalent transformation to transform \(Y_i \) to \(Y_{i-1} \) is using. Figure 8 clarifies the transformation process from \(Y_2 \) to \(Y_1 = K_3 \). (see Figure 10).

By utilizing the properties that are given in section 2, the following the transformations are given:

\[
\tau(Y_i) = 9k_i \tau(Y_i), \tau(Y_i) = \left(\frac{1}{3k_i + 2} \right)^3 \tau(Y_i), \tau(Y_i) = \tau(Y_i), \tau(Y_i) = \left(\frac{4k_i + 27}{3k_i + 2} \right) \tau(Y_i), \tau(Y_i) = \left(\frac{3k_i + 2}{18k_i + 11} \right)^3 \tau(Y_i), \tau(Y_i) = \left(\frac{18k_i + 11}{45k_i + 27} \right) \tau(Y_i), \tau(Y_i) = \tau(Y_i)
\]

Merging these nine transformations, we obtain

\[
r(Y_2) = 2(18k_2 + 11)^2 \tau(Y_1). \tag{3.53}
\]
Figure 8. The transformations from X_2 to X_1.
The characteristic equation of Eq. (3.61) is
\[\tau(Y_n) = 3 \times 2^{n-1} k_1^2 \left(\frac{58 + 41 \sqrt{2}}{4} \right) \left(17 + 12 \sqrt{2} \right)^{n-2} + \left(\frac{58 - 41 \sqrt{2}}{4} \right) \left(17 - 12 \sqrt{2} \right)^{n-2} \] \(n \geq 2. \) (3.63)

When \(n = 1, \) \(\tau(Y_1) = 3 \) which verifies Eq. (3.63). Thus, the number of spanning trees in the sequence of the graph \(Y_n \) is given by

\[\tau(Y_n) = 3 \times 2^{n-1} k_1^2 \left[\frac{58 + 41 \sqrt{2}}{4} \right] \left(17 + 12 \sqrt{2} \right)^{n-2} + \left(\frac{58 - 41 \sqrt{2}}{4} \right) \left(17 - 12 \sqrt{2} \right)^{n-2} \] \(n \geq 1. \) (3.64)

Thus, we have
\[\tau(Y_n) = 3 \times 2^{n-1} k_1^2 \left[a_{n-2}(23k_n + 14) + b_{n-2}(18k_n + 11) \right] \] (3.60)

where \(a_0 = 0, b_0 = 1 \) and \(a_1 = 18, b_1 = 11. \) By the expression \(k_{n-1} = \frac{23k_n + 14}{18k_n + 11} \) and Eqs. (3.58) and (3.59), we have
\[a_{n-1} = 34a_n - a_{n-2}, b_{n+1} = 34b_n - b_{n-1} \] (3.61)

The characteristic equation of Eq. (3.61) is \(y^2 - 34y + 1 = 0 \) which has two roots \(y_1 = 17 + 12 \sqrt{2} \) and \(y_2 = 17 - 12 \sqrt{2}. \) The general solution of Eq. (3.61) are \(a_n = \lambda_1^ny_1^n + \lambda_2^ny_2^n; b_n = \mu_1^ny_1^n + \mu_2^ny_2^n. \)

Utilizing the initial conditions \(a_0 = 0, b_0 = 1 \) and \(a_1 = 18, b_1 = 11, \) yields

\[a_n = \frac{3\sqrt{2}}{8} \left(17 + 12 \sqrt{2} \right) \left(17 - 12 \sqrt{2} \right); b_n = \left(\frac{4 - \sqrt{8}}{8} \right) \left(17 + 12 \sqrt{2} \right) + \left(\frac{4 + \sqrt{2}}{8} \right) \left(17 - 12 \sqrt{2} \right). \] (3.62)

If \(k_n = 1, \) yields \(Y_n \) has no any electrically equivalent transformation. Substituting Eq. (3.62) into Eq. (3.60), we get

Putting Eq. (3.65) into Eq. (3.64), then the result is obtained. Consider the sequence of graphs \(Z_1 = K_3, Z_2, ..., Z_n, \) formed as illustrated in Figure 11.

According to this formation, the number of total vertices \(|V(Z_n)| \) and edges \(|E(Z_n)| \) are \(|V(Z_n)| = 6n - 3, |E(Z_n)| = 18n - 15, n = 1, 2, \) It is obvious that the average degree is convergently 6 for a large \(n. \)

Theorem 6. The number of spanning trees in the sequence of the graph \(Z_n, \) where \(n \geq 1, \) is given by \(G_{n-1}, \) where \(n \geq 1, \) is given by

\[k_1 = \frac{577 + 408 \sqrt{2}}{577 + 408 \sqrt{2}} \left(\frac{577 + 408 \sqrt{2}}{3 + 2 \sqrt{2}} + 1 \right)^{n-1}. \] (3.65)

Proof: Let us be using the electrically equivalent transformation to form \(z_1 \) to \(z_{n-1}. \) Figure 2 clarifies the transformation process from \(z_2 \) to \(z_1 = K_3. \)
Figure 10. The transformations from Y_2 to Y_1.
Proof: The electrically equivalent transformation to transform Z_1 to Z_{i+1} is using. Figure 12 clarifies the transformation process from Z_{i+1} to $Z_1 = K_3$.

By utilizing the properties that are given in section 2, the following transformations are given:

$$
\tau(Z_1) = 9k_2 \tau(Z_2), \quad \tau(Z_2) = \left(\frac{1}{3k_2 + 2} \right)^{\frac{3}{2}} \tau(Z_3), \quad \tau(Z_3) = \tau(Z_4), \quad \tau(Z_4) = \left(\frac{3k_2 + 2}{18k_2} \right)^{-1}\tau(Z_5),
$$

$$
= \left(\frac{3k_2 + 2}{21k_2 + 13} \right)^{\frac{3}{2}} \tau(Z_5), \quad \tau(Z_5) = \tau(Z_6), \quad \tau(Z_6) = \left(\frac{21k_2 + 13}{9(10k_2 + 6)} \right)^{\frac{3}{2}} \tau(Z_7), \quad \tau(Z_7) = \tau(Z_8)
$$

Merging these nine transformations, we obtain

$$
\tau(Z_8) = 4(21k_2 + 13)^{-\frac{3}{2}} \tau(Z_8).
$$

(3.66)

Moreover,

$$
\tau(Z_9) = \left(\frac{n}{4(21k_2 + 13)^{\frac{3}{2}}} \right)^{\frac{3}{2}} \tau(Z_9) = 3 \times 4^{n-1} k_2 \left[\prod_{i=2}^{8} (21k_2 + 13) \right]^{-\frac{3}{2}} \tau(Z_{10}).
$$

(3.67)

where $k_{i-1} = \frac{34k_2 + 21}{2(21k_2 + 13)} i = 2, 3, ..., n$.

Its characteristic equation is $x^2 - x - 1 = 0$ which has two roots $x_1 = \frac{1 + \sqrt{5}}{2}$ and $x_2 = \frac{1 - \sqrt{5}}{2}$. Subtracting these two roots into both sides of $k_{i-1} = \frac{34k_2 + 21}{2(21k_2 + 13)}$, we have

$$
k_{i-1} - \frac{1 - \sqrt{5}}{2} = \frac{34k_2 + 21}{2(21k_2 + 13)} - \frac{1 - \sqrt{5}}{2} = \frac{a_i - \left(\frac{1 - \sqrt{5}}{2} \right)}{2(21k_2 + 13)}
$$

(3.68)

$$
k_{i-1} + \frac{1 + \sqrt{5}}{2} = \frac{34k_2 + 21}{2(21k_2 + 13)} + \frac{1 + \sqrt{5}}{2} = \frac{a_i + \left(\frac{1 + \sqrt{5}}{2} \right)}{2(21k_2 + 13)}
$$

(3.69)

Let $h_i = \frac{\sqrt{5} + 21\sqrt{5}}{2}$, Then by Eqs. (3.68) and (3.69), we have $h_{i-1} = \left(\frac{34k_2 + 21}{2(21k_2 + 13)} \right)^{\frac{3}{2}} h_i$ and $h_i = \left(\frac{34k_2 + 21}{2(21k_2 + 13)} \right)^{\frac{3}{2}} h_{i-1}$. Then by Eqs. (3.68) and (3.69), we have $h_{i-1} = \frac{34k_2 + 21}{2(21k_2 + 13)} h_i$ and $h_i = \left(\frac{34k_2 + 21}{2(21k_2 + 13)} \right)^{\frac{3}{2}} h_{i-1}$. Thus

$$
k_i = \left(\frac{34k_2 + 21}{2(21k_2 + 13)} \right)^{\frac{3}{2}} h_{i-1}
$$

Therefore,

$$
\tau(Z_8) = 3 \times 4^{n-1} k_2 \left[\frac{85 + 38\sqrt{5}}{10} \left(\frac{47 + 21\sqrt{5}}{2} \right)^{-\frac{3}{2}} + \frac{85 - 38\sqrt{5}}{10} \left(\frac{47 - 21\sqrt{5}}{2} \right)^{-\frac{3}{2}} \right]^{-\frac{3}{2}} n \geq 2.
$$

(3.76)

Utilizing the expression $k_{n-1} = \frac{34k_2 + 21}{2(21k_2 + 13)}$ and indicating the coefficients of $34k_2 + 21$ and $21k_2 + 13$ as a_i and b_i, we obtain

$$
21k_2 + 13 = a_i(34k_2 + 21) + b_i(21k_2 + 13),
$$

(3.71)

$$
21k_2 + 13 = a_i(34k_2 + 21) + b_i(21k_2 + 13) \quad a_i(34k_2 + 21) + b_i(21k_2 + 13)
$$

(3.72)

$$
21k_2 + 13 = a_i(34k_2 + 21) + b_i(21k_2 + 13) \quad a_i(34k_2 + 21) + b_i(21k_2 + 13)
$$

Thus, we get

$$
\tau(Z_8) = 3 \times 4^{n-1} k_2 \left[a_{n-2}(34k_2 + 21) + b_{n-2}(21k_2 + 13) \right]^{-\frac{3}{2}}
$$

(3.73)

where $a_0 = 0, b_0 = 1$ and $a_1 = 21, b_1 = 13$. By the expression $k_{n-1} = \frac{34k_2 + 21}{2(21k_2 + 13)}$ and Eqs. (3.71) and (3.72), we have

$$
a_{n+1} = 47a_n - a_{n-1}, b_{n+1} = 47b_n - b_{n-1}
$$

(3.74)

The characteristic equation of Eq. (3.74) is $y^2 - 47y + 1 = 0$ which has two roots $y_1 = \frac{47 + \sqrt{5}}{2}$ and $y_2 = \frac{47 - \sqrt{5}}{2}$. The general solution of Eq. (3.73) are $a_i = \lambda_1 y_1^i + \lambda_2 y_2^i$, $b_i = \mu_1 y_1^i + \mu_2 y_2^i$.

Utilizing the initial conditions $a_0 = 0, b_0 = 1$ and $a_1 = 21, b_1 = 21$, yields

$$
a_i = \frac{\sqrt{5}}{5} \left(\frac{47 + 21\sqrt{5}}{2} \right)^i \left(\frac{47 - 21\sqrt{5}}{2} \right)^i b_i
$$

$$
= \left(\frac{47 + 21\sqrt{5}}{2} \right)^i \left(\frac{47 - 21\sqrt{5}}{2} \right)^i
$$

(3.75)

If $k_1 = 1$, yields Z_8 has no any electrically equivalent transformation. Substituting Eq. (3.75) into Eq. (3.73), we get
When \(n = 1 \), \(\tau(Z_1) = 3 \) which verifies Eq. (3.76). Thus, the number of spanning trees in the sequence of the graph \(Z_n \) is given by

\[
\tau(Z_n) = 3 \times 4^{n-1} k_1 \left[\left(\frac{85 + 38\sqrt{5}}{10} \right)^{n-1} \left(\frac{47 + 21\sqrt{5}}{2} \right) + \left(\frac{85 - 38\sqrt{5}}{10} \right)^{n-1} \left(\frac{47 - 21\sqrt{5}}{2} \right) \right]^2, \quad n \geq 1.
\]

(3.77)

Putting Eq. (3.77) into Eq. (3.78), hence the result is obtained.

4. Numerical results

Next tables illustrate some the values of the number of spanning trees in the graphs \(G_n, H_n, T_n, X_n, Y_n \) and \(Z_n \).

\(n \)	\(\tau(G_n) \)	\(\tau(H_n) \)	\(\tau(T_n) \)
1	3	3	3
2	8664	1176	1734
3	22852800	596748	881292
4	60019201536	303141984	447690264
5	157597728780288	153993738288	227423130672
6	413814073710182400	78227606477184	115529159623776

\(n \)	\(\tau(X_n) \)	\(\tau(Y_n) \)	\(\tau(Z_n) \)
1	3	3	3
2	31104	8214	36300
3	188940288	18960588	320498688
4	113639424000	43761009624	2829362006208
5	6833482751803392	101000334380592	24977602663502592
6	41091617468631220224	233108596706389344	22050223104361492352

5. Spanning tree entropy

After having explicit formulas for the number of spanning trees of the sequence of the six graphs \(G_n, H_n, T_n, X_n, Y_n \) and \(Z_n \), we can calculate its spanning tree entropy \(Z \) which is a finite number and a very interesting quantity characterizing the network structure, defined in [23, 24]: for a graph \(G \),

\[
Z(G) = \lim_{n \to \infty} \frac{\ln \tau(G)}{|V(G)|}.
\]

(5.1)

\[
Z(G_n) = \frac{1}{6} \left(\ln[2] + 2 \ln \left[19 + 3\sqrt{33} \right] \right) = 1.312187627,
\]

\[
Z(H_n) = \frac{1}{6} \left(\ln[2] - 2\ln \left[127 + 48\sqrt{7} \right] + 2\ln \left[2024 + 765\sqrt{7} \right] \right) = 1.038,
\]

\[
Z(T_n) = \frac{1}{6} \left(\ln[2] - 2\ln \left[127 + 48\sqrt{7} \right] + 2\ln \left[2024 + 765\sqrt{7} \right] \right) = 1.038,
\]

\[
Z(X_n) = \frac{1}{6} \left(\ln[8] + 2\ln \left[14 + 6\sqrt{5} \right] \right) = 1.45,
\]

\[
Z(Y_n) = \frac{1}{6} \left(\ln[2] + 2\ln \left[17 + 12\sqrt{2} \right] \right) = 1.291.
\]
In addition, the entropy of the graphs Gₜₙ and Tₑ of the same average degree 4 are equal and smaller than the entropy of the fractal scale-free lattice [25] which has the entropy 1. Also, the entropy of the graph Gₜₙ has the entropy 1.0445 of the same average degree 4.

6. Conclusions

In this paper, we have calculated the number of spanning trees in the sequences of some nonahedral (polyhedral graphs having nine vertices) graphs generated by Kₙ Using electrical equivalent transformations. The feature of this technique lies in the palsy of Brouwer et al. (2004) of spanning trees, ISCIT 2004, IEEE Int. Symposium. Info. Technol. 1 (2004) 601–604.

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful comments and suggestions for improving the original version of the paper.

References

[1] D.L. Applegate, R.E.V. Bixby, V.R. Chvatal, W.J. Cook, The Traveling Salesman Problem: A Computational Study, Princeton University Press, 2006.
[2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, third ed., Johann Ambrosius Barth, Heidelberg, 1995.
[3] E.C. Kirby, D. Klein, R.B. Mallion, P. Pollak, H. Sachs, A theorem for counting spanning trees in general chemical graphs and its particular application to the bristlecone pines, Croat. Chem. Acta 77 (2004) 263–278.
[4] F.T. Boesch, A. Salyanarayana, C.I. Suffel, A survey of some network reliability analysis and synthesis results, Networks 54 (2009) 99–107.
[5] F.T. Boesch, On unreliability polynomials and graph connectivity in reliable network synthesis, J. Graph Theor. 10 (1986) 339–352.
[6] F.Y. Wu, Number of spanning trees on a lattice, J. Phys. 10 (1977) 113–115.
[7] F. Zhang, X. Yong, Asymptotic enumeration theorems for the number of spanning trees and Eulerian trail in circulant digraphs & graphs, Sci. China, Ser. A 43 (1999) 264–271.
[8] G. Chen, B. Wu, Z. Zhang, Properties and applications of Laplacian spectra for Koch networks, J. Phys. Math. Theor. 45 (2012), 025102.
[9] G. Chen, B. Wu, Z. Zhang, Properties and applications of Laplacian spectra for Koch networks, J. Phys. Math. Theor. 45 (2012), 025102.
[10] T.J. Brown, R.B. Mallion, P. Pollak, A. Roth, Some methods for counting the spanning trees in labelled molecular graphs, examined in relation to certain fullerenes, Discrete Appl. Math. 67 (1996) 51–66.
[11] W. Myrvold, K. H Cheung, L.B. Page, J.E. Perry, Uniformly-most reliable networks do not always exist, Networks 21 (1991) 417–419.
[12] S. Daoud, Complexity of graphs generated by wheel graph and their asymptotic limits, J. Egypt. Math. Soc. 25 (4) (2017) 424–433.
[13] S.N. Daoud, Number of spanning trees in different products of complete and complete tripartite graphs, Ars Electronica 139 (2018) 85–103.
[14] S.N. Daoud, Number of spanning trees of cartesian and composition products of graphs and Chebyshev polynomials, IEEE AccessVol 7 (2019) 71142–71157.
[15] Jia-Bao Liu, S.N. Daoud, Complexity of some of pyramid graphs created from a gear graph, Symmetry 10 (2018) 689.
[16] E. Teuff, S. Wagner, Determinant identity for Laplace matrices, Linear Algebra Appl. 432 (2010) 441–457.
[17] Jia-Bao Liu, S.N. Daoud, in: Number of Spanning Trees in the Sequence of Some Graphs, Complexity, Complexity, 2019, Hindawi Publ. Corp., 2019, p. 22. Article ID 4271765.
[18] F.Y. Wu, Number of spanning trees on a lattice, J. Phys. Math. Gen. 10 (1977) 113–115.
[19] R. Lyons, Asymptotic enumeration of spanning trees, Combin. Probab. Comput. 14 (2005) 491–522.
[20] Z. Zhang, H. Liu, B. Wu, T. Zou, Spanning trees in a fractal scale –free lattice, Phys. Rev. E 83 (2011), 016116.
[21] S. Chang, L. Chen, W. Yang, Spanning trees on the Sierpinski gasket, J. Stat. Phys. 126 (2007) 649–667.
[22] W. Sun, S. Wang, J. Zhang, Counting spanning trees in prism and anti-prism Graphs, J. Appl. Anal. And Comp. 6 (2016) 65–75.