PLOS ONE

Genetic relationship and source species identification of 58 Qi-Nan germplasms of Aquilaria species in China that easily form agarwood

---Manuscript Draft---

Manuscript Number:	PONE-D-22-07044
Article Type:	Research Article
Full Title:	Genetic relationship and source species identification of 58 Qi-Nan germplasms of Aquilaria species in China that easily form agarwood
Short Title:	Genetic relationship and source species identification of 58 Qi-Nan germplasms
Corresponding Author:	YONG KANG
Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College	
Haikou, Hainan CHINA	
Keywords:	Qi-Nan germplasm, DNA barcoding, Phylogenetic tree, Aquilaria sinensis
Abstract:	Recently, Qi-Nan germplasm, the germplasm of Aquilaria species that easily forms agarwood, has been widely cultivated in Guangdong and Hainan Provinces in China. Since the morphological characteristics of Qi-Nan germplasm are similar to those of Aquilaria species and germplasm is bred by grafting, it is difficult to determine the source species of this germplasm by traditional taxonomic characteristics. In this study, we performed a DNA barcoding analysis of 58 major Qi-Nan germplasms as well as Aquilaria sinensis, A. yunnanensis, A. crassna, A. malaccensis and A. hirta with 5 primers (nuclear gene internal transcribed spacer 2 (ITS2) and the chloroplast genes matK, trnH-psbA, rbcL and trnL-trnF). This field survey in the Qi-Nan germplasm plantations in Guangdong and Hainan Provinces aimed to accurately identify the source species of Qi-Nan germplasm. According to the results, ITS2 and matK showed the most variability and the highest divergence at all genetic distances. This ITS2 +matK combination, screened for with TaxonDNA analysis, showed the highest success rate in species identification of the Qi-Nan germplasm. Clustering in the phylogenetic trees constructed with Bayesian inference and maximum likelihood indicated that the Qi-Nan germplasm was most closely related to A. sinensis and more distantly related to A. yunnanensis, A. crassna, A. malaccensis and A. hirta. Therefore, this study determined that the source species of the Qi-Nan germplasm is A. sinensis.
Order of Authors:	YONG KANG
Peiwei Liu	
Feifei Lv	
Yuxiu Zhang	
Yun Yang	
Jianhe Wei	
Additional Information:	**Financial Disclosure**
Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the [submission guidelines](#) for detailed requirements. View published research articles from [PLOS ONE](#) for specific examples.
This work was supported by National Key Research and Development Program of China (2018YFC1706400), CAMS Innovation Fund for Medical Sciences (2021-12M-1-032), General project of Hainan Provincial Natural Science Foundation of China and Advanced talents project of Hainan Provincial Natural Science Foundation of China (321RC661). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |
This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate.

Unfunded studies
Enter: The author(s) received no specific funding for this work.

Funded studies
Enter a statement with the following details:
- Initials of the authors who received each award
- Grant numbers awarded to each author
- The full name of each funder
- URL of each funder website
- Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
 - NO - Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
 - YES - Specify the role(s) played.

* typeset

Competing Interests
Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any competing interests that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.

The authors have declared that no competing interests exist.

This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate and that any funding sources listed in your Funding Information later in the submission form are also declared in your Financial Disclosure statement.

View published research articles from
NO authors have competing interests

Enter: *The authors have declared that no competing interests exist.*

Authors with competing interests

Enter competing interest details beginning with this statement:

I have read the journal's policy and the authors of this manuscript have the following competing interests: [insert competing interests here]

Ethics Statement

Enter an ethics statement for this submission. This statement is required if the study involved:

- Human participants
- Human specimens or tissue
- Vertebrate animals or cephalopods
- Vertebrate embryos or tissues
- Field research

Write "N/A" if the submission does not require an ethics statement.

General guidance is provided below. Consult the submission guidelines for detailed instructions. Make sure that all information entered here is included in the Methods section of the manuscript.
Format for specific study types

Human Subject Research (involving human participants and/or tissue)
- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

Animal Research (involving vertebrate animals, embryos or tissues)
- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved *non-human primates*, add *additional details* about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

Field Research

Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:
- Field permit number
- Name of the institution or relevant body that granted permission

Data Availability

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the [PLOS Data Policy](#) and [FAQ](#) for detailed information.

Yes - all data are fully available without restriction
A Data Availability Statement describing where the data can be found is required at submission. Your answers to this question constitute the Data Availability Statement and will be published in the article, if accepted.

Important: Stating ‘data available on request from the author’ is not sufficient. If your data are only available upon request, select ‘No’ for the first question and explain your exceptional situation in the text box.

Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?

Describe where the data may be found in full sentences. If you are copying our sample text, replace any instances of XXX with the appropriate details.

- If the data are **held or will be held in a public repository**, include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: All **XXX files are available from the XXX database (accession number(s) XXX, XXX).**

- If the data are all contained **within the manuscript and/or Supporting Information files**, enter the following:

 All relevant data are within the manuscript and its Supporting Information files.

- If neither of these applies but you are able to provide **details of access elsewhere**, with or without limitations, please do so. For example:

 Data cannot be shared publicly because of [XXX]. Data are available from the XXX Institutional Data Access / Ethics Committee (contact via XXX) for researchers who meet the criteria for access to confidential data.

 The data underlying the results presented in the study are available from (include the name of the third party)

All accession numbers are available from the NCBI GenBank database (https://www.ncbi.nlm.nih.gov), and the reference numbers [OM908943-OM909007, OM938993-OM939187].
and contact information or URL).

- This text is appropriate if the data are owned by a third party and authors do not have permission to share the data.

* typeset

Additional data availability information:
Genetic relationship and source species identification of 58 Qi-Nan germplasms of *Aquilaria* species in China that easily form agarwood

Yong Kang¹, Peiwei Liu¹, Feifei Lv¹, Yuxiu Zhang¹, Yun Yang¹*, Jianhe Wei¹,²*

¹. Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China, ². Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

*yangyun43@aliyun.com (YY); wjianh@263.net (JW)

Abstract

Recently, Qi-Nan germplasm, the germplasm of *Aquilaria* species that easily forms agarwood, has been widely cultivated in Guangdong and Hainan Provinces in China. Since the morphological characteristics of Qi-Nan germplasm are similar to those of *Aquilaria* species and germplasm is bred by grafting, it is difficult to determine the source species of this germplasm by traditional taxonomic characteristics. In this study, we performed a DNA barcoding analysis of 58 major Qi-Nan germplasms as well as *Aquilaria sinensis*, *A. yunnanensis*, *A. crassna*, *A. malaccensis* and *A. hirta* with 5 primers (nuclear gene internal transcribed spacer 2 (ITS2) and the chloroplast genes *matK*, *trnH-psbA*, *rbcL* and *trnL-trnF*). This field survey in the Qi-Nan germplasm plantations in Guangdong and Hainan Provinces aimed to accurately identify the source species of Qi-Nan germplasm. According to the results, ITS2 and *matK* showed the most variability and the highest divergence at all genetic distances. This ITS2+*matK* combination, screened for with TaxonDNA analysis, showed the highest success rate in species identification of the Qi-Nan germplasm. Clustering in the phylogenetic trees constructed with Bayesian inference and maximum likelihood indicated that the Qi-Nan germplasm was most closely related to *A. sinensis* and more distantly related to *A. yunnanensis*, *A. crassna*, *A. malaccensis* and *A. hirta*. Therefore, this study determined that the source species of the Qi-Nan germplasm is *A. sinensis*.

Keywords: Qi-Nan germplasm, DNA barcoding, Phylogenetic tree, *Aquilaria sinensis*
Introduction

Agarwood is resinous wood produced when Aquilaria or Gyrinops species (of the Thymelaeaceae family) are injured [1]. This substance is a valuable natural perfume and is used in traditional Chinese medicine to relieve pain and warm the middle to reduce vomiting [2]. Worldwide, agarwood has widely featured in cultural, religious, and medicinal practices as well as other areas [3]. In the past, Aquilaria species were identified solely on the morphological characteristics of the flowers, seeds and fruits. However, this identification method can be subjective, so the classification of Aquilaria species remains unclear. Most studies have suggested that there are approximately 20 Aquilaria species in the tropical regions of Southeast Asia [4, 5], but in China, only A. sinensis and A. yunnanensis have been recorded [6]. Because of agarwood’s high economic, collection and medicinal value, it is increasingly sought worldwide, which has led to the damage and destruction of Aquilaria species. In addition, wild Aquilaria resources have increasingly been exhausted due to urbanization, especially in India, Myanmar, Malaysia, Vietnam, Indonesia and other Southeast Asian countries. Therefore, all Aquilaria species are listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) [7].

Currently, one of the most effective ways to solve the shortage of agarwood is to cultivate Aquilaria species. China was one of the first countries to alleviate the loss of wild agarwood and protect wild agarwood resources by cultivating Aquilaria species, mainly through seed propagation, tissue culture, cutting and grafting propagation [8]. Since the 1980s, large-scale seed reproduction of Aquilaria species has taken place in Hainan, Guangdong, Guangxi, and Yunnan Provinces as well as other places in China [9]. However, most of the seeds used for seed propagation have originated from previously cultivated or wild mature plants. Seeds of Aquilaria species cannot be stored for long periods, and this, coupled with the lack of systematic breeding and germplasm confusion, has led to poor agarwood quality and yields [10]. In tissue culture of Aquilaria species, rooting is the main factor restricting reproduction [11]. Cutting propagation of these species is difficult to control, and plants have low survival rates; according to Niu et al., the survival rate of lignified cuttings was 22% in summer but only 12% in winter [12]. Finally, the beneficial traits of the parent Aquilaria species can be preserved through grafting propagation [13].

Germplasm resources carry genetic information and have actual or potential utilization value; they mainly include material from plants, animals, and microorganisms. Plant germplasm resources include those for crops, traditional Chinese medicine, forests and so forth [4]. Qi-Nan germplasm is a forest germplasm resource resulting from grafting propagation and retains the excellent agarwood-forming predisposition of its parents. Grafting propagation can also be used to obtain germplasm resources that are easy to collect and genetically stable, thereby protecting wild Aquilaria species. In recent years, farmers have relied on experience to find wild, highly fragrant Aquilaria species in...
Dianbai, Guangdong Province; they then transplant these species to their homes to serve as a Qi-Nan germplasm seed tree and use the branches of the seed tree as the scion for grafting propagation. However, the main propagation method of farmers is grafting the branches of Qi-Nan germplasm seed trees to cultivated *Aquilaria* species. Most of these seed trees come from Huizhou, Maoming, Shenzhen, Hong Kong, Hainan Province and other places in China. Thus, Qi-Nan germplasm easily forms agarwood, and the yield and extract content of its agarwood are higher than those of general agarwood.

In recent years, Qi-Nan germplasm has been extensively cultivated in Guangdong, Guangxi, and Hainan Provinces as well as other places in China due to agarwood’s scarcity and value. Each grower claims that the agarwood produced by their Qi-Nan germplasm has a high oil content, strong fragrance, and is rapidly formed. However, the source species of many Qi-Nan germplasms remain unclear. The source species has variously been proposed to be a domestic *Aquilaria* species, an alien *Aquilaria* species, or even a new species. At present, many Qi-Nan germplasms are cultivated in China, with substantial variability in plant size, leaf shape, stem morphology and agarwood-forming performance. However, the species source and genetic relationship of these germplasms remain unknown, which limits their use and protection. According to this review, the source species of different Qi-Nan germplasms and their genetic relationships are the main factors restricting the application and promotion of this germplasm.

DNA barcoding has been widely applied to identify *Aquilaria* species. Jiao et al. extracted DNA from *A. sinensis* wood tissue and reported that *trnL-trnF* and ITS1 could be used to construct a phylogenetic tree of *A. sinensis* [15]. Lee et al. found that the phylogenetic tree constructed by with *trnL-trnF* and ITS2 could be used to identify *Aquilaria* species [5]. Additionally, Li et al. analyzed *A. sinensis*, *A. yunnanensis* and *A. crassna* with 3 DNA barcodes and found two combinations (ITS+*matK* and ITS+*trnL-trnF*) that could identify these three species [16]. Eurlings et al. further suggested that the *trnL-trnF* fragment provides a new method of molecular identification for *Aquilaria* and *Gyrinops* species [17]. In a preliminary study of *Aquilaria* species from different countries, *matK* and combinations thereof facilitated the accurate identification of multiple *Aquilaria* species [18]. In summary, although DNA barcoding allows the identification of many *Aquilaria* species, the application of DNA barcoding fragments or combinations of materials differ substantially. In addition, few reports have utilized DNA barcoding to identify the main Qi-Nan germplasm. In this study, DNA barcode technology was used to determine the molecular identification of Qi-Nan germplasm and in subsequent analysis to explore differences in the applicable fragments or combinations.

Thus, we used DNA barcode technology to identify the source species of Qi-Nan germplasm. In this study, we selected 58 different types of Qi-Nan germplasms from popular markets and
included *A. sinensis*, *A. yunnanensis*, *A. malaccensis*, *A. crassna*, and *A. hirta* as the research objects. Five DNA barcode sequences (ITS2, *matK*, *trnH-psbA*, *rbcL* and *trnL-trnF*) were compared in sequence to screen for the barcode fragment or combination most suitable for identifying the source species of Qi-Nan germplasm. Then, the phylogenetic trees of the Qi-Nan germplasm and the five *Aquilaria* species were constructed with the best combination. Finally, the source species of the Qi-Nan germplasm was identified according to the clustering of the phylogenetic trees.

Materials and Methods

Materials

A total of 65 test materials were used in this study (S1 Table). The Qi-Nan germplasm plantation in Guangdong and Hainan Provinces provided 58 mainstream Qi-Nan germplasm resources. Their Chinese folk names are as follows: Qianlixiang, Jinshaozi, Lvyouwang, Youyezi, Wuming2, Jinshaye, Jianyezi, Ziqi, Zhangshaozi, Genmaidaye, Dayepo, Lanbaoshi, Putaoteng, Honggujianye, Wuming1, Tianxiang2, Tieshao, Xiaoyezi, Jianyewang, Wushenyuanye, Toudinglv, Xiguaye, Kuaiishu, Zhitianjiao, XiangFei, Jianyeliu, Tangjie, Youbawang, Xiangjian, Xiangyouwang, Tianxiang1, Heizhenzhu, Jinlv, Ruhuchangye, Ruhuyuanye, Youshao, Zidantou, Dashao, Xiangshi3, Xiangshi4, Xiangshi8, Xiangshi13, Zhouyezi, Ziluolan, Diwanggu, Shisansuo, Yuanyobolang, Bohelv, Liuyouwang, Yinggelv, Diaoyouwang, Xiaoyingtao, Baozhayou, Hutoumen, Huizhouchenxiang, Zhongshannizhong, Guanxiang1, and Guanxiang2. In addition, we also selected 5 *Aquilaria* species that were accurately identified in the previous stage for comparison: *A. sinensis*, *A. yunnanensis*, *A. malaccensis*, *A. crassna* and *A. hirta*. Fresh and intact leaves of the 65 samples were collected and dried with silica gel for preservation. The grafting and agarwood-forming process as well as the whole Qi-Nan germplasm plant are shown in Fig 1 and S1 Fig. The fruits of the *Aquilaria* species used in this study are shown in Fig 2.
Fig 1. Grafting and agarwood formation with Qi-Nan germplasm.

Fig 2. Fruits of the 5 accurately identified *Aquilaria* species. A: Qi-Nan germplasm B: *A. sinensis*. C: *A. yunnanensis*. D: *A. malaccensis*. E: *A. crassna*. F: *A. hirta*
Methods

DNA Extraction, PCR Amplification and Sequencing

The total DNA of the 65 samples was extracted with a test kit from Tiangen Biotech (Beijing) Co., Ltd. Common primers were used for PCR amplification of ITS2, matK, trnH-psbA, rbcL and trnL-trnF. Optimization and adjustments were made according to the PCR conditions reported in Table 1 [19]. All amplification products were sequenced by Guangzhou IGE Biotechnology Ltd. Sequence editing, alignment and splicing, and computation of genetic distances were mostly completed in BioEdit [20], Sequencematrix [21] and Mega X [22], and the species identification rate was computed in TaxonDNA [23]. MrBayes 3.2.6 [24] and PAUP 4 b (http://paup.phylosolutions.com) were used to construct the phylogenetic tree, and R 4.0.0 (https://www.r-project.org) and Figtree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) were used generate visually appealing phylogenetic trees.

Table 1. Details on the PCR primers used in this study.

DNA barcode	Primer	Primer sequence (5’-3’)	PCR conditions
ITS2 [25]	ITS-S2F	ATCGGATACCTTGTTGTAAT	94 °C for 5 min; [94 °C for 30 s, 56 °C for 30 s, 72 °C for 45 s] × 40 cycles; 72 °C for 10 min.
	ITS-S3R	GACGCTTCTCCAGACTCAAT	
matK (Kim, unpublished)	3F_KIM	CGTACAGTACTTTTTGTTTACGAG	94 °C for 1 min; [94 °C for 30 s, 52 °C for 20 s, 72 °C for 50 s] × 35 cycles; 72 °C for 5 min.
	1R_KIM	ACCCAGTCCATCTGGAAATCTTGG	
rbcL [26]	a_F	ATGTCACCAAAACAGAGACTAAAGC	95 °C for 4 min; [94 °C for 30 s, 55 °C for 1 min, 72 °C for 1 min] × 35 cycles; 72 °C for 10 min.
	a_R	CTTCGTGATAAAATAAAGATCGAT	
trnH-psbA [27, 28]	trnHf_05	CGCGCATGGTGATTCACAATCC	94 °C for 5 min; [94 °C for 1 min, 55 °C for 1 min, 72 °C for 90 s] × 30 cycles; 72 °C for 7 min.
	psbA3-f	GTTATGCATGAACGTATGCTC	
trnL-trnF [29]	e	GGTTCAGTCCCTCTATCCC	94 °C for 5 min; [94 °C for 45 s, 50 °C for 45 s, 72 °C for 90 s] × 30 cycles; 72 °C for 10 min.
	f	ATTTGAACGTGGTGACAGAG	

Data Analysis

The PCR amplification success rate and sequencing success rate were determined following Kress [30]. Information on the length of amplification, variable sites, conserved sites, parsimony
informative sites, singleton sites and genetic distances of each fragment was collected in MEGA X. The species identification success rate was evaluated according to the “best match”, “best close match” and “all species barcodes” (BBA) method in TaxonDNA software to identify the single fragment or combination with the highest success rate. Next, phylogenetic trees were generated using the Bayesian interference (BI) and maximum likelihood (ML) approaches in MrBayes 3.2.6 and PAUP 4b, respectively. The clusters in the phylogenetic tree constructed by the best sequence combination were subsequently analyzed. Genetic distance and phylogenetic tree construction were mapped in R 4.0.0. The GenBank accession numbers of all DNA fragments in this study are shown in S2 Table.

Results

PCR Amplification and DNA Sequencing

This test included 58 samples of Qi-Nan germplasm and 7 samples from *Aquilaria* species. The ITS2, *matK*, *trnH-psbA*, *rbcL* and *trnL-trnF* sequences of all samples were subjected to PCR amplification and sequencing. A total of 650 sequences were obtained by forward and reverse sequencing. The success of PCR amplification and sequencing, as well as the sequence length, variable sites, conserved sites, parsimony informative sites and singleton sites are shown in Table 2. PCR amplification of five DNA barcoding loci was successful in all samples. Except for the *trnL-trnF* sequence (which had a sequencing success rate of 0%), the other sequences achieved a sequencing success rate of 100%. Moreover, the sequencing quality of *trnL-trnF* was repetitive, which was not suitable for sequence alignment, assembly and analysis in this study. The number of variable sites for each sequence was as follows: ITS2 (11) > *matK* (9) > *rbcL* (1) = *trnH-psbA* (1). The number of conserved sites for each sequence was as follows: *matK* (672) > *rbcL* (539) > ITS2 (439) > *trnH-psbA* (356). The number of parsimony informative sites for each sequence was as follows: *matK* (6) = ITS2 (6) > *rbcL* (0) = *trnH-psbA* (0). Finally, the number of singleton sites for each sequence was as follows: ITS2 (5) > *matK* (3) > *trnH-psbA* (1) > *rbcL* (0). However, the fragment combinations with the largest number of parsimony informative sites were ITS2+*matK* (20), ITS2+*matK+rbcL* (21), ITS2+*matK+trnH-psbA* (21) and ITS2+*matK+rbcL+trnH-psbA* (22). ITS2 and *matK* therefore provided genetic information.

DNA barcode	PCR success (%)	Sequencing success (%)	Sequence length	No. of variable sites	No. of conserved sites	No. of parsimony informative sites	No. of singleton sites
ITS2	100	100	451	11	439	6	5
matK	100	100	682	9	672	6	3

Table 2. Evaluation of the five DNA barcode loci.
	100	100	540	1	539	0	0
rbcL							
trnH-psbA							
trnL-trnF	100						
ITS2+matK	-	-	1133	20	1111	12	8
ITS2+rbcL	-	-	991	12	978	6	5
ITS2+trnH-psbA	-	-	814	12	795	6	6
matK+rbcL	-	-	1222	10	1211	6	3
matK+trnH-psbA	-	-	1045	10	1028	6	4
rbcL+trnH-psbA	-	-	903	2	895	0	1
ITS2+matK+rbcL	-	-	1673	21	1650	12	8
ITS2+matK+trnH-psbA	-	-	1496	21	1467	12	9
ITS2+rbcL+trnH-psbA	-	-	1354	13	1334	6	6
matK+rbcL+trnH-psbA	-	-	1585	11	1567	6	4
ITS2+matK+rbcL+trnH-psbA	-	-	2036	22	2006	12	9

Genetic Distance

Of the four common DNA barcodes, ITS2 and matK had large average genetic distances, while **trnH-psbA** had a smaller average genetic distance; the average genetic distance of **rbcL** was 0 (Fig 3). In the ITS2 region, the interspecific distance between the Qi-Nan germplasm and A. crassna was 0.0022±1.73E-18, the intraspecific distance among the Qi-Nan germplasms was 0, the interspecific distance between the Qi-Nan germplasm and A. hirta was 0.0203±2.08E-17, the interspecific distance between the Qi-Nan germplasm and A. malaccensis was 0.0157±0, the interspecific distance between the Qi-Nan germplasm and A. sinensis was 0, and the interspecific distance between the Qi-Nan germplasm and A. yunnanensis was 0.0090±1.04E-17. In the matK region, the interspecific distance between the Qi-Nan germplasm and A. crassna was 0.0091±5.20E-18, the intraspecific distance among the Qi-Nan germplasms was 0, the interspecific distance between the Qi-Nan germplasm and A. hirta was 0.0091±3.47E-18, the interspecific distance between the Qi-Nan germplasm and A. malaccensis was 0.0012±4.34E-19, the interspecific distance between the Qi-Nan germplasm and A. sinensis was 0, and the interspecific distance between the Qi-Nan germplasm and A. yunnanensis was 0.0039±3.90E-18. However, all genetic distances were 0 in the **rbcL** region. In the trnH-psbA region, the interspecific distance between the Qi-Nan germplasm and A. hirta was 0.0027±9.38E-07, the interspecific distance between the Qi-Nan germplasm and A. sinensis was 0.0027±9.47E-07, and the other genetic distances were 0. In addition, Wilcoxon signed-rank tests further confirmed that ITS2 and matK had the highest divergence in all genetic distances (Fig 3).

In the multilocus combinations, ITS2+matK had the highest genetic distances compared with the other barcode combinations (Fig 4). In the ITS2+matK region, the interspecific distance between
the Qi-Nan germplasm and A. crassna was 0.0066±5.20E-18, the intraspecific distance among the Qi-Nan germplasms was 0, the interspecific distance between the Qi-Nan germplasm and A. hirta was 0.0132±1.73E-17, the interspecific distance between the Qi-Nan germplasm and A. malaccensis was 0.0066±4.34E-18, the interspecific distance between the Qi-Nan germplasm and A. sinensis was 0, and the interspecific distance between the Qi-Nan germplasm and A. yunnanensis was 0.0058±1.73E-18.

Fig 3. Genetic distances between 58 Qi-Nan germplasms and the Aquilaria species for a single region. (GC: interspecific distance between the Qi-Nan germplasm and A. crassna. GG: intraspecific distance among the Qi-Nan germplasms. GH: interspecific distance between the Qi-Nan germplasm and A. hirta. GM: interspecific distance between the Qi-Nan germplasm and A. malaccensis. GS: interspecific distance between the Qi-Nan germplasm and A. sinensis. GY: interspecific distance between the Qi-Nan germplasm and A. yunnanensis. *: P<0.05, NS: not significant.)
Fig 4. Genetic distances between 58 Qi-Nan germplasms and the *Aquilaria* species for multilocus combinations. (GC: interspecific distance between the Qi-Nan germplasm and *A. crassa*. GG: intraspecific distance among the Qi-Nan germplasms. GH: interspecific distance between the Qi-Nan germplasm and *A. hirta*. GM: interspecific distance between the Qi-Nan germplasm and *A. malaccensis*. GS: interspecific distance between the Qi-Nan germplasm and *A. sinensis*. GY: interspecific distance between the Qi-Nan germplasm and *A. yunnanensis*.)
Species Discrimination

Preliminary evaluation of the DNA sequences showed that the trnL-trnF sequence was mostly repetitive and has a double peak. Therefore, only the 4 other primers (ITS2, matK, trnH-psbA and rbcL) were selected for sequence screening and analysis. TaxonDNA analysis showed that the species identification success rate of each fragment or combination was different (Table 3). Of the single loci, ITS2 and matK were the best; the correct match rates of “best match”, “best close match” and “all species” for these two sequences were 93.84%. In contrast, rbcL had the lowest successful identification rate (0.00%). The multifragment combinations ITS2+matK, ITS2+rbcL, matK+rbcL, matK+trnH-psbA, ITS2+matK+trnH-psbA, matK+rbcL+trnH-psbA and ITS2+matK+trnH-psbA+rbcL had the highest success rate; the correct match rates of “best match”, “best close match” and “all species” for these combinations were 93.84%. However, only ITS2+matK and ITS2+matK+rbcL had the lowest ambiguity (1.53%) under the “all species” method. In addition, the success rate of these two fragment combinations was equivalent to that of three or four of the other fragments. Therefore, to facilitate analysis, we selected ITS2+matK to construct the phylogenetic tree.

Table 3. Species identification success rate based on TaxonDNA analysis. C, A, I, and N represent correct, ambiguous, incorrect and no match, respectively.

Region	Best match (%)	Best close match (%)	All species (%)								
	C	A	I	C	A	I	N	C	A	I	N
ITS2	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	4.61	1.53	0.00
matK	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	3.07	3.07	0.00
rbcL	0.00	100.00	0.00	0.00	100.00	0.00	0.00	90.76	9.22	0.00	0.00
trnH-psbA	1.53	98.46	0.00	1.53	98.46	0.00	0.00	3.07	96.92	0.00	0.00
ITS2+matK	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	1.53	4.61	0.00
ITS2+rbcL	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	4.61	1.53	0.00
ITS2+trnH-psbA	93.84	0.00	6.15	93.84	0.00	6.15	0.00	4.61	93.84	1.53	0.00
matK+rbcL	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	3.07	3.07	0.00
matK+trnH-psbA	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	4.61	1.53	0.00
rbcL+trnH-psbA	1.53	96.92	1.53	1.53	96.92	1.53	0.00	3.07	96.92	0.00	0.00
ITS2+matK+rbcL	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	1.53	4.61	0.00
ITS2+matK+trnH-psbA	93.84	0.00	6.15	93.84	0.00	6.15	0.00	93.84	3.07	3.07	0.00
Phylogenetic Trees

The phylogenetic tree constructed with Bayesian inference (BI) and ITS2+matK is presented in Fig 5. The results showed that all 58 samples of Qi-Nan germplasm were clustered with A. sinensis_1, A. sinensis_2 and A. sinensis_3, but separate from A. crassna, A. hirta, A. malaccensis and A. yunnanensis. Additionally, the phylogenetic tree constructed with the maximal likelihood method and ITS2+matK is presented in Fig 6. The results of ML analyses were similar to those of BI analyses: all Qi-Nan germplasms were clustered with A. sinensis_1, A. sinensis_2 and A. sinensis_3. In conclusion, the phylogenetic tree clustering showed that the 58 Qi-Nan germplasms were genetic closest to A. sinensis but were less closely related to the other four *Aquilaria* species.
Fig 5. The phylogenetic tree of the 58 Qi-Nan germplasms and five Aquilaria species, constructed with Bayesian inference and the ITS2 + matK combination.

Fig 6. The phylogenetic tree of the 58 Qi-Nan germplasms and five Aquilaria species, constructed with maximum likelihood and the ITS2 + matK combination.
Discussion

DNA Barcoding Evaluation of the 58 Qi-Nan Germplasms

According to the screening of the 5 DNA primers, single fragments of ITS2 and matK varied the most (Table 2). The phylogenetic tree clustering constructed by the ITS2+matK combination was the most significant. This finding was similar to the results of a preliminary analysis of Aquilaria species in different countries, which concluded that matK played an important role in identifying Aquilaria species [18]. Indeed, matK is one of the fastest-evolving genes in the protein-coding region of the chloroplast genome [31] and plays an important role in the molecular identification of many plants. For example, Ste et al. determined the evolution of Casuarina species with the matK sequence [32] and Asparagus racemosus is effectively identified with the matK sequence [33]. Furthermore, the matK+rbcL combination helped identify Acacia accurately [34]. In addition, based on extensive experimental data, Chen et al. determined that the ITS2 sequence served as a universal barcode for medicinal plants [35], as it has shorter elements than ITS and a higher success rate in PCR amplification and sequencing [36]. In addition, compared with cpDNA or nuclear barcodes alone, a combination of the two better identified different species [37].

The genetic distances between the 58 Qi-Nan germplasms and five Aquilaria species showed genetic divergences mainly in ITS2 and matK, while trnH-psbA had few divergences (Fig 3). In addition, the genetic distances of ITS2 and matK were largest between the Qi-Nan germplasm and A. crassna, A. hirta, A. malaccensis, and A. yunnanensis, but there was no genetic distance between the Qi-Nan germplasm and A. sinensis. Moreover, the genetic distances of trnH-psbA were largest between the Qi-Nan germplasm and A. hirta and A. sinensis, but these values were lower than 0.003.

The rbcL fragment did not show any genetic distances between the Qi-Nan germplasm and Aquilaria species. Thus, we inferred that ITS2 and matK were ideal barcodes in this study [38], that variation in the trnH-psbA is low [39], and that the coding sequence of rbcL is highly conserved [40].

According to the species identification rates of 4 high quality sequences analyzed by the BBA method in TaxonDNA, the multifragment combinations ITS2+matK, ITS2+rbcL, matK+rbcL, matK+trnH-psbA, ITS2+matK+trnH-psbA, matK+rbcL+trnH-psbA and ITS2+matK+trnH-psbA+rbcL had the highest success rate (Table 3). Since a 2-fragment combination is more efficient and reduces the cost of sequencing, the ITS2+matK combination was selected to analyze the clustering of the phylogenetic trees. This differs from previous research on the DNA barcoding identification of Aquilaria species, as Lee et al. concluded that the phylogenetic tree constructed by ITS2+trnL-trnF was suitable for Aquilaria species [5], and Li et al. found that the phylogenetic tree constructed by the combination of ITS+matK and ITS+trnL-trnF was
conducive to species identification in three *Aquilaria* species [16]. Other research indicated that the
trnL-trnF sequence could provide molecular identification of *Aquilaria* species [17]. However, the
trnL-trnF sequence was not applicable in this study. This difference could possibly be explained by
differences in test materials or tree-building methods with the adopted DNA barcodes or
combinations. In the current study, the *trnL-trnF* sequence was mostly repetitive, which was not
conducive to conducting a cluster analysis of the phylogenetic tree. Thus, ITS2+matK was selected
for cluster analysis of the phylogenetic tree of Qi-Nan germplasm and *Aquilaria* species.

Genetic Relationship and Source Species of the 58 Qi-Nan Germplasms

Through comparison of plant morphology, the fruit of the Qi-Nan germplasm was found to be the
closest to the fruit of *A. sinensis* in shape and size (Fig 2). Previously, *Aquilaria* species were mainly
classified by the characteristics of their flowers and fruits [5, 41, 42]. *A. sinensis* was chiefly
identified by a moderate calyx that did not wrap the fruit, smooth seed coat without yellow
pubescence, and long seed appendages. *A. yunnanensis* features oval fruit, a smaller and scattered
calyx, and seeds densely coated by pubescence [6]. *A. malaccensis* has round fruit and a small calyx
that degrades after the fruit ripens, and *A. crassna* features oval or relatively round fruit, a larger
fruit and calyx, with the fruit usually wrapped in the calyx, and thick and leathery leaves [43].
Therefore, the source species of the Qi-Nan germplasm was inferred to be *A. sinensis* based on plant
morphology.

Whether in the single regions or multilocus combinations, the intraspecific distance among the 58
Qi-Nan germplasms (GG) was 0, and the interspecific distance between the Qi-Nan germplasm and
A. sinensis (GS) was the smallest (Figs 3 and 4). This finding indicates that different types of Qi-
Nan germplasm significantly differ in plant morphology and agarwood quality. However, the 58 Qi-
Nan germplasms selected did not significantly differ in molecular identification, and all were most
closely related to *A. sinensis*. Genetic distances can also reflect the relationship between different
species and germplasms. For example, Zheng et al. found that ITS2 not only quickly and accurately
identifies *Fritillaria cirrhosa* and its related species but also that the genetic relationship between
different *Fritillaria* species is clearly explained by the genetic distance between *F. cirrhosa* and its
related species [44]. When Zhang et al. analyzed the genetic distance and phylogenetic tree of
Phellodendron amurense samples, they found that the genetic distance was important in the analysis
and identification of the genetic relationship of *Phellodendron* species [45].

The BI and ML phylogenetic trees constructed by the ITS2+matK combination showed that all
58 Qi-Nan germplasms were closely related to *A. sinensis* but less closely related to *A. yunnanensis
A. crassna, A. malaccensis* and *A. hirta* (Figs 5 and 6). Approximately 20 *Aquilaria* species are
found in tropical parts of Southeast Asia [4, 5]. Huo et al. were one of the earliest to classify and describe the morphological characteristics of *Aquilaria* species, creating 12 categories of *Aquilaria* plants in the Thymelaeaceae family [43]. Recent research also indicated that *Aquilaria* plants in Asia could be divided into 13 species [46]. Of these, only *A. sinensis* and *A. yunnanensis* are found in China; the former is mostly distributed in Guangdong, Guangxi and Hainan Provinces, and the latter is only found in Xishuangbanna [6]. According to our preliminary visit to a plantation of Qi-Nan germplasm, the Qi-Nan germplasm currently cultivated in Guangdong was obtained by grafting (Fig 1). First, the branches of wild *Aquilaria* trees were grafted onto *A. sinensis*; after maturity the germplasm was propagated by grafting branches onto cultivated trees. The scion was mainly wild *A. sinensis* from Huizhou, Dianbai, Shenzhen, Hong Kong, and Hainan Province in China. According to the geographical distribution of *Aquilaria* species and the results of the phylogenetic tree, the source species of Qi-Nan germplasm cultivated in China is *A. sinensis*. However, DNA barcoding still has certain limitations and failed to resolve differences among Qi-Nan germplasm resources. Our group is currently attempting to carry out a thorough study using inter simple sequence repeats (ISSR) and random amplified polymorphic DNA (RAPD) molecular markers as well as other techniques.

The Relationship between “Qi-Nan” Agarwood and Qi-Nan Germplasm

“Qi-Nan” agarwood has different names in different countries and regions, including Chinese names (e.g., Qinan, Jianan, and Jialuo) and English names (e.g., Qi-Nan, Kanankoh, Kyara and Chi-Nan) [47]. Historical records reported “Qi-Nan” agarwood as an *Aquilaria* species in the traditional sense, referring to top-grade agarwood formed under extremely demanding conditions that was rich in resin, elegant in fragrance and dark in color [48]. It was named for its mysterious scent that could be achieved without burning the wood and was distinguished from other types of agarwood as the most expensive and top-quality due to its unique smell and appearance [49]. “Qi-Nan” agarwood is further divided according to appearance and color into green Qi-Nan, purple Qi-Nan, black Qi-Nan, yellow Qi-Nan, etc. [48, 50]. At present, the market price of “Qi-Nan” agarwood has far exceeded that of general agarwood.

Given its ultrahigh economic and collection value of “Qi-Nan” agarwood, cultivation of Qi-Nan germplasm has received substantial publicity in Guangdong, China in recent years, due to claims that planting the germplasm would produce “Qi-Nan” agarwood with the best resin and fragrance. However, this research focused on the source species of Qi-Nan germplasm instead of the relationship between the produced agarwood and the traditional “Qi-Nan” agarwood, which remains unclear and unconfirmed. This problem is also key to safeguarding the stability of the
agarwood market. “Qi-Nan” agarwood merits further analysis, including at the chemical, microscopic, and molecular levels. This paper is the first to use DNA barcoding to identify Qi-Nan germplasm cultivated in China and report that it originated from *A. sinensis* in China. These findings may inform the future promotion and application of agarwood produced from Qi-Nan germplasm.

Supporting Information

S1 Fig. Whole plants of selected Qi-Nan germplasms. A: CN-TJ-DA. B: CN-QLX-DB. C: CN-JSY-DB. D: CN-DYP-DB. E: CN-LBS-DB. F: CN-LYW-DB. G: CN-ZTJ-DB. H: CN-ZSZ-DB. I: CN-XS3HCQ-XL. (TIF)

S1 Table. List of the samples of 58 Qi-Nan germplasms and five *Aquilaria* species used in this study. Includes the name, sample numbers, origins, locations and notes of each sample. (XLSX)

S2 Table. GenBank accession numbers of the Qi-Nan germplasm and *Aquilaria* species generated in this study. (XLSX)

Acknowledgments

We are very grateful for the enthusiastic help of the local cultivators in collecting samples from the Qi-Nan germplasm plantations in Guangdong and Hainan Provinces in China.

Author Contributions

Conceptualization: Yun Yang, Jianhe Wei.

Data curation: Yong Kang.

Formal analysis: Yong Kang.

Investigation: Yong Kang, Peiwei Liu, Feifei Lv, Yuxiu Zhang, Yun Yang.

Project administration: Jianhe Wei.

Supervision: Jianhe Wei.

Visualization: Yong Kang.

Writing – original draft: Yong Kang.

Writing – review & editing: Yong Kang, Yun Yang, Jianhe Wei.

Data Availability Statement

The data that support the findings of this study are openly available in the NCBI GenBank database.
References

1. Barden A, Anak NA, Mulliken T, Song M. Heart of the matter: agarwood use and trade and CITES implementation for *Aquilaria malaccensis*. TRAFFIC International, Cambridge, UK. 2000.

2. Committee SP. Pharmacopoeia of the people's Republic of China. Beijing: China Pharmaceutical Science and Technology Press2020.

3. Ito M. Studies on perilla, agarwood, and cinnamon through a combination of fieldwork and laboratory work. Journal of Natural Medicines. 2008;62(4):387-395.

4. Gao Z, Zhao W, Sun P, Wei J. Species and Conservation Status of the Endangered Agarwood-Producing Genus *Aquilaria*. Mod Chin Med. 2017;19(08):1057-1063.

5. Lee SY, Ng WL, Mahat MN, Nazre M, Mohamed R. DNA Barcoding of the Endangered *Aquilaria* (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market. PLoS One. 2016;11(4):e0154631. PubMed PMID: 27128309.

6. FOC ECo. Flora of China. Beijing: Science Press1999.

7. (CITES) CoITiESoWFa. Consideration of Proposals for Amendment of Appendices I and II-*Aquilaria ssp*. and *Gyrinops ssp*. Thirteenth meeting of the Conference of the Parties, Bangkok, Thailand, 2–14 October. 2004.

8. Huang W, Kong F, Wang H, Fang Z. Research Progress in *Aquilaria ssp*. Propagation. World Forestry Research. 2017;30(01):44-48.

9. Wang J, Wang Y, Yan J, Li W, Dong W, Mei W, et al. Comparison of the Anatomy Structure and Chemical Compositions of Agarwoods from Two Kinds of *Aquilaria sinensis*. Sci Silva Sin. 2019;55(07):146-154.

10. Yan X. Advance in Research on Genetic Diversity of *Aquilaria sinensis*. Chin Agric Sci Bull. 2010;26(19):383-386.

11. Du M, Xu J, Zhu C, Wang L, Sui C, Wei J. Rapid Propagation of *Aquilaria sinensis* by Tissue Culture Technology. Chinese Agricultural Science Bulletin. 2019;35(26):80-83.

12. Niu H, Lu X, Wang Y, Liu F. Experiment on asexual propagation of *Aquilaria sinensis*. Forest Inventory and Planning. 2010;35(06):119-123.

13. Wang Y, Wang J, Duan R, Qin H, Mei W, Dai H. Bud Grafting for Propagation of *Aquilaria sinensis 'Reke2'*. Chinese Journal of Tropical Agriculture. 2019;39(10):34-41.

14. Wang J, Zheng S, Zeng Y, Liu M, Shang X, Wang H. Current Situation on Collection, Preservation, Evaluation and Utilization of Germplasm Resources for Traditional Chinese Medicine. Modern Chinese Medicine. 2020;22(03):311-321.

15. Jiao L, Yin Y, Cheng Y, Jiang X. DNA barcoding for identification of the endangered species *Aquilaria sinensis*: comparison of data from heated or aged wood samples. Holzforschung. 2014;68(4):487-494.

16. Li Q, Yan H, Lin D, Wang Y, He M, Zhang W, et al. Molecular identification of three *Aquilaria* (Thymelaeaceae) species through DNA barcoding. Biological and Pharmaceutical Bulletin. 2018;41(6):967-971.

17. Eurlings M, Gravendeel B. TrnL-trnF sequence data imply paraphyly of *Aquilaria* and *Gyrinops* (Thymelaeaceae) and provide new perspectives for agarwood identification. Plant systematics and
Kang Y, Liu Y, Yang Y, Feng J, Zheng X, Wei J. Screening of DNA Barcoding Sequences for Identification of Multiple Species of Aquilaria L. Chin Pharm J. 2019;54(23):1926-1932.

Group CPW, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, et al. A DNA barcode for land plants. Proceedings of the National Academy of Sciences. 2009;106(31):12794-12797.

Hall TA. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41(41):95-98.

Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics-the International Journal of the Willi Hennig Society. 2011;27(2):171–180.

Sudhir K, Glen S, Michael L, Christina K, Koichiro T. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology & Evolution. 2018;6(6).

Meier R SK, Vaidya G, Ng PKL. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic biology. 2006;55(5):715-728.

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755.

Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One. 2010;5(1):e8613.

Kress WJ, Erickson DL. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLOS ONE. 2007;2(6).

Tate JA, Simpson BB. Paraphyly of Tarasa (Malvaceae) and Diverse Origins of the Polyploid Species. Systematic Botany. 2003;28(4):723--737.

Sang T, Crawford DJ, Stuessy TF. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany. 1997;84(8):1120-1136.

Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. 1991;17(5):1105-1109.

Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, et al. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences. 2009;106(44):18621-18626.

Wolfe KH. CHAPTER 15–Protein-Coding Genes in Chloroplast DNA: Compilation of Nucleotide Sequences, Data Base Entries, and Rates of Molecular Evolution. Photosynthetic Apparatus Molecular Biology & Operation. 1991:467-482.

Steane DA, Wilson KL, Hill RS. Using matK sequence data to unravel the phylogeny of Casuarinaceae. Molecular Phylogenetics & Evolution. 2003;28(1):47-59.

Boonsom T, Waranuch N, Ingkaninan K, Denuuangboripant J, Sukrong S. Molecular analysis of the genus Asparagus based on matK sequences and its application to identify A. racemosus, a medicinally phytoestrogenic species. Fitoterapia. 2012;83(5):947-953.

Ismail M, Ahmad A, Nadeem M, Javed MA, Qari SH. Development of DNA barcodes for Selected Acacia species by using rbcL and matK DNA markers. Saudi Journal of Biological ences. 2020;1-8. doi: 10.1016/j.sjbs.2020.08.020.

Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5(1):e8613. doi: 10.1371/journal.pone.0008613. PubMed PMID: 20062805; PubMed Central PMCID:
Wang XY, Zheng SH, Liu Y, Han JP. ITS2, a Better DNA Barcode than ITS in Identification of Species in Artemisia L. Chinese Herbal Medicines. 2016;8(4):352-358. doi: 10.1016/s1674-6384(16)60062-x.

Liu J, Yan HF, Newmaster SG, Pei N, Ragupathy S, Ge XJ, et al. The use of DNA barcoding as a tool for the conservation biogeography of subtropical forests in China. Diversity & Distributions. 2015;21(2):188-199.

Chen S, Pang X, Song J, Shi L, Yao H, Han J, et al. A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol Adv. 2014;32(7):1237-1244. doi: 10.1016/j.biotechadv.2014.07.004. PubMed PMID: 25087935.

Hashim YZ, Kerr PG, Abbas P, Mohd Salleh H. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J Ethnopharmacol. 2016;189(4):331-360.

Kang Y, Deng Z, Zang R, Long W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Scientific Reports. 2017;7(1):12564.

Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(23):8369-8374.

Kang Y, Deng Z, Zang R, Long W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Scientific Reports. 2017;7(1):12564.

Hashim YZ, Kerr PG, Abbas P, Mohd Salleh H. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J Ethnopharmacol. 2016;189(4):331-360.

Li T, Zhao D, Chen L, Zhou J, Zhao G, Wang S. Comparison of Biological Characteristics between Aquilaria sinensis and Aquilaria agallocha. Chin J Trop Agric. 2016;36(03):6-9.

Zheng H, Deng K, Chen A, Fu S, De Z, Wang W, et al. Molecular identification and genetic relationship of Fritillaria cirrhosa and related species based on DNA barcode. Acta Pharmaceutica Sinica. 2019;54(12):2326-2334.

Zhang Z, Wang X, Zhang Z, Yao H, Zhang X, Zhang Y, et al. The impact of genetic diversity on the accuracy of DNA barcoding to identify species: A study on the genus Phellodendron. Ecology and evolution. 2019;9(18):10723-10733.

Santisuk T. Taxonomy geography and ecology of Aquilaria Lamk (Thymelaeaceae) in continental Asia. Second International Agarwood Conference March 5-6, Bangkok, Thailand. 2007.

Yang D, Mei W, Yang J, Zeng Y, Dai H. GC-MS Analysis of the Fragrant Sesquiterpenes and 2- (2- Phenylethyl) Chromone Derivatives in Four Types of Agarwood “Qi-Nan”. Chinese Journal of Tropical Crops. 2014;35(06):1235-1243.

Yamagata E, Yoneda K. Pharmacognostical Studies on the Crude Drug of Agarwood (VI) : On "Kanankoh". The Japanese journal of pharmacognosy. 1987;41(2):142-146.

Ishihara M, Tsuneya T, Uneyama K. Fragrant sesquiterpenes from agarwood. Phytochemistry. 1993;33(5):1147-1155.

Xie Z. Discussion on Varieties of Chinese Medicinal Materials (Volume 2): Shanghai Science and Technology Press; 1984.
Click here to access/download

Supporting Information
Manuscript-ky0317-track changes.docx
