Insights into the genetic basis of retinal detachment

Thibaud S. Boutin¹, David G. Charteris², Aman Chandra³,⁴, Susan Campbell¹, Caroline Hayward¹, Archie Campbell⁵, UK Biobank Eye & Vision Consortium⁶, Priyanka Nandakumar⁷, David Hinds⁷, 23andMe Research Team⁷, Danny Mitry⁸, Veronique Vitart*¹

1. MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU, Edinburgh, UK
2. Moorfields Eye Hospital, EC1V 2PD, London, UK
3. Department of Ophthalmology, Southend University Hospital, Essex, SS0 0RY, UK
4. Vision & Eye Research Unit, Anglia Ruskin University, Essex, CM1 1SQ, UK
5. Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Institute of Genetics and Molecular Medicine, EH4 2XU, Edinburgh, UK
6. Full list of members and affiliations is provided in S3 Text
7. 23andMe, Inc. Mountain View, CA 94041, USA
8. Department of Ophthalmology, Royal Free NHS Foundation Trust, NW3 2QG, London, UK

*Corresponding author: Veronique Vitart Telephone number: (+44)1316518751 email: veronique.vitart@igmm.ed.ac.uk
Abstract

Retinal detachment is a serious and common condition, but genetic studies to date have been hampered by the small size of the assembled cohorts. In the UK Biobank dataset, where retinal detachment was ascertained by self-report or hospital records, genetic correlations between retinal detachment and high myopia or cataract operation were respectively 0.46 (SE=0.08) and 0.44 (SE=0.07). These correlations are consistent with known epidemiological associations. Through meta-analysis of genome-wide association studies using UK Biobank retinal detachment cases (N=3977) and two cohorts, each comprising ~1000 clinically-ascertained rhegmatogenous retinal detachment patients, we uncovered 11 genome-wide significant association signals. These are near or within ZC3H11B, BMP3, COL22A1, DLG5, PLCE1, EFEMP2, TYR, FAT3, TRIM29, COL2A1 and LOXL1. Replication in the 23andMe dataset, where retinal detachment is self-reported by participants, firmly establishes six retinal detachment risk loci: FAT3, COL22A1, TYR, BMP3, ZC3H11B and PLCE1. Based on the genetic associations with eye traits described to date, the first two specifically impact risk of a retinal detachment, while the last four point to shared aetiologies with macular condition, myopia and glaucoma. Fine-mapping prioritised the lead common missense variant (TYR S192Y) as causal variant at the TYR locus and a small set of credible causal variants at the FAT3 locus. The larger study size presented here, enabled by resources linked to health records or self-report, provides novel insights into retinal detachment aetiology and underlying pathological pathways.
Introduction

The UK Biobank is a major international research resource designed to help identify the genetic and non-genetic causes of complex diseases burdening middle and old age (1). Data linkage to the UK National Health Service (NHS) hospital in–patients records, achieved for a large portion of the 500,000 participants, makes it particularly valuable for the investigation of a wide range of conditions. Here, we made use of the UK Biobank to gain genetic insight into retinal detachment (RD), a common condition and cause of emergency ophthalmic intervention.

The processes leading to the vision-threatening separation of the neurosensory retina from the underlying retinal pigment epithelium can be diverse. Break in the retina leading to sub-retinal penetration of vitreous humour characterises the most frequent RD type, hence called rhegmatogenous (RRD). Other forms exist: the far less common tractional form, with no detectable retinal break, and the very rare serous RD, caused by inflammatory or exudative retinal conditions (2).

Annual incidence has been estimated for RRD at 12 per 100,000 population (3) in the UK, peaking in individuals in their sixties (4). Posterior vitreous detachment, a common age-related condition, is thought to be a frequent initiating event (5, 6). Trauma, cataract operation, myopia and diabetic retinopathies can precipitate vitreous changes (5) and have all been associated with increased risk of RD. Retinal conditions such as lattice degeneration (7, 8) may predispose to retina breaks (holes and tears). Most epidemiological studies have also reported RD incidences to be 1.3 to 1.9 fold higher in men (3, 9, 10), even when trauma cases are excluded (10, 11).

RD has been poorly characterised genetically due to the small sample sizes of collections assembled. A genetic predisposition for RRD has been suggested by
family studies, with roughly a doubling of lifetime risk in first degree relatives of cases compared to that of controls (12, 13), and by the, rare, Mendelian syndromic conditions featuring RRD (14, 15). The proportion of RRD liability contributed by common genetic variants was estimated at 27% in the very first RRD genome-wide association study (GWAS), which we performed using 867 Scottish cases (16). This GWAS led to the identification of a common coding variant in the CERS2 gene, rs267738, as significantly associated. Several rare mutations in COL2A1 (in which Stickler syndrome causal variants have been described) have been implicated in familial dominant RRD (17, 18). A burden of rare variants in this COL2A1 gene as well as a common intronic variant, rs1635532, have additionally recently been suggested to contribute to idiopathic RRD (19).

Here, we evaluate genetic associations with retinal detachment risk, leveraging available information in the UK Biobank. The data linkage to hospitalisation records should allow identification of retinal detachment (RD) cases, with some details. In addition, all UK Biobank participants completed, at recruitment, a touchscreen questionnaire followed by verbal interviews which included history of retinal detachment. This allows capture of potential cases not linked to medical records. This ascertainment is a priori less precise than the hospital records linkage. However, RD, requiring surgical intervention, appears to be a significant ophthalmic event that has a memorable impact on patients (12).

To validate the retinal detachment cases ascertained from UK Biobank, we first assessed self-reported RD using the overlap with hospital admission records where possible, together with the wealth of other information gathered on participants. We then performed a genome-wide association study (GWAS) of RD in the UK Biobank using the union of self-reported and hospital record linked cases, to maximise power
in a sample of RD cases anticipated to be aetiologically heterogeneous. To interpret the genetic associations uncovered, we carried out sensitivity analysis using phenotypic subsets, and sought out overlapping associations with high myopia and cataract operation, two well established conditions increasing RD risks, as well as with clinically ascertained RRD in independent sets from Scotland and England.

Finally, we performed the largest GWAS analysis to date for retinal detachment by combining the UK Biobank RD data with the, smaller, studies of clinically ascertained RRD. To replicate our findings, we performed a look-up, in a population-based sample from the personal genetics company 23andMe, Inc. data, for the lead variants of the genome-wide significant signals (study workflow is summarised in Fig S1).

Results

Evaluation of UK Biobank self-reported retinal detachment

A total of 1754 UK Biobank participants self-reported retinal detachment (RD-SR) at any one of the three assessment visits. Questionnaire responses were fairly consistent in the baseline visit, with 88% of RD-SR cases also indicating a condition which would prevent them from undergoing spirometry. This compares to 7.7% in all respondents (history of retinal detachment is one of the contra-indications for spirometry in the UK Biobank protocol). Furthermore, 79.4% of cases reported having had an eye problem other than wearing glasses (compared to 14.7% in all respondents), and 79.8% answering as having had a retinal operation/vitrectomy operation (compared to 0.6% in all UK Biobank participants).
RD-SR cases display significant distributional shifts compared to controls (Table 1), with magnitudes consistent with RD epidemiological reports. They were older (median year of birth 1947 compared to 1951 in controls) and with a 1.3 times greater proportion of men (59.1 % compared to 45.1%). Over a quarter had had a cataract operation, in line with prior cataract surgery reported in a fifth to a third of individuals with RD in European cohorts (3, 9, 20, 21). Other self-reported conditions of significant increased prevalence compared to controls include ocular trauma, diabetes, macular degeneration and glaucoma. The distributional shifts are not due to sex bias, as they are maintained in the same gender comparisons (Table 1), for example for eye trauma, significantly more frequent in men (P-value =0.012). When applicable, the median age for first use of lens to correct for myopia was younger, 12 years old, in cases compared to that in controls, 17 years old. This self-reported fact has been shown to accurately identify myopia, and age at first use to inversely correlate with severity of myopia (22). The shift observed in RD-SR cases towards younger age of onset therefore suggests higher incidence of high myopia, in agreement with it being a well-recognized risk factor for RD (3, 11, 23).

Linkage to “retinal detachment or break” in hospitalisation records was found for 890 (50.7%) of the RD-SR cases (Table S1). The highest proportion (~half of those linked to a record, ~25% of total RD-SR cases) corresponded to RRD, ICD10 code H33.0 (retinal detachment with retinal break). However, very surprisingly, almost as many of the RD-SR cases (~21%) were linked to the hospital record H33.2, which represents exudative (serous) retinal detachment, a very rare form of detachment, suggesting that the ICD sub-code entries are likely to be inaccurate. The ~11% of RD-SR cases linked to an H33.3 code (retinal break, no detachment) could also reflect imprecise coding in hospital entries and/or that the breaks are a risk for future
retinal detachment. Fig 1 displays retinal detachment ICD9 and ICD10 entries in the overall UK Biobank participants and illustrates the overlaps between the different sub-codes, across hospitalisation events.

There seems little gain in restricting RD-SR cases to the individuals who self-report a retinal operation/vitrectomy for greater accuracy: 363 cases would be excluded, but these do not change the overall characteristics of the RD-SR cohort (Table 1 and S1). Given the enrichment in RD cases that they are likely to represent, we combined RD-SR cases with individuals linked to the ICD10 super code H33 and ICD9 code 361 to increase power in the initial association study (RD-SR-ICD).

Genetic variants enriched in the UK Biobank SR and ICD-defined retinal detachment cases

GWAS was carried out in the UK-Biobank subset of participants of white-British ancestry. It identified three genome-wide significant signals with common lead variants rs11992725 (MAF=31.9%, P-value=3.1x10^{-10}) on chromosome 8, an intronic variant in COL22A1, rs7118363 (MAF=39.2% P-value=1.2x10^{-16}) on chromosome 11, an intronic variant in FAT3 and rs633918 (MAF=38%, P-value=1.6x10^{-8}), an intronic variant in GRM5 (Fig S2 and regional plots Fig 2A).

No genome-wide significant association has so far been published for the COL22A1 lead variant (or with 1000G proxy variants in high LD, r^2 >0.6) in the GWAS Catalog or using Phenoscanner (24), as of September 2019. Only recently, the lead variant in FAT3 has been associated with heel bone mineral density (25) using the UK Biobank dataset (N=194398, P-value=4.65x10^{-8}). The lead variant in GRM5 is in LD
with variants that have been strongly associated with eye colour (e.g. proxy rs7120151, r2=0.64 D'=0.94, P-value=2.45x10^{-10}) (26).

A full list of loci with lead variants displaying an association P-value < 5x10^{-6} is shown in Table S2. Two of the 24 suggestive loci (5x10^{-6}<P-values≤5x10^{-8}) are amongst the most strongly supported loci associated with common myopia (27): LAMA2 (identical lead variant) and BMP3 (reported myopia lead variant rs5022942 (27) in some linkage disequilibrium, r2= 0.19 , D'=0.999, with the RD suggestive locus lead variant). Another notable suggestive association is that within the COL2A1 gene as it is an excellent RD candidate gene (18). The COL2A1 common variant rs1635532 previously proposed to be associated with RRD (19) displays no association (P-value=0.95) in the UK Biobank RD-SR-ICD, whilst in low linkage disequilibrium with the suggestive lead variant, rs1635554 (r2=0.15, D'=0.88). The CERS2 variant rs267738 previously associated with RRD (16) shows nominally significant association, P-value=4.2 10^{-3}, with the major T allele increasing risk as previously reported.

The quantile-quantile plot for the GWAS results (Fig S2- \lambda_{GC}=1.097), and the LDscore regression intercept close to 1 (1.0083, SE=0.0067)(28), suggest an excess of genetic associations attributable to polygenic effects, compared to the null expectation of no genetic effect. Using a more balanced, 1:3, case:control design, that has been advocated (29) to avoid possible distortion of results for rare variants (which are not analysed here), yields the same top two genome-wide significant signals but with less significant P-values (Fig S3), indicating some loss of power when using a smaller set of control genomes.
Jointly, the common variants tested contribute a heritability on the liability scale, h^2_{GL}, of 0.23 (P-value= 2×10^{-72}). h^2_{GL} calculated using LD score regression was similarly low but significant, 0.1378 (SE=0.0194).

Retinal detachment sub-analyses and genetic overlaps with high myopia and cataract operation in the UK Biobank dataset

We carried out sensitivity analyses to tease out phenotypic heterogeneity. Performing the same GWAS analyses after removing cases linked to an ICD code suggesting a break in the retina but no detachment (Fig. 2B, leaving Ncases=2893 for Ncontrols=360,233) did not changed the effect sizes of the COL22A1 and GRM5 lead variants substantially (Table S3). The estimated effect for the FAT3 lead variant, OR=1.157, remained significant but fell just outside the 95% CI of that obtained in the full analysis [1.158,1.265] (Table S3). This suggests that the subset of cases with breaks may contribute more substantially to the FAT3 signal.

Performing GWAS in the much reduced set comprising only the cases linked to an H33.0 ICD code (Ncases=1380 and Ncontrols=360,233) – which should correspond most closely to RRD cases - does not yield any genome-wide significant associations. However, FAT3 remains amongst the strongest signals (P-value=8.6x10^-7 for lead variant rs10765567) (Fig 2C).

In addition to ICD codes sensitivity analyses, we looked for evidences in UK Biobank of shared genetic signals with the two epidemiologically established conditions known to significantly increase retinal detachment risk: cataract operation and high myopia. GWAS analyses for high myopia (Ncases=2737 and Ncontrol=47,635) and
history of cataract operation (Ncases=21679 and Ncontrols=387,283) showed contribution of genetic variants to risk, very strong for high myopia, with LD score regression estimated SNP-based heritabilities, h^2_{gt}, of 0.7217 (SE=0.0642), and very modest 0.0719 (SE=0.0072) for cataract operation. Manhattan plots for these analyses are shown in Fig S4 A-B, and the lists of significantly associated loci in Table S4-S5. In addition to the top associated locus, intergenic GOLGA8B-GJD2 (lead rs524952, P-value=1.2x10^{-24}), nine out of the other sixteen high myopia loci show nominal association with RD-SR-ICD ($P_{RD} < 0.05$). All ten associations show agreement with the epidemiological association (the allele increasing high myopia risk increases risk of retinal detachment). Two out of the 20 cataract operation associated loci, encompassing the eye colour genes OCA2 and NPLOC4, show nominally significant association with RD, with the cataract risk allele increasing risk of retinal detachment. The regional high myopia and cataract association plots for the three genome-wide significant retinal detachment loci COL22A1, FAT3 and GRM5 are shown in Fig S5 and suggest that those are not driven by a high myopia or cataract association.

Consistent with the epidemiological and phenotypic associations, the overall genetic correlations calculated using LD score regression slopes (30) were significant, 0.46 (SE=0.08) between RD and high myopia, 0.44 (SE=0.07) between RD and cataract operation, whilst 0.25 (SE=0.066) between high myopia and cataract operation.
Validation of UK Biobank RD genetic associations in datasets with clinically ascertainment RRD cases

Genetic variants associated with RD-SR-ICD in the UK Biobank were evaluated for their association with clinically ascertainment RRD in two independent datasets. Those were small datasets comprising 980 and 1184 cases, collected in Scottish vitreoretinal surgeries and at the Moorfields London Hospital respectively. We performed GWAS scans using these clinically ascertainment cases and population matched controls (N=9,706 from Scotland and N=10,000 from London), and genotypes imputed to the same Haplotype Reference Consortium (HRC.r1-1) reference panel as that used for UK-Biobank dataset (data clean up Supplementary methods 1 and 2).

Association statistics for the lead variants of the three RD-SR-ICD genome-wide significant loci are displayed in Table S6. The FAT3 signal lead variant shows consistent effect direction and magnitude across studies (low heterogeneity index, I²=0, P-value=0.56), with estimated OR for the major allele varying from 1.111 (RRD-London) to 1.186 (RD-SR-ICD). Effect directions at the two other genome-wide significant loci were consistent across all datasets, but heterogeneity in their magnitude was high although not significant (I²=64%, P-value=0.06 for COL22A1 lead variant, I²=59.7%, P-value=0.084 for GRM5’s), indicating OR 95% CI overlap between the three studies.

Furthermore, using summary statistics from the latest, large-scale, refractive error GWAS (31), we evaluated the effect of a myopia genetic risk score on retinal detachment risks in the two types of case ascertainment. The score distributions showed a similar shift toward higher scores for cases in both the UK Biobank study
of non-clinically ascertained RD and the dataset of clinically ascertained RRD (Fig S6). The myopia genetic score effects on RD risks were of similar magnitudes in both datasets, with significant increase of RD risk, $OR_{rd}=1.711$ (CI=[1.518;1.928], P-value=1.39×10^{-18}) and $OR_{rrd}=1.598$ (CI=[1.387;1.840], P-value=8.12×10^{-11}), in individuals in the highest quintile of the myopia genetic risk score relative to individuals in the lowest quintile (Fig 3). The corresponding odds ratio for high myopia risk in UK Biobank participants was 3.444 (CI=[2.987;3.970], P-value=4.6×10^{-65}).

Supported by this range of evidence of common genetic underpinning, a GWAS meta-analysis for all studies (GWAMA) was performed. Of note, the CERS2 variant rs267738 we previously reported as associated with RRD (16) did not reach nominally significant association with RRD in the analysed London-based dataset (which only partially overlaps with the London-based dataset used previously (16)), allele T increasing risk, $OR=1.023$ (CI[0.925-1.132], P-value=0.65), despite good quality calls for a genotyped variant in high LD with it, rs267734, on the Illumina GSA chip used here.

GWAMA of UK Biobank and clinical retinal detachment datasets

Following GWAMA and removal of variants with high heterogeneity across studies, 239 variants distributed across 11 independent loci showed genome-wide significant (P-value < 5x 10^{-8}) association with retinal detachment (Fig 4 ; Fig S7 and Table S7 for lead variant regional plots and summary statistics). These loci include FAT3 and COL22A1. TYR is also included, not the physically close GRM5, with the common missense variant rs1042602 (TYR S192Y) as lead variant. The A derived allele,
strongly associated with light skin colour (32) and absence of freckles (33), increases the risk of retinal detachment in all three studies, with high homogeneity (Forest plot Fig S8). In addition, the 5’ COL2A1 locus, upstream of the known familial RRD causal gene COL2A1, as well as BMP3, 5’ ZC3H11B, DGL5, 5’EFEMP2, PLCE1, LOXL1 and an intergenic region between the TRIM29 and OAF genes are also genome-wide significant. The GWAMA had a genomic control inflation factor, λ_{GC}, of 1.096 and the LD score regression indicates the inflation of type 1 errors to be due mostly (~85%) to true genetic effects (intercept =1.0186 (0.0069), ratio=0.152(0.056)).

The Functional Mapping and Annotation of genetic association (FUMA) tool (34) was used to annotate the GWAMA results. It called heuristically two independent lead variants at the BMP3 locus, rs28420618 and rs74764079, based on low level of LD ($r^2 < 0.1$) between these two physically close genome-wide significant variants. A stepwise model selection, implemented in GCTA (35), indicated association at each of the eleven locus to be captured wholly by the variant with the lowest P-value. Further conditioning on each of these lead variants demonstrated that the lead variant effectively tags all of the association signal at each locus, except at BMP3. There, conditional analyses suggested two signals, none of which reaching genome-wide significance on its own, tagging each other to some extent, and represented by the independent lead variants detected by FUMA (Table S8 and Fig S9). The same two signals underlie genome-wide significant associations at BMP3 in the recent, large-scale, refractive error GWAMA (31).

Further statistical delineation of credible sets of causal variants was carried out following the method described by Mahajan et al (36) (see methods). Results, shown
in Table S9, point to one variant with high causal probability (PIP > 0.6), the *TYR* lead variant, rs1042602, and to a small credible set of variants for the *FAT3* signal, encompassing the lead and three linked variants. An alternative variant selection method implemented in FINEMAP(37) was applied to the denser RD-SR-ICD GWAS and resulted in prioritisation of a very similar sets of variants at *COL22A1* and *FAT3* (Table S10).

FUMA annotated a total of 472 candidate causal variants, the 12 independent lead SNPs and all tagged (r2 > 0.6) variants. Those with distinctive functional annotations are listed in Table S11. Two loci harbour variants predicted to have highly deleterious effect (CADD score > 20) (38): the missense and lead variants in *BMP3* (rs74764079) and in *TYR* (rs1042602). High CADD scores (> 15) for variants in high LD with lead variant were also notable in *TRIM29, COL2A1, PLCE1* and *LOXLI*. Evidence of potential transcriptional regulatory attributes could be found at each of the 11 loci (Table S11); for example for every variant of the small credible set established at *FAT3*.

Table S12 lists previously reported associations, or top associations in UK Biobank PheWAS repositories (Phenoscaner, Global Biobank Engine or Gene Atlas), for the lead SNPs, all of which except lead at *DGL5*, are amongst the top likely causal variants. In addition to the associations to myopia and refractive error already noted, these look-ups highlighted ocular axial length (and height) association for the lead variant in 5’ *ZC3H11B*, and retinal macular thickness for the lead, high CADD and highly likely causal *TYR* missense variant.

Gene-based association analysis (Table S13) pointed to two additional associated loci, *CMSS1* and *C16orf45* or nearby **RP11-1021N1.1**. Transcriptional expression in
human eye tissues (Table S14) shows that many implicated genes, encompassing those defined using the SNP2GENE function in FUMA (N=102, see METHODS) and the three genes highlighted by the gene-based test, are highly expressed in the retina (neuronal retina or retinal pigmented epithelium). Of note two GWAS loci have a very limited number of candidate target genes: $COL22A1$ is the sole gene at the corresponding locus, and $FAT3$ together with a gene on another chromosome, DBI, implicated by trans-eQTL effect of lead variant in a brain expression dataset, at the $FAT3$ locus. Mouse mutations associated with abnormal retinal morphologies have been described in four genes, located at independent loci: TYR, $FAT3$, $C4orf22$ and $COL2A1$ (Table S14).

Gene-set analysis, with the genes prioritised from variants at a permissive GWAS P-value threshold of 10^{-5}, shows “basement membrane components” as top enriched GO cellular-component pathways ($P_{\text{enrichment}} = 6.9 \times 10^{-3}$) with included genes $EFEMP2$, $COL2A1$, $LOXL1$, $EFEMP1$, $COL8A1$, $FRAS1$, $LAMA2$ and $ACHE$, from independent GWAS loci. The trait-GWAS enrichment (GWAS Catalog e96 2019-05-03), extends overlap with refractive error, myopia, macular thickness and axial length GWAS results (Table S15). Five genes ($DUSP12$, $BACS3$, $BMP2$, $COL8A1$ and $PLCE1$), each at independent RD loci, were in addition flagged as overlapping with the glaucoma endophenotype, vertical cup to disk ratio GWAS gene-set.

Replication in 23andMe dataset

Replication was sought for the eleven variants capturing association signals at the genome-wide significant GWAMA loci by performing association analysis in the large, independent, 23andMe dataset. In this dataset, the 9171 RD participants of
European ancestry analysed were self-reported according to questionnaire administrated on a web-based interface. Six associations, at ZC3H11B, BMP3, COL22A1, PLCE1, TYR and FAT3 replicate at a Bonferroni corrected significance threshold of 0.0045 (P-value=0.05/11) (Table 2). In all the eleven look ups, the alleles associated with increased retinal detachment risk were the same as in the GWAMA, and all corresponding odds-ratio 95% CI overlaps or are very close to each other (Table 2). Alternative variants tagging the lead variants at each loci were checked post-hoc, to account for potential genotyping quality issues, with similar outcomes (Table S16)

Discussion

We explored the use of cases ascertained from a population Biobank for the study of retinal detachment. Genotypes from study volunteers with self-reported conditions or linked to medical records are becoming increasingly available to researchers, yet, to our knowledge, have never been evaluated for the study of RD.

For a number of conditions, self-report has been shown to be specific, while possibly lacking in sensitivity (22, 39). Our findings support this to also be the case for RD with the RD self-reported participants in UK Biobank displaying characteristic features well-established for this condition. A more thorough investigation of phenotype accuracy is however warranted, especially with linkage to medical and operation notes increasingly available. With genetic risk effect sizes for common conditions typically small (41), self-reported conditions have the potential to boost power of genome-wide association studies (39, 40). For example, the recent large refractive error GWAS (31) exploited the remarkable similarity of genetic findings
between analyses of refractive errors derived from a simple online questionnaire, and those derived from optical instruments (40).

A major limitation of our work is that while case numbers have been increased by using the UK Biobank dataset, we are unable to ascertain which retinal detachment subtypes the cases developed. We did flag that the hospitalisation records ICD sub-codes may be imprecise. The percentage of RD cases sub-coded as H33.2, which represents serous retinal detachment, was far greater than clinical experience would suggest. Supporting a widespread systematic error with regard to this specific code, seven individuals recruited for the Scottish RRD study were also volunteers for the Scottish population-based GS:SFHS study and all allocated H33.2 in the extracted hospitalisation records (two had also the H33.0 code at another hospitalisation episode). These seven individuals were definitively phenotyped as RRD by consultant surgeons. This error is likely due to erroneous entries, as further subtypes of H33.0 do exist in the classification of diseases, including H33.02, retinal detachment with multiple breaks. However, the linked H33 records have only 1 digit after the dot. The increased frequency of individuals linked to the H33.3 subtype, corresponding to break in the retina but no detachment, amongst UK Biobank participants who self-reported a retinal detachment compared to controls (11% versus 0.14%) could again reflect erroneous coding, but is also consistent with a break being a precursor of future RD. The hierarchical structure of diseases in the ICD classifications, exploited by others to improve detection of genetic associations (41), should ensure some degree of specificity. All these considerations justified our combination of all H33 codes for the purpose of our initial analysis, which aimed at identifying genetic factors predisposing to retinal detachment risk.
The SNP-captured heritability estimate for RD in the UK Biobank, 23%, appears very similar to that obtained, using the same method, for RRD in the Scottish clinical dataset (16). Furthermore, the very identical effects of a genetic load of known myopia risk variants on the UK Biobank RD and clinically-validated RRD risks supported that these datasets could be combined to increase risk variant detection. Close to 6000 retinal detachment cases were analysed in the GWAMA, with some very consistent effects across sets. Smaller datasets, such as those analysed so far for clinically-validated retinal detachment, are prone to false negative as well as “winners curse”, in which effect sizes reported are upwardly biased (42).

Association with retinal detachment was replicated for six genome-wide significant lead SNPs in an independent dataset, 23andMe, where definition of cases was entirely self-reported. It is noteworthy that p-values in the replication were generally less significant than in the GWAMA, despite a larger number of cases: this could be due to a looser phenotype definition, a web-based setting, some degree of curation of our controls based on ICD codes and self-reported vitreo-retinal surgery, younger median age of participants so that controls could be cases at older age with higher probability, or analysis method. The 23andMe analysis used a logistic regression method that may be less powerful in large sample size study than the linear mixed model approach (43).

Many of the GWAMA implicated genes have functions very pertinent to retinal detachment aetiologies. There was a clear myopia-related genetic load, in line with expectation. High myopia is the strongest retinal detachment increasing risk factor in individuals who have undergone cataract operation, above the type of cataract surgery or history of trauma (11). Myopia is also a prominent feature in ~50% of cases who have never undergone cataract operation (3, 44). RD onset under the
age of 50 years old is strongly associated with high myopia (11, 20, 23). Risk of chorio-retinal abnormalities and posterior retinal detachment, often but not always associated with a retinal break, increases with the severity of myopia and greater axial length (45-48). This is a cause for concern, as myopia and, concomitantly, high myopia are showing significant increases in global prevalence (49). Whilst findings of myopia genetic risk factors are not surprising, not all myopia loci may confer increased RD risk, thus informing on myopia, itself a heterogeneous condition. For example the lead high myopia variant at PRSS56 (OR =1.3, CI=[1.218-1.397]) displayed no significant risk for RD. The loci containing genes relating to increased elongation of the eye and basal membrane remodelling are likely to be most relevant to RD. One of the six replicated RD loci, 5’ of ZC3H11B, is a newly identified refractive error locus (31) and has been associated with ocular axial length (50) and high myopia (51).

In agreement with a Dutch familial aggregation study (12) suggesting that RRD genetic risk must extend beyond that contributing to myopia risk, at least two of the replicated RD loci, FAT3 and COL22A1, did not appear to exert their effect on RD primarily through myopia, nor through cataract operation. Our fine-mapping analysis highlighted a small set of causal variants at the FAT3 locus, including the lead variant which was also recently associated with heel bone mineral density (25). FAT3 encodes an atypical cadherin. Its pattern of expression is wide, but its role in the retina is well established in mice. Mice homozygous for a knock-out allele exhibit abnormal neuronal retina, with an additional synaptic layer (52). It is possible that this altered structure would make the retina more prone to breakage, in keeping with the suggestion from the GWAS sensitivity analyses that FAT3 may be especially concerned with the retinal breaks. COL22A1 appears to be the only candidate target
gene at the corresponding locus and encodes for the collagen, type XXII, alpha 1 chain, a basement membrane collagen with a very restricted pattern of tissue expression (53). It is highly expressed in the retina (mouse and human tissues) where its function is completely unknown. Its role in extra-cellular matrix adhesion has been advanced in myotendinous junction, following knockdown of COLXXII expression in zebrafish resulting in contraction-induced muscle fiber detachment (54). Remarkably no association has been reported so far for the implicated variants.

The TYR and PLCE1 associations point to retina structure and homeostasis, impacting ocular conditions not limited to RD.

Fine-mapping prioritized the TYR association to be driven by the missense variant pS192Y, lead variant in a recent retinal macula thickness GWAS (55). It is likely to act through variation of tyrosinase in the retinal pigmented epithelium (RPE), the single cell layer of polarised cells that plays a crucial role in maintenance of the neural retina. While a large epidemiological study on prevalence of RRD in albino patients, whose tyrosinase is inactive, is unavailable, patho-physiologies that may concur with retinal detachment have been discussed (56). Histological eye sections of mice with an allelic series at the Tyr locus strongly suggest that albino adult mouse retinas are prone to detach compared to wild type mice (57). Abnormal morphology of the RPE cells and impaired communication between the RPE and neuronal cells, affecting retinal ganglion cell development, have been well documented in albino mouse embryos (58). Compromised gap junctions between RPE and neural retina represents a compelling cause for retinal detachment risk.

The PLCE1 RD lead variant is in LD ($r^2=0.6$, $D'=1$) with the reported lead variant for optic nerve cup to disk ratio, a glaucoma endophenotype (59), and in complete LD
with that of a more recent primary open glaucoma study (60), whilst has not been associated with IOP (61, 62) (the most powered of all glaucoma related GWAS). The *PLCE1* gene encodes for the phospholipase C epsilon 1. It is very strongly expressed in the retina, where PLCE1 has been suggested to regulate neuronal intracellular calcium levels and hence impacting growth and differentiation (63). Although the glaucoma and RD epidemiological associations could stem from glaucoma developing secondary to a retinal detachment operation, a high proportion of glaucoma has been reported, 9.5%, amongst patients undergoing primary operation for retinal detachment (64). Our data gives support to the latter implications of shared genetic predispositions.

The partitioning of variants based on their effects across traits is a very powerful tool to better understand and separate disease pathological pathways contributing to their aetiologies. For this approach to be thorough and successful, it is clear that well powered studies are needed and for retinal detachment expanding the size of the study will be essential. With our study results largely driven by the availability of self-report and linked hospital records in UK Biobank, future expansion making use of new incident cases over time, the increased health records linkage, and the availability of similar datasets worldwide is a very promising way forward.

Materials and Methods

Ethics statement. All cohorts studied were approved by Research Ethics Committees as detailed below and all participants gave written informed consent. The UK Biobank study was conducted with the approval of the North-West Research Ethics Committee (Reference: 06/MRE08/65). Generation Scotland Scottish Family Health Study (GS:SFHS) has Research Tissue Bank status from the Tayside...
Committee on Medical Research Ethics (REC Reference: 15/ES/0040). The Scottish rhegmatogenous retinal detachment (RRD) study was approved by the Research Ethics Committee (MREC-06/MRE00/19) and the Moorfields RRD collection by Research Ethics Committee (10/H0703/97).

Evaluation of retinal detachment self-report in UK Biobank. The criteria for self-reported retinal detachment (SR_RD) cases and controls based on the UK Biobank questionnaires are detailed in S2 Text. Proportions for conditions well documented to be associated with rhegmatogenous retinal detachment (RRD) were compared in cases and controls using a two-sided two-proportion z-test. Overlap with RD cases (ICD_RD) defined by relevant international classification of disease (ICD) codes from UK National Health Service (NHS) hospital patient records transcripts were examined. ICD codes relating to retinal detachment were ICD9 code 361 “retinal detachments and defects” and ICD10 codes H33 “retinal detachments and breaks”. In total 4777 (N=3913 ICD_RD and N=864 SR_RD with no available hospital record of detachment) were identified.

Case-control datasets for genome-wide association analysis (GWAS)

UK Biobank sets

All analyses were restricted to the large subset of participants with genotype data passing quality control and indicative of white-British ancestry (Supplementary Notes).
Retinal detachment

In the primary analysis, participants with retinal detachment ascertained from self-report or linkage to hospital records were combined (RD-SR_ICD) as cases. Controls were participants who had declared not to have any contraindication for undergoing spirometry (as used in the evaluation of retinal detachment self-report), were not cases, and had not self-reported a history of retinal operation/vitrectomy. The discovery GWAS comprised N=3977 cases and N=360,233 controls; 10,000 controls recruited in the London centres of Barts, Croydon and Hounslow were not included in this analysis and used as independent controls in the analysis of the clinically ascertained RRD cases from the Moorfield collection. The case:control ratio for the discovery retinal detachment analysis was therefore 1:91. GWAS was additionally performed using a more balanced 1:3 case/control ratio for comparison, with controls matched to cases on gender and assessment centre. As effect sizes and P-values are influenced by the case/control ratio, a 1:10 ratio was also analysed for the look-up of UK Biobank top results in the clinically ascertained RRD cohorts results and their meta-analysis so that identical case/control ratio were compared or pooled together.

High myopia

N= 2737 high myopia cases (spherical equivalent refraction (SER) greater than -6 Diopters) and N=47635 controls (case:control ratio 1:17.4- Supplementary Notes), were contrasted.

Cataract operation

N= 21,679 cases and N=387,283 controls (Supplementary Notes-case:control ratio 1:17.9) were analysed.
Clinically ascertained RRD cases and population-based controls

Scottish set
980 cases from the Scottish RRD study and 9,705 population-matched controls from GS:SFHS not linked to a retinal detachment operation (Supplementary Notes-case:control ratio ~1:10) were analysed. 1,136,421 variants with high imputation quality (INFO >= 0.8) and MAF > 1% following genotyping analyses detailed in the Supplementary Methods were tested.

London set
1184 cases recruited in London Moorfields eye hospital (Supplementary Notes) and 10000 gender matched London centres recruited UK Biobank controls, defined as per UK Biobank analysis of RD, were analysed. In total, 4,727,220 variants with high imputation quality (INFO ≥ 0.9) and MAF > 1% following genotyping analyses detailed in the Supplementary Methods were tested.

Genome-wide association testing. Single variant GWAS was performed by testing for an additive effect at each reference allele within a linear mixed model to account for population relatedness and geographic structure. All analyses apart from one were performed using BOLT_LMM v1.3 (43, 65) which implements fast parallelised algorithms to analyse large (N > 5000) datasets. The London RRD set analysis was run using GCTA(35) as low heritability estimation prevented BOLT_LMM v1.3 from carrying out the genome scan. Polygenic contribution to trait can be modelled using a mixture of Gaussians priors on SNP effect sizes (default model allowing uneven effect sizes) or a single-Gaussian prior (standard infinitesimal model) in BOLT_LMM v1.3. Reported association p-values are those obtained for the default BOLT_LMM model but all were identical or very close to those obtained under the standard
infinitesimal model in our analyses. Covariates in the models were age (coded as 5 consecutive year of birth bins) and sex, and in addition, for the UK Biobank dataset, recruitment centre, genotyping array, genotyping batch and the 10 first components of the centrally performed UK Biobank principal components analysis. Only common to low frequency, MAF > 1%, variants, were analysed given the small size of the case samples and the risk of false positive associations for rarer variants in the unbalanced case:control samples analysed. In the UK Biobank dataset, recent simulations from the BOLT-LMM developers (43) show no inflation of type 1 error, for a significance threshold α of 5×10^{-8}, at this MAF threshold with case fraction of 1% or higher.

Individual RD studies (each using a 1:10 case control ratio to harmonise effect sizes) summary statistics were meta-analysed using the inverse variance fixed effect scheme implemented in the software METAL(66). Variants with Cochran’s Q-test heterogeneity of effect greater than 75% were filtered out.

Effects size on the observed scale were converted to log(ODDS ratio) following formula described in Pirinen et al(67).

Replication. Replication analysis of 11 loci was performed using self-reported data from a GWAS including 9,171 cases and 406,168 controls of European ancestry, filtered to remove close relatives, from the 23andMe, Inc. customer database. All individuals included in the analyses provided informed consent and answered surveys online according to the 23andMe human subject protocol, which was reviewed and approved by Ethical & Independent Review Services, a private institutional review board (http://www.eandireview.com). Cases were defined as
those who reported either retinal tears or retinal detachment; controls were defined as those who reported not having either retinal tears or retinal detachment.

All 11 variants assessed for replication were imputed in this study and were among the 21,747,472 variants passing quality control in the GWAS. Association test results were computed using logistic regression assuming additive allelic effects, including age, sex, the top five principal components of ancestry, and genotyping platform as covariates in the model.

GWAS evaluation. Manhattan plots were drawn using the qqman library in R, and QQ plots using a local function. Regional association plots were plotted using LocusZoom: http://locuszoom.sph.umich.edu/. Inflation of type 1 error not accounted for by polygenicity was estimated using the LD score regression intercept (28) computed by the LDSC software. Z-scores calculated from the GWAS summary statistics from genotyped and well imputed (INFO >=0.8) variants were regressed on pre-calculated LD scores (of European ancestry from the 1000G phase 1 reference panel). For one GWAS, the Scottish RRD set, the ratio \((intercept – 1)/(mean(\chi^2) – 1)\), which measures the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercept ascribes to causes other than polygenic heritability was greater than 20% and the LD score regression intercept was used as inflation factor to apply genomic control on the results(68).

Manually, a locus was defined as a region with significant variants within a 500kb region centred on the lead variant (that of the lowest P-value in the region) and contiguous loci merged. Adjacent “loci” with variants displaying LD measure \(r^2 > 0.1\) across loci, e.g HLA region for cataract operation GWAS, were merged into one
locus. GWAMA loci were defined and annotated within FUMA with the default clumping procedure (first clumping parameter $r^2 = 0.6$, second $r^2 = 0.1$) unless for finemapping investigation ($r^2 = 0.1$ for both clumping) to define larger regions.

Independent signals detection and Finemapping

The loci were investigated using GCTA v1.91.4beta for stepwise variable selection and conditional and joint (COJO) analyses using a subset of data including ~10000 white-British UK Biobank participants as reference for linkage disequilibrium patterns. GWAMA results, or the conditional analyses results for the region identified with more than one independent lead, were used to calculate approximate Bayes factor (abf) using Wakefield’s formula (69), as implemented in the R package gtx v.2.0.1. Following Mahajan et al (36), the posterior probability for a variant to drive association (PPA) was then calculated as the abf of the variant divided by the sum of the abfs in the region. The 99% credible sets of a region were derived by summing the posterior probabilities in descending order until the cumulative posterior probability was >99%.

Fine-mapping was also performed, on the three loci identified in the discovery GWAS, using FINEMAP v1.3.1(37). This software uses shotgun stochastic search algorithm to identify the most likely causal configurations of the region. Each variant within a found credible set is defined by its posterior inclusion probabilities (PIP) of being causal and its $\log_{10} BF$ (Bayes factor) which quantifies the strength of causality evidence.
Myopia genetic risk score

A myopia genetic risk score (GRS) was derived from 71 out of 140 genome-wide significant lead variants for refractive error ($P \leq 5 \times 10^{-8}$) from a large-scale meta-analysis of studies (CREAM and 23andMe meta-analysis) (31) independent from our discovery studies. The 71 variants passed QC in our three investigated cohorts and are listed in Table S17. The GRS was constructed as the sum of the additive imputed dosage of the alleles increasing myopic refractive error, weighted by their effect on refractive error. Effect on retinal detachment risk was assessed using logistic regression with the following covariates: Year of birth bin, sex, assessment center, batch, genotyping array and 5 first PCs. The analysis using UK Biobank participants was restricted to those unrelated within the white-British ancestry subset (pairwise kinship coefficients lower than 0.0313).

Functional annotation and gene mapping

Functional annotation was performed using FUMA (34) v1.3.5, a recently developed integrative tool leveraging information from many biological data repositories. FUMA heuristically defines independent lead SNPS within loci if they are in low LD $r^2 < 0.1$ (here using the UK Biobank White British set as reference panel). These variants, as well as those, tested or not, in high LD ($r^2 \geq 0.6$) with them in the reference panel, were annotated for predicted protein-altering or regulatory features following annotations from ANNOVAR, 2017-07-17 update, (http://annovar.openbioinformatics.org), RegulomeDB (http://www.regulomedb.org/), eQTL repositories (with note that none is available as yet for eye tissues) and the ChromHMM predicted 15 core chromatin states derived from ENCODE and ROADMAP repositories. SNP-trait known associations from the GWAS catalogue (e96_r2019-05-03) were also part of FUMA annotations. The SNP2GENE function
in FUMA identified putative target genes in an exhaustive manner: by physical mapping to the loci physical locations which are defined liberally by variants coordinates in high LD (>0.6) with any lead and “independent significant” variants which display medium LD with the lead variants (r² between 0.1 and 0.6), or based on genes whose expression has been significantly associated with those GWAS variants. eQTL repositories used include GTEx v6 and v7, BIOS QTL browser and BrainSpan amongst others.

Gene based analysis and Gene-set analysis

These analyses were performed using MAGMA v1.07 (70) within FUMA. Gene-based P-values are derived from an approximation of the sampling distribution of the mean of the χ² statistic for the SNPs in a gene, with gene coordinates that from NCBI 37.3 and LD pattern to account for dependency of SNPs P-values that of the UK Biobank White British reference data as input parameters. Genome-wide threshold of significance for the gene-based p-values was set to 2.68 x10⁻⁶, following Bonferroni correction for the N=18625 genes evaluated.

Gene-based P-values converted to Z values and a between-gene correlation matrix are used as input to perform gene sets enrichment tests. (70). These tests are based on expectation of an hypergeometric distribution for the null hypothesis of no enrichment. The raw p-values are adjusted following the Benjamini and Hochberg procedure (FDR set at 5%) to account for multiple testing within each gene-set categorie. Predefined gene sets from the molecular signatures database MsigDB v6.1 (http://software.broadinstitute.org/gsea/msigdb) were used.
Traits Heritability and genetic correlations

The heritability attributable to the joint contribution of genetic variants tagged by the common variants tested, h^2_g, can be calculated using the variance components estimates from the models fitted to perform the GWAS. It was converted to a case:control ratio-independent heritability, on the scale of liability, h^2_{gl} using the formula (1) discussed in (71) or (2) when controls were also selected using a trait threshold (72) for the analysis of high myopia:

1. $h^2_{gl} = h^2_g \times \frac{K(1-K)}{z^2} \times \frac{K(1-K)}{P(1-P)}$

2. $h^2_{gl} = \frac{h^2_g}{P(1-P)} \left(\frac{2U + 2L}{K_U + K_L} \right)^2$

where P is the prevalence of the binary trait in the analysed sample (e.g. for the largest retinal detachment analysis in UK Biobank: 3977/(360233+3977)=1.1%), K the prevalence in the population of matching age group as that of the UK Biobank population. We made the assumption that conditions’ prevalences in the UK Biobank sample are similar to that of the UK population; for retinal detachment, assuming K=P was close to a previous UK RRD estimate of incidence of 12 per 100,000 population-year (4) with median age of 59 year old in the sample. For high myopia, cases corresponded to the 3.76% upper tail of the refractive error distribution and controls to the 65.5% lower tail. z^2 is the squared ordinate of a standard normal curve at the K quantile.

h^2_g and h^2_{gl} were also estimated using the linkage-disequilibrium (LD) score regression method (28). Genetic correlations (r_g) were those obtained by regressing the product of test statistics against LD-score (30) as implemented in the LDSC software.
GWAS look-up

Four GWAS results repositories were used: the GWAS catalogue (e96_r2019-05-03), PhenoScanner (as of September 2019) the Global Biobank Engine, Stanford, CA (URL: http://gbe.stanford.edu) (GBE) [March 2018] and the GeneATLAS, University of Edinburgh (URL: http://geneatlas.roslin.ed.ac.uk/) [March 2018]. In the Global Biobank Engine, over 2000 UK Biobank traits (including retinal detachment defined as in our discovery analysis) have been analysed in a first broad brush pass, on 337,000 unrelated participants of white British ancestry. The analysed traits include traits measured in smaller subsets of individuals in recall assessments, including the ophthalmologic assessment (e.g. refractive error as a quantitative trait is analysed for N=82,752 participants). The GeneATLAS shows GWAS results for 778 traits measured in the complete set of UK Biobank participants of white British ancestry, using both related and unrelated individuals; results for the genotyped variants can be queried using the web interface.

Funding

This work was supported by “QTL in Health and Disease” core programme grants, currently MC_UU_00007/10, from the Medical Research Council. The Scottish RRD study was supported by grants from the Royal College of Surgeons Edinburgh, the WH Ross Foundation for the Prevention of Blindness and the Scottish Executive Health Department, Chief Scientist Office (grant number CZB/4/705). The Moorfields hospital-based recruitment was funded through a Moorfields Eye Hospital Special Trustees grant.
Generation Scotland received core support from the Scottish Executive Health Department, Chief Scientist Office, grant number CZD/16/6, and the Scottish Funding Council, HR03006.

The UK Biobank study was established by the Wellcome Trust medical charity, Medical Research Council, Department of Health, Scottish Government and the Northwest Regional Development Agency. It has also had funding from the Welsh Assembly Government, British Heart Foundation and Diabetes UK. The UK Biobank Eye and Vision Consortium was supported by grants from UK NIHR (BRC3_026), Moorfields Eye Charity (ST 15 11 E), Fight for Sight (1507/1508), The Macular Society, The International Glaucoma Association (IGA, Ashford UK) and Alcon Research Institute.

Acknowledgements

This research has been conducted using the UK Biobank Resource under application n° 37502 formely 8842. We specially thank Mrs Lorraine Gillions for her help in the resource access process.

The work in this paper uses data provided by patients and collected by the NHS as part of their care and support.

Genotyping of the GS:SFHS DNA and Scottish RRD samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research Facility, University of Edinburgh. Genotyping of ~1200 RRD participants recruited in Moorfields was performed at the Human Genomics Facility (HuGe-F) at Erasmus MC (www.glimdna.org). We are grateful to Prof André Uitterlinden, Dr Joyce van Meurs,
Dr Fernando Rivadeneira, Dr Linda Broer and Mila Jhamai for coordinating the GSA
genotyping effort. The authors would like to thank the Rivas lab for making the
Global Biobank Engine resource available and the Tenesa group for the
GeneATLAS. In addition, we thank the research participants of 23andMe for their
contribution to this study and the following members of the 23andMe Research
Team: Michelle Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc,
Sarah L. Elson, Pierre Fontanillas, Nicholas A. Furlotte, Barry Hicks, Karen E. Huber,
Ethan M. Jewett, Yunxuan Jiang, Aaron Kleinman, Keng-Han Lin, Nadia K.
Litterman, Matthew H. McIntyre, Kimberly F. McManus, Joanna L. Mountain,
Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, G. David Poznik, J. Fah
Sathirapongsasuti, Janie F. Shelton, Suyash Shringarpure, Chao Tian, Joyce Y.
Tung, Vladimir Vacic, Xin Wang, Catherine H. Wilson. Finally, we would like to
express our gratitude to Jonathan Marten for providing the plotting scripts for the
genetic risk scores, Dr Amy Findlay for pointing out relevant past publications on
albino mice and Dr Shona Kerr, “QTL in Health and Disease” programme project
manager, for critical reading of the manuscript.

Data availability: Summary GWAS statistics for the retinal detachment GWAMA
presented here are available from the University of Edinburgh Digital Repository
DataShare: (https://datashare.is.ed.ac.uk/handle/10283/3511); summary GWAS
statistics for individual UK-Biobank trait (high myopia, cataract operation and RD-SR-
ICD) are returned to the UK-Biobank.
Web Resources

URLs. UK Biobank Access Management System, http://www.ukbiobank.ac.uk/register-apply/; HRC variants, http://www.haplotype-reference-consortium.org/site; LocusZoom: http://locuszoom.sph.umich.edu/;
NHGRI-EBI catalog of published genome-wide association studies, http://www.ebi.ac.uk/gwas/; Phenoscaner, http://www.phenoscaner.medschl.cam.ac.uk/phenoscaner; LDSC, https://github.com/bulik/lodsc; BOLT, https://data.broadinstitute.org/alkesgroup/BOLT-LMM/; FUMA, http://fuma.ctglab.nl/; GCTA, https://cnsgenomics.com/software/gcta/; gtx, https://github.com/tobyjohnson/gtx; Haploreg, http://archive.broadinstitute.org/mammals/haploreg/haploreg.php; LD calculation tool, https://www.ensembl.org/Homo_sapiens/Tools/LD/, CADD pre-calculated scores, http://cadd.gs.washington.edu/; GTEx portal, https://gtexportal.org/home/
References

1 Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M. et al. (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PloS Med*, 12, e1001779.

2 Feltgen, N. and Walter, P. (2014) Rhegmatogenous retinal detachment—an ophthalmologic emergency. *Dtsch Arztebl Int*, 111, 12-21; quiz 22.

3 Mitry, D., Charteris, D.G., Yorston, D., Siddiqui, M.A., Campbell, H., Murphy, A.L., Fleck, B.W., Wright, A.F., Singh, J. and Scottish, R.D.S.G. (2010) The epidemiology and socioeconomic associations of retinal detachment in Scotland: a two-year prospective population-based study. *Invest Ophthalmol Vis Sci*, 51, 4963-4968.

4 Mitry, D., Charteris, D.G., Fleck, B.W., Campbell, H. and Singh, J. (2010) The epidemiology of rhegmatogenous retinal detachment: geographical variation and clinical associations. *Br J Ophthalmol*, 94, 678-684.

5 Lumi, X., Hawlina, M., Glavac, D., Facsko, A., Moe, M.C., Kaarniranta, K. and Petrovski, G. (2015) Ageing of the vitreous: From acute onset floaters and flashes to retinal detachment. *Ageing Res Rev*, 21, 71-77.

6 Banker, A.S. and Freeman, W.R. (2001) Retinal detachment. *Ophthalmol Clin North Am*, 14, 695-704.

7 Byer, N.E. (1979) Lattice degeneration of the retina. *Surv Ophthalmol*, 23, 213-248.

8 Mitry, D., Singh, J., Yorston, D., Siddiqui, M.A., Wright, A., Fleck, B.W., Campbell, H. and Charteris, D.G. (2011) The predisposing pathology and clinical characteristics in the Scottish retinal detachment study. *Ophthalmology*, 118, 1429-1434.

9 Van de Put, M.A., Hooymans, J.M., Los, I.L. and Dutch Rhegmatogenous Retinal Detachment Study, G. (2013) The incidence of rhegmatogenous retinal detachment in The Netherlands. *Ophthalmology*, 120, 616-622.

10 Akira Haga, T.K., Takayuki Tsutsumi, Ryuichi Ideta, Hidenobu Tanihara. (2017) The incidence of Rhegmatogenous retinal detachment in Kumamoto, Japan, between 2009 and 2011. *Journal of clinical and experimental ophthalmology*, 8, 1-6.

11 Daien, V., Le Pape, A., Heve, D., Carriere, I. and Villain, M. (2015) Incidence, Risk Factors, and Impact of Age on Retinal Detachment after Cataract Surgery in France: A National Population Study. *Ophthalmology*, 122, 2179-2185.

12 Go, S.L., Hoyng, C.B. and Klaver, C.C. (2005) Genetic risk of rhegmatogenous retinal detachment: a familial aggregation study. *Arch Ophthalmol*, 123, 1237-1241.

13 Mitry, D., Williams, L., Charteris, D.G., Fleck, B.W., Wright, A.F. and Campbell, H. (2011) Population-based estimate of the sibling recurrence risk ratio for rhegmatogenous retinal detachment. *Invest Ophthalmol Vis Sci*, 52, 2551-2555.

14 Edwards, A.O. (2008) Clinical features of the congenital vitreoretinopathies. *Eye (Lond)*, 22, 1233-1242.

15 Johnston, T., Chandra, A. and Hewitt, A.W. (2016) Current Understanding of the Genetic Architecture of Rhegmatogenous Retinal Detachment. *Ophthalmic Genet*, 37, 121-129.

16 Kirin, M., Chandra, A., Charteris, D.G., Hayward, C., Campbell, S., Celap, I., Bencic, G., Vatavuk, Z., Kirac, I., Richards, A.J. et al. (2013) Genome-wide association study identifies genetic risk underlying primary rhegmatogenous retinal detachment. *Hum Mol Genet*, 22, 3174-3185.

17 Go, S.L., Mauger, A., Mulder, J.J., van Driel, M.A., Cremers, F.P. and Hoyng, C.B. (2003) Autosomal dominant rhegmatogenous retinal detachment associated with an Arg453Ter mutation in the COL2A1 gene. *Invest Ophthalmol Vis Sci*, 44, 4035-4043.

18 Richards, A.J., Meredith, S., Poulson, A., Bearcroft, P., Crossland, G., Baguley, D.M., Scott, J.D. and Snead, M.P. (2005) A novel mutation of COL2A1 resulting in dominantly inherited rhegmatogenous retinal detachment. *Invest Ophthalmol Vis Sci*, 46, 663-668.
19 Spickett, C., Hysi, P., Hammond, C.J., Prescott, A., Fincham, G.S., Poulsen, A.V., McNinch, A.M., Richards, A.J. and Snead, M.P. (2016) Deep Intronic Sequence Variants in COL2A1 Affect the Alternative Splicing Efficiency of Exon 2, and May Confer a Risk for Rhegmatogenous Retinal Detachment. *Hum Mutat*, 37, 1085-1096.
20 Algvere, P.V., Jahnberg, P. and Textorius, O. (1999) The Swedish Retinal Detachment Register. I. A database for epidemiological and clinical studies. *Graefes Arch Clin Exp Ophthalmol*, 237, 137-144.
21 Tornquist, R., Stenkula, S. and Tornquist, P. (1987) Retinal detachment. A study of a population-based patient material in Sweden 1971-1981. I. Epidemiology. *Acta Ophthalmol (Copenh)*, 65, 213-222.
22 Cumberland, P.M., Chianca, A. and Rahi, J.S. (2016) Accuracy and Utility of Self-report of Refractive Error. *JAMA Ophthalmol*, 134, 794-801.
23 Burton, T.C. (1989) The influence of refractive error and lattice degeneration on the incidence of retinal detachment. *Trans Am Ophthalmol Soc*, 87, 143-155; discussion 155-147.
24 Staley, J.R., Blackshaw, J., Kamat, M.A., Ellis, S., Surendran, P., Sun, B.B., Paul, D.S., Freitag, D., Burgess, S., Danesh, J. *et al.* (2016) PhenoScanner: a database of human genotype-phenotype associations. *Bioinformatics*, 32, 3207-3209.
25 Kim, S.K. (2018) Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. *PLoS One*, 13, e0200785.
26 Eriksson, N., Macpherson, J.M., Tung, J.Y., Hon, L.S., Naughton, B., Saxonov, S., Avey, L., Wojcicki, A., Pe’er, I. and Mountain, J. (2010) Web-based, participant-driven studies yield novel genetic associations for common traits. *PloS Genet*, 6, e1000993.
27 Kiefer, A.K., Tung, J.Y., Do, C.B., Hinds, D.A., Mountain, J.L., Francke, U. and Eriksson, N. (2013) Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. *PloS Genet*, 9, e1003299.
28 Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Patterson, N., Daly, M.J., Price, A.L. and Neale, B.M. (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat Genet*, 47, 291-295.
29 Ma, C., Blackwell, T., Boehnke, M. and Scott, L.J. (2013) Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. *Genet Epidemiol*, 37, 539-550.
30 Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.R., Duncan, L., Perry, J.R., Patterson, N., Robinson, E.B. *et al.* (2015) An atlas of genetic correlations across human diseases and traits. *Nat Genet*, 47, 1236-1241.
31 Tedja, M.S., Wojciechowski, R., Hysi, P.G., Eriksson, N., Furlotte, N.A., Verhoeven, V.J.M., Iglesias, A.I., Meester-Smook, M.A., Tompson, S.W., Fan, Q. *et al.* (2018) Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. *Nature Genetics*, 50, 834-+
32 Shriver, M.D., Parra, E.J., Dios, S., Bonilla, C., Norton, H., Jovel, C., Pfaff, C., Jones, C., Massac, A., Cameron, N. *et al.* (2003) Skin pigmentation, biogeographical ancestry and admixture mapping. *Hum Genet*, 112, 387-399.
33 Sulem, P., Gudbjartsson, D.F., Stacey, S.N., Helgason, A., Rafnar, T., Magnusson, K.P., Manolescu, A., Karason, A., Palsson, A., Thorleifsson, G. *et al.* (2007) Genetic determinants of hair, eye and skin pigmentation in Europeans. *Nat Genet*, 39, 1443-1452.
34 Watanabe, K., Taskesen, E., van Bochoven, A. and Posthuma, D. (2017) Functional mapping and annotation of genetic associations with FUMA. *Nat Commun*, 8, 1826.
35 Yang, J., Lee, S.H., Goddard, M.E. and Visscher, P.M. (2011) GCTA: a tool for genome-wide complex trait analysis. *Am J Hum Genet*, 88, 76-82.
36 Mahajan, A., Taluun, D., Thurner, M., Robertson, N.R., Torres, J.M., Rayner, N.W., Payne, A.J., Steinhorsdottir, V., Scott, R.A., Grarup, N. *et al.* (2018) Fine-mapping type 2 diabetes loci to single-
variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet, 50, 1505-1513.

37 Benner, C., Spencer, C.C., Havulinna, A.S., Salomaa, V., Ripatti, S. and Pirinen, M. (2016) FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics, 32, 1493-1501.

38 Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet, 46, 310-315.

39 Zengini, E., Hatzikotoula, K., Tachmazidou, I., Steinberg, J., Hartwig, F.P., Southam, L., Hackinger, S., Boer, C.G., Styrkarsdottir, U., Gilly, A. et al. (2018) Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet, in press.

40 Wojciechowski, R. and Hysi, P.G. (2013) Focusing in on the complex genetics of myopia. PLoS Genet, 9, e1003442.

41 Cortes, A., Dendrou, C.A., Motyer, A., Jostins, L., Vukcevic, D., Dilthey, A., Donnelly, P., Leslie, S., Fugger, L. and McVean, G. (2017) Bayesian association for biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet, 49, 1311-1318.

42 Ioannidis, J.P., Ntzani, E.E., Trikalinos, T.A. and Contopoulos-Ioannides, D.G. (2001) Replication validity of genetic association studies. Nat Genet, 29, 306-309.

43 Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A.P. and Price, A.L. (2018) Mixed model association for biobank-scale data sets. bioRxiv, in press.

44 Ivanisevic, M., Bojic, L. and Eterovic, D. (2000) Epidemiological study of nontraumatic phakic rhegmatogenous retinal detachment. Ophthal Res, 32, 237-239.

45 Takano, M. and Kishi, S. (1999) Foveal retinoschisis and retinal detachment in severely myopic eyes with posterior staphyloma. Am J Ophthalmol, 128, 472-476.

46 Jonas, J.B. and Xu, L. (2014) Histological changes of high axial myopia. Eye (Lond), 28, 113-117.

47 Saw, S.M., Gazzard, G., Shih-Yen, E.C. and Chua, W.H. (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt, 25, 381-391.

48 Ratiglia, R., Osnaghi, S., Bindella, A. and Pirondini, C. (2005) Posterior traction retinal detachment in highly myopic eyes: Clinical features and surgical outcome as evaluated by optical coherence tomography. Retina-J Ret Vit Dis, 25, 473-478.

49 Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., Wong, T.Y., Naduvilath, T.J. and Resnikoff, S. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042.

50 Cheng, C.Y., Schache, M., Ikram, M.K., Young, T.L., Guggenheim, J.A., Vitart, V., MacGregor, S., Verhoeven, V.J.M., Barathi, V.A., Liao, J.M. et al. (2013) Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error. American Journal of Human Genetics, 93, 264-277.

51 Li, Y.T., Xie, M.K. and Wu, J. (2016) Association between Ocular Axial Length-Related Genes and High Myopia in a Han Chinese Population. Ophthalmologica, 235, 57-60.

52 Krol, A., Henle, S.J. and Goodrich, L.V. (2016) Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina. Development, 143, 2172-2182.

53 Koch, M., Schulze, J., Hansen, U., Ashwodt, T., Keene, D.R., Brunken, W.J., Burgeson, R.E., Bruckner, P. and Bruckner-Tuderman, L. (2004) A novel marker of tissue junctions, collagen XXII. J Biol Chem, 279, 22514-22521.

54 Charvet, B., Guiraud, A., Malbouyres, M., Zwolanek, D., Guillou, E., Bretaud, S., Monnot, C., Schulze, J., Bader, H.L., Allard, B. et al. (2013) Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development, 140, 4602-4613.

55 Gao, X.R., Huang, H. and Kim, H. (2019) Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort. Hum Mol Genet, 28, 1162-1172.
Mansour, A.M., Chhablani, J., Arevalo, J.F., Wu, L., Sharma, R., Sinawat, S., Sujirakul, T., Assi, A., Velez-Vazquez, W.M., Mansour, M.A. et al. (2018) Retinal detachment in albinism. *Clin Ophthalmol, 12*, 651-656.

Beermann, F., Orlow, S.J. and Lamoreux, M.L. (2004) The Tyr (albino) locus of the laboratory mouse. *Mamm Genome, 15*, 749-758.

Iwai-Takekoshi, L., Ramos, A., Schaler, A., Weinreb, S., Blazeski, R. and Mason, C. (2016) Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. *J Comp Neurol, 524*, 3696-3716.

Springelkamp, H., Hohn, R., Mishra, A., Hysi, P.G., Khor, C.C., Loomis, S.J., Bailey, J.N.C., Gibson, J., Thorleifsson, G., Janssen, S.F. et al. (2014) Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. *Nature Communications, 5*.

Choquet, H., Paylakhi, S., Kneeland, S.C., Thai, K.K., Hoffmann, T.J., Yin, J., Kvale, M.N., Banda, Y., Tolman, N.G., Williams, P.A. et al. (2018) A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. *Nature Communications, 9*.

Khawaja, A.P., Bailey, J.N.C., Wareham, N.J., Scott, R.A., Simcoe, M., Igo, R.P., Song, Y.E., Wojciechowski, R., Cheng, C.Y., Khaw, P.T. et al. (2018) Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. *Nature Genetics, 50*, 778-+.

Zhang, C.L., Zou, Y.H., Yu, R.T., Gage, F.H. and Evans, R.M. (2006) Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1. *Gene Dev, 20*, 1308-1320.

Devlin, B. and Roeder, K. (1999) Genomic control for association studies. *Biometrics, 55*, 997-1004.

Wakefield, J. (2007) A Bayesian measure of the probability of false discovery in genetic epidemiology studies. *Am J Hum Genet, 81*, 208-227.

Lee, S.H., Wray, N.R., Goddard, M.E. and Visscher, P.M. (2011) Estimating missing heritability for disease from genome-wide association studies. *Am J Hum Genet, 88*, 294-305.

Gu, Z., Gu, L., Eils, R., Schlesner, M. and Brors, B. (2014) circlize implements and enhances circular visualization in R. *Bioinformatics, 30*, 2811-2812.
Legends to Figures

Fig 1. Distribution of “retinal detachments and breaks” ICD10 code H33 subtypes amongst UK-Biobank participants. H33 encompasses subclasses H33.0 (retinal detachment with retinal break), H33.1 (retinoschisis and retinal cysts), H33.2 (serous retinal detachment), H33.3 (retinal breaks without detachment), H33.4 (traction detachment of the retina) and H33.5 (other retinal detachments). The numbers represent the UK Biobank participants (no filtering-all ethnicities included) associated with each code; as only overlap between two codes can be represented, individuals linked to more than 2 codes are counted several times. The plot was drawn with the R package circlize v0.4.3(73).
Fig 2. Regional association plots at the three genome-wide significant loci in the primary UK Biobank retinal detachment analysis across different case definitions. The y axis represents the negative logarithm (base 10) of association P-value and the x axis the position on the chromosome. The lead variants from the RD-SR-ICD discovery study (A - Ncases=3977) are marked by a purple diamond. The colours of the other variants reflect LD strength (r^2) with the lead variant at each locus. (B): results at the same loci when cases linked to ICD10 codes H33.1 and H33.3 are omitted (Ncases=2893). (C): results when cases are restricted to participants with H33.0 code (Ncases=1380).
Fig 3. Myopia genetic risk score effect on retinal detachment risk using UK Biobank RD-SR-ICD cases or clinically ascertained RRD cases. The effects of consecutive myopia genetic risk score (GRS) quintile on retinal detachment (RD-SR-ICD) risk in UK Biobank and on Rhegmatogenous RD (RRD) risk in the aggregated clinically ascertained sets are displayed in black and grey bars respectively. Quintiles were calculated using N=408972 UK-Biobank participants of white-British ancestry. Odds-ratio for detachment, plotted along the y axis, uses odd in the first quintile as the reference. GRS boundaries for each quintile are given SFig6. Error bars denote the odds ratio 95% confidence interval.
Fig 4. Manhattan plot following meta-analysis of genome-wide association studies using UK Biobank cases (RD-SR-ICD, N=3977) and clinically ascertained RRD cases (N=2164). The y axis represents the negative logarithm (base 10) of the meta-analysis P-values and the x axis the location of variants tested. Loci displaying association reaching the genome-wide significant threshold (red line, \(P < 5 \times 10^{-8} \)) are indicated in red, with lead variant (lowest P-value within a locus) indicated in green. Suggestive level of significance (\(P < 10^{-5} \)) is indicated by a blue line.
Table 1. Self-reported features in self-reported retinal detachment cases and controls in UK Biobank (all ethnicities).

	RD-SR N=1754	RD-SRwithOP N=1391	Controls N=457255
% female (ratio female/male)	40.94%** (718/1036=0.69)	39.76%** (553/838=0.66)	54.84% (250773/206482=1.2)
Year of birth [med;min-max]	1947;1937-1969	1947;1937-1969	1951;1934-1971
	Male	Female	
Cataract N (%)	533 (30.39%)**	449 (32.28%)**	6856 (1.50%)
% amongst Female/Male	29.67%**/30.88%**	32.55%**/32.10%**	1.62%/1.36%
Cataract op N (%)	456 (26.00%)**	383 (27.53%)**	4291 (0.94%)
% amongst Female/Male	25.49%**/26.35%**	27.31%**/27.68%**	0.89%/1.00%
Eye trauma N (%)	25 (1.43%)*	21 (1.51%)*	553 (0.12%)
% amongst Female/Male	0.56%*/2.03%**	0.54%*/2.15%**	0.06%/0.19%
T2D N (%)	24 (1.37%)*	23 (1.65%)*	3302 (0.72%)
% amongst Female/Male	0.97%NS/1.74%*	1.27%*/1.91%**	0.51%/0.97%
T1D N (%)	6 (0.34%)*	6 (0.43%)*	404 (0.09%)
% amongst Female/Male	0.42%*/0.29%NS	0.54%*/0.36%*	0.08%/0.10%
Diabetic-eye disease N (%)	7 (0.40%) NS	6 (0.43%)NS	1063 (0.23%)
% amongst Female/Male	0.14%NS/0.58%NS	0.18%NS/0.60%NS	0.16%/0.32%
Glaucoma N (%)	126 (7.18%)*	105 (7.55%)*	4771 (1.04%)
% amongst Female/Male	6.41%*/7.72%**	6.51%*/8.23%**	0.91%/1.21%
Macular degeneration N (%)	9 (0.51%)*	5 (0.36%)*	348 (0.08%)
% amongst Female/Male	0.84%*/0.29%**	0.72%*/0.12%NS	0.09%/0.06%
age at first use of corrective lens for myopia [med; min-max]	12; 1-55	12; 1-50	17; 1-68

RD-SR are UK Biobank participants who self-reported a retinal detachment, RD-SRwithOP additionally self-reported to have undergone a retinal operation. Controls are described in Supplementary Note 2. ** and * denotes significant difference compared to control proportion based on a two sided proportion z test at respectively 1% and 5% threshold; NS not significant difference. Med: median, Min: minimum, Max:Maximum, Op:operation.
Table 2. Look-up of retinal detachment GWAMA associations in the 23andMe dataset

SNP	Locus	EA	ALT	EAF	OR[CI]	P	OR[CI]	P
rs4373767	5' ZC3H11B	T	C	0.63	1.128 [1.086-1.171]	1.30E-09	1.045 [1.014-1.077]	4.03x10^{-3}
rs74764079	BMP3	T	A	0.97	0.717 [0.642-0.802]	1.20E-11	0.825 [0.755-0.901]	3.02x10^{-5}
rs11992725	COL22A1	G	A	0.32	1.125 [1.082-1.170]	2.10E-09	1.110 [1.076-1.146]	7.05x10^{-11}
rs1248634	DLG5	G	A	0.71	0.888 [0.854-0.942]	3.67E-09	0.974 [0.942-1.007]	0.122
rs11187838	PLCE1	G	A	0.57	0.894 [0.861-0.928]	3.64E-09	0.9397 [0.912-0.968]	4.51x10^{-5}
rs7940691	5' EFEMP2	T	C	0.36	1.113 [1.072-1.155]	3.50E-08	1.005 [0.974-1.037]	0.766
rs1042602	TYR	C	A	0.63	0.888 [0.856-0.922]	1.01E-09	0.9499 [0.921-0.9798]	1.17x10^{-3}
rs10765567	FAT3	T	A	0.37	0.841 [0.810-0.873]	3.13E-18	0.874 [0.847-0.901]	1.64x10^{-17}
rs11217712	TRIM29-—OAF	T	G	0.31	0.892 [0.857-0.927]	2.65E-08	0.970 [0.939-1.002]	6.73x10^{-2}
rs9651980	5' COL2A1	T	C	0.087	1.188 [1.114-1.267]	4.72E-08	1.052 [0.997-1.110]	6.01x10^{-2}
rs4243042	LOXL1	T	A	0.47	0.889 [0.854-0.925]	3.33E-08	0.990 [0.961-1.020]	0.519

EA is the allele on the plus strand for which the effect is reported, ALT the alternate allele, EAF is the effect allele (EA) frequency in the meta-analysis. Effects obtained from linear mixed models (RD GWAMA) or logistic regression (23andMe) are reported as odds ratio (OR) for retinal detachment and P is the pvalue. CI: 95% confidence interval. In bold, significant replication.