Comparing spectral densities of stationary time series with unequal sample sizes

Philip Preuß and Thimo Hildebrandt

Fakultät für Mathematik
Ruhr-Universität Bochum, Germany

May 2, 2014

Abstract

This paper deals with the comparison of several stationary processes with unequal sample sizes. We provide a
detailed theoretical framework on the testing problem for equality of spectral densities in the bivariate case, after
which the generalization of our approach to the \( m \) dimensional case and to other statistical applications (like testing
for zero correlation or clustering of time series data with different length) is straightforward. We prove asymptotic
normality of an appropriately standardized version of the test statistic both under the null and the alternative and
investigate the finite sample properties of our method in a simulation study. Furthermore we apply our approach to
cluster financial time series data with different sample length.

AMS subject classification: 62M10, 62M15, 62G10

Keywords and phrases: spectral density, integrated periodogram, cluster analysis, time series, stationary process, unequal
length

1 Introduction

The comparison and clustering of different time series is an important topic in statistical data analysis and has various
applications in fields like economics, marketing, medicine and physics, among many others. Examples are the grouping
of stocks in several categories for portfolio selection in finance or the identification of similar birth and death rates
in population studies. One approach to identify similarities or dissimilarities between two stationary processes is to

\footnote{Address for correspondence: Philip Preuß, Ruhr-Universität Bochum, Fakultät für Mathematik, NA 3/30, Universitätsstr. 150, D-44780
Bochum, Germany, email: philip.preuss@rub.de, Fon: +49/234/32-23289, Fax: +49/551/32-14559}
compare the spectral densities of both time series, which directly yields to the testing problem for equality of spectral
densities in multivariate time series data. This problem has found considerable interest in the literature [see for example
Jenkins (1961) or De Souza and Thomson (1982) for some early results], but in the nonparametric situation nearly all
proposed procedures are only reasoned by simulation studies or heuristic proofs, see Coates and Diggle (1986), Pötscher
and Reschenhofer (1988), Diggle and Fisher (1991) and Maharaj (2002) among many others. Most recently Eichler (2008),
Dette and Paparoditis (2009), Dette et al. (2011), Jentsch and Pauly (2011) and Dette and Hildebrandt (2011) provided
mathematical details for the above testing problem using different $L_2$-type statistics, but nevertheless in all mentioned
articles it is always required that the different time series have the same length, which is typically not the case in practice.
Caiado and Pena (2009) considered different metrics for the comparison of time series with unequal sample sizes in a
simulation study and Jentsch and Pauly (2012) provided a theoretical result, which however does not yield a consistent
test as it was also pointed out by the authors.

This paper generalizes the approach of Dette et al. (2011) to the case of unequal sample sizes and yields a consistent test
for the equalness of spectral densities for time series with different length. Although the limiting distribution will be the
same as in Dette et al. (2011) note that our proof is completely different. This is due to the fact that one essential part in
the proofs of Dette et al. (2011) is that the different processes have the same Fourier coefficients which is not given if the
observed time series have different sample sizes. For the sake of brevity we will focus on the case of two (not necessarily
independent) stationary processes, but the results can be easily extended to the case of an $m$ dimensional process.

Our aim throughout this paper is to estimate the $L_2$-distance
\[ D^2 := \frac{1}{4\pi} \int_{-\pi}^{\pi} (f_{11}(\lambda) - f_{22}(\lambda))^2 d\lambda, \]
where $f_{11}(\lambda)$ and $f_{22}(\lambda)$ are the spectral densities of the first and the second process respectively. Under the null hypothesis
\[ H_0 : f_{11}(\lambda) = f_{22}(\lambda) \quad (1.1) \]
the distance $D^2$ equals zero while it is strictly positive if $f_{11}(\lambda) \neq f_{22}(\lambda)$ for $\lambda \in A$, where $A$ is a subset of $[-\pi, \pi]$ with positive Lebesgue measure. We will estimate $D^2$ by sums of the (squared) periodogram, where the sum goes over
the Fourier coefficients of the smaller time series. Asymptotic normality both under the null and the alternative will be
derived and since the variance terms can be easily estimated also under the alternative, asymptotic confidence intervals
and a precise hypothesis test can be constructed next to the test for (1.1) [see Remark 2.2]. Furthermore our approach
has much wider application like testing for zero correlation, discriminant analysis or clustering of time series with unequal
length [see Remark 2.3–2.4], and a simulation study will indicate that some of our assumptions are in fact not necessary (for example our method seems to work also for Long Memory processes).

2 The test statistic

Let $n_1, n_2 \in \mathbb{N}$ with $n_1 \leq n_2$ and consider the two stationary time series

\[ X_t^{(1)} = \sum_{l=-\infty}^{\infty} \psi_l^{(1)} Z_{t-l}^{(1)} \quad t = 1, \ldots, n_1 \]
\[ X_t^{(2)} = \sum_{l=-\infty}^{\infty} \psi_l^{(2)} Z_{t-l}^{(2)} \quad t = 1, \ldots, n_2 \] (2.1)

where the $Z_t^{(j)}$ are independent and identically standard normal distributed for $j = 1, 2$ and

\[ \mathbb{E}(Z_{t_1}^{(1)} Z_{t_2}^{(2)}) = \begin{cases} \rho & \text{if } t_2 = \lfloor t_1 q_{n_1, n_2} \rfloor - \lfloor q_{n_1, n_2} - 1 \rfloor \\ 0 & \text{else} \end{cases} \] (2.2)

where $q_{n_1, n_2} = \frac{n_2}{n_1}$ and $\rho \in [0, 1]$. This roughly speaking means that changes in the time series with less observations influence the more frequently observed series but not vice versa, which is for example the case if interest rates and stock returns are compared. Throughout the paper we also assume that the technical condition

\[ \sum_{l=-\infty}^{\infty} \psi_l^{(j)} |l|^\alpha < \infty \] (2.3)

is satisfied for an $\alpha > 1/2$ ($j = 1, 2$). Note that the assumption of Gaussianity is only imposed to simplify technical arguments [see Remark 2.5]. Furthermore innovations with variances different to 1 can be included by choosing other coefficients $\psi_l^{(j)}$. We define the spectral densities $f_{ij}(\lambda)$ ($i, j = 1, 2$) through

\[ f_{jj}(\lambda) := \frac{1}{2\pi} \left| \sum_{l=-\infty}^{\infty} \psi_l^{(j)} \exp(-i\lambda l) \right|^2, \quad f_{12}(\lambda) := \frac{\rho}{2\pi} \sum_{l,m=-\infty}^{\infty} \psi_l^{(1)} \psi_m^{(2)} \exp(-i\lambda(l-m)) = f_{21}(\lambda). \]

An unbiased (but not consistent) estimator for $f_{jj}(\lambda)$ is given by the periodogram

\[ I_j(\lambda) := \frac{1}{2\pi n_j} \sum_{t=1}^{n_j} X_t^{(j)} \exp(-i\lambda t) \] (2.4)

and although the periodogram does not estimate the spectral density consistently, a Riemann-sum over the Fourier coefficients of an exponentiated periodogram is (up to a constant) a consistent estimator for the corresponding integral over the exponentiated spectral density. For example, Theorem 2.1 in Dette et al. (2011) yields

\[ \hat{D}_{1,n_1} := \frac{1}{n_1} \sum_{k=1}^{n_1} f_1^2(\lambda_{1,k}) \xrightarrow{P} \frac{1}{2\pi} \int_{-\pi}^{\pi} f_1^2(\lambda) d\lambda =: D_1 \] (2.5)
where $\lambda_{1,k} := \frac{2\pi k}{n_1}$ $(k = 1, \ldots, \lfloor \frac{n_1}{2} \rfloor)$ are the Fourier coefficients of the smaller time series $X_t^{(1)}$. If we can show that

$$\hat{D}_{2,n_1} := \frac{1}{n_1} \sum_{k=1}^{\lfloor n_1/2 \rfloor} I_1^2(\lambda_{1,k}) \xrightarrow{D} \frac{1}{2\pi} \int_{-\pi}^{\pi} f_{22}^2(\lambda) d\lambda =: D_2,$$

(2.6)

we can construct an consistent estimator for $D^2$ through $\hat{D}_{2,n_1} := \frac{1}{2}(\hat{D}_{1,n_1} + \hat{D}_{2,n_1}) - 2\hat{D}_{12,n_1}$. Although (2.6) looks very much like (2.5), note that the convergence in (2.6) is different since the coefficients $\lambda_{1,k}$ are not necessarily the Fourier coefficients of the time series $X_t^{(2)}$. This implies that the proof of (2.6) has to be done in a completely different way than the proof of (2.5) in [Dette et al. (2011)]. We now obtain the following main theorem.

**Theorem 2.1** If $f_{11}(\lambda)$, $f_{22}(\lambda)$ and $f_{12}(\lambda)$ are Hölder continuous of order $L > 1/2$ and

$$\frac{n_2}{n_1} \rightarrow Q$$

for a $Q \in \mathbb{R}$, then as $n_1 \rightarrow \infty$

$$\sqrt{n_1} \left( \hat{D}_{1,n_1} - D_1, \hat{D}_{12,n_1} - D_{12}, \hat{D}_{2,n_1} - D_2 \right)^T \xrightarrow{D} N(0, (\Sigma_{ij})_{i,j=1}^{3})$$

with

$$\Sigma_{11} = 5 \int_{-\pi}^{\pi} f_{11}^4(\lambda) d\lambda, \quad \Sigma_{12} = \int_{-\pi}^{\pi} f_{11}^3(\lambda)f_{22}(\lambda) d\lambda + \int_{-\pi}^{\pi} f_{11}^2(\lambda)|f_{12}(\lambda)|^2 d\lambda,$$

$$\Sigma_{13} = \int_{-\pi}^{\pi} f_{12}^2(\lambda)f_{12}^2(\lambda) + 4 \int_{-\pi}^{\pi} f_{11}(\lambda)|f_{12}(\lambda)|f_{22}(\lambda) d\lambda, \quad \Sigma_{22} = 3 \int_{-\pi}^{\pi} f_{11}^2(\lambda)f_{22}^2(\lambda) d\lambda + \frac{1}{2} \int_{-\pi}^{\pi} f_{11}(\lambda)|f_{12}(\lambda)|f_{22}(\lambda) d\lambda,$$

$$\Sigma_{23} = \int_{-\pi}^{\pi} f_{11}(\lambda)f_{22}^2(\lambda) d\lambda + \int_{-\pi}^{\pi} f_{22}^2(\lambda)|f_{12}(\lambda)|^2 d\lambda, \quad \Sigma_{33} = 5 \int_{-\pi}^{\pi} f_{22}^4(\lambda) d\lambda.$$
and analogous to the proof of Theorem 2.1 it can be shown that
\[
\hat{\sigma}^2_{H_0} := \frac{1}{4n_1} \sum_{k=1}^{\left\lceil n_1/2 \right\rceil} \left( I_{11}(\lambda_{1,k}) + I_{22}(\lambda_{1,k}) \right) + \text{Re} \left( \frac{1}{2n_1} \sum_{k=1}^{\left\lfloor n_1/2 \right\rfloor} I_{12}^2(\lambda_{1,k}) I_{21}^2(\lambda_{1,k}) \right) \overset{P}{\rightarrow} \sigma^2_{H_0}.
\]
Therefore an asymptotic niveau-\(\alpha\)-test for (1.1) is given by: reject (1.1) if
\[
\sqrt{n_1} \frac{\hat{D}^2_{n_1}}{\hat{\sigma}^2_{H_0}} > u_{1-\alpha},
\]
where \(u_{1-\alpha}\) denotes the \((1 - \alpha)\) quantile of the standard normal distribution. This test has asymptotic power
\[
\Phi \left( \sqrt{n_1} \frac{\hat{D}^2_{n_1}}{\sigma} - \sqrt{\frac{\hat{\sigma}^2_{H_0}}{\sigma}} u_{1-\alpha} \right)
\]
where \(\Phi\) is the distribution function of the standard normal distribution. This yields that the test (2.9) has asymptotic power one for all alternatives with \(D^2 > 0\).

**Remark 2.2**

It is straightforward to construct an estimator \(\hat{\sigma}^2\), which converges to the variance \(\sigma^2\) also under the alternative. This enables us to construct asymptotic \((1 - \alpha)\) confidence intervals for \(D^2\). The same statement holds, if we consider the normalized measure \(R^2 := \frac{2D^2}{D_1 + D_2}\), which can be estimated by \(\hat{R}^2_{n_1} := \frac{2\hat{\sigma}^2_{n_1}}{\hat{D}_{1,n_1} + \hat{D}_{2,n_1}}\).

From Theorem 2.1 and a straightforward application of the delta method, it follows that
\[
\sqrt{n_1}(\hat{R}^2_{n_1} - R^2) \overset{D}{\rightarrow} N(0, \sigma^2_{I^2}),
\]  
(2.10)
where \(\sigma^2_{I^2}\) can be easily calculated. By considering a consistent estimator \(\hat{\sigma}^2_{I^2}\) for \(\sigma^2_{I^2}\) (which can be constructed through the corresponding Riemann sums of the periodogram), (2.10) provides an asymptotic level \(\alpha\) test for the so called precise hypothesis
\[
H_0 : R^2 > \varepsilon \quad \text{versus} \quad H_1 : R^2 \leq \varepsilon,
\]
(2.11)
where \(\varepsilon > 0\) [see Berger and Delampady (1987)]. This hypothesis is of interest, because spectral densities of time series in real-world applications are usually never exactly equal and a more realistic question is then to ask, if the processes have approximately the same spectral measure. An asymptotic level \(\alpha\) test for (2.11) is obtained by rejecting the null hypothesis, whenever \(\hat{R}^2_{n_1} - \varepsilon < \frac{\hat{\sigma}^2_{I^2}}{\sqrt{n_1}} u_{1-\alpha}\).

**Remark 2.3**

Theorem 2.1 can also be employed for a cluster and a discriminant analysis of time series data with different length, since
it yields an estimator for the distance measure \(d(f_{11}, f_{22})\), where

\[
d(f, g) = \left(1 - \frac{2 \int_{-\pi}^{\pi} f(\lambda)g(\lambda)d\lambda}{\int_{-\pi}^{\pi} f^2(\lambda)d\lambda + \int_{-\pi}^{\pi} g^2(\lambda)d\lambda}\right)^{1/2},
\]

which can take values between 0 and 1. A value close to 0 indicates some kind of similarities between two processes, whereas a value close to 1 exhibits dissimilarities in the second-order structure. The distance measure \(d(f_{11}, f_{22})\) can be estimated by

\[
\hat{d}_{12} = \left(\max\left(1 - \frac{2\hat{D}_{12,n_1}}{\hat{D}_{1,n_1} + \hat{D}_{2,n_1}}, 0\right)\right)^{1/2}, \tag{2.12}
\]

where the maximum is necessary, because the term \(1 - \frac{2\hat{D}_{12,n_1}}{\hat{D}_{1,n_1} + \hat{D}_{2,n_1}}\) might be negative.

**Remark 2.4**

The main ideas of the proof of Theorem 2.1 can be furthermore employed to construct tests for various other hypothesis. For example a test for zero correlation can be derived by testing for \(f_{12} \equiv 0\) which can be done by estimating \(\int_{-\pi}^{\pi} |f_{12}(\lambda)|^2d\lambda\). An estimator for this quantity is easily derived using the above approach and furthermore the calculation of the variance is straightforward, which we omit for the sake of brevity.

**Remark 2.5**

Although we only considered the bivariate case, our method can be easily extended to an \(m\) dimensional process. Moreover, a cumbersome but straightforward examination yields that our test also has asymptotic level \(\alpha\), if we skip the assumption of Gaussianity since (under the null hypothesis) all terms which consist the fourth cumulants of the processes \(Z^{(i)}\) cancel out. A similar phenomenon can be observed for the tests proposed by Eichler (2008), Dette et al. (2011), Dette and Hildebrandt (2011) and Dette et al. (2011).

### 3 Finite sample study

#### 3.1 Size and power of the test

In this section we study the size and the power of test (2.9) in the case of finite samples. All simulations are based on 1000 iterations and we consider all different combinations of \(n_1, n_2 \in \{256, 384, 512, 640\}\) with \(n_1 \leq n_2\). For the sake of brevity we only present the results for the case \(\rho = 0\) and note that the rejection frequencies do not change at all
if we consider correlations different to zero. We furthermore tested our approach using non-linear GARCH models and obtained a very good performance also in this case. The results are not displayed for the sake of brevity but are available from the authors upon request. To demonstrate the approximation of the nominal level, we consider the five processes

\[ X_1^t : X_t = Z_t, \quad X_2^t : X_t = -0.8X_{t-1} + Z_t, \quad X_3^t : X_t = Z_t - 0.8Z_{t-1}, \quad X_4^t : X_t \sim FARIMA(0.45, 0, 0.8), \]

\[ X_5^t : X_t = Z_t 1_{t \leq 0.5T} + 0.8X_{t-1} 1_{0.5T \leq t \leq 0.75T} + Z_t 1_{t \geq 0.75T} \quad \text{for} \ t = 1, \ldots, T, \]

where the FARIMA(0.45, 0, 0.8)-model corresponds to a LongMemory-process given by \((1 - B)^{0.45}X_t = (1 - 0.8B)Z_t\) with the backshift-operator \(B\) (i.e. \(B^jX_t = X_{t-j}\)). Note that the models \(X_4^t\) and \(X_5^t\) both do not fit into the theoretical framework considered in section 2, since for the FARIMA(0.45, 0, 0.8)-process we obtain \(\sum_{l=-\infty}^{\infty} |\varphi_l| = \infty\) which contradicts (2.3) and the structural-break model \(X_5^t\) does not even have a stationary solution. Nevertheless since these models are of great interest in practice, we investigate the performance of our approach in these cases as well. The results are given in Table 1 and it can be seen that the test (2.9) is very robust against different choices of \(n_1\) and \(n_2\). Furthermore our method also seems to work for the models \(X_4^t\) and \(X_5^t\) although the convergence is slightly slower.

To study the power of the test we additionally present the results of a comparison of \(X_3^t\) with \(X_j^t\) for \(j \in \{1, 2\}\) and \(X_1^t\) with \(X_5^t\) (all other comparison between the processes yield better results than the depicted ones).

### 3.2 Real world data

In this section we investigate how the clustering-method described in Remark 2.3 performs, if it is applied to real world data. Therefore we took three log-returns of stock prices from the financial sector, three log-returns from the health sector and two key interest rates. Exemplarily for the finance sector we choosed the stocks of Barclays, Deutsche Bank and Goldman Sachs and the health sector is represented by GlaxoSmithKline, Novartis and Pfizer. The key interest rates were taken from Great Britain and the EU and all time series data were recorded between March 1st, 2003 and July 29th, 2011. While the interest rates data were observed monthly, the stock prices were recorded daily or weekly. However, even if two stock prices were observed daily they might differ in length, since they are for example traded on different stock exchanges with different trading days. The result of our cluster analysis using (2.12) is presented in the dendrogram given in Figure 1. We get three different groups which correspond to the finance sector, the health sector and the key interes rates.
Acknowledgements This work has been supported in part by the Collaborative Research Center “Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt C1, C4) of the German Research Foundation (DFG).

4 Appendix: Technical details

Proof of Theorem 2.1: By using the Cramer-Wold device, we have to show that

\[ c^T \sqrt{n} \left\{ (\hat{D}_{1,n_1}, \hat{D}_{12,n_1}, \hat{D}_{2,n_1})^T - (D_1, D_{12}, D_2)^T \right\} \overset{D}{\to} N(0, c^T \Sigma c) \]

for all vectors \( c \in \mathbb{R}^3 \). For the sake of brevity, we restrict ourselves to the case \( c = (0, 1, 0)^T \) since the more general follows with exactly the same arguments. Therefore we show \( \hat{T}_{n_1} := \sqrt{n_1}(\hat{D}_{12,n_1} - D_{12}) \overset{D}{\to} N(0, \Sigma_{22}) \) and we do that by using the method of cumulants, which is described in chapter 2.3. of [Brillinger 1981] (and whose notations we will make heavy use of), i.e. in the following it is proved that

\[
\begin{align*}
\text{cum}_1(\hat{T}_{n_1}) & = o(1) \quad \text{for } l = 1 \text{ and } l \geq 3, \quad (4.1) \\
\text{cum}_2(\hat{T}_{n_1}) & \overset{n_1 \to \infty}{\to} \Sigma_{22}, \quad (4.2)
\end{align*}
\]

which will yield the assertion.

Proof of (4.1) for the case \( l = 1 \): Because of the symmetry of the periodogram, it is

\[
\mathbb{E}(\hat{D}_{12,n_1}) = \frac{1}{2n_1} \sum_{k=-[\frac{n_1}{2}]}^{[\frac{n_1}{2}]} \frac{1}{(2\pi)^2 n_1 n_2} \sum_{p_1,q_1=1}^{n_1} \sum_{p_2,q_2=1}^{n_2} \sum_{l_1,m_1=-\infty}^{\infty} \sum_{l_2,m_2=-\infty}^{\infty} \psi_{l_1}^{(1)} \psi_{m_1}^{(1)} \psi_{l_2}^{(2)} \psi_{m_2}^{(2)}
\]

and because of the standard normality of the innovations we obtain

\[
\mathbb{E}(Z_{p_1-l_1}^{(1)} Z_{q_1-m_1}^{(1)} Z_{p_2-l_2}^{(2)} Z_{q_2-m_2}^{(2)}) = \mathbb{E}(Z_{p_1-l_1}^{(1)} Z_{q_1-m_1}^{(1)}) \mathbb{E}(Z_{p_2-l_2}^{(2)} Z_{q_2-m_2}^{(2)}) + \mathbb{E}(Z_{p_1-l_1}^{(1)} Z_{q_2-m_2}^{(2)}) \mathbb{E}(Z_{q_1-m_1}^{(1)} Z_{p_2-l_2}^{(2)}) + \mathbb{E}(Z_{p_1-l_1}^{(1)} Z_{p_2-l_2}^{(2)}) \mathbb{E}(Z_{q_1-m_1}^{(1)} Z_{q_2-m_2}^{(2)})
\]

which yields that \( \mathbb{E}(\hat{D}_{12,n_1}) \) (without the \( O(1/n_1) \)-term) can be divided into the sums of three terms which are called \( A \), \( B \) and \( C \) respectively. For the first term we obtain the conditions \( p_1 = q_1 + l_1 - m_1, p_2 = q_2 + l_2 - m_2 \) (all others cases...
are equal to zero). This results in

\[ A = \frac{1}{2n_1} \sum_{k=-\left\lfloor n_1/2 \right\rfloor}^{\left\lceil n_1/2 \right\rceil} \frac{1}{(2\pi)^2 n_1 n_2} \sum_{l_1,l_2,m_1,m_2=-\infty}^{\infty} \sum_{q_1=1}^{n_1} \sum_{q_2=1}^{n_2} \psi^{(1)}_{l_1} \psi^{(2)}_{m_2} e^{-i\lambda_{1,k}(l_1-m_2)} + o\left(\frac{1}{\sqrt{n}}\right), \]

where the last equality follows from

\[ \frac{1}{n_j} \sum_{l:|l|<M_{n_j}} |\psi^{(j)}_l|^2 = \frac{1}{n_j} \sum_{l:|l|<M_{n_j}} |\psi^{(j)}_l|^{2-\alpha} = o(1/n_j^\alpha) \tag{4.3} \]

with \( M \in \mathbb{R} \), where \([2,3]\) was used. It now follows by the Hölder continuity condition that \( A \) equals \( \frac{1}{2\pi} \int_{-\pi}^{\pi} f_{11}(\lambda)f_{22}(\lambda)d\lambda + o\left(\frac{1}{\sqrt{n}}\right) \). If we consider the summand \( B \), we obtain the conditions \( q_1 = \lfloor (p_2-l_2)q_{n_1,n_2} \rfloor + m_1 - \lfloor q_{n_1,n_2} \rfloor \), \( q_2 = \lfloor (p_1-l_1)q_{n_1,n_2} \rfloor + m_2 - \lfloor q_{n_1,n_2} \rfloor \) which yields

\[ B = \frac{\rho^2}{2n_1} \sum_{k=-\left\lfloor n_1/2 \right\rfloor}^{\left\lceil n_1/2 \right\rceil} \frac{1}{(2\pi)^2 n_1 n_2} \sum_{l_1,l_2,m_1,m_2=-\infty}^{\infty} \sum_{p_1=1}^{n_1} \sum_{p_2=1}^{n_2} \psi^{(1)}_{l_1} \psi^{(2)}_{m_2} e^{-i\lambda_{1,k}(p_1-(p_2-l_2)q_{n_1,n_2}+m_1-(q_{n_1,n_2}-1))} e^{-i\lambda_{1,k+1}(p_2-(p_1-l_1)q_{n_1,n_2}+m_2-(q_{n_1,n_2}-1))}. \]

If we now employ the identity

\[ \frac{1}{n_1} \sum_{k=-\left\lfloor n_1/2 \right\rfloor}^{\left\lceil n_1/2 \right\rceil} e^{-i\lambda_{1,k}p} = \begin{cases} 1 & \text{if } p = 0, \pm n_1, \pm 2n_1, \ldots, \\ 0 & \text{else} \end{cases}, \tag{4.4} \]

it follows with \([2,8]\) that if \( p_1 \) is chosen there are only finitely many \( p_2 \) which yields a non-zero summand. Therefore we obtain that \( B = o(1/\sqrt{n_1}) \) and with the same arguments it can be shown that \( C = o(1/\sqrt{n_1}) \).

**Proof of (4.2):** It is

\[ \text{cum}_2(\sqrt{n_1}\tilde{D}_{12,n_1}) = \frac{1}{n_1} \sum_{k=1}^{\lfloor n_1/2 \rfloor} \text{cum}_2(I_{1}(\lambda_{1,k})I_{2}(\lambda_{1,k+1})) + \frac{1}{n_1} \sum_{k_1,k_2=1}^{\lfloor n_1/2 \rfloor} \text{cum}(I_{1}(\lambda_{1,k_1})I_{2}(\lambda_{1,k_2}), I_{1}(\lambda_{1,k_2})I_{2}(\lambda_{1,k_1+1})) \]

and the assertion follows if we show that

\[ \frac{1}{n_1} \sum_{k=1}^{\lfloor n_1/2 \rfloor} \text{cum}_2(I_{1}(\lambda_{1,k})I_{2}(\lambda_{1,k+1})) \xrightarrow{n_1 \to \infty} \frac{3}{4\pi} \int_{-\pi}^{\pi} f_{11}^2(\lambda)f_{22}^2(\lambda)d\lambda, \tag{4.5} \]

\[ \frac{1}{n_1} \sum_{k_1,k_2=1}^{\lfloor n_1/2 \rfloor} \text{cum}(I_{1}(\lambda_{1,k_1})I_{2}(\lambda_{1,k_1+1}), I_{1}(\lambda_{1,k_2})I_{2}(\lambda_{1,k_2+1})) \xrightarrow{n_1 \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} f_{11}(\lambda)|f_{12}(\lambda)|^2 f_{22}(\lambda)d\lambda. \tag{4.6} \]
We present a detailed proof of (4.5) and then comment briefly on (4.6) since it is proved analogously. Employing the symmetry of the periodogram again, we get

\[ \frac{1}{n_1} \sum_{k=1}^{\lfloor \frac{n_1}{2} \rfloor} \text{cum}_2(I_1(\lambda_1, k)I_2(\lambda_1, k+1)) = \frac{1}{2n_1} \sum_{k=\lfloor \frac{n_1}{2} \rfloor + 1}^{\lfloor \frac{n_1}{2} \rfloor} \text{cum}_2(I_2(\lambda_1, k+1)I_1(\lambda_1, k)) + O(1/n_1) \]

\[ = \frac{1}{2n_1} \sum_{k=\lfloor \frac{n_1}{2} \rfloor + 1}^{\lfloor \frac{n_1}{2} \rfloor} (2\pi)^4 n_1^2 n_2^2 \sum_{j=1}^{n_j} \sum_{s=1}^{\infty} \psi_{a_1}^{(1)} ... \psi_{d_2}^{(2)} e^{-i\lambda_1, k(p_1-q_1+r_1-s_1) - i\lambda_1, k+1(p_2-q_2+r_2-s_2)} \text{cum}(Z_{p_1-a_1}^{(1)}, Z_{q_1-b_1}^{(1)}, Z_{p_2-a_2}^{(1)}, Z_{q_2-b_2}^{(1)}, Z_{r_1-c_1}^{(1)}, Z_{s_1-d_1}^{(1)}, Z_{r_2-c_2}^{(1)}, Z_{s_2-d_2}^{(1)}) + O(1/n_1) \]

\[ = \sum_{\nu} \frac{1}{2n_1} \sum_{k=\lfloor \frac{n_1}{2} \rfloor + 1}^{\lfloor \frac{n_1}{2} \rfloor} (2\pi)^4 n_1^2 n_2^2 \sum_{j=1}^{n_j} \sum_{s=1}^{\infty} \psi_{a_1}^{(1)} ... \psi_{d_2}^{(2)} e^{-i\lambda_1, k(p_1-q_1+r_1-s_1) - i\lambda_1, k+1(p_2-q_2+r_2-s_2)} \text{cum}(Z_{i}^{(j)}; (i,j) \in \nu_1) \cdot \text{cum}(Z_{i}^{(j)}; (i,j) \in \nu_4) + O(1/n_1) \]

where the sum goes over all indecomposable partitions \( \nu = \nu_1 \cup \ldots \cup \nu_4 \) of

\[ \begin{align*}
Z_{p_1-a_1}^{(1)} & \quad Z_{q_1-b_1}^{(1)} & \quad Z_{p_2-a_2}^{(1)} & \quad Z_{q_2-b_2}^{(1)} \\
Z_{r_1-c_1}^{(2)} & \quad Z_{s_1-d_1}^{(2)} & \quad Z_{r_2-c_2}^{(2)} & \quad Z_{s_2-d_2}^{(2)}
\end{align*} \]

with \( |\nu_i| = 2 \ \forall i = 1, \ldots, 4 \) (we only have to consider partitions with two elements in each set, because of the Gaussianity of the innovations; in the non-Gaussian case we would get an additional term containing the fourth cumulant). Every chosen partition will imply conditions for the choice of \( p_j, q_j, r_j, s_j \) as in the calculation of the expectation. For some partitions there will not be a \( p_j, q_j, r_j, s_j \) in the exponent of \( e \) after inserting the conditions and for other partitions there will still remain one. Let us take an example of the latter one and consider the partition which corresponds to \( \text{cum}(Z_{p_1-a_1}^{(1)}, Z_{s_1-d_1}^{(1)}, Z_{q_1-b_1}^{(1)}, Z_{r_1-c_1}^{(1)}, Z_{p_2-a_2}^{(2)}, Z_{r_2-c_2}^{(2)}, Z_{q_2-b_2}^{(2)}, Z_{s_2-d_2}^{(2)}) \). We name the corresponding term of this partition in (4.7) with \( V_2 \) and obtain the conditions \( p_1 = s_1 + a_1 - d_1, q_1 = r_1 + b_1 - c_1, p_2 = r_2 + a_2 - c_2, q_2 = s_2 + b_2 - d_2 \) which yields

\[ V_2 = \frac{1}{2n_1} \sum_{k=\lfloor \frac{n_1}{2} \rfloor + 1}^{\lfloor \frac{n_1}{2} \rfloor} (2\pi)^4 n_1^2 n_2^2 \sum_{j=1}^{n_j} \sum_{s=1}^{\infty} \psi_{a_1}^{(1)} ... \psi_{d_2}^{(2)} e^{-i\lambda_1, k(a_1-d_1+c_1-b_1) - i\lambda_1, k+1(2r_2-2s_2+a_2-c_2+d_2-b_2)} + O(1/n_1) \]
where the last equality again follows with (4.3). Now as in the handling of $B$ in the calculation of the expectation, (4.4) implies that $V_2 = o(1)$.

Every other indecomposable partition is treated in exactly the same way and there are only three partitions which corresponding term in (4.7) does not vanish in the limit. These partitions correspond to one of the following three terms:

1) $\text{cum}(Z_{p_1-a_1}^{(1)}, Z_{q_1-b_1}^{(1)})\text{cum}(Z_{r_1-c_1}^{(1)}, Z_{s_1-d_1}^{(1)})\text{cum}(Z_{q_2-b_2}^{(2)}, Z_{r_2-c_2}^{(2)})$

2) $\text{cum}(Z_{p_1-a_1}^{(1)}, Z_{q_1-b_1}^{(1)})\text{cum}(Z_{r_1-c_1}^{(1)})\text{cum}(Z_{q_2-b_2}^{(2)}, Z_{r_2-c_2}^{(2)})$

3) $\text{cum}(Z_{p_1-a_1}^{(1)}, Z_{q_1-b_1}^{(1)})\text{cum}(Z_{r_1-c_1}^{(1)})\text{cum}(Z_{q_2-b_2}^{(2)}, Z_{s_2-d_2}^{(2)})$

We will exemplarily present the calculation concerning the 1) partition and denote the corresponding sum in (4.7) with $V_1$. We get that $V_1$ equals

\[
\frac{1}{2n_1} \sum_{k=-\lceil \frac{2\pi}{\nu} \rceil}^{\lceil \frac{2\pi}{\nu} \rceil} \frac{1}{(2\pi)^4 n_1^2 n_2^2} \sum_{j=1}^{\infty} \sum_{a_j,b_j,c_j,d_j=-\infty}^{\infty} \sum_{q_1,s_1=1}^{n_1} \sum_{r_2,s_2=1}^{n_2} \psi_1^{(1)} \ldots \psi_2^{(2)} e^{-i\lambda_1.a(a_1-b_1+c_1-d_1)-i\lambda_1.b(a_2-d_2+c_2-b_2)}
\]

by using (4.3). Now the Hölder continuity condition implies $V_1 = \frac{1}{4\pi} \int_{-\pi}^{\pi} f_{11}(\lambda)^2 f_{22}(\lambda)^2 d\lambda + o(1/\sqrt{n_1})$ and since the partitions 2) and 3) yield the same result, we have shown (4.5).

With the same arguments as in the proof of (4.5) it can be seen that

\[
\frac{1}{n_1} \sum_{k_1,k_2=1}^{\lceil \frac{2\pi}{\nu} \rceil -1} \text{cum}(I_1(\lambda_1,k_1)I_2(\lambda_1,k_1+1), I_1(\lambda_1,k_2)I_2(\lambda_1,k_2+1))
\]

\[
= \frac{1}{n_1} \sum_{k_1=1}^{\lceil \frac{2\pi}{\nu} \rceil -1} \text{cum}(I_1(\lambda_1,k_1)I_2(\lambda_1,k_1+1), I_1(\lambda_1,k_1+1)I_2(\lambda_1,k_1+2))
\]

\[
+ \frac{1}{n_1} \sum_{k_1=1}^{\lceil \frac{2\pi}{\nu} \rceil -1} \text{cum}(I_1(\lambda_1,k_1)I_2(\lambda_1,k_1+1), I_1(\lambda_1,k_1-1)I_2(\lambda_1,k_1)) + o(1)
\]

and it is shown completely analogously to the proof of (4.5) that

\[
\frac{1}{n_1} \sum_{k_1=1}^{\lceil \frac{2\pi}{\nu} \rceil -1} \text{cum}(I_1(\lambda_1,k_1)I_2(\lambda_1,k_1+1), I_1(\lambda_1,k_1+1)I_2(\lambda_1,k_1+2))
\]

\[
+ \frac{1}{n_1} \sum_{k_1=1}^{\lceil \frac{2\pi}{\nu} \rceil -1} \text{cum}(I_1(\lambda_1,k_1)I_2(\lambda_1,k_1+1), I_1(\lambda_1,k_1-1)I_2(\lambda_1,k_1))
\]

both converge to $\frac{1}{4\pi} \int_{-\pi}^{\pi} f_{11}(\lambda)|f_{12}(\lambda)|^2 f_{22}(\lambda)d\lambda$, which yields (4.6).
Proof of (4.1) for the case $l \geq 3$: Since the proof is done by combining standard cumulants methods with the arguments that are used in the previous proof, we will restrict ourself to a brief explanation of the main ideas. We obtain

$$\text{cum}_l(\sqrt{n_1} D_{12,n_1}) = \frac{1}{(2n_1^{1/2})^l} \sum_{j_1=1}^{l} \sum_{k_{j_1}=-\lfloor \frac{n_1}{2} \rfloor}^{\lfloor n_1/2 \rfloor} \frac{1}{(2\pi)^2 n_1^{1/2}} \sum_{j_2=1}^{2} \sum_{a_{j_1,j_2}, b_{j_1,j_2} = -\infty}^{\infty} \sum_{j_{1,j_2} = 1}^{\infty} \psi_{a_{1,1}}^{(1)} \cdots \psi_{b_{1,2}}^{(2)}$$

$$\exp(-i\lambda_{1,k}(p_{11} - q_{11}) - i\lambda_{1,k+1}(p_{12} - q_{12})) \cdots \exp(-i\lambda_{1,k}(p_{11} - q_{11}) - i\lambda_{1,k+1}(p_{12} - q_{12}))$$

$$\text{cum}(Z_{p_{11} - a_{11}}^{(1)} Z_{q_{11} - b_{11}}^{(1)} Z_{p_{12} - a_{12}}^{(2)} Z_{q_{12} - b_{12}}^{(2)}, \ldots, Z_{p_{l1} - a_{1l}}^{(1)} Z_{q_{l1} - b_{1l}}^{(1)} Z_{p_{l2} - a_{2l}}^{(2)} Z_{q_{l2} - b_{2l}}^{(2)})$$

and if we now take a indecomposable partition of

$$Z_{p_{11} - a_{11}}^{(1)} Z_{q_{11} - b_{11}}^{(1)} Z_{p_{12} - a_{12}}^{(2)} Z_{q_{12} - b_{12}}^{(2)}$$

$$\vdots$$

$$Z_{p_{l1} - a_{1l}}^{(1)} Z_{q_{l1} - b_{1l}}^{(1)} Z_{p_{l2} - a_{2l}}^{(2)} Z_{q_{l2} - b_{2l}}^{(2)}$$

which consists only of sets with two elements (again this suffices because of the Gaussianity of the innovations), it follows directly that at most $2l$ of the $4l$ variables $p_{j_1,j_2}, q_{j_1,j_2}$ ($j_1 = 1, \ldots, l$, $j_2 = 1, 2$) are free to choose. By using the same arguments as in the calculation of the variance and the expectation it then follows by the indecomposability of the partition that in fact only $l+1$ of the remaining $2l$ variables $p_{j_1,j_2}, q_{j_1,j_2}$ are free to choose. This implies $\text{cum}_l(\sqrt{n_1} D_{12,n_1}) = O(n_1^{-1/2})$ which yields the assertion.

References

Berger, J. O. and Delampady, M. (1987). Testing precise hypotheses. *Statistical Science*, 2:317–335.

Brillinger, D. R. (1981). *Time Series: Data Analysis and Theory*. McGraw Hill, New York.

Caiado, J., C. N. and Pena, D. (2009). Comparison of times series with unequal length in the frequency domain. *Communications in Statistics - Simulation and Computation*, 38:527–540.

Coates, D. and Diggle, P. (1986). Tests for comparing two estimated spectral densities. *Journal of Time Series Analysis*, 7:7–20.

De Souza, P. and Thomson, P. (1982). Lpc distance measures and statistical tests with particular reference to likelihood ratio. *IEEE Transactions Acoustics Speech Signal Process*, 30:304–315.
Dette, H. and Hildebrandt, T. (2011). A note on testing hypotheses for stationary processes in the frequency domain. *Journal of Multivariate Analysis*, 104:101–114.

Dette, H., Kinsvater, T., and Vetter, M. (2011). Testing nonparametric hypotheses for stationary processes by estimating minimal distances. *Journal of Time Series Analysis*, 32:447–461.

Dette, H. and Paparoditis, E. (2009). Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities. *Journal of the Royal Statistical Society B*, 71:831–8571.

Dette, H., Preuß, P., and Vetter, M. (2011). A measure of stationarity in locally stationary processes with applications to testing. *Journal of the American Statistical Association*, 106(495):1113–1124.

Diggle, P. and Fisher, N. (1991). Nonparametric comparison of cumulative periodograms. *Journal of the Royal Statistical Society C*, 40:423–434.

Eichler, M. (2008). Testing nonparametric and semiparametric hypotheses in vector stationary processes. *Journal of Multivariate Analysis*, 99:968–1009.

Jenkins, G. M. (1961). General considerations in the analysis of spectra. *Technometrics*, 8:133–166.

Jentsch, C. and Pauly, M. (2011). Testing equality of spectral densities using randomization techniques. Preprint.

Jentsch, C. and Pauly, M. (2012). A note on using periodogram-based distances for comparing spectral densities. *Statistics & Probability Letters*, 82(1):158–164.

Maharaj, E. (2002). Comparison of non-stationary time series in the frequency domain. *Computational Statistical Data Analysis*, 40:131–141.

Pötscher, B. M. and Reschenhofer, E. (1988). Discriminating between two spectral densities in case of replicated observations. *Journal of Time Series Analysis*, 9:221-224.
| $n_1$ | $n_2$ | $\alpha$ | $X^1$ | $X^2$ | $X^3$ | $X^1X^3$ | $X^2X^3$ | $X^4$ | $X^5$ | $X^1X^5$ |
|-------|-------|----------|------|------|------|---------|---------|------|------|---------|
| 256   | 256   | 0.05     | 0.041| 0.039| 0.045| 0.773   | 0.628   | 0.053| 0.053| 0.523   |
|       |       | 0.1      | 0.088| 0.128| 0.106| 0.894   | 0.875   | 0.117| 0.131| 0.685   |
| 256   | 384   | 0.05     | 0.049| 0.049| 0.034| 0.758   | 0.619   | 0.047| 0.054| 0.551   |
|       |       | 0.1      | 0.106| 0.128| 0.099| 0.877   | 0.841   | 0.114| 0.147| 0.719   |
| 256   | 512   | 0.05     | 0.043| 0.047| 0.026| 0.776   | 0.650   | 0.045| 0.031| 0.539   |
|       |       | 0.1      | 0.085| 0.139| 0.069| 0.892   | 0.848   | 0.109| 0.126| 0.739   |
| 256   | 640   | 0.05     | 0.050| 0.044| 0.030| 0.777   | 0.636   | 0.037| 0.046| 0.563   |
|       |       | 0.1      | 0.109| 0.112| 0.081| 0.904   | 0.859   | 0.097| 0.122| 0.755   |
| 384   | 384   | 0.05     | 0.036| 0.047| 0.037| 0.920   | 0.804   | 0.054| 0.043| 0.693   |
|       |       | 0.1      | 0.092| 0.120| 0.010| 0.969   | 0.936   | 0.110| 0.117| 0.814   |
| 384   | 512   | 0.05     | 0.048| 0.039| 0.045| 0.895   | 0.828   | 0.061| 0.065| 0.699   |
|       |       | 0.1      | 0.110| 0.120| 0.091| 0.956   | 0.938   | 0.131| 0.136| 0.836   |
| 384   | 640   | 0.05     | 0.037| 0.045| 0.046| 0.917   | 0.788   | 0.050| 0.062| 0.702   |
|       |       | 0.1      | 0.078| 0.128| 0.096| 0.968   | 0.925   | 0.124| 0.149| 0.858   |
| 512   | 512   | 0.05     | 0.037| 0.034| 0.048| 0.975   | 0.877   | 0.044| 0.027| 0.800   |
|       |       | 0.1      | 0.096| 0.111| 0.106| 0.994   | 0.967   | 0.097| 0.100| 0.889   |
| 512   | 640   | 0.05     | 0.037| 0.054| 0.046| 0.971   | 0.890   | 0.055| 0.061| 0.811   |
|       |       | 0.1      | 0.094| 0.137| 0.103| 0.987   | 0.973   | 0.119| 0.131| 0.906   |
| 640   | 640   | 0.05     | 0.044| 0.035| 0.037| 0.993   | 0.959   | 0.045| 0.043| 0.906   |
|       |       | 0.1      | 0.106| 0.101| 0.089| 0.999   | 0.993   | 0.104| 0.110| 0.934   |

Table 1: Rejection frequencies of the test (2.9) under the null hypothesis and several alternatives for $\rho = 0$. 
Figure 1: Clustering of financial time series data.