Enamel lesions: Meta-analysis on effect of prophylactic/therapeutic agents in erosive tissue loss

Liliana Teixeira a*, Patrícia Manarte-Monteiro a, Maria Conceição Manso b,c

a Conservative and Restorative Dentistry, Department of Medical Sciences, Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
b Biostatistics, Faculty of Health Sciences, FP-ENAS, University Fernando Pessoa, Porto, Portugal
c REQUIMTE, University of Porto, Porto, Portugal

Received 9 March 2015; Final revision received 25 September 2015
Available online 24 May 2016

KEYWORDS
caseins;
demineralization;
enamel;
erosion;
fluorides

Abstract This study aims to perform a meta-analysis on the effect of prophylactic/therapeutic agents in enamel tissue loss due to erosion. A paper search was done on Medline, PubMed, Embase, and Cochrane Library, and 732 papers were identified. The inclusion criteria were very restrictive in order to be able to compare different protocols and methodologies used on those studies. Sixteen papers were eligible, grouped according to the measurement method of enamel tissue loss, and a meta-analysis was done for each type of fluoride- and casein-based agent applied. Standardized mean differences were pooled across studies. There was a significant difference between all the treatment groups and their respective control groups. The highest standardized mean difference on enamel tissue loss (mean; 95% confidence interval) was obtained by stannous fluoride (4.789 mm; 1.968–7.610; P < 0.001), followed by amine fluoride (2.485 mm; 0.746–4.225; P < 0.010), and titanium tetrafluoride (1.787 mm; 1.106–2.469; P < 0.001); the lowest difference was obtained by casein phosphopeptide- amorphous calcium phosphate (0.869 mm; 0.007–1.731; P < 0.050) and sodium fluoride (0.820 mm; 0.417–1.223; P < 0.001). Stannous fluoride as a fluoride-based prophylactic/therapeutic agent allowed the lowest enamel tissue loss in erosive conditions. Standardization among future study protocols will allow better comparison regarding the prophylactic/therapeutic agent with the best clinical efficacy.

Copyright © 2016, Association for Dental Sciences of the Republic of China. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Dental erosion is the physical result of a pathologic, chronic, localized, painless loss of dental hard tissues chemically etched away from the tooth surface by acid and/or chelating agents without bacterial involvement. The initial etching results in a mineral partial superficial dissolution—early-stage surface softening,¹ which can reach a few micrometers into enamel or dentine. If the erosive challenge is more prolonged, the outermost layer of the softened surface will eventually be completely dissolved, resulting in permanent loss of tooth structures.²,³

Effective measures to control and prevent the erosive wear lesions should include management of dietary and behavioral habits⁴ and also daily intervention with effective prophylactic and/or therapeutic agents.⁵,⁶ In principle, there are two possibilities to prevent or control dental erosion: either the active agents are added to an erosive solution in order to decrease its erosive potential; or the active agents are applied directly on the enamel tooth surface to create a protective layer inhibiting enamel demineralization. After an erosive attack, part of the enamel hard tissue surface is lost and cannot be recovered, but there is a partially demineralized softened enamel surface that can be rehardened in the presence of certain substances.⁷ The repair process includes the reprecipitation of ions, into the partly demineralized surface enamel, allowing the modification of the tooth surface so that the erosive demineralization is reduced, even under persisting acid challenges (therapeutical agent’s effect). The several compounds tested in in vitro and in situ trials usually have both effects, leading to surface deposits and structural enamel modifications in order to enhance acid resistance. There are different prophylactic/therapeutic agents, several concentrations and ways of delivering, experimentally tested in, in vitro, in situ, and in vivo trials.

The aim of this paper is to perform a meta-analysis on output data of published studies regarding the effects of several prophylactic/therapeutic agents on enamel loss due to tissue demineralization, under erosive conditions.

Materials and methods

Search strategy

The guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement—Transparent Reporting of Systematic Reviews and Meta-Analyses⁸ were followed whenever possible. The search was conducted in the Medline, PubMed, Embase, and Cochrane Library for published papers in order to collect and interpret the available evidence on the protective effect of prophylactic/therapeutic agents on enamel tissues due to erosion. Although randomized clinical trials provide the highest level of evidence, this study design is not feasible for measuring enamel tissue loss due to erosive demineralization. Therefore only laboratory in vitro and in situ studies were included in this review, despite some concerns about the validity of the multiple treatments meta-analysis methods.

There are several agents available to prevent/enhance acid resistance of enamel structure. The most frequently tested agents were fluoride-based agents, namely sodium fluoride (NaF), amine fluoride (AmF), stannous fluoride (SnF₂), titanium tetrafluoride (TiF₄), and casein-derived protein products, delivered as solutions, gels or varnishes.

Full search strategy for literature evidence in databases was performed with the following keywords: #1 (“Dental enamel” [MeSH]) AND (“Tooth Erosion” [MeSH]) OR (“Tooth demineralization” [MeSH]); #2 (“Fluorides” [MeSH]); #3 (“Caseins” [MeSH]); #4 (#1 AND #2); #5 (#1 AND #3); #6 (#4 OR #5). Filters: from 1980 to 01/03/2014, English.

Study selection

The articles identified in all databases were screened for duplicates that were automatically excluded. Two readers independently selected references according to the title and the abstract of each publication. After title/abstracts were screened, the remaining articles were ordered in full text. Figure 1 presents the details of the identification, screening and the article selection process.

Inclusion criteria

In vitro and in situ studies on dental erosion, which gather the following conditions. (1) The tested agent must be a single agent, enamel only substrate, an erosive protocol only, human or bovine enamel. (2) The study must provide: sample size, control group without any agent application being only submitted to the erosive protocol, erosion measurement data obtained by the microhardness and profilometry methods, and quantitative results of enamel tissue loss (mean ± standard deviation), and be English published papers (full texts only).

Exclusion criteria

All in vivo studies, in vitro, and in situ studies on erosion, which gather one of the following conditions: the tested
Table 1 Sample characteristics—size, mean and standard deviation of tissue loss (μm) in control and agent groups, and observed variations, of the selected profilometry studies.

Reference	N	Control group					
	n	Mean ± SD (D n)	Tested agent	n	Mean ± SD (D n)	Variations	
Schlueter et al 200910	144	18	36.1 ± 4.6	TIF₄ (6 × 2 min) A	18	2.1 ± 1.9	Difference in agent’s time of application with 2 controls
	144	18	19.8 ± 4.2	TIF₄ (2 × 2 min) B	18	13.8 ± 3.4	
Magalhães et al 200811	20	10	1.17 ± 0.48	TIF₄	10	2.4 ± 0.6	
Yu et al 201012	220	10	2.96 ± 0.55	TIF₄ pH 1.2 A	10	1.28 ± 0.36	Different agent pH
				TIF₄ pH 4 B	10	2.34 ± 0.38	
				SnF₂ pH 1.2 G	10	0.84 ± 0.54	
				SnF₂ pH 4 H	10	0.96 ± 0.34	
				NaF pH 1.2 E	10	2.35 ± 0.35	
				NaF pH 4 F	10	2.01 ± 0.34	
				AmF pH 1.2 D	10	0.17 ± 0.32	
				AmF pH 4 C	10	0.16 ± 0.30	
Magalhães & Buzalaf 200713	60	15	3.43 ± 1.13	TIF₄ Varnish at 2nd day A	15	3.81 ± 0.43	Different time points with 2 controls
	60	15	7.31 ± 0.53	TIF₄ Varnish at 4th day B	15	7.69 ± 0.76	
Magalhães et al 200814	72	12	2.06 ± 1.49	TIF₄ Varnish A	12	0.65 ± 0.75	Different agent consistencies
				NaF Varnish B	12	1.47 ± 1.07	
				TIF₄ solution C	12	2.05 ± 1.49	
Hove et al 200615	24	6	2.0 ± 0.2	TIF₄ solution at 2 min etch A	6	0.0 ± 0.1	Different time points with 3 controls
				SnF solution at 2 min etch G	6	0.4 ± 0.2	
	24	6	4.4 ± 0.3	TIF₄ solution at 4 min etch B	6	1.5 ± 0.2	
				NaF solution at 2 min etch D	6	1.5 ± 0.2	
	24	6	7 ± 0.3	TIF₄ solution at 6 min etch C	6	1.5 ± 0.3	Different time points with 4 controls
				NaF solution at 6 min etch E	6	3.4 ± 0.3	
	24	6	7 ± 0.3	TIF₄ solution at 6 min etch C	6	1.5 ± 0.3	
				NaF solution at 6 min etch E	6	3.4 ± 0.3	
	60	12	2.2 ± 0.6	TIF₄ solution at 2 min etch A	12	0 ± 0.4	
				NaF solution at 2 min etch I	12	1.2 ± 0.9	
	60	12	5.2 ± 1.0	TIF₄ solution at 4 min etch B	12	1.3 ± 1.2	
				NaF solution at 4 min etch D	12	4.0 ± 1.7	
	60	12	5.2 ± 1.3	TIF₄ solution at 6 min etch C	12	4.7 ± 1.3	
	60	12	8.1 ± 1.3	TIF₄ solution at 6 min etch C	12	4.7 ± 1.3	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	
	60	12	11.0 ± 1.5	TIF₄ solution at 8 min etch D	12	8.4 ± 2.1	

(continued on next page)
agent is an association of several compounds, dentin substrate, an erosive-abrasion protocol, erosion measurement data obtained by other methods such as: atomic absorption spectroscopy, colorimetric analysis, longitudinal microradiography, or others than these, and studies with incomplete sample or methods information.

In order to minimize the risk of bias, some authors were contacted to clarify issues in their studies, to avoid uncertainty during the data extraction phase of the review.

Disagreements were solved by discussion and consensus. If necessary, the exclusion criteria were adjusted and the abstracts already screened were resubjected to the selection process. Agreement between readers was determined using κ statistics. In the absence of consensus, a third reader was called upon to analyze it. After the publication screening, based on the title and abstracts, full-text copies of the selected articles were assessed for eligibility. A total of 16 studies met the inclusion criteria and were selected for the meta-analysis study.

Synthesis of data

The included studies were grouped according to the method of analysis of enamel tissue loss. Microhardness is considered the method of election for measuring enamel softening (early stages of erosion) and profilometry is the direct method used to measure enamel loss by erosive wear (advanced stages of erosion).9

The calculation of the enamel tissue loss was made using the same method for all the studies selected. Treatment and control group tissue hardness mean value differences from pre- to postoperative status were obtained directly, or calculated based on the time-specific mean values obtained from studies results.

Enamel surface microhardness change (SMHC) percentage measurement was calculated as follows:

$$\% \text{SMHC} = \frac{\text{SMH}_t - \text{SMH}_0}{\text{SMH}_0} \times 100$$

(1)

where SMH_t is surface microhardness after erosive demineralization and agent application and SMH_0 is surface microhardness before erosive demineralization (baseline).

In the studies that used profilometry tests, the enamel tissue loss was measured in μm (micrometers) and calculated as the difference between the reference area and the exposed area to erosive attack and agent application, both in the control and treatment groups.

Statistical analysis

All calculations and graphs were performed using the software R version 3.0.1 (Free Software Foundation, Inc., Boston, USA), with the Metafor package. The statistical heterogeneity among studies was assessed using the inconsistency index, I^2 measure.

Each agent [TiF$_4$, AmF, NaF, SnF$_2$, and casein phosphopeptide–amorphous calcium phosphate (CPP-ACP)] was compared to the control group, where an erosive protocol was done with no agent applied. The analysis was done using the standardized mean difference with 95% confidence intervals (95%CI).
The bias analysis was done with the Begg and the Egger tests, and an analysis of the results sensitivity was also performed. For this, the results were excluded one at a time to test their consistency.

Results

Profilometry studies results

A high heterogeneity \((I^2 > 50\%)\) was found in all groups, which led us to use the random effects model. Table 1 presents all the mean and standard deviation of enamel tissue loss (\(\mu m\)) in the control and agent groups, from all the studies selected.

The outcomes from each treatment analysis are presented on the forest-plots (Figs. 2–6). Table 2 presents the overall obtained standardized mean difference between tissue loss of each control group and the treatment group (\(\mu m\)), defined according to the agent applied. There is a significant difference between all the treatment groups and their respective control groups. The highest standardized mean difference was obtained with the SnF\(2\), followed by the AmF and TiF\(4\) and the

![Figure 2](Figure 2 Forest plot: control group versus TiF\(4\) group.)
The lowest difference was obtained with the NaF and CPP-ACP agents.

Microhardness studies results

In studies where microhardness testing was used as the method for enamel tissue loss measurement, the only agents compared were the TiF₄ and NaF. Table 3 presents the mean and standard deviation of SMHC% in the control and agent groups from the selected studies. In the comparison between the control group and the TiF₄ group, the heterogeneity was high ($I^2 > 50\%$) so the random effects model was used. In the case of the control group compared with the NaF group the heterogeneity found was low ($I^2 < 50\%$), and the methodology used was based on the fixed effects model.

The main outcomes are presented for both comparisons (control vs. TiF₄; Figure 7, and control vs. NaF; Figure 8) individually and with combined results. Figure 7 shows the overall results (random effects); it appears that the control group has significantly higher surface microhardness change means than the TiF₄ group. The application of the Begg test ($Z = 1.019, P = 0.308$) and Egger test [$t(1) = 2.059, P = 0.053$] showed no bias ($P > 0.05$) between studies.

When sensitivity was evaluated, the overall result found was 0.873 (95%CI, 1.691). Omitting the Magalhães AC11 or Magalhães AC14 studies, the standardized mean of the control group remains significantly higher than the TiF₄ group. If the Magalhães AC26 or Magalhães AC13 studies are excluded, the statistically significant differences between the control group and the group TiF₄ disappear.

Figure 8 shows the overall results (fixed effects) of the standardized mean difference between the control group and NaF group. The enamel tissue loss means from the control groups are significantly higher than in the NaF groups. According to the results of Begg test ($Z = 1.045; P = 0.296$) and Egger test [$t(1) = 12.050, P = 0.053$], there was no bias ($P > 0.05$) between studies.

When analyzed, the sensitivity, and if omitting any of the three studies, the same result remains: the standardized mean difference from the control groups was significantly higher than the NaF groups, with an overall result from the sensitivity tests of 2.051 (95%CI, $1.285–2.817$).

Discussion

Studies to test possible methods and agents to prevent enamel erosion should ideally be conducted in vivo, using intraoral measurement of tooth tissue loss. Unfortunately, the available methods have a low accuracy. There is also uncertainty about the pattern of erosion progression, which implies a need for long-term monitoring studies; it is also difficult to control the enamel tissue loss that results from erosion alone or from attrition/abrasion processes. There are only two in vivo trials that had, as purpose, to evaluate the effect of therapeutic agents against enamel erosion.

In situ and in vitro models have been developed as attempts to overcome these problems. Here, standardized controls can be implemented, allowing for the examination of one variable at a time, the introduction of new variables stepwise, and accurate measurement technologies over defined time periods, and can be used to determine dental tissue loss. These two types of studies are the most used in evaluating agents’ action on dental erosion. This study aims to synthesize large amounts of information of in situ and in vitro trials, providing estimated effect sizes that
have greater precision and generalizability than individual studies.31

The inclusion criteria were very restrictive, in order to turn the studies comparable. Even so, there was a wide range of protocols on the enamel demineralization time/method, on the agent’s composition/method of delivery, and also on methods of measuring enamel tissue loss. This posed a serious restriction on this attempt to review the literature in a quantitative, systematic manner. Including studies that compare control groups with single agents applied, excluding the association of several compounds, may be a limitation of this meta-analysis. However, this was necessary in order to allow some standardization among experiments and a better comparison regarding their

Figure 4 Forest plot: Control group versus NaF.

Figure 5 Forest plot: Control group versus casein phosphopeptide–amorphous calcium phosphate group.
Several fluoride- and casein-based agents are available to prevent/enhance acid resistance of enamel structure, but, for this review, the most frequently used (NaF, AmF, SnF2, TiF4, CPP-ACP) were selected. Methods for measuring enamel tissue loss are also very different, and in some studies are not the most adequate. The choice of the method for evaluating erosion depends primarily on the stage of the lesion, the expected changes in the structure of the erosive lesion during the study and on the tissue of interest. Microhardness is considered the method of choice for measuring enamel softening (early stages of erosion) and profilometry is the direct method used to measure tissues loss by erosive wear (advanced stages of erosion). Study protocols analyzed are very different, which makes it difficult to compare them and to establish which one is the most adequate agent to prevent/control enamel tissue loss. Standardization of protocols is needed to ensure a valuable and scientific comparison between agent efficacies.

The lowest erosive tissue loss values were obtained by SnF2, considering enamel tissue loss mean difference values between the control and the SnF2 treatment groups, followed by the AmF and TiF4 groups. The lowest difference was obtained with the NaF and the CPP-ACP, in both methods of enamel tissue loss measurement. SnF2 was the agent that allowed the best enamel demineralization-protection in erosive conditions. The studies included in this review were performed under laboratory conditions, which limits the extrapolation of the actual usefulness of these agents application to the clinical situation. Despite this, the results might guide the researcher on evidence-based in vitro and in situ erosive enamel tissue loss data and suggest best practice given current knowledge. The erosion protection mechanism by tin effect is due to the reaction products which emerge from the interaction between hydroxyapatite and the tin fluoride preparation. Lower pH-value solutions, are more protective against erosive enamel wear, partially due to the increased formation of CaF2-like deposit and better incorporation of metal ions (Sn) into enamel.

Several studies tested the SnF2 prophylactic/therapeutic effect against enamel erosion or tin-and fluoride-containing solutions. Considering the literature review, under mild-erosive conditions, tin and titanium seemed to be the ions that combined with fluoride obtained higher levels of consensuses by the authors. In severe-erosive conditions the Sn-fluoride compounds showed better results on preventing enamel erosive tissue loss. The problem with titanium fluoride agents, is that the titanium ion is...
highly dependent on pH medium, meaning that the solutions must be very acidic to obtain the maximum effect regarding enamel demineralization prevention.42,43 The need for high concentration and low pH limits its use as a mouth rinse.10 Outputs from some studies showed a 50\textasciitilde90\% enamel tissue loss reduction.17,20,44 According to Schlueter et al,45 high concentrations of Sn and fluoride are very effective in reducing erosive tissue loss, and their efficacy increases with increasing ratios of Sn to fluoride concentrations.

Dealing with heterogeneity among study treatment effects, or the situation in which differences in study outcomes are not readily accounted for by sampling variation, is one of the most important challenges a meta-analysis has to face.46 The next step includes the examination of moderator variables impact on this study effect sizes by using regression-based techniques, in order to reinforce stannous fluoride’s importance on enamel erosion.

Conflict of interests

The authors received no financial support and declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

References

1. Imfeld T. Dental erosion. Definition, classification and links. *Eur J Oral Sci* 1996;104:151–5.
2. Addy M, Shellis RP. Interaction between attrition, abrasion and erosion in tooth wear. In: Lussi A, ed. *Dental Erosion: From Diagnosis to Therapy.* Monogr Oral Sci. Basel: Karger, 2006. 20: 17. se.
3. Cheng ZJ, Wang XM, Cui FZ, Ge J, Yan JX. The enamel softening and loss during early erosion studied by AFM, SEM and nano-indentation. *Biomed Mater* 2009;4:1–7.
4. Zero DT, Lussi A. Behavioural factors. Monogr Oral Sci 2006;20:100–5.

5. Zero DT, Hara AT, Kelly SA, et al. Evaluation of a desensitisising test dentifrice using an in situ erosion remineralisation model. J Clin Dent 2006;17:112–6.

6. Ganss C, Schlueter N, Friedrich D, Klimek J. Efficacy of waiting periods and topical fluoride treatment on toothbrush abrasion of eroded enamel in situ. Caries Res 2007;41:146–51.

7. Amaechi BT, Higham SM. Eroded enamel remineralisation by saliva as a possible factor in the site-specificity of human dental erosion. Arch Oral Biol 2001;46:697–703.

8. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097. http://dx.doi.org/10.1371/journal.pmed.1000097.

9. Shellis RP, Ganss C, Rend Y, Zero DT, Lussi A. Methodology and models in erosion research: discussion and conclusions. Caries Res 2011;45(Suppl. 1):569 res.

10. Schlueter N, Duran A, Klimk J, Ganss C. Investigation of the effect of various fluoride compounds and preparations thereof on erosive tissue loss in enamel in vitro. Caries Res 2009;43:10–6.

11. Magalhães AC, Jorge Jr AM, Delbem AC, Buzalaf MA. Effect of 4% titanium tetrafluoride solution on dental erosion: an in situ/ex vivo study. Arch Oral Biol 2008;53:399–404.

12. Yu H, Attin T, Wiegand A, Buchalla W. Effects of various fluoride solutions on enamel erosion in vitro. Caries Res 2010;44:390–401.

13. Magalhães AC, Buzalaf MA. Effect of an experimental 4% titanium tetrafluoride varnish compared to NaF varnishes and 4% TiF4 solution on dental erosion by a soft drink. J Dent 2007;35:858–61.

14. Magalhães AC, Wiegand A, Attin T, Buzalaf MA. The effect of an experimental 4% TiF4 varnish compared to NaF varnishes and 4% TiF4 solution on dental erosion in vitro. Caries Res 2008;42:269–74.

15. Hove L, Holme B, Øgaard B, Willumsen T, Tveit AB. The protective effect of TiF4, SnF2 and NaF on erosion of enamel by hydrochloric acid in vitro measured by white light interferometry. Caries Res 2006;40:440–3.

16. Hove LH, Holme B, Øgaard B, Willumsen T, Tveit AB. The erosion-inhibiting effect of TiF4, SnF2, and NaF solutions on pellicle-covered enamel in vitro. Acta Odontol Scand 2007;65:259–64.

17. Hove LH, Holme B, Øgaard B, Willumsen T, Tveit AB. The protective effect of TiF4, SnF2 and NaF against erosion-like lesions in situ. Caries Res 2008;42:68–72.

18. Hove LH, Holme B, Stenhagen KR, Tveit AB. Protective effect of TiF4 solutions with different concentrations and pH on development of erosion-like lesions. Caries Res 2011;45:64–8.

19. Wiegand A, Bichsel D, Magalhães AC, Becker K, Attin T. Effect of sodium, amine and stannous fluoride at the same concentration and different pH in vitro. J Dent 2009;37:591–5.

20. Schlueter N, Klimk J, Ganss C. Efficacy of an experimental tin fluoride-containing solution in erosive tissue loss in enamel and dentine in situ. Caries Res 2009;43:415–21.

21. White AJ, Gracia LH, Barbour ME. Inhibition of dental erosion by casein and casein-derived proteins. Caries Res 2011;45:13–20.

22. Rees J, Loyn T, Chadwick B. Pronamel and tooth mousse: an initial assessment of erosion prevention in vitro. J Dent 2007;35:355–7.

23. Poggio C, Lombardini M, Dagna A, Chiesa M, Bianchi S. Protective effect of enamel demineralization of a CPP-ACP paste: an AFM in vitro study. J Dent 2009;37:949–54.

24. Vieira A, Ruben JL, Huysmans MC. Effect of titaniufluoride, amine fluoride and fluoride varnish on enamel erosion in vitro. Caries Res 2005;39:371–9.

25. Levy FM, Magalhães MF, Comar LP, Rios D, Buzalaf MA. The erosion and abrasion-inhibiting effect of TiF4 and NaF varnishes and solutions on enamel in vitro. Int J Paediatr Dent 2012;22:11–6.

26. Magalhães AC, Rios D, Honório HM, Delbem AC, Buzalaf MA. Effect of 4% titanium tetrafluoride solution on the erosion of permanent and deciduous human enamel: an in situ/ex vivo study. J Appl Oral Sci 2009;17:56–60.

27. West NX, Davies M, Amaechi BT. In vitro and in situ erosion models for evaluating tooth substance loss. Caries Res 2011;45(Suppl. 1):543–52.

28. Huysmans MC, Chew HP, Ellwood RP. Clinical studies of dental erosion and erosive wear. Caries Res 2011;45(Suppl. 1):560–8.

29. Hjortsjö C, Jonski G, Thrane PS, Saxegaard E, Young A. Effect of stannous fluoride and dilute hydrofluoric acid on early enamel erosion over time in vivo. Caries Res 2009;43:449–54.

30. Hjortsjö C, Jonski G, Thrane PS, Saxegaard E, Young A. The effects of acidic fluoride solutions on early enamel erosion in vivo. Caries Res 2009;43:126–31.

31. Gartlehner G, Hansen RA, Nissman D, Lohr KN, Carey TS. Criteria for distinguishing effectiveness from efficacy trials in systematic reviews. In: Technical Reviews, No. 12. Rockville (MD): Agency for Healthcare Research and Quality (US), 2006.

32. Schlueter N, Hara A, Shellis RP, Ganss C. Methods for the measurement and characterization of erosion in enamel and dentine. Caries Res 2011;45(Suppl. 1):S13nd c.

33. Bellamy PG, Harris R, Date RF, et al. In situ clinical evaluation of a stabilized, stannous fluoride dentifrice. Int J Dent 2014;64(Suppl. 1):S53–S60.

34. Paepkega AM, Day TN, Boulding A, Harris R, Barker ML, Bellamy PG. In vitro comparison of stannous fluoride, sodium fluoride, and sodium monofluorophosphate dentifrices in the prevention of enamel erosion. J Clin Dent 2013;24:73–8.

35. Ganss C, Schlueter N, Hardt M, Schattenberg P, Klimk J. Effect of fluoride compounds on enamel erosion in vitro: a comparison of amine, sodium and stannous fluoride. Caries Res 2008;42:2–7.

36. Young A, Thrane PS, Saxegaard E, Jonski G, Rölla G. Effect of stannous fluoride toothpaste on erosion-like lesions: an in vivo study. Eur J Oral Sci 2006;114:180–3.

37. Eversole SL, Saunders-Burkhartt K, Faller RV. Erosion protection comparison of stabilized SnF2, mixed fluoride active and SMFP/arginine-containing dentifrices. Int J Dent 2014;64(Suppl. 1):S22–8.

38. Hooper S, Seong J, Macdonald E, et al. A randomised in situ trial, measuring the anti-erosive properties of a stannous-containing sodium fluoride dentifrice compared with a sodium fluoride/potassium nitrate dentifrice. Int J Dent 2014;64(Suppl. 1):S35–42.

39. Faller RV, Eversole SL. Enamelement protection from acid challenge benefits of marketed fluoride dentifrices. J Clin Dent 2013;24:25–30.

40. Rakhmatullina E, Beyerer B, Lussi A. Inhibition of enamel erosion by stannous and fluoride containing rinsing solutions. Schweiz Monatsschr Zahnmed 2013;123:192–8.

41. Ganss C, Neutard L, von Hinckeldey J, Klimek J, Schlueter N. Efficacy of a tin/fluoride rinse: a randomized in situ trial on erosion. J Dent Res 2010;89:1214–8.

42. Wiegand A, Waldheim E, Sener B, Magalhães AC, Attin T. Comparison of the effects of TiF4 and NaF solutions at pH 1.2 and 3.5 on enamel erosion in vitro. Caries Res 2009;43:269–77.

43. Schlueter N, Ganss C, Mueller U, Klimk J. Effect of titanium tetrafluoride and sodium fluoride on erosion progression in enamel and dentine in vitro. Caries Res 2007;41:141–5.

44. Hooper SM, Newcombe RG, Faller R, Eversole S, Addy M, West NX. The protective effects of toothpaste against erosion by orange juice: studies in situ and in vitro. J Dent 2007;35:476–81.

45. Schlueter N, Klimk J, Ganss C. Effect of stannous and fluoride concentration in a mouth rinse on erosive tissue loss in enamel in vitro. Arch Oral Biol 2009;54:432–4.

46. Colditz GA, Burdick E, Mosteller F. Heterogeneity in meta-analysis of data from epidemiological studies: a commentary. Am J Epidemiol 1995;142:371–82.