Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells

S Matsumoto1*, Y Imaeda1, S Umemoto1, K Kobayashi1,2, H Suzuki1 and T Okamoto2

1Department of Surgery, Second Teaching Hospital, School of Medicine, Fujita Health University, 3-6-10 Otaibashi, Nakagawa-ku, Nagoya 454-8509, Japan; 2Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasaki, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan

Cimetidine has been shown to have beneficial effects in colorectal cancer patients. In this study, a total of 64 colorectal cancer patients who received curative operation were examined for the effects of cimetidine treatment on survival and recurrence. The cimetidine group was given 800 mg day−1 of cimetidine orally together with 200 mg day−1 of 5-fluorouracil, while the control group received 5-fluorouracil alone. The treatment was initiated 2 weeks after the operation and terminated after 1 year. Robust beneficial effects of cimetidine were noted: the 10-year survival rate of the cimetidine group was 84.6% whereas that of control group was 49.8% (P < 0.0001). According to our previous observations that cimetidine blocked the expression of E-selectin on vascular endothelium and inhibited the adhesion of cancer cells to the endothelium, we have further stratified the patients according to the expression levels of sialyl Lewis antigens X (sLX) and A (sLA). We found that cimetidine treatment was particularly effective in patients whose tumour had higher sLX and sLA antigen levels. For example, the 10-year cumulative survival rate of the cimetidine group with higher CSLEX staining, recognizing sLX, of tumours was 95.5%, whereas that of control group was 35.1% (P = 0.0001). In contrast, in the group of patients with no or low levels CSLEX staining, cimetidine did not show significant beneficial effect (the 10-year survival rate of the cimetidine group was 70.0% and that of control group was 85.7% (P = n.s.). These results clearly indicate that cimetidine treatment dramatically improved survival in colorectal cancer patients with tumour cells expressing high levels of sLX and sLA.

Keywords: colorectal cancer; cancer metastasis; sialyl Lewis antigens; cell adhesion; cimetidine

We demonstrated in a previous randomized control study that cimetidine, a histamine type 2 receptor antagonist, was significantly advantageous in increasing the disease-free period and survival of these patients (Matsumoto, 1995). Cimetidine was given to colorectal cancer patients receiving 5-fluorouracil (5-FU) after operation with the aim of reducing appetite loss and reflux esophagitis. Two other study groups reported similar advantageous effect of cimetidine on colorectal cancer patients (Adams and Morris, 1994; Svendsen et al., 1988). Furthermore, treatment with cimetidine was reported to be beneficial for patients with gastric cancer (Tonnesen et al., 1988), melanoma (Creagan et al., 1985; Hellstrand et al., 1994) or renal cell cancer (Sagaster et al., 1995).

Several studies have suggested various mechanisms underlying the beneficial effect of cimetidine on cancer patients, such as the following: (i) reversal of the pharmacological activity of histamine, tumour growth promoter by blocking histamine receptors on cancer cells (Adams et al, 1994; Reynolds et al, 1996) or affecting histamine metabolism (Garcia-Caballero et al, 1994); (ii) acting as an antioxidant, thus inhibiting tumour growth (Kimura et al, 1986) and (iii) augmentation of anticancer immune reactivity through receptor antagonism of circulatory suppressor T cells (Kumar, 1990), prevention of postoperative alterations of lymphocyte subpopulations (Hansbrough et al, 1986), or by maintenance of natural killer cell activity (Katoh et al, 1996). In our study, we found that cimetidine could block the expression of E-selectin on the surface of human umbilical vein endothelial cells, thus blocking the tumour cell adhesion to endothelium and preventing the liver metastasis in nude mice model (Kobayashi et al, 2000). Such findings were not known when we had planned this prospective randomized control study. But now, it is known that sialyl Lewis-X (sLX) and sialyl Lewis-A (sLA) antigens are ligands to E-selectin, and sLX and sLA expressed on cancer cells mediate adhesion of the cancer cells to vascular endothelial cells expressing E-selectin (Phillips et al, 1990; Takada et al, 1991, 1993). The adhesion of cancer cells to vascular endothelial cells is a key step in invasion and metastasis of cancer cells (Hoff et al, 1989, 1990; Nakamori et al, 1993). Therefore, we decided to classify the subjects according to the level of expression of sLX and sLA on cancer cells and we investigated 10-year survival that was the major objects of this clinical study. We examined whether the effect of cimetidine on cancer patients was correlated with the degree of expression of sLX and sLA on tumour cells in 61 colorectal cancer patients in our randomized control study (Matsumoto, 1995). Treatment with cimetidine markedly reduced the incidence of metastasis and significantly increased survival during a follow-up period of more than 10 years in patients whose tumour cells expressed sLX and sLA epitopes at increased levels.
MATERIALS AND METHODS

Patients

This randomized control study was performed on colorectal cancer patients in a multicentre clinical trial of cimetidine. The clinical trial was conducted through the collaboration of 15 institutions in Japan listed at the end of the text. The coordination centre for the trial was the Department of Surgery, Second Teaching Hospital, School of Medicine, Fujita Health University. It was carried out with the approval of Fujita Health University Ethical Committee. A total of 72 patients who were diagnosed colorectal cancer by histological examination and had a primary tumour of T2 or T3 were enrolled after excluding patients who previously received chemotherapy, radiotherapy or immunotherapy and those who had multiple cancers or severe complications. Out of the 72 selected, patients who did not undergo curative resection (two patients), those who did not receive adequate drug administration (three patients), and whose disease stage was considered inappropriate for the trial (three patients) were further considered ineligible. These ineligible patients were equally distributed between the treatment groups and were excluded from the analysis. All patients were randomly allocated and there were none lost to follow-up. All 64 eligible patients gave informed consent to take part in the clinical trial and were enrolled for the trial from March 1990 to April 1992 (Table 1). The patients were followed up until the end of May 2000, with a mean follow-up term of 10.7 years. During the follow-up period, the patients were checked at least twice a year for occurrence of metastasis as well as for blood chemistry, X-ray, ultrasonography and computed tomography. Survival was the primary endpoint. Time to recurrence (disease-free period) was also assessed.

Treatment of the patients

The 64 patients were classified into two groups consisting of 34 and 30 for the treatment and control group, respectively. There were no differences in age, sex, clinical characteristics and macroscopic shape, size, location, stage and pathological type of the cancer between the two groups (Table 1). All patients received curative resection of the cancer and within 24 h of the resection, were intravenously injected with 8 mg m^{-2} of mitomycin C (Kyowa Hakko, Inc, Tokyo, Japan). The patients in the cimetidine group (n=34) were given 800 mg day^{-1} of cimetidine orally (SmithKline Beecham, Co., Tokyo, Japan) together with 200 mg day^{-1} of 5-FU orally (Kyowa Hakko, Inc.), while patients in the control group (n=30) received 5-FU alone. Treatment for both groups started 2 weeks after the operation and was given for 1 year.

Immunostaining of slx and sla on cancer cells

Cancer tissues, which had been resected by the curative operation and embedded in paraffin, were used for immunostaining of slx and sla. A total of 61 specimens were processed since we lost the specimens of two patients in the treatment group and of one patient in the control group. Immunostaining was performed by the avidin biotin complex method. Three different anti-slx monoclonal antibodies (mAbs), CSLEX (Signet Lab., Dedham, MA, USA) (Fukushima et al, 1984), KM93 (Kyowa Hakko, Inc) (Shirata et al, 1987) and FH6 (Otsuka Pharmaceutical Co., Osaka, Japan) (Fukushi et al, 1984) were used. The CA19-9 mAb (CIS Bio International, Cedex) (Charpin et al, 1982) was used as the anti-sla mAb. Cancer tissues in paraffin blocks were sectioned. The sections were deparaffinized in xylene, dehydrated through graded concentrations of ethanol and washed with distilled water. After treatment of the sections with bovine serum albumin to block nonspecific

Table 1

| Characteristics of colorectal cancer patients in the cimetidine group and control group |
|---------------------------------|-----------------|-----------------|--------|
| | Cimetidine group (n=34) | Control group (n=30) | P value |
| Gender | | | |
| Male | 20 | 15 | 0.479 |
| Female | 14 | 15 | |
| Median (range) age in years | 60 (43 – 74) | 57 (25 – 74) | 0.180 |
| Mean size | 52.0 | 53.6 | 0.841 |
| Macroscopic type* | | | |
| Protuberant type | 2 | 4 | 0.550 |
| Ulcerated type with clear margin | 26 | 23 | |
| Ulcerated type with infiltration | 5 | 3 | |
| Others | 1 | 0 | |
| Location | | | |
| Colon | 27 | 19 | 0.175 |
| Rectum | 7 | 11 | |
| Pathological type | | | |
| Well differentiated adenocarcinoma | 24 | 22 | 0.691 |
| Moderately differentiated adenocarcinoma | 8 | 6 | |
| Poorly differentiated adenocarcinoma | 1 | 0 | |
| Mucinous adenocarcinoma | 1 | 2 | |
| Histological stage* | | | |
| 1 | 2 | 3 | 0.524 |
| 2 | 18 | 13 | |
| 3 | 11 | 8 | |
| 4 | 3 | 6 | |
| Dukes’ stage | | | |
| A | 2 | 3 | 0.701 |
| B | 19 | 14 | |
| C | 13 | 13 | |

*Japanese classification according to Japanese Society for Cancer of the Colon and Rectum.
binding of the primary mAb, the sections were incubated in either one of the anti-sLe\(^x\) mAbs or the anti-sLe\(^a\) mAb for 2 h. The sections were rinsed with phosphate buffered saline (PBS), and then incubated in biotinylated anti-mouse immunoglobulin serum (Vector Lab, Burlingame, CA, USA) for 30 min. After washing with PBS, the sections were immersed in 0.3% (wt/vol) hydrogen peroxide in absolute methanol for 20 min to block endogenous peroxidase. The sections were again washed with PBS and incubated in avidin-conjugated horseradish peroxidase (Vector Lab) for 30 min, and then washed with PBS. Finally, the sections were incubated in peroxidase substrate solution until the desired stain intensity had developed (1 to 5 min). After washing with distilled water, the sections were counterstained with hematoxylin, dehydrated in ethanol, washed in xylene and mounted.

Determination of degree of sLe\(^x\) and sLe\(^a\) expression on cancer cells

By microscopic observation of the predominant area of the cancer tissue in the immunostained section, the percentage of positively stained cancer cells was calculated. Two pathologists observed the specimens and determined degrees of sLe\(^x\) and sLe\(^a\) expression. The degrees of expression of sLe\(^x\) and sLe\(^a\) based on the percentage of positively stained cancer cells were presented as follows: level 0, no stained cancer cells; level 1, less than 5% cancer cells stained; level 2, 5–70% cancer cells stained; level 3, 71% or more cancer cells stained. We defined the classification of patients according to the degree of sLe\(^x\) and sLe\(^a\) expression as such based on our observations that the number of cases with tumours exhibiting low-positively staining cancer cells in each category was very few. For example, among the cases with level 2 for CSLEX, 19 out of 21 cases (90%) exhibited the tumour with over 60% positively stained cancer cells. There was no case exhibited where the tumour tissue with less than 10% stained cancer cells with any of the sialyl Lewis antigens.

Statistical analyses

Cumulative survival rate was calculated by the Kaplan-Meier method. Statistical significance of the difference in the survival rate of patients between two categories was evaluated by the log rank test or the generalized Wilcoxon test. Differences in metastasis frequency were calculated by Fisher’s exact \(t\)-test. A \(P\) value of <0.05 was considered significant.

RESULTS

Cimetidine treatment increases survival of colorectal cancer patients

Among the 64 patients with curative operation, 34 cases were classified into the cimetidine group (800 mg day\(^{-1}\)) of cimetidine orally for 1 year) and 30 cases served as the control group (without cimetidine treatment). All the patients were treated with 5-FU (200 mg day\(^{-1}\)) for 1 year. In order to evaluate the effect of cimetidine, the survival rates were compared between these two groups (Figure 1). The cumulative 10-year survival rate of the cimetidine group \((n=34)\) was 84.6%, whereas that of control group \((n=30)\) was 49.8% \((P=0.0015\) by log rank test and \(P=0.0010\) by generalized Wilcoxon test).

We then evaluated the effects of cimetidine according to the clinical stage of colorectal cancer. As shown in Figure 2, the effect of cimetidine on the survival of patients with involvement of regional lymph nodes, thus classified as Dukes C, was remarkably significant. The cumulative 10-year survival rate of the cimetidine group of Dukes C patients \((n=13)\) was 84.6%, whereas that of the control group \((n=13)\) was 23.1% \((P=0.0016\) by log rank test; \(P=0.0026\) by generalized Wilcoxon test). In contrast, the effect of cimetidine on the survival of patients at Dukes A or B classification were not statistically significant, although there was some beneficial

![Figure 1](image-url)
Figure 1 Effect of cimetidine on the survival of patients with colorectal cancers. Patients who were treated with cimetidine and 5-FU (‘cimetidine’ group) and 5-FU alone (‘control’ group) were compared by Kaplan-Meier method. The cumulative 10-year survival rate of the cimetidine group \((n=34)\) was 84.6%, whereas that of control group \((n=30)\) was 49.8% \((P=0.0015\) by log rank test and \(P=0.0010\) by generalized Wilcoxon test).
tendency for the cimetidine group (the cumulative 10-year survival rate of the cimetidine group \(n = 21 \)) was 90.5%, whereas that of the control group \(n = 17 \) was 69.5% (not significant both by log rank and the generalized Wilcoxon tests).

Cimetidine reduces frequency of metastasis in colorectal cancer patients

The incidence of new metastasis in colorectal cancer patients over a period of 10 years after curative resection of the tumour was compared between the two study groups; the cimetidine group (treated with cimetidine and 5-FU) and a control group (treated with 5-FU alone). In the cimetidine group \(n = 34 \), eight metastases occurred in seven patients, whereas in the control group \(n = 30 \), 23 metastases occurred in 16 patients. The frequency and location of metastases in these colorectal cancer patients are shown in Table 2. Overall incidence of metastasis was significantly reduced in the cimetidine \(P = 0.0060 \) by Fisher’s t-test).

Cimetidine treatment increases survival of colorectal cancer patients with high-level sLx or sLa epitope expression on tumour cells

Expression of sLx and sLa on cancer cells was determined by immunostaining of tumour tissues with anti-sLx and anti-sLa monoclonal antibodies (mAbs). The patients were grouped according to the level of expression of sLx or sLa on their tumour cells as described in Materials and methods.

The effect of cimetidine on the survival of patients was evaluated with regard to the level of sLx and sLa antigens. The cumulative survival rates of patients, with or without cimetidine, based on the CSLEX epitope expression were demonstrated in Figure 3A. In patients with high CSLEX expression (levels 2 or 3), the cumulative 10-year survival rate of the cimetidine group \(n = 22 \) was 95.5% whereas that of control group \(n = 22 \) was 35.1% \(P = 0.0016 \) by log rank test and generalized Wilcoxon test). In contrast, patients with no (level 0) or low (level 1) CSLEX expression, the cumulative 10-year survival rate of the cimetidine group \(n = 10 \) was 70.0 and 85.7% for the control group \(n = 7 \), (not significant by log rank and generalized Wilcoxon tests).

Cimetidine had a similar positive effect on the survival rate of patients with high-level KM93 sLx or CA19-9 sLa epitopes expression on their tumours. The results of survival based on KM93 mAb expression were shown in Figure 3B. In patients with high KM93 expression, the cumulative 10-year survival rate of the cimetidine group \(n = 25 \) was 88.0%, whereas that of the controls \(n = 22 \) was 35.1% \(P = 0.0001 \), log rank test; \(P = 0.0002 \), generalized Wilcoxon test). In contrast, in patients with low level or no KM93 expression, the cumulative survival rates were equal for the cimetidine \(n = 10 \) and the control \(n = 7 \) (85.7% for both).

Similarly, the results of survival according to CA19-9 mAb expression were shown in Figure 3D. In patients with high level of sLa expression, the cimetidine treatment was effective: the cumulative 10-year survival rate for the cimetidine \(n = 22 \) and the control \(n = 18 \) groups were 90.9 and 20.1%, respectively \(P = 0.0001 \). However, for patients with no or low level sLa expression, there was no beneficial effect of the cimetidine treatment: cumulative 10-year survival rate for the cimetidine group \(n = 11 \) was 80.0 and 90.9% for the control group (statistically not significant).

Figure 2 Effect of cimetidine on the survival of patients with colorectal cancer according to the Dukes classification. Dukes A and B, localized cancer limited to mucosa and submucosa (A) and extending through serosa without lymph node metastasis (B). Dukes C, cancers involving regional lymph nodes. Note that the beneficial effects of cimetidine were greater in patients with Dukes C: the cumulative 10-year survival rate of the cimetidine group \(n = 13 \) was 84.6%, whereas that of control group \(n = 13 \) was 23.1% \(P = 0.0016 \) by log rank test and \(P = 0.0026 \) by generalized Wilcoxon test).
The effect of cimetidine on patients' survival was not always correlated with the level of Slx and Slα epitopes. As shown in Table 2, frequency and location of metastasis in colorectal cancer patients in the cimetidine group and control group.

Table 2: Frequency and location of metastasis in colorectal cancer patients in the cimetidine group and control group

Location of metastasis	Cimetidine group (n=34)	Control group (n=30)
Liver	3	3
Lung	1	1
Bone	0	0
Brain	0	2
Local metastasis or region of anastomosis	2	5
Para-aortic LN	0	1
Left supra clavicular LN	2	1
Peritoneum	1	1
Ovary	0	1
Total	8d	23e

*34 colorectal cancer patients who received cimetidine and 5-FU after curative resection of tumour. *30 colorectal cancer patients who received 5-FU alone after curative resection of tumour. LN, lymph node. *3 Metastases occurred in seven patients. *23 metastases occurred in 16 patients.

DISCUSSION

Adhesion of cancer cells via their Slx or Slα antigen to E-selectin on vascular endothelium is considered to lead to metastasis. Based on our recent observations that cimetidine blocked in vitro expression of E-selectin on the surface of vascular endothelial cells as reported by Kobayashi et al., we examined in this study whether the beneficial effect of cimetidine on colorectal cancer patients was dependent on the degree of expression of Slx and Slα on the tumour cells.

In the control group patients (treated with 5-FU alone after curative operation) of these studies, we noticed that the patients with...
Cimetidine increases survival of colorectal cancer
S Matsumoto et al

REFERENCES

Adams WJ, Lawson J, Morris DL (1994) Cimetidine inhibits in vivo growth of human colon cancer and reverses histamine stimulated in vitro and in vivo growth. Gut 35: 1632 – 1636

Adams WJ, Morris DL (1994) Short-course cimetidine and survival with colorectal cancer. Lancet 344(8939 – 8940): 1768 – 1769

Chapin C, Bhan AK, Zaravour J, Scully RE (1982) Carcinoembryonic antigen (CEA) and carbohydrate determinant 19-9 (CA 19-9) localization in 121 primary and metastatic ovarian tumors: an immunohistochemical study with the use of monoclonal antibodies. Int J Gynecol Pathol 1: 231 – 245

Creagan ET, Ahmans DL, Green SJ, Long HI, Frytak S, Itri ML (1985) Phase II study of recombinant leukocyte A intereron (IFN-RA) plus cimetidine in disseminated malignant melanoma. J Clin Oncol 3: 977 – 981

Dohi T, Nemoto T, Ohta S, Shirata K, Hanai N, Nudelman E, Hakomori S, Ohshima M (1993) Different binding properties of three monoclonal antibodies to sialyl Le(x) glycolipids in a gastric cancer cell line and normal stomach tissue. Anticancer Res 13: 1277 – 1282

Fukushi K, Hirota M, Terasaki PI, Wakisaka A, Togashi H, Chia D, Suzuki M, Naredi P, Lindner P, Lundholm K, Rudenstam CM, Hermodson M, Ohnishi S (1994) Histamine synthesis and content in benign and malignant breast tumors. Its effects on other host tissues. Surg Oncol 3: 167 – 173

Hansson B, Zapata-Sirvent RL, Bender EM (1986) Prevention of alterations in postoperative lymphocyte subpopulations by cimetidine and ibuprofen. Am J Surg 151: 249 – 255.7

Hellstrand K, Naredi P, Lindner P, Lundholm K, Rudenstam CM, Hermodeson S, Asztely M, Hafstrom L (1994) Histamine in immunotherapy of advanced melanoma: a pilot study. Cancer Immunol Immunother 9: 416 – 419

not in the patients whose cancer cells expressed none or lower levels of these epitopes, although such a cancer was considered to be less aggressive. Colorectal cancer cells expressing higher levels of SLx and SLa should adhere easily to vascular endothelium expressing E-selectin, and this would then result in metastasis, a marker of malignancy. If cimetidine given to the patients blocked the expression of E-selectin on vascular endothelial cells, even malignant colorectal cancer cells expressing higher levels of SLx and SLa would not be able to adhere to such vascular endothelial cells. In this situation, the frequency of metastasis in the patients would be reduced and the survival rate of the patients increased. Taken together, these results suggested a mechanism underlying the beneficial effect of cimetidine on colorectal cancer patients, presumably by blocking the expression of E-selectin on vascular endothelial cells and inhibiting the adhesion of cancer cells.

These results with cimetidine suggest that the cognate interaction of SLx and SLa antigens with E-selectin provides a novel target for prevention of cancer progression. It is likely that cimetidine treatment may also be effective for a range of other SLx- and SLa-expressing tumours, such as oesophageal, gastric, pulmonary, pancreatic, biliary tract, uterine, ovarian and breast cancer. Our study was so small a number scale that further-large-scale study should be investigated to assess the effect of cimetidine to colon cancer with high expression of sialyl Lewis antigens.

ACKNOWLEDGEMENTS

We would like to thank K Saito for critical comments on the manuscript. We would also like to express our gratitude for cooperation of the Study Group of the Multicentre Clinical Study on cimetidine (Chair of Study Administration: S Matsumoto; Administrator, S Kodaira) involving 15 participating institutions (principal investigator: Fujita Health University, Second Teaching Hospital (S Matsumoto, S Unemoto), Fujita Health University Hospital (M Ochiai), Hamamatsu Medical School (S Baba), Hamamatsu Red Cross Hospital (K Okuda, M Sumiyama), Shizuoka Red Cross Hospital (J Miyata, K Ando), Toyota Chiiki Medical Centre (A Seto), Oridio Hospital (K Takayama), Ooshima Hospital (K Nagai), Ootawara Red Cross Hospital (T Amemiya), Haga Red Cross Hospital (M Kojima), Mitro Red Cross Hospital (M Sakuma), Saitama Chuo Hospital (K Maeda, Y Hosoda), Inagi City Hospital (E Kurihara), Kawasaki City Ida Hospital (S Sadahiro, Kawa- hara), Teikyo University Hospital (S Kodaira). This work was supported in part by grants-in-a-ids for Scientific Research from the Ministry of Education, Science, Sports, and Culture and the Ministry of Health and Human Welfare in Japan.
Hoff SD, Matsushita Y, Ota DM, Cleary KR, Yamori T, Hakomori S, Irimura T (1989) Increased expression of sialyl-dimeric Le^x antigen in liver metastasis of human colorectal carcinoma. *Cancer Res* 49: 6883–6888

Hoff SD, Irimura T, Matsushita Y, Ota DM, Cleary KR, Hakomori S (1990) Metastatic potential of colon carcinoma: Expression of ABO/ Lewis-related antigens. *Arch Surg* 125: 206–209

Katoh J, Tsuchiya K, Sato W, Nakajima M, Iida Y (1996) Cimetidine and immunoreactivity. *Lancet* 348: 404–405

Kimura E, Koike T, Shimizu Y, Kodama M (1986) Complexes of the histamine H2-antagonist cimetidine with divalent and monovalent copper ions. *Inorg Chem* 25: 2242–2246

Kobayashi K, Matsumoto S, Morishima T, Kawabe T, Okamoto T (2000) Cimetidine inhibits cancer cell adhesion to endothelial cells and prevents metastasis by blocking E-selectin expression. *Cancer Res* 60: 3978–3984

Kumar A (1990) Cimetidine: an immunomodulator. *Ann Pharmacother* 24: 289–295

Matsumoto S (1995) Cimetidine and survival with colorectal cancer. *Lancet* 346: 115

Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, Kabuto T, Imanaga T, Matsushita Y, Irimura T (1993) Increased expression of sialyl Lewis^x antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. *Cancer Res* 53: 3632–3637

Phillips ML, Nudelman E, Gaeta FCA, Perez M, Singhal AK, Hakomori S, Paulson JC (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl- Le^a*. *Science* 250: 1130–1132

Reynolds JL, Ahkter J, Morris DL (1996) In vitro effect of histamine and histamine H1 and H2 receptor antagonists on cellular proliferation of human malignant melanoma cell lines. *Melanoma Res* 6: 95–99

Sagaster P, Miikkusu M, Flamm J, Ludwig H (1995) Randomized study using IFN-alpha versus IFN-alpha plus coumarin and cimetidine for treatment of advanced renal cell cancer. *Ann Oncol* 6: 999–1003

Shirata K, Hanai N, Yoshida H (1987) Distribution of lung adenocarcinoma-associated antigens in human tissues and sera defined by monoclonal antibodies KM-32 and KM-93. *Cancer Res* 47: 1267–1272

Srinivas U, Pahlsson P, Lundblad A (1996) E-selectins: sialyl Lewis a dependent adhesion of colon cancer cells is inhibited differently by antibodies against E-selectin ligands. *Scand J Immunol* 44: 197–203

Svendsen LB, Ross C, Knigge U, Frederiksen HJ, Graverse P, Kjaergard J, Luke M, Stimpel H, Sparso BH (1995) Cimetidine as an adjuvant treatment in colorectal cancer. *Dis Colon Rectum* 38: 514–518

Takada A, Ohmori K, Takahashi N, Tsuyuoka K, Yago A, Zenita K, Hasegawa A, Kannagi R (1991) Adhesion of human cancer cells to vascular endothelium mediated by carbohydrate antigen, sialyl Lewis^A*. *Biochim Biophys Acta* 1179: 713–719

Takada A, Ohmori K, Yoneda T, Tsuyuoka K, Hasegawa A, Kiso M, Kannagi R (1993) Contribution of carbohydrate antigens sialyl Lewis-A and sialyl Lewis-X to adhesion of human cancer cells to vascular endothelium. *Cancer Res* 53: 354–361

Tonnesen H, Knigge U, Bulow S, Damm P, Fisherman K, Hasselfeldt P, Hjortrup A, Pedersen VM, Siemsson C, Svendsen LB, Christiansen PM (1988) Effect of cimetidine on survival after gastric cancer. *Lancet* 2: 990–992