Screening of Polyphenol Composition and Antiradical Capacity of Wild Erica arborea: A Native Plant Species from the Portuguese Flora

Alfredo Aires¹ and Rosa Carvalho²

¹Centre for the Research and Technology for Agro-Environment and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
²Agronomy Department, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal

Abstract

With this study, we aimed to determine the polyphenol composition and antiradical activity of activity of Erica arborea a native plant species from the Portuguese and Mediterranean flora and often reported as having important bioactivities, but without consistent scientific evidences. The analysis of polyphenol profile and content was performed by HPLC-DAD/UV-Vis and in vitro bioassay of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS²⁺) method was used to evaluate the radical scavenging activity. The HPLC analysis showed a great diversity of compounds. E. arborea presented high contents in flavonols (52%) and flavanols (25%) and the average content of antiradical activity higher than 85%. The polyphenols identified are often associated by literature as having protective properties and protective effect against of degenerative and inflammatory processes, thus, our findings confirm the empirical health properties often associated to this endemic plant. Therefore, based in our study the E. arborea can be used to extract and purify phytochemicals with potentially beneficial effects on health.

Keywords: Endemic flora; Phytochemicals; Bioactivities; Pharmaceutical value

Introduction

The genus Erica is the largest genus of the family Ericaceae with 67 genera with 1,400 species mainly confined to the Europe and Asia [1]. Erica arborea (white flowers) are member of this family and are largely present in the mountains of Northern Portugal and Spain, but it is possible to find in other areas of Mediterranean basin. Despite this predominance in these regions no systematic studies have been made, at least to our knowledge, about their phytochemical composition and biological potential. Although, it is well known that Ericaceae species are used for centuries in folk medicine to treat urinary tract infections and other inflammatory diseases [2-4], none of their claimed properties were consistently proven. Different studies have shown that Ericaceae plants contain a larger number of biologically active secondary metabolites, including terpenoids, tannins and polyphenols [5-7]. Recently, investigations have shown that Ericaceae plants such as Arbutus unedo and Erica australis, largely present in the same region, are used in folk medicine as infusions and teas to treat diabetes, hypertension, prostate inflammation, bladder, kidneys diseases, and they are claimed to have anti-inflammatory and sedative properties [8-11]. It was also found that E. arborea displayed remarkable anti-inflammatory and antinociceptive activities due to its richness in phytochemicals, particularly phenolic acids, flavonoids and tannins which seems to be responsible for the high antiradical activities observed [12]. Another studies with other Ericaceae plant species, Gaultheria procumbens and Gaultheria leucocarpa, showed that high content of salicylic acid derivatives, especially methyl salicylate, might be responsible for its claimed strong anti-inflammatory and anti-rheumatoid properties [13,14]. Despite the large presence of these shrubs in Portugal and Iberian landscapes, no comprehensive profile of these species has been reported. Moreover, their putative beneficial effects are highly speculative, and no systematic and consistent study have been made to correlate their bioactivities with full phytochemical characterization, particularly polyphenols. In fact, polyphenols have been associated with important beneficial effects in the human health. In the past recent decades, epidemiological studies have shown that polyphenols have several biological benefits, such as reducing the risk of appearance of chronic diseases, scavenging oxidative and toxic free radicals, antiaging and antimicrobial properties. The objective of the present study was to characterize the phenolic composition of E. arborea by HPLC-DAD/UV-Vis and to investigate their biological value by an in vitro radical scavenging activity. This information will help to clarify if both plants can be used as natural source of phytochemicals by pharmaceutical and agro-food industry.

Materials and Methods

Plant material and sampling

One kilogram of fresh weight of Erica arborea (leaves and flowers) were collected during the spring season at April 2015 in the natural open fields in Northern Portugal, Vila Real Region (400 meters of altitude), Natural Park of Alvão (N 41°17'35.538", W 7°44'29.6268°). After harvest, the fresh samples were properly and botanically identified and dried in a freeze-drier system (UltraDrySystemsTM, USA), milled and reduced to a fine powder, and stored in dark flasks at 4 °C in a dark environment until extraction. Fresh and dry weight were registered and the amount of dry matter was determined. Three replications were taken from independent biological samples.

Extraction procedure

One hundred mg of powdered dry samples were placed in a screw cap tubes (10 mL) and mixed with 10 mL of 70% aqueous methanol (methanol:water). Each mixture was vigorously agitated in a vortex (Genie 2, Fisher Scientific, UK), heated at 70 °C (1083, GFL-Gesells...
A positive control with high recognized antioxidant and antiradical activity, the ascorbic acid, was included in the AA assay.

Statistical analysis

All determinations were carried out in triplicate and the results were expressed as mean values ± standard deviation (SD). The Software SPSS v.17 (SPSS-IBM, Orchard Road-Armonk, New York, USA) was used to carry out these analysis.

Results and Discussion

The analysis by HPLC-DAD/UV-Vis of the methanolic extracts of E. arborea revealed the presence of different classes of polyphenols as illustrated in the Figure 1, in which is presented a typical example of chromatogram find in the current study. The quantity of each polyphenol identified in each plant extract is presented in Table 1, in which is also included the data of retention time and λ max in the visible region for each polyphenol, and in Table 2 is presented the chemical structure of each polyphenol identified. According our results, the major individual polyphenols were quercetin-3-O-rutinoside (13% of total polyphenols identified), 5-O-p-coumaroylquinic acid (12%), kaempferol-3-O-rutinoside (12%), epicatechin (11%) and myricetin-3-O-rhamnose (8%), which are reported by literature as having important bioactive properties, such antiradical and antioxidative capacity. However, our results showed a lower antiradical activity when compared to a positive control with recognized antioxidant or antiradical activity, the ascorbic acid (Figures 2 and 3), but when compared to other medicinal plants [21,22] the E. arborea showed a moderate to higher antiradical activity.

Polyphenols, antioxidant and antiradical activities have been considered parameters to measure the biological property of foods.

Table 1: Profile and contents of polyphenols, respective retention time (RI), maximum absorption (λ max) in methanolic extracts of Erica arborea (by elution order).

Polyphenols	R(t) (min)	UV detection (nm)	UV λ max (nm)	Quantity (µg g⁻¹ dw)
trans-cinnamic acid	15.72	320	317	3.5 ± 0.2
5-O-caffeyloyquinic acid	16.45	320	280, 320	6.0 ± 0.9
Gallocatechin	17.36	280	271	25.5 ± 0.9
Myricetin-3-O-glucoside	18.21	370	271, 347	56.8 ± 1.0
Myricetin-3-O-galactoside	18.32	370	276, 346	20.4 ± 0.8
Epigallocatechin	18.78	280	276	15.2 ± 0.2
Myricetin-3-O-rhamnose	19.16	370	276, 342	64.0 ± 1.1
Epicatechin	19.67	280	277	91.0 ± 0.4
Epigallocatechin gallate	19.93	280	279	38.3 ± 0.6
p-coumaroylquinic acid	20.02	320	282, 311	11.9 ± 1.0
Gallocatechin gallate	20.38	280	277	15.7 ± 2.3
Kaempferol-3-O-rutinoside	20.67	370	265, 358	97.5 ± 2.7
Kaempferol-3-O-galactoside	20.79	370	265, 356	49.4 ± 1.6
Myricitin	21.03	370	275, 341	5.8 ± 0.2
Kaempferol-3-O-glucoside	21.44	370	267, 355	11.2 ± 0.7
Epicatechin gallate	22.71	280	278	23.1 ± 0.5
Quercetin-3-O-rutinoside	22.08	370	253, 354	109.7 ± 0.2
Quercetin-3-O-galactoside	22.21	370	256, 355	8.7 ± 1.9
5-O-p-coumaroylquinic acid	22.30	320	285, 312	98.1 ± 0.1
Ellagic acid	24.56	370	354	56.4 ± 0.2
Chrysin	26.04	370	256, 313	11.3 ± 1.0
Kaempferol	26.39	370	266, 357	4.1 ± 0.4

Values expressed as mean ± standard deviation (SD) of three replicates
Table 2: Chemical structures of the main polyphenols identified Erica arborea extracts, by alphabetical order.

Polyphenols and chemical structures	Chemical Structures
5-O-caffeoylquinic acid	![5-O-caffeoylquinic acid](image1)
Gallocatechin	![Gallocatechin](image2)
Kaempferol-3-O-rutinoside	![Kaempferol-3-O-rutinoside](image3)
5-O-p-coumaroylquinic acid	![5-O-p-coumaroylquinic acid](image4)
Galloatechin gallate	![Galloatechin gallate](image5)
Myricetin-3-O-galactoside	![Myricetin-3-O-galactoside](image6)
Chrysin	![Chrysin](image7)
Epigallocatechin gallate	![Epigallocatechin gallate](image8)
Myricetin-3-O-glucoside	![Myricetin-3-O-glucoside](image9)
Ellagic acid	![Ellagic acid](image10)
Kaempferol	![Kaempferol](image11)
Myricetin-3-O-rhamnoside	![Myricetin-3-O-rhamnoside](image12)
Epicatechin	![Epicatechin](image13)
Kaempferol-3-O-galactoside	![Kaempferol-3-O-galactoside](image14)
Quercetin-3-O-galactoside	![Quercetin-3-O-galactoside](image15)
Epicatechin gallate	![Epicatechin gallate](image16)
Kaempferol-3-O-glucoside	![Kaempferol-3-O-glucoside](image17)
Quercetin-3-O-rutinoside	![Quercetin-3-O-rutinoside](image18)
In our study, extracts of *E. arborea* revealed the presence of different classes of polyphenols, often associated with anti-inflammatory activities in other plant matrices. Our results also showed that flavonoids (kaempferol, myricetin, quercetin and luteolin glycosides) and phenolic acids (chlorogenic, neochlorogenic and caffeic acids) are associated with the antiradical activity. These compounds act as scavengers of various oxidizing species such as superoxide anion, hydroxyl radical or peroxy radicals and as quenchers of singlet oxygen [23] and their antiradical capacity arise from their ability to inhibit lipid peroxidation, chelate redox-active metals, and reduce all processes involving reactive oxygen species [24]. They may exert protection of cell structures through different mechanisms, and one in particular is their ability to increase the levels of the powerful intracellular antioxidant enzymes [25,26]. Also, recent works have demonstrate that phenolic acids like chlorogenic and neochlorogenic acids can have a strong anti-inflammatory activity [27,28]. Similar observations were made recently to caffeic acid by Song et al. [27] who reported that caffeic acid is able to inhibit the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in a dose-dependent manner, protecting the brain against neuronal inflammatory processes and diseases. Therefore, the high content of such important compounds in *E. arborea* may be used as an argument to explain their high biological potential, and may enhance the interest to study this plant species as natural source to extract and purify bioactive compounds for pharmaceutical and agro-food industry.

Acknowledgements

The authors acknowledge the support of European Investment Funds by FEDER/COMPETE/POCI–Operational Competitiveness and Internationalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT, Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Christensenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261: 201-217.
2. Akkol EK, Yesilada E, Güvenç A (2008) Valuation of anti-inflammatory and antinociceptive activities of Erica species native to Turkey. J Ethnopharmacol 116: 251-257.
