PEROVSKITES

Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation

Kiyoshi Miyata, Timothy L. Atallah, X.-Y. Zhu*

Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This “crystal-liquid” duality implies that lead halide perovskites belong to phonon glass electron crystals, a class of materials believed to make the most efficient thermoelectrics. We show that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombinations. Large polaron formation, along with the phonon glass character, may also explain the marked reduction in hot carrier cooling rates in these materials.

INTRODUCTION: THE CRYSTAL-LIQUID DUALITY

Lead halide perovskites have emerged as superstars among materials for photovoltaics and light emission (1–6). A large number of studies have explored the mechanistic origins of their electronic properties, such as long carrier lifetimes, long carrier diffusion lengths, and exceptional defect tolerance (7–11). The unique properties of both hybrid organic-inorganic lead halide perovskites (HOIPs) and their all-inorganic counterparts result from the framework-like structure consisting of a sublattice of corner-sharing PbX6octahedra and a sublattice of A+ cations in the cubic voids, as shown schematically in Fig. 1 (12). Here, A+ = Cs+, Rb+, CH3NH3+ (MA), or NH2(CH)NH2+ (FA). The framework structure leads to intrinsic softness and dynamic disorder. The former is shown by their Young’s moduli being approximately 10× lower than those of Si or GaAs (13, 14). The latter is reflected by broadening and anharmonicity in far-infrared (IR) and low-frequency Raman spectra, disorder in nuclear magnetic resonance (NMR) spectra and x-ray or neutron scattering, and liquid-like responses in dielectric function or femto- to picosecond responses (15–26).

For each lead halide perovskite, there are three main structural phases. In the low-temperature orthorhombic phase (T < 144.5 K and 370 K for MAPbBr3 and CsPbBr3, respectively), the PbBr6octahedra undergoes Jahn-Teller distortion and the cation motion is restricted (24, 27, 28). For MAPbBr3 (CsPbBr3), the perovskite structure transitions to the tetragonal phase at T = 149.5 to 237 K (370 to 420 K) and the cubic phase at T > 237 K (420 K) (24, 27, 28). Similar phase transitions are present in I- and Cl-based perovskites. These transitions are accompanied by increasing dynamic disorder, particularly the orientational motions of organic cations in HOIPs (26).

The coexistence of a crystalline-like response in coherent band transport of charge carriers and a liquid-like response in phonon activities has prompted Zhu et al. (25) to call HOIPs “crystalline liquids” for the cubic and tetragonal phases. We can view the sublattice of organic cations as a confined liquid, with each polar molecular cation confined in a nanoscopic pore; thus, an HOIP in the high-temperature cubic phase is similar to a plastic crystal (29), which refers to a crystalline lattice with long-range translational order but local rotational disorder (30). More precisely, the liquid-like behavior may generally represent the highly disordered and anharmonic motions of the strongly coupled vibrational modes of both PbX3− and A+ sublattices (31). Here, we discuss three important consequences of the crystal-liquid duality: (i) The contrasting phonon and electron dynamics mean that lead halide perovskites belong to solids called phonon glass electron crystals (PGECS) (32); (ii) the band-like charge transport, coupled with the liquid-like polarizability, means that a charge carrier can effectively form a large polaron (33), whose screened Coulomb potential reduces its scattering with charged defects and with other charge carriers; and (iii) large polaron formation, coupled with the phonon glass characteristics, may explain the much reduced cooling rates of hot carriers in HOIPs (25, 34).

PHONON GLASS ELECTRON CRYSTAL

PGECS refers to a class of solids where charge transport is ballistic and phonon transport is diffusive. This ensures high electric conductivity but low thermal conductivity, the most desirable combination for efficient thermoelectrics. Since the initial proposal by Slack in 1995 (35), the PGECS concept has guided much research in thermoelectrics (32, 36–39). A PGECS typically has large electronic bandwidth for efficient charge transport, whereas the phonon bands are disrupted by efficient scattering with local vibrations. At the limit of phonon disorder when the mean free path for phonon scattering is less than half of the phonon wavelength, we can essentially view nuclear motions in the solid as a collection of local vibrations (32, 39), as is likely the case in HOIPs (31, 40, 41). Thermal transport occurs diffusively from the coupling of these local vibrations to their neighbors via damped oscillations.

The search for PGECS over the past 20 years has focused on semiconductors consisting of crystalline frameworks that determine their electronic band structures, but with pores enclosing weakly bound atoms or ions. A representative PGECS is the so-called type I clathrate compound, whose crystal structure consists of networked cages of tetrakaidecahedrons and dodecahedrons (Fig. 2A), each housing a group 1 or 2 guest atom “rattling” in the cage, as shown in Fig. 2 for Ba9Ge10O30 (32). The motion of a rattling ion with respect to the cage with opposite charge can be represented by a varying dipole moment (Fig. 2B). The rattling in the nanocages introduces efficient scattering for the phonons, particularly acoustic phonons that are mainly responsible for thermal transport.

It is clear from the above definition that a lead halide perovskite crystal belongs to the PGECS material family. Here, the PbX3− sublattice

Department of Chemistry, Columbia University, New York, NY 10027, USA.
*Corresponding author. Email: xyzhu@columbia.edu
forms the crystalline framework, whereas the A$^+$ cations “rattle” and/or “rotate” in the cuboctahedral cages (Fig. 1). The “phonon glass” character has come from various spectroscopic studies. Early NMR measurement on CH$_3$NH$_3$PbX$_3$ crystals revealed rapid rotational motion of CH$_3$NH$_3$$^+$ cations within the perovskite framework (15). The liquid-like behavior in the tetragonal and cubic phases is particularly apparent from the temperature-dependent dielectric function, which can be well described by the Kirkwood-Fröhlich equation originally developed for polar liquids (16). More recently, direct probe of phonon activities by neutron scattering (17, 19, 20), x-ray scattering (18, 21, 26), far-IR (22), terahertz (THz) (23), Raman (17, 23, 24), two-dimensional IR (42), and time-resolved optical Kerr effect (TR-OKE) (25, 43) spectroscopies all revealed dynamic disorder, large anharmonicity, and overdamped vibrational motions. This dynamic behavior has been confirmed in molecular dynamics simulations (31, 44–46). Here, we show two examples in time and frequency domains, respectively.

As the first example, Fig. 3 compares TR-OKE responses from three single-crystal lead halide perovskites—MAPbBr$_3$, FAPbBr$_3$, and their all-inorganic counterparts, CsPbBr$_3$—at room temperature. Note that at 295 K, both MAPbBr$_3$ and FAPbBr$_3$ are in the most disordered cubic phase, whereas CsPbBr$_3$ is in the most crystalline orthorhombic phase. In a TR-OKE experiment (47, 48), shown schematically in the inset of Fig. 3A, a polarized laser pulse (pump) induces anisotropy in the refractive index and, thus, transient birefringence in the sample. After a controlled time delay, a probe laser pulse measures the decay in transient birefringence based on polarization rotation. This technique has been used in the past to probe liquids, particularly diffusive reorientation dynamics on picosecond time scales (47, 48). In a crystalline solid, the TR-OKE transient is typically dominated by the ultrafast and nearly instantaneous electronic polarization, plus weaker coherent oscillations attributed to impulsively stimulated Raman excitation of phonons (49). The TR-OKE responses in Fig. 3 are more liquid-like than crystalline solid-like. Whereas the transient from CsPbBr$_3$ is dominated by the electronic response (laser cross-correlation) with a tail on the subpicosecond time scale, the transients from MAPbBr$_3$ and FAPbBr$_3$ feature broad and picosecond responses typical of diffusive motions in liquids. Note that, in the orthorhombic phase of CsPbBr$_3$, the crystalline behavior is revealed by the presence of coherent oscillation in the TR-OKE signal, which is particularly enhanced when the excitation photon energy moves closer to the bandgap (43).

The liquid-like behavior is also evident in the frequency domain, as shown by low-frequency Raman spectra of Yaffe et al. (24) for CH$_3$NH$_3$PbBr$_3$ and CsPbBr$_3$ crystals across the two phase transitions with increasing temperature (Fig. 4). Although the low-temperature orthorhombic phases (blue) of both crystals feature well-resolved phonon modes (≤100 cm$^{-1}$), mainly of the lead bromide sublattice, the spectra become very diffuse and are dominated by a central peak in the tetragonal (green) and cubic (red) phases, indicating anharmonic and local polar fluctuations over broad time scales (24). Note that the phase transition temperatures of CsPbBr$_3$ are much higher than those of CH$_3$NH$_3$PbBr$_3$; at room temperature, the former is in the low-temperature orthorhombic phase, whereas the latter is in the high-temperature cubic phase.

The phonon glass characteristics, along with the respectable charge carrier mobilities reported to date, suggest that lead halide perovskites are promising candidates for thermoelectric materials (31, 40, 41, 50–52). Experimental measurements (53–56) and dynamics simulations (31, 41) revealed that thermal conductivities in HOIPs and their all-inorganic counterparts range from 10^1 to 10^5 W m$^{-1}$ K$^{-1}$, which are one to two orders of magnitude lower than those in conventional inorganic semiconductors but are rather similar to those of glasses or liquids (57). Kovalsky et al. (54) measured the thermal conductivity of MAPbI$_3$ that is a factor of 1.5 lower than that of CsPbI$_3$. The Debye model (that is, phonon gas model) effectively describes the thermal conductivity of both perovskites, consistent with the phonon glass characters, including the greater phonon disorder in MAPbI$_3$ than in CsPbI$_3$. This phonon glass character and slow acoustic phonon transport may also contribute to the slow cooling of hot carriers, as discussed later.
The polaron formation in lead halide perovskites is likely critical to their success as optoelectronic materials, as dynamic screening and large polaron formation are observed. Because lead halide perovskite single crystals and thin films are typically grown from solutions at room temperature, a high density of defects is inevitable. However, these materials show exceptional defect tolerance, which leads to low charge carrier trapping and low nonradiative recombination rates. The result is a large polaron, all events requiring the Coulomb potential, such as charge carrier on the subpicosecond time scale. Hence, for the resulting transport as localized shallow state, the different scaling laws, $\mu \propto T^{-1.5}$ and $\mu \propto T^{-0.5}$, may suggest the dominance of different scattering mechanisms in the cubic and tetragonal phases, respectively (64). Similar scaling laws have been found from spectroscopic measurements on CH$_3$NH$_3$PbI$_3$ thin films (65–68).

A direct consequence of large polaron formation in lead halide perovskites is efficient screening of the Coulomb potential. To understand the charge carrier properties, we consider the dielectric functions. Figure 6 shows the calculated dielectric functions for both MAPbBr$_3$ and CsPbBr$_3$ in the terahertz range (43). As the frequency decreases from >5 to \sim1 THz, we see increases in the real part (ε_1) of the dielectric function by approximately one order of magnitude due to the activation of PbBr$_3$ longitudinal optical (LO) phonons. The positions of LO phonons are shown by the peaks in Im[−1/ε]. The values of ε_1 are further increased in HOIPs by another factor of 2 as the frequency decreases to \sim0.1 THz, due to the rotational motion of the dipolar methylammonium cations (69, 70). The over one order of magnitude increase of ε_1 in lead halide perovskites is in stark contrast to what is known in conventional semiconductors, such as GaAs, where the corresponding increase in ε_1 is only \sim20% (57). The large increase in ε_1 over the terahertz frequency range in HOIPs results in efficient screening of a nascent charge carrier on the subpicosecond time scale. Hence, for the resulting large polaron, all events requiring the Coulomb potential, such as scattering of a charge carrier with charged defects or other charge carriers, are inhibited. Electron-phonon coupling is also reflected in transport as localized shallow state (71–74), in spectroscopy by exciplex emission and polaron–to–free carrier transition in IR absorption (75), and macroscopically by photostriiction (76). The coupling of methylammonium cation rotors to charge carriers is suggested by Gong et al. (77), who observed decreasing carrier lifetime with increasing moment of inertia when the methylammonium cation is deuterated.

Miyata et al. (43) provided a direct time-domain view of large polaron formation in single-crystal MAPbBr$_3$ and CsPbBr$_3$ using TR-OKE, with excitation photon energy above bandgap for charge injection (Fig. 7). On
the basis of the initial time constants for polaron formation, $\tau_{\text{pol}} = 0.3$ ps and 0.7 ps in MAPbBr$_3$ and CsPbBr$_3$, respectively, along with first-principles calculations, these authors concluded that large polarons form predominantly from the deformation of the PbBr$_3^-$ frameworks, irrespective of the cation type. Although there is more liquid-like disorder in the cubic MAPbBr$_3$ than in the orthorhombic CsPbBr$_3$, at room temperature, the intrinsic softness and polarizability of the PbX$_3^-$ framework structure enables easy formation of large polarons upon charge injection in both HOIPs and their all-inorganic counterparts. HOIPs and their all-inorganic counterparts show similarly exceptional charge carrier properties for band edge carriers and solar cell performances (78–83).

LONG-LIVED HOT CARRIERS

One of the most striking observations in HOIPs is long-lived energetic carriers at low excitation densities (25, 34). In a conventional polar semiconductor, excess electronic energy above the LO phonon energy is lost on ultrafast time scales of 100s fs due to the ubiquitous Coulomb potential, which governs the scattering of electrons with polar LO phonons (84, 85). In GaAs, the electronic cooling rate (dE/dt) is of the order of 1 eV/ps for hot electrons with mean energy E_{LO} where E_{LO} (=36 meV) is the LO phonon energy; this cooling process is slowed down by three to four orders of magnitude when E_{LO} falls below E_{LO} and scattering with acoustic phonons due to the deformation potential becomes dominant (84, 85).

In contrast to GaAs, hot carriers with excess energy above the LO phonon energy are much longer-lived in HOIPs (25, 34). Using time-resolved two-photon photoemission (TR-2PPE) spectroscopy and time-resolved photoluminescence (TR-PL), Zhu and co-workers found long-lived hot carriers in HOIPs at room temperature. The excess electronic energy of the order of 100 meV, which is much higher than E_{LO}, cools down at rates typical of acoustic phonon scattering, as shown in Fig. 8 for polycrystalline MAPbBr$_3$ and single-crystal MAPbBr$_3$ (25, 34). A comparison of HOIP single crystals with their all-inorganic counterparts at room temperature showed long-lived hot PL in MAPbBr$_3$ and FAPbBr$_3$, but not in CsPbBr$_3$ (25). This correlates well with the more liquid-like responses in MAPbBr$_3$ and FAPbBr$_3$, than in CsPbBr$_3$, as observed in TR-OKE measurements in Fig. 3. TR-2PPE measurements suggest a large polaron formation time of ~0.3 ps in MAPbBr$_3$ (34), in agreement with the TR-OKE measurement for MAPbBr$_3$ (Fig. 7); this time scale is competitive with the initial LO phonon cooling time, leading to the partial retention of excess electronic energy. Although large polarons form in both MAPbBr$_3$ and CsPbBr$_3$ (43), the rate of formation is not competitive with phonon cooling in the latter. More recently, the presence of long-lived hot carriers has also been observed by Guo et al. (86) in MAPbI$_3$ thin films using transient absorption microscopy.

Monahan et al. (87) reported the observation of long-lived “warm” carriers (excess energy ~70 meV) on the 10-ps time scale in two-dimensional electronic spectroscopy of MAPbI$_3$. These authors showed strong coupling of charge carriers to a 0.9-THz phonon mode attributed to PbI$_3$ lattice distortions (87), in excellent agreement with conclusions of Miyata et al. (43) on MAPbBr$_3$ and CsPbBr$_3$ from TR-OKE measurements. Monahan et al. (87) also observed long-lived coherence on the 10-ps time scale in the 0.9-THz phonon mode. It is possible that the large polaron formed from electron coupling to the PbI$_3$ LO phonons further isolates the quasi-particle from the phonon glass environment, leading to long-lived coherence in the 0.9-THz mode. This interpretation finds support in a recent far-IR spectroscopy study of Ivanovska et al. (88), who observed very narrow absorption features in the terahertz region in photoexcited MAPbI$_3$. Further support for this idea can be found in the succinct analysis of Frost et al. (89), who argued that the transfer of phonon energy from the subset of optical phonons that are in quasi-equilibrium with the hot carrier to the acoustic phonon bath is inefficient due to the low thermal conductivity, a result of the phonon glass character. This analysis also explains the order-of-magnitude higher hot polaron cooling rate in CsPbBr$_3$ than in MAPbBr$_3$.

The slowed cooling of energetic carriers due to large polaron formation may be mechanistically different from the conventional phonon bottleneck effect. The latter occurs at high excitation densities when efficient scattering between hot carriers and LO phonons occurs, but the hot LO phonons are not cooled down by acoustic phonons at sufficiently high rate, that is, the bottleneck effect (90, 91). As a result, the hot phonons can reheat the electrons/holes. The phonon bottleneck effect has been observed in MAPbI$_3$ thin films at high excitation densities ($\geq 10^{16}$ laser/cm2) (92–94). A marked difference between the conventional phonon bottleneck and the large polaron mechanism is seen in the excitation density dependences. In the conventional phonon bottleneck at $\rho_{\text{ex}} \geq 10^{16}cm^{-2}$ for MAPbI$_3$, the excess electronic energy at a given time increases with increasing ρ_{ex} (92–94). In contrast, the large polaron mechanism is most important at low excitation densities ($\rho_{\text{ex}} \leq 10^{16}cm^{-2}$) and the excess electronic energy decreases with increasing ρ_{ex} (Fig. 9).
The mutual repulsive interaction destabilizes the large polarons (63); this is essentially a depolarization effect, leading to the reduction in the magnitude of the Coulomb screening and/or enhancement of the coupling of hot polarons to the phonon glass environment. As pointed out by Frost et al. (89), the transition density of $\rho_{\text{tr}} \approx 10^{19}/\text{cm}^3$ is essentially the critical Mott density when the large polarons start to overlap spatially. The long-lived hot carriers in HOIPs may provide two potential advantages in solar cells. The first is the realization of the so-called hot carrier solar cell, with a theoretical power conversion efficiency (η) as high as 66% (95–97). For comparison, a conventional solar cell harvests carriers only at the band edges and the loss of excess electronic energy (from the absorption of above-bandgap photons) is partially responsible for the Shockley–Queisser limit of $\eta \approx 33%$ (98). On the basis of the partial retention of hot carrier energy, Niesner et al. (34) estimated an upper limit of $\eta \approx 38%$ from MAPbI$_3$ when hot carriers are harvested. The second advantage results from the excess kinetic energy. A portion of carriers generated from the absorption of sunlight are hot polarons. The higher kinetic energy of hot polarons may allow for easier transport across energetic barriers at domain boundaries or interfaces, leading to a higher photocurrent seen in HOIP solar cells.

DEFECT TOLERANCE

Efficient screening and large polaron formation in lead halide perovskites are key to the most significant advantage of lead halide perovskite as a semiconductor, that is, defect tolerance (99–102). The defect tolerance leads to long carrier lifetimes and diffusion lengths responsible for their exceptional performance in solar cells and light-emitting devices (1–5, 103–106). Quantitative measurements of PL intensity (79) or photoconductivity (58) as a function of excitation density revealed lower first-order nonradiative recombination rates. The latter is illustrated by the scaling of photoconductivity (σ) with excitation density (G, proportional to incident photon flux, F), $\sigma \propto G^n$ or F^n, in the four-probe measurement of Chen et al. (58) in either vapor-grown polycrystalline MAPbI$_3$ thin film or single-crystal MAPbBr$_3$ (Fig. 10). For excitation density varying over three orders of magnitude, the data can be well described by $\alpha = 1/2$ expected for radiative recombination, as opposed to $\alpha = 1$ for trap-mediated nonradiative recombination. The low nonradiative recombination rate exists in both HOIPs and their all-inorganic counterparts for band edge carriers, the different large polaron formation rates on the picosecond time scales are not expected to affect the properties of band edge carriers with nanosecond to microsecond lifetimes (79).

We can understand the defect tolerance from two perspectives. From a carrier perspective, a free band carrier is rapidly protected on the pico- or subpicosecond time scale to form a large polaron (43), whose screened Coulomb potential drastically reduces its scattering with a charged defect or a trapped charge of opposite sign on an originally neutral defect. The latter scenario means that the well-known Shockley–Read–Hall (SRH) mechanism (107, 108) for nonradiative recombination is diminished. From a defect perspective, the high polarizability in the soft and ionic lattice, including ion mobility on long time scales, can lead to the sufficient screening and compensation of charged defects in a lead halide perovskite lattice (69, 109–111). As a result, the traps are energetically shallow and electrostatically screened (100, 102), thus diminishing the role of these traps in SRH recombination.

The conventional wisdom to reduce defects in semiconductor technology is to achieve perfection, as exemplified by single-crystal silicon with remarkably low defect densities. However, this requirement cannot be met by emerging semiconductors made from molecular, hybrid, or nanocrystalline materials, where room temperature and solution synthesis/processing conditions inevitably result in a high density of defects that are detrimental to their performance. The exceptional defect tolerance in lead halide perovskites suggests that dynamic screening in intrinsically “soft” and polarizable materials provides a design principle to achieve defect tolerance, thus turning imperfection to perfection.

LARGE POLARON TRANSPORT

The “electron crystal” nature of lead halide perovskites is established by the band-like transport of charge carriers, particularly with charge mobility (μ) scaling with temperature (T) by $\mu \propto T^{-1.5}$, as determined directly by Hall effect measurements for MAPbBr$_3$ in the cubic phase (64), as well as by microwave, gigahertz, and terahertz spectroscopies on polycrystalline MAPbI$_3$ (65–68). The decreasing mobility with temperature ($d\mu/dT < 0$) unambiguously establishes coherent transport, as expected from large polarons, in stark contrast to thermally activated transport of small polarons (63).
For lead halide perovskites, the valence and conduction bands are determined mainly by the PbX$_3^-$ sublattice, with the A$^+$ cation sublattice modulating the band structure electrostatically and through electron-phonon coupling. Electronic structure calculations predict large valence and conduction band dispersions that yield low electron/hole masses of 0.1 to 0.15 m_e (112–114). This low band mass is confirmed by magneto optical absorption measurement, which gives the reduced e-h (exciton) parameter (α) which was subsequently extended by Feynman (61). In related work, Anusca et al. (58) suggested that the two-tiered dielectric responses led to a “hyperpolaron” as a result of the additional screening of a Fröhlich polaron by the liquid-like MA$^+$ cation motions.”

From Eq. 2, we obtain m_p in the range of 1.3 to 1.4 m_e. The corresponding polaron radii, $R_p = \hbar^2/(2m_e\omega_{LO})^{1/2}$, are in the range of 3 to 5 nm for HOIPs (22); thus, the diameter of the large polaron is ~10× the unit cell dimension. We estimate the polaron binding energy from the polaron radius to be of the order of 10 to 100 meV, depending on the dielectric constant used (see Fig. 6). The large polarons discussed here are in contrast to the tightly bound small polarons from the computational study of Neukirch et al. (122). These small polarons are likely minority trapped charges, not the charge carriers responsible for transport.

The LO phonons are highly populated in HOIPs at room temperature because of their low frequencies (22, 43). Under this condition, it is appropriate to use the general equations of Feynman–Ösaka (62, 123) to calculate electron and hole polaron mobilities. Miyata et al. (43) obtained $\mu_e = 149.8$ cm2 V$^{-1}$ s$^{-1}$ and $\mu_h = 79.2$ cm2 V$^{-1}$ s$^{-1}$ in CH$_3$NH$_3$PbBr$_3$; the corresponding values in CaPbBr$_3$ are $\mu_e = 48.2$ cm2 V$^{-1}$ s$^{-1}$ and $\mu_h = 41.3$ cm2 V$^{-1}$ s$^{-1}$. Similarly, Sendner et al. (22) calculated average electron-hole mobilities of $\mu = 50, 150,$ and 200 ± 30 cm2 V$^{-1}$ s$^{-1}$ for MAPbCl$_3$, MAPbBr$_3$, and MAPbI$_3$, respectively, and Frost (124) calculated electron and hole polaron mobilities in MAPbI$_3$ of 136 and 94 cm2 V$^{-1}$ s$^{-1}$, respectively. The calculated mobility values for HOIPs are slightly higher than those reported from experimental studies. For single-crystal MAPbBr$_3$ and MAPbI$_3$ at room temperature, the reported μ values are 10 to 115 cm2 V$^{-1}$ s$^{-1}$ and 24 to 164 cm2 V$^{-1}$ s$^{-1}$, respectively (8, 9, 58, 64, 125). Whereas a large polaron is formed mainly from the deformation of the PbX$_3^-$ sublattice, a moving large polaron is further slowed down from dielectric loss to the disordered vibrations at lower frequencies attributed to cation motions. In HOIPs, this additional dielectric loss channel occurs at ~0.1 THz, where the rotational motions of the dipolar MA$^+$ cations are activated, leading to another step increase by ~2x in ϵ_r (70). This loss process is called “dielectric drag” for ion movement in polar liquids (126). In related work, Anusca et al. (70) suggested that the two-tiered dielectric responses led to a “hyperpolaron” as a result of the additional screening of a Fröhlich polaron by the liquid-like MA$^+$ cation motions.

Radiative Recombination

The bimolecular radiative recombination rate constants are of the order $k_r = 10^{-10}$ cm3 s$^{-1}$ in both HOIPs and their all-inorganic counterparts (58, 79, 127). There have been arguments that these rate constants are
about five orders of magnitude lower than that predicted from the Langlevin model. The Langlevin model (128) is typically used to describe bimolecular recombination in low-mobility and disordered systems (129), where the recombination rate can be calculated from the Coulomb capture radius (r_c), that is, the e-h distance for which the Coulomb potential is equal to the thermal energy. However, the Langlevin model does not actually apply to lead halide perovskites because of the band-like transport with modest (~10 to 100 cm2 V$^{-1}$ s$^{-1}$), not low (<1 cm2 V$^{-1}$ s$^{-1}$), mobilities.

The perceived low values in radiative recombination rate constants that are partially responsible for long carrier lifetime and diffusion length have also led to discussions on the indirect character of bandgap in HOIPs. A particular argument attributes the indirect bandgap character to large Rashba splitting (130–133). Because of strong spin-orbital coupling in the presence of heavy atoms, the conduction band and the valence band may be spin-polarized. In the presence of local electric field resulting from electrostatic ordering (110, 134) and static or dynamic symmetry breaking (130–132), electrons with different spins ($m_s = \pm 1/2$) experience opposite forces from electromagnetic interaction. This leads to the splitting of conduction band and (to a lesser extent) the valence band in momentum space, thus introducing indirect bandgap character. Experimentally, the indirect bandgap is believed to lie at 47 to 75 meV below the direct bandgap in MAPbI$_3$, as obtained from temperature-dependent PL (65, 135) and pressure-dependent absorption and PL (136). Numerical simulations also addressed the disparate roles of direct and indirect bandgaps in absorption and emission (137).

Here, we present an alternative mechanism to explain the indirect bandgap character. As argued by Chen et al. (58), a model more appropriate than the Langlevin model to describe radiative recombination in lead halide perovskites is the van Roosbroeck–Shockley theory (138), which obtains the radiative recombination rate from detailed balance under thermal equilibrium in the dark (138, 139). The van Roosbroeck–Shockley theory gives k_r only approximately one order of magnitude higher than experimental values; this difference can be well accounted for by polaron formation (58). The equilibrium carrier concentration is increased upon polaron formation by the stabilization of a charge carrier and the increased density of states resulting from deviation from parabolic dispersion. These effects decrease k_r from the van Roosbroeck–Shockley theory by approximately one order of magnitude, leading to good agreement with experimental values (58). For a polaron stabilization energy within 2 to 3 kT at room temperature, there is a dynamic equilibrium between large polarons and free carriers. The electron and hole large polarons are expected to be located in spatially separate regions, due to their opposite effects on the bending of Pb-X-Pb (43), as well as their opposite effects in dipolar polarization (58, 110, 134); in this sense, the indirect character of the bandgap is in real space, not in the momentum space. As a result, the radiative recombination rate from the energetically stabilized large polarons is expected to be much lower than that from free band carriers. This can give rise to thermally activated PL (65, 135). The lower transition strength for the radiative recombination from the e-h polaron states can also appear in absorption due to electron-phonon coupling in the absorption process (136, 140). Besides the large polaron–free carrier equilibrium, there is an equilibrium between carriers and excitons with binding energies of the order of kT at room temperature (5, 10, 69, 141, 142) and the carriers and excitons may be located in spatially separate regions in a heterogeneous environment of a polycrystalline thin film (143). All these effects may contribute to the apparent thermal activation in PL measurements.

SUMMARY AND OUTLOOK

In this perspective, we attempt a unified view of the optoelectronic properties of lead halide perovskites from their unique crystal-liquid duality. We show that lead halide perovskites belong to the PEGEC family due to the binary structure consisting of a cage-like PbX$_3$– sublattice and a more weakly bound A$^+$ cation sublattice. This PEGEC character gives rise to the remarkable contrast in the transport properties of carrier and phonons. In particular, the thermal transport in lead halide perovskites, particularly HOIPs, is diffusive because of the liquid-like dynamic disorder in the phonon manifold, whereas charge transport is ballistic and band-like in the PbX$_3$– sublattice. The partial localization of a band carrier in the PbX$_3$– phonon environment leads to the formation of a large polaron, whose screened Coulomb potential reduces its scattering with charged defects and other charge carriers. The effective Coulomb screening can be found in the dielectric function, which, in HOIPs, increases by more than an order of magnitude as frequency decreases from optical to the terahertz region. We can account for the modest mobility of the large polarons by the low frequencies of PbX$_3$– LO phonons that are highly populated at room temperature and to additional dielectric loss to the disordered vibrations of the cation sublattice. Large polaron formation and the phonon glass character may also explain the long lifetimes of hot carriers in HOIPs. The understanding presented here suggests a new design principle for high performance and defect-tolerant semiconductors from PGEC type of structures with liquid-like dielectric functions.

REFERENCES AND NOTES

1. W. Zhang, G. E. Eperon, H. J. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).
2. N.-G. Park, T. Miyasaka, M. Grätzel, Organic-Inorganic Halide Perovskite Photovoltaics (Springer, 2016).
3. S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28, 6804–6832 (2016).
4. B. R. Sutherland, E. H. Sargent, Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).
5. J. S. Manner, J. A. Christians, P. V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).
6. T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transfer properties. Nat. Rev. Mater. 1, 15007 (2016).
7. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH$_3$NH$_3$PbI$_3$ Crystals. Science 342, 344–347 (2013).
8. Q. Dong, Y. Fang, Y. Shao, M. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 um in solution-grown CH$_3$NH$_3$PbI$_3$ single crystals. Science 347, 967–970 (2015).
9. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyi, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).
10. L. M. Herz, Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–80 (2016).
11. T. Leijtens, G. E. Eperon, A. J. Barker, G. Granolini, W. Zhang, J. M. Ball, A. R. S. Kangada, H. J. Snaith, A. Petrozza, Carrier trapping and recombination: The role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9, 3472–3481 (2016).
12. D. B. Mitzi, Solution-processed inorganic semiconductors. J. Mater. Chem. A, 2355–2365 (2004).
13. Y. Rakita, S. R. Cohen, N. K. Kedem, G. Hodes, D. Cahen, Mechanical properties of ABr$_3$ ($A=$Cs or CH$_3$NH$_3$) X=I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).
14. T. Balkie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, T. J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH$_3$NH$_3$)$_2$ PbI$_3$ for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).
35. G. A. Slack,
37. B. C. Sales, D. Mandrus, R. K. Williams, Filled skutterudite antimonides: A new class of
30. J. Timmermans, Un nouvel état mésomorphe les cristaux organiques plastiques.
33. X.-Y. Zhu, V. Podzorov, Charge carriers in hybrid organic
27. A. Poglitsch, D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II)
22. M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky,
21. A. N. Beecher, O. E. Semonin, J. M. Skelton, J. M. Frost, M. W. Terban, H. Zhai, A. Alatas,
24. O. Yaffe, Y. Guo, L. Z. Tan, D. A. Egger, T. Hull, C. C. Stoumpos, F. Zheng, T. F. Heinz,
23. A. M. A. Leguy, A. R. Goñi, J. M. Frost, J. Skelton, F. Brivio, X. Rodríguez-Martínez,
22. M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky,
21. A. N. Beecher, O. E. Semonin, J. M. Skelton, J. M. Frost, M. W. Terban, H. Zhai, A. Alatas,
24. O. Yaffe, Y. Guo, L. Z. Tan, D. A. Egger, T. Hull, C. C. Stoumpos, F. Zheng, T. F. Heinz,
23. A. M. A. Leguy, A. R. Goñi, J. M. Frost, J. Skelton, F. Brivio, X. Rodríguez-Martínez,
22. M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky,
21. A. N. Beecher, O. E. Semonin, J. M. Skelton, J. M. Frost, M. W. Terban, H. Zhai, A. Alatas,
24. O. Yaffe, Y. Guo, L. Z. Tan, D. A. Egger, T. Hull, C. C. Stoumpos, F. Zheng, T. F. Heinz,
23. A. M. A. Leguy, A. R. Goñi, J. M. Frost, J. Skelton, F. Brivio, X. Rodríguez-Martínez,
10 Recent Advances in Understanding the Rashba Effect and Their Applications in Hybrid Perovskites

M. Miyata, A. Atallah, X.-Y. Zhu

123. T. Etienne, E. Mosconi, F. De Angelis, Dynamical origin of the rashba effect in hybrid perovskites. arXiv:1704.05404 (2017).

124. D. Niesner, M. Wilhelm, I. Levchuk, A. Osvet, S. Shrestha, M. Batentschuk, C. Brabec, J. Ma, L.-W. Wang, Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbBr3. Nano Lett. 15, 248–253 (2015).

125. E. M. Hutter, M. C. Gélvez-Rueda, A. Osherov, V. Bulović, F. C. Grozema, S. D. Stranks, T. J. Savenije, Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2017).

126. T. Wang, B. Daiber, J. M. Frost, S. A. Mann, E. C. Garnett, A. Walsh, B. Ehler, Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017).

127. T. Kirchartz, U. Rau, Decreasing radiative recombination coefficients via an indirect band gap in lead halide perovskites. J. Phys. Chem. Lett. 8, 1205–1217 (2017).

128. P. Langevin, Recombinaison et mobilités des ions dans les gaz. J. Chem. Phys. 28, 433–530 (1903).

129. M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, 1999).

130. F. Zheng, L. Z. Tan, S. Liu, A. M. Rappe, Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015).

131. M. Kepenekian, R. Robles, C. Katan, D. Sapori, L. Pedesseau, J. Even, Rashba and dresselhaus effects in hybrid organic–inorganic perovskites: From basics to devices. ACS Nano 9, 11557–11567 (2015).

132. T. Etienne, E. Mosconi, F. De Angelis, Dynamical origin of the rashba effect in organohalide lead perovskites: A key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7, 1638–1645 (2016).

133. D. Niesner, M. Wilhelm, I. Levchuk, A. Osvet, S. Shrestha, M. Batentschuk, C. Brabec, T. Fauster, Giant rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

134. J. Ma, L.-W. Wang, Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 15, 248–253 (2015).

135. E. M. Hutter, M. C. Gélvez-Rueda, A. Osherov, V. Bulović, F. C. Grozema, S. D. Stranks, T. J. Savenije, Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2017).

136. T. Wang, B. Daiber, J. M. Frost, S. A. Mann, E. C. Garnett, A. Walsh, B. Ehler, Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017).

137. T. Kirchartz, U. Rau, Decreasing radiative recombination coefficients via an indirect band gap in lead halide perovskites. J. Phys. Chem. Lett. 8, 1205–1217 (2017).

138. W. van Roosbroeck, W. Shockley, Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558–1560 (1954).

139. J. I. Pankove, Optical Processes in Semiconductors (Courier Corporation, 2012).

140. X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, D. Yaffe, B. J. Kudisch, X.-Y. Zhu, Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

141. M. Saba, F. Quochi, A. Mura, G. Bongiovanni, Excited state properties of hybrid perovskites. Acc. Chem. Res. 49, 166–173 (2016).

142. Y. Yang, M. Yang, K. Zhu, J. C. Johnson, J. J. Berry, J. van de Lagemaat, M. C. Beard, Large polarization-dependent exciton optical Stark effect in lead iodide perovskites. Nat. Commun. 7, 12613 (2016).

143. S. Nah, B. Spokony, C. Stoumpos, C. M. M. Soe, M. Kanatzidis, E. Harel, Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains. Nat. Photonics 11, 285–288 (2017).