Upper bounds for the piercing number of families of pairwise intersecting convex polygons

Meir Katchalski, Mathematics, Technion, Haifa
David Nashtir, Mathematics, Technion Haifa

June 22, 2011

Abstract. A convex polygon \(A \) is related to a convex \(m \)-gon \(K = \bigcap_{i=1}^{m} k_i^+ \), where \(k_1^+, \ldots, k_m^+ \) are the \(m \) halfplanes whose intersection is equal to \(K \), if \(A \) is the intersection of halfplanes \(a_1^+, \ldots, a_l \), each of which is a translate of one of the \(k_i^+ \)-s. The planar family \(A \) is related to \(K \) if each \(A \in A \) is related to \(K \). We prove that any family of pairwise intersecting convex sets related to a given \(n \)-gon has a finite piercing number which depends on \(n \). In the general case we show \(O(3n^3) \), while for a certain class of families, we decrease the bound to \(4(n-2) \), and for \(n = 3, 4 \) the bound is 3 and 6 respectively.

Definition 1 A convex polygon \(P \) is related to a convex \(m \)-gon \(K = \bigcap_{i=1}^{m} k_i^+ \), where \(k_1^+, \ldots, k_m^+ \) are the \(m \) halfplanes whose intersection is equal to \(K \), if \(P \) is the intersection of halfplanes \(a_1^+, \ldots, a_l^+ \), each of which is a translate of one of the \(k_i^+ \)-s. We use the convention that the line \(l \) is the boundary of the halfplane \(l^+ \) and that \(l^- \) is the halfplane with boundary \(l \) so that \(l^+ \cap l^- = l \). The family \(P \) is related to \(K \) if each \(P \in P \) is related to \(K \).

Theorem 1 A convex family of pairwise intersecting sets related to an \(n \)-gon is \(3(3) \) pierceable.
Theorem 2 Let F be a family of pairwise intersecting sets related to an n-gon F with edges $\overline{h}, \overline{v}, \overline{a}_1, \ldots, \overline{a}_{n-2}$, such that $\overline{h} = \left[-1, 0\right]$, $\overline{v} = \left[0, y\right]$ for any $y > 0$, and the edges $\overline{a}_1, \ldots, \overline{a}_{n-2}$ have positive slopes. Then F is $4(n-2)$ pierceable. If $n = 3, 4$ then the family is 3 and 6 pierceable respectively.

Definition 2 Let P be a family related to m-gon $K = \bigcap_{i=1}^{m} k_i^+$. A triangle T is called empty or negative, if $T = \bigcap_{i=1}^{3} l_i^-$, where l_1^-, l_2^-, l_3^- are minimal half-planes that are translates of some k_j^- ($j = 1, \ldots, m$) such that $\bigcap_{i=1}^{3} l_i^+ = \emptyset$.

Proof of theorem 1. Let F be a family of pairwise intersecting polygons related to a convex n-gon. Observe the set of n minimal halfplanes. Let E be the family of all empty triangles created by them and let $N = e(n) = |E|$. We will prove the theorem by induction on N. It’s obviously true for $N = 0$ since then the intersection of any three minimal halfplanes is not empty, hence the intersection of any three halfplanes is not empty, hence by Helly’s theorem $\bigcap F \neq \emptyset$.

Suppose $N > 0$ and Let E be an arbitrary triangle in E. Observe the edges of E. Each of them comes from a line through an edge of some $F \in F$. Let $E = e_1^- \cap e_2^- \cap e_3^-$, let M_1, M_2, M_3 be the midpoints of the edges of E, and let $M = m_1^+ \cap m_2^+ \cap m_3^+$ be the triangle created by the midpoints, where m_i is parallel to e_i for $i = 1, 2, 3$.

Since any two of sets intersect, for any $F \in F$, $F = \bigcap_{i=1}^{3} f_i^+$ contains at least one of the points M_1, M_2, M_3. Otherwise, for $i, j, k = 1, 2, 3; i \neq j \neq k$, there would exist an angle $f_i^+ \cap f_j^+$ which is strictly contained in the angle $m_i^+ \cap m_j^+$, hence disjoint from the halfplane e_k^+, thus disjoint from a member of F. It follows that F can be divided into to three subfamilies, as follows:

$$\mathcal{F}_1 = \{F \in F | M_1 \in \bigcap_{i=1}^{3} f_i^+ \}$$

$$\mathcal{F}_2 = \{F \in F | M_2 \in \bigcap_{i=1}^{3} f_i^+, M_1 \notin \bigcap_{i=1}^{3} f_i^+ \}$$

$$\mathcal{F}_3 = \{F \in F | M_3 \in \bigcap_{i=1}^{3} f_i^+, M_1 \notin \bigcap_{i=1}^{3} f_i^+, M_2 \notin \bigcap_{i=1}^{3} f_i^+ \}$$
where each of these subfamilies contains no empty triangle of type \(E \), hence having at most \(N - 1 \) empty triangles. Since by Helly’s theorem, a family with no empty triangles is 1-pierceable, we get the following recursive inequality for the piercing number \(f(N) \):

\[
f(N) \leq 3f(N - 1)
\]

Hence:

\[
f(N) \leq 3^N
\]

Since the number of maximal empty triangles \(N = e(n) < \binom{n}{3} \) we finally get:

\[
f(n) < 3\binom{n}{3}, \quad \square
\]

More detailed explanations and drawings to be added later...

Proof of theorem 2. Let \(\mathcal{F} \) be a family of sets related to the convex \(n - \text{gon} \) \(F \) with edges \(h, v, a_1, \ldots, a_{n-2} \), such that \(h = [-1, 0], v = [0, y] \) for any \(y > 0 \), and the edges \(a_1, \ldots, a_{n-2} \) have positive slopes.

Observe the set of minimal halfplanes \(h^+, v^+, a_i^+ (i = 1, \ldots, n-2) \) and choose \(1 \leq s \leq n - 2 \), so that \(\Delta E \) is the empty triangle \(h^- \cap v^- \cap a_s^- \neq \emptyset \).

Let \(M_h, M_v \) and \(M_s \) be the midpoints of \(\Delta E \), and let \(\Delta M \) be the triangle \(\Delta M_h, M_v, M_s \) with edges \(m_h, m_v, m_s \). First, note that \(\Delta M \) has the following:

Two Edges Outside (TEO) property. Let \(F \in \mathcal{F} \) be a polygon and let \(L = \{l_1, l_2, l_3\} \) be a subset of its edges so that \(l_1 \parallel h, l_2 \parallel v, l_3 \parallel a_s \). Then at most one member of \(L \) intersects \(\Delta M \).

To prove the TEO property it is enough to notice that the pairwise intersection implies that no polygon can have a vertex inside \(\Delta M \), hence no two edges of a polygon can intersect inside \(\Delta M \), hence if \(l_i \in L \) intersects \(\Delta M \), the other two edges must lie outside \(\Delta M \).

Now, proceed by choosing \(a_s \) as the line with the smallest positive slope (with respect to the \(x - \text{axis} \)), such that \(\Delta E = h^- \cap v^- \cap a_s^- \neq \emptyset \). Note that all polygons in \(\mathcal{F} \) have edges \(h', v' \) (\(h' \parallel h, v' \parallel v \)), but there might exist...
ones that do not have edge \(a'_s \parallel a_s \). Let \(A_s \subset F \) be the subfamily of all polygons that have edge \(a'_s \) and do not intersect with \(\{M_h, M_v, M_s\} \). We examine two cases.

Case 1. \(M_s \in a'_i \) for \(i = 1, \ldots, n - 2 \).

We note that in this case, any polygon in \(A_s \) has the following properties:

\[
a'_s \text{ is outside } \Delta M
\]

\[
h' \text{ is outside } \Delta M
\]

To establish those properties, note that if property 1 does not hold, then by TEO both \(h' \) and \(v' \) are outside the triangle, hence, both \(h'^+ \) and \(v'^+ \) contain \(M_s \), and since \(M_s \in a'_i \) for \(i = 1, \ldots, n - 2 \), it implies that the polygon itself contains \(M_s \) - a contradiction.

As for property 2, note that if it does not hold, then \(h' \) intersects \(\Delta M \), and by TEO both \(v'^+ \) and \(a'^+_s \) contain \(M_h \). Further more, pairwise intersection implies that the intersection point \(P = h' \cap v \) belongs to the polygon, hence the intersection point \(P_i = a'_i \cap h' \) for any \(i = 1, 2, \ldots, n - 2 \) lies to the left of \(P \). Let \(\alpha = \angle(a_s, h) \) and \(\beta = \angle(a'_i, h) \) for \(i \neq s \). If \(a'^-_i \) does not create an empty triangle with \(h^- \) and \(v^- \) then \(a'^+_i \) contains \(M_h \). If, on the other hand, \(a'^-_i \cap h^- \cap v^- \neq \emptyset \), then since \(a_s \) has the smallest slope among all \(a_i \)'s that create an empty triangle with \(h^- \) and \(v^- \), it follows that \(\beta > \alpha \), hence again, \(M_h \in a'^+_i \) - a contradiction. See figure 1.

It follows that the members of \(A_s \) do not create empty triangles similar to \(h^- \cap v^- \cap a'^-_s \).

Case 2. There exits a halfplane \(a^-_i \) such that \(M_s \in a^-_i \).

Let \(A^-(M_s) = \{a^-_i | M_s \in a^-_i \} \). Let \(H = a_s \cap v \), let \(h_s \) be the horizontal line through \(H \), let \(v_s \) be the vertical line through \(M_s \) and let \(P = v_s \cap h_s \). Choose an arbitrary \(a_i \) from \(A^-(M_s) \) and construct a new auxiliary triangle
\[\triangle T_i = HXY \] as follows:

- if \(P_i = a_i \cap h_s \) lies to the right of \(P \), then \(Y = P \) and \(X = M_s \).

- if \(P_i = a_i \cap h_s \) lies to the left of \(P \), then \(Y = P_i \) and \(X = v_i \cap a_s \) where \(v_i \) is the vertical line through \(P_i \).

See figure 2.

Denoting by \(\mathcal{A}_i \subset \mathcal{F} \) the subfamily of all polygons that have edge \(a'_s \) and do not contain the vertex \(X \), we see \(\triangle T_i \) has properties similar to those of \(\triangle M_h, M_v, M_s \) we examined in case 1, i.e. any polygon in \(\mathcal{A}_i \) has its \(a'_s, h' \) edges outside \(\triangle T_i \).

Hence if \(\mathcal{A}_i \subset \mathcal{F} \) is the subfamily of all polygons that have edge \(a'_s \) and do not intersect with \(\{ M_h, M_v, M_s, X \} \) then the members of \(\mathcal{A} \) do not create
empty triangles similar to $h^- \cap v^- \cap a_s^-$.

Thus, we get the following recursive inequality for the piercing number $f(N)$ where N is the number of maximal empty triangles:

$$f(N) < f(N - 1) + 4$$

hence:

$$f(N) \leq 4N$$

and since $N \leq n - 2$ we finally have

$$f(n) \leq 4(n - 2). \square$$