Tidal waves Based Power Generation

Palpandi.M, Merlin Medona.C, Balaji.G, Nagaraja. M

Abstract: Wave energy power generation is a clean energy mechanism. Wave energy assures to be renewable source of energy with zero emission. In this experimental outcome of a built in wave generator with some additional features are reported.

Index Terms: Renewable energy, prototype wave generator.

I. INTRODUCTION

Though innovations for using wave energy are numerous, limited efforts had been attempted to use the wave energy [1]. Waves occurring in ocean contain considerable power. It’s a historical art to harness wave energy. Since 1890 attempts have been made in commercial scale to utilize the wave energy [2]. There are several research augments in progress spread over different countries [3]. The present work focuses on recovering energy from waves using a linear permanent magnet generator with other instrumentation and electrical accessories.

II. WAVE ENERGY CONVERTERS

It’s crucial to harness energy in ocean. Utilizing a floating buoy the difference in height between wave top and bottom are measured to predict the power generation potential of energy converter [4]. An ocean wave with an altitude of 2m with time period of 10seconds has an ability to generate energy potential flux to a maximum of 70 kW/m width. The buoy which, floats on ocean surface replicas wave motion. The buoy which floats over ocean surface is connected to the generator, which is fixed on a foundation, at bottom of the bottom of the ocean (Fig.1).

The classification of waves according to frequency ranging from < one second to > than 100,000s [5]. Its listed as below in Table 1.

Waves	time period in Seconds (s)
Ripple	fractional seconds
Windchop	1 to 4 s
Fully developed	5 to 12 s
Swells	6 to 22 s
Surfbeats	1 to 3 mts
Tsunamis	10 to 20 mts
Tides	12 or 24 hrs

Table 2. Terminology

Terminology	Description
Crest	high point
Trough	low point
Wave height	Vertical distance
Wave length (l)	Horizontal distance
Wave period (p)	Time for a crest to travel a distance = to 1 wave length
Wave frequency	Inverse of p
Wave celerity	Ratio of 1 and p

III. EXPERIMENTAL INVESTIGATION

The built in experimental setup of the laboratory testing scale wave energy based power generation with various accessories are pictured in Fig.2.
Tidal waves Based Power Generation

Fig.2. Built in prototype plant with instrumentation.

Fig.3. Built in prototype plat with Neodymium magnets.

Fig.3 depicts the side view of the built in laboratory testing scale wave energy unit with buoy. The magnetic generator is mounted to the movable arm that floats freely over the ocean surface. Fig.4 depicts the aerial view of the built in laboratory testing scale wave energy unit Fig.5. Depicts the instrumentation used for experimental works during wave power generation potential measurements. The major components of the laboratory testing scale wave energy unit employ magnets and a prototype tank. Buoy is a part of built in laboratory testing scale wave energy unit. It oscillates up and down over ocean surface. In this built in laboratory testing scale wave energy unit employ damping is optimized to recover major energy in the built in laboratory testing scale wave energy unit with single buoy.

Table 3. Power generated in a single float

Test	H (m)	T (s)	Voltmeter reading (V)	P (W)
1	0.05	0.59	0.87	0.087
2	0.18	1.49	2.53	1.771
3	0.22	1.89	3.64	4.368
4	0.28	1.9	5.23	8.368
5	0.295	1.95	7.34	16.148
6	0.32	1.96	8.4	19.32
7	0.37	1.96	9.1	21.84
8	0.45	2.2	12.3	46.74

IV. RESULTS AND DISCUSSION

Experiments were carried out in a single buoy built in laboratory testing scale wave energy unit. It’s investigated that when the wave period become too much longer then the power generation potential in ocean waves is found to increase drastically to a greater extent. Its also investigated that the number of coils also plays a vital role in voltage.

Effect of Time Period and wave height

The experimental outcome using a single buoy in the built in laboratory testing scale wave energy unit is shown in in Fig.5. The effect of height of ocean wave over power generation is shown in Fig.6 and Fig.7 shows the effect of wave period on power generated. Experimental results show that power output of the single buoy laboratory testing scale wave energy unit is dependent on the wave height. Its also observed that semi developed waves were found during the time span period ranging from 0.5 - 2s. Fully developed waves were observed during the time span ranging from 2- 3 secs.

POWER GENERATED IN REGULAR WAVES

The experimental outcome using a single buoy in the built in laboratory testing scale wave energy unit is shown in table 3. The single buoy at a wave height is 0.1 to 0.3 m and the period is varied in the range of 2s to 4 s. During each run in the single buoy laboratory testing scale wave energy unit
Fig. 5. Power production in regular waves of time.

![Wave height Vs Volts](image)

Fig. 6. Voltage distribution at different wave heights.

![Power generated Vs Wave period](image)

Fig. 10. Effect of Wave period on power generated.

V. CONCLUSION

Experiments were carried out in a single buoy built in laboratory testing scale wave energy unit. Operation and testing investigation details have been reported out. Experimental outcome of the present work shows that it’s capable to generate power on large scale. Laboratory testing scale wave energy unit assures to generate renewable energy with zero emission. There are also enormous methods to extract kinetic energy in waves. Experimental results are found to be promising to promote research in ocean waves.

ACKNOWLEDGEMENT

Nagaraja M., highly expresses his gratitude for guidance rendered by Dr. Sundaresan R, former professor VIT University for successful completion of the work. The authors acknowledge the motivation rendered by Dr. D. Vasudevan, Principal, Dr. R. Kannan HOD Mechanical of PSNACET. The authors would like to thank Kalvi Thanthi Late Thiru R.S. Kothandaraman, Tmt. K. Dhanalakshmi, Chairperson of PSNACET, Thiru Mr. R.S.K. Raguraam, - Pro-Chairman, Late Thiru Dr. R.S.K. Lakshshmana Prabhu, Co-Chairman and Thiru R.S.K. Sukumaran Vice-Chairman Establishment, of PSNACET for giving the wonderful environment of academics par excellence in research in PSNACET campus.

ABBREVIATIONS

- P is the power (W)
- D is the diameter (m)
- ρ is density (kg/m3) 1020 kg/m3
- g is acceleration due to gravity (m/s2)
- His h-index is 2 in Google Scholar Citations.

REFERENCES

1. M. Previsic, R. Bedard, and G. Hagerman, "Offshore Wave Energy Conversion Devices," Electric Power Research Institute (EPRI) Report no. WP-004-US, Palo Alto (USA), 2004.
2. Retrieved from http://www.bluebird-electric.net/wave_power_energy_generation.htm
3. WaveNet Results from the work of the European Thematic Network on Wave Energy, European Community - EESD Energy, Environment and Sustainable Development, March 2003, pp. 9-10.
4. M. A. Mueller, "Low Speed Linear Electrical Generators for Renewable Energy Applications," Proceedings of the Conference on Linear Drives in Industrial Applications (LDIA 2003), Birmingham (UK), pp. 121-124.

AUTHORS PROFILE

M. Palpandi did his Master degree at Arulmigu Kalasalingam College of Engineering. Presently he is pursuing his Ph.D under Anna University, Chennai. His Professional experience includes 17 years. His research includes Materials Joining, Finite & Element method. He is a life member of ISTE and Indian Welding Society (IWS). His h-index is 2 in Google Scholar Citations.

C. Merlin Medona did her Master degree at Alagappa Chettiar College of Engineering and Technology. Her research interest is concerned to the Design and Optimization. She has protected her Intellectual Property Rights with the Register Number L-77970/2018.

G. Balaji did his Master degree at Thiagarajar College of Engineering, Madurai. His Professional experience includes 25 years. He had 15 years in teaching and 10 years in industry. Her research interest is concerned to the Design and Optimization. He is a life member of ISTE chapter.

M. Nagaraja graduated with M.S in VIT. Since 5 years M.S (Research) regulation pertains to Ph.D, he upgraded M.S credits to Ph.D & completed Ph.D during 2015 in Ballbridge, South Dominica, West Indies. With 13 years of Professional experience, his research interest includes Energy & Educational administrative theory and practice. His h-index is 2 in Google scholar Citation.