Characteristics of patients with chronic airflow obstruction caused by solid fuel or tobacco smoke

Huanyu Long1,2, Zhenzhen Xing1, Di Chai1, Weiming Liu3,4, Yaqi Tong1, Yuxia Wang1, Yali Ma1, Mingming Pan1, Jia Cui1, Yanfei Guo1

1Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; 2The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; 3Department of Intensive Care Medicine, Beijing Boai Hospital, Beijing 100068, China; 4Rehabilitation Research Center, Beijing 100068, China.

To the Editor: Chronic airflow obstruction (CAO) is a characteristic feature of chronic obstructive pulmonary disease (COPD) and occurs due to airway and/or alveolar abnormalities typically associated with exposure to noxious particles or gases.[1] The major risk factor for abnormalities typically associated with exposure to disease (COPD) and occurs due to airway and/or alveolar characteristic feature of chronic obstructive pulmonary Chronic air...solid fuel or tobacco smoke exposure is associated with a high prevalence of CAO, particularly among women.[2] Comparing COPD caused by either solid fuel or tobacco smoke exposure is very significant because about 3 billion people are exposed to solid fuel smoke, and 1.01 billion people smoke tobacco, globally. This study aimed to investigate and compare the clinical and functional characteristics of CAO patients exposed to solid fuel and tobacco smoke using propensity score matching (PSM) in western China.

Data were extracted from a cross-sectional study between June 2015 and August 2016, named the Xinjiang and Tibet Pulmonary Health Study, whose detailed sampling strategies and methods had been described previously.[3] The initial study was approved by the Institutional Review Board and Ethics Committee of Beijing Hospital (No. 2013BYYEC-042C-01).

Eligible participants were aged ≥ 15 years, had post-bronchodilator spirometric evidence of CAO, and exposure to either solid fuel or tobacco smoke. Participants exposed to solid fuel smoke had used an open fire with coal, coke, charcoal, wood, crop residues, or dung as the primary means of cooking or heating for > 6 months in their lifetime. Participants exposed to tobacco smoke had smoked > 100 cigarettes in their lifetime. Participants were classified into the following groups based on their exposure: (1) those with CAO exposed to solid fuel and (2) those with CAO exposed to tobacco smoke. Those exposed to both solid fuel and tobacco smoke were excluded due to the existence of many confounding factors. We included 147 CAO participants exposed to tobacco smoke and 759 exposed to solid fuel smoke. Each participant received detailed information about the study and provided written informed consent before data collection.

Demographic characteristics, such as age, sex, ethnicity, education level, and residence, were collected using self-reported questionnaires. Lung function was measured using spirometry. We defined CAO as the post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio below the lower limit of the normal range of the Global Lung Function Initiative 2012 multi-ethnic equations. The COPD Assessment Test was also administered and included a short, simple patient-completed questionnaire, with scores ranging from 0 to 5. Peripheral oxygen saturation was measured using a pulse-oximetry (PHILIPS DB12, Suzhou, Jiangsu, China) before spirometry. We considered someone having: (1) chronic cough if they have a cough for most of the day for as much as 3 consecutive months during a year; (2) chronic phlegm if they bring up phlegm for most of the day for as much as 3 consecutive months during a year; (3) dyspnea in daily life if they were troubled by shortness of breath when hurrying on level ground, walking up a slight incline, walking at their own pace on level ground or being breathless when dressing/undressing or going out; (4) recurrent wheezing if their chest (lungs) ever sounded

Access this article online

Quick Response Code: [QR Code Image]
Website: www.cmj.org
DOI: 10.1097/CM9.0000000000002009
wheezy (whistling sound); and (5) at least one symptom if they had at least one of either chronic cough, chronic phlegm, recurrent wheezing, or dyspnea in daily life.

Statistical data were presented as counts and percentages for categorical variables and the mean and standard deviation for continuous variables. Initial comparisons were made using the Mann–Whitney U test for continuous variables. Comparisons were made using either χ² tests or Fisher exact tests for categorical variables. Using multiple logistic regressions, we also estimated associations between exposure groups and lung function and respiratory symptoms, adjusting for age, sex, body mass index (BMI), ethnicity, education level, tuberculosis history, and place of residence. We used PSM to assess the effects of tobacco and solid fuel smoke exposure to minimize potential confounding bias potentially influencing results. The tobacco group was 1:1 matched for age, sex, BMI, ethnicity, education level, tuberculosis history, and residence after PSM, the standard mean difference of all covariates was <0.10, indicating a similar distribution.

Participants exposed to solid fuel smoke had more lung function impairments when compared with those exposed to tobacco smoke. Before PSM, pre- and post-bronchodilator FEV1% predicted and FVC% predicted values were not significantly different between groups; the post-bronchodilator maximal mid-expiratory flow predicted and forced expiratory flow at 50% of FVC (FEF50%) predicted values of participants exposed to solid fuel smoke were significantly lower than those exposed to tobacco smoke \(P < 0.05 \) [Table 1]. After PSM, pre- and post-bronchodilator FEV1% predicted, FVC% predicted, and post-bronchodilator FEF50% predicted values were significantly lower in participants exposed to solid fuel smoke compared with those exposed to tobacco \(P < 0.05 \) [Table 1].

Table 1: Participant demographics and lung function in the solid fuel vs. the tobacco groups.

Items	Solid fuel group \((N = 759)\)	Tobacco group \((N = 147)\)	\(P \) values	Solid fuel group \((N = 113)\)	Tobacco group \((N = 113)\)	\(P \) values
Men, n (%)	227 (29.9)	142 (96.6)	<0.001	108 (95.6)	108 (95.6)	1.00
Mean age (years), mean ± SD	42.1 ± 16.8	40.8 ± 16.9	0.251	39.7 ± 16.7	40.3 ± 16.8	0.745
BMI (kg/m²), mean ± SD	24.3 ± 4.0	24.3 ± 3.4	0.679	24.4 ± 3.8	24.5 ± 3.6	0.702
Han ethnicity, n (%)	185 (24.4)	80 (54.4)	<0.001	47 (41.6)	48 (42.5)	1.000
Living in a rural area, n (%)	697 (91.8)	130 (88.4)	0.240	105 (92.9)	102 (90.3)	0.632
Education, n (%)	3.8 ± 0.9	3.8 ± 0.8	<0.001	3.8 ± 0.8	3.8 ± 0.8	0.537
Primary school or less	391 (51.5)	50 (34.0)		44 (38.9)	48 (42.5)	
Middle school or high school	315 (41.5)	74 (50.3)		60 (53.1)	57 (50.4)	
College and higher	53 (7.0)	23 (15.6)		9 (8.0)	8 (7.1)	
History of tuberculosis, n (%)	39 (5.1)	8 (5.4)	1.000	6 (5.3)	6 (5.3)	1.000
Pulmonary ventilation function (%), mean ± SD						
Pre-BD FEV1% pred	80.7 ± 21.9	82.0 ± 20.1	0.329	76.2 ± 22.9	83.8 ± 19.8	0.019
Pre-BD FEV1% pred	79.2 ± 21.2	82.0 ± 20.6	0.072	74.5 ± 21.8	83.7 ± 21.3	0.005
Pre-BD FVC% pred	67.0 ± 18.4	67.2 ± 16.5	0.690	62.6 ± 19.2	68.7 ± 16.1	0.020
Pre-BD FVC% pred	65.8 ± 17.7	67.2 ± 17.1	0.254	61.2 ± 18.2	68.7 ± 17.6	0.004
Pre-BD FEV1/FVC	66.6 ± 12.8	66.7 ± 11.4	0.902	64.2 ± 14.3	67.3 ± 11.2	0.157
Pre-BD FVC/FVC	64.1 ± 10.2	64.9 ± 9.4	0.557	62.0 ± 12.2	65.1 ± 9.4	0.078
Small airway function (%), mean ± SD						
Pre-BD MMEF% pred	45.6 ± 23.6	45.7 ± 20.7	0.552	44.9 ± 22.9	46.1 ± 20.7	0.538
Pre-BD MMEF% pred	44.0 ± 23.3	45.0 ± 16.9	0.028	41.1 ± 19.6	45.1 ± 17.0	0.093
Pre-BD FEF50% pred	50.8 ± 23.6	53.2 ± 22.9	0.135	49.3 ± 23.1	53.9 ± 23.1	0.141
Pre-BD FEF50% pred	45.9 ± 18.1	50.6 ± 17.7	0.002	44.9 ± 21.3	50.9 ± 18.3	0.026
Pre-BD FEF75% pred	53.3 ± 39.6	52.1 ± 28.2	0.588	51.6 ± 29.7	52.1 ± 28.4	0.669
Pre-BD FEF75% pred	48.3 ± 28.4	48.4 ± 23.0	0.631	48.5 ± 26.3	48.6 ± 19.5	0.895

1 Thirty-four missing values in the “before matching” group and 13 missing values in the “after matching” group. 2 One hundred and ten missing values in the “before matching” group and 32 missing values in the “after matching” group. 3 Thirteen missing values in the “before matching” group and four missing values in the “after matching” group. 4 One hundred and two missing values in the “before matching” group and 18 missing values in the “after matching” group. 5 Thirteen missing values in the “before matching” group and four missing values in the “after matching” group. 6 Thirteen missing values in the “before matching” group and 26 missing values in the “after matching” group. 7 BMI: Body mass index; BD: Bronchodilator; FEF: Forced expiratory flow; FEV1: Forced expiratory volume in 1 s; FVC: Forced vital capacity; MMEF: Maximal mid-expiratory flow; SD: Standard deviation; Pred: Predicted.
Overall, 59.6% (310/520) in the solid fuel group and 61.0% (58/95) in the tobacco group were classified as Global Initiative for Chronic Obstructive Lung Disease (GOLD) ≥ 2 before matching; whereas after matching, 67.9% (357/528) and 55.7% (39/70), respectively, were classified as GOLD ≥ 2 [Supplementary Figure 1, http://links.lww.com/CM9/A952]. Participants exposed to tobacco smoke were less likely to have post-bronchodilator FEV₁ < 80% predicted than participants exposed to solid fuel smoke (odds ratio [OR] = 0.56, 95% confidence interval [CI]: 0.32–0.96, P = 0.036) [Supplementary Table 1, http://links.lww.com/CM9/A952].

The tobacco group reported more respiratory symptoms than the solid fuel group. Participants exposed to tobacco smoke were more likely to have at least one symptom (cough, sputum, wheeze, and dyspnea) when compared with the solid fuel group (OR = 2.28, 95% CI: 1.35–3.86, P = 0.002) [Supplementary Table 1, http://links.lww.com/CM9/A952]. After PSM, respiratory symptoms were still higher in the tobacco group when compared with the solid fuel group [Supplementary Figure 2, http://links.lww.com/CM9/A952]. Additionally, PSM adjusted the OR value of at least one symptom (cough, sputum, wheeze, and dyspnea) (2.28 vs. 2.26) and showed that the participants exposed to tobacco were still more likely to have at least one symptom [Supplementary Table 1, http://links.lww.com/CM9/A952].

The present study investigated the differences in clinical and functional characteristics between CAO caused by solid fuel smoke and tobacco smoke. We found that participants exposed to solid fuel smoke were more likely to be women, have lower education levels, have more lung function impairments, and have less respiratory symptoms when compared with those exposed to tobacco smoke. Clinical research on CAO associated with solid fuel exposure is limited, especially when comparing solid fuel and tobacco exposure. Our study included participants aged ≥ 15 years and found that the degree of airflow limitation was worse in the solid fuel group than in the tobacco group. A previous study reported that FEV₁ and FEV₁/FVC values were higher in the solid fuel group than in the tobacco group. [4] The authors only included participants aged ≥ 40 years, but CAO associated with solid fuel smoke could be prevalent in younger people. Recently, Ramírez-Venegas et al [3] suggested that participants exposed to solid fuel smoke reach adult life with a lower FEV₁ level and normal decline of lung function, whereas participants exposed to tobacco smoke with a rapid decline in FEV₁ from a normal level of lung function. Therefore, we need more longitudinal studies to verify this conclusion. Few studies have examined tobacco smoke and solid fuel smoke exposure associations with respiratory symptoms. We observed participants exposed to tobacco smoke with more severe respiratory symptoms than those exposed to solid fuel smoke. Sex selection bias is a commonly encountered issue in CAO studies associated with different exposure types. We found that participants in the tobacco group were predominantly men and the solid fuel group predominantly women. To mitigate this bias, we matched several covariates, including sex by PSM. Pulmonary function and respiratory symptoms results were consistent before and after PSM.

Our study had some limitations. First, the study population was relatively small. Second, recall bias was a distinct possibility as we used questionnaires to collect data. Third, imaging and histopathological approaches which would have facilitated emphysema and small airway lesion assessments were unavailable. Fourth, patterns of exposure to solid fuel and tobacco smoke may have biased our results as participants exposed to tobacco were current and ex-smokers, whereas participants exposed to solid fuel smoke were current solid fuel users.

In conclusion, there are significant clinical and functional differences between CAO patients with tobacco and solid fuel exposures. When compared with those exposed to tobacco smoke, participants exposed to solid fuel smoke were more likely to be women, have lower education levels, have more lung function impairments, and have less respiratory symptoms.

Funding

This study was supported by grants from the Beijing Hospital Clinical Research 121 Project (No. BJ-2018-199) and the National Science and Technology Major Project (No. 2018YFC1315101).

Conflicts of interest

None.

References

1. Global Strategy for the Diagnosis, Management and Prevention of COPD. Global Initiative for Chronic Obstructive Lung Disease (GOLD), 2021. Available from: http://www.goldcopd.org/. [Last accessed on November 2, 2021]

2. Siddharthan T, Grigsby MR, Goodman D, Chowdhury M, Rubinstein A, Iracola V, et al. Association between household air pollution exposure and chronic obstructive pulmonary disease outcomes in 13 low- and middle-income country settings. Am J Respir Crit Care Med 2018;197:611–620. doi: 10.1164/rccm.201709-1861OC.

3. Guo Y, Xing Z, Shan G, Janssens JP, Sun T, Chai D, et al. Prevalence and risk factors for COPD at high altitude: a large cross-sectional survey of subjects living between 2,100-4,700 m above sea level. Front Med (Lausanne) 2020;7:581763. doi: 10.3389/fmed.2020.581763.

4. Golpe R, Sanjuán López P, Cano Jiménez E, Castro Añón O, Pérez de Llanos LA. Distribution of clinical phenotypes in patients with chronic obstructive pulmonary disease caused by biomass and tobacco smoke. Arch Bronconeumol 2014;50:318–324. doi: 10.1016/j.arbres.2013.12.013.

5. Ramírez-Venegas A, Montiel-Lope F, Falfán-Valencia R, Pérez-Rubio G, Sansores RH. The “Slow Horse Racing Effect” on lung function in adult life in chronic obstructive pulmonary disease associated to biomass exposure. Front Med (Lausanne) 2021;8:700836. doi: 10.3389/fmed.2021.700836.