A FAMILY OF THETA-FUNCTION IDENTITIES
BASED UPON R_{α}, R_{β} AND R_{m}-FUNCTIONS RELATED
TO JACOBI’S TRIPLE-PRODUCT IDENTITY

Mahendra Pal Chaudhary

Abstract. We establish a set of two new relationships involving R_{α}, R_{β} and
R_{m}-functions, which are based on Jacobi’s famous triple-product identity. We,
also provide answer for an open problem of Srivastava, Srivastava, Chaudhary
and Uddin, which suggest to find an inter-relationships between R_{α}, R_{β} and
$R_{m}(m \in \mathbb{N})$, q-product identities and continued-fraction identities.

1. Introduction and Definitions

Recently, Srivastava et al. [28] coined an open problem, which state as find
an inter-relationships between R_{α}, R_{β} and $R_{m}(m \in \mathbb{N})$, q-product identities and
continued-fraction identities. In this article we establish the relationships between
R_{α}, R_{β} and $R_{m}(m \in \mathbb{N})$, q-product identities.

Throughout this article, we denote by \mathbb{N}, \mathbb{Z}, and \mathbb{C} the set of positive integers,
the set of integers and the set of complex numbers, respectively. We also let
$\mathbb{N}_0 := \mathbb{N} \cup \{0\} = \{0, 1, 2, \cdots \}$
and recall the following q-notations (see, for example, [5, 7 Chapter 3, Section
3.2.1], [29 Chapter 6] and [30 pp. 346 et seq.]). The q-shifted factorial $(a; q)_n$ is
defined (for $|q| < 1$) by

$$
(a; q)_n := \begin{cases}
1 & (n = 0) \\
\prod_{k=0}^{n-1} (1 - aq^k) & (n \in \mathbb{N}),
\end{cases}
$$

where $a, q \in \mathbb{C}$ and it is assumed tacitly that $a \neq q^{-m}$ ($m \in \mathbb{N}_0$). We also write

$$
(a; q)_\infty := \prod_{k=0}^{\infty} (1 - aq^k) = \prod_{k=1}^{\infty} (1 - aq^{k-1}) \quad (a, q \in \mathbb{C}; |q| < 1).
$$

1991 Mathematics Subject Classification: Primary 11F27, 11P83; Secondary 05A17, 05A30.

Key words and phrases: theta-function identities; R_{m}-functions; Jacobi’s triple-product iden-
tity; Ramanujan’s theta functions; q-Product identities; Euler’s pentagonal number theorem;
Rogers-Ramanujan continued fraction; Rogers-Ramanujan identities.
It should be noted that, when $a \neq 0$ and $|q| \geq 1$, the infinite product in the equation (1.1) diverges. So, whenever $(a; q)_{\infty}$ is involved in a given formula, the constraint $|q| < 1$ will be tacitly assumed to be satisfied.

The following notations are also frequently used in our investigation:

\[
(a_1, a_2, \ldots, a_m; q)_n := (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n,
\]

\[
(a_1, a_2, \ldots, a_m; q)_{\infty} := (a_1; q)_{\infty} (a_2; q)_{\infty} \cdots (a_m; q)_{\infty}.
\]

Ramanujan (see [20] and [21]) defined the general theta function $\psi(a, b)$ as follows (see, for details, [8], p. 31, (18.1)] and [25]):

\begin{equation}
\psi(a, b) := \sum_{n = 1}^{\infty} a^{n(n-1)} \frac{q^n}{1 - q^n} = (a; q)_{\infty} \frac{q^2}{1 - q^2}.
\end{equation}

We find from this last equation (1.2) that

\begin{equation}
\psi(a, b) = a \frac{q(a+1)}{b(a+1)} \psi(a(b+1), b(ab+1)) = \psi(b, a) \quad (n \in \mathbb{Z}).
\end{equation}

In fact, Ramanujan (see [20] and [21]) also rediscovered Jacobi’s famous triple-product identity which, in Ramanujan’s notation, is given by (see [8], p. 35, Entry 19)]:

\begin{equation}
\varphi(a, b) = (-a; ab)_{\infty} (-b; ab)_{\infty} (ab; ab)_{\infty}
\end{equation}
or, equivalently, by (see [18])

\begin{equation}
\sum_{n = -\infty}^{\infty} q^n z^n = \prod_{n=1}^{\infty} (1 - q^{2n})(1 + zq^{2n-1}) \left(1 + \frac{1}{z} q^{2n-1}\right)
= (q^2; q^2)_{\infty} (-z; q^2)_{\infty} (-\frac{q}{z}; q^2)_{\infty}, \quad (|q| < 1; \ z \neq 0).
\end{equation}

Note 1. Historically speaking, q-series identity (1.4) or its above-mentioned equivalent form was first proved by Carl Friedrich Gauss (1777–1855).

Note 2. Equation (1.5) holds true as stated only if n is any integer. Moreover, in case n is not an integer, result (1.5) is only approximately true (see, for details, [20] Vol. 2, Chapter XVI, p. 193, Entry 18 (iv))].

Several q-series identities, which emerge naturally from Jacobi’s triple-product identity (1.4), are worthy of note here (see, for details, [8] pp. 36–37, Entry 22)]:

\begin{equation}
\phi(q) := \sum_{n = -\infty}^{\infty} q^n = 1 + 2 \sum_{n=1}^{\infty} q^n = \left\{(-q; q^2)_{\infty}\right\}^2 (q^2; q^2)_{\infty}
= \frac{(-q; q^2)_{\infty} (q^2; q^2)_{\infty}}{(q; q^2)_{\infty} (-q; q^2)_{\infty}};
\end{equation}

\begin{equation}
\psi(q) := \psi(q, q^3) = \sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}}.
\end{equation}

\begin{equation}
f(-q) = f(-q, -q^2) = \sum_{n = -\infty}^{\infty} (-1)^n q^{n(n-1)}
\end{equation}
A family of theta-function identities.... 25

\[\sum_{n=0}^{\infty} (-1)^n q^{n(n-1)/2} + \sum_{n=1}^{\infty} (-1)^n q^{n(n+1)/2} = (q; q)_\infty. \]

Equation (1.8) is known as Euler’s pentagonal number theorem, which states as

Theorem 1.1 (Euler’s Pentagonal Number Theorem). The number of partitions of a given positive integer \(n \) into distinct parts is equal to the number of partitions of \(n \) into odd parts.

Remarkably, the following \(q \)-series identity:

\[(q; q)_\infty = \frac{1}{(q^2; q^2)_\infty} = \chi(-q) , \]

provides the analytic equivalent form of Euler’s famous theorem (see, for details, [5] and [7]).

By introducing the general family \(R(s, t, l, u, v, w) \), Andrews et al. [6] investigated a number of interesting double-summation hypergeometric \(q \)-series representations for several families of partitions and further explored the role of double series in combinatorial-partition identities:

\[R(s, t, l, u, v, w) := \sum_{n=0}^{\infty} q^{l^2 + tn} r(l, u, v, w; n), \]

where

\[r(l, u, v, w : n) := \sum_{j=0}^{[\frac{w}{2}]} (-1)^j q^{uv(j^2 + (w-uj))} (q; q)_{n-uj} (q^{uv}; q^{uv})_j. \]

We also recall the following interesting special cases of \(R(s, t, l, u, v, w) \):

\[R(2, 1, 1, 2, 2) = (-q; q^2)_\infty, \]
\[R(2, 2, 1, 1, 2, 2) = (-q^2; q^2)_\infty, \]
\[R(m, m, 1, 1, 1, 2) = \frac{(q^{2m}; q^{2m})_\infty}{(q^m; q^{2m})_\infty}. \]

Recently, Srivastava et al. [28] have introduced the following three notations:

\(R_\alpha = R(2, 1, 1, 1, 2, 2), R_\beta = R(2, 2, 1, 1, 2, 2), R_m = R(m, m, 1, 1, 1, 2) \)

where \((m \in \mathbb{N})\), for multivariate \(R \)-functions, which we shall use for computation of our main results in Section 2.

Ever since the year 2015, several new advancements and generalizations of the existing results were made in regard to combinatorial partition-theoretic identities (see, for example, [14] to [15]; [25] to [27]). In particular, Chaudhary et al. generalized several known results on character formulas (see [13]), Ramanujan’s modular equations of degrees 3, 7 and 9 (see [10] and [11]), and so on, by using combinatorial partition-theoretic identities. An interesting recent investigation on the subject of combinatorial partition-theoretic identities by Hahn et al. [17] is also worth mentioning in this connection.
Each of the following preliminary results will be needed for the demonstration of our main results here (see [4 Theorem 5.1], [8 Entry 51, p.204], [19 Theorem 3.1]). If

\begin{equation}
1.10 \quad P = \frac{\phi(q)}{\phi(q^3)}, \quad Q = \frac{\phi(-q^6)}{\phi(-q^{18})}, \quad T = \frac{\psi(q^6)}{\psi(q^9)}, \quad u = \frac{\phi^2(q)}{q^2 \phi^2(q^3)}, \quad v = \frac{\phi^2(q^6)}{q^3 \phi^2(q^{18})},
\end{equation}

then

\begin{equation}
1.11 \quad \frac{Q^6}{P^6} = 21 \left(3 \frac{P^2}{Q^2} + 2 \frac{Q^2}{P^2}\right) - 3 \left(P^2 Q^2 - \frac{153}{P^2 Q^2}\right) + \left(Q^6 - \frac{81}{Q^6}\right) \left(1 + \frac{3}{P^2}\right)
\end{equation}

\begin{equation}
= 3 \left(7Q^2 - \frac{27}{Q^2}\right) - \frac{18}{P^2} \left(5Q^2 - \frac{18}{Q^2}\right) + \frac{81}{Q^6} \left(P^2 - \frac{5}{P^2}\right)
\end{equation}

\begin{equation}
+ 3P^2 \left(Q^2 - \frac{3}{Q^2}\right) + \left(P^6 Q^2 + 3 \frac{Q^6}{P^2}\right) = 0;
\end{equation}

\begin{equation}
1.12 \quad 9TQ^2 P^6 - 27Pu + 27P^5 u - 81TQ^2 P^2 - 9uQ^4 P^3 u
\end{equation}

\begin{equation}
+ Q^4 P^7 uv + TQ^6 v - TQ^6 P^4 v = 0
\end{equation}

2. Main Results

In this section, we establish a set of two new relationships involving \(R_{\alpha}, R_{\beta}\) and \(R_m\)-functions, \(q\)-product identities and continued-fraction identities. Also answer an open problem of Srivastava et al. [28], which state as find inter-relationships between \(R_{\alpha}, R_{\beta}\) and \(R_m(m \in \mathbb{N})\), \(q\)-product identities and continued-fraction identities. In this article we establish the relationships between \(R_{\alpha}, R_{\beta}\) and \(R_m(m \in \mathbb{N})\), \(q\)-product identities.

Theorem 2.1. Each of the following relationships holds true:

\begin{equation}
2.1 \quad 72 \left\{\frac{\alpha}{\beta} \left(q; q\right)_\infty \left(q^{18}; q^{18}\right)_\infty \left(-q^4, -q^6; q^6\right)_\infty \left(-q^6, -q^{12}; q^{12}\right)_\infty \right\}^2
\end{equation}

\begin{equation}
+ 21 \left\{\frac{\alpha}{\beta} \left(q; q\right)_\infty \left(q^{18}; q^{18}\right)_\infty \left(-q^{18}, -q^{36}; q^{36}\right)_\infty \right\}^2
\end{equation}

\begin{equation}
+ 42 \left\{\frac{\alpha}{\beta} \left(q; q\right)_\infty \left(q^{18}; q^{18}\right)_\infty \left(-q^{3}, -q^6; q^6\right)_\infty \left(-q^6, -q^{12}; q^{12}\right)_\infty \right\}^2
\end{equation}

\begin{equation}
+ 90 \left\{\frac{\alpha}{\beta} \left(q; q\right)_\infty \left(q^{18}; q^{18}\right)_\infty \left(-q^3, -q^6; q^6\right)_\infty \left(-q^6, -q^{12}; q^{12}\right)_\infty \right\}^2
\end{equation}

\begin{equation}
+ 405 \left\{\frac{\alpha}{\beta} \left(q; q\right)_\infty \left(q^{18}; q^{18}\right)_\infty \left(-q^6, -q^{12}; q^{12}\right)_\infty \right\}^6
\end{equation}

\begin{equation}
+ 243 \left\{\frac{\alpha}{\beta} \left(q; q\right)_\infty \left(q^{18}; q^{18}\right)_\infty \left(-q^6, -q^{12}; q^{12}\right)_\infty \right\}^6
\end{equation}

\begin{equation}
= \left\{\frac{\alpha}{\beta} \left(q; q\right)_\infty \left(q^{18}; q^{18}\right)_\infty \left(-q^4, -q^6; q^6\right)_\infty \left(-q^6, -q^{12}; q^{12}\right)_\infty \right\}^6
\end{equation}
\[
+ 459 \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty (q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty}{(q; q)_\infty (q^6; q^6)_\infty (-q^3, -q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty} \right\}^2 \\
+ \left\{ \frac{(q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty}{(q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty} \right\}^6 \left\{ \frac{9(q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty}{(q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty} \right\}^2 \\
+ \frac{3}{2} \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty}{(q; q)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^4 \left\{ (q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty \right\}^6 \\
+ 324 \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty}{(q; q)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2 \left\{ (q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty \right\}^2 \\
+ \left\{ \frac{9(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta (q^3; q^3)_\infty} \right\}^2 \right\}^3 \left\{ (q^{18}; q^{18})_\infty (-q^3, -q^{12}; q^{12})_\infty \right\} \\
+ \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty}{(q; q)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^6 \\
+ 3 \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty}{(q; q)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2 \\
\]

Equation (2.1) gives inter-relationships between \(R_\alpha, R_\beta, \) and \(q \)-products identities and

\[
\frac{R_6}{R_{18}} \left\{ \frac{3R_4(-q^{18}, -q^{36}; q^{36})_\infty}{(q^6; q^6)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2 \left\{ \frac{(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta} \right\}^6 \\
+ \frac{1}{q^7} \left\{ \frac{R_3 R_1 R_6}{R_{18}} \right\}^2 \left\{ \frac{1}{(q^3; q^3)_\infty} \right\}^3 \\
\left\{ \frac{(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta} \right\}^7 \left\{ \frac{1}{q R_\beta} \right\} \left\{ \frac{R_6}{R_{18}} \right\}^3 \left\{ \frac{(q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty}{(q^{18}; q^{18})_\infty (-q^3, -q^{12}; q^{12})_\infty} \right\}^6 \\
= \frac{R_6}{R_{18}} \left\{ \frac{9R_3}{R_\alpha R_\beta} \right\} \left\{ \frac{(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{(q^{18}; q^{18})_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2 \\
\frac{27(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{q^7 R_\alpha R_\beta (q^3; q^3)_\infty} \left\{ \frac{R_1}{R_3} \right\}^2 + \frac{R_6(q^6; q^{12})_\infty}{q^7 (q^{12}; q^{12})_\infty} \left\{ \frac{3R_4}{R_{18}(q^6; q^6)_\infty} \right\}^2 \\
\left\{ \frac{R_6(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta} \right\}^3 \left\{ \frac{(q^{18}; q^{18})_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta} \right\}^4 \\
\frac{1}{q^7} \left\{ \frac{(q^6; q^{12})_\infty}{(q^6; q^6)_\infty (q^{12}; q^{12})_\infty} \right\}^2 \\
\left\{ \frac{R_3(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta} \right\}^4 \\
\left\{ \frac{R_6^5}{R_{18}} \right\}^3 \left\{ \frac{(-q^{18}, -q^{36}; q^{36})_\infty}{(-q^9, -q^{12}; q^{12})_\infty (q^{18}; q^{18})_\infty} \right\}^6 .
\]

Equation (2.2) gives inter-relationships between \(R_1, R_3, R_6, R_{18}, R_\alpha, R_\beta, \) and \(q \)-product identities.
It is assumed that each member of the assertions (2.1) and (2.2) exists.

Proof. First of all, in order to prove assertion (2.1), apply identities (1.6)
and (1.7), under the given precondition of result (1.11); and further using (1.9), we obtain

\[
\frac{Q^6}{P^6} = \left\{ \frac{R_\alpha R_\beta(q^3,q^3) \infty (q^6,q^6) \infty (-q^{18},-q^{18};q^{36}) \infty}{(q;q) \infty (q^{18};q^{18}) \infty (-q^3,-q^3;q^6) \infty (-q^9,-q^{12};q^{12}) \infty} \right\}^6,
\]

\[
-21 \left(3 \frac{P^2}{Q^2} + 2 \frac{Q^2}{P^2} \right)
= -63 \left\{ \frac{(q;q) \infty (q^{18};q^{18}) \infty (-q^3,-q^3;q^6) \infty (-q^6,-q^{12};q^{12}) \infty}{R_\alpha R_\beta(q^3,q^3) \infty (q^6,q^6) \infty (-q^3,-q^{12};q^{12}) \infty} \right\}^2
- 42 \left\{ \frac{R_\alpha R_\beta(q^3,q^3) \infty (q^6,q^6) \infty (-q^{18},-q^{36};q^{36}) \infty}{(q;q) \infty (q^{18};q^{18}) \infty (-q^3,-q^6;q^6) \infty (-q^9,-q^{12};q^{12}) \infty} \right\}^2,
\]

\[
-3 \left(P^2 Q^2 - \frac{153}{P^2 Q^2} \right)
= -3 \left\{ \frac{(q;q) \infty (q^6,q^6) \infty (-q^3,-q^3;q^6) \infty (-q^6,-q^{12};q^{12}) \infty}{R_\alpha R_\beta(q^3,q^3) \infty (q^{18};q^{18}) \infty (-q^3,-q^{12};q^{12}) \infty} \right\}^2
+ 459 \left\{ \frac{R_\alpha R_\beta(q^3,q^3) \infty (q^{18};q^{18}) \infty (-q^6,-q^{12};q^{12}) \infty}{(q;q) \infty (q^6,q^6) \infty (-q^3,-q^6;q^6) \infty (-q^9,-q^{12};q^{12}) \infty} \right\}^2,
\]

\[
\left(Q^6 - \frac{81}{Q^6} \right) \left(1 + 3 \frac{Q^2}{P^2} \right)
= \left\{ \frac{(q^6,q^6) \infty (-q^{18},-q^{36};q^{36}) \infty}{(q^{18};q^{18}) \infty (-q^3,-q^{12};q^{12}) \infty} \right\}^6
+ 3 \cdot (R_\alpha R_\beta(q^3,q^3) \infty)^4 \left\{ \frac{(q^6,q^6) \infty (-q^{18},-q^{36};q^{36}) \infty}{(q^6,q^6) \infty (-q^3,-q^{12};q^{12}) \infty} \right\}^6
+ \left\{ \frac{(q^6,q^6) \infty (-q^3,-q^6;q^6) \infty (-q^9,-q^{12};q^{12}) \infty}{(q^6,q^6) \infty (-q^3,-q^6;q^6) \infty (-q^9,-q^{12};q^{12}) \infty} \right\}^6.
\]

\[
-3 \left(7 Q^2 - \frac{27}{Q^2} \right)
= -21 \left\{ \frac{(q^6,q^6) \infty (-q^{18},-q^{36};q^{36}) \infty}{(q^{18};q^{18}) \infty (-q^3,-q^{12};q^{12}) \infty} \right\}^2
+ \left\{ \frac{9 \cdot (q^{18};q^{18}) \infty (-q^6,-q^{12};q^{12}) \infty}{(q^6,q^6) \infty (-q^9,-q^{12};q^{12}) \infty} \right\}^2,
\]

\[
-18 \left(\frac{P^2}{Q^2} \right)
= -90 \left\{ \frac{R_\alpha R_\beta(q^3,q^3) \infty^2 (q^6,q^6) \infty (-q^{18},-q^{36};q^{36}) \infty}{(q;q) \infty (-q^3,-q^9;q^6) \infty (q^{18};q^{18}) \infty (-q^9,-q^{12};q^{12}) \infty} \right\}^2.
\]
+ 324 \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty}{(q; q)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2 (q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty^2

\begin{align}
(2.9) & \quad \frac{81}{Q^5} \left(P^2 - \frac{5}{P^2} \right) \\
& = \left\{ \frac{9(q; q)_\infty (-q^3, -q^6; q^6)_\infty \left\{ (q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty \right\}^3}{R_\alpha R_\beta (q^3; q^3)_\infty \left\{ (q^6; q^6)_\infty (-q^3, -q^6; q^6)_\infty \right\}^3} \right\}^2 \\
& - 405 \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty}{(q; q)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2 \left\{ \frac{(q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty}{(q^6; q^6)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^6,
\end{align}

\begin{align}
(2.10) & \quad 3P^2 \left(Q^2 - \frac{3}{Q^2} \right) \\
& = 3 \left\{ \frac{(q; q)_\infty (q^6; q^6)_\infty (-q^3, -q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty}{R_\alpha R_\beta (q^3; q^3)_\infty (q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty} \right\}^2 \\
& - \left\{ \frac{3(q; q)_\infty (q^{18}; q^{18})_\infty (-q^3, -q^6; q^6)_\infty (-q^6, -q^{12}; q^{12})_\infty}{R_\alpha R_\beta (q^3; q^3)_\infty (q^6; q^6)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2.
\end{align}

\begin{align}
(2.11) & \quad P^6Q^2 + 3 \cdot \frac{Q^6}{P^2} \\
& = \left\{ \frac{(q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{46})_\infty}{(q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty} \right\}^2 \left\{ \frac{(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta (q^3; q^3)_\infty} \right\}^6 \\
& + 3 \left\{ \frac{R_\alpha R_\beta (q^3; q^3)_\infty}{(q; q)_\infty (-q^3, -q^6; q^6)_\infty} \right\}^2 \left\{ \frac{(q^6; q^6)_\infty (-q^{18}, -q^{36}; q^{36})_\infty}{(q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty} \right\}^6.
\end{align}

Now, upon substituting from these last results (2.3) to (2.11) into (1.11), if we rearrange the terms and use some algebraic manipulations, we are led to the first assertion (2.1) of Theorem 2.1.

Finally, we proceed to prove identity (2.2), apply identities (1.6) and (1.7), under the given precondition of result (1.12); and further using (1.9), we obtain:

\begin{align}
(2.12) & \quad 9TQ^2P^6 = \frac{9R_6}{R_{18}} \left\{ \frac{R_3(-q^{18}, -q^{36}; q^{36})_\infty}{(q^6; q^6)_\infty (q^{18}; q^{18})_\infty (-q^6, -q^{12}; q^{12})_\infty} \right\}^2 \\
& \cdot \left\{ \frac{(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta} \right\}^6 \left\{ \frac{1}{(q^3; q^3)_\infty} \right\}^4. \\
(2.13) & \quad -27Pu = -\frac{27(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{q^2 R_\alpha R_\beta (q^3; q^3)_\infty} \left\{ \frac{R_1}{R_3} \right\}^2. \\
(2.14) & \quad 27P^5u = \frac{27}{q^3} \left\{ \frac{(q; q)_\infty (-q^3, -q^6; q^6)_\infty}{R_\alpha R_\beta (q^3; q^3)_\infty} \right\}^5 \left\{ \frac{R_1}{R_3} \right\}^2.
\end{align}
In a recently-published review-cum-expository article, in addition to applying rather briefly a number of recent developments on the subject-matter of this article, we have chosen to indicate additional parameter 0 < \alpha < 1 and combinatorial partition-theoretic identities, such as (for example)
\begin{equation}
(2.16)
- 9vQ^4 P^3 u = - \frac{R_3(q^6; q^{12})_\infty}{q^7(q^{12}; q^{12})_\infty} \frac{3R_1}{R_{18}(q^6; q^6)_\infty} \left\{ R_6(q; q)_\infty(-q^3, -q^6, q^6)_\infty \right\}^3 \left\{ \frac{(-q^{18}, -q^{36}, q^{36})_\infty}{(q^{18}; q^{18})_\infty(-q^6, -q^{12}, q^{12})_\infty} \right\}^4.
\end{equation}
\begin{equation}
(2.17)
Q^4 P^7 u v = \frac{1}{q^2} \left\{ \frac{1}{(q^3; q^3)_\infty} \frac{R_3 R_1 R_6}{R_{18}} \right\}^2 \left\{ \frac{(-q^{18}, -q^{36}, q^{36})_\infty}{(q^{18}; q^{18})_\infty(-q^6, -q^{12}, q^{12})_\infty} \right\}^7.
\end{equation}
\begin{equation}
(2.18)
T Q^6 v = \frac{1}{q^3} \left\{ \frac{R_6}{R_{18}} \right\}^3 \left\{ \frac{(q^6; q^6)_\infty(-q^{18}, -q^{36}, q^{36})_\infty}{(q^{18}; q^{18})_\infty(-q^6, -q^{12}, q^{12})_\infty} \right\}^6.
\end{equation}
\begin{equation}
(2.19)
- T Q^6 P^4 v = - \frac{1}{q^3} \left\{ \frac{(q^6; q^{12})_\infty}{(q^6; q^6)_\infty(q^{12}; q^{12})_\infty} \right\}^2 \left\{ \frac{R_6(q; q)_\infty(-q^3, -q^6, q^6)_\infty}{R_{18} R_3} \right\}^4 \left\{ \frac{R_6}{R_{18}} \right\}^5 \left\{ \frac{(-q^{18}, -q^{36}, q^{36})_\infty}{(q^{18}; q^{18})_\infty(-q^6, -q^{12}, q^{12})_\infty} \right\}^6.
\end{equation}
Now, upon substituting from these last results (2.12) to (2.19) into (1.12), if we rearrange the terms and use some algebraic manipulations, we are led to assertion (2.2).

3. Concluding Remarks and Observations

The present investigation was motivated by several recent developments dealing essentially with theta-function identities and combinatorial partition-theoretic identities. Here, we have established a family of three presumably new theta-function identities which depict the inter-relationships that exist among \(R_\alpha, R_\beta, R_\gamma\) and derivatives of \(R_\infty\)-functions. We have also considered several closely-related identities such as (for example) \(q\)-product identities and Jacobi’s triple-product identities. A view to further motivating researches involving theta-function identities and combinatorial partition-theoretic identities, we have chosen to indicate rather briefly a number of recent developments on the subject-matter of this article. In a recently-published review-cum-expository review article, in addition to applying the \(q\)-analysis to geometric function theory of complex analysis, Srivastava [24] pointed out the fact that the results for the \(q\)-analogues can easily (and possibly trivially) be translated into the corresponding results for the \((p, q)\)-analogues (with 0 < |\(q| < p \leq 1\) by applying some obvious parametric and argument variations, the additional parameter \(p\) being redundant. Of course, this exposition and observation of Srivastava [24] p. 340] would apply also to the results which we have considered.
in our present investigation for $|q| < 1$. The list of citations, which we have included in this article, is believed to be potentially useful for indicating some of the directions for further researches and related developments on the subject-matter which we have dealt with here. In particular, the recent works by Adiga et al. (see [1–3], Cao et al. [9], Chaudhary et al. (see [10] to [16]), Hahn et al. [17], and Srivastava et al. (see [26, 31–33]) are worth mentioning here.

References

1. C. Adiga, N. Anita, *A note on a continued fraction of Ramanujan*, Bull. Aust. Math. Soc. 70 (2004), 489–497.
2. C. Adiga, N. A. S. Bulkahi, D. Ranganatha, H. M. Srivastava, *Some new modular relations for the Rogers-Ramanujan type functions of order eleven with applications to partitions*, J. Number Theory 158 (2016), 281–297.
3. C. Adiga, N. A. S. Bulkahi, Y. Simsek, H. M. Srivastava, *A continued fraction of Ramanujan and some Ramanujan-Weber class invariants*, Filomat 31 (2017), 3975–3997.
4. C. Adiga, T. Kim, M. S. M. Naika, H. S. Madhusudhan, *On Ramanujan’s cubic continued fraction and explicit evaluations of theta functions*, Indian J. Pure Appl. Math. 35 (2004), 1047–1062.
5. G. E. Andrews, *The Theory of Partitions*, Cambridge University Press, Cambridge, London and New York, 1998.
6. G. E. Andrews, K. Bringman, K. Mahlburg, *Double series representations for Schur’s partition function and related identities*, J. Combin. Theory Ser. A 132 (2015), 102–119.
7. T. M. Apostol, *Introduction to Analytic Number Theory*, Springer-Verlag, Berlin, New York and Heidelberg, 1976.
8. B. C. Berndt, *Ramanujan’s Notebooks, Part III*, Springer-Verlag, Berlin, Heidelberg and New York, 1991.
9. J. Cao, H. M. Srivastava, Z.-G. Luo, *Some iterated fractional q-integrals and their applications*, Fract. Calc. Appl. Anal. 21 (2018), 672–695.
10. M. P. Chaudhary, Sangeeta Chaudhary, *Note on Ramanujan’s modular equations of degrees three and nine*, Pacific J. Appl. Math. 8 (2017), 143–148.
11. M. P. Chaudhary, Sangeeta Chaudhary, J. Choi, *Certain identities associated with 3-dissection property, continued fractions and combinatorial partition*, Appl. Math. Sci. 10 (2016), 37–44.
12. M. P. Chaudhary, J. L. Cimadevilla Villacorta, *Representations of certain theta function identities in terms of combinatorial partition identities*, Far East J. Math. Sci. 102 (2017), 1605–1611.
13. M. P. Chaudhary, Salahuddin, J. Choi, *Certain relationships between q-product identities, combinatorial partition identities and continued-fraction identities*, Far East J. Math. Sci. 101 (2017), 973–982.
14. M. P. Chaudhary, G. A. Salilew, Junesang Choi, *Five relationships between continued fraction identities, q-product identities and combinatorial partition identities*, Far East J. Math. Sci. 102 (2017), 855–863.
15. M. P. Chaudhary, Feyissa Kaba Wakene, *On interrelationships between q-product identities and combinatorial partition identities II*, Pacific J. Appl. Math. 9 (2019), 255–261.
16. M. P. Chaudhary, Feyissa Kaba Wakene, *On interrelationships between q-product identities and combinatorial partition identities V*, Uzbek Math. J. 63 (2019), 42–49.
17. H.-Y. Hahn, J.-S. Huh, E.-S. Lim, J.-B. Sohn, *From partition identities to a combinatorial approach to explicit Satake inversion*, Ann. Combin. 22 (2018), 543–562.
18. C. G. J. Jacobi, *Fundamenta Nova Theoriae Functionum Ellipticarum*, Regiomontii, Sumtibus Fratrum Bornträger, Königsberg, Germany, 1829; Reprinted in Gesammelte Math. Werke, 1 (1829), 497–538, American Mathematical Society, Providence, Rhode Island, 1969, pp. 97–239.
19. M.S.M. Nakia, K. Sushan Bairy, N.P. Suman, Certain modular relations for remarkable product of theta-functions, Proc. Jangjeon Math. Soc. 17 (2014), 317–331.
20. S. Ramanujan, Notebooks, 1 and 2, Tata Institute of Fundamental Research, Bombay, 1957.
21. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
22. H.M. Srivastava, The Zeta and related functions: Recent developments, J. Adv. Engrg. Comput. 3 (2019), 329–354.
23. H.M. Srivastava, Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researches, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan 45 (2019), 234–269.
24. H.M. Srivastava, Operators of basic (q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci. 44 (2020), 327–344.
25. H.M. Srivastava, M.P. Chaudhary, Some relationships between q-product identities, combinatorial partition identities and continued-fraction identities, Adv. Stud. Contemp. Math. 25 (2015), 265–272.
26. H.M. Srivastava, M.P. Chaudhary, Sangeeta Chaudhary, Some theta-function identities related to Jacobi’s triple-product identity, Europ. J. Pure Appl. Math. 11 (2018), 1–9.
27. H.M. Srivastava, M.P. Chaudhary, Sangeeta Chaudhary, A family of theta-function identities related to Jacobi’s triple-product identity, Russian J. Math. Phys. 27 (2020), 139–144.
28. H.M. Srivastava, R. Srivastava, M.P. Chaudhary, S. Uddin, A family of theta function identities based upon combinatorial partition identities and related to Jacobi’s triple-product identity, Mathematics 8 (6 Article ID 918) (2020), 1–14.
29. H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, London and New York, 2012.
30. H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1985.
31. H.M. Srivastava, C.-H. Zhang, A certain class of identities of the Rogers-Ramanujan type, Pan Amer. Math. J. 19 (2009), 89–102.
32. A.-J. Yee, Combinatorial proofs of generating function identities for F-partitions, J. Combin. Theory Ser. A 102 (2003), 217–228.
33. J.-H. Yi, Theta-function identities and the explicit formulas for theta-function and their applications, J. Math. Anal. Appl. 292 (2004) 381–400.

Department of Mathematics
Netaji Subhas University of Technology
New Delhi, India

(Received 25 07 2020) (Revised 16 10 2020)

dr.m.p.chaudhary@gmail.com