α-Helical Domains Promote Translocation of Intrinsically Disordered Polypeptides into the Endoplasmic Reticulum

Co-translational import into the endoplasmic reticulum (ER) is primarily controlled by N-terminal signal sequences that mediate targeting of the ribosome-nascent chain complex to the Sec61/translocon and initiate the translocation process. Here we show that after targeting to the translocon the secondary structure of the nascent polypeptide chain can significantly modulate translocation efficiency. ER-targeted polypeptides dominated by unstructured domains failed to efficiently translocate into the ER lumen and were subjected to proteasomal degradation via a co-translocational/preemptive pathway. Productive ER import could be reinstated by increasing the amount of α-helical domains, whereas more effective ER signal sequences had only a minor effect on ER import efficiency of unstructured polypeptides. ER stress and overexpression of p58IPK promoted the co-translocational degradation pathway. Moreover polypeptides with unstructured domains at their N terminus were specifically targeted to proteasomal degradation under these conditions. Our study indicates that extended unstructured domains are signals to dispose ER-targeted proteins via a co-translocational, preemptive quality control pathway.

To ensure cellular homeostasis and to preclude toxic effects of aberrant protein conformers quality control mechanisms have evolved to recognize and degrade non-functional and misfolded proteins. In the cytosol the ubiquitin–proteasome system has evolved to recognize and degrade non-functional and misfolded proteins. This regulation relies on an interplay between intrinsic features of the polypeptides and accessory factors able to modulate the translocation efficiency (for a review, see Ref. 11). Although numerous factors are known to be involved in ERAD less is known about mediators of the preemptive, co-translocational quality control pathway. In one study p58IPK was identified as a key regulator (9), whereas in another it was shown that ER translocation during conditions of acute ER stress is controlled by the signal peptide (10). Indeed the signal peptide is an important intrinsic determinant. Although an exceptionally diverse set of sequences can target proteins for ER import it has been demonstrated that the translocation efficiency is modulated in a signal peptide sequence-specific manner (for reviews, see Refs. 12–14). Another attractive candidate for an intrinsic factor to regulate translocation is the folding state of the nascent polypeptide chain. Formation of secondary structure occurs already in the ribosomal exit tunnel (15–18). Moreover it was shown that the polypeptide structure within the ribosomal exit tunnel can modulate translocation of distal parts of the nascent chain (19).

The mammalian prion protein (PrP) is a suitable model protein to study whether formation of secondary structure could modulate translocation efficiency because it has an intriguing modular composition: the N-terminal domain spanning 120 amino acids is flexibly disordered followed by a highly structured C-terminal domain of ~110 amino acids. This autonomously folding domain contains three α-helical regions and a short, two-stranded β-sheet (20–22). Notably folding of the C-terminal domain is one of the most rapid folding reactions measured in vitro (23). Interestingly previous studies indicated that the C-terminal folded domain of PrP is necessary and sufficient to promote ER import. In cultured cells and nerv...
rons of transgenic animals PrP-S230X (also known as PrPΔGPI or GPI-PrP), a mutant devoid of the C-terminal glycosylphosphatidylinositol (GPI) anchor signal peptide, is efficiently imported into the ER and secreted (24–27). However, by deleting parts of the α-helical domains located in the C-terminal domain a fraction is directed to proteasomal degradation in the cytosol (28).

We have now analyzed the underlying mechanisms of this impaired ER import and show that ER-targeted proteins require a certain amount of structured domains to be imported into the ER. In addition, our study indicates that extended unstructured domains are signals for a preemptive/co-translational degradation pathway.

EXPERIMENTAL PROCEDURES

Generation of PrP and PrP Mutants—The coding region of mouse prion protein gene (GenBank™ accession number M18070) modified to express PrP-L108M/V1111M was inserted into the mammalian expression vector pcDNA3.1/Zeol (Invitrogen), allowing detection by the monoclonal antibody (mAb) 3F4. PrP was used as a template to introduce the following deletions and mutations by standard PCR cloning techniques. The generation of the constructs S230X, Δ27–89/S230X, Δ27–156/S230X, and mouse Doppel (Dpl) was described earlier (27–29). In PrP/31CHO, Q159X/31CHO, W144X/31CHO, M133X/31CHO, A115X/31CHO, 115αα/31CHO, 115αα/31CHO/N196Q, 115αα/31CHO/N196Q/N180Q, 115/31CHO/GFR, 115/31CHO+S230X, 115/31CHO+Tau, 115/31CHO+αsyn, and 31CHO+αsyn, the amino acids (aa) Trp and Asn at position 31/32 were substituted into Asn and Phe thereby generating an additional glycosylation acceptor site (NFT-motif). For the generation of cytosolic versions of PrP mutants the ER signal sequence (aa 2–22) was deleted. The Cre5p-SS and GH-SS mutants were generated by replacing aa 1–27 of PrP containing the endogenous signal sequence with the yeast Cre5p signal peptide (MRLLAVLLLL-CAPLRA) or the rat growth hormone (GH) signal sequence (MAADSTAPWLLTFSLLCAPLRA) or the yeast Cre5p signal peptide (MRLLAVLLLL-CAPLRA) or the rat growth hormone (GH) signal sequence (MAADSTAPWLLTFSLLCAPLRA). The following PrP mutants were cloned: 115αα/αα (aa 1–114 + 171–221), 115αα/αα (aa 1–114 + 23–114), 115αα/αα (aa 1–114 + 23–114), 115αα (aa 1–114 + 23–114), 115Dpl (PrP aa 1–114 + Dpl aa 98–148), Dpl115 (PrP aa 1–22 + Dpl aa 98–148 + PrP aa 23–114), 115/31CHO/GFR (PrP aa 1–114 + GFR aa 40–89), 115/31CHO+αsyn (PrP aa 1–114 + αsyn aa 2–114), 31CHO+αsyn (PrP aa 1–34 + αsyn aa 2–114), and 115/31CHO+Tau (PrP aa 1–114 + Tau40/P301L aa 103–197). The plasmid for human Tau40/P301L was a kind gift from Eva-Maria Mandelkow (Max-Planck-Arbeitsgruppen für strukturell Molekularbiologie, Hamburg, Germany). The construct 115/31CHO+Tau contains an amino acid change at position 108 of Tau (1108N). The expression plasmid for rat glial cell-line-derived neurotrophic factor receptor α (GFR; GenBank™ accession number CAA05171) was a kind gift from Zhe-Yu Chen (Second Military Medical University, Shanghai, China).

The plasmids for the expression of p58IPK and p58IPKΔJ were kindly provided by David Ron (9) and were modified with a FLAG tag at the C-terminus of the protein. For the generation of p58IPKΔSS the ER signal sequence (aa 2–31) was deleted. The plasmid for EYFP-Hsp70 was a kind gift from Richard I. Morimoto (30). The constructs for hamster BiP (kindly provided by Linda Hendershot) and the Hsp40 members Hdj1 and Hdj2 (a kind gift from Richard I. Morimoto) were subcloned into the pcDNA3.1/Zeo vector for mammalian expression. Hdj2 was modified to bear a C-terminal FLAG tag.

Antibodies and Reagents—All standard chemicals and reagents were purchased from Sigma if not otherwise noted. The following antibodies were used: mouse mAb 3F4 (31), mouse M2 anti-FLAG mAb (Sigma), mouse anti-α-synuclein mAb (mAb42, BD Biosciences), mouse mAb anti-Hsp70 (kindly provided by William J. Welch), mouse anti-KDEL mAb (Stressgen), and horseradish peroxidase-conjugated anti-mouse and anti-rabbit IgG antibody (Amersham Biosciences). Rabbit anti-Hsp40 polyclonal antibody was a kind gift from F. Ulrich Hartl (32).

Cell Culture and Secretion Analysis—Mouse N2a (ATCC number Ccl 131) cells were cultivated as described previously (33). Cells were transfected by a liposome-mediated method using Lipofectamine Plus reagent (Invitrogen) according to the manufacturer’s instructions. To examine the secretion of proteins into the cell culture supernatant, cells were cultivated in cell culture medium without supplements for at least 3 h at 37 °C. The medium was collected, and proteins were precipitated with trichloroacetic acid and then analyzed by Western blotting.

Inhibitor Treatment—To transiently inhibit the proteasome, cells were treated with MG132 (Calbiochem; 30 μM in DMSO) for 3 h at 37 °C prior to cell lysis. To induce ER stress transfected cells were cultivated with thapsigargin (Sigma; 1 μM in DMSO) for the time indicated prior to Western blot analysis.

Cell Lysis, Endoglycosidase H (EndoH) Digestion, and Western Blot Analysis—As described earlier (34), cells were rinsed twice with ice-cold phosphate-buffered saline, scrapped off the plate, pelleted by centrifugation, and lysed in cold detergent buffer (0.5% Triton X-100, 0.5% sodium deoxycholate in phosphate-buffered saline). For EndoH digestion, protein lysates were adjusted to 0.5% SDS, boiled, and then treated with EndoH (New England Biolabs) for 1 h at 37 °C as specified by the manufacturer. Laemmli sample buffer was added, and after boiling samples were examined by immunoblotting as described previously (35).

Metabolic Labeling and Immunoprecipitation—As described previously (36), cells were starved for 30 min in methionine-free modified Eagle’s medium (Invitrogen) and subsequently labeled for the time indicated with 300 μCi/ml l-[35S]methionine (Hartmann Analytics; >37 TBq/mmol) in methionine-free modified Eagle’s medium (Invitrogen). When indicated, the proteasomal inhibitor MG132 was present during the starving and the labeling periods (50 μM in DMSO). For the chase, the labeling medium was removed, and cells were washed twice and then incubated in complete medium for the time indicated. Immunoprecipitation of PrP was performed using the mAb 3F4 as described earlier (27). The immunopellet was analyzed by SDS-PAGE.

In Vitro Transcription, Translation, and Translocation—In vitro transcription/translation was performed using the TnT
Unstructured Domains and ER Import

A

S230X	Q159X	Δ27-89/S230X
ER-SS	GPI-SS	GPI-SS
β1 α1 β2 α2 α3		

B

PrP	PrP/31CHO	EndoH	
ER-SS	GPI-SS		
p c	p c	p c	p c

C

Q159X/31CHO	W144X/31CHO	M133X/31CHO
p c	p c	p c

D

A115X/31CHO	Δ27-156/S230X
p c	p c

FIGURE 1. Loss of α-helical domains directs ER-targeted prion protein to proteasomal degradation in the cytosol—A, deletion of α-helical domains impairs ER import. Left panel, schematic presentation of the constructs. ER-SS, N-terminal signal sequence; α, α-helical region; β, β-strand; CHO, N-linked glycosylation acceptor site; straight line, unstructured regions. Right panel, N2a cells were transiently transfected with the mutants depicted, and PrP present in the cell lysate (L) or in the culture medium (M) was analyzed by immunoblotting using the mAb 3F4. In addition, cells lysates were analyzed with or without the proteasomal inhibitor MG132 for 3 h prior to lysis. L, an additional N-linked glycosylation acceptor site is functional. Left panel, schematic presentation of the constructs. GPI-SS, GPI signal sequence. The additional glycosylation site (CHO) at amino acid 31 in PrP/31CHO is marked in red. Right panel, N2a cells were transiently transfected with wild type PrP (PrP) or PrP/31CHO. Total cell lysates were either treated with the endoglycosidase H (+ EndoH) or left untreated (− EndoH), and PrP was detected by Western blotting. C and D, ER import efficiency correlates with the amount of α-helical domains. C, N2a cells transiently transfected with the constructs depicted in the upper panel were pulse-labeled (p) for 1 h with [35S]methionine and then chased (c) for 1 h in the presence (+ MG132) or absence (− MG132) of the proteasomal inhibitor MG132 (50 μM). PrP was immunoprecipitated using the mAb 3F4 and analyzed by SDS-PAGE. Quantification of three independent experiments is shown in the right panel. Data represent the ratio of glycosylated/unglycosylated PrP species present in the chase + MG132 (mean ± S.E.). p values were determined by Student’s t test. D, α-helical domains are necessary and sufficient for ER import. N2a cells transiently transfected with the PrP mutants depicted in the left panel were metabolically labeled with [35S]methionine and then incubated in fresh medium for 1 h in the presence (+ MG132) or absence (− MG132) of MG132 (50 μM). PrP was immunoprecipitated using the mAb 3F4 and analyzed by SDS-PAGE. Open arrowheads represent unglycosylated PrP species; closed arrowheads represent glycosylated forms.

RESULTS

Loss of α-Helical Domains Directs ER-targeted Prion Protein to Proteasomal Degradation in the Cytosol—Wild type PrP is characterized by a set of co- and post-translational modifications (for a review, see Ref. 38) such as two N-linked glycans of complex structure (Asn186 and Asn198 in murine PrP) (39), a disulfide bond between Cys178 and Cys213, and a GPI anchor attached to Ser230 (40). Deletion of the C-terminal GPI anchor signal sequence prevents membrane attachment of PrP-S230X but does not interfere with import into the ER or further trafficking through the secretory pathway (24, 27, 41). PrP-S230X is secreted both by cultured cells (Fig. 1A, right panel, M) (27) and by neurons of transgenic mice (26). Please note that PrP-S230X is incompletely glycosylated. Thus, two bands corresponding to a glycosylated and an unglycosylated fraction are detectable on Western blots (27). Interestingly deletion of additional parts of the C terminus interferes with ER import. PrP-Q159X, a pathogenic mutant linked to Gerstmann-Sträussler-Scheinker syndrome in humans lacking helix 2 and 3 (αααα) of the C-terminal domain, was barely found in the cell culture supernatant in contrast to PrP-S230X (Fig. 1A, M). Moreover upon transient proteasomal inhibition the relative amount of PrP-Q159X in the lysate increased indicating that a fraction was subjected to proteasomal degradation (Fig. 1A, L, MG132+ and Ref. 28). Two different mechanisms could explain the phenomenon that a significant fraction of PrP-Q159X is subjected to proteasomal degradation whereas PrP-S230X is not. Either the decreasing length of the polypep-
tide chain impairs ER import, or information present in the
C-terminal globular domain is required. To test for the possi-
bility that the α-helical domains are important for efficient ER
import we generated a mutant with a deletion in the unstruc-
tured N-terminal domain. PrPΔ27–89/S230X and PrP-R159X
are of similar length; however, PrPΔ27–89/S230X was effi-
ciently imported into the ER and secreted (Fig. 1A, M). In addi-
tion, this mutant was not subjected to proteasomal degrada-
tion. The relative amount of PrPΔ27–89/S230X did not
significantly increase upon transient inhibition of the protea-
some (Fig. 1A, L, +MG132).

To facilitate our further analysis of monitoring productive
ER import we introduced a new acceptor site for N-linked glyco-
sylation shortly behind the ER signal sequence. In PrP/31CHO
the amino acids Trp31 and Asn32 were changed to Asn and Phe,
respectively, to create an additional NFT motif. The slightly
decreased mobility on SDS-PAGE indicates that PrP/31CHO
was modified with an additional N-linked glycan. Obviously the
additional glycan was processed into complex structure, simi-
larly to the two other glycans attached to Asn180 and Asn196,
as treatment with endoglycosidase H did not cause a shift in elec-
trophoretic mobility (Fig. 1B, right panel, +EndoH). PrP/31CHO
is GPI-anchored at the outer leaflet of the plasma membrane,
and after peptide-N-glycosidase F treatment wild type PrP and
PrP/31CHO displayed a similar migration pattern on SDS-
PAGE (data not shown). These data indicate that the new
acceptor site for N-linked glycosylation located close to the N
terminus of full-length PrP is functional and does not interfere
with cellular trafficking.

Next we inserted the N-terminal acceptor site for N-linked glyco-
sylation in PrP-Q159X. Analysis of PrP-Q159X/31CHO
revealed two distinct species: a glycosylated fraction (Fig. 1C,
filled arrowhead) and an unglycosylated fraction (Fig. 1C, open
arrowhead). Interestingly two distinct species of unglycosyl-
lated molecules were detectable. As shown below, these two
fractons are apparently due to polypeptides with or without the
N-terminal ER signal peptide. The relative amount of the ungly-
cosylated fraction was significantly increased in cells tran-
siently incubated with MG132, indicating that a fraction of the
mutant was subjected to proteasomal degradation (Fig. 1C,
lower part, +MG132). To provide further support for a role of
the C terminus in productive ER import we deleted additional
parts of the C terminus to create PrP-W144X/31CHO and PrP-
M133X/31CHO. Indeed the relative amount of the glycosylated
fraction (Fig. 1C, filled arrowhead) successively decreased by
increasing the C-terminal deletions (Fig. 1C, right panel). Of
note, after transient proteasomal inhibition an unglycosylated
fraction was stabilized, indicating that the loss of glycosylated
proteins was not due to a decreased synthesis. To address
the question of whether the length of the polypeptide chain is a
limiting factor for a productive import we generated PrP-
A115X/31CHO and PrPΔ27–156/S230X, two polypeptides of
similar length. The major difference is that PrPΔ27–156/S230X
is dominated by α-helical domains, whereas PrP-A115X/31CHO
is composed solely of an unstructured domain (Fig. 1D). The
analysis revealed that PrPΔ27–156/S230X was efficiently
glycosylated, whereas PrP-A115X/31CHO was barely detect-
able (Fig. 1D, −MG132). Only after transient proteasomal

inhibition could an unglycosylated fraction of PrP-A115X/
31CHO be detected (Fig. 1D, +MG132). Metabolic labeling
experiments further demonstrated that PrP-A115X/31CHO
had obviously never been modified with N-linked glycans
(supplemental Fig. 1A).

More Efficient ER Signal Sequences Do Not Restore Import of
Intrinsically Disordered Proteins—To test for the possibility
that an increase in polypeptide chain length could promote
translocation into the ER we used an additional unstructured
domain to PrP-115/31CHO, be it a second copy of PrP-A115X,
an unstructured domain derived from the Tau protein, or an
unstructured domain derived from α-synuclein (Fig. 2A) (42–
44). However, ER import and glycosylation could not be
restored (Fig. 2A, lower panel). To exclude the possibility that
PrP-115/31CHO has a dominant negative effect on the import of
a different intrinsically unstructured domain we constructed
PrP-31CHO+asyn. This construct consists of the ER signal
sequence and the first 6 amino acids of PrP-115/31CHO to mediate
ER targeting and N-linked glycosylation fused to the intrin-
sically disordered polypeptide derived from α-synuclein. Simi-
larly to PrP-115/31CHO+asyn, PrP-31CHO+asyn was not
glycosylated (Fig. 2A, lower panel). To address the possibility
that overexpression of our PrP constructs leads to saturation of
the translocation machinery we carried out titrations where
cells were transfected with a broad range of expression plasmid
(0.01–1.0 μg). However, even in cells transfected with low
amounts of plasmid DNA we did not observe glycosylation of
PrP-115/31CHO+115 or PrP-115/31CHO+Tau (supplemental
Fig. 1B). In the same context we compared the kinetics of PrP
maturatation in cells transfected with 0.1 or 1 μg of DNA. The
pulse/chase experiments indicated that formation of fully
matured PrP, i.e. complex glycosylated, was relatively inde-
pendent of the amount of the transfected PrP expression plas-
mid (supplemental Fig. 1C).

Previous studies revealed that signal sequences can vary in
their efficiency to promote ER import (for a review, see Ref. 14).
We have shown previously that expression of mammalian full-
length PrP in yeast interferes with cellular viability because the
endogenous ER signal sequence was insufficient to promote ER
import. By using a more hydrophobic signal peptide derived
from the yeast protein Cre5p ER import of PrP could be
restored, and the adverse effects on cellular viability were pre-
vented (45). To test whether the Cre5p signal sequence can
increase ER import in mammalian cells we replaced the PrP
signal sequence with that of Cre5p. In case of full-length PrP the
Cre5p signal sequence appears to slightly increase ER import

efficiency as the intensity of the unglycosylated fraction
decreased. However, ER import and glycosylation of PrP-115/
31CHO+115, a mutant consisting of unstructured domains, was
not restored by the more hydrophobic signal sequence (Fig. 2B).
In addition, we tested the ER signal sequence of rat growth
hormone. This signal sequence was shown previously to
enhance ER import of a secreted glycoprotein (46), yet it did not
restore import of PrP-115/31CHO+115 (Fig. 2B) or of PrP-115
(28).

ER Import of Unstructured Domains Is Restored by Increasing
the Content in α-Helical Domains—Assuming that the α-heli-
cal domains serve as a positive signal for ER import we fused the
Unstructured Domains and ER Import

α-helical domains 2 and 3 (α2,α3) of PrP to PrP-A115X. In this context it is important to note that in vitro experiments indicated that the isolated fragments comprising helix 2-helix 3 or only helix 3 show complete structural autonomy, i.e. adopt an α-helical conformation independently of the complete protein can be detected for PrP-115α2,α3 (Fig. 4B). After deglycosylation with EndoH (Fig. 4B, +EndoH) the relative amount of the faster migrating band increased, indicating that this fraction consists of molecules devoid of the ER signal peptide (open arrowheads, −ER-SS). The slightly slower migrating band,

![Image](https://example.com/image.png)

FIGURE 2. More efficient ER signal sequences cannot restore import of intrinsically disordered proteins.
A, increase in polypeptide chain length could not promote translocation into the ER. Upper panel, schematic presentation of the proteins analyzed. The following domains were fused to PrP-115/31CHO: ER targeting and N-terminal signal peptide (9, 51). Importantly there is no significant sequence homology (<16%) between the α-helical domains of Dpl or GFR and PrP. The Western blot analysis of PrP-115α2,α3, PrP-115Dpl, and PrP-115/31CHO/GFR revealed that α-helical domains, be they from PrP, Dpl or GFR, efficiently restored import and glycosylation of an unstructured domain (Fig. 3A).

Two N-linked glycans (Asn180 and Asn196) and a disulfide bond (Cys178-Cys213) are located in the α-helical domains of PrP. To address their possible role in the translocation process we created a series of new mutants (Fig. 3B). The analysis revealed that neither the C-terminal glycan acceptor sites (115α2,α3/31CHO/N196Q/N180Q) nor the disulfide bond (115α2,α3/C178A) were necessary to promote efficient import (Fig. 3B). Finally we used an in vitro ER import assay to verify the results obtained in transfected cells. In contrast to PrP-115α2,α3, PrP-115/31CHO-115 was not glycosylated, indicating that this construct was not imported into microsomes (Fig. 3C).

The Polypeptide Fraction Subjected to Proteasomal Degradation Contains an Uncleaved Signal Peptide—Cleavage of the N-terminal ER signal peptide occurs co-translationally, whereas the degradation of misfolded ER proteins is mainly a post-translational event. However, a co-translational or preemptive quality control pathway was described recently (9, 10) operating prior to productive import into the ER lumen. Notably polypeptides subjected to this quality control pathway retain their N-terminal signal peptide (9, 51). Two distinct unglycosylated species

![Diagram](https://example.com/diagram.png)
contain the signal peptide. A quantitative analysis revealed that upon transient proteasomal inhibition there is a specific increase in the fraction of PrP-115α2α3 containing the signal peptide, whereas the relative amount of PrP-115α2α3 processed by the signal peptidase was not affected by proteasomal inhibition (Fig. 4B). Similarly both proteins PrP-115/31CHO+115 and PrP-115/31CHO+31 that are entirely unstructured and were not imported into the ER displayed a slightly reduced migration pattern on SDS-PAGE compared with the corresponding constructs devoid of the ER signal peptide (Fig. 4C). In summary these data indicate that the polypeptide fractions subjected to proteasomal degradation were not co-translationally processed, i.e. contain their N-terminal signal peptide.

p58IPK Promotes Proteasomal Degradation of ER-targeted Polypeptides with Extended Unstructured Domains at Their N Terminus—It was described previously that p58IPK is a mediator of co-translocational quality control (9). Consequently we tested a possible effect of p58IPK on ER import. Biogenesis of full-length PrP was not significantly affected by the co-expression of p58IPK. However, overexpression of p58IPK significantly interfered with ER import of PrP-115α2α3. As a consequence, the glycosylated fraction decreased whereas the unglycosylated fraction increased (Fig. 5A). As expected the unglycosylated fraction of PrP-115α2α3 in p58IPK-overexpressing cells was subjected to proteasomal degradation (Fig. 5A, right panel, +MG132). Remarkably overexpression of p58IPK had little effect on the biogenesis of PrP-α2α3,115. In cells co-expressing apparently containing the ER signal peptide, was stabilized by MG132, i.e. was subjected to proteasomal degradation (Fig. 4B, +EndoH, +MG132). To provide more evidence that the slower migrating species of PrP-115α2α3 contained an uncleaved signal peptide we constructed PrP-cyto115α2α3 (Fig. 4A), a variant devoid of the N-terminal ER signal sequence comprising 23 aa. The migration pattern of PrP-cyto115α2α3 supports the notion that the glycosylated fraction of PrP-115α2α3 is devoid of the signal peptide whereas the unglycosylated species, which are subjected to proteasomal degradation, still
Unstructured Domains and ER Import

A

Polypeptide	ER-SS	CHO	CHO	CHO
115_{Cy}	ER-SS	CHO	CHO	CHO
cyto115_{Cy}	ER-SS	CHO	CHO	CHO
115/31_{CHO}+115	ER-SS	CHO	CHO	CHO
cyto115/31_{CHO}+15	ER-SS	CHO	CHO	CHO
115/31_{CHO}+Tau	ER-SS	CHO	CHO	CHO
cyto115/31_{CHO}+Tau	ER-SS	CHO	CHO	CHO

FIGURE 4. Polypeptides subjected to proteasomal degradation contain an uncleaved signal sequence. A, schematic presentation of the mutants analyzed. Two versions of the mutants 115_{Cy}, 115/31_{CHO}+115, and 115/31_{CHO}+15, and Tau were generated, one version with the original ER-SS and one lacking the ER-SS (cyto forms). B, N2a cells were transiently transfected and incubated in the presence or absence of MG132 (30 μM; 3 h). In addition, cell lysates were either treated with EndoH (+ EndoH) or left untreated (− EndoH) prior to Western blotting using the mAb 3F4. Unglycosylated PrP with (+ ER-SS) and without (− ER-SS) the ER signal peptide are marked. Lower panel, quantification of at least three independent experiments. Plotted is the ratio of the amount of 115_{Cy}, with an uncleaved versus cleaved SS in EndoH-treated samples with or without proteasomal inhibition (− MG132) (mean ± S.E.). The p value was determined by Student’s t test. C, N2a cells transfected with the mutants depicted were lysed, and proteins analyzed by Western blotting using the mAb 3F4. The protein fraction with (+ ER-SS) and without (− ER-SS) the ER signal peptide is marked.

Our study presents evidence that the extent and localization of secondary structure in nascent polypeptides serve as a signal to regulate translocation into the ER: ER-targeted polypeptides dominated by unstructured domains failed to productively translocate into the ER lumen and are subjected to proteasomal degradation via a co-translational/preemptive pathway. ER import could be restored by increasing the content in α-helical domains, whereas more effective ER signal sequences did not promote ER import of unstructured polypeptides. Our study also indicates that p58^{IPK} has a specific role in controlling ER import of polypeptides with extended unstructured domains close to their N terminus.

To study a possible role of the folding state of ER-targeted polypeptides in the translocation process we made use of the prion protein as a model protein because of its particular modular structure. The N-terminal domain of about 120 amino acids is flexibly disordered followed by a highly structured C-terminal domain of ~110 amino acids (20–22). A previous study already indicated that the folded C-terminal domain is
FIGURE 5. p58IPK promotes proteasomal degradation of ER-targeted polypeptides with extended unstructured domains at their N terminus. A, p58IPK promotes a preemptive/co-translocational quality control pathway. N2a cells were transiently co-transfected with the constructs indicated and p58IPK (p58) or a vector control (−). Right panel, cells co-transfected with p58IPK and PrP-115\textsubscript{α,α}, were incubated in the presence or absence of MG132 (30 μg/ml; 3 h). The lanes MG132+ are positioned directly next to the lanes MG132− although all lanes originate from one gel. B, p58IPK requires the ER signal peptide and J-domain to interfere with ER import of PrP-115\textsubscript{α,α}. N2a cells were transiently co-transfected with PrP-115\textsubscript{α,α}, and either p58IPK (p58), p58IPK;ΔSS (p58ΔSS), p58IPK;ΔJ (p58ΔJ), or a vector control (−). A and B, expression of PrP was analyzed by immunoblotting using the mAb 3F4; an open arrowhead marks the unglycosylated protein species; a closed arrowhead marks the glycosylated species; a closed arrowhead marks the glycosylated forms. C, reduced import under conditions of ER stress. N2a cells transfected with PrP-115\textsubscript{α,α}, were incubated with thapsigargin (TG; 1 μM) for the time indicated and then analyzed by Western blot using the mAb 3F4 for detection of PrP and anti-Hsp70 mAb for detection of endogenous Hsp70 as loading control. D, overexpression of cytosolic Hsp70 or BiP does not interfere with ER import. N2a cells were transiently co-transfected with PrP-115\textsubscript{α,α}, and the constructs indicated. Expression of PrP-115\textsubscript{α,α} was then analyzed by immunoblotting using the mAb 3F4; an open arrowhead marks the unglycosylated PrP species; a closed arrowhead marks the glycosylated forms. A, B, and C, quantifications were based on at least three independent experiments. Data were expressed as the ratio of glycosylated versus unglycosylated PrP (mean ± S.E.). Statistical analysis was performed using Student’s t test. n.s., not significant.

Unstructured Domains and ER Import

The second important finding of our study was that the polypeptides with extended unstructured domains were disposed via a cotranslational/preemptive pathway. The major evidence was the finding that co-translational modulation of the Tau protein or α-synuclein were not imported into the ER.
ifications, such as N-linked glycosylation and cleavage of the signal peptide, did not occur. We show that the protein fraction subjected to proteasomal degradation contained an uncleaved signal peptide, a characteristic feature of other substrates subjected to the co-translocational/preemptive pathway (9, 51). In addition, we could demonstrate an important role of p58IPK, a factor described recently to be involved in the co-translocational pathway (9). A mutational analysis indicated that both the ER signal peptide and the J-domain of p58IPK are required for this activity (Fig. 5B).

Interestingly our study also revealed that p58IPK selectively targets polypeptides with unstructured domains close to their N terminus, such as PrP-115/H9251

3 or PrP-115/H9251

3115 or Dpl115), import was not affected by overexpression of p58IPK (Fig. 5A).

Based on our findings and studies described previously, the following model appears plausible (Fig. 6). After targeting of the ribosome-nascent chain complex to the translocon via the N-terminal signal peptide (red), the translation of an extended unstructured domain delays productive translocation into the ER lumen. Instead the growing polypeptide chain is kept in a translocationally competent state inside or at the cytosolic side of the translocon (I). Depending on the folding state of the growing polypeptide chain two alternative pathways are conceivable. In case α-helical domains are synthesized, the polypeptide chain is efficiently imported and modified by the signal peptidase and the oligosaccharyltransferase (A). If the remaining part of the polypeptide is still devoid of α-helical domains productive ER import is not pursued, and the protein is disposed via the proteasome (B). The proteasome picture was adopted with permission from Walz et al. (54).

What could be the physiological impact of such a system? Under physiological conditions only polypeptides were targeted to proteasomal degradation that are composed mainly or solely of unstructured domains. These proteins would be prime candidates for ERAD; thus the co-translocational control might provide an elegant mechanism to unburden the quality control machinery of the ER lumen. Strikingly the co-translocational quality control is more stringent under conditions of ER stress. Now ER import of polypeptides with extended unstructured domains was prevented. These polypeptides are able to fold in principle, but because of large unstructured domains they could be demanding clients for the ER chaperones. Preventing the import of such substrates could help to increase the folding capacity within the ER lumen.

Our study emphasizes the notion that the ribosome-nascent chain complex attached to the translocon complex is more dynamic than previously appreciated. It will now be interesting to see how the folding state of the emerging polypeptide chain and/or the sequence of the signal peptide is sensed to control

FIGURE 6. A model for the co-translocational quality control of ER-targeted polypeptides containing extended unstructured domains. After targeting of the ribosome-nascent chain complex to the translocon via the N-terminal signal peptide (red), the translation of an extended unstructured domain delays productive translocation into the ER lumen. Instead the growing polypeptide chain is kept in a translocationally competent state inside or at the cytosolic side of the translocon (I). Depending on the folding state of the growing polypeptide chain two alternative pathways are conceivable. In case α-helical domains are synthesized, the polypeptide chain is efficiently imported and modified by the signal peptidase and the oligosaccharyltransferase (A). If the remaining part of the polypeptide is still devoid of α-helical domains productive ER import is not pursued, and the protein is disposed via the proteasome (B). The proteasome picture was adopted with permission from Walz et al. (54).
ER translocation and to redirect ER-targeted polypeptides to the cytosol.

Acknowledgments—We are grateful to David Ron for providing the p58IPK constructs and antibody, to Rick Morimoto for the Hsp70-EYFP and Hsp40 constructs, to Zhe-Yu Chen for the rat GFR construct, to Linda Hendershot for the BiP construct, and to Ulrich Hartl for the Hsp40 antibody. We thank Richard Zimmermann for stimulating discussions, Viktoria Doll and Kerstin Lämmermann for technical help, and Christian Haass for continuous support.

REFERENCES

1. Pickart, C. M. (2001) Annu. Rev. Biochem. 70, 503–533
2. Hershko, A., and Ciechanover, A. (1998) Annu. Rev. Biochem. 67, 425–479
3. Ciechanover, A., Orian, A., and Schwartz, A. L. (2000) BioEssays 22, 442–451
4. Nakatsukasa, K., and Brodsky, J. L. (2003) FEBS Lett. 539, 184–190
5. Ellgaard, L., and Helenius, A. (2003) Annu. Rev. Biochem. 72, 765–806
6. Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005) Traffic 6, 101–111
7. Ellgaard, L., and Helenius, A. (2003) Annu. Rev. Biochem. 72, 765–806
8. Nakatsukasa, K., and Brodsky, J. L. (2003) FEBS Lett. 539, 184–190
9. Ellgaard, L., and Helenius, A. (2003) Annu. Rev. Biochem. 72, 765–806
10. Nakatsukasa, K., and Brodsky, J. L. (2003) FEBS Lett. 539, 184–190
11. Ellgaard, L., and Helenius, A. (2003) Annu. Rev. Biochem. 72, 765–806
12. Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005) Traffic 6, 101–111
13. Ellgaard, L., and Helenius, A. (2003) Annu. Rev. Biochem. 72, 765–806
14. Nakatsukasa, K., and Brodsky, J. L. (2003) FEBS Lett. 539, 184–190
15. Ellgaard, L., and Helenius, A. (2003) Annu. Rev. Biochem. 72, 765–806