Research Article

On the Existence of Long-Time Classical Solutions for the 2D Inviscid Boussinesq Equations

Jiafa Xu1,2 and Lishan Liu1,

1School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China
2School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

Correspondence should be addressed to Lishan Liu; mathlls@163.com

Received 9 February 2021; Accepted 16 June 2021; Published 28 June 2021

1.Introduction

The 2D inviscid Boussinesq equations read as

\[\begin{align*}
\partial_t \eta + (u \cdot \nabla) \eta &= 0, \quad (x, t) \in \mathbb{R}^2 \times \mathbb{R}^+, \\
\partial_t u + (u \cdot \nabla) u + \nabla q &= \eta \mathbb{e}_2, \\
\nabla \cdot u &= 0.
\end{align*} \tag{1} \]

The unknown functions \(\eta = \eta(x, t), u = (u_1(x, t), u_2(x, t)), q = q(x, t) \) stand for the temperature, the velocity field, and the scalar pressure, respectively. \(\mathbb{e}_2 = (0, 1) \) is the unit vector in the vertical direction. They can describe the natural convection in the 2D inviscid incompressible fluids such as the dynamics of the ocean or the atmosphere (see, e.g., [1–3]). Besides the physical significance, there is also a strong mathematical motivation for studying these equations. In fact, the 2D Boussinesq equation can be used as a model for the 3D axisymmetric Euler equations (see, e.g., [4]). Therefore, the study of equation (1) can provide us with the useful information to understand the Euler equations.

Due to the physical and strong mathematical significance of the 2D Boussinesq equations, many researchers have paid much attention on its study. For the Cauchy problem around the stationary solution \((0,0,0)\), global regularity of solutions is known when the classical dissipation is present in at least one of the equations (1) (see [5, 6]) or under a variety of more general conditions on dissipation (see [7]) or under adding a damp term (see [8–11]). In contrast, the global regularity problem on the inviscid 2D Boussinesq equations (1) now is still open. Some attempts have been made for a step forward in this direction, which appears to be out of reach in spite of the progress on the local well-posedness and regularity criteria (see [12, 13]). On the other hand, for the initial boundary problem, Hu et al. [14] obtained the global well-posedness for the Boussinesq equations with non-slip boundary condition, and Lai et al. [2] and Littman [4] obtained the local well-posedness for the Boussinesq equations with slip boundary condition. Recently, some researchers started to consider the global well-posedness around the stationary solution of the strong stratification [11, 15, 16]. In particular, Elgindi and Widmayer [15] proved the long-time existence which is the life span of the associated solutions is \(\varepsilon^{-(4/3)} \) if the initial data are of size \(\varepsilon \). In this paper, we will present a new life span which is suitable for general initial data by the method of Strichartz estimate combining with a blowup criterion.

To state our result more precisely, we firstly consider the solutions of (1) around a stratified solution and rewrite equation (1). It is well known that equation (1) admits an explicit stationary solution \((u_s, q_s, \eta_s)\) of the form
\[(u_s, q_s, \eta_s) = \left(0, \frac{N^2 x_1^2}{2}, N^2 x_2 \right), \quad (2) \]

satisfying the hydrostatic balance
\[\frac{\partial \eta}{\partial x_2} = \eta, \quad (3) \]

where \(N \) is called the buoyancy or the Brunt–Vaisala frequency and represents the strength of stable stratification. Setting
\[\theta = \eta - \eta_s, \quad \rho = q - q_s, \quad (4) \]

we can reformulate (1) into
\[\begin{cases} \partial_t \theta + (u \cdot \nabla) \theta = -N^2 u_2, \\ \partial_t u + (u \cdot \nabla) u + \nabla p = \theta e_2, \\ \nabla \cdot u = 0. \end{cases} \quad (5) \]

Furthermore, let us set
\[u_3 = \frac{\theta}{N}, \quad U = (u_1, u_2, u_3)^T, \quad (6) \]

and we get
\[\begin{cases} \partial_t U + (U_3 \cdot \nabla) U + \nabla p = NJU, \\ \nabla \cdot U = 0, \end{cases} \quad (7) \]

where \(\nabla = (\nabla, 0)^T \) and \(J \) is a constant matrix given by
\[J = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}. \quad (8) \]

Since \(\nabla \cdot U = 0 \), let us introduce the extended Helmholtz projector of the velocity \(u \) onto the divergence-free vector fields which is defined by
\[P := \left(\begin{array}{cc} \mathbb{P}_2 & 0 \\ 0 & 1 \end{array} \right) = \left(\begin{array}{cc} \delta_{jk} + R_{jk} & 0 \\ 0 & 0 \end{array} \right), \quad (9) \]

where \(\{ R_{jk} \}_{1 \leq j,k \leq 2} \) denote the Riesz transforms on \(\mathbb{R}^2 \). Applying the operator \(P \) to (7) gives the following equation:
\[\partial_t U + P (U \cdot \nabla) U = NP + P \nabla \cdot U. \quad (10) \]

The initial data to the above equations are given by
\[U|_{t=0} = U_0. \quad (11) \]

Now we state the main result.

Theorem 1. Let \(s \in \mathbb{N} \) satisfy \(s > 3 \) and
\[\begin{align*} U_0 &= (u_1, u_2, u_3) \in H^s(\mathbb{R}^2), \\ \nabla \cdot U_0 &= 0. \end{align*} \quad (12) \]

Then, equations (10) and (11) possess a unique solution:
\[U \in C([0, T]; H^s), \quad (13) \]

with
\[T = C(\ln N)^{3/4}, \quad (14) \]

where the constant \(C \) is independent of \(N \).

Remark 1. This result implies that the existence time will be larger as the buoyancy increases and the life span of the classical solutions satisfies
\[T > C(\ln N)^{3/4}. \quad (15) \]

1.1. Plan of the Article. The paper is organized as follows. In Section 2, we first derive the explicit formula of solutions to the linearized equations of (10) and (11), and then we establish the decay estimate and Strichartz estimate of a linear propagator. In Section 3, we establish the blowup criterion of equations (10) and (11). In Section 4, we present the proof of Theorem 1.

1.2. Notations. Throughout this paper, we denote by \(C \) the constants which may differ from line to line. \(L^p \) \((1 \leq p \leq \infty)\), \(H^s \) \((s \in \mathbb{R})\), and \(B^s_{p,q} \), \(s \in \mathbb{R}, 1 \leq p, q \leq \infty \) denote the Lebesgue spaces, Sobolev spaces, and the inhomogeneous Besov spaces, respectively. Let \(\mathcal{F}, \mathcal{F}^{-1} \) denote the Fourier transformation and inverse Fourier transformation, respectively. The Littlewood–Paley multipliers \(\Delta_{j \in \mathbb{Z}} \) are defined by
\[\Delta_j f = \mathcal{F}^{-1} \left(\psi \left(\frac{\xi}{2^j} \right) \mathcal{F} f \right), \quad (16) \]

where \(\psi \in C_0^\infty(\mathbb{R}^n), \text{supp}\psi \subset \{ \xi \in \mathbb{R}^n \mid 1/2 \leq |\xi| \leq 2 \} \) such that
\[\sum_{j \in \mathbb{Z}} \psi \left(\frac{\xi}{2^j} \right) = 1, \quad \forall \xi \neq 0. \quad (17) \]

The low-frequency multiplier \(\chi(\xi) \) is defined by
\[\chi(\xi) = 1 - \sum_{j \in \mathbb{Z}} \psi \left(\frac{\xi}{2^j} \right). \quad (18) \]

2. Linearized Equations

In this section, we derive the representation of solutions to the linearized equations of (10) and (11) and establish the decay estimate and Strichartz estimate of the linear propagator \(e^{itNtw(D)} \) given by
\[e^{itNtw(D)} f := \mathcal{F}^{-1} e^{itNtw\left(|\xi| \right)} f. \quad (19) \]

2.1. The Representation of Solutions to Linearized Equations. We study the following linearized equations associated to equations (10) and (11):
Applying the Fourier transform to (20) yields

\[
\begin{aligned}
\hat{\partial}_t U - NP(\xi)P(\xi)\hat{U} &= 0, \\
(\xi, 0) \cdot \hat{U} &= 0, \\
\hat{U}(0, x) &= \hat{U}_0(\xi),
\end{aligned}
\]

where \(P(\xi) \) is the multiplier matrix of the operator \(P \) defined by

\[
P(\xi) = \begin{pmatrix}
\frac{\delta_{jk}}{|\xi|^2} & \frac{\xi_j \xi_k}{|\xi|^2} \\
\frac{\delta_{jk}}{|\xi|^2} & 1
\end{pmatrix},
\]

which is given explicitly by

\[
P(\xi) = \begin{pmatrix}
\frac{\xi_1^2 - \xi_1 \xi_2}{|\xi|^2} & -\xi_1 \xi_2 & 0 \\
-\xi_1 \xi_2 & \xi_1^2 & 0 \\
0 & 0 & |\xi|^2
\end{pmatrix}.
\]

Then, a direct calculation yields

\[
P(\xi)P(\xi) = \begin{pmatrix}
\xi_1^2 & -\xi_1 \xi_2 & 0 \\
-\xi_1 \xi_2 & \xi_1^2 & 0 \\
0 & 0 & |\xi|^2
\end{pmatrix},
\]

and the eigenvalues of \(P(\xi)P(\xi) \) are

\[
\omega_0 = 0, \quad \omega_\pm(\xi) = \pm \frac{\xi_1}{|\xi|}
\]

and the corresponding eigenvectors are

\[
e_0 = \frac{1}{|\xi|} (\xi_1, \xi_2, 0), \quad e_\pm = \frac{1}{|\xi|} (\pm \xi_1, \pm \xi_2, \mp \pm 1).
\]

Thus, the solution of (21) is

\[
\hat{U}(t, \xi) = e^{NP(\xi)P(\xi)t},
\]

\[
\hat{U}_0(\xi) = (\hat{U}_0(\xi), e_\pm) = e_\pm + e^{i\omega_\pm(t)} (\hat{U}_0(\xi), e_\pm) e_\pm
\]

Since \(\nabla \cdot U = 0 \), we have \(\langle \hat{U}_0(\xi), e_0 \rangle = 0 \). Hence, we get

\[
\hat{U}(t, \xi) = e^{NP(\xi)P(\xi)t},
\]

\[
\hat{U}_0(\xi) = e^{i\omega_0(t)} (\hat{U}_0(\xi), e_\pm) e_\pm + e^{-i\omega_0(t)} (\hat{U}_0(\xi), e_\pm) e_\pm
\]

Setting

\[
\begin{aligned}
P_+ U_0 &= \mathcal{F}^{-1} (\hat{U}_0(\xi), e_+) e_+, \\
P_- U_0 &= \mathcal{F}^{-1} (\hat{U}_0(\xi), e_-) e_-,
\end{aligned}
\]

one has

\[
U(t, x) = e^{i\omega_0(t)} P_+ U_0 + e^{-i\omega_0(t)} P_- U_0.
\]

2.2. Decay Estimate. We derive the following decay estimate of the operator \(e^{i\omega_0 Nw(D)} \).

Lemma 1. It holds that

\[
\left\| e^{i\omega_0 Nw(D)} \phi(D) f \right\|_{L^2} \leq C(1 + |Nt|)^{-1/2} \| f \|_{L^1},
\]

for all \(f \in L^1(\mathbb{R}^2) \), where the operator \(\phi(D) \) is defined by

\[
\phi(D) f = \mathcal{F}^{-1} (\hat{\phi}(\xi) f),
\]

in which \(\hat{\phi}(\xi) \) satisfies

\[
\text{supp} \hat{\phi} \subset \{ |\xi| \leq 2 \}, \quad \hat{\phi}(\xi) = 1, \quad \forall \xi \in \{ |\xi| \leq 2 \}.
\]

Actually, the result of Lemma 1 is an immediate consequence of the following lemma.

Lemma 2. There exists a positive constant \(C \) independent of \(t, \xi \in \mathbb{R}^{1+2} \) such that

\[
\left\| \int_{\mathbb{R}^2} e^{ix\xi \cdot Nw(t)} (|\xi|/|\xi|) \phi(D) \psi(\xi) d\xi \right\| \leq C(1 + |Nt|)^{-1/2}.
\]

Next, we give the details of the proof of Lemma 2. Firstly, we recall an important lemma (see Keel and Tao [17] and Majda [18]).

Lemma 3. Let \(d\mu \) be a surface measure on a smooth surface \(\mathcal{S} \) in \(\mathbb{R}^n \) and let \(\phi \in \mathcal{C}_0^\infty(\mathbb{R}^n) \). Suppose that for all \(x \in \mathcal{S} \), at least \(k \) of the principle curvatures are non-zero. Then, it holds that

\[
|\partial \mu(\eta)| = |\phi \partial \sigma(\eta)| \leq C|\eta|^{-k/2}.
\]

2.2.1. The Proof of Lemma 2. By the theory of Fourier transform of measures supported on surfaces [18], we have

\[
\int_{\mathbb{R}^2} e^{ix\xi \cdot Nw(t)} (|\xi|/|\xi|) \psi(\xi) d\xi = \int_{\mathbb{R}^2} e^{i(x, Nw(t))} \psi(\xi) d\xi = \hat{\mu}(\eta), \quad \eta = (x, Nt),
\]

where \(\mu \) is some measure supported on the surface \(\mathcal{S} \) which is given by

\[
\mathcal{S} = \left\{ (\xi, \rho) \in \mathbb{R}^2 \times \mathbb{R}: \quad \rho = \pm \frac{\xi_1}{|\xi|} \in [-4, 4] \right\}.
\]

By Lemma 3, the decay of \(\hat{\mu}(\eta) \) is determined by the number of non-vanishing principle curvatures of the surface \(\mathcal{S} \). Equivalently, the number of non-vanishing principle curvatures of the surface \(\mathcal{S} \) is the rank of the Hessian matrix \(H \rho = (\partial^2 \rho / \partial \xi_j \partial \xi_k)_{1 \leq j, k \leq 2} \). By some computations, we obtain
\[
H\rho = \frac{1}{|\xi|} \begin{bmatrix}
-3\xi_1^2 & \xi_2(3\xi_1^2 - |\xi|^2) \\
\xi_1(3\xi_1^2 - |\xi|^2) & 3\xi_2^2 - |\xi|^2
\end{bmatrix}
\] (38)

From (38), we have
\[
\text{Det}(H\rho) = \pm \frac{\xi_2^2}{|\xi|^6}
\] (39)

(39) shows that the surface \(s\) has a non-vanishing principle curvatures unless \(\xi_2 = 0\). Thus, we decompose
\[
\int_{\mathbb{R}^2} e^{ix\xi_1 H t}(|\xi|/|\xi|) \psi(\xi) d\xi = I_1 + I_2,
\] (40)

where
\[
I_1 = \int_{\mathbb{R}^2} e^{ix\xi_1 H t}(|\xi|/|\xi|) \left(1 - \psi(|\xi|)\right) \psi(\xi) d\xi,
\]
\[
I_2 = \int_{\mathbb{R}^2} e^{ix\xi_1 H t}(|\xi|/|\xi|) \psi(|\xi|) \psi(\xi) d\xi,
\] (41)

where \(\psi\) is a smooth function on \(\mathbb{R}\) such that \(\psi = 1\) on \([-1/2, 2]\) and \(\text{supp} \psi \subset [-1, 1]\).

For the estimate of \(\|I_1\|_{L^\infty}\), by Lemma 3, we have
\[
\|I_1\|_{L^\infty} \leq C(|x, Nt|)^{-3/2} \leq C|Nt|^{-1/2}.
\] (42)

For the estimate of \(\|I_2\|_{L^\infty}\), since \(\xi_2 = 0\), we see that
\[
H\rho = \frac{1}{|\xi_1|} \begin{bmatrix}
0 & 0 \\
0 & -\xi_1^2
\end{bmatrix}
\] (43)

From (43) and the fact \(|\xi| \sim 1\) (\((1/4) \leq |\xi| \leq 4\)), we see one non-vanishing principle curvature of the surface \(s\). By Lemma 3, we have
\[
\|I_2\|_{L^\infty} \leq C(|x, Nt|)^{-3/2} \leq C|Nt|^{-1/2}.
\] (44)

Combining (36), (42), and (44), we obtain
\[
\int_{\mathbb{R}^2} e^{ix\xi_1 H t}(|\xi|/|\xi|) \psi(\xi) d\xi \leq C|Nt|^{-1/2}.
\] (45)

For small \(|t|\), it is trivial that
\[
\int_{\mathbb{R}^2} e^{ix\xi_1 H t}(|\xi|/|\xi|) \psi(\xi) d\xi \leq C.
\] (6)

From (45) and (46), we have
\[
\left|\int_{\mathbb{R}^2} e^{ix\xi_1 H t}(|\xi|/|\xi|) \psi(\xi) d\xi \right| \leq C(1 + |Nt|)^{-1/2}.
\] (47)

Thus, we complete the proof of Lemma 2.

3. Blowup Criterion

This section shows a blowup criterion of equations (10) and (11).

Lemma 6. Let \(U(t)\) be a solution of equations (10) and (11) defined on a time interval containing \([0, T]\). Then, for any \(s > 0\), we have the bounded estimate
\[
\|U(t)\|_{H^s}^2 \leq \|U_{t0}\|_{H^s}^2 \exp\left(C \int_0^T \|\nabla U(\tau)\|_{L^\infty} d\tau\right).
\] (52)

Proof. For the vector variable \(U(t) = (u(t), u_s)^T\), we obtain
\[
\begin{align*}
\partial_t u + (\nabla \cdot \nabla) u &= -Nu_3, \\
\partial_t u_s + (\nabla \cdot \nabla) u_s + \nabla p &= N u_3 e_2,
\end{align*}
\] (53)

\(\nabla \cdot u = 0\).

We take \(s\) derivatives of the first and the second equation in (53), multiply by \(\nabla u_3\) and \(\nabla u_s\), respectively, and integrate over \(\mathbb{R}^2\) to obtain
\[
\frac{d}{dt} \|\nabla^s u_3\|_{L^2}^2 + \int \nabla^s (u_3 \nabla u_3) \nabla u_3 dx = -N \int \nabla^s u_3 \nabla^s u_3 dx,
\] (54)

\[
\frac{d}{dt} \|\nabla^s u_s\|_{L^2}^2 + \int \nabla^s (u_s \nabla u) \nabla^s u dx + \int \nabla^s p \cdot \nabla^s u dx = N \int \nabla^s u_3 e_2 \nabla^s u dx.
\] (55)

Note that
\[
-N \int \nabla^s u_3 \nabla u_3 dx + N \int \nabla^s u_3 e_2 \nabla^s u dx = 0.
\] (56)

Since \(\nabla \cdot u = 0\), we have
The commutator-type estimate (see, e.g., [12, 15]) provides us with
\[
\| \nabla^2 (u \cdot \nabla u) \nabla u \|_{L^2} \leq C \| \nabla u (t) \|_{L^2} \| \nabla^2 u (t) \|_{L^2},
\]
\[
\| \nabla^2 (u \cdot \nabla u) \nabla^2 u \|_{L^2} \leq C \| \nabla u (t) \|_{L^2} \| \nabla^3 u (t) \|_{L^2}.
\]
Thus, adding (54) and (55) gives
\[
\frac{d}{dt} \| \nabla^2 u (t) \|_{L^2}^2 \leq C \| \nabla u (t) \|_{L^2} \| \nabla^2 u (t) \|_{L^2}^2,
\]
which implies that by the Gronwall inequality for \(t \in [0, T] \),
\[
\| \nabla^2 u (t) \|_{L^2}^2 \leq \| \nabla^2 u_0 \|_{L^2}^2 \exp \left(C \int_0^T \| \nabla u (t) \|_{L^2, \infty} \, dt \right).
\]
The above equality implies that Lemma 6 holds. \(\square \)

4. Proof of Theorem 1

Applying \(P_\pm \) to (10) and using the fact \(P_\pm P_\pm = P_\pm \) gives
\[
\partial_t \| P_\pm U \|_{L^2} \leq 2 \| P_\pm U \|_{L^2}.
\]
By the Duhamel principle, we get
\[
P_\pm U = e^{i \nabla \omega (D)} P_\pm U_0 + \int_0^t e^{i \nabla \omega (D) (t-s)} P_\pm (U \cdot \nabla) U (s) \, ds.
\]
Due to Lemma 5 and scaling, we find that for \(q \geq 4 \),
\[
\| \Delta_j e^{i \nabla \omega (D) \partial_t}\|_{L^2} \leq N^{-1/2} \| \Delta_j f \|_{L^2}.
\]
In the following, for \(\alpha > 0 \), we are going to derive the estimates of
\[
\| P_\pm U \|_{L^2_{\eta, \alpha}} = \| \chi (D) P_\pm U \|_{L^2_{\eta, \alpha}} + \sup_{j \geq 1} \left(\begin{array}{c}
2^{j(1+\alpha)} \| \Delta_j P_\pm U \|_{L^2_{\eta, \alpha}} \end{array} \right).
\]
By (63) and the Bernstein inequality, we have
\[
\| \Delta_j e^{i \nabla \omega (D) \partial_t} P_\pm U_0 \|_{L^2} \leq 2^{j(2+\alpha)} N^{-1/2} \| \Delta_j P_\pm U_0 \|_{L^2} \leq N^{-1/2} \| P_\pm U_0 \|_{H^{1/2}}.
\]
On the other hand, we have from (61) that
\[
\| X(D) e^{i \nabla \omega (D) \partial_t} P_\pm U_0 \|_{L^2_{\eta, \alpha}} \leq \sum_{j=-\infty}^{\infty} \| \Delta_j e^{i \nabla \omega (D) \partial_t} P_\pm U_0 \|_{L^2_{\eta, \alpha}} \leq \sum_{j=-\infty}^{\infty} \| \Delta_j e^{i \nabla \omega (D) \partial_t} P_\pm U_0 \|_{L^2_{\eta, \alpha}} \leq N^{-1/2} \| P_\pm U_0 \|_{H^{1/2}}.
\]
\[
\| \int_0^t e^{tN_a(D(t-t')_b)} \| U(t') \| dt \| \leq C N^{-(1/q)} \int_0^t \| U(t') \|_{\text{H}^{1+\alpha}} \, dt.
\]

(70)

Combining (67) and (70) yields
\[
\| \| U \|_{\text{L}^{\infty}_{t} \text{H}^{1+\alpha}} \leq C N^{-(1/q)} \left(\| U \|_{\text{H}^{1+\alpha}} + \int_0^t \| U(t') \|_{\text{H}^{1+\alpha}} \, dt \right).
\]

(71)

Define
\[
M(T) = \int_0^T \| \nabla U \|_{L^2} \, dt.
\]

(72)

We get from (71) and Lemma 6 that
\[
M(T) \leq T^{1-(1/q)} \left(\int_0^T \| \nabla U \|_{L^2}^q \, dt \right)^{(1/q)}
\]
\[
\leq CT^{1-(1/q)} N^{-(1/q)} \left(\| U \|_{\text{H}^{1+\alpha}} + \int_0^T \| U(t) \|_{\text{H}^{1+\alpha}} \, dt \right)
\]
\[
\leq CT^{1-(1/q)} N^{-(1/q)} \left(\| U \|_{\text{H}^{1+\alpha}} + \int_0^T \| U \|_{\text{H}^{1+\alpha}} \, dt \right)
\]
\[
\leq CT^{1-(1/q)} N^{-(1/q)} \left(\| U \|_{\text{H}^{1+\alpha}} + \| U \|_{\text{H}^{1+\alpha}} T e^{M(T)} \right)
\]
\[
\leq C_1 T^{1-(1/q)} N^{-(1/q)} \| U \|_{\text{H}^{1+\alpha}} (1 + \| U \|_{\text{H}^{1+\alpha}} T e^{M(T)}).
\]

(73)

Let \(q = 4 \) and suppose that
\[
M(T) \leq C_1 T^{3/4} \| U \|_{\text{H}^{1+\alpha}}.
\]

(74)

We can choose \(N \) sufficiently large such that
\[
N^{-1/(4)} \left(1 + \| U \|_{\text{H}^{1+\alpha}} T e^{M(T)} \right)
\]
\[
\leq \frac{1}{2}
\]

(75)

Combining (73) with (74) gives
\[
M(T) \leq \frac{1}{2} C_1 T^{3/4} \| U \|_{\text{H}^{1+\alpha}}.
\]

(76)

Finally, the restriction (75) implies \(T \) can choose
\[
T = C (\ln N)^{3/4}.
\]

(77)

By the bootstrap principle, we deduce from (76) that (74) actually holds. Thus, from the classical local existence (see [12]) and the blowup criterion Lemma 6, (10) and (11) possess unique classical solutions satisfying \(u \in C([0, T]; H^p) \).

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This study was supported by the NSFC (grant no. 11871302), China Postdoctoral Science Foundation (grant no. 2019M652348), Natural Science Foundation of Chongqing (grant no. cstc2020cjy-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (grant nos. KJQN201900539 and KJQN202000528).

References

[1] J. Lu, “Local existence for Boussinesq equations with slip boundary condition in a bounded domain,” Journal of Applied Mathematics and Physics, vol. 5, Article ID S10165, 2017.
[2] M. J. Lai, R. Pan, and K. Zhao, “Initial boundary value problem for two-dimensional viscous Boussinesq equations,” Archive for Rational Mechanics and Analysis, vol. 199, no. 3, Article ID 7398C760, 2011.
[3] A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, UK, 2002.
[4] W. Littman, “Fourier transforms of surface-carried measures and differentiability of surface averages,” Bulletin of the American Mathematical Society, vol. 69, pp. 766–770, 1963.
[5] D. Chae, “Global regularity for the 2D Boussinesq equations with partial viscosity terms,” Advances in Mathematics, vol. 203, pp. 497–513, 2006.
[6] T. Hou and C. Li, “Global well-posedness of the viscous Boussinesq equations,” Discrete and Continuous Dynamical Systems - A, vol. 12, no. 1, pp. 1–12, 2005.
[7] C. Cao and J. Wu, “Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation,” Archive for Rational Mechanics and Analysis, vol. 208, pp. 985–1004, 2013.
[8] D. Adhikari, C. Cao, J. Wu, and X. Xu, “Small global solutions to the damped two-dimensional Boussinesq equations,” Journal of Differential Equations, vol. 256, no. 11, pp. 3594–3613, 2014.
[9] A. Castro, D. Cordoba, and D. Lear, “On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term,” Mathematical Models and Methods in Applied Sciences, vol. 29, pp. 1227–1277, 2019.
[10] T. Tanisch, “A note on the blow-up criterion for the inviscid 2D Boussinesq equations, the Navier-Stokes equations: theory and numerical methods,” Lectures Notes in Pure and Applied Mathematics, p. 223, CRC Press, Boca Raton, FL, USA, 2002.
[11] R. Wan and J. Chen, “Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations,” Zeitschrift für angewandte Mathematik und Physik, vol. 67, p. 104, 2016.
[12] D. Chae and H.-S. Nam, “Local existence and blow up criterion for the Boussinesq equations,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 258, pp. 935–946, 1997.
[13] R. Danchin, “Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics,” Proceedings of the American Mathematical Society, vol. 141, pp. 1979–1993, 2013.
[14] W. Hu, I. Kukavica, and M. Ziane, “On the regularity for the Boussinesq equations in a bounded domain,” Journal of Mathematical Physics, vol. 54, Article ID 081507, 2013.
[15] T. Elgindi and K. Widmayer, “Shap decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid Boussinesq systems,” SIAM Journal on Mathematical Analysis, vol. 47, pp. 4672–4684, 2015.
[16] R. Wan, “Global well-posedness of strong solutions for the 2D damped Boussinesq and MHD equations with large velocity,” Communications in Mathematical Sciences, vol. 15, pp. 1617–1626, 2017.

[17] M. Keel and T. Tao, “Endpoint Strichartz estimates,” American Journal of Mathematics, vol. 120, pp. 955–980, 1998.

[18] A. Majda, “Introducing to PDEs and waves for the atmosphere and ocean,” vol. 9, New York University, Courant Institute of Mathematical Sciences, New York, NY, USA, 2003, Courant Lecture Notes in Mathematics.