An efficient one-pot approach to the synthesis of symmetric trithiocarbonates from carbon disulfide and alkyl halides using imidazole

Mohammad Soleiman-Beigi* and Zahra Taherinia

Department of Chemistry, Ilam University, P. O. Box 69315-516, Ilam, Iran

(Received 23 January 2014; accepted 19 April 2014)

A novel method is reported for the synthesis of symmetric dialkyl and cyclic (5, 6 and 7 member) trithiocarbonates from alkyl halides and carbon disulfide in the presence of imidazole and water in DMSO under mild reaction conditions. Imidazole is used as an inexpensive, non-toxic and readily available catalyst in this procedure.

\[
\text{R-X + CS}_2 \xrightarrow{\text{Imidazole}} \text{DMSO/H}_2\text{O, 45 °C} \xrightarrow{} \text{R-S-S-R}
\]

\[
\text{X-(CH}_2\text{n-X + CS}_2 \xrightarrow{\text{Imidazole}} \text{DMSO/H}_2\text{O, 45 °C} \xrightarrow{} \text{S}_{(\text{CH}_2\text{m})}\text{S}
\]

Keywords: trithiocarbonate; carbon disulfide; imidazole; alkyl halide; one-pot reaction

1. Introduction

Dialkyl trithiocarbonates are of importance in synthetic chemistry, biochemistry and industry.[1–5] They are especially used as pesticides in agriculture,[6,7] lubricating additive,[8,9] reversible addition fragmentation chain transfer agent in the free radical polymerization reactions,[10,11] pharmaceuticals,[12,13] agrochemical[14,15] and intermediate in organic synthesis.[16–20] The most convenient method for the synthesis of symmetrical trithiocarbonates is alkylation (arylation) of \text{CS}_3^- with alkyl (aryl) halides. The trithiocarbonate anion \[21,22\] is generally prepared by \textit{in situ} one-pot reaction of carbon disulfide with alkali metal or ammonium sulfide, \[23–25\] ammonium hydroxide,\[21\] KF/alumina or alumina,\[26,27\] anion-exchange resin\[28\] and hydroxide,\[29,30\] carbonate \[29\] and the phosphate\[31\] of the alkali metal group. In our previous studies, we used KF/Al\textsubscript{2}O\textsubscript{3} \[26\] as a recyclable catalyst and tetra-\textit{n}-butyl ammonium hydroxide \[32\] as a neat
aqueous medium for the one-pot synthesis of symmetrical dialkyl trithiocarbonate. This was an effective method and suitable from the novelty and green chemistry viewpoint,[33] but like all other reported methods, the catalysts were inorganic. The use of inorganic and metal bases has several disadvantages such as their expense, their toxic and corrosive behavior, the strongly basic reaction conditions that are employed, and the difficulty in work-up encountered in these reactions. Herein, we describe a new alternative approach to one-pot synthesis of symmetrical dialkyl trithiocarbonate from carbon disulfide and alkyl halides using imidazole as a highly stable, readily available, low-cost, low toxicity and mild organic compound.

2. Results and discussion

As a model, the reaction of benzyl chloride (2.0 mmol) 1 and carbon disulfide (6.0 mmol) 2 in the presence of imidazole (6.0 mmol) was studied under normal atmospheric conditions in order to optimize the reaction conditions with respect to the solvent and temperature (Scheme 1). Several solvents were examined at room temperature and at 45 °C.

According to the results given in Table 1, it was found that the reaction solvent and temperature significantly affected the rate of reaction and the type and amount of product formed. In aqueous DMSO and DMF, product 3 was the main product, whereas by-product 4 was the major product in the absence of water (0.2 ml). The presence of water is often beneficial to the rate and selectivity of the reaction. Furthermore, the yield and rate of reaction also increased with temperature, whereas the formation of by-product 4 was reduced. In aqueous DMSO and DMF at 45 °C, dibenzyl trithiocarbonate 3 was obtained as the sole product, while at room temperature 15–23% of by-product 4 was also isolated. Despite the fact that DMF and DMSO promoted the reaction, no reaction was observed in THF or 1,4-dioxane. Furthermore, during our optimization studies we discovered that decreasing the imidazole from 6 to 4 or 5 mmol decreased the efficiency of the reaction and lowered the yields to 53% and 78%, respectively.

Eventually, a large number of symmetrical dialkyl trithiocarbonate 6a–6m were synthesized under the optimized conditions by the reaction of alkyl halides 5 with carbon disulfide in the presence of imidazole at 45 °C under normal atmospheric conditions (Scheme 2, Table 2).

The procedure worked well with primary, secondary, and tertiary alkyl, benzyl and alkyl halides, to give the corresponding dialkyl trithiocarbonates as the sole product in high to excellent yields (Table 2). However, the attempted reactions of aryl halides failed under the same conditions, even after long reaction times (Table 2, Entry 13). More interestingly, the base-sensitive functional groups such as carboxylic ester and carboxylic acid remained unchanged in the synthesis of corresponding symmetric trithiocarbonates (6j and 6k) from α-bromoethyl acetate 5j and α-chloroacetic acid 5k (Table 2, Entries 10, 11).
Table 1. Optimization study: screening of solvent of reactions, optimize of the reaction temperature, and water amounta.

Entry	Solvent (5 ml)	Temp. (°C)	Time (h)	Isolated yield (%)
1	THF	45	15	–
2	1,4-dioxane	45	15	–
3	CH₃CN	45	15	–
4	DMF	45	10	15
5	H₂O	45	8	–
6	H₂Oᵇ	45	8	25
7	DMSO	45	4.5	10
8	DMF	25	10	Trace
9	H₂O	25	15	–
10	DMSO/H₂O (4.8/0.2)	25	10.5	73
11	DMF/H₂O (4.8/0.2)	25	11	60
12	DMSO/H₂O (4.8/0.2)	45	4.5	92
13	DMSO/H₂O (4.5/0.5)	45	10	37
14	DMSO/H₂O (4/1)	45	10	25
15	DMF/H₂O (4.8/0.2)	45	7	82
16	CH₃CN/H₂O (4.8/0.2)	45	10	13

a Model reaction conditions: carbon disulfide (6.0 mmol), benzyl chloride (2.0 mmol), imidazole (6.0 mmol), solvent (5.0 ml) under air atmosphere.
bIn 0.2 ml solvent.

Scheme 2. Synthesis of symmetric trithiocarbonates.

Table 2. Imidazole mediated symmetrical dialkyl trithiocarbonates synthesis.

Entry	R-X, 5	Product	Time (h)	Yielda (%)
1	CH₃CH₂I, 5a	6a	8	70
2	PhCH₂Cl, 5b	6b	4.5	92
3	PhCH₂Br, 5c	6c	3.5	91
4	CH₃CH₂CH₂Br, 5d	6d	9.5	72
5	s-BuBr, 5e	6e	8	90
6	i-BuBr, 5f	6f	7.5	86
7	t-BuBr, 5g	6g	14	65
8	PhCH₂CH₂Br, 5h	6h	7.5	85
9	Ph(C₂H₅)₁CH₂Br, 5i	6i	8.5	80
10	EtO₂CCH₂Br, 5j	6j	9	78
11	HO₂CCH₂Cl, 5k	6k	10.5	75
12	CH₂=CHCH₂Br, 5l	6l	9.5	75
13	PhI, 5m	6m	15	–

a Isolated yield by preparative chromatography.

Furthermore, the procedure’s efficiency for the synthesis of cyclic trithiocarbonates (1, 3-dithiolane-2-thione) from dihalides 7 was examined (Scheme 3). Five- (8a), six- (8b) and seven-membered cyclic trithiocarbonates (8c) were successfully prepared with moderate yields without any by-product (Table 3).
Scheme 3. Synthesis of cyclic trithiocarbonates.

Table 3. Symmetrical cyclic trithiocarbonates from alkyl halides and CS$_2$ under optimized conditions.

Entry	X-(CH$_2$)$_n$-X, 7	Producta	Time (h)	Yieldb (%)
1	ICH$_2$CH$_2$I	8a, m = 1	8	91
2	BrCH$_2$CH$_2$CH$_2$Br	8b, m = 2	8.5	82
3	BrCH$_2$(CH$_2$)$_2$CH$_2$Br	8c, m = 3	9.5	70

aKnown products compounds were characterized by comparison of NMR spectral data with those reported in the literature.

b Isolated yield.

In order to establish the general applicability of the procedure for the synthesis of unsymmetrical dialkyl trithiocarbonate from two different alkyl halides under optimal reaction conditions, α-bromo ethyl acetate 5j and ethyl iodide 5a were treated with carbon disulfide and imidazole (Scheme 4). The unsymmetrical trithiocarbonate product 9 was obtained as the major product (60%) with good chemoselectivity. The symmetrical products 10 (25%) and 11 (10%) were isolated as the minor products.

Scheme 4. Synthesis of unsymmetrical trithiocarbonates.

We also propose a possible reaction mechanism in which intermediate I is generated in the first step by the reaction of imidazole with carbon disulfide and alkyl halides and is hydrolyzed in situ to produce of thiol moiety (intermediate II), COS and imidazole. In the final step, the generated thiol (II) attacks the thiocarbonyl carbon of the intermediate I to readily yield a trithiocarbonate III and regenerate imidazole. It is presumed that water is necessary, especially, in the hydrolysis of the intermediate I. The proposed mechanism is a fairly accurate presentation of what may happen due to common considerations during the course of the reaction. In the model reaction, benzyl mercaptan and the intermediate I were in fact isolated and fully characterized by spectroscopy techniques. The proposed pathway is shown in Scheme 5.
3. Conclusion

To conclude, this strategy provides a new and alternative procedure for the one-pot synthesis of symmetrical dialkyl trithiocarbonates from alkyl halides and carbon disulfide. It is more economic, more general and more environmentally friendly than previous methods. The use of imidazole as an inexpensive, non-toxic and readily available catalyst is another significant advantage of this process. In addition, other advantages of this process are the ease of performing and controlling the reaction as well as purification of the product, and the avoidance of expensive and/or dangerous reagents.

4. Experimental

General procedures: Symmetrical trithiocarbonates synthesis from alkyl halides and carbon disulfide: Alkyl halides (2.0 mmol) (or alkyl dihalides (1.0 mmol)) were added in one portion to a solution of imidazole (6.0 mmol) and CS₂ (6.0 mmol) in 5 ml DMSO/H₂O (4.8/0.2). The color of the resulting reaction solution immediately changed from light red to yellow. Then, the solution was allowed to stir for the appropriate time (Table 2) at 45 °C in an air atmosphere. The progress of the reaction was monitored by TLC. After completion of the reaction, 20 ml CH₂Cl₂ was added to the mixture, and the mixture was then washed with water (2 × 20 ml). The organic layer was separated and then dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure. The residue was purified by preparative TLC silica gel, eluent n-hexane: EtOAc; 30:1) to afford pure product (symmetric dialkyl trithiocarbonate). In the case of Entries 10 and 11, Table 2 (6j and 6k), the TLC eluent was n-hexane: EtOAc 4:1.

Selected spectral data for representative trithiocarbonate: Table 2, Entry 5 (6e): pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ = 1.01 (t, J = 7.2 Hz, 6H), 1.4 (d, J = 6.8 Hz, 6H), 1.65–1.83 (m, 4H.), 4.21 (sext, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 11.41, 19.57, 28.81, 47.98, 224.04.
Entry 8 (6h): yellow oil 1H NMR (400 MHz, CDCl$_3$): $\delta = 3.05$ (t, $J = 7.8$ Hz, 4H), 3.67 (t, $J = 7.8$ Hz, 4H), 7.26–7.37 (m, 10H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 34.47, 37.91, 126.73, 128.61, 128.65, 139.59, 223.74$.

Table 2, Entry 9 (6i): yellow oil 1H NMR (400 MHz, CDCl$_3$): $\delta = 2.1$ (quin, $J = 7.4$ Hz, 4H), 2.79 (t, $J = 7.6$ Hz, 4H), 3.4 (t, $J = 7.4$ Hz, 4H), 7.26–7.38 (m, 10H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 29.73, 34.93, 36.14, 126.16, 128.51, 140.91, 224.08$. MS (EI, 70 eV): $m/z = 65.1, 91.1, 117.2, 151.1, 195.1, 313.2, 347.3$.

Table 2, Entry 10 (6j): Pale yellow oil 1H NMR (400 MHz, CDCl$_3$): $\delta = 1.32$ (t, $J = 7.2$ Hz, 6H), 4.20 (s, 4H), 4.26 (q, $J = 7.0$ Hz, 4H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 14.11, 38.39, 62.07, 167.14, 220.33$. MS (EI, 70 eV): $m/z = 59.1, 87.1, 107, 119, 135, 140.1, 168, 195, 206, 237.1, 282.1$.

Table 3, Entry 3 (8c): yellow oil 1H NMR (400 MHz, CDCl$_3$): yellow oil 1H NMR (400 MHz, CDCl$_3$): $\delta = 2.51$ (m, 4H), 3.29 (m, 4H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 29.72, 38.69, 223.32$. MS (EI, 70 eV): $m/z = 54.1, 60.1, 76, 88.1, 120.1, 164.1$.

9: pale yellow oil 1H NMR (400 MHz, CDCl$_3$): $\delta = 1.3$ (t, $J = 7.2$ Hz, 3H), 1.41 (t, $J = 7.2$ Hz, 3H), 3.4 (q, $J = 7.4$ Hz, 2H), 4.20 (s, 2H), 4.26 (q, $J = 7.2$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 12.95, 14.12, 31.78, 38.39, 62.07, 167.53, 222.20$. MS (EI, 70 eV): $m/z = 61, 77, 106, 120, 135, 163, 179, 195, 224.1$.

Intermediate I (R = PhCH$_2$): pale yellow 1H NMR (400 MHz, CDCl$_3$): $\delta = 4.64$ (s, 2H), 7.14 (s, 1H), 7.29–7.43 (m, 5H), 7.8 (s, 1H), 8.52 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 41.80, 117.73, 128.33, 128.95, 129.44, 131.50, 133.50, 135.67, 197.31$. MS (EI, 70 eV): $m/z = 50, 57.1, 65.2, 76.1, 83.1, 91.2, 111.2, 123.2, 158.2, 168.1, 234.1$.

Funding

Financial support from Ilam university research council is gratefully acknowledged.

Supplemental data

Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/17415993.2014.919296.

References

[1] Urbaniak K, Mlóst G, Gulea M, Masson S, Linden A, Heimgartner H. Thio- and dithioesters as dipolarophiles in reactions with thiocarbonyl ylides. Eur J Org Chem. 2005;2005:1604–1612.

[2] Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanates chemistry and mechanisms. Cancer Res. 1994;54:1976–1981.

[3] Jesberger M, Davis TP, Barner L. Applications of Lawesson’s reagent in organic and organometallic. Synthesis. 2003;34:1929–1958.

[4] Gevaza VI, Staninetis VI. Electrophilic heterocyclization of unsaturated sulfur and phosphorus compounds. Chem Heterocycl Comp. 1986;22:231–242.

[5] Dehmel F, Ciossek T, Maier T, Weinbrenner S, Schmidt B, Beckers T. Trithiocarbonates-exploration of a new head group for HDAC inhibitors. Bioorg Med Chem Lett. 2007;17:4746–4752.

[6] Bashour JT. Symmetrical dialkyl trithiocarbonates as nematocides. United State patent US 2,676,129. 1954 Apr 20.

[7] Hamm PC, Godfrey KL. Method of destroying vegetation with trithiocarbonates. United State patent US 2,933,774. 1961 July 25.

[8] Blake ES. Lubricating oil composition. United State patent US 2,438,599. 1948 Mar 30.

[9] Norris HD. Thienyl xanthates and trithiocarbonates. United State patent US 2,552,055. 1951 May 8.

[10] Barner-Kowollik KC, Davis TP, Heuts JPA, Stenzel MH, Whittaker M. RAFTing down under: tales of missing radicals, fancy architectures, and mysterious holes. J Polym Sci Part A: Polym Chem. 2003;41:365–375.

[11] Kawamoto I, Endo R, Sugahara SJ. Synthesis and antimicrobial activity of a new penem, sodium (5R,6S)-2-(2-fluoroethylthio)-6-([(1R)-1-hydroxyethyl]penem-3-carboxylate. J Antibiot. 1986;39:1551–1556.
[13] Foye WO, Mickles J, Duvall RN, Marshall JR. Antiradiation compounds. IV. trithiocarbonates of \(\beta \)-mercaptoethylguanidines. J Med Chem. 1963;6:509–512.

[14] Knowels CO. Chemistry, biological activity, and uses of formamidine pesticides. Environ Health Persp. 1976;14:93–102.

[15] Johnson D, Amarnath JV, Amarnath K, Valentine H, Valentine WM. Aracterizing the influence of structure and route of exposure on the disposition of dithiocarbamates using toluene-3,4-dithiol analysis of blood and urinary carbon disulfide metabolites. Toxicol Sci. 2003;76:65–74.

[16] Wuts PGM, Greene TW. Protecting groups in organic synthesis. New York: John; 2006.

[17] Leriche J, Metzner P, Capperucci A, Degl’Innocenti A. thiophilic addition of organolithiums to trithiocarbonates oxides (Sulfines). Tetrahedron. 1997;53:1323–1342.

[18] Corey EJ, Carey FA, Winter RAE. Stereospecific syntheses of olefins from 1,2-thionocarbonates and 1,2-trithiocarbonates. trans-cycloheptene J Am Chem Soc. 1965;87:934–935.

[19] Oliva A, Molinari A, Sanchez L. new application of dimethyl trithiocarbonate – methyl thiocarbonylation of 2,4-pentanedion and some beta-oxoesters. Synth Commun. 1998;28:3381–3386.

[20] O’Connor BR, Jones FN. Electrophilic heterocyclization of unsaturated sulfur and phosphorus compounds J Org Chem. 2002;35:1970–1974.

[21] Wertheim E. Reaction of carbon disulfide I: with ammonium hydroxide. J Am Chem Soc. 1926;48:826–830.

[22] Godt HC, Wann RE. Synthesis of organic trithiocarbonates, J Org Chem. 1961;26:4047–4051.

[23] Degani I, Fochi R, Gatti A, Regondi V. Phase-transfer synthesis of symmetrical and unsymmetrical dialkyl trithiocarbonates .Synthesis. 1986;17:894–899.

[24] Gholinejad M. One-pot synthesis of symmetrical diaryl trithiocarbonates through copper-catalyzed coupling of aryl compounds, sodium sulfide, and disulfide. Eur J Org Chem. 2013;2013:257–259.

[25] Saeed M, Abbas M, Abdel-Jalil RJ, Zaid M, Voeiter W. A convenient method for the synthesis of cyclic trithiocarbonates on carbohydrate scaffolds. Tetrahedron Lett. 2003;44:315–317.

[26] Movassagh B, Soleiman-Beigi M. Facile KF/Al2O3-mediated, one-pot Synthesis of symmetrical trithiocarbonatea from alkyl halides and carbon disulfide. Chem Lett. 2008;37:22–23.

[27] Kiasat AR, Mehrjardi MF. A novel one-step synthesis symmetrical dialkyl trithiocarbonates in the presence of phase-transfer catalysis. J Chin Chem Soc (Taipei). 2008;55:639–642.

[28] Takolpuckdee P, Mars CA, Perrier S. Merrifield resin-supported chain transfer agents, precursors for RAFT polymerization. Org Lett. 2005;7:3449–3452.

[29] Lee AWM, Chan W, Wong HC. One pot phase transfer synthesis of trithiocarbonates from carbon bisulphide and alkyl halides. Synth Commun. 1988;18:1531–1535.

[30] Leung MK, Hsieh D-T, Lee K-H, Liou J-C, Mössbauer. Spectroscopic study of fe ion-exchanged lithium taeniolite. J Chem Res (S). 1995;19:478–479.

[31] Movassagh B, Alapour S. K3PO4-mediated one-pot synthesis of symmetrical trithiocarbonate. J Sulfur Chem. 2013;34:222–226.

[32] Soleiman-Beigi M, Arzehgar Z, Movassagh B. TBAH-catalyzed one-pot of symmetrical trithiocarbonates from alkyl halides and carbon disulfide under neat aqueous. Synthesis. 2010;41:392–394.

[33] Sheldon RA, Arends IWCE, Hanefeld U. Introduction: green chemistry and catalysis. In: Green chemistry and catalysis. Weinheim: Wiley-VCH; 2007. p. 1–47.