1. Introduction

The notion of a (Gieseker) semistable sheaf is well-established in the literature and allows one to construct moduli spaces of sheaves with fixed Hilbert polynomial on a projective variety. The construction, carried out in [16], relies on the existence theorems from Geometric Invariant Theory, more precisely, it is shown that the moduli space occurs as the quotient of a certain set of semistable points of a quotient scheme modulo a reductive algebraic group.

To get a semistable quotient from a semistable sheaf \(F \) we need to express \(F \) as a quotient \(m \mathcal{O}(-d) \rightarrow F \rightarrow 0 \) with large \(m \) and \(d \). In general this procedure is quite abstract and of little use for the purposes of describing concretely the geometry of the moduli space.

Another approach for studying moduli spaces uses monads. Let \(M_{\mathbb{P}^2}(r, c_1, c_2) \) be the moduli space of semistable (in the sense of Mumford-Takemoto) torsion-free sheaves on \(\mathbb{P}^2 \) of rank \(r \) and Chern classes \(c_1, c_2 \). Assume that there exist locally free sheaves \(\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3 \) on \(\mathbb{P}^2 \) such that each \(\mathcal{F} \) giving a point in \(M_{\mathbb{P}^2}(r, c_1, c_2) \) is the cohomology of a monad

\[
0 \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_2 \rightarrow \mathcal{E}_3 \rightarrow 0.
\]

The space \(W \) of monads is acted upon in an obvious manner by the algebraic group \(G = \text{Aut}(\mathcal{E}_1) \times \text{Aut}(\mathcal{E}_2) \times \text{Aut}(\mathcal{E}_3) \). Two fundamental questions now arise: firstly, is there a semistability notion for \(W \) such that a monad is semistable precisely if its cohomology is semistable and secondly, is \(M_{\mathbb{P}^2}(r, c_1, c_2) \) a good quotient of the set \(W^{ss} \) of semistable monads modulo \(G \)?

The description of \(M_{\mathbb{P}^2}(2, c_1, c_2) \) as a good quotient was done in [1] for \(c_1 \) even and in [10] for \(c_1 \) odd. In [2] it was shown that a generic stable bundle on \(\mathbb{P}^3 \) of
rank 2, Chern classes \(c_1 = 0\), \(c_2 = 4\) and \(\alpha\)-invariant 1 is the cohomology of a self-dual monad. In [3] Drézet described as quotients those \(\mathcal{M}_{\mathbb{P}^2}(r, c_1, c_2)\) for which \(\Delta = \delta\). He takes \(\mathcal{E}_3 = 0\) and \(\mathcal{E}_1, \mathcal{E}_2\) direct sums of certain exceptional bundles. In all these instances the group \(G\) was reductive. Quotients by nonreductive \(G\) were considered by Drézet in [4] where he studies \(\mathcal{M}_{\mathbb{P}^2}(r, c_1, c_2)\) of “faible hauteur”. Again \(\mathcal{E}_3 = 0\), so he is able to express each semistable bundle as the cokernel of a semistable morphism.

A notion of semistability for complexes of morphisms of sheaves modulo nonreductive groups was proposed by Drézet and Trautmann in [4], [5] and [7]. Let us briefly explain the case of morphisms of sheaves. In this paper we will not need the notion of a semistable complex of length 3 or more. Drézet and Trautmann consider sheaves \(\mathcal{E}_1\) and \(\mathcal{E}_2\) on \(\mathbb{P}^n\) which are direct sums of simple sheaves, e.g. direct sums of line bundles. Thus \(\text{Aut}(\mathcal{E}_1) \times \text{Aut}(\mathcal{E}_2)\) is nonreductive if \(\mathcal{E}_1\) or \(\mathcal{E}_2\) has more than one kind of simple sheaf in its decomposition. This group acts on the vector space \(W = \text{Hom}(\mathcal{E}_1, \mathcal{E}_2)\) and the set of semistable points \(W^{ss}\) is defined by means of polarizations which will be not detailed here. We refer to section 3 for the precise definition. In [7] as well as in [6] it was shown that this notion of semistability quite often leads to a theory similar to the Geometric Invariant Theory.

Recently, in [9], Freiermuth and Trautmann studied the moduli space of semistable (in the sense of Gieseker) sheaves \(\mathcal{F}\) on \(\mathbb{P}^3\) with Euler characteristic 1 and with support curves of multiplicity 3. They show that each \(\mathcal{F}\) has a resolution

\[
0 \rightarrow 2\mathcal{O}(-3) \xrightarrow{\psi} \mathcal{O}(-1) \oplus 3\mathcal{O}(-2) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus \mathcal{O} \rightarrow \mathcal{F} \rightarrow 0
\]

with \(\varphi\) semistable in the sense of [7]. Moreover, the moduli space is a geometric quotient of the parameter space of \((\psi, \varphi)\) modulo the action of the group of automorphisms.

In this paper we are interested in semistable sheaves on \(\mathbb{P}^2\) with linear Hilbert polynomial. Let \(\mathcal{M}_{\mathbb{P}^2}(r, \chi)\) denote the moduli space of such sheaves \(\mathcal{F}\) with fixed multiplicity \(r\) and Euler characteristic \(\chi\). Motivated by [9] we will seek to express \(\mathcal{F}\) as a cokernel

\[
\mathcal{E}_1 \xrightarrow{\varphi} \mathcal{E}_2 \rightarrow \mathcal{F} \rightarrow 0
\]

with \(\mathcal{E}_1\) and \(\mathcal{E}_2\) direct sums of line bundles and \(\varphi\) semistable in the sense of Drézet and Trautmann. We carry this out in sections 4, 5, 6 for sheaves satisfying certain cohomological conditions. The picture we provide is far from complete because we do not have a full list of resolutions for all \(\mathcal{F}\) giving a point in \(\mathcal{M}_{\mathbb{P}^2}(r, \chi)\) even in the case \(r = 4\) (the cases \(r = 1, 2\) are trivial while the case \(r = 3\) is completely understood).

Our cohomological conditions define locally closed subvarieties in \(\mathcal{M}_{\mathbb{P}^2}(r, \chi)\) and in section 7 we address the question whether these subvarieties are good or geometric quotients of the sets of semistable morphisms \(\varphi\) modulo the canonical action of the group of automorphisms. We find that when \(r, \chi\) are mutually prime, in other words when \(\mathcal{M}_{\mathbb{P}^2}(r, \chi)\) is a fine moduli space, we always have geometric quotients. If the moduli space is not fine the problem is more complicated and we can answer it only in some cases.

In section 8 we compute the codimensions of all locally closed subsets of \(\mathcal{M}_{\mathbb{P}^2}(r, \chi)\) under investigation.
ON TWO NOTIONS OF SEMISTABILITY

In section 9 we prove a general duality result. The dual of a sheaf F giving a point in $M_{g_2}(r, \chi)$ is $F^D = \mathcal{E}xt^1(F, \Omega^2)(1)$. Applying the map $F \to F^D$ to a locally closed subset X in $M_{g_2}(r, \chi)$ we get a locally closed subset in $M_{g_2}(r, r-\chi)$ denoted X^D. At (9.5) we show that under certain conditions X and X^D are isomorphic. In particular, this is true for all sets X under investigation in this paper. Our theorem is inspired from the result present in [8], that $M_{g_2}(r, \chi)$ and $M_{g_2}(r, r-\chi)$ are birational if $\gcd(r, \chi) = 1$. We show that this is also true for the following choices of (r, χ): $(6,4)$, $(8,6)$, $(9,6)$.

We summarize our results in the table from below. The first column contains the cohomological conditions defining a locally closed subset $X \subset M_{g_2}(r, \chi)$. The second column contains the codimension of X. When we write “0” we mean an open dense subset. Each sheaf F giving a point in X has resolution of the kind featured in the row below the semistability conditions. We have even more detailed information about these resolutions: the morphisms φ having F as cokernel form a subset W_0 inside the set $W^{ss}(G, \Lambda)$ of morphisms which are semistable with respect to a polarization Λ and to the canonical action of the group G of automorphisms. We refer to section 3 for the terminology. The third column of our table contains the information about Λ and the forth column tells us whether X is a quotient of W_0 by G. When we write “good” it is self-understood that the quotient is not geometric. We wrote “unknown” whenever we could not prove that a quotient exists. The subset $W_0 \subset W^{ss}(G, \Lambda)$ is given by the following conditions: for all the blocks different than the last block in the table we require that φ be injective and that its scalar entries (regarding it as a matrix) are zero. For the last block we refer to (6.10) and (6.11).

$M_{g_2}(n+1,n)$	$n \geq 1$
$h^i(F(-1)) = 0$	0
$0 < \lambda_1 < \frac{1}{n}$	geometric

$M_{g_2}(n+2,n)$	$n = 3, 4, 5, 6$
$h^i(F(-1)) = 0$	0
$\frac{1}{2n} < \lambda_1 < \frac{1}{n}$	good for $n = 4, 6$
$\frac{1}{n^2 - n + 2}$	geometric for $n = 3, 5$

$M_{g_2}(n+2,n)$	$n = 3, 4, 5, 6$
$h^i(F(-1)) = 0$	$n - 1$
(λ_1, μ_1) in the interior of the triangle with vertices $(0,0), \left(\frac{1}{n+1}, \frac{1}{n+1}\right), \left(\frac{1}{n^2 - n + 2}, \frac{2}{n^2 - n + 2}\right)$	geometric for $n = 3, 5$
unknown	unknown for $n = 4, 6$

$M_{g_2}(4,2)$	$n \geq 1$
$h^i(F(-1)) = 0$	0
$\lambda_1 = \frac{1}{2}$	good

$M_{g_2}(4,2)$	$n \geq 1$
$h^i(F(-1)) = 0$	0
$\lambda_1 = \frac{1}{2}$	good

$M_{g_2}(4,2)$	$n \geq 1$
$h^i(F(-1)) = 0$	0
(λ_1, μ_1) in the interior of the quadrilateral with vertices $(0,0), \left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, 1\right), (0,1)$	unknown

$M_{g_2}(4,2)$	$n \geq 1$
$h^i(F(-1)) = 0$	0
$\lambda_1 = \frac{1}{2}$	good

$M_{g_2}(4,2)$	$n \geq 1$
$h^i(F(-1)) = 0$	0
(λ_1, μ_1) in the interior of the quadrilateral with vertices $(0,0), \left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, 1\right), (0,1)$	unknown

$M_{g_2}(4,2)$	$n \geq 1$
$h^i(F(-1)) = 0$	0
$\lambda_1 = \frac{1}{2}$	good
We should mention that, by virtue of our duality results (9.5) and (9.7), for each block in the table there is a “dual block” obtained by replacing \(M_{p_2}(r, \chi) \) with \(M_{p_2}(r, r - \chi) \), \(F \) with \(F^D \) and \(\varphi \) with \(\text{Hom}(\varphi, \Omega^2)(1) \). We did not feel the need to
include another “dual” table, instead we only spell out at (9.8) the cases of open dense subsets.

As a general remark, the kind of arguments from this paper become very hard to carry out in the case of large multiplicity. This is so because, when the multiplicity becomes large, other than semistability conditions on φ enter into play. Thus, for large multiplicity, Drézet and Trautmann’s notion of semistability is no longer satisfactory.

Acknowledgements: The author wishes to thank J.-M. Drézet for many useful comments. The referee pointed out several improvements, including a simplification of the proof of (4.3), for which the author is grateful.

2. Semistable Sheaves and Their Moduli

From now on k will be an algebraically closed field of characteristic zero. All schemes over k will be assumed to be algebraic, meaning that they can be covered with finitely many spectra of finitely generated k-algebras. A separated algebraic scheme will also be called an algebraic variety. A variety will be the maximal spectrum of a reduced algebraic variety. Our main reference for this section is [11].

Let X be a smooth projective variety of dimension n with ample line bundle $\mathcal{O}_X(1)$. For a coherent sheaf \mathcal{F} on X we denote by $\chi(\mathcal{F})$ its Euler characteristic given by

$$\chi(\mathcal{F}) = \sum_{i \geq 0} (-1)^i \dim_k H^i(X, \mathcal{F}).$$

The Euler characteristic of the twisted sheaf $\mathcal{F}(m) = \mathcal{F} \otimes \mathcal{O}_X(m)$ is a polynomial expression in m. Thus, we can define the Hilbert polynomial $P_\mathcal{F}(m)$ of \mathcal{F} by the formula

$$P_\mathcal{F}(m) = \chi(\mathcal{F}(m)).$$

It is known that the degree of $P_\mathcal{F}(m)$ equals the dimension of the topological support $\text{supp}(\mathcal{F})$ of \mathcal{F}. We write

$$P_\mathcal{F}(m) = \sum_{i=0}^d \alpha_i(\mathcal{F}) \frac{m^i}{i!}.$$

The coefficients $\alpha_i(\mathcal{F})$ are integers, see [11]. The dominant coefficient $\alpha_d(\mathcal{F})$ is called the multiplicity of \mathcal{F} and is positive because, by the Theorem B of Serre, for m large enough we have $P_\mathcal{F}(m) = \dim_k H^0(X, \mathcal{F}(m)) > 0$. It is known that $\alpha_d(\mathcal{F})$ equals the degree of the scheme $\text{Supp}(\mathcal{F})$ which has $\text{supp}(\mathcal{F})$ as underlying topological space and $\mathcal{O}_X/\text{Ann}(\mathcal{F})$ as structure sheaf. We define the reduced Hilbert polynomial of \mathcal{F}

$$p_\mathcal{F} = \frac{P_\mathcal{F}}{\alpha_d(\mathcal{F})}.$$

(2.1) Definition: Let \mathcal{F} be a coherent sheaf on X. Assume that $\text{Supp}(\mathcal{F})$ is pure dimensional of dimension d. We say that \mathcal{F} is (semi)stable if the following two conditions are satisfied:

(i) \mathcal{F} does not have nonzero subsheaves \mathcal{F}' with $\text{Supp}(\mathcal{F}')$ having dimension smaller than d;
(ii) for any proper subsheaf $F' \subset F$ we have
\[p_{F'}(\leq) < p_F \]
meaning that for m sufficiently large the following inequality holds:
\[p_{F'}(m)(\leq) < p_F(m). \]

(2.2) Remark: We will be interested in semistable sheaves on \mathbb{P}^2 with linear Hilbert polynomial $P_F(m) = rm + \chi$. Such sheaves are supported on projective curves C and the conditions from the above definition take the form:

(i) F does not have zero dimensional torsion;
(ii) for any proper subsheaf $F' \subset F$ we have
\[\frac{\alpha_0(F')}{\alpha_1(F')}(\leq) < \frac{\alpha_0(F)}{\alpha_1(F)}. \]

We point out that F is a torsion $\mathcal{O}_{\mathbb{P}^2}$-module because at every point x there is a nonzero germ of \mathcal{O}_x vanishing on the support of F, hence annulling F_x. The zero-dimensional torsion of a sheaf is its largest subsheaf supported on finitely many points.

The positive integer r is the so-called multiplicity of F while χ is its Euler characteristic. The restriction of F to a generic line in \mathbb{P}^2 is a sheaf of length r supported at finitely many points; r is also equal to the degree of C. Here are more facts about such sheaves (compare [8], thm. 3.1):

(2.3) Proposition: Let F be a semistable sheaf on \mathbb{P}^n with Hilbert polynomial $P_F(m) = rm + \chi$, $0 \leq \chi < r$. Let C be its support. Then:

(i) F is Cohen-Macaulay;
(ii) F is locally free on the smooth part of C;
(iii) C has no zero dimensional components and no embedded points;
(iv) if $\gcd(r, \chi) = 1$ then F is stable;
(v) if $h^0(F(-1)) = 0$ then $h^1(F(i)) = 0$ for $i \geq r - \chi - 1$.

As a generic plane curve is smooth, we see that a generic F from (2.3) is a line bundle supported on a smooth curve of degree r. Its degree can be computed with the Riemann-Roch formula: $\deg(F) = g(C) - 1 + \chi = \frac{r(r-3)}{2} + \chi$. Line bundles supported on smooth curves are clearly stable because their quotient sheaves are supported on finitely many points, hence their proper subsheaves have the same multiplicity but strictly smaller Euler characteristic. Other, well-known, examples of stable sheaves with one-dimensional support are the structure sheaves \mathcal{O}_C, where C is any curve in \mathbb{P}^2 given as the zero-set of a polynomial of degree r. We can see this using, for instance, lemma (6.8): any indeal sheaf $I \subset \mathcal{O}_C$ has Hilbert polynomial
\[P_{\mathcal{O}_C}(t) - P_{\mathcal{O}_C'}(t) - a = rt - \frac{r(r-3)}{2} - r't + \frac{r'(r'-3)}{2} - a, \]
where $a \geq 0$ and $r' < r$ are integers. Thus
\[\frac{\alpha_0(I)}{\alpha_1(I)} = \frac{-r - r' + 3}{2} - \frac{a}{r - r'} < \frac{-r + 3}{2} = \frac{\alpha_0(\mathcal{O}_C)}{\alpha_1(\mathcal{O}_C)}. \]
(2.4) Definition: Let \mathcal{F} be a semistable sheaf on X. A Jordan-Hölder filtration of \mathcal{F} is a filtration by subsheaves

$$0 = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_r = \mathcal{F}$$

such that all quotients $\mathcal{F}_i/\mathcal{F}_{i-1}$ are stable with reduced Hilbert polynomial $p_{\mathcal{F}}$.

Two semistable sheaves \mathcal{F} and \mathcal{G} on X are said to be stable equivalent if they possess Jordan-Hölder filtrations with isomorphic quotients. By this we mean the following: there is a bijection between the set of quotients of the filtration of \mathcal{F} and the set of quotients of the filtration of \mathcal{G} such that the quotients corresponding via this bijection are isomorphic.

Note that, in the case of stable sheaves, stable equivalence means isomorphism. Any semistable sheaf \mathcal{F} has at least one Jordan-Hölder filtration. \mathcal{F} may have more than one filtration, however, the direct sum $\oplus \mathcal{F}_i/\mathcal{F}_{i-1}$ does not depend on the filtration.

The moduli space of semistable sheaves on X parametrizes stable equivalence classes with fixed Hilbert polynomial. It is a coarse moduli space for a certain moduli problem which can be defined by means of the following functor: Let us fix a numerical polynomial $P(m)$, i.e. a polynomial with rational coefficients which takes integer values on the integers. For any scheme S over k we define $\mathcal{M}_X(P)(S)$ as the set of equivalence classes $[\mathcal{F}]$ of S-flat coherent sheaves \mathcal{F} on $S \times X$ whose restriction \mathcal{F}_s to any fiber $\pi^{-1}(s)$ is a semistable sheaf with Hilbert polynomial P. Here $\pi : S \times X \rightarrow S$ is the projection onto the first factor. Two sheaves \mathcal{F} and \mathcal{G} on $S \times X$ are said to be equivalent if there is a line bundle L on S such that \mathcal{F} is isomorphic to $\mathcal{G} \otimes \pi^*L$. Given a morphism $f : T \rightarrow S$ of schemes over k we have a map

$$\mathcal{M}_X(P)(f) : \mathcal{M}_X(P)(S) \rightarrow \mathcal{M}_X(P)(T)$$

given by the pull-back

$$\mathcal{M}_X(P)(f)([\mathcal{F}]) = [(f \times 1)^*\mathcal{F}].$$

We have thus defined a contravariant functor $\mathcal{M}_X(P)$ from the category of schemes over k to the category of sets.

(2.5) Definition: A scheme M over k is called a coarse moduli space of semistable sheaves on X with Hilbert polynomial P if there is a natural transformation of functors

$$\mathcal{M}_X(P)(_ : _ \rightarrow \text{Mor}(_ , M))$$

satisfying the following properties:

(i) the map

$$\tau(\text{Spec}(k)) : \mathcal{M}_X(P)(\text{Spec}(k)) \rightarrow \text{Mor}(\text{Spec}(k), M)$$

is a bijection. In other words the set of closed points of M is in a one-to-one correspondence with the set of stable equivalence classes of semistable sheaves on X with Hilbert polynomial P;

(ii) given a scheme N and a natural transformation

$$\mathcal{M}_X(P)(_ : _ \rightarrow \text{Mor}(_ , N))$$
there is a unique morphism \(f : M \to N \) such that \(f \circ \tau(S) = \tau'(S) \) for all \(S \).

\textbf{(2.6) Theorem:} Let \(X \) be a smooth projective variety with ample line bundle \(\mathcal{O}_X(1) \). Let \(P \) be a numerical polynomial. Then:

(i) there exists a coarse moduli space \(M_X(P) \) of semistable sheaves on \(X \) with Hilbert polynomial \(P \);
(ii) \(M_X(P) \) is a projective scheme;
(iii) there is an open subscheme \(M^s_X(P) \) of \(M_X(P) \) whose closed points parameterize the isomorphism classes of stable sheaves with Hilbert polynomial \(P \).

The theorem in its full generality was proven in [16]. Let us recall the way \(M_X(P) \) is constructed: For a suitably large integer \(m \) let \(V \) be a vector space of dimension \(P(m) \). We consider the quotient scheme

\[Q = \text{Quot}(X, V \otimes \mathcal{O}_X(-m), P) \]

of coherent sheaves \(\mathcal{F} \) on \(X \) with Hilbert polynomial \(P \) which occur as quotients \(V \otimes \mathcal{O}_X(-m) \to \mathcal{F} \). The reductive group \(\text{SL}(V) \) acts on \(Q \) by its action on the first component of \(V \otimes \mathcal{O}_X(-m) \). Inside \(Q \) there is the open and \(\text{SL}(V) \)-invariant subset \(R \) of semistable points. Semistability here is meant in the sense of Geometric Invariant Theory, which also guarantees the existence of a categorical quotient (see (7.1)) of \(R \) by \(\text{SL}(V) \). This quotient is the moduli space \(M_X(P) \).

We now turn to the question under which circumstances the moduli space of stable sheaves \(M^s_X(P) \) is fine. Fine moduli spaces represent certain functors, so we define the countervariant functor \(M^s_X(P) \) from the category of schemes over \(k \) to the category of sets in the same way as \(M_X(P) \) was defined, with the difference that we now require each restriction \(\mathcal{F}_S \) to be stable.

\textbf{(2.7) Definition:} We say that \(M^s_X(P) \) is a \textit{fine moduli space} of stable sheaves on \(X \) with Hilbert polynomial \(P \) if the natural transformation

\[\mathcal{M}^s_X(P)(\underline{\cdot}) \to \text{Mor}(\underline{\cdot}, M^s_X(P)) \]

induced by \(\tau \) is an isomorphism of functors. If this is true, let \(\mathcal{U} \) be the sheaf on \(M^s_X \times X \) whose class \([\mathcal{U}] \in \mathcal{M}^s_X(P)(M^s_X(P)) \) corresponds under \(\tau \) to the identity map of \(M^s_X(P) \). We say that \(\mathcal{U} \) is a \textit{universal family} on \(M^s_X(P) \).

\textbf{(2.8) Remark:} The inverse of \(\tau^s(S) \) for a scheme \(S \) is given by \(\tau^s(S)^{-1}(f) = [f^*\mathcal{U}] \). In fact, \(M^s_X(P) \) is a fine moduli space if and only if there exists a coherent sheaf \(\mathcal{U} \) on \(M^s_X(P) \times X \) such that:

(i) \(\mathcal{U} \) is flat over \(M^s_X(P) \);
(ii) for any point \([\mathcal{F}] \in M^s_X(P) \) the restriction of \(\mathcal{U} \) to the fiber \([\mathcal{F}] \times X \) is isomorphic to \(\mathcal{F} \);
(iii) \(\mathcal{U} \) has the following universality property: for any scheme \(S \) over \(k \) and any \(S \)-flat coherent family \(\mathcal{F} \) of semistable sheaves on \(S \times X \) with Hilbert polynomial \(P \), there exists a unique morphism \(f : S \to M^s_X(P) \) such that \(\mathcal{F} \cong f^*\mathcal{U} \otimes \pi^*\mathcal{L} \) for some line bundle \(\mathcal{L} \) on \(S \).
(2.9) Theorem: Consider the numerical polynomial

\[P(m) = \sum_{i=0}^{d} \alpha_i \binom{m+i-1}{i}. \]

Assume that gcd(\(\alpha_0, \ldots, \alpha_d\)) = 1. Then \(M_{P_n}^s(P)\) is a fine moduli space for any \(n \geq d\).

We refer to [11] for the proof of this theorem. In this paper we will focus on moduli spaces of sheaves on \(\mathbb{P}^2\) with linear Hilbert polynomial \(P_F(m) = rm + \chi\). To bring us closer to the notations from [12], where such moduli spaces were systematically studied, we also write \(M_{P_n}(r, \chi)\) instead of \(M_{P_n}^s(rm + \chi)\), respectively \(M_{P_n}^s(r, \chi)\) instead of \(M_{P_n}^s(rm + \chi)\). Combining (2.9) with (2.3)(iv) we obtain:

(2.10) Proposition: Assume that gcd(r, \(\chi\)) = 1. Then \(M_{P_n}(r, \chi) = M_{P_n}^s(r, \chi)\) is a fine moduli space.

From theorem 3.19(2) in [12] we learn that \(M_{P_n}^s(r, \chi)\) is not a fine moduli space in the case when \(r\) and \(\chi\) are not mutually prime. Let us quote the precise statement (which is stronger):

(2.11) Theorem: If \(r\) and \(\chi\) are not mutually prime, then for any open subset \(U \subset M_{P_2}(r, \chi)\) there is no universal sheaf on \(U \times \mathbb{P}^2\).

As the spaces \(M_{P_2}(r, \chi)\) and \(M_{P_2}(r, r + \chi)\) are isomorphic, we will assume henceforth that \(0 < \chi \leq r\). Theorem 3.1 and proposition 2.3 from [12] yield the following:

(2.12) Theorem: For any integers \(r \geq 1\) and \(\chi\) the moduli space \(M_{P_2}(r, \chi)\) is irreducible, of dimension \(r^2 + 1\) and smooth on the open dense set represented by stable sheaves.

We finish this section with an easy observation about subsets of moduli spaces:

(2.13) Remark: Let \(E\) be a locally free sheaf on \(X\). For any integers \(i, j \geq 0\) the subset of \(M_X(P)\) of stable equivalence classes of sheaves \(F\) with \(h^i(X, F \otimes E) \geq j\) is a closed algebraic subset.

Proof: Using the notations preceding (2.7), we consider the universal quotient \(V \otimes O_X(-m) \to \mathcal{F}\) on \(Q \times X\). The sheaf \(\mathcal{F} \otimes E\) is flat over \(Q\) so, according to the semicontinuity theorem, the set \(Y\) of equivalence classes of quotients \(V \otimes O_X(-m) \to \mathcal{F}\) with \(h^i(X, \mathcal{F} \otimes E) \geq j\) is a closed algebraic subset in \(Q\). Notice that \(Y\) is SL(V)-invariant so, by virtue of (7.2)(iv), its image under the good quotient map \(R \to M_X(P)\) is closed. This image is precisely the subset from the remark.

If \(M_X(P)\) is a fine moduli space, then the remark follows directly from the semicontinuity theorem applied to \(U \otimes E\).
3. Semistable Morphisms of Sheaves

Given coherent sheaves \mathcal{E} and \mathcal{F} on \mathbb{P}^n the affine space $W = \text{Hom}(\mathcal{E}, \mathcal{F})$ is acted upon by the algebraic group $G = \text{Aut}(\mathcal{E}) \times \text{Aut}(\mathcal{F})/k^*$. Here k^* is embedded as the group of homotheties $\{t \cdot 1_{\mathcal{E}}, t \cdot 1_{\mathcal{F}}, t \in k^*\}$. The action is given by $(g, h) \cdot w = h \circ w \circ g^{-1}$. If G is reductive then Geometric Invariant Theory distinguishes an open subset $W^{ss} \subset W$ of so-called semistable morphisms and constructs a categorical quotient W^{ss}/G. Our difficulty is that in general G is not reductive. A notion of semistability in the context of nonreductive groups has been studied in [7] and its usefullness has been made clear in the work [6] of Drézet.

This section introduces Drézet and Trautmann’s notion of semistability and is mainly a reproduction of notations from [7]. Let us fix sheaves $\mathcal{E} = \oplus_{1 \leq i \leq r} M_i \otimes \mathcal{E}_i$, $\mathcal{F} = \oplus_{1 \leq l \leq s} N_l \otimes \mathcal{F}_l$ where M_i, N_l are vector spaces over k of dimensions m_i, n_l while $\mathcal{E}_i, \mathcal{F}_l$ are simple sheaves on \mathbb{P}^n, meaning that their only endomorphisms are homotheties. For our purposes \mathcal{E}_i and \mathcal{F}_l will be line bundles. We assume that $\text{Hom}(\mathcal{E}_i, \mathcal{E}_j) = 0$ when $i > j$ and $\text{Hom}(\mathcal{F}_l, \mathcal{F}_m) = 0$ when $l > m$. We denote

$$H_{ii} = \text{Hom}(\mathcal{E}_i, \mathcal{F}_i),$$

$$A_{ji} = \text{Hom}(\mathcal{E}_i, \mathcal{E}_j),$$

$$B_{ml} = \text{Hom}(\mathcal{F}_l, \mathcal{F}_m).$$

The group G consists of pairs of matrices (g, h),

$$g = \begin{bmatrix} g_1 & 0 & \cdots & \cdots & 0 \\ u_{21} & g_2 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ u_{r1} & \cdots & u_{r,r-1} & g_r \end{bmatrix}, \quad h = \begin{bmatrix} h_1 & 0 & \cdots & \cdots & 0 \\ v_{21} & h_2 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ v_{s1} & \cdots & v_{s,s-1} & h_s \end{bmatrix}$$

with $g_i \in \text{GL}(M_i), \ h_l \in \text{GL}(N_l), \ u_{ji} \in \text{Hom}(M_i, M_j \otimes A_{ji}), \ v_{ml} \in \text{Hom}(N_l, N_m \otimes B_{ml})$.

The conditions $u_{ij} = 0$ and $v_{ml} = 0$ define a reductive subgroup G_{red} inside G.

For fixed positive integers λ_i, μ_l we consider the character χ of G given by

$$\chi(g, h) = \prod_{1 \leq i \leq r} \det(g_i)^{-\lambda_i} \cdot \prod_{1 \leq l \leq s} \det(h_l)^{\mu_l}.$$

Since χ must be trivial on the subgroup of homotheties k^*, we impose the relation

$$\sum_{1 \leq i \leq r} m_i \lambda_i = \sum_{1 \leq l \leq s} n_l \mu_l$$

and we denote by d this sum. We will call a polarization the tuple

$$\Lambda = (\lambda_1, \ldots, \lambda_r, \mu_1, \ldots, \mu_s).$$

(3.1) Definition: Let Λ be a fixed polarization. A point $w \in W$ is called:

(i) semistable with respect to G_{red} and Λ if there are $n \geq 1$ and a polynomial $f \in k[W]$ satisfying $f(g, x) = \chi^n(g)f(x)$ for all $g \in G_{\text{red}}, \ x \in W$, such that $f(w) \neq 0$;
(ii) stable with respect to G_{red} and Λ if $\text{Stab}_{G_{\text{red}}}(w)$ is zero dimensional and there is f as above but with the additional property that the action of G_{red} on $W_f = \{x \in W, f(x) \neq 0\}$ is closed;

(iii) properly semistable if it is semistable but not stable.

The question is now how to define semistability with respect to G. The key is the following observation from Geometric Invariant Theory: let T be a maximal torus inside a reductive algebraic group which acts on a projective variety. Then a point on the variety is semistable if and only if all points in its orbit are semistable with respect to T. In our context the subgroup of diagonal matrices is a maximal torus inside both G_{red} and G. This justifies the following:

(3.2) **Definition:** A point $w \in W$ is called (semi)stable with respect to G and Λ if $g.w$ is (semi)stable with respect to G_{red} and Λ for all $g \in G$. We denote by $W^{ss}(G, \Lambda)$, $W^s(G, \Lambda)$ the corresponding sets.

To describe the sets of semistable points in concrete situations we will use a very special case of King’s criterion of semistability as formulated in [7]. Let us write

$$\mathcal{E} = \bigoplus_j \mathcal{E}_j', \quad \mathcal{F} = \bigoplus_m \mathcal{F}_m'$$

where \mathcal{E}_j', \mathcal{F}_m' are line bundles. We represent w by a matrix (w_{mj}) with $w_{mj} \in \text{Hom}(\mathcal{E}_j', \mathcal{F}_m')$. We put

$$\lambda_j' = \lambda_i \quad \text{if} \quad \mathcal{E}_j' \simeq \mathcal{E}_i, \quad \mu_m' = \mu_l \quad \text{if} \quad \mathcal{F}_m' \simeq \mathcal{F}_l.$$

(3.3) **Proposition:** A morphism $w \in W$ is (semi)stable with respect to G and Λ if and only if for all $g \in G$ and for any zero submatrix $((g.w)_{mj})_{m \in M, j \in J}$ we have

$$\sum_{m \in M} \mu_m' (\leq) < \sum_{j \notin J} \lambda_j'.$$

For convenience we replace each λ_i with λ_i/d and each μ_l with μ_l/d. Thus our polarization Λ will be a tuple of rational numbers satisfying

$$\sum_{i=1}^r m_i \lambda_i = 1 = \sum_{l=1}^s n_l \mu_l.$$

(3.4) The set of polarizations can be realized as an open subset of the Euclidean space of dimension $r + s - 2$.

4. **Sheaves** \mathcal{F} with $h^0(\mathcal{F}(-1)) = 0$ and $h^1(\mathcal{F}) = 0$

The main technical toll that we will use in this paper is the Beilinson complex. Given a coherent sheaf \mathcal{F} on \mathbb{P}^2 there is a sequence of sheaves

$$0 \to \mathcal{C}^{-2} \to \mathcal{C}^{-1} \to \mathcal{C}^0 \to \mathcal{C}^1 \to \mathcal{C}^2 \to 0$$
which is exact except in the middle where the cohomology is \mathcal{F}. The sheaves \mathcal{C}^i are given by

$$
\begin{align*}
\mathcal{C}^{-2} &= H^0(\mathcal{F} \otimes \Omega^2(2)) \otimes \mathcal{O}(-2), \\
\mathcal{C}^{-1} &= H^0(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}(-1) \oplus H^1(\mathcal{F} \otimes \Omega^2(2)) \otimes \mathcal{O}(-2), \\
\mathcal{C}^0 &= H^0(\mathcal{F}) \otimes \mathcal{O} \oplus H^1(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}(-1) \oplus H^2(\mathcal{F} \otimes \Omega^2(2)) \otimes \mathcal{O}(-2), \\
\mathcal{C}^1 &= H^1(\mathcal{F}) \otimes \mathcal{O} \oplus H^2(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}(-1), \\
\mathcal{C}^2 &= H^2(\mathcal{F}) \otimes \mathcal{O}.
\end{align*}
$$

The sheaves \mathcal{F} we are interested in are supported on curves, so

$$
H^2(\mathcal{F}) = 0, \quad H^2(\mathcal{F} \otimes \Omega^1(1)) = 0, \quad H^2(\mathcal{F} \otimes \Omega^2(2)) = 0.
$$

Also, on \mathbb{P}^2 we have $\Omega^2(2) = \mathcal{O}(-1)$. The Beilinson sequence that we will use takes the form

$$
(4.1) \quad 0 \to \mathcal{C}^{-2} \to \mathcal{C}^{-1} \to \mathcal{C}^0 \to \mathcal{C}^1 \to 0
$$

where

$$
\begin{align*}
\mathcal{C}^{-2} &= H^0(\mathcal{F}(-1)) \otimes \mathcal{O}(-2), \\
\mathcal{C}^{-1} &= H^0(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}(-1) \oplus H^1(\mathcal{F}(-1)) \otimes \mathcal{O}(-2), \\
\mathcal{C}^0 &= H^0(\mathcal{F}) \otimes \mathcal{O} \oplus H^1(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}(-1), \\
\mathcal{C}^1 &= H^1(\mathcal{F}) \otimes \mathcal{O}.
\end{align*}
$$

The morphisms

$$
\begin{align*}
H^0(\mathcal{F}(-1)) \otimes \mathcal{O}(-2) &\to H^1(\mathcal{F}(-1)) \otimes \mathcal{O}(-2), \\
H^0(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}(-1) &\to H^1(\mathcal{F} \otimes \Omega^1(1)) \otimes \mathcal{O}(-1), \\
H^0(\mathcal{F}) \otimes \mathcal{O} &\to H^1(\mathcal{F}) \otimes \mathcal{O}
\end{align*}
$$

from above are all zero. Indeed, each of these morphisms can be represented by a matrix with scalar entries. Performing Gaussian elimination on these matrices we arrive at a complex like (4.1) in which the cohomology vector spaces get replaced by subspaces. Using standard methods in cohomology theory we can show that the dimension of each of these subspaces equals the dimension of the corresponding cohomology space. In other words no Gaussian elimination was performed; the matrices were zero to begin with.

Apart from the question of the semistability of the morphism φ, the resolutions of generic sheaves giving points in $M_{g_2}(r, \chi)$ appear first in [8]. For the sake of completeness we have included the really simple arguments here without quoting every time the above work.

\textbf{(4.2) Claim:} Let \mathcal{F} be a sheaf on \mathbb{P}^2 with $h^0(\mathcal{F}(-1)) = 0$. Let $n \geq 2$ be an integer and assume that \mathcal{F} has Hilbert polynomial $P_{\mathcal{F}}(t) = (n+1)t + n$. Then \mathcal{F} is semistable if and only if it has a resolution

$$
0 \to \mathcal{O}(-2) \oplus (n - 1)\mathcal{O}(-1) \xrightarrow{\varphi} n\mathcal{O} \to \mathcal{F} \to 0
$$

with φ not equivalent to a matrix of the form

$$
\begin{bmatrix}
* & \psi \\
* & 0
\end{bmatrix}
$$

where $\psi : m\mathcal{O}(-1) \to m\mathcal{O}$, $1 \leq m \leq n - 1$.

Equivalently, F is semistable if and only if it has a resolution as above with φ semistable with respect to Λ. Here $\Lambda = (\lambda_1, \lambda_2, \mu_1)$ is any polarization satisfying $0 < \lambda_1 < \frac{1}{n}$.

Proof: We have $h^0(F(-1)) = 0$, $h^1(F(-1)) = 1$, $h^0(F) = n$, $h^1(F) = 0$ because of (2.3). Thus (4.1) gives the following resolution with $\varphi_{12} = 0$:

$$
0 \rightarrow O(-2) \oplus (m + n - 1)O(-1) \xrightarrow{\varphi} mO(-1) \oplus nO \rightarrow F \rightarrow 0.
$$

Here m is an integer and, since φ is injective, we can only have $m = 0$ or $m = 1$.

Assume that F is semistable. Then $m \neq 1$, otherwise F would have a subsheaf F' with resolution

$$
0 \rightarrow nO(-1) \rightarrow nO \rightarrow F' \rightarrow 0.
$$

We have $P_{F'}(t) = nt + n$, hence such a subsheaf would destabilize F. Thus far we have obtained a resolution

$$
0 \rightarrow O(-2) \oplus (n - 1)O(-1) \xrightarrow{\varphi} nO \rightarrow F \rightarrow 0.
$$

Let us mention that this resolution was first obtained in [13] and it is also present in [8]. The matrix φ cannot be equivalent to a matrix of the form

$$
\begin{bmatrix}
* & \psi \\
\varphi_{21} & 0
\end{bmatrix}
$$

otherwise we would get an exact commutative diagram

$$
\begin{array}{ccccccccc}
0 & \rightarrow & mO(-1) & \xrightarrow{\psi} & mO & \rightarrow & F' & \rightarrow & 0 \\
0 & \rightarrow & O(-2) \oplus (n - 1)O(-1) & \xrightarrow{\varphi} & nO & \rightarrow & F & \rightarrow & 0 \\
0 & \rightarrow & O(-2) \oplus (n - m - 1)O(-1) & \xrightarrow{\varphi_{21}} & (n - m)O & \rightarrow & 0 & & 0
\end{array}
$$

in which F' is a destabilizing subsheaf of F.

Conversely, we assume that F has a resolution as in the statement of the claim, and we try to show that the conditions from (2.2) are satisfied. At every point x in the support of F we have

$$
\text{depth}_x F = 2 - pd_x F \geq 1,
$$

showing that F does not have zero-dimensional torsion. Assume now that F has a subsheaf F' which contradicts (2.2)(ii), in other words which satisfies

$$
\frac{\alpha_0(F')}{\alpha_1(F')} > \frac{n}{n + 1}.
$$
The multiplicity \(m = \alpha_1(F') \) cannot exceed the multiplicity of \(F \). Thus \(\alpha_0(F') \geq m \). Since \(h^0(F'(1)) \leq h^0(F(1)) \) we have \(P_{F'}(1) = -h^1(F'(1)) \leq 0 \) forcing \(\alpha_0(F') \leq m \). So far we have obtained \(P_{F'}(t) = mt + m \) for some integer \(1 \leq m \leq n \).

Now let us notice that \(F \) is generated by global sections, so we must have \(h^0(F') \leq n - 1 \) forcing \(m \leq n - 1 \). We have

\[
0 = h^0(F'(-2)), \quad h^1(F'(-2)) = m, \quad h^0(F'(1)) = 0, \quad h^1(F'(-1)) = 0.
\]

The Beilinson sequence of \(F'(1) \) gives a resolution

\[
0 \rightarrow m\mathcal{O}(-2) \rightarrow m\mathcal{O}(-1) \rightarrow F' \rightarrow 0.
\]

This yields a commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & m\mathcal{O}(-1) \\
& \downarrow \beta & \\
0 & \rightarrow & \mathcal{O}(-2) \oplus (n-1)\mathcal{O}(-1) \\
& \downarrow \alpha & \\
& & n\mathcal{O} \\
& & \downarrow \varphi \\
& & F' \\
& & \downarrow \\
& & 0
\end{array}
\]

The map \(\alpha \) is injective because it is injective on the level of global sections. Hence also \(\beta \) is injective. It is clear now that \(\varphi \) is equivalent to a matrix of the form

\[
\begin{bmatrix}
* & \psi \\
* & 0
\end{bmatrix}.
\]

This contradicts the hypothesis and finishes the proof of the first part of the claim.

The second part of the claim follows from (3.3). Namely, King’s criterion says that \(\varphi \) is semistable with respect to \(\Lambda \) if and only if whenever

\[
\varphi \sim \begin{bmatrix}
* & \psi \\
* & 0
\end{bmatrix}
\]

with \(\psi: p\mathcal{O}(-2) \oplus q\mathcal{O}(-1) \rightarrow m\mathcal{O} \)
we have \(m\mu_1 \geq p\lambda_1 + q\lambda_2 \). Thus, we need to find \(\Lambda \) satisfying the conditions

\[
m\mu_1 < p\lambda_1 + q\lambda_2 \quad \text{if and only if} \quad q \geq m.
\]

Here \(0 \leq m \leq n, \ 0 \leq p \leq 1, \ 0 \leq q \leq n - 1 \). These conditions are the same as

\[
m\mu_1 < m\lambda_2 \quad \text{for} \quad 1 \leq m \leq n - 1,
\]

\[
m\mu_1 \geq \lambda_1 + (m-1)\lambda_2 \quad \text{for} \quad 1 \leq m \leq n.
\]

Using relations (3.4)

\[
\mu_1 = \frac{1}{n}, \quad \lambda_2 = \frac{1 - \lambda_1}{n - 1},
\]

we arrive at the conditions

\[
\lambda_1 < \frac{1}{n}, \quad \frac{n-m}{n(n-1)} \geq \lambda_1 \frac{n-m}{n-1}.
\]

The conditions on \(\lambda_1 \) are precisely those of the claim. Q.e.d.

(4.3) Claim

Let \(F \) **be a sheaf on** \(\mathbb{P}^2 = \mathbb{P}(V) \) **with** \(h^0(F(-1)) = h^1(F) = 0. \)
Assume that \(F \) **has Hilbert polynomial** \(P(t) = (n+2)t + n \) **where** \(n \in \{3, 4, 5, 6\}. \)
Then \(F \) **is semistable if and only if it has a resolution**

\[
(i) \quad 0 \rightarrow 2\mathcal{O}(-2) \oplus (n-2)\mathcal{O}(-1) \xrightarrow{\varphi} n\mathcal{O} \rightarrow F \rightarrow 0
\]
with \(\varphi \) not equivalent to a matrix of the form

\[
\begin{bmatrix}
\ast & \psi \\
\ast & 0
\end{bmatrix}
\]

where \(\psi : m\mathcal{O}(-1) \to \mathcal{O}, \ 1 \leq m \leq n - 2 \) or \(\psi : \mathcal{O}(-2) \oplus (m - 1)\mathcal{O}(-1) \to m\mathcal{O}, \ n/2 < m \leq n - 1 \), or it has a resolution

\[(ii) \quad 0 \to 2\mathcal{O}(-2) \oplus (n - 1)\mathcal{O}(-1) \overset{\varphi}{\to} \mathcal{O}(-1) \oplus n\mathcal{O} \to \mathcal{F} \to 0\]

with \(\varphi_{11} \) having linearly independent entries, \(\varphi_{12} = 0 \), \(\varphi_{21} \neq 0 \) and \(\varphi_{22} \) not equivalent to a matrix of the form

\[
\begin{bmatrix}
\ast & \psi \\
\ast & 0
\end{bmatrix}
\]

where \(\psi : m\mathcal{O}(-1) \to \mathcal{O}, \ 1 \leq m \leq n - 1 \).

The maps \(\varphi \) occurring in (i) are precisely those maps \(\varphi \in W^{ss}(G, \Lambda) \) with nonzero determinant. Here \(\Lambda = (\lambda_1, \lambda_2, \mu_1) \) is any polarization satisfying \(\frac{1}{2n} \leq \lambda_1 < \frac{1}{n} \).

The maps \(\varphi \) occurring in (ii) are precisely those maps \(\varphi \in W^{ss}(G, \Lambda) \) with \(\det(\varphi) \neq 0 \) and \(\varphi_{12} = 0 \). Here \(\Lambda = (\lambda_1, \lambda_2, \mu_1, \mu_2) \) is any polarization for which the pair \((\lambda_1, \mu_1) \) is in the interior of the triangle with vertices

\[(0,0), \ \left(\frac{1}{n+1}, \frac{1}{n+1}\right), \ \left(1, \frac{2}{n^2-n+2}, \frac{2}{n^2-n+2}\right) \].

When \(n \geq 7 \) solely the “only if” part of the above statement is true. Thus, all we can say in the case \(n \geq 7 \), is that each semistable sheaf \(\mathcal{F} \) occurs as the cokernel of a semistable \(\varphi \), but there are semistable morphisms \(\varphi \) whose cokernel is not a semistable sheaf.

Proof: One direction is clear, cf. the proof of (4.2). Conversely, suppose that \(\mathcal{F}' \subset \mathcal{F} \) is a destabilizing subsheaf. Arguing as in (4.2) we see that the Hilbert polynomial of \(\mathcal{F}' \) is either \(mt+m \) with \(1 \leq m \leq n \) or \((m+1)t+m \) with \(\frac{m}{2} < m \leq n \).

In the case \(P_{\mathcal{F}'}(t) = mt+m \) we deduce that \(\varphi \) is equivalent to a matrix of the form

\[
\begin{bmatrix}
\ast & \psi \\
\ast & 0
\end{bmatrix}
\]

where \(\psi : m\mathcal{O}(-1) \to \mathcal{O}. \) Assume now that \(P_{\mathcal{F}'}(t) = (m+1)t+m \) with \(\frac{m}{2} < m \leq n \). We have

\[h^0(\mathcal{F}'(-1)) = 0, \ h^1(\mathcal{F}'(-1)) = 1, \ h^0(\mathcal{F}'(-2)) = 0, \ h^1(\mathcal{F}'(-2)) = m+2.\]

From \(\Omega^1 \subset 3\mathcal{O}(-1) \) and \(h^0(\mathcal{F}'(-1)) = 0 \) we get \(h^0(\mathcal{F}' \otimes \Omega^1) = 0 \). The Beilinson sequence of \(\mathcal{F}'(-1) \), which has \(\mathcal{F}'(-1) \) as middle cohomology, takes the form

\[0 \to (m+2)\mathcal{O}(-2) \to (m+3)\mathcal{O}(-1) \to \mathcal{O} \to 0.\]

Since \(\eta \) is surjective it must be equivalent to a matrix of the form

\[(X,Y,Z,0,\ldots,0).\]

So far we have arrived at the following resolution of \(\mathcal{F}' \):

\[0 \to (m+2)\mathcal{O}(-1) \to \Omega^1(1) \oplus m\mathcal{O} \to \mathcal{F}' \to 0.\]
From this we get $h^1(F') = 0$, $h^0(F') = m$. Writing $p = h^1(F' \otimes \Omega^1(1))$, the sequence (4.1) gives the resolution

$$0 \to \mathcal{O}(-2) \oplus (m + p - 1)\mathcal{O}(-1) \xrightarrow{\psi} p\mathcal{O}(-1) \oplus m\mathcal{O} \to F' \to 0,$$

with $\psi_{12} = 0$. From the injectivity of ψ we see that we can only have $p = 0$ or $p = 1$. In the latter case F' has a subsheaf F'' with resolution

$$0 \to m\mathcal{O}(-1) \to m\mathcal{O} \to F'' \to 0.$$

This situation has been examined before. Thus we arrive at the resolution

$$0 \to \mathcal{O}(-2) \oplus (m - 1)\mathcal{O}(-1) \xrightarrow{\psi} m\mathcal{O} \to F' \to 0.$$

We get the following exact commutative diagrams in case (i)

$$
\begin{array}{c}
0 \to \mathcal{O}(-2) \oplus (m - 1)\mathcal{O}(-1) \xrightarrow{\psi} m\mathcal{O} \xrightarrow{\alpha} F' \xrightarrow{\beta} 0,
\end{array}
$$

and in case (ii)

$$
\begin{array}{c}
0 \to \mathcal{O}(-2) \oplus (n - 1)\mathcal{O}(-1) \xrightarrow{\psi} n\mathcal{O} \xrightarrow{\alpha} F \xrightarrow{\beta} 0.
\end{array}
$$

The map α is injective because it is injective on global sections. It follows that β is also injective. If $\beta_{11} \neq 0$, which can happen only in case (i), we get the contradiction

$$\varphi \sim \begin{bmatrix} * & \psi \\ * & 0 \end{bmatrix}.$$

In case (ii) we have $\varphi_{11}\beta_{11} = \alpha_{11}\psi_{11} = 0$ forcing $\beta_{11} = 0$ because, by hypothesis, the entries of φ_{11} are linearly independent. Assume from now on that $\beta_{11} = 0$. The case

$$
\begin{bmatrix}
X & 0 & \cdots & 0 \\
Y & 0 & \cdots & 0 \\
Z & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0
\end{bmatrix}
$$

$$
\begin{bmatrix}
\beta_{21} & \beta_{22} \\
\vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
$$
leads to \(n - 1 \geq 3 + m - 1 \), so \(n \geq 3 + m > 3 + \frac{n}{2} \) which contradicts the hypothesis \(n \leq 6 \). The case

\[
\begin{bmatrix}
\beta_{21} & \beta_{22}
\end{bmatrix}
\sim
\begin{bmatrix}
X & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]

is excluded from the fact that \(\text{Coker}(\beta) \), as a subsheaf of the torsion-free sheaf \(\text{Coker}(\alpha) \), must be torsion-free. We are left with the case

\[
\begin{bmatrix}
\beta_{21} & \beta_{22}
\end{bmatrix}
\sim
\begin{bmatrix}
X & 0 & \cdots & 0 \\
Y & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\]

. We get \(\varphi \sim \begin{bmatrix}
\star & \psi' \\
\star & 0
\end{bmatrix} \)

with \(\psi' \) an \((m+1) \times (m+1) \)-matrix with entries in \(V^* \). This again contradicts the hypothesis and shows that \(\mathcal{F} \) is semistable.

The part of the claim concerning the semistability of \(\varphi \) follows from (3.3). Namely, in case (i), we are looking for \(\Lambda \) satisfying

\[
\begin{align*}
m\mu_1 &< m\lambda_2 \quad \text{for} \quad 1 \leq m \leq n - 2, \\
m\mu_1 &< \lambda_1 + (m - 1)\lambda_2 \quad \text{for} \quad \frac{n}{2} < m \leq n - 1, \\
m\mu_1 &\geq (m - 1)\lambda_2 \quad \text{for} \quad \frac{n}{2} < m \leq n - 1, \\
m\mu_1 &\geq \lambda_1 + (m - 1)\lambda_2 \quad \text{for} \quad 1 \leq m \leq \frac{n}{2}, \\
m\mu_1 &\geq 2\lambda_1 + (m - 2)\lambda_2 \quad \text{for} \quad 2 \leq m \leq n.
\end{align*}
\]

Using relations (3.4) the above conditions become \(\frac{1}{2n} \leq \lambda_1 < \frac{1}{n} \). Similarly, in case (ii), we need to find \(\Lambda \) satisfying the conditions

\[
\begin{align*}
\mu_1 &< 2\lambda_1, \\
m\mu_2 &< m\lambda_2 \quad \text{for} \quad 1 \leq m \leq n - 1, \\
\mu_1 &> \lambda_1, \\
m\mu_2 &\geq (m - 1)\lambda_2 \quad \text{for} \quad 1 \leq m \leq n, \\
\mu_1 + m\mu_2 &< \lambda_1 + m\lambda_2 \quad \text{for} \quad 1 \leq m \leq n - 1, \\
\mu_1 + m\mu_2 &\geq 2\lambda_1 + (m - 1)\lambda_2 \quad \text{for} \quad 1 \leq m \leq n.
\end{align*}
\]

Using (3.4) the above conditions can be translated into the condition that \((\lambda_1, \mu_1)\) is in the interior of a triangle as in the statement of the claim. Q.e.d.
(4.4) Observation: If \(n \geq 7 \) then the situation
\[
\begin{bmatrix}
\beta_{21} & \beta_{22}
\end{bmatrix} \sim \beta_0 = \begin{bmatrix}
X & 0 & \cdots & 0 \\
Y & 0 & \cdots & 0 \\
Z & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0
\end{bmatrix}
\]
is feasible. Thus, to ensure the semistability of \(F \), we would have to exclude, say in case (i), matrices of the form
\[
\begin{bmatrix}
* & 0 & \psi'' \\
* & \psi' & 0 \\
* & 0 & 0
\end{bmatrix}
\]
with \(\psi \sim \begin{bmatrix}
Y & X & 0 \\
Z & 0 & X \\
0 & -Z & Y
\end{bmatrix} \)
and \(\psi'' \) an \(m \times (m + 1) \)-matrix with entries in \(V^* \). From (3.3) we see that such conditions cannot be formulated in terms of semistability, so they are beyond the interest of this paper. Indeed, according to (3.3), semistability conditions on a matrix specify that the matrix should not, up to equivalence, have certain zero submatrices.

(4.5) Claim: Let \(F \) be a sheaf on \(\mathbb{P}^2 = \mathbb{P}(V) \) with \(h^0(F(-1)) = h^1(F) = 0 \). Assume that \(F \) has Hilbert polynomial \(P(t) = 4t + 2 \). Then \(F \) is semistable if and only if it has a resolution
\[
0 \rightarrow 2\mathcal{O}(-2) \rightarrow 2\mathcal{O} \rightarrow F \rightarrow 0
\]
or it has a resolution
\[
0 \rightarrow 2\mathcal{O}(-2) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus 2\mathcal{O} \rightarrow F \rightarrow 0
\]
with
\[
\varphi = \begin{bmatrix}
X_1 & X_2 & 0 \\
* & * & Y_1 \\
* & * & Y_2
\end{bmatrix}
\]
where \(X_1, X_2 \in V^* \) are linearly independent one-forms and, likewise, \(Y_1, Y_2 \in V^* \) are linearly independent. These morphisms are precisely the morphisms \(\varphi \in W^{ss}(G, \Lambda) \) with nonzero determinant and \(\varphi_{12} = 0 \). Here \(\Lambda = (\lambda_1, \lambda_2, \mu_1, \mu_2) \) is any polarization for which the pair \((\lambda_1, \mu_1)\) belongs to the interior of the quadrilateral with vertices
\[
(0, 0), \quad \left(\frac{1}{3}, \frac{1}{3}\right), \quad \left(\frac{1}{2}, 1\right), \quad (0, 1).
\]

Proof: For the first part of the claim the proof is the same as the proof of (4.3) so
we omit it. For the part of the claim concerning the semistability of φ we arrive at the following conditions on Λ:

$$
\mu_1 > \lambda_1 \quad \text{and} \quad \mu_2 < \lambda_2 \quad \text{which is the same as} \quad \mu_1 > 4\lambda_1 - 1.
$$

They describe the quadrilater from the claim. Q.e.d.

In the remaining part of this section we will be concerned with sheaves F on \mathbb{P}^2 having Hilbert polynomial $P(t) = (n+3)t + n$, $n \geq 3$, and satisfying $h^0(F(-1)) = 0$, $h^1(F) = 0$. Such a sheaf F has one of the following resolutions:

(i) \[0 \rightarrow 3\mathcal{O}(-2) \oplus (n-3)\mathcal{O}(-1) \xrightarrow{\varphi} n\mathcal{O} \rightarrow F \rightarrow 0, \]

(ii) \[0 \rightarrow 3\mathcal{O}(-2) \oplus (n-2)\mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus n\mathcal{O} \rightarrow F \rightarrow 0, \]

(iii) \[0 \rightarrow 3\mathcal{O}(-2) \oplus (n-1)\mathcal{O}(-1) \xrightarrow{\varphi} 2\mathcal{O}(-1) \oplus n\mathcal{O} \rightarrow F \rightarrow 0, \]

with $\varphi_{12} = 0$ in cases (ii) and (iii).

(4.6) Claim: Let F be a sheaf with resolution (i) and $3 \leq n \leq 6$. Then F is semistable if and only if φ is not equivalent to a matrix of the form

$$
\begin{bmatrix}
\star & \psi \\
\star & 0
\end{bmatrix}
$$

where

- $\psi : m\mathcal{O}(-1) \rightarrow m\mathcal{O}, \quad 1 \leq m \leq n-3$, or
- $\psi : \mathcal{O}(-2) \oplus (m-1)\mathcal{O}(-1) \rightarrow m\mathcal{O}, \quad \frac{n}{3} < m \leq n-2$, or
- $\psi : 2\mathcal{O}(-2) \oplus (m-2)\mathcal{O}(-1) \rightarrow m\mathcal{O}, \quad \frac{2n}{3} < m \leq n-1$.

Thus, any sheaf F with Hilbert polynomial $6t+3$ and resolution

$$
0 \rightarrow 3\mathcal{O}(-2) \xrightarrow{\varphi} 3\mathcal{O} \rightarrow F \rightarrow 0
$$

is semistable. The morphisms φ occurring form the open subset of $W^{ss}(G, \Lambda)$ given by the condition $\det(\varphi) \neq 0$. Here Λ is the only admissible polarization, namely $\Lambda = \left(\frac{1}{3}, \frac{1}{3} \right)$.

A sheaf F with Hilbert polynomial $(n+3)t + n$, $n \in \{4,5,6\}$, and resolution

$$
0 \rightarrow 3\mathcal{O}(-2) \oplus (n-3)\mathcal{O}(-1) \xrightarrow{\varphi} n\mathcal{O} \rightarrow F \rightarrow 0
$$

is semistable if and only if φ is semistable with respect to any polarization $\Lambda = (\lambda_1, \lambda_2, \mu_1)$ satisfying $\frac{2}{3m} \leq \lambda_1 < \frac{1}{n}$.

Proof: One direction is clear. For the other direction suppose that $F' \subset F$ is a destabilizing subsheaf. The Hilbert polynomial of F' must be one of the following: $mt + m$, with $1 \leq m \leq n$, $(m+1)t + m$ with $\frac{n}{3} < m \leq n$, $(m+2)t + m$ with $\frac{2n}{3} < m \leq n$.

In the case $P_{F'}(t) = mt + m$ we deduce, as in the proof of (4.2), that

$$
\varphi \sim \begin{bmatrix}
\star & \psi \\
\star & 0
\end{bmatrix} \quad \text{with} \quad \psi : m\mathcal{O}(-1) \rightarrow m\mathcal{O}.
In the case \(P_F(t) = (m + 1)t + m \) we arrive, as in the proof of (4.3), at

\[
\varphi \sim \begin{bmatrix} * & \psi \\ * & 0 \end{bmatrix}
\]

with \(\psi : \mathcal{O}(-2) \oplus (m - 1)\mathcal{O}(-1) \to m\mathcal{O} \) or \(\psi : (m + 1)\mathcal{O}(-1) \to (m + 1)\mathcal{O} \).

Assume now that \(P_F(t) = (m + 2)t + m \) with \(\frac{2n}{3} < m \leq n \). Since \(F \) is generated by global sections we must have \(h^0(F') \leq n - 1 \). Thus

\[
n - 1 \geq m + h^1(F') > \frac{2n}{3} + h^1(F'), \quad \frac{n}{3} - 1 > h^1(F') \quad \text{forcing} \quad h^1(F') = 0.
\]

The Beilinson sequence (4.1) of \(F' \) gives one of the following resolutions:

\[
0 \to 2\mathcal{O}(-2) \oplus (m - 2)\mathcal{O}(-1) \to m\mathcal{O} \to F' \to 0,
\]

\[
0 \to 2\mathcal{O}(-2) \oplus (m - 1)\mathcal{O}(-1) \xrightarrow{\psi} \mathcal{O}(-1) \oplus m\mathcal{O} \to F' \to 0,
\]

\[
0 \to 2\mathcal{O}(-2) \oplus m\mathcal{O}(-1) \xrightarrow{\psi} 2\mathcal{O}(-1) \oplus m\mathcal{O} \to F' \to 0,
\]

with \(\psi_{12} = 0 \). In the third case \(F' \) has a subsheaf \(F'' \) with resolution

\[
0 \to m\mathcal{O}(-1) \to m\mathcal{O} \to F'' \to 0.
\]

This situation has been examined before. In the first case we get an exact commutative diagram

\[
\begin{array}{ccc}
0 & \to & 2\mathcal{O}(-2) \oplus (m - 2)\mathcal{O}(-1) \\
\downarrow{\beta} & & \downarrow{\alpha} \\
0 & \to & 3\mathcal{O}(-2) \oplus (n - 3)\mathcal{O}(-1) \\
\downarrow{\varphi} & & \\
0 & \to & 3\mathcal{O}(-2) \oplus (n - 3)\mathcal{O}(-1) \\
\end{array}
\]

with \(\alpha, \beta \) injective. We have \(m - 2 \leq n - 3 \) because \(\beta_{22} \) is injective. On the other hand, \(m \geq n - 1 \) by hypothesis. Thus \(\beta_{22} \) is an isomorphism forcing \(\text{rank}(\beta_{11}) = 2 \).

In consequence

\[
\varphi \sim \begin{bmatrix} * & \psi \\ * & 0 \end{bmatrix}.
\]

Finally, assume that \(F' \) has the second resolution. We get the commutative diagram

\[
\begin{array}{ccc}
0 & \to & 2\mathcal{O}(-2) \oplus (m - 1)\mathcal{O}(-1) \\
\downarrow{\beta} & & \downarrow{\alpha} \\
0 & \to & 3\mathcal{O}(-2) \oplus (n - 3)\mathcal{O}(-1) \\
\downarrow{\varphi} & & \\
0 & \to & 3\mathcal{O}(-2) \oplus (n - 3)\mathcal{O}(-1) \\
\end{array}
\]

The map \(\alpha_{12} \) is injective because \(\alpha \) is injective on global sections. We have \(\varphi_{12}\beta_{22} = \alpha_{12}\psi_{22} \). The latter map is injective, hence \(\beta_{22} \) is injective, too. Thus \(n - 3 \geq m - 1 \), \(n \geq m + 2 \geq \frac{2n}{3} + 2 \), \(n > 6 \), contradiction.

The rest of the proof is as in (4.3), so it will be omitted.

(4.7) Claim: Let \(F \) be a sheaf on \(\mathbb{P}^2 = \mathbb{P}(V) \) with resolution (ii) and \(3 \leq n \leq 6 \).
Then \(F \) is semistable if and only if the entries of \(\varphi_{11} \) span a subspace of \(V^* \) of dimension at least two and \(\varphi \) is not equivalent to a matrix of the form

\[
\begin{bmatrix}
\ast & \psi \\
\ast & 0
\end{bmatrix}
\]

where

\[
\psi : m\mathcal{O}(-1) \longrightarrow m\mathcal{O}, \quad 1 \leq m \leq n - 2, \quad \text{or}
\]

\[
\psi : \mathcal{O}(-2) \oplus (m-1)\mathcal{O}(-1) \longrightarrow m\mathcal{O}, \quad \frac{n}{3} < m \leq n - 1, \quad \text{or}
\]

\[
\psi : 2\mathcal{O}(-2) \oplus (m-1)\mathcal{O}(-1) \longrightarrow \mathcal{O}(-1) \oplus m\mathcal{O}, \quad \frac{2n}{3} < m \leq n - 1.
\]

Equivalently, \(F \) is semistable if and only if \(\varphi \) is semistable with respect to \(\Lambda \). Here \(\Lambda = (\lambda_1, \lambda_2, \mu_1, \mu_2) \) is a polarization satisfying the property that the pair \((\lambda_1, \mu_1)\)

(i) in the interior of the segment with endpoints \((\frac{1}{4}, \frac{1}{2})\) and \((\frac{2}{5}, \frac{3}{5})\), in the case \(n = 3\);

(ii) in the interior of the triangle bounded by the lines \(\mu_1 = \lambda_1, \mu_1 = 1 - 4\lambda_1, \mu_1 = 4\lambda_1 - \frac{1}{4} \), in the case \(n = 4\);

(iii) in the interior of the triangle bounded by the lines \(\mu_1 = \lambda_1, \mu_1 = \frac{1}{6}, \mu_1 = \frac{10}{3}\lambda_1 - \frac{1}{4} \), in the case \(n = 5\);

(iv) in the interior of the segment with endpoints \((\frac{1}{7}, \frac{1}{7})\) and \((\frac{3}{29}, \frac{5}{29})\), in the case \(n = 6\).

Proof: The proof is the same as the proof of (4.6) with the only difference that when \(n \neq 3\) it is possible to have \(h^1(F^t) = 1\) and \(P_{F^t}(t) = (m + 2)t + m\). For such a sheaf the Beilinson sequence takes the form

\[
0 \longrightarrow 2\mathcal{O}(-2) \oplus (p + m - 2)\mathcal{O}(-1) \xrightarrow{\rho} p\mathcal{O}(-1) \oplus (m + 1)\mathcal{O} \xrightarrow{\eta} \mathcal{O} \longrightarrow 0.
\]

As \(\rho_{12} = 0\) we may assume that \(\eta = (X, Y, Z, 0, \ldots, 0)\). Thus \(p \geq 3\) and \(F^t\) has resolution

\[
0 \longrightarrow 2\mathcal{O}(-2) \oplus (p + m - 2)\mathcal{O}(-1) \longrightarrow \Omega^1 \oplus (p - 3)\mathcal{O}(-1) \oplus (m + 1)\mathcal{O} \rightarrow F^t \rightarrow 0
\]

from which we get the resolution

\[
0 \rightarrow \mathcal{O}(-3) \oplus 2\mathcal{O}(-2) \oplus (p + m - 2)\mathcal{O}(-1) \xrightarrow{\varphi'} 3\mathcal{O}(-2) \oplus (p - 3)\mathcal{O}(-1) \oplus (m + 1)\mathcal{O}
\]

\[
\longrightarrow F^t \longrightarrow 0
\]

with \(\varphi'_{13} = 0\) and \(\varphi'_{23} = 0\). Since \(\varphi'\) is injective we must have \(p = 3\). But then \(F^t\) has a subsheaf \(F''\) with resolution

\[
0 \longrightarrow (m + 1)\mathcal{O}(-1) \longrightarrow (m + 1)\mathcal{O} \longrightarrow F'' \longrightarrow 0.
\]

This situation has already been examined. Q.e.d.

Claim: Let \(F \) be a sheaf on \(\mathbb{P}^2 \) with Hilbert polynomial \(P_F(t) = 6t + 3 \) and resolution

\[
0 \longrightarrow 3\mathcal{O}(-2) \oplus 2\mathcal{O}(-1) \xrightarrow{\varphi} 2\mathcal{O}(-1) \oplus 3\mathcal{O} \longrightarrow F \longrightarrow 0,
\]
with $\varphi_{12} = 0$. Then \mathcal{F} is semistable if and only if

$$\varphi_{11} \approx \begin{bmatrix} * & * & 0 \\ * & * & 0 \end{bmatrix}, \quad \varphi_{11} \approx \begin{bmatrix} * & 0 & 0 \\ * & * & * \end{bmatrix}, \quad \varphi_{22} \approx \begin{bmatrix} * & 0 \\ * & * \end{bmatrix}, \quad \varphi_{22} \approx \begin{bmatrix} 0 & 0 \\ * & * \end{bmatrix}.$$

Equivalently, \mathcal{F} is semistable if and only if φ is semistable with respect to Λ, where $\Lambda = (\lambda_1, \lambda_2, \mu_1, \mu_2)$ is any polarization for which (λ_1, μ_1) is in the interior of the triangle with vertices $(0, 0)$, $(1, 0)$, $(\frac{1}{2}, \frac{1}{2})$.

Claim (4.9): Let \mathcal{F} be a sheaf on \mathbb{P}^2 with Hilbert polynomial $P_{\mathcal{F}}(t) = 7t + 4$ and resolution

$$0 \to 3\mathcal{O}(-2) \oplus 3\mathcal{O}(-1) \to 2\mathcal{O}(-1) \oplus 4\mathcal{O} \to \mathcal{F} \to 0,$$

with $\varphi_{12} = 0$. Then \mathcal{F} is semistable if and only if φ_{11} satisfies the same conditions as in (4.8) and, in addition, φ_{22} is not equivalent to a matrix of the form

$$\begin{bmatrix} * & \psi \\ * & 0 \end{bmatrix} \quad \text{with} \quad \psi : m\mathcal{O}(-1) \to m\mathcal{O}, \quad m = 1, 2, 3.$$

Equivalently, \mathcal{F} is semistable if and only if φ is semistable with respect to Λ, where $\Lambda = (\lambda_1, \lambda_2, \mu_1, \mu_2)$ is any polarization for which (λ_1, μ_1) is in the interior of the quadrilateral with vertices

$$(0, 0), \quad \left(\frac{1}{3}, \frac{1}{2}\right), \quad \left(\frac{17}{24}, 1\right), \quad (1, 1).$$

5. **Sheaves \mathcal{F} with $h^0(\mathcal{F}(-1)) = 0$ and $h^1(\mathcal{F}) = 1$**

In this section \mathcal{F} will be a sheaf on \mathbb{P}^2 with $h^0(\mathcal{F}(-1)) = 0$, $h^1(\mathcal{F}) = 1$ and Hilbert polynomial $P_{\mathcal{F}}(t) = at + b$, $0 \leq b < a$. From the Beilinson complex (4.1) we deduce that \mathcal{F} must have one of the following resolutions:

(i) when $a \leq 2b$

$$0 \to (a - b)\mathcal{O}(-2) \oplus (m + 2b - a)\mathcal{O}(-1) \to \mathcal{F} \to 0,$$

(ii) when $a > 2b$

$$0 \to (a - b)\mathcal{O}(-2) \oplus m\mathcal{O}(-1) \to \mathcal{F} \to 0,$$

where m is an integer and $\rho_{12} = 0$, $\rho_{22} = 0$. Combining these with the exact sequence

$$0 \to \mathcal{O}(-3) \to 3\mathcal{O}(-2) \to \mathcal{F} \to 0,$$

we get one of the following resolutions for \mathcal{F}:

(i) $0 \to \mathcal{O}(-3) \oplus (a - b)\mathcal{O}(-2) \oplus (m + 2b - a)\mathcal{O}(-1)$

$$\to \mathcal{F} \to 0,$$

(ii) $0 \to \mathcal{O}(-3) \oplus (a - b)\mathcal{O}(-2) \oplus m\mathcal{O}(-1)$

$$\to \mathcal{F} \to 0,$$
We must have

This subsheaf destabilizes

\[F \rightarrow O \]

\[h \]

\[P \]

\[\psi \]

Since

In conclusion rank\((\psi) \).

Proof: If \(a - b = 1 \) then \(\psi \) cannot be injective. If \(a - b = 2 \), then we must have \(m = 3 \) in case (i), respectively \(m = 2b + 3 - a \) in case (ii). It follows that \(F \) has a subsheaf \(F' \) with resolution

\[0 \rightarrow (n + 1)O(-1) \rightarrow (n + 1)O \rightarrow F' \rightarrow 0. \]

This subsheaf destabilizes \(F \).

If \(P_F(t) = (n+1)t+n \), the claim already follows from the fact that \(h^0(F(-1)) = 0 \) implies \(h^1(F) = 0 \), cf. (2.3)(v). Above we have an alternate argument. 1

In the remaining part of this section we will assume that \(F \) is a semistable sheaf with Hilbert polynomial \(P_F(t) = (n+3)t+n, \ n \geq 0 \). We have the resolution

\[0 \rightarrow O(-3) \oplus 3O(-2) \oplus (m+n)O(-1) \rightarrow 3O(-2) \oplus mO(-1) \oplus (n+1)O \rightarrow F \rightarrow 0. \]

We must have \(m \leq 1 \) to ensure that \(\psi \) is injective. But if \(m = 1 \) then \(F \) has a destabilizing sheaf \(F' \) as above. Thus \(m = 0 \) and we arrive at the resolution

\[0 \rightarrow O(-3) \oplus 3O(-2) \oplus nO(-1) \rightarrow 3O(-2) \oplus (n+1)O \rightarrow F \rightarrow 0. \]

Since \(\psi \) is injective we must have \(\text{rank}(\psi_{12}) \geq 2 \). If \(\text{rank}(\psi_{12}) = 2 \) then \(F \) has a destabilizing subsheaf \(F' \) with resolution

\[0 \rightarrow O(-2) \oplus nO(-1) \rightarrow (n+1)O \rightarrow F' \rightarrow 0. \]

In conclusion \(\text{rank}(\psi_{12}) = 3 \) and \(F \) has the resolution

\[0 \rightarrow O(-3) \oplus nO(-1) \rightarrow (n+1)O \rightarrow F \rightarrow 0. \]

If \(n > 3 \) some of the semistability conditions on \(F \) cannot be translated into semistability conditions on \(\varphi \) because one of the conditions on \(\varphi \) would have to be

\[1 \text{The referee pointed out that for any sheaf on } \mathbb{P}^2, \text{ semistable or not, with Hilbert polynomial } P_F(t) = (n+1)t+n \text{ and } h^0(F(-1)) = 0, \text{ we must have } h^1(F) = 0. \text{ Indeed, as in the proof of (4.3) with } F \text{ instead of } F', \text{ we have a monad} \]

\[0 \rightarrow (n + 2)O(-1) \rightarrow (n + 3)O \rightarrow O(1) \rightarrow 0 \]

with cohomology \(F \). As \((n+3)O \) is generated by global sections, it follows that \(O(1) \) is generated by their images under \(\eta \). But \(O(1) \) cannot be generated by fewer than 3 linearly independent sections. Thus \(\eta \) is surjective on the level of global sections. We get \(h^1(Ker(\eta)) = 0 \) and, a fortiori, \(h^1(F) = 0. \)
that there is no commutative exact diagram

\[(*) \begin{array}{ccc}
0 & \rightarrow & \mathcal{O}(-2) \oplus (m-1)\mathcal{O}(-1) \\
\downarrow & & \downarrow \beta \\
0 & \rightarrow & \mathcal{O}(-3) \oplus n\mathcal{O}(-1) \\
\varphi & \rightarrow & (n+1)\mathcal{O} \\
\alpha & \rightarrow & F \\
\end{array} \rightarrow 0 \]

with \(\alpha, \beta \) injective and \(3m > n \). If \(n > 3 \) then \(\beta \) may have the form

\[\begin{bmatrix} 0 \\ \beta_0 \end{bmatrix} \]

with \(\beta_0 \) as in (4.4). In this case the condition \(\varphi \beta = \alpha \varphi' \) cannot be translated in terms of semistability of \(\varphi \).

(5.2) Claim: Let \(F \) be a sheaf on \(\mathbb{P}^2 \) with \(h^0(F(-1)) = 0, \ h^1(F) = 1 \) and Hilbert polynomial

\[P_F(t) = (n+3)t + n, \quad n = 1, 2, 3. \]

Then \(F \) is semistable if and only if it has a resolution

\[0 \rightarrow \mathcal{O}(-3) \oplus n\mathcal{O}(-1) \rightarrow (n+1)\mathcal{O} \rightarrow F \rightarrow 0 \]

with \(\varphi \) not equivalent to a matrix of the form

\[\begin{bmatrix} * & \psi \\ * & 0 \end{bmatrix} \]

where \(\psi : m\mathcal{O}(-1) \rightarrow m\mathcal{O}, \ 1 \leq m \leq n. \)

The morphisms \(\varphi \) occuring above are precisely those morphisms semistable with respect to \(\Lambda \) with nonzero determinant. Here \(\Lambda = (\lambda_1, \lambda_2, \mu_1) \) is any polarization satisfying \(0 < \lambda_1 < \frac{1}{n+1} \). If \(n > 3 \) solely the “only if” part of the above statement remains true.

Proof: One direction follows from the discussion before the claim. Conversely, we assume that \(F \) has a resolution as above and we try to prove that \(F \) is semistable. As in the proof of (4.6), a destabilizing subsheaf \(F' \) of \(F \) must have one of the following Hilbert polynomials: \(mt + m \) with \(1 \leq m \leq n \), \((m+1)t + m \) with \(\frac{2m}{3} < m \leq n \), \((m+2)t + m \) with \(0 \leq m \leq \frac{2n}{3} \). The first case we get the contradiction

\[\varphi \sim \begin{bmatrix} * & \psi \\ * & 0 \end{bmatrix} \quad \text{with} \quad \psi : m\mathcal{O}(-1) \rightarrow m\mathcal{O}, \ 1 \leq m \leq n. \]

In the second case we have the exact commutative diagram (*) from above with injective \(\alpha \) and \(\beta \). Since \(\text{Coker}(\beta) \) is torsion-free as a subsheaf of the torsion-free sheaf \(\text{Coker}(\alpha) \), and since

\[\beta \sim \begin{bmatrix} 0 \\ \beta_0 \end{bmatrix}, \quad \text{we must have} \quad \beta = \begin{bmatrix} 0 & 0 \\ X & 0 \\ Y & 0 \end{bmatrix} \quad \text{or} \quad \beta = \begin{bmatrix} 0 & 0 \\ X & 0 \\ Y & 0 \end{bmatrix}. \]

We get

\[\varphi \sim \begin{bmatrix} * & \psi \\ * & 0 \end{bmatrix} \quad \text{with} \quad \psi : (m+1)\mathcal{O}(-1) \rightarrow (m+1)\mathcal{O}. \]
Finally, in the third case, we must have \(m = n \) and, as in the proof of (4.6), an exact commutative diagram

\[
\begin{array}{ccccccc}
0 & \longrightarrow & 2\mathcal{O}(-2) \oplus (n - 2)\mathcal{O}(-1) & \xrightarrow{\varphi'} & n\mathcal{O} & \longrightarrow & \mathcal{F}' & \longrightarrow & 0 \\
\downarrow{\beta} & & \downarrow{\alpha} & & & & & \\
0 & \longrightarrow & \mathcal{O}(-3) \oplus n\mathcal{O}(-1) & \xrightarrow{\varphi} & (n + 1)\mathcal{O} & \longrightarrow & \mathcal{F} & \longrightarrow & 0
\end{array}
\]

or a diagram

\[
\begin{array}{ccccccc}
0 & \longrightarrow & 2\mathcal{O}(-2) \oplus (n - 1)\mathcal{O}(-1) & \xrightarrow{\varphi'} & \mathcal{O}(-1) \oplus n\mathcal{O} & \longrightarrow & \mathcal{F}' & \longrightarrow & 0 \\
\downarrow{\beta} & & \downarrow{\alpha} & & & & & \\
0 & \longrightarrow & \mathcal{O}(-3) \oplus n\mathcal{O}(-1) & \xrightarrow{\varphi} & (n + 1)\mathcal{O} & \longrightarrow & \mathcal{F} & \longrightarrow & 0
\end{array}
\]

In the first case \(\alpha \) is injective because it is injective on global sections. Thus \(\beta \) is injective. But then \(\text{Coker}(\beta) \) has a direct summand supported on a conic. This contradicts the fact that \(\text{Coker}(\beta) \) is a subsheaf of \(\text{Coker}(\alpha) \simeq \mathcal{O} \).

In the second diagram we have \(\varphi_{12}\beta_{22} = \alpha_{12}\varphi'_{22} \). But \(\alpha_{12} \) is injective because \(\alpha \) is injective on global sections. Also, \(\varphi'_{22} \) is injective because \(\varphi'_{12} = 0 \) and \(\varphi' \) is injective. Thus \(\varphi_{12}\beta_{22} \) is injective, forcing \(\beta_{22} \) to be injective. It follows that \(\text{Ker}(\beta) \subset 2\mathcal{O}(-2) \). If \(\alpha \) is not injective then we get the contradiction

\[
\mathcal{O}(-1) \simeq \text{Ker}(\alpha) \simeq \text{Ker}(\beta) \subset 2\mathcal{O}(-2).
\]

Thus \(\alpha \) is injective forcing \(\text{Coker}(\alpha) \) to be supported on a line. But this is impossible, because \(\mathcal{O}(-3) \subset \text{Coker}(\beta) \subset \text{Coker}(\alpha) \). Q.e.d.

\[(5.3) \textbf{Remark:} \text{The sheaves from (5.2) with Hilbert polynomial } 6t + 3 \text{ are stable. Indeed, assume that } \mathcal{F} \text{ has a subsheaf } \mathcal{F}' \text{ with Hilbert polynomial } 2t + 1. \text{ It must be stable, hence the structure sheaf of a conic. We arrive at a commutative diagram}
\]

\[
\begin{array}{ccccccc}
0 & \longrightarrow & \mathcal{O}(-2) & \xrightarrow{\beta} & \mathcal{O} & \longrightarrow & \mathcal{F}' & \longrightarrow & 0 \\
\downarrow{\alpha} & & & & & & & \\
0 & \longrightarrow & \mathcal{O}(-3) \oplus 3\mathcal{O}(-1) & \xrightarrow{\varphi} & 4\mathcal{O} & \longrightarrow & \mathcal{F} & \longrightarrow & 0
\end{array}
\]

with injective \(\alpha \) and \(\beta \). After performing column operations on \(\varphi \) we may assume that three among the rows of \(\varphi_{12}\beta_{21} \) are zero. But, according to (5.2), \(\varphi_{12} \) is semistable with respect to the only admissible polarization on the vector space of morphisms \(3\mathcal{O}(-1) \longrightarrow 4\mathcal{O} \). From remark (5.4) we get \(\beta_{21} = 0 \), so \(\beta = 0 \), contradiction.

Assume now that \(\mathcal{F} \) has a quotient sheaf \(\mathcal{F}' = \mathcal{F}/\mathcal{F}' \) with Hilbert polynomial \(2t + 1 \). \(\mathcal{F}' \) must be stable, hence it is the structure sheaf of a conic, hence it is generated by one global section. Thus the map \(\mathcal{F} \longrightarrow \mathcal{F}' \) is surjective on global sections, forcing \(h^0(\mathcal{F}) = 2 \). Thus \(h^1(\mathcal{F}') = 0 \) which, together with \(h^1(\mathcal{F}') = 0 \) implies that \(h^1(\mathcal{F}) = 0 \). Contradiction.

\[(5.4) \textbf{Remark:} \text{Let } \varphi \text{ be a } 4 \times 3 \text{-matrix with entries in } V^* \text{ which is semistable: Modulo operations on rows and columns, } \varphi \text{ is not equivalent to a matrix having
a zero row, a zero 2×2-submatrix, or a zero 3×1-submatrix. Then one of the maximal minors of φ is not zero.

Proof: Assume that all maximal minors of φ are zero. Each 3×3-submatrix ψ of φ satisfies the hypotheses of remark (5.5), hence it is equivalent to ψ_1 or ψ_2. We can choose ψ to have a zero entry, thus ruling out ψ_2. From the assumption that all minors of φ are zero it is easy to deduce that the row of φ which is not part of ψ is a linear combination of the rows of ψ, cf. the proof of (6.7). This contradicts the semistability of φ.

(5.5) **Remark:** Let ψ be a 3×3-matrix with entries in V^* and zero determinant. Assume that ψ is equivalent to neither of the following matrices:

\[
\begin{bmatrix}
X & Y & 0 \\
Z & 0 & Y \\
b & -Z & X
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
0 & 0 & \star \\
0 & 0 & \star \\
\star & \star & \star
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
0 & 0 & \star \\
0 & 0 & \star \\
\star & \star & \star
\end{bmatrix}
\]

Then ψ is equivalent to one of the following matrices:

\[
\psi_1 = \begin{bmatrix} X & Y & 0 \\ Z & 0 & Y \\ 0 & -Z & X \end{bmatrix}
\quad \text{or} \quad
\psi_2 = \begin{bmatrix} X & Y & Z \\ Y & a_1X + a_2Y & a_3X + a_4Y + a_5Z \\ Z & a_6X + a_7Y + a_8Z & a_9X + a_{10}Z \end{bmatrix}
\]

with $a_1, \ldots, a_{10} \in k^*$. Modulo operations on rows and columns ψ_2 is not equivalent to a matrix having a zero entry.

Proof: We distinguish two cases: either ψ has one zero entry or, modulo equivalence, all entries of ψ are nonzero. In the second case $\psi \sim \psi_2$. In the first case we may assume that $\psi_{11} = X, \psi_{12} = Y, \psi_{13} = 0$. We now consider two subcases: span{ψ_{23}, ψ_{33}} is equal to or is different from span{X,Y}. In the second subcase we may write

\[
\psi = \begin{bmatrix} X & Y & 0 \\ \psi_{21} & \psi_{22} & Y \\ \psi_{31} & \psi_{32} & Z \end{bmatrix}.
\]

We have

\[
\det(\psi) = XZ\psi_{22} + Y^2\psi_{31} - XY\psi_{32} - YZ\psi_{21} = 0
\]

forcing $\psi_{22} = aY$. Performing operations on rows we may assume that $\psi_{22} = 0$. Thus $Y\psi_{31} - X\psi_{32} - Z\psi_{21} = 0$. We get

\[
\psi_{31} = cZ \mod X, \quad \psi_{21} = cY \mod X.
\]

But then

\[
\psi \sim \begin{bmatrix} X & Y & 0 \\ 0 & * & Y \\ 0 & * & Z \end{bmatrix}.
\]

From $\det(\psi) = 0$ we get

\[
\psi \sim \begin{bmatrix} X & Y & 0 \\ 0 & 0 & Y \\ 0 & 0 & Z \end{bmatrix},
\]

contradiction. This eliminates the second subcase.
Finally, we may assume that
\[
\psi = \begin{bmatrix}
X & Y & 0 \\
\psi_{21} & \psi_{22} & Y \\
\psi_{31} & \psi_{32} & X
\end{bmatrix}.
\]
We have
\[
\det(\psi) = X^2\psi_{22} + Y^2\psi_{31} - XY\psi_{32} - XY\psi_{21} = 0
\]
hence
\[
\psi_{22} = aY, \quad \psi_{31} = bX, \quad \psi_{21} + \psi_{32} = aX + bY.
\]
Performing operations on rows we may assume that \(a = b = 0\). Denoting \(Z = \psi_{21}\) we arrive at \(\psi \sim \psi_1\). Q.e.d.

6. Sheaves \(\mathcal{F}\) with \(h^0(\mathcal{F}(-1)) \neq 0\) and \(h^1(\mathcal{F}) = 0\)

Let \(\mathcal{F}\) be a sheaf on \(\mathbb{P}^2\) with \(h^0(\mathcal{F}(-1)) = p \neq 0\), \(h^1(\mathcal{F}) = 0\) and Hilbert polynomial \(P_F(t) = at + b\), \(0 \leq b < a\). From the Beilinson complex we deduce that \(\mathcal{F}\) has to have one of the following resolutions:

(i) when \(a < 2b\)
\[
0 \to p\mathcal{O}(-2) \xrightarrow{\psi} (p + a - b)\mathcal{O}(-2) \oplus (m + 2b - a)\mathcal{O}(-1) \xrightarrow{\varphi} m\mathcal{O}(-1) \oplus b\mathcal{O} \to \mathcal{F} \to 0,
\]

(ii) when \(a \geq 2b\)
\[
0 \to p\mathcal{O}(-2) \xrightarrow{\psi} (p + a - b)\mathcal{O}(-2) \oplus m\mathcal{O}(-1) \xrightarrow{\varphi} (m + a - 2b)\mathcal{O}(-1) \oplus b\mathcal{O} \to \mathcal{F} \to 0,
\]

where \(m\) is an integer, \(\psi_{11} = 0\) and \(\varphi_{12} = 0\). In case (ii) we must have \(m \geq 2\) because, if \(m = 1\), then we get the contradiction \(\psi = 0\). We obtain the following exact commutative diagram, say in case (ii):

\[
\begin{array}{ccccccccc}
0 & \to & p\mathcal{O}(-2) & \xrightarrow{\psi_{21}} & m\mathcal{O}(-1) & \xrightarrow{0} & b\mathcal{O} & \xrightarrow{C} & 0 \\
& & \downarrow & & \downarrow & & & & \\
0 & \to & p\mathcal{O}(-2) & \xrightarrow{\psi} & (p + a - b)\mathcal{O}(-2) \oplus m\mathcal{O}(-1) & \xrightarrow{\varphi} & (m + a - 2b)\mathcal{O}(-1) \oplus b\mathcal{O} & \xrightarrow{F} & 0 \\
& & \downarrow & & \downarrow & & \uparrow & & \\
0 & \to & \mathcal{K} & \xrightarrow{(p + a - b)\mathcal{O}(-2)} & (m + a - 2b)\mathcal{O}(-1) & \xrightarrow{G} & 0 \\
& & \downarrow & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
\end{array}
\]

The above induces the exact sequence
\[
(6.1) \quad 0 \to \mathcal{K} \to \mathcal{C} \to \mathcal{F} \to \mathcal{G} \to 0.
\]
Note that \(\mathcal{K}\) is torsion-free or zero, as a subsheaf of the torsion-free sheaf \((p + a - b)\mathcal{O}(-2)\).

(6.2) Remark: Assume that \(\mathcal{F}\) is semistable. Then \(\mathcal{C}\) does not have zero-dimensional torsion and is not supported on a curve.
Proof: Let \mathcal{T} be the zero-dimensional torsion of \mathcal{C}. As \mathcal{F} has no zero-dimensional torsion it follows that the induced map $\mathcal{T} \longrightarrow \mathcal{F}$ is zero. Thus \mathcal{T} is a subheaf of \mathcal{K}. The latter is torsion-free, so $\mathcal{T} = 0$.

Assume now that \mathcal{C} is supported on a curve. Then $m = p + b$ and $\mathcal{K} = 0$. Thus \mathcal{C} is a subsheaf of \mathcal{F}. We have

$$P_C(t) = b \left(\frac{t + 2}{2} \right) - (p + b) \left(\frac{t + 1}{2} \right) + p \left(\frac{t}{2} \right) = (b - p)t + b.$$

But $\frac{b}{a} < p$ which shows that \mathcal{C} violates the semistability of \mathcal{F}.

(6.3) Remark: Assume that \mathcal{F} is semistable. Then, in case (i), we either have $m + 2b - a < b$ or $m + 2b - a \geq b$ and all maximal minors of φ_{22} are zero. Similarly, in case (ii), either $m < b$ or $m \geq b$ and all maximal minors of φ_{22} are zero. This follows from (6.2).

(6.4) Remark: η is an isomorphism on global sections. As a consequence, if \mathcal{F} is semistable, then φ_{22} cannot have the form

$$\begin{bmatrix}
0 & 0 & * & \cdots & *\\
0 & 0 & * & \cdots & *\\
X & Y & * & \cdots & *
\end{bmatrix}.$$

Indeed, if φ_{22} had the above form, then we would get the commutative diagram

$$
\begin{array}{cc}
2\mathcal{O}(-1)[X, Y] & \mathcal{O} & \mathcal{C}_x \\
\downarrow & & \downarrow \\
2\mathcal{O}(-1)[X, Y] & \mathcal{O} & \mathcal{C}_x & \mathcal{F}
\end{array}
$$

Here \mathcal{C}_x is the structure sheaf of the point $x = (0 : 0 : 1)$. But the map $\mathcal{C}_x \longrightarrow \mathcal{F}$ is zero because \mathcal{F} does not have zero-dimensional torsion. This shows that η_{12} has nontrivial kernel. This contradicts the fact that η is an isomorphism on global sections.

(6.5) Claim: There are no semistable sheaves \mathcal{F} on \mathbb{P}^2 with $h^0(\mathcal{F}(-1)) \neq 0$, $h^1(\mathcal{F}) = 0$ and Hilbert polynomial

$$P_F(t) = nt + 1, \quad n \geq 2 \quad \text{or} \quad P_F(t) = nt + 2, \quad n \geq 4.$$

Proof: The case $P_F(t) = nt + 1$ follows directly from (6.4) because φ_{22} must have the form

$$[X, Y, *, \cdots, *].$$

In the case $P_F(t) = nt + 2$ all 2×2-minors of φ_{22} are zero, cf. (6.3). It follows that φ_{22} has the form

$$\begin{bmatrix}
0 & 0 & * & \cdots & * \\
X & Y & * & \cdots & *
\end{bmatrix}.$$

The claim follows from (6.4).
(6.6) Remark: Let $\alpha = (\alpha_{ij})$ be a morphism of sheaves on $\mathbb{P}^n = \mathbb{P}(V)$:

$$\alpha : (m + 1)O \rightarrow mO(l).$$

Assume that at least one of the maximal minors of α is a nonzero polynomial. Then $\text{Ker}(\alpha) \cong O(-d)$ where d is an integer satisfying $0 \leq d \leq ml$. More precisely, let $\alpha_i, 1 \leq i \leq m + 1$, denote the minor obtained from α by erasing the i^{th} column. Let

$$\beta = (\beta_1, \ldots, \beta_{m+1}), \quad \text{where} \quad \beta_i = \frac{\alpha_i}{\text{g.c.d.} (\alpha_1, \ldots, \alpha_{m+1})}, \quad 1 \leq i \leq m + 1.$$

Let d be the degree of the entries of β. Then we have the exact sequence

$$0 \rightarrow O(-d) \xrightarrow{\beta} (m + 1)O \xrightarrow{\alpha} mO(l).$$

(6.7) Claim: Let \mathcal{F} be a semistable sheaf on $\mathbb{P}^2 = \mathbb{P}(V)$ with $h^0(\mathcal{F}(-1)) \neq 0$, $h^1(\mathcal{F}) = 0$ and Hilbert polynomial $P_F(t) = nt + 3$, $n \geq 4$. Then $h^0(\mathcal{F}(-1)) = 1$ and \mathcal{F} has a resolution

$$0 \rightarrow \mathcal{O}(−2) \xrightarrow{\psi} (n - 2)\mathcal{O}(−2) \oplus 3\mathcal{O}(−1) \xrightarrow{\varphi} (n - 3)\mathcal{O}(−1) \oplus 3\mathcal{O} \rightarrow \mathcal{F} \rightarrow 0$$

with $\varphi_{12} = 0$, $\psi_{11} = 0$, $\varphi_{21} \neq 0$,

$$\psi_{21} \sim \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}, \quad \varphi_{22} \sim \begin{bmatrix} -Y & X & 0 \\ -Z & 0 & X \\ 0 & -Z & Y \end{bmatrix}, \quad \varphi_{11} \sim \begin{bmatrix} \varphi' & 0 \\ \star & \star \end{bmatrix}$$

where φ' is an $m \times m$-matrix with entries in V^*, $1 \leq m \leq n - 3$. Moreover, \mathcal{F} is an extension of the form

$$0 \rightarrow O_C(1) \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow 0$$

where C is a curve of degree d, $4 \leq d \leq n$, and the map $\mathcal{F} \rightarrow \mathcal{G}$ is zero on global sections. If $n \geq 7$ then $d \geq 5$.

Proof: Assume $n \geq 6$ so that we are in case (ii). If $m \geq 5$ then φ_{22} has the form

$$\begin{bmatrix} \star & \star & \star & 0 & \cdots & 0 \\ \star & \star & \star & \star & \cdots & \star \\ \star & \star & \star & \star & \cdots & \star \end{bmatrix} = \begin{bmatrix} \star & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{bmatrix}. \varphi'$$

From (6.3) we see that all 2×2-minors of φ' are zero. Since φ_{22} cannot have a zero column it follows that

$$\varphi_{22} \sim \begin{bmatrix} \star & \star & \star & 0 & \cdots & 0 \\ \star & \star & \star & 0 & \cdots & 0 \\ \star & \star & \star & \star & \cdots & \star \end{bmatrix}.$$

By virtue of (6.4) this is impossible.

Assume now that $m = 4$. Firstly, we notice that φ_{22} cannot have a zero row because, if

$$\varphi_{22} = \begin{bmatrix} 0 & \cdots & 0 \\ \varphi' \end{bmatrix},$$
then, arguing as at (6.2), we get that \(\varphi' \) has all maximal minors equal to zero hence \(\varphi' \) has one row identically zero. This, again, contradicts (6.4). Secondly, using the same kind of arguments, we notice that \(\varphi_{22} \) cannot have the form

\[
\begin{bmatrix}
X & 0 & 0 & 0 \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\end{bmatrix}.
\]

Now \(\varphi_{22} \) has nontrivial kernel in \(\oplus_4 V^* \) by hypothesis. No element in the kernel can have the form

\[
\begin{bmatrix}
X \\
Y \\
0 \\
0 \\
\end{bmatrix}
\]

otherwise we would arrive at a matrix excluded by (6.4):

\[
\varphi_{22} \sim \begin{bmatrix}
0 & 0 & \ast & \ast \\
0 & 0 & \ast & \ast \\
-Y & X & \ast & \ast \\
\end{bmatrix}.
\]

Performing operations on the columns of \(\varphi_{22} \) we may assume that

\[
\begin{bmatrix}
X \\
Y \\
Z \\
0 \\
\end{bmatrix}
\]

is in the kernel of \(\varphi_{22} \). Performing operations on the rows of \(\varphi_{22} \) we may assume that

\[
\varphi_{22} = \begin{bmatrix}
-Y & X & 0 & u \\
-Z & 0 & X & v \\
0 & -Z & Y & w \\
\end{bmatrix}.
\]

From

\[
0 = \begin{vmatrix}
-Y & X & u \\
-Z & 0 & v \\
0 & -Z & w \\
\end{vmatrix} = Z^2u - YZv + XZw
\]

we get \(Zu - Yv + Xw = 0 \) which shows that the third column of \(\varphi_{22} \) is a linear combination of the first two columns. Thus \(\varphi \) is equivalent to a matrix having a zero column, contradiction.

The case \(m = 2 \) is excluded by using (6.4). We conclude that \(m = 3 \) and, from what was said above, that we have

\[
\psi_{21} \sim \begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}, \quad \varphi_{22} \sim \begin{bmatrix}
-Y & X & 0 \\
-Z & 0 & X \\
0 & -Z & Y \\
\end{bmatrix}.
\]

Thus far we have obtained the desired resolution of \(\mathcal{F} \) in the cases \(n \geq 6 \). The cases \(n = 4 \) and \(n = 5 \) are completely analogous. From our concrete description of \(\varphi_{22} \) we see that \(\mathcal{C} \simeq \mathcal{O}(1) \). Since \(\mathcal{F} \) surjects onto \(\mathcal{G} \), the latter has support of dimension zero or one. Thus, at least one of the maximal minors of \(\varphi_{11} \) must be
a nonzero polynomial. We can apply (6.6) to conclude that \(\text{Ker}(\varphi_{11}) \cong \mathcal{O}(-d+1) \) for some integer \(d \geq 3 \). We have
\[
P_g(t) = (n-3)\left(\frac{t+1}{2}\right) - (n-2)\left(\frac{t}{2}\right) + \left(\frac{t+3-d}{2}\right) = (n-d)t + \frac{(d-2)(d-3)}{2}.
\]
The sheaf \(G \) violates the semistability of \(F \) precisely when
\[
\frac{(d-2)(d-3)}{2(n-d)} < \frac{3}{n}, \quad \text{i.e.} \quad n(d-5) < -6.
\]
Thus, we cannot have \(d = 3 \) and, if \(d = 4 \), then \(n \leq 6 \). We conclude that \(F \) is an extension
\[
0 \longrightarrow \mathcal{O}_C(1) \longrightarrow F \longrightarrow G \longrightarrow 0
\]
with \(\deg(C) = d \geq 4 \), respectively \(\deg(C) \geq 5 \) in the case \(n \geq 7 \). Finally, we cannot have
\[
\varphi_{11} \sim \begin{bmatrix} \varphi' & 0 \\ \ast & \ast \end{bmatrix} \quad \text{with} \quad \varphi' : m\mathcal{O}(-2) \longrightarrow m\mathcal{O}(-1), \quad 1 \leq m \leq n-3.
\]
Indeed, if this were the case, then, since \(\varphi_{11} \) has at least one nonzero maximal minor, we would get \(\det(\varphi') \neq 0 \) and a surjection \(F \longrightarrow \text{Coker}(\varphi') \) onto a sheaf with Hilbert polynomial \(P(t) = mt \). This would contradict the semistability of \(F \). Q.e.d.

(6.8) Lemma: Let \(C \subset \mathbb{P}^2 \) be a curve given by the equation \(f = 0 \), where \(f(X,Y,Z) \) is a homogeneous polynomial. Let \(\mathcal{I} \subset \mathcal{O}_C \) be a sheaf of ideals. Then there is a homogeneous polynomial \(g(X,Y,Z) \) dividing \(f \) such that the sheaf of ideals \(\mathcal{J} \subset \mathcal{O}_C \) generated by \(g \) satisfies: \(\mathcal{I} \subset \mathcal{J} \) and \(\mathcal{J}/\mathcal{I} \) is supported on finitely many points.

Proof: Dehomogenizing in a suitable open affine subset we reduce the problem to the following: let \(f(X,Y) \) be a polynomial in \(k[X,Y] \). Let \(I \subset k[X,Y] \) be an ideal containing \(f \). Then there is a polynomial \(g(X,Y) \) dividing \(f \) such that \(I \subset < g > \) and \(< g > / I \) is supported on finitely many points.

Let \(f = f_1^{n_1} \cdots f_k^{n_k} \) be the decomposition of \(f \) into irreducible factors. Let
\[
I = q_1 \cap \ldots \cap q_m \cap a_1 \cap \ldots \cap a_l
\]
be a primary decomposition of \(I \). Here \(m \leq \kappa \), \(q_i \) is a primary ideal associated to \(< f_i > \) and \(a_1, \ldots, a_l \) are primary ideals associated to maximal ideals \(m_1, \ldots, m_l \).

Let us put
\[
q = q_1 \cap \ldots \cap q_m.
\]
We notice that \(q/I \) is supported on \(m_1, \ldots, m_l \). For \(1 \leq i \leq m \) let \(r_i \) be the largest integer such that \(q_i \subset < f_i^{r_i} > \). We claim that \(g = f_1^{r_1} \cdots f_k^{r_k} \) is the desired polynomial. To prove this it is enough to show that \(< g > / q \) is supported on finitely many points. Since localization commutes with intersections it is enough to show that each \(< f_i^{r_i} > / q_i \) is supported on finitely many points.

So far we have reduced the problem to the following: let \(f \in k[X,Y] \) be an irreducible polynomial. Let \(q \subset k[X,Y] \) be a primary ideal associated to \(< f > \). Let \(r \geq 1 \) be the largest integer such that \(q \subset < f^r > \). Then \(< f^r > / q \) is supported on finitely many points.
We may assume that \(q \) is not a power of \(< f >\). Let \(s \) be the smallest integer such that \(< f^s > \subset q\). We will prove the above statement by induction on \(s \). If \(s = r + 1 \) then

\[
< f^r > / q \cong \frac{< f^r > / < f^{r+1} >}{q / < f^{r+1} >}
\]

can be regarded as the structure sheaf of a proper subscheme of the scheme \(X \subset \mathbb{P}^2 \) given by \(\{ f = 0 \} \). This is so because

\[
< f^r > / < f^{r+1} > \cong k[X,Y]/< f >
\]

But \(X \) is an irreducible scheme of dimension one, hence any proper subscheme has dimension zero.

Assume now that \(s > r + 1 \) and the statement is true for any ideal \(q' \) satisfying \(q' \not\subset < f^r > \), \(q' \not\subset < f^{r+1} > \), \(< f^{s-1} > \subset q' \). Such an ideal is \(q' = q + < f^{s-1} > \).

By the induction hypothesis we know that \(< f^r > / q' \) is supported on finitely many points. To finish the proof it is enough to show that \(q'/q \) is supported on finitely many points. But

\[
q'/q \cong < f^{s-1} > / q \cap < f^{s-1} > .
\]

If \(q \cap < f^{s-1} > \not\subset < f^s > \) then the right-hand side is supported on finitely many points by the first step in the induction argument. Let us now choose \(h \in q \setminus < f^{r+1} > \). Then \(f^{s-r-1} h \in q \cap < f^{s-1} > \setminus < f^s > \). This finishes the proof of the lemma.

In the remaining part of this section we will seek more precise information about the morphisms occurring in (6.7). For a start, let us assume that \(\mathcal{F} \) is an arbitrary sheaf having a resolution as in (6.7), and let us determine which subsheaves \(\mathcal{F}' \subset \mathcal{F} \) are destabilizing. Let \(\mathcal{G}' \) be the image of \(\mathcal{F}' \) in \(\mathcal{G} \) and let \(\mathcal{I}(1) \) be the preimage of \(\mathcal{F}' \) in \(\mathcal{O}_C(1) \). Here \(\mathcal{I} \) is the ideal sheaf of a subscheme of \(C \). By (6.8) we can find a curve \(C' \subset C \) such that the ideal sheaf \(\mathcal{J} \) of \(C' \) contains \(\mathcal{I} \) and \(P_{\mathcal{I}(1)}(t) = P_{\mathcal{J}(1)}(t) - c \), where \(c \) is a nonnegative integer. From the exact sequence

\[
0 \longrightarrow \mathcal{I}(1) \longrightarrow \mathcal{F}' \longrightarrow \mathcal{G}' \longrightarrow 0
\]

we get

\[
P_{\mathcal{F}'(t)}(t) = P_{\mathcal{I}(1)}(t) + P_{\mathcal{G}'}(t) = P_{\mathcal{J}(1)}(t) + P_{\mathcal{G}'}(t) - c.
\]

Let us put \(\kappa = \deg(C') \). We allow \(\kappa = 0 \) for the case \(\mathcal{J} = \mathcal{O}_C \). From the exact sequence

\[
0 \longrightarrow \mathcal{O}(-d + 1) \longrightarrow \mathcal{O}(-\kappa + 1) \longrightarrow \mathcal{J}(1) \longrightarrow 0
\]

we see that \(h^0(\mathcal{J}(1)) = 0 \) if \(\kappa \geq 2 \). But then \(h^0(\mathcal{I}(1)) = 0 \), forcing the map \(H^0(\mathcal{F}') \longrightarrow H^0(\mathcal{G}') \) to be injective. Since the map \(\mathcal{F} \longrightarrow \mathcal{G} \) is zero on global sections we see that \(h^0(\mathcal{F}') = 0 \). It follows that \(\mathcal{F}' \) does not violate the semistability of \(\mathcal{F} \).

In the case \(\kappa = 0 \) we have \(P_{\mathcal{F}'/\mathcal{F}}(t) = c + P_{\mathcal{G}/\mathcal{G}'}(t) \), hence \(\mathcal{F}' \) violates the semistability of \(\mathcal{F} \) if and only if \(\alpha_1(\mathcal{G}/\mathcal{G}') > 0 \) and

\[
\frac{\alpha_0(\mathcal{G}/\mathcal{G}') + c}{\alpha_1(\mathcal{G}/\mathcal{G}')} < \frac{3}{n}.
\]
Assume now that $\kappa = 1$. We have
\[P_{F/F'}(t) = P_{O_C(1)/I(1)}(t) + P_{G/G'}(t) = t + 2 + c + P_{G/G'}, \]
hence F' violates the semistability if and only if
\[\frac{2 + c + \alpha_0(G/G')}{1 + \alpha_1(G/G')} < \frac{3}{n}. \]
Now the exact sequence
\[0 \to O_C(1) \to F \to G \to 0 \]
and the hypothesis $h^1(F(i)) = 0$ for $i \geq 0$ give $h^1(G(i)) = 0$ for $i \geq 0$. This, together with the exact sequence
\[0 \to G' \to G \to G/G' \to 0 \]
yield $h^1(G/G'(i)) = 0$ for $i \geq 0$. In particular $\alpha_0(G/G') = h^0(G/G') \geq 0$. This eliminates the case $\alpha_1(G/G') = 0$ from above. Let us summarize our findings so far:

(6.9) Remark: F is semistable if and only if there are no quotients sheaves E of G satisfying
\[h^1(E) = h^1(E(1)) = 0 \quad \text{and} \quad 0 \leq \alpha_0(E) < \frac{3}{n} \alpha_1(E) \neq 0. \]

One direction was proved in the discussion above. The other direction follows by taking $\kappa = 0$ and $c = 0$, in other words taking F' to be the preimage of G', where G' is the kernel of the surjection $G \to E$.

(6.10) Claim: Let F be a sheaf on \mathbb{P}^2 with resolution
\[0 \to O(-2) \to (n - 2)O(-2) \oplus 3O(-1) \to (n - 3)O(-1) \oplus 3O \to F \to 0 \]
satisfying the properties from (6.7). Assume that $n \in \{4, 5, 6, 7\}$. Then F is semistable.

Proof: Assume that there is E as in (6.9). We must have $\alpha_0(E) = 0$, otherwise
\[1 < \frac{3}{n} \alpha_1(E) \leq \frac{3}{n} \alpha_1(G) = \frac{3}{n}(n - d) \quad \text{forcing} \quad \frac{3d}{2} < n. \]
This gives $n \geq 8$, contradicting our hypothesis.

The Beilinson sequence of $E(1)$ leads to the following resolution:
\[0 \to mO(-2) \to mO(-1) \to E \to 0 \]
for some integer $m \leq n - d$. In the case $n = 4$ there is no such E. In the case $n = 5$ we have $m = 1$. In the cases $n \in \{6, 7\}$ we have $m \in \{1, 2\}$. We obtain a commutative exact diagram
\[\begin{array}{ccc}
(n - 2)O(-2) & \xrightarrow{\varphi_{11}} & (n - 3)O(-1) \\
\downarrow{\beta} & & \downarrow{\alpha} \\
0 & \xrightarrow{\varphi'} & mO(-1) \\
\end{array} \]
\[\xrightarrow{} \begin{array}{ccc}
G & \to & 0 \\
\downarrow & & \downarrow \\
E & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array} \]
with $\alpha \neq 0$ because the following composition is surjective:

$$(n-3)\mathcal{O}(-1) \xrightarrow{\alpha} m\mathcal{O}(-1) \rightarrow \mathcal{E}.$$

After performing operations on the rows and columns of φ_{11} and φ' it is always possible to write

$$\alpha = \begin{bmatrix} I_r & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \beta = \begin{bmatrix} I_s & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

We arrive at

$$\varphi_{11} \sim \begin{bmatrix} \varphi'' & 0 \\ \star & \star \end{bmatrix}$$

with φ'' an $r \times s$-matrix. But

$$r \geq \text{rank}(\alpha \varphi_{11}) = \text{rank}(\varphi' \beta) = s.$$

This contradicts the assumption on φ_{11} and finishes the proof of the claim.

(6.11) Claim: Let \mathcal{F} be a sheaf on \mathbb{P}^2 with $P_\mathcal{F}(t) = nt+3$, $h^1(\mathcal{F}) = 0$, $h^0(\mathcal{F}(-1)) \neq 0$. Assume that $8 \leq n \leq 15$. Then \mathcal{F} is semistable if and only if it has a resolution

$$0 \rightarrow \mathcal{O}(-2) \rightarrow (n-2)\mathcal{O}(-2) \oplus 3\mathcal{O}(-1) \xrightarrow{\varphi} (n-3)\mathcal{O}(-1) \oplus 3\mathcal{O} \rightarrow \mathcal{F} \rightarrow 0$$

satisfying the properties from (6.7) and, in addition, the following property: φ_{11} is not equivalent to a matrix of the form

$$\begin{bmatrix} \varphi' & 0 \\ \star & \star \end{bmatrix}$$

where $\varphi' : (m+1)\mathcal{O}(-2) \rightarrow m\mathcal{O}(-1)$ is a morphism having kernel $\mathcal{O}(-3)$ and m is an integer satisfying $m > \frac{n}{3} + 1$.

Proof: One direction is clear: if \mathcal{F} is semistable then it has a resolution as in (6.7).

If φ did not satisfy the “additional property” then \mathcal{F} would surject onto a sheaf \mathcal{E} with resolution

$$0 \rightarrow \mathcal{O}(-3) \rightarrow (m+1)\mathcal{O}(-2) \rightarrow m\mathcal{O}(-1) \rightarrow \mathcal{E} \rightarrow 0.$$

But

$$P_{\mathcal{E}}(t) = m\left(\frac{t+1}{2}\right) - (m+1)\left(\frac{t}{2}\right) + \left(\frac{t-1}{2}\right) = (m-1)t + 1,$$

which shows that \mathcal{E} violates the semistability of \mathcal{F} precisely when $\frac{1}{m-1} < \frac{3}{n}$, that is $\frac{n}{3} + 1 < m$.

Conversely, we assume that \mathcal{F} has the resolution from the claim and let \mathcal{E} be a sheaf as in (6.9). Our aim is to arrive at a contradiction. Since $n \leq 15$ we must have $\alpha_0(\mathcal{E}) = 0$ or $\alpha_0(\mathcal{E}) = 1$. In the first case the argument is the same as at (6.10). Assume now that $\alpha_0(\mathcal{E}) = 1$ and let us write $P_{\mathcal{E}}(t) = mt + 1$. We have

$$h^0(\mathcal{E}) = 1, \quad h^1(\mathcal{E}) = 0, \quad h^0(\mathcal{E}(1)) = m + 1, \quad h^1(\mathcal{E}(1)) = 0$$

so the Beilinson sequence (4.1) of $\mathcal{E}(1)$ gives the resolution

$$0 \rightarrow \mathcal{O}(-2) \rightarrow (p + m + 2)\mathcal{O}(-1) \xrightarrow{\rho} p\mathcal{O}(-1) \oplus (m + 1)\mathcal{O} \rightarrow \mathcal{E}(1) \rightarrow 0.$$
Let $\Lambda = (\lambda_1, \mu_1, \mu_2)$ be a polarization satisfying

$$\lambda_1 < \mu_1 < \frac{n-2}{n-3} \lambda_1, \quad \frac{3(n-2)\lambda_1 - 1}{2(n-3)} < \mu_1.$$

Equivalently, Λ is such that the pair (λ_1, μ_1) is in the interior of the triangle with vertices $(0, 0), \left(\frac{1}{n-1}, \frac{1}{n-2}\right), \left(\frac{1}{n-2}, \frac{1}{n-3}\right)$. Then φ is semistable with respect to Λ if and only if φ is not equivalent to a matrix having one of the following forms:

\[
\begin{bmatrix}
* & \cdots & * & 0 & 0 \\
* & \cdots & * & 0 & 0 \\
* & \cdots & * & 0 & 0 \\
* & \cdots & * & 0 & 0 \\
* & \cdots & * & 0 & 0
\end{bmatrix},
\begin{bmatrix}
* & \cdots & * & 0 & 0 & 0 \\
* & \cdots & * & 0 & 0 & 0 \\
* & \cdots & * & 0 & 0 & 0 \\
* & \cdots & * & 0 & 0 & 0 \\
* & \cdots & * & 0 & 0 & 0 \\
* & \cdots & * & 0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & *
\end{bmatrix},
\begin{bmatrix}
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & *
\end{bmatrix},
\begin{bmatrix}
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & *
\end{bmatrix},
\begin{bmatrix}
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & * \\
* & \cdots & * & * & * & *
\end{bmatrix}.
\]
only if deg(g.c.d.\(\alpha\) entries in \(V\)) gives a constructible set. We represent \(\phi\) following two conditions:

To finish the argument we need to show that the condition \(\text{Ker}(\phi) \cong \mathcal{O}(-3)\) gives a constructible set. We represent \(\phi'\) by a \(m \times (m+1)\)-matrix \(\alpha = (\alpha_{ij})\) with entries in \(V^*\). Using the notations from (6.6) we see that \(\text{Ker}(\phi') \cong \mathcal{O}(-3)\) if and only if \(\deg(\text{g.c.d.}(\alpha_1, \ldots, \alpha_{m+1})) = m - 1\). This, furthermore, is equivalent to the following two conditions:

(i) at least two among \(\alpha_1, \ldots, \alpha_{m+1}\) are linearly independent;

(ii) the system \(\alpha_if_j = \alpha_jf_i,\ 1 \leq i < j \leq m + 1\), has a nontrivial solution \(f = (f_1, \ldots, f_{m+1}),\ f_j \in V^*\).
In view of (6.6) condition (i) is equivalent to saying that $Ker(\alpha)$ is not isomorphic to $O(-2)$. This is equivalent to saying that

$$\alpha \sim \begin{bmatrix} 0 \\ \alpha' \\ \vdots \\ 0 \end{bmatrix} \quad \text{with} \ det(\alpha') \neq 0.$$

This condition gives a constructible set because the matrices on the right-hand side form a locally closed subset and the smallest invariant subset containing a locally closed subset must be constructible, as observed above.

Condition (ii) is a closed condition. Indeed, the above system can be written as a linear system with unknowns the coefficients of $f_j, 1 \leq j \leq m+1$, and coefficients the coefficients of $\alpha_i, 1 \leq i \leq m+1$. Such a linear system has a nontrivial solution if and only if the associated matrix has vanishing maximal minors. These minors are polynomials in the coefficients of $\alpha_i, 1 \leq i \leq m+1$, so we get closed conditions on α.

7. Applications to Moduli Spaces

Thus far, for certain classes of semistable sheaves \mathcal{F}, we have found presentations

$$\mathcal{E}_1 \xrightarrow{\varphi} \mathcal{E}_2 \rightarrow \mathcal{F} \rightarrow 0$$

with decomposable vector bundles \mathcal{E}_1 and \mathcal{E}_2. In this section we will describe some locally closed subsets inside the corresponding moduli spaces $M_{p^2}(r,\chi)$, defined by means of cohomological conditions as in remark (2.13). The question we will try to answer is whether such a subset is a good quotient of the set of morphisms φ modulo the action by conjugation of $\text{Aut}(\mathcal{E}_1) \times \text{Aut}(\mathcal{E}_2)$. The difficulty here is that $\text{Aut}(\mathcal{E})$ is a nonreductive group if \mathcal{E} has a direct summand of the form $O(a) \oplus O(b)$ with $a \neq b$.

Whenever we are dealing with a fine moduli space we can show the existence of quotients by using the universal family to construct local sections, cf. the proof of (7.6). If the moduli space is not fine we need to have a quotient already constructed as, say, in the main theorem from [6]. We apply this theorem at (7.12) to describe open dense subsets of $M_{p^2}(6,4)$ and $M_{p^2}(8,6)$. At (7.13) we construct the quotient ad hoc as a fiber bundle over a projective variety.

Unfortunately, Drézet and Trautmann’s theory of quotients modulo nonreductive groups is still incomplete. For instance, the main theorem from [6] does not cover the quotients from (4.7). Thus, we are not able to describe as a quotient an open dense subset of $M_{p^2}(9,6)$. Also, we do not know if quotients exist for morphisms of type (2,2). This accounts for the “unknowns” in the table from the introduction.

We begin by recalling the notions of good and geometric quotients. Let G be a linear algebraic group acting on a variety X. The action is algebraic, i.e. the map $G \times X \rightarrow X$ given by $(g,x) \rightarrow g.x$ is a morphism of varieties.

(7.1) Definition: A categorical quotient of X by G is a pair (Y,π) where Y is a variety and $\pi : X \rightarrow Y$ is a G-equivariant morphism satisfying the following universal property: for any other G-equivariant morphism $\eta : X \rightarrow Z$ there exists
a unique morphism $\rho : Y \to Z$ making the diagram commute:

\[
\begin{array}{ccc}
X & \xrightarrow{\rho} & Z \\
\downarrow \pi & & \downarrow \\
Y & \xrightarrow{\eta} & Z
\end{array}
\]

We write $Y = X//G$. If, in addition, the fibers of π are orbits, then Y is called an orbit space and is denoted X/G. Note that a categorical quotient is unique up to isomorphism.

Definition: A good quotient of X by G is a pair (Y, π) where Y is a variety and $\pi : X \to Y$ is a morphism satisfying:

(i) π is G-equivariant;

(ii) π is surjective;

(iii) for any open subset $U \subset Y$ the pull-back map π^* gives an isomorphism of $O_Y(U)$ onto the ring of regular functions on $\pi^{-1}(U)$ which are constant on the G-orbits;

(iv) if $W \subset X$ is closed and G-invariant, then $\pi(W)$ is closed;

(v) if $W_1, W_2 \subset X$ are closed, G-invariant and disjoint, then $\pi(W_1)$ and $\pi(W_2)$ are also disjoint;

(vi) π is affine, i.e. it returns open affine sets to affine sets.

If, in addition, the fibers of π are orbits, then (Y, π) is called a geometric quotient.

Remark: Let G act on X as above and assume the existence of an affine surjective morphism $\pi : X \to Y$ whose fibers are orbits. Assume that π admits local sections, i.e. for any $y \in Y$ there is an open neighbourhood U of y and a morphism $\sigma : U \to X$ satisfying $\pi \circ \sigma = 1$. Then (Y, π) is a geometric quotient.

Definition (7.2) is important because good quotients are categorical quotients while geometric quotients are orbit spaces:

Proposition: Let (Y, π) be a good quotient of X by G. Then:

(i) (Y, π) is a categorical quotient;

(ii) $\pi(x_1) = \pi(x_2)$ if and only if $G.x_1$ intersects $G.x_2$;

(iii) if the G-orbits in X are closed, then (Y, π) is an orbit space;

(iv) Let X_o denote the subset of points $x \in X$ with $G.x$ closed and of maximal dimension among the G-orbits. Then there is an open subset $Y_o \subset Y$ such that $\pi^{-1}(Y_o) = X_o$ and (Y_o, π) is a geometric quotient of X_o by G.

The main technical tool that we will use in this section is the relative Beilinson complex. Given a variety X and a coherent sheaf F on $X \times \mathbb{P}^2$ there is a sequence

\[
0 \to C^{-2} \to C^{-1} \to C^0 \to C^1 \to C^2 \to 0
\]

of sheaves on $X \times \mathbb{P}^2$ which is exact, except in the middle, where the cohomology is F. On each fiber $\{x\} \times \mathbb{P}^2$ this sequence restricts to the Beilinson complex of the restricted sheaf F_x. Let $p : X \times \mathbb{P}^2 \to X$ be the projection onto the first component. The sheaves C^i are defined by means of the higher direct images of F:

\[
C^i = \oplus_j R^j p_* (F \otimes \Omega_{X \times \mathbb{P}^2/X}^{-j-i}(j-i)) \boxtimes O_{\mathbb{P}^2}(i-j).
\]
In our applications \mathcal{F} will be flat over X and its restrictions \mathcal{F}_x onto the fibers $\{x\} \times \mathbb{P}^2$ will have one-dimensional supports. Thus $H^2(\mathcal{F}_x) = 0$ for all $x \in X$. From the Base Change Theorem on p. 11 in [15] we get $R^2p_*(\mathcal{F}) = 0$. Analogously, the other second direct images occuring above are zero. The relative Beilinson complex now takes the form

\[(7.5)\quad 0 \to C^{-2} \to C^{-1} \to C^0 \to C^1 \to 0\]

with

\[
\begin{align*}
C^{-2} &= p_*(\mathcal{F}(-1)) \boxtimes O(-2), \\
C^{-1} &= p_*(\mathcal{F} \otimes \Omega_X^{1}\times\mathbb{P}^2/X(1)) \boxtimes O(-1) \oplus R^1p_*(\mathcal{F}(-1)) \boxtimes O(-2), \\
C^0 &= p_*(\mathcal{F}) \boxtimes O \oplus R^1p_*(\mathcal{F} \otimes \Omega_X^{1}\times\mathbb{P}^2/X(1)) \boxtimes O(-1), \\
C^1 &= R^1p_*(\mathcal{F}) \boxtimes O.
\end{align*}
\]

\[(7.6)\textbf{ Proposition:}\quad \text{Let } n \geq 1 \text{ be an integer and let } W \text{ be the vector space of morphisms } \varphi \text{ of sheaves on } \mathbb{P}^2 \text{ of the form}
\]

\[
O(-2) \oplus (n-1)O(-1) \xrightarrow{\varphi} nO.
\]

With the notations from section 3 assume that the polarization $\Lambda = (\lambda_1, \lambda_2, \mu_1)$ satisfies $0 < \lambda_1 < \frac{1}{4}$. Let W_φ be the open subset of $W^{ss}(G, \Lambda)$ given by the condition $\det(\varphi) \neq 0$. Then W_φ admits a geometric quotient modulo G which is isomorphic to the open dense subset of $M_{\mathbb{P}^2}(n+1, n)$ given by the condition $h^0(F(-1)) \neq 0$.

\textbf{Proof:}\quad Let us consider the coherent sheaf $\tilde{\mathcal{F}}$ on $W_\varphi \times \mathbb{P}^2$ given by the exact sequence

\[
O_{W_\varphi} \boxtimes O_{\mathbb{P}^2}(-2) \oplus O_{W_\varphi} \boxtimes (n-1)O_{\mathbb{P}^2}(-1) \xrightarrow{\Phi} nO_{W_\varphi \times \mathbb{P}^2} \xrightarrow{\tilde{\mathcal{F}}} 0.
\]

On each fiber $\{\varphi\} \times \mathbb{P}^2$ this sequence restricts to

\[
0 \to O(-2) \oplus (n-1)O(-1) \xrightarrow{\varphi} nO \to \tilde{\mathcal{F}}_\varphi \to 0.
\]

According to (4.2) each restriction $\tilde{\mathcal{F}}_\varphi$ is semistable with Hilbert polynomial $P(t) = (n+1)t + n$. As the Hilbert polynomial is independent of φ, and as the base W_φ is reduced, the sheaf $\tilde{\mathcal{F}}$ is flat over W_φ. By the definition (2.5) of a coarse moduli space, $\tilde{\mathcal{F}}$ gives rise to a morphism

\[
\eta: W_\varphi \to M_{\mathbb{P}^2}(n+1, n)
\]

which sends φ to the stable equivalence class of $\tilde{\mathcal{F}}_\varphi$.

By (4.2) the image of η is the subset M_φ of $M_{\mathbb{P}^2}(n+1, n)$ given by the condition $h^0(F(-1)) = 0$. By (2.13) this subset is open and, as the moduli space is irreducible, it must be dense.

The fibers of η are G-orbits. Indeed, an isomorphism f between two cokernels \mathcal{F}_1 and \mathcal{F}_2 of φ_1 and φ_2 from W_φ must fit into a commutative diagram

\[
\begin{array}{ccc}
0 & \to & O(-2) \oplus (n-1)O(-1) \xrightarrow{\varphi_1} nO \xrightarrow{f} \mathcal{F}_1 \to 0 \\
& \downarrow{g} & \downarrow{h} & \downarrow{f} \\
0 & \to & O(-2) \oplus (n-1)O(-1) \xrightarrow{\varphi_2} nO \xrightarrow{g} \mathcal{F}_2 \to 0 \\
\end{array}
\]

in which g and h are isomorphisms. Here h is defined in such a way as to coincide with f on the level of global sections, while g is the induced map on the kernels.
To prove that η is a geometric quotient map it is enough to construct local sections as in (7.3). For this we will use the fact that $M_{2^2}(n + 1, n)$ is a fine moduli space, cf. (2.10), so it has a universal family. Let U denote the restriction of the universal family to $M_o \times \mathbb{P}^2$. Let $p : M_o \times \mathbb{P}^2 \to M_o$ be the projection onto the first component. U is flat over M_o and all its restrictions to the fibers of p have Beilinson resolution (4.2). In view of the Base Change Theorem the higher direct images of the higher direct images, the Beilinson complex (7.5) gives the resolution

$$p_* (U(-1)), \quad R^1 p_* (U(-1)), \quad p_* (U), \quad R^1 p_* (U),$$

$$p_* (U \otimes \Omega^1_{M_o \times \mathbb{P}^2/M_o}(1)), \quad R^1 p_* (U \otimes \Omega^1_{M_o \times \mathbb{P}^2/M_o}(1))$$

are locally free of ranks 0, 1, n, 0, $n - 1$, 0. Let us cover M_o with open subsets S on which the above sheaves are free. On $S \times \mathbb{P}^2$, and relative to fixed trivializations of the higher direct images, the Beilinson complex (7.5) gives the resolution

$$0 \to \mathcal{O}_S \otimes \mathcal{O}_{\mathbb{P}^2}(-2) \oplus \mathcal{O}_S \otimes (n - 1) \mathcal{O}_{\mathbb{P}^2}(-1) \to n \mathcal{O}_{S \times \mathbb{P}^2} \to U \to 0.$$

We put $\sigma(x) = \varphi_x$ for $x \in S$ and notice that $\sigma : S \to W_o$ is a local section of η. Q.e.d.

The sets W_o are nonempty for all n. Indeed, it is easy to construct an $n \times (n - 1)$-matrix ψ with entries in V^* whose maximal minors are linearly independent, and which has the form

$$\begin{pmatrix}
* & * & \cdots & * \\
* & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & *
\end{pmatrix}.$$

For example

$$\begin{pmatrix}
Y & Z & Y & Z \\
X & 0 & 0 & 0 \\
0 & Y & 0 & 0 \\
0 & 0 & Z & 0 \\
0 & 0 & 0 & X
\end{pmatrix}$$

is such a matrix for $n = 5$. But it now becomes clear that the following matrix is semistable and has nonzero determinant:

$$\begin{pmatrix}
X^2 & 0 & 0 \\
0 & \psi
\end{pmatrix}.$$

The existence of the geometric quotient W_o / G can be put into a broader context if we realize that $W^{ss}(G, \Lambda)$ itself has a geometric quotient, as J.-M. Drézet pointed out to the author:

(7.7) Proposition: Let $W^{ss}(G, \Lambda)$ be the set of morphisms of sheaves on \mathbb{P}^2,

$$\mathcal{O}(-2) \oplus (n - 1) \mathcal{O}(-1) \xrightarrow{\varphi} n \mathcal{O},$$

which are semistable with respect to a polarization Λ satisfying $0 < \lambda_1 < \frac{1}{n}$. Then there exists a geometric quotient $W^{ss}(G, \Lambda) / G$ which is a fiber bundle with fiber \mathbb{P}^{3n+2} and base a projective variety of dimension $n^2 - n$.

Proof: Let us represent φ as a pair (φ_1, φ_2) where φ_1 is an $n \times 1$-matrix with entries in $S^{2} V^*$, while φ_2 is an $n \times (n - 1)$-matrix with entries in V^*. Let W_i denote the vector space of matrices φ_i.

The reductive group $G_2 = \text{GL}(n-1) \times \text{GL}(n) / k^*$ acts on W_2 by conjugation. Here k^* is embedded as the subgroup of homotheties. The only admissible polarization on W_2 is $\left(\frac{1}{n-1}, \frac{1}{n} \right)$ and, as $n - 1$ and n are mutually prime, equality cannot be achieved.
in (3.3). This shows that the set of semistable points \(W_2^{ss} \) for the action of \(G_2 \) coincides with the set of stable points. By the classical Geometric Invariant Theory there is a geometric quotient \(W_2^{ss}/G_2 \) which is a projective variety of dimension \(n^2 - n \). Let us denote it by \(N \).

We view \(W \) as a trivial bundle with fiber \(W_1 \) and base \(W_2 \). Let \(U \) be the trivial bundle on \(W_2 \) with fiber the space of \((n-1) \times 1 \)-matrices with entries in \(V^* \). We consider the morphism of bundles \(f : U \to W \) given at every point \(\varphi_2 \) by left-multiplication with \(\varphi_2 \). It is easy to see that \(f \) is injective at every semistable point \(\varphi_2 \), hence the restriction of \(\text{Coker}(f) \) to \(W_2^{ss} \) is a vector bundle of rank \(3n + 3 \), denoted by \(E \). \(\mathbb{P}(E) \) carries a \(G_2 \) action which is compatible with the action on \(W_2^{ss} \). At (8.1) below we will prove that for any \(\varphi_2 \in W_2^{ss} \) the isotropy group \(\text{Stab}_{G_2}(\varphi_2) \) is trivial, so it acts trivially on \(\mathbb{P}(E_{\varphi_2}) \). It follows that \(\mathbb{P}(E) \) descends to a fiber bundle \(F \) on \(N \), see 4.2.15 in [11].

We notice that the semistability conditions on \(\varphi \) read as follows: \(\varphi_2 \) is in \(W_2^{ss} \) and \(\varphi_1' \neq 0 \) for all \(\varphi' \) in the same \(G \)-orbit as \(\varphi \). In other words, \(W^{ss}(G, \Lambda) \) can be identified with the complement of \(\mathcal{I}m(f) \) inside \(W_1|_{W_2^{ss}} \). The map

\[
W_1|_{W_2^{ss}} \setminus \mathcal{I}m(f) \longrightarrow \mathbb{P}(E)
\]

admits local sections because \(E \) is a bundle. In view of (7.3) this map is a geometric quotient modulo the action of the subgroup of \(G \) given by the conditions \(h_1 = 1 \), \(g_2 = 1 \), see the notations preceeding (3.1). Combining this with the fact that the map \(\mathbb{P}(E) \to F \) is a geometric quotient modulo \(G_2 \), we easily deduce that the map \(W^{ss}(G, \Lambda) \to F \) is a geometric quotient modulo \(G \). Q.e.d.

Our construction is similar to, though much less elegant than, the construction from 10.2 in [7] which addresses morphisms on \(\mathbb{P}^n \) of the form

\[
m_1\mathcal{O}(-2) \oplus m_2\mathcal{O}(-1) \xrightarrow{\varphi} n_1\mathcal{O}.
\]

The polarization satisfies \(0 < \lambda_1 < \lambda_{\text{min}} \), where \(\lambda_{\text{min}} \) is the smallest positive number such that for \(\lambda_1 \) varying in the interval \((0, \lambda_{\text{min}})\) the set of semistable points remains unchanged. In the context of the above proposition \(\lambda_{\text{min}} = \frac{1}{2} \). They show that if certain conditions on the integers \(m_1, m_2, n_1 \) are satisfied, then there exists a geometric quotient which is a Grassmann bundle \(\text{Grass}(m_1, p, \mathcal{E}(2)) \) with base \(N = W_2^{ss}/G_2 \). Here \(p : N \times \mathbb{P}^2 \to N \) is the projection onto the first component and \(\mathcal{E} \) is the universal sheaf on \(N \times \mathbb{P}^2 \) which restricts to \(\text{Coker}(\varphi_2) \) on each fiber \(\{[\varphi_2]\} \times \mathbb{P}^2 \). One of their conditions, having to do with the injectivity of \(\varphi_2 \) regarded as map from \(m_2\mathcal{O}(-1) \) to \(n_1\mathcal{O} \), is \(n_1 \geq m_2 \). Thus Drčet and Trautmann’s construction addresses only the case \(n = 2 \) of the above proposition.

There is yet another, more direct way of constructing the quotient in the case \(n = 2 \). The semistability conditions on a morphism \(\varphi : \mathcal{O}(-2) \oplus \mathcal{O}(-1) \to 2\mathcal{O} \) read: \(\det(\varphi) \neq 0 \) and \(\varphi_{12}, \varphi_{22} \) are linearly independent in \(V^* \). The map

\[
W^{ss}(G, \Lambda) \to \text{Grass}(2, V^*) \times \mathbb{P}(S^3V^*) \cong \mathbb{P}^2 \times \mathbb{P}(S^3V^*)
\]

given by

\[
\varphi \longrightarrow (\langle \text{span}(\varphi_{12}, \varphi_{22}), \langle \det(f) \rangle \rangle)
\]

has fibers \(G \)-orbits and has image the universal cubic

\[
C = \{(x, \langle f \rangle) \in \mathbb{P}^2 \times \mathbb{P}(S^3V^*), \quad f(x) = 0\}.
\]
It was first noticed in [13] that the map $W^{ss}(G, \Lambda) \to C$ has local sections: Choose a point $(x, < f >)$ in C, say $x = (0 : 0 : 1)$. As f does not contain the monomial Z^3, there are unique quadratic polynomials $q_1(X,Y,Z)$ and $q_2(X,Z)$ such that $f = q_1Y - q_2X$. We put

$$\sigma(x, < f >) = \begin{bmatrix} q_1 & X \\ q_2 & Y \end{bmatrix}.$$

Since all processes involved in defining σ are algebraic, we see that σ extends to a section of the map $W^{ss}(G, \Lambda) \to C$ defined on a neighbourhood of $(x, < f >)$. Thus $W^{ss}(G, \Lambda) / G \simeq C$. A more sophisticated proof of this isomorphism can be found in [8].

In the simplest case $n = 1$, $W^{ss}(G, \Lambda)$ is just the set of nonzero morphisms $\mathcal{O}(-2) \to \mathcal{O}$ and $W^{ss}(G, \Lambda) / G$ is $\mathbb{P}^2(S^2V^*)$.

As noticed, in the cases $n = 1, 2$ we have $W_o = W^{ss}(G, \Lambda)$, hence W_o / G is complete, hence the set M_o from (7.6) is complete, hence M_o is the entire moduli space. We have obtained the well-known fact that every semistable sheaf on \mathbb{P}^2 with Hilbert polynomial $P(t) = 2t + 1$ is the structure sheaf of a conic; in other words $M_{\mathbb{P}^2}(2,1) \simeq \mathbb{P}(S^2V^*)$. In the case $n = 3$ we have rediscovered one of Le Potier’s result from [12] to the effect that $M_{\mathbb{P}^2}(3,2)$ is isomorphic to the universal cubic.

If $n \geq 3$ W_o is a proper open subset of the set of semistable points, hence W_o / G is not complete, hence M_o is a proper open subset of $M_{\mathbb{P}^2}(n + 1, n)$. Indeed, it is easy to construct semistable morphisms with zero determinant; for example, in the case $n = 3$,

$$\begin{bmatrix} 0 & X & Y \\ XY & Z & 0 \\ -X^2 & 0 & Z \end{bmatrix}.$$

Thus, at most we can say at this time is the following:

Corollary (7.8): For $n \geq 3$ the projective varieties $W^{ss}(G, \Lambda) / G$ and $M_{\mathbb{P}^2}(n + 1, n)$ are birational.

Proof: From (7.2)(iv) we see that the image of W_o under the quotient map

$$W^{ss}(G, \Lambda) \to W^{ss}(G, \Lambda) / G$$

is an open set U. In fact, W_o is the preimage of U. Clearly, the properties from (7.2) are satisfied for the map $W_o \to U$. This proves that $W_o / G \simeq U$ and so we have isomorphic open dense subsets of $W^{ss}(G, \Lambda) / G$ and of $M_{\mathbb{P}^2}(n + 1, n)$.

The same proof as at (7.6) can be used to show that for all fine moduli spaces $M_{\mathbb{P}^2}(r, \chi)$ occurring in sections 4, 5, 6 the locally closed subsets described by cohomological conditions are geometric quotients W_o / G of the corresponding sets $W_o \subset W^{ss}(G, \Lambda)$. We have summarized the results in the table from the introduction. For the quotients in section 5 we should mention that φ_x depends in an algebraic manner on the maps from the Beilinson complex of \mathcal{U}_x, hence it depends in an algebraic manner on x; see (7.14) for the details.
The assumption that $M_{p2}(r, \chi)$ be fine, i.e. the assumption that a universal family exists, is needed for the construction of the local sections of η. The proof of (7.6) does not apply if the moduli space is not fine because, according to (2.11), there is no universal family on any open subset of such a moduli space.

Two of the quotients from sections 5 and 6 have very concrete descriptions. First we consider the case $n = 1$ from (5.2). The set of morphisms $\varphi : O(-3) \oplus O(-1) \rightarrow 2O$

semistable with respect to a polarization satisfying $0 < \lambda_1 < \frac{1}{2}$ is characterized by the conditions $\det(\varphi) \neq 0$ and $\varphi_{12}, \varphi_{22}$ are linearly independent in V^*. The same discussion as in the case $n = 2$ of (7.6) shows that the geometric quotient $W^{ss}(G, \Lambda)/G$ is isomorphic to the universal quartic in $\mathbb{P}^2 \times \mathbb{P}(S^4V^*)$. From (5.2) we get:

Corollary: The subset of $M_{p2}(4,1)$ given by the conditions $h^0(F(-1)) = 0$ and $h^1(F) = 1$ is closed and, equipped with its canonical reduced structure, it is isomorphic to the universal quartic in $\mathbb{P}^2 \times \mathbb{P}(S^4V^*)$.

Let us now consider the simplest case $n = 4$ from (6.7). It concerns morphisms $\varphi : 2O(-2) \oplus 3O(-1) \rightarrow O(-1) \oplus 3O$

satisfying the conditions: $\varphi_{12} = 0$, φ_{11} has linearly independent entries in V^*, $\varphi'_{21} \neq 0$ for any φ' in the same orbit as f, φ_{22} is equivalent to the matrix

$$
\begin{bmatrix}
-Y & X & 0 \\
-Z & 0 & X \\
0 & -Z & Y
\end{bmatrix}.
$$

Let $f = 0$ be the equation of the support of \mathcal{F}. To be precise,

$$
f = \begin{bmatrix} Z & -Y & X \end{bmatrix} \varphi_{21} \begin{bmatrix} -X_2 \\ X_1 \\ X_3 \end{bmatrix}, \quad \text{where} \quad \varphi_{11} = \begin{bmatrix} X_1 & X_2 \end{bmatrix}
$$

and φ_{22} is assumed to be the above 3×3-matrix. We consider the G-invariant map $W_\circ \rightarrow \text{Grass}(2, V^*) \times \mathbb{P}(S^4V^*) \simeq \mathbb{P}^2 \times \mathbb{P}(S^4V^*)$

given by

$$
\varphi \mapsto (\text{span}\{X_1, X_2\}, < f>).
$$

Its image is the universal quartic. To prove that the map $W_\circ \rightarrow Q$ is a geometric quotient, we will construct local sections. We fix a point $(\text{span}\{X_1, X_2\}, < f>)$ in Q. We complete $\{X_1, X_2\}$ to a basis $\{X_1, X_2, X_3\}$ of V^*. Relative to this basis f can be uniquely written as

$$
f(X_1, X_2, X_3) = -X_2 f_1(X_1, X_2, X_3) + X_1 f_2(X_1, X_3).
$$

Now f_1 and f_2 can each be uniquely written as

$$
f_1 = Z q_{11}(X, Y, Z) - Y q_{21}(X, Y) + X q_{31}(X),
$$

$$
f_2 = Z q_{12}(X, Y, Z) - Y q_{22}(X, Y) + X q_{32}(X).
$$
We put
\[\sigma(\text{span}\{X_1, X_2\}, <f>) = \begin{bmatrix} X_1 & X_2 & 0 & 0 & 0 \\ q_{11} & q_{12} & -Y & X & 0 \\ q_{21} & q_{22} & -Z & 0 & X \\ q_{31} & q_{32} & 0 & -Z & Y \end{bmatrix}. \]

Since all processes involved in defining \(\sigma \) are algebraic, we see that \(\sigma \) extends to a local section defined on an open subset of \(Q \). From (6.7) we get:

\textbf{(7.10) Corollary:} The subset of \(M_{22}(4, 3) \) given by the conditions \(h^0(\mathcal{F}(-1)) = 1 \) and \(h^1(\mathcal{F}) = 0 \) is closed and, equipped with its canonical reduced structure, is isomorphic to the universal quartic in \(\mathbb{P}^2 \times \mathbb{P}(S^4V^*) \).

We now turn to the moduli spaces \(M_{22}(r, \chi) \) for which \(r \) and \(\chi \) are not mutually prime. As we shall see, if we knew the existence of the quotient \(W_0//G \), then we could prove that this quotient is isomorphic to the corresponding subvariety of the moduli space. We know the existence of the quotients only in two cases: for the situation in (4.3)(i) and for \(n = 3 \) in (5.2). In the first case we will use a theorem of Drézet:

Let \(m_1, m_2, n_1 \) be integers and let us consider morphisms of sheaves on \(\mathbb{P}^n \) of the form
\[m_1\mathcal{O}(-2) \oplus m_2\mathcal{O}(-1) \xrightarrow{\varphi} n_1\mathcal{O}. \]

We recall from section 3 that a polarization in this context is a triple \(\Lambda = (\lambda_1, \lambda_2, \mu_1) \) of positive numbers satisfying the relations \(m_1\lambda_1 + m_2\lambda_2 = n_1\mu_1 = 1 \). Theorem 6.4 from [6] gives sufficient conditions on \(\Lambda \) which assure the existence of a good quotient. Below we state part two of the theorem formulated in the particular case \(n = 2 \) which is of interest to us:

There exists a good quotient \(W^{ss}(G, \Lambda)//G \), which is a projective variety, if the following four inequalities are fulfilled:

\[
\begin{align*}
\lambda_2 &< \frac{3}{n_1}, \\
\lambda_2 &> \frac{3m_1 + n_1}{3m_1n_1 + n_1m_2}, \\
m_2\lambda_2 &> 1 - \frac{3m_1}{n_1(3m_1 - 1)} \quad \text{if} \quad m_1 \leq 3, \\
m_2\lambda_2 &> 1 - \frac{3m_1}{8n_1} \quad \text{if} \quad m_1 > 3.
\end{align*}
\]

Taking \(m_1 = 2, m_2 = n - 2, n_1 = n \) the above conditions become
\[\lambda_1 < \frac{6}{n(n + 4)}, \quad \lambda_1 < \frac{3}{5n}. \]

\textbf{(7.11) Corollary:} Let \(3 \leq n \leq 7 \) be an integer and let \(W^{ss}(G, \Lambda) \) be the space of morphisms of sheaves on \(\mathbb{P}^2 \) of the form
\[2\mathcal{O}(-2) \oplus (n - 2)\mathcal{O}(-1) \xrightarrow{\varphi} n\mathcal{O} \]

which are semistable with respect to a polarization \(\Lambda \) satisfying \(\frac{1}{2n} < \lambda_1 < \frac{1}{n} \). Then there exists a good quotient \(W^{ss}(G, \Lambda)//G \), which, moreover, is a projective variety.
Proof: If \(\frac{1}{m} < \lambda_1 < \frac{1}{m+1} \), the statement follows from Drézet’s theorem. To conclude the proof we only need observe that \(W^{ss}(G, \Lambda) \) does not change when \(\lambda_1 \) varies in the interval \((\frac{1}{m}, \frac{1}{n}) \).

\(\textbf{(7.12) Proposition:} \) For \(3 \leq n \leq 6 \) let \(W_o \) be the subset of \(W^{ss}(G, \Lambda) \) from (7.11) given by the condition \(\det(\varphi) \neq 0 \). For \(n = 2 \) let \(W_o \) be the space of injective morphisms \(2\mathcal{O}(-2) \longrightarrow 2\mathcal{O} \). Then \(W_o \) admits a good quotient modulo \(G \), which is isomorphic to the open dense subset of \(M_{ss}(n+2, n) \) given by the conditions

\[
\begin{align*}
 h^0(\mathcal{F}(-1)) &= 0, & h^1(\mathcal{F}) &= 0, & h^1(\mathcal{F} \otimes \Omega^1(1)) &= 0.
\end{align*}
\]

In particular, the projective varieties \(W^{ss}(G, \Lambda)//G \) and \(M_{ss}(n+2, n) \) are birational.

Proof: The good quotient \(W_o//G \) is an open dense subset of \(W^{ss}(G, \Lambda)//G \). The latter exists by (7.11) when \(n \geq 3 \) and by the classical Geometric Invariant Theory when \(n = 2 \). The map

\[
\eta: W_o \longrightarrow M_{ss}(n+2, n)
\]
can be constructed as at (7.6) and has image the open subset \(M_o \) described by the cohomological conditions from the proposition. By the universal property (7.4)(i) of a good quotient, \(\eta \) factors through a morphism

\[
\rho: W_o//G \longrightarrow M_o.
\]

If \(n \) is even the injectivity of \(\rho \) is not as straightforward as at (7.6) because the fibers of \(\eta \) may not be \(G \)-orbits, as there may occur properly semistable sheaves. We will prove the injectivity only in the case \(n = 2 \), the cases \(n = 4 \) and \(n = 6 \) being analogous:

Let \([\varphi_1]\) and \([\varphi_2]\) be in \(W_o//G \) and assume that \(\mathcal{F}_1 = \text{Coker}(\varphi_1) \) and \(\mathcal{F}_2 = \text{Coker}(\varphi_2) \) are properly semistable and stable equivalent. Thus \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) have the same terms in their Jordan-Hölder filtrations, say \(A_1 \) and \(A_2 \). According to the discussion preceding (7.8), \(A_i \) are cokernels of maps \(\alpha_i : \mathcal{O}(-2) \longrightarrow \mathcal{O} \). It is easy to see that, modulo the action of \(G \), \(\varphi_1 \) and \(\varphi_2 \) are equivalent to matrices

\[
\psi_1 = \begin{bmatrix} \alpha_1 & \beta_1 \\ 0 & \alpha_2 \end{bmatrix}, \quad \text{respectively} \quad \psi_2 = \begin{bmatrix} \alpha_1 & \beta_2 \\ 0 & \alpha_2 \end{bmatrix}.
\]

We consider the one-parameter subgroup \(\lambda \) of \(G \) given by

\[
\lambda(t) = \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix}.
\]

We have

\[
\lambda(t).\psi_i = \begin{bmatrix} \alpha_1 & t\beta_i \\ 0 & \alpha_2 \end{bmatrix}
\]

forcing

\[
\lim_{t\to 0} \lambda(t).\psi_i = \begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix}
\]

which we denote by \(\psi \). From (7.4)(ii) we get \([\psi_i] = [\psi]\), so \([\varphi_i] = [\psi]\), so \(\rho \) is injective.

To finish the proof we only need observe that \(M_o \) is smooth. At points represented by stable sheaves this is already known from (2.12). In general, applying the long exact sequence of Ext groups to the exact sequence (4.3)(i), we deduce that for all \(\mathcal{F} \) in \(M_o \), we have \(\text{Ext}^2(\mathcal{F}, \mathcal{F}) = 0 \). According to Grothendieck’s Criterion, this gives smoothness at the point in the moduli space represented by \(\mathcal{F} \).
Thus far ρ is a bijective morphism onto a normal variety. From Zariski’s Main Theorem we conclude that ρ is an isomorphism.

We notice that another way of proving that ρ is an isomorphism, which avoids Grothendieck’s Criterion of smoothness and Zariski’s Main Theorem, is exhibited in the proof of (7.14).

We do not know if the birational maps constructed above are isomorphisms. The subsets M_o are open, proper subsets of $M_{P^2(n+2,n)}$ because W_o are proper subsets of the sets of semistable points. For example, in the case $n = 2$, the following matrices are semistable but have zero determinant:

$$\begin{bmatrix}
X_1Y_1 & X_1Y_2 \\
X_2Y_1 & X_2Y_2
\end{bmatrix}$$

where X_1, X_2 are linearly independent in V^* and same for Y_1, Y_2.

(7.13) Proposition: For $n = 1, 2, 3$ let $W^{ss}(G, \Lambda)$ be the set of morphisms of sheaves on P^2 of the form

$$O(-3) \oplus nO(-1) \xrightarrow{\varphi} (n+1)O,$$

which are semistable with respect to a polarization Λ satisfying $0 < \lambda_1 < \frac{1}{n+1}$. Then there exists a geometric quotient $W^{ss}(G, \Lambda)/G$ which is a fiber bundle with fiber \mathbb{P}^{4n+9} and base a projective variety of dimension $n^2 + n$.

The proof is the same as at (7.7). The injectivity of f is clear in the cases $n = 1, 2$ and follows from remark (5.4) in the case $n = 3$.

(7.14) Proposition: Let W_o be the open subset of $W^{ss}(G, \Lambda)$ from (7.13) given by the condition $\det(\varphi) \neq 0$. Then W_o admits a geometric quotient modulo G which is isomorphic to the locally closed subset of $M_{P^2(n+3,n)}$ given by the conditions $h^0(F(-1)) = 0$ and $h^1(F) = 1$, and equipped with its canonical reduced structure.

Proof: The cases of the fine moduli spaces $M_{P^2(4,1)}$ and $M_{P^2(5,2)}$ were discussed earlier. Assume now that $n = 3$. Let X be the subset of $M_{P^2(6,3)}$ described by the cohomological conditions from the proposition.

As at (7.6), there is a morphism $\eta : W_o \longrightarrow X$ associated to a flat family on W_o and which factors through a morphism $\rho : W_o/G \longrightarrow X$. From (5.3) we know that all sheaves from X are stable, so we can repeat the argument from (7.6) proving that the fibers of η are G-orbits. Thus ρ is bijective.

To prove that ρ is an isomorphism we will construct its inverse. Let us recall from section 2 that $M_{P^2(6,3)}$ is the good quotient of a certain open subset R inside a quotient scheme, modulo the action of $\text{SL}(V)$. There is a locally closed subvariety S of R, invariant under the action of the special linear group, such that $X = S/\text{SL}(V)$. The existence of S follows from remark 3.4.3 on p. 54 in [14] and from the fact that in characteristic zero reductive groups are linearly reductive, cf. p. 50 in loc. cit. In fact S is the preimage of X under the quotient map $R \longrightarrow M_{P^2(6,3)}$. Let $\tau : S \longrightarrow X$ denote the quotient map.

Let U be the restriction to $S \times P^2$ of the universal quotient family on $R \times P^2$. Let $p : S \times P^2 \longrightarrow S$ be the projection onto the first component. For an arbitrary
point in \(s \in S \) we denote by \(U_s \) the restriction \(U_{\{s\} \times P^2} \). From (5.2) we know that \(U_s \) has a resolution

\[
\begin{array}{c}
0 \rightarrow \mathcal{O}(-3) \oplus 3\mathcal{O}(-1) \xrightarrow{\varphi} 4\mathcal{O} \rightarrow U_s \rightarrow 0.
\end{array}
\]

In fact, with the notations from section 5, we have

\[
\varphi_{12} = \rho_{32}, \quad \varphi_{11} = -\rho_{31} \psi_{12}^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.
\]

Each \(U_s \) is the middle cohomology of a Beilinson complex

\[
0 \rightarrow 3\mathcal{O}(-2) \oplus 3\mathcal{O}(-1) \rightarrow 3\mathcal{O}(-1) \oplus 4\mathcal{O} \rightarrow \mathcal{O} \rightarrow 0
\]

and \(\rho_{32}, \rho_{31}, \psi_{12} \) depend algebraically on the maps in this complex. We put \(\varsigma(s) = \varphi \) and we claim that \(\varsigma \) can be extended to a morphism from a neighbourhood \(S_o \) of \(s \) in \(S \) to \(W_o \).

To see this we proceed as in the proof of (7.6). The higher direct image sheaves

\[
p_* (U(-1)), \quad R^1 p_* (U(-1)), \quad p_* (U), \quad R^1 p_* (U),
\]

\[
p_* (U \otimes \Omega^1_{S \times P^2 / S}(1)), \quad R^1 p_* (U \otimes \Omega^1_{S \times P^2 / S}(1))
\]

are locally free of ranks 0, 3, 4, 1, 3, 3. They are free on an open neighbourhood \(S_o \) of \(s \). Thus \(\rho_{32}, \rho_{31}, \psi_{12} \) can be made to depend algebraically on the point in \(S_o \). This allows us to define \(\varsigma \) on \(S_o \).

We now cover \(S \) with such open sets \(S_o \) and we notice that the locally defined maps \(\pi \circ \varsigma \) glue together to a globally defined morphism \(\sigma : S \rightarrow W_o / G \) making the diagram commute:

\[
\begin{array}{c}
\xymatrix{ & S_o \ar[dl]_{\pi} \ar[dr]^{\sigma} & \ar@{^{(}->}[d] \ar[dl]_{\iota} & \cr W_o & S & \ar[dl]_{\tau} & \cr W_o / G & & & \cr}
\end{array}
\]

Indeed, if \(\varsigma_1 \) and \(\varsigma_2 \) are defined on two distinct neighbourhoods of \(s \), then \(\varsigma_1(s) \) and \(\varsigma_2(s) \) are in the same \(G \)-orbit.

Finally, let us observe that \(\sigma \) is constant on the fibers of \(\tau \). This is so because if \(\tau(s_1) = \tau(s_2) \), then the corresponding sheaves \(U_{s_1} \) and \(U_{s_2} \) are isomorphic, so their Beilinson resolutions are equivalent, i.e. \(\varsigma_1(s) \) and \(\varsigma_2(s) \) are in the same \(G \)-orbit. Here \(\varsigma_i \) is defined on a neighbourhood of \(s_i \).

By the universal property (7.4)(i) of a good quotient, the map \(\sigma \) factors through a morphism from \(X \) to \(W_o / G \). This is the desired inverse of \(\rho \). Q.e.d.

The above proof could be carried out for all locally closed subsets \(X \subset M_{\text{P}^2}(r, \chi) \) occurring at (4.3), (4.5)(ii), (4.7), (4.8), provided that we knew the existence of the quotients \(W_o / G \). In all cases we would get the isomorphism \(X \simeq W_o / G \). Unfortunately, we do not know how to prove the existence of \(W_o / G \) when \(r \) and \(\chi \) are not mutually prime in each of the above cases. We should mention that an essential ingredient in the proof is the fact that all sheaves from \(S \) have the same kind of Beilinson complex. This is satisfied because the cohomological conditions defining \(X \) are closed under stable equivalence. This fact is easy to check in each
case. To give the flavor of the argument we will just check the case \(n = 6 \) from (4.3)(i): assume that \(G \) is stable equivalent to \(F \) and that \(F \) has resolution
\[
0 \rightarrow 2O(-2) \oplus 4O(-1) \rightarrow 6O \rightarrow F \rightarrow 0.
\]
Assume that \(F \) is properly semistable, so it fits into an exact sequence
\[
0 \rightarrow F_1 \rightarrow F \rightarrow F_2 \rightarrow 0
\]
with \(F_1 \) and \(F_2 \) in \(M_{F_2}(4,3) \). From \(h^1(F) = 0 \) and \(h^2(F_1) = 0 \) we get \(h^1(F_2) = 0 \). Analogously, from \(h^1(F \otimes \Omega^1(1)) = 0 \) and from \(h^2(F_1 \otimes \Omega^1(1)) = 0 \) we get \(h^1(F_2 \otimes \Omega^1(1)) = 0 \). We cannot have \(h^0(F_2(-1)) > 0 \) because, in view of (6.7), this would force \(h^1(F_2 \otimes \Omega^1(1)) = 1 \). Thus \(h^0(F_2(-1)) = 0 \). From \(h^0(F(-1)) = 0 \) we immediately also get \(h^0(F_1(-1)) = 0 \). In conclusion, both \(F_1 \) and \(F_2 \) satisfy the hypotheses of (4.2). We arrive at the resolutions
\[
0 \rightarrow O(-2) \oplus 2O(-1) \rightarrow 3O \rightarrow F_1 \rightarrow 0.
\]
By hypothesis \(G \) is an extension
\[
0 \rightarrow F_1 \rightarrow G \rightarrow F_2 \rightarrow 0
\]
possibly with \(F_1 \) and \(F_2 \) interchanged. By the "horseshoe lemma" the resolutions of \(F_1 \) and \(F_2 \) can be combined to give a resolution for \(G \) of the same kind as the resolution of \(F \).

8. Computation of Codimensions

To find the codimensions of the locally closed subvarieties of \(M_{F_2}(r, \chi) \) occurring in the previous sections we need to find the dimensions of the stabilizers of generic points from \(W_\omega \). For actions of reductive groups it is known that a stable point has zero-dimensional isotropy group. This fact will not remain true in our context.

We begin with a lemma which seems to be known, yet we couldn’t find a reference. Let \(V \) be a vector space over \(k \) and let \(W \) be the space of \(m \times n \)-matrices with entries in \(V \). We consider the action by conjugation on \(W \) of the reductive group \(G = \text{GL}(m) \times \text{GL}(n)/k^* \).

8.1 Lemma: The isotropy subgroup of a stable point from \(W \) is trivial.

Proof: Let \(w \in W \) be a stable matrix. Concretely, what this means, is that no matrix in the same orbit as \(w \) can have a zero \(p \times q \)-submatrix with \(\frac{p}{m} + \frac{q}{n} \geq 1 \). We consider an element in the isotropy group of \(w \) represented by \((g, h)\).

As \(G \) is reductive, \(\text{Stab}_G(w) \) is finite, so there are \(t \in k^* \) and an integer \(r \geq 1 \) such that \(g^r = tI_m \) and \(h^r = tI_n \). From this we see that \(g \) and \(h \) are diagonalizable matrices. Replacing possibly \(w \) by another point in its orbit, we may assume that \(g \) and \(h \) are diagonal matrices. Let us write
\[
g = \text{diag}(t_1, \ldots, t_m), \quad h = \text{diag}(s_1, \ldots, s_n).
\]
From \(w = gwh^{-1} \) we see that \(w_{ij} = 0 \) if \(t_i \neq s_j \). Thus, if \(t_1, \ldots, t_m, s_1, \ldots, s_n \) are not all equal, then \(w \) is a block matrix, say
\[
\begin{bmatrix}
\star & 0 \\
0 & \star
\end{bmatrix}.
\]
This contradicts the stability of \(w \). In conclusion \(g = tI_m, h = tI_n \), i.e. \((g, h)\) represents the identity of \(G \).
(8.2) Claim: The isotropy group of a generic semistable morphism

\[2\mathcal{O}(-2) \oplus (n-1)\mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus n\mathcal{O}, \quad \varphi_{12} = 0, \]

has dimension \(n - 1 \). The semistability conditions are understood to be as at (4.3).

Proof: We choose a morphism \(\varphi \) for which at least one of the maximal minors of \(\varphi_{22} \) is nonzero. Let \((g, h)\) be in \(\text{Stab}_G(\varphi) \). Keeping the notations from section 3 we write

\[g^{-1} = \begin{bmatrix} g_1 & 0 \\ u & g_2 \end{bmatrix}, \quad h = \begin{bmatrix} h_1 & 0 \\ v & h_2 \end{bmatrix}. \]

We have \(\varphi = h\varphi g^{-1} \) so \(\varphi_{11} = h_1\varphi_{11}g_1 \) and \(\varphi_{22} = h_2\varphi_{22}g_2 \). But \(\varphi_{11} \) and \(\varphi_{22} \) are stable matrices with entries in \(V^* \). From (8.1) we get \(h_1 = t_1, \ g_1 = t_1^{-1}, \ h_2 = t_2I_n, \ g_2 = t_2^{-1}I_{n-1} \). We have \(\varphi_{21} = v\varphi_{11}t_1^{-1} + t_2\varphi_{21}t_1^{-1} + t_2\varphi_{22}u \). If \(t_1 \neq t_2 \), then \(\varphi \) is equivalent to a matrix \(\varphi' \) for which \(\varphi'_{21} = 0 \). This would contradict the semistability of \(\varphi \). Thus \(t_1 = t_2 = t \) and \(\varphi_{22}u = -t^{-2}\varphi_{11} \).

Recall that \(\varphi_{11} = [X_1, X_2] \) with linearly independent \(X_1, X_2 \) in \(V^* \). We put \(\psi = [-X_2, X_1]^T \). From \(\varphi_{22}u\psi = -t^{-2}v\varphi_{11}\psi = 0 \) we get \(u\psi = 0 \) because one of the maximal minors of \(\varphi_{22} \) is nonzero. Thus \(u = \alpha\varphi_{11} \) with \(\alpha \in M_{n-1,1}(k) \). From \((t^{-1}v + t\varphi_{22}\alpha)\varphi_{11} = 0 \) we get \(v = -t^2\varphi_{22}\alpha \). Thus \((g, h)\) is parametrized by \(t \) and by the entries of \(\alpha \), giving the claim.

The above proof worked because for \(\varphi_{11} \) there existed a matrix \(\psi \) such that for any \(1 \times 2 \)-matrix \(u \) with entries in \(V^* \)

\[(*) \quad u\psi = 0 \quad \text{implies that } u \text{ is a multiple of } \varphi_{11}.\]

For morphisms from (4.7) we can take

\[\varphi_{11} = \begin{bmatrix} X & Y & Z \end{bmatrix}, \quad \psi = \begin{bmatrix} -Y & -Z & 0 \\ X & 0 & -Y \\ 0 & X & Z \end{bmatrix} \]

and we see that (*) is true for \(1 \times 3 \)-matrices \(u \) with entries in \(V^* \). We arrive at:

(8.3) Claim: The isotropy group of a generic semistable morphism

\[3\mathcal{O}(-2) \oplus (n-2)\mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus n\mathcal{O}, \quad \varphi_{12} = 0, \]

has dimension \(n - 2 \). The semistability conditions are understood to be as at (4.7).

For morphisms from (4.8) and (4.9) the \(2 \times 3 \)-matrix \(\varphi_{11} = (f_{ij})_{i=1,2,j=1,2,3} \) with entries in \(V^* \) is stable. Concretely, stability here means that the maximal minors of \(\varphi_{11} \) are linearly independent in \(S^2V^* \). We put \(f = [f_1, f_2, f_3]^T \), where

\[f_1 = \begin{bmatrix} f_{12} & f_{13} \\ f_{22} & f_{23} \end{bmatrix}, \quad f_2 = \begin{bmatrix} f_{13} & f_{11} \\ f_{23} & f_{21} \end{bmatrix}, \quad f_3 = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}. \]

Clearly \(\varphi_{11}f = 0 \). Our intention is to show that, for generic \(\varphi_{11} \), and for a \(1 \times 3 \)-matrix \(u \) with entries in \(V^* \), the equality \(uf = 0 \) implies that \(u \) is a linear combination of the rows of \(\varphi_{11} \). Indeed, the condition \(uf = 0 \) is the same as saying
that the determinant of

$$\psi = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ u_1 & u_2 & u_3 \end{bmatrix}$$

is zero. We need to prove that, modulo operations on rows and columns, \(\psi\) is equivalent to a matrix having a zero row. For this we will use (5.5), namely we will exclude the other possibilities listed there. First we see that, as the columns of \(\varphi_{11}\) are linearly independent, \(\psi\) cannot be equivalent to a matrix having a zero column. Nor is \(\psi\) equivalent to a matrix of the form

$$\begin{bmatrix} 0 & 0 & \star \\ 0 & 0 & \star \\ \star & \star & \star \end{bmatrix},$$

for if \(g\psi h\) has the above form, then all 2 × 2-minors positioned on the first two columns of \(\psi h\) are zero. But the matrix obtained by deleting the third row of \(\psi h\) is equivalent to \(\varphi_{11}\), so it is stable, so its first maximal minor from the left is nonzero (in fact all its maximal minors are nonzero).

If we choose \(\varphi_{11}\) generic enough, then \(\psi\) is equivalent to neither \(\psi_1\) nor \(\psi_2\) from (5.5). For instance, if \(\varphi_{11}\), regarded as a map from \(V^* \oplus V^* \oplus V^* \to V^* \oplus V^*\), is injective, then \(\psi\) is not equivalent to \(\psi_1\). To rule out \(\psi_2\), we need only observe that the condition \(\det(\psi_2) = 0\) defines a thin subset inside the affine space with coordinates \(a_1, \ldots, a_5\) (notations as at (5.5)). In conclusion, \(\psi\) is equivalent to a matrix having a zero row.

With the notations from the proof of (8.2), we have \(u = \alpha \varphi_{11}\) with \(\alpha \in M_{n-1,2}(k)\), and \(v = -t^2 \varphi_{22} \alpha\). We arrive at the following:

(8.4) Claim: The isotropy group of a generic semistable morphism

$$3\mathcal{O}(-2) \oplus (n-1)\mathcal{O}(-1) \xrightarrow{\varphi} 2\mathcal{O}(-1) \oplus n\mathcal{O}, \quad \varphi_{12} = 0,$$

has dimension \(2n - 2\).

Finally, we turn to morphisms from (6.10) and (6.11).

(8.5) Claim: The isotropy group of a generic semistable morphism

$$(n-2)\mathcal{O}(-2) \oplus 3\mathcal{O}(-1) \xrightarrow{\varphi} (n-3)\mathcal{O}(-1) \oplus 3\mathcal{O}, \quad \varphi_{12} = 0, \quad \varphi_{22} = \psi_1,$$

has dimension \(4n - 11\).

Proof: As at (8.2) we have \(t_1 = t_2 = t\) and \(v \varphi_{11} t^{-1} = -t \varphi_{22} u\). We put \(\psi = [Z, -X, Y]\). From \(\psi v \varphi_{11} = -t^2 \varphi_{22} u = 0\) we get \(\psi v = 0\), because \(\varphi_{11}\) can be chosen generic enough that one of its maximal minors be nonzero. From \(\psi v = 0\) we get \(v = \varphi_{22} \alpha\) with \(\alpha \in M_{4,n-3}\). From \(\varphi_{22} (\alpha \varphi_{11} t^{-1} + tu) = 0\) we get \(\alpha \varphi_{11} t^{-1} + tu = [-Y, X, Z]^T \beta\). with \(\beta \in M_{1,n-2}(k)\). Thus \(\text{Stab}_G(\varphi)\) is parametrized by \(t\), the entries of \(\alpha\) and the entries of \(\beta\). Q.e.d.

Once we know the dimensions of the isotropy groups of generic points \(\varphi \in W_o\), we can apply the obvious formula

$$\dim(X) = \dim(W_o) - \dim(G) + \dim(\text{Stab}_G(\varphi)).$$
We do not carry out here these computations; we refer, instead, to the table from the introduction where we have recorded the results.

9. Duality Results

In [8] one can find a birational map of fine moduli spaces

\[\mathcal{M}_{\mathbb{P}^2}(r, \chi) \longrightarrow \mathcal{M}_{\mathbb{P}^2}(r, r - \chi) \]

given by sending a point represented by \(F \) to the point represented by the dual sheaf \(F^D \). By modifying slightly the argument from [8] we will construct such birational maps also for those coarse moduli spaces occurring in section 4. At (9.5) we will also obtain isomorphisms between dual locally closed subspaces of \(\mathcal{M}_{\mathbb{P}^2}(r, \chi) \) and \(\mathcal{M}_{\mathbb{P}^2}(r, r - \chi) \).

In the sequel \(F \) will be a coherent sheaf on \(\mathbb{P}^2 \) with pure one-dimensional support and without zero-dimensional torsion. We define its dual \(F^D \) by

\[F^D = \mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^2}}(F, \Omega_{\mathbb{P}^2}^2)(1). \]

Clearly \(F^D \) has one-dimensional support, so it has linear Hilbert polynomial. This can be computed using the following isomorphisms provided by Serre Duality:

\[H^0(F^D(-1)) \simeq H^1(F)^*, \quad H^1(F^D(-1)) \simeq H^0(F)^*, \]

\[H^0(F^D) \simeq H^1(F(-1))^*, \quad H^1(F^D) \simeq H^0(F(-1))^*. \]

Thus, if \(P_F(t) = rt + \chi \), then \(P_{F^D}(t) = rt + r - \chi \). In particular, the slopes of \(F \) and \(F^D \) are related by \(p(F^D) = 1 - p(F) \).

(9.1) Lemma: If \(F \) is Cohen-Macaulay, in particular if \(F \) is semistable, then \(F^{DD} \simeq F \) and \(\mathcal{E}xt^2(F, \Omega^2) = 0 \).

Proof: We will apply proposition 1.1.10 from [11]. All we need to show is that \(F \) satisfies the Serre condition \(S_{2,1} \):

\[\text{depth}(F_x) \geq \min\{2, \text{dim } O_{\mathbb{P}^2, x} - 1\} \quad \text{for all } x \in \text{Supp}(F). \]

But if \(x \) is a closed point in the support of \(F \), we have \(\text{depth}(F_x) = 1 \) and \(\text{dim } O_{\mathbb{P}^2, x} = 2 \). If \(x \) is a generic point of an irreducible component of \(\text{Supp}(F) \), we have \(\text{dim } O_{\mathbb{P}^2, x} = 1 \) and the above inequality is trivially fulfilled.

Finally, we notice that, by virtue of (2.3), semistable sheaves are Cohen-Macaulay.

(9.2) Lemma: \(F \) is (semi)stable if and only if \(F^D \) is (semi)stable.

Proof: Assume that \(F \) is semistable. Let \(G = F^D/K \) be a quotient sheaf of \(F^D \). As \(K \) is a torsion sheaf, we have \(\mathcal{H}om(K, \Omega^2) = 0 \). Applying the long exact sequence in \(\mathcal{E}xt \)-sheaves to the short exact sequence

\[0 \longrightarrow K \longrightarrow F^D \longrightarrow G \longrightarrow 0 \]

we see that \(G^D \) is a subsheaf of \(F^{DD} \simeq F \). Thus

\[1 - p(G) = p(G^D) \leq p(F) = 1 - p(F^D), \quad \text{so } \quad p(F^D) \leq p(G). \]

This proves the semistability of \(F^D \).

Assume that \(F \) is not semistable. Then \(F \) has a quotient sheaf \(G \) with \(p(G) < p(F) \). As before, \(G^D \) is a destabilizing subsheaf of \(F^D \).
(9.3) Lemma: If \mathcal{F} and \mathcal{G} are semistable and stable equivalent, then so are \mathcal{F}^D and \mathcal{G}^D.

Proof: Let us consider a Jordan-Hölder filtration for \mathcal{F}:

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_{n-1} \subset \mathcal{F}_n = \mathcal{F}.$$

We apply the long exact sequence in $\mathcal{E}xt$-sheaves to the exact sequences

$$0 \rightarrow \mathcal{F}_i \rightarrow \mathcal{F}_{i+1} \rightarrow \mathcal{F}_{i+1}/\mathcal{F}_i \rightarrow 0.$$

As \mathcal{F}_i is a torsion sheaf we have $\mathcal{H}om(\mathcal{F}_i, \Omega^2) = 0$. As $\mathcal{F}_{i+1}/\mathcal{F}_i$ is semistable, we have, by (9.1), $\mathcal{E}xt^2(\mathcal{F}_{i+1}/\mathcal{F}_i, \Omega^2) = 0$. We arrive at the exact sequences

$$0 \rightarrow (\mathcal{F}_{i+1}/\mathcal{F}_i)^D \rightarrow \mathcal{F}_{i+1}^D \rightarrow \mathcal{F}_i^D \rightarrow 0.$$

Similarly we obtain exact sequences

$$0 \rightarrow (\mathcal{F}/\mathcal{F}_1)^D \rightarrow \mathcal{F}^D \rightarrow \mathcal{F}_1^D \rightarrow 0.$$

From these two sequences we conclude that

$$0 = (\mathcal{F}/\mathcal{F}_n)^D \subset (\mathcal{F}/\mathcal{F}_{n-1})^D \subset \ldots \subset (\mathcal{F}/\mathcal{F}_1)^D \subset (\mathcal{F}/\mathcal{F}_0)^D = \mathcal{F}^D$$

is a Jordan-Hölder filtration of \mathcal{F}^D with terms $(\mathcal{F}_{i+1}/\mathcal{F}_i)^D$, the latter being stable by virtue of (9.2). The lemma follows.

(9.4) Theorem: Assume that $\frac{r}{\chi} \leq \chi \leq r$ and that r, χ are mutually prime. Then the open dense subset of $M_{\mathbb{P}^2}(r, \chi)$ given by the conditions

$$h^0(\mathcal{F}(-1)) = 0, \quad h^1(\mathcal{F}) = 0, \quad h^1(\mathcal{F} \otimes \Omega^1(1)) = 0,$$

is isomorphic to the open dense subset of $M_{\mathbb{P}^2}(r, r - \chi)$ given by the conditions

$$h^1(\mathcal{F}) = 0, \quad h^0(\mathcal{F}(-1)) = 0, \quad h^0(\mathcal{F} \otimes \Omega^1(1)) = 0.$$

The isomorphism is given by $[\mathcal{F}] \rightarrow [\mathcal{F}^D]$.

Proof: From (9.1), (9.2) and (9.3) we see that the map δ given by $[\mathcal{F}] \rightarrow [\mathcal{F}^D]$ is well defined and a bijection between the two open sets from the theorem, which we call $M_o(r, \chi)$ and $M_o(r, r - \chi)$.

Every sheaf \mathcal{F} from $M_o(r, \chi)$ has Beilinson resolution

$$(*) \quad 0 \rightarrow (r - \chi)\mathcal{O}(-2) \oplus (2\chi - r)\mathcal{O}(-1) \xrightarrow{\varphi} \chi\mathcal{O} \rightarrow \mathcal{F} \rightarrow 0.$$

The long exact sequence in $\mathcal{E}xt$-sheaves gives the resolution

$$0 \rightarrow \chi\mathcal{O}(-2) \xrightarrow{\varphi^D} (r - \chi)\mathcal{O} \oplus (2\chi - r)\mathcal{O}(-1) \rightarrow \mathcal{F}^D \rightarrow 0,$$

where φ^D, viewed as a matrix, is simply the transpose of φ. The set of morphisms φ occuring above forms an open subset W_o inside the vector space of morphisms

$$(r - \chi)\mathcal{O}(-2) \oplus (2\chi - r)\mathcal{O}(-1) \rightarrow \chi\mathcal{O}.$$

On $W_o \times \mathbb{P}^2$ we consider the coherent sheaf $\tilde{\mathcal{F}}$ given by the exact sequence

$$\mathcal{O}_{W_o} \boxtimes (r - \chi)\mathcal{O}_{\mathbb{P}^2}(-2) \oplus \mathcal{O}_{W_o} \boxtimes (2\chi - r)\mathcal{O}_{\mathbb{P}^2}(-1) \xrightarrow{\Phi_o} \chi\mathcal{O}_{W_o \times \mathbb{P}^2} \rightarrow \tilde{\mathcal{F}} \rightarrow 0.$$
On each fiber \(\{ \varphi \} \times \mathbb{P}^2 \) the restriction of \(\Phi \) is \(\varphi \). Similarly we construct the dual family as the cokernel

\[
\mathcal{O}_{W_o} \otimes \mathcal{O}_{\mathbb{P}^2}(-2) \xrightarrow{\delta^D} \mathcal{O}_{W_o} \otimes \mathcal{O}_{\mathbb{P}^2} (r - \chi) \mathcal{O}_{\mathbb{P}^2} \rightarrow \tilde{\mathcal{F}}^D \rightarrow 0
\]

of a morphism \(\Phi^D \) which restricts to \(\varphi^D \) on each fiber \(\{ \varphi \} \times \mathbb{P}^2 \). Clearly \(\tilde{\mathcal{F}} \) and \(\tilde{\mathcal{F}}^D \) are \(W_o \)-flat, so they induce morphisms

\[
\rho : W_o \rightarrow M_o (r, \chi), \quad \rho^D : W_o \rightarrow M_o (r, r - \chi).
\]

We have \(\delta \circ \rho = \rho^D \).

Next we recall from section 2 that \(M_{\mathbb{P}^2} (r, \chi) \) is the good quotient of an open subset \(R \) inside a certain quotient scheme. Let \(S \) be the preimage of \(M_o (r, \chi) \) under the quotient map \(R \rightarrow M_{\mathbb{P}^2} (r, \chi) \). The map \(\pi : S \rightarrow M_o (r, \chi) \) is a good quotient map. Let \(U \) be the restriction to \(S \times \mathbb{P}^2 \) of the universal quotient family on \(R \times \mathbb{P}^2 \). From the fact that all restrictions of \(U \) to the fibers \(\{ s \} \times \mathbb{P}^2, s \in S \), have Beilinson resolution (*) we deduce, as in the proof of (7.14), the existence of locally defined morphisms \(\varsigma : S_o \rightarrow W_o \) satisfying \(\rho \circ \varsigma = \pi \). The morphisms \(\rho^D \circ \varsigma \) glue to a globally defined morphism \(\pi^D \) making the diagram commute:

\[
\begin{array}{c}
\text{S} \\
\downarrow \pi \\
S_o \\
\downarrow \varsigma \\
W_o \\
\downarrow \rho^D \\
M_o (r, \chi) \quad \downarrow \delta \\
\quad \quad M_o (r, r - \chi)
\end{array}
\]

Thus \(\delta \) is the map induced by \(\pi^D \) via the universal property of the quotient map \(\pi \). As such, \(\delta \) must be a morphism. By symmetry, its inverse must be a morphism, too.

The above theorem first appeared in [8]. Its proof given there is simpler and makes use of the universal families on the fine moduli spaces. Our argument, though more cumbersome, has the following advantage: it works also in the case when \(r, \chi \) are not mutually prime, as long as we know that all sheaves giving a point in \(M_o \) have the same kind of Beilinson complex.

(9.5) Theorem: Let \(X \) be the locally closed subvariety of \(M_{\mathbb{P}^2} (r, \chi) \) given by the conditions

\[
h^0 (F(-1)) = a, \quad h^0 (F) = b, \quad h^0 (F \otimes \Omega^1 (1)) = c.
\]

Assume that every sheaf giving a point in \(X \) satisfies the above conditions. This is the case, for instance, when \(r, \chi \) are mutually prime. Then \(X \) is isomorphic to the locally closed subvariety \(X^D \) of \(M_{\mathbb{P}^2} (r, r - \chi) \) given by the conditions

\[
h^1 (F) = a, \quad h^1 (F(-1)) = b, \quad h^1 (F \otimes \Omega^1 (1)) = c.
\]

The isomorphism is given by \([F] \rightarrow [F^D] \). Here \(X \) and \(X^D \) are equipped with their canonical reduced structures.
Proof: Assume that X is nonempty. We repeat the arguments from (9.4).

We consider vector bundles E^i on \mathbb{P}^2, $i = -2, -1, 0, 1$, which are decomposable as direct sums of line bundles. We assume that for each F giving a point in X there is a complex
\[(*) \quad 0 \rightarrow E^{-2} \rightarrow E^{-1} \rightarrow E^0 \rightarrow E^1 \rightarrow 0\]
which is exact, except at E^0, where the cohomology is F. For instance, we could choose E^i to be the bundles E^i occurring in the Beilinson complex (4.1). Let W_o be the set of the above complexes.

W_o will play the same role as in the proof of (9.4). The existence of $\rho: W_o \rightarrow X$ is clear by construction. To finish the proof, we only need to construct the set of the above complexes.

We consider the long exact sequences in $\mathcal{E}xt(\underline{\Omega}^2)$-sheaves induced by the short exact sequences
\[0 \rightarrow E^{-2} \rightarrow E^{-1} \rightarrow A \rightarrow 0,\]
\[0 \rightarrow B \rightarrow E^0 \rightarrow E^1 \rightarrow 0,\]
\[0 \rightarrow A \rightarrow B \rightarrow F \rightarrow 0.\]
As $\mathcal{E}xt^j(\mathcal{O}(d), \underline{\Omega}) = 0$ for $j \geq 1$, we have $\mathcal{E}xt^j(E^i, \Omega^2) = 0$ for $j \geq 1$. The second sequence gives $\mathcal{E}xt^1(B, \Omega^2) = 0$. In view of (9.1), the semistability of F leads to $\mathcal{E}xt^2(F, \Omega^2) = 0$. The third sequence gives $\mathcal{E}xt^1(A, \Omega^2) = 0$. Thus we arrive at the exact sequences
\[0 \rightarrow \mathcal{H}om(A, \Omega^2) \rightarrow \mathcal{H}om(E^{-1}, \Omega^2) \rightarrow \mathcal{H}om(E^{-2}, \Omega^2) \rightarrow 0,\]
\[0 \rightarrow \mathcal{H}om(E^1, \Omega^2) \rightarrow \mathcal{H}om(E^0, \Omega^2) \rightarrow \mathcal{H}om(B, \Omega^2) \rightarrow 0,\]
\[0 \rightarrow \mathcal{H}om(B, \Omega^2) \rightarrow \mathcal{H}om(A, \Omega^2) \rightarrow \mathcal{E}xt^1(F, \Omega^2) \rightarrow 0\]
which immediately yield (**).

We mentioned at the end of section 7 that all locally closed subvarieties X occuring in section 4, satisfy the hypotheses of the above theorem. Indeed, it can be verified in each case that the cohomological properties defining X are closed under stable equivalence. As a consequence, all locally closed subvarieties $X \subset \mathbb{M}_{22}(r, \chi)$ occurring in sections 4, 5, 6, with the possible exception of the subvarieties in $\mathbb{M}_{22}(3r, 3)$, $r = 3, 4, 5$, occuring in section 6, are isomorphic to their duals X^D. In particular, (9.4) remains true for the following choices of multiplicity and Euler characteristic: $(6,4)$, $(8,6)$, $(9,6)$. We obtain the following:

(9.6) Corollary: For the following choices of (r, χ) the spaces $\mathbb{M}_{22}(r, \chi)$ and $\mathbb{M}_{22}(r, r - \chi)$ are birational: $(6,4)$, $(8,6)$, $(9,6)$.

Here is another application of (9.5): the closed subset of $\mathbb{M}_{22}(4,1)$ given by the conditions $h^0(F(-1)) = 0$, $h^1(F) = 1$ (the condition $h^0(F \otimes \Omega^1(1)) = 1$ is automatically fulfilled), is isomorphic to the closed subset of $\mathbb{M}_{22}(4,3)$ given by the conditions $h^1(F) = 0$, $h^0(F(-1)) = 1$. This we proved earlier at (7.9) and (7.10).
by means of their description as geometric quotients.

Let W^D_o denote the set of complexes (**), i.e. the set of complexes obtained by applying $Hom(\cdot, \Omega^2)(1)$ to the complexes from W_o. If we identify W_o with a certain subset of triples of matrices $(\varphi, \varphi', \varphi'')$ inside the vector space

$$W = \text{Hom}(\mathcal{E}^{-2}, \mathcal{E}^{-1}) \times \text{Hom}(\mathcal{E}^{-1}, \mathcal{E}^0) \times \text{Hom}(\mathcal{E}^0, \mathcal{E}^1),$$

then W^D_o is just the subset of triples of transposed matrices $(\varphi''^T, \varphi'^T, \varphi^T)$ inside the vector space

$$W^D = \text{Hom}(\mathcal{E}_D^1, \mathcal{E}_D^0) \times \text{Hom}(\mathcal{E}_D^0, \mathcal{E}_D^{-1}) \times \text{Hom}(\mathcal{E}_D^{-1}, \mathcal{E}_D^{-2}).$$

Thus transposition gives an isomorphism of W_o with W^D_o, both equipped with their canonical reduced structures induced by the ambient spaces W and W^D.

On W_o and on W^D_o we have the canonical action of the (usually nonreductive) algebraic group

$$G = \text{Aut}(\mathcal{E}^{-2}) \times \text{Aut}(\mathcal{E}^{-1}) \times \text{Aut}(\mathcal{E}^0) \times \text{Aut}(\mathcal{E}^1).$$

From the proofs of (9.4) and (9.5) we extract the following:

Proposition (9.7): Let X be as in (9.5). Assume that a good quotient of W_o by G exists and is isomorphic to X. Then a good quotient of W^D_o by G exists and is isomorphic to X^D.

For every subset $X \subset M_{p^2}(r, \chi)$ described in section 7 as a good (geometric) quotient, we have a dual description of $X^D \subset M_{p^2}(r, r - \chi)$ as a good (geometric) quotient. For better understanding let us introduce to a polarization Λ of type (2,1) or (2,2) its dual polarization Λ^D of type (1,2), respectively (2.2):

- for $\Lambda = (\lambda_1, \lambda_2, \mu_1)$ we put $\Lambda^D = (\lambda_1^D, \mu_1^D, \mu_2^D) = (\mu_1, \lambda_2, \lambda_1);$
- for $\Lambda = (\lambda_1, \lambda_2, \mu_1, \mu_2)$ we put $\Lambda^D = (\lambda_1^D, \lambda_2^D, \mu_1^D, \mu_2^D) = (\mu_1, \mu_2, \lambda_2, \lambda_1).$

If W_o is defined by semistability conditions expressed in terms of Λ, then W^D_o is defined by semistability conditions expressed in terms of Λ^D. We list below the consequences of (9.7) for the cases of generic sheaves:

Corollary (9.8): The open dense subset of $M_{p^2}(n + 1, 1)$, $n \geq 2$, given by the condition $h^1(F) = 0$, is isomorphic to W_o/G, where W_o is the set of injective morphisms

$$n \mathcal{O}(-2) \xrightarrow{\varphi} (n - 1) \mathcal{O}(1) \oplus \mathcal{O}, \quad \varphi \in W^{ss}(G, \Lambda), \; \Lambda = (\lambda_1, \mu_1, \mu_2), \; 0 < \mu_2 < \frac{1}{n}.$$

The open dense subset of $M_{p^2}(n + 2, 2)$, $n = 3, 4, 5, 6$, given by the conditions $h^0(F(-1)) = 0$, $h^1(F) = 0$, $h^0(F \otimes \Omega^1(1)) = 0$, is isomorphic to W_o/G, where W_o is the set of injective morphisms

$$n \mathcal{O}(-2) \xrightarrow{\varphi} (n - 2) \mathcal{O}(1) \oplus 2 \mathcal{O}, \quad \varphi \in W^{ss}(G, \Lambda), \; \Lambda = (\lambda_1, \mu_1, \mu_2), \; \frac{1}{2n} < \mu_2 < \frac{1}{n}.$$

The open dense subset of $M_{p^2}(n + 3, 3)$, $n = 4, 5$, given by the conditions $h^0(F(-1)) = 0$, $h^1(F) = 0$, $h^0(F \otimes \Omega^1(1)) = 0$, is isomorphic to W_o/G, where W_o is the set of
injective morphisms

\[n\mathcal{O}(-2) \xrightarrow{\varphi} (n-3)\mathcal{O}(-1) \oplus 3\mathcal{O}, \quad \varphi \in W^{ss}(G, \Lambda), \quad \Lambda = (\lambda_1, \mu_1, \mu_2), \quad \frac{2}{3n} < \mu_2 < \frac{1}{n}. \]

One final example of a quotient we were not able to obtain in section 6: the subset of \(\mathcal{M}_{P^2}(6, 3) \) given by the conditions \(h^0(F(-1)) = 1, h^1(F) = 0 \) (the condition \(h^1(F \otimes \Omega^1(1)) = 3 \) is automatically fulfilled), is isomorphic to \(W_o/G \), where \(W_o \) is the set of injective morphisms

\[4\mathcal{O}(-2) \xrightarrow{\varphi} 3\mathcal{O}(-1) \oplus \mathcal{O}(1), \quad \varphi \in W^{ss}(G, \Lambda), \quad \Lambda = (\lambda_1, \mu_1, \mu_2), \quad 0 < \mu_2 < \frac{1}{4}. \]

Applying (9.7) to the quotients from section 6 we get descriptions for the subsets in \(\mathcal{M}_{P^2}(n+3, n) \), \(n = 4, 5, 7, 8, 10, 11 \), given by the conditions \(h^0(F(-1)) = 0, h^1(F) = 1 \). We omit the details.

REFERENCES

[1] Wolf Barth, Moduli of Vector Bundles on the Projective Plane, Inventiones math. 42 (1977), 63-91.
[2] Mei-Chu Chang, Stable Rank 2 Bundles on \(\mathbb{P}^3 \) with \(c_1 = 0, c_2 = 4 \), and \(\alpha = 1 \), Math. Z. 184 (1983), 407-415.
[3] Jean-Marc Drézet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur \(\mathbb{P}_2(\mathbb{C}) \), J. reine angew. Math. 380 (1987), 14-58.
[4] Jean-Marc Drézet, Variétés de modules extrémales de faisceaux semi-stables sur \(\mathbb{P}_2(\mathbb{C}) \), Math. Ann. 290 (1991), 727-770.
[5] Jean-Marc Drézet, Quotients algébriques par des groupes non réductifs et variétés de modules de complexes, Inter. J. Math. 9 (1998), no. 7, 769-819.
[6] Jean-Marc Drézet, Espaces abstraits de morphismes et mutations, J. reine angew. Math. 518 (2000), 41-93.
[7] Jean-Marc Drézet, Günther Trautmann, Moduli Spaces of Decomposable Morphisms of Sheaves and Quotients Modulo Non-reductive Groups, Ann. Inst. Fourier 53 (2003), no. 1, 107-192.
[8] Hans-Georg Freiermuth, On the Moduli Space \(\mathcal{M}_{P^2}(\mathbb{P}_3) \) of Semi-stable Sheaves on \(\mathbb{P}_3 \) with Hilbert Polynomial \(P(m) = 3m + 1 \), Diplomarbeit at Univ. Kaiserslautern, December 2000.
[9] Hans-Georg Freiermuth, Günther Trautmann, On the Moduli Scheme of Stable Sheaves Supported on Cubic Space Curves, Amer. J. Math. 126 (2004), 363-393.
[10] Klaus Hulek, Stable Rank-2 Vector Bundles on \(\mathbb{P}_2 \) with \(c_1 = 1 \) Odd, Math. Ann. 242 (1979), 241-266.
[11] Daniel Huybrechts, Manfred Lehn, The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics E31, Friedr. Vieweg & Sohn, Braunschweig, 1997.
[12] J. Le Potier, Faisceaux semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math. Pures Appl. 38 (1993), 635-678.
[13] Mario Maican, Variation of GIT-Quotients. Examples, Techniques and Applications to Moduli Spaces, Diplomarbeit at Univ. Kaiserslautern, April 2000.
[14] Phillip Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute Lectures on Mathematics and Physics 51, Narosa Publ. House, New Delhi, 1978.
[15] Christian Okonek, Michael Schneider, Heinz Spindler, Vector Bundles on Projective Spaces, Progress in Mathematics 3, Birkhäuser, Boston, 1980.
[16] Carlos Simpson, Moduli of Representations of the Fundamental Group of a Smooth Projective Variety I, II, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129 and 80 (1994), 5-79.