Panaitopol-Bandila-Lascu Type Inequalities for Generalized Hyperbolic Functions

Kwara Nantomah1* and Osman Kasimu2

1Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P.O.Box 24, Navrongo, UE/R, Ghana.
2Faculty of Education, College of Arts, Law and Education, University of Tasmania, Launceston TAS 7248, Australia.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2020/v16i530190
Editor(s):
(1) Prof. Megan M. Khoshyaran, Economics Traffic Clinic - ETC, France.
Reviewers:
(1) Adel H. Phillips, Ain Shams University, Egypt.
(2) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia.
(3) Francisco Bulnes, Tecnolóxico de Estudios Superiores de Chalco, Mexico.
(4) Abdullah Akkurt, Kahramanmaraş Sütçü Imam University, Turkey.
Complete Peer review History: http://www.sdiarticle4.com/review-history/56505

Received: 24 February 2020
Accepted: 29 April 2020

Original Research Article

Abstract

In this paper, we establish Panaitopol-Bandila-Lascu type inequalities for some generalized hyperbolic functions. The established results extend and generalize some earlier results due Barbu and Piscoran. The procedure makes use of the classical arithmetic-geometric mean inequality and the Cauchy-Schwarz inequality.

Keywords: Generalized hyperbolic functions; Panaitopol-Bandila-Lascu inequality; arithmetic-geometric mean inequality; Cauchy-Schwarz inequality.

2010 Mathematics Subject Classification: 33B10, 33Bxx, 26D05.

*Corresponding author: E-mail: knantomah@uds.edu.gh;
1 Introduction and Preliminary Definitions

In 2008, Panaitopol, Bandila and Lascu [1] proposed the following problems.

Problem 1.1. If \(0 < z < \pi/2, u > 0 \) and \(v > 0 \), then
\[
(1 + \sqrt{2uv})^2 \leq (1 + \frac{u}{\sin z})(1 + \frac{v}{\cos z}).
\]

Problem 1.2. If \(0 < z < \pi/2 \) and \(n \in \mathbb{N} \), then
\[
(1 + 2^n)^2 \leq (1 + \frac{1}{\sin^n z})(1 + \frac{1}{\cos^n z}).
\]

Then in 2012, Barbu and Piscoran [2] extended these results to the hyperbolic functions. Specifically, they established that the inequality
\[
\left(1 + \sqrt{2uv} \sinh 2z\right)^2 \leq \left(1 + \frac{u}{\sinh z}\right)\left(1 + \frac{v}{\cosh z}\right);
\]
holds for \(z > 0, u > 0 \) and \(v > 0 \). By using the principle of mathematical induction, they generalize (3) by proving that
\[
\left(1 + \sqrt{\frac{2uv}{\sinh 2z}} \sinh 2r + 1 z\right)^2 \leq \left(1 + \frac{u}{\sinh 2rz}\right)\left(1 + \frac{v}{\cosh 2rz}\right);
\]
holds for \(z > 0, u > 0, v > 0 \) and \(r \in \mathbb{N} \). They further established that
\[
\left(1 + \sqrt{\frac{uv}{\sinh^m z \cosh^n z}}\right)^2 \leq \left(1 + \frac{u}{\sinh^m z}\right)\left(1 + \frac{v}{\cosh^m z}\right)
\leq 1 + \sqrt{(u^2 + v^2) \left(\frac{1}{\sinh^{2m} z} + \frac{1}{\cosh^{2n} z}\right) + \frac{uv}{\sinh^m z \cosh^n z}},
\]
holds for \(z > 0, u > 0, v > 0 \) and \(m, n \in \mathbb{N} \).

Also, in a bid to generalize a previous work [3], the authors of [4] gave the following generalizations of the hyperbolic functions. See also [5] and [6].

Definition 1.3. The generalized hyperbolic cosine, hyperbolic sine and hyperbolic tangent functions are respectively defined as [4]
\[
cosh_a(z) = \frac{a^z + a^{-z}}{2},
\]
\[
sinh_a(z) = \frac{a^z - a^{-z}}{2},
\]
\[
tanh_a(z) = \frac{\sinh_a(z)}{\cosh_a(z)} = \frac{a^z - a^{-z}}{a^z + a^{-z}} = 1 - \frac{2}{1 + a^{2z}}.
\]
where \(a > 1 \) and \(z \in \mathbb{R} \).

These generalized functions satisfy the following identities [4].
\[
cosh_a(z) + \sinh_a(z) = a^z,
\]
\[
cosh_a(z) - \sinh_a(z) = a^{-z},
\]
\[
(cosh_a(z))' = (\ln a) \sinh_a(z),
\]
By applying the well-known arithmetic-geometric mean inequality \[(22) \]
\[(\sinh_a(z))' = (\ln a) \cosh_a(z), \]
\[(\tanh_a(z))' = \frac{\ln a}{\cosh_a^2(z)}, \]
\[(\cosh_a(z))'' + (\sinh_a(z))'' = (\ln a)^2 a^e, \]
\[(\cosh_a(z))'' - (\sinh_a(z))'' = (\ln a)^2 a^{-e}, \]
\[\cosh_a^2(z) + \sinh_a^2(z) = \cosh_a(2z), \]
\[\cosh_a^2(z) - \sinh_a^2(z) = 1, \]
\[2 \sinh_a(z) \cosh_a(z) = \sinh_a(2z), \]
\[\cosh_a^2(z) = \frac{\cosh_a(2z) + 1}{2}, \]
\[\sinh_a^2(z) = \frac{\cosh_a(2z) - 1}{2}. \]

The generalized hyperbolic secant, hyperbolic cosecant and hyperbolic cotangent functions are respectively defined as
\[\text{sech}_a(z) = \frac{1}{\cosh_a(z)}, \quad \text{cosech}_a(z) = \frac{1}{\sinh_a(z)}, \quad \text{coth}_a(z) = \frac{1}{\tanh_a(z)}. \]

As pointed out in [4], several other identities can be derived from (6), (7) and (8). When \(a = e \), where \(e = 2.71828... \) is the Euler’s number, then the above definitions and identities reduce to their ordinary counterparts. For other generalizations of these function, the reader may refer to [7] and [8].

Motivated by the work of Barbu and Piscoran [2], the objective of this work is to extend inequalities (3), (4) and (5) to the generalized hyperbolic functions (6), (7) and (8). Specifically, we provide lower and upper bounds for the functions
\[(1 + u/\sinh_a^m(z))(1 + v/\cosh_a^n(z)), \]
\[(1 + u/\cosh_a^m(z))(1 + v/\tan_a^n(z)), \]
\[(1 + u/\sinh_a^m(z))(1 + v/\tan_a^n(z)), \]
where \(z > 0, u > 0, v > 0 \) and \(m, n \in \mathbb{N} \). We present our results in the following section.

\[\textbf{2 Results and Discussion} \]

\textbf{Theorem 2.1.} Let \(z > 0, u > 0, v > 0 \) and \(m, n \in \mathbb{N} \). Then the inequality
\[\left(1 + \sqrt{\frac{uv}{\sinh_a^m(z) \cosh_a^n(z)}}\right)^2 \leq \left(1 + \frac{u}{\sinh_a^m(z)}\right) \left(1 + \frac{v}{\cosh_a^n(z)}\right) \leq \left(1 + \frac{u}{2 \sinh_a^m(z)} + \frac{v}{2 \cosh_a^n(z)}\right)^2, \]

holds.

\textit{Proof.} By applying the well-known arithmetic-geometric mean inequality [9], we obtain
\[\frac{1 + u}{\sinh_a^m(z)} + \frac{v}{\cosh_a^n(z)} \geq 1 + 2 \sqrt{\frac{uv}{\sinh_a^m(z) \cosh_a^n(z)}} = \left(1 + \sqrt{\frac{uv}{\sinh_a^m(z) \cosh_a^n(z)}}\right)^2, \]

32
which gives the left-hand side of (22). Next, by applying the Cauchy-Schwarz inequality [10], we obtain
\[
\left(1 + \frac{u}{\sinh a(z)}\right)\left(1 + \frac{v}{\cosh a(z)}\right) \\
\leq \frac{1}{2} \left[\left(1 + \frac{u}{\sinh a(z)}\right)^2 + \left(1 + \frac{v}{\cosh a(z)}\right)^2\right] \\
= \frac{1}{2} \left[\left(2 + \frac{u}{\sinh a(z)} \right) + \frac{v}{\cosh a(z)}\right]^2 - 2 \left(1 + \frac{u}{\sinh a(z)}\right)\left(1 + \frac{v}{\cosh a(z)}\right) \\
= 2 \left(1 + \frac{u}{2\sinh a(z)} + \frac{v}{2\cosh a(z)}\right)^2 - \left(1 + \frac{u}{\sinh a(z)}\right)\left(1 + \frac{v}{\cosh a(z)}\right),
\]
which gives the right-hand side of (22).

Corollary 2.2. Let \(z > 0, u > 0, v > 0 \) and \(r \in \mathbb{N}_0 \). Then the inequality
\[
\left(1 + \sqrt{2uv \sinh a(2rz)}\right)^2 \leq \left(1 + \frac{u}{\sinh a(z)}\right)\left(1 + \frac{v}{\cosh a(z)}\right) \\
\leq \left(1 + \frac{u \cosh a(2rz) + v \sinh a(2rz)}{\sinh a(2rz)}\right)^2, \quad (23)
\]
holds.

Proof. This follows from Theorem 2.1 by letting \(m = n = 1 \) and replacing \(z \) by \(2rz \).

Corollary 2.3. Let \(z > 0, u > 0, v > 0 \) and \(n \in \mathbb{N} \). Then the inequality
\[
\left(1 + \frac{2^n uv}{\sinh a(2nz)}\right)^2 \leq \left(1 + \frac{u}{\sinh a(z)}\right)\left(1 + \frac{v}{\cosh a(z)}\right) \\
\leq \left(1 + \frac{2^n - 1[u \cosh a(z) + v \sinh a(z)]}{\sinh a(2nz)}\right)^2, \quad (24)
\]
holds.

Proof. This follows from Theorem 2.1 by letting \(m = n \).

Corollary 2.4. For \(z > 0 \), then the inequality
\[
\left(1 + \sqrt{2 \sinh a(2z)}\right)^2 \leq \left(1 + \frac{1}{\sinh a(z)}\right)\left(1 + \frac{1}{\cosh a(z)}\right) \leq \left(1 + \frac{a^z}{\sinh a(2z)}\right)^2, \quad (25)
\]
holds.

Proof. This follows from Theorem 2.1 by letting \(m = n = 1 \) and \(u = v = 1 \).

Corollary 2.5. For \(z > 0 \), then the inequality
\[
\left(1 + \frac{2}{\sinh a(2z)}\right)^2 \leq \left(1 + \frac{1}{\sinh a(z)}\right)\left(1 + \frac{1}{\cosh a(z)}\right) \leq \left(1 + \frac{2}{\sinh a(2z) \tanh a(2z)}\right)^2, \quad (26)
\]
holds.
Proof. This follows from Theorem 2.1 by letting $m = n = 2$ and $u = v = 1$.

Theorem 2.6. Let $z > 0$, $u > 0$, $v > 0$ and $m, n \in \mathbb{N}$. Then the inequality

$$
(1 + \sqrt{\frac{uv}{\cosh^m(z) \tanh^m(z)}})^2 \leq \left(1 + \frac{u}{\cosh^m(z)}\right) \left(1 + \frac{v}{\tanh^m(z)}\right) \leq \left(1 + \frac{u \tanh^n(z) + v \cosh^n(z)}{2 \cosh^n(z) \tanh^n(z)}\right)^2,
$$

(27)

holds.

Proof. This follows the same procedure as that for Theorem 2.1. Hence we omit it.

Corollary 2.7. Let $z > 0$, $u > 0$, $v > 0$ and $n \in \mathbb{N}$. Then the inequality

$$
(1 + \sqrt{\frac{uv}{\sinh^n(z)}})^2 \leq \left(1 + \frac{u}{\cosh^n(z)}\right) \left(1 + \frac{v}{\tan^n(z)}\right) \leq \left(1 + \frac{u \tanh^n(z) + v \sinh^n(z)}{2 \sinh^n(z)}\right)^2,
$$

(28)

holds.

Proof. This follows from Theorem 2.6 by letting $m = n$.

Remark 2.8. Inequality (28) implies that

$$
4uv \sinh^2(z) - [u \tanh^n(z) + v \cosh^n(z)]^2 \leq 0.
$$

(29)

Theorem 2.9. Let $z > 0$, $u > 0$, $v > 0$ and $m, n \in \mathbb{N}$. Then the inequality

$$
(1 + \sqrt{\frac{uv}{\sinh^{m+n}(z)}})^2 \leq \left(1 + \frac{u}{\sinh^n(z)}\right) \left(1 + \frac{v}{\tanh^m(z)}\right) \leq \left(1 + \frac{u \tanh^n(z) + v \sinh^n(z)}{2 \sinh^n(z) \tanh^m(z)}\right)^2,
$$

(30)

holds.

Proof. By adopting the technique of the proof of Theorem 2.1 and using the fact that $\cosh_a(z) > 1$ for all $z \neq 0$, we obtain

$$
\left(1 + \frac{u}{\sinh^m(z)}\right) \left(1 + \frac{v}{\tanh^m(z)}\right) \geq \left(1 + \sqrt{\frac{uv \cosh^n(z)}{\sinh^{m+n}(z)}}\right)^2 > \left(1 + \sqrt{\frac{uv \sinh^n(z)}{\sinh^{m+n}(z)}}\right)^2,
$$

which gives the left-hand side of (30). Likewise, the right-hand side of (30) also obtained by applying the Cauchy-Schwarz inequality.

Corollary 2.10. Let $z > 0$, $u > 0$ and $v > 0$. Then the inequality

$$
(1 + \sqrt{\frac{2uv}{\cosh(2z) - 1}})^2 \leq \left(1 + \frac{u}{\sinh(z)}\right) \left(1 + \frac{v}{\tanh(z)}\right) \leq \left(1 + \frac{u + v}{2 \tanh(z)}\right)^2,
$$

(31)

holds.
Proof. By letting \(m = n = 1 \) in the left-hand side of Theorem 2.9, and applying identity (20), we obtain the left-hand side of (31). Next, by letting \(m = n = 1 \) in the right-hand side of Theorem 2.9, and using the fact that \(\cosh_a(z) > 1 \), we obtain
\[
\left(1 + \frac{u}{\sinh_a(z)} \right) \left(1 + \frac{v}{\tanh_a(z)} \right) \leq \left(1 + \frac{u \tanh_a(z) + v \sinh_a(z)}{2 \sinh_a(z) \tanh_a(z)} \right)^2 \leq \left(1 + \frac{u}{2 \sinh_a(z) \tanh_a(z)} \right)^2 \leq \left(1 + \frac{u + v}{2 \tanh_a(z)} \right)^2,
\]
which gives the right-hand side of (31). This completes the proof.

3 Concluding Remarks

In this work, we have provided lower and upper bounds for the functions
\[
\begin{align*}
\quad f(z) &= \left(1 + \frac{u}{\sinh_a(z)} \right) \left(1 + \frac{v}{\cosh_a(z)} \right), \\
\quad g(z) &= \left(1 + \frac{u}{\cosh_a(z)} \right) \left(1 + \frac{v}{\tanh_a(z)} \right), \\
\quad h(z) &= \left(1 + \frac{u}{\sinh_a(z)} \right) \left(1 + \frac{v}{\tanh_a(z)} \right),
\end{align*}
\]
where \(z > 0, u > 0, v > 0 \) and \(m, n \in \mathbb{N} \). These extend and generalize the earlier results due Barbu and Piscoran. By applying some mean value inequalities, other bounds could be established for these functions. The largest possible range of \(f(z) \), \(g(z) \) and \(h(z) \) are respectively \((1, \infty)\), \((1 + v, \infty)\) and \((1 + v, \infty)\). This follows from the fact that \(f(z) \), \(g(z) \) and \(h(z) \) are decreasing with \(\lim_{z \to \infty} f(z) = 1 \), \(\lim_{z \to \infty} g(z) = 1 + v \) and \(\lim_{z \to \infty} h(z) = 1 + v \). When \(a = e \), the results of this paper reduce to those involving the ordinary hyperbolic functions.

Acknowledgement

The authors would like to express their gratitude to the anonymous reviewers for their useful suggestions and comments.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Panaitopol L, Bandila V, Lascu M. Inegalitati. Ed. GIL Zalau. 2008;131.
[2] Barbu C, Piscoran LI. On panaitopol and jordan type inequalities. 2012;1-11. Available:http://ijgeometry.com/wp-content/uploads/2012/04/Untitled1.pdf
[3] Nantomah K. On Some properties of the sigmoid function. Asia Mathematika. 2019;3(1):79-90. Available:http://asiamath.org/issue1/vol3iss1/AM-1904-4107.pdf
[4] Nantomah K, Okpoti CA, Nasiru S. On a generalized sigmoid function and its properties. Asian Journal of Mathematics and Applications. 2020;2020:11. Article ID ama0527 Available: http://scienceasia.asia/index.php/ama/article/view/528

[5] Nantomah K. Cusa-Huygens. Wilker and huygens type inequalities for generalized hyperbolic functions. 2020. hal-02527401f. Available: https://hal.archives-ouvertes.fr/hal-02527401

[6] Nantomah K, Prempeh E. Some inequalities for generalized hyperbolic functions. Moroccan J. of Pure and Appl. Anal. 2020;6(1):76-92. Available: https://doi.org/10.2478/mjpaa-2020-0007

[7] Lindqvist P. Some remarkable sine and cosine functions. Ric. Mat. 1995;44(2):269-290. Available: https://people.math.osu.edu/lang.162/book/Li3.pdf

[8] Takeuchi S. Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian. J. Math. Anal. Appl. 2012;385(1):24-35. Available: https://www.sciencedirect.com/science/article/pii/S0022247X11006111

[9] Chong KM. The arithmetic mean-geometric mean inequality: A new proof. Mathematics Magazine. 1976;49(2):87-88. Available: https://www.jstor.org/stable/2689438

[10] Dragomir SS. A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 2003;4(3):1-142. Available: https://www.emis.de/journals/JIPAM/images/010_03JIPAM/010_03.pdf

© 2020 Nantomah and Kasimu; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdarticle4.com/review-history/56505

36