1 DATA AVAILABILITY
The datasets generated and analyzed in this study, along with codes, can be found in the Antibiofilm repository at github.com/davidanastasiu/antibiofilm.

2 DATASET STATISTICS
Table S1 presents the number of peptides for training, validation and out-of-sample test sets for both the positive and negative datasets. The table also contains details of the dataset used for training and evaluating the regression models.

Table S1. Dataset Distribution of Our Machine Learning Models

Dataset	Type	Training	Validation	Out-of-Sample Test
Classification	Positive	175	19	48
	Negative	1741	194	485
MBIC Classification	≤ 64µM	128	32	N/A
	> 64µM	14	4	N/A
MBIC Regression	≤ 64µM	128	32	N/A
	≤ 64µM	33	9	N/A
Candidate		135015		

3 CHARACTERIZATION OF PEPTIDES
Figure S1 presents the ten dipeptides with the highest composition percentage from the negative dataset. Interestingly, most of the dipeptides in the top ten set contain leucine, a non-polar amino acid.
Figure S1. Dipeptide composition of the negative dataset: all the dipeptides contain the non-polar amino acid leucine;

4 PERFORMANCE OF MACHINE LEARNING MODELS

Table S2 presents results from our evaluation of different machine learning models based on individual features while Table S3 displays the performance of different models when we combine two features together. Finally, Table S4 showcases the performance of our models when we combine more than two features. Our best performing model combines the AAC, DPC, CTD and Motif features.

Table S2. Performance Evaluation of Different Machine Learning Techniques with Individual Features

Feature	Model	Sensitivity	Specificity	Accuracy	F1 Score	MCC
AAC	SVM	72.91	99.79	97.37	83.33	82.93
	RF	68.75	100	97.18	81.48	81.66
	XGBoost	75.11	99.38	97.18	82.75	81.76
DPC	SVM	85.41	98.35	97.17	84.35	82.99
	RF	72.91	99.17	96.81	80.45	79.24
	XGBoost	79.16	98.76	96.99	82.60	81.06
CTD	SVM	83.33	99.38	97.93	86.94	87.91
	RF	70.83	99.79	97.18	81.92	81.62
	XGBoost	85.41	98.96	97.74	87.23	86.02
Table S3. Performance Evaluation of Different Machine Learning Techniques with a Combination of Two Features

Features	Model	Sensitivity	Specificity	Accuracy	F1 Score	MCC
AAC & DPC	SVM	81.25	98.96	97.33	84.78	83.33
	RF	77.08	99.79	97.74	86.08	85.52
	XGBoost	81.25	99.38	97.74	86.66	85.76
DPC & CTD	SVM	77.08	99.79	97.74	86.04	85.52
	RF	70.83	100	97.37	82.92	82.97
	XGBoost	79.16	99.17	97.37	84.44	83.23
CTD & AAC	SVM	85.41	99.17	97.93	88.17	87.09
	RF	72.91	100	97.56	84.33	84.26
	XGBoost	79.16	99.58	97.74	86.36	85.56

Table S4. Performance Evaluation of Different Machine Learning Techniques with a Combination of Three or More Features

Features	Model	Sensitivity	Specificity	Accuracy	F1 Score	MCC
AAC & DPC & CTD	SVM (c=100, gamma=0.01)	85.41	98.96	97.94	88.42	87.29
	RF (n-estimator=100)	70.83	100	97.37	82.92	82.97
	XGBoost (n-estimator=100, gamma=0.5)	81.25	99.58	97.93	87.64	86.84
AAC & DPC & CTD & motif	SVM (c=150, gamma=0.05, Motif=ALL)	**85.48**	**99.79**	**98.49**	**91.11**	**90.53**
	RF (with Motif=BETTS-RUSSELL)	72.91	100	97.56	84.33	84.26
	XGBoost (with Motif=BETTS-RUSSELL)	85.41	99.38	98.12	89.13	88.20

Table S5. Performance Comparison of Our Method with the Dataset from Gupta et al. (2016)

Validation dataset performance	Specificity	Sensitivity	Accuracy	F1 Score	MCC
Reported in Gupta et al. (2016)	97.75	91.67	97.19	N/A	0.84
Achieved with our model	99.71	86.11	**98.46**	**91.17**	**0.90**
5 CHARACTERIZATION OF PEPTIDES FROM THE MBEC DATASET

We present the characteristics of the 57 peptides that were selected for training the regression model responsible for predicting the MBEC value of a candidate antibiofilm peptide.

![Figure S2](image_url)

Figure S2. Performance and characteristics of peptides with MBIC/MBEC values; (A) Number of peptides with MBEC values in different sequence ranges; (B) Percentage of helices, strands and coils in secondary structure for peptides with MBEC values;

6 NEWLY FOUND ANTIBIOFILM PEPTIDES

6.1 Visualization

We have evaluated the 2D structures of the peptides using PEP2D server Singh et al. (2019).

We further evaluated the structure of the peptides with probable antibiofilm activity. We evaluated helical wheel structure (Figure S5) for the peptides which showed higher percentage of helices in secondary structure evaluation.
Figure S3. Predicted 2D structures of previously characterized peptides with potential antibiofilm activity.

The 2D structures were evaluated using the PEP2D server. The pink cylinders represent helix, yellow arrows represent sheet, and the black line is coil.
Supplementary Material

Figure S4. Predicted 2D structures of previously characterized peptides with potential antibiofilm activity.

The 2D structures were evaluated using the PEP2D server. The pink cylinders represent helix, yellow arrows represent sheet, and the black line is coil.
Figure S5. The helical wheel structures of a few newly found antibiofilm peptides; (A) P17238, Mastoparan; (B) C0HK43, Lasioglossin; Rest of the peptide marked as ‘uncharacterized protein’ (C) A0A2P2Q2Y8, (D) A0A0A9U210, (E) E9JAR4, (F) A0A3Q7GQZ6. Here, hydrophilic amino acids are shown in circles, hydrophobic as diamonds. Negatively charged amino acids are triangles, and positively charged are pentagons. The hydrophobic amino acids are green, and the green shade decreases to yellow as per decreasing hydrophobicity. Hydrophilic amino acids are in red and the amount of red decreases as per decreasing hydrophilicity. The highly charged amino acids are in light blue and non-polar amino acids are in dark red. The numbers indicate the hydrophobic moment and the direction of the moment. The wheel structures were obtained using the software created by Don Armstrong and Raphael Zidovetzki, version 1.4, 2009-10-20 Schiffer and Edmundson (1967); Armstrong and Zidovetzki (2009).
6.2 Alignment

We also analyzed a few newly found antibiofilm peptides against some well known antibiofilm peptides which already have an eradication effect on preformed biofilm. For example, we aligned human cathelicidin, LL-37, against the set of Mastoparan-like peptides from our list. The alignment was done using the Clustal default webservice Madeira et al. (2019). The alignment is displayed in Figure S6 using Jalview V2 Waterhouse et al. (2009).

Figure S6. Pairwise sequence alignment of peptide hits with their closely matching known antibiofilm peptide. The default colour scheme used as per ClustalX

Colorcode – blue: residue A, I, L, M, F, W, V; red: residue K, R; green: residue N, Q, S, T; magenta: E, D; yellow: residue P.
6.3 Peptide List

The list of probable antibiofilm peptides from our pipeline are listed in Tables S6–S13. The tables contain peptide sequences and predicted MBEC values. We grouped the peptides in several MBIC value ranges.

Table S6. Newly Predicted Antibiofilm Peptides with MBIC Range 1–8 (µM) from the DRAMP database

Name	Seq	Source	Predicted MBEC (µM)
DRAMP04642	GIGKFLHSAGKFGKAFGEIMKS	Synthetic	1.510
DRAMP02364	GFWGKFLKLGIIHIGILHLLHL	Mammals	1.617
DRAMP04663	ARRLKLKAKKILKWL	Sheep	1.617
DRAMP01423	GLLSGILGAGKHICGGLSLR	Synthetic	3.071
DRAMP18605	VNWWKILAKIKVVK	Synthetic	3.597
DRAMP18607	VNWWKILPKIKVKV	Synthetic	4.332
DRAMP03983	KWWKLFKIPKFLHLA	Synthetic	4.332
DRAMP03862	RLRKIVVRVR	Frog	6.605
DRAMP01310	FLGLPSVSGAVSLKVL	Synthetic	7.090
DRAMP04187	KWLKILLKLL	Synthetic	8.957
DRAMP03974	WKKIPKFLHLAKKF	Fish	9.853
DRAMP18601	VNWWKILAKIKVAK	Synthetic	11.312
DRAMP18602	VNWWKILKKIKVAK	Synthetic	11.854
DRAMP18603	VNWWKILPKIKVAK	Synthetic	13.681
DRAMP03981	KWLKILPKFLHLAK	Synthetic	20.981
DRAMP03850	FALALKALKLKKKLLKKKKK	Scorpion	22.396
DRAMP04002	ILKILKGKFKK	Xenopus mueller	22.471
DRAMP18560	JWRIFRRIRFRIF	Synthetic	22.608
DRAMP03859	RLARIVVIRWAR	Synthetic	22.632
DRAMP03880	RRIRWRIR	Synthetic	22.668
DRAMP04318	IKWKKLLRAAKRIL	Synthetic	22.671
DRAMP18642	KWRRIW	Bacteria	22.674
DRAMP04297	LKALKLLAKKLKLL	Synthetic	22.677
DRAMP04215	RRLFRRILKWL	Synthetic	22.677
DRAMP18514	KKLHALHKLKWLHKLAKKKK	Synthetic-De Novo	22.679
DRAMP04384	KIASIGKEIVKAL	Synthetic	22.679
DRAMP03702	LGGLPSLIGGLVSFK	Synthetic	22.679
DRAMP02910	LRRIRKIIHIKK	Synthetic	22.679
DRAMP02911	IRRIRKIIHIKK	Synthetic	22.725
DRAMP01621	IGPVLGVSGALGGGLKKI	Synthetic	22.837
DRAMP01626	IGPVLGVSGALGGGLKKI	Synthetic	24.947
DRAMP04125	SGKLWRRKKK	Frog	25.316
DRAMP03975	KFWKKIPKFLHLKKKF	Bombina variegata	25.316
DRAMP03973	WFKKIPKFLHLAKKF	Synthetic	25.568
DRAMP03979	KWWKFLKFIPKFLHLAKKF	Orange-legged leaf frog	25.616
DRAMP01807	FLPLVLGALGGIPKIL	Synthetic	29.105
DRAMP03977	WKKIPKFLHLKKKF	Synthetic	29.774
DRAMP03976	WFKKIPKFLHLKKKF	Synthetic	36.868
DRAMP18619	RKLRLKRIIAHKVKKKY	Synthetic	60.154
Table S7. Newly Predicted Antibiofilm Peptides with MBIC Range 8–16 (µM) from the DRAMP Database

Name	Seq	Source	Predicted MBEC (µM)
DRAMP02474	KFFRKLKKSVKKRAK	Spider	2.397
DRAMP18600	NVWKILGKIJKVK	Synthetic	2.462
DRAMP18568	VSWKKSGLGKIJKVK	Synthetic	3.071
DRAMP18596	NVWKVLGKIJKVAK	Synthetic	3.071
DRAMP04228	GRFRRLGRFKKLFKKYGP	Synthetic	3.071
DRAMP03972	KWFKIPKFLHLKK	Scorpion	3.236
DRAMP02963	GRFRRLKTRKRLKKIGKV	Synthetic	4.011
DRAMP01126	ILGPVISKGVLGGKKNL	Synthetic	4.332
DRAMP03570	LLGDFRKSKEKIGFKRIVQR	Bovine	4.719
DRAMP03967	KWLFKKIPKFLHLKK	Synthetic	4.953
DRAMP03969	KWLFKKISKFHLHAKK	Synthetic	4.953
DRAMP03970	WLFLFKIPKFLHLHAKK	Synthetic	6.610
DRAMP03971	FKLFKIPKFLHLHAKK	Synthetic	10.699
DRAMP18563	KSLRRWVRSWR	Synthetic	10.791
DRAMP03826	KNLRRIHKRIHIKKY	Odorana grahami (Frog)	15.718
DRAMP04310	ELAKALKALKKALKSAR	Synthetic	16.091
DRAMP04311	ELAKKALRAKALKSKASK	Pig	19.720
DRAMP03227	GLFGKLIKFGKRAISKAVVKARGKH	Synthetic	19.996
DRAMP03980	KWLFLFKKIPHLHAKF	Toad	21.695
DRAMP03923	KWLFKKIGAVLKVLT	Synthetic	22.608
DRAMP04260	LALLKVLRKIKKAK	Synthetic	22.645
DRAMP18562	KSLRWRVSRW	Synthetic	22.645
DRAMP18597	VNWKVLAKIKVAK	Synthetic	22.659
DRAMP18598	VNWKVLKIIJKVAK	Synthetic	22.659
DRAMP18599	VNWKVLPKIIJKVAK	Synthetic	22.668
DRAMP03963	KWLFLKKIKHLHSKAF	Synthetic	22.671
DRAMP03968	KWLFLKKIKFLHLHAKF	Synthetic	22.676
DRAMP03984	KWLFLKKIPHLKAF	Synthetic	22.676
DRAMP18570	VNRRKILGSIKVVK	Synthetic	22.679
DRAMP18502	WKSYYWRWR	Synthetic	22.679
DRAMP04018	ALYKFKKLLLKLKSLRKL	Bacteria	22.679
DRAMP04003	ILGKIIKIKKL	Synthetic	22.679
DRAMP04376	JNWKLGIKKISAL	Synthetic	22.705
DRAMP18507	FSGGNCRFRRRCFCTK	Synthetic	22.725
DRAMP04614	AVNPEKHI.FRCKSICF	Synthetic	22.837
DRAMP03865	RWKIVWRWR	Synthetic	22.837
DRAMP18567	VNWKILGSIKVK	Synthetic	23.595
Table S8. Newly Predicted Antibiofilm Peptides with MBIC Range 8–16 µM from the DRAMP Database (Cont.)

Name	Seq	Source	Predicted MBEC (µM)
DRAMP04664	AKRLKKLAKKIWKWK	Human	24.958
DRAMP04051	RICRIVVIRCIR	Human	25.040
DRAMP03978	KWKLFKKIPFLHLAKKF	Synthetic	25.219
DRAMP03925	KWKLFKKGAVLKVLT	Synthetic	25.595
DRAMP03768	ILSAIWSGIKS	Synthetic	25.595
DRAMP03858	RLARIVKIRVAR	Synthetic	25.595
DRAMP03982	KWKLFKKIPHLAKKF	Synthetic	28.344
DRAMP18564	KWLRRVWRWWWR	Snake	35.077
DRAMP18565	KRLRRVWRWWWR	Synthetic	39.599
DRAMP03964	KWKLFKKIPKFLHSAKKF	Synthetic	39.927
DRAMP03924	KWKLFKKGIGAVLKVL	Synthetic	44.372
DRAMP03755	FKRIVQRIKDFLIR	AnTomato	48.038
DRAMP02872	GRFKFRKFKFLFKKLS	Synthetic	50.828
DRAMP18501	WKSYSVRRWRS	Synthetic	53.153
DRAMP03829	GLKKLKGKLKLGKLKLLL	Synthetic	54.066
DRAMP18499	WKSYSVRRWRSR	Synthetic	63.560

Table S9. Newly Predicted Antibiofilm Peptides with MBIC Range 16–32 (µM) from the DRAMP Database

Name	Seq	Source	Predicted MBEC (µM)
DRAMP03777	JWSAIWSGIKGLL	*Unradicus yaschenkoi* (scorpion)	35.514
DRAMP04390	INWKKGKEVLKAL	Synthetic	22.679
DRAMP03966	KLKLFKKIGIGKFLHSACKF	Synthetic	7.220
DRAMP02914	RICRIIFLRVCR	Sheep	14.287
DRAMP04377	JWNLKGLKLKLSAL	Synthetic	22.679
DRAMP04113	KWKSFIKKLASKFLHSACKF	Synthetic	22.680
DRAMP04115	KWKSFIKKLTKFLHSACKF	Synthetic	45.279
DRAMP04127	RGKRWWRRKK	Synthetic	49.900
DRAMP04054	RLCRIVVVIRVCR	Synthetic	47.017
DRAMP18401	ILSAIWSGIKGLL	Scorpion	35.514
DRAMP03965	KAKLFFKIGIGKFLHSACKF	Synthetic	5.068
DRAMP04102	KWKSFIKKLTSKFLHLAKKF	Synthetic	25.740
DRAMP04103	KWKSFIKKLTSKFLHSACKF	Synthetic	45.279
DRAMP04104	KFKSFKKLTSKFLHSACKF	Synthetic	45.279
DRAMP04106	KWKSFIKKLTSKFLHSACKF	Synthetic	45.279
DRAMP04119	KWKSFIKKLTSKFLHSKKKF	Synthetic	45.279
DRAMP04112	KWKSFIKKLLSKFLHSACKF	Synthetic	22.380
DRAMP18723	KWKLFKKI	Moth	48.126
DRAMP18566	VNWKSSLGKSIVVK	Synthetic	4.953
DRAMP01134	ILGPVIKTIGGVGLGILLKNL	Toad	19.866
Table S10. Newly Predicted Antibiofilm Peptides with MBIC Range >32 (µM) from the DRAMP Database

Name	Seq	Source	Predicted MBEC (µM)
DRAMP04343	IGKLFKRIVKKILKFLRKL	Synthetic	35.719
DRAMP04126	SGKRWRWRK	Synthetic	49.900
DRAMP04339	IGKKFKRIVQRIKKFLRKL	Synthetic	3.556
DRAMP04340	IGKKFKRIVKRIKKFLRKL	Synthetic	3.556
DRAMP04345	IGKWKRIJKKRIKKFLRKL	Synthetic	3.556
DRAMP04346	IGKKFKRIVKRIKKWKLKL	Synthetic	3.556
DRAMP18614	VRRFAWWAFLRR	Synthetic	22.940
DRAMP03876	RRWWWRWRWRW	Synthetic	49.900
DRAMP03877	KKWWWKWWK	Synthetic	49.900
DRAMP03878	RRRWRRWRWRW	Synthetic	49.900
DRAMP03879	RRRFRRFRF	Synthetic	49.900
DRAMP18457	KRWWKWWRRRC	Synthetic	15.828
DRAMP18508	KFAKKFKFFAAFKKFKK	Synthetic	49.900
DRAMP18643	KWWWWRW	Synthetic	49.900
DRAMP04001	ILGKIWKIKSLF	Synthetic	7.590
DRAMP04069	CFPFIFGSGFKFKFKFC	Synthetic	22.791
DRAMP04070	CWWWRWGWGKWWK	Synthetic	22.791
DRAMP03869	RRRWVRWRW	Synthetic	40.529
DRAMP18558	FIKRIARLLRKIF	Synthetic	34.455

Table S11. Newly Predicted Antibiofilm Peptides with MBIC Range 1–8 (µM) from the UniProt database

Name	Seq	Source	Predicted MBEC (µM)
sp—P0CF03	FLOGGILGPLMSLPGGLK	Ant	19.723
tr—A0A5K1B3V0	VIRIGCKWKRTA	Nymphaea colorata (plant)	6.260
tr—A0A0E9S200	MCTRWRVLTCVRRR	Anguilla anguilla (eel)	28.711
tr—A0A2P2N8A3	MGKDFRFRFCHVKKVL	Rhizophora macromonata (plant)	11.138
tr—A0A0A9M1Q7	MGKKFKKWLKT	Arundo donax (plant)	14.310
sp—C0HK43	VNWKKILGKAKV	Lasioglossum laticeps (bee)	3.071
tr—A0A0A9U210	MTRRRRRHLLLRL	Arundo donax (plant)	22.612
sp—P17236	FLPLLGLKVKGLLL	Oriental hornet	36.241
tr—A0A2P2QY8	MLKLRJLRLRKL	Rhizophora macromonata (plant)	35.601
tr—A0A5K1FAL9	FRABLLRTAFR	Nymphaea colorata (plant)	22.722
sp—P82419	GLOVDLGVGGLKGLLLP	Ant	28.502
sp—C0HL3D5	FLSPKRJGAGASLWKL	Frog	23.319
sp—P82420	GLVDLGVGGLKGLLLPG	Ant	27.711
tr—E4Z311	IKGILLRIKJKVR	Oikopleura dioica (tunicate)	35.514
Table S12. Newly Predicted Antibiofilm Peptides with MBIC Range 8–16 (µM) from the UniProt database

Name	Seq	Source	Predicted MBEC (µM)
tr—A0A3D5SU75—	PCPCGSGKYYKHCHGKLS	Rhodocyclaceae bacterium	1.854
sp—P0C424—	CCAPSCACRLGCRRCCR	Conus marmoreus (marble cone)	2.968
tr—A0A5K1BN05—	LGCGLHPGIFACLK	Nymphaea colorata (plant)	3.071
tr—A0A5K1DCQ4—	LGCGLHPGIYACLK	Nymphaea colorata (plant)	3.071
sp—C0H4KI2—	VNWKVYLGKJIVKAK	Lastigosoma laticeps (bee)	3.071
sp—P3O259—	GCKRKRARKRPKKCRKARPKRKKVAKKCC	Catshark	4.290
sp—P14215—	RRWCFRVCYRFYRCYRCR	Atlantic horseshoe crab	6.030
sp—P14216—	RRWCFRVCYRFYRCYRCR	Atlantic horseshoe crab	6.030
tr—A0A033VX2—	AVPSWRIKSWNNR	Bacteria	7.090
tr—E918P2—	MLKKKLGSRSRRRCCRRRRRRRRA	Solenopsis invicta (ant)	8.156
sp—P69135—	KWCFFRVCYRGICYRRCR	Asian horseshoe crab	18.171
sp—Q8WMD3—	MARYRHRCSSRSRRCRRRRRRRCCRRRRRRRRA CCRYRCRRR	Bat	21.567
tr—A0A033H27—	MFGGGPLKLL	Oryza barthii (plant)	22.009
tr—A0A1CDY26—	FLGCGRVQLAIKSIGI	Triticum aestivum x Aeeglosa sharonensis (plant)	22.359
tr—A0A3Q7GQQ6—	GLAYRLYVNLHPCTKR	Solanum lycopersicum (tomato)	22.657
tr—A0A01K7640—	KAIALAKGKCK	Lycium cestroides (plants)	22.679
sp—P0C20—	INLKKIAKGLKSL	Wasp	22.679
sp—P5878—	INWKKIAISIGKEVLKAL	Wasp	22.679
sp—P69034—	INWLKLGKKVSAIL	Wasp	22.679
sp—P69036—	INWLKLGKAVDIAL	Wasp	22.679
sp—P65443—	GLDLDFLKAAGKLVRTNL	Frog	22.691
tr—A0A5K0UX57—	ALLKSKPKLLRSGL	Nymphaea colorata (plant)	22.694
tr—E9جار4—	KLVRRIILACLHIAVCK	Solenopsis invicta (ant)	22.924
sp—P82282—	IGPVLGMVSAALGLKKIG	Toad	23.278
sp—P82285—	IGPVLGLVSAALGLKKIG	Toad	23.278
sp—P85982—	IFGAILPLALGALKNLIK	Frog	23.712
LFB0040	FKCRRWARMKMKLGA	Synthetic	25.902
sp—P0C1R0—	ILGTILGLKSL	Wasp	32.702
tr—A0A5K0UVL7—	ILLKIVGCKIK	Nymphaea colorata (plant)	38.404
LFB0017	FKCRRWQRWQVR	Lactoferrin, source: cow	38.492
sp—C0HLM2—	SGCCCHPACGKKNRC	Alpha-conotoxin, source: conus purpurascens	39.130
tr—A0A0K0L6U6—	GOCYCCGAFQRQICYRKY	Androctonus biclor (scorpion)	46.616
tr—A0A5K1IP988—	EFKIHKSGRRKWM	Nymphaea colorata (plant)	46.812
tr—I7DAN2—	KSKGKIKSKAYKR	Rhea americana (bird)	50.828
tr—S7JKV4—	SLFCKGCSKL	Chlamydia psittaci (bacteria)	60.154
tr—Q16228—	WRWRACRRIPGRPFWRV	Human	61.163

Table S13. Newly Predicted Antibiofilm Peptides with MBIC Range 16–32 (µM) from the UniProt database

Name	Seq	Source	Predicted MBEC (µM)
sp—P0C05—	GLLKRIKTL	Wasp	22.679
sp—P17238—	INLKIAAALVKKVL	Hornet	22.679
tr—Q9USM9—	AGLGGICGLDTNREIVKSGPK	Scaptomyza granimum (insect)	20.318
7 DATASET

7.1 Positive Dataset

The details of our positive dataset, including the peptide sequence and its length, are given in Tables S14–S18.

Name	Seq	Seq Length
BREVININ-1GHA	FLGAVLKVGKLVPAAICKISKKC	24
DERMASEPTIN-AC4	SLWGGKLEMAAAGKAALNAVGLNQ	27
RPDEF1ALPHA	GFGCPNDYSCSNHCRCDSIOCRRGGYCKYHVICTCYGCKKRSIQE	44
KASSINIATUERIN-3	FQHLILPHAQIQIKDIF	20
AGELAIA-ADN	IWLKIGKAIDAL	14
CCL20	SNFDCCLGTYDRLHPKFIVGTRQLANEGCDINAIIFHTKKKLSCVANCANPQTWVKYIVRRNSSKVKNM	69
CHICKEN	RFGFLKLRIRRPKFYVTITIQGSARFG	27
CITROPIN	GLFDVKVAVSGGL	16
COLISTIN	KTJAAAALKK	10
CON10	FWSFLYKAAASKKLPSILIGDNDKSSS	27
COPRISIN	VTCDFYLSEAKVIAYNHSAACALRLRKKKGSCQNCVCRN	43
DATUCIN	TFPKCAPTRPGPKCDINNFKSFHIFIWRA	31
DERMASEPTIN-PH	ALWKEVLNKAGAKALNENLVL	22
DERMASEPTIN-PT9	GLWSIKDAAGTAGKAALGFVNEMV	25
DHVAR4	RKLFFKLLSFLKRKY	14
ENTEROCIN	LGSVANKIKDIPEFAMISIAVKAQQKAWKELAVTVMFAKANGLKTNAIVAGQLAWQCQLS	68
ESCULENTIN	GFSKLAGKIKLLNSILKGL	21
GL13K	GJIJKLAKSLKL	13
GRAMICIDIN	VKLFPVKLF	10
HS02	KWAVRIRKHFKGFIS	16
HUMAN defensin	GIINLTKCYVRGRCGVLSCLKPEEKIQICKCSTRGRKCCRKK	45
HYICIN	NKCNGCACAIAACADGPIDFVEVGATITFGGI	35
INDOLICIDIN	ILPKWDPWVWPWRR	13
JAPONICIN-2LF	FIVPSIFLLKAFIALKKC	20
LL-37	LLGDFFRSKEKIGKEKFRIVQIRKDLRLNLPRTES	37
MP-C	LNLKALLAVAKKL	14
MORONECIDIN-	FFRNLWKGAKAARAFRAHAAWRA	22
MYXINIDIN	GHIILKYGKPS	12
NA-CATH	GLLSGILGAGKIKVF	15
NISIN	ITSISLCTPOCKTGALMGCNMTATCHCSIHVSK	34
PARACENTRIN	EVAADFSLKLL	11
PHYLLOSEPTIN-1	FLSHIPHVGSVIAKHF	19
PHYLLOSEPTIN-1-CO	FLSMPKJAGGIASVLKNL	19
PHYLLOSEPTIN-PHA	FSLIPAAISAVSALANHF	19
PLEUROCIDIN	GWGFSFKKAHVHGKVKHGAALTHYL	25
POLYBIA-MP-II	IWLNLGKMVIDAL	14
POLYMYXIN	KTKKKFLKKT	10
PROTEGRIN	RGRRLCHYRRCIFCIVCR	18
SA-CATH	KFFKLKKSVKKHVVKKFFKPKVIGVSIHF	30
SAAP-148	LKKRVKRRFLKLRKRYRQLKKPVRR	24
SMAP-29-APD	RGLRLRGLKIAHGYKIVQPTVLRIRIAG	29
TACHYPLESIN	KWCFCRVCYRPIRCYRKCR	17
TEMPORIN-1OLA	FLPLLXILGKIL	13
Name	Seq	Seq Length
---------------------	----------------------------	------------
TEMPORIN-B	LLPIVGNLLKSSL	13
TEMPORIN-1CEB	ILPILIGGLGGLBK	14
TEMPORIN-GHC	FLQHIIGALTHIF	13
TEMPORIN-GHD	FLQHIIGALSHFF	13
TEMPORIN-PTE	FFGSVKLKIPKIL	13
TETRAF2W-RK	WWWLRIKIV	8
TOAP1	FIGMIPGLIGGLISAK	17
TOAP2	FFGTLKGLSLKLPGK	26
TSAP-2	FIGMIPGLIGGLISAFK	17
UYCT3	ILSAIWSGIKSLF	
VLL-28	VLVVTLTRLHQRGVIYRKRHRFSGRKYR	28
ZMD32	RTCQGSQHREFGIPCLRSNCANVCRTEGFPGGRGCFRRRCCTTCRC	47
BMAP-27	GRFKRKKKFFKLLLKSPVIIPLLHL	26
BMAP-28	GGLRLGRKILRAWKKGVPPIRIR	27
SMAP-29	RGLLRGLIRKIAHVKKYGPTVLRIRIA	28
KSL	KKVFFKVKF	10
F2-5-12W	RWGRWLKIRRRWPRK	15
LL-31	LLGDFFRKSSKEKIGKEFKRIVQRKDFRLNL	31
LL-31	RKSKEKIGKEFKRIVQRKDFRLNL	25
LL-37	IKGKEFKRIVQRKDFRLNLVPRTES	25
LL-37	RKSKEKIGKEFKRIVQRKDFRLNLVPRTES	31
LL-19	LLGDFFRKSSKEKIGKEFKR	19
LL-25	LLGDFFRKSSKEKIGKEFKRIVQIK	25
LL-13	LLGDFFRKSSKEK	13
LL-13-31	IKGKEFKRIVQRKDFRLNL	19
LL-7-25	RKSKEKIGKEFKRIVQRQIK	19
LL-13-25	IKGKEFKRIVQRQIK	13
LL-19-37	RIVQRIKDFRLNLVPRTES	19
KSL-W	KKVFFWVKF	10
KS-30	KSKEKIGKEFKRIVQRKDFRLNLVPRTES	30
KR-20	KRIVQRKDFRLNLVPRTES	20
KR-12	KRIVQRKDFRL	12
LACTOFERRICIN-(17-30)	FKKRRWQWRMMKKLG	14
LACTOFERRAMPIN	WKLISQAQKFGKNSR	17
MUC7-12-MER-L	RKSYYKLHKRCR	12
G10KHC	KKHRRKHRRKHGSGGSKNLRRIRKGIHIKKYG	36
MUC7-12-MER-L4	RKSYYKHALKRAR	12
MUC7-20-MER	LAHKQPFIRSKSYKCLHKRCR	20
HSN5	AKRRHGGYKRFH	12
MAGAININ-II	GIGKFLHSAKFKGAFVGEIMNS	23
LYS-A1	KIFGAIWPLGALKNLKJ	19
AAP2	FHFFHFFHFHFFH	14
CSP	SGSSLSTFFRFLGNGSFTQALGK	21
CSPC16	TFFRFNSRFFTQLGK	16
G2	KNLRIRKGIHHK	16
C16G2	TFFRFNSRFFTQLGKGGGBKNLRIKIRKGIHIKKY	35
M8G2	TFFRFNSRGGKRLRIRKGIHIKKY	27
S6L3-33	FKKFVKWRFRF	11
C16-33	TRRRLFNSRFFTQALGKGGGGFFKKFWKFWRF	31
M8-33	TFFRFNSRGGGFFKKFWKFWRF	23
CECROPIN-A-(1-7)-MELITTIN	KWKLFFKIGAVLKL	15
HH15	KRRFRIVRVRK	12
Table S16. Peptide List for our Positive Dataset (Cont.)

Name	Seq	Seq Length
BAC2A	RLARIVVIRVAR	12
1026	VQWRIRVRIHK	12
1029	KQFRIRVRV	9
1036	VQFRIRVIRIK	13
1037	KRFIRVRV	9
HH2	VQLRIRVAVIRA	12
1002	VQRWLVWRIRK	12
1003	IVWKIKRWVVGVR	12
1004	RFWKVVRVYIRF	12
1008	RIKWIVRFR	9
HH7	VRLRIRVAVRA	12
1010	IWRIRVWVRRR	12
1011	RWWVVRIVQRR	12
1012	IFWRRIVIVKKF	12
1013	VRLRIRVA	8
1016	LRIRWFKR	9
HH8	VRLRIRVAVIRK	12
1020	VRLRIRWWVLK	12
HH10	KRFIRVAVRA	12
1035	KRWBVIVNIRR	12
1031	WRWWRVRWR	9
IMB-2	TFFRLFNRGGGWGSGFFKKAAHVGVKL	25
BAC8C	RIWVTWR	8
PTP-7	FLGALFKALSKLL	13
HOLOTHURIDIN-1	HLGHHALDHLKK	12
HOLOTHURIDIN-2	ASHGLGHALDHLKK	14
TN-AFP1	LMCTHIRPLDCSN	11
COPRISIN-BAAMP	VTCDVLSFEAKGLAVNH	17
HISTATIN5	DSHAKRHRGKHFHKFHSHRGY	24
HST	AKRRHGYKKFHHGG	15
DF17-6K	KKKKKAAFAAFAAFAA	17
DF21-10K	KKKKKKKKKAAFAAFAAFAA	21
CWR11	CWFWKWKWRRRR	12
CHRYSOPTIN-1	FFGWLIKGAIHAGKAIHGLIHRRRH	25
RK1	RWKRWWRRRRK	10
RK2	RKKRWWRRRRK	10
(IRIK)	IRIKIRIK	8
(IRVK)	IRVKIRVKIRVK	12
ALPHA-DEFENSIN-3	DCYCRIPIACGERRYGTCTYQGRLWAFC	30
BETA-DEFENSIN-1	DHYNCVSSGQCLYSACPIFTKIQGTCYRGKACCK	36
MAGAININ-1	GIGKFLHSAGKFGKAFVGEIMKS	23
RIP	YSPWTNF	7
K4-S4(12-13)A	AWKTLKKVLKAA	13
DD13-RIP	AWKTLKKVLKAYSPWTNF	20
2C-4	RWRRWRF	7
SM6(L1)2C	FIKHIHRFGGGRWRWRWF	19
SM6(L3)2C	FIKHIHRFSATRWRWRWF	19
SM6(L1)B33	FIKHIHRFGGGFKFKWKFWRFRF	23
NRC-16	GWKKWLRGBKAKHLGQAAIK	19
GK7	GQINLKK	7
(RW)2-NH2	RWRRW	4
(RW)3-NH2	RWRRWRW	6
Table S17. Peptide List for our Positive Dataset (Cont.)

Name	Seq	Seq Length
(RW)4-NH2	RWRWRWRWRW	8
LASIO-III	VNWKKILGKIIKVVK	15
MELITLIN	GIGAVLKVLTTLPAIJSWKVRKQQ	26
MELIMEINE	TLISWIKNRKQRPVRVRRRRRRRGGRRRRR	29
MELIMEINE-CYNS	CTLISWIKNRKQRPVRVRRRRRRRGGRRRRR	30
MELIMEINE-CYS	TLISWIKNRKQRPVRVRRRRRRRGGRRRRC	30
MELIMEINE-CYS13	TLISWIKNRKQCRPVRRRRRRRGGRRRRR	30
K4-S4(1-15A)	LWKTLKKVVLKAAA	14
BETAA6-20-G3K6	NEEGFSARGHRPLDGGGKKKKK	24
HEPCIDIN	ICIFCGCCSHSRKCGMCCT	20
NA-CATH-BAAMP	KRFFKKFFKLLKNSVKKRACKFKKPKVIGVTFFP	34
NA-CATH-ATRA1-ATRA1	KRFFKKFFKLLKNSVKKRFFKKFKLKVIGVTFFP	34
LACTOFERRICIN-B-(17-41)	FKCRWRQWRMKKLGAPSITCVRAF	25
SCRAMBLED	GLKLRFEFSKIKGFLKTEPVFRDFDIKLKDNRISVQR	37
R-FV-16	RFRLFRIRVRLKKI	16
FV7	FRIRVRV	7
VSL2	AFKAFWKVFVFKVFK	13
VS2	KWFWKVFVFKVFK	11
L-K6	IJKILSKIKLLK	13
HLF1-11	GRRRSSVQWCA	11
FS3	YAPWNTF	7
TET-213	KRWWKWWRRC	10
1010CY5	IWRIRVRVWRRRC	13
TET-20	KRWRIRVRVIRKC	13
TET-26	WIVVIWRRRKRRRC	13
FS8	YAPWNTA	7
CHROMOFUNGIN	RILSILRHQNLKELKDLAL	20
CECROPIN-B	KWKVFKKIEKMGRNIRNGIVKAGPAAVLGEAKAL	35
MAGAININ	GIGFLHSAGLFGLFVGEIMKS	23
CYSLASIO-III	CVNWKKILGKIIKVVK	16
DASAMP1	FFKVLKLRKIF	13
BMAP-18	GRWRKRWKKWKLWKQLS	18
BACTENECIN	LRCRIVVIRVCR	12
CA-MA	KWKLFKKIGIGKFHLSAKKF	20
RTA3	RPAKRKAARVRMACV	16
DHVAR5	LLLLFLKKRKKRKY	14
KABT-AMP	GIWKKWIKWLKWKWLKLWKKG	22
P10	LAREYKIKVEKLKRWLRQVLRLTR	24
P60.4AC	IGKFKRIVERIKRFLRELVRPLR	24
OSIP108	MLCVLQGLRE	10
S-OSIP108	ELRLVCMGQL	10
[CYC2]OSIP108	MLCVLQGLREGG	12
[CYC3]OSIP108	MLCVLQGLREC	11
I018	VRLIHAVRIWRR	12
HE1	RRWRVAVILRV	12
HE2	VRLIARAVRAWV	12
HE3	VRWARVARILRV	12
HE4	VRLIHAVRIWRR	12
HE10	VRLIHAVRIWRR	10
HE12	RFKRVARFWV	10
GL13KR1	IGKLLKSKLKLAL	13
[IKIK]2	IKIKIK	8
Table S18. Peptide List for our Positive Dataset (Cont.)

Name	Seq	Seq Length
RI1012	FKKVIVIRRWF1	12
RI1002	KRIRWVILVRQV	12
LJK1	VFLRIRIVIVIR	12
RIJK1	RIVIVRIRRLFV	12
LJK2	VFWRIRVWVIR	12
RIJK2	RIVVWRIRRWVF	12
LJK3	VQLRAIRVVRV	12
RIJK3	RIVVRIARLQV	12
LJK4	VQLRIRVWVIR	12
RIJK4	RIVVWRIRRLQV	12
LJK5	VQWRIRVVRV	12
RIJK5	RIVVRAIRWQV	12
LJK6	VQWRIRVWVIR	12
RIJK6	RIVVWRIRWQV	12
NAL-P-113	AKRRRGYKRKFKKK	13
P15	GTGPGQIAGQRGVV	15
P15-CSP	GTGPGIAGQQRGVAEAAAEAAKAASGLSLTFRLFNRSFTQALGK	53
C-GG-NT-DHVAR5	CGGLLLFLKKRRKRRKRY	17
KT2	NGVQPKYKWKKWKWW	17
RT2	NGVQPKYBWWRWWRW	17
LF11-322	FFWRIRIRR	9
LF11-324	FFWRIRIRR	10
6-MO-LF11-227	FWRRFWR	8
LF11-215	FWRRIRIRR	8
D-ATRA-1A	KRAKKFKKKLK	11
ATRA-2	KRAKKFKKKP	11
ATRA-1	KRFKKFKKKLK	11
ALL	LKKKLLLKKLKLKKL	15
SEG5D	KKKLLLLLLLLLKKK	15
SEG6D	LLLLLKKKKKKLLL	15
G10	KNLRRIRKGIHJIKKYG	18
LIN-SB056	WKKIRVRLSA	10
LIN-SB056-1	WKKIRVRLSA	10
MYXINIDIN2	KIKWILKYWKWS	12
MYXINIDIN3	RIRILRYYRSW	12
GH12	GLLWHLHLLLH	12
PA-MAP	LAAKLTKAAATKTLTAALTKLAAALT	24
HSAFP1	DGYKLCDPVSPTSAGHCSSSKCSCQQCKDREHFAVGACPHQPSVCKCIRKQC	54
HSLIN06	EHFAYGAKHYQPSVKKFKKRQK	24
Verine	RRRWWWV	8
Phylloseptin-PTa	FLSLIPKIAGGIAALAKHL	19
7.2 MBEC Dataset

Antibiofilm peptides with MBEC values are listed in Tables S19–S20. The pathogens against which the MBEC values are effective are also listed in the ‘pathogen’ column. The MBEC values are listed in µM.

Table S19. Antibiofilm Peptides and MBEC (µM) Values

Name	Seq	MBEC (µM)	Pathogen	Source
BREVININ-1GHA	FLGAVLKQAVKLVPAAICKSKKC	16	S. aureus	Chen et al. (2018)
DERMASEPTIN-AC4	SLWGLKLEMAAAXAAGKANNAVNGLNQ	256	S. aureus	Gong et al. (2020)
KASSIMIAUERIN-3	FHLILPEIHPHQIKDRIF	64	S. aureus	Wang et al. (2020)
CCL20	SNFDCCLGYTDRLHPKFQGFTQRLANEGDGINAFAHTTKKLSSCVANCPKQWGTVKYIVRLSSLKKVKNM	128	P. aeruginosa	Ramamourthy et al. (2019)
COPRISIN	VTDVLSPAEKGAIVHNSACALHICARKKGGSCQNGVCCMN	4.49	P. aeruginosa	Hwang et al. (2013)
DERMASEPTIN-PH	ALWKEVLKNAGKAALEINNLV	128	S. aureus	Huang et al. (2017)
DERMASEPTIN-PT9	GLWSKIKDAAKT7AGKAAALGFPENMV	32	S. aureus	Li et al. (2019)
ESCULENTIN	GIFSKLPAGKKINNLISLGK	6	P. aeruginosa	Luca et al. (2013)
OL13K	GKIHKLASKLKL	22.47	P. aeruginosa	Hirt and Guo (2013)
HUMAN defense	QINTLQKYVCVRGGRGCAVLSCLPKQQEQRGCSITGRKCRKK	3.1	MRSA	Sutton and Pritts (2014)
INDOLICIDIN	ILPKWKKPPWPRK	335.7	MRSA	Mataraci and Dosler (2012)
LL-37	LLGDFRKSKEKIKFEKRIQKFKLKDRLNVRPSTES	20	P. aeruginosa	Nagant et al. (2012)
NISIN	HTSISLCPKCIHTALMCMNIAHTCCSHYSK	183.1	MRSA	Mataraci and Dosler (2012)
PHYLLOSEPTIN-1	FLSLPHIVSGVASSAHLKF	5	S. aureus	Zhang et al. (2010)
PLEUROCIDIN	GWGPSFKKAHAVGKHAVGAALTHYL	23.62	S. mutans	Tao et al. (2011)
BMAP-27	GFRKFKFKKFKLKLSPVPLHHL	6.2	P. aeruginosa	Pompiio et al. (2011)
BMAP-28	GQLSRLGRKILRAWKKYGIPIVPHIR	6.5	P. aeruginosa	Pompiio et al. (2011)
SMAP-29	RQLRLRGIKAHHVGYKQPVTLLRIIRIA	6.25	P. aeruginosa	Pompiio et al. (2011)
KSL	KKVVFVKFK	400	S. mutans	Liu et al. (2011)
P2-5-12W	RWGRWLKIRIRWRPK	40	S. epidermidis	Mohloek et al. (2011)
LL-31	LLGDFRKSKEKIKFEKRIQKFKLKDRLNVRPSTES	20	P. aeruginosa	Nagant et al. (2012)
LL-13-37	1GFEKRIQKFKLKDRLNVRPSTES	100	P. aeruginosa	Nagant et al. (2012)
LL7-37	RRSKEKIGEKFRIQKFKLKDRLNVRPSTES	50	P. aeruginosa	Nagant et al. (2012)
KSL-W	KKVVFVKFK	191.16	MRSA	Gwawde et al. (2014)
MUC7-12-MER-L	RKSYKCLKHCR	12.5–50; median 50	S. mutans	Wei et al. (2006)
MUC7-12-MER-L4	RKSYKALHRAR	50; median >50	S. mutans	Wei et al. (2006)
MUC7-20-MER	LAHQKFIRKSYSKCLKHCR	6.25–25; median 25	S. mutans	Wei et al. (2006)
HSN5	AKRHHGYKRFH	12.5–50; median >50	S. mutans	Wei et al. (2006)
MAGAININ-II	GIGKFLHSKAKFGKAFVGEIMNS	25–50; median >50	S. mutans	Wei et al. (2006)
C16G2	TFFRLFNKSTFQALKGKGGKLNRIKRGHIHHKY	25	S. mutans	Sullivan et al. (2011)
BAC5C	RIWVIWR	108.13	S. mutans	Ding et al. (2014)
PTP-7	FLGALFKALSKL	40	S. aureus	Kharidza and Liang (2011)
CHRYSOPHSIN-1	FPGWLIKGAHAIKGAHIGLHIIHRK	11.07	S. aureus	Wang et al. (2012)
2C-4	RWRWRWF	50	S. mutans and other oral streptococci	He et al. (2010)
SM6s(L1)2C	FIKHIHPRFQGGGRWRWRF	50	S. mutans and other oral streptococci	He et al. (2010)
SM6s(L3)2C	FIKHIHPRFSATRWRWRF	50	S. mutans and other oral streptococci	He et al. (2010)
SM6s(L1)B3	FIKHIHPRFQGGGRFKFKWWRF	50	S. mutans	He et al. (2010)
(RW)4-12H	RWRWWRWF	100	E. coli	Hou et al. (2010)
MELITIN	GIGVAVLKLYVTGGDLPSIKKQRQQ	50	S. mutans	Sullivan et al. (2011)
K-FV-116	KFRKLFIRVRVVLKK	64	P. aeruginosa	Xu et al. (2014)
L-K6	IKIKLSSIKKLL	6.25	S. mutans	Shang et al. (2014)
CA-MA	KWKLFFKIKGIGFKLHASKKF	361.54	MRSA	Mataraci and Dosler (2012)
PI0	LAREYKKIVELKRRWLRQRVLRTL	32	HAASNA	Haassna et al. (2014)
Table S20. Antibiofilm Peptides and MBEC (µM) Values (Cont...)

Name	Seq	MBEC (µM)	Pathogen	Source
1018	VRLIVAVRIWRR	6.51	*P. aeruginosa*	de la Fuente-Núñez et al. (2013)
HE4	VRLIVAVRIWRR	6.16	*P. aeruginosa*	de la Fuente-Núñez et al. (2014)
HE10	VRLIVRIWRR	7.32	*P. aeruginosa*	de la Fuente-Núñez et al. (2014)
DJK5	VQWRARIRVIR	1.61	*P. aeruginosa*	de la Fuente-Núñez et al. (2015)
DJK6	VQWRIRKRWVIR	1.5	*P. aeruginosa*	de la Fuente-Núñez et al. (2015)
KT2	NVQIPRYKWWKWWKKWW	1	*E. coli*	Anunthawan et al. (2015)
RT2	NVQIPRYRWWRRRWW	1	*E. coli*	Anunthawan et al. (2015)
DL-MB-LF11-322	PFWRIRIRR	246.38	*P. aeruginosa*	Sánchez-Gómez et al. (2015)
LF11-324	PFWRIRIRR	55.33	*P. aeruginosa*	Sánchez-Gómez et al. (2015)
6-MO-LF11-227	FWRRFWRR	489.01	*P. aeruginosa*	Sánchez-Gómez et al. (2015)
LF11-215	FWRRIRRR	133.41	*P. aeruginosa*	Sánchez-Gómez et al. (2015)
P60.4AC	IGKEFKRIVERIKRFLRELVRPLR	32	MRSA	Haisma et al. (2014)

REFERENCES

Anunthawan, T., de la Fuente-Núñez, C., Hancock, R. E., and Klaynongsruang, S. (2015). Cationic amphipathic peptides kt2 and rt2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 1848, 1352–1358. doi:https://doi.org/10.1016/j.bbamem.2015.02.021

[Dataset] Armstrong, D. and Zidovetzki, R. (2009). Helical wheel projections. www.donarmstrong.com/cgi-bin/wheel.pl. Version ID: wheel.pl,v 1.4 2009-10-20 21:23:36 don Exp

Chen, Q., Cheng, P., Ma, C., Xi, X., Wang, L., Zhou, M., et al. (2018). Evaluating the bioactivity of a novel broad-spectrum antimicrobial peptide brevinin-1gha from the frog skin secretion of hylarana guentheri and its analogues. *Toxins* 10. doi:10.3390/toxins10100413

de la Fuente-Núñez, C., Mansour, S. C., Wang, Z., Jiang, L., Breidenstein, E. B., Elliott, M., et al. (2014). Anti-biofilm and immunomodulatory activities of peptides that inhibit biofilms formed by pathogens isolated from cystic fibrosis patients. *Antibiotics* 3, 509–526. doi:10.3390/antibiotics3040509

de la Fuente-Núñez, C., Reffuveille, F., Mansour, S. C., Reckseidler-Zenteno, S. L., Hernández, D., Brackman, G., et al. (2015). D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal *Pseudomonas aeruginosa* infections. *Chem Biol* 22, 196–205

de la Fuente-Núñez, C., Reffuveille, F., nde, L. F., and Hancock, R. E. (2013). Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. *Current Opinion in Microbiology* 16, 580–589. doi:10.1016/j.mib.2013.06.013. Antimicrobials · Genomics

Ding, Y., Wang, W., Fan, M., Tong, Z., Kuang, R., Jiang, W., et al. (2014). Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. *Peptides* 52, 61–67

Gawande, P. V., Leung, K. P., and Madhyastha, S. (2014). Antibiofilm and antimicrobial efficacy of dispersinb®-ksl-w peptide-based wound gel against chronic wound infection associated bacteria. *Current Microbiology* 68, 635–641. doi:10.1007/s00284-014-0519-6

Gong, Z., Pei, X., Ren, S., Chen, X., Wang, L., Ma, C., et al. (2020). Identification and rational design of a novel antibacterial peptide dermaseptin-ac from the skin secretion of the red-eyed tree frog agalychnis caldidyras. *Antibiotics* 9. doi:10.3390/antibiotics9050243

Gupta, S., Sharma, A. K., Jaiswal, S. K., and Sharma, V. K. (2016). Prediction of biofilm inhibiting peptides: An in silico approach. *Frontiers in Microbiology* 7, 949. doi:10.3389/fmicb.2016.00949

Haisma, E. M., de Breij, A., Chan, H., van Dissel, J. T., Drijfhout, J. W., Hiemstra, P. S., et al. (2014). LI-37-derived peptides eradicate multidrug-resistant staphylococcus aureus from thermally wounded human skin equivalents. *Antimicrobial Agents and Chemotherapy* 58, 4411–4419. doi:10.1128/AAC.02554-14
He, J., Yarbrough, D. K., Kreth, J., Anderson, M. H., Shi, W., and Eckert, R. (2010). Systematic approach to optimizing specifically targeted antimicrobial peptides against *Streptococcus mutans*. *Antimicrobial Agents and Chemotherapy* 54, 2143–2151. doi:10.1128/AAC.01391-09

Hirt, H. and Gorr, S.-U. (2013). Antimicrobial peptide gl13k is effective in reducing biofilms of *Pseudomonas aeruginosa*. *Antimicrobial Agents and Chemotherapy* 57, 4903–4910. doi:10.1128/AAC.00311-13

Hou, S., Liu, Z., Young, A. W., Mark, S. L., Kallenbach, N. R., and Ren, D. (2010). Effects of trp- and arg-containing antimicrobial-peptide structure on inhibition of *Escherichia coli* planktonic growth and biofilm formation. *Applied and Environmental Microbiology* 76, 1967–1974. doi:10.1128/AEM.02321-09

Huang, L., Chen, D., Wang, L., Lin, C., Ma, C., Xi, X., et al. (2017). Dermaseptin-ph: A novel peptide with antimicrobial and anticancer activities from the skin secretion of the south american orange-legged leaf frog, *Pithecopus (Phyllomedusa) hypochondrialis*. *Molecules* 22. doi:10.3390/molecules22101805

Hwang, I.-s., Hwang, J.-s., Hwang, J. H., Choi, H., Lee, E., Kim, Y., et al. (2013). Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. *Current Microbiology* 66, 56–60. doi:10.1007/s00284-012-0239-8

Kharidia, R. and Liang, J. F. (2011). The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. *J Microbiol* 49, 663–668

Li, M., Xi, X., Ma, C., Chen, X., Zhou, M., Burrows, J. F., et al. (2019). A novel dermaseptin isolated from the skin secretion of *Phyllomedusa tarsius* and its cationicity-enhanced analogue exhibiting effective antimicrobial and anti-proliferative activities. *Biomolecules* 9. doi:10.3390/biom9100628

Liu, Y., Wang, L., Zhou, X., Hu, S., Zhang, S., and Wu, H. (2011). Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and *Streptococcus mutans* biofilm. *Int J Antimicrob Agents* 37, 33–38

Luca, V., Stringaro, A., Colone, M., Pini, A., and Mangoni, M. L. (2013). Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen *Pseudomonas aeruginosa*. *Cellular and Molecular Life Sciences* 70, 2773–2786. doi:10.1007/s00018-013-1291-7

Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., et al. (2019). The embl-ebi search and sequence analysis tools api in 2019. *Nucleic acids research* 47, W636—W641. doi:10.1093/nar/gkz268

Mataraci, E. and Dosler, S. (2012). In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant *Staphylococcus aureus* biofilms. *Antimicrob Agents Chemother* 56, 6366–6371

Molhoek, E. M., van Dijk, A., Veldhuizen, E. J., Haagsman, H. P., and Bikker, F. J. (2011). A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms. *Int J Antimicrob Agents* 37, 476–479

Nagant, C., Pitts, B., Nazmi, K., Vandenbranden, M., Bolscher, J. G., Stewart, P. S., et al. (2012). Identification of peptides derived from the human antimicrobial peptide Il-37 active against biofilms formed by *Pseudomonas aeruginosa* using a library of truncated fragments. *Antimicrobial Agents and Chemotherapy* 56, 5698–5708. doi:10.1128/AAC.00918-12

Pompilio, A., Scocchi, M., Pomponio, S., Guida, F., Di Primio, A., Fiscarelli, E., et al. (2011). Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. *Peptides* 32, 1807–1814
Ramamourthy, G., Arias, M., Nguyen, L. T., Ishida, H., and Vogel, H. J. (2019). Expression and purification of chemokine mip-3α (ccl20) through a calmodulin-fusion protein system. *Microorganisms* 7. doi:10.3390/microorganisms7010008

Sánchez-Gómez, S., Ferrer-Espada, R., Stewart, P. S., Pitts, B., Lohner, K., and Martínez de Tejada, G. (2015). Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferrin against pseudomonas aeruginosa planktonic cultures and biofilms. *BMC Microbiology* 15, 137. doi:10.1186/s12866-015-0473-x

Schiffer, M. and Edmundson, A. B. (1967). Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. *Biophysical Journal* 7, 121–135. doi:10.1016/S0006-3495(67)86579-2

Shang, D., Liang, H., Wei, S., Yan, X., Yang, Q., and Sun, Y. (2014). Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. *Appl Microbiol Biotechnol* 98, 8685–8695

Singh, H., Singh, S., and Singh Raghava, G. P. (2019). Peptide secondary structure prediction using evolutionary information. *bioRxiv* doi:10.1101/558791

Sullivan, R., Santarpia, P., Lavender, S., Gittins, E., Liu, Z., Anderson, M. H., et al. (2011). Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: Targeted elimination of *Streptococcus* mutans and prevention of demineralization. *Caries Research* 45, 415–428. doi:10.1159/000330510

Sutton, J. M. and Pritts, T. A. (2014). Human beta-defensin 3: a novel inhibitor of Staphylococcus-produced biofilm production. Commentary on “Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation”. *J Surg Res* 186, 99–100

Tao, R., Tong, Z., Lin, Y., Xue, Y., Wang, W., Kuang, R., et al. (2011). Antimicrobial and antibiofilm activity of pleurocidin against cariogenic microorganisms. *Peptides* 32, 1748–1754

Wang, H., He, H., Chen, X., Zhou, M., Wei, M., Xi, X., et al. (2020). A novel antimicrobial peptide (kassinatuerin-3) isolated from the skin secretion of the african frog, *kassina senegalensis*. *Biology (Basel)* 9

Wang, W., Tao, R., Tong, Z., Ding, Y., Kuang, R., Zhai, S., et al. (2012). Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. *Peptides* 33, 212–219

Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., and Barton, G. J. (2009). Jalview version 2—a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25, 1189–1191. doi:10.1093/bioinformatics/btp033

Wei, G.-X., Campagna, A. N., and Bobek, L. A. (2006). Effect of muc7 peptides on the growth of bacteria and on streptococcus mutans biofilm. *Journal of Antimicrobial Chemotherapy* 57, 1100–1109. doi:10.1093/jac/dkl120

Xu, W., Zhu, X., Tan, T., Li, W., and Shan, A. (2014). Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. *PLOS ONE* 9, 1–13. doi:10.1371/journal.pone.0098935

Zhang, R., Zhou, M., Wang, L., McGrath, S., Chen, T., Chen, X., et al. (2010). Phylloseptin-1 (psn-1) from phyllomedusa sauvagei skin secretion: a novel broad-spectrum antimicrobial peptide with antibiofilm activity. *Molecular Immunology* 47 11-12, 2030–7