A Lightweight Implementation of NTRU Prime for the Post-Quantum Internet of Things

Hao Cheng¹ Daniel Dinu² Johann Großschädl¹
Peter B. Rønne¹ Peter Y. A. Ryan¹

¹SnT and CSC, University of Luxembourg
²IPAS, Intel

WISTP 2019, 11-12 December 2019, Paris, France
Outline

1. Introduction

2. Overview of NTRU Prime (Streamlined NTRU Prime)

3. Optimizations for Arithmetic Operations
 - Karatsuba-Based Polynomial Multiplication
 - Multiplication Based on Product-Form Polynomials

4. Experimental Results

5. Conclusion
Outline

1. Introduction
2. Overview of NTRU Prime (Streamlined NTRU Prime)
3. Optimizations for Arithmetic Operations
 - Karatsuba-Based Polynomial Multiplication
 - Multiplication Based on Product-Form Polynomials
4. Experimental Results
5. Conclusion
Quantum Cryptanalysis

- Quantum Computing
 - Exploits quantum-mechanical phenomena (superposition and entanglement)
 - Can solve certain hard problems efficiently
- Shor’s Algorithm\(^1\)
 - Integer Factorization, Discrete Logarithm in polynomial time
- Google publishes landmark quantum supremacy claim\(^2\)

\(^1\) Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS ’94). IEEE Computer Society Press, 1994, pp. 124–134.

\(^2\) F. Arute et al. “Quantum Supremacy using a Programmable Superconducting Processor”. In: Nature 574 (2019), pp. 505–510.
Solicit, evaluate and standardize one or more quantum-resistant PKC algorithms.

26 candidates in Round 2, 17 KEM/Encryption and 9 Signature schemes.

NTRU Prime is the KEM candidate in Round 2.

Performance (hardware + software) will play more of a role.

3 https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
Internet of Things

Figure: Internet of Things on the rise

- IoT needs **lightweight** cryptosystems and protocols

4 Ericsson Mobility Report (Jan 2019): https://www.ericsson.com/490532/assets/local/mobility-report/documents/2019/ericsson-mobility-report-world-economic-forum.pdf
8-bit AVR Microcontrollers

- 8-bit AVR Architecture
 - 8-bit RISC, 133 instructions
 - 32 general-purpose registers
 - Three 16-bit pointer registers: X, Y, and Z
 - Two-operand instruction format, e.g. “ADD R0, R1”
 - Most arithmetic/logic instructions take 1 cycle
 - Loads/Stores to/from RAM take 2 cycles

- ATmega1284 microcontroller: 16 KB RAM, 128 KB program memory
- One of the most constrained microcontrollers
Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
 - Karatsuba-Based Polynomial Multiplication
 - Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion
Parameters and Rings

- **NTRU Prime (Key-establishment Algorithms)**
 - **Streamlined NTRU Prime**: Variant of classic NTRU
 - **NTRU LPrime**: Similar structure with NewHope (based on RLWE)

- **Parameters and Notations**
 - \(p \): the number of coefficients (must be **prime**), e.g. 653, 761 and 857
 - \(q \): modulus of the ring (must be **prime**), e.g. 4621, 4591 and 5167
 - \(w \): weight of the polynomial (the number of non-0 coefficients)
 - **small**: an element of \(R \) if all of its coefficients are in \{-1, 0, 1\}.
 - **Short**: the set of **small** weight-\(w \) elements of \(R \).

- **Rings**: \((\mathbb{Z}/m)\) means the set of integers in \((-m/2, m/2)\)
 - \(R \): ring \(\mathbb{Z}[x]/(x^p - x - 1) \)
 - \(R/3 \): ring \((\mathbb{Z}/3)[x]/(x^p - x - 1) \)
 - \(R/q \): field \((\mathbb{Z}/q)[x]/(x^p - x - 1) \)
Key Generation

1. Generate a uniform random small polynomial $g(x) \in \mathcal{R}$ that is invertible in $\mathcal{R}/3$ (Repeat this step if $g(x)$ is not qualified).
2. Compute $v(x) = 1/g(x)$ in $\mathcal{R}/3$.
3. Generate a uniform random polynomial $f(x) \in \text{Short}$.
4. Compute $h(x) = g(x)/(3f(x))$ in \mathcal{R}/q.
5. Output public key $h(x)$ and private key $(f(x), v(x))$.
Encapsulation

1. Generate a uniform random polynomial $r(x) \in \text{Short}$.

2. Compute $hr(x) = h(x) \star r(x) \in \mathcal{R}/q$ and then round each coefficient of $hr(x)$ to the nearest multiple of 3, the generated polynomial is ciphertext $c(x)$.

3. Hash (SHA-512-based) $r(x)$ together with $c(x)$ to obtain session key $k(x)$.

Decapsulation

1. Compute $e(x) = (3f(x) \star c(x) \in \mathcal{R}/q) \mod 3$

 $$= 3f(x) \star h(x) \star r(x) = 3f(x) \star (g(x)/3f(x)) \star r(x) = g(x) \star r(x).$$

2. Compute $r'(x) = e(x) \star v(x) \in \mathcal{R}/3$

 $$g(x) \star r(x) \star v(x) = g(x) \star r(x) \star g^{-1}(x) = r(x).$$

3. Repeat the Step 2 of Encapsulation to generate $c'(x)$ by $r'(x)$.

4. Check whether $c'(x) = c(x)$: if they are not equal, set $r'(x)$ to be a new uniform random polynomial \in Short.

5. Hash (SHA-512-based) $r'(x)$ together with $c(x)$ to obtain session key $k(x)$.
Scheme Performance Analysis

- **Arithmetic Operations**
 - Multiplication between an element in \mathcal{R}/q and Short
 - $hr(x) = h(x) \ast r(x) \in \mathcal{R}/q$ (Encap. step 2, Decap. step 3)
 - $f(x) \ast c(x) \in \mathcal{R}/q$ (Decap. step 1)
 - Multiplication between two elements in $\mathcal{R}/3$
 - $r'(x) = e(x) \ast v(x) \in \mathcal{R}/3$ (Decap. step 1)

- **Auxiliary Functions**
 - SHA-512 hash function
 - Optimization of SHA-512 is based on our previous work\(^5\), which sets the speed record of SHA-512 on 8-bit AVR platform
 - Encoding/Decoding
 - Decoding the private key $f(x)$ is constant-time

Our work has the constant running time for the security-critical part, that is resistant for timing attacks.

\(^5\) Hao Cheng, Daniel Dinu, and Johann Großschädl. “Efficient Implementation of the SHA-512 Hash Function for 8-Bit AVR Microcontrollers”. In: **Innovative Security Solutions for Information Technology and Communications — SecITC 2018.**
Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
 - Karatsuba-Based Polynomial Multiplication
 - Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion
Karatsuba-Based Polynomial Multiplication in $\mathbb{R}/3$

4-Level Karatsuba Multiplication (mul_kara) in $\mathbb{R}/3$ for sntrup653

$$(a + bX) \ast (c + dX) = ac + (ad + bc)X + bdX^2$$

$$= ac + [(a - b)(d - c) + ac + bd]X + bdX^2$$

1. Padding $p = 653$ coefficients to 656 (a multiple of 2^4) coefficients
2. $\text{mul_kara}(\text{len} = 656)$
3. $3 \ast \text{mul_kara}(\text{len} = 328) + \text{polynomial additions/subtractions}$
4. $3^2 \ast \text{mul_kara}(\text{len} = 164) + \text{polynomial additions/subtractions}$
5. $3^3 \ast \text{mul_kara}(\text{len} = 82) + \text{polynomial additions/subtractions}$
6. $3^4 \ast \text{school_book}(\text{len} = 41) + \text{polynomial additions/subtractions}$
7. Final polynomial reduction (mod $x^p - x - 1$)
Karatsuba-Based Polynomial Multiplication in $\mathcal{R}/3$

Hybrid School Book Multiplication6 ($d = 4$) in $\mathcal{R}/3$ for sntrup653

Outer layer: product–scanning

$$R_i = \sum_{i=j+k} A_j \ast B_k$$

- $Z_i(z_0 \ldots z_6) += A_j(a_0 \ldots a_3) \ast B_k(b_0 \ldots b_3)$
- $R_i \leftarrow z_0, z_1, z_2, z_3$
- $z_0 \leftarrow z_4; z_1 \leftarrow z_5; z_2 \leftarrow z_6; z_3, z_4, z_5, z_6 \leftarrow 0$

Inner layer: operand–scanning

- $z_0 += a_0 \ast b_0; z_1 += a_1 \ast b_0; z_2 += a_2 \ast b_0; z_3 += a_3 \ast b_0$
- $z_1 += a_0 \ast b_1; z_2 += a_1 \ast b_1; z_3 += a_2 \ast b_1; z_4 += a_3 \ast b_1$
- $z_2 += a_0 \ast b_2; z_3 += a_1 \ast b_2; z_4 += a_2 \ast b_2; z_5 += a_3 \ast b_2$
- $z_3 += a_0 \ast b_3; z_4 += a_1 \ast b_3; z_5 += a_2 \ast b_3; z_6 += a_3 \ast b_3$

Perform modulo-3 reduction at the end of each hybrid school book multiplication. Maximal intermediate value is $2 \ast 2 \ast 41 = 164$ (8-bit).

6Nils Gura et al. “Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs”. In: Cryptographic Hardware and Embedded Systems — CHES 2004.
Karatsuba-Based Polynomial Multiplication in $\mathbb{R}/3$ Modulo-3 Reduction

avr-gcc 4.8.2 for ATtiny45 (no hardware multiplier) ← _udivmodhi4

Cycles	Frequency	Percent (%)	Cycles	Frequency	Percent (%)
193	3	0.005	201	12244	18.683
194	45	0.069	202	7956	12.140
195	312	0.476	203	3825	5.836
196	1323	2.019	204	1323	2.019
197	3825	5.836	205	312	0.476
198	7956	12.140	206	45	0.069
199	12243	18.681	207	3	0.005
200	14121	21.547			

Figure: The execution time in cycles of the _udivmodhi4 function for all possible 16-bit unsigned integer inputs.
Karatsuba-Based Polynomial Multiplication in $\mathbb{R}/3$
Modulo-3 Reduction

1. $b \leftarrow a \mod 255$ (lines 1 to 2)
2. $c \leftarrow b \mod 15$ (lines 3 to 11)
3. $d \leftarrow c \mod 3$ (lines 12 to 21)
4. Final subtraction of 3 (lines 22 to 25)

Algorithm 1 Constant-Time Modulo 3 Reduction for 16-bit Unsigned Integer

Input: 16-bit unsigned integer $a = (\text{HIBYTE}, \text{LOBYTE})$, where HIBYTE represents the higher byte and LOBYTE represents the lower byte; ZERO is initially 0

Output: LOBYTE $\equiv a \mod 3$

Line	Instruction 1	Instruction 2
1	ADD LOBYTE, HIBYTE	
2	ADC LOBYTE, ZERO	
3	MOV HIBYTE, LOBYTE	
4	SWAP HIBYTE	
5	ANDI LOBYTE, 0x0F	
6	ANDI HIBYTE, 0x0F	
7	ADD LOBYTE, HIBYTE	
8	MOV HIBYTE, LOBYTE	
9	SWAP HIBYTE	
10	ADD LOBYTE, HIBYTE	
11	ANDI LOBYTE, 0x0F	
12	MOV HIBYTE, LOBYTE	
13	LSR HIBYTE	
14	LSR HIBYTE	
15	ANDI LOBYTE, 0x03	
16	ADD LOBYTE, HIBYTE	
17	MOV HIBYTE, LOBYTE	
18	LSR HIBYTE	
19	LSR HIBYTE	
20	ANDI LOBYTE, 0x03	
21	ADD LOBYTE, HIBYTE	
22	SUBI LOBYTE, 0x03	
23	SBC ZERO, ZERO	
24	ANDI ZERO, 0x03	
25	ADD LOBYTE, ZERO	
26	CLR ZERO	
Karatsuba-Based Polynomial Multiplication in \mathcal{R}/q

4-Level Karatsuba Multiplication (mul_kara) in \mathcal{R}/q for sntrup653

Multiplication between an element in \mathcal{R}/q and Short:

- $hr(x) = h(x) \ast r(x) \in \mathcal{R}/q$ (Encap. step 2, Decap. step 3)
- $f(x) \ast c(x) \in \mathcal{R}/q$ (Decap. step 1)

1. Padding $p = 653$ coefficients to 656 (a multiple of 2^4) coefficients
2. mul_kara($len = 656$)
3. $3 \ast$ mul_kara($len = 328$) + polynomial additions/subtractions
4. $3^2 \ast$ mul_kara($len = 164$) + polynomial additions/subtractions
5. $3^3 \ast$ mul_kara($len = 82$) + polynomial additions/subtractions
6. $3^4 \ast$ school_book($len = 41$) + polynomial additions/subtractions
7. Final polynomial reduction (mod $x^p - x - 1$)
Karatsuba-Based Polynomial Multiplication in \mathcal{R}/q
Modulo-q Reduction for sntrup653 ($q = 4621$)

- Perform modulo-q reduction at the end of each school book multiplication
- Maximal intermediate value’s length is 30-bit ($4620 \times 4620 \times 41$)
- 30-bit unsigned integer modulo-q reduction
 1. $tmp \leftarrow \text{LUT1}(b_{24} \ldots b_{29}) + \text{LUT2}(b_{16} \ldots b_{23}) + (b_0 \ldots b_{15})$
 2. $r \leftarrow \text{LUT3}(t_{12} \ldots t_{16}) + tmp \& 0xfff$
 3. $r \leftarrow r - q \cdot (r \geq q)$

This polynomial multiplication in \mathcal{R}/q occupies 70% of the whole execution time.
Product-Form Polynomial

- Product-form polynomial is in the fashion of
 \[f(x) = f_1(x) \ast f_2(x) + f_3(x) \]
- Widely used in the classic NTRU\(^7\)
- Proved to have constant running time in cache-less devices\(^8\)
- A few researchers appeal to use this technique in NTRU Prime
- Multiplication between an element in \(\mathcal{R} / q \) and Short:
 - \[hr(x) = h(x) \ast r(x) \in \mathcal{R} / q \text{ (Encap. step 2, Decap. step 3)} \]
 - \[f(x) \ast c(x) \in \mathcal{R} / q \text{ (Decap. step 1)} \]
- The weight of sparse polynomial \(f_1(x), f_2(x), f_3(x) \) is \((18, 16, 8) \)
- 7.7 times faster than Karatsuba-based multiplication, just costs less than 1 million clock cycles

\(^7\) Jeffrey Hoffstein and Joseph H. Silverman. “Optimizations for NTRU”. In: Public-Key Cryptography and Computational Number Theory. 2001, pp. 77–88.

\(^8\) Hao Cheng et al. “A Lightweight Implementation of NTRUEncrypt for 8-bit AVR Microcontrollers”. In: Proceedings of the 2nd NIST PQC Standardization Conference. Available online at http://csrc.nist.gov/Events/2019/second-pqc-standardization-conference. 2019.
Product-Form Polynomial Multiplication

```c
for (j = 0; j < blen; j ++)
{
    if (b[j] == 0) {b[j+9] = 0x0000; } else {b[j+9] = 0xFFFF; b[j] = N-b[j];}
}

while (i < loop_cnt) // loop_cnt must be >= N and a multiple of 5
{
    sum0 = r[i ]; sum1 = r[i+1]; sum2 = r[i+2]; sum3 = r[i+3];
    sum4 = r[i+4]; sum0 += sumx; sumx = 0;

    for (j = 0; j < blen; j ++)
    {
        idx = b[j];
        sum1 += a[idx] & b[j+9]; sum0 += a[idx++];
        sum2 += a[idx] & b[j+9]; sum1 += a[idx++]; sum3 += a[idx] & b[j+9]; sum2 += a[idx++];
        sum4 += a[idx] & b[j+9]; sum3 += a[idx++]; sumx += a[idx] & b[j+9]; sum4 += a[idx++];
        if (idx >= N) { b[j] = idx-N; b[j+9] &= 0x0000; }
        else { b[j] = idx; b[j+9] &= 0xFFFF; }
    }

    r[i++] = uint17_mod_q(sum0); r[i++] = uint17_mod_q(sum1); r[i++] = uint17_mod_q(sum2);
    r[i++] = uint17_mod_q(sum3); r[i++] = uint17_mod_q(sum4); sumx = uint17_mod_q(sumx);
}
```

Please see details in our previous work\(^8\)

\(^8\) Hao Cheng et al. “A Lightweight Implementation of NTRUEncrypt for 8-bit AVR Microcontrollers”. In: *Proceedings of the 2nd NIST PQC Standardization Conference*.

Hao Cheng et al.
Security Weakness of the Product-Form Polynomial

\[f(x) = f_1(x) \ast f_2(x) + f_3(x) \mod (x^p - x - 1) \]

- The distribution of \(f_1(x) \ast f_2(x) \) is not uniform
- Could use a more complicated fashion to have the uniform distribution, but it will increase the time cost
Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
 - Karatsuba-Based Polynomial Multiplication
 - Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion
Experiment Setup

- Tools: Atmel Studio v7.0
- Simulator: ATmega1284 simulator in Atmel Studio v7.0
- Compiler: 8-bit AVR GNU toolchain avr-gcc version 5.4.0
- Optimization Level: -O2 option
- Source code:
 - Assembler (performance/security-critical operations + SHA-512 compression)
 - Others are written in C language
Performance Evaluation

Table: Execution time (in clock cycles) and code size (in bytes) of the main components of two Streamlined NTRU Prime implementations: Karatsuba multiplication based (KA) version and product-form (PF) based version

Operation	KA version		PF version	
	Time	Code	Time	Code
Karatsuba Mul. (in \mathcal{R}/q)	5,691,117	2,230	5,691,117	2,230
Product-Form Mul.	n/a	n/a	740,980	2,812
Karatsuba Mul. (in $\mathcal{R}/3$)	1,277,675	1,510	1,277,675	1,510
Encapsulation	8,276,001	8,694	8,276,001	8,694
Decapsulation	15,838,978	11,478	10,869,879	14,370
Encapsulation + Decapsulation	24,114,979	11,634	19,145,880	14,530
Comparision

Table: Execution time (in clock cycles) of our NTRU Prime software, compared with other post-quantum key encapsulation schemes, RSA and ECC. All cryptosystems (except RSA) provide 128-bit security.

Implementation	Algorithm	Platform	Encap.	Decap.
This work	NTRU Prime	ATmega1284	8,276,001	15,838,978
This work (PF)	NTRU Prime	ATmega1284	8,276,001	10,869,879
Kannwischer et al\(^9\)	NTRU Prime	Cortex M4	54,942,173	166,481,625
Kannwischer et al\(^9\)	Frodo	Cortex M4	45,883,334	45,366,065
Kannwischer et al\(^9\)	NewHope	Cortex M4	1,903,231	1,927,505
Kannwischer et al\(^9\)	NTRU	Cortex M4	645,329	542,439
Gura et al\(^10\) *	RSA-1024	ATmega128	3,440,000	87,920,000
Düll et al\(^11\)	ECC-255	ATmega2560	27,800,794	23,900,397
Cheng et al\(^8\)	NTRU	ATmega1281	847,973	1,051,871

\(^9\)Matthias J. Kannwischer et al. *pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4*. Cryptology ePrint Archive, Report 2019/844. Available for download at http://eprint.iacr.org. 2019.

\(^10\)Gura et al., “Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs”.

\(^11\)Michael Düll et al. “High-Speed Curve25519 on 8-bit, 16-bit and 32-bit Microcontrollers”. In: *Designs, Codes and Cryptography* 77.2–3 (Dec. 2015), pp. 493–514.
Outline

1. Introduction

2. Overview of NTRU Prime (Streamlined NTRU Prime)

3. Optimizations for Arithmetic Operations
 - Karatsuba-Based Polynomial Multiplication
 - Multiplication Based on Product-Form Polynomials

4. Experimental Results

5. Conclusion
Conclusion

- The first optimized microcontroller implementation of NTRU Prime (Timing Attacks resistant)
- Optimization of multiplication that combines four levels of Karatsuba multiplication with the hybrid method at the lowest level
- Can not trust C compilers to generate constant-time code for the modulo-3 reduction, which generally raises security concerns
- Adapt the concept of product-form polynomials to NTRU Prime, and show its performance and security weakness
- NTRU Prime can be well optimized to run efficiently on small microcontrollers
Thanks for your attention!

Questions?