Supplementary file 1: Comparison between INLA and JAGS estimations and assessment of the stability of the inference.
1 Descriptive: number of events

H.Area	N	F → R	F → D	R → D				
	Men	Women	Men	Women	Men	Women		
1	141	442	9	31	77	215	5	20
2	510	1478	23	114	301	704	17	58
3	339	934	21	63	207	417	11	28
4	353	1019	19	89	216	511	14	45
5	550	1724	36	147	320	769	24	69
6	489	1716	31	154	299	821	19	74
7	349	1111	26	88	204	523	16	39
8	111	293	3	19	83	154	3	11
9	639	2085	30	173	386	1029	20	73
10	578	1815	31	142	364	870	20	68
11	406	1224	25	104	272	674	17	56
12	374	1095	30	83	206	500	20	37
13	335	966	25	96	189	408	10	46
14	438	1246	23	88	280	610	18	43
15	278	908	16	55	167	461	12	26
16	277	679	12	41	154	304	8	20
17	385	1210	19	93	224	602	14	44
18	386	1118	26	85	222	571	13	34
19	358	1140	29	94	199	487	18	28
20	281	795	21	57	164	395	14	25
21	254	732	17	44	138	308	9	19
22	325	713	19	52	153	278	7	19
23	322	842	20	66	188	379	13	32
24	206	522	5	38	120	222	4	13
Total	**8684**	**25807**	**516**	**2016**	**5133**	**12212**	**326**	**927**

Supplementary table 1: Number of patients among transitions by Health Area, and sex.
2 INLA vs JAGS

We compared estimations from both procedures using a reduced case study. We selected 5 neighbouring Health Areas of the 24 in the Valencia Region, and applied an illness-death model with Weibull transition intensities, and with region-specific random effects. Random effects follow a gaussian distribution which precision matrix only includes between-transition correlation. The illness-death part of the model remains unchanged and the only difference appears in the random effects model:

\[
(b_{k}^{FR}, b_{k}^{FD}, b_{k}^{RD})^T \sim N(0, \Sigma_{\text{between}}), \quad k = 1, \ldots, 5,
\]

where \(b_{k}^{ij}\) is the random effect of the Health Area \(k\) in the intensity of the transition \(i \rightarrow j\), and \(\Sigma_{\text{between}}\) is the between-transition correlation matrix defined as:

\[
\Sigma_{\text{between}} = \begin{pmatrix}
\frac{1}{\tau_{FR}} & \frac{\rho(\text{FR})(\text{FD})}{\sqrt{\tau_{FR}\tau_{FD}}} & \frac{\rho(\text{FR})(\text{RD})}{\sqrt{\tau_{FR}\tau_{RD}}} \\
\frac{\rho(\text{FR})(\text{FD})}{\sqrt{\tau_{FR}\tau_{FD}}} & \frac{1}{\tau_{FD}} & \frac{\rho(\text{FD})(\text{RD})}{\sqrt{\tau_{FD}\tau_{RD}}} \\
\frac{\rho(\text{FR})(\text{RD})}{\sqrt{\tau_{FR}\tau_{RD}}} & \frac{\rho(\text{FD})(\text{RD})}{\sqrt{\tau_{FD}\tau_{RD}}} & \frac{1}{\tau_{RD}}
\end{pmatrix}.
\]

Non-informative priors were used. In particular, \(\text{Gamma}(0.01, 0.01)\) priors for shape parameters \(\alpha\) and normal distributions, \(N(0, 0.001)\) (in terms of precision) for intercepts and effects of covariates. For the precision matrix, \(\Sigma_{\text{between}}^{-1}\), we assumed a Wishart prior with \(\nu = 7\) degrees of freedom and the identity as the scale matrix.
Supplementary figure 1: Posterior mean of the region-specific random effects for 5 Health Areas of the Valencia Region, from an illness-death model with gaussian random effects considering between-transition correlation, using INLA and MCMC methods via JAGS.

Supplementary figure 2: Absolute differences in the estimated posterior mean of random effects using INLA and MCMC methods via JAGS.

Note that slight differences were observed between random effects obtained from both procedures.
2.1 JAGS diagnostics

Convergence to the posterior distribution was assessed using three chains and 5,000 iterations per chain (each chain with an adapt period of 1000 and burn-in of 500 iterations). A post-sweeping procedure was applied to random effects and intercepts to improve identifiability and reduce the number of iterations needed to reach this convergence.

We assessed convergence and mixing of the Markov chains. We obtained point estimates and upper confidence limits of the Gelman and Rubin’s potential scale reduction factor, for each parameter and latent effect in the model, in order to assess convergence. We show a summary of it.

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Point est.	1.000	1.001	1.003	1.005	1.009	1.023
Upper C.I.	1.000	1.002	1.008	1.017	1.026	1.067

Supplementary table 2: Summary of the estimated Gelman and Rubin’s potential scale reduction factor for the samples obtained via JAGS. Point estimates and upper confidence limits.

2.2 MCSE of posterior outcomes

We estimated Monte Carlo Standard Errors (MCSE) for the samples of the posterior outcomes. Note that we first simulated values of the parameters from the joint posterior distribution with INLA, and then we obtained samples of cumulative incidences and transition probabilities. We provide the MCSE of those samples, analogously to what should be done when simulating from MCMC or other methods which work with random draws. We calculated it for each Health Area, \(k = 1, \ldots, 24 \), for each \(t = 1, \ldots, 5 \), for each quantity of interest, and for both women and men. It has been summarized in the following table:

Outcome	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
\(F_{12} \)	1.82	2.06	2.22	2.22	2.36	2.92	1.71	2.11	2.26	2.26	2.40	3.03
\(p_{FR} \)	1.86	2.11	2.26	2.26	2.36	2.99	1.46	2.17	2.31	2.30	2.45	3.16
\(p_{FD} \)	1.78	2.13	2.34	2.40	2.61	3.61	1.77	2.06	2.25	2.27	2.43	3.28
\(p_{RD} \)	1.91	2.10	2.27	2.27	2.46	2.68	1.81	2.18	2.32	2.31	2.47	2.78

Supplementary table 3: Summary of the Monte Carlo standard errors as a percentage of the posterior SD.

In broad terms, MC standard errors are low compared to standard deviation, which implies that we have good estimations of the posterior mean of the outcomes depicted in Figures 6-9 in the manuscript.
3 Stability of the inference

3.1 Fixing spatial-correlation parameter, γ

Note that few differences were observed by fixing γ parameter, comparing to an unknown value of γ which is estimated from the model and data (mean of 0.841). The model considering no spatial correlation at all, $\gamma = 0$, differed the most.

Supplementary figure 3: Absolute differences in the estimated posterior mean of random effects for fixed values of $\gamma = 0, 0.5, 0.99$ compared to a variable value of γ (posterior mean of 0.841 estimated according to the main analysis), approximated via INLA.
Parameter	$\gamma = 0$		$\gamma = 0.5$		Unknown γ		$\gamma = 0.99$	
β_{FR}	-3.603 (-3.739, -3.468)	3.598	-3.603 (-3.739, -3.468)	3.598	-3.596 (-4.764, -2.430)	3.596	-3.596 (-4.764, -2.430)	3.596
β_{FD}	-1.104 (-1.196, -1.013)	0.999	-1.104 (-1.196, -1.013)	0.999	1.105 (-2.094, -0.115)	1.105	1.105 (-2.094, -0.115)	1.105
β_{RD}	-0.537 (-0.694, -0.381)	0.371	-0.537 (-0.694, -0.381)	0.371	0.545 (-0.984, -0.107)	0.545	0.545 (-0.984, -0.107)	0.545
$\beta_{FR, Woman}$	0.021 (-0.076, 0.119)	0.021	0.021 (-0.076, 0.119)	0.021	0.021 (-0.076, 0.119)	0.021	0.021 (-0.076, 0.119)	0.021
$\beta_{FD, Woman}$	-0.510 (-0.542, -0.477)	-0.510	-0.510 (-0.542, -0.477)	-0.510	-0.510 (-0.542, -0.477)	-0.510	-0.510 (-0.542, -0.477)	-0.510
$\beta_{RD, Woman}$	-0.633 (-0.760, -0.504)	-0.634	-0.633 (-0.760, -0.504)	-0.634	-0.634 (-0.760, -0.504)	-0.634	-0.634 (-0.760, -0.504)	-0.634
$\beta_{FR, Age}$	0.024 (0.018, 0.030)	0.024	0.024 (0.018, 0.030)	0.024	0.024 (0.018, 0.030)	0.024	0.024 (0.018, 0.030)	0.024
$\beta_{FD, Age}$	0.070 (0.068, 0.073)	0.070	0.070 (0.068, 0.073)	0.070	0.070 (0.068, 0.073)	0.070	0.070 (0.068, 0.073)	0.070
$\beta_{RD, Age}$	0.050 (0.040, 0.059)	0.050	0.050 (0.040, 0.059)	0.050	0.049 (0.040, 0.059)	0.049	0.049 (0.040, 0.059)	0.049

Supplementary table 4: Posterior estimates from different spatial illness-death models with fixed values of the spatial correlation parameter $\gamma = 0, 0.5, 0.99$, and with an unknown γ estimated from the model, via INLA.
3.2 Varying degrees of freedom, ν

Note that few differences were observed by varying ν parameter, comparing to estimations for $\nu = 7$. Transition from refracture to death showed the highest differences, but probably due to the lower sample size (See Supplementary Table 1).

Supplementary figure 4: Absolute differences in the estimated posterior mean of random effects for $\nu = 6, 8, 9, 10$ compared to $\nu = 7$ (reference value used in the main analysis), approximated via INLA.
Parameter	$v = 6$	Median	$v = 7$	Median	$v = 8$	Median	$v = 9$	Median	$v = 10$	Median
β^{IR}	-3.598 (-3.954, -3.243)	-3.570	-3.598 (-3.993, -3.204)	-3.597	-3.598 (-3.913, -3.284)	-3.597	-3.598 (-3.945, -3.251)	-3.597	-3.597 (-3.878, -3.319)	-3.597
β^{ID}	-1.105 (-1.402, -0.809)	-1.105	-1.105 (-1.436, -0.775)	-1.105	-1.105 (-1.358, -0.854)	-1.105	-1.105 (-1.394, -0.818)	-1.105	-1.105 (-1.332, -0.879)	-1.105
β^{RD}	-0.544 (-0.946, -0.142)	-0.544	-0.545 (-0.984, -0.107)	-0.545	-0.545 (-0.891, -0.199)	-0.545	-0.545 (-0.924, -0.166)	-0.545	-0.546 (-0.852, -0.237)	-0.546
$\beta_{FR, Woman}$	0.021 (-0.076, 0.119)	0.021	0.021 (-0.076, 0.119)	0.020	0.021 (-0.076, 0.119)	0.020	0.021 (-0.076, 0.119)	0.020	0.021 (-0.076, 0.119)	0.020
$\beta_{FD, Woman}$	-0.510 (-0.543, -0.477)	-0.510	-0.510 (-0.543, -0.477)	-0.510	-0.510 (-0.543, -0.477)	-0.510	-0.510 (-0.543, -0.477)	-0.510	-0.510 (-0.542, -0.477)	-0.510
$\beta_{RD, Woman}$	-0.634 (-0.761, -0.505)	-0.634	-0.634 (-0.761, -0.505)	-0.634	-0.634 (-0.760, -0.504)	-0.634	-0.634 (-0.760, -0.504)	-0.633	-0.633 (-0.759, -0.504)	-0.633
$\beta_{FR, Age}$	0.024 (0.018, 0.030)	0.024	0.024 (0.018, 0.030)	0.024	0.024 (0.018, 0.030)	0.024	0.024 (0.018, 0.030)	0.024	0.024 (0.018, 0.030)	0.024
$\beta_{FD, Age}$	0.070 (0.068, 0.073)	0.070	0.070 (0.068, 0.073)	0.070	0.070 (0.068, 0.073)	0.070	0.070 (0.068, 0.073)	0.070	0.070 (0.068, 0.073)	0.070
$\beta_{RD, Age}$	0.049 (0.040, 0.059)	0.049	0.049 (0.040, 0.059)	0.049	0.049 (0.040, 0.059)	0.049	0.049 (0.040, 0.059)	0.049	0.049 (0.040, 0.059)	0.049

Supplementary table 5: Posterior estimates from different spatial illness-death models with fixed values $v = 6, 7, 8, 9, 10$, via INLA.
A reference value $v = 7$ is used in the main analysis.