Genomic characterization of *Kerstersia gyiorum* SWMUKG01, an isolate from a patient with respiratory infection in China

Ying Li¹, Min Tang²*, Guangxi Wang², Chengwen Li¹, Wenbi Chen², Yonghong Luo³, Jing Zeng², Xiaoyan Hu², Yungang Zhou¹, Yan Gao¹, Luhua Zhang¹*

¹ Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China, ² Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China, ³ Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China

* These authors contributed equally to this work.

zhluhua@swmu.edu.cn

Abstract

Background

The Gram-negative bacterium *Kerstersia gyiorum*, a potential etiological agent of clinical infections, was isolated from several human patients presenting clinical symptoms. Its significance as a possible pathogen has been previously overlooked as no disease has thus far been definitively associated with this bacterium. To better understand how the organism contributes to the infectious disease, we determined the complete genomic sequence of *K. gyiorum* SWMUKG01, the first clinical isolate from southwest China.

Results

The genomic data obtained displayed a single circular chromosome of 3,945,801 base pairs in length, which contains 3,441 protein-coding genes, 55 tRNA genes and 9 rRNA genes. Analysis on the full spectrum of protein coding genes for cellular structures, two-component regulatory systems and iron uptake pathways that may be important for the success of the bacterial survival, colonization and establishment in the host conferred new insights into the virulence characteristics of *K. gyiorum*. Phylogenomic comparisons with *Alcaligenaceae* species indicated that *K. gyiorum* SWMUKG01 had a close evolutionary relationships with *Alcaligenes aquatilis* and *Alcaligenes faecalis*.

Conclusions

The comprehensive analysis presented in this work determinates for the first time a complete genome sequence of *K. gyiorum*, which is expected to provide useful information for subsequent studies on pathogenesis of this species.
Introduction

Kerstersia gyiorum is a Gram-negative coccobacillus that is occasionally isolated from clinical samples of human infections. On nutrient agar, colonies of *K. gyiorum* are usually characterized by spreading edge morphology, exhibiting flat or slightly convex with smooth margins [1–3]. The word ‘gyiorum’, meaning ‘from the limbs’, was given as a species name by Coenye et al., since the organism was primarily isolated from lower-extremity wounds. The novel genus *Kerstersia*, initially described by Coenye et al., is grouped in the family Alcaligenaceae along with *Alcaligenes*, *Achromobacter*, *Bordetella*, and *Pigmentiphaga* spp. [1]. *Kerstersia* members resemble *Alcaligenes faecalis* phenotypically, except that isolates of *Kerstersia* are oxidase-negative and do not produce a fruity odor.

The initial publication describing *K. gyiorum* by Coenye et al. in 2003 reported six isolates recovered from leg wounds, sputum, and feces. After 2012, case reports documenting *Kerstersia* spp. infection began to emerge again. Since then, there have been one case of infection with a second species of *Kerstersia*, *Kerstersia similis* [4] and 12 publications describing 14 cases of patients with various diseases infected with *K. gyiorum* [2, 3, 5–13]. Among them, seven cases were associated with chronic otitis media [2, 5, 6, 8, 11, 13], three with chronic leg wound [2, 7, 10]. Additionally, *K. gyiorum* was also reported to be isolated from patients with chronic tracheostomy [3], chronic osteomyelitis [12], or urinary tract infection [9]. In fact, it is difficult to distinguish *K. gyiorum* from other microorganisms using conventional methods, such as traditional biochemical tests and automated identification systems, which may lead to *K. gyiorum* being identified incorrectly or unsuccessfully in the past in most clinical laboratories [12]. The potentially clinical importance of *K. gyiorum* may therefore be overlooked. For the current, with the development of (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) MALDI–TOF MS and 16S rRNA gene sequencing, *K. gyiorum* is expected to be identified in laboratories more accurately.

As previous reports indicated, other bacterial species were co-isolated with *K. gyiorum* from specimens in most cases [2, 3, 6, 9]. It was suggested that *K. gyiorum* has an affinity towards causing chronic mixed infections in patients [6]. However, little is known regarding how much of the disease process can specifically be attributed to *K. gyiorum* because of a lack of pathogenesis-related information on this organism in the literature. Reported cases of human *Kerstersia* infections showed that the patients gained remission when treated with an antimicrobial agent to which this organism was susceptible [2, 8, 9]. These observations indicate that *K. gyiorum* could contribute significantly as a possible aetiology. To better understand how the organism contributes to infections, virulence factors and pathogenec mechanisms of *K. gyiorum* need to be investigated. Whole genome sequencing represents a valuable approach in an in-depth exploration of potential virulence factors and may answer important questions concerning the evolution of this bacterium [14]. Though a draft genome of *K. gyiorum* was announced by Greninger et al. [15], a comprehensive genome analysis of this organism is still not available to date. For this study, we presented a complete genome sequence of recently identified isolate *K. gyiorum* SWMUKG01, which was recovered from the sputum of a patient with respiratory infection. We reported and analyzed the complete genome sequence of *K. gyiorum* SWMUKG01, accompanied by a detailed annotation of its genome organization and expression strategy, with an emphasis on the investigation of genes and operons related to potential virulence factors.

Material and methods

Bacterial strain and growth conditions

The *K. gyiorum* strain SWMUKG01 was recovered from the sputum of a 70-year-old female patient of respiratory infection with a history of tracheotomy and epilepsy in May, 2018 from...
the affiliated hospital of Southwest Medical University. The isolate SWMUKG01 was identified as *K. gyiorum* by MALDI-TOF MS and 16S rRNA gene sequencing. For genomic DNA extraction, one colony of *K. gyiorum* SWMUKG01 was transferred into 5 ml Tryptic Soy Broth (TSB, Difco Laboratories) and cultured at 37˚C. After an overnight incubation, the culture was diluted 1:100 into fresh TSB for sub-cultivation until mid-exponential growth phase was reached. The bacterial cells were collected by centrifugation at 5000 g for 10 min.

DNA extraction and genome sequencing

Total genomic DNA of *K. gyiorum* SWMUKG01 was extracted using Rapid Bacterial Genomic DNA Isolation Kit (Sangon Biotech, Shanghai, China) according to the manufacturer's protocol. The genomic DNA was sent to Sangon Biotech (Shanghai, China) for *de novo* whole genome sequencing. A combination of HiSeq 2500 Sequencer (Illumina, San Diego, CA, USA) and the PacBio RSII platforms (Pacific Biosciences, Menlo Park, CA, USA) was employed for whole genome sequencing. *De novo* genome assembly of filtered reads was conducted using the Hierarchical Genome Assembly Process workflow (HGAP, v3; Pacific Biosciences) [16].

Sequence analysis

Protein coding sequences (CDSs), tRNAs and rRNAs were predicted in *K. gyiorum* SWMUKG01 complete genome with Prokka [17]. BLAST [18] was employed for annotation based on the sequence similarity of CDS against the Cluster of Orthologous Groups of proteins (COG) [19, 20], Kyoto Encyclopedia of Genes and Genomes (KEGG) [21], SwissProt [22], NR, and Gene Ontology (GO) databases [23]. The genome circular map was performed with the program CGview [24]. BLAST was employed to align the gene sequences against the Comprehensive Antibiotic Resistance Database (CARD) [25], and the description of the best hit (with the highest alignment length percentage and match identity) was assigned as the annotation of predicted gene. Virulence factors were investigated by BLAST against the virulence factor database (VFDB) (*E* < 1e⁻⁵) [26]. Genomic islands were annotated using IslandViewer 4 (http://www.pathogenomics.sfu.ca/islandviewer/) [27].

Phylogenetic analysis

For phylogenetic and comparative analysis, the genome sequences of the closest genetic relatives of *K. gyiorum* SWMUKG01 were obtained from the NCBI including *K. gyiorum* CG1 (NZ_LBNE00000000.1), *A. faecalis* ZD02 (NZ_CP013119.1), *Alcaligenes aquatilis* BU33N (NZ_CP022390.1), *Achromobacter xylosoxidans* NCTC10807 (NZ_LN831029.1), *Achromobacter denitrificans* USDA-ARS-USMARC-56712 (NZ_CP013923.1), *Achromobacter insolitus* FDAARGOS_88 (NZ_CP026973.1), *Bordetella bronchiseptica* 253 (NC_019382.1), *Bordetella pertussis* Tohama I (NC_002929.2), *Bordetella holmesii* ATCC 51541 (NZ_CP007494.1), *Bordetella hinzii* ASM107827v1 (NZ_CP012076.1), *Bordetella petrii* ASM6720v1 (NC_010170.1), *Bordetella parapertussis* Bpp5 (NC_018828.1), *Bordetella avium* 197N (NC_010645.1), *Bordetella trematum* H044680328 (NZ_LT546645.1), and *Bordetella pseudohinzii* HI4681 (NZ_CP016440.1). A phylogenetic tree based on the 16S rRNA gene sequences was generated using the tool FastTree [28]. To identify unique and conserved genes, the genome sequences of *K. gyiorum* SWMUKG01 and selected strains were compared using Pan-Genomes Analysis Pipeline (PGAP) [29], with which the genes shared by all genomes were collected, concatenated and aligned. The alignment of the conserved genes was used for the construction of neighbor joining tree using PGAP [29]. The species identification was also performed by average nucleotide identity (ANI) analysis between the isolate and strains shown in Table 1 using JSpeciesWS (http://jspecies.ribohost.com/jspeciesws/#analyse).
Data availability

All relevant data are within the paper and its Supporting Information files. The genome sequence data of *K. gyiorum* SWMUKG01 were deposited in GenBank with the accession number CP033936. Raw sequencing data were deposited under a BioProject with accession number PRJNA497911.

Ethics statement

The current study was approved by the Ethics Committee of Southwest Medical University (Sichuan, China). Written informed consent was exempted, since this retrospective study mainly focused on bacteria and patient intervention was not required.

Results and discussions

General features of the genome

The genome of *Kerstersia gyiorum* SWMUKG01 is composed of 3,945,801 base pairs (bps) with a single circular chromosome (Fig 1), which showed 95% coverage and 99% identity with *K. gyiorum* CG1. However, in CG1, the genome is comprised of one plasmid in addition to a circular chromosome. The putative replication origin (oriC) of SWMUKG01 chromosome was identified to be located from 3,914,889 to 3,915,821 bp, with the web-based system Ori-Finder [30]. The chromosome encodes 3520 predicted genes with an average length of 994 bps, which account for 88.72% of the whole chromosome in sum. The entire SWMUKG01 chromosome contains 55 tRNA genes and 9 rRNA genes. Global characterizations of the SWMUKG01 genome are compared to those of strains CG1 (*K. gyiorum*), ZD02 (*Alcaligenes faecalis*), BU33N (*A. aquatilis*), NCTC10807 (*A. xylosoxidans*), FDAARGOS_88 (*A. insolitus*), 253 (*B. bronchiseptica*), Tohama I (*B. pertussis*), and Bpp5 (*B. parapertussis*) (Table 1).

Functional classification of *K. gyiorum* SWMUKG01

Orthologs are thought to retain the same function during evolution. Therefore, the identification of orthologs contributes to the prediction of gene functions in a newly identified species. In this study, NCBI COG database was employed for genome-scale analysis of protein function prediction in *K. gyiorum* SWMUKG01. Of the 3441 protein-coding genes in SWMUKG01, 2801 were categorized into 23 COG functional codes (S1 Fig, S1 Table), but 640 were not assigned. The majority of protein-coding genes were involved in basic cellular functions, such as metabolism, transcription and translation, 34.4% of genes have unknown function.

Table 1. General features of whole genomes of *K. gyiorum* (SWMUKG01), *K. gyiorum* (CG1), *A. faecalis* (ZD02), *A. aquatilis* (BU33N), *A. xylosoxidans* (NCTC10807), *A. insolitus* (FDAARGOS_88), *B. bronchiseptica* (253), *B. pertussis* (Tohama I) and *B. parapertussis* (Bpp5).

GenBank accession No.	SWMUKG01	CG1	ZD02	BU33N	NCTC10807	FDAARGOS_88	253	Tohama I	Bpp5
Total length (bp)	3,945,801	3,942,939	4,233,756	3,838,399	6,813,182	6,523,893	5,264,383	4,086,189	4,887,379
GC content	62.0%	62.4%	56.8%	56.1%	67.4%	64.9%	68.1%	67.7%	67.8%
Number of CDSs	3521	3511	3785	3407	6087	6297	4781	3425	4184
Ribosome RNA									
16S rRNA	3	1	3	1	3	4	3	3	3
23S rRNA	3	1	3	1	3	4	3	3	3
5S rRNA	3	1	3	1	4	5	3	3	3
Number of tRNA	55	50	57	54	57	58	54	51	54

https://doi.org/10.1371/journal.pone.0214686.t001
including “general function prediction only,” “Function unknown,” and the genes not assigned (S2 Table).

Phylogenetic analysis

A comparative analysis of the 16 genomes within the family *Alcaligenaceae* was performed to confirm the evolutionary relationship based on the 16S rRNA genes and genome-wide comparisons of orthologous gene pairs. The phylogenetic tree based on the 16S rRNA gene
sequences showed that *K. gyiorum* SWMUKG01 and CG1 are located on the same node (98.3% similarity) (Fig 2A), both of which are more closely related to *A. aquatilis* and *Achromatium faecalis*, with 93.53% and 92.9% similarities of *K. gyiorum* SWMUKG01 in relative to *A. aquatilis* BU33N and *A. faecalis* ZD02. Genome-wide comparisons showed that 880 core genes were shared among *K. gyiorum* SWMUKG01 and the other 15 closely related species (Fig 3), based on which, the phylogenetic tree was reconstructed and also demonstrated that *K. gyiorum* SWMUKG01 and CG1 display closer evolutionary relationship to *A. aquatilis* and *A. faecalis* than to other species tested (Fig 2B). The strain SWMUKG01 was further confirmed to belong to *K. gyiorum* based on the ANI analysis, as it had a 99.1% ANI value with *K. gyiorum* CG1, which is obviously above the 95%-96% cut-off usually used to define a bacterial species [31].

Analysis of virulence factors

326 potential virulence factors were annotated in strain SWMUKG01 genome and these proteins fell into 134 VF terms. Among all these potential virulence factors, proteins involved in flagella and pili production, biosynthesis of lipopolysaccharide and capsule, iron acquisition, secretion and efflux pump systems as well as two-component systems were included (S3 Table). Further studies, e.g. gene knockout studies and animal experiments, were necessary for elucidating the contribution of these virulence factors to pathogenicity of *K. gyiorum*. The genomic characteristics of the specific pathogenesis/virulence factors are described in detail below:

Flagella biosynthesis. In the family of Alcaligenaceae, flagella have been widely identified in the genera of Alcaligenes, Achromobacter and Pigmentiphaga [32, 33]. In Bordetella, the flagellar operons of both *B. pertussis* and *B. parapertussis* are inactivated, leading to inability to make flagella [34]. Of the two species in Kerstersia, *K. similis* was reported to have no motility due to lacking flagella [4], whereas a full flagellar regulon (a cluster of operons) was identified in the genome of *K. gyiorum* SWMUKG01 in this study (Fig 4).

BLASTn searches revealed that the genes of the flagellar regulon in strain SWMUKG01 showed 99% identity with those in *K. gyiorum* CG1, which indicates that the flagellar system in *K. gyiorum* is highly conserved. The putative flagellar regulon (PROKKA_00866–00919) in
SWMUKG01, approximately 52 kb, encodes proteins involved in flagella biosynthesis, export, motor and bacterial chemotaxis (S4 Table). The bacterial chemotaxis system encoded by PROKKA_00877–00884 and PROKKA_00903–00904 shares 71% identity and 72% sequence coverage with those in *Bordetella genomosp*. It is suggested that bacterial chemotaxis operates as an important part of a complex network of signaling pathways, by which bacteria adjust and produce an optimal physiological response to an ever-changing environment[35]. Here, we propose that the flagellar system in *K. gyiorum* may contribute to its survival in a hostile environment during infection and to the generation of pathogenic responses.

Fig 3. Venn diagram showing the gene conservation among the *K. gyiorum* SWMUKG01 and 15 other closely related bacteria. The number in the center of Venn diagram indicates the number of genes shared by all bacteria.
Adherence. As previously reported, tad (tight adherence) genes encode the machinery that is essential for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili, which are required for autoaggregation, colonization, biofilm formation and pathogenesis in the genera Actinobacillus, Haemophilus, Pseudomonas, Yersinia and perhaps others [36]. Analysis of the genome sequence facilitates the identification of a tad gene cluster tadZABCD (PROKKA_01524–01528) in the strain SWMUKG01 (Fig 5), which is highly conserved in K. gyiorum showing 96% identity with that in CG1. Similar tad loci have also been identified in several Gram-negative pathogens, such as Pasteurella multocida, Yersinia pestis and Vibrio cholerae [36, 37]. Based on sequence comparisons in the family of Alcaligenaceae, the tadABC genes in K. gyiorum SWMUKG01 are highly homologous to those in some other members. For instance, the tadABC in strain SWMUKG01 showed 78%, 74% and 75% identities comparing to those of A. xylosodixans and 78%, 74% and 70% identities with that of B. pertussis, respectively. Despite low homologies with those from other species, the putative protein encoded by tadZ in strain SWMUKG01 was predicted to be involved in localization of pilus biogenesis and TadD potentially contained a tetratricopeptide repeat protein–protein interaction motif, which is required for the assembly of Flp pili [36].

Furthermore, we found that the flp-tadVEF-rcpCA gene region was closely linked to the tad cluster in SWMUKG01 genome, forming a 11-gene cluster flp-tadVEF-rcpCA-tadZABCD (PROKKA_01518–01528) that is predicted to be involved in the biosynthesis and secretion of Flp pili [36] (Table 2). However, flp and tadV of the cluster were missing in CG1. By a further search in the SWMUKG01 genome, we found another incomplete subset of tad operon, tadE-orf-rcpCA-tadABC (PROKKA_01139–01145) (Fig 5). Due to the lack of flp gene, which encodes the major structural component of Flp pili, this truncated tad cluster is likely to be null. It is known that the Flp pili are a distinct clade of type IVb pili [38]. To explore the existence of other types of pili in strain SWMUKG01, we searched all the genes encoding proteins...
for pilus biosynthesis in the genome in addition to the two tad clusters described above. As a result, a few genes, scattered throughout the SWMUKG01 chromosome, were found coding for proteins putatively involved in the type IVa pilus biosynthesis, including pilZ (PROKKA_00005), pilF (PROKKA_00008), pilD (PROKKA_00160) and pilP (PROKKA_02422). However, these CDSs seem to be incomplete for the type IVa pili production, as the gene coding for the main pilus subunit pilin (PilA), a central component, was not found [38]. Besides, genes encoding potential functional analogues of type 1 or P pili are also absent in the SWMUKG01 genome.

Biosynthesis of lipopolysaccharides (LPSs). Surface polysaccharides are extremely diverse and occur in multiple forms in Gram-negative bacteria, such as lipopolysaccharides (LPSs), the essential components of the outer membrane structurally and functionally, and capsular polysaccharides, surface layers or capsules that are associated with the cell [39].

All genes encoding enzymes for biosynthesis of the lipid A and core OS in the SWMUKG01 genome were identified (Table 3), which are highly conserved in *K. gyiorum* showing no less than 94% identities with those in CG1. These CDSs are scattered throughout the SWMUKG01 chromosome, just like most Gram-negative bacteria, such as *E. coli*, *Neisseria meningitidis*, *Y. pestis* and *Pseudomonas aeruginosa*. The majority of genes essential for the synthesis of lipid A (*lpxK, lpxD, lpxA, lpxB, lpxL, kdsA, kdsC and kdsD*) and KDO core oligosaccharide (*waaP, waaC, waaG, waaA, waaF, lpsB and gmhA*) are highly conserved among different species within the family *Alcaligenaceae*. However, *kdsB* in *K. gyiorum* SWMUKG01, encoding CMP-2-keto-3-deoxyoctulosonic acid synthetase involved in lipid A synthesis, showed little similarity with that in other *Alcaligenaceae* members, but shared 71% sequence identity in *Pseudomonas monteilii* and *Pseudomonas citronellolis*. *lpsE*, encoding glycosyltransferase in core OS biosynthesis, showed 67% identity (98% sequence coverage) with that in *Stenotrophomonas rhizophila* but only 23% coverage in *B. pertussis*. The gene *msbA* (PROKKA_01899) is also identified encoding a putative lipid A export ATP-binding/permease protein (583aa) that is required for the flipping of lipid A / core moiety of LPS from the cytoplasmic side of the IM to the periplasmic face.

Table 3. Genes encoding proteins with a role in adherence of strain SWMUKG01.

CDS no.	Putative Product	Name
PROKKA_01139	TadE-like family protein	tadE
PROKKA_01140	hypothetical protein	
PROKKA_01141	Flp pilus assembly protein CpaB	rcpC
PROKKA_01142	Flp pilus assembly protein, secretin CpaC	rcpA
PROKKA_01143	pilus assembly protein CpaF	tadA
PROKKA_01144	Flp pilus assembly protein TadB	tadB
PROKKA_01145	Flp pilus assembly protein TadC	tadC
PROKKA_01518	Flp pilus assembly protein, pilin Flp	flp
PROKKA_01519	type IV leader peptidase family protein	tadV
PROKKA_01520	Flp pilus assembly protein	tadE
PROKKA_01521	Flp pilus assembly protein	tadF
PROKKA_01522	Flp pilus assembly protein RcpC	rcpC
PROKKA_01523	Flp pilus assembly protein, secretin	rcpA
PROKKA_01524	Flp pilus assembly protein, ATPase	tadZ
PROKKA_01525	pilus assembly protein TadA	tadA
PROKKA_01526	Flp pilus assembly protein TadB	tadB
PROKKA_01527	Flp pilus assembly protein TadC	tadC
PROKKA_01528	Flp pilus assembly protein TadD, contains TPR repeats	tadD

https://doi.org/10.1371/journal.pone.0214686.t002
Table 3. Genes encoding proteins with a role in lipopolysaccharide metabolism of strain SWMUKG01.

CDS no.	Putative Product	Name
PROKKA_00186	lipopolysaccharide export system permease protein LptG	lptG
PROKKA_00221	glycosyltransferases	-
PROKKA_00277	phosphoheptose isomerase	gmhA
PROKKA_00294	lipopolysaccharide export system ATP-binding protein LptB	lptB
PROKKA_00295	lipopolysaccharide transport periplasmic protein LptA	lptA
PROKKA_00296	ABC transporter, LPS-binding protein LptC	lptC
PROKKA_00297	3-deoxy-D-manno-octulosonate8-phosphate phosphatase KdsC	kdsC
PROKKA_00298	arabinose 5-phosphate isomerase KdsD	kdsD
PROKKA_00500	phospho-N-acetyluramoyl-pentapeptide-transferase	wecA
PROKKA_00621	prolipoprotein diacglyceryl transferase	lptC
PROKKA_01031	phospho-2-dehydro-3-deoxyheptone aldolase, Phe-sensitive	waaC
PROKKA_01063	lipopolysaccharide core heptosyltransferase RfaQ	waaC
PROKKA_01064	lipid A export ATP-binding/permease protein MsbA	msbA
PROKKA_01162	ATP-dependent zinc metalloprotease FtsH2	ftsH2
PROKKA_01172	phospho-2-dehydro-3-deoxyheptone aldolase, Phe-sensitive	-
PROKKA_01290	MobA-like NTP transferase domain protein	-
PROKKA_01291	phosphotransferase enzyme family protein	-
PROKKA_01292	LPS-assembly protein LptD precursor	lptD
PROKKA_01350	dTDP-4-dehydrorhamnose 3,5-epimerase	rfbC
PROKKA_01351	Glucose-1-phosphate thymidylyltransferase 1	rfbA
PROKKA_01352	dTDP-4-dehydrorhamnose reductase	rfbD
PROKKA_01353	dTDP-glucose 4,6-dehydratase	rfbB
PROKKA_01539	tetraacyldisaccharide 4′-kinase	lpxK
PROKKA_01756	UDP-3-O-acetylglucosamine N-acetyltransferase	lpxD
PROKKA_01757	3-hydroxacyl-[acyl-carrier-protein] dehydratase FabZ	fabZ
PROKKA_01758	acyl-[acyl-carrier-protein]-UDP-N-acetylgalactosamine O-acetyltransferase	lpxA
PROKKA_01759	lipid-A-disaccharide synthase	lpxB
PROKKA_01899	lipid A export ATP-binding/permease protein MsbA	msbA
PROKKA_01912	UDP-glucose 6-dehydrogenase Ugd	ugd
PROKKA_02020	UDP-N-acetylglactosamine-undecaprenyl-phosphate N-acetylglactosaminephosphotransferase	wcaA
PROKKA_02021	putative glycosyltransferase EpsD	espD
PROKKA_02022	glycosyltransferase	rfaG
PROKKA_02023	putative O-antigen transporter	wzx
PROKKA_02311	3-deoxy-D-manno-octulosonic acid kinase	waaP
PROKKA_02386	phosphoglucomamine mutase GlmM	glmM
PROKKA_02388	ATP-dependent zinc metalloprotease FtsH	ftsH
PROKKA_02665	3-deoxy-manno-octulosonate cytidylyltransferase	kdsB
PROKKA_02666	2-dehydro-3-deox phosphoheptone aldolase	kdsA
PROKKA_02674	D-beta-D-heptose 7-phosphate kinase	rfaE
PROKKA_02675	tetratricopeptide repeat protein YciM	yciM
PROKKA_02726	LPS-assembly lipoprotein LptE	lptE
PROKKA_02751	lipopolysaccharide export system permease protein LptF	lptF
PROKKA_02821	lipopolysaccharide export system ATP-binding protein LptB	lptB
PROKKA_02830	lipid A deacylase PagL precursor	pagL
PROKKA_02933	UDP-3-O-acetyl-N-acetylglucosamine deacetylase	lpxC
PROKKA_02960	glycosyltransferase	rfaG
PROKKA_02961	glycosyltransferase	-

(Continued)
9 CDSs, showing more than 96% identities with those in CG1, that are likely associated with O-antigen biogenesis were predicted in the SWMUKG01 genome. These CDSs could be classified into three groups: nucleotide sugar synthetases by a potential rfb operon (rfbCADB, PROKKA_01350–01353), glycosyltransferase genes wcaG, wecC, and wecA (PROKKA_02964–02966) and oligosaccharide repeat unit processing genes wzy (PROKKA_03380) and wzx (PROKKA_02023). Of these CDSs, only genes encoding the dTDP-glucose 4,6-dehydratase RfbB and UDP-N-acetyl-D-glucosamine 6-dehydrogenase WecC are conserved across a wide range of species in Alcaligenaceae family, such as B. bronchiseptica and B. pertussis. It is known that in the Wzy-dependent pathway implicated in the assembly or export of O-antigen, O-unit polymerase Wzy, O-unit flippase Wzx and the O-chain length determinant Wzz are included [40]. However, we could not detect the wzz homolog in K. gyiorum SWMUKG01. Further experimental works are required to verify the O-antigen-processing process.

Capsular polysaccharides (CPS). A cluster of genes coding for proteins involved in CPS biosynthesis and export were identified in the strain SWMUKG01 ranging from PROKKA_00910 to PROKKA_01935 (Table 4). However, several genes from PROKKA_01920 to PROKKA_01928 in this cluster were not detected in CG1, which might be due to the incomplete genome sequence. The G+C content of this gene cluster is much lower (53%) than that of the SWMUKG01 chromosome (62%), which is similar to the O-antigen’s case in many Gram-negative bacteria [41]. In fact, the genetic loci for CPS production in *K. gyiorum* SWMUKG01 seem to be allelic to many LPS biosynthetic loci, and multiple enzymes are the same between these pathways, such as flippase Wzx, glycosyltransferase RfaG and UDP-N-acetyl-D-manno-saminurionate dehydrogenase WecC. It is known that Wza, Wzb, and Wzc are translocation proteins that specifically export group I or IV CPS to the outer surface. The identification of

CDS no.	Putative Product	Name
PROKKA_02962	glycosyltransferase	
PROKKA_02963	putative peptidoglycan biosynthesis protein MurJ	murJ
PROKKA_02964	UDP-glucose 4-epimerase	WcaG
PROKKA_02965	UDP-N-acetyl-D-glucosamine 6-dehydrogenase	wecC
PROKKA_02966	Undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase	wecA
PROKKA_03199	glycosyltransferase	mgtA
PROKKA_03200	hypothetical protein	
PROKKA_03201	S-adenosylmethionine synthase	
PROKKA_03202	Lipid A biosynthesis lauroyl acyltransferase, HtrB	lpxL
PROKKA_03203	Lipid A biosynthesis lauroyl acyltransferase, HtrB	lpxL
PROKKA_03256	3-deoxy-D-manno-octulosonic acid transferase WaaA	waaA
PROKKA_03257	lipopolysaccharide heptosyltransferase 1 RfaF	waaF
PROKKA_03278	UDP-glucose 4-epimerase	wcaG
PROKKA_03378	glutamine—fructose-6-phosphate aminotransferase	glmS
PROKKA_03380	O-antigen ligase	wzy
PROKKA_03381	putative polysaccharide deacetylase YxkH	yxkH
PROKKA_03382	lipopolysaccharide core biosynthesis glycosyltransferase LpsE	lpsE
PROKKA_03383	lipopolysaccharide core biosynthesis mannosyltransferase LpsB	lpsB
PROKKA_03384	lipopolysaccharide core biosynthesis glycosyltransferase WaaE	waaE
PROKKA_03385	predicted xylanase/chitin deacetylase YadE	yadE
PROKKA_03386	bifunctional protein GlmU	glmU
PROKKA_03520	UDP-glucose 6-dehydrogenase	ugd

https://doi.org/10.1371/journal.pone.0214686.t003
wza, wzb, and wzc genes suggested a type of group I or IV CPS in *K. gyiorum* SWMUKG01. It is reported that the initiating glycosyltransferase is the distinguishing factor between group I and IV CPS biosynthesis pathways, with WbaP catalyzing group I and WecA for group IV CPS biosynthesis. By searching in the SWMUKG01 genome, we could not identify a *wbaP* homologue, but two *wecA* (PROKKA_02966 and PROKKA_00500) were identified though it locates outside the CPS gene cluster. We proposed that the strain SWMUKG01 appears to have a group IV CPS. As group IV CPS biosynthesis is Wzy-dependent, the O-antigen polymerase Wzy appears to participate in both CPS and LPS biosynthesis in *K. gyiorum* SWMUKG01, as in *Vibrio vulnificus* [42].

Analysis on the SWMUKG01 genome sequence identified three genomic islands (GIs) (S5 Table), which were defined by obviously different GC contents in comparison to the average of the genome and associated with the presence of insertion sequences, integrases and transposases. We found that the CPS gene cluster is mainly composed of a specific genomic island GI-III (PROKKA_01918–01931) and several genes on both sides. The GI-III is a 16,772 bp island with a GC content of 49% and codes for 14 proteins, including those for the biosynthesis and transport of capsular polysaccharides in addition to an IS2 transposase TnpB. The identification of GI-III suggested that these capsular polysaccharide encoding genes might have evolved from a different organism by horizontal gene transfer. Besides, the GI-III presents some characteristics of pathogenicity islands for the presence of some putative virulence related genes (PROKKA_01918, 01919, 01920, 01929 and 01931).

Secretion systems. The SWMUKG01 genome harbors complete sets of genes coding for proteins that constitute the general secretion (Sec) and two-arginine (Tat) pathways (Table 5), which are essential for export of proteins into the periplasm (Gram-negative bacteria) or plasma membrane (Gram-positive bacteria) [43]. Three sets of closely linked genes encoding the putative T1SS, namely *prsD1-prsE1-tolC1* (PROKKA_00929–00931), *tolC2-prsD2-prsE2* (PROKKA_01512–01514) and *prsE3-prsD3-tolC3* (PROKKA_02054–02056), were identified on this genome (Table 5). The identities among these three T1SSs were 33.5 ± 4.9%, suggesting a structural independence between each other. A further blast showed that *prsD1-prsE1-tolC1*
Table 5. Genes encoding secretion systems in strain SWMUKG01.

CDS no.	Putative Product	Name
PROKKA_00248	protein-export protein SecB	secB
PROKKA_01637	protein-export membrane protein SecG	secG
PROKKA_02930	protein translocase subunit SecA	secA
PROKKA_02951	protein translocase subunit SecD	secD
PROKKA_02952	protein-export membrane protein SecF	secF
PROKKA_03340	protein translocase subunit SecY	secY
PROKKA_03503	protein translocase subunit SecE	secE
PROKKA_03421	Sec-independent protein translocase protein TatA	tatA
PROKKA_03422	Sec-independent protein translocase protein TatB	tatB
PROKKA_03423	Sec-independent protein translocase protein TatC	tatC
PROKKA_00929	type I secretion system ATP-binding protein PrsD	prsD1
PROKKA_00930	type I secretion system membrane fusion protein PrsE	prsE1
PROKKA_00931	outer membrane protein TolC precursor	tolIC1
PROKKA_01512	outer membrane protein TolC precursor	tolIC2
PROKKA_01513	alpha-hemolysin translocation ATP-binding protein HlyB	prsD2
PROKKA_01514	type I secretion system membrane fusion protein PrsE	prsE2
PROKKA_02054	type I secretion system membrane fusion protein PrsE	prsE3
PROKKA_02055	alpha-hemolysin translocation ATP-binding protein HlyB	prsD3
PROKKA_02056	outer membrane protein TolC precursor	tolIC3
PROKKA_02423	type II secretion system protein G, pseudopilin	gspG
PROKKA_02424	type II secretion system protein H, pseudopilin	gspH
PROKKA_02425	type II secretion system protein I, pseudopilin	gspI
PROKKA_02426	type II secretion system protein J, pseudopilin	gspJ
PROKKA_02427	type II secretion system protein K, pseudopilin	gspK
PROKKA_02428	inner membrane platform protein GspL	gspL
PROKKA_02429	inner membrane platform protein GspM	gspM
PROKKA_02430	tRNA-Arg(tcg)	-
PROKKA_02431	type II secretion system protein D, secretin	gspD
PROKKA_02432	type II secretion system protein E, ATPase	gspE
PROKKA_02433	type II secretion system protein F	gspF
PROKKA_00412	type IV secretion system protein VirD4, ATPases	virD4
PROKKA_00413	CopG family transcriptional regulator	copG
PROKKA_00414	type IV secretion system protein VirB11, ATPases	virB11
PROKKA_00415	type IV secretory pathway, VirB2 components (pilins)	virB2
PROKKA_00416	type IV secretory pathway, VirB3 components	virB3
PROKKA_00417	type IV secretion system protein VirB4, ATPases	virB4
PROKKA_00418	conjugative transfer protein TrbJ	virB5
PROKKA_00419	hypothetical protein	-
PROKKA_00420	type IV secretory pathway, VirB6 components	virB6
PROKKA_00421	type IV secretory pathway, VirB8 components	virB8
PROKKA_00422	type IV secretory pathway, VirB9 components	virB9
PROKKA_00423	type IV secretory pathway, VirB10 components	virB10
PROKKA_02491	type IV secretory pathway, VirB10 components	virB10
PROKKA_02492	type IV secretory pathway, VirB9 components	virB9
PROKKA_02493	type IV secretory pathway, VirB8 components	virB8
PROKKA_02494	type IV secretory pathway, VirB6 components	virB6
PROKKA_02495	conjugative transfer protein TrbJ	virB5

(Continued)
of the strain SWMUKG01 had 83% identity and 93% coverage with that from Comamonas Kerstersii, and prsE3-prsD3-tolC3 obtained 70% identity and 92% coverage with that from Variovorax Boroniculans, but tolC2-prsD2-prsE2 had no significant homologues in the GenBank.

K. gyiorum harbors a putative *gsp* operon encoding proteins putatively involved in the biosynthesis of T2SS (Table 5). This *gsp* operon, consisting of *gspGHIJKLMODEF*, is located between PROKKA_02423 and PROKKA_02433, with an unexpected tRNA encoding gene (PROKKA_02430) inserted into the operon. It seems that GspC and GspO proteins were lacking in the strain SWMUKG01, for that a typical T2SS apparatus bears 12 core components (T2SS CDEFGHIJKLMO) [44]. These gene absences do not necessarily mean that this bacterium lacks a functioning system, because some T2SS proteins, especially C, could have been missed as a result of them being the least conserved among core constituents [44]. More work is needed to determine whether the T2SS homologs in this strain are expressed correctly and encode a functional secretion system.

An interesting finding on the SWMUKG01 genome was the presence of two sets of genes encoding proteins homologous to the conjugation paradigm VirB/D T4SS, which we designated the *vir1* (PROKKA_00412–00423) and *vir2* (PROKKA_02490–02502) locus (Table 5). The nucleotide sequence identity between these two sets of genes was 77%, indicating that they were very likely to be duplicated copies. Compared with that in *vir2* locus, almost the same gene context was contained in *vir1*, except that double *virB4* were found in the former but a single in the latter (Fig 6). Both *vir1* and *vir2* showed highest identity (75% and 73%) with those of *A. aquatilis*, and other homologous T4SS were also found in *Bordetella petrii*, *B. trematum*, *B. bronchiseptica* and *P. aeruginosa* etc (Fig 6). It was unexpected to identify a *copG* gene between *virB11* and *virD4* in both *vir* loci of SWMUKG01. Similar gene arrangement occurs in a conserved fashion in many other bacteria. It is known that CopG is a transcriptional repressor that control the plasmid copy number [45]. And, we found a homologous T4SS encoded by a plasmid pTTS12 in *Pseudomonas putida*, also with a *copG* gene between *virB11* and *virD4*. Thus, we proposed that the T4SS encoding system on the SWMUKG01 chromosome is most likely to originate from a plasmid by horizontal transfer. Besides, in comparison with the VirB/VirD4 system of *Agrobacterium tumefaciens* [46], an archetypal T4SS that is encoded by the *vir* gene cluster composed of 12 components, *virB1–virB11* and *virD4*, SWMUKG01 lacks *virB7* in both *vir* loci. However, on the SWMUKG01 genome, a hypothetical protein (PROKKA_00419) is placed between *virB5* and *virB6*. Similar gene arrangements also occur in other homologous T4SSs. This suggested that the hypothetical protein may play similar roles as the VirB7 does. If this is true and both *vir1* and *vir2* are functional, it would be interesting to learn these two T4SS systems coexist in SWMUKG01. Furthermore, the presence of secretion systems in CG1 was investigated; the results showed that all the secretion systems discussed above could be detected except the *vir1* locus of T4SS.

Table 5. (Continued)

CDS no.	Putative Product	Name
PROKKA_02496	type IV secretion system protein VirB4, ATPases	virB4
PROKKA_02497	type IV secretion system protein VirB4, ATPases	virB4
PROKKA_02498	type IV secretory pathway, VirB3 components	virB3
PROKKA_02499	type IV secretory pathway, VirB2 components (pilins)	virB2
PROKKA_02500	type IV secretion system protein VirB11, ATPases	virB11
Iron-uptake systems. Three broad categories of iron-uptake systems have been currently identified: systems for the utilization of ferric iron (Fe$^{3+}$), ferrous iron (Fe$^{2+}$), and heme-bound iron. By searching the genome, we found that the SWMUKG01 harbors genes encoding proteins for all three categories of iron-uptake systems.

Approximately 88 genes (2.5%) of the SWMUKG01 genome are involved in iron uptake (Table 6), all of which, except the genes from PROKKA_00721 to PROKKA_00723, could also be detected in CG1. Among them, 16 genes encoding potential outer membrane receptors for ferric siderophores, of which seven are involved in binding ferric enterobactin, four binding ferric dicitrate, two binding ferric-pseudobactin, one binding ferripyoverdine, one binding...
Table 6. Genes encoding iron uptake systems in strain SWMUKG01.

CDS no.	Putative Product	Name
PROKKA_00020	putative TonB-dependent receptor precursor	tonB
PROKKA_00021	fec operon regulator FecR	fecR
PROKKA_00022	putative RNA polymerase sigma factor FecI	fecI
PROKKA_00473	ferric enterobactin receptor precursor FepA	fepA
PROKKA_00474	putative TonB-dependent receptor precursor	tonB
PROKKA_00475	putative TonB-dependent receptor precursor	tonB
PROKKA_00476	fec operon regulator FecR	fecR
PROKKA_00477	putative RNA polymerase sigma factor FecI	fecI
PROKKA_00585	ferrous iron permease EfeU	efeU
PROKKA_00586	deferoxelatase/peroxidase EfeB precursor	efeB
PROKKA_00587	iron uptake system component EfeO precursor	efeO
PROKKA_00721	putative RNA polymerase sigma factor FecI	fecI
PROKKA_00722	fec operon regulator FecR	fecR
PROKKA_00723	Fe (3+) dicitrate transport protein FecA precursor	fepA
PROKKA_00724	PKD domain protein	-
PROKKA_00725	putative RNA polymerase sigma factor FecI	fecI
PROKKA_00726	fec operon regulator FecR	fecR
PROKKA_00727	putative TonB-dependent receptor precursor	tonB
PROKKA_00746	ferric-pseudobactin BN7/BN8 receptor precursor	pupB
PROKKA_00824	ferric enterobactin transport system permease protein FepG	fepG
PROKKA_00825	ABC-type Fe3+-siderophore transport system, permease component FepD	fepD
PROKKA_00826	ferrienterobactin-binding periplasmic protein precursor, FepB	fepB
PROKKA_00827	putative siderophore transport system ATP-binding protein FepC	fepC
PROKKA_00830	Fe (3+) dicitrate transport protein FecA precursor	fepA
PROKKA_00863	ferrichrysobactin receptor	-
PROKKA_00923	iron import ATP-binding/permease protein IrtA	IrtA
PROKKA_01049	Fe (3+) dicitrate transport protein FecA precursor	fepA
PROKKA_01050	fec operon regulator FecR	fecR
PROKKA_01051	putative RNA polymerase sigma factor FecI	fecI
PROKKA_01281	putative TonB-dependent receptor precursor	tonB
PROKKA_01282	putative RNA polymerase sigma factor FecI	fecI
PROKKA_01283	fec operon regulator FecR	fecR
PROKKA_01345	Fe (3+) ions import ATP-binding protein FbpC	fbpC
PROKKA_01346	Fe (3+)-transport system permease protein FbpB	fbpB
PROKKA_01347	iron ABC transporter substrate-binding protein FbpA	fbpA
PROKKA_01738	TonB-dependent receptor for ferrienterochelin and colicins	fepA
PROKKA_01769	TonB-dependent receptor for ferrienterochelin and colicins	fepA
PROKKA_01870	biopolymer transport protein ExbD	exbD
PROKKA_01871	biopolymer transport protein ExbB	exbB
PROKKA_01872	periplasmic protein TonB	tonB
PROKKA_02160	iron ABC transporter substrate-binding protein, periplasmic component	fepB
PROKKA_02161	iron ABC transporter permease protein FecC	fecC
PROKKA_02162	iron ABC transporter permease protein FecD	fecD
PROKKA_02163	iron (III) dicitrate transport ATP-binding protein FecE	fepE
PROKKA_02295	fec operon regulator FecR	fecR
PROKKA_02296	putative RNA polymerase sigma factor FecI	fepI
PROKKA_02297	ferric-pseudobactin BN7/BN8 receptor precursor	pupB

(Continued)
In addition, 8 CDSs for putative TonB-dependent receptor precursors were also identified. Interestingly, all of them are located in a potential operon with \textit{fecI} and \textit{fecR}, regulatory genes of the iron dicitrate transport systems, which may indicate a functional relevance between the putative receptor precursors and FecIR for Table 6.

CDS no.	Putative Product	Name
PROKKA_02405	putative TonB-dependent receptor precursor	\textit{tonB}
PROKKA_02406	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_02407	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}
PROKKA_02517	ferrichrome receptor \textit{FhuA} precursor	\textit{fhuA}
PROKKA_02518	putative ABC transporter solute-binding protein, \textit{FhuD}	\textit{fhuD}
PROKKA_02519	iron (3+)-hydroxamate import ATP-binding protein \textit{FhuC}	\textit{fhuC}
PROKKA_02520	iron ABC transporter permease	\textit{fhuB}
PROKKA_02521	iron ABC transporter permease	\textit{fhuB}
PROKKA_02616	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_02617	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}
PROKKA_02621	receptor for ferrienterochelin and colicins	\textit{fepA}
PROKKA_02631	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}
PROKKA_02632	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_02633	\textit{TonB}-dependent heme receptor \textit{A} precursor	\textit{fepA}
PROKKA_02635	ferric uptake regulation protein	\textit{fur}
PROKKA_02755	putative \textit{TonB}-dependent receptor precursor	\textit{tonB}
PROKKA_02756	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_02757	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}
PROKKA_02782	PKD domain protein	-
PROKKA_02783	Fe (3+) dicitrate transport protein \textit{FecA} precursor	\textit{fecA}
PROKKA_02784	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_02785	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}
PROKKA_02796	ferric enterobactin receptor precursor	\textit{fepA}
PROKKA_03003	colicin \textit{I} receptor precursor	-
PROKKA_03042	ferric enterobactin receptor precursor	\textit{fepA}
PROKKA_03097	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_03098	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}
PROKKA_03175	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}
PROKKA_03176	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_03177	ferripyoverdine receptor precursor	\textit{fpvA}
PROKKA_03474	iron siderophore receptor protein	\textit{fecA}
PROKKA_03475	fec operon regulator \textit{FecR}	\textit{fecR}
PROKKA_03476	putative RNA polymerase sigma factor \textit{FecI}	\textit{fecI}

Heme

CDS no.	Heme-binding Protein A Precursor	Name
PROKKA_01191	heme-binding protein \textit{A} precursor	\textit{hbpA}
PROKKA_01284	heme/hemopexin utilization protein \textit{C} precursor	\textit{hxuC}
PROKKA_01313	hemin receptor precursor	\textit{hemR}
PROKKA_02939	hemin import ATP-binding protein \textit{HmuV}	\textit{hmuV}
PROKKA_02940	hemin transport system permease protein \textit{HmuU}	\textit{hmuU}
PROKKA_02941	hemin-binding periplasmic protein \textit{HmuT} precursor	\textit{hmuT}
PROKKA_03318	hemin receptor precursor	\textit{tdhA}
PROKKA_03474	hemin receptor precursor	\textit{hmuR}

https://doi.org/10.1371/journal.pone.0214686.t006
iron uptake. Although the SWMUKG01 possesses multiple outer membrane receptors, each of which provides the bacterium with specificity for different siderophores, it only contains three binding-protein-dependent ABC systems: FepCBDG (PROKKA_00824–00827) for the transport of ferric catechols, FecBCDE (PROKKA_02160–02163) for ferric citrate and FhuBCD (PROKKA_02518–02521) for ferric hydroxamates. In addition, a putative fbp operon (PROKKA_01345–01347) encoding the FbpABC system was found on SWMUKG01 genome. It was previously shown that FbpABC is likely to be a ferric iron transporter that is involved in the translocation of iron delivered by transferrin and lactoferrin, across the cytosolic membrane [47]. Interestingly, no gene encoding putative transferrin or lactoferrin receptor has been found in this organism, leading to the hypothesis that the FbpABC system functions in the utilization of some siderophores as iron source in SWMUKG01 [48].

In K. gyiorum SWMUKG01, five genes encoding CDSs homologous to heme-binding receptors were identified (Table 6). These receptors include one periplasmic heme-binding protein, one hemopexin utilization protein C and three TonB-dependent hemin receptors on the outer membrane, which are likely to be involved in the import of heme by binding it directly or by recognizing its carrier. In addition, orthologs of hmuVUT were found in SWMUKG01, which encode an ABC-type heme uptake system, comprising a periplasmic heme-binding protein HmuT, a permease HmuU and an ATPase HmuV. It is likely that the HmuVUT system is the main participant in delivering the heme to the cytosol, as it is the only potential heme transport system identified in SWMUKG01.

It is demonstrated that Fe^{2+} is the dominant form of the element under anaerobic and/or acidic conditions [49]. Only one Fe^{2+}-uptake system, EfeUOB, has been identified in SWMUKG01 (Table 6), which is demonstrated to be involved in the uptake of ferrous iron in several bacteria [47]. The efe operon (PROKKA_00585–00587) in this bacterium encodes a ferrous iron permease EfeU and two periplasmic proteins EfeB and EfeO in sequential order, with a slight difference in gene order comparing with previous studies [50]. In Gram-negative bacteria, the inner-membrane anchored TonB/ExbB/ExbD complex provides the energy required to transport the associated cargo across the outer membrane [51]. A set of genes encoding the TonB system, tonB-exbB-exbD (PROKKA_01872–01870), were identified in SWMUKG01 genome. In some bacteria, such as V. cholerae [52] and P. aeruginosa [53], there is more than one TonB-ExbB-ExbD system, while in SWMUKG01 only one exists. This indicated that the TonB system might be shared by different iron uptake systems and heme transport pathways of SWMUKG01.

Two-component signal transduction systems (TCSs). In K. gyiorum SWMUKG01, a total of 23 open reading frames were identified as putative RRs, 19 of which are adjacent to genes encoding probable HKs, forming 21 HK/RR pairs, all of which could be identified in CG1 but the gene PROKKA_00858. These histidine kinase and response regulator proteins could be categorized into five groups (Table 7): ten pairs and two single RRs belong to the OmpR subfamily, four pairs fall into the FixJ subfamily, three pairs and a single RR are grouped in the CitB subfamily, one pair is in the NtrC subfamily and the remaining two RRs are members of the CheY subfamily [54]. These TCSs are potentially implicated in regulating several aspects of key processes, such as osmoregulation (EnvZ/OmpR), chemotaxis (CheA/CheY), nitrogen metabolism (NtrY/NtrX), oxygen sensing (AcrA/AcrB) and perhaps pathogenicity mechanisms (QseC/QseB) [55]. Overall, a large number of genes encoding putative TCSs appear to make K. gyiorum well-equipped to respond to and survive environmental changes during the infection cycle.

Antibiotic resistant genes and multidrug efflux pumps. Clinical reports showed that some of K. gyiorum isolates were resistant to ciprofloxacin [2, 8], colistin [10], cefepime and ceftazidime [7], which suggested potential drug resistance genes or efflux pumps. K. gyiorum
Table 7. Genes encoding two-component signal transduction systems in strain SWMUKG01.

CDS no.	Putative Product	Name
OmpR subfamily		
PROKKA_00218	signal transduction histidine-protein kinase BaeS	baeS
PROKKA_00219	transcriptional regulatory protein BaeR	baeR
PROKKA_00355	transcriptional activator protein CzcR	czcR
PROKKA_00356	sensor protein CzcS precursor	czcS
PROKKA_00602	osmolarity sensor protein EnvZ	envZ
PROKKA_00603	transcriptional regulatory protein OmpR	ompR
PROKKA_00671	sensor protein BasS	basS
PROKKA_00672	transcriptional regulatory protein QseB	qseB
PROKKA_00856	KDP operon transcriptional regulatory protein KdpE	kdpE
PROKKA_00857	hypothetical protein	-
PROKKA_00858	sensor histidine kinase LiaS	liaS
PROKKA_01868	sensor protein QseC	qseC
PROKKA_01869	transcriptional regulatory protein QseB	qseB
PROKKA_02258	signal transduction histidine-protein kinase BaeS	baeS
PROKKA_02259	transcriptional regulatory protein BaeR	baeR
PROKKA_02453	signal transduction histidine-protein kinase BaeS	baeS
PROKKA_02454	transcriptional regulatory protein BaeR	baeR
PROKKA_02864	osmolarity sensor protein EnvZ	envZ
PROKKA_02863	transcriptional regulatory protein OmpR	ompR
PROKKA_02989	response regulators AcrA	acrA
PROKKA_02990	aerobic respiration control sensor protein ArcB	acrB
PROKKA_01215	sensory transduction protein regX3	regX3
PROKKA_00510	transcriptional regulatory protein QseB	qseB
FixJ subfamily		
PROKKA_00712	sensor histidine kinase NodV	nodV
PROKKA_00713	response regulator protein NodW	nodW
PROKKA_01693	transcriptional regulatory protein FixJ	fixJ
PROKKA_01694	sensor protein FixL	fixL
PROKKA_01699	C4-dicarboxylate transport sensor protein DctS	dctS
PROKKA_01700	C4-dicarboxylate transport transcriptional regulatory protein DctR	dctR
PROKKA_01798	sensor protein FixL	fixL
PROKKA_01799	transcriptional regulatory protein FixJ	fixJ
CitB subfamily		
PROKKA_00858	sensor histidine kinase LiaS	liaS
PROKKA_00859	transcriptional regulatory protein DegU	degU
PROKKA_02009	oxygen sensor histidine kinase NreB	nreB
PROKKA_02010	oxygen regulatory protein NreC	nrec
PROKKA_02991	transcriptional regulatory protein RcsB	rcsB
PROKKA_02992	sensor histidine kinase RcsC	rcsC
PROKKA_00362	glycerol metabolism activator AgmR	agmR
NtrC subfamily		
PROKKA_00239	signal transduction histidine kinase NtrY	ntrY
PROKKA_00240	nitrogen assimilation regulatory protein NtrX	ntrX
CheY subfamily		
PROKKA_00877	chemotaxis protein histidine kinase CheA	cheA
PROKKA_00882	chemotaxis response regulator CheB	cheB
PROKKA_00883	chemotaxis protein CheY	cheY

https://doi.org/10.1371/journal.pone.0214686.t007
SWMUKG01 showed resistant to ciprofloxacin (>2 μg/ml) and cefuroxime (>16 μg/ml). Our genomic analysis showed that 48 (1.39%) out of 3441 potential CDSs were identified in CARD database (S6 Table). Among them, potential resistance genes encoding proteins against fluoroquinolone (gyrB, gyrA), sulfonamide, rifampicin, and fosfomycin were included, as well as some other multidrug resistance proteins. However, no plasmid was detected in the strain SWMUKG01, thus plasmid-carried drug resistance genes are not part of drug resistance for this pathogen.

By searching in the SWMUKG01 genome, we found a total of 10 sets of genes encoding multidrug efflux pump systems (Table 8), among which only two genes PROKKA_00804 and PROKKA_01650 were discovered to be truncated. In these pumps, RND (resistance-nodulation-division) family transporters are most commonly found in SWMUKG01, such as, AcrA-B-OprM, MexAB-OprM and BepEF-TtgF. MFS (major facilitator superfamily) (e.g., EmrAB-OprM) and ABC (ATP-binding cassette) (e.g., MacAB-TtgC) efflux pumps are also

Table 8. Genes encoding multidrug efflux pumps in strain SWMUKG01.

CDS no.	Putative Product	Name
PROKKA_00059	multidrug resistance protein AcrA precursor	acrA
PROKKA_00060	efflux pump membrane transporter AcrB	acrB
PROKKA_00061	outer membrane protein OprM precursor	tolC
PROKKA_00163	efflux pump outer membrane protein TtgI precursor	ttgI
PROKKA_00164	multidrug resistance protein MdtC	mdtC
PROKKA_00165	multidrug resistance protein MdtB	mdtB
PROKKA_00166	multidrug resistance protein MdtA precursor	mdtA
PROKKA_00754	multidrug resistance protein MdtC	mdtC
PROKKA_00755	macrolide export protein MacA	macA
PROKKA_00804	outer membrane protein OprM precursor	oprM
PROKKA_00805	p-hydroxybenzoic acid efflux pump subunit AaeA	aaeA
PROKKA_00806	protein AaeX	aaeX
PROKKA_00807	p-hydroxybenzoic acid efflux pump subunit AaeB	aaeB
PROKKA_01650	efflux pump outer membrane protein TtgF precursor	ttgF
PROKKA_01651	efflux pump membrane transporter BepE	bepE
PROKKA_01652	efflux pump periplasmic linker BepF	bepF
PROKKA_02027	multidrug resistance protein MdtA	mdtA
PROKKA_02028	multidrug ABC transporter ATP-binding protein YhhF	yhhF
PROKKA_02029	inner membrane transport permease YhhF	yhhF
PROKKA_02218	multidrug export protein EmrB	emrB
PROKKA_02219	multidrug export protein EmrA	emrA
PROKKA_02352	multidrug resistance protein MexA precursor	mexA
PROKKA_02353	multidrug resistance protein MexB	mexB
PROKKA_02354	outer membrane protein OprM precursor	oprM
PROKKA_02372	outer membrane protein OprM precursor	oprM
PROKKA_02373	multidrug export protein AcrF	acrF
PROKKA_02374	multidrug efflux pump subunit AcrA precursor	acrA
PROKKA_02456	macrolide export protein MacA	macA
PROKKA_02457	macrolide export ATP-binding/permease protein MacB	macB
PROKKA_02458	putative export ATP-binding/permease protein MacB	macB
PROKKA_03460	multidrug resistance protein MdtN	mdtN
PROKKA_03461	multidrug resistance protein MdtO	mdtO
PROKKA_03462	efflux pump outer membrane protein TtgC precursor	ttgC

https://doi.org/10.1371/journal.pone.0214686.t008
included. These efflux pumps were reported to be responsible for the direct extrusion of many kinds of drugs, such as aminoglycosides, β-lactams, fluoroquinolones, macrolides and chloramphenicol from the cell [56]. Given the presence of various efflux pumps in SWMUKG01, the risk of efflux-mediated multidrug resistance is a real possibility in this organism.

Conclusions
In conclusion, the complete genome of K. gyiorum strain SWMUKG01, the first clinical isolate from southwest China, was sequenced in our present study. The length of the genome is about 3.9 million bps with genomic GC content of 62%. Genomic and phylogenetic comparisons indicated that K. gyiorum, A. aquatilis and A. faecalis may derive from a recent common ancestor. A total of 3441 CDSs were annotated, of which 326 potential virulence factors were predicted by VFDB database. Genes and operons related to bacterial surface polysaccharides, flagella, pili, iron acquisition systems, secretion systems, and TCSs as well as efflux pumps were analyzed at the genomic level and compared with those from other pathogens, which underlined the genetic basis of the pathogenesis and virulence of K. gyiorum. This work allows the identification of a new bacterial species at the genetic level and provides a foundation for future research into the mechanisms of pathogenesis of K. gyiorum.

Supporting information
S1 Fig. Functional categorization of the K. gyiorum SWMUKG01 genome based on COG database.
(TIF)

S1 Table. Functional categorization of the K. gyiorum SWMUKG01 genome based on COG database.
(XLSX)

S2 Table. Classification of genes of K. gyiorum SWMUKG01 by COG codes.
(XLSX)

S3 Table. Genes encoding proteins with a putative role in virulence of strain SWMUKG01.
(XLSX)

S4 Table. Genes encoding proteins with a putative role in flagella biosynthesis of strain SWMUKG01.
(XLSX)

S5 Table. Putative genomic islands in strain SWMUKG01.
(XLSX)

S6 Table. Putative antibiotic resistant genes in strain SWMUKG01.
(XLSX)

Author Contributions
Data curation: Yonghong Luo.

Formal analysis: Ying Li, Guangxi Wang, Chengwen Li, Wenbi Chen, Xiaoyan Hu, Luhua Zhang.

Funding acquisition: Ying Li, Luhua Zhang.

Investigation: Min Tang.
Methodology: Min Tang.

Project administration: Luhua Zhang.

Writing – original draft: Ying Li, Luhua Zhang.

Writing – review & editing: Jing Zeng, Yungang Zhou, Yan Gao.

References

1. Coenye T, Vancanneyt M, Cnockaert MC, Falsen E, Swings J, Vandamme P. Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Puger and Tan 1983 as Achromobacter denitrificans comb. nov. Int J Syst Evol Microbiol. 2003; 53(Pt 6):1825–31. https://doi.org/10.1099/ijs.0.02609-0 PMID: 14657111.

2. Pence MA, Sharon J, McElvania Tekippe E, Pakalnisks BL, Ford BA, Burnham CA. Two cases of Kerstersia gyiorum isolated from sites of chronic infection. J Clin Microbiol. 2013; 51(6):2001–4. https://doi.org/10.1128/JCM.00829-13 PMID: 23596236; PubMed Central PMCID: PMCPMC3716053.

3. Deutscher M, Severing J, Balada-Llasat JM. Kerstersia gyiorum Isolated from a Bronchoalveolar Lavage in a Patient with a Chronic Tracheostomy. Case Rep Infect Dis. 2014; 2014:479581. https://doi.org/10.1155/2014/479581 PMID: 25506444; PubMed Central PMCID: PMCPMC4259082.

4. Vandamme P, De Brandt E, Houf K, De Baere T. Kerstersia similis sp. nov., isolated from human clinical samples. Int J Syst Evol Microbiol. 2012; 62(Pt 9):2156–9. https://doi.org/10.1099/ijs.0.037887-0 PMID: 22058318.

5. Almuzara MN, Barberis CM, Traglia GM, Ordonez AM, Famiglietti AM, Ramirez MS, et al. Isolation of Kerstersia gyiorum from a patient with cholesteatomatous chronic otitis media. J Clin Microbiol. 2012; 50(11):3809–11. https://doi.org/10.1128/JCM.02051-12 PMID: 22972825; PubMed Central PMCID: PMCPMC3486247.

6. Mwalulute A, Mshana SE, Mirambo MM, Mushy PL, Giliyoma JM, et al. Kerstersia gyiorum Isolated from a Bronchial Lavage in a Patient with a Chronic Tracheostomy. Case Rep Infect Dis. 2014; 2014:479581. https://doi.org/10.1155/2014/479581 PMID: 25506444; PubMed Central PMCID: PMCPMC4259082.

7. Ogawa Y, Lee ST, Kasahara K, Koizumi A, Chihara Y, Nakano R, et al. A first case of isolation of Kerstersia gyiorum from urinary tract. J Infect Chemother. 2016; 22(4):265–7. https://doi.org/10.1016/j.jiac.2015.11.003 PMID: 26683244.

8. Bostwick AD, Zhang C, Manninen K, Touchberry J, Greene SR, Holland TL. Bacteremia Caused by Kerstersia gyiorum. J Clin Microbiol. 2015; 53(6):1965–7. https://doi.org/10.1128/JCM.03625-14 PMID: 25809974; PubMed Central PMCID: PMCPMC4432044.

9. Uysal EB, Celik C, Tuzcu N, Can F, Dogan M, Erturk R, et al. A case of chronic suppurative otitis media caused by Kerstersia gyiorum. APIMIS. 2015; 123(11):986–9. https://doi.org/10.1111/apm.12434 PMID: 26303793.

10. Borsa BA, Kaplan HH, Bayir Baris A, Gungordu Dalar Z, Ozalp VC. Kerstersia gyiorum: An Unusual Pathogen Causing Chronic Suppurative Otitis Media. Klimik Dergisi/Klimik Journal. 2017; 30(3):158–60. https://doi.org/10.5152/kd.2017.39

11. Lan Y, Yan Q, Yan Y, Liu W. First case of Kerstersia gyiorum isolated from a patient with chronic osteomyelitis in China. Frontiers in Laboratory Medicine. 2017; 1(3):141–3. https://doi.org/10.1016/j.jjci.2017.08.003

12. Kim JH, Lee E, Lee Y. The First Case of Chronic Otitis Media due to Kerstersia gyiorum in Korea. Ann Lab Med. 2018; 38(6):607–9. https://doi.org/10.3343/alm.2018.38.6.607 PMID: 30027707; PubMed Central PMCID: PMCPMC6056389.

13. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008; 24(3):133–41. https://doi.org/10.1016/j.tig.2007.12.007 PMID: 18262675.

14. Greninger AL, Kozyreva V, Truong CL, Longoria R, Chaturvedi V. Draft Genome Sequence of Kerstersia gyiorum CG1, Isolated from a Leg Ulcer. Genome Announc. 2015; 3(5). https://doi.org/10.1128/genomeA.01036-15 PMID: 26358603; PubMed Central PMCID: PMCPMC4566185.
16. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013; 10(6):563–9. https://doi.org/10.1038/nmeth.2474 PMID: 23644548.

17. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063.

18. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17):3389–402. PMID: 9254694; PubMed Central PMCID: PMCPMC146917.

19. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC bioinformatics. 2003; 4:41. https://doi.org/10.1186/1471-2105-4-41 PMID: 12969510; PubMed Central PMCID: PMCPMC1347464.

20. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004; 32(Database issue):D277–80. https://doi.org/10.1093/nar/gkh063 PMID: 14681412; PubMed Central PMCID: PMCPMC308797.

21. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomes to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006; 34(Database issue):D354–7. https://doi.org/10.1093/nar/gkj102 PMID: 16381885; PubMed Central PMCID: PMCPMC1347464.

22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25–9. https://doi.org/10.1038/75556 PMID: 10802651; PubMed Central PMCID: PMCPM3037419.

23. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics. 2005; 21(4):537–9. https://doi.org/10.1093/bioinformatics/bti054 PMID: 15479716.

24. Jia B, Raphael AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017; 45(D1):D566–D73. https://doi.org/10.1093/nar/gkw1004 PMID: 27789705; PubMed Central PMCID: PMCPMC5210516.

25. Chen L, Yang J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic acids research. 2005; 33(Database issue):D325–8. https://doi.org/10.1093/nar/gki008 PMID: 15608208; PubMed Central PMCID: PMCPMC539962.

26. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010; 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490 PMID: 20224823; PubMed Central PMCID: PMCPMC2835736.

27. Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. PGAP: pan-genomes analysis pipeline. Bioinformatics. 2012; 28(3):416–8. https://doi.org/10.1093/bioinformatics/btr655 PMID: 22130594; PubMed Central PMCID: PMCPMC3268234.

28. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(45):19126–31. https://doi.org/10.1073/pnas.0906412106 PMID: 19855009; PubMed Central PMCID: PMCPMC2776425.
36. Tomich M, Planet PJ, Figurski DH. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol. 2007; 5(5):363–75. https://doi.org/10.1038/nrmicro1636 PMID: 17435791.
37. Kachlany SC, Planet PJ, DeSalle R, Fine DH, Figurski DH. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plaque to pond scum. Trends Microbiol. 2001; 9(9):429–37. PMID: 11553455.
38. Pellicc V. Type IV pili: e pluribus unum? Mol Microbiol. 2008; 68(4):827–37. https://doi.org/10.1111/j.1365-2958.2008.06197.x PMID: 18399938.
39. Yuan B, Cheng A, Wang M. Polysaccharide export outer membrane proteins in Gram-negative bacteria. Future Microbiol. 2013; 8(4):525–35. https://doi.org/10.2217/fmb.13.13 PMID: 23534363.
40. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002; 71:635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414 PMID: 12045108; PubMed Central PMCID: PMCPMC2569852.
41. Allison GE, Verma NK. Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol. 2000; 8(1):17–23. PMID: 10637639.
42. Nakhamchik A, Wilde C, Rowe-Magnus DA. Identification of a Wzy polymerase required for group IV capsular polysaccharide and lipopolysaccharide biosynthesis in Vibrio vulnificus. Infect Immun. 2007; 75(12):5550–8. https://doi.org/10.1128/IAI.00932-07 PMID: 17923517; PubMed Central PMCID: PMCPMC2168434.
43. Tseng TT, Tyler BM, Setubal JC. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 2009; 9 Suppl 1:S2. https://doi.org/10.1186/1471-2180-9-S1-S2 PMID: 19278550; PubMed Central PMCID: PMCPMC2654662.
44. Cianciotto NP. Type II secretion: a protein secretion system for all seasons. Trends Microbiol. 2005; 13(14):581–8. https://doi.org/10.1016/j.tim.2005.09.005 PMID: 16216510.
45. Hernandez-Arriaga AM, Rubio-Lepe TS, Espinosa M, del Solar G. Repressor CopG prevents access of RNA polymerase to promoter and actively dissociates open complexes. Nucleic Acids Res. 2009; 37(14):4799–811. https://doi.org/10.1093/nar/gkp503 PMID: 19520770; PubMed Central PMCID: PMCPMC2724298.
46. Li PL, Hwang I, Miyagi H, True H, Farrand SK. Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. Journal of bacteriology. 1999; 181(16):5033–41. PMID: 10438776; PubMed Central PMCID: PMCPMC939993.
47. Andrews SC, Robinson AK, Rodríguez-Quiones F. Bacterial iron homeostasis. FEMS Microbiology Reviews. 2003; 27(2–3):215–37. https://doi.org/10.1016/S0168-6445(03)00055-X PMID: 12829269.
48. Strange HR, Zola TA, Cornelissen CN. The tpbABC operon is required for Ton-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19. Infect Immun. 2011; 79(1):267–78. https://doi.org/10.1128/IAI.00807-10 PMID: 21041493; PubMed Central PMCID: PMCPMC3019921.
49. Wei Y, Murphy ER. Shigella Iron Acquisition Systems and their Regulation. Front Cell Infect Microbiol. 2016; 6:18. https://doi.org/10.3389/fcimb.2016.00018 PMID: 26904516; PubMed Central PMCID: PMCPMC4746246.
50. Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol. 2007; 65(4):857–75. https://doi.org/10.1111/j.1365-2958.2007.05802.x PMID: 17627767.
51. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007; 71(3):413–51. https://doi.org/10.1128/MMBR.00012-07 PMID: 17804665; PubMed Central PMCID: PMCPMC2168645.
52. Mey AR, Payne SM. Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol Microbiol. 2001; 42(3):835–49. PMID: 11722746.
53. Zhao Q, Poole K. A second tonB gene in Pseudomonas aeruginosa is linked to the exbB and exbD genes. FEMS microbiology letters. 2000; 184(1):127–32. https://doi.org/10.1111/j.1574-6968.2000.tb09002.x PMID: 10689178.
54. Gao R, Tao Y, Stock AM. System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids. Molecular Microbiology. 2008; 69(6):1358–72. https://doi.org/10.1111/j.1365-2958.2008.06355.x PMID: 18631241.
55. Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol. 2010; 13(2):232–9. https://doi.org/10.1016/j.mib.2010.01.008 PMID: 20138000.
56. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018; 16(9):523–39. https://doi.org/10.1038/s41579-018-0048-6 PMID: 30002505.