Developing teaching materials two-dimensional figure-based on Palembang local cultural context

Lisnani
Musi Charitas Catholic University
Email: Lisnanipcmtk@yahoo.com

Abstract. Developing teaching materials is important to help students in learning mathematics especially for two-dimensional figure by using Palembang local cultural context. The purpose of the research was to develop whether the teaching materials two-dimensional figure-based on Palembang local cultural context are valid, practical, and have potential effect. The research method used research and development (R&D). The research consists of two stages, namely the preliminary stage and the formative evaluation stage. In one-to-one evaluation involved three students. Then, small group evaluation involved 9 (nine) students in the research. Meanwhile, in field test stage involved 29 students. Data collection techniques employed interviews, tests and documentation. The research was conducted in seventh graders at one of junior high school in Indonesia. The results of this study were the developed teaching materials were categorized as valid, practical and have potential effect. The average score of validity content, construct and product design were 3.65 which was very highly valid level. The practicality of one-to-one was 3.47 and small group evaluation was 3.61 which was at very highly practical level. The teaching materials were categorized as effective. It showed that there were 24 students (82.75%) out of 29 students (17.24%).

1. Introduction
Curriculum in Indonesia continuously changes result in mathematics learning encountering a few improvements as well as. Mathematics which is initially abstract is created in such a way that it gets to be something concrete. The Curriculum 2013 required that in the teaching and learning activities for all graders and topics accomplish attitude competency, knowledge, and skills, in all learning process [1]. In order to implement the Curriculum 2013, it would require an innovation in the planning learning process and learning approaches especially in learning mathematics. Mathematics is exceptional fundamental subjects to be well understood by students.

The specified situation has relevance to mathematics; since mathematics is abstraction of the real life. Therefore, it is important for students to connect something abstract to be concrete with real life in mathematics courses [2], [3]. Learning mathematics is very important for solving many problems in human life because learning mathematics is very attractive to improve students’ ability dealing with mathematics [4]. One of the abstract concepts in learning mathematics is two-dimensional figure. Two dimensional figure was arranged by a collection of points, lines and fields. The two-dimensional figure is divided into two, namely quadrilateral and triangle. This study specifically discusses on quadrilaterals. The sorts of quadrilaterals such as parallelogram, rectangle, square, rhombus, kite and trapezoid are illustrations of concepts, whereas “parallelogram could be a quadrilateral that has two sets of parallel opposite sides,” is an illustration of a definition [5].

Teaching materials plays a critical part in improving student learning outcomes. Subsequently, to improve the quality of learning, it is necessary to develop valid, practical, effective and innovative...
teaching materials. However, based on the results of interviews with educators related to the teaching and learning process, educators use teaching materials that are already available that is electronic school books (BSE) as a learning assets without any exertion to arrange and prepare their teaching materials [6].

Numerous educators are still using customary teaching materials, which is teaching materials to understand the materials without any endeavour to compose their own. In this way, it is conceivable on the off chance that the teaching materials used are not relevant, unattractive, repetitive, and not in accordance with the needs, both educators and pupils [7]. Teaching materials make students are more curious in the classes, ended up more dynamic, do more exercise in accordance with their individual qualities, become more successful, encounter real learning, get the chance to collaborate, think critically and improve their issue understanding and imaginative skills [8].

Concrete materials include concrete instantiations of mathematical concepts and mathematical medium such as pictures to serve this point and real objects [9]. These touchable and movable concrete materials are accepted to help in form a clear understanding of mathematical concepts [10]. Therefore, in mathematics learning a teacher should be able to make mathematics into something real.

One of the instruments or learning approaches that can be developed for mathematics is the teaching materials by using local cultural context. There are many local potentials that can be used as investment potentials such as mining and energy, agriculture, plantations, geothermal, forestry, tourist attraction, livestock and ground water. The excellences of South Sumatra Province not only comes from natural factors such as natural resources but also from many local potentials that come from cultural aspects including custom homes, traditional clothing, traditions, dances, special foods and even historical places in South Sumatra [11].

One of the largest cities in South Sumatra is Palembang with the local excellences. The local excellences of Palembang city from the natural aspect consist of the Musi River, the tourism forest of Punti Kayu, Kemaro Island, Kambang Iwak Besak and Kerto Island. Relating to the artificial aspect, the excellences consist of the Carving Center of 19 Ilir, the Woven Handicraft Songket Center of 32 Ilir, OPI Lake, Jakabaring Sport City, OPI Water Fun, Kuto Besak Fortress Plaza, Amanzi Water Park, Palembang Bird Park, Ceng Ho Mosque, Nusa Indah Park, Al Qur'an Al-Akbar, Fantasy Island. Viewed from the historical aspect, Palembang city has a lot of history like Ampera Bridge, Great Mosque, Mayor's Office, Monopera Monument, Kuto Besak Fortress, Siguntang Fort, Balaputra Dewa Museum, Textile Museum, Tomb of Kentik Gravel Grave, Lawang Kidul Mosque, Tengkurep Crater Tomb, Boom Baru, Tomb of Ki Gede Ing Suro, The Archaeological Park of Sriwijaya Kingdom, Kapitan Village, Pertamina Plaju and Gerong River, Silk Air Monument, Sabokingking Tomb, Museum of Sultan Mahmud Badaruddin II, Ice Assegaf Factory, Mud River Mosque, Ki Merogan Mosque, Syeh M. Azhari Thousand Island Mosque, Al Mahmudiyah/Saro Mosque, 10 Ulu Temple, Kelenteng Pualang Kemaro, Tomb of Cinde Welang, Makam Bagus Kuning, Kebon Gede Cemetery, Sriwijaya Fertilizer Area, Firma Village, Potato Tuna Area Goa Japan Ario Kemuning, Goa Japan Jalan Joko, Kawasan Sekanak, Kuto Besak Theater, Kertapati Station, Tomb of Ariendila, and AK. Gani Museum [12].

In this research, the researcher chooses limas house, museum, mall, tourist attractions in learning about two-dimensional figure, as illustrated in figure 1. The use of local cultural context is in line with the approach of Indonesian Realistic Mathematics Education. Realistic Mathematics Education (RME) is an interesting hypothesis used in mathematics education, which was put forward by Hans Freudenthal to relate mathematics with real life. In this hypothesis, it is worked on the circumstances in real life, or conceivable happening in real life conditions [13].
2. Experimental Method
The methodology of this research employed research and development (R&D) [14]. To develop valid, practical and have potential effect teaching materials two-dimensional figure based on Palembang local cultural context for junior high school students and to determine potential effects on students in mathematics activity. The study was conducted in two stages phases, namely the the preliminary stage (i.e. preparation and design stages) and the formative evaluation stage (i.e. expert reviews, one-to-one, small group, and field test stages) [15].

At the preparation stage, the researcher decided and dissected the place and subject of study. The researcher moreover surveyed a few of the literary on research development related to this research. Further, the researcher examined the Curriculum 2013 for junior high school associated with the characteristics of RME and teaching materials by utilizing Palembang local cultural context. The researcher also contacted the teachers in the school and inquired the procedure to do research in that school. As regards the prototyping phase, the flow used is formative evaluation, including self-evaluation, expert reviews, one-to-one, small group evaluation, and field tests. The sample of the formative evaluation in Table 1.

Table 1. The formative evaluation design flow described in Figure 2.

No	Staged by Formative Evaluation	Number of Students	Description of the Students
1	One-to-one evaluation	3	1 student for each category, i.e: low, medium, and high Mathematics proficiency
2	Small group evaluation	9	3 students for each category, i.e: low, medium,
and high Mathematics proficiency

3	Field trial/field test	29	All the students in a real class
Total		**31**	Each stage used a different class

The formative evaluation design flow described in Figure 2.

![Formative Evaluation Flow](image)

Figure 2. Formative Evaluation Flow [16]

Figure 2 described the stages of formative evaluation: 1) The researcher assessed and examined the draft of prototype 1 in self-evaluation phase. At the stage of self-evaluation, the researcher analysed the data and the prototype of teaching materials adjusted with the standard of the Curriculum 2013; 2) In the stage of the expert review, the prototype 1 was approved by experts to be observed, assessed and evaluated. Expert Validation used in this study is in terms of content, language, constructs. The results of expert review are used to revise the product; 3) In one-to-one phase, the researcher conducted tests to students individually. The results of one-to-one are utilized to revise the first prototype. The results of expert reviews and one-to-one produced the second prototype of teaching materials; 4) In the small group evaluation phase, the researcher produced prototype 2 through revise by experts. The small group evaluation of the test was used to identify the weaknesses and strengths, effectiveness, efficiency, usability, and the interest of the prototype 2; 5) The prototype 3 was then used for the field tests. The field test was conducted in class VII at one of State Junior High Schools in Palembang. The products produced at the field test must meet the quality criteria which comprise of three criteria: validity, practicality and have a potential effect (effectiveness).

Based on the research method used in this study, methods of collecting data in this study were questionnaires, tests, documentation, and walk-through. The questionnaires to know students’ need analysis dealing with the teaching materials. The documentation like videos and photos to record the teaching learning process. Walk-through was used for the revision of the first prototype combined with one-to-one to get the second prototype; interviews were conducted to students after the students finished the lesson. The test was used to determine the potential effects of this study.

The teaching materials based on Palembang local cultural context must be valid, practical and have a potential effect. The validity of the instructional materials may be determined by looking at the results of the validation expert (expert review), the interview phase during one-to-one, and the results of the quantitative analysis of items on the phase of a small group evaluation. Meanwhile, the practicality of teaching materials two-dimensional based on Palembang local cultural context can be noted from the observations and interviews in small groups and interviews on the field test with reference to the practical sense. Finally, the potential effects of teaching materials based on Palembang
local cultural context are demonstrated in the results of the field test and interview after the implementation of learning at this stage of the field test.

3. Results and Discussions

3.1. Results

Phases of formative evaluation consist of one-to-one, small group evaluation and field test. The one-to-one evaluation consists of three students: students with low, moderate, and high abilities in mathematics. Before formative evaluation, the researcher validated the teaching materials which are based on Palembang local cultural context. The validation of teaching materials related to Palembang local cultural context consists of validation of content, construct and product design by the experts, as shown in Tables 1, 2 and 3.

Table 2. Recapitulation of Expert Review of Validation Sheet of Content (Content Validity)

The appropriateness of contents with the student characteristic	The accuracy of content	The presentation of content	Linguistic aspects of the content	Exercises and evaluation aspects	Averag e Score									
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15
4	3	4	3	4	4	4	4	4	3	4	4	3.73		

Table 1 describes the recapitulation of content validity from questionnaires comprising fifteen questions, in which the researcher acquires the average score of content validity was 3.75 which was highly valid level.

Table 3. Recapitulation of Expert Review of Instructional Design (Construct Validity)

The appropriateness between materials and curriculum	Materials Presentation	The appropriateness of materials with students’ characteristic	The appropriateness between exercise and evaluation	The number exercise and evaluation	AS												
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18
3	4	4	3	4	4	4	3	4	4	4	4	3	3.67				

Table 2 shows the recapitulation of construct validity from questionnaires consisting of eighteen questions and the researcher acquires the average score of construct validity was 3.52 which was highly valid level.

Table 4. Recapitulation of Expert Review of Product Design

Product Design	Usability	Average Score							
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
4	3	4	4	3	4	4	3	4	3.70
3.60	3.80	3.70							

Table 3 describes the recapitulation of product design from questionnaires consisting of ten questions and the researcher acquires the average score of construct validity was 3.70 which was highly valid level. From table 1, 2 and 3, the researcher acquires the average score of three validities were 3.65. Then, the researcher distributed the questionnaires in one-to-one and small group evaluation to discover the practicality of the teaching materials, as demonstrated in Table 4 and Table 5.
The 7th South East Asia Design Research International Conference (SEADRIC 2019) IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1470 (2020) 012063 doi:10.1088/1742-6596/1470/1/012063

Table 5. Result of Questionnaires in One-to-One Evaluation

Student	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	AS
Student 1	3	4	4	3	4	3	3	3	4	4	3	3	4	3	3	3.40
Student 2	3	4	3	3	4	4	4	4	3	4	3	4	3	3	3.33	
Student 3	3	4	4	3	4	4	4	3	4	4	4	4	4	3	3	3.67
AVERAGE	3.00	3.67	4.00	3.00	3.67	3.67	3.67	3.00	4.00	3.67	3.67	3.33	3.67	3.00	3.00	3.47
REMARK	VH	VH	VH	H	VH	VH	VH	H	VH	VH	VH	VH	H	H	VH	

Table 4 demonstrates the result of questionnaires in one-to-one consisting of fifteen questions and the researcher acquires the average score of practicality was 3.47 which was highly practical level.

Table 6. Result of Questionnaire in Small Group Evaluation

Student	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	AS
Student 1	3	3	4	3	4	4	4	4	4	3	4	3	4	3	4	3.67
Student 2	3	4	3	4	4	4	4	3	3	4	3	4	3	4	3.67	
Student 3	3	4	4	4	4	4	3	4	4	3	4	4	4	4	4	3.73
Student 4	4	3	3	3	3	4	3	3	3	3	4	4	3	3	3.26	
Student 5	4	4	4	4	4	3	4	4	3	4	4	4	4	4	4	3.86
Student 6	3	3	4	4	4	4	3	3	3	3	4	3	4	4	4	3.60
Student 7	4	3	3	4	3	3	3	3	4	4	3	4	3	4	3.40	
Student 8	3	4	2	4	3	4	4	4	3	4	3	4	3	4	3.60	
Student 9	4	4	3	3	4	4	4	4	3	4	3	4	3	4	3.60	
AVERAGE	3.44	3.55	3.33	3.67	3.77	3.55	3.78	3.44	3.44	3.56	3.56	3.56	3.78	3.67	3.89	3.61
REMARK	VH															

Table 5 describes the result of questionnaire in small group evaluation from questionnaires comprising fifteen questions, in which the researcher acquires the average score of practicality was 3.61 which was highly practical level.

3.2. Discussion

This research has developed teaching materials which are based on Palembang local cultural context in the form of Student Activity Sheets (LAS), namely mathematics instructional materials with the topic of two-dimensional figure. LAS begins with understanding the concepts and principles of two-dimensional figure based on Palembang local cultural context.

At the end of LAS, there are questions to practice concepts understanding. In accordance with the research objectives, the teaching materials developed have potential effects on the scientific activities of students in the learning process. Highly visible activity is the activity of observation, reasoning, ask questions, and try to do the working group in Student Activity Sheets (LAS). The following photos show the activities of students in LAS work in groups in Figure 3.
Figure 3. Students observing the stairs in a mall

Figure 3 could be seen that the students work in group solving problems in LAS. In these activities, based on the observation, the students made observations and analyzed the characteristics of parallelogram. In addition, the students conducted reasoning when she/he compose a report on the student worksheet.

Figure 4. Group representatives presenting their discussion result before the class

Figure 4 shows a group of students conducted group presentation. This activity shows that the students do communication.
Figure 5 interpretation an example of students’ work in mathematics worksheet. The student’s work shows the activities of the reasoning process. This study is limited to the product development process of teaching material of two-dimensional figure. The product of this research is the teaching materials in the form of student activity sheet (LAS) which has been thought the process of developing appropriate with research methods.

The development of teaching materials is adapted to the demands of the learning in the Curriculum in 2013 based on scientific approach: in the learning process the students must do observation, reasoning, trying, asking, and communicating. This approach is in accordance with the process of oriented learning on problem solving question problems by using local cultural context with RME approach.

In conclusion, based on the experiment in seventh graders at one of junior high schools, it is shown that the RME approach by using local cultural context in developing teaching materials two-dimensional topic. The students were very active and enjoyed learning. It can be underlined that students were effectively within the learning process and developed or constructed the concept of learning through observing, trying, asking, reasoning, and communicating about two-dimensional figure particularly quadrilaterals.

4. Conclusion
Based on the results and discussions, it can be concluded that the teaching materials based on Palembang local cultural context which are developed, in the topic of two-dimensional figure, is in accordance with the characteristics of the curriculum 2013 by utilizing RME approach. Furthermore, based on the research results, it is recommended that teachers can use this teaching learning materials,
because it is in accordance with the characteristics of the Curriculum 2013 and RME approach by using local cultural context. Since this study is restricted to the usage, it is suggested that other researchers may conduct research on the students’ learning outcomes.

Acknowledgments
By the grace of God, the researcher is very grateful to the Headmaster of SMP Negeri 1 Palembang, the teachers, and the students who helped the researcher complete this research. In addition, the researcher is also grateful the Catholic University of Musi Charitas that has provided funding support to the researcher.

References
[1] Somakim, Andi S, Kodri M and Taufiq 2016 Developing teaching materials PISA-based for mathematics and science of junior high school Journal of Education and Practice 7 73-7
[2] National Council of Teachers of Mathematics (NCTM) 2000 Principles and Standards for School Mathematics (Reston: NCTM)
[3] Cotton T 2002 Mathematics teaching in the real world Issues in mathematics teaching Issues in Mathematics Teaching (London: Routledge) pp 39-53
[4] Unlu M, Ertekin E, and Dilmaç B 2017 Predicting relationships between mathematics anxiety, mathematics teaching anxiety, self-efficacy beliefs towards mathematics and mathematics teaching International Journal of Research in Education and Science 3 636-45 DOI: 10.21890/ijres.328096
[5] Budiarto M T, Siti K and Rini S 2017 Construction of high school students’ abstraction levels in understanding the concept of quadrilaterals International Education Studies 10 148-55 http://dx.doi.org/10.5539/ies.v10n2p148
[6] Satinem and Juwati 2018 Development of teaching materials of poetry writing using pictures for the elementary students Advances in Language and Literary Studies 9 1-9 http://dx.doi.org/10.7575/aiac.alls.v.9n.3p.1
[7] Prastowo 2011 Panduan Kreasif Membuat Bahan Ajar Inovatif (Jakarta: Diva Press)
[8] Koparan T 2015 The effect of dynamic geometry software on prospective teachers’ achievement about locus problems The Turkish Online Journal of Educational Technology 2 589-693
[9] Van de Walle J A 2007 Elementary and middle school mathematics: Teaching developmentally (Boston, MA: Pearson)
[10] Moyer P S 2001 Are we having fun yet? How teachers use manipulatives to teach mathematics Educational Studies in Mathematics 47 175-97
[11] Suratmi A, Laihat and Didi J S 2018 Development of teaching materials based on local excellences of South Sumatera for science learning in elementary school Jurnal Penelitian dan Pembelajaran IPA 4 35-50
[12] South Sumatra Province 2015 Seri Analis Pembangunan Wilayah Provinsi Sumatera Selatan 2015 (Palembang: South Sumatra Province)
[13] Guller H K 2018 Activities written by prospective primary teachers on realistic mathematics education International Journal of Evaluation and Research in Education 3 229-35 DOI: 10.11591/ijere.v7.i3.pp229-235
[14] Akker J V, Gravemeijer K, McKenney S and Nieveen N 2006 Educational Design Research (London: Routledge)
[15] Nieveen N and Plomp T 2007 Formative evaluation in educational design research An Introduction to Educational Design Research (Enschede: SLO)
[16] Tessmer M 2005 Planning and Conducting Formative Evaluations (London: Routledge)