Doping-free complementary WSe$_2$ circuit via van der Waals metal integration

Lingan Kong1,5, Xiaodong Zhang2,5, Quanyang Tao1, Mingliang Zhang1, Weiqi Dang3, Zhiwei Li1, Liping Feng2,5, Lei Liao1, Xiangfeng Duan4 & Yuan Liu1*

Two-dimensional (2D) semiconductors have attracted considerable attention for the development of ultra-thin body transistors. However, the polarity control of 2D transistors and the achievement of complementary logic functions remain critical challenges. Here, we report a doping-free strategy to modulate the polarity of WSe$_2$ transistors using same contact metal but different integration methods. By applying low-energy van der Waals integration of Au electrodes, we observed robust and optimized p-type transistor behavior, which is in great contrast to the transistors fabricated on the same WSe$_2$ flake using conventional deposited Au contacts with pronounced n-type characteristics. With the ability to switch majority carrier type and to achieve optimized contact for both electrons and holes, a doping-free logic inverter is demonstrated with higher voltage gain of 340, at the bias voltage of 5.5 V. Furthermore, the simple polarity control strategy is extended for realizing more complex logic functions such as NAND and NOR.
Two-dimensional (2D) semiconductors have attracted considerable attention as ultrathin channel materials for transistors. Their atomically thin body and dangling-bond free surface offer significant potential for ultimate transistor scaling (down to atomic thin-body thickness), which is essential for decreasing off-state power consumption and further extending Moore’s Law. To date, one major challenge of a 2D transistor is the uncontrollable device polarity (n- or p-type) and majority carrier type, posing a key limitation for realizing complementary metal oxide semiconductor (CMOS) logic function in 2D transistors. In modern silicon microelectronics, the doping concentration of the silicon channel and transistor polarity are achieved by introducing extrinsic (e.g., B for p-type and As for n-type) dopants through high-energy ion implantation and subsequently high-temperature activation. However, applying existing state-of-the-art ion-implantation approaches to a 2D semiconductor is not straightforward because there is little physical space for impurity dopants in such atomically thin lattice. Hence, the majority carrier type of a typical 2D transistor is limited to its intrinsic properties and is largely fixed once exfoliated or synthesized.

Considerable efforts have been devoted to realize 2D CMOS functions in the past few years. Early attempts focused on using two different 2D semiconductors, where one material is used for the NMOS (e.g., MoS$_2$ and MoSe$_2$) and a different material is used for PMOS (e.g., black phosphorus, WSe$_2$). Although demonstrating desired logic functions, this method is still relied on the uncontrollable intrinsic doping, and is not obviously compatible with CMOS technology since it involves two materials with distinct synthesizing and processing conditions. Alternatively, the selective doping of 2D semiconductors can be achieved through a gentle chemical surface absorption with charge transfer process between 2D semiconductors and adsorbate, which could effectively modulate 2D carrier concentration and their majority carrier type (electrons or holes). For example, polyethyleneimine or benzyl viologen molecule was employed to achieve n-type doping in multilayer MoS$_2$ (refs. 17,18), and the chloride molecule was applied to increase electron-doping density of WS$_2$ and MoS$_2$ (ref. 19). However, such chemical absorption approaches typically suffer from poor stability due to the weak interaction between the surface dopants and 2D materials. Recently, the CMOS logic functions are also demonstrated in 2D channels (e.g., WSe$_2$ and MoTe$_2$) using metals with different work function. For example, Ag and Pt have been applied as the contact metal of WSe$_2$ to achieve the NMOS and PMOS, respectively, and similarly, Ti and Pt are integrated in MoTe$_2$ flake to realize CMOS inverter. However, due to the strong Fermi level pinning effect, large Schottky barrier is typically observed in 2D/metal interfaces, regardless of the metal work function used. Therefore, using this approach, it is difficult to achieve optimized device performance in both p- and n-type devices at the same time. In addition, the use of asymmetric contact metals could further complicate the fabrication processes.

Here, we report a doping-free strategy to achieve CMOS circuit functions by using the same contact metal gold (Au) and the same channel material WSe$_2$, but different metal integration methods. By applying low-energy van der Waals (vdW) integration of Au electrode, we observed a robust and consistent p-type behavior in multilayer WSe$_2$. This is in great contrast to the transistors fabricated on the same WSe$_2$ flake using conventional deposited Au contacts, where pronounced n-type characteristic is always observed. To further gain insight of this phenomenon, we conducted detailed analysis through thickness-dependent measurement and density functional theory (DFT) simulation, and attributed the polarity change of WSe$_2$ to the controllable Fermi level pinning effect using different metal integration methods. With the ability to control the polarity of WSe$_2$ transistors and to achieve optimized contact to both PMOS and NMOS using the same metal, a logic inverter is demonstrated with the highest voltage gain of 340 (at a bias voltage of 5.5 V) and total noise margin over 90%. Furthermore, the polarity-controllable strategy is also extended to realize more complex logic functions such as NAND and NOR. Our results not only demonstrate robust and high-performance CMOS logic circuit using vdW metal electrodes, but also provide a doping-free method to control the polarity of a 2D semiconductor using the same contact metal, shedding light to high-performance 2D electronics and CMOS design.

Results

Fabrication processes and electrical measurement. Figure 1a-f schematically illustrates our device structure. To fabricate the device, multilayer WSe$_2$ flakes with various thicknesses are first mechanically exfoliated onto a heavily doped silicon substrate (as gate) with 300-nm silicon oxide (as gate dielectric). Next, 50-nm Au electrode pair is pre-fabricated on a sacrificial Si wafer and then mechanically released using a previously developed method (see “Methods” section for fabrication details). The released metal electrodes are aligned under a microscope and physically laminated on top of the WSe$_2$ flake using a vdW metal integration process, resulting in an atomically sharp and clean Au/WSe$_2$ interface. (Fig. 1a–d). For comparison, another pair of Au electrode with the same thickness (50-nm thick) is also deposited on the same WSe$_2$ flake using conventional electron beam lithography followed by high vacuum thermal deposition, resulting in the nonideal metal/semiconductor interfaces with diffusion, defects, chemical bonding, and strains, as have been demonstrated previously and schematically illustrated in Fig. 1e, f. The optical image of a typical fabricated device is shown Fig. 1g, where the left electrode pair is fabricated through thermal evaporation (highlighted by a black box) and the right electrode pair (red box) is vdW integrated. Electrical transport studies of the resulting devices were carried out at room temperature in a probe station under vacuum condition (3 × 10$^{-5}$ Torr). As shown in Fig. 1h, a typical device (7–7 nm thick) contacted with vdW metal electrodes shows p-type V_{th} transfer characteristic, consistent with band alignment of WSe$_2$ with high work function Au, suggesting the optimized Au/WSe$_2$ interface using the vdW metal integration approach. In contrast, without applying any doping process, n-type V_{th} transfer characteristic is observed in the control device (fabricated on the same WSe$_2$ flake) using conventional deposited Au contacts (Fig. 1i). The observed polarity change indicates the strong Fermi level pinning effect within evaporated Au/WSe$_2$ interfaces, where the pinned Fermi level position is close to the conduction band of WSe$_2$. Furthermore, the two-terminal FET mobility μ can be further extracted using equation $\mu = \frac{dI_d/dV_{gs}}{C_{gs}[L/(WCV_{th})]}$, where L/W is the ratio between channel length and width (shown in Fig. 1g). C is the back-gate capacitance (1.15×10^{-8} F cm$^{-2}$, 300-nm-thick SiO$_2$). The extracted hole and electron mobility in this device are 16 and 11 cm2 V$^{-1}$ s$^{-1}$, respectively. In addition, the contact resistance (R_c) and Schottky barrier height (SBH) of both p- and n-type transistors can also be extracted using the transfer line method and temperature-dependent measurement, where R_c and SBH are measured to be 14 kΩ μm, 50 meV for PMOS and 17 kΩ μm, 60 meV for NMOS, respectively, as shown in Supplementary Fig. 1. The balanced μ, R_c, and SBH between electrons and holes are important for the demonstration of high-performance CMOS circuit described below.
Thickness-dependent electrical measurement. To further confirm the robustness of this behavior and investigate the polarity control by using different metal integration processes, we have conducted detailed electrical measurement based on WSe₂ of various thicknesses. As shown in Fig. 2a−c, the device contacted with vdW metal electrodes shows clearly p-type behavior, regardless of the WSe₂ thickness, in consistent with the band alignment between WSe₂ valence band (5.02−4.83 eV from monolayer to bulk) and high work function Au (5.24 eV). In great contrast, the control devices (contacted with conventional evaporated Au electrodes) display a unique polarity change behavior with increasing WSe₂ thickness, demonstrating p-type characteristic with thickness <5 layers (~3 nm), a bipolar characteristic with 7 layers thick (~4.5 nm), and pronounced n-type property with thickness greater than 10 layers (~6.5 nm), as shown in Fig. 2d−f. The corresponding on−off ratio and mobility of these transistors (in Fig. 2a−f) and monolayer WSe₂ transistor data (using both metal integration processes) are also plotted in Supplementary Fig. 2.

Furthermore, to confirm the robustness of this behavior and to quantitively analyze the polarity change, we have measured over 20 devices and extracted the current ratio between I_{−50V} (I_{ds} at V_g = −50 V) and I_{50V} (I_{ds} at V_g = 50 V) as a function of WSe₂ thickness. The I_{−50V}/I_{50V} ratio here could represent the ratio between hole and electron contribution in a given transistor, and thus could quantitively demonstrate the transistor polarity and majority carrier type. For devices with vdW-contacted electrode (Fig. 2g, red dot), the I_{−50V}/I_{50V} ratio over 10³ is consistently observed from monolayer to 30-nm (~50 layers) thick devices, suggesting a dominated p-type behavior (with negligible electron current) regardless of body thickenss. In contrast, for devices with conventional evaporated electrodes, the I_{−50V}/I_{50V} ratio decreased exponentially from 10⁴ to ~10⁻³ (7 orders of magnitudes) with increasing body thickness from monolayer to ~50 layers, demonstrating that the majority carrier type can be progressively transformed from holes to electrons via increasing the thickness of WSe₂. The slightly increased I_{−50V}/I_{50V} ratio for evaporated contacts (with thickness >13 nm, black line of Fig. 2g) could be attributed to the increased vertical resistance (under contact region) with increasing body thickness.

Moreover, the devices integrated by both vdW and evaporated electrodes are very stable, which can exhibit the original device polarity after 4 months of storage at room temperature in ambient atmosphere (Supplementary Fig. 3), further suggesting the stability of our doping-free approaches²⁵,²⁶. We also note that the unique device polarity control technique reported here is not
For devices with vdW electrodes, large curves of WSe$_2$ with different thicknesses (3 layers in electrodes, where p-type, bipolar, and n-type behaviors are observed in (blue), and 1 V (brown) throughout transport across the metal/WSe$_2$ interfaces. First, we constructed NMOS transition, we have carried out DFT simulation of carrier and to gain insight into the thickness dependent on PMOS to DFT simulation clearly observed. The Fermi level, as demonstrated in a integration processes to pin (using evaporated contact) or de-pin (using vdW contact) the Fermi level, as demonstrated in a MoS$_2$–Pt system in Supplementary Fig. 4.

DFT simulation. To further understand the mechanism of polarity control by using different metal integration approaches, and to gain insight into the thickness dependent on PMOS to NMOS transition, we have carried out DFT simulation of carrier transport across the metal/WSe$_2$ interfaces. First, we constructed two types of Au/WSe$_2$ interface models, a close-contact model corresponding to the evaporated Au interface and a non-close contact corresponding to the vdW-integrated Au interface. For the close-contact model, an interlayer distance of 1.5 Å (covalent radius of Au and Se) was chosen between metal and WSe$_2$, under which the Au and the Se atoms are covalently bonded. For the non-close-contact model, an interlayer distance of 3.3 Å was used, which included an additional vdW-gap distance of 1.8 Å on the base of close-contact interlayer distance, consistent with previous reports. Based on this model, there are three interfaces that may contribute to the transport barrier: Au and the first layer WSe$_2$ (interface I), WSe$_2$ under the contact and inside the channel region (interface II), as well as the first layer WSe$_2$ and the rest of the WSe$_2$ layers (interface III), as illustrated in Fig. 3a, b.

For the non-close contact, as the Au/WSe$_2$ interlayer distance is large enough and their interlayer interaction is weak, Au electrode has little in influence on the properties of WSe$_2$. As shown in Supplementary Fig. 5, there are negligible interfacial gap states in WSe$_2$, and the whole multilayer WSe$_2$ maintains its intrinsic properties, leading to Ohmic contacts at interfaces II and III. Therefore, the contact Schottky barrier only exists in interface I, regardless of the thickness of WSe$_2$ used. Figure 3c illustrates the calculated band structures of WSe$_2$ under vdW Au contact, which is nearly the same with that of freestanding WSe$_2$ (Supplementary Fig. 6), further indicating the weak interaction between Au electrode and the underlying WSe$_2$. The calculated results of SBH are shown in Fig. 3d with dominating p-type Schottky barrier, consistent with observed p-type transistor behavior using vdW Au contact (Fig. 2a–c).

In great contrast, for evaporated Au with the close-contact model, chemical interaction exists between Au electrode and WSe$_2$, which strongly perturbs the electrical properties of WSe$_2$. As shown in Supplementary Fig. 7, a large number of interfacial states are generated in the forbidden band of WSe$_2$, resulting in the disappearance of the WSe$_2$ bandgap. Therefore, as demonstrated in Fig. 3b, the first layer of WSe$_2$ is metallized under the contact (with a new work function ~4.83 eV), leading to an Ohmic contact at interface I. Meanwhile, Schottky barrier is generated at interfaces II and III during charge transport from metallized WSe$_2$ (under contact) to semiconducting WSe$_2$. For monolayer WSe$_2$, the lateral Schottky barrier at interface II is p-type with a barrier height of 0.19 eV, as revealed by the calculated band alignments (Supplementary Fig. 8). On the other hand, for multilayer WSe$_2$, the first underlying WSe$_2$ is metallized, but the rest of the underlying layers remains largely intrinsic (Supplementary Fig. 9), and consequently the effect of Schottky barrier at interface III is more and more pronounced. As shown in Fig. 3e, f, the calculated vertical Schottky barriers at interface III are p-type when Au electrode contacts with 3-layer and 5-layer WSe$_2$, and gradually switched to n-type with 7-layer and 9-layer WSe$_2$, consistent with our measurement results in Fig. 2d–g. Figure 3f demonstrates the variation of SBH at interface III with layer number, with a detailed mechanism in Supplementary Fig. 10.
WSe₂-based CMOS logic functions. The ability to control the transistor polarity can readily allow us to integrate multiple WSe₂ transistors into functional circuits. For example, a complementary logic inverter can be achieved by connecting two WSe₂ transistors in series, where one device is connected with deposited Au electrodes as n-type transistor and the other is contacted by vdW electrodes as a p-type device. The logic diagram and optical image of the inverter are shown in Fig. 4a, where the metal integration processes (both evaporation and vdW integrated) are the same as previous devices in Fig. 1, except that the back-gate dielectric is changed from 300-nm-thick SiO₂ to 20-nm-thick Al₂O₃ to enhance the gate capacitance and electrostatic control over the channel, which is essential to reduce the inverter input voltage and to increase the voltage gain. The detailed inverter fabrication process is shown in the “Methods” section and Supplementary Fig. 11.

Figure 4b shows the voltage transfer characteristics of the resulting inverter as a function of input voltage with bias voltage \(V_{dd}\) from 1.5 to 5.5 V, demonstrating sharp voltage transition with input voltage. The resulted voltage gain is plotted in Fig. 4c with a peak value of 340 at \(V_{dd} = 5.5\) V. To the best of our knowledge, the voltage gain reported here represents the highest value for TMD-based inverter, as shown in the comparison with previous literatures in Supplementary Table 1. Further increasing the \(V_{dd}\) leads to much increased gate leakage current, and degrades the overall device performance. The much higher voltage gain achieved here could be largely attributed to the optimized contact for both PMOS and NMOS by controlling their Fermi level position, which is intrinsically different compared with previous methods by evaporating metals with different work functions, where optimized contact to both PMOS and NMOS is hard to realize due to strong Fermi level pinning effect at metal/2D interfaces. To characterize the robustness of an inverter fabricated through different contact approaches, we have extracted the noise margins (NM_L and NM_H), as shown in Fig. 4d. At the \(V_{dd}\) of 2.5 V, NM_L of 1.16 V and NM_H of 1.19 V are extracted. In addition, we also plot the total noise margin [(NM_L + NM_H)/\(V_{dd}\)] as a function of \(V_{dd}\) from 1.5 to 5.5 V (Fig. 4e). The measured total noise margin of the inverter is greater than 90% at various bias voltages, indicating the high tolerance to noise. Furthermore, the static peak energy consumption of the corresponding inverter is also plotted in Supplementary Fig. 12.

Taking a step further, more complicated logic functions could be achieved by connecting more WSe₂ transistors together. For example, a logic NOR or NAND function can be created using four multilayer WSe₂ transistors, with two transistors using vdW Au contacts (p-type) and other two using evaporated Au contacts (n-type) as p-MOS and n-MOS, respectively. Taking a step further, more complicated logic functions could be achieved by connecting more WSe₂ transistors together.

Fig. 3 DFT calculation of Au/WSe₂ interface with different contact approaches. a, b Schematic cross-sectional view of the Au/WSe₂ non-close-contact model (a) and the close-contact model (b). c Calculated band structures of WSe₂ with different thickness (under Au contact) for the non-close-contact model. The red dots denote the projected band structures of WSe₂ underlying the Au electrode, and the dots size represents the weights. d Variation of calculated SBH with WSe₂ layer number for the close-contact model, with a clear transition from p- to n-type SBH with increasing layer thickness.
The bistable hysteresis voltage characteristics were measured using an Agilent B1500A Semiconductor Parameter Unit (SMU). Besides, for the CMOS logic functions, the voltage transfer characteristic measurements were characterized in a Lakeshore PS-100 cryogenic probe unit cell of WSe2 and 2 × 2 unit cell of Au, respectively. A Monkhorst-Pack k-point mesh of 9 × 9 × 1 was used for the calculation of Au/WSe2 interfaces. To avoid the interaction effect of adjacent slabs, the thickness of vacuum region was set to no less than 15 Å. The $\sqrt{3} \times \sqrt{3}$ unit cell of WSe2 and 2 × 2 unit cell of Au (111) faces were constructed to match with each other. As the properties of WSe2 are hypersensitive to strain, we adjusted the Au lattice parameter to be commensurate to that of WSe2. The strains applied on Au in all the Au/WSe2 interface models are less than 1%. To model the Au surface, we used six layers of Au atoms. Considering that the interface has little impact on the bottom several layers of Au atoms, the bottom three layers of Au atoms were fixed.

Methods

Fabrication process of metal electrode for vdW integration. First, we prepared 50-nm-thick Ti/Au electrode arrays on sacrificial silicon substrate (with an atomically flat surface) using standard photolithography followed by thermal evaporation under vacuum (pressure ~5 × 10⁻⁴ Pa). After the lift-off process, the whole wafer was immersed in a sealed hexamethyldisilazane (HMDS) chamber to functionalize the surface of SiO$_2$ at 80 °C. Next, the poly(methyl methacrylate) (PMMA A8, Microchem Inc.) layer was spin-coated twice on the substrate with a speed of 3500 r.p.m. Finally, the 0.5-μm-thick PMMA layer with array Au electrodes is mechanically peeled and laminated to the target substrate via the mechanical aligner under an optical microscope.

Inverter fabrication process. For fabricating logic inverter, we first prepared 10/50-nm-thick Ti/Au electrode onto an Si/SiO$_2$ substrate as back-gate electrode. Next, the growth of a 20-nm-thick Al$_2$O$_3$ dielectric layer was employed through atomic layer deposition (ALD) on the gate electrode at the growth temperature of 150 °C. By contacting with vdW and evaporated electrode pairs, PMOS and NMOS were fabricated. Finally, the N-type and D-type CMOS transistors were fabricated by using an Agilent B1500A Semiconductor Parameter Analyzer.

Material characterization and electrical measurement. The electrical characteristics measurements were characterized in a Lakeshore PS-100 cryogenic probe station at room temperature in vacuum, using Keysight B2900A source measurement unit (SMU). Besides, for the CMOS logic functions, the voltage transfer characteristics were measured using an Agilent B1500A Semiconductor Parameter Analyzer.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 28 October 2019; Accepted: 26 March 2020; Published online: 20 April 2020

References
1. Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
2. Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
3. Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).
4. Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).
5. Li, Z. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 1151 (2020).
6. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).
7. Haynes, T. E. et al. Interactions of ion-implantation induced interstitials with boron at high concentrations in silicon. Appl. Phys. Lett. 69, 1376 (1996).
8. Pandey, K. C. et al. Annealing of heavily arsenic-doped silicon: electrical deactivation and a new defect complex. Phys. Rev. Lett. 61, 1282–1285 (1988).
9. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
10. Shokouh, S. H. H. et al. High-gain subnanowatt power consumption hybrid complementary logic inverter with WSe2 nanosheet and ZnO nanowire transistors on glass. Adv. Mater. 27, 150–156 (2015).
11. Das, T. et al. Highly flexible hybrid CMOS inverter based on Si nanonanomembrane and molybdenum disulphide. Small 12, 5720–5726 (2017).
12. Xu, Y. et al. Field-induced n-doping of black phosphorus for CMOS-compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27, 1702212 (2017).
13. Resta, G. V. et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 12, 7039–7047 (2018).
14. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
15. Jeon, P. J. et al. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7, 22333–22340 (2015).
16. Sachid, A. B. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28, 2547–2554 (2016).
17. Du, Y. et al. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett. 34, 1328–1330 (2013).
18. Kiriya, D. et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).
19. Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).
20. Yu, L. et al. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 15, 4928–4934 (2015).
21. Lim, J. Y. et al. Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater. 29, 1701798 (2017).
22. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
23. Gong, C., Colombo, L., Wallace, R. M. & Cho, K. The unusual mechanism of partial fermi level pinning at metal-MoS2 interfaces. Nano Lett. 14, 1714–1720 (2014).
24. Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).
25. Das, S., Chen, H. Y., Penunurtha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
26. Liu, Y. et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018).
27. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).
28. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
29. Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal-semiconductor junction: weak fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2,e1600069 (2016).
30. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
31. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).
32. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
34. Zhong, H. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci. Rep. 6, 21786 (2016).
35. Yang, H. et al. Schottky contact in monolayer WS2 field-effect transistors. Adv. Theory Simul. 2, 1900001 (2019).
36. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

Acknowledgements
Y.L. acknowledges the financial support from National Natural Science Foundation of China (Grant Nos. 51991340, 51991341, 51802090, and 61847041), the Hunan Science Fund for Excellent Young Scholars (Grant No. 812019037), and from Huxiang high level talent program (Grant No. S201808SCXCG0149). L.F. acknowledges the financial support from National Natural Science Foundation of China (Grant No. 11674265), from the Natural Science Basic Research Project of Shaanxi Province (Grant No. 2018JZD003), and from Fundamental Research Funds of the Central Universities (3102019MS0402).

Author contributions
Y.L. conceived the research. Y.L. and L.K. designed the experiments. L.K. performed the sample fabrication and device measurement. X.Z. and L.F. contributed to DFT calculation. L.K. contributed to the device schematic. L.I., M.Z., W.D., and Q.T. contributed to fabrication of the logic devices and the circuit measurements. X.D. contributed to paper editing. Y.L., L.F., and L.K. co-wrote the paper. All authors discussed the results and commented on the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-15776-x.

Correspondence and requests for materials should be addressed to L.F., X.D. or Y.L.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020