Out of Control: Reducing Probabilistic Models by Control-State Elimination

Tobias Winkler, Johannes Lehmann, Joost-Pieter Katoen
Probabilistic Model Checking in Theory

Finite Markov chain or MDP

Property (reachability, expected reward, etc.)

Model Checker

Out of Control: Reducing Probabilistic Models by Control-State Elimination — Tobias Winkler
Probabilistic Model Checking in Practice

High level program description (finite variable domains)

Finite Markov chain or MDP

Model Checker

Property (reachability, expected reward, etc.)

Out of Control: Reducing Probabilistic Models by Control-State Elimination — Tobias Winkler
Probabilistic Model Checking in Practice

High level program description (finite variable domains)

State explosion!

Finite Markov chain or MDP

Model Checker

Property (reachability, expected reward, etc.)
High level program description (finite variable domains)

State explosion!

Finite Markov chain or MDP

Model Checker

Property (reachability, expected reward, etc.)

MO/TO

Out of Control: Reducing Probabilistic Models by Control-State Elimination — Tobias Winkler
High level program description (finite variable domains)

State explosion!

Finite Markov chain or MDP

Goal: Mitigate state explosion through program transformations

Model Checker

Property (reachability, expected reward, etc.)

Out of Control: Reducing Probabilistic Models by Control-State Elimination — Tobias Winkler
The PRISM Modelling Language and Control-Flow Graphs

```
1 dtmc
2 const int N = 5;
3
4 module coingame
5     x : [0..N+1] init N/2;
6     f : bool init false;
7
8     [] x=0 & x<N & !f -> 0.5 : (x'=x-1) + 0.5 : (f'=true);
9     [] x<N & !f -> 0.5 : (x'=x-1) & (f'=false) + 0.5 : (x'=x+2) & (f'=false);
10     [] x=0 | x=N -> true;
11
12 endmodule
```
The PRISM Modelling Language and Control-Flow Graphs

Resulting Markov chain for N=6:
State Elimination
State Elimination
These Markov chains are equivalent w.r.t. reaching 🟢!
Can we (automatically) achieve such simplifications by manipulating the program?

These Markov chains are equivalent wrt. reaching !
Step 1: Unfold Variable into Control-flow Graph

Unfold f
Step 1: Unfold Variable into Control-flow Graph

unfold f
Step 1: Unfold Variable into Control-flow Graph

Variables cannot always be unfolded so easily

- E.g. cannot unfold f if assignment $f = x$ occurs
 - x must be unfolded first
- Most real-world instances have some unfoldable variables
eliminate f
se

eliminate f

Out of Control: Reducing Probabilistic Models by Control-State Elimination — Tobias Winkler
eliminate f
Out of Control: Reducing Probabilistic Models by Control-State Elimination — Tobias Winkler
Elimination Rule

In plain Markov chains:
Elimination Rule

In plain Markov chains:

In the control-flow graph (eliminating a single transition):
Each location (without self-loops) can be eliminated by successively applying the transition-elimination rule to all its incoming transitions.
Location Elimination in general

Each location (without self-loops) can be eliminated by successively applying the transition-elimination rule to all its incoming transitions.

Treat case $l_1 = l_2$ with extra care
Complexity of Location Elimination

Definition (Transition Multiplicity):

\[\begin{align*}
\phi & \quad \Downarrow \quad m \text{ incoming transitions from same command} \\
\rightarrow & \quad p_1 : u_1 \\
\rightarrow & \quad p_2 : u_2 \\
\rightarrow & \quad \vdots \\
\rightarrow & \quad p_m : u_m \\
\rightarrow & \quad l_1
\end{align*} \]
Definition (Transition Multiplicity):

m incoming transitions from same command

\[
\begin{align*}
 p_1 &: u_1 \\
 p_2 &: u_2 \\
 p_m &: u_m \\
\end{align*}
\]
Definition (Transition Multiplicity):

Complexity of Location Elimination

\[m = 2 \]

Theorem:
Exponentially many (in \(m \)) applications of transition elimination are sufficient and necessary to eliminate location \(l_1 \)
Automization

Heuristics: *Unfold a bit, eliminate reasonably*
Automization

Heuristics: *Unfold a bit, eliminate reasonably*

higher score = generates more self-loop free locations
Automization

Heuristics: Unfold a bit, eliminate reasonably

- Higher score = generates more self-loop free locations
- Don’t blow up the control flow graph
Implementation

- Extension to the probabilistic model checker Storm
- Used as a simplification front end:

Unfolding + Elimination until too many control-flow locations
Experimental Results

Name	Type	Prop. type	Red. type	Params	States	Transitions	Build time	Check time	Total time			
					orig.	red.	orig.	red.	orig.	red.		
BRP	dtmc	P	134	2^{19}/5	78.9K	-44%	106K	-33%	261 -33%	22 -38%	\(16,418 -46\%\)	
					2^{11}/10	201K	-45%	397K	-33%	1,027 -39%	101 -46%	
					2^{12}/20	1.11M	-46%	1.53K	-33%	3,945 -48%	462 -48%	
					2^{13}/25	2.76M	-46%	3.8K	-33%	9,413 -47%	1,187 -47%	
GOINGAME	dtmc	P	35	\(10^4\)	20K	-50%	40K	-50%	53 -24%	18,500 -79%	\(18,553 -78\%\)	
DICE5	mdp	P	671	n/a	371K	-84%	2.01K	-83%	1,709 -82%	9,538 -99%	\(11,247 -91\%\)	
BAJS	mdp	R	223	\(10^3\)	194K	-28%	326K	-1%	1,242 -43%	220 -32%	\(18,397 -42\%\)	
					\(10^4\)	2M	-28%	3.38K	-1%	13,154 -46%	3,780 -31%	
GRID	dtmc	P	117	\(10^4\)	300K	-47%	410K	-34%	1,082 -57%	17 -52%	\(11,716 -52\%\)	
					\(10^5\)	3M	-47%	4.1K	-34%	10,430 -53%	207 -54%	
HOSPITAL	mdp	P	37	n/a	160K	-66%	396K	-27%	502 -50%	19 -56%	521 -39%	
NAND	dtmc	P	80	\(20/4\)	308K	-79%	476K	-82%	589 -45%	108 -75%	\(84,080 -56\%\)	
					\(40/4\)	4M	-80%	6.2M	-51%	8,248 -50%	1,859 -77%	
					\(60/2\)	9.42M	-80%	14.9M	-50%	19,701 -49%	4,685 -76%	
					\(60/4\)	18.8M	-80%	29.8M	-50%	40,168 -53%	10,703 -77%	
ND-NAND	mdp	P	106	\(20/4\)	308K	-79%	476K	-52%	618 -36%	127 -74%	\(96,956 -52\%\)	
					\(40/4\)	4M	-80%	6.2M	-51%	8,783 -42%	2,270 -77%	
					\(60/2\)	9.42M	-80%	14.9M	-50%	21,792 -47%	5,846 -75%	
					\(60/4\)	18.8M	-80%	29.8M	-50%	44,409 -48%	13,312 -76%	
NEGOTIATION	dtmc	P	148	\(10^3\)	1.29K	-32%	184K	-26%	481 -39%	22 -49%	\(5,631 -39\%\)	
					\(10^4\)	1.92M	-32%	1.84M	-26%	4,930 -43%	197 -30%	
POLE	dtmc	R	208	\(10^2\)	316K	-46%	790K	-4%	1,496 -48%	26 -42%	406 -38%	\(17,431 -45\%\)
Experimental Results

Name	Type	Prop. type	Red. time	Params	States	Transitions	Build	Check	Total time
		orig.	orig.		orig.	orig.	orig.	orig.	orig.
		red.	red.		red.	red.	red.	red.	red.
BRP	dtmc	P	134	210/5	78.9K	106K	261	22	16,418
		-44\%	-33\%		-33\%	-33\%	-38\%		-46\%
		211/10	201K	397K	1,027	101	-39\%	-46\%	
		-45\%	-33\%		-33\%	-39\%	-46\%		-46\%
		212/20	1.11M	1.53M	3,945	462	-48\%	-48\%	
		-46\%	-33\%		-33\%	-48\%	-48\%		-48\%
		213/25	2.76M	3.8M	9,413	1,187	-17\%	-17\%	
		-46\%	-33\%		-33\%	-17\%	-17\%		-17\%
COINGAME	dtmc	P	35	104	20K	40K	53	18,500	18,553
		-50\%	-50\%		-24\%	-79\%	-78\%		-78\%
DICE5	mdp	P	671	n/a	371K	2.01K	1,700	9,538	11,247
		-84\%	-83\%		-82\%	-99\%	-91\%		-91\%
BAJS	mdp	R	223	103	194K	326K	1,242	220	18,397
		-28\%	-1\%		-43\%	-32\%	-42\%		-42\%
		104	2M	3.38M	13,154	3,780	-46\%	-31\%	
GRID	dtmc	P	117	104	300K	410K	1,062	17	11,716
		-47\%	-34\%		-57\%	-52\%	-52\%		-52\%
		105	3M	4.1M	10,430	207	-54\%	-54\%	
HOSPITAL	mdp	P	57	n/a	160K	396K	502	19	521
		-66\%	-27\%		-50\%	-56\%	-39\%		-39\%
NAND	dtmc	P	80	20/4	308K	476K	589	108	86,080
		-79\%	-52\%		-15\%	-75\%	-75\%		-75\%
		40/4	6.29M	8,248	1,859	-50\%	1,859	77\%	-77\%
		60/2	9.62M	14.9K	19,701	4,685	-76\%	-76\%	
		60/4	18.8M	29.8M	40,168	10,703	-77\%	-77\%	
ND-NAND	mdp	P	106	20/4	308K	476K	618	127	96,956
		-79\%	-52\%		-36\%	-74\%	-74\%		-74\%
		40/4	6.29M	8,783	2,270	-42\%	2,270	77\%	-77\%
		60/2	9.62M	14.9K	21,792	5,846	-75\%	-75\%	
		60/4	18.8M	29.8M	44,409	13,312	-76\%	-76\%	
NEGOTIATION	dtmc	P	148	104	129K	184K	481	22	5,631
		-32\%	-26\%		-39\%	-49\%	-49\%		-49\%
		105	1.29M	1.84M	4,930	197	-30\%	-30\%	
POLE	dtmc	R	208	102	315K	790K	1,496	26	17,431
		-46\%	-4\%		-46\%	-42\%	-42\%		-42\%
		103	3.16M	7.9M	15,508	406	-33\%	-33\%	
Experimental Results

Name	Type	Prop. type	Red.	Param.	States	Transitions	Build time	Check time	Total time					
					orig.	red.	orig.	red.	orig.	red.				
BRP	dtmc	P	134	2	78.9k	-44%	106k	-33%	261	-33%	22	-38%	16,418	-46%
		R	246	2	201k	-45%	397k	-33%	1,027	-39%	101	-46%	10,014	-46%
							1,53k	-33%	9,943	-48%	462	-48%	14,985	-48%
							3.8k	-33%	9,413	-47%	1,187	-47%	14,595	-47%
COINGAME	dtmc	P	35	10^4	20k	-50%	40k	-50%	53	-24%	18,500	-79%	18,553	-78%
DICE5	mdp	P	671	n/a	371k	-84%	2.01k	-83%	1,709	-82%	9,538	-99%	11,247	-91%
BARS	mdp	R	223	10^3	194k	-28%	326k	-1%	1,242	-43%	220	-32%	18,397	-42%
				10^4	2m	-28%	3.38k	-1%	13,154	-46%	3,780	-31%	11,937	-31%
GRID	dtmc	P	117	10^4	300k	-47%	410k	-34%	1,062	-57%	17	-52%	11,716	-52%
				10^8	3m	-47%	4.1k	-34%	10,430	-53%	207	-54%	11,716	-52%
HOSPITAL	mdp	P	57	n/a	160k	-66%	396k	-27%	502	-50%	19	-56%	521	-39%
NAND	dtmc	P	80	20/4	308k	-79%	476k	-82%	589	-45%	108	-75%	86,080	-56%
				40/4	4m	-80%	6.29k	-51%	8,248	-50%	1,859	-77%	86,080	-56%
				60/2	9.62m	-80%	14.9k	-50%	19,701	-49%	4,685	-76%	86,080	-56%
				60/4	18.8m	-80%	29.8k	-50%	40,168	-53%	10,703	-77%	86,080	-56%
ND-NAND	mdp	P	106	20/4	308k	-79%	476k	-52%	618	-36%	127	-74%	96,956	-52%
				40/4	4m	-80%	6.29k	-51%	8,783	-42%	2,270	-77%	96,956	-52%
				60/2	9.62m	-80%	14.9k	-50%	21,792	-47%	5,846	-75%	96,956	-52%
				60/4	18.8m	-80%	29.8k	-50%	44,409	-46%	13,312	-76%	96,956	-52%
NEGOTIATION	dtmc	P	148	10^4	129k	-32%	184k	-26%	481	-39%	22	-49%	5,631	-39%
				10^2	1.29m	-32%	1.84m	-26%	4,930	-43%	197	-30%	5,631	-39%
POLE	dtmc	R	208	10^3	315k	-46%	790k	-4%	1,496	-48%	26	-42%	17,431	-45%

13 Out of Control: Reducing Probabilistic Models by Control-State Elimination — Tobias Winkler
Control-Flow Reduction and Bisimulation Minimization

Name	Params.	States Bisim.	States CFR	States both
BRP	$2^{12}/20$	598K	606K	344K
NAND	40/4	3.21M	816K	678K
POLE	10^3	4.06K	1.72M	1.2K
Control-Flow Reduction and Bisimulation Minimization

Name	Params.	States	Bisim.	CFR.	both
BRP	$2^{12}/20$	598K	606K	344K	
NAND	40/4	3.21M	816K	678K	
POLE	10^3	4.06K	1.72M	1.2K	

Are orthogonal and can be combined!
Take-Home Messages

In probabilistic model checking …
Take-Home Messages

In probabilistic model checking …

1) **Mechanizable program transformations can reduce the state space**
Take-Home Messages

In probabilistic model checking …

1) Mechanizable program transformations can reduce the state space

2) There are “symmetries” beyond bisimulation
Take-Home Messages

In probabilistic model checking …

1) **Mechanizable program transformations can reduce the state space**

2) **There are “symmetries” beyond bisimulation**

Thank you!
Take-Home Messages

In probabilistic model checking …

1) **Mechanizable program transformations can reduce the state space**

2) **There are “symmetries” beyond bisimulation**

Thank you!