Pseudo-Anosov subgroups of fibered 3-manifold groups

Spencer Dowdall, Richard P. Kent IV, and Christopher J. Leininger

Abstract. Let S be a hyperbolic surface and let \hat{S} be the surface obtained from S by removing a point. The mapping class groups $\text{Mod}(S)$ and $\text{Mod}(\hat{S})$ fit into a short exact sequence

$$1 \to \pi_1(S) \to \text{Mod}(\hat{S}) \to \text{Mod}(S) \to 1.$$

If M is a hyperbolic 3-manifold that fibers over the circle with fiber S, then its fundamental group fits into a short exact sequence

$$1 \to \pi_1(S) \to \pi_1(M) \to \mathbb{Z} \to 1$$

that injects into the one above.

We show that, when viewed as subgroups of $\text{Mod}(\hat{S})$, finitely generated purely pseudo-Anosov subgroups of $\pi_1(M)$ are convex cocompact in the sense of Farb and Mosher. More generally, if we have a δ-hyperbolic surface group extension

$$1 \to \pi_1(S) \to \Gamma_\Theta \to \Theta \to 1,$$

any quasiisometrically embedded purely pseudo-Anosov subgroup of Γ_Θ is convex cocompact in $\text{Mod}(\hat{S})$. We also obtain a generalization of a theorem of Scott and Swarup by showing that finitely generated subgroups of $\pi_1(S)$ are quasiisometrically embedded in hyperbolic extensions Γ_Θ.

Mathematics Subject Classification (2010). 20F65, 20F67, 57M07, 57S25.

Keywords. Mapping class group, pseudo-Anosov, fibered 3-manifold, hyperbolic, Gromov hyperbolic, convex cocompact.

1 All three authors were partially supported by the GEAR network.
2 The first author was supported by NSF MSPRF No. 1204814.
3 The second author was supported by NSF grant DMS-1104871.
4 The third author was supported by NSF grant DMS-0905748.
1. Introduction

In [10], Farb and Mosher defined a notion of convex cocompactness for subgroups $\Theta < \text{Mod}(S)$ of the mapping class group of a closed hyperbolic surface S by analogy with convex cocompactness in the theory of Kleinian groups. This analogy was extended by the second and third authors [15, 16]. Combining the results of Farb–Mosher [10] and Hamenstädt [11], it follows that the associated $\pi_1(S)$-extension Γ_Θ of $\Theta < \text{Mod}(S)$ given by

$$1 \rightarrow \pi_1(S) \rightarrow \Gamma_\Theta \rightarrow \Theta \rightarrow 1$$

is δ-hyperbolic for some δ if and only if Θ is convex cocompact. For punctured surfaces, one has a similar statement for associated orbifold extensions [10], or one can replace hyperbolicity with relative hyperbolicity [21]; see Section 2.6.

If $\Theta < \text{Mod}(S)$ is convex cocompact, then it must be finitely generated and purely pseudo-Anosov, i.e. every infinite order element is pseudo-Anosov. Conversely, if Θ is purely pseudo-Anosov then the (orbifold) extension Γ_Θ has no Baumslag–Solitar subgroups. As such subgroups are the natural obstructions to being hyperbolic, Farb and Mosher [10] asked

Question 1. If $\Theta < \text{Mod}(S)$ is a purely pseudo-Anosov, finitely generated free group, is Θ convex cocompact?

The hypotheses imply that Γ_Θ has a 3-dimensional $K(\Gamma_\Theta, 1)$, and so this is a special case of a question of Gromov, see [14]. More generally one can ask if every finitely generated purely pseudo-Anosov subgroup is convex cocompact.
These questions seem difficult in general as the class of purely pseudo-Anosov subgroups is somewhat mysterious.

We attack Question 1 for certain classes of purely pseudo-Anosov subgroups related to the Kleinian origins of convex cocompactness. Recall that if $M = \mathbb{H}^3/\Gamma$ is an orientable finite volume hyperbolic 3-manifold that fibers over S^1 with fiber S, and \hat{S} denotes the surface equipped with a distinguished basepoint, then there is a natural injection $\Gamma \to \text{Mod}(\hat{S})$; see sections 2.1 and 2.5. We may then view any subgroup $G < \Gamma$ as a subgroup of $\text{Mod}(\hat{S})$.

Theorem 1.1. Let Γ be the fundamental group of hyperbolic 3-manifold that fibers over the circle with fiber S, considered as a subgroup of $\text{Mod}(\hat{S})$. If G is a finitely generated purely pseudo-Anosov subgroup of Γ, then it is convex cocompact.

This above result is a generalization of the second and third authors’ work with Schleimer [17], where the subgroup G was contained in the fiber group $\pi_1(S) < \pi_1(M) \cong \Gamma$. In that case, the group G could be naturally identified with a Fuchsian group, and 2-dimensional hyperbolic geometry could be used to provide the additional leverage needed to prove convex cocompactness. In Theorem 1.1, G is naturally a Kleinian group, and 3-dimensional geometric techniques can be applied in a similar way to prove convex cocompactness, though there are a number of technical obstacles in the generalization.

The ideas used to deal with these obstacles apply in a more general setting. Specifically, given $\Theta < \text{Mod}(S)$, the extension Γ_Θ also naturally injects into $\text{Mod}(\hat{S})$.

Theorem 1.2. Suppose S is a closed surface, $\Theta < \text{Mod}(S)$ is a convex cocompact subgroup and $G < \Gamma_\Theta$ is a finitely generated quasiisometrically embedded subgroup. If G is purely pseudo-Anosov as a subgroup of $\text{Mod}(\hat{S})$, then it is convex cocompact.

In [25], Scott and Swarup prove that if Γ is the fundamental group of a hyperbolic 3-manifold fibered over the circle with fiber S, then any finitely generated infinite-index subgroup of the fiber subgroup $\pi_1(S) < \Gamma$ is convex cocompact. A consequence of our work is the following generalization of this to arbitrary hyperbolic extensions Γ_Θ. See [20] for a discussion of an analog for hyperbolic free-by-cyclic groups.

Theorem 1.3. Let

$$1 \to \pi_1(S) \to \Gamma_\Theta \to \Theta \to 1$$
be a δ-hyperbolic surface group extension. If H is a finitely generated infinite-index subgroup of $\pi_1(S)$, then H is quasiisometrically embedded in Γ_Θ.

This theorem follows from Proposition 8.1, and is proven in the final section.

1.1. Outline of the proofs. As discussed above, both Theorems 1.1 and 1.2 follow the approach used in [17]. We briefly describe the main ideas and technical results needed to carry out the proofs. See Section 2 for definitions.

Suppose $G \subset \Gamma$ is as in Theorem 1.1. According to [15] or [11], convex co-compactness is equivalent to the orbit map $G \to G \cdot u$ to the curve complex $\mathcal{C}(\hat{S})$ being a quasiisometric embedding for some vertex $u \in \mathcal{C}(\hat{S})$. The difficulty establishing this criterion is proving that distances in $\mathcal{C}(\hat{S})$ are coarsely bounded below by those in G equipped with a word metric.

The first step is to prove that G is convex cocompact as a Kleinian group (see Lemma 3.1). The corresponding step in [17] is straightforward, but here we need to appeal to some fairly technical results in Kleinian groups (Tameness [1, 6] and the Covering Theorem [8, 7]). It follows that distances in G are comparable to distances between orbit points in \mathbb{H}^3, and, more importantly, in the convex hull $\text{Hull}(G) \subset \mathbb{H}^3$ of the limit set for G.

It then suffices to bound the distance between orbit points in \mathbb{H}^3 by the distance of the corresponding orbit points in $\mathcal{C}(\hat{S})$. We do this as follows. For any edge-path between orbit points in $\mathcal{C}(\hat{S})$ of some length n, we construct a piecewise geodesic path in \mathbb{H}^3 between corresponding orbit points in $\text{Hull}(G)$, built from $n + 1$ geodesic segments. Each of the geodesic segments is contained in a convex set $\text{Hull}(u) \subset \mathbb{H}^3$ canonically associated to one of the vertices u of the path in $\mathcal{C}(\hat{S})$. Specifically, $\text{Hull}(u) = \text{Hull}(\pi_1(S)_u)$, where $\pi_1(S)_u < \pi_1(S)$ is the stabilizer of u under the action of $\pi_1(S)$ on $\mathcal{C}(\hat{S})$ coming from the natural injection $\pi_1(S) < \Gamma \to \text{Mod}(\hat{S})$.

The remaining step is to prove that, when this path is projected back to $\text{Hull}(G)$, each of the $n + 1$ geodesic segments projects to a path of uniformly bounded length. The key to this is Proposition 6.1, which states that for any simplex $u \subset \mathcal{C}(\hat{S})$, the set $\text{Hull}(u) \cap \text{Hull}(G)$ has diameter bounded independently of u.

This in turn relies on Proposition 5.1. To briefly describe this, first observe that the fibration $M \to S^1$ lifts to a fibration $\mathbb{H}^3 \to \mathbb{R}$ of the universal cover whose fibers are naturally viewed as hyperbolic planes. Roughly speaking, Proposition 5.1 states that for any simplex $u \subset \mathcal{C}(\hat{S})$, there is a $t_u \in \mathbb{R}$ so that the convex hull of the limit set of $\pi_1(S)_u$ in the fiber over t_u is uniformly close to $\text{Hull}(u)$. The proof of this uses recent work of the second and third authors [13].
Theorem 1.2 follows the same basic approach. The abstraction from hyperbolic 3-space to a more general Gromov hyperbolic space is an obstacle that causes little difficulty. However, the technical results in Kleinian groups are unavailable here, and we must assume that G is quasiconvex to begin with. The proof then reduces to proving the analogue of Proposition 5.1 in this setting, which is Proposition 8.1.

Acknowledgements. The authors would like to thank Ian Agol for helpful conversations. In particular, the proof of Lemma 3.1 was inspired by an idea of Ian Agol. The authors would also like to thank the referee for several useful comments and suggestions.

2. Background

2.1. Hyperbolic geometry. An orientable hyperbolic n-manifold is the quotient of hyperbolic n-space \mathbb{H}^n by a discrete torsion-free subgroup of $\text{Isom}^+ (\mathbb{H}^n)$. We will be primarily interested in the case of $n = 2, 3$, where such a group is called a (torsion-free) Kleinian group. A Kleinian group G is called a lattice if the volume of \mathbb{H}^n / G is finite.

Hyperbolic space is compactified by adding a sphere at infinity $\partial_\infty \mathbb{H}^n$ to obtain a ball $\overline{\mathbb{H}^n} = \mathbb{H}^n \cup \partial_\infty \mathbb{H}^n$. The limit set of a Kleinian group G is the set of accumulation points of any orbit

$$\Lambda_G = \overline{G \cdot x} \setminus G \cdot x \subset \partial_\infty \mathbb{H}^n.$$

The limit set is independent of the choice of point $x \in \mathbb{H}^n$ used to define it. The convex hull of the limit set is the smallest closed convex set in \mathbb{H}^n whose closure in $\overline{\mathbb{H}^n}$ contains Λ_G, and will be denoted

$$\text{Hull}(G) \subset \mathbb{H}^n.$$

Since Λ_G is G-invariant, so is Hull(G).

We say that a Kleinian group G is convex cocompact if Hull(G) / G is compact. If G is convex cocompact, then it is purely hyperbolic, meaning that every infinite order element is hyperbolic. In dimension 2, the converse is true for finitely generated G.

Theorem 2.1 (see [2, Theorem 10.1.2]). A torsion-free Kleinian group

$$G < \text{Isom}^+(\mathbb{H}^2)$$

(usually called a torsion-free Fuchsian group) is convex cocompact if and only if it is finitely generated and contains no parabolics.

\qed
The situation is more complicated when $G < \text{Isom}^+(\mathbb{H}^3)$. For this case, we consider a special situation. Suppose $\Gamma < \text{Isom}^+(\mathbb{H}^3)$ is a torsion-free lattice. Let $M = \mathbb{H}^3/\Gamma$. Suppose that M fibers over the circle with fiber a surface S

$$S \rightarrow M \rightarrow S^1.$$

Then the fundamental groups fit into a short exact sequence

$$1 \rightarrow \pi_1(S) \rightarrow \Gamma \rightarrow \mathbb{Z} \rightarrow 1,$$

where $\Gamma = \pi_1(M)$ and $\mathbb{Z} = \pi_1(S^1)$. In particular, the subgroup $\pi_1(S) < \Gamma$ is a finitely generated, infinite-index, normal subgroup of Γ that we call a fiber group. By normality, we have equality of the limit sets $\Lambda_{\pi_1(S)} = \Lambda_{\Gamma} = S^2_{\infty}$ and there is an infinite-sheeted covering

$$\text{Hull}(\pi_1(S))/\pi_1(S) = \text{Hull}(\Gamma)/\pi_1(S) \rightarrow \text{Hull}(\Gamma)/\Gamma.$$

By the Tameness Theorem [1, 6] and the Covering Theorem [8, 7], this is essentially the only type of subgroup of Γ which fails to be convex cocompact.

Theorem 2.2. Suppose $\Gamma < \text{Isom}^+(\mathbb{H}^3)$ is a torsion-free lattice, and $G < \Gamma$ is a finitely generated subgroup without parabolics. Then either G is convex cocompact, or else there is a subgroup $\tilde{G} < G$ with index at most 2 and a finite index subgroup $\tilde{\Gamma} < \Gamma$ such that $\tilde{G} < \tilde{\Gamma}$ is a fiber subgroup.

2.2. Coarse geometry. Let $\delta \geq 0$. A geodesic triangle Δ in a geodesic metric space X is δ-thin if each of its sides lies in the δ-neighborhood of the union of the other two sides. A geodesic metric space X is δ-hyperbolic if every geodesic triangle is δ-thin.

Let K and C be positive numbers. A map $f : X \rightarrow Y$ between metric spaces is a (K, C)-quasiisometric embedding if

$$\frac{1}{K} d_X(a, b) - C \leq d_Y(f(a), f(b)) \leq K d_X(a, b) + C$$

for all a and b in X. A quasiisometric embedding f is a quasiisometry if its image is D-dense for some D. A quasiisometric embedding $\mathcal{G} : I \rightarrow X$ from an interval $I \subseteq \mathbb{R}$ into X is called a quasigeodesic.

If $A > 0$, a subset Y of a geodesic metric space X is A-quasiconvex if each geodesic joining points of Y lies in the A-neighborhood of Y.

The Gromov boundary $\partial_{\infty} X$ of a proper δ-hyperbolic space X is defined to be the set of equivalence classes of quasigeodesic rays $\mathcal{G} : [0, \infty) \rightarrow X$, where two
rays are equivalent if they have finite Hausdorff distance. In this way each biinfinite quasigeodesic determines two distinct endpoints at infinity. The following consequence of δ-hyperbolicity is well known; for a proof see [5, Theorem III.1.7].

Theorem 2.3 (Stability of quasigeodesics). Given $K, C, \delta > 0$, there exists a stability constant $R > 0$ with the following property. For any (K, C)-quasigeodesic γ in a δ-hyperbolic space X, every geodesic γ in X with the same endpoints (possibly at infinity) has Hausdorff distance at most R from γ. \hfill \Box

A finitely generated group is made into a metric space by equipping its Cayley graph with the path metric induced by declaring that edges have length one and giving the group the subspace metric. Up to quasiisometry, this metric does not depend on the finite generating set. The group is said to be δ-hyperbolic if there is a choice of finite generating set such that its Cayley graph is δ-hyperbolic. We will make frequent use of the following well-known fact; see [5, Proposition I.8.19] for a proof.

Theorem 2.4 (Švarc–Milnor lemma). If X is a proper geodesic metric space, and G acts properly and cocompactly by isometries on X, then X and G are quasiisometric. In fact, for any x in X, the orbit map $G \to X$ given by $g \mapsto gx$ is a quasiisometry. \hfill \Box

The following is a consequence of the stability of quasigeodesics.

Proposition 2.5. If Γ is δ-hyperbolic and $G < \Gamma$ is finitely generated, then G is quasiisometrically embedded if and only if it is quasiconvex. \hfill \Box

We conclude this section by noting that, for Kleinian groups, convex cocompactness may be reformulated in terms of coarse geometry as follows.

Theorem 2.6. A Kleinian group $G < \text{Isom}^+(\mathbb{H}^n)$ is convex cocompact if and only if the orbit map $G \to G \cdot x \subset \mathbb{H}^n$ is a quasiisometric embedding. \hfill \Box

2.3. Mapping class groups and the complex of curves

Let S be a finite-volume hyperbolic surface, we may then identify $\pi_1(S)$ with a lattice in $\text{Isom}(\mathbb{H}^2)$ and write $S = \mathbb{H}^2/\pi_1(S)$. The complexity of S is $\xi(S) = 3g - 3 + n$, where g is the genus of S and n is the number of its punctures. We assume throughout that $\xi(S) \geq 1$, which means that S has negative Euler characteristic and is not a thrice-punctured sphere. The mapping class group $\text{Mod}(S)$ of S is the group of isotopy classes of orientation-preserving homeomorphisms of S.
The mapping class group acts on a number of spaces, but for our purposes, the most important one is the complex of curves $\mathcal{C}(S)$. This is a simplicial complex whose vertices are isotopy classes of essential simple closed curves – these are precisely the isotopy classes with simple closed geodesic representatives. When $\xi(S) > 1$, we say that $k + 1$ distinct isotopy classes span a k-simplex if and only if they can be realized disjointly on the surface (equivalently, their geodesic representatives are all disjoint). When $\xi(S) = 1$, the surface S is either a once-punctured torus or a four-times punctured sphere. In these cases, $k + 1$ isotopy classes are the vertices of a k-simplex if and only if they pairwise intersect once or twice, respectively.

We view $\mathcal{C}(S)$ as either a combinatorial object or a geometric object. For the latter, we declare each simplex to be isometric to a regular Euclidean simplex, and give $\mathcal{C}(S)$ the induced path metric. We make extensive use of the following celebrated theorem of Masur and Minsky [19].

Theorem 2.7 (Masur–Minsky [19]). For any S there is a $\delta > 0$ such that $\mathcal{C}(S)$ is δ-hyperbolic. \(\square\)

An element of $\text{Mod}(S)$ is pseudo-Anosov if it has positive (asymptotic) translation length on $\mathcal{C}(S)$. That is, the pseudo-Anosov elements are precisely the analogues of the hyperbolic isometries of \mathbb{H}^n.

2.4. Exact sequences

We will also be concerned with the marked surface \hat{S}, which is simply the surface S equipped with a distinguished basepoint (or an additional preferred puncture). In the corresponding based mapping class group $\text{Mod}({\hat{S}})$, homeomorphisms and isotopies are required to fix the basepoint. There is a natural surjection $\text{Mod}({\hat{S}}) \to \text{Mod}(S)$ obtained by simply ‘forgetting’ the basepoint. Birman [3, 4] showed that the kernel of this map may be identified with $\pi_1(S)$ thus giving an exact sequence

$$1 \to \pi_1(S) \to \text{Mod}(\hat{S}) \to \text{Mod}(S) \to 1. \quad (1)$$

The injective homomorphism $\text{Mod}(S) \to \text{Out}(\pi_1(S))$ naturally gives rise to an inclusion of short exact sequences

$$1 \to \pi_1(S) \to \text{Mod}(\hat{S}) \to \text{Mod}(S) \to 1.$$

$$1 \to \pi_1(S) \to \text{Aut}(\pi_1(S)) \to \text{Out}(\pi_1(S)) \to 1. \quad (2)$$
The following result of Kra [18] provides many pseudo-Anosov elements. Recall that a loop \(\gamma \in \pi_1(S) \) is \textit{filling} if the geodesic representative of the free homotopy class cuts \(S \) into disks and once-punctured disks.

Theorem 2.8 (Kra [18]). An element \(\gamma \in \pi_1(S) \) is pseudo-Anosov as an element of \(\text{Mod}(\hat{S}) \) if and only if \(\gamma \) is filling as an element of \(\pi_1(S) \).

2.5. Surface and orbifold group extensions.

Given \(\Theta < \text{Mod}(S) \), the exact sequence (1) can be used to describe a \(\pi_1(S) \)-extension \(\Gamma_\Theta \). Specifically, we can define \(\Gamma_\Theta \) as the preimage of \(\Theta \) in \(\text{Mod}(\hat{S}) \), which gives rise to an inclusion of short exact sequences

\[
\begin{array}{ccccccc}
1 & \longrightarrow & \pi_1(S) & \longrightarrow & \Gamma_\Theta & \longrightarrow & \Theta & \longrightarrow & 1 \\
\| & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \longrightarrow & \pi_1(S) & \longrightarrow & \text{Mod}(\hat{S}) & \longrightarrow & \text{Mod}(S) & \longrightarrow & 1 \\
\end{array}
\]

When \(\Theta = \langle \varphi \rangle \), and \(\varphi \) is pseudo-Anosov, then \(\Gamma_\Theta = \pi_1(M) \), where

\[M_\varphi = S \times [0, 1]/(x, 1) \sim (\varphi(x), 0) \]

is the mapping torus of \(\varphi \). By Thurston’s Geometrization Theorem [22, 23, 24, 12], we have \(M = \mathbb{H}^3/\Gamma \) with \(\Gamma_\Theta \cong \pi_1(M) \cong \Gamma < \text{Isom}^+(\mathbb{H}^3) \). In particular, this allows us to view \(\Gamma \) and its subgroups as both Kleinian groups and subgroups of \(\text{Mod}(\hat{S}) \).

When \(S \) has punctures, there are other extensions of \(\Theta \). Namely, replacing each puncture of \(S \) with a cone point of some order, we consider \(S \) as a hyperbolic orbifold. There is an inclusion \(\text{Mod}(S) \to \text{Out}(\pi_1(S)_{\text{orb}}) \), and we build an extension \(\Gamma_{\Theta}^{\text{orb}} \) as the preimage in \(\text{Aut}(\pi_1(S)_{\text{orb}}) \)

\[
\begin{array}{ccccccc}
1 & \longrightarrow & \pi_1(S)_{\text{orb}} & \longrightarrow & \Gamma_{\Theta}^{\text{orb}} & \longrightarrow & \Theta & \longrightarrow & 1 \\
\| & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \longrightarrow & \pi_1(S)_{\text{orb}} & \longrightarrow & \text{Aut}(\pi_1(S)_{\text{orb}}) & \longrightarrow & \text{Out}(\pi_1(S)_{\text{orb}}) & \longrightarrow & 1 \\
\end{array}
\]

2.6. Convex cocompactness.

Farb and Mosher defined convex cocompactness for \(G < \text{Mod}(S) \) in terms of the action of \(\text{Mod}(S) \) on Teichmüller space. An equivalent formulation mirroring Theorem 2.6 is that \(G \) is \textit{convex cocompact} if and only if \(G \) is finitely generated and the orbit map \(G \to G \cdot v \subset \mathcal{C}(S) \) is a quasiisometric embedding (for any \(v \in \mathcal{C}(S) \)), see [15] or [11]. Analogous to the Kleinian group setting, if \(G \) is convex cocompact, it is \(\delta \)-hyperbolic and purely pseudo-Anosov.
The following provides the link with the coarse geometry of surface group extensions and combines the results of Farb–Mosher [10] and Hamenstädt [11].

Theorem 2.9 (Farb–Hamenstädt–Mosher [10, 11]). Suppose S is a closed surface and $\Theta \subset \text{Mod}(S)$ is a subgroup. Then Θ is convex cocompact if and only if Γ_Θ is δ-hyperbolic.

Although we will not need it, this theorem is also true when S has punctures, provided we replace Γ_Θ with $\Gamma_\Theta^{\text{orb}}$. More recently, Mj–Sardar [21] proved that Θ is convex cocompact if and only if Γ_Θ is hyperbolic relative to the peripheral subgroups.

3. Convex cocompactness as a Kleinian group.

We now embark on the proof of Theorem 1.1, letting Γ be the fundamental group of a hyperbolic 3-manifold M fibered over the circle with fiber S, considered as a subgroup of $\text{Mod}(\hat{S})$. Let G be a finitely generated purely pseudo-Anosov subgroup of Γ.

Lemma 3.1. G is a convex cocompact Kleinian group.

Proof. By replacing G with a subgroup of index at most two (which does not change the conclusion), Theorem 2.2 implies that either G is convex cocompact, or G contains a parabolic, or G is a fiber subgroup of a finite index subgroup $\tilde{\Gamma} \subset \Gamma$.

We begin by observing that any element of Γ which is pseudo-Anosov in $\text{Mod}(\hat{S})$ must be hyperbolic. For if not, it would be parabolic and hence contained in a maximal parabolic subgroup which is isomorphic to \mathbb{Z}^2. Since the centralizer of a pseudo-Anosov element is virtually cyclic (contains a cyclic subgroup of finite index), it cannot be contained in any subgroup isomorphic to \mathbb{Z}^2, and therefore cannot be parabolic in Γ.

Therefore we must show that G is not a fiber group of some $\tilde{\Gamma} \subset \Gamma$. We assume that it is and derive a contradiction.

To this end, we let $\tilde{M} \to M$ denote a finite cover that fibers over S^1 with a fiber subgroup G, and let $\tilde{\Gamma} \subset \Gamma$ denote the corresponding subgroup of the fundamental group. Then G is a normal subgroup of $\tilde{\Gamma}$ with $\tilde{\Gamma}/G \cong \mathbb{Z}$. Since $\tilde{\Gamma}/(\tilde{\Gamma} \cap \pi_1(S)) \cong \mathbb{Z}$, it follows that

$$[\tilde{\Gamma}, \tilde{\Gamma}] < G \cap \pi_1(S) \cap \tilde{\Gamma}$$
Now consider any strict essential subsurface $\Sigma \subset S$, and let Σ_0 be any component of the preimage of Σ in the (finite-sheeted) covering $\tilde{S} \to S$, corresponding to $\pi_1(S) \cap \tilde{\Gamma} < \pi_1(S)$. Any nontrivial commutator in $\pi_1(\Sigma_0) < \pi_1(S)$ has infinite order (since all groups in question are torsion-free) and lies in $[\tilde{\Gamma}, \tilde{\Gamma}]$, hence also in G. On the other hand, every element of $\pi_1(\Sigma_0)$ projects to a loop in Σ, and hence a nonfilling loop in S. It follows that G contains an infinite order element which is not pseudo-Anosov. This contradicts the assumption that G is purely pseudo-Anosov and completes the proof.

4. Metrics and covers.

The 3-manifold M is a quotient of \mathbb{H}^3 by Γ, and so has a quotient hyperbolic metric we denote by d. We will want to consider an auxiliary metric \hat{d} constructed as follows. The manifold M is the mapping torus of $\varphi : S \to S$, and we choose a suspension flow φ_t. That is, φ_t is a flow transverse to the fibers such that φ_t sends fibers to fibers for all t, and φ_1 is the first return map on each fiber. We choose a Riemannian metric so that the induced metric on each fiber is a hyperbolic metric, and so that φ_t is a flow along flow lines that are orthogonal to the fibers. We let \hat{d} denote the metric induced by this Riemannian metric. We also assume that the Riemannian metrics defining \hat{d} and d agree on some horoball neighborhoods of the cusps when M is noncompact. This is possible since the fibration can be chosen so that in the hyperbolic metric d, the fibers intersect the cusps in totally geodesic surfaces, and so that the integral curves of the suspension flow are horocycles orthogonal to the fibers.

By compactness of the complement of the horoball cusp neighborhoods, the identity $(M, d) \to (M, \hat{d})$ is bilipschitz. It follows that the same is true for any cover of M if we pull back the metrics d and \hat{d}.

We let $M_S \to M$ be the cover corresponding to $\pi_1(S)$, which fibers over \mathbb{R} by lifting the fibration $M \to S^1$. We record this, together with the homeomorphisms of the universal cover $\mathbb{H}^3 \cong \mathbb{H}^2 \times \mathbb{R}$ and $M_S \cong S \times \mathbb{R}$ in the following commutative diagram:

\[
\begin{array}{c}
\mathbb{H}^3 \longrightarrow M_S \longrightarrow M \\
\mathbb{H}^2 \times \mathbb{R} \longrightarrow S \times \mathbb{R} \\
\mathbb{R} \longrightarrow \mathbb{R} \longrightarrow S^1
\end{array}
\]
We pull the metric \(\hat{d} \) on \(M \to S^1 \) back to \(\mathbb{H}^3 \) and \(M_S \). We let \(\mathbb{H}^2_t = \mathbb{H}^2 \times \{t\} \) and \(S_t = S \times \{t\} \) denote the fibers of the fibrations \(\mathbb{H}^3 \to \mathbb{R} \) and \(M_S \to \mathbb{R} \), respectively. We equip these fibers with their path metrics induced by \(\hat{d} \).

Let \(\eta: \Gamma \to Z \) denote the homomorphism induced by the fibration \(M \to S^1 \). We assume that in addition to being purely pseudo-Anosov and finitely generated, \(G < \Gamma \) is not contained in \(\pi_1(S) \): if \(G < \pi_1(S) \) then we can apply [17], and \(G \) is convex cocompact in \(\text{Mod}(\hat{S}) \). Let \(G_0 = G \cap \pi_1(S) \), which is the kernel of \(\eta|_G: G \to Z \).

\[
1 \to G_0 \to G \xrightarrow{\eta|_G} Z \to 1
\]

By replacing \(\Gamma \) with a finite index subgroup (namely the preimage in \(\Gamma \) of the image of \(G \) in \(Z \)), we can assume without loss of generality that \(G \to Z \) is surjective. We also let \(g \in G \) be an element that maps to 1 in \(Z \). If \(G_0 \) is trivial, then \(G \) is cyclic and we are done, so we assume \(G_0 \) is nontrivial.

We consider the covers \(M_{G_0} \to M_G \to M \) corresponding to \(G_0 < G < \Gamma \), as well as the cover \(S_{G_0} \to S \) corresponding to \(G_0 < \pi_1(S) \). We can add this to the previous diagram to get

\[
\begin{array}{cccc}
\mathbb{H}^3 & \to & M_{G_0} & \to & M_S & \to & M \\
\| & & \| & & \| & & \\
\mathbb{H}^2 \times \mathbb{R} & \to & S_{G_0} \times \mathbb{R} & \to & S \times \mathbb{R} & \to & S^1 \\
\downarrow & & \downarrow & & \downarrow & & \\
\mathbb{R} & \to & \mathbb{R} & \to & \mathbb{R} & \to & \mathbb{R}
\end{array}
\]

Keeping with the same notation, we write \(S_{G_0,t} = S_{G_0} \times \{t\} \) with its induced hyperbolic metric.

Notation. The metrics \(d \) and \(\hat{d} \) both pull back to metrics on all the covers, and we denote these by the same names \(d \) and \(\hat{d} \).

For any of the spaces that fiber over \(\mathbb{R} \), we write \(d_t \) for the path metric on the fiber over \(t \in \mathbb{R} \) induced by \(\hat{d} \). By construction, \(d_t \) is a hyperbolic metric on each fiber. For metric-dependent constructions we will add a prefix to the name to signify what metric is being used in the construction. For example, we will refer to \(d_t \)-geodesics, \(d_t \)-diameter, \(d_t \)-Hausdorff distance, et cetera. If there is no prefix this signifies that the metric \(d \) is being used, though we will sometimes include the \(d \) for clarification.
5. Simplex hulls

For any simplex $u \subset \mathcal{C}(\mathcal{S})$, we consider the stabilizer of u in $\pi_1(S) \subset \text{Mod}(\mathcal{S})$. This is the fundamental group of the subsurface determined by u, see [17] for a detailed discussion. Since the stabilizer $\pi_1(S)_u$ acts on \mathbb{H}^3 as well as each \mathbb{H}_t^2 for every t, we can consider the convex hull of its limit set in any one of these spaces. We write $\text{Hull}(u) \subset \mathbb{H}^3$ for the d-convex hull in \mathbb{H}^3 and $\text{Hull}_t(u) \subset \mathbb{H}_t^2$ for the d_t-convex hull in \mathbb{H}_t^2. By the main theorem of [25], the limit set of $\text{Hull}_t(u)$ in $\partial_{\infty}\mathbb{H}_t^2$ maps homeomorphically onto the limit set of $\text{Hull}(u)$ in $\partial_{\infty}\mathbb{H}^3$.

Given any $\gamma \in \Gamma$ we have $\gamma(\text{Hull}(u)) = \text{Hull}(\gamma \cdot u)$, where γ acts on $\mathcal{C}(\mathcal{S})$ via the inclusion $\Gamma < \text{Mod}(\mathcal{S})$ from (3). Recall also that $\eta: \Gamma \to \mathbb{Z}$ is the homomorphism of fundamental groups induced by the fibration $M = \mathbb{H}^3/\Gamma \to S^1$.

Proposition 5.1. There exist $K, C, R > 0$ with the following property. For any simplex $u \subset \mathcal{C}(\mathcal{S})$ there exists a $t_u \in \mathbb{Z}$ satisfying $t_\gamma u = t_u + \eta(\gamma)$ for all $\gamma \in \Gamma$, and such that the following holds.

1. The inclusion $\text{Hull}_{t_u}(u) \to \mathbb{H}^3$ is a (K, C)-quasiisometric embedding.
2. For any $z, w \in \text{Hull}(u)$, there exists $z', w' \in \text{Hull}_{t_u}(u)$ such that

\[d(z, z'), d(w, w') \leq R\]

and the d_{t_u}-geodesic $[z', w']_{t_u} \subset \text{Hull}_{t_u}(u)$ and the d-geodesic $[z, w] \subset \text{Hull}(u)$ have d-Hausdorff distance at most R.

One of the key ingredients in the proof of this proposition is the following result from [13], which shows that the convex hull $\text{Hull}(u) \subset \mathbb{H}^3 = \mathbb{H}^2 \times \mathbb{R}$ is not too wide.

Proposition 5.2 (Kent–Leininger [13]). There exists $W > 0$ such that for any simplex $u \subset \mathcal{C}(\mathcal{S})$, the image of $\text{Hull}(u)$ in \mathbb{R} under the projection

$\mathbb{H}^3 = \mathbb{H}^2 \times \mathbb{R} \to \mathbb{R}$

onto the second coordinate has diameter at most W. \hfill \square

Given this Proposition, we now sketch the proof of Proposition 5.1 before proceeding to the details.

Sketch of Proposition 5.1. We choose t_u uniformly close to the image of $\text{Hull}(u)$ in \mathbb{R} under the projection $\mathbb{H}^3 \to \mathbb{R}$. According to Proposition 5.2, the image of
Hull(u) in \mathbb{R} is contained in an interval I_u centered on t_u of uniformly bounded diameter. Since I_u has bounded diameter, the inclusion $\mathbb{H}^2_{I_u} \to \mathbb{H}^2 \times I_u$ is uniformly bilipschitz provided we give $\mathbb{H}^2_{I_u}$ the hyperbolic metric d_{t_u} and $\mathbb{H}^2 \times I_u$ the induced path metric from \hat{d} or from the hyperbolic metric d. Since Hull$_{I_u} (u) \subset \mathbb{H}^2_{I_u}$ is convex, the same is true for the inclusion Hull$_{I_u} (u) \to \mathbb{H}^2 \times I_u$, and in particular, Hull$_{I_u} (u)$ is uniformly quasi-convex in the Gromov hyperbolic space $\mathbb{H}^2 \times I_u$.

Next we observe that Hull$(u) \subset \mathbb{H}^2 \times I_u$. Since Hull$(u)$ is convex, the path metric on Hull(u) induced by d is precisely the restriction of the hyperbolic metric d. Since Hull(u) and Hull$_{I_u} (u)$ have the same limit set, and both are quasi-convex, they are uniformly close to each other inside $\mathbb{H}^2 \times I_u$. From this and the fact that both spaces are uniformly quasi-isometrically embedded in $\mathbb{H}^2 \times I_u$, we see that distances between points in Hull$_{I_u} (u)$ are uniformly comparable to distances in Hull(u). On the other hand, distances in Hull(u) are precisely distances in \mathbb{H}^3, as required.

With this sketch in mind, we proceed to the actual proof of Proposition 5.1. It turns out that comparing distances in Hull$_{I_u} (u)$ and Hull(u) as just described is a bit messy. The following Lemma allows us to restrict attention to the points which lie on biinfinite geodesics contained in the respective hulls.

Lemma 5.3. There exists $\delta > 0$ such that for $n = 2$ or 3 the following holds. Let Z be a closed subset of $\partial_\infty \mathbb{H}^n$. Then any geodesic segment $[z, w]$ in the convex hull Hull(Z) in \mathbb{H}^n has Hausdorff distance at most δ from a geodesic segment $[z_0, w_0]$ which is contained in a biinfinite geodesic in Hull(Z).

Proof. Extend $[z, w]$ as far as possible in both directions. If it extends indefinitely in both directions in Hull(Z), then $[z, w]$ is itself contained in a biinfinite geodesic in Hull(Z) and we are done. If not, then $[z, w]$ is contained in \mathcal{G}, a geodesic segment or ray that terminates in the boundary of the convex hull. By moving \mathcal{G} a uniformly bounded amount to some \mathcal{G}' if necessary, we can assume that each endpoint lies on a biinfinite geodesic in the boundary of Hull(Z), and that \mathcal{G}' has length at least 10, say. This follows from the fact that if Hull(Z) has dimension 2, then the boundary of Hull(Z) is a union of biinfinite geodesics, and if Hull(Z) has dimension 3, its boundary is a hyperbolic surface bent along a geodesic lamination [9]. To each endpoint of \mathcal{G}', append a ray of the biinfinite geodesic in the direction that makes the larger of the two angles with \mathcal{G}' (which is at least $\pi/2$). The resulting broken geodesic is a uniformly bounded distance from a biinfinite geodesic, and this geodesic contains $[z, w]$ in a uniformly bounded neighborhood, as required.
Proof of Proposition 5.1. Let \(W \geq 1/2 \) be as in Proposition 5.2. Therefore, for each \(u \) there exists an integer \(t \in \mathbb{R} \) such that
\[
\text{Hull}(u) \subset \mathbb{H}^2 \times [t + W, t - W].
\] (4)

The action of \(\Gamma \) on \(\mathbb{H}^2 \times \mathbb{R} \) descends to an action on \(\mathbb{R} \) given by translation under \(\eta \). Therefore, the projection of
\[
\text{Hull}(\gamma \cdot u) = \gamma \text{Hull}(u)
\]
to \(\mathbb{R} \) is the image of \(\text{Hull}(u) \) under the projection, after translating by \(\eta(\gamma) \). It follows that if \(t \) is an integer satisfying (4) for \(u \), then
\[
\text{Hull}(\gamma \cdot u) \subset \mathbb{H}^2 \times [t + \eta(\gamma) - W, t + \eta(\gamma) + W].
\] (5)

Let \(T \) be a transversal for the action of \(\Gamma \) on the set of simplices in \(\mathcal{C}(\hat{S}) \), that is, a choice of simplex from each \(\Gamma \) orbit. For any \(u \in T \), pick \(t_u = t \) satisfying (4), then define \(t_{\gamma \cdot u} = t_u + \eta(\gamma) \) for any \(u \in T \) and \(\gamma \in \Gamma \). From (5), it follows that
\[
\text{Hull}(u) \subset \mathbb{H}^2 \times [t_u - W, t_u + W]
\]
for every \(u \in \mathcal{C}(\hat{S}) \). Since \(\eta \) is a homomorphism, \(t_{\gamma \cdot u} = t_u + \eta(\gamma) \) holds for every \(\gamma \in \Gamma \) and \(u \in \mathcal{C}(\hat{S}) \).

Given any integer \(t \), let \(d_t^\times \) denote the path metric on \(\mathbb{H}^2 \times [t - W, t + W] \) induced by the hyperbolic metric \(d \).

Claim. There exists \(K > 0 \) such that the inclusion
\[
\mathbb{H}^2_t \longrightarrow \mathbb{H}^2 \times [t - W, t + W]
\]
is a \(K \)-bilipschitz embedding (with respect to \(d_t \) and \(d_t^\times \)).

Proof of Claim. Let \(\hat{d}_t^\times \) denote the path metric on \(\mathbb{H}^2 \times [t - W, t + W] \) induced by \(\hat{d} \). Let \(K_0 \) be the bilipschitz constant for the identity map between \(d_t^\times \) and \(\hat{d}_t^\times \). It follows that the inclusion
\[
\mathbb{H}^2_t \longrightarrow \mathbb{H}^2 \times [t - W, t + W]
\]
with respect to \(d_t \) and \(d_t^\times \) is \(K_0 \)-Lipschitz.

There is a \(K_1 > 1 \) such that the suspension flow \(\varphi_t \) is \(K_1 \)-bilipschitz with respect to \(\hat{d} \). This follows from compactness of the complement of the cusp neighborhoods and the fact that the flow is by isometries on the cusp neighborhoods. Lifting this flow to \(\mathbb{H}^3 \), we can use it to define a projection
\[
\mathbb{H}^2 \times [t - W, t + W] \to \mathbb{H}^2_t
\]
by projecting out the flow lines. This is K^W_1-Lipschitz with respect to \hat{d}^x_i and d_t, and hence $K_0K^W_1$-Lipschitz with respect to d^x_i and d_t. Setting $K = K_0K^W_1 > K_0$, it follows that the inclusion

$$\mathbb{H}^2_t \longrightarrow \mathbb{H}^2 \times [t - W, t + W]$$

is K-bilipschitz.

Let $R' > 0$ be the stability constant for $(K,0)$-quasigeodesics in the Gromov hyperbolic metric space $(\mathbb{H}^2 \times [t - W, t + W], d^x_i)$, see Theorem 2.3. Let $\delta > 0$ be the constant from Lemma 5.3 and set

$$C = 4K(K\delta + R').$$

The next claim will prove the first part of the proposition.

Claim. For any $u \subset \mathcal{C}(\hat{S})$ the inclusion

$$\text{Hull}_{t_u}(u) \longrightarrow \mathbb{H}^3$$

is a (K, C)-quasiisometric embedding.

Proof of Claim. Since $\text{Hull}_{t_u}(u) \subset \mathbb{H}^2_{t_u}$ is isometrically embedded, it follows that the inclusion

$$\text{Hull}_{t_u}(u) \longrightarrow \mathbb{H}^2 \times [t_u - W, t_u + W]$$

is a K-bilipschitz embedding.

Now let $z', w' \in \text{Hull}_{t_u}(u)$ be any two points. According to Lemma 5.3 there are points $z'_0, w'_0 \in \text{Hull}_{t_u}(u)$ such that

$$d_{t_u}(z', z'_0), d_{t_u}(w', w'_0) \leq \delta$$ \hspace{1cm} (6)

and such that the geodesic segment $[z'_0, w'_0]$ extends to a biinfinite d_{t_u}-geodesic $\mathcal{G}' \subset \text{Hull}_{t_u}(u)$.

Since the limit set of $\text{Hull}_{t_u}(u)$ in $\partial_{\infty}\mathbb{H}^2_{t_u}$ embeds in $\partial_{\infty}\mathbb{H}^3$, the path \mathcal{G}' has two endpoints in $\partial_{\infty}\mathbb{H}^3$. Let \mathcal{G} be the d-geodesic with these endpoints, which is necessarily contained in $\text{Hull}(u) \subset \mathbb{H}^2 \times [t_u - W, t_u + W]$. In particular, \mathcal{G} is a $d^x_{t_u}$-geodesic. Since the d_{t_u}-geodesic \mathcal{G}' is a $(K,0)$-quasigeodesic with respect to $d^x_{t_u}$, Theorem 2.3 implies that \mathcal{G} and \mathcal{G}' have $d^x_{t_u}$-Hausdorff distance at most R'.
Let \(z, w \in \mathcal{S} \) be points with
\[
d_{t_u}(z_0', z), d_{t_u}(w_0', w) \leq R'.
\]
Since \(d \) is less than \(d_{t_u} \), appealing to this and (6) we have
\[
d(z', z) \leq d_{t_u}(z', z) \leq d_{t_u}(z', z_0') + d_{t_u}(z_0', z) \leq K\delta + R',
\]
and likewise
\[
d(w', w) \leq d_{t_u}(w', w) \leq K\delta + R'.
\]
Combining (7) and (8) with the triangle inequality, the fact that
\[
\text{Hull}_{t_u}(u) \longrightarrow \mathbb{H}^2 \times [t_u - W, t_u + W]
\]
is a \(K \)-bilipschitz embedding, and the fact that \(d = d_{t_u} \) on Hull\((u)\) (since Hull\((u)\) is convex) we find
\[
d_{t_u}(z', w') \leq K d_{t_u}(z', w')
\]
\[
\leq K(d_{t_u}(z, w) + d_{t_u}(z', z) + d_{t_u}(w, w'))
\]
\[
\leq Kd(z, w) + K(2(K\delta + R'))
\]
\[
\leq K(d(z', w') + d(z, z') + d(w', w)) + 2K(K\delta + R')
\]
\[
\leq Kd(z', w') + 2K(K\delta + R') + 2K(K\delta + R')
\]
\[
= Kd(z', w') + C.
\]
On the other hand, since \(d \leq d_{t_u} \) on \(\mathbb{H}^2 \times [t_u - W, t_u + W] \) it follows that
\[
d(z', w') \leq d_{t_u}(z', w') \leq Kd_{t_u}(z', w') + C.
\]
Therefore, the inclusion Hull\(t_u(u) \rightarrow \mathbb{H}^3 \) is a \((K, C)\)-quasiisometric embedding, proving the claim. \(\square \)

To finish the proof of the proposition, let \(R = R' + \delta > 0 \), where \(R' \) is as in the proof of the claim. By increasing \(R' > 0 \) if necessary, we can assume that if \(\mathcal{S}' \) is a \((K, 0)\)-quasigeodesic in \(\mathbb{H}^2 \times [t - W, t + W] \) and \(\mathcal{S} \) is the unique geodesic a \(d_{t_u} \)-Hausdorff distance at most \(R' \) away, then for any segment \([z, w] \subset \mathcal{S}' \) there is a segment \([z', w'] \subset \mathcal{S}' \) for which the \(d_{t_u} \)-Hausdorff distance between \([z, w] \) and \([z', w'] \) is at most \(R' \) and \(d_{t_u}(z, z'), d_{t_u}(w, w') \leq R' \).
Let $u \in \mathcal{C}(\mathcal{S})$ be any simplex. Given $z, w \in \text{Hull}(u)$, let \mathcal{G} be a biinfinite geodesic in $\text{Hull}(u)$ containing points $z_0, w_0 \subset \mathcal{G}$ such that

$$d(z, z_0), d(w, w_0) \leq \delta,$$

as given by Lemma \ref{five.prop}. Hull intersections

Let \mathcal{G}' be the unique d_{tu}-geodesic in $\text{Hull}_{tu}(u)$ with the same endpoints as \mathcal{G}. Since \mathcal{G}' is a $(K, 0)$-quasigeodesic for d_{tu}, it has d_{tu}-Hausdorff distance at most R' from \mathcal{G}. Let $z', w' \in \mathcal{G}'$ be any points such that the d_{tu}-Hausdorff distance between $[z_0, w_0]$ and $[z', w']$ is at most $R' + \delta = R$, completing the proof.

\section{Hull intersections}

Let $C(M_{G_0}) = \text{Hull}(G_0)/G_0$ and $C(M_G) = \text{Hull}(G)/G$. Since $G_0 \lhd G$ is an infinite normal subgroup, the limit sets are equal so $\text{Hull}(G_0) = \text{Hull}(G)$, and hence there is an induced covering map $C(M_{G_0}) \to C(M_G)$ -- in fact it is a \mathbb{Z}-covering. The same is true for the r-neighborhoods, for any $r > 0$,

$$N_r(C(M_{G_0})) \to N_r(C(M_G)).$$

We can compose the fibration $M \to S^1$ with the map $N_r(C(M_G)) \to M$ obtained by restricting the covering map $M_G \to M$. This gives a map

$$f : N_r(C(M_G)) \to S^1.$$

This lifts to

$$\tilde{f} : N_r(C(M_{G_0})) \to \mathbb{R}$$

which is simply the restriction to $N_r(C(M_{G_0}))$ of the projection onto the second coordinate of the product structure $M_{G_0} \cong S_{G_0} \times \mathbb{R}$. Let $S_{G_0,0} = S_{G_0} \times \{0\}$.

\[
\begin{array}{ccc}
N_r(C(M_{G_0})) & \to & N_r(C(M_G)) \\
\downarrow & & \downarrow \\
M_{G_0} & \to & M_G & \to & M \\
\downarrow & & \downarrow & & \downarrow \\
\mathbb{R} & \to & S^1 & \cong & S^1
\end{array}
\]
Because $\eta: G \to Z$ is surjective, the fibers of \tilde{f} project homeomorphically to the fibers of f by the covering map $N_r(C(MG_0)) \to N_r(C(MG))$. In particular, because f has compact fibers, so does \tilde{f}, and hence

$$\tilde{f}^{-1}(0) = N_r(C(MG_0)) \cap S_{G_0,0} \subset S_{G_0,0}$$

is compact. We assume, without loss of generality, that for whatever choice of r we investigate, 0 is a regular value for \tilde{f} restricted to the boundary of $N_r(C(MG_0))$. Then $\tilde{f}^{-1}(0) \subset S_{G_0,0}$ is a compact submanifold, hence has only finitely many components.

The next result is the key ingredient needed to adapt the arguments from [17].

Proposition 6.1. There exists $D > 0$ such that for any simplex $u \in \mathbb{C}(\hat{S})$, the diameter of $\text{Hull}(u) \cap N_1(\text{Hull}(G))$ is at most D.

Before we launch into the proof we give a brief sketch.

Sketch of Proposition 6.1. Given two points of $\text{Hull}(u) \cap N_1(\text{Hull}(G))$, the geodesic between these points is contained in the intersection by convexity. According to Proposition 5.1 any geodesic segment contained in $\text{Hull}(u)$ is within a distance R of a d_{tu}-geodesic segment in $\text{Hull}_{tu}(u)$. Thus, it suffices to find a uniform bound on the length of a d_{tu}-geodesic segment in the intersection

$$\text{Hull}_{tu}(u) \cap N_{R+1}(\text{Hull}(G)) = \text{Hull}_{tu}(u) \cap N_{R+1}(\text{Hull}(G_0)).$$

Furthermore, replacing u by its image under an element of G, we can assume $t_u = 0$.

Now suppose we have a d_0-geodesic segment in $\text{Hull}_{tu}(u) \cap N_{R+1}(\text{Hull}(G_0))$. Taking the quotient by G_0 we obtain a d_0-geodesic segment inside $\tilde{f}^{-1}(0) \subset S_{G_0,0}$. Since $\tilde{f}^{-1}(0)$ is compact, the fundamental group is finitely generated, $G_1 < G_0$. The compact subsurface $\tilde{f}^{-1}(0)$ and the d_0-geodesic segment lift to the cover $S_{G_{1,0}} \to S_{G_0,0}$ corresponding to G_1. Now we observe that $G_1 < \pi_1(S)$ is a finitely generated Fuchsian group, and is purely pseudo-Anosov as a subgroup of $\text{Mod}(\hat{S})$. Thus, we can appeal directly to the arguments of [17] to bound the length of the d_0-geodesic segment.

The proof of Proposition 6.1 requires the following result from [17].

Proposition 6.2 (Corollary 5.2 of [17]). Let $G' < \pi_1(S)$ be a finitely generated subgroup which is purely pseudo-Anosov when considered as a subgroup of $\text{Mod}(\hat{S})$. Then for each $t \in \mathbb{R}$, there exists $D'_t > 0$ such that for any simplex $u \in \mathbb{C}(\hat{S})$, the d_t-diameter of $\text{Hull}_t(u) \cap N_1(\text{Hull}(G'))$ is at most D'_t. \[\square\]
We also need the following lemma.

Lemma 6.3. Let \(R > 0 \) be the constant from Proposition 5.1. There exists a \(D' > 0 \) with the following property. Given any \(u \in \mathcal{C}(\hat{S}) \), let \(t_u \in \mathbb{Z} \) be the integer from Proposition 5.1. Then any \(d_{t_u} \)-geodesic segment \([z', w'] \subset N_{R+1}(\text{Hull}(G_0)) \cap \text{Hull}_{t_u}(u)\) has \(d_{t_u} \)-length at most \(D' \).

Proof of Lemma 6.3. Recall that we have chosen \(g \in G \) with \(\eta(g) = 1 \). Given \(u \in \mathcal{C}(\hat{S}) \) and any \(d_{t_u} \)-geodesic segment \([z', w'] \subset N_{R+1}(\text{Hull}(G_0)) \cap \text{Hull}_{t_u}(u)\), Proposition 5.1 implies

\[
t_{g^{-t_u}u} = t_u + \eta(g^{-t_u}) = t_u - t_u = 0.
\]

Combining this with the fact that \(g^{-t_u} \) is an isometry on all of \(\mathbb{H}^3 \), as well as from \(\mathbb{H}^2_{t_u} \) to \(\mathbb{H}^2_0 \), and the fact that it preserves \(\text{Hull}(G_0) = \text{Hull}(G) \), it follows that

\[
[g^{-t_u}z', g^{-t_u}w'] = g^{-t_u}([z', w'])
\]

\[
\subset g^{-t_u} (N_{R+1}(\text{Hull}(G_0)) \cap \text{Hull}_{t_u}(u))
\]

\[
= N_{R+1}(\text{Hull}(G_0)) \cap g^{-t_u} (\text{Hull}_{t_u}(u))
\]

\[
= N_{R+1}(\text{Hull}(G_0)) \cap \text{Hull}_0(g^{-t_u} \cdot u)
\]

Therefore, it suffices to prove the lemma for the case that \(t_u = 0 \).

By compactness, there are only finitely many components of

\[
\tilde{f}^{-1}(0) = N_{R+1}(C(G_0)) \cap S_{G_0,0}.
\]

To prove the lemma we must bound the length of a segment in \(N_{R+1}(\text{Hull}(G_0)) \cap \text{Hull}_0(u) \). Since such a segment must project to one of the components \(X_0 \subset \tilde{f}^{-1}(0) \), it suffices to find a constant \(D'_0 > 0 \) such that the conclusion of the lemma is satisfied for segments that project to \(X_0 \). Taking the maximum of the constants over the finitely many components of \(\tilde{f}^{-1}(0) \) will complete the proof.

Let \(p_0 : \mathbb{H}^2_0 \to S_{G_0,0} \) be the covering projection and \(\tilde{X}_0 \subset p_0^{-1}(X_0) \) a component of the preimage. Since \(G_0 \) acts transitively on the components of \(p_0^{-1}(X_0) \), given a \(d_0 \)-geodesic segment

\[
[z', w'] \subset p_0^{-1}(X_0) \cap \text{Hull}_0(u)
\]
there exists an element $g_0 \in G_0$ such that
\[[g_0(z'), g_0(w')] = g_0([z', w']) \subset \bar{X}_0 \cap \text{Hull}_0(g_0 \cdot u). \]

Therefore, it suffices to find a constant $D'_0 > 0$ such that for all $u \in \mathcal{C}(\hat{S})$ with $t_u = 0$, any geodesic segment
\[[z', w'] \subset \bar{X}_0 \cap \text{Hull}_0(u) \]
has d_0-length at most D'_0. This follows from the next claim.

Claim. There exists $D'_0 > 0$ such that for any $u \in \mathcal{C}(\hat{S})$ with $t_u = 0$, the d_0-diameter of $\bar{X}_0 \cap \text{Hull}_0(u)$ is at most D'_0.

Proof of claim. Since X_0 is a compact manifold, $\pi_1(X_0)$ is finitely generated, and hence the image in G_0 is a finitely generated subgroup $G_1 < G_0$. A conjugate of G_1 acts cocompactly on \bar{X}_0, and without loss of generality, assume it is G_1 itself. It follows that there exists $r > 0$ such that $N_r(C_0(G_1))$, the r-neighborhood of the d_0-convex core of G_1, contains X_0. Consequently we have
\[\bar{X}_0 \subset N_r(\text{Hull}_0(G_1)). \]

By Proposition 6.2, since G_1 is finitely generated and purely pseudo-Anosov there exists $D'_0 > 0$ such that $N_r(\text{Hull}_0(G_1)) \cap \text{Hull}_0(u)$ has diameter at most D'_0. Therefore, so does $\bar{X}_0 \cap \text{Hull}_0(u)$. □

This completes the proof. □

Proof of Proposition 6.1. Let $D' > 0$ be as in Lemma 6.3 and set $D = 2R + KD' + C$, where K, C, R are as in Proposition 5.1. Now suppose $u \in \mathcal{C}(\hat{S})$ is a simplex and
\[z, w \in N_1(\text{Hull}(G)) \cap \text{Hull}(u). \]

Since this is the intersection of two convex sets in \mathbb{H}^3, the geodesic $[z, w]$ also lies in this intersection. By Proposition 5.1 there exists a d_{t_u}-geodesic $[z', w'] \subset \text{Hull}_{t_u}(u)$ with d-Hausdorff distance at most R from $[z, w]$.

It follows that
\[[z', w'] \subset N_{R+1}(\text{Hull}(G)) \cap \text{Hull}_{t_u}(u), \]
and hence has d_{t_u}-length at most D' by Lemma 6.3. Combining this with Proposition 5.1 and the triangle inequality we see that the d-distance between z, w is at
most
\[
d(z, w) \leq d(z, z') + d(z', w') + d(w', w) \\
\leq R + Kd_{\mathcal{C}}(z', w') + C + R \\
\leq 2R + KD' + C = D
\]
as required. \qed

7. End of the proof

We remark that this is formally just like the proof of Theorem 6.3 in [17].

Proof of Theorem 1.1. Fix a vertex \(u \in \mathcal{C}^0(\hat{S}) \) and a point \(x \in \text{Hull}(u) \cap \text{Hull}(G) \). Let \(d_{\mathcal{C}} \) denote the path metric on the curve complex \(\mathcal{C}(\hat{S}) \) and equip \(G \) with the metric defined by
\[
d_G(g, h) := d_{\text{Hull}(G)}(g \cdot x, h \cdot x) = d(g \cdot x, h \cdot x).
\]
Since \(G \) acts cocompactly on \(\text{Hull}(G) \), the Švarc–Milnor lemma (Theorem 2.4) implies that \(d_G \) is quasiisometric to any (finitely generated) word metric on \(G \).

We need to show that the orbit map \((G, d_G) \to (\mathcal{C}(\hat{S}), d_{\mathcal{C}})\) defined by \(g \mapsto g \cdot u \) is a quasiisometric embedding, so we must find constants \(K \geq 1 \) and \(C \geq 0 \) such that
\[
\frac{1}{K}d_G(1, g) - C \leq d_{\mathcal{C}}(u, g \cdot u) \leq Kd_G(1, g) + C
\]
for all \(g \in G \). Such an upper bound follows immediately from the triangle inequality and the fact that \(d_G \) is quasiisometric to the word metric on \(G \), and we therefore focus on the lower bound.

Let \((u_0, u_1, \ldots, u_n)\) be a geodesic path in \(\mathcal{C}(\hat{S}) \) from \(u = u_0 \) to \(g \cdot u = u_n \), where \(n = d_{\mathcal{C}}(u, g \cdot u) \). We will use this to construct a path from \(x \) to \(g \cdot x \) in \(\text{Hull}(G) \) whose length is bounded in terms of \(n \). Let \(\omega_i = [u_{i-1}, u_i] \subset \mathcal{C}(\hat{S}) \), \(1 \leq i \leq n \), denote the 1-simplices comprising our \(\mathcal{C}\)-geodesic from \(u \) to \(g \cdot u \). For a simplex \(v \subset \mathcal{C}(\hat{S}) \), recall that \(\text{Hull}(v) \subset \mathbb{H}^3 \) is defined to be the convex hull of the limit set of the stabilizer \(\pi_1(S)_v \) of \(v \) in \(\pi_1(S) < \Gamma \). Since \(u_{i-1}, u_i \subset \omega_i \), the corresponding stabilizers are related by \(\pi_1(S)_{\omega_i} \subset \pi_1(S)_{u_{i-1}} \cap \pi_1(S)_{u_i} \). So the corresponding hulls satisfy
\[
\text{Hull}(\omega_i) \subset \text{Hull}(u_{i-1}) \cap \text{Hull}(u_i).
\]
In particular, for each \(1 \leq i < n \) we have that
\[
\text{Hull}(\omega_i), \text{Hull}(\omega_{i+1}) \subset \text{Hull}(u_i).
\]
We now construct a piecewise geodesic path $\gamma \subset \mathbb{H}^3$ connecting x to $g \cdot x$ as follows. For each $1 \leq i \leq n$ choose any point $x_i \in \text{Hull}(\omega_i)$; we also set $x_0 = x$ and $x_{n+1} = g \cdot x$. Recall that, by choice of x, we have $x_0 = x \in \text{Hull}(u) = \text{Hull}(u_0)$ and therefore also that $x_{n+1} = g \cdot x \in \text{Hull}(g \cdot u) = \text{Hull}(u_n)$. For each $0 \leq i \leq n$ we let γ_i denote the d-geodesic $[x_i \cdot x_{i+1}]$: since $\text{Hull}(u_i)$ is convex, equation (9) and the above implies that $\gamma_i \subset \text{Hull}(u_i)$. The concatenation $\gamma = \gamma_0 \gamma_1 \ldots \gamma_n$ now gives a piecewise geodesic path from x to $g \cdot x$.

The path γ may be arbitrarily long and is furthermore not necessarily contained in $\text{Hull}(G)$.

Let $\tau : \mathbb{H}^3 \to \text{Hull}(G)$ be the closest point projection. It is a well known fact in hyperbolic geometry that τ is a contraction and that, furthermore, there exists a constant $T > 0$ such that for any d-geodesic segment σ outside of $N_1(\text{Hull}(G))$, the projection $\tau(\sigma)$ has length at most $l(\tau(\sigma)) \leq T$. Now, since $\text{Hull}(u_i) \cap N_1(\text{Hull}(G))$ is convex, it cuts γ_i into at most three geodesic segments: at most one in $\text{Hull}(u_i) \cap N_1(\text{Hull}(G))$, which, by Proposition 6.1, has length at most D, and at most two which are disjoint from $\text{Hull}(u_i) \cap N_1(\text{Hull}(G))$. By the contraction properties of τ, it follows that

$$l(\tau(\gamma_i)) \leq 2T + D$$

for each $0 \leq i \leq n$. Since $\tau(\gamma)$ is a path in $\text{Hull}(G)$ connecting x to $g \cdot x$, we conclude that

$$d_G(1, g) = d_{\text{Hull}(G)}(x, g \cdot x) \leq l(\tau(\gamma)) \leq (2T + D)(n + 1).$$

Isolating $n = d_C(u, g \cdot u)$, we find that

$$d_C(u, g \cdot u) = n \geq \frac{1}{2T + D} d_G(1, g) - 1.$$

\[\square\]

8. Generalizations

We now modify the proof of Theorem 1.1 to prove Theorem 1.2. Suppose that S is a closed surface and $\Theta < \text{Mod}(S)$ is a subgroup of $\text{Mod}(S)$. Section 2.5 explains that there is an associated $\pi_1(S)$ extension which includes into the Birman Exact Sequence as in Equation (3):

$$\begin{array}{cccccc}
1 & \longrightarrow & \pi_1(S) & \longrightarrow & \Gamma_\Theta & \longrightarrow & \Theta & \longrightarrow & 1 \\
| & | & \downarrow & | & \downarrow & | & \\
1 & \longrightarrow & \pi_1(S) & \longrightarrow & \text{Mod}(\hat{S}) & \longrightarrow & \text{Mod}(S) & \longrightarrow & 1
\end{array}$$
According to Theorem 2.9, the group Γ_Θ is δ-hyperbolic if and only if Θ is convex cocompact; see also [21].

Theorem 1.2. Suppose S is a closed surface, $\Theta < \text{Mod}(S)$ is a convex cocompact subgroup and $G < \Gamma_\Theta$ is a finitely generated quasiisometrically embedded subgroup. If G is purely pseudo-Anosov as a subgroup of $\text{Mod}(\hat{S})$, then it is convex cocompact.

Remark. We note that although we are able to replace the Γ from Theorem 1.1 with a more general class of groups, we do need the assumption on the subgroup $G < \Gamma_\Theta$. This is due to the fact that a generalization of Lemma 3.1 seems quite difficult, or perhaps false, in this more general setting.

To simplify notation, we henceforth write $\Gamma = \Gamma_\Theta$.

We start by describing a geometric model for Γ that will be most useful for the proof. By passing to finite index subgroups, we assume Θ is torsion-free. Let \hat{B} denote the Cayley graph of Θ with respect to some finite generating set, and $B = \hat{B}/\Theta$ the quotient wedge of circles. Choose any continuous map

$$\hat{B} \to \text{Teich}(S)$$

which is equivariant with respect to the actions of Θ on \hat{B} by covering transformations and on $\text{Teich}(S)$ via the action induced by the inclusion

$$\Theta \to \text{Mod}(S).$$

The Bers fibration

$$\mathbb{H}^2 \to \text{Teich}(\hat{S}) \to \text{Teich}(S)$$

is equivariant with respect to the Birman Exact Sequence, and we can pull back the bundle to \hat{B} so that all maps are equivariant:
We give \(\tilde{X} \) a \(\Gamma \)-invariant geodesic metric \(d \) for which the induced path metric on the fiber \(\varphi^{-1}(t) = H^2_t \) for \(t \in B \) is the hyperbolic metric \(d_t \). Each quotient by the corresponding group is compact, and this produces an \(S \)-bundle over \(B \):

\[
S \longrightarrow X \longrightarrow B.
\]

By the Švarc–Milnor lemma (Theorem 2.4), any orbit map \(\Gamma \rightarrow \tilde{X} \) is a quasi-isometry with respect to the word metric on \(\Gamma \) for any fixed finite generating set.

The analogue of Proposition 5.1 we need is the following. Here \(\Gamma \) acts on \(\tilde{B} \) via the homomorphism \(\Gamma \rightarrow \Theta \) and on \(\mathcal{C}(\tilde{S}) \) by the homomorphism \(\Gamma \rightarrow \text{Mod}(\tilde{S}) \). We write \(\text{Hull}_t(u) \) to denote the convex hull in \(\mathbb{H}^2_t \) of the stabilizer \(\pi_1(S)_u \) of \(u \) in \(\pi_1(S) \), as before.

Proposition 8.1. Suppose that we are in the situation of Diagram (10) and \(\tilde{X} \) is \(\delta \)-hyperbolic. There exist \(K, C > 0 \) with the following property. For any simplex \(u \subset \mathcal{C}(\tilde{S}) \) there exists a vertex \(t_u \in \tilde{B}(0) \) satisfying

\[
t_{\gamma} = \gamma \cdot t_u \quad \text{for all } \gamma \in \Gamma,
\]

and such that the inclusion

\[
\text{Hull}_{t_u}(u) \longrightarrow \tilde{X}
\]

is a \((K, C)\)-quasiisometric embedding.

In Section 9, we derive Theorem 1.3 from this Proposition.

The proof of Proposition 8.1 requires the following analogue of Proposition 5.2 which is proven in [13]. Given any simplex \(u \subset \mathcal{C}(\tilde{S}) \), we let \(\text{Hull}(u) \) denote the union of all quasiinvariant geodesic axes in \(\tilde{X} \) of elements in \(\pi_1(S)_u \).

Proposition 8.2. Suppose that we are in the situation of Diagram (10) and \(\tilde{X} \) is \(\delta \)-hyperbolic. Then there exists \(W > 0 \) such that for any simplex \(u \subset \mathcal{C}(\tilde{S}) \), the set \(\text{Hull}(u) \) has diameter \(\text{diam}_{\tilde{B}}(\varphi(\text{Hull}(u))) < W \).

With this Proposition, the proof of Proposition 8.1 is similar to that of Proposition 5.1. The key idea is again to pick \(t_u \in \tilde{B}(0) \) lying within a uniformly bounded distance of the image of \(\text{Hull}(u) \) in \(\tilde{B} \) so that \(\varphi^{-1}(B_R(t_u)) \) will play the role of \(\mathbb{H}^2_{t_u} \times [t_u - W, t_u + W] \). As before, we will see that the inclusion \(\mathbb{H}^2_{t_u} \rightarrow \varphi^{-1}(B_R(t_u)) \) is uniformly bilipschitz and, using the fact that \(\text{Hull}(u) \subset \varphi^{-1}(B_R(t_u)) \) is convex, we will show that distances in \(\text{Hull}_{t_u}(u) \) are comparable to those in \(\text{Hull}(u) \) and thus also in \(\tilde{X} \).

We also need the following minor modification of Lemma 5.3.
Lemma 8.3. There exists $\delta' > 0$ such that for any convex cocompact Fuchsian group $H < \text{PSL}(2, \mathbb{R})$, any geodesic segment $[z, w]$ in $\text{Hull}(\Lambda_H) \subset \mathbb{H}^2$ has Hausdorff distance at most δ' from a geodesic segment $[z_0, w_0]$ which is contained in a biinfinite periodic geodesic in $\text{Hull}(\Lambda_H)$.

Proof. Since the fixed points of hyperbolic elements is dense in Λ_H, it follows that any biinfinite geodesic in $\text{Hull}(\Lambda_H)$ is a limit of periodic geodesics. So we may apply Lemma 5.3 to first find a segment $[z'_0, w'_0]$ in some biinfinite geodesic in $\text{Hull}(\Lambda_H)$, then approximate this as close as we like by a segment $[z_0, w_0]$ contained in a periodic geodesic. □

Proof of Proposition 8.1. For any simplex $u \subset \mathcal{C}(\hat{S})$ we choose a vertex t_u within a distance at most 1 from $\varphi(\text{Hull}(u))$, subject to the equivariance condition $t_{\gamma^{-1}u} = \gamma \cdot t_u$ (compare the proof of Proposition 5.1). We now prove that t_u has the required properties.

Let $R = W + 1$, let $t \in \tilde{B}^{(0)}$, and consider the preimage $\varphi^{-1}(B_R(t))$ of the closed ball $B_R(t)$. Equip $\varphi^{-1}(B_R(t))$ with the induced path metric d^φ. Since $\pi_1(\hat{S})$ acts cocompactly on \mathbb{H}^2 and $\varphi^{-1}(B_R(t))$, the Švarc–Milnor lemma (Theorem 2.4) implies that this inclusion is a (K, C')-quasiisometry for some $K, C' > 1$. In particular, the space $\varphi^{-1}(B_R(t))$ is Gromov hyperbolic. Since Θ acts transitively by isometries on $\tilde{B}^{(0)}$ (because B has only one vertex), K and C' are independent of t. Given any simplex $u \subset \mathcal{C}(\hat{S})$, we have $\text{Hull}_{t_u}(u) \subset \varphi^{-1}(B_R(t_u))$ by assumption. Since the inclusion $\text{Hull}_{t_u}(u) \to \mathbb{H}_{t_u}^2$ is an isometric embedding, the inclusion

$$\text{Hull}_{t_u}(u) \to \varphi^{-1}(B_R(t_u))$$

is a (K, C')-quasiisometric embedding.

Let $R' > 0$ be the stability constant for (K, C')-quasigeodesics in the Gromov hyperbolic metric space $\varphi^{-1}(B_R(t_u))$ given by Theorem 2.3. Let $\delta' > 0$ be the constant from Lemma 8.3 and set

$$C = 4K(\delta' + R') + C'.$$

The next claim will prove the proposition.

Claim. For any $u \subset \mathcal{C}(\hat{S})$ the inclusion

$$\text{Hull}_{t_u}(u) \to \tilde{X}$$

is a (K, C)-quasiisometric embedding.
Proof of Claim. Let \(z', w' \in \text{Hull}_{t_u}(u) \) be any two points. Observe that \(\pi_1(S) \) is a finitely generated subgroup of the closed surface group \(\pi_1(S) \), so it is a convex cocompact Fuchsian group. By Lemma 8.3 there are points \(z_0', w_0' \in \text{Hull}_{t_u}(u) \) such that

\[
d_{t_u}(z', z_0'), d_{t_u}(w', w_0') \leq \delta'
\]

and such that the geodesic segment \([z_0', w_0']\) extends to a biinfinite periodic \(d_{t_u} \)-geodesic \(\mathcal{G} \subset \text{Hull}_{t_u}(u) \) invariant under an element \(h \in \pi_1(S)_u \).

Let \(\mathcal{G} \) be a quasiinvariant \(d \)-geodesic axis for \(h \); thus

\[
\mathcal{G} \subset \text{Hull}(u) \subset \varphi^{-1}(B_R(t_u)).
\]

In particular, \(\mathcal{G} \) is a \(d_{t_u}^\times \)-geodesic. Since the \(d_{t_u}^\times \)-geodesic \(\mathcal{G} \) is a \((K, C')\)-quasi-geodesic with respect to \(d_{t_u}^\times \), the \(d_{t_u}^\times \)-Hausdorff distance between \(\mathcal{G} \) and \(\mathcal{G}' \) is at most \(R' \).

Let \(z, w \in \mathcal{G} \) be points with

\[
d_{t_u}(z', z), d_{t_u}(w', w) \leq R'.
\]

Notice that \(d(z, w) = d_{t_u}^\times(z, w) \) because \(z, w \in \mathcal{G} \subset \text{Hull}(u) \). Appealing to this and (11), we have

\[
d(z', z) \leq d_{t_u}^\times(z', z) \leq d_{t_u}^\times(z', z_0') + d_{t_u}^\times(z_0', z) \leq \delta' + R',
\]

since \(d \) is less than \(d_{t_u}^\times \), and likewise

\[
d(w', w) \leq d_{t_u}^\times(w', w) \leq \delta' + R'.
\]

Combining (12) and (13) with the triangle inequality, the fact that

\[
\text{Hull}_{t_u}(u) \longrightarrow \varphi^{-1}(B_R(t_u))
\]

is a \((K, C')\)-quasiisometric embedding, and the fact that \(d(z, w) = d_{t_u}^\times(z, w) \), we find

\[
d_{t_u}(z', w') \leq K d_{t_u}^\times(z', w') + C'
\]

\[
\leq K(d_{t_u}^\times(z, w) + d_{t_u}^\times(z', z) + d_{t_u}^\times(w, w')) + C'
\]

\[
\leq K d(z, w) + 2K(\delta' + R') + C'
\]

\[
\leq K(d(z', w') + d(z, z') + d(w', w)) + 2K(\delta' + R') + C'
\]

\[
\leq K d(z', w') + 2K(\delta' + R') + 2K(\delta' + R') + C'
\]

\[
= K d(z', w') + C.
\]
On the other hand, since $d \leq d_{tu}^X \leq d_{tu}$ on $\text{Hull}_{tu}(u)$, it follows that

\[
d(z', w') \leq d_{tu}^X(z', w') \leq d_{tu}(z', w') \leq Kd_{tu}(z', w') + C.
\]

Therefore, the inclusion $\text{Hull}_{tu}(u) \to \tilde{X}$ is a (K, C)-quasiisometric embedding, proving the claim.

This claim completes the proof of the proposition.

We have the following corollary which will be used to prove Theorem 1.2.

Corollary 8.4. Suppose that we are in the situation of Diagram (10) and \tilde{X} is δ-hyperbolic. Then there exists $D_0 > 0$ such that for any pair of adjacent vertices $u_1, u_2 \in C^{(0)}(S)$, there are points $x' \in \text{Hull}_{tu_1}([u_1, u_2])$ and $x'' \in \text{Hull}_{tu_2}([u_1, u_2])$ with $d(x', x'') < D_0$.

Proof. First observe that the inclusions

\[
\text{Hull}_{tu_1}([u_1, u_2]) \subset \text{Hull}_{tu_1}(u_1)
\]

and

\[
\text{Hull}_{tu_2}([u_1, u_2]) \subset \text{Hull}_{tu_2}(u_2)
\]

are isometric embeddings, and hence $\text{Hull}_{tu_1}([u_1, u_2])$ and $\text{Hull}_{tu_2}([u_1, u_2])$ are (K, C)-quasiisometrically embedded in \tilde{X}. A quasiinvariant d-geodesic axis for any element of $\pi_1(S)[u_1, u_2]$ is contained in a uniformly bounded neighborhood of each of $\text{Hull}_{tu_1}([u_1, u_2])$ and $\text{Hull}_{tu_2}([u_1, u_2])$, and hence there are points in these hulls within some uniform distance $D_0 > 0$ of each other.

Let $G_0 = G \cap \pi_1(S)$ and $\hat{G} < \Theta$ denote the image of G under the homomorphism $\Gamma \to \Theta$. Denote the quotients of \tilde{X} by the actions of G_0, G, and $\pi_1(S)$ by X_{G_0}, X_G, and X_S, respectively. Denote the quotient of \mathbb{H}^2 by the action of G_0 by S_{G_0}, and the quotient of \hat{B} by the action of \hat{G} by $B_{\hat{G}}$. We arrange all these quotient maps and all previous maps into the following diagram, labeling those we will need to refer to explicitly.
The fact that each of the spaces \tilde{X}, X_{G_0}, and X_S are products follows from the fact that X_S is a product, which in turn follows from the fact that the quotient of Teich(\hat{S}) by $\pi_1(S)$ is an S-bundle over the contractible space Teich(S). We also note that X_{G_0} and X_G are S_{G_0}-bundles over \tilde{B} and B_G, respectively, with the latter bundle the quotient of the former by the action of $G/G_0 = \hat{G}$ by bundle transformations.

For any vertex $t \in B^{(0)}$ we let H^2_t, $S_{G_0,t}$, and S_t denote the fibers over t in \tilde{X}, X_{G_0}, and X_S, respectively. We equip these with their induced path metrics, all of which we denote d_t. Similarly, given $v \in B^{(0)}_G$, let $S_{G_0,v}$ denote the fiber over v in X_G with its path metric d_v. Observe that if $q(t) = v$, then the restriction of p_0 to $(S_{G_0,t}, d_t)$ is an isometry to $(S_{G_0,v}, d_v)$.

Lemma 8.5. Suppose that we are in the situation of Diagram (10), the space \tilde{X} is δ-hyperbolic, and $G < \Gamma$. Given $x \in \tilde{X}$ and $R > 0$ there exists $D' > 0$ with the following property. If u is a simplex of $\mathcal{C}(\hat{S})$, then any d_{tu}-geodesic segment

$$[z, w]_{tu} \subset N_R(G \cdot x) \cap \text{Hull}_{tu}(u)$$

has length at most D'.
Proof. The reader may wish to refer to Diagram (14) throughout the proof.

For any \(x \in \tilde{X} \) and \(R > 0 \) we consider the closed \(R \)-neighborhood \(N_R(G \cdot x) \) of the \(G \)-orbit of \(x \). Observe that \(p(G \cdot x) = p(x) \), and so \(p(N_R(G \cdot x)) = B_R(p(x)) \), the closed ball of radius \(R \) about \(p(x) \), which is compact. Since \(f \) is continuous, it follows that \(f(B_R(p(x))) \subset B_G \) is compact, and hence contains only finitely many vertices

\[
V = \{v_1, \ldots, v_n\} = f(B_R(p(x))) \cap B_G^{(0)}.
\]

Also, for each \(i = 1, \ldots, n \), pick \(t_i \) with \(q(t_i) = v_i \) and set

\[
T = \{t_1, \ldots, t_n\} \subset \tilde{B}^{(0)}
\]

so that \(G \cdot T = q^{-1}(V) \) (where \(G \) is acting on \(T \subset \tilde{B} \) by the quotient \(G \to \hat{G} \)). Then, given any \(t \in \tilde{B}^{(0)} \) we have

\[
\mathbb{H}_t^2 \cap N_R(G \cdot x) \neq \emptyset \iff \exists g \in G \text{ such that } g \cdot t \in T.
\]

For all \(i = 1, \ldots, n \), the map \(p_0 \) takes \((S_{G_0,t_i}, d_{t_i}) \) isometrically to \((S_{G_0,v_i}, d_{v_i}) \), and restricts to a homeomorphism on the intersections

\[
S_{G_0,t_i} \cap p_1(N_R(G \cdot x)) \xrightarrow{\cong_{p_0}} S_{G_0,v_i} \cap B_R(p(x)).
\]

Since the target of this restriction is compact, so is the domain. So there is a compact connected subsurface \(\Sigma_i \subset S_{G_0,t_i} \) with

\[
S_{G_0,t_i} \cap p_1(N_R(G \cdot x)) \subset \Sigma_i.
\]

We may assume \(\Sigma_i \) is \(\pi_1 \)-injective, and we let \(G_i = \pi_1(\Sigma_i) \subset G_0 \) be the finitely generated image.

Let \(\tilde{\Sigma}_i \) denote the component of \(p_1^{-1}(\Sigma_i) \subset \mathbb{H}_{t_i}^2 \) stabilized by \(G_i \) and let \(r_i > 0 \) be such that

\[
\tilde{\Sigma}_i \subset N_{r_i}(\text{Hull}_{t_i}(G_i)).
\]

Observe that any geodesic segment \([z, w]_{t_i} \subset \mathbb{H}_{t_i}^2 \cap N_R(G \cdot x) \) projects by \(p_1 \) to be contained in \(S_{G_0,t_i} \cap p_1(N_R(G \cdot x)) \subset \Sigma_i \). Therefore \([z, w]_{t_i} \) is contained in a \(G_0 \) translate of \(\tilde{\Sigma}_i \), and hence a \(G_0 \)-translate of \(N_{r_i}(\text{Hull}_{t_i}(G_i)) \).
Now, let \(u \subset \mathcal{E}(\hat{S}) \) denote any simplex. Given any geodesic segment in the intersection

\[
[z, w]_{t_u} \subset \text{Hull}_{t_u}(u) \cap N_R(G \cdot x),
\]

we may apply an element \(g \in G \) with \(g \cdot t_u = t_i \) to this, by (15). By Proposition 8.1, we have \(g \cdot t_u = t_{g \cdot u} \), and so

\[
[g \cdot z, g \cdot w]_{t_{g \cdot u}} = [g \cdot z, g \cdot w]_{t_i} \subset \text{Hull}_{t_i}(g \cdot u) \cap N_R(G \cdot x)
= \text{Hull}_{t_{g \cdot u}}(g \cdot u) \cap N_R(G \cdot x).
\]

Since \(g \) acts by isometries, it follows that

\[
\text{diam}([z, w]_{t_u}) = \text{diam}([g \cdot z, g \cdot w]_{t_{g \cdot u}}).
\]

So it suffices to prove the lemma for segments \([z, w]_{t_u}\) where \(t_u = t_i \) for some \(i \). As noted above, all such segments are contained in a \(G_0 \) translate of \(N_{r_i}(\text{Hull}_{t_i}(G_i)) \). Therefore, appealing to Proposition 8.1 again, it suffices to prove the lemma for segments

\[
[z, w]_{t_i} \subset N_{r_i}(\text{Hull}_{t_i}(G_i)) \cap \text{Hull}_{t_u}(u)
\]

where \(t_u = t_i \).

By Proposition 6.2, we again see that there exists a \(D_i \) which bounds the length of such a segment, depending on \(G_i \) and \(r_i \), but not \(u \). Setting \(D' = \max\{D_1, \ldots, D_n\} \) completes the proof. \(\square \)

Given a subset \(Y \subset \hat{X} \), let \(\pi : \hat{X} \to Y \) denote a closest point projection map. The following is a consequence of quasiconvexity and hyperbolicity.

Lemma 8.6. Suppose that we are in the situation of Diagram (10), the space \(\hat{X} \) is \(\delta \)-hyperbolic, and \(Y \subset \hat{X} \) an \(\Lambda \)-quasiconvex subset. There is a \(\lambda > 0 \) such that \(\pi \) is \((\lambda, \lambda)\)-coarsely Lipschitz.

Moreover, given \(K, C > 0 \) there exists \(R_0 > 0 \) such that for any \(R > R_0 \) and any \((K, C)\)-quasigeodesic \(\gamma \subset \hat{X} \),

\[
\text{diam}(\pi(\gamma)) \leq \text{diam}((\gamma \cap N_R(Y))_0) + R_0
\]

where \((\gamma \cap N_R(Y))_0\) is the longest segment of \(\gamma \) contained in \(N_R(Y) \).

Proof. The first part is well known. To prove the second part, we observe that a quasigeodesic \(\gamma = [z, w] \) can be decomposed into three segments

\[
[z, w] = [z, z'][z', w'][w', w]
\]
(some of which may be empty), where \([z', w']\) remains a bounded distance from \(Y\) and \([z, z']\) remains a bounded distance from a geodesic joining \(z\) to \(\pi(z)\) (and therefore has uniformly bounded projection diameter). Similarly, the path \([w', w]\) remains a bounded distance from a geodesic joining \(\pi(w)\) to \(w\).

The next proposition follows by simply assembling the results above.

Proposition 8.7. Suppose that we are in the situation of Diagram (10), the space \(\tilde{X}\) is \(\delta\)-hyperbolic, and \(G < \Gamma\) quasiisometrically embedded. Given \(x \in \tilde{X}\) and letting \(\pi : \tilde{X} \to G \cdot x\) denote a closest point projection map, there exists \(D > 0\) with the following property. Given any simplex \(u \subset \mathcal{C}(\hat{S})\) and \(t_u\)-geodesic segment \([z, w]_{t_u} \subset \operatorname{Hull}_{t_u}(u)\) we have \(\operatorname{diam}(\pi([z, w]_{t_u})) < D\).

Proof. Let \(K, C\) be as in Proposition 8.1. Since \(G < \Gamma\) is quasiisometrically embedded, \(G \cdot x\) is also, and hence is \(A\)-quasiconvex for some \(A > 0\). Let \(R_0 > 0\) be given by Lemma 8.6, and fix \(R \geq R_0\). Finally, let \(D' > 0\) be as given by Lemma 8.5 and set \(D = D' + R_0\).

Now \([z, w]_{t_u} \subset \operatorname{Hull}_{t_u}(u)\) is \((K, C)\)-quasigeodesic by Proposition 8.1. By Lemma 8.5 and the second part of Lemma 8.6, it follows that

\[
\operatorname{diam}(\pi([z, w]_{t_u})) \leq \operatorname{diam}(([z, w]_{t_u} \cap N_R(G \cdot x))_0) + R_0 \leq D' + R_0 = D,
\]

where \(([z, w]_{t_u} \cap N_R(G \cdot x))_0\) is the longest segment in the intersection

\([z, w]_{t_u} \cap N_R(G \cdot x) \subset \operatorname{Hull}_{t_u}(u) \cap N_R(G \cdot x)\).

This completes the proof.

Proof of Theorem 1.2. This now follows a similar outline to the proof of Theorem 1.1.

We choose any vertex \(u \in \mathcal{C}(\hat{S})\) and let \(x \in \operatorname{Hull}_{t_u}(u) \subset \tilde{X}\) be any point. Let \(D > 0\) be as in Proposition 8.7. Since \(G < \Gamma\) is quasiisometrically embedded, distances in \(G\) are comparable to those in \(G \cdot x \subset \tilde{X}\). As in the proof of Theorem 1.1, it suffices to prove that there exist constants \(K_0, C_0 > 0\) such that

\[
d(x, g \cdot x) \leq K_0 d_G(u, g \cdot u) + C_0.
\]

Let \(D_0 > 0\) be as in Corollary 8.4 and \(\lambda > 0\) as in Lemma 8.6. We claim that \(C_0 = \max\{\lambda(D_0 + 1), D\}\) and \(K_0 = 2C_0\) suffices.
Let \(u = u_0, \ldots, u_n = g \cdot u \) denote the vertices of a geodesic \([u, g \cdot u] \subset \hat{C}(\hat{S})\) connecting \(u \) to \(g \cdot u \), so that \(n = d_e(u, g \cdot u) \). For each \(1 \leq i \leq n \), choose points
\[
x'_i \in \text{Hull}_{\text{ult}_{u_{i-1}}}(\{u_{i-1}, u_i\}) \quad \text{and} \quad x''_i \in \text{Hull}_{\text{ult}_u}(\{u_{i-1}, u_i\})
\]
which are a distance \(D_0 \) apart, which is possible by Corollary 8.4.

Now consider the path \(\gamma \) connecting \(x \) and \(g \cdot x \) given by
\[
\gamma = \{x, x'_1\}_{t_{u_0}} \{x'_1, x''_1\}_t \{x_2, x''_2\}_t \cdots \{x''_{n-1}, x'_n\}_t \{x'_n, x''_n\}_t \{x''_n, g \cdot x\}_t
\]
Here \([z, w]\) denotes a \(d \)-geodesic from \(z \) to \(w \) in \(\hat{X} \) and \([z, w]_t\) denotes a \(d_t \)-geodesic from \(z \) to \(w \) in \(\mathbb{H}^2_t \). Since
\[
x''_i \in \text{Hull}_{\text{ult}_u}(\{u_{i-1}, u_i\}) \subset \text{Hull}_{\text{ult}_u}(u_i)
\]
and
\[
x'_{i+1} \in \text{Hull}_{\text{ult}_u}(\{u_i, u_{i+1}\}) \subset \text{Hull}_{\text{ult}_u}(u_i),
\]
it follows that \(\{x''_i, x'_{i+1}\}_{u_i} \subset \text{Hull}_{\text{ult}_u}(u_i) \) for every \(1 \leq i \leq n-1 \). In particular, the path \(\gamma \) alternates between geodesic segments in hulls \(\text{Hull}_{\text{ult}_u}(u_i) \) and segments of the form \(\{x'_i, x''_i\} \) (note that \(x, x'_1 \in \text{Hull}_{\text{ult}_u}(u_0) \) and \(x''_n, g \cdot x \in \text{Hull}_{\text{ult}_u}(u_n) \)).

Let \(\pi : \hat{X} \rightarrow G \cdot x \) denote a closest point projection. By Proposition 8.7, for every \(i = 0, \ldots, n-1 \) we have
\[
d(\pi(x''_i), \pi(x'_{i+1})) \leq \text{diam}(\pi([x''_i, x'_{i+1}]_{\text{ult}_u})) \leq D
\]
and
\[
d(x, \pi(x'_1)), d(\pi(x''_n), g \cdot x) \leq D.
\]
Since \(\pi \) is \((\lambda, \lambda)\)-coarsely Lipschitz, we also have
\[
d(\pi(x'_i), \pi(x''_i)) \leq \lambda d(x'_i, x''_i) + \lambda \leq \lambda(D_0 + 1).
\]
Therefore, since \(C_0 = \max\{\lambda(D_0 + 1), D\}, K_0 = 2C_0, \) and \(d_e(u, g \cdot u) = n \) we have
\[
d(x, g \cdot x) \leq d(x, \pi(x'_1)) + \sum_{i=1}^{n} d(\pi(x'_i), \pi(x''_i))
\]
\[
+ \sum_{i=1}^{n-1} d(\pi(x''_i), \pi(x'_{i+1})) + d(\pi(x''_n), g \cdot x)
\]
\[
\leq (n + 1)D + n(\lambda(D_0 + 1))
\]
\[
\leq (2n + 1)C_0
\]
\[
= (2d_e(u, g \cdot u) + 1)C_0
\]
\[
= K_0d_e(u, g \cdot u) + C_0
\]
as required.
9. On a theorem of Scott and Swarup

We now prove our generalization of Scott and Swarup’s Theorem [25].

Theorem 1.3. Let

$$1 \rightarrow \pi_1(S) \rightarrow \Gamma_{\Theta} \rightarrow \Theta \rightarrow 1$$

be a δ-hyperbolic surface group extension. If H is a finitely generated infinite-index subgroup of $\pi_1(S)$, then H is quasiisometrically embedded in Γ_{Θ}.

Proof. It suffices to show that a finite-index subgroup H' of H is quasiisometrically embedded.

By a theorem of Scott [26, 27], there is a finite cover S' of S in which the subgroup H represents the fundamental group of a subsurface of S'. Let S'' be the finite cover of S such that

$$\pi_1(S'') = \bigcap_{\theta \in \Theta} \theta(\pi_1(S')).$$

Then Θ lifts to $\text{Mod}(S'')$, and so there is a finite-index subgroup Γ'_{Θ} of Γ_{Θ} of the form

$$1 \rightarrow \pi_1(S'') \rightarrow \Gamma'_{\Theta} \rightarrow \Theta \rightarrow 1.$$

It follows immediately from Proposition 8.1 that $H' = H \cap \pi_1(S'')$ is quasiisometrically embedded in Γ'_{Θ}. As the latter is finite-index in Γ_{Θ}, it is quasiisometrically embedded there, and so H' is quasiisometrically embedded in Γ_{Θ}. $$\square$$

References

[1] I. Agol, Tameness of hyperbolic 3-manifolds. Preprint 2004. [arXiv:math.GT/0405568 [math.GT]]

[2] A. F. Beardon, *The geometry of discrete groups*. Graduate Texts in Mathematics, 91. Springer, New York, 1983. Zbl 0528.30001 MR 0698777

[3] J. S. Birman, Mapping class groups and their relationship to braid groups. *Comm. Pure Appl. Math.* 22 (1969), 213–238. Zbl 0167.21503 MR 0243519

[4] J. S. Birman, *Braids, links, and mapping class groups*. Annals of Mathematics Studies, No. 82. Princeton University Press, Princeton, N.J., and University of Tokyo Press, Tokyo, 1974. Zbl 0305.57013 MR 0375281
[5] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften, 319. Springer, Berlin etc., 1999. Zbl 0988.53001 MR 1744486

[6] D. Calegari and D. Gabai, Shrinkingwrapping and the taming of hyperbolic 3-manifolds. J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. Zbl 1090.57010 MR 2188131

[7] R. D. Canary, Covering theorems for hyperbolic 3-manifolds. In K. Johannson (eds.), Low-dimensional topology. Conference Proceedings and Lecture Notes in Geometry and Topology, III. International Press, Cambridge, MA, 1994, 21–30. Zbl 0849.57014 Zbl 0816.00026 (collection) MR 1316167 MR 1316164 (collection)

[8] R. D. Canary, A covering theorem for hyperbolic 3-manifolds and its applications. Topology 35 (1996), no. 3, 751–778. Zbl 0863.57010 MR 1396777

[9] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces. In D. Canary, D. Epstein and A. Marden (eds.), Fundamentals of hyperbolic geometry: selected expositions. London Mathematical Society Lecture Note Series, 328. Cambridge University Press, Cambridge, 2006. MR 2235711 MR 2230672 (collection)

[10] B. Farb and L. Mosher, Convex cocompact subgroups of mapping class groups. Geom. Topol. 6 (2002), 91–152. Zbl 1021.20034 MR 1914566

[11] U. Hamenstädt, Word hyperbolic extensions of surface groups. Preprint 2005. arXiv:math.GT/0505244 [math.GT]

[12] M. Kapovich, Hyperbolic manifolds and discrete groups. Progress in Mathematics, 183. Birkhäuser Boston, Inc., Boston, MA, 2001. Zbl 0958.57001 MR 1792613

[13] R. P. Kent IV and Ch. J. Leininger, A geometric criterion to be pseudo-Anosov. Michigan Math. J. 63 (2014), no. 2, 227–251. Zbl 06327196 MR 3215548

[14] R. P. Kent IV and Ch. J. Leininger, Subgroups of mapping class groups from the geometrical viewpoint. In D. Canary, J. Gilman, J. Heinonen, and H. Masur, In the tradition of Ahlfors-Bers. IV. Contemporary Mathematics, 432. American Mathematical Society, Providence, RI, 2007, 119–141. Zbl 1140.30017 Zbl 1116.14001 (collection) MR 2342811 MR 2284823 (collection)

[15] R. P. Kent IV and Ch. J. Leininger, Shadows of mapping class groups: capturing convex cocompactness. Geom. Funct. Anal. 18 (2008), no. 4, 1270–1325. Zbl 1282.20046 MR 2465691

[16] R. P. Kent IV and Ch. J. Leininger, Uniform convergence in the mapping class group. Ergodic Theory Dynam. Systems 28 (2008), no. 4, 1177–1195. Zbl 1153.57013 MR 2437226

[17] R. P. Kent IV, Ch. J. Leininger, and S. Schleimer, Trees and mapping class groups. J. Reine Angew. Math. 637 (2009), 1–21. Zbl 1190.57014 MR 2599078

[18] I. Kra, On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces. Acta Math. 146 (1981), no. 3-4, 231–270. Zbl 0477.32024 MR 061385

[19] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138 (1999), no. 1, 103–149. Zbl 0941.32012 MR 1714338
[20] M. Mitra, On a theorem of Scott and Swarup. Proc. Amer. Math. Soc. 127 (1999), no. 6, 1625–1631. Zbl 0918.20028 MR 1610757

[21] M. Mj and P. Sardar, A combination theorem for metric bundles. Geom. Funct. Anal. 22 (2012), no. 6, 1636–1707. Zbl 1284.57016 MR 3000500

[22] J. W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds. In J W. Morgan and H. Bass (eds.), The Smith conjecture. Pure and Applied Mathematics, II. Academic Press, Inc., Orlando, FL, 1984, 37–125. Zbl 0599.57002 Zbl 0599.57001 (collection) MR 0758464 MR 0758459 (collection)

[23] J.-P. Otal, Thurston’s hyperbolization of Haken manifolds. In C.-C. Hsiung and S.-T. Yau (eds.), Surveys in differential geometry. Vol. III. International Press, Boston, MA, 1998. 77–194. Zbl 0997.57001 Zbl 0918.00028 (collection) MR 1677888 MR 1677886 (collection)

[24] J.-P. Otal, The hyperbolization theorem for fibered 3-manifolds. SMF/AMS Texts and Monographs, 7. American Mathematical Society, Providence, RI, and Société Mathématique de France, Paris, 2001. Translated from the 1996 French original by Leslie D. Kay. Zbl 0986.57001 MR 1855976

[25] G. P. Scott and G. A. Swarup, Geometric finiteness of certain Kleinian groups. Proc. Amer. Math. Soc. 109 (1990), no. 3, 765–768. Zbl 0699.30040 MR 1013981

[26] P. Scott, Subgroups of surface groups are almost geometric. J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. Zbl 0412.57006 MR 0494062

[27] P. Scott, Correction to: “Subgroups of surface groups are almost geometric.” J. London Math. Soc. (2) 32 (1985), no. 2, 217–220. Zbl 0581.57005 MR 0811778

Received November 15, 2012; revised April 8, 2013

S. Dowdall, Department of Mathematics, 1409 W Green Street, Urbana, IL 61801, U.S.A.

e-mail: dowdall@math.uiuc.edu

Richard P. Kent IV, Department of Mathematics, 480 Lincoln Dr., Madison, WI 53706-1325, U.S.A.

e-mail: rken4@math.wisc.edu

Christopher J. Leininger, Department of Mathematics, 1409 W Green Street, Urbana, IL 61801, U.S.A.

e-mail: clein@math.uiuc.edu