PAULI GRAPHS, RIEMANN HYPOTHESIS, AND GOLDBACH PAIRS

© M. Planat,* F. Anselmi,* and P. Solé†

We consider the Pauli group P_q generated by unitary quantum generators X (shift) and Z (clock) acting on vectors of the q-dimensional Hilbert space. It has been found that the number of maximal mutually commuting sets within P_q is controlled by the Dedekind psi function $\psi(q)$ and that there exists a specific inequality involving the Euler constant $\gamma \approx 0.577$ that is only satisfied at specific low dimensions $q \in A = \{2, 3, 4, 5, 6, 8, 10, 12, 18, 30\}$. The set A is closely related to the set $A \cup \{1, 24\}$ of integers that are totally Goldbach, i.e., that consist of all primes $p < n - 1$ with p not dividing n and such that $n - p$ is prime.

In the extreme high-dimensional case, at primorial numbers N_r, the Hardy–Littlewood function $R(q)$ is introduced for estimating the number of Goldbach pairs, and a new inequality (Theorem 4) is established for the equivalence to the Riemann hypothesis in terms of $R(N_r)$. We discuss these number-theoretical properties in the context of the qudit commutation structure.

Keywords: Riemann hypothesis, Goldbach pair, generalized Pauli group, qudit commutation structure

1. Introduction

We propose new connections between the Pauli graphs [1], [2], which encode the commutation relations of qudit observables, and prime number theory. We already emphasized that the Dedekind psi function $\psi(q) = q \prod_{p|q} \left(1 + \frac{1}{p}\right)$ (where p is prime) is used to count the number of maximal commuting sets of qudits [1] and corresponds to the Riemann hypothesis (RH) at primorial numbers $q \equiv N_r = 2 \cdot \cdots \cdot p_r$ [3]. Similarly, there exist striking connections between $\psi(q)$ and the Hardy–Littlewood function $g(q) = R(q) \cdot \frac{q}{\ln^2 q}$ for the Goldbach distribution of prime pairs (see Sec. 3 for the definition of $R(q)$). In particular, we observe that $\psi(q)$ corresponds to the so-called totally Goldbach numbers at small q and that $R(q) < \zeta(2) \cdot \psi(q)/q$ also corresponds to the RH at primorial numbers. The Euler constant

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) \sim 0.57721$$

via the Mertens formula

$$e^\gamma = \lim_{n \to \infty} \frac{1}{\ln n} \prod_{p \leq n} \left(1 - \frac{1}{p}\right)^{-1}$$

is an important ingredient of all the inequalities involved in this correspondence.

In Sec. 2, we report on the number-theoretical coincidence between $\psi(q)$ and the totally Goldbach numbers at small q and also on the already known theorem relating $\psi(q)$ and the RH at primorial numbers N_r. In Sec. 3, we explore this coincidence in detail by referring to the qudit Pauli graphs. In Sec. 4, we establish the relation between $R(q)$ and RH at primorial numbers. In the discussion, we propose the concept of a Goldbach defect for encompassing the statements at low and high q.

*FEMTO-ST Institute, CNRS, Besançon, France, e-mail: michel.planat@femto-st.fr.
†Telecom ParisTech, Paris, France, e-mail: sole@telecom-paristech.fr.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 171, No. 3, pp. 417–429, June, 2012. Original article submitted April 14, 2011.
2. A number-theoretical coincidence

We start the exposition of our ideas with a few definitions and the already established Theorem 1.

Goldbach’s conjecture, formulated in 1742, is that every even integer greater than 2 is the sum of two primes. To date, it has been checked for \(q \) up to \(2 \cdot 10^{18} [4] \). A pair \((p_1, p_2)\) of primes such that the even integer \(n = p_1 + p_2 \) is called a Goldbach partition.

Definition 1. A positive integer \(n \) is totally Goldbach if \(n - p \) is prime for all primes \(p < n - 1 \) such that \(p \) does not divide \(n \) (except when \(p = n - p \)) [5].

The inequality

\[
\frac{\psi(q)}{q} > e^{\gamma} \ln \ln q \tag{1}
\]

is only satisfied at a totally Goldbach number \(q \in \mathcal{A} \), where

\[
\mathcal{A} = \{2, 3, 4, 5, 6, 8, 10, 12, 18, 30\}.
\]

The only totally Goldbach numbers not satisfying the inequality are \(q = 1 \) and \(q = 24 \). This follows from a combination of results in [3] and [5] (see [6] for a more general setting).

Definition 2. A positive integer \(n \) is almost totally Goldbach of index \(r \) if \(n - p \) is prime for all primes \(p < n - 1 \) such that \(p \) does not divide \(n \) (except when \(p = n - p \)) with \(r \) exceptions.

Table 1	set of almost totally Goldbach numbers
\(\text{index } r \)	\(\mathcal{A}_0 = \{1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30\} \)
1	\(\mathcal{A}_1 = \mathcal{A}_0 \cup \{7, 9, 14, 16, 20, 36, 42, 60\} \)
2	\(\mathcal{A}_2 = \mathcal{A}_1 \cup \{15, 22, 48, 90\} \)
3	\(\mathcal{A}_3 = \mathcal{A}_2 \cup \{13, 26, 28, 34, 54, 66, 84, 120\} \)
4	\(\mathcal{A}_4 = \mathcal{A}_3 \cup \{11, 21, 40, 78, 210\} \)
5	\(\mathcal{A}_5 = \mathcal{A}_4 \cup \{19, 32, 44, 50, 72\} \)
6	\(\mathcal{A}_6 = \mathcal{A}_5 \cup \{17, 25, 46, 70, 102, 114\} \)
7	\(\mathcal{A}_7 = \mathcal{A}_6 \cup \{33, 38, 52, 64, 126, 150\} \)
8	\(\mathcal{A}_8 = \mathcal{A}_7 \cup \{23, 27, 31, 39, 56, 58, 96\} \)
9	\(\mathcal{A}_9 = \mathcal{A}_8 \cup \{29, 35, 76, 108, 168, 180\} \)
10	\(\mathcal{A}_{10} = \mathcal{A}_9 \cup \{45, 74, 132, 144\} \)

Almost totally Goldbach numbers of index \(r \leq 10 \).

Let \(g(n) \) be the number of ways of representing the integer \(n \) as the sum of two primes. The maximum value of \(g(n) \) is indeed less than or equal to the number of primes \(n/2 \leq p \leq n - 1 \). Values of \(n \) such that \(g(n) \) reaches its maximum are in the set

\[
\mathcal{B} = \mathcal{A}_0 \cup \{7, 14, 16, 36, 42, 48, 60, 90, 210\},
\]

where \(\mathcal{A}_0 \) is the set of totally Goldbach numbers [7]. It is not surprising that numbers in \(\mathcal{B} \) that are not totally Goldbach are almost totally Goldbach with a small index \(r \) (as can be seen in Table 1). The first five and the integer 60 have the index 1, while 48 and 90 have the index 2 and 210 has the index 4. For a prime number \(p > 3 \), the index \(r(p) \) is Sloane’s sequence A062302. This number-theoretical coincidence is further explored in Sec. 3 in the context of the qudit commutation structure.