Supporting Information

Pore-Bound Water at the Key Residue Histidine 37 in Influenza A M2
Kumar Tekwani Movellan, Rıza Dervişoğlu, Stefan Becker, and Loren B. Andreas*

anie_202103955_sm_misellaneous_information.pdf
Table of Contents

Table of Contents ... 1
Experimental Procedures ... 1
 Protein expression .. 1
 NMR experiments ... 2
 pH of the frozen sample with phosphate buffer 2
Structural refinement and NMR chemical shift calculations using DFT and GIAO methods 2
Figure S1. Pulse sequences .. 3
Figure S2. (H)CH spectrum ... 4
Figure S3. 2D (H)NH spectra .. 5
Figure S5: Phosphate/glutamate buffer pH upon liquid nitrogen freezing 7
Figure S6: The full 2D (H)NH spectrum 8
Figure S7: Correlation between experimental and calculated NMR chemical shifts 9
Figure S8: Correlation between experimental and calculated NMR chemical shifts 10
Table S1. NMR chemical shift table ... 11
Table S2. Manual restraints used for the structure calculation in CYANA 18
Table S3. J-coupling restraints used for the structure calculation in CYANA 18
Table S4. Solid-state NMR experiments and parameters ... 19
Table S5: CYANA table output from the structure calculation ... 22
Table S4. Tetramer PDB coordinates used for the tetramer DFT calculations 23
References .. 47
Author Contributions ... 47

Experimental Procedures

Protein expression
The M2 conductance domain (residue 18 to 60) from Influenza A was expressed and purified as previously described.[1] The M2 amino acid sequence from the Udom strain was used with a C50S mutation and an N-terminal 9xHis tag followed by TrpLE. Uniformly 15N and 13C labeled M2 expression was carried out using 13C6-glucose and 15N-ammonium chloride as carbon and nitrogen sources. Expression in Escherichia coli resulted in inclusion bodies, which were resuspended in 6M guanidinium and purified through a nickel column and cleaved using cyanogen bromide to remove the TrpLE tag. Protein was finally purified on a C4 HPLC column with gradient elution using 3:2 isopropanol:acetonitrile. The lyophilized protein was resuspended in NMR buffer (40 mM sodium phosphate, 30 mM glutamate, 3 mM sodium azide, pH 7.8) containing octyl glucoside detergent and reconstituted in d78-phytanoyl, d9-choline (DPhPC deuterated lipids from FBRagents). The lipid to protein ratio was 1:1 by weight, about 6 per monomer, or 24 per tetramer. The D2O exchange was performed by incubating the sample from a 1.3 mm rotor in NMR buffer prepared in 99 % D2O. Briefly, the sample was prepacked in a 1.3 mm rotor and then emptied in 1 mL of NMR D2O buffer. The sample was incubated for 24 hours at room temperature (~20 °C). The sample was repacked in a 1.3 mm rotor using a tabletop centrifuge, and kept at 4 °C until the NMR measurement.
NMR experiments

The ultra-fast MAS spectra were recorded using a 0.7 mm HCDN probe at a 950 MHz (22.3 T) Bruker AVANCE III HD spectrometer. The sample was spun to 100 kHz MAS and the temperature was set at 250 K (sample temperature at around 10 °C). The D2O exchange spectra were recorded at 45 kHz MAS using 1.3 mm HCN probe at an 800 MHz (18.8 T) Bruker AVANCE III HD spectrometer with the temperature set at 235 K (sample temperature below 10 °C). The DNP spectra were recorded using an HCN mode of a 2.5 mm Phoenix HFXY DNP probe at a 600 MHz (14.1 T) Bruker spectrometer with a 396 GHz gyrotron matching the TEMTrPol-1 [2] radical's cross-effect condition. The cooling was set at 90 K which results in a sample temperature of about 100 K at 24 kHz MAS. The DNP sample was prepared from a 1.3 mm rotor containing about 1 mg of reconstituted M2 protein. The pellet from the 1.3 mm rotor was resuspended in 24 µl of ‘DNP juice’, composed of 98% 13C depleted, d-8 glycerol, D2O and H2O based NMR buffer at 60:30:10 volume ratios, respectively. A final concentration of 5 to 10 mM of TEMTrPol-1 was reached by adding a 30 mM stock TEMTrPol-1 solution in DNP juice and mixing thoroughly. The final ~36 µl sample was then centrifuged into the 2.5mm zirconia rotor using the Phoenix 2.5 mm liquid sample packing tools, for 5 min at 5000 g. The sample was then frozen inside the packed and closed zirconia rotor with a liquid nitrogen bath, thawed, and repeated 3 times in order to remove dissolved oxygen.

Structural refinement and NMR chemical shift calculations using DFT and GIAO methods

Density functional theory (DFT) calculations were performed using gaussian 16 software[3]. As a starting structure, we used the de novo M2 calculated structure obtained using CYANA[4] with the experimental chemical shift and restraints shown in Table S1, S2 and S3. The NMR spectra and parameters recorded for the assignment and obtaining structural restraints are shown in Table S4. To accelerate the DFT and the Gauge-Independent Atomic Orbital (GIAO)[5] based NMR calculations, a reduced set of atoms, spanning residues G34 to W41, were used. Two starting structures were optimized with first semi-empirical and later DFT methods using different functionals (hybrid and GGA) and basis sets available in gaussian16, on either the dimer or the tetramer structure. The gaussian input file of the tetramer used for DFT is shown in Table S5. The structures were optimized stepwise, firstly by a semi-empirical PM6[6] and later by hybrid B3LYP[7] or pure generalized gradient approximation (GGA) mPW1PW91[8] level of theory with 6-311G++2d,p as basis set in both cases. One or two molecules of water were added in the dimer or tetramer, respectively. After addition of water molecule(s), the structures were reoptimized before performing the NMR calculations using GIAO method. For the NMR calculation, both B3LYP with 6-31G, 6-311G++d,p, 6-311G++d,p (pcpm,solvent=water) and MPW1PW91 with 6-311G++2d,p, 6-311G++2d,p (pcpm,solvent=water) were performed. We also tested solvation by adding water in a polarizable continuum model (PCPM)[9] and performing a Hybrid functional DFT calculation. A final calculation was performed using the same DFT parameters (basis set and functional) but removing the water molecules. The proton chemical shift is calculated using TMS (31.88 ppm) as reference for protons from the chemical shielding tensor of the GIAO results. We achieve R2=0.98 for H37s and R2=0.56 for H37a for protons without considering the H37a of H37 since the H37a is not forming a H bond with the carboxyl at the +4 residue as usually encountered in helix structures. The discrepancy on the R2 obtained for protons between the different chains is due to the H37a at the imidazole ring. Indeed, from our NMR assignments, we find an unusual proton chemical shift of ~4.1 ppm for H37a with respect to the usual values reported on the BMRB at ~ 7.8 ppm. The high field proton chemical shift could be from ring current shifts that differ in the DFT calculations. For obtaining the nitrogen chemical shift from the calculated isotropic nitrogen chemical shift, a regression method using the slope of the curve obtained by comparing the calculated isotropic chemical shift and the experimental nitrogen chemical shift of H37a, which are independent of the water, has been used for internal 15N referencing (Fig S4E and S5E), where we achieve R2=0.991 [10]. The regressions between calculated and experimental proton chemical shifts are shown in Fig S4B-C and S5B-C for dimer and tetramer, respectively.

PH of the frozen sample with phosphate buffer

A pH-indicator solution pH 4.0-10.0 from Merck (1.09175.0100) was used for measuring the pH shift after liquid nitrogen freezing of the phosphate/glutamate buffer used in DNP samples. Two conditions were tested, either with or without protein. For a total of 30 µl final solution, 24 µl of DNP juice was mixed with either 6 µl of free protein phosphate buffer or with the sample from a prepacked rotor (~6 µl), which contains about 1 mg of reconstituted M2 protein. On top of these samples, ~6 µl of pH-indicator solution was added and the solutions were frozen inside a liquid nitrogen bath.
Figure S1. Pulse sequences used for dipolar filtered (A) and reference (B) spectra. In (A) and (B), the first two CP periods polarize 15N. The delay d_2 (1 to several seconds) allows spin diffusion to equilibrate polarization among both protonated and non-protonated 15N spins. The third CP step transfers signal back to 1H for detection. These initial CP steps are made long enough (several ms) to transfer signal to (or from) protons that are remote from 15N. Polarization is also transferred across shorter distances such as a chemical bond. The final (fourth) CP step in (A) is the filter, which here is implemented for both 15N and 13C. Protons that are close to 15N or 13C lose polarization faster than those that are more remote.
Figure S2. (H)CH spectrum recorded with a 0.7 mm 4 channel HDCN Bruker probe with 100 kHz MAS on a 950 MHz Bruker spectrometer at ~10 °C.
Figure S3. 2D (H)NH spectra of H₂O (blue) and D₂O-washed (orange) at 45 kHz MAS on a 800 MHz Bruker spectrometer at 240 K. Negative contours are pink and green, respectively. Labels indicate proton shifts.
Figure S4. Proton chemical shift assignment of His37 side chain imidazole ring in M2 from influenza A. The left panel shows the 2D (H)NH with 4 ms CP (black) and an N-H projection of the (H)(C)NCH spectrum (red). The spectra were recorded on a 0.7 mm 4 channel HDCN Bruker probe with 100 kHz MAS on a 950 MHz Bruker spectrometer at ~10 ºC. The panels at right show selected planes from the 3D spectrum. The assignment to the tau tautomer can be made since Hδ2 correlates only to Nε2, whose chemical shift in the 160-180 ppm range is indicative of protonation.[11] On the other hand, the Hε1 proton correlates to two 15N resonances, both Nε2 and Nδ1, Nδ1 is found near 250 ppm, indicative of a deprotonated nitrogen.[11]
Figure S5: Phosphate/glutamate buffer pH upon liquid nitrogen freezing. The pH as determined by a color indicator is shown in (A) after cooling in liquid nitrogen and in (B) at room temperature for a DNP sample containing ~1 mg (6 µl) of reconstituted M2 protein resuspended in 24 µl of DNP juice frozen. Panel (C) shows the pH shift observed for the DNP buffer alone upon liquid nitrogen freezing, as compared with room temperature (D).
Figure S6: The full 2D (H)NH spectrum (black) is compared with a CP-based dipolar filtered (H)NH spectrum (red) of Figure 2B. The CP contact time for filtering was 200 µs for HN and 100 µs for HC. Both HN and NH CPs used a contact time of 2 ms. Both spectra were measured at 600 MHz with cooling set at 90 K corresponding to a sample temperature of about 100 K using 24 kHz MAS. The data were measured using a three-channel phoenix probe with a 2.5 mm rotor. With this setup, we obtained an 1H DNP enhancement factor, e, of 22 using 5 to 10 mM TEMTriPol. The enhancement factor was measured from 1D carbon CP spectra by taking the signal ratio between spectra with and without microwaves.
Figure S7: Correlation between experimental and calculated NMR chemical shifts obtained from a tetramer structure. (A) shows the dimer structures containing chain A and B from the geometry optimized M2 tetramer structures with or without water calculated from the NMR data using CYANA. Panels (B) and (C) show the correlation for proton resonances of H37 of chain B and chain A, respectively. In (D), the difference between experimental and calculated proton chemical shift obtained for the water (H\textsubscript{1}) and H\textsubscript{2} of H37 is shown. Panel (E) shows the correlation between the GIAO calculated isotropic chemical shielding and the experimental chemical shift of chain A, as used for chemical shift calibration of nitrogen, with a $R^2=0.991$. In (F), the difference between the calculated and experimental nitrogen chemical shifts are shown.
Figure S8: Correlation between experimental and calculated NMR chemical shifts starting from a dimer structure. In (A), the dimer structures with and without (No Water) a water molecule are shown. (B) and (C) shows the correlation between experimental and calculated proton chemical shifts of the H37 of chain B (B) and chain A (C). In (D), the difference between calculated and experimental chemical shifts obtained for the water proton (H1) and H37 of H37 is shown. Panel (E), shows the correlation between the isotropic chemical shielding and the experimental chemical shifts of chain A used for chemical shift calibration of nitrogen, with $R^2=0.98$. In (F), the difference between the calculated and experimental nitrogen chemical shifts are shown.
Table S1. NMR chemical shift table.

Residue	Atom	Chemical shift	Residue	Atom	Chemical shift
25	N	25.496	Chain B	25	65.496
25	CA	4.075	25	CB	32.819
25	HB2	2.176	25	HB3	1.690
25	QB	-	25	CG	27.608
25	HG2	1.952	25	HG3	2.010
25	QG	-	25	CD	51.124
25	HQ2	3.937	25	HD3	3.765
25	HQD	-	26	C	177.164
26	N	118.643	26	H	7.710
26	CA	57.607	26	CB	40.408
26	HB2	1.694	26	HB3	0.593
26	QG	-	26	CD	23.937
26	HQ2	-	26	HQD	-
26	HQD	-	27	C	178.259
27	N	120.321	27	H	8.157
27	CA	67.253	27	CB	31.536
27	HB2	1.684	27	HB3	0.593
27	QG	-	27	CD	23.937
27	HQ2	-	27	HQD	-
27	HQD	-	28	C	178.737
28	N	119.425	28	H	8.224
28	CA	67.118	28	HB	2.215
28	HB2	3.345	28	HB3	3.405
28	QG	-	28	CD	51.124
28	HQ2	-	28	HQD	-
28	HQD	-	29	C	177.835
29	N	121.127	29	H	8.399
29	CA	55.910	29	HB	3.713
29	HB2	1.415	29	HB3	1.303
35	HG21 –	135	HG21 –		
35	HG22 –	135	HG22 –		
35	HG23 –	135	HG23 –		
35	CG1 30.070	135	CG1 29.719		
35	HG12 0.641	135	HG12 0.877		
35	HG13 1.799	135	HG13 1.655		
35	GG1 –	135	GG1 –		
35	GD1 0.576	135	GD1 0.568		
35	GD1 13.557	135	GD1 13.542		
35	HD11 –	135	HD11 –		
35	HD12 –	135	HD12 –		
35	HD13 –	135	HD13 –		
35	C 176.646	135	C 176.646		
36	N 119.371	136	N 119.787		
36	H 8.209	136	H 8.549		
36	CA 56.229	136	CA 56.454		
36	HA 3.806	136	HA 3.792		
36	CB 41.701	136	CB 41.832		
36	HB2 1.359	136	HB2 1.744		
36	HB3 1.742	136	HB3 1.361		
36	QB –	136	QB –		
36	CG 30.191	136	CG 30.247		
36	HG 1.716	136	HG 1.525		
36	GD1 –	136	GD1 1.742		
36	QD2 –	136	QD2 0.633		
36	CD1 26.803	136	CD1 26.856		
36	HD11 –	136	HD11 –		
36	HD12 –	136	HD12 –		
36	HD13 –	136	HD13 –		
36	CD2 –	136	CD2 23.110		
36	HD21 –	136	HD21 –		
36	HD22 –	136	HD22 –		
36	HD23 –	136	HD23 –		
36	QDD –	136	QDD –		
36	C 177.564	136	C 177.663		
37	N 117.271	137	N 116.495		
37	H 8.022	137	H 8.360		
37	CA 62.339	137	CA 59.558		
37	HA 3.624	137	HA 4.358		
37	CB 32.196	137	CB 31.203		
37	HB2 2.964	137	HB2 2.923		
37	HB3 2.796	137	HB3 –		
37	QB –	137	QB –		
37	CG –	137	CG –		
37	ND1 252.609	137	ND1 249.236		
37	CD2 116.227	137	CD2 118.742		
37	CE1 136.282	137	CE1 137.228		
37	NE2 166.110	137	NE2 172.784		
37	HD2 6.434	137	HD2 7.260		
37	HE1 4.130	137	HE1 6.910		
37	HE2 11.713	137	HE2 14.276		
37	C 176.748	137	C 175.214		
37	N 119.528	138	N 117.299		
37	H 8.073	138	H 7.710		
37	CA 58.171	138	CA 59.024		
37	HA 3.376	138	HA 3.527		
37	CB 40.642	138	CB 42.469		
37	HB2 1.557	138	HB2 2.119		
37	HB3 0.566	138	HB3 1.396		
37	QB –	138	QB –		
37	CG 26.507	138	CG 26.591		
37	HG –	138	HG 1.385		
38	QD1 1.179	138	QD1 0.645		
38	QD2 –	138	QD2 –		
38	CD1 21.769	138	CD1 –		
38	HD11 –	138	HD11 –		
38	HD12 –	138	HD12 –		
38	HD13 –	138	HD13 –		
38	CD2 –	138	CD2 –		
38	HD21 –	138	HD21 –		
38	HD22 –	138	HD22 –		
38	HD23 –	138	HD23 –		
38	QDD –	138	QDD –		
38	C 178.370	138	C 177.485		
39	N 117.391	139	N 114.432		
39	H 8.259	139	H 8.023		
39	CA 65.806	139	CA 65.472		
39	HA 3.311	139	HA 3.391		
39	CB 37.442	139	CB 37.571		
39	HB 1.620	139	HB 1.831		
39	QG2 0.644	139	QG2 0.653		
39	CG2 17.327	139	CG2 17.384		
39	HG21 –	139	HG21 –		
	HG22		HG22		
---	------	---	------	---	
39	29.606	139	29.659	139	
39	1.800	139	1.762	139	
39	0.920	139	0.835	139	
39	0.564	139	0.575	139	
39	13.610	139	13.686	139	
39	HD11	139	HD11	139	
39	HD12	139	HD12	139	
39	HD13	139	HD13	139	
39	C 177.087	139	C 177.056	139	
40	N 118.895	140	N 121.275	140	
40	H 7.728	140	H 8.822	140	
40	CA 58.226	140	CA 58.491	140	
40	HA 3.839	140	HA 3.845	140	
40	CB 40.725	140	CB 41.359	140	
40	HB2 1.693	140	HB2 2.164	140	
40	HB3 0.637	140	HB3	140	
40	QB	140	QB	140	
40	CG 30.110	140	CG 26.836	140	
40	HG 1.886	140	HG	140	
40	QD1 1.639	140	QD1 1.665	140	
40	QD2	140	QD2 0.928	140	
40	CD1 26.699	140	CD1 25.618	140	
40	HD11	140	HD11	140	
40	HD12	140	HD12	140	
40	HD13	140	HD13	140	
40	CD2 26.600	140	CD2 22.959	140	
40	HD21	140	HD21	140	
40	HD22	140	HD22	140	
40	HD23	140	HD23	140	
40	QQD	140	QQD	140	
40	C 178.352	140	C 178.703	140	
41	N 123.002	141	N 120.804	141	
41	H 8.510	141	H 9.459	141	
41	CA 62.763	141	CA 61.474	141	
41	HA 3.750	141	HA 3.654	141	
41	CB 28.157	141	CB 27.473	141	
41	HB1 3.341	141	HB2 2.503	141	
41	HB2 2.531	141	HB3	141	
41	QB	141	QB	141	
41	CG	141	CG	141	
41	CD1 127.718	141	CD1 126.563	141	
41	CD2	141	CD2	141	
41	CE3 120.720	141	CE3 119.417	141	
41	CE2	141	CE2	141	
41	NE1 130.945	141	NE1 131.220	141	
41	HD11 7.210	141	HD11 6.145	141	
41	HE3 7.392	141	HE3	141	
41	CZ3 120.717	141	CZ3 121.646	141	
41	CZ2 114.559	141	CZ2 114.847	141	
41	HE1 11.276	141	HE1 10.776	141	
41	HZ3 6.673	141	HZ3 5.172	141	
41	CH2 123.168	141	CH2 123.900	141	
41	HZ2 7.812	141	HZ2 7.614	141	
41	HH2 6.923	141	HH2 7.182	141	
41	C 178.527	141	C 178.143	141	
42	N 119.515	142	N 117.151	142	
42	H 8.812	142	H 7.834	142	
42	CA 65.022	142	CA 66.579	142	
42	HA 3.040	142	HA 3.230	142	
42	CB 37.620	142	CB 37.638	142	
42	HB 1.811	142	HB 1.873	142	
42	CG2 0.589	142	CG2 0.670	142	
42	CG2 17.048	142	CG2 17.506	142	
42	HG21	142	HG21	142	
42	HG22	142	HG22	142	
42	HG23	142	HG23	142	
42	CG1 29.388	142	CG1 29.610	142	
42	HG12 0.620	142	HG12 1.831	142	
42	HG13 0.448	142	HG13 0.632	142	
42	QG1	142	QG1	142	
42	QD1 0.564	142	QD1 0.630	142	
42	CD1 13.634	142	CD1 13.804	142	
42	HD11	142	HD11	142	
42	HD12	142	HD12	142	
42	HD13	142	HD13	142	
42	C 177.924	142	C 177.743	142	
43	N 119.131	143	N 117.248	143	
43	H 8.460	143	H 8.441	143	
43	CA 58.150	143	CA 58.071	143	
43	HA	143	HA 3.835	143	
---	---	---	---		
43	CB		143	CB	41.717
43	HB2		143	HB2	2.042
43	HB3		143	HB3	1.382
43	QB		143	QB	
43	CQ		143	CQ	26.654
43	HG		143	HG	1.671
43	QD1		143	QD1	
43	QD2		143	QD2	
43	CD1		143	CD1	22.938
43	HD11		143	HD11	
43	HD12		143	HD12	
43	HD13		143	HD13	
43	CD2		143	CD2	
43	HD21		143	HD21	
43	HD22		143	HD22	
43	HD23		143	HD23	
43	QQD		143	QQD	
43	C		143	C	179.626
44	N		120.828		
44	H		9.064		
44	CA		57.820		
44	HA		4.761		
44	CB		42.688		
44	HB2		2.571		
44	HB3		2.876		
44	QB				
44	CG				
44	QD1				
44	QD2				
44	C		178.417		
45	N		116.290		
45	H		8.329		
45	CA		57.082		
45	HA		3.515		
45	CB		30.472		
45	HB2		1.656		
45	HB3		1.535		
45	QB				
45	CG		25.154		
45	HG2		1.018		
45	HG3		0.771		
45	QG				
45	CD		43.206		
45	HD2				
45	HD3				
45	QQD				
45	NE				
45	HE				
45	CZ				
45	NH1				
45	HH11				
45	HH12				
45	NH2				
45	HH21				
45	HH22				
45	QH2				
45	C		178.289		
46	N		113.319		
46	H		7.793		
46	CA		56.308		
46	HA		3.796		
46	CB		42.254		
46	HB2		0.994		
46	HB3		1.437		
46	QB				
46	CG		26.683		
46	HG				
46	QD1				
46	QD2				
46	CD1				
46	HD11				
46	HD12				
46	HD13				
46	CD2				
46	HD21				
46	HD22				
46	HD23				
46	QQD				
46	C		177.261		
47	N		112.813		
47	H		7.536		
47	CA		58.771		
47	HA		4.616		
147	CB	41.510			
-----	------	--------			
147	HB2	2.496			
147	HB3	–			
147	QB	–			
147	QD	–			
147	QE	–			
147	QR	–			
147	CG	–			
147	GD1	–			
147	CE1	–			
147	HE1	–			
147	CZ	–			
147	HZ	–			
147	CE2	–			
147	HE2	–			
147	GD2	–			
147	HD1	–			
147	HD2	–			
148	N	118.432			
148	H	7.373			
148	CA	61.539			
148	HA	4.216			
148	CB	39.503			
148	HB2	3.521			
148	HB3	3.131			
148	QB	–			
148	QD	–			
148	QE	–			
148	QR	–			
148	CG	–			
148	GD1	–			
148	CE1	–			
148	HE1	–			
148	CZ	–			
148	HZ	–			
148	CE2	–			
148	HE2	–			
148	HD2	–			
148	C	175.579			
149	N	120.103			
149	H	9.020			
149	CA	57.147			
149	HA	3.323			
149	CB	30.366			
149	HB2	1.675			
149	HB3	1.025			
149	QB	–			
149	CG	25.281			
149	HG2	0.994			
149	HG3	–			
149	QG	–			
149	CD	29.297			
149	HD2	–			
149	HD3	–			
149	QD	–			
149	CE	–			
149	HE2	–			
149	HE3	–			
149	QE	–			
149	NZ	–			
149	HZ1	–			
149	HZ2	–			
149	HZ3	–			
149	QZ	–			
150	C	175.633			
150	N	111.292			
150	H	9.020			
150	CA	60.519			
150	HA	4.428			
150	CB	66.283			
150	HB2	3.512			
150	HB3	3.632			
150	QB	–			
150	QG	–			
150	HG	–			
150	C	174.659			
151	N	126.452			
151	H	9.926			
151	CA	66.079			
151	HA	3.164			
---	---	---			
151	CB	38.119			
151	HB	1.164			
151	QG2	-0.914			
151	CG2	17.164			
151	HG21	-			
151	HG22	-			
151	HG23	-			
151	CG1	38.119			
151	HG12	28.621			
151	HG13	0.413			
151	HG1	-			
151	CD1	13.806			
151	HD11	-			
151	HD12	-			
151	HD13	-			
151	C	176.078			
151	N	117.337			
151	H	7.911			
151	CA	62.800			
151	HA	3.854			
151	CB	36.611			
151	HB2	2.575			
151	HB3	1.885			
152	QD	-			
152	QE	-			
152	QR	-			
152	CG	-			
152	CD1	-			
152	HD1	-			
152	CE1	-			
152	HE1	-			
152	CZ	-			
152	CE2	-			
152	HE2	-			
152	CD2	-			
152	HD2	-			
152	OH	-			
152	HH	-			
152	C	178.934			
152	N	121.954			
152	H	8.543			
152	CA	58.909			
152	HA	3.994			
152	CB	29.381			
152	HB2	1.335			
152	HB3	-			
153	QB	-			
153	CG	25.241			
153	HG2	0.990			
153	HG3	-			
153	QG	-			
153	CD	42.646			
153	HD2	2.713			
153	HD3	-			
153	QD	-			
153	NE	-			
153	HE	-			
153	CZ	-			
153	NH1	-			
153	HH11	-			
153	HH12	-			
153	NH2	-			
153	HH21	-			
153	HH22	-			
153	QH2	-			
153	C	177.941			
154	N	120.662			
154	H	7.312			
154	CA	61.022			
154	HA	4.199			
154	CB	38.281			
154	HB2	2.967			
154	HB3	3.212			
154	QB	-			
154	QD	-			
154	QE	-			
154	QR	-			
154	CG	-			
154	CD1	-			
154	HD1	-			
154	CE1	-			
Table S2. Manual restraints used for the structure calculation in CYANA.

Residue number	Residue	Atom	Residue number	Residue	Atom	Distance
27	VAL	CA	127	VAL	CA	10.00
27	VAL	CA	327	VAL	CA	10.00
27	VAL	CA	227	VAL	CA	14.00
327	VAL	CA	127	VAL	CA	14.00
45	ARG	CB	245	ARG	CB	21.00
45	ARG	CB	345	ARG	CB	21.00

Table S3. J-coupling restraints used for the structure calculation in CYANA.

Residue number	Residue	Atom	Residue number	Residue	Atom	Distance
137	HIST	HE2	37	HIST	ND1	1.50
137	HIST	NE2	37	HIST	ND1	2.80
337	HIST	HE2	237	HIST	ND1	1.50
337	HIST	NE2	237	HIST	ND1	2.80
Table S4. Solid-state NMR experiments and parameters.

Experiment	(H)CNH	(H)(Co)CNH	(H)CNH	(H)(Co)NH	(H)NH in	(H)NH water
Transfer 1	HN-CP	HN-CP	HN-CP	HC-CP	HN-CP	HN-CP
Max RF Field (kHz) (Ramp in H)	149/20 (100 to 80)	149/20 (100 to 80)	149/20 (100 to 80)	139/29 (80 to 80)	149/20 (100 to 80)	142/30 (100 to 80)
Time (ms)*	1.25	3	6	1.2	1.25	4
Transfer 2	NH-CP	NH-CP	NH-CP	CH-CP	N-N inept	NH-CP
Max RF Field (kHz) (Ramp in H)	30/137 (80 to 100)	30/137 (80 to 100)	30/137 (80 to 100)	29/127 (80 to 100)	-	30/140 (80 to 100)
Time (ms)*	0.5	3	6	0.35	Different times used	4
Transfer 3	-	-	-	-	NH-CP	NH-CP
Max RF Field (kHz) (Ramp in H)	-	-	-	-	30/140 (80 to 100)	140/30 (H/N)
Time (ms)*	-	-	-	-	0.5	0.5 (H/N)
Interscan delay (s)	1.1	1.1	1.1	1.1	1.1	1.1
Number of scans	4	40	46	4	-	-
Measurement time (h)	1.25	14	34	1.25	-	-

Experiment	(H)CaNH	(H)(Co)Ca(N)NH	(H)CoNH	(H)(Co)NH	(H)Ca(NH)	(H)Ca(Ca)NH
Transfer 1	HC-CP	HC-CP	HC-CP	HC-CP	HC-CP	HC-CP
Max RF Field (kHz) (Ramp in H)	132/29 (100 to 80)	132/29 (100 to 80)	121/22 (85 to 80)	121/22 (85 to 80)	119/22 (85 to 100)	
Time (ms)*	1.4	2.7	2.9	2.9	0.5	0.8
Transfer 2	CN-CP	CO-CA INEPT	CN-CP	CO-CA INEPT	CA-CB-CA INEPT	CA-CB-CA INEPT
Max RF Field (kHz) (Ramp in H)	61/42 (100 to 80)	-	69/42 (Tan)	-	-	
Time (ms)*	9.8	T2 Ca and Co optimised	4	4.2 (T2 optimised)	4.5 (T2 optimised)	
Transfer 3	NH-CP	CN-CP	NH-CP	CN-CP	CN-CP	CN-CP
Max RF Field (kHz) (Ramp in H)	31/126 (80 to 100)	62/42 (Tan)	31/130 (80 to 100)	69/42 (80 to 100)	69/42 (80 to 100)	
Time (ms)*	0.3	11.2	0.5	14	14	14
Transfer 4	-	NH-CP	-	NH-CP	NH-CP	NH-CP
Max RF Field (kHz) (Ramp)	-	31/133 (80 to 100)	-	31/122 (80 to 100)	31/122 (80 to 100)	
Time (ms)*	-	0.5	0.5	0.5	0.5	0.5
Interscan delay (s)	1.1	1.1	1.1	1.1	1.1	1.1
Number of scans	4	20	4	16	16	16
Measurement time (h)

Experiment	(H)NCaHa	(H)COCAHa	(HCa)Cb(Ca)N H
Transfer 1	HN-CP	HC-CP	HC-CP
Max RF Field (kHz) (Ramp)	139/31	133/29	120/22
Time (ms)*	1.5	3.5	0.75
Transfer 2	NC-CP	CO-CA INEPT	CA-CB INEPT
Max RF Field (kHz) (Ramp)	71/42	-	-
Time (ms)*	13	4.16	4.3
Transfer 3	CH-CP	CH-CP	CN-CP
Max RF Field (kHz) (Ramp)	30/125	29/137	69/42
Time (ms)*	0.35	0.25	1.1
Transfer 4	-	-	NH-CP
Max RF Field (kHz) (Ramp)	-	-	31/122
Time (ms)*	-	-	0.5

sw (t1) (ppm)	30	52	30
Acq.time (t1) (ms)	15.2	40	15
sw (t2) (ppm)	30	30	60
Acq.time (t2) (ms)	6.8	9	10
sw (t3) (ppm)	52	15	52
Acq.time (t3) (ms)	20.4	16	15

1H decoupling
- slppm

| Interscan delay (s) | 1.1 | 1.1 | 1.1 |
| Number of scans | 4 | 4 | 12 |

Experiment	H(H)NH	H(H)CH	(H)(H)CH	(H)(H)XH
Transfer 1	HN-CP	HC-CP	HC-CP	HC-CP
Max RF Field (kHz) (Ramp in H)	150/30	169/51	167/51	149(H)/33(C)/ 31(N)
Time (ms)*	1	1.2	0.35	1.5 (HN-CP)
Transfer 2	NH-CP	CH-CP	CH-CP	CH-CP
Max RF Field (kHz) (Ramp in N)	30/137	51/158	51/156	138H)/32(C)/ 31(N)
Time (ms)*	0.4	0.35	0.2	1.5 (HN-CP)
Transfer 3	-	-	-	-
Max RF Field (kHz) (Ramp in N)	-	-	-	149(H)/33(C)/ 31(N)
Time (ms)*	-	-	-	1.5 (HN-CP)
Transfer 4	-	-	-	CH-CP
Max RF Field (kHz) (Ramp)	-	-	-	138H)/32(C)/ 31(N)
Time (ms)*	-	-	-	0.3 (HC-CP)
Mixing (ms)*	-	-	-	0.45 (HN-CP)

sw (t1) (ppm)	22	15	15	290
Acq.time (t1) (ms)	4	4	4	4.5
sw (t2) (ppm)	52	30	30	268
Acq.time (t2) (ms)	40	36	36	4.5
	1	2	3	4
^{1}H decoupling RF field (kHz)	22	22	22	22
Interscan delay (s)	1.1	1.1	1.1	1.1
Number of scans	4	2	4	2
Measurement time (h)	26	36	54	122
Table S5: CYANA table output from the structure calculation.

Cycle	1	2	3	4	5	6	7	final
Peaks								
Selected	3095	3095	3095	3095	3095	3095	3095	3095
Assigned	1311	1389	1366	1369	1339	1319	1315	
Unassigned	1784	1706	1729	1726	1756	1776	1780	
With diagonal assignment	6	6	6	6	6	6	6	
Cross peaks								
With off-diagonal assignment	1305	1383	1360	1363	1333	1313	1309	
With unique assignment	556	823	852	866	946	972	970	
With short-range assignment	1017	1165	1141	1134	1101	1089	1091	
With medium-range assignment 1<i-j<5	143	180	176	188	176	173	170	
With long-range assignment	145	38	43	41	56	51	48	
With intermolecular assignment	0	8	15	13	14	13	13	
Upper distance limits								
Total	1350	1276	1216	1196	1116	1056	1084	1081
Short-range 1<i-j<1	790	882	820	778	700	666	636	635
Medium-range 1<i-j<5	430	388	316	338	310	296	316	314
Long-range	130	6	80	80	106	94	132	132
Average assignments/restraint	7.52	2.59	1.94	1.85	1.63	1.51	1.00	
Average target function value	634.46	159.70	109.91	23.09	15.79	12.76	11.18	9.96
RMSD (residues 27..43, 128..154):								
Average backbone RMSD to mean	4.47	0.69	0.31	0.34	0.32	0.32	0.37	0.35
Average heavy atom RMSD to mean	5.19	1.31	0.87	0.88	0.95	0.87	0.95	0.87
Table S4. Tetramer PDB coordinates used for the tetramer DFT calculations.

REMARK	Molecule	Name	created	by GaussView	5.0.8			
HETATM	H	0	-17,202	0.199	-12.718	0.00	0.00	H
HETATM	H	0	-22,710	-9.536	-17.717	0.00	0.00	H
HETATM	H	0	-17,679	-2.928	-4.853	0.00	0.00	H
HETATM	H	0	-25,069	-11.670	-4.560	0.00	0.00	H
HETATM	H	0	-10,260	-4.336	-8.087	0.00	0.00	H
HETATM	H	0	-13,393	-15.937	-9.386	0.00	0.00	H
HETATM	H	0	-10,087	-2.063	-16.808	0.00	0.00	H
HETATM	H	0	-10,426	-12.075	-22.668	0.00	0.00	H
HETATM	N	0	-18,156	0.453	-12.504	0.00	0.00	N
HETATM	H	0	-18,121	1.298	-12.009	0.00	0.00	H
HETATM	C	0	-18,776	-0.713	-11.900	0.00	0.00	C
HETATM	H	0	-18,095	-1.548	-11.975	0.00	0.00	H
HETATM	H	0	-18,963	-0.507	-10.857	0.00	0.00	H
HETATM	C	0	-20,084	-1.085	-12.568	0.00	0.00	C
HETATM	O	0	-20,290	-2.239	-12.944	0.00	0.00	O
HETATM	N	0	-20,971	-0.106	-12.716	0.00	0.00	N
HETATM	H	0	-20,748	0.793	-12.396	0.00	0.00	H
HETATM	C	0	-22,266	-0.338	-13.342	0.00	0.00	C
HETATM	H	0	-22,802	-1.059	-12.742	0.00	0.00	H
HETATM	C	0	-23,099	0.956	-13.407	0.00	0.00	C
HETATM	H	0	-23,310	1.273	-12.397	0.00	0.00	H
HETATM	C	0	-22,311	2.059	-14.096	0.00	0.00	C
HETATM	H	0	-22,801	3.009	-13.930	0.00	0.00	H
HETATM	H	0	-21,311	2.095	-13.691	0.00	0.00	H
HETATM	H	0	-22,263	1.860	-15.156	0.00	0.00	H
HETATM	C	0	-24,420	0.702	-14.137	0.00	0.00	C
HETATM	H	0	-25,034	1.586	-14.076	0.00	0.00	H
HETATM	H	0	-24,212	0.483	-15.174	0.00	0.00	H
HETATM	C	0	-25,212	-0.454	-13.567	0.00	0.00	C
HETATM	H	0	-24,861	-0.674	-12.570	0.00	0.00	H
HETATM	H	0	-26,259	-0.188	-13.528	0.00	0.00	H
HETATM	H	0	-25,085	-1.323	-14.195	0.00	0.00	H
HETATM	C	0	-22,103	-0.894	-14.754	0.00	0.00	C
HETATM	O	0	-22,784	-1.845	-15.140	0.00	0.00	O
HETATM	N	0	-21,193	-0.298	-15.517	0.00	0.00	N
HETATM	H	0	-20,681	0.454	-15.153	0.00	0.00	H
HETATM	C	0	-20,938	-0.736	-16.885	0.00	0.00	C
HETATM	H	0	-21,887	-0.796	-17.396	0.00	0.00	H
HETATM	C	0	-20,046	0.276	-17.607	0.00	0.00	C
HETATM	H	0	-20,329	0.282	-18.648	0.00	0.00	H
HETATM	H	0	-20,237	1.249	-17.178	0.00	0.00	H
HETATM	C	0	-18,541	0.017	-17.532	0.00	0.00	C
HETATM	H	0	-18,301	-0.391	-16.560	0.00	0.00	H
HETATM	C	0	-18,121	-0.996	-18.584	0.00	0.00	C
SUPPORTING INFORMATION

HETATM	45	H	0	-18.946	-1.182	-19.256	0.00	0.00	H
HETATM	46	H	0	-17.282	-0.608	-19.143	0.00	0.00	H
HETATM	47	H	0	-17.836	-1.920	-18.101	0.00	0.00	H
HETATM	48	C	0	-17.768	1.317	-17.702	0.00	0.00	C
HETATM	49	H	0	-16.779	1.204	-17.283	0.00	0.00	H
HETATM	50	H	0	-17.690	1.554	-18.752	0.00	0.00	H
HETATM	51	H	0	-18.286	2.114	-17.190	0.00	0.00	H
HETATM	52	C	0	-20.282	-2.113	-16.902	0.00	0.00	C
HETATM	53	O	0	-20.514	-2.911	-17.812	0.00	0.00	O
HETATM	54	N	0	-19.463	-2.386	-15.892	0.00	0.00	N
HETATM	55	H	0	-19.318	-1.709	-15.198	0.00	0.00	H
HETATM	56	C	0	-18.775	-3.668	-15.790	0.00	0.00	C
HETATM	57	H	0	-18.260	-3.844	-16.722	0.00	0.00	H
HETATM	58	C	0	-17.751	-3.632	-14.655	0.00	0.00	C
HETATM	59	H	0	-16.923	-3.003	-14.946	0.00	0.00	H
HETATM	60	H	0	-18.217	-3.221	-13.771	0.00	0.00	H
HETATM	61	C	0	-17.201	-4.980	-14.302	0.00	0.00	C
HETATM	62	N	0	-17.460	-5.608	-13.101	0.00	0.00	N
HETATM	63	C	0	-16.405	-5.822	-15.001	0.00	0.00	C
HETATM	64	C	0	-16.844	-6.776	-13.076	0.00	0.00	C
HETATM	65	N	0	-16.198	-6.931	-14.217	0.00	0.00	N
HETATM	66	H	0	-16.006	-5.655	-15.992	0.00	0.00	H
HETATM	67	H	0	-16.865	-7.485	-12.262	0.00	0.00	H
HETATM	68	H	0	-15.658	-7.712	-14.482	0.00	0.00	H
HETATM	69	C	0	-19.770	-4.801	-15.558	0.00	0.00	C
HETATM	70	O	0	-19.637	-5.885	-16.128	0.00	0.00	O
HETATM	71	N	0	-20.767	-4.545	-14.718	0.00	0.00	N
HETATM	72	H	0	-20.820	-3.662	-14.295	0.00	0.00	H
HETATM	73	C	0	-21.784	-5.543	-14.410	0.00	0.00	C
HETATM	74	H	0	-21.279	-6.459	-14.142	0.00	0.00	H
HETATM	75	C	0	-22.640	-5.080	-13.230	0.00	0.00	C
HETATM	76	H	0	-21.994	-4.982	-12.371	0.00	0.00	H
HETATM	77	H	0	-23.052	-4.113	-13.479	0.00	0.00	H
HETATM	78	C	0	-23.799	-5.999	-12.840	0.00	0.00	C
HETATM	79	H	0	-24.050	-5.830	-11.802	0.00	0.00	H
HETATM	80	C	0	-25.030	-5.689	-13.677	0.00	0.00	C
HETATM	81	H	0	-24.997	-6.262	-14.592	0.00	0.00	H
HETATM	82	H	0	-25.918	-5.950	-13.121	0.00	0.00	H
HETATM	83	H	0	-25.049	-4.636	-13.913	0.00	0.00	H
HETATM	84	C	0	-23.399	-7.458	-12.997	0.00	0.00	C
HETATM	85	H	0	-23.506	-7.752	-14.031	0.00	0.00	H
HETATM	86	H	0	-22.370	-7.584	-12.692	0.00	0.00	H
HETATM	87	H	0	-24.036	-8.075	-12.390	0.00	0.00	H
HETATM	88	C	0	-22.671	-5.808	-15.623	0.00	0.00	C
HETATM	89	O	0	-22.823	-6.951	-16.054	0.00	0.00	O
HETATM	90	N	0	-23.252	-4.745	-16.168	0.00	0.00	N
HETATM	91	H	0	-23.093	-3.860	-15.779	0.00	0.00	H
HETATM	92	C	0	-24.121	-4.864	-17.333	0.00	0.00	C
SUPPORTING INFORMATION									

HETATM	93	H	0	-24.976	-5.462	-17.051	0.00	0.00	H
HETATM	94	C	0	-24.628	-3.486	-17.799	0.00	0.00	C
HETATM	95	H	0	-25.126	-3.010	-16.969	0.00	0.00	H
HETATM	96	C	0	-23.459	-2.606	-18.218	0.00	0.00	C
HETATM	97	H	0	-23.815	-1.606	-18.417	0.00	0.00	H
HETATM	98	H	0	-22.728	-2.578	-17.423	0.00	0.00	H
HETATM	99	H	0	-23.005	-3.011	-19.110	0.00	0.00	H
HETATM	100	C	0	-25.620	-3.648	-18.953	0.00	0.00	C
HETATM	101	H	0	-25.932	-2.671	-19.290	0.00	0.00	H
HETATM	102	H	0	-25.134	-4.166	-19.766	0.00	0.00	H
HETATM	103	C	0	-26.860	-4.427	-18.578	0.00	0.00	C
HETATM	104	H	0	-26.901	-5.339	-19.157	0.00	0.00	H
HETATM	105	H	0	-26.829	-4.670	-17.527	0.00	0.00	H
HETATM	106	H	0	-27.737	-3.831	-18.784	0.00	0.00	H
HETATM	107	C	0	-23.401	-5.546	-18.489	0.00	0.00	C
HETATM	108	O	0	-23.994	-6.332	-19.229	0.00	0.00	O
HETATM	109	N	0	-22.115	-5.244	-18.639	0.00	0.00	N
HETATM	110	H	0	-21.697	-4.612	-18.019	0.00	0.00	H
HETATM	111	C	0	-21.310	-5.831	-19.706	0.00	0.00	C
HETATM	112	H	0	-21.869	-5.748	-20.625	0.00	0.00	H
HETATM	113	C	0	-19.992	-5.070	-19.853	0.00	0.00	C
HETATM	114	H	0	-20.206	-4.017	-19.755	0.00	0.00	H
HETATM	115	H	0	-19.340	-5.380	-19.049	0.00	0.00	H
HETATM	116	C	0	-19.243	-5.274	-21.171	0.00	0.00	C
HETATM	117	H	0	-18.413	-4.583	-21.217	0.00	0.00	H
HETATM	118	C	0	-18.682	-6.685	-21.251	0.00	0.00	C
HETATM	119	H	0	-18.597	-7.098	-20.257	0.00	0.00	H
HETATM	120	H	0	-19.343	-7.303	-21.842	0.00	0.00	H
HETATM	121	H	0	-17.706	-6.659	-21.714	0.00	0.00	H
HETATM	122	C	0	-20.158	-4.993	-22.354	0.00	0.00	C
HETATM	123	H	0	-20.965	-4.349	-22.039	0.00	0.00	H
HETATM	124	H	0	-19.594	-4.508	-23.138	0.00	0.00	H
HETATM	125	H	0	-20.563	-5.924	-22.724	0.00	0.00	H
HETATM	126	C	0	-21.032	-7.305	-19.430	0.00	0.00	C
HETATM	127	O	0	-21.045	-8.130	-20.343	0.00	0.00	O
HETATM	128	N	0	-20.783	-7.628	-18.166	0.00	0.00	N
HETATM	129	H	0	-20.787	-6.925	-17.482	0.00	0.00	H
HETATM	130	C	0	-20.503	-9.003	-17.770	0.00	0.00	C
HETATM	131	H	0	-19.688	-9.364	-18.379	0.00	0.00	H
HETATM	132	C	0	-20.086	-8.058	-16.300	0.00	0.00	C
HETATM	133	H	0	-19.222	-8.427	-16.153	0.00	0.00	H
HETATM	134	H	0	-20.900	-8.695	-15.688	0.00	0.00	H
HETATM	135	C	0	-19.736	-10.438	-15.831	0.00	0.00	C
HETATM	136	C	0	-18.484	-10.970	-15.717	0.00	0.00	C
HETATM	137	C	0	-20.649	-11.460	-15.418	0.00	0.00	C
HETATM	138	C	0	-22.040	-11.533	-15.310	0.00	0.00	C
HETATM	139	C	0	-19.880	-12.587	-15.065	0.00	0.00	C
HETATM	140	N	0	-18.563	-12.263	-15.257	0.00	0.00	N
ATOM	ELEMENT	X-VALUE	Y-VALUE	Z-VALUE	TEMP	SCALE			
---	---	---	---	---	---	---	---	---	---
141	H	-17.574	-10.443	-15.958	0.00	0.00			
142	H	-22.665	-10.692	-15.570	0.00	0.00			
143	C	-22.612	-12.708	-14.862	0.00	0.00			
144	C	-20.459	-13.770	-14.613	0.00	0.00			
145	H	-17.799	-12.856	-15.092	0.00	0.00			
146	H	-23.686	-12.783	-14.772	0.00	0.00			
147	C	-21.823	-13.813	-14.517	0.00	0.00			
148	H	-19.863	-14.630	-14.344	0.00	0.00			
149	H	-22.313	-14.710	-14.172	0.00	0.00			
150	C	-21.720	-9.894	-17.999	0.00	0.00			
151	O	-21.596	-11.012	-18.498	0.00	0.00			
152	N	-18.143	-2.337	-4.178	0.00	0.00			
153	H	-17.615	-1.514	-4.111	0.00	0.00			
154	C	-18.372	-3.147	-2.995	0.00	0.00			
155	H	-17.820	-4.070	-3.093	0.00	0.00			
156	H	-18.009	-2.613	-2.131	0.00	0.00			
157	C	-19.838	-3.473	-2.790	0.00	0.00			
158	O	-20.215	-4.641	-2.703	0.00	0.00			
159	N	-20.666	-2.436	-2.710	0.00	0.00			
160	H	-20.306	-1.529	-2.786	0.00	0.00			
161	C	-22.099	-2.618	-2.511	0.00	0.00			
162	H	-22.237	-3.381	-1.760	0.00	0.00			
163	C	-22.767	-1.322	-2.016	0.00	0.00			
164	H	-22.310	-1.044	-1.078	0.00	0.00			
165	C	-22.536	-0.193	-3.009	0.00	0.00			
166	H	-21.580	-0.330	-3.492	0.00	0.00			
167	H	-23.319	-0.201	-3.752	0.00	0.00			
168	H	-22.544	0.753	-2.487	0.00	0.00			
169	C	-24.264	-1.546	-1.796	0.00	0.00			
170	H	-24.811	-1.130	-2.627	0.00	0.00			
171	H	-24.457	-2.609	-1.739	0.00	0.00			
172	C	-24.791	-0.909	-0.529	0.00	0.00			
173	H	-25.020	0.130	-0.716	0.00	0.00			
174	H	-25.686	-1.424	-0.212	0.00	0.00			
175	H	-24.043	-0.979	0.247	0.00	0.00			
176	C	-22.779	-3.066	-3.801	0.00	0.00			
177	O	-23.608	-3.978	-3.793	0.00	0.00			
178	N	-22.424	-2.422	-4.906	0.00	0.00			
179	H	-21.759	-1.705	-4.849	0.00	0.00			
180	C	-22.998	-2.756	-6.205	0.00	0.00			
181	H	-24.048	-2.501	-6.178	0.00	0.00			
182	C	-22.317	-1.945	-7.309	0.00	0.00			
183	H	-22.341	-0.906	-7.019	0.00	0.00			
184	H	-21.290	-2.276	-7.375	0.00	0.00			
185	C	-22.937	-2.057	-8.702	0.00	0.00			
186	H	-22.572	-1.246	-9.318	0.00	0.00			
187	C	-22.533	-3.366	-9.363	0.00	0.00			
188	H	-22.079	-3.161	-10.321	0.00	0.00			
HETATM	189	H	0	-21.825	-3.884	-8.733	0.00	0.00	H
--------	-----	---	---	---------	--------	--------	------	------	---
HETATM	190	H	0	-23.408	-3.983	-9.505	0.00	0.00	H
HETATM	191	C	0	-24.453	-1.943	-8.622	0.00	0.00	C
HETATM	192	H	0	-24.719	-1.175	-7.912	0.00	0.00	H
HETATM	193	H	0	-24.846	-1.686	-9.596	0.00	0.00	H
HETATM	194	H	0	-24.868	-2.887	-8.304	0.00	0.00	H
HETATM	195	C	0	-22.862	-4.247	-6.494	0.00	0.00	C
HETATM	196	O	0	-23.853	-4.937	-6.736	0.00	0.00	O
HETATM	197	N	0	-21.627	-4.739	-6.466	0.00	0.00	N
HETATM	198	H	0	-20.878	-4.140	-6.266	0.00	0.00	H
HETATM	199	C	0	-21.361	-6.150	-6.721	0.00	0.00	C
HETATM	200	H	0	-21.851	-6.417	-7.645	0.00	0.00	H
HETATM	201	C	0	-19.858	-6.388	-6.868	0.00	0.00	C
HETATM	202	H	0	-19.337	-5.849	-6.922	0.00	0.00	H
HETATM	203	H	0	-19.655	-7.445	-6.764	0.00	0.00	H
HETATM	204	C	0	-19.306	-5.942	-8.187	0.00	0.00	C
HETATM	205	N	0	-19.489	-4.670	-8.687	0.00	0.00	N
HETATM	206	C	0	-18.571	-6.605	-9.110	0.00	0.00	C
HETATM	207	C	0	-18.892	-4.571	-9.862	0.00	0.00	C
HETATM	208	N	0	-18.327	-5.731	-10.141	0.00	0.00	N
HETATM	209	H	0	-18.239	-7.633	-9.049	0.00	0.00	H
HETATM	210	H	0	-18.866	-3.691	-10.487	0.00	0.00	H
HETATM	211	H	0	-17.818	-5.933	-10.953	0.00	0.00	H
HETATM	212	C	0	-21.918	-7.021	-5.600	0.00	0.00	C
HETATM	213	O	0	-22.414	-8.122	-5.843	0.00	0.00	O
HETATM	214	N	0	-21.834	-6.521	-4.371	0.00	0.00	N
HETATM	215	H	0	-21.428	-5.639	-4.241	0.00	0.00	H
HETATM	216	C	0	-22.330	-7.254	-3.212	0.00	0.00	C
HETATM	217	H	0	-21.689	-8.110	-3.062	0.00	0.00	H
HETATM	218	C	0	-22.280	-6.369	-1.966	0.00	0.00	C
HETATM	219	H	0	-21.253	-6.309	-1.642	0.00	0.00	H
HETATM	220	H	0	-22.624	-5.383	-2.247	0.00	0.00	H
HETATM	221	C	0	-23.119	-6.837	-0.775	0.00	0.00	C
HETATM	222	H	0	-24.121	-7.059	-1.115	0.00	0.00	H
HETATM	223	C	0	-22.534	-8.107	-0.177	0.00	0.00	C
HETATM	224	H	0	-21.688	-7.855	0.444	0.00	0.00	H
HETATM	225	H	0	-23.285	-8.603	0.420	0.00	0.00	H
HETATM	226	H	0	-22.214	-8.765	-0.972	0.00	0.00	H
HETATM	227	C	0	-23.209	-5.742	0.277	0.00	0.00	C
HETATM	228	H	0	-23.685	-6.133	1.164	0.00	0.00	H
HETATM	229	H	0	-22.216	-5.396	0.524	0.00	0.00	H
HETATM	230	H	0	-23.791	-4.918	-0.109	0.00	0.00	H
HETATM	231	C	0	-23.756	-7.743	-3.445	0.00	0.00	C
HETATM	232	O	0	-24.012	-8.947	-3.474	0.00	0.00	O
HETATM	233	N	0	-24.678	-8.802	-3.613	0.00	0.00	N
HETATM	234	H	0	-24.412	-5.860	-3.581	0.00	0.00	H
HETATM	235	C	0	-26.077	-7.138	-3.849	0.00	0.00	C
HETATM	236	H	0	-26.393	-7.815	-3.068	0.00	0.00	H
SUPPORTING INFORMATION

HETATM	237	C	0	-26.974	-5.887	-3.797	0.00	0.00	C
HETATM	238	H	0	-27.903	-6.115	-4.293	0.00	0.00	H
HETATM	239	C	0	-27.285	-5.518	-2.353	0.00	0.00	C
HETATM	240	H	0	-26.548	-4.816	-1.994	0.00	0.00	H
HETATM	241	H	0	-28.267	-5.069	-2.300	0.00	0.00	H
HETATM	242	H	0	-27.263	-6.409	-1.742	0.00	0.00	H
HETATM	243	C	0	-26.297	-4.717	-4.515	0.00	0.00	C
HETATM	244	H	0	-25.896	-4.035	-3.782	0.00	0.00	H
HETATM	245	H	0	-25.490	-5.099	-5.125	0.00	0.00	H
HETATM	246	C	0	-27.230	-3.939	-5.414	0.00	0.00	C
HETATM	247	H	0	-27.788	-3.227	-4.825	0.00	0.00	H
HETATM	248	H	0	-26.656	-3.414	-6.163	0.00	0.00	H
HETATM	249	H	0	-27.915	-4.620	-5.089	0.00	0.00	H
HETATM	250	C	0	-26.259	-7.823	-5.198	0.00	0.00	C
HETATM	251	O	0	-27.142	-8.665	-5.366	0.00	0.00	O
HETATM	252	N	0	-25.416	-7.459	-6.159	0.00	0.00	N
HETATM	253	H	0	-24.734	-6.783	-5.965	0.00	0.00	H
HETATM	254	C	0	-25.482	-8.040	-7.495	0.00	0.00	C
HETATM	255	H	0	-26.392	-7.694	-7.962	0.00	0.00	H
HETATM	256	C	0	-24.286	-7.582	-8.332	0.00	0.00	C
HETATM	257	H	0	-24.234	-6.505	-8.272	0.00	0.00	H
HETATM	258	H	0	-23.395	-8.009	-7.884	0.00	0.00	H
HETATM	259	C	0	-24.315	-7.967	-9.811	0.00	0.00	C
HETATM	260	H	0	-23.597	-7.361	-10.347	0.00	0.00	H
HETATM	261	C	0	-23.924	-9.426	-9.990	0.00	0.00	C
HETATM	262	H	0	-23.194	-9.508	-10.782	0.00	0.00	H
HETATM	263	H	0	-23.501	-9.801	-9.070	0.00	0.00	H
HETATM	264	H	0	-24.799	-10.004	-10.246	0.00	0.00	H
HETATM	265	C	0	-27.691	-7.705	-10.404	0.00	0.00	C
HETATM	266	H	0	-24.906	-8.626	-10.424	0.00	0.00	H
HETATM	267	H	0	-26.212	-6.978	-9.798	0.00	0.00	H
HETATM	268	H	0	-25.584	-7.326	-11.410	0.00	0.00	H
HETATM	269	C	0	-25.515	-9.564	-7.426	0.00	0.00	C
HETATM	270	O	0	-26.469	-10.195	-7.880	0.00	0.00	O
HETATM	271	N	0	-24.468	-10.147	-6.853	0.00	0.00	N
HETATM	272	H	0	-23.739	-9.589	-6.509	0.00	0.00	H
HETATM	273	C	0	-24.378	-11.596	-6.722	0.00	0.00	C
HETATM	274	H	0	-24.754	-12.035	-7.635	0.00	0.00	H
HETATM	275	C	0	-22.922	-12.022	-8.528	0.00	0.00	C
HETATM	276	H	0	-22.592	-11.720	-6.545	0.00	0.00	H
HETATM	277	H	0	-22.854	-10.097	-6.612	0.00	0.00	H
HETATM	278	C	0	-21.988	-11.420	-7.534	0.00	0.00	C
HETATM	279	C	0	-21.099	-10.404	-7.322	0.00	0.00	C
HETATM	280	C	0	-21.854	-11.793	-8.910	0.00	0.00	C
HETATM	281	C	0	-22.471	-12.749	-9.721	0.00	0.00	C
HETATM	282	C	0	-20.863	-10.964	-9.471	0.00	0.00	C
HETATM	283	N	0	-20.419	-10.125	-8.484	0.00	0.00	N
HETATM	284	H	0	-20.962	-9.904	-6.376	0.00	0.00	H
SUPPORTING INFORMATION

HETATM	X	Y	Z	AltLoc	Biso				
285	H	0	-23.235	-13.404	-9.328	0.00	0.00	H	
286	C	0	-22.089	-12.845	-11.045	0.00	0.00	C	
287	C	0	-20.480	-11.062	-10.806	0.00	0.00	C	
288	H	0	-19.728	-9.438	-8.586	0.00	0.00	H	
289	H	0	-22.556	-13.577	-11.688	0.00	0.00	H	
290	C	0	-21.102	-12.007	-11.577	0.00	0.00	C	
291	H	0	-19.719	-10.423	-11.231	0.00	0.00	H	
292	H	0	-20.836	-12.116	-12.617	0.00	0.00	H	
293	C	0	-25.224	-12.091	-5.554	0.00	0.00	C	
294	O	0	-26.080	-12.960	-5.720	0.00	0.00	O	
295	N	0	-9.317	-4.595	-3.341	0.00	0.00	N	
296	H	0	-8.803	-3.763	-8.412	0.00	0.00	H	
297	C	0	-9.418	-5.482	-9.486	0.00	0.00	C	
298	H	0	-10.461	-5.674	-9.686	0.00	0.00	H	
299	H	0	-8.981	-4.993	-10.345	0.00	0.00	H	
300	C	0	-8.709	-6.803	-9.260	0.00	0.00	C	
301	O	0	-9.216	-7.859	-9.638	0.00	0.00	O	
302	N	0	-7.532	-6.743	-8.645	0.00	0.00	N	
303	H	0	-7.181	-5.871	-8.368	0.00	0.00	H	
304	C	0	-6.753	-7.944	-8.372	0.00	0.00	C	
305	H	0	-6.622	-8.475	-9.304	0.00	0.00	H	
306	C	0	-5.361	-7.595	-7.812	0.00	0.00	C	
307	H	0	-4.829	-7.029	-8.560	0.00	0.00	H	
308	C	0	-5.492	-6.732	-8.567	0.00	0.00	C	
309	H	0	-4.521	-6.343	-6.294	0.00	0.00	H	
310	H	0	-6.165	-5.911	-6.767	0.00	0.00	H	
311	H	0	-5.882	-7.327	-5.754	0.00	0.00	H	
312	C	0	-4.578	-8.873	-7.501	0.00	0.00	C	
313	H	0	-3.562	-8.614	-7.251	0.00	0.00	H	
314	H	0	-5.037	-9.370	-8.657	0.00	0.00	H	
315	C	0	-4.538	-9.853	-8.653	0.00	0.00	C	
316	H	0	-4.796	-9.342	-9.568	0.00	0.00	H	
317	H	0	-3.544	-10.266	-8.739	0.00	0.00	H	
318	H	0	-5.244	-10.650	-8.473	0.00	0.00	H	
319	C	0	-7.474	-8.853	-7.383	0.00	0.00	C	
320	O	0	-7.472	-10.076	-7.531	0.00	0.00	O	
321	N	0	-8.090	-8.249	-6.373	0.00	0.00	N	
322	H	0	-8.057	-7.273	-6.307	0.00	0.00	H	
323	C	0	-8.818	-9.004	-5.358	0.00	0.00	C	
324	H	0	-8.234	-8.878	-5.114	0.00	0.00	H	
325	C	0	-9.001	-8.157	-4.098	0.00	0.00	C	
326	H	0	-8.992	-8.823	-3.249	0.00	0.00	H	
327	H	0	-8.162	-7.480	-4.031	0.00	0.00	H	
328	C	0	-10.283	-7.327	-4.028	0.00	0.00	C	
329	H	0	-10.560	-7.019	-5.027	0.00	0.00	H	
330	C	0	-11.425	-8.154	-3.459	0.00	0.00	C	
331	H	0	-11.038	-9.088	-3.079	0.00	0.00	H	
332	H	0	-11.899	-7.608	-2.655	0.00	0.00	H	
HETATM	333	H	0	-12.149	-8.352	-4.235	0.00	0.00	H
---------	-----	-----	-----	---------	--------	--------	-------	-------	-------
HETATM	334	C	0	-10.061	-6.073	-3.193	0.00	0.00	C
HETATM	335	H	0	-10.737	-5.298	-3.521	0.00	0.00	H
HETATM	336	H	0	-10.248	-6.297	-2.153	0.00	0.00	H
HETATM	337	H	0	-9.042	-5.738	-3.312	0.00	0.00	H
HETATM	338	C	0	-10.178	-9.454	-5.885	0.00	0.00	C
HETATM	339	O	0	-10.694	-10.498	-5.488	0.00	0.00	O
HETATM	340	N	0	-10.751	-8.659	-6.783	0.00	0.00	N
HETATM	341	H	0	-10.289	-7.841	-7.061	0.00	0.00	H
HETATM	342	C	0	-12.049	-8.977	-7.367	0.00	0.00	C
HETATM	343	H	0	-12.737	-9.173	-8.559	0.00	0.00	H
HETATM	344	C	0	-12.567	-7.793	-8.185	0.00	0.00	C
HETATM	345	H	0	-12.794	-6.976	-7.518	0.00	0.00	H
HETATM	346	H	0	-11.801	-7.483	-8.881	0.00	0.00	H
HETATM	347	C	0	-13.805	-8.104	-8.970	0.00	0.00	C
HETATM	348	N	0	-13.813	-8.236	-10.343	0.00	0.00	N
HETATM	349	C	0	-15.080	-8.310	-8.566	0.00	0.00	C
HETATM	350	C	0	-15.040	-8.509	-10.748	0.00	0.00	C
HETATM	351	N	0	-15.828	-8.560	-9.690	0.00	0.00	N
HETATM	352	H	0	-15.444	-8.284	-7.548	0.00	0.00	H
HETATM	353	H	0	-15.346	-8.664	-11.772	0.00	0.00	H
HETATM	354	H	0	-16.789	-8.745	-9.708	0.00	0.00	H
HETATM	355	C	0	-11.960	-10.220	-8.248	0.00	0.00	C
HETATM	356	O	0	-12.794	-11.121	-8.156	0.00	0.00	O
HETATM	357	N	0	-10.943	-10.261	-9.102	0.00	0.00	N
HETATM	358	H	0	-10.310	-9.514	-9.130	0.00	0.00	H
HETATM	359	C	0	-10.744	-11.393	-10.001	0.00	0.00	C
HETATM	360	H	0	-11.629	-11.491	-10.611	0.00	0.00	H
HETATM	361	C	0	-9.538	-11.144	-10.908	0.00	0.00	C
HETATM	362	H	0	-9.747	-10.267	-11.502	0.00	0.00	H
HETATM	363	H	0	-8.683	-10.952	-10.276	0.00	0.00	H
HETATM	364	C	0	-9.170	-12.280	-11.863	0.00	0.00	C
HETATM	365	H	0	-8.619	-11.874	-12.700	0.00	0.00	H
HETATM	366	C	0	-8.280	-13.296	-11.165	0.00	0.00	C
HETATM	367	H	0	-8.895	-14.004	-10.628	0.00	0.00	H
HETATM	368	H	0	-8.136	-13.819	-11.900	0.00	0.00	H
HETATM	369	H	0	-7.628	-12.787	-10.471	0.00	0.00	H
HETATM	370	C	0	-10.425	-12.950	-12.404	0.00	0.00	C
HETATM	371	H	0	-10.823	-13.622	-11.659	0.00	0.00	H
HETATM	372	H	0	-11.162	-12.195	-12.640	0.00	0.00	H
HETATM	373	H	0	-10.180	-13.506	-13.297	0.00	0.00	H
HETATM	374	C	0	-10.545	-12.684	-9.214	0.00	0.00	C
HETATM	375	O	0	-11.296	-13.646	-9.378	0.00	0.00	O
HETATM	376	N	0	-9.528	-12.699	-8.358	0.00	0.00	N
HETATM	377	H	0	-8.965	-11.901	-8.271	0.00	0.00	H
HETATM	378	C	0	-9.233	-13.870	-7.543	0.00	0.00	C
HETATM	379	H	0	-8.867	-14.655	-8.201	0.00	0.00	H
HETATM	380	C	0	-8.123	-13.577	-6.516	0.00	0.00	C
----	---	---	---	---	---				
HETATM	381	H	0	-7.229	-13.304	-7.053	0.00	0.00	H
HETATM	382	C	0	-8.520	-12.404	-5.631	0.00	0.00	C
HETATM	383	H	0	-7.681	-12.121	-5.012	0.00	0.00	H
HETATM	384	H	0	-8.810	-11.567	-6.249	0.00	0.00	H
HETATM	385	H	0	-9.349	-12.692	-5.002	0.00	0.00	H
HETATM	386	C	0	-7.841	-14.819	-5.669	0.00	0.00	H
HETATM	387	H	0	-7.074	-14.588	-4.947	0.00	0.00	H
HETATM	388	H	0	-8.744	-15.105	-5.149	0.00	0.00	H
HETATM	389	C	0	-7.373	-16.008	-6.478	0.00	0.00	C
HETATM	390	H	0	-8.098	-16.805	-6.399	0.00	0.00	H
HETATM	391	H	0	-7.267	-15.720	-7.514	0.00	0.00	H
HETATM	392	H	0	-6.420	-16.344	-6.101	0.00	0.00	H
HETATM	393	C	0	-10.476	-14.356	-6.808	0.00	0.00	C
HETATM	394	O	0	-10.697	-15.560	-6.667	0.00	0.00	O
HETATM	395	N	0	-11.287	-13.413	-6.341	0.00	0.00	N
HETATM	396	H	0	-11.059	-12.472	-6.484	0.00	0.00	H
HETATM	397	C	0	-12.512	-13.745	-5.621	0.00	0.00	C
HETATM	398	H	0	-12.274	-14.511	-4.888	0.00	0.00	H
HETATM	399	C	0	-13.044	-12.513	-4.889	0.00	0.00	C
HETATM	400	H	0	-12.196	-11.944	-4.538	0.00	0.00	H
HETATM	401	H	0	-13.605	-11.923	-5.596	0.00	0.00	H
HETATM	402	C	0	-13.949	-12.788	-3.683	0.00	0.00	C
HETATM	403	H	0	-14.195	-11.850	-3.206	0.00	0.00	H
HETATM	404	C	0	-15.247	-13.442	-4.131	0.00	0.00	C
HETATM	405	H	0	-15.412	-13.235	-5.178	0.00	0.00	H
HETATM	406	H	0	-15.182	-14.509	-3.981	0.00	0.00	H
HETATM	407	H	0	-16.067	-13.045	-3.552	0.00	0.00	H
HETATM	408	C	0	-13.232	-13.663	-2.665	0.00	0.00	C
HETATM	409	H	0	-12.164	-13.555	-2.787	0.00	0.00	H
HETATM	410	H	0	-13.512	-13.359	-1.668	0.00	0.00	H
HETATM	411	H	0	-13.509	-14.695	-2.819	0.00	0.00	H
HETATM	412	C	0	-13.575	-14.282	-6.573	0.00	0.00	C
HETATM	413	O	0	-14.318	-15.203	-6.233	0.00	0.00	O
HETATM	414	N	0	-13.641	-13.701	-7.766	0.00	0.00	N
HETATM	415	H	0	-13.022	-12.972	-7.978	0.00	0.00	H
HETATM	416	C	0	-14.613	-14.124	-8.768	0.00	0.00	C
HETATM	417	H	0	-15.598	-14.019	-8.339	0.00	0.00	H
HETATM	418	C	0	-14.514	-13.236	-10.009	0.00	0.00	C
HETATM	419	H	0	-14.671	-12.206	-9.722	0.00	0.00	H
HETATM	420	H	0	-13.528	-13.338	-10.439	0.00	0.00	H
HETATM	421	C	0	-15.519	-13.579	-11.067	0.00	0.00	C
HETATM	422	C	0	-16.740	-12.999	-11.257	0.00	0.00	C
HETATM	423	C	0	-15.388	-14.583	-12.079	0.00	0.00	C
HETATM	424	C	0	-14.388	-15.501	-12.412	0.00	0.00	C
HETATM	425	C	0	-16.568	-14.557	-12.848	0.00	0.00	C
HETATM	426	N	0	-17.378	-13.582	-12.326	0.00	0.00	N
HETATM	427	H	0	-17.136	-12.201	-10.646	0.00	0.00	H
HETATM	428	H	0	-13.469	-15.555	-11.848	0.00	0.00	H
HETATM	429	C	0	-14.594	-16.350	-13.483	0.00	0.00	C
--------	-----	----	-----	---------	---------	---------	------	------	-------
HETATM	430	C	0	-16.773	-15.413	-13.926	0.00	0.00	C
HETATM	431	H	0	-18.266	-13.339	-12.660	0.00	0.00	H
HETATM	432	H	0	-13.833	-17.068	-13.755	0.00	0.00	H
HETATM	433	C	0	-15.778	-16.302	-14.230	0.00	0.00	C
HETATM	434	H	0	-17.681	-15.386	-14.512	0.00	0.00	H
HETATM	435	H	0	-15.896	-16.984	-15.057	0.00	0.00	H
HETATM	436	C	0	-14.398	-15.583	-9.154	0.00	0.00	C
HETATM	437	O	0	-15.347	-16.367	-9.207	0.00	0.00	O
HETATM	438	N	0	-9.159	-1.760	-17.067	0.00	0.00	N
HETATM	439	H	0	-8.955	-0.970	-16.522	0.00	0.00	H
HETATM	440	C	0	-9.137	-1.664	-18.515	0.00	0.00	C
HETATM	441	H	0	-10.141	-1.796	-18.889	0.00	0.00	H
HETATM	442	H	0	-8.786	-0.680	-18.793	0.00	0.00	H
HETATM	443	C	0	-8.234	-2.702	-19.151	0.00	0.00	C
HETATM	444	O	0	-8.422	-3.071	-20.309	0.00	0.00	O
HETATM	445	N	0	-7.251	-3.173	-18.391	0.00	0.00	N
HETATM	446	H	0	-7.152	-2.841	-17.474	0.00	0.00	H
HETATM	447	C	0	-6.316	-4.176	-18.888	0.00	0.00	C
HETATM	448	H	0	-6.576	-4.395	-19.914	0.00	0.00	H
HETATM	449	C	0	-4.866	-3.658	-18.855	0.00	0.00	C
HETATM	450	H	0	-4.767	-2.831	-19.544	0.00	0.00	H
HETATM	451	C	0	-4.516	-3.151	-17.484	0.00	0.00	C
HETATM	452	H	0	-5.293	-2.488	-17.116	0.00	0.00	H
HETATM	453	H	0	-4.428	-3.989	-16.788	0.00	0.00	H
HETATM	454	H	0	-3.577	-2.618	-17.501	0.00	0.00	H
HETATM	455	C	0	-3.898	-4.761	-19.286	0.00	0.00	C
HETATM	456	H	0	-3.402	-5.157	-18.414	0.00	0.00	H
HETATM	457	H	0	-4.456	-5.551	-19.767	0.00	0.00	H
HETATM	458	C	0	-2.833	-4.288	-20.251	0.00	0.00	C
HETATM	459	H	0	-1.995	-3.892	-19.696	0.00	0.00	H
HETATM	460	H	0	-2.502	-5.118	-20.857	0.00	0.00	H
HETATM	461	H	0	-3.241	-3.517	-20.888	0.00	0.00	H
HETATM	462	C	0	-6.404	-5.461	-18.073	0.00	0.00	C
HETATM	463	O	0	-6.416	-6.562	-18.626	0.00	0.00	O
HETATM	464	N	0	-6.466	-5.316	-16.754	0.00	0.00	N
HETATM	465	H	0	-6.453	-4.415	-16.370	0.00	0.00	H
HETATM	466	C	0	-6.554	-6.465	-15.860	0.00	0.00	C
HETATM	467	H	0	-5.616	-6.997	-15.910	0.00	0.00	H
HETATM	468	C	0	-6.788	-6.001	-14.421	0.00	0.00	C
HETATM	469	H	0	-6.063	-5.233	-14.200	0.00	0.00	H
HETATM	470	H	0	-7.783	-5.582	-14.368	0.00	0.00	H
HETATM	471	C	0	-6.673	-7.078	-13.341	0.00	0.00	C
HETATM	472	H	0	-6.583	-6.602	-12.375	0.00	0.00	H
HETATM	473	C	0	-7.920	-7.948	-13.321	0.00	0.00	C
HETATM	474	H	0	-8.312	-7.990	-12.316	0.00	0.00	H
HETATM	475	H	0	-8.665	-7.527	-13.980	0.00	0.00	H
HETATM	476	H	0	-7.669	-8.945	-13.651	0.00	0.00	H
HETATM

477	C	0	-5.431	-7.928	-13.567	0.00	0.00	C
478	H	0	-4.629	-7.304	-13.931	0.00	0.00	H
479	H	0	-5.135	-8.387	-12.635	0.00	0.00	H
480	H	0	-5.648	-8.698	-14.294	0.00	0.00	H
481	C	0	-7.676	-7.405	-16.292	0.00	0.00	C
482	O	0	-7.439	-8.577	-16.585	0.00	0.00	O
483	N	0	-8.898	-6.883	-16.330	0.00	0.00	N
484	H	0	-9.022	-5.943	-16.084	0.00	0.00	H
485	C	0	-10.056	-7.675	-16.729	0.00	0.00	C
486	H	0	-10.020	-8.608	-16.189	0.00	0.00	H
487	C	0	-11.349	-6.941	-16.372	0.00	0.00	C
488	H	0	-11.251	-5.900	-16.643	0.00	0.00	H
489	H	0	-12.167	-7.377	-16.927	0.00	0.00	H
490	C	0	-11.692	-7.006	-14.915	0.00	0.00	C
491	N	0	-10.913	-6.434	-13.933	0.00	0.00	N
492	C	0	-12.739	-7.579	-14.277	0.00	0.00	C
493	C	0	-11.465	-6.653	-12.753	0.00	0.00	C
494	N	0	-12.575	-7.346	-12.934	0.00	0.00	N
495	H	0	-13.553	-8.121	-14.738	0.00	0.00	H
496	H	0	-11.076	-6.322	-11.802	0.00	0.00	H
497	H	0	-13.180	-7.644	-12.224	0.00	0.00	H
498	C	0	-10.021	-7.972	-18.224	0.00	0.00	C
499	O	0	-10.463	-9.033	-18.688	0.00	0.00	O
500	N	0	-9.496	-7.028	-18.998	0.00	0.00	N
501	H	0	-9.161	-6.204	-18.588	0.00	0.00	H
502	C	0	-9.405	-7.188	-20.448	0.00	0.00	C
503	H	0	-10.407	-7.157	-20.846	0.00	0.00	H
504	C	0	-8.590	-6.046	-21.055	0.00	0.00	C
505	H	0	-9.170	-5.141	-20.964	0.00	0.00	H
506	H	0	-7.680	-5.948	-20.480	0.00	0.00	H
507	C	0	-8.201	-6.208	-22.524	0.00	0.00	C
508	H	0	-7.737	-7.175	-22.663	0.00	0.00	H
509	C	0	-9.434	-6.149	-23.412	0.00	0.00	C
510	H	0	-9.739	-5.120	-23.537	0.00	0.00	H
511	H	0	-9.204	-6.575	-24.378	0.00	0.00	H
512	H	0	-10.235	-6.708	-22.953	0.00	0.00	H
513	C	0	-7.196	-5.140	-22.931	0.00	0.00	C
514	H	0	-7.047	-5.175	-24.000	0.00	0.00	H
515	H	0	-7.573	-4.166	-22.653	0.00	0.00	H
516	H	0	-6.257	-5.320	-22.431	0.00	0.00	H
517	C	0	-8.773	-8.528	-20.806	0.00	0.00	C
518	O	0	-9.396	-9.363	-21.463	0.00	0.00	O
519	N	0	-7.532	-8.728	-20.372	0.00	0.00	N
520	H	0	-7.069	-8.025	-19.853	0.00	0.00	H
521	C	0	-8.187	-9.968	-20.646	0.00	0.00	C
522	H	0	-6.849	-10.142	-21.712	0.00	0.00	H
523	C	0	-5.342	-9.876	-20.213	0.00	0.00	C
524	H	0	-4.906	-10.859	-20.287	0.00	0.00	H
HETATM	573	C		-15.244	-11.404	-16.605	0.00	0.00	C
HETATM	574	H		-14.228	-8.782	-17.085	0.00	0.00	H
HETATM	575	H		-15.325	-14.514	-17.921	0.00	0.00	H
HETATM	576	C		-15.533	-12.734	-16.744	0.00	0.00	C
HETATM	577	H		-15.605	-10.852	-15.748	0.00	0.00	H
HETATM	578	H		-16.122	-13.241	-15.996	0.00	0.00	H
HETATM	579	C		-11.261	-12.547	-22.150	0.00	0.00	C
HETATM	580	O		-11.893	-13.447	-22.706	0.00	0.00	O
CONECT	11	9	12	13	14				
CONECT	14	11	15	16					
CONECT	18	16	19	20	28				
CONECT	20	23	27	28	29				
CONECT	29		31	32					
CONECT	33	35	37	38	39				
CONECT	37	39		41	42				
CONECT	42	43	44	45	46				
CONECT	44		47						
CONECT	48	51	49		50				
CONECT	52	53	54		37				
CONECT	56	57	58	69					
CONECT	58	59	60	61					
CONECT	61	62	63						
CONECT	63	65	66						
CONECT	64	65	67						
CONECT	69	70	71						
CONECT	73	74	75	88					
CONECT	75	76	77	78					
CONECT	78	79	80	84					
CONECT	80	81	82	83					
CONECT	84	85	86	87					
CONECT	88	89	90						
CONECT	92	93	94						
CONECT	94	95	96	100					
CONECT	96	97	98	99					
CONECT	100	94	101	102					
CONECT	103	104	105	106	100				
CONECT	107	108	109	92					
CONECT	111	112	113	126					
CONECT	113	114	115	116					
CONECT	116	117	118	122					
CONECT	118	119	120	121					
CONECT	122	123	124	125					
CONECT	126	127	128						
CONECT	130	131	132	150					
CONECT	132	133	134	135					
CONECT	135	132	136	137					
---------	------	------	------	------					
CONECT	136	135	140	141					
CONECT	137	135	138	139					
CONECT	138	137	142	143					
CONECT	139	137	140	144					
CONECT	143	138	146	147					
CONECT	144	139	147	148					
CONECT	147	143	144	149					
CONECT	150	130	151	2					
CONECT	154	152	155	156	157				
CONECT	157	154	158	159					
CONECT	161	159	162	163	178				
CONECT	163	161	164	165	169				
CONECT	165	163	166	167	168				
CONECT	169	163	170	171	172				
CONECT	172	169	173	174	175				
CONECT	176	161	177	178					
CONECT	180	182	181	195	178				
CONECT	182	185	184	180	183				
CONECT	185	191	187	182	186				
CONECT	187	185	190	189	188				
CONECT	191	185	192	193	194				
CONECT	195	180	196	197					
CONECT	199	197	200	201	212				
CONECT	201	199	202	203	204				
CONECT	204	201	205	206					
CONECT	206	204	208	209					
CONECT	207	205	26. Jul	210					
CONECT	212	199	31. Jul	214					
CONECT	216	214	04. Aug	218	231				
CONECT	218	216	06. Aug	220	221				
CONECT	221	218	222	223	227				
CONECT	223	221	224	225	226				
CONECT	227	221	228	229	230				
CONECT	231	216	232	233					
CONECT	235	233	236	237	250				
CONECT	237	235	238	239	243				
CONECT	239	237	240	241	242				
CONECT	243	237	244	245	246				
CONECT	246	243	247	248	249				
CONECT	250	235	251	252					
CONECT	254	252	255	256	269				
CONECT	256	254	257	258	259				
CONECT	259	256	260	261	265				
CONECT	261	259	262	263	264				
CONECT	265	259	266	267	268				
CONECT	269	254	270	271					
CONECT	273	271	274	275	293				
CONECT 275	273	276	277	278					
CONECT 278	275	279	280						
CONECT 279	278	283	284						
CONECT 280	278	281	282						
CONECT 281	280	285	286						
CONECT 282	280	283	287						
CONECT 286	281	289	290						
CONECT 287	282	290	291						
CONECT 290	286	287	292						
CONECT 293	273	294	4						
CONECT 297	295	298	299	300					
CONECT 300	297	301	302						
CONECT 304	302	305	306	319					
CONECT 306	304	307	308	312					
CONECT 308	306	309	310	311					
CONECT 312	306	313	314	315					
CONECT 315	312	316	317	318					
CONECT 319	304	320	321						
CONECT 323	321	324	325	338					
CONECT 325	323	326	327	328					
CONECT 328	325	329	330	334					
CONECT 330	328	331	332	333					
CONECT 334	328	335	336	337					
CONECT 338	323	339	340						
CONECT 342	340	343	344	355					
CONECT 344	342	345	346	347					
CONECT 347	344	348	349						
CONECT 349	347	351	352						
CONECT 350	348	351	353						
CONECT 355	342	356	357						
CONECT 359	357	360	361	374					
CONECT 361	359	362	363	364					
CONECT 364	361	365	366	370					
CONECT 366	364	367	368	369					
CONECT 370	364	371	372	373					
CONECT 374	359	375	376						
CONECT 378	376	379	380	393					
CONECT 380	378	381	382	386					
CONECT 382	380	383	384	385					
CONECT 386	380	387	388	389					
CONECT 389	386	390	391	392					
CONECT 393	378	394	395						
CONECT 397	412	395	398	399					
CONECT 399	402	397	400	401					
CONECT 402	403	404	408	399					
CONECT 404	402	405	406	407					
CONECT 408	402	409	410	411					
CONECT 412	413	414	397						
416	414	417	418	436					
-----	-----	-----	-----	-----					
418	416	419	420	421					
421	418	422	423						
422	421	426	427						
423	421	424	425						
424	423	428	429						
425	423	426	430						
429	424	432	433						
430	425	433	434						
433	429	430	435						
436	416	437		6					
440	438	441	442	443					
443	440	444	445						
447	445	448	449	462					
449	447	450	451	455					
451	449	452	453	454					
455	449	456	457	458					
458	455	459	460	461					
462	447	463	464						
466	464	467	468	481					
468	466	469	470	471					
471	468	472	473	477					
473	471	474	475	476					
477	471	478	479	480					
481	466	482	483						
485	483	486	487	498					
487	485	488	489	490					
490	487	491	492						
492									
498	491	494	495						
493	491	494	496						
498	485	499	500						
502	500	503	504	517					
504	502	505	506	507					
507	504	508	509	513					
509	507	510	511	512					
513	507	514	515	516					
517	502	518	519						
521	519	522	523	536					
523	521	524	525	529					
525	523	526	527	528					
529	523	530	531	532					
532	529	533	534	535					
536	521	537	538						
540	538	541	542	555					
542	540	543	544	545					
545	542	546	547	551					
547	545	548	549	550					
551	545	552	553	554					
CONECT	555	540	556	557					
--------	-----	-----	-----	-----					
CONECT	559	557	560	561	579				
CONECT	561	559	562	563	564				
CONECT	564	561	565	566					
CONECT	565	564	569	570					
CONECT	566	564	567	568					
CONECT	567	566	571	572					
CONECT	568	566	569	573					
CONECT	572	567	575	576					
CONECT	573	568	576	577					
CONECT	576	572	573	578					
CONECT	579	559	580	8					
CONECT	1	9							
CONECT	2	150							
CONECT	3	152							
CONECT	4	293							
CONECT	5	295							
CONECT	6	436							
CONECT	7	438							
CONECT	8	579							
CONECT	10	9							
CONECT	12	11							
CONECT	13	11							
CONECT	17	16							
CONECT	19	18							
CONECT	21	20							
CONECT	23	22							
CONECT	24	22							
CONECT	25	22							
CONECT	27	26							
CONECT	28	26							
CONECT	30	29							
CONECT	31	29							
CONECT	32	29							
CONECT	36	35							
CONECT	38	37							
CONECT	40	39							
CONECT	41	39							
CONECT	43	42							
CONECT	45	44							
CONECT	46	44							
CONECT	47	44							
CONECT	49	48							
CONECT	50	48							
CONECT	51	48							
CONECT	55	54							
CONECT	57	56							
CONECT	59	58							
CONECT									
--------	---	---							
CONECT	60	58							
CONECT	66	63							
CONECT	67	64							
CONECT	68	65							
CONECT	72	71							
CONECT	74	73							
CONECT	76	75							
CONECT	77	75							
CONECT	79	78							
CONECT	81	80							
CONECT	82	80							
CONECT	83	80							
CONECT	85	84							
CONECT	86	84							
CONECT	87	84							
CONECT	91	90							
CONECT	93	92							
CONECT	95	94							
CONECT	97	96							
CONECT	98	96							
CONECT	99	96							
CONECT	101	100							
CONECT	102	100							
CONECT	104	103							
CONECT	105	103							
CONECT	106	103							
CONECT	110	109							
CONECT	112	111							
CONECT	114	113							
CONECT	115	113							
CONECT	117	116							
CONECT	119	118							
CONECT	120	118							
CONECT	121	118							
CONECT	123	122							
CONECT	124	122							
CONECT	125	122							
CONECT	129	128							
CONECT	131	130							
CONECT	133	132							
CONECT	134	132							
CONECT	141	136							
CONECT	142	138							
CONECT	145	140							
CONECT	146	143							
CONECT	148	144							
CONECT	149	147							
CONECT	153	152							
SUPPORTING INFORMATION

CONECT 155 154
CONECT 156 154
CONECT 160 159
CONECT 162 161
CONECT 164 163
CONECT 166 165
CONECT 167 165
CONECT 168 165
CONECT 170 169
CONECT 171 169
CONECT 173 172
CONECT 174 172
CONECT 175 172
CONECT 179 178
CONECT 181 180
CONECT 183 182
CONECT 184 182
CONECT 186 185
CONECT 188 187
CONECT 189 187
CONECT 190 187
CONECT 192 191
CONECT 193 191
CONECT 194 191
CONECT 198 197
CONECT 200 199
CONECT 202 201
CONECT 203 201
CONECT 209 206
CONECT 210 207
CONECT 211 208
CONECT 215 214
CONECT 217 216
CONECT 219 218
CONECT 220 218
CONECT 222 221
CONECT 224 223
CONECT 225 223
CONECT 226 223
CONECT 228 227
CONECT 229 227
CONECT 230 227
CONECT 234 233
CONECT 236 235
CONECT 238 237
CONECT 240 239
CONECT 241 239
CONECT 242 239
CONECT	244	243
CONECT	245	243
CONECT	247	246
CONECT	248	246
CONECT	249	246
CONECT	253	252
CONECT	255	254
CONECT	257	256
CONECT	258	256
CONECT	260	259
CONECT	262	261
CONECT	263	261
CONECT	264	261
CONECT	266	265
CONECT	267	265
CONECT	268	265
CONECT	272	271
CONECT	274	273
CONECT	276	275
CONECT	277	275
CONECT	284	279
CONECT	285	281
CONECT	288	283
CONECT	289	286
CONECT	291	287
CONECT	292	290
CONECT	296	295
CONECT	298	297
CONECT	299	297
CONECT	303	302
CONECT	305	304
CONECT	307	306
CONECT	309	308
CONECT	310	308
CONECT	311	308
CONECT	313	312
CONECT	314	312
CONECT	316	315
CONECT	317	315
CONECT	318	315
CONECT	322	321
CONECT	324	323
CONECT	326	325
CONECT	327	325
CONECT	329	328
CONECT	331	330
CONECT	332	330
CONECT	333	330
SUPPORTING INFORMATION		

CONECT 335 334		
CONECT 336 334		
CONECT 337 334		
CONECT 341 340		
CONECT 343 342		
CONECT 345 344		
CONECT 346 344		
CONECT 352 349		
CONECT 353 350		
CONECT 354 351		
CONECT 358 357		
CONECT 360 359		
CONECT 362 361		
CONECT 363 361		
CONECT 365 364		
CONECT 367 366		
CONECT 368 366		
CONECT 369 366		
CONECT 371 370		
CONECT 372 370		
CONECT 373 370		
CONECT 377 376		
CONECT 379 378		
CONECT 381 380		
CONECT 383 382		
CONECT 384 382		
CONECT 385 382		
CONECT 387 386		
CONECT 388 386		
CONECT 390 389		
CONECT 391 389		
CONECT 392 389		
CONECT 396 395		
CONECT 398 397		
CONECT 400 399		
CONECT 401 399		
CONECT 403 402		
CONECT 405 404		
CONECT 406 404		
CONECT 407 404		
CONECT 409 408		
CONECT 410 408		
CONECT 411 408		
CONECT 415 414		
CONECT 417 416		
CONECT 419 418		
CONECT 420 418		
CONECT 427 422		
CONECT	428	424
CONECT	431	426
CONECT	432	429
CONECT	434	430
CONECT	435	433
CONECT	439	438
CONECT	441	440
CONECT	442	440
CONECT	446	445
CONECT	448	447
CONECT	450	449
CONECT	452	451
CONECT	453	451
CONECT	454	451
CONECT	456	455
CONECT	457	455
CONECT	459	458
CONECT	460	458
CONECT	461	458
CONECT	465	464
CONECT	467	466
CONECT	469	468
CONECT	470	468
CONECT	472	471
CONECT	474	473
CONECT	475	473
CONECT	476	473
CONECT	478	477
CONECT	479	477
CONECT	480	477
CONECT	484	483
CONECT	486	485
CONECT	488	487
CONECT	489	487
CONECT	495	492
CONECT	496	493
CONECT	497	494
CONECT	501	500
CONECT	503	502
CONECT	505	504
CONECT	506	504
CONECT	508	507
CONECT	510	509
CONECT	511	509
CONECT	512	509
CONECT	514	513
CONECT	515	513
CONECT	516	513
CONECT	520	519
CONECT	522	521
CONECT	524	523
CONECT	526	525
CONECT	527	525
CONECT	528	525
CONECT	530	529
CONECT	531	529
CONECT	533	532
CONECT	534	532
CONECT	535	532
CONECT	539	538
CONECT	541	540
CONECT	543	542
CONECT	544	542
CONECT	546	545
CONECT	548	547
CONECT	549	547
CONECT	550	547
CONECT	552	551
CONECT	553	551
CONECT	554	551
CONECT	558	557
CONECT	560	559
CONECT	562	561
CONECT	563	561
CONECT	570	565
CONECT	571	567
CONECT	574	569
CONECT	575	572
CONECT	577	573
CONECT	578	576
CONECT	9	1
CONECT	16	14
CONECT	35	33
CONECT	54	52
CONECT	62	61
CONECT	65	63
CONECT	71	69
CONECT	90	88
CONECT	109	107
CONECT	128	126
CONECT	140	136
CONECT	152	153
CONECT	159	157
CONECT	178	180
CONECT	197	195
CONECT	205	204
CONECT	208	206	207	211
CONECT	214	212	215	216
CONECT	233	231	234	235
CONECT	252	250	253	254
CONECT	271	269	272	273
CONECT	283	279	282	288
CONECT	295	296	297	5
CONECT	302	300	303	304
CONECT	321	319	322	323
CONECT	340	338	341	342
CONECT	348	347	350	
CONECT	351	349	350	354
CONECT	357	355	358	359
CONECT	376	374	377	378
CONECT	385	383	396	397
CONECT	414	412	415	416
CONECT	426	422	425	431
CONECT	438	439	440	7
CONECT	445	443	446	447
CONECT	464	462	465	466
CONECT	483	481	484	485
CONECT	491	490	493	
CONECT	494	492	493	497
CONECT	500	498	501	502
CONECT	519	517	520	521
CONECT	538	536	539	540
CONECT	557	555	558	559
CONECT	569	565	568	574
CONECT	15	14		
CONECT	34	33		
CONECT	53	52		
CONECT	70	69		
CONECT	89	88		
CONECT	108	107		
CONECT	127	126		
CONECT	151	150		
CONECT	158	157		
CONECT	177	176		
CONECT	196	195		
CONECT	213	212		
CONECT	232	231		
CONECT	251	250		
CONECT	270	269		
CONECT	294	293		
CONECT	301	300		
CONECT	320	319		
CONECT	339	338		
CONECT	356	355		
SUPPORTING INFORMATION

CONECT	375	374
CONECT	394	393
CONECT	413	412
CONECT	437	436
CONECT	444	443
CONECT	463	462
CONECT	482	481
CONECT	499	498
CONECT	518	517
CONECT	537	536
CONECT	556	555
CONECT	580	579

END

References

1. Schnell, J.R. and J.J. Chou, Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008. 451(7178): p. 591-5.
2. Mathies, G., et al., Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals. Angewandte Chemie International Edition, 2015. 54(40): p. 11770-11774.
3. Frisch, M.J., et al., Gaussian 16 Rev. C.01. 2016: Wallingford, CT.
4. Guntert, P., Automated NMR structure calculation with CYANA. Methods Mol Biol, 2004. 278: p. 353-78.
5. Gauss, J., Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts. The Journal of Chemical Physics, 1993. 99(5): p. 3629-3643.
6. Stewart, J.J.P., Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 2007. 13(12): p. 1173-1213.
7. Becke, A.D., Density functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.
8. Adamo, C. and V. Barone. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mpW and mpW1PW models. The Journal of Chemical Physics, 1998. 108(2): p. 664-675.
9. Pascual-Ahuir, J.L., et al., Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. Journal of Computational Chemistry, 1987. 8(6): p. 779-787.
10. Xin, D., et al., Systematic investigation of DFT-GIAO 15N NMR chemical shift prediction using B3LYP/cc-pVDZ: application to studies of regioisomers, tautomers, protonation states and N-oxides. Organic & Biomolecular Chemistry, 2017. 15(4): p. 928-936.
11. Li, S. and M. Hong, Protonation, tautomeration, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR. J Am Chem Soc, 2011. 133(5): p. 1534-44.

Author Contributions

KT Movellan, Dr. Rıza Dervişoğlu and Dr. Loren B. Andreas performed the experiments and analyzed the data. The manuscript was written by Dr. Loren B. Andreas and KT Movellan. Dr. Stefan Becker provided the samples. All authors revised the manuscript.