Semi-Inclusive Λ and K_S Production in p-Au Collisions at 17.5 GeV/c

I. Chemakin2, V. Cianciolo7,8, B.A. Cole2, R. Fernow1, A.D. Frawley3, M. Gilkes9, S. Gushue1, E.P. Hartouni7, H. Hiejima2, M. Justice6, J.H. Kang11, H. Kirk1, N. Maeda3, R.L. McGrath9, S. Mioduszewski10, D. Morrison10,1, M. Moulson2, M.N. Namboodiri7, G. Rai6, K. Read10, L. Remsberg1, M. Rosati1,4, Y. Shin11, R.A. Soltz7, S. Sorensen10, J.H. Thomas7,6, Y. Torun3,1, D. Winter2, X. Yang2, W.A. Zajc2, and Y. Zhang7,

1 Brookhaven National Laboratory, Upton, New York 11973
2 Columbia University, New York, NY 10027, 3 Florida State University, Tallahassee, FL 32306,
4 Iowa State University, Ames, IA 50010, 5 Kent State University, Kent, OH 44242
6 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
7 Lawrence Livermore National Laboratory, Livermore, CA 94550
8 Oak Ridge National Laboratory, Oak Ridge, TN 37831
9 State University of New York at Stony Brook, Stony Brook, NY 11794
10 University of Tennessee, Knoxville, TN 37996, 11 Yonsei University, Seoul 120-749, Korea

(November 7, 2018)

The first detailed measurements of the centrality dependence of strangeness production in p-A collisions are presented. Λ and K_S dn/dy distributions from 17.5 GeV/c p-Au collisions are shown as a function of “grey” track multiplicity and the estimated number of collisions, ν, made by the proton. The ν dependence of the Λ yield deviates from a scaling of p-p data by the number of participants, increasing faster than this scaling for $\nu \leq 5$ and saturating for larger ν. A slower growth in K_S multiplicity with ν is observed, consistent with a weaker ν dependence of KK production than YK production.
Significant effort has been devoted in the last decade to measuring strange particle production in nucleus-nucleus (A-A) collisions, motivated by predictions that quark-gluon plasma (QGP) formation could enhance strangeness production. Experiments at both the Brookhaven National Laboratory (BNL) AGS and the CERN SPS accelerators have reported large increases in relative strangeness production in central heavy ion (Au, Pb) induced collisions compared to p-p collisions. However, we still cannot claim a true strangeness enhancement mechanism is already present in p-A collisions. Previously published p-A data demonstrated an increase in the inclusive strangeness production offset by a decrease in ¯K production. Inclusive data at higher energies suggested no overall strangeness enhancement in A-A collisions at SPS energies. However, we still cannot claim a true strangeness enhancement mechanism is already present in p-A collisions. A more thorough analysis suggested no overall strangeness enhancement but a possible modest enhancement in Λ production offset by a decrease in ¯K production. This result has led to claims that the observed strangeness enhancement in A-A collisions is due to QGP formation. However, extrapolations to central A-A data from inclusive p-A data are intrinsically flawed: Centrally selected A-A events necessarily involve more scatterings of the participant nucleons, and the dynamics of strangeness production may be quite sensitive to these additional scatterings. A resolution of this problem requires a detailed measurement of the centrality dependence of strangeness production in p-A collisions.

In this paper we present the first such measurement, made by BNL experiment 910 at the AGS accelerator. The data consist of Λ and K± multiplicity from p-Au collisions at a beam momentum of 17.5 GeV/c, and heavy ion (Au, Pb) induced collisions compared to p-p collisions. However, we still cannot claim a true understanding of the physics of strangeness enhancement due to the complexity of the hadronic interactions underlying A-A collisions and the competing mechanisms proposed and/or used in models to explain the observed enhancement. Heavy ion (Au, Pb) induced collisions compared to p-p collisions. However, we still cannot claim a true strangeness enhancement mechanism is already present in p-A collisions. We compared our multiplicities to the yields expected from Eq. 1 to evaluate whether we see enhanced strange particle production using the same benchmark as in A-A collisions. We observe that for A production Eq. 1 is physically sensible since baryon number is conserved and B ¯B processes are negligible at our energies. Deviations from Eq.1 would imply contributions from target nucleons not directly struck by the projectile or changes in the probability of participants to fragment into A’s. E910 was staged in the Multi-Particle Spectrometer (MPS) facility at the AGS. For this data, the Cherenkov tagged secondary proton beam had a mean momentum of 17.5 ± 0.1 GeV/c and a 1.5% momentum spread. The E910 spectrometer was previously described in [23]; the results presented here rely on the EOS time projection chamber and the beamline/trigger counters. A 3.9 g/cm² Au target was located 20.5 cm upstream of the active area of the TPC and was immediately followed by a 10 cm × 10 cm two-layer scintillating-fiber hodoscope. This multiplicity detector provided two triggers, a minimum-bias (MB) trigger that required 2 hits on each layer and a “central” trigger that required a total of 20 hits in the two layers and selected approximately the 25% most central events. Due to the low light yield of the fibers the MB trigger suffered significant efficiency loss for low multiplicity events with no highly ionizing tracks.

After finding and fitting the recorded pulses in the TPC we obtained typical resolutions of 0.7 mm (vertical) and 0.5 mm (horizontal) for position measurements in each sample. The momentum resolution for particles bending in the 0.5 T magnetic field varied from 1.2% (p < 2 GeV/c) to 5.5% (p ≈ 17 GeV/c). The dE/dx measurement, obtained from a truncated-mean of the TPC samples on each track, provided a resolution of σ/(dE/dx) = 6% for typical track lengths. A’s and K’s were measured and identified through a combination of topological reconstruction and dE/dx identification of the decay daughters. We paired and removed conversion electrons and positrons, the dominant source of background, with an efficiency of ≈ 50%. We further reduced background from conversions and from false vertices by applying tighter geometric cuts to small opening-angle pairs. We attempted topological fits on +/− track pairs satisfying applied geometric and dE/dx cuts and accepted as V0 candidates those passing applied χ² cuts with origin ≥ 3.5 cm from the target. We used a combined likelihood from the single track dE/dx’s and hypothetical π+π− and π±π− invariant masses (Minv) of the pairs to identify the decaying particle, obtaining the Minv distributions shown in Fig. 4. We obtained mass resolutions of FWHM=4 MeV, 13 MeV for A’s and K’s, respectively and corresponding S/B ratios of 35:1 and 30:1. The acceptances were calculated via GEANT simulations of the detector response to 20M pure Λ and 10M pure K’s decays. We show in Fig. 3 the y − pL regions with > 10% acceptance. For the centrality measurement, we identified as “grey” tracks protons and deuterons in the momentum ranges [0.25,1.2] GeV/c and [0.5,2.4] GeV/c,
respectively. We obtain the multiplicity of grey tracks, \(N_{\text{grey}} \), within our geometric acceptance event-by-event and from this quantity estimate the mean number of collisions suffered by the beam proton, \(\bar{\nu}(N_{\text{grey}}) \), using an established technique \[23\].

The data presented in this paper resulted from a combined 4.65M triggers. We required a valid event to have at least one secondary charged particle in the final state and a \(\Sigma p_{T} > 85 \) MeV/c. In addition, we vetoed one and two-track events containing a high-momentum positive track consistent with a quasi-elastically scattered proton. After applying quality and the above interaction cuts we obtained 2.97M events, 1.88M minimum-bias and 2.07M central. From these, we reconstructed a total of 156.8k \(\Lambda \)'s and 76.8k \(K_S \)'s. Using beam-triggered events we determined trigger efficiency corrections as a two-dimensional function of charged-particle multiplicity and \(N_{\text{grey}} \). The correction for multiplicity 1,2 events with \(N_{\text{grey}} = 0 \) is large (5\%) except for the lowest rapidity bin while the average correction for all interactions is 1.1.

We calculated \(\Lambda \) and \(K_S \) yields \(\Delta N(m_{\perp}, y, M_{\text{inv}}) \) per event as a function of \(N_{\text{grey}} \) after subtracting the \(\Lambda \) and \(K_S \) background in each bin. From these, we reconstructed a total of 156.8k \(\Lambda \)'s and 76.8k \(K_S \)'s. Using beam-triggered events we determined trigger efficiency corrections as a two-dimensional function of charged-particle multiplicity and \(N_{\text{grey}} \). The correction for multiplicity 1,2 events with \(N_{\text{grey}} = 0 \) is large (5\%) except for the lowest rapidity bin while the average correction for all interactions is 1.1.

We observed that with increasing \(N_{\text{grey}} \), the \(\Lambda \) and \(K_S \) yields decrease at high rapidity and increase at low rapidity. For \(\Lambda \)'s, the decrease in yield at large rapidity is a direct consequence of the increased “stopping” of the projectile baryon resulting from the multiple interactions in the target nucleus \[23\]. The strong increase in production of strange particles at low rapidity is qualitatively consistent with previously observed trends in secondary particle production in p-A collisions \[16\].

We show in Fig. 3 the integrated yields that we have obtained by summing our measured \(dn/dy \) values as a function of \(\nu \). The error on the in-acceptance yield is dominated by and taken to be the same as our uncertainty in the absolute normalization \(\pm 10\% \) at 90%CL. We show (solid line) in Fig. 3 the expectations from Eq. \ref{eq:1} with \(N_{pp}^{\Lambda} = 0.054 \pm 0.002(syst) \) and \(N_{pp}^{K_S} = 0.035 \pm 0.002(syst) \) obtained by parameterizing the \(\sqrt{s} \) dependence of \(\Lambda \) and \(K_S \) multiplicities \[27\] and interpolating to our energy. The \(\Lambda \) yields initially increase faster with \(\nu \) than expected from the \(N_{\text{part}} \) scaling of p-p yields and then saturate and start to decrease. The \(K_S \) yields behave similarly with a slower initial increase. The apparent decrease of the yields may result from the fact that we miss a larger fraction of the total \(\Lambda \) and \(K_S \) yield with increasing \(N_{\text{grey}} \) or \(\nu \) due to our low-rapidity cut-off. We have estimated the missing yield by fitting the \(dn/dy \) distribution to gamma distributions as shown in Fig. 3 and extrapolating these into the unmeasured region to produce the estimated total yields shown in Fig. 3. The uncertainty in the total yield is largest for the larger \(N_{\text{grey}} \) or \(\nu \) bins where the \(dn/dy \) distribution peaks near the edge of our acceptance. We show in Fig. 3 90%CL systematic errors on the yields with larger errors on the high side to account for the possibility that an unknown mechanism may produce a larger \(\Lambda \) yield below \(y = 0 \) than we estimate. The resulting total \(\Lambda \) yields shown in Fig. 3 saturate at large \(\nu \) and remain flat. We have fit the extrapolated \(\Lambda \) yields to an empirical function,

\[
N_{\Lambda} = N_{pp}^{\Lambda}(1 - e^{-\kappa \nu \alpha})/(1 - e^{-\kappa}),
\]

where \(N_{pp} \) is the \(\Lambda \) multiplicity in p-p collisions. The obtained function with \(\kappa = 0.299 \pm 0.008 \) and \(\alpha = 1.29 \pm 0.03 \) describes both the initial rapid rise of the yield and the saturation at large \(\nu \). To evaluate the significance of this fast initial increase in the \(\Lambda \) yield we plot in Fig. 4 the yield that would result from a “binary-collision” scaling of p-p data,

\[
N_{\text{BC}}^{\Lambda}(\nu) = N_{pp} \nu,
\]

which we view as the fastest plausible increase that could be expected from the multiple scattering of the incoming proton. The \(\Lambda \) yields are consistent with this “upper limit” for \(\nu \leq 3 \) indicating a rate of increase in \(\Lambda \) yield with \(\nu \) in this region that is approximately twice that given by Eq. 1. We note that the systematic error on the \(\nu \) scale of \(\pm 15\% \) \[23\] is small compared to this difference in slope.

We observe that the \(K_S \) yield increases more slowly with \(\nu \) than the \(\Lambda \) yield and appears to decrease slightly at large \(\nu \) even after we have accounted for the missing
yield. The difference in behavior between the Λ and K_S yields may result from the mixture of K^0 and K^0 in the K_S and the fact that these are produced through different processes. In p-p collisions at comparable energies, \(\frac{1}{2} \) of the K_S are produced as K^0's in association with hyperons with the other half produced as K^0's associated with kaons. If we assume that this proportion is not modified in p-A collisions and that the total hyperon yields increase in proportion to the Λ yield, we can estimate the K^0 component of the measured K_S yields shown in Fig. 5. The K^0 component appears to increase by a factor of two at \(\nu = 3 \), roughly consistent with the \(N_{\text{part}} \) scaling of p-p data shown in Fig. 6 before starting to decrease slowly with \(\nu \). While our data suggests an increase in KK production with \(\nu \), because of uncertainties in the above assumptions we cannot make a stronger statement. A forthcoming analysis of K^- production will provide clearer insight into this problem.

In conclusion, we have reported on the first detailed investigation of the centrality dependence of strange particle production in p-A collisions using grey track multiplicity and the estimated number of collisions of the projectile nucleon to characterize centrality. We have measured \(d\sigma/dy \) distributions for Λ and K_S that both show a strong backward shift with increasing \(N_{\text{grey}} \) and \(\nu \). The estimated total Λ yields increase with \(\nu \) at a rate approximately twice that expected from the \(N_{\text{part}} \) scaling of p-p data for \(\nu \leq 3 \) and saturate for \(\nu > 5 \). As noted above, this violation of \(N_{\text{part}} \) scaling implies either that additional nucleons not directly struck by the projectile contribute to Λ production or that the probability for one or more of the participants to fragment into a Λ increases with \(\nu \). We observe a slower but significant increase in K_S multiplicity with \(\nu \) that apparently results from different behavior of the K^0 and K^0 components of the K_S. The observed increase in K_S yield is large enough to allow for a statistically significant increase in KK production with \(\nu \) for \(\nu \leq 3 \) using a reasonable extrapolation of p-p data.

We conclude that at AGS energies, p-A data show a clear violation of a simple \(N_{\text{part}} \) scaling of p-p data. This result has clear qualitative implications for use of such scaling for interpreting strangeness yields in A-A collisions. To quantitatively evaluate the potential implications of our results, we assume that the target contribution to the p-A Λ yield grows as \(\nu N_{\text{pp}}/2 \) and attribute the remainder to the fragmentation of the projectile and/or energy deposition of the projectile in the nucleus. Then, our data show that the "projectile" contribution increases proportional to \(\nu \) for \(\nu \leq 3 \) with a slope that is the same as for the target nucleons. In A-A collisions where both the projectile and target nucleons multiply scatter, this picture implies that the hyperon and associated kaon yields per participant would increase rapidly with the average number of scatterers of the participants, \(\langle \nu \rangle \), for \(\langle \nu \rangle \leq 3 \) giving a maximum possible increase in yield per participant of a factor \(\sim 3 \). This is precisely the behavior seen in the K^+ production in Si-Au and Au-Au collisions at the AGS and Λ production in Pb-Pb collisions at the SPS. In p-A collisions, the enhancement is more modest – a 50% increase over \(N_{\text{part}} \) scaling at \(\nu = 3 \) – simply because the target nucleons scatter only once. As we have shown, however, this modest enhancement may have profound consequences for interpretation of the strangeness enhancement in nuclear collisions. We note that the above picture is consistent with the additive quark model used by Kadija et al. to explain the observed strangeness enhancement in light-ion collisions at the SPS. In particular, the increase in the projectile-like component up to \(\nu = 3 \) is exactly what is expected from the additive quark model. Since the saturation of the Λ yield for \(\nu > 5 \) is very likely due to the stopping of the incident baryon we predict that at higher energies the Λ yield will continue to increase for \(\nu > 5 \).

We wish to thank Dr. R. Hackenburg and the MPS staff, J. Scaduto and Dr. G. Bunce. This work has been supported by the U.S. Department of Energy under contracts with BNL (DE-AC02-98CH10886), Columbia (DE-FG02-86ER40281), ISU (DOE-FG02-92ER4069), KSU (DE-FG02-89ER40531), LBNL (DE-AC03-76F00098), LLNL (W-7405-ENG-48), ORNL (DE-AC05-96OR22464) and UT (DE-FG02-96ER40982) and the National Science Foundation under contract with FSU (PHY-9523974).

[1] J. Rafelski and B. Mueller, Phys. Rev. Lett. 48, 1066 (1982).
[2] P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986).
[3] T. Abbott et al., Phys. Rev. Lett. 64, 847 (1990).
[4] L. Ahle et al., Phys. Rev. C60, 044904 (1999).
[5] T. Alber et al., Z. Phys. C64, 195 (1994).
[6] F. Antinori et al., Phys. Lett. B447, 178 (1999).
[7] T. Alber et al., Phys. Rev. C58, 3523 (1998).
[8] S. Ahmad et al., Phys. Lett. B382, 35 (1996).
[9] C. Bormann et al., J. Phys. G23, 1817 (1997).
[10] S. Margetis et al., J. Phys. G25, 189 (1999).
[11] E. Andersen et al., Phys. Lett. B449, 401 (1999).
[12] R. Matiello et al., Phys. Rev. Lett. 63, 1459 (1989).
[13] Y. Pang, T. Schiøgel, and S. Kahana, Phys. Rev. Lett. 68, 2743 (1992).
[14] P. Braun-Munzinger and J. Stachel, Nucl. Phys. A606, 320 (1996).
[15] T. Abbott et al., Phys. Rev. Lett. 66, 1991 (1991).
[16] T. Abbott et al., Phys. Rev. D 45, 3906 (1992).
[17] M. Gazdzicki, Nucl. Phys. A566, 503C (1994).
[18] H. Bialkowski et al., Z. Phys. C55, 491 (1992).
[19] M. Gazdzicki, J. Phys. G20, 1881 (1997).
[20] E. Andersen et al., Phys. Lett. B433, 209 (1998).
[21] The projectile counts as one participant no matter how many times it scatters.
I. Chemakin et al., (1999), nucl-ex/9902009, submitted to PRL.
I. Chemakin et al., Phys. Rev. C 60, 024902 (1999).
We have neglected small (< 5%) multi-track losses.
J. Elias et al., Phys. Rev. D 22, 13 (1980).
C. DeMarzo et al., Phys. Rev. D 29, 2476 (1984).
M. Gazdzicki and D. Rohrich, Z. Phys. C71, 55 (1996).
K. Alpgård et al., Nucl. Phys. B103, 234 (1976).
A. Bialas, W. Czyz, and W. Furmanski, Acta Phys. Polon. B8, 585 (1977).
K. Kadija et al., Z. Phys. C66, 393 (1995).

FIG. 1. Λ and K_s acceptance boundary (left) and reconstructed invariant mass spectra (right).

FIG. 2. Λ (left) and K_s (right) rapidity density distributions for different N_{grey} plotted in both log (top) and linear (bottom) scale. N_{grey} = • 0, o 1, ▼ 2 and ▽ 4.

FIG. 3. Λ (left) and K_s (right) multiplicities vs \bar{\nu}(N_{grey}). ▼ - in E910 acceptance, △ - total yield (syst. errors from extrapolation included), o - est. \bar{K}^0 component of K_s. Lines: Solid - N_{part} scaling, dot-dashed - Binary collision, dashed - empirical fit to Λ (left panel, see text for details), est. N_{part} scaling for \bar{K}^0 (right panel).