Abstract

There is a converging body of evidence supporting a measurable slowdown of the Atlantic Meridional Overturning Circulation (AMOC) as climate warms and Northern Hemisphere ice sheets inexorably shrink. Within this context, we assess the variability of the AMOC during the Holocene based on a marine sediment core retrieved from the deep northwest Atlantic, which sensitively recorded large-scale deglacial transitions in deep water circulation. While there is a diffuse notion of Holocene variability in Labrador and Nordic Seas overturning, we report a largely invariable deep water circulation for the last ~11,000 years, even during the meltwater pulse associated with the 8.2-ka event. Sensitivity tests along with high-resolution 231Pa/230Th data constrain the duration and the magnitude of possible Holocene AMOC variations. The generally constant baseline during the Holocene suggests attenuated natural variability of the large-scale AMOC on submillennial timescales and calls for compensating effects involving the upstream components of North Atlantic Deep Water.

1. Introduction

Atlantic Meridional Overturning Circulation (AMOC) variability has been linked to changes in the formation rate of North Atlantic Deep Water (NADW). Recent studies suggest a steady decline of the AMOC strength during the past decades and centuries (Caesar et al., 2018; Rahmstorf et al., 2015; Thornalley et al., 2018) raising concerns about its vulnerability in the face of global warming and accelerating Greenland ice sheet melting. Painstaking efforts have been devoted to reconstruct changes in AMOC dynamics in the recent geological past in order to better predict its future evolution. These investigations provide ample evidence for large-scale glacial and deglacial AMOC reorganizations as inferred from independent proxy approaches (Howe, Piotrowski, Noble, et al., 2016; Lippold et al., 2016; Lynch-Stieglitz, 2017; Marchitto & Broecker, 2006; McManus et al., 1999; Oppo et al., 2018; Praetorius et al., 2008; Robert et al., 2010). While there is a general sense that AMOC variability was subdued during the Holocene compared with the last glacial termination (Keigwin & Boyle, 2000; Oppo et al., 2003), proxy evidence is often contradictory. Discrepancies remain regarding the timing, overall tendency, and amplitude of deep water export variations based on a wealth of various proxy records, mainly focusing on upstream tributaries of NADW including the Labrador Sea Water (LSW) and Nordic Seas Overflow Waters (Ellison et al., 2006; Hall et al., 2004; Hoogakker et al., 2011; Keigwin et al., 2005; Kissel et al., 2013; Kleiven et al., 2008; Mjell et al., 2015; Moffa-Sánchez & Hall, 2017; Thornalley et al., 2013).

Here we aim at reconstructing large-scale AMOC variability for the Holocene, combining high-resolution 231Pa/230Th, eNd, and 8H3C records with existing data from Bermuda Rise sediments, which sensitively recorded past changes in AMOC dynamics (Böhm et al., 2015; Deane et al., 2017; Gutjahr & Lippold, 2011; Henry et al., 2016; Keigwin & Boyle, 2000; McManus et al., 2004; Rempfer et al., 2017; Roberts et al., 2010). Existing Holocene data sets from this area are not available in sufficient temporal resolution or have been obtained from potentially less sensitive locations, hindering identification of short-scale AMOC oscillations (Hoffmann et al., 2018; Lippold et al., 2016; McManus et al., 2004; Ng et al., 2018; Rempfer et al., 2017).

Seawater-derived Nd isotope signatures recorded in marine sediments (eNd) allow distinguishing the major water masses bathing the Atlantic basin. NADW is characterized by distinctively less radiogenic (i.e., lower
εNd signatures (mostly due to the contribution of very unradiogenic LSW (εNd ~ −15) compared to more radiogenic signatures of Southern Component Water (εNd ~ −9, Figure 1; e.g., (Lambelet et al., 2016; Stichel et al., 2015). Similarly, the stable carbon isotope composition (δ13C) of seawater recorded by epibenthic foraminifera, indicative of the accumulation of remineralized carbon in the ocean interior, represents a debated (Gebbie et al., 2015; Howe, Piotrowski, Noble, et al., 2016; Schmittner et al., 2013; Voigt et al., 2017), yet long-standing proxy for reconstructions of water mass distribution (Curry & Oppo, 2005; Keigwin, 2004; Oppo et al., 2003). Both tracers thus provide largely independent and complementary evidence reflecting past changes in the relative contributions of water masses originating from the North Atlantic and the Southern Ocean. In contrast, sedimentary 231Pa/230Th reflects kinematic changes in ocean circulation and provides a quantitative measure of the integrated AMOC strength (Deng et al., 2018; Yu et al., 1996). A difference in the removal timescale between both radioisotopes causes a deficit of 231Pa relative to 230Th in marine sediments in the Atlantic Ocean, the extent of which is related to the strength of meridional export of NADW (Luo et al., 2010; Marchal et al., 2000; Rempfer et al., 2017). Hence, low 231Pa/230Th values, below the production ratio of 0.093, reflect strong NADW advection, while higher values are consistent with a weaker AMOC state.

2. Materials and Methods

Ocean Drilling Program (ODP) Site 1063 (33°41.2’N, 57°36.9’W) was recovered from the Bermuda Rise during ODP Leg 172 from a water depth of 4,584 m (Keigwin et al., 1998). Numerous investigations targeting past changes in ocean circulation patterns have been performed based on marine archives from the Bermuda Rise (see overview on core locations and studies in the supporting information S1; Böhm et al., 2015; Deaney et al., 2017; Gutjahr & Lippold, 2011; Henry et al., 2016; Keigwin & Boyle, 2008; Marchal et al., 2000; Oppo & Boyle, 2000; Oppo et al., 2003; McManus et al., 2004; Roberts et al., 2010). From the Holocene section of ODP Site 1063 Hole A and D (0–110 cm) 81 samples for 231Pa/230Th (71 for εNd and 17 for δ13C) have been taken allowing for high-resolution kinematic reconstructions of past changes in AMOC dynamics.

2.1. Age Model

The Holocene age model for ODP Site 1063 is based on 13 new radiocarbon age control points covering the past 11,000 years. The 14C dates were generated by Accelerator Mass Spectrometry at ETH Zurich (Wacker et al., 2015).
et al., 2013) on at least 300-μg *Globigerinoides ruber* (white and pink variety; supporting information S2). Age uncertainties are given as 1 sigma standard deviations. The calibration of the radiocarbon ages was performed with Calib7.10 using the MARINE13 (Reimer et al., 2013) data set and assuming a constant 400-year surface radiocarbon reservoir age. One additional age control point is given by the minimum in magnetic susceptibility during the Younger Dryas (Roberts et al., 2010). The age model of Hole A is based on the three 14C dates back to 2.5 ka. The part of Hole A older than 2.5 ka has been aligned to the 14C-constrained age model of Hole D by aligning the magnetic susceptibility signals of both holes (supporting information S2).

2.2. Neodymium Isotope Analyses

The 143Nd/144Nd ratio (expressed in εNd units, i.e., the deviation of the measured 143Nd/144Nd from that of the Chondritic Uniform Reservoir in parts per 10,000) is used as a quasi-conservative tracer to reconstruct changes in the source and mixing of water masses (Frank, 2002; Piotrowski et al., 2005). The water Nd isotope signal was extracted from bulk sediments of ODP Site 1063 following the leaching and measurement procedures described by Blaser et al. (2019). Nd isotope measurements were carried out with a Thermo Fisher Neptune Plus inductively coupled plasma mass spectrometer at GEOMAR Kiel. Raw ratios were corrected for isobaric interference of 148Sm and for mass bias by an exponential law calibrating to a stable ratio of 146Nd/144Nd = 0.7219. Corrected 143Nd/144Nd were then normalized to bracketing standards of JNd1-1 with a value of 0.512115 (Tanaka et al., 2000). The shown uncertainties are the double standard deviation of in-house standard solutions measured repeatedly throughout the same sessions and lie between 0.07 and 0.37 epsilon units.

2.3. Uranium, Thorium, and Protactinium Isotope Analyses

For 231Pa/230Th analyses bulk concentrations of 231Pa, 232Th, and 238U have been measured. Per sample approximately 0.1 g of bulk sediment was weighed and then spiked with 231Pa, 232Th, and 238U followed by total digestion in a mixture of concentrated HCl, HNO3, and HF. Pa, Th, and U were separated by anion exchange column chromatography (Süfke et al., 2018). The 231Pa-spike was calibrated against the reference standard material UREM-11 and an internal pitchblende standard (Fietzke et al., 1999). Following standard ICP-MS methods (Böhm et al., 2015; Lippold et al., 2009), measurements of protactinium were performed on a Thermo Finnigan ELEMENT2 at Heidelberg University, while uranium and thorium were measured on a Thermo Finnigan MAT253plus gas source mass spectrometer coupled to a Kiel IV carbonate preparation device at the Institute of Earth Sciences, Heidelberg University. Values are reported relative to Vienna Pee Dee Belemnite through the analysis of an in-house standard calibrated to IAEA-603. The precision for standards run parallel to the analyzed samples is better than 0.03‰ (at 1σ level).

2.4. Stable Carbon Isotope Analyses

For stable carbon isotope analyses, dried and weighed sediment samples were disaggregated in distilled water and washed over a 63-μm mesh. Samples were subsequently dry-sieved into two fractions: 63 to 150 and >150 μm. One to five specimens of the benthic foraminifera *Cibicidoides wuellerstorfi* were picked from the >150-μm dried sediment fraction. The carbon-isotope composition of *C. wuellerstorfi* was analyzed using a Thermo Finnigan MAT253plus gas source mass spectrometer coupled to a Kiel IV carbonate preparation device at the Institute of Earth Sciences, Heidelberg University. Values are reported relative to Vienna Pee Dee Belemnite through the analysis of an in-house standard calibrated to IAEA-603. The precision for standards run parallel to the analyzed samples is better than 0.03‰ (at 1σ level).

2.5. Measurements of Biogenic Opal

To assess the potential influence of changes in particulate biogenic opal fluxes on 231Pa/230Th, its preserved concentration in the sediment was measured. The measurements followed the automated procedure for analysis of dissolved silica applying molybdate-blue spectrophotometry (Müller & Schneider, 1993) and were...
performed at GEOMAR, Kiel. Bulk concentrations ranged from 0.9% to 2.2% with an error based on repeated measurements of replicates in the range of 2–40% (2 RSD).

3. Results
The new epibenthic foraminiferal δ13C generally cluster around high values, ranging between 0.5 and 1.0 corroborating available data (Henry et al., 2016; Keigwin & Boyle, 2000) indicative of little variation in water mass sourcing and/or air-sea gas exchange and remineralization during the Holocene (Figure 2). In contrast, our new high-resolution Nd isotope record reveals a pronounced trend of decreasing εNd values in the aftermath of the YD with values as unradiogenic as −17 at the onset of the Holocene. This is followed by a gradual recovery toward more radiogenic values trending to modern seawater values (Figure 2c, ref. (Lambelet et al., 2016)). This unexpected early Holocene variability in Nd isotope signature could potentially contradict the relatively constant δ13C if interpreted at face value in terms of conservative water mass mixing. In turn, 231Pa/230Th with constant and low values residing clearly and consistently below the production ratio mirrors the δ13C trend. The new high-resolution data are consistent with the existing, lower-resolution Bermuda Rise 231Pa/230Th record (McManus et al., 2004) exhibiting low variability (max: 0.065, min: 0.052, average: 0.057 for the last 10 ka). We obtained the highest resolution of the record around 8 ka bracketing the prominent 8.2-ka event (Thomas et al., 2007), yet without recording any significant variation around this time period.

4. Discussion
The high-resolution epibenthic foraminiferal δ13C records (Figure 2; Henry et al., 2016; Keigwin & Boyle, 2000; this study) highlight the persistent presence of NADW at the Bermuda Rise during the Holocene. These observations are further supported by consistently unradiogenic bottom water εNd signatures (εNd between −17 and −13) throughout the last ~12 ka. However, the εNd record arguably shows more structure when compared to the δ13C record, notably featuring a pronounced negative early Holocene excursion. Such a postdeglacial unradiogenic εNd pulse is unlikely to reflect changes in water mass distribution alone (Pöppelmeier et al., 2018), and it has been hypothesized that this excursion has been caused, in part, by poorly weathered lithogenic material supplied to the Labrador Sea seabed as ice sheets retreated in the aftermath of the deglaciation (Howe, Piotrowski, & Rennie, 2016). The expression of the unradiogenic peak in the early Holocene attenuates southward, supporting the hypothesis of a signal originating predominantly from the Labrador Sea with material transported downslope and along the continental margin by nepheloid layers (Pöppelmeier et al., 2019). A larger data set in particular from the Labrador Sea would be required to better quantify these processes creating such a transient, unradiogenic excursion. However, due to its unquestionably unradiogenic character (εNd consistently below −13) combined with constantly high δ13C values, it seems inescapable that NADW continuously bathed the deep NW Atlantic over the course of the Holocene.

Furthermore, sedimentary 231Pa/230Th data measured on the same samples provide means to quantify the meridional advection of NADW. Compared to the large deglacial 231Pa/230Th excursions related to prominent AMOC oscillations (McManus et al., 2004), the Holocene values remain constantly low (Figure 2d),
indicative of a stable and vigorous NADW overturning cell. While there is debate as to which degree varying opal fluxes may influence downcore \(^{231}\text{Pa}/^{230}\text{Th}\) records (Ng et al., 2018), the preserved opal concentrations in Holocene sediments of ODP Site 1063 remain consistently low during the Holocene (<2.5%) rendering a perceptible influence on the very stable \(^{231}\text{Pa}/^{230}\text{Th}\) pattern unlikely. Both low opal concentrations and constant \(^{231}\text{Pa}/^{230}\text{Th}\) values throughout the Holocene have been also reported recently from a shallower site (KN140-2-51GGC, 32.783°N, 76.283°W, 1,790-m water depth) closer to the margin (Figure 3f; Hoffmann et al., 2018). Similarly, other potential particle-induced effects on \(^{231}\text{Pa}/^{230}\text{Th}\) like bottom or boundary scavenging (Hayes, Anderson, Fleisher, Huang, et al., 2015; Hayes, Anderson, Fleisher, Vivancos, et al., 2015; Remper et al., 2017) must have been constant and of secondary order, as witnessed by the virtually invariable \(^{231}\text{Pa}/^{230}\text{Th}\) records from both locations over the course of the Holocene (comparisons of particle fluxes with \(^{231}\text{Pa}/^{230}\text{Th}\) are shown in Figure S3). While the higher sedimentation rates of 51GGC would allow higher temporal resolution, its \(^{231}\text{Pa}/^{230}\text{Th}\) record is potentially less sensitive to AMOC variations due to its shallower and more southern location (Remper et al., 2017). In contrast to these observations, previous studies did report variations in the intensities of Overflow Waters and/or LSW overturning rates (e.g., Ayache et al., 2018; Hall et al., 2004; Hoogakker et al., 2011; Kissel et al., 2013; Kleiven et al., 2008; Mjell et al., 2015; Moffa-Sánchez & Hall, 2017; Thornalley et al., 2013; Figure 3) but did not yield a coherent picture regarding the timing and amplitude of these variations. Within the perspective of our data, these observed variations appear to remain spatially limited to the tributaries of NADW possibly compensating for each other and thus not affecting the integrated downstream NADW circulation scheme (Moffa-Sanchez et al., 2015; Renssen et al., 2005).

Importantly, we found neither a gradual temporal AMOC trend (as implied by the steady decrease of Greenland’s \(\delta^{18}\text{O}\)-based temperature record (Figure 3a) or observed for Iceland-Scotland Overflow Water (e.g., Thornalley et al., 2013, Figure 3b) nor an abrupt decline associated with the 8.2-ka cooling. This is somewhat surprising since the effects of meltwater outbursts and/or ice-saddle collapse that have been proposed to account for the prominent 8.2-ka event (Hoffman et al., 2012; Matero et al., 2017) are expected to be capable of substantially weakening the AMOC and have been recorded in high-resolution paleoceanographic reconstructions (Ellison et al., 2006; Hall et al., 2004; Kleiven et al., 2008; Praetorius et al., 2008). Thus, the absence of any discernable \(^{231}\text{Pa}/^{230}\text{Th}\) excursion centered around 8.2-ka raises questions related to the temporal resolution capacity of \(^{231}\text{Pa}/^{230}\text{Th}\) in sedimentary records. There is only limited knowledge on the exact duration of the 8.2-ka event meltwater outburst (most probably in the range of <200 years; Cheng et al., 2009) and no clear agreement on the freshwater source and routing (Carlson & Clark, 2012; Hoogakker et al., 2011; Kissel et al., 2013; Kleiven et al., 2008; Mjell et al., 2015; Oppo et al., 2003). In order to assess the magnitude and duration of a potential AMOC perturbation associated with the 8.2-ka event, we apply a conceptual box model (Christl, 2007; supporting information S4) simulating the \(^{231}\text{Pa}/^{230}\text{Th}\) signal recorded in the sediment. Variations in sedimentary \(^{231}\text{Pa}/^{230}\text{Th}\) ratios are in the first-order functions of (i) the oceanic residence time of \(^{231}\text{Pa}\), (ii) sediment accumulation, (iii) bioturbation, and (iv) the magnitude and duration of the perturbation affecting the meridional advection of \(^{231}\text{Pa}\). Using the prominent AMOC perturbations characterizing the Younger Dryas (YD) and Heinrich Stadial 1 (HS1) as test cases, our model faithfully reproduces the

Figure 3. Expanded view on \(^{231}\text{Pa}/^{230}\text{Th}\) in comparison to NGRIP and hydrographic proxies from a variety of North Atlantic studies indicating different trends. The blue bar indicates the time period of the 8.2-ka event as manifested in the NGRIP record. (a) Oxygen isotope record of the NGRIP ice core (Andersen et al., 2004). (b) Sortable silt records of ISOW strength from (right axis) Core GS06-144 O8GC (Mjell et al., 2015) and an (left axis) Iceland slope stack (Thornalley et al., 2013). (c) Relative abundance of the polar foraminifer \(N.\ pachyderma\) from the Core MD99-2251 (Ellison et al., 2006). (d) \(\delta^{13}\text{C}\) of \(C.\ wuellerstorfi\) from (bright) Core MD03-2665 (Kleiven et al., 2008) and from (dark) ODP Site 980 (Oppo et al., 2003). (e) High-resolution Holocene \(^{231}\text{Pa}/^{230}\text{Th}\) from the ODP Site 1063 (red, this study and McManus et al., 2004) and from the shallower core KN140-2-51GGC (purple) (Hoffmann et al., 2018).
amplitude of both associated 231Pa/230Th peaks (McManus et al., 2004) at the Bermuda Rise (supporting information S5). In comparison to the YD and HS1 the sedimentation rates at ODP Site 1063 were lower during the 8.2-ka event (~8.3 cm/ka). Hence, bioturbation is expected to attenuate the sedimentary response (Figure 4a, red) of a changing oceanic 231Pa/230Th signal (Figure 4a, black). In a next step we compare the high-resolution 231Pa/230Th data (31 data points between 7 and 10 ka) to the model outputs of systematically varied parameters (i.e., event duration, event magnitude, and bioturbation length; supporting information S6). The multitude of parameters produces hypothetical 231Pa/230Th profiles, which mostly significantly differ from our observations, constraining magnitude and in particular the duration of a hypothetical AMOC decrease (supporting information S6). For example, the model outputs suggest that an AMOC perturbation resulting in an ~50% 231Pa/230Th increase, associated with a 150 years lasting 8.2-ka event, should still be distinguishable from the average Holocene 231Pa/230Th levels corresponding to Atlantic Meridional Overturning Circulation reductions. Dashed line shows the significance level equivalent to a p value of 0.01 calculated from the χ^2 distribution for $d = n – 1 = 20$ degrees of freedom ($n = 21$; data points in the relevant time interval of 7–9 ka). Scenarios above the dashed line are considered to be inconsistent with the observed constant 231Pa/230Th, while scenarios below cannot be rejected.

5. Conclusion

We present new 231Pa/230Th data (supported by eNd and δ^{13}C) from the Bermuda Rise complementing the existing records of the last glacial cycle in high resolution for the Holocene. While eNd and δ^{13}C data document the continuous presence of NADW in the deep NW Atlantic (with eNd showing an unradiogenic excursion due to variable input from the Labrador Sea (Howe, Piotrowski, & Rennie, 2016; Pöppelmeier et al., 2018; Pöppelmeier et al., 2019) 231Pa/230Th indicates a constant export of 231Pa by NADW throughout the Holocene without any perceivable interruptions on millennial scale. Since variations in the strength of NADW forming components further upstream have been observed, these water masses may have

Figure 4. Bermuda Rise 231Pa/230Th compared to expected signal strength. (a) 231Pa/230Th around the 8.2-ka event (open symbols) and modeled increase of 231Pa/230Th from the Holocene baseline represented by the gray rectangular wave signal, which is smoothed by the oceanic residence time of 231Pa (black, see supporting information S4 for model description). The red curve (including an uncertainty range of 20% accounting for the maximum error on the sedimentation rate) delineates the resulting sediment signal blurred by bioturbation. As an example the scenarios of a hypothetical Atlantic Meridional Overturning Circulation reduction by 50% for 150 years is shown, which is expected to be still distinguishable from the observations. Further scenario outputs with varying parameter sets are demonstrated in supporting information S6. (b) Goodness of fit measured as χ^2 between model and data for different event durations. Line colors indicate 231Pa/230Th levels corresponding to Atlantic Meridional Overturning Circulation reductions. Dashed line shows the significance level equivalent to a p value of 0.01 calculated from the χ^2 distribution for $d = n – 1 = 20$ degrees of freedom ($n = 21$; data points in the relevant time interval of 7–9 ka). Scenarios above the dashed line are considered to be inconsistent with the observed constant 231Pa/230Th, while scenarios below cannot be rejected.
compensated for each other resulting in a stable NADW circulation on basin scale (Moffa-Sanchez et al., 2015; Renssen et al., 2005). While a strong large-scale AMOC persisted during the Holocene, smaller-scale and/or shorter perturbations may have been unrecorded by the \[^{231}\text{Pa}/^{230}\text{Th}\] proxy. Based on sensitivity tests compared to observations, we constrain a hypothetical AMOC reduction around the 8.2-ka event as a function of its magnitude and duration (Figure 4b). We found that the constant \[^{231}\text{Pa}/^{230}\text{Th}\] observed between 9 and 7 ka do not allow YD-like AMOC perturbations longer than 125 years. But smaller perturbations (e.g., <25%) could have been persisted for ~200 years, before it would be recognizable from our record. Such a limited AMOC reduction below ~25% for no longer than 200 years across the 8.2-ka event would be in agreement with scenarios of a confined impact on the AMOC (Born & Levermann, 2010; Condron & Winsor, 2011; Morrill et al., 2013) as well as with previous \[^{231}\text{Pa}/^{230}\text{Th}\] data (Hoffmann et al., 2018) from a shallower core location of higher sedimentation rate. Considering the modern ~15% decline in the Deep Western Boundary Current strength (Caesar et al., 2018; Thornalley et al., 2018), our results imply that such a reduction could have already occurred during the Holocene but must have been of limited duration since it was not captured by \[^{231}\text{Pa}/^{230}\text{Th}\].

References

Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon, N., et al., & North Greenland Ice Core Project members (2004). North Greenland Ice Core Project, High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005), 147-151. https://doi.org/10.1038/nature02805
Ayache, M., Swingedouw, D., Mary, Y., Eyraud, F., & Colin, C. (2018). Multi-centennial variability of the AMOC over the Holocene: A new reconstruction based on multiple proxy-derived SST records. Global and Planetary Change, 170, 172-189. https://doi.org/10.1016/j.gloplacha.2018.08.016
Blaser, F., Fikoumi, J., Schulz, A., Hunger, M., Frank, M., Lippold, J., Heinrich, H., et al. (2019). The resilience and sensitivity of Northeast Atlantic deep water and its impact on the AMOC. Geochemistry, Geophysics, Geosystems, 20(5), 2902-2921. https://doi.org/10.1029/2019GC008382
Born, A., & Levermann, A. (2010). The 8.2 ka event: Abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochemistry, Geophysics, Geosystems, 11(1), Q00011. https://doi.org/10.1029/2009GC003024
Caesar, L., Rahmstorf, S., Robinson, A., Frülicher, M., & Saba, V. (2018). Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 550(7670), 191-196. https://doi.org/10.1038/s41586-018-0006-5
Carlson, A., & Clark, P. (2012). Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Reviews of Geophysics, 50, RG4007. https://doi.org/10.1029/2011RG000371
Cheng, H., Feitmann, D., Edwards, R. L., Wang, X., Cruz, F. W., Auler, A. S., et al. (2009). Timing and structure of the 8.2 kyr R.P. event inferred from \[^{230}\text{Th}/^{231}\text{Pa}\] data of marine sedimentary records. Quaternary Science Reviews, 29(19-20), 2663-2672. https://doi.org/10.1016/j.quascirev.2010.06.017
Condron, A., & Winsor, P. (2011). A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophysical Research Letters, 38, L01705. https://doi.org/10.1029/2010GL046011
Curry, W., & Oppe, D. (2005). Glacial water mass geometry and the distribution of \(\delta^13\text{C}\) in the western Atlantic Ocean. Paleoceanography, 20, PA1017. https://doi.org/10.1029/2004PA001021
Deane, E. L., Barker, S., & van de Flierdt, T. (2017). Timing and nature of AMOC recovery across Termination 2 and magnitude of glacial CO\(_2\) change. Nature Communications, 8(1), 14595. https://doi.org/10.1038/ncomms14595
Deng, F., Henderson, G. M., Castrillejo, M., & Perez, F. F. (2018). Evolution of \[^{231}\text{Pa}/^{230}\text{Th}\] in overflows of the North Atlantic. Biogeosciences, 15(23), 7299-7313. https://doi.org/10.5194/bg-15-7299-2018
Ellison, C., Chapman, M., & Hall, I. (2006). Surface and deep ocean interactions during the cold climate event 8200 years ago. Science, 312(5782), 1929-1932. https://doi.org/10.1126/science.1127213
Fietzke, J., Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., et al. (2015). Strong and deep Atlantic Meridional Overturning Circulation during the last glacial cycle. Nature, 517(7532), 73-76. https://doi.org/10.1038/nature14059
Fietzke, J., Bollhöfer, A., Frank, N., & Mangini, A. (1999). Pa determination in manganese crust VA12/2 by TIMS. Geochimica et Cosmochimica Acta, 63(10), 1539-1544. https://doi.org/10.1016/S0016-7037(98)00174-4
Gebbie, G., Petrunin, C. D., Lisiecki, L. E., & Spero, H. J. (2015). Global-mean marine \(\delta^18\text{O}\) and its uncertainty in a glacial state estimate. Quaternary Science Reviews, 125, 144-159. https://doi.org/10.1016/j.quascirev.2015.08.010
Gutjahr, M., & Lippold, J. (2011). Early arrival of southern source water in the deep North Atlantic prior to Heinrich event 2. Paleoceanography, 26, PA2011. https://doi.org/10.1029/2011PA002114
Hall, I., Bianchi, G. G., & Evans, J. R. (2004). Centennial to millennial scale Holocene climate–deep water linkage in the North Atlantic. Quaternary Science Reviews, 23(14-15), 1529-1536. https://doi.org/10.1016/j.quascirev.2004.04.004

Acknowledgments

This research used sediment samples provided by the Ocean Discovery Program (ODP), which is supported by NSF and participating countries under management of Joint Oceanographic Institutions (JOI) Inc. Analytical support and provision of infrastructure from M. Brünecker and M. Regelous is acknowledged. We thank M. Deininger, J. McManus, D. Thornalley, and the OCI/iPODS workshop participants in Cambridge (UK) 2018 for valuable discussions. Data presented in this study are available in the supporting information and on the PANGAEA website https://doi.pangaea.de/10.1594/PANGAEA.907381. Financial support for this research was provided by the Emmy-Noether Programme of the Deutsche Forschungsgemeinschaft (DFG) through Grant Li1815/4 and the Swiss National Science Foundation (SNSF Grant 200021_163030 to S. L. J.).
