Improving biological relevance of model projections in response to climate change by considering dispersal amongst lineages in an amphibian

Igor Boyer1 | Hugo Cayuela2 | Romain Bertrand3 | Francis Isselin-Nondedeu1,4,5

1UMR 7324, CNRS CITERES, Tours, France
2Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
3Laboratoire Evolution & Diversité Biologique (EDB), UMR5174 Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse Cedex 9, France
4Institut Méditerranéen de Biodiversité et Écologie (IMBE), UMR Université Aix-Marseille Avignon, 7263-CNRS, 237-IRD IRPNC (Ingénierie de la Restauration des Patrimonies Naturels et Culturales), Avignon, France
5Département d’Aménagement et d’Environnement, Ecole Polytechnique de l’Université de Tours, Tours, France

Correspondence
Igor Boyer, UMR 7324 – CNRS CITERES, 33 allée Ferdinand de Lesseps, 37200 Tours, France.
Email: igor.boyer@univ-tours.fr

Funding Information
Région Centre-Val de Loire

Handling Editor: David Chapple

Abstract

Aim: When modelling future or past geographic distributions of a species, attention should be paid to the possible differentiated responses to climate changes between lineages. Dispersal also plays an important role in the capacity of species to track suitable climate, which is particularly relevant for amphibians with limited dispersal ability. In this study, we included different lineages and dispersal distances into species distribution models to make them more biologically relevant in face of climate change scenarios.

Location: Europe.

Taxon: Bombina variegata and its lineages.

Methods: Using MaxEnt, we fitted correlative niche models for B. variegata lineages and also for the species level (B. variegata sensu lato) that we projected under Last Glacial Maximum (LGM) and future climate scenarios (RCP2.6, RCP8.5). A comparison of projections was conducted considering both unlimited and limited dispersal abilities.

Results: We found that the B. variegata lineages differed in their bioclimatic niches. In general, models run without discriminating the lineages showed reduced suitable areas compared to models run at each lineage, especially those for B. variegata pachypus and B. variegata scabra (southern lineages). Suitable areas identified for the LGM match with the climatic refugia identified in phylogeographic studies. Projections for the mid-Holocene showed the increase of suitable areas for the lineages B. variegata variegata “Carpathians” and “Western” while they decreased for the southern lineages. In the future (2040–2080), only models under limited dispersal predict the extinction of the Carpathian lineage and a reduction in suitable areas for the other lineages, regardless of periods and scenarios.

Main conclusions: We demonstrated important shifts in habitat suitability in Europe suggesting range-shifts about hundreds of kilometres in response to past climate changes. However, rapid and unprecedented changes in suitability are expected in the future due to the accelerated climate warming during the 21st. According to their limited dispersal abilities, the persistence of all B. variegata lineages over time appears uncertain. We further recommend to integrate the intraspecific levels, when
1 | INTRODUCTION

Climate change caused by human activities is one of the main drivers of biodiversity decline worldwide (Parmesan, 2006). One of the main effects of climate change is the shift of thermal isoclines upward and poleward, leading to the redistribution of climate conditions on a global scale (Loarie et al., 2009). Species may respond to those changes through phenotypic plasticity and local adaptation (Urban et al., 2014) or may shift their distribution range to track favourable climate conditions (Lenoir et al., 2020). Possibilities and magnitudes of range shifts are determined by the species' propensity and ability to disperse (Travis et al., 2013). Climate-induced dispersal has been reported in many species (Blaustein et al., 2010) and likely contributes to the unprecedented biodiversity redistribution reported in recent studies (Lenoir et al., 2020). However, the evolvability of thermal performances as well as dispersal potential strongly varies at both interspecific and intraspecific levels (Bestion et al., 2015), therefore making accurate prediction of species response to climate change a challenging task.

Niche-based models (also called ‘ecological niche models’ or ‘species distribution models’), relying on correlative relationships between observed species distributions and environmental factors, are powerful tools to predict range shifts driven by future or past climate variations (Araújo et al., 2006). However, those models have historically suffered from conceptual and technical limitations that critically affected the reliability of their predictions (Hernandez et al., 2006). First, relatively few studies explicitly considered species dispersal ability when modelling past and future range shifts, despite the fact that running models with unlimited dispersal overestimates the potential future range, especially for species with moderate to low dispersal ability (Urban et al., 2016). Second, most studies did not consider the intraspecific levels in climate-related phenotypic performances.

Recent studies suggest that populations of the same species may differ in their responses to climate variation (see, for instance, Bestion et al., 2015 and Trochet et al., 2018). Differences in population sensitivity to climate fluctuations likely rely on population-specific reaction norms to thermal and hydric conditions and/or adaptation to local climatic conditions (Gienapp et al., 2007; Urban et al., 2014). Those population-specific responses are expected to be particularly broad in ectotherms whose physiology and fitness components (i.e., survival, reproduction and growth) strongly depend on local/regional thermic and hygrometric variation (Beebee, 1995; Blaustein et al., 2010). Such variation in population responses to climatic conditions could have a genetic base (Wilson, 2001) depending on population evolutionary history. This is especially true for ectotherms vertebrates from temperate areas that experienced broad climate variation and complex demographic/evolutionary processes, resulting from the effect of climate-driven selection on their respective glacial refugia (Gilbert & Miles, 2017).

Therefore, considering dispersal ability and bioclimatic preferences at the intraspecific or lineage level in niche-based models seems a promising way to produce more accurate projections of species distribution in response to past or future climate changes and to guide conservation actions (Fong G. et al., 2015). In this study, we focus on a western Palearctic amphibian - the yellow-bellied toad - B. variegata (sensu lato), which appears to be an excellent candidate on which to test this assumption since it has a relatively limited dispersal ability (most of its dispersal movements have distances of less than 500 m; see Cayuela, Bonnaire, et al., 2018; Cayuela, Rougemont, et al., 2018) and can be separated into different lineages. Indeed, as a result of B. variegata's complex evolutionary history during Pleistocene glaciations, four distinct lineages occupy regions with contrasted climatic conditions (Hofman et al., 2007; Pabijan et al., 2013). Moreover, rainwater fluctuations are known to impact the survival of Bombina variegata and because of its dependency to temporary ponds for its reproduction, extreme drought events increased by global warming are expected to particularly threat the development of this toad (Cayuela et al., 2014). Therefore, we asked the following nested questions: how meaningful is it to run the models while considering intraspecific levels? How has each lineage responded, and how will it respond, to climate change when we consider the dispersal ability of the species? What lineage could suffer the most in the face of future climate change?

First, we fitted correlative niche models for each B. variegata lineage using MaxEnt (Phillips et al., 2017) and projected both past (LGM and mid-Holocene) and future climate change scenarios. Second, we compared model projections that had limited and unlimited dispersal abilities.
2 | MATERIALS AND METHODS

2.1 | Model species

Bombina variegata is a pond-breeding amphibian with a widespread distribution in Europe. Over the last century, the species suffered from a sharp decline, especially in Western Europe (Lescure et al., 2011), and is registered in Appendix II of the Bern Convention and in Appendices II and IV of the EU Habitat Directive. This species occupies various habitats, such as forests and meadows, and reproduces mainly in temporary waterbodies filled by rainfall that could result from human activities (Cayuela et al., 2014; Scheele et al., 2014). Temperature and precipitation are important determinants of post-metamorphic survival and reproduction (Cayuela et al., 2016).

Bombina variegata has a complex biogeography: distinct glacial lineages were previously identified based on mitochondrial DNA (Hofman et al., 2007), including B. v. variegata in western Europe, B. v. variegata in the Carpathian Mountains, B. v. pachypus in Italy and B. v. scabra in the Balkan Peninsula.

2.2 | Occurrence data

Occurrence data were obtained from several sources for the period 1979–2016. We gathered data of the different Bombina lineages across Europe, including southern, western and part of eastern Europe (Fijarczyk et al., 2011; Hofman et al., 2007). Occurrence data of B. v. variegata ‘Carpathians’, B. v. scabra and B. v. pachypus were all obtained from the Global Biodiversity Information Facility (GBIF, http://www.gbif.org/). The data set for the western lineage of B. v. variegata, which has the largest distribution area, was completed by occurrence data from the association Faune-France, the Écrins National Park, Montagne de Reims Regional Natural Park, naturalistic associations in the region of Centre-Val de Loire, the Swiss Wildlife Mapping Center and some additional data from the northeast of France (Cayuela et al., 2020). Occurrence data were upsampled to correspond at the centroid of a 10 × 10 km grid. This transformation allows us to reduce sample bias by removing over-sampled locations and thus increases the predictive abilities of the model by reducing spatial autocorrelation (Boria et al., 2014). Because B. v. scabra and the two lineages of B. v. variegata were not distinguished in the GBIF and International Union for Conservation of Nature (IUCN), we separated them according to the genetic clusters identified by Fijarczyk et al. (2011) and Hofman et al. (2007).

After removing suspicious occurrences (i.e., older occurrences and data outside the current species range), the sample size used for modelling was as follows: 1956 occurrence data for B. v. variegata ‘western lineage’ (V), 123 for B. v. variegata ‘Carpathians’ (C), 26 for B. v. scabra (S) and 28 for B. v. pachypus (P). These final two lineages occupy the smallest distribution areas, restricted to the Balkan region and to the main part of Italy, whereas the first has the widest distribution area (see Supporting Information Appendix S1).

2.3 | Climate data

We selected nine bioclimatic variables (representing temperature and precipitation conditions) known to influence the different development stages of the Bombina toads (see Supporting Information Appendix S2 for a complete description of variables), from egg to adulthood (Cayuela et al., 2014; Kaplan & Phillips, 2006; Reyer & Barandun, 1997). These variables were obtained from ‘Climatologies at high resolution for the Earth’s land surface area’ (CHiLSA, (Karger et al., 2017), http://www.chelsa-climate.org/) for the period 1979–2013 (30 arcsec resolution, ~1 km). Climatic layers were averaged at a 10 × 10 km spatial resolution to match the species occurrence grid. Climate data were extracted at the location of lineage occurrences and used to fit the niche-based model.

We calculated the Pearson correlation coefficient among each of the bioclimatic variables, as well as their variance inflation factor (VIF) in the niche-based model, using the R packages ‘usdm’ and ‘ecospat’ (Broennimann et al., 2012; Naimi et al., 2014). Only variables with a correlation coefficient lower than 0.75 and a VIF of less than 10 were retained (Naimi et al., 2014). This method allowed us to avoid collinearity that could bias forecasts made by the niche-based model. Thus, we retained seven variables that were used throughout this study (see Appendix S2).

For past climatic conditions, we used CCSM4 and MIROC-ESM models according to the reviews of Svenning et al. (2011) and Varela et al. (2011). Indeed, these climate models are the most widely used in Europe and show less bias compared to other global circulation models (GCMs) for the LGM (Harrison et al., 2014). Both model outputs were extracted from the CHiLSA database (Karger et al., 2017) for the LGM (i.e., 21,000 years ago) and from the WorldClim database (1.4; Fick & Hijmans, 2017) for the mid-Holocene (i.e., 6,000 years ago).

We used two other GCMs for future climate conditions expected during the 21st century: CSIRO-Mk3.6.0 and HadGEM2-ES (Collier et al., 2011; Collins et al., 2008), which we extracted from the CHiLSA and WorldClim databases, respectively. These widely used GCMs were selected because they generate robust predictions (Buisson et al., 2010; Farzaneh et al., 2012) and have been recognized for generating divergent predictions (Mitchell et al., 2004). These two GCMs were used to model two future periods, 2041–2060 and 2061–2080, under two Representative Concentration Pathway (RCP) scenarios: RCP2.6 and RCP8.5, which are optimistic and pessimistic scenarios that, respectively, predict a global increase in mean temperature of 0.9–2.3°C to 3.2–5.4°C and changes in global mean precipitation correlated with changes in global mean temperature (Baek et al., 2013; Riahi et al., 2011; van Vuuren et al., 2011). Species redistribution forecasts on several GCMs and climate change scenarios account for future climate condition uncertainties in our work (Buisson et al., 2010).

2.4 | Niche similarity between lineages

Prior to modelling, we analysed the bioclimatic niches of the different lineages identified by Fijarczyk et al. (2011) and their possible
overlap using the R package ‘ecospat’. A similarity test was performed to estimate the climate niche similarity between two lineages by comparing climate conditions (defined by the first two components of a principal component analysis [PCA]) where lineages occur (with replications \( n = 1,000 \)). We calculated the similarity measure \( I \) based on the Hellinger distance to assess niche overlaps (Schoener, 1968; Warren et al., 2008). The \( I \) metric ranges from 0 (no overlap) to 1 (perfect overlap), has no biological assumptions concerning the distribution of the two tested species and only considers them as probability distributions (Warren et al., 2008).

2.5 | Niche-based modelling and forecasts

2.5.1 | General modelling

We used MaxEnt 3.4.1, one of the most used and robust models (Elith et al., 2011), which also demonstrated good performance in situations with few occurrence data (Elith et al., 2006; Hernandez et al., 2006). Our models were calibrated according to current bioclimatic conditions from all of Europe (see above), which is the best way to encompass a large range of conditions, limit model extrapolation and identify the overall global niche of the species (Pearson et al., 2002).

We ran 50 replicates with 25% of test data (random seed, bootstrap) and set the other parameters by defaults. Because MaxEnt uses an exponential model and extrapolates projections when environmental data used are outside their present range, we used the clamping method. This method considers variables outside their range as if they were at the limit of their training range and thereby limits extrapolation (Phillips, 2017).

The model performance was assessed with the area under the receiver operating characteristic curve (AUC), the true skill statistic (TSS; usdm package) and the kappa statistic (Araújo et al., 2019). The AUC ranges between 0 and 1, where 0.5 and below indicate that the model has no predictive ability better than random (Hanley & McNeil, 1982). The kappa statistic and TSS range from −1 to 1, where 1 indicates a perfect model and values of less than 0 indicate a performance no better than random predictions (Allouche et al., 2006; Cohen, 1960). We explored models’ extrapolations by identifying areas where predictors are outside of their training range with the multivariate environmental similarity surface (MESS) option.

After binarization based on the ‘maximum training sensitivity plus specificity’ threshold rule (Liu et al., 2013), we calculated the percentage of loss and gain of suitable habitats and projected these results on maps. Changes in areas of suitable habitats of each lineage were combined in one map by model and period.

2.5.2 | Species and intraspecific level

We ran separate models following the methods described above for each lineage and also without considering the intraspecific level (\( B. variegata \) sensu lato). Moreover, we ran the models with the most adapted value of regularization multiplier and feature class, according to the AICc, calculated under the R package “ENMeval” (Muscarella et al., 2014). The best regularization multipliers and feature classes were 0.5HP (Hinge plus Product features), 1T (Threshold features), 0.5LQ (Linear plus Quadratic features), 0.5HP (Hinge plus Product features) and 0.5HPQ (Hinge plus Product plus Quadratic features), respectively, for \( B. v. variegata \) ‘Carpathian’, \( B. v. pachypus \), \( B. v. scabra \), \( B. v. variegata \) ‘western lineage’ and \( B. variegata \) (i.e., species level).

2.5.3 | Limited versus unlimited dispersal scenarios

We considered the dispersal capacity based on the study from Cayuela, Bonnaire, et al. (2018), who assessed the dispersal abilities of the yellow-bellied toad at different life stages in a forest environment located in eastern France. The median dispersal event distance comprised between 444 and 695 m per year, depending on the age class (Cayuela, Bonnaire, et al., 2018). Based on these results, we considered in this study that \( B. variegata \) was able to disperse at a rate of 500 m per year, which corresponds to the distance covered by most of the individuals within a population in a favourable environment.

We took into account the dispersal ability by adding a buffer zone around the current distribution area (obtained from the IUCN) of the considered lineage. The buffer width was calculated by multiplying the number of years that separates the current period from the past or future studied period by 500 m. For each lineage at the species level, future projections were conducted in the current distribution areas with additional buffers of 15 and 30 km for the periods 2041–2060 and 2061–2080, respectively. We also ran models under unlimited dispersal for these periods.

Considering the time scale for past projections, the buffer areas were as large as Europe (equivalent to unlimited dispersal). Nevertheless, for LGM projections, the continental area has been modified by taking into account the large continental glaciers and changes in emerged land surface due to sea levels’ temporal variations (Ehlers & Gibbard, 2007; Lambeck, 2001). We considered continental glaciers to be unsuitable areas. Also, we considered islands to be unreachable and therefore unlikely to be colonized.

3 | RESULTS

3.1 | Divergence of bioclimatic niches among the Bombina glacial lineages

The first two components of the PCA explained 69% of the total variance (Figure 1). The first component represented a water balance gradient ranging from humid/fresh to dry/hot conditions. The second component described specific climate conditions in summer, distinguishing cold/dry and hot/humid locations.

We detected a significant niche similarity between the Italian (\( B. v. pachypus \)) and the Balkan (\( B. v. scabra \)) lineages, suggesting that
they occur in similar climate conditions ($I = 0.693$; see Appendix S3). Other climate niche comparisons among lineages were not significant, showing a high level of intraspecific niche differentiation within the *B. variegata* species. The Carpathian lineage had the smallest bioclimatic niche and always presented the lowest scores of niche similarity with the other three lineages (Figure 1). The maximal niche similarity for this lineage was observed with its sister lineage, western *B. v. variegata* ($I = 0.252$). Whereas the western lineage of *B. v. variegata* had the largest niche, which overlapped greatly with the other lineages, niche similarity was low ($I_{\text{min/max}} = 0.252/0.428$) as

![Bioclimatic niche similarities amongst the four Bombina variegata lineages.](image-url)
a large part of the climate niche of the western lineage is not shared with any other lineages.

### 3.2 | Current distribution models

Models at both the species and lineage levels performed well according to the mean values of the AUC, TSS and kappa, which ranged from 0.937 (±0.036) to 0.961 (±0.044), 0.760 (±0.016) to 0.923 (±0.076) and 0.412 (±0.101) to 0.781 (±0.015), respectively (see Appendix S4).

According to the models' outputs, the most suitable areas were located in the central Carpathian Mountains for the Carpathian lineage of *B. v. variegata*, in the Balkan Mountains for *B. v. scabra*, in southern Italy for *B. v. pachypus* and in western Europe for the western lineage of *B. v. variegata* (Figure 2a). Models at the species level identified suitable areas that correspond almost exclusively to those identified for the western lineages (i.e., in western Europe) (Figure 2b).

The bioclimatic variables that contributed the most to the models were ‘Precipitation of the Wettest Quarter’ (Bio16: 33.4% and 39.8%) for the Carpathian and Italian lineages, ‘Mean Temperature of the Driest Quarter’ (Bio9: 36.5%) for *B. v. scabra* and ‘Precipitation of the Driest Quarter’ (Bio17) for the western lineage of *B. v. variegata* and also for the species-level model (53.1% and 52.4%, respectively) (see Appendix S5).

### 3.3 | Projections under past climates

Due to the large range of the time period (6,000–21,000), past projections were made without any dispersal limitation (see Materials and Methods).

For models conducted at the species level, the location and percentage of suitable areas were similar to the western lineage (−93.1% to −88.2% for the LGM and −45.1% to −37.8% for the mid-Holocene).

Considering the western lineage of *B. v. variegata*, only the southwest of France was suitable 21,000 years ago (Figure 3: Table 1). CCSM4-based projections indicated that the west coast of France, a part of the Apennine Mountains in Italy and a small area of the Balkan Peninsula were also suitable, while MIROC-ESM-based projections showed additional suitable areas in the north of Italy and in the Dinaric Alps (see Appendix S6). As a result, suitable areas were smaller than they are today, with an average of ~91% to ~68.2%. During the mid-Holocene, suitable areas appeared towards the north, but these areas were smaller compared to current areas, ranging from −43% to −31.3%. For the Carpathian lineage, models' outputs showed much smaller suitable areas than the current situation, between −100% to −84.2% smaller on average. Those suitable areas were potentially located in the Pannonian Basin and in Germany 21,000 years ago (see Appendix S1). Later, 6,000 years ago, suitable areas were less restricted, with a mean percentage ranging from −80% to −20% in comparison to the current distribution. Therefore, the model showed that this lineage shifted its range towards the centre and the south of the Carpathians (Figure 3; Table 1).

The *B. v. pachypus* lineage model projections for 21,000 years ago identified larger suitable areas than the lineage's current range, mostly in the Balkan Peninsula, western France and Spain. Models made with the CCSM4 climate scenario resulted in suitable areas 50% larger than the current distribution (Figure 3; Table 1; see Appendix S6). During the mid-Holocene, models showed a reduction in suitable areas restricted to the south of Italy, resulting in a climatic suitable area of −44.1% to −26.5% compared to current areas.

For the Balkan lineage, *B. v. scabra*, a large part of the Balkans appeared suitable, including the Dinaric Alps and Rhodope Mountains during the LGM (Figure 3, see Appendix S1). Results based on climate conditions inferred from the CCSM4 model are more restricted than those based on the MIROC-ESM model (see Appendix S6). Thus, suitable areas were about 12.3%–253% larger than current areas. During the mid-Holocene, suitable areas were generally smaller than their current distribution by ~93.8% to 33.1% (Table 1). Models identified suitable areas mainly in high elevation areas such as the Rhodope but also in Ukraine (see Appendix S6).

### 3.4 | Projections under future climate change

Results correspond to models run at species or lineage level by considering either unlimited or limited dispersal.

#### 3.4.1 | Species level

According to species distribution models (SDMs) made at the species level, *B. variegata* is expected to undergo a reduction in suitable areas similar to the western lineage of *B. v. variegata*, ranging from −99.6% to −54.1% in 2061–2080 under dispersal limitation. Thus, percentages of predicted suitable areas under dispersal limitation are lower than those obtained for the southern lineages (*B. v. pachypus* and *B. v. scabra*).

Under unlimited dispersal, forecasts indicated that *B. variegata* will likely not expand its range, and whereas the western lineage of *B. v. variegata* could gain 37.6% more suitable areas in 2061–2080 according...
to the HadGEM2-ES GCM coupled with the RCP2.6, *B. variegata* (*sensu lato*) could only gain 5.5% more suitable areas. Nevertheless, losses in suitable areas are less significant under unlimited dispersal, ranging from −93.3% to 5.5% (Table 2; see Appendix S7).

### 3.4.2 Lineage level

The models showed that the two lineages of *B. v. variegata* had the lowest increase of suitable areas, with a mean percentage increase of −99.6% to 170.2% and −39.1% to 37.6%, compared to current areas, in 2061–2080 for the Carpathians and western lineage under unlimited dispersal, respectively (all scenarios and periods). Under dispersal limitations, forecasts were pessimistic, with suitable areas ranging from −100% to 44.5% compared to current areas (all scenarios, periods and lineages).

According to projections based on the RCP8.5 under unlimited dispersal, potential suitable areas were expected to be 2.3 to more than 20 times larger than current areas for *B. v. pachypus* and *B. v. scabra* (Table 2; see Appendix S8, S9). Even if suitable areas were expected to increase for these lineages according to this scenario under unlimited dispersal, the two lineages of *B. v. variegata* should undergo reduction in suitable areas from −97.7% to −59% in 2061–2080. Under dispersal limitations, forecasts obtained for the RCP8.5 were always pessimistic compared to those obtained under unlimited dispersal, even for *B. v. pachypus* and *B. v. scabra*, with a mean percentage of suitable areas between −63.2% and 1.5% in 2061–2080.

Thus, SDMs often predicted less loss of suitable areas under unlimited dispersal even if some predictions still indicated an almost complete disappearance of suitable areas (Table 2). Finally, the Carpathian lineage appears to be the most threatened, and only a few areas remain suitable in altitude according to the optimistic climate scenario, while the other models project an almost complete loss of suitable habitat in 2061–2080 under dispersal limitations (Figures 4 and 5). In the same way, the western lineage of *B. v. variegata* will also suffer from a drastic reduction in suitable habitat, and the remaining suitable areas are located in the north or altitude (Figure 5).

### TABLE 1 Predicted change of suitable areas in the past compared to the current period under unlimited dispersal.

Species models did not take into account intraspecific diversity (i.e., *Bombina variegata sensu lato*). [Colour figure can be viewed at wileyonlinelibrary.com]
4 | DISCUSSION

For this paper, we developed models that simulated the changes in suitable areas for *B. variegata* in response to past and future climate changes by testing the different lineages independently and taking into account the dispersal capacity. This study is the first forecast of the future geographic distribution of bioclimatic suitable areas for this vulnerable amphibian. This is also the first that explored the animal's

| Lineages                  | Period | RCP  | GCM       | Percentage of suitable areas compared to current (%) | Limited dispersal | Unlimited dispersal |
|---------------------------|--------|------|-----------|-----------------------------------------------------|-------------------|---------------------|
| *B. v. variegata*         |        |      |           |                                                     |                   |                     |
| "Carpathians"            | 2050   | RCP2.6 | CSIRO | -77.4                                               | 92.7              |                     |
|                           |        |       |         | HadGEM2-ES                                          | -100              | -99.6               |
|                           |        | RCP8.5 | CSIRO | -89.4                                               | -50.7             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -100              | -99.2               |
|                           | 2070   | RCP2.6 | CSIRO | -62.9                                               | 170.2             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -100              | -97.5               |
|                           |        | RCP8.5 | CSIRO | -100                                                | -76.3             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -100              | -73                 |
| *B. v. pachypus*          | 2050   | RCP2.6 | CSIRO | -16.4                                               | 543.2             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -65.8             | 257                 |
|                           |        | RCP8.5 | CSIRO | -6.1                                                | 1688.6            |                     |
|                           |        |       |         | HadGEM2-ES                                          | -77.2             | 411.4               |
|                           | 2070   | RCP2.6 | CSIRO | -28.7                                               | 1,051.7           |                     |
|                           |        |       |         | HadGEM2-ES                                          | -41.4             | 310.4               |
|                           |        | RCP8.5 | CSIRO | 1.5                                                 | 2,103             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -43.8             | 1,342.6             |
| *B. v. scabra*            | 2050   | RCP2.6 | CSIRO | -6.6                                                | 151.8             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -97.9             | 33                  |
|                           |        | RCP8.5 | CSIRO | -19.7                                               | 234.8             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -91.3             | 121                 |
|                           | 2070   | RCP2.6 | CSIRO | 44.5                                                | 176.9             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -100              | -58.8               |
|                           |        | RCP8.5 | CSIRO | -14.5                                               | 535.5             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -63.2             | 359.3               |
| *B. v. variegata*         |        |      |           |                                                     |                   |                     |
| "western"                | 2050   | RCP2.6 | CSIRO | -68.9                                               | -39.1             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -85               | 35.3                |
|                           |        | RCP8.5 | CSIRO | -92                                                 | -70.2             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -93.9             | -3.7                |
|                           | 2070   | RCP2.6 | CSIRO | -56.7                                               | 6.9               |                     |
|                           |        |       |         | HadGEM2-ES                                          | -84.4             | 37.6                |
|                           |        | RCP8.5 | CSIRO | -100                                                | -97.7             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -97.3             | -59                 |
| *Species level*          |        |      |           |                                                     |                   |                     |
| (*Bombina variegata*)     | 2050   | RCP2.6 | CSIRO | -62.4                                               | -15.1             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -86.8             | 1.7                 |
|                           |        | RCP8.5 | CSIRO | -89.5                                               | -51.2             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -94.8             | -30.5               |
|                           | 2070   | RCP2.6 | CSIRO | -54.1                                               | 5.5               |                     |
|                           |        |       |         | HadGEM2-ES                                          | -83.5             | -0.9                |
|                           |        | RCP8.5 | CSIRO | -99.6                                               | -93.3             |                     |
|                           |        |       |         | HadGEM2-ES                                          | -96.8             | -46.2               |

**TABLE 2** Predicted change of suitable areas in the future compared to the current period under limited and unlimited dispersal. Species models did not take into account intraspecific diversity (i.e., *Bombina variegata sensu lato*). [Colour figure can be viewed at wileyonlinelibrary.com]
potential distribution during the LGM and mid-Holocene period.

The results of all the models are supported by good performances of the metrics that are broadly used in modelling studies. In addition, as expected, MESS analysis indicated that reachable areas have a low degree of extrapolation, which is due to our calibration with current bioclimatic data from all of Europe (Appendix S10).

Our study revealed that considering dispersal limitation by expanding the distribution area has a broad influence on model projections of future and past distribution of *B. variegata*. Indeed, whereas suitable areas will endure in Europe over time, many of them will not be reachable for the yellow-bellied toad.

4.1 | Intraspecific level strongly impacts forecasts

The analysis of the bioclimatic niches of the lineages commonly identified in the scientific literature showed enough discrepancies to treat each lineage independently in the models, also suggesting contrasted thermal and hydric preferences between lineages. According to the niche similarity measures, each lineage had relatively little overlap, and we distinguished two main groups: the southern group including *B. v. pachypus* and *B. v. scabra* and the northern group including the other lineages. With the smallest overlap scores, the Carpathian lineage appears to be the most different, with populations living in a particular climatic environment. Our results are consistent with genetic studies (Fijarczyk et al., 2011) that showed this lineage to be the most genetically divergent. The Italian

---

**FIGURE 4** Predicted changes in habitat suitability in Europe for *Bombina variegata* lineages by 2050 (period 2041–2060) under dispersal limitation. Because predictions for each lineage were made in different areas, they were pooled in the same map. The colours show the differences from the current distributions: red shows lost suitable areas (i.e., areas that will became unsuitable), dark blue indicates suitable areas that are predicted to persist, light blue indicates new suitable areas and grey indicates areas that remain unsuitable, taking into account dispersal ability. A dashed line separates the predictions for *Bombina variegata scabra* (in the south) from those of the Carpathian and western lineages of *Bombina variegata variegata*. Maps were projected under the WGS84 system [Colour figure can be viewed at wileyonlinelibrary.com]
lineage, sometimes considered a distinct species, Bombina pachypus (Canestrelli et al., 2006), had a significantly similar bioclimatic niche than the Balkan lineage. Populations of these two lineages are geographically separated, apparently with a quasi-absence of populations between their current range areas. Thus, the proximity of these two niches is likely due to similarities in the bioclimatic conditions of the Balkan and Italian peninsulas.

Models’ outputs were different if we considered the species or the lineage level, and simulations for the LGM gave contrasting results, depending on the lineages. According to species models for past projections, no suitable area was present near the Carpathians or in the Balkan Peninsula, even if these areas had served as climatic refugia during the LGM (Hofman et al., 2007). For the Carpathian’s lineage, models have identified suitable areas in lowland regions, in the Pannonian Basin. The localization of these suitable areas is consistent with phylogeographic studies and supports the fact that this region served as a climatic refuge for ectotherms during the LGM (Fijarczyk et al., 2011; Horreo & Fitze, 2018). For B. v. pachypus, suitable areas were located in lowlands between the Tyrrenian Sea and the Apennine Mountains and in southern Italy, as suggested by genetic studies during the LGM (Canestrelli et al., 2006).

Current models at species level indicated that Carpathians and the Balkan and Italian Peninsulas were not suitable to host B. variegata populations. By contrast, when we considered the intraspecific level, we showed that the suitability of these areas was higher than expected according to the species model. These results support the fact that distinct populations of the same species may react differently to climate and habitat changes (Gotelli & Stanton-Geddes, 2015), highlighting the importance of integrating intraspecific levels when data are available. Dowell and Hekkala (2016) have shown that the predicted suitable areas differed depending on the lineages of Varanus niloticus and therefore should not face the same future threats. In our case, forecasts for the species models were similar to those obtained for the western lineage of B. v. variegata (see Appendix S10). One plausible explanation is that the western lineage of B. v. variegata, which has the largest distribution and accounts for

**FIGURE 5** Predicted distribution change in Europe by 2070 (period 2061–2080) for Bombina variegata lineages under dispersal limitation (see details in Figure 4) [Colour figure can be viewed at wileyonlinelibrary.com]
91.7% of the occurrences in Europe, largely influenced the model, hiding the diversity within the species models. Consequently, the suitable areas identified in the Italian and Balkan Peninsulas for the southern lineages have been considerably reduced, leading to pessimistic predictions.

4.2 | Improving models’ relevance with dispersal limitation

Dispersal is one of the keys that allows species to migrate and to modify their range in response to environmental changes. Several studies have discussed modelling species distributions using different dispersal scenarios. Two ‘dispersal assumptions’ are particularly widespread in modelling studies: unlimited dispersal and no dispersal. In the case of unlimited dispersal, it is recognized that forecasts tend to over-predict suitable areas and are unrealistic because the areas predicted as suitable are, in general, unreachable by the species (Araújo et al., 2006). With regard to the no dispersal scenario, forecasts often under-predict suitable areas because they are limited by the current distribution area of the species studied. Even if this latter dispersal assumption appears more realistic than that of unlimited dispersal, it suffers from severe limitations, mainly because many species have the ability to track their bioclimatic niches to some extent, emphasizing the importance of integrating a biologically relevant dispersal distance (Araújo et al., 2006).

Under unlimited dispersal, our models often predicted an increase in new suitable areas for all lineages, mainly predicted to be located in north or at altitude, out of the lineages’ current range. However, under limited dispersal scenarios, despite predicted new suitable areas, results showed a global reduction in suitable areas and sometimes an almost total disappearance of them. Consequently, three of the four lineages (B. v. scabra, Carpathians and western B. v. variegata) are predicted to lose all of their suitable areas in the future, according to at least one model. The discrepancy between the results under limited and unlimited dispersal could be explained by the dispersal abilities of the yellow-bellied toad. Indeed, even if suitable areas remain in Europe over time, many of them will likely be unreachable, according to our dispersal buffer. Thus, only a fraction of these suitable areas will likely be reached, mainly in altitude or to the north of the lineages’ current range.

The integration of a coherent dispersal distance is still a major issue in modelling studies because of the lack of data, but studies that rely on demographic or genetic approaches could help (Cayuela, Rougemont, et al., 2018). Indeed, dispersal distance can be inferred though genetic differentiation between two distinguished populations. Genetic differentiation depends on genetic drift and gene flow, and thus individuals that colonize another distant population could modify its allele frequencies and therefore its genetic differentiation (Broquet & Petit, 2009). However, because genetic differentiation also depends on genetic drift, its use as a dispersal proxy could lead to misleading results. Thus, we recommend jointly the use of genetic and demographic approaches (Cayuela, Rougemont, et al., 2018).

For instance, Cayuela et al. (2020) used a combined demographic and genetic approach to study and compare two populations of B. v. variegata, one of which exhibited dispersal syndromes. Using this method, they identified that the costs and benefits of dispersal drive the behaviour of spatially structured populations in logging environments, and they were able to distinguish the effect of genetic drift from gene flow. These results bring us to a new point: populations could differ in terms of dispersal behaviour, and those with lower dispersal abilities and weaker genetic structure are expected to be particularly vulnerable to environmental changes (Cayuela et al., 2020). The integration of the intraspecific differences in dispersal abilities using dispersal kernels would therefore pose a future challenge in obtaining more accurate and realistic SDMs. Nonetheless, integration of intraspecific differences would require precise knowledge of the dispersal behaviour of populations across the range extent of the species studied.

In our study, we considered a dispersal distance of 500 m per year. Even though this distance is biologically relevant, it was assessed in a homogenous landscape, while human infrastructures are known to limit dispersal events (Cayuela, Bonnaire, et al., 2018; Trochet et al., 2019). Thus, at a smaller scale, the integration of the landscape resistance could also allow us to obtain more biologically relevant predictions. According to the negative impact of human infrastructure on animal movements, the width of the dispersal buffers may be too large in some regions. Nevertheless, while human infrastructures have negative effects on dispersal events, logging activities could generate waterbodies (for instance ruts) used for reproduction (Cayuela et al., 2014). Thus, landscape management could counterbalance human impacts in harvested forest that were supposed to provide high quality habitat especially during drought (Scheele et al., 2014).

5 | CONCLUSION

We demonstrated that incorporating intraspecific levels into niche-based models is a valuable approach to obtaining more biologically relevant projections in response to environmental changes, especially when the species has lineages with divergent bioclimatic niches across its distribution. Predictions at the intraspecific level were generally more optimistic than those made at the species level, notably by their limited decline in response to future climate change. Taking into account each lineage separately reflected adaptations to ‘regional’ climates and allowed us to observe specific responses rather than an average global response. However, when dispersal ability was considered, future projections of the two sister lineages of B. v. variegata, particularly the one from the Carpathians, showed a drastic reduction in suitable areas, which could lead to extinction in less than 70 years. In the face of unprecedentedly high current climate velocity, further studies should focus on obtaining better knowledge about species dispersal. Finally, our approach is particularly valuable for species such as European amphibians that exhibit a complex biogeography inherited by isolation and recolonization.
events that occurred during Pleistocene glaciation and that resulted in distinct lineages.

ACKNOWLEDGEMENTS

We thank Matthieu Willmes from the Direction Régionale de l’Environnement, de l’Aménagement et du Logement Centre-Val de Loire (DREAL), the Office National des Forêts (ONF), Faune-France and all of the naturalistic associations and parks which contributed to the project by sharing the data of occurrence of the species. The funding was supported by the Region Centre-Val de Loire (France) under the acronym MODELISe. RB’s work was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

DATA AVAILABILITY STATEMENT

The data on which this paper is based are available in the Figshare digital repository available at https://doi.org/10.6084/m9.figshare.12982016.v2.

ORCID

Igor Boyer https://orcid.org/0000-0002-2870-9391
Hugo Cayuela https://orcid.org/0000-0002-3529-0736
Romain Bertrand https://orcid.org/0000-0003-2386-9174
Francis Isselin-Nondedeu https://orcid.org/0000-0002-9513-4524

REFERENCES

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). *Journal of Applied Ecology*, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Araújo, M. B., Anderson, R. P., Mário Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. *Science. Advances*, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858

Araújo, M. B., Thuiller, W., & Pearson, R. G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. *Journal of Biogeography*, 33(10), 1712–1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x

Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C. H., Kwon, W.-T., Marzin, C., Gan, S.-Y., Kim, M.-J., Choi, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S., & Byun, Y.-H. (2013). Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. *Asia-Pacific Journal of Atmospheric Sciences*, 49(5), 603–618. https://doi.org/10.1007/s13143-013-0053-7

Beebee, T. J. C. (1995). Amphibian breeding and climate. *Nature*, 374(6519), 219–220. https://doi.org/10.1038/374219a0

Bestion, E., Clobert, J., & Cote, J. (2015). Dispersal response to climate change: Scaling down to intraspecific variation. *Ecology Letters*, 18(11), 1226–1233. https://doi.org/10.1111/ele.12502

Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. *Diversity*, 2(2), 281–313. https://doi.org/10.3390/d2020281

Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. *Ecological Modelling*, 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data: Measuring niche overlap. *Global Ecology and Biogeography*, 21(4), 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

Broquet, T., & Petit, E. J. (2009). Molecular estimation of dispersal for ecology and population genetics. *Annual Review of Ecology, Evolution, and Systematics*, 40(1), 193–216. https://doi.org/10.1146/annurev.evo.080608.134912

Buisson, L., Thuiller, W., Casajus, N., Lek, S., & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. *Global Change Biology*, 16(4), 1145–1157. https://doi.org/10.1111/j.1365-2486.2009.02000.x

Canestrelli, D., Cimmaruta, R., Costantini, V., & Nascetti, G. (2006). Genetic diversity and phylogeography of the Apennine yellow-bellied toad Bombina pachypus, with implications for conservation. *Molecular Ecology*, 15(12), 3741–3754. https://doi.org/10.1111/j.1365-294X.2006.03055.x

Cayuela, H., Arsovski, D., Thirion, J.-M., Bonnaire, E., Pichenot, J., Boitaud, S., Mlia, C., Joly, P., & Besnard, A. (2016). Demographic responses to weather fluctuations are context dependent in a long-lived amphibian. *Global Change Biology*, 22(6), 2676–2687. https://doi.org/10.1111/gcb.13290

Cayuela, H., Besnard, A., Bonnaire, E., Perret, H., Rivoalen, J., Mlia, C., & Joly, P. (2014). To breed or not to breed: Past reproductive status and environmental cues drive current breeding decisions in a long-lived amphibian. *Oecologia*, 176(1), 107–116. https://doi.org/10.1007/s00442-014-3003-x

Cayuela, H., Besnard, A., Cote, J., Laporte, M., Bonnaire, E., Pichenot, J., & Léna, J.-P. (2020). Anthropogenic disturbance drives dispersal syndromes, demography, and gene flow in amphibian populations. *Ecological Monographs*, 90(2), https://doi.org/10.1002/ecm.14848

Cayuela, H., Bonnaire, E., & Besnard, A. (2018). Toads and roads: Transport infrastructure severely impacts dispersal regardless of life stage. *BioRxiv*, https://doi.org/10.1101/349639

Cayuela, H., Rougemont, Q., Prunier, J. G., Moore, J.-S., Clobert, J., Besnard, A., & Bernatchez, L. (2018). Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. *Molecular Ecology*, 27(20), 3976–4010. https://doi.org/10.1111/mec.14848

Cohen, J. (1960). A coefficient of agreement for Nominal Scales. *Educational and Psychological Measurement*, 20(1), 37–46. https://doi.org/10.1177/00131644600200104

Collier, M. A., Jeffrey, S. J., Rotstam, L. D., Wong, K.-H., Dravitzi, S. M., Moeseneder, C., & Atif, M. (2011). The CSIRO-Mk3.6.0 Atmospheric-Ocean GCM: Participation in CMIP5 and data publication. *International Congress on Modelling and Simulation-MODSIM*, 7.

Collins, W. J., Bellouin, N., Doutriaux-Bouchet, M., Gedney, N., Hinton, T., Jones, C. D., & Kim, J. (2008). Evaluation of HadGEM2 model. Hadley Cent. Tech. Note, 47.

Dowell, S. A., & Hekkala, E. R. (2016). Divergent lineages and conserved niches: Using ecological niche modeling to examine the evolutionary patterns of the Nile monitor (Varanus niloticus). *Evolutionary Ecology*, 30(3), 471–485. https://doi.org/10.1007/s10682-016-9818-7

Ehlers, J., & Gibbard, P. L. (2007). The extent and chronology of Cenozoic Global Glaciation. *Quaternary International*, 164–165, 6–20. https://doi.org/10.1016/j.quaint.2006.10.008
Scheele, B. C., Boyd, C. E., Fischer, J., Fletcher, A. W., Hanspach, J., & Hartel, T. (2014). Identifying core habitat before it’s too late: The case of Bombina variegata, an internationally endangered amphibian. Biodiversity and Conservation, 23(3), 775–780. https://doi.org/10.1007/s10531-014-0624-7

Schoener, T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49(4), 704–726. https://doi.org/10.2307/1935534

Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D., & Normand, S. (2011). Applications of species distribution modeling to paleobiology. Quaternary Science Reviews, 30(21–22), 2930–2947. https://doi.org/10.1016/j.quascirev.2011.06.012

Travis, J. M. J., Delgado, M., Bocedi, G., Baguette, M., Bartoń, K., Bonte, D., Boulangeat, I., Hodgson, J. A., Kubisch, A., Penteriani, V., Saastamoinen, M., Stevens, V. M., & Bullock, J. M. (2013). Dispersal and species’ responses to climate change. Oikos, 122(11), 1532–1540. https://doi.org/10.1111/j.1600-0706.2013.00399.x

Trochet, A., Dupoué, A., Souchet, J., Bertrand, R., Deluén, M., Murarasu, S., Calvez, O., Martinez-Silvestre, A., Verdaguier-Foz, I., Darnet, E., Chevaller, H. L., Mossoll-Torres, M., Guillaume, O., & Aubret, F. (2018). Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. Journal of Thermal Biology, 77, 38–44. https://doi.org/10.1016/j.jtherbio.2018.08.002

Trochet, A., Le Chevalier, H., Calvez, O., Ribéron, A., Bertrand, R., & Blanchet, S. (2019). Influence of substrate types and morphological traits on movement behavior in a toad and newt species. PeerJ, 6, e6053. https://doi.org/10.7717/peerj.6053

Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Peer, G., Singer, A., Bridle, J. R., Crozier, L. G., De Meester, L., Godsoe, W., Gonzalez, A., Hellmann, J. J., Holt, R. D., Huth, A., Johst, K., Krug, C. B., Leadley, P. W., Palmer, S. C. F., Pantel, J. H., ... Travis, J. M. J. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), https://doi.org/10.1126/science.aad8466

Urban, M. C., Richardson, J. L., & Freidenfelds, N. A. (2014). Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evolutionary Applications, 7(1), 88–103. https://doi.org/10.1111/eva.12114

van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Klein Goldewijk, K., Hof, A., Mendoza Beltran, A., Oostenrijk, R., & van Ruijven, B. (2011). RCP2.6: Exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 109(1–2), 95–116. https://doi.org/10.1007/s10584-011-0152-3

Varela, S., Lobo, J. M., & Hortal, J. (2011). Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3–4), 451–463. https://doi.org/10.1016/j.palaeo.2011.07.021

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

Wilson, R. S. (2001). Geographic variation in thermal sensitivity of frog jumping. Journal of Experimental Biology, 204(24), 10.

Zeisset, I., & Beebee, T. J. C. (2008). Amphibian phylogeography: A model for understanding historical aspects of species distributions. Heredity, 101(2), 109–119. https://doi.org/10.1038/hdy.2008.30

BOYER ET AL.

BIOSKETCH

Igor Boyer is a PhD student in Ecology at the CItés, TERritoires, Environnement et Sociétés (CITERES) lab of the National Center for Scientific Research (CNRS). He is particularly interested in the consequences of global changes on future distribution of European herpetofauna. He asks questions on species biogeography assessing the environmental factors that shape their distributions and therefore the potential consequences of future changes using modeling approaches at different geographical scales.

Author contributions: I.B., F.I.N. and H.C. conceived the ideas; I.B. performed the analysis, R.B., F.I.N. co-analysed some of the data; and I.B. wrote, R.B., H.C. and F.I.N reviewed the paper. F.I.N. managed the whole project.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Boyer I, Cayuela H, Bertrand R, Isselin-Nondedeu F. Improving biological relevance of model projections in response to climate change by considering dispersal amongst lineages in an amphibian. J Biogeogr. 2021:48:561–576. https://doi.org/10.1111/jbi.14019