Comparison of changes in the oxygenated hemoglobin level during a ‘modified rock-paper-scissors task’ between healthy subjects and patients with schizophrenia

Mamoru Sato, MD,1,2 Yoshihisa Shoji, MD, PhD1,2* Kiichiro Morita, MD, PhD,1,2 Yusuke Kato, MD, PhD,1,2 Youhei Ishii, PhD,2 Shinya Nakano, MA2 and Naohisa Uchimura, MD, PhD1,2

1Department of Neuropsychiatry, Kurume University School of Medicine, and 2Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Kurume, Japan

Aim: The purpose of this study, using single-event-related near-infrared spectroscopy (NIRS), was to examine the psychophysiological and social function assessment of 30 schizophrenic patients during a modified rock-paper-scissors task.

Methods: We set up a screen in front of the subjects, on which pictures of hand-gestures for rock, paper, and scissors were randomly presented. Subjects were asked to give verbal answers under the conditions of win, lose, and draw, respectively. Using the 44-channel NIRS system, we evaluated the maximum amplitude of oxygenated hemoglobin, latency, and the area based on the arithmetic mean of resulting values after the task between 30 outpatients with schizophrenia and 30 healthy subjects, and analyzed the frontal pole area, dorsolateral prefrontal region, and parietal association area as regions of interest (ROI).

Results: In schizophrenic patients, oxygenated hemoglobin changes (Δoxy-Hb) when losing the task showed a significantly lower level of Δoxy-Hb in ROI than controls. In addition, a significant positive correlation was observed between the Global Assessment of Functioning Scale and Δoxy-Hb in ROI, and a significant negative correlation was observed between the Negative Syndrome scale of the Positive and Negative Syndrome Scale and Δoxy-Hb in ROI.

Conclusion: From these results, we conclude that Δoxy-Hb levels when performing the modified rock-paper-scissors task assessed using NIRS may be a useful psychophysiological marker to evaluate the cognitive and social functions of schizophrenic patients.

Key words: near-infrared spectroscopy, rock-paper-scissors task, schizophrenia, social function, working memory.

ROCK-PAPER-SCISSORS (RPS) IS a very popular game in which the winner and loser are decided based on hand movements, and can be played over a wide age range from children to adults. There are three hand movements (rock, paper, and scissors), and the winner and loser are decided based on these movements: Rock wins against scissors, but loses against paper because it cannot be cut by scissors, but can be wrapped in paper. Similarly, scissors win against paper and lose against rock, and paper wins against rock and loses against scissors. The opponent’s hands are simultaneously extended when calling out.1 This game is widely performed worldwide and is known as rock-paper-scissors.

*Correspondence: Yoshihisa Shoji, MD, PhD, Department of Neuropsychiatry, Kurume University School of Medicine, Asahi-machi, Kurume 830-0011, Japan. Email: yshoji@med.kurume-u.ac.jp
Received 26 June 2017; revised 21 February 2018; accepted 22 March 2018.

© 2018 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
(or scissors-paper-stone) in the English-speaking world. Thus, it is termed RPS in this report.

A delay in showing a hand command after confirming the command of the opponent is generally regarded as cheating. Such modified rock-paper-scissors (mRPS) is also performed using three commands (win, lose, and draw). The subjects must perform the task while recognizing what the presented hand is. For this, attention, an executive function based on the memory of the presented hand, is important, and working memory (WM) should be considered. WM is the function of retaining information and achieving tasks while recalling learned knowledge and experience from memory. In addition, WM was reported to be involved in functions of focused attention and switching attention, has been proposed to support goal-oriented behavior, and is considered the main function necessary to perform mRPS. Furthermore, as an important characteristic of this mRPS, the practitioner can control the result of the game. Therefore, depending on which result the practitioner selects, a different cognitive psychological process is activated. For example, when selecting a win, although the practitioner presents their hand according to the desire to try to win as well as the normal RPS, when selecting to lose, they have to present their hand while resisting their desire to win. In the case of a draw, the simple strategy is to copy the hand that has been presented, although they have to control their desire and behavior.

In previous studies using mRPS, Matsubara et al. suggested the difficulty of actively losing when the desire is to win, and reported an association between cognitive conflict and inhibitory function. Furthermore, it was verified that mRPS is associated with an increase of cerebral blood flow in the prefrontal cortex (PFC) using near-infrared spectroscopy (NIRS), and some theorists argue that an impaired ability to play mRPS is a useful tool for assessing the frontal lobe function. Kikuchi et al. investigated brain activity during mRPS performance in healthy people using NIRS for the first time and reported that modified lose RPS leads to greater activation of the dorsolateral prefrontal region than modified win RPS. The brain function during mRPS in healthy people in past studies using functional magnetic resonance imaging (fMRI) showed a significant increase in activity in the medial frontal gyrus (Brodmann area [BA] 10), left ventrolateral frontal gyrus (BA 11/47), and left pallidum under the win condition, in the bilateral supplementary motor area under the draw condition, and in the inferior frontal gyrus and left supplementary motor area under the lose condition. In this way, mRPS activates a wide range of activities in the cognitive task area and motion-related area of the frontal lobe. Furthermore, in recent years, mRPS has sometimes been applied in clinical practice, such as severity assessment of cognitive impairment in patients with depression and rehabilitation due to frontal lobe injuries or in elderly people with dementia.

On the other hand, schizophrenia widely affects higher brain functions, such as attention function, executive function, monitoring, memory, and language. As a result, patients suffer disadvantages in daily life. It is thought that the impairment causes social dysfunction, and that this is closely associated with the function of the PFC. Moreover, based on several cognitive tasks that activate the frontal lobe, schizophrenia is reportedly related to dysfunction of the PFC, encompassing the sites of executive function and WM. Takizawa et al. reported the results of a comparison between schizophrenia patients and a healthy group regarding the frontal lobe function during a verbal fluency task using multi-channel NIRS; in schizophrenia, changes in oxygenated hemoglobin (oxy-Hb) were inefficient, and this was consistent with the results of Suto et al. Thus, schizophrenia is considered to impair frontal lobe function and the prefrontal area–parietal network of WM. Therefore, further clarification of this feature may contribute to the pathological assessment of schizophrenia. In addition, it has been reported that the WM failure of schizophrenia is more prominent in visuospatial WM than verbal WM. We selected mRPS, a visual and inhibitory task, as a challenge because, to our knowledge, no studies have evaluated the psychophysiological effect of schizophrenia using mRPS in detail. In this study, using single-event-related near-infrared spectroscopy, we investigated the psychophysiology and social function of schizophrenic patients, and clarified activated brain areas during mRPS tasks.

METHOD

Subjects

The study subjects included 30 Japanese outpatients who visited Kurume University Hospital and were
given a diagnosis of schizophrenia (22 paranoid type, eight non-paranoid type, 15 women and 15 men; mean age, 33.6 ± 8.5 years) by two trained psychiatrists based on the ICD-10,21 and the same number of age-matched healthy control subjects (16 women and 14 men; mean age, 31.6 ± 8.5 years). The patients were recruited during the 3 years from 2013 to 2016 based on consecutive referrals. All were native Japanese speakers, and were right-handed according to the Edinburgh Handedness Inventory.22 All of the patients were taking atypical antipsychotics (i.e., risperidone \([n = 20]\), olanzapine \([n = 10]\)). The mean daily dosage of antipsychotic drugs in terms of the risperidone equivalent was 4.4 ± 1.3 mg. Their mean intelligence quotient values were evaluated using the Japanese version of the National Adult Reading Test.23 The exclusion criteria were: comorbid neurological illness, a history of previous traumatic head injuries, seizures, substance and/or alcohol abuse, dementia, and anemia. Healthy control subjects had no history of mental illness. In addition, visual impairment was not observed in either group. Psychiatric symptoms and the social function of patients were evaluated using the Positive and Negative Syndrome Scale (PANSS)24 and the Global Assessment of Functioning (GAF) Scale (DSM-IV)25 on the same day as measurement by NIRS. Demographic and clinical characteristics of all subjects are shown in Table 1. We informed all subjects of the study in written form, and obtained their consent. The study was performed with the approval of the ethical committee of Kurume University (10086).

NIRS measurement

In recent NIRS studies, the activity of oxy-Hb has been used as an indicator of hemodynamic response rather than deoxygenated hemoglobin; in the present study, we used oxy-Hb as an indicator of cerebral activation.26,27 We measured relative changes in oxy-Hb (Δoxy-Hb) during the task, which were calculated from the difference in light-absorption characteristics based on the modified Beer–Lambert law, using the 44-channel NIRS system (ETG-4000, Hitachi Medical Co., Tokyo, Japan). The distance between the injector and detection probe was 3 cm, and we defined the midpoint as the channel (ch.). When near-infrared light characterized by a high bio-permeability was projected from the scalp, it was considered to reach the cerebral cortex located approximately 2–3 cm deep.28 The probes were placed on the frontotemporal region of the subjects, and the most anteroinferior channels were located on the line connecting the T3-Fp1-FPZ-Fp2-T4 line in the International 10–20 system for electroencephalography.29 During the NIRS measurement, the subject’s jaw was lightly fixed using a chin stand to minimize movement artifacts. For NIRS measurement, we measured the whole recording unit, and established three areas as regions of interest (ROI): the frontal pole area (left ch. 19 and right ch. 22),

Table 1. Patient demographics and clinical characteristics	Patients (mean ± SD)	Controls (mean ± SD)	P-value
Age (years)	33.6 ± 8.5	31.6 ± 8.5	NS
Sex (F/M)	15/15	14/16	NS
Duration of illness (years)	7.4 ± 4.0	NA	—
Education (years)	14.4 ± 1.5	13.6 ± 1.3	0.0024
Estimated IQ (JART)	93.0 ± 7.1	101 ± 8.5	0.0009
PANSS			
Positive score	20.1 ± 4.1	NA	—
Negative score	18.1 ± 2.8	NA	—
General psychopathology score	45.6 ± 5.6	NA	—
GAF	44.8 ± 9.4	NA	—
Antipsychotics (risperidone equivalents; mg/day)	4.4 ± 1.3	NA	—

Data presented as means ± SD. P < 0.05, comparing patients with controls.
F, female; GAF, Global Assessment of Functioning Scale; IQ, intelligence quotient; JART, Japanese version of the National Adult Reading Test; M, male; NA, not applicable; NS, not significant; PANSS, Positive and Negative Syndrome Scale.
the dorsolateral PFC (DLPFC) region (left ch. 11 and right ch. 12), and the anterior and middle parietal lobe regions equivalent to the parietal association area (left ch. 9 and right ch. 5), since the prefrontal–parietal network is considered to be important for WM associated with visual stimuli (Fig. 1). In addition, the probe position was decided based on the association between the channel at which changes in the oxy-Hb level were observed during a right finger movement task and the anatomical region. The right finger movement task was correlated with the left motor cortex, and the channel corresponding to BA 4 was defined as a region near ch. 3 and ch. 8, based on which the middle frontal region, including the dorsolateral prefrontal area (BA 9/46), was considered to be correlated with left ch. 11 and right ch. 12. We performed the finger movement task in all cases.

With reference to our previous research, the pre-task baseline was set to 1 s before presenting the stimulus, and the post-task baseline was set to a period of 11 s from 10 s after the stimulus presentation. Linear fitting was applied to the data between these two baselines. For each channel relation with the anatomical region, NIRS data were converted to a normalized brain image template (3-D composition indication unit; Hitachi).

Task design
We selected mRPS as a cognitive task, and the brain activity was measured during task performance. As a method of NIRS measurement, we chose a single-event-related design. This is a method to apply short stimulations one by one in a control state, and multiple and weak stimulations are required compared with the block design. Although it removes artifacts on analysis, there is a merit in that waveforms can be precisely analyzed one by one, and it is considered to be able to capture brain activity more sensitively. Each subject performed the task while sitting on a chair in the examination room, which blocked sounds or unnecessary visual stimuli. We set up a screen in front of the subjects, on which pictures of hand-gestures for rock, paper, and scissors were randomly presented. In the resting condition, subjects were instructed to continuously gaze at a black dot on the monitor for 12 s, and required to say ‘A- I- U- E- O’ (in Japanese) repeatedly. During the mRPS task, subjects were instructed to verbally respond with one of the three choices (i.e., rock, paper, or scissors) as soon as possible when they saw a picture presented on the monitor for 0.3 s as a stimulus. The task consisted of three types of condition (win, draw, and lose), and the subject was exposed to each condition 20 times. Specifically, in the win condition, when the ‘rock’ was presented, the subjects answered ‘paper’ immediately, and in the same way, ‘paper’ for ‘scissors,’ and ‘scissors’ for ‘rock.’ Draw and lose conditions were also examined in the same way. In addition, in order to prevent any effect of the task presentation order, each condition was performed randomly. The task design is shown in Figure 2.

Figure 1. (a) The probe-holder worn by the participant. (b) Location of channels, and regions of interest (ROI).
In data analysis, the maximum amplitude, latency, and area were determined referring to the event-related potential employed by Shoji et al.\(^3\) To reduce variation among one-word stimulations, single stimulation was loaded 20 times, and data were determined from the averaged waveform of 20 stimulations, similarly to analysis of the p300 component of the event-related potential. However, as variation of this event-related potential is large between and within individuals, it is necessary to set a time limit and analyze the area to achieve reproducibility. Thus, the time limit was set as the time to the mean maximum amplitude from stimulus presentation, and the approximate value of the area was used as an analytical element. In a pilot study, the maximum latency after stimulus presentation was 5.6 ± 0.58 s in healthy subjects. Based on this, each 100-ms increment over the 6-s period after stimulus presentation was determined and regarded as Δoxy-Hb.

Statistical analysis

For statistical analysis, two-way layout analysis of variance (two-way ANOVA) with the tasks was performed between each ROI and each group or diagnosis and task condition. A significance level below 5% was regarded as significant in two-way ANOVA. For multiple comparison, the Bonferroni/Dunn method was used for evaluation among tasks in each group, and values below 1.67 (5/3)% after correction with multiple comparison were regarded as significant. The correlation between Δoxy-Hb and the PANSS score/GAF score is expressed as the Pearson’s product-moment correlation coefficient with reference to Takei’s study.\(^3\)\(^4\) Statistical-analysis software, STAT VIEW 5.0 (SAS Institute, Cary, NC, USA) was used. The data of subjects with an mRPS success rate exceeding 80% in all tasks were included in analysis.

RESULTS

Task performances

To compare performance differences, we compared the success rate of each group’s tasks. During the win condition, task performance was 20 ± 0 in healthy subjects and 19.93 ± 0.25 in patients (\(F = 2.071, P > 0.05\)). During the draw condition, task performance was 19.76 ± 0.50 in healthy subjects and 19.66 ± 0.61 in patients (\(F = 0.482, P > 0.05\)). During the lose condition, task performance was 19.66 ± 0.48 in healthy subjects and 19.33 ± 0.92 in patients (\(F = 3.085, P < 0.05\)). All subjects had a response rate above 80%. There were no significant differences between healthy subjects and the patient group during the three conditions.

Activation of ROI during mRPS tasks

In the frontal pole region

In the mRPS task, two-way ANOVA revealed a significant main effect of ‘group’ in the following channel, but no significant interactions. The area of Δoxy-Hb in patients was significantly smaller than that in the control group when the assigned criterion was to lose (left ch. 19: \(F = 22.933, P < 0.0001\); right ch. 22: \(F = 15.088, P = 0.0003\)). In the control group, there were significant differences between the conditions (left ch. 19: lose vs win, \(P < 0.0001\); lose vs draw, \(P < 0.0001\); right ch. 22: lose vs win, \(P < 0.0001\); lose vs draw, \(P < 0.0001\)). The
maximum amplitude was significantly higher in the control group than in the patient group when the assigned criterion was to lose (left ch. 19: $F = 9.660, P = 0.0029$; right ch. 22: $F = 8.804, P = 0.0043$). In the control group, there were significant differences between the conditions (left ch. 19: lose vs win, $P < 0.0001$; lose vs draw, $P < 0.0001$; right ch. 22: lose vs win, $P < 0.0001$; lose vs draw, $P < 0.0001$). The latency time was significantly shorter in the control group than in the patient group for left ch. 19 when the assigned criterion was to lose ($F = 6.732, P = 0.0119$). At right ch. 22, the latency time of the control group was significantly shorter than in the patient group when the assigned criterion was to win ($F = 6.801, P = 0.011$).

In the dorsolateral prefrontal region

In the mRPS task, two-way ANOVA revealed a significant main effect of ‘group’ in the following channels, but no significant interactions. The area of Δoxy-Hb in patients was significantly smaller than in the control group when the assigned criterion was to lose (left ch. 11: $F = 22.099, P < 0.0001$; right ch. 12: $F = 15.117, P = 0.0003$). In the control group, there were significant differences between the conditions (left ch. 11: lose vs win, $P = 0.0008$; lose vs draw, $P < 0.0001$; right ch. 12: lose vs draw, $P < 0.0001$). The maximum amplitude was significantly higher in the control group than in the patient group for all channels when the assigned criterion was to lose. In the control group, the maximum amplitude was significantly higher for left ch. 9 when the assigned criterion was to lose compared with that to win ($P = 0.0012$) or draw ($P = 0.001$). In the same way, the maximum amplitude was significantly higher for right ch. 5 when the assigned criterion was to lose compared with that to draw ($P = 0.0014$). The latency time was significantly shorter in the control group than in the patient group when the assigned criterion was to lose ($F = 6.745, P = 0.0016$; right ch. 5: $F = 7.842, P = 0.0068$). In the control group, the latency time was significantly shorter for left ch. 9 when the assigned criterion was to lose compared with that to win ($P = 0.0012$) or draw ($P = 0.001$). The latency time was significantly shorter for right ch. 5 when the assigned criterion was to lose compared with that to win ($P = 0.0028$) or draw ($P = 0.0024$).

The integrated waveforms of each group in ROI and comparison among the tasks are shown in Figure 3a,b. Figure 3a shows integrated waveforms in the controls during each task, and Figure 3b shows integrated waveforms in the patients. Figure 3c shows Δoxy-Hb in the control group during the lose task, and it was significantly higher than in the other tasks, but no significant change was observed in the patient group.

Relation to social function

Correlation between Δoxy-Hb and PANSS scores or GAF scores

Under the win condition, Δoxy-Hb of left ch. 11, left ch. 19, and right ch. 5 showed significant negative correlations with Negative PANSS scores in patients (left ch. 11: $r = -0.431, P = 0.0123$; left ch. 19: $r = -0.440, P = 0.0016$; right ch. 5: $r = -0.315, P = 0.047$). Under the draw condition, the Δoxy-Hb of left ch. 9, left ch. 11, left ch. 19, and right ch. 22 showed significant negative correlations with the Negative PANSS scores in patients (left ch. 9: $r = -0.316, P = 0.0123$; left ch. 11: $r = -0.431, P = 0.0004$; left ch. 19: $r = -0.440, P = 0.0048$; right ch. 22: $r = -0.315, P = 0.047$). In the control group, there were significant differences between the conditions (left ch. 9: lose vs draw, $P = 0.0045$; right ch. 5: lose vs draw, $P = 0.0014$). The maximum amplitude was significantly higher in the control group than in the patient group for all channels when the assigned criterion was to lose (left ch. 9: $F = 6.865, P = 0.0110$; right ch. 5: $F = 5.038, P = 0.0472$). In the control group, there were significant differences between the conditions (left ch. 9: lose vs draw, $P = 0.0045$; right ch. 5: lose vs draw, $P = 0.0014$). The maximum amplitude was significantly higher in the control group than in the patient group for all channels when the assigned criterion was to lose (left ch. 9: $F = 6.865, P = 0.0110$; right ch. 5: $F = 5.038, P = 0.0472$). In the control group, the maximum amplitude was significantly higher for left ch. 9 when the assigned criterion was to lose compared with that to win ($P = 0.0012$) or draw ($P = 0.001$). In the same way, the maximum amplitude was significantly higher for right ch. 5 when the assigned criterion was to lose compared with that to draw ($P = 0.0014$). The latency time was significantly shorter in the control group than in the patient group when the assigned criterion was to lose ($F = 6.745, P = 0.0016$; right ch. 5: $F = 7.842, P = 0.0068$). In the control group, the latency time was significantly shorter for left ch. 9 when the assigned criterion was to lose compared with that to win ($P = 0.0012$) or draw ($P = 0.001$). The latency time was significantly shorter for right ch. 5 when the assigned criterion was to lose compared with that to win ($P = 0.0028$) or draw ($P = 0.0024$).
Under the lose condition, the Δoxy-Hb of left ch. 11, left ch. 19, and right ch. 5 showed significant negative correlations with Negative PANSS scores in patients (left ch. 11: $r = -0.431$, $P = 0.0004$; left ch. 19: $r = -0.440$, $P = 0.0048$; right ch. 5: $r = -0.532$, $P = 0.0017$). However, there were no correlations with the Positive PANSS scores or General Psychopathology PANSS scores. Furthermore, in the lose condition, a significant positive correlation was observed between Δoxy-Hb and GAF at left ch. 11 ($r = 0.502$, $P = 0.0043$), left ch. 19 ($r = 0.427$, $P = 0.0014$), and right ch. 5 ($r = 0.495$, $P = 0.004$; Fig. 4).

DISCUSSION

The Δoxy-Hb levels during the mRPS tasks employing the event-related design were compared between the schizophrenia and healthy groups using multi-channel NIRS. In the task, following the instructions, the subject responded orally to a visual hand-shaped stimulation presented on the screen. The subject had to memorize the hand command presented on the screen and carefully execute the task, suggesting the close involvement of WM. Furthermore, unlike conventional tasks, with oral replies only we reduced the influence of the motor cortex related to the movement of the hand and were able to more accurately evaluate the subject’s brain activity during the task.

In the healthy group, the blood flow level significantly increased during the task to lose compared with the tasks to win and draw in the ROI. As the behavior to lose is different from the normal rule, ‘winning is everything,’ the subject had to perform the task while controlling their desire to win, which required inhibition of the routine, the habitual cognitive tendency (i.e., inhibition of stereotypes). The observed increase in the PFC blood flow level during the condition to lose may have been associated with the control of impulses and the inhibitory function required to perform the task. In the DLPFC, which plays the most central role in WM, the Δoxy-Hb level significantly increased during the condition to lose compared with the tasks to win and draw. According to the multicomponent model of WM established by Baddeley, the DLPFC represents the action of the central executive function.
Cognitive dysfunction in schizophrenia

In the schizophrenia group, a significant decrease in blood flow was observed in the bilateral prefrontal cortical areas and dorsolateral prefrontal areas during the task to lose. Deficiency of the frontal lobe function was observed in a study reported by Okada et al., in which schizophrenic patients and healthy subjects were initially evaluated using a mirror-drawing task and NIRS. The presence of frontal lobe dysfunction in schizophrenia was also reported by later studies using NIRS and various cognitive tasks, such as verbal fluency, Go/No Go, continuous performance tasks and the Trail-Making Test. These also suggest the presence of impairments in inhibitory and attention-related executive functions in schizophrenia patients, reflected in the impairment of WM. The decrease in the Δoxy-Hb during the condition to lose in the schizophrenia group may have been due to the difference in the difficulty of the task. Similarly, the relation between the WM load and frontal lobe activity was presented using an inverted U curve (by Van Snellenberg et al.). The curve shifted leftward in the schizophrenia group, suggesting that the brain activity peaked at a lower load level than that in the healthy group (i.e., the condition to lose may have been too difficult for the schizophrenia group). Actually, after completing the tasks, many patients stated their subjective impression that the condition to lose was difficult. Cerebral blood flow in the anterior-middle region of the parietal lobe, considered to correspond to the parietal association area, also most markedly increased during the condition to lose in the healthy group, but no significant difference was noted among the conditions. In the patient group, the increase in Δoxy-Hb during the task to lose was smaller than that in the healthy group. Particularly, the change was smaller at right ch. 5 than left ch. 9, showing laterality. Baker et al. evaluated the characteristics of functional associativity of 122 cerebral cortical regions in schizophrenia patients during rest with their eyes open using fMRI. They observed that functional associativity was reduced in the frontal-parietal control network, including the dorsolateral prefrontal, posterior medial prefrontal, temporoparietal cortices, and part of the posterior temporal cortex, suggesting that impairment of information processing, including the frontal-parietal network, in schizophrenia patients represents vulnerability of the neural basis, in addition to frontal lobe dysfunction. Based on this, we expected an increase in cerebral blood flow during the condition to lose compared with those to draw and win, but no significant difference was observed. A possible reason for this is as follows: As capacity resource is limited, the resource may have been more preferentially distributed to the central executive function and control of impulse and inhibitory functions located mainly in the anterior cingulate gyrus than to the prefrontal area-parietal network during the task to lose, because this is more difficult than the other tasks. Accordingly, it was assumed that although blood flow most markedly increased during the condition to lose in the anterior-middle region of the parietal lobe, the change was not significant.

In patients, the area, maximum amplitude, and latency obtained from measurements in ROI were significantly smaller than in the control group when the assigned criterion was to lose. Regarding the latency, a significant extension was noted during the condition to lose in ROI, excluding right ch. 22, in the patient group compared with those in the healthy subject group. This may support the findings of a study on the event-related potential reported by O’Donnell et al., whereby the latency of the P300 component was extended in schizophrenia patients.

A significant positive correlation was noted between Δoxy-Hb and GAF scores at left ch. 11, left ch. 19, and right ch. 5 during the mRPS task, and a significant inverse correlation was noted between Δoxy-Hb in all ROI and the Negative PANSS scale. Concerning the GAF scores, a previous study of verbal fluency task reported that the prefrontal lobe, especially the frontal pole area, was positively correlated with the GAF. In this study, the correlation between GAF scores and the left frontal pole area (left ch. 19) was considered to agree with the previous study. However, the correlation of the left DLPFC area (left ch. 11) and right parietal association area (right ch. 5) was considered to require further study. Generally, it is reported that the DLPFC...
area is activated at the time of the WM task, and that it becomes more activated as the task load increases. In neuropsychological research on schizophrenia, impairment with the DLPFC area and activity of WM has been reported, considered to be closely associated with WM and social function. GAF scores are not only a mental assessment but also an index that comprehensively covers social function, and this was consistent with the correlation between the GAF and left ch. 11. In addition, Thakkar et al. reported a decrease of activity specificity in the right inferior parietal lobe of schizophrenic patients in an fMRI study using the imitation task, and this site is closely related to mirror neurons. In other words, regarding right ch. 5, it may be simply associated with activities of the visual association field, but it may be a result reflecting disorders of mirror neurons in patients with schizophrenia and related social function disorders. Concerning the PANSS, although only Negative PANSS scales in the patient group showed a negative correlation with ROI, this result may have been influenced by the task and environment in which it was demonstrated. In other words, it can be said that the brain activity sites correlated with the task differed in all of the previous studies revealing a negative correlation between Δoxy-Hb and the Negative PANSS scale. However, this study is consistent with the results of Fujiki et al., whereby the schizophrenia group showed a negative correlation between the DLPFC region and Negative PANSS scale. These results may reflect the negative correlation between the Negative PANSS scale and execution function reported by Heydebrand et al. Further studies are needed in order to clarify this point. Furthermore, it was recognized that no significant difference was observed between the working patient and healthy subject groups in Δoxy-Hb of ch. 19. These findings suggest that it serves as a state marker reflecting the social function of schizophrenia patients, and the left frontal lobe (particularly left ch. 19) reflects the central region responsible for social function. This is consistent with the positive correlation between the frontal pole region and GAF scores in schizophrenia.

Figure 4. Relations among oxygenated hemoglobin changes (Δoxy-Hb) at left ch. 19, left ch. 11, right ch. 5, Negative score for the Positive and Negative Syndrome Scale (PANSS), and Global Assessment of Functioning (GAF) score in patients during the lose task.
patients observed using a verbal fluency task reported by Takizawa et al.18 Therefore, this study design may support the prediction of a patient's response to treatment and the appropriateness of timing to reintegrate them into society. These results suggest that the extent of social function can be inferred by observing the relevant part of the NIRS measurement result, and as a condition evaluation of patients with psychiatric disorders, the significance of observing the degree of social life simultaneously with individual symptoms was considered.

However, several problems still need to be addressed. First, the difference in the performance should be clarified. Only the data of subjects with a success rate exceeding 80% were adopted, but the number of correct responses varied among individuals. Thus, it may be necessary to standardize the performance for accurate evaluation. Second, there is a problem with the NIRS device itself. A characteristic of NIRS is its low spatial resolution, but individual MRI was not performed in this study. Thus, the validity of the anatomical region should be more closely investigated. In addition, artifacts are another problem. In fact, body movement, such as nodding and shaking of the head, causes artifacts. There is also a possibility of changes in hemoglobin due to contact failure of a fiber. The influence of skin blood flow is also known50 and mechanisms to reduce these artifacts will be important in the future. The third problem is disease specificity. It is necessary to investigate whether the data were specific to schizophrenia, as well as their reproducibility and course observation. Finally, the influence of drugs should be considered because all patients were being treated with oral atypical antipsychotics. This confounding factor should be excluded by comparison with an untreated patient group, requiring further studies. Moreover, this study included patients whose performance level was higher than that of the healthy subjects, and local cerebral blood flow, mainly in the DLPFC, increased even under the condition to lose. These findings may support the hypothesis of hypo- and hyperactivation of the frontal lobe function in schizophrenia, which has been discussed. In a preceding study to compare healthy subjects with a schizophrenic patient group using a verbal fluency task, Watanabe and Kato51 reported that patients showed performance comparable to that of a healthy subject group. Moreover, Shinba et al.52 performed three types of frontal lobe activation tasks (a random-number-generation task, a ruler-catching task, and a sequential finger-to-thumb task), with different findings among the tasks. There was a decrease in Δoxy-Hb in the random-number-generation and ruler-catching tasks, and there was no difference in the sequential finger-to-thumb task in patients. The difference in performance and the frontal lobe activation reaction can be considered to support not only the hyper/hypo frontal-hypothesis, but also that the findings are task-dependent. Furthermore, considering the laterality38 and inefficiency of the brain function in schizophrenia, these findings may predict a failure of some kind at the nerve cell level, reflecting the complexity of frontal lobe function mechanisms in schizophrenia.

In summary, this is the first study comparing healthy subjects and schizophrenia patients during the mRPS task, a frontal lobe cognitive task, using single-event-related NIRS. The oxy-Hb level decreased in the frontal lobe and anterior-middle region of the parietal lobe during the task in schizophrenia patients, and significant correlations were observed between these findings and GAF values and the Negative PANSS score. The mRPS task is useful for evaluating the cognitive and social functions of schizophrenia patients using NIRS.

ACKNOWLEDGMENTS

This research was partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (23791360). We gratefully acknowledge Dr. Ann-Christine Ehlis for her useful comments.

DISCLOSURE STATEMENT

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

K.M. designed the study. Y.K., Y.I., S.N. acquired and analyzed data. N.U. contributed to drafting the manuscript. Y.S. contributed to critical revision and approved of the final version to be published.

REFERENCES

1. Kadota H, Sekiguchi H, Takeuchi S, Miyazaki M, Kohno Y, Nakajima Y. The role of the dorsolateral prefrontal cortex in the inhibition of stereotyped responses. Exp. Brain Res. 2010; 203: 593–600.
2. Yamauchi Y, Kikuchi S, Miwakeichi F et al. Relation between parametric change of the workload and prefrontal cortex activity during a modified version of the ‘rock, paper, scissors’ task. Neuropsychobiology 2013; 68: 24–33.

3. Baddeley AD. Working Memory. Oxford University Press, Oxford, 1986.

4. Baddeley AD. Exploring the central executive. Q. J. Exp. Psychol. A 1996; 49: 5–28.

5. Matsubara M, Yamaguchi S, Xu J, Kobayashi S. Neural correlates for the suppression of habitual behavior: A functional MRI study. J. Cogn. Neurosci. 2004; 16: 944–954.

6. Kikuchi S, Iwata K, Onishi Y et al. Prefrontal cerebral activity during a simple “rock, paper, scissors” task measured by the noninvasive near-infrared spectroscopy method. Psychiatr. Res. Neuroim. 2007; 156: 199–208.

7. Matsumoto K, Kikuchi S, Miwakeichi F et al. A sensitive indicator of hemodynamic changes in the lateral prefrontal cortex using a modified version of “rock, paper, scissors” as a task load. J. Med. Biol. Eng. 2013; 33: 87–94.

8. Paulus MP, Feinstein JS, Tapert SF, Liu TT. Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection. Neuroimage 2004; 21: 733–743.

9. Omori M, Yamada H, Murata T et al. Neuronal substrates participating in attentional set-shifting of rules for visually guided motor selection: A functional magnetic resonance imaging investigation. Neurosci. Res. 1999; 33: 317–323.

10. Fukunaga A, Ohira T, Kato M, Kashima H, Kawase T. Role of supplementary motor area during performance of loss resulting pursuant paper-rock-scissors. Koujikinokakenkyu 2005; 25: 36–44 (in Japanese).

11. Onishi Y, Kikuchi S, Watanabe E, Kato S. Alteration in prefrontal cortical activity in the course of treatment for late-life depression as assessed on near-infrared spectroscopy. Psychiatry Clin. Neurosci. 2008; 62: 177–184.

12. Han YS, Araki T, Lee PY et al. Development and effect of a cognitive enhancement gymnastics program for elderly people with dementia. J. Exerc. Rehabil. 2016; 12: 340–345.

13. Kuperberg G, Heckers S. Schizophrenia and cognitive function. Curr. Opin. Neurol. 2000; 10: 205–210.

14. Itakura M, Pu S, Ohdachi H et al. Association between social functioning and prefrontal cortex function during a verbal fluency task in schizophrenia: A near-infrared spectroscopic study. Psychiatry Clin. Neurosci. 2017; 71: 769–779.

15. Ehls AC, Herrmann MJ, Plichta MM, Fallgatter AJ. Cortical activation during two verbal fluency tasks in schizophrenic patients and healthy controls as assessed by multi-channel near-infrared spectroscopy. Psychiatry Res. 2007; 156: 1–13.

16. Azechi M, Iwase M, Ikezawa K et al. Discriminant analysis in schizophrenia and healthy subjects using prefrontal activation during frontal lobe tasks: A near-infrared spectroscopy. Schizophr. Res. 2010; 117: 52–60.

17. Fujiki R, Morita K, Sato M et al. Single event-related changes in cerebral oxygenated hemoglobin using word game in schizophrenia. Neuropsychiatr. Dis. Treat. 2014; 10: 2353–2360.

18. Takizawa R, Kasai K, Kawakubo Y et al. Reduced frontopolar activation during verbal fluency task in schizophrenia: A multi-channel near-infrared spectroscopy study. Schizophr. Res. 2008; 99: 250–262.

19. Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: Cognitive brain activation study. Biol. Psychiatry 2004; 55: 501–511.

20. Lee J, Park S. Working memory impairments in schizophrenia: A meta-analysis. J. Abnorm. Psychol. 2005; 114: 599–611.

21. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. World Health Organization, Geneva, 1992.

22. Oldfield RC. The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 1971; 9: 97–113.

23. Uetsuki M, Matsuoka K, Kim Y et al. Estimation of premorbid IQ by IART in schizophrenia. Seishin Igaku 2006; 48: 15–22.

24. Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 1987; 13: 261–276.

25. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edn, text revision, American Psychiatric Association, Washington, DC, 2000.

26. Hoshi Y, Kobayashi N, Tamura M. Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. J. Appl. Physiol. 2001; 90: 1657–1662.

27. Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 2002; 17: 719–731.

28. Okada E, Delpy DT. Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Appl. Optics 2003; 42: 2915–2922.

29. Jasper HH. The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 1958; 10: 371–375.

30. Fujiki R, Morita K, Inoue M. Characteristics of cortical activation in schizophrenia during the card game “concentration.”. Kurume Med. J. 2012; 59: 53–60.

31. Kawabe C, Ishii Y, Sato M, Kato Y, Morita K. Variations in oxygenated hemoglobin levels in healthy individuals
Cognitive dysfunction in schizophrenia

...when performing rock-paper-scissors pairing tasks. J. Jpn. Occup. Ther. Assoc. 2015; 34: 219–226.

32. Kato Y, Shoji Y, Morita K et al. Evaluation of changes in oxyhaemoglobin during Shiritori task in elderly subjects including those with Alzheimer’s disease. Psychogeriatrics 2017; 17: 238–246.

33. Shoji Y, Morita K, Mori K et al. Characteristics of single event-related cerebral hemodynamics during verbal task in emotionally charged state measured by multi-channel near-infrared spectroscopy (NIRS) in patients with schizophrenia: Comparison with healthy subjects. Seishin Shinkeigaku Zasshi 2013; 115: 853–862.

34. Takei Y, Suda M, Aoyama Y et al. Temporal lobe and inferior frontal gyrus dysfunction in patients with schizophrenia during face-to-face conversation: A near-infrared spectroscopy study. J. Psychiatr. Res. 2013; 47: 1581–1589.

35. Kadota H, Nakajima Y, Miyazaki M, Sekiguchi H, Kohno Y, Kansaku K. Anterior prefrontal cortex activities during the inhibition of stereotyped responses in a neuropsychological rock-paper-scissors task. Neurosci. Lett. 2009; 453: 1–5.

36. Baddeley A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000; 4: 417–423.

37. Okada F, Tokumitsu Y, Hoshi Y, Tamura M. Impaired interhemispheric integration in brain oxygenation and hemodynamics in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 1994; 244: 17–25.

38. Nishimura Y, Takizawa R, Murao M, Marumo K, Kinou M, Kasai K. Prefrontal cortex activity during response inhibition associated with excitement symptoms in schizophrenia. Brain Res. 2011; 1370: 194–203.

39. Fallgatter AJ, Strik WK. Reduced frontal functional asymmetry in schizophrenia during a cued continuous performance test assessed with near-infrared spectroscopy. Schizophr. Bull. 2000; 26: 913–919.

40. Fujiki R, Morita K, Sato M et al. Reduced prefrontal cortex activation using the Trail Making Test in schizophrenia. Neuropsychiatr. Dis. Treat. 2013; 9: 675–685.

41. Van Snellenberg JX, Torres IJ, Thornton AE. Functional neuroimaging of working memory in schizophrenia: Task performance as a moderating variable. Neuropsychology 2006; 20: 497–510.

42. Baker JT, Holmes AJ, Masters GA et al. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 2014; 71: 109–118.

43. O’Donnell BF, Faux SF, McCarley RW et al. Increased rate of P300 latency prolongation with age in schizophrenia. Electrophysiological evidence for a neurodegenerative process. Arch. Gen. Psychiatry 1995; 52: 544–549.

44. Koike S, Takizawa R, Nishimura Y et al. Different hemodynamic response patterns in the prefrontal cortical sub-regions according to the clinical stages of psychosis. Schizophr. Res. 2011; 132: 54–61.

45. Cohen JD, Perlstein WM, Braver TS et al. Temporal dynamics of brain activation during a working memory task. Nature 1997; 386: 604–608.

46. Green MF, Nuechterlein KH, Gold JM et al. Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biol. Psychiatry 2004; 56: 301–307.

47. Thakkar KN, Peterman JS, Park S. Altered brain activation during action imitation and observation in schizophrenia: A translational approach to investigating social dysfunction in schizophrenia. Am. J. Psychiatry 2014; 171: 539–548.

48. Ikezawa K, Iwase M, Ishii R et al. Impaired regional hemodynamic response in schizophrenia during multiple prefrontal activation tasks: A two-channel near-infrared spectroscopy study. Schizophr. Res. 2009; 108: 93–103.

49. Heydebrand G, Weiser M, Rabinowitz J, Hoff AL, DeLisi LE, Csernansky JG. Correlates of cognitive deficits in first episode schizophrenia. Schizophr. Res. 2004; 68: 1–9.

50. Takahashi T, Takikawa Y, Kawagoe R, Shibuya S, Iwano T, Kitazawa S. Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 2011; 57: 991–1002.

51. Watanabe A, Kato T. Cerebrovascular response to cognitive tasks in patients with schizophrenia measured by near-infrared spectroscopy. Schizophr. Bull. 2004; 30: 435–444.

52. Shinba T, Nagano M, Kariya N et al. Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia. Biol. Psychiatry 2004; 55: 154–164.