Lossofhumoralresponse3monthsafterSARS-CoV-2
vaccinationintheCKDspectrum:themulticentricSENCOVAC
study

BorjaQuiroga1,MaríaJoséSoler2,3,AlbertoOrtiz3,4,AmparoBernat5,AnaBeatrizMuñozDíaz5,
CarlosJesusJaravaMantecón6,VirginiaOlindaGómezPérez6,CarmenCalderónGonzález7,
MichalCervienka7,AuxiliadoraMazuecos8,JuanManuelCazorla8,ManuelCarnereroDiRiso9,
ShaíraMartínez9,MayraOrtegaDíaz10,RafaelLucenaValverde10,MaríaGabrielaSánchezMárquez11,
CarolinaLanchoNovillo11,EmilioGonzálezParra4,CarolinaGracia-Iguacel4,MaríaTeresaRodrigoDe
Tomas12,MaríaCintaAguilarCervera12,MartínGiorgi1,PatriciaMuñozRamos1,NicolásMacías
Carmona13,NéstorToapanta13,SecundinoCigarrán14,JuanCarlosRuizSanMillán15,RaquelSantana
Estupiñán16,MartaCrespo17,BlancaVillacortaLinaza18,MaríaIsabelJimenoMartín19,
LauraRodríguez-OsorioJiménez20,SagraríoSoriano21,DionéGonzálezFerri22,MariaSoledadPizarro
Sánchez23,AlejandraYuguer24,AlbaLeyva25,JoséRojas25,RonT.Gansevoort26andPatriciade
Sequera3,10;onbehalfoftheSENCOVACcollaborativenetwork

SENCOVACisaprospectivemulticentricstudypromotedby
theSpanishSocietyofNephrology(S.E.N.),whichincluded
fourcohortsadultsofchronickidneydisease(CKD):
kidneytransplantrecipients(KTRs),haemodialysis(HD),
peritonealdialysis(PD)andnondialysis(ND)-CKDpatients
[glomerularfiltrationrate(GFR)<30mL/min/1.73m²]1.
Participantswereimmunizedlocallyavailablevaccines
[BNT162b2(Pfizer-BioNTech®),mRNA-1273(Moderna®),
ChAdOx1-S(AstraZeneca®)orAd26.COV2(Janssen®)]
prescribedbyregionalhealthauthoritiesunrelatedtothestudy
investigators.Thepresentanalysis(20September2021)pres-
datesboosterdoses.Theprimaryobjectivewasseroconversion
aftervaccination.Preliminarydatashowedloweranti-Spike
antibodydevelopmentaftervaccinationinKTRsthaninother
CKDpatients[1](SupplementaryMaterialandmethods).

SENCOVACincluded3439patientsandanalysed28-day
humoralimmunityin1061patientsand3-monthhumoral
immunityin567patients.Baselinecharacteristicsofpatients

Correspondenceto:MaríaJoséSoler;E-mail:mjsoler01@gmail.com;Twitterhandle:@PepaSolerR
andalbertooritz;
E-mail:aortiz@fjd.es

©TheAuthor(s)2022.PublishedbyOxfordUniversityPressonbehalfoftheERA.
Allrightsreserved.Forphereadmission,pleasemail:journals.permissions@oup.com
analysed 28 days and 3 months after vaccine completion are summarized in Supplementary data, Tables S1 and S2. At 28 days, 255 (24%) were KT, 103 (10%) PD, 610 (57%) HD and 93 (9%) ND-CKD patients (Figure 1A). At 3 months, 155 were KT (27%), 28 (5%) PD, 332 (59%) HD and 52 (9%) ND-CKD patients (Figure 1A).

The humoral response at 28 days differed between groups. Among the 255 KTRs, 159 (62.4%) presented humoral immunity, which was lower than the 91 (97.8%) of 93 ND-CKD patients, 100 (97%) of 103 PD patients and 584 (95.7%) of 610 HD patients (P < 0.001). At 3 months, the rate of humoral response in KTRs was even lower (47.7%)
Anti-Spike antibody titres differed between cohorts, being lower in KTRs (P < 0.001) at 28 days and at 3 months (Supplementary data, Figures S1 and S2). A strong correlation was found between 3-month and 28-day anti-Spike titres (r > 0.858, P < 0.001) (Supplementary data, Figure S3).

When assessing differences between the most common vaccines, BNT162b2 and mRNA-1273, at 3 months, anti-Spike antibody titres were higher for mRNA-1273 (P < 0.0001) (Supplementary data, Figure S4). mRNA-1273 was associated with higher antibody titres in PD (P = 0.005) and HD patients (P < 0.001) (Supplementary data, Figure S5). Among patients with negative baseline anti-Spike antibodies, mRNA-1273 was also associated with higher antibody titres 3 months after vaccination (P = 0.009) (Supplementary data, Figure S4). Among these patients, mRNA-1273 was associated with higher antibody titres in PD (P = 0.009) and HD patients (P < 0.001) (Supplementary data, Figure S6). Interestingly, in a preprint study from Florida, the risk of infection after full vaccination with mRNA-1273 was about 60% lower than after full vaccination with BNT162b2 [Incidence rate ratio (IRR): 0.39 [95% confidence interval (CI): 0.24–0.62]], indicating a higher protection with mRNA-1273 [2]. Similar results were reported in immunocompromised adults [3].

Factors associated with a lack of humoral response 28 days after completing vaccination were female sex (P = 0.02), negative baseline anti-Spike antibodies (P < 0.001), previous influenza vaccine (P = 0.02) and KTR (P < 0.001). Independent predictors for negative humoral response were older age [hazard ratio (HR): 1.02 (95% CI: 1.00–1.04); P = 0.031], female sex [HR: 1.97 (95% CI: 1.26–3.10); P = 0.003], negative baseline anti-Spike antibodies [HR: 10.42 (95% CI: 3.15–34.89); P < 0.001], KTRs [HR: 21.62 (95% CI: 12.74–36.70); P < 0.001] and BNT162b2 [HR: 2.25 (95% CI: 1.32–3.81); P = 0.003] (Supplementary data, Table S3). Older age has been associated with less antibody response and worse coronavirus disease 2019 (COVID-19) outcomes [4, 5]. In contrast to our results regarding sex differences, in healthy people, humoral responses were lower in males [6]. Moreover, factors associated with negative humoral responses 3 months after completing vaccination were negative baseline anti-Spike antibodies (P < 0.001), lower anti-Spike antibody titres at 28 days (P < 0.001) and KTR (P < 0.0001). In the multivariate model, KTRs [HR: 5.39 (95% CI: 2.50–11.58); P < 0.001] and anti-Spike antibody titres at 28 days [HR: 0.99 (95% CI: 0.99–0.99); P < 0.001] maintained their independent predictor value for negative humoral response (Supplementary data, Table S3). Multivariate assessment using the same predictive model but excluding 28-day anti-Spike titres showed that age [HR: 1.03 (95% CI: 1.01–1.06); P = 0.003], negative baseline anti-Spike antibodies [HR: 13.6 (95% CI: 4.43–41.79); P < 0.001], KTRs [HR: 23.14 (95% CI: 12.12–44.18); P < 0.001] and BNT162b2 [HR: 3.09 (95% CI: 1.71–5.61); P < 0.001] were associated with negative humoral response 3 months after completing vaccination (Supplementary data, Table S4).

Among the 496 patients with a positive humoral response at 28 days, 55 (11%) had become anti-Spike antibody negative at 3 months. KTRs lost the humoral response more frequently (26%) than the other cohorts (P < 0.001) (Figure 1C). Factors associated with the loss of the humoral response were KTRs (P < 0.0001), negative baseline anti-Spike antibodies (P = 0.04) and lower antibody titres at 28 days (P < 0.001). An adjusted multivariate logistic regression showed that KTRs [HR: 2.72 (95% CI: 1.38–5.37); P = 0.004] and lower 28-day antibody titres [HR: 0.99 (95% CI: 0.99–0.99); P < 0.001] were predictors for losing humoral response 3 months after vaccination. Among KTRs, losing humoral immunity was associated with negative baseline anti-Spike antibodies (P = 0.002), lower 28-day antibody titres (P < 0.001), steroids prescription (P = 0.017) and a trend was observed for shorter transplantation vintage (P = 0.08). In HD patients, losing humoral immunity was associated with BNT162b2 (P = 0.015) and lower 28-day antibody titres (P < 0.001). The response rate, anti-Spike antibody titres and rate of loss of anti-Spike antibodies were similar for PD, HD and ND-CKD patients. However, antibody titres were lower at 3 months than at 28 days. A recent small report of 41 chronic HD patients reached similar conclusions and alerts about the decline in humoral immunity [7].

During follow-up [median 3.9 (3.6–4.4) months] and after completing the vaccine schedule, 26 patients (0.8%) were infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 5 patients (<0.1% of vaccinated patients, 19% of breakthrough SARS-CoV-2 infections) died from COVID-19 (Supplementary data, Tables S5 and S6). Overall, 59 patients (1.7%) died during follow-up. One patient, registered as a possible-probable vaccine-related death, developed a haemorrhagic stroke 21 days after the first dose of mRNA-1273 (Supplementary data, Tables S5 and S6).

Issues for further exploration include the relevance of cellular immunity after vaccination or the impact of a third dose in CKD patients.

In conclusion, KTRs developed lower vaccine response rates and anti-Spike antibody titres and lost antibodies faster than other CKD cohorts, and BNT162b2 was associated with lower anti-Spike antibody titres than mRNA-1273. Identifying predictors for loss of antibodies should help in prioritizing patients at higher risk for booster doses or prophylactic use of anti-SARS-CoV-2 monoclonal antibodies [8], as breakthrough infections were uncommon but had high mortality. Anti-Spike antibodies titres 28 days after completing the vaccine schedule predicted the loss of humoral responses. To our knowledge, this is the first report including the whole spectrum of CKD patients, with a 3-month follow-up and a considerable sample size.

SUPPLEMENTARY DATA
Supplementary data are available at ndt online.

ACKNOWLEDGEMENTS
We thank all the involved centres and healthcare workers, especially the nurse team, for their implication in this project.
In addition, we want to thank the support of the Sociedad Española de Enfermería Nefrológica (SEDEN), Organización Nacional de Trasplantes (ONT) and Sociedad Española de Trasplante (SET).

CONFLICT OF INTEREST STATEMENT

B.Q. has received honoraria for conferences, consulting fees and advisory boards from Vifor-Pharma, Astellas, Amgen, Bial, Ferrer, Novartis, AstraZeneca, Sandoz, Laboratorios Bial, Esteve, Sanofi-Genzyme and Otsuka. M.J.S. reports honorarium for conferences, consulting fees and advisory boards from AstraZeneca, Novo Nordisk, Esteve, Vifor, Bayer, Mundipharma, Ingelheim Lilly, Jansen, ICU Medical and Boehringer. A.O. has received consultancy or speaker fees or travel support from Astellas, AstraZeneca, Amicus, Amgen, Fresenius Medical Care, Bayer, Sanofi-Genzyme, Menarini, Kyowa Kirin, Alexion, Otsuka and Vifor Fresenius Medical Care Renal Pharma, and is Director of the Catedra Mundipharma-UAM of diabetic kidney disease and the Catedra AstraZeneca-UAM of CKD and electrolytes. A.B. has received honoraria for conferences from Vifor-Pharma and Shire. C.J.J.M. has received honoraria for one conference from Vifor-Pharma. C.C.G. has received honoraria for conferences, consulting fees and advisory boards from Fresenius and AstraZeneca. A.M. has received honoraria for conferences, consulting fees and advisory boards from Astellas, Novartis, Chiesi, GSK and Sanofi-Genzyme. She is a member of the Board of the S.E.N. and the Spanish Society of Transplantation (S.E.T.). J.C.R.S.M. has received honoraria for conferences, consulting fees and advisory boards from Novartis, Alexion, Astellas, Chiesi and Sandoz. J.M.C. has received honoraria for conferences from Astellas and AstraZeneca. S.C. has received honoraria for conferences, consulting fees and Advisory Boards from: Vifor-Pharma, Astellas, Amgen, Novartis, Novo Nordisk, Chiesi, AstraZeneca, Sanofi-Genzyme, Otsuka, Chemo-Centrix, Boheringer and Rovi. M.Crespo has received honoraria for conferences, consulting fees and advisory boards from Astellas, Sanofi, Novartis and Chiesi. S.S. reports an honorarium for conferences and Advisory Boards from Vifor-Pharma, Astellas and Baxter. P.d.S. reports an honorarium for conferences, consulting fees and advisory boards from Amgen, Astellas, AstraZeneca, Baxter, Braun, Fresenius, Nipro and Vifor-Pharma. She is the present president of the S.E.N.

A.B.M.D., V.O.G.P., M.Cervienka, M.O.D., R.L.V., M.C.D.R., S.M., M.G.S.M., M.G., P.M.R., N.M.C., N.T., C.L.N., M.T.R.D.T., D.G.F., B.V.L., E.G.P., C.G.-I., R.S.E., M.C.A.C., M.I.J.M., M.S.P.S., L.R.-O.J., A.Y., A.L., J.R. and R.T.G. do not present conflict of interests.

AUTHORS’ CONTRIBUTIONS

Research idea and study design was by B.Q., M.J.S., A.O., R.T.G. and P.d.S. Data acquisition was performed by A.B., A.B.M.D., C.J.J.M., V.O.G.P., C.C.G., M.Crespo, A.M., J.M.C., M.C.D.R., S.M., M.O.D., R.L., M.G.S.M., C.L.N., E.G.P., C.G.-I., M.T.R.D.T., M.C.A.C., M.G., P.M.R., N.M.C., N.T., J.C.R.S.M., R.S.E., M.Cervienka, B.V.L., M.I.J.M., L.R.-O.J., S.C., S.S., D.G.F., M.S.P.S. and A.Y. Data analysis/interpretation was carried out by B.Q., M.J.S., A.O., A.L., J.R., R.T.G. and P.d.S. Statistical analysis was performed by B.Q. and A.O. Supervision or mentorship was provided by B.Q., M.J.S., A.O., S.M., R.T.G., A.L., J.R., R.T.G. and P.d.S.

FUNDING

The present project has been supported by Fresenius Medical Care, Diaverum, Vifor Pharma, Vircell and Fundación Renal Iñigo Álvarez de Toledo.

APPENDIX

The SENCOVAC collaborative network: Hospital Universitario Infanta Leonor: Marta Puerta Carretero, Daniel Gaitán Tocora, Mª Teresa Jaldo Rodríguez, Tamar Talaván Zanón, Esther Rodriguez Suárez, Alfredo José Sáenz Santolaya, Raquel Cerrajero Calero, Patricia Arribas Cobo.

Hospital Fundación Jiménez Díaz: Catalina Martin-Cleary, Jinny Sánchez-Rodríguez, Mónica Pereira, Ana Ramos-Verde.

Hospital Universitario de la Princesa: Carmen Sánchez, Yohana Gil Giraldo, Ana Sánchez Horrillo, Pablo Ruano Suárez, Antonio Fernández Perpén, Andrés Fernández Ramos, Laura Salanova Villanueva, Alejandra Cortiñas, Pablo A. Díez Arias, Alicia Cabrera Cárdenas, Antonio de Santos, Almudena Núñez, Guillermína Barril Cuadrado, Raquel Repollet.

Hospital Vall D’Hebrón: Francesc Moreso, María Antonieta Azancot, Natalia Ramos, Oriol Bestard, Ignacio Cidráquez, Sheila Bermejo, Irene Agraz, Oreo Prat, Carlota Medina, Emma Pardo, Alejandro Saiz.

Hospital Son Espases: María Antonià Munar Vila.

Hospital Da Mariña: Nicolás Menéndez Granados, María Jesús Corton Cabo, Walter López Alarcón.

Hospital Rey Juan Carlos: Simona Alexandru, Laura García Puente Suarez, Saul Pampa Saico, Marisol Poma Tapia.

Hospital Universitario de Villalba: Rosa Sánchez Hernández.

Clínica Universidad de Navarra: Nuria García-Fernández, Paloma Leticia Martín Moreno, Noelia Ania González, Ana Sabalza Ortiz, María Nieves Bastida Iñárreria.

Hospital Reina Sofia de Córdoba: Raquel Ojeda López, Cayetana Moyano Peregrí, María Luisa Agüera Morales, María Dolores Navarro Cabello.

Hospital Universitario Fundación de Alcorcón: Ana M Tato Ribera, Eduardo Gallego Válcarce, Enrique Gruss Vergara.

Hospital Universitario Puerta del Mar: Teresa García, Carlos Narváez, Cristhian Orellana.

Hospital Universitario Puerto Real: Pedro Luis Quirós Ganga, Fernando Vallejo Carrión, Antonio Luis García Herrera.

Hospital del Mar de Barcelona: Betty Chamoun, Francesc Barbosa, Anna Faura, Dolores Redondo Pachón.

Hospital QuirónSalud A Coruña: Natalia Blanco Castro.
Hospital Universitario de Badajoz: Rosa María Ruiz-Calero Cendrero, María Victoria Martín Hidalgo-Barquero, Román Hernández Gallego, Álvaro Alvarez, Eva Vázquez Leo.

Diáser Análados: José Luis Pizarro León, Manuel Antonio Martínez García, Benaldina García Jiménez, Juan de Dios Ramiro Moya, Dina López Espinosa, Alejandro Jiménez Herrador, Manuel Navarro Zurita, Leonardo Díaz Álvarez, Álvaro González Martín, Sandra Báez Arroyo, Raquel Reina Fernández, Marilyn Janella Suárez Vargas, Rocio Calurano Casero.

Diáser Valencia: Gustavo Ueseche, Carmen Santamaría de Miguel, Ángel Palacios, Brenda Henningsmeyer, Esther Orero Calve, José Lacueva Moya, Yurika Sato, Marta Serra Marín.

Diáser Murcia-Alicante: Irene Torres, Pablo Delgado Conde, Georgina Alfaro, Olga Halauko, Fouad El Rifai, Ana Dolores Martínez.

Diáser Baleares: Pablo Justo Ávila.

Diáser Galicia – Castilla y León: Antonio Marín Franco.

Diáser Madrid: Marta Sanz Sainz.

Hospital Universitario San Agustín: José María Baltar Martín, Laura del Río García, José Luis Pérez Canga, Paola Milena Villabón Ochoa.

Hospital Universitario de la Paz: Auxiliadora Bajo Rubio, Gloria Del Peso Gilsanz, Marta Ossorio Gonzalez, Rafael Sánchez Villanueva, María Ovidia Lopez Oliva.

Hospital Lucus Augusti: Jesús Calviño Varela, Alba García Enríquez, Carmen Cobelo Casas, Pablo Otero Alonso, Lourdes González Tabares.

Consori Sanitari Alt Penedès: Augusto Quiróz Morales, Ignacio Manzur Cavalloti, Itziar Navarro Zorita, Sol Otero López, Sara Onut González, Carlos Soto Montaña.

Hospital Universitario de la Cruz Roja de Gijón: Gloria Tomás Simó, Humberto Daniel Rojas Canto Balaguer, Marta Poves Gómez, Juan Villaro Gumpt.

Hospital Universitario del Sureste: Eva Cotilla de la Rosa, David Cucchiari, José Broseta Monzo.

Hospital Universitario de Valencia: Antonio Rodríguez Santarelli, Alba Santos Garcia, Antonio Cabadas Martin-Caro, Inmaculada Martínez Santamaría.

Complejo Hospitalario Universitario de Vigo: José María Lamas Barreiro, Luisa Palomares Solla, Arginino Gándara, Walfred Nájera de la Garza, Francisco Fernández Fleming, Maria Gloria Rodríguez Goyanes, Cintia Caramés Feijoo, María Mercedes Moreiras Plaza, Cristina Bayón Juan.

Hospital Universitario Marqués de Valdecilla: Rosalía Valero San Cecilio, Celestino Piñera Haces, María Kislíkova, Emilio Rodrigo.

Hospital de Alicante: Francisco Javier Pérez Contreras, Noelia Balibrea Lara, Eduardo Muñoz de Bustillo Llorente.

Hospital Universitario Central de Asturias: Lucía Sobrino Díaz, Adriana María Cavada Bustamante, Jaime Mazón Ruiz.

Hospital Cruz Roja de Gijón: Enriqueta González Rodríguez.

Hospital Clínico San Carlos: Virginia Lopez De La Manzanara Perez, Marta Calvo Arevalo, Jose Antonio Herrero Calvo.

Hospital Universitario Puerta de Hierro: María Rosario Llópez Carratalá, Leire María Martín Rodríguez, Marisa Serrano Salazar, Begoña Bravo Prieto, José María Portolés Pérez.

Hospital Universitario Gregorio Marañón: David Arroyo Rueda, María Luisa Rodríguez Ferrero, Almudena Vega Martínez, Soraya Abad Estébanez.

Hospital San Pedro: Antonio Gil Paraiso, Emma Huarte, M. Lanau.

Fundación Hospital Calahorra: Rodrigo Avellaneda Campos, José Manuel Ubé.

Hospital La Fe: Pilar Sánchez Pérez.

Fresenius Medical care (FMC) San Rafael: Isabel Berdud Godoy, Esther Torres Aguilera, Rolando Tello Alea, Margie Soledad Del Rosario Saldana.

Fundación Salud Empordà: María Laura Salvetti, María Cufi Valmajó, Montserrat Picazo Sánchez, Miriam Llado Barragan, Laia Reixach Aunatell.

Hospital Virgen Macarena de Sevilla: Mercedes Salgueira, Nuria Aresté, María de los Ángeles Rodríguez, Rocío Collantes, Ana Isabel Martín, María Jesús Moyano, Elena Jiménez Vibora.

FMC Madrid-Dialcentro: Sandra Castellano Gash, Lara Ruiz Martínez.

Hospital Universitario de Donostia: Beatriz Azcue Prieto, Carmen Toyos, José Molina Del Rio, Adriana Restrepo Acosta, Amagoa Celayeta Zamacona.

Hospital de Galdakao: Saioa Bilbao Ortega, Mª Isabel Galardo Ruiz, Ainhoa Hernando Rubio, Paula García Ledesma, Alvaro Goyoaga Alvarez.

Hospital Clinic de Barcelona: Esteban Pch López de Briñas, David Cucchiari, José Broseta Monzo.

Hospital Universitario de Canarias: Beatriz Escamilla Cabrera, Aurelio Pastor Rodríguez Hernández, María Sigrario García Rebollo, Juan Margarita Rufino Hernández.

Hospital Lluís Alcanyís: Juan Carlos Alonso, Amparo Martínez Más, Manuel Calvé, Marina Garces Cardona, Vanesa Canto Balaguer.

Hospital de Basurto: José Ignacio Minguela Pesquera.

Hospital General Universitario de Valencia: Antonio Galán Serrano, Patricia Tomás Simó, Humberto Daniel Rojas Mancilla, Marta Poves Gómez, Juan Villaro Gumpt.

Hospital Universitario de Guadalajara: Gabriel de Arriba de la Fuente, Katia Pérez del Valle.

Hospital de Vinalopó: Eva Cotilla de la Rosa, David Rodríguez Santarelli, Alba Santos Garcia, Antonio Cabezas Martin-Caro, Inmaculada Martínez Santamaría.

Hospital Doctor José Molina Orosa: Adelaida Morales Umpierez, Esther Hurtado Ruiz, Aráñazu Márquez Corbella, Katia Toledo Perdomo, Yasmina Martín Martín.

Complejo asistencia universitario (CAU) Palencia: Ana María Urraca de la Pisa, Lidia Sendino Monzon, Karina Ampuero Anachuri, Esther Hernandez Garcia, Victoria Oviedo Gomez.

Hospital Universitario Doctor Negrín: Francisco Valga Amado, Patricia Pérez Borges, Raquel Monzon Vázquez.

Hospital Arquitecto Marcide: Marta Durán Beloso, Fernando Arroyo Alonso, Noemi Pérez Felpete, Ana Meizoso Ameneiro, Mónica Cunha Mera.

Hospital Universitario del Sureste: Beatriz Gil Casares.
REFERENCES

1. Quiroga B, Soler MJ, Ortiz A et al. (12 November 2021) Safety and immediate humoral response of COVID-19 vaccines in chronic kidney disease patients: the SENCOVAC study. Nephrol Dial Transplant; doi: 10.1093/ndt/gfab313

2. Puranik A, Lenehan PJ, Silvert E et al. Comparative effectiveness of mRNA-1273 and BNT162b2 against symptomatic SARS-CoV-2 infection. Med (N Y) 2022; 3: 28–41.e8

3. Embi PJ, Levy ME, Naleway AL et al. Effectiveness of 2-dose vaccination with mRNA COVID-19 vaccines against COVID-19-associated hospitalizations among immunocompromised adults—nine states, January–September 2021. MMWR Morb Mortal Wkly Rep 2021; 70: 1553–1559

4. Vergara A, Molina-Van den Bosch M, Toapanta N et al. The impact of age on mortality in chronic haemodialysis population with COVID-19. J Clin Med 2021; 10: 3022

5. Müller L, Andrée M, Moskorz W et al. Age-dependent immune response to the biontech/Pfizer BNT162b2 coronavirus disease 2019 vaccination. Clin Infect Dis Clin Infect Dis 2021; 73: 2065–2072

6. Levin EG, Lustig Y, Cohen C et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N Engl J Med 2021; 385: e84

7. Davidovic T, Schimpf J, Abbassi-Nik A et al. Waning humoral response six months after SARS-CoV-2 vaccination with the mRNA-BNT162b2 vaccine in hemodialysis patients—time for a boost. Kidney Int 2021; 100: 1334–1335

8. Del Bello A, Marion O, Vellas C et al. Anti-SARS-CoV-2 monoclonal antibodies in solid-organ transplant patients. Transplantation 2021; 105: e146–e147

Received: 2.1.2022; Editorial decision: 5.1.2022