Efficacy of travoprost for the treatment of patients with glaucoma

Xiu-Li Zhang, MB, Li Qin, MM

Abstract
Background: This study will evaluate the efficacy and safety of travoprost for patients with glaucoma systematically.

Methods: A comprehensive literature search will be carried from following literature sources from inception to the present: Cochrane Library, MEDLINE, EMBASE, Web of Science, Google scholar, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure. We will only consider randomized controlled trials on assessing the efficacy and safety of travoprost for glaucoma for inclusion. We will use Cochrane risk of bias tool for the methodological quality assessment for each qualified study. If it is possible, we will pool the outcome data, and will perform meta-analysis.

Results: This study will systematically evaluate the efficacy and safety of travoprost for glaucoma. Primary outcomes include intraocular pressure (IOP), mean IOP, and mean reduction of IOP. Secondary outcomes consist of diastolic ocular perfusion pressure, central corneal thickness, and quality of life, as measured by 36-Item Short Form Health Survey, and treatment-related adverse events included hyperemia, eye pain, and eye pruritus.

Conclusion: The findings of the present study will summarize the updated evidence of travoprost for patients with glaucoma.

PROSPERO registration number: PROSPERO CRD42019126956.

Abbreviations: RCTs = randomized controlled trials; IOP = intraocular pressure; CIs = confidence intervals.

Keywords: efficacy, glaucoma, randomized controlled trial, safety, travoprost

1. Introduction

Glaucoma is a chronic optic neuropathy, which is depicted by the alteration of the optic nerve and the death of retinal ganglion cells [1–3]. It is one of the most leading causes of permanent blindness around the world [4–6] and occurs most often in older adults [7–9]. It consists of primary and secondary open-angle and angle-closure glaucoma, respectively [10]. It has been estimated to affect 76 million in 2020 and 112 million people in 2040 [10].

A variety of management strategies are utilized to treat glaucoma, including timolol, valproic acid, latanoprost, travoprost, and so on, especially for travoprost [11–19]. Lots of previous studies have reported that travoprost can effectively treat glaucoma [13–25]. However, no study has systematically explored its efficacy and safety for patients with glaucoma. Therefore, this study will systematically assess the efficacy and safety of travoprost for the treatment of patients with glaucoma.

2. Methods

2.1. Types of studies. This proposed study will include randomized controlled trials (RCTs) that have assessed all forms travoprost for patients with glaucoma. However, any other studies will be excluded, such as nonclinical trials, case studies, noncontrolled trials, non-RCTs, and quasi-RCTs.

2.1.2. Types of participants. All participants with clinically diagnosed as glaucoma will be considered for inclusion in this study without restrictions of country, race, sex, age, educational background, and economy status.

2.1.3. Types of interventions. In experimental group, patients can receive any form of travoprost alone for patients with glaucoma. In the control group, patients can undergo any other treatments, except travoprost.

2.1.4. Types of outcomes. Primary outcomes include intraocular pressure (IOP), mean IOP, and mean reduction of IOP. Secondary outcomes include diastolic ocular perfusion pressure, central corneal thickness, and quality of life, as measured by 36-Item Short Form Health Survey, and treatment-related adverse events included hyperemia, eye pain, and eye pruritus.

2.2. Strategy of literature searches

We will conduct a comprehensive literature search from following literature sources from inception to the present: MEDLINE, EMBASE, Cochrane Library, Web of Science, Web of Science, Google scholar, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure. We will only consider randomized controlled trials on assessing the efficacy and safety of travoprost for glaucoma for inclusion. We will use Cochrane risk of bias tool for the methodological quality assessment for each qualified study. If it is possible, we will pool the outcome data, and will perform meta-analysis.
To. It comprises of 7 domains, and each aspect will be graded as 3 types: low risk of bias, unclear risk of bias, and high risk of bias, respectively. Any disagreements will be settled down by a third researcher through discussion.

3. Statistical analysis

We will utilize RevMan 5.3 software to analyze the data. Binary valuables will be represented with risk ratio with 95% confidence intervals (CIs). Continuity changes will be represented with mean difference or standardized mean difference with 95% CIs. Heterogeneity among eligible trials will be identified using I^2 test. When $I^2 \leq 50\%$, heterogeneity is acceptable and a fixed-effect model will be applied. Data will be pooled and meta-analysis will be conducted if it is possible. When $I^2 > 50\%$, heterogeneity is significant, and a random-effect model will be used. We will also perform subgroup analysis to detect any possible reasons that may contribute to the high heterogeneity based on the different treatments, controls, and outcomes. When the heterogeneity is still substantial after subgroup analysis, data will not be pooled, and meta-analysis will not be operated. Meanwhile, a narrative summary will be elaborated.

Additionally, sensitivity analysis will be carried out to investigate the robustness of pooled results by taking away low-quality trials. Whenever possible, we will also perform funnel plot[26] and Egger regression[27] to check any possible reporting bias if >10 eligible trials are entered in this study.

4. Discussion

Glaucoma is one of the most leading causes of permanent blindness. Travoprost is reported to treat glaucoma effectively. However, no study has systematically investigated the efficacy and safety of travoprost for the treatment of glaucoma. Thus, this study will assess the efficacy and safety of travoprost for glaucoma systematically.

This study will summarize a better understanding of efficacy and safety of travoprost for patients with glaucoma. The results of this study will inform our understanding of the value of travoprost in treating glaucoma outcomes. In addition, they will also provide helpful evidence for clinical practice and future researches.

Author contributions

Conceptualization: Li Qin, Xiu-Li Zhang.
Data curation: Li Qin, Xiu-Li Zhang.
Formal analysis: Li Qin.
Funding acquisition: Xiu-Li Zhang.
Investigation: Li Qin.
Methodology: Li Qin, Xiu-Li Zhang.
Project administration: Li Qin.
Resources: Li Qin, Xiu-Li Zhang.
Software: Xiu-Li Zhang.
Supervision: Li Qin.
Validation: Li Qin, Xiu-Li Zhang.
Visualization: Li Qin, Xiu-Li Zhang.
Methodology: Li Qin, Xiu-Li Zhang.
Investigation: Li Qin.
Funding acquisition: Zhang and Qin.

References

[1] Lusthaus J, Goldberg I. Current management of glaucoma. Med J Aust 2019;210:180–7.
[2] Ma A, Yu SWY, Wong JK.W. Micropulse laser for the treatment of glaucoma: A literature review. Surv Ophthalmol 2019;64:486–97.
[3] Tan NYQ, Sng CCA, Ang M. Myopic optic disc changes and its role in glaucoma. Curr Opin Ophthalmol 2019;30:89–96.
[4] Vorkov B, Rohrbach JM. Glaucoma treatment in high myopia. Ophthalmologe 2019;116:409–14.
[5] Marshall LL, Hayslett RL, Stevens GA. Therapy for open-angle glaucoma. Consult Pharm 2018;33:432–45.
[6] Nucci C, Martucci A, Giannini C, et al. Neuroprotective agents in the treatment of glaucoma. Expert Opin Pharmacother 2002;3:965–74.
[7] Barnebey HS, Robin AL. Adherence to fixed-combination versus unixed travoprost 0.004%/timolol 0.5% for glaucoma or ocular hypertension: a randomized trial. Am J Ophthalmol 2011;150:266–74.
[8] Barnebey HS, Robin AL. Adherence to fixed-combination versus unixed travoprost 0.004%/timolol 0.5% for glaucoma or ocular hypertension: a randomized trial. Am J Ophthalmol 2011;150:266–74.
[9] Fear JH, Aldberg P, Wagner M, et al. Polyquaternium-1-preserved travoprost 0.003% or benzalkonium chloride-preserved travoprost 0.004% for glaucoma and ocular hypertension. Am J Ophthalmol 2015;160:606–13.
[10] Misiuk-Hojlo M, Pomorska M, Mulak M, et al. The RELIEF study: efficacy and safety of bimatoprost, latanoprost and travoprost in primary open angle glaucoma. Curr Med Res Opin 2005;21:1875–83.
[11] Holmstrom S, Buchholz P, Walt J, et al. Analytic review of bimatoprost, latanoprost and travoprost in primary open angle glaucoma. Curr Med Res Opin 2005;21:1875–83.
[12] Cheng JW, Xi GL, Wei RL, et al. Effects of travoprost in the treatment of open-angle glaucoma or ocular hypertension: A systematic review and meta-analysis. Curr Ther Res Clin Exp 2009;70:335–50.