Identification of Transcriptional Targets of HOXA5

Hexin Chen¹, Ethel Rubin¹, Huiping Zhang¹, Seung Chung¹, Charles C. Jie², Elizabeth Garrett², Shyam Biswal³, and Saraswati Sukumar¹*

¹Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231-1000; ²Department of Biostatistics and Clinical Trials, ³Environmental Health Sciences, Bloomberg School of Public Health, John Hopkins University, Baltimore 21205.

*To whom correspondence should be addressed: Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street CRB410, Baltimore, MD 21231-1000. Tel: 410-614-2479; Fax: 410-614-4073; Email: saras@jhmi.edu.

Running title: Identifying HOXA5 targets

Key words: HOXA5/transcriptional target/Pleiotrophin/microarray/breast cancer
ABSTRACT

The homeobox gene HOXA5 encodes a transcriptional factor which has been shown to play important roles in embryogenesis, hematopoiesis and tumorigenesis. In order to decipher downstream signaling pathways of HOXA5, we utilized oligonucleotide microarray analysis to identify genes which are differentially expressed in HOXA5 induced cells compared to uninduced cells. Comparative analysis of gene expression changes after 9 hours of HOXA5 induction in Hs578T breast cancer cells identified 306 genes whose expression was modulated at least two-fold. Ten out of these 306 genes were also upregulated by at least two-fold at 6 hours post-induction. The expression of all of these ten genes was confirmed by semi-quantitative RT-PCR. Among these ten genes, which are most likely to be direct targets of HOXA5, we initiated an investigation into the pleiotrophin gene by first cloning its promoter. Transient transfection assays indicated that HOXA5 can specifically activate the pleiotrophin promoter. Promoter deletion, chromatin immunoprecipitation assay and gel shift assays were performed to show that HOXA5 can directly bind to one binding site on the pleiotrophin promoter. These data strongly suggest that microarray analysis can successfully identify many potential direct downstream genes of HOXA5. Further functional analysis of these targets will allow us to better understand the diverse functions of HOXA5 in embryonic development and tumorigenesis.
INTRODUCTION

HOX genes, a subset of the homeobox genes which were originally identified in *Drosophila*, encode a family of transcriptional factors essential for axial and appendicular patterning and organogenesis (1). Recently, many HOX genes were found to be aberrantly expressed in a variety of cancers, including those of the breast, kidney and skin, suggesting that they may also contribute to the progression of tumors (2-5). All 39 HOX transcriptional factors identified in vertebrates have in common a 60-amino acid DNA-binding homeodomain that binds DNA and that has been conserved with respect to sequence, structure, and mechanism of DNA binding (6). In vitro assays show that all HOX proteins can bind to similar DNA motifs with a core sequence of TAAT (7,8). In sharp contrast to relatively simple binding motifs revealed in *in vitro* binding assays, each HOX gene has a variety of functions which cannot be completely compensated by other HOX genes. In order to understand the complexity of HOX gene functions extending from embryo development to hematopoietic maturation and tumorigenesis, it is important to identify the specific targets for each HOX gene.

The evidence for an important role of Hoxa5 in development comes mainly from the study of the Hoxa5 knockout mice (9,10). The resultant heterozygous mutant mice were viable and indistinguishable from their wild type littermates. However, more than 60% of the homozygous pups died within 4 days of birth. In homozygous newborn mutants, improper tracheal and lung morphogenesis lead to tracheal occlusion, and to respiratory distress associated with a marked decrease in the production of surfactant protein (10). Loss of Hoxa5 also perturbed intestinal maturation and transiently affects thyroid development(11,12). Analysis of the skeletal structures in the homozygote
revealed consistent abnormalities affecting the region between sixth cervical vertebra (C6) and the first lumbar vertebra. In human, HOXA5 has been shown to play a role in blood cell differentiation (13,14). Constitutive expression of HOXA5 expression in human hematopoietic progenitor cells causes a significant shift toward myeloid differentiation and away from erythroid differentiation (13). In addition, HOXA5 expression was lost in more than 60% breast cancer cell lines and primary breast carcinoma cells (15). Overexpression of HOXA5 in breast cancer cell line, MCF7, induced apoptosis by upregulating the expression of p53 (15). However, in the p53-mutant breast cancer line Hs578T, we have presented evidence that HOXA5-mediated apoptosis by activating caspase-2 and caspase-8 (16). HOXA5 and TNFα acted synergistically to induce apoptosis (16). These studies indicated that HOXA5 may behave as a tumor suppressor gene in breast cells.

Despite knowledge of a variety of functions of the HOXA5 gene that have been found to date in development and tumorigenesis, very few specific targets genes have been identified. The identity of the target genes could better define the multiple pathways through which HOXA5 may positively or negatively modulate growth. In this study, we utilized microarray analysis of an inducible HOXA5 breast cancer cell line, HS578T, to identify 306 genes whose expressions are significantly modified after HOXA5 induction. Further, we demonstrated that HOXA5 can directly bind to and activate the promoter of one these genes, pleiotrophin (PTN). Further sorting and functionally analyzing the candidate targets of HOXA5 will shed light on the underlying mechanisms of HOXA5 function.
MATERIALS AND METHODS

Cell Culture and Plasmids Construction: The Hs578T breast cancer cell line was purchased from ATCC and cultured in DMEM medium supplemented with 10% fetal bovine serum. SKBR3 breast cancer cells were cultured in McCoy 5A medium supplemented with 15% fetal bovine serum. The HOXA5 inducible Hs578T cell line was established using the 2-step Tet-Off plasmid transfection system, where gene expression is induced by removing doxycycline from the medium, as described previously (16).

HOXB1, HOXB3, HOXB5, and HOXD9- expressing plasmids were described previously (15,17). pCB6-HOXA5M was constructed by restricting pCB6-HOXA5 with Apa I followed by treatment with Klenow enzyme to remove four base pair followed by self-ligation. The 4-bp deletion in pCB6-HOXA5M resulted in a frame shift of HOXA5 coding sequence. pCB6-HOXA5M encodes a truncated HOXA5 protein without its homeodomain and C-terminus. We found unacceptably high level of activation of the pGL2 promoterless constructs by HOXA5. To circumvent this problem, we modified the pLC-Gal plasmid (a kind gift from Dr. Linzhao Cheng, Johns Hopkins University) which carries a β-galactosidase gene under the control of the CMV promoter. The pLC-Luc plasmid was constructed by us by replacing the β-galactosidase gene sequence of pLC-Gal with the luciferase gene sequence from pGL-3 plasmid (Promega). The full-length and deleted-PTN promoter sequences were PCR-amplified with primers (Forward primers: P-1084: 5'-CTA CTT GCC ACA AGA CAA TG-3'; P-624: 5'-AAA TTC TTG GGT GTC AAA GG-3'; P-314: 5'-AAA TGC CCA TCA ATT GTC CA-3' and reverse
primer P+222: 5'-TTG CTA CCG CTG AGT CCA GG-3’) and cloned into the pGEM-T vector (Promega). Then, PTN promoter inserts, released from pGEM-T cloning vector by restriction enzyme Sac II and Nde I, were cloned into pLC-Luc by replacing the CMV promoter sequence between enzyme sites Hind III and Nde I. The resulting clones, which contained full-length and deletions of PTN promoter, were sequenced and referred to as PTN-Luc, PTN-D-604 and PTN-D-314 respectively. To construct the PTN promoter deletion plasmid PTN-D-880, PTN-Luc was digested with restriction enzymes Nde I and Nhe I to release a small fragment of 5’-end PTN promoter sequence, and was followed by filling with Klenow enzyme and self-ligation with T4 ligase. Similarly, PTN-Luc was cut with Nde I and Hind III to construct PTN-D-101. PTN-D-604-106M was constructed using a two-step PCR mutagenesis method (18).

Transcriptional Profiling Microarray: Total RNA was purified from HOXA5-inducible Hs578T cells with the RNasy Mini Kit (Qiagen, Valencia, CA) after isolation with TRIzol reagent (Invitrogen) according to the manufacturer’s instruction. Two batches of RNA from HOXA5-inducible cells (0 h, 6 h and 9 h) were purified for performing replicate microarray hybridization experiments. The U133A GeneChip® (Affymetrix, Santa Clara, CA) contains probes for detecting approximately 14,500 well characterized genes and expressed sequence tags (ESTs). Hybridization was performed as described (19). Briefly, double-stranded cDNA was synthesized from 15 ug of total RNA with SuperScript Choice System (Invitrogen) by using oligo dT 24 primers, with a T7 RNA polymerase promoter site added to its 3’ end (Genset Corp, La Jolla, CA). The isolated cDNA was then labeled to generate biotinylated cRNA in vitro and amplified using the BioArray T7 RNA polymerase labeling kit (Enzo, Farmingdale, NY).
purification of the cRNA by RNeasy Mini Kit, 20 ug of cRNA was fragmented at 94°C for 35 min. Approximately 12.5 ug of fragmented cRNA was used in a 250 ul hybridization mixture containing Herring Sperm DNA (0.1 mg/ml; Promega, Madison, WI), plus bacterial and phage cRNA controls (1.5 pM BioB, 5pM BioC, 25 pM BioD, and 100 pM Cre) to serve as internal controls for hybridization efficiency as directed by the manufacturer (Affymetrix). Aliquots (200 ul) of the mixture were hybridized onto the array for 18 h at 45°C in a GeneChip® Hybridization Oven 640 (Affymetrix, Santa Clara, CA). Each array was washed and stained with streptavidin-phycoerythrin (Molecular Probes, Eugene, OR) and amplified with biotinylated anti-streptavidin antibody (Vector Lab, Burlingame, CA) on the GeneChip® Fluidics Station 400 (Affymetrix, Santa Clara, CA). Each array was scanned with the GeneArray scanner (Agilent Technologies, Palo Alto, CA) to obtain image and signal intensities.

Data Analysis Using Affymetrix Software: Scanned output files were analyzed with the Affymetrix Microarray Suite 5.0 and global normalization was performed prior to comparison. To identify differentially expressed transcripts, pairwise comparison analysis was carried out with Data Mining Tool 3.0 (Affymetrix, Santa Clara, CA). The analysis compares the differences in values of perfect match to mismatch of each probe pair in the baseline array to its matching probe on the experimental array. P-values were determined by the Wilcoxon’s signed rank test and denoted as increase, decrease or no change. Analysis using Data Mining Tool also provides the signal log ratio, which estimates the magnitude and direction of change of a transcript when two arrays are compared (induced vs. uninduced). We have converted the signal ration output into fold change for convenience using the formula recommended by affymetrix:
Fold Change =

\[
\begin{cases}
(-2)^{-(\text{Signal Log Ratio})}, & \text{Signal Log Ratio} < 0 \\
& \text{Signal Log Ratio} > 0
\end{cases}
\]

In the present study, we performed 4 pairwise comparisons for each time point (induced, n=2 and uninduced, n=2). Only those altered genes that appeared in 4 out of 4 comparisons were selected. This conservative analytical approach was used to limit the number of false-positives. The ESTs obtained in the data were searched for their recent annotation using the ‘Analysis Center’ at the Affymetrix site (www.netaffx.com). The microarray data has been deposited to the GEO database (Series entry: GSE2241; http://www.ncbi.nlm.nih.gov/geo).

Quantitative Real Time RT-PCR Analysis: Ten up-regulated genes as identified by microarray were selected for real time RT-PCR analysis to verify the array results. Reverse transcription reaction was performed as follows: 1ug of DNase treated total RNA, 0.5 ug of anchored oligo-dT15 primer and 500 M dNTPs (NEB) were heated for 5 min at 65°C; 1× first strand buffer (Invitrogen, La Jolla, CA), 0.01 M DTT, and 200 units Superscript II (Invitrogen) were added and reverse transcription was carried out, in a 20-ul reaction, for 50 min at 42°C and terminated by heating for 15 min at 70°C. To assess for potential contamination of solutions, a control containing all reagents, but devoid of RNA was included. In addition, a control containing all reagents, except the Superscript II, was included for each sample in order to monitor for possible residual genomic DNA in the RNA preparations.
The Q-RTPCR was performed using the fluorescent dye SYBR Green Master Mix following standard protocols on an ABI PRISM 7900 sequence detection system (Applied Biosystems, CA). The primers used for the PCR reaction were shown in Table 1. Native gel electrophoresis was used to characterize the final products. The data were first analyzed using the Sequence Detector Software SDS 2.0 (Applied Biosystems, CA). Results were calculated and normalized relative to the GAPDH control by using the Microsoft Excel program. All of the PCR were performed in triplicate and mean values were shown in figures.

Western Blot Analysis: Twenty µg of protein was fractionated in a 4-12% NuPAGE gel and transferred to PVDF membranes. The membrane was blocked with 100 ml of TBS buffer (10 mM Tris-base pH7.5, 0.9% NaCl) containing 5% dry milk and 0.1% Tween-20 for 1 hour on the shaker at room temperature or overnight in cold room. The membrane was rinsed once with TBS buffer before incubating with an appropriate dilution of the 1’ antibody in TBS buffer containing 5% milk and 0.02% Tween-20 on shaker for 1 h. The primary antibody bound membrane was washed with TBS buffer containing 0.1% Tween-20 four times and then incubated with the 2’ antibody (from Amersham ECL kit- anti-rabbit or anti-mouse) at about 1:1000 dilution for 1 to 1.5 hours on a shaker. The filter was developed by using the ECL-Plus reagent (Amersham). Rabbit anti-peptide antibodies to HOXA5 were provided by Zymed Inc. (San Francisco, CA)

Transient Transfection Assay: 2×10^5 SKBR3 cells were seeded onto each well of 6-well plate 24 h prior to transfection. 1 to 2 ug of plasmids was transfected into cells using Gene Jammer (Stratagene Corp., La Jolla, CA) according to the manufacturer’s instruction. 24 h post-transfection, cells were harvested for luciferase and β-Gal assay
using luciferase activity measuring kit (Promega, Madison WI) and β-Gal assay kit (ICN Biomedicals Inc., Aurora, OH) according to the manufacturer’s instruction. The luciferase activities were normalized to the β-Gal activities for each sample. The fold-activation was calculated as the ratio of normalized luciferase activities in the cells transfected with the reporter plasmid in the presence of HOXA5-expressing plasmid to that in the absence of HOXA5-expressing plasmid. Each transfection was repeated at least three times and the averaged data is shown in the figures.

Chromatin Immunoprecipitation (ChIP) assay: Chip assays were performed using Chromatin Immunoprecipitation (ChIP) Assay Kit (Upstate Inc., Lake Placid, NY) according to the manufacturer’s instruction. In brief, 1 x 10^6 vector and HOXA5-induced cells were cross-linked by adding formaldehyde directly to culture medium. Cells were harvested and sonicated to shear DNA to lengths between 200 and 1000 base pairs. After centrifuging samples for 10 minutes at 13,000 rpm at 4°C, the supernatant was pre-cleared with 75µl of salmon sperm DNA/Protein A agarose-50% slurry for 30 minutes at 4°C with agitation. 2 µg of HOXA5 antibody was then added to the supernatant fraction for incubation overnight at 4°C with rotation. Then, 60µl of salmon sperm DNA/Protein A agarose was added to collect the antibody/histone complex. The protein A agarose/antibody/histone complex was extensively washed for five minutes as suggested and heated at 65°C for 4 hours to reverse histone-DNA crosslinks. The DNA was recovered by phenol/chloroform extraction and ethanol precipitation. The PCR were performed using two pairs of primers (control: nt-1084 5’-CTA CTT GCC ACA AGA CAA TG and nt-725 5’ACG CTA AGG CAA TGC ATA GG-3’ ; HBS: nt-271 5’-GAG
ATC TGG CTT TGC ACT CAT CTG AA-3’ and nt-8 5’-GCA TAT GGA GAA TGG GAG GGA ATG A-3’).

Gel-shift assay: Nuclear extracts from HOXA5-inducible cells were prepared and gel-shift assays were performed as described previously (15,17). The reaction was carried out in a final volume of 20-ul. One microliter of nuclear extract (~2 ug total protein) was added to binding buffer containing 2 ug of poly[d(I-C)] (Amersham Biosciences Corp., Piscataway, NJ), 20 mM HEPES-HCl, pH 7.9, 50 mM KCl, 1 mM EDTA, 10 mM MgCl₂, 6% glycerol and 2×10⁴ cpm of ³²P-end-labeled oligonucleotide. After 15 min on ice, loading buffer was added, and the Protein-DNA complexes were resolved in nondenaturing 5% polyacrylamide gels by electrophoresis at 100V for 3-4 h in 0.25×TBE (1×TBE: 0.089M Tris base, 0.089M boric acid, 2mM EDTA). The gels were dried and exposed to Kodak-RP film (Kodak, New Haven, CT). The 20-mer oligonucleotides containing the canonical HOXA5-binding site within the PTN promoter and the mutated binding-sites, were synthesized and purified by high performance liquid chromatography. Double-stranded oligonucleotides were end-labeled with [γ-³²P] ATP. To ascertain specificity of binding, unlabeled competitor wild-type, or mutated oligonucleotides were incubated with the protein extract prior to the addition of the labeled oligonucleotide. A supershift assay was also performed by incubating the DNA-protein complex with 2 ug of rabbit polyclonal HOXA5 antiserum (Zymed Inc., San Francisco, CA) for 10 min on ice.

RESULTS
Identification of genes which are differentially expressed after induction of HOXA5 expression

The tet-off HOXA5 inducible Hs578T cell line was established as described previously (16). In this system, HOXA5 expression is tightly controlled by the tetracycline-responsive promoter and can be rapidly induced by removal of Doxycycline (a tetracycline analog) from the culture medium (Fig. 1). Similar to the parental cells (P), under uninduced condition (0h time point), the expression of HOXA5 was undetectable by western blot analysis. At 3 h post-induction, the expression of HOXA5 became detectable and continued to increase over the time course of induction until 6-9 h post-induction. At 12 hours post-induction, cells began to undergo apoptosis (16).

These data suggested that HOXA5-mediated gene expression had occurred during the first few hours of induction. The earliest responding genes are more likely to be the direct targets of HOXA5. To this end, we harvested cells at 0, 6 and 9 h after induction. Total RNA was purified from these cells and subjected to oligonucleotide microarray analysis using Affymetrix chips.

The microarray experiments were repeated once with separately purified RNA samples for each of the time points. The gene expression profiles of cells induced for 6 and 9 h were compared to that under uninduced conditions (0 h). The differentially expressed genes in 4 out of 4 comparisons (6 h #1 versus 0 h #1 and #2; 6 h #2 versus 0 h #1 and #2; 9 h #1 versus 0 h #1 and #2; 9 h #2 versus 0 h #1 and #2) are listed in the Tables (Supplementary Data). At 9 h post-induction, when we observed the maximal number of genes that were differentially expressed, we identified 262 genes whose expression was up-regulated by at least 2-fold and 44 genes whose expression was
down-regulated by at least 2-fold. Since HOXA5 is well-established as a positive regulator of genes, we have focused only on the up-regulated genes in this study.

Among the 262 up-regulated genes, 10 genes or ESTs were also up-regulated at 6 h post-induction (Table 2). In contrast, only one gene which is upregulated at 6 h post-induction did not appear in the list of upregulated gene at 9 h post-induction.

Validation of microarray data by real time PCR analysis

The ten genes whose expression was upregulated at both 6 h and 9 h post-induction are more likely to be the direct targets of HOXA5. Therefore, we examined the expression pattern of these genes over the time course of HOXA5 induction. Similar to the continued increase in the expression of HOXA5 during the time course of induction, we observed that compared to parent cells and uninduced cells, expression of most of these ten genes increased in parallel to the expression of HOXA5 (Fig. 2). Hence, the data generated by the microarray was confirmed for each of these genes by real time PCR, thereby validating the robustness of the analysis.

HOXA5 specifically activates the promoter of the pleiotrophin gene

Next, a search was performed of the promoter region of these ten HOXA5-induced candidate genes. Among these, we observed the presence of multiple HOXA5 core binding motifs (TAAT) in the promoter sequences of the pleiotrophin (PTN) gene. While the core binding sequences of HOX genes are TAAT, the specificity of binding for each HOX genes has been shown, in one study, to be attributable to the flanking sequences (8). But no consensus HOXA5-specific binding sites beside the TAAT core sequence were identified. PTN encodes a 136-amino acid cytokine which is an important contributor to growth, differentiation, and maintenance of viability within the mammalian
nervous system during development (21,22). Hoxa5 is also highly expressed in the
nervous system during mouse embryogenesis. Moreover, in primary breast cancers, we
analyzed multiple array databases and determined that PTN expression is lost in breast
cancer (www.oncomine.com). PTN expression level was significantly lower in breast
tumor samples in three out of three studies involving a total of 32 normal breast samples
and 149 breast carcinoma samples. The adjusted P-values for these three studies were
0.002, 0.1 and 5.6×10^{-6} respectively. Based upon the data that there is loss of HOXA5
(15) and PTN in a large proportion of breast cancers, we wanted to test whether HOXA5
directly activates the expression of PTN. To this end, we performed transient transfection
assays. As shown in Fig. 3B, HOXA5 up-regulated the PTN promoter driven-luciferase
gene expression in a dose-dependent manner. Luciferase activity increased by about 4-fold in the presence of one microgram of HOXA5-expressing plasmid, when compared to
activity in the absence of HOXA5-expressing plasmids (Fig. 3B). With the same amount
of transfected mutant HOXA5-expressing plasmid, no increase in luciferase gene
expression was observed (Fig. 3B).

Since many HOX genes are functionally redundant, we next tested the specificity
of HOXA5 on activation of PTN promoter. PTN promoter was cotransfected with
expression constructs of either, HOXB1, HOXB3, HOXB5 or HOXD9. We found that
among the HOX genes tested, only HOXD9 weakly activated the promoter of PTN (Fig.
3E). These results suggested that, among the HOX genes tested, it is likely that HOXA5
acts as a transcriptional regulator upstream of PTN.

Homeodomain of HOXA5 is required for its ability to transactivate the PTN promoter
The homeodomain of the HOX protein, which binds to DNA, is generally required for its transactivation abilities. However, HOX proteins can also regulate gene expression by interacting with other transcriptional factors independent of their binding domain (25). To investigate whether the DNA binding domain of HOXA5 is required for activation of PTN expression, we constructed a mutant HOXA5 plasmid which encoded a truncated HOXA5 protein, lacking most of its homeodomain (Fig. 3A). Transient transfection assays indicated that this truncated HOXA5 protein completely lost its ability to activate the promoter of PTN (Fig. 3B). The inability of truncated HOXA5 to activate gene expression was not due to failure of expression since Western analysis revealed that both wild type and truncated protein were expressed at similar levels (Fig. 3C). These results suggested that HOXA5 DNA binding domain is required for its ability to regulate the PTN promoter.

In vitro assays have shown that HOX gene family transcription factors bind to very similar binding sites with core sequences such as TAAT (8). The specificity for transcriptional regulation by HOX genes is often achieved either by interaction with cofactors, or by the DNA context around the binding site (26-29). The N-terminal part of the HOX protein is known to play an important role in protein-protein interaction. For example, the pentapeptide (YPWMR), which is found N-terminal to the homeodomain of many HOX proteins, is the determinant for interaction with the cofactor PBX1A (30). Interaction with PBX1A has been shown to greatly increase the DNA binding affinity of HOX proteins, including HOXA5, and also altered DNA binding specificity (30-32). We hypothesized that the truncated HOXA5 protein (that had lost its binding capacity but retained its ability to interact with cofactors) may competitively inhibit the transactivation
of the PTN promoter mediated by wild type HOXA5. As predicted, by cotransfecting cells with wild type HOXA5 and different concentrations of mutant HOXA5, we found that the truncated HOXA5 protein inhibited the transactivation ability of wild-type HOXA5 in a dose-dependent manner. In the presence of ten-fold excess of mutant HOXA5-expressing plasmids, the transactivation of PTN promoter by wild-type HOXA5 was inhibited by more than 50% (Fig. 3D). These results provide further evidence that HOXA5 can, with some specificity, increase the promoter activity of PTN.

Mapping the binding sites of HOXA5 on the promoter of PTN

The DNA binding domain of HOXA5 is required for HOXA5-mediated activation of PTN promoter. We next attempted to define the binding sites of HOXA5 in the promoter by serially deleting the PTN promoter. Within about 1kb of PTN promoter sequences immediately upstream of the transcriptional start site, we found 7 potential HOXA5 binding sites. We constructed a series of deletions aimed at removing these sites in a stepwise manner. As shown in Fig. 4A, deletion of the first six sites in the deletion constructs (PTN-D-880, PTN-D-604 and PTN-D-314) had no drastic effects on their abilities to be activated by HOXA5. All three of these deleted promoters were activated 3- to 4-fold by HOXA5. However, further deletion of the last site in the shortest construct, PTN-D-101, completely abolished its ability to be activated by HOXA5. Also, this deletion construct of the promoter still retains more than 50% basal transcriptional ability compared to the full-length promoter as reported by Li et al (33). These results indicated that the last TAAT-containing sequences are likely to comprise the direct HOXA5 binding site (HBS). To test this further, a promoter construct (PTN-D-604-106M) with a point mutation in the HBS site (TAAT → TGGT) was made. Although it still carries two
upstream TAAT sites, the mutated plasmid completely lost its ability to be activated by HOXA5 (Fig. 4A). These findings provided additional lines of evidence that HOXA5 bind to the PTN promoter, and that the putative HBS is most likely a bona fide HOXA5 binding site in the PTN promoter.

To test whether HOXA5 can bind directly to the putative HBS site, we performed gel-shift assays with synthetic probes designed according to the sequence of HBS (Fig. 4B). In most previous studies on HOX protein-DNA binding assay, purified HOX proteins were used for the gel-shift assay (8,26). The strong binding sites found in these in vitro assays usually confer very weak transactivation ability to the consensus binding site-containing promoters in in vivo transfection assay (8,26). Besides co-factors affecting the binding affinity in vivo, post-transcriptional modifications of HOX protein also alter their DNA binding abilities (34). We used nuclear extracts from HOXA5-induced cells to perform the gel-shift assays. The results showed that HOXA5 specifically bound to the putative HBS (lane 2, Fig. 4C). No specific shifted bands were observed when vector cell lysate was added (lane 3, Fig. 4C). The binding of HOXA5 to HBS was competitively inhibited by excess corresponding unlabeled wild-type HBS oligonucleotide (lane 4), but not by adding the mutant HBS oligonucleotide to the reaction (lane 5). Two base mutations (AA to GG) in the HBS completely abolished its binding ability to HOXA5 (Fig. 4C, lane 7), further indicating that the core binding sequence (TAAT) in HBS was important for HOXA5 binding. In addition, HOXA5 did not bind to another oligonucleotide probe corresponding to the DNA sequence (nt-1011~1030) containing a TAAT site at nt-1019 (lane 10, Fig. 4C). The binding specificity of HOXA5 to the HBS was further tested by performing supershift assays (Fig.
4D). Adding HOXA5-specific antibody to the reaction resulted in a shift of the HOXA5-specific bands (lanes 2, 3), but had no effect on the migration of nonspecific bands (lanes 4, 5).

To study if HOXA5 binds to HBS in intact cells, we performed a chromatin immunoprecipitation (ChIP) assay using a HOXA5-specific antibody. Consistent with the results of the gel-shift assay, the DNA fragment encompassing the HBS was specifically pulled down in the presence of the HOXA5 antibody (Fig. 5E, lane 6), but not in its absence (lane 5), in immunoprecipitates of the HOXA5 transfected cells but not in the vector control (lane 3). In contrast, a control DNA fragment can not be pulled down by HOXA5 antibody. These results, combined with evidence from deletion and mutation studies of the PTN promoter, DNA binding and supershift assays provide strong experimental evidences that support the conclusion that the TAAT-containing sequences located at –106 in the PTN promoter is the binding site for HOXA5.

DISCUSSION

The HOX family transcription factors are known to play pivotal roles in embryogenesis and tumorigenesis. A prerequisite for understanding the complex patterning functions of HOX genes is to identify their downstream target genes. Although the number of Hox targets in Drosophila alone has been estimated to range in the thousands, to date, only a few presumptive downstream genes have been isolated in both flies and vertebrates (35). Efforts to identify gene-specific targets are greatly hindered by lack of knowledge of the sequence of binding sites specific to each HOX gene. As a master regulator, HOX genes may indeed regulate expression of many genes
simultaneously in vivo. Since the recent development of subtractive hybridization and array technologies, a small numbers of studies have resulted in the identification of a number of other HOX gene targets (36-41). But similar studies have not been performed for HOXA5.

In this study, we utilized oligonucleotide microarray analysis to identify the downstream targets of HOXA5. We found that induction of HOXA5 expression can rapidly modulate the expression of a large group of genes representing a wide variety of functional categories. Semi-quantitative RT-PCR was able to confirm the gene expression changes identified by the microarray analysis in all 10/10 genes tested. Detailed transient transfection assays, promoter deletion assays, gel-shift assays and ChIP assays demonstrated that HOXA5 can directly bind to, and activate the promoter of the PTN gene. These results indicated that at least some of these genes may be direct targets of HOXA5. Many of the 262 upregulated genes at 9 h post-induction are transcriptional factors, implying that a large number of these differentially expressed genes are indirect targets of HOXA5. However, all of these genes may get involved in HOXA5-signaling pathways.

HOXA5 plays an important role during embryogenesis. However, the signaling pathways downstream of HOXA5 are largely unknown. Identification of PTN as a bona fide target of HOXA5 may provide insight into the functions of HOXA5 in development. PTN was initially isolated from early postnatal rat brain as a protein with neurite outgrowth-promoting activity on embryonic brain neuron cells in culture (42). During embryogenesis, PTN expression was expressed in a distinctive temporal and cell-type specific manner (43). Although in vitro studies showed that PTN expression can be
regulated by PDGF and other stimuli (43,44), it is difficult to reconcile the temporal-spatial expression pattern of Ptn during embryogenesis. The data presented in this paper show that like human HOXA5, mouse Hoxa5 may directly control the expression of Ptn during development. Strikingly, the expression of Hoxa5 coincides well with that of Ptn both in the time window and locations during development (24,45-47). Since both of Hoxa5 and Ptn are expressed in CNS, lung and gut, it is possible that HOXA5 may directly dictate functions of PTN in the development of these tissues. For example, both Hoxa5 and Ptn are expressed in Purkinje cells (46,48). Their expression appears to be activated perinatally, and continues into adulthood. Interestingly, Hoxa5 has been shown to activate a Purkinje cell-specific promoter, L7 (48). Another line of evidence for their interaction may be provided by the fact that Hoxa5 knockout mice died of respiratory failure soon after birth. This phenotype, resulting from the absence of Hoxa5, corresponds to the high expression of both Ptn and Hoxa5 in the lung of neonate animals (34,42). Further studies are needed to confirm their colocalization in tissues and functional relevance during development.

In breast cancer cells, it was initially reported that PTN mRNA was detected in 25% of breast cancer cell lines and about 60% of breast carcinomas (23). However, the expression of PTN in normal breast tissue was not examined. The authors concluded that PTN was overexpressed in a large proportion of breast carcinomas. Since tumors that did not express PTN also contained similar proportions of normal tissue, they argue that the expression of PTN in normal breast tissue is too low to be detected by the RNase protection assay. In recent years, gene expression profiles of breast cancer using large numbers of clinical samples have been performed using microarray analysis (49-51). We
searched through these gene expression databases at www.oncomine.com and found that, in contrast to the published data (23), PTN expression level was significantly lower in breast tumor samples in three out of three studies involving a total of 32 normal breast samples and 149 breast carcinoma samples. Our data suggests that PTN expression was lost in breast tumors. Our previous study showed that HOXA5 expression was also lost in more than 60% primary breast carcinomas. Identification of PTN as a direct target of HOXA5 implies that loss of HOXA5 expression may contribute to the loss of PTN expression in breast tumors. Both PTN and HOXA5 play diverse roles in development and tumorigenesis. PTN was reported to stimulate the proliferation of fibroblast, endothelial and epithelial cells and act more like an oncogene (23). On the other hand, HOXA5 was found to induce apoptosis in breast cancer cells when it was overexpressed (15,16). However, both of them have also been shown to promote cellular differentiation (13,14,42). Currently, we can not integrate these diverse functions into a simple model. Further studies are needed to address the functional relationship between these two genes in breast tumorigenesis.

As mentioned above, overexpression of HOXA5 in breast cancer cells triggers apoptotic pathways (15,16). Interestingly, when we searched through genes which were upregulated at 9 h post-induction, we identified many genes related to receptor-mediated apoptosis. Among them are two TNF receptor family members, TNFR9 and TNFR10b. TNF10b (also named as DR5) is a receptor for TRAIL, which is a well-documented apoptotic inducer (52). Among the 12 gene probes which displayed unregulated genes at 6 h post-induction, three of them represent one single gene GADD45β. GADD45β is a putative target of NF-κB (53). IL-8, which is another putative target of NF-κB (54), is
also upregulated at 6 h post-induction. These results strongly suggest that NF-κB pathway may be activated downstream of HOXA5. Our recent data showed that p65 protein was translocated into nucleus 30min after induction of HOXA5 expression (data not shown), which has been shown to be one of the most important criteria for NF-κB activation (55,56). Activation of NF-κB antagonizes apoptosis by numerous triggers, including the ligand engagement of ‘death receptor’ such as tumor-necrosis factor (TNF) receptor (57). Consistent with these findings, we have recently shown that HOXA5 and TNFα can synergistically induce apoptosis, strongly suggesting that the receptor-mediated apoptotic pathway was activated (16). In conclusion, HOXA5 may trigger receptor-mediated apoptotic pathways which involve activation of NF-κB signaling pathway.

In summary, we have successfully identified many direct or indirect targets of HOXA5. The HS578T-tet- inducible system allowed us easily to identify genes whose expression was upregulated early, which are more likely to be the direct targets and may initiate HOXA5 downstream signaling pathways. Further comprehensive sorting and characterization of these downstream targets will help us better understand how the HOXA5 signaling pathways contribute to the integration of proliferation, differentiation and apoptosis in development and tumorigenesis.

ACKNOWLEDGEMENTS

We are deeply grateful to Kim H. Mai and Hannah Lee for technical assistance on microarray experiments, and Cindy Zahnow for critically reviewing the manuscript. This work is supported by a Susan Komen fellowship (PDF0100603) to H. Chen, and the NIH SPORE P50CA88843 to S. Sukumar.
REFERENCES:

1. Krumlauf, R. (1994) Cell 78, 191-201
2. Abate-Shen, C. (2002) Nat Rev Cancer 2, 777-785
3. Chen, H., and Sukumar, S. (2003) J Mammary Gland Biol Neoplasia 8, 159-175
4. Lewis, M. T. (2000) Breast Cancer Res 2, 158-169
5. Chen, H., and Sukumar, S. (2003) Cancer Biol Ther 2, 524-525
6. Sharkey, M., Graba, Y., and Scott, M. P. (1997) Trends Genet 13, 145-151
7. Hayashi, S., and Scott, M. P. (1990) Cell 63, 883-894
8. Pellerin, I., Schnabel, C., Catron, K. M., and Abate, C. (1994) Mol Cell Biol 14, 4532-4545
9. Jeannotte, L., Lemieux, M., Charron, J., Poirier, F., and Robertson, E. J. (1993) Genes Dev 7, 2085-2096
10. Aubin, J., Lemieux, M., Tremblay, M., Berard, J., and Jeannotte, L. (1997) Dev Biol 192, 432-445
11. Aubin, J., Chaillier, P., Menard, D., and Jeannotte, L. (1999) Am J Physiol 277, C965-973
12. Aubin, J., Dery, U., Lemieux, M., Chaillier, P., and Jeannotte, L. (2002) Development 129, 4075-4087
13. Crooks, G. M., Fuller, J., Petersen, D., Izadi, P., Malik, P., Pattengale, P. K., Kohn, D. B., and Gasson, J. C. (1999) Blood 94, 519-528
14. Fuller, J. F., McAdara, J., Yaron, Y., Sakaguchi, M., Fraser, J. K., and Gasson, J. C. (1999) Blood 93, 3391-3400
15. Raman, V., Martensen, S. A., Reisman, D., Evron, E., Odenwald, W. F., Jaffee, E., Marks, J., and Sukumar, S. (2000) Nature 405, 974-978
16. Chen, H., Chung, S., and Sukumar, S. (2004) Mol Cell Biol 24, 924-935
17. Raman, V., Tamori, A., Vali, M., Zeller, K., Korz, D., and Sukumar, S. (2000) J Biol Chem 275, 26551-26555
18. Ausubel, F. M., Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). (1989) Current protocols in molecular biology., Green Publishing Associates, New York, N.Y.
19. Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., and Biswal, S. (2002) Cancer Res 62, 5196-5203
20. Nikiforova, N. N., Velikodvorskaja, T. V., Kachko, A. V., Nikolaev, L. G., Monastyrskaya, G. S., Lukyanov, S. A., Konovalova, S. N., Protopopova, E. V., Svyatchenko, V. A., Kiselev, N. N., Loktev, V. B., and Sverdlov, E. D. (2002) Virology 297, 163-171
21. Muramatsu, T. (2002) J Biochem (Tokyo) 132, 359-371
22. Deuel, T. F., Zhang, N., Yeh, H. J., Silos-Santiago, I., and Wang, Z. Y. (2002) Arch Biochem Biophys 397, 162-171
23. Fang, W., Hartmann, N., Chow, D. T., Riegel, A. T., and Wellstein, A. (1992) J Biol Chem 267, 25889-25897
24. Dony, C., and Gruss, P. (1987) Embo J 6, 2965-2975
25. Suzuki, M., Ueno, N., and Kuroiwa, A. (2003) J Biol Chem 278, 30148-30156
26. Zappavigna, V., Sartori, D., and Mavilio, F. (1994) *Genes Dev* **8**, 732-744
27. Vigano, M. A., Di Rocco, G., Zappavigna, V., and Mavilio, F. (1998) *Mol Cell Biol* **18**, 6201-6212
28. Phelan, M. L., and Featherstone, M. S. (1997) *J Biol Chem* **272**, 8635-8643
29. Phelan, M. L., Rambaldi, I., and Featherstone, M. S. (1995) *Mol Cell Biol* **15**, 3989-3997
30. Lu, Q., and Kamps, M. P. (1996) *Mol Cell Biol* **16**, 1632-1640
31. Shen, W. F., Chang, C. P., Rozenfeld, S., Sauvageau, G., Humphries, R. K., Lu, M., Lawrence, H. J., Cleary, M. L., and Largman, C. (1996) *Nucleic Acids Res* **24**, 898-906
32. Shen, W. F., Rozenfeld, S., Lawrence, H. J., and Largman, C. (1997) *J Biol Chem* **272**, 8198-8206
33. Li, Y. S., Hoffman, R. M., Le Beau, M. M., Espinosa, R., 3rd, Jenkins, N. A., Gilbert, D. J., Copeland, N. G., and Deuel, T. F. (1992) *Mol Cell Biol* **15**, 3989-3997
34. Lu, Q., and Kamps, M. P. (1996) *Mol Cell Biol* **16**, 1632-1640
35. Mannervik, M. (1999) *Bioessays* **21**, 267-270
36. Tkatchenko, A. V., Visconti, R. P., Shang, L., Papenbrock, T., Pruett, N. D., Ito, T., Ogawa, M., and Awgulewitsch, A. (2001) *Development* **128**, 1547-1558
37. Dorsam, S. T., Ferrell, C. M., Dorsam, G. P., Derynck, M. K., Vijapurkar, U., Khodabakhsh, D., Pau, B., Bernstein, H., Haqq, C. M., Largman, C., and Lawrence, H. J. (2004) *Blood* **103**, 1676-1684
38. Ghannam, G., Takeda, A., Camarata, T., Moore, M. A., Viale, A., and Yaseen, N. R. (2004) *J Biol Chem* **279**, 866-875
39. Shen, J., Wu, H., and Gudas, L. J. (2000) *Exp Cell Res* **259**, 274-283
40. Hedlund, E., Karsten, S. L., Kudo, L., Geschwind, D. H., and Carpenter, E. M. (2004) *J Neurosci Res* **75**, 307-319
41. Zhao, Y., and Potter, S. S. (2001) *Development* **128**, 3197-3207
42. Li, Y. S., Milner, P. G., Chauhan, A. K., Watson, M. A., Hoffman, R. M., Kodner, C. M., Milbrandt, J., and Deuel, T. F. (1990) *Science* **250**, 1690-1694
43. Li, Y. S., Gurrieri, M., and Deuel, T. F. (1992) *Biochem Biophys Res Commun* **184**, 427-432
44. Yeh, H. J., He, Y. Y., Xu, J., Hsu, C. Y., and Deuel, T. F. (1998) *J Neurosci* **18**, 3699-3707
45. Tani, M., Odenwald, W. F., Lazzarini, R. A., and Friedrich, V. L., Jr. (1989) *J Neurosci Res* **24**, 457-469
46. Silos-Santiago, I., Yeh, H. J., Gurrieri, M. A., Guillerman, R. P., Li, Y. S., Wolf, J., Snider, W., and Deuel, T. F. (1996) *J Neurobiol* **31**, 283-296
47. Vanderwinden, J. M., Mailloux, P., Schiffmann, S. N., and Vanderhaeghen, J. J. (1992) *Anat Embryol (Berl)* **186**, 387-406
48. Sanlioglu, S., Zhang, X., Baader, S. L., and Oberdick, J. (1998) *J Neurobiol* **36**, 559-571
49. Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Thorsen, T., Quist, H., Matese, J.
C., Brown, P. O., Botstein, D., Eystein Lonning, P., and Borresen-Dale, A. L. (2001) *Proc Natl Acad Sci U S A* **98**, 10869-10874

50. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C. H., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J. P., Poggio, T., Gerald, W., Loda, M., Lander, E. S., and Golub, T. R. (2001) *Proc Natl Acad Sci U S A* **98**, 15149-15154

51. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lonning, P. E., Borresen-Dale, A. L., Brown, P. O., and Botstein, D. (2000) *Nature* **406**, 747-752

52. Goodwin, R. G., and Smith, C. A. (1998) *Apoptosis* **3**, 83-88

53. Papa, S., Zazzeroni, F., Bubici, C., Jayawardena, S., Alvarez, K., Matsuda, S., Nguyen, D. U., Pham, C. G., Nelsbach, A. H., Melis, T., Smaele, E. D., Tang, W. J., D’Adamio, L., and Franzoso, G. (2004) *Nat Cell Biol* **6**, 146-153

54. Roebuck, K. A. (1999) *J Interferon Cytokine Res* **19**, 429-438

55. Ghosh, S., and Baltimore, D. (1990) *Nature* **344**, 678-682

56. Nolan, G. P., Ghosh, S., Liou, H. C., Tempst, P., and Baltimore, D. (1991) *Cell* **64**, 961-969

57. Kucharczak, J., Simmons, M. J., Fan, Y., and Gelinas, C. (2003) *Oncogene* **22**, 8961-8982
Legend:

Fig. 1. **Time course of induction of HOXA5 expression in Hs578T cells.** 2×10^6

HOXA5 inducible Hs578T breast cancer cells were seeded onto a 10-cm plates 24 h prior to induction. The cells were harvested at time points indicated and subjected to western blot analysis. P, parental Hs578T cells.

Fig. 2. **Quantitative Real time RT-PCR analysis.** Total RNA was purified from parent and HOXA5 inducible Hs578T cells. Ten genes whose expressions are up-regulated at both 6 and 9 h post-induction by microarray analysis were tested by Quantitative Real time RT-PCR analysis. The PCR reaction was performed as described in the Material and Methods section. The PCR primer sequences are listed in Table 1. The relative expression level of each gene in the uninduced cells was referred to as one after normalization to GAPDH control for each sample. P, parent Hs578T cells.

Fig. 3. **HOXA5 can specifically activate the PTN promoter.**

A. Wild type and mutant HOXA5-expressing constructs. A 4-bp deletion in the HOXA5M plasmid resulted in a frame shift from amino acid position 197. HOXA5M encodes a peptide which has the intact N-terminal part of HOXA5, and 22 amino acid non-specific (NS) sequences due to the frame shift, but lacks the entire homeodomain (HD) and the C-terminal part of HOXA5.

B. Transactivation of PTN promoter by wild type or mutant HOXA5. 100 ng of PTN-Luc was co-transfected into SKBR3 cells with different concentrations of either wild type or mutant HOXA5-expressing plasmids. 2.5 ng of β-galactosidase expressing plasmids was co-transfected as internal control. At 24 h post-transfection, the cells were harvested for luciferase and β-galactosidase activities assay. The calculation for activation was done as described under “Materials and Methods”. The transfection
experiments were repeated at least three times. C. Western blot analysis of wild type and mutant HOXA5 protein. SKBR3 cells were transiently transfected with wild type and mutated HOXA5-expressing plasmids. At 48 hrs post-transfection, the cells were harvested for western blot analysis. D. Competition of HOXA5 transactivation abilities by HOXA5M. 100 ng of PTN-Luc was co-transfected with 100 ng of wild type HOXA5 expressing plasmid in the presence of different amounts of mutant HOXA5 expressing plasmids (0, 0.1, 0.5 and 1.0 ug). The normalized luciferase activity in the absence of mutant HOXA5 expressing plasmids was referred to as 100% activity. E. Effects on PTN promoter activities by co-transfection of other HOX expressing plasmids. 100 ng of PTN-Luc was co-transfected into SKBR3 cells with 1 ug of different HOX genes expressing plasmids. The experiments were done as described in legend Fig. 3B.

Fig. 4. **Mapping the HOXA5 binding sites on PTN promoter.** A. Deletion analysis of PTN promoter. 100 ng of each of these deletion constructs were co-transfected into cells with 0.5 ug of HOXA5 expressing plasmids. The luciferase activities were measured at 24 h post-transfection as described under “Materials and Methods”. The results are an average of three independent experiments. PTN-Luc which contains the PTN promoter sequence from -1084 bp to +222 bp was referred to as the full-length promoter. PTN-D-604-106M carries a point mutation in the HBS site (nt-106, TAAT → TGGT). HBS, HOXA5 binding site. B. The wild type and mutant oligonucleotides containing the potential HBS and control oligonucleotide were synthesized for gel shift assays. C. HOXA5 directly binds to HBS on PTN promoter. The wild type and mutant oligonucleotide probes were end-labeled and hybridized with nuclear extracts from
HOXA5 and vector-inducible cells 16 h post-induction. For each probe, a negative control (no nuclear extract) was included, and the HOXA5 specific binding was competed with cold, 50-fold excess of either wild type oligonucleotide or mutant HBS oligonucleotide. Two base mutations (AA→GG) in HBS completely abolished its ability to bind to HOXA5 (lane 6-9). HOXA5 and Vector represent nuclear extracts from HOXA5 and vector-inducible cells respectively. C, control oligonucleotide. D. Supershift assay using HOXA5-specific antibody. The end-labeled HBS oligonucleotide was incubated with HOXA5 or vector cell nuclear extract in the presence or absence of HOXA5 antibodies. The bands of HOXA5-oligonucleotide complex and the supershifted complex are indicated by arrows. E. Binding of HOXA5 to HBS in vivo by ChIP assay. M. DNA marker; In, total input DNA; Ab, HOXA5 antibody; HBS, HOXA5-binding region; control, upstream region of PTN promoter used as a negative control. Primers for PCR amplification of HBS and control regions were described under the “Material and Methods”.
Table 1. **Primers used in the quantitative real time RT-PCR analysis**

Gene Name	Primer Sequence
EGR-1	5’-CGAGCAGCCCTACGAGCACCTGAC-3’
 | 5’-TGCGCAGCTCAGGGGTGGGCTCTG-3’ |
| IL-8 | 5’-TCTTGGCAGCCTCTCTGATT-3’
 | 5’-AACTTCTCCACAAACCTCTG-3’ |
| GADD45β | 5’-CGGTGGAGGAGCTTTTGGTG-3’
 | 5’-CACCAGACGATGTTGATGT-3’ |
| SAT | 5’-ATGGCTAAATTCGATCCCG-3’
 | 5’-TTAGCAAGTACTCCTTGTCG-3’ |
| TIEG | 5’-CTCAACTTCGGTGCCCTCTC-3’
 | 5’-GGTTTGACGATCTGAGAG-3’ |
| ETR101 | 5’-TCGATGTGAGATAGTGTAC-3’
 | 5’-GTCCATGGCTCCGAAAC-3’ |
| PTN | 5’-ATGCAAGCTCAACAGTACCA-3’
 | 5’-TATGTCACAGGTGACATC-3’ |
| EST1 | 5’-TTTGCACTTATTCCTCCTT-3’
 | 5’-GGTGCGGCATTGTGAACTA-3’ |
| EST2 | 5’-AGGAGTCACTGTTTACAAG-3’
 | 5’-ACTTGAAAATGTGCCAGTG-3’ |
| EST3 | 5’-GAGATTTTCCAGCCATAAC-3’
 | 5’-TAAAGGACTCAGCCTGGAG-3’ |
| GAPDH | 5’ GAAGGTGAAGGTTCGGAGTC 3’
 | 5’ GAAGATGGTGATGGGATTTC 3’ |
Table 2. *Genes that are up-regulated in HOXA5-induced cells*

Accession no.	Gene	Folds (±SE) (at 6h)	Folds (±SE) (at 9h)
NM_001964	early growth response 1 (EGR1)	4.4 (±1.7)	6.4 (±1.8)
NM_004907	immediate early protein (ETR101)	2.8(±1.3)	3.3(±1.3)
NM_005655	TGFB inducible early growth response (TIEG)	2.8(±1.3)	4.3(±1.5)
NM_000584	interleukin 8 (IL8)	8.8(±3.6)	13.0(±3.6)
NM_000584	interleukin 8 (IL8)	8.8(±3.6)	13.0(±3.6)
AF087853	growth arrest and DNA-damage-inducible, beta (GADD45β)	4.6(±1.4)	5.1(±1.4)
NM_002825	pleiotrophin (heparin binding growth factor 8) (PTN)	8.1(±1.3)	7.7(±1.2)
AF078077	growth arrest and DNA damage inducible, beta (GADD45β)	4.5(±1.5)	4.5(±1.4)
M55580	spermidinespermine N1-acetyltransferase mRNA(SAT)	2.5(±1.1)	5.0(±1.1)
A1572079	EST1	2.0(±1.1)	2.9(±1.0)
A1556438	EST2	2.3(±1.0)	3.2(±1.2)
A1544742	EST3	2.0 (±1.2)	2.5(±1.1)
A1809774	EST4	2.0(±1.1)	NC^b

^a^ The genes that showed fold changes > 2.0 in four out of four comparison at 6 h post-induction are listed in this Table.

^b^ No change
Fig. 1

![Western blot analysis of HOXA5 and β-Actin expression over time.](image)

- **HOXA5**
- **β-Actin**

Time points: P, 0, 3, 6, 9, 24 h
Fig. 3

A.

HOXA5

YPWHR HD (196~242 aa)

HOXA5M

270 aa

197 aa

B.

C.

Fold activation

Plasmids amount (ug)

[Graph showing fold activation with different plasmid amounts and comparison between HOXA5 and HOXA5M]
Fig. 3

D.

E.

Relative luciferase activity (%)

Fold activation

PTN-Luc + + + + +
HOXA5 + + + + +
HOXA5M -

Vector HOXA5 HOXB1 HOXB3 HOXB5 HOXD9
Fig. 4

A.

![Graph showing fold activation for different PTN-Luc constructs.](image-url)
Fig. 4

B.
Control: aaattgct\text{TAAT}\text{aaatatttt}
\text{HBS}: tctgcttt\text{TAAT}\text{aagcttcc}
\text{Mutant HBS}: tctgcttt\text{GG}\text{T}\text{aagcttcc}

C.
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\text{HBS} & \text{Mutant HBS} & \text{C} \\
\hline
\text{No Extract} & \text{HOXA5} & \text{Vector} & \text{HOXA5 + HBS} & \text{HOXA5 + Mutant HBS} & \text{No Extract} & \text{HOXA5} & \text{Vector} & \text{HOXA5 + Mutant HBS} & \text{HOXA5} \\
\hline
\end{array}

D.
\begin{array}{c|c|c|c|c}
\text{HBS} & \text{No Extract} & \text{HOXA5} & \text{HOXA5 + Ab} & \text{Vector + HOXA5 Ab} \\
\hline
1 & 2 & 3 & 4 & 5 \\
\hline
\end{array}
Fig. 4

E.

Ab	In	Ab	In
-	-	-	+
+	+	+	+

HBS

Control

1 2 3 4 5 6

Vector HOXA5
Supplementary Data

The following four tables are gene lists which included differentially expressed genes with at least two-fold changes (Sig log-average >1) in 4 out of 4 comparisons as described in the text.

Table 1. Down-regulated genes at 6 h post induction

Probe ID	sig log - Average	sig log - Stdev	Description
213040_s_at	-1.58	1.06	Consensus includes gb:AL008583
202407_s_at	-1.35	1.66	Consensus includes gb:BF342707
219522_at	-1.28	0.39	gb:NM_014344.1 /DEF=Homo sapiens putative secreted ligand homologous to fjx1 (FJX1)
220770_s_at	-1.11	0.25	gb:NM_022090.1 /DEF=Homo sapiens transposon-derived Buster3 transposase-like (LOC63920)
216379_x_at	-1.05	0.42	Consensus includes gb:AK000168.1
209118_s_at	-1.01	0.4	gb:AF141347.1 /DEF=Homo sapiens hum-a-tub2 alpha-tubulin mRNA

Table 2. Up-regulated genes at 6 h post induction

Probe ID	sig log - Average	sig log - Stdev	Description
207574_s_at	2.21	0.5	gb:NM_015675.1 /DEF=Homo sapiens growth arrest and DNA-damage-inducible, beta (GADD45B)
210592_s_at	1.34	0.12	gb:M55580.1 /DEF=Human spermidinespermine N1-acetyltransferase mRNA
213139_at	1.01	0.09	Consensus includes gb:Al572079
202081_at	1.5	0.34	gb:NM_004907.1 /DEF=Homo sapiens growth arrest and DNA-damage-inducible protein (GADD45B)
202393_s_at	1.48	0.37	gb:NM_005655.1 /DEF=Homo sapiens TGFB inducible early growth response (TIEG)
206096_at	1.02	0.17	Consensus includes gb:Al509774
209305_s_at	1.8	1	gb:AF078077.1 /DEF=Homo sapiens growth arrest and DNA-damage-inducible protein GADD45beta mRNA
208408_at	3.02	0.41	gb:NM_002825.1 /DEF=Homo sapiens pleiotrophin (PTN)
202859_x_at	3.13	1.85	gb:NM_000584.1 /DEF=Homo sapiens interleukin 8 (IL8)
209304_x_at	2.18	0.57	gb:AF087853.1 /DEF=Homo sapiens growth arrest and DNA damage inducible protein beta (GADD45B)
212665_at	1.21	0.07	Consensus includes gb:Al5556438
201694_s_at	2.15	0.74	gb:NM_001964.1 /DEF=Homo sapiens early growth response 1 (EGR1)
213916_at	1.12	0.27	Consensus includes gb:AU154474
Probe ID	sig log - Average	sig log - Stdev	Description
-----------	-------------------	-----------------	---
210220_at	-2.72	1.72	gb:L37882.1 /DEF=Human frizzled gene product mRNA,
215891_s_at	-2.13	1.29	Consensus includes gb:X61094.1
203626_s_at	-2.04	0.8	gb:NM_005983.1 /DEF=Homo sapiens S-phase kinase-associated protein 2 (p45) (SKP2),
218300_at	-1.87	0.72	gb:NM_024516.1 /DEF=Homo sapiens hypothetical protein MGC4606 (MGC4606)
65133_i_at	-1.83	0.53	Cluster Incl. AI862454
203069_at	-1.75	0.61	gb:NM_014849.1 /DEF=Homo sapiens KIAA0736 gene product (KIAA0736)
219522_at	-1.67	0.15	gb:NM_014344.1 /DEF=Homo sapiens putative secreted ligand homologous to fjx1 (FJX1)
201668_x_at	-1.63	0.92	Consensus includes gb:AW163148
210567_s_at	-1.6	0.25	gb:BC001441.1 /DEF=Homo sapiens, Similar to S-phase kinase-associated protein 2 (p45)
221029_s_at	-1.6	0.46	gb:NM_030775.1 /DEF=Homo sapiens WNT5b protein (WNT5B)
201818_at	-1.51	0.69	gb:NM_024830.1 /DEF=Homo sapiens hypothetical protein FLJ12443 (FLJ12443)
202888_s_at	-1.49	0.45	gb:NM_001150.1 /DEF=Homo sapiens alanyl (membrane) aminopeptidase (ANPEP)
203570_at	-1.48	0.24	gb:NM_005576.1 /DEF=Homo sapiens lysyl oxidase-like 1 (LOXL1)
207714_s_at	-1.4	0.51	gb:NM_004353.1 /DEF=Homo sapiens serine (or cysteine) proteinase inhibitor, member 1 (SERPINH1)
201801_s_at	-1.3	0.08	gb:AF079117.1 /DEF=Homo sapiens equilibrative NBMPR-sensitive nucleoside transporter (ENT1) mRNA
214881_s_at	-1.3	0.43	Consensus includes gb:X56687.1 /DEF=H.sapiens mRNA for autoantigen NOR-90
221759_at	-1.29	0.16	Consensus includes gb:AL583123
214564_s_at	-1.28	0.76	Consensus includes gb:AF152524.1
201058_s_at	-1.23	0.14	gb:NM_006097.1 /DEF=Homo sapiens myosin regulatory light chain 2, smooth muscle isoform (MYRL2)
205436_s_at	-1.22	0.15	gb:NM_022105.1 /DEF=Homo sapiens H2A histone family, member X (H2AFX)
207966_s_at	-1.22	0.38	gb:NM_012201.1 /DEF=Homo sapiens Golgi apparatus protein 1 (GLG1)
201079_at	-1.21	0.43	gb:NM_004710.1 /DEF=Homo sapiens synaptogyrin 2 (SYNGR2)
202047_s_at	-1.21	0.06	Consensus includes gb:A1458128
210625_s_at	-1.18	0.1	gb:U34074.1 /DEF=Human A kinase anchor protein S-AKAP84
205196_s_at	-1.18	0.47	gb:NM_001283.1 /DEF=Homo sapiens adaptor-related protein complex 1, sigma 1 subunit (AP1S1)
221044_s_at	-1.16	0.77	gb:NM_021616.1 /DEF=Homo sapiens ring finger protein 21, interferon-responsive (RNF21)
200998_s_at	-1.15	0.26	Consensus includes gb:AW029619
212279_at	-1.15	0.5	Consensus includes gb:BE779865
Probe ID	sig log - Average	sig log - Stdev	Description
---------------	-------------------	-----------------	--
214415_at	4.61	0.49	Consensus includes gb:N58120
209189_at	4.31	0.63	gb:BC004490.1 /DEF=Homo sapiens, v-fos FBJ murine osteosarcoma viral oncogene homolog
206638_at	4.19	0.79	gb:NM_003447.1 /DEF=Homo sapiens zinc finger protein 165 (ZNF165)
202859_x_at	3.7	1.83	gb:NM_000584.1 /DEF=Homo sapiens interleukin 8 (IL8)
219947_at	3.65	0.91	gb:NM_016184.1 /DEF=Homo sapiens C-type lectin, superfamily member 6 (CLECSF6)
220444	3.6	1.8	gb:NM_024341.1 /DEF=Homo sapiens hypothetical protein MGC4054 (MGC4054)
211506_s_at	3.1	1.47	gb:AF043337.1 /DEF=Homo sapiens interleukin 8 C-terminal variant (IL8)
208408_at	2.94	0.32	gb:NM_002825.1 /DEF=Homo sapiens pleiotrophin (PTN)
204748_at	2.82	1.31	gb:NM_000963.1 /DEF=Homo sapiens prostaglandin-endoperoxide synthase 2 (PTGS2)
202672_s_at	2.79	1.15	gb:NM_001674.1 /DEF=Homo sapiens activating transcription factor 3 (ATF3)

Table 4. Up-regulated genes at 9 h post induction
Probe ID	Log2 Ratio	RMA Ratio	Description
36711_at	2.77	1.34	Cluster Incl. AL021977
202149_at	2.77	0.96	Consensus includes gb:AL136139
201694_s_at	2.67	0.81	gb:NM_001964.1 /DEF=Homo sapiens early growth response 1 (EGR1)
213934_s_at	2.65	0.82	Consensus includes gb:AL567808
203889_at	2.63	0.8	gb:NM_003020.1 /DEF=Homo sapiens secretory granule (SGNE1)
201502_s_at	2.59	1.38	Consensus includes gb:AI078167
210538_s_at	2.48	0.97	gb:U37546.1 /DEF=Human IAP homolog C (MIHC) mRNA
202768_at	2.47	0.6	gb:NM_006732.1 /DEF=Homo sapiens FBJ murine osteosarcoma viral oncogene homolog B (FOSB)
205266_at	2.45	0.68	gb:NM_002309.2 /DEF=Homo sapiens leukemia inhibitory factor (cholinergic differentiation factor) (LIF)
207574_s_at	2.36	0.52	gb:NM_015675.1 /DEF=Homo sapiens growth arrest and DNA-damage-inducible, beta (GADD45B)
210592_s_at	2.31	0.13	gb:M55580.1 /DEF=Human spermidinespermine N1-acetyltransferase mRNA
204286_s_at	2.25	0.44	gb:NM_021127.1 /DEF=Homo sapiens phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)
220046_s_at	2.25	0.4	gb:NM_020307.1 /DEF=Homo sapiens cyclin L ania-6a (LOC57018)
202643_s_at	2.2	0.97	Consensus includes gb:Al738896
209304_x_at	2.18	0.5	gb:AF087853.1 /DEF=Homo sapiens growth arrest and DNA damage inducible protein beta (GADD45B)
202644_s_at	2.14	0.88	gb:NM_006290.1 /DEF=Homo sapiens tumor necrosis factor, alpha-induced protein 3 (TNFAIP3)
201466_s_at	2.14	0.41	gb:NM_002228.2 /DEF=Homo sapiens v-jun avian sarcoma virus 17 oncogene homolog (JUN)
202393_s_at	2.11	0.63	gb:NM_005655.1 /DEF=Homo sapiens TGFB inducible early growth response (TIEG)
207678_s_at	2.11	0.91	gb:NM_007017.1 /DEF=Homo sapiens SRY (sex determining region Y)-box 30 (SOX30)
219540_at	2.1	0.64	Consensus includes gb:AU150728
201465_s_at	2.1	0.26	gb:BC002646.1 /DEF=Homo sapiens, v-jun avian sarcoma virus 17 oncogene homolog
205193_at	2.08	1.18	gb:NM_012323.1 /DEF=Homo sapiens v-maf musculoaponeurotic fibrosarcoma (avian) oncogene family (MAFF)
204472_at	2.08	1.36	gb:NM_005261.1 /DEF=Homo sapiens GTP-binding protein overexpressed in skeletal muscle (GEM)
202301_s_at	2.07	0.95	Consensus includes gb:BE396879
202302_s_at	2.01	0.79	gb:NM_023012.1 /DEF=Homo sapiens hypothetical protein FLJ11021
203574_at	2	0.37	gb:NM_005384.1 /DEF=Homo sapiens nuclear factor, interleukin 3 regulated (NFIL3)
218929_at	1.99	0.32	gb:NM_017632.1 /DEF=Homo sapiens hypothetical protein FLJ20036 (FLJ20036)
218378_s_at	1.98	0.42	gb:NM_024653.1 /DEF=Homo sapiens hypothetical protein FLJ13902 (FLJ13902)
217127_at	1.97	0.28	Consensus includes gb:AL534872
210346_s_at	1.97	0.28	gb:AF212224.1 /DEF=Homo sapiens CLK4 mRNA
214016_s_at	1.94	0.54	Consensus includes gb:AL558875
Probe ID	Ratio	P-value	Description
-----------	-------	---------	---
220205_at	1.94	0.25	gb:NM_013315.1/DEF=Homo sapiens transmembrane phosphatase with tensin homology (TPTE)
204285_s_at	1.91	0.49	Consensus includes gb:AI857639
214683_s_at	1.9	0.66	Consensus includes gb:AI251890
215009_s_at	1.88	0.46	Consensus includes gb:U92014.1
213281_at	1.87	0.43	Consensus includes gb:BE327172
203455_s_at	1.87	0.54	gb:NM_002970.1/DEF=Homo sapiens spermidinespermine N1-acetyltransferase (SAT)
212684_at	1.86	0.5	Consensus includes gb:AI752257
213452_at	1.84	0.22	Consensus includes gb:AI811577
204363_at	1.84	0.33	gb:NM_001993.2/DEF=Homo sapiens coagulation factor III (thromboplastin, tissue factor) (F3)
206613_s_at	1.83	0.46	gb:NM_005681.1/DEF=Homo sapiens TATA box binding protein (TBP)-associated factor(TAF1A)
207510_at	1.83	0.32	gb:NM_000710.1/DEF=Homo sapiens bradykinin receptor B1 (BDKRB1)
206175_x_at	1.82	0.57	gb:NM_013360.1/DEF=Homo sapiens zinc finger protein 222 (ZNF222)
205739_x_at	1.82	1.2	gb:NM_016220.1/DEF=Homo sapiens zinc finger protein (ZFD25) (ZFD25)
215043_s_at	1.77	0.99	Consensus includes gb:X83301.1
205964_at	1.77	0.25	gb:NM_024106.1/DEF=Homo sapiens hypothetical protein MGC2663 (MGC2663)
221842_s_at	1.76	0.76	Consensus includes gb:BE972394
219248_at	1.75	0.55	gb:NM_025264.1/DEF=Homo sapiens hypothetical protein MGC2454 (MGC2454)
208370_s_at	1.75	0.56	gb:NM_004414.2/DEF=Homo sapiens Down syndrome critical region gene 1 (DSCR1)
205070_at	1.75	0.53	gb:NM_019071.1/DEF=Homo sapiens inhibitor of growth family, member 3 (ING3)
221763_at	1.73	0.35	Consensus includes gb:AI694023
202081_at	1.73	0.33	gb:NM_004907.1/DEF=Homo sapiens immediate early protein (ETR101)
219270_at	1.73	0.43	gb:NM_024111.1/DEF=Homo sapiens hypothetical protein MGC4504 (MGC4504)
218683_at	1.73	0.27	gb:NM_021190.1/DEF=Homo sapiens neural polypyrimidine tract binding protein (PTB)
201329_s_at	1.71	0.31	gb:NM_005239.1/DEF=Homo sapiens v-ets avian erythroblastosis virus E26 oncogene homolog 2 (ETS2)
221201_s_at	1.7	0.46	gb:NM_003445.1/DEF=Homo sapiens zinc finger protein 155 (pHZ-96) (ZNF155)
209211_at	1.7	0.21	gb:AF132818.1/DEF=Homo sapiens colon Kruppel-like factor (CKLF) mRNA
218319_at	1.69	0.36	gb:NM_020651.2/DEF=Homo sapiens pellino (Drosophila) homolog 1 (PELI1)
221580_s_at	1.69	0.36	gb:BC001972.1/DEF=Homo sapiens, clone MGC:5306, mRNA
205122_at	1.69	0.39	Consensus includes gb:BF439316
213988_s_at	1.69	0.13	Consensus includes gb:BE971383
220933_s_at	1.68	0.58	gb:NM_024617.1/DEF=Homo sapiens hypothetical protein FLJ13409 (FLJ13409)
Probe ID	Ratio	P-value	Description
-------------	-------	---------	---
212665_at	1.68	0.28	Consensus includes gb:AL556438
205579_at	1.68	0.2	gb:NM_000861.2 /DEF=Homo sapiens histamine receptor H1 (HRH1)
203291_at	1.67	0.43	gb:NM_013316.1 /DEF=Homo sapiens CCR4-NOT transcription complex, subunit 4 (CNOT4)
213000_at	1.67	0.58	Consensus includes gb:AP000693
207941_s_at	1.65	0.27	gb:NM_004902.1 /DEF=Homo sapiens splicing factor (CC1.3) (CC1.3)
209451_at	1.65	0.35	gb:U59863.1 /DEF=Human TRAF-interacting protein I-TRAF mRNA
211038_s_at	1.64	0.51	gb:BC006312.1 /DEF=Homo sapiens, Similar to KIAA0445 gene product
209305_s_at	1.59	0.48	gb:AF078077.1 /DEF=Homo sapiens growth arrest and DNA-damage-inducible protein GADD45beta mRNA
218242_s_at	1.59	0.27	gb:NM_017635.1 /DEF=Homo sapiens hypothetical protein FLJ20039 (FLJ20039)
220235_s_at	1.59	0.59	gb:NM_018372.1 /DEF=Homo sapiens hypothetical protein FLJ11269 (FLJ11269)
218371_s_at	1.58	0.23	gb:NM_018282.1 /DEF=Homo sapiens hypothetical protein FLJ10955 (FLJ10955)
206374_at	1.58	0.64	gb:NM_004420.1 /DEF=Homo sapiens dual specificity phosphatase 8 (DUSP8)
201464_x_at	1.57	0.24	Consensus includes gb:BG491844
205607_s_at	1.57	0.53	gb:NM_020423.1 /DEF=Homo sapiens hypothetical protein LOC57147 (LOC57147)
218478_s_at	1.57	0.16	gb:NM_017612.1 /DEF=Homo sapiens hypothetical protein DKFZp434E2220 (DKFZp434E2220)
204937_s_at	1.57	0.43	gb:NM_016325.1 /DEF=Homo sapiens zinc finger protein 274 (ZNF274)
213139_at	1.53	0.07	Consensus includes gb:AI572079
221213_s_at	1.53	0.28	gb:NM_017661.1 /DEF=Homo sapiens hypothetical protein FLJ20086 (FLJ20086)
205047_s_at	1.52	0.49	gb:NM_001673.1 /DEF=Homo sapiens asparagine synthetase (ASNS)
219854_at	1.49	0.41	gb:NM_021030.1 /DEF=Homo sapiens zinc finger protein 14 (KOX 6) (ZNF14)
207304_at	1.49	0.14	gb:NM_003425.1 /DEF=Homo sapiens zinc finger protein 45 (ZNF45)
204499_at	1.49	0.22	Consensus includes gb:AB028958.1
219848_s_at	1.47	0.52	gb:NM_014650.1 /DEF=Homo sapiens KIAA0798 gene product (KIAA0798)
205931_s_at	1.47	0.78	gb:NM_004904.1 /DEF=Homo sapiens cAMP response element-binding protein CRE-BPα
205205_at	1.47	0.78	gb:NM_006509.1 /DEF=Homo sapiens v-rel avian reticuloendotheliosis viral oncogene homolog B
218721_s_at	1.46	0.61	gb:NM_017847.1 /DEF=Homo sapiens hypothetical protein FLJ20505 (FLJ20505)
218303_x_at	1.46	0.28	gb:NM_016618.1 /DEF=Homo sapiens hypothetical protein (LOC51315)
204203_at	1.46	0.33	gb:NM_001806.1 /DEF=Homo sapiens CCAATenhancer binding protein (CEBP), gamma (CEBP)
222028_at	1.46	0.27	Consensus includes gb:AI967981
208961_s_at	1.45	0.3	gb:AB017493.1 /DEF=Homo sapiens mRNA for DNA-binding zinc finger(GBF)
209824_s_at	1.45	0.57	gb:AB0000812.1 /DEF=Homo sapiens mRNA for BMAL1b
Gene ID	Ratio	Value	Description
-------------	-------	-------	---
218880_at	1.45	0.45	Consensus includes gb:N36408
200798_x_at	1.44	0.27	gb:NM_021960.1 /DEF=Homo sapiens myeloid cell leukemia sequence 1 (BCL2-related) (MCL1)
213704_at	1.44	0.2	Consensus includes gb:AA129753
219495_s_at	1.44	0.41	gb:NM_013256.1 /DEF=Homo sapiens zinc finger protein 180 (HHZ168) (ZNF180)
205278_at	1.43	0.23	gb:NM_000817.1 /DEF=Homo sapiens glutamate decarboxylase 1 (brain, 67kD) (GAD1)
205218_at	1.43	0.46	gb:NM_006466.1 /DEF=Homo sapiens polymerase (RNA) III (DNA directed) (39kD) (RPC39)
218520_at	1.43	0.53	gb:NM_013254.1 /DEF=Homo sapiens TANK-binding kinase 1 (TBK1)
219682_s_at	1.43	0.27	gb:NM_016569.1 /DEF=Homo sapiens TBX3-iso protein (TBX3-iso)
220121_at	1.42	0.54	gb:NM_018148.1 /DEF=Homo sapiens hypothetical protein FLJ10583 (FLJ10583)
202146_at	1.41	0.84	Consensus includes gb:AA747426
208892_s_at	1.4	0.52	gb:BC003143.1 /DEF=Homo sapiens, dual specificity phosphatase 6
222163_s_at	1.4	0.54	Consensus includes gb:BE890973
220606_s_at	1.39	0.77	gb:NM_020233.1 /DEF=Homo sapiens x 006 protein (MDS006)
222239_s_at	1.39	0.19	Consensus includes gb:AL117626.1
219078_at	1.38	0.38	gb:NM_018040.1 /DEF=Homo sapiens hypothetical protein FLJ10252 (FLJ10252)
209967_s_at	1.38	0.28	gb:D14826.1 /DEF=Human mRNA for hCREM (cyclic AMP-responsive element modulator) type 2 protein
213387_at	1.38	0.37	Consensus includes gb:AB033066.1
217403_s_at	1.38	0.15	Consensus includes gb:AC074331
215111_s_at	1.37	0.17	Consensus includes gb:AK027071.1
222237_s_at	1.36	0.19	Consensus includes gb:AC084239
201473_at	1.36	0.44	gb:NM_002229.1 /DEF=Homo sapiens jun B proto-oncogene (JUNB)
212721_at	1.36	0.3	Consensus includes gb:AI810380
202402_s_at	1.35	0.14	gb:NM_001751.1 /DEF=Homo sapiens cysteinyl-tRNA synthetase (CARS)
212971_at	1.35	0.14	Consensus includes gb:AI769685
210512_s_at	1.35	0.61	gb:AF022375.1 /DEF=Homo sapiens vascular endothelial growth factor mRNA
213341_at	1.34	0.45	Consensus includes gb:AI862658
212781_at	1.34	0.32	Consensus includes gb:AK026954.1
214061_at	1.34	0.11	Consensus includes gb:AI017564
220346_at	1.34	0.28	gb:NM_025001.1 /DEF=Homo sapiens hypothetical protein FLJ13105 (FLJ13105)
205664_at	1.33	0.13	gb:NM_012311.1 /DEF=Homo sapiens antigenic determinant of recA protein (mouse) homolog (KIN)
221257_x_at	1.33	0.14	gb:NM_030793.1 /DEF=Homo sapiens hypothetical protein SP329 (SP329)
Gene ID	Fold Change	p-value	Description
------------	-------------	---------	---
221803_s_at	1.33	0.23	Consensus includes gb:AA883074
221230_s_at	1.33	0.05	gb:NM_016374.2 /DEF=Homo sapiens RBP1-like protein (BCAA)
220941_s_at	1.32	0.09	gb:NM_017447.1 /DEF=Homo sapiens hypothetical protein LOC54149 (Y81)
218940_at	1.32	0.31	gb:NM_024558.1 /DEF=Homo sapiens hypothetical protein FLJ13920 (FLJ13920)
221918_at	1.32	0.33	Consensus includes gb:AI742210
213916_at	1.32	0.19	Consensus includes gb:AU154474
204194_at	1.32	0.43	gb:NM_001186.1 /DEF=Homo sapiens BTB and CNC homology 1 (BACH1)
220939_s_at	1.31	0.28	gb:NM_017743.1 /DEF=Homo sapiens hypothetical protein FLJ20283 (FLJ20283)
218023_s_at	1.31	0.54	gb:NM_016605.1 /DEF=Homo sapiens putative nuclear protein (LOC51307)
211458_s_at	1.31	0.93	gb:AF180519.1 /DEF=Homo sapiens GABA-A receptor-associated protein mRNA
206235_at	1.31	0.48	gb:NM_002312.1 /DEF=Homo sapiens ligase IV, DNA, ATP-dependent (LIG4)
213239_at	1.31	0.26	Consensus includes gb:NM_006346.1 /DEF=Homo sapiens PIBF1 gene product (PIBF1)
204645_at	1.31	0.22	gb:NM_001241.1 /DEF=Homo sapiens cyclin T2 (CCNT2)
222128_at	1.3	0.41	Consensus includes gb:U80764.1
202076_at	1.3	0.41	gb:NM_001166.2 /DEF=Homo sapiens baculoviral IAP repeat-containing 2 (BIRC2)
219286_s_at	1.3	0.35	gb:NM_022768.1 /DEF=Homo sapiens hypothetical protein FLJ12479 (FLJ12479)
201395_at	1.3	0.56	gb:NM_005778.1 /DEF=Homo sapiens RNA binding motif protein 5 (RBM5)
203438_at	1.3	0.25	Consensus includes gb:AI435828
207147_at	1.3	0.69	gb:NM_004405.2 /DEF=Homo sapiens distal-less homeo box 2 (DLX2)
201845_s_at	1.29	0.27	gb:AB029551.1 /DEF=Homo sapiens YEAF1 mRNA for YY1 and E4TF1 associated factor 1
212689_s_at	1.28	0.15	Consensus includes gb:AA524505
203155_at	1.28	0.71	gb:NM_012432.1 /DEF=Homo sapiens SET domain, bifurcated 1 (SETDB1)
201394_s_at	1.28	0.52	gb:U23946.1 /DEF=Human putative tumor suppressor (LUCA15) mRNA
214751_at	1.27	0.3	Consensus includes gb:BE541042
213097_s_at	1.27	0.19	Consensus includes gb:AI338837
201328_at	1.27	0.22	Consensus includes gb:AL575509
208720_s_at	1.26	0.41	Consensus includes gb:AI890947
213743_at	1.26	0.12	Consensus includes gb:BE674119
209180_at	1.26	0.2	gb:U492245.1 /DEF=Human geranylgeranyl transferase type II beta-subunit
218192_at	1.25	0.22	gb:NM_016291.1 /DEF=Homo sapiens mammalian inositol hexakisphosphate kinase 2 (IP6K2)
214056_at	1.25	0.59	Consensus includes gb:BF981280
Gene ID	Ratio	Log2 Fold Change	Descriptions
----------	-------	------------------	---
202220_at	1.25	0.19	gb:NM_014949.1 /DEF=Homo sapiens KIAA0907 protein (KIAA0907)
212557_at	1.25	0.13	Consensus includes gb:AB011148.1 /DEF=Homo sapiens mRNA for KIAA0576 protein
200797_s_at	1.24	0.18	Consensus includes gb:AI275690
205807_s_at	1.24	0.46	gb:NM_020127.1 /DEF=Homo sapiens tuftelin 1 (TUFT1)
214741_at	1.24	0.17	Consensus includes gb:AW968301
205583_s_at	1.23	0.24	gb:NM_024810.1 /DEF=Homo sapiens hypothetical protein FLJ23018 (FLJ23018)
218040_at	1.23	0.21	gb:NM_018061.1 /DEF=Homo sapiens hypothetical protein FLJ10330 (FLJ10330)
212997_s_at	1.23	0.22	Consensus includes gb:AU151689
219068_s_at	1.23	0.49	gb:NM_024862.1 /DEF=Homo sapiens hypothetical protein FLJ13962 (FLJ13962)
219228_at	1.22	0.33	gb:NM_018555.2 /DEF=Homo sapiens C2H2-like zinc finger protein (ZNF361)
219128_at	1.22	0.33	gb:NM_017880.1 /DEF=Homo sapiens hypothetical protein FLJ20558 (FLJ20558)
209674_at	1.22	0.47	gb:D83702.1 /DEF=Homo sapiens mRNA for photolyase
213396_s_at	1.22	0.39	Consensus includes gb:AA456929
52285_f_at	1.22	0.25	Cluster Incl. AW002970
204243_at	1.21	0.25	gb:NM_012421.1 /DEF=Homo sapiens rearranged L-myc fusion sequence (RLF)
211297_s_at	1.21	0.24	gb:L20320.1 /DEF=Human protein serinethreonine kinase stk1 mRNA
219793_at	1.2	0.15	gb:NM_022133.1 /DEF=Homo sapiens sorting nexin 16 (SNX16)
201603_at	1.2	0.32	Consensus includes gb:AI817061
204739_at	1.19	0.1	gb:NM_001812.1 /DEF=Homo sapiens centromere protein C 1 (CENPC1)
204435_at	1.19	0.47	gb:NM_014778.1 /DEF=Homo sapiens KIAA0410 gene product (KIAA0410)
205580_s_at	1.18	0.53	gb:D28481.1 /DEF=Human mRNA for histamine H1 receptor
203927_at	1.18	0.2	gb:NM_004556.1 /DEF=Homo sapiens NFkB enhancer in B-cells inhibitor, epsilon (NFKBIE)
219477_s_at	1.18	0.71	gb:NM_018676.1 /DEF=Homo sapiens TMTSP for transmembrane molecule
213872_at	1.18	0.73	Consensus includes gb:BE465032
221258_s_at	1.17	0.17	gb:NM_031217.1 /DEF=Homo sapiens hypothetical protein DKFZp434G2226 (DKFZP434G2226)
218761_at	1.16	0.16	gb:NM_017610.1 /DEF=Homo sapiens hypothetical protein DKFZp761D081 (DKFZp761D081)
219394_at	1.16	0.21	gb:NM_024419.1 /DEF=Homo sapiens Phosphatidylglycerophosphate Synthase (PGS1)
222182_s_at	1.16	0.21	Consensus includes gb:BG105204
205123_s_at	1.16	0.38	gb:NM_003692.1 /DEF=Homo sapiens transmembrane protein with EGF-like (TMEFF1)
203743_s_at	1.16	0.45	gb:NM_003211.1 /DEF=Homo sapiens thymine-DNA glycosylase (TDG)
202653_s_at	1.16	0.42	Consensus includes gb:BC003404.1
Gene ID	Ratio	p-value	Description
------------	-------	---------	---
218889_at	1.15	0.18	gb:NM_022451.1 /DEF=Homo sapiens hypothetical protein FLJ12820 (FLJ12820)
212900_at	1.15	0.35	Consensus includes gb:AJ131244.1
204094_s_at	1.15	0.18	gb:NM_014779.1 /DEF=Homo sapiens KIAA0669 gene product (KIAA0669)
219676_at	1.15	0.13	gb:NM_025231.1 /DEF=Homo sapiens hypothetical protein FLJ22191 (FLJ22191)
208436_s_at	1.14	0.19	gb:NM_004030.1 /DEF=Homo sapiens interferon regulatory factor 7 (IRF7)
212893_at	1.13	0.13	Consensus includes gb:AL080063.1
219446_at	1.13	0.37	gb:NM_018157.1 /DEF=Homo sapiens hypothetical protein FLJ10620 (FLJ10620)
217828_at	1.13	0.24	gb:NM_024755.1 /DEF=Homo sapiens hypothetical protein FLJ13213 (FLJ13213)
217836_s_at	1.13	0.49	gb:NM_018253.1 /DEF=Homo sapiens hypothetical protein FLJ10875 (FLJ10875)
218819_at	1.12	0.32	gb:NM_012141.1 /DEF=Homo sapiens deleted in cancer 1; RNA helicase HDBDICE1 (DDX26)
208708_x_at	1.12	0.41	gb:AL080102.1 /DEF=Homo sapiens mRNA; cDNA DKFZp564N1916 (from clone DKFZp564N1916)
217893_s_at	1.12	0.34	gb:NM_024595.1 /DEF=Homo sapiens hypothetical protein FLJ12666 (FLJ12666)
212615_at	1.11	0.15	Consensus includes gb:AI742305
212474_at	1.11	0.04	Consensus includes gb:D87682.1
218649_x_at	1.1	0.2	gb:NM_004713.1 /DEF=Homo sapiens serologically defined colon cancer antigen 1 (SDCCAG1)
215359_x_at	1.1	0.34	Consensus includes gb:AI758888
205263_at	1.1	0.19	gb:AF082283.1 /DEF=Homo sapiens CARD-containing apoptotic signaling protein (BCL10) mRNA
221193_s_at	1.1	0.61	gb:NM_017665.1 /DEF=Homo sapiens hypothetical protein FLJ20094 (FLJ20094)
209061_at	1.1	0.5	Consensus includes gb:AI761748
213137_s_at	1.1	0.21	Consensus includes gb:AI828880
209181_s_at	1.09	0.06	gb:U49245.1 /DEF=Human geranylgeranyl transferase type II beta-subunit mRNA
209545_s_at	1.09	0.22	gb:AF064824.1 /DEF=Homo sapiens CARD-containing ICE associated kinase mRNA
209523_at	1.09	0.48	Consensus includes gb:AK001618.1
212749_s_at	1.08	0.28	Consensus includes gb:AI096477
207536_s_at	1.08	0.42	gb:NM_001561.2 /DEF=Homo sapiens tumor necrosis factor receptor superfamily, member 9 (TNFRSF9)
202251_at	1.08	0.43	gb:NM_004698.1 /DEF=Homo sapiens U4U6-associated RNA splicing factor (HPRP3P)
217779_s_at	1.08	0.37	gb:NM_017761.1 /DEF=Homo sapiens hypothetical protein FLJ20312 (FLJ20312)
212902_at	1.07	0.19	Consensus includes gb:BE645231
202763_at	1.07	0.16	gb:NM_004346.1 /DEF=Homo sapiens caspase 3, apoptosis-related cysteine protease (CASP3)
206085_s_at	1.07	0.35	gb:NM_001902.1 /DEF=Homo sapiens cystathionase (cystathionine gamma-lyase) (CTH)
202569_s_at	1.07	0.33	gb:NM_002376.1 /DEF=Homo sapiens MAPmicrotubule affinity-regulating kinase 3 (MARK3)
Probe ID	Ratio	FDR	Description
-------------------	-------	-----	---
205803_s_at	1.07	0.2	gb:NM_003304.1 /DEF=Homo sapiens transient receptor potential channel 1 (TRPC1)
213331_s_at	1.07	0.43	Consensus includes gb:AV700007
209295_at	1.06	0.23	gb:AF016266.1 /DEF=Homo sapiens TRAIL receptor 2
204496_at	1.06	0.13	gb:NM_014574.1 /DEF=Homo sapiens nuclear autoantigen (GS2NA)
208966_x_at	1.06	0.16	gb:AF208043.1 /DEF=Homo sapiens IFI16b (IFI16b) mRNA
219311_at	1.05	0.18	gb:NM_024899.1 /DEF=Homo sapiens hypothetical protein FLJ12542 (FLJ12542)
220408_x_at	1.05	0.38	gb:NM_017569.1 /DEF=Homo sapiens transcription factor (p38 interacting protein) (P38IP)
208995_s_at	1.05	0.46	gb:U40763.1 /DEF=Human Ck-associated RS cyclophilin CARS-Cyp mRNA
217873_at	1.04	0.36	gb:NM_016289.1 /DEF=Homo sapiens MO25 protein (LOC51719)
217742_s_at	1.04	0.3	gb:NM_016628.1 /DEF=Homo sapiens hypothetical protein (LOC51322)
213483_at	1.04	0.24	Consensus includes gb:AK025679.1
203301_s_at	1.04	0.16	gb:NM_021145.1 /DEF=Homo sapiens cyclin D binding Myb-like transcription factor 1 (DMTF)
218518_at	1.04	0.11	gb:NM_016603.1 /DEF=Homo sapiens GAP-like protein (LOC51306)
204131_s_at	1.04	0.37	Consensus includes gb:N25732
209457_at	1.03	0.19	gb:U16996.1 /DEF=Human protein tyrosine phosphatase mRNA
214438_at	1.03	0.15	Consensus includes gb:M60721.1
204234_s_at	1.03	0.16	Consensus includes gb:AI476267
206240_s_at	1.03	0.18	gb:NM_003437.1 /DEF=Homo sapiens zinc finger protein 136 (clone pHZ-20) (ZNF136)
213410_at	1.03	0.47	Consensus includes gb:AL050102.1
215493_x_at	1.03	0.43	Consensus includes gb:AL121936
220746_s_at	1.03	0.16	gb:NM_016290.1 /DEF=Homo sapiens retinoid x receptor interacting protein (LOC51720)
217792_at	1.02	0.2	gb:NM_014426.1 /DEF=Homo sapiens sorting nexin 5 (SNX5)
204299_at	1.02	0.2	gb:NM_021993.1 /DEF=Homo sapiens TLS-associated serine-arginine protein 2 (TASR2)
206332_s_at	1.02	0.1	gb:NM_005531.1 /DEF=Homo sapiens interferon, gamma-inducible protein 16 (IFI16)
221774_x_at	1.02	0.5	Consensus includes gb:AW003334
212569_at	1.02	0.32	Consensus includes gb:AV699744
201878_at	1.02	0.14	Consensus includes gb:N25546
216060_s_at	1.02	0.57	Consensus includes gb:AK021890.1
201773_at	1.02	0.11	gb:NM_015339.1 /DEF=Homo sapiens activity-dependent neuroprotective protein (ADNP)
212783_at	1.01	0.19	Consensus includes gb:AI538172
222233_s_at	1.01	0.45	Consensus includes gb:AK022922.1
Gene ID	Value	Consensus includes gb:	Description
--------------	-------	-------------------------	---
201602_s_at	1.01	BE737620	
219802_at	1.01	NM_024854.1 /DEF=Homo sapiens hypothetical protein FLJ22028 (FLJ22028)	
212232_at	1	AB023231.1	Consensus includes gb:AB023231.1
212501_at	1	AL564683	Consensus includes gb:AL564683
