Detecting emission lines with XMM-Newton in 4U 1538–52

J. J. Rodes-Roca1,2,3, K. L. Page3, J. M. Torrejón1,2, J. P. Osborne3 and G. Bernabéu1,2

1 Department of Physics, Systems Engineering and Sign Theory, University of Alicante, 03080 Alicante, Spain
e-mail: rodes@dfists.ua.es

2 University Institute of Physics Applied to Sciences and Technologies, University of Alicante, 03080 Alicante, Spain

3 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK

Received ; accepted

ABSTRACT

Context. The properties of the X-ray emission lines are a fundamental tool for studying the nature of the matter surrounding the neutron star and the phenomena that produce these lines.

Aims. The aim of this work is to analyze the X-ray spectrum of 4U 1538–52 obtained by the XMM-Newton observatory and to look for the presence of diagnostic lines in the energy range 0.3–11.5 keV.

Methods. We used a 54 ks PN & MOS/XMM-Newton observation of the high mass X-ray binary 4U 1538–52 covering the orbital phase between 0.75 to 1.00 (the eclipse-ingress). We have modelled the 0.3–11.5 keV continuum emission with three absorbed power laws and looked for the emission lines.

Results. We found previously unreported recombination lines, in this system, at \(\sim 2.4\) keV, \(\sim 1.9\) keV and \(\sim 1.3\) keV, consistent with the presence of highly ionized states of S XV He\(\alpha\), Si XIII He\(\alpha\) and Mg K\(\alpha\) or Mg XI He\(\alpha\). On the other hand, both out of eclipse and in eclipse we detect a fluorescence iron emission line at 6.4 keV which is resolved into two components: a narrow (\(\sigma \leq 10\) eV) fluorescence Fe Ko line plus one hot line from highly photoionized Fe XXV.

Conclusions. The detection of new recombination lines during eclipse-ingress in 4U 1538–52 indicates that there is an extended ionized region surrounding the neutron star.

Key words. X-rays: binaries – stars: pulsars: individual: 4U 1538–52

1. Introduction

4U 1538–52, discovered by the Uhuru satellite (Giacconi et al. 1974), is an X-ray pulsar with a B-type supergiant companion, QV Nor. It has an orbital period of \(\sim 3.728\) days (Davison et al. 1977, Clark 2000), with eclipses lasting \(\sim 0.6\) days (Becker et al. 1977). This X-ray persistent system produces this radiation when the neutron star captures matter from the wind of the B supergiant star. Assuming a distance to the source of 5.5 kpc (Becker et al. 1977) and isotropic emission, the estimated X-ray luminosity is \((2 \sim 7) \times 10^{36}\) erg s\(^{-1}\) in the 3–100 keV range (Rodes 2007). Therefore, the size of the ionization zone may be a relatively small region in the stellar wind (Hatchett & McCray 1977, van Loon et al. 2001).

Fluorescence iron emission lines from X-ray pulsars are produced by illumination of neutral or partially ionized material by X-ray photons with energies above the line excitation energy. Possible sites of fluorescence emission may be: (i) accretion disk (mostly seen in low mass X-ray binary sources); (ii) stellar wind (in high mass X-ray binary pulsars); (iii) material in the form of a circumstellar shell; (iv) accretion column; (v) material in the line of sight; or some combination of these locations. In this sense, fluorescence lines in the X-ray spectrum are an interesting tool for studying the surrounding wind regions and elemental abundance in X-ray sources.

In 4U 1538–52 the emission line at \(\sim 6.4\) keV can usually be described within the uncertainties either by a single narrow Gaussian line or by a multiplet of narrow Gaussian lines (White et al. 1983). Observations carried out with Tenma detected it at 6.3±0.2 keV and EW 50±30 eV (Makishima et al. 1987), while the Rossi X-ray Timing Explorer (RXTE) saw it at 6.25±0.06 keV and EW 61 eV (Coburn et al. 2002). Other X-ray observatories such as BeppoSAX (Robba et al. 2001) and RXTE have used a Gaussian line at \(\sim 6.4\) keV for describing the fluorescence of iron in a low-ionization region (Mukherjee et al. 2006; Rodes 2007). The variability of this line was studied by Rodes et al. (2006).

In this paper, we present a spectral analysis based on the observation of 4U 1538–52 performed with data from the XMM-Newton satellite. The observation covers the orbital phase interval 0.75–1.00 and we detect the presence of the K\(\alpha\) iron line at \(\sim 6.4\) keV and some blended emission lines below 3 keV. In Sect.2 we describe the observation and data analysis. We present in Sect.3 timing analysis; in Sect.4 spectral analysis, and in Sect.5 we summarize our results.

2. Observation

4U 1538–52 was observed with the XMM-Newton satellite in 2003 from August 14 15:34:01 to August 15 14:02:30 UT using EPIC/PN and EPIC/MOS. The three European Photon Imaging Cameras (EPIC) consist of one PN-type CCD camera and two MOS CCD cameras (Strüder et al. 2001, Turner et al. 2001).
Table 1. Log of XMM-Newton observation of 4U 1538–52.

Instrument	MJD	Exposure (ks)	Orbital phase
PN	52 865.66–52 866.58	53.68	0.75–1.00
MOS-1	52 865.65–52 866.58	64.33	0.75–1.00
MOS-2	52 865.65–52 866.58	67.93	0.75–1.00

The three EPIC cameras were operated in Full frame mode, with a time resolution of 73.4 ms for the PN camera and of 2.6 s for the two MOS cameras, and the thin filter 1 (MOS-1 and PN) and medium filter (MOS-2) were used. The net count rate of each one was 3.116 ± 0.008 cts s$^{-1}$, 0.723 ± 0.003 cts s$^{-1}$ and 0.734 ± 0.003 cts s$^{-1}$, respectively. The reflection grating spectrometer (RGS) showed a low level of counts, $1.4 \pm 1.1 \times 10^{-3}$ cts s$^{-1}$, and we did not use this spectrum in our analysis. The resulting effective exposure time was 53.68 ks for the PN, 64.33 ks for the MOS-1 and 67.93 ks for the MOS-2. The details of the observation are listed in Table 1. To calculate the orbital phase we used the best-fit ephemeris of Makishima et al. (1987) with the orbital period $P_{Orb} \approx 3.2854 \pm 0.00015$ days and the eclipse centre $45,518.14$ (Modified Julian Date).

We reduced the data using Science Analysis System (SAS) version 8.0, using the most up-to-date calibration files. Spectra and light curves were extracted using circular regions centered on the source position, with radii of 600 pixels (30 arcsec) for EPIC/PN and 400 pixels (20 arcsec) for the two EPIC/MOS instruments. We selected background data from circular regions offset from the source, with radii six times the source extraction radius. We accumulated all the events with patterns 0–4 and 0–12 for EPIC/PN and EPIC/MOS, respectively.

As 4U 1538–52 is a bright source, we analyzed whether our data were affected by pile-up, i.e. if more than one X-ray photon arrives at either a single CCD pixel, or adjacent pixels, before the charge is read out. This effect can distort the source spectrum and the measured flux. The XMM/ASAS provides the task EPATPLOT to determine the distribution patterns produced on the CCDs by the incoming photons and verify whether the source is piled-up or not. We created an event list extracted for both an annulus and a circle region and displayed the fraction of single, double, triple and quadruple pixel events. The resulting plots of the PN and MOS data revealed no obvious pile-up, even when using a circle. The maximum count rate before pile-up is typically ~0.7 cts s$^{-1}$ for the MOS instruments and 6 cts s$^{-1}$ for PN in full frame mode. Therefore, we conclude that our data are not affected by pile-up.

3. Timing analysis

In Fig. 1 we show the background subtracted light curves for the EPIC/PN camera, binned at 20 s, in the energy ranges 0.3–3 keV and 3–11.5 keV and their hardness–ratio (HR) calculated as $(3–11.5\text{ keV})/(0.3–3\text{ keV})$ (hard/soft). This light curve shows the source out of eclipse during the first ~25 ks and in eclipse in the last ~55 ks. The shape of the light curve is similar both in the hard and soft components during the eclipse. During the first ~10 ks there is a softening trend but the HR presents significant differences between ~10 ks and ~20 ks. In this time interval, the soft component has a count rate similar to that in eclipse, whereas the hard component appears unc eclipsed.

The XMM-Newton observation of 4U 1538–52 allows us to investigate the pulse profile in detail. To estimate the pulse period, we used the XRONOS version 5.21 timing analysis software package. First of all, we estimated the pulse period with the powspec task; secondly, we searched for the best pulse period with the efssearch task using the χ^2 test; and finally, we obtained the folded light curve at the best-fit period $P = 526.7 \pm 0.2$ s. This result is consistent with the RXTE pulse period obtained by Mukherjee et al. (2006), $P = 526.849 \pm 0.003$ s. Fig. 2 shows the folded light curves in the two energy intervals 0.3–3 keV (soft) and 3–11.5 keV (hard) together with the folded hardness–ratio. The HR shows two peaks at pulse phases 0.1 and 0.6, respectively.

4. Spectral analysis

For spectral analysis we used the XSPEC version 12.5.0 (Arnaud 1996) fitting package, released as a part of XANADU in the HEASoft tools.

The EPIC cameras cover the energy range 0.3–11.5 keV. In previous works based on a wider energy range (Tenma, 1.5–35 keV, Makishima et al., 1987; BeppoSAX, 0.1–100 keV, Robba et al. 2001; RXTE, 3–100 keV, Coburn et al. 2002; INTEGRAL, 3–100 keV, Rodes-Roca et al. 2009) the X-ray continuum of 4U 1538–52 was described by different absorbed power law relations, modified by a high-energy cutoff plus a Gaussian emission line at ~6.4 keV, whenever present. Moreover, these models have also been modified by absorption cyclotron resonant scattering features at ~21 keV (Clark et al. 1994; Robba et al. 2001) and at ~47 keV (Rodes-Roca et al. 2009).

Other X-ray continuum models of high-mass X-ray binaries (HMXBs), such as two absorbed power laws or three absorbed power laws, can also describe the observations with ASCA of Vela X–1 (Sako et al. 1999) or with Chandra & XMM-Newton of 4U 1700–37 (Boroson et al. 2003; Van der Meer et al. 2005). One power law is used to fit the direct continuum which originates near the neutron star. Part of this radiation is scattered by the stellar wind of the supergiant star and is fitted by the second power law. Some HMXBs present a soft excess at low energies (0.1–1 keV) which may be modelled as another absorbed power law, blackbody component or bremsstrahlung component.

The physical origin of this component is not well understood, although it is reported for some X-ray binary sources, such as 4U.

Fig. 2. EPIC/PN folded light curves of 4U 1538–52, binned at 20 s, in the energy ranges 0.3–3 keV (top panel), 3–11.5 keV (middle panel) and their hardness ratio (3–11.5)/(0.3–3) (bottom panel).
Fig. 1. EPIC/PN light curve of 4U 1538−52, binned at 20 s, in the energy ranges 0.3–3 keV (top panel) and 3–11.5 keV (middle panel), and their hardness ratio (bottom panel).

We obtained adequate fits using the same photon index $\alpha \sim 1.134^{+0.018}_{-0.023}$ for both components which describe the X-ray continuum radiation from the neutron star: a direct emission from the compact object, absorbed through the surrounding stellar wind, and scattered radiation produced by Thomson scattering by electrons in the extended stellar wind of the supergiant star. Taking the hydrogen columns listed in Table 2 into account, the hard component is assumed to originate from the near surroundings of the neutron star and is highly absorbed by optically thick matter in the line of sight ($N_H \sim 6.0 \times 10^{23}$ cm$^{-2}$), and the scattered component is produced by optically thin plasma ($N_H \sim 1.2 \times 10^{23}$ cm$^{-2}$). Other HMXBs with spectra which can be described by these components are Cen X–3 (Nagase et al. 1992; Ebisawa et al. 1996) and 4U 1700–37 (van der Meer et al. 2005). These systems also showed a hard component highly absorbed even during the eclipse.

We used the third absorbed power-law because a soft excess at 0.3–1.0 keV is detected in the PN spectrum. We fixed the photon index to that of the other power-laws obtaining a significant improvement ($\chi^2 = 1.16$, with an F-test of 4.2×10^{-13}). Fig. 3 shows the three different absorbed power-law continuum components and their residuals in units of σ. The spectrum clearly shows several emission lines at 6.4 keV, 2.4 keV, 1.9 keV and 1.3 keV, and an absorption feature at 2.1 keV. The flux ratios...
MOS flux ratios above 10% are consistent with the presence of emission or absorption lines.

The sources, optimally reduced, fit with spectral models defined in Fig. 3.

Table 2. Fitted parameters for the PN X-ray continuum spectrum in Fig.[3]

Component	Parameter	3PL	2PL+bb*
Hard	N_H (10^{22} cm$^{-2}$)	60 ± 4	62_{-4}^{+4}
	Photon indexa	1.134$^{+0.013}_{-0.023}$	1.13$^{+0.003}_{-0.005}$
	Normalizationb	93 ± 9	92_{-10}^{+7}
Scattered	N_H (10^{22} cm$^{-2}$)	$11.70_{-0.11}^{+0.21}$	$12.7_{-0.9}^{+0.7}$
	Normalizationb	43 ± 3	47_{-8}^{+7}
Soft	N_H (10^{22} cm$^{-2}$)	0.74 ± 0.04	$0.42_{-0.04}^{+0.04}$
	Normalizationb	$2.42_{-0.14}^{+0.15}$	$0.92_{-0.04}^{+0.05}$
	kT_{bb} (keV)	...	$1.8_{-0.1}^{+0.1} \times 10^{-5}$
χ^2(dof)	1.16(2235)	1.16(2234)	

a Three absorbed power-laws
b Two absorbed power-laws plus an absorbed blackbody
c The same for all the power-laws
d $(\times 10^{-4})$ in units of photons s$^{-1}$ cm$^{-2}$ keV$^{-1}$ at 1 keV

are usually above 30%. We are sure that the low energy residuals are not due to incomplete calibration. The cross-calibration XMM-Newton database consists of ~150 observation of different sources, optimally reduced, fit with spectral models defined on a source-by-source basis.3 As a result, deviations for PN and MOS flux ratios above 10% are consistent with the presence of emission or absorption lines.

In Table 2 we report the model parameters of the X-ray continuum spectrum for the PN camera. All uncertainties refer to a single parameter at the 90% ($\Delta \chi^2 = 2.71$ confidence limit.4

When we used a blackbody component we also obtained a similar improvement of the fit (χ^2 = 1.16, F-test of 1.6×10$^{-15}$). The blackbody has a temperature of $kT \sim 0.925_{-0.015}^{+0.015}$ keV. We calculated the luminosity of the source of the blackbody component over the 0.3–11.5 keV energy band, assuming a distance to the source of 5.5 kpc (Becker et al. 1977) and isotropic emission to be 5.4×1033 erg s$^{-1}$. Since the surface luminosity of a blackbody depends only on its temperature, it is possible to calculate the size of the emitting region:

$$R_{bb}(\text{km}) = 3.04 \times 10^{8} \frac{D \sqrt{F_{bb}}}{T_{bb}^{2}},$$

(1)

where D is the distance to the source in kpc, F_{bb} the unabsorbed flux over the 0.3–11.5 keV energy band in erg s$^{-1}$ cm$^{-2}$, T_{bb} the temperature in keV and R_{bb} is the radius of the emitting region. From Eq.[1] we found a radius of the emitting surface of 0.24 km. If we assume thermal emission from the neutron star polar cap, this radius may be consistent with the expected size. However, we estimated the radius of the accreting polar cap using the equation (Hickox et al. 2004).

$$R_{\text{cut}} = R_{NS} \sqrt{\frac{R_{NS}}{R_{m}}},$$

(2)

where R_{m} is the magnetospheric radius and R_{NS} the neutron star radius. The magnetospheric radius may be estimated from the magnetic dipole moment and mass accretion rate (Elsner & Lamb 1977; Audley et al. 1996).

$$R_{m}(\text{cm}) = 3.2 \times 10^{8} M_{17}^{-2/3} \mu_{30}^{4/5} \left(\frac{M_{NS}}{M_{\odot}}\right)^{-1/7},$$

(3)

where μ_{30} is the magnetic dipole moment of the neutron star in units of 1030 G cm3 and M_{17} is the mass accretion rate in units of 1017 g s$^{-1}$. With $M = 1.3 M_{\odot}$ (Reynolds et al. 1992), $M_{17} = 883$ g s$^{-1}$ (Clark et al. 1994; Rodes et al. 2007) and $\mu_{30} = 1.8$ G cm3 (Rodes 2007), the Eq. [3] yields the value $R_{m} \sim 6.2 \times 10^{7}$ cm. Assuming $R_{NS} \sim 10^{6}$ cm, we obtained $R_{\text{cut}} \sim 1.27$ km, five times our estimated blackbody emitting radius. Although this result suggests that the soft excess is not formed by blackbody emission, taking into account the associated errors in the parameters, we cannot exclude blackbody emission as the origin of the soft excess.

We also tried to fit this soft excess by adding 2 to the photon index of the soft component compared to the index of the hard component, i.e. scattering by dust grains at large distance from the source (Robba et al. 2001, Van der Meer et al. 2005). We obtained a good description of the spectrum ($\chi^2_{\nu} = 1.20$, F-test of 11×10$^{-16}$), but a significantly worse fit than the previous components ($\chi^2_{\nu} = 1.16$).

Finally, we modelled the soft X-ray continuum component with a blend of Gaussians only (Boroson et al. 2003, Van der Meer et al. 2005) and refitted the data. We could not obtain a good description below 0.6 keV, though. Therefore, although the model composed of three power-law components also does not fit the data well below 0.6 keV, it was the best model obtained and we used it for our analysis.

We also used other components to investigate the physical origin of this soft-excess, such as a bremsstrahlung or blackbody component. These model components need to be modified by an absorption column too. Although a bremsstrahlung component improves the fit significantly ($\chi^2_{\nu} = 1.17$, F-test of 4.0×10$^{-13}$), its inferred temperature is too high (196.9 keV) and could not be constrained within the XMM band pass, suggesting that the soft excess has another physical origin.

Table 3 also shows the results of Table 3, Table 4, Table 5 and Table 6.

Fig. 3. EPIC/PN spectrum of 4U 1538–52 and X-ray continuum model. The dash line represents the direct component, the dash-dot-dot-dot the scattered component, and the dot line the soft component (top panel). The lower panel shows the residuals between the spectrum and the model.

1 http://www.iachec.org/meetings/2009/Guainazzi_2.pdf

2 Also in Tables 3, 4, 5 and 6.
Afterwards we combined EPIC/PN and EPIC/MOS spectra and applied the same models to them obtaining similar results. The spectra of all three EPIC instruments were fitted simultaneously, including a factor to allow for the adjustment of efficiencies between different instruments. We fixed the continuum parameters, described in Table 2 and looked for the emission features (see Sect. 4.2).

4.2. Emission lines

The X-ray eclipse spectra of some HMXBs show many emission lines and radiative recombination continua (e.g. Vela X-1, Sako et al. 1999; Cen X-3 Ebisawa et al. 1996; 4U 1700–37 van der Meer et al. 2005). The data together with the best-fit model, three absorbed power laws plus emission lines, and residuals of the fit as the difference between observed flux and model flux divided by the uncertainty of the observed flux, i.e. in units of \(\sigma \) are included in Fig. 4. As we can see in Fig. 4 the PN spectrum of 4U 1538–52 shows emission lines below 3 keV and between 6 and 7 keV. We fitted these lines as Gaussian profiles (see Table 3 for parameter values). Because the energy resolution of the EPIC cameras is not sufficient to resolve all lines (FWHM 80–100 eV in the energy range 1–3 keV), many of them could be blended (e.g., 1.75 keV Si K \(\alpha \), Al xiii Ly\(\alpha \) and 1.85 keV Si xiii He\(\alpha \)). Using the list of emission lines in van der Meer et al. (2005), we could identify suitable candidates among fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species (see also Drake 1988 and Hojnacki et al. 2007).

Fig. 4 clearly shows the presence of the Fe K\(\alpha \) line at \(\sim 6.4 \) keV, but a second broad emission line around 6.65 keV or an absorption edge at \(\sim 7.2 \) keV associated with low-ionization iron is an unresolved issue within the deviation for PN and MOS ratios.

We started by modeling the fluorescence iron line (see Fig. 4) that was also detected by several other satellite observatories, such as Tenma, BeppoSAX or RXTE. Starting with the 3PL continuum model, after the inclusion of the emission line at \(\sim 6.4 \) keV, the \(\chi^2 \) improves from 1.16 for 2242 degrees of freedom (dof) to 1.08, for 2239 dof (F-test of 9.2 \(\times 10^{-35} \)). Although residuals improve significantly above 3 keV (see Fig. 4 third panel), other emission features can be seen at \(\sim 2.4, \sim 1.9 \) keV and \(\sim 1.3 \) keV. Including an emission line at \(\sim 2.4 \) keV improves the fit further resulting in a \(\chi^2 \) of 1.07 for 2236 dof (F-test of 9.5 \(\times 10^{-8} \), see Fig. 4 fourth panel). Adding another one at \(\sim 1.9 \) keV, we obtained a \(\chi^2 \) of 1.06 for 2233 dof (F-test of 2.6 \(\times 10^{-7} \), see Fig. 4 fifth panel). Finally, the last emission line at \(\sim 1.3 \) keV marginally improves the fit, leading to \(\chi^2 = 1.05 \) for 2230 dof (F-test of 0.4, see Fig. 4 bottom panel).

Using the combined spectra, we did not obtain an improvement in the fit quality (\(\chi^2 = 1.27 \), compared to \(\chi^2 = 1.16 \) obtained using only the PN spectrum). Nevertheless, as evident from Fig 4, the emission lines are clearly seen in the raw data of the three cameras. In Table 3 we show the best fit parameters for the emission lines we detected in Fig. 4 where the top spectrum in the top panel is from PN and the bottom spectra in the top panel are from MOS-1 (black filled square) and MOS-2 (grey cross), respectively.

The F-test is known to be problematic when used to test the significance of an additional spectral feature (see Protassov & van Dijk 2002), even if systematic uncertainties are not an issue. However, the low false alarm probabilities may make the detection of the line stable against even crude mistakes in the computation of the significance (Kreykenbohm 2004). Therefore, taking into account these caveats, we can conclude...
Table 3. Fitted parameters for the emission lines detected in Fig. 4 using PN and MOS data simultaneously.

Component	Parameter	3PL	2PL+bb
Fluorescence iron line	Energy (keV)	$6.4169^{+0.0007}_{-0.0008}$	$6.4188^{+0.0006}_{-0.0008}$
	σ (eV)	≤ 23	≤ 60
	EW (eV)	53 ± 5	52 ± 5
Identification		Fe K\alpha I–XVII	
	F-test	9.2×10^{-35}	
Other emission lines	Energy (keV)	$2.422^{+0.0023}_{-0.0020}$	$2.423^{+0.0023}_{-0.0019}$
	σ (eV)	$6^{+0.6}_{-0.5}$	$8^{+0.5}_{-0.4}$
	EW (eV)	26 ± 8	27 ± 9
Identification		S XV He\alpha?	
	F-test	9.5×10^{-6}	
	Energy (keV)	$1.905^{+0.0024}_{-0.0015}$	$1.851^{+0.0020}_{-0.0015}$
	σ (eV)	68^{+13}_{-15}	≤ 40
	EW (eV)	50 ± 12	40^{+9}_{-12}
Identification		Si XIII He\alpha?	
	F-test	2.6×10^{-6}	
	Energy (keV)	$1.342^{+0.014}_{-0.012}$	$1.340^{+0.014}_{-0.012}$
	σ (eV)	≤ 21	≤ 21
	EW (eV)	22^{+11}_{-9}	27^{+9}_{-8}
Identification		Mg K\alpha, Mg XI He\alpha?	
	F-test	0.4	
	χ^2(dof)	$1.27(3725)$	$1.27(3725)$

that the fluorescence emission lines are detected with high significance in the spectrum of this source and none of these features is the result of poor calibration.

However, none of these models deals with the strong feature at ~ 2.1 keV. We added a Gaussian absorption profile at this energy and found an improvement of the fit, but the high optical depth and its unconstrained value prevent us from accepting it. We checked the possibility that this feature could be due to a gain effect by changing the gain and offset values by up to $\pm 3\%$ and ± 0.05 keV, respectively. The line profile expressed as ratio of a spectral data to a best-fit model was always around 70%, suggesting that it is not a gain effect and the absorption feature could be real. Moreover, although the feature is less pronounced in a spectrum extracted using single pixel events only, the EPIC/PN calibration team have confirmed (M. Guainazzi, private communication) the reality of the absorption feature at 2.1 keV.

4.3. Pulse phase resolved spectra

The hardness ratio shown in Fig. 2 demonstrates variation of the spectrum with respect to the spin phase of the neutron star. We divided the pulse into ten phase intervals of equal length in order to investigate the X-ray spectrum as function of pulse phase. We produced energy spectra corresponding to each of these phase intervals, which were fitted by the same X-ray underlying model used to fit the pulse phase averaged spectrum, i.e., three absorption power laws plus an iron emission line. The resulting fit parameters are reported in Table 4.
Table 4. Results of the fit of the pulse phase resolved spectra in the energy range 0.3–11.5 keV.

Parameter	0.05	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
Hard component										
N_H (10^{22} cm^{-2})	49 ± 9	67^{+11}_{-10}	69^{+12}_{-10}	47^{+8}_{-6}	67^{+13}_{-11}	79^{+15}_{-12}	59^{+11}_{-9}	48^{+9}_{-7}	58 ± 8	62^{+9}_{-6}
Photon index	0.93^{+0.12}_{-0.11}	1.11^{+0.03}_{-0.05}	1.51^{+0.09}_{-0.13}	1.65 ± 0.12	1.19 ± 0.10	0.95^{+0.05}_{-0.06}	0.79^{+0.03}_{-0.09}	1.16^{+0.06}_{-0.09}	1.44^{+0.08}_{-0.11}	1.31 ± 0.12
Normalization	57^{+5}_{-11}	90^{+30}_{-20}	160^{+50}_{-40}	210^{+90}_{-50}	103^{+23}_{-20}	110 ± 30	64^{+22}_{-17}	112^{+21}_{-30}	180^{+90}_{-80}	130^{+50}_{-20}
Scattered component										
N_H (10^{22} cm^{-2})	12.0^{+2.3}_{-1.3}	13.6^{+1.2}_{-1.3}	12.7^{+1.4}_{-1.3}	9.2^{+0.8}_{-1.4}	11.4 ± 1.0	12.8 ± 1.1	11.6^{+0.8}_{-1.5}	10.8^{+0.7}_{-1.4}	12.0^{+1.2}_{-1.4}	10.4^{+1.3}_{-1.2}
Normalization	21.6^{+1.2}_{-1.2}	44^{+2}_{-2}	54^{+12}_{-11}	47^{+14}_{-14}	61^{+10}_{-9}	49^{10}_{-10}	32^{+7}_{-7}	48^{+13}_{-11}	59^{+12}_{-10}	34^{+3}_{-3}
Soft component										
N_H (10^{22} cm^{-2})	0.60^{+0.14}_{-0.09}	0.76^{+0.15}_{-0.09}	0.78^{+0.15}_{-0.09}	0.75^{+0.12}_{-0.09}	0.67^{+0.15}_{-0.09}	0.70^{+0.11}_{-0.09}	0.59^{+0.10}_{-0.09}	0.69^{+0.12}_{-0.09}	0.90 ± 0.12	0.67^{+0.10}_{-0.09}
Normalization	2.0^{+0.4}_{-0.3}	2.51^{+0.16}_{-0.21}	2.8^{+0.11}_{-0.3}	2.9^{+0.11}_{-0.3}	2.50^{+0.12}_{-0.07}	2.5^{+0.11}_{-0.1}	2.4^{+0.11}_{-0.1}	2.6^{+0.09}_{-0.3}	3.6^{+0.06}_{-0.4}	2.4^{+0.03}_{-0.04}
Iron line										
Energy (keV)	6.39^{+0.02}_{-0.03}	6.40^{+0.03}_{-0.04}	6.37 ± 0.03	6.38^{+0.09}_{-0.09}	6.44 ± 0.05	6.44 ± 0.11	6.39^{+0.03}_{-0.04}	6.39 ± 0.03	6.41^{+0.03}_{-0.04}	6.37^{+0.10}_{-0.09}
σ (eV)	≤ 70	30^{+10}_{-10}	≤ 60	150 ± 60	60 ± 60	130^{+100}_{-100}	≤ 70	≤ 50	70^{+70}_{-20}	100^{+100}_{-20}
EW (eV)	54 ± 16	55^{+30}_{-16}	59^{+31}_{-16}	70 ± 30	42^{+18}_{-16}	33^{+18}_{-16}	35^{+15}_{-15}	40^{+15}_{-15}	67^{+19}_{-19}	60 ± 30
Unabsorbed flux	1.63	2.08	1.95	2.06	2.27	3.05	2.48	2.30	2.37	1.87
C-statistic(dof)	2362(2239)	2289(2239)	2367(2239)	2426(2239)	2337(2239)	2255(2239)	2302(2239)	2389(2239)	2362(2239)	2362(2239)

\[\times 10^{24} \] in units of photons s^{-1} cm^{-2} keV^{-1} at 1 keV

\[\times 10^{-16} \] erg s^{-1} cm^{-2}
We did not find statistically significant residuals in the energy range between 1 and 3 keV, and therefore no low energy emission lines are required to fit these spectra, although this could be because of the lower statistics of the phase resolved spectra with respect to the phase averaged spectrum. The energy of the iron emission line is compatible with being unchanged along the pulse profile, although the variations in the depth, width and equivalent width could be due to the presence of other unresolved emission lines. The BeppoSAX spectrum showed similar results with the pulse phase of the iron emission line parameters using four phase intervals (Robba et al. 2001). In other pulse phase spectroscopy analysis either the iron emission line was not present significantly (EXOSAT; Robba et al. 1992) or was also unchanged when the pulse phase profile was divided into two phase intervals (Tenma; Makishima et al. 1987). The variation of the different absorption parameters are significant along the pulse profile, but again these do not show a clear relationship to the other parameters.

Table 5. Fitted parameters for the X-ray continuum of the eclipse spectra in Fig.6 using PN and MOS data simultaneously.

Component	Parameter	2PL
Scattered	\(N_\text{H}\ (10^{22}\text{ cm}^{-2})\)	\(79\pm3\)
Normalization		\(84^{+11}_{-10}\)
Soft	\(N_\text{H}\ (10^{22}\text{ cm}^{-2})\)	\(1.08^{+0.06}_{-0.05}\)
Normalization		\(4.17^{+0.03}_{-0.02}\)
Photon index		\(1.74^{+0.04}_{-0.03}\)
C-statistic(dof)		6452(3727)

\(a\) (\(10^{-4}\)) in units of photons \(s^{-1}\) cm\(^{-2}\) keV\(^{-1}\) at 1 keV

\(b\) Both power-laws with the same photon index

4.4. Detecting emission lines in the eclipse spectrum

As we showed in Sect. 5 the eclipse of the X-ray source is clearly visible in the last 55 ks of the XMM-Newton observation (see Fig. 1). Therefore, we analyzed the phase-averaged spectrum out of eclipse and in eclipse. The X-ray continuum spectrum out of the eclipse could be described by the models used in this work. While the parameters of the fluorescent iron emission line at 6.4 keV were consistent with those of the whole observation, we did not find evidence of the other emission lines. Nevertheless, Fig.1 suggests the presence of a variability out of the eclipse since the HR changes with time. Therefore, we divided the data out of the eclipse into two temporal intervals, 0–10 ks and 10–20 ks, taking into account the HR variability. We could describe these spectra with the same X-ray continuum, i.e., three absorbed power-law components, and a fluorescence iron emission line. No statistically significant residuals were observed in the energy range between 1 and 3 keV, and therefore no more emission lines are required to fit these spectra. The photon index and the iron emission line were compatible within the associated errors, but the photoelectric absorption were significantly different.

The continuum spectrum in eclipse was described by two absorbed power-laws due to the fact that the direct component should not be seen in the eclipse. In Fig.6 we show the eclipse spectra (top panel) and the residuals to the two absorbed power-laws continuum model from PN and MOS cameras simultaneously (second panel). Although the fit quality is very good, the high value deduced for the absorption column is at odds with the interpretation of this power law as the scattered component. In fact, the values are more consistent with those of the hard component. However, any other combination we tried, resulted in significantly worse fits. Whatever the interpretation might be, this component seems to be the dominant one both in and out of eclipse.

4U 1538–52 shows some emission lines in the eclipse, when the X-ray continuum emission is at a minimum. Evident are the presence of the Fe Kα line at 6.4 keV, an absorption edge around 7.1 keV and emission lines between 1 and 3 keV. We fixed the two absorbed power-law components and added Gaussian profiles to fit these emission lines. Table 5 lists the parameters of the continuum model we used to fit the spectra.

Fig.6 shows the spectra and the residuals with respect to X-ray continuum model in the whole energy range 0.3–11.5 keV using the PN and MOS cameras. We note that in the 6.4–7.2 keV energy band some iron emission lines are present in the residuals. As has been shown using high resolu-
are Energy, emission lines. The parameters of the Gaussian emission lines in this Section.
The ratio before and after adding the emission lines described to fit these residuals. In the bottom panels of Fig. 6 we show of Fe XXV and Fe XXVI. Therefore, we used Gaussian lines 2007), the Fe complex can be clearly resolved into the near larger in eclipse (262 eV) than out of eclipse (14 eV). The RXTE observation which cov-

tion Chandra/HETG data (Brandt & Schulz 2000; D’Aì et al. 2007), the Fe complex can be clearly resolved into the near neutral Fe Kα line plus hot lines from highly ionized species of Fe XXV and Fe XXVI. Therefore, we used Gaussian lines to fit these residuals. In the bottom panels of Fig. 6 we show the ratio before and after adding the emission lines described in this Section. In Table 6 we report the parameters of the iron emission lines. The parameters of the Gaussian emission lines are Energy, σ and EW, indicating the centroid, the width and the equivalent width, respectively.
The EW of the neutral iron Kα line is noticeably larger in eclipse (262 eV) than out of eclipse (~30 eV). [Rodes et al. (2006) found that the EW was larger when the source flux was low by using an RXTE observation which cov-
ers nearly a complete orbital period. The measured line energy is consistent with an ionization stage up to Fe XVII, and this re-
quires the ionization parameter \(\xi \) should be less than some hundreds (Kallman & McCray 1982 Ebisawa et al. 1996).

On the other hand, the simultaneous presence of the Fe XXV line in the spectrum implies an ionization parameter for the photo-
toized plasma of \(\xi \sim 10^{3.2} \) erg cm s\(^{-1}\) (Ebisawa et al. 1996).
The broad range of the ionization parameter suggests either that the emitting material is present over a wide range of distances from the neutron star or has a large range of den-

ities.

Fig. 6 also shows the residuals with respect to a two absorbed power-law continuum model in the 1.0–3.0 keV energy range. Discrete recombination lines from He- and H-like species are present in the MOS and PN spectra of 4U 1538–52. The energy resolution of the instruments are not sufficient to resolve the lines clearly (Drake 1988 Hojnicki et al. 2007). Therefore, our identi-
fication could be a blend of other emission lines. We also fit these emission lines as Gaussians and list them in Table 6.

Component	Parameter	2PL
Fluorescence iron line	Energy (keV)	6.4050(0.0010)
	σ (eV)	≤ 10
	EW (eV)	62(21)
Identification	Fe Kα I–XVII	
Recombination emission lines	Energy (keV)	6.634(0.020)
	σ (eV)	≤ 49
	EW (eV)	84(14)
Identification	Fe XXV	
Energy (keV)	2.4427(0.023)	
σ (eV)	≤ 18	
EW (eV)	47(15)	
Identification	S XV Heα	
Energy (keV)	2.001(0.005)	
σ (eV)	≤ 280	
EW (eV)	8(14)	
Identification	Si XIV Lyα	
Energy (keV)	1.848(0.012)	
σ (eV)	≤ 103	
EW (eV)	21(17)	
Identification	Si XIII Heα	
Energy (keV)	1.34 (fixed)	
σ (eV)	30 (fixed)	
EW (eV)	≤ 14	
Identification	Mg Kα, Mg XI Heα	
C-statistic(dof)	5148(3373)	

5. Summary and discussion

We presented the spectral analysis of the HMXB 4U 1538–52 using an XMM-Newton observation. The X-ray continuum is well fitted by three absorbed power-laws with a photon index ~1.13, describing the hard, scattered and soft excess, respect-
ively. The inferred unabsorbed flux is ~ 2.1×10^{-10} erg s^{-1} cm^{-2} in the 0.3–11.5 keV energy band, corresponding to a luminosity of ~ 7.5 × 10^{35} erg s^{-1}, assuming an isotropic emission and a distance to the source of 5.5 kpc (Becker et al. 1977). The flux found by RXTE in the 3–11.5 keV energy band and an orbital phase of 0.85 was 1.3×10^{-10} erg s^{-1} cm^{-2}. Using the spectrum obtained by XMM-Newton over the same range of phases, the flux we obtained in this work was two times lower, 6.3×10^{-11} erg s^{-1} cm^{-2}.

The soft excess is present in the spectrum and can be modelled with different absorbed components. We simply modelled the soft emission with an absorbed power law component, although Fig. 4 still showed residual features at lowest energies. Our results show that a blackbody component could also be the physical origin of this soft excess, taking the associated errors into account. The soft excess in other HMXBs has been explained by a blend of Gaussian emission lines only (Boroson et al. 2003). We also tried to fit the soft emission using Gaussian profiles, but we did not obtain a significant improvement of the fit because of the low level of counts below 0.6 keV.

We detected an iron Kα line at ~6.41 keV, with an EW of ~50 eV. The BeppoSAX observation of this system obtained an EW of 57 eV in the same orbital phase range 0.75–1.00 (Robba et al. 2001) and showed an increase in the post-egress phase to 85 eV. The phase-averaged spectrum obtained by RXTE reported an EW of 62 eV (Coburn et al. 2002). In addition this iron line is detected in all orbital phases (Robba et al. 2001). Rodes et al. (2006) (Rodes 2007), therefore the iron Kα line is not only produced by fluorescence from less ionized iron near the neutron star’s sur-
facture but also a fraction of the observed line flux must originate from more extended regions. We have also detected a number of emission lines which we interpret as recombination lines from highly ionized species. Since these lines are detected in eclipse, they must be produced in an extended halo. Likewise, we have found an absorption feature at 2.1 keV. Whether it is produced by physical properties of the source or it is due to calibration effects, is still an open issue.

We compared the phase-average spectrum to the eclipse spectrum. In the phase-average spectrum, we found no evidence of any other iron line apart from that at 6.4 keV, and the absorption edge at ~7.1 keV was well described by the X-ray absorption model. The 6.4–7.2 keV energy band showed a complex structure, but we did not find a proper model to describe it or detect other iron features significantly. We also detected discrete recombination lines in both EPIC/PN and EPIC/MOS spectra. The emission lines reported in Sect. 4.2 are possibly identified with di-

hers.
Table 6. The presence of these lines in an eclipse spectrum implies that the formation region extends beyond the size of the B supergiant. Moreover, the ionization state was estimated to range from $10^{2.1}$ to $10^{3.2}$ erg cm s$^{-1}$, due to the simultaneous detection of elements with both low and high ionization levels. This broad range of ξ also suggests either that the emitting material is present over a wide range of distances from the compact object or has a large range of densities.

The pulse phase-resolved spectroscopy showed significant variability of the photon index and the unabsorbed flux,
but no clear correlation or anticorrelation between them. Significant variations with the pulse phase were also observed in the different column absorption values, but again did not show a clear relationship to the other parameters.

Future observations with high spectral resolution instruments will be needed to unambiguously resolve possible blended lines found in this study allowing the full use of their diagnostic capability.

Acknowledgements. Part of this work was supported by the Spanish Ministry of Education and Science Primera ciencia con el GTC: La astronomía española en vanguardia de la astronomía europea CSD200670 and Multiplicidad y evolución de estrellas masivas project number AYA200806166C0303. This research has made use of data obtained through the XMM-Newton Science Archive (XSA), provided by European Space Agency (ESA). We would like to thank the XMM helpdesk, particularly Matteo Guainazzi, for invaluable assistance in determining the systematic uncertainties in the PN data. KLP and JPO acknowledge support from STFC. JMT acknowledges the support by the Spanish Ministerio de Educación y Ciencia (MEC) under grant PR2007-0176. JJRR acknowledges the support by the Spanish MEC under grant PR2009-0455.

References

Arnaud, K. A. 1996, in Astronomical Data Analysis Software and Systems V, ed. J. H. Jacoby & J. Barnes, ASP Conf. Ser. 101, San Francisco, 17

Audley, M. D., Kelley, R. L., Boldt, E. A. et al. 1996, ApJ, 457, 397

Becker, R. H., Swank, J. H., Boldt, E. A. et al. 1977, ApJ, 216, L11

Brandt, W. N. & Schulz, N. S. 2000, ApJ, 544, L123

Boroson, B., Vrtilek, S. D., Kallman, T. et al. 2003, ApJ, 592, 516

Clark, G. W., Woo, J. W., Nagase, F. et al. 1990, ApJ, 353, 274

Clark, G. W., Woo, J. W. & Nagase, F. 1994, ApJ, 422, 336

Clark, G. W. 2000, ApJ, 542, L131

Coburn, W., Heindl, W. A., Rothschild, R. E., et al. 2002, ApJ, 580, 394

Corbet, R. H. D., Woo, J. W. & Nagase, F. 1993, A&A, 276, 52

D’Aì, A., Iaria, R., Di Salvo, T. et al. 2007, ApJ, 671, 2006

Davidson, P. J. J., Watson, M. G. & Pye, J. P. 1977, MNRAS, 181, 73P

Drake, G. W. 1988, Canadian J. Phys., 66, 586

Ebisawa, K., Day, C. S. R., Kallman, T. R. et al. 1996, PASI, 48, 425

Elsner, R. F. & Lamb, F. K. 1977, ApJ, 215, 897

Giaccioni, R., Gursky, H., Kellog, E. et al. 1974, ApJ Suppl., 27, 37

Harding, A. K. & Daugherty, J. K. 1991, ApJ, 374, 687.

Hatchett, S., & McCluckey, S. 1977, ApJ, 211, 532

Hickox, R. C., Narayan, R. & Kallman, T. R. 2004, ApJ, 614, 881

Hojnacki, S. M., Kastner, J., Micela, G. et al. 2007, ApJ, 659, 585

Iaria, R., Di Salvo, T., Robba, N. R. et al 2005, ApJ, 634, L161

Kallman, T. R. & McCluckey, S. 1982, ApJS, 50, 263

Kreykenbohm, I. 2004, Ph. D. thesis, University of Tübingen

Makishima, K., Koyama, K., Hayakawa, S. et al. 1987, ApJ, 314, 619

Morrison, R. & McCammon, D. 1983, ApJ, 270, 119

Mukherjee, U., Raichur, H., Paul, B. et al. 2006, JAA, 27, 411

Nagase, F., Corbet, R. H. D., Day, C. S. R. et al. 1992, ApJ, 396, 147

Protassov, R. & van Dijk, D. A. 2002, ApJ, 571, 545

Reynolds, A. P., Bell, S. A. & Hilditch, R. W. 1992, MNRAS, 256, 631

Robba, N. R., Cusumano, G., Orlandini, M. et al. 1992, ApJ, 401, 685

Robba, N. R., Burderi, L., Di Salvo, T. et al. 2001, ApJ, 526, 950

Rodes, J. J. 2007, Ph.D. thesis, University of Alicante, http://hdl.handle.net/10045/13227

Rodes-Roca, J. J., Torrejón, J. M. & Bernabéu, G. 2006, Proceedings of the The X-ray Universe 2005, 26-30 September 2005, El Escorial, Madrid, Spain. Editor: A. Wilson (Noordwijk: ESA Publications Division), ESA SP-604, 1, 287

Rodes, J. J., Torrejón, J. M. & Bernabéu, G. 2006, The X-ray Universe 2008, 27-30 May 2008, Granada, Spain, http://xmm.esac.esa.int/external/xmm_science/workshops/2008symposium/#topicB

Rodes-Roca, J. J., Torrejón, J. M., Kreykenbohm, I. et al. 2009, A&A, 508, 395

Sako M., Liedahl D. A., Kahn S. M. et al. 1999, ApJ, 525, 921

Strüder, L., Briel U., Dennerl, K. et al. 2001, A&A, 365, L18

Turner, M. J. L., Abney, A., Arnaud, M. et al. 2001, A&A, 365, L27

van der Meer, A., Kaper, L., Di Salvo, T. et al. 2005, A&A, 432, 999

van Loon, J. Th., Kaper, L. & Hammerschlag-Hensberge, G. 2001, A&A, 375, 498

White, N. E., Swank, J. H. & Holt, S. S. 1983, ApJ, 270, 711