Response surface optimization of a vortex-assisted dispersive liquid–liquid microextraction method for highly sensitive determination of repaglinide in environmental water by HPLC/UV

Amira H. Kamal1, Mohamed A. Hammad2, Reham E. Kannouma2 and Fotouh R. Mansour1,3*

Abstract
A vortex-assisted dispersive liquid–liquid microextraction (DLLME) method, mated to chemometrics and combined with HPLC/UV detection was optimized and validated for enrichment and determination of repaglinide in environmental samples using nateglinide as an internal standard (IS). A phosphate buffer (10 mM, pH 2.5): acetonitrile (45:55, v/v) was used as a mobile phase with a flow rate of 1 mL/min in an isocratic elution mode. Chemometrics-assisted optimization was performed using a quadratic integrated d-optimal design. The developed model assessed the statistical significance of the independent variables and their interactions to attain the optimum conditions revealing that extractant type, extractant volume and pH are the most influential factors. Optimization of the extraction procedures was performed with the aid of Design Expert 8® software, which suggested 58 different experiments. The optimal conditions were 30 µL of 1-octanol as extractant, 100 µL of acetonitrile as a disperser at pH 8. Under the optimized conditions, the method showed linearity over the range of 1–100 ng/mL with a limit of detection of 0.4 ng/mL. The accuracy, the intra- and inter-day precision were assessed, the %recoveries were found to be between 98.48 and 100.81% with %RSD lower than 1.3. Using chemometrics in method optimization helped achieve the maximum possible enrichment with the least effort, time, and reagents while considering all possible interactions between variables.

Keywords: Repaglinide, Nateglinide, Vortex-assisted DLLME, HPLC/UV, Chemometrics, Response Surface Optimization

Introduction
Non-insulin-dependent diabetes mellitus (NIDDM) is a chronic disease characterized by a defect in insulin secretion or insulin resistance. The Meglitinide family, including repaglinide and nateglinide (Fig. 1), can stimulate insulin release from the β-cells of the pancreas by inhibiting potassium ion-dependent ATP channels [1, 2]. Repaglinide is rapidly absorbed after oral administration of a 2 mg tablet achieving a Cmax of 28 ng/mL within half an hour [1]. It is eliminated via biliary-faecal and urinary excretion within 96 h after administration [3].

Great attention has been paid to the life and behaviour of pharmaceuticals in water cycles. Many pharmaceuticals are taken up easily by the human body to exert their activity. Based on the pharmacology of the drug, it will be excreted unchanged or as a mixture of metabolites in urine or faeces reaching the wastewater treatment
Because antidiabetic drugs such as repaglinide are used for the treatment of chronic disease, they are continuously released to the surface water systems through industrial and sewage treatment plants at very low concentrations. Several studies have been reported for quantitation of repaglinide, using highly sophisticated, expensive, and sensitive techniques [6–11] due to the low concentrations of repaglinide in aqueous samples. Sample preparation and preconcentration are important to analyze the low concentrations of repaglinide. Solid-phase extraction and liquid phase extraction are the main common sample preparation techniques [12, 13]. Compared with other sample preparation techniques, dispersive liquid–liquid microextraction is widely used because it is rapid, simple, inexpensive, and eco-friendly. Dispersive liquid–liquid microextraction is a ternary solvent system in which only microliters of organic solvent as an extractant in addition to a disperser solvent are added to the aqueous sample to form a cloudy state [14]. Deep eutectic solvents could be used in dispersive liquid–liquid microextraction [15, 16]. The dispersion process improves the surface area contact between both the extractant and the aqueous sample and hence attains the equilibrium rapidly [17]. Several mechanical powers can assist the disperser to improve the dispersion process. Manual shaking is considered the simplest one, but it rarely achieves an effective dispersion and always needs to be combined with other dispersion methods. It results in poor stability of the dispersion and as a result a contradiction of the analysis results between the samples using the vortex mixing improves the dispersion and its uniformity [18]. Using the vortex mixing or other mechanical powers enhances the extraction efficiency and reaches equilibrium more rapidly [19].

Optimization of the experimental variables of vortex-assisted DLLME is critical to get the best conditions that give an acceptable response at the lowest possible concentration of the analyte. One-factor-at-a-time (OFAT) approach is used by most of the studies of analytical methods by studying the effect of each variable individually while keeping other variables constant. This approach consumes a lot of time, effort, and reagents. Moreover, it may not consider interactions between variables, which may affect the optimization results [20]. Recently, chemometric-assisted optimization of analytical methods has provided a theoretical basis for the processes and provides mathematical models that evaluate the independent parameters’ significance and interactions. This approach saves time, reagents and experimental work, extracts the more significant variables as well as determines what combination of the levels of variables achieve the best method performance [21–23].

In this paper, a vortex-assisted dispersive liquid–liquid microextraction (DLLME) method combined with HPLC/UV detection was optimized and validated for preconcentration and quantitation of repaglinide in an aqueous environmental sample (river water and tap water). The experimental variables that affect the method were evaluated and optimized with the aid of chemometrics design of experiment (DOE) using a quadratic integrated D-optimal design to achieve the best performance with the least time and effort. The method was compared with other reported methods and was found simpler, easier, faster, more sensitive than the reported HPLC/UV methods and comparable in performance to LC/MS without the need for such a sophisticated technique or experienced operators.

Experimental

Apparatus and software

A Cyan-CL008 benchtop centrifuge from Cypress Diagnostics (Langdorp, Belgium) was used for phase separation. The pH measurements were carried out using a Jenway 3510 pH-meter of Cole-Parmer (Saint Neots, UK). A vortex (2800 rpm) (London, UK) was used for sample dispersion. Optimization of the extraction procedures was performed with the aid of Stat-Ease’s Design Expert 8® software (Minneapolis, MN, USA). A Dionex UltiMate 3000 HPLC of Thermo Scientific™ (Sunnyvale, CA, USA) was used. The HPLC instrument included an LPG-3400SD quaternary pump, a WPS-3000TSL autosampler, a TCC-3000SD column thermostat, and a VWD-3000 variable wavelength detector. The HPLC was controlled by a computer using Chromleon 7 software for data acquisition and processing.

Reagents and standards

Repaglinide (99.8%) and nateglinide (99.2%) were kindly supplied by Sigma Pharmaceutical Industries (Quwaysna, UAE).
Egypt. Methanol (HPLC grade), acetonitrile (HPLC grade) and potassium dihydrogen phosphate were purchased from Merck (Darmstadt, Germany). 1-Octanol, 1-decanol, 1-undecanol and 1-dodecanol (analytical grade) were purchased from Sigma Aldrich (Darmstadt, Germany). Glycerol, propylene glycol, sodium hydroxide, and phosphoric acid were purchased from Piochem (6th of October, Egypt). Distilled water was used for the preparation of aqueous solutions. Drug-free human plasma from healthy volunteers (Blood Bank, Benha University Hospitals, Benha, Egypt) was used for the application of the vortex-assisted DLLME method. The plasma samples, stored at −20 °C were thawed to room temperature before use.

Chromatographic conditions

A Thermo Hypersil® ODS C18 column (150 mm × 4.6 mm, 5 µm) was used as the stationary phase at 30 °C. A phosphate buffer (10 mM, pH 2.5): acetonitrile (45:55, v/v) was used as a mobile phase with a flow rate of 1 mL/min in an isocratic elution mode. Detection was carried out at 210 nm with a run time of 10 min and an injection volume of 3µL.

Standard solutions and sample pretreatment

Standard stock solutions of repaglinide and nateglinide (internal standard) were prepared in methanol (0.5 and 1 mg/mL, respectively) and stored at 4 °C. A standard solution of repaglinide was prepared by diluting the stock solution with deionized water to the concentration of 1 µg/mL. Environmental water samples were collected from the Nile River (Egypt) and lab tap water, and stored in amber glass bottles at 4 °C. No filtration was applied to environmental water before microextraction. Environmental water samples were treated with a standard phosphoric acid solution or a standard sodium hydroxide solution to adjust the pH. Further dilutions were prepared by spiking the pretreated environmental water with repaglinide and nateglinide to obtain the working solutions of the desired concentrations.

Vortex-assisted DLLME procedures

A volume of 10 mL of environmental water (pH 8) spiked with repaglinide and nateglinide was mixed with 30 µL of 1-octanol (extractant) and 100 µL of acetonitrile (disperser) in a 15 mL screw cap plastic tube. The mixture was vortexed for 1 min for dispersion, then the sample was centrifuged for 5 min at 1792 G-force for phase separation. The upper 1-octanol layer was withdrawn using a 25µL Hamilton syringe, collected in a micro vial, and injected (3 µL) into the HPLC column. Vortex-assisted DLLME procedures were performed at room temperature (25 °C).

Calculation of enrichment factor (EF)

Several parameters can be used to evaluate the performance of the vortex assisted-DLLME method. The enrichment factor (EF) was used to assess the effect of experimental conditions on the efficiency of vortex assisted-DLLME and was calculated from the following equation:

$$EF = \frac{C_{org}}{C_{aq}}$$

where C_{org} and C_{aq} are the concentration of repaglinide in the organic phase and the initial concentration of repaglinide in the aqueous sample, respectively [24].

Analytical performance of the developed method

Validation of the vortex-assisted DLLME HPLC/UV method according to ICH guidelines was done by spiking tap water samples with different concentration levels of repaglinide and a constant level of nateglinide. The calibration curve was constructed by plotting peak area ratios (repaglinide-to-nateglinide) versus concentrations of repaglinide (n=6). Limits of detection (LOD) and quantitation (LOQ) were used for evaluation of the method sensitivity through determining the lowest concentration producing signal-to-noise ratio of 3 and 10, respectively. The selectivity of the method was evaluated by checking the chromatograms of blank samples for any interfering peaks at the same retention time of repaglinide. The selectivity was further confirmed by making minor modifications in the mobile phase composition (Acetonitrile:buffer ratio) and checking the chromatograms for the appearance of any unexpected peaks. The intra- and inter-day accuracy and precision (n=3) were studied using spiked environmental water samples with repaglinide at concentrations of 10, 40, 70 ng/mL using 1000 ng/mL nateglinide as internal standard (IS). The accuracy and precision were expressed as % recovery and % RSD, respectively.

Results and discussion

DLLME has been extensively used for the preparation of various samples with different matrices including environmental water [25], soil [26], food [27], plasma [28, 29], serum [30], urine and saliva [31]. DLLME has been applied for determinations of pharmaceuticals [17], pesticides [32], insecticides [33], toxicants [34], and natural products [35]. In this work, a dispersive liquid–liquid microextraction methodology was combined with HPLC/UV detection for preconcentration and determination of repaglinide in environmental water samples. The continuous consumption of antidiabetic drugs increases the
possibility of its presence in industrial and municipal sewage water. Repaglinide cannot be detected in aqueous samples without pretreatment due to its low concentrations. Vortex-assisted DLLME efficiency was affected by experimental conditions including extractant type and volume, disperser type and volume, and pH of the sample [36]. To attain the utmost enrichment of repaglinide, it was essential to optimize these variables. This optimization was performed on two sequential steps: studying the effects of different experimental variables to set the limits, and optimizing these conditions by simultaneous changes within the specified limits. The mentioned chromatographic conditions showed retention times of 8.3 and 5.5 min for repaglinide and nateglinide, respectively.

Selection of extractant type and volumes
Suitable extractants should have certain characteristics to achieve the desired purpose of use. These characteristics include high safety, environmental benignness, low miscibility with the aqueous phase, the ability to extract the target analyte, and compatibility with the analytical instrument [37]. High density halogenated hydrocarbon solvents such as chloroform and dichloromethane usually were used but they are highly toxic [38]. Other low-density solvents such as long-chain alcohols are suitable alternative extractants [39]. Based on preliminary experiments, it was found that long-chain alcohols such as 1-octanol, 1-decanol, 1-undecanol, and 1-dodecanol were good extractants of repaglinide (Additional file 1: Fig. S1) so, they were chosen to be studied using experimental design optimization. The volume of extractant was also critical for the enrichment of the analyte. Increasing the extractant volume may lead to decreasing the enrichment factor due to the dilution effect [40]. Decreasing the volume beyond 30 µL lead to decreasing the available volume for analysis [38] so, volumes ranging from 30 to 150 µL were chosen for the subsequent optimization.

Selection of disperser type and volumes
The main requirement of a suitable disperser is its miscibility with both the extractant solvent and aqueous phase to ensure efficient contact between both of them [41]. Introducing new dispersers like glycerol and propylene glycol enhances the green aspects of analysis. Based on preliminary experiments, methanol, acetonitrile, glycerol, and propylene glycol showed reasonable extraction efficiency (Additional file 1: Fig. S2), while acetone and ethanol were excluded as they showed overlapping peaks at the same retention time of the analyte. This could be due to the presence of impurities in acetone and ethanol. Volumes ranging from 100 to 500 µL were chosen for subsequent optimization. Volumes lower than 100 µL and higher than 500 µL were tried but they showed low enrichment factors (Additional file 1: Fig. S3). Low volumes of disperser are not enough to disperse the extractant in the aqueous phase while high volumes may enhance the miscibility of the extractant in the aqueous phase making the phase separation difficult [36] or it may be due to increasing the solubility of repaglinide in water which minimizing the extraction efficiency [24].

Selection of pH range
Ionizable drugs are greatly affected by pH, hence optimization of pH during vortex-assisted DLLME procedures is critical. The extraction of the drug is affected by the degree of ionization which in turn depends on pH. The best pH is the one that ensures that most of the drug molecules are in the unionized form with sufficient hydrophobicity to be more extractable in the organic phase [40, 41]. Repaglinide has two pKₐ values of 6.20 (basic) and 3.96 (acidic) for the amine and the carboxylate groups, respectively [42]. So, no specific pH within the HPLC working range could be selected to make the two functional groups of repaglinide in the unionized forms. For this reason, a wide range of pH values from 2 to 8 was chosen for further optimization.

Optimization of extraction procedures
Method optimization in DLLME could be performed using either the classical one factor at a time approach [43] or chemometrics methods including response surface methodology [44]. In response surface methodology, the different experimental variables are studied simultaneously which saves time, effort and consider potential interactions between variables. Accordingly, the results of the preliminary study were used as a base for further optimization of vortex-assisted DLLME procedures of repaglinide using response surface methodology, with aid of Design Expert 8® StatEase software. The model studied the interaction between the different variables: type of extractant, the volume of extractant, type of disperser, volume of the disperser, pH of the sample. The developed model decreased the time required to reach the optimum conditions in comparison with the one factor at a time approach. Besides, the model helped to predict enrichment factors at any given condition and the critical experimental variables.

The five variables (extractant type, extractant volume, disperser type, disperser volume, and sample pH) were varied over a program-suggested 58 runs using a quadratic integrated D-optimal design (Additional file 1: Table S1). The levels of each variable were chosen based on the previous results, as shown in Table 1. The desirability criteria were set to select the conditions that achieve the maximum response, where the latter was
The desirability function attempts to reach operating conditions that guarantee compliance with the criteria of the involved response. The d values could be between 0 and 1, where 0 indicated undesirable conditions while 1 could hypothetically be attained at fully desirable conditions [21, 45].

The enrichment factors (EF) of different extractant/disperser combinations were calculated by the developed model, as shown in Fig. 2. This simultaneous optimization considered the possible interactions between variables and help reach the actual optimum. The results revealed that the best combination consisted of 1-octanol as an extractant with acetonitrile as a disperser. It also showed that 1-octanol was always the best extractant, no matter which disperser was used. It is worth mentioning that glycerol showed comparable results with methanol, which highlights the potential use of glycerol as a green disperser. Based on the optimization results, three variables had substantial effects on the EFs. These variables included the extractant type, the extractant volume, and the pH, while the other two variables (the disperser type and volume) had observably lower effects on EFs (Additional file 1: Fig. S4).

As expected, the EFs were inversely proportional to the extractant volumes due to the possible dilution effect, with the maximum EF achieved using 30µL. Increasing the disperser volumes decreased the EFs due to the expected increase in the volume of extractant/disperser mixture after phase separation. Using pH 8 led to the greatest enrichment factor at which the amine functional group (basic $pK_a = 6.20$) of repaglinide would be

Table 1 The levels of variables used in the optimization process

Variable	Range
Type of extractant	1-octanol, 1-decanol, 1-undecanol, 1-dodecanol
Volume of extractant	30–150 µL
Type of disperser	methanol, acetonitrile, glycerol, propylene glycol
Volume of disperser	100–500 µL
Sample pH	2 –8

![Fig. 2](image) The effect of interaction between the type of extractant and the type of disperser on the enrichment factor. ACN: acetonitrile, MeOH: methanol, GLY: glycerol, PPG: propylene glycol
in the unionized form, which was preferably extractable. As shown in Fig. 3, the highest d value was attained under the experimental conditions of 30 µL of 1-octanol (extractant) and 100 µL of acetonitrile (disperser) at pH 8.

The model was evaluated by the fraction of design space (FDS) that could give an estimate of the response with enough precision. FDS needs to be higher than 80% for the model to be considered reliable [46]. FDS was estimated by the software (Additional file 1: Fig. S5) and was found to be 88.2% with a standard error of 0.978 at a 95% confidence level. The model predictability was tested by plotting the actual EFs versus the predicted EFs (Additional file 1: Fig. S6), satisfactory results were obtained. The Model had an F-value of 4.38, which implied that the model was significant. The P-values (0.0031) was less than 0.0500, which indicated that the model terms were significant, with only a 0.31% chance that an F-value this large could occur due to noise.

The optimum conditions were tried to extract repaglinide from environmental waters using vortex-assisted
Fig. 4 Chromatogram of repaglinide A before and B after vortex assisted-DLLME. Microextraction conditions: extractant type: octanol, extractant volume: 30 μL, disperser type: acetonitrile, disperser volume: 100 μL, vortex time: 1 min, centrifugation time: 5 min, diluent: pH = 8
DLLME and were compared with the untreated aqueous samples. Nateglinide was used as an internal standard to improve the method’s accuracy and precision. Figure 4 shows the chromatographic separation of repaglinide before and after vortex-assisted DLLME using the optimum condition. The samples treated with vortex-assisted DLLME were markedly concentrated with an EF of 480.

Analytical performance of the vortex-assisted DLLME HPLC/UV method

Under the optimized conditions, the developed vortex-assisted DLLME HPLC/UV method was validated for linearity, specificity, limits of detection and quantitation, intra- and inter-day accuracy and precision using spiked samples. The method showed good linearity in the range of 1–100 ng/mL with a correlation coefficient of (r) of 0.9969 (n = 6). The LOD was found to be 0.4 ng/mL with a signal-to-noise ratio of 3 (Table 2) while the LOQ was found to be 1 ng/mL with a signal-to-noise ratio of 10. The selectivity of the method was shown by the absence of any peaks in the same retention time of repaglinide in blank chromatograms and chromatograms of other chromatographic conditions. The method reliability was assessed via using control charts of repaglinide retention times and areas under curves of the internal standard. As shown in Additional file 1: Fig. S7, the results showed that none of the reported data exceeded the control limits and more than 95% of the data were below the warning limits. The % recovery (found concentration/ spiked concentration × 100) was used for the evaluation of accuracy while the precision was evaluated by %RSD. The intra-day accuracy and precision (n = 3) were found to be 99.46% and 1.20%RSD while inter-day accuracy and precision (n = 3) were found to be 99.57% and 0.13% RSD (Table 3).

Applications

The validated developed vortex-assisted DLLME method was applied for the determination of repaglinide in environmental water using the optimum conditions. River water (The Nile) and tap water were spiked with 5, 20, and 100 ng/mL. Application of the method showed acceptable % recovery as shown in Table 4 and showed that the method could be applied in the analysis of repaglinide in water samples with high sensitivity and acceptable accuracy and precision. It should be noted that the method was validated in aqueous samples for the determination of repaglinide in environmental water.

Comparison of the proposed method and other reported methods

The sensitivity of the proposed vortex-assisted DLLME method was compared to different reported methods for the determination of repaglinide in different matrices in terms of LODs and LOQs (Table 5). The comparison shows that vortex-assisted DLLME can reach comparable levels of sensitivity with mass spectroscopy techniques, which is sophisticated, expensive, and requires highly expert technicians. Vortex-assisted DLLME does not require time, high consumption of organic solvents, or expensive and special cartridges such as liquid–liquid

Table 2 Regression parameters for determination of repaglinide by the proposed method

Analyte	Linear regression	LDR (ng/mL)	LOD (ng/mL)	EF				
	Slope	SE of slope	intercept	SE of intercept	r value			
Repaglinide	0.0370	0.0009	0.1436	0.0571	0.9969	1–100	0.4	480

SE: standard error; r: correlation coefficient; LDR: linear dynamic range; EF: enrichment factor

Table 3 Intra and inter-day accuracy and precision (n = 3) for determination of repaglinide by the proposed method

Parameter	Accuracy and precision	Inter-day
Intra-day		
Spiked conc. (ng/mL)	Found conc. (ng/mL)	%Recovery
10	9.9	99.1
40	39.4	98.5
70	70.6	100.8
Mean	99.5	
% RSD	1.2	0.13

%RSD: Percent relative standard deviation
Conclusions
A vortex assisted-dispersive liquid–liquid microextraction coupled with HPLC/UV methodology was developed and validated for preconcentration and determination of repaglinide in environmental samples. The optimization of the experimental conditions was carried out using a factorial design model which allows studying the interaction between the various factors affecting the method efficiency in addition to saving time and effort. The response surface optimization provided a more efficient method for studying the variables simultaneously. The optimized conditions provided the highest possible enrichment factor. Vortex-assisted DLLME method offers a lot of advantages including a short time of analysis, simple procedures, and low consumption of organic solvents, which makes the method more economic and environmentally benign. The validation of the proposed method proved its sensitivity, accuracy, and reproducibility. The method was applied for environmental samples like river water and tap water providing reliable %recoveries. As well as it was applied to plasma and could be extended to be applied in the biological analysis of repaglinide.

Abbreviations
DLLME: Dispersive liquid–liquid microextraction; EF: Enrichment factor; FDS: Fraction of design space.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13065-022-00826-w.

Additional file 1: Data of the model development, optimization and validation.

Acknowledgements
Not applicable.

Author contributions
AHK participated in the study design and the discussion of the results and revised the manuscript. MAH participated in the study design and the discussion of the results and revised the manuscript. REK conducted the practical...
work, participated in the discussion of the results and the preparation and writing of the manuscript. FRM proposed the study design, participated in the results discussion, manuscript preparation and revision. All authors read and approved the final manuscript.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). Not applicable.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

This work was approved by the Committee of Research Ethics in the Faculty of Pharmacy, Tanta University.

Consent for publication

Not applicable.

Competing interests

All authors declared no conflict of interests.

Author details

1. Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
2. Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Tanta 32958, Egypt.
3. Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta 31111, Egypt.

Received: 24 January 2022 Accepted: 28 April 2022

Published online: 14 May 2022

References

1. McLeod HL, Evans WE. Clinical pharmacokinetics and pharmacodynamics of epipodophyllotoxins. Cancer Surv. 1993;17:253–68.
2. Ruzlawiari AB, Wahab MSA, Imran A, et al. Method development and validation of repaglinide in human plasma by HPLC and its application in pharmacokinetic studies. J Pharm Biomed Anal. 2007;43:1831–5. https://doi.org/10.1016/j.jpba.2006.12.010.
3. Culy CR, Jarvis B. Repaglinide: A review of its therapeutic use in type 2 diabetes mellitus. Drugs. 2001;61:1625–60.
4. Halling-Sørensen B, Nors Nielsen S, Lanzky PF, et al. Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere. 1998;36:357–93. https://doi.org/10.1016/S0045-6535(97)00354-8.
5. Radjenovic J, Petrovic M, Bacec O. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem. 2007;387:1365–77. https://doi.org/10.1007/s00216-006-0883-6.
6. Wang M, Miksa IR. Multi-component plasma quantification of anti-hyperglycemic pharmaceutical compounds using liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2007;856:318–27. https://doi.org/10.1016/j.jchromb.2007.06.037.
7. Petsalos T, Turpeinen M, Pelkonen O, Tolonen A. Analysis of nine drugs and their cytochrome P450-specific probe metabolites from urine by liquid chromatography-tandem mass spectrometry utilizing sub 2 µm particle size column. J Chromatogr A. 2008;1215:107–15. https://doi.org/10.1016/j.chroma.2008.10.122.
8. Lakshmi KS, Rajesh T. Separation and quantification of eight antidiabetic drugs on a high-performance liquid chromatography: its application to human plasma assay. ISRN Pharm. 2011;2011:1–7. https://doi.org/10.5402/2011/521353.
9. Chen W, Wang L, Van Berkel GJ, et al. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A. 2016;1439:137–43. https://doi.org/10.1016/j.chroma.2015.10.093.
10. Truong QK, Mai XL, Lee JY, et al. Simultaneous determination of 14 oral antihyperglycaemic drugs in human urine by liquid chromatography-tandem mass spectrometry. Arch Pharm Res. 2018;41:530–43. https://doi.org/10.1007/s12272-018-1011-9.
11. Lam YH, Leung MT, Ching CK, Mak TWL. Simultaneous detection of 24 oral antidiabetic drugs and their metabolites in urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2020;1141:122020. https://doi.org/10.1016/j.chromb.2020.122020.
12. Nemati M, Tuzen M, Farajzadeh MA, et al. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Anal Chim Acta. 2022;1199:335970. https://doi.org/10.1016/J.ACA.2022.335970.
13. Farajzadeh MA, Nemati M, Altunay N, et al. Experimental and density functional theory studies during a new solid-phase extraction of pharmaceuticals from wastewater samples prior to GC–MS determination. Microchem J. 2022;177:107291. https://doi.org/10.1016/J.MICROC.2022.107291.
14. Rezaee M, Yamini Y, Farsi J. Evolution of dispersive liquid-liquid microextraction method. J Chromatogr A. 2010;1217:2342–57. https://doi.org/10.1016/j.chroma.2009.11.088.
15. Afshar Mogaddam MR, Farajzadeh MA, Tuzen M, et al. Organic solvent-free elevated temperature liquid-liquid extraction combined with a new switchable deep eutectic solvent-based dispersive liquid-liquid microextraction of three phenolic antioxidants from oil samples. Microchem J. 2021;168:106433. https://doi.org/10.1016/J.MICROC.2021.106433.
16. Nemati M, Tuzen M, Altunay N, et al. Development of sodium hydroxide-induced homogenous liquid-liquid extraction-effervescent assisted dispersive liquid-liquid microextraction based on deep eutectic solvents; Application in the extraction of phytosterols from cow cream samples. J Food Compos Anal. 2022;106:104291. https://doi.org/10.1016/J.JFCA.2021.104291.
17. Mansour FR, Danielson ND. Solvent-terminated dispersive liquid-liquid microextraction: A tutorial. Anal Chem. 2018;1016;1–11. https://doi.org/10.1021/acs.analchem.8b00205.
18. Li MJ, Zhang HY, Liu XZ, et al. Progress of extraction solvent dispersion strategies for dispersive liquid–liquid microextraction. Chinese J Anal Chem. 2015;43:1231–40. https://doi.org/10.1016/S1872-2040(15)60851-9.
19. Seebunreung K, Santaladchayakit Y, Sirinarasi S. Vertex-assisted low-density solvent-based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples. Chemosphere. 2014;103:51–8. https://doi.org/10.1016/J.CHEMSPEC.2013.11.024.
20. Petridis NP, Sakkas VA, Albainis TA. Chromometric optimization of dispersive suspended microextraction followed by gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in natural waters. J Chromatogr A. 2014;1355:46–52. https://doi.org/10.1016/j.chroma.2014.06.019.
21. Stalikas C, Fiamigos Y, Sakkas V, Albainis T. Developments on chemometric approaches to optimize and evaluate microextraction. J Chromatogr A. 2009;1216:175–89. https://doi.org/10.1016/j.chroma.2008.11.060.
22. Beldean-Galea MS, Vial J, Thiebaut D, Coman MV. Analysis of multiclass organic pollutant in municipal landfill leachate by dispersive liquid-liquid microextraction and comprehensive two-dimensional gas chromatography coupled with mass spectrometry. Environ Sci Pollut Res. 2020;27:9535–46. https://doi.org/10.1007/s11356-019-07064-z.
23. Alipanahpour Dil E, Asfaram A, Sedeghfar F. Magnetic dispersive micro-solid phase extraction with the CuO/ZnO@Fe3O4-CNIs nanopowder for the rapid pre-concentration of chlorogenic acid in the medicinal extract of plants, food, and water samples. Analyst. 2019;144:2684–95. https://doi.org/10.1039/c8an02484g.
24. Rezaee M, Assadi Y, Milani Hosseini MR, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116:1–9. https://doi.org/10.1016/j.chroma.2006.03.071.
25. Bebhanahi M, Najafi F, Bagheri S, et al. Coupling of solvent-based demulsification dispersive liquid-liquid microextraction with high-performance liquid chromatography for simultaneous simple and rapid trace
monitoring of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. Environ Monit Assess. 2014;186:2609–18. https://doi.org/10.1007/s10661-013-3564-x.

26. Hu S, Song T, Bai X, et al. Derivatization and Solidification of Floating Dispersive Liquid-phase Microextraction for the Analysis of Kanamycin in Wastewater and Soil by HPLC with Fluorescence Detection. CLEAN – Soil, Air, Water. 2014;42:364–70. https://doi.org/10.1002/cld.201200374.

27. Petrarca MH, Ccancapa-Cartagena A, Masia A, et al. Comparison of green sample preparation techniques in the analysis of pyrethrin and pyrethroids in baby food by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2017;1547:28–37. https://doi.org/10.1016/j.chroma.2017.03.065.

28. Mabrouk MM, Soliman SM, Aligazy HM, Mansour FR. Ultrasound-assisted dispersive liquid microextraction for determination of three gliblozins in human plasma by HPLC/DAD. J Chromatogr B Anal Technol Biomed Sci. 2020;1136:121932. https://doi.org/10.1016/j.jchromb.2019.121932.

29. Hammad MA, Kamal AH, Kannouma RE, Mansour FR. Vortex-Assisted Dispersive Liquid-liquid Microextraction Coupled with Deproteinization for Determination of Nateglinide in Human Plasma Using HPLC/UV. J Chromatogr Sci. 2021;59:297–304. https://doi.org/10.1093/chrsci/bmaa096.

30. Taheri S, Jalali F, Fattahi N, et al. Sensitive determination of methadone in human serum and urine by dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by HPLC-UV. J Sep Sci. 2015;38:3545–51. https://doi.org/10.1002/jssc.201500636.

31. Bulatov A, Medinskaya K, Aseeva D, et al. Determination of antipyrine in saliva using the dispersive liquid-liquid microextraction based on a stopped-flow injection system. Talanta. 2015;133:66–70. https://doi.org/10.1016/j.talanta.2014.05.064.

32. Pinto MI, Sontag G, Bernardino RJ, Noronha JP. Pesticides in water and the performance of the liquid-phase microextraction based techniques. A review Microchem J. 2010;96:225–37. https://doi.org/10.1016/j.microc.2010.06.010.

33. Ccancapa-Cartagena A, Masia A, Picci Y. Simultaneous determination of pyrethroids and pyrethrin by dispersive liquid-liquid microextraction and liquid chromatography triple quadrupole mass spectrometry in environmental samples. Anal Bioanal Chem. 2017;409:4787–99. https://doi.org/10.1007/s00216-017-0422-7.

34. Akramipour R, Golpayegani MR, Gheini S, Fattahi N. Speciation of organic/inorganic mercury and total mercury in blood samples using vortex assisted dispersive liquid-liquid microextraction based on the freezing of deep eutectic solvent followed by GFAAS. Talanta. 2015;1062:382–91. https://doi.org/10.1016/j.jchromatographyb.2017.07.055.

35. Yan Y, Chen X, Hu S, Bai X. Applications of liquid-phase microextraction techniques in natural product analysis: A review. J Chromatogr A. 2014;1368:1–17. https://doi.org/10.1016/j.chroma.2014.09.068.

36. Mansour FR, Danielson ND. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta. 2017;170:22–35.

37. Kociórová L, Balogh IS, Šandrejová J, Andruch V. Recent advances in dispersive liquid-liquid microextraction using organic solvents lighter than water. A review Microchem J. 2012;102:111–7. https://doi.org/10.1016/j.microc.2011.12.002.

38. Mansour FR, Khairy MA. Pharmaceutical and biomedical applications of dispersive liquid-liquid microextraction. J Chromatogr B. 2017;1061–1062:382–91. https://doi.org/10.1016/j.jchromb.2017.07.055.

39. Yeong Hwaung T, Mee Kin C, Ling Shing W. A review on extraction solvents in the dispersive liquid-liquid microextraction Malaysian. J Anal Sci. 2018;22:166–74. https://doi.org/10.1016/j.mjas.2018-2020-01.

40. Ahmadi-Joubari T, Fattahi N, Shamsipour M. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic droplet followed by high-performance liquid chromatography. J Pharm Biomed Anal. 2014;94:145–51. https://doi.org/10.1016/j.jpba.2014.01.044.

41. Guiréz M, Martínez LD, Fernández L, Cerveri S. Dispersive liquid-liquid microextraction based on solidification of floating organic drop and fluorescence detection for the determination of nitrate polycyclic aromatic hydrocarbons in aqueous samples. Microchem J. 2017;131:1–8. https://doi.org/10.1016/j.microc.2016.10.020.

42. Mandić Z, Gabelica V. Ionization, lipophilicity and solubility properties of repaglinide. J Pharm Biomed Anal. 2006;41:866–71. https://doi.org/10.1016/j.jpba.2006.01.056.

43. Albaseer SS, Rao RN, Swamy YV, Khagga M. In-syringe dispersive liquid-liquid microextraction with liquid chromatographic determination of synthetic pyrethroids in surface water. Artic J Anal Sci Technol. 2012;3:143–50. https://doi.org/10.1355/JAST.2012.113.

44. Ghareed M, Roosta M, Khodadoust S, Daneshfar A. Application of optimized vortex-assisted surfactant-enhanced DLLME for preconcentration of thymol and carvacrol, and their determination by HPLC-UV. surface response methodology. J Chromatogr Sci. 2015;53:1222–31. https://doi.org/10.1093/chromsci/bmu216.

45. vera Candido I, De Zan MM, Cármena MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 2014;124:123–38. https://doi.org/10.1016/j.talanta.2014.01.034.

46. Mansour FR, Kirkpatrick CL, Danielson ND. Separation of aliphatic and aromatic carboxylic acids by conventional and ultra-high-performance ion-exclusion chromatography. Chromatographia. 2013;76:603–9. https://doi.org/10.1007/s10337-013-2461-3.

47. Hess C, Musshoff F, Madera B. Simultaneous identification and validated quantification of 11 oral hypoglycaemic drugs in plasma by electrospray ionisation liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2011;400:33–41. https://doi.org/10.1002/jssc.201026898.

48. Tatiparthi R, Duraiwamy D, Bannoth CK. Method development and validation of metformin and repaglinide in rabbit plasma by RP-HPLC. FABAD J Pharm Sci. 2010;35:69–75.

49. Mahouze MA, Lamie NT. Experimental design methodology for optimization and robustness determination in ion-pair RP-HPLC method development: Application for the simultaneous determination of metformin hydrochloride, allopurinol benzoate and repaglinide in tablets. Microchem J. 2019;147:691–706. https://doi.org/10.1016/j.microc.2019.03.038.

50. Gandhimathi M, Ravi TK, Renu SK. Determination of repaglinide in pharmaceutical formulations by HPLC with UV Detection. Anal Sci. 2003;19:1675–7. https://doi.org/10.2116/analsci.19.1675.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions