The current status of malignant hyperthermia

Lukun Yang1,2, Timothy Tautz2, Shulin Zhang3, Alla Fomina4✉, Hong Liu2✉

1Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; 2Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA; 3Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; 4Department of Physiology and Membrane Biology, University of California Davis Health, Sacramento, CA 95817, USA.

Abstract

Malignant hyperthermia (MH) is a rare and life-threatening pharmacogenetic disorder triggered by volatile anesthetics, the depolarizing muscle relaxant succinylcholine, and rarely by strenuous exercise or environmental heat. The exact prevalence of MH is unknown, and it varies from 1:16 000 in Denmark to 1:100 000 in New York State. The underlying mechanism of MH is excessive calcium release from the sarcoplasmic reticulum (SR), leading to uncontrolled skeletal muscle hyper-metabolism. Genetic mutations in ryanodine receptor type 1 (RYR1) and CACNA1S have been identified in approximately 50% to 86% and 1% of MH-susceptible (MHS) individuals, respectively. Classic clinical symptoms of MH include hypercarbia, sinus tachycardia, masseter spasm, hyperthermia, acidosis, muscle rigidity, hyperkalemia, myoglobinuria, and etc. There are two types of testing for MH: a genetic test and a contracture test. Contracture testing is still being considered as the gold standard for MH diagnosis. Dantrolene is the only available drug approved for the treatment of MH through suppressing the calcium release from SR. Since clinical symptoms of MH are highly variable, it can be difficult to establish a diagnosis of MH. Nevertheless, prompt diagnosis and treatments are crucial to avoid a fatal outcome. Therefore, it is very important for anesthesiologists to raise awareness and understand the characteristics of MH. This review summarizes epidemiology, clinical symptoms, diagnosis and treatments of MH and any new developments.

Keywords: malignant hyperthermia, general anesthesia, dantrolene, ryanodine receptor

Introduction

Malignant hyperthermia (MH) is a rare and life-threatening pharmacogenetic disorder of skeletal muscle. MH is triggered by volatile anesthetics and succinylcholine. In addition, MH can be triggered by strenuous exercise, high temperature and even emotional stress1–8. The underlying mechanism of MH is excessive calcium release from the sarcoplasmic reticulum (SR) which lead to disturbance of intracellular calcium ion (Ca2+) homeostasis and uncontrolled skeletal muscle hypermetabolism. This hypermetabolic state generates heat and leads to hypercarbia, hypoxemia, acidosis, arrhythmias,
rhabdomyolysis, renal and circulatory failure, and fatal outcome. Dantrolene is the only disease-specific drug available for MH. The clinical effect of dantrolene therapy in MH is dramatic. It was reported the case fatality rate of MH was 70% in the 1970s[9]. This number had dropped to 9.5% according to a report from the Malignant Hyperthermia Association of the United States (MHAUS)[10]. Nevertheless, MH is still a fatal medical emergency in the operating room and this review aims to provide a more comprehensive knowledge including the epidemiology, molecular mechanism, clinical presentations, diagnosis and treatment of MH to anesthesiologists. Furthermore, every anesthesiologist needs to raise the awareness and recognize the characteristics of a fulminant MH and begins appropriate management without any delay.

Epidemiology

MH may occur in any race and the exact prevalence of MH is unknown. The anesthesia related MH varies from 1 per 16 000 in Denmark to 1 per 100 000 in the New York State of the USA[11–13]. A recent study containing a total of 9 745 539 inpatient discharge records showed the overall prevalence of 1.68 per 100 000 inpatient discharges and 2.37 per 100 000 surgical inpatient discharges[13]. A higher MH prevalence was seen in surgical inpatient discharges. The fatality rate was 11% of 164 patients with MH diagnosis in this study[13]. Another study of 1 238 171 patients undergoing general anesthesia and showed a prevalence of 1.37 per 100 000, and the fatality rate was 6%[14]. The prevalence of MH was more than doubled in male patients than in female patients[11,13,15–17]. It was reported that the muscular body build in males is likely to develop MH[10]. No more data explains the prevalence in children, but in a multi-center study including seven Europe MH units, 50% out of 200 patients were younger than 12 years old with a history of a clinical MH episode[17]. The prevalence of MH-susceptible (MHS) is much higher, because most people with a genetic mutation that predispose to a MH episode are never exposed to anesthetics. While the exact prevalence of MHS individuals is unknown, experts believe that approximately 1:2 000 individuals may be affected[18]. However, another study reported the prevalence of the genetic mutations may be as great as 1:400 individuals[19]. MH also exhibits variable penetrance in humans. Not all susceptible individuals have events upon exposure to triggering agents. This explains the discrepancy between reported clinical incidence and genetic prevalence.

Molecular mechanism

Experimental evidences such as cells, animals, and humans, have clearly explained MH is due to abnormal intracellular calcium homeostasis within the skeletal muscle[20–22]. When an action potentially spreads across the sarcolemmal membrane into the transverse tubule in a muscle cell, it activates a specific type of the voltage-gated Ca\(^{2+}\) channels, termed sarcolemmal L-type Ca\(^{2+}\) channel, or dihydropyridine receptor (DHPR). Activated DHPR produces conformational changes and physically interacts with the ryanodine receptor type 1 (RyR1), a Ca\(^{2+}\) channel located in the membrane of the SR. When RyR1 is activated and opened, Ca\(^{2+}\) release from the SR into the cytoplasm leads to muscular contraction (Fig. 1). This is the fundamental excitation-contraction coupling needed for normal skeletal muscle contraction.

RyR1 is the largest known Ca\(^{2+}\) channel capable of creating a rapid increase in cytosolic Ca\(^{2+}\);

![Fig. 1 The proposed mechanisms of malignant hyperthermia (MH). SR: sarcoplasmic reticulum; Ca\(^{2+}\): calcium ion; DHPR: dihydropyridine receptor; RyR1: ryanodine receptor type 1; T-Tubule: transverse tubule; CO\(_2\): carbon dioxide; ATP: adenosine triphosphate.](image-url)
out mice have the characteristics of human MHS, such as Casq1 knock-out gene for MH based on its function. The gene could be a new candidate binding/buffering protein of the major luminal Ca\(^{2+}\) stores. The gene locus was mapped to chromosome 19q12-13.2, which is the position encoding the RyR1 [20]. Since then, other mutations of RYR1 associated with MH were also identified. Up to 430 mutations have been reported [28]. However, genetic mutations in the RYR1 only induce 50–86% of individuals associated with MH [29–37]. Roux and colleagues reported that RYR1 mutation was identified in 13% of positive in vitro contracture test exertional heat stroke cohort, which was higher than expected for RYR1 variants in the general population (6%) suggested that MH and exertional heat stroke may share the same mechanisms on RYR1 genetic mutations [38].

Several mutations were also identified to be responsible for MH in the CACNA1S gene, which encodes the alpha1 subunit of the DHPR [39–43]. DHPR interacts with the RyR1 channel to control the Ca\(^{2+}\) release from SR. One study identified the CACNA1S gene on chromosome 1q as a new MHS locus in a large French family [39]. Stewart and colleagues also found the p.Arg1086His mutation in CACNA1S in a North American family was associated with MH [40]. However, mutations in the CACNA1S-associated MH only represent a very small proportion of MHS in North America (1%) [40]. CACNA1S variants were found in only 1.7% of UK MH patients with about 42% also had RYR1 mutations [41].

The calsequestrin 1 encoded by the CASQ1 gene is the major luminal Ca\(^{2+}\) binding/buffering protein of the SR. The CASQ1 gene could be a new candidate gene for MH based on its function. The Casq1 knock-out mice have the characteristics of human MHS, such as halothane-induced MH-like episodes which can be blocked by dantrolene [45]. However, other study suggested a low level of protein coding sequence variability within the human CASQ1 gene indicating that it is not a major MHS locus, at least in the North American population [46]. Mestre and colleagues found a novel mutation in the KCNA1 encoding the voltage-gated potassium channel in a family member with episodic ataxia, myokymia, and MHS [47]. The authors did not find mutations in the known MH genes RYR1 and CACNA1S. Currently, RYR1 and CACNA1S are the only known genes harboring causative mutations of MHS.

Clinical presentations

Clinical symptoms of MH vary greatly, range from masseter spasm, tachycardia, hypercarbia to fulminant MH crisis with severe rhabdomyolysis, cola-color urine, ventricular fibrillation, excessive bleeding and acute renal and circulatory failure. Larach and colleagues analyzed 255 cases of MH reported to the MHAUS from 1987 to 2006 and found the first appeared clinical symptoms were hypercarbia (38.0%), sinus tachycardia (31.0%), or masseter spasm (20.8%) [48]. In this study, the first clinical symptom was hypercarbia followed by sinus tachycardia, rapidly increasing temperature and elevated temperature. The order and percentage of appearance of the clinical symptoms during 255 MH events are listed in Table 1. Similar to the above study, Nelson’s study also showed sinus tachycardia, hypercarbia, and rapid temperature increase were the most common signs of MH crisis seen in 73.1%, 68.6%, and 48.5%, respectively [49]. Nelson and colleagues also demonstrated that the youngest patients (0–2 years old) were more likely to develop muscle rigidity and severe metabolic acidosis and the older children present with higher body temperature and higher potassium level.

MH can occur at any time during anesthesia. The interval between induction of anesthesia and the first symptom ranged from 0 minutes (MH occurred immediately on induction) to 168 minutes [49]. MH can also occur in the postoperative period [28,50–52]. In one study, postoperative MH occurred in 1.9% reported to the MHAUS, the latency period between the anesthesia finish time and the onset of MH ranged from 0 to 40 minutes [53]. An increasing number of cases has been reported that MH may occur one hour after the end of anesthesia [28,50,53]. MH even occurred 10 hours after anesthesia [50]. Importantly, MH diagnosed postoperatively almost always exhibited acute renal and circulatory failure. Larach and colleagues also demonstrated that the youngest patients (0–2 years old) were more likely to develop muscle rigidity and severe metabolic acidosis and the older children present with higher body temperature and higher potassium level.
signs of hypermetabolism alongside hyperthermia. Isolated temperature elevations are unlikely to be MH53.

The current MH presentations are often more insidious. It is believed that this was most likely due to the lower triggering potency of modern volatile anesthetics, the alleviative effects of several intravenous drugs (such as non-depolarizing muscular relaxants, alpha 2 adrenergic receptor agonists, beta adrenergic blockade), techniques (neuro-axial anesthesia), the routine monitoring of end-tidal CO\textsubscript{2} (ETCO\textsubscript{2}) and early withdrawal of triggering agents54. It is very important for anesthesiologists to know these changes in clinical presentation of MH since the early clinical diagnosis and fast appropriate management are critical for MH patient survival. Data clearly showed delays between diagnosis and initiation of dantrolene therapy increased the risk of complications48.

Diagnosis

Like most other diagnoses, the diagnosis of MH is based on clinical symptoms and laboratory testing. The main clinical presentations of MH are unexplained increased ETCO\textsubscript{2} concentration, tachycardia, muscular rigidity, combined metabolic and respiratory acidosis, hyperthermia, cardiac arrhythmia and renal failure. An increasing ETCO\textsubscript{2} concentration may be an early warning sign of an impending MH55, and unexplained tachycardia, muscular rigidity, acidosis and hyperkalemia are further key signs of a fulminant MH. Initial clinical features can be the elevated ETCO\textsubscript{2} followed by the body temperature rapidly exceeding 38.8 °C. However, the elevated temperature often occurs at a later time48,51. In some cases, there is no significant increase in body temperature48,56. Therefore, the diagnosis should not be delayed and early diagnosis and prompt treatment are quite crucial. Larach and colleagues developed an internationally clinical grading scale to assess the qualitative likelihood of a MH event using the Delphi method and an international panel of eleven experts on MH57. This MH clinical grading scale (Table 2) can be used to qualitatively estimate the likelihood of a MH event and MHS. MH is likely to occur when the score goes in excess of 20, while MH may almost be clinically diagnosed when the score goes in excess of 50. Successful treatment of the MH crisis requires early recognition and rapid intervention58–59.

For about 30 years, the gold standard for diagnosing MHS individuals have been the *in vitro* measurement of contracture response of biopsied muscle to graded concentrations of caffeine and the anesthetic halothane. Two protocols of this test have been used currently, one is the caffeine/halothane contracture test (CHCT) established by the MHAUS, and the other is *in vitro* contracture test (IVCT) established by the European Malignant Hyperthermia Group (EMHG)60–62. For IVCT, it includes four laboratory diagnostic groups: MHS\textsubscript{hc}, MHS\textsubscript{h}, MHS\textsubscript{c}, and MHN. Patients with positive responses to both halothane and caffeine are classified as MHS\textsubscript{hc} patients with normal responses to both halothane and caffeine are classified as MHN (MH normal), patients with positive responses only to halothane are classified as MHS\textsubscript{h}, and patients with positive responses only to caffeine are classified as MHS\textsubscript{c}. Differences between CHCT and IVCT include halothane and caffeine concentration, the number of muscle fiber bundles, the time of exposure and the thresholds for a positive response63–64. A sensitivity of 99.0% and a specificity of 93.6% were reported in IVCT, while a sensitivity of 97% and a specificity of 78% in CHCT65–66. It has been demonstrated that these two protocols can reach similar diagnoses69. Although they are regarded as the gold standard for the diagnosis of MHS, CHCT/IVCT are invasive, expensive, restricted to a

Table 1: Order and percentage of appearance of the clinical symptoms during 255 malignant hyperthermia (MH) events

Clinical symptom	Median of appearance number	Range of appearance number	Percentage of patients (%)
Masseter spasm	1.00	1.00–4.00	26.7
Hypercarbia	2.00	1.00–8.00	92.2
Sinus tachycardia	2.00	1.00–7.00	72.9
Generalized muscle rigidity	2.00	1.00–6.00	40.8
Tachypnea	2.00	1.00–6.00	27.1
Cyanosis	2.00	1.00–7.00	9.4
Skin mottling	2.00	1.00–7.00	6.3
Rapidly increasing temperature	3.00	1.00–7.00	64.7
Elevated temperature	3.00	1.00–8.00	52.2
Sweating	4.00	1.00–8.00	17.6
Ventricular tachycardia	4.00	1.00–7.00	3.5
Cola-colored urine	5.00	2.00–9.00	13.7
Ventricular fibrillation	5.50	1.00–8.00	2.4
Excessive bleeding	6.00	4.00–8.00	2.7

Clinical symptoms were listed in order of appearance. Appearance number was the numerical order in which a clinical symptom appeared such as the first clinical symptom that appeared during MH event would be marked 1. If the median of appearance number was same, the order of appearance depended on the percentage of MH patients.
few specialized centers and need a surgical procedure under anesthesia to take a muscle biopsy specimen.

Genetic testing requiring only a blood sample and it has become an attractive alternative to the invasive muscle biopsy [26–27]. As of June 2017, 430 mutations in the \textit{RYR1} and \textit{CACNA1S} gene associated with MHS were identified [28]. As an alternative to CHCT/IVCT, genetic testing has been more and more widely used in last decade, especially in patients with a family history of MH [33,41,43,67–69]. However, genetic mutations in the \textit{RYR1} only account for approximately 50%–86% of individuals affected with MH [29–37]. Discordance between MH diagnosed by the presence of causative mutations and skeletal muscle contracture tests has been reported [30]. CHCT/IVCT is still required to confirm or exclude MHS if genetic testing is negative. So, CHCT/IVCT still cannot be replaced. In 2000, molecular diagnosis for MH was introduced in Europe. There were 15 mutations in the \textit{RYR1} was recommended by the EMHG for molecular genetic testing, while 17 mutations in the \textit{RYR1} gene were recommended by the MHAUS [71–73] at that time. Currently, 50 genetic mutations, 48 in \textit{RYR1} and 2 in \textit{CACNA1S}, are accepted [74]. The diagnostic pathway for MHS from the EMHG are showed in Fig. 2 [61].

\section*{Emerging diagnostic methods}

Since MH is a clinical syndrome of skeletal muscle hypermetabolic crisis caused by excessive calcium release from the SR, researchers hope to find a less invasive diagnostic method for diagnosing MHS through measuring the local metabolic change after intramuscular injection of low doses of MH triggered agents. Schuster and colleagues found that local lactate and PCO$_2$ level in MHS individuals increased significantly after intramuscular caffeine and halothane injection [75–78]. However, a relevant increase was also observed in some non-MHS individuals [79]. Johannsen and colleagues reported this minimally invasive test for diagnosing MHS through using a micro-dialysis technique to measure local lactate

\begin{table}[h]
\centering
\caption{Clinical grading scale for malignant hyperthermia}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Process} & \textbf{Indicator} & \textbf{Score} \\
\hline
\textbf{I. Rigidity} & Generalized muscular rigidity (in absence of shivering due to hypothermia, or during or immediately following emergence from inhalational anesthesia) & 15 \\
& Masseter spasm shortly following succinylcholine administration & 15 \\
\hline
\textbf{II. Muscle breakdown} & Elevated creatine kinase >20000 IU after anesthetic that included succinylcholine & 15 \\
& Elevated creatine kinase >10000 IU after anesthetic without succinylcholine & 15 \\
& Cola colored urine in perioperative period & 10 \\
& Myoglobin in urine >60 μg/L & 5 \\
& Myoglobin in serum >170 μg/L & 5 \\
& Blood/plasma/serum K$^+>$6 mEq/L (in absence of renal failure) & 3 \\
\hline
\textbf{III. Respiratory acidosis} & PETCO$_2$ >55 mmHg with appropriately controlled ventilation & 15 \\
& Arterial PaCO$_2$ >60 mmHg with appropriately controlled ventilation & 15 \\
& PETCO$_2$ >60 mmHg with spontaneous ventilation & 15 \\
& Arterial PaCO$_2$ >65 mmHg with spontaneous ventilation & 15 \\
& Inappropriate hypercarbia (in anesthesiologist’s judgment) & 15 \\
& Inappropriate tachypnea & 10 \\
\hline
\textbf{IV. Temperature increase} & Inappropriately rapid increase in temperature & 15 \\
& Inappropriately increased temperature >38.8 °C (101.8 °F) in the perioperative period & 10 \\
\hline
\textbf{V. Cardiac involvement} & Inappropriate sinus tachycardia & 3 \\
& Ventricular tachycardia or ventricular fibrillation & 3 \\
\hline
\textbf{VI. Family history (used for MH susceptible)} & Positive MH family history in relative of first degree & 15 \\
& Positive MH family history in relative not of first degree & 5 \\
\hline
\textbf{VII. Other indicators that are not part of a single process} & Arterial base excess more negative than −8 mEq/L & 10 \\
& Arterial pH <7.25 & 10 \\
& Rapid reversal of MH signs of metabolic and/or respiratory acidosis with intravenous dantrolene & 5 \\
& Positive MH family history together with another indicator from the patient’s own anesthetic experience other than elevated resting serum creatine kinase & 10 \\
& Resting elevated serum creatine kinase in patient with a family history of MH & 10 \\
\hline
\end{tabular}
\end{table}
levels was not influenced by pre-existing hyper CK emia\[79\]. These studies showed evidence that local metabolic changes after intramuscular injection with MH triggered agents may afford a minimally invasive diagnostic method for diagnosing MHS. More experiments are needed to confirm the validity and diagnostic thresholds, and to determine whether negative test results need to be verified by CHCT/IVCT as required after genetic testing. While CHCT/IVCT is the gold standard for MHS diagnosis, we are still exploring the less or non-invasive testing techniques. Although genetic testing has some limitations, because genetic mutations in \textit{RYRI} and \textit{CACNA1S} account for approximately 50% to 86% of individuals affected with MH\[29–37\], great progress has been made. There were only 15 causative mutations in \textit{RYRI} were selected for initial gene test 17 years ago, it has increased to 44 now, including 42 in \textit{RYRI} and 2 in \textit{CACNA1S}. Among the approximately 20,000 in the human genome, candidate gene explored for further screening still remains a major obstacle in searching the new MHS-associated genes. However, the development of next generation sequencing technologies provides another powerful method for MHS.

As the RyR1 is also expressed in human B-lymphocytes\[80\], it was expected that the evidence of MHS might be found in human B-lymphocytes. Several studies had showed that intracellular Ca\(^{2+}\) concentration significantly increased in B-lymphocytes in MHS individuals compared with that in B-lymphocytes from MHN individuals after B-lymphocytes were exposed to RyR1-stimulating agents\[81–82\]. These results suggested that B-lymphocytes and skeletal muscles shared a common mechanism of Ca\(^{2+}\) release. Therefore, Ca\(^{2+}\) signaling phenotype of B-lymphocytes may be useful to diagnose MHS. Binap and colleagues reported a new and relatively simple method to test adenosine levels in B-lymphocytes from the blood of MHS and MHN using high performance liquid chromatography for distinguishing between MHN and MHS\[83–84\]. They demonstrated that the adenosine level of B-lymphocytes stimulated with a specific RyR1 agonist 4-CmC was significantly higher in the MHS group than in the MHN group. Hoppe and colleagues demonstrated the acidification rate, an indicator of metabolic activity, was significantly higher in B-lymphocytes from MHS patients after using a potent activator of RyR1 to challenge native B-lymphocytes\[85\]. Zullo and colleagues also demonstrated that the increased acidification rate of immortalized B-lymphocytes in response to 4-CmC is mostly due to \textit{RYRI} mutation\[86\]. Thus, these tests potentially can be used for screening and diagnosing the MHS test in the future.

Olqin and colleagues\[87\] used 31-phosphorus nuclear magnetic resonance spectroscopy (\(^{31}\)P NMRS) to compare the nuclear magnetic resonance (NMR) spectra of the flexor muscles of the forearm \textit{in vivo} from 13 humans defined as MHS on the basis of IVCT and 25 normal controls. They found that the levels of phosphocreatine and inorganic phosphate at rest were significantly higher and a slower post-exercise recovery in the MHS group. The authors estimated the sensitivity and specificity of this NMR test was 98.8% and 95.3%, respectively and suggested that this non-invasive technique may be used to diagnose MHS\[88–89\]. It has also been suggested that the early change of ETCO\(_2\) could be used for early diagnosing MH events\[90–91\]. Ganesan and colleagues used a computer-based design of a micro-analysis system for MH diagnosis through ETCO\(_2\) assessment\[92\]. But the increase of ETCO\(_2\) is only one symptom of MH, and it occurs in many scenarios during anesthesia and post-anesthesia care including inadequate ventilation, rebreathing in a faulty breathing circuit, fever, systemic absorption during laparoscopic procedure, MH, and thyroid storm etc. It is impossible to diagnose MH solely based on the increased ETCO\(_2\). Although the above mentioned less invasive MHS diagnostic tests using micro-dialysis, B-lymphocytes metabolic assay, and \(^{31}\)P NMRS have been promising, none of these techniques have progressed beyond the experimental stage so far.

Treatment

The prognosis of a MH crisis depends on how soon
MH is suspected and how fast treatment is initiated. The treatment includes two steps, the immediate treatment is to interrupt the MH episode, while the symptomatic treatment is to prevent the subsequent complications. According to the guideline from the MHAUS and the EMHG, the specific treatments of MH are listed in Table 3. After immediate treatment, appropriate monitoring should be used. Except continuing the routine anesthetic monitoring, core temperature should be measured at once. An arterial line should be considered to facilitate the amount of arterial blood gas measurements, and a urinary catheter should be placed to assess urine color. Repeated arterial blood gas analysis and monitoring of serum electrolyte, CK, myoglobin, and lactate levels are very important for determining the success of therapy. Renal and hepatic function, coagulation, and signs of compartment syndrome should be closely monitored. When stable, the patient should be transferred to the ICU to be monitored for a minimum of 24 hours.

Some cases may only need treatment with one dose of dantrolene which is a postsynaptic muscle relaxant that lessens ECC in muscle cells. It achieves this by inhibiting Ca\(^{2+}\) release from sarcoplasmic reticulum stores by antagonizing ryanodine receptors[92]. It is the primary drug used for the treatment and prevention of malignant hyperthermia. However, redosing should occur with any sign of recrudescence (increased rigidity, acidosis, temperature elevation, hypercarbia). Subsequent doses should be 1 mg/kg every six hours, although fulminant cases may require continuous infusions to maintain stability. Since 80% of recrudescence events occurred within 16 hours[95] of the initial MH treatment, it seems reasonable to suggest that if a patient receiving dantrolene is metabolically stable for 24 hours after initial therapy, dantrolene could be stopped.

Telephone hotlines for MH counselling and management guidelines have been established in many countries. A smart phone application (MHApp) issued by EMHG in cooperation with MHAUS can also provide direction to MH management. However, the best treatment is to prevent a MH crisis from happening. Recently, Litman and colleagues have presented a guideline to determine what types of patients should be considered MHS and should not

Table 3 Malignant hyperthermia treatments according to the guideline
Immediate treatment
Discontinue all trigger agents;
Stop surgery. If surgery must be continued, maintain anesthesia with intravenous (IV) non-trigger anesthetics;
Hyperventilate (use a minute volume 2–3 times normal) with 100% oxygen at flows of 10 L/minute;
Call for help;
Give IV dantrolene 2.5 mg/kg rapidly. Repeat as frequently as needed until the patient responds with a decrease in ETCO2, muscle rigidity, and/or heart rate;
Remove the vaporizer and replace the soda lime.
Treat hyperthermia (temperature >39 °C or less if rapidly rising)
Body surface cooling with ice packs and 75% medical alcohol wiped on body surface;
Other cooling procedures available;
Stop cooling when the temperature has decreased to <38 °C.
Treat hyperkalemia (K\(^+\) > 5.9 or less with ECG changes)
Calcium chloride 10 mg/kg or calcium gluconate 30 mg/kg;
Sodium bicarbonate: 1–2 mEq/kg IV;
Glucose/insulin:
For pediatric patients: 0.1 units of regular insulin/kg IV and 0.5 g/kg dextrose;
For adult patients: 10 units of regular insulin IV and 50 mL 50% glucose.
For refractory hyperkalemia, dialysis, or ECMO if patient is in cardiac arrest may be required.
Treat acidosis
Sodium bicarbonate: 1–2 mEq/kg IV;
Amiodarone: 3 mg/kg IV (300 mg for an adult);
β-blockers if tachycardia persists;
Avoid calcium channel blockers which may cause hyperkalemia or cardiac arrest while using dantrolene;
Treat acidosis and hyperkalemia if present (see above).
Treat arrhythmias
Furosemide 0.5–1 mg/kg and/or mannitol 1 g/kg IV to maintain urine output > 1 mL/(kg∙hour);
Crystalloids solutions IV;
If creatine kinase or K\(^+\) rise, assume myoglobinuria and give bicarbonate infusion of 1 mEq/(kg∙hour) to alkalinize urine.
receive anesthetic triggering agents[58]. \textbf{Conclusion}

MH is a rare and life-threatening anesthesia complication. It is caused by Ca2+ release from the SR leading to uncontrolled skeletal muscle hypermetabolism. Genetic mutations in \textit{RYR1} and \textit{CACNA1S} have been identified to be causative of MH. Up to now, there are 430 genetic variants associated with MHS, but only 50 genetic mutations, 48 in \textit{RYR1} and 2 in \textit{CACNA1S}, are accepted as diagnostic genetic testing for MHS, and they only account for approximately 50\%–86\% of individuals affected with MH. The MH clinical presentations various greatly so it is difficult to diagnose all MH in its early phase. The current diagnostic methods of MHS used clinically are IVCT and genetic testing. Both diagnostic methods require specialized testing center, while IVCT is an invasive test and genetic testing has a low sensitivity. Though a few tests have focused on the less invasive diagnostic procedures for determining MHS, none of them have progressed beyond the experimental stage up to now.

\textbf{Acknowledgments}

This work was supported by the Department of Anesthesiology and Pain Medicine and NIH grant (No. UL1 TR001860) of the University of California Davis Health.

\textbf{References}

\begin{itemize}
 \item [1] Michelucci A, Paolini C, Boncompagni S, et al. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia[J]. \textit{FASEB J}, 2017, 31(8): 3649–3662.
 \item [2] Thomas J, Crowhurst T. Exertional heat stroke, rhabdomyolysis and susceptibility to malignant hyperthermia[J]. \textit{Intern Med J}, 2013, 43(9): 1035–1038.
 \item [3] Poussel M, Guerci P, Kaminsky P, et al. Exertional heat stroke and susceptibility to malignant hyperthermia in an athlete: evidence for a link?[J]. \textit{J Athl Train}, 2015, 50(11): 1212–1214.
 \item [4] Carsana A. Exercise-induced rhabdomyolysis and stress-induced malignant hyperthermia events, association with malignant hyperthermia susceptibility, and \textit{RYR1} gene sequence variations[J]. \textit{Sci World J}, 2013, 2013: 531465.
 \item [5] Tobin JR, Jason DR, Challa VR, et al. Malignant hyperthermia and apparent heat stroke[J]. \textit{JAMA}, 2001, 286(2): 168–169.
 \item [6] Nishio H, Sato T, Fukunishi S, et al. Identification of malignant hyperthermia-susceptible ryanodine receptor type 1 gene (\textit{RYR1}) mutations in a child who died in a car after exposure to a high environmental temperature[J]. \textit{Leg Med}, 2009, 11(3): 142–143.
 \item [7] Groom L, Muldoon SM, Tang ZZ, et al. Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families[J]. \textit{Anesthesiology}, 2011, 115(5): 938–945.
 \item [8] Davis M, Brown R, Dickson A, et al. Malignant hyperthermia associated with exercise-induced rhabdomyolysis or congenital abnormalities and a novel \textit{RYR1} mutation in New Zealand and Australian pedigrees[J]. \textit{Br J Anaesth}, 2002, 88(4): 508–515.
 \item [9] Denborough M. Malignant hyperthermia[J]. \textit{Lancet}, 1998, 352(9134): 1131–1136.
 \item [10] Larach MG, Brandom BW, Allen GC, et al. Malignant hyperthermia deaths related to inadequate temperature monitoring, 2007-2012: a report from the North American malignant hyperthermia registry of the malignant hyperthermia association of the United States[J]. \textit{Anesth Analg}, 2014, 119(6): 1359–1366.
 \item [11] Brady JE, Sun LS, Rosenberg H, et al. Prevalence of malignant hyperthermia due to anesthesia in New York State, 2001-2005[J]. \textit{Anesth Analg}, 2009, 109(4): 1162–1166.
 \item [12] Ording H. Incidence of malignant hyperthermia in Denmark[J]. \textit{Anesth Analg}, 1985, 64(7): 700–704.
 \item [13] Lu Z, Rosenberg H, Li GH. Prevalence of malignant hyperthermia diagnosis in hospital discharge records in California, Florida, New York, and Wisconsin[J]. \textit{J Clin Anesth}, 2017, 39: 10–14.
 \item [14] Sumitani M, Uchida K, Yasunaga H, et al. Prevalence of malignant hyperthermia and relationship with anesthetics in Japan: data from the diagnosis procedure combination database[J]. \textit{Anesthesiology}, 2011, 114(1): 84–90.
 \item [15] Riazi S, Larach MG, Hu C, et al. Malignant hyperthermia in Canada: characteristics of index anesthetics in 129 malignant hyperthermia susceptible probands[J]. \textit{Anesth Analg}, 2014, 118(2): 381–387.
 \item [16] Butala B, Brandom B. Muscular body build and male sex are independently associated with malignant hyperthermia susceptibility[J]. \textit{Can J Anaesth}, 2017, 64(4): 396–401.
 \item [17] Klingler W, Heiderich S, Girard T, et al. Functional and genetic characterization of clinical malignant hyperthermia crises: a multi-centre study[J]. \textit{Orphanet J Rare Dis}, 2014, 9: 8.
 \item [18] Monnier N, Krivosis-Horber R, Payen JF, et al. Presence of two different genetic traits in malignant hyperthermia families: implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility[J]. \textit{Anesthesiology}, 2002, 97(5): 1067–1074.
 \item [19] Gonsalves SG, Ng D, Johnston JJ, et al. Using exome data to identify malignant hyperthermia susceptibility mutations[J]. \textit{Anesthesiology}, 2013, 119(5): 1043–1053.
 \item [20] Moulds RFW, Denborough MA. Biochemical basis of malignant hyperpyrexia[J]. \textit{Br Med J}, 1974, 2(5913): 241–244.
 \item [21] Britt BA, Endrenyi L, Cadman DL, et al. Porcine malignant hyperthermia: effects of halothane on mitochondrial respiration and calcium accumulation[J]. \textit{Anesthesiology}, 1975, 42(3): 292–300.
\end{itemize}
[22] López JR, Alamo L, Caputo C, et al. Intracellular ionized calcium concentration in muscles from humans with malignant hyperthermia[J]. *Muscle Nerve*, 1985, 8(5): 355–358.

[23] Smith JS, Coronado R, Meissner G. Sarcomplasmic reticulum contains adenine nucleotide-activated calcium channels[J]. *Nature*, 1985, 316(6027): 446–449.

[24] Takeshima H, Nishimura S, Matsumoto T, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor[J]. *Nature*, 1989, 339(6224): 439–445.

[25] Chen WQ, Koop A, Liu YJ, et al. Reduced threshold for store overload-induced Ca\(^{2+}\) release is a common defect of RyR1 mutations associated with malignant hyperthermia and central core disease[J]. *Biochem J*, 2017, 474(16): 2749–2761.

[26] McCarthy TV, Healy JMS, Heffron JJA, et al. Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12-13[J]. *Nature*, 1990, 343(6258): 562–564.

[27] MacLennan DH, Duff C, Zorzato F, et al. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia[J]. *Nature*, 1990, 343(6258): 559–561.

[28] Sinha AK, Kumar P, Vaghela MM, et al. Postoperative malignant hyperthermia- a medical emergency: a case report and review of literature[J]. *J Clin Diagn Res*, 2017, 11(4): PD01–PD02.

[29] Ibarra MCA, Wu SW, Murayama K, et al. Malignant hyperthermia in Japan: mutation screening of the entire ryanodine receptor type 1 gene coding region by direct sequencing[J]. *Anesthesiology*, 2006, 104(6): 1146–1154.

[30] Sambuughin N, Holley H, Muldoon S, et al. Screening of the entire ryanodine receptor type 1 coding region for sequence variants associated with malignant hyperthermia susceptibility in the north american population[J]. *Anesthesiology*, 2005, 102(3): 515–521.

[31] Monnier N, Kozak-Ribbens G, Krivosic-Horber R, et al. Correlations between genotype and pharmacological, histological, functional, and clinical phenotypes in malignant hyperthermia susceptibility[J]. *Hum Mutat*, 2005, 26(5): 413–425.

[32] Rueffert H, Othoff D, Deutrich C, et al. Mutation screening in the ryanodine receptor 1 gene (RYR1) in patients susceptible to malignant hyperthermia who show definite IVCT results: identification of three novel mutations[J]. *Acta Anaesthesiol Scand*, 2002, 46(6): 692–698.

[33] Levano S, Vukcevic M, Singer M, et al. Increasing the number of diagnostic mutations in malignant hyperthermia[J]. *Hum Mutat*, 2009, 30(4): 590–598.

[34] Kraeva N, Riazi S, Loke J, et al. Ryanodine receptor type 1 gene mutations found in the Canadian malignant hyperthermia population[J]. *Can J Anaesth*, 2011, 58(6): 504–513.

[35] Tammaro A, Di Martino A, Bracco A, et al. Novel missense mutations and unexpected multiple changes of RyR1 gene in 75 malignant hyperthermia families[J]. *Clin Genet*, 2011, 79(5): 438–447.

[36] Brandom BW, Bina S, Wong CA, et al. Ryanodine receptor type 1 gene variants in the malignant hyperthermia-susceptible population of the United States[J]. *Anesth Analg*, 2013, 116(5): 1078–1086.

[37] Bamaga AK, Riazi S, Amburgey K, et al. Neuromuscular conditions associated with malignant hyperthermia in paediatric patients: a 25-year retrospective study[J]. *Neuromuscul Disord*, 2016, 26(3): 201–206.

[38] Roux-Buisson N, Monnier N, Sagui E, et al. Identification of variants of the ryanodine receptor type 1 in patients with exertional heat stroke and positive response to the malignant hyperthermia in vitro contracture test[J]. *Br J Anaesth*, 2016, 116(4): 566–568.

[39] Monnier N, Procaccio V, Stiegltz P, et al. Malignant-hyperthermia susceptibility is associated with a mutation of the a1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle[J]. *Am J Hum Genet*, 1997, 60(6): 1316–1325.

[40] Stewart SL, Hogan K, Rosenberg H, et al. Identification of the Arg1086His mutation in the alpha subunit of the voltage-dependent calcium channel (CACNA1S) in a North American family with malignant hyperthermia[J]. *Clin Genet*, 2001, 59(3): 178–184.

[41] Carpenter D, Robinson RL, Quinnell RJ, et al. Genetic variation in *RYR1* and malignant hyperthermia phenotypes[J]. *Br J Anaesth*, 2009, 103(4): 538–548.

[42] Toppin PJ, Chandy TT, Ghanekar A, et al. A report of fulminant malignant hyperthermia in a patient with a novel mutation of the CACNA1S gene[J]. *Can J Anaesth*, 2010, 57(7): 689–693.

[43] Beam TA, Loudermilk EF, Kisor DF. Pharmacogenetics and pathophysiology of *CACNA1S* mutations in malignant hyperthermia[J]. *Physiol Genomics*, 2017, 49(2): 81–87.

[44] Miller DM, Daly C, Aboelsaad EM, et al. Genetic epidemiology of malignant hyperthermia in the UK[J]. *Br J Anaesth*, 2018, 121(4): 944–952.

[45] Protasi F, Paolini C, Dainese M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/ environmental heat stroke[J]. *J Physiol*, 2009, 587(13): 3095–3100.

[46] Kraeva N, Zvaritch E, Frodis W, et al. CASQ1 Gene is an unlikely candidate for malignant hyperthermia susceptibility in the North American population[J]. *Anesthesiology*, 2013, 118(2): 344–349.

[47] Mestre TA, Manole A, MacDonald H, et al. A novel *KCNA1* mutation in a family with episodic ataxia and malignant hyperthermia[J]. *Neurogenetics*, 2016, 17(4): 245–249.

[48] Larach MG, Gronert GA, Allen GC, et al. Clinical presentation, treatment, and complications of malignant hyperthermia in North America from 1987 to 2006[J]. *Anesth Analg*, 2010, 110(2): 498–507.

[49] Nelson P, Litman RS. Malignant hyperthermia in children: an analysis of the North American malignant hyperthermia registry[J]. *Anesth Analg*, 2014, 118(2): 369–374.

[50] Kohno Y, Koishi K, Nishiyama T. A case of suspected delayed postoperative malignant hyperthermia[J]. *Masui*, 2015, 64(6): 660–662.
[51] Litman RS, Flood CD, Kaplan RF, et al. Postoperative malignant hyperthermia: an analysis of cases from the North American Malignant Hyperthermia Registry[J]. Anesthesiology, 2008, 109(5): 825–829.
[52] Raut MS, Kar S, Maheshwari A, et al. Rare postoperative delayed malignant hyperthermia after off-pump coronary bypass surgery and brief review of literature[J]. Ann Card Anaesth, 2016, 19(2): 357–362.
[53] Honardar MR, Rubio J, Bhananker SM. A case of rapid progression of postoperative hyperthermia: dantrolene or not dilemma?[J]. Int J Crit Illn Inf Sci, 2016, 6(4): 203–205.
[54] Heytens L, Forget P, Scholtes JL, et al. The changing face of malignant hyperthermia: less fulminant, more insidious[J]. Anaesth Intensive Care, 2015, 43(4): 506–511.
[55] Schuster F, Johannsen S, Schneiderbanger D, et al. Evaluation of suspected malignant hyperthermia events during anesthesia[J]. BMC Anesthesiol, 2013, 13: 24.
[56] Glahn KPE, Ellis FR, Halsall PJ, et al. Recognizing and managing a malignant hyperthermia crisis: guidelines from the European Malignant Hyperthermia Group[J]. Br J Anaesth, 2010, 105(4): 417–420.
[57] Larach MG, Localio AR, Allen GC, et al. A clinical grading scale to predict malignant hyperthermia susceptibility[J]. Anesthesiology, 1994, 80(4): 771–779.
[58] Litman RS, Griggs SM, Dowling JJ, et al. Malignant hyperthermia susceptibility and related diseases[J]. Anesthesiology, 2018, 128(1): 159–167.
[59] Larach MG. A primer for diagnosing and managing malignant hyperthermia susceptibility[J]. Anesthesiology, 2018, 128(1): 8–10.
[60] The European Malignant Hyperpyrexia Group. A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility[J]. Br J Anaesth, 1984, 56(11): 1267–1269.
[61] Hopkins PM, Rüffert H, Snoeck MM, et al. European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility[J]. Br J Anaesth, 2015, 115(4): 531–539.
[62] Larach MG. Standardization of the caffeine halothane muscle contracture test. North American Malignant Hyperthermia Group[J]. Anesth Analg, 1989, 69(4): 511–555.
[63] Fletcher JE, Rosenberg H, Aggarwal M. Comparison of European and North American malignant hyperthermia diagnostic protocol outcomes for use in genetic studies[J]. Anesthesiology, 1999, 90(3): 654–661.
[64] Islander G, Twetman ER. Comparison between the European and North American protocols for diagnosis of malignant hyperthermia susceptibility in humans[J]. Anesth Analg, 1999, 88(5): 1155–1160.
[65] Ørding H, Brancadoro V, Cozzolino S, et al. In vitro contracture test for diagnosis of malignant hyperthermia following the protocol of the European MH Group: results of testing patients surviving fulminant MH and unrelated low-risk subjects[J]. Acta Anaesthesiol Scand, 1997, 41(8): 955–966.
[66] Allen GC, Larach MG, Kunselman AR. The sensitivity and specificity of the caffeine-halothane contracture test: a report from the North American Malignant Hyperthermia Registry[J]. Anesthesiology, 1998, 88(3): 579–588.
[67] Urwyler A, Deufel T, McCarthy T, et al. Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia[J]. Br J Anaesth, 2001, 86(2): 283–287.
[68] Witherspoon JW, Meilleur KG. Review of RyR1 pathway and associated pathomechanisms[J]. Acta Neuropathol Commun, 2016, 4(1): 121.
[69] Carpenter D, Ringrose C, Leo V, et al. The role of CACNA1S in predisposition to malignant hyperthermia[J]. BMC Med Genet, 2009, 10: 104.
[70] Robinson RL, Anetseder MJ, Brancadoro V, et al. Recent advances in the diagnosis of malignant hyperthermia susceptibility: how confident can we be of genetic testing?[J]. Eur J Hum Genet, 2003, 11(4): 342–348.
[71] Sei Y, Samboughin N, Muldoon S. Malignant hyperthermia genetic testing in North America Working Group Meeting. Bethesda, Maryland. September 4-5, 2002[J]. Anesthesiology, 2004, 100(2): 464–465.
[72] Nelson TE, Rosenberg H, Muldoon SM. Genetic testing for malignant hyperthermia in North America[J]. Anesthesiology, 2004, 100(2): 212–214.
[73] Girard T, Treves S, Voronkov E, et al. Molecular genetic testing for malignant hyperthermia susceptibility[J]. Anesthesiology, 2004, 100(5): 1076–1080.
[74] List of all causative mutations[EB/OL]. https://www.emhg.org/diagnostic-mutations.
[75] Schuster F, Gardill A, Metterlein T, et al. A minimally invasive metabolic test with intramuscular injection of halothane 5 and 6 vol% to detect probands at risk for malignant hyperthermia[J]. Anesthesiology, 2007, 62(9): 882–887.
[76] Schuster F, Hager M, Metterlein T, et al. In-vivo diagnosis of malignant hyperthermia susceptibility: a microdialysis study[J]. Anaesthesist, 2008, 57(8): 767–774.
[77] Schuster F, Scholl H, Hager M, et al. The dose-response relationship and regional distribution of lactate after intramuscular injection of halothane and caffeine in malignant hyperthermia-susceptible pigs[J]. Anesth Analg, 2006, 102(2): 468–472.
[78] Schuster F, Metterlein T, Negele S, et al. An in-vivo metabolic test for detecting malignant hyperthermia susceptibility in humans: a pilot study[J]. Anesth Analg, 2008, 107(3): 909–914.
[79] Johannsen S, Berberich C, Metterlein T, et al. Screening test for malignant hyperthermia in patients with persistent hyperCKemia: a pilot study[J]. Muscle Nerve, 2013, 47(5): 677–681.
[80] Sei Y, Gallagher KL, Basile AS. Skeletal muscle type ryanodine receptor is involved in calcium signaling in human B lymphocytes[J]. J Biol Chem, 1999, 274(9): 5995–6002.
[81] Sei Y, Bandom BW, Bina S, et al. Patients with malignant hyperthermia demonstrate an altered calcium control mechanism in B lymphocytes[J]. Anesthesiology, 2002, 97(5): 1052–1058.
[82] Wappler F, Scholz J, von Richthofen V, et al. 4-chlor-m-cresol induziert kontrakturen an skelettmuskel-präparaten von
[83] Bina S, Capaccione J, Munkhuu B, et al. Is lymphocyte adenosine a diagnostic marker of clinical malignant hyperthermia? A pilot study[J]. *Crit Care Med*, 2015, 43(3): 584–593.

[84] Bina S, Capaccione J, Muldoon S, et al. Lymphocyte-based determination of susceptibility to malignant hyperthermia: A pilot study in swine[J]. *Anesthesiology*, 2010, 113(4): 917–924.

[85] Hoppe K, Hack G, Lehmann-Horn F, et al. Hypermetabolism in B-lymphocytes from malignant hyperthermia susceptible individuals[J]. *Sci Rep*, 2016, 6: 33372.

[86] Zullo A, Klingler W, De Sarno C, et al. Functional characterization of ryanodine receptor (RYR1) sequence variants using a metabolic assay in immortalized B-lymphocytes[J]. *Hum Mutat*, 2009, 30(4): E575–E590.

[87] Mickelson JR, Gallant EM, Litterer LA, et al. Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia[J]. *J Biol Chem*, 1988, 263(19): 9310–9315.

[88] Olgin J, Rosenberg H, Allen G, et al. A blinded comparison of noninvasive, in vivo phosphorus nuclear magnetic resonance spectroscopy and the in vitro halothane/caffeine contracture test in the evaluation of malignant hyperthermia susceptibility[J]. *Anesth Analg*, 1991, 72(1): 36–47.

[89] Payen JF, Bosson JL, Bourdon L, et al. Improved noninvasive diagnostic testing for malignant hyperthermia susceptibility from a combination of metabolites determined in vivo with 31P-magnetic resonance spectroscopy[J]. *Anesthesiology*, 1993, 78(5): 848–855.

[90] Schatke H, Schneider J, Abbushi W, et al. Frühdiaose der malignen Hyperthermie-zum Stellenwert des endexspiratorischen CO$_2$-Monitorings[J]. *Anästhesiol Intensivmed Notfallmed Schmerzther*, 1991, 26(8): 468–470.

[91] Bonciu M, De La Chapelle A, Delpech H, et al. Minor increase of endtidal CO$_2$ during sevoflurane-induced malignant hyperthermia[J]. *Pediart Anesth*, 2007, 17(2): 180–182.

[92] Lin HT, Wang SC, Zuo ZY, et al. Increased requirement for minute ventilation and negative arterial to end-tidal carbon dioxide gradient may indicate malignant hyperthermia[J]. *J Chin Med Assoc*, 2014, 77(4): 209–212.

[93] Tautz TJ, Urwyler A, Antognini JF. Case scenario: increased end-tidal carbon dioxide: a diagnostic dilemma[J]. *Anesthesiology*, 2010, 112(2): 440–446.

[94] Ganesan AV, Ricardez-Sandoval LA. A modelling study of a new malignant hyperthermia diagnosis device[J]. *Can J Chem Eng*, 2015, 93(6): 1053–1062.

[95] Burkman JM, Posner KL, Domino KB. Analysis of the clinical variables associated with recrudescence after malignant hyperthermia reactions[J]. *Anesthesiology*, 2007, 106(5): 901–906.