Shellability of complexes of directed trees

Duško Jojić
Faculty of Science, University of Banja Luka
78 000 Banja Luka, Bosnia and Herzegovina
e-mail: ducci68@blic.net

Abstract

The question of shellability of complexes of directed trees was asked by R. Stanley. D. Kozlov showed that the existence of a complete source in a directed graph provides a shelling of its complex of directed trees. We will show that this property gives a shelling that is straightforward in some sense. Among the simplicial polytopes, only the crosspolytopes allow such a shelling. Furthermore, we show that the complex of directed trees of a complete double directed graph is a union of suitable spheres. We also investigate shellability of the maximal pure skeleton of a complex of directed trees. Also, we prove that the complexes of directed trees of a directed graph which is essentially a tree is vertex-decomposable. For these complexes we describe the set of generating facets.

1 Introduction

A directed tree with a root r is an acyclic directed graph $T = (V(T), E(T))$ such that for every $x \in V(T)$ there exists a unique path from r to x. A directed forest is a family of disjoint directed trees. We say that a vertex y is below vertex x in a directed tree T if there exists a unique path from x to y. In this paper we write \overrightarrow{xy} for a directed edge from x to y.

Definition 1. Let D be a directed graph. The vertices of the complex of directed trees $\Delta(D)$ are oriented edges of D. The faces of $\Delta(D)$ are all directed forests that are subgraphs of D.

The investigation of complexes of directed trees was initiated by D. Kozlov in [9]. The complex of directed trees of a graph G is recognized in [5] as a discrete Morse complex of this graph (the authors treat graph as a 1-dimensional complex). Directed forests of G correspond with Morse matchings on G. Complexes of directed trees are also studied in [8] and [10].

A d-dimensional simplicial complex is pure if every simplex of dimension less than d is a face of some d-simplex. For further definitions about simplicial complexes and other topological concepts used in this paper we refer the reader to the textbook [13].

Definition 2. A simplicial complex Δ is shellable if Δ is pure and there exists a linear ordering (shelling order) F_1, F_2, \ldots, F_k of maximal faces (facets) of Δ
such that for all \(i < j \leq k \), there exist some \(l < j \) and a vertex \(v \) of \(F_j \), such that

\[
F_i \cap F_j \subseteq F_i \cap F_j = F_j \setminus \{v\}.
\]

(1)

For a fixed shelling order \(F_1, F_2, \ldots, F_k \) of \(\Delta \), the restriction \(R(F_j) \) of the facet \(F_j \) is defined by:

\[
R(F_j) = \{v \text{ is a vertex of } F_j : F_j \setminus \{v\} \subset F_i \text{ for some } 1 \leq i < j\}.
\]

Geometrically, if we build up \(\Delta \) from its facets according to the shelling order, then \(R(F_j) \) is the unique minimal new face added at the \(j \)-th step. The type of the facet \(F_j \) in the given shelling order is the cardinality of \(R(F_j) \), that is, \(\text{type}(F_j) = |R(F_j)| \).

For a \(d \)-dimensional simplicial complex \(\Delta \) we denote the number of \(i \)-dimensional faces of \(\Delta \) by \(f_i \), and call \(f(\Delta) = (f_{d-1}, f_0, f_1, \ldots, f_d) \) the \(f \)-vector. A new invariant, the \(h \)-vector of \(d \)-dimensional complex \(\Delta \) is \(h(\Delta) = (h_0, h_1, \ldots, h_d, h_{d+1}) \) defined by the formula

\[
h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{d+1-i}{d+1-k} f_{i-1}.
\]

If a simplicial complex \(\Delta \) is shellable, then

\[
h_k(\Delta) = |\{F \text{ is a facet of } \Delta : \text{type}(F) = k\}|
\]

is an important combinatorial interpretation of \(h(\Delta) \). This interpretation was of great significance in the proof of the upper-bound theorem and in the characterization of \(f \)-vectors of simplicial polytopes (see chapter 8 in [15]).

If a \(d \)-dimensional simplicial complex \(\Delta \) is shellable, then \(\Delta \) is homotopy equivalent to a wedge of \(h_d \) spheres of dimension \(d \). A set of maximal simplices from a simplicial complex \(\Delta \) is a set of generating simplices if the removal of their interiors makes \(\Delta \) contractible.

For a given shelling order of a complex \(\Delta \) we have that

\[
\{F \in \Delta : F \text{ is a facet and } R(F) = F\}
\]

is a set of generating facets of \(\Delta \). Note that a facet \(F \) is in this set if and only if

\[
\forall v \in F \text{ there exists a facet } F' \text{ before } F \text{ such that } F \cap F' = F \setminus \{v\}.
\]

(2)

The concept of shellability for nonpure complexes is introduced in [4]. In the definition of shellability of nonpure complexes we just drop the requirement of purity from Definition 4.

For a facet \(F \) of a shellable nonpure complex we can define its restriction \(R(F) \) as before. For nonpure complexes the definitions of \(f \)-vector and \(h \)-vector are extended for double indexed arrays. For a nonpure complex \(\Delta \) let

\[
f_{i,j}(\Delta) = |\{A \in \Delta : |A| = j, i = \max\{|T| : A \subseteq T \subseteq \Delta\}\}|
\]

and

\[
h_{i,j}(\Delta) = \sum_{k=0}^{j} (-1)^{j-k} \binom{i-k}{j-k} f_{i,k}.
\]
The above defined arrays are called the f-triangle and the h-triangle of Δ. If Δ is a shellable complex, we have the following combinatorial interpretation of the h-triangle: $h_{i,j}(\Delta) = |\{F \text{ a facet of } \Delta : |F| = i, |R(F)| = j\}|$.

Furthermore, for a facet T in (3). T, in both cases simplices $\langle i,j \rangle$ such that x. $\langle i,j \rangle$ are in the same class if and only if $d_y \leq d_x$. Namely, if $d_y \leq d_x$ and a vertex $v \in V(T)$ let $d_T(v)$ denote the outdegree of v, i.e., $d_T(v) = |\{x \in V(T) : \exists \delta \in E(T)\}|$.

In the proof of Theorem 3.1 in [9], the facets of $\Delta(D)$ are ordered by their degree sequences, i.e., trees T and T' are in the same class if and only if $d_T(v) = d_{T'}(v)$ for all $v \in V(D)$. Subsequently, the facets of $\Delta(D)$ are classified by considering the out-degree of the complete source.

Here we consider a directed graph D with a complete source c and detect some nice properties of a shelling described in the above remark. If $|V(D)| = n$ for $i = 0, 1, \ldots, n-1$, we set $\mathcal{F}_i = \{T \text{ a facet in } \Delta(D) : d_T(c) = n - i - 1\}$.

In the same manner as in the proof of Theorem 3.1 in [9] we can verify that the partition $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{n-1}$ fulfills the condition described in Remark 3. Namely, if $d_T(c) > d_{T'}(c)$ and $T \neq T'$, then there exists an edge $xy \in T' \setminus T$ such that $x \neq c$. We define

- $T'' = T' \setminus \{xy\} \cup \{\overline{xy}\}$ if the vertex c is not below y in T'; or
- $T'' = T' \setminus \{xy\} \cup \{\overline{xy}\}$ if c is below y in T' and r is the root of T'.

In both cases simplices T, T', T'' and the vertex xy satisfy condition described in [3].

Furthermore, for a facet $T \in \Delta(D)$ the unique new face for T in the shelling order defined above is $R(T) = \{xy \in T : x \neq c\}$. Therefore, the type of T is $\text{type}(T) = n - 1 - d_T(c)$, and we obtain that $h_i(\Delta(D)) = |\mathcal{F}_i| = |\{T \text{ is a facet of } \Delta(D) : d_T(c) = n - i - 1\}|$.
Corollary 4. Let G_n be the complete directed graph on n vertices. Then, for all $k = 0, 1, \ldots, n-1$ we have

$$h_k(\Delta(G_n)) = \binom{n-1}{k}(n-1)^k.$$

Remark 5. If a directed graph D has a complete source, then the shelling of $\Delta(D)$ is straightforward in the following sense:

1. We start the shelling with an appropriate facet F_0 and let $\mathcal{F}_0 = \{F_0\}$.

2. When we order all of the facets from \mathcal{F}_{i-1}, let \mathcal{F}_i denote the set of all facets of $\Delta(D) \setminus (\mathcal{F}_0 \cup \cdots \cup \mathcal{F}_{i-1})$ that are neighborly (share a common ridget) to a simplex from \mathcal{F}_{i-1}.

3. We continue shelling of $\Delta(D)$ by arranging simplices from \mathcal{F}_i in an arbitrary order.

4. In this shelling order, for any facet F we have that type(F) = i \iff $F \in \mathcal{F}_i$.

It may be interesting to find more examples of simplicial complexes that allow a shelling with the properties (1)–(4) from the above remark.

Example 6. Let D_n be the directed graph with $V(D_n) = [n]$ and

$$E(D_n) = \{1^i : i \in [n], i \neq 1\} \cup \{2^j : j \in [n], j \neq 2\}.$$

It is easy to see that $\Delta(D_n)$ is combinatorially equivalent to the boundary of the $(n-1)$-dimensional crosspolytope.

Theorem 7. The only simplicial d-dimensional polytope whose boundary admit a shelling as those described in Remark 4 is the crosspolytope.

Proof. Assume that P is a simplicial d-polytope with desired shelling. We identify a facet of P with its set of vertices. Let $F_0 = \{v_1, v_2, \ldots, v_d\}$ be the first facet in this shelling.

Let w_i denote the unique new vertex of the facet of P that contains $(d-2)$-dimensional simplex $F_0 \setminus \{v_i\}$. All of the facets of P whose type is 1 belong to \mathcal{F}_1 and therefore have the form $F_0 \setminus \{v_i\} \cup \{w_i\}$. We can conclude that the set of the vertices of P is $V(P) = \{v_1, v_2, \ldots, v_d, w_1, w_2, \ldots, w_d\}$.

For any $S \subseteq [d]$ we consider the $(d-1)$-simplex $F_S = \text{conv}(\{v_i : i \notin S\} \cup \{w_j : j \in S\})$.

We do not know that F_S is a facet of P, but we use induction on k to show that

$$\mathcal{F}_k = \{F_S : S \subseteq [d], |S| = k\}. \quad (4)$$

Assume that the above statement holds for all $t \leq k-1$. Let $F \notin \mathcal{F}_k$ be a facet (yet not listed) of P that shares a common ridget with a facet \hat{F} from \mathcal{F}_{k-1}.

From the inductive hypothesis we have $F = F_S$ (for $S \subseteq [n], |S| = k - 1$) and $F = F_S \setminus \{v_i\} \cup \{w_j\}$ for $i, j \notin S$. If $i \neq j$ then the edge $\{v_i, w_j\}$ and the $(k-1)$-simplex $\{w_s : s \in S \cup \{j\}\}$ are two different minimal new faces that F contributes in the shelling of P, which is impossible. Therefore, we can conclude that $i = j$, and $F = F_S \setminus \{v_i\} \cup \{w_i\} = F_{S \cup \{i\}}$.

4
We have that any of the facets that belong to \mathcal{F}_k has the form described in [4]. All of the facets from \mathcal{F}_k can be listed in an arbitrary order and any of them has the type k. Therefore, we conclude that two facets from \mathcal{F}_k cannot share the same ridget, and we obtain that

$$(d - k + 1)|\mathcal{F}_{k-1}| = k|\mathcal{F}_k|.$$

The inductive assumption and the above equations complete the proof of [4]. So, we may conclude that P is combinatorially equivalent with d-dimensional crosspolytope.

If a directed graph D has a complete source c then the complex $\Delta(D)$ is homotopy equivalent to a wedge of the spheres. In [3], D. Kozlov describes generating facets of $\Delta(D)$ as rooted trees of D having complete source c as a leaf.

Here we study the combinatorics of the spheres in $\Delta(D)$ when D has a complete source. For each tree T that is a generating facet we associate a sphere $S_T \subset \Delta(D)$ that contains T and describe the combinatorial type of S_T.

We consider a directed graph D with n vertices. Assume that c is a complete source of D. Let T be a rooted spanning tree of D with vertex c as a leaf. If $x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_k \rightarrow c$ is the unique directed path from x_1 (the root of T) to c, let σ_T denote the simplex $\{x_1, x_2, \ldots, x_k, c\}$. It is obvious that $\sigma_T \notin \Delta(D)$. Also note that $\partial \sigma_T \subset \Delta(D)$.

Let $A = \{y_1, y_2, \ldots, y_r\} = V(D) \setminus \{x_1, x_2, \ldots, x_k, c\}$, i.e., A contains $r = n - k - 1$ vertices that do not belong to the unique directed path from x_1 to c in T. For any $y_i \in A$ there exists the unique vertical z_i such that $\overline{z_i y_i} \in E(T)$. Now, we define

$$S_T = \partial \sigma_T \ast \{\overline{z_1 y_1} \ast \overline{z_2 y_2} \ast \cdots \ast \overline{z_r y_r}\}.$$

It is not complicated to prove that $S_T \subset \Delta(D)$. The sphere S_T is $(n - k - 1)$-folded bipyramid over the boundary of k-simplex σ_T.

Proposition 8. If a directed graph D has two complete sources, then $\Delta(D)$ is the union of the spheres defined in [4].

Proof. Let us denote two complete sources in D by c and c'. If c is a leaf in T, then we have $T \in S_T$. If c is not a leaf in a tree T, then let $\{x_1, x_2, \ldots, x_k\}$ be the set of all vertices of D such that $\overline{cx_i} \in E(T)$ for all $i = 1, 2, \ldots, k$.

If the vertex c' is not below c in T, we define

$$T' = T \setminus \{\overline{cx_1}, \overline{cx_2}, \ldots, \overline{cx_k}\} \cup \{\overrightarrow{cx_1}, \overrightarrow{cx_2}, \ldots, \overrightarrow{cx_k}\}.$$

In the case when c' is below c (then we have that $c' = x_i$ or c' is below x_i) and the root of T is r we define

$$T' = T \setminus \{\overline{cx_1}, \overline{cx_2}, \ldots, \overline{cx_k}\} \cup \{\overrightarrow{x_1}, \ldots, \overrightarrow{x_{i-1}}, \overrightarrow{x_{i+1}}, \ldots, \overrightarrow{x_k}\}.$$

In both cases the directed tree T' is a generating facet of $\Delta(D)$. Obviously, the facet T is contained in the sphere $S_{T'}$.

We conclude now that $\Delta(G_n)$ is the union of the $(n-k-1)$-folded bipyramids over the boundary of k-simplex. A simple calculation and the well-known formulae for the number of forests with $n-1$ vertices and k trees such that k specified nodes belong to distinct trees (Theorem 3.3 in [12]) give us the number of spheres in $\Delta(G_n)$ of the same combinatorial type.

Corollary 9. For any $n \geq 1$ the complex $\Delta(G_n)$ is a union of $(n-1)^{n-1}$ spheres of dimension $n-2$. For $0 < k < n$ there are exactly

$$\frac{(n-1)! k(n-1)^{n-k-2}}{(n-k-1)!}$$

of these spheres that are $(n-k-1)$-folded bipyramid over the boundary of $(k-1)$-simplex.

3 Shellability of skeleton of $\Delta(D)$

The subcomplex of a complex of directed trees generated by its maximal facets was studied in [1] and [5].

Here we ask about the minimal dimension of the facets of $\Delta(D)$, i.e., we want to determine the maximal k such that the k-skeleton of $\Delta(D)$ is pure. Note that for any directed graph D we have that the k-skeleton of $\Delta(D)$ is

$$\Delta^{(k)}(D) = \{ F : F \text{ is a rooted forest in } D \text{ with at least } |V(D)| - k - 1 \text{ trees } \}.$$

For a simple graph G let \overrightarrow{G} denote the directed graph obtained by replacing every edge xy of G with two directed edges \overrightarrow{xy} and \overrightarrow{yx}. The greatest distance between two vertices of a graph G is the diameter of G, denoted by $\text{diam}(G)$. A subset of the vertex set of a graph is independent if no two of its elements are adjacent. The set of neighbors of a vertex v in a graph G is denoted by $N(v)$.

For a graph G we say that $A \subseteq V(G)$ is a strongly independent set if A is independent and $N(u) \cap N(v) = \emptyset$ for all $u, v \in A, u \neq v$. Let $r(G)$ denote the maximal cardinality of a strongly independent subset of $V(G)$.

Proposition 10. The k-skeleton of $\Delta(\overrightarrow{G})$ is pure if and only if $k \leq |V(G)| - 1 - r(G)$.

Proof. Let F be a directed forest of \overrightarrow{G} with roots x_1, x_2, \ldots, x_t. If the forest F is a facet of $\Delta(\overrightarrow{G})$, then $\{x_1, x_2, \ldots, x_t\}$ is an independent set in G. Further, if T_i denotes the tree of F that contain x_i, then $N(x_i) \subseteq V(T_i)$. Therefore we obtain that $\{x_1, x_2, \ldots, x_t\}$ is a strongly independent set.

So, minimal facets of $\Delta(\overrightarrow{G})$ correspond with maximal strongly independent sets of G.

Corollary 11. For a connected graph G, the complex $\Delta(\overrightarrow{G})$ is pure if and only if $\text{diam}(G) \leq 2$.

For a graph G let m_G denote the maximal dimension of skeleton of $\Delta(\overrightarrow{G})$ that is pure. From Proposition 10 we know that $m_G = |V(G)| - r(G) - 1$. Now we examine shellability of $\Delta^{(m_G)}(\overrightarrow{G})$.
We say that a maximal strongly independent set \(A = \{x_1, x_2, \ldots, x_r\} \) of a graph \(G \) is a complete \(r \)-source if \(V(G) = A \cup N(x_1) \cup N(x_2) \cdots \cup N(x_r) \).

Theorem 12. If a graph \(G \) has a complete \(r \)-source, then \(\Delta^{(mG)}(G) \) is shellable.

Proof. Let \(A = \{x_1, x_2, \ldots, x_r\} \) be a complete \(r \)-source in \(G \). Assume that the vertex set \(V(G) \) is linearly ordered. For a facet \(F \) of \(\Delta^{(mG)}(G) \) (recall that \(F \) is a directed forest with \(r \) trees) we define \(d_F = (d_F(x_1), d_F(x_2), \ldots, d_F(x_r)) \) and \(S_F = (F_1, F_2, \ldots, F_r) \) where \(F_i = \{v \in N(x_i) : \overrightarrow{x_i} \in E(F)\} \).

Let \(<_L \) denote the lexicographical order on \(\mathbb{N}^r \). We say that \(S_F \preceq S_{F'} \) if and only if \(F_1 = F'_1, \ldots, F_{i-1} = F'_{i-1} \) and \(\min(F_i, F'_i) \in F_i \). Now, we define a partial order on the facets of \(\Delta^{(mG)}(G) \):\[
F < F' \iff \begin{cases}
d_{F'} <_L d_F, \\
d_F = d_{F'} \text{ and } S_F \preceq S_{F'}.
\end{cases}
\]

The above order induces a partition of the facets of \(\Delta^{(mG)}(G) \). A block in this partition contains all forests of \(\Delta^{(mG)}(G) \) in which the sets of outgoing edges having \(x_i \) as the source are the same for all \(i = 1, 2, \ldots, r \). Note that the relation \(< \) induces a linear order on the blocks. The forest with edges \(\{\overrightarrow{x_i} : x_i \in A, v \in N(x_i)\} \) is the only facet contained in the first block.

Now, we will prove that this partition of the facets of \(\Delta^{(mG)}(G) \) satisfies conditions described in Remark 3. Consider two different forests \(F, F' \in \Delta^{(mG)}(G) \) such that \(F \in F_i, F' \in F_j \) and \(i < j \). Let \(T_1, T_2, \ldots, T_s \) denote the trees of the forest \(F \cap F' \). For \(i = 1, 2, \ldots, s \) let \(r_i \) denote the root of \(T_i \). Note that \(s > r \) and all edges from \(E(F) \setminus E(F') \) have the form \(\overrightarrow{x_i} \). We consider the following three possibilities:

1. There exists an edge \(\overrightarrow{uv} \in E(F') \setminus E(F) \) such that \(u \notin A \). As we have that \(r < s \), we can conclude that there exists \(j \) such that \(r_j \in N(x_i) \) and \(x_i \) is not below \(r_j \) in \(F' \setminus \{\overrightarrow{uv}\} \). Then we set \(F'' = F' \setminus \{\overrightarrow{uv}\} \cup \{\overrightarrow{x_i}\} \).

Now, we assume that \(\overrightarrow{uv} \in E(F') \setminus E(F) \) implies \(u \in A \). Further, let \(i_0 \) denotes the minimal \(i \in [r] \) for which there exists an edge \(\overrightarrow{x_{i_0}z} \in E(F') \setminus E(F) \).

2. If \(E(F') \setminus E(F) \) also contains an edge \(\overrightarrow{x_j}\) such that \(i_0 < j \), then from \(d_F(x_{i_0}) \geq d_F(x_j) \) we conclude that there exists \(x_{i_0}z \in E(F) \setminus E(F') \). The vertex \(z \) is the root in \(F' \) and \(x_{i_0} \) is not below \(z \) in \(F' \). Otherwise we have an edge \(\overrightarrow{x_{i_0}z} \) in \(E(F') \setminus E(F) \), such that \(x \notin A \) (or \(z \notin A \)). In this case we set \(F'' = F' \setminus \{\overrightarrow{x_j}\} \cup \{\overrightarrow{x_{i_0}z}\} \).

3. If \(E(F') \setminus E(F) = \{x_{i_0}v_1, x_{i_0}v_2, \ldots, x_{i_0}v_m\} \), we have that there exists the edge \(\overrightarrow{x_{i_0}u} \in E(F) \setminus E(F') \) such that \(u \) is smaller than any of \(v_i \) in the linear order defined on \(V(G) \). Again \(u \) is the root in \(F' \), and we set \(F'' = F' \setminus \{x_{i_0}v_1\} \cup \{x_{i_0}u\} \).

In any of the cases considered above, it is clear that the forests \(F, F', F'' \) satisfy $ \Delta $.

Now, we investigate shellability of \(\Delta^{(mC_n)}(G_n) \), where \(C_n \) denotes a cycle with \(n \) vertices.
Theorem 13. A complex $\Delta^{(m_{C_n})}(\overline{C}_n)$ is shellable if and only if $n = 3k$ or $n = 3k + 1$.

Proof. Note that $r(C_n) = \lceil \frac{n}{3} \rceil$ and therefore we have that

$$m_{C_n} = \begin{cases} 2k - 1, & \text{if } n = 3k; \\ 2k, & \text{if } n = 3k + 1; \\ 2k + 1, & \text{if } n = 3k + 2. \end{cases}$$

Let C_n denote the simplicial complex with n vertices indexed by \mathbb{Z}_n and $F \subseteq \mathbb{Z}_n$ is a face if and only if it does not contain $\{i, i + 1\}$ for $i \in \mathbb{Z}_n$. It is obvious that $\Delta(\overline{C}_n) = C_{2n} \setminus \{1, 3, \ldots, 2n - 1\}$. So, we conclude that $\Delta(2k+1)\overline{C}_n$ is shellable.

If $n = 3k$, then $\{1, 4, 7, \ldots, 3k - 2\}$ is a complete r-source for C_n and from Theorem 12 we know that $\Delta^{(2k+1)}(\overline{C}_{3k})$ is shellable.

If $n = 3k + 1$, we will prove that the lexicographical order of the facets of C_{6k+2} defined by $A < B$ if and only if $\min(A \cup B) \in A$ is a shelling order.

For $A = \{a_0, a_1, \ldots, a_{2k}\} < B = \{b_0, b_1, \ldots, b_{2k}\}$ let $a_i = \min(A \setminus B) \in A$ and $b_j = \min B \setminus A$. We consider $C = (B \setminus \{b_j\}) \cup \{a_i\}$. Note that C is not contained in C_{6k+2} if and only if $a_0 = 1, b_0 = 2, b_{2k} = 6k + 2$. In that case, because $1 \in A$ we have that $6k + 2 \notin A$.

If $b_{2k} = 6k + 2$ and $b_{2k+1} < 6k$, then we define $C = B \setminus \{6k + 1\}$.

If $b_0 = 2, b_{2k+1} = 6k + 2$, then there exists $s \in \{1, 2, \ldots, 2k - 1\}$ such that $b_s - b_{s-1} > 3$. Then, we let $C = B \setminus \{6k + 2\} \cup \{b_{s-1} + 2\}$. It is easy to check that the condition described in (1) is satisfied in any of the above cases. So, we can conclude that $\Delta^{(2k+1)}(\overline{C}_{3k+1})$ is shellable.

For $n = 3k + 2$ we consider complex $\Delta^{(2k+1)}(\overline{C}_{3k+2}) = C_{6k+4}$. We know that C_{6k+4} is homotopy equivalent with a $2k$-dimensional sphere (see Proposition 5.1 in [2]). From the proof of this proposition we can identify this sphere with the boundary of $(2k+1)$-dimensional crosspolytope $\{1, 2\} \ast \{4, 5\} \ast \cdots \ast \{6k+1, 6k+2\}$.

Obviously, this sphere is contained in C_{6k+4}.

However, C_{6k+4} also contains $(2k+1)$-dimensional spheres (boundaries of $(2k + 2)$-simplex $\{1, 3, 5, \ldots, 4k + 5\}$ in C_{6k+4}).

Therefore, we obtain that this complex is homotopy equivalent to a wedge of spheres of different dimensions. So, we conclude that $\Delta^{(2k+1)}(\overline{C}_{3k+2})$ is not shellable.

\Box

4 Trees

For a simple graph $G = (V, E)$ the independency complex $I(G)$ is the simplicial complex with vertex set V and with faces the independent sets of G. The independence complex has been previously studied in [7], [11].

Shellability and vertex-decomposability of independency complexes is discussed in [6] and [14]. A complex Δ is vertex decomposable if it is a simplex or (recursively) Δ has a shedding vertex v such that $\Delta \setminus \{v\}$ and $\text{link}_\Delta v$ are vertex decomposable. It is well-known that any vertex decomposable complex is shellable too.

A chordless cycle of length n in a graph G is a cycle $v_1, v_2, \ldots, v_n, v_1$ in G with no chord, i.e. with no edges except $\{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}$.

\[
\]
We will use the following Theorem.

Theorem 14 (Theorem 1, [13]). If G is a graph with no chordless cycles of length other than 3 or 5, then $I(G)$ is vertex decomposable (hence shellable and sequentially Cohen-Macaulay.)

We follow Kozlov [9] and say that a digraph D is essentially a tree if it becomes an undirected tree when one replaces all directed edges (or pairs of directed edges going in opposite directions) by an edge.

Theorem 15. Let $D = (V(D), E(D))$ be essentially a tree. Then $\Delta(D)$ is vertex decomposable and hence shellable.

Proof. For a given tree D we define a simple graph G in the following way. For $v \in V(D)$ let $d^-(v) = |\{x \in V(D) : x \rightarrow v \in E(D)\}|$ denote the in-degree of v in D. We replace every $v \in V(D)$ with a complete graph $K_{d^-(v)}$ whose vertices correspond with directed edges having v as sink. Further, if both of directed edges $\overrightarrow{xy}, \overrightarrow{yx}$ are contained in $E(D)$, then the corresponding vertices of $K_{d^-(v)}$ and $K_{d^-(w)}$ are adjacent in G. Formally, we define $V(G) = E(D)$, and edges with the same sink $\overrightarrow{x\ell}, \overrightarrow{yx}$ are adjacent in G. Also, if $\overrightarrow{ab}, \overrightarrow{ba} \in E(D)$ they are adjacent as vertices of G.

Note that $A \subset V(G)$ is an independent set in G if and only if A is the set of edges of a directed forest in D. Therefore we have that $\Delta(D) = I(G)$. Moreover, the construction of G and the assumption that D is essentially a tree guaranteed that G does not contain a chordless cycle of length other than 3. Now, the statement of our theorem follows from Theorem 14.

We describe a way to find an explicit shelling of $\Delta(D)$. Let D be a directed graph and let $v \in V(D)$ be a leaf in D. In other words there exists the unique vertex $x \in V(D)$ such that \overrightarrow{vx} or \overrightarrow{xv} or both of them are in $E(D)$ and there are no other edges where v is a source or a sink.

Let $D' = D \setminus \{v\}$ and let $\{y_1, y_2, \ldots, y_k\} = \{y \in V(D') : \overrightarrow{vy} \in E(D')\}$. Furthermore, let $D_0 = D' \setminus \{\overrightarrow{y_1x}, \overrightarrow{y_2x}, \ldots, \overrightarrow{y_kx}\}$ and assume that $\overrightarrow{yix} \in E(D)$ for $i = 1, 2, \ldots, s$. Now, for $p = 1, 2, \ldots, k$ we set $D_p = D_0 \setminus \{\overrightarrow{y_ix}\}$. Note that $D_p = D_0$ for $p > s$.

We know that the complexes $\Delta(D')$, $\Delta(D_0)$ and $\Delta(D_p)$ are shellable. Assume that:

(i) F_1, F_2, \ldots, F_t is a shelling of $\Delta(D')$;

(ii) H_1, H_2, \ldots, H_s is a shelling of $\Delta(D_0)$;

(iii) $G_1^p, G_2^p, \ldots, G_t^p$ is a shelling of $\Delta(D_p)$ (for $p = 1, 2, \ldots, k$).

We use the above notation in the next proposition.

Proposition 16. We consider three possible cases.

(a) If $\overrightarrow{xy} \in E(D)$ and $\overrightarrow{yx} \notin E(D)$, then $F_1 \cup \{\overrightarrow{xy}\}, F_2 \cup \{\overrightarrow{xy}\}, \ldots, F_t \cup \{\overrightarrow{xy}\}$ is a shelling of $\Delta(D)$. Also, we have that $h_{i,j}(\Delta(D)) = h_{i-1,j}(\Delta(D'))$.
(b) If $\overline{w} \notin E(D)$ and $\overline{v} \in E(D)$, then

$$H_1 \cup \{\overline{v}\}, \ldots, H_s \cup \{\overline{v}\}, G^1_1 \cup \{\overline{y}_1\}, \ldots, G^1_t \cup \{\overline{y}_1\}, G^2_k \cup \{\overline{y}_2\}$$

is a shelling of $\Delta(D)$. Furthermore, we have that

$$h_{i,j}(\Delta(D)) = h_{i-1,j}(\Delta(D')) + \sum_{p=1}^{k} h_{i-1,j-1}(\Delta(D_p)).$$

(c) If $\overline{v}, \overline{w} \in E(D)$, then

$$F_1 \cup \{\overline{v}\}, F_2 \cup \{\overline{v}\}, \ldots, F_t \cup \{\overline{v}\}, H_1 \cup \{\overline{v}\}, H_2 \cup \{\overline{v}\}, \ldots, H_s \cup \{\overline{v}\}$$

is a shelling of D. In that case we have that

$$h_{i,j}(\Delta(D)) = h_{i-1,j}(\Delta(D')) + h_{i-1,j-1}(\Delta(D_0)).$$

Proof.

(a) This is obvious, because $\Delta(D)$ is a cone over $\Delta(D')$ with apex \overline{v}. Therefore, we have $\mathcal{R}_D(F_i \cup \{\overline{v}\}) = \mathcal{R}_D(F_i)$ and $\Delta(D)$ is contractible.

(b) If a facet F of $\Delta(D)$ contains \overline{v}, then F does not contain any of the edges $\{\overline{y}_1, \overline{y}_2, \ldots, \overline{y}_s\}$. So, in that case we have that $F = H \cup \{\overline{v}\}$, for a facet H of $\Delta(D_0)$. If a facet F' of $\Delta(D)$ does not contain \overline{v}, then F' must contain exactly one of the edges $\{\overline{y}_1, \overline{y}_2, \ldots, \overline{y}_s\}$. Therefore, we have that $F' = G \cup \{\overline{y}_p\}$ for a facet G of D_p.

The supposed shelling of $\Delta(D_0)$ provides that for $i \leq j$ and facets H_i, H_j of $\Delta(D_0)$ there exists $k \leq j$ and $\overline{w} \in H_j$ such that

$$(H_i \cup \{\overline{v}\}) \cap (H_j \cup \{\overline{v}\}) \subseteq (H_k \cup \{\overline{v}\}) \cap (H_j \cup \{\overline{v}\}) = H_j \cup \{\overline{v}\} \setminus \{\overline{w}\}.$$

Note that for any p such that $1 \leq p \leq s$ and for any facet G^p_k of $\Delta(D_p)$ there exists a facet H_k of $\Delta(D_0)$ such that $G^p_k \subseteq H_k$. Therefore, for any facet H_i of $\Delta(D_0)$ we have

$$(H_i \cup \{\overline{v}\}) \cap (G^p_k \cup \{\overline{y}_p\}) \subseteq (H_k \cup \{\overline{v}\}) \cap (G^p_k \cup \{\overline{y}_p\}) = G^p_j.$$

Also, for $q \leq p$ and a facet G^q_j of $\Delta(D_0)$ we have

$$(G^q_j \cup \{\overline{y}_q\}) \cap (G^p_k \cup \{\overline{y}_p\}) \subseteq (H_k \cup \{\overline{v}\}) \cap (G^p_k \cup \{\overline{y}_p\}) = G^p_j.$$

So, we obtain that the order defined in (b) is a shelling order for $\Delta(D)$. In this order we have that the restriction of the facets of $\Delta(D)$ is

$$\mathcal{R}_D(H_i \cup \{\overline{v}\}) = \mathcal{R}_{D_0}(H_i)$$

and

$$\mathcal{R}_D(G^p_k \cup \{\overline{y}_p\}) = \mathcal{R}_{D_p}(G^p_k) \cup \{\overline{y}_p\}.$$

(c) In this case a facet of $\Delta(D)$ has the form

$$\{\overline{v}\} \cup F,$$

for a facet F of $\Delta(D')$ or $\{\overline{v}\} \cup H$, for a facet H of $\Delta(D_0)$.

Again, for a facet H_j of $\Delta(D_0)$ there exists a facet F_i of $\Delta(D')$ such that $H_j \subseteq F_i$. In the similar manner as in (b) we can prove that the considered order is a shelling order. Further, the restriction in this order is

$$\mathcal{R}_D(F_i \cup \{\overline{v}\}) = \mathcal{R}_{D'}(F_i)$$

and

$$\mathcal{R}_D(H_i \cup \{\overline{v}\}) = \mathcal{R}_{D_0}(H_i) \cup \{\overline{v}\}. $$
Remark 17. Now, we can identify generating facets of $\Delta(D)$. If $\vec{x} \notin E(D)$ and $\vec{v} \notin E(D)$, then $\Delta(D)$ is contractible. If $\vec{x} \notin E(D)$ and $\vec{v} \in E(D)$, let G_p denote a set of generating faces of $\Delta(D_p)$ for $p = 1, 2, \ldots, s$. Then, a generating set of facets of $\Delta(D)$ is
\[
\bigcup_{p=1}^{s} \{ G \cup \{ \vec{y}_p \} : G \in G_p \}.
\]
If $\vec{x}, \vec{v} \in E(D)$, then a set of generating facets of $\Delta(D)$ is
\[
\{ H \cup \{ \vec{v} \} : H \text{ is a generating facet of } \Delta(D_0) \}.
\]

A directed acyclic graph is a directed graph without directed cycles. By successive applications of Proposition 16 and Remark 17 we obtain the following result of A. Engström.

Theorem 18 (Theorem 2.10, [8]). If D is a directed acyclic graph, then $\Delta(G)$ is homotopy equivalent to a wedge of $\prod_{v \in V(G)} (d^-(v) - 1)$ spheres of dimension $|V(G)| - |R| - 1$, where R is the set of vertices without edges directed to them.

Now, we investigate homotopy type of $\Delta(D)$ when D is a double directed tree.

Definition 19. A tree T with $2n$ vertices (n leaves and n non-leaves) such that every non-leaf is adjacent to exactly one leaf we call basic tree. Also, we say that a tree with exactly two vertices is a basic tree. We say that the edge connecting a non-leaf and a leaf is peripheral.

We can produce a basic tree if we start with an arbitrary tree T' and add a leaf to each node of T'. We use description of generating facets from Remark 17 to obtain the following proposition.

Proposition 20. Let D be a directed tree with $2n$ vertices obtained from a basic tree T by replacing every edge of T by a pair of directed edges going in opposite directions. Then we have that $\Delta(D) \cong S^{n-1}$.

Proof. Assume that v_1, v_2, \ldots, v_n are leaves of T. We label the rest of the vertices of T with u_1, u_2, \ldots, u_n so that $v_i u_i \in E(T)$ for all $i = 1, 2, \ldots, n$. By applying Remark 17 successively we obtain that the set of peripheral edges $\{ \vec{v}_i \vec{u}_i : i = 1, 2, \ldots, n \}$ is the unique generating facet of $\Delta(D)$.

We denote the unique generating facet for a basic tree T by G_T, that is, $G_T = \{ \vec{v}_1 \vec{u}_1, \vec{v}_2 \vec{u}_2, \ldots, \vec{v}_n \vec{u}_n \}$.

Let D be a double directed tree obtained from a tree T. We describe a bijection between generating simplices of $\Delta(D)$ and decompositions of T into basic trees.

Let v_1, v_2, \ldots, v_n be a fixed linear order of $V(D)$ and choose the first leaf $v \in V(D)$ in this order. Assume that $N(v) = \{ x \}$ and $N(x) = \{ y_1, y_2, \ldots, y_k \}$. From (c) of Remark 17 we know that all generating facets of $\Delta(D_0)$ have to contain the edge \vec{x}. Next, we are looking for generating facets of complex $\Delta(D_0)$ where $D_0 = (D \setminus \{ v \}) \setminus \{ \vec{y}_1 \vec{y}, \ldots, \vec{y_k} \}$. From (b) of Proposition 16 we
have that a generating facet of $\Delta(D_0)$ must contain edges $\overrightarrow{z_1y_1}, \overrightarrow{z_2y_2}, \ldots, \overrightarrow{z_ky_k}$ where $z_i \in N(y_i)$ and $z_i \neq x$. If $\deg_T(y_i) = 2$ for all $i = 1, 2, \ldots, k$, we consider a subtree of T spanned by $\{v, x, y_1, z_1, \ldots, y_k, z_k\}$. In the case when $N_T(y_i) = \{x, z_i, u_1, \ldots, u_r\}$, a generating facet of $\Delta(D)$ that contains $\{\overrightarrow{vx}, \overrightarrow{z_1y_1}, \ldots, \overrightarrow{z_ky_k}\}$ also contains edges $\overrightarrow{w_ju_j}$ for $j = 1, 2, \ldots, r$.

By repeating this procedure we obtain a subtree B_1 of T such that

1. B_1 is a basic tree and $v \in V(B_1)$,
2. for any $x \in V(B_1)$ that is not a leaf in B_1 we have that $d_{B_1}(x) = d_T(x)$,
3. $|V(B_1)| \geq 2$ whenever $|V(T)| \geq 2$.

Note that there can be more possibilities for a basic tree B_1, see Figure 1. If we can not find a subtree B_1 that satisfies the above conditions, then we obtain that $\Delta(D)$ is contractible. After we choose a basic tree B_1 that satisfies (1)–(3) we proceed in the same way with $T' = T \setminus \{x \in V(B_1) : d_{B_1}(x) = d_T(x)\}$. Note that T' is a forest or a tree.

Let v' be the first leaf of T' and let T_1 be the maximal tree of T' that contains v'. Now, we are looking for B_2, a subtree of T_1 that satisfies (1)–(3). If we can decompose T into B_1, B_2, \ldots, B_m we say that (B_1, B_2, \ldots, B_m) is an ordered decomposition of T into m basic trees.

An ordered decomposition (B_1, B_2, \ldots, B_m) of T that satisfies (1)–(3) produces a generating facet $G_{B_1} \cup G_{B_2} \cup \cdots \cup G_{B_m}$ of $\Delta(D)$.

Figure 1: A tree and its decompositions into basic trees. Oriented edges represent generating facets of $\Delta(D)$. Note that $\Delta(D) \simeq S_5 \vee S_6$.

Theorem 21. Let D be a double directed tree with n vertices. Let μ_m denote the number of ordered decompositions of D into m basic trees. Then we have that

$$\Delta(D) \simeq \bigvee_m \left(\bigvee \mu_m S_{\frac{3m - 3}{2}} \right).$$

Proof. We described above a bijection between generating sets of $\Delta(D)$ and ordered decompositions of D that satisfy (1)–(3). Consider such an ordered partition (B_1, B_2, \ldots, B_m) with m basic trees. If a basic tree B_i contains $2s_i$ vertices (and $2s_i - 1$ edges) it contains s_i edges of a generating set of $\Delta(D)$.

12
Then we have $2s_1 - 1 + 2s_2 - 1 + \cdots + 2s_m - 1 = n - 1$, and this decomposition corresponds with

$$s_1 + s_2 + \cdots + s_m - 1 = \frac{n + m - 1}{2} - 1$$

dimensional generating facet of $\Delta(D)$.

Corollary 22. Among all double directed trees D with n vertices the biggest dimension of nontrivial homology is $\lceil \frac{n-2}{2} \rceil$. Smallest nontrivial homology for all trees with n vertices appears in the dimension $n - \lfloor \frac{n}{3} \rfloor - 2$.

References

[1] R. Ayala, L. M. Fernández, A. Quintero, and J. A. Vilches. A note on the pure Morse complex of a graph. *Topology Appl.*, 155(17-18):2084–2089, 2008.

[2] A. Björner. Topological methods. In *Handbook of combinatorics, Vol. 1*, pages 1819–1872. Elsevier, Amsterdam, 1995.

[3] Anders Björner. Shellable and Cohen-Macaulay partially ordered sets. *Trans. Amer. Math. Soc.*, 260(1):159–183, 1980.

[4] Anders Björner and Michelle L. Wachs. Shellable nonpure complexes and posets. I. *Trans. Amer. Math. Soc.*, 348(4):1299–1327, 1996.

[5] Manoj K. Chari and Michael Joswig. Complexes of discrete Morse functions. *Discrete Math.*, 302(1-3):39–51, 2005.

[6] Anton Dochtermann and Alexander Engström. Algebraic properties of edge ideals via combinatorial topology. *Electron. J. Combin.*, 16(2, Special volume in honor of Anders Björner):Research Paper 2, 24, 2009.

[7] Richard Ehrenborg and Gábor Hetyei. The topology of the independence complex. *European J. Combin.*, 27(6):906–923, 2006.

[8] Alexander Engström. Complexes of directed trees and independence complexes. *Discrete Math.*, 309(10):3299–3309, 2009.

[9] Dmitry N. Kozlov. Complexes of directed trees. *J. Combin. Theory Ser. A*, 88(1):112–122, 1999.

[10] Dmitry N. Kozlov. Directed trees in a string, real polynomials with triple roots, and chain mails. *Discrete Comput. Geom.*, 32(3):373–382, 2004.

[11] Roy Meshulam. Domination numbers and homology. *J. Combin. Theory Ser. A*, 102(2):321–330, 2003.

[12] J. W. Moon. *Counting labelled trees*, volume 1969 of *From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver)*. Canadian Mathematical Congress, Montreal, Que., 1970.
[13] James R. Munkres. *Elements of algebraic topology*. Addison-Wesley Publishing Company, Menlo Park, CA, 1984.

[14] Russ Woodroofe. Vertex decomposable graphs and obstructions to shellability. *Proc. Amer. Math. Soc.*, 137(10):3235–3246, 2009.

[15] Günter M. Ziegler. *Lectures on polytopes*, volume 152 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995.