Novel Carbohydrate-binding Activity of Pancreatic Trypsins to N-Linked Glycans of Glycoproteins*

Received for publication, December 27, 2005 Published, JBC Papers in Press, January 17, 2006, DOI 10.1074/jbc.M513773200

Hiroko Takekawa†, Chieko Ina‡, Reiko Sato§, Kazunori Toma§, and Haruko Ogawa†‡§

From the †Graduate School of Humanities and Sciences and §The Glycoscience Institute, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610 and ‡The Noguchi Institute, Itabashi-ku, Tokyo 173-0003, Japan

How glycosylation affects the reactivity of proteins to trypsin is not well understood. Bovine and porcine pancreatic trypsins were discovered to bind to α-Man, Neu5Aca2,6Galβ1,4Glc, and α-galactose sequences by binding studies with biotinylated sugar-polymer.

Quantitative kinetic studies supported that phenylmethylsulfonyl fluoride (PMSF)-treated trypsin binds to glycolipid analogues possessing α-Man or α-NeuAc but not to those possessing β-galactose or β-GlcNAc residue. Enzyme-linked immunosorbent assay (ELISA) showed that trypsin binds to six kinds of biotinylated glycans possessing high mannose-type and complex-type N-glycans but not to bovine submaxillary mucin, which possesses only O-glycans. Further, the binding of trypsin to glycoproteins was differentially changed by treatments with sequential exoglycosidases, endoglycosidase H, or N-glycosidase F. Quantitative kinetic studies indicated that PMSF-treated trypsin binds with bovine thyroglobulin with the affinity constant of 10^{10} M^{-1}, which was the highest among the glycoproteins examined, and that α-galactosidase treatment decreased it to 10^{5} M^{-1}. PMSF-treated trypsin bound to other glycoproteins, including ovomucoid, a trypsin inhibitor, with the affinity constants of 10^{-10} - 10^{-15} mol^{-1} and were markedly changed by glycosidase treatments in manners consistent with the sugar-binding specificities suggested by ELISA. Thus, the binding site for glycans was shown to be distinct from the catalytic site, allowing trypsin to function as an uncompetitive activator in the hydrolysis of a synthetic peptide substrate. Correspondingly the carbohydrate-binding activities of trypsin were unaffected by treatment with PMSF or soybean trypsin inhibitor. The results indicate the presence of an allosteric regulatory site on trypsin that sugar-specifically interacts with glycoproteins in addition to the proteolytic catalytic site.

Numerous biological phenomena are mediated by recognition of specific oligosaccharide signals. This recognition implies quality control in polypeptide folding, cellular interactions, and protein targeting (1–3). In contrast, some functions of protein glycosylation seem to be widely applicable to various types of glycosylation, for example, protecting the active conformation of proteins would enable the use of glycosylation in molecular engineering of recombinant products for therapeutic purposes.

Trypsin is a principal pancreatic serine protease that plays a key role in digestion in the duodenum by activatingzymogens and degrading dietary proteins. Trypsin acts specifically on peptide bonds of the carboxyl side of positively charged lysine and arginine and catalyzes the activation of many pancreatic proenzymes, such as trypsinogen, chymotrypsinogen, proelastase, and carboxypeptidase, and protease-activated receptors to control digestive efficiency in the intestines (4, 5). When, however, trypsin is activated in the pancreas, the activated proteinases induce the destruction of pancreatic cells. The modulation of trypsin activity is therefore important for controlling digestive efficiency and preventing pancreatitis.

Porcine pancreatic α-amylase (PPA) is activated by interaction with glycoproteins. Previously we reported that PPA exhibits carbohydrate-binding activity toward N-glycans of glycoproteins (6). To further elucidate the biological functions of the carbohydrate-binding activity found in PPA, we investigated whether other pancreatic digestive enzymes possess similar carbohydrate-binding activity. In this study, we found that trypsin exhibits remarkable carbohydrate-binding activities to the sequences present in the N-glycans of glycoproteins with a specificity distinct from PPA. This finding provides new insights into the interaction between the proteases and glycoproteins related to protease resistance and the biological functions of carbohydrate-specific interactions in the digestive organs.

EXPERIMENTAL PROCEDURES

Materials—Porcine pancreatic trypsin (PPT), N-α-benzoyl-D-arginine ethyl ester (BAEE), N-α-benzoyl-D-arginine-p-nitroanilide hydrochloride (BAPA), soybean trypsin inhibitor, bovine serum albumin (BSA), 3,3′-diaminobenzidine tetrahydrochloride, methyl-α-D-mannoside, and mannitol were purchased from Wako Pure Chemical Industries, Ltd., Osaka, Japan. Bovine pancreatic trypsin (BPT), bovine submaxillary gland mucin (BSM), human holotransferrin, fetuin from fetal calf serum, hen ovomucoid, human orosomucoid, bovine thyroglobulin, streptavidin-biotinylated horseradish peroxidase complex (ABC complex), and 4-nitrophenyl phosphate magnesium salt were purchased from Sigma. Sugar-biotinylated polycrylamide probes (sug-AR-BP probes) were purchased from Lectinity Holdings, Inc. Moscow,

*This work was supported in part by Grants-in-aid for Scientific Research (C) 1458022 and 17570109 (HO) from the Japan Society for the Promotion of Science and Grants-in-aid for Scientific Research on Priority Areas 15040209 and 17046004 (HO) from the Ministry of Education, Culture, Sports, Science, and Technology. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed. Tel.: 81-3-5978-5343; Fax: 81-3-5978-5343; E-mail: hogawa@cc.ocha.ac.jp.

‡ The abbreviations used are: PPA, porcine pancreatic α-amylase; BPT, bovine pancreatic trypsin; PPT, porcine pancreatic trypsin; BAEE, N-α-benzoyl-D-arginine ethyl ester; BAPA, N-α-benzoyl-D-arginine-p-nitroanilide hydrochloride; BSA, bovine serum albumin; BSM, bovine submaxillary mucin; ABC complex; streptavidin-biotinylated horseradish peroxidase complex; sugar-AR-BP probe, sugar-biotinylated polycrylamide probe; PMSF, phenylmethylsulfonyl fluoride; TBS, Tris-buffered saline; k_{on}, affinity constant; k_{off}, association rate constant; k_{dis}, dissociation rate constant; ELISA, enzyme-linked immunosorbent assay; SPR, surface plasmon resonance; RU, resonance units; Me, methyl.
Russia, except β-D-galactose-3-sulfate, which was purchased from Seikagaku Corp., Tokyo, Japan. Porcine thyroglobulin and *Galanthus nivalis* lectin were purchased from Cosmo Bio Co., Ltd, Tokyo, Japan. Neuraminidase from *Vibrio cholerae*, N-glycosidase F from *Flavobacterium meningosepticum*, and O-glycosidase were purchased from Roche Diagnostics Corp., Inc. (Indianapolis, IN). *Psathyrella velutina* lectin was prepared in our laboratory (7). β-Galactosidase and β-N-acetylhexosaminidase from jack bean and α-galactosidase from *Mortierella vinacea* were purchased from Seikagaku Corp. EZ-Link sulfo-N-hydroxysuccinimide-biotin and *Sambucus nigra* bark lectin were purchased from Funakoshi Co. Ltd., Tokyo, Japan. Phenylmethylsulfonyl fluoride (PMSF) and methyl-β-D-galactoside were purchased from Nacalai Tesque, Inc., Kyoto, Japan. N-Heptyl-β-D-thiogalactoside was purchased from Dojindo Laboratories, Kumamoto, Japan. Phenylmethylsulfonyl fluoride (PMSF) and methyl-β-D-galactoside were purchased from Nacalai Tesque, Inc., Kyoto, Japan. N-Heptyl-β-D-thiogalactoside was purchased from Dojindo Laboratories, Kumamoto, Japan. Peanut lectin and *Ricinus communis* agglutinin I were purchased from Seikagaku Corp. Lactose was purchased from Kanto Kagaku, Tokyo, Japan. SDS-PAGE molecular weight standards were purchased from Bio-Rad.

Preparation of Glycoprotein Probes—All biotinylated glycoprotein probes, their deglycosylated derivatives, and biotinyl lectins were prepared in our laboratory. Biotinylation was performed using EZ-link™ sulfo-N-hydroxysuccinimide-biotin according to the instruction manual. Briefly, 2 mg of each glycoprotein was dissolved in 1 ml of 50 mM sodium bicarbonate buffer (pH 8.5), and 74 μl of sulfo-NHS-biotin (1 mg/ml) was added. After incubation for 30 min at room temperature, the reactant was dialyzed against water to remove excess biotin. Asialoglycoproteins, asialoagalactoglycoproteins, and asialoalactohepatosaminoglycoproteins were prepared from biotinylated glycoproteins by sequential glycosidase treatments with neuraminidase (0.1 units/mg glycoprotein) in 20 mM acetate-buffered saline (pH 5.5), β-galactosidase (0.14 units/mg glycoprotein) in 50 mM sodium-citrate buffer (pH 3.5) overnight, and then β-N-acetylhexosaminidase (1.43 units/mg of glycoprotein) in 50 mM sodium citrate buffer (pH 5.0) at 37 °C overnight. The glycan structures and carbohydrate concentrations of the glycoproteins used in this study are summarized in Scheme 1. Besides the sequential treatments described above, biotinylated bovine thyroglobulin was treated with α-galactosidase (0.14 unit/mg of glycoprotein) in 20 mM acetate-buffered saline (pH 5.5) for agalactosylation of the major oligosaccharide, Galα1-3Galβ1-4GlcNAc. Fetuin was treated with N-glycosidase F (600 units/mg of glycoprotein) in 10 mM Tris-buffered saline (TBS) at pH 7, or de-O-glycosylated with a mixture of neuraminidase...
Carbohydrate Binding Activity of Pancreatic Trypsins

Scheme 2. Structures of sugar-BP probes and glycolipid analogues used in this study.

(0.1 unit/mg of glycoprotein) and O-glycosidase (2 milliunits/mg of glycoprotein) in 10 mM acetate buffer of pH 6 at 37 °C overnight.

Biotinylated porcine thyroglobulin (20 μg) was denatured in glycoprotein denaturing buffer (5% SDS, 10% β-mercaptoethanol) at 100 °C for 10 min, a 10% volume of 0.5 M sodium citrate buffer (pH 5.5) was added, and then it was incubated with 1500 units of endoglycosidase H at 37 °C overnight. Deglycosylation of all biotinylated glycoprotein probes was checked by ELISA for a change in reactivity with Ricinus communis agglutinin I for agalactosylation, Paulythre凭证 lectin for desialylation and ahexosaminidation, Galanthus nivalis lectin for endoglycosidase H treatment, and peanut lectin for de-O-glycosylation to recognize each carbohydrate structure, and by mobility on SDS-PAGE to demonstrate the decrease in molecular weight (data not shown).

SDS-PAGE—To check the purity of trypsin, SDS-PAGE was performed according to the method of Laemmli (8) using a 14% gel in the presence of 2-mercaptoethanol. The bovine and porcine trypsins (10, 20, or 40 μg of protein per lane) were loaded onto the gel together with a set of markers and run at 20 mA for 1.5 h. After electrophoresis, protein bands were visualized by Coomassie Brilliant Blue R-250.

Binding Studies with Sugar-BP Probes or Biotinylated Glycoprotein Probes—PPT and BPT were preincubated in the presence or absence of 0.5 mM PMSF, 0.5 mM soybean trypsin inhibitor, or 5 mM EDTA in 10 mM TBS (pH 7.5) for 1 h and then immobilized at concentrations of 0.01–0.5 μg/100 μl in wells of a microtiter plate (Immulon 1, Dynatech Laboratories) at 4 °C overnight. All other procedures were performed at room temperature using 10 mM TBS (pH 7.5) as the dilution buffer. After immobilization, the wells were blocked with 3% BSA for 2 h. Aliquots (100 μl) of various sugar-BP probes (shown in Scheme 1A) or biotinylated glycoprotein probes at concentrations of 10 μg/ml were added to each well, followed by incubation for 1 h. After incubation, the wells were washed three times, and 100 μl of ABC complex (1 μg/ml) was added, and the mixture was incubated for 1 h. After washing three times, color was developed by adding 200 μl of o-phenylenediamine/H2O2, and then 50 μl of 2.5 M H2SO4 was added to stop the reaction. Absorbance was measured with a microplate reader (Bio-Rad MPR-80) at 490 nm.

Quantification of Interactions between Trypsins and Glycolipid Analogues by Surface Plasmon Resonance—For binding studies between trypsins and glycolipid analogues or various glycoproteins, a BIAcore 2000 SPR apparatus (BIAcore AB, Uppsala, Sweden) was used. Structure of glycolipid analogues used in this study was illustrated in Scheme 2B, and their synthesis will be described elsewhere. Glycolipid analogues were immobilized on a HPA sensor chip (BIAcore AB) by preparing liposomes containing each glycolipid analogue/phosphatidylcholine at a molar ratio of 40/60 as described previously (9, 10). PMSF-treated PPT was injected onto the sensor chip at various concentrations in 10 mM TBS buffer (pH 7.5) at a flow rate of 20 μl/min at 25 °C using a BIAcore biosensor. The reference cell was prepared by immobilizing phosphatidylcholine and used to correct for bulk effect. The chip was regenerated each time by injection of 20 μl of 0.1 M phosphoric acid.

Quantification of Interactions between Trypsins and Various Glycoproteins by SPR—After equilibration of a CM5 sensor chip (BIAcore AB) with HEPES-buffered saline, the surface of the sensor chip was activated with an amine coupling kit. BPT or PPT (each 1.8 μg/ml) in 10 mM sodium acetate buffer (pH 6) containing 0.1 mM PMSF and 0.2 M methyl d-mannoside was injected onto the activated surface, and then the remaining N-hydroxysuccinimide esters were blocked with 1.0 M ethanalamine hydrochloride (pH 8). Each step was performed for 14 min at a constant flow rate of 10 μl/min at 25 °C. The reference flow cell was prepared with BSA as a ligand.

To determine the pH dependence of the binding, fetuin, or porcine thyroglobulin were dissolved at 30 μg/ml in buffers of various pH, 10 mM acetate (pH 4.5, 5.5, and 6.5), 10 mM TBS (pH 7.0, 7.5, and 8.0), or 10 mM bicarbonate buffer (pH 9 and 10), and injected onto the trypsin-immobilized sensor chip. To measure binding curves, various glycoproteins in 10
mM TBS (pH 7.5) were separately injected onto the trypsin-immobilized sensor chip at various concentrations in 10 mM TBS buffer (pH 7.5) at a flow rate of 20 µl/min at 25 °C using BIAcore. Binding curves of PPT on the sensor chip immobilized with glycolipid analogues containing α-Man (A), α-NeuAc (B), and β-Lac (C) are shown. The response is expressed as the change in the number of resonance units induced by the binding of PPT to the glycolipid analogue-immobilized flow cell, which was corrected for bulk effect by subtracting the change on the phosphatidylcholine-immobilized reference cell. D, kinetic parameters for the interaction between PPT and glycolipid analogues. Kinetic parameters were calculated by global analysis for α-Man and affinity analysis for α-NeuAc and β-Lac. kₐ, association rate constant; kᵋ, dissociation rate constant; Kₓ, association constant.

FIGURE 2. Quantification of interaction between PPT and glycolipid analogues by SPR. Glycolipid analogues were immobilized on an HPA sensor chip as described in the text. PPT was pretreated with 0.1 mM PMSF and injected onto the sensor chip at various concentrations in 10 mM TBS buffer (pH 7.5) at a flow rate of 20 µl/min at 25 °C using BIAcore. Binding curves of PPT on the sensor chip immobilized with glycolipid analogue-immobilized flow cell, which was corrected for bulk effect by subtracting the change on the phosphatidylcholine-immobilized reference cell. D, kinetic parameters for the interaction between PPT and glycolipid analogues. Kinetic parameters were calculated by global analysis for α-Man and affinity analysis for α-NeuAc and β-Lac. kₐ, association rate constant; kᵋ, dissociation rate constant; Kₓ, association constant.

FIGURE 3. SDS-PAGE of BPT and PPT. Bovine and porcine trypsin (10, 20, or 40 µg of protein per lane) were loaded under reduced condition onto a 14% polyacrylamide gel. SDS-PAGE was performed as described in the text, and protein bands were visualized by Coomassie Brilliant Blue R-250. The migration positions of molecular weight markers are shown on the left side of the gel.

FIGURE 4. Reactivities of PPT (A) and BPT (B) to biotinylated glycoproteins by ELISA. PPT or BPT (each 100 µl) was coated onto the wells of a microtiter plate and reacted with various glycoprotein probes as described in the text. The bound glycoprotein probes were detected with ABC complex and o-phenylenediamine/H₂O₂ by ELISA. Symbols used are: ⌡, bovine thyroglobulin; ⌦, porcine thyroglobulin; ◇, fetuin; ■, ovomucoid; □, orosomucoid; X, transferrin; and ●, BSM.

Measurement of Enzyme Activity of Trypsin—Enzyme activity was measured in a test tube according to the method previously described using BAEE (11) or BAPA (12) as the substrate. To estimate the effect of sugar on the BAEE-hydrolytic activity, it was measured after preincubation of PPT in 100 µl of 1 mM HCl (0.02 mg/ml) with 100 µl of 0.2 mM methyl-α-D-mannoside, 0.2 mM methyl-α-D-galactoside, or 0.2 mM lactose in 20 mM TBS (pH 7.6) for 10 min at 25 °C. A control experiment was done by preincubating PPT without sugar. After preincubation, the PPT solution was added to 500 µl of 0.025 mM BAEE in 10 mM TBS (pH 7.6) and incubated at 25 °C for 1 min. Absorbance was immediately measured at 253 nm, and trypsin activity that increased absorbance by 0.003 at 25 °C for 1 min was regarded as 1 USP unit of trypsin.

To analyze the effect of sugar by a double reciprocal Lineweaver-Burk plot, the initial rates of the enzyme-catalyzed reaction were measured using BAPA as the substrate. The substrate stock solution was prepared by dissolving 0.0217 g of BAPA in 1.5 ml of Me₂SO and then diluted to final concentrations of 0.1–0.5 mM with 100 mM TBS (pH 7.5) in the presence or absence of 0.2 mM methyl-α-mannoside, methyl-α-galacto-
Carbohydrate Binding Activity of Pancreatic Trypsins

side, or lactose. The substrate solutions were heated for 5 min at 37 °C. The enzyme stock solution was prepared by dissolving 2.5 mg of PPT in 3 ml of 1 mM HCl containing 13 mg of CaCl₂-2H₂O. A 10-µl aliquot of the enzyme solution was added to 3 ml of the substrate solution, and absorbance was measured at 410 nm every 30 s.

RESULTS

Interation between Trypsins and Sugar-BP Probes

The carbohydrate-binding activities of BPT and PPT were analyzed using synthetic sugar-BP probes (Scheme 2A), and specificities toward sugar residues and oligosaccharides were determined. As shown in Fig. 1, both BPT and PPT exhibited high binding activity toward α-Man-, α-Man-6-phosphate-, NeuAcα2,6Galβ1,4Glc-α-Gal-, and β-Glc-BP probes among the 17 kinds of sugar-BP probes tested. Both trypsins bound to NeuAcα2,3Galβ1,4Glc- and NeuAc-α-BP to a lesser extent than to NeuAcα2,6Galβ1,4Glc-BP, indicating a preference for sialyl linkages. On the contrary, trypsin did not bind with α-GalNAc- or mucin core 2-type BP probes or with β-Gal, LacNAc, Lac, β-GlcNAC, or β-Gal3-sulfate-BP probes. None of the carbohydrate-binding activities of the trypsins was affected by preincubation with PMSF and EDTA or soybean trypsin inhibitor, suggesting that binding is independent of the catalytic site. The bound sugar residues other than β-Gal are components of N-glycans, demonstrating basic specificities toward monosaccharides or short sequences that include linkages for trypsin binding.

Interaction between Trypsin and Glycolipid Analogues Analyzed by SPR

To verify the carbohydrate-binding specificity of trypsin by quantitative measurement, interaction analyses were performed by SPR using five kinds of synthetic high sensitivity glycolipid analogues (Scheme 2B). The total amounts of immobilized glycolipid analogues containing α-Man, α-NeuAc, and β-Lac were 1593, 1560, and 1680 BIACore resonance units (RU, 1000 RU = 1 ng/mm²), respectively. As shown in Fig. 2 (A–C), PPT concentration-dependently bound to immobilized glycolipid analogues. The differential binding of PPT to the analogues clearly indicates its relative binding affinity toward sugar residues: PPT binds best with the analogues containing α-Man, then α-NeuAc, and to a lesser extent β-Lac. The binding and dissociation occurred rapidly at the start and end of injection of the glycolipid analogues except the α-Man derivative, demonstrating the specific binding of PPT to those glycolipid analogues with quick association and dissociation rates. PPT did not bind to other analogues containing β-galactose or β-GlcNAC even at 2 μM. The association constants (Kₐ) were calculated to be 10⁶–10⁷ (M⁻¹) for glycolipid analogues containing α-Man and α-NeuAc (Fig. 2D), which are comparable to the Kₐ obtained for the interaction between ricin and the glycolipid analogues containing β-galactose and higher than that obtained between concanavalin A and α-Man-derivatized glycolipid containing phosphatidylethanolamine aglycon (13). The carbohydrate-binding specificity indicated by SPR corresponded with that obtained by using sugar-BP probes (Fig. 1) demonstrating that the affinity of trypsin for specific carbohydrates is comparable to those of known plant lectins. Therefore, the binding activity of trypsin for glycoproteins was examined.

Purity of BPT and PPT on SDS-PAGE

The carbohydrate-binding activities shown in Figs. 1 and 2 have never been reported for trypsin. To eliminate the suspicion that some contaminant in the trypsin preparation might exhibit such an activity, we analyzed the purity of the trypsins preparations used in this study by SDS-PAGE. As shown in Fig. 3, both BPT and PPT showed only a single band without any detectable contamination even if 40 µg of trypsin preparation was applied per lane to the polyacrylamide gel. Therefore, the carbohydrate-binding activities observed in this study were attributed to the trypsins.

Figure 5. Reactivities of BPT to biotinylated glycoprotein probes before and after glycosidase treatment by ELISA. Biotinylated glycoprotein probes were pretreated with various exoglycosidases as described in the text. BPT (100 µl) was coated onto the wells of a microtiter plate and reacted with biotinylated glycoprotein probes: bovine thyroglobulin (A), porcine thyroglobulin (B), fetuin (C), ovomucoid (D), orosomucoid (E), and transferrin (F). The bound glycoprotein probes were detected by ELISA as described in the text. Symbols used are: B, intact; C, α-galactosidase-treated; D, α-galactosidase-treate; E, α-galactosidase-treated; F, with a vertical line, endoglycosidase H-treated; and G, de-N-glycosylated glycoproteins.

Figure 6. Binding of trypsin to fetuin and porcine thyroglobulin at various pH by SPR. PPT and BPT were immobilized on a CM5 sensor chip, and each glycoprotein was injected onto the sensor chip at various pH, as described in the text. Fetuin (B) or porcine thyroglobulin (C) was dissolved at concentrations of 1 or 0.5 µM, respectively, in 10 mM acetate buffer (pH 4.5–6.5), 10 mM TBS (pH 7–8), or 10 mM bicarbonate buffer (pH 9–10) and injected onto the sensor chip. The bound amounts of glycoprotein are expressed as relative response (%) by taking the response at pH 7.5 as 100%. A, relative response on immobilized PPT; B, relative response on immobilized BPT.

3 H. Takekawa, C. Ina, R. Sato, K. Toma, and H. Ogawa, unpublished results.
Interaction between Trypsins and Biotinylated Glycoprotein Probes

Interactions between the glycoprotein probes and PPT or BPT were studied by ELISA at pH 7.5, which is the physiological pH in the duodenum. Because the amount of biotin incorporated into each glycoprotein probe was almost equal, as judged by the color intensity of each probe developed with the ABC complex being within a 10% error, the value of A_{490} corresponds to the amount of probe bound. As shown in Fig. 4(A and B), BPT and PPT were found to bind to various glycoproteins with very similar binding patterns. The trypsins bound best to bovine thyroglobulin and to a lesser extent to fetuin, porcine thyroglobulin, ovomucoid, orosomucoid, and transferrin, in that order, but not to BSM. All the bound glycoproteins contain 5–30% (w/w) N-linked oligosaccharides, whereas BSM possesses up to 60% (w/w) O-linked glycans, which are mainly sialyl-Tn and core 3-type (Scheme 1). Combined with the finding that trypsins did not bind with α-GalNAc- and β-GlcNAc (Fig. 1), this indicates that trypsins do not interact with O-linked glycans.

The involvement of the N-glycan structure in the binding with PPT and BPT was shown by deglycosylating the glycoprotein probes with endo-type glycosidases. As shown in Fig. 5C, de-N-glycosylation of fetuin by N-glycosidase F treatment markedly decreased the reactivity toward both trypsins (data not shown for PPT), showing that their binding was mostly due to the affinity for the sialylated complex-type N-glycans of fetuin. The reactivity of trypsins for porcine thyroglobulin (Fig. 5B), which contains almost equal amounts of high Man-type and complex-type glycans (Scheme 1), was decreased to about half that of intact porcine thyroglobulin by endoglycosidase H treatment as well as asialoagalactoheptosaminylating, indicating that trypsins bind with high Man-type N-glycans as well as the sialylated complex-type.

As shown in Fig. 5, the effects of exo-type glycosidase treatments of the glycoprotein probes illustrate the contribution of each sugar residue to the interaction with BPT. Remarkably, binding of BPT with bovine thyroglobulin was found to be diminished by α-galactosidase treatment (Fig. 5A), clearly indicating that the α-galactosyl residue at the nonreducing terminal, which is unique to the N-glycan of bovine thyroglobulin (Scheme 1), is an epitope for BPT binding. Other exoglycosidase treatments of bovine thyroglobulin did not affect the binding.
On the other hand, neuraminidase treatment of other glycoproteins that possess sialylated complex-type N-glycans, such as fetuin, ovomucoid, orosomucoid, and porcine thyroglobulin, considerably decreased the binding, as shown in Fig. 5 (B–E). For these glycoprotein probes, β-galactosidase treatment subsequent to desialylation did not significantly change the binding, but exposure of α-mannosyl residues of the trimannosyl core of N-glycans by β-hexosaminidase treatment subsequent to degalactosylation restored the binding to trypsin. These results strongly indicate that α-NeuAc and α-mannosyl residues of complex-type multiantennary N-glycans contribute to the binding of trypsins, but β-galactose and β-GlcNAc residues of the lactosamine sequence do not. The biantennary complex type of transferrin did not show significant affinity for trypsins (Fig. 5F). As a whole, the sugar-binding specificities of BPT and PPT indicated in Fig. 1 coincide with and account for the binding specificities toward the glycoprotein probes.

Preincubation of PPT and BPT with PMSF and EDTA or soybean

FIGURE 8. Quantification of interaction between trypsins and glycoproteins by SPR. PPT and BPT were immobilized on a CM5 sensor chip as described in the text. Glycoproteins were injected onto a trypsin-immobilized sensor chip in 10 mM TBS (pH 7.5) for 150 s at a flow rate of 20 ml/min at 25 °C. The response was expressed as the change of resonance units induced by the binding of fetuin to the trypsin-immobilized flow cell, which was corrected for bulk effect by subtracting the change on the BSA-immobilized reference cell. Binding curves of glycoproteins on the sensor chip were immobilized with PPT (A) and BPT (B).
Trypsin inhibitor before the binding studies did not affect the binding activities toward glycoproteins (data not shown). Moreover, the binding of trypsin to ovomucoid, a natural inhibitor that blocks the catalytic site of trypsin, was found to be significantly affected by glycan trimming (Fig. 5D). The observations indicate that the trypsin binding to glycoproteins is independent of their catalytic activity.

Interaction between Trypsins and Various Glycoproteins Analyzed by BIAcore

The total amounts of immobilized PPT, BPT, and BSA were 4,012, 4,028, and 4,031 RU, respectively. The responses are expressed as the change of resonance units induced by the binding of analytes to each
Carbohydrate Binding Activity of Pancreatic Trypsins

TABLE 1
Binding parameters for interaction between trypsins and glycoproteins

Glycoprotein	k_a (10^{-1} M$^{-1}$ s$^{-1}$)	k_d (s$^{-1}$)	K_d (M$^{-1}$)
(A) PPT			
Bovine thyroglobulin	3.97 \pm 0.40	2.47 \pm 0.07	1.61 \pm 0.10
α-Galactosidase-treated bovine thyroglobulin	7.23 \pm 0.10	5.67 \pm 0.05	1.28 \pm 0.05
Porcine thyroglobulin	3.05 \pm 0.30	7.27 \pm 0.04	4.19 \pm 0.10
Asialo-porcine thyroglobulin	8.52 \pm 0.30	1.35 \pm 0.03	6.30 \pm 0.09
Endo H-treated thyroglobulin	1.04 \pm 0.30	1.36 \pm 0.03	7.68 \pm 0.10
Fetuin	5.07 \pm 0.10	6.20 \pm 0.03	8.17 \pm 0.10
Asialo-fetuin	1.26 \pm 0.06	6.04 \pm 0.03	2.09 \pm 0.09
De-O-glycosylated fetuin	4.57 \pm 0.10	5.46 \pm 0.03	8.38 \pm 0.10
De-N-glycosylated fetuin	9.71 \pm 0.10	4.67 \pm 0.03	2.08 \pm 0.10
BSM	1.08 \pm 0.04		

(B) BPT

Glycoprotein	k_a (10^{-1} M$^{-1}$ s$^{-1}$)	k_d (s$^{-1}$)	K_d (M$^{-1}$)
Bovine thyroglobulin	1.55 \pm 0.10	1.45 \pm 0.06	1.07 \pm 0.10
α-Galactosidase-treated bovine thyroglobulin	3.19 \pm 0.10	9.07 \pm 0.05	3.51 \pm 0.10
Porcine thyroglobulin	3.06 \pm 0.06	6.38 \pm 0.04	4.79 \pm 0.10
Asialo-porcine thyroglobulin	4.28 \pm 0.10	6.08 \pm 0.04	7.04 \pm 0.10
Endo H-treated thyroglobulin	3.49 \pm 0.04	5.33 \pm 0.05	6.55 \pm 0.10
Fetuin	2.43 \pm 0.04	5.67 \pm 0.03	4.30 \pm 0.10
Asialo-fetuin	9.16 \pm 0.10	7.13 \pm 0.03	1.28 \pm 0.10
De-O-glycosylated fetuin	1.79 \pm 0.04	5.40 \pm 0.03	3.32 \pm 0.10
De-N-glycosylated fetuin	1.09 \pm 0.04	1.86 \pm 0.02	5.87 \pm 0.10
BSM	8.09 \pm 0.10		

Flow cell, which was corrected for bulk effect by subtracting the change on the BSA-immobilized reference cell.

pH Dependence of Interaction between Trypsin and Glycoproteins—Fetuin or porcine thyroglobulin was injected onto a trypsin-immobilized chip at pH 4.5–10. As shown in Fig. 6, the amounts of the glycoproteins bound to immobilized PPT and BPT changed within 30% in the pH range examined, showing a maximum at around pH 7.5–8. The weakly alkaline pH coincides with the enteric pH indicating that the carbohydrate-binding activity of trypsin is optimal in the milieu of the intestine. Based on this observation, 0.1 M TBS at pH 7.5 was thereafter used for the binding studies.

Effect of Sugars on Binding of Trypsin to Glycoproteins—Fig. 7 shows the effect of monosaccharide trypsin binding to glycoproteins. Me-α-Man and Me-α-galactoside, which showed the highest binding to trypsin (Fig. 1) were used as inhibitors in comparison with Lac, which showed relatively lower binding in the binding study with BP-sugars. The binding of both trypsins to fetuin and porcine thyroglobulins was decreased by 30–44% in 50 mM Me-α-Man and 56–64% in 0.2 M Me-α-Man, and binding to bovine thyroglobulin was decreased by 44–50% and 66–70% in 50 mM and 0.2 M Me-α-Gal, respectively. The binding of trypsins was decreased by only 10–18% even at 0.2 M Lac, indicating the weak inhibitory activity of Lac compared with those of Me-α-Man and Me-α-galactoside coinciding with the relative affinity of sugars shown by BP-sugar binding studies. The results strongly support the hypothesis that trypsins bind glycoproteins by sugar-specific interaction.

Kinetic Parameters for Binding between Trypsins and Glycoproteins—The sensorgrams are shown in Fig. 8 (A and B), and the binding parameters were calculated for each glycoprotein. The binding of all glycoproteins except BSM fit best a 1:1 binding model among the fitting models in global analysis. The interaction between bovine thyroglobulin and trypsins was analyzed at concentrations lower than 0.25 μM (Fig. 8, A (panel e) and B (panel o)), because bovine thyroglobulin gave fluctuating, irregular-shaped binding curves at concentrations higher than 0.5 μM. The interaction between trypsins and BSM showed box-shaped binding curves suggesting high association and dissociation rates (Fig. 8, A (panel j) and B (panel t)) and was analyzed using affinity analysis. The kinetic data of the binding are summarized in Table 1.

Trypsin bound to the glycoproteins possessing N-glycans with significantly high affinity, K_d ranging from 2$^{-10^{-6}}$ to 10$^{-6}$ M$^{-1}$. In contrast, the K_d for BSM was as low as 1–8 \times 10$^{-11}$ M$^{-1}$, indicating very weak interaction with trypsins. The K_d for bovine thyroglobulin binding to both PPT and BPT was 10$^{-7}$–10$^{-5}$ M$^{-1}$, which is the strongest among glycoproteins and equal to that of high affinity antibodies, followed by the K_d of porcine thyroglobulin, 4–5 \times 10$^{-7}$ M$^{-1}$. The high K_d of trypsin for bovine thyroglobulin is attributable to the extremely low dissociation rate constants (k_d) compared with those of other glycoproteins (10$^{-2}$–10$^{-3}$ s$^{-1}$), suggesting that thyroglobulins hardly dissociate from trypsin. The K_d of trypsin for bovine thyroglobulin was markedly decreased from 10$^{-7}$ to 10$^{-6}$ (M$^{-1}$) by α-galactosidase treatment, indicating that α-galactose residues are essential for high affinity binding to trypsin. On the other hand, the K_d of trypsin for porcine thyroglobulins (4–5 \times 10$^{-7}$ M$^{-1}$) was decreased to 15–20% by treatment with endoglycosidase H or neuraminidase, showing that high-Man types as well as sialyl residues of complex types contribute to the binding.

Effect of Sugars on Enzyme Activity of PPT

As shown in Fig. 9A, the sugars that bound to trypsins enhanced the enzyme activity to various degrees, as detected using BAEE and BAPA as substrates. The hydrolytic activity of PPT for BAEE was enhanced by 1.4-fold in 0.2 mM methyl-α-d-mannoside and 1.2-fold in methyl-α-d-galactoside but not enhanced in 0.2 mM lactose. When we used a slowly hydrolyzable BAPA as the substrate, PPT was activated with 0.2 mM methyl-α-d-mannoside and methyl-α-d-galactoside to ~1.2- to 1.4-fold at 300–600 s (Fig. 9B). As shown in Fig. 9C-E and Table 1, the Lineweaver-Burk plots indicate that the binding of Me-α-Man, and Me-α-galactoside uncompetitively activates PPT with increasing V_{max} by 2.5-fold and K_m by 2- to 2.5-fold, while binding of lactose slightly inhibited PPT noncompetitively and uncompetitively, indicating that the binding of carbohydrates activates the hydrolytic activity to various degrees.
DISCUSSION

This study demonstrates that mammalian pancreatic trypsin commonly binds to glycoproteins possessing N-linked glycans by carbohydrate-specific interaction. The sugar-binding specificity of trypsin was shown by the binding with sugar-BP probes and glycolipid analogues to be α-galactosyl, oligomannosyl, and nonreducing terminal α2,6-NeuAc residues (Fig. 1). Trypsin bound to glycoproteins possessing N-glycans with very high affinity, reaching 10^{10}–10^{12} M^{-1}, whereas it did not bind to BSM (Fig. 4 and Table 1). The binding of glycoprotein probes with trypsin was changed by glycosidase treatments on ELISA and SPR analyses, which coincided well with the sugar-binding specificity indicated by sugar-BP probes. The specificity of the interaction between trypsin and the glycoproteins was proven by inhibition studies with monosaccharides using SPR (Fig. 7) and conclusively demonstrated to be due to the affinity of trypsin for component saccharide residues of the N-linked glycans but not by protein-protein interaction.

Treatment of trypsin with soybean trypsin inhibitor and PMSF did not affect the binding to sugar-BP, glycolipid analogues, and glycoprotein probes, and trypsin was noncompetitively and uncompetitively activated toward synthetic substrates, BAEE and BAPA, by the binding of specific sugars (Fig. 9 and Table 2). Therefore, the N-glycan recognition of trypsin must be exhibited at a site different from its catalytic site, and activation would be caused by an allosteric effect to make the substrate-binding site more accessible to the substrate and/or by a conformational effect that stabilizes the trypsin molecule against autodegradation, like the stabilizing effect of Ca^{2+} binding (14).

The coating of oligosaccharides on glycoproteins can serve to protect the polypeptide chain from degradation by proteases (3). The contributions of sialylation to the stabilization of glycoprotein against tryptic hydrolysis have been reported for several glycoproteins, including orosomucoid (15) and vitronectin (16). The de-N-glycosylation of ovomucoid with trifluoromethanesulfonic acid has been reported to interfere with the inhibitory activity against trypsin and make ovomucoid easily hydrolyzable with trypsin (17). Although the relationship between oligosaccharide structure and the protective function against proteases has been explored for several glycoproteins (18–20), the protecting mechanism achieved by the oligosaccharides has remained unclear. Because the removal of oligosaccharides from a mature protein does not always drastically alter its sensitivity to proteolysis,
some specific interaction between protease and glycoproteins may be involved in regulating protease attack. We found that trypsin sugar-specifically interacts with N-linked glycoproteins. The binding of trypsin to the N-glycans of glycoprotein would protect the carrier glycoprotein from hydrolysis, at least partially, by topologically restricting the substrate-binding site of trypsin. Deglycosylation of glycoproteins, which diminishes the carbohydrate-specific binding, makes trypsin interact with the peptide moiety of the glycoprotein through the substrate-binding site to hydrolyze it. In this hypothesis, glycosylation at even one site of the polypeptide can regulate the reactivity of trypsin with the glycosylated protease-activated digestive tract hormones or pancreatic proteins as reported for exoglycosidase-administered plant lectins (28). The carbohydrate binding may regulate the reactivity of trypsin with the glycosylated protease-activated receptor 2 depending on the glycosylation state (29) and influence intestinal inflammation, cytoprotection, and cellular motility.

Together with our previous findings on pancreatic α-amylase, carbohydrate-binding activities of macromolecule-degrading enzymes might play essential roles in localization, activation, and stabilization of pancreatic enzymes to achieve efficient digestion. Considering the biological significance of trypsin in the activation of other proteases and its degradation role in various tissues, the mechanism of modulating trypsin susceptibility by glycosylation of proteins must be elucidated.

REFERENCES

1. Marx, J. D. (1999) in Essentials of Glycobiology (Varki, A., Esko, J. E. R., Freeze, H., Hart, G., and Marx, J. D., eds) pp. 85–100, Cold Spring Harbor Laboratory Press, Woodbury, NY.
2. Helenium, A., and Aeby, M. (2001) Science 291, 2364–2369.
3. Varki, A. (1993) Glyobiology 3, 97–130.
4. Chen, J. M., and Ferec, C. (2000) Pancreat. 21, 57–62.
5. Phillips, M. A., and Fetterick, R. J. (1992) Curr. Opin. Struct. Biol. 2, 713–720.
6. Matsushita, H., Takenaka, M., and Ogawa, H. (2002) J. Biochem. 127, 4680–4686.
7. Ueda, H., Kojima, K., Saitho, T., and Ogawa, H. (1999) FEMS Lett. 446, 75–80.
8. Laemmli, U. K. (1970) Nature 227, 680–685.
9. Azefu, Y. Tamiaki, H., Sato, R., and Toma, K. (2002) Bioorg. Med. Chem. 10, 4013–4022.
10. Sato, R., Toma, K., Nomura, K., Takagi, M., Yoshida, T., Azefu, Y., and Tamiaki, H. (2004) J. Carbohydr. Chem. 23, 375–388.
11. Schwert, G. W., and Takenaka, Y. (1955) Biochim. Biophys. Acta 16, 570–575.
12. Erlanger, B. F., Kokowsky, N., and Cohen W. (1961) Arch. Biochem. Biophys. 95, 271–278.
13. Mann, D. A., Kanai, M., Maly, D. J., and Kiesling L. L. (1998) J. Am. Chem. Soc. 120, 10575–10582.
14. Abbott, F., Gomez, J. E., Birkbaum, E. R., and Darnall, D. W. (1975) Biochemistry 14, 4935–4943.
15. Sharon, N. (1975) Complex Carbohydrates: Their Chemistry, Biosynthesis and Functions, pp. 109–117, Addison-Wesley Publishing, Reading, MS.
16. Uchihori-Iwaki, H., Yoneda, A., Oda-Tamai, S., Kata, S., Akamatsu, N., Otaka, M., Murase, K., Kojima, K., Suzuki, R., Maeya, Y., Tanabe, M., and Ogawa, H. (2000) Glyobiology 10, 865–874.
17. Gu, J. X., Matsuda, T., Nakamura, R., Ishiguro, H., Ohkubo, I., Sasaki, M., and Takashashi, N. (1989) J. Biochem. (Tokyo) 106, 66–70.
18. Gentile, F., and Salvatore, G. (1993) Eur. J. Biochem. 218, 603–621.
19. Arnold, U., Schierhorn, A., and Ulbrich-Hoffmann, R. (1998) J. Protein Chem. 17, 397–405.
20. Ashida, H., Yamamoto, K., and Kumagai, H. (2000) Biosci. Biotechnol. Biochem. 64, 2266–2268.
21. Roth, J. (1993) Histochem. J. 25, 687–710.
22. Roth, J. (1987) Biochim. Biophys. Acta 906, 405–436.
23. Pusztafi, A., Ewen, S. W., Grant, G., Peumans, W. J., Van Damme, E. J., Coates, M. E., and Bardocz, S. (1995) Glycoconjug. j. 12, 22–33.
24. Oriol, R., Barthod, F., Barbier, A., Rallot, F., and Joly, C. (1994) Biochim. Biophys. Acta 743, 37–42.
25. Takasaki, S., Erickson, R. H., Kim, Y. S., Kojima, K., and Kurosaka, A. (1981) Biochem. J. 206, 1691–1699.
26. Erickson, R. H., and Kim, Y. S. (1983) Biochim. Biophys. Acta 743, 37–42.
27. Shen, H., Smith, D. E., and Brosius, F. C., Jr. (2001) Pediatr. Res. 49, 789–795.
28. Pusztafi, A., and Bardocz, S. (1996) Trends Glycosci. Glycotecton. 8, 149–165.
29. Hollenberg, M. D., and Compton, S. J. (2002) Pharmacol. Rev. 54, 203–217.
30. Yamashita, K., Kamerling, J. P., and Kobata, A. (1982) J. Biol. Chem. 257, 12809–12814.
31. van Dijk, W., Havenaar, E. C., and Brinkman-van der Linden, E. C. (1995) Glycoconjug. J. 12, 227–233.
32. Thall, A., and Galili, U. (1990) Biochemistry 29, 3959–3965.
33. Ito, S., Yamasita, K., Sprio, R. G., and Kobata, A. (1977) J. Biochem. (Tokyo) 81, 1621–1631.
34. Kamerling, J. P., Rokke, I., Jansen, M., and van Kuik, J. A., and Vliegenthart, J. F. (1988) FEMS Lett. 241, 246–250.
35. Tsuji, T., Yamamoto, K., Irimura, T., and Osawa, T. (1981) Biochem. J. 195, 691–699.
36. Yamamoto, K., Tsuji, T., Irimura, T., and Osawa, T. (1981) Biochem. J. 195, 701–713.
37. Fu, D., and van Halbeek, H. (1992) Anal. Biochem. 206, 53–63.
38. Takasaki, S., and Kobata, A. (1986) Biochemistry 25, 5709–5715.
39. Berman, E. (1987) Magn. Reson. Chem. 25, 784–789.
40. Tsuji, T., and Osawa, T. (1986) Carbohydr. Res. 151, 391–402.
41. Toba, S., Tenno, M., and Kurusaka, A. (2000) Biochem. Biophys. Res. Commun. 271, 281–286.