Edinburgh Research Explorer

Local cytokine transcription in naïve and previously infected sheep and lambs following challenge with Teladorsagia circumcincta

Citation for published version:
Craig, NM, Smith, DW, Pate, JA, Morrison, IW & Knight, PA 2014, 'Local cytokine transcription in naïve and previously infected sheep and lambs following challenge with Teladorsagia circumcincta' BMC Veterinary Research, vol 10, 87. DOI: 10.1186/1746-6148-10-87

Digital Object Identifier (DOI):
10.1186/1746-6148-10-87

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMC Veterinary Research

Publisher Rights Statement:

© 2014 Craig et al.; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Local cytokine transcription in naïve and previously infected sheep and lambs following challenge with *Teladorsagia circumcincta*

Nicola M Craig1*, David W Smith2, Judith A Pate3, Ivan W Morrison4 and Pamela A Knight5

Abstract

Background: The abomasal helminth *Teladorsagia circumcincta* is one of the most economically important parasites affecting sheep in temperate regions. Infection is particularly detrimental to lambs, in which it can cause pronounced morbidity and severe production losses. Due to the spreading resistance of this parasite to all classes of anthelmintic drugs, teladorsagiosis is having an increasingly severe impact on the sheep industry with significant implications for sheep welfare. Protective immunity develops slowly, wanes rapidly and does not appear to be as effective in young lambs. To investigate the development of immunity to *T. circumcincta* in sheep and lambs, we used cytokine transcript profiling to examine differences in the abomasal mucosa and gastric lymph node of naïve and previously infected sheep and lambs following challenge.

Results: The results of these experiments demonstrated that the abomasal mucosa is a major source of cytokines during abomasal helminth infection. A local Th2-type cytokine response was observed in the abomasal mucosa and gastric lymph node of the previously infected sheep and lambs when compared with those of the naïve during the early stages of infection. In contrast, a pro-inflammatory component more was evident in the abomasal mucosa and gastric lymph node of the naïve sheep when compared with those of the previously infected, which was not observed in the lambs.

Conclusions: The greater levels of Th2-type cytokine transcripts in both the abomasum and gastric lymph node of the previously infected compared with naïve sheep and lambs emphasises the importance of these mechanisms in the immune response to *T. circumcincta* infection. Younger lambs appear to be able to generate similar Th2-type responses in the abomasum suggesting that the increased morbidity and apparent lack of resistance in younger lambs following continuous or repeated exposure to *T. circumcincta* is unlikely to be due to a lack of appropriate Th2-type cytokine production.

Keywords: Cytokine, Abomasum, *T. Circumcincta*, Sheep

Background

The abomasal nematode *Teladorsagia circumcincta* is one of the most economically important parasites to affect the farming of sheep and goats in temperate and subtropical areas [1-5]. This parasite is especially detrimental to younger lambs, in which it can cause pronounced morbidity and severe production losses if not controlled. Control of teladorsagiosis currently relies upon the use of anthelminthics, and is complicated by the increasing incidence of resistance to these drugs, which has had a significant impact on the sheep industry and implications for sheep welfare [6-11].

Infection with *T. circumcincta* causes functional changes in the abomasum, including a rapid reduction in gastric secretion [12,13] and suppression of gastric acid production, leading to increased abomasal pH [14-17] and reduced activation of pepsinogen. Gross pathology shows areas of inflammation of the abomasal mucosa, in which parasitized glands can be located at the centre of nodular lesions. Histologically, there is epithelial hyperplasia and thickening of the mucosa, which may progress to mucosal...
sloughing [18], reduction in the prevalence of parietal cells, increased numbers of mucus neck cells [3,17], and infiltration of mast cells, eosinophils and T cells [19,20]. Breakdown of the junctions between epithelial cells, possibly by mast cell proteases [21], causes increased mucosal permeability, loss of protein and fluid into the gut lumen, and allows passage of pepsinogen into the blood [3,22-24]. Clinical consequences of infection range from sub-optimal weight gain, to inappetence, weight loss, protein deficiency and diarrhoea [22,25].

Repeated exposure to *T. circumcincta* eventually results in the development of protective immunity [16,26-28], manifested as rapid expulsion of infective larvae, inhibited parasite development and growth, and reduced fecundity of adults [29-32]. Vaccination has therefore been suggested as a viable alternative to anthelmintic treatment as a means of control [33-37]. However, the immune responses to gastrointestinal helminths take far longer to develop, and develop to a lesser extent, in young lambs [38-40]. Improved understanding of the differences between young lambs and older sheep, in terms of immune responses to gastrointestinal helminths, will aid the development of gastrointestinal helminth vaccines which are effective in young animals.

While the immune response to *T. circumcincta* is similar to that of other gastrointestinal helminths in sheep and cattle, which provoke a predominantly Th2 phenotype response with associated up-regulation of Th2-type cytokines [41-45], the local cytokine profile generated in the abomasum in response to *T. circumcincta* infection in naïve and previously infected animals has not yet been reported.

In young lambs, deficiency in generating effective protective immunity to gastrointestinal parasites has been demonstrated by a number of studies in which lambs under 6 months of age failed to develop immunity following exposure to helminths including *H. contortus* and *Trichostrongylus colubriformis*. In contrast, the same exposure resulted in protective immune responses in older sheep [40,46-50]. However, while apparently deficient in generating protective immunity to helminth infections in comparison to older sheep, young lambs have been shown to produce immune responses to vaccines containing *H. contortus* intestinal antigen; which in one study resulted in a significant reduction in pasture contamination with *H. contortus* larvae [51].

Previous studies of the immune response to *T. circumcincta* have demonstrated that lambs at 4.5 months of age were capable of generating resistance to infection, as shown by increased larval stunting and developmental arrest following later challenge. However, this resistance was measurably less than that generated using the same infection protocol in 10-month-old sheep, in which almost all larvae were arrested early in development [26,31,38].

Cytokine responses in the gastric lymph node of yearling sheep have previously been examined during a trial study of infection with *T. circumcincta* [45]. Here we set out to compare the cytokine responses in both the abomasum and gastric lymph node of naïve and previously infected yearling sheep over the course of a challenge infection with *T. circumcincta*, and to investigate whether these responses differ in a similar experiment using 5-month-old lambs.

Results

Over the course of a challenge infection with *T. circumcincta*, transcription of interleukins 1β (IL-1β), 2 (IL-2), 4 (IL-4), 5 (IL-5), 6 (IL-6), 10 (IL-10), 12 (IL-12p40), 13 (IL-13) and 18 (IL-18), interferon gamma (IFNγ), transforming growth factor beta one (TGFβ1) and tumour necrosis factor alpha (TNFα) was examined in the abomasal mucosa and gastric lymph node of naïve and previously infected (PI) yearling sheep and 5-month-old lambs. The experimental design of this study is summarised in Table 1. Due to differences in breed and surgical status, comparisons can only be made between naïve and PI animals, and between the day 0 and day 2 yearlings.

Parasitology

Detailed post-mortem parasitology data obtained from the animals used in these experiments, including gastric contents and mucosal digests, have been presented elsewhere [52-54]. Worm counts are listed in Table S1 and S2 (see Additional file 1). As expected, significantly higher numbers of *T. circumcincta* were recovered from the abomasum of naïve yearlings than from the corresponding PI group (day 2, P = 0.024; day 5, P = 0.005; day 10 P < 0.001). In contrast the numbers of *T. circumcincta* recovered from the naïve and PI 5-month-old lambs was not significantly different on days 5 and 10, but were significantly higher in the naïve animals on day 21 (P = 0.024).

Mast cell counts

Mast cell numbers in the abomasal mucosa were examined as an indicator of the extent of the Th2 phenotypic response which occurred following infection with *T. circumcincta* in the yearling groups (Figure 1). Throughout the course of the challenge infection PI yearlings were found to have significantly higher numbers of mast cells in the abomasal mucosa than the corresponding naïve animals (days 0, 2, 5 and 10, P = 0.0051). Hypertrophy of the abomasal mucosa was also noted following exposure to *T. circumcincta*, and this was marked in the PI animals (data not shown).
Cytokine transcript levels in the yearling abomasal mucosa

Cytokine transcript levels relative to ATPase in samples of abomasal mucosa from naïve and previously infected sheep at various time points following challenge with *T. circumcincta* are presented in Figure 2.

A more pronounced Th2-type response was observed in the PI yearlings compared with the naïve. This was demonstrated by a significantly greater abundance of IL-4 (P = 0.0289) and IL-5 (P = 0.0059) transcripts in the PI yearlings than in the naïve group on day 2, which in the case of IL-5 was also found on day 5 (P < 0.0001). This response also took place earlier in the PI animals, as demonstrated by a greater level of IL-4 (P = 0.0012) and IL-5 (P = 0.0081) transcripts on day 2 compared with day 0 in the PI yearlings, but not in the naïve. There was a trend towards a greater abundance of IL-13 transcripts in the PI sheep than the naïve on day 5, then in the naïve than the PI on day 10, but these differences were not significant.

In contrast to the marked differences in Th2-type cytokine transcript levels, no significant differences were found in the abundance of transcripts of the Th1-type cytokines IL-2, IL-12p40 and IFN-γ, in the yearling abomasal mucosa samples.

A considerable pro-inflammatory component to the local immune response to *T. circumcincta* was indicated in the naïve yearlings by a greater abundance of IL-1β, IL-6 and IL-18 transcripts when compared with the PI group: IL-1β transcript levels were greater in the naïve yearlings on days 5 (P = 0.0219) and 10 (P = 0.0006); IL-6 transcript levels were greater in the naïve yearlings on day 10 (P = 0.0068); and IL-18 transcript levels were greater in the naïve yearlings throughout the experiment (days 0 and 2, P < 0.0001; day 5, P = 0.0001; day 10, P = 0.0181). Transcript levels of IL-6 were also greater on day 2 in the naïve yearlings compared with day 0 (P = 0.0453). No significant differences were found in levels of TNFα, IL-10 or TGFβ1 transcripts in the yearling abomasal mucosa.

Figure 1 Abomasal mast cell counts from naïve and previously infected yearling sheep. Previously infected sheep were orally infected with 2000 L3 larvae three times per week for eight weeks. All sheep were treated with Levamisole (7.5 mg/kg) then challenged one week later with 50,000 L3 larvae and killed on day 0, 2, 5 or 10 following challenge. An additional group of naïve sheep were killed on day 21 following challenge. Data analysed using Mann–Whitney U-test for non-parametric data with a 95% confidence interval, n = 6 sheep per group for each time point. Significant difference between naïve and previously infected groups, *P < 0.01. Significant difference between day 0 and corresponding day 2, #P < 0.05.

Cytokine transcript levels in the 5-month-old lamb abomasal mucosa

Cytokine transcript levels relative to ATPase in samples of abomasal mucosa from naïve and previously infected 5-month-old lambs at various time points following challenge with *T. circumcincta* are presented in Figure 3.
Figure 2 (See legend on next page.)
Figure 2 Cytokine transcript levels in yearling abomasal mucosa. Relative cytokine transcript levels in samples of abomasal mucosa, in comparison to ATPase, from naïve and previously infected yearling sheep (Scottish Blackface × Bluefaced Leicester and Dorset × Suffolk) following challenge with *T. circumcincta*. Previously infected sheep were orally infected with 2,000 L3 larvae three times per week for eight weeks. All sheep were treated with Levamisole (7.5 mg/kg) then challenged one week later with 50,000 L3 larvae and killed on day 0, 2, 5 or 10 following challenge. An additional group of naïve sheep were killed on day 21 following challenge. Analysed using Tukey’s test with a 95% confidence interval, n = 6 sheep per group for each time point. Significant difference between naïve and previously infected groups: *P < 0.05, **P < 0.01, ***P < 0.001. Significant difference between day 0 and corresponding day 2: †P < 0.05, ‡P < 0.01.

Cytokine transcript levels in the 5-month-old lamb gastric lymph node
Cytokine transcript levels relative to ATPase in samples of gastric lymph node from naïve and previously infected 5-month-old lambs at various time points following challenge with *T. circumcincta* are presented in Figure 5. Similar to those findings in the abomasal mucosa, significantly greater Th2-type cytokine transcript levels were detected in the gastric lymph node of PI 5-month-old lambs compared with naïve. On day 5 the abundance of both IL-5 (P = 0.0025) and IL-13 (P = 0.0202) transcripts was greater in the PI lambs than the naïve. No significant differences in the abundance of IL-10 or TGFβ1 transcripts in the abomasal mucosa were observed between naïve and PI 5-month-old lambs. No significant differences in the abundance of IL-4 or IL-5 transcript abundance in the gastric lymph node were observed between the naïve and PI yearlings.

Discussion
The fact that significantly fewer *T. circumcincta* were recovered from PI yearlings than from the naïve throughout these experiments indicates that more effective anti-parasite responses were elicited in these animals following trickle immunisation compared with the naïve. In contrast, no significant difference in the numbers of recovered worms was found in the 5-month-old animals until day 21, indicating that the any anti-parasite responses generated in the lambs during trickle infection were less effective, or had waned within the seven day period following clearance of the trickle infection. The significantly greater numbers of mast cells observed in the abomasal mucosa of the previously infected yearlings compared with the naïve animals on day 0 is consistent with a Th2-type phenotypic response during the eight week trickle infection of these sheep. In a separate investigation of the immune responses taking place in the gastric lymph of these animals, lower post-mortem worm counts and a
Figure 3 (See legend on next page.)
greater degree of larval stunting were associated with a stronger IgA response and an earlier blast cell response in the efferent lymph of the previously infected yearlings than in the naïve challenged animals [53,54].

The observed difference in levels of transcripts for IL-4 and IL-5 in the abomasal mucosa following infection of yearlings with *T. circumcincta* is consistent with studies of *H. contortus* infection of sheep [44] and *O. ostertagi* infection of cattle [42]. During the early stages of the immune response these cytokines were transcribed to a greater extent in the previously infected than the naïve immune response these cytokines were transcribed to a greater degree of larval stunting were associated with a stronger IgA response and an earlier blast cell response in the efferent lymph of the previously infected yearlings than in the naïve challenged animals [53,54].

The timing of the cytokine responses in the yearling abomasum is interesting. The early up-regulation of IL-4 and IL-5 in the abomasal mucosa of the previously infected sheep corresponds with increased anti-parasite responses to *T. circumcincta* in this group. Expulsion of *T. circumcincta* larvae occurred by day 2 in the previously infected group, resulting in significantly lower worm burdens compared with the naïve challenged sheep [53,54].

In the yearling gastric lymph node there are few significant differences between the naïve and PI animals. The greater abundance of IL-13 transcripts in the previously infected yearling gastric lymph node again indicates a Th2-type cytokine response. Transcripts of IL-2 and IFNγ appear to be less abundant in the later stages of infection, which is consistent with the Th2-type response and concurrent suppression of Th1-type cytokine levels observed in the gastric lymph node during *O. ostertagi* infection of cattle [42].

The differing cytokine responses in the gastric lymph node compared with the abomasal mucosa illustrates the differing roles in the immune response allocated to each tissue. Early stage cytokine signalling in the abomasal mucosa is likely to be important in the initial focussing of the immune response both in terms of helminth-specific responses and their location in the abomasal mucosa, for example IL-4 may play a role in stimulating dendritic cells to induce appropriate gut-associated homing receptor expression in the T cells activated in the lymph node [60]. The lymph node, as the site of induction of the adaptive immune response by basophils and dendritic cells arriving from the mucosa via the afferent lymph, is predominantly engaged in the activation, polarisation and tissue-specific targeting of lymphocytes prior to recirculation [61,62]. Recirculating lymphocytes homing to the mucosa [62,63] are therefore able to direct and amplify later stage cytokine responses in the abomasum. The cytokine responses observed in the abomasal mucosa of 5-month-old lambs were broadly similar to those found in yearling sheep, suggesting a Th2-type response which occurred earlier and more prominently in the previously infected lambs, and an inflammatory response which was more pronounced in naïve challenged animals. However, in contrast to the yearlings, these lambs also demonstrated a Th2-type response in the gastric lymph node with no suppression of Th1-type cytokine transcript levels.

This indicates that the lower resistance and increased morbidity associated with helminth infection in young lambs is unlikely to be due to an inability to produce local Th2 or inflammatory responses. This is consistent with the findings of previous studies of *H. contortus* infection of 3-month-old lambs, which demonstrated a clear Th2-type response indicated by recruitment of mast cells and eosinophils, and increased transcription of IL-4, IL-5 and IL-13 in the abomasal mucosa, but demonstrated no significant suppression of IL-12 or IFNγ in the gastric lymph node [44]. It is possible that the influence of Th1-type cytokines in the lymph node may be inhibiting
Figure 4 (See legend on next page.)
anti-parasitic immune responses due to suppression of Th2-type cytokine production and/or antagonism of their effects in the abomasum in younger lambs.

The more prominent transcript levels of IL-10 in the gastric lymph node of naïve 5-month-old lambs following infection with *T. circumcincta*, when compared with previously infected lambs, is consistent with the findings in yearling sheep. However, this discrepancy in IL-10 transcript abundance was found earlier in the yearling sheep. It is possible that a delay or reduction in the development of regulatory responses in the younger lambs may contribute to the increased morbidity due to helminth infection in these animals.

The importance of the interplay between Th1, Th2, pro-inflammatory and regulatory cytokines is illustrated by recent studies by Hassan and colleagues examining pro-inflammatory and regulatory cytokines during the development of resistance in younger lambs. It is possible that a delay or reduction in the development of regulatory responses in the younger lambs may contribute to the increased morbidity due to helminth infection in these animals.

The more pronounced Th2-type cytokine transcription in the abomasal mucosa of the previously infected compared with naïve yearling sheep emphasises the importance of these mechanisms in the immune response to *T. circumcincta* infection and the development of resistance to infection.

Younger lambs appear to be able to generate similar Th2-type responses in the abomasum to those of yearlings. However, it is possible that a lack of Th1-type cytokine suppression in the gastric lymph node may be a factor in the apparent lack of efficacy of these responses in generating resistance in younger lambs following continuous or repeated exposure to *T. circumcincta*.

Methods

Animals and experimental design

All animal experiments described in this study were carried out in accordance with Moredun Research Institute, Roslin Institute and R (D) SVS guidelines, subject to approval by the Moredun Research Institute’s Animal Experiments and Ethics Committee, and authorised under the UK Animals (Scientific Procedures) Act 1986.

A series of experiments were set up to compare the immune responses of yearling sheep and 5-month-old lambs which had been previously infected with an eight-week trickle infection of *T. circumcincta* L3 larvae, with those of helminth-naïve animals following a challenge dose of 50,000 larvae. Naïve and previously infected sheep and lambs were killed at several time-points following challenge (Table 1). All animals were reared indoors under conditions designed to prevent accidental infection with helminths.

Each experiment contained one group of animals which was exposed to a trickle infection of 2000 *T. circumcincta* L3 larvae administered by oral gavage three times per week for eight weeks. These previously infected (PI) animals were then treated with Levamisole (7.5 mg/kg) before being given a single challenge dose of 50,000 *T. circumcincta* L3 larvae seven days later (day 0). The remaining helminth-naïve animals in each experiment did not receive a trickle infection, but were otherwise treated identically to the PI group, including Levamisole treatment. Sheep were killed by captive-bolt stunning and exsanguination. At post-mortem samples of mucosa were scraped off the underlying muscle in the fundic region of the abomasum. Gastric lymph node samples were also collected, and both tissues were preserved in RNAlater (Applied Biosystems, Warrington, UK) and stored at −20°C until use. Separate samples of abomasal mucosa from the yearling groups were also fixed using 4% paraformaldehyde.

Sheep and lambs killed on days 5, 10 and 21 underwent cannulation of the common gastric lymph duct 4–7 days prior to challenge in order to collect lymph samples for use in concurrent studies [52-54]. It was known from previous experiments using this model that cellular and humoral immune responses to *T. circumcincta* infection all occurred by day 9 in previously infected yearling sheep.

Conclusions

The data presented here indicate that the abomasal mucosa is a major source of cytokine signalling during the development of a local Th2-phenotype response and the generation of protective immunity to *T. circumcincta* in yearling sheep.

Experiments and Ethics Committee, and authorised under the UK Animals (Scientific Procedures) Act 1986.

A series of experiments were set up to compare the immune responses of yearling sheep and 5-month-old lambs which had been previously infected with an eight-week trickle infection of *T. circumcincta* L3 larvae, with those of helminth-naïve animals following a challenge dose of 50,000 larvae. Naïve and previously infected sheep and lambs were killed at several time-points following challenge (Table 1). All animals were reared indoors under conditions designed to prevent accidental infection with helminths.

Each experiment contained one group of animals which was exposed to a trickle infection of 2000 *T. circumcincta* L3 larvae administered by oral gavage three times per week for eight weeks. These previously infected (PI) animals were then treated with Levamisole (7.5 mg/kg) before being given a single challenge dose of 50,000 *T. circumcincta* L3 larvae seven days later (day 0). The remaining helminth-naïve animals in each experiment did not receive a trickle infection, but were otherwise treated identically to the PI group, including Levamisole treatment. Sheep were killed by captive-bolt stunning and exsanguination. At post-mortem samples of mucosa were scraped off the underlying muscle in the fundic region of the abomasum. Gastric lymph node samples were also collected, and both tissues were preserved in RNAlater (Applied Biosystems, Warrington, UK) and stored at −20°C until use. Separate samples of abomasal mucosa from the yearling groups were also fixed using 4% paraformaldehyde.

Sheep and lambs killed on days 5, 10 and 21 underwent cannulation of the common gastric lymph duct 4–7 days prior to challenge in order to collect lymph samples for use in concurrent studies [52-54]. It was known from previous experiments using this model that cellular and humoral immune responses to *T. circumcincta* infection all occurred by day 9 in previously infected yearling sheep.

Methods

Animals and experimental design

All animal experiments described in this study were carried out in accordance with Moredun Research Institute, Roslin Institute and R (D) SVS guidelines, subject to approval by the Moredun Research Institute’s Animal Experiments and Ethics Committee, and authorised under the UK Animals (Scientific Procedures) Act 1986.

A series of experiments were set up to compare the immune responses of yearling sheep and 5-month-old lambs which had been previously infected with an eight-week trickle infection of *T. circumcincta* L3 larvae, with those of helminth-naïve animals following a challenge dose of 50,000 larvae. Naïve and previously infected sheep and lambs were killed at several time-points following challenge (Table 1). All animals were reared indoors under conditions designed to prevent accidental infection with helminths.

Each experiment contained one group of animals which was exposed to a trickle infection of 2000 *T. circumcincta* L3 larvae administered by oral gavage three times per week for eight weeks. These previously infected (PI) animals were then treated with Levamisole (7.5 mg/kg) before being given a single challenge dose of 50,000 *T. circumcincta* L3 larvae seven days later (day 0). The remaining helminth-naïve animals in each experiment did not receive a trickle infection, but were otherwise treated identically to the PI group, including Levamisole treatment. Sheep were killed by captive-bolt stunning and exsanguination. At post-mortem samples of mucosa were scraped off the underlying muscle in the fundic region of the abomasum. Gastric lymph node samples were also collected, and both tissues were preserved in RNAlater (Applied Biosystems, Warrington, UK) and stored at −20°C until use. Separate samples of abomasal mucosa from the yearling groups were also fixed using 4% paraformaldehyde.

Sheep and lambs killed on days 5, 10 and 21 underwent cannulation of the common gastric lymph duct 4–7 days prior to challenge in order to collect lymph samples for use in concurrent studies [52-54]. It was known from previous experiments using this model that cellular and humoral immune responses to *T. circumcincta* infection all occurred by day 9 in previously infected yearling sheep.
Figure 5 (See legend on next page.)
[26], therefore the PI yearling group was not extended to day 21.

The *T. circumcincta* L3 larvae used in each experiment were from the same batch of an anthelmintic susceptible *T. circumcincta* isolate, which had been stored at -20°C for up to one month prior to use.

RNA extraction

RNA was extracted from the RNAlater preserved abomasal mucosa and gastric lymph node samples as described previously [45] using a Stratech Beadbeater-8 (Stratech Scientific, Soham, UK) and 1 mm² zirconia-silica beads (Thistle Scientific, Glasgow, UK). RNAse Mini Kit (Qiagen, Crawley, UK) with β-mercaptoethanol (Thermo Fisher Scientific Inc., Waltham, USA), QiaShredder columns (Qiagen, Crawley, UK) and Qiagen RNase-free DNase (Qiagen, Crawley, UK). Complete removal of native DNA contamination required additional DNase treatment in solution (DNA-free kit, Applied Biosystems, Warrington, UK). The 260 nm absorbance of a 1:5 dilution of sample RNA was measured using a Cecil CE2021 2000 series spectrophotometer (Cecil Instruments, Cambridge, UK) and used to calculate the RNA concentration. RNA purity was assessed by determining the ratio 260/280 nm absorbance.

Reverse transcription of mRNA into cDNA

Reverse transcription of 1 µg total RNA was set up on ice using a Reverse Transcription Kit (Promega, Southampton, UK) and a Techgene thermocycler (Techne, New Jersey, USA) as previously described [45]. RNA controls were set up by diluting 0.5 µg of sample RNA in 50 µl of RNase-free water. These control samples were used to check for DNA contamination during PCR. Both cDNA and RNA controls were stored at -20°C until use.

PCR amplification of ovine cytokine cDNA

The oligonucleotide primers and PCR cycling conditions used to detect cDNA specific for ovine IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, TGFβ1, TNFα, IFNγ and ATPase have been previously published [45,65]. ATPase, a constitutively expressed ‘housekeeping’ gene, was used both as a control to assess the quality of the RT product and as a reference for quantification of cytokine mRNA. Primer specificity was checked using PCR product sequencing as described previously [45].

PCR reactions were set up on ice using Taq DNA polymerase (Roche Diagnostics GmbH, Mannheim, Germany) and 250 ng cDNA as described previously [45]. Mastermix only controls to which no cDNA was added were used to check for DNA contamination of the PCR reaction mixture. The reactions were heated to 94°C for 2 min for the initial denaturation, then cycled through 40 seconds at 94°C, annealing at an appropriate temperature for 40 seconds and extension at 72°C for 2 minutes. Thermocycling was concluded by a final extension of 5 minutes at 72°C. Techne Gradient (Techne, New Jersey, USA) and PerkinElmer GeneAmp PCR System 2400 (PerkinElmer, Boston, USA) thermocyclers were used.

A 10 µl aliquot of each PCR product was migrated in 1.3% TBE-agarose gel containing 0.01% GelRed (Biotium, Inc., Hayward, USA). 1Kb Plus DNA ladder was included as a molecular weight marker and gels were photographed using a Bio-Rad Molecular Imager FX (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK). Kodak 1D Analysis software was then used to determine the density of the PCR product bands on each image. To normalise for variation in cDNA levels during PCR, the level of cytokine mRNA transcript was compared relative to the level of ATPase mRNA transcript for each sample; the values were presented as the ratio of the cytokine PCR product band density over that of the corresponding ATPase PCR product.

Abomasal mucosal mast cell counts

Paraformaldehyde-fixed samples of the abomasal mucosa from the yearling sheep were trimmed, embedded in paraffin and longitudinally sectioned. Sections were de-waxed in ethanol, then washed and stained for 30 minutes using chloroacetate esterase staining solution consisting 0.1 M potassium phosphate (pH 6.0), 40 mg Fast Garnet GBC salt, 5 mg Naphthol AS-D Chloroacetate, 1 ml DMSO in a total volume of 81 ml (Thermo Fisher Scientific Inc., Waltham, USA) [66-68].

Stained sections were washed using distilled water and mounted using polyvinylpyrrolidone, then examined using a Leitz Laborlux S microscope (Leica Microsystems GmbH, Wetzlar, Germany). The number of mucosal mast cells were counted using a 1 mm² eyepiece graticule, as closely as possible orientated with the top edge along the epithelial surface, at ten locations along the section under x 250 magnification. The mean mast cell count for each sample was recorded.
Statistical analysis

Statistical analyses were performed using Minitab Statistical Software release 15 for Windows (Minitab Inc., Pennsylvania, USA). Data were checked for deviation from a normal distribution using an Anderson-Darling test. Where data for a particular factor was found to deviate from normality it was transformed to fit a normal distribution using a Johnson transformation selected using a p-value of 0.05. The data was then analysed using a general linear model technique considering immune status (naive or PI), and kill day nested within immune status. Where a significant difference was indicated Tukey's tests were used post-hoc to compare the means of naive and PI groups on the same day, and the mean of the yearling day 2 group to that of the corresponding day 0. Significance was indicated by a p-value <0.05 and confidence intervals used were 95%.

Abomasal mast cell counts from the yearlings were not normally distributed and could not be successfully transformed. Kruskal-Wallis test, followed by Mann–Whitney U-tests, was therefore used to look for differences between pairs of groups. Again significance was indicated by a p-value <0.05 and confidence intervals used were 95%.

Additional file

Additional file 1: Table S1. Lists yearling worm counts and Table S2 lists 5-month-old lamb worm counts.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NMC planned and carried out the main body of the work (molecular analyses, mast cell counts and statistical analysis), interpreted the results and drafted the manuscript. WDS conceived and supervised this project and helped to plan and carry out the main body of the work (molecular analyses, mast cell counts and statistical analysis), interpreted the results and drafted the manuscript. JAP assisted with post-mortem sample collection, processing and statistical evaluation of the data. Thanks also go to Jeremy Brown, Alan Johnson, Tim Parkin and Mike Stear for their advice on the experimental design.

Acknowledgements

The authors would like to thank Frank Jackson’s laboratory at Moredun Research Institute for supplying the T. circumcincta larvae. Oligonucleotide primer sequences for ovine ATPase, IL-1β, IL-4, IL-6, IL-10, IL-12p40, IL-18, TNFα and TGFβ1 were kindly provided by Tom McNeil and Colin McNines. General histology processing and chloroacetate esterase staining was carried out by the Royal (Dick) School of Veterinary Studies Pathology Dept. We would like to thank Tim Parkin and Mike Stear for their advice on the statistical evaluation of the data. Thanks also go to Jeremy Brown, Alan Pemberton, Aileen Halliday, Anne French, Steven Wright, Elisabeth Thornton, Stephen Smith and Susan Griffith for their advice and assistance. This work was funded by a Veterinary Research Initiative from the Scottish Government Rural and Environment Analysis Directorate.

Author details

1.
 Jarett Building, Institute of Biodiversity, Animal Health and Comparative Medicine, School of Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK.
 2.
 Moredun Research Institute, Midlothian, UK.
 3.
 Division of Pathology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
 4.
 The Roslin Institute, Midlothian, UK.
 5.
 INTO Glasgow Caledonian University, Glasgow, UK.

References

1. McLeod RS: Costs of major parasites to the Australian livestock industries. Int J Parasitol 1995, 25:1363–1367.
2. Fox MT: Pathophysiology of infection with gastrointestinal nematodes in domestic ruminants: recent developments. Vet Parasitol 1997, 72:285–297. discussion 297–308.
3. Scott I, Hodgkinson SM, Khalaf S, Lawton DE, Collett MG, Reynolds GW, Pomroy WE, Simpson HV: Infection of sheep with adult and larval Ostertagia circumcincta: abomasal morphology. Int J Parasitol 1998, 28:1383–1392.
4. Grillo V, Jackson F, Gilleard JS: Characterisation of Teladorsagia circumcincta microsatellites and their development as population genetic markers. Mol Biochem Parasitol 2006, 148:181–189.
5. Miller JE, Horohov DW: Immunological aspects of nematode parasite control in sheep. J Anim Sci 2006, 84(Suppl):E124–E132.
6. Jackson F, Coop RL: The development of anthelmintic resistance in sheep nematodes. Parasitology 2000, 120(Suppl):S59–S107.
7. Besier RB, Love SJ: Anthelmintic resistance in sheep nematodes in Australia: the need for new approaches. Aust J Exp Agric 2003, 43:1383–1391.
8. Bartley DJ, Jackson F, Jackson E, Sangster NC: Characterisation of two triple resistant field isolates of Teladorsagia from Scottish lowland sheep farms. Vet Parasitol 2004, 123:189–199.
9. Wolstenholme AJ, Fainweather I, Pirchard R, von Samson-Himmelstjerna G, Sangster NC: Drug resistance in veterinary helminths. Trends Parasitol 2004, 20:469–476.
10. Coles GC, Jackson F, Pomroy WE, Pirchard RK, von Samson-Himmelstjerna G, Silvestre A, Taylor MA, Vercaeyse J: The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 2006, 136:167–185.
11. Jabbar A, Iqbal Z, Kerboeuf D, Muhammad G, Khan MN, Afaj M: Anthelmintic resistance: the state of play revisited. Livest Sci 2006, 79:243–243.
12. Scott I, Hodgkinson SM, Lawton DE, Khalaf S, Reynolds GW, Pomroy WE, Simpson HV: Infection of sheep with adult and larval Ostertagia circumcincta: gastrin. Int J Parasitol 1998, 28:1393–1401.
13. Simcock DC, Scott I, Przemec M, Simpson HV: Abomasal contents of parasitised sheep contain an inhibitor of gastrin secretion in vitro. Res Vet Sci 2006, 81:225–230.
14. McLeay LN, Anderson N, Bingley JI, Titchen DA: Effects on abomasal function of Ostertagia circumcincta infections in sheep. Parasitology 1973, 66:241–257.
15. Anderson N, Blake R, Titchen DA: Effects of a series of infections of Ostertagia circumcincta on gastric secretion of sheep. Parasitology 1976, 72:1–12.
16. McAllister QA: Interactions of Ostertagia species with their bovine and ovine hosts. Int J Parasitol 1993, 23:451–462.
17. Scott I, Khalaf S, Simcock DC, Knight CG, Reynolds GW, Pomroy WE, Simpson HV: A sequential study of the pathology associated with the infection of sheep with adult and larval Ostertagia circumcincta. Vet Parasitol 2000, 89:79–94.
18. Ritchie JD, Anderson N, Amour J, Jarrett WF, Jennings JW, Urquhart GM: Experimental Ostertagia ostertagi infections in calves: parasitology and pathogenesis of a single infection. Am J Vet Res 1966, 27:659–667.
19. Gruner L, Mandonnet N, Bouix J, Vu Tien Xang, J, Cabaret J, Hoste H, Kerboeuf D, Barnouin J: Worm population characteristics and pathological changes in lambs after a single or trickle infection with Teladorsagia circumcincta. Int J Parasitol 1994, 24:347–356.
20. Balle A, Bowles VM, Liu XS, Memonen EN: Local immune responses in sensitized sheep following challenge infection with Teladorsagia circumcincta. Parasite Immunol 2003, 25:375–381.
21. McDermott JR, Bartram RE, Knight PA, Miller HR, Garrard DR, Grecis RK: Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci U S A 2003, 100:7761–7766.
22. Stear MJ, Bishop SC, Henderson NC, Scott I: A key mechanism of pathogenesis in sheep infected with the nematode Teladorsagia circumcincta. Anim Health Res Rev 2003, 4:45–52.
23. Anderson N, Hansky J, Titchen DA: Effects of Ostertagia circumcincta infections on plasma gastrin in sheep. Parasitology 1981, 82:401–410.
24. Lawton DE, Reynolds GW, Hodgkinson SM, Pomroy WE, Simpson HV: Infection of sheep with adult and larval Ostertagia circumcincta: effects

Received: 13 November 2013 **Accepted:** 2 April 2014 **Published:** 9 April 2014
Further attempts to immunise lambs using metabolites and previously infected lambs after challenge with Teladorsagia circumcincta: comparison of the local immune responses of 4 1/2- and 10-month-old lambs.

Craig NM, Miller HR, Smith WD, Knight PA; Pernthaner A, Cole SA, Morrison L, Hein WR; Claerebout E, Vercauteren I, Geldhof P, Olbrechts A, Zarlenga DS, Goddeeris BM; Gill HS, Altmann K, Cross ML, Husband AJ; Smith WD, Jackson F, Jackson E, Williams J; Stear MJ, Strain S, Bishop SC; Redmond DL, Smith SK, Halliday A, Smith WD, Jackson F, Knox DP; Strain SA, Stear MJ; Smith WD, Pettit D, Smith SK; Miller HR; Stear MJ, Bishop SC, Doligalska M, Duncan JL, Holmes PH, Irvine J, McCririe Vercruysse J; Gibson TE, Everett G; Smith WD, Jackson F, Graham R, Jackson E, Williams J; Mucosal IgA production and lymph cell traffic following prolonged low level infections of Ostertagia circumcincta in sheep. Res Vet Sci 1987; 43:320–326.

Gibson TE, Everett G: Further observations on the effect of different levels of larval intake on the output of eggs of Ostertagia circumcincta in lambs. Res Vet Sci 1978, 26:169–173.

Miller HR: The protective mucosal response against gastrointestinal nematodes in ruminants and laboratory animals. Vet Immunol Immunopathol 1984, 6:167–259.

Smith WD, Jackson F, Jackson E, Williams J, Miller HR: Manifestations of resistance to ovine ostertagiasis associated with immunological responses in the gastric lymph. J Comp Pathol 1984, 94:591–601.

Stear MJ, Bishop SC, Doligalska M, Duncan JL, Holmes PH, Irvine J, McCririe Vercruysse J; Gibber TE, Everett G: The protective mucosal response against gastrointestinal nematodes in ruminants and laboratory animals. Vet Immunol Immunopathol 1984, 6:167–259.

Halliday AM, McAllister HC, Smith WD: Kinetics of the local immune response in the gastric lymph of lambs after primary and challenge infection with Teladorsagia circumcincta. Parasite Immunol 2010, 32:81–90.

Halliday AM, Morrison WI, Smith WD: Kinetics of the local cellular response in the gastric lymph of immune and susceptible sheep to infection with Teladorsagia circumcincta. Parasite Immunol 2000, 31:402–411.

Halliday AM, Routledge CM, Smith SK, Matthews JB, Smith WD: Parasite loss and inhibited development of Teladorsagia circumcincta in relation to the kinetics of the local IgA response in sheep. Parasite Immunol 2007, 29:425–434.

Athanasiadou S, Pemberton A, Jackson F, Inglis N, Miller HR, Thevenod F, Mackellar A, Huntley JF: Proteomic approach to identify candidate effector molecules during the in vitro immune exclusion of infective Teladorsagia circumcincta in the abomasum of sheep. Vet Res 2008, 39:58.

French AT, Knight PA, Smith WD, Brown JK, Craig NM, Pate JA, Miller HR, Pemberton AD: Up-regulation of intelectin in sheep after infection with Teladorsagia circumcincta. Int J Parasitol 2008, 38:667–675.

French AT, Knight PA, Smith WD, Pate JA, Miller HR, Pemberton AD: Expression of three intelectins in sheep and response to a Th2 environment. Vet Res 2009, 40:53.

Knight PA, Griffith SE, Pemberton AD, Pate JM, Guarreri L, Anderson K, Talbot RT, Smith S, Waddington D, Fell M, Archibald AL, Burgess ST, Smith DW, Miller HR, Morrison WI: Novel gene expression responses in the ovine abomasal mucosa to infection with the gastric nematode Teladorsagia circumcincta. Vet Res 2011, 42:78.

Zhou Y, Dong Q, Louahed J, Dragava C, Savio D, Wang C, Weiss C, Torrey Y, McLane MP, Nicollides NC, Levit LC: Characterization of a calcium-activated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am J Respir Cell Mol Biol 2001, 25:486–491.

Elgueta R, Sepulveda FE, Vilches F, Vargas L, Mora JR, Bono MR, Rosenberg M: Imprinting of CRCR on CD4 T cells requires IL-4 signaling on mesenteric lymph node dendritic cells. J Immunol 2008, 180:5501–5507.

Perrigoque JC, Saenz SA, Sirencusa MC, Almerssiec J, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Roonen N, Comeau MR, Pearce EJ, Laufer TM, Arts D: MHC class II-dependent basophilicCD4+ T cell interactions promote Th1 T(H2) cytokine-dependent immunity. Nat Immunol 2009, 10:697–705.

Molenaar R, Greuter M, van der Marel AP, Rozendaal R, Martin SF, Edele F, Huxen J, Forster R, OToole T, Jansen W, Wermster LD, Krall G, Mebus RR: Lymph node stromal cells support dendritic cell-induced gut-homing of T cells. J Immunol 2009, 182:6405–6407.

Hassan M, Hanrahan JP, Good B, Mucaly G, Sweeney T: T cell differentiation interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Vet Res 2011, 42:45.

McNeilery T: Respiratory Transmission of Maedi-Visna Virus. PhD thesis: The University of Edinburgh, 2006.
66. Huntley JF, Newlands G, Miller HR: The isolation and characterization of globule leucocytes: their derivation from mucosal mast cells in parasitized sheep. *Parasite Immunol* 1984, 6:371–390.

67. Huntley JF, Newlands GF, Gibson S, Ferguson A, Miller HR: Histochemical demonstration of chymotrypsin like serine esterases in mucosal mast cells in four species including man. *J Clin Pathol* 1985, 38:375–384.

68. Li CY: Diagnosis of mastocytosis: value of cytochemistry and immunohistochemistry. *Leuk Res* 2001, 25:537–541.