Cell type ontologies of the Human Cell Atlas

Authors: David Osumi-Sutherland¹, Chuan Xu², Maria Keays², Adam P. Levine³, Peter V. Kharchenko⁴, Aviv Regev⁵, Ed Lein⁶, Sarah A. Teichmann²,⁷

Affiliations:
¹: EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
²: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
³: Research Department of Pathology, University College London, London WC1E 6DD, UK
⁴: Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
⁵: Genentech, 1 DNA Way, South San Francisco, California 94080, USA
⁶: Allen Institute for Brain Science, Seattle, Washington 98109, USA
⁷: Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK

Correspondence should be addressed to S.A.T. (st9@sanger.ac.uk)

Abstract
Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body, while at the same time raising the need to formalise this new knowledge. Here, we discuss current efforts to harmonise and integrate different sources of annotations of cell types and states into a reference cell ontology. We illustrate with examples how a unified ontology can consolidate and advance our understanding of cell types across scientific communities and biological domains.

Main
With collaboration of over 2,000 scientists across more than 1,000 institutes from 76 countries to date, the Human Cell Atlas (HCA) has generated comprehensive molecular profiles of tens of millions of single cells across 18 different organs and systems, which, in turn, are advancing our understanding of the definition of cell types and states¹, ². Technological advances in single-cell and spatial genomics are rapidly expanding the compendium of known cell types³, and accelerating discoveries of a large variety of novel cell populations.

For instance, these efforts have been applied to system-level disciplines such as immunology and neuroscience, both of which require an understanding of vast networks of cells and tissues. In immunology, cell types have been historically recognised and well characterised. Yet, the number of discrete cell types and specific cell states identified from single-cell genomics has exceeded expectations, particularly with respect to the diversity of cell states derived from developmental dynamics⁴, tissue-resident phenotypes⁵ and activation states⁶. For example, transcriptomic profiling identified three decidual natural killer cell populations at the maternal-fetal interface, which show varying levels of immunoregulatory properties and which modulate trophoblast invasion⁷. Transcriptomic and
genomic profiling has also captured an increasing variety of cell types and gene programmes in the central and peripheral nervous systems. Cell atlasing - i.e. the creation of a cell atlas - of mammalian brains has led to the discovery of previously uncharacterised cell types, including over a hundred cell types in one single region of the neocortex\(^8\), as well as of cellular diversity due to species-specific adaptations in the cortex\(^8\). A similar dramatic increase in diversity has been reported in the peripheral nervous system such as in the enteric nervous system\(^9,10\).

This incredible progress takes us closer to answering a general question motivating stem and developmental cell biologists, as well as the HCA project: what is the complete cellular makeup of the human body? Annotating cells and gene programmes is crucial not only to address this question but also to fully exploit these data for biological discovery, including in pathological states. This can only be achieved by naming the entities we study in a consolidated way, such that findings can be related between studies and one study can build on findings from multiple previous ones as knowledge is accrued and expanded. However, most annotations of single-cell genomics datasets to date have used uncontrolled free text (i.e. arbitrary naming schemes) for cell type names, making cross-searching of annotations across separate datasets challenging and unreliable. In some cases, with a naming scheme absent, cells are described merely by a subset of their molecular characteristics and thus can be hard to match between studies.

To fully answer the question of what the cellular composition of the human body is, there is an urgent need to put new discoveries from the HCA into the context of classical cell biology and anatomy, as well as developmental biology, neurobiology, and pathology. Cell ontologies, a structured controlled vocabulary for cell types in animals, are a tremendously powerful way of formalising such knowledge, which in turn opens up opportunities for quantitative scientific interrogation of the HCA data in new and exciting ways.

In this Perspective, we discuss the utility and parts of cell ontologies, review the state of current cell ontologies, and conclude with ongoing efforts and how they can be applied for discovery over the coming years.

Using cell ontology for knowledge integration and mining

Biomedical ontologies originated in simple controlled vocabularies developed to supplement or replace the free text metadata in databases, clinical records and medical billing systems\(^11\). Standardising the text used to record, for example, diseases, gene functions, anatomical structures, and cell types within and between databases makes it possible to reliably search and group records referring to the same entities (diseases, cell types, etc.). However, controlled vocabularies are not sufficient for searching and grouping records with closely related contents. For example, a user searching a database for records relating to macrophages or liver sinusoid would not find records for Kupffer cells unless the data structures driving the search had some meaningful ways to relate the terms 'macrophage', 'Kupffer cell' and 'liver sinusoid'. Cell ontologies provide mechanisms for this integration, allowing us to record a 'Kupffer cell' as a type of macrophage located in the liver sinusoid and then to enrich search results to take advantage of the classification and location relationships (Fig. 1).
Ontologies of cell types such as the Cell Ontology12 and the Drosophila Anatomy Ontology13 are increasingly used to annotate single-cell transcriptomic data. The use of ontology terms in dataset annotation relates annotated data back to hard-earned legacy knowledge, classical terminologies, and the accompanying understanding of cell types, anatomies, and development. Such annotation makes data cross-searchable, discoverable, integrable, and more accessible to general cell biologists. It facilitates cross-dataset analyses, allowing more quantitative analyses of similarities across thousands of individual cells, leading to more nuanced views of cell types, their classification, and their properties.

The Cell Ontology was first developed as a platform in 2004 to collect major cell types for humans and model organisms, and has been applied to various fields since then. For example, the Encyclopedia of DNA Elements (ENCODE) Consortium used the Cell Ontology to annotate its compendium of cell types, yielding a prioritised set of genetic and epigenetic elements14. Because the precise terms used for cell types, anatomical structures and diseases often vary greatly across sources, biomedical ontologies, including the cell ontology, typically use a bipartite system of universally resolvable IDs in the form of URLs for ontology terms, each linked to an official label. For example, the term with the primary label ‘Kupffer cell’ in the Cell Ontology is identified by the persistent URL http://purl.obolibrary.org/obo/CL_0000091, which is further abbreviated to a compact form CL:000009115. Critically, using resolvable IDs rather than labels to refer to cell types in database records allows associated metadata (labels, descriptions, and references) and their relationships (anatomy, development, functional and pathological relevance) to evolve over time with no cost for the databases and records that use IDs to refer to them (Fig. 1).

Ontologies can serve to link and integrate heterogeneous data types related to the same cell type across multiple modalities. For example, Virtual Fly Brain16, 17 and the Fly Cell Atlas18 use the same ontology terms to annotate 3D images of neurons (>70,000 images), connectomics data (>3.5 million pairwise connections), and single-cell transcriptomics data (~600,000 cells). Similarly, Cell Ontology terms, classifications and relationships are also increasingly used to define and classify terms in the Gene Ontology19 (>750 terms) and in widely-used ontologies of phenotypes (730 terms in the Human Phenotype Ontology20) and diseases (>3,000 terms in the Mondo disease ontology21). These links make it possible to combine single-cell, phenotype, and disease data relating to the same cell types. With the advent of large-scale single-cell transcriptomic atlasing, community-driven nomenclature and ontology building projects have emerged and are coordinating with existing ontology building efforts (e.g. HCA Biological Networks2, HuBMAP22, BRAIN Initiative Cell Census Network (BICCN)23 and Cell Annotation Platform (http://celltype.info)).

This is already impacting our ability to organise our knowledge of cell types for comparisons of datasets across individual laboratories, and notably, for effectively interpreting health and disease using the knowledge from both classical histopathology and single-cell genomics. For instance, ontological distinctions between fetal and mature cells in the kidney are mirrored by differences in their molecular signatures, which are critical to understanding the divergent origins of pediatric and adult kidney cancers, respectively24. Similarly, consistently annotated datasets allowed cross-tissue meta-analyses for COVID-19 that identified specialised nasal epithelial cells enriched for expression of SARS-CoV-2 entry factors25, identified covariates such as age, sex, and smoking status associated with the entry factor expression in lung and airway cells26, and compared cells in COVID-19 tissues from patient
autopsies to healthy and other disease conditions, again highlighting the necessity and utility of establishing agreed-upon ontological classifications.

Considerations in the classification of human cell types

Biologists have long recognised that the natural world lends itself to hierarchical systems of classification, which capture the underlying hierarchical processes driving biology, such as the phylogenetic classification of species by morphological and molecular observations. Similarly, cell types can be hierarchically classified and categorised in ever-increasing levels of resolution, from a general cell type like an endothelial cell, through more specialised types like a liver sinusoidal endothelial cell (LSEC), down to highly specialised types found in specific locations such as a periportal LSEC. As with a species’ taxonomy, there are various kinds of observations informing the ultimate classification, and these different types of information are often used in concert to arrive at a particular cell type definition.

Take anatomical locations as an example: the Cell Ontology imports information about anatomical structures and features from the Uber-anatomy Ontology (Uberon) and relates them to the Cell Ontology terms using, for example, 'part of' to relate cell types to the tissues and organs, and 'located in' to relate cell types to cavities within structures. For example, the Cell Ontology definition of an LSEC includes a 'part of' relationship to 'hepatic sinusoid', which indicates that the liver sinusoidal endothelial cell forms part of the structure of the hepatic sinusoid as defined in Uberon, whereas the definition of Kupffer cells records that they are 'located in' (the lumen of) the hepatic sinusoid. In an anatomically higher hierarchy, the definition of hepatic sinusoid involves relations to the liver lobule and the liver overall, which is in turn defined by its structure, location and physiological role in the body. The LSEC is hence hierarchically defined relative to the whole organism down to its individual position in the specific tissue where it is found (Fig. 2a). Furthermore, since the Cell Ontology classifies cell types hierarchically from generic cell types down to more specialised types, an LSEC is also defined as a descendent of the general endothelial cell class in the Cell Ontology. The main LSEC class (officially 'endothelial cell of hepatic sinusoid') has its own descendent classes, representing further specialisations of LSECs: 'endothelial cell of periportal hepatic sinusoid' and 'endothelial cell of pericentral hepatic sinusoid'.

Sources of information contributing to a cell type categorisation include morphological features, developmental origins, and functional profiles. Ontologies attempt to capture all terms that are used by different scientific communities to refer to the same cell type, as well as alternative names that may not be commonly used. Historically, different fields in biology have focused on different aspects of cells to drive their naming. For example, many immune cells have been classified according to which cell surface protein(s) they express, whereas cells of the nervous system have been named according to a combination of features including morphologies, physiologies, connectivities and the roles they play in the neuronal circuitry. In some systems, such as the retina, there is strong evidence that cell types can be classified consistently regardless of the features used to classify them. In these cases, classically defined cell types typically align well with those identified by analysis of single-cell transcriptomic data, making cell annotation straightforward. In other cases, different features could in principle lead to different cell type classifications, making consistent annotation more challenging. Formal ontologies are able to support multiple overlapping classification schemes, and thus can potentially help reconcile different classification schemes, at least at the level of more generally grouped classes.
Cell ontologies also represent developmental lineages and, to a more limited extent, cell states such as activation, cycling, morphological changes and stresses (Fig. 2b) - either directly or through extensions of existing annotations. Cell-cycle states, for example, can be represented in the annotation system by combining a Cell Ontology term with a term from the Gene Ontology Cell Cycle Phase terms. Developmental or actively regenerating tissues present particular challenges to cell ontology development, as a plethora of intermediate states and continuous branching lineages can be partitioned. In such a setting, cell annotation needs to emphasise the relative ordering of states, or their positions on a continuous differentiation path. There are also striking examples of developmental convergence (developmental homoplasy). Somatosensory neurons, for example, can be of mixed origin, from the neural crest or sensory placodes39. Similarly, dermal fibroblasts in different parts of the trunk or face are derived from distinct embryonic lineages, despite molecular and phenotypic likeness40. Nevertheless, cell ontologies record gross lineage relationships, with limited temporal resolution between developing/progenitor and mature cell types using specific relations where these relationships are stereotyped and consistent. To date, the Cell Ontology records lineage and differentiation relationships for more than 1,900 cell types, connecting developing cell types to developing tissues and stages via links to Uberon.

Many processes driving cell diversifications, including ontogeny (cell differentiation), morphogenesis (often driven by continuous gradients), and the dual impact of a cell’s differentiation history and tissue context, are imprinted in a cell’s molecular properties and can be captured by hierarchical representations. Therefore, molecular features can serve as the basis for robust cell type classification, reflecting these underlying processes (even when the process is not explicitly known). Currently, cell types and states can be elucidated from single-cell transcriptomic, epigenomic and proteomic expression profiles, using different software such as SCCAF41. Further complemented by morphological, physiological, developmental, and functional properties, this data-driven framework makes cell annotations comparable across independent ontology efforts and the inferred cell types understandable across different communities. Of note, while these inferences are unbiased, it is important to reconcile them with conventional biological and clinical understanding and terminologies.

Current state of ontologies

First developed as the platforms to integrate cross-species ontology information, the Cell Ontology and Uberon are now species-neutral ontologies with a strong focus on mammalian cell types and anatomies with standard mechanisms for recording the species applicability of terms. To date, the Cell Ontology has 2,401 terms covering all major cell types. The granularity of this coverage is variable, with the greatest coverage currently for the immune system (>500 cell types). Uberon defines over 14,000 types of anatomical structures and records many types of relationships between them. Practically, the Cell Ontology and Uberon are tightly integrated with each other. Almost 2,000 cell types in the Cell Ontology are linked by ‘part of’ relationships to the anatomical structures defined in Uberon. Further combining the Cell Ontology with newly discovered cell populations from HCA data, we are beginning to extensively cover major organs and cell types in the human body (Table 1).

The human-applicable components of the Cell Ontology and Uberon are under active development as part of multiple collaborative efforts. For human data, terms are being added...
in a coordinated fashion to both ontology platforms in response to the requests of individual labs, as well as to the annotation needs of atlasing projects including HCA's Data Coordination Platform (https://data.humancellatlas.org), and the Cambridge Cell Atlas portal (www.cambridgecellatlas.org). Editing of the Cell Ontology and Uberon is coordinated by a team of researchers drawn from a growing number of collaborating projects including the Human Cell Atlas (Chan Zuckerberg Initiative), HuBMAP (NIH), the Monarch Initiative (NIH) and the Cell Annotation Platform (a collaborative effort funded by Schmidt Futures). This team of editing researchers runs regular open training sessions, and anyone trained to edit the ontology can join the editing team. Edits are coordinated and reviewed on GitHub (https://github.com/obophenotype/cell-ontology), with all changes and releases subject to automated quality-control tests prior to approval. Issues not resolved after discussion on open tickets are coordinated via monthly editor video conferences, which also coordinate the general focus of Cell Ontology and Uberon efforts. These calls frequently feature guest speakers with a particular interest in extending the Cell Ontology or Uberon in specific areas.

Cell Ontology and Uberon are both members of the Open Biological and Biomedical Ontology (OBO) Foundry group of ontologies, a loose alliance of ontologies committed to adopting common standards and aligning semantics and ontology infrastructure. All these endow the Cell Ontology and Uberon with the ability to continuously evolve with inputs from various projects and perspectives and to supply formalised ontology information back to the projects (Table 2). Examples of the co-evolution of the Cell Ontology and human cell ontology-building efforts are listed below.

The Brain Data Standards Initiative, part of the NIH BRAIN Initiative Cell Census Network, is extending the Cell Ontology with terms for cortical cell types defined by single-cell transcriptomics, with a current focus on the primary motor cortex of human, marmoset, and mouse. This work leverages existing efforts on nomenclature standards, but importantly aims to use the quantitative hierarchical cell type classification from single-cell genomics as a data-driven foundation for ontological definitions. Different data types about these cell types are integrated at different levels of the hierarchy, including their spatial tissue distributions, morphological and physiological properties, and axonal projection targets. Ultimately such a data-driven approach may be used across the entire human body, providing a common metric in gene usage to measure similarities and potential common developmental origins across organs.

The ASCT+B effort presented as an accompanying Perspective in this issue is a HuBMAP/HTAN/HCA community-wide project to build tables representing the human anatomy and cell type terminology needed for annotating scRNA-seq datasets, and to record expert-approved lists of markers for cell types. Entries in these tables are mapped to existing Cell Ontology or Uberon terms where possible or turned into term requests for these data resources, when new terms are needed. The relationships between cell types and anatomical structures encoded in these tables are validated against the Cell Ontology and Uberon. The results of this validation are relayed to improve the tables, Uberon, and Cell Ontology based on discussions and agreement with experts. For example, the ASCT+B project is building an expert-validated ontological model of the human vasculature that is feeding hundreds of new terms and relationships back into Uberon. One important outcome of this work will be a curated subset of Cell Ontology and Uberon terms for reliably annotating human scRNA-seq data, both for the healthy HCA data as well as disease samples.
As part of the human cell-focused Sanger-EBI (European Bioinformatics Institute) Cambridge Cell Atlas portal (https://www.cambridgecellatlas.org), an effort to make results from human single-cell gene expression experiments easily accessible to a broad community of users including clinicians, the Cell Ontology is being enriched and extended based on contributions from pathologists and clinicians. This will introduce human cell types annotated with details of specific immunohistochemical markers that are in routine clinical use in diagnostic pathology. This ontology can then be integrated into the search functionality of the Cambridge Cell Atlas platform to enable searching based on a specific immunohistochemical marker or panel of markers, allowing for the identification of the normal cell type(s) (and potentially pathogenic cell types as well) that express the marker(s). This functionality could be useful to pathologists in interpreting and contextualising the range of cell types stained by different immunohistochemical markers on histological sections, cytological preparations or by flow cytometry, and in understanding perturbations in staining patterns in pathological states.

Applications of a cell ontology

Cell ontologies provide a single place to look up cell types for the community. Through this, knowledge can be aggregated and standardised in an encyclopaedic sense. First, cross-modal data integration can reinforce or refine the identity of a cell type. For example, the survey on the mammalian neocortex revealed the correspondence of various cellular properties when overlapping imaging, electrophysiology and connectivity with transcriptomic profiles. Second, mining of an ontological classification system can reveal major trends with respect to shared cell types across organ-specific atlases (e.g. immune, stromal and endothelial cells) versus specialised types (e.g. goblet cell in the gut and lung), emphasising the concept of a tissue being the collective of its cells operating in concert in a specific 3D organisation.

Importantly, with more single-cell resources employing the cell and anatomy ontologies, including but not limited to the Fly Cell Atlas, EBI’s Single Cell Expression Atlas and Sanger-EBI Cambridge Cell Atlas, cell ontologies can link scientific and medical communities through common nomenclatures and markers for human cell biology, pathology and disease. This link, in a broader sense, represents cross-community research where a common cell type reference can be referred. For example, a well-defined cell type classification of human head and neck tumors, which covered major immune and non-immune cell populations, was utilised as the reference to interrogate the cellular signals contributing to bulk samples of head and neck squamous cell carcinoma from The Cancer Genome Atlas (TCGA), revealing the association of tumor-infiltrating regulatory T cells with improved survival in head and neck cancer.

At the same time, immunohistochemical markers in routine clinical use (such as those listed by Pathology Outlines, https://www.pathologyoutlines.com/stains.html), which are linked to the non-pathological cell types by the Cambridge Cell Atlas project, could also be curated and further linked to pathological tissues and cell states that express them. This would provide hundreds of antibodies to link cell types and anatomical structures with the Cell Ontology and Uberon, albeit with a focus on pathological states (of course the Cell Ontology and Uberon currently focus on healthy homeostatic states).
The application of cell ontologies will be most pertinent in the context of interactive and automated systems for the interpretation and annotation of single-cell genomic datasets. A number of efforts to design such systems are under way, including automated cell annotation projection pipelines. For example, as part of the HCA initiative, the Cell Annotation Platform (CAP) aims to provide a general repository for cell annotations of different datasets, in combination with interactive tools for annotating new datasets. For a cell of interest, CAP user interfaces will suggest the appropriate ontology terms based on text search, learned synonyms, and eventually molecular signatures themselves. Where no appropriate term is available from the Cell Ontology, free text annotation will be used as the basis for new term addition to the Cell Ontology. Similarly, the HuBMAP data portal assigns cell annotations to scRNA-seq datasets with an Azimuth-based label transfer procedure based on a vocabulary of cell types from the Cell Ontology, aiming at assessing cellular diversities at different levels of resolution. With an initial focus on immune cells, CellTypist uses an expandable cross-tissue cell reference before predicting cell identities with a logistic regression-based label transfer pipeline, with all derived cell types directly interpretable by the Cell Ontology. Conversely, the resulting knowledgebase of commonly used annotation terms and associated molecular signatures will provide a useful resource to extend ontologies as well as to train and optimise machine learning models that automate the annotation task. In parallel to these efforts, data-driven ontology development is advancing community engagement in specific research domains such as NeMO Analytics for the brain, https://nemoanalytics.org, and gEAR for the ear.

Summary and outlook
Resolving the cellular makeup of the human body warrants the categorisation of cells in a standardised framework. The Cell Ontology offers one such avenue to consolidating this knowledge in an encyclopaedic manner, with applications from cell and tissue biology all the way to the clinic. Despite potential cell classification ambiguities and transient cellular states, each facet of a cell ranging from morphological to molecular features can be taken into account, until a defining status is reached and recognised by the community.

Many HCA-related resources, such as cellxgene, have been using the Cell Ontology for de novo cell annotation. Cell Ontologies serve other sources of data by retrieving or delivering ontology-level information. We anticipate the synergy between the HCA project and the Cell Ontology will continue to grow over the coming years and beyond the completion of HCA, with dimensions of human genetic variation, ageing and disease on the horizon. HCA single-cell omics data provide a foundation for the development of cell ontologies, which are powerful resources to define cell types that are universal across the entire body or specific to subsets of tissues and which will facilitate future research. This will become more pressing and clearer as the number of HCA studies of individual tissues and organs increases. The HCA Biological Networks will provide nucleation points for expert community efforts to achieve gold standard, consensus cell annotations with cell ontology terms. With such a quantitative approach, common phenotypes and developmental origins of cell types will become understandable through shared gene usage, and functional similarities will be revealed in gene patterns. Whole-body consequences of disease will be understandable through differential gene usage in differently located cells. This will thus create opportunities for a new and different kind of quantitative data-driven framework extending and potentially transforming existing ontology efforts.
Acknowledgements

We are grateful to Jana Eliasova (scientific illustrator) for support with the figure, to Roser Vento-Tormo for comments on the figure and texts, and to the following clinicians and researchers for information on standard pathology markers for tissues and cells: Lia Campos, Andrew Dean, Luiza Moore, Neil Sebire, Teresa Brevini, Muzlifah Haniffa, Jing Eugene Kwa, James McCaffrey, and Alexandra Kreins. We also thank all members of the Cell Ontology and Uberon editorial teams including Chris Mungall, Nicolas Matentzoglu, Alexander Diehl, Nicole Washington, Shawn Tan, Paola Roncaglia, Tiago Lubiana and Damien Goutte-Gattat. Research reported in this publication was supported by the Wellcome Trust Grant 108413/A/15/D, the Office Of The Director, National Institutes Of Health of the National Institutes of Health under Award Number OT2OD026682’, grants from the CZI (Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation), and Schmidt Futures (Grant 74). This publication is part of the Human Cell Atlas - www.humancellatlas.org/publications/.

Competing interests

Since January 2019, S.A.T. has been remunerated for consulting and SAB membership by Foresite Labs, GlaxoSmithKline, Biogen, Roche and Genentech, and is a founder and equity holder of Transition Bio. A.R. is a founder and equity holder in Celsius Therapeutics, an equity holder in Immunitas Therapeutics, and was a scientific advisory board member for ThermoFisher Scientific, Syros Pharmaceuticals and Neogene Therapeutics until August 1, 2020. From August 1, 2020, A.R. is an employee of Genentech. A.R. is a named inventor on several patents and patent applications filed by the Broad Institute in the area of single cell and spatial genomics. Other authors declare no competing interests.
Fig. 1: A graph representation of a portion of the Cell Ontology centred around the term Kupffer cell. Graph showing the relationships between terms for anatomical structures (e.g. hepatic sinusoid), cell types (e.g. macrophage), and functional roles (e.g. erythrocyte clearance). Relationships shown include 'is a' which records the classification, 'part of' which relates cells to their tissues and organs, 'located in' which relates cells to spaces such as the hepatic sinusoid, 'develops in' which records the developmental origin, and 'capable of' which records the function.

Fig. 2: A cell ontology links human cell types with anatomy and cell state transition. a, The Cell Ontology (CL) has terms for a variety of cell types associated with the hepatic sinusoid (UBERON:0001281). The classification of these cell types allows them to be grouped with other cells from the same location (e.g. Kupffer cells (CL:0000091) can be grouped with other tissue-resident macrophages or with cells of the hepatic sinusoid). b, Ontologies can be used to encode transitions through diverse cell states. Examples include T cell activation following antigen recognition, cell cycling, neuron development and maturation, smooth muscle cell contraction and relaxation, and cell destruction after oxidative stress.
Table 1: Current status of cell type enumerations in the Cell Ontology and HCA data.

Summary of cell type numbers in the Cell Ontology and HCA data.

Tissue	No. cell types (Cell Ontology version: 2021-04-22)	No. cell types as per HCA Ref	HCA Ref
Kidney	127	33 (mature)/44 (fetal)	Stewart et al., 2019⁵⁵
Lymph node	12	19	James et al., 2020⁵⁶
Small and large intestine	125	132	Elmentaite et al., 2021⁶⁰
Lung	27	21; 58	Vieira Braga et al., 2019⁵⁷; Travaglini et al., 2020⁵⁸
Liver	19	21; 39	Ramachandran et al., 2019⁵⁹; Aizarani et al., 2019⁶⁰
Muscle	31	19	Litviňuková et al., 2020⁵¹
Esophagus	11	18	Madissoon et al., 2019⁶
Heart	54	67	Litviňuková et al., 2020⁵¹
Thymus	55	44	Park et al., 2020⁶²
Brain (primary motor cortex)	133	127	Bakken et al., 2020⁴²
Bone marrow and blood	515	48	HCA Data Portal
Skin	71	34	Reynolds et al., 2021⁵³
Endometrium and decidua	5	14; 11	Garcia-Alonso et al., 2021⁶⁴; Vento-Tormo et al., 2018⁷
Placenta	10	5	Vento-Tormo et al., 2018⁷
Project	Description	CL Use	URL
--	---	--	---
Cell Annotation Platform	An open annotation platform for scRNA-seq data	Uses CL and free text for cell type annotation	http://celltype.info
EBI Single Cell Expression Atlas & Cambridge Cell Atlas	Open public repository for exploration of single cell gene expression data	Uses CL to annotate samples and cell types in tertiary analysis	https://www.ebi.ac.uk/gxa/sc and https://www.cambridgecellatlas.org
HCA/DCP	Community generated, multi-omic, open data processed by standardized pipelines	Uses CL to annotate samples and cell types in tertiary analysis	https://data.humancellatlas.org
HuBMAP/CCF ASCT+B tables	Expert curated tables of human cell types, their markers and anatomical context	Maps all cell types to CL	https://hubmapconsortium.github.io/ccf-asct-reporter
cellxgene	An open annotation platform requiring annotation with ontology terms	Uses CL to annotate samples and cell types in tertiary analysis	https://chanzuckerberg.github.io/cellxgene
Tabula Muris	Curated whole mouse scRNA-seq atlas	Uses CL to annotate gross cell types, extending definitions with free text and markers	https://tabula-muris.ds.czbiohub.org
Monarch Initiative	A resource building ontologies of phenotypes and disease and using these to build an integrated collection of phenotype/disease to gene/variant associations	Defines cellular phenotypes and diseases	https://monarchinitiative.org
Gene Ontology	The world’s largest source of information on the function and location of gene products	Defines cell type-specific organelles and biological processes	http://geneontology.org
CellTypist	An open source tool for automated cell type annotations as well as a work group in charge of curating models and ontologies	Maps all cell types to CL	https://www.celltypist.org
----------------	---	---	--
Human Immunology Project Consortium (HIPC)	A comprehensive, centralised research resource with the goal of facilitating a comprehensive understanding of the human immune system and its regulation	Works with CL to improve the representation of human immune cell types for use in data annotation	https://www.immune-profiling.org/hipc
References

1. Regev, A. et al. The Human Cell Atlas. *Elife* 6 (2017).
2. Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A. & Teichmann, S.A. The Human Cell Atlas: from vision to reality. *Nature* 550, 451-453 (2017).
3. Aldridge, S. & Teichmann, S.A. Single cell transcriptomics comes of age. *Nat Commun* 11, 4307 (2020).
4. Popescu, D.M. et al. Decoding human fetal liver haematopoiesis. *Nature* 574, 365-371 (2019).
5. Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. *Genome Biol* 21, 1 (2019).
6. Hagai, T. et al. Gene expression variability across cells and species shapes innate immunity. *Nature* 563, 197-202 (2018).
7. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. *Nature* 563, 347-353 (2018).
8. Hodge, R.D. et al. Conserved cell types with divergent features in human versus mouse cortex. *Nature* 573, 61-68 (2019).
9. Drokhlyansky, E. et al. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. *Cell* 182, 1606-1622 e1623 (2020).
10. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. *Nature* 597, 250-255 (2021).
11. Bodenreider, O. & Stevens, R. Bio-ontologies: current trends and future directions. *Brief Bioinform* 7, 256-274 (2006).
12. Diehl, A.D. et al. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability. *J Biomed Semantics* 7, 44 (2016).
13. Costa, M., Reeve, S., Grumbling, G. & Osumi-Sutherland, D. The Drosophila anatomy ontology. *J Biomed Semantics* 4, 32 (2013).
14. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. *Nature* 489, 57-74 (2012).
15. Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. *Nat Biotechnol* 25, 1251-1255 (2007).
16. Milyaev, N. et al. The Virtual Fly Brain browser and query interface. *Bioinformatics* 28, 411-415 (2012).
17. Osumi-Sutherland, D., Costa, M., Court, R. & O’Kane, C.J. Virtual Fly Brain - Using OWL to support the mapping and genetic dissection of the Drosophila brain. *CEUR Workshop Proc* 1265, 85-96 (2014).
18. Li, H. et al. Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly. *bioRxiv*, 2021.2007.2004.451050 (2021).
19. Gene Ontology, C. The Gene Ontology resource: enriching a GOld mine. *Nucleic Acids Res* 49, D325-D334 (2021).
20. Mungall, C.J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. *Nucleic Acids Res* 45, D325-D334 (2021).
21. Jacqz, E., Branch, R.A., Heidemann, H. & Aujard, Y. [Prevention of nephrotoxicity of amphotericin B during the treatment of deep candidiasis]. *Ann Biol Clin (Paris)* 45, 689-693 (1987).
22. Hu, B.C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. *Nature* 574, 187-192 (2019).
23. Ecker, J.R. et al. The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. *Neuron* 96, 542-557 (2017).
24. Young, M.D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. *Science* 361, 594-599 (2018).
25. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. *Nat Med* 26, 681-687 (2020).
26. Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. *Nat Med* **27**, 546-559 (2021).
27. Delorey, T.M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. *Nature* (2021).
28. Mungall, C.J., Torniai, C., Gkoutos, G.V., Lewis, S.E. & Haendel, M.A. Uberon, an integrative multi-species anatomy ontology. *Genome Biol* **13**, R5 (2012).
29. Bernard, A., Institut national de la santé et de la recherche médicale (France), World Health Organization. & IUIS. *Leucocyte typing : human leucocyte differentiation antigens detected by monoclonal antibodies : specification, classification, nomenclature = Typage leucocytaire : antigènes de différenciation leucocytaire humains révélés par les anticorps monoclonaux.* (Springer-Verlag, Berlin ; New York; 1984).
30. Reinherz, E.L. *Leukocyte typing II.* (Springer-Verlag, New York; 1986).
31. McMichael, A.J. *Leukocyte typing III : white cell differentiation antigens.* (Oxford University Press, Oxford ; New York; 1987).
32. Knapp, W. *Leucocyte typing IV : white cell differentiation antigens.* (Oxford University Press, Oxford ; New York; 1989).
33. Schlossman, S.F. *Leucocyte typing V : white cell differentiation antigens : proceedings of the fifth international workshop and conference held in Boston, USA, 3-7 November, 1993.* (Oxford University Press, Oxford ; New York; 1995).
34. Kishimoto, T. *Leucocyte typing VI : white cell differentiation antigens : proceedings of the sixth international workshop and conference held in Kobe, Japan, 10-14 November 1996.* (Garland Pub., New York; 1998).
35. Mason, D. *Leucocyte typing VII : white cell differentiation antigens : proceedings of the Seventh International Workshop and Conference held in Harrogate, United Kindom.* (Oxford University Press, Oxford; 2002).
36. Zola, H. *Leukocyte and stromal cell molecules : the CD markers.* (Wiley-Liss, Hoboken, N.J.; 2007).
37. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. *Nat Neurosci* **23**, 1456-1468 (2020).
38. Shekhar, K. et al. Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. *Cell* **166**, 1308-1323 e1330 (2016).
39. Vermeiren, S., Bellefroid, E.J. & Desiderio, S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. *Front Cell Dev Biol* **8**, 587699 (2020).
40. Driskell, R.R. & Watt, F.M. Understanding fibroblast heterogeneity in the skin. *Trends Cell Biol* **25**, 92-99 (2015).
41. Miao, Z. et al. Putative cell type discovery from single-cell gene expression data. *Nat Methods* **17**, 621-628 (2020).
42. Bakken, T.E. et al. Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse. *bioRxiv*, 2020.2003.2031.016972 (2020).
43. Miller, J.A. et al. Common cell type nomenclature for the mammalian brain. *Elife* **9** (2020).
44. Börner, K. et al. Anatomical Structures, Cell Types, and Biomarkers Tables Plus 3D Reference Organs in Support of a Human Reference Atlas. *bioRxiv*, 2021.2005.2031.446440 (2021).
45. Qi, Z. et al. Single-Cell Deconvolution of Head and Neck Squamous Cell Carcinoma. *Cancers (Basel)* **13** (2021).
46. Kiselev, V.Y., Yu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. *Nat Methods* **15**, 359-362 (2018).
47. Kimmel, J.C. & Kelley, D.R. Semi-supervised adversarial neural networks for single-cell classification. *Genome Res* (2021).
48. Domínguez, C.C. et al. Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture across the human body. *bioRxiv*, 2021.2004.2028.441762 (2021).
49. Hao, Y. et al. Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587 e3529 (2021).

50. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. *Nat Immunol* **20**, 163-172 (2019).

51. Bernstein, M.N., Ma, Z., Gleicher, M. & Dewey, C.N. CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology. *iScience* **24**, 101913 (2021).

52. Hou, R., Denisenko, E. & Forrest, A.R.R. scMatch: a single-cell gene expression profile annotation tool using reference datasets. *Bioinformatics* **35**, 4688-4695 (2019).

53. Orvis, J. et al. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. *Nat Methods* **18**, 843-844 (2021).

54. Megill, C. et al. cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. *bioRxiv*, 2021.2004.2005.438318 (2021).

55. Stewart, B.J. et al. Spatiotemporal immune zonation of the human kidney. *Science* **365**, 1461-1466 (2019).

56. James, K.R. et al. Distinct microbial and immune niches of the human colon. *Nat Immunol* **21**, 343-353 (2020).

57. Vieira Braga, F.A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. *Nat Med* **25**, 1153-1163 (2019).

58. Travaglini, K.J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. *Nature* **587**, 619-625 (2020).

59. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. *Nature* **575**, 512-518 (2019).

60. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. *Nature* **572**, 199-204 (2019).

61. Litvinukova, M. et al. Cells of the adult human heart. *Nature* **588**, 466-472 (2020).

62. Park, J.E. et al. A cell atlas of human thymic development defines T cell repertoire formation. *Science* **367** (2020).

63. Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. *Science* **371** (2021).

64. Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. *bioRxiv*, 2021.2001.2002.425073 (2021).