SAŽETAK

Uvod/cilj: Dijabetesna ketoacidoza (DKA) je najznačajniji uzrok mortaliteta mladih sa tipom 1 dijabetesa melitusa (T1DM). Rezultati poslednjih istraživanja ukazuju na zabrinjavajuće visoku prevalenciju DKA u trenutku postavljanja dijagnoze T1DM kod mladih u Beogradu. Cilj ovog istraživanja bila je procena učestalosti DKA kod dece i adolescenata sa novootkrivenim T1DM tokom desetogodišnjeg perioda u tercijernom centru u Beogradu.

Metode: Podaci su prikupljeni retrospektivnom pretragom medicinske dokumentacije sve dece i adolescenata sa novootkrivenim T1DM koji su bili hospitalizovani u našem centru tokom perioda od 1. januara 2007. godine do 1. januara 2017. godine.

Rezultati: Dijagnoza novootkrivenog T1DM postavljena je kod ukupno 501 deteta (233 devojčice i 268 dečaka) prosečnog uzrasta 9,55 ± 4,26 godina, sa prosečnom vrednošću pH od 7,28 ± 0,14 (6,78-7,51) u trenutku postavljanja dijagnoze. Devojčice sa T1DM su u prosečnom mlađe u odnosu na dečake (9,05 ± 4,04 god. u odnosu na 9,98 ± 4,41 god, respektivno, p<0.05). Od ukupnog broja pacijenata, 191 (38,1%) je u trenutku postavljanja DKA, 47.6% od kojih je u blagoj, 26,2% u umerenoj, a 26,2% u teškoj ketoacidozi.

Zaključak: Rezultati ukazuju na zabrinjavajuće visoku prevalenciju DKA u trećijernom centru u Beogradu. Ovi nalazi ukazuju na potrebu posvetovanja i vođenja pozornosti u vezi sa novootkrivenim T1DM dece i adolescenata sa T1DM u Beogradu. Ovi nalazi ukazuju na potrebu posvetovanja i vođenja pozornosti u vezi sa novootkrivenim T1DM dece i adolescenata sa T1DM u Beogradu.

SUMMARY

Introduction/Aim: Diabetic ketoacidosis (DKA) is one of the most important causes of acute mortality in youth with type 1 diabetes mellitus (T1DM). Recently published data suggested worryingly high frequency of DKA at the onset of T1DM in Belgrade youth. The goal of this study was to assess the frequency of DKA at the onset of T1DM and the associated risk factors in Belgrade youth during the previous 10 years at a tertiary centre.

Methods: Data were collected retrospectively from the medical records of all children with new-onset T1DM admitted to our centre during the study period between 1st January 2007 and 1st January 2017.

Results: During the study period, a total of 501 subjects (233 girls and 268 boys) were diagnosed with new-onset T1DM, with a mean age of 9.55 ± 4.26 years, and mean pH at the time of diagnosis of 7.28 ± 0.14 (6.78-7.51). Girls with T1DM were younger compared to boys (9.05 ± 4.04 years vs. 9.98 ± 4.41 years, respectively, p < 0.05). Of all patients, 191 (38.1%) presented with DKA, 47.6% of which were classified as mild, 26.2% as moderate and 26.2% as severe DKA.

Conclusion: There is an alarmingly high rate of DKA at the onset of T1DM in Belgrade youth with no significant differences between different age groups. These findings emphasize the need for intensive public health preventive actions aimed at early diagnosis of T1DM in all age groups.
Introduction

Diabetic ketoacidosis (DKA) is one of the most important causes of acute mortality in youth with type 1 diabetes mellitus (T1DM) (1,2). The frequency of DKA at the time of diagnosis of T1DM is highly variable, with worldwide reported incidences ranging from 12.8 to 80% (3-18).

Serbia has a population of children under the age of 19 years of 1,427,272, and a large proportion of youth (317,258 - 22%) lives in Belgrade, the capital city (19). There are two tertiary paediatric centres in Belgrade with paediatric endocrinology departments and intensive care units in which the children with newly diagnosed T1DM are treated: the University Children’s Hospital, and our hospital the Mother and Child Healthcare Institute of Serbia “Dr Vukan Cupic” (18). Besides those residing in Belgrade, children from other parts of Serbia are also frequently being referred to these two centres in Belgrade at the time of diagnosis due to the lack of resources in other regions.

The recently published data from the University Children’s Hospital in Belgrade, the other tertiary centre from Belgrade, revealed alarmingly high frequency of DKA (32.9%) in youth with newly diagnosed T1DM during the period 1991-2011, with DKA frequency up to 55% in children younger than 5 years (18). Considering that such high prevalence of DKA in children and adolescents with newly diagnosed T1DM represents a worrisome and significant public-health issue, we analyzed the medical records of patients diagnosed at our centre in order to provide a comprehensive insight into the frequency of DKA in youth with newly diagnosed T1DM living in the Belgrade area.

The aim of the present study was to analyze the frequency of DKA and the associated risk factors at the time of onset of T1DM during the period of the past 10 years (2007-2017) at our hospital, the other tertiary centre in Belgrade, Serbia.

Methods

The data were collected retrospectively from the medical records of all children with new-onset T1DM admitted to the Mother and Child Healthcare Institute of Serbia “Dr Vukan Cupic” during the study period between 1st January 2007 and 1st January 2017. Subjects with other types of diabetes were excluded from this study. Data regarding patients’ gender, age at diagnosis, duration of symptoms, blood pH (or serum bicarbonates when pH was unavailable), glucose and blood glycosylated haemoglobin (HbA1c) level at the time of diagnosis were collected retrospectively from the medical records. Study protocol was approved by the Hospital Ethics Committee and was in accordance with the Declaration of Helsinki.

The final study cohort included 501 patients (233 girls and 268 boys) with newly diagnosed T1DM. The patients were classified into three age groups: under 5 years, 5-11 years and > 11 years. Based on the date of admission, the study period was also stratified into two 5-year periods.

The diagnosis of DKA was based on ISPAD 2014 guidelines: hyperglycaemia (blood glucose > 11 mmol/L) with acidosis (venous pH < 7.3 or bicarbonate < 15 mmol/L), and with ketoacidemia or ketonuria (20). DKA severity was also categorized according to the ISPAD 2014 guidelines as mild (venous pH < 7.3, bicarbonate < 15 mmol/L), moderate (pH < 7.2, bicarbonate < 10 mmol/L) or severe (pH < 7.1, bicarbonate < 5 mmol/L) (20).

Differences in the means between groups were tested using the independent t-test, Mann-Whitney U test and Kruskal-Wallis independent samples test, depending on the number of groups and the distribution of the variables, and the Pearson’s chi-square test was used for categorical variables. P-values < 0.05 were considered as statistically significant. Analyses were conducted using the SPSS version 20 (SPSS Inc, Chicago, IL) statistical software.
Results

Of all 501 patients with T1DM, 191 (38.1%) presented with DKA and 310 (61.9%) without DKA (Table 1). DKA was present at the time of diagnosis slightly more often in newly diagnosed girls (40.8%) compared to boys (35.8%); however, the difference was not statistically significant. In the group of patients without DKA, the mean age was 9.73 ± 4.26 years which was a slightly higher than in the group with DKA 9.25 ± 4.27. In the group of patients with DKA, mean blood glucose level was significantly higher than in the group without DKA. As expected, the mean pH among patients with DKA was significantly lower. Also, the level of HbA1c was significantly higher in the group with DKA than in the group without DKA. Patients with DKA had a slightly shorter duration of symptoms, but without statistically significant difference.

Table 1. Characteristics of patients with or without diabetic ketoacidosis*

	No DKA (Mean±SD)	Ranges	DKA (Mean±SD)	Ranges	p value*
N	310	191			
Age at diagnosis (years)	9.73 ± 4.26	1.24-17.72	9.25 ± 4.27	0.93-18.74	NS
Sex ratio (males %)	55.5%	50.3%			NS**

Biochemical parameters

	No DKA (Mean±SD)	Ranges	DKA (Mean±SD)	Ranges	p value*
pH	7.37 ± 0.04	7.30-7.51	7.15 ± 0.12	6.78-7.29	<0.001
Glucose (mmol/L)	21.8 ± 8.6	7.3-55.0	25.5 ± 8.4	10.1-57.8	<0.001
HbA1c (%)	11.4 ± 2.2	6.3-18.9	12.2 ± 2.1	7.6-19.7	0.001
Duration of symptoms (days)	20.7 ± 21.1	0-155	21.3 ± 21.2	0-120	NS

No DKA – patients without diabetic ketoacidosis at the time of T1DM diagnosis; DKA – patients with diabetic ketoacidosis at the time of T1DM diagnosis; NS – not statistically significant; *p value according to the t test; **p value according to Pearson’s chi-square test.

When subjects were compared according to DKA severity at the onset of T1DM, there were no significant differences in age at diagnosis, gender, or levels of HbA1c (Table 2). As expected, pH level (p < 0.001) was significantly lower in the groups with moderate and severe DKA, and interestingly, blood glucose levels were significantly higher in the group with severe DKA (p = 0.002).

Table 2. Characteristics of patients with diabetic ketoacidosis (DKA) (N = 310) at time of diagnosis regarding DKA severity

	Mild DKA	Moderate DKA	Severe DKA	p value*
N (proportion of cohort)	91 (47.8%)	50 (26.2%)	50 (26.2%)	
Age at diagnosis (years)	10.0 ± 4.4	8.5 ± 3.5	8.6 ± 4.6	NS
Sex ratio (males %)	51%	50%	50%	NS**

Biochemical parameters

	Mild DKA	Moderate DKA	Severe DKA	p value*
pH	7.25 ± 0.03	7.16 ± 0.03	6.98 ± 0.07	<0.001
Glucose (mmol/L)	23.9 ± 8.3	24.4 ± 5.8	29.4 ± 9.6	0.002
HbA1c (%)	12.4 ± 2.1	12.3 ± 2.1	11.9 ± 2.3	NS

NS – not statistically significant; *p value according to the Kruskal-Wallis independent samples test; **p value according to Pearson’s chi-square test

There were 96 children (19.2%) aged less than 5 years at the time of diagnosis of T1DM (Table 3). The incidence of DKA in this age group was 40.6% (n = 39), without statistically significant differences in DKA prevalence in older age groups, as shown in Table 3. In the youngest age group, higher frequency of severe DKA was observed, but also, without any statistical significance. Slightly higher levels of HbA1c were observed in older age groups. There was no significant difference in the duration of symptoms among different age groups.

Table 3. Characteristics of patients with diabetic ketoacidosis (DKA) (N = 310) at time of diagnosis regarding age group

	N < 5 years	5 - 10 years	11 - 15 years	16 - 18 years	p value*
N	96	205	119	81	
Age at diagnosis (years)	4.25 ± 2.6	8.5 ± 4.4	9.2 ± 4.6	10.2 ± 4.6	NS
Sex ratio (males %)	51%	50%	50%	50%	NS
Table 3. Characteristics of patients with newly diagnosed T1DM in different age groups

Characteristics	< 5 years (N=96)	5-11 years (N=198)	>11 years (N=207)	p value*
DKA at diagnosis, n (%)				
Mild	16 (41.05%)	33 (41.3%)	42 (58.3%)	NS**
Moderate	10 (25.6%)	28 (35.0%)	12 (16.7%)	NS**
Severe	13 (33.3%)	19 (23.8%)	18 (25.0%)	NS**

Severity of DKA

Laboratory findings

* DKA – diabetic ketoacidosis; NS – not statistically significant; *p value according to the t test; NS – not statistically significant; *p value according to the Kruskal-Wallis independent samples test; **p value according to Pearson’s chi-square test.

We also compared the first half of the study period with the last 5-year period (Table 4). In 2007-2011 period, the incidence of DKA at the time of diagnosis of T1DM, as well as the percentage of severe DKA were slightly higher, but without statistically significant difference, as shown in Table 4. Also, there were no significant differences between periods regarding the age at diagnosis of T1DM, blood glucose levels, pH or HbA1c levels.

Table 4. Comparison of children diagnosed with type 1 diabetes between 2007-2011 and 2012-2016.

Characteristics	2007-2011 (N=267)	2012-2016 (N=234)	p value
Age at diagnosis (years)	9.3±4.4 (0.9-18.7)	9.8±4.1 (1.4-18.0)	NS
Blood glucose (mmol/L)	22.9±9.0 (7.3-57.8)	23.4±8.3 (8.0-49.6)	NS
pH	7.26±0.14 (6.90-7.49)	7.29±0.13 (6.78-7.51)	NS
HbA1c (%)	11.5±2.3 (6.6-19.7)	11.9±2.1 (6.3-17.3)	NS
DKA n (%)	108 (40.4%)	83 (35.5%)	NS
Mild	52 (48.1%)	39 (47.0%)	NS**
Moderate	22 (20.4%)	28 (33.7%)	NS**
Severe	34 (31.5%)	16 (19.3%)	NS**

* DKA – diabetic ketoacidosis; NS – not statistically significant; p value according to t-test; *p value according to the t test; **p value according to Pearson’s chi-square test.

Discussion

Mother and Child Healthcare Institute of Serbia “Dr Vukan Cupic” is the largest paediatric hospital in Serbia and one of the two tertiary centres in the capital city Belgrade that treats children with T1DM from the Belgrade area. Considering the high prevalence of DKA at the time of T1DM diagnosis recently reported by the authors from the other tertiary centre from Belgrade, and that such a high prevalence of DKA represents a worrisome public-health issue, this study analyzed the data from medical records of patients diagnosed at our centre, to provide a complete insight into the DKA at the onset of T1DM in children and adolescents living in Belgrade (18).

The frequency of DKA at the time of diagnosis of T1DM is known to be highly variable (3-17). In our study, 38.1% newly
diagnosed T1DM patients had DKA, which, together with the DKA incidence of 32.9% reported by the study performed at the University Children’s Hospital in Belgrade, provides a complete insight and confirms the alarmingly high frequency of DKA at the time of diagnosis of T1DM in youth living in Belgrade (18). Similar worrisome DKA frequencies at T1DM onset were reported in other countries in the region, such as Croatia (31.3-41.7%) and Bosnia (48%) (21,22), although data from Montenegro showed a significantly lower incidence of 24.5% (23).

Many studies have demonstrated higher incidence of DKA at the time of T1DM diagnosis in patients aged < 5 years, with even higher rates in children younger than 2 years (17,24-27). Many authors suggest that higher incidence of T1DM in some countries is associated with a lower prevalence of DKA at the time of T1DM diagnosis, as the study from Finland that showed a relative reduction of DKA incidence over a period of 20 years, especially in the group of children younger than 5 years (28,29). However, a large study from 106 centers in Germany and Austria failed to demonstrate changes in either incidence or severity of DKA during the study period 1995-2007, while a steadily high DKA prevalence of 43.9% was observed in a study conducted on a national level in France (30,31). In the present study, although slightly higher incidence of DKA was present in younger patients, and although the prevalence of severe DKA was also higher in this age group, these findings were not statistically significant and the DKA prevalence was fairly similar among the age groups. This emphasizes the urgency of public health preventive actions aimed at early T1DM diagnosis in all age groups, including school-aged children and adolescents, to reduce the rate of DKA, a potentially fatal T1DM complication.

When two consecutive 5-year periods were compared in the present study, the number of children and adolescents with new-onset T1DM was similar. The observed mild decline in the prevalence of DKA at the time of onset of T1DM in youth from 40.4% in the first 5-year period to 35.5% in the second, together with similar findings from the previous Belgrade study, could suggest that the public awareness of the T1DM has increased over the last couple of years (18). However, the rate of DKA at onset of T1DM in Belgrade youth is still alarmingly high and suggests the fact that public health preventive programs should be implemented in order to increase public awareness of T1DM in youth, as well as awareness amongst health care professionals.

Findings of the present study should be interpreted in the light of its acknowledged limitations. Impact of ethnicity, income status and family history were not assessed in the present study. Also, health insurance status was not assessed, though this should not have influenced findings in a significant manner, considering that free healthcare coverage is provided to all children in Serbia.

Conclusion

The presented findings confirm the alarmingly high rate of DKA at the onset of T1DM in Belgrade youth with no significant differences between different age groups. These findings emphasize the need for intensive public health preventive actions aimed at early T1DM diagnosis in all age groups, including school-aged children and adolescents, to reduce the rate of DKA, a potentially fatal T1DM complication.

References

1. Edge JA, Ford-Adams ME, Dunger DB. Causes of death in children with insulin dependent diabetes 1990-96. Arch. Dis. Child 1999; 81:318-23.
2. Sperling MA. Diabetic ketoacidosis in children: the problems continue (Editorial). Pediatr Diabetes 2006; 6:67-8.
3. Usher-Smith JA, Thompson M, Ercole A, Walter FM. Variation between countries in the frequency of diabetic ketoacidosis at first presentation of type 1 diabetes in children: a systematic review. Diabetologia 2012; 55(11):2878-94.
4. Bui H, To T, Stein R, Fung K, Daneman D. Is diabetic ketoacidosis at disease onset a result of missed diagnosis? J Pediatr 2010; 156(3):472-7.
5. Neu A, Willasch S, Ehehalt S, Hub R, Ranke MB, Baden-Wuerttemberg DG. Ketoacidosis at onset of type 1 diabetes mellitus in children: frequency and clinical presentation. Pediatric diabetes 2003; 4(2):77-81.
6. Fritsch M, Schober E, Rami-Merhar B, Hofer S, Frohlich-Reiterer E, Waldhoer T, et al. Diabetic ketoacidosis at diagnosis in Austrian children: a population-based analysis, 1989-2011. J Pediatr 2013; 163(5):1484-8 e1.
7. Lansdown AJ, Barton J, Warner J, Williams D, Gregory JW, Harvey JN, et al. Prevalence of ketoacidosis at diagnosis of childhood onset Type 1 diabetes in Wales from 1991 to 2009.
and effect of a publicity campaign. Diabetic medicine: a journal of the British Diabetic Association 2012; 29(12):1506-9.
8. Rewers A, Klingensmith G, Davis C, Petitti DB, Pihoker C, Rodriguez B, et al. Presence of diabetic ketoacidosis at diagnosis of diabetes mellitus in youth: the Search for Diabetes in Youth Study. Pediatrics 2008; 121(5):e1258-66.
9. Kamal Alanani NM, Alsulaimani AA. Epidemiological pattern of newly diagnosed children with type 1 diabetes mellitus, Taif, Saudi Arabia. The Scientific World Journal 2013; 2013:421569.
10. Dabelea D, Rewers A, Stafford JM, Standiford DA, Lawrence JM, Saydah S, et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics 2014; 133(4):e938-45.
11. Levy-Marchal C, Patterson CC, Green A, Europe EASG, Diabetes. Geographical variation of presentation at diagnosis of type I diabetes in children: the EURODIAB study. European and Diabetes. Diabetologia 2001; 44 Suppl 3:B75-80.
12. Alvi NS, Davies P, Kirk JM, Shaw NJ. Diabetic ketoacidosis in Asian children. Archives of disease in childhood 2001; 85(1):60-1.
13. Hang JYH, Jalaludin MY, Mohamad Adam B, Fuziah MZ, WU LL, Rasat R, et al. Diabetic ketoacidosis at diagnosis of type 1 diabetes mellitus in Malaysian children and adolescents. Malays Physician 2015; 10(3):11-8.
14. Soltesz G, Patterson CC, Dahlquist G. et al. Worldwide childhood type 1 diabetes incidence-what can we learn from epidemiology? Pediatr Diabetes 2007; (6):6-14.
15. Cherubini V, Skrami E, Ferrito L, Zucchini S, Scaramuzzza A, Bonfanti R, et al. Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetology (ISPED). High frequency of diabetic ketoacidosis at diagnosis of type 1 diabetes in Italian children: a nationwide longitudinal study, 2004-2013. Sci Rep 2016; 6:38844.
16. Shaltout AA, Wake D, Thanaraj TA, Omar DM, Al-Abdul Razzaq D, Channanath A, et al. Incidence of type 1 diabetes has doubled in Kuwaiti children 0-14 years over the last 20 years. Pediatr Diabetes 2017; 18(8):761-6.
17. Jefferies C, Cutfield SW, Derraik JG, Bhagvandas J, Albert BB, Hofman PL, et al. 15-year incidence of diabetic ketoacidosis at onset of type 1 diabetes in children from a regional setting (Auckland, New Zealand). Sci Rep 2015; 5:10358.
18. Jesic MD, Jesic MM, Stanisavljevic D, Zdravkovic V, Bojic V, Vranjes M et al. Ketoacidosis at presentation of type 1 diabetes mellitus in children: a retrospective 20-year experience from a tertiary care hospital in Serbia. Eur J Pediatr 2013;172(12):1581-5.
19. Zoran Jančić. Census atlas 2011. Belgrade: The Statistical Office of the Republic of Serbia, 2011. Available at: http://popis2011.stat.rs/ 20. Wolfsdorf JI, Allgrove J, Craig ME, Edge J, Glaser N, Jain V. et al. ISPAD Clinical Practice Consensus Guidelines 2014. Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes 2014; 15 Suppl 20:154-79. doi: 10.1111/pedi.12165.
21. Stipančić G, Sabolić La Grasta L, Šepec Požgaj M, Radica A, Skrabić V, Severinski S, et al. Regional difference in incidence and clinical presentation of type 1 diabetes in children aged under 15 years in Croatia. Croat Med J 2012; 53:141–8.
22. Tahirovic H, Toromanovic A, Bacaj D, Hasanovic E. Ketoacidosis at onset of type 1 diabetes mellitus in children in Bosnia and Herzegovina: frequency and clinical presentation. J Pediatr Endocrinol Metab 2007; 20(10):1137-40.
23. Samardžić M, Terzic N, Popovic M. Diabetic ketoacidosis in children with newly detected type 1 diabetes in Montenegro from 1999 to 2008. Med Pregl 2012; 65(11-12):503-6.
24. Roche EF, Menon A, Gill D, Hoey H. Clinical presentation of type 1 diabetes. Pediatr Diabetes 2005; 6:79–83.
25. Lokulo-Sodipe K, Moon R J, Edge JA, Davies J H. Identifying targets to reduce the incidence of diabetic ketoacidosis at diagnosis of type 1 diabetes in the UK. Arch Dis Child 2014; 99, 438–42.
26. Oyarzabal Irigoyen M; García Cuartero B; Barrio Castellanos R; Torres Lacruz M; Gómez Gila AL; González Casado I. et al. Ketoacidosis at onset of type 1 diabetes mellitus in pediatric age in Spain and review of the literature. Pediatr Endocrinol Rev 2012; 9: 669–71.
27. de Vries L, Oren L, Lazar L, Lebenthal Y, Shalitin S, Phillip M. Factors associated with diabetic ketoacidosis at onset of Type 1 diabetes in children and adolescents. Diabet Med 2013; 30:1360–6.
28. Eurodiab, ACE Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet 2000; 355:873–6.
Ketoacidosis at diagnosis of type 1 diabetes in children in northern Finland: temporal changes over 20 years. Diabetes Care 2007; 30:861–6.
30. Neu A, Hofer SE, Karges B, Oeverink R, Rosenbauer J, Holl RW; DPV Initiative and the German BMBF Competency Network for Diabetes Mellitus. Ketoacidosis at diabetes onset is still frequent in children and adolescents: a multicenter analysis of 14,664 patients from 106 institutions. Diabetes Care 2009; 32:1647–8.

Conflict of interest: None declared.

Received (primljen): 03.11.2019.
Revised (revizija): 13.12.2019.
Accepted (prihvaćen): 16.12.2019.
Online first: 17.12.2019.

Kontakt: Asist. Dr sci. med. Rade Vukovic, Institut za zdravstvenu zaštitu majke i deteta Srbije „Dr Vukan Čupić”, Radoja Dakića 8, 11070 Beograd, Srbija; e-mail: radevukovic9@gmail.com

Correspondence to: Assist. Rade Vukovic, MD, PhD; Dept. of Endocrinology, Mother and Child Healthcare Institute of Serbia “Dr Vukan Cupic”, Radoja Dakica 8, 11070 Belgrade, Serbia; e-mail: radevukovic9@gmail.com
