QUANTUM PARTICLE BEHAVIOR IN CLASSICALLY SINGULAR SPACETIMES

D. A. KONKOWSKI
Department of Mathematics, U.S. Naval Academy
Annapolis, Maryland, 21012, USA
E-mail: dak@usna.edu

T.M. HELLIWELL
Department of Physics, Harvey Mudd College
Claremont, California, 91711, USA
E-mail: helliwell@HMC.edu

We review the classical and quantum singularity structure of a broad class of spacetimes with asymptotically power-law behavior near the origin. Quantum considerations “heal” a large class of scalar curvature singularities.

1. Introduction

The question addressed in this review is: What happens if instead of classical particle paths (time-like and null geodesics) one uses quantum mechanical particles to identify singularities? The answer for any asymptotically power-law space-time is given. This conference proceeding is based on articles by the authors and by K. Lake.

2. Types of Singularities

2.1. Classical Singularities

A classical singularity is indicated by incomplete geodesics or incomplete paths of bounded acceleration in a maximal spacetime. Since, by definition, a spacetime is smooth, all irregular points (singularities) have been excised; a singular point is a boundary point of the spacetime. There are three different types of singularity: quasi-regular, non-scalar curvature and scalar curvature. Whereas quasi-regular singularities are topological, curvature singularities are indicated by diverging components of the Riemann tensor when it is evaluated in a parallel-propagated orthonormal frame carried along a causal curve ending at the singularity.

2.2. Quantum Singularities

A spacetime is QM (quantum-mechanically) nonsingular if the evolution of a test scalar wave packet, representing the quantum particle, is uniquely determined by the initial wave packet, manifold and metric, without having to put boundary conditions at the singularity. Technically, a static ST (spacetime) is QM-singular if the spatial portion of the Klein-Gordon operator is not essentially self-adjoint on $C_0^\infty(\Sigma)$ in $L^2(\Sigma)$ where Σ is a spatial slice.
3. Asymptotically Power-Law Spacetimes
We consider a class of spacetimes that can be written in power-law metric form in the limit of small r,

$$ds^2 = -r^\alpha dt^2 + r^\beta dr^2 + C^{-2}r^\gamma d\theta^2 + r^\delta(dz + A d\theta)^2$$ (1)

where $\beta, \gamma, \delta, C, A$ are constant parameters and the variables have the usual ranges. We are particularly interested in the metrics at small r, because we suppose that if the spacetime has a classical curvature singularity (and nearly all of these do), it occurs at $r = 0$. We can eliminate α by rescaling r which results in two separate metric types:

- **Type I:**
 $$ds^2 = r^\beta (-dt^2 + dr^2) + C^{-2}r^\gamma d\theta^2 + r^\delta(dz + A d\theta)^2 \quad \alpha \neq \beta + 2.$$ (2)

- **Type II:**
 $$ds^2 = -r^{\beta+2} dt^2 + r^\beta dr^2 + C^{-2}r^\gamma d\theta^2 + r^\delta(dz + A d\theta)^2 \quad \alpha = \beta + 2.$$ (3)

4. Classical Singularity Analysis
Except for isolated values of $\beta, \gamma, \delta, C, A$ all of these power-law spacetimes have diverging scalar polynomial invariants if and only if $\beta > -2$.

4.1. **Type I Spacetimes**
Lake has shown that in Type I STs $r = 0$ is timelike, naked and at a finite affine distance if and only if $\beta > -1$, implying that there is a classical singularity at $r = 0$ if and only if $\beta > -1$.

4.2. **Type II Spacetimes**
Likewise, Lake has shown that in Type II STs $r = 0$ is null, naked and at a finite affine distance and thus is a classical singularity for all $\beta > -2$.

5. Quantum Singularity Analysis
To study the quantum particle propagation in these spacetimes (for simplicity, we take $A = 0$), we use massive scalar particles described by the Klein-Gordon equation and the "limit point - limit circle" criterion of Weyl. This means that, in

*If $\alpha = \beta = \gamma = \delta = 0, C \neq 1$ indicates a quasi-regular singularity (a disclination) and $A \neq 0$ indicates a quasi-regular singularity (a dislocation) (see, e.g., Konkowski and Helliwell).
particular, we study the radial equation in a one-dimensional Schrödinger form with a ‘potential’ and determine the number of solutions that are square integrable. If we obtain a unique solution, without placing boundary conditions at the location of the classical singularity, we can then say that the Klein-Gordon operator is essentially self-adjoint and the spacetime is QM-nonsingular.

5.1. Type I Spacetimes

There is a quantum singularity "bowl" in parameter space for these metrics. The bowl is bounded by (1) a bottom which is formed from a $\beta = -2$ base plane and (2) the sides which are composed of (a) two vertical planes with $\gamma + \delta = 6$ and $\gamma + \delta = -2$ and (b) two tilted planes with $\delta = \beta + 2$ and $\gamma = \beta + 2$. Points within the bowl are QM singular; points outside the bowl are QM non-singular.

5.2. Type II Spacetimes

Type II STs are globally hyperbolic; the wave operator in this case must be essentially self-adjoint, so these spacetimes contain no quantum singularities. It is easy to verify this conclusion directly by checking the essential self-adjointness of the wave operator using the "limit point - limit circle" technique.

6. Conclusions

A large class of classically singular asymptotically power-law spacetimes has been shown to be quantum mechanically non-singular. Invoking an energy condition (e.g., weak or strong) can eliminate more singular spacetimes, but no choice completely eradicates them.

7. Acknowledgments

One of us (DAK) thanks Queen Mary, University of London, where some of this work was carried out.

References

1. T.M. Helliwell and D.A. Konkowski, *Class. Quantum Grav.* **24**, 3377 (2007).
2. K. Lake, *Gen. Rel. Grav.* **40**, 1609 (2008).
3. S.W. Hawking and G.F.R. Ellis, *The Large-Scale Structure of Spacetime* (Cambridge University Press, 1973).
4. R. Geroch, *Ann. Phys.* **48**, 526 (1968)
5. G.F.R. Ellis and B.G. Schmidt, *Gen. Rel. Grav.* **8**, 915 (1977).
6. D.A. Konkowski and T.M. Helliwell, *Gen. Rel. Grav.* **38**, 1069 (2006).
7. G.T. Horowitz and D. Marolf, *Phys. Rev. D* **52**, 5670 (1995).
8. M. Reed and B. Simon, *Functional Analysis* (Academic Press, 1972); M. Reed and B. Simon, *Fourier Analysis and Self-Adjointness* (Academic Press, 1972).
9. H. Weyl, *Math. Ann.* **68**, 220 (1910).