Providing Security in Data Aggregation using RSA Algorithm

Er. Kumar Saurabh
Assistant Professor
Ramgharia Institute of Eng. & Technology
Phagwara

Sukhpreet Singh (Research fellow)
Mtech 4th sem CSE
Ramgharia Institute of Engg. & Tech.
Phagwara

Abstract

The RSA algorithm proposed by Rivest, Adi Shamir and Leonard Adleman is cryptography technique. The current problem with wireless sensor network is how to protect the security of the sensor data. RSA algorithm is used as a digital signature authentication in the field of security, basically works on deciding encryption variable. In this also the basic concept is to decide a description variable and then decide the description variable using same encryption variable. It is a secure and fast cryptographic system. The major effort will be applied on the RSA encryption technique in order to make node authenticated as well as to secure data while dealing with aggregation.

Keywords- RSA; Wireless Sensor Network

I. INTRODUCTION

A Wireless Sensor Network [1] is a self-configuring network of small sensor nodes communicating among themselves using radio signals, and deployed in quantity to sense, monitor and understand the physical world. Wireless Sensor Network are used to collect data from the environment. Wireless Sensor Network consist of number of sensor nodes and one or more base station. The nodes in the network are connected via wireless communication channels. Each node has capability to sense data, process the data and send it to rest of nodes or to base station. These network are limited by the node battery lifetime. The sensor nodes are small, they are able to detect events, gather information, process it and then send the processed data back to sink node. The sensor nodes have limited range and as they are battery operated, they have limited power. As stated earlier the source of these sensor nodes depend upon battery, so enhancing the working period of a wireless sensor network is an important issue. [2,3]

Data Transmission: Data transmission in WSNs is application specific. It may be continuous or event driven or query-based or hybrid. In case of continuous data transmission, sensor nodes send data to the base station periodically. In event driven and query-based transmission they send data to the base station when some event occurs or a specific query is generated by the base station. Hybrid transmission uses a combination of continuous, event driven and query-based transmission, so for architecture and design of WSNs data transmission is a very significant issue.

Scalability: A WSN consists of hundreds to thousands of sensor nodes. Routing protocols must be workable with this huge number of nodes i.e., these protocols can be able to handle all of the functionalities of the sensor nodes so that the lifetime of the network can be stable.

Figure 1: Basic Wireless Sensors Network

The main design goal of wireless sensor networks is to transmit data by increasing the lifetime of the network and by employing energy efficient routing protocols. Depending on the applications used, different architectures and designs have been applied in sensor networks. Again, the performance of a routing protocol depends on the architecture and design of the network, so the architecture and design of the network is very important features in WSNs. The design of the wireless sensor network is affected by many challenging factors which must be overcome before an efficient network can be achieved in WSNs.

Node distribution [11] in WSNs is either deterministic or self-organizing and application dependant. The uniformity of the node distribution directly affects the performance of the routing protocol used for this network. In the case of deterministic node distribution, the sensor nodes are mutually placed and gathered data is transmitted through pre-determined paths. In the other case, the sensor nodes are spread over the area of interest randomly thus creating an infrastructure in an ad hoc manner.

Network Dynamicity: Since the nodes in WSNs may be static or dynamic, dynamicity of the network is a challenging issue. Most of the routing protocols assume that the sensor nodes and the base stations are fixed i.e., they are static, but in the case of dynamic BS or nodes routes from one node to another must be reported periodically within the network so that all nodes can transmit data via the reported route. Again depending on the application, the sensed event can be dynamic or static. For example, in target detection/tracking applications, the event is dynamic, whereas forest monitoring for early fire prevention is an example of a static event. Monitoring static events works in reactive mode. On the other hand, dynamic events work in proactive mode.
achieved by signal processing methods. This technique is used by some routing protocols for energy efficiency and data transfer optimization. Since sensor nodes get data from multiple nodes, similar packets may be fused generating redundant data. In data fusion or data aggregation process awareness is needed to avoid this redundant data.

II. ATTACKS IN WIRELESS SENSOR NETWORK

HELLO Flood Attacks
HELLO messages are used in many protocols by nodes that want to announce their presence and proximity to their neighbors. Most of these protocols rely on the assumption that a node A is within the radio transmission range of another node B if A is able to receive messages from B. In a HELLO flood attack, a malicious node may try to transmit a message with an abnormally high power so as to make all nodes believe that it is their neighbor.[5]

Wormhole Attacks
A wormhole attack: where an attacker receives packets at one location in the network, tunnels and then replays them at another remote location in the network. The route request can be tunneled to the target area by the attacker through wormholes. Thus, the sensor nodes in the target area build the route through the attacker. Later, the attacker can tamper the data, messages, or selectively forward data messages to disrupt the functions of the network.

Figure 2: Wormhole Attack In WSN

Jamming Attacks
Jamming, a well-known attack on wireless communication is simply interference with the radio frequencies used by a device’s transceiver. It represents an attack on the availability of a network. Jamming is only different from normal radio propagation in that it is unwanted and disruptive, thus creating a denial-of-service condition.

Back hole Attacks
Selective forwarding is a more subtle attack in which some packets are correctly forwarded but others are silently and intentionally dropped. A compromised node could be configured to drop all packets, creating a so-called black hole.

Sinkhole Attacks
In the sinkhole attack, a node spuriously advertises a very good route to a sink node in order to lure all nearby traffic to itself. Thus all traffic within some sphere of influence is drawn into the sinkhole centered at the compromised node. This attack enables the selective forwarding attack along with other attacks.[6,7]

Sybil Attack
The Sybil attack occurs when a single node claims to be other nodes in the network. Karloff and Wagner claim that this attack significantly reduces the effectiveness of —fault-tolerant schemes[8] such as distributed storage, multipath routing, and topology maintenance.

III. INTRODUCTION TO DIGITAL ENCRYPTION

RSA is an algorithm for public-key cryptography that is based on the presumed difficulty of factoring large integers, the factoring problem. RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman, who first publicly described it in 1978. A user of RSA creates and then publishes the product of two large prime numbers, along with an auxiliary value, as their public key. The prime factors must be kept secret. Anyone can use the public key to encrypt a message, but with currently published methods, if the public key is large enough, only someone with knowledge of the prime factors can feasibly decode the message. Whether breaking RSA encryption is as hard as factoring is an open question known as the RSA problem.[8]

Alice bob
plain c
Encrypt Decrypt

Figure 3: Plain to Cipher conversion

Alice encrypts message to Bob using Bob’s Private Key. Only Bob knows Bob’s Private Key ⇒ only Bob can decrypt message.

A. RSA OPERATION

The RSA algorithm involves three steps: key generation, encryption and decryption.

a) Key generation

RSA involves a public key and a private key.[9,10] The public key can be known to everyone and is used for encrypting messages. Messages encrypted with the public key can only be decrypted using the private key. The keys for the RSA algorithm are generated the following way:

1. Choose two distinct prime numbers p and q.
 ○ For security purposes, the integers p and q should be chosen at random, and should be of similar bit-length. Prime integers can be efficiently found using a primality test.
2. Compute n = pq.
 ○ n is used as the modulus for both the public and private keys.
3. Compute \(\varphi(n) = (p - 1)(q - 1) \), where \(\varphi \) is Euler’s totient function.
4. Choose an integer e such that 1 < e < \(\varphi(n) \) and greatest common divisor of \((e, \varphi(n)) = 1 \); i.e., e and \(\varphi(n) \) are coprime.
 ○ e is released as the public key exponent.

61 | Page
62 | Page

\[m = c^d \pmod{n} \]

Given \(M \), she can recover the original message \(M \) by reversing the padding scheme.

IV. PROPOSED ALGORITHM

Source Node

If (Any Packet sent P)

- Alter Header add columns ‘Route’ and ‘Signatures’
- Insert id into Route Column
- Insert Digital Signature into Signature Column
- Forward Packet P

If (received A Packet)

- If (Received Packet == Data_Ack)
 - Note the ‘Signature’ in the header
 - Note Route Noted In header
 - Verify the Digital Signature
 - If(Verification Successful)
 - Discard the route noted
 - Else
 - Drop the packet
 - Repeat the Procedure for next packet;

Intermediate Node

If (Received a packet P)

- Insert id into Route Column
- Insert Digital Signature into Signature Column
- Forward Packet P

Destination Node

If (Received a packet P)

- Note the ‘Signature’ in the header
- Note Route Noted In header
- Verify the Digital Signature
- If(Verification Successful)
 - Noted Route = null;
 - Else
 - Noted Route unchanged
- Create Data_Ack Packet
- Insert columns ‘Route’ and ‘Signatures’ in Data_Ack
- Insert id into Route Column
- Insert Digital Signature into Signature Column
V. ANALYSIS OF THE PROPOSED ALGORITHM

The results produced in data aggregation in wireless sensor networks are much better than any other algorithm. The energy efficiency and timing constraints are also better. It provides graphical clear results which are easy to understand.

VI. RESULT AND CONCLUSION

In this simulation I have implemented security using RSA algorithm. All the results are shown in MATLAB. In the first scenario source to destination communication is performed using shortest path algorithm. The root is shown in Green with arrows.

Figure 4: Graph shows the path taken from source to destination

In the Second scenario the malicious attack is performed and detected through security algorithm. The data packets take a new route to the destination.

Figure 5: Graph shows marked malicious node and alternative path taken

In this scenario energy of nodes is shown after the attack and the energy level is almost same, so it does not loss any data during aggregation.

Figure 6: Graph shows energy representation of nodes

Figure 7: Graph shows comparison between time taken before and after attack

In the above scenario the time taken by various nodes during data transmission is shown. After the particular attack the path taken by nodes is the second optimal path.

V. CONCLUSION

Security related issues in WSN have become an important part of research in present scenario. Detecting abnormal/malicious function of nodes and offering efficient counter measures is a difficult task. In the proposed paper a method that’s Node Authentication Method. In the proposed method there is no need for specific hardware and neither is the need for clock synchronization due to use of the cryptographic concepts like digital signature. In that each node is authenticated using digital signature (RSA). The received node at the destination node is verified and if the digital signature is false the information about that is sent to the sender node using DATA_ACK. In the future there is a plan to simulate Node Authentication method with other wireless sensor protocols.

REFERENCES

[1] K.P. AlSakib, T.D. Tran, S.H. Chong. A Key Management Scheme with Encoding and Improved Security for Wireless Sensor Networks. ICCDCIT 2006:102-115.

[2] L. Eschenauer, V. D. Gilgor. A key-management scheme for distributed sensor networks. Proceedings of the 9th ACM
[3] Gennaro, R. (2000), “Robust and Efficient Sharing of RSA Functions”, Journal of Cryptology, Vol 13, No 2, pp 273-300.

[4] Y Frankel, PD MacKenzie, M Yung, STOC. (1998), “Robust Efficient Distributed RSA-Key Generation”, Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp 663-672.

[5] Capacity of Ad Hoc Wireless Networks, in the proceedings of the 7th ACM International

[6] Laura Marie Feency. Ataxonomy for routing protocols in mobile ad hoc networks technical report, institute of computer surden 1999

[7] D Boneh, M Franklin. (2001), “Efficient generation of shared RSA keys”, Journal of the ACM, Vol 48, No. 4, pp 702-722.

[8] Y.Lili, W.Lijun, “Integration into The Chinese Remainder Theorem and Montgomery Algorithm for Fast RSA Algorithm”.

[9] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung. Network information flow. Information Theory, IEEE Transactions on, 46(4):1204–1216, 2000.

[10] Y.Lili, W. Lijun, “Integration into The Chinese Remainder Theorem and Montgomery Algorithm for Fast RSA Algorithm.”