A class of non-matchable distributive lattices

Xu Wang, Xuxu Zhao and Haiyuan Yao

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, PR China

Abstract

The set of all perfect matchings of a plane (weakly) elementary bipartite graph equipped with a partial order is a poset, moreover the poset is a finite distributive lattice and its Hasse diagram is isomorphic to Z-transformation directed graph of the graph. A finite distributive lattice is matchable if its Hasse diagram is isomorphic to a Z-transformation directed graph of a plane weakly elementary bipartite graph, otherwise non-matchable. We introduce the meet-irreducible cell with respect to a perfect matching of a plane (weakly) elementary bipartite graph and give its equivalent characterizations. Using these, we extend a result on non-matchable distributive lattices, and obtain a class of new non-matchable distributive lattices.

Key words: plane (weakly) elementary bigraph, Z-transformation digraph, meet-irreducible cell, non-matchable distributive lattice, planarity

2010 AMS Subj. Class.: 05C70, 06D50

1 Introduction

Zhang et al. [9] introduced a concept of Z-transformation graph (called by some authors resonance graph) on the set of perfect matchings (or 1-factors) of hexagonal system; in addition, Zhang and Zhang [17] extended the concept to a general plane bipartite graph with a perfect matching and obtained some results on a plane (weakly) elementary bipartite graph. Let G be a graph with a perfect matching, denote by $\mathcal{M}(G)$ the set of all perfect matchings of G. The Z-transformation directed graph $\vec{Z}(G)$ is an orientation of Z-transformation graph by orientating all the edges [16]. Lam and Zhang [4] proved that $\mathcal{M}(G)$ equipped with a partial order is a finite distributive lattice and its Hasse diagram is isomorphic to $\vec{Z}(G)$. There are some results on finite distributive lattices and Z-transformation directed graphs [14] [10] [11]. Recently, Zhang et al. [12] introduced the concept of matchable distributive lattice and got some consequences on matchable distributive lattices, Yao and Zhang [8] obtained some results on non-matchable distributive lattices.

In the paper we first obtain Proposition 3.1 from the Proof of Lemma 3.7 in [13]. In a finite lattice, an element is meet-irreducible if and only if it is covered by exactly one element. From a graphical point of view, if and only if there is exactly one arc (directed edge) to the vertex (element) in $\vec{Z}(G)$. Consider the arc f with its tail M, since M and f are perfect matching of G and proper M-alternating cell, respectively, thus we call the cell meet-irreducible cell with respect to M. Furthermore, we have Theorem 3.2 that is analogous to a lemma in [6]. However, our method is completely different from their proof. Finally, by Theorem 3.2 we extend Theorem 4.8 in [8], and obtain a class of non-matchable distributive lattices by Kuratowski’s Theorem.

*Corresponding author.
2 Preliminaries

A set P equipped with a partial order relation \leq is said to be a partially ordered set (poset for short). Given any poset P, the dual P^* of P by defining $x \leq y$ to hold in P^* if and only if $y \leq x$ holds in P. A poset P is a chain if any two elements of P are comparable, and we write n to denote the chain obtained by giving $\{0,1,\ldots,n-1\}$ the order in which $0 < 1 < \cdots < n-1$. The set of all filters of a poset P is denoted by $\mathcal{F}(P)$, and carries the usual anti-inclusion order; and the filter lattice $\mathcal{F}(P)$ is a distributive lattice. A lattice is nontrivial if it has at least two elements and a finite distributive lattice is irreducible if it cannot be decomposed into a direct product of two nontrivial finite distributive lattices.

The symmetric difference of two finite sets A and B is defined as $A \oplus B := (A \cup B) \setminus (A \cap B)$. If M is a perfect matching of a graph and C is an M-alternating cycle of the graph, then the symmetric difference of M and edge-set $E(C)$ is another perfect matching of the graph, which is simply denoted by $M \oplus C$. Let G be a plane bipartite graph with a perfect matching, and the vertices of G are colored properly black and white such that the two ends of every edge receive different colors. An M-alternating cycle of G is said to be proper, if every edge of the cycle belonging to M goes from white end-vertex to black end-vertex by the clockwise orientation of the cycle; otherwise improper [15]. An inner face of a graph is called a cell if its boundary is a cycle, and we will say that the cycle is a cell too.

For some concepts and notations not explained in the paper, refer to [2,7] for poset and lattice, [11,3] for graph theory.

Obverse that the M-alternating cycle intersecting an improper M-alternating cycle must be proper, vice versa. Obviously, we have the following result.

Lemma 2.1 ([14]) If G be a plane bipartite graph with a matching M, then any two proper (resp. improper) M-alternating cells are disjoint.

Definition 2.1 ([17]) Let G be a plane bipartite graph. The Z-transformation graph $Z(G)$ is defined on $\mathcal{M}(G)$: $M_1, M_2 \in \mathcal{M}(G)$ are joined by an edge if and only if $M_1 \oplus M_2$ is a cell of G. And Z-transformation digraph $\bar{Z}(G)$ is the orientation of $Z(G)$: an edge M_1M_2 of $Z(G)$ is oriented from M_1 to M_2 if $M_1 \oplus M_2$ form a proper M_1-alternating (thus improper M_2-alternating) cell.

An edge of graph G is allowed if it lies in a perfect matching of G. A graph G is said to be elementary if its allowed edges form a connected subgraph of G, then G is connected and every edge of G is allowed. A subgraph H of G is said to be nice if $G - V(H)$ has a perfect matching [5]. Let G be a bipartite graph, from Theorem 4.1.1 in [5], we have that G is elementary if and only if G is connected and every edge of G is allowed.

Definition 2.2 ([17]) A bipartite graph G is weakly elementary if the subgraph of G consisting of C together with its interior is elementary for every nice cycle C of G.

Let G be a plane bipartite graph with a perfect matching, a binary relation \leq on $\mathcal{M}(G)$ is defined as: for $M_1, M_2 \in \mathcal{M}(G)$, $M_1 \leq M_2$ if and only if $\bar{Z}(G)$ has a directed path from M_2 to M_1 [17], thus $(\mathcal{M}(G); \leq)$ is a poset [4]. For convenient, we write $\mathcal{M}(G)$ for poset $(\mathcal{M}(G), \leq)$.

Theorem 2.2 ([4]) If G is a plane (weakly) elementary bipartite graph, then $\mathcal{M}(G)$ is a finite distributive lattice and its Hasse diagram is isomorphic to $\bar{Z}(G)$.

Definition 2.3 ([12]) A finite distributive lattice L is matchable if there is a plane weakly elementary bipartite graph G such that $L \cong \mathcal{M}(G)$; otherwise it is non-matchable.
3 Meet-irreducible cell

The Proof of Lemma 3.7 in [13] implies the following proposition.

Proposition 3.1 If G is a plane elementary bipartite graph with a perfect matching M, then there exists a hypercube in $\bar{Z}(G)$ generated by some pairwise disjoint M-alternating cells. In particular, M is the top (resp. bottom) of the hypercube in $\mathcal{M}(G)$ if these M-alternating cells are proper (resp. improper).

It is obvious that the dimension of the hypercube is equal to the number of these pairwise disjoint M-alternating cells. In particular, the hypercube is a quadrilateral if and only if it is generated by exactly two disjoint M-alternating cells in G [13].

Definition 3.1 Let G be a plane (weakly) elementary bipartite graph with a perfect matching M. A meet-irreducible cell f with respect to M is a proper M-alternating cell if and only if $M \oplus f$ is meet-irreducible in $\mathcal{M}(G)$.

Theorem 3.2 Let G be a plane (weakly) elementary bipartite graph G with perfect matching M and let f be a proper M-alternating cell.

1. If G has no improper M-alternating cell (namely, M is the top of $\mathcal{M}(G)$), then every (proper) M-alternating cell is a meet-irreducible cell with respect to M;
2. If G has some improper M-alternating cells, then the following are equivalent:
 (a) the cell f is a meet-irreducible cell with respect to M;
 (b) the cell f intersects every improper M-alternating cell;
 (c) there is no perfect matching M' in $V(Q) \setminus \{M\}$ such that f is a proper M'-alternating cell, where Q is a hypercube generated by all improper M-alternating cells.

Proof 1. It is trivial by the definition of Z-transformation directed graph.

2. Firstly suppose that the cell f is a meet-irreducible cell with respect to M, but there is at least one improper M-alternating cell f' such that f and f' are disjoint. Thus $M \oplus f = ((M \oplus f') \oplus f) \oplus f'$, i.e. G has two improper $M \oplus f$-alternating cells, hence $M \oplus f$ is not meet-irreducible, contradicting the supposition that f is a meet-irreducible cell with respect to M.

Next suppose that the cell f intersects every improper M-alternating cell, but there is a perfect matching M' in $V(Q) \setminus \{M\}$ such that f is a proper M'-alternating cell. In fact, by Proposition 3.1, there is at least one improper M-alternating cell f' is a proper M'-alternating cell. Hence f and f' are disjoint by Lemma 2.1, a contradiction.

Finally, suppose that there is no perfect matching M' in $V(Q) \setminus \{M\}$ such that f is a proper M'-alternating cell, but f is not a meet-irreducible cell with respect to M. Thus G has at least one improper $M \oplus f$-alternating cell f' except f, by Lemma 2.1, hence f and f' are disjoint. Therefore f' is an improper M-alternating cell, this means that f is a proper $M \oplus f'$-alternating cell, i.e. there is a perfect matching $M' = M \oplus f'$ in $V(Q) \setminus \{M\}$ such that f is a proper M'-alternating cell, a contradiction. \qed

If every proper M-alternating cell is a meet-irreducible cell with respect to M, then M is a top of $\mathcal{M}(G)$ if G has no improper M-alternating cell, otherwise cut vertex in $Z(G)$. Moreover we obtain the following corollary as a consequence of Theorem 3.2.
Corollary 3.3 ([16][14]) If G is a plane elementary bipartite graph with a perfect matching M, then M is a cut vertex of $Z(G)$ if and only if G has both proper and improper M-alternating cells and every proper M-alternating cell is a meet-irreducible cell with respect to M; i.e. every proper M-alternating cell intersects every improper M-alternating cell.

Note that duality of lattice, meet-irreducible cell, Theorem 3.2 and Corollary 3.3 could be treated in dual.

4 Non-matchable distributive lattice

Subdivide an edge e is to delete e, add a new vertex v, and join v to the ends of e. Any graph derived from a graph G by a sequence of edge subdivisions is called a subdivision of G.

Theorem 4.1 (Kuratowski’s Theorem) A graph is planar if and only if it contains no subdivision of either K_5 or $K_{3,3}$.

From the proof of Lemma 4.2 in [8] and Theorem 3.2, the following theorem is immediate.

Theorem 4.2 Let L be a finite distributive lattice and $x \in L$. If x is covered by at least three elements and covers at least three meet-irreducible elements, then L is non-matchable.

![Figure 1: Two non-matchable distributive lattices](image)

For instance, it is easy to see that each distributive lattice in Figure 1 is non-matchable by Theorem 4.2, but it is difficult to determine only by Theorem 4.3 in [8].

Obviously, theorem 4.2 could be obtained in dual.

Corollary 4.3 If L is a matchable distributive lattice, then for every element of L, it either is covered by at most two elements or covers at most two meet-irreducible elements in both L and L^*.

Given a plane graph G, its (geometric) dual G^* is constructed as follows: place a vertex in each face of G (including the exterior face) and, if two faces have an edge e in common, join the corresponding vertices by an edge e^* crossing only e. It is easy to see that the dual G^* of a plane graph G is itself a planar graph [1].

Theorem 4.4 The distributive lattice $\mathcal{F}(\Delta)$ is non-matchable, where Δ is a poset as shown in Figure 2(a).
Figure 2: (a) The poset Δ and (b) a part of \(\mathcal{F}(\Delta) \)

\[\begin{array}{c}
(a) \\
(b)
\end{array} \]

Figure 3: Proof of Theorem 4.4

Proof Recall that \(\mathcal{F}(\Delta) \) is a finite distributive lattice. Suppose that \(\mathcal{F}(\Delta) \) is matchable, since \(\mathcal{F}(\Delta) \) is irreducible, then there exists a plane elementary bipartite graph \(G \) such that \(\bar{Z}(G) \cong \mathcal{F}(\Delta) \). Consider a part of \(\mathcal{F}(\Delta) \) as drawn in Figure 2(b), the vertices correspond to the perfect matchings \(M_\emptyset, M_0, M_1, \ldots, M_a \) of \(G \), respectively. Let \(f_0 = M_\emptyset \oplus M_0, f_1 = M_0 \oplus M_1, f_5 = M_12 \oplus M_5, f_6 = M_13 \oplus M_6, \ldots, \) and \(f_a = M_34 \oplus M_a \). By definition of \(Z \)-transformation graph, then \(f_0 \) is a nice cell, so are \(f_1, \ldots, f_a \). Since the cells \(f_0, f_1, \ldots, f_a \) are meet-irreducible cells, by Theorem 3.2(2), the cell \(f_0 \) intersects \(f_1, f_2, f_3 \) and \(f_4 \); the cell \(f_5 \) intersects \(f_1 \) and \(f_2 \), but it does not intersect \(f_3 \) or \(f_4 \), because \(f_5, f_3 \) and \(f_4 \) are proper \(M_12 \)-alternating cells. Thus \(f_0 \) and \(f_5 \) are distinct; analogously, \(f_0 \) and \(f_i \) \((i \in \{6, 7, 8, 9, a\})\) are distinct too.

Next, consider the dual \(G^* \) of \(G \), as drawn in Figure 3(a), vertex \(f_0^* \) is adjacent with \(f_1^*, f_2^*, f_3^* \) and \(f_4^* \), and \(f_5^* \) is adjacent with \(f_1^* \) and \(f_2^* \), etc. Therefore, let \(V' = \{f_0^*, \ldots, f_a^*\} \), thus \(G^* \) contains a subgraph \(S^* := G^*[V'] \). Clearly \(S^* \) (see Figure 3(b)) is a subdivision of \(K_5 \). By Kuratowski’s Theorem, hence \(S^* \) is non-planar, contradicting the planarity of \(G \). □

As a straightforward consequence of Theorem 4.4, we have the following result.

Corollary 4.5 If a poset \(P \) contains \(\Delta \) as a convex sub-poset, then distributive lattice \(\mathcal{F}(P) \) is non-matchable.

Clearly, for any finite distributive lattice \(L \), the Cartesian product, linear sum and vertical sum of \(\mathcal{F}(P) \) and \(L \) are non-matchable. In particular, the following corollary is immediate.

Corollary 4.6 The distributive lattice \(\mathcal{F}(2^4) \) is non-matchable. In addition, the distributive lattice \(\mathcal{F}\left(\prod_{j=1}^{k} \mathbf{n}_j\right) \) is non-matchable, where \(k \geq 4, \mathbf{n}_j \) is a chain of length \(n_j \) and \(n_j \geq 2 \) for every \(j = 1, 2, \ldots, k \).
References

[1] Bondy, J. A., and Murty, U. S. R. *Graph Theory*, vol. 244 of *Graduate Texts in Mathematics*. Springer-Verlag, London, 2008.

[2] Davey, B. A., and Priestley, H. A. *Introduction to Lattices and Order*, 2nd ed. Cambridge University Press, Cambridge, 2002.

[3] Harary, F. *Graph Theory*. Addison-Wesley Publishing Company, Inc., Reading, 1969.

[4] Lam, P. C. B., and Zhang, H. A distributive lattice on the set of perfect matchings of a plane bipartite graph. *Order* 20 (2003), 13–29.

[5] Lovász, L., and Plummer, M. D. *Matching Theory*. North-Holland, Amsterdam, 1986.

[6] Qi, Z., and Zhang, H. The relation between the R-rotation graph and the \overline{R}-rotation graph of a coronoid system. *Acta Math. Appl. Sinica* 33, 2 (Mar. 2010), 269–280. in Chinese.

[7] Stanley, R. P. *Enumerative Combinatorics: Volume 1*, 2nd ed., vol. 49 of *Cambridge studies in advanced mathematics*. Cambridge University Press, Cambridge, 2011.

[8] Yao, H., and Zhang, H. Non-matchable distributive lattices. *Discrete Math* 338, 3 (2015), 122–132.

[9] Zhang, F., Guo, X., and Chen, R. Z-transformation graphs of perfect matchings of hexagonal systems. *Discrete Math* 72, 1 (1988), 405–415.

[10] Zhang, H. Z-transformation graphs of perfect matchings of plane bipartite graphs: a survey. *MATCH Commun Math Comput Chem* 56, 3 (2006), 457–476.

[11] Zhang, H., Ou, L., and Yao, H. Fibonacci-like cubes as Z-transformation graphs. *Discrete Math* 309 (2009), 1284–1293.

[12] Zhang, H., Yang, D., and Yao, H. Decomposition theorem on matchable distributive lattices. *Discrete Appl Math* 166 (2014), 239–248.

[13] Zhang, H., Yao, H., and Yang, D. A minmax result on outerplane bipartite graphs. *Appl Math Lett* 20, 2 (2007), 199–205.

[14] Zhang, H., Zha, R., and Yao, H. Z-transformation graphs of maximum matchings of plane bipartite graphs. *Discrete Appl Math* 134 (2004), 339–350.

[15] Zhang, H., and Zhang, F. The rotation graphs of perfect matchings of plane bipartite graphs. *Discrete Appl Math* 73, 1 (1997), 5–12.

[16] Zhang, H., and Zhang, F. Block graphs of Z-transformation graphs of perfect matchings of plane elementary bipartite graphs. *Ars Combin* 53 (1999), 309–314.

[17] Zhang, H., and Zhang, F. Plane elementary bipartite graphs. *Discrete Appl Math* 105 (2000), 291–311.