Mesenchymal Stem/Stromal Cells as a Vehicle for Cytokine Delivery: An Emerging Approach for Tumor Immunotherapy

Ehsan Razeghian1, Ria Margiana2,3,4, Supat Chupradit5, Dmitry O. Bokov6,7, Walid Kamal Abdelbasset6,9, Faroogh Marofi10, Siavash Shariatzadeh11, Foad Tosan12* and Mostafa Jarahian13*

1Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran, 2Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia, 3Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia, 4Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia, 5Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand, 6Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia, 7Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia, 8Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Khob, Saudi Arabia, 9Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt, 10Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran, 11Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 12Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran, 13Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany

Pro-inflammatory cytokines can effectively be used for tumor immunotherapy, affecting every step of the tumor immunity cycle. Thereby, they can restore antigen priming, improve the effector immune cell frequencies in the tumor microenvironment (TME), and eventually strengthen their cytolytic function. A renewed interest in the anticancer competencies of cytokines has resulted in a substantial promotion in the number of trials to address the safety and efficacy of cytokine-based therapeutic options. However, low response rate along with the high toxicity associated with high-dose cytokine for reaching desired therapeutic outcomes negatively affect their clinical utility. Recently, mesenchymal stem/stromal cells (MSCs) due to their pronounced tropism to tumors and also lower immunogenicity have become a promising vehicle for cytokine delivery for human malignancies. MSC-based delivery of the cytokine can lead to the more effective immune cell-induced antitumor response and provide sustained release of target cytokines, as widely evidenced in a myriad of xenograft models. In the current review, we offer a summary of the novel trends in cytokine immunotherapy using MSCs as a potent and encouraging carrier for antitumor cytokines, focusing on the last two decades’ animal reports.

Keywords: mesenchymal stem/stromal cells, cytokine, tumor-immunotherapy, gene therapy, cytokine delivery
INTRODUCTION

Cytokines as a family of molecular messengers support the communications between immune cells to establish a harmonized, strong, while self-limited reaction to a target antigen (1–3). Although a diversity of the correlation of the immune system befalls by direct cell-cell contact, the release of cytokines provides the robust and swift spreading of the immune signaling axis in a multifaceted and well-organized mode (4–6). The rising proofs over the last two decades in harnessing the immune system to eliminate tumor cells have been sustained by reinforced efforts for characterizing and utilizing the massive signaling networks of cytokines for advancing tumor therapy (7, 8).

Cytokines typically induce both immune effector cells and also stromal cells at the tumor area and improve transformed cell recognition through cytotoxic effector cells (9–11). Frequent in vivo reports have shown that a diversity of cytokines, ranging from interleukins (ILs) to interferons (IFNs), and also tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), have unique antitumor competencies, highlighting the importance of their application for cancer therapy (12–14). Nonetheless, the wide-ranging pleiotropism and redundancy of cytokine axis concomitant with the dual activity of various cytokines in both immune induction and immune inhibition, and also treatment-related toxicities, poses substantial controversies to our aptitude for achieving expressive antitumor outcome (8, 15). For instance, some evidence is implying that the low response rate and high toxicity correlated with high-dose IL-2 and IFN-α therapy could disturb their clinical use (8).

Presently, mesenchymal stem/stromal cells (MSCs), a well-known multipotent stromal cell, have been employed as a carrier for gene and drug delivery (16, 17). Remarkably, MSC utility is a capable strategy for the progress of gene therapy and drug-loading approaches due to their intrinsic attributes, importantly remarkable homing capacity, and tumor tropism (18). Also, another unique property of MSC is its lower immunogenicity due to the minimized expression of costimulatory molecules (19, 20), thus signifying that there is no need for the application of immunosuppressive drugs before allogeneic transplantation. These properties introduce them as an encouraging option for cellular-based immunotherapy as a drug or cytokine delivery vehicle (21–23). Correspondingly, through the combining inherent cell characteristics and antitumor activities of cytokines, the use of MSCs engineered to express target cytokines offers more competent cytokine delivery to tumor tissue and thereby seems to be a rational and promising approach in the context of tumor immune therapy (Figure 1). For example, it was found that intratumoral infusion of MSCs modified to overexpress IL-12 (MSC-IL-12) could result in the more prominent tumor-specific T-cell responses and antitumor impacts, and also more continued expressions of IL-12 and IFN-γ in both sera and tumor tissues than the injection of IL-12-expressing adenovirus (rAd/IL-12) in tumor-bearing xenografts (24). In addition, MSC-based delivery of TRAIL could make dramatically susceptible TRAIL-resistant tumor cells to TRAIL-induced apoptosis in xenografts (25).

Herein, we will discuss recent findings respecting the antitumor effects of cytokine delivery using MSCs, with a special focus on the last two decades of in vivo studies.

CYTOKINE-BASED TUMOR IMMUNOTHERAPY

Cytokines are polypeptides or glycoproteins with molecular weight ranging from typically 6 to 70 kD and largely support proliferation, activation, differentiation, and inflammatory or anti-inflammatory signals to diverse cell types (26–28). They are commonly produced throughout a well-defined duration in response to a stimulus, and also display short-lived autocrine or paracrine effects because of their restricted half-life in the circulation (8, 29). Nonetheless, IL-7 or hematopoietic growth factors are secreted homeostatically in an incessant style (8). Upon the detection of the effective antitumor functions of various pro-inflammatory cytokines in preclinical models, comprehensive clinical studies have resulted in the approval of recombinant IFN-α and IL-2 to treat various malignancies usually with modest effectiveness. These primary landmarks in tumor immunotherapy have been followed by advanced immune checkpoint inhibitors (30–32) and also chimeric antigen receptor (CAR)-T cells (33–35). A renewed attention to the antitumor attributes of cytokines has sustained a pronounced increase in the number of clinical trials for addressing the safety and efficacy of cytokine-based components either as single agents or in combination with other immunomodulatory ingredients (Table 1). Indeed, cytokines hinder tumor cell development primarily by antiproliferative or proapoptotic functions, and secondarily through eliciting the cytotoxic effects of immune cells toward tumor cells. In the 1970s, Gresser and Bourali (36) for the first time described the antitumor property of IFN-α vs. tumor cell line-bearing mice. In the 1980s and 1990s, this finding was followed by the progress of recombinant DNA technologies, causing many preclinical and clinical studies of the possible antitumor effects of some recombinant cytokines. However, their short half-life and narrow therapeutic windows, and modest antitumor effectiveness obstruct their utility in the clinic. To date, only IL-2 and IFN-α have displayed mild clinical efficacy, and thereby have received the approval of the Food and Drug Administration (FDA) for various malignant disease therapy. The IL-2 has been approved for advanced renal cell carcinoma (RCC) therapy (37) and metastatic melanoma (38), while IFN-α has been approved for the treatment of hairy cell leukemia (HCL) (39), non-Hodgkin lymphoma (NHL) (40), melanoma (41), and AIDS-related Kaposis sarcoma (42). Nevertheless, in addition to the listed challenges and controversies, high toxicity and neurological side effects related to high-dose IL-2 and IFN-α therapy mainly due to the pleiotropic effect of cytokines is another factor limiting their extensive application (43). For instance, Kruit et al. found that a high-dose regimen of IL-2 and IFN-α therapy in combination with lymphokine-activated killer cells
FIGURE 1 | Mesenchymal stem/stromal cell (MSC)-based cytokine delivery for tumor immunotherapy. Human MSCs upon procurement from various sources, such as bone marrow (BM), adipose tissue, and umbilical cord (UC), can be modified to express therapeutic genes (e.g., cytokines) for exerting antitumor response in patients suffering from tumors.
TABLE 1 | Completed clinical trials (phases 3 and 4) respecting cytokine-based immunotherapy for treatment of human cancers registered in ClinicalTrials.gov (May 2021).

Condition	Cytokine	Phase	Participant number	Location	NCT number
Kidney cancer	IL-2	3	NA	USA	NCT00018941
Kidney cancer	IL-2	3	220	France	NCT00416871
Colon cancer	IFN-α	3	796	Germany	NCT01060501
Kidney cancer	IL-2	3	96	UK	NCT00053807
Kidney cancer	IFN-α	3	1551	Germany/Switzerland	NCT00055874
Kidney cancer	IL-2	4	NA	USA	NCT00006864
Lymphoma	IL-2	3	206	USA/UK	NCT0002649
Leukemia	IFN-α	3	744	USA/UK	NCT0002868
Leukemia	IFN-α	4	360	Spain	NCT00390897
Leukemia	IFN-α	3	103	Italy	NCT00633542
Multiple myeloma	IFN-α	3	244	NA	NCT00732641
Multiple myeloma	IFN-α	2/3	350	Austria	NCT00205751
Kidney cancer	IL-2	3	670	Multinational	NCT00053820
Kidney cancer	IFN-α	3	69	USA	NCT00003126
Kidney cancer	IFN-α	3	NA	Multinational	NCT00005966
Kidney cancer	IFN-α	3	320	Multinational	NCT00005966
Kidney cancer	IL-2	3	456	France	NCT00416429
Kidney cancer	IFN-α	3	732	USA/Canada	NCT00072046
Bladder cancer	IFN-α	2/3	140	Singapore	NCT00330707
Melanoma	IL-2	3	140	USA	NCT00002882
Various cancers	IL-11	3	62	China	NCT01663441
Melanoma	IL-2	3	70	France	NCT00200577
Melanoma	IL-2	3	350	Multinational	NCT00089000
Melanoma	IFN-α	3	269	Italy	NCT01359956
Melanoma	IFN-α	3	3000	USA	NCT00004196
Melanoma	IFN-α	3	901	Germany	NCT00204529
Liver cancer	IFN-α	4	100	Japan	NCT00375661
Kidney cancer	IL-2	3	310	Italy	NCT00502034
Leukemia	IL-2	3	360	Multinational	NCT00003999
Leukemia	IL-2	3	420	France	NCT00931138
Leukemia	IL-2	3	61	USA	NCT00002945
Leukemia	IL-2	4	84	Sweden	NCT01347996
Leukemia	IL-2	3	720	USA	NCT00083636
Kidney cancer	IFN-α	3	628	Multinational	NCT00085468
Head and neck cancer	IFN-α	3	NA	Multinational	NCT00054561
Kidney cancer	IFN-α	3	649	Multinational	NCT00738530
Melanoma	IFN-γ	3	122	USA	NCT00001296
Liver cancer	IFN-α	4	120	Taiwan	NCT00630084
Liver cancer	IFN-α	3	150	Italy	NCT002373247
Multiple myeloma	IFN-α	3	312	USA	NCT00002556
Melanoma	IFN-α	3	167	USA	NCT00003444
Leukemia	IFN-α	3	1106	Multinational	NCT00333840
Leukemia	IFN-α	3	96	USA	NCT00050531
Leukemia	IFN-α	3	41	Germany	NCT02736721
caused three treatment-associated deaths in patients suffering from metastatic RCC. Furthermore, hypotension, cardiotoxicity, pulmonary edema, renal toxicity, and infectious complications were observed following intervention (44). Moreover, the high-dose IFN-α therapy (HD1) led to constitutional symptoms, chronic fatigue, myelosuppression, elevated liver enzyme levels, and neurologic symptoms in patients with high-risk melanoma (45).

Therby, finding novel strategies to overcome high toxicities, short half-life, and pleiotropic effects of cytokines is of paramount importance.

MSC TROPISM INTO THE TUMOR

Human MSCs have demonstrated possible clinical utility for tumor therapy because of their inherent tumor tropism, making them promising carriers for antitumor drugs or molecules (17, 46–48). Previous evaluations of MSC function in recipients were observed following intervention (44). Moreover, the high-tropism to tumor tissue of MSCs (18). A similar pattern of tumor tropism was also observed in the ovarian tumor model upon intraperitoneal injection of modified MSC (18). Remarkably, these findings have indicated that MSC tumor tropism is independent of tumor type, immunocompetence, and also administration route (18).

Monitoring of the migration and incorporation of magnetically labeled MSCS using magnetic resonance (MR) imaging evidenced that MSCs could show efficient migration toward glioma tissue in glioma cell-bearing Fischer 344 rats with high specificity in a temporal-spatial pattern (50). Meanwhile, co-labeled MSCS with superparamagnetic iron oxide nanoparticles (SPIO) and enhanced green fluorescent protein (EGFP) were detectable at the border between the tumor and normal parenchyma for 2 weeks post-transplantation (50). Also, it has been suggested that the administration of ionizing radiation (IR) to glioma tumors might restore MSC tropism to tumor tissue (51). Correspondingly, IR considerably improved the tropism of MSCs to patient-derived glioma stem-like GSC7-2 cell-bearing murine. Immunohistochemistry analysis indicated an improved CCL2 in irradiated GSC7-2 gliomas, suggesting that chemokine CCL2 was reliable for IR-stimulated tropism of MSCs to tumor tissue (51). Also, MSC tropism to tumor tissue could be ameliorated by valproic acid (VPA) (52), and also promotion of the expression of the activated lymphocyte cell adhesion molecule (ALCAM) and N-cadherin mediated by downregulation of microRNA-192 and microRNA-218 in vivo (53). Furthermore, investigation of the interrelation between adipose tissue-derived MSCS (ADSCs) and MCF-7 breast cancer cells in a Matrigel coculture condition as well as in a nude mouse model supported the hypothesis that MCF-7 improved the tumor tropism of ADSC, which was adjusted by chemokines, including the macrophage inflammatory protein (MIP)-1α and MIP-3α (54). Also, ADSCs showed tropism and triggered tumorsphere creation of MCF-7 cells (54). Besides, there is an indication showing that MSCs could infiltrate the tumor tissue in osteosarcoma xenografts (55). However, MSCs seem to be eliminated by splenic macrophage phagocytosis and therefore restrained the more efficient tumor engraftment (55). Nonetheless, transiently exhausted macrophages with liposomal clodronate, a potent antimacrophage agent, may lead to improved MSC localization within a tumor without marked diminishment in tumor-associated macrophages (TAMs), providing a novel strategy for the restoration of the clinical efficacy of MSCS as a carrier for antitumor agents (55).

MSCs AS A CARRIER FOR IL-2

MSCs as a Carrier for IL-2

The IL-2 largely contributes to the stimulation of the immune system which could result in cancer elimination. As described, IL-2 has been shown capable of arbitrating tumor deterioration and was verified for metastatic renal cell carcinoma and metastatic melanoma by the FDA (56). Recent studies have shown that IL-2 gene-engineered MSCs (MSC-IL-2) could be considered a rational strategy for treating human tumors as IL-2 antitumor function accompanied with MSC efficient tropism. For instance, in addition to the migratory competence of MSCs in vivo, intratumoral injection of MSC-IL-2 led to the robust regression of glioma tumor growth and also improved overall survival rate of 9L glioma cell-bearing rats (57). However, the study of the possible effects of ADSCs modified to express IL-2 on B16F10 melanoma cell xenografts revealed that systemic injection of the modified MSCs also could effectively engraft into melanoma lung tumors but could not affect melanoma pulmonary metastases, and also the survival rate of the animal (58). In another study, hADSC-IL2 potently induced activation of peripheral blood mononuclear cells (PBMCs) and conversely reduced proliferation and survival of SH-SY5Y neuroblastoma cells in vitro. However, a conditioned medium from hADSC-IL2 supported the proliferation of SH-SY5Y cells despite the activation of T cells, natural killer (NK) cells, NK T cells, and activated T killers, suggesting therapies using this cytokine have to be taken into careful consideration (59). On the other hand, cytochalasin-B, a cell-permeable mycotoxin-induced human ADSC-IL-2-derived extracellular vesicle (EV) could stimulate more efficient CD8+ T killers than ADSC-IL-2 to eliminate human triple-negative breast cancer MDA-MB-231 and MDA-MB-436 cells in vitro (60).

MSCs as a Carrier for IL-12

IL-12 has been found to adjust NK cells and cytotoxic T-lymphocyte (CTL) immunities in tumor therapy. A well-known function of IL-12 is its aptitude to stimulate IFN-γ secretion from NK cells, and also CD4+ and CD8+ T cells (61).
Gene therapy in Ewing sarcoma using MSCs as a carrier for IL-12 could suppress tumor development. Accordingly, IL-12 expression was detected in tumor tissue in TC71 Ewing sarcoma xenografts following systemic injection of MSC-IL-12, leading to the suppressed tumor growth compared with control xenografts (62). Similarly, genetically modified MSCs by lentivirus-mediated mouse IL-12 could modify malignant ascites in murine (63). In addition to the critical chemotactic effects on dendritic cells (DCs) in vitro, and also pronounced safety in vivo, MSC-IL-12 robustly attenuated not only the volume of ascites but also red blood cell (RBC) frequency in ascites, ultimately facilitating promoted survival period of the experimental model (63). Besides, MSC-IL-12 intratumoral injection resulted in abrogated tumor progress in established subcutaneous B16BL6 tumors; however, the intravenous administration of MSC-IL-12 did not hinder the tumor development in melanoma B16BL6 cell-bearing animals (64). These findings delivered the proof of the concept that MSCs are largely distributed in the lungs, and therefore their administration by intravenous route could not possibly mitigate the development of the human solid tumors (64). Other studies showed that human umbilical cord mesenchymal stem/stromal cells infected by an adenoviral vector encoding IL-12 (UC-MSC-IL-12) could negatively modify tumor development in breast carcinoma SKOV3 cell xenografts (65). In the tumor-bearing nude mice model, the systemic administration of MSCs led to a noticeable regression in the development of SKOV3 tumor explants. Also, MSC-IL-12-derived conditioned medium (CM) suppressed the proliferation of SKOV3 cells and stimulated cell death in vitro (65). In another study, injection of MSC-IL-12 into Ast11.9-2 glioma cell-bearing C57/B16 mice caused enhanced NK cell infiltration in brain tissue, and thereby exerted an improvement in non-specific cell lysis, while could not induce significant promotion in overall survival rates of the treated mice compared with control mice (66). Nonetheless, it was demonstrated that treatment with Fuzheng Yiliu decoction (FYD), a traditional Chinese medicine, in combination with MSC-IL-12 therapy could elicit synergistic antitumor effects in glioma-bearing nude mice (67). Meanwhile, glioma U251 cell-bearing BALB/c nude mice experienced robust decreases in tumor volume upon treatment with FYD plus MSC-IL-12. Moreover, a combine treatment of FYD and MSC-IL-12 induced higher Bax and lower Bcl-2 expression and also supported higher serum IL-12 and INF-γ levels compared with monotherapy with FYD or MSC-IL-12 (67). Besides, intramural injection of genetically modified MSCs co-expressing IL-12 and IL-7 caused a marked inversion of the CD4+ /CD8+ T-cell ratio with an intricate antitumor response mainly mediated by CD8+ effector T cells in glioma tumor-bearing mice (68). Furthermore, MSCs constitutively secreting IL-12 were able to exert a potent regression in the growth of renal cell carcinoma (RCC), and thereby improved the survival rate of the tumor-bearing mice predominantly through the induction of NK cell activation and IFN-γ secretion (69).

MSCs as a Carrier for IL-18

The IL-18 was first recognized as a potent IFN-γ-inducing molecule. This cytokine induces IFN-γ secretion from NK cells and T-helper-type 1 cells, in particular, in a marked synergy with the greatly strong and toxic cytokine IL-12 (70).

Current studies have exhibited that hUMSCs modified to overexpress IL-18, but not parental hUMSCs, could counteract proliferation, migration, and invasion of breast tumor MCF-7 (71) and HCC1937 cells (72) in vitro. Analyses have indicated that stimulation of G1- to S-phase arrest of tumor cells was reliable for the hUMSC-IL-18-mediated suppressive effects on the proliferation of these cells (72). More importantly, hUMSC-IL-18 injection to breast cancer 4T1 cell-bearing BALB/c mice supported noticeable abrogation in tumor cell growth in vivo by activating immunocytes and immune cytokines, and also constraining tumor angiogenesis, as evidenced by reduced CD31 expression in hUMSC-IL-18 group compared with the control group (73). Likewise, intratumoral injection of MSC-IL-18 into glioma C6 cell-bearing Sprague-Dawley rats elicited delayed tumor growth of glioma, and thereby provided extended survival in experimental models (74). The existence of the association between the transplantation of MSCs constitutively secreting IL-18 and ameliorated T-cell infiltration and continued antitumor responses have indicated that IL-18 can be an operative and rationally adoptive immunotherapy for malignant tumors (74).

MSCs as a Carrier for IL-21

The IL-21 as a pro-inflammatory cytokine has been advanced as an immunotherapeutic option because of its potent influences on NK cells and T cells; however, the clinical achievement in tumor patients has been restricted (75).

It has been currently supposed that MSCs genetically modified to express IL-21 (MSC-IL-21) could improve antitumor activities through localized delivery of IL-21. For instance, MSC-IL-21 systemic injection into the B-cell lymphoma A20 cell-bearing BALB/c mice resulted in delayed tumor occurrence and also prolonged survival, while either MSCs or recombinant adenovirus-expressing IL-21 (rAD/IL-21) could not induce desirable antitumor effects in experimental models (76). Respecting the observations, the evident antitumor impacts were mediated by the pronounced levels of IL-21 delivered to the liver, averting the establishment of a tumor nodule. Remarkably, MSC-IL-21 therapy caused stimulation of effector T and NK cells but strongly hindered the activities of immune suppressor cells (76). Moreover, hUC-MSC-IL-21 suggestively weakened SKOV3 (77) and A2780 (78) ovarian cancer volume in xenografts by affecting the serum levels of IFN-γ and TNF-α, concurrently restoring the expression of natural killer group 2 member D (NK2G2D) and MHC class I polypeptide-related sequence A (MICA) molecules in the tumor microenvironment (77). Also, abrogation of SKOV3 ovarian cancer growth in mice may arise from negative regulation of β-catenin and cyclin-D1 in the TME (77).

Moreover, combine treatment of hUCMSC-IL-21 and miR-200c supported more prominent antitumor effects than monotherapy with hUCMSC-IL-21on SKOV3 cell-bearing mice mainly through boosting the serum levels of IFN-γ, IL-21, and TNF-α and also the splenocyte cytotoxicity (79). Also, the expression of β-catenin, cyclin-D1, Gli1, Gli2, and Zinc finger E-box-binding homeobox 1 (ZEB1) was reduced, and conversely, the expression of E-cadherin, a downstream target of
TABLE 2 | The overview of studies based on the use of mesenchymal stem/stromal cells (MSCs) as a carrier for delivery of interleukins to treat human tumors (in vitro and in vivo).

Cancer	Interleukin	Cell line/model	Results (Ref)
GIOMA	IL-2	9L glioma cell line	Inhibition of the proliferation of 9L cell in vitro (57)
		9L glioma cell-bearing rats	MSC-IL-2 efficient tropism into tumor area and reducing tumor burden (57)
NEUROBLASTOMA	IL-2	SH-SYSY neuroblastoma cell line	Reducing the SH-SYSY proliferation and also activation of PBMCs in vitro (59)
BREAST CANCER	IL-2	MDA-MB-231 cell line	Induction of apoptosis in MDA-MB-231 cells (63)
MELANOMA	IL-2	B16F10 melanoma cell line	Increasing the viability and reducing the apoptosis of melanoma cells in vitro (an unexpected result) (68)
		B16F10 cell-bearing mice	Reducing the systemic CD4+ cells without any effect on tumor size in melanoma bearing mice (65)
ASCITES	IL-12	MethA ascites mice models	Suppression of the growth of ascites and promotion of the survival of tumor-bearing mice (63)
OVARIAN CANCER	IL-12	B16F10 cell-bearing mice	Attenuation of tumor burden by MSC-IL-12 intratumoral but not an intravenous injection (6-4)
OVARIAN CANCER	IL-12	SKOV3 cell line	Inhibition of the proliferation of SKOV3 cells and inducing the cellular apoptosis in vitro (65)
OVARIAN CANCER	IL-12	SKOV3 cell-bearing nude mice	Suppression of the development of SKOV3 tumor explants (65)
GIOMA	IL-12	U251 cell-bearing nude mice	Inducing the marked inhibitory effect toward tumor growth by improvement of Bax/Bcl-2 ratio leading to tumors apoptosis (66)
RENAL CARCINOMA	IL-12	786-O cell-bearing nude mice	Regression tumor growth and providing prolonged mice survival (69)
Glioblastoma	IL-12	GL261 and CT2A cell-bearing mice	Remarkable inversion of the CD4+/CD8+ T-cell ratio and inducing the CD8+ effector T-cell-mediated antitumor response (68)
BREAST CANCER	IL-18	MCF-7 cell line	Inhibition of the proliferation, migration, and invasion of the MCF-7 cell in vivo (71)
GIOMA	IL-18	Glioma C6 cell line	Suppression of the growth of C6 cells in vitro (74)
Lymphoma	IL-21	A20 cell-bearing BALB/c mice	Supporting the inhibited tumor incidence as well as promoted survival (76)
OVARIAN CANCER	IL-21	SKOV3 cell-bearing nude mice	Suppression of the β-catenin and cyclin-D1 activities in the tumor tissues leading to delayed tumor growth in vivo (77)
OVARIAN CANCER	IL-21	A2780 cell-bearing nude mice	Delayed tumor growth by activation of NK cells response against tumor cells in vivo (78)
OVARIAN CANCER	IL-21	SKOV3 cell-bearing nude mice	Inhibition of tumor growth by combination therapy using MSC-IL-21 and miR-200 mediated by inhibition of the Wnt/β-catenin signaling axis and also epithelial-mesenchymal transition (EMT) in vivo (79)

IL, interleukin; PBMC, peripheral blood mononuclear cell.

miR-200c, was improved in tumor tissues of murine treated with hUCMSC-IL-21 plus miR-200c (79). These findings emphasize the significance of the repression of Wnt/β-catenin signaling and inhibiting the epithelial-mesenchymal transition (EMT) to attain the favorite outcome in patients suffering from the ovarian tumor (79). A potent decrease in proliferation and migration in reproductive cancer cells transfected with miR-200c mimic implies miR-200c prominence to be utilized as a possible antitumor molecule (80).

A summary of preclinical studies respecting IL delivery using MSCs is listed in Table 2.

MSCS AS A CARRIER FOR IFNs

MSCs as a Carrier for IFN-α

IFN-α is a pleiotropic cytokine, which can widely be employed for the therapy of patients with tumors and viral disease (81). In addition to affecting multiple biologic processes of tumor cell, it can support both differentiation and activities of host immune cells. Preclinical reports in mouse tumor models show the significance of host immune mechanisms in the exerting prolonged antitumor functions following the treatment of an animal with IFN-α and IFN-β (82); however, IFN-α may cause some untoward effects because of its short half-life and high dose (81).

Investigation of the clinical effects of hepatocellular carcinoma (HCC) treatment with human bone marrow (BM)-MSCs modified to overexpress IFN-α2b indicated the intervention caused delayed tumor growth in HepG2 cell-bearing NOD/SCID mouse through the negative regulation of the Notch signaling axis. Moreover, CM derived from modified MSCs induced G2/M phase arrest in HepG2 and Huh7 cells in vitro (81). Similarly, systemic injection of the BMMSC secreting IFN-α abridged the development of B16F10 melanoma cells and substantially extended survival in C57BL/6 mice with melanoma. Analysis signified robust elevation in apoptosis and a reduction in proliferation and blood vasculature in tumor tissue (83). Likewise, subcutaneous injection of BMMSC-IFN-α modified the tumor growth in vivo and sustained the overall survival in mice multiple myeloma model (84). It was found that observed antitumor effects were dependent on the promoted apoptosis of tumor cells, a decrease in microvessel density, and ischemic...
necrosis (84). Nonetheless, systemic injection of BM MSC-IFN-α had no significant effect on the survival of mice largely because of the substantial entrapment of administered cells in the pulmonary vessels and thereby suggests the superiority of intratumoral injection of modified cells over systemic injection in terms of clinical efficacy in preclinical models (84).

MSCs as a Carrier for IFN-β

Recent finishings have shown that IFN-β gene delivery could stimulate apoptosis in IFN-β-resistant cancer cells, such as, melanoma, glioma, and renal cell carcinoma (RCC) (85). It has been found that the genetically modified MSCs to generate IFN-β could induce apoptosis in prostate cancer cell line PC-3 in vitro. Also, systemic injection of these modified MSCs could lead to the diminished proliferation of transformed cells in both PC-3 (86) and TRAMP-C2 (87) xenografts, as documented by reduced tumor weight, leading to the prolonged animal survival (86). Furthermore, IFN-β-secreting BM MSCs (BM MSC-IFN-β) in addition to the induction of reduced cell proliferation and G1-phase arrest in HCC cell line HepG2 and Huh7 in vitro, suppressed tumor growth in HCC NOD/SCID mice model. Molecular analysis indicated that downregulation of the AKT/Forkhead box O3 (FOXO3a) pathway plays a central role in observed antitumor effects in xenografts (88). Also, systemic injection of the MSC-IFN-β resulted in high levels of IFN-β secreted by MSC in the tumor microenvironment but not in circulation in breast cancer 4T1 cell-bearing mice. Furthermore, intervention supported inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling axis and also dramatically decreased pulmonary and hepatic metastases in xenografts (89). Besides, canine ADMSC-IFN-β co-cultured with canine melanoma LMeC cells led to the pronounced cell cycle arrest in tumor cells and significantly diminished cyclin D1 expression in these cells. Regardless of the affecting proliferation of LMeC cell, ADMSC-IFN-β induced active forms of caspase-3 and Bak in co-cultured LMeC cells, and thereby elicited their apoptosis in vitro (90). Remarkably, intratumoral injection of canine ADMSC-IFN-β plus cisplatin into melanoma B16F10 cells bearing C57BL/6 mice resulted in the more prominent antitumor effects than monotherapy with ADMSC-IFN-β and cisplatin (91). These findings confirmed the possible capability of ADMSC-mediated IFN-β for the treatment of canine and human cancer patients (91). Additionally, IFN-β producing human UC-MSCs could induce robust apoptosis in human triple-negative breast (TNBC) carcinoma cell lines MDA-MB-231 and Hs578T in vitro (92), and in bronchioloalveolar carcinoma xenografts in SCID mice in vivo (93). Furthermore, administration of the IFN-β-secreting human MSCs into tongue squamous cell carcinoma (TSCC) (94), and also glioma xenografts (95) exerted dramatic antitumor responses in vivo.

MSCs as a Carrier for IFN-γ

The IFN-γ while stimulates the expression of resistant genes in tumor cells, this signaling sponsored the maturation of NK and innate lymphatic cells (ILCs), and also the generation of CXCL9 and CXCL10 in immune cells for improving T-cell infiltration (96).

It has been displayed that MSCs engineered to deliver IFN-γ could eliminate tumor cells by continued activation of the TRAIL pathway, a potent stimulator of apoptosis. Meanwhile, IFN-γ-secreting MSCs stimulated apoptosis in lung tumor H460 cells mediated by TRAIL signaling pathways and resultant caspase-3 activation in vitro. Also, IFN-γ-modified administration of MSCs caused suppressed tumor growth in lung carcinoma xenografts (97). Furthermore, Tsujimura et al. found that murine MSC line C3H10T1/2 engineered to coexpress IFN-γ and herpes simplex virus-thymidine kinase (HSV-TK) in combination with prodrug ganciclovir could dramatically inhibit the proliferation of murine adenocarcinoma colon26 cell in xenografts (98).

A summary of preclinical studies respecting IFN delivery using MSCs is listed in Table 3.

MSCs AS A CARRIER FOR TRAIL

The immune cytokine TRAIL has attracted substantial attention as an antitumor agent because of its competence to selectively induce tumor cell apoptosis without exerting toxicity in vivo. Nonetheless, poor circulation half-life, inadequate delivery to target cells, and TRAIL resistance have obstructed clinical translation (102).

The Mechanism of Resistance to Cytokine TRAIL

TRAIL interrelates with two agonistic receptors, involving TRAIL-R1 (DR4) and TRAIL-R2 (DR5), and three antagonistic receptors, including TRAIL-R3 (DrR1), TRAIL-R4 (DrR2), and soluble receptor osteoprotegerin (OPG) (103, 104). Correspondingly, induction of either extrinsic or intrinsic apoptosis pathways in tumor cells resulting from binding of TRAIL to DR4 and DR5 is mainly induced by trimerization of responding receptors and establishment of the death-inducing signaling complex (DISC) (105, 106). Fas-associated death domain protein (FADD) is then engaged to the DISC and connects with the death domains (DD) located in the cytoplasmic domain of DR4 and DR5. Finally, this interaction supports translocation and subsequent stimulation of procaspase-8/10 (107).

Concisely, upregulation of antiapoptotic proteins, such as Bcl-2, c-FLIP, Mcl-1, and survivin, and also overactivation of survival or proliferation-involved signaling axis (e.g., NF-κB, PI3K/AKT, and ERK) play a critical role in tumor cell resistance to TRAIL (103, 108). Furthermore, downregulation of proapoptotic proteins, in particular Bax, accompanied by suppression of DR4/5 expression and also activation contributes to tumor-cell resistance to TRAIL (109–111). Recent findings have delivered proof of the theory that human MSCs engineered to produce and deliver TRAIL can efficiently infiltrate to and eradicate tumor cells in vitro and in vivo (112–114). For instance, Mueller et al. found that MSC with lentiviral TRAIL expression (MSC-TRAIL) abrogated the proliferation of TRAIL-resistant colorectal carcinoma (CRC) cells in a murine model possibly mediated by prolonged exposure to TRAIL (115).
The recent finding has shown that MSC-based delivery of TRAIL can target and eliminate CD133+ non-small-cell lung carcinoma (NSCLC)-derived cancer stem cells (CSCs) by modifying mitochondria membrane potential, and subsequently triggering intrinsic apoptosis in CSCs (116). Moreover, TRAIL-secreting MSCs induced robust apoptosis in lung A549, breast MDAMB231, squamous H357, and cervical Hela cancer cells in coculture experiments, and also in xenografts (117). Injected MSC-TRAIL could induce significant attenuation in metastatic tumor volume with frequent elimination of metastases in tumor xenografts (117). Importantly, MSC-TRAIL induced apoptosis in neuroblastoma cell lines in vitro, infiltrated tumor sites in vivo, and abrogated neuroblastoma development in xenotransplantation experiments following intraperitoneal injection (118). Additionally, TRAIL-secreting BMMSCs triggered apoptosis in heat-shock-treated liver cancer cells as evidenced by upregulated caspase-3 activation, and also suppressed tumor growth in tumor xenografts leading to prolonged mouse survival (119). Similarly, UCMSC-TRAIL stimulated apoptosis in myeloma U-266 cells in vitro, and also in SCID mice models through caspase-3 activation (120). On the other hand, it was found that combine treatment of MSC-TRAIL and paclitaxel (121) or with AKT inhibitors (122) or with VPA (52) triggered apoptosis in human pancreatic carcinoma (CFPAC-1) (54), glioblastoma (U87-MG) (121), prostate cancer (PC3, LNCaP, and C4-2B) (122), and in glioblastoma (U87 and U138) (52) cell lines in vitro, respectively.

In sum, engineered MSCs to overexpress TRAIL have resulted in promising consequences in tumor xenografts by triggering apoptosis intrinsic and extrinsic pathways.

A summary of preclinical studies respecting TRAIL delivery using MSCs is listed in Table 4.

Table 3 | The overview of studies based on the use of mesenchymal stem/stromal cells (MSCs) as a carrier for delivery of interferons to treat human tumors (in vitro and in vivo).

Cancer	Interferon	Interferon Cell line/model	Results (Ref)
Liver cancer	IFN-α	HepG2 and HuH7 cell line	Inhibition of the proliferation and induction of G2/M phase arrest in HepG2 and HuH7 cell line by down-regulation of Notch signaling axis (81)
Melanoma	IFN-α	B16F10 cell-bearing C57BL/6 mice	Inhibition of tumor growth in SCID mice (81)
Plasmacytoma	IFN-α	Sp6 cell-bearing BALB/c mice	Induction of apoptosis of tumor cells, reduction in microvesSEL density, and ischemic necrosis in tumor-bearing mice (84)
Prostate cancer	IFN-β	PC-3 cell line	Inhibition of the proliferation of PC-3 cells in vitro (86)
Liver cancer	IFN-β	HepG2 and HuH7 cell line	Inhibition of the proliferation and induction of G1 phase arrest in HepG2 and HuH7 cell line by downregulation of AKT/FOXO3a pathway (86)
Squamous cell carcinoma	IFN-β	CAL27 cell line	Suppression of the proliferation of CAL27 cells in vitro and in vivo (94)
Breast cancer	IFN-β	4 T1 cell-bearing mice	Inhibition tumor growth by inhibition of STAT3 signaling resulted in diminished pulmonary and hepatic metastases (89)
Melanoma	IFN-β	LMeC cell line (canine)	Induction of tumor cell apoptosis by up-regulation of caspase-3 and Bak (90)
Melanoma	IFN-β	B16F10 cell-bearing C57BL/6 mice	Inhibition of the growth of melanoma leading to the prolonged survival by combine treatment of MSC-IFN-β and cisplatin (91)
Gioma	IFN-β	F98 cell-bearing rat	Hindrance of gloma growth by marked Bax3+ dendritic cells and CD8+ T-lymphocyte infiltration into tumor tissue (99)
Gioma	IFN-β	9L glioma cell-bearing rat	Induction of tumor cell apoptosis, promotion of the antitumor cytokine secretion and CD4+ and CD8+ T-cell recruitment in intracranial gloma tissues (100)
B-18	IFN-β	MDA-MB-231 cell line	Obstruction of the tumor growth through apoptosis (92)
Bronchioloalveolar carcinoma	IFN-β	H358 cell line	Inducing H358 cell apoptosis in vitro (93)
Bladder cancer	IFN-β	T24M cell-bearing mice	Delayed tumor growth by stimulating apoptosis in vivo (93)
Lung cancer	IFN-γ	H460 cell-bearing nude mice	Suppression of the growth and progression of lung carcinoma by caspase-3 activation (97)
Colon cancer	IFN-γ	colon26 cell-bearing nude mice	Inhibition of the proliferation of murine colon26 cell in vivo (98)

IFN, interferon; FOXO3a, Forkhead box O3; HCC, hepatocellular carcinoma; STAT3, signal transducer and activator of transcription 3.

TRAIL Delivery by MSCs

The recent finding has shown that MSC-based delivery of TRAIL can target and eliminate CD133+ non-small-cell lung carcinoma (NSCLC)-derived cancer stem cells (CSCs) by modifying mitochondria membrane potential, and subsequently triggering intrinsic apoptosis in CSCs (116). Moreover, TRAIL-secreting MSCs induced robust apoptosis in lung A549, breast MDAMB231, squamous H357, and cervical Hela cancer cells in coculture experiments, and also in xenografts (117). Injected MSC-TRAIL could induce significant attenuation in metastatic tumor volume with frequent elimination of metastases in tumor xenografts (117). Importantly, MSC-TRAIL induced apoptosis in neuroblastoma cell lines in vitro, infiltrated tumor sites in vivo, and abrogated neuroblastoma development in xenotransplantation experiments following intraperitoneal injection (118). Additionally, TRAIL-secreting BMMSCs triggered apoptosis in heat-shock-treated liver cancer cells as evidenced by upregulated caspase-3 activation, and also suppressed tumor growth in tumor xenografts leading to prolonged mouse survival (119). Similarly, UCMSC-TRAIL stimulated apoptosis in myeloma U-266 cells in vitro, and also in SCID mice models through caspase-3 activation (120). On the other hand, it was found that combine treatment of MSC-TRAIL and paclitaxel (121) or with AKT inhibitors (122) or with VPA (52) triggered apoptosis in human pancreatic carcinoma (CFPAC-1) (54), glioblastoma (U87-MG) (121), prostate cancer (PC3, LNCaP, and C4-2B) (122), and in glioblastoma (U87 and U138) (52) cell lines in vitro, respectively.

In sum, engineered MSCs to overexpress TRAIL have resulted in promising consequences in tumor xenografts by triggering apoptosis intrinsic and extrinsic pathways.

A summary of preclinical studies respecting TRAIL delivery using MSCs is listed in Table 4.
The MSC-based gene delivery is recently introduced as an encouraging therapeutic approach to tumor therapy, including solid tumors and hematological malignancies (118). The modified MSCs can robustly and specifically affect transformed cells without significant unwanted effects and also systemic toxicity. The strong tumor tropism of MSCs makes them reliable candidates as gene delivery vehicles, providing sustained and continued releases of antitumor cytokine. Based on the recent reports, MSCs can unfavorably support tumor progress by a diversity of mechanisms, containing the stimulation of drug resistance, proangiogenic functions, and eliciting metastasis procedure by stimulation of epithelial-mesenchymal transition (EMT) and also enrichments of the cancer stem cell (CSC) niche (139, 140). MSC-derived factors are reliable for the listed unwanted effects, affecting the various hallmarks of cancer. Nonetheless, homing potential of MSCs introduces them as a

CONCLUSION AND FUTURE PROSPECT

The overview of studies based on the use of mesenchymal stem/stromal cells (MSCs) as a carrier for delivery of TRAIL to treat human tumors (in vitro and in vivo).

Cancer	Cell line/model	Result (Ref)
Neuroblastoma	Tumor-bearing NOD/SCID mice	MSC-TRAIL migration to tumor tissue resulted in abrogated tumor growth in xenografts (118)
NSCLC	H460 and H2170 cell line	Inducing the apoptosis intrinsic pathway by affecting mitochondria membrane potential and also NFKB1, BAG3, MCL1, GADD45A, and HRK expression (116)
Breast cancer	MCF-7 cell line	Induced apoptosis of MCF-7 cells co-cultured with modified MSC-coexpressing Smac and TRAIL (123)
SCC	H357 cell line	Induction of apoptosis of tumor cells along with suppressing colony formation (124)
NSCLC	A549 cell line	Marked regression in tumor growth in xenografts (126, 127)
Various cancers	A549, MDAMB23, H357, and Hela cell line	Inducing all cell lines apoptosis in vitro (117)
Esophageal cancer	Eca-109 cell line	Abrogation of tumor growth in subcutaneous xenograft (117)
Multiple myeloma	Eca-109 cell-bearing BALB/c nude mice	Inhibition of the proliferation and induction of apoptosis in Eca-109 cells (125)
NSCLC	U-266 cell line	Suppression of tumor growth in xenografts (125)
Multiple myeloma	U-266 cell-bearing SCID mice	Inducing apoptosis in U-266 cells in vitro (120)
NSCLC	A549 cell-bearing mice	Attenuation of tumor burden by selective stimulation of apoptosis in U-266 cells stimulated by caspase-3 activation in vivo (120)
Pancreatic cancer	CFPAC-1 cell line	Enhancement of the antitumor effects the of MSC-TRAIL secretome by priming with paclitaxel in vitro (121)
Glioblastoma	U87-MG cell line	Induction of apoptosis in tumor cells by upregulation of caspase-3, and DR4 and DR5 expression (119)
HCC	MHCC97-H cell line	Induction of apoptosis in MHCC97-H cells co-cultured with cisplatin plus MSC-TRAIL by upregulation of death receptor 5 (DR5) in vitro (128)
HCC	Tumor cell-bearing BALB/c nude mice	Abrogation of tumor growth in MHCC97-H xenografts by combination therapy using cisplatin plus MSC-TRAIL (129)
HCC	N1-S1, HepG2, and MHCC97-H cell line	Inducing apoptosis in tumor cells by upregulation of caspase-3, and DR4 and DR5 expression (119)
Melanoma	B16FO cell-bearing nude mice	Suppression of tumor growth and reduction of tumor weights (129)
Brain metastatic breast cancer	MDA-MB-23-bearing SCID mice	Induction of selective apoptosis in tumor cells by MSCs modified to co-overexpress CXCR4 and TRAIL (130)
SCC	Tumor cell-bearing nude mice	Marked inhibition in tumor growth in vivo (131)
Gloma	U-87MG cell-bearing nude mice	Enhancing the MSC-TRAIL tumor tropism and subsequent tumor counteraction by irradiation in glioma xenografts (132)
Mesothelioma	Isoflurane-induced NOD/SCID mice	Efficient homing of the MSC-TRAIL to malignant pleural mesothelioma and reducing the tumor growth (133, 134)
Gloma	HME50 cell-bearing SCID mice	Significant and selective elimination of malignant cells supporting prolonged survival in xenografts (135)
Colon cancer	U87MG cell xenografts	Marked inhibition in tumor growth in vivo (131)
Ewing sarcoma	HCT116 cell-bearing CD1 nude mice	Induction of the p53-independent antitumor effects by combine treatment of MSC-TRAIL, and 5-fluorouracil (136)
Ewing sarcoma	A-673, SK-N-MC, and SK-ES-1 cell line	Stimulating apoptosis by cell-to-cell contact in all cell lines (137)
Ewing sarcoma	A-673 cell-bearing nude mice	Suppressed tumor growth in xenografts by inducing the caspase activation (137)

TRAIL/Apo2L, tumor necrosis factor (TNF)-related apoptosis-inducing ligand; NSCLC, nonsmall-cell lung carcinoma; SCC, squamous cell carcinoma; HCC, hepatocellular carcinoma; BAG3, BAG cochaperone 3; MCL1, myeloid cell leukemia 1; GADD45A, growth arrest and DNA damage-inducible alpha; HRK, Harakiri.
More comprehensive investigations concerning the tumor-supportive mechanisms of MSCs can ameliorate the possibility to use them to treat cancers by optimizing their expansion, and thereby attenuation of the tumor cell growth. Besides, further knowledge of the specific molecular mechanisms complicated in the protumorigenic activities of MSCs is urgently required. Importantly, an alternative plan for using the intact MSCs for cytokine delivery is the utilizing MSC-derived conditioned medium, which potently attenuates the cell growth of MSC-derived tumor cell (47, 141, 142).

Overall, we deduce that deterioration of the MSC tumor-supportive competencies using several methods, in particular, combines treatment with engineered MSCs and small molecules (e.g., tyrosine kinase inhibitors) can result in a remarkable safety concurrently more desired therapeutic efficacy.

AUTHOR CONTRIBUTIONS

ER, RM, FM, SS, DB, and WA drafted the main text, figures, and tables. MJ and FT supervised the work and provided comments and additional scientific information. SC, RM, and ER reviewed and revised the text. All authors contributed to the conception and the main idea of the work and read and approved the final version of the work to be published.

REFERENCES

1. Cutler A, Brombacher F. Cytokine therapy. *Ann N Y Acad Sci.* (2005) 1056:16–29. doi: 10.1196/annals.1352.002
2. Dinarello CA. Proinflammatory cytokines. *Chest.* (2000) 118:503–8. doi: 10.1378/chest.118.2.503
3. Nathan C, Sporn M. Cytokines in context. *J Cell Biol.* (1991) 113:981–6.
4. Altan-Bonnet G, Mukherjee R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. *Nat Rev Immunol.* (2019) 19:205–17. doi: 10.1038/s41577-019-0131-x
5. Dey P, Panga V, Raghunathan S. A cytokine signalling network for the regulation of inducible nitric oxide synthase expression in rheumatoid arthritis. *PloS ONE.* (2016) 11:e0161306. doi: 10.1371/journal.pone.0161306
6. Hwang D, Kim W-U. Modelling cytokine signalling networks. *Nat Rev Rheumatol.* (2017) 13:5–6. doi: 10.1038/nrrheum.2016.194
7. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. *Nat Rev Cancer.* (2004) 4:611–22. doi: 10.1038/nrc1252
8. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. *Br J Cancer.* (2019) 120:6–15. doi: 10.1038/s41416-018-0328-y
9. Oppenheim JJ. Cytokines: past, present, and future. *Int J Hematol.* (2001) 74:3–8. doi: 10.1046/j.1532-5435.2001.00010.x
10. Seruga B, Zhang H, Bernstein IJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. *Nat Rev Cancer.* (2008) 8:897–99. doi: 10.1038/nrc2507
11. Nasr MB, Vergani A, Avruch J, Liu L, Kefaloyianni E, D’Addio F, et al. Co-transplantation of autologous MSCs delays islet allograft rejection and localizes an immunoprivileged site. *Acta Diabetol.* (2015) 52:917–27. doi: 10.1007/s00592-015-0735-y
12. Le Blanc K, Ringdén O. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. *Curr Opin Immunol.* (2006) 18:586–91. doi: 10.1016/j.coi.2006.07.004
13. Kidd S, Saperth E, Dembinski JL, Dietrich M, Watson K, Klopp A, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wound microenvironments using in vivo bioluminescent imaging. *Stem Cells.* (2009) 27:2614–23. doi: 10.1002/stem.187
14. Levy O, Rothhammer V, Mascanfroni I, Tong Z, Kuai R, De Biase M, et al. A cell-based drug delivery platform for treating central nervous system inflammation. *J Mol Med.* (2021) 99:663–71. doi: 10.1007/s00109-020-02003-9
15. Wu H-H, Zhou Y, Tabata Y, Gao J-Q. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. *J Control Rel.* (2019) 294:102–13. doi: 10.1016/j.jconrel.2018.12.019
32. Gibellini L, De Biasi S, Porta C, Lo Tartaro D, Depenni R, Pellacani G, et al. Single-cell approaches to profile the response to immune checkpoint inhibitors. Front Immunol. (2020) 11:490. doi: 10.3389/fimmu.2020.00490

33. June CH, O’Connor RS, Kawaikekur OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. (2018) 359:1361–5. doi: 10.1126/science.aar6711

34. Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander PI, et al. Recombinant alpha-2 interferon therapy for Kaposi’s sarcoma in an invasive glioma model. Gene Ther. (2021) 19:1–14. doi: 10.1186/s12967-021-02809-2

35. Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, et al. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol. (2019) 10:453. doi: 10.3389/fimmu.2019.00453

36. Groopman JE, Gottlieb MS, Goodman J, Mitsuyasu RT, Prince RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous Ewing sarcoma tumors. J Clin Oncol. (1996) 14:7–17. doi: 10.1200/JCO.1996.14.1.7

37. Hasgur S, Desbourdes L, Relation T, Overholt KM, Stanek JR, Guess AJ, et al. Synthetic macrophage phagocytosis of intravenously infused mesenchymal stromal cells attenuates tumor localization. Cytotheray. (2021) 23:411–22. doi: 10.1016/j.jcyt.2020.04.102

38. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. (1999) 17:2105–6. doi: 10.1200/JCO.1999.17.7.2105

39. Kurozumi K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. (2004) 11:1155–64. doi: 10.1038/sj.gt.3302276

30. Solal-Celigny P, Leporrier M. Recombinant interleukin interferon therapy in patients with malignant glioma. J Neurosurg. (1994) 100:671–6. doi: 10.3726/0003-4819-100-5-671

41. Kirkwood M, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alpha-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1681. (1984) J Clin Oncol. (1996) 14:7–17. doi: 10.1200/JCO.1996.14.1.7

42. Groopman JE, Gottlieb MS, Smith TJ, Borden EC, Blum RH. Interferon alpha-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1681. (1984) J Clin Oncol. (1996) 14:7–17. doi: 10.1200/JCO.1996.14.1.7

43. Groopman JE, Gottlieb MS, Smith TJ, Borden EC, Blum RH. Interferon alpha-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1681. (1984) J Clin Oncol. (1996) 14:7–17. doi: 10.1200/JCO.1996.14.1.7

44. Groopman JE, Gottlieb MS, Smith TJ, Borden EC, Blum RH. Interferon alpha-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1681. (1984) J Clin Oncol. (1996) 14:7–17. doi: 10.1200/JCO.1996.14.1.7

45. Groopman JE, Gottlieb MS, Smith TJ, Borden EC, Blum RH. Interferon alpha-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1681. (1984) J Clin Oncol. (1996) 14:7–17. doi: 10.1200/JCO.1996.14.1.7

46. Groopman JE, Gottlieb MS, Smith TJ, Borden EC, Blum RH. Interferon alpha-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1681. (1984) J Clin Oncol. (1996) 14:7–17. doi: 10.1200/JCO.1996.14.1.7
Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mouniz JD, et al. Mesenchymal stem cells expressing interferon-β inhibit breast cancer growth and metastases through STAT3 signaling in a syngeneic tumor model. Cancer Microenviron. (2010) 3:383–95. doi: 10.1007/s12287-010-0041-8

Han S-M, Park C-W, Ahn J-O, Park S-C, Jung W-S, Seo K-W, et al. Pro-apoptotic and growth-inhibitory effect of IFN-β-overexpressing canine adipose tissue-derived mesenchymal stem cells against melanoma cells. Anticancer Res. (2015) 35:4749–56.

Seo K-W, Lee H-W, Oh Y-I, Ahn J-O, Koh Y-R, Oh S-H, et al. Anti-tumor effects of canine adipose tissue-derived mesenchymal stromal cell-based interferon-β gene therapy and cisplatin in a mouse melanoma model. Cytotherapy. (2011) 13:944–55. doi: 10.1016/j.jcyt.2011.08.006

Shen C-J, Chan T-F, Chen C-C, Hsu Y-C, Long C-Y, Lai C-S. Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget. (2016) 7:34172. doi: 10.18632/oncotarget.8997

Matsuoka T, Rakachatat RS, Doi C, Maurya DK, Ohta N, Kawabata A, et al. Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer. (2010) 70:28–36. doi: 10.1016/j.lungcan.2010.01.003

Du L, Liang Q, Ge S, Yang C, Yang P. The growth inhibitory effect of human gingiva-derived mesenchymal stromal cells expressing interferon-β on tongue squamous cell carcinoma cells and xenograft model. Stem Cell Res Ther. (2019) 10:1–12. doi: 10.1186/s13287-019-1320-z

Mao J, Cao M, Zhang F, Zhang J, Duan X, Lu L, et al. Peritumoral administration of IFNβ upregulated mesenchymal stem cells inhibits tumor growth in an orthotopic, immunocompetent rat glioma model. J Immunother Cancer. (2020) 8:e000164. doi: 10.1136/jitc-2019-000164

Gerber SA, Sedlack AL, Cron KR, Murphy SP, Frelinger JG, Lord EM. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. (2013) 182:2345–54. doi: 10.1016/j.ajpath.2013.02.041

Yang X, Du J, Xu X, Xu C, Song W. IFN-γ-secreting mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J Immunol Res. (2014) 2014:318098. doi: 10.1155/2014/318098

Tsuimura M, Kusamori K, Katsumi H, Sakane T, Yamamoto A, Nishikawa M. Cell-based interferon gene therapy using proliferation-controllable, interferon-releasing mesenchymal stem cells. Stem Cell Res. (2019) 34:1915–22. doi: 10.1016/j.scr.2019.05.004

Shen C-J, Chan T-F, Chen C-C, Hsu Y-C, Long C-Y, Lai C-S. Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget. (2016) 7:34172. doi: 10.18632/oncotarget.8997

Matsuoka T, Rakachatat RS, Doi C, Maurya DK, Ohta N, Kawabata A, et al. Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer. (2010) 70:28–36. doi: 10.1016/j.lungcan.2010.01.003

Du L, Liang Q, Ge S, Yang C, Yang P. The growth inhibitory effect of human gingiva-derived mesenchymal stromal cells expressing interferon-β on tongue squamous cell carcinoma cells and xenograft model. Stem Cell Res Ther. (2019) 10:1–12. doi: 10.1186/s13287-019-1320-z

Mao J, Cao M, Zhang F, Zhang J, Duan X, Lu L, et al. Peritumoral administration of IFNβ upregulated mesenchymal stem cells inhibits tumor growth in an orthotopic, immunocompetent rat glioma model. J Immunother Cancer. (2020) 8:e000164. doi: 10.1136/jitc-2019-000164

Gerber SA, Sedlack AL, Cron KR, Murphy SP, Frelinger JG, Lord EM. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. (2013) 182:2345–54. doi: 10.1016/j.ajpath.2013.02.041

Yang X, Du J, Xu X, Xu C, Song W. IFN-γ-secreting mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J Immunol Res. (2014) 2014:318098. doi: 10.1155/2014/318098

Tsuimura M, Kusamori K, Katsumi H, Sakane T, Yamamoto A, Nishikawa M. Cell-based interferon gene therapy using proliferation-controllable, interferon-releasing mesenchymal stem cells. Stem Cell Res. (2019) 34:1915–22. doi: 10.1016/j.scr.2019.05.004
106. Xu L, Guo T, Qu X, Hu X, Zhang Y, Che X, et al. β-ellipse increases the sensitivity of gastric cancer cells to TRAIL by promoting the formation of DISC in lipid rafts. Cell Biol Int. (2018) 42:1377–85. doi: 10.1002/cbin.11023

107. Mouasni S, Tourneur L. FADD at the crossroads between cancer and inflammation. Trends Immunol. (2018) 39:1036–53. doi: 10.1016/j.it.2018.10.005

108. Zha H, Zhang L, Huang X, Davis JI, Jacob DA, Terasiash F, et al. Overcoming acquired resistance to TRAIL by chemotherapeutic agents and calpain inhibitor i through distinct mechanisms. Mol Ther. (2004) 9:666–73. doi: 10.1016/j.mther.2004.02.007

109. Deng D, Shah K. Trail of hope meeting resistance in cancer. Trends Cancer. (2020) 6:989–1001. doi: 10.1016/j.trecan.2020.06.006

110. van Dijk J, Halpin-McCormick A, Sessler T, Samali A, Szegedzi E. Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death Dis. (2013) 4:e702. doi: 10.1038/cddis.2013.214

111. Han J, Goldstein BR, Gastman BR, Rabinovitz A, Wang GQ, Fang B, et al. Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells. Leukemia. (2004) 18:1671–80. doi: 10.1038/sj.leu.2403496

112. Kim SM, Woo JS, Jeong CH, Ryu CH, Jang J-D, Jeon S-S. Potential application of temozolomide in mesenchymal stem cell-based TRAIL gene therapy against malignant glioma. Stem Cells Transl Med. (2014) 3:1727–82. doi: 10.5966/sctm.2013-0132

113. Mohr A, Albarenque SM, Deedigan L, Yu R, Reidy M, Fuldal S, et al. Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells. (2010) 28:2109–20. doi: 10.1002/stem.533

114. Barti-Juhasz H, Mihalik R, Nagy K, Grisendi G, Dominici M, Petak I. Bone marrow derived mesenchymal stem/stromal cells transduced with full length human TRAIL repress the growth of rhabdomyosarcoma cells in vitro. Haematologica. (2011) 96:e21. doi: 10.3324/haematol.2010.036822

115. Mueller LP, Lutzkendorf I, Widdler M, Nerger K, Carska H, Mueller T. TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther. (2011) 18:229–39. doi: 10.1038/cgt.2010.68

116. Fakiruddin KS, Lim MN, Nordin N, Rosli R, Zakaria Z, Abdullah S. Mesenchymal stem cells promote apoptosis in heat-shock-treated liver cancer cells and inhibit tumor growth in nude mice. J Cell Physiol. (2009) 216:37–27. doi: 10.1002/jcp.2013.88

117. Cafforio P, Viggiano L, Mannovela F, Pellè E, Caporusso C, Maiorano E, et al. p53-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo. Stem Cell Res Ther. (2017) 8:206. doi: 10.1186/s13287-017-0655-6

118. Coccé V, Bonomi A, Cavicchini L, Sisto F, Gianni A, Faronatto G, et al. Paclitaxel priming of TRAIL expressing mesenchymal stem cells (MSC-TRA) increases antitumor efficacy of their secretome. Curr Cancer Drug Targets. (2020). doi: 10.2174/156800962066202116112153

119. Mohr A, Chu T, Brooke GN, Zwacka RM. MSCs-TRAIL has better efficacy than MSC-FL-TRAIL and in combination with AKT1 blocks pro-metastatic cytokine production in prostate cancer cells. Cancers. (2019) 11:568. doi: 10.3390/cancers11040568

120. Khorrashadizadeh M, Soleimani M, Khanahmad H, Fallah A, Naderi M, Khorrashadizadeh M. Bypassing the need for pre-sensitization of cancer cells for anticancer TRAIL therapy with secretion of novel cell penetrable form of Smac from hα-MSCs as cellular delivery vehicle. Tumour Biol. (2015) 36:4213–21. doi: 10.1007/s13277-015-3058-2

121. Loebinger MR, Sage EK, Davies D, Janes SM. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. Br J Cancer. (2010) 103:1692–7. doi: 10.1038/sj.bjc.6605952

122. Li L, Li F, Tian H, Yue W, Li S, Chen G. Mesenchymal stem cells with adenovirus-mediated TRAIL gene transduction have antitumor effects on esophageal cancer cell line Eca-109. Acta Biochim Biophys Sin. (2014) 46:471–6. doi: 10.1039/abs/gmu0024

123. Mohr A, Lyons M, Deedigan L, Harte T, Shaw G, Howard L, et al. Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. J Cell Mol Med. (2008) 12:2628–43. doi: 10.1111/j.1582-4934.2008.00317.x

124. Yang B, Wu X, Mao Y, Bao W, Gao L, Zhou P, et al. Dual-targeted antitumor effects of TRAIL-expressing mesenchymal stem cells in glioma therapy. Stem Cells. (2010) 28:2217–28. doi: 10.1002/stem.543

125. Liu M, Hu Y, Chen G. The antitumor effect of gene-engineered exosomes in the treatment of brain metastasis of breast cancer. Front Oncol. (2016) 37:8425–35. doi: 10.3389/fonc.2016.01453

126. Cancers. (2015) 9:21–29. doi: 10.1177/202034514557815

127. Kim SM, Oh JH, Park SA, Ryu CH, Lim JY, Kim DS, et al. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells. (2010) 28:2217–28. doi: 10.1002/stem.543

128. Sage EK, Kolluri KK, McNulty K, Lourenco Sda S, Kalber TL, Ordidge KL, et al. Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma. Thorax. (2014) 69:638–47. doi: 10.1136/thoraxjnl-2013-204110

129. Lathrop MJ, Sage EK, Macura SL, Brooks EM, Cruz F, Bonenfant NR, et al. Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma. Cancer Gene Ther. (2020) 27:44–54. doi: 10.1038/s41419-020-0362-8

130. Yang B, Wu X, Mao Y, Bao W, Gao L, Zhou P, et al. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related apoptosis-inducing ligand-secreting human mesenchymal stem cells. Neurosurgery. (2009) 65:610–24; discussion 24. doi: 10.1227/01.NEU.0000350227.61132.A7

131. Yu R, Deedigan L, Albarenque SM, Mohr A, Zwacka RM. Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects. Cell Death Dis. (2013) 4:e503. doi: 10.1038/cddis.2013.19

132. Guirro R, Béreau K, Grisendi G, Taurelle J, Chatelais M, Gantier M, et al. TRAIL delivered by mesenchymal stromal/stem cells countersact tumor development in orthotopic Ewing sarcoma models. Int J Cancer. (2016) 139:2802–11. doi: 10.1002/jic.30402

133. Tavakoli S, Ghaderi Jafargholgo HR, Shariatii A, Jahangiryan A, Jadidi J, Jadidi Khoubanani MA, et al. Mesenchymal stem cells: a new horizon in regenerative medicine. J Cell Physiol. (2020) 235:9185–210. doi: 10.1002/jcp.29803

134. Markov A, Thangavelu LV, Aravindhan S, Zekiy AO, Jaraihan M, Chartrand MS, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. (2021) 12:1–30. doi: 10.1186/s13287-021-0265-1

135. Hassanzadeh A, Altaiar AH, Rahmaan HS, Saleh MM, Bokov DO, Abdelbasset WK, et al. Mesenchymal stem/stromal cell-based delivery: a
rapidly evolving strategy for cancer therapy. Front Cell Dev Biol. (2021) 9:1758. doi: 10.3389/fcell.2021.686453

141. Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier. Eur J Cell Biol. (2020) 99:151097. doi: 10.1016/j.ejcb.2020.151097

142. Moghadasi S, Elveny M, Rahman HS, Sukasatan W, Jalil AT, Abdelbasset WK, et al. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med. (2021) 19:302. doi: 10.1186/s12967-021-02980-6

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Razeghian, Margiana, Chupradit, Bokov, Abdelbasset, Marofi, Shariatzadeh, Tosan and Jarahian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.