Genome-wide association study identifies novel risk variants from RPS6KA1, CADPS, VARS, and DHX58 for fasting plasma glucose in Arab population

Prashantha Hebbarah1,2, Mohamed Abu-Farha3,6, Fadi Alkayal1,6, Rasheeba Nizam1,6, Naser Elkum1,3, Motasem Melhem1, Sumi Elsa John1, Arshad Channanath1, Jehad Abubaker1, Abdullah Bennakhil1, Ebaa Al-Ozairi1, Jaakko Tuomilehto4,5, Janne Pitkanen1, Osama Alsmadi5,6*, Fahd Al-Mulla1* & Thangavel Alphonse Thanaraj1*

Consanguineous populations of the Arabian Peninsula, which has seen an uncontrolled rise in type 2 diabetes incidence, are underrepresented in global studies on diabetes genetics. We performed a genome-wide association study on the quantitative trait of fasting plasma glucose (FPG) in unrelated Arab individuals from Kuwait (discovery-cohort:n = 1,353; replication-cohort:n = 1,196). Genome-wide genotyping in discovery phase was performed for 632,375 markers from Illumina HumanOmniExpress Beadchip; and top-associating markers were replicated using candidate genotyping. Genetic models based on additive and recessive transmission modes were used in statistical tests for associations in discovery phase, replication phase, and meta-analysis that combines data from both the phases. A genome-wide significant association with high FPG was found at rs1002487 (RPS6KA1) (p-discovery = 1.64E-08, p-replication = 3.71E-04, p-combined = 5.72E-11; β-discovery = 8.315, β-replication = 3.442, β-combined = 6.551). Further, three suggestive associations (p-values < 8.2E-06) with high FPG were observed at rs487321 (CADPS), rs707927 (VARS and 2Kb upstream of VWA7), and rs12600570 (DHX58); the first two markers reached genome-wide significance in the combined analysis (p-combined = 1.83E-12 and 3.07E-09, respectively). Significant interactions of diabetes traits (serum triglycerides, FPG, and glycated hemoglobin) with homeostatic model assessment of insulin resistance were identified for genotypes heterozygous or homozygous for the risk allele. Literature reports support the involvement of these gene loci in type 2 diabetes etiology.

A large number of genome-wide association studies have been conducted in various populations (mostly on Europeans, Americans, and East Asians), resulting in the identification of more than 100 loci conferring susceptibility to type 2 diabetes mellitus1-4. Meta-analysis and genotype imputations from diverse ethnic populations help identify novel markers and causal loci. However, despite the observed high prevalence of type 2 diabetes in Arab countries5,6, their populations were not included in global studies.

The Arabian Peninsula is at the nexus of Africa, Europe, and Asia; and has been assumed to be an early human migration route out of Africa. Consanguineous marriage (especially among first or second cousins) is an established practice among the Arabian Peninsula population. Consanguinity results in increased homozygosity, and accumulation of deleterious recessive alleles in the gene pool, creating the potential for certain variants to become

1Dasman Diabetes Institute, P.O. Box 1180, Dasman, 15462, Kuwait. 2Doctoral program in Population Health, Faculty of medicine, University of Helsinki, Helsinki, Finland. 3Sidra Medical and Research Center, Doha, Qatar. 4Department of Public Health, University of Helsinki, Helsinki, Finland. 5King Hussein Cancer Center, Amman, Jordan. 6These authors contributed equally: Mohamed Abu-Farha, Fadi Alkayal and Rasheeba Nizam. *email: oa.12163@khcc.jo; fahd.almulla@dasmaninstitute.org; alphonse.thangavel@dasmaninstitute.org
more common in these endogamous population groups; these features can influence the etiology of complex disorders. Therefore, elucidating novel risk variants is realistically possible in this population.

The Kuwaiti population consists of settlers from Saudi Arabia, Iran, and other neighboring countries within the Peninsula. Such settlement and subsequent admixture shaped the genetics of the Kuwaiti population. Our earlier work showed that the Kuwaiti population is heterogeneous, but structured, and carries a large burden of homozygosity. Kuwaiti population groups practice consanguineous marriage; a survey in Kuwait reported that the rate of consanguineous marriages was as high as 54% and the average inbreeding coefficient was 0.0219. These practices indicate that groups live in isolation by community leading to genetic isolates in extended families and Bedouin tribes. Using these small population isolates can reduce the complexity of polygenic disorders by reducing the number of loci involved in disorder etiology. In the present study, we performed a genome-wide association study (GWAS) on native Arab individuals from Kuwait to delineate novel risk variants for fasting plasma glucose (FPG). We further examined associations between glucose-related traits and insulin resistance traits in individuals with genotypes, heterozygous or homozygous, for the risk allele at the identified risk variants.

Results
Marker and sample sets. Quality control analyses resulted in a marker set of 632,375 SNPs (reduced down from 730,525), discovery cohort of 1,353 samples (reduced down from 1913), and replication cohort of 1,176 samples. The discovery cohort was estimated to have 80% power to detect associations (under additive and recessive models) with a genetic effect that explained 0.6% of the variance in the trait. The acceptable effect sizes at different allele frequencies for associations with FPG (in discovery phase) are presented in Supplementary Table S1.

Characteristics of study participants. The study cohorts were described in our previous reports. Participants (comprising almost equal proportions of men and women) were largely middle-aged (mean age in discovery cohort, 46.8 ± 13.8 years) (Table 1) and were largely obese (mean body mass index, 32.4 ± 7.4 kg/m²) with high waist circumference (102.2 ± 16.35 cm). The proportions of participants afflicted with type 2 diabetes from the discovery and replication cohorts were 45% and 39%, respectively. A total of 216 of the participants from the discovery cohort were being administered glucose-lowering medication. Mean FPG values in the discovery and replication cohorts were 7.3 ± 3.57 and 5.86 ± 2.27 mmol/L, respectively, and were in the range of the ADA-defined threshold of 5.5–6.9 mmol/L for diagnosing impaired fasting glucose. Mean HbA1c values in the discovery and replication cohorts were 7.1 ± 2.1%, and 6.00 ± 1.4%, respectively. While FPG measurements were available for all participants of the discovery cohort, HbA1c values were available for only 750; hence, markers associated with only HbA1c were excluded from further analyses.

Associations observed in discovery and replication phases. Upon examining the association test results from discovery phase for at least nominal p-values of <1.0E-05 and acceptable beta values, we short-listed 22 markers (21 associated with FPG and 1 with both FPG and HbA1c) to carry forward to the replication phase; Table 2 presents their quality assessment values in the replication phase. Intensity maps displaying the quality of the three called genotypes at these markers are presented in Supplementary Figure S3. Quantile–quantile plots depicting the expected and observed log10(p-values) for association of the markers with FPG are presented in Fig. 1. Genomic-control inflation factors for FPG were (λ = 1.047, recessive model; λ = 1.077, additive model) in tests with regular corrections and (λ = 1.031, recessive model; λ = 1.069, additive model) in tests corrected further for glucose-lowering medication. Similar values were obtained for HbA1c. These values at close to 1.0 and differing only over a small range of 1.03–1.08 do not necessitate correcting association statistics for genomic-control inflation. Manhattan plots depicting the −log10(p-values) from the GWAS for the FPG trait are presented in Supplementary Figure S4. Four markers (i.e., rs12488539, rs6762914, rs1199028, rs7329697) failed the SNP quality assessment tests for Hardy–Weinberg equilibrium quality control (HW = 10−6); and none failed the test for allele frequency consistency (between discovery and replication phases). Table S2 lists, for all 22 markers, results of association tests (with regular corrections and additionally corrected for diabetes medication) from the discovery and replication phases as well as meta-analysis of the combined results from both phases. The analysis produced a short-list of four associations for FPG that showed significant p-values in discovery phase (one at a genome-wide significant p-value of <1.8E-08 and three at nominal p-values of <1.0E-05) and that passed the p-value threshold in the replication phase; three of them reached genome-wide significance in the meta-analysis that combines and jointly analyze the data from both the discovery and replication phases (Table 3). Such markers were rs1002487/[intronic from RPS6KA1] (p-discovery = 1.64E-08, p-replication = 3.71E-04, p-combined = 1.11E-11), rs487321/[intronic from CADPS] (p-discovery = 1.53E-07, p-replication = 2.25E-06, p-combined = 1.83E-12), rs707927/[intronic from VARS and 2 Kb upstream of VWA7] (p-discovery = 8.24E-06, p-replication = 8.25E-05, p-combined = 3.07E-09), and rs12600570/[intronic from DDX58] (p-discovery = 7.49E-06, p-replication = 4.67E-03, p-combined = 2.72E-07); the former two were recessive and the latter were additive markers. Further corrections for glucose-lowering medication retained significant p-values and effect sizes. Upon performing inverse normal transformation on the FPG traits, p-values for the association of rs707927 improved to 1.26E-07 (effect size = 0.33). The RPS6KA1 marker was also associated with HbA1c at close to the p-value threshold for genome-wide significance (p-discovery = 4.91E-08; p-replication = 2.71E-03; p-combined = 7.27E-09).
Considering the diabetes and obesity status of the participants as covariates for adjustments on the association models. 45% of participants in the discovery phase, and 38% of participants in the replication phase, respectively, were diagnosed for diabetes (see Table 1). It is further the case that obesity seems to be a major driver of diabetes in the whole sample – 59% of participants in the discovery phase and 46% of participants in the replication phase, respectively, were obese. Thus, it is important to perform corrections for the association tests for diabetes and obesity status along with corrections for diabetes and lipid lowering medications (lipid lowering medications can influence FPG levels). Upon performing the corrections for these 4 covariates along with the regular corrections, it was found that the p-values remained significant at p-combined $= 1.38E-10$ (for RPS6KA1 marker), $1.88E-13$ (for CADPS marker), $1.23E-08$ (for VARS marker) and $2.78E-05$ (for DHX58 marker) (Table 4).

Sensitivity analysis. A concern arises as to whether the FPG values measured in individuals receiving glucose-lowering medication represent “naturally” observed values in the population. We addressed this concern by performing a sensitivity analysis to add a value of 2.5 mmol/L to the FPG values of the participants taking diabetes medication and then performing the association tests; the value of 2.5 mmol/L is an average effect size (p-value taking diabetes medication and then performing the association tests; the value of 2.5 mmol/L is an average effect size). We distributed the discovery cohort (n = 452) and replication cohort (n = 1176) onto four sub-cohorts: (i) Discovery_diabetic (n = 605); (ii) Discovery_non-diabetic (n = 748); (iii) Replication_diabetic (n = 452); and (iv) Replication_non-diabetic (n = 724). We performed association tests with each of the four sub-cohorts followed by three meta-analysis (Meta_diabetic: combining results from Discovery_diabetic and Replication_diabetic), (Meta_non-diabetic: combining results from Discovery_non-diabetic and Replication_non-diabetic) and (Meta_all: combining results from all the four sub-cohorts). With regular corrections performed on the association tests, the effect sizes and p-values remained significant in the Meta_diabetic

Discovery Cohort (mean ± SD)	Replication Cohort (mean ± SD)	p-values for differences between Discovery and Replication cohorts
Sex, Male:Female	667:686	673:503
Age, years ± SD	47 ± 13.8	47 ± 10.7
Weight, Kg ± SD	88.5 ± 21.1	92.4 ± 17
Height, cm ± SD	165 ± 9.6	166.5 ± 8.9
BMI, Kg/m² ± SD	32.4 ± 7.4	31.2 ± 5.7
WC, cm ± SD	102.2 ± 16.4	100.5 ± 12.1
LDL, mmol/L ± SD	3.1 ± 0.97	3.4 ± 0.9
HDL, mmol/L ± SD	1.1 ± 0.4	1.1 ± 0.3
TC, mmol/L ± SD	4.9 ± 1.1	5.2 ± 1.0
TG, mmol/L ± SD	1.7 ± 1.2	1.6 ± 1.0
HbA1c, mmol/L ± SD	7.1 ± 2.1	6.0 ± 1.4
FPG, mmol/L ± SD	7.3 ± 3.6	5.9 ± 2.3
SBP, mmHg ± SD	128 ± 17.5	129.1 ± 16.7
DBP, mmHg ± SD	77.9 ± 10.6	78.7 ± 11.1
Proportion of the participants that are obese (BMI ≥ 30 Kg/m²)	59.3%	45.5%
Proportion of the participants that are diabetic	44.7%	38.4%
Proportion of the participants that are hypertensive	44.9%	35.7%
Proportion of the participants that consume lipid lowering medication	9.8%	0.3%
Proportion of the participants that consume glucose lowering medication	16.0%	4.6%
Proportion of the participants that consume blood pressure medication	11.9%	7.2%

Table 1. Demographic characteristics of the study participants. Abbreviations: WC, waist circumference; TC, total cholesterol; HbA1c, glycated hemoglobin; FPG, fasting plasma glucose; SBP, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation. *The distribution of the participants onto normal weight (BMI 20 to <25): overweight (BMI 25 to <30): obese (BMI 30 to <40): morbid obese (BMI ≥ 40) = 222:328:597:206 in the discovery cohort; and 93:442:559:82 in the replication cohort.

Assessing the identified associations in sub-cohorts of entirely diabetic or of entirely non-diabetic participants. The discovery and replication cohorts used in this study included both diabetic patients and healthy participants; as mentioned above, the identified associations retained significance when the models were adjusted for the covariate of diabetes status. It is often the case that quantitative trait associations are done on entirely non-diabetic participants or on entirely diabetic patients (which gives a higher chance of translating the findings to clinical utility). We distributed the discovery cohort (n = 1353) and replication cohort (n = 1176) onto four sub-cohorts: (i) Discovery_diabetic (n = 605); (ii) Discovery_non-diabetic (n = 748); (iii) Replication_diabetic (n = 452); and (iv) Replication_non-diabetic (n = 724). We performed association tests with each of the four sub-cohorts followed by three meta-analysis (Meta_diabetic: combining results from Discovery_diabetic and Replication_diabetic), (Meta_non-diabetic: combining results from Discovery_non-diabetic and Replication_non-diabetic) and (Meta_all: combining results from all the four sub-cohorts). With regular corrections performed on the association tests, the effect sizes and p-values remained significant in the Meta_diabetic...
Table 2. SNP quality assessment statistics for the 22 markers assessed in the replication phase. Association with the trait was assessed under the genetic model based on recessive mode of inheritance; association with the trait was assessed under the genetic model based on additive mode of inheritance. The markers (rs12488539, rs6762914, rs1199028 and rs7329697) fail in HWE test in replication phase.

Examination of the NHGRI-EBI GWAS catalog for previous association reports on the identified risk variants. While none of the identified risk variants was associated with any trait in previous GWAS, the gene loci were often associated with traits related to diabetes: RPS6KA1 with glucose homeostasis traits, sporadic amyotrophic lateral sclerosis, and the symptom of rosacea; DHX58 with coronary artery disease (CAD); and CADPS with treatment interaction of sulfonylurea (a glucose-lowering drug), heart failure-related metabolite levels, and obsessive-compulsive symptoms.

LD markers and regional associations. Figure 2 presents regional association plots for regions of 500 Kb centered at the identified four risk variants; these regions (other than for the CADPS marker) were gene-dense. The (VARS, VWA7) and DHX58 markers had 21 and 7 LD partners ($r^2 > 0.59$), respectively. Several LD partners were associated with FPG at suggestive p-values of $< 1E-04$ (Supplementary Table S3). Examination of the NHGRI-EBI GWAS catalog listed the following two LD partners (that associated in our study population at a p-value of E-05): (i) rs2074158-T (missense) ($r^2 = 0.56$) partner of DHX58 risk variant) associated with CADPS (p-value = 2.0E-10) in UK BioBank populations; and (ii) rs469054-A (intronic) ($r^2 = 0.85$) partner of [VARS, VWA7] risk variant) associated with monocyte count (p-value = 1.0E-20). shared genetic pathways linking blood cell counts with complex pathologies (including CAD) have been reported.

ROH segments overlying the identified risk variants. All of the four reported risk variants were in ROH (Table 7). The observed maximum values for the ROH region lengths (mean ± SD of the ROH groups) were 8 Mb (RPS6KA1 marker), 15.5 Mb (CADPS), 9.9 Mb (VARS, VWA7), and 6.96 Mb (DHX58). The two recessive risk variants from RPS6KA1 and CADPS were in “known” ROH segments, while the two additive markers from (VARS, VWA7) and DHX58 were in “novel” segments. However, LD partners of the additive risk variants lay in “known” ROH segments — one such marker (i.e., rs2074158/DHX58) in LD with the DHX58 risk variant is listed in the GWAS catalog as being associated with CAD (see Table 7). Presence of the identified ROH segments (to which the associated variant overlaps) is found more often in sub-cohort of diabetic participants than in
sub-cohort of non-diabetic participants, though the size of the former sub-cohort (n = 605) is smaller than that of the latter sub-cohort (n = 748); however, the differences are not seen statistically significant.

Gene expression regulation by the identified risk variants. Examination of Genotype-Tissue Expression (GTEx) data (https://www.gtexportal.org) revealed that all four risk variants regulate the expression of their own or other genes. The RPS6KA1 marker regulates the DHDDS gene in the heart's left ventricle; the CADPS marker regulates itself in the artery-tibial and adipose-subcutaneous tissues; the (VARS, VWA7) marker regulates a number of genes [LY6G5B (artery-tibial, testis, muscle-skeletal, thyroid); GPANK1 (esophagus-mucosa, skin);

Figure 1. Quantile-quantile plots of the expected and observed $-\log_{10}(p)$-values for the association of markers with FPG under additive ($\lambda = 1.077$) and recessive ($\lambda = 1.047$) models upon regular correction.
and HOMA-CADPS markers passed the p-value threshold (<0.05), RPS6KA1 marker: intronic

SNP: Effect Allele: Trait	Gene: functional consequences	Phase	Effect Size	P-value	Effect Size	P-value
rs1002487: C⁺, FPG	RPS6KA1: intronic	Discovery	8.315	1.64E-08	8.297	1.58E-08
		Replication	3.442	3.7E-04	3.509	2.15E-04
		Meta	6.551	5.72E-11	6.652	2.89E-11
rs487321: A⁺, FPG	CADPS: intronic	Discovery	6.133	1.53E-07	6.161	1.23E-07
		Replication	3.955	2.25E-06	3.88	5.03E-06
		Meta	7.047	1.83E-12	7.031	2.05E-12
rs709297: G⁺, FPG	VARS, VWA7: intron in VARS, 2 Kb upstream of VWA7	Discovery	0.9453	8.24E-06	0.9262	1.19E-05
		Replication	0.6375	8.25E-05	0.6503	3.18E-05
		Meta	5.928	3.07E-09	6.033	1.61E-09
rs12600570: G⁺, FPG	DHX58: intronic	Discovery	0.8166	7.49E-06	0.8374	4.11E-06
		Replication	0.3892	4.67E-03	0.3682	5.65E-03
		Meta	5.142	2.71E-07	5.186	2.15E-07

The following associations with HbA1c are shown in this table for the sake of completion; HbA1c associations are not considered significant except in the case of RPS6KA1.

Table 3. List of the four identified risk variants associated with FPG either at genome-wide significant p-values (<1.8E-08) or at nominal p-values of 1.0E-06. EffectSize, Effect size represents beta value for discovery and replication phases, and Z-score for meta-analysis. R-regular correction: Corrected for age, sex and the top 10 principal components that resulted from the Principal Components Analysis of the genotype data; DM: Corrected for diabetes medication in addition to the regular correction. *association with the trait was observed under the genetic model based on recessive mode of inheritance; *association with the trait was observed under the genetic model based on additive mode of inheritance. Upon performing inverse normal transformation on the FPG values, the p-values for association of the marker rs709297 with FPG improved in the discovery phase; the values were (p-value = 1.26E-07; effect size = 0.3314) which upon further correction for diabetes medication were (p-value = 2.72E-07; effect size = 0.3226).

AIF1 (whole blood), C6orf25 (skin), SAPC1D1-AS1 (skin); and TNXA (skin); the **DHX58** marker regulates itself (in artery-tibial, adipose-subcutaneous, adipose-visceral, pancreas, and heart) and other genes such as **KCNH4** (esophagus-muscularis), **HSPB9** (testis), and **RAB5C** (adipose-subcutaneous, pancreas, muscle-skeletal).

Associations between glucose-related traits and insulin resistance traits at the risk variants. Allelic association test statistics (Supplementary Table S4) for the identified risk variants in the third cohort of 283 samples considered for insulin resistance analysis indicated that the **RPS6KA1**, **VARS, VWA7**, and **CADPS** markers passed the p-value threshold (<0.05) for associations with insulin resistance traits of HOMA-IR and HOMA-β and with the glucose-related traits of FPG and HbA1c; in addition, the association of the **RPS6KA1** marker with TG was replicated.

Results from multivariate analysis to examine relationships between glucose-related (FPG, HbA1C, TG) and insulin resistance (HOMA-IR, HOMA-β, C-peptide, HOMA-S) traits in the context of observed genotypes at risk variants (Table 8) indicated possible associations of the identified risk variants with insulin resistance:

(I) **RPS6KA1** marker: With genotypes homozygous for the risk allele, interactions between (TG, FPG and HbA1c) and insulin resistance traits (HOMA-IR, C-peptide, HOMA-S) were observed at the multiple testing significance threshold of <0.003. With the heterozygous genotype, TG was associated with HOMA-S at a p-value < 0.05.

(II) **[VARS, VWA7] marker**: With genotypes that are heterozygous or homozygous for the risk allele, interactions between FPG and insulin resistance traits (HOMA-IR and HOMA-S) were observed at the multiple testing significance threshold of <0.003. With a heterozygous genotype, interactions between HbA1c and insulin resistance traits (HOMA-IR and HOMA-S) were observed at the multiple testing significance threshold of <0.003. TG also interacted with HOMA-S at a p-value = 0.007 with a heterozygous genotype.
SNP: Effect Allele: Trait	Gene	Phase	Effect Size Discovery	P-value Discovery	Effect Size Meta	P-value Meta
rs1002487: C*, FPG	RPS6KA1: intronic	Discovery	8.416	1.02E-08	1.23E-08	1.53E-07
		Replication	3.355	2.62E-03	3.73E-04	3.492
		Meta	6.233	4.58E-10	6.233	2.05E-10
rs487321: A*, FPG	CADPS: intronic	Discovery	6.145	1.35E-07	1.22E-07	4.468
		Replication	3.904	2.59E-06	2.06E-06	3.994
		Meta	7.042	1.90E-12	7.089	2.81E-13
rs707927: G, FPG	VARS: intron in VARS, 2 Kb upstream of VWA7	Discovery	0.9289	1.14E-05	1.12E-05	0.658
		Replication	0.6446	6.29E-05	2.64E-05	0.614
		Meta	5.926	3.11E-09	6.073	4.87E-09
rs12600570: T*, FPG	DHX58: intronic	Discovery	0.7914	1.42E-05	5.19E-06	0.530
		Replication	0.3757	5.20E-03	3.88E-03	0.309
		Meta	5.025	5.05E-07	5.238	1.12E-05

Table 4. Results from the analysis of correcting the observed associations for the additional covariates of obesity and diabetes status of the participants. Association with the trait was observed under the genetic model based on recessive mode of inheritance; association with the trait was observed under the genetic model based on additive mode of inheritance. Effect size represents beta value for discovery and replication phases, and Z-score for meta-analysis. Regular correction - Corrected for age, sex and the top 10 principal components. A significant association was observed under the genetic model based on additive mode of inheritance. BMI, Corrected for BMI in addition to the regular correction; DM, Corrected for lipid medication in addition to the regular correction; BMI + DM, Corrected for BMI and lipid & diabetes medications in addition to the regular correction.

SNP: Effect Allele: Trait	Gene	Phase	Effect Size Discovery	P-value Discovery	Effect Size Meta	P-value Meta
rs1002487: C*, FPG	RPS6KA1: intronic	Discovery	8.371	7.63E-08	8.48	4.78E-08
		Replication	3.378	1.27E-03	3.43	9.29E-04
		Meta	4.895	9.85E-07	6.201	5.59E-10
rs487321: A*, FPG	CADPS: intronic	Discovery	6.041	1.01E-06	6.055	8.94E-07
		Replication	4.163	6.11E-06	4.092	7.35E-06
		Meta	6.396	1.59E-10	6.645	3.04E-11
rs707927: G, FPG	VARS: intron in VARS, 2 Kb upstream of VWA7	Discovery	1.011	6.34E-06	0.9928	8.93E-06
		Replication	0.6265	4.49E-04	0.5916	8.38E-04
		Meta	5.674	1.39E-08	5.502	3.75E-08
rs12600570: T*, FPG	DHX58: intronic	Discovery	0.9928	8.93E-06	0.7241	1.7E-04
		Replication	0.4363	3.30E-03	0.4233	4.1E-03
		Meta	4.835	1.33E-06	4.803	1.56E-06

Table 5. Results from sensitivity analysis of preadjusting the FPG measurements by a fixed value (2.5 mmol/L) per diabetes medication status.

(III) CADPS marker: With a heterozygous genotype, associations between TG and HOMA-IR were observed at the multiple testing significance threshold of <0.003. Interaction between FPG and HOMA-IR with a heterozygous genotype could be seen at a p-value < 0.003.

(IV) DHX58 marker: With genotypes homozygous for the trait allele, TG and FPG were seen to be associated with (HOMA-IR and C-peptide levels) and HOMA-β, respectively, at the multiple testing significance threshold of <0.003. With heterozygous genotypes, FPG was associated with both HOMA-IR and HOMA-β at p-values < 0.05.

Discussion
This study identified a novel recessive marker (rs1002487) from RPS6KA1 (encoding Ribosomal Protein S6 Kinase A1) associated with high FPG (and HbA1c) at genome-wide significance in native Kuwaiti people of Arab descent. S6K1 signaling has distinct roles in regulating glucose homeostasis in pro-opiomelanocortin and agouti-related protein neurons, key regulators of energy homeostasis and can potentially regulate insulin resistance through phosphorylating insulin receptor substrate 1 (IRS-1). It participates in the NOTCH pathway, an effector of mTOR, and is sensitive to both insulin and certain nutrients. Our previous GWAS, using the same cohort, demonstrated that the marker was also recessively associated with high TG at genome-wide significance. FPG was directly correlated with TG and inversely correlated with HDL. Adiposity, high FPG, and TG are
Table 6. Results from the analysis of examining the identified associations in sub-cohorts of entirely diabetic patients or of entirely healthy participants. aIn the case of the RPS6KA1 marker, all the individuals with genotype homozygous for risk allele were seen with the sub-cohort of Discovery_diabetic and hence results for Discovery_non-diabetic sub-cohort were unavailable. bAssociation with the trait was observed under the genetic model based on recessive mode of inheritance; cassociation with the trait was observed under the genetic model based on additive mode of inheritance. \(\text{Effect Size} \) represents beta value for discovery and replication phases, and \(\text{Z-score for meta-analysis} \). \(\text{Regular correction - Corrected for age, sex and the top 10 principal components that resulted from the Principal Components Analysis of the genotype data; BMI+LM} \) Corrected for BMI and lipid medication in addition to the regular correction; \(\text{BMI+LM+DM} \) Corrected for BMI and lipid & diabetes medications in addition to the regular correction.

SNP: Effect Allele: Trait	Gene: functional consequences	Phase	Effect Sizea	\(\text{P-valuea} \)	Effect Sizeb BMI+LM	\(\text{P-valueb BMI+LM} \)	Effect Sizec BMI+LM+DM	\(\text{P-valuec BMI+LM+DM} \)
rs1002487: C\(^*\), FPG	RPS6KA1: intronic	Discovery_diabetic	6.396	2.4E-04	6.487	2.11E-04	6.488	2.12E-04
		Discovery_non_diabetic	NA	NA	NA	NA	NA	NA
		Replication_diabetic	17.83	4.7E-07	17.72	6.07E-07	17.7	6.50E-07
		Replication_non_diabetic	0.0086	0.9886	-0.0815	0.8861	-0.0815	0.8861
		Meta_diabetic	6.011	1.84E-09	6.014	1.81E-09	6.004	1.93E-09
		Meta_non-diabetic	0.014	0.9886	0.143	0.8861	0.143	0.8861
		Meta_all	4.173	3.0E-05	4.062	4.86E-05	4.062	4.86E-05
rs487321: A\(^*\), FPG	CADPS: intronic	Discovery_diabetic	5.781	3.1E-04	5.799	3.1E-04	5.797	3.1E-04
		Discovery_non_diabetic	-0.117	0.9872	0.1009	0.8885	0.1009	0.8885
		Replication_diabetic	9.392	2.1E-04	9.346	2.36E-04	9.594	1.84E-04
		Replication_non_diabetic	2.479	4.64E-08	2.429	1.07E-08	2.429	1.07E-08
		Meta_diabetic	5.132	2.86E-07	5.116	3.12E-07	5.154	2.55E-07
		Meta_non-diabetic	4.190	2.78E-05	4.486	7.27E-06	4.486	7.27E-06
		Meta_all	6.420	1.36E-10	6.648	2.97E-11	6.648	2.97E-11
rs707927: G\(^*\), FPG	VARS, VWA7: intron in VARS, 2 Kb upstream of VWA7	Discovery_diabetic	1.153	1.50E-03	1.157	1.51E-03	1.155	1.54E-03
		Discovery_non_diabetic	0.1979	3.3E-02	0.1858	4.18E-02	0.1858	4.18E-02
		Replication_diabetic	1.516	4.23E-04	1.518	4.35E-04	1.517	4.47E-04
		Replication_non_diabetic	0.2364	1.1E-02	0.2011	2.04E-02	0.2011	2.04E-02
		Meta_diabetic	4.683	2.83E-06	4.677	2.91E-06	4.668	3.05E-06
		Meta_non-diabetic	3.327	8.7E-04	3.083	2.05E-03	3.083	2.05E-03
		Meta_all	5.458	4.82E-08	5.259	1.45E-07	5.259	1.45E-07
rs12600570: T\(^*\), FPG	DHX58: intronic	Discovery_diabetic	0.8421	8.46E-03	0.8328	9.55E-03	0.8303	9.85E-03
		Discovery_non_diabetic	0.2308	3.35E-03	0.217	5.21E-03	0.217	5.21E-03
		Replication_diabetic	0.5816	1.01E-01	0.5767	1.052	0.5874	0.1002
		Replication_non_diabetic	0.1955	1.2E-02	0.1955	1.17E-02	0.1955	1.17E-02
		Meta_diabetic	3.080	2.07E-03	3.035	2.4E-03	3.042	2.35E-03
		Meta_non-diabetic	3.814	1.30E-04	3.724	1.96E-04	3.724	1.96E-04
		Meta_all	4.898	9.71E-07	4.799	1.59E-06	4.799	1.59E-06

hallmarks of insulin resistance and high FPG within the normoglycemic range can increase the risk for type 2 diabetes. The presented results indicate interactions between (TG, FPG, and Hba1c) and insulin resistance traits (HOMA-3, HOMA-S, C-peptide) at multiple testing significance with genotypes homozygous for the risk allele at the risk variant; even for the heterozygous genotype, TG was associated with HOMA-S (at p-value < 0.05). Thus, the present study, reporting for the first time that the RPS6KA1 marker is a risk variant for TG and glucose-related traits, is of considerable interest. Furthermore, in the GWAS catalog, the RPS6KA1 gene is associated with glucose homeostasis traits, sclerosis, and the symptom of rosacea. Reports have suggested that the rare homozygous (CC) state at the marker is involved in schizophrenia. The GTEx resource annotates this marker as having the potential to regulate expression of the DHDDS gene, a locus associated with developmental delay and seizures (with or without movement abnormalities); patients with schizophrenia are also more prone to seizures. Patients with mental disorders, especially schizophrenia, are often afflicted by diabetes. Glucose homeostasis is altered upon the onset of schizophrenia, indicating that patients are at increased risk of diabetes.

This study identified three further risk variants associated with FPG at nominal p-values of < 8.20E-06. These are rs487321 (recessive, intronic, CADPS), rs707927 (additive, intronic in VARS, and 2 Kb upstream of VWA7), and rs12600570 (additive, intronic, DHX58). Of these three suggestive markers, the CADPS and [VARS, VWA7] markers reached genome-wide significance (p-combined = 1.83E-12 and 3.07E-09, respectively) in meta-analysis that jointly analyzes the data from both the phases.

(i) CADPS encodes a calcium-dependent secretion activator involved in the exocytosis of vesicles filled with neurotransmitters and neuropeptides. Interestingly, the activator regulates the recruitment of insulin granules and
Figure 2. Regional association plots showing the 4 identified risk variants (A) rs1002487, (B) rs487321, (C) rs707927, (D) rs12600570 and the markers in LD (from a 500 Kb genome region centered at the risk variants) with the risk variants in their respective gene regions and their association with FPG. The SNPs are color-coded as per the r^2 value for the SNP with the identified risk variant (Blue dots: $r^2 \leq 0.2$; Purple dots: $r^2 > 0.2$ & ≤ 0.4; Green dots: $r^2 > 0.4$ & ≤ 0.6; Orange dots: $r^2 > 0.6$ & ≤ 0.8; Red dots: $r^2 > 0.8$ & ≤ 1.0). The X-axis represents the gene region in physical order; the Y-axis represents $-\log_{10}$ P-value of the associations with FPG for all the SNPs. The dashed horizontal line represents a p-value of 3.60E-08. To generate regional association plot for a SNP-trait association, all the genotyped SNPs (passing the quality control analyses) from a region of around 500 Kb centered on the SNP were tested for association with the trait; the resultant statistics and the SNPs were displayed in the regional association plot. Region-plot tool (https://github.com/pgxcentre/region-plot) was used to produce regional plots.
SNP	ROH group and the method used to identify the ROH	Consensus ROH region	Distance to SNP from consensus ROH (in Mb)	Number of individuals from the discovery cohort (n = 1353) harboring the ROH	Distance to SNP from consensus ROH region	Presence of SNP in ROH regions identified in worldwide population (from Pemberton et al. study)			
rs1002487/RPS6KA1	S1181^1	1.62864435–29062427	1.99	51 (29.22)	197.99	11	24917436–33009426	Overlapping	Yes
S1557^2	1.23056342–2804571	1.19	44 (27.11)	28.23	5	27732540–28417532	0.85		
S7177^1	3.62647115–6343522	0.143	29 (17.12)	788.11	226	355304385–7077955	Overlapping		
S7176^0	3.62315312–62315312	0.475	29 (16.13)	0.0011	1	355748124–6882499	Overlapping		
S4114^1	3.61981197–62189189	0.60	31 (17.14)	207.99	85	356569532–6751033	Overlapping		
S4115^2	3.62604010–62604010	0.186	31 (16.15)	0.0011	1	357340271–67867749	Overlapping		
S4116^2	3.62883050–6333375	0.0924	31 (18.13)	450.32	101	357671318–64855106	Overlapping		
S4117^2	3.63663215–63670140	6.93	31 (18.13)	0.8733	3	358512852–69120521	Overlapping		
S7106^0	6.31001421–32989521	0.744	53 (29.24)	1988.10	1077	62682755–36745549	Overlapping		
S687^2	6.29569045–29593788	2.176	71 (38.33)	24.74	24	626617526–32543506	Overlapping		
S824^2	6.31872383–32161430	0.126	64 (34.30)	289.05	126	629115193–34918619	Overlapping		
S1000^2	6.30112623–30125537	1.619	57 (30.27)	12.91	30	627129747–33108413	Overlapping		
S1001^2	6.31572927–31572927	0.173	57 (31.26)	0.0011	1	628490667–34655186	Overlapping		
S515^3	17:39908189–40041676	Overlapping	34 (19.15)	60.858	8	17:36532212–43490282	Overlapping		
S1741^2	17:40041676–40063083	0.219	43 (22.21)	21.408	5	17:39559171–40545041	Overlapping		

Table 7. ROH regions overlaying the identified risk variants. ^2 Two approaches were used to identify ROH segments (see Methods for details). Method 1: Markers that passed quality control were pruned for LD (r^2 > 0.9) (n = 568,670) and employed to detect ROH segments using parameters suggested by Howrigan et al. ^3; Method 2: Un-pruned marker set (n = 632,375) was employed to detect ROH using parameters deployed in Christofidiou et al. ^4.}

beta-cell function ^2, ^3; previous global GWAS associated CADPS loci with treatment interaction of sulfonylurea (a glucose-lowering drug) and heart failure-related metabolite levels ^2, ^3; and GTEx annotates the marker as regulating expression of its own gene (CADPS) in adipose-subcutaneous and tibial artery tissues. Furthermore, as indicated in our results, with a heterozygous genotype at the risk variant, TG was significantly associated with HOMA-IR (p < 0.003) and FPG with HOMA-β (p < 0.003).

(ii) VARS encodes varyl-tRNA synthetase and is associated with diabetic cataract, neurodevelopmental disorder, microcephaly, seizures, and cortical atrophy. VWA7 encodes Von Willebrand Factor A Domain-Containing Protein 7; previous global GWAS associated the VWA7 locus with IBD, blood plasma proteome, blood protein levels, and schizophrenia. Furthermore, the risk variant and its 26 strong LD partners are from a gene-dense VWA7 locus with IBD, blood plasma proteome, blood protein levels, and schizophrenia. C6orf48, LY6G6F–LY6G6D, and insulin resistance ^36; the VARS gene (encoding Von Willebrand Factor A Domain-Containing Protein 7) gets upregulated and correlates with HbA1c levels in pregnant women with gestational diabetes ^37; people with type 2 diabetes have higher HSP70 levels in serum collected from the discovery cohort (n = 605) versus sub-cohort of participants diagnosed for T2DM (n = 748).
Interaction	Effect Size	Std. Error	P-value*
Recessive Marker rs1002487-C/RPS6KA1			
Model: TG~rs1002487* insulin resistance traits			
CC: HOMA-IR	11.78	4.12	0.0047
TC: HOMA-IR	12.95	7.17	0.072
CC: HOMA-β	−4.31	0.69	1.5E-09
TC: HOMA-β	0.078	0.17	0.655
CC: C-peptide	1959.1	292.95	1.25E-10
TC: C-peptide	26.11	18.32	0.152
CC: HOMA-S	−2.633	0.418	1.16E-09
TC: HOMA-S	−0.299	0.145	0.0397
Model: FPG~rs1002487* insulin resistance traits			
CC: HOMA-IR	0.209	0.308	0.497
TC: HOMA-IR	−0.394	0.537	0.463
CC: HOMA-β	−0.247	0.043	3.62E-08
TC: HOMA-β	0.0013	0.011	0.900
CC: C-peptide	122.2	5.046	8.19E-07
TC: C-peptide	0.078	0.17	0.655
CC: HOMA-S	−0.162	0.032	1.25E-06
TC: HOMA-S	−0.0005	0.011	0.995
Model: HbA1C~rs1002487* insulin resistance traits			
CC: HOMA-IR	0.341	0.201	0.090
CT: HOMA-IR	−0.624	0.349	0.075
CC: HOMA-β	−0.138	0.029	3.04E-06
CT: HOMA-β	−0.0008	0.007	0.257
CC: C-peptide	66.96	14.77	8.73E-06
CT: C-peptide	−0.886	0.924	0.338
CC: HOMA-S	−0.092	0.02	1.35E-05
CT: HOMA-S	0.0037	0.007	0.606
Additive Marker rs707927-G/[VARS, VWA7]			
Model: TG~rs707927* insulin resistance trait			
AG: HOMA-IR	9.845	3.351	0.0035
GG: HOMA-IR	17.318	78.544	0.825
AG: HOMA-β	−0.307	0.165	0.064
GG: HOMA-β	−0.435	0.817	0.595
AG: C-peptide	8.396	17.182	0.625
GG: C-peptide	−139.584	258.03	0.588
AG: HOMA-S	−0.313	0.116	0.007
GG: HOMA-S	0.009	0.521	0.986
Model: FPG~rs707927* insulin resistance trait			
AG: HOMA-IR	0.239	0.233	0.306
GG: HOMA-IR	24.48	5.470	1.11E-05
AG: HOMA-β	−0.034	0.009	0.00032
GG: HOMA-β	−0.194	0.047	5.17E-05
AG: C-peptide	0.100	1.272	0.937
GG: C-peptide	−77.43	19.10	6.59E-05
AG: HOMA-S	−0.020	0.008	0.012
GG: HOMA-S	−0.140	0.037	0.00019
Model: HbA1C~rs707927* insulin resistance trait			
AG: HOMA-IR	0.482	0.159	0.0024
GG: HOMA-IR	7.012	3.736	0.0615
AG: HOMA-β	−0.021	0.006	0.0013
GG: HOMA-β	−0.048	0.032	0.127
AG: C-peptide	0.827	0.788	0.295
GG: C-peptide	−22.07	11.84	0.063
AG: HOMA-S	−0.018	0.005	0.0005
GG: HOMA-S	−0.043	0.023	0.0686
Recessive Marker rs487321-A/CADPS			
Continued			
Interaction	Effect Size	Std. Error	P-value*
---	---	---	---
Model: TG~rs487321* insulin resistance trait	GA: HOMA-IR	−17.71	6.001
	AA: HOMA-IR	NA	NA
	GA: HOMA-BS	0.091	0.186
	AA: HOMA-BS	NA	NA
	GA: C-peptide	−0.661	18.710
	AA: C-peptide	NA	NA
	GA: HOMA-S	0.109	0.150
	AA: HOMA-S	NA	NA
Model: FPG~rs487321* insulin resistance trait	GA: HOMA-IR	−0.316	0.446
	AA: HOMA-IR	NA	NA
	GA: HOMA-BS	−0.024	0.011
	AA: HOMA-BS	NA	NA
	GA: C-peptide	−1.55	1.464
	AA: C-peptide	NA	NA
	GA: HOMA-S	0.0006	0.011
	AA: HOMA-S	NA	NA
Model: HbA1C~rs487321* insulin resistance trait	GA: HOMA-IR	0.038	0.294
	AA: HOMA-IR	NA	NA
	GA: HOMA-BS	−0.007	0.007
	AA: HOMA-BS	NA	NA
	GA: C-peptide	0.088	0.881
	AA: C-peptide	NA	NA
	GA: HOMA-S	−0.0041	0.007
	AA: HOMA-S	NA	NA

Additive Marker rs12600570-T/DHX58

Interaction	Effect Size	Std. Error	P-value*	
Model: TG~rs12600570* insulin resistance trait	CT: HOMA-IR	−7.86	5.063	0.122
	TT: HOMA-IR	59.60	17.11	0.00057
	CT: HOMA-BS	0.116	0.128	0.3654
	TT: HOMA-BS	0.467	0.490	0.1742
	CT: C-peptide	3.11	17.42	0.858
	TT: C-peptide	178.71	44.06	6.50E-05
	CT: HOMA-S	0.155	0.093	0.095
	TT: HOMA-S	−0.971	0.393	0.014
Model: FPG~rs12600570* insulin resistance trait	CT: HOMA-IR	1.005	0.375	0.0078
	TT: HOMA-IR	2.797	1.268	0.0282
	CT: HOMA-BS	−0.018	0.0076	0.0158
	TT: HOMA-BS	−0.135	0.0291	0.0994
	CT: C-peptide	−0.781	1.391	0.574
	TT: C-peptide	−10.22	3.517	0.0039
	CT: HOMA-S	−0.004	0.007	0.660
	TT: HOMA-S	−0.081	0.029	2.712
Model: HbA1C~rs12600570* insulin resistance trait	CT: HOMA-IR	0.213	0.254	0.402
	TT: HOMA-IR	0.153	0.859	0.858
	CT: HOMA-BS	0.002	0.0052	0.601
	TT: HOMA-BS	−0.012	0.0196	0.531
	CT: C-peptide	−0.363	0.848	0.668
	TT: C-peptide	−1.861	2.144	0.386
	CT: HOMA-S	0.0015	0.004	0.720
	TT: HOMA-S	−0.0176	0.0188	0.350

Table 8. Interactions between (TG, FPG, HbA1c) and Insulin Resistance traits (HOMA-IR, HOMA-β, C-peptide, HOMA-S) with respect to genotypes at the risk variants. *Multiple testing significance threshold for p-value is 0.003. All the interaction models were corrected for age and gender.
COX7B2, GABRA4, ZNF106 and (Supplementary Table S5) 41–45. Our study now adds DVL1, EPB41L3, DTNB, DLL1, CTNNB1, JAG1, MLXIP, CDKLAL1, TCF7L2, KCTD8, GABRG1, GABRA2, (T2DM) at either genome-wide significant or suggestive p-values for associations – such loci include the region on Arab cohorts demonstrated this aspect by way of identifying novel risk loci for type 2 diabetes of risk loci by way of indicating novel risk loci (not seen in major continental populations). Previous studies from DHX58 marker in the cohort of participants free of diabetes.

Further examination of the identified associations in the sub-cohorts of entirely diabetic patients or of entirely healthy participants revealed that the RPS6KA1, CADPS, and VARS markers performed better in terms of retaining significance in cohorts of diabetic patients and the DHX58 marker in the cohort of participants free of diabetes.

Consideration of ethnic populations in association studies is supposed to help in enlarging the global catalog of risk loci by way of indicating novel risk loci (not seen in major continental populations). Previous studies from the region on Arab cohorts demonstrated this aspect by way of identifying novel risk loci for type 2 diabetes (T2DM) at either genome-wide significant or suggestive p-values for associations – such loci include KIF12, DVL1, EPB41L3, DTNB, DLL1, CTNNB1, JAG1, MLXIP, CDKLAL1, TCF7L2, KCTD8, GABRG1, GABRA2, COX7B2, GABRA4, ZNF106 and OX2-ASI (Supplementary Table S5) 41–45. Our study now adds RPS6KA1, CADPS, (VARS, VWA7), and DHX58 to this list of novel T2DM risk loci in Arab population.

Because of the nature of the study design that uses HumanOmniExpress BeadChip, the study does not consider genetic variants that are seen only in the Arab population. However, we find that there are statistically significant differences in genotype distributions at the risk variants between the Arab population and continental populations (Supplementary Table S6). The risk allele frequencies also differ substantially across the populations (Supplementary Figure S5). In order to identify Arab-population-specific risk variants (that are not polymorphic in continental population), we need to perform large-scale genome-wide surveys (a combination of GWAS, exome, and genome sequencing and imputation) of the Arab population with diabetes 46.

Our earlier studies identified three population subgroups in Kuwait 8. The first group (Kuwait P) is largely of West Asian ancestry, representing Persians with European admixture; the second group (Kuwait S) is predominantly of city-dwelling Saudi Arabian tribe ancestry, and the third group (Kuwait B) includes most of the tent-dwelling Bedouin and is characterized by the presence of 17% African ancestry. Allele frequency assessment of the identified 4 risk variants among these substructures (Fig. 3) suggests that the variant rs1002487/RPS6KA1 is enriched in Persian ancestry, rs12600570/DHX58 in nomadic Bedouin ancestry, rs707927/(VARS, VWA7) in Saudi Arabian ancestry followed by nomadic Bedouin ancestry while the frequency of rs487321/CADPS is almost equal among the three population substructures of Kuwait.

Limitations of the study include the following: (i) Among study cohorts, there are many subjects assuming hypoglycemic therapy – which we took care by way of adjusting the association tests for medication and by performing sensitivity analysis; however, such the individuals at risk for hyperglycemia might have introduced corrective actions (such as exercise, hypocaloric diet and food supplements) affecting FPG; unfortunately, data relating to these corrective measures were not available and hence we were unable to consider them in association test models or in sensitivity analysis. (ii) The study cohort is relatively small, a limitation which might have hindered the ability to identify more than just the four reported risk variants and to observe any of the established risk variants for glucose-related traits. There is an urgent need to carry out much larger studies on the genetics of diabetes in Arab populations which are notorious for high prevalence of obesity and diabetes 49.

Conclusions
This study identified novel risk variants for high FPG in the Arab population of Kuwait. The RPS6KA1 gene (associated with FPG at genome-wide significance) is known to be involved in glucose homeostasis. Gene loci of CADPS, (VARS, VWA7), and DHX58 exhibiting nominal associations with FPG were often found to be associated with CAD in previous global GWAS. The identified four associations remained significant when the regression models were adjusted for various confounders (such as medication, obesity and diabetes status) and when the FPG levels were preadjusted by a fixed value per diabetes medication status. The RPS6KA1, CADPS and VARS markers performed better in terms of retaining significance in cohorts of entirely diabetic patients and the DHX58 marker in the cohort of participants free of diabetes. With heterozygous or homozygous risk allele genotypes at these risk variants, significant interactions appear to occur between glucose-related and insulin resistance traits. The identified gene loci were previously associated with various other disorders (including IBD, schizophrenia, and autism) that appear to share risk factors with diabetes. This study presents, for the first time, potential associations between the RPS6KA1 gene loci and high TG, FPG, and HbA1c.
Methods

Ethics approval and consent to participate. This study was reviewed and approved by the institutional Ethical Review Committee at Dasman Diabetes Institute, Kuwait. Participant recruitment and blood sample collection were conducted under protocols adopted by the Ethical Review Committee. Signed informed consent was obtained from each participant.

Study participants. Details on participant recruitment and a description of the study cohorts are presented in our previous paper12 (for details, see Supplementary Material: Methods section on Study participants). Briefly, 3,145 participants were recruited from two cohorts in Kuwait. A representative sample of Kuwaiti native adults randomly selected from each of the six governorates of Kuwait formed the first group. Native Kuwaitis visiting our institutional clinics for tertiary medical care or our campaigns formed the second group; such visitors interested in participating were invited later to give blood samples after overnight fasting. We confirmed ethnicity through detailed questioning on parental lineage up to three generations. Data on age, sex, medical history, and medication were also recorded, as were baseline characteristics and vital signs. The discovery cohort was drawn largely from the second group and the replication cohort from the first group. 1,913 of the recruited participants were used for the discovery phase and 1,176 for the replication phase.

Power calculation. We adopted the “gene only” hypothesis and performed two types of power calculation (for details, see Supplementary Material: Methods section on Power calculation): (Type i): Quanto47 was implemented to evaluate sample size and the potential to detect FPG trait variance with 80% power and p-value $< 5.0 \times 10^{-08}$. Marginal genetic effect estimates (R^2) were made to increment from 0.001 to 0.04 in steps of 0.001 in order to detect genetic effects explaining at least 0.1%–4% of trait variance could be detected. (Type ii): QPowR (https://msu.edu/~steibelj/JP_files/QpowR.html) was used to determine the sample size for achieving 80% power for the study design of two phases (discovery and replication) with total sample size of 2,529, total heritability of 0.05, samples genotyped each of the two phases as ~50% of 2,529, markers typed in the second phase as ~0.2% of the markers typed in the first phase, and type I error rate of 5.0E-08.

Genotyping in the discovery and replication phases. Genome-wide genotyping was performed on an Illumina HumanOmniExpress Array. Top associating markers in the discovery phase were genotyped in replication phase using TaqMan® SNP Genotyping Assays (Applied Biosystems, Foster City, CA, USA) and ABI 7500 Real-Time PCR System (Applied Biosystems) (for details, see Supplementary Material: Methods section on Sample processing: Discovery phase and Replication phase).

Quality control analyses. Raw intensity data from all samples were pooled and genotype calling was performed using GenomeStudio software. A series of quality metric thresholds was applied to derive a high-quality set of SNPs and samples (for details, see Supplementary Material: Methods section on Quality control analysis). Samples with a call rate >95% were retained. SNPs with inappropriate call quality were removed. Sex was estimated using GenomeStudio and removed mismatched samples. Strand designations were corrected to the forward strand, and REF/ALT designations were corrected using the design files for HumanOmniExpress BeadChip. Markers with allele frequency (~maf 0.01), and deviation from Hardy–Weinberg equilibrium (HWE $< 10^{-06}$) were removed. We derived a set of LD-pruned markers ($n = 340,299$) by removing markers in LD ($r^2 > 0.5$) with others in a sliding window of 50-SNP and the LD-pruned marker set was used to measure relatedness among participants to the extent of third-degree relatives, to perform ancestry estimation (using ADMIXTURE48), and

Figure 3. Assessment of allele frequencies at the identified 4 risk variants among the three population substructures of Kuwait. Saudi: Kuwait S subgroup that is predominantly of city-dwelling Saudi Arabian tribe ancestry; Persian: Kuwait P subgroup that is largely of West Asian ancestry, representing Persians; Bedouin: Kuwait B subgroup that is of tent-dwelling Bedouin ancestry46.
principal component analysis (using EIGENSTRAT⁵⁰). One sample per pair of related participants was randomly removed. Samples with abnormal deviations, in the extents of component ancestry elements, from what we had established for the three Kuwaiti population subgroups⁵ were removed as samples of ethnicity mismatch. Outliers in PCA were identified and the corresponding samples were removed.

Quantitative trait association tests. In discovery phase, all the 632,375 SNPs that passed quality control were used in association tests. Selected markers from discovery phase were tested in the replication phase. Both the additive and recessive genetic models were used in tests for associations with FPG and HbA1c. Two types of corrections were made to the association tests – “Regular Corrections” involved adjustments for age, sex, and the first 10 principal components; and “Additional Corrections” involved further adjustment for glucose-lowering medication.

Joint analysis with results from discovery and replication phases. The METAL tool⁵⁶ was used to perform meta-analysis with association test statistics from both the discovery and replication phases. Combined analysis of data from both the phases is believed to enable detecting genetic associations with increased power⁵⁷.

P-value thresholds to assess significance of associations. Threshold for genome-wide significant p-values were calibrated for the counts of LD-pruned markers (n = 340,299), quantitative traits (n = 2, FPG and HbA1c), genetic models (n = 2, additive or recessive), and correction models for the association tests (n = 2, regular correction and further correction for glucose-lowering medication). The “stringent” p-value threshold to keep the type 1 error rate at 5% got calibrated to 1.84E-08. We further defined a “nominal” p-value threshold of (≥1.84E-08 and <E-05) to identify “suggestive” associations. P-value threshold for significant associations in replication phase was set at 0.05.

Identifying runs of homozygosity (ROH). Runs of Homozygosity (ROH) were identified, using PLINK-1.9, through two approaches: (Approach-1): Markers that passed quality control were pruned for LD (r² > 0.9) (n = 568,670) and employed to detect ROH segments using parameters recommended by Howrigan et al.⁵² (Approach-2): The unpruned marker set (n = 632,375) was employed and parameters deployed by Christofidou et al.⁵³ were used. Consensus ROH regions were derived for the identified groups of overlapping ROH segments and mean ± SD was calculated (by considering the midpoint of each individual ROH falling in the group). Delineated ROH segments were classified as “known” or “novel” by comparison with ROH signatures discovered in global populations⁵⁴.

Derivation of insulin resistance traits and association with glucose-related traits. We considered a subset of 283 samples, randomly selected from the replication cohort, and measured C-peptide levels in plasma (for details, see Supplementary Material: Methods section on Derivation of insulin resistance traits). Insulin resistance traits (i.e., HOMA-IR, HOMA-β, and HOMA-S) were calculated using the FPG (mmol/l) and C-peptide (nmol/l) values with the HOMA2 calculator (https://www.dtu.ox.ac.uk/homacalculator/). Multivariate linear regression, corrected for age and sex, was performed to assess interactions between (TG, FPG, HbA1c) and insulin resistance traits with respect to the genotypes at risk variants; standardized beta-coefficients (β̂) and test significance (p-values) were derived using the R Project for Statistical Computing software (https://www.r-project.org/). The p-value threshold calibrated for multiple testing was 0.003 (≤0.05/16); the denominator corresponds to four interaction models on each of the four risk variants.

Received: 5 February 2019; Accepted: 20 December 2019;
Published online: 13 January 2020

References
1. Diabetes Genetics Initiative of Broad Institute of, H. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336, https://doi.org/10.1126/science.1142358 (2007).
2. Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44, 981–990, https://doi.org/10.1038/ng.3383 (2012).
3. Steinhöldt, V. et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46, 294–298, https://doi.org/10.1038/ng.2882 (2014).
4. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47, https://doi.org/10.1038/nature18642 (2016).
5. Channanath, A. M., Farran, B., Behbehani, K. & Thanaraj, T. A. State of diabetes, hypertension, and comorbidity in Kuwait: showcasing the trends as seen in native versus expatriate populations. Diabetes Care 36, e75, https://doi.org/10.2337/dc12-2451 (2013).
6. Klautzer, L., Becker, J. & Mattke, S. The curse of wealth - Middle Eastern countries need to address the rapidly rising burden of diabetes. International journal of health policy and management 2, 109–114, https://doi.org/10.15171/ijhpm.2014.33 (2014).
7. Rudan, I., Campbell, H., Carothers, A. D.; Hestie, N. D. & Wright, A. E. Contribution of consanguinity to polygenic and multifactorial diseases. Nat Genet 38, 1224–1225, https://doi.org/10.1038/ng1106-1224 (2006).
8. Alsmadi, O. et al. Genetic substructure of Kuwaiti population reveals migration history. PLoS One 8, e74913, https://doi.org/10.1371/journal.pone.0074913 (2013).
9. Al-Awadi, S. A. et al. Consanguinity among the Kuwaiti population. Clin Genet 27, 483–486 (1985).
10. Tebib, A. S. Autosomal recessive disorders among Arabs: an overview from Kuwait. Journal of medical genetics 31, 224–233 (1994).
11. Sheffield, V. C., Stone, E. M. & Carmi, R. Use of isolated inbred human populations for identification of disease genes. Trends in genetics: TIG 14, 391–396 (1998).
12. Al-Awadi, S. A. Genome-wide association study identifies novel recessive genetic variants for high TGs in an Arab population. J Lipid Res. https://doi.org/10.1194/jlr.P080218 (2018).
13. Hebbel, P. et al. The TCN2 variant of rs9606756 [Ile23Val] acts as risk loci for obesity-related traits and mediates by interacting with Apo-A1. Obesity (Silver Spring) 25, 1098–1108, https://doi.org/10.1002/oby.21826 (2017).
52. Howrigan, D. P., Simonson, M. A. & Keller, M. C. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. *BMC Genomics* **12**, 460, https://doi.org/10.1186/1471-2164-12-460 (2011).

53. Christofidou, P. *et al*. Runs of Homozygosity: Association with Coronary Artery Disease and Gene Expression in Monocytes and Macrophages. *Am J Hum Genet* **97**, 228–237, https://doi.org/10.1016/j.ajhg.2015.06.001 (2015).

54. Pemberton, T. J. *et al*. Genomic patterns of homozygosity in worldwide human populations. *Am J Hum Genet* **91**, 275–292, https://doi.org/10.1016/j.ajhg.2012.06.014 (2012).

Acknowledgements

The authors thank Daisy Thomas for providing help with recruiting participants and collecting phenotype information. The Tissue Bank Core Facility is acknowledged for sample processing and DNA extraction. The study was funded by the Kuwait Foundation for Advancement of the Sciences (KFAS) (Dasman Diabetes Institute project numbers RA 2016-026 & RA-2010-005).

Author contributions

T.A.T., O.A. and F.A.M. designed the study and directed the work components. N.E. and A.B. performed participants recruitment and collection of samples and phenotype. P.H. performed data analysis and participated in data interpretation. M.A.F. and J.A. planned and performed C-peptide assays and critically reviewed the manuscript. S.E.J. and A.C. participated in bioinformatics analysis. F.A. performed genome-wide genotyping experiments. R.N. and M.M. performed replication and genotyping validation experiments. T.A.T. and P.H. prepared the manuscript. E.A., J.P. and J.T. critically reviewed the manuscript. F.A.M. critically reviewed the manuscript and approved.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-57072-9.

Correspondence and requests for materials should be addressed to O.A., F.A.-M. or T.A.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020