Superposition of Functional Contours Based Prosodic Feature Extraction for Speech Processing

Shahid Ali Mahar¹, Mumtaz Hussain Mahar¹, Javed Ahmed Mahar¹, Mehei Masud², Muneer Ahmad³, NZ Jhanjhi⁴, and Mirza Abdur Razzaq¹

¹Department of Computer Science, Shah Abdul Latif University, Khairpur, 66020, Sindh, Pakistan
²Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
³Department of Information Systems, Faculty of Computer Science & Information Technology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
⁴School of Computer Science and Engineering, SCE, Taylor's University, Malaysia
*Corresponding Author: NZ Jhanjhi. Email: noorzaman.jhanjhi@taylors.edu.my
Received: 05 December 2020; Accepted: 14 March 2021

Abstract: Speech signal analysis for the extraction of speech elements is viable in natural language applications. Rhythm, intonation, stress, and tone are the elements of prosody. These features are essential in emotional speech, speech to speech, speech recognition, and other applications. The current study attempts to extract the pitch and duration from historical Sindhi sound clips using the functional contours model’s superposition. The sampled sound clips contained the speech of 273 undergraduates living in 5 districts of the Sindh province. Several Python libraries are available for the application of this model. We used these libraries for the extraction of prosodic data from a variety of sound units. The spoken sentences were categorically segmented into words, syllables, and phonemes. A speech analyzer investigated the acoustics of sounds with the power spectral density method. Meanwhile, a speech database was divided into parts contains words of different sizes (ranging from 1-letter to 5-letter words). The results illustrated the production of both minimum and maximum μ sound durations and pitches from the inhabitants of Khairpur and Ghotki districts, respectively. Both districts lie in the upper part of the Sindh province. In addition, the second parameter approach, observed versus obtained, was used to compare outcomes. We observed 5250 and 4850 durations and pitches, respectively.

Keywords: Intelligent systems; speech signal analysis; pitch; duration; Superposition of functional contours; prosody extraction; Sindhi speech analysis

1 Introduction

Over the past decade, attention toward prosody generation has been increasing, with the aim to obtain the maximum accuracy in speech-based software applications. Academics interpret the term prosody differently. Still, most agree that prosody is a collection of prosodic features, i.e., pitch, voice quality,
loudness, rhythm, speech rate, and pauses. These features help us to understand what individuals are saying [1]. Prosodic feature information is worth recognizing in spoken languages. Furthermore, prosody generation is an essential module for various speech processing (SP) applications, including speech understanding, speech synthesis, text to speech, speech recognition, and emotional speech. This module supports the generation of natural sounds. Generally, we obtain prosodic information symbolically and acoustically. The acoustic-based approach is useful for experimenting with Sindhi prosody because it relies on features of sound forms rather than complete knowledge of consonants, vowels, and other linguistic components.

The Sindhi language is rich in phonetic treasures and contains a large variety of sounds [2,3]. It also possesses complex accent variations that hinder SP applications. Sindhi is a diacritics-based language that presents unanticipated differences in homographic words. Sindhi people frequently use homographic word terms and diacritic marks. We can observe our system’s adverse output with an input of homographic words exceeding a maximum. Tab. 1 presents a sample of homographic words having sound variations.

Sindhi Word	SAMPA	Waveform
سین	Kònô	![Waveform](image1.png)
سین	Kònô	![Waveform](image2.png)
سین	Kònô	![Waveform](image3.png)
سین	Kònô	![Waveform](image4.png)
سین	Kònô	![Waveform](image5.png)
سین	Kònô	![Waveform](image6.png)
سین	Kònô	![Waveform](image7.png)
سین	Kònô	![Waveform](image8.png)

The core purpose of the present research is to extract prosodic features, i.e., pitch and duration, from sound clips of syllables and phonemes. These features are essential elements for SP application for the Sindhi language [4] and will help generate the other prosodic features, such as rhythm, stress, and loudness. The generation and analysis of prosody are very intricate due to their relationship with multi-level and multi-nature data. Moreover, prosodic data correct the sentence’s accent for the entire process of automatic speech processing software application [5].

Academics have realized the importance of prosody generation to produce more accurate natural sounds. Several procedures have been suggested and applied to sound units, and commonly used approaches include the neural network [6,7], rule-based model [8], probability-based model [9], superposition of functional contours (SFC) model [10,11], and Fujisaki parameters model [12]. SFC modeling is selected here to obtain Sindhi prosodic information; note that there is no concrete reason for selecting a specific type of SFC approach. Furthermore, there is a limited amount of research on the extraction of prosodic data for the Sindhi language [1,13]. This paper presents a practical application of SFC sound units. Moreover, introducing a neural network top-down approach makes this model useful for resolving phonological issues [14]. Our research aims to extract the prosodic information from sound units because SP applications cannot produce natural sound without such details.
2 Literature Review

Sindhi phonetics, being one of the most complicated Indo-Aryan languages in terms of phones, has attracted researcher attention. The work of Shaikh [3] elaborated on the Sindhi phonological issues explicitly. A comparison was made among different accents, showing the waveform images as the solution to the discovered problem. Mahar [2,15] added a letter to sound conversion and demonstrated an f0 peak of syllables of short and long vowels. Abbasi [16,17] analyzed the fundamental frequency of the Sindhi language, focusing on pitch, intonation, and stress. Meanwhile, Keerio [18] examined Sindhi sounds using acoustic analysis and worked on VCV sounds in experiments and focused on liquid sounds in addition to trill and lateral consonants. Building upon this work, Mahwish [19] worked on different vowels to evaluate vocalic characteristics and made inter-lingual comparisons of vowels of the Sindhi language along with languages spoken in Pakistan using PRAAT for experiments.

Prosody data are essential for speech processing applications of any language. Mahar [1,13] performed experiments on Sindhi prosody using recorded sounds. They recruited university undergraduates to produce recorded sound samples. They then investigated the pitch and duration of 1960 sound clips of male and female individuals using PRAAT. Prosodic data were collected, and using a backpropagation neural network resulted in an accuracy rate of 98.8%.

In our literature review, we could find literature on prosody generation of Arabic script-based languages like Persian. However, we could not find literature on Arabic and Urdu, and thus we here present available research contributions for other languages. This does not affect the quality of our work since the inputs are sound units.

We used the sound units of numerous languages to extract prosodic information. Breen [20] implemented event-based approaches for the representation of implicit prosodic details and compared their performances to those of [x]. Prosody was generated by Chiange [21] precisely for the mandarin language TTS system. The researcher used two linguistic features of the language to accomplish this. Nigel [22] also worked on prosody generation and suggested several prosody constructions as well configurations to create relationships among various prosody units. Similarly, Nidhal [23] proposed some speech unit techniques based on instances by considering the unit structure. The unit placement in the sound and the succeeding and preceding syllables are used in the Arabic TTS system. Obin [24] talked about the impediments regarding metric and linguistics mainly for different prosody events. To model sound prosody structure, the HMM was used following a chain of linguistic processing with rich and furnished inputted text arrangement. Meanwhile, Talman [25] introduced the NLP dataset with proper naming, as well as a benchmark of prosody. The dataset predicted significant prosody from the sound of descriptive sentences; moreover, by employing a neural network and feature-based classifier, prosody generation models were trained on the dataset.

Mixdroff [26] investigated different fundamental quantitative prosodic highlights, i.e., the prosodic information extracted from male speakers. They employed the Fujisaki model for the implementation of syllabic feature extraction. The Fujisaki model is a quantitative model preferred by scientists to shape the selected dialects’ sound. Given the rising programming applications in human–computer interaction, speech fusion and identification are frequently employed by analysts [27]. Using Fujisaki modeling, James [28] utilized verbal manifestations to conduct contour experiments, including selected human emotions.

The SFC model is best for Sindhi prosody generation tasks because it can disintegrate the prosody primary forms that are significant. Moreover, for learning the fundamentals of prosodic structures, the SFC model is based on neural networks. Gerazov [10] introduced a unit in which the model is based on a rhythmic component. Bailly [11] proposed a model by building an information-based programming application for prosody generation. Meanwhile, an ordinary SFC model was applied in [29] for prosody generation. The advanced SFC modeling version is known as weighted SFC, and functions by bordering
each contour generator. The generators are then scaled with different designs given in [30]. Rhythmic units (RU) are estimated with multi-parametric counters at a specific range. The model then computes the provisions relying on the ranges given in the sentences. The mono-layer neural network is based on this contour generator module, and thus associated with the specific RUs [31]. The researchers also discussed appropriate the position of units in the provided contour range.

3 Research Methodology

The research methodology for Sindhi prosody extraction is based on six phases: analysis of the literature, introduction to the SFC model, development of a speech corpus, and its’ accumulation accession, implementation of SFC using Python libraries, process execution, and reviewing the acquired results. Fig. 1 shows a flowchart of the research methodology. After the critical and systematic analysis of prosody modeling, we present the limitations of Sindhi prosodic information extraction using prosody modeling techniques, and then discuss the weighted SFC.

![Figure 1: Research Methodology](image)

The third component of this research is about the speech corpus collection because researchers reported that the speech corpus is an important component for prosody extraction. Hence, we selected male and female personnel for the collection of speech units. The selected personnel recorded sounds of the
provided descriptive sentences. These recordings comprised our speech corpus and were further processed and segmented into words, syllables, and phonemes, and then stored. With the help of Python libraries, the SFC model was applied to the speech corpus. During this process, frequencies of Sindhi sounds at the syllable level were analyzed acoustically. The power spectral density (PSD) was used for the analysis of speech signals and the computation of recorded sounds. However, we separately calculated the sound duration and pitch of Sindhi phonemes and syllables. The obtained results are presented in both tabular and pictorial formats.

4 Superposition of Functional Contours

The SFC model decomposes prosodic structures into primary forms relevant to the essential functions’ contours. The method is suitable for language encoding using the prosody of a language. In addition to this, the generators based on the neural network use the SFC model for learning the primary prosodic forms. Such a model helps us to detect the internal linguistic issues of signals and aids subsequent processing. The model manipulates signals and outputs of sound units; the entire model is based on rhythmic units, as suggested by Gerazov [10]. The model presents a solution for a multifunctional phoneme in terms of energy, rhythm, and theme. The model follows the data-driven framework to produce prosody. Bailly [11] suggested such a model while developing a data-based software application for prosody generation.

Fig. 2 shows the different levels and stages of the model. The SFC model strictly follows some fixed stages which are well-structured. In this way, multiple parameters are associated with meta-functions of language. The elements of acoustic data are given to the synthesizer for further processing. It undergoes the process with a selection of suitable functions connected with prosodic information generation. The study in [29] applied a typical SFC model for prosody modeling. With the capacity to deal with prosody corpus and classified sound clips collection, two datasets were used. Both datasets were composed of labeling and stylizing processes.

Figure 2: Model representation of SFC for prosody

An advanced version of SFC is weighted SFC (WSFC). This version functions by adjoining each contour generator and scaling them with other architectures [30]. WSFC has a weighted contour generator. We illustrate WSFC in Fig. 3. The generator estimates a multi-parametric contour for all rhythmic units (RU) individually. The model makes calculations depending on the context of the contents given in the sentence.
The contour generator module is based on a mono-layer neural network. Thus, it agrees with the exact RUs and relevant placement in the given range of created prosodic contour for the particular syllable and phoneme [31]. The module can obtain a vector with linguistic data and prosodic information. Furthermore, the variational prosody model (VPM) introduced in [10] and based on SFC standards was used to model Sindhi prosody because this approach assimilates contour generators inside an architecture of the network. The VPM overlaps linguistic functions in rhythmic units. We train the VPM using the loss function and maximum mean discrepancy (MMD) to normalize the system, and the mean square error (MSE) for restructuring. Eq. (1) is used as discussed in [10].

\[L = L_{\text{MSE}} + \lambda L_{\text{MMD}} = \frac{1}{N} \sum_{n=0}^{N-1} (f_n - \hat{f}_n)^2 + \lambda D_{\text{MMD}}(q(z)||p(z)) \]

Here, the original and reconstructed prosody contours are \(f \), and \(\hat{f} \) prosody sample per syllable is represented with \(N \). For the duration coefficient and pitch targets, we have \(N-I \). \(\lambda \) is the regularization coefficient, and for the estimation of borderline inference distribution \(D_{\text{MMD}} \) is used on the dormant space \((q(z) \) and the prior \(p(z) \). The MMD intelligently measures the distance between the obtained distributions. Among the two models discussed above, the weighted SFC is used for experimenting with Sindhi prosody due to the availability of neural network features.

5 Speech Corpus Collection

A simple random method is used to select the mean of known speakers with Eq. (2). ME is the margin of error, alpha is used to estimate the confidence level, \(z \) is used to check the standard score, \(N \) is the total number of speakers, and \(\sigma \) is used as input to get the speakers’ variance. Using this equation, 273 speakers are selected for developing the speech corpus. The individuals belong to five districts Sindh of province, i.e., Khairpur, Sukkur, Ghotki, Shikarpur, and Larkana. There are two reasons for the selection of these speakers. (1) Author affiliation is with the district Khairpur, and (2) the undergraduates
recruited for this study belong to these five districts. The detailed information of individuals is given in [1] and presented in Fig. 4. Students were between 19 to 22 years old. Since the quality of sounds decreases with an individual’s age, having an age range was important. Sindhi is divided into six dialects, and the selected undergraduates spoke Sindhi with the Siroli dialect. Other dialects also need to be studied so that SP applications can produce more natural Sindhi sounds; this may be a direction for future work.

\[
n = \left\{ z^2 + \frac{\sigma^2}{N} \right\} / \left\{ ME^2 + \left[z^2 + \frac{\sigma^2}{N-1} \right] \right\}
\]

(2)

Eight utterances of 65 sentences were randomly taken for recording. We preferred the PRAAT software for recording these sentences. SFC is implemented on our developed Sindhi speech corpus. The recorded sounds are segmented using the algorithm proposed by Esposito [32]. The algorithm works on varying features such as speech frames collected using the short-term investigation of speech signals. The words, syllables, and phoneme boundaries are fixed based on sharp transition events. Hence, we used the fitting procedures in the speech segmentation algorithm. The sharp transitions are joints that perceive the similar frame \(n \) into an exclusive sign of unit-like syllable and phoneme boundary. Throughout parameter segmentation, \(c \) is used to identify the number of successive frames required to approximate the intensity. Feature \(t \) is fixed as a threshold and used when the intensity increases, and transitions from one syllable or phoneme to another by the fitting procedure represented by \(w \). The following equations are implemented for the segmentation of recorded sounds.

\[
J_{i}^c[n] = | \sum_{m=n-c}^{n-1} \frac{x_i[m]}{c} - \sum_{m=n+1}^{n+c} \frac{x_i[m]}{c}|
\]

(3)

\[
fn' = \min_{n \in [p,q]} f[n]
\]

(4)

\[
f[n] = \sum_{m=p}^{q} \sum_{i=1}^{k} S(m,i)|n-m| \quad \forall n \in [p, q]
\]

(5)

c represents the width of the frame interval, and \(t \) is a threshold. We calculate \(w \) for the frame’s width when the fitting function found the boundaries of sound units; \(S \) is a matrix, and \(i \) is a time sequence at frame \(n \). Furthermore, recorded sound clips were broken down into words, syllables, and phonemes. This led to a total number of 1960 segments. We analyzed and segmented sound units through a PRAAT speech analyzer. Most recorded sentences were taken from [1,13] and stored in separate directories. We gave a limited number of sentences to speakers for recordings—however, a larger speech corpus was required to get the maximum precision from the system. A sound-free environment was not available at the university, and the

Figure 4: District wise statistics of selected speakers
managers of Radio Pakistan Khairpur provided only a short time for recording. Hence, we could only record a limited number of sentences. Two datasets of sounds were created and grounded with directories of phonemes and syllables. These datasets contained 203 phonemes and 143 syllables respectively. A total number of 346 sound units were experimented with the SFC model. The developed corpus was enough for our experiments, but we realize that a large-scale speech corpus would better train the prosody extraction system.

6 Python Libraries
The SFC model uses different methods for synthesizing the sound units. Programming languages are inspired by the SFC model and provide maximum support to implement the model. Python has various commands, built-in functions, and libraries through which prosodic information can easily be extracted from different sound elements without hard integration efforts. The PySFC library was established for various sound tones and their statistical data representation. The PRAAT library, which is more suitable for speech analysis, is associated with PySFC. We fix this combined approach in the file PySFC.py, which is typically used to deal with the maximum contour utterances. Python offers many functionalities to the developers of speech processing, including the composition and implementation of the neural network model.

We already discussed that RUs are critical in the SFC model, and we can standardize RUs with available functions. This assures model performance by utilizing an earlier tone of a sound unit. Phonemes and syllables have different segmentation procedures, and the context path is obtained using the Python file py. Python’s core features are SciPy and NumPy, which directly pertain to the extraction of prosodic information. Hence, we chose these libraries to implement and extract the prosodic information of different Sindhi sound units. Furthermore, Spyder cells were used for programming and acquire the phonemic and syllabic information from sound units.

7 Implementation and Results
The extraction and examination of pitch and duration prosodic features from Sindhi sounds are considered significant tasks in this project. While we experiment with pitch and duration features, intonation, stress, and rhythm are also valuable features that needed an extraction. We acknowledge that we are failing to accomplish the entire task, but do present milestones that can be of use to other researchers. In the present study, we employ the SFC model, Python libraries, and the developed sound units database. The mean values of durations in ms and pitches in Hz are calculated and presented because it is hard to depict all values in table format. We classify the word sounds into 1 letter words (1LW), 2 letter words (2LW), 3 letter words (3LW), 4 letter words (4LW), and 5 letter words (5LW) for clearer understanding and comparison of received pitches and durations.

7.1 Execution of Python Libraries
Software developers always call different libraries to maintain and deal with files of different natures. The computations of duration, pitch, and amplitude are also handled by Python’s libraries. Calling libraries is not automatic, and we use Jupiter to call the libraries. In contrast, the neural network is automatically called and executed when the Python libraries are called. Librosa is another Python library that supports examining sound units. This library should explicitly be installed for getting the various functions required to obtain the prosodic information, i.e., pitch and duration. All the necessary steps have been taken regarding the installation of Librosa to accomplish prosodic information. Librosa libraries have sufficient skills to fetch the required information from the speech datasets developed for phonemes and syllables experiments. The “librosa” core is one module that needs to be imported in the
programming code. The package Glob is required because the project contents are not directly imported from the local drive, i.e., it is impossible to call all the files needed at a time with the exact file extensions into generated directories.

The “matplotlib” library provides full services to generate a plot for the sound unit’s inputted file. It presents the prosodic information graphically for further processing and analysis. The “Glob” library recognizes the variable named “data_dir.” This variable is tied to the “wav” file format. Subsequently, “NumPy” organized all inputted data into different arrays. The distribution of the data frames is the responsibility of Panda. Another package called “matplot” constructs us a custom graph.

Furthermore, the function “Len” finds the length of the sound files stored in directories. The Librosa libraries manage and assess nearby contour locations. A novel mechanism is developed and implemented in this project after importing all the necessary files and libraries for extracting the pitches and durations information. It is also essential to examine various sound units. Hence, we used a spectrogram and PSD. The duration and pitches of every sound unit are calculated using the developed code (in Python language) and the built-in libraries of Python. We conducted the experiments using the weighted SFC architecture.

7.2 Acoustic Analysis of Sentences

Our dataset consists of many sentences for the analysis of sound pitch. The current study tested ten datasets. The impression of low and high frequency sound waves is referred as the low and high pitches [16]. We computed amplitudes, possible differences, and pitches to ensure the quality of the sounds. `amplitude()` acquired the variance between multiple sounds. Moreover, we analyzed all the sentences separately in terms of duration and quality. The given process is adopted and applied repeatedly to complete the task with an input of ten sentences.

Various sound reflection characteristics were evaluated in terms of a coefficient or a power spectral. The selected characteristics were based on the sound’s quality and capacity. Several forms of a sound may appear as an alpha or a bright reflection. The fed sentences’ data differ from each other both males and females provided recordings. The fluctuations and differences may be observed at the syllable levels when utterances are analyzed. In total, 300 syllables are analyzed.

We produce a spectrogram from a range analyzer with a fine count of frequencies available in a speech database at the current time. The darker areas in the graph represent extraordinarily low power frequencies.

7.3 Syllables Frequencies

Phonemes and syllables are the smallest parts of speech sounds. We stored segmented syllables in ten directories for experiments. It is rather hard to put them in some arrangement like NumPy and Panda libraries do at this preliminary stage. We put a time series into an image format based on the many syllables, frequency of vowels. In addition to this, some extra elements are studied, like the power spectral of sound clips.

We view all the wave spectra in isolated form before observing their signal spectrograms. We do this to see whether they are of low or high Hertz. This process helps us to examine the level of sound energy taken on different scales of time. The x axis in the spectrogram shows the time and the y axis shows the frequency, and the colors indicate the amplitude. Bright colors show the strength of the frequency of the FFT plot. Hence, the lower frequencies (from 0–1 kHz) are strong ones. This is how we may distinguish the frequencies from each other. Furthermore, the acoustic information of sentences and frequency-based information of the syllabus is compulsory for extracting the sound’s prosodic information.
7.4 Power Spectral Density of Syllables

The PSD is a technique commonly used to define the power of speech-based signals with the unit of frequency [33]. PSD is widely used in various applications, including speech analysis and synthesis [34]. The waves represent the amplitude of sound units; and by using the sound waves, prosodic information can be analyzed and extracted. Hence, the PSD approach is applied to segmented sounds of syllables in the present work. We analyzed ten recorded sentences in Sindhi based on this approach. PSD has the ability to modulate and characterize the carrier owing along with bandwidth. Likewise, we computed various speech units by considering their features properties. In the entire process of PSD calculations, the power of 10 is used for getting approximate results.

Additionally, we pay special attention to the isolation of modules. The same is done to obtain 30 syllables from the aforementioned directories. This is useful for the recognition of noise in the sound clips.

7.5 Mean Syllable Sound Durations

The mean values of calculated durations (in ms) and pitches (in Hz) were calculated. Because this involves numerous calculations, the results are summarized in tables, and in some cases only in figures.

Tab. 2 presents the μ of calculated sound durations. With the sounds based on 1LW, we received the lowest μ duration of 0.3175 ms. After that, the sounds of 2LW were tested, and the calculated minimum μ duration was 0.3255 ms. For 3LW, μ was 0.3489 ms. Finally, durations of 0.3771 ms and 0.3855 ms were obtained for 4LW and 5LW, respectively.

Age in (Years)	n	μ Duration in ms					
		5LW	4LW	3LW	2LW	1LW	
K-22	20	0.3942	0.3997	0.3499	0.3278	0.3248	
K-21	26	0.3855	0.3788	0.3493	0.3265	0.3251	
K-20	19	0.3855	0.3771	0.3489	0.3255	0.3241	
S-22	17	0.3878	0.3871	0.3693	0.3428	0.3175	
S-21	18	0.3889	0.3864	0.3683	0.3422	0.3227	
S-20	16	0.3891	0.3877	0.3662	0.3389	0.3203	
L-22	15	0.4001	0.3809	0.3970	0.3467	0.3671	
L-21	10	0.3992	0.3801	0.3967	0.3471	0.3577	
L-20	20	0.3974	0.3736	0.3963	0.3353	0.3415	
Sh-22	15	0.4017	0.3939	0.3723	0.3492	0.3229	
Sh-21	19	0.4013	0.3941	0.3716	0.3487	0.3222	
Sh-20	20	0.3989	0.3936	0.3717	0.3373	0.3211	
G-22	23	0.4396	0.4331	0.4154	0.4047	0.3897	
G-21	21	0.4381	0.4325	0.4148	0.4041	0.3890	
G-20	14	0.4374	0.4319	0.4147	0.4022	0.3888	
The minimum μ durations for speakers of the Khairpur district are presented in Tab. 2. We found that 1LW and 2LW sounds have durations of 0.3897 ms and 0.4047 ms, respectively. For 3LW, we recorded a duration of 0.4154 ms. For 4LW, we obtained a duration 0.4331 ms. Lastly, the maximum μ duration of 0.4396 ms was observed for the 5LW sounds. These results proved that speakers from Ghotki have the largest μ durations compared to speakers from other districts. We also calculated the SD to check the variations in sound duration at various levels. Mnsari [35] used this same methodology. 1LW and 2LW had SDs of 0.027 ms, while 3LW and 4LW had SDs of 0.023 ms and 0.020 ms, respectively. The lowest SD of 0.019 ms was obtained for 5LW. Variations in SD between 1LW to 5LW can be seen in Fig. 5.

SD values are also calculated at the district level, which shows significant dissimilarity among the speakers of District Shikarpur (with an SD of 0.030 ms). Meanwhile, speakers of District Ghotki provide the lowest SD value (0.017 ms). Speakers of Khairpur, Sukkur, and Larkana districts have SDs of 0.08 ms, 0.027 ms, and 0.023 ms, respectively. The obtained results are better than the results calculated by Obin [24].

Two variables are needed to measure the performance of the proposed method of prosodic information extraction. Hence, the obtained and observed are fixed for the presentation of syllable durations. The computed syllable sounds durations are presented in Fig. 6. As the percentage of parameter observations is too high, 5250 values are chosen for the depiction of the method’s precision. We also calculated interval coordinates of every syllable sound from 0.2 ms to 0.6 ms. If both observed and obtained parameters are considered, then the maximum observed durations are placed between 0.27 ms and 0.58 ms, and the obtained durations are placed between 0.29 ms and 0.43 ms.

Figure 5: Calculated SD Values at 1LW to 5LW Level, and District Level

Figure 6: Demonstration of 5250 observations evaluated as obtained and observed durations
7.6 Mean Syllable Sound Pitches

Like with the syllables durations, we deposited the generated pitch values in the database. We present the mean values of estimated pitches in Tab. 3. The maximum and minimum pitch values, i.e., 184.91 Hz and 151.67 Hz, are received for 1LW. The highest and lowest calculated \(\mu \) pitches are 191.94 Hz and 157.08 Hz, respectively, with the sounds of 2LW.

Similarly, tests were conducted on numerous 3LW sound units; the minimum \(\mu \) pitch was 157.69 Hz, and the maximum was 193.69 Hz. For 4LW sounds the maximum and minimum \(\mu \) pitches were 198.23 Hz and 159.16 Hz. Furthermore, the lowest \(\mu \) pitch of 159.71 Hz and highest \(\mu \) pitch of 198.23 Hz were measured for 5LW sound units. The obtained values were then used to calculate the SDs. 1LW had an SD of 10.772 Hz, 2LW had an SD of 12.869 Hz, and 3LW had an SD of 11.952 Hz. These are minute differences as compared to the SDs calculated for 4LW and 5LW, i.e., 13.002 Hz and 15.343 Hz, respectively. Fig. 8 presents the differences between 1LW through 5LW. This study reflects the methodology adopted by Xydas [36]. The recorded pitch sounds for individually selected districts were used to calculate additional SDs. The least and most significant variations in sound units were observed among the speakers of Khairpur and Shikarpur districts, respectively. The recorded SDs for speakers of the Khairpur district was 1.886 Hz, while that for speakers of District Shikarpur was 10.268 Hz. However, SD values obtained from the speakers of the Sukkur and Ghotki districts are relatively close to each other (8.034 Hz and 8.084 Hz, respectively). The results are depicted in Fig. 7. The obtained and observed parameters are also used to measure the performance of segmented syllables in terms of pitches. The results of 4850 examined observations are presented in Fig. 8.

Table 3: Mean pitches received from syllable sounds of all letter words
Age in (Years)
K-22
K-21
K-20
S-22
S-21
S-20
L-22
L-21
L-20
Sh-22
Sh-21
Sh-20
G-22
G-21
G-20
We selected the observations randomly and received unexpected results. This might be because of high-level variance in inputted sentence sounds. Some positions are crucial because the obtained and observed parameter values are nearly associated with the same type of words used in a descriptive sentence pronounced by speakers. We found that most calculated pitches were between 160 Hz and 185 Hz. The maximum pitch was 263 Hz, while the minimum pitch was 137 Hz.

Moreover, we found that prosodic information of syllables and phonemes are sufficient for speech synthesis. There is no need to acquire sound pitch and duration information from the words and sentences because concatenation of obtained information of pitches and durations can produce the prosodic information of words and sentences. Therefore, we performed experiments on phonemes and syllables instead of words and sentences. The collected data of prosodic features are authentic and reliable because advanced IT tools and programming languages are used for experiments.

8 Conclusion

Speech signal analysis for extraction of speech elements is viable in natural language applications. The development of Arabic Script-Based SP applications still requires much research for analysis and synthesis. The pitch and duration are the main prosodic features of sound units used to help us understand the cognitive
concepts of phonetics. We presented analytical results after the extraction of pitch and duration. We developed a speech corpus for the practical application of Sindhi prosody with the SFC model. We first analyzed the utterances acoustically to determine their amplitude. Next, we calculated the frequency of segmented syllables through the PSD method and calculated the mean sound durations and pitches. Finally, our results showed us that speakers of the District Ghotki produce the highest pitches and those of Khairpur and Larkana districts produce the lowest pitches.

Funding Statement: Taif University Researchers Supporting Project number (TURSP-2020/10), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding the present study.

References

[1] S. A. Mahar, M. H. Mahar, S. H. Danwar and J. A. Mahar, “Investigation of pitch and duration range in speech of Sindhi adults for prosody generation module,” *Int. Journal of Advanced Computer Science and Applications*, vol. 10, no. 9, pp. 187–195, 2019.

[2] J. A. Mahar and G. Q. Memon, “Phonology for Sindhi letter-to-sound conversion,” *Journal of Information & Commun. Technology*, vol. 3, no. 1, pp. 11–21, 2009.

[3] H. Shaikh, J. A. Mahar and G. A. Mallah, “Digital investigation of accent variation in Sindhi dialects,” *Indian Journal of Science and Technology*, vol. 6, no. 10, pp. 5429–5433, 2013.

[4] A. Keerio, N. Channa, Y. A. Malkani and Qureshi, “Acoustic analysis of the liquid class of consonant sounds of Sindhi,” *Sindh University Research Journal (Science Series.)*, vol. 46, no. 4, pp. 505–510, 2014.

[5] P. B. Dasgupta, “Detection and analysis of human emotions through voice and speech pattern processing,” *Int. Journal of Computer Trends and Technology*, vol. 52, no. 1, pp. 1–3, 2017.

[6] K. J. Min and U. C. Lim, “Korean prosody generation and artificial neural networks,” in *8th Int. Conf. on Spoken Language Processing. Jeju Island, Korea*, pp. 1–4, 2004.

[7] Y. Wu, S. Li and H. Li, “Automatic pitch accent detection using long short-term memory neural networks,” in *Int. Symp. on Signal Processing Systems*. Beijing, China, 41–45, 2019.

[8] M. Begum, R. N. Ainon, R. Zainuddin, Z. M. Don. and G. Knowles, “Prosody generation by integrating rule and template-based approaches for emotional Malay speech synthesis,” in *Proc. IEEE Region 10 Conf.*, Hyderabad, India, pp. 1–6, 2008.

[9] X. J. Ma, W. Zhang, W. B. Zhu and Q. Shi, “Probability based prosody model for unit selection,” in *Proc. IEEE Int. Conf. on Acoustic, Speech and Signal Processing*. Montreal, Canada, pp. 1–5, 2004.

[10] B. Gerazon, G. Bailly, O. Mohammed, Y. Xu and P. N. Garner, “A variational prosody model for the decomposition and synthesis of speech prosody. preprint, arXiv: 1806.08685v1, pp. 1–10, 2018.

[11] G. Bailly and B. Holm, “SFC: A trainable prosodic model,” *Speech Communication*, vol. 46, no. 3-4, pp. 348–364, 2005.

[12] Z. Mnasri and F. Boukadida, “F0 contour modeling for Arabic text-to-speech synthesis using Fujisaki parameters and neural networks,” *Signal Processing An Int. Journal*, vol. 4, no. 6, pp. 352–369, 2010.

[13] S. A. Mahar, M. H. Mahar, S. H. Danwar, J. A. Mahar and A. A. Shaikh, “Prosody generation using back propagation neural network for Sindhi speech processing applications,” *Indian Journal of Science and Technology*, vol. 13, no. 2, pp. 218–228, 2020.

[14] B. Gerazon, G. Bailly, O. Mohammed, Y. Xu and P. N. Garner, “A variational prosody model for mapping the context-sensitive variation of functional prosodic prototypes. arXiv: 1806.08685v2, 1–122019.

[15] J. A. Mahar, G. Q. Memon and H. A. Shah, “Perception of syllables pitch contour in Sindhi language,” in *IEEE Int. Conf. on Natural Language Processing and Knowledge Engineering*. Dalian, China, pp. 593–597, 2009.

[16] A. M. Abbasi and S. Hussain, “The role of pitch between stress and intonation in Sindhi,” *ELF Annual Research Journal*, vol. 17, pp. 41–54, 2015.
[17] A. M. Abbasi, H. Pathan and M. A. Channa, “Experimental phonetics and phonology in Indo-Aryan & European languages,” Journal of Language and Cultural Education, vol. 6, no. 3, pp. 21–52, 2018.

[18] A. Keerio, N. Channa, Y. A. Malkani and B. Qureshi, “Acoustic analysis of the liquid class of consonant sounds of Sindhi,” Sindh University Research Journal (Science Series), vol. 46, no. 4, pp. 505–510, 2014.

[19] M. Farooq, “Acoustic analysis of corner vowels in six indigenous languages of Pakistan,” Journal of Research in Social Sciences, vol. 6, no. 2, pp. 2305–5633, 2018.

[20] M. Breen, A. B. Fitzroy and M. O. Ali, “Event-related potential evidence of implicit metric structure during silent reading,” Brain Sciences, vol. 9, no. 8, pp. 1–28, 2019.

[21] C. Chiang, Y. Hung, H. Yeh and I. Liao, “Punctuation-generation-inspired linguistic features for Mandarin prosody generation,” in Proc. Administrative Professional Conf., pp. 3368–3372, 2018.

[22] N. Al-Saiyd and M. Hijjawi, “Unit selection model in Arabic speech synthesis,” International Journal of Computer Science and Network Security, vol. 18, no. 4, pp. 126–131, 2018.

[23] N. Obin and P. Lanchantin, “Symbolic modeling of prosody: from linguistics to statistics,” IEEE Transactions on Audio, Speech and Language Processing, vol. 23, no. 3, pp. 588–599, 2015.

[24] A. Talman, A. Suni, H. Celikkanat and S. Kakouros, “Predicting prosodic prominence from text with pre-trained contextualized word representations,” 2019. [Online]. Available at: https://arxiv.org/abs/1908.02262.

[25] H. Mixdorff, C. Watson and P. Keegan, “Quantitative analysis of Maori prosody from three generations,” in Proc. 9th Int. Conf. on Speech Prosody, Poznan, Poland, pp. 631–635, 2018.

[26] S. A. Ali, S. A. Khan and N. Bashir, “Analyzing the impact of prosodic feature (pitch) on learning classifiers for speech emotion corpus,” Int. Journal of Information Technology and Computer Science, vol. 7, no. 2, pp. 54–59, 2015.

[27] J. James, H. Mixdorff and C. I. Watson, “Quantitative model-based analysis of F0 contours of emotional speech,” in Int. Conf. on the 19th Congress of Phonetic Science, Australia, pp. 72–76, 2019.

[28] S. Baumann and P. B. Schumacher, “The incremental processing of focus, givenness, and prosodic prominence,” Glossa: Int. Journal of General Linguistics, vol. 5, no. 1, pp. 1–30, 2020.

[29] A. Esposito and G. Aversano, “Text independent methods for speech segmentation,” Lecture Notes in Computer Science, vol. 131, no. 14, pp. 33–36, 2015.

[30] A. Kydyrbekova, M. Othman, O. Manyrbayev and A. Akhmediyarova, “Identification and authentication of user voice using DNN features and i-vector,” Cogent Engineering, vol. 7, no. 1, pp. 1–21, 2020.

[31] Z. Mnasri, F. Boutakida and N. Ellouze, “Design and development of a prosody generator for Arabic TTS systems,” Int. Journal of Computer Applications, vol. 12, no. 1, pp. 24–31, 2010.

[32] G. Xydas and G. Kouroupetroglou, “Modeling improved prosody generation from high-level linguistically annotated corpora,” Institute of Electronics, Information and Commun. Engineering Transaction and on Information Systems, vol. 88, no. 3, pp. 510–518, 2005.