THE DIVERSITY AND BIOGEOGRAPHY OF THE ALPINE FLORA OF THE SIERRA NEVADA, CALIFORNIA

PHILIP W. RUNDELD
Department of Ecology and Evolutionary Biology and the Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095
rundel@biology.ucla.edu

ABSTRACT

The alpine zone of the Sierra Nevada of California, defined as non-forested areas at or above 3500 m, includes 385 species (409 taxa) of native vascular plants. Were the alpine boundary defined as at or above 3300 m, the alpine flora would grow to 536 species (570 taxa). There are 97 species that reach elevations of 4000 m and 27 species that reach to 4200 m. Over half of the alpine species occur in just six families, led by the Asteraceae (55 species, 59 taxa), Poaceae (39 species, 47 taxa), Brassicaceae (34 species), and Cyperaceae (31 species). The largest genus present is Carex with 29 species, and 18 more species would be added by lowering the alpine boundary to 3300 m. Next in size are Draba (14 species) and Lupinus (11 species, 16 taxa). Life forms of the flora are heavily dominated by broad-leaved erect perennials (50%), followed in importance by graminoid perennials (21%) and mats and cushions (11%). Annuals and woody shrubs each account for about 6% of the flora. Only nine species are obligate alpine taxa with a range restricted to elevations of 3500 m or above. An additional 67 species (17% of the flora) occur in both subalpine and alpine habitats but not lower. More than a quarter of the alpine species have elevational ranges that extend as low as foothill habitats defined as occurring below 1200 m. In terms of biogeographic affinities, the broad relationships of the flora include the cordillera of western North America (35%), Intermountain region of the Great Basin (20%), Sierra/Cascade axis (16%), and widespread distributions (14%). There are 36 species in the alpine flora endemic to the Sierra Nevada, and another 31 species that are Californian endemics.

Key Words: Alpine, arctic-alpine flora, cushion plant, Sierra Nevada, treeline.

How large and diverse is the alpine flora of the Sierra Nevada in California and what are its biogeographic relationships? There has been a long history of floristic and ecological studies of the alpine region of the Sierra Nevada addressing this and related issues, but a clear answer to the question has not been achieved. Unlike the majority of alpine regions in the northern hemisphere that share extensive elements of a circumboreal arctic-alpine flora, the Sierra Nevada has developed a unique component to its alpine flora under the influence of mediterranean-climate conditions with relatively dry summers added to other alpine environmental factors of stress. Also significant in the evolution of this alpine flora has been the relative isolation of the range from other high mountain floras of the western United States. Moreover, the Sierra Nevada possesses a complex mosaic of substrate, glacial history, and soil variation superimposed over broad patterns of climatic and topographic heterogeneity.

Interest in the alpine flora dates back to early descriptions by Coville (1893) and Harshberger (1911), who recognized the distinctiveness of the Sierran alpine flora. Hall and Grinnell (1919) gave a very brief description of the alpine zone in the context of a broader description of California life zones, and provided a short list of characteristic species. More significant, however, have been five studies over the past 80 years that have provided an analysis of the diversity and floristic affinities of the high elevation flora of the Sierra Nevada. The earliest of these was the work of Smiley (1921), whose definition of the boreal region of the Sierra Nevada comprised the Canadian, Hudsonian, and Arctic-Alpine zones as characterized in the Merriam system of life zones (Daubenmire 1938). These life zones roughly correspond to the upper montane, subalpine and alpine zones under current concepts (Fites-Kaufman et al. 2007). Smiley’s work was followed by the classic investigation of Sharsmith (1940), and in more recent decades with analyses by Chabot and Billings (1972), Major and Taylor (1977), and Stebbins (1982). Early speculations on the origin of the Sierran alpine flora were contributed by Went (1948, 1953). Beyond these broad floristic surveys, there have been numerous studies of the floristics and vegetation of regional areas of subalpine and alpine vegetation in the Sierra Nevada (Howell 1944, 1951; Klikoff 1965; Pembel 1970; Taylor 1976b; Major and Taylor 1977; Tatum 1979; Benedict and Major 1982; Burke 1982; Ratliff 1982; Benedict 1983; Porter 1983; Constantine-Shull 2000; Sawyer and Keeler-Wolf 2007).

None of the existing literature has provided a satisfactory answer to the fundamental question. How many species are there in the alpine flora of
the Sierra Nevada? The objective of this paper is to present a broad overview of the alpine flora of the Sierra Nevada by providing a detailed and updated analysis of the floristic richness, ecological diversity, and biogeographic relationships of the species present within the alpine zone. The paper takes a conservative approach following Sharsmith (1940) by defining the alpine zone using a lower elevational limit of 3500 m. Climatic treeline typically occurs from 3300–3500 m in the central and southern Sierra Nevada where the great majority of alpine habitat in California is located (Fig. 1). Although the northern Sierra Nevada lacks high elevation areas, it nevertheless has a good representation of alpine species that reach above 3500 m in the central or southern areas of the range. To provide a broader context examining the significance of elevation in the definition of the alpine zone, analyses have been made for all species occurring at or above 3300 m within California.

Beyond an intrinsic interest in the evolution of biodiversity of alpine biota, there are very significant reasons to support Sierran alpine studies that can serve as baseline studies for important early warning systems of potential environmental impacts of climate change. Climate change models for California suggest that there will be significant effects on environmental conditions of subalpine and alpine habitats of the Sierra Nevada (Hayoe et al. 2004; Shafer et al. 2001), and historical data on vertebrate distribution demonstrates that these effects are ongoing today in influencing the distributions of vertebrate species (Moritz et al. 2008; Tingley et al. 2009).

Materials and Methods

The Jepson Manual, 2nd Edition (Baldwin et al. 2012) was used to identify California species with an elevational distribution up to or above 3300 m within the state, and which occurred in the Sierra Nevada. This reference is the sole source and reference for binomials used in this article. Species at or above 3500 m in California were considered to comprise the alpine flora. The upper and lower elevational ranges of each of these species were recorded, along with their biogeographic distribution and occurrence within the geographic regions of California (Hickman 1993). These geographic regions included records of species presence in the montane and higher elevations of the northern, central, and southern subregions of the Sierra Nevada, as well as the high Cascade Range, the Klamath/Siskiyou mountains, Transverse and Peninsular ranges of southern California, and ranges east of the Sierra Nevada including the Sweetwater and White-Inyo mountains (Fig. 1). The elevational limits and geographical ranges listed in Baldwin et al. (2012) are specimen-based records and thus considered reliable. Only native species were included in this analysis, however, alien species recorded as occurring at high elevations in the Sierra Nevada are very few. *Poa pratensis* L. is recorded as reaching 3500 m and *Taraxacum officinale* F. H. Wigg. reaches 3300 m.

Each taxon occurring at elevations of 3300 m or above was categorized into a series of growth forms, based on a modified scheme of Raunkiaer (1934). These categories were broad-leaved herbaceous perennials (tusssocks, rosettes, and biennials), graminoid perennials, mats and cushion plants, geophytes, aquatics, annuals, shrubs, woody shrubs (deciduous and evergreen), and trees.

The lower elevational limit of occurrence in California was used to separate alpine species into categories of lowest elevational zone of occurrence on the following basis: 1) foothill habitats of woodland and chaparral—<1199 m; 2) lower montane habitats dominated by mixed conifer and yellow pine forests—1200–1999 m; 3) upper montane habitats of red fir and lodgepole pine forests—2000–2699 m; 4) subalpine habitats of open conifer stands near treeline—2700–3499 m; and 5) alpine habitats—>3500 m. Because elevational boundaries of these major vegetation zones change with latitude, as well as locally with slope exposure, these elevational ranges represent averaged boundaries across the west slope of the central and southern Sierra Nevada.

The biogeographic range of each alpine species was classified into one of six categories. These were: 1) widespread species present in many habitats or regions across North America and/or throughout the world; 2) cordilleran species broadly distributed in mountain regions of the western United States; 3) Sierra/Cascade species with a Pacific Northwest distribution; 4) Intermountain Region species present in the Great Basin; 5) species endemic to the Sierra Nevada; and 6) species endemic to California, broadly defined to include adjacent Great Basin ranges extending into western Nevada (i.e., Sweetwater, Wassuk, and White-Inyo mountains) and southern Oregon. Dividing species into such simple biogeographic categories is inherently arbitrary for some species, and expanded field studies in the future may well change these classifications and alter the list of Sierran endemics based on new records or taxonomic revisions.

Results

The Geography of California Alpine Habitats

The elevational contour interval of 3500 m is highly irregular in the Sierra Nevada, as it defines a relatively continuous area along the crest of the
central and southern crest of the range extending from northern Tuolumne and Mono counties in the area of Leavitt Peak (3527 m) near Sonoran Pass and south across Yosemite National Park where the highest peak is Mount Lyell (3999 m; Fig. 2). Further south this belt of alpine habitat continues into Kings Canyon and Sequoia National parks where there are extensive areas of alpine habitat with ten peaks that reach above 4000 m. Mount Whitney at 4421 m is the highest
point in the contiguous United States. The southern limit of this extensive and virtually contiguous alpine zone occurs at Cirque Peak (3932 m) in Sequoia National Park at the southern end of the continuous chain of glaciated peaks in the Sierra Nevada. To the south, the alpine zone reappears on Olancha Peak (3698 m; Fig. 2), the southernmost glaciated summit of the range lying...
on the Tulare-Inyo county line (Howell 1951; Tatum 1979). Two major breaks with subalpine elevations but not true alpine provide the only major discontinuity for this primary Sierran alpine region. These are Tioga Pass in Yosemite National Park (3031 m) and Mammoth Pass (Minaret Summit) (2824 m), which is the route for California Highway 203.

The crest of the Sierra Nevada lies at lower elevations to the north of the Tioga Pass area, with only scattered areas of good alpine habitat present. A notable ecological change occurs north of this pass where volcanic substrates replace the granites of the central and southern Sierra Nevada. Fragmented communities of alpine species are present at elevations below 3500 m, particularly along exposed ridgelines and on steep north-facing slopes that were heavily glaciated. However, there are no elevations in the northern Sierra Nevada that reach the 3500 m limit used here to define the alpine zone. Alpine habitats are weakly developed in Alpine Co. (with Sonora Peak reaching 3493 m) and eastern El Dorado Co. (with Freel Peak reaching 3318 m), extending to their northern limit on Mount Rose (3285 m) in the Carson Range east of Lake Tahoe in Nevada (Fig. 2). Nevertheless, there are scattered communities of alpine-like habitat existing at upper elevations in the northern Sierra Nevada, positioned above local edaphically-controlled treelines, and the alpine flora is well represented (Smiley 1915). Despite the floristic relationships of high-elevation Sierran species all along the range, Stebbins and Major (1965) linked the Sierra Nevada north of Lake Tahoe with the Cascade Range rather than with the region of the central and southern Sierra Nevada on the basis of the dominance of volcanic substrates.

To the north of the Sierra Nevada, Mount Shasta in the southern Cascade Range reaches an elevation of 4322 m, while Lassen Peak is lower at 3187 m. The highest peaks in the Klamath Mountains of northwestern California and adjacent Oregon are Mount Eddy (2750 m) in Siskiyou Co., Thompson Peak (2744 m) in Trinity Co., and Mount Ashland (2296 m) in Jackson Co., Oregon. These high peaks contain areas with permanent or long-lasting snowfields on north-facing slopes with associated alpine species (Howell 1944; Major and Taylor 1977).

There are several high mountain ranges to the east of the Sierra Nevada at the western margin of the Great Basin. The Sweetwater Mountains, located just 33 km east of the Sierra Nevada, reach 3552 m on Mount Patterson (Hunter and Johnson 1983). The Wassuk Range in western-central Nevada lie 48 km east of the Sweetwater Mountains and 88 km north of the White Mountains, reaching 3427 m on Mount Grant (Bell and Johnson 1980). The White Mountains have an extensive alpine area and reach to 4344 m on White Mountain Peak, the third highest peak in California (Rundel et al. 2008). To the south, Mount Waucoba forms the high point at 3390 in the Inyo Mountains. The Panamint Mountains lying east of the White-Inyo Mountains reach a maximum elevation of 3366 m on Telescope Peak. Further south, the Spring Mountains in southwestern Nevada divide the Pahrump Valley and Amargosa River basins from the Las Vegas Valley watershed and define part of the southwestern boundary of the Great Basin. The highest point is Charleston Peak at 3633 m.

High elevations are also present in the Transverse and Peninsular ranges of southern California (Fig. 1) where a subset of Sierran alpine species is present in weakly developed alpine-like communities (Hall 1902; Parish 1917; Horton 1960; Hanes 1976; Major and Taylor 1977; Meyers 1978). Mount San Gorgonio in the San Bernardino Mountains reaches 3506 m, while other high points are Mount San Jacinto in the San Jacinto Mountains at 3302 m and Mount Baldy in the San Gabriel Mountains at 3068 m. Alpine species are present in both xeric and mesic habitats at high elevation, but alpine communities, defined as extended areas dominated by assemblages of alpine species, are only poorly developed.

The alpine zone of the Sierra Nevada experiences mediterranean-type climate conditions that differ significantly from those that characterize the Rocky Mountains and most of the continental alpine habitats of the world where summer rainfall predominates. The fraction of annual precipitation that falls as winter snow in the Sierra Nevada is about 95% at upper treeline (Stephenson 1998). Deep snow packs and cool temperature at higher elevations mean that snowmelt extends into the spring, but the length and magnitude of the summer drought period experienced by plants is significant. Patterns of rainfall decline gradually from north to south in the Sierra Nevada, and summer drought decreases as elevation increases because of both increased levels of precipitation and cooler temperatures with lower evaporative demand at higher elevations (Stephenson 1998; Urban et al. 2000).

Winter mean monthly low temperatures are moderate in the Sierra Nevada compared to the Rocky Mountains, and soils only rarely freeze to even moderate depth. While, the mean minimum temperature above treeline is below freezing for ten months of the year, with nighttime lows that typically reach only −3 to −6 °C, although extremes can reach temperatures of −15 °C or lower on the high peaks. Nevertheless, these moderate low temperatures as well as other limiting factors for survival at high elevations sharply reduce the diversity of species able to tolerate such conditions (Körner 2003).
Floristic Richness

The alpine flora of the Sierra Nevada, defined as species reaching 3500 m or more at their upper limit of distribution, comprises 385 vascular plant species. The species total includes 10 ferns and fern relatives (2.6%), five conifers (1.3%), 85 monocots (22.1%), and 285 eudicots (74.0%). With the inclusion of an additional 24 named varieties and subspecies, the total number of alpine taxa is 409.

Of course, the predetermined elevational boundary has a very strong influence on the size of the flora (Fig. 3). If the alpine flora were defined as those species reaching 3400 m, then 76 additional species would be added for a total of 460 species (488 taxa). Were the limit defined as 3300 m, there would be a flora of 536 species (570 taxa), with the relative proportions of monocots and eudicots virtually unchanged and the addition of five ferns and one conifer.

There are 97 species (101 taxa) with an elevational range that extends as high as 4000 m, an elevation reached by only the highest Sierran peaks (Fig. 3). This number declines to 27 species that reach 4200 m in elevation. These 27 high elevation species do not display dominance by a few families as is the case with the full alpine flora but are rather spread among 15 different families (Appendix 1). Three species have been recorded as reaching to 4400 m. These are Epilobium anagallidifolium Lam. (Onagraceae), Saxifraga hyperborea R. Br. (Saxifragaceae), and Erigeron vagus Payson (Asteraceae). Additional taxa that occur up to or above 4300 m are Erigeron compositus Pursh (Asteraceae), Boechera lemmonii (S. Watson) W. A. Weber (Brassicaceae), Cerastium heeringianum Cham. & Schltdl. (Carophyllaceae), Calyptridium umbellatum (Torr.) Greene (Montiaceae), Festuca brachythylla Schult. & Schult. subsp. breviculmis Fred., Poa keckii Soreng, and P. lettermannii Vasey (Poa- ceae), Phlox pulvinata (Wherry) Cronquist (Polemoniaceae), Ranunculus eschscholtzii Schult. var. oxynottus (A. Gray) Jeps. (Ranunculaceae), and Potentilla pseudosericea Rydb. and Sorbus californica Greene (Rosaceae).

There are six families that contribute 20 or more taxa to the alpine flora. The largest of these is the Asteraceae with 55 species (59 taxa), followed in size by the Poaceae (39 species, 47 taxa), Brassicaceae (34 species), Cyperaceae (31 species), Rosaceae (21 species, 23 taxa), and Fabaceae (18 species, 27 taxa). These six families together comprise 52% of the alpine flora.

At the generic level, Carex stands out prominently with 29 species in the alpine flora, with an additional 18 species present at elevations between 3300 and 3500 m. Next in order of size are Draba (Brassicaceae, 14 species), and Lupinus (Fabaceae, 11 species, 16 taxa). There are 10 species of Boechera (Brassicaceae) and nine species each of Epilobium (Onagraceae), Eriogonum (Polygonaceae), and Potentilla (Rosaceae). There are three genera with eight species—Penstemon (Plantaginaceae), Poa (Poaceae), and Salix (Salicaceae).

Growth Form Distribution

Herbaceous perennial growth forms, broadly defined, comprise the great majority of taxa reaching to or above 3500 m in the Sierra Nevada. This growth form with all of its subgroups includes 343 taxa, or 84% of the 409 taxa that comprise the flora. These herbaceous perennials can be broken down into subgroups of erect herbaceous perennials, perennial graminoids, prostrate mats and cushion plants, biennials, and geophytes. The largest numbers of herbaceous perennials form the category of erect herbaceous perennials, with 186 species (206 taxa; Fig. 4). The most important families for the erect herbaceous perennials are the Asteraceae, Brassi-
ceae, Fabaceae, Rosaceae, Polygonaceae, and Onagraceae. Among the erect herbaceous perennials are four species that are reported to have the potential to survive as facultative annuals. Although these have not been studied in detail, it is expected that these species have biennial or short-lived perennial life histories in the alpine zone, and they are included here in the totals for erect herbaceous perennials. Three of these are members of the Brassicaceae, each representing a different genus. Among these facultative annuals, only *Androsace septentrionalis* L. (Primulaceae) with an elevation range of 2700–3600 m can be considered as a subalpine and alpine specialist.

There are several additional groups classified broadly as erect herbaceous perennials. The 10 species of ferns and fern relatives included here within the alpine flora represent four families (Pteridaceae, Ophioglossaceae, Woodsiaiceae, and Selaginellaceae). Four of these species reach elevation at or above 4000 m—*Botrychium lineare* W. H. Wagner, *B. paradoxum* W. H. Wagner, *Cystopteris fragilis* (L.) Bernh., and *Selaginella watsonii* Underw. Lowering the characterization of the alpine zone lower limit to 3300 m would add five additional fern species (Appendix 2). Also classified as erect perennials are seven species of hemiparasites, all members of the Orobanchaceae, with four species (five taxa) of *Castilleja* and three species of *Pedicularis*. Six more species from this family would be added by lowering the alpine boundary to 3300 m, including five more species of *Castilleja*.

Next in diversity among the herbaceous perennials is the subgroup of graminoids (Cyperaceae, Juncaceae, Juncaginaceae, and Poaceae) with 83 species (85 taxa, Fig. 4). All of the members of these four families within the alpine flora are perennials, with *Agrostis, Bromus, Carex, Elymus, Juncus, Luzula, Poa*, and *Stipa* forming genera with five or more taxa (Appendix 1). These perennial graminoids include one species of *C_4* grass, *Muhlenbergia richardsonis* Rydb. (Sage and Sage 2002). Two other *C_4* members of this genus, the perennial *M. montana* Hitchc. and the annual *M. filiformis* Rydb., just miss inclusion, reaching to elevations of 3420 m and 3350 m, respectively. Lowering the alpine boundary to 3300 m would add significantly to the diversity of graminoid perennials, with 43 additional taxa present (Appendix 2).

Prostrate mats and cushion forms of growth are common in some of the herbaceous perennials of the Sierran alpine flora (Fig. 4). These species are low in stature and form a heterogeneous group that shares the characteristic of a prostrate growth form with either a central taproot or multiple points of rooting through layering. Mats and cushions often form an ecologically significant component of plant cover on exposed ridges and fellfield. There are 46 species classified here as mats or cushions, with 19 of these high subalpine and alpine specialists not occurring below 2700 m elevation. The growth form characteristics of mats and cushions may be genetic in some cases but in others is environmentally induced, with mat forms of growth only occurring at higher elevations (personal observations). Alpine mat and cushion species are well represented in the Asteraceae with 13 species (notably taxa of *Antennaria* and *Erigeron*), Polygonaceae (*Eriogonum*) with eight species,
Brassicaceae (*Draba* and *Anelsonia*) with six species, and Fabaceae (*Astragalus*, *Lupinus*, *Oxytropis*, and *Trifolium*) with five species. Also notable in their ecological dominance are mats of Caryophyllaceae (*Cerastium*, *Eremogone*, *Minuartia*) and Polemoniaceae (*Phlox*).

The alpine flora includes just four species of geophytes, which represent the Alliaceae (*Allium obutsum* Lemmon var. *obutsum*), Liliaceae (*Calochortus leichtlinii* Hook. f.), Melanthiaceae (*Veratrum californicum* Durand var. *californicum*), and Themidaceae (*Triteleia douglasii* Hoover). The highest elevation species among these is *C. leichtlinii*, which reaches up to 4000 m. None of these geophytes can be considered to be high elevation specialists as all reach lower elevational limits of 1200–1500 m in California. There are six species of geophytes that just miss reaching the lower alpine limit, as defined here, but occur at or above 3300 m (Appendix 2). These include *Allium validum* S. Watson (Alliaceae), *Iris missouriensis* Nutt. (Iridaceae), *Lilium kelleyanum* Lemmon (Liliaceae) and three Orchidaceae (*Platanthera dilatata* (Pursh) Lindl. ex L. C. Beck var. *leucostachys* (Lind.) Luer, *P. sparsiflora* Schltr., and *Spiranthes romanzoffiana* Cham.

Only a single species of aquatic plant, *Callitrichce palustris* L. (Plantaginaceae), reaches the alpine zone of the Sierra Nevada. This is perhaps not surprising given the relatively small area of oligotrophic lakes that are present above 3500 m. *Potamogeton robbinsii* Oakes (Potamogetonaceae) and *Limosella acaulis* Sessé & Moc. (Scrophulariaceae) have a range that extends as high as 3300 m, and a number of aquatic species including *Isoetes* (Isoetaceae) reach elevations of 3000 m.

Plants with an annual life history comprise a small but significant component of the alpine flora of the Sierra Nevada, with 24 species (26 taxa) reaching to elevations of 3500 m (Fig. 4). The annual species occurring at the highest elevation is *Gayophytum decipiens* F. H. Lewis & Szweyk. (Onagraceae), which ranges up to 4200 m. Five other species of annuals reach 4000 m in elevation—*Gentianopsis holopetala* (A. Gray) Ilits (Gentianaceae), *Phacelia hastata* Douglas ex Lehman. subsp. *compacta* (Brand) Heckard (Boraginaceae), *Minulus suksdorfi* A. Gray (Phrymaceae), *Gayophytum racemosum* Torr. & A. Gray (Onagraceae), and *Collinsia torreyi* A. Gray var. *wrightii* (S. Watson) I. M. Johnst. (Plantaginaceae). The number of annual species present increases sharply below the limit set here for inclusion in the alpine flora. Including the above taxa, there are 33 annual species (36 taxa) with a range reaching to or above 3400 m and 38 species (41 taxa) occurring at or above 3300 m (Fig. 5).

Most of the annuals reaching into the alpine zone are species with wide elevational ranges that extend down to lower foothill habitats. Only 13 of the alpine annual species have ranges limited to elevations at or above 1200 m, a distribution that would indicate adaptation to montane and higher elevation habitats. Five annual taxa can be...
considered as subalpine and alpine specialists having a lower elevation limit of 2700 m or above and/or a median elevational range above 3000 m. These species, none of which ranges as high as 4000 m or above, are COMASTOMA TENELLUM (Rottb.) Toyok. (Gentianaceae), CRYPTANTHA CIRCUMCISSA (Hook. & Arn.) I. M. Johnst var. rosulata J. T. Howell (Boraginaceae), SIREPTANTHUS GRACILIS Eastw. (Brassicaceae), and Leptosiphon ob lanceolatus (Brand) J. M. Porter & L. A. Johnson and GYMNOSTERIS PARVALWA A. Heller (Polygoniaceae). Just missing this criteria, but certainly also a high elevation specialist, is Phacelia orogenes Brand (Boraginaceae). Four of these six, with COMASTOMA TENELLUM and GYMNOSTERIS PARVALWA as exceptions, are Sierra Nevada endemics.

The most important family in contributing to the annual flora of high elevations is the Boraginaceae, with 11 species (12 taxa) representing five genera. Next in importance are the Polygoniaceae with five species (comprising five genera), and the Onagraceae with four species (five taxa) representing just a single genus. There are four genera that contribute three or more species to the annual flora. These are GAYPHYTUM (Onagraceae, four species, five taxa), Phacelia (Boraginaceae, four species), Cryptantha (Boraginaceae, three species, four taxa), and Mimulus (Phrymaceae, three species).

Subshrubs, defined as semi-woody species that maintain living perennial tissue in winter above the ground surface, include 13 species occurring at elevations of 3500 m or above (Fig. 4). The Asteraceae contribute more than 60% of the alpine flora of subshrubs, with eight species. Four species of ERICAMERIA (Asteraceae) and three species each of Penstemon (Plantaginaceae), and one Monardella (Lamiaceae) form subshrubs that reach alpine elevations. Five species are considered to be subalpine and alpine specialists based on a lower elevational limit of 2700 m or a mean elevational range above 3000 m. Four of these are members of the Asteraceae—Sphaeroemeria cana (D. C. Eaton) A. Heller, Ericameria parryi (A. Gray) G. L. Nesom & G. I. Baird var. moncepha (A. Nelson & P. B. Kenn.) G. L. Nesom & G. I. Baird, E. bloomer (A. Gray) J. F. Macbr., and Chrysothamnus viscidiflorus (Hook.) Nutt. var. viscidiflorus. The two latter species have very broad elevational occurrence from 800–4000 m.

There are 23 species of woody shrubs that extend into the alpine zone of the Sierra Nevada (Fig. 4). Just four families account for the majority of the high elevation shrubs. The largest of these is the Salicaceae (eight species of Salix), followed by the Ericaceae (five species, each in a different genus), Grossulariaceae (three species of Ribes), and Rosaceae (three species, each in a different genus). The highest elevation reached is reported for Sorbus californica at 4300 m. However, this elevation record appears to not be supported by specimen records in the Consortium of California Herbaria (ucjeps.berkeley.edu/consortium), and therefore needs confirmation. There are six additional shrub species that reach elevations of 4000 m—Salix oreastera C. K. Schneid., S. planifolia Pursh, S. petrophila Rydb., Gaultheria humifusa (Pursh) Maxim. var. microphyllus (Rydb) Jeps., and Ribes montigenum McClatchey. Only three shrub species can be considered as subalpine and alpine specialists based on a lower elevational limit at or above 2700 m or median range of occurrence above 3000 m. These are Salix planifolia, S. brachycarpa Nutt. var. brachycarpa, and S. nivalis Hook. Three more shrub species just miss this definition of high elevation specialist. Arctostaphyllos uva-ursi (L.) Spreng, has an elevational range of 2400–3300 m, while Jamesia americana Torr. & A. Gray (Hydrangeaceae) and Ribes cereum Douglas var. inebrius (Lindl.) C. L. Hitchc. are alpine species that extend down to lower elevations of 2070 m and 2100 m, respectively. Including the above species, there are a total of 39 shrub species that occur at elevations of 3300 m or above in the Sierra Nevada. This group includes two more species of Salix, one additional Ribes, five Ericaceae, three Rosaceae, two species of Caprifoliaceae, and a scattered diversity of species from other families (Appendix 2).

Five species of coniferous trees in the Pinaceae have scattered populations that extend well above typical treeline elevation on favorable sites. The treeline pines, Pinus albicaulis Engelm., P. flexilis E. James and P. balfouriana Grev. & Balf., all have local populations that reach as high as 3700 m in elevation in the Sierra Nevada, while P. contorta Loudon subsp. murrayana (Grev. & Balf.) Critchf. and Tsuga mertensiana (Bong.) Carrière reach 3500 m. Just missing the elevation of the alpine zone are scattered trees of Pinus monticola Douglas ex D. Don that reach up to 3400 m.

Elevational Amplitude

Separating alpine taxa into categories of elevational ranges over which they occur provides some insight into their ecological amplitude and thus a crude measure of potential niche breadth. There are nine obligate alpine taxa in the Sierra Nevada restricted in occurrence to elevations at or above 3500 m. These are Boechera depauperata (A. Nelson & P. B. Kenn.) Windham & Al-Shebbazz (Brassicaceae), Botrychium paradoxum and B. tumex Stensvold & Farrar (Ophioglossaceae), Carex incurviformis Mack. (Cyperaceae), Draba sierra Sharms. (Brassicaceae), Eriogonum wrightii Torr. ex Benth. var. alanchense
There are more than 67 alpine species (70 taxa, 17.2% of all taxa) with ranges restricted to the elevations of subalpine and alpine habitats at or above 2700 m (Fig. 6). Examining the floristic composition of all 76 species (79 taxa) with a range restricted to subalpine and alpine elevations, just four families comprise more than half of these. These are the Asteraceae (11 species), Brassicaceae (nine species), Rosaceae (eight species, nine taxa), and Poaceae (eight species). Three additional species would be added to the obligate subalpine and alpine flora if the elevational limit were reduced to 3300 m. These are Astragalus ravenii Barneby (Fabaceae), Carex tiogana D. W. Taylor & J. D. Mastrog. (Cyperaceae), and Chaenactis douglasii (Hook.) Hook. & Arn. var. alpina A. Gray (Asteraceae).

Looking at the level of all alpine taxa, 22.4% have a lower elevational limit in the upper montane zone (2000–2699 m) and a further 31.0% have a lower limit in the lower montane zone (1200–1999 m). Finally 27.5% of the alpine taxa have a broad elevational amplitude of occurrence extending upward from the foothill zone below 1200 m up into the alpine (Fig. 6).

Plotting the elevational amplitude of all of the alpine taxa shows a peak at about 2300 m, with relatively fewer species exhibiting very broad or very narrow elevational amplitudes (Fig. 7). Nevertheless, there are many taxa with surprising broad ranges of elevational occurrence. There are 77 species that have an elevational amplitude of 3000 m or more, and six species that have 4000 m or more of amplitude in California. These latter species, each in a different family, are Callitriche palustris (Plantaginaceae), Calyptranum umbellatum (Montiaceae), Cystopteris fragilis (Woodsiaceae), Draba cana Rydb. (Brassicaceae), Epilobium ciliatum Raf. subsp. ciliatum (Onagraceae), and Erysimum capitatum (Hook.) Greene var. capitatum (Brassicaceae). Were the elevational definition of the alpine zone lowered to 3300 m, a large number of species with broad elevational amplitudes would be added to the flora. There are 42 species in this group of added taxa that have 3000 m or more of elevational amplitude in their range of occurrence.

Biogeography and Endemism

Within the Sierra Nevada itself, the distributions of the high elevation flora are relatively well spread between the northern, central and southern subregions of the Sierra Nevada. Assessing species reaching an elevational boundary of 3300 m, 70% of the 567 taxa occur in all three subregions. The northern subregion has 76% of the alpine flora present, while the central and southern Sierra Nevada have 90% and 88% of the alpine flora present, respectively. A number of alpine species have their southern limit of distribution in the central Sierra Nevada. These include Carex whitneyi Olney (Cyperaceae), Podistera nevadensis (A. Gray) S. Watson (Apiaceae), Claytonia megarrhiza (A. Gray) S. Weston (Montiaceae), Thalictrum alpinum L. (Ranunculaceae), Galium grayanum Ehrend. var. grayanum (Rubiaceae), and Salix nivalis (Salicaceae).
The broader biogeographic relationships of the alpine flora at or above 3500 m indicate its diverse origins (Fig. 8). Widespread species distributed across North America and beyond as boreal or arctic-alpine taxa comprise 13.6% of the flora (Table 1). The largest group of taxa (34.3%) shows patterns of distribution as cordilleran species widespread in mountain regions of the western United States. Next in importance are taxa with a range in the Intermountain Region of the Great Basin, comprising 20.5% of taxa. A group consisting of 15.8% of the taxa has ranges extending along the Sierra Nevada axis to the Cascade Range and often on to the Pacific Northwest.

The alpine flora of the Sierra Nevada includes 36 endemic taxa restricted in their distribution to the Sierra Nevada (Table 2). These endemic taxa
Biogeographic range category	Exemplar taxa
Widespread taxa distributed across North America and beyond as circumboreal or arctic-alpine taxa	*Anemone drummondii* (Ranunculaceae), *Carex capitate* (Cyperaceae), *Crepis nana* (Asteraceae), *Cystopteris fragilis* (Woodsiaceae), *Deschampsia cespitosa* (Poaceae), *Oxyria digyna* (Polygonaceae), *Pileum alpinum* (Poaceae), *Rhodiolae integrifolium* (Crassulaceae), *Salix nivalis* and *S. petrophila* (Salicaceae), *Sibbaldia procumbens* (Rosaceae), *Trisetum spicatum* (Poaceae)
Cordilleran taxa widespread in mountain regions of the western United States	*Antennaria media* (Asteraceae), *Carex phaseocephala* (Cyperaceae), *Erigeron vagus* (Asteraceae), *Gentiana calycosa* (Gentianaceae), *Levisia pygmea* (Montiacae), *Phlox condensata* (Polemoniaceae), *Poa glauca* subsp. *rupicola* (Poaceae), *Ribes cereum* (Grossulariaceae), *Stipa pinetorum* (Poaceae)
Intermountain Region taxa distributed across the Great Basin	*Cryptantha rubicra* (Boraginaceae), *Cymopterus cinerarius* (Apiaceae), *Eriogonum incanum* (Polygonaceae), *Ivesia shockleyi* (Rosaceae), *Jamaica americana* (Hydrangeaceae), *Podistera nevadensis* (Apiaceae), *Selaginella watsonii* (Selaginellaceae), *Trifolium monanthum* subsp. *monanthum* (Fabaceae)
Taxa extending from the Pacific Northwest and Cascade Range	*Anelsonia caryarpa* (Brassicaceae), *Astragalus whitneyi* (Fabaceae), *Bocchera hovelli* (Brassicaceae), *Carex brevipes* (Cyperaceae), *Eriogonum lobbii* (Polygonaceae), *Gentiana brevicaulis* (Gentianaceae), *Potentilla breweri* and *P. flabellifolia* (Rosaceae), *Ranunculus alismifolius* var. *alismifolius* (Ranunculaceae), *Senecio fremontii* var. *occidentalis* (Asteraceae), *Silene sargentii* (Caryophyllaceae)

are heavily weighted toward subalpine and alpine specialists, with 29 of these restricted in distribution to elevations of 2700 m or above, or with median elevational range above 3000 m. Two generic lineages are prominent among these endemics, with five taxa each of *Draba* and *Eriogonum*. Five of the alpine endemics are annual species—*Orochaena thysanocarpa* (A. Gray) Coville (Asteraceae), *Cryptantha circumcisata* var. *rosulata* (Boraginaceae), *Streptanthus gracilis* (Brassicaceae), and *Leptosiphon oblanceolatus* (Polemoniaceae).

The southern Sierra Nevada is the most significant subregion for endemics, with 15 of the 36 endemic taxa (42%) are restricted in distribution to the area from the Kings River drainage south that includes Kings Canyon and Sequoia National parks (Table 2). These are *Draba cruciata* Payson, *D. longisquamosa* O. E. Schulz, *D. sharsmithii* Rollins & R. A. Price, *Eriogonum polypondum* Small, *E. spergulinum* A. Gray var. *pretense* (S. Stokes) J. T. Howell, *E. wrightii* var. *olanchense*, *Galium hypotrichum* A. Gray subsp. *subalpinum* (Hilend & J. T. Howell) Ehrend., *Leptosiphon oblaneleolatus*, *Monardella beneolens* Shevock, *Ertter & Jorkst*, *Oreocona clementis* (M. E. Jones) Jeps., *Orthochaena thysanocarpa*, *Phlox dispersa*, *Pinus balfouriana* var. *austina* R. J. Mastrog. & J. D. Mastrog., *Streptanthus gracilis*, and *Trifolium kingii* S. Waston subsp. *dedeckerae* (J. M. Gillett) D. Heller.

Another 13 taxa are restricted to the central and southern Sierra Nevada. Five of the endemics are present across the northern, central and southern subregions of the Sierra Nevada, and three endemic taxa are restricted in occurrence to the central Sierra Nevada. These are *Draba sierres*, *Eriogonum ovalifolium* Nutt. var. *caesal-tinum* Reveal, and *Lupinus gracilentus* Greene (Table 2). Although the absence of peaks above 3500 m in the Sierra Nevada north of Yosemite National Park explains the lack of endemics restricted to this subregion, the scattered lower elevation alpine communities of the northern Sierra Nevada retain moderately high richness of species.

In addition to the members of the alpine flora that are endemic to the Sierra Nevada, there are an additional 31 alpine taxa that are Californian endemics, allowing for a broad interpretation of the floristic region to include the westernmost ranges of the Great Basin lying close to the Sierra Nevada and the southern Cascade Range in Oregon. Many of the Californian endemics have ranges that extend to the Sweetwater and/or White Inyo mountains, while others extend into the high Transverse and Peninsular Ranges of southern California and a small number extend into the southern Cascade Range. The pattern of dominant endemism centered in the southern Sierra Nevada is not seen among these taxa. Twelve of these occur throughout the Sierra Nevada and an additional 12 are restricted to the central and southern areas of the range, while only four species are limited to the southern Sierra Nevada.

If the lower limit of the alpine zone were dropped to 3300 m, 11 additional Sierra Nevada endemics would be added (Table 2). Four of these are restricted to the southern Sierra Nevada (*Astragalus ravenii*, *Bocchera pygmaea* (Rollins) Al-Shhebazz, *Castilleja praterita* Heckard & Bacig., and *Phacelia oregenes*), with three each present in the central and southern Sierra Nevada and in all three regions. One species is restricted...
to the central Sierra Nevada. Five additional Californian endemics would be added if the lower alpine limit was dropped to 3300 m (Table 2).

DISCUSSION

Defining the Alpine Zone of California

Critically defining what species should be included in an alpine flora is an imperfect task given the lack of a simple operational definition, as discussed below. The high elevation areas of the Sierra Nevada broadly classified as subalpine and alpine, or upper Hudsonian and Arctic-Alpine in the Merriam life zone classification (Daubenmire 1938), would roughly include those areas lying above about 3000 m elevation (Fig. 2). Such subalpine and alpine habitats cover extensive areas of the central and southern Sierra Nevada, but only scattered areas of the northern Sierra Nevada lying north of Sonora Pass. The higher elevation area of this northern Sierran region, however, supports mosaics of subalpine forest, shrublands, and low alpine-like vegetation (Smiley 1915, 1921).

A simple definition of alpine habitat is that area occurring above treeline, with the caveat that most alpine species are not obligate in inhabiting habitats above treeline and typically occur to varying degrees at lower elevations (Packer 1974). While this approach sounds logical, timberline itself can be highly variable even in a local area depending on slope exposure, erosional history, parent material, disturbance history, and local microclimate (Billings 2000).

Sharsmith (1940) recognized the alpine flora as a distinct subdivision of the overall California flora, characterized by its geographic range, growth forms, species composition, and constancy with which the alpine association of species is maintained. Although he described the alpine zone as reaching its lower limit at an average elevation of 3500 m, the limit used in this paper, nowhere in his dissertation is there a clear statement of criteria for his inclusion of species. He stated,

While certain species are absolute indicators of the alpine flora, it is the particular association of species which gives it its characteristic. Although many species occur elsewhere, this special assemblage is not met until the alpine area is reached. Everywhere the flora presents the impression of unity, an impression reinforced by increased field experience.

The combined subalpine and alpine flora of the Sierra Nevada as defined by Smiley (1921) included 633 species, with 41 listed as indicators of the Arctic-Alpine zone. He considered 158 species to be Sierra Nevada endemics and another 20 species to be restricted in distribution to the Sierra Nevada and the southern California mountains. Sharsmith (1940) included 189 species in his alpine flora of the Sierra Nevada, with 31 of these considered to be endemic. This flora was composed of 183 herbaceous perennials and six annual species, but did not include any woody species. A similar estimate was made by Stebbins (1982) who stated that there were 207 species in the Sierra Nevada alpine flora. Finally, a much higher estimate came from Major and Bamberg (1967) who used the species descriptions in Munz (1959) to estimate a Sierra alpine flora of about 600 species, a number similar to that reported here for taxa reaching 3300 m or above.

Growth Forms

The relative dominance of a herbaceous perennial growth forms present in the alpine flora of the Sierra Nevada is typical of other alpine floras worldwide and does not change dramatically in a gradient from the Rocky Mountains west across the Great Basin (Billings 1978, 2000; Rundel et al. 2008). Herbaceous perennials have the characteristic of maintaining large proportions of total biomass belowground where they play an important role in carbohydrate storage over the winter months (Mooney and Billings 1960; Billings 1974). The herbaceous perennials include species with a variety of ecological forms and life history strategies of carbon allocation to belowground and aboveground vegetative, and reproductive tissues (Rundel et al. 2005), and many of these are relatively long-lived plants surviving for decades (Billings 1974; Pollak 1991).

As in other alpine regions, perennial graminoids in alpine habitats of the Sierra Nevada commonly dominate plant communities of wet meadows that dry earlier than fellfield communities. In contrast, fellfield habitats exhibit a mixed dominance of broad-leaved erect perennials, perennial graminoids, and mats and cushions (Rundel et al. 2005). Mat and cushion growth forms of herbaceous perennials are widespread in the high elevation Sierra Nevada, where the 46 taxa listed here represent 12% of the alpine flora. These are most prominent ecologically on wind-swept rocky slopes or other exposed areas that remain snow-free during the winter.

Because of limiting stress factors of short and severe growing conditions, annual plants are generally rare in the typical circumboreal arctic-alpine floras of the Northern Hemisphere, comprising no more than 1–2% of the flora (Billings 2000). Although not abundant, annuals, nevertheless, are more common in alpine flora of the Sierra Nevada and White Mountains where they comprise about 6–8% of the floras (Jackson and Bliss 1982; Jackson 1985; Rundel et al. 2008). The species richness of alpine annual taxa, however, drops rapidly at elevations above 3300 in the Sierra Nevada (Fig. 5). Went (1948, 1953)
Endemic group	Family	Range	Growth form
Sierra Nevada endemics >3500 m	Ranunculaceae	n,c,s	P
Aquilegia pubescens	Poaceae	c,s	P-G
Calamagrostis mairiiana	Cyperaceae	c,s	P-G
Carex congdonii	Boraginaceae	n,c,s	A
Cryptantha circunscissa var. rosulata	Primulaceae	c,s	P
Dodecatheon subalpinum	Brassicaceae	s	P
Draba cruciata	Brassicaceae	n,c,s	P
Draba lemmontii	Brassicaceae	s	P
Draba longissima	Brassicaceae	s	P
Draba sharphillii	Brassicaceae	s	P
Draba sierra	Brassicaceae	c	P-MAT
Eriogonum madan var. scapigerum	Polygonaceae	c,s	P
Eriogonum ovatifolium var. caelestimum	Polygonaceae	c	P-MAT
Eriogonum polyphorum	Polygonaceae	s	P-MAT
Eriogonum spargulimum var. pratense	Polygonaceae	s	P
Eriogonum wrightii var. olandense	Polygonaceae	s	P
Galium hypotrichium subsp. subalpinum	Rubiaceae	s	P
Hazardia whitneyi var. whitneyi	Asteraceae	n,c,s	SS
Ivesia murrill	Rosaceae	c,s	P
Ivesia pygmaea	Rosaceae	c,s	P
Leptosiphon oblanceolatus	Polemoniaceae	s	A
Lewisia dispala	Montiaceae	c,s	P
Lupinus covillei	Fabaceae	c,s	P
Lupinus gracilentus	Fabaceae	c	P
Luzula oreastera	Junceaceae	n,c,s	P-G
Monardella bennolens	Lamiaceae	s	SS
Oreonoma Clementis	Apiaceae	s	P
Oreostema peroxon	Asteraceae	c,s	P
Orochaenactis thysanocarpha	Asteraceae	s	A
Phlox dispersa	Polemoniaceae	s	P-MAT
Pinus balfouriana var. austriana	Pinaceae	s	T
Poa stebbinsii	Poaceae	c,s	P-G
Polenonium eximium	Polygonaceae	c,s	P
Stipa kingii	Poaceae	c,s	P-G
Streptanthus gracilis	Brassicaceae	s	A
Trichophorum cuneifolium	Cyperaceae	c,s	P-G
Trifolium kingii subsp. dederickae	Fabaceae	s	P
Sierra Nevada endemics 3300–3499 m	Fabaceae	s	P
Astragalus ravenii	Brassicaceae	s	P
Boechera pygmaea	Orobanchaceae	s	P
Castilleja praeternita	Asteraeae	c,s	P
Erigeron elmeri	Asteraeae	c,s	P
Hulsea vestita subsp. vestita	Asteraeae	c,s	P
Ipomopsis aggregata subsp. bridgesii	Polemoniaceae	c,s	P
Lilium kelleyanum	Liliaceae	s	G
Lomatium torreyi	Apiaceae	n,c,s	P
Phacelia eisenii	Boraginaceae	c,s	A
Phacelia orogenes	Boraginaceae	s	A
Trifolium monanthum subsp. tenerum	Fabaceae	n,c,s	P
Californian endemics >3500	Fabaceae	n,c,s	P-MAT
Astragalus kenporphyra var. danaus	Cyperaceae	n,c,s	P-G
Carex maritposana	Orobanchaceae	n,c,s	P
Castilleja nana	Asteraeae	n,c,s	P
Chamaenactis alpigena	Asteraeae	n,c,s	P-MAT
Delphinium polycladon	Ranunculaceae	n,c,s	P
Draba brevicaulis	Brassicaceae	n,c,s	P
Draba subumbellata	Brassicaceae	s	P-MAT
Eriogonum gracilipes	Polygonaceae	c,s	P-MAT
Eriogonum umbellatum var. covillei	Polygonaceae	c,s	P-MAT
suggested that many of the high elevation annuals in the Sierra Nevada were related to desert species.

Severe winter conditions typically limit the occurrence of woody plants above treeline, with prostrate mats and cushions as prominent exceptions. The upright growth form of woody shrubs and krummholz tree species exposes their tissues to extreme conditions of temperature and wind exposure (Körner 2003). This impact on shrub occurrence can be seen in Fig. 5 where shrub richness in the Sierra Nevada drops sharply with increasing elevation above 3300 m, similar to the pattern for annual species. Much of the alpine flora of woody species comes from species of *Salix* and members of the Ericaceae, groups which favor moist habitats with some level of protection.

Biogeography and Endemism

The alpine flora of mountain ranges on the western margin of the Great Basin of California and western Nevada exhibit very strong relationships to that of the Sierra Nevada (Rundel et al. 2008). The Sweetwater Mountains supports a flora of 173 species in 16 km² of alpine habitat, with 94% of this flora common to the Sierra Nevada (Hunter and Johnson 1983). The Wassuk Range has an alpine flora of 70 species in just 2.6 km² of alpine habitat (Bell and Johnson 1980). Again, this flora is has stronger floristic relationships to the Sierra Nevada than the Rocky Mountains.

As with the Sweetwater Mountains and Was-suk Ranges, the flora of the White Mountains exhibits much stronger floristic relationships to the Sierra Nevada than to the Rocky Mountains. About 90% of the species in the alpine flora of the White Mountains are also found in the Sierra Nevada (Rundel et al. 2008), compared with only 58% that occur in the ranges of the central Rocky Mountains (Scott 1995). These values are significantly higher for both ranges than earlier estimates made on incomplete data (Lloyd and Mitchell 1973).

Mountain ranges in the central Great Basin generally show strong floristic linkages to the Rocky Mountains and weaker links to the Sierra Nevada (Billings 1978). Loope (1969) reported 189 alpine species from the Ruby Mountains in northeastern Nevada, with this flora heavily linked to the Rocky Mountains. The isolated San Francisco Mountains in Arizona with only 5.2 km² of alpine habitat has 80 species, and likewise shows strong floristic relationships to the Rocky Mountains despite its separation of about 200 km (Schaak 1983).

The level of endemism in the alpine Sierra Nevada flora is a relatively small part of the overall endemism for the montane and higher parts of the range. Based on current information, there are 205 taxa endemic to what The Jepson

Table 2. Continued.

Endemic group	Family	Range	Growth form
Galium hypotrichium subsp. hypotrichium	Rubiaceae	c,s	P
Hulsea vestita subsp. pygmaea	Asteraceae	c,s	P
Ivesia lycopodioides subsp. lycopodioides	Rosaceae	n,c	P
Ivesia lycopodioides subsp. *scandularis*	Rosaceae	c,s	P
Ivesia santolinoides	Rosaceae	n,c,s	P
Lewisia glandulosa	Montiaceae	c,s	P
Lupinus breweri var. *breweri*	Fabaceae	n,c,s	P-MAT
Lupinus breweri var. *bryoides*	Fabaceae	s	P-MAT
Lupinus latifolius var. *parishii*	Fabaceae	c,s	P
Lupinus lepis var. *ramosus*	Fabaceae	c,s	P
Lupinus padre-crowleyi	Fabaceae	s	P-MAT
Lupinus pratensis var. *pratensis*	Fabaceae	c,s	P
Phyllococe brevleri	Ericaceae	n,c,s	S
Poa kecki	Poaceae	n,c,s	P-G
Potentilla pseudosericea	Rosaceae	c,s	P
Potentilla wheeleri	Rosaceae	s	P
Primula suffrutescens	Primulaceae	n,c,s	P
Ranunculus escholtzii var. *oxynotus*	Ranunculaceae	n,c,s	P
Tonebus petsonii	Asteraceae	c	P
Triteleia dalyleyi	Thelimidae	c,s	G
Viola pinetorum subsp. *grisea*	Violaceae	n,c,s	P
Viola purpurea subsp. *mesophyta*	Violaceae	n,c,s	P

Californian endemics 3300-3499 m

Eriogonum latens	Polygonaceae	c,s	P
Fraseria puberulenta	Gentianaceae	c,s	P
Hordeum brachyantherum subsp. *californicum*	Poaceae	n,c,s	P-G
Penstemon caesius	Plantaginaceae	s	SS
Plagiobothrys torreyi var. *diffusus*	Boraginaceae	n,c,s	A
Manual (Hickman 1993) classifies as the northern, central, and southern high Sierra Nevada, i.e., the montane, subalpine and alpine zones above foothill habitats (R. Moe, Univ. of California, Berkeley, personal communication). The 36 Sierran endemics present in the alpine flora would thus comprise 18% of the endemic flora of the higher Sierra Nevada.

The unique California component of the alpine flora of the Sierra Nevada is considerably greater if one considers the endemic component of 31 species in the alpine flora that are not uniquely limited to the Sierra Nevada but are Californian endemics as defined earlier. Combining the endemic taxa with Sierran and Californian limits of distribution, the total of 66 taxa represents 16% of the alpine flora. This is a relatively high figure compared to other alpine ranges in continental North America and Europe, and reflects the environmental stress conditions associated with the summer-dry mediterranean-type climate present in the Sierra Nevada.

Stebbins (1982) analyzed the flora of the high Sierra Nevada, defined similarly to that of Smiley (1921) as the upper montane to alpine zones, and identified 119 endemic species, 13.5% of the total flora. He further noted that another 60% of the flora extended beyond the Sierra Nevada only as far as southern California, western Nevada, and southern Oregon.

Raven and Axelrod (1978) briefly discussed the diversity and evolution of the subalpine and alpine flora of the Sierra Nevada, listing 68 endemics for this region. Their table of endemics, however, is outdated by more recent information on distribution patterns and species concepts. Shevock (1996) gave a figure of 405 endemic taxa of vascular plants for the entire Sierra Nevada. The 36 alpine endemics reported here would comprise 9% of this total. Of the three geographical subregions (northern, central, and southern) of the entire range, the southern Sierra Nevada is the richest in endemics, rare species, and total floristic composition (Shevock 1996), a finding similar to that reported here.

The Evolution of the Sierran Alpine Flora

A detailed assessment of the biogeographic and evolutionary origin of the alpine flora of the Sierra Nevada is beyond the scope of this review. Broad interpretations of biogeographic relationships within alpine lineages have been discussed by previous authors (e.g., Smiley 1921; Sharpsmith 1940; Chabot and Billings 1972; Taylor 1977; Major and Taylor 1977; Raven and Axelrod 1978; Stebbins 1982) but recent phylogenetic studies have made many of these earlier interpretations subject to re-evaluation.

Evidence for a north to south route of colonization of high mountain areas of the Sierra Nevada comes from a pattern of decreasing presence of Rocky Mountain floristic elements and an increasing number of endemics alpine species as one moves from the northern to southern crest of the range (Chabot and Billings 1972; Raven and Axelrod 1978). The southern limit of a number of alpine species on Mount Lassen suggests the possibility that some of these and other Cascade Range species may well have been present in the Sierra Nevada in the late Pliocene or early Pleistocene. Although the species composition of lower and middle elevation conifer forests of Lassen National Park are strongly related to that of the Sierra Nevada, the summits of the highest peaks in Lassen support an alpine flora that exhibits stronger floristic links to Mount Shasta and the Cascade Range to the north (Gillett et al. 1995). Alpine species with disjunct patterns of distribution from Mount Lassen to the Cascade Range volcanoes include Cardamine bellidifolia L. (Brassicaceae), Carex illota L. H. Bailey (Cyperaceae), Colloinia larsenii (A. Gray) Payson (Polemoniaceae), Draba aureola S. Watson (Brassicaceae), Erigeron elegans Greene and E. nivalis Nutt. (Asteraceae), Hulsea nana A. Gray (Asteraceae), Polemonium pulcherrimum Hook. var. pilosum (Greem.) Brand (Polemoniaceae), and Silene suksdorfii B. L. Rob. (Caryophyllaceae). The Klamath Mountains also mark the southern distribution limit of a number of boreal species that do not occur in the high elevations of the Sierra Nevada (Howell 1944).

Alpine and subalpine species characteristic of wet meadows and other moist sites typically have broad geographic ranges but become increasing habitat specific moving to the south in the Sierra Nevada as precipitation decreases (Kimball et al. 2004; Moore et al. 2007). The relative isolation of the Sierra Nevada from northern ranges and the summer-dry have clearly acted as a filter to exclude some widespread circumpolar arctic-alpine species such as Dryas integrifolia Vahl (Rosaceae) and Silene acaulis L. (Caryophyllaceae) which do not occur anywhere in California. Species growing in xeric rocky habitats show higher levels of endemism and smaller range size due to isolation and divergence from ancestral populations distributed in wetter habitats to the north.

More controversial, however, is the origin of disjunct Rocky Mountain species present in the central and southern Sierra Nevada, often growing in azonal soil conditions. There is both geological and paleobotanical evidence to suggest that the mean elevation of the Great Basin was as much as 1500 m higher in the Miocene and that the current Basin and Range topography is the result of subsidence rather than uplift (Wernicke et al. 1988; Wolfe et al. 1997). The presence of higher elevations in the Great Basin during the
Pleistocene could possibly have provided stepping stones to allow the dispersal of alpine organisms from the east (Major and Bamberg 1967; Taylor 1976a). Molecular evidence indicates that at least one lineage of butterflies entered the Sierra Nevada by this route (Nice and Shapiro 2001). However, other authors feel that the majority of these disjunct plant species reached the Sierra Nevada by the same dominant route from the Western Cordillera via the Cascade Range and south (Chabot and Billings 1972).

Modes of speciation in the development of the endemic alpine flora of the Sierra Nevada are clearly complex. Polyploidy and associated apomixis are widely recognized as major factors in plant evolution, and these factors have had a relatively recent impact on speciation in producing stable self-propagating lineages (Soltis et al. 2009). In the alpine region of the Sierra Nevada, as in other alpine regions, diploid lineages of polyploid complexes often occupy unglaciated areas and resist introgression due hypothetically to a significantly higher seed set. However, asexual apomictic populations are more widespread than their sexual relatives in glaciated areas. Sexual and asexual polyploids may become distinct stabilized species through hybrid origin.

Reproductive isolation and stability of tetraploids within their respective distribution as well as the value of uniparental reproduction provide the advantages of apomixis. Many important genera in the alpine flora of the Sierra Nevada are notable for the presence of apomixis, with Boechera (Schrantz et al. 2005; Dobes et al. 2007), Draba (Jordon-Thaden and Koch 2008), and Antennaria (Bayer and Stebbins 1987) as examples. Additional speciose genera in the Sierra Nevada known to have complex apomictic populations include Arnica and Crepis (Asteraceae; Noyes 2007), Poa and Calamagrostis (Poaceae), and Potentilla (Rosaceae) (Asker and Jerling 1992).

Other modes of alpine speciation have also been described for the Sierra Nevada. Some speciation, for example, has hypothetically come from lowland arid-adapted taxa colonizing the glaciated terrain of the range at the end of the Pleistocene (Went 1948, 1953). Speciation has also been shown to be the result of population disjunction and reproductive isolation (Chase and Raven 1975).

Although the Transverse and Peninsular ranges are well separated from the higher elevations of the Sierra Nevada, more than one third of the Sierran alpine flora has a range of distribution that extends to these southern California ranges. While some of these species occur at lower elevations, others are typically subalpine and alpine species that must have crossed the Mojave Desert during the cold conditions of the Pleistocene. This latter group includes Androsace septentrionalis (Primulaceae), Hulsea vestita A. Gray subsp. pygmaea (A. Gray) Wilken (Asteraeaceae), Oxystyla digyna (L.) Hill (Polygonaceae), and Podistera nevadensis (Apiaceae).

There are lessons to be learned from recent studies of the patterns of diversification in the European alpine flora. These strongly demonstrate that speciation have been promoted by diverse ecological, evolutionary, and life history traits related to population structure, phylogenetic relationships, breeding system, dispersal syndromes, ecophysiological ranges of habitat requirements, and competitive abilities (Comes and Kaderieit 1998; Taberlet et al. 1998; Hewitt 2000; Gugerli and Holderegger 2001; Vargas 2003). The complex and dynamic climatic and geological history of the Sierra Nevada operating on such traits suggests that there have been a range of different colonization and extinction histories that are species specific. Much more work on the comparative phyllogeography of alpine plants in the Sierra Nevada will be necessary before we understand all of the factors responsible for present distributions and predominant modes of speciation in the alpine flora of the range.

Research Needs

There is little doubt that the stability of the ecotone between alpine and treeline ecosystems in the Sierra Nevada and other high mountain regions has been and continues to be a function of complex interactions, with multiple drivers operating across diverse scales of time and space. This ecotone has been highly dynamic in the past and given the importance of temperature in controlling the elevation of treeline and higher alpine ecosystems, this ecotone and associated species are likely to be particularly sensitive to climate change in the future (Lloyd and Graumlich 1997; Graumlich et al. 2005; Grabherr et al. 2010). Beyond treeline studies, the expansion of woody shrub species into alpine habitats has been shown to also be a sensitive indicator of potential climate change, with significant feedbacks on microclimate and soil ecosystems (Hallinger et al. 2010), as well as species facilitation (Callaway et al. 2002). The potential sensitivity of alpine ecosystems to climate change has been the stimulus for establishing the worldwide research program Global Observation Research Initiative in Alpine Environments (GLORIA, http://www.gloria.ac.at) with the aim of providing long-term observations on the state and dynamics of alpine biota.

Acknowledgments

I thank Bruce Baldwin and Richard Moe for their help in accessing the Jepson Manual database. Peggy
Moore and Sylvia Haultain kindly shared species lists for Yosemite and Sequoia/Kings Canyon National Parks, respectively. This work is a contribution from the UCLA La Kretz Center for California Conservation Science.

Literature Cited

ASKER, S. E., AND L. JERLING. 1992. Apomixis in plants. CRC Press, Boca Raton, FL.

BALDWIN, B. G., D. H. GOLDMAN, D. J. KEIL, R. PATTERSON, AND T. J. ROSATTI. 2012. The Jepson manual: vascular plants of California. 2nd ed. University of California Press, Berkeley, CA.

BAYER, R. J. AND G. L. STEBBINS. 1987. Chromosome numbers, patterns of distribution, and apomixis in Antennaria (Asteraceae: Inuleae). Systematic Botany 12:305–319.

BELL, K. L. AND R. E. JOHNSON. 1980. Alpine flora of the Wasuuk Range, Mineral County, Nevada. Madroño 27:25–35.

BENEDICT, N. B. 1983. Plant associations of subalpine meadows, Sequoia National Park, California, USA. Arctic and Alpine Research 15:383–396.

— AND J. MAJOR. 1982. A physiographic classification of subalpine meadows of the Sierra Nevada, California. Madroño 29:1–12.

BILLINGS, W. D. 1974. Adaptations and origins of alpine plants. Arctic and Alpine Research 6:129–142.

—. 1978. Alpine phytogeography across the Great Basin. Great Basin Naturalist Memoirs 2:105–117.

—. 2000. Alpine vegetation. Pp. 536–572 in M. G. Barbour and W. D. Billings (eds.). North American terrestrial vegetation, 2nd ed. Cambridge University Press, Cambridge, UK.

BURKE, M. T. 1982. The vegetation of the Rae Lakes Basin, southern Sierra Nevada. Madroño 29: 164–179.

CALLAWAY, R. M., R. W. BROOKER, P. CHOLER, Z. KIKVIDZE, C. J. LORTIE, R. MICHAELET, L. PAOLINI, F. I. PUIGNAIRE, B. NEWINGHAM, E. T. ASCHEHOUG, C. ARMAS, V. D. KIKODZE, AND B. J. COOK. 2002. Positive interactions among alpine plant increase with stress. Nature 417:844–848.

CHABOT, B. F. AND W. D. BILLINGS. 1972. Origins and ecology of the Sierra ranean flora and vegetation. Ecological Monographs 42:163–199.

CHASE, V. C. AND P. H. RAVEN. 1975. Evolutionary and ecological relationships between Aquilegia formosa and A. pubescens (Ranunculaceae), two perennial plants. Evolution 29:474–486.

COMES, P. H. AND J. W. KADEREIT. 1998. The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science 3:432–438.

CONSTANTINE-SHULL, H. M. 2000. Floristic affinities of the San Joaquin Roadless Area, Inyo National Forest, Mono County, California. M.S. Thesis, Humboldt State University, Arcata, CA.

COVILLE, F. V. 1893. Botany of the Death Valley expedition. Contributions from the U.S. National Herbarium 4:1–363.

DAUBENMIRE, R. F. 1938. Merriam’s life zones of North America. Quarterly Review of Biology 13:327–332.

DOBES, C., T. F. SHARBEL, AND M. KOCH. 2007. Towards understanding the dynamics of hybridization and apomixis in the evolution of the genus Boechera (Brassicaceae). Systematics and Biodiversity 5:321–331.

FITES-KAUFMAN, J. A., P. W. RUNDL, N. STEPHENSON, AND D. A. WEIXELMAN. 2007. Montane and subalpine vegetation of the Sierra Nevada and Cascade Ranges. Pp. 456–501 in M. Barbour, A. Schoennerr, and T. Keeler-Wolf (eds.). Terrestrial vegetation of California, 2nd ed. University of California Press, Berkeley, CA.

GILLETT, G. W., J. T. HOWELL, AND H. LESCHKE. 1995. A flora of Lassen Volcanic National Park, California. California Native Plant Society, Sacramento, CA.

GRABHERR, G., M. GOTTTFRED, AND H. PAULL. 2010. Climate change impacts in alpine environments. Geography Compass 4:1133–1153.

GRAUMILCH, L., L. WAGGONER, AND A. BUNN. 2005. Connecting global change at alpine treelines: coupling paleoecology with contemporary studies. Advances in Global Change Research 23:501–508.

GUGERL, F. AND R. HOLDERREGGER. 2001. Nunatak survival, tabula rasa and the influence of the Pleistocene ice-ages on plant evolution in mountain areas. Trends in Plant Science 6:397–398.

HALL, H. M. 1902. A botanical survey of San Jacinto Mountain. University of California Publications in Botany 1:1–140.

— AND J. GRINNELL. 1919. Life-zone indicators in California. Proceedings of the California Academy of Sciences 9:37–67.

HALLINGER, M., M. MANTHEY, AND M. WILMKING. 2010. Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186:890–899.

HANES, T. L. 1976. Vegetation types of the San Gabriel Mountains. Pp. 65–76 in J. Latting (ed.), Plant communities of southern California. Symposium Proceedings Special Publication Number 2. California Native Plant Society, Sacramento, CA.

HARSHBERGER, J. W. 1911. Phytogeographic survey of North America. Stechert and Co., New York, NY.

HAYHOE, K., D. CAYAN, C. B. FIELD, AND 16 OTHERS. 2004. Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Science 101:12422–12427.

HEWITT, G. M. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907–913.

HICKMAN, J. (ed.). 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley, CA.

HORTON, J. S. 1960. Vegetation types of the San Bernardino Mountains. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Technical Paper 44, Berkeley, CA.

HOVANITZ, W. 1940. Ecological color variation in a butterfly and the problem of “protective coloration.” Ecology 21:371–380.

HOWELL, J. T. 1944. Certain plants of the Marble Mountains in California with remarks on the boreal flora of the Klamath area. Wasmann Collector 6:13–19.

—. 1951. The arctic-alpine flora of three peaks in the Sierra Nevada. Leaflets of Western Botany 6:141–56.

HUNTER, K. L. AND R. E. JOHNSON. 1983. Alpine flora of the Sweetwater Mountains, Mono County, Nevada. Madroño 30:89–105.
Meyers, J. L. 1985. Floristic analysis of the distribution of ephemeral plants in treeline areas of the western USA. Arctic and Alpine Research 17:251–260.

——— AND L. C. BLISS. 1982. Distribution of ephemeral herbaceous plants near treeline in the Sierra Nevada, California, USA. Arctic and Alpine Research 14:33–44.

JORDON-THADEN, I. AND M. KOCH. 2008. Species richness and polyploid patterns in the genus Draba (Brassicaceae): a first global perspective. Plant Ecology & Diversity 1:255–263.

KIMBALL, S., P. WILSON, AND J. CROWTHER. 2004. Local ecology and geographic ranges of plants in the Bishop Creek watershed, Sierra Nevada, California. Journal of Biogeography 31:1637–1657.

KLIKOFF, L. G. 1965. Microenvironmental influence on vegetational pattern near timberline in the central Sierra Nevada. Ecological Monographs 35: 187–211.

KÖRNER, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Verlag, Berlin, Germany.

LLOYD, A. H. AND L. J. GRAULMICH. 1997. Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78:1199–1210.

LLOYD, R. M. AND R. S. MITCHELL. 1973. A flora of the White Mountains of California. University of California Press, Berkeley, CA.

LOOPE, L. L. 1969. Subalpine and alpine vegetation of northeastern Nevada. Ph.D. Dissertation. Duke University, Durham, NC.

MAJOR, J. AND S. A. BAMBERG. 1967. Some cordilleran plants disjunct in the Sierra Nevada of California and their bearing on Pleistocene ecological conditions. Pp. 171–188 in H. E. Wright and W. H. Osburn (eds.), Arctic and alpine environments. Indiana University Press, Bloomington, IN.

——— AND D. W. TAYLOR. 1977. Alpine. Pp. 601–675 in M. G. Barbour and J. Major (eds.), Terrestrial vegetation of California. Wiley, New York, NY.

MEYERS, P. A. 1978. A phytogeographic survey of the subalpine and alpine regions of southern California. Ph.D. Dissertation. University of California, Santa Barbara, CA.

MOONEY, H. A. AND W. D. BILLINGS. 1960. The annual carbohydrate cycle of alpine plants as related to growth. American Journal of Botany 47:594–598.

MORITZ, C., J. L. PATTON, C. J. CONROY, J. L. PARRA, G. C. WHITE, AND S. R. BEISSINGER. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322: 261–264.

MOORE, P. E., A. E. COLWELL, AND D. GROSSENBACHER. 2007. Rare plant surveys in unusual habitats of Yosemite National Park, California. U.S. Geological Survey, Sacramento, CA. Website http://www.werc.usgs.gov/ProductDetails.aspx?ID=3632 [accessed 04 January 2012].

MUNZ, P. A. 1959. A California flora. University of California Press, Berkeley, CA.

NICE, C. C. AND A. M. SHAPIRO. 2001. Patterns of morphological, biochemical, and molecular evolution in the Oeneis chrysis complex (Lepidoptera: Satyrinae): a test of historical biogeographical hypotheses. Molecular Phylogenetics and Evolution 20:11–123.

NOYES, R. D. 2007. Apomixis in the Asteraceae: diamonds in the rough. Functional Plant Science and Biotechnology 1:208–222.

PACKER, J. G. 1974. Differentiation and dispersal in alpine floras. Arctic and Alpine Research 6:117–128.

PARISH, S. G. 1917. An enumeration of the pteridophytes and spermatophytes of the San Bernardino Mountains, California. Plant World 20:163–178, 208–223, 245–259.

PEMBLE, R. H. 1970. Alpine vegetation in the Sierra Nevada of California as lithosequences and in relation to local site factors. Ph.D. Thesis. University of California, Davis, CA.

POLLACK, O. 1991. Morphology and dynamics inalpine populations of Ivesia lycopodioides subsp. scundutaris from the White Mountains of California. Pp. 97–116 in C. A. Hall, V. Doyle Jones, and B. Widowski (eds.), Natural history of eastern California and high-altitude research. White Mountains Research Station Symposium Vol. 3. White Mountain Research Station, University of California, Los Angeles, CA.

PORTER, B. R. 1983. A flora of the Desolation Wilderness, El Dorado County, California. M.S. Thesis, Humboldt State University, Arcata, CA.

RATLIFF, R. D. 1982. A meadow site classification for the Sierra Nevada, California. General Technical Report PSW-60. USDA Pacific Southwest Forest and Range Experiment Station, Berkeley, CA.

RAUNKIÆR, C. 1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford, UK.

RAVEN, P. H. AND D. I. AXELROD. 1978. Origin and relationships of the California flora. University of California Publications in Botany 72:1–134.

RUNDL, P. W., A. C. GIBSON, AND M. R. SHARIFI. 2005. Plant functional groups in alpine fellfield habitats of the White Mountains, California. Arctic, Antarctic and Alpine Research 37:358–365.

——— AND ———. 2008. The alpine flora of the White Mountain, California. Madrõñio 55:204–217.

SAGE, R. F. AND T. L. SAGE. 2002. Microsite characteristics of Muhlenbergia richardsonii (Trin.) Rydb., an alpine C4 grass from the White Mountains, California. Oecologia 132:501–508.

SAYWER, J. O. AND T. KEELER-WOLF. 2007. Alpine vegetation. Pp. 539–573 in M. Barbour, A. Schoenherr, and T. Keeler-Wolf (eds.), Terrestrial vegetation of California, 2nd ed. University of California Press, Berkeley, CA.

SCHAAK, C. G. 1983. The alpine vascular flora of Arizona. Madrõñio 40:7–28.

SCHRANZ, M. M. DOBES, M. A. KOCH, AND T. MITCHELL-OLDS. 2005. Sexual reproduction, apomixis and polyploidization in the genus Boechera (Brassicaceae). American Journal of Botany 92:1797–1810.

SCOTT, R. W. 1995. The alpine flora of the Rocky Mountains: Vol. 1. The Middle Rockies. University of Utah Press, Salt Lake City, UT.

SHAFFER, P. B., J. BARTLEIN, AND R. S. THOMPSON. 2001. Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios. Ecosystems 4:200–215.

SHARMSITH, C. 1940. A contribution to the history of the alpine flora of the Sierra Nevada. Ph.D.
Dissertation, University of California, Berkeley, CA.

SHEVOK, J. R. 1996. Status of rare and endemic plants. Pp. 691–707 in Sierra Nevada ecosystem project: final report to Congress. Vol. II: assessments and scientific basis for management options. Wildland Resources Center Report No. 37. Centers for Water and Wildland Resources, University of California, Davis, CA. Website http://ceres.ca.gov/snp/pubs/v2.html [accessed 04 January 2012].

SMILEY, F. J. 1915. The alpine and subalpine vegetation of the Lake Tahoe region. Botanical Gazette 59:265–286.

———. 1921. A report upon the boreal flora of the Sierra Nevada of California. University of California Publications in Botany 9:1–423.

SOLTIS, D. E., V. A. ALBERT, J. LEEBENS-MACK, C. D. BELL, A. H. PATerson, C. ZHENg, D. SANKOFF, C. W. dePAMPHILIS, P. KERR WALL, and P. S. SOLTIS. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96:336–348.

STEBBINS, G. L. 1982. Floristic affinities of the high Sierra Nevada. Madroño 29:189–99.

——— and J. MAJOR. 1965. Endemism and speciation in the California flora. Ecological Monographs 35:1–35.

STEPHENSON, N. L. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25:855–870.

TABERLET, P., L. FUMAGALLI, A. G. WUST-SAUCY, and J.-F. COSSONS. 1998. Comparative phyleogeography and postglacial colonization routes in Europe. Molecular Ecology 7:453–464.

TATUM, J. W. 1979. The vegetation and flora of Olancha Peak, southern Sierra Nevada, California. M.S. Thesis, University of California, Santa Barbara, CA.

TAYLOR, D. W. 1976a. Disjunction of Great Basin plants in the northern Sierra Nevada. Madroño 29:301–310.

———. 1976b. Ecology of the timberline vegetation at Carson pass, Alpine County, California. Ph.D. Dissertation. University of California, Davis, CA.

———. 1977. Floristic relationships along the Cascade-Sierran axis. American Midland Naturalist 97:333–349.

TINGLEY, M. W., W. B. MONAHANC, S. R. BEISSINGER, and C. MORITZ. 2009. Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Science (USA) 106:19637–19643.

URBAN, D. L., C. MILLER, P. N. HALPIN, and N. L. STEPHENSON. 2000. Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology 15:603–620.

VARGAS, P. 2003. Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon 52:463–476.

WENT, F. W. 1948. Some parallels between desert and alpine floras in California. Madroño 9:241–249.

———. 1953. Annual plants at high altitudes in the Sierra Nevada, California. Madroño 12:109–114.

WERNICKE, B., G. J. AXEN, and J. K. SNOW. 1988. Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada. Geological Society of America Bulletin 100:1738–1757.

WOLFE, J. A., H. E. SCHORN, C. E. FOREST, and P. MOLNAR. 1997. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science 276:1672–1675.
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
Ophioglossaceae	Botrychium lunulatum	1500	3600	P	CORD
Ophioglossaceae	Botrychium lineare	2500	4000	P	CORD
Ophioglossaceae	Botrychium paradoxum	4000	4200	P	CORD
Ophioglossaceae	Botrychium simplex var.	1500	3800	P	WIDE
Ophioglossaceae	Botrychium tanum	3600	3600	P	WIDE
Pteridaceae	Pellaea brevifolia	1500	3700	P	INT
Selaginellaceae	Selaginella watsonii	1350	4100	P	INT
Woodsiaceae	Athyrium distentifolium var.	1700	3700	P	WIDE
Woodsiaceae	Cystopteris fragilis	50	4100	P	CORD
Woodsiaceae	Woodsia scapulina	1300	3500	P	WIDE
Pinaceae	Pinus albicaulis	2135	3700	T	CORD
Pinaceae	Pinus balfouriana var.	2700	3700	T	END
Pinaceae	Pinus contorta subsp.	1525	3500	T	S-C
Pinaceae	Pinus flexis	2600	3700	T	CORD
Pinaceae	Tsuga mertensiana	1200	3500	T	S-C
Alliaceae	Allium obersum var.	1500	3500	G	INT
Cyperaceae	Carex albonigra	3000	4200	P-G	CORD
Cyperaceae	Carex brevifolia	2000	3900	P-G	S-C
Cyperaceae	Carex capitata	1200	3900	P-G	WIDE
Cyperaceae	Carex congdonii	2600	3900	P-G	END
Cyperaceae	Carex deflexa var. boottii	0	3800	P-G	CORD
Cyperaceae	Carex douglasii	300	3800	P-G	CORD
Cyperaceae	Carex filifolia var.	1500	3700	P-G	CORD
Cyperaceae	Carex haydeniana	2400	4200	P-G	CORD
Cyperaceae	Carex helleri	2400	4100	P-G	S-C
Cyperaceae	Carex heteroneura	1300	4000	P-G	INT
Cyperaceae	Carex hooldii	650	3600	P-G	CORD
Cyperaceae	Carex incurviformis	3700	4000	P-G	CORD
Cyperaceae	Carex jonesii	900	3500	P-G	CORD
Cyperaceae	Carex lenticularis var.	0	3600	P-G	CORD
Cyperaceae	Carex leporinella	1900	4000	P-G	CORD
Cyperaceae	Carex mariposana	750	3600	P-G	END-CAL
Cyperaceae	Carex multicoella	1900	3500	P-G	CORD
Cyperaceae	Carex nigricans	1900	3700	P-G	CORD
Cyperaceae	Carex phaeocephala	2500	4000	P-G	CORD
Cyperaceae	Carex praecaptorium	2200	3500	P-G	CORD
Cyperaceae	Carex proposita	3000	4100	P-G	S-C
Cyperaceae	Carex rossii	0	3800	P-G	CORD
Cyperaceae	Carex scirpoidea var.	2800	3700	P-G	CORD
Cyperaceae	Carex specifis	1200	3500	P-G	INT
Cyperaceae	Carex spectabilis	1800	3700	P-G	CORD
Cyperaceae	Carex straminiformis	1700	4100	P-G	S-C
Cyperaceae	Carex subflava	700	3800	P-G	INT
Cyperaceae	Carex subnigricans	2600	3800	P-G	CORD
Cyperaceae	Carex tahoeis	3200	3700	P-G	CORD
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
-------------------	--------------------------------	---------------------	---------------------	-------------	---------------------------
Poaceae	Carex vermacula	1800	4000	P-G	CORD
Poaceae	Eleocharis quinqueflora	40	3600	P-G	WIDE
Poaceae	Trichophorum cuneatum	2400	3600	P-G	END
Juncaceae	Juncus bryoide	600	3600	P-G	CORD
Juncaceae	Juncus drimondii	200	3500	P-G	CORD
Juncaceae	Juncus mertensianus	1200	3500	P-G	CORD
Juncaceae	Juncus mexicanus	0	3800	P-G	WIDE
Juncaceae	Juncus parryi	2000	3800	P-G	CORD
Juncaceae	Luzula divaricata	2100	3700	P-G	S-C
Juncaceae	Luzula oreestera	2700	3600	P-G	END
Juncaceae	Luzula spicata	2900	3700	P-G	WIDE
Juncaceae	Luzula subcongesta	2000	3500	P-G	S-C
Juncaginaceae	Triglochin patulastris	2400	3500	P-G	WIDE
Liliaceae	Calochortus leichtlinii	1300	4000	G	S-C
Melanthiaceae	Veratum californicum var.	0	3500	P-G	CORD
	californicum				
Poaceae	Agrostis idahoensis	0	3500	P-G	CORD
Poaceae	Agrostis pultens	200	3500	P-G	CORD
Poaceae	Agrostis scabra	100	3500	P-G	WIDE
Poaceae	Agrostis thurberiana	1300	3500	P-G	CORD
Poaceae	Agrostis variabilis	1600	4000	P-G	CORD
Poaceae	Alopecurus aequalis var	50	3500	P-G	WIDE
	aequalis				
Poaceae	Bromus carinatus var.	0	3500	P-G	S-C
	carinatus				
Poaceae	Bromus carinatus var.	0	3500	P-G	S-C
	marginatus				
Poaceae	Bromus orcuttianus	560	3500	P-G	S-C
Poaceae	Bromus porteri	550	3500	P-G	CORD
Poaceae	Bromus richardsonii	1200	3600	P-G	CORD
Poaceae	Calamagrostis muiriana	2480	3900	P-G	END
Poaceae	Calamagrostis purpurascens	1300	4000	P-G	WIDE
Poaceae	Deschampsia cespitosa	0	3820	P-G	WIDE
Poaceae	Deschampsia cespitosa subsp.	275	4200	P-G	CORD
	cespitosa				
Poaceae	Elymus elymoides subsp.	0	3800	P-G	CORD
	californicus				
Poaceae	Elymus multiflorus	2900	4200	P-G	CORD
Poaceae	Elymus scribneri	1800	3530	P-G	INT
Poaceae	Elymus sierae	2800	4300	P-G	WIDE
Poaceae	Festuca brachyphylla subsp.	2850	4050	P-G	CORD
	brevicutmis				
Poaceae	Festuca mitatiflora	20	3500	P-G	WIDE
Poaceae	Hordeum jubatum var.	20	3500	P-G	WIDE
Poaceae	Hordeum jubatum var.	0	3840	P-G	WIDE
Poaceae	Koeleria macrantha	1220	3670	P-G	CORD
Poaceae	Muhlenbergia richardsonii	0	3700	P-G	WIDE
Poaceae	Phleum alpinum	3300	3660	P-G	CORD
Poaceae	Poa abbreviata subsp.	2400	3600	P-G	CORD
	pattersoni				
Poaceae	Poa cusickii subsp. epilis	2100	3500	P-G	S-C
Poaceae	Poa cusickii subsp. purpurascens	3300	4100	P-G	CORD
Poaceae	Poa glauca subsp. rapicola	3300	4100	P-G	END-CAL
Poaceae	Poa keckii	3500	4340	P-G	END
Poaceae	Poa lettermanii	0	3900	P-G	CORD
Poaceae	Poa secunda subsp. secunda	2700	3700	P-G	END
Poaceae	Poa stebbiisi	1300	3800	P-G	CORD
Poaceae	Poa wheeleri	60	3500	P-G	CORD
Poaceae	Stipa hymenoides	2000	3650	P-G	END
Poaceae	Stipa kingii	450	3500	P-G	CORD
Poaceae	Stipa nelsonii subsp. dorei	1200	3500	P-G	CORD
Poaceae	Stipa occidentalis subsp.	1200	3500	P-G	CORD
	pubescens				
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
-------------------	--------------------------------	--------------------	---------------------	-------------	---------------------------
Poaceae	Stipa pinetorum	2000	3900	P-G	INT
Poaceae	Stipa webberi	1450	3500	P-G	INT
Poaceae	Torreyochloa erecta	2000	3500	P-G	INT
Poaceae	Torreyochloa pallida var. pauciflora	0	3500	P-G	CORD
Poaceae	Trisetum spicatum	1370	3900	P-G	WIDE
Themidaceae	Triteleia dudleyi	1200	3500	G	END-CAL
EUDICOTS	Adoxaceae Sambucus racemosa var. melanocarpa	1800	3600	S	CORD
Apiaceae	Cymopterus cinerarius	2100	3500	P	INT
Apiaceae	Oreonana clementis	1500	4000	P	END
Apiaceae	Podistera nevadensis	3000	4000	P	INT
Apiaceae	Sphenosciadium capitellatum	0	3500	P	CORD
Asteraceae	Achillea millefolium	0	3650	P	WIDE
Asteraceae	Ageratina occidentalis	0	3700	P	CORD
Asteraceae	Agoseris aurantiaca var. aurantiaca	1500	3500	P	CORD
Asteraceae	Agoseris monticola	2500	3800	P	S-C
Asteraceae	Antennaria media	1800	3900	P-MAT	CORD
Asteraceae	Antennaria pulchella	2800	3700	P-MAT	INT
Asteraceae	Antennaria rosea subsp. confinis	1200	3700	P	WIDE
Asteraceae	Antennaria rosea subsp. rosea	1200	3700	P-MAT	CORD
Asteraceae	Arnica chamissonis	1800	3500	P	WIDE
Asteraceae	Arnica lanceolata subsp. prima	2200	3500	P	CORD
Asteraceae	Arnica longifolia	1300	3500	P	CORD
Asteraceae	Arnica mollis	2500	3500	P	CORD
Asteraceae	Arnica ovata	1800	3600	P	CORD
Asteraceae	Artemisia arbuscula subsp. arbuscula	1500	3800	S	CORD
Asteraceae	Artemisia ludoviciana subsp. incompata	0	3500	P	INT
Asteraceae	Artemisia norvegica subsp. saxatilis	2300	3800	P	WIDE
Asteraceae	Artemisia spiciformis	2100	3700	P	CORD
Asteraceae	Chaenactis alpigena	220	3900	P-MAT	END-CAL
Asteraceae	Chaenactis douglasii var. douglasii	400	3500	P	CORD
Asteraceae	Chrysothamnus viscidiflorus var. v. v. viscidiflorus	900	4000	SS	INT
Asteraceae	Cirslam arizonicum var. arizonicum	2300	3500	P	INT
Asteraceae	Cirslam occidentale var. venustum	0	3600	P	INT
Asteraceae	Cirslam scariosum var. americanum	1600	3500	P	CORD
Asteraceae	Crepis nana	2000	4000	P-MAT	CORD
Asteraceae	Ericameria bloomeri	900	4000	SS	INT
Asteraceae	Ericameria discoides	2300	3800	SS	INT
Asteraceae	Ericameria nauseosa var. speciosa	50	3500	S	INT
Asteraceae	Ericameria parryi var. monoeophala	2800	3700	SS	INT
Asteraceae	Ericameria suffruticoso	2100	3800	SS	INT
Asteraceae	Erigeron algidus	2600	3700	P	INT
Asteraceae	Erigeron compositus	2000	4300	P-MAT	WIDE
Asteraceae	Erigeron lonicophyllus	1800	3550	P-A	WIDE
Asteraceae	Erigeron pygmaeus	2900	4100	P-MAT	S-C
Asteraceae	Erigeron vagus	3300	4400	P-MAT	INT
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
-------------------	--------------------------------	---------------------	---------------------	------------	---------------------------
Asteraceae	*Eriophyllum lanatum* var.	1400	3500	P	CORD
	Eriophyllum lanatum				
Asteraceae	*Hazardia whitneyi* var.	1200	3500	SS	END
	Hazardia whitneyi				
Asteraceae	*Hieracium nudicaule*	1800	3500	P	S-C
Asteraceae	*Hieracium triste*	1650	3550	P	CORD
Asteraceae	*Hieracium giganteum* subsp.	3200	3900	P	END-CAL
	pygmaea				
Asteraceae	*Hymenoxys hoopesii*	1500	3650	P	CORD
Asteraceae	*Oreostemma alpigenum* var.	1200	3500	P	S-C
	Oreostemma andersonii				
Asteraceae	*Oreostemma peisonii*	3000	3800	P	END
Asteraceae	*Orochaenactis*	1600	3800	A	END
	thysanocarpa				
Asteraceae	*Packera cana*	1200	3500	P	S-C
Asteraceae	*Packera werneritfolia*	3000	3650	P	S-C
Asteraceae	*Pyrocoma apargioides*	2200	3800	P	S-C
Asteraceae	*Raillardiella argentea*	1800	3900	P	S-C
Asteraceae	*Raillardiella scaposa*	2000	3500	P	S-C
Asteraceae	*Senecio fremontii* var.	2800	4000	P-MAT	S-C
	occidentals				
Asteraceae	*Senecio integerrimus* var.	100	3600	P	CORD
	Senecio major				
Asteraceae	*Senecio pattersonensis*	3000	3700	P	INT
Asteraceae	*Senecio scorzonella*	1600	3500	P	S-C
Asteraceae	*Senecio spartioides*	1000	3500	SS	CORD
Asteraceae	*Solidago multiradiata*	1250	3950	P	CORD
Asteraceae	*Sphaeromeria cana*	1800	4000	S	CORD
Asteraceae	*Stenotis acaulis*	1800	3600	P-MAT	INT
Asteraceae	*Toneustus peisonii*	2900	3700	P	END-CAL
Boraginaceae	*Cryptantha circumscissa* var.	150	3650	A	CORD
	circumscissa				
Boraginaceae	*Cryptantha circumscissa* var.	2950	3650	A	END
	rosulata				
Boraginaceae	*Cryptantha glomeriflora*	1800	3750	A	S-C
Boraginaceae	*Cryptantha humilis*	1700	3600	P	INT
Boraginaceae	*Cryptantha murgena*	2400	3900	P	INT
Boraginaceae	*Hackelia micrantha*	1200	3500	P	CORD
Boraginaceae	*Hackelia sharsmithii*	3150	3700	P	INT
Boraginaceae	*Nama densum*	880	3560	A	INT
Boraginaceae	*Nama erectum*	1500	4000	A	S-C
Boraginaceae	*Phacelia hastata* subsp.	900	3500	P	S-C
	compacta				
Boraginaceae	*Phacelia purpurea*	0	3800	P	CORD
Brassicaceae	*Anelsonia eurycarpa*	1600	4100	P-MAT	S-C
Brassicaceae	*Boechera depauwerata*	3650	3900	P	INT
Brassicaceae	*Boechera howelli*	1500	3800	P	S-C
Brassicaceae	*Boechera inyoenis*	1200	3500	P	INT
Brassicaceae	*Boechera covillei*	2200	3500	P	S-C
Brassicaceae	*Boechera inyoenis*	1200	3500	P	INT
Brassicaceae	*Boechera lemmonii*	2000	4350	P	INT
Brassicaceae	*Boechera lyallii*	2000	3900	P	CORD
Brassicaceae	*Boechera pauperula*	2500	3700	P	CORD
Brassicaceae	*Boechera repanda*	1400	3600	P	INT
Brassicaceae	*Boechera rubens*	3000	3600	P	INT
Brassicaceae	*Cardamine cordifolia*	600	3600	P	CORD
Brassicaceae	*Descurainia incana*	100	3500	P	CORD
Brassicaceae	*Draba albertina*	900	3700	P	CORD
Brassicaceae	*Draba brevii*	3100	4100	P	END-CAL
Brassicaceae	*Draba cana*	0	4100	P	CORD
Brassicaceae	*Draba cruciata*	2500	3963	P	END
Brassicaceae	*Draba densifolia*	1900	3650	P-MAT	INT
Brassicaceae	*Draba lemmonii*	3050	4000	P	END
Higher level taxon	Specific or infra specific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
--------------------	---------------------------------	---------------------	---------------------	-------------	---------------------------
Brassicaceae	Draba longicornicarpa	2800	4000	P	WIDE
Brassicaceae	Draba longisquamosa	3000	3900	P	END
Brassicaceae	Draba novolymica	1500	3700	P-MAT	CORD
Brassicaceae	Draba oligosperma	2000	3900	P-MAT	CORD
Brassicaceae	Draba praeculta	2500	4100	P	WIDE
Brassicaceae	Draba sharsmithii	3300	3800	P	END
Brassicaceae	Draba sierae	3500	4114	P-MAT	END
Brassicaceae	Draba subumbellata	3300	4100	P-MAT	END-CAL
Brassicaceae	Erysimum capitatum var. capitatum	0	4000	P	WIDE
Brassicaceae	Erysimum perenne	2000	4000	P	S-C
Brassicaceae	Lepidium densiflorum	0	3500	P-A	WIDE
Brassicaceae	Rorippa curvipes	100	3500	P-A	CORD
Brassicaceae	Rorippa curvisiliqua	0	3500	A	CORD
Brassicaceae	Streptanthus gracilis	2600	3600	A	END
Brassicaceae	Streptanthus tortuosus	200	4100	P	S-C
Caryophyllaceae	Cerastium beckingianum	2900	4300	P-MAT	WIDE
Caryophyllaceae	Ereminogone kingii var. glabrescens	2100	4050	P-MAT	S-C
Caryophyllaceae	Minuartia nutallii var. gracilis	2600	3800	P-MAT	S-C
Caryophyllaceae	Minuartia obtusiloba	3150	3700	P-MAT	CORD
Caryophyllaceae	Minuartia rubella	2400	3800	P	CORD
Caryophyllaceae	Minuartia stricta	3500	3900	P	CORD
Caryophyllaceae	Sagina saginoides	1000	3800	P	WIDE
Caryophyllaceae	Silene bernardina	1350	3600	P	CORD
Caryophyllaceae	Silene sargentii	2400	3800	P	S-C
Caryophyllaceae	Stellaria calycantha	1700	3800	P	WIDE
Chenopodiaceae	Chenopodium atrovirens	300	3500	A	CORD
Chenopodiaceae	Monolepis nutallianum	0	3700	A	CORD
Crassulaceae	Rhodiola integrifolia	1800	4000	P	WIDE
Crassulaceae	Sedum obtusatum subsp. obtusatum	1200	3700	P	S-C
Ericaceae	Cassiope mertensiana	1800	3505	S	CORD
Ericaceae	Gaultheria humifusa	1350	4000	S	CORD
Ericaceae	Kahnia polifolia subsp. polifolia	1000	3500	S	CORD
Ericaceae	Phylloste brevemeri	1200	3500	S	END-CAL
Ericaceae	Pterospora andromedea	60	3700	P	WIDE
Ericaceae	Rhododendron calcanianum	0	3630	S	CORD
Fabaceae	Astragalus kentrophyta var. danaus	2900	4000	P-MAT	END-CAL
Fabaceae	Astragalus kentrophyta var. tegetarius	2700	3600	P	CORD
Fabaceae	Astragalus lentiginosus var. ineptus	1250	3700	P	INT
Fabaceae	Astragalus platytropus	2350	3500	P	INT
Fabaceae	Astragalus purshii var. lectulus	1500	3650	P	INT
Fabaceae	Astragalus whitneyi var. whitney	1550	3500	P	S-C
Fabaceae	Lupinus adscursus	1000	3500	P	S-C
Fabaceae	Lupinus angustiflorus	1000	3500	P	INT
Fabaceae	Lupinus argenteus var. montigenus	1500	3500	P	INT
Fabaceae	Lupinus argenteus var. meionanthus	2500	3500	P	INT
Fabaceae	Lupinus breviori var. breviori	1000	4000	P-MAT	END-CAL
Fabaceae	Lupinus breviori var. breviori	2500	4000	P-MAT	END-CAL
Fabaceae	Lupinus breviori var. bryoides	2000	3500	P-MAT	INT
Fabaceae	Lupinus breviori var. grandiflorus	2000	3500	P	END
Fabaceae	Lupinus coveiili	2500	3500	P	END
Fabaceae	Lupinus graciliertus	2500	3500	P	END
Higher level taxon	Specific or infra-specific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
-----------------------	----------------------------------	---------------------	---------------------	-------------	---------------------------
Fabaceae	Lupinus latifolius var.	1000	3500	P	S-C
	columbianus				
Fabaceae	Lupinus latifolius var.	0	3500	P	END-CAL
	parishii				
Fabaceae	Lupinus lepidus var. lobbii	2000	3500	P	S-C
Fabaceae	Lupinus lepidus var. ramosus	3000	4000	P	END-CAL
Fabaceae	Lupinus obtusilobus	2500	3500	P	S-C
Fabaceae	Lupinus padre-crowleyi	2500	4000	P-MAT	END-CAL
Fabaceae	Lupinus pratensis var. prattensis	1000	3500	P	END-CAL
Fabaceae	Oxytropis borealis var.	3300	3900	P	INT
	australis				
Fabaceae	Oxytropis borealis var.	3300	3900	P	CORD
	viscidula				
Fabaceae	Oxytropis parryi	3100	3800	P-MAT	INT
Fabaceae	Trifolium kingii subsp.	2100	3500	P	END
	dedeckerae				
Fabaceae	Trifolium monanthum subsp.	1700	3900	P-MAT	INT
	monanthum				
Gentianaceae	Comastoma tenellum	3200	3900	A	WIDE
Gentianaceae	Gentianopsis holopetala	1800	4000	A	S-C
Gentianaceae	Gentiana calycosa	1300	3900	P	CORD
Gentianaceae	Gentiana newberryi var.	1500	4000	P	S-C
	tiogaena				
Gentianaceae	Gentianella amarella subsp.	1500	3500	A	WIDE
	acuta				
Gentianaceae	Gentianopsis holopetala	1800	4000	A	S-C
Grossulariaceae	Ribes cereum var. inebrians	2100	3850	S	INT
Grossulariaceae	Ribes montigenum	800	4000	S	CORD
Grossulariaceae	Ribes velutinum	700	3500	S	CORD
Hydrangeaceae	Jamesia americana	2070	3700	S	INT
Lamiaeae	Monardella beneolens	2500	3600	SS	END
Lamiaeae	Monardella linoides subsp.	1000	3500	SS	INT
	sierrae				
Lamiaceae	Monardella odoratissima	1000	3500	SS	INT
	subsp. glauca				
Linaceae	Limnium lewissii	400	3657	P	INT
Montiaceae	Calyptridium monospermum	300	3970	P	INT
Montiaceae	Calyptridium roseum	1500	3800	A	CORD
Montiaceae	Calyptridium umbellatum	240	4300	P	CORD
Montiaceae	Calyptridium nevadensis	2200	3500	P	S-C
Montiaceae	Levisia disepala	1300	3500	P	END
Montiaceae	Levisia glandulosa	3000	4000	P	END-CAL
Montiaceae	Levisia nevadensis	609	3596	P	S-C
Montiaceae	Levisia pygmaea	1700	4020	P	CORD
Montiaceae	Levisia triphylla	1300	3500	P	CORD
Montiaceae	Montia chamissoi	1100	3700	P	S-C
Onagraceae	Epilobium anagallidifolium	1500	4500	P	WIDE
Onagraceae	Epilobium ciliatum subsp.	0	4000	P	CORD
	ciliatum				
Onagraceae	Epilobium ciliatum subsp.	0	3500	P	WIDE
	glandulosum				
Onagraceae	Epilobium clavatum	1200	4200	P	CORD
Onagraceae	Epilobium glaberrimum subsp.	1200	3800	P	CORD
	fastigiatum				
Onagraceae	Epilobium kalmannii subsp.	100	3700	P	CORD
	hornemannii	1200	3900	P	WIDE
Onagraceae	Epilobium obcordatum	1700	4000	P	S-C
Onagraceae	Epilobium oregoneuse	1200	3500	P	CORD
Onagraceae	Epilobium saximontanum	1400	3500	P	CORD
Onagraceae	Gayophytum decipiens	1800	4200	A	INT
Onagraceae	Gayophytum diffusum subsp.	800	3700	A	S-C
	diffusum				
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
-------------------	---------------------------------	---------------------	---------------------	-------------	---------------------------
Onagraceae	Gayophyton diffusum subsp. parviforum	800	3700	A	INT
Onagraceae	Gayophyton racemosum	1000	4000	A	CORD
Onagraceae	Gayophyton ramossissimum	500	3500	A	INT
Orobanchaceae	Castilleja applegatei subsp. pallida	1900	3600	P	INT
Orobanchaceae	Castilleja applegatei subsp. pinetorum	300	3600	P	INT
Orobanchaceae	Castilleja lemmontii	1550	3700	P	S-C
Orobanchaceae	Castilleja miniatia subsp. miniatia	1500	3500	P	INT
Orobanchaceae	Castilleja nana	2400	4200	P	END-CAL
Orobanchaceae	Pedicularis attollens	1200	4000	P	S-C
Orobanchaceae	Pedicularis groenlandica	1000	3600	P	S-C
Orobanchaceae	Pedicularis semiarbata	1500	3500	P	S-C
Parnassiaceae	Parnassia palustris	1100	4000	A	INT
Phrymaceae	Minthea suksdorfii	0	4000	Q	WIDE
Plantaginaceae	Colliricke palustris	800	3500	A	WIDE
Plantaginaceae	Collinsia parviflora	800	4000	A	INT
Plantaginaceae	Collinsia torreyi var. wrightii	2000	3750	P-MAT	INT
Plantaginaceae	Penstemon davidsonii	2700	3900	P-MAT	S-C
Plantaginaceae	Penstemon heterodoxus var. heterodoxus	1000	3700	P-MAT	INT
Plantaginaceae	Penstemon newberryi var. newberryi	2100	3600	P-MAT	INT
Plantaginaceae	Penstemon procerus var. formosus	300	3500	SS	INT
Plantaginaceae	Penstemon roezlii	500	3500	SS	INT
Plantaginaceae	Penstemon rostriflorus	1000	3600	P	INT
Plantaginaceae	Penstemon rydbergii var. oreocharis	850	3800	P	INT
Plantaginaceae	Penstemon speciosus	1700	4000	P	CORD
Plantaginaceae	Veronica wormskjoldii	2000	4000	P-MAT	CORD
Polemoniaceae	Cistus linearis	1100	3600	P-MAT	CORD
Polemoniaceae	Gymnosteris parvula	3600	4200	P-MAT	END
Polemoniaceae	Ipomopsis congesta subsp. montana	3300	4300	P-MAT	CORD
Polemoniaceae	Leptosiphon oblanceolatus	3000	4200	P	END
Polemoniaceae	Linanthus pangens	2800	3700	A	END
Polemoniaceae	Linanthus pungens	1700	4000	P	CORD
Polemoniaceae	Phlox condensata	2000	4000	P-MAT	CORD
Polemoniaceae	Phlox diffusa	1100	3600	P-MAT	CORD
Polemoniaceae	Phlox dispera	3600	4200	P-MAT	END
Polemoniaceae	Phlox pulvinita	3300	4300	P-MAT	CORD
Polemoniaceae	Polemonium eximium	3000	4200	P	END
Polemoniaceae	Polemonium pubescens subsp. montana	2400	3700	P	S-C
Polygonaceae	Eriogonum gracileps	2900	3900	P-MAT	END-CAL
Polygonaceae	Eriogonum incanum	2100	4000	P-MAT	INT
Polygonaceae	Eriogonum lobbii	1600	3800	P-MAT	S-C
Polygonaceae	Eriogonum nudum var. scopigerum	2800	3800	P	END
Polygonaceae	Eriogonum ovalifolium var. caelestium	3000	3600	P-MAT	END
Polygonaceae	Eriogonum ovalifolium var. nivele	1700	4200	P-MAT	INT
Polygonaceae	Eriogonum polytypodum	2800	3500	P-MAT	END
Polygonaceae	Eriogonum roseum var. roseum	2300	4000	P-MAT	INT
Polygonaceae	Eriogonum spergulinum var. pratense	1300	3500	P	END
Polygonaceae	Eriogonum umbellatum var. covillei	3000	3600	P-MAT	END-CAL
Polygonaceae	Eriogonum wrightii var. olanchense	3500	3600	P-MAT	END
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
--------------------	---------------------------------	---------------------	---------------------	-------------	---------------------------
Polygonaceae	*Oxyria digyna*	1800	4000	P	WIDE
Polygonaceae	*Ranunculus alismatifolius*	1400	3600	P	END-CAL
Primulaceae	*Trollius alpinoideus*	2900	3700	P	END-CAL
Ranunculaceae	*Aquilegia pubescens*	2600	3650	P	END-CAL
Ranunculaceae	*Delphinium polycladon*	2200	3600	P	END-CAL
Ranunculaceae	*Ranunculus acris*	1800	3700	P	END-CAL
Ranunculaceae	*Ivesia gordonii*	1800	3500	P	END-CAL
Rosaceae	*Ivesia lycoperoides* var.	3000	4000	P	END-CAL
Rosaceae	*Ranunculus luteus*	1800	3700	P	END-CAL
Rosaceae	*Ranunculus alpinoideus*	1200	3600	P	CORD
Rosaceae	*Ranunculus flabelliformis*	1400	3500	P	CORD
Rosaceae	*Ivesia multiflora*	2900	4000	P	END-CAL
Rosaceae	*Ivesia panii*	2700	4000	P	END-CAL
Rosaceae	*Ranunculus laxiflorus*	1800	3700	P	END-CAL
Rosaceae	*Potentilla flavescens*	1600	3700	P	END-CAL
Salicaceae	*Salix brachycarpa* var.	3200	3500	S	CORD
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
-------------------	--------------------------------	---------------------	---------------------	-------------	---------------------------
Saxifragaceae	Salix eastwoodiae	1600	3800	S	CORD
Saxifragaceae	Salix geyeriana	1450	3600	S	CORD
Saxifragaceae	Salix leonmii	1400	3500	S	CORD
Saxifragaceae	Salix nivalis	3100	3500	S	CORD
Saxifragaceae	Salix oreestera	1100	4000	S	S-C
Saxifragaceae	Salix petrophila	1670	4000	S	CORD
Saxifragaceae	Salix planifolia	2500	4000	S	WIDE
Saxifragaceae	Heuchera rubescens	1000	4000	P	CORD
Saxifragaceae	Lithophragma glabrum	0	3750	P	CORD
Saxifragaceae	Micranthes aprica	1600	3600	P	CORD
Saxifragaceae	Micranthes bryophora	1600	3500	P	CORD
Saxifragaceae	Micranthes nidifera	1000	3500	P	CORD
Saxifragaceae	Micranthes tolmiei	1980	3596	P	CORD
Saxifragaceae	Pectiaria brevii	1500	3500	P	S-C
Saxifragaceae	Saxifraga hyperborea	3000	4500	P	WIDE
Valerianaceae	Valeriana californica	1500	3700	P	INT
Violaceae	Viola adunca	0	3570	P	WIDE
Violaceae	Viola bakeri	900	3800	P	INT
Violaceae	Viola macloskeyi	609	3600	P	WIDE
Violaceae	Viola pinnatiorum subsp. grisea	1981	3700	P	END-CAL
Violaceae	Viola purpurea subsp. mesophyta	1400	3598	P	END-CAL

APPENDIX 2. Annotated checklist of the flora of the Sierra Nevada with an upper elevational limit of 3300-3499 m. Abbreviations as in Appendix 1. Species names follow Baldwin et al. (2012).
APPENDIX 2. CONTINUED.

Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
Cyperaceae	Eleocharis acicularis var. acicularis	0	3300	P-G	WIDE
Cyperaceae	Eleocharis acicularis var. gracilescens	0	3300	P-G	WIDE
Cyperaceae	Eleocharis saksdorffiana	0	3400	P-G	CORD
Cyperaceae	Eriophorum criniger	2000	3350	P-G	S-C
Iridaceae	Iris missouriensis	900	3400	G	CORD
Juncaceae	Juncus hemiendythus var. abjectus	1400	3350	P-G	INT
Juncaceae	Juncus nevadensis subsp. nevadensis	1200	3300	P-G	CORD
Juncaceae	Luzula parviflora var. parviflora	1000	3300	P-G	WIDE
Liliaceae	Lilium kelleyiym	2200	3300	G	END
Orchidaceae	Platynthera dilatata var. leucostachys	0	3400	G	CORD
Orchidaceae	Platynthera sparsiflora	100	3400	G	CORD
Orchidaceae	Spiranthus romanoffianus	0	3300	P	WIDE
Poaceae	Agrostis humiltis	1500	3350	P-G	CORD
Poaceae	Bromus saksdorffii	1250	3300	P-G	S-C
Poaceae	Calamagrostis canadensis var. canadensis	1500	3400	P-G	WIDE
Poaceae	Calamagrostis canadensis var. saksdorffii	1500	3400	P-G	WIDE
Poaceae	Calamagrostis stricta subsp. inexpansa	0	3400	P-G	WIDE
Poaceae	Calamagrostis stricta subsp. stricta	1500	3350	P-G	WIDE
Poaceae	Danthonia intermedia var. intermedia	1460	3450	P-G	WIDE
Poaceae	Elymus trachycalus subsp. trachycalus	100	3400	P-G	WIDE
Poaceae	Hordeum brachyantherum subsp. brachyantherum	0	3400	P-G	CORD
Poaceae	Hordeum brachyantherum subsp. californicum	0	3400	P-G	END-CAL
Poaceae	Melica bulbosa	1200	3350	P-G	CORD
Poaceae	Melica stricta	1200	3350	P-G	CORD
Poaceae	Muhlenbergia filiformis	1500	3350	A	CORD
Poaceae	Muhlenbergia montana	1640	3420	P-G	WIDE
Poaceae	Setina nevadensis	1000	3450	P-G	CORD
Poaceae	Setina occidentalis subsp. californica	1500	3450	P-G	CORD
Poaceae	Setina occidentalis subsp. occidentalis	1200	3450	P-G	CORD
Poaceae	Trisetum wolfii	1740	3300	P-G	CORD

EUDICOTS

Apiaceae	Angelica linearioloba	1700	3300	P	END-CAL
Apiaceae	Ligusticum grayi	1000	3300	P	CORD
Apiaceae	Loliumum torreyi	1100	3300	P	END
Apiaceae	Periderida parishii subsp. latifolia	2000	3400	P	S-C
Asteraceae	Agoseris parviflora	1400	3400	P	CORD
Asteraceae	Artemisia cana subsp. bolanderi	1200	3300	S	S-C
Asteraceae	Artemisia dracunculus	0	3400	P	INT
Asteraceae	Chaenactis douglasi var. alpina	3000	3400	P-MAT	CORD
Asteraceae	Crepis acuminata	1000	3300	P	CORD
Asteraceae	Crepis intermedia	800	3300	P	CORD
Asteraceae	Erucaeria parryi var. aspera	1900	3300	SS	INT
Asteraceae	Erigeron barbellauffia	2100	3300	P	END-CAL
Asteraceae	Erigeron chokeyi var. pinzliae	2200	3400	P	INT
Asteraceae	Erigeron coulteri	1900	3400	P	CORD
Asteraceae	Erigeron elmeri	1300	3300	P	END
Asteraceae	Erigeron glacialis var. glacialis	1300	3400	P	CORD
Asteraceae	Erigeron tener	2300	3400	P-MAT	CORD
Asteraceae	Helenium bigelovii	0	3400	P	S-C
Asteraceae	Hieracium althiformum	0	3300	P	WIDE
Asteraceae	Hieracium horridum	1350	3300	P	S-C
Asteraceae	Hulsea vestita subsp. vestita	2400	3350	P	END
Asteraceae	Microseris nutans	1000	3400	P	CORD
Asteraceae	Nothocalris alpstris	1300	3400	P	S-C
Asteraceae	Packera pauciflora	1800	3300	P	WIDE
Asteraceae	Senecio triangularis	100	3300	P	CORD
Asteraceae	Tetradymia canescens	1080	3400	P	CORD
Asteraceae	Tonestus eximius	1800	3300	P	CORD
Asteraceae	Wyeitia mollis	900	3400	P	S-C
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
Boraginaceae	Cryptantha watsonii	1250	3300	A	CORD
Boraginaceae	Cryptantha confertiflора	1050	3350	P	INT
Boraginaceae	Lappula redowskii	1300	3300	A	WIDE
Boraginaceae	Mertensia ciliata	1310	3380	P	S-C
Boraginaceae	Phacelia bicolor	700	3400	A	INT
Boraginaceae	Phacelia censei	1300	3400	A	END
Boraginaceae	Phacelia orogenes	2060	3400	A	END
Boraginaceae	Plagiothrys hispidulus	1200	3400	A	CORD
Boraginaceae	Plagiothrys torreyi var. diffusus	1200	3400	A	END-CAL
Brassicaceae	Barbarea orthoceras	0	3400	B/P	WIDE
Brassicaceae	Boechera caldera	2050	3350	P	CORD
Brassicaceae	Boechera davidsonii	1200	3400	P	S-C
Brassicaceae	Boechera pygmaea	2600	3400	P	INT
Brassicaceae	Boechera stricta	1800	3400	P	CORD
Brassicaceae	Cardamine oligosperma	50	3300	A/B	CORD
Brassicaceae	Deseaturania californica	1700	3400	A/B	CORD
Brassicaceae	Draba asterophora	2600	3300	P	INT
Brassicaceae	Phryaria occidentalis	600	3350	P	INT
Capsifoliaceae	Lonicera conjugialis	140	3300	S	S-C
Capsifoliaceae	Symphicarpus rotundifolius var. parishii	1100	3300	S	INT
Caryophyllaceae	Eremonogone congesta var. subfrutescens	1200	3300	P	INT
Caryophyllaceae	Arctostaphylos patula	750	3350	S	CORD
Caryophyllaceae	Arctostaphylos uva-ursi	2400	3300	S	WIDE
Caryophyllaceae	Vaccinium caespitosum	0	3400	S	WIDE
Caryophyllaceae	Vaccinium uliginosum subsp. occidentale	0	3400	S	WIDE
Fabaceae	Astragalus bolanderi	1400	3300	P	INT
Fabaceae	Astragalus ravenii	3400	3450	P	END
Fabaceae	Trifolium monanthum subsp. tenerum	1600	3300	P	END
Fagaceae	Chrysolepis sempervirens	700	3300	S	S-C
Gentianaceae	Frasera puberulenta	1700	3400	P	END-CAL
Gentianaceae	Gentianopsis simplex	1200	3400	P	END
Grossulariaceae	Ribes inermicvar. inermc	1300	3300	S	CORD
Lamiaceae	Monardella brevui subsp. lanceolata	0	3400	A	INT
Montiaceae	Claytonia megarhiza	2600	3300	P	CORD
Montiaceae	Levisia leana	1300	3350	P	S-C
Onagraceae	Chamberon angustifolium subsp. circumvagum	0	3300	P	WIDE
Orobanchaceae	Castilleja arachnoidea	1300	3300	P	INT
Orobanchaceae	Castilleja linearifolia	1000	3350	P	INT
Orobanchaceae	Castilleja peirsonii	1500	3400	P	S-C
Orobanchaceae	Castilleja pilosa	1200	3400	P	INT
Orobanchaceae	Castilleja praeterita	2200	3400	P	END
Orobanchaceae	Orobanche fasciculata	0	3300	P	WIDE
Papaveraceae	Dicentra uniflora	1000	3300	P	CORD
Phrymaceae	Minnula brevii	1200	3400	A	CORD
Phrymaceae	Minnula nanus var. mephiticus	1520	3445	A	S-C
Phrymaceae	Minnula tiltingii	1400	3400	P	CORD
Plantaginaceae	Penstemon caespit	1800	3400	SS	END-CAL
Plantaginaceae	Veronica americana	0	3300	P	WIDE
Polemoniaceae	Ipomopsis aggregata subsp. bridgesii	1800	3300	P	END
Polemoniaceae	Microtis gracilis	0	3300	A	WIDE
Polemoniaceae	Navarretia brevii	1000	3300	A	CORD
Polemoniaceae	Polemonium occidentale subsp. occidentale	900	3300	P	WIDE
Polygonaceae	Eriogonum latens	2600	3400	P	END-CAL
Polygonaceae	Eriogonum microthecum var. alpinum	2500	3300	SS	END-CAL
Polygonaceae	Eriogonum microthecum var. ambiguum	1100	3300	SS	INT
Polygonaceae	Eriogonum saxatil	800	3400	P-MAT	INT
Polygonaceae	Eriogonum spargulimum var. redingiannum	1300	3400	A	INT
Polygonaceae	Eriogonum wrightii var. subscaposum	200	3400	P-MAT	INT
Higher level taxon	Specific or infraspecific taxon	Lower elevation (m)	Upper elevation (m)	Growth form	Biogeographic relationship
-------------------	---------------------------------	---------------------	---------------------	-------------	---------------------------
Polygonaceae	Polygonum polygaloides subsp. kelloggii	1500	3300	P	CORD
Polygonaceae	Polygonum shastense	2100	3400	P	S-C
Potamogetonaceae	Potamogeton robustus	1600	3300	Q	WIDE
Primulaceae	Dodecatheon alpinum	1700	3400	P	CORD
Ranunculaceae	Anemone drummondii	1200	3350	P	S-C
Ranunculaceae	Aquilegia formosa	0	3300	P	S-C
Ranunculaceae	Caltha leptosepala var. biflora	900	3300	P	CORD
Ranunculaceae	Delphinium nuttallianum	300	3300	P	CORD
Rhamnaceae	Ceanothus cordulatus	365	3365	S	INT
Rosaceae	Amelanchier utahensis	200	3400	S	INT
Rosaceae	Fragaria virginiana	1200	3300	P	WIDE
Rosaceae	Geum macrophyllum var. pericinsum	1000	3300	P	WIDE
Rosaceae	Horkelia fusca subsp. parviflora	1400	3300	P	CORD
Rosaceae	Ivesia gordonii var. alpicola	2100	3300	P	INT
Rosaceae	Ivesia saxosa	900	3300	P	INT
Rosaceae	Rosa woodsii subsp. gratissima	800	3400	S	INT
Rosaceae	Spiraea splendens	548	3400	S	S-C
Salicaceae	Salix jepsonii	1000	3400	S	S-C
Salicaceae	Salix scouleriana	1	3400	S	CORD
Scrophulariaceae	Limosella acaulis	0	3300	A-Q	WIDE