Yangian Symmetry for the Masses

Florian Loebbert,1,* Julian Miczajka,1,† Dennis Müller,2,† and Hagen Münkler3,‡

1Institut für Physik, Humboldt-Universität zu Berlin,
Zum Großen Windkanal 6, 12489 Berlin, Germany
2Niels Bohr Institute, Copenhagen University, Blegdамsej 17, 2100 Copenhagen, Denmark
3Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,
Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
(Dated: May 21, 2020)

In the context of planar holography, integrability plays an important role for solving certain massless quantum field theories such as $\mathcal{N} = 4$ SYM theory. In this letter we show that integrability also features in the building blocks of massive quantum field theories. At one-loop order we prove that all massive n-gon Feynman integrals in generic spacetime dimensions are invariant under a massive Yangian symmetry. At two loops similar statements can be proven for graphs built from two n-gons. At generic loop order we conjecture that all graphs cut from regular tilings of the plane with massive propagators on the boundary are invariant. We support this conjecture by a number of numerical tests for higher loops and legs. The observed Yangian extends the bosonic part of the massive dual conformal symmetry that was found a decade ago on the Coulomb branch of $\mathcal{N} = 4$ SYM theory. By translating the Yangian level-one generators from dual to original momentum space, we introduce a massive generalization of momentum space conformal symmetry. Even for non-dual conformal integrals this novel symmetry persists. The Yangian can thus be understood as the closure of massive dual conformal symmetry and this new massive momentum space conformal symmetry, which suggests an interpretation via AdS/CFT. As an application of our findings, we bootstrap the hypergeometric building blocks for examples of massive Feynman integrals.

Zvi Bern in his dinner speech: “We should bring amplitudes to the masses, to the people on the street.”

Lance Dixon from the audience: “We should bring masses to the amplitudes.”

INTRODUCTION

In 1954 Wick and Cutkosky noticed that a certain class of ladder-type Feynman integrals with massive propagators features a massive dual conformal symmetry [1, 2]. While most of the formal insights into quantum field theory inspired by the AdS/CFT correspondence are limited to massless situations, this massive dual conformal symmetry is naturally realized in the context of this duality [3, 4]. In particular, the extended dual conformal symmetry limits the variables that certain massive Feynman integrals can depend on and thus simplifies their computation. In the present letter we argue that for large classes of Feynman integrals, this massive dual conformal symmetry is in fact only the zeroth level of an infinite dimensional massive Yangian algebra. In addition to limiting the number of variables, this new symmetry strongly constrains the functional form of the integrals. While these symmetry properties naturally extend the observations on the integrability of massless Feynman integrals [5–7], to the knowledge of the authors this is the first occurrence of quantum integrability in massive quantum field theory in $D > 2$ spacetime dimensions.

For massless $\mathcal{N} = 4$ super Yang–Mills (SYM) theory it was recently argued that planar integrability is preserved in a certain double scaling limit, which (in the simplest case) results in the so-called bi-scalar fishnet theory [8]. Here, individual (massless) Feynman integrals inherit the Yangian symmetry that underlies the integrability of the prototypical examples of the AdS/CFT duality [5, 6]. A similar starting point, i.e. an integrable massive avatar of $\mathcal{N} = 4$ super Yang–Mills theory, is not known. We thus investigate massive Feynman integrals directly, i.e. we consider the properties of functions of the type

\[
\int \frac{d^D x_0 d^D x_0}{x_{01}^{2a_1} x_{02}^{2a_2} x_{03}^{2a_3} x_{04}^{2a_4} x_{12}^{2b_1} x_{13}^{2b_2} x_{14}^{2b_3} x_{23}^{2b_4}},
\]

where $x_{jk} = x_{j+k} - x_{k}$ and $\tilde{x}_{jk} = x_{j+k} + (m_j - m_k)^2$. Here the dashed internal propagator is massless, i.e. $m_0 = m_0 = 0$, while the other propagators are massive. The x-variables denote dualized momenta (dotted green diagram) related via $p^\mu_j = x^\mu_j - x^\mu_{j+1}$ [9]. Our findings suggest that all Feynman graphs, which are cut from regular tilings of the plane and have massive propagators on the boundary, feature a massive D-dimensional Yangian symmetry. We will demonstrate the usefulness of this Yangian for bootstrapping massive Feynman integrals. Finally, we will show that, when translated to momentum space, the non-local Yangian symmetry can be interpreted as a massive generalization of momentum space conformal symmetry. This suggests to interpret this novel symmetry within the AdS/CFT correspondence.
Massive dual conformal symmetry is realized in the form of partial differential equations obeyed by coordinate space Feynman integrals. That is, the integrals are annihilated by the tensor product action of the level-zero dual conformal generators \(\hat{J}^a = \sum_{j=1}^{n} J_j^a \), where \(J_j^a \) denotes one of the following densities acting on \(x_j \):\[
P_j^\mu = -i \partial_x^\mu, \quad \hat{L}_j^{\mu \nu} = i x_j^\mu \partial_x^\nu - i x_j^\nu \partial_x^\mu, \quad D_j = -i (x_j^\mu \partial_{x_j}^\nu + m_j \partial_{m_j} + \Delta_j), \quad K_j^{\mu \nu} = -2i x_j^\mu (x_j^\nu \partial_{x_j}^\nu + m_j \partial_{m_j} + \Delta_j) + i (x_j^2 + m_j^2) \partial_{x_j}^\mu.
\]

Here we do not sum the internal index \(\mu \) over \(D \) dimensions but rather define this contribution separately. Here we work with the Euclidean metric and the index \(\mu \) runs from 1 to \(D + 1 \), while \(\mu \) runs from 1 to \(D \).

The massive Yangian is spanned by the above level-zero Lie algebra generators and the bijection-local level-one generators defined as
\[
\hat{J}_0^a = \frac{1}{2} f_{abc} \sum_{j<k=1}^{n} J_j^b J_k^c + \sum_{j=1}^{n} s_j J_j^a,
\]
where \(f_{abc} \) denotes the Lie algebra structure constants. The so-called evaluation parameters \(s_j \) depend on the considered Feynman integral and will be specified below. The level-one momentum generator for instance reads
\[
\hat{P}_\mu = \frac{i}{2} \sum_{j,k=1}^{n} \text{sign}(k-j) (P_j^\rho D_k + P_j^\rho L_k^\rho \hat{J}^a) + \sum_{j=1}^{n} s_j P_j^\mu.
\]

Here we do not sum the internal index \(\nu \) over \(D + 1 \) dimensions but rather define this contribution separately, e.g., \(\hat{P}_\mu^\text{extra} = \frac{i}{2} \sum_{j<k} \text{sign}(k-j) P_j^\rho D_k + P_j^\rho L_k^\rho \hat{J}^a \).

ONE AND TWO LOOPS

First, we consider a generic scalar \(n \)-point Feynman integral at one-loop order with massive propagators. Propagator powers \(a_j \) and the spacetime dimension \(D \) are arbitrary:
\[
I_n = \int d^D x_0 \rho_n = \frac{1}{n!} \prod_{j=1}^{n} (x_{0j}^2 + m_j^2)^{-a_j} \text{sign}(k-j) a_k L_{D+1}^\mu.
\]

Here \(\rho_n = \prod_{j=1}^{n} (x_{0j}^2 + m_j^2)^{-a_j} \) and we use the notation \(x_{jk}^\mu = x_j^\mu - x_k^\mu \). These integrals have been expressed in terms of hypergeometric functions by Davydychev [10]. Surprisingly, we find that the integrand is invariant under the massive level-one generators acting on legs 1 to \(n \) defined in (3), i.e., we have \(\hat{J}_0^a \rho_n = 0 \) which implies
\[
\hat{J}_0^a I_n = 0.
\]

The scaling dimensions in (2) take values \(\Delta_j = a_j \) and the evaluation parameters entering the level-one generators (3) can be written in the compact form
\[
s_j = \frac{i}{2} \sum_{k=1}^{n} \text{sign}(k-j) a_k.
\]

We emphasize that this symmetry also holds for cases where an arbitrary subset of the masses is set to zero [11]. Moreover, the above level-one symmetry holds even if we do not impose conformal level-zero symmetry, i.e., the constraint \(\sum_{j=1}^{n} a_j = D \) on the propagator powers. Hence, the level-one symmetry can be used to constrain dual conformal and non-dual-conformal integrals. Finally we should mention that also the generators as \(\hat{P}_\mu^\text{extra} \) given below (4), which can be interpreted as contributions to an internal sum over \(D + 1 \) dimensions, define a separate symmetry of the above one-loop integrands [12].

While (6) represents the central symmetry equation that extends to higher loop integrals, see table I, at one-loop order even stronger invariance statements can be formulated: Firstly, the one-loop invariance even holds at the integrand level. Secondly, due to the total permutation symmetry, the \(n \)-gon integrand is even invariant under the two-point generator density:
\[
\hat{J}_{jk}^a \rho_n = 0, \quad \hat{J}_{jk}^a = \frac{i}{2} f_{abc} J_j^b J_k^c + s_j J_j^c + s_k J_k^c.
\]
for \(j, k \in \{1, \ldots, n\} \) and with \(s_j = a_k/2 \) and \(s_k = -a_j/2 \).

At two loops we find that \(n \)-point integrals (not integrands) built from an \(l + 1 \)-gon and an \(r + 1 \)-gon with \(n = l + r \) connected by a massless internal propagator are Yangian invariant:

Using the permutation symmetries of this class of diagrams as well as their level-zero symmetry and the two-point level-one symmetry (8) of the one-loop integrals, it is not difficult to prove this two-loop invariance.
Beyond the analytic proofs for one- and two-loop integrals, we have numerically tested the invariance of higher loop diagrams for various examples, cf. table II. To be precise, we have checked for the presence of the symmetry by acting on the respective Feynman parametrization and numerical integration of the result. On this basis we conjecture that all planar Feynman graphs, which are cut along a closed contour from one of the three regular tilings of the plane, have massive Yangian symmetry if all internal propagators are massless. The external propagators can be massive or massless. Here an x-space propagator is called external if it is connected to an external point of the diagram. The integration can be evaluated in generic spacetime dimension D and propagator powers may take generic values a_j. For full Yangian invariance we require the conformal constraint $D = \sum_{j \in \text{vertex}} a_j$ at each integration vertex. If this constraint is not satisfied, we still have level-one momentum symmetry \hat{P}^μ, which corresponds to a massive generalization of momentum space conformal symmetry that we introduce below. In the massless limit this matches the observations of [5–7] on the integrability of massless Feynman integrals in $D = 3, 4$ and 6 spacetime dimensions.

The values of the evaluation parameters s_j entering (4) can be read off from the Feynman graph as follows: (i) Choose an arbitrary leg 1 with $s_1 = \frac{1}{2} \sum_{k=2}^{n} a_k$, (ii) walk clockwise along the external boundary of the (x-space) graph and pick up the respective propagator weights, (iii) here an external propagator with power a_j contributes $-a_j/2$ while an internal propagator with weight b_k contributes $-b_k + D/2$. The evaluation parameter s_{j+1} is obtained from s_j by adding the respective terms, e.g.

$$-\frac{a_j}{2} - \frac{a_{j+1}}{2} = -\frac{a_j}{2} - \frac{a_{j+1}}{2} - b_k + \frac{D}{2}.$$ \hspace{1cm} (10)

YANGIAN BOOTSTRAP

Let us now employ the above non-local symmetry to bootstrap Feynman integrals with massive propagators. This discussion extends the algorithm of [7] to the massive case. We start with some examples containing conformal vertices obeying the condition $\sum_j a_j = D$. Notably, after solving these integrals, we can obtain an infinite class of integrals by acting with mass derivatives ∂_m which yields an integral with propagator weights a_j with $\sum_j a_j = D + r$.

Conformal, 2 points, 2 masses, 1 loop: As a simple starting example consider the two-point integral (see e.g. [10, 13, 14] for the non-conformal case)

$$I_2^{m_1 m_2} = \frac{a_1 a_2}{m_1^{a_1} m_2^{a_2}} \phi(v),$$ \hspace{1cm} (11)

written in terms of a function ϕ of the conformally invariant variable $v = (m_1^2 + m_2^2 + x_{12}^2)/2m_1 m_2$. For convenience we set $2\alpha = a_1 - a_2 - 1$ and $2\beta = -a_1 - a_2 + 1$. Acting on I_2 with the level-one momentum generator yields the associated Legendre differential equation [15]:

$$\left[\alpha(\alpha + 1) + \frac{\beta^2}{v^2 - 1}\right] \phi - 2v \phi' + (1 - v^2) \phi'' = 0.$$ \hspace{1cm} (12)

The general solution to the above differential equation is easily found, e.g. in Mathematica, to be a linear combination of the associated Legendre functions of the first and second kind, i.e. P_α^β and Q_α^β. The coefficients of these functions can be fixed using numerical input for the integral, which yields

$$\phi(v) = 2^{\beta + 1 - \alpha} P_\alpha^\beta(v).$$ \hspace{1cm} (13)

We have thus completely constrained the integral.

Conformal, 3 points, 3 masses, 1 loop: Consider next the one-loop three-point integral with all propagators massive and the conformal constraint $D = a_1 + a_2 + a_3$ (see e.g. [16–18] for the case with $a_j = 1$):

$$I_3^{m_1 m_2 m_3} = \frac{2}{m_1^{a_1} m_2^{a_2} m_3^{a_3}} \phi_3(u, v, w).$$ \hspace{1cm} (14)

Here we have chosen the conformal variables $u = u_{12}$, $v = u_{13}$ and $w = u_{23}$, where $u_{jk} = -a_{jk}/4m_j m_k$. Making a series ansatz in u, v and w, the Yangian PDEs

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Non-local Symmetry & \multicolumn{3}{c|}{No Sym.} \\
\hline
Triangle & Square & Hexagon & Irregular \\
\hline
\end{tabular}
\caption{Examples of integrals up to 6 loops and 12 legs explicitly tested for level-one momentum invariance by acting on the Feynman parametrization. Graphs cut from regular tilings are invariant if propagators on the boundary of the graph are massive or massless (solid), while internal propagators have to be massless (dashed). Graphs not cut from regular tilings have no level-one symmetry as described here.}
\end{table}
translate into recurrence equations for the series coefficients. These equations can straightforwardly be solved, which yields Srivastava’s triple hypergeometric function H_C, a generalization of Appell’s hypergeometric function F_1, see e.g. [19]:

$$H_C(u,v,w) = \sum_{k,l,n=0}^{\infty} \frac{(a_1)_{k+l}(a_2)_{k+n}(a_3)_{l+n} u^k v^l w^n}{(\gamma_1)_{k+l+n} k! l! n!}.$$ \hspace{1cm} (15)

with $\gamma = D/2 + 1/2$ and the Pochhammer symbol $(a)_k = \Gamma_{a+k}/\Gamma_a$. This series converges for

$$|u| + |v| + |w| - 2\sqrt{(1 - |u|)(1 - |v|)(1 - |w|)} < 2,$$ \hspace{1cm} (16)

and in this region it is the only converging solution of 29 formal series solutions to the Yangian equations. Numerical comparison to the Feynman parameter representation of (14) yields the overall constant such that

$$I_3^{m_1m_2m_3} = \frac{\pi^{D/2} \Gamma_{D/2}}{(D-1)!m_1^{a_1}m_2^{a_2}m_3^{a_3}} H_C(u,v,w).$$ \hspace{1cm} (17)

To the knowledge of the authors this result has not been given elsewhere in the literature.

Non-Conformal, 3 points, 1 mass, 1 loop: Let us finally demonstrate the usefulness of the level-one symmetry \bar{P} for an integral that has no massive dual conformal (level-zero) symmetry. We write the triangle with massive leg 1 as

$$I_3^{m_100} = \frac{2}{a_2} = m_1^{D-2a_1-2a_2-2a_3} \psi_3(u,v,w),$$ \hspace{1cm} (18)

with $u = u_{12}$, $v = u_{13}$ and $w = -u_{23}$, and $u_{jk} = -x_{jk}^2/m_1^2$. We act with the \bar{P}-PDEs on the series ansatz

$$G_{x,y,z}^{a_1,a_2,a_3,\gamma_1\gamma_2} = \sum_{k,l,n} f_{kl n} \frac{u^k v^l w^n}{k! l! n!},$$ \hspace{1cm} (19)

where the sum runs over $k \in x + Z$, $l \in y + Z$, $n \in z + Z$ for some $(x,y,z) \in \mathbb{R}^3$. The resulting recurrence equations can straightforwardly be solved which results in

$$f_{kl n} = \frac{(a_1)_{k+l+n}(a_2)_{k+n}(a_3)_{l+n}}{(\gamma_1)_{k+l+n}(\gamma_2)_n},$$ \hspace{1cm} (20)

with the new parameters

$$\alpha_1 = a_1 + a_2 + a_3 - \frac{D}{2}, \hspace{0.5cm} \alpha_2 = a_2, \hspace{0.5cm} \alpha_3 = a_3, \hspace{0.5cm} \gamma_1 = \frac{D}{2},$$ \hspace{1cm} (21)

and the abbreviation $\gamma_2 = 1 - \gamma_1 + \alpha_2 + \alpha_3$. We find 36 combinations of (x,y,z) in (19) for which the series terminates after rescaling, which we take as a necessary criterion for convergence. However, only for the two choices $(0,0,0)$ and $(0,0,1 - \gamma_2)$ of these 36 combinations, u, v and w are the effective series variables. In fact, the ansatz combining these two functions, i.e. [20]

$$\psi_3 = \pi^{\frac{D}{2}} \left(c_1 C_{000}^{a_1a_2a_3\gamma_1\gamma_2} + c_2 C_{001}^{a_1a_2\gamma_1\gamma_2} \right),$$ \hspace{1cm} (22)

maps to the solution given in [13], if the constants c_1 and c_2 are chosen as $c_1 = \Gamma_{\alpha_1} \Gamma_{1-\gamma_2}/(\Gamma_{\alpha_1-\gamma_2} + 1 - \Gamma_{\gamma_2})$ and $c_2 = \Gamma_{\gamma_1-\alpha_2-\gamma_2} \Gamma_{1-\gamma_2-1}/\Gamma_{\alpha_2} \Gamma_{\gamma_1-\gamma_2+1}$. In this last example we have thus successfully employed the \bar{P} symmetry to constrain the functional form of an integral without conformal level-zero symmetry. This suggests an alternative interpretation of this non-local symmetry.

MASSIVE MOMENTUM SPACE SYMMETRY

In the massless case, the Yangian symmetry of amplitudes in planar $\mathcal{N} = 4$ SYM theory [21] as well as in the fishnet theory [5] can be understood as the closure of a dual (region momentum space) and an ordinary (momentum space) conformal symmetry. It is thus a natural question whether the discovered massive Yangian can be understood as the closure of the massive dual conformal symmetry generated by (2) and some massive generalization of momentum space conformal symmetry. To address this question we translate the level-one generator \bar{P}^μ of (4) given in terms of region momenta x_j into momenta p_j defined via $p_j^\mu = x_j^\mu - x_{j+1}^\mu$. The masses, on the contrary, stay untouched because the mass dependence of the integrals cannot be phrased in terms of dual masses $m_j - m_{j+1}$ only. By making the respective substitutions and using the chain rule, one finds

$$\bar{P}^\mu = -\frac{1}{2} \hat{K}^\mu,$$ \hspace{1cm} (23)

which holds up to terms that vanish when the integral is expressed in terms of the first $n - 1$ momenta by using momentum conservation. Here, the special conformal operator \hat{K}^μ forms part of the following massive generalization of the momentum space conformal generators [22]:

$$\bar{P}^\mu_j = p_j^\mu,$$ \hspace{0.5cm} $\bar{L}^\mu_j = p_j^\mu \partial_{p_j^\nu} - p_j^\mu \partial_{p_j^\nu}$,

$$\bar{D}_j = p_{j\nu} \partial_{p_j^\nu} + \frac{m_j \partial_{m_j} + m_{j+1} \partial_{m_{j+1}}}{2} + \Delta_j,$$ \hspace{0.5cm} (24)

$$\bar{K}_j^\mu = p_j^\mu \partial_{p_j^\nu} - 2 \left[p_{j\nu} \partial_{p_j^\nu} + \frac{m_j \partial_{m_j} + m_{j+1} \partial_{m_{j+1}}}{2} + \Delta_j \right] \partial_{p_j^\nu}.$$ \hspace{1cm}

These generators thus furnish symmetries of the above integrals expressed in momentum space and they obey the ordinary conformal algebra. We have $\Delta_j = \frac{1}{2} \Delta_{j+1} - s_j + s_{j+1}$ with the evaluation parameters s_j determined by the rules (10) [23]. We note that the operator \hat{K}^μ includes a mildly non-local contribution acting on the masses of nearest-neighbouring legs j and $j + 1$ of the Feynman graph. In the massless limit, the above translation (23) of the Yangian level-one generator to momentum space also makes connection to the momentum space Ward identities that were recently studied for conformal correlation functions, see e.g. [24–26].
CONCLUSIONS AND OUTLOOK

The main results presented in this letter are summarized as follows: A large fraction of the building blocks of massive quantum field theories features a highly constraining Yangian symmetry — a hallmark of integrability. The observed Yangian algebra can be understood as the closure of a novel momentum space conformal symmetry and the known massive dual conformal symmetry; this strongly suggests an embedding of these findings into a larger picture within the AdS/CFT duality.

There are plenty of further directions worth being investigated. Firstly, it would be important to formally prove our conjecture of higher loop Yangian and massive Feynman integrals and generic; we have

\[\mathcal{L} = \mathcal{N}_c \text{tr} \left(\partial_\mu X \partial^\mu X + \partial_\mu Z \partial^\mu Z + \xi^2 \hat{X} \hat{Z} \hat{X} \hat{Z} \right) \]

+ \left(\frac{1}{2} m_j - \tilde{m}_k \right)^2 \hat{Z}_j \hat{Z}_k - \tilde{n}_j \tilde{n}_k \hat{X}_j \hat{X}_k\right),

Here, \(N_c - n \) of the masses \(m_j \) and \(\tilde{m}_j \) are taken to be zero, such that graphs with massless propagators in the bulk of the diagram are dominant in the planar limit [30]. It would be interesting to test this Lagrangian for Yangian symmetry with the methods of [31].

FL and DM are very grateful to Till Bargheer and Jan Plefka for helpful comments on the manuscript. The work of FL is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 363895012. JM is supported by the International Max Planck Research School for Mathematical and Physical Aspects of Gravitation, Cosmology and Quantum Field Theory. DM was supported by DFF-FNU through grant number DFF-FNU 4002-00037. The work of HM has been supported by the grant no. 615203 of the European Research Council under the FP7 and by the Swiss National Science Foundation by the NCCR SwissMAP.

1. G. C. Wick, Phys. Rev. 96, 1124 (1954).
2. R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).
3. L. F. Alday, J. M. Henn, J. Plefka, and T. Schuster, JHEP 01, 077 (2010), arXiv:0908.0684 [hep-th].
4. S. Caron-Huot and J. M. Henn, Phys. Rev. Lett. 113, 161601 (2014), arXiv:1408.0296 [hep-th].
5. D. Chicherin, V. Kazakov, F. Loebbert, D. Müller, and D.-l. Zhong, JHEP 05, 003 (2018), arXiv:1704.01967 [hep-th].
6. D. Chicherin, V. Kazakov, F. Loebbert, D. Müller, and D.-l. Zhong, Phys. Rev. D96, 121901 (2017), arXiv:1708.00007 [hep-th].
7. F. Loebbert, D. Müller, and H. Münkler, Phys. Rev. D101, 066006 (2020), arXiv:1912.05561 [hep-th].
8. Ö. Gürdoğan and V. Kazakov, Phys. Rev. Lett. 117, 201602 (2016), [Addendum: Phys. Rev. Lett. 117, no.25,259903(2016)], arXiv:1512.06704 [hep-th].
9. Note that the \(p_i^2 \) are unconstrained and the \(m_j \) are generic; we have \(x_i^2 = x_i^2 - \sum_{j<i} p_j^2 \) and \(x_{i+1}^2 = x_i^2 \).
10. A. I. Davydychev, J. Math. Phys. 33, 358 (1992).
11. In these cases one acts on massive legs with the generators of the massive symmetry and on massless legs with the usual dual-conformal generators obtained by dropping the mass terms in (2).
12. Switching on the internal mass \(m_p \), only the combination \(\bar{P} - \bar{P}_\text{extra} \) is a symmetry.
13. E. E. Boos and A. I. Davydychev, Theor. Math. Phys. 89, 1052 (1991), [Teor. Mat. Fiz.89,56(1991)].
14. B. A. Kniehl and O. V. Tarasov, Nucl. Phys. B854, 841 (2012), arXiv:1108.6019 [math-ph].
15. Note that this equation arises from the differential operator \(\bar{P}_\text{extra} \), while the rest of \(\bar{P} \) trivially annihilates \(I_2 \). This is a generic feature for two-point invariants.
16. B. G. Nickel, J. Math. Phys. 19, 542 (1978).
17. A. I. Davydychev, Proceedings, 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017): Seattle, WA, USA, August 21-25, 2017, J. Phys. Conf. Ser. 1085, 052016 (2018), arXiv:1711.07351 [hep-th].
18. J. L. Bourjaily, E. Gardi, A. J. McLeod, and C. Vergu, (2019), arXiv:1912.11067 [hep-th].
Note the shift identity $G_{\alpha_1 \alpha_2 \alpha_3 \gamma_1 \gamma_2}^{001} = u^{1-\gamma_2} G_{\alpha_1 \alpha_2 \gamma_1 \gamma_2}^{000}$, with $\gamma' = \gamma_2 - 1$.

Here we could also use a local version of the dilatation generator density acting only on the mass m_j. In the tensor product this makes no difference.

For the one-loop n-gons for instance, we thus find $\Delta_j = a_j + a_{j+1}$.

Note that the mass terms generated by spontaneous symmetry breaking in the fishnet theory have product form instead of the difference form [32, 33].

Note that the mass terms generated by spontaneous symmetry breaking in the fishnet theory have product form instead of the difference form [32, 33].

[19] P. Srivastava and P. Gupta, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 85, 63 (2015).

[20] Note the shift identity $G_{\alpha_1 \alpha_2 \alpha_3 \gamma_1 \gamma_2}^{001} = u^{1-\gamma_2} G_{\alpha_1 \alpha_2 \gamma_1 \gamma_2}^{000}$, with $\gamma' = \gamma_2 - 1$.

[21] J. M. Drummond, J. M. Henn, and J. Plefka, JHEP 05, 046 (2009), arXiv:0902.2987 [hep-th].

[22] Here we could also use a local version of the dilatation generator density acting only on the mass m_j. In the tensor product this makes no difference.

[23] For the one-loop n-gons for instance, we thus find $\Delta_j = a_j + a_{j+1}$.

[24] C. Coriano, L. Delle Rose, E. Mottola, and M. Serino, JHEP 07, 011 (2013), arXiv:1304.6944 [hep-th].

[25] A. Bzowski, P. McFadden, and K. Skenderis, JHEP 03, 111 (2014), arXiv:1304.7760 [hep-th].

[26] C. Corianò and M. M. Maglio (2020) arXiv:2001.09622 [hep-th].

[27] D. Nandan, M. F. Paulos, M. Spradlin, and A. Volovich, JHEP 05, 105 (2013), arXiv:1301.2500 [hep-th].

[28] E. Herrmann and J. Parra-Martinez, JHEP 02, 099 (2020), arXiv:1909.04777 [hep-th].

[29] B. Basso and L. J. Dixon, Phys. Rev. Lett. 119, 071601 (2017), arXiv:1705.03545 [hep-th].

[30] Note that the mass terms generated by spontaneous symmetry breaking in the fishnet theory have product form instead of the difference form [32, 33].

[31] N. Beisert, A. Garus, and M. Rosso, Phys. Rev. Lett. 118, 141603 (2017), arXiv:1701.09162 [hep-th].

[32] G. K. Karananas, V. Kazakov, and M. Shaposhnikov, (2019), arXiv:1908.04302 [hep-th].

[33] F. Loebbert and J. Miczajka, Work in progress.