Genetic Linkage Map of Olive Flounder, *Paralichthys olivaceus*

Jung-Ha Kang¹, Woo-Jin Kim¹ and Woo-Jai Lee²

1. Biotechnology Research Institute, National Fisheries Research and Development Institute, 619-705, Busan, Republic of Korea
2. GenoMar ASA, Post Box Sentrum 1159, 0107 Oslo, Norway

Correspondence to: Jung-Ha Kang, Biotechnology Research Institute, National Fisheries Research and Development Institute (NFRDI), 619-705, Busan, Republic of Korea. E-mail: jhkang@nfrdi.re.kr

Received: 2008.03.28; Accepted: 2008.05.08; Published: 2008.05.10

Olive flounder, *Paralichthys olivaceus*, is an important fish species in Asia, both for fisheries and aquaculture. As the first step for better understanding the genomic structure and functional analysis, we constructed a genetic linkage map for olive flounder based on 180 microsatellites and 31 expressed sequence tag (EST)-derived markers. Twenty-four linkage groups were identified, consistent with the 24 chromosomes of this species. The total map distance was 1,001.3 cM based on Kosambi sex-average mapping, and the average inter-locus distance was 4.7 cM. Linkage between the loci was identified by an LOD score of ≥3. This linkage map may be used to map quantitative trait loci associated with important traits of the species and may assist in breeding programs.

Key words: EST, flounder, linkage, microsatellite, *Paralichthys olivaceus*

1. Introduction

Olive flounder, *Paralichthys olivaceus*, is an important fish species in Asia for both fisheries and aquaculture. In an effort to improve the productivity of olive flounder through genetic selection, a preliminary marker-assisted-selection (MAS) using markers involving a major disease gene of the species has been carried out [1, 2]. Since 2004, selective breeding with means of phenotypic selection and family effects for a fast growth rate of the flounder has been implemented at the National Fisheries Research and Development Institute (NFRDI, Busan, Korea). The MAS approach is expected to increase genetic response by improving the intensity and accuracy of selection [3]. Together with phenotypic selection, an important step in such genetic improvement schemes is to accelerate the genetic gains using markers closely linked with the target traits. Genetic maps provide the important information for genomic structure and allow exploration of QTL, which can be used to maximize the selection effects for target traits [4]. A previous olive flounder linkage map [5] identified 30 linkage groups spanning an sex averaged total map length of 705 cM based on 111 microsatellites and 346 amplified fragment length polymorphism (AFLP) markers in a panel of 44 offspring. Unfortunately, AFLP markers have limitations in reuse for other families or populations because of difficulty in determining the mode of inheritance owing to dominance/recessiveness and limited portability [6]. Here we report a microsatellite-based and more saturated genetic linkage map of olive flounder based on 211 microsatellites containing 31 expressed sequence tag (EST)-derived markers, which can be used to overcome the disadvantages of AFLP markers for locus specific genotyping. Since EST-based markers from gene sequences have a high probability of being associated with gene functions, the segregation of alleles of such markers can be tested for their link to predicted phenotypes [7]. Those markers derived from expressed genes provide clear information for synteny discovery between fish genomes [8]. Our improved linkage map may serve as a framework for QTL and gene mapping in olive flounder, and it should facilitate MAS breeding for the genetic improvement of the species.

2. Materials and Methods

2.1. Mapping family

We created an F1 mapping population by crossing one wild-stock female and one male olive flounder. A total of 100 unsexed progeny were used to create the linkage map.

2.2. Microsatellite markers

The microsatellite markers used in this study were taken from the following sources: 111 markers suffixed TUF [5], 27 (#1-27) markers prefixed Kop [9], 16 markers prefixed Po [10], and 5 markers prefixed Po1 [11]. An additional 33 markers (MHFS suffix) were previously posted as *P. olivaceus* microsatellites on the GenBank/EMBL/DDBJ database. The polymorphisms and mapping feasibility of these
markers were evaluated by genotyping of parental DNA; only those markers that were suitable for PCR, easy to score, and informative were used in this study. In addition to the 192 previously reported markers, 28 new markers were developed from genomic libraries [9]. These markers are listed as part of the Kop series (after #27; Table 1). Null alleles were identified with non-mendelian inheritance observed in offspring. The offspring carry different homozygous genotypes from the parents at certain loci.

2.3. Type I markers

In this study, simple sequence repeat markers (SSRs) were defined as arrays of dinucleotide repeat motifs longer than 18 bp. A total of 3,500 EST sequences retrieved from the GenBank/EMBL/DDBJ databases were screened for mono-, di-, tri- and tetra-nucleotide microsatellites using Tendem repeat finder [12]. EST-SSR primer pairs were developed and 76 EST-SSRs were amplified. However, only 31 markers were found to be informative in this mapping family. The names, repeat motifs, primer sequences, and putative functions of the 31 informative EST-SSR primer pairs are listed in Table 2.

Table 1 Characterization of 28 microsatellite markers used for Paralichthys olivaceus map.

Locus	Repeat motif	Primer sequence (5'→3')	Ta1 (°C)	LG2	GenBank accession no.
KOP30	(GT)9	TCGCTGCCCACACTCGGTTCTTT CCTTGTTCTCTGGGTGGAGTTG	60	9	EU307223
KOP31	(AC)12AT(AC)5	GCAGTGTCGCTAAGTTACCTCT ACAATTGTTCTCTTGTTG	56	18	EU307224
KOP32	(AC)10	TCAAAACCTCATCCGCTTCTTT TCACTCATGACCCGCTTGTAG	60	24	EU307225
KOP35	(AC)35	CACAACACTTGACAGATGC AAATCATGAAAAGATGGTTTGGG	60	18	EU307226
KOP36	(AT)2(GT)3GC (GT)2	CCTACACTTTGCTGTTAGAAGAG GTGAGTCATCTAAAGGTCTTG	60	20	EU307227
KOP38	(AC)12	TCTATCTCCCACTCTCTTCT TACGTTGTTGTTATGCTGCTC	56	16	EU307229
KOP41	(GT)9	GGAAAGAAGAATGGCTCGA GACCTGAAGATCAAGAGA	56	6	EU307232
KOP44	(GT)31	GATCTCTAAAGGCAGACATT GATCCCACTCTAAAGGTCAG	56	6	EU307234
KOP46	(CA)14	AGAGTAACTACAGGAACTGCC CAGTGGCAACACTCTG	56	1	EU307237
KOP55	(AC)9	CATCCGCTCTTCAGTCTGTC GCTGCTGATTGCTGTTGTG	56	24	EU307245
KOP57	(AC)16	GTTCATCTTGACCGTGTCCTG GGGATTTGAAAGCGGGATTAGG	56	14	EU307247
KOP58	(GT)10	TTTCATCTAGCTGGTTCTGAA ACAACCTACTCCGCTTCTCTCTA	56	24	EU307250
KOP60	(AC)12AT(AC)5	TCTCTCTAGGTCGCACACTAC CCTCTCTGCTCTCTCTTGAG	56	8	EU307250
KOP63	(AC)10AT(AC)11	CTTCCACCTACCACATTTGATCTAAGTTCAG	56	11	EU307251
KOP67	(CTGT)3CT (CTGT)3	CACCTCTGACACCACAAAG CTAAGGTAGAGCTGCTGCTGA	56	4	EU307253
KOP68	(AAC)7	AGGTCAAGGGTCATCTGCTG TGACAGAAGGATCCATCACAA	56	16	EU307254
KOP69	(CT)1CC(CT)34	CAGCCGATTTTGGACTAC AACTAGACATTGGGCTGAG	50	3	EU307255
KOP74	(GA)19AA(GA)9 (GA)15	CGTGGTGTAGAATCTGTTAGT GTGAAGTCTTGCACGGTGG	56	4	EU307258
KOP75	(GA)10AA(GA)5 (GA)13	ACACAACTTCTAAAGAGAC CCGATTGTGTATGCTTACTACCT	56	8	EU307250
KOP76	(AC)10AT(AC)5	TTTACATTACACAGATTTACAGAAGAA AAAGTCACAAGTGGACTACAAAC	56	16	EU307261
KOP77	(AC)10TT(AC)14	GCAACTGAAAGGTGGAGAGATG CACTGGCACACTTCGAGCG	50	16	EU307261
KOP79	(CT)9	ATGCAGAGGATGATGATGAGAAGG CCGGTTGTGGGAGATTGAGT	60	18	EU307262
KOP82	(TC)1TT(AC)16	CACATACACAGCGTCTTGTGCTC CAGGAAAGTGGTAGACG	56	18	EU307263
KOP85	(TC)1TT(AC)19	TCACATACACAGTGCTTTGTCG CGAAGATGTGACGACGC	56	18	EU307266
KOP86	(GT)17(GA)5 (GA)5	TTTGGAAGGAGATCTG ACATACTACAGCTCTTGTG	50	18	EU307268
KOP88	(AG)29	CGAAACGACCCAAACTCT ATTCAAGCGTTGAAAGTCG	56	3	EU307268
Table 2 Primer information of 31 mapped EST-SSR markers used in this study. The ESTs were retrieved from public databases.

Locus	Repeat motif	Primer sequence (5’ → 3’)	Ta (°C)	LG	GenBank accession No.	Source of cDNA
EKOP1-Br	(AGC)₆AGT (AGC)₃	CACGAGGACACAGCAGGTTTCTA GCAAGTGGTGGCCAGAAGTCTA	60	16	CX284385	Brain
EKOP2-Br	(AT)₈	AGATTGACATTATCTATTTTTCAG AATCTTAACCTGAGGACAGT	56	24	CX284457	Brain
EKOP-E1-Br	(AGC)₆AGT(AGC)₃	GAGCCAGCAGGTTTCTA TTTCGAAGTTGTCAAGTATG	58	16	CX284385	Brain
EKOP2-Bo	(CA)₁₅	GAGAGTTTAAGGAGCAGGTGAC CGGTACAGTTATTTGATTGC	60	5	FE042418	Bowel
EKOP-E1-Ey	(AT)₁₂~(AT)₁₀	TGGCAAGTTTTTTACAGTGA TACTTGTACCTACAGGACAG	58	22	CX283063	Eyes
EKOP-E2-Ey	(CA)₁₂(CA)₆	GAGCCAGCAGCACTACATCA CACCACAGTACAGCACTCA	58	21	CX283155	Eyes
EKOP6-Ey	(CA)₁₅	GGCAAGGTTATGGAACAGTTAC GTTGGAGCAGAAACAGCTA	60	2	CX283268	Eyes
EKOP3-Ey	(ATG)₆	ACCAGGACCATCCACACAG CACAGTACAGTGTGATTGA	56	17	CX283116	Eyes
EKOP1-Ge	(AG)₆CG(AG)₉ CG(AG)₃	CAGCCGACCTAAACCCGGTATC AGCAAGCAGCAGTGAGGA	58	8	CX286078	Gonad
EKOP1-Ge	(AG)₂₆CG(AG)₆ CG(AG)₃	CAGCCGACCTAAACCCGGTATC AGCAAGCAGCAGTGAGGA	58	24	CX286079	Gonad
EKOP-E1 Gi	(ATG)₉AA(AC)₆	CTGATACATAATCACAGTTGGA CGACCCCCACATACAGTAG	58	15	CX283308	Gill
EKOP-E2-Gi	(GA)₁₂	GCCCTCTCCTACATGACCATAA GAGACTGCCATCCGGGGGTTGCA	60	16	CX283298	Gill
EKOP4-Gi	(TG)₁₂	GGCCTGCGCTTGGTATCTGCTA CTTCGGCTCCTCCTCCTCA	60	15	CX283316	Gill
EKOP9-Gi	(GT)₁₁	GTGAGAGGAGGACTACTTGTTC GTTGGTTTTTCCCCCTCAGA	57	14	CX283393	Gill
EKOP10-Gi	(AT)₁₂AA(AT)₇	GTTGGCAATACGCTGTTCCTA AGGCTAACCAACAACAAATGTTCC	60	24	CX283308	Gill
EKOP11-Gi	(CT)₁₉	CCCCTCTCCTACATGCCACCT GGAGGCAACCTCTACCTCTGA	55	21	CX283413	Gill
EKOP12-Gi	(CA)₁₈	GATTTTGCTTGGTTGCTGCTC CAATGGCAACGATCAGTTTCTC	60	24	CX283331	Gill
EKOP-E1-In	(AGC)₆~(GCAG)₆	GTTCCCCCCAATCCTGACAG CTCTATTTTGCTGACAGC	58	14	CX285440	Intestine
EKOP2-In	(CT)₁₃TTCT(CA)₂	GGCTGTCACTTGCTTGGTTGAA CTAACACCTCTGTGGTGACATCA	60	19	CX285589	Intestine
EKOP3-In	(AC)₁₃	CAGGCGCCATCCTGCTGCTA CTTCCGGCTCCTCCTCCTCA	60	15	CX285592	Intestine
EKOP3-Ki	(AT)₁₀	GATGAAATCCCTGACCAAG GCTTCATCTGAGTTAAATG	56	6	CX283730	Kidney
EKOP5-Li	(CA)₁₂TA(CA)₂	CTTCCACAGTAACTCCATCTCCA GATTTTGAAGCAGACAGGCAGTC	60	11	CX283412	Liver
EKOP6-Li	(CA)₁₂	GTAGCACATTTTTTTTTTCCA GACGAACTTAAATGCAAGGA	57	18	CX285421	Liver
EKOP17-Li	(AC)₁₀(ATA)₁₀	TCTACTCAGAGCCAAACAG ATCACTGCAGCTCAGT	56	7	CX286761	Liver
EKOP2-Mu	(TC)₁₀	CATTTTACATTCCGTTACTC AGATGACGGGGCAGCAAAAT	58	21	CX283994	Muscle
EKOP5-Sk	(TG)₁₃	CATACTGATACTGCGATGTTG TCAAAAAGAAGGGAGGACAGC	58	1	CX284321	Skin
EKOP1-Sp	(ATC)₁₀	TTGGACACAGAAAACAGAG CTCGGTTAGGTAATG	56	11	CX283759	Spleen
EKOP-E1-Sp	(ATC)₈	TTGGACACAGAAAACAGAG CTCGGTTAGGTAATG	58	11	CX283759	Spleen
EKOP-E2-Sp	(TG)₁₀	GGAGTTAATGATGTAACAT ATCAAAGCCTGTTGCTGTC	58	12	CX283892	Spleen
EKOP6-St	(CA)₁₀	GACTTGAAGTACGCAGTTTGAATTG GCTTGGTACAACTTCTCGTTAG	55	16	CX284835	Stomach
EKOP8-St	(GT)₁₄	GTAAGTACAGGCTCAGAATGTG CACCCCTACCTCCCTCCTCAG	60	4	CX284949	Stomach

¹Ta is the optimal annealing temperature; ²LG is linkage group.
2.4. Genotyping

DNA was extracted from fin samples using TNES-urea buffer (6 M urea, 10 mM Tris-HCl [pH 7.5], 125 mM NaCl, 10 mM EDTA, and 1% SDS) and proteinase K treatment followed by standard phenol extraction methods [13]. PCR was performed in a 10-μl reaction volume containing 50 ng of genomic DNA, 10 mM Tris-HCl (pH 8.8), 0.1% Triton X-100, 5 mM KCl, 1.5 mM MgCl₂, 0.2 mM each dNTP, 5 pmol of each primer, and 0.5 U of Taq DNA polymerase (Promega, Madison, WI). Amplification was carried out using a PTC 200 MJ-Research thermocycler DNA engine under the following conditions: initial denaturation at 95°C for 15 min followed by 35 cycles of 20 s at 94°C, 40 s at a primer-specific annealing temperature between 58 and 62°C, 1 min at 72°C, and a final extension period of 10 min at 72°C.

For fluorescent detection of the PCR products, the forward primer in each pair was labeled with 6-FAM, NED, or HEX dye. The polymorphic microsatellite loci were revealed using an ABI PRISM 3100 automated DNA sequencer (Applied Biosystems, Foster City, CA, USA) and alleles were designated according to product size (GENESCAN 400HD ROX, PE Applied Biosystems). The genotypes were scored using GENESCAN and GENOTYPER (both version 3.7) software.

2.5. Linkage analysis

Linkage analysis and the building of the map were achieved using Crimap version 3.0 [14]. Linkage groups were identified by pair-wise two point analysis. Those markers with LOD scores of ≥3 were assigned to the same linkage group. The order of markers in each linkage group was confirmed based on the likelihood scores using the flips 6 option in the Crimap package. The linkage maps are theoretically sex averaged maps because the unsexed progeny should be assumed to be 1:1 sex ratio. The maps were visualized using MapChart version 2.2 [15].

3. Results and Discussion

3.1. Genetic markers

Where possible, we established correspondence with the previous map [5] with the intention of providing a stable nomenclature for the linkage groups. The markers on LG 23, 24, and 28 in the previous map coalesced with LG 11, 20, and 3, respectively, in the new map. The relationships between the markers in the two maps are outlined in Table 3. Eighty-four of 110 previously-mapped microsatellite markers with the suffix TUF were also found in our linkage map. The linkages and order of markers in the new map are largely concordant with those in the previous linkage map of Japanese flounder [5].

Current LG	Common markers	Previous LG	Not mapped
1	Poli6TUF, Poli10TUF, Poli30TUF	1	Poli9-22TUF, Poli100TUF, Poli157TUF
2	Poli23TUF, Poli30TUF	2	Poli153TUF, Poli9-48TUF
3	Poli18-2TUF, Poli18STUF, Poli192TUF, Poli13TUF, Poli137TUF, Poli128TUF, Poli167TUF, Poli116TUF	3 + 28	Poli140TUF, Poli115TUF, Poli142TUF, PoliRC35TUF
4	Poli48TUF, Poli29TUF, Poli111TUF, Poli128TUF, Poli181TUF, Poli35TUF, Poli83TUF, Poli156TUF	4	-
5	Poli51TUF, Poli43TUF, Poli9TUF	5	Poli112TUF
6	Poli190TUF, Poli143TUF, Poli172TUF, Poli107TUF	6	Poli157TUF, Poli158TUF
7	Poli18-55TUF, Poli177TUF, Poli154TUF, Poli117TUF	7	Poli112TUF
8	Poli194TUF, Poli136TUF, Poli166TUF, Poli162TUF, Poli106TUF, Poli126TUF, Poli202TUF, Poli116TUF	8	Poli112TUF
9	Poli163TUF, Poli182TUF, Poli190TUF, Poli180TUF, Poli16-39TUF, Poli129UF, Poli16-76TUF	9	Poli49TUF
10	Poli34TUF, Poli144TUF, Poli13-2TUF	10	Poli101TUF, Poli158TUF
11	Poli176TUF, Poli174TUF, Poli154TUF	11 + 23	Poli132TUF
12	Poli149TUF, Poli16-24TUF, Poli16-911TUF, Poli9-52TUF	12	Poli1TUF, Poli131TUF, Poli189TUF, Poli179TUF
13	Poli18-44TUF, Poli187TUF, Poli145TUF, Poli175TUF, Poli135TUF	13	-
14	Poli141TUF, Poli1RC47-TUF	14	-
15	Poli121TUF, Poli9-8TUF, Poli168TUF	15	Poli15-35TUF, Poli132TUF
16	Poli105TUF, Poli199TUF	16	-
17	Poli9-38TUF	17	Poli127TUF, Poli11TUF
18	Poli147TUF, Poli16-79TUF	18	Poli108TUF
19	-	19	Poli123TUF
20	Poli9-58TUF, Poli139TUF	20 + 24	Poli123TUF
21	Poli28TUF	21	Poli113TUF, Poli102TUF
22	Poli2TUF	22	-
Figure 1. Linkage map for olive flounder (*Paralichthys olivaceus*). The nomenclature of linkage groups is consistent, where possible, with the previous map [5] and the marker distances are indicated in Kosambi centimorgan.

23	Poli122TUF, Poli193TUF, Poli150TUF, Poli56TUF, Poli18-42TUF, Poli-RC27-TUF
24	Poli98TUF, Poli124TUF

1 Unlinked marker; 2 segregating null allele; 3 monomorphic markers
Twenty-six markers were not mapped in our analysis because of null or unlinked markers and homozygous genotypes. The segregation of null alleles was identified at three loci (Poli102TUF, Poli127TUF, and Poli129TUF). Thirteen markers (Poli9-22TUF, Poli115TUF, Poli97TUF, Poli112TUF, Poli5-35TUF, Poli11TUF, Poli9-6TUF, Poli9-48TUF, Poli49TUF, Poli101TUF, Poli1TUe, Poli108TUF, and Poli113TUF) were unlinked to any of the other markers and ten markers (PoliRC12TUF, Poli104TUF, Poli33TUF, Poli142TUF, PoliRC35TUF, Poli158TUF, Poli131TUF, Poli132TUF, Poli179TUF, and Poli123TUF) were not informative in this mapping family. The cross-species amplification of microsatellite markers between closely related species is an important issue for map construction because the interspecies use of markers can save a lot of resources and also indicate the relationships in genome structure and functions. Between Atlantic halibut and Japanese flounder genomes, around 63.9% of markers were amplified in both species and about half of the markers used for accurate estimate of genome sizes.

The estimated genome sizes of fish species were from 700cM, Barramundi [19] and tiger pufferfish [20] to 1,500cM of Atlantic halibut [16] and to 2,750cM of rainbow trout [21]. The olive flounder genome size is in the moderate size range and can function as a bridge for fish genome evolution studies, which can be further understood with help from the genome sizes because the genome duplication in an ancestral lineage undoubtedly contribute to the genome size and structure of the species in that lineage [22].

Based on genome similarity, identified QTL and target EST sequences can be also applied between species and the structure and functions can be further clarified through positional cloning and comparative genomic analysis [23]. The olive flounder linkage map presented here provides the basis for further investigations into quantitative and comparative genomics of Pleuronectiformes.

Acknowledgments

This work was supported by grants from the National Fisheries Research and Development Institute (RP-2008-BT-007).

Conflict of interest

The authors have declared that no conflict of interest exists.

References

1. Fuji K, Kobayashi K, Hasegawa O, et al. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture. 2006; 254: 203-210.
2. Fuji K, Hasegawa O, Honda K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture. 2007; 272: 291-295.
3. Bentsen HH, Gjerde B. Design of fish breeding programs. Proceedings of the 5th World Congress of Genetics Applied to Livestock Production. Guelph, ON: Department of Animal Science, University of Guelph. 1994: 352-359.
4. Wang CM, Lo LC, Zhu ZY, et al. A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer). BMC Genomics.2006; 7: 274.
5. Coimbra MMM, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japanese flounder (Paralichthys olivaceus). Aquaculture. 2003; 220: 203-218.
6. Danzmann RG, Gharbi K. Gene mapping in fishes: a means to and end. Genetica. 2001; 111: 3-23.
7. Eujayl I, Sorrells ME, Wolters P, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl. Genet. 2004; 104: 399-407.
8. Shimizu N, Sasaki T, Asakawa S, et al. Comparative genomics of medaka and fugu. Comp. Biochem. Physiol. 2006; 1: 6-12.
9. Kim WJ, Kim KK, Lee JH, et al. Isolation and characterization of polymorphic microsatellite loci in the olive flounder (Paralichthys olivaceus). Molec. Ecol. Not. 2003; 3: 491-493.
10. Sekino M, Hara M. Isolation and characterization of microsatellite DNA loci in Japanese flounder Paralichthys olivaceus (Pleuronectiformes, Pleuronectoidei, Paralichthyidae). Molec. Ecol. 2002; 9: 2200-2202.
11. Takagi M, Yoshida K, Taniguchi N. Isolation of microsatellite
loci from Japanese flounder *Paralichthys olivaceus* and detection of PCR fragments with simple Non-RI methods. Fish. Sci. 1999; 65(3): 486-487.

12. Benson G. Tandem repeats finder: a program to analyze DNA sequence. Nucleic Acids Research. 1999; 27: 573-580.

13. Asahida T, Kobayashi T, Saitoh K, et al. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci. 1996; 62: 727-730.

14. Green P, Falls K, Crooks S. Documentation for CRI-MAP. St Louis, MI: Washington University School of Medicine. 1990.

15. Voorrips R.E. MapChart software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002; 93: 77-78.

16. Reid DP, Smith CA, Rommens M, et al. A genetic linkage map of Atlantic halibut (*Hippoglossus hippoglossus* L). Genetics. 2007; 177(2): 1193-1205.

17. Kikuno T, Ojima Y, Yamashita N. Chromosomes of flounder *Paralichthys olivaceus*. Proc. Japan Acad. 1986; 62: 194-196.

18. Dekkers JCM, Hospital F. Multifactoral genetics: the use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Genet. 2002; 3: 22-32.

19. Wang CM, Zhu ZY, Lo LC, et al. A microsatellite linkage map of Barramundi, *Lates calcarifer*. Genetics. 2007; 175: 907-915.

20. Kai W, Kikuchi K, Fujita M, et al. A genetic linkage map for the Tiger Pufferfish, *Takifugu rubripes*. Genetics. 2005; 171: 227-238.

21. Guyomard R, Mauger S, Tabet-Canale K, et al. A type I and type II microsatellite linkage map of rainbow trout (*Oncorhynchus mykiss*) with presumptive coverage of all chromosome arms. BMC Genomics. 2006; 7(302): 1-13.

22. Hoegg S, Brinkmann H, et al. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol. 2004; 59(2): 190-203.

23. Reid DP, Szanto A, Glebe B, et al. QTL for body weight and condition factor in Atlantic salmon (*Salmo salar*): comparative analysis with rainbow trout (*Oncorhynchus mykiss*) and Arctic char (*Salvelinus alpinus*). Heredity. 2005; 94: 166-172.