\textbf{PT} restoration via increased loss-gain in \textbf{PT}-symmetric Aubry-Andre model

Charles Liang, Derek D. Scott, and Yogesh N. Joglekar

Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA

(Dated: February 12, 2014)

In systems with “balanced loss and gain”, the \textbf{PT}-symmetry is broken by increasing the non-hermiticity or the loss-gain strength. We show that finite lattices with oscillatory, \textbf{PT}-symmetric potentials exhibit a new class of \textbf{PT}-symmetry breaking and restoration. We obtain the \textbf{PT} phase diagram as a function of potential periodicity, which also controls the location complex eigenvalues in the lattice spectrum. We show that the sum of \textbf{PT}-potentials with nearby periodicities leads to \textbf{PT}-symmetry restoration, where the system goes from a \textbf{PT}-broken state to a \textbf{PT}-symmetric state as the average loss-gain strength is increased. We discuss the implications of this novel transition for the propagation of a light in an array of coupled waveguides.

\textit{Introduction.} Open systems with balanced loss and gain have gained tremendous interest in the past three years since their experimental realizations in optical \cite{1} \cite{2}, electrical \cite{3}, and mechanical \cite{4} systems. Such systems are described by non-hermitian Hamiltonians that are invariant under combined parity and time-reversal (\textbf{PT}) operations \cite{5}. Apart from their mathematical appeal, such non-hermitian Hamiltonians show non-intuitive properties such as unidirectional invisibility \cite{6} \cite{7} \cite{8} and are thus of potential technological importance.

Historically, \textbf{PT} Hamiltonians on an infinite line were the first to be investigated \cite{9} \cite{10}. The range of parameters where the spectrum of the Hamiltonian is purely real, $e_{\lambda} = c_{\lambda}^*$, and the eigenfunctions are simultaneous eigenfunctions of the \textbf{PT} operator, $\psi_{\lambda}(x) = \psi_{\lambda}^*(-x)$, is called the \textbf{PT}-symmetric phase. The emergence of complex conjugate eigenvalues when the parameters are not in this region is called \textbf{PT}-symmetry breaking. A positive threshold for \textbf{PT}-symmetry breaking implies that the system transitions \cite{11} \cite{12} from a quasi-equilibrium state at a small but nonzero non-hermiticity, to loss of reciprocity as the strength of the balanced loss-gain term crosses the threshold.

Although \textbf{PT}-symmetric Hamiltonian studies started with continuum Hamiltonians, all of their realizations are in finite lattices where the continuum, effective-mass approximation may not apply. This observation has led to tremendous interest in \textbf{PT}-symmetric lattice models \cite{13} \cite{14} \cite{15} that can be realized in coupled waveguide arrays \cite{16} \cite{17}.

A universal feature of all such systems is that \textbf{PT}-symmetry is broken by increasing the balanced loss-gain strength and restored by reducing it. Here, we present a tight-binding model that can exhibit exactly opposite behavior, via a family of \textbf{PT}-symmetric, periodic potentials.

A remarkable property of lattice models, absent in the continuum limit, is the effects of a periodic potential. The spectrum of a charged particle in constant magnetic field in two dimensions consists of Landau levels \cite{18} \cite{19}; a similar particle on a two-dimensional lattice displays a fractal, Hofstadter butterfly spectrum \cite{20} \cite{21}. In one dimensional lattices, a fractal spectrum emerges in the presence of a hermitian, periodic potential, and this model, known as the Aubry-Andre model \cite{22}, shows localization transition in a clean system when the strength of the incommensurate potential exceeds the nearest-neighbor hopping \cite{23}. Here, we consider a \textbf{PT}-symmetric Aubry-Andre model on an N-site lattice with hopping J and complex potential $V_{\beta}(n) = V_0 \cos [2\pi \beta(n - n_c)] + i \gamma \sin [2\pi \beta(n - n_c)]$ where $n_c = (N + 1)/2$ is the lattice center and $\gamma > 0$.

Since $V_{\beta} = (-1)^{2n_c}V_{\beta}^* = (-1)^{2n_c}V_{1+\beta}$, it is sufficient to consider the family of potentials with $0 < \beta < 1$ (when $\beta = 0$ the problem reduces to the Aubrey-Andre model \cite{24} \cite{25}). We then consider the effect of two such potentials $V_{\beta_1} + V_{\beta_2}$ with $|\beta_1 - \beta_2| \sim 1/N \ll 1$.

Our salient results are follows: i) For a single potential V_{β}, the threshold loss-gain strength $\gamma_{\text{PT}}(N, V_0, \beta)$ shows N local maxima along the β axis; it is suppressed by a nonzero real modulation V_0. ii) The discrete index of pair of eigenvalues that become complex can be tuned stepwise by varying $0 < \beta < 1/2$. iii) For $V = V_{\beta_1} + V_{\beta_2}$, generically, the phase diagram in the $(\gamma_{\beta_1}, \gamma_{\beta_2})$ plane shows a re-entrant \textbf{PT}-symmetric phase: a broken \textbf{PT} symmetry is restored by increasing the non-hermiticity and broken again when γ_{β_1} become sufficiently large. This behavior is absent in the extensively studied continuum Hamiltonians with complex potentials \cite{26} \cite{27}, and is a result of competition between the two lattice potentials V_{β_1} and V_{β_2}.

We emphasize that $\gamma_i > 0$ means the gain-regions of the two potentials mostly align as do their respective loss-regions. Thus, the competition between V_{β_1} and V_{β_2} is not in their loss-gain profiles, but, as we will show below, due to the relative locations of \textbf{PT}-symmetry breaking energy-levels in the spectrum. \textbf{PT} phase diagram for a single potential. The tight-binding hopping Hamiltonian for an N-site lattice with open boundary conditions is $H_0 = -J \sum_{n=1}^{N-1} (|n+1\rangle \langle n | + |n+1\rangle \langle n |)$. Its particle-hole symmetric energy spectrum is given by $\epsilon_{0,p} = -2J \cos(k_p) = -\epsilon_0,\beta$ and the corresponding normalized eigenfunctions are $\psi_p(j) = \sin(k_p j) = (-1)^j \sin(\bar{k}_p j)$ where $0 < k_p = p \pi/(N+1) < \pi$ and $\bar{p} = N + 1 - p$. The properties that relate eigenval-
ues and eigenfunctions at indices p, \tilde{p} remain valid in the presence of pure loss-gain potential $V_0 = -V_0^*$ [33]. The eigenvalue equation for an eigenfunction $f(n)$ of the non-Hermitian, \mathcal{PT}-symmetric Hamiltonian $H_\beta = H_0 + V_\beta$ is given by ($1 \leq n \leq N$)

$$-J [f(n+1) + f(n-1)] + V_\beta f(n) = E f(n), \quad (1)$$

with $f(0) = 0 = f(N+1)$. Since this difference equation is not analytically soluble for an arbitrary β, we numerically obtain the spectrum $E(\gamma)$ and the \mathcal{PT}-symmetry breaking threshold $\gamma_{\mathcal{PT}}(N, V_0, \beta)$ using different discretizations $\beta_k = k\delta\beta$ along the β-axis. Due to the $\beta \leftrightarrow 1 - \beta$ symmetry of the potential, it follows that the exact threshold loss-gain strength satisfies $\gamma_{\mathcal{PT}}(N, V_0, \beta) = \gamma_{\mathcal{PT}}(N, V_0, 1 - \beta) = \gamma_{\mathcal{PT}}(N, -V_0, \beta)$.

We consider a purely loss-gain potential, present results for an even lattice, and point out the salient differences that arise when lattice size N is odd or when $V_0 \neq 0$. The left-hand panel in Fig. 1 shows the \mathcal{PT}-symmetric threshold $\gamma_{\mathcal{PT}}(N, \beta)/J$ for an $N = 50$ lattice obtained by using discretization $\delta\beta = 1/2N$ (blue squares), an $N = 100$ lattice with $\delta\beta = 1/4N$ (red markers), and an $N = 400$ lattice with $\delta\beta = 1/N$ (black stars). There is a monotonic suppression of the threshold strength with increasing N, and, crucially, the general shape of the phase diagram depends upon the size of $\delta\beta$ relative to $1/N$. A scaling of this threshold suppression for lattice sizes $N = 50 - 500$, shown in the inset, implies that $\gamma_{\mathcal{PT}}(N, \beta) = C_\beta / N$ where C_β is a constant. Thus, the threshold strength is suppressed linearly and vanishes in the thermodynamic limit [33,35]. However, this algebraically fragile nature of the \mathcal{PT}-phase is not an impediment since \mathcal{PT}-systems to-date are only realized in small lattices with $N \ll 100$. The right-hand panel in Fig. 1 shows the phase diagram for $N = 50$ case with discretization $\delta\beta = 1/N^2$. The results for irrational values of β and other discretizations lie on the same curve. The \mathcal{PT} phase diagram shows $(N-2)$ local maxima located at $\beta_k = (2k+1)/2N$ and the two maxima at the end points, is symmetric about the center and has a local minimum in the threshold at $\beta = 1/2$. In addition, the function $\gamma_{\mathcal{PT}}(N, \beta)$ has $(N-1)$ minima at $\beta_k = k/N$ and smoothly oscillates over a period $\sim 1/N = 0.02$ as shown in the inset (solid red circles). These results are generic for any lattice size N with discretization $\delta\beta \sim 1/N^2$.

When N is odd, the non-Hermitian potential vanishes at $\beta = 1/2$ and the spectrum of the Hamiltonian H_β is purely real. For an odd lattice, a similarly obtained phase diagram shows $(N-1)$ local maxima that are distributed equally on the two sides of $\beta = 1/2$, along with a substantial enhancement in the threshold strength as $\beta \to 1/2^\pm$. Adding a real potential modulation $V_0 \neq 0$, to the loss-gain potential, in general, suppresses the threshold strength.

The phase diagram can be understood as follows: for a small $\sim 1/N^2 \ll 1/N$, $V_\beta(n) = i\gamma(2\pi\beta)(n - n_c)$ and the enhanced \mathcal{PT}-breaking threshold, $\gamma_{\mathcal{PT}}/J \sim 0.3$, is consistent with a linear-potential threshold [36]. For an even lattice, the average of the gain-potential is given by $A_\beta(N) = \sum_{n}^N V_\beta(n)$, $\gamma = \sin^2(\pi\beta/2)/\sin(\pi\beta)$, and the \mathcal{PT} threshold is greatest when the change in the average strength is maximum as β is varied, $\partial_\beta A_\beta(\beta) = 0$. In the limit $N \gg 1$ and $\beta \gg 1/N^2$, it implies that the N maxima of $\gamma_{\mathcal{PT}}(N, \beta)$ occur at $\beta_{n,\text{max}} = (2k+1)/2N$. On the other hand, $\gamma_{\mathcal{PT}}(N, \beta)$ is smallest when the change in the average strength is minimum, $\partial_\beta A_\beta(\beta) = 0$, and gives
the locations of \((N-1)\) minima as \(\beta_{k,\text{min}} = k/N\). A similar analysis applies to odd lattices, where the average potential is given by \(A_O(\beta) = \sin[\pi\beta(N-1)/2] \sin[\pi\beta(N+1)/2]/\sin(\pi\beta)\).

![Diagram](image)

FIG. 2. (color online) Index of eigenvalues that become complex as a function of \(\beta\) for an \(N = 20\) lattice with discretization \(\delta\beta = 1/2N = 0.025\) shows a \(\beta \leftrightarrow 1 - \beta\) symmetry, denoted by heavy and light red markers. When \(\beta \leq 0.08\), levels \((E_1, E_2)\) become degenerate and complex, and so do their particle-hole counterparts, \((E_{1g}, E_{2g})\) (red circles); in general, we can tune the location of \(\mathcal{PT}\)-breaking (blue squares, black stars, red markers) by appropriately choosing \(\beta\).

Next, we focus on the location of the \(\mathcal{PT}\) symmetry breaking. Due to the particle-hole symmetric spectrum of \(H_\beta\), two pairs of levels \((E_n, E_{n+1})\) and \((-E_n, -E_{n+1})\) become complex simultaneously. Figure 2 plots the indices of eigenvalues that become complex as a function of \(\beta\) for an \(N = 20\) lattice with discretization \(\delta\beta = 1/2N\). It shows that at small \(\beta\), the eigenvalues at the band edges become complex, whereas, as \(\beta \to 1/2\), the pairs of eigenvalues that become complex move to the center of the band. Thus the average range of \(\beta\)s with the same location for \(\mathcal{PT}\)-symmetry breaking is \(\sim 1/N\). It follows that by choosing an appropriate \(\beta\), one is able to control the location of \(\mathcal{PT}\)-symmetry breaking in the energy spectrum. As we will see next, this control allows us to introduce competition between potentials \(V_\beta\) with two different, but close, values of \(\beta\).

\(\mathcal{PT}\) phase diagram with two potentials. We now consider the \(\mathcal{PT}\)-symmetric phase of the Hamiltonian with two potentials, \(H = H_0 + V_{\beta_1} + V_{\beta_2}\), in the \((\gamma_1, \gamma_2)\) plane, where both axes are scaled by their respective threshold values \(\gamma_{\alpha,\mathcal{PT}} = \gamma_{\mathcal{PT}}(\beta_\alpha)\). Panel (a) in Fig. 3 shows the numerically obtained phase diagram for an \(N = 20\) lattice with \((\beta_1, \beta_2) = (0.20, 0.25)\) (blue stars and squares). It shows that, from a \(\mathcal{PT}\)-broken phase (point 1), it is possible to enter the \(\mathcal{PT}\)-symmetric phase by increasing the non-hermiticity \(\gamma_1\) (point 2). We emphasize that increasing \(\gamma_1\) increases the average gain- and loss- strength \(\gamma_1 A_E(\beta_1) + \gamma_2 A_E(\beta_2)\), and yet drives the system into a \(\mathcal{PT}\)-symmetric phase from a \(\mathcal{PT}\)-broken phase. Increasing \(\gamma_1\) further, eventually, drives the system into a \(\mathcal{PT}\) broken phase again (point 3). This re-entrant phase is due to competition between \(V_{\beta_1}\) and \(V_{\beta_2}\). For \((\beta_1, \beta_2) = (0.04, 0.08)\), the two co-operate and the phase boundary is an expected straight line. Panel (b): intensity \(I(k, t)\) of an initially normalized state shows that, starting from a \(\mathcal{PT}\)-broken phase (top panel), increasing \(\gamma_1\) initially restores bounded oscillations (center panel), followed by \(\mathcal{PT}\) breaking and amplification (bottom panel). Note the two-orders-of-magnitude difference in the total intensity.

![Diagram](image)

FIG. 3. (color online) Panel (a): \(\mathcal{PT}\)-phase diagram for potential \(V_{\beta_1} + V_{\beta_2}\). When \((\beta_1, \beta_2) = (0.20, 0.24)\) (blue stars and squares), a \(\mathcal{PT}\)-broken phase (point 1) is restored by increasing \(\gamma_1\) (point 2) and subsequently broken again (point 3). This re-entrant phase is due to competition between \(V_{\beta_1}\) and \(V_{\beta_2}\). For \((\beta_1, \beta_2) = (0.04, 0.08)\), the two co-operate and the phase boundary is an expected straight line. Panel (b): intensity \(I(k, t)\) of an initially normalized state shows that, starting from a \(\mathcal{PT}\)-broken phase (top panel), increasing \(\gamma_1\) initially restores bounded oscillations (center panel), followed by \(\mathcal{PT}\) breaking and amplification (bottom panel). Note the two-orders-of-magnitude difference in the total intensity.
restoration on the site- and time-dependent intensity $I(k,t) = |\langle \psi | \exp(-iHt/\hbar)|\psi_0 \rangle|^2$ of a state $|\psi_0 \rangle$ that is initially localized on site $N/2 = 10$; the time is measured in units of \hbar/J. The top-subpanel shows that intensity has a monotonic amplification in regions with gain sites, leading to a striated pattern (point 1). Center subpanel shows that by increasing γ_1, oscillatory behavior in the intensity is restored (point 2). Bottom subpanel shows that increasing γ_1 further breaks the \mathcal{PT} symmetry again (point 3). Thus, we are able to restore \mathcal{PT}-symmetry by increasing the non-hermiticity and, achieve amplification by both reducing or increasing the average gain-strength. This novel behavior is absent in all lattice models with a single \mathcal{PT} potential.

Since each potential V_{β_j} breaks the \mathcal{PT} symmetry for $\gamma_j/\gamma_j^{\mathcal{PT}} > 1$, naively, one may expect that the \mathcal{PT} phase boundary for $V_{\beta_1} + V_{\beta_2}$ is given by $\gamma_1/\gamma_1^{\mathcal{PT}} + \gamma_2/\gamma_2^{\mathcal{PT}} = 1$. This is indeed the case for $(\beta_1, \beta_2) = (0.04, 0.08)$, shown by red dashed line in panel (a), even though the potential periodicities differ by a factor of two.

What is the key difference between the two sets of parameters, one of which shows a re-entrant \mathcal{PT}-symmetric phase? It is the indices of eigenvalues that become complex due to V_{β_1} and V_{β_2}. The red rectangle in Fig. 2 shows that for $\beta \leq 0.8$, eigenvalues (E_1, E_2) become complex. In such a case, the two potentials V_{β_1} and V_{β_2} act in a cooperative manner effectively adding their strengths. Therefore, the \mathcal{PT}-phase boundary is a straight line. In contrast, the blue oval in Fig. 2 shows that for $\beta_1 = 0.20$, energy levels E_3, E_5 approach each other, become degenerate, and then complex as $\gamma \to \gamma_{1\mathcal{PT}}$; for $\beta_2 = 0.25$, the energy levels that become complex as $\gamma \to \gamma_{2\mathcal{PT}}$ is E_5, E_6. Thus, the level E_5 is lowered by potential V_{β_1} and raised by the potential V_{β_2} from its hermitian-limit value. This introduces competition between the two potentials V_{β_1} and V_{β_2} even though their gain-regions largely overlap and so do their respective loss regions.

This correspondence between competing potentials and \mathcal{PT}-restoration is further elucidated in Fig. 4. In conjunction with Fig. 2 it shows that re-entrant \mathcal{PT}-symmetric phase occurs when the two potentials compete (panels b-e, g, h). This restoration of \mathcal{PT}-symmetry can be due to increased loss-gain strength in γ_1 (panels d, e), γ_2 (panels b, c, g), or both (panel h). On the other hand, when the two potentials break the same set of eigenvalues, the \mathcal{PT} phase boundary is a line (panels a, f, k).

Discussion. Competing potentials, a common theme in physics, often stabilize phases that would be unstable in the presence of only one of them [37]. A trivial definition of competing \mathcal{PT}-potentials is that the gain-region of one strongly overlaps with the loss-region of another, thus reducing the average gain (and loss) strength.

Here, we have unmasked the subtle competition between \mathcal{PT} potentials whose gain regions largely overlap, based on the location of \mathcal{PT}-symmetry breaking induced by each. This competition results in \mathcal{PT}-restoration and subsequent \mathcal{PT}-breaking, leading to selective intensity suppression and oscillations at large loss-gain strength. Its hints were seen in a continuum model with complex δ-function and constant potentials, but that continuum model is neither easily experimentally realizable nor can it tune between cooperative and competitive behavior [39]. The \mathcal{PT}-symmetric Aubry-Andre model provides a family of potentials with tunable competition or cooperation among them, and is thus ideal for investigating the consequences of such competition; even lattices as small as $N = 10$ that can be realized via coupled optical waveguides [19, 20] or cold atoms [38] may provide a comprehensive understanding of interplay between loss-gain strengths and \mathcal{PT}-symmetry breaking.

This work was supported by NSF Grant No. DMR-1054020.

[1] A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, and D.N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).
[2] C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).
[3] L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, Science 333, 729 (2011).
[4] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D.N. Christodoulides, and U. Peschel, Nature 488, 167 (2012).
[5] J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, and T. Kottos, Phys. Rev. A 84, 040101(R) (2011).
[6] C.M. Bender, B.K. Berntson, D. Parker, and E. Samuel, Am. J. Phys. 81, 173 (2013).
[7] For a review, see C.M. Bender, Rep. Prog. Phys. 70, 947 (2007) and references therein.
[8] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011).
[9] L. Feng, Y.-L. Xu, W.S. Fegadolli, M.-H. Lu, J.E.B. Oliveira, V.R. Almeida, Y.-F. Chen, and A. Scherer, Nat. Mater. 12, 108 (2013).
[10] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[11] C.M. Bender, D.C. Brody, and H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002).
[12] M. Znojil, Phys. Rev. A 82, 052113 (2010).
[13] M. Znojil, Phys. Lett. A 375, 3435 (2011).
[14] O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Phys. Rev. Lett. 103, 030402 (2009).
[15] L. Jin and Z. Song, Phys. Rev. A 80, 052107 (2009).
[16] Y.N. Joglekar and A. Saxena, Phys. Rev. A 83, 050101(R) (2011).
[17] G. Della Valle and S. Loghi, Phys. Rev. A 87, 022119 (2013).
[18] S. Longhi, G. Della Valle, Ann. Phys. 334, 35 (2013).
[19] D.N. Christodoulides, F. Lederer, and Y. Silberberg, Nature (London) 424, 817 (2003).
[20] Y.N. Joglekar, C. Thompson, D.D. Scott, and G. Vemuri, Eur. Phys. J. Appl. Phys. 63, 30001 (2013).
[21] See chapter XV, L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory) (Butterworth-Heinemann, Burlington, MA, 2005).
[22] F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[23] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
[24] P. Harper, Proc. Phys. Soc. London Sec. A 68, 874 (1955).
[25] D. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[26] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, P. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013); H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, and W. Ketterle, ibid 185302 (2013).
[27] L.A. Ponomarenko et al., Nature (London) 497, 594 (2013); C.R. Dean et al., ibid 598 (2013).
[28] S. Aubry and G. Andre, Ann. Isr. Phys. Soc. 3, 133 (1980).
[29] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Phys. Rev. Lett. 103, 013901 (2009).
[30] K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).
[31] S. Longhi, Phys. Rev. A 81, 022102 (2010).
[32] E.-M. Graefe and H.F. Jones, Phys. Rev. A 84, 013818 (2011).
[33] Y.N. Joglekar, Phys. Rev. A 82, 044101 (2010).
[34] Y.N. Joglekar, D. Scott, M. Babey, and A. Saxena, Phys. Rev. A 82, 030103(R) (2010).
[35] D.E. Pelinovsky, P.G. Kevrekidis, and D.J. Frantzeskakis, EPL 101, 11002 (2013).
[36] M. Serbyn, M.A. Skvortsov, Phys. Rev. B 87, 020501 (2013).
[37] See, for example, E. Fradkin, Field Theories of Condensed Matter Systems (Addison Wesley, Reading, MA, 1991).
[38] H. Li, J. Dou, and G. Huang, Opt. Express 21, 32053 (2013).
[39] Y.N. Joglekar and B. Bagchi, J. Phys. A 45, 402001 (2012).