New results on stabbing segments with a polygon

José Miguel Díaz-Báñez, Matías Korman, Pablo Pérez-Lantero, Alexander Pilz, Carlos Seara, and Rodrigo I. Silveira

1 Dept. Matemática Aplicada II, Universidad de Sevilla, Spain.
2 National Institute of Informatics, Tokyo, Japan.
3 JST, ERATO, Kawarabayashi Large Graph Project.
4 Escuela de Ingeniería Civil en Informática, Universidad de Valparaíso, Chile.
5 Institute for Software Technology, Graz University of Technology, Austria.
6 Dept. Matemática Aplicada II, Universitat Politècnica de Catalunya, Spain.
7 Dept. de Matemática & CIDMA, Universidade de Aveiro, Portugal.

Abstract. We consider a natural variation of the concept of stabbing a set of segments with a simple polygon: a segment is stabbed by a simple polygon if at least one endpoint of s is contained in P, and a segment set S is stabbed by P if P stabs every element of S. Given a segment set S, we study the problem of finding a simple polygon P stabbing S in a way that some measure of P (such as area or perimeter) is optimized. We show that if the elements of S are pairwise disjoint, the problem can be solved in polynomial time. In particular, this solves an open problem posed by Löffler and van Kreveld [Algorithmica 56(2), 236–269 (2010)] about finding a maximum perimeter convex hull for a set of imprecise points modeled as line segments. Our algorithm can also be extended to work for a more general problem, in which instead of segments, the set S consists of a collection of point sets with pairwise disjoint convex hulls. We also prove that for general segments our stabbing problem is NP-hard.

1 Introduction

Let S be a set of n straight line segments (segments for short) in the plane. The problem of stabbing S with different types of stabbers (in the computer science literature) or transversals (in the mathematics literature) has been widely studied during the last two decades.

Rappaport [20] considered the case in which the stabber is a simple polygon. Specifically, he studied the following problem: a simple polygon P is a polygon transversal of S if we have P∩s ≠ ∅ for all s ∈ S; that is, every segment in S has at least one point in P. A simple polygon P is a minimum polygon transversal of S if P is a polygon transversal of S and all other transversal polygons have equal or larger perimeter. Rappaport observed that such a polygon always exists, is convex, and may not be unique. He gave an O(3^m n + n log n) time algorithm for computing one, where m is the number of different segment directions. Several approximation algorithms are known [10,12], but determining if the general problem can be solved in polynomial time is still an intriguing open problem.
Arkin et al. [3] considered a similar problem: \(S \) is stabbable if there exists a convex polygon whose boundary \(C \) intersects every segment in \(S \); the closed convex chain \(C \) is then called a (convex) transversal or stabber of \(S \). Note that in this variant there is not always a solution. Arkin et al. [3] proved that deciding whether \(S \) is stabbable is NP-hard.

In this paper we also consider the problem of stabbing the set \(S \) by a simple polygon, but with a different criterion that is between the two criteria above. More concretely, we use the following definition:

Definition 1. A segment \(s \in S \) is stabbed by a simple polygon \(P \) if at least one of the two endpoints of \(s \) is contained in \(P \). The set \(S \) is stabbed by \(P \) if every segment of \(S \) is stabbed by \(P \).

With this definition we study the **Stabbing Polygon Problem (SPP)**, defined as finding a simple polygon \(P \) that stabs a given set \(S \) of segments and optimizes some objective function. The main focus of this paper is the case in which we want to minimize the perimeter of the stabber (denoted by \(\text{MinPerSPP} \)). Naturally, one could also study the maximization variants of the problem, or even the case in which we measure the area instead. However, with the current formulation these problems are trivial, since there exists stabbers of arbitrarily large area/perimeter (or arbitrarily small area, realized, e.g., by a simple polygon resulting from “thickening” a plane tree spanned by segment endpoints by an arbitrarily small amount). Instead, we follow the formulation of Löffler and van Kreveld [22,15] and formulate the \(\text{MinAreaSPP} \), \(\text{MaxPerSPP} \) and \(\text{MaxAreaSPP} \) as follows: given a set \(S \) of segments, select one endpoint of each segment such that the convex hull of the selected endpoints has minimum area, maximum perimeter, or maximum area, respectively. It is straightforward to verify that any polygon obtained in this way is a stabber. Also, the optimal solution of the \(\text{MinPerSPP} \) can be obtained with this approach (as the convex hull of any stabber is also a stabber with at most the same perimeter; see also [20, Lemma 1]).

Note that the four variants that we consider are discrete (that is, we do not consider the interior of the segments). One could alter the definition of the SPP by saying that the input is a collection of pairs of points instead of segments. However, as we will show later, the segments play an important role in establishing the difficulty of the problem, hence we keep the segment formulation.

Although the differences between the \(\text{MinPerSPP} \) and the problems studied by Rappaport [20] and Arkin et al. [3] may look small, we observe that the problems are substantially different. The difference with the problem studied by Rappaport [20] is that \(P \) can be a stabber and have both endpoints of a segment of \(s \in S \) outside \(P \) (provided that the interior of \(s \) is stabbed by \(P \)), whereas we force one of the endpoints to be in \(P \). One of the common properties of both problems is that the optimal solution is a convex polygon and that it always exists (the convex hull of \(S \) is always a stabbing polygon according to both definitions). On the other hand, a solution of an instance of the \(\text{MinPerSPP} \) may fully contain a segment of \(S \). This is not allowed in the stabber definition used by Arkin et al. [3]. Thus, we can say that our problem is between the two mentioned ones.

1.1 Related work

Prior to the paper by Rappaport [20], Meijer and Rappaport [16] solved the problem of computing a minimum perimeter polygon transversal for a set of \(n \) parallel segments in optimal \(\Theta(n \log n) \) time. Mukhopadhyay et al. [17] considered the related problem of computing a convex polygon transversal of minimum area for vertical segments, giving an algorithm that runs in \(O(n \log n) \) time. Prior to the work of Arkin et al. [3] on convex transversal, Goodrich and Snoeyink [11] gave an \(O(n \log n) \) time algorithm that decides whether a convex transversal exists when the segments are parallel.

Pairs of points are also the input of the problems studied by Arkin et al. [2], who studied the 1-center and 2-center problems in that context. In the former problem, the goal is to find a disk of smallest radius containing at least one point from each pair. The latter one aims at finding two disks of smallest size such that each pair has one point in each disk. Arkin et al. [2] presented algorithms for these problems that run in \(O(n^2 \text{polylog } n) \) and \(O(n^3 \log^2 n) \) time, respectively.
Several similar problems have been considered in the context of data imprecision by Löffler and van Kreveld [15,22]. The input in their problems is a set of imprecise points, where each point is specified by a region in which the point may lie. The output is the location of each point within the specified region so that the area or perimeter of the convex hull is maximized/minimized. Among other cases, they consider the case in which each imprecise region is a segment [15]. First, they show that for the maximization of perimeter and area, one can restrict the search to the endpoints of the regions, thus implying that their problems are equivalent to the MaxPerSPP and the MaxAreaSPP, respectively. Then, they give several polynomial time algorithms for particular cases of the input (e.g., parallel segments). They also show that the MaxAreaSPP is NP-complete, and that MaxPerSPP is NP-hard. In a companion paper [22], they provide a linear-time approximation scheme for the MaxAreaSPP.

Daescu et al. [9] studied the complexity of the problem of, given a k-colored point set, finding a convex polygon of minimum perimeter containing at least one point from each color. Note that the MinPerSPP is the special case in which 2n points are colored with n colors, and each color is used twice. They proved that their problem is NP-hard if k is part of the input of the problem, and presented a \(\sqrt{2} \)-approximation algorithm for the MinPerSPP that runs in \(O(n^2) \) time.

Parallel to our research, the model we consider was studied in a more general setting by Consuegra and Narasimhan [8] and Consuegra et al. [7]. They define a class of geometric problems called avatar problems. In these problems one has a collection of objects, each of which has k copies (or avatars). The objective is to find some structure that uses at least one copy of each object. Our problem fits into their model as a particular case in which \(k = 2 \), each avatar is a point, and the structure to look for is a minimum/maximum perimeter/area convex hull of the selected points. Consuegra et al. [7] gave a dynamic programming algorithm that can be used to solve the MinPerSPP in polynomial time for parallel segments. In the companion paper [8] they present a polynomial-time approximation scheme that can be applied to both the MinPerSPP and the MinAreaSPP.

1.2 Our results

We show in Section 2 that if \(S \) is a set of pairwise disjoint segments, the four variants of the SPP can be solved in polynomial time. In particular, this method can be used to solve the open problem posed by Löffler and van Kreveld [15] (since their maximum area transversal problem is equivalent to our MaxAreaSPP). In Section 3 we extend our algorithm for disjoint segments to islands of points: \(S \) is a collection of point sets with pairwise-disjoint convex hulls, proving that this problem can also be solved in polynomial time. Finally, we show that the minimization variants of the problem for the case of general segments (that is, when crossings are allowed) is NP-hard in Section 4. This result complements with the NP-hardness for the maximization variants of Löffler and van Kreveld [15]. We complement the NP-hardness result by showing that the four variants of the SPP are Fixed Parameter Tractable (FPT) in the number of segments that cross other segments. A summary of the results obtained for line segments can be seen in Table 1 (note that, for conciseness, our results for islands of points are not included in the table).

Note that optimization of the perimeter requires comparing sums of radicals (specifically, the sum of Euclidean distances). It is not known whether this problem is in NP [5], and therefore the NP-hardness result does not imply NP-completeness for the minimization version of the problem (the same fact was also observed in [15]). For the same reason, we assume the real RAM as the underlying computational model in our algorithms.

2 Solving the SPP for pairwise disjoint segments

In this section we show that if the segments in \(S \) are pairwise disjoint, then the SPP can be solved in polynomial time. For ease of exposition, we present the algorithm for the MinPerSPP. Observe throughout the description that the approach naturally extends to the MinAreaSPP as well. In Section 2.7 we explain the modifications needed for the maximization variants of the problem.
	Minimization	Maximization
Perimeter	NP-hard (Th. [1])	NP-hard [14]
	PTAS [8]	FPT (Obs. [1])
	Polynomial for non-crossing (Th. [1]	Polynomial for non-crossing (Th. [2]
	FPT (Obs. [1])	
Area	NP-complete (Th. [4])	NP-complete [6,15]
	PTAS [8]	FPT (Obs. [1])
	Polynomial for non-crossing (Th. [1]	
	FPT (Obs. [1])	

Table 1. Summary of known and new results for the four variants of the Stabbing Polygon Problem (SPP), for a set of line segments.

Given any two points p and q in the plane, let pq denote the segment joining p and q. For any simple polygon P let ∂P denote the boundary of P. Consider the set B of all possible bitangents of S, i.e., B is the set of all segments not contained in S spanned by two endpoints of segments in S. Note that the elements of B might cross each other and might also cross the segments in S. A polygon C^* with minimum perimeter that contains at least one endpoint of every segment of S is spanned by endpoints of segments in S, and its edges are elements of B.

Arkin et al. [3] describe a dynamic programming approach to decide whether a set of pairwise disjoint segments admits a convex transversal (the vertices of the transversing polygon are restricted to a given set of candidate points). They use constant-size polygonal chains that separate subproblems and are not crossed by segments; therefore the subproblems are independent. We adapt their approach to produce an algorithm for the MinPerSPP. While in their problem setting the boundary of the polygon has to intersect all segments, the SPP requires at least one endpoint of each segment to be contained in the polygon. The key difference (apart from the fact that no candidate points are needed) is that in our problem the segments actually can cross the polygonal chains that separate subproblems. However, we show below that such segments can be handled in a way that leads to polynomial running time. Afterwards, we discuss how to adapt this approach for the maximization variant.

2.1 Triangulating a combination of segments and a polygon

The following way of triangulating a combination of segments and a polygon is crucial for the algorithm, and motivates the structure of the subproblems used in our dynamic programming algorithm.

Let Q be a simple polygon and let S_c be a set of pairwise disjoint segments each of which crosses ∂Q exactly once. Throughout this section we distinguish between a segment intersecting having a point in common) and crossing (having an interior point in common with) another segment or set. Let X be the interior of Q and let X' denote the set we get after removing the 1-dimensional regions of S_c from X, i.e., $X' = X \setminus \bigcup_{s \in S_c} s$ where each segment s is considered to be an infinite set of points. Then X' is an open region whose closure is Q. Note that the vertices of X' are the union of: (i) the vertices of Q, (ii) the endpoints of edges in S_c that are in the interior of Q, and (iii) the points where elements of S_c cross ∂Q. Further, note that X' might not be connected if there is a segment of S_c that has one endpoint on ∂Q and the other one outside Q (e.g., the longest segment in Fig. 1, left).

We now triangulate X' (i.e., partition it into triangles that are spanned only by vertices of X', see Fig. 1). The triangulation T of X' behaves like the triangulation of a collection of simple polygons (imagine the 1-dimensional parts not in X' where the segments of S_c enter Q, i.e., $X \setminus X'$, to be slightly “split”, as in Fig. 1 center). Note that the vertices of T are exactly the vertices of X'. Each edge in T that is not part of ∂Q or part of a segment in S_c partitions X' into two sets (note that each set need not be connected). We call such edges chords (gray edges in Fig. 1 right). Hence, a chord is an edge where each endpoint is either an endpoint of a segment of S or a
crossing between a segment of S and a bitangent of B. Chords are the equivalent of diagonals of simple polygons (interior edges that subdivide the polygon into two smaller polygons). Further, X' might also be separated by an edge that is part of a segment in S_c (like the longest edge in Fig. 1). We call such a segment a separating segment. Keep in mind that there are chords that have one or both of their endpoints not on the endpoint of a segment or at a vertex of Q, but at the crossing of a segment with ∂Q. In any case, a chord or a separating segment uniquely defines a polygonal path from one point on an edge of Q to another point on an edge of Q. Following [13], we will use these polygonal paths of at most three edges, called “bridges” (whose formal description will be given later), to define our subproblems to obtain a solution when taking C^* as Q. Further note that at most two of the edges are a portion of a segment of S. One may think of our approach as being similar to the classic dynamic programming algorithm for minimum weight triangulations of simple polygons (see, e.g., [14]), but with a major difference: we do not know the boundary of the triangulated region beforehand.

2.2 Subproblems

Every subproblem is defined by an ordered pair (a,b) of directed bitangents of B and a bridge β, a polygonal chain of at most three edges that connects a and b. When evaluating a subproblem (a,b,β), we assume that a and b are edges of C^* (with a being directed counterclockwise and b being directed clockwise around ∂C^*) and that C^* equals Q in the discussion above (for some choice of S_c to be defined later). Therefore the bridge β is part of a triangulation of X' and separates X'; β is either a part of a separating segment or consists of a chord (called the chord of β) and at most two parts of segments of S_c. See Fig. 2 for examples of bridges.

Let us recap the possible structures of bridges. Traversing a bridge β from a to b, β starts from either (i) an endpoint of a, or (ii) the intersection point of some segment $s \in S$ and bitangent a.

In the first case, when β starts from an endpoint of a, β consists of a separating segment ending at its intersection point with bitangent b, or β contains a chord that connects to an endpoint of b or to a piece of a segment that crosses b.

In the second case, when β starts from intersection point $s \cap a$, the bridge either continues with a chord, which starts at $s \cap a$, or it continues along s. In the latter case, β continues along s towards b until reaching its endpoint. The bridge can end there, if that endpoint is also an endpoint of bitangent b (in which case s is a separating segment) or it continues through a chord that connects to b or to a piece of a segment that crosses b.

The analogous structure occurs when traversing β from b to a. Keep in mind that a bridge might have a chord that is not a bitangent of B (like the second from the left in Fig. 2). Further, note that a bridge can only be crossed by a segment through the chord, since the segments are pairwise disjoint by definition.

Let the two directed bitangents of a subproblem be $a = a_1a_2$ and $b = b_1b_2$. Given a directed bitangent $a = a_1a_2$ we write \overline{a} for the directed bitangent a_2a_1. Without loss of generality, let a_1
Fig. 2. Examples of bridges. The two bitangents defining the subproblem are shown dashed, chords are dash-dotted, and segments from S are shown solid.

Fig. 3. Examples of subproblems.

and b_1 be on the x-axis and a_2 and b_2 be above it. Also, let b be to the left of the directed line through a_1 and a_2. See Fig. 3 for an illustration.

2.3 Solution of a subproblem

We define the solution of a subproblem as follows. Let $C^\ast_{a,b,\beta}$ be a polygon of minimum perimeter that: (i) contains a and b as two of its boundary edges, (ii) contains at least one endpoint of each segment in S, and (iii) contains both endpoints of every segment of S that crosses the chord of β. The third condition is particularly important, as will become clear later.

Let $C_{a,b,\beta}$ be the polygonal chain on $\partial C^\ast_{a,b,\beta}$ starting at a_1, counterclockwise traversing $\partial C^\ast_{a,b,\beta}$ and ending at b_1. Note that $C_{a,b,\beta}$ is an open polygonal chain, as opposed to $C^\ast_{a,b,\beta}$, which is a simple polygon.

The solution of a subproblem (a,b,β) is $C_{a,b,\beta}$, and its cost is the length of that chain. The base case occurs when $a_2 = b_2$, and has cost equal to the sum of the lengths of a and b. Note throughout the construction that this is the only way a and b can intersect. In general, a and b form a quadrilateral $a_2a_1b_1b_2$. If the quadrilateral is not convex, we discard the subproblem (i.e., we assign it a cost of $+\infty$). Therefore, from now on we discuss the more interesting case in which the quadrilateral is convex.

2.4 Getting the overall solution

In order to find a solution of the initial problem we need to find a,b,β so that the solution to the subproblem (a,b,β) gives a solution of the given instance of the MinPerSPP. We do that by guessing a pair of bitangents $x,y \in B$, with $x = x_1x_2, y = y_1y_2$, such that $y_2y_1x_1x_2$ are assumed to be four consecutive vertices of C^\ast. Hence, after $O(|S|^4)$ guesses we have found x and y such that $\partial C^\ast = C_{x,y,\beta_0} \cup y_1x_1$ with $\beta_0 = x_1y_1$. Suppose we are given the solution $Q = C^\ast$. Let X' be defined as above, and let S_c be the set of segments in S that cross C_{x,y,β_0} (which does not include the ones that cross β_0). Let Δ_0 be the triangle of a triangulation T of X' that has $\beta_0 = y_1x_1$ as one side. The subproblem (x,y,β_0) will be solved by guessing the third endpoint of Δ_0 and the edge c of C_{x,y,β_0} that is incident to Δ_0 or that is crossed by a segment whose endpoint is incident to Δ_0. In the most general case, this will result in two new subproblems (x,\overline{c},β_1) and (c,y,β_2), where each of β_1 and β_2 contains one side of Δ_0 that is not part of β_0 (we will consider the other cases in detail below, as well as the exact rules for guessing the third endpoint). See Fig. 4.
2.5 Subproblem regions

Let \(\hat{a} \) be the ray through \(a_2 \) starting at \(a_1 \). Let \(\hat{b} \) be defined analogously. For every subproblem \((a, b, \beta)\), only a part of the elements of \(S \) is relevant. Consider the (possibly unbounded) maximal region to the left of the supporting line of \(a \) and to the right of the supporting line of \(b \) (recall that \(a \) and \(b \) are directed). The bridge \(\beta \) disconnects that region into two parts. The subproblem region \(R_{a, b, \beta} \) is the part “above” \(\beta \) (i.e., the part adjacent to \(\hat{a} \setminus a \) and \(\hat{b} \setminus b \); the bridge might not be \(x \)-monotone).

The subproblem region is marked gray in Fig. 3. Only the segments that have at least one endpoint in \(R_{a, b, \beta} \) are relevant for finding \(C_{a, b, \beta} \). We distinguish between three different types of such segments: (1) Segments that are entirely inside \(R_{a, b, \beta} \) are complete. (2) Segments that share more than one point with \(R_{a, b, \beta} \) but are not complete are cut. (3) A segment with infinitely many points on the bridge is neither cut nor complete. We say that a point is inside \(C_{a, b, \beta} \) when it is contained in the closure of the region bounded by \(C_{a, b, \beta} \) and \(\beta \).

If there is a segment that is entirely to the right of \(a \) or to the left of \(b \), then the choice of \(a \) and \(b \) cannot give a solution and such a subproblem is assigned +\(\infty \) as cost. We also do this if a segment intersected by \(\hat{a} \) or \(\hat{b} \) does not have an endpoint inside the subproblem region.

Note that if a segment in a valid subproblem intersects \(\hat{a} \) or \(\hat{b} \), then we know which of its endpoints must be inside \(C_{a, b, \beta} \), while we do not know that for the cut segments that intersect the chord of the bridge. However, we will choose our subproblems in a way such that all endpoints of cut segments in the subproblem region will be inside \(C_{a, b, \beta} \); the reason for that will become clear in the proof of Lemma 3, but the reader should keep this in mind as an essential part of the method. For complete segments, we need to decide which endpoint to select.

Lemma 1. Given a subproblem instance \((a, b, \beta)\), let \(t \) be the chord of \(\beta \), or its only edge if \(\beta \) is a single edge (which may be a chord itself, or part of a separating segment). Let \(X \) be the region bounded by \(C_{a, b, \beta} \cup \beta \), and let \(X' = X \setminus \bigcup_{s \in S_c} s \), for \(S_c \) the set of segments of \(S \) that are crossed by the chain \(C_{a, b, \beta} \). Then either \(t \) is an edge of \(C_{a, b, \beta} \), or there exists a triangle \(\Delta \) such that:

1. The interior of \(\Delta \) is completely contained in \(X' \).
2. The edge \(t \) is an edge of \(\Delta \).
3. The apex of \(\Delta \) (i.e., the vertex not on \(t \)) is either (i) an endpoint of a segment in \(S_c \) inside \(X \), (ii) an endpoint of a segment in \(S \) that is a vertex of \(C_{a, b, \beta} \), or (iii) an intersection point between a segment in \(S_c \) and \(C_{a, b, \beta} \).

Proof. Arbitrarily triangulate \(X' \). If \(t \) is not on the boundary, then the triangle \(\Delta \) incident to \(t \) inside the subproblem region fulfills the properties. See Fig. 3. \(\square \)

Lemma 2. Let \(\Delta \) be the triangle of Lemma 3. Any segment of \(S \) that has a non-empty intersection with the interior of \(\Delta \) either has both its endpoints inside \(C_{a, b, \beta} \) or crosses \(t \); in the latter case the endpoint that is inside \(R_{a, b, \beta} \) is also inside \(C_{a, b, \beta} \).
implies the choice of x. This follows from the properties of Δ. A segment intersecting the interior of Δ is not part of S_c but has a non-empty intersection with X. Therefore, either both of its endpoints are inside $C_{a,b,\beta}$, or it enters X via t and therefore has its relevant endpoint inside $C_{a,b,\beta}$ by definition. See Fig. 5.

2.6 Getting smaller subproblems

Let A be the set of points that are either endpoints of S or crossing points of a segment and a bitangent (recall that no segment of S is an element of B). Hence, A contains all the points that are possible apices for a triangle Δ of Lemma 1. Note that one may construct subproblems where every possible apex of Δ is an endpoint of a segment in S_c, as well as subproblems where every possible apex is on a point where a segment crosses $C_{a,b,\beta}$. Further, note that $|A| \in O(|S|^2)$ since $|B| = 4 \binom{|S|}{2}$.

Consider again a subproblem (a, b, β). If $a_2 = b_2$, then we have reached the end of the recursion, and there are no smaller subproblems to consider. Otherwise, as in Lemma 1, let t be the chord of β if a chord exists, or otherwise let t be the only edge of β. Let $a\beta$ be the intersection point of a with the bridge β; $b\beta$ is defined analogously. For each subproblem (a, b, β), one of the following cases applies, allowing to obtain one or two smaller subproblems. During the execution of the algorithm we will consider both cases.

Case 1: t is an edge of the solution, i.e., an edge of $C_{a,b,\beta}$. This happens when t is a chord that does not intersect the interior of the quadrilateral defined by a and b. This case is only valid if no segment crosses t, as we require all the endpoints in $R_{a,b,\beta}$ of segments crossing t to be inside $C_{a,b,\beta}$. In that case we get at most two new subproblems (a, t, β_1) and (t, b, β_2), where β_1 is the edge $a\beta$ and β_2 is the edge $t_2b\beta$. However, note that one of $(a, t) \cup (t, b)$ (or both) might intersect at a_2 or b_2, respectively, and therefore form a base case.

Case 2: t is not an edge of the solution. Then there is a triangle adjacent to t as in Lemma 1. We will guess the apex of the triangle. For every point d in $A \cap R_{a,b,\beta}$ consider the triangle Δ_d that d forms with t. We only consider d if Δ_d is completely inside $R_{a,b,\beta}$, and the interior of Δ_d does not intersect any segment that intersects a or b. It follows from Lemma 1 that one of the triangles tested leads to a subdivision of the optimal solution. We get the following two subcases, see Fig. 6.

Case 2.1: d is a point where a bitangent and a segment cross. Let c be the bitangent that contains d. If c equals a or b, then we get one new subproblem (a, b, β'), with β' containing a side of Δ_d that is different from t as a chord (Fig. 6a). Otherwise, we get two new subproblems, (a, c, β_1) and (c, b, β_2), where β_1 and β_2 both contain a side of Δ_d (Fig. 6b).

Case 2.2: d is an endpoint of a segment. Let s be the segment that has d as its endpoint. Choose a point x where s intersects some bitangent c. Then, for every possible choice of x (which implies the choice of c), we get two new subproblems (a, c, β_1) and (c, b, β_2), as in the previous case; note that for both new bridges, $x = d$ is possible. The degenerate case where c equals a or b can be handled as in the previous case. See Fig. 6c-d.

In all cases, after considering each case and the associated subproblems, we compute the information about the perimeter of the current solution accordingly.
Lemma 3. Given any valid subproblem \((a, b, \beta)\), there is a pair of subproblems among the ones above such that the union of their solutions is equal to \(C_{a,b,\beta}\).

Proof. Consider the edge \(t\) of Lemma 1. If \(t\) is a chord and part of \(C_{a,b,\beta}\), then it will be considered in Case 1. Otherwise, consider the triangle \(\Delta\) inside \(C_{a,b,\beta}\). All segments that are intersected by the interior of \(\Delta\) are either completely contained in \(C_{a,b,\beta}\) or enter through \(t\) (if it is a chord) and therefore have their relevant endpoint inside \(C_{a,b,\beta}\) (cf. Lemma 2). Hence, when the choice of \(\Delta_d\) coincides with \(\Delta\), the two subproblems can be combined into \(C_{a,b,\beta}\); the only segments that are part of both subproblems intersect the interior of \(\Delta\), and we know that both endpoints will have to be inside the chain that results from the combination of the solutions of the subproblems. For each possible value of \(\Delta_d\) we obtain a stabber, its cost cannot be lower than the one of the optimal solution. Moreover, since we check all possibilities of \(\Delta_d\), the subproblem combination of minimum cost is guaranteed to be \(C_{a,b,\beta}\). \(\square\)

This last lemma now implies that we actually find the optimal solution. Note that it is easy to construct a pair of bitangents and a bridge \((a, b, \beta)\) that is part of the optimal solution but for which \(C_{a,b,\beta}\) is not part of \(C^*\). However, as mentioned in the outline of the algorithm, we choose the initial problem \((x, y, \beta_0)\) in a way that \(\partial C^* = C_{x,y,\beta_0} \cup \beta_0\). All segments crossing \(\beta_0 = x_1y_1\) need to have their endpoint above \(\beta_0\) inside the solution, and the algorithm actually produces a triangulation of \(X'\) when taking \(C^*\) as \(Q\) and \(S_c\) being the segments that cross \(\partial C^*\) but do not cross \(\beta_0\).

Recall that we initialize the algorithm using a brute-force approach: that is, we consider all the \(O(|S|^4)\) possible choices for two defining bitangents and a bridge \(a_1b_1\). Every subproblem contains less edges of the complete graph on all endpoints of \(S\), and for every subproblem we need polynomial time. The number of subproblems can be bounded by the choices for \(c\) and \(d\). Therefore, dynamic programming can be applied to obtain a polynomial-time algorithm.

Theorem 1. Given a set of pairwise disjoint segments, both the MinPerspp and the MinAreaSpp can be solved in polynomial time.

2.7 Maximization for pairwise disjoint segments.

Our previous algorithm relies on the fact that the result has minimum perimeter (or area): this automatically prevents two endpoints of the same segment from being vertices of the resulting polygon. However, making the algorithm slightly more sophisticated, we can solve in polynomial time.

A straightforward analysis of the running time results in \(O(|S|^9)\), which probably can be improved. In any case, we consider that our main contribution is that the problem can be solved in polynomial time.
time maximization versions of these problems, stated open by Löffler and van Kreveld [15]: "select exactly one point on each segment in S such that the perimeter (or area) of the convex hull of the selected points is maximized." This result is based on the fact that for the maximum area or perimeter transversal, one needs to consider only the endpoints of the segments [15, Lemmata 1 and 8]:

Lemma 4 (Löffler, van Kreveld). The problem of, given a set of line segments, choosing one point on each line segment such that the perimeter (or area) of the convex hull of the resulting point set is as large as possible, has a solution in which all chosen points are endpoints of the line segments.

Theorem 2. Given a set of pairwise disjoint segments, the MaxPerSPP and the MaxAreaSPP can be solved in polynomial time.

Proof. Due to Lemma 4, we know that we only need to consider the endpoints of the segments. We modify the algorithm used for the minimization version of the problem. Note that the structure of the solution is very similar. Again, let C^* be the optimal solution. One main difference is that a segment that has an endpoint as a vertex of C^* might have the other endpoint in the interior of C^*, i.e., might be completely contained in it. We define subproblems and bridges in the same way.

The crucial property in the previous algorithm was that a segment that entered a subproblem region through the chord of the bridge had to have its endpoint that was inside the subproblem region to be inside the solution of the subproblem as well. This was due to Lemma 2 and the choice of the initial bridge β_0; a segment that enters the subproblem region through the chord of the bridge can be of one of two types: it either crosses β_0, thus one of its endpoints is considered to be outside of C^*, or it does not cross β_0, and thus both of its endpoints are considered to be in the interior of C^* (recall Lemma 2). For Theorem 1, it was not necessary to distinguish between these two types of segments (in the minimization version, a construction using both endpoints of a segment would be considered valid, but the minimum solution would never contain two such points). However, now we need to take this into account.

Instead of only guessing three consecutive bitangents that form the initial problem (a, b, β_0), we may choose two “opposite” bitangents in the following way: For every segment s, guess two bitangents a and b such that a crosses s and b has a common endpoint with s. This defines two subproblems (a, b, β) and (\bar{b}, π, β), where β is the part of s connecting a with b, which can be combined to an overall solution; see Fig. 7. We call this the first phase of the algorithm. Afterwards (in the second phase), we guess three consecutive bitangents to form (x, y, β_0) as before. All endpoints of segments crossing the chord of a bridge then have to be in the interior of the solution. We explicitly do not allow the solution to a subproblem to have an endpoint of a segment that crosses the current bridge as a vertex. Hence, there might be subproblems for which no solution is possible in that way. All solutions that would contain an endpoint of a segment entering through β_0 as a vertex are already found when during the first phase for the following reason. Suppose there would be a solution with a vertex w being the endpoint of a segment e crossing β_0. Then during the first phase we already guessed a bitangent a that equals β_0 (as β_0 is also a bitangent), and a bitangent b incident to w, with the segment e being s and vertex w being v (see again Fig. 7). Hence, such a solution was already found in the first phase, and the only solutions we still need to consider are the ones where the endpoint of any edge e crossing β_0 is not a vertex of the convex hull.

Recall the proof of Lemma 1. If we replace S_c by the set of the segments that intersect $C_{a,b,\beta}$, the analogous result follows. Following the proof of Lemma 2 we observe that the segments not in S_c have both endpoints in the interior of the solution. Therefore, the choice of the bitangent c that gives new subproblems for a subproblem (a, b, β) can be altered in the following way. If c shares an endpoint with a segment that has its other endpoint on a or b, then c is not valid. Further, c must not share an endpoint with a segment that crosses β (however, the requirement that all endpoints in $R_{a,b,\beta}$ of segments that cross β have to be inside the subproblem solution persists).

Our modification therefore only concerns the selection of c in Case 2. In both subcases, the choice for the bitangent c is restricted to the ones that do not share an endpoint with a segment
crossing β, and that do not share an endpoint with a segment sharing the other endpoint with a or b. In Case 2.2, we have more potential candidates for c: the point x can also be the endpoint of the segment that is not d (recall that the solution might completely contain a segment that contributes a vertex to it), in which case c is a bitangent that has x as an endpoint. With this variation, we never select both endpoints of a segment but still find (a triangulation of) the optimal solution.

\[\square\]

Fig. 7. A segment s and two bitangents a and b are chosen such that s is the bridge connecting a and b. Starting with this setting means that, in the maximization algorithm, the endpoint of a segment crossing the chord of a bridge cannot be a vertex of the maximum polygon.

3 Islands of points

A segment can be considered as the convex hull of two points. From this point of view, we give a generalization of the algorithm for non-crossing segments to families of point sets whose convex hulls do not intersect pairwise. The algorithm can be applied to the four variants of the problem (i.e. maximization/minimization of area/perimeter).

Let P be a set of n points in the plane. A cluster is any subset of P. An island $I \subset P$ is a cluster of P such that $\text{CH}(I) \cap P = I$; see, e.g., [4]. A pair of islands (I_1, I_2) is called disjoint if $\text{CH}(I_1) \cap \text{CH}(I_2) = \emptyset$. Let S_P be a set of islands partitioning a point set P. Analogously to a set of segments, we say that an island $I \in S_P$ is stabbed by a polygon P if one point of I is contained in P, and S_P is stabbed by P if every island of S_P is stabbed by P. In this section we show how to extend our algorithm for disjoint line segments to disjoint islands.

As in the previous section, consider a polygon Q spanned by P and stabbing S_P. Let S_c be the set of islands in S_P that intersect ∂Q at least once. Observe that, again, this definition of S_c is slightly different from those considered for the previous problems. As shown in Fig. 8 if an island is not a segment, ∂Q might intersect it several times and Q still contains a point of the island. Let X be the interior of Q and let $X' = X \setminus \bigcup_{I \in S_c} \text{CH}(I)$ (observe that this time the closure of X' might be different from Q, as the removed parts might have non-zero area).

The vertices of X' are (i) vertices of the convex hulls of the islands that intersect with Q, and (ii) the points where ∂Q crosses the convex hull boundary of islands in S_P. Note that the vertices of Q are a subset of P, but they might not be on the convex hull of an island. We say that Q crosses an island I if an edge of Q crosses an edge of $\text{CH}(I)$. If an island contains only two points, we again consider X' being “slightly split” at the 1-dimensional part corresponding to the convex hull of that island. See Fig. 8.

Let us first state a property of the maximization variant of the problem that also holds for general clusters. The following is a generalization of Lemma 4 to clusters of points.

Proposition 1. Given a set of clusters, there always exists a maximum (area or perimeter) stabbing polygon using only the points on the convex hull boundaries of the clusters.
Fig. 8. Analogous to the algorithm for segments, there is a triangulation of the interior of a polygon with the convex hulls of the islands removed.

Proof. Recall that, by Lemma 4 when the points are chosen on line segments there is always a maximum stabbing polygon having the vertices on the endpoints of the segments [15]. Suppose there exists no maximum polygon with all vertices being extreme points of their clusters, and consider an optimal solution \(P \), which has a point \(p \) in the interior of the convex hull of a cluster \(C \) as a vertex. Pick any extreme point \(q \) of \(C \) (i.e., any vertex of \(\text{CH}(C) \)) and let \(s \) be the line segment that is defined by the intersection of the supporting line of \(pq \) and \(\text{CH}(C) \). Hence, one endpoint of \(s \) is \(q \) and the other endpoint, \(\tilde{q} \), is on \(\partial \text{CH}(C) \), but is not an element of \(C \). Let \(S' \) be the set of line segments consisting of \(s \) and one zero-length segment for each point in \(P \setminus \{ q \} \). Applying Lemma 4 to \(S' \) we conclude that there has to exist a larger polygon \(P' \) containing an endpoint of \(s \), and due to our assumption, this cannot be \(q \). Thus, it has to be \(\tilde{q} \). But \(\tilde{q} \) is contained in an edge \(s' \) of \(\text{CH}(C) \). Again, we can define another set of line segments \(S'' \) that contains \(s' \) and a zero-length segment for each point in \(P' \setminus \{ \tilde{q} \} \), and apply Lemma 4 to conclude that there has to exist a solution larger than \(P' \), and thus larger than \(P \), containing an endpoint of \(s' \). But any endpoint of \(s' \) is an extreme point of \(C \), a contradiction with the optimality of \(P \). \(\square \)

Now consider again a set \(S_P \) of pairwise-disjoint islands. Let \(T \) be a triangulation of \(X' \); \(T \) again defines a set of chords that partitions \(X' \). An endpoint of a chord is either a vertex of the convex hull of some island, or the intersection of \(\partial Q \) with the convex hull boundary of some island. Given the set \(B \) of all segments spanned by points of \(P \) that are part of different islands in \(S_P \), and the crossings of segments in \(B \) and edges of the convex hulls of the islands, we can apply the same algorithm as for segments: Each subproblem is defined by two segments of \(B \) that potentially define a stabber, and a bridge that is defined by either the convex hull of one island, or the two convex hulls of two islands and a chord (where the latter case also covers bridges where only one point of each convex hull is part of the bridge). By the definition of \(S_c \), we assume that no island whose convex hull intersects the chord of a bridge intersects the boundary of the solution to the current subproblem.

3.1 Structure of the subproblems

When dealing with segments, the structure of a subproblem \((a, b, \beta)\) allowed to identify the chosen endpoints of the segments that formed \(\beta \). This aspect is more complicated when dealing with islands.

Consider first the case where the bridge has a chord \(t \), and let \(I_1 \) and \(I_2 \) be the two islands that define \(t \) and whose convex hulls intersect \(a \) and \(b \), respectively. The endpoints of \(t \) are on \(\partial \text{CH}(I_1) \) and \(\partial \text{CH}(I_2) \), but they are not necessarily points of \(P \). Consider the endpoint of \(t \) at \(I_1 \). If this endpoint is also on \(a \) (because either an endpoint of \(a \) is in \(I_1 \) or \(\partial \text{CH}(I_1) \) intersects the interior of \(a \)), then it is clear whether a point in \(I_1 \) is picked inside the subproblem region or not,
due to convexity \((C^*_a,b,\beta \text{ either enters or leaves } \partial \text{CH}(I_1)) \) at that endpoint of \(t \)). The analogous holds for \(I_2 \), see Fig. 9. Otherwise, if that endpoint of \(t \) is a vertex of \(\text{CH}(I_1) \) and not on \(a \), the algorithm has to make the decision of whether to pick a point of \(I_1 \) for \(C_{a,b,\beta} \) or not. For the minimization variant of the problem, the endpoint of \(t \) in \(I_1 \) is always an optimal choice. But for the maximization variant, the algorithm cannot locally decide whether it is better to have a point of \(I_1 \) on \(C_{a,b,\beta} \) or on \(C_{b,a,\beta} \) when solving the subproblem. Again, the analogous holds for \(I_2 \); see Fig. 10. We solve this in the following way. Recall that, due to Proposition 1, we only need to consider the vertices of the convex hull of \(I_1 \) for the maximization variant. When the algorithm has to divide a subproblem into two further subproblems, and has to pick a point of an island \(I_1 \), it passes a parameter to one of the two subproblems indicating that a point of \(I_1 \) being incident to the subproblem’s region has to be picked, and afterwards tests the same subproblem combination, this time indicating that the point of \(I_1 \) belongs to the other subproblem.

The case where the bridge consists of only one island \(I \) (and hence does not contain a chord; see Fig. 11) is similar. In this case, the same issue arises for both the maximization and minimization variant; we do not know whether the selected point of \(I \) has to be inside the subproblem region or not. However, this can also be indicated to the subproblem with a single flag.

Summing up, a subproblem is defined by the following elements:

- the two segments \(a \) and \(b \), and
- the bridge \(\beta \), consisting of
 - two islands \(I_1 \) and \(I_2 \) or a single island \(I \),
 - a chord \(t \) (if there are two islands in the bridge), and
 - a flag for each given island. Each flag indicates whether a point of \(I_1 \) or \(I_2 \) (or \(I \)) is picked for the solution of the subproblem or not.

Even though the subproblem definition became more complex by the generalization, the number of subproblems is still polynomial in \(|P| \): Conceptually, a subproblem can be guessed in the following way: We pick two pairs of points from \(P \) representing \(a \) and \(b \). For \(a \), we pick either another point \(p \) from \(P \), contained in some island \(I_1 \) intersecting \(a \), or one of the \(O(n) \) edges on the convex hull of an island \(I_1 \). In the first case, we suppose that \(p \) is the endpoint of the chord \(t \), in the second case \(t \) ends in the intersection of \(a \) with the guessed convex hull edge of \(I_1 \). The same is done for \(b \). The case where the bridge consists of a single island \(I \) requires only guessing \(a \), \(b \), and \(I \). Hence, there are \(O(|P|^6) \) subproblems, as in the previous section (where all islands had two elements).

![Fig. 9. An example of a case where the bridge determines whether a point of an island defining the bridge needs to be picked inside the subproblem region or not.](image)

3.2 Choice of the subproblems

Choosing the subproblems is also more sophisticated for islands than for line segments. Again, we want to choose a triangle \(\Delta_d \) for each subproblem \((a, b, \beta) \) by guessing the apex of the triangle and the edge \(c \) defining it. When dealing only with segments, \(\Delta_d \) was attached to the edge \(t \) of the bridge \(\beta \). If the bridge contains a chord \(t \), the cases are the same: either \(t \) is part of \(C_{a,b,\beta} \), or, for some choice of \(d \), \(\Delta_d \) is a triangle in a triangulation of \(C_{a,b,\beta} \). Unlike when dealing only with segments, we must also consider the case where \(\beta \) consists of a part of the convex hull boundary of a single island \(I \). (It may even occur that \(\beta \) is intersected by \(C_{a,b,\beta} \) at another bitangent \(c \).)
For every island contained in the bridge, we actually have two cases: one where a point of the island has to be contained in the subproblem solution, and one where it must not contribute a vertex. This cannot be determined locally, so we consider both cases.

of $C_{a,b,\beta}$; note that c might or might not have an endpoint in I.) Since β is not a single edge, we need a different well-defined way to choose the edge of triangle Δ_d not containing d. Observe that both points a_2 and b_2 cannot be inside $\text{CH}(I)$, as this would mean that two points of I are chosen for the boundary of the solution. W.l.o.g., let a_2 be outside $\text{CH}(I)$. Let a_β be the point on a intersecting $\partial \text{CH}(I)$ that is closer to a_2. Then there is a part of a starting at a_β towards a_2 that is not contained inside the convex hull of any island. If a is an edge of the optimal polygon, this part of a is an edge of X'. Therefore, we can choose it as the base edge t of Δ_d, and Δ_d is part of a triangulation of the optimal polygon for some choice of d. See again Fig. 11.

If the bridge is defined by the convex hull of a single island, the base edge of the triangle Δ_d (shown fat gray) is chosen w.l.o.g. on a. Observe that also other convex hulls of islands might intersect the defining edge, but no such convex hulls are part of X' if a is part of the optimal polygon.

3.3 Initialization

There is another technical difficulty related to the segments that intersect the first bridge: For these, we need a way to determine whether there is already a part on the inside, and in addition, there are more cases to consider than for segments in the proof of Theorem 2. However, we can apply the same trick as discussed in Section 2.7. When guessing the initial subproblem, we do not guess three consecutive edges, but two “opposite” edges for which there exists an island I whose convex hull is intersected by both edges. The two edges and I define two subproblems. After checking all such pairs of edges, we know that all remaining solution candidates are in our classical setting, i.e., if an island intersects the chord of a bridge, it has to be inside the partial solution. Note that in this special case it may occur that an island intersects both the chord β_0 and one of the edges that define the initial subproblem; in any case, we know that the remaining part of the island has to be inside the resulting polygon.

Hence, the analogous statements to the lemmata in the previous section hold, and we have a polynomial-time dynamic programming algorithm that finds an optimal solution for any of the four variants of the problem.

Concerning the running time, the same observations hold as in the previous section. We have $O(|P|^{6})$ subproblems. In each subproblem, we basically have to choose the point d and the bitangent intersecting the island containing d. After this guess, all necessary conditions can be checked in linear time.
Theorem 3. Given a point set P in the plane and a partition S_P of P such that the convex hulls of any two elements of S_P are disjoint, we can solve any of the four variants of the SPP in polynomial time.

Observe that convexity of the stabbed sets is crucial for our approach. Schlipf [21] showed that finding a convex transversal is NP-complete if the stabbed sets are non-convex, even if they are disjoint. Her reduction can be adapted to our setting in a way similar to the one shown in the next section.

4 NP-hardness of the MinPerSPP and the MinAreaSPP

In this section we prove that the MinPerSPP and the MinAreaSPP are NP-hard by a reduction from 3-SAT. Note that the NP-hardness of the maximization variants of the SPP are already known [6,15].

Our reduction has a structure very similar those used in [3,6,9,15]. In the following we give the construction, not only for completeness, but also because it will be used afterwards to show hardness of non-crossing clusters. In addition, we also provide a full proof that the coordinates of the points can be described in polynomial time. This is mentioned in the previous constructions, but details are often omitted.

Theorem 4. The MinPerSPP and the MinAreaSPP are NP-hard.

Proof. For ease of exposition, we present the proof for the MinPerSPP. As mentioned in the end of the section, the adaptations needed for the construction to work for the MinAreaSPP are minor.

Let a 3-SAT instance consist of n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m. We reduce this instance to the following one of the MinPerSPP. We draw a circle and place variable gadgets in the left semicircle, clause gadgets in the right semicircle, and segment connectors joining variable gadgets with clause gadgets. See Fig. 12a.

Gadgets For each variable x_i, $i \in [1..n]$, we put points T_i and F_i on the circle and place three segments: segment $T_i F_i$, and two zero-length segments a_i and b_i, so that $T_i F_i$ is parallel to the line containing both a_i and b_i. Refer to Fig. 12b. Furthermore, trapezoids with vertices a_i, T_i, F_i, b_i, for all $i \in [1..n]$, are congruent. Let $P_i := |a_i T_i| + |T_i F_i| = |a_i F_i| + |F_i b_i|$.

For each clause C_j, $j \in [1..m]$, we first place two zero-length segments c_j and d_j. We select three points $p_{j,1}, p_{j,2},$ and $p_{j,3}$, dividing evenly the smallest arc of the circle joining c_j and d_j into four arcs, and then we place three other segments: $p_{j,1} p_{j,2}$, $p_{j,2}p_{j,3}$, and $p_{j,3}p_{j,1}$. See Fig. 12c.

\[
\text{Fig. 12. (a) Overview of the reduction from the 3-SAT problem. Variable gadgets (b) are to the left and clause gadgets (c) to the right.}
\]
The convex pentagons with vertices $d_j, c_j, p_{j,1}, p_{j,2}, p_{j,3}$, for all $j \in \{1..m\}$, are congruent. Let $P_c := |c_j p_{j,1}| + |p_{j,1} p_{j,2}| + |p_{j,2} d_j| = |c_j p_{j,1}| + |p_{j,1} p_{j,3}| + |p_{j,3} d_j| = |c_j p_{j,2}| + |p_{j,2} p_{j,3}| + |p_{j,3} d_j|$. For each clause C_j, $j \in \{1..m\}$, we add segments called connectors as follows. Let x_i be the variable involved in the first literal of C_j. If x_i appears in positive form then let $\overline{p_i,1}$ denote the point F_i. Otherwise, if x_i appears in negative form, then let $\overline{p_i,1}$ denote the point F_i. In both cases we add the connector $\overline{p_i,1}$ to $\overline{p_i,1}$. We proceed analogously with the variable in the second literal and point $p_{j,2}$, and with the variable in the third literal and point $p_{j,3}$.

Problem reduction Consider the instance of the MinPerSPP consisting of the set of segments added at variable gadgets, clause gadgets, and connectors. Observe that any optimal polygon P_{opt} for this instance satisfies the following conditions:

(a) For each variable x_i, $i \in \{1..n\}$, P_{opt} contains as vertices the points a_i and b_i, and at least one point between T_i and F_i.

(b) For each clause C_j, $j \in \{1..m\}$, P_{opt} contains the points c_j and d_j as vertices, and at least two points among $p_{j,1}, p_{j,2},$ and $p_{j,3}$.

(c) For each clause C_j, $j \in \{1..m\}$, P_{opt} contains exactly two points among $p_{j,1}, p_{j,2},$ and $p_{j,3}$ as vertices if and only if it contains at least one point among $p_{j,1}, p_{j,2},$ and $p_{j,3}$ as vertex, located in variable gadgets. See Fig. 13.

(d) The perimeter of P_{opt} is at least the minimum possible perimeter

$$m = |b_1 c_1| + |a_n d_m| + \sum_{i=1}^{n-1} |a_i b_{i+1}| + \sum_{j=1}^{m-1} |d_j c_{j+1}| + n P_v + m P_c .$$

If P_{opt} has perimeter m, P_{opt} contains, for every $i \in \{1..n\}$, exactly one point between T_i and F_i as vertex, and contains, for every $j \in \{1..m\}$, exactly two points among $p_{j,1}, p_{j,2},$ and $p_{j,3}$ as vertices.

Condition (a) follows from the fact that a_i and b_i, $i \in \{1..n\}$, are zero-length segments, where at least one endpoint from each of them must be contained in P_{opt}, and the presence of the segment $T_i F_i$. Condition (b) is due to the fact that c_j and d_j, $j \in \{1..m\}$, are zero-length segments and the presence of the segments $p_{j,1} p_{j,2}, p_{j,2} p_{j,3},$ and $p_{j,3} p_{j,1}$. Condition (c) follows from the presence of the segments $p_{j,1} p_{j,2}, p_{j,2} p_{j,3},$ and $p_{j,3} p_{j,1}$, together with the connectors $\overline{p_{j,1} p_{j,1}}, \overline{p_{j,2} p_{j,2}},$ and $\overline{p_{j,3} p_{j,3}}$. Condition (d) follows from (a) and (b).

Let P be any feasible polygon satisfying conditions (a)-(c) and having minimum perimeter m. Polygon P induces the following assignment for the variables x_1, x_2, \ldots, x_n: we assign x_i to true if
point T_i is a vertex of P, false otherwise. With this assignment we can ensure that every clause C_j is satisfied if and only if exactly two points among $p_{j,1}, p_{j,2},$ and $p_{j,3}$ are vertices of P. Therefore, the 3-SAT formula consisting of the clauses C_1, \ldots, C_m is satisfiable if and only if the perimeter of the MinPerSPP is m.

To complete the proof, it remains to show that the coordinates specifying the positions of the points of the gadgets can be expressed as rational numbers whose size is polynomial in n and m. The proof of this fact is relegated to the appendix.

Note that our reduction uses segments of zero length. This can be avoided by replacing each zero-length segment by a sufficiently short segment, in order to guarantee that the choice of the endpoint makes only a marginal difference in the overall cost of any solution.

Observe that the same reduction with minor modifications applies for the case of minimizing the area of the output polygon, i.e., for the MinAreaSPP. Moreover, our proof shows that the problem remains NP-hard even if the endpoints of all the segments are in convex position or lie on a circle. Recently, it has been shown that the case in which the segments are diameters of a circle, both the minimum and maximum area problems can be solved in linear time [1].

4.1 Fixed-parameter tractability

It is worth mentioning that the four variants of the SPP are fixed-parameter tractable (FPT) on the number k of segments that intersect other segments. Namely, let $S' \subseteq S$ be the set of segments of S that do not intersect any segment of S. Consider the 2^k instances of SPP such that each consists of the elements of S' joint with exactly one endpoint (i.e., a segment of length zero) of each element of $S \setminus S'$. All these instances can be solved in $O(2^k P(n))$ time, for the polynomial time $P(n)$ of Theorem 1 or Theorem 2 since each instance consists of pairwise disjoint segments. The optimal solution for S is among the $O(2^k)$ solutions found for those instances. We summarize with the following observation.

Observation 1 Given a set S of n segments, any of the four variants of the SPP can be solved in $O(2^k P(n))$ time, where k is the number of segments in S that cross at least another segment from S, and $P(n)$ is the running time of the algorithm from Theorem 1 or Theorem 2 (depending on the variant).

4.2 Generalization to non-crossing clusters

In Section 3 we generalized the algorithm from segments to islands, i.e., subsets of a point set P whose convex hulls do not intersect. Next we remark that relaxing the disjointness only slightly, allowing non-crossing clusters, results again in an NP-hard problem.

Recall that a cluster is any subset of P. Two clusters J_1 and J_2 are non-crossing if the convex hull boundary of $J_1 \cup J_2$ has at most two segments with one endpoint in J_1 and the other endpoint in J_2 [18]. In these terms, the reduction presented uses crossing clusters of size 2.

It is conceivable that the key factor in the NP-hardness of the problem relies in allowing the gadgets to cross, since the difference between crossing and non-crossing clusters plays a role in the time complexity of other problems, e.g. [19]. Thus, it could be the case that if clusters can intersect but not cross the problem becomes polynomial-time solvable. However, we show next that our reduction can be adapted to non-crossing clusters as well.

To every segment (i.e., cluster of size 2) that connects a variable gadget to a clause gadget, we add another two points that are “far away” from the circle in which we place our gadgets, such that the resulting clusters are non-crossing and the points not part of the gadget never get chosen. Suppose w.l.o.g. that the variable gadgets are in the third quadrant of the plane and the clause gadgets are in the first quadrant. Consider the two lines $\ell_c : y = 2x + d$ and $\ell_r : y = (x + d)/2$, for some constant $d > 0$ to be made more precise later. For every segment e_c,e_r that connects a variable gadget with a clause gadget, we project the point e_c horizontally on ℓ_c, and the point e_r vertically on ℓ_c, and add the two projected points to the cluster of the segment; see Fig. [14]
Regarding the value of d, it suffices to choose a value large enough such that the circle of the construction is below ℓ_c and ℓ_v, and far enough from the lines so that the projected points can never be part of an optimal solution.

![Diagram](image)

Fig. 14. Extending segments to clusters of size 4 in convex position. Each pair of the resulting clusters is non-crossing.

Observe that the resulting clusters are in convex position and non-crossing. Further, no such cluster crosses a segment that is part of a gadget. None of the new points can be part of the optimal solution if the constant d is chosen sufficiently large, and hence, the construction behaves in the same way as the construction for segments. The construction can be easily altered to give a point set in general position by replacing the relevant segments on ℓ_v and ℓ_c by, say, sufficiently flat circular arcs.

Theorem 5. Given a set of non-crossing clusters, it is NP-hard to find an optimal solution of the MinPerSPP or the MinAreaSPP. The problems remain NP-hard if each cluster is in convex position.

While the structure of the reduction for line segments is similar to the one for the maximization variant by Löffler and van Kreveld [15], the adaptation for non-crossing clusters cannot be done in the same way. However, for the maximization variant, Proposition 1 applies.

Therefore, for solving the following problem, it is sufficient to consider the cases where each cluster is in convex position.

Open problem 1 What is the complexity of finding a maximum (area or perimeter) stabbing polygon of non-crossing clusters of points? That is, find a maximum stabbing polygon whose vertices are elements of P such that no two belong to the same cluster.

References

1. O. Aichholzer, L. E. Caraballo, J. M. Díaz-Báñez, R. Fabila-Monroy, C. Ochoa, and P. Nigsch. Extremal antipodal polygons and polytopes. In Proc. Mexican Conference on Discrete Mathematics and Computational Geometry, pages 11–20, Oaxaca, Mexico, 2013.
2. E. M. Arkin, J. M. Díaz-Báñez, F. Hurtado, P. Kumar, J. S. B. Mitchell, B. Palop, P. Pérez-Lantero, M. Saumell, and R. I. Silveira. Bichromatic 2-center of pairs of points. In LATIN 2012, volume 7256 of LNCS, pages 25–36. Springer, 2012.
3. E. M. Arkin, C. Dieckmann, C. Knauer, J. S. B. Mitchell, V. Polishchuk, L. Schlipf, and S. Yang. Convex transversals. *Comput. Geom.*, 47(2):224–239, 2014.
4. C. Bautista-Santiago, J. M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, J. Urrutia, and I. Ventura. Computing optimal islands. Oper. Res. Lett., 39(4):246–251, 2011.
5. J. Blömer. Computing sums of radicals in polynomial time. In FOCS 1991, pages 670–677. IEEE Computer Society, 1991.
6. O. Cheong and M. Lee. Imprecise convex hulls. In Abstracts of the 14th Japan-Korea Joint Workshop on Algorithms and Computation (WAAC), 2011.
7. M. Consuegra, G. Narasimhan, D. Rodriguez, and S. Tanigawa. Avatar problems. Technical Report TR-2012-10-06, Florida International University, 2012.
8. M. E. Consuegra and G. Narasimhan. Geometric avatar problems. In A. Seth and N. K. Vishnoi, editors, FSTTCS, volume 24 of LIPIcs, pages 389–400. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.
9. O. Daescu, W. Ju, and J. Luo. NP-completeness of spreading colored points. In COCOA 2010, volume 6508 of LNCS, pages 41–50. Springer, 2010.
10. A. Dumitrescu and M. Jiang. Minimum-perimeter intersecting polygons. Algorithmica, 63(3):602–615, 2012.
11. M. T. Goodrich and J. Snoeyink. Stabbing parallel segments with a convex polygon. Computer Vision, Graphics, and Image Processing, 49(2):152–170, 1990.
12. F. Hassanzadeh and D. Rappaport. Approximation algorithms for finding a minimum perimeter polygon intersecting a set of line segments. In WADS 2009, volume 5664 of LNCS, pages 363–374. Springer, 2009.
13. D. Husemoller. Elliptic Curves. Graduate Texts in Mathematics. Springer, 2003.
14. G. T. Klincsek. Minimal triangulations of polygonal domains. Ann. Discrete Math., 9:121–123, 1980.
15. M. Löffler and M. J. van Kreveld. Largest and smallest convex hulls for imprecise points. Algorithmica, 56(2):235–269, 2010.
16. H. Meijer and D. Rappaport. Minimum polygon covers of parallel line segments. In CCCG 1990, pages 324–327, 1990.
17. A. Mukhopadhyay, C. Kumar, E. Greene, and B. K. Bhattacharya. On intersecting a set of parallel line segments with a convex polygon of minimum area. Inf. Proc. Lett., 105(2):58–64, 2008.
18. E. Papadopoulou. The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica, 40(2):63–82, 2004.
19. E. Papadopoulou and D. T. Lee. The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geometry Appl., 14(6):421–452, 2004.
20. D. Rappaport. Minimum polygon transversals of line segments. Int. J. Comput. Geometry Appl., 5(3):243–256, 1995.
21. L. Schlifp. New results on convex stabbers. In Abstracts of the 26th European Workshop on Computational Geometry (EuroCG) 2013, pages 57–60, 2013.
22. M. J. van Kreveld and M. Löffler. Approximating largest convex hulls for imprecise points. J. Discrete Algorithms, 6(4):583–594, 2008.
A Exact point construction for Theorem 4

In this section we give the exact construction for the segment set described in the proof of Theorem 4. We place the segment endpoints of the gadgets at rational coordinates on the unit circle in such a way that the size of both the numerator and denominator of each coordinate are bounded by a polynomial function of the size of the initial problem.

With respect to the segment endpoints, both the variable gadgets and the clause gadgets have the same structure. For any point \(p \), let \(\angle p \) denote the polar angle of the point. If we construct a variable gadget such that \(\alpha_v := \angle a_i - \angle T_i = \angle T_i - \angle F_i = \angle F_i - \angle b_i \), the gadget works as described. If we use the same angle \(\alpha_v \) for all variable gadgets, the gadgets are congruent. The analogous holds if we choose an angle \(\alpha_c = \angle c_j - \angle p_{j,1} = \ldots = \angle p_{j,3} - \angle d_j \) between two consecutive points when constructing a clause gadget; we obtain a set of congruent gadgets that fulfill the properties described previously. In the remainder of this section we show how to choose the reference points \(a_i \) and \(c_j \) for each gadget among the rational points on the unit circle and the angles \(\alpha_v \) and \(\alpha_c \).

We use several well-known facts about rational points on the unit circle (see, e.g., [13]). For any point \(p \) on the unit circle, \(\angle p = \arctan \left(\frac{y}{x} \right) \) is rational and lies on the unit circle. Hence, the coordinates of \(p \) describe the cosine and sine, respectively, of the polar angle \(\angle p_i \). Observe that for any \(t > 1 \), point \(p_t \) lies in the first quadrant. In particular, we have \(\angle p_t \to 0 \) and \(p_t \to (1,0) \) when \(t \to +\infty \).

Using the trigonometric identity \(\sin(\alpha_1 - \alpha_2) = \sin(\alpha_1)\cos(\alpha_2) - \cos(\alpha_1)\sin(\alpha_2) \) we obtain:

\[
\sin(\angle p_t - \angle p_{t+1}) = \left(\frac{2t}{t^2 + 1} \right) \left(\frac{(t+1)^2 - 1}{(t+1)^2 + 1} \right) - \left(\frac{t^2 - 1}{t^2 + 1} \right) \left(\frac{2(t+1)}{(t+1)^2 + 1} \right)
\]

\[
= \frac{2(t^2 + t + 1)}{(t^2 + 1)(t^2 + 2t + 2)}.
\]

Observation 2 For \(t \geq 1 \), the angle \(\angle p_t - \angle p_{t+1} \) is monotonically decreasing in \(t \).

The following inequality will allow us to choose both the reference points and the small angles for the gadget construction. If \(1 \leq t < 5N \) for some positive integer \(N \) (the factor 5 is chosen with foresight), we have

\[
\sin(\angle p_t - \angle p_{t+1}) \geq \frac{2(25N^2 + 5N + 1)}{(25N^2 + 1)(25N^2 + 10N + 2)} \geq \frac{50N^2}{625N^4 + 250N^3 + 75N^2 + 10N + 2} \geq \frac{50}{625N^4 + 250N^4 + 75N^4 + 10N^4 + 2N^4} = \frac{50}{962N^2}.
\]

We can use this bound to define a rational angle \(\angle p_s \) that is smaller than all intervals we consider in the construction:

\[
\sin(\angle p_s) = \frac{2}{s^2 + 1} < \frac{2s}{s^2} \leq \frac{50}{962N^2},
\]

which is fulfilled if

\[
s \geq \frac{962N^2}{25}.
\]

Let us place the endpoints for the variable gadgets. We choose \(a_i = p_{(5i-4)} \) and therefore set \(N = n \). Further, we choose \(s = 100n^2 \), which fulfills the above inequalities. By the choice of \(s \), we have \(\angle a_{i+1} + 3\angle p_s < \angle a_i \), hence the variable gadgets do not interfere with each other. We therefore can place \(T_i, F_i \), and \(b_i \) on the arc segment between \(a_i \) and \(a_{i+1} \) by rotating \(a_i \) up to \(10 \) Note that there are multiple conventions for choosing the sign of the coordinates in this parametrization.
three times by $\alpha_v = \angle p_s$. The points can be explicitly computed from a_i by using the coordinates of p_s as elements of the rotation matrix:

$$
\begin{pmatrix}
\cos(\angle p_s) & \sin(\angle p_s) \\
-\sin(\angle p_s) & \cos(\angle p_s)
\end{pmatrix}^\kappa
\begin{pmatrix}
\cos(\angle a_i) \\
\sin(\angle a_i)
\end{pmatrix}
$$

for $\kappa \in \{1, 2, 3\}$. Observe that the coordinates of a_i and p_s are the sines and cosines of the corresponding angles and are rational; therefore, the resulting points also have rational coordinates, which are bounded by a polynomial function in the size of the input, since κ is constant. Finally, we change the signs of the coordinates, so that the variable gadgets are placed on the third quadrant.

For the clause gadgets, we can basically proceed in the same manner, choosing $N = m$ in the above equation, as well as $c_j = p_{(5j-4)}$.

21