Elastic wave dispersion equation considering material and geometric nonlinearities

xiangyang li (xiangyangli@stu.xidian.edu.cn)
Key Laboratory of Electric Equipment Structure Design, Ministry of Education, Xidian University
https://orcid.org/0000-0002-2625-1807

Na Li
Key Laboratory of Electric Equipment Structure Design, Ministry of Education, Xidian University

Bin Zheng
key laboratory of electric equipment structure design, Ministry of Education, Xidian University

Jianqiang Bao
Key Laboratory of Electric Equipment Structure Design, Ministry of Education

Yan Wang
key Laboratory of Electric Equipment Structure Design, Ministry of Education, Xidian University

Yanwei Tian
key Laboratory of Electric Equipment Structure Design, Ministry of Education, Xidian University

Research Article

Keywords: Material nonlinearity, geometry nonlinearity, nonlinear dispersion relationship, Fourier spectrum method

Posted Date: November 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-972379/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Elastic wave dispersion equation considering material and geometric nonlinearities

Xiangyang Li, Na Li, Bin Zheng, Jianqiang Bao, Yan Wang, Yanwei Tian

Key Laboratory of Electric Equipment Structure Design, Ministry of Education
Xidian University, Xi’an 710071, China
Email:lina@mail.xidian.edu.cn

Abstract In this letter, we describe the propagation of longitudinal waves in one-dimensional nonlinear elastic thin rods with material nonlinearity and geometric nonlinearity. Mathematical analysis is used to derive the analytical dispersion relationship of longitudinal waves; subsequently, the numerical Fourier spectrum method is used to solve the nonlinear wave equation directly and the results are used to verify the correctness of the derived nonlinear dispersion relation.

Keywords Material nonlinearity, geometry nonlinearity, nonlinear dispersion relationship, Fourier spectrum method

1 Introduction

Wave motion is a ubiquitous phenomenon in nature as evidenced by sound waves, water waves, electromagnetic waves, waves in solids, and even chemical reactions, life process, population migration, and traffic flows. Understanding the governing principles and nature of wave propagation is of great significance for controlling wave propagation and benefiting human society. Because of this, research on wave motion has attracted researchers from across a variety of fields. The theory of linear dispersion waves is almost complete, but the nonlinear behavior has not yet been fully characterized.

In the study of waves, the dispersion relationship can provide valuable information about the dynamics of the propagation medium. Most of the early studies on elastic wave dispersion were based on linear governing equations but now, nonlinear effects are deemed more important because they can describe the potential motion of waves more accurately. The first nonlinear wave theory was studied by Stokes (1847). However, because the study of nonlinear waves
involves very complicated mathematical models, the progress of research is very slow. In this regard, G. B. Whitham systematically introduced different wave phenomena in physics and mechanics in his work, especially the problem of wave propagation in solids and fluids. P. L. Bhatnager (1979) introduced the interaction between shock waves, solitary waves in a simple one-dimensional dispersion system in a monograph. Nariboli, Clarkson P. A, Dreiden, etc. have studied the propagation characteristics of physical nonlinear waves in the elastic rod while considering the nonlinear wave propagation characteristics including the dispersion effect.

In 2013, M.H. Abedinnasab and M.I. Hussein proposed a theory to derive the precise nonlinear dispersion relationship (NDR) while studying finite strain elastic waves in rods and beams; this theory derives an accurate NDR for nonlinear elastic thin rods. Without limiting the amplitude of the elastic waves, numerical simulation can be used to predict the instantaneous dispersion of large-amplitude waves. In 2019, R.K proposed an NDR theory to predict the propagation of longitudinal waves and used it to predict the generation of harmonics while considering the geometric nonlinearity. In China, Hu and others have studied the numerical simulation of the propagation of longitudinal waves in nonlinear elastic rods. In recent years, scholars have mainly studied nonlinear elastic waves in phononic crystals or artificial metamaterial.

However, research that considers both geometric nonlinearity and material nonlinearity in the nonlinear dispersion relationship is not available; in actual engineering, there are indeed two nonlinearities in a material, such as in the case of rubbers or in the case of explosions and high-speed impact, where two nonlinear factors must be considered simultaneously. In this study, we consider thin rods (ignoring lateral inertial effects) with two simultaneous nonlinearities: geometric nonlinearity and material nonlinearity and study the influence of these nonlinear factors on the dispersion relationship. Initially, the analytical method is used to derive the nonlinear dispersion relationship by considering the linear factors (lateral inertial effects) and nonlinear factors (geometric nonlinearities). Subsequently, we ignore the linear factor and concentrate on the influence of the nonlinear factors on the wave displacement gradient solution. From three different instants, we can see that the nonlinear factor makes the wavefront steeper. Using sinusoidal excitation as the initial condition, the nonlinear dispersion relation with
a specific excitation wavenumber is derived; subsequently, the nonlinear wave equation with initial excitation is solved directly, and finally, the correctness of the deduced dispersion relation is verified by wavenumber-frequency spectrum analysis.

2 Dispersion relationship including material nonlinearity and geometric nonlinearity

Consider an infinitely long one-dimensional rod with a radius \(r \), where unidirectional axial stress \(\sigma(x,t) \) and longitudinal displacement \(u(x,t) \) are functions of position \(x \) and time \(t \), respectively. The governing equation can be obtained from Hamilton’s principle, namely \(\delta \int_t^L L dt = 0 \). Without considering the external non-conservative forces and moments, the elastic Lagrangian density function is \(L = T - U \), where \(T = \frac{1}{2} \rho \left(\frac{\partial u}{\partial t} \right)^2 + \frac{1}{2} \rho v^2 r^2 \left(\frac{\partial^2 u}{\partial x \partial t} \right)^2 \) is the system kinetic energy density and \(U = \frac{1}{2} \sigma \varepsilon \) is the elastic potential energy density of the system. Here \(\rho \) and \(v \) are the mass density and Poisson’s ratio, respectively, and the uniaxial force is a nonlinear relationship\(^9\) \(\sigma = E\varepsilon + E\varepsilon \), where \(E \) is the Young’s modulus. The finite strain here is the Green-Lagrange strain(GLS):

\[
\varepsilon = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial u}{\partial x} \right)^2
\]

(1)

and Hencky strain (HS):

\[
\varepsilon = \ln(1 + \frac{\partial u}{\partial x})
\]

(2)

The Lagrangian density function is substituted into the following Euler-Lagrangian equation, namely:

\[
\frac{\partial}{\partial x} \left(\frac{\partial L}{\partial (\partial u/\partial x)} \right) + \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial (\partial u/\partial t)} \right) - \frac{\partial^2}{\partial x \partial t} \left(\frac{\partial L}{\partial (\partial^2 u/\partial x \partial t)} \right) = 0
\]

(3)

Take the derivative with respect to \(x \) on both sides of the above equation and set \(\ddot{u} = \frac{\partial u}{\partial x} \) to obtain:
\[
\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left(\alpha \ddot{u} + \beta N(\ddot{u}) + \gamma \frac{\partial^2 \ddot{u}}{\partial t^2} \right) = 0
\] \(4\)

For GLS, \(\alpha = \beta = c^2\), \(N(u) = 3\ddot{u}^2 + \frac{7}{2} \ddot{u}^3 + \frac{15}{8} \dddot{u}^4 + \frac{3}{8} \dddot{u}^5\); For HS, \(\alpha = 0\), \(\beta = c^2\), \(N(u) = \ln(1 + \ddot{u}) + \frac{3}{2} \ln(1 + \dddot{u})\). For both cases, \(\gamma = r^2 v^2\) and \(c = \sqrt{E/\rho}\).

To facilitate the description of the dispersion, the transformation \(\xi = kx - \omega t\) is introduced, where \(k\) is the wave number and \(\omega\) is the frequency of the traveling wave. Equation \(4\) can be written as:

\[
\omega^2 \frac{\partial^2 u}{\partial \xi^2} - k^2 \frac{\partial^2}{\partial \xi^2} \left(\alpha \ddot{u} + \beta N(\ddot{u}) + \omega^2 \gamma \frac{\partial^2 \ddot{u}}{\partial \xi^2} \right) = 0
\] \(5\)

We integrate the two ends of equation \(5\) twice and set the integral constant term to 0 to ensure that the traveling wave solution of the initial bounded displacement field is bounded at infinity before solving the equation. After replacing the above variables, the initial displacement field\(^{[15]}\) is a sinusoidal displacement \(u(\xi) = B \sin(\xi)\), it satisfies \(\ddot{u}(0) = Bk\) and \(\frac{\partial^2 \ddot{u}(0)}{\partial \xi^2} = -Bk\) at \(\xi = 0\), and an accurate dispersion relationship can be obtained. The dispersion relationship corresponding to the GLS and HS strain is as follows:

\[
w = kc \sqrt{\frac{3B^4k^4 + 15B^3k^3 + 28B^2k^2 + 24Bk + 8}{8(k^2r^2V^2)}}
\] \(6\)

And

\[
w = kc \sqrt{\frac{\ln(1 + Bk)(2 + 3\ln(1 + Bk))}{2Bk(1 + Bk + k^2r^2V^2 + Bk^2r^2V^2)}}
\] \(7\)

If the amplitude \(B\) of the wave and the initial excitation of the wave number \(k_c\) are given, the initial conditions become:

\[
\ddot{u}(0) = Bk_c
\] \(8\)

And

\[
\frac{\partial^2 \ddot{u}}{\partial \xi^2} = -Bk_c
\] \(9\)
Then, we get the nonlinear dispersion with a single harmonic excitation:

\[w_{GLS} = kc \frac{3B^2k_e^4 + 15B^2k_e^2 + 28Bk_e^2 + 24Bk_e + 8}{8(1 + k_e^2r^2v^2)} \]

(10)

And

\[w_{HS} = kc \frac{\ln(1 + Bk_e)(2 + 3\ln(1 + Bk_e))}{2Bk_e(1 + Bk_e + k_e^2r^2v^2 + Bk_e^2k_e^2r^2v^2)} \]

(11)

3 Numerical verification

The Fourier spectrum method is used to solve equation (4) and the precise nonlinear dispersion relationship (10) and (11) may thus be verified.

Given an initial single harmonic excitation, \(\bar{\omega}(x, t) = Bk_e(1 + \cos(k_e(x - ct))) / 2 \), the amplitude is \(B = 0.1 \), and the wave number \(k_e \) is 4.5. Since it is impossible to simulate an infinite rod, the simulated rod is assumed to have a finite length. The space-time domain is defined by \(-x^* < x \leq x^* \) (long enough to avoid any reflections from boundaries) with a grid spacing of \(h = 1 \text{ mm} \), and \(0 < t < t^* \) (set just before the breaking point of the wave profile) with a constant time stepping of \(\Delta t = 1 \mu s \).

The material considered is aluminum which has property values of \(\rho = 2700 \text{ kg/m}^3 \), \(v = 0.33 \), and \(E = 70 \text{ GPa} \). We display the results of the WFS analysis using the logarithmic value of the spectrum \(S(k_e) = \sum \ln |s| \), scaled in the unit interval spanning the normalized axes of \(Bk_e \) and \(w/c \).

Thin-Material nonlinearity + GLS Thin-Material nonlinearity + HS
We prescribe the \(\mathbf{u}(x, t) = Bk_x (1 + \cos(k_x (x - ct))) / 2 \) field along the entire computational domain at time \(t=0 \). Beyond the initial time, the wave is allowed to propagate freely in the simulation with no further prescription of displacement. Three different snapshots of the simulated motion are shown in Fig. 1(a).

Performing Fourier analysis in space on the wave function at the time of excitation (t0) and two timesteps later (t1 and t2) shows the evolution of the energy spectrum, \(K \). At time t0, only a single harmonic exists, which is the cosine excitation signal. As the wave evolves, the nonlinear effects increasingly cause distortion and generate higher harmonics, as shown in Fig.1(b). The WFS analysis results corresponding to this excitation is also presented in Fig.1(c). The frequency wavenumber spectrum analysis is performed, and the linear dispersion relationship, nonlinear dispersion relationship, and dispersion relationship with harmonic excitation are superimposed on the spectrum. A careful observation of the red dotted line in Figure(c) shows that this curve passes accurately through the bright spots in the figure, and these bright spots represent the generation of harmonics. Therefore, the deduced nonlinear dispersion relationship can predict...
the harmonics accurately. The occurrence of the wave further proves the correctness of the deduced nonlinear dispersion relation containing the harmonics. Equations (10) and (11).

4 Conclusion

In this letter, we describe how we considered material and geometric nonlinearities in a long, thin rod simultaneously. Based on the given material nonlinearity, we deduced the nonlinear longitudinal wave equations under two different geometric nonlinearities, GLS and HS, respectively, and used analytical mathematical methods to derive the nonlinear dispersion relationship. Finally, the obtained dispersion relationship was verified using a numerical simulation.

Acknowledgment The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51775402 and U1931139).

Data availability

The data will be made available upon reasonable request for academic use and within the limitations of the provided informed consent by the corresponding author upon acceptance.

References

1. S.Y Zhang, Nonlinear waves in elastic solids. China Building Materials industry Press, 2006.
2. G. B. Whitham, Linear and nonlinear waves. John Wiley & Sons, 1974.
3. Bhatnagar B. Nonlinear waves in one-dimensional dispersive systems. Clarendon Press; 1979.
4. Nariboli G A, Sedov A. Burgers's-Korteweg-De Vries equation for viscoelastic rods and plates[J]. Journal of Mathematical Analysis and Applications, 1970, 32(3):661-677.
5. Clarkson P A, Leveque R J, Saxton R. Solitary-Wave Interactions in Elastic Rods[J]. Studies in Applied Mathematics, 1986, 75(2):95-121.
6. Dreiden G.V, Formation and Propagation of Strain in Nonlinearly Elastic Solids, Sov. Phys. Techn. Phys, 1988,33(10):1237-1241
7. Abedin nasab M H, Hussein M I. Wave dispersion under finite deformation[J]. Wave Motion, 2013, 50(3):374-388.
8. Khajehtourian R, Hussein M I. Nonlinear dispersion relation predicts harmonic generation in wave motion[J]. 2019.
9. Hu Weipeng, Han Aihong, Deng Zichen. Numerical simulation of longitudinal wave propagation in a nonlinear elastic rod[J]. Chinese Journal of Computational Mechanics, 2010(01):10-15.

10. Fang Xin. Research on elastic wave propagation theory and vibration reduction application in nonlinear acoustic metamaterials[J]. 2018.

11. Cai Li. Research on the propagation characteristics of phononic crystal elastic wave[D]. National University of Defense Technology, 2008

12. Zhang Qicheng. Research on elastic wave behavior and tunability in one-dimensional phononic crystals[D]. Harbin Engineering University, 2020

13. Liu Mao. Propagation characteristics and control of elastic waves in nonlinear phononic crystals and stealth structures[D]. Harbin Institute of Technology, 2019

14. Fang Xin. Research on Elastic Wave Propagation Theory and Vibration Reduction Application in Nonlinear Acoustic Metamaterials[D]. National University of Defense Technology, 2018

15. Khajehtourian R . Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions[D]. University of Colorado at Boulder, 2017.