\(\mathbb{A}^1\)-homotopy groups, excision, and solvable quotients

Aravind Asok
Department of Mathematics
University of Washington
Seattle, WA 98195
asok@math.washington.edu

Brent Doran
School of Mathematics
Institute for Advanced Study
Princeton, NJ 08540
doranb@ias.edu

November 12, 2007

Abstract

We study some properties of \(\mathbb{A}^1\)-homotopy groups: geometric interpretations of connectivity, excision results, and a re-interpretation of geometric quotients by solvable groups in terms of covering spaces in the sense of \(\mathbb{A}^1\)-homotopy theory. These concepts and results are well-suited to the study of certain quotients via geometric invariant theory.

As a case study in geometry of solvable group quotients, we focus on \(\mathbb{A}^1\)-homotopy groups of smooth toric varieties. We give simple combinatorial conditions (in terms of fans) guaranteeing vanishing of low degree \(\mathbb{A}^1\)-homotopy groups of smooth (proper) toric varieties. Finally, in certain cases, we can actually compute the “next” non-vanishing \(\mathbb{A}^1\)-homotopy group (beyond \(\pi_{\mathbb{A}^1}^1\)) of a smooth toric variety. From this point of view, \(\mathbb{A}^1\)-homotopy theory, even with its exquisite sensitivity to algebro-geometric structure, is almost “as tractable” (in low degrees) as ordinary homotopy for large classes of interesting varieties.

Contents

1 Introduction 1

2 \(\mathbb{A}^1\)-homotopy theory and \(\mathbb{A}^1\)-chain connectivity 6

3 \(\mathbb{A}^1\)-homotopy and \(\mathbb{A}^1\)-homology groups 11

4 Excision results for \(\mathbb{A}^1\)-homotopy groups 17

5 Geometric quotients, \(\mathbb{A}^1\)-covers, and toric varieties 27

6 \(\mathbb{A}^1\)-homotopy groups of smooth toric varieties 33

1 Introduction

One of the basic problems in \(\mathbb{A}^1\)-homotopy theory (see [Voe98] §7) is to understand “concretely,” i.e., in terms of algebraic and combinatorial data, the \(\mathbb{A}^1\)-homotopy types of smooth algebraic varieties. In analogy with classical topology, Morel and Voevodsky prove a Whitehead theorem
(see Theorem 3.4), which shows the A^1-homotopy groups (strictly speaking, Nisnevich sheaves of groups) determine the A^1-homotopy type of a variety. These groups therefore encode very valuable algebro-geometric information. For example, vanishing of the related “A^1-homology” groups of \mathbb{P}^n in degree above $2n$ would imply the famed Beilinson-Soulé vanishing conjecture (see e.g., Morc).

Geometric quotients by group actions arise naturally in algebraic geometry in moduli problems and in the construction of a host of classical varieties; typically, the space on which the group acts is comparatively easy to understand, and one is interested in the geometry of the quotient. In another direction, Morel has developed a theory of A^1-covering spaces for smooth schemes, in analogy with classical algebraic topology. A major motivation for this paper was the realization that smooth geometric quotients by free actions of (split) solvable (affine algebraic) groups are in fact A^1-covering spaces up to A^1-weak equivalence. Intuitively, over \mathbb{R}, one sees a torsor under a (split) torus is simply, up to ordinary homotopy, a finite covering space in the usual topological sense.

In this spirit, start with an A^1-connected smooth scheme X whose A^1-homotopy groups we understand. Suppose X is endowed with a free action of a split solvable group G. By modifying X in high codimension and taking quotients by the G-action, we can attempt to produce other smooth schemes whose A^1-homotopy groups we likewise understand. In the case of additive, and more generally split unipotent, groups we exploited this to produce arbitrary dimensional moduli of A^1-contractible varieties [AD07] as quotients of affine space. One application of this paper is to the study of A^1-homotopy groups of quotients of affine space by actions split tori.

For reductive, or even just multiplicative, group actions the natural way to produce quotient schemes is through geometric invariant theory, which helps identify closed subschemes that prevent the action from being proper or free. Much can be said about the motivic cohomology of such quotients, by using an inductive description of a natural stratification of the aforementioned closed subschemes (see [ADK07]). Of course, unlike the situation with cohomology, there is neither a localization sequence nor excision for homotopy groups in general.

After proving excision results for sufficiently “highly connected in the A^1-sense” spaces (see Theorem 4.1), we invoke the above perspective to concretely compute some A^1-homotopy groups for smooth toric varieties (see Theorem 6.4). These varieties arise as quotients of open subsets of affine space (presented as complements of arrangements of linear coordinate subspaces) by the natural (free) action of the torus dual to the Picard group of the variety. In actuality we do not directly use GIT, which only picks out certain open subsets with a free group action (in particular, these quotients must be quasi-projective), but rather the related Cox cover description for toric varieties, which captures all of the relevant open subsets in a pleasant combinatorial manner. In particular, we stress that these computations hold even for non-quasi-projective smooth toric varieties; we will discuss this more in Section 6. We thereby see that the (fundamentally algebro-geometric) A^1-homotopy theory can be nearly “as tractable” as ordinary homotopy for large classes of interesting varieties.

The topological story

For the moment, we consider only varieties over \mathbb{C} for simplicity. Let us recall the basic techniques one can use to study the homotopy theory of quotients. Let G denote a connected, affine algebraic
group and suppose \(X \) is a connected smooth scheme equipped with a (left) \(G \)-action. Suppose furthermore that \(G \) acts freely on an open subscheme \(U \subset X \), such that a (geometric) quotient \(U/G \) exists as a smooth scheme. Let us denote by \(Z \subset X \) the closed complement of \(U \) (equipped with the reduced induced scheme structure). We consider the triple \((X, G, Z)\). Assume, for simplicity of notation, that we know that \(X(\mathbb{C}) \) is \((d-2)\)-connected where the maximal dimensional components of \(Z \) have codimension \(d \) in \(X \).

- **Excision** of a codimension \(d \) closed subspace from an \(d-2 \)-connected manifold induces isomorphisms on \(\pi_i \) for \(i \leq d-2 \). Thus \(\pi_i \) vanishes for \(i \leq d-2 \) and \(\pi_{d-1}(X(\mathbb{C})) \cong \pi_i(U(\mathbb{C})) \).

- The Hurewicz theorem gives a canonical morphism \(\pi_{d-1}(U(\mathbb{C})) \to H_{d-1}(U(\mathbb{C})) \) that is an isomorphism if \(d \geq 3 \) and a surjection (indeed, abelianization) if \(d = 2 \).

- The fibration \(U(\mathbb{C}) \to U/G(\mathbb{C}) \) gives a way to relate \(\pi_i(X(\mathbb{C})) \) and \(\pi_i(U/G(\mathbb{C})) \).

The motivic story and its complications

Continuing with the above notations, most of the above sketch goes through using \(\mathbb{A}^1 \)-homotopy and \(\mathbb{A}^1 \)-homology, albeit several things must be proven and there are subtle differences.

- **Excision** holds as above, but with the extra condition that the complement of the codimension \(d \) closed subspace, here \(U \), must be shown to be \(\mathbb{A}^1 \)-connected (see Theorem 4.1). Unlike with ordinary homotopy, this is not true in general for codimension at least 2 complements of an \(\mathbb{A}^1 \)-connected space (see Remark 2.13).

- A Hurewicz theorem relating \(\mathbb{A}^1 \)-homotopy and \(\mathbb{A}^1 \)-homology groups has been established by Morel (see Definition 3.12 and Theorem 3.15). However, if \(\pi_{\mathbb{A}^1} \) is non-trivial, then the morphism to \(H_{\mathbb{A}^1} \) is not known to be an epimorphism, unless \(\pi_{\mathbb{A}^1} \) is abelian in which case it is an isomorphism as expected.

- The long exact homotopy sequence of a fibration exists in any model category in the sense of Quillen, so in particular it is part of \(\mathbb{A}^1 \)-homotopy theory, though \(\mathbb{A}^1 \)-fibrations are “rare.”

The easiest way to guarantee that \(U \to U/G \) is an \(\mathbb{A}^1 \)-fibration is to ask that it be an \(\mathbb{A}^1 \)-covering space (Definition 3.9). However, even though \(U \) is assumed \(\mathbb{A}^1 \)-connected, it is not a priori clear that the quotient \(U/G \) is also \(\mathbb{A}^1 \)-connected (see e.g., Example 2.14). When furthermore \(X \) is proper it will be \(\mathbb{A}^1 \)-connected, and in our terminology, a geometric Galois \(\mathbb{A}^1 \)-covering space (see Section 5).

The need to verify \(\mathbb{A}^1 \)-connectivity of \(U \) (to apply the excision theorem) and of \(U/G \) (to meaningfully discuss \(\mathbb{A}^1 \)-homotopy groups independent of choice of base point) requires an extended foray into the “geometry” of \(\mathbb{A}^1 \)-connectivity. We introduce a geometric criterion called \(\mathbb{A}^1 \)-chain connectivity, which for smooth proper varieties is (a priori) stronger than rational chain connectivity, and show how it implies \(\mathbb{A}^1 \)-connectivity.

To illustrate the above principle, we consider the case of smooth proper toric varieties, which can always be presented, by work of Cox ([Cox95]), as torus quotients. Here \(X = \mathbb{A}^n \), \(G \) is a split torus,
and Z is a union of coordinate subspaces. In this case, Lemma 2.12 and Lemma 5.11 establish the relevant \mathbb{A}^1-connectedness hypotheses. Consequently, the quotient morphism $U \to U/G$ is an \mathbb{A}^1-covering space. Affine space is \mathbb{A}^1-contractible (and hence highly \mathbb{A}^1-connected) and the \mathbb{A}^1-homology of U can sometimes be computed using a version of the Mayer-Vietoris sequence in \mathbb{A}^1-homology (see Proposition 3.16). One difficulty with the Mayer-Vietoris computation is that if a pair of codimension d components of Z intersect in codimension $d+1$ then the relevant part of the sequence does not split, so the problem is harder to analyze. (This reflects how the constraint of “even arrangements”, introduced by Goresky and MacPherson in their study of the homology of arrangement complements in affine space via stratified Morse theory (see [GM88] Part III), is a convenient simplifying assumption.)

Remark 1.1. Suppose X is now a variety defined over \mathbb{R}. Our results provide corroborating evidence for the philosophy (due to Voevodsky and emphasized by Morel) that \mathbb{A}^1-connectivity properties are more closely reflected by the topology of the real points. The topological fundamental group of the real points of a smooth proper toric variety has been completely described by Uma (Uma04), and we refer the reader to ibid. for a longer discussion of topology of real points of toric varieties.

Remark 1.2. Let us remark that if X is a smooth and projective toric variety, then the Bialynicki-Birula decomposition can be used to decompose the motive of X. Indeed, it follows from e.g., [Bro05] Theorem 3.3, that $M(X)$ is a direct sum of Tate motives. Unfortunately, the motive of a general smooth proper toric variety is harder to understand.

The rest of the work is concerned with deducing combinatorial conditions (see Proposition 5.10) that guarantee the above steps are explicitly computable. In particular, we give sufficient conditions for $\pi^{A^1}(\mathbb{A}^n - Z)$ to be abelian so we can apply Hurewicz, and for the relevant portion of the Mayer-Vietoris sequence to split (see Proposition 6.3). Conveniently, both of these have to do with pairs of codimension d subspaces intersecting in codimension $d+2$.

Overview of sections

We have endeavored to make this work as self-contained as possible. Achieving this goal necessitated reviewing, at least schematically, aspects of \mathbb{A}^1-algebraic topology (as developed by Morel and Voevodsky in [MV99] and further by Morel in [Mora, Mor05]) and the theory of toric varieties (see e.g., [Ful93]). While essentially none of this material is original, we hope that the novelty of presentation justifies its inclusion in the present work.

Section 2 is devoted to introducing an \mathbb{A}^1-analog of the topological notion of path connectedness. We define a notion of \mathbb{A}^1-chain connectedness (see Definition 2.6) and prove (see Proposition 2.8) that \mathbb{A}^1-chain connected varieties are \mathbb{A}^1-connected. Furthermore, we discuss \mathbb{A}^1-connectivity of certain open subsets of affine space.

Section 3 is devoted to a quick review of basic definitions and properties of higher \mathbb{A}^1-homotopy and \mathbb{A}^1-homology groups. The only novelty here is that we prove the existence of Mayer-Vietoris sequences for \mathbb{A}^1-homology. Along the way, we discuss \mathbb{A}^1-covering space theory and the computations of some \mathbb{A}^1-homotopy groups of $\mathbb{A}^n - 0$ and \mathbb{P}^n.

Section 4 proves the first main result of the paper (see Theorem 4.1): an “excision” result for \mathbb{A}^1-homotopy groups. The hardest part of this theorem is treating the case of the \mathbb{A}^1-fundamental
group. Morel has developed a collection of techniques for dealing with the so-called strongly \(\mathbb{A}^1 \)-invariant sheaves of groups; all the \(\mathbb{A}^1 \)-homotopy groups of a (simplicial) space \(X \) are in fact strongly \(\mathbb{A}^1 \)-invariant, while the higher \(\mathbb{A}^1 \)-homotopy groups are furthermore abelian. In \[CTHK97\], a collection of axioms are given to prove the existence of “Cousin resolutions” for certain “\(\mathbb{A}^1 \)-invariant” sheaves of groups. We review aspects of this theory here together with Morel’s extension for strongly \(\mathbb{A}^1 \)-invariant sheaves of groups; these results are the key technical tools involved in proving our excision results.

Section 5 is devoted to studying the geometry of toric varieties and, more generally, geometric quotients by solvable group actions from the standpoint of \(\mathbb{A}^1 \)-covering space theory. For us, a toric variety is a normal algebraic variety \(X \) over a field \(k \) on which a split torus \(T \) acts with an open dense orbit. We then review Cox’s presentation of a smooth proper toric variety as a quotient of an open subset of affine space by the action of the dual torus of the Picard group (the latter is in fact free abelian); we refer to this construction as the “Cox cover.” The main results of this section are two-fold. Proposition 5.1, Corollary 5.3 and Proposition 5.11 together show that the Cox’s quotient presentation of any smooth proper toric variety is a geometric Galois \(\mathbb{A}^1 \)-covering space (in the sense of Definition 3.9). Next, the combinatorial Proposition 5.10 sets the stage for the application of Theorem 4.1 to study the \(\mathbb{A}^1 \)-homotopy groups of smooth proper toric varieties.

Section 6 is devoted to proving certain “vanishing” and “non-vanishing” results for low-degree \(\mathbb{A}^1 \)-homotopy groups of smooth toric varieties. The main result of this section is Theorem 6.4, which serves two purposes. It first gives a neat combinatorial/geometric condition guaranteeing vanishing of low degree \(\mathbb{A}^1 \)-homotopy groups and computes the next non-trivial (i.e., beyond \(\pi_1 \mathbb{A}^1 \)) \(\mathbb{A}^1 \)-homotopy group in simple situations. Finally, this section illustrates some sample computations using the techniques developed previously.

Acknowledgements

This work grew out of several conversations with Fabien Morel at the Topology meeting held at the Banff International Research Center. He patiently explained how his results could be used to prove excision results. We thank him kindly for these inspiring interactions and subsequent discussions. We would also like to thank Joseph Ayoub for some useful discussions.

Conventions

Throughout this paper \(k \) will denote an arbitrary field unless otherwise mentioned. The word “scheme” will be synonymous with separated, finite type, \(k \)-scheme. For any scheme \(X \), \(X^{(p)} \) will denote the set of codimension \(p \) points of \(X \). If \(L/k \) is a field extension, we will denote by \(X_L \) the fiber product \(X \times_{\text{Spec} \ k} \text{Spec} \ L \). The words “group” or “group scheme” will always mean linear algebraic group unless otherwise indicated. Following Borel, a (connected) split solvable group is a connected linear algebraic group admitting an increasing filtration by connected normal algebraic subgroups with sub-quotients isomorphic to \(\mathbb{G}_a \) or \(\mathbb{G}_m \).

Let \(Sm_k \) denote the category of smooth schemes. Unless otherwise mentioned, the word “sheaf” will mean Nisnevich sheaf on \(Sm_k \). Also \(Spc \) will denote the category of Nisnevich sheaves of sets on \(Sm_k \); thus “sheaf” and “space” will be synonymous. The Yoneda embedding determines a fully-
faithful functor $\mathcal{S}m_k \hookrightarrow \mathcal{S}p_c$ defined by $X \mapsto X(\cdot) = \text{Hom}_{\mathcal{S}m_k}(\cdot, X)$. We use this functor to identify schemes with their corresponding spaces. We let $\Delta^\circ \mathcal{S}p_c$ denote the category of simplicial spaces (i.e., simplicial Nisnevich sheaves on $\mathcal{S}m_k$). There is a canonical functor $\mathcal{S}p_c \hookrightarrow \Delta^\circ \mathcal{S}p_c$ sending \mathcal{X} to the simplicial sheaf whose n-th term is the space \mathcal{X} and all of whose face and degeneracy maps are the identity morphism; this functor is fully-faithful. Given a simplicial space \mathcal{X}, we will denote by \mathcal{X}_n the sheaf of n-simplices of \mathcal{X}. We will also use the notation $\mathcal{S}p_c \cdot$ (resp. $\Delta^\circ \mathcal{S}p_c \cdot$) for the category of pointed (simplicial) spaces.

Suppose \mathcal{X} is a (simplicial) space. Given a morphism $f : \mathbb{A}^1_k \to \mathcal{X}$, we will denote by $f(0)$ (resp. $f(1)$) the morphism $\text{Spec} k \to \mathcal{X}$ obtained by composing with the morphism $0 : \text{Spec} k \to \mathbb{A}^1$ (resp. $1 : \text{Spec} k \to \mathbb{A}^1$).

We let $\mathcal{H}(k)$ and $\mathcal{H}(k)$ denote the unpointed and pointed motivic homotopy categories. Objects of these categories are simplicial spaces and morphisms are \mathbb{A}^1-homotopy classes of maps. The latter will be denoted by $[\mathcal{X}, \mathcal{Y}]_{\mathbb{A}^1}$ (resp. $[(\mathcal{X}, x), (\mathcal{Y}, y)]_{\mathbb{A}^1}$). When discussing the \mathbb{A}^1-homotopy type of a scheme X, we will always implicitly be considering the corresponding sheaf $X(\cdot)$ on $\mathcal{S}m_k$. Also, Σ^1_k denotes the simplicial suspension functor. We write $\mathbb{A}b_k$ for the category of Nisnevich sheaves of abelian groups.

We offer a word of caution with regard to our use of the word “torsor.” If G is a group scheme, a (left) G-torsor over a smooth scheme X consists of a triple (\mathcal{P}, π, G) where \mathcal{P} is a scheme equipped with a left action of G, $\pi : \mathcal{P} \to X$ is a faithfully flat, quasi-compact G-equivariant morphism (for the trivial action of G on X), and the canonical map $G \times \mathcal{P} \to \mathcal{P} \times \mathcal{P}$ is an isomorphism onto $\mathcal{P} \times_{\pi, X, \pi} \mathcal{P}$. On the other hand, if G is a sheaf of groups, and \mathcal{X} is a space, a G-torsor over \mathcal{X} is a triple $(\mathcal{P}, \pi, \mathcal{X})$ where \mathcal{P} is a G-space such that the action morphism $G \times \mathcal{P} \to \mathcal{P} \times \mathcal{P}$ is a monomorphism, and such that the canonical morphism $\mathcal{P}/G \to \mathcal{X}$ is an isomorphism. Torsors in the former sense give rise to torsors in the latter sense since we are assuming our schemes separated (see e.g., [MFK94] Lemma 0.6). When we speak of torsors over schemes, we will always mean the former notion. Finally, given a connected linear algebraic group G, we say that a G-scheme is G-quasi-projective if it admits an ample G-equivariant line bundle.

2 \mathbb{A}^1-homotopy theory and \mathbb{A}^1-chain connectivity

The main goal of this section is to study the sheaf of \mathbb{A}^1-connected components of a smooth scheme X. The most naïve thing that the statement “X is \mathbb{A}^1-connected” might mean is that any pair of k-points of X lie in the image of a morphism $f : \mathbb{A}^1 \to X$. Such statements are complicated by the fact that $X(k)$ can be empty and by questions regarding field extensions. Furthermore, this is where the first key distinction between the topological and algebro-geometric stories appears. In topology, if a pair of points can be connected by a chain of paths, then they can be connected by a single path; unfortunately, it is not clear that this is true in algebraic geometry. Thus, the more general condition one wants to impose is that of chain connectedness. We begin by recalling some basic notions of \mathbb{A}^1-homotopy theory and then the definition and basic properties of the sheaf of \mathbb{A}^1-connected components. We also mention here that all of the results in this section that are presented without other attribution were known to Morel. We take full responsibility for (perhaps irrationally exuberant) conjectures made here.
The A^1-homotopy category

The A^1-homotopy category can be constructed by a “two-step” localization process from the category $\Delta^\circ \mathbf{Spc}$. First, one equips $\Delta^\circ \mathbf{Spc}$ with the so-called “local injective” model structure (also called the Joyal-Jardine model structure). Recall that this means that one defines cofibrations and weak equivalences in $\Delta^\circ \mathbf{Spc}$ to be monomorphisms (of simplicial Nisnevich sheaves) and those morphisms that stalkwise induce weak equivalences of simplicial sets. One then defines (simplicial) fibrations to be those morphisms that have the right lifting property with respect to acyclic fibrations. This triple of collections of morphisms equips $\Delta^\circ \mathbf{Spc}$ with the structure of a closed model category (see e.g., [MV99] §2 Theorem 1.4); the resulting homotopy category is denoted $\mathcal{H}_s((Sm/k)_{Nis})$; we will refer to this category as the \textit{simplicial homotopy category}. Morphisms between two (simplicial) spaces \mathcal{X}, \mathcal{Y} in $\mathcal{H}_s((Sm/k)_{Nis})$ will be denoted $[\mathcal{X}, \mathcal{Y}]_s$ (with the field k clear from context). It is important to note that the functor $\mathcal{S} : \mathcal{H}(k) \rightarrow \mathcal{H}_s((Sm/k)_{Nis}) \hookrightarrow \Delta^\circ \mathbf{Spc}$ is fully-faithful (see [MV99] §2 Remark 1.14).

The A^1-homotopy category $\mathcal{H}(k)$ is constructed from by a localization in the sense of Bousfield. One says that a (simplicial) space \mathcal{X} is A^1-\textit{local}, if for any test (simplicial) space \mathcal{T}, the map

$$[\mathcal{T}, \mathcal{X}]_s \rightarrow [\mathcal{T} \times A^1, \mathcal{X}]_s$$

induced by projection is a bijection. A morphism $f : \mathcal{X}_1 \rightarrow \mathcal{X}_2$ of (simplicial) spaces is said to be an A^1-\textit{weak equivalence} if for any A^1-local (simplicial) space \mathcal{Y}, the induced morphism

$$[\mathcal{X}_1, \mathcal{Y}]_s \rightarrow [\mathcal{X}_2, \mathcal{Y}]_s$$

is a bijection. Keeping cofibrations as before, one can define A^1-fibrations to be those morphisms having the right lifting property with respect to A^1-acyclic cofibrations, i.e., those morphisms that are both A^1-weak equivalences and monomorphisms of simplicial sheaves. One can further localize $\mathcal{H}_s((Sm/k)_{Nis})$ at the class of A^1-weak equivalences to obtain $\mathcal{H}(k)$ (see [MV99] Definition 3.1 and Theorem 3.2). Similarly, one can make “pointed” versions of all of these constructions. We will write $[\mathcal{X}, \mathcal{Y}]_{A^1}$ for the set of morphisms between \mathcal{X} and \mathcal{Y} in $\mathcal{H}(k)$ (once more, we have suppressed k).

Observe that in this model structure, all simplicial spaces are cofibrant. Following the general theory of model categories, in order to compute $[\mathcal{X}, \mathcal{Y}]_s$ or $[\mathcal{X}, \mathcal{Y}]_{A^1}$, it is necessary to choose a fibrant (or A^1-fibrant) replacement of \mathcal{Y}. In fact, this can be done \textit{functorially}. Recall that an A^1-resolution functor consists of a pair $\left(Ex_{A^1}, \theta\right)$, where θ is a natural transformation $Id \rightarrow Ex_{A^1}$, and for any simplicial space \mathcal{X}, $Ex_{A^1}(\mathcal{X})$ is simplicially fibrant, A^1-local (in fact this means it is A^1-fibrant as well by [MV99] §2 Proposition 2.28) and the morphism $\mathcal{X} \rightarrow Ex_{A^1}(\mathcal{X})$ is an A^1-acyclic cofibration (see [MV99] §2 Definition 3.18).

Lemma 2.1. There exists an A^1-resolution functor that commutes with formation of finite products of simplicial spaces.

Remark 2.2. The construction of this functor uses the properties of the Godement resolution functor stated in [MV99] §2 Theorem 1.66 and the fact, (see [MV99] p. 87) that by definition the functor $\text{Sing}^*_{A^1}(\cdot)$ commutes with formation of finite limits (and hence finite products).
Consider two (simplicial) spaces \(\mathcal{X}, \mathcal{Y} \). We say that two morphisms \(f_0, f_1 : \mathcal{X} \to \mathcal{Y} \) are simplicial homotopy equivalent if there exists a morphism \(H : \mathcal{X} \times \mathbb{A}^1 \to \mathcal{Y} \) such that \(H(0) = f_0 \) and \(H(1) = f_1 \) (see e.g., [Qui67] Ch. 2 §1 Definition 4). Unfortunately, simplicial homotopy equivalence may fail to be an equivalence relation unless \(\mathcal{Y} \) is \(\mathbb{A}^1 \)-fibrant. If \(\mathcal{Y} \) is \(\mathbb{A}^1 \)-fibrant, we denote this equivalence relation by \(\sim_{\mathbb{A}^1} \). The general machinery of model categories (see e.g., [Qui67] Ch. 2 §2 Proposition 5) then provides us with an identification

\[
[\mathcal{X}, \mathcal{Y}]_{\mathbb{A}^1} = \text{Hom}_{\Delta^\text{sp}}(\mathcal{X}, \text{Ex}_{\mathbb{A}^1}(\mathcal{Y}))/\sim_{\mathbb{A}^1}.
\]

Thus we need a sufficiently “explicit” understanding of \(\text{Ex}_{\mathbb{A}^1}(\mathcal{Y}) \) to compute \(\mathbb{A}^1 \)-homotopy classes of maps.

The sheaf \(\pi_{\mathbb{A}^1}^0 \)

Here and through the rest of this section, we fix a base field \(k \). All (simplicial) spaces, and schemes, unless otherwise noted, are defined over \(k \).

Suppose \(\mathcal{X} \) is a (simplicial) space. Define \(\pi_{\mathbb{A}^1}^0(\mathcal{X}) \) to be the Nisnevich sheaf associated with the presheaf

\[
U \mapsto [U, \mathcal{X}]_{\mathbb{A}^1}.
\]

We will write the stalks of \(\pi_{\mathbb{A}^1}^0(\mathcal{X}) \) as \([S, \mathcal{X}]_{\mathbb{A}^1}\) where \(S \) is a Henselian local scheme. Of course, this last statement requires comment as \(S \) can be essentially of finite type (i.e., a limit of a filtering system of smooth schemes with smooth affine bonding morphisms). Thus, we define \([S, \mathcal{X}]_{\mathbb{A}^1}\) to be the limit \(\text{colim}_\alpha[U_\alpha, \mathcal{X}]_{\mathbb{A}^1} \) for any choice of inverse system defining \(S \); this is independent of the choice of such an inverse system.

Definition 2.3. A (simplicial) space \(\mathcal{X} \) is said to be \(\mathbb{A}^1 \)-connected if \(\pi_{\mathbb{A}^1}^0(\mathcal{X}) \) is the trivial sheaf, i.e., \(\pi_{\mathbb{A}^1}^0(\mathcal{X}) \) is the sheaf associated with the presheaf whose sections over any smooth scheme \(U \) are just one element sets. We will sometimes refer to \(\mathbb{A}^1 \)-connected spaces as \(\mathbb{A}^1 \)-0-connected in analogy with classical homotopy theory. Any space that is not \(\mathbb{A}^1 \)-connected will be called \(\mathbb{A}^1 \)-disconnected.

Thus, a (simplicial) space is \(\mathbb{A}^1 \)-connected if and only if, for any Henselian local scheme \(S \), any pair of \(S \)-points \(s_0, s_1 \) of \(\text{Ex}_{\mathbb{A}^1}(\mathcal{X}) \) can be connected by a morphism \(S \times \mathbb{A}^1 \to \mathcal{X} \). We now proceed to re-interpret this condition. Observe that finitely generated separable extensions of \(k \) are necessarily Henselian local schemes. The existence of the functor \(\text{Ex}_{\mathbb{A}^1} \) proves the following result, which can be referred to as the unstable \(\mathbb{A}^1 \)-0-connectivity theorem.

Theorem 2.4 ([MV99] §2 Corollary 3.22). Suppose \(\mathcal{X} \) is a simplicial space. The morphism of sheaves \(\mathcal{X} \to \text{Ex}_{\mathbb{A}^1}(\mathcal{X}) \) induces a surjective morphism of Nisnevich sheaves

\[
\mathcal{X}_0 \to \pi_{\mathbb{A}^1}^0(\mathcal{X}).
\]

Observe that an immediate consequence of this theorem is that any \(\mathbb{A}^1 \)-connected (simplicial) space \(\mathcal{X} \) necessarily has a \(k \)-point. This provides an obstruction to \(\mathbb{A}^1 \)-connectedness of a scheme \(\mathcal{X} \).
As we observed above, to check that the sheaf $\pi_0^{A^1}(\mathcal{X})$ is trivial, it suffices to check that it is trivial at all stalks. The following result shows that A^1-connectedness can even be reduced to a check over “fields”; we pause here to remind the reader here of the issues involved in considering schemes essentially of finite type over k.

Lemma 2.5 ([Mor05] Lemma 6.1.3). The space \mathcal{X} is A^1-connected if and only if for every separable, finitely generated field extension L/k, the simplicial set $Ex_{A^1}(\mathcal{X})(L)$ is a connected simplicial set.

A^1-chain connectedness

With these results in place, we can now give a geometric criterion which guarantees A^1-connectedness.

Definition 2.6. We will say that a (simplicial) space \mathcal{X} is A^1-path connected if for every finitely generated, separable field extension L/k the set $X_0(L)$ is non-empty and for every pair of L-points $x_0, x_1 : \text{Spec} L \to \mathcal{X}$, there exists a morphism $f : A^1_L \to \mathcal{X}$ such that $f(0) = x_0$ and $f(1) = x_1$. Similarly, we will say that a (simplicial) space \mathcal{X} is A^1-chain connected if for every finitely generated, separable field extension L/k the set $X_0(L)$ is non-empty, and for every pair of L-points $x_0, x_1 : \text{Spec} L \to \mathcal{X}$ there exist a finite sequence $y_1, \ldots, y_n \in X(L)$ and a collection of morphisms $f_i : A^1 \to \mathcal{X}$ ($i = 0, \ldots, n$) such that $f_0(0) = x_0$, $f_n(1) = x_1$, and $f_{i-1}(1) = f_i(0) = y_i$.

Remark 2.7. Observe that in Definition 2.6 it is essential that we make a statement for all field extensions L/k. For example, given any smooth projective curve of genus $g \geq 1$ or abelian variety X over a finite field k, $X(k)$ is a finite set. Consider the open subscheme U of X obtained by removing all but a single k-rational point. Then the trivial morphism $A^1 \to U$ whose image is the remaining k-point gives a chain connecting all k-points. However, for such varieties after making a finite extension L/k, no pair of L-points can be connected by a morphism $A^1 \to U$ (see also Example 2.11). For smooth curves of genus $g \geq 2$, a similar statement can be made for k a number field.

Proposition 2.8. Suppose \mathcal{X} is an A^1-chain connected (simplicial) space over a field k. Then \mathcal{X} is A^1-connected.

Proof. Suppose \mathcal{X} is A^1-chain connected. Consider the A^1-acyclic, cofibration $\mathcal{X} \to Ex_{A^1}(\mathcal{X})$ given by Lemma 2.1. By Theorem 2.4, for any Henselian local scheme S there is a canonical, surjective morphism $X_0(S) \to [S, \mathcal{X}]_{A^1}$. Since $Ex_{A^1}(\mathcal{X})$ is (simplicially) fibrant and A^1-local, this last set can be computed in terms of simplicial homotopy classes of maps from S to $Ex_{A^1}(\mathcal{X})$.

Now, by Lemma 2.5 to check that \mathcal{X} is A^1-connected, it suffices to check that $[\text{Spec} L, \mathcal{X}]_{A^1}$ is reduced to a point for every separable, finitely generated field extension L/k. By the previous paragraph, we know that $[\text{Spec} L, \mathcal{X}]_{A^1}$ is a quotient of $X_0(L)$. Since \mathcal{X} is A^1-chain connected, it follows that $X_0(L)$ is non-empty and the image of any two L-points of \mathcal{X} in $Ex_{A^1}(\mathcal{X})$ are in fact simplicially homotopy equivalent. Thus $[\text{Spec} L, \mathcal{X}]_{A^1}$ is reduced to a point.

The definition of A^1-chain connectivity is, of course, more geometrically suggestive if X is a smooth k-scheme in which case one considers actual morphisms of schemes $A^1 \to X$ (use the full-faithfulness of the embedding $Sm_k \to \Delta(Spc)$). However, in this case, checking that X is A^1-chain
connected can be cumbersome because one has to check something for all finitely generated field extensions. Fortunately, many of the examples considered in this paper will satisfy the hypotheses of the following easy lemma.

Lemma 2.9. If X is an n-dimensional smooth scheme over a field k. If X admits an open cover $X = \bigcup U_i$ where each U_i is (k,\cdot)-isomorphic to \mathbb{A}^n_k, then X is \mathbb{A}^1-chain connected and in particular \mathbb{A}^1-connected.

Example 2.10. In particular, as we shall see, this can be used to show that smooth proper toric varieties and flag varieties (under connected, split reductive groups) are \mathbb{A}^1-connected. More generally, the techniques used to prove these facts can be generalized to study smooth proper spherical varieties X under connected, split reductive groups G (here, spherical means that a Borel subgroup $B \subset G$ acts on X with an open dense orbit), at least over algebraically closed fields of characteristic 0.

Thus, by definition, any \mathbb{A}^1-chain-connected variety over a field k admits many rational curves, and one hopes that \mathbb{A}^1-connected smooth schemes have the same property. One expects that \mathbb{A}^1-disconnected varieties do not have many rational curves.

Example 2.11. Recall that a variety X is said to be \mathbb{A}^1-rigid if for any smooth scheme U, the canonical morphism $\text{Hom}_{\text{Sm}}(U, X) \to \text{Hom}_{\text{Sm}}(U \times \mathbb{A}^1, X)$ is bijective (see [MV99] §3 Example 2.4). For \mathbb{A}^1-rigid varieties, one can check that one has an isomorphism of sheaves $\pi_0^{\mathbb{A}^1}(X) \cong X$; thus \mathbb{A}^1-rigid varieties are totally disconnected. Indeed, if X is \mathbb{A}^1-rigid, then X is \mathbb{A}^1-local and the result follows from the full-faithfulness of the functor $\text{Sm}_k \to \mathcal{H}_s((\text{Sm}/k)_{\text{Nis}})$. Examples of \mathbb{A}^1-rigid varieties include smooth curves of geometric genus $g \geq 1$, open subschemes of \mathbb{G}_m, abelian varieties, products of such varieties, sub-schemes of such things, etc. Observe then that, using classification results, one knows that a smooth algebraic curve is \mathbb{A}^1-connected if and only if it is \mathbb{A}^1-connected.

Furthermore, one can show that, if $k = \overline{k}$, the sheaf of \mathbb{A}^1-connected components of a smooth projective ruled surface $\pi : X \to C$ is trivial if C has genus 0 and isomorphic to the sheaf C defined by the base curve of the fibration when the genus of C is (strictly) greater than 0. In other words, the only \mathbb{A}^1-connected smooth proper varieties of dimension ≤ 2 are rational varieties.

Excision and \mathbb{A}^1-connectivity

We won’t develop the general theory of \mathbb{A}^1-chain connected varieties over a field here. Rather, we’ll focus on the main example that we’ll use for the rest of the paper: open subvarieties of affine space.

Lemma 2.12. Suppose k is an infinite field. Choose coordinates x_1, \ldots, x_n on \mathbb{A}^n. If $U \subset \mathbb{A}^n$ is an open subscheme realized as the complement of a union of coordinate subspaces of codimension $d \geq 2$, then U is \mathbb{A}^1-connected.

Proof. If k is any infinite field, and K is any finitely generated, separable extension, suppose L_i are a sequence of linear subspaces defined over k whose union has complement of codimension ≥ 2 in \mathbb{A}^n. In this case, we can even choose sequences of linear maps $\mathbb{A}^1 \to X$ (defined over K) that miss the complement of the union of the L_i and connect any pair of K-points. \qed
Remark 2.13. Still under the assumption that \(k \) is infinite, the previous result can be generalized to the following statement. If \(U \subset \mathbb{A}^n \) is an open subscheme whose complement has codimension \(\geq 2 \), then \(U \) is \(\mathbb{A}^1 \)-chain connected. The condition that \(k \) be infinite is necessary. Indeed, if \(k \) is finite the complement of the codimension 2 subscheme consisting of all \(k \)-rational points has no \(k \)-rational points and is thus \(\mathbb{A}^1 \)-disconnected. Slightly more generally, we may construct “space-filling” curves \(Y \subset \mathbb{A}^n \): these are geometrically connected affine curves \(Y \) over \(k \) such that \(Y(k) = \mathbb{A}^n(k) \) (see [Kat99] Lemma 1). For such a curve, the complement \(U = \mathbb{A}^n - Y \) has no \(k \)-rational points and thus \(U \) cannot be \(\mathbb{A}^1 \)-connected.

Example 2.14. The following example presents a more subtle variation on the situation discussed in Remark 2.7. Observe that the group \(\mu_n \) of \(n \)th-roots of unity acts (scheme-theoretically) freely on \(\mathbb{A}^m - 0 \) (say \(m > 1 \)). The quotient \(\mathbb{A}^m - 0/\mu_n \) exists as a smooth scheme and is isomorphic to the \(\mathbb{G}_m \)-torsor underlying the line bundle \(\mathcal{O}(n) \) on \(\mathbb{P}^{m-1} \). However, the quotient morphism

\[
q : \mathbb{A}^m - 0 \longrightarrow \mathbb{A}^m - 0/\mu_n
\]

is not a surjective morphism at the level of \(L \)-points if \(L \) is not algebraically closed. Since \(m > 1 \), \(\mathbb{A}^m - 0 \) is always \(\mathbb{A}^1 \)-connected. However, one can show that \(\pi^A_0(\mathbb{A}^m - 0/\mu_n) \cong \mathbb{G}_m/\mathbb{G}_m^0 \), where the last sheaf is the cokernel of the \(n \)-th power morphism \(\mathbb{G}_m \longrightarrow \mathbb{G}_m \) in the category of Nisnevich sheaves of abelian groups. On the other hand, if \(L \) is algebraically closed, every pair of \(L \)-points is in the image of a morphism \(\mathbb{A}^1 \longrightarrow \mathbb{A}^m - 0/\mu_n \). We thank Fabien Morel for explaining this example to us.

Conjecture 2.15. Let \(k \) be an infinite field. If \(X \) is a smooth \(\mathbb{A}^1 \)-connected scheme and \(U \subset X \) is an open subscheme whose complement has codimension \(\geq 2 \), then \(U \) is \(\mathbb{A}^1 \)-connected.

Remark 2.16. To contrast with the discussion of the previous section, let us observe that removing an open subset of affine space whose complement has codimension 1 components produces a variety that need not be \(\mathbb{A}^1 \)-connected. Indeed, removing a hyperplane from \(\mathbb{A}^n \) produces a variety \(\mathbb{A}^1 \)-weakly equivalent to \(\mathbb{G}_m \), that, as we discussed before, is known not to be \(\mathbb{A}^1 \)-connected.

3 \(\mathbb{A}^1 \)-homotopy and \(\mathbb{A}^1 \)-homology groups

Herein, we review definitions and basic structural properties of \(\mathbb{A}^1 \)-homotopy sheaves of groups of degree \(\geq 1 \). In particular, we state the \(\mathbb{A}^1 \)-version of the Whitehead Theorem (see Theorem 3.4), recall basics of Morel’s theory of \(\mathbb{A}^1 \)-covers (to be discussed in greater detail in §5), recall the definition of \(\mathbb{A}^1 \)-homology (see Definition 3.12), state Morel’s \(\mathbb{A}^1 \)-Hurewicz theorem (see Theorem 3.15), prove the existence of Mayer-Vietoris sequences (see Proposition 3.16), and recall Morel’s computations of low degree \(\mathbb{A}^1 \)-homotopy groups of \(\mathbb{A}^n - 0 \) and \(\mathbb{P}^n \) (see Theorem 3.17).

\(\mathbb{A}^1 \)-homotopy (sheaves of) groups

Suppose \((\mathcal{X}, x)\) is a pointed (simplicial) space. Recall that the simplicial \(i \)-sphere is the (pointed) space \(S^i = \Delta^i / \partial \Delta^i \), where \(\Delta^i \) is the algebraic \(n \)-simplex \(\text{Spec} \ k[x_0, \ldots, x_i]/(\sum_{j=0}^i x_j = 1) \). The \(\mathbb{A}^1 \)-homotopy sheaves of groups \(\pi^A_k(\mathcal{X}, x) \) are defined to be the sheaves associated with the presheaves

\[
U \mapsto [S^i_k \wedge U_+, (\mathcal{X}, x)]_{\mathbb{A}^1},
\]
which for \(i \geq 2 \) are sheaves of abelian groups. Observe that these sheaves can also be interpreted as the sheaves associated with the presheaves \(U \mapsto A_1^i(Ex_{A_1}(X))(U), x) \); here the superscript \(s \) indicates that we are considering homotopy groups of the corresponding (fibrant) simplicial sets. The following result will be used without mention in the sequel.

Lemma 3.1. Suppose \((X, x)\) and \((Y, y)\) are a pair of pointed \(A_1\)-connected (simplicial) spaces. Then for any \(i \geq 1 \) one has

\[
\pi_i^{A_1}(X \times Y, (x, y)) \cong \pi_i^{A_1}(X, x) \times \pi_i^{A_1}(Y, y).
\]

Proof. This follows easily from Lemma 2.1. Indeed, using that lemma, we reduce to the corresponding simplicial result: the assumption that \(X \) be \(A_1 \)-connected implies that \(Ex_{A_1}(X) \) is simplicially connected.

Remark 3.2. Formal arguments in model category theory show (see [Qui67] Chapter 1 §3 Proposition 4) that if \(f : X \to Y \) is an \(A_1 \)-fibration, that one obtains a corresponding long exact sequence of \(A_1 \)-homotopy sheaves.

Definition 3.3. Suppose \(k \) is an integer \(\geq 0 \). A pointed (simplicial) space \(X \) is said to be \(A_1^{k} \)-connected if

\[
\pi_i^{A_1}(X, x) = \ast \text{ for all } 0 \leq i \leq k.
\]

If \(k = 1 \), such spaces will be called \(A_1 \)-simply connected.

Part of the reason for introducing these sheaves of \(A_1 \)-homotopy groups, as opposed to ordinary groups, is that the \(A_1 \)-homotopy sheaves of groups form the correct class of objects with which to detect \(A_1 \)-weak equivalences.

Theorem 3.4 (\(A_1 \)-Whitehead Theorem, [MV99] §3 Proposition 2.14). Suppose \(f : (X, x) \to (Y, y) \) is a morphism of pointed \(A_1 \)-connected (simplicial) spaces. The following conditions are equivalent:

- the morphism \(f \) is an \(A_1 \)-weak equivalence, and
- for every \(i > 0 \), the induced morphism of \(A_1 \)-homotopy sheaves of groups \(f_* : \pi_i^{A_1}(X, x) \to \pi_i^{A_1}(Y, y) \) is an isomorphism.

Example 3.5. Observe that the \(A_1 \)-homotopy groups \(\pi_i^{A_1}(\text{Spec } k) \) are all trivial if \(i \geq 0 \). In particular, the \(A_1 \)-contractible spaces of [AD07] provide examples of spaces that are \(A_1^{i} \)-connected for all \(i \geq 0 \). For this paper, it is important to observe that \(A^n \) is \(A_1 \)-contractible (essentially by definition). This fact, together with Lemma 2.12 and the excision result proved in Theorem 4.1, will be used to give many examples of \(A_1^{i} \)-connected varieties for any fixed \(i \).
The sheaf π^A_1, A^1-covering spaces, and strong A^1-invariance

In classical algebraic topology, one knows that the fundamental group of a (sufficiently nice) topological space is a discrete group. The notion analogous to discreteness in A^1-algebraic topology is summarized in the following definition.

Definition 3.6 ([Mora] Definition 5). A strongly A^1-invariant sheaf of groups G (possibly non-abelian) is a sheaf of groups such that, for any smooth scheme X and $i = 0, 1$, the pull-back morphism $H^i_{Nis}(X, G) \to H^i_{Nis}(X \times A^1, G)$ induced by the projection $X \times A^1 \to X$ is an isomorphism.

Example 3.7. If G is a sheaf of groups, the usual simplicial bar construction gives rise to a simplicial sheaf $B(G)$, pointed by the identity. Strong A^1-invariance of G is equivalent to the condition that $B(G)$ be A^1-local. Using this observation, it is proved in, e.g., [MV99] Proposition 3.8 that G_m is a strongly A^1-invariant sheaf of groups. More generally, a split torus T is a strongly A^1-invariant sheaf of groups (via an isomorphism $BT \cong BG^{\times n}$).

Observe that, on the contrary, G_a is not strongly A^1-invariant; indeed, for any smooth scheme X, one has isomorphisms $H^0_{Nis}(X, G_a) \cong H^0_{Zar}(X, G_a) = H^0(X, O_X)$. The last group is obviously not isomorphic to $H^0_{Nis}(X \times A^1, G_a)$ for X a smooth affine scheme. Also, GL_n is known not to be A^1-local (see, e.g., [AD07] for a detailed discussion of this fact). Indeed, it is well known that the canonical map $H^1_{Nis}(X, GL_n) \to H^1_{Nis}(X \times A^1, GL_n)$ need not be an isomorphism if X is not affine (e.g., there exist counter-examples with $X = \mathbb{P}^1$). Generalizing this, the results of [AD07] can be used to show that essentially any non-abelian reductive group is not strongly A^1-invariant.

Theorem 3.8 ([Mora] Theorem 3.1, Corollary 3.3). Suppose \mathcal{X} is a pointed (simplicial) space. For every $i > 0$ the sheaf of groups $\pi^A_i(\mathcal{X}, x)$ is strongly A^1-invariant.

A^1-covering spaces

Analogous to the usual theory of covering spaces, the group $\pi^A_1(\mathcal{X}, x)$ has an interpretation in terms of an A^1-covering space theory; for more details we refer the reader to [Mora] §4.1. In classical topology, covering spaces can be characterized by the unique path lifting property (see e.g., [Spa81] Chapter 2 §4 Theorem 10). Analogously, recall that a morphism of spaces $f : Y \to \mathcal{X}$ is said to be an A^1-cover if and only if f has the unique right lifting property with respect to A^1-acyclic cofibrations. As in topology, [Mora] Lemma 4.7 shows that A^1-covers are A^1-fibrations.

By [Mora] Lemma 4.5, torsors under strongly A^1-invariant sheaves of groups G over (simplicial) spaces \mathcal{X} are always A^1-covers; we will refer to A^1-covers of this form as Galois A^1-covers. Observe, however, that given an A^1-connected space \mathcal{X}, the total space of an A^1-cover need not be A^1-connected: take for instance the trivial \mathbb{G}_m-torsor over any smooth scheme X. The aforementioned lemma also proves that if G is a finite étale group scheme of order coprime to the characteristic of k, then any G-torsor is an A^1-cover. Once more, the total space of such a cover may be A^1-disconnected (e.g., the trivial torsor over a smooth scheme X). More remarkably, in stark contrast to the topological situation, one can construct A^1-connected A^1-covers of A^1-disconnected spaces (see, e.g., Example 2.14).
If \mathcal{X} is an \mathbb{A}^1-connected space, we will say that $f : \mathcal{X}' \longrightarrow \mathcal{X}$ is an \mathbb{A}^1-covering space if \mathcal{X}' is \mathbb{A}^1-connected and f is an \mathbb{A}^1-cover. If \mathcal{X} is a pointed \mathbb{A}^1-connected space, Theorem 4.8 of loc. cit. then guarantees the existence of a universal \mathbb{A}^1-covering space. By definition, the universal \mathbb{A}^1-covering space of a pointed, \mathbb{A}^1-connected space (\mathcal{X}, x) is the unique (up to unique isomorphism) pointed, \mathbb{A}^1-1-connected \mathbb{A}^1-covering space $(\tilde{\mathcal{X}}, \tilde{x})$ of (\mathcal{X}, x). This space canonically has the structure of a $\pi_{1}^\mathbb{A}^1(\mathcal{X}, x)$-torsor.

Definition 3.9. A geometric \mathbb{A}^1-covering of an (\mathbb{A}^1-connected) smooth scheme Y is a morphism of schemes $f : X \longrightarrow Y$ making X into an \mathbb{A}^1-covering space of Y. If furthermore, $f : X \longrightarrow Y$ is a torsor under a strongly \mathbb{A}^1-invariant sheaf of groups, then f will be called a geometric Galois \mathbb{A}^1-covering.

Remark 3.10. In §5 we will study such geometric \mathbb{A}^1-covering spaces of \mathbb{A}^1-connected smooth schemes coming from torsors under split tori, though not all \mathbb{A}^1-covering spaces need be geometric. The main complicating feature of this discussion is that, as we noted above, it is non-trivial to check that the total space of an \mathbb{A}^1-cover of an \mathbb{A}^1-connected smooth scheme defined by a G-torsor, for G a split torus or a finite étale group scheme of order coprime to the characteristic of k, is itself \mathbb{A}^1-connected. On the other hand, Morel has claimed that an \mathbb{A}^1-connected smooth scheme admits no finite étale covers of order coprime to the characteristic of the base field.

Also, the following might help to explain why \mathbb{G}_m-torsors “ought to be” \mathbb{A}^1-covers. Suppose X is a smooth scheme defined over a field k which is embeddable in \mathbb{R}. Suppose $L \longrightarrow X$ is a \mathbb{G}_m-torsor. Observe that $L(\mathbb{R}) \longrightarrow X(\mathbb{R})$ is then homotopy equivalent to a covering space of $X(\mathbb{R})$ with group $\mathbb{Z}/2\mathbb{Z}$.

\mathbb{A}^1-homology, strict \mathbb{A}^1-invariance

Analogous to the \mathbb{A}^1-homotopy (sheaves of) groups, one can define \mathbb{A}^1-homology (sheaves of) groups and reduced \mathbb{A}^1-homology (sheaves of) groups. Henceforth, we will suppress the modifier “sheaves of” and refer just to “groups.” To define the aforementioned objects, one uses the \mathbb{A}^1-derived category as defined by Morel in [Mora] §3.2. One first considers the category of chain complexes of sheaves of abelian groups on Sm_k, which we denote by $C_*(\mathbb{A}^1)$.

Definition 3.11. The \mathbb{A}^1-singular chain complex of \mathcal{X}, denoted $C^\mathbb{A}^1_*(\mathcal{X})$ is the \mathbb{A}^1-localization of the complex $C_*(\mathbb{Z}(\mathcal{X}))$.

If (\mathcal{X}, x) is a pointed space, the map $\mathbb{Z} \longrightarrow C^\mathbb{A}^1_* (\mathcal{X})$ induced by the base-point splits the morphism $C^\mathbb{A}^1_* (\mathcal{X}) \longrightarrow \mathbb{Z}$ induced by the structure morphism $\mathcal{X} \longrightarrow \text{Spec } k$. The kernel of the morphism $C^\mathbb{A}^1_* (\mathcal{X}) \longrightarrow \mathbb{Z}$ is called the reduced \mathbb{A}^1-singular chain complex of (\mathcal{X}, x) and is denoted $\tilde{C}^\mathbb{A}^1_* (\mathcal{X}, x)$; there is a direct sum decomposition $C^\mathbb{A}^1_* (\mathcal{X}) \cong \mathbb{Z} \oplus \tilde{C}^\mathbb{A}^1_* (\mathcal{X}, x)$.

Definition 3.12. If \(\mathcal{X} \) is a (simplicial) space, the \(\mathbb{A}^1 \)-homology groups \(H_i^{\mathbb{A}^1}(\mathcal{X}) \) are defined to be the homology sheaves \(H_n(C_*^{\mathbb{A}^1}(\mathcal{X})) \). If \((\mathcal{X}, x) \) is a pointed (simplicial) space, the reduced \(\mathbb{A}^1 \)-homology groups \(\tilde{H}_n^{\mathbb{A}^1}(\mathcal{X}, x) \) are defined to be the homology sheaves \(H_n(\tilde{C}_*^{\mathbb{A}^1}(\mathcal{X}, x)) \).

One could also define \(\mathbb{A}^1 \)-cohomology \(H^n_{\mathbb{A}^1}(\mathcal{X}) \) of a space \(\mathcal{X} \) by taking cohomology of the (co-chain) complex \(\text{Hom}(C_*^{\mathbb{A}^1}(\mathcal{X}), \mathbb{Z}) \). Reduced \(\mathbb{A}^1 \)-homology commutes with simplicial suspension in the sense that we have canonical isomorphisms

\[
\tilde{H}_i^{\mathbb{A}^1}(\Sigma_1^1(\mathcal{X}, x)) \cong \tilde{H}_{i+1}^{\mathbb{A}^1}(\mathcal{X}, x).
\]

The \(\mathbb{A}^1 \)-homology groups \(H_i^{\mathbb{A}^1}(\mathcal{X}) \) are also “discrete” from the standpoint of \(\mathbb{A}^1 \)-homotopy theory. They have a structure that is, a priori, stronger than strong \(\mathbb{A}^1 \)-invariance; the following definition is due to Morel (and historically preceded by work of Voevodsky and Rost).

Definition 3.13 (Mora Definition 5). A strictly \(\mathbb{A}^1 \)-invariant sheaf of groups is a sheaf of groups \(A \) such that for any smooth scheme \(X \), and every \(i \geq 0 \), the pull-back map \(H^i_{\text{Nis}}(X, A) \rightarrow H^i_{\text{Nis}}(X \times \mathbb{A}^1, A) \) induced by projection is a bijection.

Remark 3.14. Just as with strongly \(\mathbb{A}^1 \)-invariant sheaves of groups, a sheaf of abelian groups \(A \) is strictly \(\mathbb{A}^1 \)-invariant if and only if \(K(A, n) \) is \(\mathbb{A}^1 \)-local for all \(n \geq 0 \). Morel shows that if \(A \) is a strictly \(\mathbb{A}^1 \)-invariant sheaf of abelian groups, then \(A \) is in fact strictly \(\mathbb{A}^1 \)-invariant (see Mora Proposition 3.22 and Theorem 3.25). Thus, for example \(\mathbb{G}_m \) is a strictly \(\mathbb{A}^1 \)-invariant sheaf of groups, and if \((\mathcal{X}, x) \) is a pointed (simplicial) space, \(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x) \) is a strictly \(\mathbb{A}^1 \)-invariant sheaf of groups for \(i \geq 2 \). It was proved earlier (see Mor05 Remark 8 and Theorem 6.2.7) that the \(\mathbb{A}^1 \)-homology sheaves \(H_i^{\mathbb{A}^1}(\mathcal{X}) \) are strictly \(\mathbb{A}^1 \)-invariant.

The \(\mathbb{A}^1 \)-Hurewicz Theorem

Sending a space to its (reduced) \(\mathbb{A}^1 \)-singular chain complex gives a functor \(\mathcal{H}(k) \rightarrow D_{\mathbb{A}^1}(\mathbb{A}^1) \) (resp. \(\mathcal{H}(k) \rightarrow D_{\mathbb{A}^1}(\mathbb{A}^1) \)). This construction gives rise to a natural \(\mathbb{A}^1 \)-Hurewicz morphism with the \(\mathbb{A}^1 \)-homology groups as target.

Theorem 3.15 (\(\mathbb{A}^1 \)-Hurewicz Theorem (Mora Theorems 3.35 and 3.57)). Let \(n \geq 1 \) be an integer and let \((\mathcal{X}, x) \) be a pointed \(\mathbb{A}^1 \)-connected (simplicial) space.

i) The \(\mathbb{A}^1 \)-Hurewicz morphism \(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x) \rightarrow H_1^{\mathbb{A}^1}(\mathcal{X}) \) is the initial morphism from \(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x) \) to a strongly \(\mathbb{A}^1 \)-invariant sheaf of abelian groups.

ii) If \(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x) \) is abelian, the morphism of the previous statement is an isomorphism.

iii) If \(n > 1 \), and \(\mathcal{X} \) is \((n-1) - \mathbb{A}^1 \)-connected, then \(H_i^{\mathbb{A}^1}(\mathcal{X}) \) vanishes if \(0 \leq i \leq n-1 \), the \(\mathbb{A}^1 \)-Hurewicz morphism \(\pi_n^{\mathbb{A}^1}(\mathcal{X}, x) \rightarrow H_n^{\mathbb{A}^1}(\mathcal{X}) \) is an isomorphism, and \(\pi_{n+1}^{\mathbb{A}^1}(\mathcal{X}, x) \rightarrow H_{n+1}^{\mathbb{A}^1}(\mathcal{X}) \) is an epimorphism.

It is expected though not known that, in general, the \(\mathbb{A}^1 \)-Hurewicz morphism \(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x) \rightarrow H_1^{\mathbb{A}^1}(\mathcal{X}) \) is an epimorphism and identifies \(H_1^{\mathbb{A}^1}(\mathcal{X}) \) as the abelianization of \(\pi_1^{\mathbb{A}^1}(\mathcal{X}, x) \).
Proposition 3.16 (Mayer-Vietoris). Suppose we have two open subschemes U and V of a smooth scheme X. Then we have Mayer-Vietoris long exact sequences in \mathbb{A}^1-homology:

\[\cdots \rightarrow H_{i+1}^\mathbb{A}(U \cup V) \rightarrow H_i^\mathbb{A}(U \cap V) \rightarrow H_i^\mathbb{A}(U) \oplus H_i^\mathbb{A}(V) \rightarrow H_i^\mathbb{A}(U \cup V) \rightarrow \cdots , \]

and reduced \mathbb{A}^1-homology:

\[\cdots \rightarrow \tilde{H}_{i+1}^\mathbb{A}(U \cup V) \rightarrow \tilde{H}_i^\mathbb{A}(U \cap V) \rightarrow \tilde{H}_i^\mathbb{A}(U) \oplus \tilde{H}_i^\mathbb{A}(V) \rightarrow \tilde{H}_i^\mathbb{A}(U \cup V) \rightarrow \cdots . \]

Proof. A Zariski covering by two open sets gives rise to a push-out square of the form

\[
\begin{array}{ccc}
U \cap V & \rightarrow & U \\
\downarrow & & \downarrow \\
V & \rightarrow & U \cup V
\end{array}
\]

Thus, we get a short exact sequence of sheaves of abelian groups of the form

\[0 \rightarrow \mathbb{Z}(U \cap V) \rightarrow \mathbb{Z}(U) \oplus \mathbb{Z}(V) \rightarrow \mathbb{Z}(U \cup V) \rightarrow 0. \]

Now, essentially by construction (see the construction given in the Proof of Lemma 3.16 in [Mora]), the \mathbb{A}^1-localization functor is exact. Thus, one obtains a short exact sequence of \mathbb{A}^1-singular chain complexes; the middle term can be identified with the direct sum of the \mathbb{A}^1-singular chain complexes corresponding to U and V. Tracking the unit map gives rise to corresponding short exact sequences for reduced \mathbb{A}^1-singular chain complexes (the proof is identical to that given in e.g., [Spa81] Chapter 4 §6). In either case, taking homology sheaves gives rise to the required exact sequences of \mathbb{A}^1-homology sheaves.

Some key computations

Consider the canonical \mathbb{G}_m-torsor:

\[\mathbb{A}^{n+1} - 0 \rightarrow \mathbb{P}^n. \]

For $n \geq 2$, this morphism makes \mathbb{A}^{n+1} into the universal \mathbb{A}^1-covering space of \mathbb{P}^n. We now recall Morel’s computation of some \mathbb{A}^1-homotopy groups as it provides the template for our results on \mathbb{A}^1-homotopy groups of toric varieties. In order to state the result, it is necessary to recall the Milnor-Witt K-theory sheaves introduced by Morel (see [Mora] §2). Let S be a pointed space. The free strictly \mathbb{A}^1-invariant sheaf of groups generated by S is by definition the reduced \mathbb{A}^1-homology sheaf $\tilde{H}_0^\mathbb{A}(S)$. The sheaf K_n^{MW} of weight n Milnor-Witt K-theory can be defined to be the free strictly \mathbb{A}^1-invariant sheaf generated by \mathbb{G}_m^n (at least if $n \geq 1$). The following deep result is one of the main computational achievements of [Mora]; we will use this result repeatedly in the sequel.

The proof of the result breaks into a largely formal part (given the coterie of theorems mentioned or proved so far), most of which we reproduce below, and the non-trivial task of identifying the sheaf of groups K_n^{MW} “concretely,” for which we refer the reader to [Mora] §2, especially Theorem 2.37. (We implicitly fix base-points in the statement below.)

\[K_n^{MW} \text{ is the free strongly } \mathbb{A}^1 \text{-invariant sheaf of abelian groups generated by } \mathbb{G}_m^n. \]
Theorem 3.17 (Morel ([Mora] Thm 3.40, Thm 4.13)). Suppose $n \geq 2$. We have canonical isomorphisms

$$
\pi_{i}^{A^1}(\mathbb{A}^n - 0) \cong \begin{cases}
0 & \text{if } i < n - 1 \\
\mathbb{K}_n^{MW} & \text{if } i = n - 1.
\end{cases}
$$

Furthermore, one has a canonical central extension

$$
1 \rightarrow \mathbb{K}_2^{MW} \rightarrow \pi_{1}^{A^1}(\mathbb{P}^1) \rightarrow \mathbb{G}_m \rightarrow 1,
$$

and if $n \geq 2$, one has canonical isomorphisms $\pi_{n}^{A^1}(\mathbb{P}^n) \cong \mathbb{G}_m$ and $\pi_{n}^{A^1}(\mathbb{P}^n) \cong \mathbb{K}_n^{MW}$.

4 Excision results for A^1-homotopy groups

The goal of this section is to prove excision style results for A^1-homotopy groups of smooth schemes. Let us begin by stating the main theorem.

Theorem 4.1 (A^1-Excision). Let k be an infinite field. Suppose X is a smooth A^1-connected scheme and $j : U \hookrightarrow X$ is an open immersion of an A^1-connected scheme whose closed complement is everywhere of codimension $d \geq 2$. Fix a base point $x \in U(k)$. If furthermore X is A^1-m-connected, for $m \geq d - 3$, then the canonical morphism

$$
j_* : \pi_{i}^{A^1}(U, x) \rightarrow \pi_{i}^{A^1}(X, x)
$$

is an isomorphism for $0 \leq i \leq d - 2$ and an epimorphism for $i = d - 1$.

Remark 4.2. The expression A^1-$(−1)$-connected, which arises when $d = 2$ and $m = −1$, means the scheme is nonempty, but the background assumption that X is A^1-connected is of course a strictly stronger hypothesis. In Theorem 4.1, either the condition that k is infinite or the hypothesis that U be A^1-connected is necessary. Indeed, if k is finite, the hypothesis that U be A^1-connected need not be satisfied (see Remark 2.13). On the other hand if k is infinite, it is expected that this can not happen (see Conjecture 2.15).

The proof of this result breaks into two cases depending on whether $i = 1$ or $i > 1$. Before we proceed, let us introduce a convention for the rest of this section: non-abelian sheaves of groups will be denoted using the letter G (or primed versions thereof) and abelian sheaves of groups will be denoted by the letter A (or primed versions thereof). In either case, the proof involves two steps. First, one needs to construct a “Cousin resolution” that allows one to compute Nisnevich cohomology groups (ordinary, not sheaves) for a sheaf of groups. Second, one needs to relate Nisnevich cohomology of sheaves of groups to A^1-homotopy groups and use the Yoneda lemma; this is accomplished by means of the Postnikov tower and the main necessary result is Theorem 4.12.

If A is a sheaf of abelian groups, it is relatively easy to construct the Cousin complex; this is discussed quite beautifully in [CTHK97] §1. Relating the Cousin complex to Nisnevich cohomology of A currently requires two steps and necessitates that one impose some additional conditions on A; these conditions may be axiomatized as in [CTHK97] §5. Roughly speaking, these axioms
include “Nisnevich excision” and a form of \mathbb{A}^1-homotopy invariance, and are satisfied for strictly \mathbb{A}^1-invariant sheaves of groups (see Definition 3.13 and Lemma 4.5). Both find their way into the proof by way of Gabber’s (geometric) presentation lemma, which is very nicely discussed in [CTHK97] §3 (esp. Theorem 3.1.1), and thus necessitate that the base field k be infinite. One begins by proving that the Cousin complex is a flasque resolution of the Zariski sheaf A (see Theorem 4.3). Next, one proves that the Nisnevich and Zariski cohomology of A co-incide (see Theorem 4.4).

If G is a non-abelian sheaf of groups, one can not expect a Cousin complex for Zariski cohomology of G to exist in general. Nevertheless, Morel constructs in [Mora] §1.2 a truncated version of the Cousin complex that is refined enough to compute $H^1_{Nis}(X, G)$. Again, these results are housed in an axiomatic framework involving an appropriate form of Nisnevich excision and \mathbb{A}^1-homotopy invariance. Gabber’s presentation Lemma once more appears in the proof and necessitates the assumption that k be infinite. Strongly \mathbb{A}^1-invariant sheaves of groups (see Definition 3.6 and Theorem 4.10) satisfy both of the corresponding conditions (in fact Morel gives an axiomatic characterization of such sheaves). Roughly, one constructs a flasque Zariski “resolution” of G and uses it to prove a comparison theorem between Zariski and Nisnevich cohomology (see Theorem 4.9).

Cousin resolutions

In this section, we review some aspects of the beautiful axiomatic framework introduced in [CTHK97] for construction of Cousin resolutions for sheaves of abelian groups A. We refer the reader to [Har66] Chapter 4 Proposition 2.6 for a discussion of the classical Cousin complex (associated with a filtration of a topological space by closed subspaces) and associated conditions guaranteeing that the corresponding complex is a resolution.

Suppose X is a smooth scheme. We refer the reader to [Har66] Chapter IV for a discussion of cohomology with supports. Suppose X is equidimensional and $Z_{p+2} \subset Z_{p+1} \subset Z_p$ is a nested sequence of closed immersions with each Z_i having codimension $\geq i$. The long exact sequence of cohomology with supports for the triple (X, Z_p, Z_{p+1}) gives rise to a connecting homomorphism

$$H^i_{Z_p-Z_{p+1}}(X, A) \rightarrow H^{i+1}_{Z_{p+1}}(X, A)$$

and similarly, using the triple (X, Z_{p+1}, Z_{p+2}), one obtains a morphism

$$H^i_{Z_{p+1}}(X, A) \rightarrow H^i_{Z_{p+1}-Z_{p+2}}(X, A);$$

we write

$$d^{p,i} : H^i_{Z_{p}-Z_{p+1}}(X, A) \rightarrow H^i_{Z_{p+1}-Z_{p+2}}(X, A)$$

for the composite of these two morphisms. If we order the collection sequences of closed immersions $\bar{Z} = \{Z_{p+2} \subset Z_{p+1} \subset Z_p\}$ by saying $\bar{Z} \leq \bar{Z}'$ if $Z_p \subset Z'_p$ for all p, the functoriality of cohomology with supports shows that the construction of the above groups and morphisms is covariant with respect to the ordering so defined.

For a point $x \in X^{(p)}$ and an integer $q \geq 0$, define $H^{p+q}_x(U, A) := \lim_{\rightarrow U^{(p)}_x} H^{p+q}_x(U, A)$. With this notation, passing to the limit in the situation of the previous paragraph allows us to construct
complexes (see [CTHK97] Lemma 1.2.1 and Equation 1.3)

\[
\begin{array}{c}
0 \to \\ \\
\prod_{x \in X^{(0)}} H^q_x(X, A) \xrightarrow{d^{0,q}} \\ \\
\prod_{x \in X^{(1)}} H^{q+1}_x(X, A) \xrightarrow{d^{1,q}} \\
\cdots \\
\prod_{x \in X^{(m)}} H^{q+m}_x(X, A) \xrightarrow{d^{m,q}} \\
\end{array}
\]

that we shall refer to as Cousin complexes. In fact, in the sequel, we shall only use these complexes in the case \(q = 0 \).

The above construction can also be sheafified for the Zariski topology in the sense that the functors

\[
U \mapsto \prod_{x \in U^{(p)}} H^n_x(U, A)
\]

produce sheaves on the small Zariski site of \(X \) (see [CTHK97] Lemma 1.2.2); these sheaves are in fact flasque. Indeed, if we denote \(i_x : x \hookrightarrow X \), then we can identify the above sheaf with \(\prod_{x \in X^{(p)}} i_x^* H^n_x(U, A) \). Replacing the groups in Equation 4.2.1 by the sheaves just described produces a complex of flasque sheaves:

\[
\begin{array}{c}
0 \to \\ \\
\prod_{x \in X^{(0)}} i_x^* H^q_x(X, A) \xrightarrow{d^{0,q}} \\ \\
\prod_{x \in X^{(1)}} i_x^* H^{q+1}_x(X, A) \xrightarrow{d^{1,q}} \\
\cdots \\
\prod_{x \in X^{(m)}} i_x^* H^{q+m}_x(X, A) \xrightarrow{d^{m,q}} \\
\end{array}
\]

If \(A \) is a Nisnevich sheaf, we let \(H^q_{\text{Nis}}(A) \) and \(H^q_{\text{Zar}}(A) \) denote the Nisnevich and Zariski sheaves corresponding to the presheaves \(U \mapsto H^q_{\text{Nis}}(U, A) \) or \(U \mapsto H^q_{\text{Zar}}(U, A) \). We write \(H^q_{\mathfrak{A}}(X, A) \) or \(H^q_{\mathfrak{B}}(X, A) \) for the corresponding sheaves restricted to the appropriate small site of \(X \). The goal then is to give conditions guaranteeing that the complex of Equation 4.2.2 is in fact a flasque resolution of the cohomology sheaf \(H^q(X, A) \), again we observe that we will only consider the case \(q = 0 \). Doing this requires us to consider the axiomatization of [CTHK97] §5.

In [CTHK97] §5.1, the authors introduce an abstract notion of “cohomology theory with supports” taking values in some abelian category \(\mathfrak{A} \). Furthermore, they construct a “complex” level refinement of this notion that they term a “substratum” (see [CTHK97] Definition 5.1.1). Usual cohomology with supports of an abelian sheaf \(A \) (taking values in abelian groups) is certainly of this form; for the complex level refinement, assign to \(X \) a fibrant resolution of the global sections of \(A \) (with supports). We will only consider functors sending a pair \((X, Z)\) consisting of a smooth scheme \(X \) and a closed subscheme \(Z \subset X \) to the cohomology group \(H^q_Z(X, A) \).

Recall that a distinguished square is a Cartesian diagram of the form

\[
\begin{array}{ccc}
\pi^{-1}(U) & \to & X' \\
\downarrow & & \downarrow \pi \\
U & \to & X \\
\end{array}
\]

where \(\pi \) is étale and \(\pi \) is an isomorphism from the closed complement \(Z' \) of \(\pi^{-1}(U) \) in \(X \) onto the closed complement \(Z \) of \(U \) in \(X \). We now recall a pair of axioms introduced in [CTHK97] §5. Consider the functor on pairs \((Z, X) \mapsto H^q_{Z}(X, A)\).

1. **(Nisnevich Excision)** Given any distinguished square, the induced morphism \(H^q_Z(X) \to H^q_{Z'}(X') \) is an isomorphism for all \(q \).
2. **(Weak \mathbb{A}^1-homotopy invariance)** Given any open subset $V \subset \mathbb{A}^k$ and any closed subscheme S of V, let $\pi : \mathbb{A}^1_V \to V$ denote the canonical projection morphism. The pull-back morphism

$$H^q_S(V, A) \to H^q_{\mathbb{A}^1}(V, A)$$

is an isomorphism for all q.

The first key result on Cousin complexes can be summarized as follows; we paraphrase [CTHK97] Corollary 5.1.11.

Theorem 4.3 ([CTHK97] Corollary 5.11). Suppose k is an infinite field. If A is an abelian sheaf such that the functor on pairs $(Z, X) \to H^q_Z(X, A)$ satisfies Nisnevich excision and weak \mathbb{A}^1-homotopy invariance, for any smooth scheme X, the Cousin complexes of Equation 4.2.2 are flasque resolutions of the Zariski sheaves $H^q(X, A)$.

However, our main interest will be in Nisnevich cohomology, not Zariski cohomology. For this, a further comparison theorem is required. We write $H^i_{\text{Zar}}(A)$ (resp. $H^i_{\text{Nis}}(A)$) for the sheaf on the big Zariski (resp. Nisnevich) site of \mathcal{S}_{mk} associated with the presheaf $U \mapsto H^q(U, A)$. The content of Theorem 8.3.1 of [CTHK97] can then be summarized by the following result.

Theorem 4.4 ([CTHK97] Theorem 8.3.1). Suppose k is an infinite field. If A is an abelian sheaf satisfying the hypotheses Theorem 4.3, then for any smooth scheme X, and any q, the comparison morphism

$$H^i_{\text{Zar}}(X, H^0_{\text{Zar}}(A)) \to H^i_{\text{Nis}}(X, H^0_{\text{Nis}}(A))$$

is an isomorphism for all $i \geq 0$.

Using the above, one can show that strictly \mathbb{A}^1-invariant sheaves of groups admit Cousin resolutions, this is summarized in the following result.

Lemma 4.5. Suppose k is an infinite field. If A is a strictly \mathbb{A}^1-invariant sheaf of groups, then the functor on pairs $(X, Z) \to H^0_Z(X, A)$ satisfies Nisnevich excision and weak \mathbb{A}^1-homotopy invariance. Thus, for any smooth scheme X, A admits a Cousin resolution of the form

$$0 \to A \to \bigoplus_{x \in X^{(0)}} i_x H^0_x(X, A) \to \bigoplus_{x \in X^{(1)}} i_x H^1_x(X, A) \to \cdots.$$

Proof. Nisnevich excision follows from the characterization of Nisnevich sheaves in terms of distinguished triangles. Homotopy invariance follows immediately from the definition of strict \mathbb{A}^1-invariance.

For our purposes, the most important observation to make is that in order to study the i-th Zariski cohomology group of the sheaf A it suffices to concentrate on the portion of the complex corresponding to points of codimension $i - 1$ through $i + 1$.

Corollary 4.6. Suppose k is an infinite field and A is a strictly \mathbb{A}^1-invariant sheaf of groups. Suppose X is a smooth scheme and $U \subset X$ is an open subscheme whose complement is everywhere of codimension d. The restriction morphism

$$H^i_{\text{Nis}}(X, A) \to H^i_{\text{Nis}}(U, A)$$

is a monomorphism for $i \leq d - 1$ and an isomorphism for $i \leq d - 2$.

Proof. Since Zariski and Nisnevich cohomology of a strictly \mathbb{A}^1-invariant sheaf co-incide by Lemma 4.5 and Theorem 4.4, it suffices to prove the result for Zariski cohomology. In this case, again by Lemma 4.5, the Cousin resolutions of A on X and U are flasque resolutions, let us denote these resolutions by $C^*(X, A)$ and $C^*(U, A)$. We obtain by functoriality of the Cousin resolution, a canonical restriction morphism $C^*(X, A) \to C^*(U, A)$. Since U has complement of codimension d, it follows that the induced map on sets on points of codimension $\geq d - 1$ is an isomorphism and a monomorphism on points of codimension d. Thus, the induced morphism of Cousin complexes is an isomorphism in degrees $\leq d - 1$ and monomorphism in degrees $\leq d$. It follows from the long exact sequence in cohomology that the restriction maps are isomorphisms in degrees $\leq d - 2$ and monomorphisms in degrees $\leq d - 1$.

Truncated Cousin resolutions

In order to study strongly \mathbb{A}^1-invariant sheaves of groups G, one must work harder. The basic problem is the usual one in non-abelian cohomology: $H^i(X, G)$ is naturally defined only for $i = 0, 1$, is a group for $i = 0$, but only a pointed set if $i = 1$; this will be reflected in the “resolution” one constructs. Morel’s idea in [Mora] §1.2 is to produce a “truncated Cousin resolution” using the same axiomatic approach as above. His key results provide analogs of Theorem 4.3 and Theorem 4.4 in the non-abelian situation. One may then use similar arguments to those above to deduce the comparison theorem for Nisnevich and Zariski cohomology (analogous to Corollary 4.6) in the non-abelian setting. Let us begin by discussing analogs of the first few terms of the Cousin complex for non-abelian groups.

First, in order to control the degree 0 part of the Cousin complex, following Morel (see [Mora] Defn. 1.1 (0),(1)), we introduce an axiom. Strictly speaking, this axiom is unnecessary to define the Cousin complex, but will aid us in studying the Cousin resolution.

(C0) For any smooth scheme X with irreducible components X_i, the map $G(X) \to \prod_{i \in X^{(0)}} G(X_i)$ is a bijection and for any open, everywhere dense subscheme $U \subset X$, the restriction morphism $G(X) \to G(U)$ is injective.

Suppose x is a codimension 1 point of an irreducible smooth scheme X. If A is an abelian sheaf, recall that $H_1^1(X, A)$ is by definition $\lim_{U \ni x} H_1^1(U, A)$. Let $X_x = \text{Spec} \mathcal{O}_{X,x}$, $j : X_x \hookrightarrow X$, and $A_x = j^*A$. We can then identify $H_1^1(X, A) = H_1^1(X_x, A_x)$. This space fits into an exact sequence of the form

$$\cdots \to A(O_{X,x}) \to A(F) \to H_1^1(X_x, A_x) \to H^1(X, A_x) \to \cdots,$$

where F is the function field of X. The last group classifies Zariski locally trivial A-torsors on X_x, but since X_x is a local scheme, all such torsors are trivial. Using this, one can identify $H_1^1(X_x, A_x)$ with the quotient set $A(F)/A(O_{X,x})$. For a Zariski sheaf of groups G, observe that

$$H_1^1(X, G) = G(F)/G(O_{X,x})$$

is no longer a group, but only a pointed set. More generally, for a codimension 1 point x of a not necessarily irreducible scheme X, observe that $H_1^1(X, G)$ is well-defined as a pointed set, e.g., using the exact sequence in cohomology with supports.
Recall that the co-product in the category of pointed sets is the restricted product; this is the subset of the direct product consisting of sequences of elements all but finitely many of which are given by the distinguished base-point. The above long exact sequence induces (as before) a quotient “boundary” homomorphism

$$\prod_{x \in X^{(0)}} H^0_x(X, G) \to \prod_{x \in X^{(1)}} H^1_x(X, G).$$

Following Morel, we use the symbol “⇒” to denote this quotient map. In case G is abelian, in order to reduce to the ordinary Cousin complex, the image of this boundary homomorphism must be contained in the restricted product and its kernel must be trivial, we can, again following Morel (see [Mora] Defn. 1.1 (2)) impose this as an axiom. In conjunction with (C0), this axiom gives us the required condition.

(C1) The map $G(X) \to \bigcap_{x \in X^{(1)}} G(O_{X,x})$ (intersection taken in $G(F)$) is a bijection.

Using the description of the differential in the Cousin complex (see Equation 4.2.1) we can construct, for non-abelian G, a target set for the differential from the term corresponding to codimension 1 points and related to codimension 2 points. To do this, suppose x is a codimension 2 point of X and consider the set $X^{(1)}_x$ of all codimension 1 points $y \in X$ such that $y \in X_x$. Let F be the function field of X_x and observe that $G(F)$ acts on $H^1_y(X, G)$ for such y. It is not obvious that $G(F)$ preserves the restricted product $\prod_{y \in X^{(1)}_x} H^1_y(X, G)$, but assuming G satisfies (C1), this is true. We can then set

$$H^2_x(X, G) = \prod_{y \in X^{(1)}_x} H^1_y(X, G)/G(F).$$

The composite maps of pointed sets

$$\prod_{x \in X^{(1)}} H^1_x(X, G) \to \prod_{x \in X^{(1)}} H^1_x(X, G) \to H^2_x(X, G)$$

fit together to give a $G(F)$-equivariant boundary homomorphism

(4.6.1) \[\prod_{x \in X^{(1)}} H^1_x(X, G) \to \prod_{x \in X^{(2)}} H^2_x(X, G). \]

Because of the definition however, it is not clear that the image is actually contained in the coproduct. Once more, following Morel (see [Mora] Axiom (A2') p. 24), we introduce an axiom to deal with this problem.

(C2) For any smooth scheme X, the image of the boundary map in Equation 4.6.1 is contained in the coproduct $\prod_{x \in X^{(2)}} H^2_x(X, G)$

Summarizing then, if G is any Nisnevich sheaf of groups satisfying (C0), (C1) and (C2), we obtain a sequence of groups and pointed sets of the form

$$\prod_{x \in X^{(0)}} H^0_x(X, G) \to \prod_{x \in X^{(1)}} H^1_x(X, G) \to \prod_{x \in X^{(2)}} H^2_x(X, G).$$
The last arrow is a $G(F)$-equivariant homomorphism as well; this sequence will play the role of the Cousin complex of Equation 4.2.1.

We can also sheafify this construction as in Equation 4.2.2. Indeed, for $i = 0, 1, 2$, the functors $U \mapsto \coprod_{x \in X^{(i)}} H^i_x(X, G)$ give rise to flasque Zariski sheaves on the big Zariski site; Morel denotes the corresponding collection of Zariski sheaves by $G^{(i)}$ (see after Remark 1.19 of [Mora]).

Consider now the injective morphisms $G(X) \rightarrow \coprod_{x \in X^{(0)}} H^0_x(X, G)$ and $G \rightarrow G^{(0)}$. Thus, we obtain sequences:

\[
(4.6.2) \quad 1 \rightarrow G(X) \rightarrow \coprod_{x \in X^{(0)}} H^0_x(X, G) \Rightarrow \coprod_{x \in X^{(1)}} H^1_x(X, G) \rightarrow \coprod_{x \in X^{(2)}} H^2_x(X, G)
\]

and corresponding sequences of Zariski sheaves

\[
(4.6.3) \quad 1 \rightarrow G \rightarrow G^{(0)} \Rightarrow G^{(1)} \rightarrow G^{(2)}.
\]

We will refer to these sequences as truncated Cousin complexes. In order to extend the above constructions to produce a Cousin resolution one needs to introduce an appropriate notion of exactness and relate the above sequence to Zariski cohomology of G (at least in degrees 0 and 1). Let us first deal with exactness; following Morel (see [Mora] Definition 1.20), we make the following definition.

Definition 4.7. We will say that Sequence 4.6.2 (or stalkwise, Sequence 4.6.3) is exact if

1. $G(X)$ is the isotropy subgroup of the base-point in $\coprod_{x \in X^{(1)}}$, and
2. the “kernel” of the second boundary map is equal to the orbit under $\coprod_{x \in X^{(0)}} H^0_x(X, G)$ of $\coprod_{x \in X^{(1)}} H^1_x(X, G)$.

If the truncated Cousin complex satisfies the conditions Definition 4.7, we will refer to it as the truncated Cousin resolution.

In any case, the relation with Zariski cohomology can be understood as follows. Denote by $\mathcal{Z}^1(\cdot, G)$ the sheaf-theoretic orbit of the base-point in $G^{(1)}$ under $G^{(0)}$. Precisely, this is the sheaf associated to the pre-sheaf whose sections over an open U are the orbit of the base-point in $G^{(1)}(U)$ under $G^{(0)}(U)$. We thus obtain an exact sequence of sheaves

\[
1 \rightarrow G \rightarrow G^{(0)} \Rightarrow \mathcal{Z}^1(\cdot, G) \rightarrow *.
\]

Since $H^1_{\text{Zar}}(X, G^{(0)})$ vanishes as $G^{(0)}$ is flasque, we can identify $H^1_{\text{Zar}}(X, G)$ with the quotient pointed set $\mathcal{Z}^1(X, G)/G^{(0)}(X)$.

Note that this does not involve the “H^2” term of the Cousin complex. Following Morel, let $\mathcal{K}^1(\cdot, G)$ denote the kernel of the boundary morphism $G^{(1)} \rightarrow G^{(2)}$; this is a priori a Zariski sheaf of pointed sets. There is an obvious injective morphism $\mathcal{Z}^1(\cdot, G) \hookrightarrow \mathcal{K}^1(\cdot, G)$. Furthermore, this monomorphism is $G^{(0)}$-equivariant. Shortly, we will relate $\mathcal{K}^1(\cdot, G)$ to $H^1_{\text{Nis}}(X, G)$. In order to do this, however, it is important to know that $\mathcal{K}^1(\cdot, G)$ is in fact a Nisnevich sheaf; this will be related to a form of Nisnevich excision for G.

Observe that condition (1) of Definition 4.7 follows from (C1). To impose condition (2) of the same Definition, Morel introduces analogs of the Nisnevich excision and weak \mathbb{A}^1-homotopy invariance conditions above.
1. (Weak Nisnevich Excision)

a) Suppose X and X' are smooth local schemes of dimension 1 with closed points x and x'. If $f : X' \rightarrow X$ is a local étale morphism inducing an isomorphism of closed points, the induced morphism $H^1_x(X) \rightarrow H^1_{x'}(X)$ is an isomorphism.

b) Suppose X and X' are smooth local schemes of dimension 2 with closed points x and x'. If $f : X' \rightarrow X$ is a local étale morphism inducing an isomorphism on closed points, then map of pointed sets $H^2_x(X, G) \rightarrow H^2_{x'}(X', G)$ has trivial kernel.

2. (Weak \mathbb{A}^1-homotopy invariance) Suppose X is the localization of a smooth k scheme at a point of codimension ≤ 1. The morphism $G(X) \rightarrow G(\mathbb{A}^1_X)$ is a bijection and the Cousin complex

$$1 \rightarrow G(\mathbb{A}^1_X) \rightarrow \coprod_{x \in \mathbb{A}^1_X(0)} H^0(\mathbb{A}^1_X, G) \rightarrow \coprod_{x \in \mathbb{A}^1_X(1)} H^1_x(\mathbb{A}^1_X, G) \rightarrow \coprod_{x \in \mathbb{A}^1_X(2)} H^2_x(\mathbb{A}^1_X, G)$$

is exact.

Lemma 4.8 ([Mora] Lemma 1.24). If G is a Nisnevich sheaf of groups satisfying (C0), (C1), (C2) and weak Nisnevich excision, then $K^1(\cdot, G)$ is a Nisnevich sheaf. In this case, we have for any smooth scheme X a (functorial) bijection

$$K^1(X, G)/G^{(0)}(X) \iso H^1_{\text{Nis}}(X, G).$$

Theorem 4.9 ([Mora] Theorem 1.26). Let k be an infinite field. If G is a Nisnevich sheaf of groups satisfying (C0), (C1), (C2), weak Nisnevich excision and weak \mathbb{A}^1-homotopy invariance, then for any smooth scheme X, the canonical comparison map

$$H^1_{\text{Zar}}(X, G) \rightarrow H^1_{\text{Nis}}(X, G)$$

is (functorially in X and G) a bijection.

Finally, the key point is that strongly \mathbb{A}^1-invariant sheaves satisfy the hypotheses of the previous theorem.

Theorem 4.10 ([Mora] Theorem 3.9). Let k be an infinite field. If G is a strongly \mathbb{A}^1-invariant sheaf of groups. Then G satisfies (C0), (C1), (C2), weak Nisnevich excision and weak \mathbb{A}^1-homotopy invariance.

As before, we can deduce our excision results for H^1 relatively easily from these facts.

Corollary 4.11. Let k be an infinite field. Suppose X is a smooth scheme and $U \subset X$ is an open subscheme whose complement is everywhere of codimension d. If G is any strongly \mathbb{A}^1-invariant sheaf of groups, the restriction morphism

$$H^1_{\text{Nis}}(X, G) \rightarrow H^1_{\text{Nis}}(U, G)$$

is a monomorphism if $d \geq 2$ and an isomorphism if $d \geq 3$.
Proof. Since G is a strongly \mathbb{A}^1-invariant sheaf of groups, we know that Zariski and Nisnevich cohomology of G coincide for any smooth scheme X by Theorem [4.9] If U has complement everywhere of codimension 2 in X, it follows that $\mathcal{K}^1(X,G) \to \mathcal{K}^1(U,G)$ is a monomorphism by definition. Similarly, if U has complement everywhere of codimension ≥ 3, it follows that $\mathcal{K}^1(X,G)$ and $\mathcal{K}^1(U,G)$ coincide as they only depend on points of X of codimension at most 2.

Postnikov Towers

Let $\mathcal{Gr}^\mathbb{A}1_k$ denote the category of strongly \mathbb{A}^1-invariant sheaves of groups and let $\mathcal{Ab}^\mathbb{A}1_k$ denote the category of strictly \mathbb{A}^1-invariant sheaves of groups. A deep theorem of Morel asserts that the latter category is in fact abelian. Let us quickly recall the Postnikov tower of a (simplicial) space \mathcal{X}. For simplicity, we only consider pointed, connected (simplicial) spaces \mathcal{X}, and by making an \mathbb{A}^1-fibrant replacement of \mathcal{X}, we can assume \mathcal{X} is \mathbb{A}^1-fibrant as well. Recall that the n-th level of the Postnikov tower $P^{(n)}(\mathcal{X})$ of the space \mathcal{X} is the sheaf associated with the presheaf

$$U \mapsto \text{Im}(\mathcal{X}(U) \to \cosk_n \mathcal{X}(U)).$$

By construction, there are morphisms $\mathcal{X} \to P^{(n)}(\mathcal{X})$ and stalkwise fibrations (though not, in general, fibrations for the injective model structure) $p_{n+1} : P^{(n+1)}(\mathcal{X}) \to P^{(n)}(\mathcal{X})$; these morphisms fit into an obvious commutative triangle.

Since the site $(Sm_k)_{Nis}$ is a site of finite type by [MV99] §2 Theorem 1.37 coupled with [MV99] §3 Proposition 1.8, [MV99] §2 Definition 1.31 says that the canonical morphism $\mathcal{X} \to \text{holim}_n P^{(n)} \mathcal{X}$ is a simplicial weak equivalence. By construction, the Postnikov tower is functorial in \mathcal{X}. Furthermore, [MV99] §2 Proposition 1.36 (together with the definition of the \mathbb{A}^1-homotopy groups) shows that the homotopy fiber of p_n is \mathbb{A}^1-weakly equivalent to the Eilenberg-MacLane space $K(\pi_1^{\mathbb{A}1}(\mathcal{X}), n)$.

If \mathcal{X} is an \mathbb{A}^1-fibrant, \mathbb{A}^1-k-connected space, observe that we have a diagram of the form

$$
\begin{array}{ccc}
P^{(k)} \mathcal{X} & \longrightarrow & K(\pi_1^{\mathbb{A}1}(\mathcal{X}), k) \\
\downarrow & & \\
\mathcal{X} & & \end{array}
$$

where the vertical morphism is an \mathbb{A}^1-weak equivalence. This determines, up to \mathbb{A}^1-weak equivalence, a canonical morphism $\mathcal{X} \to K(\pi_1^{\mathbb{A}1}(\mathcal{X}), k)$.

If A is a strictly \mathbb{A}^1-invariant sheaf of groups, then any group homomorphism $\pi_1^{\mathbb{A}1}(\mathcal{X}, k) \to A$ determines a morphism $K(\pi_1^{\mathbb{A}1}(\mathcal{X}), k) \to K(A, k)$. Conversely, since $K(\pi_1^{\mathbb{A}1}(\mathcal{X}), k)$ has exactly one non-vanishing homotopy group in dimension k, applying the functor $\pi_1^{\mathbb{A}1}(\cdot)$ gives a corresponding map of groups $\pi_1^{\mathbb{A}1}(\mathcal{X}, k) \to A$. These two constructions are mutually inverse to each other.

If now G is a strongly \mathbb{A}^1-invariant sheaf of groups, a corresponding statement holds for $k = 1$. That is, there is a bijection between simplicial homotopy classes of morphisms $B \pi_1^{\mathbb{A}1}(\mathcal{X}) \to BG$ (where BG denotes the simplicial classifying space of [MV99] §4.1) and group homomorphisms $\pi_1^{\mathbb{A}1}(\mathcal{X}) \to G$; again since BG has exactly 1-non-vanishing \mathbb{A}^1-homotopy group that appears in dimension 1 and is isomorphic to G.

If G is a strongly \mathbb{A}^1-invariant sheaf of groups, we know that by definition, $[\mathcal{X}, BG]_{\mathbb{A}^1} \cong [\mathcal{X}, BG]_A$; furthermore, by [MV99] §Proposition 1.15, we know that $[\mathcal{X}, BG]_A \cong H^1_{Nis}(X, G)$. Similarly, we know that if A is a strictly \mathbb{A}^1-invariant sheaf of groups, that by definition $[\mathcal{X}, K(A, n)]_A \cong [\mathcal{X}, K(A, n)]_s$ and the latter group is isomorphic to $H^0_{Nis}(X, A)$ by, e.g., [MV99] §Proposition 1.26.

Together, the discussion of the two previous paragraphs give for any \mathbb{A}^1-connected space \mathcal{X}, and any strictly \mathbb{A}^1-invariant sheaf of groups G canonically defined, functorial morphisms

$$H^1_{Nis}(\mathcal{X}, G) \to \text{Hom}_{Gr_1^A}(\pi_1^{\mathbb{A}^1}(\mathcal{X}), G).$$

Similarly, for any \mathbb{A}^1-connected space \mathcal{X} ($k > 1$), and any strictly \mathbb{A}^1-invariant sheaf of groups A, we get canonically defined functorial morphisms

$$H^k_{Nis}(\mathcal{X}, A) \to \text{Hom}_{\text{Ab}^1}(\pi_k^{\mathbb{A}^1}(\mathcal{X}), A).$$

The structure of these morphisms is summarized in the following result (see e.g., [Mora] Remark 4.11 or [Morb] Lemma B.2.2).

Theorem 4.12. If \mathcal{X} is any pointed \mathbb{A}^1-connected space, there is a functorial bijection

$$H^1_{Nis}(\mathcal{X}, G) \sim \text{Hom}_{Gr_1^A}(\pi_1^{\mathbb{A}^1}(\mathcal{X}), G).$$

If moreover \mathcal{X} is \mathbb{A}^1-m-connected, $m > 1$, there is a functorial bijection

$$H^m_{Nis}(\mathcal{X}, A) \sim \text{Hom}_{\text{Ab}^1}(\pi_m^{\mathbb{A}^1}(\mathcal{X}), A).$$

Proof of Theorem 4.1

Proof of Theorem 4.1 Let us assume that X is an \mathbb{A}^1-m-connected scheme and $U \subset X$ is an \mathbb{A}^1-connected open subscheme whose complement is everywhere of codimension d. Let us prove the “isomorphism” part of the statement first. Assume $m = 0$ and $d \geq 3$. By assumption U is \mathbb{A}^1-connected. By Corollary 4.11 we have canonical functorial bijections $H^1(X, G) \sim H^1(U, G)$ for any strongly \mathbb{A}^1-invariant sheaf of groups G. By Theorem 4.12 we have isomorphisms of functors

$$\text{Hom}_{Gr_1^A}(\pi_1^{\mathbb{A}^1}(X), G) \sim H^1(X, G) \sim H^1(U, G) \sim \text{Hom}_{Gr_1^A}(\pi_1^{\mathbb{A}^1}(U), G).$$

Thus, by the covariant form of the Yoneda lemma, we see that $\pi_1^{\mathbb{A}^1}(X)$ and $\pi_1^{\mathbb{A}^1}(U)$ are isomorphic as strongly \mathbb{A}^1-invariant sheaves. A similar result holds for higher $\pi_i^{\mathbb{A}^1}$, assuming appropriate connectivity hypotheses, in the corresponding range of degrees, this time using Corollary 4.6 and Theorem 4.12 together with the Yoneda lemma.

For the “epimorphism” part of the Theorem, consider the following situation. Suppose $m = 0$ and $d \geq 2$. We know that $H^1_{Nis}(X, G) \to H^1_{Nis}(U, G)$ is a monomorphism for any strongly \mathbb{A}^1-invariant sheaf of groups G by Corollary 4.11. Again, this implies that we have a functorial monomorphism

$$\text{Hom}_{Gr_1^A}(\pi_1^{\mathbb{A}^1}(X), G) \to \text{Hom}_{Gr_1^A}(\pi_1^{\mathbb{A}^1}(U), G).$$
induced by the morphism $\pi_1^{A^1}(U) \to \pi_1^{A^1}(X)$. By definition, this morphism of functors is a monomorphism, and a straightforward check shows that the corresponding morphism of sheaves of groups is an epimorphism. A similar argument holds for higher $\pi_i^{A^1}$ with appropriate connectivity hypotheses in place this time using Corollary 4.6 in place of Corollary 4.11.

5 Geometric quotients, A^1-covers, and toric varieties

In this section, we discuss the A^1-covering space theory introduced in §3 in the context of geometric invariant theory for solvable group actions. The motivating principle behind this relation is Proposition 5.1, which shows how geometric invariant theory for solvable group actions may be used to construct geometric Galois A^1-covering spaces (recall Definition 3.9). The simplest examples to which the theory applies are the complete flag varieties $SL_n \to SL_n/B$, for which, as far as GIT is concerned, every point is “stable” and so nothing need be excised. Concrete computations of A^1-homotopy groups of such quotients X in these instances are quite difficult, largely because we don’t know enough about the A^1-homotopy groups of the source variety. The better strategy is then to start with a space whose A^1-homotopy type one understands, e.g., A^n, and consider GIT-style quotients by solvable groups. We studied quotients for free unipotent actions on affine space in [AD07]. On the other hand, quotients of split torus actions on affine space yield toric varieties.

After motivating the construction of toric varieties via GIT for split torus actions, we recall Cox’s description (see [Cox95]) of any simplicial (in particular smooth) toric variety as a geometric quotient of an open subset of affine space by the free action of a split torus. This will allow for a broader range of open sets than would arise as the GIT-stable points for a linearized split torus action on affine space; for instance, one can produce non-quasi-projective smooth toric varieties. Along the way, we will give a quick summary of geometry and combinatorics of toric varieties relevant to the discussion of subsequent sections, and establish key Propositions 5.10 and 5.11.

Solvable quotients and A^1-covers

The motivating observation for the results in this paper is summarized in the following result.

Proposition 5.1. Let G be a connected, split, solvable algebraic group. Suppose G acts freely on a smooth scheme X such that i) a quotient $q : X \to X/G$ exists as a smooth scheme, ii) the triple (X, q, G) is a G-torsor. If both X and X/G are A^1-connected, then the morphism q makes X into a (homotopy) geometric Galois A^1-covering space of X/G.

Proof. Since G is k-split, its unipotent radical $R_u(G)$ is k-defined as well; the quotient $G/R_u(G)$ is a split torus T. Consider the quotient $X/R_u(G)$, which exists as a scheme. The quotient morphism $X \to X/R_u(G)$ is an $R_u(G)$-torsor and is thus an A^1-weak equivalence (being Zariski locally trivial with fibers isomorphic to affine space; see e.g., [AD07] Lemma 3.3). Observe then that T acts on $X/R_u(G)$ and the quotient morphism $X/R_u(G) \to X/G$ is a T-torsor. If both X and X/G are assumed A^1-connected, it follows that $X/R_u(G) \to X/G$ is a geometric Galois A^1-covering space. □
Remark 5.2. Note that as discussed in the proof, if G is a split unipotent group then $X \longrightarrow X/G$ is not merely a (homotopy) \mathbb{A}^1-covering space but in fact is an \mathbb{A}^1-weak equivalence. This is a handy way of producing moduli of schemes with fixed \mathbb{A}^1-homotopy type (see [AD07]).

Corollary 5.3. Work under the assumptions of Proposition 5.1. Let $x \in X$ be a k-rational point, and $q(x)$ be the corresponding k-rational point of X/G. The quotient morphism induces a canonical extension:

$$1 \longrightarrow \pi^A_i(X, x) \longrightarrow \pi^A_i(X/G, q(x)) \longrightarrow G/R_u(G) \longrightarrow 1,$$

and isomorphisms $q_\ast : \pi^A_i(X, x) \xrightarrow{\sim} \pi^A_i(X/G, q(x))$ for all $i \geq 2$.

Proof. Up to \mathbb{A}^1-weak equivalence, q is an \mathbb{A}^1-fibration. Thus, we get a long exact sequence in homotopy groups for an \mathbb{A}^1-fibration:

$$\cdots \longrightarrow \pi^A_i(G/R_u(G)) \longrightarrow \pi^A_i(X, x) \xrightarrow{q_\ast} \pi^A_i(X/G, q(x)) \longrightarrow \pi^A_{i-1}(G/R_u(G)) \longrightarrow \cdots$$

The result will now follow from the fact that the higher \mathbb{A}^1-homotopy groups of a split torus vanish.

Now, \mathbb{G}_m^x is \mathbb{A}^1-rigid (see Example 2.11) which shows that $\pi^A_0(X) \cong \mathbb{G}_m^x$. Similarly,

$$[S^1_s \wedge U_+, (X, x)]_{\mathbb{A}^1} \cong [S^1_s \wedge U_+, (\mathbb{G}_m^x, 1)]_{\mathbb{A}^1}.$$

Since \mathbb{G}_m^x is already strongly-\mathbb{A}^1-invariant, we just have to compute the group $[S^1_s \wedge U_+, (\mathbb{G}_m, 1)]_s$. Since we have a bijection $Hom_{Smk}(\Delta^s, U) \cong Hom_{Smk}(U, \mathbb{G}_m)$ it follows that the last group vanishes if $i > 0$.

Example 5.4. If $G = SL_n$ then $G \longrightarrow G/B$ is an \mathbb{A}^1-covering space, inducing an isomorphism π^A_i for all $i \neq 1$. This follows from Proposition 5.1, Corollary 5.3, and the fact that SL_n is \mathbb{A}^1-connected. More generally, if G is a split reductive linear algebraic group, and B is a Borel subgroup of G, then the Bruhat decomposition shows that every point of G/B has a neighborhood isomorphic to affine space (over k). It follows by Lemma 2.9 that such G/B are \mathbb{A}^1-connected. If G is \mathbb{A}^1-connected (this should be true for G split, semi-simple, simply connected, but isn’t known in general) then $G \longrightarrow G/B$ is a (homotopy) \mathbb{A}^1-covering space and thus $\pi^A_i(G) \cong \pi^A_i(G/B)$ for all $i \neq 1$. Furthermore, if T denotes a split maximal torus of B, then we have a canonical extension

$$1 \longrightarrow \pi^A_1(G) \longrightarrow \pi^A_1(G/B) \longrightarrow T \longrightarrow 1.$$

To construct solvable quotients in a manner that fits well with the excision results we have proved so far, we can use a version of the geometric invariant theory for non-reductive groups studied in [DK07]. The essential idea of GIT is to construct nice “parameter spaces” for orbits under a group action on X, known as “good quotients”. It provides a tool, the Hilbert-Mumford numerical criterion, for identifying open sets X^s of stable points for which the action is proper and hence the good quotient is exactly a geometric quotient in the traditional sense. In nice enough settings (“stable equals semi-stable”) the stable locus is precisely the complement of the simultaneous vanishing locus for invariant sections of a chosen G-equivariant line bundle on X.

Proposition 5.5 ([DK07] Theorem 5.3.1). Let G be an affine algebraic group. Let X be a smooth G-quasi-projective variety with a chosen G-equivariant line bundle. There is a canonically determined open set of stable points X^s on which the action is proper and whose geometric quotient exists.
GIT for linear torus actions on affine space

Given a torus T acting linearly on \mathbb{A}^n together with a choice of T-equivariant structure on the trivial line bundle, one may consider the collection of T-equivariant sections (henceforth called “invariants”). The locus of geometric points on which all invariants vanish is called the unstable set Z, which uniquely defines an unstable (closed) subscheme $s(Z)$ of \mathbb{A}^n. In an appropriate basis, represented by coordinate functions $\{x_1, \ldots, x_n\}$, the T action is diagonal and the invariants are generated by monomials.

Because it is defined in terms of geometric points, the unstable set Z is the vanishing locus for a finite collection of invariant monomials chosen so that each factor in a given monomial occurs without repeats. That is, it suffices to consider monomials of the form $x_{i_1} \cdots x_{i_k}$ where all i_j are distinct. Formally:

Lemma 5.6. The unstable set Z is the zero set for an ideal generated by finitely many monomials of the form $x_{i_1} \cdots x_{i_k}$ where the i_j are all distinct.

In particular the set Z is a coordinate linear subspace arrangement determined by such a set of monomial equations. One can then ask under what conditions the complementary open subscheme is \mathbb{A}^1-connected (which is guaranteed when $\text{codim } Z \geq 2$) and the associated restricted T-action is free. Our excision results (Theorem 4.1 together with Proposition 5.1) would then apply.

One constraint of this method is that all the quotient varieties so obtained are necessarily quasi-projective, as they inherit an ample line bundle by formal properties of GIT. For this reason and for the sake of completeness we instead look at the general combinatorial characterization of T-invariant opens of affine space that yield toric varieties as geometric quotients, due to Cox (see [Cox95]) who in turn was motivated by the traditional approach to toric varieties via unions of affine toric varieties. Once again the key data will be sets of monomials whose vanishing describes the coordinate arrangement Z, but here they will be encoded via a combinatorial device called a fan.

Combinatorial encoding of geometry of toric varieties

Let T be a split torus over a field k. Let $X_*(T)$ and $X^*(T)$ denote the co-character and character groups of T. We denote by $\langle \cdot, \cdot \rangle$ the canonical pairing $X_*(T) \times X^*(T) \rightarrow \mathbb{Z}$ defined by composition. Since T is split, the category of k-rational representations of T is semi-simple and that every irreducible representation is given by a character.

A good reference for the theory of toric varieties is [Ful93], but due to the wealth of differing notation in the field, we felt it best to summarize our conventions here. A normal T-variety is said to be a toric variety if T acts on X with an open dense orbit. By a Theorem of Sumihiro, every k-point in a toric variety has a T-stable open affine neighborhood; such a variety is necessarily an affine toric T-variety. Thus, we can cover any toric variety by affine toric varieties.

If X is an affine toric T-variety, we let $k[X]$ be its ring of regular functions, i.e., $k[X] = \Gamma(X, \mathcal{O}_X)$. The ring $k[X]$ is naturally a T-module and decomposes as a direct sum of irreducible T-modules; this structure is particularly easy to describe. Indeed, since T acts with a dense orbit, any T-invariant rational function is constant. Since the quotient of any pair of regular T-eigenvectors
is a T-invariant rational function (and hence constant), it follows that $k[X]$ decomposes as a multiplicity free direct sum of characters of T. Thus, any regular function f on X transforms as a character χ_f under the action of T. The map that assigns to a regular T-eigenfunction f the underlying character χ_f thus gives a way to attach to $k[X]$ a (finitely generated) sub-monoid σ of $X^*(T)$. One can check that such monoids are integral (sometimes cancellative is used), i.e., the cancellation law holds in σ: $x + y = x' + y$ implies $x = y$. Also, normality of X implies that such monoids are saturated, i.e., if $x \in X^*(T)$ and $m \in \mathbb{N}$ are such that $mx \in \sigma$, then $x \in \sigma$.

Attaching to a finitely generated, integral, saturated, sub-monoid σ of $X^*(T)$ the spectrum of the monoid algebra $k[\sigma]$ produces an affine toric variety X_σ. The monoid σ determines a convex subset of $X^*(T) \otimes_{\mathbb{Z}} \mathbb{Q}$ and we thus refer to σ as the cone associated with X_σ. These constructions provide a contravariant equivalence between the category of affine toric T-varieties with T-equivariant morphisms and the category of finitely generated, integral, saturated, sub-monoid algebras of $X^*(T)$. The dimension of a cone is the cardinality of a minimal set of generators.

A generator ρ of a 1-dimensional cone is called primitive if $mp' = \rho$ implies $m = 1$ and $\rho' = \rho$. A face of a monoid σ is a sub-monoid $\sigma' \subset \sigma$ such that whenever $x, y \in \sigma$, if $x + y \in \sigma'$, then both $x, y \in \sigma'$. A fan Σ in $X^*(T)$ is a finite collection of cones (i.e., finitely generated, integral, saturated sub-monoids in $X^*(T)$) giving rise to convex subsets of $X^*(T) \otimes_{\mathbb{Z}} \mathbb{Q}$ having the following properties: 1) $0 \in \Sigma$, 2) every face of a cone in Σ lies in Σ, 3) cones are adjacent along their faces (i.e., the intersection of a pair of cones is a face of each). Any normal toric T-variety X gives rise to a fan Σ: attach to X the cones corresponding to an open cover of X by affine toric T-varieties. Conversely, given a fan Σ, we can recover a toric T-variety which we denote by X_Σ throughout the sequel.

Suppose $\Sigma \subset X^*(T)$; we will use the following terminology regarding fans. We will refer to Σ as a smooth fan if every cone $\sigma \in \Sigma$ is generated by a basis for the lattice $X^*(T)$. The support $\text{Supp}(\Sigma)$ of Σ is the subset of $X^*(T)$ consisting of all vectors lying in some cone $\sigma \subset \Sigma$. A fan Σ will be called proper if $\text{Supp}(\Sigma) = X^*(T)$. A refinement of a fan Σ is a fan Σ' such that $\text{Supp}(\Sigma) = \text{Supp}(\Sigma')$ and for every cone of $\sigma' \in \Sigma'$ there exists a cone $\sigma \in \Sigma$ such that $\sigma' \subset \sigma$.

As the terminology suggests, smooth fans correspond bijectively to smooth toric varieties and proper fans correspond bijectively to proper toric varieties. Refinements of fans correspond to proper birational morphisms of the corresponding toric varieties. We will refer to a fan Σ as projective if X_Σ is a projective toric variety.

Smooth toric varieties and geometric \mathbb{A}^1-covers

If X_Σ is a toric variety associated to a smooth proper fan Σ, our goal now is to construct a canonical \mathbb{A}^1-cover of X_Σ which we will refer to as the Cox cover of X_Σ. To do this, we will show that X_Σ is a geometric quotient of an open subscheme of an appropriate affine space.

Let $\Sigma(1)$ denote the set of 1-dimensional cones in Σ. Recall that $\text{Pic}(X_\Sigma)$ fits into an exact sequence

$$0 \longrightarrow X^*(T) \longrightarrow \mathbb{Z}^{\Sigma(1)} \longrightarrow \text{Pic}(X_\Sigma) \longrightarrow 0.$$

The set $\Sigma(1)$ can be interpreted as the set of T-invariant Weil divisors on X_Σ.

The affine space $\mathbb{A}^{\Sigma(1)}$ can be viewed as a toric variety equipped with an action of the torus $\mathbb{G}_m^{\times \Sigma(1)}$ dual to $\mathbb{Z}^{\Sigma(1)}$. The above exact sequence of lattices gives rise, by duality, to an exact
sequence of tori:

\[0 \longrightarrow \text{Pic}(X_\Sigma)^\vee \longrightarrow G_m^{\times \Sigma(1)} \longrightarrow T \longrightarrow 0. \]

Via this sequence, we can view \(\text{Pic}(X_\Sigma)^\vee \) as acting on \(A^{\Sigma(1)} \).

Choose coordinates \(x_1, \ldots, x_{\Sigma(1)} \) on \(A^{\Sigma(1)} \). The \(\text{Pic}(X_\Sigma)^\vee \) action on \(A^{\Sigma(1)} \) is equivalent to a \(\text{Pic}(X_\Sigma) \)-grading on the polynomial ring \(k[A^{\Sigma(1)}] \). Since a monomial \(\prod_{\rho} x_{\rho}^{a_{\rho}} \) determines a divisor \(\sum_{\rho} a_{\rho} D_{\rho} \) (where \(D_{\rho} \) is the coordinate hyperplane defined by \(x_{\rho} \)), the degree of the aforementioned monomial is the image of \(\sum_{\rho} a_{\rho} D_{\rho} \) in \(\text{Pic}(X_\Sigma) \).

Definition 5.7. For a cone \(\sigma \in \Sigma \), we let \(\hat{\sigma} \) be the divisor \(\sum_{\rho \notin \sigma(1)} D_{\rho} \), and we let \(x^{\hat{\sigma}} \) be the monomial \(\prod_{\rho \notin \sigma(1)} x_{\rho} \). We will refer to \(x^{\hat{\sigma}} \) as the cone-complement monomial associated with \(\sigma \).

Definition 5.8 (Irrelevant subvariety). Let \(\Sigma \) be a proper fan. Let \(Z_\Sigma \) be the variety associated with the ideal \(I_\Sigma \) generated the monomials \(x^{\hat{\sigma}} \). The variety \(Z_\Sigma \) will be called the irrelevant subvariety, corresponding to the fan \(\Sigma \).

By definition, \(Z_\Sigma \) is a union of coordinate subspaces of \(A^{\Sigma(1)} \); this will be the key property we will use in the study of the \(A^1 \)-homotopy groups of \(X_\Sigma \) in what follows.

Theorem 5.9 (Cox). The group \(\text{Pic}(X_\Sigma)^\vee \) leaves \(Z_\Sigma \) invariant and acts freely on its complement in \(A^{\Sigma(1)} \). Furthermore, there is a canonical identification \(X_\Sigma = (A^{\Sigma(1)} - Z_\Sigma)/\text{Pic}(X_\Sigma)^\vee \).

Combinatorics related to \(Z_\Sigma \)

Our goal now is to relate the combinatorial structure of \(\Sigma \) to the geometry of the variety \(Z_\Sigma \). As we mentioned above, \(Z_\Sigma \) is a union of coordinate hypersurfaces in \(A^{\Sigma(1)} \). Our goal will be give conditions that guarantee 1) that \(Z_\Sigma \) has codimension \(\geq d \), 2) under (1) that \(Z_\Sigma \) has codimension \(\geq d \), \(Z_\Sigma \) has exactly \(r \) codimension \(d \) components, and 3) under (2) that the intersection of any pair of codimension \(d \) subspaces in \(Z_\Sigma \) has codimension \(\geq d + 2 \). These conditions will form the combinatorial backbone of our vanishing and non-vanishing results for \(A^1 \)-homotopy groups in the next section. In order to do this, we investigate the ideal defining \(Z_\Sigma \) in greater detail. Recall (Definition 5.8) that the ideal defining \(Z_\Sigma \) is generated by monomials of the form \(x^{\hat{\sigma}} \).

Cox shows that the variety defined by the ideal \(I_\Sigma \) generated by the set of cone-complement monomials is precisely the coordinate subspace arrangement \(Z_\Sigma \). The combinatorial conditions we will require are summarized in the following proposition.

Proposition 5.10. Suppose \(\Sigma \) is a smooth, proper fan. Suppose \(Z_\Sigma \subset A^{\Sigma(1)} \) is the coordinate subspace arrangement associated with the fan \(\Sigma \).

1. The subspace arrangement \(Z_\Sigma \) has codimension \(\geq d \) in \(A^{\Sigma(1)} \) if and only if every (non-degenerate) collection of \(d - 1 \) primitive vectors in \(\Sigma \) is part of a cone in \(\Sigma \).

2. If furthermore there exists a collection of \(d \) primitive vectors that are not part of some cone of \(\Sigma \), then \(Z_\Sigma \) has a component of codimension precisely \(d \). The set of components of \(Z_\Sigma \) of codimension exactly \(d \) is in canonical bijection with the set of (unordered) collections of \(d \) primitive vectors that are not part of some cone of \(\Sigma \).
3. Suppose Z_{Σ} has codimension d in $\mathbb{A}^{\Sigma(1)}$. Then the intersection of two codimension d subspaces of Z_{Σ} in $\mathbb{A}^{\Sigma(1)}$ has codimension $d+1$ if and only if under the above bijection the corresponding collections have $d-1$ primitive vectors in common.

4. All intersections of codimension d components of Z_{Σ} have codimension at least $d+2$ in $\mathbb{A}^{\Sigma(1)}$ if and only if for every set of $d-1$ primitive vectors $\{\rho_1, \ldots, \rho_{d-1}\}$ spanning a cone, there exists at most one primitive vector ρ_d such that $\{\rho_1, \ldots, \rho_{d-1}, \rho_d\}$ does not span a cone.

Proof. Observe that Z_{Σ} is defined by the simultaneous vanishing of the set of cone-complement monomials:

$$x_{i_1,1} \cdots x_{i_1,k_1} = 0$$
$$x_{i_2,1} \cdots x_{i_2,k_2} = 0$$
$$\vdots$$
$$x_{i_l,1} \cdots x_{i_l,k_l} = 0$$

By DeMorgan’s Laws, the locus is the union of intersections of the vanishing of precisely one factor $x_{i_j,l}$ from each monomial. To simplify notation slightly, for the rest of the proof we use fewer indices, reverting to the convention of the above definition: to a cone σ with k primitive vectors $\{\rho_1, \ldots, \rho_k\}$ the associated cone-complement monomial is $x_1 \cdots \hat{x}_{i_1} \cdots \hat{x}_{i_k} \cdots x_{\Sigma(1)}$. In particular, if σ is a cone of Σ, then the coordinate hyperplane $x_{i_j} = 0$ is not contained in Z_{Σ} for any j.

To prove the forward direction of the first claim, assume there is a collection of $d-1$ primitive vectors $\rho_1, \ldots, \rho_{d-1}$ which are not part of a cone of Σ. Then every monomial contains at least one factor x_j for $j \in 1, \ldots, d-1$. Thus, by the DeMorgan’s Laws argument, one of the components of Z_{Σ} consists of a coordinate subspace determined by a set of equations $x_j = 0$ for j drawn from $1, \ldots, d-1$, and hence is codimension no more than $d-1$.

To prove the reverse direction of the first claim, observe that since any component of Z_{Σ} is a coordinate subspace, it is equivalent to show that no codimension $(d-1)$ coordinate subspace $x_{i_1} = \cdots = x_{i_{d-1}} = 0$ is contained in any component of Z_{Σ}. By the DeMorgan’s Laws statement above, if a component contains $x_{i_1} = \cdots = x_{i_{d-1}} = 0$, then each cone-complement monomial must have at least one of the x_{i_j} as a factor. In other words, every cone of Σ must then lack at least one of the ρ_{i_j}, which is a contradiction because by assumption all $(d-1)$ vectors ρ_{i_j} are part of a $(d-1)$-cone.

For the second statement, note that by the first claim all components of Z_{Σ} are at least codimension d. Consider primitive vectors ρ_1, \ldots, ρ_d that do not form part of a d-cone. By assumption each of the d possible $(d-1)$-element subsets are part of a $(d-1)$-cone; we denote by σ_j the cone consisting of each ρ_j other than ρ_i. Then x_i is a factor in the cone-complement monomial of σ_j; furthermore no other cone of Σ contains all of the ρ_j, so some x_j (for $1 \leq j \leq d$) is a factor in each of the remaining cone-complement monomials. Consequently $x_1 = \cdots = x_d = 0$ is contained in a component of Z_{Σ}, and because it is of the minimal codimension d, it must actually be a component of Z_{Σ}.

It follows that, under the assumptions of the first claim, given any collection of d primitive vectors ρ_1, \ldots, ρ_d that are not part of a cone of Σ, there is a canonically associated codimension d subspace $x_{i_1} = \cdots = x_{i_d} = 0$ which is a component of Z_{Σ}. It is clear from the construction that this canonical association is a bijection β.
For the third claim, consider two codimension \(d\) components of \(Z_\Sigma\), call them \(L_1\), given by \(x_{i_1} = \cdots = x_{i_d} = 0\), and \(L_2\), given by \(x_{j_1} = \cdots = x_{j_d} = 0\). They intersect in a codimension \(d + 1\) set if and only if \(d - 1\) of the \(i_l\) indices agree with \(d - 1\) of the \(j_s\) indices. Using the definition of the bijection, this is true if and only if the \(d\)-cones \(\beta^{-1}(L_1)\) and \(\beta^{-1}(L_2)\) have \(d - 1\) primitive vectors in common.

The final claim follows because by the third claim all pairwise intersections of such spaces are codimension at least \(d + 2\) if and only if under \(\beta^{-1}\) the corresponding collections of \(d\) primitive vectors have strictly fewer than \(d - 1\) elements in common. Equivalently, given any \((d - 1)\)-cone there is at most one collection of \(d\) primitive vectors of the stated type. \(\square\)

The Cox cover as an \(\mathbb{A}^1\)-covering space

One can deduce from Proposition 5.10 that the Cox cover of Theorem 5.9 is a geometric Galois \(\mathbb{A}^1\)-covering space (as introduced in Definition 3.9).

Proposition 5.11. Suppose \(X_\Sigma\) is a smooth proper toric variety over an infinite field \(k\). Both \(X_\Sigma\) and \(\mathbb{A}^{\Sigma(1)} - Z_\Sigma\) are \(\mathbb{A}^1\)-connected. Thus, the quotient morphism

\[
q : \mathbb{A}^{\Sigma(1)} - Z_\Sigma \longrightarrow X_\Sigma
\]

makes \(\mathbb{A}^{\Sigma(1)} - Z_\Sigma\) into a geometric Galois \(\mathbb{A}^1\)-covering of \(X_\Sigma\) with group \(\text{Pic}(X_\Sigma)^\vee\).

Proof. If \(X_\Sigma\) is proper and strictly positive dimensional, then \(\Sigma\) must have more than one maximal cone, else it would be an affine toric variety. A degenerate fan would correspond to a toric variety which decompose into a Cartesian product with a torus, which again would contradict being proper. The first statement of Proposition 5.10 implies that \(Z_\Sigma\) has codimension at least 2 in \(\mathbb{A}^{\Sigma(1)}\). Thus, \(\mathbb{A}^{\Sigma(1)} - Z_\Sigma\) is \(\mathbb{A}^1\)-connected by Lemma 2.12.

Because \(X_\Sigma\) is smooth and proper, it follows that \(X_\Sigma\) can be covered by open affine subsets isomorphic to affine space and is thus \(\mathbb{A}^1\)-connected. Indeed, the fan \(\Sigma\) can be written as a union of maximal cones \(\sigma\), each of which is a toric variety corresponding to an affine space. Thus every point of \(X_\Sigma\) is contained in an open subscheme isomorphic to an affine space and \(X_\Sigma\) is \(\mathbb{A}^1\)-chain-connected.

Finally, Theorem 5.9 implies that \(q : \mathbb{A}^{\Sigma(1)} - Z_\Sigma \longrightarrow X_\Sigma\) is a \(\text{Pic}(X_\Sigma)^\vee\)-torsor and thus a Galois \(\mathbb{A}^1\)-cover. Thus, combining this with the previous paragraphs, we see that \(q\) is a geometric Galois \(\mathbb{A}^1\)-cover. \(\square\)

Remark 5.12. Observe that the proof actually works for any smooth toric variety which is the complement of a codimension at least 2 subvariety of a smooth proper toric variety. On the other hand, smooth affine toric varieties are necessarily isomorphic to products of affine space and split tori and thus need not be \(\mathbb{A}^1\)-connected.

6 \(\mathbb{A}^1\)-homotopy groups of smooth toric varieties

In order to study the \(\mathbb{A}^1\)-homotopy groups of smooth proper toric varieties, we use the quotient presentation described in the previous section. Together with the long exact sequence in \(\mathbb{A}^1\)-
homotopy groups of a fibration, this will allow us to reduce our computations to the study of \(\mathbb{A}^1 \)-homotopy groups of complements of coordinate subspaces in affine space.

While we can not, at the moment, compute the first non-vanishing \(\mathbb{A}^1 \)-homotopy group of a coordinate subspace complement in completely generality, the combinatorial conditions described in the Proposition 5.10 allow us to make computations for many toric examples. Theorem 6.4 provides a computation of the first non-vanishing \(\mathbb{A}^1 \)-homotopy group of a coordinate subspace complement in the situation where the subspace arrangement contains no components of codimension \(\leq d \), and the codimension \(d \) subspaces have pairwise intersection of dimension \(\geq d + 2 \).

Complements of coordinate subspaces in affine space

Consider \(\mathbb{A}^n \) with fixed coordinates \(x_1, \ldots, x_n \). Let \(\{L_i\}, i \in I \) be a sequence of coordinate subspaces in \(\mathbb{A}^n \). Suppose furthermore that all the \(L_i \) have codimension \(\geq d \). Suppose \(I' \subset I \) is a subset such that for \(i \in I' \) each \(L_i \) has codimension exactly \(d \). In this situation we get a morphism

\[
j : \mathbb{A}^n - \bigcup_{i \in I} L_i \hookrightarrow \mathbb{A}^n - \bigcup_{i \in I'} L_i
\]

whose complement is necessarily of codimension \(\geq d + 1 \).

Corollary 6.1. The map

\[
j_* : \pi_{d-1}^A(\mathbb{A}^n - \bigcup_{i \in I} L_i) \longrightarrow \pi_{d-1}^A(\mathbb{A}^n - \bigcup_{i \in I'} L_i)
\]

is an isomorphism in degrees \(\leq d - 1 \) and a surjection in degree \(d \). Furthermore, if \(I' \) is non-empty, then \(\pi_{d-1}^A(\mathbb{A}^n - \bigcup_{i \in I'} L_i) \) is non-vanishing.

Proof. The first statement is an immediate corollary of Theorem 4.11. If \(I' \) is non-empty, we can choose any \(L_i \) with \(i \in I' \). We then have an open immersion \(\mathbb{A}^n - \bigcup_{i \in I'} L_i \hookrightarrow \mathbb{A}^n - L_i \). This map induces a surjection on \(\pi_{d-1}^A \). Since \(\mathbb{A}^n - L_i \) is \(\mathbb{A}^1 \)-weakly equivalent to \(\mathbb{A}^d - 0 \), the result follows from Theorem 3.17. \(\square \)

Suppose now that \(L_1, \ldots, L_r \) are (distinct) coordinate subspaces of codimension (exactly) \(d \geq 2 \) in \(\mathbb{A}^n \), then we have \(\mathbb{A}^n - \bigcup_{i=1}^r L_i = \cap_{i=1}^r \mathbb{A}^n - L_i \) where the intersection is taken in affine space. Similarly, \(\bigcup_{i=1}^r \mathbb{A}^n - L_i = \mathbb{A}^n - \cap_{i=1}^r L_i \) where again the intersection is taken \(\mathbb{A}^n \). Observe that, since the \(L_i \) are distinct, the intersection \(L_i \cap L_j \) is always a non-empty coordinate subspace of lower dimension than either \(L_i \) or \(L_j \). Furthermore, any such coordinate subspace complement is \(\mathbb{A}^1 \)-connected by Lemma 2.12. Thus, this gives us a useful inductive procedure for computing \(\mathbb{A}^1 \)-homotopy groups of such complements.

Lemma 6.2. Suppose \(L_1, \ldots, L_r \) are a collection of coordinate subspaces of codimension \(d \) (\(d \geq 2 \)) in \(\mathbb{A}^n \). We have a surjective morphism

\[
\tau : H^A_{d-1}(\mathbb{A}^n - \bigcup_{i=1}^r L_i) \longrightarrow K_d^{MW_{\oplus r}}.
\]
Proof. We know that for each pair of subspaces L_i, L_j, the intersection $L_i \cap L_j$ has codimension $\geq d + 1$ in \mathbb{A}^n as the L_i are non-isomorphic coordinate subspaces.

We will proceed by induction using the Mayer-Vietoris sequence of Proposition 3.16. Consider the subspace $\mathbb{A}^n - \bigcup_{j=1}^m L_j$. We can write this subspace as the intersection of $\mathbb{A}^n - \bigcup_{j=1}^{m-1} L_j$ and $\mathbb{A}^n - L_m$. The union of these two subspaces is $\mathbb{A}^n - (\bigcup_{i=1}^{m-1} \cap L_m)$. Consider the Mayer-Vietoris sequence for this pair of open sets. We get

$$
\cdots \longrightarrow H^1_d(\mathbb{A}^n - \bigcup_{j=1}^m L_j) \longrightarrow H^1_{d-1}(\mathbb{A}^n - \bigcup_{j=1}^{m-1} L_j) \\
\longrightarrow H^1_{d-1}(\mathbb{A}^n - \bigcup_{j=1}^{m-1} L_j) \oplus H^1_{d-1}(\mathbb{A}^n - L_m) \longrightarrow H^1_{d-1}(\mathbb{A}^n - (\bigcup_{i=1}^{m-1} L_j) \cap L_m) \longrightarrow \cdots
$$

Since $\mathbb{A}^n - (\bigcup_{j=1}^{m-1} L_j) \cap L_m)$ has complement of codimension $\geq d + 1$ in \mathbb{A}^n, by excision, we know its $d - 1$st homotopy group vanishes. By the \mathbb{A}^1-Hurewicz theorem its $d - 1$st reduced homotopy group vanishes as well. Thus the last term in the diagram vanishes. By Theorem 3.17 combined with the Hurewicz theorem, we know that $H^1_{d-1}(\mathbb{A}^n - L_m)$ is isomorphic to K_d^{MW}. Induction on m gives the result.

Observe that if $d \geq 3$, the \mathbb{A}^1-Hurewicz theorem allows us to identify the $(d - 1)$st \mathbb{A}^1-homotopy and \mathbb{A}^1-homology groups. Thus, the morphism τ in the statement of Lemma 6.2 is actually a surjection on \mathbb{A}^1-homotopy groups. The next result gives a computation of the first non-trivial \mathbb{A}^1-homotopy group.

Proposition 6.3. Under the hypotheses of Lemma 6.2 if all the L_i have pair-wise intersection of codimension $\geq d + 2$, then the morphism τ is an isomorphism and

$$
\pi^1_{d-1}(\mathbb{A}^n - \bigcup_{i=1}^r L_i) \cong K_{d}^{MW^{\oplus r}}.
$$

Proof. If $d \geq 3$, this follows immediately from Lemma 6.2. If $d = 2$, we get an identification $\tilde{H}_1(\mathbb{A}^n - \bigcup_{i=1}^r L_i) \cong K_2^{MW^{\oplus r}}$. Thus, it suffices to prove that $\pi^1(\mathbb{A}^n - \bigcup_{i=1}^r L_i)$ is abelian; the result then will follow from the \mathbb{A}^1-Hurewicz theorem. We claim that, up to homotopy, there is a surjective morphism

$$
\pi^1_{1}((\mathbb{A}^2 - 0)^{\times \ell}) \longrightarrow \pi^1_{1}(\mathbb{A}^n - \bigcup_{i=1}^r L_i).
$$

Assuming this, observe that the first sheaf is abelian by Theorem 3.17, so the result follows.

Choose a basis x_1, \ldots, x_n of \mathbb{A}^n. Observe that codimension 2 coordinate subspaces are defined by the vanishing of pairs x_i, x_j for $i, j \in \{1, \ldots, n\}$. By assumption, the successive intersections of the L_i have codimension ≥ 4. A parity argument shows that there can only be an even number of codimension 2 subspaces in \mathbb{A}^n satisfying these conditions. Thus, the number of coordinates that do not vanish for some codimension 2 subspace is odd if n is odd and even if n is even. Projection onto the coordinates that do not appear defines an \mathbb{A}^1-weak equivalence to a subspace complement in $\mathbb{A}^{2n'}$ where each of the coordinates vanishes in at least one coordinate subspace.

In this last case, it is easy to construct an open embedding from a product of copies of $\mathbb{A}^2 - 0$. By Theorem 4.1, this open immersion defines a surjective morphism of homotopy groups.

\[\square \]
Vanishing and non-vanishing results

Proposition 5.10 gives a purely combinatorial condition guaranteeing that the intersection of any pair of codimension \(d\) subspaces has codimension \(d + 2\). This together with all of the previous results proved leads us to our main computation.

Theorem 6.4. Suppose \(X_\Sigma\) is a toric variety corresponding to a smooth, proper fan \(\Sigma\). Let \(\mathbb{A}^{\Sigma(1)}\) denote the affine space of dimension equal to the number of 1-dimensional cones in \(\Sigma\). Let \(Z_\Sigma\) be the irrelevant subvariety.

1. Let \(r\) denote the number of (unordered) collections of pairs of primitive vectors \(\rho_i, \rho_j\) that do not span a cone. Suppose for each primitive vector \(\rho_i\), there exists at most one index \(i(j)\) such that \(\rho_i, \rho_{i(j)}\) does not span a cone. Then \(\pi_1^{A_1}(X_\Sigma, x)\) fits into an extension of the form:

\[1 \rightarrow K_{MW} \rightarrow \pi_1^{A_1}(X_\Sigma, x) \rightarrow \text{Pic}(X_\Sigma)^\vee \rightarrow 1.\]

2. Suppose \(d \geq 3\) and every non-degenerate collection of \(d - 2\)-primitive vectors spans a cone, let \(r\) denote the number of (unordered) collections of \(d - 1\)-primitive vectors that do not span a cone. Suppose for each (unordered) collection of \(d - 2\) primitive vectors \(\rho_1, \ldots, \rho_{d-2}\) that do span a cone, there is a unique primitive vector \(\rho_{d-1}\) (distinct from the \(\rho_i\)) such that \(\{\rho_1, \ldots, \rho_{d-1}\}\) does not span a cone. Furthermore, the quotient map \(\mathbb{A}^{\Sigma(1)} - Z_\Sigma \rightarrow X_\Sigma\) induces (functorial) isomorphisms

\[\pi_1^{A_1}(X_\Sigma, x) \cong \text{Pic}(X_\Sigma)^\vee,\]

\[\pi_i^{A_1}(X_\Sigma, x) \cong 0 \text{ for all } 2 \leq i \leq d - 2,\]

\[\pi_{d-1}^{A_1}(X_\Sigma, x) \cong K_{MW} \oplus r.\]

Proof. The Cox cover is a geometric Galois \(A_1\)-cover by Proposition 5.11. Thus, Corollary 5.3 shows that we have a corresponding long exact sequence in \(A_1\)-homotopy groups. The results then follow immediately by combining Proposition 5.10, Corollary 6.1 and Proposition 6.3.

Examples

In this subsection, we present some sample computations of \(A_1\)-homotopy groups of smooth proper toric varieties. We will use notation following the previous sections throughout. Thus, if \(\Sigma\) is a fan, we write \(X_\Sigma\) for the associated toric variety, \(\Sigma(1)\) for the set of 1-dimensional cones in \(\Sigma\), \(\mathbb{A}^{\Sigma(1)}\) for the affine space containing the Cox cover and \(Z_\Sigma\) for the irrelevant subvariety corresponding to \(\Sigma\).

Blow-ups

Suppose \(\text{Bl}_Y(X) \rightarrow X\) is a blow-up of a smooth variety \(X\) at a smooth center \(Y\). Since \(\text{Pic}(\text{Bl}_Y(X))\) is necessarily isomorphic to \(\text{Pic}(X) \oplus \mathbb{Z}\) with the generator of \(\mathbb{Z}\) being the class of the exceptional divisor, the \(A_1\)-fundamental group of \(\text{Bl}_Y(X)\) is necessarily non-isomorphic to
the A^1-fundamental group of X. Thus, a blow-up of a smooth variety at a non-singular subvariety can never be an A^1-weak equivalence.

Recall that birational morphisms of toric varieties correspond to locally-finite subdivisions of fans. Suppose $f : X_{\Sigma'} \to X_{\Sigma}$ is a blow-up of X_{Σ} at a smooth toric subvariety X_{Δ} corresponding to a smooth sub-fan $\Delta \subset \Sigma$. We will consider the induced homomorphism:

$$f_* : \pi_1^A(X_{\Sigma'}) \to \pi_1^A(X_{\Sigma}).$$

Suppose Z_{Σ} has codimension $\geq d$ in $A^1_{\Sigma(1)}$, $d \geq 3$. Observe that f_* is surjective in this situation. Indeed, pulling back the A^1-universal cover of X_{Σ} via f gives a torsor under a torus on $X_{\Sigma'}$; one can then apply the A^1-covering space dictionary. This discussion of the previous paragraph shows that there is always a factor of G_m in the kernel of f_* and one might ask whether this is the entire kernel. Unfortunately, we will see that this is never the case.

If Σ is a fan, closures of orbits of codimension d correspond to cones of dimension d. If Σ is a smooth fan, one can check that any cone $\sigma \subset \Sigma$ corresponds to a smooth fan as well. If σ is a cone in a fan Σ, let $\text{Star}(\sigma)$ be the set of all cones $\tau \in \Sigma$ which contain σ.

Construction 6.5 (Blowing up $\sigma \subset \Sigma$). Let us describe the refinement of Σ corresponding to the blow-up of X_{Σ} at the (smooth) toric subvariety corresponding to σ.

1. Let ρ_1, \ldots, ρ_d be the set of primitive generators for σ. Set $\rho_0 = \sum_{i=1}^d \rho_i$, and let σ_i be the cone with primitive generators $\rho_0, \rho_1, \ldots, \hat{\rho}_i, \ldots, \rho_d$ (where the $\hat{\rho}_i$ indicates that ρ_i has been omitted).

2. For each $\tau \in \text{Star}(\sigma)$, decompose $\tau = \sigma + \sigma'(\tau)$, where $\sigma'(\tau) \cap \sigma = \{0\}$ (such a decomposition exists because τ is generated by a subset of the basis for $X^*(T)$).

3. For each $\tau \in \text{Star}(\sigma)$, replace τ by the cones $\sigma_i + \sigma'(\tau)$.

4. Write Σ' to be the fan with this new collection of cones.

Example 6.6. Let X_{Σ} be a smooth proper n-dimensional toric variety corresponding to a fan Σ. Suppose we want to blow-up X_{Σ} at a torus fixed point. Torus fixed points correspond to cones of dimension n, so fix such a cone and call it σ; the star of such a cone consists of the cone itself. If ρ_1, \ldots, ρ_n are primitive vectors for σ, then we consider the vector $\rho_0 = \rho_1 + \cdots + \rho_n$ and subdivide the cone σ into subcones of the form $\rho_0, \rho_1, \ldots, \hat{\rho}_i, \ldots, \rho_n$. Let Σ' denote the new fan.

Lemma 6.7. Let X_{Σ} be a smooth proper toric variety and let $\sigma \subset \Sigma$ be a cone. Let Σ' denote the refinement corresponding to the blow-up of X_{Σ} at the subvariety corresponding to σ. Then $\pi_1^A(X_{\Sigma'})$ is never isomorphic to $\text{Pic}(X_{\Sigma'})$.

Proof. Take the vector ρ_0 introduced in the blow-up and any primitive vector in a 1-dimensional cone not lying in the star of σ; this gives a pair of primitive vectors not contained in a cone and hence shows that Z_{Σ} has a codimension 2 component. \qed

Example 6.8. Consider \mathbb{P}^n viewed as a toric variety under $G_m^{\times n}$. We can view \mathbb{P}^n as associated to the following fan in $X^*(T)$. Identify the last group with \mathbb{Z}^n and let e_i denote the usual basis...
vectors. Let \(e_{n+1} = -(e_1 + \cdots + e_n) \), and consider the fan \(\Sigma \) whose \(n \)-dimensional cones correspond to subsets of the form \(e_1, \ldots, e_i, \ldots, e_{n+1} \).

Consider the torus fixed point corresponding to the cone \(e_1, \ldots, e_n \) and let \(e_{n+2} = \sum_{i=1}^{n} e_i \); denote this fixed-point by \(x \). Then the \(n \)-dimensional cones of the blow-up of \(\mathbb{P}^n \) at the corresponding torus fixed point are \(e_1, \ldots, e_i, \ldots, e_{n+1} \) (with \(i \neq n+1 \)) and \(e_1, \ldots, e_j, \ldots, e_n, e_{n+2} \) (with \(j = 1, \ldots, n \)); let \(\Sigma' \) denote the corresponding fan. Observe that the only pair of primitive vectors not lying in some cone of the pair \(e_{n+1}, e_{n+2} \). Thus, \(Z_{\Sigma'} \) has a unique codimension 2 component and Theorem 6.4 shows that \(\pi^A_1(\text{Bl}_x(\mathbb{P}^n)) \) fits into an exact sequence of the form

\[
1 \longrightarrow \mathbf{K}_2^{MW} \longrightarrow \pi^A_1(\text{Bl}_x(\mathbb{P}^n)) \longrightarrow \mathbb{G}^\times_2 \longrightarrow 1.
\]

Recall also that one may identify \(\text{Bl}_x(\mathbb{P}^n) \) as a \(\mathbb{P}^1 \)-bundle over \(\mathbb{P}^{n-1} \).

Next, let \(x' \) denote the torus fixed-point corresponding to the cone \(e_2, \ldots, e_{n+1} \). Let \(e_{n+3} = \sum_{i=1}^{n} e_{i+1} \). If we blow-up \(\mathbb{P}^n \) at both points \(x \) and \(x' \), the resulting toric variety has \(n \)-dimensional cones given by \(e_1, \ldots, e_i, \ldots, e_{n+1} \) (with \(i = 2, \ldots, n \)), \(e_1, \ldots, e_j, \ldots, e_n, e_{n+2} \) (with \(j = 1, \ldots, n \)), and \(e_2, \ldots, e_k, \ldots, e_{n+1}, e_{n+3} \) (with \(k = 2, \ldots, n+1 \)). Let \(\Sigma'' \) be the corresponding fan. There are now a host of pairs of primitive vectors which do not fit into some cone and one may check that some pairs corresponding to codimension 2 subspaces in \(Z_{\Sigma''} \) have intersection of codimension 3. Thus, while there is still a surjection \(\pi^A_1(\text{Bl}_{x,x}(\mathbb{P}^n)) \longrightarrow \mathbb{G}^\times_3 \), the kernel of this surjection is rather difficult to describe.

Hirzebruch surfaces

Smooth projective toric surfaces correspond to 2-dimensional fans. By general theory of toric surfaces, every smooth projective toric surface can be obtained from either \(\mathbb{P}^2 \) or a Hirzebruch surface \(F_a \) by successive blow ups at torus fixed points (see [Ful93] §2.5 for more details). For us, the surface \(F_a \) can be identified with the projectivization of the rank 2 vector bundle \(\mathcal{O} \oplus O(a) \) (for some integer \(a \)) over \(\mathbb{P}^1 \). Morel’s results describe the \(A^1 \)-fundamental group of \(\mathbb{P}^2 \), so let us describe the \(A^1 \)-fundamental group of \(F_a \).

Example 6.9. The group \(\pi^A_1(\mathbb{P}_a) \) fits into a short exact sequence of the form

\[
1 \longrightarrow \mathbf{K}_2^{MW} \longrightarrow \pi^A_1(\mathbb{P}_a) \longrightarrow \mathbb{G}^\times_2 \longrightarrow 1.
\]

Unfortunately, we can not (yet) describe the group structure on this sheaf.

Smooth complete toric varieties with small numbers of generators

Kleinschmidt has classified all \(d \)-dimensional smooth proper fans with at most \(d + 2 \)-generators (see [Kle88]). Any smooth proper fan must have at least \(d + 1 \)-generators; and any such fan with exactly \(d + 1 \)-generators is necessarily the fan of projective space \(\mathbb{P}^d \).

Assume now \(d \geq 2 \). As before let \(e_i \) denote the unit vectors in \(\mathbb{Z}^{\oplus d} \). Suppose we have given a pair of integers \(s \) and \(r \) satisfying \(2 \leq s \leq d \), \(r = d - s + 1 \) and a collection of non-negative integers with \(0 \leq a_1 \leq a_2 \leq \cdots \leq a_r \). Consider the following collection of primitive vectors

\[
(e_1, \ldots, e_r, -\sum_{i=1}^{r-s} e_i, e_{r+1}, \ldots, e_{r+s-1}, \sum_{i=1}^{r-s} a_i e_i - \sum_{j=1}^{s-1} e_{r+j})
\]
Set $U = \{e_1, \ldots, e_r, \sum_{i=1}^r e_i\}$ and $V = \{e_{r+1}, \ldots, e_{r+s-1}, \sum_{i=1}^r a_ie_i - \sum_{j=1}^{s-1} e_{r+j}\}$. We define a fan $\Sigma_d(a_1, \ldots, a_r)$ that has $U \cup V$ as its set of primitive generators and whose d-dimensional (maximal) cones are the positive linear spans of sets of the form $U \cup V - \{u, v\}$ where $u \in U$ and $v \in V$. Any smooth proper toric d-variety with $d + 2$-generators is isomorphic to precisely one of the varieties $X_{\Sigma_d(a_1, \ldots, a_r)}$ by [Kle88] Theorem 1. Furthermore, by [Kle88] Theorem 3, any such variety is isomorphic to a \mathbb{P}^r-bundle over \mathbb{P}^{s-1}. We may thus deduce from Theorem 6.4 then that $\pi_1^A(X_{\Sigma_d(a_1, \ldots, a_r)})$ is isomorphic to $\mathbb{G}_m \times \mathbb{G}_m$ if $r \geq 2$, $s \geq 3$, is an extension of $\mathbb{G}_m \times \mathbb{G}_m$ by K_{MW}^2 if either $s = 2$ or $r = 1$ (but not both) and is an extension of $\mathbb{G}_m \times \mathbb{G}_m$ by $K_{MW}^{2 \otimes 2}$ if $s = 2$ and $r = 1$.

Proper, non-projective examples

It is known that any smooth proper, non-projective toric variety must have $rk\text{Pic}(X) \geq 4$ (see [KS91]). An example of a smooth proper, non-projective toric 3-fold with $rk\text{Pic}(X) = 4$ was constructed by Oda (see [Oda88] p. 84); this example admits a morphism to projective space, though there exist smooth proper toric 3-folds admitting no morphism to a projective variety (see e.g., [FP05]). In all of these cases, we know that $\pi_1^A(X)$ surjects onto the torus dual to the Picard group, but we can’t describe the kernel. Nevertheless, this discussion suggests the following combinatorial question.

Question 6.10. Does there exist a smooth proper, non-projective fan Σ having the property that any pair of primitive vectors is contained in a cone?

References

[AD] A. Asok and B. Doran. Vector bundles on contractible smooth schemes. To appear, Duke Math. Jour. Preprint available at http://www.math.washington.edu/~asok. 13

[AD07] A. Asok and B. Doran. On unipotent quotients and some \mathbb{A}^1-contractible smooth schemes. Int. Math. Res. Pap., 5:1–51, 2007. 2, 12, 15, 22, 27, 28

[ADK07] A. Asok, B. Doran, and F.C. Kirwan. Yang-mills theory and Tamagawa numbers. To appear: Bull. Lond. Math. Soc., ?, 2007. 2

[Bro05] P. Brosnan. On motivic decompositions arising from the method of Białynicki-Birula. Invent. Math., 161(1):91–111, 2005. 4

[Cox95] D. A. Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom., 4(1):17–50, 1995. 3

[CTHK97] J.-L. Colliot-Thélène, R. T. Hoobler, and B. Kahn. The Bloch-Ogus-Gabber theorem. In *Algebraic K-theory (Toronto, ON, 1996)*, volume 16 of *Fields Inst. Commun.*, pages 31–94. Amer. Math. Soc., Providence, RI, 1997. 5, 14, 18, 20

[DK07] B. Doran and F. Kirwan. Towards non-reductive geometric invariant theory. Quart. J. of Pure and App. Math, 3(1), 2007. 28

[FP05] O. Fujino and S. Payne. Smooth complete toric threefolds with no nontrivial nef line bundles. Proc. Japan Acad. Ser. A Math. Sci., 81(10):174–179 (2006), 2005. 39

[Ful93] W. Fulton. *Introduction to toric varieties*, volume 131 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. 4, 29, 38
40 REFERENCES

[GM88] M. Goresky and R. MacPherson. *Stratified Morse theory*, volume 14 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1988. 4

[Har66] R. Hartshorne. *Residues and duality*. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer-Verlag, Berlin, 1966. 18

[Kat99] N. M. Katz. Space filling curves over finite fields. *Math. Res. Lett.*, 6(5-6):613–624, 1999. 11

[Kle88] P. Kleinschmidt. A classification of toric varieties with few generators. *Aequationes Math.*, 35(2-3):254–266, 1988. 38, 39

[Kle91] P. Kleinschmidt and B. Sturmfels. Smooth toric varieties with small Picard number are projective. *Topology*, 30(2):289–299, 1991. 39

[MFK94] D. Mumford, J. Fogarty, and F. C. Kirwan. *Geometric invariant theory*, volume 34 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge [Results in Mathematics and Related Areas (2)]*. Springer-Verlag, Berlin, third edition, 1994. 9

[Mora] F. Morel. \(\mathbb{A}^1\)-algebraic topology over a field. *Preprint*, available at http://www.mathematik.uni-muenchen.de/~morel/preprint.html 4, 13, 15, 16, 18, 21, 22, 23, 24, 26

[Morb] F. Morel. \(\mathbb{A}^1\)-homotopy classification of vector bundles over smooth affine schemes. *Preprint*, available at http://www.mathematik.uni-muenchen.de/~morel/preprint.html 26

[Morc] F. Morel. Rationalized stable splitting of grassmannians and rational motivic sphere spectrum. *Preprint*, available at http://www.mathematik.uni-muenchen.de/~morel/preprint.html 2

[Mor05] F. Morel. The stable \(\mathbb{A}^1\)-connectivity theorems. *K-Theory*, 35(1-2):1–68, 2005. 4, 6, 15

[MV99] F. Morel and V. Voevodsky. \(\mathbb{A}^1\)-homotopy theory of schemes. *Inst. Hautes Études Sci. Publ. Math.*, (90):45–143 (2001), 1999. 4, 7, 8, 10, 12, 13, 14, 25, 26

[Oda88] T. Oda. *Convex bodies and algebraic geometry*, volume 15 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese. 39

[Qui67] D. G. Quillen. *Homotopical algebra*. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin, 1967. 12

[Spa81] E. H. Spanier. *Algebraic topology*. Springer-Verlag, New York, 1981. Corrected reprint. 13, 16

[Uma04] V. Uma. On the fundamental group of real toric varieties. *Proc. Indian Acad. Sci. Math. Sci.*, 114(1):15–31, 2004. 4

[Voe98] V. Voevodsky. \(\mathbb{A}^1\)-homotopy theory. In *Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)*, number Extra Vol. I, pages 579–604 (electronic), 1998. 1