NC Algorithms for Popular Matchings in One-Sided Preference Systems

Changyong Hu, Vijay K. Garg

Department of Electrical and Computer Engineering
University of Texas at Austin

colinhu9@utexas.edu, garg@ece.utexas.edu
Popular matching

- For a vertex v, we say v prefers M to M' if v prefers $p_M(v)$ to $p_{M'}(v)$.
- $P(M, M') = \text{the set of vertices that prefers } M \text{ to } M'. \text{ (Voting over matchings)}$
- “more popular than” relation \succ on M:

$$M' \succ M \text{ if } |P(M', M)| > |P(M, M')|.$$

Definition

A matching M is **popular** if there is no matching M' such that $M' \succ M$.
The stable matching problem only makes sense in two-sided preference systems.

The housing allocation model:
- Bipartite graph G
- $\mathcal{A} \cup \mathcal{H}(P) = \text{set of agents(applicants) and set of houses(posts)}$
- $E = \text{set of edges}$
- for each agent in \mathcal{A}, there is a strictly ordered preference lists over acceptable houses. Houses do not have preferences over agents.

We will refer houses as posts and agents as applicants.
NC model

- The set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors.
- Equivalently, a problem is in NC if there exist constants c and k such that it can be solved in time $O(\log^c n)$ using $O(n^k)$ parallel processors.
- $NC \subseteq P$
Characterizing popular matchings

- **f-post**: for each agent a, let $f(a)$ denote the first-ranked post on a’s preference list.
- **s-post**: let $s(a)$ be the first non-f-post on a’s preference list.
- **l-post**: last-resort post.

Figure: A popular matching instance I

- $a_1 : p_1 \ p_4 \ p_5 \ p_2 \ p_6 \ l_1$
- $a_2 : p_4 \ p_5 \ p_7 \ p_2 \ p_8 \ l_2$
- $a_3 : p_4 \ p_1 \ p_3 \ p_8 \ l_3$
- $a_4 : p_1 \ p_7 \ p_4 \ p_3 \ p_9 \ l_4$
- $a_5 : p_5 \ p_1 \ p_7 \ p_2 \ p_6 \ l_5$
- $a_6 : p_7 \ p_6 \ l_6$
- $a_7 : p_7 \ p_4 \ p_8 \ p_2 \ l_7$
- $a_8 : p_7 \ p_4 \ p_1 \ p_5 \ p_9 \ p_3 \ l_8$
Theorem (Abraham, Irving, Kavitha and Mehlhorn)

A matching M is popular if and only if

1. every f-post is matched in M, and
2. for each applicant a, $M(a) \in \{f(a), s(a)\}$.
High level ideas

- For each applicant a, only need to consider a’s f-post and s-post. Hence we can obtain a reduced graph that is sparse.
- Find a matching that is complete for the applicants.
- Locally rearrange to make sure every f-post is matched.
Algorithm 1: Popular Matching

1. Input: Graph $G = (A \cup P, E)$.
2. Output: A popular matching M or determine that no such matching.
3. $G' :=$ reduced graph of G;
4. if G' admits an applicant-complete matching M then
5. for each f-post p unmatched in M in parallel do
6. let a be any applicant in $f^{-1}(p)$;
7. promote a to p in M;
8. return M;
9. else
10. return “no popular matching”;
Algorithm: Applicant-Complete Matching

- Finding an applicant-complete matching sequentially is easy through augmenting path.
- The degree of each agent is exactly two.
- Finding maximal paths can be done in NC.
Algorithm 2: Applicant-Complete Matching

1. Input: Graph $G' = (A \cup \mathcal{P}, E')$.
2. Output: An applicant-complete matching M or determine that no such matching exists.
3. $M := \emptyset$;
4. while some post p has degree 1
 5. For all such p, find maximal paths that end at p;
 6. for each edge (p', a') at an even distance from some p in parallel do
 7. $M := M \cup \{ (p', a') \}$;
 8. $G' := G' - \{ p', a' \}$;
 9. end while
10. for each post p has degree 0 in parallel do
11. $G' := G' - p$
12. // Every post now has degree at least 2;
13. // Every applicant still has degree 2;
14. if $|\mathcal{P}| < |A|$ then
15. return “no applicant-complete matching”;
16. else
17. // G' decomposes into a family of disjoint even cycles
18. $M' :=$ any perfect matching of G';
19. return $M \cup M'$;
Complexity

Lemma

The while loop (line 4 in Algorithm 2) runs $O(\log(n))$ number of rounds.

Proof.

- In round r, suppose we have t vertices of degree 1.
- Such vertices have degree at least 3 in round $r - 1 \implies \geq 2t$ vertices are deleted.
- Totally $\geq (2^r - 1)t$ vertices deleted \implies at most $\lceil \log(n) \rceil + 1$ rounds.

Theorem

There is an NC algorithm to find a popular matching, or determine that no such matching exists.
Maximum-cardinality popular matching

- Popular matchings may have different sizes.
- Switching graph captures all the possible popular matchings.
Switching graph

Definition

Given a popular matching M, the switching graph G_M of M is a directed graph with a vertex for each post p, and a directed edge (p_i, p_j) for each agent a, where $p_i = M(a)$ and $p_j = O_M(a)$. $O_M(a)$ is the unmatched post in $\{f(a), s(a)\}$.

![Switching graph](image)

Figure: The switching graph G_M for popular matching M.
Lemma (McDermid and Irving, Lemma 1)

Let M be a popular matching for an instance of $G = (A \cup P, E)$, G_M be the switching graph of M. Then

- Each vertex in G_M has outdegree at most 1.
- The sink vertices of G_M are those vertices corresponding to posts that are unmatched in M, and are all s-post vertices.
- Each component of G_M contains either a single sink vertex or a single cycle.
A component of a switching graph G_M is called a \textit{cycle component} if it contains a cycle, and a \textit{tree component} if it contains a sink vertex.

Each cycle in G_M is called a \textit{switching cycle}.

If T is a tree component of G_M with sink vertex p, and if q is another s-post vertex in T, the unique path from q to p is called a \textit{switching path}.

Note that each cycle component of G_M has a unique switching cycle, but each tree component may have zero or multiple switching paths.
Findings cycles in Pseudoforest

Definition

A **pseudoforest** is an undirected graph in which every connected component has at most one cycle. A **directed pseudoforest** is a directed graph in which each vertex has at most one outgoing edge, i.e., it has outdegree at most one.
Transitive closure

Theorem (Hirschberg)

The transitive closure of a directed graph with n vertices can be computed in $O(\log^2 n)$ time, using $O(n^\omega \log n)$ operations on a CREW PRAM, where n^ω is the best known sequential bound for multiplying two $n \times n$ matrices over a ring.

We compute the transitive closure G_P^* and for any two vertices i and j s.t. $i \neq j$ in G_P, if $G_P^*(i, j) = 1$ and $G_P^*(j, i) = 1$, then both i and j are in the unique cycle C. Hence we can identify the cycle C by checking each pair of vertices in parallel.
Algorithm: maximum-cardinality popular matching

Definition

Let Δ be the margin of applying a switching cycle C (resp. switching path P) to M, i.e.

$$\Delta = \sum_{a \in C(\text{resp.} P)} \mathbb{1}_{M \cdot C(a)} - \mathbb{1}_{M(a)}$$

where $\mathbb{1}_p$ is an indicator function of posts

s.t. $\mathbb{1}_p := \begin{cases} 1 & \text{if } p \text{ is not } l\text{-post} \\ 0 & \text{if } p \text{ is } l\text{-post} \end{cases}$

Figure: A tree component in switching graph
Algorithm 3: Maximum-Cardinality Popular Matching

Input: Reduced graph $G' = (A \cup \mathcal{P}, E')$ and a popular matching M.
Output: A maximum-cardinality popular matching M'.

1. $G_M :=$ switching graph of M and G'.
2. Find all weakly connected components of G_M.
3. for each cycle component in parallel do
4. Find the unique switching cycle;
5. for each switching cycle in parallel do
6. Compute the margin of applying this switching cycle;
7. for each cycle component in parallel do
8. if the margin Δ of switching cycle is positive
9. Apply this switching cycle to M;
10. return M';
Theorem (McDermid and Irving, Corollary 1)

Let the tree components of G_M be T_1, \cdots, T_k, and the cycle components of G_M be C_1, \cdots, C_l. Then the set of popular matchings for G consists of exactly those matchings obtained by applying at most one switching path in T_i and by either applying or not applying the switching cycle in C_i.

- Any popular matching can be obtained from M by applying at most one switching cycle or switching path per component of the switching graph G_M.

Theorem

For each tree component T, applying the switching path in T with the largest positive margin; similarly, for each cycle component C, applying the switching cycle in C with positive margin, the new matching is the maximum-cardinality popular matching.
The switching graph G_M can be constructed from G' and M in constant time in parallel.

All weakly connected components of G_M can also be found in polylog time.

All switching cycles and switching paths can be found in polylog time. Each switching cycle and switching path can be applied to matching M easily in parallel since they are vertex-disjoint in G_M.

Theorem

There is an NC algorithm to find a maximum-cardinality popular matching, or determine that no such matching exists.