A bicombing that implies a
sub-exponential Isoperimetric Inequality

Günther Huck
Northern Arizona University

Stephan Rosebrock
Johann–Wolfgang Goethe Universität

January 7, 2022

1 Definitions

Let $\Gamma_X(G)$ be the Cayley graph of a group G with respect to a finite set of
generators X, and let $\Gamma_X(G)$ be equipped with the word metric. Let F be the
free group on X. For $v \in F$ let $|v|$ denote the length in the free group.

A bicombing as defined in [1] and [7] is essentially a selection of a path
$\sigma(g, h)$ for every pair of vertices $g, h \in \Gamma_X(G)$, such that the distance between
any two paths which start and end a distance ≤ 1 apart is uniformly bounded.
We replace the uniform bound for this distance by a bound that is dep endent
on the lengths of the paths. More precisely, we define a bicombing of narrow
shape as follows:

For each $(g, h) \in G \times G$ let $\sigma(g, h) : [0, \infty[\rightarrow \Gamma_X(G)$ be a path from g to h
which is at integer times at vertices (i.e. from $t = n$ to $t = n + 1$ the path either
travels the distance between two adjacent vertices or pauses at a vertex). We
define the length:

$|\sigma(g, h)| = \min\{|t|\sigma(g, h)|t, \infty[= \text{constant} = h\}$. This is the length of the path
including the pauses which occur before the end of the path is reached. We will
dependently represent such a path by a sequence of elements in $X \cup X^{-1} \cup \{1\}$
which, given the startvertex g, completely determines the path. Let $\sigma(h) =$
$\sigma(1, h)$. We call σ a bicombing of narrow shape if

1. it is “recursive”, i.e. if there exists an increasing polynomial $f : \mathbb{N} \rightarrow \mathbb{N}$,
such that $|\sigma(g)| \leq f(d(1, g)) \quad \forall g \in G$ (1)

2. there exists an integer $M > 1$ and a real number $k > 2$, such that for any
$g \in G \ |\sigma(g, g)| \leq Mk/2$ and for all $g, h \in G$ and $a, b \in X^{\pm 1} \cup \{1\}$

$|\sigma(\sigma(g, h)(t), \sigma(ga, hb)(t))| \leq \max((|\sigma(g, h)| + |\sigma(ga, hb)|)/k, M/2)$ (2)
holds for all integers $t \in [0, \infty]$.

where $d(1,g)$ denotes the distance in $\Gamma_X(G)$ from 1 to g. If possible we will always choose $\sigma(1)$ to be the identical path. A bicombing is called \textit{geodesic} if f is the identity (i.e. the combing lines are geodesics).

Let the group G be finitely generated with generator set X. Following Gersten [8], a function $f: \mathbb{N} \to \mathbb{N}$ is called an \textit{isoperimetric function} for G if for any word w in X of length n with $w = 1$ in G, the minimum number of 2-cells in a van Kampen diagram for w is at most $f(n)$.

Let $P = < X \mid R >$ be a finite presentation of the group G. Following Gersten [8], a function $f: \mathbb{N} \to \mathbb{R}$ is called an \textit{isodiametric function} for P, if for any word w in the generators X with $w = 1$ in G there is a van Kampen diagram for w, such that any vertex in the diagram has distance at most $f(|w|)$ from the basepoint.

We would like to thank Allan J. Sieradsky, Holger Meinert, Stephen J. Pride, William A. Bogley and all the members of our "Luttach workshop" for helpful discussions.

2 An isoperimetric inequality and an isodiametric function

Theorem 2.1 A group G with finite generator set X and a bicombing of narrow shape is finitely presented and has an isoperimetric function of growth $n^{O(\log n)}$.

Proof: Define a presentation $P = < X \mid R >$, where R is the set of all cyclically reduced non-trivial words of length at most $M + 2$ which are trivial in G. We proof that P is a presentation for G by constructing a van Kampen diagram for each word which is trivial in G, using only 2-cells of R.

Let $w \in F$ be a reduced nontrivial word of length $n > M + 2$ which is trivial in G. If $w = x_1 \ldots x_n$, $x_i \in X^{\pm 1}$, define $w_i = x_1 \ldots x_i$. Now consider the "fan" of bicombing lines $\sigma(w_i)$ from 1 to w_i. $|w| = n$ implies $d(1, w_i) \leq n/2$ and by (1) it follows

$$|\sigma(w_i)| \leq f(n/2) \quad \text{for } 1 \leq i \leq n. \quad (3)$$

If $|\sigma(w_i)| + |\sigma(w_{i+1})| \leq M$, then the closed path $\tau_i = \sigma(w_i)x_{i+1} \sigma(w_{i+1})^{-1}$ in $\Gamma_X(G)$ is of length $\leq M + 2$ and therefore represents up to cyclic reduction an element of R.

If $|\sigma(w_i)| + |\sigma(w_{i+1})| > M$ we break up the closed path τ_i again, using the bicombing paths $\sigma_{i,t} = \sigma(\sigma(w_i)(t), \sigma(w_{i+1})(t))$ that connect $\sigma(w_i)(t)$ to $\sigma(w_{i+1})(t)$ for all positive integers $t \leq \max(|\sigma(w_i)|, |\sigma(w_{i+1})|)$. By (2),

$$|\sigma_{i,t}| \leq \max(2f(n/2)/k, M/2). \quad (4)$$

Let $\sigma(w_i) = a_1 \ldots a_p$, $\sigma(w_{i+1}) = b_1 \ldots b_q$, $a_j, b_l \in X^{\pm 1} \cup \{1\}$. We examine the length of the closed paths $\tau_{i,t}$ that are generated by the connecting paths.
Figure 1: A diagram for w

$\tau_{i,t} = \sigma_{i,t} b_{i+1} \sigma_{i,t+1}^{-1} \sigma_{i,t+1} ^{-1}$ (see fig. 1). If $|\sigma_{i,t}| + |\sigma_{i,t+1}| \leq M$, then $|\tau_{i,t}| < M + 2$ and $\tau_{i,t}$ represents up to cyclic reduction an element in R. Otherwise, we break $\tau_{i,t}$ up again using bicombing paths $\sigma_{i,t,s} = \sigma(\sigma_{i,t}(s), \sigma_{i,t+1}(s))$ for $s \leq \max(|\sigma_{i,t}|, |\sigma_{i,t+1}|)$.

There is one exception, namely if we are close to the boundary. This is because the path of length one between w_i and w_{i+1} is not (necessarily) a combing line. But the condition $|\sigma(g, g)| \leq Mk/2$ implies

$$|\sigma(\sigma(w_i, w_i)(0), \sigma(w_{i+1}, w_{i+1})(0))| \leq \max \left(\frac{|\sigma(w_i, w_i)| + |\sigma(w_{i+1}, w_{i+1})|}{k}, \frac{M}{2} \right) \leq M,$$

and we have a representation of an element of R.

By (4), $|\sigma_{i,t,s}| \leq \max(4f(n/2)/k^2, M/2)$. If $|\sigma_{i,t,s}| + |\sigma_{i,t,s+1}| \leq M$ then the closed path $\tau_{i,t,s}$, using $\sigma_{i,t,s}$, $\sigma_{i,t,s+1}$ and the segments of length ≤ 1 along $\sigma_{i,t}$ and $\sigma_{i,t+1}$, is of length $\leq M + 2$ and therefore represents an element in R. Otherwise, we break up further in the same manner using connecting bicombing paths of length $\leq \max(8f(n/2)/k^3, M/2)$, etc. until $2d f(n/2)/k^d \leq M/2$. In this way we find a van Kampen diagram for w. This proves that G is finitely presented. d can be estimated as the smallest integer greater or equal than $\log_{k/2}(2f(n/2)/M)$.

The isoperimetric inequality has the form:

$$\# \text{ (2–cells)} \leq n \cdot (f(n/2) + 1) \cdot 2(f(n/2) + 2) / k \cdots 2d^{-1}(f(n/2) + 2) / k^{d-1} \leq \frac{n(f(n/2) + 2) d^{2d(d-1)/2}}{k^{d(d-1)/2}} = O(\log n)$$

where d is given as above.

\[\n\]

Remark: 1. Condition (1) is not necessary in order to prove that the presentation is finite.
2. The growth of the isoperimetric function is faster than polynomial but slower than exponential; therefore we call it sub-exponential.

Theorem 2.2 Each group that has a bicombing in the sense of [7] has a bicombing of narrow shape.

Proof: By using the notation of the proof above, the bicombing in the sense of Short is a narrow bicombing with $|\sigma_{i,t}| \leq M/2$ and $f(n) = mn$ for a given constant $m \in \mathbb{N}$ and $d = 1$ in this case.

Theorem 2.3 Let $P = \langle X \mid R \rangle$ be a finite presentation for the group G with a bicombing of narrow shape σ and let f be the polynomial from [7] bounding $|\sigma|$.
1. There is a polynomial isodiametric function for P of the same degree as f.
2. If σ is geodesic, then the isodiametric function is linear.

Proof: Let $w \in F$ be a reduced nontrivial word of length n, which is trivial in G, and let D be the van Kampen diagram for w constructed in the proof of theorem 2.1. One can reach every vertex in the diagram D from the basepoint 1 by traveling part of a bicombing line $\sigma(w_i)$ of the first generation then traveling part of a bicombing line $\sigma_{i,t}$ of the second generation then part of a bicombing line $\sigma_{i,t,s}$ of the third generation etc. The length of a bicombing line of the l-th generation is $\leq 2^l f(n/2)/k^l$, and the sum of the lengths of successive generations of bicombing lines therefore is $\leq f(n/2)(1 + 2/k + (2/k)^2 + ...) = f(n/2)k/(k-2)$. Hence $2^l f(n/2)$ is an isodiametric function for the presentation P. If σ is geodesic, then f is the identity and the above function is linear.

The next theorem follows an idea of M. Bridson [8]. It shows that the definition of a bicombing of narrow shape cannot be sharpened.

Theorem 2.4 Let X be a finite generating set of the group G. Choose for every pair $g, h \in G$ a geodesic $\sigma(g, h) \in \Gamma_X(G)$. Then:

$$\forall x, y \in X^{\pm 1}, \forall g, h \in G, \quad |\sigma(\sigma(g, h)(t), \sigma(gx, hy)(t))| \leq (|\sigma(g, h)| + |\sigma(gx, hy)|)/2 + 1$$

holds for all integers $t \in [0, \infty[$.

Proof: Let $C = (|\sigma(g, h)| + |\sigma(gx, hy)|)/2$. If $t \leq C/2$, then following $\sigma(g, h)$ backwards from $\sigma(g, h)(t)$ to g then one edge to gx and then going to $\sigma(gx, hy)(t)$
along \(\sigma(gx, hy) \) gives a path of length at most \(C + 1 \). For \(t > C/2 \) follow \(\sigma(g, h) \) from \(\sigma(g, h)(t) \) to the vertex \(h \), then go one edge to \(hy \) and then to \(\sigma(gx, hy)(t) \) backwards along \(\sigma(gx, hy) \). This gives a path of length at most \(C \).

3 A class of Examples

Let \(P_q = \langle x, y, z \mid [x, y^q] = z, [x, z] = [y, z] = 1 \rangle \) be a presentation of the group \(G_q \) where \(q \geq 1 \) and \([a, b]\) denotes the commutator of \(a \) and \(b \). \(G_1 \) is the 3–dimensional integral Heisenberg group. Let \(F \) be the free group on \(\{x, y, z\} \).

Let \(w, v \in F \). If both words are equal in \(F \), we write \(w \equiv v \). If they are the same in \(G_q \), we write \(w = v \).

It is easy to see, that
\[
z^{jl} = x^j y^{ql} x^{-j} y^{-ql}
\]
holds in \(G_q \).

Lemma 3.1 (normal form for \(G_q \)) Let \(w \in F \). Then, for \(q > 1 \), there is a word
\[
\tau(w) \equiv y^s x^{r_1} y^{s_1} x^{r_2} \ldots y^{s_{m-1}} x^{r_m} y^p z^n \in F
\]
with \(r_i, s_i \neq 0 \) and
\[
\text{for } q \text{ even: } s, s_i \in \{-q/2 + 1, \ldots, q/2\},
\]
\[
\text{for } q \text{ odd: } s, s_i \in \{-(q-1)/2, \ldots, (q-1)/2\},
\]
and, for \(q = 1 \), there is a word
\[
\tau(w) \equiv x^r y^p z^n \in F
\]
such that \(\tau(w) = w \) in \(G_q \) and for all \(v \in F \) with \(w = v \) in \(G_q \), \(\tau(w) \equiv \tau(v) \).

Proof: The case \(q = 1 \) is trivial. For \(q > 1 \) it is easy to see that each word \(w \in F \) can be transformed into \(\tau(w) \) using the relations of \(P_q \). In order to prove uniqueness, let \(w \) and \(v \) be two words in \(F \) representing the same element in \(G_q \). Let \(H_q = G_q/\langle \langle z \rangle \rangle \), where \(\langle \langle z \rangle \rangle \) denotes the normal closure of \(z \) in \(G_q \). \(T_q = \langle x, y \mid xy^qx^{-1} = y^q \rangle \) is a presentation for \(H_q \), which is an HNN–extension. Therefore \(w \) and \(v \) have the same normal form (see \([3] \) \(\tau'(w) = \tau'(v) \) in \(H_q \) which is equal to the normal form in \(G_q \), except that \(n = 0 \). Since \(z \) is central, \(\tau(w) \) and \(\tau(v) \) can only differ by a power of \(z \). But \(z \) has infinite order in \(G_q \) which implies \(\tau(v) \equiv \tau(w) \).
The normal forms (6) and (7) define a path \(\sigma(w) \) from 1 to \(w \) in the Cayley graph \(\Gamma_X(G_q) \) of \(G_q \) for every \(w \in F \). Define paths \(\sigma(g, h) \) by taking equivariant lines; define
\[
\sigma(g, h)(t) := g \cdot \sigma(1, g^{-1}h)(t) = g \cdot \sigma(g^{-1}h)(t) \quad \forall g, h \in G_q
\]

Theorem 3.2 The paths \(\sigma(g) \) are recursive (i.e. \(|\sigma(g)| \leq f(d(1, g)) \)) with a function \(f(x) = 2x^2 + 3x \) for \(q > 1 \) and \(f(x) = x^2 + x \) for \(q = 1 \).

Proof: The relations in \(P_q \) say that \(z \) commutes with \(x \) and \(y \), in particular any power of \(z \) can be shifted to any place in a given word, and that \(x \) commutes with \(y^q \) at the expense of introducing \(z \) or \(z^{-1} \).

For \(q > 1 \), let \(w = \sigma(g) = y^q x^{r_1} y^{s_1} x^{r_2} \ldots y^{s_{m-1}} x^{r_m} y^n z^n \in F \) be the normal form for \(g \). We observe first that
\[
d(1, g) \geq \sum_{i=1}^{m} |r_i| + \sum_{i=1}^{m-1} |s_i| + |s| \quad (9)
\]
This is due to the fact that the exponents of the \(y \)-powers which occur in \(w \) can only be changed by adding multiples of \(q \) (The relations (6) allow to permute powers of \(x \) with powers of \(y^q \)). However, the range for \(s_i \) and \(s \) in the normal form \(w \) is such that \(|s_i| \) and \(|s| \) can not decrease under these changes. The same argument also shows that
\[
d(1, g) \geq \sum_{i=1}^{m} |r_i| + \sum_{i=1}^{m-1} |s_i| + |s| + \max\{ |p| - (\sum |s_i| + |s|), 0 \}, \text{ which implies:}
\]
\[
d(1, g) \geq |p| \quad (10)
\]
Therefore \(\sum_{i=1}^{m} |r_i| + \sum_{i=1}^{m-1} |s_i| + |s| + |p| \leq 2d(1, g) \). In order to prove \(|w| = \sum_{i=1}^{m} |r_i| + \sum_{i=1}^{m-1} |s_i| + |s| + |p| + |n| \leq f(d(1, g)) = 3d(1, g) + 2d^2(1, g) \), we only need to show that \(|n| \leq d(1, g) + 2d^2(1, g) \):

We claim that
\[
d(1, g) \geq \sum_{i=1}^{m} |r_i| + \sum_{i=1}^{m-1} |s_i| + |s| + \min \left\{ \max \left[|n| - \left(\sum_{i=1}^{m} |r_i| + |r| \right) \left(\sum_{i=1}^{m} |s_i| + |s| + |p| \right) / q + |l|, 0 \right] + 2|r| + 2q|l| \right\}
\]
where the minimum ranges over \(|r| \) and \(|l| \). If \(|n| \leq (\sum_{i=1}^{m} |r_i|)(\sum_{i=1}^{m-1} |s_i| + |s| + |p|) / q \), the minimum term on the right hand will be 0 and the inequality holds by (6). If \(|n| > (\sum_{i=1}^{m} |r_i|)(\sum_{i=1}^{m-1} |s_i| + |s| + |p|) / q \) we observe first that \(|n| \) may decrease by at most \(|k| |l| \) if a power \(y^k \) is pushed across a power \(x^k \) in \(w \).
If we do not introduce new powers of x or y^q by inserting $x^r x^{-r}$ or $y^q y^{-q}$ into the word, the amount by which $|n|$ may be decreased by means of permuting powers of x with powers of y^q is clearly bounded by $\sum_{i=1}^m |r_i| (\sum_{i=1}^{m-1} |s_i| + |s| + |p|)/q$. This coarse estimate stems from the following fact: Among all words in x and y whose sum of absolute values of x-exponents and sum of absolute values of y-exponents is the same as for w, $y \sum |s_i| + |s| + |p| \cdot x \sum |r_i|$ can absorb the largest powers z^n or z^{-n^q} by permuting powers of x with powers of y^q.

If we prolong the word by inserting $x^r x^{-r}$ and $y^q y^{-q}$ at suitable places, the amount by which $|n|$ can be decreased by means of $\sum_{i=1}^m |r_i| + |r_i| (\sum_{i=1}^{m-1} |s_i| + |s| + |p|)/q + |l|]$; and, at the same time, the length of the x-part of the word increases by $2|r| + 2q|l|$. This explains inequality (11).

Now, let $|r_0|$ and $|l_0|$ be the values for $|r|$ and $|l|$ for which the minimum occurs in (11). Then $d^2(1, g) \geq (\sum_{i=1}^m |r_i| + 2|r_0|) (\sum_{i=1}^{m-1} |s_i| + |s| + 2|l_0|)$, and, by (11), $d^2(1, g) \geq (\sum_{i=1}^m |r_i| + 2|r_0|) |p|$ which implies $2d^2(1, g) \geq (\sum_{i=1}^m |r_i| + |r_0|) (\sum_{i=1}^{m-1} |s_i| + |s| + |p|)/q + |l_0|$. Therefore, by (11) again, $|n| \leq d(1, g) + 2d^2(1, g)$ which proves the Theorem for $q > 1$.

For $q = 1$ the proof is similar, but easier. Let $\sigma(g) \equiv x^r y^s z^n$. It is clear that $d(1, g) \geq |r| + |s|$. If $|n| \leq |r| + |s|$, then $d(1, g) + d(1, g)^2 \geq |\sigma(g)|$; if $|n| > |r| + |s|$, then, by the same ideas as in the proof for $q > 1$, $d(1, g) \geq |r| + |s| + \min \{ \max \{|n| - (|r| + |r'|)(|s| + |s'|), 0\} + 2|r' + 2|s'| \}$ where the minimum ranges over the values of $|r'|$ and $|s'|$. Let $|r_0'|$ and $|s_0'|$ be the values for which the minimum occurs, then $|n| \geq d(1, g) + (|r| + |r_0'|)(|s| + |s_0'|) \geq d(1, g) + d^2(1, g)$.

Theorem 3.3 $\sigma(g, h)$ defines a bicombing of narrow shape with constants $M = 24q + 18$ and $k = 11/5$.

Proof: Recall that a recursive σ is of narrow shape, if there exists an integer $M > 1$ and a real $k > 2$, such that for all $g, h \in G$ and $a, b \in X^{\pm 1} \cup \{1\}$

$$|\sigma(\sigma(g, h)(t), \sigma(ga, bh)(t))| \leq \max(|\sigma(g, h)| + |\sigma(ga, bh)|)/k, M/2)$$

holds for all integers $t \in [0, \infty[$. Since the bicombing is equivariant, it suffices to show this inequality for $g = 1$.

For $q > 1$ let $v \in F$ be in normal form $v \equiv y^s x^{r_1} y^{s_1} x^{r_2} \ldots y^{s_{m-1}} x^{r_m} y^p z^n$, such that $v = h$ in G_q ($\sigma(1, h) \equiv v$). Let w be the group element $a^{-1} v b$ brought into normal form ($\sigma(a, v b) \equiv w$) (see fig. 6).

Now calculate the length of the bicombing lines (the *combing distance*) between these two paths w, v in $\Gamma_X(G_q)$. Call the maximal combing distance between two such paths $\delta(\sigma, w, v)$.

If \(a = 1 \) and \(b \in \{1, z^\pm 1\} \), then \(\delta(\sigma, w, v) \leq 1 \). If \(a = 1 \) and \(b \in \{y^{\pm 1}\} \) then
\(\delta(\sigma, w, v) = 2 \).

If \(a = 1 \) and \(b \in \{x^\epsilon \} (\epsilon = \pm 1) \), then \(\delta(\sigma, w, v) \leq |l| + q + 1 \), where \(l \) is such that
\(-q/2 + 1 \leq p - lq \leq q/2 \) for \(q \) even and
\(-q - 1/2 \leq p - lq \leq q - 1/2 \) otherwise.

To see this, observe that \(\nu \) ends with \(y^{p} z^{n} \) but \(w \) ends with \(x^{l} y^{q} z^{n-l} \). Since
\(|w| + |v| \geq 2q|l| \) we get for \(q \geq 2 \) and \(\delta(\sigma, w, v) > M/2 \):
\(|w| + |v|)/k > \delta(\sigma, w, v).

There are a few more cases which are relatively easy. The most critical case
which requires the sharpest estimates occurs if \(a = y^{s}, b = x^{\alpha} \) with \(\alpha, \epsilon \in \{\pm 1\} \);
in particular if \(y^{s} \) is at the boundary of its range to which it is restricted by the normal form, and the premultiplication by \(a^{-1} = y^{-\epsilon} \) moves it out of this range, as, for example, in the case \(\epsilon = -1, s = q/2 \) and \(q \) even (the other cases can be treated similarly).

In this case \(v \equiv y^{q/2} x^{r_{1}} y^{s_{1}} x r_{2} \ldots y^{s_{m-1}} x r_{m} y^{p} z^{n} \) and
\(w \equiv y^{-q/2 + 1} x^{r_{1}} y^{s_{1}} x r_{2} \ldots y^{s_{m-1}} x r_{m} y^{l} x^{\alpha} y^{(l+1)} q^{z^{n}} - \sum r_{i} - \alpha(l+1), \)
where \(l \) is as above. Using the rule \(|a| + |a - b| \geq |b| \) we obtain the estimate:
\(|w| + |v| \geq 2q|l| + 2 \sum |r_{i}| + |\sum r_{i} + \alpha(l + 1)|. A careful study of the lengths of
the combing distances shows that
\[\delta(\sigma, w, v) \leq \max \{ \sum_{i=1}^{m} |r_{i}| + |l| + 3q + 2, \} \leq \frac{2}{|l|} \]
\[\sum_{i=1}^{m} |r_{i}| + |l| + 3q + 2. \]

Since \(q \geq 2 \) and \(k = 11/5 \), \((|w| + |v|)/k \geq 20|l|/11 + 10 \sum |r_{i}|/11 + 5| \sum r_{i} + \alpha(l + 1)/11 \). We will show that the right hand side is \(\geq (\sum_{i=1}^{m} |r_{i}| + |\sum_{i=1}^{m} r_{i}|)/2 + |l| + 3q + 2 \) whenever \(\delta(\sigma, w, v) \geq M/2 \) (which, by the above estimate for \(\delta(\sigma, w, v) \),
proves the Theorem for this case). This is equivalent to:
\[9|l| + 10 \sum |r_{i}| + 5| \sum r_{i} + \alpha(l + 1)| \geq 11 \sum |r_{i}|/2 + 11| \sum r_{i}|/2 + 33q + 22. \]

The left hand side can be simplified by the following estimates:
\(5|l| + 5| \sum r_{i} + \alpha + \alpha l \geq 5 \sum r_{i}, \alpha \geq 5 \sum r_{i} - 5 \), and
\(10 |r_{i}| + 5 \sum r_{i} \)
Therefore the above inequality follows from \(4(|l| + \sum |r_i|) \geq 33q + 27\), which follows from \(\delta(\sigma, w, v) > M/2\) using the value \(M = 24q + 18\) and the estimate \(\delta(\sigma, w, v) \leq (\sum |r_i| + \sum r_i)/2 + |l| + 3q + 2 \leq \sum |r_i| + 3q + 2\).

The proof for \(q = 1\) is much simpler and left to the reader.

In the following we use Cockcroft 2-complexes to get lower bounds for isoperimetric functions. This idea is due to S. Gersten [4].

Theorem 3.4 \(G_q\) has no quadratic isoperimetric inequality and therefore no combing in the sense of Short [7].

Proof: There is a van Kampen diagram for \(w_n \equiv [x^n, y^m] \cdot [y^{-m}, x^{-n}]\) in \(G_q\), which has \(n^3\) more 2-cells \([x, z]\) of positive then of negative type. W. A. Bogley proved in [2], that the corresponding 2-complex is Cockcroft. So each \(\pi_2\)-element has the same number of positive as of negative 2-cells \([x, z]\), which proves that every van Kampen diagram for \(w_n\) will contain at least \(n^3\) 2-cells \([x, z]\) and so proves the theorem.

References

[1] J. M. Alonso and M. R. Bridson. Semihyperbolic groups. preprint, Cornell University, 1990.

[2] W. Bogley. Unions of cockcroft two–complexes. preprint, 1991.

[3] M. Bridson. On the geometry of normal forms in discrete groups. preprint, Princeton University, 1992.

[4] S. Gersten. Dehn functions and \(l_1\)-norms of finite presentations. In C. F. Miller III and G. Baumslag, editors, *Proceedings of the workshop on algorithmic problems*. Springer Verlag, 1991.

[5] S. Gersten. Isoperimetric and isodiametric functions of finite presentations. preprint, University of Utah, 1991.

[6] R. Lyndon and P. Schupp. *Combinatorial group theory*. Springer Verlag, Berlin, 1977.

[7] H. Short. Groups and combings. *Laboratoire de Math., Ecole Normale Sup. de Lyon*, 1990.
Stephan Rosebrock
Institut f. Didaktik der Mathematik
J.- W.- Goethe Universität
Senckenberanlage 9
60054 Frankfurt/M.
West-Germany

e-mail:
huck@nauvax.ucc.nau.edu
rosebrock@mathematik.uni-frankfurt.d400.de

Günther Huck
Dept. of Math.
Northern Arizona University
Flagstaff AZ 86011
USA