Learning the Difference that Makes a Difference with Counterfactually-Augmented Data

Divyansh Kaushik, Eduard Hovy, Zachary C. Lipton

School of Computer Science
Carnegie Mellon University
dkaushik@cmu.edu, hovy@cmu.edu, zlipton@cmu.edu

September 30, 2019

Abstract

Despite alarm over the reliance of machine learning systems on so-called spurious patterns in training data, the term lacks coherent meaning in standard statistical frameworks. However, the language of causality offers clarity: spurious associations are those due to a common cause (confounding) vs direct or indirect effects. In this paper, we focus on NLP, introducing methods and resources for training models insensitive to spurious patterns. Given documents and their initial labels, we task humans with revise each document to accord with a counterfactual target label, asking that the revised documents be internally coherent while avoiding any gratuitous changes. Interestingly, on sentiment analysis and natural language inference tasks, classifiers trained on original data fail on their counterfactually-revised counterparts and vice versa. Classifiers trained on combined datasets perform remarkably well, just shy of those specialized to either domain. While classifiers trained on either original or manipulated data alone are sensitive to spurious features (e.g., mentions of genre), models trained on the combined data are insensitive to this signal. We will publicly release both datasets.

1 Introduction

What makes a document’s sentiment positive? What makes a loan applicant creditworthy? What makes a job candidate qualified? What about a photograph truly makes it depict a dolphin? Moreover, what does it mean for a feature to be relevant to such a determination?

Statistical learning offers one framework for approaching these questions. First, we swap out the semantic question for a more readily answerable associative question. For example, instead of asking what comprises a document’s sentiment, we recast the question as which documents are likely to be labeled as positive (or negative)? Then, in this associative framing, we interpret as relevant, those features that are most predictive of the label. However, despite the rapid adoption and undeniable commercial success of associative learning, this framing seems unsatisfying.

Alongside deep learning’s predictive wins, critical questions have piled up concerning spuriousness, artifacts, reliability, and discrimination, that the purely associative perspective appears ill-equipped
to answer. For example, in computer vision, researchers have found that deep neural networks rely on surface-level texture [12, 5] or clues in the image’s background to recognize foreground objects even when that seems both unnecessary and somehow wrong: the beach is not what makes a seagull a seagull. And yet researchers struggle to articulate precisely why models should not rely on such patterns.

In NLP, these issues have emerged as central concerns in the literature on annotation artifacts and bias (in the societal sense). Across myriad tasks, researchers have demonstrated that models tend to rely on spurious associations [23, 8, 14, 16]. Notably, some models for question-answering tasks may not actually be sensitive to the choice of the question [14], while in Natural Language Inference (NLI), classifiers trained on hypotheses only (vs hypotheses and premises) perform surprisingly well [23, 8]. However, papers seldom make clear what, if anything, spuriousness means within the standard supervised learning framework. ML systems are trained to exploit the mutual information between features and a label to make accurate predictions. Statistical learning does not offer a conceptual distinction between spurious and non-spurious associations.

Causality, however, offers a coherent notion of spuriousness. Spurious associations owe to common cause rather than to a (direct or indirect) causal path. We might consider a factor of variation to be spuriously correlated with a label of interest if intervening upon it (counterfactually) would not impact the applicability of the label or vice versa. While our paper does not rely on the mathematical machinery of causality, we draw inspiration from the underlying philosophy to design a new dataset creation procedure in which humans counterfactually augment datasets.

Returning to NLP, even though the raw data does not come neatly disentangled into manipulable factors, people nevertheless speak colloquially of editing documents to manipulate specific aspects [13]. For example, the following interventions seem natural: (i) Revise the letter to make it more positive; (ii) Edit the second sentence so that it appears to contradict the first. The very notion of targeted revisions like (i) suggests a generative process in which the sentiment is but one (manipulable) cause of the final document. These edits might be thought of as intervening on sentiment while holding all upstream features constant. However even if some other factor has no influence on sentiment, if they share some underlying common cause (confounding), then we might expect aspects of the final document to be predictive of sentiment owing to spurious association.

In this exploratory paper, we design a human-in-the-loop system for counterfactually manipulating
documents. Our hope is that by intervening only upon the factor of interest, we might disentangle the spurious and non-spurious associations, yielding classifiers that hold up better when spurious associations do not transport out of sample. We employ crowd workers not to label documents, but rather to edit them, manipulating the text to make a targeted (counterfactual) class apply. For sentiment analysis, we direct the worker: revise this negative movie review to make it positive, without making any gratuitous changes. We might regard the second part of this directive as a sort of least action principle, ensuring that we perturb only those spans necessary to alter the applicability of the label. For NLI, a 3-class classification task (entailment, contradiction, neutral), we ask the workers to modify the premise while keeping the hypothesis intact, and vice versa, seeking two sets of edits corresponding to each of the (two) counterfactual classes. Using this platform, we collect thousands of counterfactually-manipulated examples for both sentiment analysis and NLI, extending the IMDb [18] and SNLI [1] datasets, respectively. The result is two new datasets (each an extension of a standard resource) that enable us to both probe fundamental properties of language and train classifiers less reliant on spurious signal.

We show that classifiers trained on original IMDb reviews fail on counterfactually-revised data and vice versa, and spurious correlations in these datasets are picked up by even linear models, however, augmenting the revised examples breaks up these correlations (e.g., genre ceases to be predictive of sentiment). For a Bidirectional LSTM [7] trained on IMDb reviews, classification accuracy goes down from 79.3% to 55.7% when evaluated on original vs revised reviews. The same classifier trained on revised reviews achieves an accuracy of 62.5% on original reviews compared to 89.1% on their revised counterparts. These numbers go to 81.7% and 92.0% respectively when the classifier is retrained on the combined dataset. Similar behavior is observed for linear classifiers. We discovered that BERT [3] is more resilient to such drops in performance on sentiment analysis. Despite that, it appears to rely on spurious associations in SNLI hypotheses identified by Gururangan et al. [8]. We show that if fine-tuned on SNLI sentence pairs, BERT fails on pairs with revised premise and vice versa, experiencing more than a 30 point drop in accuracy. However, fine-tuned on the combined set, it performs much better across all datasets. Similarly, a Bi-LSTM trained on hypotheses alone can accurately classify 69% of the SNLI dataset but performs worse than the majority class baseline when evaluated on the revised dataset. When trained on hypotheses only from the combined dataset, its performance is expectedly worse than simply selecting the majority class on both SNLI as well as the revised dataset. Our data will be made available at https://github.com/dkaushik96/bizarro-data.

2 Related Work

Several papers demonstrate cases where NLP systems appear not to learn what humans consider to be the difference that makes the difference. For example, otherwise state-of-the-art models have been shown to be vulnerable to synthetic transformations such as distractor phrases [11, 27], to misclassify paraphrased task [10, 22] and to fail on template-based modifications [25]. Glockner et al. [6] demonstrate that simply replacing words by synonyms or hypernyms, which should not alter the applicable label, nevertheless breaks ML-based NLI systems. Gururangan et al. [8] and Poliak et al. [23] show that classifiers correctly classified the hypotheses alone in about 69% of SNLI corpus. They further discover that crowd workers adopted specific annotation strategies and heuristics for data generation. Chen et al. [2] identify similar issues exist with automatically-constructed
benchmarks for question-answering [9]. Kaushik & Lipton [14] discover that reported numbers in question-answering benchmarks could often be achieved by the same models when restricted to be blind either to the question or to the passages. Dixon et al. [4], Zhao et al. [30] and Kiritchenko & Mohammad [16] showed how imbalances in training data lead to unintended bias in the resulting models, and, consequently, potentially unfair applications. Shen et al. [26] substitute words to test the behavior of sentiment analysis algorithms in the presence of stylistic variation, finding that similar word pairs produce significant differences in sentiment score.

Several papers explore richer feedback mechanisms for classification. Some ask annotators to highlight rationales, spans of text indicative of the label [28, 29, 24]. For each document, Zaidan et al. [28] remove the rationales to generate contrast documents, learning classifiers to distinguish original documents from their contrasting counterparts. While this feedback is easier to collect than ours, how to leverage it for training deep NLP models, where features are not neatly separated, remains less clear.

Lu et al. [17] programmatically alter text to invert gender bias and combined the original and manipulated data yielding gender-balanced dataset for learning word embeddings. In the simplest experiments, they swap each gendered word for its other-gendered counterpart. For example, the doctor ran because he is late becomes the doctor ran because she is late. However, they do not substitute names even if they co-refer to a gendered pronoun. Building on their work, Zmigrod et al. [31] describe a data augmentation approach for mitigating gender stereotypes associated with animate nouns for morphologically-rich languages like Spanish and Hebrew. They use a Markov random field to infer how the sentence must be modified while altering the grammatical gender of particular nouns to preserve morpho-syntactic agreement. In contrast, Maudslay et al. [19] describe a method for probabilistic automatic in-place substitution of gendered words in a corpus. Unlike Lu et al., they propose an explicit treatment of first names by pre-defining name-pairs for swapping, thus expanding Lu et al.’s list of gendered word pairs significantly.

3 Data Collection

We use Amazon’s Mechanical Turk crowdsourcing platform to recruit editors to counterfactually revise each dataset. To ensure high quality of the collected data, we restricted the pool to U.S. residents that had already completed at least 500 HITs and had an over 97% HIT approval rate. For each HIT, we conducted pilot tests to identify appropriate compensation per assignment, receive feedback from workers and revise our instructions accordingly. A total of 713 workers contributed throughout the whole process, of which 518 contributed edits reflected in the final datasets.

Sentiment Analysis The original IMDb dataset consists of 50000 reviews divided equally across train and test splits. To keep the task of editing from growing unwieldy, we filter out the longest 20% of reviews, leaving 20000 reviews in the train split from which we randomly sample 2500 reviews, enforcing a 50:50 class balance. Following revision by the crowd workers, we partition this dataset into train/validation/test splits containing 1707, 245 and 488 examples, respectively. We present each review to two workers, instructing to revise the review such that (a) the document remains coherent and (b) the new label (given) accurately describes the revised document. Moreover, we instruct the workers not to make gratuitous modifications.
Figure 2: Annotation platform for collecting counterfactually annotated data for sentiment analysis

Table 1: Percentage of inter-editor agreement for counterfactually-revised movie reviews

Number of tokens	0-50	51-100	101-150	151-200	201-250	251-300	301-329	Full
Replacement	35.6	25.7	20.0	17.2	15.0	14.8	11.6	19.3
Insertion	27.7	20.8	14.4	12.2	11.0	11.5	07.6	14.3
Combined	41.6	32.7	26.3	23.4	21.6	20.3	16.2	25.5

Over a four week period, we manually inspected each generated review and rejected the ones that were outright wrong (sentiment was still the same or the review was a spam). After review, we rejected roughly 2% of revised reviews. For 60 original reviews, we did not approve any among the counterfactually-revised counterparts supplied by the workers. To construct the new dataset, we chose one revised review (at random) corresponding to each original review. In qualitative analysis, we identified eight common patterns among the edits (Table 2).

For each review, having access to its counterfactually-revised counterpart enables us to isolate which parts the review humans believe are truly indicative of sentiment. These are the parts that were removed, replaced, or inserted into the original review to generate a new review that has the opposite sentiment. We identify the position indices where such replacements or insertions were made and create a binary vector representing the edits in each original review. To analyze inter-editor agreement, we compute the Jaccard similarity between the vectors corresponding to each revised review (Table 1). We observe that there is a higher agreement between two workers on smaller reviews and it decreases with the length of the review.
Table 2: Most prominent categories of edits performed by humans (Original/Revised, in order)

Types of revisions	Examples
Recasting fact as hoped for	The world of Atlantis, hidden beneath the earth’s core, is fantastic The world of Atlantis, hidden beneath the earth’s core is **supposed** to be fantastic
Suggesting sarcasm	thoroughly captivating **thriller-drama, taking a deep and realistic view** thoroughly mind numbing **“thriller-drama”, taking a “deep” and “realistic” (who are they kidding?) view**
Inserting modifiers	The presentation of simply Atlantis’ landscape and setting The presentation of Atlantis’ **predictable** landscape and setting
Replacing modifiers	“Election” is a highly fascinating and thoroughly **captivating** thriller-drama “Election” is a highly expected and thoroughly **mind numbing** “thriller-drama”
Inserting phrases	Although there’s hardly any action, the ending is still shocking. Although there’s hardly any action (**or reason to continue watching past 10 minutes**), the ending is still shocking.
Diminishing via qualifiers	which, while usually containing some reminder of harshness, become **more and more intriguing**. which, usually containing some reminder of harshness, became **only slightly more intriguing**.
Differing perspectives	Granted, **not all of the story makes full sense**, but the film doesn’t feature any amazing new computer-generated visual effects. Granted, **some of the story makes sense**, but the film doesn’t feature any amazing new computer-generated visual effects.
Changing ratings	one of the worst ever scenes in a sports movie. **3 stars out of 10**. one of the wildest ever scenes in a sports movie. **8 stars out of 10**.

Natural Language Inference Unlike sentiment analysis, SNLI is 3-way classification task, with inputs consisting of two sentences, a **premise** and a **hypothesis** and the three possible labels being **entailment**, **contradiction**, and **neutral**. The label is meant to describe the relationship between the facts stated in each sentence. We randomly sampled 1750, 250, and 500 pairs from the train, validation, and test sets of SNLI respectively, constraining the new data to have balanced classes. In
one HIT, we asked workers to revise the hypothesis while keeping the premise intact, seeking edits corresponding to each of the two counterfactual classes. We refer to this data as Revised Hypothesis (RH). In another HIT, we asked workers to revise the original premise, while leaving the original hypothesis intact, seeking similar edits, calling it Revised Premise (RP).

Following data collection, we employed a different set of workers to verify whether the given label accurately described the relationship between each premise-hypothesis pair. We presented each pair to three workers and performed a majority vote. When all three reviewers were in agreement, we approved or rejected the pair based on their decision, else, we verified the data ourselves. Finally, we only kept premise-hypothesis pairs for which we had valid revised data in both RP and RH, corresponding to both counterfactual labels. As a result, we discarded $\approx 9\%$ data. RP and RH, each comprised of 3332 pairs in train, 400 in validation, and 800 in test, leading to a total of 6664 pairs in train, 800 in validation, and 1600 in test in the revised dataset.

We collected all data after IRB approval and measured the time taken to complete each HIT to ensure that all workers were paid more than the federal minimum wage. During our pilot studies, workers spent roughly 5 minutes per revised review, and 4 minutes per revised sentence (for NLI). We paid workers $0.65 per revision, and $0.15 per verification, totalling $10778.14 for the study.

4 Models

Our experiments rely on the following five models: Support Vector Machines (SVMs), Naïve Bayes (NB) classifiers, Random Forests (RF), Bidirectional Long Short-Term Memory Networks [Bi-LSTMs; 7], and fine-tuned BERT models [3]. For brevity, we discuss only implementation details necessary for reproducibility.

Standard Methods We use scikit-learn [21] implementations of SVMs, Naïve Bayes and Random Forests for sentiment analysis. We train these models on TF-IDF bag of words feature representations of the reviews. We use 100 trees for Random Forests and identify parameters for all classifiers using grid search conducted over the validation set.

Bi-LSTM When training Bi-LSTMs for sentiment analysis, we restrict the vocabulary to the most frequent 20000 tokens, replacing out of vocabulary tokens by UNK. We fix the maximum input length at 300 tokens and pad smaller reviews. Each token is represented by a randomly-initialized 50-dimensional embedding. Our model consists of a bidirectional LSTM (hidden size 50) with recurrent dropout (probability 0.5) and global max-pooling following the embedding layer. To generate output, we feed this (fixed-length) representation through a fully-connected hidden layer with ReLU [20] activation (hidden size 50), and then a fully-connected output layer with softmax activation. We train all models for a maximum of 20 epochs using Adam [15], with a learning rate of 1e-3 and a batch size of 32. We apply early stopping when validation loss does not decrease for 5 epochs. We use the architecture described in Poliak et al. [23] to evaluate hypothesis-only baselines.¹

¹https://github.com/azpoliak/hypothesis-only-NLI
BERT We use an off-the-shelf uncased BERT Base model, fine-tuning for each task. To account for BERT’s sub-word tokenization, we set the maximum token length is set at 350 for sentiment analysis and 50 for NLI. We fine-tune BERT up to 20 epochs with same early stopping criteria as for Bi-LSTM, using the Adam optimizer with a batch size of 16 (to fit on a Tesla V-100 GPU). We found learning rates of 5e-5 and 1e-5 to work best for sentiment analysis and NLI respectively.

5 Experimental Results

Sentiment Analysis We find that for sentiment analysis, linear models trained on the original 1.7k reviews achieve 80% accuracy when evaluated on original reviews but only 51% (level of random guessing) on revised reviews (Table 3). Linear models trained on revised reviews achieve 91% accuracy on revised reviews but only 58.3% on the original test set. We see similar pattern for Bi-LSTMs where accuracy drops substantially in both directions. Interestingly, while BERT models suffer drops too, they are less pronounced, perhaps a benefit of the exposure to a larger dataset where the spurious patterns may not have held. Classifiers trained on combined datasets perform well on both, often within ≈ 3 pts of models trained on the same amount of data taken only from the original data. Thus, there may be a price to pay for breaking the reliance on spurious associations, but it may not be substantial.

To gain intuition about what is learnable absent the edited spans, we tried training several models on passages where the edited spans have been removed from training set sentences (but not test set). SVM, Naïve Bayes, and Bi-LSTM achieve 57.8%, 59.1%, 60.2% accuracy, respectively, on this task, suggesting that there is substantial signal in these potentially immaterial sections. However, BERT performs worse than random guessing.

In one simple demonstration of the benefits of our approach, we note that seemingly irrelevant words such as genre names are picked up by linear models trained on either original or revised reviews as top predictors. However, because humans never edit the genre during revision owing to its lack of semantic relevance, combining the original and revised datasets breaks these associations and genre ceases to be predictive of sentiment (Fig 3). Models trained on original data but at the same scale as combined data are able to perform slightly better on the original test set but still fail on the revised reviews. All models trained on 19k original reviews receive a slight boost in accuracy on revised data (except Naïve Bayes), yet their performance significantly worse compared to specialised models. Retraining models on a combination of the original 19k reviews with revised 1.7k reviews leads to significant increases in accuracy for all models on classifying revised reviews, while slightly improving the accuracy on classifying the original reviews. This underscores the importance of including counterfactually-revised examples in training data.

Natural Language Inference Fine-tuned on 1.67k original sentence pairs, BERT achieves 72.2% accuracy on SNLI dataset but it is only able to accurately classify 39.7% sentence pairs from the RP set (Table 4). Fine-tuning BERT on the full SNLI training set (500k sentence pairs) results in similar behavior. Fine-tuning it on RP sentence pairs improves its accuracy to 66.3% on RP but causes a drop of roughly 20 pts on SNLI. On RH sentence pairs, this results in an accuracy of 67%.

https://github.com/huggingface/pytorch-transformers
(a) Trained on the original dataset (b) Trained on the revised dataset (c) Trained on combined dataset

Figure 3: Most important features learned by an SVM classifier trained on TF-IDF bag of words.

Training data	SVM	NB	RF	Bi-LSTM	BERT
Accuracy on original reviews					
Original (1.7k)	80.0	74.9	75.4	79.3	87.4
Revised (1.7k)	58.3	50.9	58.5	62.5	80.4
Original & Revised (3.4k)	83.7	86.1	81.7	81.5	88.5
Original (3.4k)	85.1	82.4	80.6	80.4	90.2
Original (19k)	87.8	84.3	83.6	86.3	93.2
Original (19k) & Revised (1.7k)	87.8	85.2	84.9	88.7	93.2
Original w/o Edited Spans (1.7k)	57.8	59.1	54.7	60.2	49.2
Accuracy on revised reviews					
Original (1.7k)	51.0	47.3	58.8	55.7	82.2
Revised (1.7k)	91.2	88.7	87.9	89.1	90.8
Original & Revised (3.4k)	87.3	91.2	89.1	92.0	95.1
Original (3.4k)	54.3	48.2	59.6	59.6	86.1
Original (19k)	60.9	42.8	63.5	68.0	88.3
Original (19k) & Revised (1.7k)	76.2	48.4	70.7	79.5	93.9

Table 3: Accuracy of various models for sentiment analysis trained with various datasets.

on RH and 71.9% on SNLI test set but 47.4% on the RP set. To put these numbers in context, each individual hypothesis sentence in RP is associated with two labels, each in the presence of a different premise. A model that relies on hypotheses only would at best perform slightly better than choosing the majority class when evaluated on this dataset. However, fine-tuning BERT on a combination of RP and RH leads to consistent performance on all datasets as the dataset design forces models to look at both premise and hypothesis. Combining original sentences with RP and RH improves these numbers even further. We compare this with the performance obtained by fine-tuning it on 8.3k sentence pairs sampled from SNLI training set, and show that while the two perform roughly within 4 pts of each other when evaluated on SNLI, the former outperforms latter on both RP and RH.

To further isolate this effect, Bi-LSTM trained on SNLI hypotheses only achieves 69% accuracy on
Table 4: Accuracy of BERT on NLI with various train and eval sets.

Train/Eval	Original	RP	RH	RP & RH
Original (1.67k)	72.2	39.7	59.5	49.6
Revised Premise (RP; 3.3k)	50.6	66.3	50.1	58.2
Revised Hypothesis (RH; 3.3k)	71.9	47.4	67.0	57.2
RP & RH (6.6k)	64.7	64.6	67.8	66.2
Original w/ RP & RH (8.3k)	73.5	64.6	69.6	67.1
Original (8.3k)	77.8	44.6	66.1	55.4
Original (500k)	90.4	54.3	74.3	64.3

Table 5: Accuracy of Bi-LSTM classifier trained on hypotheses only

Train/Test	Original	RP	RH	RP & RH
Majority class	34.7	34.6	34.6	34.6
RP & RH (6.6k)	32.4	35.1	33.4	34.2
Original w/ RP & RH (8.3k)	44.0	25.8	43.2	34.5
Original (8.3k)	60.2	20.5	46.6	33.6
Original (500k)	69.0	15.4	53.2	34.3

Table 6: Accuracy of models trained to differentiate between original and revised data

Model	IMDb	SNLI/RP	SNLI/RH
Majority class	50.0	66.7	66.7
SVM	67.4	46.6	51.0
NB	69.2	66.7	66.6
BERT	77.3	64.8	69.7

SNLI test set, which drops to 44% if it is retrained on combination of original, RP and RH data (Table 5). Note that this combined dataset consists of five variants of each original premise-hypothesis pair. Of these five pairs, three consist of the same hypothesis sentence, each associated with different truth value given the respective premise. Using these hypotheses only would provide conflicting feedback to a classifier during training, thus causing the drop in performance. Further, we notice that the gain of the latter over majority class baseline comes primarily from the original data, as the same model retrained only on RP and RH data experiences a further drop of 11.6% in accuracy, performing worse than just choosing the majority class at all times.

One reasonable concern might be that our models would simply distinguish whether an example were from the original or revised dataset and thereafter treat them differently. The fear might be that our models would exhibit a hypersensitivity (rather than insensitivity) to domain. To test the
potential for this behavior, we train several models to distinguish between original and revised data (Table 6). BERT identifies original reviews from revised reviews with 77.3% accuracy. In case of NLI, BERT and Naïve Bayes perform roughly within 3 pts of the majority class baseline (66.7%) whereas SVM performs substantially worse.

6 Conclusion

By leveraging humans not only to provide labels but also to intervene upon the data, revising documents to alter the applicability of various labels, we are able to derive insights about the underlying semantic concepts. Moreover we can leverage the augmented data to train classifiers less dependent on spurious associations. Our study demonstrates the promise of leveraging human-in-the-loop feedback to disentangle the spurious and non-spurious associations, yielding classifiers that hold up better when spurious associations do not transport out of sample. Our methods appear useful on both sentiment analysis and NLI, two contrasting tasks. In sentiment analysis, expressions of opinion matter more than stated facts, while in NLI this is reversed. SNLI poses another challenge in that it is a 3-class classification task using two input sentences. In future work, we plan to extend these techniques, finding ways to leverage humans in the loop to build more robust systems for question answering and summarization (among others).

Acknowledgements

The authors are grateful to Amazon AWS for providing GPUs to conduct the experiments, Salesforce Research and Facebook AI for their generous grants that made the data collection possible, Sivaraman Balakrishnan, Shruti Rijhwani, Shruti Palaskar, Aishwarya Kamath, Michael Collins, Rajesh Ranganath and Sanjoy Dasgupta for their valuable feedback, and Tzu-Hsiang Lin for their generous help in creating the data collection platform.
References

[1] Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large annotated corpus for learning natural language inference. In Empirical Methods in Natural Language Processing (EMNLP).

[2] Chen, D., Bolton, J., & Manning, C. D. (2016). A thorough examination of the cnn/daily mail reading comprehension task. In Association for Computational Linguistics (ACL).

[3] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

[4] Dixon, L., Li, J., Sorensen, J., Thain, N., & Vasserman, L. (2018). Measuring and mitigating unintended bias in text classification. In AAAI/ACM Conference on AI, Ethics, and Society. ACM.

[5] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231.

[6] Glockner, M., Shwartz, V., & Goldberg, Y. (2018). Breaking nli systems with sentences that require simple lexical inferences. In Association for Computational Linguistics (ACL).

[7] Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional lstm and other neural network architectures. Neural networks, 18(5-6).

[8] Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S., & Smith, N. A. (2018). Annotation artifacts in natural language inference data. In North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

[9] Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., & Blunsom, P. (2015). Teaching machines to read and comprehend. In Advances in Neural Information Processing Systems (NeurIPS).

[10] Iyyer, M., Wieting, J., Gimpel, K., & Zettlemoyer, L. (2018). Adversarial example generation with syntactically controlled paraphrase networks. In North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

[11] Jia, R., & Liang, P. (2017). Adversarial examples for evaluating reading comprehension systems. In Empirical Methods in Natural Language Processing (EMNLP).

[12] Jo, J., & Bengio, Y. (2017). Measuring the tendency of cnns to learn surface statistical regularities. arXiv preprint arXiv:1711.11561.

[13] Jurafsky, D., Chahuneau, V., Routledge, B., & Smith, N. (2014). Narrative framing of consumer sentiment in online restaurant reviews. First Monday, 19(4).

[14] Kaushik, D., & Lipton, Z. C. (2018). How much reading does reading comprehension require? a critical investigation of popular benchmarks. In Empirical Methods in Natural Language Processing (EMNLP).
[15] Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International Conference on Learning Representations (ICLR).

[16] Kiritchenko, S., & Mohammad, S. (2018). Examining gender and race bias in two hundred sentiment analysis systems. In Joint Conference on Lexical and Computational Semantics (*SEM).

[17] Lu, K., Mardziel, P., Wu, F., Amancharla, P., & Datta, A. (2018). Gender bias in neural natural language processing. arXiv preprint arXiv:1807.11714.

[18] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. In Association for Computational Linguistics: Human Language Technologies (ACL-HLT).

[19] Maudslay, R. H., Gonen, H., Cotterell, R., & Teufel, S. (2019). It's all in the name: Mitigating gender bias with name-based counterfactual data substitution. arXiv preprint arXiv:1909.00871.

[20] Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In International Conference on Machine Learning (ICML).

[21] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research (JMLR), 12.

[22] Pfieffer, J., Kamath, A., Gurevych, I., & Ruder, S. (2019). What do deep networks like to read? arXiv preprint arXiv:1909.04547.

[23] Poliak, A., Naradowsky, J., Haldar, A., Rudinger, R., & Van Durme, B. (2018). Hypothesis Only Baselines in Natural Language Inference. In Joint Conference on Lexical and Computational Semantics (*Sem).

[24] Pouliis, S., & Dasgupta, S. (2017). Learning with feature feedback: from theory to practice. In Artificial Intelligence and Statistics (AISTATS).

[25] Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Semantically equivalent adversarial rules for debugging nlp models. In Association for Computational Linguistics (ACL).

[26] Shen, J. H., Fratamico, L., Rahwan, I., & Rush, A. M. (2018). Darling or babygirl? investigating stylistic bias in sentiment analysis. 5th Workshop on Fairness, Accountability, and Transparency in Machine Learning (FATML).

[27] Wallace, E., Feng, S., Kandpal, N., Gardner, M., & Singh, S. (2019). Universal adversarial triggers for nlp. arXiv preprint arXiv:1908.07125.

[28] Zaidan, O., Eisner, J., & Piatko, C. (2007). Using “annotator rationales” to improve machine learning for text categorization. In North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

[29] Zaidan, O. F., & Eisner, J. (2008). Modeling annotators: A generative approach to learning from annotator rationales. In Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.
[30] Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K.-W. (2018). Gender bias in coreference resolution: Evaluation and debiasing methods. In North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

[31] Zmigrod, R., Mielke, S. J., Wallach, H., & Cotterell, R. (2019). Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. In Association for Computational Linguistics (ACL).
Appendix

Table 7: Most frequent insertions/deletions by human annotators for sentiment analysis.

Revision	Removed words	Inserted words
Positive to Negative	movie, film, great, like, good, really, would, see, story, love	movie, film, one, like, bad, would, really, even, story, see
Negative to Positive	bad, even, worst, waste, nothing, never, much, would, like, little	great, good, best, even, well, amazing, much, many, watch, better
Revision	Removed words	Inserted words
----------	---------------	----------------
Revising Premise		
Entailment to Neutral	woman, walking, man, blue, sitting, men, girl, standing, looking, running	person, near, child, something, together, people, tall, vehicle, wall, holding
Neutral to Entailment	man, street, black, water, little, front, young, playing, woman, two	waiting, couple, playing, running, getting, making, tall, game, black, happily
Entailment to Contradiction	blue, people, standing, girl, front, street, red, young, sitting, band	sitting, standing, inside, young, women, child, red, men, sits, one
Contradiction to Entailment	sitting, man, walking, black, blue, people, red, standing, white, street	man, sitting, sleeping, woman, sits, eating, playing, park, two, standing
Neutral to Contradiction	man, woman, people, boy, black, red, standing, young, two, water	man, woman, boy, men, alone, sitting, girl, dog, three, one
Contradiction to Neutral	man, sitting, black, blue, walking, red, standing, street, white, street	man, sitting, woman, people, person, near, something, something, sits, black
Revising Hypothesis		
Entailment to Neutral	man, wearing, white, blue, black, shirt, one, young, people, woman	people, there, playing, man, person, wearing, outside, two, old, near
Neutral to Entailment	white, wearing, shirt, black, blue, man, two, standing, young, red	playing, wearing, man, two, there, woman, people, men, near, person
Entailment to Contradiction	man, wearing, white, blue, black, two, shirt, one, young, people	people, man, woman, playing, no, inside, person, two, wearing, women
Contradiction to Entailment	wearing, blue, black, man, white, two, red, shirt, young, one	people, there, man, two, wearing, playing, people, men, woman, outside
Neutral to Contradiction	white, man, wearing, shirt, black, blue, two, standing, woman, red	woman, man, there, playing, two, wearing, one, men, girl, no
Contradiction to Neutral	wearing, blue, black, man, white, two, red, sitting, young, standing	people, playing, man, woman, two, wearing, near, tall, men, old
Figure 4: Thirty most important features learned by an SVM classifier trained on TF-IDF bag of words.
The blue box contains a text passage and a label. Please edit this text in the textbox below, making
a small number of changes such that:
(a) the document remains coherent and
(b) the new label (colored) accurately describes the revised passage.
Do not change any portions of the passage unnecessarily.
After modifying the passage and checking it over to make sure that is coherent and matches the
label.

(a) Revising IMDb movie reviews

The upper blue box contains Sentence 1. The lower blue box contains Sentence 2.
Given that Sentence 1 is True, Sentence 2 (by implication), must either be
(a) definitely True, (b) definitely False, or (c) May be True.
You are presented with an initial Sentence 1 and Sentence 2 and the correct initial relationship label
(True, False, or May be True).
Please edit Sentence 2 in the textboxes, making a small number of changes such that:
(a) The new sentences are coherent and
(b) The target labels (in red) accurately describe the truthfulness of the modified Sentence 2 given
the original Sentence 1.
Do not change any portions of the sentence unnecessarily.
After modifying the text and checking it over to make sure that it is coherent and matches the
target label.

(b) Revising hypothesis in SNLI

The upper blue box contains Sentence 1. The lower blue box contains Sentence 2.
Given that Sentence 1 is True, Sentence 2 (by implication), must either be
(a) definitely True, (b) definitely False, or (c) May be True.
You are presented with an initial Sentence 1 and Sentence 2 and the correct initial relationship label
(True, False, or May be True).
Please edit Sentence 1 in the textboxes, making a small number of changes such that:
(a) The new sentences are coherent and
(b) The target labels (in red) accurately describe the truthfulness of the original Sentence 2 given
the modified Sentence 1.
Do not change any portions of the sentence unnecessarily.
After modifying the text and checking it over to make sure that it is coherent and matches the
target label.

(c) Revising premise in SNLI

Figure 5: Instructions used on Amazon Mechanical Turk for data collection