Relationship of common variants in WWOX gene with susceptibility and prognosis of Prostate cancer

Song Chen
Beijing Tsinghua Changgung Hospital

Yuzhe Tang
Beijing Tsinghua Changgung Hospital

Bo Xiao
Beijing Tsinghua Changgung Hospital

Weiguo Hu
Beijing Tsinghua Changgung Hospital

Qiang Wang
Beijing Tsinghua Changgung Hospital

Yubao Liu
Beijing Tsinghua Changgung Hospital

Boxing Su
Beijing Tsinghua Changgung Hospital

Meng Fu
Beijing Tsinghua Changgung Hospital

Jianxing Li (✉ xeygoyt@126.com)
Beijing Tsinghua Changgung Hospital https://orcid.org/0000-0002-9765-6748

Research

Keywords: WWOX, Prognosis, Prostate cancer

DOI: https://doi.org/10.21203/rs.3.rs-49513/v1

License: ☺ ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background
The aim of the study was to determine the expression of WW domain containing oxidoreductase (WWOX) in patients with prostate cancer (PCa) and to evaluate the correlation of WWOX expression and patients survival.

Methods
Immunohistochemistry (IHC) was applied to detect the WWOX expression. Chi-square test was adopted to evaluate the relationship between WWOX expression and clinical features of PCa patients. In addition, Kaplan-Meier curve was made to estimate the survival rate of PCa patients. Multivariate analysis was performed to assess the statistical significance between WWOX expression and prognosis of PCa patients.

Results
WWOX was weakly expressed in PCa tissues compared to the paired normal tissues by IHC. WWOX expression was tightly associated with Gleason score, PSA and clinical staging (P< 0.05), but has no relationship with age, tumor column, distant metastasis and ALP (P > 0.05). Survival curve demonstrated that patients with negative WWOX expression had lower survival rate. Finally, Cox analysis illustrated that WWOX was related with the prognosis of PCa patients (P = 0.001, HR = 4.605, 95% CI = 1.814–11.690).

Conclusion
In short, the present study showed strong evidence that WWOX could act as an indicator for prognosis of PCa patients.

Background
Prostate cancer (PCa) is one of the most common non-dermatologic cancers [1–3] and mainly occurs in economically developed countries [4]. And it is also one of the leading causes of cancer deaths among men all over the world. The majority of PCa were diagnosed as localized disease [5, 6]. Recently, the incidence of PCa has increased and perhaps will remain so in the foreseeable future. PCa is initiated by androgen receptor signaling pathway [7, 8]. Therapies for PCa are selected according to such factors as age, body condition and Gleason score, including transurethral prostate resection, androgen deprivation, radiotherapy and endocrine therapy [9, 10]. Because most patients are diagnosed with advanced stage, treatments on patients have little effects. Therefore, finding a biomarker for therapy and prognosis of PCa is quite important.
WW-domain containing oxidoreductase (WWOX) locates at chromosome 16q23.3-24.1 and encodes a protein of 46 kD, which is an oxidoreductase containing two WW domains [11–13]. It has been determined that WWOX gene could spans the common chromosomal fragile site region FRA16D [14, 15]. WWOX is important for UV, TNF, staurosporine and p53-mediated cell deaths. Growing evidence has proved that WWOX played an important role on neurodevelopment, bone metabolism and tumor suppression [16–18]. Besides, restored expression of WWOX in lung and breast cancer cells resulted in notable caspase-mediated apoptosis, growth inhibition and blocked tumor development [19, 20]. Loss or reduced expression of WWOX was observed in different cancers, such as ovarian cancer, breast cancer, hepatocellular carcinoma, gastric cancer and non-small cell lung cancer [21–23]. In the present study, we detected the WWOX expression in PCa tissues to explore the potential biological role of WWOX.

Materials And Methods

Patients and specimens

A total of 101 patients who were pathologically diagnosed with PCa were selected from Urology Surgery of Beijing Tsinghua Changgung Hospital. Clinical data of patients, including age, PSA, alkaline phosphate (ALP), distant metastasis, clinical staging, Gleason score and tumor column, were obtained from the patients’ initial history. Our study was approved by the Ethics Committee of Beijing Tsinghua Changgung Hospital and all patients were asked to sign the confirmed consents before surgery.

Immunohistochemistry

WWOX protein expression was determined by immunohistochemistry (IHC). The fresh tissues were continuously cut into sections of 2 µm and fixed on glass slides. The sections were dewaxed with xylene and rehydrated with graded alcohol after baking at 70°C for 2 h. Citrate buffer (0.01M, pH = 6.0) was used for antigen retrieval. Then the primary antibody was applied to the sections overnight at 4°C. Subsequently, the sections were incubated with the second antibody at 37°C for 2 h. Finally, staining was developed with DAB. The tissues were manually divided into two groups according to the staining percentage of cells (0 to 100%). Sections with cell staining percentages of more than 40% were clarified as positive, and the others were clarified as negative.

Statistical analysis

The relationship of clinical features and WWOX expression was evaluated with Chi-square. The overall survival rate of PCa patients was determined according to the Kaplan-Meier curve. Cox regression analysis was adopted to confirm the correlation between WWOX expression and prognosis of PCa patients.

Results

Lowexpression of WWOX in PCa tissues
The expression of *WWOX* was measured by IHC method in PCa tissues and the paired normal tissues. Low expression of *WWOX* was observed in the PCa tissues compared to the normal ones. The positive rates of *WWOX* were 28.7% (29 out of 101) in PCa tissues and 85.1% (86 out of 101) in the paired normal tissues. PCa tissues exhibited significantly lower *WWOX* expression than the paired normal tissues (*P* < 0.001, Table 1).

Table 1

Tissues	Case NO.	Expression	Positive rate	*P* value
		Positive		
PCa	101	29 72	28.7%	< 0.001
Normal	101	86 15	85.1%	

Relationship between *WWOX* expression and clinical features of PCa patients

We then estimated the potential relationship of *WWOX* expression and clinical features of PCa patients. The result was detailed in Table 2. *WWOX* expression shared statistical significance with the following features: Gleason score, PSA and clinical staging (*P* < 0.05). However, no correlation was found between the expression of *WWOX* and such clinical features as age, tumor column, distant metastasis and ALP (*P* > 0.05).
Table 2
Relationship of *WWOX* expression and clinical features of PCa patients.

Clinical features	Case NO.	Expression	\(\chi^2\)	\(P\)	
		Negative	Positive		
Age					
\(\leq 60\)	37	25	12	0.395	0.530
\(> 60\)	64	47	17		
ALP					
Negative	53	43	13	0.954	0.329
Positive	48	32	16		
Tumor column (ml)					
\(\leq 0.5\)	45	30	15	0.847	0.358
\(> 0.5\)	56	42	14		
Gleason score					
\(\leq 7\)	53	43	10	5.281	0.022
\(> 7\)	48	29	19		
PSA (ng/ml)					
\(\leq 9\)	55	34	21	5.290	0.021
\(> 9\)	46	38	8		
Distant metastasis					
Yes	56	41	15	0.228	0.633
No	45	31	14		
Clinical staging					
\(T_1 + T_2\)	43	25	18	6.324	0.012
\(T_3 + T_4\)	58	47	11		

Correlation of *WWOX* expression and the prognosis of PCa patients

Survival curve was plotted according to *WWOX* expression by Kaplan-Meier (Fig. 1). During the follow-up, 43 (59.7%) patients with negative *WWOX* expression died, while only 6 (20.7%) patients died among those who of positive *WWOX* expression. Patients with negative *WWOX* expression were more likely to die
than those with positive WWOX expression. Multivariate analysis revealed that WWOX could serve as a statistically significant prognostic factor by Cox regression analysis \((P = 0.001, HR = 4.605, 95\% \text{ CI} = 1.814-11.690, \text{Table 3})\).

Clinical feature	\(P\) value	HR	95% CI
Distant metastasis	0.100	0.522	0.241–1.131
PSA	0.161	1.753	0.800–3.843
Clinical staging	0.102	1.830	0.887–3.775
WWOX expression	0.001	4.605	1.814–11.690

Discussion

PCa is one of the major causes for cancer deaths of men in Europe and America. The incidence of PCa is positively related with age and is remarkably different in regions and races. The pathogenesis of PCa remains unclear. Studies from such Northern Europe countries as Denmark and Finland demonstrate that PCa derives from gene mutation to a great extent. It is also clarified that PCa might be associated with the environment.

WWOX is a newly discovered gene that participates in many processes of various cancers. Exon loss, heterozygosity absence and abnormal protein expression of WWOX were frequently present at different cancers, such as breast cancer, prostate cancer, ovarian cancer and esophageal cancer \([24, 25]\). It has been certified that WWOX usually behaves as a suppressor of tumor growth. In this study, we assayed its expression in PCa and evaluated the correlation between its expression and the prognosis of PCa patients.

WWOX has been confirmed to be downregulated in different cancers. Jentai Lin et al. studied that downregulation of WWOX was found in RCC \([26]\). Yachun Huang et al. revealed that WWOX was downregulated in human uroepithelial cells \([27]\). We first measured the expression of WWOX in PCa tissues and the paired normal tissues at protein level by HIC in this study. The result showed that the WWOX expression was significantly lower in PCa tissues than that in the paired normal tissues, which was in accordance with the existing literature. Then the relationship of WWOX expression and the clinical features of PCa patients was evaluated. Significant difference was found from the result, indicating that WWOX might serve as a prognostic factor for PCa patients. Based on the previous presumption, further investigations were performed to estimate the correlation between WWOX expression and the prognosis of PCa patients. The multivariate analysis displayed statistical significance between them, suggesting that WWOX was an prognostic indicator for PCa patients.
Though the correlation of *WWOX* expression and the prognosis was evaluated in this study, the concrete mechanism of *WWOX* on PCa was still unclear. In recent years, lots of studies have reported that *WWOX* functioned on various cancers by different approaches. Ekizoglu S et al. manifested that *WWOX* developed genetic alterations in breast cancer [28]. Anwen Xiong et al. explained that *WWOX* inhibited breast cancer cell growth by modulating the hedgehog-GLI1 signaling pathway [29]. In addition, Lin JT et al. demonstrated that *WWOX* suppressed the PCa cells through mediating the cell cycle with cyclin D1 [30]. All these reports can provide rationales for our future study.

Conclusions

Generally speaking, *WWOX* is a suppressor for PCa and is weakly expressed in PCa tissues. The result of univariate and multivariate analyses illustrated that *WWOX* might act as an prognostic indicator for PCa patients.

Abbreviations

WW domain containing oxidoreductase (*WWOX*)

prostate cancer (PCa)

Immunohistochemistry (IHC)

alkaline phosphate (ALP)

Declarations

Ethics approval and consent to participate

This study was supported by the Ethics Committee of Beijing Tsinghua Changgung Hospital and also has been carried out in accordance with the World Medical Association Declaration of Helsinki.

The subjects had been informed the objective. Certainly, written consents were signed by every subject in this study.

Consent for publication

We obtaining permission from participants to publish their data.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors’ contributions

S.C., Y.T. and B.X. conceived and designed the experiments; W.H. and Q.W. conceived and performed the experiments; B.S. and Y.L. prepared figures. M.F. and J.L. wrote the main manuscript text. All authors reviewed the manuscript.

Acknowledgements

Not applicable.

References

1. Song I, Kim CK, Park BK, Park W. Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. AJR Am J Roentgenol. 2010;194:W477–82.

2. Jarosek SL, Virmig BA, Chu H, Elliott SP. Propensity-weighted Long-term Risk of Urinary Adverse Events After Prostate Cancer Surgery, Radiation, or Both. Eur Urol 2014.

3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015.

4. Geisler C, Gaisa NT, Pfister D, Fuessel S, Kristiansen G, Braunschweig T, Gostek S, Beine B, Diehl HC, Jackson AM, Borchers CH, Heidenreich A, Meyer HE, Knuchel R, Henkel C Identification and Validation of Potential New Biomarkers for Prostate Cancer Diagnosis and Prognosis Using 2D-DIGE and MS. Biomed Res Int 2015; 2015: 454256.

5. Bachmann A, Tubaro A, Barber N, d'Ancona F, Muir G, Witzsch U, Grimm MO, Benejam J, Stolzenburg JU, Riddick A, Pahernik S, Roelink H, Ameye F, Saussine C, Bruyere F, Loidl W, Larner T, Gogoi NK, Hindley R, Muschter R, Thorpe A, Shrotri N, Graham S, Hamann M, Miller K, Schostak M, Capitan C, Knispel H, Thomas JA. A European Multicenter Randomized Noninferiority Trial Comparing 180 W GreenLight XPS Laser Vaporization and Transurethral Resection of the Prostate for the Treatment of Benign Prostatic Obstruction: 12-Month Results of the GOLIATH Study. J Urol. 2015;193:570–8.

6. Shukla ME, Yu C, Reddy CA, Stephans KL, Klein EA, Abdel-Wahab M, Ciezki J, Tendulkar RD. Evaluation of the current prostate cancer staging system based on cancer-specific mortality in the surveillance, epidemiology, and end results database. Clin Genitourin Cancer. 2015;13:17–21.
7. Gomez L, Kovac JR, Lamb DJ. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids. 2015;95C:80–7.

8. Saad F, de Bono J, Shore N, Fizazi K, Loriot Y, Hirmand M, Franks B, Haas GP, Scher HL. Efficacy Outcomes by Baseline Prostate-specific Antigen Quartile in the AFFIRM Trial. Eur Urol 2014.

9. Gladwish A, Loblaw A, Cheung P, Morton G, Chung H, Deabreu A, Pang G, Mamedov A. Accelerated Hypofractioned Postoperative Radiotherapy for Prostate Cancer: A Prospective Phase I/II Study. Clin Oncol (R Coll Radiol). 2015;27:145–52.

10. Pepe P, Garufi A, Priolo G, Pennisi M. Can 3-Tesla Pelvic Phased-Array Multiparametric MRI Avoid Unnecessary Repeat Prostate Biopsy in Patients With PSA < 10 ng/mL? Clin Genitourin Cancer. 2015;13:e27–30.

11. Nunez MI, Ludes-Meyers J, Abba MC, Kil H, Abbey NW, Page RE, Sahin A, Klein-Szanto AJ, Aldaz CM. Frequent loss of WWOX expression in breast cancer: correlation with estrogen receptor status. Breast Cancer Res Treat. 2005;89:99–105.

12. Pimenta FJ, Cordeiro GT, Pimenta LG, Viana MB, Lopes J, Gomez MV, Aldaz CM, De Marco L, Gomez RS. Molecular alterations in the tumor suppressor gene WWOX in oral leukoplakias. Oral Oncol. 2008;44:753–8.

13. Kosla K, Pluciennik E, Kurzyk A, JesioneK-Kupnicka D, Kordek R, Potemski P, Bednarek AK. Molecular analysis of WWOX expression correlation with proliferation and apoptosis in glioblastoma multiforme. J Neurooncol. 2011;101:207–13.

14. Thavathiru E, Ludes-Meyers JH, MacLeod MC, Aldaz CM. Expression of common chromosomal fragile site genes, WWOX/FRA16D and FHIT/FRA3B is downregulated by exposure to environmental carcinogens, UV, and BPDE but not by IR. Mol Carcinog. 2005;44:174–82.

15. Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ. and Aldaz CM. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 2001;61:8068–73.

16. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res. 2000;60:2140–5.

17. Aqeilan RI, Hassan MQ, de Bruin A, Hagan JP, Volinia S, Palumbo T, Hussain S, Lee SH, Gaur T, Stein GS, Lian JB, Croce CM. The WWOX tumor suppressor is essential for postnatal survival and normal bone metabolism. J Biol Chem. 2008;283:21629–39.

18. Wang HY, Juo LI, Lin YT, Hsiao M, Lin JT, Tsai CH, Tzeng YH, Chuang YC, Chang NS, Yang CN, Lu PJ. WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3beta. Cell Death Differ. 2012;19:1049–59.

19. Armstrong AJ, Halabi S. Making Progress on Progression in Metastatic Prostate Cancer. J Clin Oncol 2015.

20. Fabbr M, Iliopoulos D, Trapasso F, Aqeilan RI, Cimmino A, Zanesi N, Yendamuri S, Han SY, Amadori D, Huebner K, Croce CM. WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proc
21. Meryn S. Undertreatment of osteoporosis in men. Arch Intern Med. 2005;165:241.

22. Paige AJ, Taylor KJ, Taylor C, Hillier SG, Farrington S, Scott D, Porteous DJ, Smyth JF, Gabra H, Watson JE. WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci U S A. 2001;98:11417–22.

23. Nunez MI, Rosen DG, Ludes-Meyers JH, Abba MC, Kil H, Page R, Klein-Szanto AJ, Godwin AK, Liu J, Mills GB, Aldaz CM. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome. BMC Cancer. 2005;5:64.

24. Pluciennik E, Kusinska R, Potemski P, Kubiak R, Kordek R, Bednarek AK. WWOX—the FRA16D cancer gene: expression correlation with breast cancer progression and prognosis. Eur J Surg Oncol. 2006;32:153–7.

25. Li J, Liu J, Ren Y, Yang J, Liu P. Common Chromosomal Fragile Site Gene WWOX in Metabolic Disorders and Tumors. Int J Biol Sci. 2014;10:142–8.

26. Lin JT, Tzai TS, Liao CY, Wang JS, Wu TT, Wang HY, Wu CH, Yu CC, Lu PJ. WWOX protein expression varies among RCC histotypes and downregulation of WWOX protein correlates with less-favorable prognosis in clear RCC. Ann Surg Oncol. 2013;20:193–9.

27. Huang YC, Hung WC, Chen WT, Yu HS, Chai CY. Expression of WWOX and FHIT is downregulated by exposure to arsenite in human uroepithelial cells. Toxicol Lett. 2013;220:118–25.

28. Ekizoglu S, Muslumanoglu M, Dalay N, Buyru N. Genetic alterations of the WWOX gene in breast cancer. Med Oncol. 2012;29:1529–35.

29. Terrier A, Larrea X, Guerdat J, Crevoisier X. Development and experimental validation of a finite element model of total ankle replacement. J Biomech. 2014;47:742–5.

30. Lin JT, Li HY, Chang NS, Lin CH, Chen YC, Lu PJ. WWOX suppresses prostate cancer cell progression through cyclin D1-mediated cell cycle arrest in the G1 phase. Cell Cycle. 2015;14:408–16.

Figures
Figure 1

Kaplan-Meier survival curves were made for PCa patients. Patients with negative WWOX expression had higher mortality than those with positive expression. P value was calculated by Log-Rank test.