Strong approximation of time-changed stochastic differential equations involving drifts with random and non-random integrators*

Sixian Jin† and Kei Kobayashi‡

Abstract

The rates of strong convergence for various approximation schemes are investigated for a class of stochastic differential equations (SDEs) which involve a random time change given by an inverse subordinator. SDEs to be considered are unique in two different aspects: i) they contain two drift terms, one driven by the random time change and the other driven by a regular, non-random time variable; ii) the standard Lipschitz assumption is replaced by that with a time-varying Lipschitz bound. The difficulty imposed by the first aspect is overcome via an approach that is significantly different from a well-known method based on the so-called duality principle. On the other hand, the second aspect requires the establishment of a criterion for the existence of exponential moments of functions of the random time change.

Keywords: Stochastic differential equation, Numerical approximation, Rate of convergence, Inverse subordinator, Random time change, Time-changed Brownian motion.

MSC(2010): 65C30 60H10

1 Introduction

Let $B = (B_t)_{t \geq 0}$ be a standard Brownian motion and $E = (E_t)_{t \geq 0}$ be a stochastic process defined by the inverse of a stable subordinator $D = (D_t)_{t \geq 0}$ with index $\beta \in (0, 1)$, independent of B. The composition process $B \circ E = (B_{E_t})_{t \geq 0}$, called a time-changed Brownian motion, and its various generalizations have been widely used to model subdiffusions observed in many different areas of science; see e.g. Chapter 1 of [27]. The time-changed Brownian motion is non-Markovian (see [19, 20]) and its variance is $\mathbb{E}[B_{E_t}^2] = t^\beta / \Gamma(1 + \beta)$, which shows that in large time scales particles represented by $B \circ E$ diffuse more slowly than the regular Brownian particles. Moreover, the densities of $B \circ E$ satisfy the time-fractional heat equation $\partial_t^\beta u(t, x) = (1/2) \Delta u(t, x)$, where ∂_t^β denotes the Caputo fractional derivative of order β with respect to t. Various extensions

*Kei Kobayashi’s research was partially supported by a Faculty Fellowship at Fordham University.
†Fordham University. Email: sjin27@fordham.edu
‡Corresponding author. Fordham University. Email: kkobayashi5@fordham.edu
of $B \circ E$ and their associated fractional order partial differential equations have been investigated, including time-changed fractional Brownian motions (see [5, 6, 18]).

This paper investigates the rates of strong convergence for numerical approximation schemes for stochastic differential equations (SDEs) of the form

$$dX_t = H(E_t, X_t) \, dt + F(E_t, X_t) \, dE_t + G(E_t, X_t) \, dB_{E_t} \quad \text{with} \quad X_0 = x_0. \quad (1)$$

One of the main difficulties of handling this SDE is the simultaneous presence of the two drift coefficients H and F, with the former driven by the regular, non-random time variable and the latter driven by the random time change. Detailed analysis of the “time-changed SDE” (1) with Lévy noise terms added first appeared in [13], and since then, the time-changed SDE (1) and its extensions have drawn more and more attention. For example, Nane and Ni [21, 22] and Wu [28] established stability in various senses of solutions of time-changed SDEs. To overcome the difficulty of the simultaneous presence of the two drifts, they utilized extensions of the time-changed Itô formula derived in [13]. Chapter 1 of [27] discusses practical situations where such SDEs naturally arise. Establishing the rates of convergence for numerical approximation schemes for time-changed SDEs is extremely important both theoretically and practically in the analysis of complex subdiffusions, and that is the main contribution of this paper.

Note that, in handling the time-changed SDE (1) with $H \equiv 0$, the so-called duality principle in Theorem 4.2 of [13] comes in handy. The duality principle connects the time-changed SDE (1) with $H \equiv 0$ with the classical Itô SDE

$$dY_t = F(t, Y_t) \, dt + G(t, Y_t) \, dB_t \quad \text{with} \quad Y_0 = x_0 \quad (2)$$

in the following manner: if Y_t solves (2), then $X_t := Y_{E_t}$ solves (1), while if X_t solves (1), then $Y_t := X_{D_t}$ solves (2), where D is the original subordinator. Hahn et al. [7] employed this one-to-one correspondence between the two SDEs to establish a time-fractional pseudo-differential equation associated with a time-changed SDE involving jumps. The duality principle was also used in [10] to derive convergence of Euler–Maruyama-type approximation for the time-changed SDE (1) with $H \equiv 0$ under the standard Lipschitz assumption on the coefficients F and G. The same approach was also employed in the more recent paper [3] for semi-implicit Euler–Maruyama-type approximation for the same form of SDE but with superlinearly growing coefficients.

This paper derives extensions of the strong convergence result in [10] while asking the following non-trivial question:

(A) If $H \neq 0$ and the coefficients F, G and H satisfy the Lipschitz assumption with a time-varying Lipschitz bound (as in Assumption \mathcal{H}_1 in the beginning of Section 3), can we still obtain a convergence result similar to the one established in [10]?

Let us emphasize that the approach based on the duality principle becomes powerless in the simultaneous presence of the two drifts H and F, even with the standard Lipschitz assumption. To see this, note that when $H \equiv 0$, the duality principle allows us to approximate the solution of the time-changed SDE (1) by the composition $X^\delta_t := (Y^\delta \circ E^\delta)_t = Y_{E^\delta_t}$, where $\delta \in (0, 1)$ is a step size, E^δ is an approximation of E defined in [15, 16], and Y^δ is the standard Euler–Maruyama approximation of the solution Y of the classical SDE (2). The independence assumption between B and E along with representation (2)
implies independence between Y and E, which in turn allows us to analyze the moments of the error process in an ideal manner. However, regarding the time-changed SDE (1) with $H \not\equiv 0$, the corresponding classical SDE would involve a term driven by D_r in addition to the terms already appearing in (2). Consequently, Y and E would become dependent, making the above argument based on the duality principle no longer work.

To overcome the difficulty, in this paper we use a Gronwall-type inequality with a stochastic driver to control the moments of the error processes. Our method builds upon and extends the ideas presented in [9] in dealing with a different type of time-changed SDEs of the form $dX_t = F(t, X_t) dE_t + G(t, X_t) dB_{E_t}$, where the asynchrony in time is present between the “original clock t” involved in the coefficients and the “new clock E_t” appearing in the driving process. Regarding Question (A) on the time-changed SDE (1), however, we must appropriately modify that approach in order to deal with (i) the simultaneous presence of the two drifts H and F and (ii) the generalized Lipschitz assumption. To handle the generalized Lipschitz assumption, we also derive a useful criterion for the existence of the exponential moments of random variables of the form $f(E_t)$ with f being a regularly varying function at ∞; see Theorem 3. The criterion generalizes Theorem 1 of [9] and may be of independent interest to some readers. Let us stress that our approach is intrinsically different from the approach that Nane and Ni [21, 22] and Wu [28] took in handling the simultaneous presence of the two drifts.

We further ask the following question:

(B) Can we improve the rate of convergence for the time-changed SDE (1) using an Itô–Taylor-type approximation scheme?

Even though we give a positive answer to this question only under the assumption that $H \equiv 0$, it is still a non-trivial generalization of the result established in [10]. Indeed, it is pointed out in Remark 3.2(4) of [10] that a simple modification of the argument in [10] by using the duality principle together with the Itô–Taylor scheme for the solution Y of the classical SDE (2) would not lead to any improvement of the rate of convergence. This is because the Itô–Taylor scheme, which helps improve the rate for the approximation of Y, has no contribution to improving the rate for the approximation of E. It turns out that the approach taken for Question (A), while completely avoiding the use of the duality principle, enables us to tackle Question (B): we directly analyze the estimation error for X rather than separately analyzing and combining the estimation errors for Y and E.

The rest of the paper is organized as follows. Section 2 defines the wide class of random time changes to be considered in this paper and derives criteria for the existence and non-existence of various moments of the time changes. Section 3 discusses the meaning of the time-changed SDE (1) and derives sufficient conditions for the existence of moments of the SDE solution. Using these results, Sections 4 and 5 establish the main theorems which answer Questions (A) and (B). Section 6 is devoted to numerical examples which verify the statements derived in Section 4.

2 Inverse subordinators and their moments

Throughout the paper, $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a complete probability space, \mathbb{E} denotes the expectation under \mathbb{P}, and all stochastic processes are defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $D =$
(D_t)_{t \geq 0} be a subordinator starting at 0 with Laplace exponent ψ with killing rate 0, drift 0, and Lévy measure ν; i.e. D is a one-dimensional nondecreasing Lévy process with càdlàg paths starting at 0 with Laplace transform $\mathbb{E}[e^{-sD_t}] = e^{-t\psi(s)}$, where $\psi(s) = \int_0^\infty (1-e^{-sy}) \nu(dy)$ with the condition $\int_0^\infty (y \wedge 1) \nu(dy) < \infty$. We focus on the case when the Lévy measure ν is infinite (i.e. $\nu(0, \infty) = \infty$). Let $E = (E_t)_{t \geq 0}$ be the inverse (or hitting time process) of D defined by

$$E_t := \inf\{u > 0; D_u > t\}, \quad t \geq 0.$$

We call E an inverse subordinator. If the subordinator D is stable with index $\beta \in (0, 1)$, then $\psi(s) = s^\beta$ and E is called an inverse β-stable subordinator. The assumption that $\nu(0, \infty) = \infty$ implies that D has strictly increasing paths with infinitely many jumps (see e.g. [25]), and therefore, E has continuous, nondecreasing paths starting at 0. Also, the inverse relation between D and E implies $\{E_t > x\} = \{D_x < t\}$ for all $t, x \geq 0$; see Figure 1. Note that the jumps of D correspond to the (random) time intervals on which E is constant, and during those constant periods, any time-changed process of the form $X \circ E = (X_{E_t})_{t \geq 0}$ also remains constant. If B is a standard Brownian motion independent of D, we can regard particles represented by the time-changed Brownian motion $B \circ E$ as being trapped and immobile during the constant periods; see Figure 2. Note that even though $B \circ D$ is a Lévy process, $B \circ E$ is not even a Markov process (see [19, 20]).

To describe the wide class of inverse subordinators E to be discussed in this paper, let us introduce the notion of regularly varying and slowly varying functions. A function $f : (0, \infty) \to (0, \infty)$ is said to be regularly varying at ∞ with index $p \in \mathbb{R}$ if $\lim_{s \to \infty} f(cs)/f(s) = c^p$ for any $c > 0$. Let $\text{RV}_p(\infty)$ denote the class of regularly varying functions at ∞ with index p. A function $\ell : (0, \infty) \to (0, \infty)$ is said to be slowly varying at ∞ if $\ell \in \text{RV}_0(\infty)$ (i.e. $\ell \in \text{RV}_p(\infty)$ with $p = 0$). Every $f \in \text{RV}_p(\infty)$ is represented as $f(s) = s^p \ell(s)$ with $\ell \in \text{RV}_0(\infty)$. Note that the following two Laplace exponents are regularly varying at ∞ with index $\beta \in (0, 1)$: $\psi(s) = s^\beta$, which corresponds to a stable subordinator with index β, and $\psi(s) = (s + \kappa)^\beta - \kappa^\beta$ with $\kappa > 0$, which corresponds to an exponentially tempered (or tilted) stable subordinator with index β and temper-
Figure 2: Sample paths of an inverse 0.8-stable subordinator E (dotted) and the corresponding time-changed Brownian motion $B \circ E$ (solid), which share the same constant periods.

...ing factor κ. On the other hand, $\psi(s) = \log(1 + s)$, which corresponds to a Gamma subordinator, is slowly varying at ∞.

For the reader’s convenience, we list some properties of regularly varying functions that are used throughout this paper (see Propositions 1.5.1 and 1.5.7 of [1]). Let $f(0) := \lim_{s \to 0} f(s)$ and $f(\infty) := \lim_{s \to \infty} f(s)$ for a given function f defined on $(0, \infty)$.

Lemma 1. (i) Given $f \in \text{RV}_p(\infty)$, $f(\infty) = \infty$ if $p > 0$, and $f(\infty) = 0$ if $p < 0$.

(ii) If $f_i \in \text{RV}_{p_i}(\infty)$ for $i = 1, 2$ and $f_2(\infty) = \infty$, then $f_1 \circ f_2 \in \text{RV}_{p_1p_2}(\infty)$.

(iii) If $f_i \in \text{RV}_{p_i}(\infty)$ for $i = 1, 2$, then $f_1 \cdot f_2 \in \text{RV}_{p_1 + p_2}(\infty)$.

In Proposition 2 and Theorem 3 below, we provide important criteria for the existence and non-existence of various moments concerning inverse subordinators, which play key roles in the proofs of the statements to be established in Sections 3-5. Proposition 2 states that any inverse subordinator with the underlying Lévy measure being infinite has exponential moment; for proofs, see [10, 17].

Proposition 2. Let E be the inverse of a subordinator with infinite Lévy measure. Then $\mathbb{E}[e^{\lambda E_t}] < \infty$ for any $\lambda > 0$ and $t > 0$. Consequently, if $f : (0, \infty) \to (0, \infty)$ is a measurable function regularly varying at ∞ with index $p > 0$ such that $\sup_{s \leq s_0} f(s) < \infty$ for any $s_0 < \infty$, then $\mathbb{E}[f(E_t)] < \infty$ for any $t > 0$.

Even though E_t has exponential moment, its power E_t^p with $p > 1$ may or may not have exponential moment. For instance, if E is an inverse β-stable subordinator, then $\mathbb{E}[e^{\lambda E_t^p}]$ exists if $1/2 < \beta < 1$ while it does not if $0 < \beta < 1/2$. When $\beta = 1/2$, whether the expectation exists or not depends on the relationship between λ and t. For details, see Remark 6(2) of [9]. The following theorem generalizes Theorem 1 of [9].

Theorem 3. Let E be the inverse of a subordinator D whose Laplace exponent ψ is regularly varying at ∞ with index $\beta \in [0, 1)$. If $\beta = 0$, assume further that $\psi(\infty) = \infty$.
and ψ' is regularly varying at ∞ with index -1. Suppose $f : (0, \infty) \to (0, \infty)$ is a measurable function regularly varying at ∞ with index $p > 0$ such that $\sup_{s \leq s_0} f(s) < \infty$ for any $s_0 < \infty$. Fix $t > 0$.

(i) If $p < 1/(1 - \beta)$, or equivalently, $\beta > (p - 1)/p$, then $E[e^{f(E_t)}] < \infty$.

(ii) If $p > 1/(1 - \beta)$, or equivalently, $\beta < (p - 1)/p$, then $E[e^{f(E_t)}] = \infty$.

Proof. For any fixed $M > 0$, $\int_0^M e^{f(u)} \mathbb{P}(E_t \in du) \leq e^{\sup_{u \leq M} f(u)} < \infty$ by assumption. Hence, for large enough $M > 0$, the integrability of $E[e^{f(E_t)}]$ coincides with that of $\int_M^{\infty} e^{f(u)} \mathbb{P}(E_t \in du)$.

If $p < 1/(1 - \beta)$, then there exist $q \in (p, 1/(1 - \beta))$ and $M_1 > 0$ such that $f(u) < u^q$ for all $u \geq M_1$. Indeed, for $q > p$, since $f(u)u^{-q} \in RV_{p-q}(\infty)$, it follows from Lemma 1(i) that $f(u)u^{-q} \to 0$ as $u \to \infty$. Then $\int_{M_1}^{\infty} e^{f(u)} \mathbb{P}(E_t \in du) \leq \int_{M_1}^{\infty} e^{u^q} \mathbb{P}(E_t \in du) \leq E[e^{E_t^q}]$, which is finite due to Theorem 1(1) of [9], so $E[e^{f(E_t)}] < \infty$. On the other hand, if $p > 1/(1 - \beta)$, then again by Lemma 1(i), there exist $q \in (1/(1 - \beta), p)$ and $M_2 > 0$ such that $f(u) > u^q$ for all $u \geq M_2$. Since $E[e^{E_t^q}] = \infty$ due to Theorem 1(2) of [9], it follows that $\int_{M_2}^{\infty} e^{f(u)} \mathbb{P}(E_t \in du) \geq \int_{M_2}^{\infty} e^{u^q} \mathbb{P}(E_t \in du) = \infty$. Thus, $E[e^{f(E_t)}] = \infty$.

Theorem 4 below concerning the moments of negative orders of E_t (i.e. $E[1/E_t^p]$ for $p > 0$) can be regarded as a counterpart of Proposition 2 and Theorem 3. To state the theorem in a more general setting, note that a function $f : (0, \infty) \to (0, \infty)$ is called regularly varying at 0 with index $p \in \mathbb{R}$ if $\lim_{s \to 0} f(cs)/f(s) = c^p$ for any $c > 0$, which is equivalent to the statement that $\tilde{f} \in RV_{-p}(\infty)$ with $\tilde{f}(x) := f(1/x)$. The proof is based on the small ball probability of E_t that is established in [14] or obtained immediately from a result in [24]. Note that for any $t > 0$ and $f : (0, \infty) \to (0, \infty)$, it follows that $f(E_t)$ is well-defined and positive a.s. since $E_t > 0$ a.s. (or otherwise, the underlying subordinator D would not start at 0).

Theorem 4. Let E be the inverse of a subordinator with infinite Lévy measure ν. Suppose $f : (0, \infty) \to (0, \infty)$ is a measurable function regularly varying at 0 with index $p > 0$ such that $\inf_{s \geq s_0} f(s) > 0$ for any $s_0 < \infty$. Fix $t > 0$.

(i) If $p < 1$, then $E[1/f(E_t)] < \infty$.

(ii) If $p > 1$ and $\nu(t, \infty) > 0$, then $E[1/f(E_t)] = \infty$.

Proof. We first prove the statement in the special case when $f(u) = u^p$ for $u > 0$. Observe that $E[1/E_t^p]$ can be expressed as

$$\int_0^\infty \mathbb{P}\left(\frac{1}{E_t} > x\right) dx = \int_0^\infty \mathbb{P}(E_t < x^{-1/p}) dx = \int_0^\infty pu^{-p-1} \mathbb{P}(E_t \leq u) du,$$

where we used the fact that the function $u \mapsto \mathbb{P}(E_t \leq u)$ is a distribution function and hence $\mathbb{P}(E_t < u) = \mathbb{P}(E_t \leq u)$ for a.e. u. Since $\int_0^\infty pu^{-p-1} \mathbb{P}(E_t \leq u) du \leq \int_0^{u_0} pu^{-p-1} du = u_0^{-p} < \infty$ for any fixed $u_0 > 0$, it suffices to discuss the convergence and divergence of the integral $\int_0^u pu^{-p-1} \mathbb{P}(E \leq u) du$ for small enough $u_0 > 0$. On the other hand, by Corollary 4.14 of [24] (also see Proposition 1 of [14]),

$$\mathbb{P}(E_t \leq u) \sim \nu(t, \infty) u$$

as $u \downarrow 0$.

6
(If \(\nu(t, \infty) = 0 \), this is interpreted as \(\mathbb{P}(E_t \leq u) = o(u) \).) Thus, if \(0 < p < 1 \), then \(\int_0^{u_0} p u^{-p-1} \mathbb{P}(E_t \leq u) \, du \leq (\nu(t, \infty) + \varepsilon) \int_0^{u_0} p u^{-p} \, du < \infty \) for some \(\varepsilon > 0 \) and \(u_0 > 0 \), thereby yielding (i). In contrast, if \(p \geq 1 \) and \(\nu(t, \infty) > 0 \), then for some \(\varepsilon \in (0, \nu(t, \infty)) \) and \(u_0 > 0 \), \(\int_0^{u_0} p u^{-p-1} \mathbb{P}(E_t \leq u) \, du \geq (\nu(t, \infty) - \varepsilon) \int_0^{u_0} p u^{-p} \, du = \infty \), from which (ii) follows.

Now, consider a general regularly varying function \(f \) stated in the theorem. For any fixed \(u_1 > 0 \), \(\int_0^{u_1} (1/f(u)) \mathbb{P}(E_t \leq du) \leq 1/\inf_{u \geq u_1} f(u) < \infty \) by assumption. Hence, the integrability of \(\mathbb{E}[1/f(E_t)] \) coincides with that of \(\int_0^{u_1} (1/f(u)) \mathbb{P}(E_t \in du) \) for small enough \(u_1 > 0 \). Since \(\tilde{f}(x) \in \text{RV}_p(\infty) \) with \(\tilde{f}(x) := f(1/x) \), by Lemma 1(i), \(\lim_{u \downarrow 0} f(u) u^{-\alpha} = \infty \) if \(\alpha > p \). Thus, if \(0 < p < 1 \), then there exist \(\alpha \in (p, 1) \) and \(u_1 > 0 \) such that \(f(u) > u^\alpha \) for \(u \leq u_1 \). For this \(\alpha \), by the special case above, \(\infty > \mathbb{E}[1/E_t^\alpha] \geq \int_0^{u_1} (1/u^\alpha) \mathbb{P}(E_t \in du) \geq \int_0^{u_1} (1/f(u)) \mathbb{P}(E_t \in du) \), which yields (i).

On the other hand, if \(p > 1 \), then since \(\lim_{u \downarrow 0} f(u) u^{-\alpha} = 0 \) if \(\alpha < p \), there exist \(\alpha \in (1, p) \) and \(u_2 > 0 \) such that \(f(u) < u^\alpha \) for \(u \leq u_2 \). For this \(\alpha \), by the special case above, \(\mathbb{E}[1/E_t^\alpha] = \infty \), and hence, \(\infty = \int_0^{u_2} (1/u^\alpha) \mathbb{P}(E_t \in du) \leq \int_0^{u_2} (1/f(u)) \mathbb{P}(E_t \in du) \), which yields (ii).

\[\square \]

Remark 5. 1) The proof of Theorem 4(ii) implies that if \(p = 1 \), then \(\mathbb{E}[1/f(E_t)] = \infty \) as long as \(\nu(t, \infty) > 0 \) and there exists \(\epsilon > 0 \) such that \(f(s) \leq cs \) for all \(s \) small enough.

2) A simple application of Theorem 4 provides an insight into the one-sided exit problem for a time-changed Brownian motion \(B \circ E \), where \(B \) is a Brownian motion independent of the inverse subordinator \(E \). By (8.3) in Chapter 2 of [11], the running maximum \(M_T := \max_{0 \leq t \leq T} B_t \) of the Brownian motion has density \(f_{M_T}(x) = \sqrt{2/(\pi T)} \exp(-x^2/2T) \) with \(x > 0 \), so for any fixed \(T > 0 \),

\[
\sqrt{\frac{2}{\pi T}} e^{-\frac{x^2}{2T}} \leq \mathbb{P}(\max_{0 \leq t \leq T} B_t \leq 1) \leq \sqrt{\frac{2}{\pi T}}
\]

Since \(\mathbb{P}(\max_{0 \leq t \leq T} B_{E_t} \leq 1) = \mathbb{P}(\max_{0 \leq r \leq E_T} B_r \leq 1) \), a simple conditioning yields

\[
\sqrt{\frac{2}{\pi}} \mathbb{E} \left[E_T^{-\frac{1}{2}} e^{-\frac{x^2}{2ET}} \right] \leq \mathbb{P}(\max_{0 \leq t \leq T} B_{E_t} \leq 1) \leq \sqrt{\frac{2}{\pi}} \mathbb{E} \left[E_T^{-\frac{1}{2}} \right],
\]

where the finiteness of the lower and upper bounds are guaranteed by Theorem 4(i).

3 Stochastic differential equations involving a random time change and associated \(L^p \) bounds

Throughout the rest of the paper, let \((\mathcal{F}_t)_{t \geq 0} \) be a filtration on the probability space \((\Omega, \mathcal{F}, \mathbb{P})\) satisfying the usual conditions, \(B \) be an \(m \)-dimensional \((\mathcal{F}_t)\)-adapted Brownian motion which is independent of an \((\mathcal{F}_t)\)-adapted subordinator \(D \) with infinite Lévy measure, and \(E \) be the inverse of \(D \). Consider a stochastic differential equation (SDE)

\[
X_t = x_0 + \int_0^t H(E_r, X_r) \, dr + \int_0^t F(E_r, X_r) \, dE_r + \int_0^t G(E_r, X_r) \, dB_{E_r}, \quad t \in [0, T],
\]

where \(x_0 \in \mathbb{R}^d \) is a non-random constant, \(T > 0 \) is a fixed time horizon, and \(H, F, G : [0, \infty) \times \mathbb{R}^d \to \mathbb{R}^d \) and \(G : [0, \infty) \times \mathbb{R}^d \to \mathbb{R}^{d \times m} \) are jointly continuous functions such
that the following assumptions hold: there exists a continuous, nondecreasing function $h(u) : [0, \infty) \to [0, \infty)$ such that for all $u \geq 0$ and $x, y \in \mathbb{R}^d$,

$$H_1 : |H(u, x) - H(u, y)| + |F(u, x) - F(u, y)| + |G(u, x) - G(u, y)| \leq h(u)|x - y|;$$

$$H_2 : |H(u, x)| + |F(u, x)| + |G(u, x)| \leq h(u)(1 + |x|),$$

where $| \cdot |$ denotes the Euclidean norms of appropriate dimensions. In the remainder of the paper, we assume that $m = d = 1$ for simplicity of discussions and expressions since an extension to a multidimensional case is straightforward. Examples of coefficients satisfying the above assumptions include $H(u, x) = F(u, x) = G(u, x) = u^p x$ for some $p > 0$. We make the bounds in Assumptions H_1 and H_2 time-dependent since our convergence results for approximation schemes of SDE (3) rely on the relationship between the growth of the bound $h(u)$ and that of the Laplace exponent $\psi(s)$ of the underlying subordinator D. Moreover, the inclusion of the function $h(u)$ will reveal how the information about random time changes are generally retained when moments of the SDE solution are estimated. Note that this paper often assumes that the nondecreasing bound $h(u)$ is regularly varying at ∞ with positive index, in which case, the monotonicity assumption of $h(u)$ can be dropped since we can always replace $h(u)$ by the running maximum $\bar{h}(u) := \sup_{t \in [0, u]} h(t)$, which is also regularly varying at ∞ with the same index due to Theorem 1.5.3 of [1]. We assume the monotonicity solely for simplicity of discussions in proofs.

For each fixed $t \geq 0$, the random time E_t is an (\mathcal{F}_t)-stopping time, and therefore, the time-changed filtration $(\mathcal{F}_{E_t})_{t \geq 0}$ is well-defined. Moreover, since the time change E is an (\mathcal{F}_{E_t})-adapted process with continuous, nondecreasing paths and the time-changed Brownian motion $B \circ E$ is a continuous (\mathcal{F}_{E_t})-martingale, SDE (3) is understood within the framework of stochastic integrals driven by continuous semimartingales (see [13] for details). The following lemma confirms that a unique strong solution of SDE (3) exists. Its proof is analogous to the proof of Lemma 4.1 in [13].

Lemma 6. SDE (3) satisfying Assumption H_1 has a unique strong solution which is a continuous (\mathcal{F}_{E_t})-semimartingale.

Proof. Let \mathbb{D} denote the space of (\mathcal{F}_{E_t})-adapted processes with càdlàg paths on $(\Omega, \mathcal{F}, \mathbb{P})$. Define operators $F_1, F_2, F_3 : \mathbb{D} \to \mathbb{D}$ by $(F_1(X))_t := H(E_t, X_t)$, $(F_2(X))_t := F(E_t, X_t)$, and $(F_3(X))_t := G(E_t, X_t)$ for $X \in \mathbb{D}$ and $t \geq 0$. Then by the joint continuity of H, F and G, for each $i = 1, 2, 3$, it follows that $X^{\sigma_\alpha} = Y^{\sigma_\alpha}$ implies $(F_i(X))^{\sigma_\alpha} = (F_i(Y))^{\sigma_\alpha}$ for any $X, Y \in \mathbb{D}$ and (\mathcal{F}_{E_t})-stopping time σ, where $Z_t^{\sigma_\alpha} := Z_t$ if $t < \sigma$ and $Z_t^{\sigma_\alpha} := Z_{\sigma_-}$ if $t \geq \sigma$. Also, for all $X, Y \in \mathbb{D}$ and $t \geq 0$, $|(F_i(X))_t - (F_i(Y))_t| \leq K_t|X_t - Y_t|$ with $K_t := h(E_t)$. Since $(K_t)_{t \geq 0}$ is an (\mathcal{F}_{E_t})-adapted, continuous process, each operator F_i is process Lipschitz, and therefore, by Theorem 7 of Chapter V in [23], a unique solution of SDE (3) exists and is an (\mathcal{F}_{E_t})-semimartingale. The continuity of the solution follows by the continuity of the driving process of the SDE. \[\square\]

Both E and $B \circ E$ start at 0, and for quadratic variations, $[B \circ E, B \circ E] = E$ and $[E, E] = [B \circ E, E] = [B \circ E, m] = [E, m] = 0$, where m denotes the identity map. For example, $d[X, X]_t = G^2(E_t, X_t) dE_t$ for the solution X of SDE (3). For details about stochastic calculus for more general time-changed semimartingales, see Section 4 in [13].
The remainder of this section is devoted to the derivation of sufficient conditions for the existence of the pth moment of $\sup_{0 \leq r \leq T} |X_r|$, where X is the solution of SDE (3). The conditions are necessary to establish the main theorems of this paper in Sections 4 and 5. Let us recall the Burkholder–Davis–Gundy (BDG) inequality, which states that for any $p > 0$, there exists a constant $b_p > 0$ such that

$$
\mathbb{E}\left[\sup_{0 \leq t \leq S} |M_t|^p\right] \leq b_p \mathbb{E}\left[|M|^{p/2}\right]
$$

for any stopping time S and any continuous local martingale M with quadratic variation $[M, M]$. The constant b_p can be taken independently of S and M; see Proposition 3.26 and Theorem 3.28 of Chapter 3 of [11].

Notations: Since the Brownian motion B and the subordinator D are assumed independent, it is possible to set up B and D on a product space $\Omega = \Omega_B \times \Omega_D$ with product measure $\mathbb{P} = \mathbb{P}_B \times \mathbb{P}_D$ with obvious notation. We use this setting in the proofs of all the remaining statements. Let \mathbb{E}_B, \mathbb{E}_D and \mathbb{E} denote the expectations under the probability measures \mathbb{P}_B, \mathbb{P}_D and \mathbb{P}, respectively.

Proposition 7. Let X be the solution of SDE (3) satisfying Assumptions \mathcal{H}_1 and \mathcal{H}_2. Assume further that one of the following two conditions holds:

(a) h is constant;

(b) h is continuous, nondecreasing, and regularly varying at ∞ with index $q \geq 0$, and the Laplace exponent ψ of D is regularly varying at ∞ with index $\beta \in (2q/(2q + 1), 1)$.

Then $\mathbb{E}[Y_T^{(p)}] < \infty$ for any $p \geq 1$, where $Y_T^{(p)} := 1 + \sup_{0 \leq r \leq T} |X_r|^p$.

Proof. Since a similar approach will be taken several times in Sections 4 and 5, we will provide a detailed proof of this proposition. Let $S_\ell := \inf\{t \geq 0 : Y_T^{(p)} > \ell\}$ for $\ell \in \mathbb{N}$. Since the solution X has continuous paths, $Y_T^{(p)} < \infty$ for each $t \geq 0$, and hence, $S_\ell \uparrow \infty$ as $\ell \to \infty$. For \mathbb{P}_D-a.e. path, we first apply a Gronwall-type inequality to the function $t \mapsto \mathbb{E}_B[Y_T^{(p)}]$ for a fixed ℓ and then let $t = T$ and $\ell \to \infty$ in the obtained inequality to establish a bound for $\mathbb{E}_B[Y_T^{(p)}]$. Note that due to the definition of S_ℓ, $\int_0^T \mathbb{E}_B[Y_T^{(p)}] \, dE_r \leq \ell E_T < \infty$, which allows us to safely apply the Gronwall-type inequality.

Assume $p \geq 2$ since the result for $1 \leq p < 2$ follows immediately from the result for $p \geq 2$ with Jensen’s inequality. By the Itô formula, $X_t^p = x_0^p + I_s + J_s + K_s$, where

$$
I_s := \int_0^s pX_r^{p-1}H(E_r, X_r)\, dr; \quad J_s := \int_0^s pX_r^{p-1}G(E_r, X_r)\, dB_{E_r};
$$

$$
K_s := \int_0^s \left\{ pX_r^{p-1}F(E_r, X_r) + \frac{1}{2}p(p - 1)X_r^{p-2}G^2(E_r, X_r) \right\} \, dE_r.
$$

Fix $t \in [0, T]$ and $\ell \in \mathbb{N}$. By Assumption \mathcal{H}_2 and the inequality $(x + y + z)^p \leq c_p(x^p + y^p + z^p)$ for $x, y, z \geq 0$ with $c_p = 3^{p-1}$,

$$
\mathbb{E}_B\left[\sup_{0 \leq s \leq t \wedge S_\ell} |I_s|\right] \leq \mathbb{E}_B\left[\int_0^{t \wedge S_\ell} ph(E_r)|X_r|^{p-1}(1 + |X_r|)\, dr\right]
$$

$$
\leq pc_p h(E_T) \int_0^{t \wedge S_\ell} \mathbb{E}_B[Y_r^{(p)}] \, dr.
$$

(5)
Similarly,
\[
\mathbb{E}_B \left[\sup_{0 \leq s \leq t \wedge S_t} |K_s| \right] \leq \left(p c_p h(E_T) + \frac{1}{2} B(p-1) c_p h^2(E_T) \right) \int_0^{t \wedge S_t} \mathbb{E}_B[Y_r^{(p)}] \, dE_r.
\]
Since \((J_s)_{s \geq 0}\) is a local martingale, applying the BDG inequality (4) yields \(\mathbb{E}_B[\sup_{0 \leq s \leq t \wedge S_t} |J_s|] \leq b_1 \mathbb{E}_B[\int_0^{t \wedge S_t} p^2 X_r^{2p-2} G^2(E_r, X_r) \, dE_r]^{1/2}\), and hence,
\[
\mathbb{E}_B \left[\sup_{0 \leq s \leq t \wedge S_t} |J_s| \right] \leq b_1 \mathbb{E}_B \left[p c_p h(E_T) \left(Y_{t \wedge S_t}^{(p)} \int_0^{t \wedge S_t} Y_r^{(p)} \, dE_r \right)^{1/2} \right]
\leq \frac{1}{2} \mathbb{E}_B[Y_t^{(p)}] + 2 b_1^2 p^2 c_p^2 h^2(E_T) \int_0^{t \wedge S_t} \mathbb{E}_B[Y_r^{(p)}] \, dE_r,
\]
where the last inequality follows from the elementary inequality \((ab)^{1/2} \leq a/\lambda + \lambda b\) valid for any \(a, b, \lambda > 0\), with \(\lambda := 2b_1 p c_p h(E_T)\). (Note that \(h(E_T) > 0\) due to the discussion given right above Theorem 4.)

Now, note that \(\int_0^{t \wedge S_t} L_r \, dE_r \leq \int_0^t L_r \, dE_r\) for any nonnegative process \((L_t)_{t \geq 0}\). Indeed, the inequality obviously holds if \(t \leq S_t\), while if \(t > S_t\), then \(\int_0^t L_r \, dE_r = \int_0^{S_t} L_r \, dE_r + \int_{S_t}^t L_r \, dE_r \geq \int_0^{t \wedge S_t} L_r \, dE_r\). Thus, by the above estimates for \(I_s, J_s\) and \(K_s\),
\[
\mathbb{E}_B[Y_t^{(p)}] \leq 2(1 + |x_0|^p) + 2 p c_p h(E_T) \int_0^t \mathbb{E}_B[Y_r^{(p)}] \, dr + 2 \xi(E_T) \int_0^t \mathbb{E}_B[Y_r^{(p)}] \, dE_r,
\]
where \(\xi(u) := p c_p h(u) + (p(p-1)c_p/2 + 2b_1^2 p^2 c_p^2) h^2(u)\).

With the Gronwall-type inequality in Chapter IX.6a, Lemma 6.3 of [8], \(\mathbb{E}_B[Y_t^{(p)}] \leq 2(1 + |x_0|^p)e^{2E_T \xi(E_T)+2pcpTh(E_T)}\). Setting \(t = T\), letting \(\ell \to \infty\) while recalling \(\xi(u)\) does not depend on \(\ell\), and using the monotone convergence theorem yields
\[
\mathbb{E}_B[Y_T^{(p)}] \leq 2(1 + |x_0|^p)e^{2E_T \xi(E_T)+2pcpTh(E_T)}.
\]

If \(h\) is constant, then the right hand side of (6) takes the form \(ce^{cE_T}\), so taking \(\mathbb{E}_D\) on both sides gives \(\mathbb{E}[Y_T^{(p)}] \leq \mathbb{E}[ce^{cE_T}] \leq \infty\) due to Proposition 2. On the other hand, if \(h \in RV_q(\infty)\) with \(q \geq 0\) is continuous and nondecreasing, then since \(\xi(u) \in RV_{2q}(\infty)\), the right hand side of (6) takes the form \(ce^{f(E_T)}\) with \(f(u) \in RV_{2q+1}(\infty)\) due to Lemma 1(ii)(iii). So taking \(\mathbb{E}_D\) on both sides gives \(\mathbb{E}[Y_T^{(p)}] \leq \mathbb{E}[ce^{f(E_T)}]\). By Theorem 3, the latter is finite provided that \(2q + 1 < (1/1-\beta)\), or equivalently, \(\beta \in (2q/(2q+1), 1)\).

Remark 8. 1) The key part in the above proof is to derive an estimate for \(\mathbb{E}_B[Y_t^{(p)}_{t \wedge S_t}]\) rather than \(\mathbb{E}[Y_t^{(p)}_{t \wedge S_t}]\). This makes estimations such as (5) possible. Indeed, if we consider \(\mathbb{E}[\sup_{0 \leq s \leq t \wedge S_t} |J_s|]\) instead of \(\mathbb{E}_B[\sup_{0 \leq s \leq t \wedge S_t} |J_s|]\) in (5), then the expectation and integral signs are no longer interchangeable and \(h(E_T)\) cannot be taken out of the integral sign, which makes the Gronwall-type inequality inapplicable. This approach is completely different from the one employed in [10]. It also gives rise to the factor \(h(E_T)\) in the exponent of the right hand side of (6), which must be handled by Theorem 3 in Section 2.
2) The introduction of the localizing sequence \(\{S_t\} \) in the above proof essentially allows us to consider the process \((Y_t(u))_{t \in [0,T]}\) to be bounded by a non-random constant. This, in particular, guarantees that the argument based on the Gronwall-type inequality with a stochastic driver be meaningful. Note that it also allows us to use various theorems concerning integrals with the pertinent function appearing as integrands. In order to make such theorems as well as the Gronwall-type inequality available in the proofs of Theorems 9, 12, 14 and 15 in Sections 4 and 5, we will use the localizing sequence \(S_t := \inf\{t \geq 0 : \sup_{0 \leq s \leq t}|X_s - X^\delta_s| > \ell\} \), where \(X^\delta \) is the approximation process. However, to clarify the main ideas of the proofs, we suppress \(S_t \) and simply give arguments assuming that the process \((\sup_{0 \leq s \leq t}|X_s - X^\delta_s|)_{t \in [0,T]}\) is bounded by a non-random constant.

4 Rate of convergence for a Euler–Maruyama-type scheme when \(H \not= 0 \)

This section discusses the rate of strong convergence of a Euler–Maruyama-type approximation scheme for the solution of SDE (3) with \(H(u,x) = H(u) \) under two different sets of assumptions on the SDE coefficients in addition to Assumptions \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \). The different settings result in different rates of convergence. The results we prove here answer Question (A) raised in Section 1 and provide generalizations of Theorem 3.1 of [10] to cases when the two drifts \(H \) and \(F \) simultaneously appear. However, as discussed in Section 1, the approach we take in this paper is completely different from that in [10] as the duality principle is never used.

Let us first describe an approximation process for an inverse subordinator \(E \) given in [15, 16]. Fix an equidistant step size \(\delta \in (0,1) \) and a time horizon \(T > 0 \). To approximate \(E \) on the interval \([0,T]\), we first simulate a sample path of the subordinator \(D \), which has independent and stationary increments, by setting \(D_0 = 0 \) and then following the rule \(D_{i\delta} := D_{(i-1)\delta} + Z_i, \ i = 1,2,3,\ldots, \) with an i.i.d. sequence \(\{Z_i\}_{i \in \mathbb{N}} \) distributed as \(Z_i \overset{d}{=} D_\delta \). We stop this procedure upon finding the integer \(N \) satisfying \(T \in [D_{N\delta},D_{(N+1)\delta}) \). Note that the \(\mathbb{N} \cup \{0\} \)-valued random variable \(N \) indeed exists since \(D_t \to \infty \) as \(t \to \infty \) a.s. To generate the random variables \(\{Z_i\} \), one can use algorithms presented in Chapter 6 of [2]. Next, let \(E^\delta_t := (\min\{n \in \mathbb{N} : D_{n\delta} > t\} - 1) \delta \). The sample paths of \(E^\delta = (E^\delta_t)_{t \geq 0} \) are nondecreasing step functions with constant jump size \(\delta \) and the \(i \)th waiting time given by \(Z_i = D_{i\delta} - D_{(i-1)\delta} \). Indeed, it is easy to see that for \(n = 0,1,2,\ldots,N \), \(E^\delta_t = n\delta \) whenever \(t \in [D_{n\delta},D_{(n+1)\delta}) \). In particular, \(E^\delta_T = N\delta \). The process \(E^\delta \) efficiently approximates \(E \) as established in [10, 16]; namely, a.s.,

\[
E_t - \delta \leq E^\delta_t \leq E_t \quad \text{for all } \ t \in [0,T].
\]

Now, let \(\tau_n = D_{n\delta} \) for \(n = 0,1,\ldots,N \).

By the independence assumption between \(B \) and \(D \), we can approximate the Brownian motion \(B \) over the time steps \(\{0,\delta,2\delta,\ldots,N\delta\} \), independently of \(D \). With this in mind, define a discrete-time process \((X^\delta_n)_{n \in \{0,1,2,\ldots,N\}}\) by \(X^\delta_0 := x_0 \) and for \(n = 0,1,2,\ldots,N-1 \),

\[
X^\delta_{\tau_{n+1}} := X^\delta_{\tau_n} + H(n\delta)(\tau_{n+1} - \tau_n) + F(n\delta,X^\delta_{\tau_n})\delta + G(n\delta,X^\delta_{\tau_n})(B_{(n+1)\delta} - B_{n\delta}). \tag{7}
\]
To define a continuous-time process \((X^\delta_t)_{t \in [0,T]}\), we adopt the continuous interpolation; i.e. whenever \(s \in [\tau_n, \tau_{n+1}]\),

\[
X^\delta_s := X^\delta_{\tau_n} + \int_{\tau_n}^s H(E_{\tau_n}) \, dr + \int_{\tau_n}^s F(E_{\tau_n}, X^\delta_{\tau_n}) \, dE_r + \int_{\tau_n}^s G(E_{\tau_n}, X^\delta_{\tau_n}) \, dB_{E_r}. \tag{8}
\]

Let

\[
n_t = \max\{n \in \mathbb{N} \cup \{0\}; \tau_n \leq t\} \quad \text{for} \quad t \geq 0.
\]

Then clearly \(\tau_{n_t} \leq t < \tau_{n_t+1}\) for any \(t > 0\). Using (7) and the identity \(X^\delta_s - x_0 = \sum_{i=0}^{n_t-1} (X^\delta_{\tau_{i+1}} - X^\delta_{\tau_i}) + (X^\delta_s - X^\delta_{\tau_{n_t}})\), we can express \(X^\delta_s - x_0\) as

\[
\sum_{i=0}^{n_t-1} [H(E_{\tau_i}) (\tau_{i+1} - \tau_i) + F(E_{\tau_i}, X^\delta_{\tau_i}) \delta + G(E_{\tau_i}, X^\delta_{\tau_i}) (B_{(i+1)\delta} - B_i\delta)] + (X^\delta_s - X^\delta_{\tau_{n_t}}),
\]

where we used \(i\delta = E_{i\delta} = E_{\tau_i}\). Using (8) and the fact that \(\tau_i = \tau_{n_r}\) for any \(r \in [\tau_i, \tau_{i+1}]\), we can rewrite the latter in the convenient form

\[
X^\delta_s = x_0 + \int_0^s H(E_{\tau_{n_r}}) \, dr + \int_0^s F(E_{\tau_{n_r}}, X^\delta_{\tau_{n_r}}) \, dE_r + \int_0^s G(E_{\tau_{n_r}}, X^\delta_{\tau_{n_r}}) \, dB_{E_r}. \tag{9}
\]

We are now ready to state the first main theorem of this paper, where we assume that there exist constants \(K > 0\) and \(\theta \in (0, 1]\) such that for all \(u, v \geq 0\) and \(x \in \mathbb{R}\),

\[
\mathcal{H}_3 : |H(u) - H(v)| + |F(u, x) - F(v, x)| + |G(u, x) - G(v, x)| \leq K|u - v|^\theta (1 + |x|).
\]

Recall that an approximation process \(X^\delta\) with step size \(\delta > 0\) is said to converge strongly to the solution \(X\) uniformly on \([0, T]\) with order \(\eta \in (0, \infty)\) if there exist finite positive constants \(C\) and \(\delta_0\) such that for all \(\delta \in (0, \delta_0)\), \(\mathbb{E} \left[\sup_{0 \leq t \leq T} |X_t - X^\delta_t| \right] \leq C\delta^\eta\).

Theorem 9. Let \(X\) be the solution of SDE (3) with \(H(u, x) = H(u)\) for all \((u, x) \in [0, T] \times \mathbb{R}\) such that Assumptions \(\mathcal{H}_1, \mathcal{H}_2\) and \(\mathcal{H}_3\) hold. Assume that the Laplace exponent \(\psi\) of \(D\) is regularly varying at \(\infty\) with index \(\beta \in (0, 1)\) and that one of the following conditions holds:

(a) \(h\) is constant and \(\beta \in (1/2, 1)\);

(b) \(h\) is continuous, nondecreasing, and regularly varying at \(\infty\) with index \(q \geq 0\), and \(\beta \in ((2q + 1)/(2q + 2), 1)\).

Let \(X^\delta\) be the approximation process of Euler–Maruyama-type defined in (7)-(8). Then there exists a constant \(C > 0\) not depending on \(\delta\) such that for all \(\delta \in (0, 1)\),

\[
\mathbb{E} \left[\sup_{0 \leq s \leq T} |X_s - X^\delta_s| \right] \leq C\delta^{\min(\theta, 1/2)}.
\]

Thus, \(X^\delta\) converges strongly to \(X\) uniformly on \([0, T]\) with order \(\min\{\theta, 1/2\}\).

The proof of this theorem relies on the following lemma, which can be viewed as a generalization of Lemma 3.2 in [10] to cases when \(H \not\equiv 0\).
Lemma 10. Under the assumptions of Theorem 9, for any \(t \geq s \geq 0 \),
\[
\mathbb{E}_B[|X_t - X_s|] \leq \sqrt{2} h(E_t) \mathbb{E}_B[Y_t^{(2)}]^{1/2} \{(t-s) + (E_t - E_s)^{1/2} + (E_t - E_s)\},
\]
where \(Y_t^{(2)} \) is defined in Proposition 7.

Proof. By the Cauchy-Schwartz inequality, \(\mathbb{E}_B[|X_t - X_s|] \) is dominated above by
\[
\mathbb{E}_B \left[\int_s^t |H(E_r)|dr \right] + \mathbb{E}_B \left[\int_s^t |F(E_r, X_r)|dE_r \right] + \mathbb{E}_B \left[\int_s^t G(E_r, X_r)dB_{E_r} \right]^{1/2} \leq (t-s)h(E_t) + (E_t - E_s)h(E_t)\mathbb{E}_B[Y_t^{(1)}] + \sqrt{2}(E_t - E_s)^{1/2}h(E_t)\mathbb{E}_B[Y_t^{(2)}]^{1/2}.
\]
Jensen’s inequality gives the desired bound.

Proof of Theorem 9 Let \(Z_t := \sup_{0 \leq s \leq t} |X_s - X_s^\delta| \) for \(t \in [0, T] \). Then by the representations of \(X \) and \(X^\delta \) in (3) and (9), respectively, \(Z_t \leq I_1 + I_2 + I_3 \), where
\[
I_1 := \sup_{0 \leq s \leq t} \left| \int_0^s (H(E_r) - H(E_{\tau_{n_\delta}}))dr \right|;
\]
\[
I_2 := \sup_{0 \leq s \leq t} \left| \int_0^s (F(E_r, X_r) - F(E_{\tau_{n_\delta}}, X_{\tau_{n_\delta}}))dE_r \right|;
\]
\[
I_3 := \sup_{0 \leq s \leq t} \left| \int_0^s (G(E_r, X_r) - G(E_{\tau_{n_\delta}}, X_{\tau_{n_\delta}}))dE_r \right|.
\]

In terms of \(I_1 \), recall that \(\tau_{n_\delta} \leq r < \tau_{n_\delta+1} \) and \(0 \leq E_r - E_{\tau_{n_\delta}} \leq (n_\delta + 1)\delta - n_\delta \delta = \delta \).

This, together with the Cauchy-Schwartz inequality and Assumption \(\mathcal{H}_3 \), yields
\[
I_1^2 \leq t \int_0^t (H(E_r) - H(E_{\tau_{n_\delta}}))^2 dr \leq K^2 T^2 \delta^{2\theta} \tag{10}
\]
As for \(I_2 \), note that \(\mathbb{E}_B[I_2^2] \leq E_t \int_0^t \mathbb{E}_B \left[(F(E_r, X_r) - F(E_{\tau_{n_\delta}}, X_{\tau_{n_\delta}}))^2 \right] dE_r \) by the Cauchy-Schwartz inequality. Assumptions \(\mathcal{H}_1 \) and \(\mathcal{H}_3 \) together with the inequality
\[
|F(E_r, X_r) - F(E_{\tau_{n_\delta}}, X_{\tau_{n_\delta}})| \leq |F(E_r, X_r) - F(E_{\tau_{n_\delta}}, X_r)| + |F(E_{\tau_{n_\delta}}, X_r) - F(E_{\tau_{n_\delta}}, X_{\tau_{n_\delta}})| + |F(E_{\tau_{n_\delta}}, X_{\tau_{n_\delta}}) - F(E_{\tau_{n_\delta}}, X_{\tau_{n_\delta}})|
\]
yield
\[
\mathbb{E}_B[I_2^2] \leq 3E_T \int_0^t \mathbb{E}_B[K^2 \delta^{2\theta}(1 + |X_r|)^2 + h^2(E_{\tau_{n_\delta}})|X_r - X_{\tau_{n_\delta}}|^2 + h^2(E_{\tau_{n_\delta}})Z_{\tau_{n_\delta}}^2]dE_r
\]
\[
\leq 6E_T^2 K^2 \delta^{2\theta} \mathbb{E}_B[Y_T^{(2)}] + 3E_T h^2(E_T) \left\{ \int_0^t \mathbb{E}_B[|X_r - X_{\tau_{n_\delta}}|^2]dE_r + \int_0^t \mathbb{E}_B[Z_r^2]dE_r \right\}. \tag{11}
\]
Now, for any \(r \in [0, t] \), by Lemma 10 and the fact that \(0 \leq E_r - E_{\tau_{n_\delta}} \leq \delta \),
\[
\mathbb{E}_B[|X_r - X_{\tau_{n_\delta}}|^2] \leq 6h^2(E_T)\mathbb{E}_B[Y_T^{(2)}] \{ (r - \tau_{n_\delta})^2 + \delta + \delta^2 \}. \tag{12}
\]

13
Moreover,

\[
\int_0^t (r - \tau_{m})^2dE_r = \sum_{i=0}^{n-1} \int_{\tau_i}^{\tau_{i+1}} (r - \tau)^2dE_r + \int_{\tau_{n-1}}^t (r - \tau_{n})^2dE_r \\
\leq \delta \left(\sum_{i=0}^{n-1} (\tau_{i+1} - \tau_i)^2 + (t - \tau_{n})^2 \right) \leq 2T\delta \left(\sum_{i=0}^{n-1} (\tau_{i+1} - \tau_i) + (t - \tau_{n}) \right) \\
\leq 2T^2\delta.
\]

Combining (12) and (13) with (11) and recalling that \(\delta < 1\) gives

\[
E_B[I_2^2] \leq \xi_1(E_T)E_B[Y_T^{(2)}]\delta^{\min\{2q, 1\}} + 3E_T h^2(E_T)\int_0^t E_B[Z_r^2]dE_r,
\]

where \(\xi_1(u) := 36u^2h^4(u) + 36uh^4(u)T^2 + 6u^2K^2\).

In terms of \(I_3\), the BDG inequality (4) and a calculation similar to the previous paragraph yield

\[
E_B[I_3^2] \leq \xi_2(E_T)E_B[Y_T^{(2)}]\delta^{\min\{2q, 1\}} + 3b_2 h^2(E_T)\int_0^t E_B[Z_r^2]dE_r,
\]

where \(\xi_2(u) := b_2\xi_1(u)/u\).

Putting together estimates (10), (14) and (15) gives

\[
E_B[Z_T^2] \leq \xi_3(E_T)E_B[Y_T^{(2)}]\delta^{\min\{2q, 1\}} + 9(E_T + b_2)h^2(E_T)\int_0^t E_B[Z_r^2]dE_r,
\]

where \(\xi_3(u) := 3\xi_1(u) + 3\xi_2(u) + 3K^2T^2\). Using the Gronwall-type inequality in Chapter IX.6a, Lemma 6.3 of [8] and setting \(t = T\) gives

\[
E_B[Z_T^2] \leq \xi_3(E_T)E_B[Y_T^{(2)}]e^{9E_T(E_T + b_2)h^2(E_T)}\delta^{\min\{2q, 1\}}.
\]

Taking \(E_D\) on both sides and using the Cauchy-Schwartz inequality,

\[
E[Z_T^2] \leq E[\xi_4^4(E_T)]^{1/4}E[(Y_T^{(2)})^4]^{1/4}E \left[e^{18E_T(E_T + b_2)h^2(E_T)} \right]^{1/2} \delta^{\min\{2q, 1\}}.
\]

The desired result follows upon showing the expectations on the right hand side of (16) are finite. Now, suppose \(h\) is constant. Then it follows from Propositions 2 and 7 that \(E[\xi_4^4(E_T)] < \infty\) and \(E[(Y_T^{(2)})^4] \leq 8E[Y_T^{(8)}] < \infty\). In terms of \(E[\xi_4(E_T)]\), the exponent takes the form \(f(E_T)\) with \(f \in RV_2(\infty)\) due to Lemma 1, so the expectation is finite if \(2 < 1/(1 - \beta)\) (or equivalently, \(\beta \in (1/2, 1)\) due to Theorem 3.

On the other hand, if \(\beta \in RV_q(\infty)\) with \(q \geq 0\), then by Propositions 7, \(E[Y_T^{(8)}] < \infty\) if \(\beta \in ((2q)/(2q + 1), 1)\). Since the exponent of \(E[\xi_4(E_T)]\) takes the form \(f(E_T)\) with \(f \in RV_{2q+2}(\infty)\), the expectation is finite if \(2q + 2 < 1/(1 - \beta)\) (or equivalently, \(\beta \in ((2q + 1)/(2q + 2), 1)\) due to Theorem 3. Consequently, the result follows as long as \(\beta \in ((2q + 1)/(2q + 2), 1)\).
Remark 11. 1) The method used in the above proof provides a general idea of how to analyze the rates of strong convergence of approximation schemes for possibly larger classes of SDEs involving random time changes.

2) The above proof would not work if we allowed the coefficient H to depend on x as well. Indeed, that case would require an estimation of $E_B[I^2_r]$ in a way similar to (11), giving rise to the integral $\int_0^t E_B[|X_r - X_{\tau_n}|^2] \, dr$. This integral, due to (12), could be dominated above by a quantity involving the integral $\int_0^t (r - \tau_n)^2 \, dr$. However, unlike (13), the latter integral would not yield a bound containing δ.

3) Although we interpolated the discretized process $(X^\delta_{\tau_n})_{n \in \{0, 1, 2, \ldots, N\}}$ via the continuous interpolation in (8), it is also possible to adopt the piecewise constant interpolation $X^\delta_t := X^\delta_{\tau_n}$ as in [9]. In the latter case, the bound for Z_t will additionally contain the suprema of integrals over $[\tau_n, s]$, including $I_s := \sup_{0 \leq s \leq t} |\int_{\tau_n}^s G(E_r, X_r) \, dB_r|$. Estimation of $E_B[I^2_r]$ can be carried out with the help of a result on modulus of continuity of stochastic integrals established in [4], which only yields the convergence order $1/2 - \varepsilon$ for any $\varepsilon > 0$. See Remark 9(3) of [9] for details.

We now consider SDE (3) when not only $H(u, x)$ but also $G(u, x)$ is independent of x. The order of convergence cannot be increased if we use the Euler–Maruyama-type approximation since the term $E_B[I^2_r]$ in the proof of Theorem 9 remains the same and gives a bound containing $\delta^{\min(2, \theta)}$. In order to estimate $E_B[I^2_r]$ in a way that a bound involves the better rate $\delta^{\min(2, \theta)}$ ($= \delta^{2\theta}$), we employ a Milstein-type approach, which assumes some differentiability on F and uses the Itô formula to expand it. In addition to Assumptions \mathcal{H}_1 and \mathcal{H}_2, we assume that there exist constants $K > 0$ and $\theta \in (0, 1]$ and a continuous, nondecreasing function $k(u) : [0, \infty) \to (0, \infty)$ such that for all $u, v \geq 0$ and $x \in \mathbb{R}$,

$$\mathcal{H}_4: \quad F \in C^{1, 2};$$

- $|H(u) - H(v)| + |G(u) - G(v)| \leq K|u - v|^\theta$;
- $|F_u(u, x)| + |F_x H(u, x)| + |F_x F(u, x)| + |F_x G(u, x)| + |F_{xx} G^2(u, x)|$

$$\leq k(u)(1 + |x|).$$

Here, we introduce a new function $k(u)$ in addition to the already given function $h(u)$ since $k(u)$ and $h(u)$ will differently affect the range of β values for which our argument works. Note that even though our approach is of Milstein-type, since $G_x(u, x) \equiv 0$ when $G(u, x)$ does not depend on x, the approximation scheme itself is no different from the Euler–Maruyama-type scheme. In this restrictive setting with $\theta > 1/2$, the order of strong convergence improves as the following theorem shows.

Theorem 12. Let X be the solution of SDE (3) with $H(u, x) = H(u)$ and $G(u, x) = G(u)$ for all $(u, x) \in [0, T] \times \mathbb{R}$ such that Assumptions \mathcal{H}_1, \mathcal{H}_2 and \mathcal{H}_4 hold. Assume further that one of the following conditions holds:

(a) h and k are constant;

(b) h and k are continuous and nondecreasing, h and $\log k$ are regularly varying at ∞ with indices $q \geq 0$ and $\tilde{q} \geq 0$, respectively, and the Laplace exponent ψ of D is regularly varying at ∞ with index $\beta \in ((q_\ast - 1)/q_\ast, 1)$, where $q_\ast := \max\{2q + 1, \tilde{q}\}$.

15
Let X^δ be the approximation process of Euler–Maruyama-type defined in (7)-(8). Then there exists a constant $C > 0$ not depending on δ such that for all $\delta \in (0, 1)$,

$$
\mathbb{E} \left[\sup_{0 \leq s \leq T} |X_s - X^\delta_s| \right] \leq C\delta^\theta.
$$

Thus, X^δ converges strongly to X uniformly on $[0,T]$ with order θ.

Proof. Using (3) and expanding the integrand of the dE_r integral via the Itô formula,

$$
X_{\tau_{n+1}} = X_{\tau_n} + \int_{\tau_n}^{\tau_{n+1}} H(E_r)dr + \int_{\tau_n}^{\tau_{n+1}} F(E_{\tau_n}, X_{\tau_n})dE_r + \int_{\tau_n}^{\tau_{n+1}} G(E_r)dB_{E_r}
$$

$$
+ R_{(\tau_n, \tau_{n+1})};
$$

$$
R_{(a,b)} := \int_a^b \int_a^{r_2} F_x Hdr_1dE_{r_2} + \int_a^b \int_a^{r_2} \left(F_u + F_x F + \frac{1}{2} F_{xx} G^2 \right) dE_{r_1}dE_{r_2}
$$

$$
+ \int_a^b \int_a^{r_2} F_x GdB_{E_{r_1}}dE_{r_2},
$$

with all the integrands evaluated at (E_{τ_1}, X_{τ_1}). This representation together with representation (9) for X^δ gives $Z_t := \sup_{0 \leq s \leq t} |X_s - X^\delta_s| \leq I_1 + I_2 + I_3 + I_4$, where

$$
I_1 := \sup_{0 \leq s \leq t} \left| \int_0^s \{H(E_r) - H(E_{\tau_{nr}})\}dr \right|;
$$

$$
I_2 := \sup_{0 \leq s \leq t} \left| \int_0^s \{F(E_{\tau_{nr}}, X_{\tau_n}) - F(E_{\tau_{nr}}, X^\delta_{\tau_n})\}dE_r \right|;
$$

$$
I_3 := \sup_{0 \leq s \leq t} \left| \int_0^s \{G(E_r) - G(E_{\tau_{nr}})\}dB_{E_r} \right|;\quad I_4 := \sup_{0 \leq s \leq t} \left| \sum_{i=0}^{n_s-1} R_{(\tau_i, \tau_{i+1})} + R_{(\tau_n, s)} \right|.
$$

It is easy to observe that

$$
I_1 \leq KT\delta^\theta;\quad \mathbb{E}_B[I_2] \leq h(E_T) \int_0^t \mathbb{E}_B[Z_r]dE_r;\quad \mathbb{E}_B[I_3] \leq \mathbb{E}_B[I_3^2]^{1/2} \leq 2KE_T\delta^\theta. \quad (17)
$$

The main technical part concerns the remainder term I_4, which contains double integrals involving three different integrators: $dr_1dE_{r_2}, dE_{r_1}dE_{r_2}$ and $dB_{E_{r_1}}dE_{r_2}$. We will deal with them one by one below.

In terms of the term driven by $dr_1dE_{r_2}$, by Assumption \mathcal{H}_4 and a discussion similar to (13),

$$
\mathbb{E}_B \left[\sup_{0 \leq s \leq t} \left| \int_0^s \int_{\tau_{nr_2}}^{r_2} F_x H(E_{r_1}, X_{r_1})dr_1dE_{r_2} \right| \right] \leq k(E_T)\mathbb{E}_B[Y_T^{(1)}] \int_0^t (r_2 - \tau_{nr_2})dE_{r_2}
$$

$$
\leq Tk(E_T)\mathbb{E}_B[Y_T^{(1)}]\delta, \quad (18)
$$

where $Y_T^{(1)}$ is defined in Proposition 7. Similarly, as for the second integrator $dE_{r_1}dE_{r_2}$,

$$
\mathbb{E}_B \left[\sup_{0 \leq s \leq t} \left| \int_0^s \int_{\tau_{nr_2}}^{r_2} \left\{ F_u(E_{r_1}, X_{r_1}) + F_x F(E_{r_1}, X_{r_1}) + \frac{1}{2} F_{xx} G^2(E_{r_1}, X_{r_1}) \right\} dE_{r_1}dE_{r_2} \right| \right]
$$

$$
\leq \frac{5}{2} k(E_T)\mathbb{E}_B[Y_T^{(1)}] \int_0^t \int_{\tau_{nr_2}}^{r_2} dE_{r_1}dE_{r_2} \leq \frac{5}{2} E_T k(E_T)\mathbb{E}_B[Y_T^{(1)}]\delta. \quad (19)
$$
On the other hand, the term driven by $dB_{E_{r_1}} dB_{E_{r_2}}$ requires a careful discussion. We need to estimate $\mathbb{E}_B[\sup_{0 \leq s \leq t} |M_{n_s} + U_s|]$, where $M_0 := 0$, $M_n := \sum_{i=0}^{n-1} L_i$ for $n \geq 1$,

$$L_i := \int_{\tau_i}^{\tau_{i+1}} \int_{\tau_i}^{\tau_{i+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} dE_{E_{r_2}}; \quad U_i := \int_{\tau_{n_s}}^{\tau_{n_s+1}} \int_{\tau_{n_s}}^{\tau_{n_s+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} dE_{E_{r_2}}.$$

We first verify that the stochastic integrals L_i, $i = 0, 1, \ldots, n_t - 1$, are uncorrelated with respect to \mathbb{P}_B. Let $i < j$, so that $\tau_{i+1} \leq \tau_j$. Observe that $\mathbb{E}_B[L_i L_j] = \mathbb{E}_B[L_i \mathbb{E}_B[L_j | F_{E_{r_1}}]]$. By assumption and estimate (6),

$$\mathbb{E}_B \left[\int_{\tau_j}^{\tau_{j+1}} \left| \int_{\tau_j}^{\tau_{j+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} \right|^2 dE_{E_{r_2}} \right] \leq \delta^2 k^2(E_t) \mathbb{E}_B[Y_T^{(2)}] < \infty.$$

Thus, $\mathbb{E}_B[L_j | F_{E_{r_1}}] = \int_{\tau_j}^{\tau_{j+1}} \mathbb{E}_B \left[\int_{\tau_j}^{\tau_{j+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} \right| F_{E_{r_1}} \right] dE_{E_{r_2}} = 0$ due to the conditional Fubini theorem (Theorem 27.17 in [26]) and the martingale property, thereby yielding the uncorrelatedness. On the other hand, since E has continuous paths, the change-of-variables formula (Theorem 3.1 in [13]) implies that M_n can be expressed as

$$\sum_{i=0}^{n-1} \int_{\tau_i}^{\tau_{i+1}} \int_{\tau_i}^{\tau_{i+1}} F_x G(r_1, X_{D_{r_1}}) dB_{r_1} dB_{r_2}. $$

The latter representation, together with the proofs of Lemmas 5.7.1 and 10.8.1 of [12], shows that the discrete-time process $(M_n)_{n \geq 0}$ is a square-integrable, $(\mathcal{F}_n)_n, \mathbb{P}_B$-martingale starting at 0. Therefore, by the BDG inequality (4) and the uncorrelatedness of L_i’s, $\mathbb{E}_B[\sup_{0 \leq s \leq t} M_{n_s}^2] \leq b_2 \sum_{i=0}^{n_t-1} \mathbb{E}_B[L_i^2]$; hence, by the Cauchy-Schwartz inequality,

$$\mathbb{E}_B \left[\sup_{0 \leq s \leq t} M_{n_s}^2 \right] \leq b_2 \delta \sum_{i=0}^{n_t-1} \int_{\tau_i}^{\tau_{i+1}} \mathbb{E}_B \left[\int_{\tau_i}^{\tau_{i+1}} F_x G(E_{r_1}, X_{r_1}) \right]^2 dE_{E_{r_1}} dE_{E_{r_2}} $$

$$\leq 2b_2 \delta k^2(E_T) \mathbb{E}_B[Y_T^{(2)}] \sum_{i=0}^{n_t-1} \int_{\tau_i}^{\tau_{i+1}} (E_{r_2} - E_{r_1}) dE_{E_{r_2}} \leq 2b_2 E_T k^2(E_T) \mathbb{E}_B[Y_T^{(2)}] \delta^2. \quad (20)$$

On the other hand,

$$\mathbb{E}_B \left[\sup_{0 \leq s \leq t} U_s \right] \leq \mathbb{E}_B \left[\sup_{0 \leq s \leq t} (E_s - E_{n_s}) \int_{\tau_{n_s}}^{\tau_{n_s+1}} \int_{\tau_{n_s}}^{\tau_{n_s+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} \right]^2 dE_{E_{r_2}} $$

$$\leq \delta \int_{0}^{t} \mathbb{E}_B \left[\sup_{s \in [r_2, t]} \left| \int_{\tau_{n_s}}^{\tau_{n_s+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} \right|^2 dE_{E_{r_2}}. \quad (21)$$

Since $\{(\tau_{n_2}, r_2) : r_2 \leq s \leq t \} \subset \{(\tau_{n_2}, u) : \tau_{n_2} \leq u \leq r_2 \}$, the integrand

$$\mathbb{E}_B \left[\sup_{s \in [r_2, t]} \left| \int_{\tau_{n_s}}^{\tau_{n_s+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} \right|^2 \right] \leq \mathbb{E}_B \left[\sup_{u \in [\tau_{n_2}, r_2]} \left| \int_{\tau_{n_2}}^{\tau_{n_2+1}} F_x G(E_{r_1}, X_{r_1}) dE_{E_{r_1}} \right|^2 \right]$$

$$\leq b_2 \mathbb{E}_B \left[\int_{\tau_{n_2}}^{\tau_{n_2+1}} |F_x G(E_{r_1}, X_{r_1})|^2 dE_{E_{r_1}} \right] \leq 2b_2 k^2(E_T) \mathbb{E}_B[Y_T^{(2)}] \delta. $$

Hence, (21) is dominated above by $2b_2 E_T k^2(E_T) \mathbb{E}_B[Y_T^{(2)}] \delta^2$. Putting this together with (20) yields

$$\mathbb{E}_B \left[\sup_{0 \leq s \leq t} |M_{n_s} + U_s| \right] \leq 8b_2 E_T k^2(E_T) \mathbb{E}_B[Y_T^{(2)}] \delta^2. \quad (22)
By estimates (18), (19) and (22),
\[
\mathbb{E}_B[I_4] \leq \left\{ T\mathbb{E}_B[Y_T^{(1)}] + \frac{5}{2} E_T \mathbb{E}_B[Y_T^{(1)}] + (8b_2E_T \mathbb{E}_B[Y_T^{(2)}])^{1/2} \right\} k(E_T) \delta. \tag{23}
\]

Now, combining (17) and (23) with \(\mathbb{E}_B[Y_T^{(1)}] \leq \sqrt{2} \mathbb{E}_B[Y_T^{(2)}]^{1/2} \) yields \(\mathbb{E}_B[Z_t] \leq \xi_4(E_T) \mathbb{E}_B[Y_T^{(2)}]^{1/2} \delta^q + h(E_T) \int_0^t \mathbb{E}_B[Z_r] \, dE_r \), where \(\xi_4(u) \equiv KT + 2Ku + (\sqrt{2}T + (5\sqrt{2}/2)u + (8b_2u)^{1/2})k(u) \). Applying the Gronwall-type inequality, taking \(\mathbb{E}_D \) on both sides, and using the Cauchy-Schwartz inequality gives
\[
\mathbb{E}[Z_T] \leq \mathbb{E}[\xi_4^4(E_T)]^{1/4} \mathbb{E}[(Y_T^{(2)})^2]^{1/4} \mathbb{E}[e^{2E_T h(E_T)}]^{1/2} \delta^q.
\]

If \(h \) and \(k \) are constant, then the latter bound is finite due to Propositions 2 and 7, thereby yielding the desired result. Suppose now that \(h \) and \(\log k \) are regularly varying and note that the function \(k^q(u) \) involved in \(\xi_4(u) \) can be expressed as \(e^{4 \log k(u)} \). Then Theorem 3 and Proposition 7 together guarantee the finiteness of the latter bound provided that \(\beta > q/(q + 1) \), \(\beta > (\hat{q} - 1)/\hat{q} \) and \(\beta > 2q/(2q + 1) \), which requires the value of \(\beta \) be restricted as stated in the theorem.

\[\square \]

Remark 13. In the above proof when \(h \) and \(\log k \) are regularly varying, analyzing the first moment \(\mathbb{E}_B[Z_T] \) instead of the second moment \(\mathbb{E}_B[Z_T^2] \) is crucial since estimation of \(\mathbb{E}_B[Z_T^2] \) would give us a similar convergence result with \(q_* \), replaced by the larger value \(\hat{q}_* = \max\{2q + 2, \hat{q}\} \), yielding the result with a narrower range of \(\beta \) values. Indeed, if we attempted to deal with the second moment \(\mathbb{E}_B[Z_T^2] \), we would rely on the estimate \(\mathbb{E}_B[I_4^2] \leq E_T h^2(E_T) \int_0^t \mathbb{E}_B[Z_r^2] \, dE_r \) instead of the estimate for \(\mathbb{E}_B[I_2^2] \) appearing in (17). This would eventually lead to a bound for \(\mathbb{E}[Z_T^2] \) containing a quantity of the form \(\mathbb{E}[e^{E_T^2 h(E_T)}] \), which is finite for \(\beta > (2q + 2)/(2q + 2) \) only.

5 Rates of convergence for Itô–Taylor-type schemes when \(H \equiv 0 \)

This section answers Question (B) raised in Section 1. We consider the time-changed SDE (3) in which a drift with the non-random integrator is not present (i.e. \(H \equiv 0 \)) but in which the coefficient \(G(u, x) \) depends on \(x \), unlike Theorem 12. Theorem 3.1 of [10] established that the rate of strong convergence for the Euler–Maruyama-type scheme for such an SDE is \(1/2 - \varepsilon \) for any small \(\varepsilon \). A natural question to ask next is whether we can improve the rate of convergence by adopting an approximation scheme of Milstein-type or more general Itô–Taylor-type. As briefly explained in Section 1, the method used in [10] based on the duality principle between SDEs (2) and (1) with \(H \equiv 0 \) does not help improve the rate of convergence. This is because that method relies on the error estimate for the approximation of \(E \), which would remain unchanged even with a higher order scheme.

Below we employ the approach used in the previous section to establish the rate of strong convergence of an Itô–Taylor-type scheme. This is done by directly estimating the error for the approximation of \(X \), thereby avoiding the separate analysis of the error for the approximation of \(E \). However, we first discuss a Milstein-type scheme (which is a
special case of the Itô–Taylor-type scheme) in the hope that the simplest case gives the reader a clear understanding of the complicated notations and discussions of the more general case. Since the arguments we give in this section are similar to the ones given in the proof of Theorem 12, we only provide a sketch for the proof of each theorem. For the Milstein and Itô–Taylor schemes for classical Itô SDEs (without random time changes), consult Chapters 5 and 10 of [12].

In addition to Assumptions \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \), assume that there exists a continuous, non-decreasing function \(k : [0, \infty) \to (0, \infty) \) such that for all \(x, y \in \mathbb{R} \) and \(u \geq 0 \),

\[\mathcal{H}_5: \quad \bullet \quad F, G, GG_x \in C^{1,2}; \]
\[\bullet \quad |(GG_x)(u, x) - (GG_x)(u, y)| \leq h(u)|x - y|; \]
\[\bullet \quad |(GG_x)(u, x)| \leq h(u)(1 + |x|); \]
\[\bullet \quad |f_\alpha(u, x)| \leq k(u)(1 + |x|), \]

where \(h \) is the function appearing in Assumptions \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \), and \(f_\alpha \) reads each integrand appearing in (26) below. First, approximate \(E \) by \(E^\delta \) as in Section 4. Next, define a discrete-time process \((X^\delta_n)_{n \in \{0, 1, \ldots, N\}} \) by \(X_0^\delta := x_0 \) and

\[
X^\delta_{n+1} := X^\delta_n + F(n\delta, X^\delta_n)\delta + G(n\delta, X^\delta_n)(B_{(n+1)\delta} - B_{n\delta}) + \frac{1}{2}(GG_x)(n\delta, X^\delta_n)((B_{(n+1)\delta} - B_{n\delta})^2 - (\tau_{n+1} - \tau_n)).
\]

We adopt continuous interpolation as is (8) but with an additional term corresponding to the integral of \(GG_x \) included. As in representation (9) for the Euler–Maruyama-type scheme, the Milstein-type scheme defined by (24) satisfies

\[
X^\delta_s = x_0 + \int_0^s F(E_{\tau_{nr}}, X^\delta_{\tau_{nr}})dE_r + \int_0^s G(E_{\tau_{nr}}, X^\delta_{\tau_{nr}})dB_E + \int_0^s \int_{\tau_{nr}}^{\tau_{n+1}} (GG_x)(E_{\tau_{nr}}, X^\delta_{\tau_{nr}})dB_{E}dE_r.
\]

Theorem 14. Let \(X \) be the solution of SDE (3) with \(H \equiv 0 \) such that Assumptions \(\mathcal{H}_1, \mathcal{H}_2 \) and \(\mathcal{H}_5 \) hold. Assume that the Laplace exponent \(\psi \) of \(D \) is regularly varying at \(\infty \) with index \(\beta \in (0, 1) \) and that one of the following conditions holds:

(a) \(h \) and \(k \) are constant and \(\beta \in (1/2, 1) \);

(b) \(h \) and \(k \) are continuous and nondecreasing, \(h \) and \(\log k \) are regularly varying at \(\infty \) with indices \(q \geq 0 \) and \(\tilde{q} \geq 0 \), respectively, and \(\beta \in ((q_{**} - 1)/q_{**}, 1) \), where \(q_{**} := \max\{2q + 2, \tilde{q}\} \).

Let \(X^\delta \) be the approximation process of Milstein-type defined in (24) with continuous interpolation. Then there exists a constant \(C > 0 \) not depending on \(\delta \) such that for all \(\delta \in (0, 1) \), \(E \left[\sup_{0 \leq s \leq t} |X_s - X^\delta_s| \right] \leq C\delta \). Thus, \(X^\delta \) converges strongly to \(X \) uniformly on \([0, T]\) with order 1.
Proof. By SDE (3) with $H \equiv 0$ and the Itô formula,

$$X_{\tau_{n+1}} = X_{\tau_n} + \int_{\tau_n}^{\tau_{n+1}} F(E_{\tau_r}, X_{\tau_r}) \, dE_r + \int_{\tau_n}^{\tau_{n+1}} G(E_{\tau_r}, X_{\tau_r}) \, dB_{E_r}$$

$$+ \int_{\tau_n}^{\tau_{n+1}} \int_{\tau_n}^{r_2} (GG_x)(E_{\tau_r}, X_{\tau_r}) \, dB_{E_{r_1}} \, dB_{E_{r_2}} + R(\tau_n, \tau_{n+1});$$

with all the integrands for $R_{(a,b)}$ evaluated at (E_{τ_1}, X_{τ_1}). From this representation together with representation (25) for X^δ, it follows that $Z_t := \sup_{0 \leq s \leq t} |X_s - X^\delta_s| \leq I_1 + I_2 + I_3 + I_4$, where

$$I_1 := \sup_{0 \leq s \leq t} \left| \int_0^s \{ F(E_{\tau_{\tau_r}}, X_{\tau_{\tau_r}}) - F(E_{\tau_{\tau_r}}, X^\delta_{\tau_{\tau_r}})\} \, dE_r \right|;$$

$$I_2 := \sup_{0 \leq s \leq t} \left| \int_0^s \{ G(E_{\tau_{\tau_r}}, X_{\tau_{\tau_r}}) - G(E_{\tau_{\tau_r}}, X^\delta_{\tau_{\tau_r}})\} \, dB_{E_r} \right|;$$

$$I_3 := \sup_{0 \leq s \leq t} \left| \int_0^s \int_{\tau_{\tau_r}}^{\tau_{\tau_{\tau_r}}} \{ GG_x(E_{\tau_{\tau_r}}, X_{\tau_{\tau_r}}) - GG_x(E_{\tau_{\tau_r}}, X^\delta_{\tau_{\tau_r}})\} \, dB_{E_{r_1}} \, dB_{E_{r_2}} \right|;$$

$$I_4 := \sup_{0 \leq s \leq t} \left| \sum_{i=0}^{n-1} R(\tau_i, \tau_{i+1}) + R(\tau_{n-1}, s) \right| .$$

Arguments as in the proofs of Theorems 9 and 12 yield

$$\mathbb{E}_B[I_1^2] \leq E_T h^2(E_T) \int_0^t \mathbb{E}_B[Z_r^2] \, dE_r; \quad \mathbb{E}_B[I_2^2] \leq b_2 h^2(E_T) \int_0^t \mathbb{E}_B[Z_r^2] \, dE_r;$$

$$\mathbb{E}_B[I_3^2] \leq b_2 \delta h^2(E_T) \int_0^t \mathbb{E}_B[Z_r^2] \, dE_r; \quad \mathbb{E}_B[I_4^2] \leq \xi_5(E_T) \mathbb{E}_B[Y_T^{(2)}]\delta^2 ,$$

where $\xi_5(u) := c(u+u^2)k^2(u)$ with some constant $c > 0$ and $Y_T^{(2)}$ is defined in Proposition 7. (To estimate $\mathbb{E}_B[I_4^2]$, recall the methods used for obtaining (19) and (22).)

Thus, $\mathbb{E}_B[Z_T^2] \leq 4 \xi_5(E_T) \mathbb{E}_B[Y_T^{(2)}] \delta^2 + 4h^2(E_T)(E_T + 2b_2) \int_0^t \mathbb{E}_B[Z_r^2] \, dE_r$, which implies $\mathbb{E}_B[Z_T^2] \leq 4 \xi_5(E_T) \mathbb{E}_B[Y_T^{(2)}] e^{4h^2(E_T)(E_T + 2b_2)E_T} \delta^2$. The desired result now follows as in the last part of the proof of Theorem 12.

To discuss a general Itô–Taylor-type scheme, we recall Chapters 5 and 9 of [12] and introduce shorthand notations for the following operators:

$$L^0 := \frac{\partial}{\partial u} + F \frac{\partial}{\partial x} + \frac{1}{2} G^2 \frac{\partial^2}{\partial x^2}; \quad L^1 := G \frac{\partial}{\partial x} .$$
For a multi-index $\alpha = (j_1, \ldots, j_\ell)$ with $j_i \in \{0,1\}$ for $i = 1, \ldots, \ell$ and $\ell \geq 1$, let

$$f_\alpha := L^{j_1} \cdots L^{j_{\ell-1}} G^{j_\ell} \text{ if } \ell \geq 2 \quad \text{and} \quad f_\alpha := G^{j_1} \text{ if } \ell = 1,$$

where $G^0 := F$ and $G^1 := G$. Define the multiple integral of the function f_α by

$$I_\alpha(f_\alpha(E_r, X_r))_{a,b} := \int_{a \leq r_1 \leq \ldots \leq r_\ell \leq b} f_\alpha(E_{r_1}, X_{r_1}) dB^{(j_1)}_{E_{r_1}} \cdots dB^{(j_\ell)}_{E_{r_\ell}}$$

with $dB^{(0)}_{E_r} := dE_r$ and $dB^{(1)}_{E_r} := dE_r$. Let v denote the multi-index with length $\ell = 0$, and let $f_v(u, x) = x$ and $I_v(f)_{a,b} = f(a)$. Also, for each γ such that 2γ is a positive integer (so that $\gamma = 0.5, 1, 1.5, 2, \ldots$), let

$$\mathcal{A}_\gamma := \left\{ \alpha : \ell(\alpha) + n(\alpha) \leq 2\gamma \text{ or } \ell(\alpha) = n(\alpha) = \gamma + \frac{1}{2} \right\},$$

where $\ell(\alpha)$ denotes the length of α and $n(\alpha)$ denotes the number of the zero components of α.

Define a discrete-time process $(X^\delta_{\tau_n})_{n \in \{0,1,2,\ldots,N\}}$ by $X^\delta_0 := x_0$ and

$$X^\delta_{\tau_{n+1}} := X^\delta_{\tau_n} + \sum_{\alpha \in \mathcal{A}_\gamma \setminus \{v\}} I_\alpha(f_\alpha(E_{\tau_n}, X^\delta_{\tau_n}))_{\tau_n, \tau_{n+1}}; \quad (27)$$

with continuous interpolation as in the Milstein-type scheme but with some additional terms included. For the solution X of SDE (3) with $H \equiv 0$, a repeated use of the Itô formula yields

$$X_t = x_0 + \sum_{\alpha \in \mathcal{A}_\gamma \setminus \{v\}} \left(\sum_{i=0}^{n_t-1} I_\alpha(f_\alpha(E_{\tau_i}, X_{\tau_i}))_{\tau_i, \tau_{i+1}} + I_\alpha(f_\alpha(E_{\tau_{n_t}}, X_{\tau_{n_t}}))_{\tau_{n_t}, t} \right)$$

$$+ \sum_{\alpha \in \mathcal{R}(\mathcal{A}_\gamma)} \left(\sum_{i=0}^{n_t-1} I_\alpha(f_\alpha(E_{\tau_i}, X_{\tau_i}))_{\tau_i, \tau_{i+1}} + I_\alpha(f_\alpha(E_{\tau_{n_t}}, X_{\tau_{n_t}}))_{\tau_{n_t}, t} \right),$$

where $\mathcal{R}(\mathcal{A}_\gamma)$ is the remainder set of multi-indices given by

$$\mathcal{R}(\mathcal{A}_\gamma) := \{ \alpha \notin \mathcal{A}_\gamma, \text{ and } -\alpha := (j_2, \ldots, j_\ell) \in \mathcal{A}_\gamma \}.$$
Theorem 15. Let X be the solution of SDE (3) with $H \equiv 0$ such that Assumption H_6 holds with h_α and $\log k_\alpha$ being regularly varying at ∞ with indices $q_\alpha \geq 0$ and $\tilde{q}_\alpha \geq 0$, respectively. Assume further that the Laplace exponent ψ of D is regularly varying at ∞ with index $\beta \in (0,1)$. Let X^δ be the approximation process of Itô–Taylor-type defined in (27) with continuous interpolation. If $\beta \in ((q_{***} - 1)/q_{***}, 1)$, where $q_{***} := \max\{\max_{\alpha \in A_\gamma \setminus \nu} (2q_\alpha + 2), \max_{\alpha \in \mathcal{R}(A_\gamma)} \tilde{q}_\alpha\}$, then there exists a constant $C > 0$ not depending on δ such that for all $\delta \in (0,1)$, $\mathbb{E} \left[\sup_{0 \leq t \leq \tau} |X_s - X^\delta_s| \right] \leq C\delta^\gamma$. Thus, X^δ converges strongly to X uniformly on $[0,T]$ with order γ. Moreover, if both h_α and k_α are constant for all $\alpha \in A_\gamma \setminus \nu$ and $\alpha \in \mathcal{R}(A_\gamma)$, respectively, the same conclusion holds as long as $\beta \in (1/2,1)$.

Our proof for this theorem relies on the following two lemmas that help determine a bound for an integral involving f_α with $\alpha \in \mathcal{R}(A_\gamma)$ in the way in which $\mathbb{E}_B[I_4]$ in the proof of Theorem 12 was estimated. The two lemmas can be regarded as generalizations of Lemmas 5.7.3 and 10.8.1 in [12], respectively, and we omit the proofs since they are similar to the ones given in [12]. Note that we will only need the second lemma in order to prove Theorem 15, but we list the first lemma as well since it plays an important role in proving the second lemma. In the statements of the lemmas, we assume f is a given function for which all multiple integrals appearing in the proofs are well-defined.

Lemma 16. For any multi-index α and $r \geq 0$,

$$
\mathbb{E}_B \left[\sup_{\tau_n, \delta \leq r} I_\alpha(f(E_\tau, X_\delta))^{2r_{n,s}} \right] \leq \mathbb{E}_B \left[\sup_{\tau_n, \delta \leq r} |f(E_{\sigma}, X_\sigma)|^2 \right] b_2^{\ell(\alpha) - n(\alpha)\delta^{\ell(\alpha) + n(\alpha)}}.
$$

Lemma 17. For any multi-index α and $t \geq 0$,

$$
\mathbb{E}_B \left[\sup_{0 \leq s \leq t} \left| \sum_{i=0}^{n_s - 1} I_\alpha(f(E_{\tau_i}, X_{\delta}))_{\tau_i, \tau_{i+1}} + I_\alpha(f(E_{\tau}, X_{\delta}))_{\tau_n, s} \right|^2 \right]
$$

$$
\leq (4b_2^{\ell(\alpha) - n(\alpha) + 1} + E_t)\delta^{\phi(\alpha)} \int_0^t \mathbb{E}_B \left[\sup_{0 \leq \sigma \leq r} |f(E_{\sigma}, X_{\sigma})|^2 \right] dE_r,
$$

where $\phi(\alpha) := \ell(\alpha) + n(\alpha) - 1$ if $\ell(\alpha) \neq n(\alpha)$, and $\phi(\alpha) := 2\ell(\alpha) - 2$ if $\ell(\alpha) = n(\alpha)$.

Proof of Theorem 15 Let $Z_t^2 := \sup_{0 \leq s \leq t} |X_s - X^\delta_s|^2$. By the Cauchy-Schwartz inequality,

$$
Z_t^2 \leq 2|A_\gamma| \sum_{\alpha \in A_\gamma \setminus \nu} \sup_{0 \leq s \leq t} \left| \sum_{i=0}^{n_s - 1} I_\alpha \left(f_\alpha(E_{\tau_i}, X_{\delta}) - f_\alpha(E_{\tau_i}, X^\delta_{\tau_i}) \right)_{\tau_i, \tau_{i+1}} \right|^2 + I_\alpha \left(f_\alpha(E_{\tau_n}, X_{\delta}) - f_\alpha(E_{\tau_n}, X^\delta_{\tau_n}) \right)_{\tau_n, s}^2 + 2|\mathcal{R}(A_\gamma)| \sum_{\alpha \in \mathcal{R}(A_\gamma)} \sup_{0 \leq s \leq t} \left| \sum_{i=0}^{n_s - 1} I_\alpha \left(f_\alpha(E_{\tau}, X_{\delta}) \right)_{\tau_i, \tau_{i+1}} + I_\alpha \left(f_\alpha(E_{\tau}, X_{\delta}) \right)_{\tau_n, s} \right|^2.
$$

By Assumption H_6, $\sup_{0 \leq s \leq t} |f_\alpha(E_{\sigma}, X_{\sigma}) - f_\alpha(E_{\sigma}, X^\delta_{\sigma})|^2 \leq h_\alpha^2(E_{\tau})Z_t^2$ for all $\alpha \in A_\gamma \setminus \nu$ and $\sup_{0 \leq s \leq t} |f_\alpha(E_{\sigma}, X_{\sigma})|^2 \leq 2k_\alpha^2(E_{\tau})Y_t^{(2)}$ for all $\alpha \in \mathcal{R}(A_\gamma)$. By an argument analogous
to the one given for obtaining (19) and (22), together with Lemma 17 and the inequality \(\ell(\alpha) - n(\alpha) + 1 \leq 2\gamma + 2 \) valid for any \(\alpha \in \mathcal{A}_\gamma \cup \mathcal{R}(\mathcal{A}_\gamma) \),

\[
\mathbb{E}_B[Z_T^2] \leq 2(4b_2^{2\gamma+2} + E_T)|\mathcal{A}_\gamma| \sum_{\alpha \in \mathcal{A}_\gamma \setminus \nu} h_\alpha^2(E_\gamma)\delta^{\phi(\alpha)} \int_0^T \mathbb{E}_B[Z_r^2] dE_r \\
+ 4E_T(4b_2^{2\gamma+2} + E_T)\mathbb{E}_B[Y_T^{(2)}]|\mathcal{R}(\mathcal{A}_\gamma)| \sum_{\alpha \in \mathcal{R}(\mathcal{A}_\gamma)} h_\alpha^2(E_\gamma)\delta^{\phi(\alpha)},
\]

where \(Y_T^{(2)} \) is defined in Proposition 7. Note that the least value of \(\phi(\alpha) \) for \(\alpha \in \mathcal{R}(\mathcal{A}_\gamma) \) is \(2\gamma \), which is achieved when \(\ell(\alpha-) + n(\alpha-) = 2\gamma \), \(j_0 = 1 \) and \(\ell(\alpha) \neq n(\alpha) \). Thus, by the Gronwall-type inequality,

\[
\mathbb{E}_B[Z_T^2] \leq cE_T(4b_2^{2\gamma+2} + E_T)\mathbb{E}_B[Y_T^{(2)}]\xi_6(E_T)\xi_7(E_T)e^{cE_T(2b_2^{2\gamma+2} + E_T)E_T\delta^{2\gamma}},
\]

where \(c > 0 \) is a constant, \(\xi_6(u) := \sum_{\alpha \in \mathcal{R}(\mathcal{A}_\gamma)} k_\alpha^2(u) = \sum_{\alpha \in \mathcal{R}(\mathcal{A}_\gamma)} e^{2\log h_\alpha(u)} \), and \(\xi_7(u) := \sum_{\alpha \in \mathcal{A}_\gamma \setminus \nu} h_\alpha^2(u) \). The desired results now follow as in the last paragraph of the proof of Theorem 12.

\[\square\]

6 Simulations

This section presents two numerical examples which verify the rates of convergence obtained in Theorems 9 and 12 in Section 4, respectively. We also numerically check the mean-square stability as \(t \to \infty \) of an approximated solution to SDE (3) with coefficients satisfying extra conditions.

We use a 0.8-stable subordinator \(D \) and simulate a sample path of \(X^\delta \) on a time interval \([0, T]\) as follows. First, simulate \(D \) at the discretization points \(\{0, \delta, 2\delta, \cdots\} \) and stop this procedure upon finding an integer \(N \) satisfying \(T \in [D(N\delta), D((N+1)\delta)) \). Second, simulate the Brownian motion \(B \) at the discretization points \(\{0, \delta, 2\delta, \cdots, N\delta\} \). Finally, calculate \(X^\delta_{n\delta} \) for \(n = 0, 1, 2, \cdots, N - 1 \) using the approximation scheme in (7) and let \(X^\delta_t := X^\delta_{n\delta} \) whenever \(t \in [D_{n\delta}, D_{(n+1)\delta}) \).

Consider the two SDEs

\[
X_t = 1 + \int_0^t \sqrt{1 + E_r} \, dr + \int_0^t \sqrt{1 + E_r} X_r \, dB_r + \int_0^t \sqrt{1 + E_r} X_r \, dE_r; \quad (28)
\]

\[
Y_t = 1 + \int_0^t \sqrt{1 + E_r} \, dr + \int_0^t \sqrt{1 + E_r} Y_r \, dB_r + \int_0^t \sqrt{1 + E_r} Y_r \, dE_r; \quad (29)
\]

It is easy to verify that the coefficients of SDEs (28) and (29) satisfy the conditions of Theorems 9 and 12 with \(\theta = 1 \), respectively. To examine the order of convergence for SDE (28), as in [3], we regard the numerical solution with the fixed step size \(\delta_0 = 2^{-15} \) as the true solution. For each fixed \(\delta \in \{2^{-14}, 2^{-13}, \ldots, 2^{-8}\} \), we generate 100 paths for the true solution \(X^{\delta_0} \) and 100 paths for the approximated solution \(X^\delta \). We then calculate the following error at the time horizon \(T = 1 \):

\[
ERROR(X, \delta) := \frac{1}{100} \sum_{i=1}^{100} |X^\delta_T(\omega_i) - X^{\delta_0}_T(\omega_i)|.
\]
Figure 3: Plot of $\log_2(\text{ERROR}(X, \delta))$ versus $\log_2 \delta$ with the least squares line $y = 0.5138x + 4.1982$.

Figure 4: Plot of $\log_2(\text{ERROR}(Y, \delta))$ versus $\log_2 \delta$ with the least squares line $y = 1.0088x + 9.2991$.

Figure 3 gives a plot of $\log_2(\text{ERROR}(X, \delta))$ against $\log_2 \delta$. It shows a linear trend with least squares slope being 0.5138, which is close to 0.5, the largest possible slope suggested by Theorem 9. On the other hand, for SDE (29), Figure 4 gives a plot of $\log_2(\text{ERROR}(Y, \delta))$ against $\log_2 \delta$, which again presents a linear trend but with least squares slope being 1.0088. The latter is close to 1 as suggested by Theorem 12.

We now turn to the mean-square stability as $t \to \infty$ of a numerical solution to SDE (3). Here we consider the SDE

$$X_t = 1 - \int_0^t \sqrt{1 + E_r X_r \, dE_r} + \int_0^t \sqrt{1 + E_r X_r \, dB_r},$$

the coefficients of which satisfy not only Assumptions \mathcal{H}_1–\mathcal{H}_3 but also the extra condition $x F(u, x) + \frac{1}{2} G(u, x)^2 \leq -h(u|x|^2$, with $h(u)$ being a regularly varying function with index $q = 1/2$. Note that similar conditions appear in [3, 21] but with $h(u)$ being a fixed
constant. We generate 100 paths to find the following estimate for the mean square $\mathbb{E}[(X_{t}^{\delta_0})^2]$ for 1000 equally-spaced time points t in $[0, 10]$:

$$MS(t, \delta_0) := \frac{1}{100} \sum_{i=1}^{100} |X_{t_i}^{\delta_0}(\omega_i)|^2.$$

The graph of the obtained function $t \mapsto MS(t, \delta_0)$ is plotted in Figure 5. The value of $MS(t, \delta_0)$ decays as t increases, which indicates the mean-square stability of the numerical solution of SDE (30).

References

[1] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1987.

[2] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman and Hall/CRC, 2003.

[3] C.-S. Deng and W. Liu. Semi-implicit Euler–Maruyama method for non-linear time-changed stochastic differential equations. BIT Numer. Math., online first, 2020.

[4] M. Fischer and G. Nappo. On the moments of the modulus of continuity of Itô processes. Stoch. Anal. Appl., 28(1):103–122, 2008.

[5] M. Hahn, K. Kobayashi, J. Ryvkina, and S. Umarov. On time-changed Gaussian processes and their associated Fokker–Planck–Kolmogorov equations. Elect. Comm. in Probab., 16:150–164, 2011.

[6] M. Hahn, K. Kobayashi, and S. Umarov. Fokker–Planck–Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Amer. Math. Soc., 139(2):691–705, 2011.
[7] M. Hahn, K. Kobayashi, and S. Umarov. SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations. *J. Theoret. Probab.*, 25(1):262–279, 2012.

[8] J. Jacod and A. N. Shiryaev. *Limit Theorems for Stochastic Processes*, volume 288 of *Grundlehren der mathematischen Wissenschaften*. Springer, Berlin, 2003.

[9] S. Jin and K. Kobayashi. Strong approximation of stochastic differential equations driven by a time-changed Brownian motion with time-space-dependent coefficients. *J. Math. Anal. Appl.*, 476(2):619–636, 2019.

[10] E. Jum and K. Kobayashi. A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion. *Probab. Math. Statist.*, 36(2):201–220, 2016.

[11] I. Karatzas and S. Shreve. *Brownian Motion and Stochastic Calculus*. Springer-Verlag New York, second edition, 1998.

[12] P. E. Kloeden and E. Platen. *Numerical Solution of Stochastic Differential Equations*. Springer, corrected edition, 1992.

[13] K. Kobayashi. Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. *J. Theoret. Probab.*, 24(3):789–820, 2011.

[14] K. Kobayashi. Small ball probabilities for a class of time-changed self-similar processes. *Statist. Probab. Lett.*, 110:155–161, 2016.

[15] M. Magdziarz. Langevin picture of subdiffusion with infinitely divisible waiting times. *J. Stat. Phys.*, 135:763–772, 2009.

[16] M. Magdziarz. Stochastic representation of subdiffusion processes with time-dependent drift. *Stoch. Proc. Appl.*, 119:3238–3252, 2009.

[17] M. Magdziarz, S. Orzel, and A. Weron. Option pricing in subdiffusive Bachelier model. *J. Stat. Phys.*, 145(1):187, 2011.

[18] M. M. Meerschaert, E. Nane, and Y. Xiao. Correlated continuous time random walks. *Statist. Probab. Lett.*, 79:1194–1202, 2009.

[19] M. M. Meerschaert and H-P. Scheffler. Limit theorems for continuous-time random walks with infinite mean waiting times. *J. Appl. Probab.*, 41:623–638, 2004.

[20] M. M. Meerschaert and H-P. Scheffler. Triangular array limits for continuous time random walks. *Stoch. Proc. Appl.*, 118:1606–1633, 2008.

[21] E. Nane and Y. Ni. Stability of the solution of stochastic differential equation driven by time-changed Lévy noise. *Proc. Amer. Math. Soc.*, 145:3085–3104, 2017.

[22] E. Nane and Y. Ni. Path stability of stochastic differential equations driven by time-changed Lévy noises. *ALEA, Lat. Am. J. Probab. Math. Stat.*, 15:479–507, 2018.
[23] P. Protter. *Stochastic Integration and Differential Equations*. Springer, second edition, 2004.

[24] J. Rosiński. Representations and isomorphism identities for infinitely divisible processes. *Ann. Probab.*, 46(6):3229–3274, 2018.

[25] K. Sato. *Lévy Processes and Infinitely Divisible Distributions*. Cambridge University Press, 1999.

[26] R. L. Schilling, R. Song, and Z. Vondracek. *Bernstein Functions: Theory and Applications*. De Gruyter, 2010.

[27] S. Umarov, M. Hahn, and K. Kobayashi. *Beyond the Triangle: Brownian Motion, Itô Calculus, and Fokker–Planck Equation — Fractional Generalizations*. World Scientific, 2018.

[28] Q. Wu. Stability of stochastic differential equation with respect to time-changed Brownian motion. Available at arXiv:1602.08160. 2016.