Plasmids and Rickettsial Evolution: Insight from Rickettsia felis

Joseph J. Gillespie1,2*, Magda S. Beier2, M. Sayeedur Rahman2, Nicole C. Ammerman2, Joshua M. Shollom1, Anjan Purkayastha1, Bruno S. Sobral1, Abdu F. Azad1,2*

1 Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America, 2 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America

Background. The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. Methodology/Principal Findings. Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phyllogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFΔ, is an artifact of the original genome assembly. Conclusion / Significance. Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree.

INTRODUCTION

All members of the genus Rickettsia (Rickettsiales; Rickettsiaceae) are obligate intracellular parasites of eukaryotes [1], with some species that are pathogenic and are known to cause harmful diseases in humans, e.g., R. prowazekii, the causative agent of epidemic typhus and R. rickettsii, the agent of Rocky Mountain spotted fever [2]. Some rickettsiae are important both as emerging pathogens [3] and as selected agents for the development of bioweapons [4]. Given the diversity of Rickettsia spp. [5,6] and their associated pathologies, a sound understanding of the evolutionary relationships of these diverse bacteria is essential for species-level diagnostics and potential vaccine targeting. The system of classification of rickettsiae has traditionally grouped Rickettsia spp. into the spotted fever (SFG) and typhus group (TG) rickettsiae [2] with R. bellii considered ancestral to both groups [7,8]. R. canadensis was subsequently added to this ancestral group (AG) rickettsiae [9]. Recent phylogenies based on various molecular markers have resulted in conflicting tree topologies [e.g., 10,11,12,13]; however, when AG rickettsiae are included they are nearly always basal to the remaining TG and SFG rickettsiae clades [1,14,15]. Moreover, only with the inclusion of AG rickettsiae (for rooting the analyses) is a unique lineage recovered consisting of R. akari and R. felis [1,14,15], as well as R. australis and some other unidentified rickettsiae from booklouse (Liposcelis sp.) and parasitic wasp (Neochrysocharis sp.) hosts [1]. This clade, referred to hereafter as transitional group (TRG) rickettsiae, is interesting from a host perspective because, while both R. akari and R. felis have been classified as SFG rickettsiae, neither species purportedly parasitizes a tick host, with R. akari found in mites [16] and R. felis found in fleas [17,18,19,20,21].

R. felis has been difficult to place phylogenetically because it displays some genotypic and phenotypic attributes of both SFG and TG rickettsiae, e.g., association with insect, hemolytic activity, actin-based motility, transovarial maintenance in the vector hosts, and serological cross-reactivity. In addition, the genome sequence of R. felis revealed morphological surprises, such as the presence of plasmids (pRF) and conjugative pili, as well as genetic traits atypical of most rickettsial genomes, such as elevated copies of several transposase families, spoT genes and genes coding for uncharacterized proteins with ankyrin (ANK) and tetratricopeptide (TPR) motifs [21,22]. Despite tremendous laboratory efforts these features had not been identified in Rickettsia in the pre-genomic era [23].

* To whom correspondence should be addressed. E-mail: aazad@umaryland.edu

Academic Editor: Berend Snel, Utrecht University, Netherlands

Received December 29, 2006; Accepted February 8, 2007; Published March 7, 2007

Copyright: © 2007 Gillespie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is funded through NIH grants AI59118 and AI17828 to AFA and NIAID contract HHSN266200400035C to BSS.

Competing Interests: The authors have declared that no competing interests exist.

* To whom correspondence should be addressed. E-mail: aazad@umaryland.edu
The discovery of a plasmid system in *R. felis* is rather peculiar since no other bacteria in the Rickettsiales (Ehrlichia, Anaplasma, Neorickettsia, and Wolbachia) are known to harbor plasmids based on their available completed genome sequences. Plasmids are known only from a few other obligate intracellular bacteria, including the γ-proteobacterium Q fever agent *Coxiella burnetii* [24,25], str. MCS of an unclassified species of *Mycobacterium* [26], and the distantly related Chlamydiaceae species *Chlamydia trachomatis* [27,28,29], *Chlamydia muridarum* [30], *Chlamydothphila pneumoniae* [30,31], *Chlamydothphila psittaci* [32,33,34], *Chlamydothphila caviae* [35], and *Chlamydothphila felis* [36]. The existence of a putative conjugative plasmid presents a historical riddle when *R. felis* is considered within a phylogenetic context. *R. felis* is neither ancestral nor derived within the rickettsial evolutionary tree [1,14,15], yet it is the only published rickettsial genome to date that contains autonomous and seemingly functional plasmids [21,22]. This entails one of two evolutionary scenarios for rickettsiae. First, all ancestral rickettsiae once contained functional plasmids that have been lost in all lineages for which a genome has been sequenced (except *R. felis*). Given the phylogenetic position of *R. felis*, this implies multiple losses of the plasmid and raises the question of why, among all ten sequenced rickettsial genomes, a single maintenance of a plasmid system would remain in *R. felis*. Under this hypothesis, if some plasmid genes are essential for rickettsial fitness, then the lineages without plasmids may have had the plasmid genes incorporated into their chromosomes where they have become a permanent fixture, as is the case for the plasmidless *C. burnetii* isolate Scurry Q217 [37,38] and some plasmidless *Chlamydia* spp. [35,39,40]. Thus, pRF genes that are not present in other rickettsiae would likely be involved in the specific biology of *R. felis*, and may involve critical proteins for its survival and/or virulence. Otherwise they could be pseudogenes in the early stages of decay.

Alternatively, perhaps *R. felis* acquired a plasmid from another organism and has retained this plasmid through the incorporation of certain genes on the plasmid into its life cycle such that loss of these genes would be deleterious for the survival and/or virulence of *R. felis*. This hypothesis implies that pRF genes would be less related to other rickettsial orthologous genes than are genes on the *R. felis* chromosome. Garnering support for either evolutionary model requires the evaluation of each plasmid gene through phylogenetic estimation and comparative analysis with other previously published rickettsial molecular phylogenies [1,14,15], thus supporting our establishment of the TRG rickettsiae as a lineage distinct from other previously established taxonomic categories for rickettsiae.

Summary information of nine published rickettsial genomes illustrates the increased genome size of *R. felis* relative to other non-AG rickettsiae (Figure 1). While *R. felis* genome size is most similar to *R. bellii* str. RML369-C, it is interesting that the presence of pRF does not result in a remarkably larger genome size, given the lack of plasmids in *R. bellii* str. RML369-C [15]. In light of the recent discovery of pili in *R. bellii* str. RML369-C [15], it may be possible that genes once present on a plasmid have been incorporated into the chromosome, accounting for the larger size of the *R. bellii* genome relative to other rickettsiae (save *R. felis*). Other *R. felis* genome summary statistics, including gene number, percent GC and percent coding, are not significantly different than other rickettsial genomes (Figure 1).

Phylogenies of Chromosomal and pRF genes

A phylogeny estimated from 21 conserved hypothetical proteins found only on the chromosomes of 10 *Rickettsia* spp. (Figure 2A) is similar to our phylogeny based on six fewer genes (Figure 1) as well as other recently published rickettsial trees [1,14,15], suggesting that the conserved rickettsial hypothetical proteins are phylogenetically informative markers. This suggests that these uncharacterized ORFs code for functional proteins, as we might expect less conserved genes or pseudogenes to elicit a phylogenetic signal different from the organismal phylogeny [41,42,43]. Even though these 21 proteins are hypothetical, the bootstrap values increased for several of the branches compared to the tree based on 15 proteins (Figure 1), suggesting that adding more data for phylogeny estimation is better for recovering the apparent relatedness amongst these 10 *Rickettsia* spp., an approach recently verified using concatenated nucleotide alignments [14]. Thus, the failure for this phylogenetic position of *R. felis* to be recovered in many previous studies is likely due to the fewer number of genes analyzed. For instance, when we analyzed nine genes, we recovered the same tree topology but with weaker bootstrap support (data not shown). Furthermore, analyses of fewer than nine genes did not consistently recover the *R. akari*/*R. felis* clade. In light of these findings, we strongly caution against the use of single or few genes to estimate historical divergence within rickettsiae. This problem can be seen in the comparison of recent trees estimated from 16S rDNA sequences. While the tree from Perlman et al. [1] is in general agreement with our estimates (Figure 1 & 2A) and that of Abergel et al. [14], the 16S rDNA trees from Lawson et al. [44], Kikuchi et al. [12], Fournier et al. [6], and our unpublished analyses do not recover the AG rickettsiae as basal to the remaining *Rickettsia* spp., that are pathogenic in vertebrates. These conflicting trees are likely due less to differences in analytical methods than variance in the sampled taxa, thus highlighting that taxon sampling is just as important as concatenating multiple datasets for estimating a robust phylogeny of rickettsiae.

While our generated phylogenies described above (Figure 1, 2) are robust and in agreement with other well-supported studies, the consensus phylogeny of the seven ORFs found on both pRF and endosymbionts, is presented in Figure 1 and used as a reference for the robust relationships of the four main lineages of rickettsiae (AG, TG, TRG, SFG). This single most parsimonious tree, 9061 steps in length, was the result of an exhaustive search that analyzed all possible trees from treespace. From a total of the 12263 amino acid characters in the concatenated alignment, 3039 were parsimony-informative. This phylogeny is congruent with other recently published rickettsial molecular phylogenies [1,14,15], thus supporting our establishment of the TRG rickettsiae as a lineage distinct from other previously established taxonomic categories for rickettsiae.

RESULTS AND DISCUSSION

Rickettsiae Phylogenomics

An estimated phylogeny from 15 chromosomal-encoded proteins present in nine rickettsial genomes and two strains of *Wolbachia* is conjugative (HGT). Garnering support for either evolutionary relatedness amongst these 10 *Rickettsia* spp., an approach recently verified using concatenated nucleotide alignments [14]. Thus, the failure for this phylogenetic position of *R. felis* to be recovered in many previous studies is likely due to the fewer number of genes analyzed. For instance, when we analyzed nine genes, we recovered the same tree topology but with weaker bootstrap support (data not shown). Furthermore, analyses of fewer than nine genes did not consistently recover the *R. akari*/*R. felis* clade. In light of these findings, we strongly caution against the use of single or few genes to estimate historical divergence within rickettsiae. This problem can be seen in the comparison of recent trees estimated from 16S rDNA sequences. While the tree from Perlman et al. [1] is in general agreement with our estimates (Figure 1 & 2A) and that of Abergel et al. [14], the 16S rDNA trees from Lawson et al. [44], Kikuchi et al. [12], Fournier et al. [6], and our unpublished analyses do not recover the AG rickettsiae as basal to the remaining *Rickettsia* spp., that are pathogenic in vertebrates. These conflicting trees are likely due less to differences in analytical methods than variance in the sampled taxa, thus highlighting that taxon sampling is just as important as concatenating multiple datasets for estimating a robust phylogeny of rickettsiae.

While our generated phylogenies described above (Figure 1, 2) are robust and in agreement with other well-supported studies, the consensus phylogeny of the seven ORFs found on both pRF and
the *R. felis* chromosome, as well the chromosomes of the other sampled rickettsiae, tells a different story (Figure 2B). Most unexpected is the non-monophyly of the pRF and chromosomal genes of *R. felis*, which strongly suggests that the analyzed pRF genes were not vertically passed over time in the lineage leading to *R. felis*, but rather were likely inherited horizontally from other bacterial plasmids and non-bacterial DNA. Furthermore, none of the individual plasmid gene trees are in agreement with the chromosomal phylogeny (Figure 3). The majority of the single trees place the plasmid genes basal to the non-*R. bellii* taxa (Figure 3A, C, D, E, G). One tree groups the plasmid genes closely with *R. canadensis* (Figure 3B), while one tree is mostly discordant with any reasonable rickettsial phylogeny (Figure 3F). Thus, both consensus and individual pRF phylogenies suggest an affinity of pRF with AG rickettsiae over any other rickettsial group. The inclusion of the pRF genes in rickettsial phylogeny estimation has a profound impact on tree topology, as TG and SFG rickettsiae are grouped as monophyletic to the exclusion of TRG rickettsiae, which groups with *R. canadensis* and pRF (Figure 2B, 3H). This is perhaps our most compelling evidence for the separation of TRG rickettsiae from SFG rickettsiae.

Our observation that pRF genes are closely related to AG rickettsial genes is further supported by analyzing the distribution of the *R. felis* genes found exclusively on pRF (Table 1). Thirty-eight of the 68 pRF genes are not found on the *R. felis* chromosome, and none of these 38 genes are present in any of the SFG. Furthermore, only three exclusively pRF genes occur in TG and one truncated gene is found in *R. akari*. However, 10 exclusively pRF genes (or inactive derivatives) occur in the ancestral rickettsiae, with five of these genes characteristic of typical plasmids. While our phylogenetic analysis suggests that the pRF plasmid of *R. felis* is likely composed of many products of HGT, possibly through conjugation with other bacteria (especially AG rickettsiae), the question still remains: of all sequenced rickettsial genomes, why do plasmids occur exclusively in *R. felis*? We attempt to answer this in light of the characterization of the plasmid genes and their distribution in *R. felis* chromosome, other rickettsiae, other bacterial taxa, and other non-bacterial organisms.
Characterization and Distribution of pRF Genes

The pRF plasmid in *R. felis* could be maintained for a variety of reasons, all of which are not mutually exclusive. First, since it contains proteins with high homology to bacterial conjugation proteins (*tra* genes), pRF could function in fertility as an (F) plasmid, exchanging genetic material with other bacterial congeners via a pilus. Support for this role comes from the presence of putative DNA transfer proteins TraA Ti (pRF38/39), TraD Ti (pRF37) and TraD (pRF43/44), and two F-pilus assembly/aggregate stabilization homologs of *E. coli* TraGF (pRF46 and pRF47). Other important conjugative proteins are found on the *R. felis* chromosome, including two competence protein ComE3 orthologs (RF0020 and RF0021), a DNA primase (RF0786) similar to the *E. coli* TraC protein that replicates transferred DNA in recipient cells, a protein (RF0705/RF0706) similar to the P-pilus assembly protein FimD, and a protein (RF0964) similar to *E. coli* F-pilin acetylation protein TraX [22]. Thus, the majority of conjugative transfer genes and other structural proteins involved in conjugation are present in the *R. felis* chromosome, including two competence protein ComE3 orthologs (RF0020 and RF0021), a DNA primase (RF0786) similar to the *E. coli* TraC protein that replicates transferred DNA in recipient cells, a protein (RF0705/RF0706) similar to the P-pilus assembly protein FimD, and a protein (RF0964) similar to *E. coli* F-pilin acetylation protein TraX [22]. Thus, the majority of conjugative transfer genes and other structural proteins involved in conjugation are present in the *R. felis* genome, suggesting at the very least that *R. felis* once had the capacity to transfer plasmid genes. This is further supported by the presence of some of these proteins in other rickettsiae (Table 1 and 2), particularly the ancestral taxa. As previously noted [22], the presence of conserved and fully intact type IV secretion system (T4SS) components (found in all rickettsiae) could allow for efficient transfer of plasmid DNA, much like that found in the *vir* and *dot/icm* T4SSs of *Agrobacterium tumefaciens* and *Legionella pneumophila*, respectively, that have dual functions as DNA-transfer machines and effector protein translocators [45].

Second, pRF may exist as a resistance, or (R) plasmid, that can allow a tolerance for antibiotics or poisons present in the niche of *R. felis*. While there is an elevated level of drug resistance genes on the *R. felis* chromosome [22], including six *R. felis*-specific proteins, there are no genes on pRF that suggest the plasmid plays any role in antibiotic or poison evasion. Third, pRF could function as a Col-plasmid, killing other bacteria with colicine gene products (bacteriocins). So far, no colicine gene orthologs have been identified in any rickettsiae genomes. Fourth, because 17 of the genes on the pRF plasmid have not been characterized (or annotated), it cannot be ruled out that pRF isn’t a degradative plasmid, enabling the digestion of unusual substances like toluene or salicylic acid, which may be encountered in primary and secondary host environments.

Finally, pRF could be a virulence plasmid, allowing the bacterium to be pathogenic to its primary and secondary hosts. As a prerequisite to virulence, pathogenic bacteria must have proteins involved in recognition of and adaptation to host cells. pRF contains both ANK (pRF14, pRF42) and TPR (pRF12, pRF15, pRF16, pRF17, pRF18, pRF24, pRF26) motif-containing genes
that are typically involved in protein-protein interactions in eukaryotic cells [46,47,48,49,50,51,52]. ANK-containing genes are known from other intracellular pathogens such as Wolbachia pipientis [53], Ehrlichia phagocytophila [47], C. burnetii [54] and Legionella pneumophila [51] and likely play an important role in the manipulation of host cell physiology. In addition, one copy of a surface antigen, sca12 (pRF25), is also present on pRF. Previously, two pRF genes were implicated as likely virulence factors [22]: a patatin homolog (pRF11), pat2, which is a patatin-like phospholipase, and a hyaluronidase gene (pRF56), which codes for an enzyme, or “spreading factor”, that increases host tissue permeability and enables antigenic disguise. BLASTP results suggest that pat2 is found in other α-proteobacteria as well as plants (Table S1), while the putative hyaluronidase is similar to distantly related bacteria as well as proteins from various arthropod genomes (Table S2). These proteins are strong candidates for testing the role of pRF in virulence. Furthermore, they may provide the best explanation for why R. felis is the only known Rickettsia species that has retained plasmids. Pat2 of pRF has been shown to be unrelated to other patatin present on the R. felis chromosome and the chromosomes of other rickettsiae [22,55], and, although these patatins have been ruled out as factors for phagosomal escape [56], an ascribed phospholipase activity and conservation of A2 active sites suggests that Pat2 likely has a role in R. felis virulence that is distinct from other rickettsiae. Interestingly, the pFra plasmid of Yersinia pestis, the causative agent of plague, encodes a phospholipase D gene, Ymt, that is essential for colonization of the flea midgut and eventual transmission to a secondary mammalian host [57,58]. This virulence plasmid is absent in the species Yersinia pseudotuberculosis, which is the less virulent immediate ancestor to Y. pestis [59,60]. Additionally, the presence of a hyaluronidase gene on pRF, which is not found in other rickettsiae, suggests an important role in the life cycle of R. felis. These two genes may be critical to the survival and virulence of R. felis such that their failure to integrate into the chromosome has driven the retention of plasmids in R. felis (and other as yet unidentified plasmid-containing Rickettsia spp.). Thus, it is probable that some genes on pRF confer R. felis with the ability to recognize, invade and cause virulence in host cells. This is consistent with another bacterial pathogen, Bacillus anthracis, the causative agent of anthrax, that seemingly acquired virulence plasmids from a source other than its most common ancestor, which lacks plasmids [61]. Like B. anthracis and Y. pestis, R. felis could have acquired its pRF plasmid in a serendipitous event that allowed for colonization of a new primary host (flea) as well as a range of secondary vertebrate hosts, a mechanism recently proposed to explain “host jumping”
Table 1. Annotation of \(R. \) felis large (pRF) and small (pRF \(d \)) plasmid-encoded genes that are absent on the \(R. \) felis chromosome, and their distribution in other rickettsiae, other bacterial sequences, and other non-bacterial taxa.

ORF	Name	Annotation	%GC	AG	TG	TRG	SFG	bac	nb	yr	yf	yn
pRF4	—	R. felis specific protein	0.24	—	—	—	—	—	—	—	—	—
pRF7	—	HupB	0.32	1	1	—	—	—	—	—	—	—
pRF8	—	R. felis specific protein	0.33	1	1	—	—	—	—	—	—	—
pRF11	—	tpr	0.32	1	1	—	—	—	—	—	—	—
pRF12	—	chromosomal replication initiator protein DnaA-like protein	0.39	1	1	—	—	—	—	—	—	—
pRF14	—	HsdR	0.35	—	—	—	1	—	—	—	—	—
pRF15	—	R. felis specific protein	0.36	—	—	—	1	—	—	—	—	—
pRF16	—	pRF05	—	—	—	—	1	—	—	—	—	—
pRF17	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF18	—	pRF07	—	—	—	—	1	—	—	—	—	—
pRF19	—	pRF08	—	—	—	—	1	—	—	—	—	—
pRF20	—	R. felis specific protein	0.36	1	1	—	—	—	—	—	—	—
pRF21	—	tpr	0.36	1	1	—	—	—	—	—	—	—
pRF22	—	R. felis specific protein	0.36	1	1	—	—	—	—	—	—	—
pRF23	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF24	—	pRF09	—	—	—	—	1	—	—	—	—	—
pRF25	—	R. felis specific protein	0.36	1	1	—	—	—	—	—	—	—
pRF26	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF27	—	pRF10	—	—	—	—	1	—	—	—	—	—
pRF28	—	R. felis specific protein	0.36	1	1	—	—	—	—	—	—	—
pRF29	—	tpr	0.36	1	1	—	—	—	—	—	—	—
pRF30	—	DnaA-like protein	0.39	1	1	—	—	—	—	—	—	—
pRF31	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF32	—	tpr	0.36	1	1	—	—	—	—	—	—	—
pRF33	—	R. felis specific protein	0.38	1	1	—	—	—	—	—	—	—
pRF34	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF35	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF36	—	pRF11	—	—	—	—	1	—	—	—	—	—
pRF37	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF38	—	pRF12	—	—	—	—	1	—	—	—	—	—
pRF39	—	tpr	0.39	1	1	—	—	—	—	—	—	—
pRF40	—	DnaA-like protein	0.40	1	1	—	—	—	—	—	—	—
pRF41	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF42	—	HupC	0.38	1	1	—	—	—	—	—	—	—
pRF43	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF44	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF45	—	tpr	0.36	1	1	—	—	—	—	—	—	—
pRF46	—	DnaA-like protein	0.39	1	1	—	—	—	—	—	—	—
pRF47	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF48	—	HupC	0.38	1	1	—	—	—	—	—	—	—
pRF49	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF50	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF51	—	HupC	0.38	1	1	—	—	—	—	—	—	—
pRF52	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF53	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF54	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF55	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF56	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF57	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF58	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—
pRF59	—	putative conjugative transfer protein TraD (F plasmid)	0.37	1	1	—	—	—	—	—	—	—

Note: ORF labels that are bolded depict putative genes that are unknown from other published rickettsiae genomes. AG = ancestral group, TG = typhus group, TRG = transitional group, SFG = spotted fever group, bac = present (y) or absent (n) in a diverse array of non-rickettsial bacteria, or present in a few (f) bacteria, nb = present (y) or absent (n) in non-bacterial organisms. Presence (y) or absence (n) of putative orthologs found in other plasmids (pl) are listed. Br = \(R. \) bellii str. RML369-C, Bo = \(R. \) bellii str. OSU 85 389, Ca = \(R. \) canadensis str. McKiel, Pr = \(R. \) prowazekii E, Ty = \(R. \) typhi str. Wilmington, Ak = \(R. \) akari str. Hartford, Fe = \(R. \) felis str. URRWXCal2, Ri = \(R. \) rickettsii, and Si = \(R. \) sibirica str. 246. r = reduced gene relative to the plasmid gene, t = truncated gene relative to the plasmid gene, s = split gene relative to the plasmid gene.
Table 2. Annotation of *R. felis* large (pRF) and small (pRFd) plasmid-encoded genes that are present on the *R. felis* chromosome, and their distribution in other rickettsiae, other bacterial sequences, and other non-bacterial taxa.

ORF a	Name	Annotation	%GC	AG	TG	TRG	SFG	bac	nb	pl								
				Br	Bo	Ca	Pr	Ty	Ak	Fe	Ri	Co	Si	y/n/f	y/n	y/n		
pRF01	*tnp*	hypothetical transposase (or inactive derivative)	0.35	—	—	—	—	5	—	—	—	—	y	n	n			
pRF02	—	hypothetical transcription regulatory protein	0.26	t	t	r,t	r,t	r,t	4,t	r,t	r,t	ct	f	n	n			
pRF03	*parA*	possible cytokinesis regulatory protein	0.28	1	1	1	1	1	1	1	1	1	y	y	n			
pRF06	*HsdR*	type I restriction-modification system methyltransferase subunit	0.32	1	1	1	—	t	t	4,t	—	t	2	t	2	y	y	n
pRF08	—	similar to a part of CheY-like receiver domain	0.30	1	1	1	1	1	1	1	1	1	y	n	n			
pRF10	—	rickettsial hypothetical protein	0.30	—	—	1	—	—	1	3	1	1	1	f	n	n		
pRF11	*pat2*	patatin-like phospholipase	0.38	r	1	s	2,t	1	1	3	1	1	y	n	n			
pRF13	*tmk*	thymidylate kinase (TMPK)	0.38	r	1	1	1	1	1	3	1	1	1	y	n	n		
pRF41	*tnp*	transposase 31: putative transposase, YhgA-like [pfam04754]	0.34	9,t	12,t	t	—	—	t	3	5,t	t	3	t	4	y	n	n
pRF42	*ank*	ankyrin-repeating containing gene (ANK)	0.31	—	—	—	—	—	3	—	—	—	f	y	n			
pRF43	*traDF*	putative conjugative transfer protein TraD (*E. coli* F plasmid)	0.38	1,*	1,*	2,t	*	*	*	2	*	*	*	*	y	n	n	
pRF51	*hspP2*	small heat shock protein 2	0.27	—	—	—	—	—	3	—	—	—	y	n	n			
pRF52	*hspP1*	small heat shock protein 1	0.31	t	t	t	t	t	t	t	t	t	y	n	n			
pRF54	*tnp*	transposase, mutator family [transposase_mut] [pfam0872]	0.32	r	1	—	—	—	18	—	—	—	y	n	n			
pRF55	*tnp*	transposase, mutator family [transposase_mut] [pfam0872]	0.33	—	—	—	—	—	22	—	—	—	y	n	y			
pRF61	*tnp*	transposase 31: putative transposase, YhgA-like [pfam04754]	0.34	—	—	—	—	—	3	—	—	—	y	n	y			
pRF64	*tnp*	transposase 14 [pfam01710]	0.35	—	—	—	—	—	3	—	—	—	y	n	y			
pRF65	—	R. felis specific protein	0.32	—	—	—	—	—	3	t	—	—	f	y	f			
pRF16	*tpr*	tetratricopeptide repeat domain (TPR)	0.36	1	1	—	—	—	6	—	—	—	y	y	n			
pRF17	*tpr*	tetratricopeptide repeat domain (TPR)	0.35	2,r	2	—	—	—	4	r	r	r	y	n	n			
pRF18	*tpr*	tetratricopeptide repeat domain (TPR)	0.36	1	1	—	—	—	6	—	—	—	y	n	n			
pRF19	—	chromosomal replication initiator protein DnaA-like protein	0.34	1,t	1,t	2,t	t	t	t	2,t	t	2,t	t	f	y	n		
pRF23	*parA*	possible cytokinesis regulatory protein	0.32	—	—	—	—	—	4	r	r	r	y	n	y			
pRF25	*sca12*	cell surface antigen 12	0.41	1	2	1	2	5	5	3	2	2	y	n	n			
pRF26	*lon*	ATP-dependent protease La, bacterial type (TPR-containing)	0.35	1	1	1	1	1	2	1	1	1	y	n	n			
pRF27	—	similar to ABC_SMC_euk (chromosome maintenance)	0.36	r	r	—	r	r	2,r	—	—	—	f	y	n			
pRF29	—	rickettsial hypothetical protein	0.35	—	—	—	—	—	2,t	—	—	—	f	y	y			
pRF30	*tnp*	transposase, mutator family [transposase_mut] [pfam0872]	0.34	r	r	—	r	r	14,t	—	—	—	y	n	y			
pRF31	*tnp*	COG3328: transposase (or inactive derivative)	0.31	—	1	—	—	1	20	—	—	—	y	n	n			
pRF32	*parB*	cleaves ssDNA and supercoiled plasmid DNA	0.36	r	r	r	r	r	r	r	r	r	y	n	y			

a ORF labels that are bolded depict putative genes that are unknown from other published rickettsiae genomes. Underlined ORFs depict sequences analyzed in Figures 2B and 3.

b AG = ancestral group, TG = typhus group, TRG = transitional group, SFG = spotted fever group, bac = present (y) or absent (n) in a diverse array of non-rickettsial bacteria, or present in a few (f) bacteria, nb = present (y) or absent (n) in non-bacterial organisms. Presence (y) or absence (n) of putative orthologs found in other plasmids (pl) are listed. Br = *R. bellii* str. RML369-C, Bo = *R. bellii* str. OSU 85 389, Ca = *R. canadensis* str. McKiel, Pr = *R. prowazekii* str. Madrid E, Ty = *R. typhi* str. Wilmington, Ak = *R. akari* str. Hartford, Fe = *R. felis* str. URRWXCal2, Ri = *R. rickettsii*, Co = *R. conorii* str. Malish 7, and Si = *R. sibirica* str. 246. r = reduced gene relative to the plasmid gene, t = truncated gene relative to the plasmid gene, s = split gene relative to the plasmid gene. * = similar to virD4 genes.

doi:10.1371/journal.pone.0000266.t002
in pathogenic bacteria [62]. This hypothesis is certainly consistent with the unique combination of SFG and TG rickettsiae characteristics that define *R. felis*.

Further support for a functional plasmid that is probably essential for the life cycle of *R. felis* comes from analysis of other interesting proteins on pRF that have plasmid-like characteristics. For instance, there are 12 ORFs on pRF that are similar to transposase (*tnp*) genes from 10 different transposase (or inactive derivative) families (Tables 1 and 2). This high occurrence of transposases suggests that pRF genes have been frequently rearranged through recombination mediated by *tnp* elements. This is further supported by the presence of two putative integrase genes (pRF14, pRF42), which typically integrate viral DNA into host chromosomes, a putative TnpR resolvase gene that codes for a site specific recombine that is typical of plasmids (pRF32), a putative *lon* gene coding for an ATP-dependent serine protease *La* (bacterial type) (pRF20) likely involved in DNA-binding and cytokinesis, three copies of a DNA-like protein (pRF03, pRF19, pRF20) that could function in initiation of plasmid replication, and a site-specific recombine with similarity to DNA invertase Pin homologs (pRF60). Two *parA* genes (pRF03, pRF25) on the plasmid could be involved in cytokinesis, and one *parB* gene (pRF35) is likely responsible for cleaving ssDNA and particularly super-coiled plasmid DNA. Finally, pRF22 is similar to the plasmid Ppsr1 ORF 12 from *Pseudomonas syringae* [63].

Some plasmid-containing bacteria have incorporated toxin-antitoxin (TAT) systems for keeping the partitioning and inheritance of plasmids stable [64,65,66,67]. Under constitutive expression with the antitoxin component on the plasmid and the toxin on the chromosome, the lethality of the more stable toxin is mediated by the unstable antitoxin. Upon faulty segregation of plasmids after cell division, plasmidless daughter cells are killed by elevated toxin levels due to the breakdown of the unstable antitoxin [68,69,70]. Aside from the 16 toxin and 14 antitoxin genes identified in the *R. felis* chromosomal genome, we suggest that another ORF (RF1345) may encode a putative toxin with mild homology to the *mazF* toxin gene of several plasmid-containing bacteria. The *mazEF* TAT module, first characterized in *E. coli* [71,72], is found on the chromosomes of many bacteria and functions in programmed cell death [73]. Interestingly, a BLAST search using RF1345 as the query resulted in two other *Rickettsia* spp. containing this putative toxin: *R. bellii* str. RML369-C and *R. africae*, suggesting that all other rickettsiae have lost this gene. Alternatively, this putative *mazEF* toxin gene could have been transferred from the AG rickettsiae to TRG rickettsiae. No other *z*-proteobacteria seem to contain a *mazEF* toxin gene, and the most similar homologs are from three species of Firmicutes and one *β*-proteobacterium, *Ralstoniaeutropha* str. H16 (Table S3). Searches for a complementary antitoxin *mazE*-like protein in other rickettsiae were unsuccessful. While TAT systems are found in hosts, as has been suggested for other TAT systems [22]. Such “neofunctionalization” [77] could likely be true for many of the duplicate genes acquired laterally in *R. felis* that have not been subjected to decay in the midst of selection favoring the original orthology. Interestingly, another component of the TAT system, *mazG*, whose gene product functions as a nucleotide triphosphate pyrophosphohydrolase, is present and extremely variable across rickettsiae (data not shown).

Identification of pRF oriV and replication termination regions

We identified the putative origin of replication (oriV) of pRF (Figure 4) based on results from GenSkew (http://mips.gsf.de/services/analysis/genskew), an application for computing and plotting nucleotide skew data. It has previously been reported for *Borrelia burgdorferi* linear and circular plasmids that the *oriV* maps to regions of the plasmids wherein a significant and pronounced switch in DNA strand compositional asymmetry (AT and CG skew) occurs [78]. We have identified the minimum cumulative skew of pRF at positions 20253K (AT-skew) and 21453 (CG-skew) which occurs within pRF23 (parA homolog) and pRF24 (hypothetical protein) (Figure 4). ParA functions in cytokinesis and replication initiation [79], and a BLASTP search using pRF23 retrieved with high homology other identified ParA proteins and orthologs with predicted functions in DNA replication and plasmid partitioning (Table 3). Additionally, within a ten-gene range from the pRF23 gene we found two other genes coding for putative Lon (pRF23) and DnaA (pRF23) proteins whose functions in replication are described above. The putative region of replication termination is marked by the minimum CG- and maximum AT-skews (Figure 4) and, rather interestingly, is flanked on both the 5’- and 3’- sides by five of the seven genes associated with the conjugation apparatus (the other two genes are close on the 3’-end). Thus it is highly likely that we have determined the *oriV* and replication termination regions, providing more evidence that pRF is indeed a functionally-replicating plasmid.

Second *R. felis* Plasmid, pRF0?

Ogata et al. [21,22] identified a second plasmid of 39,263 bp in *R. felis*, pRF0, which is identical to pRF except for the deletion of 24 contiguous genes, pRF15 to pRF38 (Figure 4A). Of these deleted genes, 12 are exclusive to pRF (Table 1), while the other 12 are present on both the *R. felis* chromosome and pRF (Table 2). We call into question the existence of pRF0 for five reasons. First, several of the important genes predicted to be involved in plasmid maintenance and replication are absent in pRF0, including genes coding for two putative DNA-like chromosomal replication initiator proteins (pRF19 and pRF20), the putative cytokinesis regulatory protein ParA (pRF23), a putative structural maintenance of chromosomes protein (ABC_SMC_euk) (pRF27), and ParB, a protein implicated in the cleavage of ssDNA and supercoiled plasmid DNA (pRF35). Second, six pRF proteins that have homology to proteins from other plasmid-containing bacteria are absent in pRF0, including the ORF similar to *P. syringae* plasmid Ppsr1 ORF12 (pRF22), rickettsial hypothetical protein pRF29, the plasmid-encoded site specific recombinase TnpR (pRF32), a DNA polymerase III epsilon subunit-like protein with WGR domain (pRF34), and the putative conjugative transfer proteins TraD Ti (pRF37) and TraA Ti (pRF38). Third, our recent attempts (unpublished data) and those of Pornwiroon et al. [80] to amplify pRF0 in a different strain of *R. felis* (str. LSU) were unsuccessful. Fourth, our predicted *oriV* of pRF that is substantiated by gene composition, sharp change in coding strand and nucleotide compositional skew, is deleted in pRF0 (Figure 4A), suggesting that another means of plasmid replication would be responsible for its continual inheritance. Finally, the fifth reservation we have with the existence of pRF0 in *R. felis* deals with plasmid incompatibility. Plasmid incompatibility is the failure of two co-resident plasmids to be stably inherited without external selection [81]. Incompatibility arises either by conflict in common replication or maintenance.
elements found in each unique plasmid, or by interference with the ability to correct stochastic fluctuations in copy number of the co-resident plasmids [82]. Even though pRF₉ is lacking several of the important genes suspected in plasmid replication and maintenance, the presence of other genes identical to pRF would likely result in plasmid incompatibility, either by conflict in maintenance, replication or regulation of copy number. Collectively, these five points suggest that pRF₉ may be an artifact of the genome sequencing and assembly procedures, and that only one plasmid, pRF, probably occurs in strains of *R. felis*.

Horizontal Transfer of pRF Genes

Likely due to their highly reductive genomes [83,84,85], there is relatively little HGT within *z*-proteobacteria [86], and particularly rickettsiae [43,87,88]. This is consistent with other parasitic bacteria with small genomes, such as *Mycoplasma genitalium* and *Chlamydia* spp. [89,90] and the actinobacterium *Tropheryma whipplei* [91]. Some examples of HGT between *z*-proteobacteria and their hosts are well known. For instance, segments of the genome of a *Wolbachia* endosymbiont (*wOvo*) have been inserted into the nuclear genome of its host, a human-parasitic nematode, *Onchocerca volvulus* [92]. Similarly, a large segment of DNA from a *Wolbachia* endosymbiont of the aduki bean beetle, *Callosobruchus chinensis*, has been detected on the X chromosome in the nuclear genome of the beetle [93]. Still, plasmids are thus far unknown from other Rickettsiales, suggesting other means for genetic exchange between *Wolbachia* spp. and their hosts. HGT between chlamydiae and rickettsiae has been suggested for the transfer of ADP/ATP-translocase genes (*tlc*) from the former to the latter roughly 1.5 billion years ago while both organisms likely inhabited single-celled primitive eukaryotes [94,95]. Regarding the hypothetical immediate ancestor to TG and SFG rickettsiae, HGT has been proposed for the acquisition of S-adenosylmethionine synthetase (*metK*) from an unknown *γ*-proteobacterium [96]. Recently, the genome sequence of *R. bellii* str. RML369-C

Figure 4. Characteristics and summary information of predicted origin of replication (oriV) of the pRF plasmid of *Rickettsia felis*. (A) Schematic map of the pRF with shaded regions containing the putative oriV (right) and replication termination region (left). The region outlined in the dark dashed line depicts the portion of the plasmid missing in pRF₉ (pRF15-pRF38). Grey boxes depict genes, with gene names described in Tables 1 and 2. Red lines depict coding strands, and yellow blocks depict areas of gene overlap. (B) AT-skew of pRF, with AT-skew (blue), cumulative AT-skew (red) and minimum AT-skew (orange). (C) CG-skew of pRF, with CG-skew (blue), cumulative CG-skew (red) and maximum CG-skew (orange). Plots generated and values computed with GenSkew (http://mips.gsf.de/services/analysis/genskew).

doi:10.1371/journal.pone.0000266.g004
Table 3. Results of a BlastP search using pRF23 (parA) as a query.

Accession no.	Taxon/annotation	score (bits)	E value
NP_940697.1	Pseudomonas syringae pv. syringae; stability protein	229	5e-59
NP_114201.1	Pseudomonas syringae pv. maculicola; ParA	228	2e-58
YP_245407.1	Actinobacillus porcitsillarum; ParA-like	221	2e-56
YP_245399.1	Actinobacillus porcitsillarum; ParA-like protein	218	2e-55
NP_053131.1	Escherichia coli; HP pB171_069201	201	1e-50
YP_190184.1	Escherichia coli; putative plasmid partitioning protein	201	2e-50
YP_454299.1	Sodalis glossinis str. 'morsitans'; SG 0619	163	4e-39
BAD3724.1	Moraxella bovis Epp63; putative partition protein	146	6e-34
ZP_0018773.1	Crocosphaera watsonii WH 8501; Cobyricinic acid a,c-diamide synthase	144	2e-33
YP_37033.1	Chlorobium chlorochromatii CaD3; HP Cag_0719	133	4e-30
ZP_0014461.1	Anthrobacter sp. FB24; Cobyricinic acid a,c-diamide synthase	131	2e-29
YP_108764.1	Escherichia coli; HP LH0102	103	5e-21
ZP_0083506.1	Shewanella sp. PV-4; conserved HP	94.0	3e-18
ZP_0081477.1	Shewanella putrefaciens CN-32; conserved HP	92.4	1e-17
NP_0851578.1	Shewanella sp. ANA-3; conserved HP	91.7	2e-17
NP_71836.1	Shewanella oneidensis MR-1; HP SO2808	91.3	2e-17
YP_734556.1	Shewanella sp. MR-4; hypothetical protein Shewmr4_2428	90.5	4e-17
NP_936926.1	Vibrio vulnificus YJ016; HP VVA0870	90.1	5e-17
ZP_0082484.1	Shewanella baltica OS155; conserved HP	89.4	1e-16
YP_562459.1	Shewanella dentrificans OS217; HP Sdin_1451	87.8	3e-16
ZP_00586925.1	Shewanella amazonensis SB28; conserved HP	85.5	1e-15
YP_751114.1	Shewanella frigidimarina NCIMB 400; HP Sfi_2431	85.1	2e-15
YP_516224.1	Sodalis phage phiS1G1; HP SGPHI_0046	83.2	6e-15
YP_665408.1	Helicobacter acrionychis str. Sheeba; ParA	80.1	6e-14
ZP_01132364.1	Pseudoalteromonas tunicata D2; parA family protein	80.1	6e-14

Only sequences with a score greater than 80 bits are shown.
doi:10.1371/journal.pone.0000266.t003

revealed the presence of many genes with high homology to several obligate intracellular symbionts of amoebae, suggesting that at one time R. bellii likely exchanged genetic information, particularly with the ancestors of Legionella and Proteobacteria, while residing in an amoeba-like ancestor protozoon [13]. While the R. bellii str. RML369-C genome encodes a complete set of putative conjugal DNA transfer genes (Tables 1 & 2), the lack of plasmids that they are just extremes to the average base composition of the R. felis genome. However, absence of base compositional bias alone should not be used to rule out HGT, as the base composition of transferred DNA segments will likely become nearly identical to the host genome over time [97,98,99], especially in intracellular symbionts wherein elevated mutation rates are typical [100].

Many bacterial genes passed horizontally likely fail at becoming an integral component of the new genome, with their eventual loss of function and subsequent decay into pseudogenes [43,101]. Only two pRF proteins are unique to R. felis (pRF9 and pRF59), having no putative function or orthology with other known proteins. This could, again, be a consequence of the highly reductive genomes of rickettsiae, or it could reflect two genes that have recently been laterally acquired and have yet to undergo decay. BLAST searches against the public virus protein database recovered no similarity between these ORFs and viruses, supporting the recent proposal that proteins with no recognizable homology to any other life are less likely to have been acquired from viruses than are other characterized proteins [102].
Chromosomal Virulence Factors Derived from Primitive Plasmids

The number of intracellular pathogens that have acquired the conjugal transfer systems of plasmids and modified them for the export of toxins is growing [103,104]. The presence of putative type IV pilin in \textit{R. felis} could imply that this machinery is responsible for the secretion of virulence factors and other proteins involved in host tropism, as was recently determined for \textit{Franciscella tularensis} virulence [105]. Alternatively, a modification of a second “adapted” T\textsubscript{4}SS could be involved in the shunt transfer of effector molecules directly into host cells [106]. The machinery for bacterial T\textsubscript{4}SS has been suggested to have undergone a great amount of HGT [77]. Phylogenetic analysis implies that the ancestors to all chromosomally encoded T\textsubscript{4}SSs are plasmid-derived, with the lateral transfer of plasmid-encoded genes to the chromosome much more likely than vice versa [77]. This supports the hypothesis that all rickettsiae may have once harbored plasmids, with T\textsubscript{4}SS components derived from these plasmids, either through independent acquisition events or one event ancestral to all rickettsiae. Indeed, the putative \textit{TraDF} gene \textit{pRF43} shares close similarity with the \textit{viD4} genes of other rickettsiae (Table 2). Interestingly, AG rickettsiae contain additional copies of \textit{viD4} that are more similar to \textit{pRF43} than to the other non-AG rickettsiae \textit{viD4} genes, further strengthening the argument for HGT between \textit{R. felis} and AG rickettsiae.

In theory, the presence of duplicated T\textsubscript{4}SS genes would allow for bacteria to continue the use of pili-mediated conjugation with a separate adapted conjugation system for the secretion of virulence factors. The only two \textit{Rickettsia} spp. known to have conjugative pili are \textit{R. felis} str. URRWXCa2 and \textit{R. bellii} str. RML369-C [15,21,22]. Not surprising is that these two genomes also contain elevated copies of transposable elements, insertion sequences and repetitive elements relative to other sequenced rickettsial genomes [107]. They also contain more HGT candidates than other rickettsiae, particularly genes likely inherited from Legionellaceae and Parachlamydiaceae [15]. While \textit{R. felis} seemingly has the ability to transfer plasmids via its pili, the genome of \textit{R. bellii} str. RML369-C does not harbor plasmids by which to exchange DNA. However, conjugative transposons are also efficient at transferring DNA between the pili [108]. Indeed, another intracellular pathogen, \textit{Legionella pneumophila}, performs T\textsubscript{4}SS-mediated conjugative transfer of both chromosomal [109] and plasmid [110] DNA. Thus, even in the absence of plasmids, rickettsiae with pili are likely able to exchange DNA via conjugation with other bacteria, as well as uptake genetic material from non-bacterial organisms.

In rickettsiae, no proteins potentially involved in virulence have been demonstrated to be secreted via the T\textsubscript{4}SS. However, we predict that some rickettsiae T\textsubscript{4}SS effectors characterized in the future will be genes inherited horizontally from distantly-related organisms, as products of HGT in prokaryotic genomes are often associated with pathogenicity [111]. For example, HGT has been implicated in the acquisition of bacterial \textit{x2}-macroglobulins, which function as colonization factors, in many diverse bacteria exploiting higher eukaryotes as hosts [112]. The recently sequenced genome of \textit{Chlamydophila abortus} revealed several highly variable genomic islands, some of which contain genes involved in host invasion and virulence [113]. Waterfield et al. [61] have demonstrated that a high level of similarity exists between pathogenicity islands from insect and mammalian pathogens. While no pathogenicity islands have been described from rickettsiae, it is likely that virulence factors could have resulted from previously acquired pathogenicity islands that are difficult to detect in highly reductive genomes. For instance, the presence of gene clusters involved in virulence or immunity on plasmids are often flanked by repetitive and direct repeats [114], as is known for microcin C51 plasmid genes of \textit{E. coli} that are believed to be laterally inherited [115]. Some of these genes are present in various rickettsiae in truncated and highly variable copies (data not shown). One microcin, \textit{mccE}, is similar to a rickettsial gene that codes for \textit{vimF}, a ribosomal-protein-alanine N-acetyltransferase. While conserved across all rickettsiae, \textit{vimF} is unknown from other Rickettsiales, with the closest putative orthologs found in various genomes of \textit{Coxiella} and \textit{Bacillus} (Table S4). Even if the similarity between \textit{vimF} and \textit{mccE} is the result of convergence in the C-terminal catalytic domain, the close affinity of \textit{vimF} to other bacteria well diverged from rickettsiae, many of which harbor plasmids (Table S4), may hint at the horizontal inheritance of this gene in rickettsiae. Also, one of the above-mentioned \textit{pRF} genes possibly involved in \textit{R. felis} virulence, the hyaluronidase (\textit{pRF56}), has close similarity with several proteins from insects, suggesting it could be derived from an insect host gene and is involved in host manipulation (Table S2).

The search for virulence factors involved in rickettsial pathogenesis has not been easy and will entail intense scrutiny of the predicted ORFs with unknown function across the growing number of rickettsial genomes. Due to their streamlined evolution with constraints on genome size relative to many other bacteria, the detection of HGT in rickettsiae will be difficult for the following reasons: 1) most of the introduced genes are likely rapidly degraded and pruned from the genome, 2) accelerated rates of nucleotide evolution quickly disguise horizontally-inherited genes by homogenizing overall genomic base composition, and 3) neofunctionalization of co-opted genes only retains those motifs important in structure and function, making homology assignment virtually undetectable for similarity algorithms. Nevertheless, through an understanding of these properties of rickettsial evolution, coupled with rigorous phylogeny estimation and \textit{in vitro} characterization, will a repertoire of horizontally inherited virulence factors begin to emerge, further illustrating the means by which these parasitic bacteria manipulate hosts cells throughout their life stages.

Plasmid Plasticity and Associated Virulence Traits

Of the 53 sequenced \textit{z}-proteobacterial genomes currently available on the NCBI microbial genome database (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi), 16 are known to contain plasmids. Aside from \textit{Rickettsia}, two other genera have species both with and without plasmids, \textit{Nitrobacter} and \textit{Rhodopseudomonas}, suggesting that plasmids are not essential for all species within \textit{z}-proteobacterial genera that contain them. This plasticity for harboring plasmids is further intricate when analyzing intraspecific plasmid number. Three \textit{z}-proteobacterial species differ in the number of plasmid types within their genomes: \textit{Mesarizhohbium} (2–3), \textit{Rhizobium} (5–6) and \textit{Silicibacter} (1–2). Thus it appears typical for at least \textit{z}-proteobacterial plasmid-containing species that plasmids can be present or absent, and that the number of plasmid types per genome is plastic. This pattern extends to include four other genera of obligate intracellular pathogens (Table 4). It seems that plasmids are plastic across all five genera of the obligate intracellular pathogens listed, and in the instances where virulence factors are associated with the plasmid, plasmidless strains have incorporated the essential genes into their chromosomes (35,37,38,39,40). Thus, even though laboratory methods for detecting plasmids, such as pulse-field gel electrophoresis or
PCR, may rule out the presence of plasmids within genomes, plasmids may reside within chromosomes either permanently or temporarily, not unlike the behavior of the bacteriophage lambda. Still, integration of plasmids into chromosomes is considered rare, temporarily, not unlike the behavior of the bacteriophage lambda. Plasmids are also plastic when analyzed across the genome sequences of five other selected pathogenic bacteria, namely Bacillus, Legionella, Neisseria, Pseudomonas and Yersinia (Table S5). Except for Yersinia, all five genera contain both strains with and without plasmids, and aside from Neisseria and Legionella, the number of plasmid types per species is variable. Although three sequenced genomes of Neisseria revealed no presence of plasmids, a larger sampling of several pathogenic and commensal neisseriae uncovered six plasmid types, with some containing genes with moderate homology to the recently identified meningococcal disease-associated phage [99]. The virulence traits associated with the plasmids of Bacillus and Yersinia were discussed above and raise questions as to whether or not plasmidless strains have the genes necessary for virulence incorporated into their chromosomes. Analysis of two close strains of Legionella pneumophila, Paris and Lens, revealed three variable plasmids, with only the Paris strain harboring a T4SS encoded on a multicopy plasmid [51]. Interestingly, robust sampling of L. pneumophila populations exposed that some genomes have this T4SS-plasmid integrated into the chromosome [51]. Similarly, of three strains of Pseudomonas, pv. tomato DC3000, pv. phaseolicola 1448A and pv. syringae B728a, only the first two contain plasmids, with two plasmid types per genome [119,120,121]. Analysis of the plasmidless str. pv. syringae B728a with other pseudomonad genomes revealed a genomic island with high similarity to a conjugal plasmid from P. aeruginosa str. PAO1, pKLC102, which carries a pil operon encoding type IV sex pili, as well as recombination and replication machinery [120,122]. Regarding Pseudomonas pv. tomato DC3000, even though copies of virulence genes are present on pDC3000A, the plasmid is not involved in virulence, as copies of the virulence genes have functional paralogs on the chromosome [119]. Thus plasmids may initially be involved in virulence, but once the virulence genes are inserted into the chromosome, the plasmid genes are no longer essential for fitness. However, mutational analysis of T4SS genes on the plasmid pVir of Campylobacter jejuni str. 81–176 identified five genes that affect in vitro invasion of intestinal epithelial cells, suggesting the plasmid is

Table 4. Comparative genomic analysis of five plasmid-containing genera of obligate intracellular pathogens.

Taxon	Genome size (MB)	% GC	Plasmid(s)	Plasmid size (MB)	% GC	ORFs	RNAs
Chlamydia							
C. muridarum Nigg	1.08	40.3	1, pMoPn	0.007501	35.7	7	0
C. trachomatis A/HAR-13	1.05	41.3	1, Pcta	0.00751	36.3	8	0
C. trachomatis D/UW-3/CX	1.04	41.3	0				
Chlamydophila							
C. caviae GPIC	1.18	39.2	1, pCPGP1	0.007966	33.7	7	0
C. felis Fe/C-56	1.17	39.4	1, pCFe1	0.00755233.9	8	0	
C. pneumoniae AR39	1.23	40.6	0^1				
C. pneumoniae CWL029	1.23	40.6	0^1				
C. pneumoniae J138	1.23	40.6	0^1				
C. pneumoniae TW-183	1.23	40.6	0^1				
C. psittaci	NA	NA	1^2, pAP^p	NA	NA	NA	NA
Coxiella							
C. burneti RSA 493	2.03	42.7	t^2, pQpH1	0.037393	39.3	36	0
Mycobacterium							
M. leprae TN	3.27	57.8	0				
M. sp. MCS	5.92	68.5	1, plasmid1	0.215075	66.6	224	0
Rickettsia							
R. bellii RML369-C	1.52	31.7	0				
R. bellii OSU 85 389	1.52	31.0	1, ?	0.048775(?)	?	49(?)	?
R. canadensis McKiel	1.16	29.0	0				
R. prowazekii Madrid E	1.11	28.9	0				
R. typhi Wilmington	1.11	29.0	0				
R. akari Hartford	1.23	32.3	?		?	?	?
R. felis URRW0Cal2	1.59	32.5	1, pRF	0.062829	33.6	68	0
R. rickettsii	1.26	32.4	0				
R. conorii Malish 7	1.27	32.5	0				
R. sibirica 246	1.25	32.4	0				

1Majority of C. psittaci and some C. pneumoniae strains carry a plasmid [116,117,118].
2Plasmidless strains of C. burneti occur, with the plasmid incorporated into the chromosome [37,38].
3As recently reported [128] (see Conclusion).

doi:10.1371/journal.pone.0000266.t004
essential for host colonization [123]. Similarly, O’Connell and Nicks [124] demonstrated that plasmid-cured strains of *Chlamydia muridarum* grew smaller plaques than the wildtype and were unable to accumulate glycogen within intercytoplasmic inclusions. Thus, while plasmid plasticity may hint at a reduced role for plasmids in virulence, particularly when virulence genes are copied on the chromosome, it is likely that many plasmid systems are still essential for survival and/or virulence.

The number of gram-negative pathogenic bacteria that use adapted T4SSs for the export of virulence factors to hosts is growing, e.g. *Agrobacterium tumefaciens*, *Bartonella tribocorum*, *Brucella* spp., *Helicobacter pylori*, *Bordetella pertussis*, *L. pneumophila*, *R. prowazekii*, and *Yersinia enterocolitica* [106,125,126]. Given that plasmid conjugation machineries are likely the ancestors to many of these modified T4SSs, the role of plasmids in the acquisition of virulence is an exciting area for research, particularly for systems wherein plasmids are plastic, such as rickettsiae. Future analysis of plasmid plasticity and characterization of plasmid-associated virulence traits will hopefully answer an important question: why do the sequenced genomes of other pathogenic rickettsiae not harbor plasmids? And more interestingly, why would *R. felis* need a plasmid with virulence traits when it has the same core set of genes (e.g., *pdl*, *tlyc*, *romP*, *pat*, etc.) shared by the already implicated in host adherence and pathogenicity? Studies demonstrating the differential expression of pRF genes during the life cycle of *R. felis* may lead to the identification of genes involved in host invasion and virulence. Indeed, plasmid gene expression has been shown to be highly variable throughout the life cycle of another intracellular pathogen, *C. trachomatis* [127]. Future studies should also determine if *R. felis* is capable of integrating pRF into its chromosome, and how plasmid-curing affects overall fitness.

Conclusion

We have demonstrated above through a phylogenomic/bioinformatic evaluation that there is strong support for the presence of a single plasmid in *R. felis*, pRF, and that many of the plasmid genes have probably been horizontally inherited from exchanges with other organisms either through a rudimentary conjugation apparatus or an adaptation of the T4SS that allows for dual transfer of plasmid DNA as well as translocation of effector molecules. Thus, we doubt the recent proposal that all pRF genes were inherited in one HGT event (Figure 5A), and that this event occurred either in *R. felis* [96] or an ancestor to TRG rickettsiae [21]. Rather, our characterization of the *R. felis* plasmid within a phylogenomic context suggests that the primitive rickettsial ancestor likely harbored plasmids (Figure 5B). In the *Rickettsia* ancestor plasmids would have 1) eased the exchange of DNA with other intracellular pathogens, 2) fostered the duplication of certain genes (especially transposases), creating gene families and new genes through neofunctionalization, 3) facilitated the integration of plasmid genes into the chromosome, and 4) provided for a means

Figure 5. Comparison of two hypotheses for the evolution of plasmids in rickettsiae. (A) The appearance of a plasmid system in *R. felis* (as a member of SFG rickettsiae) as recently suggested (Ogata et al., 2005b; Blanc et al. 2007). (B) Our hypothesis centered on the notion that the ancestor to all rickettsiae harbored a plasmid system with subsequent losses in the ancestors to the TG and SFG rickettsiae, and in *R. canadensis* and *R. bellii* str. RML369-C. Red = ancestral rickettsiae, Aquamarine = typhus group, light blue = transitional group, brown = true spotted fever group. Trees are from Figure 2A.

doi:10.1371/journal.pone.0000266.g005
to acquire a conjugation operon that would eventually give rise to the T4SS. Under this evolutionary model the plasticity of plasmids can be explained in relation to life history and overall fitness costs associated with plasmids: those lineages with strict host specialization, particularly lineages undergoing extreme gene loss and accelerated rates of nucleotide evolution (i.e., TG rickettsiae), would no longer need to harbor plasmids. Those lineages with a large genome size, elevated numbers of mobile elements and a less strict host range might retain plasmids.

We stress that the discovery of a plasmid system in R. felis, as well as the presence of conjugative pili in R. bellii and close genomic similarities between the two species, should be considered the opening of Pandora’s box, as subsequent completed rickettsial genomes will likely yield more plasmid systems and other means for non-vertical exchange of genetic material within rickettsiae and between rickettsiae and other organisms. For instance, it was recently presented at the annual meetings of The American Society of Rickettsiology [128] that R. bellii OSU83-389 contains a putative conjugative plasmid (sequence as yet unpublished). Based on this finding, R. akari str. Hartford may also contain a conjugative plasmid, as it shares a unique clade (TRG rickettsiae) in the rickettsial tree with R. felis that is unique in that it colonizes mice and insect hosts respectively. The presence of a plasmid perhaps allowed for the horizontal acquisition of virulence factors from other mice- and insect-associated endosymbionts that occupy similar niches of TRG rickettsiae. The supposed finding of a plasmid in R. bellii str. OSU83-389 is compatible with our analysis of the pRF gene distribution throughout other rickettsiae, as we detected many of the plasmid-specific pRF genes in the genomes of two R. bellii strains. Plasmids would undoubtedly be beneficial for R. bellii as it has one of the largest host ranges of any Rickettsia species.

We predict that as more genomic sequences become available for other Rickettsia spp., the four clades defined herein using phylogenetic estimation (AG, TG, TRG, SFG) will remain strongly supported, and that R. australis and other rickettsiae with either recent host switches or the presence of plasmids, will likely fall within the AG and TRG rickettsiae. However, because the recently sequenced genome of another member of the SFG rickettsiae, R. massiliae, revealed a large genome size and the presence of a tra gene cluster similar to that found in R. felis [96], plasmids may be uncovered in other as yet unsequenced SFG rickettsiae. Given the genomic similarities shared between the R. felis and R. bellii (and likely R. massiliae) genomes, it is likely that genetic mobility boosts the versatility and plasticity of these microorganisms. However, the role plasmids play in host colonization and virulence is not well understood, and will likely only become more apparent with both the discovery of plasmids in other rickettsiae, as well as the in vitro characterization of the contribution of plasmids to host recognition, invasion and pathogenicity. This aspect of rickettsiology is promising for the future development of vaccines for virulent rickettsiae, as well as for the construction of shuttle vectors for which plasmids may provide the first means for in vivo experimental models [23,129].

MATERIALS AND METHODS

Phylogeny estimation

We analyzed only those Rickettsia spp. for which a genome sequence was available: Rickettsia bellii str. RML369-C (NC_007940), R. bellii str. OSU83 389 (NZ_AARC00000000), R. canadensis str. McKiel (NZ_AAFO10000001), R. prowazekii str. Madrid E (NC_000963), R. typhi str. Wilmington (NC_006142), R. akari str. Hartford (NZ_AAFO10000001), R. felis str. URRWX-Cal2 (NC_007109), R. conorii str. Malish 7 (NC_003103), R. rickettsii (NZ_AAD)01000001), and R. sibirica str. 246 (NZ_AABW01000001). Additionally, to root the baseline phylogeny we included orthologous sequences from two outgroup taxa, one from the Wolbachia endosymbiont of Drosophila melanogaster (NC_002976.6), and one from the Wolbachia endosymbiont strain TRS of Brugia malayi (NC_006383.1). Methods of phylogeny estimation were the same for generating the baseline phylogeny (Figure 1), the phylogenies of exclusively chromosomal genes (Figure 2A) and those present on chromosomes and the pRF plasmid of R. felis (Figure 2B), and the single pRF genes (Figure 3).

Initially, BLASTP [130] searches against the NCBI protein database were done using R. felis amino acid sequences as queries (for BLASTP specifics and threshold see below). For the baseline phylogeny, we analyzed 15 conserved rickettsial proteins (hypothetical protein RF_0005, threonyl-t-RNA synthetase, prepore translocase SecA subunit, uncharacterized low-complexity protein RF_0864, pyruvate phosphate dikinase precursor, leucyl-t-RNA synthetase, hypothetical protein RF_0556, NAD-specific glutamate dehydrogenase, DNA polymerase III alpha chain, O-antigen export system permease protein RfhA, thioredoxin, NADPH-dependent glutamate synthase beta chain and related oxidoreductases, putative TIM-barrel protein in miR3 family, and UDP-3-O-[3-hydroxymyristoyl]glucosamine). For the exclusively chromosomal dataset, we used the Rickettsia Orthologous Groups database at the PATRIC Website [107] to compile 21 hypothetical proteins that are present in all ten published rickettsial genomes. Our rationale for using hypothetical proteins was that these proteins have never been analyzed in prior studies and thus would test previous phylogeny estimates, as well as evaluate the phylogenetic utility of uncharacterized ORFs. The seven proteins comprising the third dataset consist of genes present of both the R. felis chromosome and pRF and distributed across all 10 rickettsial chromosomal genomes. Initially, 10 proteins qualified by this criterion; however, gene duplications, truncations and split genes did not permit the inclusion of pRF02, pRF19 and pRF25 (Table 2), pRF43 was also excluded because of its uncertain homology with chromosomal virD4 genes.

Retrieved rickettsial (and Wolbachia outgroup) protein sequences were exported in Fasta format and aligned locally using default parameters in the command-line version of the program MUSCLE [131,132]. Aligned datasets were converted to Nexus format using the program seqConverter.pl, version 1.1 [133]. Each Nexus file was concatenated manually into a combined executable Nexus file and analyzed under parsimony in an exhaustive search in the program PAUP* version 4.10 (Altech) [134]. Branch support was assessed using the bootstrap [135] with default settings in PAUP. We performed one million bootstrap replications. Tree images were exported from PAUP* and manually adjusted in Adobe® Illustrator® CS2 v.12.0.1. Single gene phylogeny estimations were performed similarly.

Characterization and distribution of pRF genes

We performed BLASTP searches against the NCBI protein database using the 68 genes present on the pRF plasmid (NC_007110) as queries. The nr (All GenBank+RefSeq Nucleotides+EMBL+DDBJ+PDB) database was used, coupled with a search against the Conserved Domains Database. Searches were performed across all organisms with composition-based statistics. No filter was used. Default matrix parameters (BLOSUM62) and gap costs (Existence:11 Extension: 1) were implemented, with an inclusion threshold of 0.005. We then compiled the 68 genes into two tables: one based on pRF genes that were present only on pRF (Table 1), and another with genes
also found on the \emph{R. felis} chromosome (Table 2). When strong support for a function was given for closely related sequences, we modified the existing annotation for some genes. The presence or absence of the genes across 1) other rickettsiae, 2) other bacteria and 3) other viruses, archaeca and eukaryotes was then assigned. For presence/absence in other viruses, archaeca and eukaryotes, we did not reject sequences with low homology, as recent studies suggest that regions of divergent proteins sharing limited homology can actually be the result of molecular mimicry [136,137]. We also determined whether or not pRF genes were present in the plasmids of other bacteria.

Identification of pRF \textit{oriV}

We predicted the putative origin of replication (\textit{oriV}) of pRF (Figure 4) based on results from GenSkew [http://mips.gsf.de/services/analysis/genreskew], an application for computing and plotting nucleotide skew data. We then plotted a ten-gene range from the center of the cumulative AT and GT skews to determine putative \textit{oriV} and replication termination regions through identification of genes known to typically occur in these regions.

All relevant materials, including updates to pRF annotation and sequence alignments used to generate phylogenetic trees, will be available in a future update of the PATRIC rickettsial database [107].

\textbf{SUPPORTING INFORMATION}

\textbf{Table S1} Results of a BlastP search using pRF11

\textbf{REFERENCES}

1. Perlman SJ, Hunter MS, Zchori-Fein E. (2006) The emerging diversity of \emph{Rickettsia}. Proc Biol Sci 273: 2097–2106.
2. Hackstadt T. (1996) The biology of rickettsiae. Infect Agents & Disease 5: 127–149.
3. Azad AF, Beard CB. (1998) Rickettsial pathogens and their arthropod vectors. Emerg Infect Dis 4: 179–86.
4. Azad AF, Radićkovic S. (2003) Pathogenic rickettsiae as bioterrorism agents. Ann N Y Acad Sci 990: 734–738.
5. Weisburg WG, DeLong ME, Samuel JE, Dasch GA, Mallavia LP, et al. (1989) Phylogenetic diversity of the \emph{Rickettsia} family. J Bacteriol 171: 4202–4206.
6. Fournier P-E, Dummier JS, Greub G, Zhang J, Wu Y, et al. (2003) Gene sequence-based criteria for the identification of new \emph{Rickettsia} isolates and description of \emph{Rickettsiella hongkongensis} sp. nov. J Clin Microbiol 41: 5456–5465.
7. Philip RN, Casper EA, Anacker RL, Cory J, Hayes SF, et al. (1983) \emph{Rickettsia bellii} sp. nov.: A tick-borne rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups. Int J Syst Bacteriol 33: 94–106.
8. Stothard DR, Clark JB, Fuerst PA. (1994) Ancestral divergence of \emph{Rickettsia bellii} from the spotted fever and typhus groups of \emph{Rickettsia} and antiquity of the genus \emph{Rickettsia}. Int J Syst Bacteriol 44: 780–804.
9. Stothard DR, Fuerst PA. (1993) Evolutionary analysis of the spotted fever and typhus groups of \emph{Rickettsia} using 16S rRNA gene sequences. Syst. Appl. Microbiol. 16: 52–61.

10. Sterner J, Walker DH. (2000) The rickettsial outer-membrane protein A and B genes of \emph{Rickettsia mellitii}, the most divergent of the spotted fever groups. Int J Syst Evol Microbiol 50: 1757–1775.
11. Ishikura M, Fujita H, Ando S, Matsukura K, Watanabe M. (2002) Phylogenetic analysis of spotted fever group \emph{Rickettsia} isolated from ticks in Japan. Microbiol Immunol 46: 241–247.
12. Kituchi Y, Sameshima S, Kitade O, Kojima J, Fukatsu T. (2002) Novel clade of \emph{Rickettsia} spp. from leeches. Appl Environ Microbiol 68: 999–1004.
13. Erenmeeva ME, Madan A, Shaw CD, Tang K, Dasch GA. (2005) New perspectives on rickettsial evolution from new genome sequences of rickettsia, particularly \emph{R. canadensis}, and \emph{Orientia tsutsugamushi}. Ann N Y Acad Sci 1063: 47–63.
14. Abergel C, Blanc G, Monchois V, Renesto-Audiffren P, Sigouillot C, et al. (2006) Impact of the excision of an ancient repeat insertion on \emph{Rickettsia conorii} guanylate kinase activity. Mol Biol Ecol 23: 2112–2122.
15. Ogata H, LaScola B, Audic S, Renesto P, Blanc G, et al. (2006) Genome sequence of \emph{Ricketsia helvetica} illuminates the role of amoeboic in gene exchanges between intracellular pathogens. PLoS Genet 2: e76.
16. Huebner RJ, Jellison WL, Pomerantz C. (1948) Rickettsialpox-a newly recognized rickettsial disease. IV. Isolation of a rickettsia apparently identical with the causative agent of rickettsialpox from \emph{Albomammosus sanguinosus}, a rodent mite. Public Health Rep 61: 1677–1682.
17. Adams Jr, Schmidtma ET, Azad AF. (1990) Infection of colonized cat fleas, \emph{Ctenocephalides felis} (Bouche), with a rickettsia-like microorganism. Ann J Trop Med Hyg 43: 400–409.
18. Azad AF, Sacci Jr, Nelson WM, Dasch GA, Schmidtma ET, et al. (1992) Genetic characterization and transovarial transmission of a typhus-like \emph{rickettsia} found in cat fleas. Proc Natl Acad Sci USA 89: 45–46.
19. Boonyer DH, Stenon J, Croquet-Valdes P, Moron CG, Popov VL, et al. (2001) \emph{Rickettsia felis}: Molecular characterization of a new member of the spotted fever group. Int J Syst Evol Microbiol 51: 339–347.
20. Zavala-Velasquez JE, Zavala-Castro JE, Vado-Solis I, Ruiz-Sosa JA, Moron CG, et al. (2002) Identification of \emph{Ctenocephalides felis} fleas as a host of \emph{Rickettsia felis}, the agent of a spotted fever rickettsiosis in Yucatan, Mexico. Vector Borne Zoonotic Dis 2: 69–75.
21. Ogata H, Robert C, Audic S, Robineau G, Blanc G, et al. (2005) \emph{Rickettsia felis}, from culture to genome sequencing. Ann NY Acad Sci 1065: 26–34.
22. Ogata H, Renesto P, Audic S, Robert C, Blanc G, et al. (2005) The genome sequence of \emph{Rickettsia felis} identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3: e248.
23. Kell K, Binniewie TS, Scherzer-Pontin T, Willenbrock H, Hallin PF, et al. (2005) Genome update: Sigma factors in 240 bacterial genomes. Microbiology 151: 3147–3150.
24. Samuel JE, Frazier ME, Kahn ML, Thomashow LS, Mallavia LP. (1983) Isolation and characterization of a plasmid from phase I \emph{Coxiella burnetii}. Infect Immun 41: 488–493.
25. Samuel JE, Frazier ME, Mallavia LP. (1985) Correlation of plasmid type and guanylate kinase activity. Mol Biol Evol 2: 197–207.
26. Zavala-Velasquez JE, Zavala-Castro JE, Vado-Solis I, Ruiz-Sosa JA, Moron CG, et al. (2002) Identification of \emph{Ctenocephalides felis} fleas as a host of \emph{Rickettsia felis}, the agent of a spotted fever rickettsiosis in Yucatan, Mexico. Vector Borne Zoonotic Dis 2: 69–75.
27. Ogata H, Robert C, Audic S, Robineau G, Blanc G, et al. (2005) \emph{Rickettsia felis}, from culture to genome sequencing. Ann NY Acad Sci 1065: 26–34.
28. Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, et al. (2006) Complete sequence of chromosome and plasmid of \emph{Mycobacterium} sp. MCS US DOE Joint Genome Institute.
29. Lovett M, Kuo C-C, Holmes K, Falkow S. (1980) Plasmid of the genus \emph{Chlamydia}. In "Current Chemotherapy and Infectious Disease: Proceedings of the 11th ICC and the 19th ICAC.,” pp. 1250–1252. Amer Soc Microbiol, Washington, DC.
30. Huppa T, Larsen SH, Stahlberg T, Tebrko P. (1984) Analysis and detection of chlamydial DNA. J Gen Microbiol 130: 3159–3164.

\textbf{ACKNOWLEDGMENTS}

We wish to thank Michele Worely (UMB) for helpful discussion, and Matt Yoder (Texas A&M University) for assistance with regular expressions.

\textbf{Author Contributions}

Conceived and designed the experiments: AA, JG, MB, MR. Performed the experiments: JG, JS. Analyzed the data: JG, JS. Contributed reagents/materials/analysis tools: AA, BS, JG, AP. Wrote the paper: AA, BS, JG, MB, NA, AP.
standards for the identification of organisms. Int J Syst Bacteriol 49 Pt 2: 415–440.

31. Pickett MA, Everson JS, Read PJ, Clarke IN (2005) The plasmids of Chlamydia trachomatis and Chlamydia pneumoniae (N16): Accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology 151: 893–903.

32. Joseph T, Nano FE, Garon CF, Caldwell HD (1986) Molecular characterization of Chlamydia trachomatis and Chlamydia psittaci plasmids. Infect Immun 51: 707–710.

33. Campbell LA, Kuo CC, Grayston JT (1987) Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization. J Clin Microbiol 25: 1911–1916.

34. Peterson EM, de la Maza LM (1988) Restriction endonuclease analysis of DNA from Chlamydia trachomatis biotypes. J Clin Microbiol 26: 625–629.

35. Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen JT, et al. (2003) Genome sequence of Chlamydia caviae (Chlamydia psittaci GFC). Examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31: 2141–2147.

36. Anzuma Y, Hiramaki H, Yamashita A, Cai Y, Rahman MA, et al. (2006) Genome sequence of the cat pathogen, Chlamydia felis. DNA Res 13: 15–23.

37. Savinelli EA, Mallavita LP (1990) Comparison of Caustia bartonii plasmids to homologous chromosomal sequences in a plasmidless endocarditis-causing isolate. Ann N Y Acad Sci 590: 523–533.

38. Willems H, Ritter M, Jager C, Thiele D (1997) Plasmid-homologous sequences in the chromosome of plasmidless Caustia bartonii Scurry Q271. J Bacteriol. 179: 3929–3937.

39. Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, et al. (1999) Comparative genomes of Chlamydia pneumoniae and Ch. trachomatis. Nat Genet 21: 385–393.

40. Read TD, Brunham RC, Shero C, Gill SR, Halstead BG, et al. (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28: 1397–1406.

41. Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: Rates of horizontal and exchange. J Mol Evol 44: 383–397.

42. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95: 9413–9417.

43. Liu L, Harrison PM, Kunin V, Gerstein M (2004) Comprehensive analysis of pseudogenes in prokaryotes: Widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5: R64.

44. Lawson ET, Mousau TA, Klaper R, Hunter MD, Werren JH (2001) Characterization of the large number and the paradoxical effect of plasmid-curing agents. Microbiology 147: 623–637.

45. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Annu Rev Genet 37: 197–225.

46. Caturegli P, Asanovich KM, Walls JJ, Bakken JS, Madigan JE, et al. (2000) Type IV secretion systems: A frontier for bacterial pathogenesis. Trends Biochem Sci 25: 673–679.

47. Metzger D, Brijder A, Innerdüz S, Eberle A, Teemu M, et al. (1980) The nucleotide sequence and characterization of the rfa gene of Escherichia coli. J Biol Chem 256: 15699–15704.

48. Engelsberg-Kulka H, Aimutis E, Schreiber G, Teemu M, et al. (1980) Expression of a toxigenic plasmid from Yersinia enterocolitica 8081 in Pasteurella multocida. FEMS Microbiol Lett 71: 1988–1994.

49. Engelsberg-Kulka H, Aimutis E, Schreiber G, Teemu M, et al. (1980) Toxins-antitoxins: Plasmid maintenance, programmed cell death, and cell cycle arrest. Science 210: 1496–1499.

50. Gerdes K, Christensen SK, Lonnert-Olsen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3: 371–382.

51. But B, Li B, Da-Thu MH, Wyns L, Loris R (2006) Toxin-antitoxin modules regulate bacterial metabolic stress. Trends Biochem Sci 30: 673–679.

52. Raoult D, Audic S, Robert C, Abergel C, Renesto P, et al. (2004) The 1.2-megabase genome sequence of the Q-fever pathogen Coxiella burnetii. Science 306: 72601 bp, a pPT2A-family plasmid from Pseudomonas syringae pv. syringae strain A2. Mol Genet Genomics. 270: 462–476.

53. Whitworth T, Popov VL, Y X-J, Walker DH, Bouyer DM (2005) Expression of the Rickettsia prowazekii pliE pliF gene in Salmonella enterica serovar typhimurium mediates phagosome escape. Infect Immun 73: 6608–6673.

54. Hinnebusch J, Chervenak P, Do Y, Rudolph A, Droux JD, et al. (2000) Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int J Med Microbiol. 290: 483–487.

55. Hinnebusch J, Rudolph A, Chervenak P, Dixon JD, Schwab T, et al. (2002) Role of ToxCM toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 295: 733–735.

56. Soderina OA, Subrahmanyan YV, Stark K, Quam T, Bao Y, et al. (1992) A surface protease and the invasive character of plague. Science 256: 1004–1007.
92. Fern K, Coulon C, Jones M, Quail MA, Holroyd NR, et al. (2006) Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog 2.

93. Kondo N, Nikol N, Iijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia isochoromabor transferred to X chromosome of host insect. PNAS 99: 14280–14285.

94. Wolf YI, Aravind L, Koonin EV (1999) Rickettsiae and Chlamydiae: Evidence of horizontal gene transfer and gene exchange. Trends Genet 15: 173–175.

95. Eremeeva ME, Madan A, Dasch GA (2006) Genome sequence of Wolbachia pipientis W136. J Bacteriol 188: 679–689.

96. Blanc G, Ogata H, Robert C, Audic S, Suhre K, et al. (2007) Reductive evolution of horizontal gene transfer and gene exchange. Trends Genet 15: 173–175.

97. Greub G, Raoult D (2004) Microorganisms resistant to free-living Amoebae. Clin Microbiol Rev 17: 413–433.

98. van Passel MWJ, Bart A, Luyf AC, van Kampen AH, van der Ende A (2006a) Whole-genome sequence analysis of Wolbachia pipientis W136 reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187: 6408–6416.

99. van Passel MWJ, Bart A (2006b) Plasmid diversity in Neisseriae. Infect Immun 74: 4892–4899.

100. Itoh T, Martín W, Nei M (2002) Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. PNAS 99: 12944–12948.

101. Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3: e130.

102. Miyamoto H, Yoshida S, Taniguchi H, Shuman HA (2003) Virulence of Francisella. Nucleic Acids Res 31: 518–534.

103. Sexton JA, Vogel JP (2002) Type IVB secretion by intracellular pathogens. Antimicrob Agents Chemother 47: 2868–2874.

104. Czech J, Rabinovitch D, O’Brien T, Schnaiter M, Ackermann H, et al. (2004) Chlamydial plasmid: a tool for pathogenic adaptation. Trends Microbiol 12: 522–527.

105. Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia isochoromabor transferred to X chromosome of host insect. PNAS 99: 14280–14285.

106. Wolf YI, Aravind L, Koonin EV (1999) Rickettsiae and Chlamydiae: Evidence of horizontal gene transfer and gene exchange. Trends Genet 15: 173–175.

107. Snyder EE, Kampanya N, Lu J, Nordberg E, Rajasimha H, et al. (2007) The complete genome sequence of the Ambobiplois and tomato pathogen Pseudomonas syringae pv. tomato DC3000. PNAS 104: 10181–10186.

108. Licht TR, Wilcks R (2006) Conjugative gene transfer in the gastrointestinal environment. Adv Appl Microbiol 58: 77–95.

109. Klockgether J, Reva O, Larbig K, Tümmler B (2004) Sequence analysis of the Francisella pseudomallei 294–305 genome. Nucleic Acids Res 32: 1792–1797.

110. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, et al. (2003) The complete genome sequence of the Ambobiplois and tomato pathogen Pseudomonas syringae pv. tomato DC3000. PNAS 100: 11064–11069.

111. Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological constraints and evolutionary conclusions. Microbiology 147: 3201–3214.

112. Budd A, Blandin S, Levashina EA, Gibson TJ (2004) Bacterial endosymbiont transferred to X chromosome of host insect. PNAS 99: 12944–12948.

113. Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, et al. (2005) The complete genome sequence of the Ambobiplois and tomato pathogen Pseudomonas syringae pv. tomato DC3000. PNAS 102: 11064–11069.

114. Klockgether J, Reva O, Larbig K, Tümmler B (2004) Sequence analysis of the mobile genome Island pKL102 of Pseudomonas aeruginosa C. J Bacteriol 186: 518–534.

115. Bacon DJ, Atn RA, Hu L, Hickey TE, Ewing CP, et al. (2002) DNA sequence and mutational analyses of the Pvir plasmid of Campylobacter jejuni 81-176. Infect Immun 70: 6242–6250.

116. O’Connell CM, Nichols K (2006) A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. Microbiology 152: 1601–1607.

117. Christe P (2001) Type IV secretion: Intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40: 294–305.

118. Strauch E, Goetz G, Knabner D, Konietzny A, Lanka E, et al. (2003) A cryptic plasmid of Terrusia enterolobii encodes a conjugative transfer system related to the regions of CloDF13 Mot and IncX Pl. Microbiology 149: 2829–2845.

119. van Passel MWJ, Bart A (2006b) Plasmid diversity in Neisseriae. Infect Immun 74: 4892–4899.

120. Yiu Y, Fischer D (2006) On the origin of microbial ORFans: Quantifying the strength of the evidence for viral lateral transfer. BMC Evol Biol 6: 63.

121. OECD CM, Nichols K (2006) A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. Microbiology 152: 1601–1607.

122. Klockgether J, Reva O, Larbig K, Tümmler B (2004) Sequence analysis of the Francisella pseudomallei 294–305 genome. Nucleic Acids Res 32: 1792–1797.

123. Seyrek EE, Kampanya N, Lu J, Nordberg E, Rajasimha H, et al. (2007) The VBI PathoSystems Resource Integration Center (PATRIC). Nuclic Acids Res 35: 588–591.

124. Vogel JP (2002) Type IVB secretion by intracellular pathogens. Traffic 3: 178–185.

125. Hager J, Bolotin DL, Pelletier MR, Brittmacher MJ, Gallacher LA, et al. (2006) Type IV pilus-mediated secretion modulates Francisella virulence. Mol Microbiol 62: 227–237.

126. Baran O, Curalli D, Van Laecke E (2006b) Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol Microbiol 43: 1359–1365.

127. Nyman H, Yoshida S, Taniguchi H, Shuman HA (2003) Virulence conversion of Legionnaires pneumophila by conjugal transfer of chromosomal DNA. J Bacteriol 185: 6712–6718.

128. Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionnaires pneumophila. Science 279: 873–876.

129. Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36: 760–766.

130. Altschul SF, Madden TL, Schaffer AA, Zhang Z, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

131. Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.

132. Steinbs CE, Galan,JE (2001) Structural mimicry in bacterial virulence. Nature 412: 701–705.

133. Thomas NS, Lusher M, Storey CC, Clarke IN (1997) Plasmid diversity in Chlamydia. Microbiology 143: 1047–1054.

134. Itoh T, Martin W, Nei M (2002) Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. PNAS 99: 12944–12948.

135. Eremeeva ME, Madan A, Dasch GA (2006) Genome sequence of Rickettsia helii OSU 85-389. 20th Meeting of The American Society for Rickettsiology in conjunction with the 5th International Conference on Bartonella as Emerging Pathogens. September 27-1, 2006. Auklamar Conference Grounds, Pacific Grove, California, USA. Abstract #11.

136. Eremeeva ME, Madan A, Dasch GA (2006) Genome sequence of Rickettsia helii OSU 85-389. 20th Meeting of The American Society for Rickettsiology in conjunction with the 5th International Conference on Bartonella as Emerging Pathogens. September 27-1, 2006. Auklamar Conference Grounds, Pacific Grove, California, USA. Abstract #11.

137. Sikora S, Strongin A, Godzik A (2005) Convergent evolution as a mechanism for pathogenic adaptation. Trends Microbiol 13: 522–527.