Seasonal variation and sources of elements in urban submicron and fine aerosol in Brno, Czech Republic

Hana Cigánkováa,b,*, Pavel Mikuškab, Jitka Hegrovác, Petra Pokornád, Jaroslav Schwarzd, Jozef Krajčoviča

a Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
b Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
c Division of Sustainable Transport and Road Structures Diagnostics, Transport Research Center, Liščí 33a, 636 00 Brno, Czech Republic
d Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 2/135, 165 02 Prague 6, Czech Republic

SUPPLEMENTARY MATERIALS

Figure S1: 1-day back trajectories in winter 2018 in Brno
Figure S2: 1-day back trajectories in spring 2018 in Brno

Figure S3: 1-day back trajectories in summer 2018 in Brno
Figure S4: 1-day back trajectories in autumn 2018 in Brno

Figure S5: Comparison of PM2.5 mass concentrations in Brno.
Table S1: Meteorological parameters during campaigns.

Season	Temperature (°C)	Humidity (%)	Modelled wind direction (predominant)		
	Average	Range	Average	Range	
winter	-3.6	-12.6 – 5.4	70.4	41.9 – 99.4	northeast, east
spring	17.7	3.7 – 27.3	57.6	27.3 – 98.4	west, south
summer	21.3	11.3 – 30.6	62.8	26.0 - 100	north, northwest
autumn	2.5	-7.2 – 10.4	78.7	44.9 – 99.6	east

Table S2: Comparison of PM$_1$ mass concentrations in studied seasons.

Probability (P) *	winter	spring	summer	autumn
winter	---	0.0013	0.0004	0.0413
spring	0.0013	---	0.1510	0.0098
summer	0.0004	0.1510	---	0.0010
autumn	0.0413	0.0098	0.0010	---

* independent T-test: if P ≥ 0.05, means are not statistically different

Table S3: Comparison of PM$_{2.5}$ mass concentrations in studied seasons.

Probability (P) *	winter	spring	summer	autumn
winter	---	0.0003	0.0001	0.0766
spring	0.0003	---	0.0259	0.0038
summer	0.0001	0.0259	---	0.0001
autumn	0.0766	0.0038	0.0001	---

* independent T-test: if P ≥ 0.05, means are not statistically different

Table S4: Comparison of PM mass concentrations during week-days and weekends

Probability (P) *
winter PM$_1$
winter PM$_{2.5}$
spring PM$_1$
spring PM$_{2.5}$
summer PM$_1$
summer PM$_{2.5}$
autumn PM$_1$
autumn PM$_{2.5}$

* one sample T-test: if P ≥ 0.05, means are not statistically different
Table S5: PM1 and PM2.5 mass concentrations (µg m\(^{-3}\)) in literature

Location	PM1	PM2.5	PM1	PM2.5	Reference				
Average	Range	Average	Range	Average	Range				
Brno (CZE)	21.9	14.5–32.6	30.4	19.7–42.0	9.74	7.19–13.7	12.4	9.34–15.8	this study
Brno (CZE)	12.3	10.3–20.3	-	-	8.9	7.7–10.7	-	-	Mikuška et al., 2020
Brno (CZE)	25.9	20.9–32.5	-	-	10.4	5.8–17.6	-	-	Mikuška et al., 2020
Brno (CZE)	16.5	2.80–26.8	-	-	10.8	6.70–15.7	-	-	Coufalík et al., 2016
Elche (Spain)	8.80	2.00–19.9	12.3	3.60–29.2	10.1	5.30–16.5	14.0	4.70–26.8	Galindo et al., 2010
Warsaw (Poland)	17.4	4.70–39.0	-	-	11.1	5.67–22.6	-	-	Rogula-Kozłowska et al., 2018
Milan (Italy)	-	-	27.5	-	-	-	11.5	-	Juda-Rezler et al., 2020
Zabrze (Poland)	47.1	8.30–199	-	-	12.1	6.47–19.1	-	-	Rogula-Kozłowska et al., 2018
	-	-	66.9	-	-	-	18.4	-	Rogula-Kozłowska et al., 2012
Table S6: Selected elements concentration (ng m⁻³) in PM₁ during winter and summer campaigns in literature

Location	Al	Ca	Cu	Fe	K	Mn	Ni	Pb	V	Zn	Reference
Winter											
Brno (CZE)	11.5	9.65	1.97	38.9	173	2.17	0.38	7.36	0.25	25.8	this study
Brno (CZE)	9.11	30.0	0.46	28.8	63.3	1.18	0.37	133	0.41	8.49	Mikuška et al., 2020
Brno (CZE)	3.89	20.7	1.40	57.4	273	5.90	1.38	76.7	0.57	46.2	Mikuška et al., 2020
Brno (CZE)	-	-	1.72	27.9	-	1.66	-	4.22	0.15	18.4	Coufalík et al., 2016
Milan (Italy)	16.0	24.0	7.00	89.0	257	9.00	7.00	35.0	5.00	66.0	Vecchi et al., 2004
Barcelona (Spain)	-	-	3.91	-	-	2.23	2.58	6.02	5.47	27.1	Moreno et al., 2011
Kanpur (India)	-	1520	240	1030	-	10.0	240	10.0	860	Abishek et al., 2010	
Summer											
Brno (CZE)	13.0	19.5	0.98	33.1	31.7	1.09	0.21	1.66	0.09	3.86	this study
Brno (CZE)	7.07	54.7	1.08	5.45	68.1	1.38	-	27.3	0.13	8.52	Mikuška et al., 2020
Brno (CZE)	8.63	13.0	1.44	25.1	44.0	1.24	0.10	3.05	-	12.5	Mikuška et al., 2020
Brno (CZE)	-	-	1.44	37.1	-	2.43	0.51	2.94	0.22	11.2	Coufalík et al., 2016
Milan (Italy)	14.0	17.0	3.00	42.0	81.0	4.00	2.00	15.0	4.00	32.0	Vecchi et al., 2004
Barcelona (Spain)	-	-	2.05	-	-	1.44	2.93	2.34	8.24	8.82	Moreno et al., 2011
Kanpur (India)	-	2870	160	1240	-	8.00	360	20.0	390	Abishek et al., 2010	
Katowice (Poland)	12.4	-	7.08	91.1	-	28.6	0.50	18.5	12.3	38.4	Rogula-Kozlowska, 2015
	8.94	-	7.61	101	-	33.8	0.52	18.8	13.8	35.8	
Table S7: Selected elements concentration (ng m$^{-3}$) in PM$_{2.5}$ during winter and summer campaigns in literature

Location	Al	Ca	Cu	Fe	K	Mn	Ni	Pb	V	Zn	Reference
Winter											
Brno (CZE)	97.2	102	4.53	176	226	5.09	0.62	9.90	0.53	39.9	this study
Nanjing (China)	113	-	34.6	-	-	70.3	8.76	72.2	4.19	310	Qi et al., 2016
Karachi (Pakistan)	28.1	26.3	0.04	3.71	20.6	0.05	-	0.13	-	2.89	Mansha et al., 2012
Milan (Italy)	53.0	69.0	18.0	309	342	18.0	9.00	55.0	7.00	135	Vecchi et al., 2004
Barcelona (Spain)	-	-	8.06	-	-	6.08	3.11	9.13	6.98	45.7	Moreno et al., 2011
Nanjing (China)	-	-	70.3	-	-	48.9	-	70.8	8.48	-	Wu et al., 2019
Wuhan (China)	-	2270	30.6	1420	2170	125	5.95	204	-	366	Zhang et al., 2015
Summer											
Brno (CZE)	57.6	73.5	2.54	106	54.3	2.21	0.29	1.69	0.14	6.48	this study
Nanjing (China)	141	-	17.8	-	-	37.9	7.69	62.9	3.48	167	Qi et al., 2016
Karachi (Pakistan)	51.4	43.9	0.06	3.36	51.4	0.05	-	0.12	-	2.89	Mansha et al., 2012
Milan (Italy)	49.0	65.0	10.0	186	124	8.00	2.00	22.0	5.00	66.0	Vecchi et al., 2004
Barcelona (Spain)	-	-	5.97	-	-	5.42	5.14	5.01	12.5	25.8	Moreno et al., 2011
Nanjing (China)	-	-	21.4	-	-	27.3	-	39.7	7.17	-	Wu et al., 2019
Wuhan (China)	-	5590	17.7	1340	410	48.7	3.26	88.9	-	159	Zhang et al., 2015
Table S8: Average enrichment factors of elements in different seasons.

	Al	As	Ba	Ca	Cd	Co	Cr	Cu	K	Mg	Mn	Na	Ni	Pb	Sb	Se	Sn	Ti	V	Zn
PM1																				
winter	0.14	0.60	0.38	3562	2.18	3.59	71	7.46	0.32	2.82	2.14	8.03	434	1211	7246	336	0.14	2.45	386	
spring	0.35	0.85	0.62	673	0.79	2.17	32	2.00	0.50	1.30	2.10	2.72	92	625	3577	141	0.25	1.91	103	
summer	0.19	0.35	0.90	445	0.75	3.07	41	1.61	0.37	1.67	0.90	5.25	117	6586	7018	184	0.22	1.10	68	
autumn	0.07	0.23	0.60	2282	1.59	6.09	80	7.56	0.40	2.45	3.82	5.47	439	1804	7024	398	0.07	1.22	424	
PM2.5																				
winter	0.26	0.86	0.87	1184	1.04	2.45	35	2.14	0.53	1.45	1.60	2.89	128	411	2060	121	0.29	1.20	131	
spring	0.35	0.85	0.56	205	0.70	1.79	21	0.83	0.51	0.99	0.63	1.45	28	209	1112	68	0.29	0.99	37	
summer	0.26	0.66	1.06	140	0.57	2.14	33	0.86	0.49	1.06	0.73	2.29	36	1694	2336	101	0.28	0.53	35	
autumn	0.16	0.74	0.71	1094	0.91	4.17	61	3.44	0.30	1.64	1.29	2.61	177	627	3131	189	0.12	0.77	259	

Table S9: Summary of PMF diagnostics.

Diagnostic	PM2.5	PM1
Qexpected/theoretical	231	255
Qtrue	231	255
Qrobust	231	255
Species Q/Qexpected >2	-	V
DISP	-0.002	0
BS mapping	92 – 100	95 – 100