LETTER

Novel Optimization Strategies for Isolation Structure Design in MIMO Systems

Dawei Ding¹, Dawei Li², Jing Xia² and Zhuang Li²

Abstract Isolation is one of the most important electric characteristics in a compact MIMO (multiple-input and multiple-output) system. Fragment-type structure receives much attention for acquiring high isolation due to its novel topology structure. In this paper, several novel boundary-based weighted sum filtering operators are proposed to obtain fragment-type isolation structure designs. Experiments on the isolation structure design of a compact MIMO PIFAs (planar inverted-F antennas) system are investigated. Comparison results show that the proposed hybrid filtering matrices could generate smoother structure, thus obtain wider impedance bandwidth and better radiation efficiency.

doi: 10.1587/elex.17.20200006
Received December 30, 2019
Accepted March 9, 2020
Publicized March 31, 2020

1. Introduction

Multiple-input and multiple-output (MIMO) technique has been widely used in modern wireless communication [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. It is a key point to achieve high isolation between closely-packed MIMO antenna elements in MIMO design.

Many structures, such as electromagnetic band-gap structures [11], slots [12, 13, 14], resonator structures [15, 16, 17], meta-surface [18], meta-material structures [19] and some other structures [20, 21, 22], have been proposed to improve the isolation among MIMO antenna elements. In [23], fragment-type isolation structures have been designed through MOEA/D-GO (multobjective evolutionary algorithm based on decomposition combined with enhanced genetic operators) [24, 25, 26, 27, 28]. In [29], MOEA/D-GO-II (MOEA/D-GO combined with two-dimensional median filtering operator) is proposed to speedup the searching process.

However, MOEA/D-GO-II converges too fast at the expense of population diversity, which might make the algorithm converge to local optimal and reduce alternative designs number. In order to overcome this problem, a boundary-based weighted sum filtering operator, metalizing the edge cell when it is bounded by metal, and non-metalizing the edge cell when it is bounded by air, is proposed in [30]. This operator has more possibility to maintain the connectivity of the boundary of the metal conductor, thus, 1) more metalized cells are remained to maintain the population diversity and to reduce backward radiation, and 2) it is beneficial for trapping the current into the isolation structure through conductor to obtain perfect return loss and isolation, and to increase the overall loss, and thus obtain wider impedance bandwidth [29, 30].

In this paper, in order to further ensure the electrical connectivity of the fragment-type structures, several novel boundary-based weighted sum filtering operators are proposed. Then, the fragment-type isolation structure is designed for a compact MIMO PIFAs (planar inverted-F antennas) system operating at 2.345-2.36 GHz. Comparison among the different optimization strategies is also conducted.

2. Novel filtering operators

A novel boundary-based weighted sum filtering operator is proposed in [30]. During the implementation of boundary-based weighted sum filtering operator, each cell is assigned with “1” or “0” according to the following equation.

\[H(i, j) = \begin{cases}
1 & \text{if } d(i, j) \geq \frac{|FM|}{2} \\
0 & \text{otherwise}
\end{cases} \]

(1)

\[d(i, j) = \sum_{m=1}^{M} \sum_{n=1}^{N} H(i+m, j+n) \times |FM| \]

(2)

\(|FM| \) represents the sum of all elements of the filtering matrix, \(M \times N \) denotes the size of the fragment-type structure, and \(H(i, j) \) denotes the value of each cell of the fragment-type structure. The difference between the boundary-based filtering operator and the original...
median filtering operator [29] is the index of the calculation of \(d(i, j)\).

Fig. 1(c) gives two novel filtering matrices, called cross-shaped filtering matrices. It is shown that the proposed cross-shaped filtering matrix does not consider the impact of the diagonal elements. Therefore, it is easy to obtain the connected structures with less diagonal structures. Fig. 1(d) gives two five-order filtering matrices. This kind of filtering matrices could further ensure the connectivity of the fragment-type structures. Finally, two hybrid filtering matrices are proposed in Fig. 1(e) to combine the advantages of the two aforementioned matrices.

3. Fragment-type isolation structure designs

The proposed boundary-based weighted sum filtering operators are introduced into MOEA/D-GO to design fragment-type isolation structures [30]. Fig. 2 illustrates the basic configuration of a compact MIMO PIFAs operating at 2.345-2.36 GHz.

The objective functions are set as following.

\[
\begin{align*}
 f_1(x) &= \frac{10}{\min_{\omega \in [\omega_1, \omega_2]} |S_1|_{\text{dB}}} \\
 f_2(x) &= \frac{20}{\min_{\omega \in [\omega_1, \omega_2]} |S_2|_{\text{dB}}}
\end{align*}
\]

[\(\omega_1, \omega_2\)] indicates the operating band, \(|S_1|_{\text{dB}}\) represents the return loss, and \(|S_2|_{\text{dB}}\) represents the isolation between the MIMO PIFAs. The constants in (3)-(4) are used for normalization. It’s obviously seen that the smaller the value, the better the performance.

For each optimization strategy, several candidate designs are obtained. For simplification, only one design is fabricated and is tested in Fig. 3.

From Fig. 3(a), it is shown that great connectivity of the fragment-type structure is obtained. From Fig. 3(b), good agreement between simulated and measured results is observed. The antenna operates at 2.26-2.36 GHz with return loss of more than 10 dB and isolation of more than 20 dB. The isolation at 2.35 GHz could achieve 25 dB.
4. Comparison

For fair comparison, other filtering matrices in Fig. 1 are also used to design the fragment-type isolation structure. Fig. 4 illustrates the obtained isolation structures denoted as design #1, design #2, and design #3, respectively. Table I exhibits the comparison results, including electric characteristics, the number of alternative designs, and computational cost.

![Fig. 3. (a) Prototype of the design, and (b) measured S parameters.](image)

![Fig. 4. Obtained optimal structures by using (a) cross-shaped filtering matrix, (b) five-order filtering matrix, and (c) hybrid filtering matrix.](image)

TABLE I. Comparison on the optimization results and the computational cost

Design	Electric Characteristics	Computational Cost		
	Relative bandwidth (%)	Radiation efficiency (%)	Iteration number	Candidate number
#1	9.3	85	14	17
#2	10.5	83	12	15
#3	16.7	93	7	8

From Fig. 4 and Table I, it is observed as following.

1) All proposed optimization strategies could ensure the electrical connectivity of the fragment-type structures.

2) Hybrid filtering matrix could generate better smoothness than cross-shaped filtering matrix and five-order filtering matrix, thus it could obtain better radiation efficiency and wider impedance bandwidth [29].

3) Both cross-shaped and five-order filtering matrix has better population diversity than hybrid filtering matrix at the expense of searching speed.

5. Conclusion

Several novel boundary-based weighted sum filtering operators are proposed to ensure the electrical connectivity of the fragment-type isolation structures. Isolation structures of two closely-packed MIMO PIFAs are designed. Comparison on the experiment results shows that the proposed optimization strategies could improve the electrical connectivity of the fragment-type structures, and hybrid filtering matrices could generate smoother structure, thus obtain wider impedance bandwidth and better radiation efficiency.

Acknowledgments

This project was supported by NSFC (61801194), the Fundamental Research Funds for the Central Universities (2018MS13), China Postdoctoral Science Foundation (2018M643083), the Key Research & Development Plan of Jiangsu Province (BE2018108) and the Key Lab Foundation of Science and Technology on Monolithic Integrated Circuits and Modules Laboratory (6142803180206).

References

[1] J. Ren, et al.: “Compact printed MIMO antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 13 (2014) 1517 (DOI: 10.1109/LAWP.2014.2343454).

[2] L. Liu, et al.: “Compact MIMO antenna for portable devices in UWB applications,” IEEE Trans. Antennas Propag. 61 (2013) 4257 (DOI: 10.1109/TAP.2013.2263277).

[3] X. Liu, et al.: “Wideband MIMO antenna with enhanced isolation for wireless communication application,” IEICE Electron. Express 15 (2018) 20180948 (DOI: 10.1587/excl.15.20180948).

[4] A. Toktas and A. Akdagli: “Wideband MIMO antenna with enhanced isolation for LTE, WiMAX and WLAN mobile handsets,” IET Electron. Lett. 50 (2014) 723 (DOI: 10.1049/el.2014.0666).

[5] M. S. Sharawi, et al.: “A dual-element dual-band MIMO antenna system with enhanced isolation for mobile terminals,” IEEE Antennas Wireless Propag. Lett. 11 (2012) 1006 (DOI: 10.1109/LAWP.2012.2214433).

[6] Q. Chen, et al.: “Modulated scattering array antenna for MIMO application,” IEICE Electron. Express 4 (2007) 745 (DOI: 10.1587/excl.4.745).

[7] S. Zhang, et al.: “Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications,” IEEE Trans. Antennas Propag. 60 (2012) 4372 (DOI: 10.1109/TAP.2012.2207049).

[8] Y. Yin, et al.: “A compact planar UWB MIMO antenna using modified ground stub structure,” IEICE Electron. Express 14 (2017) 20170883 (DOI: 10.1587/elex.14.20170883).
[9] S. Koziel and A. Bekasiewicz: “A structure and design of a novel compact UWB MIMO antenna,” APSURSI (2016) 1947 (DOI: 10.1109/APS.2016.7696591).

[10] X. He, et al.: “MIMO antenna with working frequency accompanied isolation characteristic,” IEICE Electron. Express 14 (2017) 20170602 (DOI: 10.1587/elex.14.20170602).

[11] F. Yang and Y. Rahmat-Smaii: “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array application,” IEEE Trans. Antennas Propag. 51 (2003) 2396 (DOI: 10.1109/TAP.2003.817983).

[12] C.Y. Chiu, et al.: “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antennas Propag. 55 (2007) 1732 (DOI: 10.1109/TAP.2007.898618).

[13] G. Srivastava and A. Mohan: “Compact MIMO slot antenna for UWB applications,” IEEE Antennas Wireless Propag. Lett. 15 (2016) 1057 (DOI: 10.1109/LAWP.2015.2491968).

[14] A. Bekasiewicz and S. Koziel: “Structure and EM-driven design of novel compact UWB slot antenna,” IET Microw. Antennas Propag. 11 (2017) 219 (DOI: 10.1049/iet-map.2016.0467).

[15] M.M. Bait-Suwailam C.Y. Chiu, et al.: “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag. Lett. 9 (2010) 876 (DOI: 10.1109/LAWP.2010.2074175).

[16] C. C. Hsu, et al.: “Implementation of broadband isolator using metamaterial-inspired resonators and a T-shaped branch for MIMO antennas,” IEEE Trans. Antennas Propag. 59 (2011) 3936 (DOI: 10.1109/TAP.2011.2163741).

[17] M. Amin, et al.: “A bowtie-shaped MIMO dielectric resonator antenna for WLAN applications,” IEICE Electron. Express 14 (2017) 20170519 (DOI: 10.1587/elex.14.20170519).

[18] E. Saenz, I. Ederra C.Y. Chiu, et al.: “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antennas Propag. 57 (2009) 383 (DOI: 10.1109/TAP.2008.112149).

[19] M.M. Bait-Suwailam C.Y. Chiu, et al.: “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antennas Propag. 58 (2010) 2849 (DOI: 10.1109/TAP.2010.2052560).

[20] H. Aru, et al.: “Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas,” IEEE Antennas Wireless Propag. Lett. 13 (2014) 277 (DOI: 10.1109/LAWP.2014.2304541).

[21] S. K. Menon: “Microstrip patch antenna assisted compact dual-band planar crossover,” Electronics 6 (2017) 74 (DOI: 10.3390/electronics6040074).

[22] Z. Li, et al.: “Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals,” IEEE Trans. Antennas Propag. 60 (2012) 473 (DOI: 10.1109/TAP.2011.2173432).

[23] L. Wang, et al.: “Design of fragment-type isolation structures for MIMO antennas,” Progress In Electromagnetics Research C 52 (2014) 71 (DOI:10.2528/PIERC.14051504).

[24] D.W. Ding, et al.: “MOEA/D-GO for fragmented antenna design,” Progress in Electromagnetics Research M. 33 (2013) 1 (DOI:10.2528/PIERM13071610).

[25] D.W. Ding and G. Wang: “Design of near-field ultra-high frequency radio-frequency identification antenna with fragmented wires for electrically-large coverage,” IET Microwaves, Antennas & Propagation. 10 (2016) 1218 (DOI:10.1049/iet-map.2015.0750).

[26] D.W. Ding, et al.: “Multiobjective optimization design for electrically large coverage: fragment-type near-field/far-field UHF RFID reader antenna design,” IEEE Antennas and Propagation Magazine 60 (2018) 27 (DOI:10.1109/MAP.2017.2774140).

[27] Qi Zhao, et al.: “Compact microstrip bandpass filter with fragment-loaded resonators,” Microwave and Optical Technology Letters. 56 (2014) 2896 (DOI: 10.1002/mop.28726).

[28] Chenwei Yang, et al.: “Design of tiny versatile UHF RFID tags of fragment-type structures,” Progress in Electromagnetics Research M. 37 (2014) 161 (DOI: 10.2528/piern14040302).

[29] D.W. Ding, et al.: “High-efficiency scheme and optimization technique for design of fragment-type isolation structure between multiple-input and multiple-output antenna,” IET Microw. Antennas Propag. 9 (2015) 933 (DOI: 10.1049/iet-map.2014.0742).

[30] W. Kong, D.W. Ding, et al.: “Optimization design of fragment-type microstrip filter using boundary-based filtering operator,” IEICE Electron. Express 15 (2018) 20180499 (DOI: 10.1587/eelex.15.20180499).