Feeding Preference and Development of *Sitophilus oryzae* L. on Organic and Inorganic Rice Cultivation

Ludji Pantja Astuti*1

Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia

This study examined the preferences and development of *Sitophilus oryzae* on different organic and inorganic rice varieties by free-choice and no-choice tests. Feeding preference was assessed by the total adult present, no. of female adult present, and the percentage of weight loss. The development was assessed by the numbers of eggs, larvae, pupae, and adults, the period of eggs, larvae, and pupae, the total development time, larval growth index, growth index, and biotic potential. The free-choice test showed that the total adult present, female present, and the percentage of weight loss were higher on inorganic rice than on organic rice of either the Shinta Nur or IR-64 variety. The no-choice test showed that the numbers of eggs, larvae, pupae, and adults were higher on inorganic rice than on both varieties of organic rice. The period of eggs, larvae, and pupae and the total development time were shorter on inorganic rice than on organic rice. The larval growth index, growth index, and biotic potential were higher on inorganic rice than on organic rice varieties. Organic rice had high levels of phenolic, amylose, and carbohydrates, but smaller seed size and lower protein levels and ash was preferred less compared with inorganic rice of both varieties.

ARTICLE INFO

Keywords: Biotic potential, Growth index, Larvae growth index, Preference, Stored product pest

Article History:

Received: February 5, 2019
Accepted: August 15, 2019

* Corresponding author:
E-mail: ludji_pa@ub.ac.id

ABSTRACT

This study examined the preferences and development of *Sitophilus oryzae* on different organic and inorganic rice varieties by free-choice and no-choice tests. Feeding preference was assessed by the total adult present, no. of female adult present, and the percentage of weight loss. The development was assessed by the numbers of eggs, larvae, pupae, and adults, the period of eggs, larvae, and pupae, the total development time, larval growth index, growth index, and biotic potential. The free-choice test showed that the total adult present, female present, and the percentage of weight loss were higher on inorganic rice than on organic rice of either the Shinta Nur or IR-64 variety. The no-choice test showed that the numbers of eggs, larvae, pupae, and adults were higher on inorganic rice than on both varieties of organic rice. The period of eggs, larvae, and pupae and the total development time were shorter on inorganic rice than on organic rice. The larval growth index, growth index, and biotic potential were higher on inorganic rice than on organic rice varieties. Organic rice had high levels of phenolic, amylose, and carbohydrates, but smaller seed size and lower protein levels and ash was preferred less compared with inorganic rice of both varieties.

INTRODUCTION

Rice (*Oryza sativa*) is the most important staple food in Indonesia. Post-harvest rice is stored as paddy, brown, or polished rice. During storage, rice can be infested by several insect pests, such as *Sitophilus oryzae*, *S. zeamais*, *Sitotroga cerealella*, *Rhizopertha dominica*, *Tribolium castaneum*, and *Oryzaephilus surinamensis* (Astuti, Mudjiono, Rasminah, & Rahardjo, 2013b; Devi, Thomas, Rebijith, & Ramamurthy, 2017; Hagstrum, Flinn, & Howard, 1995; Mansoor-ul-Hasan et al., 2017; Trematerra, 2009). According to the Head of Logistic Bureau (Bulog) of East Java, Indonesia, annual grain loss caused by insect infestation during storage is approximately 10%–25% (Astuti, Mudjiono, Rasminah, & Rahardjo, 2013b). In developing countries, product loss is approximately 10% (Buzby, Wells, & Hyman, 2014) and grain loss is between 20% and 50% (Adam, Phillips, & Flinn, 2006; Phillips & Throne, 2010). Infestation of *S. oryzae* reduces the quantity and quality through weight loss, broken grain, dust, and increases in free fatty acids, and facilitates the establishment of secondary stored product pathogens (Trematerra, Valente, Athanassiou, & Kavalieratos, 2007).

S. oryzae is the most destructive species that is widely spread in warm, tropical, and sub-tropical zones (Antunes et al., 2016; Devi, Thomas, Rebijith, & Ramamurthy, 2017; Hagstrum, Flinn, & Howard, 1995; Mansoor-ul-Hasan et al., 2017; Trematerra, 2009). According to the Head of Logistic Bureau (Bulog) of East Java, Indonesia, annual grain loss caused by insect infestation during storage is approximately 10%–25% (Astuti, Mudjiono, Rasminah, & Rahardjo, 2013b). In developing countries, product loss is approximately 10% (Buzby, Wells, & Hyman, 2014) and grain loss is between 20% and 50% (Adam, Phillips, & Flinn, 2006; Phillips & Throne, 2010). Infestation of *S. oryzae* reduces the quantity and quality through weight loss, broken grain, dust, and increases in free fatty acids, and facilitates the establishment of secondary stored product pathogens (Trematerra, Valente, Athanassiou, & Kavalieratos, 2007).

S. oryzae is the most destructive species that is widely spread in warm, tropical, and sub-tropical zones (Antunes et al., 2016; Devi, Thomas, Rebijith, & Ramamurthy, 2017; Hagstrum, Flinn, & Howard, 1995; Mansoor-ul-Hasan et al., 2017; Trematerra, 2009). According to the Head of Logistic Bureau (Bulog) of East Java, Indonesia, annual grain loss caused by insect infestation during storage is approximately 10%–25% (Astuti, Mudjiono, Rasminah, & Rahardjo, 2013b). In developing countries, product loss is approximately 10% (Buzby, Wells, & Hyman, 2014) and grain loss is between 20% and 50% (Adam, Phillips, & Flinn, 2006; Phillips & Throne, 2010). Infestation of *S. oryzae* reduces the quantity and quality through weight loss, broken grain, dust, and increases in free fatty acids, and facilitates the establishment of secondary stored product pathogens (Trematerra, Valente, Athanassiou, & Kavalieratos, 2007).
characteristics include high phenol, amylose, and carbohydrate contents and lower starch, ash, and protein contents (Antunes et al., 2016; Astuti, Mudijono, Rasminah, & Rahardjo, 2013a; 2013b).

Given consumer demands for healthy food free of chemical and pesticide residues, some researchers have developed varieties of rice that are resistant to insect attacks using organic fertilizer and no pesticide applied as an organic system. Jennings, Coffman, & Kauffman (1979) reported that rice quality can be influenced genetic and environmental conditions and processing techniques. Pest management on stored grain can be accomplished by modifying the biotic factor component through genetic development and cultivation methods to modify the physical and chemical characteristics of the grain (Nadeem, Hamed, & Shafique, 2011; da Silva Costa et al., 2016; Su, Adam, Arthur, Lusk, & Meullenet, 2019). This study examined the preferences and development of *S. oryzae* on some method of cultivation, i.e., organic and inorganic, using two rice varieties and free-choice and no-choice tests.

MATERIALS AND METHODS

The experiment was conducted in the Plant Pest Laboratory of the Department of Plant Pests and Diseases, Agriculture Faculty, Universitas Brawijaya, Malang, Indonesia from September 2014 to January 2015. The temperature of laboratory was kept at 27 ± 2 °C with a relative humidity of 60 ± 5% humidity. The study was conducting using free-choice and no-choice tests.

The feeding preference (free-choice) test involved inorganic and organic rice in two varieties, i.e., Shinta Nur and IR-64. Treatment was arranged by a randomized complete-block design that was replicated five times. The experiment was carried out by placing 30 g of rice on each treatment into a chamber-of-preference cage, after which 30 mating pairs of *S. oryzae* aged between 1 and 2 weeks were placed into the cage. Insect infestation was accomplished by releasing the insects into the center of the preference cage to provide an equal chance for each treatment to be chosen as a host by *S. oryzae*. Adult *S. oryzae* were removed from the preference cage 1 week after infestation. Rice infested with *S. oryzae* eggs on each treatment combination were transferred into glass tubes (7 cm tall, Ø 4.5 cm) and wrapped in gauze until F1 progeny emerged. The observed variables were the total number of adult insects (male and female) present and the number of female adult insects present 1 week after infestation. The percentage of weight loss was observed at the end of the experiment.

The second experiment (no-choice test) used two different cultivations of inorganic and organic rice as in the first experiment. The no-choice test was carried out by filling each glass jar (7 cm tall, Ø 4.5 cm) with 30 g of each rice variety according to the treatment. Each jar was infested by 15 mating pairs of adult *S. oryzae* between 1 and 2 weeks old and wrapped in gauze. Sterilization and water content of the rice, and *S. oryzae* insects used in this experiment were the same as in the first experiment. This experiment used a completely randomized design repeated five times. Adult insects of *S. oryzae* were removed after 1 week of infestation. Eggs on the infested rice were incubated until F1 progeny emerged. The observed variables were the numbers of insect eggs, larvae, pupae, and F1 progeny that emerged, and the life cycle of *S. oryzae*. The number of adult insects was calculated after all F1 progeny had emerged.

The formula of larval growth index (LGI) was determined by Itoyama, Kawahira, Murata, & Tojo (1999), and Pretorius (1976); the growth index (GI) by Howe (1971), Kumawat (2007), and Shires (1979); and the biotic potential (BP) by Din, Ashraf, Hussain, Iqbal, & Hussain (2018).

\[
LGI = \frac{l_x}{L} \tag{1}
\]

where \(l_x\) is survival rate of larvae and \(L\) is larvae period

\[
GI = \frac{\log f}{D} \times 100 \tag{2}
\]

where \(\log f\) is the percentage of adult insect emerged and \(D\) is developing time from egg to adult insect

\[
BP = \frac{\log \text{Fecundity}}{\log \text{Development Time}} \tag{3}
\]

where development time is larvae duration and pupae duration.

The recorded data were analyzed by analysis of variance and the treatment means were compared by least significant difference at a 5% significance level. The correlation analyses on various variables between the variables of *S. oryzae* preference and biochemical characteristics were examined using the Pearson correlation coefficient (Steel & Torrie, 1980).
RESULTS AND DISCUSSION

Based on the free-choice test, there was a significant difference between the two different varieties of rice tested in the total number (male and female) of adult insects present, the number of female adult insects present, and the percentage of weight loss (Table 1). The total number of adult insects present was higher on inorganic rice than on organic rice of either the Shinta Nur or IR-64 variety. The total number of adult insects present was higher on Shinta Nur inorganic rice (24.60 individuals) than on Shinta Nur organic rice (11.00 individuals). The total number of adult insects present on inorganic IR-64 rice was 17.80 individuals compared with 6.60 individual on the organic IR-64 rice. The presence of female indicated that inorganic Shinta Nur rice was more attractive (5.60 individuals) compared with organic Shinta Nur rice. Furthermore, the number of females present on inorganic IR-64 rice was higher (4.22 individuals) compared with organic IR-64 rice (1.5 individuals). The preference of S. oryzae can also be seen in the percentage of weight loss, which was higher for Shinta Nur inorganic rice (11.8%) compared with organic Shinta Nur rice (5.60%). The percentage of weight loss was also higher for inorganic IR-64 rice (8.80%) compared with the organic variety (3.60%).

In the no-choice test, the numbers of eggs laid, larvae, pupae, and F1 progeny showed a significant different between inorganic and organic cultivations on the two different varieties tested. Table 2 shows that the number of eggs on inorganic Shinta Nur rice was higher (123 eggs) than on organic Shinta Nur rice (86.4 eggs). Similarly, the number of eggs on inorganic IR-64 rice was higher (96.80 eggs) than on organic IR-64 rice (54.40 eggs). Furthermore, the numbers of larvae, pupae, and F1 progeny that emerged on inorganic rice were higher than those for organic cultivations of either the Shinta Nur or IR-64 variety.

The development period of eggs, larvae, and pupae, and the total duration of development (egg to adult) were shorter on inorganic cultivations of either Shinta Nur or IR-64 varieties (Table 3). The period of eggs on inorganic Shinta Nur rice was shorter (2.80 days) than on organic rice (3.60 days). The period of larvae on inorganic IR-64 rice was also shorter (3.40 days) than on organic rice (4.20 days). The pupae period on inorganic Shinta Nur varieties was also shorter (7.60 days) compared with organic cultivation (8.20 days). The pupae period on inorganic IR-64 varieties was also shorter (6.40 days) than on organic cultivation (8.80 days). The total duration of S. oryzae development on inorganic Shinta Nur varieties was shorter (25.80 days) than on organic cultivation (29.60 days). A similar result showed the total duration of development for inorganic IR-64 rice was shorter (27.20 days) than for the organic variety (31.40 days).

Table 1. Mean number of total adult insects (male and female) present (X̄ ± SE), number of female adult insects present (X̄ ± SE), and the percentage of weight loss (X̄ ± SE) of two rice varieties with different cultivations in a free-choice test

Variables	Shinta Nur Varieties	IR-64 Varieties		
	Inorganic	Organic	Inorganic	Organic
Adult Insect Total (No)	24.60 ± 0.51a	11.00 ± 0.71c	17.80 ± 0.58b	6.60 ± 0.51d
Female Adult Insect (No)	5.60 ± 0.31a	3.80 ± 0.83b	4.22 ± 0.73b	1.50 ± 0.84c
Weight Loss (%)	11.80 ± 0.80a	5.60 ± 0.40c	8.80 ± 0.37b	3.60 ± 0.40d

Remarks: The mean at the same row followed by the same letters are not significantly different (p < 0.05)

Table 2. Mean number of eggs (X̄ ± SE), number of larvae (X̄ ± SE), number of pupae (X̄ ± SE), and number of F1 progeny (X̄ ± SE) of S. oryzae of two varieties with different cultivations in a no-choice test

Variables	Shinta Nur varieties	IR-64 varieties		
	Inorganic	Organic	Inorganic	Organic
Number of eggs	123.00 ± 1.14a	86.40 ± 0.93c	96.80 ± 0.80b	54.40 ± 0.93d
Number of larvae	78.20 ± 0.86a	59.60 ± 0.93c	64.60 ± 0.75b	36.20 ± 0.73d
Number of pupae	74.40 ± 0.60a	57.20 ± 1.24c	62.60 ± 0.93b	34.00 ± 0.71d
Number of F1 progeny	55.20 ± 0.66a	44.60 ± 0.75c	48.20 ± 0.73b	28.40 ± 0.75d

Remarks: The mean at the same row followed by the same letters are not significantly different (p < 0.05)
Table 4 shows that the LGI, GI, and BP of *S. oryzae* on inorganic rice were higher than on organic Shinta Nur and IR-64 varieties. The LGI on inorganic Shinta Nur rice (0.045) was also higher than on the organic variety (0.038). Similarly, the LGI on inorganic IR-64 cultivation (0.038) was higher than on organic rice (0.04). Furthermore, the GI on inorganic Shinta Nur rice (0.063) was higher than on organic cultivation (0.057). The GI on inorganic cultivation (0.061) was similarly higher than on organic cultivation (0.054).

Results for the BP of *S. oryzae* were similar to those for LGI and GI. The BP of the two varieties tested on inorganic cultivation was higher than those tested on organic rice. These results demonstrate that *S. oryzae* preferred inorganic rice to organic, and inorganic rice was more susceptible to *S. oryzae* than was organic rice.

The results of the free-choice test shows a significant different between treatments on the total number (male and female) insects present, the number of females present, and the percentage of weight loss. *S. oryzae* preferred inorganic rice to organic rice of either Shinta Nur or IR-64 varieties. The results of the no-choice test also showed a high and significant number of eggs, larvae, pupae, and F1 progeny in inorganic rice compared with organic rice, either on Shinta Nur or IR-64 varieties. However, the period of eggs, larvae, and pupae, and the total duration (egg to adult insect) on inorganic rice was significantly lower than for organic cultivation, either on Shinta Nur or IR-64 varieties. Furthermore, the LGI, GI, and BP results show that the growth of *S. oryzae* was faster on inorganic rice than on organic rice in the case of both Shinta Nur and IR-64 varieties. These results demonstrate that *S. oryzae* develops faster on inorganic than organic rice of both Shinta Nur and IR-64 varieties.

This revealed different physical and biochemical characteristics of inorganic and organic cultivation and rice varieties. Some of the physical and biochemical properties of inorganic and organic rice of Shinta Nur and IR-64 varieties are presented in Table 5. Inorganic kernels are softer than those of organic rice, and the inorganic seed (measured by a thousand of kernel weight) is larger than the seed of organic rice in both Shinta Nur and IR-64 varieties. The phenol, amylose, and carbohydrate contents are lower in inorganic rice than in organic rice of varieties tested. However, the ash and protein content of inorganic rice is higher than those of organic rice for both varieties. Those results are in line with Bagchi et al. (2016), Gangmei & George (2017), Gharieb, Metwally, Abou-Khadrah, Glela, & El Sabagh (2017), and Paule, Gomez, Juliano, & Coffman (1979), as inorganic rice has a softer kernel and lower phenol and carbohydrate content, while organic rice has lower ash and protein contents. Ingver, Tamm, & Tamm (2008) reported that inorganic barley and wheat have larger seeds and higher protein contents compared with organic grains.
This study found a negative correlation between the physical properties of grain, such as kernel hardness, and insect preference, as measured by weight loss percentage ($r = -0.785$), number of F1 emerged ($r = -0.773$), LGI ($r = -0.708$), GI ($r = -0.729$), and BP ($r = -0.731$). These results mean that softer kernels were preferred by *S. oryzae*. However, a positive correlation was found between the size of kernels and *S. oryzae* preference: larger kernels were preferred to smaller ones. A positive correlation between the size of rice kernel and susceptibility parameter due to the attacking of *Sitophilus* sp. was also reported by Akhter, Sultana, Akter, & Begum (2018), and Stejskal, Kučerová, & Lukáš (2004), who concluded that weevils prefer larger seeds for oviposition purposes. The larger seed was more parasitized and contained more eggs. This results are also in line with those of Nadeem, Hamed, & Shafique (2011), who reported a significant positive correlation between rice kernel size and susceptibility parameters due to attacks of *R. dominica*. Kernel hardness and susceptibility of wheat show a significant negative correlation (Shafique, Ahmad, & Chaudry, 2006). According to Antunes et al. (2016), damage in the husks of rice was correlated with lower hardness, making it more attractive to *S. oryzae* compared with undamaged husks. Furthermore, the same authors reported that paddy kernels with undamaged husks of rice were resistant to weevil attack. Astuti, Mudjiono, Rasmimah, & Rahardjo (2013a), (2013b), Demissie, Swaminathan, Ameta, Jain, & Saharan (2015), and Khan & Halder (2012) reported that the susceptibility of rice against stored pests can be affected by a combination of the physical and biochemical properties of rice.

A correlation analysis between the biochemical properties and preference (susceptibility) parameters of percentage of weight loss, number of F1 progeny emerged, LGI, GI, and BP showed that variables including phenol, amylase, and carbohydrate contents have a significant negative correlation (Table 6).

Table 5. Grain characteristics of Shinta Nur and IR-64 rice varieties in inorganic and organic cultivations

Characteristics	Shinta Nur varieties	IR-64 varieties		
	Organic	Inorganic	Organic	Inorganic
Hardness	126.465 ± 1.035	122.225 ± 0.805	149.165 ± 1.065	141.95 ± 0.62
Thousand of kernel weight (g)	26.05 ± 0.15	27.00 ± 0.20	25.30 ± 0.10	26.80 ± 0.10
Phenol content	13.50 ± 0.40	11.75 ± 0.55	19.70 ± 0.70	17.85 ± 0.85
Protein content	6.425 ± 0.175	7.5 ± 0.3	6.625 ± 0.125	7.065 ± 0.135
Carbohydrate content	77.85 ± 0.35	75.80 ± 0.70	79.25 ± 0.05	77.50 ± 0.30
Amylase content	18.60 ± 0.10	17.85 ± 0.25	25.75 ± 0.25	24.35 ± 0.15
Ash content	0.53 ± 0.02	0.7 ± 0.05	0.38 ± 0.03	0.535 ± 0.035

Table 6. The matrix of correlation coefficient between physicochemical characteristics of rice and the percentage of weight loss, F1 progeny emerged, total development time, larval growth index (LGI), growth index (GI), and biotic potential (BP) of *S. oryzae*.

Physicochemical characteristics	Percentage of weight loss	F1 progeny emerged	Total development time	Larvae growth index	Growth index	Biotic potential
Hardness	-0.785*	-0.773*	0.734*	-0.708*	-0.729*	-0.731*
Thousand of kernel weight (g)	0.898*	0.897*	-0.934*	0.802*	0.823*	0.934*
Phenol content	-0.773*	-0.737*	-0.789	-0.779*	-0.786*	-0.718*
Protein content	0.733*	0.787*	-0.467	0.895*	0.582	0.806*
Carbohydrate content	-0.951*	-0.946*	0.907*	-0.817*	-0.859*	-0.940*
Amylase content	-0.714*	-0.793*	0.443	-0.764*	-0.744*	-0.748*
Ash content	0.911*	0.910*	-0.774	0.883*	0.802*	0.914*

Remarks: * show significances
However, protein and ash contents showed a significant positive correlation with percentage of weight loss, F1 progeny emerged, LGI, GI, and BP. These results are consistent with those of several previous studies (Nadeem, Hamed, & Shafique, 2011; da Silva Costa et al., 2016) that found negative correlations between phenolic, carbohydrate, and amylase content and susceptibility of rice. Reports by Astuti, Mudjiono, Rasminah, & Rahardjo (2013a), (2013b), Demissie, Swaminathan, Ameta, Jain, & Saharan (2015), and Yadu, Saxena, & Dubey (2000) show that susceptibility of rice is positively correlated with ash and protein content.

CONCLUSION

Organic rice was preferred less than inorganic rice of either Shinta Nur or IR-64 varieties. Physical properties such as hardness and kernel seed size, and biochemical properties such as phenol, ash, protein, carbohydrate, and amylase contents have an effect on the preference of S. oryzae. Negative correlations are evident between hardness, phenol, carbohydrate, and amylase contents and the preference of S. oryzae as measured by percentage of weight loss, F1 progeny emerged, LGI, GI, and BP. However, these physical and biochemical properties are positively correlated with total development times of S. oryzae. Seed size as indicated by the weight of a thousand kernel and protein and ash contents are positively correlated with those preference parameters, with the exception of development time, which shows a negative correlation.

ACKNOWLEDGEMENT

Author would like to thank Universitas Brawijaya, Malang, Indonesia for the financial support of this study and also Department of Plant Pests and Diseases, Agriculture Faculty, Universitas Brawijaya for the facilities during the research.

REFERENCES

Adam, B. D., Phillips, T. W., & Flinn, P. W. (2006). The economics of IPM in stored grain: Why don’t more grain handlers use IPM? In I. Lorini, B. Bacalchuk, H. Beckel, D. Deckers, E. Sundfeld, J. P. dos Santos, … V. M. Scussel (Eds.), 9th International Working Conference on Stored Product Protection (pp. 3–12): Campinas, Brazil: Brazilian Post-harvest Association. Retrieved from http://storedgrain.com.au/wp-content/uploads/2013/06/9th-Proceedings-IWCSPP-Contents.pdf

Akhter, M., Sultana, S., Akter, T., & Begum, S. (2018). Oviposition preference and development of rice weevil, Sitophilus oryzae (Lin.) (Coleoptera: Curculionidae) in different stored grains. Bangladesh Journal of Zoology, 45(2), 131–138. https://doi.org/10.3329/bjz.v45i2.35708

Antunes, C., Mendes, R., Lima, A., Barros, G., Fields, P., Da Costa, L. B., … Carvalho, M. O. (2016). Resistance of rice varieties to the stored-product insect, Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Economic Entomology, 109(1), 445–453. https://doi.org/10.1093/jee/tov260

Astuti, L. P., Mudjiono, G., Rasminah, S., & Rahardjo, B. T. (2013a). Influence of temperature and humidity on the population growth of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) on milled rice. Journal of Entomology, 10(2), 86–94. https://doi.org/10.3923/je.2013.86.94

Astuti, L. P., Mudjiono, G., Rasminah, S., & Rahardjo, B. T. (2013b). Susceptibility of milled rice varieties to the lesser grain borer (Rhyzopertha dominica, F.). Journal of Agricultural Science, 5(2), 145–149. https://doi.org/10.5539/jas.v5n2p145

Athanassiou, C. G., Kavallieratos, N. G., Chintzoglou, G. J., Peteinatou, G. G., Boukouvala, M. C., Petrou, S. S., & Panoussakis, E. C. (2008). Effect of temperature and commodity on insecticidal efficacy of spinosad dust against Sitophilus oryzae (Coleoptera: Curculionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae). Journal of Economic Entomology, 101(3), 976–981. https://doi.org/10.1093/jee/toi260

Athié, I., & de Paulo, D. C. (2002). Insetos de grãos armazenados: aspectos biológicos e identificação (2nd ed.). Sao Paulo: Varela. Retrieved from https://books.google.co.id/books?id=OXVUAAAAIAAJ

Bagchi, T. B., Ghosh, A., Kumar, U., Chattopadhyay, K., Sanghamitra, P., Ray, S., ... Sharma, S. (2016). Comparison of nutritional and physicochemical quality of rice under organic and standard production systems. Cereal Chemistry, 93(5), 435–443. https://doi.org/10.1094/CCHEM-01-16-0001-R

Barbhuiya, M., & Kar, D. (2002). Biology of rice weevil, Sitophilus oryzae Linn. (Coleoptera: Curculionidae) in stored wheat Triticum vulgare and its control. Environment and
Ludji P. Astuti: S. oryzae Preferences on Rice in Different Cultivation System

Ecology, 20(3), 700–702. Retrieved from https://www.sciencebase.gov/catalog/item/50578ca8e4eb01ad7e02824a1

Buzby, J. C., Wells, H. F., & Hyman, J. (2014). The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States. Economic Information Bulletin Number 121. https://doi.org/10.2139/ssm.2501659

da Silva Costa, D. C., de Sousa Almeida, A. C., da Silva Araújo, M., Heinrichs, E. A., Lacerda, M. C., Barriossi, J. A. F., & de Jesus, F. G. (2016). Resistance of rice varieties to Sitophilus oryzae (Coleoptera: Curculionidae). Florida Entomologist, 99(4), 769-773. https://doi.org/10.1653/024.099.0432

Demissie, G., Swaminathan, R., Ameta, O. P., Jain, H. K., & Saharan, V. (2015). Biochemical basis of resistance in different varieties of maize for their relative susceptibility to Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). Journal of Stored Product and Postharvest Research, 6(1), 1–12. https://doi.org/10.5897/JSPPR2013.0167

Devi, S. R., Thomas, A., Rebijith, K. B., & Ramamurthy, V. V. (2017). Biology, morphology and molecular characterization of Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research, 73, 135–141. https://doi.org/10.1016/j.jspr.2017.08.004

Din, N., Ashraf, M., Hussain, S., Iqbal, Z., & Hussain, D. (2018). Feeding preference and biology of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) in different wheat varieties. Journal of Entomology and Zoology Studies, 7(3), 147–150. Retrieved from https://pdfs.semanticscholar.org/5283/bde672aee7b402b97b17d1249077774ec2e6.pdf

Gangmei, T. P., & George, P. J. (2017). Black rice CV. “Chakhaom Amubi” (Oryza sativa L.) Response to organic and inorganic sources of nutrients on growth, yield and grain protein content. Journal of Pharmacognosy and Phytochemistry, 6(4), 550–555. Retrieved from http://www.phytojournal.com/archives/2017/vol6issue4/part/6-4-100-574.pdf

Gharieb, A. S., Metwally, T. F., Abou-Khadrah, S. H., Gilea, A. A., & El Sabagh, A. (2017). Quality of rice grain is influenced by organic and inorganic sources of nutrients and antioxidant application. Cercetari Agronomice in Moldova, 49(4), 57–68. https://doi.org/10.1515/cerce-2016-0036

Hagstrum, D. W., Flinn, P. W., & Howard, R. W. (1995). Ecology. In B. Subramanyam & D. W. Hagstrum (Eds.), Integrated management of insects in stored products (pp. 71–134). Madison Avenue, NY: Marcel Dekker, Inc. Retrieved from https://books.google.co.id/books?id=jQlzPKWYoC&pg=PA71&source=gbs_reader&cad=4#v=onepage&q&f=false

Howe, R. W. (1971). A parameter for expressing the suitability of an environment for insect development. Journal of Stored Products Research, 7(1), 63–65. https://doi.org/10.1016/0022-474X(71)90039-7

Ingver, A., Tamm, I., & Tamm, Ü. (2008). Effect of organic and conventional production on yield and the quality of spring cereals. Agronomijas Vestis (Latvian Journal of Agronomy), 11, 61–67. Retrieved from https://llufb.llu.lv/conference/agrvestis/content/n11/AgrVestis-N11-61-67.pdf

Itoyama, K., Kawahira, Y., Murata, M., & Tojo, S. (1999). Fluctuations of some characteristics in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae) reared under different diets. Applied Entomology and Zoology, 34(3), 315–321. https://doi.org/10.1303/aez.34.315

Jennings, P. R., Coffman, W. R., & Kauffman, H. E. (1979). Rice improvement. Los Banos, Philippines: International Rice Research Institute. Retrieved from http://books.iris.org/9711040034_content.pdf

Khan, H. R., & Halder, P. K. (2012). Susceptibility of six varieties of rice to the infestation of rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Dhaka University Journal of Biological Sciences, 21(2), 163–168. https://doi.org/10.3329/dubjs.v21i2.11514

Kumawat, K. C. (2007). Effect of abiotic factors on biology of Rhyzopertha dominica (fab.) on wheat. Annals of Plant Protection Sciences, 15(1), 111–115. Retrieved from http://www.indianjournals.com/ijor.aspx?target=ijor:apps&volume=15&issue=1&article=025

Mansoor-ul-Hasan, Aslam, A., Jafir, M., Javed, M. W., Shehzad, M., Chaudhary, M. Z., & Aftab, M. (2017). Effect of temperature and relative humidity on development of Sitophilus oryzae L. (coleoptera: curculionidae). Journal of Entomology and Zoology Studies, 5(6), 85–90. Retrieved from https://www.researchgate.net/publication/320729966_Effect_of_temperature_and_relative_humidity_on_development_of_Sitophilus_oryzae_L_coleoptera_curculionidae
Nadeem, S., Hamed, M., & Shafique, M. (2011). Feeding preference and developmental period of some storage insect species in rice products. Pakistan Journal of Zoology, 43(1), 79–83. Retrieved from http://zsp.com.pk/79-83 (13) PJZ-160-09.pdf

Paule, C. M., Gomez, K. A., Juliano, B. O., & Coffman, W. R. (1979). Variability in amylose content of rice. Rivista Il Riso, 28(1), 15–22. Retrieved from https://www.researchgate.net/publication/276060345_Variability_in_Amylose_Content_of_Rice

Phillips, T. W., & Throne, J. E. (2010). Biorational approaches to managing stored-product insects. Annual Review of Entomology, 55, 375–397. https://doi.org/10.1146/annurev.ento.54.110807.090451

Pretorius, L. M. (1976). Laboratory studies on the development and reproductive performance of Heliothis armigera (Hubn.) on various food plants. Journal of the Entomological Society of South Africa, 39(2), 337–343. Retrieved from http://eprints.icrisat.ac.in/8002/

Rossetto, C. J. (1969). O complexo de Sitophilus spp (Coleoptera curculionidae) no Estado de São Paulo. Bragantia, 28, 127–148. https://doi.org/10.1590/s0006-87051969000100010

Shafique, M., Ahmad, M., & Chaudry, M. A. (2006). Feeding preference and development of Tribolium castaneum (Herbst.) in wheat products. Pakistan Journal of Zoology, 38(1), 27–31. Retrieved from http://zsp.com.pk/pdf/38/27-31 _6_.pdf

Shires, S. W. (1979). Influence of temperature and humidity on survival, development period and adult sex ratio in Prostephanus truncatus (Horn) (Coleoptera. Bostrichidae). Journal of Stored Products Research, 15(1), 5–10. https://doi.org/10.1016/0022-474X(79)90018-3

Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics a biometrical approach (2nd ed.). New York: McGraw-Hill.

Stejskal, V., Kučerová, Z., & Lukáš, J. (2004). Evidence and symptoms of pasta infestation by Sitophilus oryzae (Curculionidae; Coleoptera) in the Czech Republic. Plant Protection Science, 40, 107–111. https://doi.org/10.17221/971-pps

Su, L., Adam, B. D., Arthur, F. H., Lusk, J. L., & Meullenet, J. F. (2019). The economic effects of Rhyzopertha dominica on rice quality: Objective and subjective measures. Journal of Stored Products Research, 84, 101505. https://doi.org/10.1016/j.jspr.2019.08.002

Trematerra, P. (2009). Preferences of Sitophilus zeamais to different types of Italian commercial rice and cereal pasta. Bulletin of Insectology, 62(1), 103–106. Retrieved from http://www.bulletinofinsectology.org/pdfarticles/vol62-2009-103-106trematerra.pdf

Trematerra, P., Valente, A., Athanassiou, C. G., & Kavallieratos, N. G. (2007). Kernel-kernel interactions and behavioral responses of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Applied Entomology and Zoology, 42(1), 129–135. https://doi.org/10.1303/aez.2007.129

Yadu, Y. K., Saxena, R. C., & Dubey, V. K. (2000). Relative susceptibility of different varieties of maize to infestation by the Sitotroga cerealella (Oliver) as influenced by the biochemical content of the grains. Indian Journal Of Agricultural Research, 34, 243–246. Retrieved from https://arccjournals.com/journal/indian-journal-of-agricultural-research/ARCC3154