Prevalence of adenovirus and rotavirus infection in immunocompromised patients with acute gastroenteritis in Portugal

Joana Ribeiro, Delfim Ferreira, Célia Arrabalde, Sandra Almeida, Inês Baldaque, Hugo Sousa

Author contributions: Almeida S and Baldaque I performed the experimental tests for Adv and RV detection; Ribeiro J, Ferreira D, and Arrabalde C were responsible for the data collection; Ribeiro J and Ferreira D wrote the paper; Sousa H supervised the study; all authors have provided the final approval of the manuscript.

Conflict-of-interest statement: All authors declare no conflicts of interest with any competing financial interest for the work described in this paper.

Data sharing statement: Not applied.

Abstract

AIM: To characterize the prevalence of rotavirus (RV) and adenovirus (AdV) infections in immunocompromised patients with acute gastroenteritis.

METHODS: The presence of RV and AdV (serotypes 40 and 41) was evaluated in 509 stool samples obtained between January 2009 and December 2010 from 200 immunocompromised patients (83 females and 117 males; median age 21 years old, range 0-72). The diagnosis of infection was performed as a routine procedure and the presence of RV and AdV (serotypes 40 and 41) was determined by immunochromatography using the RIDA® Quick Rota-Adeno-Kombi kit (r-Biopharm, Darmstadt, Germany). The data analysis and description of seasonal frequencies were performed using computer software IBM® SPSS® (Statistical Package for Social Sciences) Statistics version 20.0 for Mac. The frequencies of infection were compared into different age and gender groups by χ² test.

RESULTS: The study revealed 12.4% AdV positive samples and 0.8% RV positive samples, which correspond to a prevalence of 6.5% and 1.5%, respectively. AdV was more frequent between October 2009 and April 2010, while RV was identified in April 2010 and July 2010. The stool analysis revealed that from the 509 samples, 63 (12.4%) were positive for AdV and 4 (0.8%) positive for RV, which by resuming the information...
Acute gastroenteritis, one of the main causes of morbidity and mortality in the world, is a consequence of microbial infections, which in industrialized countries are mainly caused by viruses, such as rotavirus (RV), enteric adenovirus (AdV), astrovirus and human calicivirus[1-3].

RV is the most common cause of severe diarrhoea in children under 5 years of age, adults in close contact with infected children, hospitalised patients and the elderly[4,5]. Data from United States reveal that RV infection is responsible for approximately 3 million cases of acute diarrhoea in children each year[6]. RV infection is associated with high rates of morbidity throughout the world and high rates of mortality in developing countries, where gastroenteritis caused by RV account for more than 800000 deaths per year due to poor nutrition and lack of health care[6]. In the majority of countries, RV infections occur dispersed throughout the year, nevertheless in temperate climates is characterized by a peak during the winter months[7-9].

AdV, especially serotypes 40 and 41 (enteric AdV), are frequently related with high morbidity and mortality in immunocompromised patients with the most susceptible groups to be children and patients submitted to transplantation[7-9]. Enteric AdV have been related with acute diarrhea in variable frequency (ranging from 1.4% to 10%), depending on the geographic location and type of patients[10,11]. AdV is known for its large distribution worldwide and the majority of the studies refer it to be equally distributed during all the seasons of the year[10,11].

Immunocompromised patients constitute an important group for prevention of gastrointestinal infections[12,13]. In fact, the incidence of infection-related post-transplant diarrhoea has been reported to be up to 40%, with viruses being the most common pathogens[12,13]. Considering the importance of gastroenteritis prevention in immunocompromised individuals, the diagnosis of AdV and RV at early stages of the disease is extremely important, in order to reduce morbidity and mortality.

The aim of this study was to characterize the prevalence of RV and AdV infection in immunocompromised patients with acute gastroenteritis from the North region of Portugal treated at the Portuguese Institute of Oncology of Porto.

MATERIALS AND METHODS

Population
This study was performed as a cross-sectorial retrospective hospital-based case study with 509 stool samples obtained between January 2009 and December 2010 from immunocompromised patients diagnosed with acute diarrhoea at Portuguese Institute of Oncology of Porto (IPO Porto). Samples were obtained from 200 immunocompromised patients with different haematological malignancies (median age 21 years old, range 0-72): 83 female (median age 15 years old, range 0-65) and 117 male (median age 39 years old, range 0-72).

RV/AdV detection
The diagnosis of infection was performed as a routine procedure at the Virology Service of IPO Porto. The stool specimens were tested as soon as possible after collection and the presence of RV and AdV (serotypes 40 and 41) was determined by immunochromatography using the RIDA® Quick Rota-Adeno-Kombi kit (r-Biopharm, Darmstadt, Germany) according to manufacturer instructions. The faecal samples were diluted in the dilution buffer supplied with the kit. This is a ready-to-use test based on a nitrocellulose membrane sensitized with
antibodies directed against RV and AdV (test lines).

Statistical analysis
Data analysis and description of seasonal frequencies were performed using computer software IBM® SPSS® (Statistical Package for Social Sciences) Statistics version 20.0 for Mac. The frequencies of infection were compared into different age and gender groups by χ^2 test.

RESULTS
In total, 509 stool samples were tested and it was possible to detect 63 (12.4%) positive samples for AdV and 4 (0.8%) positive samples for RV (Table 1). Comparing the number of cases during the period between January 2009 and December 2010, it was possible to observe a substantial increase in 2010, however the infection rates were similar.

Considering only patients-related data, where we have combined the results of all samples obtained from each individual, the overall frequency of AdV and RV infection was 6.5% (13/200 patients) and 1.5% (3/200 patients), respectively. The prevalence of infection was characterized with stratification of individuals according to age groups and gender and the results showed a tendency to an increased prevalence of infection in paediatric patients between 0-10 years old (Figure 1 and Table 2).

Considering the seasonal distribution of these infections (Figure 2), our study revealed that AdV infection was more frequent between October 2009 and April 2010, while RV infection was characterized by two distinct peaks (April 2010 and July 2010).

DISCUSSION
Immunosuppression treatments lead patients to be more susceptible to opportunistic infections, either bacterial or viral. Many studies have shown that RV and AdV are the most frequent pathogenic virus during acute diarrhoea in immunocompromised patients[2-4, 7, 21-23]. The overall distribution worldwide has been described in literature[5, 14], although little is known about the epidemiology of these viruses in Portugal, and therefore we aimed to add epidemiological information of the prevalence of these infections in immunocompromised patients with haematological diseases treated at IPO Porto.

Firstly, it is important to refer that our results should

Table 1	Adenovirus and rotavirus results discriminated by year n (%)		
	AdV positive	RV positive	Negative
Total (n = 509)	63 (12.4)	4 (0.8)	442 (86.8)
Year 2009 (n = 189)	24 (12.7)	-	165 (87.3)
Year 2010 (n = 320)	39 (12.2)	4 (1.3)	277 (86.5)

AdV: Adenovirus; RV: Rotavirus.
the world, especially for immunocompromised patients. Immunosuppression treatments lead patients to be more susceptible to opportunistic infections, either bacterial or viral. Many studies have shown that rotavirus (RV) and adenovirus (AdV) are the most frequent pathogenic virus during acute diarrhoea in immunocompromised patients.

Research frontiers
Characterization of RV and AdV prevalence and seasonal distribution in immunocompromised patients with acute gastroenteritis.

Innovations and breakthroughs
The overall prevalence of AdV and RV infection in immunocompromised patients with acute gastroenteritis was 8%. AdV was the most prevalent with 6.5% (13/200 patients) followed by RV with a prevalence of 1.5% (3/200 patients). Results revealed a lower prevalence of RV and enteric AdV than expected.

Applications
The lower incidence of RV and enteric AdV observed in the authors’ study pointed that it is extremely important to add more screening methods for other emergent enteric viruses, in order to avoid the morbidity and mortality of the immunocompromised patients.

ACKNOWLEDGMENTS
Authors are grateful to the Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte) for the grant of the first author.

COMMENTS

Background
Acute gastroenteritis is one of the main causes of morbidity and mortality in immunocompromised patients. The authors emphasize the importance of vigilance and prevention of viral infections in the gastrointestinal tract. Moreover, as the results reveal a lower incidence of RV and enteric AdV, it is extremely important to add more screening methods for other emergent enteric viruses, in order to avoid the morbidity and mortality of the immunocompromised patients.

Table 2 Characterization adenovirus and rotavirus infection by age group and genre

	AdV Positive	AdV Negative	IC	RV Positive	RV Negative	IC
Total (n = 200)	13 (6.5)	185 (92.5)	2 (1.0)	3 (1.5)	196 (98.0)	1 (0.5)
Age group						
0-10 (n = 60)	7 (11.7)	53 (88.3)	-	2 (3.3)	58 (96.7)	-
11-20 (n = 21)	-	21 (100.0)	-	-	21 (100.0)	-
21-30 (n = 19)	2 (10.5)	17 (89.5)	-	-	19 (100.0)	-
31-40 (n = 19)	2 (10.5)	17 (89.5)	-	1 (5.3)	18 (94.7)	-
41-50 (n = 19)	-	18 (94.7)	1 (5.3)	-	19 (100.0)	-
≥ 51 (n = 62)	2 (3.2)	59 (95.2)	1 (1.6)	-	61 (98.4)	1 (1.6)
Genre						
Male (n = 117)	9 (7.7)	107 (91.4)	1 (0.9)	1 (0.9)	115 (98.2)	1 (0.9)
Female (n = 83)	4 (4.8)	78 (94.0)	1 (1.2)	2 (2.4)	81 (97.6)	-

AdV: Adenovirus; RV: Rotavirus; IC: Inconclusive.
emergent enteric viruses, in order to avoid the morbidity and mortality of the immunocompromised patients.

Terminology
This study provides the first update on the prevalence of RV and AdV infection as agents of acute gastroenteritis in immunocompromised patients.

Peer-review
This is an interesting study on the cause of diarrhea by viral agents. The study is well-designed and the manuscript is well-written.

REFERENCES

1. Wilhelmi I, Roman E, Sánchez-Fauquier A. Viruses causing gastroenteritis. *Clin Microbiol Infect* 2003; 9: 247-262 [PMID: 12667234]

2. Carratu A, Catalani V, Tega L. Microbiological and epidemiological aspects of rotavirus and enteric adenovirus infections in hospitalized children in Italy. *New Microbiol* 2008; 31: 329-336 [PMID: 18843886]

3. Akaan H, Izbrik G, Gürol Y, Sarkaya S, Gündüz TS, Yılmaz G, Hayran O, Vitrinel A. Rotavirus and adenovirus frequency among patients with acute gastroenteritis and their relationship to clinical parameters: a retrospective study in Turkey. *Asia Pac Fam Med* 2009; 8: 8 [PMID: 19943964 DOI: 10.1186/1471-2571-8-8]

4. Podkolzin AT, Fenske EB, Abramacheva NY, Shipulin GA, Sagalova OL, Mazepa VN, Ivanova GN, Semena AV, Tagirova ZG, Alekseeva MN, Molochny VP, Parashar UD, Vinjé J, Maleev VV, Glass RI, Pokrovsky VI. Hospital-based surveillance of rotavirus and other viral agents of diarrhea in children and adults in Russia, 2005-2007. *J Infect Dis* 2009; 200 Suppl 1: S228-S233 [PMID: 19817602 DOI: 10.1086/605054]

5. Elhag WI, Saced HA, Omer el FE, Ali AS. Prevalence of rotavirus and adenovirus associated with diarrhea among displaced communities in Khartoum, Sudan. *BMC Infect Dis* 2013; 13: 209 [PMID: 23657114 DOI: 10.1186/1471-2334-13-209]

6. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Bok K, Green KY, Kapikian AZ. Epidemiology and evolution of rotavirus and norovirus infections from an archival WHO Global Study in Children (1976-79) with implications for vaccine design. *PLoS One* 2013; 8: e59394 [PMID: 23536875 DOI: 10.1371/journal.pone.0059394]

7. Walls T, Shankar AG, Shingadia D. Adenovirus: an increasingly important pathogen in paediatric bone marrow transplant patients. *Lancet Infect Dis* 2003; 3: 79-86 [PMID: 12560192 DOI: 10.1016/S1473-3099(03)00515-2]

8. Ison MG. Adenovirus infections in transplant recipients. *Clin Infect Dis* 2006; 43: 331-339 [PMID: 16804849 DOI: 10.1086/505498]

9. Echavarria M. Adenoviruses in immunocompromised hosts. *Clin Microbiol Rev* 2008; 21: 704-715 [PMID: 18854488 DOI: 10.1128/CMR.00052-07]

10. Ramani S, Karg G. Viruses causing childhood diarrhea in the developing world. *Curr Opin Infect Dis* 2009; 22: 477-482 [PMID: 19635550 DOI: 10.1097/QCO.0b013e3283306622]

11. Tran A, Talmud D, Lejeune B, Jovenin N, Renois F, Payan C, Leveque N, Andreolleti L. Prevalence of rotavirus, adenovirus, norovirus, and astrovirus infections and coinfections among hospitalized children in northern France. *J Clin Microbiol* 2010; 48: 1943-1946 [DOI: 10.1128/JCM.02181-09]

12. Liakopoulou E, Mutton K, Carrington D, Robinson S, Steward CG, Goulend NJ, Cornish JM, Marks D. Rotavirus as a significant cause of prolonged diarrhea illness and morbidity following allogeneic bone marrow transplantation. *Bone Marrow Transplant* 2005; 36: 691-694 [PMID: 16113671 DOI: 10.1038/sj.bmt.1705127]

13. Aggarwal V, Williams MD, Beath SV. Gastrointestinal problems in the immunosuppressed patient. *Arch Dis Child* 1998; 78: 5-8 [PMID: 9534668 DOI: 10.1136/adc.78.1.5]

14. Al-Thani A, Baris M, Al-Lawai N, Al-Dhahry S. Characterising the aetiology of severe acute gastroenteritis among patients visiting a hospital in Qatar using real-time polymerase chain reaction. *BMC Infect Dis* 2013; 13: 329 [PMID: 23865805 DOI: 10.1186/1471-2334-13-329]

15. Karst SM. Pathogenesis of noroviruses, emerging RNA viruses. *Viruses* 2010; 2: 748-781 [PMID: 21994656 DOI: 10.3390/v203-0748]

16. Weber DJ, Rutala WA, Miller MB, Huslage K, Sickbert-Bennett E. Role of hospital surfaces in the transmission of emerging health-care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. *Am J Infect Control* 2010; 38: S25-S33 [PMID: 20569853 DOI: 10.1016/j.ajic.2010.04.196]

17. Man SM. The clinical importance of emerging Campylobacter species. *Nat Rev Gastroenterol Hepatol* 2011; 8: 669-685 [PMID: 22025630 DOI: 10.1038/nrgastro.2011.191]

18. Rackoff LA, Bok K, Green KY, Kapikian AZ. Epidemiology and evolution of rotaviruses and noroviruses from an archival WHO Global Study in Children (1976-79) with implications for vaccine design. *PLoS One* 2013; 8: e59394 [PMID: 23536875 DOI: 10.1371/journal.pone.0059394]

19. Donaldson SS, Lenon RA. Alterations of nutritional status: impact of chemotherapy and radiation therapy. *Cancer* 1979; 43: 2036-2052 [PMID: 109184]

20. Fischer Walker CL, Perin J, Aryee MJ, Boschi-Pinto C, Black RE. Diarrhea incidence in low- and middle-income countries in 1990 and 2010: a systematic review. *BMJ Public Health* 2012; 12: 220 [PMID: 22436130 DOI: 10.1186/1471-2458-12-220]

21. Rodrigues F, Iturria M, Gray J, Januário L, Lemos E. Epidemiology of rotavirus in Portugal: G9 as a major cause of diarrhea in non-hospitalised children. *J Clin Virol* 2007; 40: 214-217 [PMID: 17875400 DOI: 10.1016/j.jcv.2007.08.006]

22. Rodrigues F, Iturria-Gómar M, Marlow R, Gray J, Nawaz S, Januário L, Finn A. The evolving epidemiology of rotavirus gastroenteritis in central Portugal with modest vaccine coverage. *J Clin Virol* 2013; 56: 129-134 [PMID: 23238239 DOI: 10.1016/j.jcv.2012.10.016]
