1,1′-Methylenebis[4-[(E)-2-(pyridin-4-yl)ethenyl]-pyridinium] dibromide dihydrate

Henry C. Neal, a Volodymyr V. Nesterov, b and Bradley W. Smucker a *

a Austin College, 900 N Grand, Sherman, TX 75090, USA, and b Department of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX, 76201, USA. *Correspondence e-mail: bsmucker@austincollege.edu

The chevron-shaped cations of the title hydrated salt, C_{25}H_{22}N_{4^{2+}}/C_{12}Br_{2}/C_{12}H_{2}O, are arranged in back-to-back alternating directions to form a zigzag ribbon propagating along the [010] direction. Intermolecular interactions comprising these ribbons are π–π interactions between the pyridinium and adjacent pyridyl rings, as well as O–H···O hydrogen bonding between water molecules and two adjacent pyridyl N atoms. Half of the cation is generated by the mirror plane. The water O atoms, the central C atom and one Br atom are located on this mirror plane while the other Br atom is on a twofold screw axis.

Structure description

Half of the cation is generated by the mirror plane (x, 1/2 − y, z). The O1, O2, Br1, and Cl atoms are located on this mirror plane and the Br2 atom is on a twofold screw axis (−x, 1/2 + y, −z). The pyridyl–vinyl–pyridinium moiety (Fig. 1) is essentially planar with a 1.7 (3)° dihedral angle between the planes of the pyridinium (N1/C2–C6) and pyridyl (N2/C9–C13) rings. The N1–C1–N1(x, 1/2 − y, z) angle is 110.9 (10)°, which is similar to the N–C–N angles of 111.1 (4) or 112.3 (4)° found in the bromide (Schuster et al. 2022) or PF_{6} (Blanco et al., 2007) salts, respectively, of the 1,1′-methylenebis-4,4′-bipyridinium cation. When two of the title cations are used in a supramolecular cyclic compound with two Pd(ethylenediamine) moieties, the crystal structure had this same N–C–N angle remaining relatively unchanged at 109.1 (19)° and 111.2 (11)° (Blanco et al., 2009).

In the extended structure, the chevron-shaped cations of the title compound arrange in back-to-back alternating directions to form a zigzag ribbon (Fig. 2) propagating along the [010] direction. Water molecules are positioned to interact with the terminal pyridyl nitrogen atom, N2, with an N2–H1D(1/2 − x, 1 − y, 1/2 + z) distance of 2.01 Å (Table 1). The distance between back-to-back pyridinium and pyridyl rings [the closest distance between carbon atoms, C6 of the pyridinium and C13(1 − x, 1 − y, 1 − z) of a pyridyl...
ring, being 3.46 (1) Å (Fig. 2) is suitable for π–π interactions (Sinnokrot et al., 2002), which further consolidate these zigzag ribbons. Water molecules and bromide ions pack between the ribbons (Fig. 3). Other hydrogen-bonded zigzag ribbon structures are observed in 1,3-bis[(tetrahydrofuran-2-yl)methyl]thiourea (Pen˜a et al., 2009) or 1-(4-bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one (Fun et al., 2008).

Synthesis and crystallization

The title compound was synthesized according to published procedures (Blanco et al., 2009). Colorless plates were grown from liquid diffusion of tetrahydrofuran into a dimethylformamide solution of the pyridinium bromide salt.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Disorder of the 4-[((E)-2-(pyridin-4-yl)ethenyl)pyridinium moiety was refined using ‘PART 1’ and ‘PART 2’ with the ratio of occupancies at 47 and 53%. All

Table 1

Hydrogen-bond geometry (Å, °)	D–H···A	D–H	H···A	D···A	D–H···A
O1–H1C···N2i	0.88	2.26	2.880(11)	128	
O1–H1D···N2ii	0.88	2.01	2.880(11)	171	

Symmetry codes: (i) –x + 2, y, –z + 1; (ii) –x + 2, –y + 3, z – 1.

Table 2

Experimental details.
Crystal data
Chemical formula
M_r
Crystal system, space group
Temperature (K)
a, b, c (Å)
V (Å³)
Z
Radiation type
μ (mm⁻¹)
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
T_{min}, T_{max}
No. of measured, independent and observed [I > 2σ(I)] reflections
R_{int}
(sin θ/λ)_{max} (Å⁻¹)
Refinement
R[F² > 2σ(F²)], wR(F²), S
No. of reflections
No. of parameters
No. of restraints
H-atom treatment
Δρ_{max}, Δρ_{min} (e Å⁻³)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2018/2 (Sheldrick, 2015a), SHELX2018/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020), and OLEX2 (Dolomanov et al., 2009).
our attempts to refine the structure to achieve equal occupancies led to a drastic worsening of R_1 and wR_2 values.

Funding information
Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT; grant No. 1712066 to Austin College); Welch Foundation (grant No. AD-0007 to Austin College).

References
Blanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). *J. Am. Chem. Soc.* **129**, 13978–13986.
Blanco, V., Gutiérrez, A., Platas-Iglesias, C., Peinador, C. & Quintela, J. M. (2009). *J. Org. Chem.* **74**, 6577–6583.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). *Acta Cryst.* **E64**, o1540–o1541.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* **53**, 226–235.
Peña, Ú., Bernès, S. & Gutiérrez, R. (2009). *Acta Cryst.* **E65**, o96.
Rigaku OD (2021). *CrysAlis PRO*. Rigaku Oxford Diffraction, Yarnton, England.
Schuster, S. A., Nesterov, V. V. & Smucker, B. W. (2022). *IUCrData*, **7**, x220526.
Sheldrick, G. M. (2015a). *Acta Cryst.* **A71**, 3–8.
Sheldrick, G. M. (2015b). *Acta Cryst.* **C71**, 3–8.
Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). *J. Am. Chem. Soc.* **124**, 10887–10893.
full crystallographic data

1,1′-Methylenebis(4-[(E)-2-(pyridin-4-yl)ethenyl]pyridinium) dibromide dihydrate

Henry C. Neal, Volodymyr V. Nesterov and Bradley W. Smucker

Crystal data

C25H22N4Br2·2H2O
Mr = 574.32
Orthorhombic, Pnma
a = 15.4863 (2) Å
b = 22.2936 (3) Å
c = 7.2100 (1) Å
V = 2489.22 (6) Å³
Z = 4
F(000) = 1160

Cu Kα radiation, λ = 1.54184 Å
θ = 6.1–79.8°
µ = 4.37 mm⁻¹
T = 220 K
Plate, clear light colourless
0.04 × 0.03 × 0.02 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm⁻¹
ω scans
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2021)

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.036
wR(F²) = 0.104
S = 1.09
2780 reflections
244 parameters
8 restraints

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_{iso}/U_{eq}	Occ. (<1)
Br1	0.83013 (2)	0.250000	0.51496 (5)	0.05780 (16)	
Br2	0.500000	0.500000	0.000000	0.06787 (19)	
O1	0.59949 (18)	0.250000	−0.0276 (5)	0.0644 (5)	
H1C	0.628097	0.228712	0.053830	0.097* 0.5	
H1D	0.637353	0.279127	−0.030494	0.097* 0.5	
O2	0.61749 (17)	0.250000	0.5693 (5)	0.0644 (5)	
H2B	0.666046	0.234075	0.534382	0.097* 0.5	
H2C	0.616243	0.229500	0.676421	0.097* 0.5	
N1	0.4441 (7)	0.3047 (4)	0.4944 (11)	0.0280 (19)	0.471 (7)
C2	0.4622 (7)	0.3261 (4)	0.6635 (9)	0.0336 (16)	0.471 (7)
H2	0.441055	0.306491	0.769534	0.040* 0.471 (7)	
C3	0.5120 (5)	0.3769 (3)	0.6814 (7)	0.0338 (14)	0.471 (7)
H3	0.523534	0.392117	0.800374	0.041* 0.471 (7)	
C4	0.5451 (3)	0.4059 (2)	0.5289 (9)	0.0259 (12)	0.471 (7)
C5	0.5254 (4)	0.3821 (3)	0.3578 (7)	0.0355 (15)	0.471 (7)
H5	0.546674	0.400906	0.250362	0.043* 0.471 (7)	
C6	0.4753 (6)	0.3316 (4)	0.3410 (8)	0.0375 (17)	0.471 (7)
H6	0.462840	0.315841	0.223042	0.045* 0.471 (7)	
N2	0.7822 (9)	0.6508 (4)	0.5018 (14)	0.048 (3)	0.471 (7)
C11	0.7660 (7)	0.6282 (4)	0.3350 (11)	0.0430 (17)	0.471 (7)
H11	0.788849	0.647826	0.230565	0.052* 0.471 (7)	
C10	0.7170 (5)	0.5769 (3)	0.3083 (8)	0.0383 (15)	0.471 (7)
H10	0.707421	0.562561	0.187380	0.046* 0.471 (7)	
C9	0.6822 (3)	0.54692 (19)	0.4566 (10)	0.0301 (12)	0.471 (7)
C13	0.6980 (5)	0.5710 (3)	0.6290 (8)	0.0394 (16)	0.471 (7)
H13	0.674916	0.552711	0.735506	0.047* 0.471 (7)	
C12	0.7480 (8)	0.6224 (4)	0.6452 (10)	0.050 (2)	0.471 (7)
H12	0.758017	0.637927	0.764548	0.060* 0.471 (7)	
C1	0.39067 (17)	0.250000	0.4756 (4)	0.0281 (5)	
C7	0.5974 (3)	0.4592 (2)	0.5575 (7)	0.0328 (12)	0.471 (7)
H7	0.608461	0.470689	0.680642	0.039* 0.471 (7)	
C8	0.6307 (3)	0.4929 (2)	0.4239 (6)	0.0321 (13)	0.471 (7)
H8	0.620576	0.481388	0.300419	0.038* 0.471 (7)	
C8A	0.6252 (3)	0.4946 (2)	0.5660 (6)	0.0352 (12)	0.529 (7)
H8A	0.604322	0.485675	0.685211	0.042* 0.529 (7)	
C7A	0.6033 (3)	0.4578 (2)	0.4290 (6)	0.0330 (11)	0.529 (7)
H7A	0.624114	0.466670	0.309581	0.040* 0.529 (7)	
N1A	0.4453 (6)	0.3041 (3)	0.4673 (9)	0.0244 (15)	0.529 (7)
C2A	0.4791 (5)	0.3212 (3)	0.3033 (8)	0.0290 (12)	0.529 (7)
H2A	0.467537	0.298861	0.195459	0.035* 0.529 (7)	
C3A	0.5305 (3)	0.3713 (2)	0.2945 (6)	0.0307 (12)	0.529 (7)
H3A	0.553479	0.383222	0.179661	0.037* 0.529 (7)	
C4A	0.5489 (3)	0.40443 (19)	0.4506 (8)	0.0264 (11)	0.529 (7)
C5A	0.5131 (4)	0.3853 (3)	0.6147 (7)	0.0341 (13)	0.529 (7)
H5A	0.523793	0.407169	0.723830	0.041* 0.529 (7)	
C6A 0.4621 (6) 0.3349 (3) 0.6226 (7) 0.0323 (13) 0.529 (7)
H6A 0.439049 0.322149 0.735640 0.039* 0.529 (7)
N2A 0.7859 (8) 0.6497 (4) 0.5226 (13) 0.052 (3) 0.529 (7)
C11A 0.7539 (7) 0.6311 (4) 0.6829 (10) 0.0468 (16) 0.529 (7)
H11A 0.7011 (4) 0.5811 (3) 0.7003 (7) 0.0401 (14) 0.529 (7)
N2A 0.7859 (8) 0.6497 (4) 0.5226 (13) 0.052 (3) 0.529 (7)
C11A 0.7539 (7) 0.6311 (4) 0.6829 (10) 0.0468 (16) 0.529 (7)
H11A 0.7011 (4) 0.5811 (3) 0.7003 (7) 0.0401 (14) 0.529 (7)
N2A 0.7859 (8) 0.6497 (4) 0.5226 (13) 0.052 (3) 0.529 (7)
C11A 0.7539 (7) 0.6311 (4) 0.6829 (10) 0.0468 (16) 0.529 (7)
H11A 0.7011 (4) 0.5811 (3) 0.7003 (7) 0.0401 (14) 0.529 (7)

Br1	U11	U22	U33	U12	U13	U23
0.0341 (2)	0.1080 (4)	0.03128 (19)	0.000	0.00029 (12)	0.000	
Br2	0.1255 (5)	0.0507 (2)	0.0274 (2)	0.0236 (2)	0.00356 (18)	0.00004 (13)
O1	0.0401 (9)	0.0554 (10)	0.0978 (16)	0.000	−0.0060 (10)	0.000
O2	0.0401 (9)	0.0554 (10)	0.0978 (16)	0.000	−0.0060 (10)	0.000
N1	0.023 (3)	0.025 (4)	0.036 (3)	0.001 (3)	0.004 (2)	0.007 (3)
C2	0.045 (3)	0.030 (3)	0.025 (3)	−0.006 (3)	0.007 (3)	−0.003 (2)
C3	0.046 (3)	0.033 (3)	0.022 (3)	−0.006 (2)	0.003 (3)	−0.008 (3)
C4	0.029 (2)	0.023 (2)	0.026 (3)	0.0000 (16)	0.002 (2)	−0.004 (3)
C5	0.048 (3)	0.033 (3)	0.025 (4)	−0.002 (2)	0.008 (3)	0.008 (3)
C6	0.051 (4)	0.036 (3)	0.026 (3)	−0.003 (3)	−0.010 (3)	−0.004 (3)
N2	0.039 (6)	0.025 (6)	0.078 (6)	0.000 (5)	0.003 (5)	0.007 (5)
C1	0.042 (3)	0.028 (3)	0.060 (4)	−0.005 (2)	0.005 (3)	0.006 (3)
C10	0.040 (3)	0.035 (3)	0.040 (4)	−0.002 (2)	0.004 (3)	−0.001 (3)
C9	0.028 (2)	0.023 (2)	0.039 (4)	0.0008 (16)	0.001 (3)	0.001 (3)
C13	0.040 (3)	0.036 (4)	0.042 (4)	−0.004 (2)	0.000 (3)	0.001 (3)
C12	0.052 (4)	0.032 (3)	0.065 (5)	−0.001 (3)	−0.014 (4)	−0.011 (3)
C1	0.0243 (12)	0.0240 (11)	0.0360 (14)	0.000	−0.0007 (11)	0.000
C7	0.033 (2)	0.027 (3)	0.038 (3)	−0.0030 (19)	0.0006 (18)	−0.0038 (17)
C8	0.032 (2)	0.028 (3)	0.035 (3)	−0.0021 (19)	−0.0027 (17)	−0.0009 (16)
C8A	0.0346 (19)	0.032 (2)	0.039 (3)	−0.0033 (18)	0.0025 (16)	0.0023 (16)
C7A	0.0326 (19)	0.029 (2)	0.037 (2)	−0.0024 (17)	0.0024 (15)	0.0007 (16)
N1A	0.026 (3)	0.022 (3)	0.026 (2)	0.000 (2)	−0.004 (2)	−0.004 (2)
C2A	0.034 (2)	0.032 (3)	0.022 (2)	−0.008 (2)	0.0000 (18)	0.0004 (19)
C3A	0.032 (2)	0.034 (2)	0.026 (3)	−0.0048 (18)	0.004 (2)	0.003 (2)
C4A	0.0276 (18)	0.027 (2)	0.024 (3)	0.0010 (14)	−0.001 (2)	−0.008 (2)
C5A	0.047 (3)	0.032 (3)	0.024 (3)	−0.002 (2)	0.000 (3)	−0.008 (3)
C6A	0.039 (3)	0.034 (3)	0.023 (3)	0.001 (2)	0.006 (2)	−0.002 (2)
N2A	0.041 (5)	0.033 (6)	0.081 (5)	−0.010 (5)	−0.001 (5)	−0.007 (5)
C11A	0.045 (3)	0.035 (3)	0.061 (4)	−0.006 (2)	−0.007 (3)	−0.007 (3)
C10A	0.042 (2)	0.034 (3)	0.044 (3)	−0.001 (2)	−0.006 (3)	0.000 (3)
	0.0290 (19)	0.028 (2)	0.041 (3)	0.0021 (16)	−0.001 (2)	−0.003 (3)
----	-------------	-----------	-----------	-------------	-----------	-----------
C9A	0.053 (3)	0.037 (3)	0.042 (4)	−0.007 (2)	0.005 (3)	−0.005 (3)
C13A	0.058 (4)	0.036 (3)	0.068 (5)	−0.005 (3)	0.017 (4)	0.003 (3)

Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)
O1—H1C	0.8753	
O1—H1Ci	0.88 (6)	
O1—H1D	0.8752	
O1—H1Di	0.88 (8)	
O1—H1D	0.8752	
O1—H1Di	0.88 (8)	
O1—H1D	0.8752	
O1—H1Di	0.88 (8)	
O2—H2B	0.8688	
O2—H2B	0.87 (5)	
O2—H2C	0.8975	
O2—H2C	0.90 (6)	
N1—C2	1.3385	
N1—C6	1.3481	
N1—C1	1.480 (5)	
C2—H2	0.9400	
C2—C3	1.3755	
C3—H3	0.9400	
C6—H6	0.9400	
N2—C11	1.3275	
N2—C12	1.3235	
C11—H11	0.9400	
C11—C10	1.3868	
C10—H10	0.9400	
C10—C9	1.3715	
C9—C13	1.3756	
C9—C8	1.464 (7)	
C13—H13	0.9400	
C13—C12	1.3883	
C12—H12	0.9400	
C1—N1A	1.474 (4)	

Bond	Angle (°)		
H1C—O1—H1C	65.7		
H1C—O1—H1D	94.5		
H1C—O1—H1D	94.5		
H1D—O1—H1C	43.5		
H1D—O1—H1D	95.8		
H2B—O2—H2B	48.2		
H2B—O2—H2C	93.4		
H2B—O2—H2C	118.4		
Bond/Cross-Bond	93.4	C7—C8—C9	124.2 (5)
----------------	------	-----------	-----------
H2B—O2—H2C	118.4	C7—C8—H8	117.9
H2C—O2—H2Bi	61.2	C7A—C8A—H8A	117.5
H2C—O2—H2Ci	120.9	C7A—C8A—C9A	125.1 (5)
C2—N1—C6	119.6 (5)	C9A—C8A—H8A	117.5
C2—N1—C1	119.4 (5)	C8A—C7A—H7A	117.7
C6—N1—C1	120.1	C8A—C7A—C4A	124.7 (5)
N1—C2—H2	119.8	C4A—C7A—H7A	117.7
N1—C2—C3	120.1	C2A—N1A—C1	119.3 (4)
C3—C2—H3	119.3	C6A—N1A—C1	119.8 (4)
C4—C3—C2	121.4	C6A—N1A—C2A	120.9
C4—C3—H3	119.3	N1A—C2A—H2A	120.2
C3—C4—C5	117.0	N1A—C2A—C3A	119.7
C3—C4—C7	118.6 (4)	C3A—C2A—H2A	120.2
C5—C4—C7	124.4 (4)	C2A—C3A—H3A	119.4
C6—C5—C4	121.3	C2A—C3A—C4A	121.3
C6—C5—H5	119.4	C4A—C3A—H3A	119.4
N1—C6—C5	119.7	C3A—C4A—C7A	117.9 (4)
N1—C6—H6	120.2	C5A—C4A—C7A	125.1 (4)
C5—C6—H6	120.2	C5A—C4A—C3A	117.0
C12—N2—C11	116.8	C6A—C5A—H5A	119.3
N2—C11—H11	118.6	C6A—C5A—H5A	119.3
N2—C11—C10	122.9	N1A—C6A—C5A	119.8
C10—C11—H11	118.6	N1A—C6A—H6A	120.1
C11—C10—H10	119.7	C5A—C6A—H6A	120.1
C9—C10—C11	120.6	C11A—N2A—C12A	116.8
C9—C10—H10	119.7	C11A—N2A—C12A	116.8
C10—C9—C13	116.4	C12A—N1A—C10A	123.5
C10—C9—C8	119.3 (5)	C10A—C11A—H11A	118.2
C13—C9—C8	124.3 (5)	C11A—C10A—H10A	120.1
C9—C13—H13	120.1	C9A—C10A—C11A	119.8
C9—C13—C12	119.8	C9A—C10A—H10A	120.1
C12—C13—H13	120.1	C10A—C9A—C8A	119.4 (4)
N2—C12—C13	123.5	C13A—C9A—C8A	124.2 (4)
N2—C12—H12	118.2	C13A—C9A—C10A	116.4
C13—C12—H12	118.2	C9A—C13A—H13A	119.7
N1—C1—N1	110.9 (10)	C9A—C13A—C12A	120.6
N1—C1—H1A	102.9 (11)	C12A—C13A—H13A	119.7
N1—C1—H1A	102.9 (11)	C12A—C13A—H13A	119.7
N1—C1—H1B	110.9 (11)	N2A—C12A—C13A	122.8
N1—C1—H1B	110.9 (11)	N2A—C12A—H12A	118.6
N1A—C1—N1A	109.8 (9)	C13A—C12A—H12A	118.6
N1—C2—C3—C4	-1.2	C7—C4—C5—C6	-179.8 (6)
C2—N1—C6—C5	-0.9	C8—C9—C13—C12	179.8 (6)
C2—N1—C1—N1'	-84.1 (7)	C8A—C7A—C4A—C3A	178.8 (4)
C2—C3—C4—C5	0.7	C8A—C7A—C4A—C5A	0.2 (6)
C2—C3—C4—C7 −179.8 (6) C8A—C9A—C13A—C12A −178.8 (6)
C3—C4—C5—C6 −0.3 C7A—C8A—C9A—C10A −176.9 (4)
C3—C4—C7—C8 −177.3 (5) C7A—C8A—C9A—C13A 2.7 (7)
C4—C5—C6—N1 0.4 C7A—C4A—C5A—C6A 179.4 (5)
C4—C7—C8—C9 179.1 (4) N1A—C1—N1A—C2A 76.4 (7)
C3—C4—C7—C8 0.3 C7A—C8A—C9A—C13A −102.3 (5)
C6—N1—C1—N1i 94.7 (7) C2A—N1A—C6A—C5A 1.2
N2—C11—C10—C9 0.2 C2A—C3A—C4A—C7A −179.2 (5)
C11—N2—C12—C13 0.7 C2A—C3A—C4A—C5A −0.5
C11—C10—C9—C8 0.8 C3A—C4A—C5A—C6A 0.8
C11—C10—C9—C8 180.0 (6) C4A—C5A—C6A—N1A −1.2
C10—C9—C13—C12 −1.1 C6A—N1A—C2A—C3A −0.9
C10—C9—C8—C7 177.0 (5) N2A—C11A—C10A—C9A 0.0
C9—C13—C12—N2 0.3 C11A—N2A—C12A—C13A −1.1
C13—C9—C8—C7 −3.9 (7) C11A—C10A—C9A—C8A 178.7 (6)
C12—N2—C11—C10 −1.0 C11A—C10A—C9A—C13A −1.0
C1—N1—C2—C3 180.0 (10) C10A—C9A—C13A—C12A 0.8
C1—N1—C6—C5 −179.6 (9) C9A—C8A—C7A—C4A −180.0 (4)
C1—N1A—C2A—C3A −179.6 (8) C9A—C13A—C12A—N2A 0.2
C1—N1A—C6A—C5A 179.9 (8) C12A—N2A—C11A—C10A 1.0

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1C—N2ii	0.88	2.26	2.880 (11)	128
O1—H1D—N2iii	0.88	2.01	2.880 (11)	171

Symmetry codes: (ii) −x+3/2, y−1/2, z−1/2; (iii) −x+3/2, −y+1, z−1/2.