A novel 3-D chaotic system with line equilibrium: dynamical analysis, coexisting attractors, offset boosting control and circuit design

A Sambas¹, S Vaidyanathan², S Zhang³, Mujiarto¹, Sukono⁴, M Mamat⁵, Subiyanto⁶

¹Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Indonesia
²Research and Development Centre, Vel Tech University, Avadi, Chennai, India
³School of Physics and Optronics Engineering, Xiangtan University, Hunan, China
⁴Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia.
⁵Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
⁶Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Indonesia.

Corresponding author: acengs@umtas.ac.id

Abstract. A 3-D new chaotic system with five nonlinearities is proposed in this paper. A novel feature of our chaotic system is that there is no linear term in it. We also show that the chaotic system consists of equilibrium points on the z-axis (line equilibrium) as well as two equilibrium points on the (x, y)-plane. The dynamical properties of the new chaotic system are described in terms of phase portraits, bifurcation diagrams, Lyapunov exponents, coexisting attractors, coexisting bifurcation and offset boosting control. Finally, an electronic circuit realization of the new chaotic system is presented in detail to confirm the feasibility of the theoretical chaotic model.

1. Introduction
Chaotic systems are characterized by their high sensitivity to small changes in initial conditions [1-2] and they have many applications in science and engineering such as weather systems [3-4], ecology [5], neurons [6-7], biology [8-10], cellular neural networks [11-12], chemical reactors [13-14], oscillators [15-20], robotics [21-24], encryption [25-30], finance systems [31-32], circuits [33-45], etc.

In the chaos literature, there is good interest in finding chaotic systems with infinite number of equilibrium points such as line equilibrium [46-50], square equilibrium [51], ellipse equilibrium [52], conch equilibrium [53], circle equilibrium [54], heart-shaped equilibrium [55], etc.

In this research paper, we report the finding of a new chaotic system with equilibrium points on the z-axis (line equilibrium) as well as two equilibrium points on the (x, y)-plane. We describe the phase plots of the chaotic system and do a rigorous dynamic analysis by finding bifurcation diagrams, Lyapunov exponents, equilibrium points, etc. Bifurcation analysis gives valuable information about the chaotic systems [56-61].
Section 2 describes the new chaotic system, its phase plots and equilibrium points. Section 3 describes the dynamic analysis of the new chaotic system. Section 4 depicts an electronic circuit realization of the new chaotic system. Section 5 draws the main conclusions.

Methodology of this work can be detailed as follows. Section 2 describes a dynamical analysis of the properties of the new 3-D chaotic system reported in this work. We calculate the equilibrium of the system and show that the system has line equilibrium. We display the phase portraits of the system. Section 3 describes a detailed bifurcation analysis of the new 3-D chaotic system including multi-stability and coexisting attractors. Section 4 gives a circuit simulation for the new 3-D chaotic system.

2. A new chaotic system with line equilibrium

In this work, we report a new 3-D system given by the dynamics

\[
\begin{align*}
\dot{x} &= z \sign(y) \\
\dot{y} &= x |x| - y |y| \\
\dot{z} &= a |x| - bxy
\end{align*}
\]

(1)

Where \(x, y, z \) are state variables and \(a, b \) are positive constants.

In this paper, we show that the dynamical system (1) is chaotic for the parameter values

\[
a = 0.6, \quad b = 1.6
\]

(2)

For numerical simulations, we take the initial values of the system (4) as \(X(0) = (0.2, 0.2, 0.2) \).

Figure 1 shows the phase portrait of the new system (4) for \((a, b) = (0.6, 1.6) \) and initial conditions \(X(0) = (0.2, 0.2, 0.2) \). Figures 1 (a)-(c) show the 2-D phase plots of the new chaotic system (1) in \((x, y) \), \((y, z) \), \((x, z) \) coordinate planes, while Figure 1 (d) shows the 3-D phase plot of the new chaotic system (1).

![Figure 1. Plots of the new chaotic system (1) for \((a, b) = (0.6, 1.6) \) and \(X(0) = (0.2, 0.2, 0.2) \)](image)

We take the parameters \(a \) and \(b \) as in the chaotic case (2), i.e. \((a, b) = (0.6, 1.6) \).

The equilibrium points of the new chaotic system (1) are obtained by solving the system:

\[
\begin{align*}
z \sign(y) &= 0 \quad \text{(3a)} \\
x |x| - y |y| &= 0 \quad \text{(3b)} \\
a |x| - bxy &= 0 \quad \text{(3c)}
\end{align*}
\]
Solving the equations (3), we obtain the set of equilibrium points

\[S = \{(x, y, z) \in \mathbb{R}^3 : x = y = 0\} \cup \{(0.3750, 0.3750, 0), (-0.3750, -0.3750, 0)\}. \]

Thus, the new chaotic system (1) has the whole of z-axis as its equilibrium points as well as the two points \((0.3750, 0.3750, 0)\) and \((-0.3750, -0.3750, 0)\) on the \((x, y)\) – plane.

3. Numerical Study

3.1 Bifurcation and Chaos

We fix \(b = 0.6\) and vary \(a\) in the range of \([0, 5]\). The bifurcation diagram for varying \(a\) and the related graphs of Lyapunov exponents are provided in Figure 2 (a), (b). Obviously, from the bifurcation diagram, one can get that the system is in periodic state in the beginning, then goes into chaos. In addition, there is a big periodic window. Similarly, from Figure 3 (a), one can see that the system changes from period to chaos in the whole region except for a large period-3 window in the region of \([1.1, 1.3]\). Note that the bifurcation diagram and the Lyapunov exponents match well with each other.

![Figure 2 (a) Bifurcation diagram of system (1) versus the parameter \(a\) for \(b = 0.6\) and initial conditions \((x(0), y(0), z(0)) = (0.2, 0.2, 0.2)\); (b) Lyapunov spectrum of system (1) when varying the parameter \(a\) for \(b = 0.6\), and initial conditions \((x(0), y(0), z(0)) = (0.2, 0.2, 0.2)\).](image1)

![Figure 3 (a) Bifurcation diagram of the system (1) versus the parameter \(b\) for \(a = 1.6\) and initial conditions \((x(0), y(0), z(0)) = (0.2, 0.2, 0.2)\); (b) Lyapunov spectrum of the system (1) when varying the parameter \(b\) for \(b = 1.6\), and initial conditions \((x(0), y(0), z(0)) = (0.2, 0.2, 0.2)\).](image2)
3.2 Coexisting attractor

In this work, the bifurcation diagrams of the system (1) versus a [0, 5] are shown in Figure 4, where the blue color starts from the initial conditions (0.2 0.2 0.2) and the red color starts from the initial conditions (-0.2 -0.2 0.2), respectively. As can be seen from the bifurcation diagram, there exists coexisting attractors in the very narrow regions of [0.25, 0.5] and [4.5, 5]. The coexisting chaotic attractors can be seen in Fig. 5a, when $a = 4.5$ and the coexisting periodic attractors can be seen in Fig. 5b, when $a = 0.25.$

Figure 4 The bifurcation diagrams of the system (1) with a from 0 to 5 for $b = 1.6.$ condition: $(x(0), y(0), z(0)) = (0.2 0.2 0.2)$ (blue), $(x(0), y(0), z(0)) = (-0.2 -0.2 0.2),$ (red)

Figure 5 Phase portraits of the system (1) displayed in the x--y plane when changing the value of parameter a: (a) the coexisting chaotic attractors for $a = 4.5$
(b) the coexisting periodic attractors for $a = 0.25.$
3.3 Offset boosting control

Clearly, the state variable z appears only once in the first equation of the system. Therefore, we can control the state variable z conveniently. The state variable z is offset-boosted by replacing z with $z + k$, in which k is a constant. The system can be rewritten as

\[
\begin{align*}
\dot{x} &= \text{sign}(y)(z + k) \\
\dot{y} &= x|x| - y|y| \\
\dot{z} &= a|x| - bxy
\end{align*}
\]

Consequently, the chaotic signal z can be transformed from a bipolar signal to a unipolar signal when varying the control parameter k. When increasing the boosting controller k, the chaotic signal z is boosted from a bipolar signal to a unipolar one as illustrated in Figure 6. Phase portraits of system (1) are adjusted according to the boosting controller as illustrated in Figure 7.

![Figure 6](image1.png)

Figure 6 The signal z with different values of the offset boosting controller k: $k = 0$ (blue colour); $k = 4$ (red colour); $n = -4$ (green colour).

![Figure 7](image2.png)

Figure 7 Phase portraits in different planes and different values of the offset boosting controller k: (a) $x - z$ plane, (b) $y - z$ plane for $k = 0$ (blue colour), $k = 4$ (red colour), $k = -4$ (green colour).
4. Circuit implementation of the new chaotic system

In this work, the electronic circuit design of signum nonlinearity (1) is presented. The electronic circuit is designed in MultiSIM platform. The signum nonlinearity which detailed electronic circuit is depicted in Figure 8 consists of two resistors and two operational amplifiers. A detailed analysis of the signum circuit can be found in [62].

The ciruital equations of the designed new chaotic system are given by

\[
\begin{align*}
\dot{x} &= \frac{1}{10C_1R_1} z \text{sign}(y) \\
\dot{y} &= \frac{1}{10C_2R_2} x |x| - \frac{1}{10C_2R_3} y |y| \\
\dot{z} &= \frac{1}{C_4R_4} |x| - \frac{1}{10C_4R_5} xy
\end{align*}
\]

(5)

Where \(x\), \(y\), and \(z\) are the voltages across the capacitors \(C_1\), \(C_2\) and \(C_3\), respectively. The circuit has been implemented by using MultiSIM \(R_1 = R_2 = R_3 = 40\, \text{k}\\Omega\), \(R_4 = 66.67\, \text{k}\\Omega\), \(R_5 = 1.425\, \text{M}\\Omega\), \(R_6 = 25\, \text{k}\\Omega\), \(R_7 = R_8 = R_{10} = R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{17} = R_{19} = R_{20} = R_{21} = 100\, \text{k}\\Omega\), \(C_1 = C_2 = C_3 = 1\, \text{nF}\). Obtained MultiSIM results in Figure 9 indicate that the circuit exhibits chaotic attractors. The MultiSIM results (see Figure 9) based simulations are carried out to confirm the results of theoretical analysis (see. Figure 1).
Figure 8 The electronic circuit schematic of new chaotic system (1)
5. Conclusions

A new chaotic system with five nonlinearities was announced in this paper. Our proposed chaotic system has a novel feature that there is no linear term in it. We also showed that the chaotic system has equilibrium points on the z-axis (line equilibrium) as well as two equilibrium points on the (x, y)-plane. The dynamical properties of the new chaotic system were analyzed in terms of phase portraits, bifurcation diagram, etc. Finally, an electronic circuit realization of the new chaotic system was displayed in detail to confirm the feasibility of the theoretical chaotic model.

References

[1] Vaidyanathan S and Volos C 2017 Advances and Applications in Chaotic Systems (Berlin: Springer)

[2] Alligood K T, Sauer T D and Yorke J A 2000 Chaos: An Introduction to Dynamical Systems (Berlin: Springer)
[3] Vaidyanathan S, Azar A T, Rajagopal K, Sambas A, Kacar S and Cavusoglu U 2018 International Journal of Simulation and Process Modelling 13 281-296
[4] Vaidyanathan S, Volos C K, Rajagopal K, Kyprianidis I M and Stouboulos I N 2015 Journal of Engineering Science and Technology Review 8 74-82
[5] Vaidyanathan S 2015 International Journal of PharmTech Research 8 974-981
[6] Vaidyanathan S 2015 International Journal of PharmTech Research 8 1-11
[7] Vaidyanathan S 2015 International Journal of PharmTech Research 8 117-127
[8] Tomita K 1982 Journal of Theoretical Biology 99 111-118
[9] Vaidyanathan S 2015 International Journal of PharmTech Research 8 106-116
[10] Vaidyanathan S 2015 International Journal of PharmTech Research 8 156-166
[11] Njitacke Z T and Kengne J 2018 AEU-International Journal of Electronics and Communications 93 242-252
[12] Vaidyanathan S 2015 International Journal of PharmTech Research 8 946-955
[13] Saad M, Safieddine A and Sultan R 2018 Journal of Physical Chemistry A 122 6043-6047
[14] Vaidyanathan S 2015 International Journal of ChemTech Research 8 159-171
[15] Hellen E H and Volkov E 2018 Communications in Nonlinear Science and Numerical Simulation 62 462-479
[16] Vaidyanathan S and Rasappan S 2011 Communications in Computer and Information Science 131 585-593
[17] Pisarchik A N, Huerta-Cuellar G and Kulp C W 2018 Communications in Nonlinear Science and Numerical Simulation 62 134-145
[18] Vaidyanathan S 2015 International Journal of Modelling, Identification and Control 23 380-392
[19] Vaidyanathan S 2012 Lecture Notes of the Institute for for Computer Sciences, Social-Informatics and Telecommunications Engineering 85 124-133,
[20] Xu Q, Zhang Q, Jiang T, Bao B and Chen M 2018 Circuit World 44 108-114
[21] Vaidyanathan S, Sambas A, Mamad M and Sanjaya W S M 2017 Archives of Control Sciences 27 541-554
[22] Singh J P, Lochan K, Kuznetsov N V and Roy B K 2017 Nonlinear Dynamics 90 1277-1299
[23] Wang Y, Mou Y and Zhang J 2018 Journal of Harbin Engineering University 39 584-593
[24] Mansour S M B, Sundarapandian V and Naceur S M 2016 International Journal of Control Theory and Applications 9 37-54
[25] Akgul A, Moroz I, Pehlivan S and Vaidyanathan S 2016 Optik 127 5491-5499
[26] Vaidyanathan S, Akgul A, Kacar S and Cavusoglu U 2018 European Physical Journal Plus 133 46
[27] Vaidyanathan S 2015 Kyungpook Mathematical Journal 55 563-586
[28] Vaidyanathan S and Rajagopal K 2017 International Journal of Simulation and Process Modelling 12 165-178
[29] Dou Y, Liu X, Fan H and Li M 2017 Optik 145 456-464
[30] Vaidyanathan S, Sambas A, Mamad M and Sanjaya W S M 2017 International Journal of Modelling, Identification and Control 28 153-166
[31] Idowu B A, Vaidyanathan S, Sambas A, Olusola O I and Onma O S 2018 Studies in Systems, Decision and Control 133 271-295
[32] Tacha O I, Volos C K, Kyprianidis I M, Stouboulos I N, Vaidyanathan S and Pham V T 2016 *Applied Mathematics and Computation* **276** 200-217

[33] Volos C K, Pham V T, Vaidyanathan S, Kyprianidis I M and Stouboulos I N 2015 *Journal of Engineering Science and Technology Review* **8** 142-151

[34] Daltzis P, Vaidyanathan S, Pham V T, Volos C, Nistazakis E. and Tombras G. 2018 *Circuits, Systems, and Signal Processing* **37** 613-615

[35] Sambas A, Vaidyanathan S, Mamat M and Mada Sanjaya W S 2018 *Studies in Systems, Decision and Control* **133** 365-373

[36] Vaidyanathan S, Jafari S, Pham V T, Azar A T and Alsaadi F E 2018 *Archives of Control Sciences* **28** 239-254

[37] Wang X, Vaidyanathan S, Volos C, Pham V T and Kapitaniak T 2017 *Nonlinear Dynamics* **89** 1673-1687

[38] Sambas A, Mamat M, Vaidyanathan S, Mohamed M A, Mada Sanjaya W S and Mujirarto 2018 *WSEAS Transactions on Systems and Control* **13** 345-352

[39] Bao B, Xu L, Wang N, Bao H, Xu Q and Chen M 2018 *AEU-International Journal of Electronics and Communications* **94** 26-35

[40] Sambas A, Mamat M, Vaidyanathan S, Mohamed M A and Mada Sanjaya W S 2018 *International Journal of Engineering and Technology* **7** 1245-1250

[41] Vaidyanathan S, Jafari S, Pham V T, Giakoumis A, Vaidyanathan S and Kapitaniak T 2017 *IEEE Transactions on Circuits and Systems II: Express Briefs* **64** 339-343

[42] Pham V T, Jafari S, Volos C, Giakoumis A, Vaidyanathan S and Kapitaniak T 2016 *IEEE Transactions on Circuits and Systems II: Express Briefs* **63** 878-882

[43] Mamat M, Vaidyanathan S, Sambas A, Mujirarto, Sanjaya W S M and Subiyanto 2018 *IOP Conference Series: Materials Science and Engineering* **332** 012033

[44] Lien C H, Vaidyanathan S, Sambas A, Sukono, Mamat M, Sanjaya W S M and Subiyanto 2018 *IOP Conference Series: Materials Science and Engineering* **332** 012010

[45] Vaidyanathan S, Sambas A, Sukono, Mamat M, Gundara G, Sanjaya W S M and Subiyanto 2018 *IOP Conference Series: Materials Science and Engineering* **332** 012048

[46] Zhang S, Zeng Y, Li Z, Wang M and Xiong L 2018 *Chaos: An Interdisciplinary Journal of Nonlinear Science* **28** 013113

[47] Kingni S T, Pham V T, Jafari S and Woafo P 2017 *Chaos, Solitons and Fractals* **99** 209-218

[48] Jafari S and Sprott J C 2013 *Chaos, Solitons and Fractals* **57** 79-84

[49] Vaidyanathan S 2016 *Studies in Computational Intelligence* **636** 471-494

[50] Li C and Sprott J C 2014 *Physics Letters A* **378** 178-183

[51] Gottthans T, Sprott J C and Petrzela J 2016 *International Journal of Bifurcation and Chaos* **26** 1560137

[52] Pham V T, Jafari S, Wang X and Ma J 2016 *International Journal of Bifurcation and Chaos* **26** 1650069

[53] Mamat M, Vaidyanathan S, Sambas A, Mohamed M A, Sampath S and Sanjaya W S M 2018 *International Journal of Engineering and Technology* **7** 1410-1414

[54] Gottthans T and Petrzela J 2015 *Nonlinear Dynamics* **81** 1143-1149

[55] Pham V T, Jafari S and Volos C 2017 *Optik* **131** 343-439

[56] Zhang S, Zeng Y, Li Z, Wang M, Zhang X and Chang D 2018 *International Journal of Dynamics and Control* **23** 1-12

[57] Zhang S, Zeng Y and Li Z 2018 *Chinese Journal of Physics* **56** 793-806

[58] Zhang S, Zeng Y C and Li Z J 2018 *J. Computational and Nonlinear Dynamics* **13** 1-10

[59] Zhang S, Zeng Y, Li Z, Wang M and Xiong L 2018 *Pramana* **90** 63.

[60] Wang L, Zhang S, Zeng Y C and Li Z J 2018 *Electronics Letters* **52** 1008-1010

[61] Zhang S, Zeng Y C, Li Z J, Wang M J and Xiong L 2018 *Chaos* **28** 013113

[62] Pham V T, Volos C, Jafari S and Kapitaniak T 2018 *Journal of Circuits, Systems and Computers,* **27** 1850066.