CHARACTER VARIETIES OF FREE GROUPS ARE GORENSTEIN BUT NOT ALWAYS FACTORIAL

SEAN LAWTON AND CHRISTOPHER MANON

Abstract. Fix a rank g free group F_g and a connected reductive complex algebraic group G. Let $\mathcal{X}(F_g, G)$ be the G–character variety of F_g. When the derived subgroup $DG < G$ is simply connected we show that $\mathcal{X}(F_g, G)$ is factorial (which implies it is Gorenstein), and provide examples to show that when DG is not simply connected $\mathcal{X}(F_g, G)$ need not even be locally factorial. Despite the general failure of factoriality of these moduli spaces, using different methods, we show that $\mathcal{X}(F_g, G)$ is always Gorenstein.

1. Introduction

In his remembrance of Grothendieck, Landsburg [Lan] writes an important part of Grothendieck’s mathematical philosophy was his “…lifelong insistence that mathematical objects are intrinsically uninteresting – instead it’s the relations between mathematical objects that matter.” At its heart, the study of moduli spaces of representations (also known as character varieties) is a juxtaposition of this philosophy with its opposite. The relationship between topology and geometry is manifest in the conjugation classes of homomorphisms from the fundamental group of a topological space M to a transformation group G; parameterizing G–local systems on M. Yet, the moduli space of these equivalence classes itself is an object of intrinsic interest exactly because of these relationships.

In concrete terms, let Γ be a finitely generated group (generated by g elements), perhaps the fundamental group of a manifold or orbifold M, and let G be a reductive affine algebraic group over an algebraically closed field k. Then the collection of group homomorphisms $\text{Hom}(\Gamma, G)$ is naturally a k–variety cut out of the product variety G^g via the relations defining Γ. Since G admits a faithful morphism into $\text{GL}_n(k)$, we call $\text{Hom}(\Gamma, G)$ the G–representation variety of Γ. Standard in representation theory is that two representations are equivalent if they are conjugate. As we are interested in G–valued representations, we consider the conjugation action of G on the representation variety. The orbit space $\text{Hom}(\Gamma, G)/G$ is generally not Hausdorff, but it is homotopic (see [FLR14, Proposition 3.4]) to the geometric points of the Geometric Invariant Theory (GIT) quotient $\mathcal{X}(\Gamma, G) := \text{Hom}(\Gamma, G)/G$; which as usual, is the spectrum of the ring of G–invariant elements in the coordinate ring $k[\text{Hom}(\Gamma, G)]$.

The spaces $\mathcal{X}(\Gamma, G)$ constitute a large class of affine varieties (see [Rap13]). More importantly, they are of central interest in the study of moduli spaces (see [AB83, Hit87, NS65, Sim94a, Sim94b]); finding applications in mathematical physics (see [KS00, Wit01, HT03, KW07]), the study of geometric manifolds (see [Gol88]), and knot theory (see [CCG94]).

The purpose of this note is to prove that the singularities of a character variety $\mathcal{X}(F_g, G)$ are always well behaved, when G is reductive and F_g is a rank g free group. This is in stark contrast to the situation when Γ is not free; in that case, “Murphy’s Law” is in play [KM13]. In particular, we characterize when $\mathcal{X}(F_g, G)$ is factorial and show it is always Gorenstein. This allows us to describe conditions when the Picard group of $\mathcal{X}(F_g, G)$ is trivial.

In general, regular rings (smooth varieties) are local complete-intersection rings (varieties locally cut out by codimension relations) which are Gorenstein. All Gorenstein rings are Cohen-Macaulay, and assuming the singular locus lies in codimension at least 2, this further implies normality (which implies irreducibility). So Gorenstein varieties (coordinate rings are Gorenstein) are situated between complete-intersections and Cohen-Macaulay varieties. Factorial varieties (coordinate rings are unique factorization domains) fall slightly in between. When they are additionally normal, they have the property that all irreducible hypersurfaces (divisors) come from rational functions (principal divisors).
A factorial Cohen-Macaulay variety is automatically Gorenstein (but not conversely). For \(G = \text{SL}_n(\mathbb{C}) \), we describe exactly when these properties hold for \(\mathcal{X}(F_g, G) \); see Example 2.6.

Before we describe in further detail our main theorem, we take a moment to describe what some of the aforementioned properties mean from the point-of-view of a geometer (since these moduli spaces garner interest from a wide range of mathematicians). Using standard GIT, see for instance [Muk03], one easily deduces that \(\mathcal{X}(F_g, G) \) is irreducible and normal. Being irreducible in this context is equivalent to the smooth locus being path-connected, and being normal implies the singular locus is in codimension at least 2 and that the inclusion of the smooth locus induces a surjection on fundamental groups. Using this latter property, [BL15] completely describes the fundamental group of \(\mathcal{X}(F_g, G) \); showing it is simply connected if and only if \(G \) is semisimple. And by [FLR14], the singular locus of \(\mathcal{X}(F_g, G) \) is generally (but not always) given exactly by the locus of representations whose stabilizer is strictly larger than the center \(Z(G) \).

Let us focus a bit on the Cohen-Macaulay property. In the introduction to [Hoc78], Hochster says “Life is really worth living in a Noetherian ring \(R \) when all the local rings have the property that every \(\text{s.o.p.} \) [system of parameters] is an \(R \)-sequence. Such a ring is called Cohen-Macaulay.” By his earlier work in [HR74], we immediately conclude that the spaces \(\mathcal{X}(F_g, G) \) are Cohen-Macaulay, since \(\mathcal{X}(F_g, G) \) is the GIT quotient of a smooth variety by a reductive group. A desingularization of a complex affine variety \(X \) is a proper map \(f : S \to X \) from a smooth variety that is an isomorphism when restricted to the inverse image of the smooth locus of \(X \). By [Bou87] we know \(\mathcal{X}(F_g, G) \) has rational singularities (which in general implies Cohen-Macaulay); that is, there exists a desingularization \(f : S \to \mathcal{X}(F_g, G) \) such that \(S \) is acyclic. In this case, being Cohen-Macaulay means that every highest order differential form on the smooth locus of \(\mathcal{X}(F_g, G) \) is the restriction of one on \(S \) (see [Hoc78]).

Here is the main theorem of the paper:

Theorem 1.1. For any \(g \geq 1 \) and any connected complex reductive algebraic group \(G \), the space \(\mathcal{X}(F_g, G) \) is Gorenstein. If the derived subgroup \(DG < G \) is simply connected, then \(\mathcal{X}(F_g, G) \) is factorial. If the derived subgroup \(DG < G \) is not simply connected, there are examples where \(\mathcal{X}(F_g, G) \) is not factorial, nor locally factorial.

We prove the factoriality parts of the above theorem in Section 2. As an interesting corollary, we give conditions for the Picard group of the character variety to be trivial: \(\text{Pic}(\mathcal{X}(F_g, G)) = 0 \) if \(DG \) is simply connected. The proof of the Gorenstein part of Theorem 1.1 makes up the rest of the paper. As the proof uses the representation theory of algebraic groups, in Sections 3 and 4 we review the relevant ideas and build up the machinery needed for the proof which is in Sections 5 and 6.

In the course of our proof of Theorem 1.1 we also obtain similar results for the configuration space \(P_u(G) \) of \(n \) points in the homogeneous variety \(G/U \) for \(U \subset G \) a maximal unipotent subgroup; see Theorem 5.1, and Remark 6.4. These spaces play a central role in the study of saturation problems which arise from the theory of tensor product invariants in the representation theory of \(G \), see e.g. Section 9 of [LKM08].

Acknowledgments. We thank both Brian Conrad and Vladimir Popov for giving references and comments concerning Lemma 2.1; this was extremely helpful. The second named author thanks Neil Epstein for several useful discussions on factorial rings. The first named author was partially supported by grants from the Simons Foundation (Collaboration #245642) and the National Science Foundation (DMS #1309376). Additionally, he acknowledges support by the National Science Foundation under Grant No. 0932078000 while in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2015 semester.

2. Factoriality

Let \(X \) be a normal affine variety over an algebraically closed field \(k \) (of arbitrary characteristic). For the following discussion we follow [Har77, II.6]. A prime divisor on \(X \) is a codimension 1 irreducible subvariety, and a Weil divisor is an element of the Abelian group generated by prime divisors; denoted \(\text{Div}(X) \). There is a homomorphism \(P : k(X)^* \to \text{Div}(X) \) where \(k(X) \) is the rational function field of \(X \). The divisor class group of \(X \) is the quotient group \(\text{Cl}(X) := \text{Div}(X)/P(C(X)^*) \). Then [Har77, Proposition 6.2] shows that the coordinate ring \(k[X] \) is a unique factorization domain (UFD) if and only if \(\text{Cl}(X) = 0 \).
The Picard group, denoted Pic(X), is the group of isomorphism classes of line bundles over X. From [Eis95, Theorems 11.8 and 11.10], we see Pic(X) injects into Cl(X), and this injection is an isomorphism if and only if X is locally factorial (the local rings are UFDs). For excellent notes on these and related topics see [Cla].

In this generality, a connected semisimple algebraic group G is simply connected if it does not admit any non-trivial isogeny (over \(\mathbb{C} \) this is equivalent to the topological definition). The following lemma is implied by the work of Popov ([Pop74, Theorem 6]), and is essential to the proof of Theorem 2.2 below.

Lemma 2.1. Let G be an affine algebraic \(\mathbb{C} \)-group, where \(\mathbb{C} \) is an algebraically closed field of arbitrary characteristic. Let R be the radical of G. Then G is factorial if and only if G/R is simply connected.

Proof. By definition, G is factorial means exactly that its coordinate ring \(\mathbb{C}[G] \) is a UFD. Since G is smooth it is normal and hence \(\mathbb{C}[G] \) is a UFD if and only if the class group Cl(G) is trivial. However, since G is locally factorial (since it is smooth), the class group of G is isomorphic to the Picard group Pic(G).

For algebraic groups, irreducible components and connected components coincide (see [Bor91]), and in general an affine variety is irreducible if and only if its coordinate ring is a domain. In particular, if G is factorial, it is connected. However, when G is connected Pic(G) = 0 if and only if G/R is simply connected by [Pop74, Theorem 6].

Theorem 2.2. Let G be a connected reductive affine algebraic \(\mathbb{C} \)-group, where \(\mathbb{C} \) is an algebraically closed field of arbitrary characteristic, and let \(F_g \) a rank \(g \) free group. Then \(\mathcal{X}(F_g, G) \) is factorial if DG is simply connected.

Proof. The character variety \(\mathcal{X}(F_g, G) \) is the GIT quotient of \(\text{Hom}(F_g, G) \cong G^g \) by the conjugation action of \(PG := G/\mathbb{Z}(G) \). The character group \(\text{Hom}(PG, \mathbb{C}^*) \) is trivial since PG is semisimple, and so the ring of invariants \(\mathbb{C}[G^g]^{PG} \) is a UFD by [LB86][Lemma 2], since \(G^g \) is factorial by the previous Lemma 2.1 (\(G^g \) is a reductive group whose derived subgroup is \(DG^g \), and the latter is simply connected since \(DG \) is simply connected).

Corollary 2.3. Let G be as in Theorem 2.2. Then Pic(\(\mathcal{X}(F_g, G) \)) = 0 if DG is simply connected.

Proof. In Theorem 2.2, we see that the coordinate ring \(\mathbb{C}[\mathcal{X}(F_g, G)] \) is a UFD and thus its class group is trivial. However, Pic(\(\mathcal{X}(F_g, G) \)) injects into the class group, and so is likewise trivial.

Corollary 2.4. Let G be as in Theorem 2.2. Then \(\mathcal{X}(F_g, G) \) is Gorenstein if DG is simply connected.

Proof. By a theorem of Murthy [Mur64], it suffices to show that the coordinate ring \(\mathbb{C}[\mathcal{X}(F_g, G)] \) is Cohen-Macaulay and a UFD. The former is a consequence of a theorem of Hochster and Roberts [HR74], and the latter was shown above in Theorem 2.2.

Unfortunately, when DG is not simply connected, \(\mathcal{X}(F_g, G) \) need not be even locally factorial over \(\mathbb{C} \), as the next example shows. Nevertheless, in the sequel we show that \(\mathcal{X}(F_g, G) \) is Gorenstein in general (over \(\mathbb{C} \)).

Example 2.5. By [Sik13, Corollary 6], the coordinate ring of \(\mathcal{X}(F_2, \text{PSL}_2(\mathbb{C})) \) is \(\mathbb{C}[x, y, z, w]/(xyz - w^2) \). Therefore, it is certainly not a UFD. However, this example shows that character varieties are not generally even locally factorial. A normal affine variety V is local factorial if and only if Pic(V) = Cl(V), by [Eis95, Theorems 11.8 and 11.10]. However, \(\mathcal{X}(F_2, \text{PSL}_2(\mathbb{C})) \) is normal since it is the GIT quotient of a smooth (and hence normal) variety by a reductive group. Since \(\mathcal{X}(F_2, \text{PSL}_2(\mathbb{C})) \) is not factorial, we conclude that its class group is non-trivial; but its Picard group is trivial as we now explain. \(\mathcal{X}(F_2, \text{PSL}_2(\mathbb{C})) \cong \mathcal{X}(F_2, \text{SL}_2(\mathbb{C}))/\langle \mathbb{Z}/2\mathbb{Z} \rangle^2 \), and \(\mathcal{X}(F_2, \text{SL}_2(\mathbb{C})) \cong \mathbb{C}^3 \). Since it is a finite quotient of an affine space, we conclude that its Picard group is trivial (see [Kan79]). Thus, \(\mathcal{X}(F_2, \text{PSL}_2(\mathbb{C})) \) is not locally factorial. Along similar lines, Example 7 in [Sik13] also shows that \(\mathcal{X}(F_2, \text{SO}_4(\mathbb{C})) \) is not locally factorial.

Example 2.6. As described in the introduction, the coordinate ring \(\mathbb{C}[\mathcal{X}(F_g, \text{SL}_n(\mathbb{C}))] \) is integrally closed, Cohen-Macaulay, and has rational singularities. By [FL12, Theorem 1.1] \(\mathbb{C}[\mathcal{X}(F_g, \text{SL}_n(\mathbb{C}))] \) is
regular if and only if \((g, n) = (1, n), (g, 1), (2, 2), (2, 3),\) or \((3, 2)\). In these cases the isomorphism type of the rings is also known; see [FL12, Section 2.2]. We have now further established that \(\mathbb{C}[\mathcal{X}(F_g, SL_n(\mathbb{C}))]\) has trivial Picard group, is a UFD, and hence is Gorenstein.

Conjecture 2.7. With the preceding examples in mind, we conjecture that \(\mathcal{X}(F_g, G)\) is factorial if and only if \(DG\) is simply connected.

Remark 2.8. We have established half of this conjecture here, and showed that \(\text{Hom}(F_g, G)\) is factorial if and only if \(DG\) is simply connected. It remains to prove that the GIT quotient of \(\text{Hom}(F_g, G)\) cannot be factorial since \(\text{Hom}(F_g, G)\) itself is not.

3. Some Elements of Reductive Representation Theory

We collect necessary material on the structure of reductive groups and combinatorial aspects of their representation theory in this section. We refer the reader to the books of Fulton and Harris [FH91], Dolgachev [Dol03], and Grosshans [Gro97] for the representation theory of reductive groups, and their actions on commutative algebras.

We let \(G\) be a connected, complex reductive group with center \(Z\), maximal torus \(T\), and choice of root system \(\Phi\). We choose a set of positive roots \(\Phi^+ \subset \Phi \subset t^*\) with simple roots \(\Phi^0 = \{\alpha_1, \ldots, \alpha_r\}\). The Lie algebra \(\mathfrak{g}\) of \(G\) splits as a direct sum \(\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{g}^{ss}\) with \(\mathfrak{z}\) the Lie algebra of \(Z\) and \(\mathfrak{g}^{ss}\) the semisimple part of \(\mathfrak{g}\). Structurally, this Lie algebra decomposition corresponds to the fact that we can present \(G\) as \(\mathbb{C}[\mathfrak{g}^{ss} \times \hat{Z}]/K\) for \(\hat{Z}\) a covering torus of \(Z\), \(\mathfrak{g}^{ss}\) the simply connected, semisimple group corresponding to \(\mathfrak{g}^{ss}\), and \(K\) a finite central subgroup of \(\mathbb{C}[\mathfrak{g}^{ss} \times \hat{Z}]\).

We fix a system of Chevalley generators \(H_1, \ldots, H_r, f_1, \ldots, f_r, e_1, \ldots, e_r \in \mathfrak{g}^{ss}\), where \(r\) is the rank of \(\mathfrak{g}^{ss}\). The elements \(f_i\) and \(e_i\) are called lowering and raising operators, and they generate nilpotent Lie subalgebras \(\mathfrak{u}_-, \mathfrak{u}_+ \subset \mathfrak{g}\), respectively. The elements \(H_i\) are called coroots, they form a basis of a Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g}^{ss}\), where \(\mathfrak{z} \oplus \mathfrak{h} = t\), the Lie algebra of \(T\). The algebras \(\mathfrak{u}_-\) and \(\mathfrak{u}_+\) are the Lie algebras of corresponding maximal unipotent subgroups \(U_-, U_+ \subset G\). Along with \(T\), these subgroups define a dense, open algebraic subset \(U_- \times T \times U_+ \rightarrow U_- TU_+ \subset G\), and a triangular decomposition \(\mathfrak{g} = \mathfrak{u}_- \oplus t \oplus \mathfrak{u}_+\).

We let \(\mathcal{X}(T) \subset t^*\) be the character group of \(T\), elements of this lattice are called weights. The weights \(\lambda \in \mathcal{X}(T)\) which satisfy \(\lambda(H_i) \geq 0\) are called dominant, and the non-negative real span of the dominant weights forms a polyhedral cone called a Weyl chamber \(\Delta \subset t^*\). The set of positive roots \(\Phi\) is contained in \(\Delta\) and spans a sublattice \(\mathcal{R} \subset \mathcal{X}(T)\) called the root lattice. There is a natural partial ordering \(<\) on the set of dominant weights, where \(\lambda > \eta\) when \(\lambda - \eta\) can be expressed as a non-negative sum of positive roots. Using the decomposition \(G = [\mathfrak{g}^{ss} \times \hat{Z}]/K\), any dominant weight \(\lambda \in \Delta\) can be expressed as a sum \(\lambda + \tau\) of a dominant weight \(\lambda \in \Delta^{ss}\) of \(\mathfrak{g}^{ss}\) and a character \(\tau\) of \(\hat{Z}\) such that \(\lambda + \tau\) is a trivial character on \(K\). In this way, the Weyl chamber can be identified with a product \(\hat{t}^* \times \prod \Delta_i\), where \(\Delta_i\) is a Weyl chamber of a simple part \(\mathfrak{g}_i\) of \(\mathfrak{g}^{ss}\).

The Weyl group \(N(T)/T = W\) of \(G\) is generated by elements \(s_1, \ldots, s_r\) called simple reflections, these are in bijection with the simple roots. These generators define a length function on the elements of \(W\), and the unique longest element \(w_0\) has length equal to the number \(N\) of positive roots of \(\mathfrak{g}\). We let \(R(w_0)\) denote the set of reduced decompositions \(i = \{i_1, \ldots, i_N\}\), of \(w_0 = s_{i_1} \cdots s_{i_N}\) into simple reflections. These objects are a critical ingredient in the definition of the polyhedral cones \(C_{3,1}(G)\) and \(C_{T,1}(G)\) used in Sections 5 and 6.

The category \(\text{Rep}(G)\) of finite dimensional representations of \(G\) is semisimple, and the set of irreducible representations is in bijection with the dominant weights \(\lambda \in \Delta\). We let \(V(\lambda)\) denote the irreducible representation associated to \(\lambda \in \Delta\). The dual representation \(V(\lambda)^*\) of an irreducible has weight \(\lambda^* = -w_0(\lambda)\). Recall that any representation \(V\) decomposes as a \(T\)—representation into weight spaces \(V_\eta \subset V\), and that \(\eta < \lambda\) for all \(\eta\) which appear in this decomposition for \(V(\lambda)\). In this case, the weight space \(V_\lambda(\lambda)\) is always \(1\)—dimensional; we let \(b_\lambda\) be a highest weight vector spanning \(V_\lambda(\lambda)\) for \(\lambda\). Because of these observations, the weight \(\eta\) of any irreducible summand \(V(\eta) \subset V(\lambda) \otimes V(\mu)\) of a tensor product of irreducible representations must have the property that \(\lambda + \mu - \eta \in R\).
4. Gorenstein graded algebras and semigroup algebras

A Noetherian ring R is said to be Gorenstein if every localization R_m at a maximal ideal $m \subset R$ has finite injective dimension as a module over itself: $\text{inj}_{R_m}(R_m) < \infty$ (see [BH93, Definition 3.1.18]). Gorenstein algebras are also Cohen-Macaulay, and in all the cases we consider here, they can be characterized in the class of Cohen-Macaulay rings by the behavior of an associated object called the canonical module $\Omega(R)$. When R is a homomorphic image of a polynomial ring $S = K[x_1, \ldots, x_n]$ (this is the case for all algebras we study in this paper), one can define the canonical module as $\text{Ext}_S^{n - \dim(R)}(R, S)$. This module agrees with the module of top differential forms of R on the non-singular locus; the K–algebra R is then Gorenstein when $\Omega(R)$ is a principal module isomorphic to R (see [BH93, Theorem 3.3.7]). The module $\Omega(R)$ was introduced by Grothendieck to study duality theory for singular varieties, in particular when R is Gorenstein the Betti numbers of R as an S–module satisfy $\beta^S_n(R) = \beta^S_{n - \dim(R) - 1}(R)$. An illustrative example of a Gorenstein algebra is S itself, where $\Omega(S)$ is generated by the top form $dx_1 \wedge \ldots \wedge dx_n$.

It is a recurring theme in commutative algebra that algebraic properties are often easier to establish for rings with gradings, this is also the case with the Gorenstein property. In the presence of a positive multigrading, a theorem of Stanley (see 4.1 below) establishes that the Gorenstein property is characterized by features of the Hilbert function, when the ring in question is a Cohen-Macaulay Noetherian domain. Normal affine semigroup algebras provide an extreme special case of multigraded algebras, in this case the Gorenstein property can be proved using the combinatorics of the associated semigroup. In this section we will recall these two results, and indicate how degeneration techniques allow us to use these powerful methods on more general classes of algebras which may not have a grading, in particular the coordinate rings of character varieties.

4.1. Gorenstein graded algebras. Let $R = \bigoplus_{\lambda \in \mathbb{Z}^n_{\geq 0}} R_\lambda$ be a multigraded Noetherian domain over an algebraically closed field $K = R_0$. Recall that the Hilbert series of R is the following element of the formal power series ring $\mathbb{Z}[[t]]$, $t = (t_1, \ldots, t_n)$:

(1) $H(R, t) = \sum_{\lambda \in \mathbb{Z}^n_{\geq 0}} \dim(R_\lambda) t^\lambda$

Here t^λ denotes the monomial $t_1^{\lambda_1} \ldots t_n^{\lambda_n}$. The series $H(R, t)$ is always the expansion of a rational function (see [Sta96, Theorem 2.3]):

(2) $H(R, t) = \frac{t^\beta P(t)}{\prod(1 - t^\alpha)}$

The weights α_i appearing in the denominator of this function can be taken to be the multidegrees of a set of homogeneous generators of R. The following theorem of Stanley (see [Sta96, Theorem 12.7] and [Sta78, Theorem 6.1]) gives a characterization of the Gorenstein property in terms of $H(R, t)$.

Theorem 4.1 (Stanley). Let R be a $\mathbb{Z}_{\geq 0}^n$–multigraded Cohen-Macaulay Noetherian domain, then R is Gorenstein if and only if the following holds for some $\omega \in \mathbb{Z}^n$:

(3) $H(R, t^{-1}) = (-1)^n t^\omega H(R, t)$.

Furthermore, the weight ω is the multidegree of the generator of the unique \mathbb{Z}^n–multigraded canonical module of R.

A matrix $\delta \in \text{GL}_n(\mathbb{Z})$ acts on $\mathbb{Z}[[t]]$ by permuting the monomials t^α, this action is compatible with rational expansions. Let $\delta \in \text{GL}_n(\mathbb{Z})$ fix the Hilbert function $H(R, t)$, then we can always choose a homogeneous generating set of R whose set of multidegrees are symmetric under δ, so it follows that the rational functions $H(R, t)$ and $H(R, t^{-1})$ are left unchanged by δ. The following is a consequence of this observation.

Proposition 4.2. Let R be a $\mathbb{Z}_{\geq 0}^n$–graded Gorenstein Noetherian domain, and let Δ be a group of \mathbb{Z}–linear automorphisms which fix $H(R, t)$, then the multidegree ω of the generator of the canonical module of R is preserved by each $\delta \in \Delta$.

4.2. Gorenstein semigroup algebras. Let $L \subset \mathbb{R}^n$ be a lattice, and let $\mathcal{P} \subset \mathbb{R}^n$ be an integral polyhedral cone. Recall that this means that \mathcal{P} is obtained as a set of solutions to a finite collection of L–integral linear inequalities: $\langle v, a_i \rangle \geq 0$, $a_i \in L$. The set $P = \mathcal{P} \cap L$ is naturally a semigroup under addition with identity 0, so we let $\mathbb{C}[P]$ be the associated semigroup algebra. The semigroup P is said to be positive if 0 is the only invertible element. For any facet $F \subset \mathcal{P}$, let $P_F \subset P$ be the points not in F. The vector space $\mathbb{C}[P_F]$ is a prime ideal in $\mathbb{C}[P]$, likewise the set of points $\text{int}(P) = \cap_F P_F$ spans an ideal $\mathbb{C}[\text{int}(P)] \subset \mathbb{C}[P]$. For the following see [BH93, Theorem 6.35].

Theorem 4.3. The algebra $\mathbb{C}[P]$ is a Cohen-Macaulay ring, and it has a canonical module isomorphic to the ideal $\mathbb{C}[\text{int}(P)]$. Furthermore, if P is positive, $\mathbb{C}[\text{int}(P)]$ provides the unique P–grading on the canonical module of $\mathbb{C}[P]$.

It follows that $\mathbb{C}[P]$ is Gorenstein if and only if $\mathbb{C}[\text{int}(P)]$ is a principal module, indeed the following is Corollary 6.3.8 in [BH93].

Proposition 4.4. The affine semigroup algebra $\mathbb{C}[P]$ is Gorenstein if and only if there is a $w \in \text{int}(P)$ such that any $x \in \text{int}(P)$ can be expressed as $x = y + w$ for some $y \in P$.

Example 4.5. If we take P to be the non-negative orthant $\mathbb{R}_{\geq 0}^n \subset \mathbb{R}^n$, then $\mathbb{C}[P]$ is isomorphic to the polynomial ring $S = \mathbb{C}[x_1, \ldots, x_n]$. The multiweight of the generator $dx_1 \wedge \ldots \wedge dx_n$ of $\Omega(S)$ is $(1, \ldots, 1)$, and indeed this weight generates $\text{int}(P)$.

Corollary 4.6. Let $\mathcal{P} \subset \mathbb{R}^n$ be an integral polyhedral cone with respect to a lattice $L \subset \mathbb{R}^n$, and let $L \subset L'$ be an inclusion of lattices. Then if $\mathbb{C}[\mathcal{P} \cap L']$ is Gorenstein and the generator $w \in \text{int}(\mathcal{P} \cap L')$ is in L, then $\mathbb{C}[\mathcal{P} \cap L]$ is Gorenstein.

4.3. Deforming the Gorenstein property. In what follows a flat degeneration of a variety X over an algebraically closed field K to a variety $X(\Delta)$ is taken to mean a scheme E with a flat map $\pi : E \to \mathbb{A}^1_K$, such that $\pi^{-1}(0) = X(\Delta)$ and $\pi^{-1}(C) = X$ for $C \neq 0$. When the special fiber $X(\Delta)$ of this family is a normal toric variety, we say that $\pi : E \to C$ defines a toric degeneration of X. We show that the Gorenstein property behaves well with respect to flat degenerations. We take A to be a commutative Noetherian domain over a field K, and we fix an increasing $\mathbb{Z}_{\geq 0}$ algebra filtration F of A by K–vector spaces with $F_0 = K$:

$$A = \bigcup_{m \in \mathbb{Z}_{\geq 0}} F_m. \tag{4}$$

This filtration defines two related algebras, the Rees algebra:

$$R_F(A) = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} F_m, \tag{5}$$

and the associated graded algebra:

$$\text{gr}_F(A) = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} F_m/F_{m-1}. \tag{6}$$

Let $t \in F_1$ be the copy of the identity of 1 of filtration level 1. For any filtration space $F_m \subset A$, the subspace $tF_m \subset F_{m+1}$ is the copy of F_m inside F_{m+1}, this defines a $K[t]$–algebra structure on $R_F(A)$. Furthermore, since t is non-invertible and a non-zerodivisor, $R_F(A)$ is a faithfully flat $K[t]$–module. Let $E = \text{Spec}(R_F(A))$, then E is a flat family of affine schemes over the affine line. We have the following exact sequence of $R_F(A)$ modules:

$$0 \longrightarrow tR_F(A) \longrightarrow R_F(A) \longrightarrow \text{gr}_F(A) \longrightarrow 0. \tag{7}$$

In particular, the fiber E_0 over 0 is $\text{Spec}(\text{gr}_F(A))$. Identifying t with 1 results in the union $\bigcup_{m \in \mathbb{Z}_{\geq 0}} F_m = A$, so we identify E_1 (indeed E_C for any $C \neq 0$) with $\text{Spec}(A)$. In this way, F defines a flat degeneration of A to the algebra $\text{gr}_F(A)$. All the degenerations we use in this paper are of this form.
Proposition 4.7. If $gr_F(A)$ is Gorenstein then A and $R_F(A)$ are Gorenstein as well.

Proof. We use Corollary 3.3.15 of [BH93]: if $f : (R, m) \to (S, n)$ is a flat, local map of Noetherian local rings, and if R and S/mS are Gorenstein, then S is Gorenstein as well. For (R, m) we take $(K[t], t)$ and for (S, n) we take $(R_F(A), M)$, where $M = \bigoplus_{m > 0} F_m$. A graded algebra such as $R_F(A)$ with $F_0 = K$ is Gorenstein if and only if its localization at its maximal graded ideal is Gorenstein (see e.g. [BH93, Exercise 3.6.20]), so $gr_F(A)$ Gorenstein implies that the localization $gr_F(A) \otimes_{R_F(A)} R_F(A)M$ is Gorenstein. By the above exact sequence, this is $R_F(A)M/t$. This proves that $R_F(A)$ is Gorenstein, and implies that $R_F(A)/(t - C)$ is Gorenstein for any $C \in K$, since these algebras are all quotients of $R_F(A)$ by an irreducible element. In particular, $A = R_F(A)/(t - 1)$ must also be Gorenstein. \hfill \Box

5. The space $P_3(G)$

The proof of Theorem 1.1 depends on establishing the Gorenstein property for the configuration space $P_3(G)$ (or rather a degeneration of this space). We start by showing this property holds when G is semisimple and simply connected, and then we use combinatorial methods to extend the result to all reductive G.

For G a connected reductive group and $U \subset G$ a maximal unipotent subgroup, $P_n(G)$ is constructed as the following GIT quotient:

$$P_n(G) = G \backslash [G/U]^n.$$

The variety G/U is the spectrum of the total coordinate ring of the flag variety G/B, for B the Borel subgroup which contains U. The maximal torus T normalizes U, so there is a residual T–action on the right hand side of G/U, and the isotypical components of the coordinate ring $\mathbb{C}[G/U]$ with respect to this action are precisely the irreducible representations of G. In particular the support of the corresponding multigrading of this decomposition is the set of dominant weights in the Weyl chamber Δ:

$$\mathbb{C}[G/U] = \bigoplus_{\lambda \in \Delta} V(\lambda).$$

The T–actions on the components G/U in the definition of $P_n(G)$ endow this space with a rational T^n–action, the isotypical components of this action are the n–fold tensor product invariant spaces of G:

$$\mathbb{C}[P_n(G)] = \bigoplus_{\vec{\lambda} \in \Delta^n} [V(\lambda_1) \otimes \ldots \otimes V(\lambda_n)]^G.$$

The support of the Δ^n–multigrading of $\mathbb{C}[P_n(G)]$ is an affine semigroup $T_n(G) \subset \Delta^n$. A tuple $\vec{\lambda}$ is in $T_n(G)$ if and only if there is G–invariant vector in the tensor product $V(\lambda_1) \otimes \ldots \otimes V(\lambda_n)$; note that this is also the support of the multigraded Hilbert function $H_{T^n}(P_n(G), t)$. We let $T_n(G)$ be the convex hull of $T_n(G)$.

5.1. The semisimple and simply connected case. We begin with a proof that $P_n(G)$ is Gorenstein when G is semisimple and simply connected. We distinguish the lemma from the general result as it is a consequence of more general techniques from invariant theory.

Lemma 5.1. Let G be semisimple and simply connected, then $P_n(G)$ is factorial and Gorenstein.

Proof. We show that $\mathbb{C}[P_n(G)]$ is factorial and Cohen-Macaulay, then the lemma follows from the result of Murthy, [Mur64]. The algebra $\mathbb{C}[P_n(G)]$ is obtained as the invariant subring of $\mathbb{C}[G^n]$ with respect to an action by $G \times U^n$, and we may exchange the order by which we take invariants. The invariants in $\mathbb{C}[G^n]$ by the left action of G give the coordinate ring of G^{n-1}, which is factorial by Lemma 2.1. By [PV94, Theorem 3.17], factoriality is preserved by passing to unipotent invariants, since U^n is connected with no non-trivial characters. The Cohen-Macaulay property can be handled in a similar manner, as G^{n-1} is smooth, and taking unipotent invariants introduces at worst rational singularities by [Pop86, Theorem 6] (see also [Man14, Theorem 1.3]).
When G is semisimple its Weyl chamber Δ is a simplicial cone, this means that it can be identified with a positive orthant in a real vector space. As a consequence $T_3(G)$ and $T_3(G)$ are subsets of a positive orthant, and the multigraded Hilbert function $H_{T^3}(P_3(G), t)$ satisfies the assumptions in Theorem 4.1.

5.2. Toric degeneration of $P_3(G)$. Now we discuss the toric degenerations of $P_3(G)$ constructed in [Man14] in more detail. If G is connected and reductive, then for each choice $i \in R(w_0)$ of a reduced decomposition of the longest element of the Weyl group W of G there is a flat degeneration of $P_3(G)$ to a normal toric variety $X(C_3, i(G))$. These degenerations are all equivariant with respect to the action of T^3 on $P_3(G)$, so it follows that there is a surjective map of polyhedral cones:

\[(10) \quad \pi_3 : C_3, i(G) \to T_3(G).\]

The map π_3 restricts to a surjective map of affine semigroups $\pi_3 : C_3, i(G) \to T_3(G)$. As the toric degenerations constructed in [Man14] are T^3-equivariant, they must preserve the multigraded Hilbert function of $P_3(G)$:

\[(11) \quad H_{T^3}(X(C_3, i(G)), t) = H_{T^3}(C[3, P_3(G)], t).\]

Lemma 5.2. Let G be semisimple and simply connected, then there is a point $\omega_3, i(G) \in C_3, i(G)$ such that $\text{int}(C_3, i(G)) = \omega_3, i(G) + C_3, i(G)$, in particular $C[C_3, i(G)]$ is Gorenstein. Furthermore, for $(\lambda_1, \lambda_2, \lambda_3) = \pi_3(\omega_3, i(G)) \in T_3(G)$, we must have $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_G$ with $\lambda_G^* = \lambda_G$.

Proof. By the Theorem 4.1 $C[C_3, i(G)]$ must be Gorenstein. It follows that $\omega_3(G)$ must exist with the property $\text{int}(C_3, i(G)) = \omega_3, i(G) + C_3, i(G)$, and by Proposition 4.2, $\pi_3(\omega_3, i(G)) \in T_3(G)$ is preserved by any linear symmetries of $H_{T^3}(P_3(G), t)$.

Triple tensor product multiplicities are invariant with respect to permutation of the weights $\lambda_1, \lambda_2, \lambda_3$, this is because tensor product of representations is a commutative operation. Consequently, the three weights $(\lambda_1, \lambda_2, \lambda_3) = \pi_3(\omega_3, i(G))$ must all coincide: $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_G$. Moreover, the space of invariants in the tensor product $V(\lambda) \otimes V(\eta) \otimes V(\mu)$ is dual to the space of invariants in $V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)$, so $\lambda_G^* = \lambda_G^*$. □

Example 5.3. When $G = \text{SL}_m(\mathbb{C})$ and a particular choice of reduced word i, the semigroup $C_3, i(G)$ is the cone of so-called Berenstein-Zelevinsky triangles BZ_m. A point $x \in BZ_m$ is defined by a triangular array of integers as in Figure 1. The entries of $x \in BZ_m$ must all be non-negative integers, and any two pairs $a, b; A, B$ of integers on opposite sides of a hexagon in the array must have the same sum: $a + b = A + B$. The generator ω_{BZ_m} is depicted on the right hand side of Figure 1, it is the triangle with all entries equal to 1. Each assignment of numbers is dual to a weighted graph supported on the vertices of the triangle, see Figure 1.

To compute the map $\pi_3 : BZ_m \to T_3(\text{SL}_m(\mathbb{C}))$ we choose a clockwise orientation on the diagram. For $x \in BZ_m$, let $(a_1, \ldots, a_{2m-2}), (b_1, \ldots, b_{2m-2}), (c_1, \ldots, c_{2m-2})$ be the entries along the three edges of the diagram, ordered by the chosen orientation. The three weights $\pi_3(x) \in T_3(\text{SL}_m(\mathbb{C}))$ are then $[(a_1 + a_2, \ldots, a_{2m-3} + a_{2m-2}), (b_1 + b_2, \ldots, b_{2m-3} + b_{2m-2}), (c_1 + c_2, \ldots, c_{2m-3} + c_{2m-2})]$. Following this recipe, $\pi_3(\omega_3(\text{SL}_m(\mathbb{C}))) = [(2, \ldots, 2), (2, \ldots, 2), (2, \ldots, 2)]$.

Recall that any connected reductive group G is a finite quotient $G = (G^{ss} \times \hat{Z})/K$, where \hat{Z} is a torus, G^{ss} is semisimple and simply connected, and $K \subset Z(G^{ss}) \times \hat{Z}$.

Lemma 5.4. Let G be reductive, with $G = (G^{ss} \times \hat{Z})/K$ as above, and let $\lambda \in \Delta$ be in the root lattice $R(G^{ss})$. Then $(\lambda, 0)$ is a dominant weight of G.

Proof. The weight $(\lambda, 0)$ defines a character on $K \subset Z(G^{ss}) \times \hat{Z}$. The \hat{Z} component of $(\lambda, 0)$ is 0, so it follows that this character lifts to a character on the image of K in $Z(G^{ss})$. As λ is in the root lattice, it must define a trivial character on $Z(G^{ss})$, and therefore K. □
Tensor product invariants of G can be described using the tensor product invariants of G^{ss} and \hat{Z}. The tensor product invariant space \((V(\lambda_1, \rho_1) \otimes V(\lambda_2, \rho_2) \otimes V(\lambda_3, \rho_3))^G \) is isomorphic to \((V(\lambda_1) \otimes V(\lambda_2) \otimes V(\lambda_3))^{G^{ss}} \), and we must have $\rho_1 + \rho_2 + \rho_3 = 0$ as a character of \hat{Z}.

A choice of reduced word decomposition i for G imposes a choice for G^{ss}. Accordingly, following [Man14], we can describe the polyhedral cone $C_{3,1}(G)$ as the product of $C_{3,1}(G^{ss})$ with the cone $T_3(\hat{Z}) = \{(\rho_1, \rho_2, \rho_3) \mid \rho_i \in X(\hat{Z}), \rho_1 + \rho_2 + \rho_3 = 0\}$. The affine semigroup $C_{3,1}(G)$ is then the subsemigroup of the product $C_{3,1}(G^{ss})$ with $T_3(\hat{Z})$ picked out by the sublattice defined by requiring $\lambda_i + \rho_i$ to be the 0 character on K.

Theorem 5.5. For any reductive group G, the affine semigroup algebra $\mathbb{C}[C_{3,1}(G)]$ and the algebra $\mathbb{C}[P_3(G)]$ are Gorenstein.

Proof. We pass to G^{ss}, for $G = [G^{ss} \times \hat{Z}]/K$. The affine semigroup algebra $\mathbb{C}[C_{3,1}(G^{ss})]$ Gorenstein by Lemma 5.1 and Theorem 4.1, therefore so is the algebra of Laurent polynomials $\mathbb{C}[C_{3,1}(G^{ss})] \times T_3(\hat{Z}) = \mathbb{C}[C_{3,1}(G^{ss})] \otimes_{\mathbb{C}} \mathbb{C}[T_3(\hat{Z})]$. As $\mathbb{C}[C_{3,1}(G)]$ is obtained from $\mathbb{C}[C_{3,1}(G^{ss})] \times T_3(\hat{Z})$ by intersecting the semigroup $C_{3,1}(G^{ss}) \times T_3(\hat{Z})$ with the sublattice described above, to prove the theorem it suffices to show that $(\lambda_{G^{ss}}, 0)$ is a dominant weight of G. By Lemma 5.4 this follows if $\lambda_{G^{ss}}$ is in the root lattice of G^{ss}. Since $V(\lambda_{G^{ss}})^{\otimes 3}$ contains an invariant, and $\lambda_{G^{ss}}$ is self-dual, we must have that $\lambda_{G^{ss}} + \lambda_{G^{ss}} - \lambda_{G^{ss}} = \lambda_{G^{ss}}$ is a member of the root lattice. \square

6. Free group character varieties are Gorenstein

In Section 5 we showed that the configuration spaces $P_3(G)$ are Gorenstein when G is connected and reductive using degeneration methods and the combinatorics of affine semigroups; now we use the same methods on $X(F_g, G)$. In [Man14] it is shown that one can construct a degeneration of $X(F_g, G)$ to a normal affine toric variety $X(C_{G^{ss}})$ which depends on a choice of the following data:

1. A trivalent graph Γ with no leaves and $\beta_1(\Gamma) = g$.
2. An assignment $i : V(\Gamma) \to \mathbb{R}(w_0)$ of reduced word decompositions of w_0 to the vertices of Γ.

The information (Γ, i) is used to define a convex polyhedral cone $C_{G^{ss}}$ with affine semigroup $C_{G^{ss}}$. By Proposition 4.7, we can prove that $X(F_g, G)$ is Gorenstein provided we can establish that $X(C_{G^{ss}})$
is Gorenstein. Happily, the cone $C_{\Gamma, i}(G)$ and the semigroup $C_{\Gamma, 1}(G)$ are constructed from the cones $C_{3, \lambda(v)}(G)$ and semigroups $C_{3, \lambda(v)}(G)$, $\lambda(v) \in V(\Gamma)$, which are Gorenstein by Theorem 5.5.

Fix a trivalent graph Γ as above, and consider the forest $\hat{\Gamma}$ obtained by splitting each edge $e \in E(\Gamma)$ into two edges. This procedure results in $|V(\Gamma)|$ connected components, each a trinode τ_v for $v \in V(\Gamma)$. We let $\lambda(v) = (e(v, 1), e(v, 2), e(v, 3))$ be the three edges of the trinode τ_v, and we let $\Psi : \hat{\Gamma} \to \Gamma$ be the graph map which sends two edges $e(v, i), e(w, j)$ to the same edge $e \in E(\Gamma)$ whenever $e(v, i)$ and $e(w, j)$ are obtained from e in the construction of $\hat{\Gamma}$.

Figure 2. A trivalent graph Γ (right), with the associated forest $\hat{\Gamma}$ (left).

For each $v \in V(\Gamma)$ we label the components of the projection map $\pi_3 : C_{3, \lambda(v)}(G) \to \mathcal{T}_3(G)$ so that the image of a point $x \in C_{3, \lambda(v)}(G)$ is a triple $(\pi_{e(v, 1)}(x), \pi_{e(v, 2)}(x), \pi_{e(v, 3)}(x)) \in \mathcal{T}_3(G)$.

Definition 6.1. The cone $C_{\Gamma, i}(G)$ is the subcone of $\prod_{v \in V(\Gamma)} C_{3, \lambda(v)}(G)$ defined by the equations $\pi_{e(v, i)}(x) = \pi_{e(w, j)}(x)^*$ whenever $\Psi(e(v, i)) = \Psi(e(w, j))$. The semigroup $C_{\Gamma, i}(G)$ is likewise the intersection $C_{\Gamma, i}(G) \cap \prod_{v \in V(\Gamma)} C_{3, \lambda(v)}(G)$.

Recall the interior point $\omega_{3, i}(G) \in C_{\Gamma, i}(G)$, the next lemma shows that an analogous interior point exists in $C_{\Gamma, 1}(G)$.

Lemma 6.2. The point $\omega_{\Gamma, i}(G) = \prod_{v \in V(\Gamma)} \omega_{3, \lambda(v)}(G)$ is in $C_{\Gamma, i}(G) \subset C_{\Gamma, 1}(G)$.

Proof. Stated in the notation above, the dominant weights $\pi_{e(v, i)}(\omega_{3, \lambda(v)}(G))$ are all the same dominant weight $\lambda(G)$, irrespective of the choice of vertex v or the decomposition $i(v)$. Furthermore, $\lambda(G)$ is self-dual. \qed

Corollary 6.3. Every interior point $x \in \text{int}(C_{\Gamma, 1}(G))$ can be written $y + \omega_{\Gamma, 1}(G)$ for some $y \in C_{\Gamma, 1}(G)$.

Proof. As $\text{int}(C_{\Gamma, i}(G)) \cap \text{int}(\prod_{v \in V(\Gamma)} C_{3, \lambda(v)}(G))$ is non-empty, we conclude that $\text{int}(C_{\Gamma, 1}(G))$ is contained in $\text{int}(\prod_{v \in V(\Gamma)} C_{3, \lambda(v)}(G))$. It follows that any $x \in \text{int}(C_{\Gamma, 1}(G))$ can be written as $y + \omega_{\Gamma, 1}(G)$ for $y \in \prod_{v \in V(\Gamma)} C_{3, \lambda(v)}(G)$. As $\omega_{\Gamma, 1}(G)$ and x satisfy the linear conditions $\pi_{e, i}(x) = \pi_{e, j}(x)^*$ above, y must satisfy these conditions as well. We conclude that $y \in C_{\Gamma, 1}(G)$. \qed

By Corollary 6.3, $X(C_{\Gamma, 1}(G))$ is always a Gorenstein toric variety, so $X(F_g, G)$ must be Gorenstein as well. This concludes the proof of Theorem 1.1.

Remark 6.4. An identical argument to the one given in this section can be used to prove that $P_n(G)$ is a Gorenstein variety for G connected and reductive, and $n > 3$. This follows from an analogous use of the toric degeneration from [Man14], whose existence is also proved in [Man14], and replacing the trivalent graph Γ with a trivalent tree \mathcal{T} with n leaves.

Example 6.5. Continuing with the example $G = SL_m(C)$, we may choose $i : V(\Gamma) \to R(w_0)$ to give the cone BZ_m of Berenstein-Zelevinsky triangles at each vertex of Γ. We orient all triangles so that if two triangles x, y meet along edges e, f, then these edges have opposite directions. In this case, x and y can be glued if their respective entries (a_1, \ldots, a_{2m-2}) and (A_1, \ldots, A_{2m-2}) satisfy...
\(a_{2i-1} + a_{2i} = A_{2(m-i)-3} + A_{2(m-i)-2}\). This condition corresponds to requiring the sums of pairs which line up geometrically in the plane to be equal. We call the resulting object \(x_{\Gamma} \in C_{\Gamma,1}(\text{SL}_m(\mathbb{C})) = BZ_{\Gamma,m}\) a Berenstein-Zelevinsky quilt. Quilts can be thought of as a kind of combinatorial oriented surface dual to \(\Gamma\). Acyclic pieces of two quilts, with corresponding dual weighted graphs, are depicted in Figure 3.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Berenstein-Zelevinsky quilts (right) with their graphical representations (left). The element \(\omega_{\Gamma}(\text{SL}_3(\mathbb{C}))\) is represented in the bottom row.}
\end{figure}

\begin{thebibliography}{10}

\bibitem[AB83]{AB83} M. F. Atiyah and R. Bott. The Yang–Mills equations over Riemann surfaces. \textit{Philos. Trans. Roy. Soc. London Ser. A}, 308(1505):523–615, 1983.
\bibitem[BH93]{BH93} Winfried Bruns and Jürgen Herzog. \textit{Cohen-Macaulay rings}, volume 39 of \textit{Cambridge Studies in Advanced Mathematics}. Cambridge University Press, Cambridge, 1993.
\bibitem[BL15]{BL15} Indranil Biswas and Sean Lawton. Fundamental group of moduli spaces of representations. \textit{Geometriae Dedicata}, DOI: 10.1007/s10711-015-0048-x, 2015.
\bibitem[Bor91]{Bor91} Armand Borel. \textit{Linear algebraic groups}, volume 126 of \textit{Graduate Texts in Mathematics}. Springer-Verlag, New York, second edition, 1991.
\bibitem[Bou87]{Bou87} Jean-François Boutot. Singularités rationnelles et quotients par les groupes réductifs. \textit{Invent. Math.}, 88(1):65–68, 1987.
\bibitem[CCG+94]{CCG+94} D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen. Plane curves associated to character varieties of 3-manifolds. \textit{Invent. Math.}, 118(1):47–84, 1994.
\bibitem[Cla]{Cla} Pete Clark. Factorization in integral domains. http://alpha.math.uga.edu/~pete/factorization2010.pdf.
\bibitem[Dol03]{Dol03} Igor Dolgachev. \textit{Lectures on invariant theory}, volume 296 of \textit{London Mathematical Society Lecture Note Series}. Cambridge University Press, Cambridge, 2003.
\bibitem[Eis95]{Eis95} David Eisenbud. \textit{Commutative algebra}, volume 150 of \textit{Graduate Texts in Mathematics}. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
\bibitem[FH91]{FH91} R. Fulton and J. Harris. \textit{Representation Theory: A First Course}, volume 129 of \textit{Graduate Texts in Mathematics}. Springer-Verlag, New York, 1991.
\bibitem[FL12]{FL12} Carlos Florentino and Sean Lawton. Singularities of free group character varieties. \textit{Pacific J. Math.}, 260(1):149–179, 2012.
\bibitem[FLR14]{FLR14} Carlos Florentino, Sean Lawton, and Daniel Ramras. Homotopy groups of free group character varieties. \textit{arXiv:1412.0272}, 2014.
\bibitem[Gol88]{Gol88} William M. Goldman. Geometric structures on manifolds and varieties of representations. In \textit{Geometry of group representations (Boulder, CO, 1987)}, volume 74 of \textit{Contemp. Math.}, pages 169–198. Amer. Math. Soc., Providence, RI, 1988.
\bibitem[Gro97]{Gro97} Frank D. Grosshans. \textit{Algebraic homogeneous spaces and invariant theory}, volume 1673 of \textit{Lecture Notes in Mathematics}. Springer-Verlag, Berlin, 1997.
\end{thebibliography}
Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.

N. J. Hitchin. The self-duality equations on a Riemann surface. *Proc. London Math. Soc. (3)*, 55(1):59–126, 1987.

Melvin Hochster. Some applications of the Frobenius in characteristic 0. *Bull. Amer. Math. Soc.*, 84(5):886–912, 1978.

Melvin Hochster and Joel L. Roberts. Actions of reductive groups on regular rings and Cohen-Macaulay rings. *Bull. Amer. Math. Soc.*, 80:281–284, 1974.

Tamás Hausel and Michael Thaddeus. Mirror symmetry, Langlands duality, and the Hitchin system. *Invent. Math.*, 153(1):197–229, 2003.

Ming Chang Kang. Picard groups of some rings of invariants. *J. Algebra*, 58(2):455–461, 1979.

Friedrich Knop, Hanspeter Kraft, and Thierry Vust. The Picard group of a G-variety. In *Algebraische Transformationsgruppen und Invariantentheorie*, volume 13 of *DMV Sem.*, pages 77–87. Birkhäuser, Basel, 1989.

Melvin Kapovich and John J. Millson. On representation varieties of 3-manifold groups. arXiv:1303.2347, 2013.

V. G. Kac and A. V. Smilga. Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. In *The many faces of the superworld*, pages 185–234. World Sci. Publ., River Edge, NJ, 2000.

Anton Kapustin and Edward Witten. Electric-magnetic duality and the geometric Langlands program. *Commun. Number Theory Phys.*, 1(1):1–236, 2007.

Steve Landsburg. http://www.thebigquestions.com/2014/11/17/the-generalist/.

Lieven Le Bruyn. Trace rings of generic matrices are unique factorization domains. *Glasgow Math. J.*, 28(1):1–13, 1986.

Lieven Le Bruyn and Yasuo Teranishi. Matrix invariants and complete intersections. *Glasgow Math. J.*, 32(2):227–229, 1990.

Bernhard Leeb, Michael Kapovich, and John J. Millson. The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra. *Memoirs of AMS*, 192, 2008.

C. Manon. Newton-Okounkov polyhedra for character varieties and configuration spaces. arXiv:1403.3990, 2014.

Shigeru Mukai. An introduction to invariants and moduli, volume 81 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury.

M.P. Murthy. A note on factorial rings. *Arch. Math.*, 15:418–420, 1964.

M. S. Narasimhan and C. S. Seshadri. Stable and unitary vector bundles on a compact Riemann surface. *Ann. of Math. (2)*, 82:540–567, 1965.

V. L. Popov. Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector fiberings. *Izv. Akad. Nauk SSSR Ser. Mat.*, 38:294–322, 1974.

V. L. Popov. Contractions of actions of reductive algebraic groups. *Mat. Sb. (N.S.)*, 130(172)(3):310–334, 431, 1986.

V.L. Popov and E.B. Vinberg. Invariant theory. In A.N. Parshin and I.R. Shafarevich, editors, *Algebraic Geometry IV*, volume 55 of *Encyclopaedia of Mathematical Sciences*, pages 123–278. Springer Berlin Heidelberg, 1994.

Igor A. Rapinchuk. On the character varieties of finitely generated groups. arXiv:1308.2692, 2013.

S. Sikora. G-character varieties for $G = SO(N,C)$ and other not simply connected groups. arXiv:1303.7181, 2013.

Carlos T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. I. *Inst. Hautes Études Sci. Publ. Math.*, (79):47–129, 1994.

Carlos T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. II. *Inst. Hautes Études Sci. Publ. Math.*, (80):5–79 (1995), 1994.

Richard P. Stanley. Combinatorics and commutative algebra, volume 41 of *Progress in Mathematics*. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996.

Edward Witten. Supersymmetric index in four-dimensional gauge theories. *Adv. Theor. Math. Phys.*, 5(5):841–907, 2001.

Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA

E-mail address: slawton3@gmu.edu

Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA

E-mail address: cmanon@gmu.edu