ON THE ERDŐS–LAX INEQUALITY CONCERNING POLYNOMIALS

Gradimir V. Milovanović and Abdullah Mir

Abstract. If $P(z)$ is a polynomial of degree n which does not vanish in $|z| < k$, where $k \leq 1$, then N. K. Govil [On a theorem of S. Bernstein, Proc. Nat. Acad. Sci., 50 (1980), 50–52] proved that

$$\max_{|z|=1} |P'(z)| \leq \frac{n}{1 + k^n} \max_{|z|=1} |P(z)|,$$

provided $|P'(z)|$ and $|Q'(z)|$ attain maximum at the same point on $|z| = 1$, where $Q(z) = z^n P(1/z)$. In this paper, we obtain certain refinements and generalizations of this inequality and related results.

Mathematics subject classification (2010): 30A10, 30C10, 30D15.

Keywords and phrases: Polynomial, minimum modulus principle, Rouché’s theorem, zeros.

REFERENCES

[1] A. Aziz and N. Ahmad, Inequalities for the derivative of a polynomial, Proc. Indian Acad. Sci. Math. Sci., 107 (1997), 189–196.
[2] S. Bernstein, Sur l’ordre de la meilleure approximation des functions continues par des polynomes de degré donné, Mem. Acad. R. Belg., 4 (1912), 1–103.
[3] N. K. Govil, On a theorem of S. Bernstein, Proc. Nat. Acad. Sci., 50 (1980), 50–52.
[4] N. K. Govil and Q. I. Rahman, Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501–517.
[5] N. K. Govil, M. A. Qazi and Q. I. Rahman, Inequalities describing the growth of polynomials not vanishing in a disk of prescribed radius, Math. Inequal. Appl., 6 (2003), 453–467.
[6] V. K. Jain, On the derivative of a polynomial, Bull. Math. Soc. Sci. Math. Roumanie, 59 (2016), 339–347.
[7] P. D. Lax, Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509–513.
[8] M. A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc., 1 (1969), 57–60.
[9] M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer. Math. Soc., Providence, R.I., 1966.
[10] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co., Singapore, 1994.
[11] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press Inc., New York, 2002.