Avaliação do abdome fetal por ressonância magnética.
Parte 1: malformações da cavidade abdominal

Evaluation of the fetal abdomen by magnetic resonance imaging. Part 1: malformations of the abdominal cavity

Ana Paula Pinho Matos¹, Luciana de Barros Duarte², Pedro Teixeira Castro³, Pedro Daltro⁴, Heron Werner Júnior⁴, Edward Araujo Júnior⁵

Matos APP, Duarte LB, Castro PT, Daltro P, Werner Jr HW, Araujo Júnior E. Avaliação do abdome fetal por ressonância magnética. Parte 1: malformações da cavidade abdominal. Radiol Bras. 2018 Mar/Abr;51(2):112–118.

Resumo

Apesar de a ultrassonografia (US) permanecer como principal método na avaliação de desordens fetais, a ressonância magnética (RM) fetal tem sido frequentemente usada como método adjuvante nos últimos anos. O crescente uso da RM fetal foi facilitado pelos avanços tecnológicos como a seqüência pesada em T2 ultrarrápida e imagens diffusion-weighted. A RM fetal pode alcançar resultados superiores ou semelhantes aos da US, principalmente em casos de obesidade materna, oligo-hidramnio ou posição fetal anômala. Por apresentar melhor contraste entre tecidos, grande campo de visão e cortes multiplanares, a RM fetal é capaz de avaliar órgãos fetais de grande volume como pulmões, fígado, cólon e rins. Ademais, a RM fetal permite o exame de malformações grandes ou complexas, facilitando a compreensão da malformação no contexto de todo o corpo fetal. Inicialmente, os estudos eram direcionados ao sistema nervoso central. Com o avanço dos softwares e hardwares, a RM fetal ganhou importância na avaliação da cavidade do abdome fetal. O propósito deste artigo é revisar a literatura recente e avanços na avaliação da cavidade abdominal fetal pela RM, com ênfase nas características das imagens, protocolos e indicações clínicas mais comuns.

Unitermos: Feto; Anormalidades congênitas/diagnóstico por imagem; Abdome/diagnóstico por imagem; Ressonância magnética.

Abstract

Although ultrasound (US) continues to be the mainstay modality for the evaluation of fetal disorders, fetal magnetic resonance imaging (MRI) has often been used as a valuable adjunct in recent years. The exponential growth of the use of fetal MRI has been facilitated by technological advancements such as ultrafast T2-weighted sequences and diffusion-weighted imaging. Fetal MRI can achieve results that are comparable to or better than those of ultrasound, particularly in cases of maternal obesity, severe oligohydramnios, or abnormal fetal position. Because of its superior soft tissue contrast, wide field of view, and multiplanar imaging, fetal MRI is able to evaluate the large fetal organs, such as the lungs, liver, bowel, and kidneys. In addition, fetal MRI allows large or complex malformations to be examined, facilitating the understanding of the malformation within the context of the body as a whole. Initial fetal MRI studies were focused on the central nervous system. With advances in software and hardware, fetal MRI gained importance in the evaluation of the fetal abdomen. The purpose of this article is to review the recent literature and developments in MRI evaluation of the fetal abdomen, with an emphasis on imaging aspects, protocols, and common clinical indications.

Keywords: Fetus; Congenital abnormalities/diagnostic imaging; Abdomen/diagnostic imaging; Magnetic resonance imaging.

INTRODUÇÃO

A importância dos métodos de imagem no diagnóstico das malformações congênitas¹⁻⁻³, e em especial na medicina fetal⁴⁻⁻⁷, tem sido objetivo de uma série de estudos recentes publicados por autores nacionais. O aprimoramento das resolução das imagens, a formação de múltiplos contrastes entre os diferentes tecidos e o amplo campo de visão e aquisição de imagens geradas pelos equipamentos e softwares tornou a ressonância magnética (RM) importante ferramenta na propedêutica fetal. A ultrassonografia (US) permanece como método preferencial de rastreamento das anomalias fetais⁸, por seu baixo custo e grande disponibilidade. Todavia, as restrições do método, como oligo-hidramnio, obesidade materna e posição fetal, reduzem sua eficiência para o correto diagnóstico pré-natal, quando está indicado o estudo fetal por RM. Em razão da difícil caracterização das malformações da cavidade abdominal fetal, a avaliação fetal por meio da RM pode ser necessária quando o exame ultrassonográfico é inconclusivo.

Endereço para correspondência: Dr. Edward Araujo Júnior, Rua Belchior de Azevedo, 156, ap. 111, Torre Vitória, Vila Leopoldina. São Paulo, SP, Brasil, 05089-030. E-mail: araujojred@terra.com.br.

Trabalho realizado no Departamento de Radiologia da Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro, RJ, Brasil.
1. Especialista em Medicina Fetal, Mestranda do Departamento Materno-Infantil da Universidade Federal Fluminense (UFF), Niterói, RJ, Brasil.
2. Doutora, Professora Adjunta do Departamento Materno-Infantil da Universidade Federal Fluminense (UFF), Niterói, RJ, Brasil.
3. Mestre, Médico do Departamento de Radiologia da Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro, RJ, Brasil.
4. Doutores, Médicos do Departamento de Radiologia da Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro, RJ, Brasil.
5. Livre-docente, Professor Adjunto do Departamento de Obstetrícia da Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brasil.
para adicionar informações prognósticas ou para auxílio do planejamento terapêutico(9).

MALFORMAÇÕES DA CAVIDADE ABDOMINAL

Atresia de esôfago

A atresia de esôfago tem origem na malformação do septo traqueoesofágico, antes da 8ª semana de gestação. Com incidência de 1/2500 a 1/4000 nascimentos, o prognóstico está relacionado ao achado de outras malformações associadas. Pode se apresentar como malformação isolada, forma menos frequente, ou associada a fistula traqueoesofágica, forma mais comum em 90% dos casos(10). Apresenta-se como malformação torácica, mas como está relacionada às malformações digestivas, aqui a relatamos. A elevada associação com a fistula leva ao baixo índice de diagnósticos durante o rastreamento pré-natal. A presença de fistula pode desviar líquido amniótico para o estômago, dificultando a suspeição de anomalias do trato digestivo, pela ausência de seus sinais mais característicos, como o não preenchimento do estômago e o poli-hidrâmnio. Em alguns casos, pode-se visibilizar a porção mais proximal da atresia preenchida por líquido amniótico (Figura 1).

Suspeita-se de atresia de esôfago quando não se visibiliza o estômago ou quando este se apresenta de tamanho diminuído, ou na presença de poli-hidrâmnio. A avaliação esofagiana pela US provê a anatomia e a motricidade do esôfago, mas apresenta dificuldades na aquisição de imagens no segmento cervical e junção gastroesofágica. Apresenta-se como duas linhas ecogênicas correspondentes às paredes anterior e posterior. Pode-se visibilizar a deglutição de líquido com abertura do esfincter superior em 90% dos casos, geralmente após a 19ª semana, mas se considera completa a maturação esofagiana após a 32ª semana.

Na RM, o esôfago se apresenta isointenso-hipointenso em T2, com presença, ocasionalmente, de sinal hiperintenso (líquido amniótico). Pode-se, ainda, verificar a mobilidade esofagiana pela deglutição do líquido amniótico. Com cortes sagitais, verifica-se o líquido amniótico, hiperintenso em T2, na cavidade oral e direção ao estômago. A RM apresenta maior facilidade na avaliação dos segmentos cervicais e na junção gastroesofágica. Na atresia de esôfago, não é incomum a dilatação do esôfago proximal e da hipofaringe, e a presença de líquido no fundo-de-saco da malformação é mais facilmente visibilizada pela RM.

Obstrução duodenal

Sítio mais frequente de atresia intestinal, com incidência de 1/5000 nascidos-vivos(11), a obstrução duodenal é resultado da persistência da obliteração luminal entre a 8ª e 10ª semanas de gestação. Pode ainda ser secundária a

Figura 1. Atresia de esôfago. A: Feto com 30 semanas de gestação apresentando poli-hidrâmnio e dilatação do esôfago (seta). B: Feto com 22 semanas de gestação apresentando poli-hidrâmnio e dilatação esofagiana (seta).
compressão extrínseca pela veia porta ou pela artéria mesentérica superior, com clínica semelhante à obliteração luminal. A trissomia 21 e a cardiopatia congênita ocorrem em um terço dos casos \(^{(12)}\).

No exame ultrassonográfico observa-se hiperperistaltismo gastroduodenal, com o clássico sinal da dupla bolha, porém, a regurgitação fetal pode eliminar a imagem da dupla bolha temporariamente. Seu diagnóstico antes do segundo trimestre é raro, devido à imaturidade do sistema gastrintestinal. Seu diagnóstico precoce está relacionado ao diagnóstico de outras malformações.

A RM mostra estômago e duodeno dilatados, hiperintensos em T2, devido ao líquido amniótico. Deve-se avaliar o intestino distal, para diferenciação entre obstrução incompleta e atresia (Figura 2). Na obstrução incompleta há preenchimento do jejuno e cólon por mecônio. O conteúdo intestinal distal pode mostrar sinal semelhante a mecônio, porém, com sinal diminuído em T1 e diminuição do diâmetro intestinal \(^{(13)}\). Na atresia/obstrução duodenal, a RM acrescenta valiosas informações à propedêutica do estudo dessa malformação na presença de estenose ou diafragma no piloro, pois há hipossinal em T1 no intestino distal. Há maior acurácia na detecção de massas obstrutivas extrínsecas, como pâncreas anelar.

DERRAMES NA CAVIDADE ABDOMINAL

Peritonite meconial

Peritonite meconial ocorre em 1/2000 nascidos vivos, sendo a complicação mais frequente de oclusão intestinal fetal. Caracteriza-se como uma resposta inflamatória à agressão química do mecônio sobre o peritônio. Na ausência de diagnóstico pré-natal e tratamento pós-natal planejado, a mortalidade perinatal atinge 62% \(^{(14)}\). A US mostra derrame na cavidade abdominal e a peritonite meconial se diferencia da ascite quando há presença de imagens hipercogênicas abdominais (calcificações) ou escrotais, dilatação intestinal e poli-hidrâmnio \(^{(15)}\). Na presença de dilatação intestinal e derrame na cavidade abdominal, a RM se

Figura 2. Atresia duodenal em feto com 32 semanas. **A:** Corte coronal em T2 mostrando estômago dilatado, piloro e dilatação duodenal. **B:** Corte axial em T2. **C:** Corte axial em T1 mostrando estômago e duodeno dilatados.
mostra importante ferramenta propedeutica no diagnóstico diferencial entre ascite e peritonite meconial. A peritonite meconial apresenta sinal intermediário, heterogêneo em T1, quando comparado com o do líquido amniótico, hiperintenso e heterogêneo em T2. A peritonite meconial pode se apresentar como grande pseudocisto, com as mesmas características previamente descritas (Figura 3).

CISTOS ABDOMINAIS

Cistos ovarianos

Em fetos do gênero feminino, os cistos ovarianos são a principal causa de massa abdominal. Em neonatos, a incidência pode ultrapassar 30%. A associação de outras malformações é rara e se resolve espontaneamente na grande maioria dos casos. As complicações mais frequentes no período neonatal são torção, hemorragia e rotura do cisto, com possível terapêutica cirúrgica. A punção e a laparotomia, além da conduta expectante, são opções terapêuticas. Usualmente, apresentam-se como cisto simples. Em massas heterogêneas, deve-se pensar em hemorragia intracística ou torção ovariana. Em termos práticos, o cisto ovariano deve ser considerado quando houver um cisto pelvicoabdominal em feto do gênero feminino, sem malformações urinárias ou gastrointestinal associadas. Geralmente, os cistos ovarianos se apresentam predominantemente nos flancos e fossas ilíacas (Figura 4). Quando o cisto for central, deve-se considerar o diagnóstico de cisto mesentérico

Cistos mesentéricos

Os cistos mesentéricos apresentam-se desde o primeiro trimestre, com diagnóstico habitualmente após o segundo trimestre. São cistos de paredes finas, sem peristalse, com tamanhos variáveis e conteúdo líquido. Apresentam-se em localização retroperitoneal (Figura 5) e separados do cólon. Estão relacionados às malformações linfáticas e devem ser lembrados no diagnóstico diferencial das anormalias renais, em especial as duplicações.

Os cistos mesentéricos são descritos, principalmente em crianças, como massa abdominal que pode apresentar

Figura 3. Ascite idiopática em feto com 28 semanas. A: Abdome distendido, presença de líquido com hiperseal em T2, corte coronal. Alças intestinais bem definidas (seta). B: Imagem axial do abdome fetal com ascite. Identificam-se os órgãos flutuando na cavidade abdominal. Estômago (seta). C: Imagem axial do abdome fetal com ascite. Artérias umbilicais (seta) individualizadas pelo grande volume líquido na cavidade abdominal.
Figura 4. Cisto de ovário em feto com 32 semanas. **A:** Corte axial da pelve fetal mostrando imagem hiperintensa em T2 na região anexial direita. **B:** Corte axial da pelve fetal mostrando imagem hipointensa em T1 na região anexial direita, de contornos bem definidos, homogênea. **C:** Corte coronal em T2 demonstrando cisto com sinal hiperintenso em T2 na região anexial direita. Cisto de ovário (setas) e bexiga fetal (asteriscos).

Figura 5. Cisto mesentérico em feto com 32 semanas, visibilizado como massa abdominal de conteúdo homogêneo, centralizada no abdome, hipersinal em T2, cápsula fina, regular.
sintomas clínicos gastrintestinais sugestivos de obstrução, ou habitualmente assintomática. Apresentam-se, geralmente, como malformação isolada, e o tratamento é cirúrgico; contudo, há possibilidade de se utilizarem agentes esclerosantes como a bleomicina.

ANOMALIAS HEPÁTICAS ESPLÊNICAS

As alterações hepáticas mais comuns in utero são as calcificações, que podem ter origem tumoral, infecciosa ou isquêmica. A US tem maior acurácia na avaliação de lesões focais hepáticas, porém, nos tumores hepáticos, a RM tem despontado como importante método na avaliação da doença, auxiliando no diagnóstico diferencial de hepatoblastoma, hemangiomas e neuroblastoma, além de avaliar a extensão e o comprometimento do parênquima adjacente. Em doenças hepáticas com acometimento de todo o órgão, a RM apresenta importante valor. Em casos de hipossinal em T1 e T2, hemossiderose, hemocromatose e doenças infecciosas devem ser consideradas\(^{17}\).

As malformações esplênicas podem ser visibilizadas pela RM. Os cistos esplênicos podem ter diagnóstico confirmado pela RM, sendo pequenos – com menos de 2 cm – e hipointensos, no sitio usual do baço (Figura 6). Têm diagnóstico diferencial com neuroblastoma e bom prognóstico.

REFERÊNCIAS

1. Castro AA, Morandini F, Calixto CP, et al. Ectopic ovary with torsion: uncommon diagnosis made by ultrasound. Radiol Bras. 2017; 50:60–1.
2. Sala MAS, Ligabô ANSG, Arruda MCC, et al. Intestinal malrotation associated with duodenal obstruction secondary to Ladd’s bands. Radiol Bras. 2016;49:271–2.
3. Niemeyer B, Muniz BC, Gasparetto EL, et al. Congenital Zika syndrome and neuroimaging findings: what do we know so far? Radiol Bras. 2017;50:314–22.
4. Werner Jr H, Santos JL, Belmonte S, et al. Applicability of three-dimensional imaging techniques in fetal medicine. Radiol Bras. 2016;49:281–7.
5. Araujo Júnior E. Three-dimensional ultrasound in fetal medicine.
after 25 years in clinical practice: many advances and some questions. Radiol Bras. 2016;49(5):v–vi.

6. Werner H, Daltro P, Fazecas T, et al. Prenatal diagnosis of sirenomelia in the second trimester of pregnancy using two-dimensional ultrasound, three-dimensional ultrasound and magnetic resonance imaging. Radiol Bras. 2017;50:201–2.

7. Bertoni NC, Pereira DC, Araujo Júnior E, et al. Thrombocytopenia-absent radius syndrome: prenatal diagnosis of a rare syndrome. Radiol Bras. 2016;49:128–9.

8. Corteville JE, Gray DL, Langer JC. Bowel abnormalities in the fetus—correlation of prenatal ultrasonographic findings with outcome. Am J Obstet Gynecol. 1996;175(3 Pt 1):724–9.

9. Rubesova E. Fetal bowel anomalies—US and MR assessment. Pediatr Radiol. 2012;42 Suppl 1:S101–6.

10. Best KE, Tennant PW, Addor MC, et al. Epidemiology of small intestinal atresia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F353–8.

11. Kimura K, Mukohara N, Nishijima E, et al. Diamond-shaped anastomosis for duodenal atresia: an experience with 44 patients over 15 years. J Pediatr Surg. 1990;25:977–9.

12. Keckler SJ, St Peter SD, Spilde TL, et al. The influence of trisomy 21 on the incidence and severity of congenital heart defects in patients with duodenal atresia. Pediatr Surg Int. 2008;24:921–3.

13. Ozcan UA, Yazici Z, Savci G. Foetal intestinal atresia: diagnosis with MRI. Eur J Radiol. 2012;42 Suppl 1:S125–7.

14. Eckoldt F, Heling KS, Woderich R, et al. Meconium peritonitis and pseudo-cyst formation: prenatal diagnosis and post-natal course. Prenat Diagn. 2003;23:904–8.

15. Foster MA, Nyberg DA, Mahony BS, et al. Meconium peritonitis: prenatal sonographic findings and their clinical significance. Radiology. 1987;165:661–5.

16. Nemec U, Nemec SF, Bettelheim D, et al. Ovarian cysts on prenatal MRI. Eur J Radiol. 2012;81:1937–44.

17. Cassart M, Avni FE, Guibaud L, et al. Fetal liver iron overload: the role of MR imaging. Eur Radiol. 2011;21:295–300.

This is an open-access article distributed under the terms of the Creative Commons Attribution License.