Sir,

A 39-year-old gentleman, nonsmoker, nonalcoholic, without any other premorbid illness, complained of giddiness and mild difficulty in walking on 24th November 2020 at around 11 am. He was able to carry out his daily routine work and did not give much importance to his symptoms. At around 5 pm, he started to have mild weakness involving the right side of his body. His wife also noticed him having trouble finding words, although with intact comprehension. Concerned with his symptoms, he was taken to a nearby clinic, where he was advised magnetic resonance imaging (MRI) of the brain which was suggestive of acute left middle cerebral artery (MCA) territory infarcts (high-resolution images not available). After the MRI, the patient deteriorated and developed worsening of his right-side motor power, such that he was barely able to lift his right upper and lower limbs along with speech impairment, in the form of word-finding difficulties. After this, he was referred to our center for further management. On examination in the emergency department at 09.30 pm, he had right side hemiplegia along with Broca’s aphasia (NIHSS 18). Stroke Code was activated as per our institutional protocol, and the patient was immediately rushed for imaging (CT Brain, CT angiography head-neck, and CT perfusion). CT Brain showed focal areas of hypodensities suggestive of acute infarcts seen in the left frontal cortex and left MCA-anterior cerebral artery (ACA) and MCA-posterior cerebral artery (PCA) watershed territories. CT Perfusion showed focal areas of matched perfusion deficit in the left frontal cortex and left MCA-ACA and MCA-PCA watershed territories. Hypodensity suggestive of free-floating thrombus was noted in the left cervical internal carotid artery (ICA) with decreased anterograde signal intensity [Figure 1]. There was no occlusion of MCA and its branches.

In spite of a free-floating thrombus, the patient had patchy infarcts which had caused hemiplegia and aphasia. Further treatment decision was to be governed by multiple factors such as young age, presence of free-floating thrombus proximally with a risk of further distal clot migration, leading to large vessel occlusion causing major stroke and thus a need for decompression surgery. Another important consideration was the already present deficits [hemiplegia and Broca’s aphasia with high National Institutes of Health Stroke Scale (NIHSS)] which might affect our clinical judgment in case of any fresh infarcts because of distal clot migration. In view of the patient’s best clinical interests, after discussing with the family and written informed consent, a decision for mechanical clot aspiration was taken.

With the patient under monitored anesthesia care (MAC) following regular prepping and draping of the right groin, 8-F short sheath was placed, and Neuron max 6 F 088 was inserted through the right femoral artery and parked in left distal common carotid artery (CCA). The contrast run showed Left ICA floating thrombus [Figure 2]. MCA branches (M1, M2, and M3) showed normal opacification with minor perfusion deficits noted in the distal cortical branches.

With the free-floating thrombus, there was always a risk of clot migration.1,2 We did not have a balloon-guided catheter in our lab at that time. So, to prevent the risk of clot migration during aspiration, we first placed the Emboshield NAV filter device distal to the thrombus followed by a noncompliant balloon (NC TREK 4.5 mm × 12 mm) over the filter wire placed proximal to the filter device but distal to the thrombus. The idea behind this step was to create a “Double Protection Closed Compartment,” with the purpose of minimizing distal clot migration during aspiration [Figure 3].

After that, an 8F short sheath was placed in the left femoral artery, and Neuron Max 6 F 088 was inserted and parked in the left proximal CCA. Thereafter, the balloon was inflated to

Figure 1: (a) CT Brain showed focal areas of hypodensities suggestive of acute infarcts seen in the left frontal cortex and left MCA-ACA and MCA-PCA watershed territories. Sagittal (b) and Axial (d) CT Angiography showing hypodensity suggestive of free-floating thrombus in the cervical internal carotid artery (ICA) with decreased anterograde signal intensity. (c) CT perfusion showed focal areas of matched perfusion deficit in the left frontal cortex and left MCA-ACA and MCA-PCA watershed territories.
create “Double Protection Closed Compartment,” following which aspiration was connected to 2nd Neuron max and advanced distally into the mid-cervical ICA engaging the clot. The subsequent run showed complete opacification of the left ICA with no residual intraluminal clot. Check angiography also didnot show any new perfusion deficits in the MCA territory compared to the baseline angiographic run.

The patient remained neurologically stable after procedure. Repeat CT Brain done the next morning did not show any new evidence of new territorial infarcts [Figure 4].

The patient was evaluated for the etiology of the stroke. 2D echocardiogram and Holter monitoring were within normal limits. Reverse transcription polymerase chain reaction (RT PCR) for COVID-19 was nonreactive. Other investigations (serum homocysteine, protein C and S, antithrombin III, anticardiolipin antibodies) did not reveal any abnormality. The patient improved during the course of the hospital stay with improvement in the right side motor power (3/5) and speech (modified Rankin scale score 3).

This case demonstrates the importance of aggressive management in cases where future clinical decision judgement might be impaired by patient’s present clinical deficits. Also, the technique we used in this case, Double Protection Closed Compartment,” might be useful and effective in such cases with limited/unavailable resources.
Dear Editor,

COVID-19 vaccine rollout is the most important step towards the fight against the ongoing deadly SARS-COV-2 pandemic. As a critical tool, COVID-19 vaccines are rapidly being administered to the millions of people worldwide and the emergence of any adverse reaction to the vaccine challenges the claim for its safety. As of 18 October 2021, India has administered over 986,769,411 vaccine doses of the currently approved vaccines; ChAdOx1-nCOV-19 (brand name “Covishield” has been used with highest proportion.[1]

Vaccine-induced Thrombotic Thrombocytopenia (VITT) has been documented to be associated with COVID-19 vaccines since the initial stages of the administration.[2-5] Recently, cases with accelerated hypertension and intracerebral hemorrhage without thrombocytopenia have also been reported.[6,7] We, herein, report a case of primary intracerebral hemorrhage with accelerated hypertension within 8 hours of the first dose of COVID-19 vaccination.

A 60-year female, known hypertensive with well-controlled blood pressure on treatment, presented with dizziness and weakness of the right half of body 8 hours after having received the first dose of COVID-19 vaccine (Covishield). Examination revealed blood pressure of 200/110 mm of Hg, disorientation, right hemiplegia and right gaze paresis. CT scan head revealed left thalamic bleed with intraventricular extension. CT angiogram was normal. MRI brain and venogram did not reveal venous sinus thrombosis [Figure 1]. Complete blood count, platelet count, kidney function and liver function tests were normal. D-Dimer was 1500 ng/ml. Prothrombin test, INR and CRP levels were well within normal range. Electrocardiogram was unremarkable. The patient was given antihypertensives, decongestants and other supportive treatment. The patient did not require any neurosurgical intervention. Disorientation and gaze paresis improved over 6 days of hospital stay, she could follow verbal commands and communicate with her relatives. She was discharged with minimal residual right hemiparesis.

Recombinant viral vectored (ChAdOx1-nCOV-19 and Ad26-COV2.S) vaccine administration has been reported to be associated with cerebral venous thrombosis, thrombocytopenia and positive Platelet Factor-4 autoantibodies, presenting as intracerebral hemorrhage. Several cases have been reported from USA and Europe. Furthermore, CDC and FDA recommended a temporary pause in vaccination with Ad26-COV2.S (Janssen) following the emergence of these cases.[8] Thrombohemorrhagic complications have been reported at a higher rate, after ChAdOx1-nCOV-19 (AstraZeneca) COVID-19 vaccination compared to BNT162b2 (Pfizer) COVID-19 vaccination among vaccine recipients in Europe. Immunogenicity to

Figure 4: Follow-up CT Brain – no evidence of any fresh infarcts post-procedure

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Bhatti AF, Leon LR Jr, Labropoulos N, Rubinas TL, Rodriguez H, Kalman PG, et al. Free-floating thrombus of the carotid artery: Literature review and case reports. J Vasc Surg 2007;45:199-205.
2. Ferrero E, Ferri M, Viazzo A, Labate C, Pecchio A, Berardi G, et al. Free-floating thrombus in the internal carotid artery: Diagnosis and treatment of 16 cases in a single center. Ann Vasc Surg 2011;25:805-12.

DOI: 10.4103/aiian.aiian_271_21