All the trajectories of an extended averaged Hebbian learning equation on the quantum state space are the e-geodesics

Yoshio Uwano

Department of Mathematics, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto, 607-8414, Japan
e-mail: uwano@mb.kyoto-phu.ac.jp

Abstract. In this paper, two families of trajectories on the quantum state space (QSS) originating from a synaptic-neuron model and from quantum information geometry meet together. The extended averaged Hebbian learning equation (EAHLE) on the QSS developed by the author and Yuya [1] from a Hebbian synaptic-neuron model is studied from a quantum-information-geometric point of view. It is shown that all the trajectories of the EAHLE are the e-geodesics, the autoparallel curves with respect to the exponential-type parallel transport, on the QSS. As a secondary outcome, an explicit representation of solution of the averaged Hebbian learning equation, the origin of the EAHLE, is derived from that of the e-geodesics on the QSS.

Keywords: dynamical systems, quantum information, geodesic, Hebbian learning

MSC numbers: 37D40, 53C22, 68T05, 81P45
References

[1] Uwano Y. and Yuya H. *A Hebb-type learning equation on the quantum information space – A clue to a fast principal component analyzer.* Far East Journal of Applied Mathematics 2010, **47**, pp. 149-167

[2] Nielsen M. A. and Chuang I. L. *Quantum Computation and Quantum Information.* 2000, Cambridge: Cambridge U.P.

[3] Uwano Y., Hino H. and Ishiwatari Y. *Certain integrable system on a space associated with a quantum search algorithm.* Physics of Atomic Nuclei 2007, **70**, pp. 784-791

[4] Uwano Y. and Yuya H. *A gradient system on the quantum information space realizing the Karmarkar flow for linear programming – A clue to effective algorithms –.* New Trends in Quantum Information (Special Issue of Electronic Journal of Theoretical Physics) 2010, Rome: Aracne Editorice, pp. 257-276

[5] Uwano Y. *Geometry of Dynamics of a Quantum Search Algorithm for an Ordered Tuple of Multi-Qubits.* Search Algorithms for Engineering Optimization 2013, Rijeka: InTech Press, pp. 261-284

[6] Grover L. *A fast quantum mechanical algorithm for database search.* 1996, In: Proc. the 28th Annual ACM Symposium on the Theory of Computing, pp. 212-219, New York: ACM

[7] Miyake A. and Wadati M. *Geometric strategy for the optimal quantum search.* Phys. Rev. A 2001, **64**, 042317, 9pp.

[8] Nakamura Y. *Neurodynamics and nonlinear integrable systems of Lax type.* Japan J. Indust. Appl. Math. 1994, **11**, pp. 11-20

[9] Nakamura Y. *Completely integrable dynamical systems on the manifolds of Gaussian and multinomial distributions.* Japan J. Indust. Appl. Math. 1993, **10**, pp. 179-189

[10] Nakamura Y. *Lax pair and fixed point analysis of Karmarkar’s projective scaling trajectory for linear programming.* Japan J. Indust. Appl. Math. 1994, **11**, pp. 1-9

[11] Oja E. *A simplified neuron model as a principal component analyzer.* J. Math. Biology 1982, **15**, pp. 267-273

[12] Karmarkar N. *Riemannian geometry underlying interior-point methods for linear programming.* Mathematical Developments Arising from Linear Programming (Contemp. Math. **114**) 1990, Providence: AMS, pp. 51-75

[13] Hayashi M. *Quantum Information.* 2006, Berlin: Springer-Verlag
[14] Hebb D. O. *The Organization of Behavior*. 1949, New York: Wiley

[15] Moser J. *Finitely many mass points on the line under the influence of an exponential potential – an integrable system*. Dynamical Systems, Theory and Applications (LNP 38) 1975, Heidelberg: Springer-Verlag, pp. 467-497

[16] Moser J. and Zehnder E.J. *Notes on Dynamical Systems* 2005, Providence: AMS

[17] Nakahara M. *Geometry, Topology and Physics*. 1990, Bristol: IOP Publishing

[18] Guggenheimer H. *Differential Geometry*. 1977, New York: Dover

[19] Braunstein S.L. *Geometry of quantum inference*. Phys. Lett. A 1996, 219, pp. 169-174