Effect of Cell-Selection on the Effective Fading Distribution in a Downlink K-tier HetNet

Mustafa A. Kishk and Harpreet S. Dhillon

Abstract—This paper characterizes the statistics of effective fading gain in multi-tier cellular networks with strongest base station (BS) cell association policy. First, we derive the probability of association with the n-th nearest BS in the k-th tier. Next, we use this result to derive the probability density function (PDF) of the channel fading gain (effective fading) experienced by the user when associating with the strongest BS. Interestingly, our results show that the effective channel gain distribution solely depends upon the original channel fading and the path-loss exponent. Moreover, we show that in the case of Nakagami-m fading channels (Gamma distribution), the distribution of the effective fading is also Gamma but with a gain of $\frac{\alpha}{2}$ in the shape parameter, where α is the path-loss exponent.

Index Terms—Stochastic geometry, order statistics, heterogeneous cellular networks, Poisson Point Process, fading.

I. INTRODUCTION

With the dawn of fifth-generation (5G) cellular systems almost upon us, we are currently witnessing unprecedented changes in the cellular use-cases and consequently the architecture of cellular networks. In the context of this letter, two parallel trends are of particular interest. First, cell sizes are shrinking due to the organic deployment of low-power BSs called small cells [1]. Second, 5G may need to support mobility at speeds up to 500km/hour [2]. These trends together mean that the mobile users may experience orders of magnitude higher handover rates compared to the current networks. This issue has indeed attracted a lot of attention, with cloud radio access networks (C-RANs) and more recently Fog networks presented as possible solutions [3]. More frequent handovers mean that the effective fading distribution observed by a receiver may deviate significantly from the fading gain distribution on each individual link. This is due to the effect of order statistics in cell selection. As a result of this, users will experience two types of fading on their serving links: (i) effective fading during cell selection phase, and (ii) original fading distribution at other times. Therefore, it is important to characterize the effect of cell selection on the effective fading distribution, which is the main goal of this letter. It is worth noting that this problem has never been studied before perhaps because it was not quite as meaningful in conventional networks that had far lower handover rates.

Although this exact problem has not been studied before, order statistics have been used to study several problems that have a somewhat similar flavor [4]. Examples include the analysis of diversity combining techniques and multi-user scheduling. For instance, in multi-antenna receivers, it is important to exploit the existence of multiple paths by optimally combining them in order to enhance the performance gain.

The main principle in such schemes is to give larger weights to the strongest paths. Popular combining techniques include generalized selection combining, maximal ratio combining, equal gain combining, and generalized switch and examine combining scheme [5]–[7]. As expected, order statistics plays a critical role in the analysis of all these combining schemes. Also in multi-user systems, similar procedure appears during scheduling when the transmitter picks the users with strongest channel state. Popular user scheduling techniques include absolute SNR-based scheduling, normalized SNR-based scheduling, and generalized selection multiuser scheduling [8]–[10]. Similar to diversity techniques, selecting stronger users during scheduling necessitates using order statistics in the analysis. Similar decision needs to be made during cell selection in cellular networks, which is the main focus of this letter. The usual procedure is to measure the received signal strengths from all nearby BSs at the mobile user and then attach it to the BS that provides the strongest signal. While this typically reduces to closest-BS association in conventional single-tier cellular networks, the same is not true in multi-tier HetNets due to different transmit powers across tiers [1]. Assuming same fading gain statistics across all wireless links, in this letter we study the effect of cell selection procedure on the effective fading gain observed at the mobile user.

Contributions. Using tools from stochastic geometry [11], we characterize the PDF of the effective channel fading gain experienced by the typical user in a multi-tier cellular network during cell-selection phase under strongest-BS association policy. As an important intermediate result, we first derive the probability of association of the typical user with the n-th nearest BS in the k-th tier, which itself is a new and much finer characterization of association probabilities under strongest BS association policy in HetNets. Our results concretely demonstrate that the PDF solely depends upon the distribution of the original fading gain and the path-loss exponent (does not depend upon infrastructure properties, such as the number of BS tiers, their densities, or their transmission powers). In addition, if we assume independent Nakagami-m fading (Gamma distribution) over all links, the resulting effective fading is also Gamma distributed with the same scale parameter but a gain of $\frac{\alpha}{2}$ in the shape parameter.

II. SYSTEM MODEL

We consider a K-tier cellular network were the locations of BSs in each tier are modeled by an independent Poisson point process (PPP) $\Phi_k = \{x_{k,i}\} \in \mathbb{R}^2$ with density λ_k. The transmission power of BSs in the k-th tier is P_k. The locations of all BSs can then be modeled by the PPP $\Psi = \bigcup_{k \in \mathcal{K}} \Phi_k$, where $\mathcal{K} = \{1, 2, \ldots, K\}$ is the set of indices of the tiers. The locations of the users are modeled by an independent PPP...
\(\Phi_u = \{ u_i \} \in \mathbb{R}^2 \) with density \(\lambda_u \). Without loss of generality, the analysis is performed at an arbitrarily chosen user (termed typical user), whose position can be translated to the origin due to the stationarity of this setup. The received signal power at the typical user from a \(k \)-th tier BS located at \(x \in \Phi_k \) is \(P_k h_k x \| x \|^{-\alpha} \), where \(h_k x \) models fading gain and \(\| x \|^{-\alpha} \) represents standard power-law pathloss with exponent \(\alpha > 2 \). To differentiate it from the effective fading gain studied in the next Section, we refer to \(h_k x \) as the original fading gain. It is assumed to be independent and identically distributed across all links with PDF \(f_{h_k}(h) \) and cumulative distribution function (CDF) \(F_{h_k}(h) \). While all the results will be derived for this general distribution, we will also specialize them to Nakagami-\(m \) fading case for providing insights and numerical comparisons. In this case, we have \(f_{h_k}(y) = \left(\frac{\gamma}{\Omega} \right)^{m} \frac{\gamma^{m+1}}{\Gamma(m)} \exp \left(-\frac{\gamma}{\Omega} y \right) \), \(y \geq 0 \), which is Gamma distribution with scale parameter \(\frac{\Omega}{\gamma} \) and shape parameter \(m \) (i.e. \(h \sim \text{Gamma} \left(\frac{\Omega}{\gamma}, m \right) \)), where \(\Omega \) is the mean of \(h \) (usually assumed to be 1 in Nakagami-\(m \) fading channels). Also \(F_{h_k}(y) = \frac{1 - \Gamma(m, \frac{\gamma y}{\Omega})}{\Gamma(m)} \). For cell selection, we assume that the typical user connects to the BS that provides maximum received power. For this setup, we define effective fading gain seen at the typical user as follows.

Definition 1 (Effective Fading Gain). The effective fading gain \(h^* \) represents the fading gain experienced by the typical user during cell-selection phase when associating with the BS located at \(x^* \), where

\[
x^* = \arg \max_{x \in \Phi_k, k \in K} P_k h_k x \| x \|^{-\alpha}.
\]

Note that, in principle, \(h_k x \) can be interpreted as the cumulative fading gain incorporating both slow and fast fading effects. This generality is mathematically provided by the general distribution of \(h \). Also note that the cell-selection policy can be specialized to both instantaneous and average power-based cell selection by choosing appropriate distribution \(f_{h_k}(\cdot) \).

III. Effective Channel Distribution

Since fading gain appears in the cell selection criterion given by Eq. [1], the distribution of the effective fading gain \(h^* \) experienced by the typical user will, in general, be different from the distribution of the original fading gain \(h \) (due to the effect of order statistics). Before starting the derivation of the PDF of \(h^* \), we introduce an indicator function \(\delta_{k,n} \) for which \(\delta_{k,n} = 1 \) if the \(n \)-th nearest BS in the \(k \)-th tier is the serving BS and \(\delta_{k,n} = 0 \) otherwise. This function can be expressed as

\[
\delta_{k,n} = \prod_{x \in \Phi_k \setminus x_{k,n}} \mathbb{I}(\| x_{k,n} \|^{-\alpha} h_{k,n} \geq \| x \|^{-\alpha} h_x) \times \prod_{j \in \mathbb{K} \setminus k} \prod_{x \in \Phi_j} \mathbb{I}(P_k \| x_{k,n} \|^{-\alpha} h_{k,n} \geq P_j \| x \|^{-\alpha} h_x),
\]

where \(h_{k,n} \) is the original fading gain for the channel between the typical user and the \(n \)-th nearest BS in the \(k \)-th tier. Using the above function, we can define the CDF of the effective fading gain \(h^* \) using the law of total probability as follows:

\[
\mathbb{P}(h^* \leq y) = \sum_{k \in \mathbb{K}} \sum_{n=1}^{\infty} \mathbb{P}(h_{k,n} \leq y, \delta_{k,n} = 1)
\]

\[
= \sum_{k \in \mathbb{K}} \sum_{n=1}^{\infty} \mathbb{E}_{\mathbb{P}, h} [\mathbb{I}(h_{k,n} \leq y) \delta_{k,n}]
\]

\[
= \sum_{k \in \mathbb{K}} \sum_{n=1}^{\infty} \mathbb{E}_{\mathbb{P}, h} [\mathbb{I}(h_{k,n} \leq y) \mathbb{P}(\delta_{k,n} = 1 | h_{k,n})]
\]

\[
= \sum_{k \in \mathbb{K}} \sum_{n=1}^{\infty} \int_{0}^{y} f_{h_k}(h_{k,n}) P(h_{k,n}) dh_{k,n},
\]

where \(P(h_{k,n}) \) is the probability of association with the \(n \)-th nearest BS in the \(k \)-th tier conditioned on \(h_{k,n} \). Hence, we first derive an expression for \(P(h_{k,n}) \) in Lemma [1] using which we will derive the PDF of \(h^* \) in Theorem [1].

A. Conditional Association Probability

We first derive an expression for \(P(h_{k,n}) \) in Lemma [1].

Lemma 1 (Association Probability). The conditional probability of the typical user associating with the \(n \)-th nearest BS in the \(k \)-th tier is:

\[
P_k(h_{k,n}) = \left(\frac{1}{g_2(h_{k,n})} + 1 \right)^n g_1(h_{k,n})^{-1},
\]

where \(g_1(h_{k,n}) = \frac{2}{\alpha} \int_{0}^{\infty} F_h(y_{k,n}) y^{\frac{2}{\alpha}-1} dy, \quad g_2(h_{k,n}) = \frac{2}{\alpha} \int_{0}^{\infty} \bar{F}_h(y_{k,n}) y^{\frac{2}{\alpha}-1} dy, \quad B_k = \frac{\lambda_k P_k}{\sum_{j \in \mathbb{K} \setminus k} \lambda_j P_j} \text{ and } \bar{F}_h(h) = 1 - F_h(h). \]

Proof: See Appendix A.

Remark 1. Note that the effect of BS density and their transmit powers appears in the term \(B_k \) in \(g_2(h_{k,n}) \) in Eq. [2] Consistent with the intuition, the conditional association probability is directly proportional to both \(\lambda_k \) and \(P_k \).

For the case of Nakagami-\(m \) original fading, the integrals in \(g_1(h_{k,n}) \) and \(g_2(h_{k,n}) \) can be reduced to closed forms.

Corollary 1. In the case of Nakagami-\(m \) original fading, \(g_1(h_{k,n}) \) and \(g_2(h_{k,n}) \) can be simplified as:

\[
g_1(h_{k,n}) = 1 - \left(\frac{\Omega_{m, h_{k,n}}}{\Omega_{m, h_{k,n}} + \frac{m h_{k,n}}{\Omega}} \right) \bar{\gamma} \left(\frac{m + \frac{m h_{k,n}}{\Omega}}{\Omega} \right) + \Gamma \left(\frac{m + \frac{m h_{k,n}}{\Omega}}{\Omega} \right)
\]

\[
g_2(h_{k,n}) = \frac{\Omega_{m, h_{k,n}}}{\Omega_{m, h_{k,n}} - \frac{m h_{k,n}}{\Omega}} \left(\frac{m + \frac{m h_{k,n}}{\Omega}}{\Omega} \right) + \frac{\Gamma(\alpha) + \Gamma(\alpha + \frac{m h_{k,n}}{\Omega} - 1)}{\Gamma(\alpha)}.
\]

where \(\Gamma(\alpha, b) \), and \(\gamma(\alpha, b) \) are the upper and lower incomplete Gamma functions, respectively.

B. Effective Fading Distribution Analysis

In the following Theorem we provide the PDF of the effective fading gain \(h^* \) in terms of general original fading.

Theorem 1 (Effective Fading Distribution with General Fading). The PDF of the effective fading gain in a \(K \)-tier network under general cell-selection policy given by Definition [7] is:

\[
f_{h^*}(y) = \frac{2}{\alpha} y^{\frac{2}{\alpha} - 1} f_h(y) \int_{0}^{\infty} \bar{F}_h(z) z^{\frac{2}{\alpha} - 1} dz.
\]
Therefore important to understand network properties during the handover phases. In this letter, we derived the PDF of the effective fading gain observed by the typical user during the handover phase in a K-tier HetNet under strongest association policy. As an intermediate result (which is in fact important in its own right), we provided a much finer characterization of association probabilities by deriving the probability that the typical user is served by the n-th nearest BS in the k-th tier. Our results concretely demonstrate that the effective channel fading distribution during cell selection phase is significantly different from the original fading distribution. In fact, association with the strongest BS reduces perceived severely of fading in general due to order statistics.

APPENDIX

(A. Proof of Lemma 7)

The association probability conditioned on \(h_{k,n} \) can be derived as follows:

\[
P(k,n| h_{k,n}) = \mathbb{E}_{x_{k,n}} [\mathbb{P}_{k,n}^\alpha \mathbb{P}_{k,n}] \mathbb{E}_{\Phi_k} \mathbb{E}_{h_k} \left[\prod_{m \in \Phi_k \setminus x_{k,n}} \mathbb{I}(||x_{k,n} - h_{k,n}|| - \alpha h_{k,n}) \right]
\]

\[
\geq \mathbb{P}(x||\alpha h_x) \prod_{j \in K \setminus k} \prod_{x \in \Phi_j} \mathbb{P}(P_k ||x_{k,n} - \alpha h_{k,n} \geq P_j ||x - \alpha h_x)
\]

\[
= \mathbb{E}_{x_{k,n}} \mathbb{E}_{\Phi_k} \mathbb{E}_{h_k} \prod_{m \in \Phi_k \setminus x_{k,n}} F_h \left(\frac{||x_{k,n} - h_{k,n}|| - \alpha h_{k,n}}{||x - \alpha h_x||} \right)
\]

\[
\times \prod_{j \in K \setminus k} \prod_{x \in \Phi_j} F_h \left(\frac{P_k ||x_{k,n} - \alpha h_{k,n} \geq P_j ||x - \alpha h_x} {P_j ||x - \alpha h_x|| h_{k,n}} \right)
\]

\[
= \mathbb{E}_{x_{k,n}} \prod_{m \in \Phi_k \setminus x_{k,n}} F_h \left(\frac{I_1(x_{k,n})}{I_2(x_{k,n})} \right)
\]

where (a) is due to the independence of fading gain across all links, (b) follows by substituting for the CDF of the original fading gain \(F_h(h) \), and (c) follows from the assumption that the K-tiers are modeled by independent PPPs.

The term \(I_1(x_{k,n}) \) can be derived by splitting \(\Phi_k \) into \(\Phi_k \cap B(0, ||x_{k,n}||) \) and \(\Phi_k \cap B(0, ||x_{k,n}||) \), where \(B(0, ||x_{k,n}||) \) is the ball of radius \(||x_{k,n}|| \) centered at the origin, and \(B(0, ||x_{k,n}||) \) is its compliment. Note that conditioned on the location of the n-th nearest BS \(x_{k,n} \), the number of points inside the ball \(\Phi_k \cap B(0, ||x_{k,n}||) \) is \(n - 1 \), and their locations

IV. CONCLUSION

Owing to network densification, 5G networks may experience orders of magnitude higher handover rates. It is
are uniformly distributed (follows from the definition of PPP). Hence, $I_1(x_{k,n})$ can be derived as follows:

$$I_1(x_{k,n}) = \mathbb{E}_{\Phi_k} \left[\prod_{x \in \Phi_k \cap B(0, ||x||_\alpha)} F_h \left(\frac{||x||_\alpha}{||x_{k,n}||_\alpha} h_{k,n} \right) \right]$$

$$\times \mathbb{E}_{\Phi_k} \left[\prod_{x \in \Phi_k \cap B(0, ||x||_\alpha)} F_h \left(\frac{||x||_\alpha}{||x_{k,n}||_\alpha} h_{k,n} \right) \right]$$

\[
= \left(\frac{1}{\pi ||x_{k,n}||_\alpha^2} \int_{x \in \mathbb{R}^2 \cap B(0, ||x||_\alpha)} F_h \left(\frac{||x||_\alpha}{||x_{k,n}||_\alpha} h_{k,n} \right) dx \right)^{n-1}
\times \exp \left(-\lambda_k \int_{r_{k,n}}^{\infty} F_h \left(\frac{r_{k,n}^\alpha}{\alpha r_{k,n}^\alpha} h_{k,n} \right) r dr \right) \tag{9}
\]

where $\tilde{F}_h(h) = 1 - F_h(h)$. The first term in (d) is due to the uniform distribution of the points inside $\Phi_k \cap B(0, ||x||_\alpha)$, the second term in (d) follows by applying PGFL of PPP. Note that the point process $\Phi_k \cap B(0, ||x||_\alpha)$ remains a PPP due to Slivnyak’s theorem. Step (e) follows from converting to polar coordinates where $r_{k,n} = ||x_{k,n}||$, and step (f) results from simple manipulations to the integrals. The term $I_2(x_{k,n})$ can also be derived using PGFL of PPP and similar procedure to steps (d) and (e) which results in:

$$I_2(x_{k,n}) = \prod_{j \in \mathcal{K} \setminus k} \exp \left(-2\lambda_j \int_0^{\infty} \tilde{F}_h \left(\frac{P_j r_{k,n}^\alpha}{P_m} h_{k,n} \right) r dr \right)$$

\[
= \prod_{j \in \mathcal{K} \setminus k} \exp \left(-2\lambda_j r_{k,n}^\alpha \alpha \int_0^{\infty} \tilde{F}_h \left(y h_{k,n} \right) y^{\frac{1}{\alpha} - 1} dy \right)
\]

where $\mathcal{B}_k = \frac{r_{k,n}^2}{\alpha \sum_{j \in \mathcal{K} \setminus k} \lambda_j (r_j)_{\alpha}}$. Now substitute Eq. 9 in Eq. 8, which gives

$$P_{(k,n)|h_{k,n}} = \mathbb{E}_{r_{k,n}} \left[g_1(h_{k,n})^{n-1} \exp \left(-\lambda_k r_{k,n}^2 g_2(h_{k,n}) \right) \right]$$

\[
= \int_0^{\infty} f_{r_{k,n}}(r) g_1(h_{k,n})^{n-1} \exp \left(-\lambda_k r_{k,n}^2 g_2(h_{k,n}) \right) dr
\]

where $g_1(h_{k,n}) = \frac{2}{\pi} \int_0^{\infty} F_h(y h_{k,n}) y^{\frac{1}{\alpha} - 1} dy$, $g_2(h_{k,n}) = \frac{2}{\pi} \int_0^{\infty} \tilde{F}_h(y h_{k,n}) y^{\frac{1}{\alpha} - 1} dy$ + $\frac{1}{\mathcal{B}_k} \int_0^{\infty} \tilde{F}_h(y h_{k,n}) y^{\frac{1}{\alpha} - 1} dy$. Substituting $f_{r_{k,n}}(r) = \frac{1}{(2\pi)^{\alpha/2}} (\lambda_k)^\alpha r^{(2\alpha-1)} \exp(-\lambda_k r^2)$ in Eq. 11 with some algebraic manipulations leads to the final result in Lemma 1.

B. Proof of Theorem 1

Using Eq. 3 and the result in Lemma 1 the CDF of the effective fading gain h^* can be derived as follows:

$$P(h^* \leq y) = \sum_{k \in \mathcal{K}} \int_0^y f_h(h_{k,n}) \sum_{n=1}^{\infty} (P_{(k,n)|h_{k,n}}) dh_{k,n}$$

$$\left. \right|_{(g)} \sum_{k \in \mathcal{K}} \int_0^y f_h(h_{k,n}) \frac{1}{1+g_2(h_{k,n}) - g_1(h_{k,n})} dh_{k,n} \tag{12}
\]

where step (g) comes from using the summation of a geometric series. It can easily be shown with simple algebraic manipulations that

$$1 + g_2(h_{k,n}) - g_1(h_{k,n}) = \left(\frac{1}{\mathcal{B}_k} \right)^2 h_{k,n}^{\frac{1}{\alpha} - 1} \int_0^{\infty} \tilde{F}_h(z) z^{\frac{1}{\alpha} - 1} dz$$

In this expression, we note that \mathcal{B}_k is the only term that is function of k. Moreover, note that \mathcal{B}_k is not function of $h_{k,n}$. Hence, the summation in Eq. 12 can be handled as follows:

$$P(h^* \leq y) = \left(\int_0^y f_h(h_{k,n}) \frac{\alpha h_{k,n}^\frac{1}{\alpha} \mathcal{B}_k}{2} \right) \int_0^{\infty} \tilde{F}(z) z^{\frac{1}{\alpha} - 1} dz dh_{k,n} \tag{13}
\]

where step (h) is due to $\sum_{k \in \mathcal{K}} \mathcal{B}_k = 1$. Taking the derivative of this CDF w.r.t. y, the final result in Theorem 1 follows.

References

1. H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and analysis of K-tier downlink heterogeneous cellular networks,” *IEEE Journal on Sel. Areas in Commun.*, vol. 30, no. 3, pp. 550–560, Apr. 2012.

2. ITU, “Framework and overall objectives of the future development of IMT for 2020 and beyond,” Rec. ITU-R M.2083-0, Sep. 2015.

3. A. Checko, H. L. Christensen, Y. Yan, L. Scolari, G. Kardara, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” *IEEE Commun. Surveys and Tutorials*, vol. 17, no. 1, pp. 405–426, 2015.

4. H.-C. Yang and M.-S. Alouini, *Order statistics in wireless communications: diversity, adaptation, and scheduling in MIMO and OFDM systems*. Cambridge University Press, 2011.

5. T. Eng, N. Kong, and L. B. Milstein, “Comparison of diversity combining techniques for Rayleigh-fading channels,” *IEEE Trans. on Commun.*, vol. 44, no. 9, pp. 1177–1129, Sep 1996.

6. M. S. Alouini and M. K. Simon, “An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels,” *IEEE Trans. on Commun.*, vol. 48, no. 3, pp. 401–415, Mar 2000.

7. H.-C. Yang and M.-S. Alouini, “Generalized switch-and-examine combining (GSEC): a low-complexity combining scheme for diversity-rich environments,” *IEEE Trans. on Commun.*, vol. 52, no. 10, pp. 1711–1721, Oct 2004.

8. G. Song and Y. Li, “Asymptotic throughput analysis for channel-aware scheduling,” *IEEE Trans. on Commun.*, vol. 54, no. 8, pp. 1514–1514, Aug 2006.

9. Y. Ma, J. Jin, and D. Zhang, “Throughput and channel access statistics of generalized selection multiuser scheduling,” *IEEE Trans. on Wireless Commun.*, vol. 7, no. 8, pp. 2975–2987, August 2008.

10. L. Yang and M. S. Alouini, “Performance analysis of multiuser selection diversity,” *IEEE Trans. on Veh. Technology*, vol. 55, no. 6, pp. 1848–1861, Nov 2006.

11. J. G. Andrews, A. K. Gupta, and H. S. Dhillon, “A primer on cellular network analysis using stochastic geometry,” available online: arxiv.org/abs/1604.03183.

12. M. Haenggi, *Stochastic geometry for wireless networks*. Cambridge University Press, 2012.