Non-integrability of the mixmaster universe

F Christiansen†, H H Rugh‡ and S E Rugh¶
† Istituto Nazionale di Ottica, Largo E. Fermi 6, Firenze, I-50125, Italy
‡ Institut Hautes Etudes Scientifiques, 35 Route de Chartres, Bures-sur-Yvette, France
¶ The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark

Abstract. We comment on an analysis by Contopoulos et al. which demonstrates that the governing six-dimensional Einstein equations for the mixmaster space-time metric pass the ARS or reduced Painlevé test. We note that this is the case irrespective of the value, I, of the generating Hamiltonian which is a constant of motion. For $I < 0$ we find numerous closed orbits with two unstable eigenvalues strongly indicating that there cannot exist two additional first integrals apart from the Hamiltonian and thus that the system, at least for this case, is very likely not integrable. In addition, we present numerical evidence that the average Lyapunov exponent nevertheless vanishes.

The model is thus a very interesting example of a Hamiltonian dynamical system, which is likely non-integrable yet passes the reduced Painlevé test.

PACS numbers: 0230Hq, 0420Dw, 0420Ha, 0425Dm, 0440Nr, 9880Hw

Short title: Non-integrability of the mixmaster universe

November 21, 2018
1. Introduction.

In general, it is a difficult task to establish whether or not a Hamiltonian system of \(N\) degrees of freedom is integrable. We note that there are many definitions of integrability \([1]\). Here, we take as definition \([2]\) the existence of \(N\) independent first integrals \(I_j = I_j(p, q) = \text{const}\) which are in involution, i.e. their mutual Poisson brackets vanish \(\{I_i, I_j\} = 0\), for all \(i, j\). In case that \(N\) such integrals have not been found, one may try to establish the integrability of the dynamical system via the singularity analysis called the Painlevé test. According to the “Painlevé conjecture” a Hamiltonian dynamical system is integrable if it has the Painlevé property. However, since carrying out the Painlevé test is often too difficult a task, in practice the test is performed in a reduced form called the ARS-algorithm \([3, 4, 5]\). In this paper we shall comment on an example where the (ARS) conjecture fails.

In Contopoulos et al. \([6]\), and in Cotsakis et al. \([7]\), it is shown that the Einstein equations for the mixmaster space-time metric pass the ARS-test (the reduced Painlevé property) and, by the above proposition, that it is probably integrable.

Here we shall argue that this is very likely not the case. Our argument pursues the following line: First, there is a generating Hamiltonian, the value of which, \(I\), characterizes different qualitative behaviours of the model. The case \(I = 0\) corresponds to the proper mixmaster universe. Although it contains the chaotic Gauss-map in its time-evolution there is no direct contradiction in calling the system integrable, e.g. in the sense of being solvable by an inverse scattering transform (see e.g. \([3]\)). For \(I > 0\), the evolution is in some sense ‘trivial’, but for \(I < 0\)† we shall show that the system displays chaotic behaviour in the sense that it contains an abundance of unstable periodic orbits, even apparently infinite families of these, which in turn renders the existence of a full set of first integrals very unlikely. In fact, the proliferation of unstable periodic orbits indicates the existence of a ‘Smale horseshoe’ prohibiting integrability. A rigorous proof would require finding a transversal homoclinic intersection \([10, 11]\), i.e. a transversal intersection of the stable and unstable manifolds of a hyperbolic closed orbit of the system, a work currently in progress. Second, the Painlevé analysis for the mixmaster model as presented in Contopoulos et al. \([6]\) does not distinguish the value of this first integral, i.e. by this analysis one arrives at the contradictory statement that even in the chaotic case \(I < 0\) the model is probably integrable‡.

† At first sight a universe model with \(I < 0\) might appear quite artificial. It has, however, a physical interpretation as a mixmaster universe in which matter with negative energy density is uniformly distributed. It gives the possibility of an oscillatory evolution of the three-volume of the universe \([8, 9]\) and thus the possibility of periodic (cyclic) mixmaster universes.

‡ In a subsequent paper \([12]\) Contopoulos et al. cast doubt as to the conclusion of their original paper \([6]\). They introduce a perturbative Painlevé test which the mixmaster model fails to pass. Also, Latifi
Finally, we present numerical evidence that, despite the existence of unstable periodic orbits, the average Lyapunov exponent vanishes in the case $I < 0$, contradicting data based on single trajectories presented in Rugh [8] and Hobill et al. [14].

2. The equations of motion.

The mixmaster space-time metric is a famous cosmological toy-model [15] which has been studied extensively in the past two decades in various contexts. It is an anisotropic generalization of the standard cosmological model of our universe (in case our universe is closed), the compact Friedman-Robertson-Walker model. The mixmaster metric exhibits very complicated dynamical behaviour near its curvature singularities, illustrating an interesting non-linear aspect of the Einstein equations. For a recent discussion of the characterization of chaos in general relativity and the mixmaster toy-model gravitational collapse, see e.g. S.E.Rugh [16].

The governing Einstein equations for the mixmaster metric are given by a set of three second order ordinary differential equations

\begin{align}
2\ddot{\alpha} &= (e^{2\beta} - e^{2\gamma})^2 - e^{4\alpha} \\
2\ddot{\beta} &= (e^{2\gamma} - e^{2\alpha})^2 - e^{4\beta} \\
2\ddot{\gamma} &= (e^{2\alpha} - e^{2\beta})^2 - e^{4\gamma},
\end{align}

where α, β and γ are the so-called scale factors of the metric, and a dot denotes derivative with respect to the (logarithmic) time variable τ, see Landau and Lifshitz [15] §118. The equations (1) admit a first integral

\begin{align}
I &= 4(\dot{\alpha}\dot{\beta} + \dot{\beta}\dot{\gamma} + \dot{\gamma}\dot{\alpha}) - e^{4\alpha} - e^{4\beta} - e^{4\gamma} + 2(e^{2(\alpha+\beta)} + e^{2(\beta+\gamma)} + e^{2(\gamma+\alpha)}).
\end{align}

The mixmaster universe, with its interesting oscillatory behaviour of the scale functions near its space-time singularity, arises exactly at $I = 0$. The cosmological model was first analyzed by V.A. Belinski and I.M. Khalatnikov [17] and independently by C.W. Misner [18], who showed that the asymptotic evolution could be accurately described as a simple combinatorial evolution of the axes governed by the Gauss map (see also Barrow [19] and Mayer [20]). The appearance of the Gauss map may seem to indicate chaotic behaviour of the system but, as the transformation to the relevant coordinates is singular and maps non-closed orbits into closed orbits, it is not clear to what extent conclusions regarding the inherent chaos of the Gauss map can be carried back to the analysis of the differential system governing the mixmaster universe.

Following the notation of Contopoulos et al. [6], we first perform a change of et al. [13] note that the model does not pass the full Painlevé test.
variables:
\[x = 2\alpha \quad y = 2\beta \quad z = 2\gamma \]
\[p_x = -(\dot{y} + \dot{z}) \quad p_y = -(\dot{z} + \dot{x}) \quad p_z = -(\dot{x} + \dot{y}) \]

and find that the system can also be described as governed by the Hamiltonian
\[H = \frac{1}{4}(p_x^2 + p_y^2 + p_z^2 - 2p_xp_y - 2p_yp_z - 2p_zp_x) + e^{2x} + e^{2y} + e^{2z} - 2e^{x+y} - 2e^{y+z} - 2e^{z+x} \equiv -I. \]

For the purpose of the Painlevé analysis a further change of variables is made
\[X = e^x \quad Y = e^y \quad Z = e^z, \]

and we finally end up with this version of differential equations:
\[2\dot{X} = X(p_x - p_y - p_z) \quad 2\dot{Y} = Y(p_y - p_z - p_x) \quad 2\dot{Z} = Z(p_z - p_x - p_y) \]
\[\dot{p}_x = 2X(Y + Z - X) \quad \dot{p}_y = 2Y(Z + X - Y) \quad \dot{p}_z = 2Z(X + Y - Z), \]

in which the first integral takes the form
\[I = -\frac{1}{2}(p_x^2 + p_y^2 + p_z^2) + \frac{1}{4}(p_x + p_y + p_z)^2 - 2(X^2 + Y^2 + Z^2) + (X + Y + Z)^2. \]

The sign of the first integral characterizes three different phases of the model. This can be seen from the scale invariance of the differential equations (6) under the transformation
\[X \rightarrow cX \quad Y \rightarrow cY \quad Z \rightarrow cZ \]
\[p_x \rightarrow cp_x \quad p_y \rightarrow cp_y \quad p_z \rightarrow cp_z \]
\[I \rightarrow c^2I \quad \tau \rightarrow c^{-1}\tau \]

In popular terms we may say that \(I = 0 \) characterizes a phase transition for the system, as the qualitative description of the time evolution depends strongly on the sign of \(I \). In particular we note here that since the time variable scales with \(|I|^{-1/2}\), the Lyapunov exponent for the system will have to vanish for \(I \rightarrow 0 \), revealing an apparent non-chaotic behaviour at \(I = 0 \), i.e. for the mixmaster universe. Due to this scale invariance we are free to choose an arbitrary value of \(I \) when we look for periodic orbits of the mixmaster system for \(I < 0 \), and we will choose the value \(I = -1 \).

3. Painlevé analysis.

The Painlevé analysis, when applied to (6), showed [6] that the system passes the (ARS) Painlevé test for the case \(I = 0 \) and therefore, according to the cited conjecture, that the system is probably integrable. The analysis does not, however, depend on the value of \(I \). Here we focus on one of the singular solutions (cf. p. 5798 in Contopoulos et al. [6]):
Inserting and identifying coefficients in the Laurent series expansion show that the singular expansions

\[\begin{align*}
X &= \frac{1}{s} + \gamma_1 s + \ldots \\
Y &= x_2 s + \ldots \\
Z &= x_3 s + \ldots \\
p_x &= - \frac{2}{s} + b + cs + \ldots \\
p_y &= p_2 + 2i x_2 s + \ldots \\
p_z &= p_3 + 2i x_3 s + \ldots
\end{align*} \tag{9} \]

satisfy the set of equations (6) to zero'th order in \(s = t - \tau_0 \), provided \(b = p_2 + p_3 \) and \(c = 2i[x_2 + x_3 - 2 \gamma_1] \). Here, \(t \) is the complex time variable and \(\tau_0, \gamma_1, x_2, x_3, p_2 \) and \(p_3 \) are the six free parameters in the generic Painlevé expansion. Computing \(I \) to zero'th order (all other terms must vanish due to the time invariance of \(I \)) we get:

\[I = p_2 p_3 + 2i(x_2 + x_3 - 3 \gamma_1), \tag{10} \]

which is a constant of motion but in general does not vanish. Thus we see, as is also the case for the other classes of singular solutions in [6], that the set of equations has the (ARS) Painlevé property independent of the value of the first integral \(I \).

4. Closed orbits and non-integrability.

One way to characterize non-integrability is by means of non-zero Lyapunov exponents. In general, each first integral of a Hamiltonian system implies the vanishing of two Lyapunov exponents due to preservation of symplectic two-forms [21]. In practice this characterization is not very useful. First, it is not easy to establish numerically due to the infinite time limit involved, and second, because the reverse need not be true, i.e., the vanishing of \(2n \) Lyapunov exponents does not imply the existence of \(n \) first integrals. However, in general the vanishing of Lyapunov exponents occurs for almost all trajectories of infinite length. In particular, we shall consider closed orbits, i.e., trajectories which return to a given point, \(x \), in the phase space after some period \(T \). Periodic orbits have the great advantage (see also [22]) that they are completely determined by their finite time behaviour and therefore provide a numerically easy and reliable way of stating non-integrability of the system.

We write the differential equations (4)-(6) in the form:

\[\frac{d}{dt}x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \nabla H(x) \equiv J \nabla H(x), \quad x = (p, q) \in \mathbb{R}^d \times \mathbb{R}^d \tag{11} \]

(here \(d = 3 \)) and we denote by \(\phi_H^t(x) \) the flow obtained by integrating this equation. A real-analytic function \(I \) on \(\mathbb{R}^{2d} \) is said to be a first integral if it commutes with \(H \), i.e., if their poisson bracket vanishes:

\[\{ I, H \} \equiv (\nabla I, J \nabla H) \equiv 0 \tag{12} \]

(\(\cdot, \cdot \) being the usual inner product in \(\mathbb{R}^{2d} \). In particular [2], this condition implies that the flow \(\phi_I^t(x) \), generated by \(J \nabla I \), commutes with \(\phi_H^t \). Thus, we have the two relations:
\[I \circ \phi^t_H = I \quad t \in R \]
\[\phi^s_t \circ \phi^t_H = \phi^s_t \circ \phi^t_H \quad s, t \in R \]

(13)

Assume now that we have found a periodic orbit \(x = \phi^T_H(x) \) of our Hamiltonian flow with return time \(T > 0 \). We may use this periodicity condition in our two relations above, taking derivatives in \(x \) and in \(s \) (at \(s = 0 \)), respectively, to obtain (\(\text{tr} \) meaning transpose):

\[
\nabla I(x)^\text{tr} D\phi^T_H(x) = \nabla I(x)^\text{tr},
\]
\[
J\nabla I(x) = D\phi^T_H(x)J\nabla I(x).
\]

(14)

We can replace \(I \) with \(H \) or any other first integral (provided they all commute) and conclude that the (transposed) set of \(\nabla H, \nabla I \), etc. generates a set of left invariant eigenvectors of \(D\phi^T_H(x) \) while by multiplying by \(J \) we obtain a set of right invariant eigenvectors of the same matrix.

The two sets are evidently mutually orthogonal (as the first integrals commute). Thus we may orthonormalize each set and take their union to be a basis of \(\mathbb{R}^{2d} \). A straightforward calculation shows that in this basis \(D\phi^T_H(x) \) takes the form of an upper (or lower) triangular matrix with 1 in the diagonal. Thus, we conclude that if the system has \(d \) independent first integrals at a periodic orbit then the stability matrix has only one eigenvalue, 1, with degeneracy \(2N \).

As Poincaré already noted \[23\], the presence of non-unit eigenvalues does not exclude integrability but could germinate from a degeneracy of first integrals. The simplest example of this is the stiff pendulum which, when placed at rest in its top position, is in an unstable fixed point. The separatrices \[2\] through this point separate the phase space into oscillatory modes and two types of rotational modes. The eigenvalues of the stability matrix for the fixed point for any non-zero time are not on the unit-circle. The arguments above do not apply to this case as we here have \(\nabla H = 0 \) (a special case of degenerating first integrals). More complicated situations arise in integrable systems in higher dimensions when, for closed orbits, the gradients of the first integrals become linearly dependent.

As mentioned above, a rigorous proof would require the presence of a transversal homoclinic intersection \[10, 11\]. However, we insist that an abundance of unstable periodic orbits strongly indicates non-integrability of the dynamical system, i.e. that it cannot possess \(d \) commuting analytic first integrals which are independent almost everywhere.
5. Unstable periodic orbits for $I < 0$.

Finding periodic orbits in a low-dimensional dynamical system such as (1) means solving the equation

$$\phi^T(x) = x$$

and is a straightforward, if tedious, task. One starts with random initial conditions and lets the system evolve until a suitable close-return occurs. What is a suitable close-return is as much determined by elapsed time as distance between initial and final values of the variables, due to the high instability of the dynamics. One then uses the initial conditions of the close return trajectory as a starting guess in an extended Newton search for a solution to (13). This takes the following steps:

1. Choose a Poincaré section, i.e. a $(2N - 1)$-dimensional surface that the trajectory will cross. This is rather arbitrary, but a plane through the initial point perpendicular to the initial velocity works well.

2. Integrate the equations of motion including the Jacobian matrix M (here $v = J\nabla H$)

$$\dot{M} = \frac{\partial v(x(t))}{\partial x} M, \quad M_{t=0} = 1,$$

until the trajectory crosses the Poincaré section at x_f, close to the initial point, x_i.

3. Assume that the trajectory is close to a periodic orbit and solve the linearized version of (15):

$$x = \phi^T(x) \approx \phi^T(x_i) + M(x - x_i) = x_f + M(x - x_i),$$

i.e. solve

$$(1 - M)x = x_f - Mx_i.$$

This presents the problem that since M has 1 as (at least) a double eigenvalue, $1 - M$ is not invertible. To remedy this, we augment the equation (18) with 2 more equations and 2 more variables [24]. The two extra equations serve the purpose of keeping the solution x on the Poincaré section and preserving the first integral I during the Newton iteration, while the two variables add corrections to x along the right/left eigenvectors of the eigenvalue 1, i.e. $v(x)$ and ∇I, in order to insures the existence of a solution to (18).

4. Repeat until satisfactory convergence is obtained.

We plot two examples of periodic orbits in figures 1 and 2. In tables 1 and 2 we give the initial conditions, periods and eigenvalues of a few of the periodic orbits found through this method. As can be seen, the eigenvalue 1 has multiplicity 2 in all our examples. We have found approximately 200 unstable periodic orbits, of which around 50 were found in a random search through phase space, whereas the remaining number
was found in a systematic search for members of infinite families of orbits as described below. This numerical result makes it highly unlikely that the system is integrable for \(I < 0 \).

The existence of unstable periodic orbits does not directly lead to chaos in the sense of a positive Lyapunov exponent in the mixmaster system for \(I < 0 \). In fact, we have been able to find series of periodic orbits that indicate that the Lyapunov exponent will converge to zero for infinite time. Consider a family of periodic orbits where one of the scale factors, \(\alpha \), makes one oscillation while the other two, \(\beta \) and \(\gamma \) make \(n \) oscillations. In figure 4 such an orbit with \(n = 10 \) is shown. We find that for such a family the largest eigenvalue of \(M \), \(\Lambda_n \), grows linearly with \(n \), whereas the period, \(T_n \), grows as \(\sqrt{n} \). This means that for the instability exponent \(\lambda_n \), i.e. the local Lyapunov exponent of the individual periodic orbits, we have:

\[
\lambda_n \equiv \frac{\log \Lambda_n}{T_n} \sim \frac{\log n}{\sqrt{n}},
\]

which will tend to zero for \(n \) going to infinity. This is shown in table 3 and figure 4. The limit of such a family of periodic orbits is therefore marginally stable. In the computation of the Lyapunov exponent, marginally stable regions seem to dominate making the exponent converge to zero. This conclusion is supported by a direct computation of the finite time approximation of the Lyapunov exponent. Starting with 1000 random initial conditions, we have computed the average finite time Lyapunov exponent, which appears to fall off as a power law with increasing \(\tau \). This result is shown in figure 6.

We therefore conclude that the mixmaster system (1) for \(I < 0 \) is neither integrable nor chaotic in the sense of having a positive maximal Lyapunov exponent.

6. Concluding remarks

We have noted that, according to the recent analysis by Contopoulos et al. [6], the mixmaster cosmological model passes the Painlevé test not only for the case \(I = 0 \), i.e. the vacuum Einstein equations for which the behaviour of the axes is described by the BKL-combinatorial model, but for arbitrary values of the first integral \(I \). At the same time we have shown that when \(I < 0 \), the model is probably non-integrable through the existence of an abundance of unstable periodic orbits.

Thus, the model provides a first example of a Hamiltonian system of non-linear differential equations that passes the ARS-test for the Painlevé property but which is not integrable. One may still speculate whether the mixmaster model has the full Painlevé property (the answer appears to be negative according to the recent results of Contopoulos et al. [12] and those of Latifi et al. [13]), or whether the constraint \(I = 0 \) may be incorporated in a dynamical context or in the Painlevé analysis in some way, avoiding the non-integrable periodic solutions described in this article and rendering the
Acknowledgments

F. Christiansen is supported by the European Union Human Capital and Mobility grant no. ERB401G7921004 and is grateful for the hospitality of INO, Firenze. S.E. Rugh would like to thank support from the Danish Natural Science Research Council grant no. 11-8705-1. H.H. Rugh is supported by the European Human Capital and Mobility grant no. ERB CHB GCT 92006 and IHES.

We thank for fruitful discussions with Arne Lykke Larsen and with A. Ramani and B. Grammaticos at the Ecole Polytechnique and G. Contopoulos for pointing out a flaw in a draft of the paper.

Table 1. Initial conditions for some periodic orbits. Entries i, v and vi correspond to figures 1, 2–3 and 4. The number of digits given corresponds to the accuracy of the numerical methods employed as estimated by using 2 different integration routines and 2 different tolerance levels in the routines.

#	\(\alpha, \dot{\alpha}\)	\(\beta, \dot{\beta}\)	\(\gamma, \dot{\gamma}\)	\(T\)
i	-0.7465064136	-0.04110593028	-0.31459136109	5.6040350442
	0.0	0.57358291296	-0.6330334642	
ii	0.28088191655	-1.4043414748	-0.21644617646	7.9472870699
	0.0	-0.19132448256	0.084543111864	
iii	-0.85822654286	0.296817610585	-0.374109406546	8.54414096178
	0.0	0.0	0.0	
iv	0.399801735	-0.141272123	-0.26896997	13.4135432128
	0.0	1.044336138	-0.47263976	
v	0.13651016517	-0.83335865226	-0.5987346358	14.6263998708
	0.0	0.424450201779	-0.32431285874	
vi	0.67215626848	-0.04851348437	-0.04851348437	16.15030271
	0.0	0.2302667762	-0.230266776	
vii	-1.0663696240	-2.7978105880	0.07780069395	16.435444052
	0.0	0.0668561349	0.3463999832	
Table 2. Eigenvalues for the periodic orbits of Table 1. The lesser accuracy of the unit eigenvalues is caused by the fact that they appear as double eigenvalues.

Eigenvalues
i
ii
iii
iv
v
vi
vii

Table 3. Largest stability eigenvalue, period and stability exponent for the $(1,n,n)$ family of periodic orbits. T_n and Λ_n vs. n are plotted in figure 5. Beyond $n \approx 40$ it gets increasingly difficult to follow the trajectories numerically because the dynamics is determined by the decreasing difference between the two oscillating scale factors β and γ.

| n | T | Λ | $\lambda \equiv \log(|\Lambda|)/T$ |
|-----|------|-----------|----------------------------------|
| 1 | 5.6040350441 | -29.654128172 | -0.11430453548 |
| 2 | 7.9472870699 | -103.5456716852 | -0.0481126745499 |
| 3 | 9.42569727483 | -186.757808548 | -0.0280031805718 |
| 5 | 11.7015648632 | -331.02446237 | -0.0175279864076 |
| 10 | 16.150302715 | -643.89340465 | -0.010444159622 |
| 15 | 19.649946461 | -967.1141240 | -0.007100716705 |
| 20 | 22.618966753 | -1292.2369183 | -0.0055439756742 |
| 25 | 25.242560127 | -1617.915587 | -0.00456692177 |
| 30 | 27.618644595 | -1943.8400780 | -0.0038959861571 |
| 40 | 31.84403793 | -2596.030034 | -0.003028369681 |
| 46 | 34.12932414 | -2987.456574 | -0.002678592127 |
References

[1] See, e.g., Kruskal M D, Ramani A and Grammaticos B “Singularity analysis and its relation to complete, partial and non-integrability”, Lectures given in Les Houches Spring School (March 1989) on Partially integrable nonlinear evolution equations and their physical applications.

[2] Arnold V I 1978 Mathematical methods of Classical Mechanics (Berlin: Springer)

[3] Ablowitz M J and Segur H 1977 Phys. Rev. Lett. 38 1103

[4] Ablowitz, M J, Ramani A and Segur H 1980 J. Math. Phys. 21 715

[5] Ramani A, Grammaticos B and Bountis A 1989 Phys.Rep. 180 159

[6] Contopoulos G, Grammaticos B and Ramani A 1993 J. Phys. A., Math. Gen. 26 5795

[7] Cotsakis S and Leach P G L 1994 J. Phys. A., Math. Gen. 27 1625

[8] Rugh S E 1990 “Chaotic Behavior and Oscillating Three-volumes in a Space-Time Metric in General Relativity”. Cand.Scient.Thesis, The Niels Bohr Institute, Copenhagen (January 1990). Available upon request.

[9] Rugh S E and Jones B J T 1990 Phys. Lett. A 147 353

[10] Cushman R 1978 Trans. Amer. Soc. 238 45

[11] Nikolaevski E S and Schur L N 1984 Sov. Phys. JETP 58 (1) 1

[12] Contopoulos G, Grammaticos B and Ramani A 1994 “The Mixmaster Universe Model, Revisited”, preprint.

[13] Latifi A, Musette M and Conte R 1994 “The Bianchi IX (mixmaster) cosmological model is not integrable”, preprint gr-qc/9409027.

[14] Hobill D, Bernstein D, Welge M and Simkins D 1991 Class. Quant. Grav. 8 1155

[15] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (New York: Freeman) Especially §30

[16] Misner C W 1969 Phys. Rev. Lett. 22 1071

[17] Barrow J D 1982 Phys. Rep. 85 1

[18] Rackow J D 1987 Phys. Lett. A 121 390

[19] Meyer H-D 1986 J. Chem. Phys. 84 3147

[20] Cvitanović P 1992 “The Power of Chaos” in Applications of Chaos, Electrical Power Research Institute Workshop 1990 edited by Kim J H and Stringer (New York: John Wiley & Sons)

[21] Poincaré H 1892 Les méthodes nouvelles de la mécanique céleste, vols, 1,2,3 (Paris:Gauthier-Villars); reprinted 1957 by Dover, N.Y.

[22] Christiansen F 1989, “Analysis of Chaotic Dynamical Systems in terms of Cycles”. Cand.Scient.Thesis, The Niels Bohr Institute, Copenhagen (June 1989). Available upon request.
Figure Captions

Figure 1. The simplest periodic orbit of the mixmaster system corresponding to entry i in table 1. The 3 scale factors α, β, and γ each make one identical oscillation. The trajectory takes the form of a slightly distorted circle.

Figure 2. A more complex periodic orbit of the mixmaster system corresponding to entry v in table 1. The largest eigenvalue Λ of the Jacobian for this trajectory is ≈ 5800 for a period T of only 14.62.

Figure 3. The same trajectory as above but shown projected on the (α, β)-plane.

Figure 4. An example of a periodic orbit in the family with respectivet l, n and n oscillations of the three scale factors with $n = 10$. The initial values correspond to entry vi in table 1. For increasing n the difference between the two oscillating scale factors becomes smaller and smaller.

Figure 5. The power law dependence of the largest instability eigenvalue Λ of the Jacobian, M, and the period, T, vs. n in the $(1,n,n)$ family of periodic orbits. We have found orbits up to $n = 46$. For $n \geq 6$ we estimate the slope to be .495 for T and 1.006 for Λ. Some of the data points are listed in table 3.

Figure 6. The finite time Lyapunov exponent λ_τ computed as an average of 1000 random trajectories. For numerical reasons we use the largest eigenvalue of $M^\tau M$. $\tau = 70$ is approximately the time limit, where we lose information about the lowest eigenvalue due to numerical underflow. We believe this explains the bend of the curve near this value and therefore that the power law fall-off holds even for $\tau > 70$. The power law fall-off indicates that the infinite time Lyapunov exponent is 0.
