An Association Study of Candidate Gene Variants in Chinese Nonsyndromic Cleft Lip with or without Palate Subjects

Zhenmin Niu (niuzhm@chgc.sh.cn)
Chinese National Human Genome Center at Shanghai
https://orcid.org/0000-0003-4741-5337

Li Peng
Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Jiapei Chen
Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Teng Wan
Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Dandan Wu
Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Yusheng Yang
Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Guomin Wang
Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Lin Yang
Chinese National Human Genome Center and Shanghai Academy of Science & Technology

Wei Huang
Chinese National Human Genome Center and Shanghai Academy of Science & Technology

Zhenqi Chen
Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Research article

Keywords: nonsyndromic cleft lip with or without cleft palate, genetic factor, association study, disease susceptibility

DOI: https://doi.org/10.21203/rs.3.rs-56765/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Nonsyndromic cleft lip with or without palate is a common birth defect of complex etiology involving the interaction of genetic factors and environmental exposures. Previous reports identified several candidate genes and risk variants of the disease, and their functions were verified by model animal studies.

Methods: In order to depict the composition of the orofacial cleft susceptibility loci in Chinese population, we genotyped ten common SNPs of six genes (VAX1, MAFB, PAX7, ABCA4, NTN1 and NOG) in 249 nonsyndromic cleft lip with or without palate individuals, 62 nonsyndromic cleft palate only individuals and 480 controls.

Results: Three loci: VAX1 rs7078160, MAFB rs11696257 and NTN1 rs4791774 showed significant relevance with NSCL/P. Carrying both VAX1 rs7078160 and NTN1 rs4791774 further increased the risk, compared with carrying only one of them.

Conclusions: This result supported that SNPs of genes VAX1, MAFB and NTN1 are associated with NSCL/P in Chinese subjects.

Background

Cleft lip with or without palate (CL/P) is among the most common congenital craniofacial defects, with an average incidence ranging from 1/500 to 1/1000 live births, based on different ethnic populations [1]. Approximately 70% of cases of CL/P occur with no other apparent structural abnormalities are defined as nonsyndromic cleft lip with or without cleft palate (NSCL/P) [2]. The prevalence of NSCL/P in China was 1.22/1000 [3]. It is considered to be a multifactorial disease with both genetic and environmental factors contributing to the etiology. Nonsyndromic cleft palate only (NSCPO) is to some extent different though not completely distinct from NSCL/P in genetic mechanism [4].

Nonsyndromic CL/P does not entirely follow Mendel's genetic characteristics, a large part of parental phenotype of cleft lip and palate patients is normal[5]. Genetic variations increase the risk of this phenotype, although they are common in population. The genome wide association studies found more than 40 candidate genes and their marker SNPs [6–11]. In addition to being a marker of susceptibility, several of these genes also have been linked to cleft lip and palate by animal model. Gene VAX1 located in chromosome 10q25 is expressed widely during development of craniofacial structures [6]. The Vax1 knockout mouse developed cleft palate [12]. A missense mutation H131Q in a strongly conserved sequence region of MAFB was found association with CL/P, and Mafb expression was upregulated during palatal fusion [11]. Mice lacking Pax7 showed malformations of the nasomaxillary complex [13]. Gene NOG is expressed in palate shelves and functions as a signaling molecule during embryonic development [14]. Inactivation of NOG showed cleft palate in a rat model [15].
Although deleterious changes in these genes can cause cleft in model animals, the contribution of polymorphisms remains to be investigated. And these variants may not play roles independently [16]. Dissimilar results of the gene contributions in the populations with different genetic backgrounds and living conditions were reported. For example, \textit{ABCA4} achieved more significant association among the Asian families compared to the European's while the 8q24 region showed an opposite result [11]. Therefore, we selected 10 SNPs of six candidate genes: \textit{VAX1}, \textit{MAFB}, \textit{PAX7}, \textit{ABCA4}, \textit{NTN1} and \textit{NOG} to conduct this case-control study.

\textbf{Results}

In total of 10 SNPs from \textit{VAX1} (rs7078160, rs4752028), \textit{MAFB} (rs13041247, rs11696257), \textit{PAX7} (rs4920520, rs766325), \textit{ABCA4} (rs560426, rs481931), \textit{NTN1} (rs4791774) and \textit{NOG} (rs17760296) were selected and genotyped in the case and the control samples. Statistical results of each SNP, distribution of alleles and genotypes were listed in Table 1 and S1. All the SNPs were in Hardy–Weinberg equilibrium among the controls.

Allele analyses showed that \textit{VAX1} rs7078160 and \textit{MAFB} rs11696257 in the NSCL/P cases were significantly different from those among the controls (Bonferroni method adjusted p-values were 0.020 and 0.00031, respectively). The risk allele frequencies in the case and the control groups were 48.6% and 40.3% for rs7078160 A and 60.1% and 48.5% for rs11696257 C, respectively. Genotype analyses under the additive model also identified the association of \textit{VAX1} rs7078160 and \textit{MAFB} rs11696257 (p-values were 0.025 and 0.00044, respectively). The highest risk of this study was found in homozygote comparing CC vs. TT for \textit{MAFB} rs11696257 (OR = 2.47, 95% CI: 1.58 to 3.87). Variants \textit{NTN1} rs4791774 passed the significant test under the dominate model (p-values were 0.030). For this SNP, the genotype GG + AG increased disease risk 1.63 times (95% CI: 1.18 to 2.25) comparing with the homozygote AA.
Genes	Loci	Genotype Padj	Allele Padj	OR	
		AA + Aa vs. aa	AA vs. aa	A vs. a	(95%CI)
VAX1	rs7078160	0.257	0.025	0.020	1.41 (1.13–1.76)
	rs4752028	> 1	> 1	> 1	1.00 (0.79–1.26)
MAFB	rs13041247	0.979	0.487	0.441	1.26 (1.01–1.57)
	rs11696257	**0.024**	**0.00044**	**0.00031**	1.60 (1.28–2.00)
PAX7	rs4920520	> 1	> 1	> 1	1.30 (0.94–1.80)
	rs766325	> 1	> 1	> 1	0.98 (0.73–1.31)
ABCA4	rs560426	0.275	0.140	0.077	1.37 (1.09–1.73)
	rs481931	> 1	> 1	0.158	1.27 (1.07–1.60)
NTN1	rs4791774	**0.030**	> 1	0.067	1.44 (1.11–1.88)
NOG	rs17760296	p value for AA vs. Aa	> 1	1.29 (0.45–3.70)	

Note: NSCL/P: nonsyndromic cleft lip and/or palate; Allele A: the risk allele of the polymorphism; Genotype AA: the homozygote of the risk allele; Padj: Bonferroni method adjusted p-value; Padj < 0.05 were showed in bold; OR: Odds Ratio.

There were no association found between the CPO group and all the SNPs. Then the CL/P (CL + CLP) and the CPO subjects were combined into one orofacial cleft case group to calculate. MAFB rs11696257 remained positive, but the significant level reduced, compared with the result when only NSCL/P subjects included (Table S1).

In order to test whether a second risk gene would further increase the disease risk, the number of subjects who carried any one or two of the three positive loci (VAX1 rs7078160 A, MAFB rs11696257 C and NTN1 rs4791774 G) were compared between NSCL/P patients and controls (Table 2). Individual, who carrying both risk genes VAX1 rs7078160 A and NTN1 rs4791774 G, has more than two times higher risk compared with these carrying only one of these two risk genes. These two genes are independent risk factors to each other.
Table 2

Risk gene carried	CL/P	Control	Padj	OR (95% CI)
VAX1 and NTN1	83	94		2.02
vs. VAX1 only	80	183	0.0014**	(1.36–3.00)
vs. NTN1 only	24	59	0.018*	(1.24–3.80)
VAX1 and MAFB	140	233		1.22
vs. VAX1 only	30	61	>1	(0.75–1.98)
vs. MAFB only	59	130	0.52	(0.91–1.92)
MAFB and NTN1	82	117		1.64
vs. MAFB only	96	225	0.024*	(1.13–2.38)
vs. NTN1 only	16	35	0.60	(0.80–2.95)

Note: CL/P: Cleft lip and/or palate; Padj: Bonferroni method adjusted p-values; Padj < 0.05 were showed in bold; *: p < 0.05, **: p < 0.01; OR: Odds Ratio.

Discussion

NSCL/P is considered as a multifactorial disease resulting from the interaction between genetic and environmental factors. We conduct an association study for 10 SNPs and support that MAFB rs11696257, VAX1 rs7078160 and NTN1 rs4791774 increased NSCL/P risk in Chinese subjects. The ABCA4 polymorphisms also showed weak association but they had not passed the multiple test adjustment. Similar results were found in MAFB rs13041247 and PAX7 rs4920520. But for VAX1 rs4752028 and PAX7 rs766325, the frequencies were nearly equal in the cases and the controls (32.21% vs. 32.29% and 16.67% vs. 16.99%). The minor allele frequency of NOG rs17760296 is only about 1.5%, so the contribution of this variant must be limited in Chinese population. This study indicates that CL/P and CPO should be considered as two phenotypes caused by different genetic reasons, at least for these positive genes.
The highest risk was found in *MAFB*, which is a transcription factor located in chromosome 20q12. This gene encodes a basic leucine zipper transcription factor and also associated with another disease with maxillary hypoplasia phenotype named Multicentric Carpotarsal Osteolysis Syndrome. Expression analysis in mouse embryos revealed its function in lip and palate morphogenesis especially palatal fusion [17], which reminded the role of gene *IRF6*. Beaty's GWAS identified the association of two *MAFB* SNPs rs13041247 and rs11696257 with NSCL/P [11], but no positive result was obtained for the first one in this study.

In the population that acquired both *VAX1* rs7078160 A and *NTN1* rs4791774 G, the risk of disease increased, higher than the risk variant obtained from either of these two genes. SNP rs7078160 A significantly associated with NSCL/P in rs4791774 G positive subgroup (AG or GG, p = 0.0014). Similar result discovered for rs4791774 G in rs7078160 A positive subgroup (AG or AA, p = 0.018). These two genes play independent roles in the disease onset.

VAX1 encodes a conserved homeobox transcription factors and involves in the regulation of development and morphogenesis. Mice heterozygous for the *Vax1* mutation were fertile and appeared normal, although homozygous exhibited craniofacial malformations including cleft palate [12]. *NTN1* encodes a laminin-related secreted protein and plays a critical role in axon guidance, cell migration and adhesion during development. Mice that lack *Ntn1* die during the perinatal period with a cleft palate phenotype [18]. High-level NTN1 protein was observed in the mesenchyme, especially along the basement membrane of the palatal shelves [19]. Taken together, *VAX1* is involved in the development of the tissue structure of the palate, while *NTN1* may ensure the cell adhesion of the palate flaps. They may play different roles in different aspects of CL/P onset. Although both SNPs are not codon variants, the double-site detection can be developed as a better early warning marker for cleft lip and palate risk in Chinese.

Conclusions

The SNPs of genes *VAX1*, *MAFB* and *NTN1* are associated with NSCL/P in Chinese subjects.

Methods

Sample Collection

This study involved 311 nonsyndromic orofacial clefts cases and 480 controls. Subjects were collected from Shanghai Ninth People's Hospital affiliated to Shanghai JiaoTong University School of Medicine, which were physically screened and were carefully diagnosed by at least two physicians. Healthy controls were also recruited from Shanghai. The case group consisted of 57 cleft lip (CL), 192 cleft lip and palate (CLP), and 62 cleft palate only (CPO) patients. Gender ratio is 1.75:1.

Genomic DNA Extraction and SNP selection
DNA samples were extracted from peripheral blood using Flexi Gene DNA Kit (Qiagen, Germany). The DNA was measured for concentration and purity and then stored at -20 °C.

In total of 10 SNPs from VAX1 (rs7078160, rs4752028), MAFB (rs13041247, rs11696257), PAX7 (rs4920520, rs766325), ABCA4 (rs560426, rs481931), NTN1 (rs4791774) and NOG (rs17760296) were eventually selected and genotyped in case and control samples.

Primer Design and PCR

PCR primers were designed for these ten SNPs based on hg19 of the human genome. All amplicons were in the range of 200 to 300bp. For each primer pair designed, the forward and reverse primers were tagged with a common sequence 1 (CS1: 5′-CCTACACGACGCTCTTCCGATCT-3′) and common sequence 2 (CS2: 5′-AGTTCCTTGGCACCCGAGAATTCCA-3′), respectively. The primer pairs were synthesized from Shanghai Morgen Biotechnology Co., Ltd.

All the primer pairs were divided into 3 combinations, each combination of 3 or 4 primer pairs. Every DNA sample was amplified in separate multiplex PCR reactions (HotStarTaq, Qiagen, Germany) with these primer combinations and mixed after electrophoresis. PCR products were cleaned up by AMPure XP Beads (Beckman Coulter, CA).

Barcoding and Illumina Sequencing

Barcoding was performed in a 20 μL reaction mixture that contained 8 μL of the cleaned up PCR products, 10 μl of KAPA2G Robust hotstart ready mix (Kapa Biosystems, USA), 1μmol/L barcode F primers and 1 μmol/L barcode R primer. The barcoded PCR products from various samples were cleaned up by the AMPure XP Beads (Beckman Coulter, CA).

Purified PCR product library was quantified using a Qubit Fluorometer. According to library quantitation, the PCR product was pooled together with equal mole. Purified libraries were sequenced on a MiSeq Benchtop Sequencer or a NextSeq 500 sequencer (Illumina Inc., San Diego, CA) using protocol. The quality of sequence reads were checked by FastQC algorithm. SNPs were identified using Genome Analysis Toolkit (GATK) and annotated by Annovar software.

Sequence Data Analysis

Demultiplexed compressed FASTQ files were generated from BCL by bcl2fastq Conversion Software v1.8.4 (Illumina, San Diego, CA). For all successful sequencing runs, read depth was 1600x at any given position, with 2700x mean coverage across the entire targeted sequence, and 100% of bases above Q30 at 2 * 150 bp. The variant calling and the coverage of each captured region were analyzed by an in-house developed bioinformatics pipeline, based on the general analysis algorithm pipeline. Briefly, the reads
were mapped to the hg19 version of the human reference genome, filtered to remove off-target and poor-quality reads. Variants were identified and annotated. The variants and annotation results were transformed into Excel sheets.

Statistical Analysis

Statistical analysis was performed with the SPSS 11.0 statistical software package (SPSS Inc., Chicago, IL, USA) or R (Version 3.0.2: www.r-project.org/). Differences in genotype and allele frequencies were analyzed using Pearson χ^2 test or Fisher’s exact test and with a $p<0.05$ taken as being significant after multiple testing adjustment. Odds ratio and 95% CI of alleles had also been calculated. Power analysis was estimated assuming a prevalence of NSCL/P in China of 0.0012.

Declarations

Ethics approval and consent to participate

The study was approved by the Ethical Committee of Chinese National Human Genome Center (2014-09). Written informed consent was obtained from all participants or their legal guardians.

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by grants from National Natural Science Foundation of China (31571293), Science and Technology Committee of Shanghai Municipality (20ZR1440100, 17ZR1420200), the National Key R&D Project of China (2017YFC0907503), and Shanghai leading talent training program 2017. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.
Authors' contributions

Z.C, Z.N and W.H conceived and designed the experiments. L.P, Z.N, J.C and L.Y performed the experiments. L.P and Z.N analyzed the data. T.W, D.W, Y.Y and G.W contributed materials. L.P, Z.N, Z.C and W.H wrote the main manuscript text. All authors reviewed the manuscript.

Acknowledgments

We thank Liu Jing for his kindly help to this study.

References

1. Moreno LM, Arcos-Burgos M, Marazita ML, Krahn K, Maher BS, Cooper ME, Valencia-Ramirez CR, Lidral AC: Genetic analysis of candidate loci in non-syndromic cleft lip families from Antioquia-Colombia and Ohio. Am J Med Genet A 2004, 125A(2):135-144.

2. Dixon MJ, Marazita ML, Beaty TH, Murray JC: Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 2011, 12(3):167-178.

3. Dai L, Zhu J, Mao M, Li Y, Deng Y, Wang Y, Liang J, Tang L, Wang H, Kilfoy BA et al: Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network. Birth Defects Res A Clin Mol Teratol 2010, 88(1):41-47.

4. Huang L, Jia Z, Shi Y, Du Q, Shi J, Wang Z, Mou Y, Wang Q, Zhang B, Ma S et al: Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft. PLoS Genet 2019, 15(10):e1008357.

5. Saleem K, Zaib T, Sun W, Fu S: Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Heliyon 2019, 5(12):e03019.

6. Yu Y, Zuo X, He M, Gao J, Fu Y, Qin C, Meng L, Wang W, Song Y, Cheng Y et al: Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat Commun 2017, 8:14364.

7. Aylward A, Cai Y, Lee A, Blue E, Rabinowitz D, Haddad J, Jr.: Using Whole Exome Sequencing to Identify Candidate Genes With Rare Variants In Nonsyndromic Cleft Lip and Palate. Genet Epidemiol 2016, 40(5):432-441.

8. Ludwig KU, Bohmer AC, Bowes J, Nikolic M, Ishorst N, Wyatt N, Hammond NL, Golz L, Thieme F, Barth S et al: Imputation of orofacial clefting data identifies novel risk loci and sheds light on the genetic background of cleft lip +/- cleft palate and cleft palate only. Hum Mol Genet 2017, 26(4):829-842.

9. Leslie EJ, Carlson JC, Shaffer JR, Buxo CJ, Castilla EE, Christensen K, Deleyiannis FWB, Field LL, Hecht JT, Moreno L et al: Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate. Am J Med Genet A 2017, 173(6):1531-1538.
10. da Silva HPV, Oliveira GHM, Ururahy MAG, Bezerra JF, de Souza KSC, Bortolin RH, Luchessi AD, Silbiger VN, Lima V, Leite GCP et al: Application of high-resolution array platform for genome-wide copy number variation analysis in patients with nonsyndromic cleft lip and palate. *J Clin Lab Anal* 2018, 32(6):e22428.

11. Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, Liang KY, Wu T, Murray T, Fallin MD et al: A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. *Nat Genet* 2010, 42(6):525-529.

12. Hallonet M, Hollemann T, Pieler T, Gruss P: Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. *Genes Dev* 1999, 13(23):3106-3114.

13. Schroder HC, Perovic-Ottstadt S, Wiens M, Batel R, Muller IM, Muller WE: Differentiation capacity of epithelial cells in the sponge *Suberites domuncula*. *Cell Tissue Res* 2004, 316(2):271-280.

14. Butali A, Suzuki S, Cooper ME, Mansilla AM, Cuenco K, Leslie EJ, Suzuki Y, Niimi T, Yamamoto M, Ayanga G et al: Replication of genome wide association identified candidate genes confirm the role of common and rare variants in PAX7 and VAX1 in the etiology of nonsyndromic CL(P). *Am J Med Genet A* 2013, 161A(5):965-972.

15. He F, Xiong W, Wang Y, Matsu M, Yu X, Chai Y, Klingensmith J, Chen Y: Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis. *Dev Biol* 2010, 347(1):109-121.

16. Zhou R, Wang M, Li W, Wang S, Zhou Z, Li J, Wu T, Zhu H, Beaty TH: Gene-Gene Interactions among SPRYs for Nonsyndromic Cleft Lip/Palate. *J Dent Res* 2019, 98(2):180-185.

17. Sun Y, Huang Y, Yin A, Pan Y, Wang Y, Wang C, Du Y, Wang M, Lan F, Hu Z et al: Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. *Nat Commun* 2015, 6:6414.

18. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M: Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. *Cell* 1996, 87(6):1001-1014.

19. Leslie EJ, Taub MA, Liu H, Steinberg KM, Koboldt DC, Zhang Q, Carlson JC, Hetmanski JB, Wang H, Larson DE et al: Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. *Am J Hum Genet* 2015, 96(3):397-411.