SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

RUISHENG ZHENG, YAO CHEN, AND BING WANG
Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, 264209 Weihai, China; ruishengzheng@sdu.edu.cn

Received 2016 February 5; accepted 2016 April 15; published 2016 May 31

ABSTRACT

With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semicircular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.

Key words: magnetic reconnection – Sun: activity – Sun: corona

Supporting material: animations

1. INTRODUCTION

Solar flares are the most energetic magnetic explosions among solar activities. They can increase the emission in a broad range of the electromagnetic spectrum, from radio wavelengths to X- and γ-rays (Fletcher et al. 2011). In the standard solar flare model, i.e., the CSHKP model (named after Carmichael 1964; Sturrock 1966; Hirayama 1974; Kopp & Pneuman 1976), the erupting flux rope stretches magnetic field lines to induce the magnetic reconnection; due to successive reconnections, the flare loops (FLs; originally named post-flare loops) form and straddle the magnetic polarity inversion line, and their footpoints are heated by the energy transport from the reconnection site to appear as flare ribbons (FRs).

However, the standard flare model is basically two-dimensional (2D), and it remains deficient to explain many inherent three-dimensional (3D) observational features, such as the formation of coronal sigmoids (Aulanier et al. 2010; Green et al. 2011; Savcheva et al. 2015), the erupting flux rope (Zhang et al. 2012), the moving bright emissions along the FRs (Fletcher & Hudson 2002; del Zanna et al. 2006; Chandra et al. 2009), and the strong-to-weak shear transition in FLs (Aulanier et al. 2012). Recently, Aulanier et al. (2012) and Janvier et al. (2013) proposed a fully 3D flare model that incorporates the standard 2D one in one of its cuts, thus satisfying the principle of correspondence. In the 3D magneto-hydrodynamic simulation, the magnetic field lines pass through the quasi-separatrix layers (QSLs; Priest & Démoulin 1995), and could undergo a successive reconnection, which exchanges their connectivity with neighboring field lines; the continuous reconnections result in an obvious slipping motion along the QSLs (Pontin et al. 2005; Aulanier et al. 2006; De Moortel & Galggaard 2006). Therefore, it is classified as a slipping magnetic reconnection.

As theoretical models have been developed, some observational cases of the slipping magnetic reconnection have been analyzed. Aulanier et al. (2007) first presented direct observations of slipping magnetic reconnection in coronal loops using the X-ray Telescope on board Hinode. Based on the Atmospheric Imaging Assembly (AIA; Pesnell et al. 2012) on the Solar Dynamics Observatory (SDO; Fletcher et al. 2011), and Li & Zhang (2014, 2015) showed two examples of the slipping motion of FLs and the quasi-periodic pattern of the latter case. However, the previous observations only focused on the slipping motion in two FRs, and the slippage in multiple FRs with complex magnetic configuration has never been discussed. In this paper, we present the slipping magnetic reconnections in multiple FRs during an X1.2 eruptive flare.

2. OBSERVATIONS AND DATA ANALYSIS

The X1.2 flare occurred in ARs 11944 and 11943 on 2014 January 7, associated with a rapid coronal mass ejection and a fast coronal wave. We only focus on the flare, and its start, peak, and end times are about 18:04, 18:32, and 18:58 UT, respectively. To study the evolution of FRs, we mainly use the observations from the AIA on SDO and the Hα filtergrams from the Global Oscillation Network Group of the National Solar Observatory. The AIA has 10 EUV and UV wavelengths, covering a wide range of temperatures. The AIA image (4096 × 4096 pixels) covers the full disk of the Sun and up to 0.5 Rs above the limb, with a pixel resolution of 0.6 and a cadence of 12 s. The Hα images are at 6563 Å with a spatial resolution of 1″ and a cadence of around 1 minute (Harvey et al. 2011). Magnetograms from the Helioseismic and Magnetic Imager (HMI; Scherrer et al. 2012), another instrument on SDO, are chosen to check the magnetic field configuration of the eruption region, with a cadence of 45 s and a pixel scale of 0.6. In order to analyze the dynamics of
moving structures, we employ the time-slice approach. The associated speeds are obtained by the linear fits, assuming that the measurement uncertainty of the selected points is 4 pixels (≈1.74 Mm).

3. RESULTS

The general appearance of the eruption region and the nearby environment before the flare is shown in the HMI magnetogram (panel (a)) and AIA 171 Å image (panel (b)) in

Figure 1. Magnetic field environment of the eruption region in an HMI magnetogram (panel (a)) and the evolution of the flare in AIA 171 Å images (panels (b)–(h)). The magnetic polarities (P1–P2 and N1–N3) are indicated by the arrows in panel (a). The FOV of panels (c)–(h) is illustrated by the dotted box in panel (b), and the X represents the location of the magnetic reconnection between ARs 11944 and 11946, where TELs formed. The arrows in panels (b)–(c) point out the loops (SL and TELs) associated with the magnetic reconnection triggering the flare, and the dotted boxes in panels (d)–(e) present the place of this magnetic reconnection. The arrows in panels (f)–(h) show the structures (FRs, FLs, and hooks) of the flare, and the survived warm loops (L1). The inflow of the flare is obvious in the time-slice image (panel (i)) along the dotted lines in panel (c).
Figure 2. Evolution of the multiple FRs in AIA 304 Å (first and third columns) and Hα filtergrams (second and fourth columns). Except the westward black arrows in base-difference images (panels (e1)–(f1)) showing brightening, the arrows in panels (a1)–(d1) indicate the multiple FRs, and the white and black arrows in panels (c1)–(h1) point out the dimmings and the mass flow, respectively. In Hα filtergrams, the white arrows indicate the filaments (F1–F3), and the black arrows in panels (e2)–(f2) and those in other panels show the mass flow and FRs, respectively. The dotted lines in panels (c)–(d) are used to obtain the time-slice image in Figures 4(a). (An animation of this figure is available.)
Figure 1. The flare occurred between the ARs 11944 and 11943, but the negative polarity (N1) of AR 11944 barely contributed. The flare was associated with the leading positive polarity (P1) of AR 11944 and the pair of polarities of AR 11943 (N2–P2), and it seems that N2 is surrounded by P1 and P2 (panel (a)). There was a sigmoidal loop (SL) connecting N2 and P1 (panels (b)–(c)). To the north of SL, there were trans-equatorial lines (TELs) linking ARs 11944 and 11946. TELs resulted from magnetic reconnection that occurred at the X point between ARs 11944 and 11946 (panel (b)). As more TELs formed, their south footpoints approached much closer to the SL (boxes in panels (d)–(e)). The time-slice plot along the S1 in panel (e) shows the clear inflow for TELs, with a speed of 4.8 km s\(^{-1}\) before the flare onset (panel (i)), which is close to the upper limit of reconnection inflow speeds (Yokoyama et al. 2001). The close relationship between the inflow and the flare onset demonstrates that the magnetic reconnection between TELs and the overlying field of the SL’s western part invoked the flare. There formed three normal FRs (panel (f)): the center FR (FR1), the east FR (FR2), and the west FR (FR3). FR1 located at N2, and FR2 and FR3 lie at P1 and P2, respectively. FR2 and FR3 connected FR1 by FLs (black arrows in panel (b)). FRs all experienced a lateral extension, as a result of slipping reconnections. There appeared hook structures at the eastern end of FR1 and FR2 (black arrows in panel (g)), and a faint semi-circular secondary FR (SFR; named by Zhang et al. 2014) on P2 (the white arrow in panel (g)) connecting FR3. Note that the warm coronal loops (L1; the white arrow in panel (h)), connecting the SFR and FR1, survived during the eruptive flare.

The evolution of the multiple FRs is shown in 304 Å images (first and third columns) and Hα filtergrams (second and fourth columns) in Figure 2. Before the flare, FR3 and the SFR were at a single continuous bright lane (white arrows in panel (a1)). There were also some filaments (F1–F3; arrows in panel (a2)) around the eruption region. At the beginning of the flare, FR1 lay at the edge of N2 as the coastline of a peninsula (the black arrow in panel (b1)); sequentially, FR1 quickly moved from the north top toward the center of N2 (the dotted line S2 and the southward black arrow in panel (c1)). Meanwhile, FR2 extended eastward, and FR3 moved southward (white arrows in panels (b1)–(d1)). As a result of the extension, hook-like structures formed at the east ends of FR1–FR2 (conjugated arrows in panel (d1)), and the semi-circular SFR appeared, connecting the south end of FR3. In addition, there appeared a mass flow from FR2 to AR 11946 (black arrows in panels (e)–(f)), which likely provides another evidence of the magnetic reconnection between TELs and the overlying field of SL’s western part. Moreover, the F1–F3 seemed to survive during the entire flare (white arrows in panels (e2)–(h2)).

The attractive element of the event is the bright features moving along the SFR (better seen in the accompanying animation). The bright features first moved clockwise in west-east direction toward the SFR’s easternmost point (northward black arrows in panels (c)–(d) of Figure 2), and then slipped anticlockwise toward FR3. Note that the slippage of the SFR first occurred along the outer edge, and then moved along the inner edge. Following the slippage, the SFR nearly disappeared and was replaced by wider coronal dimmings (northward white arrows in panels (e1)–(h1) of Figure 2), but FR3’s were nearly intact (black arrows in panels (g2)–(h2) of Figure 2). The slipping motion along the SFR and the associated dimmings are consistent with the presence of an eruption as predicted by the standard 3D model for eruptive flares (Aulanier et al. 2012; Janvier et al. 2013). Next, we focus on the interesting anticlockwise slippage of the SFR shown in AIA 94, 193, 171, 304, and 1600 Å (Figure 3). In the right column, the moving features are indicated by black arrows, and the wider dimmings are pointed out by white arrows in panels (a2)–(d4). The hook-like structures of FR1 and FR2 are shown by black arrows in the left column. During the flare, L1 connecting the SFR and N2 (white arrows in panels (b1)–(c1)) was intact.
To best analyze the kinetics of FR1 and the SFR, we employ the time-slice approach along the dotted lines in Figures 2 and 3. According to the time-slice plots (upper panels of Figure 4), the slippage of FR1 started at about 18:04 UT, close to the flare onset, and its speed is about 384 km s\(^{-1}\). The anticlockwise propagation velocity of the moving feature along the SFR is

Figure 4. Slipping motions of FR1 (panel (a)) and the SFR (panels (b)–(c)) in time-slice images along the dotted lines in Figures 2 and 3, and the flare evolution in original (panel (d)) and bas-difference (panels (e)–(i)) images of AIA 94 Å. The linear fitted velocities are obtained along the dotted lines. The black arrows in panels (f)–(g) show the newly formed L3, and the white arrows in panels (e), (f)–(h), and (i) indicate the brightening, the moving features, and the dimmings, respectively. The dotted boxes in panels (d)–(g) illustrate the fading of the hook of FR2. (An animation of this figure is available.)
about 110–130 km s$^{-1}$ in 304 and 94 Å, and its onset is about at 18:30 UT.

In the middle and bottom panels of Figure 4, the eruptive flare is also shown in the original (panels (d) and (i)) and base-difference (panels (e)–(h)) images of AIA 94 Å (see the accompanying animation). The moving features of the SFR (white arrows in panels (f)–(h)) and associated dimmings (the white arrow in panel (i)) are clear. At the beginning of the flare, FLs were still in a lower altitude, but there were some hot loops (L2, panel (d)) overlaying the FLs between FR1 and FR2, which existed before the flare. As the FLs grew up, L2 was impulsively heated and expanded. About some minutes later, there formed some new loops (L3; the black arrow in panel (f)) connecting FR1 and a remote brightening (the white arrow in panel (e)). The brightening was rooted in the negative polarity (N3, see Figure 1(a)) of F3, consistent with the brightening at the turn of F3 (westward white arrows in panels (e1)–(f1) of Figure 2). Because L3 connected P1 with N3, there is likely a magnetic reconnection between L2 and the overlying arcades of F3. L3 kept extending southward along N3 (the black arrow in panels (h)–(i)), and left a clear channel between L3 and FLs. On the other hand, the hook-like structure of FR2 was also fading (dotted boxes in panels (e)–(g)), which is possibly related to the formation of L3.

4. DISCUSSION AND CONCLUSIONS

The apparent slipping motion of the FLs and the hook-like structures of the FRs are consistent with the 3D reconnection in the QSLs, as predicted by the 3D standard flare model (Aulanier et al. 2012 and Janvier et al. 2013). The 3D model is generic with two polarities and two J-shape FRs. This kind of slipping of the twin FRs has been reported in previous studies (Dudik et al. 2014; Li & Zhang 2014, 2015). Here, the slipping motions of the flare involved at least two ARs and three distinct FRs, which may be a consequence of the more complex flux distribution in the photosphere. The semi-circular SFR contributes to the complex magnetic configuration, and confirms the presence of a QSL (Aulanier et al. 2007).

The SFR was not connected by FLs, and disappeared following the slippage. Does it mean that the SFR is a different structure, e.g., footpoints of coronal loops impulsively heated by the flare (Zheng et al. 2015)? Note that the eruption was launched between FR1 and FR3 toward the southwest (better seen in 193 Å of the accompanying animation), and it was closely associated with a fast partial-halo CME in the southwest. Following the slippage, the SFR widened, and coronal dimmings formed within the widened part of the SFR (white arrows in right column of Figure 3), which is in accordance with the predictions of the 3D standard model for eruptive flares (Figure 11(a) of Janvier et al. 2015). Hence, the SFR is the extended hook of FR3, and represents footpoints of erupting structures as predicted in the 3D standard model for eruptive flares. The presence of dimmings within the hook is due to the stretching of the field lines opened by the eruption.

According to the 3D slipping reconnection in the QSLs predicted by the 3D flare model, we suggest the scenario of the slippage of the SFR in a sketch (Figure 5), which is based on an HMI magnetogram showing the associated magnetic polarities (P1–P2, N1–N3). FR3 and the SFR are at a single continuous bright lane (orange lines) before the flare (Figure 2(a1)). The erupting SL (the dashed light-blue line) induced the flare and FLs (yellow lines). Due to the successive reconnections, FR3 extended clockwise and formed a semi-circular SFR. The bright features first moved along the outer edge of the SFR toward its easternmost point, and continually slipped anticlockwise along the inner edge of the SFR, followed by coronal dimmings within the hook (the shadow in panel (b)). The slipping directions of the SFR are indicated by orange arrows, and the tight narrow hook is similar to that reported by Dudik et al. (2014). The presence of dimmings reveals the open of the erupting structure (the pink lines). Note that the erupting structure is just a schematic representation of the eruption, and can itself be fragmented, since FR1–FR3 all have hook

1. http://cdaw.gsfc.nasa.gov/movie/make_javamovie.php?stine=20140107_1711&etime=20140107_2049&ti...
structures. In addition, the survived warm coronal loops (L1; red lines) connected the inner edge of the SFR and FR2. Due to the eruption direction, the dimmings only occur to the southwest of the closed L1. The inner edge of the SFR is then simply the topological boundary between closed and open field lines. On the other hand, the hot coronal loops L2 (green lines) are impulsively heated, expanded, and reconnected with the magnetic field lines (black lines) overlying F3 (the sparkle), which resulted in the formation of L3 (deep-blue lines).

As in the findings in Dudík et al. (2014), the tight narrow hook of the SFR fades and disappears, due to the moving footpoints of erupting structures. The fading and disappearance of the hook of FR2 is possibly due to the successive reconnections between L2 and the overlying loops of F3. It suggests that the eruption with complex magnetic configurations involves at least two magnetic reconnections.

All the FRs underwent slipping motions in most of the AIA passbands, especially for FR1 and SFR. FR1 extended fast with a speed of 384 km s$^{-1}$, which is faster than that of previous results; the anticlockwise propagation velocity of the SFR is about 130 km s$^{-1}$, which is similar to that of the previous results (Dudík et al. 2014; Li & Zhang et al. 2014, 2015). The fast slippage of FR1 reveals the strong-to-weak shear transition of FLs, which is likely associated with the untwisting of the SL during the eruption. According to the definitions in Aulanier et al. (2006), the slipping-running and slipping reconnection regimes respectively correspond to super- and sub-Alfvénic field line fast slippage. Due to the average Alfvén speed for the decaying AR is 500 km s$^{-1}$ (Aulanier et al. 2012), all the slipping speeds here are in the range of sub-Alfvénic speed. We suggest that the extension and propagation in multiple FRs are as a result of slipping magnetic reconnections.

Benefiting from the high-resolution observations of SDO/AIA, we capture the slipping magnetic reconnections in multiple FRs during the X1.2 flare on 2014 January 7. As the result of slipping motion, multiple FRs extended with hook structures. Due to the moving footpoints of erupting structures and another magnetic reconnection, hooks disappeared, and/or were replaced by coronal dimmings. Our results are accordant with the slipping magnetic reconnection regime in the 3D standard model for eruptive flares (Aulanier et al. 2006, 2012; Janvier et al. 2013, 2015). More studies of the slipping reconnection will be helpful for understanding the 3D standard flare model; further observations and theoretical work will be necessary.

Many thanks to Wei Liu, Ting Li, Xiaoli Yan, and Hongqiang Song for constructive discussions. SDO is a mission of NASA’s Living With a Star Program. The authors thank the SDO team for providing the data. This work is supported by grants NSBRSF 2012CB825601, NNSFC 41274175, and 41331068, and Yunnan Province Natural Science Foundation 2013FB085.

REFERENCES

Aulanier, G., Golub, L., DeLuca, E. E., et al. 2007, Sci, 318, 1588
Aulanier, G., Janvier, M., & Schmieder, B. 2012, A&A, 543, 110
Aulanier, G., Pariat, E., Démoulin, P., & DeVore, C. R. 2006, SoPh, 238, 347
Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. E. 2010, ApJ, 708, 314
Carmichael, H. 1964, in Proc. AAS–NASA Symp. on the Physics of Solar Phrase, NASA Special Publ 50, 451
Chandra, R., Schmieder, B., Aulanier, G., & Malherbe, J. M. 2009, SoPh, 258, 53
De Moortel, I., & Galsgaard, K. 2006, A&A, 451, 1101
Del Zanna, G., Berlicki, A., Schmieder, B., & Mason, H. E. 2006, SoPh, 234, 95
Dudík, J., Janvier, M., Aulanier, G., et al. 2014, ApJ, 784, 144
Fletcher, L., Dennis, B. R., Hudson, H. S., et al. 2011, SSRv, 159, 19
Fletcher, L., & Hudson, H. S. 2002, SoPh, 210, 307
Green, L. M., Kliem, B., & Wallace, A. J. 2011, A&A, 526, 2
Harvey, J. W., Bolding, J., Clark, R., et al. 2011, in AAS/Solar Physics Division Abstracts 42, 1745
Hirayama, T. 1974, SoPh, 34, 323
Janvier, M., Aulanier, G., & Démoulin, P. 2015, SoPh, 290, 3425
Janvier, M., Aulanier, G., Pariat, E., & Démoulin, P. 2013, A&A, 555, 77
Kopp, R. A., & Pneuman, G. W. 1976, SoPh, 50, 85
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, 275, 17
Li, T., & Zhang, J. 2014, ApJL, 791, L13
Li, T., & Zhang, J. 2015, ApJL, 804, L8
Pesnell, W. D., Thompson, B. J., Chamberlin, P. C., et al. 2012, SoPh, 275, 3
Pontin, D. I., Hornig, G., & Priest, E. R. 2005, GApFD, 99, 77
Priest, E. R., & Démoulin, P. 1995, IGR, 100, 23443
Savecheva, A., Pariat, E., McKillop, S., et al. 2015, ApJ, 810, 96
Scherrer, P. H., Schou, J., Bush, R. I., et al. 2012, SoPh, 275, 207
Sturrock, P. A. 1966, Natur, 211, 695
Yokoyama, T., Akita, K., Morinoto, T., Inoue, K., & Newmark, J. 2001, ApJL, 546, L69
Zhang, J., Cheng, X., & Ding, M. D. 2012, NatCo, 3, 747
Zheng, J., Li, T., & Yang, S. 2014, ApJL, 782, L27
Zheng, R., Korsós, M. B., & Edélyi, R. 2015, ApJ, 809, 45