Cataract surgery in the face of ocular surface disease

Asadolah Movahedan and Ali R. Djalilian

Purpose of review
This article reviews the importance of ocular surface management in patients undergoing cataract surgery. The current strategies for the diagnosis and management of ocular surface disease in cataract surgery patients are discussed.

Recent findings
The current trend is to diagnose and treat ocular surface disease before cataract surgery using a stepwise regimen tailored to the individual patient and disease severity.

Summary
Maintaining a healthy ocular surface is essential for achieving the best visual outcome in cataract patients. Ocular surface preparation is beneficial not only in patients with established ocular surface disease, but also in those with minimal signs or symptoms of surface disease.

Keywords
blepharitis, cataract surgery, dry eye, lid margin disease, ocular surface disease

INTRODUCTION
Ocular surface disease, particularly dry eye syndrome, is one of the most common conditions in the elderly [1,2]. As age-related cataract constitutes most of patients undergoing phacoemulsification, the diagnosis and management of ocular surface disease is therefore indispensable in majority of these patients. In a recent multicenter study, presented at the American Society of Cataract and Refractive Surgery, more than half of all patients who underwent cataract surgery were found to have significant dry eye disease based on objective testing (W.B. Trattler et al., unpublished data). This is important, as the incidence and severity of dry eye symptoms increase even further after cataract surgery [3,4]. In particular, phacoemulsification has been shown to reduce tear meniscus height and tear breakup time (TBUT) [5,6] and increase squamous metaplasia on conjunctival impression cytology [7]. The mechanism for the exacerbation of surface disease after cataract surgery likely includes several factors: increased inflammatory mediators due to postoperative inflammation, toxicity from the use of benzalkonium chloride containing eye drops, and damage to the corneal nerves from limbal incisions. The presence and exacerbation of ocular surface disease may have special importance in patients receiving presbyopic intraocular lenses, as disturbances in the tear film can significantly impact the visual quality and patient satisfaction postoperatively. In addition to having delayed visual recovery after cataract surgery, patients with moderate-to-severe ocular surface disease are also at higher risk of postoperative complications, namely infections and corneal melts. Therefore, aggressive management of the ocular surface disease is imperative in all cataract surgery patients. This review summarizes the latest approaches to the diagnosis and management of ocular surface disease in the setting of cataract surgery.

DIAGNOSIS
Preoperative recognition of patients with ocular surface disease provides an opportunity to optimize the surface before proceeding with surgery. The patient history is often one of the most important elements...
in the diagnosis of patients with dry eyes or ‘dysfunctional tear syndrome’ [8,9]. In addition to the usual symptoms of grittiness or discomfort, blurry vision that is worsened by visual activity, can sometimes be overlooked as a symptom of dry eye and could be mistakenly attributed to the patient’s cataract [10]. As noted by others, fluctuating vision either before or after cataract surgery is almost always a sign of tear film insufficiency [11]. Likewise, history of a systemic collagen vascular disease or associated manifestations such as arthritis or dry mouth provides important clues for the possibility of concomitant ocular surface disease.

Clinical examination and diagnostic testing
The clinical examination of the cataract surgery patient can provide additional clues that suggest tear film insufficiency. These include findings such as debris in the tear film, a low tear meniscus height, evidence of lid margin disease, and conjunctival inflammation.

Diagnostic testing is greatly valuable both for the detection of early changes due to dry eyes and also to grade the severity of surface disease. The most commonly performed tests include the Schirmer test, TBUT, and ocular surface staining. It is noteworthy that clinical findings and diagnostic tests are only weakly associated with patient symptoms in ocular surface disease [12,13].

There is an ongoing debate about the reproducibility and sensitivity of the Schirmer test as it measures reflex tearing and the stimulus is not standardized. Serin et al. [14] have suggested that performing the test without anesthesia with the eyes closed produces less variable results and increases the repeatability of the test. The two-minute Schirmer test has been proposed as an acceptable alternative for 5-min test both for the patient and examiner; overall, the Schirmer test may be less useful in mild cases and instead more applicable for detecting patients with moderate-to-severe aqueous tear deficiency.

A TBUT of less than 10 s is likewise highly suggestive of an inadequate tear film and is a valuable diagnostic test when looking for the evidence of ocular surface disease preoperatively.

Ocular surface staining
Corneal staining with fluorescein is a widely used diagnostic modality to assess the severity of the dry eyes (Fig. 1). Lisamine green and Rose Bengal stain the epithelial cells that have lost their mucin covering; both are more sensitive than fluorescein in detecting the early signs of tear film insufficiency by looking for staining in the nasal and temporal conjunctiva.

Hardten [15] has suggested using a test he calls ‘ocular surface stress test’ to identify high-risk patients for developing dry eye signs and symptoms after phacoemulsification. ‘After the dilating drops and anesthetic, the patient is directed to sit in the waiting room for 30–60 min and is then reexamined. If irregular epithelium or punctate keratopathy is observed during this follow-up examination, that patient probably has problems maintaining a healthy epithelial surface after surgery.’ (p. 855).

Corneal sensation
Neurotrophic corneal disease is relatively common and especially in diabetic patients is a frequent cause of chronic surface disease [16]. The use of cotton wisp to measure sensation can identify such
patients. Although neurotrophic patients are less likely to complain of the typical dry eye symptoms (other than fluctuating or decreased vision), they are at particularly higher risk for ocular surface complications such as persistent epithelial defects following cataract surgery.

MANAGEMENT

Given the elective nature of cataract surgery, once a patient has been identified as having poorly controlled ocular surface disease, surgery is typically postponed until the surface can be optimized.

Preoperative care

Management of ocular surface disease may be done most effectively by following established treatment guidelines [17]. In this stepwise approach, treatment begins with artificial tears which have been shown to diminish ocular symptoms and improve vision-related function and dry eye signs (TBUT) in the majority of cataract surgery patients [18].

Anti-inflammatory agents play a major role in the treatment of moderate-to-severe dry eye because of the critical role of inflammation in pathogenesis of the ocular surface disease. Topical corticosteroids and immunomodulatory agents constitute the main therapies currently in use. Several studies have noted the efficacy of topical corticosteroids in treatment of dry eye [19]. Steroids have a rapid onset of action and therefore are helpful in circumstances that immediate response is needed. In a randomized, double-masked, placebo-controlled study in keratoconjunctivitis sicca patients, a significant difference between the loteprednol etabonate ophthalmic suspension 0.5%-treated group and vehicle-treated group was found in patients with moderate clinical inflammation after 2 weeks of therapy. In addition, steroid-treated patients retained their improvement compared with control group [20].

Cyclosporine has gained popularity because its long-term use is devoid of steroid-induced side-effects. Although, it may take several weeks of treatment in order to get a therapeutic effect. The mechanism of action of cyclosporine in increasing tear production is not fully understood, but the drug seems to have immunomodulatory effects that reduce inflammation. Pflugfelder et al. [21] showed a significant increase in goblet cell density in the bulbar conjunctiva in patients with dry eye with 0.05% cyclosporine emulsion therapy twice a day for 12 weeks comparing the same treatment with artificial tears. Sahli et al. [22] reported the beneficial effects of topical cyclosporine therapy twice daily in increasing Schirmer test values and TBUT scores and improvement of cytological grade of dry eye comparing the patients before and 6 months after treatment. Donnenfeld et al. [23] found that cyclosporine 0.05% therapy improves visual quality after multifocal intraocular lens implantation suggesting its beneficial effect on tear-film quality. A recent study showed that decreasing therapy to once daily for patients controlled with topical 0.05% cyclosporine twice daily for at least 1 year, still may allow suppression of the dry eye disease [24]. An important consideration in patients with cataract surgery is to maximally suppress inflammation preoperatively, given that inflammation increases significantly after surgery.

In patients with significant aqueous deficiency, consideration should be given to punctual occlusion. Punctal plugs have been shown to improve vision in dry eye patients by stabilizing tear film through decreasing its osmolarity [25]. Combining punctal plugs with 0.05% cyclosporine is shown to result in the best Schirmer test scores, Rose Bengal staining, and reduction in overall artificial tear use compared to either treatments alone [26]. Punctal occlusion is best done after controlling the ocular surface inflammation.

Management of lid disease is likewise essential for optimization of surgical outcomes. In one series, blepharitis was the number one reason for cancellation of cataract surgery [27], as it is thought to be a primary risk factor for endophthalmitis [28]. Preoperative treatment begins with a prolonged commitment to eyelid hygiene. Topical antibiotics are used to control staphylococcal growth on the eyelids. Recent antibiotics such as topical azithromycin are promising in unresponsive patients and have been shown to effectively reduce signs and symptoms of blepharitis [29]. If severe inflammation or complications like phlyctenules or severe conjunctivitis are present, topical antibiotic-steroid combinations can be used for short periods of time [30]. Oral antibiotics, commonly doxycycline or minocycline, are reserved for refractory cases most of whom have significant meibomian gland disease or ocular rosacea [31]. Tetracycline drugs improve the symptoms [32], boost TBUT [33], and also decrease eyelid flora. These are typically started at least 1 month before cataract surgery. Increasing intake of omega-3 fatty acids from fish oil and flax seed oil may also have anti-inflammatory effects which are beneficial in the management of lid disease.

Intraoperative care

Intraoperatively, the ocular surface is prone to damage from preservative containing anesthetics and
more importantly from desiccation. Frequent irrigation with balanced salt solution or more viscous eye lubricants or viscoelastics [34] can minimize the desiccating stress to the surface. In a randomized, controlled, double-masked study, hydroxypropyl methylcellulose (HPMC) 2% gel provided significantly better optical clarity and less frequent need for irrigation compared with Balanced Salt Solution during cataract surgery. One-hour after surgery, there was no difference in the corneal staining between the two groups [35*].

The surgical incision may potentially impact the ocular surface after cataract surgery. Historically, large incision from extracapsular cataract extractions induced significant damage to the corneal nerves [36]. However, small incision cataract wounds [37,38] as well as limbal relaxing incisions seem to induce localized damage to the corneal nerves with subsequent reduced corneal sensation [39]. However, the effect of decreased corneal sensation on ocular surface and tear film has not been studied.

Postoperative care

After cataract surgery, the signs and/or symptoms of ocular surface disease typically get worse. Prolonged use of postoperative medications may be one of the contributing factors. Therefore, in patients with surface disease, it is best to stop or taper medications when no longer needed. One particular type of medication commonly used after cataract surgery that deserves special attention is topical nonsteroidal anti-inflammatory drug (NSAID). Topical NSAIDs such as nepafenac, ketorolac, and diclofenac have been reported to cause corneal melting mainly in the presence of epithelial breakdown [40–42]. These complications may be more likely in patients with significant ocular surface disease and dry eye such as Sjogren’s syndrome. There is a suggestion that concomitant use of topical steroids with NSAIDs may reduce this complication; however, it does not completely prevent it. Therefore, in patients with significant ocular surface disease, it is prudent to minimize or even avoid the use of topical NSAIDs especially as a single agent.

CATARACT SURGERY IN SEVERE OCULAR SURFACE DISEASE

As mentioned in the last section, patients with severe ocular surface disease are at significantly greater risk of complication after cataract surgery. One noteworthy complication is sterile corneal melts which has been reported in patients with immune-mediated ocular surface diseases such as Sjogren’s syndrome, graft versus host disease, and Stevens–Johnson syndrome [42–47]. Optimization of the ocular surface prior to cataract surgery is imperative in these patients. Although topical steroids are cautiously used in patients with an unstable surface, systemic immunosuppression may be indicated to suppress inflammation in the setting of systemic disease [48]. Cataract surgery in patients with ocular cicatricial pemphigoid (OCP) requires the disease to be controlled for a minimum of 1 year, while perioperative use of systemic steroids is highly recommended.

CONCLUSION

Given that cataract surgery is a surface-damaging event, it is important to consider ocular surface in patients preoperatively. Ocular surface preparation is beneficial not only in patients with established ocular surface disease, but also in those with minimal signs or symptoms of surface disease. Currently, there is more interest among the cataract surgeons to further improve the outcomes of surgery by aggressively treating the ocular surface before and after operation.

Acknowledgements

None.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:
- **of special interest**
- **of outstanding interest**

Additional references related to this topic can also be found in the Current World Literature section in this issue (p. 77).

1. Schaufenburg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol 2003; 136:318–326.
2. Han SB, Hyon JY, Woo SJ, et al. Prevalence of dry eye disease in an elderly Korean population. Arch Ophthalmol 2011; 129:633–638.
3. Cho YK, Kim MS. Dry eye after cataract surgery and associated intraoperative risk factors. Korean J Ophthalmol 2009; 23:65–73.
4. Li XM, Hu L, Hu J, Wang W. Clinical observation of dry eye in patients before and after cataract surgery. Zhonghua Yan Ke Za Zhi 2007; 43:10–13.
5. Ram J, Gupta A, Brar G, et al. Outcomes of phacoemulsification in patients with dry eye. J Cataract Refract Surg 2002; 28:1386–1389.
6. Khanal S, Tomlinson A, Eskowitz L, et al. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic Physiol Opt 2008; 28:127–134.
7. Li XM, Hu L, Hu J, Wang W. Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea 2007; 26:S16–S20.
8. Korb DR. Survey of preferred tests for diagnosis of the tear film and dry eye. Cornea 2000; 19:483–486.
9. Nichols KK, Nichols JI, Zadnik K. Frequency of dry eye diagnostic test procedures used in various modes of ophthalmic practice. Cornea 2000; 19:477–482.
Cataract surgery and ocular surface disease

10. Lemp MA. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. CLAO J 1995; 21:221–232.
11. Roberts CW, Elie ER. Dry eye symptoms following cataract surgery. Insight 2007; 32:14–21; quiz 22–23.
12. Bjerrum KB. Test and symptoms in keratoconjunctivitis sicca and their correlation. Acta Ophthalmol Scand 1998; 74:436–441.
13. Hay EM, Thomas E, Pal B, et al. Weak association between subjective symptoms or and objective testing for dry eyes and dry mouth: results from a population based study. Ann Rheum Dis 1998; 57:20–24.
14. Sein D, Karsløoglu S, Kyan A, Alagast G. A simple approach to the repeatability of the Schmpire test without anesthesia: eyes open or closed? Cornea 2007; 26:903–906.
15. Hardten DR. Dry eye disease in patients after cataract surgery. Cornea 2008; 27:855.
16. Lockwood A, Hope-Ross M, Chell P. Neurotrophic keratopathy and diabetes mellitus. Eye 2008; 20:837–839.
17. Behrens A, Doyle Jl, Stem L, et al. Dysfunction tear syndrome: a Delphi approach to treatment recommendations. Cornea 2006; 25:900–907.
18. Sánchez MA, Arriola-Villalobos P, Torrabo-Jiménez P, et al. The effect of preservative-free GP-Guar on dry eye after phacoemulsification: a flow cytometric study. Eye 2010; 24:1331–1337.
19. Pfliugfelder SC. Antiinflammatory therapy for dry eye. Am J Ophthalmol 2004; 137:397–342.
20. Pfliugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol 2004; 138:444–457.
21. Pfliugfelder SC, De Paiva CS, Villarreal AL, Stem ME. Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production. Cornea 2008; 27:64–69.
22. Sahi E, Hopal BM, Ziełońgol G, Gülbağçe R, et al. The effect of topical cyclosporine A on clinical findings and cytological grade of the disease in patients with dry eye. Cornea 2010; 29:1412–1416.
23. Donnenfeld ED, Solomon R, Roberts CW, et al. Cyclosporine 0.05% to improve visual outcomes after multifocal intraocular lens implantation. J Cataract Refract Surg 2010; 36:1095–1100.
24. Su MY, Perry HD, Barsam A, et al. The effect of decreasing the dosage of cyclosporine A 0.05% on dry eye disease after 1 year of twice-daily therapy. Cornea 2011; 30:1098–1104.
25. Gilbard JP, Rossi SR, Azar DT, Hydka KG. Effect of puncatcular occlusion by Freeman silicone plug insertion on tear osmolarity in dry eye disorders. CLAO 1988; 14:216–218.
26. Roberts CW, Carniglia PE, Brazzo BG. Comparison of topical cyclosporine, punctal occlusion, and a combination for the treatment of dry eye. Cornea 2007; 26:805–809.
27. Stead RE, Stuart A, Keller J, Subramanian S. Reducing the rate of cataract surgery cancellation due to blepharitis. Eye 2010; 24:742.
28. Speaker MG, Milch FA, Shah MK, et al. The role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology 1991; 98:639–649.
29. Luche J. Efficacy of topical azithromycin ophthalmic solution 1% in the treatment of posterior blepharitis. Adv Ther 2008; 25:858–870.
30. Jackson WB. Blepharitis, current strategies for diagnosis and management. Can J Ophthalmol 2008; 43:170–179.
31. Alvarenga LS, Mannis MJ. Ocular rosacea. Ocul Surf 2005; 3:41–58.
32. Akpek EK, Merchant A, Pinar V, Foster CS. Ocular rosacea: patient characteristics and follow-up. Ophthalmology 1997; 104:1863–1867.
33. Zengin N, Tol H, Gündüz K, et al. Meibomian gland dysfunction and tear film abnormalities in rosacea. Cornea 1995; 14:144–146.
34. Lindstrom RL. The effects of blepharitis on ocular surgery. Ocul Surf 2009; 7:518–520.
35. Chen YA, Hirschall N, Findl O. Comparison of corneal wetting properties of viscous eye lubricant and balanced salt solution to maintain optical clarity during cataract surgery. J Cataract Refract Surg 2011; 37:1806–1808.
36. Lyne A. Corneal sensitivity after surgery. Trans Ophthalmol Soc UK 1982; 102:302–305.
37. John T. Corneal sensation after small incision, sutureless, one-handed cataract surgery. Can J Ophthalmol 2005; 40:727–731.
38. Kohlhaas M, Stahlhut O, Tholuck J, Richard G. Development of corneal sensitivity after phacoemulsification with scleral tunnel incision. Klin Monbl Augenheilkd 1987; 211:32–36.
39. Moon SW, Yeom DJ, Chung SH. Neurotrophic corneal ulcer development following cataract surgery with a limbal relaxing incision. Korean J Ophthalmol 2011; 25:210–213.
40. Wolf E, Kleinman LZ, Schrier A. Nepafenac-associated corneal melt. J Cataract Refract Surg 2007; 33:1974–1975.
41. Khalifa YM, Miffin MD. Keratitis and corneal melt with ketorolac tromethamine after conductive keratoplasty. Can J Ophthalmol 2011; 30:477–478.
42. Gokhale NS, Vemuganti GK. Diclofenac-induced acute corneal melt after collagen crosslinking for keratoconus. Cornea 2010; 29:117–119.
43. Pfister RR, Murphy GE. Corneal ulceration and perforation associated with Sjögren’s syndrome. Arch Ophthalmol 1980; 98:89–94.
44. Cohen KL. Sterile corneal perforation after cataract surgery in Sjögren’s syndrome. Br J Ophthalmol 1982; 66:179–182.
45. Perez VL, Azar DT, Foster CS. Sterile corneal melting and necrotizing scleritis after cataract surgery in patients with rheumatoid arthritis and collagen vascular disease. Semin Ophthalmol 2002; 17:124–130.
46. Van der Meulen IJ, van Rooij J, Hazes JW, et al. Corneal melting after ocular surgery in patients with auto-immune disorders. Ned Tijdschr Geneeskd 2007; 151:920–923.
47. Sangwan VS, Burman S. Cataract surgery in Stevens–Johnson syndrome. J Cataract Refract Surg 2005; 31:860–862.
48. Cordero-Coma M, Anzara F, Sobrin L, Foster CS. Systemic immunomodulatory therapy in severe dry eye secondary to inflammation. Ocul Immunol Inflamm 2007; 15:99–104.