Turtles of the genera *Geoemyda* and *Pangshura* (Testudines: Geoemydidae) lack differentiated sex chromosomes: the end of a 40-year error cascade for *Pangshura*

Sofia Mazzoleni ¹, Barbora Augstenová ¹, Lorenzo Clemente ¹, Markus Auer ², Uwe Fritz ², Peter Praschag ³, Tomáš Protiva ⁴, Petr Velenský ⁵, Lukáš Kratochvíl ¹, Michail Rovatsos ¹

¹ Department of Ecology, Charles University, Prague, Czech Republic
² Museum of Zoology, Senckenberg, Dresden, Germany
³ Turtle Island, Graz, Austria
⁴ landsnails.org, Prague, Czech Republic
⁵ Prague Zoological Garden, Prague, Czech Republic

Corresponding Author: Michail Rovatsos
Email address: michail.rovatsos@natur.cuni.cz

For a long time, turtles of the family Geoemydidae have been considered exceptional, because representatives of this family were thought to possess a wide variety of sex determination systems. In the present study, we cytogenetically studied *Geoemyda spengleri* and *Geoemyda japonica* and re-examined the putative presence of sex chromosomes in *Pangshura smithii*. Karyotypes were examined by assessing the occurrence of constitutive heterochromatin, by comparative genome hybridization and *in situ* hybridization with repetitive motifs, which are often accumulated on differentiated sex chromosomes in reptiles. We found similar karyotypes, distributions of constitutive heterochromatin and topology of tested repetitive motifs for all three species. We did not detect differentiated sex chromosomes in any of the species. For *P. smithii*, ZZ/ZW sex determination system, with differentiated sex chromosomes, was described more than 40 years ago, but this finding has never been re-examined and was cited in all reviews of sex determination in reptiles. Here we show that the identification of sex chromosomes in the original report was based on the erroneous pairing of chromosomes in the karyogram, causing over decades an error cascade regarding the inferences derived from the putative existence of female heterogamety in geoemydid turtles.
Turtles of the genera *Geoemyda* and *Pangshura* (Testudines: Geoemydidae) lack differentiated sex chromosomes: the end of a 40-year error cascade for *Pangshura*

Sofia Mazzoleni¹, Barbora Augstenová¹, Lorenzo Clemente¹, Markus Auer², Uwe Fritz², Peter Praschag³, Tomáš Protiva⁴, Petr Velenský⁵, Lukáš Kratochvíl¹, Michail Rovatsos¹

¹Department of Ecology, Charles University, Prague, Czech Republic
²Museum of Zoology, Senckenberg Dresden, Germany
³Turtle Island, Graz, Austria
⁴landsnails.org, Prague, Czech Republic
⁵Prague Zoological Garden, Prague, Czech Republic

Corresponding Author:
Michail Rovatsos
Viničná 7, Prague, 12844, Czech Republic
Email address: michail.rovatsos@natur.cuni.cz

Abstract

For a long time, turtles of the family Geoemydidae have been considered exceptional, because representatives of this family were thought to possess a wide variety of sex determination systems. In the present study, we cytogenetically studied *Geoemyda spengleri* and *Geoemyda japonica* and re-examined the putative presence of sex chromosomes in *Pangshura smithii*. Karyotypes were examined by assessing the occurrence of constitutive heterochromatin, by comparative genome hybridization and *in situ* hybridization with repetitive motifs, which are often accumulated on differentiated sex chromosomes in reptiles. We found similar karyotypes, distributions of constitutive heterochromatin and topology of tested repetitive motifs for all three species. We did not detect differentiated sex chromosomes in any of the species. For *P. smithii*, ZZ/ZW sex determination system, with differentiated sex chromosomes, was described more than 40 years ago, but this finding has never been re-examined and was cited in all reviews of
sex determination in reptiles. Here we show that the identification of sex chromosomes in the
original report was based on the erroneous pairing of chromosomes in the karyogram, causing
over decades an error cascade regarding the inferences derived from the putative existence of
female heterogamety in geoemydid turtles.

Introduction

Turtles exhibit different sex determination modes. Although it is still a matter of debate, the
ancestral (Valenzuela & Adams, 2011; Johnson Pokorná & Kratochvíl, 2016) and most common
sex determination mechanism in turtles is most likely environmental sex determination (ESD).
Genotypic sex determination (GSD) evolved independently in five families (Chelidae,
Emydidae, Geoemydidae, Kinosternidae, Trionychidae) (Valenzuela & Adams, 2011;
Badenhorst et al., 2013). Turtles of the family Geoemydidae (Old World pond turtles) are a
fascinating model for the evolution of sex determination, because it has been reported that this
large family with more than 70 species (Rhodin et al., 2017) includes lineages with ESD as well
as GSD, with both male (XX/XY sex chromosomes) and female (ZZ/ZW) heterogamety
(Valenzuela & Adams, 2011).

ESD was reported for three geoemydid genera, namely Mauremys (including Chinemys)
(Rhodin et al., 2017), Melanochelys and Rhinoclemmys, mainly based on skewed sex ratios of
hatchlings incubated at different temperatures (Ewert et al., 2004). So far, cytogenetic
examinations revealed XX/XY sex chromosomes only in the black marsh turtle Siebenrockiella
crassicollis (Carr & Bickham, 1986; Kawagoshi et al., 2012) and ZZ/ZW sex chromosomes only
in the brown roofed turtle Pangshura smithii (Sharma et al., 1975). The XX/XY sex
chromosomes of S. crassicollis are medium-sized, and have been assigned as the fourth pair of
the karyogram. The sex chromosomes are heteromorphic and with gene content partially
homologous to chicken (Gallus gallus) and Chinese softshell turtle (Pelodiscus sinensis)
chromosome pair five (Kawagoshi et al., 2012). The Y chromosome is metacentric, and the X
chromosome is submetacentric, with a prominent C-positive band, missing on the Y. Despite that
the X and Y chromosomes differ in morphology and C-banding pattern, it seems that they share
gene content extensively. Sex-specific regions were not detected after single-copy gene mapping
(Kawagoshi et al., 2012). Therefore, we assume that these sex chromosomes are at an early stage
of differentiation with a small sex-specific region. For P. smithii, ZZ/ZW sex chromosomes have
been reported by Sharma et al. (1975) based on distinct chromosome morphology. For the majority of species of the family Geoemydidae, the sex determination mode remains unstudied.

In the current investigation, we cytogenetically explored the brown roofed turtle *P. smithii*, the black-breasted leaf turtle *Geoemyda spengleri* and the Ryukyu black-breasted leaf turtle *Geoemyda japonica* (Rhodin et al., 2017). *Geoemyda* is especially interesting because it represents the sister taxon of *Siebenrockiella*, a genus with an evident male heterogametic sex chromosomes (Carr & Bickham, 1986; Kawagoshi et al., 2012). In addition, the genus *Geoemyda* is phylogenetically nested in a major geoemydid clade containing also *Pangshura* (Spinks et al., 2004; Lourenço et al., 2013; Pereira et al., 2017), a genus with reported female heterogametic sex chromosomes (Sharma et al., 1975).

The pioneering studies by Nakamura (1937; 1949) reported a chromosome number of 2n = 52 for *G. spengleri*, but karyotypes were not documented photographically. In addition, neither the sex of the examined turtles nor their geographical origin was reported. We assume that Nakamura (1937; 1949) actually studied *G. japonica*, since the Japanese populations had the status of a subspecies of *G. spengleri* at that time (Yasukawa et al., 1992). Chaowen and co-authors (1998) studied later undoubtedly *G. spengleri*, using individuals originating from Hunan Province, China. Chaowen and co-authors (1998) applied classic cytogenetic methods and revealed also a karyotype of 2n = 52 chromosomes. However, no other cytogenetic approach has been applied to *Geoemyda* yet. Besides the karyogram of *P. smithii* published by Sharma and co-authors (1975), no further cytogenetic studies exist for this species.

In the present study, we constructed karyograms for all three species and further explored their karyotypes by C-banding stain to reveal the distribution of constitutive heterochromatin. Furthermore, we examined the presence of differentiated sex chromosomes by comparative genome hybridization (CGH) and fluorescence in situ hybridization (FISH) with repetitive elements that often accumulate on sex chromosomes of reptiles, such as telomeric motifs, (GATA)$_8$ microsatellite repeats and rDNA loci (Literman et al., 2014; Matsubara et al., 2016; Rovatsos et al., 2017a; Augstenová et al., 2018).

Materials & Methods

Samples and species verification
Blood samples from four individuals of *G. japonica*, five individuals of *G. spengleri* and four individuals of *P. smithii* (Table 1) were used for preparation of mitotic chromosome suspensions and DNA isolation. All turtles are captive-bred or legally imported, and kept in Plzeň Zoo (Czech Republic), Prague Zoo (Czech Republic) or the Museum of Zoology, Senckenberg Dresden (Germany).

Genomic DNA was extracted using a DNeasy Blood and Tissue Kit (Qiagen). We amplified by PCR and sequenced the mitochondrial cytochrome *b* gene (*cyt b*), in order to verify the taxon and to provide a DNA-based identity of our cytogenetically examined material for future comparison (for the same approach please see Koubová et al., 2014; Rovatsos et al., 2015a; Rovatsos et al., 2015b; Rovatsos et al., 2016a). *Cyt b* was amplified by PCR using the primers L14919 5´-AACCACGGTTGTTATCTCAACT-3´ and H16064 5´-CTTTGGTTTACAAGAACAATGCTTTA-3´ (Burbrink et al., 2000; de Queiroz et al., 2002). The PCR reaction protocol consists of 20-80 ng of DNA, 1 µl of each primer (10 pmol/µl), 5 µl of 10× PCR buffer (Bioline), 2.5 µl of MgCl₂ (50 mM), 1 µl of dNTPs (10 mM each), 0.5 µl of BioTaq DNA polymerase (5 U/µl, Bioline) and water up to final volume of 50 µl. The amplification conditions were: 95 °C for 3 min, followed by 35 cycles of 95 °C for 30 sec, 50 °C for 30 sec and 72 °C for 1 min, and a final step of 72 °C for 5 min. The PCR products were sequenced by Macrogen (Korea), and the obtained sequences deposited in GenBank. A BLAST search (Altschul et al., 1990) was performed to compare our sequences with those previously deposited in public databases.

Chromosome preparation and staining

Mitotic chromosome suspensions were prepared from all studied individuals using whole blood cell cultures. For leukocyte cultivation, 100-300 µl of blood samples were cultured at 30 °C for a week without CO₂ supplementation in 5 ml of DMEM medium (Gibco) enriched with 10% fetal bovine serum (Gibco), 100 µg/ml lipopolysacharide (Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich), 3% phytohaemaglutinin M solution (Gibco), 100 units/ml of penicillin and 100 µg/ml of streptomycin (Gibco). Three hours before harvesting, 35 µl of colcemid solution (10 µg/ml stock solution, Roche) was added to the medium. Chromosome suspensions were obtained according to the standard method, including an initial hypotonic treatment with 0.075 M KCl at...
37 °C for 30 min and four times fixation in 3:1 methanol/acetic acid solution. Chromosome suspensions were stored in freezer for further use.

Chromosomal spreads were stained with Giemsa solution, and selected metaphases were captured in a Provis AX70 (Olympus) fluorescence microscope, equipped with a DP30BW digital camera (Olympus). Subsequently, karyograms were constructed using Ikaros karyotyping software (Metasystems).

The distribution of constitutive heterochromatin was detected by C-banding (Sumner, 1972). The slides were aged at 55 °C for 1 h, then soaked successively in 0.2 N HCl at room temperature for 45 min, in 5% Ba(OH)$_2$ solution at 45 °C for 4-5 min and in 2xSSC for 1 h at 60 °C, with intermediate washes in distilled water, and finally stained with 4′,6-diamidino-2-phenylindole (DAPI) and mounted with antifade medium Vectashield (Vector Laboratories).

Fluorescence in situ hybridization with probes for repetitive elements

The probe to detect the topology of rDNA loci was prepared from a plasmid (pDm r.a51#1) with an 11.5-kb insertion, encoding the 18S and 28S rRNA units of *Drosophila melanogaster* (Endow, 1982) and labeled with biotin-dUTP using a Nick Translation Kit (Abbott Laboratories).

The probe for telomeric motifs (TTAGGG)$_n$ was produced and labeled with biotin-dUTP in a single PCR reaction using the primers (TTAGGG)$_5$ and (CCCTAA)$_5$ without a DNA template (Ijdo et al., 1991). The probes for the detection of rDNA loci and telomeric motifs were ethanol-precipitated with sonicated salmon sperm DNA and subsequently resuspended in hybridization buffer (50% formamide/2xSSC) (Rovatsos et al., 2015a; Rovatsos et al., 2017b).

The probe for the GATA microsatellite motif was synthesized by Macrogen (Korea) as (GATA)$_8$ and labeled with biotin. Subsequently, 0.3 μl of (GATA)$_8$ biotin-labeled probe (100 pmol/ul stock solution) was diluted in 10 μl of hybridization buffer (50% formamide, 20xSSC, 10% sodium dodecyl sulphate, 10% dextran sulphate, 1x Denhard’s buffer, pH = 7) per slide.

The preparation of chromosome spreads and probes, the hybridization conditions, the post-hybridization washes, the signal amplification and detection are explained in detail in (Rovatsos et al., 2015a). At least 20 metaphases per slide were captured to confirm the fluorescent signal. The pictures were collected in black and white and superimposed with colors. The photos were processed with DP Manager imaging software (Olympus).
Comparative Genome Hybridization

To detect putative sex-specific chromosome regions, CGH was used according to our standard protocol (Rovatsos et al., 2015a). In each species, equal amounts of male and female genomic DNA (1 µg each) were labelled independently with biotin-dUTP and digoxigenin-dUTP, respectively, using a Nick translation kit (Abbott Laboratories) and then mixed together. Sonicated salmon sperm DNA was added and ethanol-precipitation was carried out overnight at -20 °C. The labelled DNA was resuspended in hybridization buffer, denatured at 75 °C for 10 min and immediately chilled on ice for 10 min prior to hybridization. The slides with chromosomal material were subsequently treated with RNase A and pepsin, fixed with 1% formaldehyde, dehydrated through an ethanol series, denatured in 70% formamide/2xSSC at 75 °C for 3 min, dehydrated again and air-dried. Hybridization was performed at 37 °C for two or three days. Post-hybridization washes were performed three times in 50% formamide/2xSSC at 42 °C for 5 min and twice in 2xSSC at room temperature for 5 min. Afterwards, the slides were incubated in 100 µl of 4xSSC/5% blocking reagent (Roche) at 37 °C for 30 min and then with 100 µl of 4xSSC/5% blocking reagent including avidin-FITC (Vector Laboratories) and anti-digoxigenin rhodamine (Roche) at 37 °C for 30 min. The slides were washed in 4xSSC/0.05% Tween 20, dehydrated, air dried, stained with DAPI, and mounted with Vectashield (Vector Laboratories).

Results

Species verification

The mitochondrial cyt b gene was successfully amplified by PCR and sequenced in all three examined species. A BLAST search (Altschul et al., 1990) of the obtained sequences verified the expected taxonomic identity of the turtles examined here as G. japonica, G. spengleri and P. smithii. The haplotypes are deposited in GenBank, under the accession numbers MK097237-MK097240.

Karyotype reconstruction and C-banding

Both G. japonica and G. spengleri have a similar karyotype with 2n = 52 chromosomes composed by 12 pairs of macrochromosomes, gradually decreasing in size and 14 pairs of microchromosomes. Among macrochromosomes, nine pairs are bi-armed and three are
acrocentric (pairs 6, 7 and 11) (Figure 1). C-positive bands were identified in the centromeric regions of almost all chromosomes. A prominent heterochromatic block has been detected in the chromosome pair 12 in metaphases of both sexes in both species (Figure 1).

In addition, *P. smithii* has similar karyotype with 2n = 52, consisting of 12 pairs of bi-armed macrochromosomes and 14 pairs of microchromosomes. C-positive heterochromatin is detected in the centromeric regions of all chromosomes. An extensive accumulation of constitutive heterochromatin is detected in pair 12 in both sexes. This chromosome pair seems to be polymorphic in size in some individuals, but this polymorphism is not linked to sex.

Fluorescence in situ hybridization and comparative genome hybridization

The rDNA loci are located in the terminal position in a pair of microchromosomes in *G. japonica* and *P. smithii*, and near the centromere in a pair of microchromosomes in *G. spengleri* (Figure 2). The rDNA loci seem to be in all three species linked to the chromosome pair 12, which has the prominent C-positive heterochromatic block.

The telomeric repeats (TTAGGG)$_n$ showed the expected terminal chromosome topology in all studied individuals (Figure 2). The (GATA)$_8$ microsatellite motif had a widespread distribution in several pairs of microchromosomes and in the centromeric region of a pair of acrocentric macrochromosomes in both species of the genus *Geoemyda*, but without any sex-specific signal. A weak signal of the (GATA)$_8$ microsatellite motif was detected in the telomeric regions of several chromosomes in *P. smithii*, but without any sex-specific accumulation. Comparative genome hybridization did not reveal any sex-specific differences in any of the three species (Figure 2).

Discussion

Our results confirmed that all three studied species have similar karyotypes with 2n = 52 chromosomes, which agrees with former studies (Nakamura 1949; Sharma et al., 1975; Killebrew 1977; Yasukawa et al., 1992; Chaowen et al., 1998). *Geoemyda* is phylogenetically close to two lineages (*Pangshura, Siebenrockiella*) (Spinks et al., 2004; Lourenço et al., 2013; Pereira et al., 2017) for which differentiated sex chromosomes have been reported (Carr & Bickham, 1986; Sharma et al., 1975; Kawagoshi et al., 2012). In several non-avian reptiles, differentiated sex chromosomes are often highly conserved across the phylogenetic spectrum,
e.g. in trionychid turtles (Rovatsos et al., 2017b), lacertids (Rovatsos et al., 2016b), iguanas (Rovatsos et al., 2014) and caenophidian snakes (Rovatsos et al., 2015c). However, our cytogenetic analysis using multiple approaches did not reveal any differentiated sex chromosomes in *G. spengleri* and *G. japonica*. Thus, turtles of this genus have either GSD with poorly differentiated sex chromosomes not detectable by our cytogenetic techniques, or ESD where sex chromosomes are lacking (following the definition of ESD by Johnson Pokorná & Kratochvíl, 2016).

We did not detect sex chromosomes in *P. smithii* despite differentiated, highly heteromorphic ZZ/ZW sex chromosomes had been shown by Sharma and co-authors (1975) in a karyogram of this species using Giemsa-stained metaphase chromosomes. In this study, the Z chromosome of *P. smithii* was identified as a small acrocentric, while the W as a medium-sized metacentric chromosome. To explain the discrepancies between our results and those of Sharma and co-authors (1975), we revisited their karyogram (Figure 3a) and we discovered several potential errors in their assignment of chromosomes to homologue pairs that likely contributed to the mischaracterization of *P. smithii* as possessing a ZZ/ZW system (Figure 3b). Namely, the chromosome identified by Sharma et al. (1975) as the Z chromosome is a microchromosome, and we conclude that it can be better reassigned as a homolog of one of the pairs 16 to 26. Additionally, the metacentric chromosome identified by Sharma et al. (1975) as the W chromosome could be reassigned as a homolog of pair 7, 8 or 9. After simple rearrangement of the original karyogram, no obviously heteromorphic pair of chromosomes is detectable (Figure 3b), consistent with our own karyotyping of new specimens (Figure 3c).

We found variability in size between the homologous chromosomes in the pair 12 in all three examined species of turtles. This pair includes heterochromatic blocks co-localizing with the accumulation of rDNA repeats (Figures 1, 2). Heterochromatic blocks are often connected with autosomal polymorphism due to rapid divergence of repeat numbers (Altmanová et al., 2016), and a polymorphism in chromosome morphology including rDNA genes was reported also in ESD species of geoemydid turtles such as *Rhinoclemmys pulcherrima* (Carr & Bickham 1986). The polymorphism of the chromosome pair 12 is not linked to sex in *G. spengleri*, *G. japonica* or *P. smithii*, there is therefore no evidence that this pair correspond to sex chromosomes. In any case, the chromosome pair 12 was not identified by Sharma et al. (1975) as
sex chromosomes, although it might contribute to the incorrect pairing of chromosomes in their karyotype (Figure 3).

According to our results, there is no evidence for female heterogamety with differentiated sex chromosomes in geoemydid turtles of the genus Pangshura. Thus, among turtles, female heterogamety is only known in softshell turtles (Trionychidae) (Badenhorst et al., 2013; Rovatsos et al., 2017b). In the family Geoemydidae, the only reliable identification of sex chromosomes refers to the XX/XY sex determination system of Siebenrockiella crassicollis (Kawagoshi et al., 2012), while other studied species possess either ESD as most other lineages of the family Geoemydidae with known sex determination (Figure 4) or, perhaps, GSD with poorly differentiated and homomorphic sex chromosomes.

Unfortunately, the erroneous identification of putative sex chromosomes in P. smithii was influential for scientific literature and impacted studies examining the cytogenetics of turtles (Martinez et al., 2008; Kawagoshi et al., 2012) and comparative reconstructions as well as reviews of sex determination mechanisms, causing a 40-year error cascade regarding the inferred number of sex chromosome turnovers in amniotes and the evolution of sex determination and genome organization (Modi & Crews, 2005; Gamble 2010; Valenzuela & Adams 2011; Badenhorst et al., 2013; Johnson Pokorná & Kratochvíl, 2016; Montiel et al., 2017). The error cascade caused by the putative sex chromosomes of P. smithii illustrates how little we still know about sex determination in reptiles and that even traditionally widely accepted reports of sex determining modes can benefit from re-examination with modern molecular cytogenetic methods and broader species sampling.

Conclusions

We found that G. spengleri, G. japonica and P. smithii share karyotypes with 2n = 52 chromosomes and similar topology of constitutive heterochromatin and repetitive motifs. We did not detect differentiated sex chromosomes in any of these species. It is particularly notable in P. smithii, where ZZ/ZW sex determination system with differentiated sex chromosomes was described more than 40 years ago. This information was repeated in subsequent reviews and phylogenetic analyses on sex determination in amniotes and influenced their outcomes and conclusions. We show that the identification of sex chromosomes in the original report was based on the erroneous pairing of chromosomes in karyogram. We conclude that additional
research is needed in order to clarify the true sex determination mode in the three studied species of turtles, which might show either GSD with poorly differentiated sex chromosomes not detectable by our cytogenetic techniques, or ESD as most other lineages of the family Geoemydidae with known sex determination (Figure 4). The future directions of research should include controlled incubation experiments of eggs to examine the influence of temperature in hatchling sex ratios in *G. spengleri*, *G. japonica* and *P. smithii*, as well as cytogenetic examination with molecular methods of additional geoemydid species, to better understand the evolution of sex determination systems in this group.

Acknowledgements

We would like to express our gratitude to Petr Ráb for providing laboratory space and constant support, to Nuria Viñuela Rodriguez and Jana Thomayerová for technical assistance. We thank the staff of Prague Zoo and Zoo Plzeň for providing blood samples. We also thank Hidetoshi Ota for providing Japanese literature and Christian Schmidt for translation to English.

References

Altmanová M, Rovatsos M, Kratochvíl L, Johnson Pokorná M. 2016. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae). *Biol J Linnean Soc* **118**:618–633.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol* **215**:403–410.

Augstenová B, Mazzoleni S, Kratochvíl L, Rovatsos M. 2018. Evolutionary dynamics of the W chromosome in caenophidian snakes. *Genes* **9**:5. http://dx.doi.org/10.3390genes9010005

Badenhorst D, Stanyon R, Engstrom T, Valenzuela N. 2013. A ZZ/ZW microchromosome system in the spiny softshell turtle, *Apalone spinifera*, reveals an intriguing sex chromosome conservation in Trionychidae. *Chromosome Res* **21**:137–147, https://doi.org/10.1007/s10577-013-9343-2

Burbrrink FT, Lawson R, Slowinski JB. 2000. Mitochondrial DNA phylogeography of the polytypic North American rat snake (*Elaphe obsoleta*: a critique of the subspecies concept. *Evolution* **54**:2107–2118, https://doi.org/10.1554/0014-3820(2000)054[2107:mdpotp]2.0.co;2
Carr JL, Bickham JW. 1986. Phylogenetic implications of karyotypic variation in the Batagurinae (Testudines: Emydidae). *Genetica* 70:89–106.

Chaowen G, Ming W, Liuwang N. 1998. A cytogenetic study on three species of turtle. *Acta Hydrobiol Sin* 1:002.

de Queiroz A, Lawson R, Lemos-Espinal JA. 2002. Phylogenetic relationships of North American garter snakes (*Thamnophis*) based on four mitochondrial genes: How much DNA sequence is enough? *Mol Phylogenet Evol* 22:315–329, https://doi.org/10.1006/mpev.2001.1074

Endow SA. 1982. Polytenization of the ribosomal genes on the X and Y chromosomes of *Drosophila melanogaster*. *Genetics* 100:375–385.

Ewert MA, Etchberger CR, Nelson CE. 2004. Turtle sex-determining modes and TSD patterns, and some TSD pattern correlates. In: Valenzuela N, Lance VA, eds. Temperature-dependent sex determination in vertebrates. Washington D.C.: Smithsonian Institution Press, 21–32, http://dx.doi.org/10.5479/si.9781944466213

Gamble T. 2010. A review of sex determining mechanisms in geckos (Gekkota: Squamata). *Sex Dev* 4:88–103, https://doi.org/10.1159/000289578

Ijdo JW, Wells RA, Baldini A, Reeders ST. 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)$_n$ generated by PCR. *Nucleic Acids Res* 19:4780, https://doi.org/10.1093/nar/19.17.4780

Johnson Pokorná M, Kratochvíl L. 2016. What was the ancestral sex-determining mechanism in amniote vertebrates? *Biol Rev* 91:1–12, doi:10.1111/brv.12156

Kawagoshi T, Nishida C, Matsuda Y. 2012. The origin and differentiation process of X and Y chromosomes of the black marsh turtle (*Siebenrockiella crassicollis*, Geoemydidae, Testudines). *Chromosome Res* 20:95–110, http://dx.doi.org/10.1007/s10577-011-9267-7

Killebrew F. 1977. Mitotic chromosomes of turtles. IV. The Emydidae. *Tex J Sci* 29:245–253.

Koubová M, Pokorná M.J, Rovatsos M, Farkačová K, Altmanová M, Kratochvíl L. 2014. Sex determination in Madagascar geckos of the genus *Paroedura* (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable? *Chromosome Res* 22:441–452, https://doi.org/10.1007/s10577-014-9430-z

Literman R, Badenhorst D, Valenzuela N. 2014. qPCR-based molecular sexing by copy number variation in rRNA genes and its utility for sex identification in soft-shell turtles. *Methods Ecol Evol* 5:872–880, http://dx.doi.org/10.1111/2041-210X.12228
Lourenço JM, Glémin S, Chiari Y, Galtier N. 2013. The determinants of the molecular substitution process in turtles. J Evol Biol 26:38–50, http://dx.doi.org/10.1111/jeb.12031

Martinez PA, Ezaz T, Valenzuela N, Georges A, Graves JAM. 2008. An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle *Emydura macquarii*: a new piece in the puzzle of sex chromosome evolution in turtles. Chromosome Res 16:815–825, https://doi.org/10.1007/s10577-008-1228-4

Matsubara K, O’Meally D, Azad B, Georges A, Sarre SD, Graves JAM, Matsuda Y, Ezaz T. 2016. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma 125:111–123, https://doi.org/10.1007/s00412-015-0531-z

Modi WS, David C. 2005. Sex chromosomes and sex determination in reptiles. Curr Opin Genet Dev 15:660–665.

Montiel EE, Badenhorst D, Tamplin J, Burke RL, Valenzuela N. 2017. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 126:105–113, https://doi.org/10.1007/s00412-016-0576-7

Nakamura K. 1949. A study in some chelonians with notes on chromosomal formula in the Chelonia. Chromosome 5:205–213.

Nakamura K. 1937. On the chromosomes of some chelonians (a preliminary note). Jap J Genet 13:240, https://doi.org/10.1266/jjg.13.240

Pereira AG, Sterli J, Moreira F.R, Schrago CG. 2017. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol Phylogenet Evol 113:59–66, http://dx.doi.org/10.1016/j.ympev.2017.05.008

Rovatsos M, Altmanová M, Johnson Pokorná M, Augstenová B, Kratochvíl L. 2017a. Cytogenetics of the Javan file snake (*Acrochordus javanicus*) and the evolution of snake sex chromosomes. J Zool Syst Evol Res 56:117–125, https://doi.org/10.1111/jzs.12180

Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L. 2014. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett 10:20131093, http://dx.doi.org/10.1098/rsbl.2013.1093

Rovatsos M, Pokorná M.J, Altmanová M, Kratochvíl L. 2015a. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: *Furcifer*): differentiation of sex and neo-sex chromosomes. Sci Rep 5:13196, https://doi.org/10.1038/srep13196
Rovatsos M, Pokorná M.J, Altmanová M, Kratochvíl L. 2016a. Mixed-up sex chromosomes: identification of sex chromosomes in the $X_1X_1X_2X_2/X_1X_2Y$ system of the legless lizards of the genus *Lialis* (Squamata: Gekkota: Pygopodidae). *Cytogenet Genome Res* **149**:282–289, https://doi.org/10.1159/000450734

Rovatsos M, Pokorná M.J, Kratochvíl L. 2015b. Differentiation of sex chromosomes and karyotype characterisation in the dragonsnake *Xenodermus javanicus* (Squamata: Xenodermatidae). *Cytogenet Genome Res* **147**:48–54, https://doi.org/10.1159/000441646

Rovatsos M, Praschag P, Fritz U, Kratochvil L. 2017b. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae). *Sci Rep* **7**:42150, https://doi.org/10.1038/srep42150

Rovatsos M, Vukić J, Altmanová M, Johnson Pokorná M, Moravec J, Kratochvíl L. 2016b. Conservation of sex chromosomes in lacertid lizards. *Mol Ecol* **23**:3120–3126, https://doi.org/10.1111/mec.13635

Rovatsos M, Vukić J, Lymberakis P, Kratochvíl L. 2015c. Evolutionary stability of sex chromosomes in snakes. *Proc R Soc B* **282**:20151992, https://doi.org/10.1098/rspb.2015.1992

Sharma GP, Kaur P, Nakhasi U. 1975. Female heterogamety in the Indian cryptodiran chelonian, *Kachuga smithi* Gray. In: Tiwari KK, Srivistava CB, eds. Dr. B. S. Chuahah Commemoration Volume. Orissa, India: Zoological Society of India, 359–368

Spinks PQ, Shaffer HB, Iverson JB, McCord WP. 2004. Phylogenetic hypotheses for the turtle family *Geoemydidae*. *Mol Phyl Evol* **32**:164–182, https://doi.org/10.1016/j.ympev.2003.12.015

Sumner AT. 1972. A simple technique for demonstrating centromeric heterochromatin. *Exp Cell Res* **75**:304–306, https://doi.org/10.1016/0014-4827(72)90558-7

Rhodin AGJ, Iverson JB, Bour R, Fritz U, Georges A, Shaffer HB, van Dijk PP, TTWG-Turtle Taxonomy Working Group. 2017. Turtles of the world: Annotated checklist and atlas of taxonomy, synonymy, distribution and conservation status (8th edition). *Chelon Res Monogr* 7:1–202, doi:10.3854/crm.7.checklist.atlas.v8.2017

Valenzuela N, Adams DC. 2011. Chromosomes number and sex determination coevolve in turtles. *Evolution* **65**:1808–1813, doi:10.1111/j.1558-5646.2011.01258.x

Yasukawa Y, Ota H, Hikida H. 1992. Taxonomic re-evaluation of the two subspecies of *Geoemyda spengleri* (Gmelin, 1792). *Jpn J Herpetol* **14**:143–159.
Table 1 (on next page)

Number of individuals per species and sex, analyzed in this study.
Species	♂	♀
Geoemyda japonica	2	2
Geoemyda spengleri	3	2
Pangshura smithi	2	2
Figure 1

Karyograms and C-banded metaphases of *Geoemyda japonica* (a-d), *Geoemyda spengleri* (e-h) and *Pangshura smithii* (i-l).

Please note that microchromosomes are paired according to size for illustration, which does not correspond to actual homology of chromosomes.

![Karyograms and C-banded metaphases](image)
Figure 2

FISH with rDNA, (GATA)$_8$ and telomeric probes in metaphases of *Geoemyda japonica* (a-h), *Geoemyda spengleri* (i-p) and *Pangshura smithii* (q-x).

Chromosomes are stained blue with DAPI, and the signal of the probe is pseudocoloured in red. In CGH, the male genome is stained with FITC (green colour) and the female genome with rhodamine (red colour). Chromosomal regions with similar sequence content in both sexes are visualized in yellow. Arrows indicate the chromosome pair 12, with the prominent C-positive block.
Figure 3

The original karyogram of Sharma and co-authors (1975) (a), their karyogram re-arranged by us (b) and a new karyogram of a female individual from our studied material (c).

Note that the chromosomes misidentified as Z and W in the original study can be autosomal and easily assigned according to size and morphology into the pairs 16-26 and 7-9, respectively. Numbers in the re-arranged karyogram (b) refer to the original assignment of chromosome pairs by Sharma and co-authors (1975) .
Figure 4

Phylogenetic reconstruction of the sex determination modes in turtles from the family Geoemydidae.

Phylogenetic relationships follow Spinks and co-authors (2004), Lourenço and co-authors (2013) and Pereira and co-authors (2017).