Elastic and collapsible: current understanding of cell walls in succulent plants

Fradera-Soler, Marca,b,*; Grace, Olwen M.b; Jørgensen, Bodila; Mravec, Jozefa,*

a Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark

b Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom

*Corresponding authors

Email addresses (in order):

mfs@plen.ku.dk
o.grace@kew.org
boj@plen.ku.dk
mravec@plen.ku.dk

Highlight

Although cell walls of succulent plants are a key aspect of how they function, they remain largely unexplored, yet they hold potential for climate change mitigation.
Abstract/Summary

Succulent plants represent a large functional group of drought-resistant plants which store water in specialized tissues. Several co-adaptive traits accompany water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and allowing for reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize the current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.

Keywords

Cell wall composition; cell wall folding; cell wall remodelling; collapsible cell walls; drought avoidance; plant cell walls; plant glycomics; polysaccharides; succulent plants
Abbreviations

Cell wall polymers
AGP Arabinogalactan protein
CWSP Cell wall storage polysaccharide
HG Homogalacturonan
RG-I Rhamnogalacturonan I
RG-II Rhamnogalacturonan II
DM Degree of methyl-esterification (of homogalacturonan or pectin in general)

Physiological parameters
C Hydraulic capacitance
ε Volumetric modulus of elasticity
gi Internal conductance to CO\textsubscript{2} (in photosynthetic tissues)
K Hydraulic conductance: \(K_{\text{tissue/organ}} = (K_{X}^{-1} + K_{OX}^{-1})^{-1} \) (see Sack and Scoffoni, 2013)
K\textsubscript{X} Xylem hydraulic conductance
K\textsubscript{OX} Outside-xylem hydraulic conductance
Ψ Water potential; simplified formula: \(\Psi = \Psi_{p} + \Psi_{s} \) (see Taiz et al., 2014)
Ψ\textsubscript{p} Pressure potential, hydrostatic potential or turgor pressure
Ψ\textsubscript{s} Solute or osmotic potential
Introduction

With their peculiar appearance and their capacity to thrive under extreme conditions, succulent plants have long captivated botanists and plant enthusiasts (Eggli, 2017). Drought-avoiding succulent plants store water in living cells for later remobilization, which renders them temporarily independent of external water supply (see Box 1; Eggli and Nyffeler, 2009; Griffith and Males, 2017). Water-storage capacity in succulents is usually accompanied by several co-adaptive traits, such as certain xeromorphic features and different degrees of crassulacean acid metabolism (CAM), so that succulence emerges as a complex adaptive syndrome (Ogburn and Edwards, 2010; Winter et al., 2015; Males, 2017). The link between succulence and CAM is an ongoing debate: succulence has long been regarded as a pre-requisite for CAM, and succulence and strong CAM are highly correlated (Kluge and Ting, 1978; Sayed, 2001; Lüttege, 2004), but it remains unclear whether the co-occurrence of CAM and succulence is due to mutual facilitation or just a result of co-selection under similar selective pressures (Ogburn and Edwards, 2010; Heyduk et al., 2016; Edwards, 2019; Leverett et al., 2021). Succulence and its co-adaptive traits have evolved in numerous lineages across the plant tree of life (Fig. 1; Nyffeler and Eggli, 2010; Edwards, 2019). Among photosynthetic succulent organs, a widely used functional classification coined by Ihlenfeldt (1985) considers two types of succulence: all-cell succulence (e.g. Crassulaceae; Fradera-Soler et al., 2021), with all cells both performing photosynthesis and storing water, and storage succulence (e.g. Aloe, Asphodelaceae; Ni et al., 2004a), with a functional demarcation between photosynthetic tissue (i.e. chlorenchyma) and water-storing tissue (i.e. hydrenchyma). In reality, the anatomical diversity of succulent organs is even larger when considering the intermediate states between all-cell and storage succulence and the various arrangements of hydrenchyma and chlorenchyma within an organ. The term “succulent tissue” is usually applied to those tissues in succulent organs responsible for water storage, which are comprised primarily of highly vacuolated parenchyma cells with thin, elastic primary cell walls (Kluge and Ting, 1978; Gibson and Nobel, 1986; von Willert et al., 1992). Thus, “succulent tissue” may refer specifically to the hydrenchyma in a storage succulent or to all parenchyma cells in an all-cell succulent organ.

Across the plant tree of life, variation in cell wall structure and composition governs plant morphology and physiology and has undoubtedly played a crucial role in the adaptation to different evolutionary pressures (Sarkar et al., 2009; Sørensen et al., 2010). Primary cell walls are complex and dynamic systems capable of deformation due their intrinsic viscoelasticity (Niklas, 1992; Braybrook et al., 2012; Cosgrove, 2018). They are composed of three coextensive polymeric networks: (1) a tension-bearing cellulose-hemicellulose network, (2) a water-retentive, gel-forming pectin network, and (3) a structural protein network (Fig. 2; Cosgrove, 2005; Albersheim et al., 2011; Carpita et al., 2015). Hemicelluloses, pectins and structural proteins are highly diverse, and differing abundance and arrangement of these components result in contrasting cell wall characteristics (Showalter, 1993;
Willats et al., 2001; Harholt et al., 2010; Scheller and Ulvskov, 2010). These characteristics can be modified through cell wall remodelling, which affects cell wall structure and/or composition (see Box 2). Some cell wall polysaccharides, known as cell wall storage polysaccharides (CWSPs), appear to have been evolutionarily repurposed for storage and other functions across several plant lineages (see Box 3).

Cell wall properties are expected to be decisive in overcoming the alleged biomechanical and physiological challenges posed by the succulent syndrome. Besides being involved in mechanical support, cell walls in succulent tissues are capable of folding, which allows for reversible volume changes of succulent organs during dehydration/rehydration cycles while preventing catastrophic cell collapse and irreversible damage (von Willert et al., 1992; Christensen-Dean et al., 1993; Mauseth, 1995; Burgoyne et al., 2000; Bobich and North, 2009). Secondly, cell walls are the gas-liquid interface in the parallel processes of CO₂ diffusion and water movement in photosynthetic organs, thus influencing the interplay of factors linked to photosynthesis limitation (Barbour, 2016; Gago et al., 2019). Therefore, water relations and CO₂ uptake in succulents are expected to be tightly controlled by cell wall characteristics (Flexas et al., 2013; Xiong et al., 2017; Xiong and Nadal, 2020). Despite the general assumption that cell wall characteristics play a pivotal role in the succulent syndrome, cell walls of succulent plants have received little research attention to date. Studies have been hampered by the challenges of applying standard histological and biochemical techniques to water-rich tissues, which often demand methodological modifications in order to investigate succulent tissues (e.g. Ahl et al., 2018; Mozzi et al., 2021).

Increasing surface temperature and expanding aridity in many parts of the world (IPCC, 2007) exacerbate the need for deeper insights into the mechanisms of drought resistance and water management in plants. CAM-performing succulent plants have been identified as natural capital to mitigate the effects of climate change (Grace, 2019), including the possibility of engineering CAM into crops (Borland et al., 2014; Yang et al., 2015). However, while several succulence-related traits will probably allow many succulent groups to better withstand future climatic conditions (Willis, 2017), other succulent taxa are facing a high risk of extinction (Goettsch et al., 2015; Guo et al., 2016; Young et al., 2016). A better understanding of the mechanisms underlying the succulent function would reaffirm the role of succulent plants as natural capital and would help to promote conservation efforts. This review focuses on the current knowledge of cell walls in drought-avoiding succulent plants and their influence on the function of the succulent syndrome, and highlights the knowledge gaps in these topics. Future perspectives of the characterization of cell walls in succulents and its challenges are also presented.
Functional relations between cell wall components and responses to drought

Cell wall responses to drought and other abiotic stresses, most of which involve differential gene expression leading to cell wall remodelling, have been widely studied and reviewed in crop and model plants (Le Gall et al., 2015; Tenhaken, 2015; Ezquer et al., 2020). These acclimation processes highlight the importance of cell walls in drought resistance and can also hint at cell wall adaptations in succulents which may have shaped their evolution into drought-prone habitats.

Since the highly labile pectin network strongly influences many interrelated cell wall properties (e.g. thickness, porosity, hydration, elasticity), changes in pectin are likely crucial to drought-induced cell wall remodelling (Harholt et al., 2010; Braybrook et al., 2012; Levesque-Tremblay et al., 2015; Bidhendi and Geitmann, 2016). The nature of pectin gels is determined, at least partially, by the degree of methyl-esterification (DM) of homogalacturonans (HGs), which is regulated by pectin methylesterases (PMEs), resulting in the formation of either “strong” gels that stiffen the cell wall or “weak” gels that soften it (Hocq et al., 2017). Other pectin-modifying enzymes, such as pectin acetyltransferases (PAEs), polygalacturonases (PGs) and pectate lyases (PLs), also influence the properties of the pectin matrix. Xyloglucan, the most abundant hemicellulose in primary cell walls of spermatophytes, is targeted by xyloglucan endo-transglycosylases/hydrolases (XTHs), which can perform two different catalytic activities and either strengthen or soften the cell wall (Eklöf and Brumer, 2010; Scheller and Ulvskov, 2010; Nishikubo et al., 2011). Contrasting regulation patterns in response to drought have been reported among pectin- and xyloglucan-modifying enzymes (Pelloux et al., 2007; He et al., 2009; Clauw et al., 2015; Nguyen et al., 2016; Xuan et al., 2016), which highlights the complex relationship between these enzymatic activities and cell wall properties. On the other hand, drought stress has been strongly linked to upregulation of a large portion of expansin isoforms (Harb et al., 2010; Chen et al., 2019, 2020; Jin et al., 2020), which suggests that adjustments of cell wall loosening and extensibility are general responses against drought.

Pectin gel properties are also determined by rhamnogalacturonan I (RG-I), whose side chains influence cell wall hydration and elasticity (Willats et al., 2001; Harholt et al., 2010). Drought stress has been associated with an increase in the amount of arabinan, galactan and arabinogalactan RG-I side chains (Leucci et al., 2008; Gribaa et al., 2013). Due to the high mobility of RG-I arabinans and galactans in the cell wall, they have been postulated as cell wall plasticizers which maintain the fluidity of the pectin network and stabilize the cell wall during dehydration and rehydration (Harholt et al., 2010). This is a particularly relevant feature for cells that undergo drastic changes in shape as water is lost during drought. Structurally highly complex rhamnogalacturonan II (RG-II) side chains, which are thought to provide mechanical strength to the cell wall by forming borate cross-links.
(O’Neill et al., 2004), also seem to increase in number in response to drought stress (Leucci et al., 2008), although the interpretation of this response is not as clear since the exact physiological role of RG-II is still relatively unknown.

Drought stress has also been associated with upregulation of arabinogalactan proteins (AGPs; Cui et al., 2012; Mareri et al., 2019). Periplasmic AGPs, many of which are anchored to the plasma membrane, seem to occur in a reticulate pattern along the external face of the cell membrane, where they help to maintain the membrane-cell wall continuum by interacting with cell wall components (Gens et al., 2000; Liu et al., 2015). Given that this continuum can be compromised during abiotic stress, the upregulated AGPs are believed to form a “buffer zone” which stabilizes the membrane by preventing its direct interaction with the cell wall (Lamport et al., 2006). Indeed, a decrease in AGP epitopes and their rearrangement have been linked to the disruption of the membrane-wall continuum in senescing fruits (Leszczuk et al., 2020). AGPs have also been postulated as cell wall plasticizers (Lamport et al., 2006) and may be performing a similar role to that of the aforementioned RG-I side chains during dehydration. Another cell wall structural protein, extensins, are generally thought to form self-assembling scaffolds which strengthen the wall (Cannon et al., 2008). However, gene expression studies have given contrasting results regarding the regulation of different extensin genes upon drought (Molina et al., 2008; Cevher-Keskin, 2019), which suggests that different extensin isoforms may be performing different functions in the cell wall. Several functions of cell wall structural proteins and their involvement in drought response remain largely hypothetical, which presents many research opportunities.

Structure and function of cell walls in succulents

Biomechanics

Succulent organs tend to have a low surface-area-to-volume ratio to minimize water loss and enhance water storage (Males, 2017), but the considerable weight of stored water poses a biomechanical problem. Cell walls in succulent organs are thus expected to have inherent mechanical properties allowing for efficient mechanical support. Small, globose or prostrate succulent plants possess succulent organs mostly lacking support tissues, which is the case for the leaves of Aizoaceae, Crassulaceae and succulent Asteraceae, and the stems of small members of Cactaceae and some succulent Asteraceae and Asclepiadoideae (Apocynaceae; Gibson, 1996; Ogburn and Edwards, 2010). High cell turgor pressure in these succulent organs generates high hydrostatic pressure and provides most of the mechanical support (Niklas, 1992; Gibson, 1996; Bobich and North, 2009), which also makes them capable of drastic shrinking upon drought (Mauseth, 2006). As a remarkable exception, despite their relatively large size, succulent leaves of *Aloe* and closely related genera lack support tissues and are also primarily supported by hydrostatic pressure on a reinforced epidermis (Gibson, 1996).
However, most large succulent organs usually exhibit support tissues, such as hypodermis, fibres, and wood and bark from secondary growth (Blunden, 1973; Koller and Rost, 1988a; Mauseth, 2004a, b, 2006). There has been a growing interest in the support tissues and their cell walls in certain succulent lineages due to their adaptive and evolutionary relevance or their useful applications, such as the different types of wood of Cactaceae (Vázquez-Sánchez et al., 2017; Reyes-Rivera et al., 2018; Maceda et al., 2019) and the sclerenchyma fibres of Agave (Asparagaceae; Ferreira et al., 2014; Hidalgo-Reyes et al., 2015). Despite having support tissues, most large succulent plants are still capable of a high degree of volume change, which may be facilitated by morphological adaptations such as ribs in many Cactaceae and succulent Apocynaceae and Euphorbiaceae (Gibson and Nobel, 1986; Nobel, 1988; Felger and Henrickson, 1997; Eggli and Giorgetta, 2020). Most succulents undergo successive cycles of dehydration and rehydration following external water availability, which is reflected in shrinking and swelling of their succulent organs as the water stores are emptied and refilled (Gibson and Nobel, 1986; von Willert et al., 1992). Even in large succulents with support tissues, turgor pressure still plays an important role in mechanical support compared with non-succulent plants (Schulte et al., 1989; Bobich and North, 2009).

Since drastic volume changes of succulent organs can compromise tissue function, succulent taxa capable of extreme shrinking often exhibit secondary cell wall thickenings which provide structural support during dehydration and restrict the shrinkage direction of cells. In the notoriously drought-resistant genus Sansevieria (syn. Dracaena, Asparagaceae), many species exhibit secondary cell wall bands in the hydrenchyma (Koller and Rost, 1988a, 1988b). Similarly, wide-band tracheids occur in the vascular tissues of succulent organs in many genera of succulent families of the Caryophyllales, namely Cactaceae, Aizoaceae, Anacampserotaceae and Didiereaceae; these tracheids have annular or helical secondary wall thickenings which extend deeply into the lumen (Landrum, 2001, 2006; Mauseth, 2004c). Wide-band tracheids are believed to increase hydraulic adaptability, as they preserve the function of vascular tissues by preventing both cavitation and occlusion during drought-induced shrinking of succulent organs (Landrum, 2006; Mauseth, 2006).

Water relations

Unlike non-succulent “true” xerophytes, succulent plants are able to maintain a relatively high water potential (Ψ) even during extended drought (Nobel and Jordan, 1983; von Willert et al., 1992; Griffiths and Males, 2017). This is due to high values of hydraulic capacitance (C) and low values of volumetric modulus of elasticity (ε) in succulent organs, which is related to highly elastic cell walls (Ogburn and Edwards, 2010). C can be defined as:

$$C = \frac{\Delta V}{\Delta \Psi}$$
where ΔV is the change in volume, and $\Delta \Psi$ is the change in water potential (Nobel, 2009). On the other hand, ε can be defined as:

$$\varepsilon = \frac{\Delta \Psi_p}{\Delta V/V}$$

where $\Delta \Psi_p$ is the change in pressure potential or turgor pressure, and $\Delta V/V$ is the relative volume change; lower values of ε indicate higher elasticity (Nobel, 2009). Cell wall thickness has long been assumed to affect ε (i.e. thicker walls are generally more rigid; Tyree and Jarvis, 1982), and a strong positive correlation has recently been reported (Peguero-Pina et al., 2017). These two formulas suggest that cell wall properties influence the trade-offs between maintaining tissue volume and tissue Ψ. High C and low ε means that succulents maintain higher turgor pressure for longer with decreasing Ψ and lose relatively large amounts of water before turgor loss occurs (Bobich and North, 2009; Ogburn and Edwards, 2010). The turgor loss point (TLP, i.e. the Ψ at which turgor loss occurs) has generally been interpreted as an indicator of drought tolerance (i.e. tolerating low Ψ) among non-succulent plants (Lenz et al., 2006; Blackman et al., 2010). Many arid-adapted non-succulents respond to drought by lowering their already low TLP through physiological adjustments, primarily osmotic adjustments (Bartlett et al., 2012; Turner, 2018; Signori-Müller et al., 2021). On the other hand, measurements of TLP and the closely related osmotic potential (Ψ_S; see formula in Bartlett et al., 2012) in drought-avoiding succulents have shown that they exhibit relatively high TLP values (Walter and Stadelmann, 1974; Smith and Lütge, 1985; von Willert et al., 1992; Donatz and Eller, 1993; Gotsch et al., 2021; Leverett et al., 2021); their ability to maintain high Ψ seems to relax the need for a low TLP. Indeed, drought-avoiding succulents are assumed to have a relatively limited capacity for osmotic adjustment (Walter and Stadelmann, 1974; Griffiths and Males, 2017). Given this limitation, if turgor loss is to be prevented during severe, extended drought, elastic adjustment by further decreasing ε may be an important process among drought-avoiding succulents (Schulte, 1992; A. Leverett, pers. comm.). Such elastic adjustment likely involves rapid changes of the cell wall driven by wall remodelling, particularly of the pectin fraction (Peaucelle et al., 2011; Bethke et al., 2016; Roig-Oliver et al., 2020b, 2021). Indeed, changes in DM of cell wall HGs have been reported as a response to dehydration in the hydrenchyma of Aloe species (Fig. 3E; Ahl et al., 2019b). In succulent organs of storage succulents, cell wall heterogeneity between tissues in terms of wall thickness and elasticity allow for preferential water loss and tissue-to-tissue remobilization. As Ψ decreases during early stages of drought, water is preferentially lost from the large-celled hydrenchyma, given that hydrenchyma cell walls are thinner and more elastic (i.e. lower ε) than those of the chlorenchyma, and this water can then be remobilized to the chlorenchyma to maintain photosynthesis (Schmidt and Kaiser, 1987; Goldstein et al., 1991; Nobel, 2006). This remobilization process seems to be driven by minor osmotic adjustments primarily involving polymerization or depletion of organic solutes, which create an osmotic gradient
(ΔΨₛ) between hydrenchyma and chlorenchyma (Barcikowski and Nobel, 1984; Schulte and Nobel, 1989; Schulte et al., 1989; Nerd and Nobel, 1991; Herrera et al., 2000).

Despite adaptations of the vascular system to optimize hydraulic connectivity (e.g. Mauseth, 2006; Ogburn and Edwards, 2013; Melo-de-Pinna et al., 2016), succulent organs are generally assumed to have reduced hydraulic conductance (K), with outside-xylem hydraulic conductance (Kₒₓ) expected to be particularly limiting due to long outside-xylem hydraulic pathways (Brodribb et al., 2007; de Boer et al., 2012; Ferrio et al., 2012; Sack and Scoffoni, 2013). Water movement in succulents is tightly controlled: emptying of succulent tissues during drought is remarkably slow, whereas refilling upon rain events can happen strikingly quickly (Gibson and Nobel, 1986; Smith and Nobel, 1986; Flach et al., 1995). In transpiring non-succulent leaves, recent evidence suggests that water flow predominantly follows the apoplastic pathway (Buckley, 2015; Buckley et al., 2015). Assuming that the dominance of the apoplastic pathway can be extrapolated to other photosynthetic organs, such as succulent leaves and stems, cell wall features such as thickness, effective porosity and cell-to-cell connectivity are expected to be among the strongest determinants of Kₒₓ (Buckley, 2015; Buckley et al., 2015; Bidhendi and Geitmann, 2016; Xiong et al., 2017). Since such features can be modulated through cell wall remodelling, water movement in succulents is likely controlled, at least partially, by cell wall modifications. Among these modifications, pectin remodelling has been postulated as the strongest contributor: conformational changes of pectin due to different enzymatic activities can affect cell wall porosity (McKenna et al., 2010; Levesque-Tremblay et al., 2015; Bidhendi and Geitmann, 2016), and increased cell wall pectin content has been linked to lower cell wall thickness and higher elasticity and hydration (Roig-Oliver et al., 2020a, b, 2021; Carriquí et al., 2020). Other factors such as pH and ion concentration also influence cell wall thickness and extensibility (Demarty et al., 1984; Cosgrove, 2005).

Although the largest reservoir of water in succulent tissues is symplastic, apoplastic water contributes to stored water in some succulent groups, most notably in suborder Portulacineae (Nyffeler, 2007), and is facilitated by a matrix of highly hydrophilic apoplastic polysaccharides known as mucilage (Nobel et al., 1992; von Willert et al., 1992; Ogburn and Edwards, 2010). The term mucilage has also been used interchangeably (and arguably mistakenly) to refer to all water-extractable polysaccharides from succulent tissues (e.g. Sáenz et al., 2004; Ni et al., 2004a). Mucilage has been extensively reported in seeds and/or fruits of numerous land plant lineages, which in many cases has also been linked to water retention (Phan and Burton, 2018). Mucilage in succulents occurs in the apoplastic space, either partially filling the space between cells or within the wall of specialized mucilage cells (Nobel et al., 1992; Mauseth, 2006). Mucilage in Cactaceae has been considerably studied and its composition resembles that of pectins, particularly RG-I, with a highly branched structure rich in arabinose and galactose (Cárdenas et al., 1997; Goycoolea and Cárdenas, 2003). Mucilage has also been reported in succulent species of
Aizoaceae, Anacampserotaceae, Crassulaceae, Didiereaceae, Portulacaceae and Vitaceae (Landrum, 2002; Mauseth, 2004a), although its role and composition remain unclear.

Photosynthesis

Besides imposing a limitation on \(K_{\text{OX}} \), a recent review by Flexas *et al.* (2021) has highlighted the often-neglected effect of cell wall properties on limiting internal conductance to \(\text{CO}_2 \) \((g_i) \) and, thus, on photosynthesis. Several interrelated cell wall properties, such as thickness, \(\varepsilon \) and effective porosity, have been postulated as some of the strongest determinants of \(g_i \) (Evans *et al.*, 2009; Tosens *et al.*, 2012; Ellsworth *et al.*, 2018; Nadal *et al.*, 2018). However, the influence of cell wall composition on \(g_i \) is still scarcely understood, as indicated by contrasting findings regarding the relationship between pectin content and \(g_i \) (Clemente-Moreno *et al.*, 2019; Carriquí *et al.*, 2020; Roig-Oliver *et al.*, 2020a, c, 2021). Correlations between \(g_i \) and \(K \) and their relationship with cell wall parameters indicate coordination between these two parameters and demonstrate the shared cell wall pathway for \(\text{CO}_2 \) and water (Flexas *et al.*, 2013; Xiong *et al.*, 2017; Xiong and Nadal, 2020; Roig-Oliver *et al.*, 2021).

Throughout land plant evolution, both \(g_i \) and \(K \) have generally increased with enhanced photosynthetic capacity (de Boer *et al.*, 2012; Flexas and Carriquí, 2020), and such increases have likely been facilitated by changes in cell wall characteristics such as thickness and \(\varepsilon \) (Nadal *et al.*, 2018; Carriquí *et al.*, 2020; Gago *et al.*, 2019). Thin cell walls and a peripheral distribution of chloroplasts against the cell membrane in succulent tissues (Gibson and Nobel, 1986; von Willert *et al.*, 1992) would suggest that in succulents the cell wall poses a relatively low limitation on \(g_i \) (Evans *et al.*, 2009; Gago *et al.*, 2019; Flexas *et al.*, 2021). However, contrary to the aforementioned evolutionary trend, CAM-performing succulent plants have regressed to states of relatively low \(g_i \), with values being as low as in gymnosperms, which is thought to increase CAM capacity by limiting internal \(\text{CO}_2 \) efflux (Maxwell *et al.*, 1997; Flexas *et al.*, 2008; Ripley *et al.*, 2013). Even though such low \(g_i \) has been previously attributed primarily to anatomical features related to intercellular air spaces (Nelson *et al.*, 2005; Nelson and Sage, 2008), the role of cell wall characteristics in limiting \(g_i \) in succulents remains unexplored.
Cell walls of succulent tissues under drought

Succulent tissues are characterized by having thin and highly flexible primary cell walls, yet little is known of the mechanism that translates into drought avoidance. Early academic works on succulent tissues noted that distinctive cell wall folding patterns could be observed as cells shrink during drought (Westermaier, 1884; Haberlandt, 1904; Engmann, 1934). Since those early studies, these collapsible cell walls have been reported for a few succulent taxa and are often assumed as a general anatomical feature of succulents, allowing for controlled regular wall folding and reversible volume changes in succulent organs (Fig. 3). Studies on the cortex hydrenchyma in stems of Cactaceae (Mauseth, 1995) and the hydrenchyma in leaves of Aloe (Ahl et al., 2019b) have given the most detailed descriptions to date of collapsible cell walls in succulents. This type of cell wall has also been reported in succulent stems of Euphorbia (Euphorbiaceae) and Asclepiadoideae (Apocynaceae; Mauseth, 2004b), and in succulent leaves of Sansevieria (Koller and Rost, 1988a, b) and Pyrrosia (Polypodiaceae; Ong et al., 1992). Although the presence of collapsible cell walls has not been systematically surveyed, histological images from an even broader body of research suggests that collapsible cell walls occur in many more succulent lineages: folding patterns can be observed in succulent tissues of Aizoaceae (e.g. Melo-de-Pinna et al., 2014; Ogura et al., 2018), Crassulaceae (e.g. Jiménez et al., 1983; Sandoval-Zapotitla et al., 2019), Bromeliaceae (e.g. Gomes-da-Silva et al., 2012; Reinert et al., 2013), Gesneriaceae (e.g. Pereira-Dias and Santos, 2015) and Piperaceae (e.g. Horner et al., 2017). When cells in non-succulent plants reach the TLP under severe drought, negative turgor pressures can develop and result in dehydration injury due to plasmolysis and/or collapse of the cell walls around the plasmolyzed protoplasts (Ristic and Cass, 1991; Palomäki et al., 1994; Ding et al., 2014; Vollenweider et al., 2016). On the other hand, succulents maintain relatively high cell turgor pressures and rarely reach the TLP, even during extended drought. As cells in succulent tissues shrink, the convoluted regular folding of collapsible cell walls, coupled with the maintenance of high turgor, points towards a coordinated response that preserves the cell membrane-cell wall continuum and prevents irreversible damage due to mechanical stress. In fact, it is likely that even cells that have apparently collapsed in succulent tissues retain some turgor, as the protoplasm seems to remain mostly in contact with the cell wall (A. Leverett, pers. comm.; J. D. Mauseth, pers. comm.). Similarly, cell wall folding in resurrection plants (see Box 1) is thought to prevent the development of negative turgor and subsequent irreversible damage (Vander Willigen et al., 2001).

Besides the cell wall and its polysaccharidic components, plant cells also contain carbohydrates within the symplastic domain; all carbohydrates in a tissue, organ or a whole plant can be referred to as the glycome. The glycome of some economically important succulent groups has received particular attention due to its multiple applications in pharmaceutics, food, cosmetics, bioremediation, bioenergy and material sciences (Borland et al., 2009; Grace, 2019). Studies have therefore focused on taxa such as Aloe (e.g. Reynolds and Dweck, 1999; Ni et
The interest in Aloe vera (L.) Burm.f. and its relatives in Asphodelaceae due to their widespread medicinal uses has fostered one of the most detailed cell wall characterizations in succulent tissues. In the leaf hydrenchyma of A. vera, besides structural cell wall polysaccharides, cell contents are rich in storage polysaccharides and free sugars, including the prized acetylated glucomannans with putative medicinal properties (Reynolds and Dweck, 1999; Ni et al., 2004a, b). Subsequent studies have shown that monosaccharide profiles of the hydrenchyma across Aloe species and relatives are phylogenetically constrained, and that well-developed hydrenchyma is the main predictor for medicinal use (Grace et al., 2013, 2015). More recent studies have highlighted the usefulness of high-throughput polysaccharide screening methods such as comprehensive microarray polymer profiling (CoMPP) to characterize the glycomic profiles of succulent tissues (Ahl et al., 2018). Among four Aloe species, such profiles exhibited abundant mannans and were shown to vary seasonally (Ahl et al., 2019a), which suggests that acclimation processes affecting storage polysaccharides and/or cell walls occur in response to seasonal changes.

Another study on two species of Aloe (A. helenae and A. vera) has confirmed the existence of a tightly regulated cell wall folding process during dehydration (Ahl et al., 2019b). Drought-induced pectin remodelling of hydrenchyma cell walls in these Aloe species is thought to cause the loss of low-DM HG (Fig. 3E), which is believed to enhance cell wall elasticity and initiate the cell wall folding process. Remarkably, the same study also reported changes in cell wall mannans (incl. (galacto)(gluco)mannans and acetylated glucomannans), which accumulated inside the cells upon drought in a granular form that resembles that of starch (Fig. 3F). Granular forms of mannans have also been observed in storage organs of Dendrobium (Orchidaceae; He et al., 2017) and Amorphophallus (Araceae; Ohtsuki, 1968; Chua et al., 2013). The presence of cell wall mannans in the hydrenchyma of Aloe was shown to decrease sharply during drought, whereas intracellular mannans increased in the chlorenchyma (Ahl et al., 2019b). It has been postulated that, despite not being directly involved in the folding process, mannans in Aloe could be acting as CWSPs (see Box 3) by providing energy storage, particularly during drought periods with stalled photosynthesis, and by helping to maintain an osmotic gradient between hydrenchyma and chlorenchyma (Ahl et al., 2019b). Mannan mobilization from storage organs has also been reported in orchids and geophytes, and it has been linked to certain growth stages and to drought stress response by establishing osmotic gradients and promoting water transfer between tissues (Stancato et al., 2001; Tan et al., 2007; Wang et al., 2008; Chua et al., 2013). The reason why Aloe and perhaps other succulents seem to rely on mannans as storage during drought rather than the more widespread starch probably stems from their different physicochemical properties: starch granules are highly packed and insoluble, thus exhibiting extremely low osmotic activity, whereas soluble mannans possess high osmotic activity and water-holding capacity, and are also mobilized more readily and rapidly than starch (Meier and Reid, 1982; Buckeridge et al., 2000).
of some orchids and geophytes the mobilization of mannans occurs before that of coexisting starch (Matsuo and Mizuno, 1974; Franz, 1979), whereas during flowering of Oncidium (Orchidaceae) mannans are mobilized from the pseudobulb and subsequently degraded and converted to starch, which is temporarily accumulated before further catabolic reactions (Wang et al., 2008). Either way, these observations indicate that mannans can be more easily mobilized than starch, which may be the basis of the use of mannans as CWSPs in Aloe.

From different studies, it seems clear that collapsible cell walls in succulents maintain their high elasticity or even increase it further during drought through elastic adjustment, a process which is likely driven by cell wall remodelling (Mauseth, 1995; Ahl et al., 2019b). However, the exact mechanism behind this highly regulated process is still largely unknown. Anatomical peculiarities of collapsible cell walls hint at the mechanism behind the folding process: in Sansevieria the collapsible walls in the hydrenchyma exhibit bands of secondary thickening (Koller and Rost, 1988a, 1988b), and it is possible this ridged spatial patterning of stiffer and softer regions determines how the wall folds. However, most succulent tissues lack secondary wall thickening. Instead, cell wall remodelling can create patterns of local softening and/or loosening and induce phase separation phenomena in the wall, as seen in many developmental and acclimation processes which require cell growth or change in cell shape (Peaucelle et al., 2011; Miedes et al., 2013; Amsbury et al., 2016; Bidhendi and Geitmann, 2016; Chebli and Geitmann, 2017; Bidhendi et al., 2019; Haas et al., 2020, 2021). Thus, similar processes leading to localized cell wall softening and/or loosening could be involved in the initiation of the regular cell wall folding process in succulent tissues.

A hypothetical model, based on the observations of Moore et al. (2013) on leaves of resurrection plants, those of Bidhendi et al. (2019) on pavement cells of Arabidopsis and those of Ahl et al. (2019b) on leaves of Aloe, is presented in Fig. 4. Cell wall folding can also be observed in plant tissues and organs frequently subjected to desiccation, such as seeds of some plant lineages (Webb and Arnott, 1982) and leaves of resurrection plants (Cooper and Farrant, 2002; Moore et al., 2006). In resurrection plants, cell wall folding upon dehydration has been linked to expansin-mediated cell wall loosening, which enhances wall extensibility, and to wall remodelling affecting primarily pectin (Jung et al., 2019), with arabinose-rich polymers (e.g. RG-I arabinans/arabinogalactans and AGPs) postulated as cell wall plasticizers which allow for elastic adjustment (Moore et al., 2013). These cell wall components could act as plasticizers in collapsible cell walls of succulent plants as well. Observations in resurrection plants also suggest that upregulation of certain proteins during dehydration-driven cell wall folding, such as glycine-rich proteins (GRPs; Wang et al., 2009; Giarola et al., 2016) and wall-localized dehydrins (Layton et al., 2010), may help to maintain cell wall integrity and enable repair. Since these proteins are ubiquitous among land plants (Sachetto-Martins et al., 2000; Hanin et al., 2011), it is possible that they also play a role in dehydration response in succulent plants and in regulating the cell wall folding process. However, the
high values of cell wall thickness found in resurrection plants makes drawing parallels with drought-avoiding succulents challenging (Flexas et al., 2021; Nadal et al., 2021).

Future perspectives

The cell wall is a central aspect of drought resistance in plants, yet much remains to be determined about the molecular and physiological mechanisms of cell wall folding processes in drought-avoiding succulents. Cell wall folding in resurrection plants, which has received special attention over the last decades, relies on different mechanisms in different lineages, most of which involve arabinose-rich polymers acting as cell wall plasticizers (Moore et al., 2013). More research is thus needed to elucidate how cell wall folding is regulated in the numerous succulent lineages and whether a shared mechanism exists. In Aloe, for instance, it has been recently postulated that HGs and mannans are involved in the folding process (Ahl et al., 2019b). Changes in DM of HGs reinforce the idea that cell wall elasticity is optimized during wall folding, whereas the involvement of mannans suggests that CWSPs and soluble sugars likely play a crucial role during dehydration. Whether similar processes occur in other succulent lineages and whether other cell wall components are involved in the folding process remain to be explored.

Since studies of separate cell wall components tend to overlook the complexity of the cell wall and the interactions between different components, holistic approaches should be favoured for cell wall characterization in succulents. Advancing cell wall analytical methods provide promising prospects, with a growing demand for high-throughput methods for rapid screening and profiling of cell wall components (Persson et al., 2011). Spectroscopic methods have been widely used for cell wall characterization (Bauer, 2012; Mansfield et al., 2012; Pettolino et al., 2012; Gierlinger, 2018; Zhao et al., 2020) in combination with imaging techniques (Zhao et al., 2019; Bidhendi et al., 2020; DeVree et al., 2021; Xu et al., 2021). Recent advances in non-destructive real-time imaging, such as light-sheet fluorescence microscopy (LSFM), could allow us to observe changes in cell walls of succulent tissues under drought in near-physiological conditions (Grossmann et al., 2018; Ovečka et al., 2018). Comprehensive microarray polymer profiling (CoMPP), a method based on the specificity of molecular probes, allows for high-throughput screening of numerous cell wall components across a wide range of samples (Møller et al., 2007; Rydahl et al., 2018). CoMPP has recently been used alongside immunolocalization to characterize the cell wall and glycomic composition of several Aloe species and relatives and to provide a deeper insight into cell wall dynamics under drought (Ahl et al., 2018, 2019b). However, the semiquantitative nature of CoMPP poses some limitations, and it should usually be employed as a complementary method to quantitative biochemical techniques (Møller et al., 2007; Persson et al., 2011). Another disadvantage of CoMPP is the difficulty to isolate succulent tissues within a succulent organ, which is not feasible in most cases and requires whole organs. The latest technological developments include imaging techniques which allow for 3D
visualization of cell wall structure, composition and connectivity, including serial-sectioning scanning electron microscopy (ssSEM; Oi et al., 2017; Harwood et al., 2020, 2021; Antreich et al., 2021) among other high-resolution microscopy techniques (Zeng et al., 2017; Haas et al., 2020), X-ray microcomputed tomography (X-ray microCT; Théroux-Rancourt et al., 2017; Earles et al., 2018) and magnetic resonance imaging (MRI; Malik et al., 2016; Hesse et al., 2020; Mylo et al., 2021). These methods have the potential to elucidate how succulent tissues are built and their anatomical complexity from a 3D perspective.

While omics studies have shed light on cell wall-related genes and their respective products (Carpita et al., 2001; Minic et al., 2009; Albenne et al., 2013; Houston et al., 2016), genetic tools and resources to specifically study succulents are still largely missing. Genome sequencing of a few succulent taxa over the last decade (Cai et al., 2015; Ming et al., 2015; Copetti et al., 2017; Yang et al., 2017; Jaiswal et al., 2021) offers the possibility of establishing them as models to study drought resistance and/or CAM performance (Yang et al., 2019). Given that succulence has often been regarded as a pre-requisite for CAM, engineering CAM into crops and other economically important plants to enhance their water-use efficiency would probably first require the engineering of succulence (Borland et al., 2014; Yang et al., 2015). Since cell walls are expected to play a central role in succulence, next-generation sequencing can be used for future omics studies to mine candidate genes involved in cell wall remodelling in succulent plants (Egan et al., 2012; Strickler et al., 2012; Gross et al., 2013), which would provide opportunities for ongoing (e.g. Lim et al., 2020) and future efforts of engineering tissue succulence into crops.
Acknowledgements

The authors would like to thank Alistair Leverett (University of Illinois Urbana-Champaign) and Sylwia Glazowska (University of Copenhagen) for helpful discussion, and James D. Mauseth (University of Texas at Austin) for helpful discussion and for providing the cactus histological images in Fig. 3. We would like to thank the iNaturalist community for the images in Fig. 1. The authors would also like to thank two anonymous reviewers for their helpful comments.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801199.

This project has also been supported by GUDP project GræsProteinFoder and Independent Research Fund Denmark (grant number 272-07-0152).
References

Ahl LI, Al-Husseini N, Al-Helle S, Staerk D, Grace OM, Willats WGT, Mravec J, Jørgensen B, Rønsted N. 2019a. Detection of seasonal variation in Aloe polysaccharides using carbohydrate detecting microarrays. Frontiers in Plant Science 10, 512.

Ahl LI, Grace OM, Pedersen HL, Willats WGT, Jørgensen B, Rønsted N. 2018. Analyses of Aloe polysaccharides using carbohydrate microarray profiling. Journal of AOAC International 101, 1720-1728.

Ahl LI, Mravec J, Jørgensen B, Rudall PJ, Rønsted N, Grace OM. 2019b. Dynamics of intracellular mannan and cell wall folding in the drought responses of succulent Aloe species. Plant, Cell & Environment 42, 2458-2471.

Albenne C, Canut H, Jamet E. 2013. Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Frontiers in Plant Science 4, 111.

Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A. 2011. Plant Cell Walls. New York: Garland Science.

Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, Scheller HV, Knox JP, Fleming AJ, Gray JE. 2016. Stomatal function requires pectin de-methylation of the guard cell wall. Current Biology 26, 2899-2906.

Anderson CT, Kieber JJ. 2020. Dynamic construction, perception, and remodeling of plant cell walls. Annual Review of Plant Biology 71, 39-69.

Antreich SJ, Xiao N, Huss JC, Gierlinger N. 2021. A belt for the cell: cellulose wall thickenings and their role in morphogenesis of the 3D puzzle cells in walnut shells. Journal of Experimental Botany 72, 4744-4756.

Arabidopsis Genome Initiative (AGI). 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.

Barbour MM. 2016. Understanding regulation of leaf internal carbon and water transport using online stable isotope techniques. New Phytologist 213, 83-88.

Barcikowski W, Nobel PS. 1984. Water relations of cacti during desiccation: distribution of water in tissues. Botanical Gazette 145, 110-115.

Barnes WJ, Anderson CT. 2018. Release, recycle, rebuild: cell-wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Molecular Plant 11, 31-46.

Bartlett MK, Scoffoni C, Sack L. 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters 15, 393-405.

Bauer S. 2012. Mass spectrometry for characterizing plant cell wall polysaccharides. Frontiers in Plant Science 3, 45.

Bethke G, Thao A, Xiong G, et al. 2016. Pectin biosynthesis is critical for cell wall integrity and immunity in Arabidopsis thaliana. The Plant Cell 28, 537-556.

Bidhendi AJ, Altartouri B, Gosselin FP, Geitmann A. 2019. Mechanical stress initiates and sustains the morphogenesis of wavy leaf epidermal cells. Cell Reports 28, 1237-1250.

Bidhendi AJ, Chebli Y, Geitmann A. 2020. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. Journal of Microscopy 278, 164-181.

Bidhendi AJ, Geitmann A. 2016. Relating the mechanics of the primary plant cell wall to morphogenesis. Journal of Experimental Botany 67, 449-461.

Blackman CJ, Brodribb TJ, Jordan GJ. 2010. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytologist 188, 1113-1123.

Blunden G, Yi Y, Jewers K. 1973. The comparative leaf anatomy of Agave, Beschorneria, Doryanthes and Furcraea species (Agavaceae: Agavaceae). Botanical Journal of the Linnean Society 66, 157-179.

Bobich EG, North GB. 2009. Structural implications of succulence: Architecture, anatomy, and mechanics of photosynthetic stem succulents, pachycauls, and leaf succulents. In: de la Barrera E, Smith WK, eds. Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel. México D.F.: Universidad Nacional Autónoma de México, 3-37.
Borland AM, Griffiths H, Hartwell J, Smith JAC. 2009. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. Journal of Experimental Botany 60, 2879-2896.

Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC. 2014. Engineering crassulacean acid metabolism to improve water-use efficiency. Trends in Plant Science 19, 327-338.

Braybrook SA, Hoft H, Peaucelle A. 2012. Probing the mechanical contributions of the pectin matrix: insights for cell growth. Plant Signaling & Behavior 7, 1037-1041.

Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144, 1890-1898.

Buckeridge MS, dos Santos HP, Tiné MAS. 2000. Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiology and Biochemistry 38, 141-156.

Buckeridge MS. 2010. Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiology 154, 1017-1023.

Buckley TN, John GP, Scoffoni C, Sack L. 2015. How does leaf anatomy influence water transport outside the xylem? Plant Physiology 168, 1616-1635.

Buckley TN. 2015. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant, Cell & Environment 38, 7-22.

Burgess TL, Shmida A. 1988. Succulent growth-forms in arid environments. In: Whitehead EE, Hutchinson CF, Timmermann BN, Varady RG, eds. Arid lands: today and tomorrow. London and New York: Routledge, 383-395.

Burgoyne PM, Smith GF, du Plessis F. 2000. Notes on the genus Frithia (Mesembryanthemaceae) and the description of a new species, F. humilis, in South Africa. Bothalia 30, 1-7.

Cai J, Liu X, Vanneste K, et al. (2015). The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics 47, 65-72.

Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport DTA, Chen Y, Kieliszewski MJ. 2008. Self-assembly of the plant cell wall requires an extensin scaffold. Proceedings of the National Academy of Sciences 105, 2226-2231.

Cárdenas A, Higuera-Ciapara I, Goycoolea FM. 1997. Rheology and aggregation of cactus (Opuntia ficus-indica) mucilage in solution. Journal of the Professional Association for Cactus Development 2, 152-159.

Carpita NC, Ralph J, McCann MC. 2015. The Cell Wall. In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. 2nd edition. Chichester, UK: John Wiley & Sons, 45-110.

Carpita NC, Tierney M, Campbell M. 2001. Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. In: Carpita NC, Campbell M, Tierney M, eds. Plant Cell Walls. Dordrecht: Springer, 1-5.

Carriquí M, Nadal M, Clemente-Moreno MJ, Gago J, Miedes E, Flexas J. 2020. Cell wall composition strongly influences mesophyll conductance in gymnosperms. The Plant Journal 103, 1372-1385.

Cevher-Keskin B. 2019. Quantitative mRNA expression profiles of germin-like and extensin-like proteins under drought stress in Triticum aestivum. International Journal of Life Sciences and Biotechnology 2, 95-107.

Chebli Y, Geitmann A. 2017. Cellular growth in plants requires regulation of cell wall biochemistry. Current Opinion in Cell Biology 44, 28-35.

Chen S, Luo Y, Wang G, Feng C, Li H. 2020. Genome-wide identification of expansin genes in Brachypodium distachyon and functional characterization of BdEXPA27. Plant Science 296, 110490.

Chen Y, Zhang B, Li C, Lei C, Kong C, Yang Y, Gong M. 2019. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One 14, e0219837.

Christensen-Dean GA, Moore R. 1993. Development of chlorenchyma and window tissues in leaves of Peperomia columella. Annals of Botany 71, 141-146.

Chua M, Hocking TJ, Chan K, Baldwin TC. 2013. Temporal and spatial regulation of glucosaminan deposition and mobilization in corns of Amorphophallus konjac (Araceae). American Journal of Botany 100, 337-345.
Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inzé D. 2015. Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiology 167, 800-816.

Clemente-Moreno MJ, Gago J, Díaz-Vivancos P, Bernal A, Miedes E, Bresta P, Liakopoulos G, Fernie AR, Hernández JA, Flexas J. 2019. The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. The Plant Journal 99, 1031-1046.

Cooper K, Farrant JM. 2002. Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. Journal of Experimental Botany 53, 1805-1813.

Copetti D, Búrzquez A, Bustamante E, et al. 2017. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proceedings of the National Academy of Sciences 114, 12003-12008.

Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6, 850.

Cosgrove DJ. 2016. Catalysts of plant cell wall loosening. F1000Research 5 (F1000 Faculty Rev), 119.

Cosgrove DJ. 2018. Diffuse growth of plant cell walls. Plant Physiology 176, 16-27.

Cui S, Hu J, Guo S, Wang J, Cheng Y, Dang X, Wu L, He Y. 2012. Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration. Journal of Experimental Botany 63, 711-726.

de Boer HJ, Eppinga MB, Wassen MJ, Dekker SC. 2012. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications 3, 1-11.

Demarty M, Morvan C, Thellier M. 1984. Calcium and the cell wall. Plant, Cell & Environment 7, 441-448.

DeVree BT, Steiner LM, Glazowska S, Ruhnow F, Herburger K, Persson S, Mravec J. 2021. Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. Biotechnology for Biofuels 14, 1-26.

Ding Y, Zhang Y, Zheng QS, Tyree MT. 2014. Pressure–volume curves: revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytologist 203, 378-387.

Donatz M, Eller BM. 1993. Plant water status and water translocation in the drought deciduous CAM-succulent Senecio medley-woodii. Journal of Plant Physiology 141, 750-756.

Earles JM, Théroux-Rancourt G, Roddy AB, Gilbert ME, McElrone AJ, Brodersen CR. 2018. Beyond porosity: 3D leaf intercellular airspace traits that impact mesophyll conductance. Plant Physiology 178, 148-162.

Edwards EJ. 2019. Evolutionary trajectories, accessibility and other metaphors: the case of C₄ and CAM photosynthesis. New Phytologist 223, 1742-1755.

Egan AN, Schlueter J, Spooner DM. 2012. Applications of next-generation sequencing in plant biology. American Journal of Botany 99, 175-185.

Egli U, Giorgetta M. 2020. Dry season—wet season volume change of Echinopsis atacamensis ssp. atacamensis (Cactaceae) as proxy for the amount of utilisable water of a stem succulent plant. Bradleyna 2020, 59-69.

Egli U, Nyffeler R. 2009. Living under temporarily arid conditions – succulence as an adaptive strategy. Bradleyna 2009, 13-36.

Egli U. 2017. Sukkulentengärten – Geschichten einer Faszination. Avonia 35 (Supplement).

Eklöf JM, Brumer H. 2010. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology 153, 456-466.

Ellsworth PV, Ellsworth PZ, Koteyeva NK, Cousins AB. 2018. Cell wall properties in Oryza sativa influence mesophyll CO₂ conductance. New Phytologist 219, 66-76.

Engmann KF. 1934. Studien über die Leistungsfähigkeit der Wassergewebe sukkulenter Pflanzen. Beihefte zum botanischen Centralblatt, Abt. A 52, 381-414.

Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO₂ diffusion pathway inside leaves. Journal of Experimental Botany 60, 2235-2248.
Szerner I, Salameh I, Colombo L, Kalaitzis P. 2020. Plant cell walls tackling climate change: Insights into plant cell wall remodeling, its regulation, and biotechnological strategies to improve crop adaptations and photosynthesis in response to global warming. Plants 9, 212.

Felsenberg H, Henrickson J. 1997. Convergent adaptive morphology of a Sonoran desert cactus (Peniocereus striatus) and an African spurge (Euphorbia cryptospinosus). Haseltonia 5, 77-85.

Ferreira SR, Lima PRL, Silva FA, Toledo Filho RD. 2014. Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bending behavior of cement based composites. Key Engineering Materials 600, 421-432.

Ferrão JP, Pou A, Flórez- Sarasa I, Gessler A, Kodama N, Flexas J, Ribas- Carbó M. 2012. The Pécelt effect on leaf water enrichment correlates with leaf hydraulic conductance and mesophyll conductance for CO₂. Plant, Cell & Environment 35, 611-625.

Flach BM, Eller BM, Egli A. 1995. Transpiration and water uptake of Senecio medley-woodii and Aloe jubanda under changing environmental conditions: measurements with a potometric water-budget-meter. Journal of Experimental Botany 46, 1615-1624.

Flexas J, Carriquí M. 2020. Photosynthesis and photosynthetic efficiencies along the terrestrial plant’s phylogeny: lessons for improving crop photosynthesis. The Plant Journal 101, 964-978.

Flexas J, Clemente-Moreno MJ, Bota J, et al. 2021. Cell wall thickness and composition are involved in photosynthetic limitation. Journal of Experimental Botany 72, 3971-3986.

Flexas J, Ribas-Carbo M, Díaz-Despejo A, Galmés J, Medrano H. 2008. Mesophyll conductance to CO₂: current knowledge and future prospects. Plant, Cell & Environment 31, 602-621.

Flexas J, Scoffoni C, Gago J, Sack L. 2013. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany 64, 3965-3981.

Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytologist 179, 945-963.

Fradera-da Costa A. 2012. A morphological cladistic analysis of the genus. Systematic Botany 37, 517-550.

Franz G. 1979. Metabolism of reserve polysaccharides in tubers of Orchis morio L. Planta Medica 36, 68-73.

Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J. 2019. Photosynthesis optimized across land plant phylogeny. Trends in Plant Science 24, 947-958.

Gens JS, Fujiki M, Pickard BG. 2000. Arabinogalactan protein and wall-associated kinase in a plasmalemmal reticulum with specialized vertices. Protoplasma 212, 115-134.

Giarola V, Krey S, von den Driesch B, Bartels D. 2016. The Craterostigma plantagineum glycine- rich protein Cp GRP 1 interacts with a cell wall- associated protein kinase 1 (Cp WAK 1) and accumulates in leaf cell walls during dehydration. New Phytologist 210, 535-550.

Gibson AC, Nobel PS. 1986. The cactus primer. Cambridge, Massachusetts and London, England: Harvard University Press.

Gibson AC. 1996. Structure-function relations of warm desert plants. Berlin: Springer-Verlag.

Gierlinger N. 2018. New insights into plant cell walls by vibrational microspectroscopy. Applied Spectroscopy Reviews 53, 517-551.

Ginestra G, Parker ML, Bennett RN, Robertson J, Mandalari G, Narbad A, Lo Curro RB, Bisignano G, Faulds CB, Waldron KW. 2009. Anatomical, chemical, and biochemical characterization of cladodes from prickly pear [Opuntia ficus-indica (L.) Mill.]. Journal of Agricultural and Food Chemistry 57, 10323-10330.

Goetzsch B, Hilton-Taylor C, Cruz-Piñón G, et al. 2015. High proportion of cactus species threatened with extinction. Nature Plants 1, 1-7.

Goldstein G, Andrade JL, Nobel PS. 1991. Differences in water relations parameters for the chlorenchyma and the parenchyma of Opuntia ficus-indica under wet versus dry conditions. Australian Journal of Plant Physiology 18, 95-107.

Gomes-da-Silva J, Alves da Costa Vargens F, do Carmo de Oliveira Arruda R, Ferreira da Costa A. 2012. A morphological cladistic analysis of the Vriesea corcovadensis group (Bromeliaceae: Tillandsioidae), with anatomical descriptions: new evidence of the non-monophyly of the genus. Systematic Botany 37, 641-654.
Gotsch S, Williams CB, Bicaba R, et al. 2021. Trade-offs between succulent and non-succulent epiphytes underlie variation in drought tolerance and avoidance. Research Square DOI: 10.21203/rs.3.rs-899788/v1. [Preprint].

Goycoolea FM, Cárdenas A. 2003. Pectins from Opuntia spp.: a short review. Journal of the Professional Association for Cactus Development 5, 17-29.

Grace OM, Buerki S, Symonds MRE, et al. 2015. Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera. BMC Evolutionary Biology 15, 1-12.

Grace OM, Dzajic A, Jäger AK, Nyberg NT, Önder A, Rousted N. 2013. Monosaccharide analysis of succulent leaf tissue in Aloe. Phytochemistry 93, 79-87.

Gribaa A, Dardelle F, Lehner A, Rhouey C, Burel C, Ferchichi A, Driouich A, Mollet JC. 2013. Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera ‘Deglet nour’, Arecales) fruit during development. Plant, Cell & Environment 36, 1056-1070.

Griffiths H, Males J. 2017. Succulent plants as natural capital. Plants, People, Planet 1, 336-345.

Haberlandt G. 1904. Physiologische pflanzenanatomie. Leipzig: W. Engelmann.

Haran M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior 6, 1503-1509.

Harb A, Krishnan A, Ambavaram MM, Pereira A. 2010. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology 154, 1254-1271.

Harbolt J, Suttangkakul A, Scheller HV. 2010. Biosynthesis of pectin. Plant Physiology 153, 384-395.

Harwood R, Goodman E, Gudmundsdottir M, Huynh M, Musulin Q, Song M, Barbour MM. 2020. Cell and chloroplast anatomical features are poorly estimated from 2D cross-sections. New Phytologist 225, 2567-2578.

Harwood R, Théroux-Rancourt G, Barbour MM. 2021. Understanding airspace in leaves: 3D anatomy and directional tortuosity. Plant, Cell & Environment 44, 2455-2465.

He C, Wu K, Zhang J, et al. 2017. Cytochemical localization of polysaccharides in Dendrobium officinale and the involvement of DoCSLA6 in the synthesis of mann polysaccharides. Frontiers in Plant Science 8, 173.

He H, Serraj R, Yang Q. 2009. Changes in OsXTH gene expression, ABA content, and peduncle elongation in rice subjected to drought at the reproductive stage. Acta Physiologiae Plantarum 31, 749-756.

Herrera A, Fernández MD, Taisma MA. 2000. Effects of drought on CAM and water relations in plants of Peperomia carnevalii. Annals of Botany 86, 511-517.

Hesse I., Kampowski T, Leopold J, Caliaro S, Speck T, Speck O. 2020. Comparative analyses of the self-sealing mechanisms in leaves of Delosperma cooperi and Delosperma ecklonis (Aizoaceae). International Journal of Molecular Sciences 21, 5768.

Heyduk K, McKain MR, Lalani F, Leebens-Mack J. 2016. Evolution of a CAM anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae (Asparagaceae). Molecular Phylogenetics and Evolution 105, 102-113.

Hidalgo-Reyes M, Caballero-Caballero M, Hernández-Gómez LH, Urríolagüitía-Calderón G. 2015. Chemical and morphological characterization of Agave angustifolia bagasse fibers. Botanical Sciences 93, 807-817.

Hoê L, Pelloux J, Lefebvre V. 2017. Connecting homogalacturonan-type pectin remodeling to acid growth. Trends in Plant Science 22, 20-29.
Horner HT, Wanke S, Oelschlägel B, Samain MS. 2017. Peruvian window-leaved *Peperomia* taxa display unique crystal macropatterns in high-altitude environments. International Journal of Plant Sciences 178, 157-167.

Houston K, Tucker MR, Chowdhury J, Shirley N, Little A. 2016. The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Frontiers in Plant Science 7, 984.

Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. 2020. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367, 1003-1007.

Haas KT, Wightman R, Peaucelle A, Höfte H. 2021. The role of pectin phase separation in plant cell wall assembly and growth. The Cell Surface 100054.

Ihlenfeldt H-D. 1985. Lebensformen und Überlebensstrategien bei Sukkulenten. Berichte der Deutschen Botanischen Gesellschaft 98, 409-423.

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.

Jaiswal SK, Mahajan S, Chakraborty A, Kumar S, Sharma VK. 2021. The genome sequence of *Aloe vera* reveals adaptive evolution of drought tolerance mechanisms. iScience 24, 102079.

Jiménez MS, Morales D, Irarte J, Gil E. 1983. Succulence and CAM relationships in *Aeonium* genus. Photosynthesis Research 4, 9-20.

Jin KM, Zhuo RY, Xu D, Wang YJ, Fan HJ, Huang BY, Qiao GR. 2020. Genome-wide identification of the expansin gene family and its potential association with drought stress in moso bamboo. International Journal of Molecular Sciences 21, 9491.

Jones AM, Zhou Y, Held MA, Davis SC. 2020. Tissue composition of *Agave americana* L. yields greater carbohydrates from enzymatic hydrolysis than advanced bioenergy crops. Frontiers in Plant Science 11, 654.

Jung NU, Girola V, Chen P, Knox JP, Bartels D. 2019. *Craterostigma plantagineum* cell wall composition is remodelled during desiccation and the glycine- rich protein CpGRP1 interacts with pectins through clustered arginines. The Plant Journal 100, 661-676.

Kaderweit G, Borsch T, Weising K, Freitag H. 2003. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C₄ photosynthesis. International Journal of Plant Sciences 164, 959-986.

Kluge M, Ting IP. 1978. Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation. Ecological Studies: Analysis and Synthesis. Vol. 30. Berlin, Heidelberg: Springer-Verlag.

Koller AL, Rost TL. 1988a. Leaf anatomy in *Sansevieria* (Agavaceae). American Journal of Botany 75, 615-633.

Koller AL, Rost TL. 1988b. Structural analysis of water-storage tissue in leaves of *Sansevieria* (Agavaceae). Botanical Gazette 149, 260-274.

Kramer PJ. 1983. Water Deficits and Plant Growth. In: Kramer PJ. Water Relations of Plants. New York: Academic Press, 342-389.

Körner C. 2003. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edition. Berlin, Heidelberg: Springer.

Laity JJ. 2008. Deserts and Desert Environments. Chichester, UK: John Wiley & Sons.

Lamport DT, Kieliszewski MJ, Showalter AM. 2006. Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytologist 169, 479-492.

Landrum JV. 2001. Wide-band tracheids in leaves of genera in Aizoaceae: the systematic occurrence of a novel cell type and its implications for the monophyly of the subfamily Ruschioideae. Plant Systematics and Evolution 227, 49-61.

Landrum JV. 2002. Four succulent families and 40 million years of evolution and adaptation to xeric environments: What can stem and leaf anatomical characters tell us about their phylogeny? Taxon 51, 463-473.

Landrum JV. 2006. Wide-band tracheids in genera of Portulacaceae: novel, non-xylary tracheids possibly evolved as an adaptation to water stress. Journal of Plant Research 119, 497-504.

Layton BE, Boyd MB, Tripepi MS, Bitonti BM, Dollahon MNR, Balsamo RA. 2010. Dehydration- induced expression of a 31- kDa dehydrin in *Polypodium polypondiiodes* (Polypodiaceae) may enable large, reversible deformation of cell walls. American Journal of Botany 97, 535-544.
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. 2015. Cell wall metabolism in response to abiotic stress. Plants 4, 112-166.

Lenz TI, Wright IJ, Westoby M. 2006. Interrelations among pressure–volume curve traits across species and water availability gradients. Physiologia Plantarum 127, 423-433.

Leszczuk A, Kalaitzis P, Blazakis KN, Zdunek A. 2020. The role of arabinogalactan proteins (AGPs) in fruit ripening—a review. Horticulture Research 7, 1-12.

Leucci MR, Lenucci MS, Piro G, Dalesandro G. 2008. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. Journal of Plant Physiology 165, 1168-1180.

Leverett A, Castaño NH, Ferguson K, Winter K, Borland AM. 2021. Crassulacean acid metabolism (CAM) supersedes the turgor loss point (TLP) as an important adaptation across a precipitation gradient, in the genus Clusia. Functional Plant Biology 48, 703-716.

Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. 2015. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta 242, 791-811.

Levitt J. 1980. Responses of plants to environmental stresses. 2nd edition. New York: Academic Press.

Li H, Pattathil S, Foston MB, et al. 2014. Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semiarid lands. Biotechnology for Biofuels 7, 1-11.

Lim SD, Mayer JA, Yim WC, Cushman JC. 2020. Plant tissue succulence engineering improves water-use efficiency, water-deficit stress attenuation and salinity tolerance in Arabidopsis. The Plant Journal 103, 1049-1072.

Liu Z, Persson S, Sánchez-Rodríguez C. 2015. At the border: the plasma membrane–cell wall continuum. Journal of Experimental Botany 66, 1553-1563.

Lüttge U. 2004. Ecophysiology of Crassulacean Acid Metabolism (CAM). Annals of Botany 93, 629-652.

Maceda A, Soto-Hernández M, Peña-Valdivia CB, Trejo C, Terrazas T. 2019. Differences in the structural chemical composition of the primary xylem of Cactaceae: a topoc hemical perspective. Frontiers in Plant Science 10, 1497.

Males J. 2017. Secrets of succulence. Journal of Experimental Botany 68, 2121-2134.

Malik FT, Clement RM, Gethin DT, Kiernan M, Goral T, Griffiths P, Beynon D, Parker AR. 2016. Hierarchical structures of cactus spines that aid in the directional movement of dew droplets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, 20160110.

Mansfield SD, Kim H, Lu F, Ralph J. 2012. Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols 7, 1579-1589.

Mareri L, Romi M, Cal G. 2019. Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? Plant Biosystems 153, 173-185.

Matsuo T, Mizuno T. 1974. Changes in the amounts of two kinds of reserve glucose-containing polysaccharides during germination of the Easter lily bulb. Plant and Cell Physiology 15, 555-558.

Mauseth JD. 1995. Collapsible water-storage cells in cacti. Bulletin of the Torrey Botanical Club 122, 145-151.

Mauseth JD. 2004a. Cacti and other succulents: stem anatomy of “other succulents” has little in common with that of cacti. Bradleya 22, 131-140.

Mauseth JD. 2004b. The structure of photosynthetic succulent stems in plants other than cacti. International Journal of Plant Sciences 165, 1-9.

Mauseth JD. 2004c. Wide-band tracheids are present in almost all species of Cactaceae. Journal of Plant Research 117, 69-76.

Mauseth JD. 2006. Structure–function relationships in highly modified shoots of Cactaceae. Annals of Botany 98, 901-926.

Mauseth JD. 2020. Some cacti produce “reaction cortex” rather than reaction wood in curved sections of weight-stressed shoots. Haseltonia 2019, 86-93.
Maxwell K, von Caemmerer S, Evans JR. 1997. Is a low internal conductance to CO₂ diffusion a consequence of succulence in plants with crassulacean acid metabolism? Functional Plant Biology 24, 777-786.

McKenna BA, Kopittke PM, Wehr JB, Blamey FPC, Menzies NW. 2010. Metal ion effects on hydraulic conductivity of bacterial cellulose–pectin composites used as plant cell wall analogs. Physiologia Plantarum 138, 205-214.

Meier H, Reid JSG. 1982. Reserve polysaccharides other than starch in higher plants. In: Loewus FA, Tanner W, eds. Plant Carbohydrates I. Berlin, Heidelberg: Springer, 418-471.

Melo-de-Pinna GF, Hernandes-Lopes J, Ogura AS, Santos LK, Silva DC, Haevermans T. 2016. Growth patterns and different arrangements of vascular tissues in succulent leaves. International Journal of Plant Sciences 177, 643-660.

Meli-de-Pinna GF, Ogura AS, Arruda EC, Klak C. 2014. Repeated evolution of endoscopic peripheral vascular bundles in succulent leaves of Aizoaceae (Caryophyllales). Taxon 63, 1037-1052.

Miedes E, Suslov D, Vandenbussche F, Kenobi K, Ivakov A, Van Der Straeten D, Lorences EP, Mellerowicz EJ, Verbelen J-P, Vissenberg K. 2013. Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. Journal of Experimental Botany 64, 2481-2497.

Ming R, VanBuren R, Wai CM, et al. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics 47, 1435-1442.

Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DPO, Proux C, Lerouge P, Jouanin L. 2009. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC Plant Biology 9, 1-17.

Molina C, Rotter B, Horres R, et al. 2008. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9, 1-28.

Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J, Pettolino F, Roberts A, Mikkelsen JD, Knox JP, Bacic A, Willats WGT. 2007. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. The Plant Journal 50, 1118-1128.

Moore JP, Nguema-Ona E, Chevalier L, Lindsey GG, Brandt WF, Lerouge P, Farrant JM, Driouich A. 2006. Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. Plant Physiology 141, 651-662.

Moore JP, Nguema-Ona EE, Vicré-Gibouin M, Sorensen I, Willats WGT, Driouich A, Farrant JM. 2013. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237, 739-754.

Mozzi G, Romero E, Martínez-Quezada DM, Hulrine KR, Crivellaro A. 2021. PEG infiltration: an alternative method to obtain thin sections of cacti tissues. IAWA Journal 42, 204-208.

Mylo MD, Hesse L, Masselter T, Leupold J, Drozzella K, Speck T, Speck O. 2021. Morphology and anatomy of branch–branch junctions in Opuntia ficus-indica and Cylindropuntia bigelovii: a comparative study supported by mechanical tissue quantification. Plants 10, 2313.

Nadal M, Flexas J, Gullas J. 2018. Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships? Ecology Letters 21, 1372-1379.

Nadal M, Perera-Castro AV, Gullas J, Farrant JM, Flexas J. 2021. Resurrection plants optimize photosynthesis despite very thick cell walls by means of chloroplast distribution. Journal of Experimental Botany 72, 2600-2610.

Nelson EA, Sage RF. 2008. Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. Journal of Experimental Botany 59, 1841-1850.

Nelson EA, Sage TL, Sage RF. 2005. Functional leaf anatomy of plants with crassulacean acid metabolism. Functional Plant Biology 32, 409-419.

Nerd A, Nobel PS. 1991. Effects of drought on water relations and nonstructural carbohydrates in cladodes of Opuntia ficus-indica. Physiologia plantarum 81, 495-500.

Nguyen HP, Jeong HY, Kim H, Kim YC, Lee C. 2016. Molecular and biochemical characterization of rice pectin methylsterase inhibitors (OsPMEIs). Plant Physiology and Biochemistry 101, 105-112.
Ni Y, Turner D, Yates KÁ, Tizard I. 2004a. Isolation and characterization of structural components of Aloe vera L. leaf pulp. International Immunopharmacology 4, 1745-1755.

Ni Y, Yates KM, Tizard IR. 2004b. Aloe polysaccharides. In: Reynolds T, ed. Aloes: The genus Aloe. Boca Raton, Florida: CRC Press: 75-87.

Niklas KJ. 1992. Plant Biomechanics: an engineering approach to form and function. Chicago, Illinois: University of Chicago Press.

Nishikubo N, Takahashi J, Roos AA, Derba-Macełuch M, Pieni K, Brumer H, Teeri TT, Stålbrand H, Mellerowicz EJ. 2011. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiology 155, 399-413.

Nobel PS, Cavelier J, Andrade JL. 1992. Mucilage in cacti: its apoplastic capacitance, associated solutes, and influence on tissue water relations. Journal of Experimental Botany 43, 641-648.

Nobel PS, Jordan PW. 1983. Transpiration stream of desert species: resistances and capacitances for a C₃, a C₄, and a CAM plant. Journal of Experimental Botany 34, 1379-1391.

Nobel PS. 1988. Environmental biology of agaves and cacti. Cambridge, UK: Cambridge University Press.

Nobel PS. 2006. Parenchyma–chlorenchyma water movement during drought for the hemiepiphytic cactus Hylocereus undatus. Annals of Botany 97, 469-474.

Nobel PS. 2009. Physicochemical and Environmental Plant Physiology. 4th edition. Amsterdam: Elsevier Academic Press.

Nyffeler R, Eggli U. 2010. An up-to-date familial and suprafamilial classification of succulent plants. Bradleya 2010, 125-144.

Nyffeler R. 2007. The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampserotae. American Journal of Botany 94, 89-101.

O’Neill MA, Ishii T, Albersheim P, Darvill AG. 2004. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology 55, 109-139.

Ogburn RM, Edwards EJ. 2009. Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. American Journal of Botany 96, 391-408.

Ogburn RM, Edwards EJ. 2010. The ecological water-use strategies of succulent plants. Advances in Botanical Research 55, 179-225.

Ogburn RM, Edwards EJ. 2013. Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants. Current Biology 23, 722-726.

Ogura AS, Hernandes-Lopes J, Melo-de-Pinna GF. 2018. A new anatomical interpretation for abaxialization in unifacial leaf blade of stone plants (Aizoaceae, Caryophyllales). Brazilian Journal of Botany 41, 751-764.

Ohtsuki T. 1968. Studies on reserve carbohydrates of four Amorphophallus species, with special reference to mannan. Botanical Magazine, Tokyo 81, 119-126.

Oi T, Enomoto S, Nakao T, Arai S, Yamane K, Taniguchi M. 2017. Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM. Annals of Botany 120, 21-28.

Ong BL, Koh CKK, Wee YC. 1992. Changes in cell wall structure of Pyrrosia piloselloides (L.) Price leaf cells during water stress. International Journal of Plant Sciences 153, 329-332.

Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J. 2018. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nature Plants 4, 639-650.

Palomiäki V, Holopainen JK, Holopainen T. 1994. Effects of drought and waterlogging on ultrastructure of Scots pine and Norway spruce needles. Trees 9, 98-105.

Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. 2011. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Current Biology 21, 1720-1726.

Peguero-Pina JJ, Sancho-Knapik D, Gil-Pelegrín E. 2017. Ancient cell structural traits and photosynthesis in today’s environment. Journal of Experimental Botany 68, 1389-1392.
Pelloux J, Rusterucci C, Mellerowicz EJ. 2007. New insights into pectin methylesterase structure and function. Trends in Plant Science 12, 267-277.

Pereira-Dias F, Santos M. 2015. Adaptive strategies against water stress: a study comparing leaf morphoanatomy of rupicolous and epiphytic species of Gesneriaceae. Brazilian Journal of Botany 38, 911-919.

Persson S, Sörensen I, Møller I, Willats W, Pauly M. 2011. Dissection of Plant Cell Walls by High-Throughput Methods. In: Ullskov P, ed. Annual Plant Reviews: Plant Polysaccharides, Biosynthesis and Bioengineering. Oxford, UK: Wiley-Blackwell, 43-64.

Pettolino FA, Walsh C, Fincher GB, Bacic A. 2012. Determining the polysaccharide composition of plant cell walls. Nature Protocols 7, 1590-1607.

Phan JL, Burton RA. 2018. New insights into the composition and structure of seed mucilage. Annual Plant Reviews Online 1, 63-104.

Pockman WT, Sperry JS. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. American Journal of Botany 87, 1287-1299.

Ranwala AP, Miller WB. 2008. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection. New Phytologist 180, 421-433.

Reinert F, Leal-Dehesa MV, Junqueira NE, Tavares ES. 2013. Are sun-and shade-type anatomy required for the acclimation of Neoregelia cruenta? Anais da Academia Brasileira de Ciências 85, 561-574.

Reyes-Rivera J, Soto-Hernández M, Canché-Escamilla G, Terrazas T. 2018. Structural characterization of lignin in four cacti wood: implications of lignification in the growth form and succulence. Frontiers in Plant Science 9, 1518.

Reynolds T, Dweck AC. 1999. Aloe vera leaf gel: a review update. Journal of Ethnopharmacology 68, 3-37.

Ripley BS, Abraham T, Klak C, Crauthorst M, Vertino M, Merino ME, Dweck AC. 2009. Leaf anatomy of Vitis vinifera L. in response to water shortage and high temperature: a comparison of drought-resistant and drought-sensitive lines. Botanical Gazette 152, 173-185.

Roig-Oliver M, Bresta P, Nadal M, Liakopoulos G, Nikolopoulos D, Karabourniotis G, Bota J, Flexas J. 2020a. Cell wall composition and thickness affect mesophyll conductance to CO₂ diffusion in Helianthus annuus under water deprivation. Journal of Experimental Botany 71, 7198-7209.

Roig-Oliver M, Fullana-Pericàs M, Bota J, Flexas J. 2021. Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in Hordeum vulgare and Triticum aestivum subjected to water deficit stress. Plant Science 311, 11015.

Roig-Oliver M, Nadal M, Clemente-Moreno MJ, Bota J, Flexas J. 2020b. Cell wall components regulate photosynthesis and leaf water relations of Vitis vinifera cv. Grenache acclimated to contrasting environmental conditions. Journal of Plant Physiology 244, 153084.

Roig-Oliver M, Rayon C, Rouard R, Fournet F, Bota J, Flexas J. 2020c. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. Physiologia Plantarum 172, 1439-1451.

Rydhå M, Hansen AR, Kračun SK, Mravec J. 2018. Report on the current inventory of the toolbox for plant cell wall analysis: proteinaceous and small molecular probes. Frontiers in Plant Science 9, 581.

Sachetto-Martins G, Franco LO, de Oliveira DE. 2000. Plant glycine-rich proteins: a family or just proteins with a common motif? Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1492, 1-14.

Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198, 983-1000.

Sáenz C, Sepúlveda E, Matsuhiro B. 2004. Opuntia spp mucilage's: a functional component with industrial perspectives. Journal of Arid Environments 57, 275-290.

Sandoval-Zapotitla E, Martínez-Quezada DM, Reyes-Santiago J, Islas-Luna MdlÁ., Rosas U. 2019. Leaf morpho-anatomical diversity in Echeveria aff. gigantea (Crassulaceae). Botanical Sciences 97, 218-235.

Sarkar P, Bosneaga E, Auer M. 2009. Plant cell walls throughout evolution: towards a molecular understanding of their design principles. Journal of Experimental Botany 60, 3615-3635.
Sayed OH. 2001. Crassulacean acid metabolism 1975–2000, a check list. Photosynthetica 39, 339-352.

Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annual Review of Plant Biology 61, 263-289.

Schmidt JE, Kaiser WM. 1987. Response of the succulent leaves of *Peperomia magnoliaefolia* to dehydration: water relations and solute movement in chlorenchyma and hydrenchyma. Plant Physiology 83, 190-194.

Schulte PJ, Nobel PS. 1989. Responses of a CAM plant to drought and rainfall: capacitance and osmotic pressure influences on water movement. Journal of Experimental Botany 40, 61-70.

Schulte PJ, Smith JAC, Nobel PS. 1989. Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent. Plant, Cell & Environment 12, 831-842.

Schulte PJ. 1992. The units of currency for plant water status. Plant, Cell & Environment 15, 7-10.

Sénéchal F, Wattier C, Rustérucci C, Pelloux J. 2014. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. Journal of Experimental Botany 65, 5125-5160.

Showalter AM. 1993. Structure and function of plant cell wall proteins. The Plant Cell 5, 9-23.

Signori-Müller C, Oliveira RS, Barros FdV, *et al.* 2021. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications 12, 2310.

Smith JAC, Lüttge U. 1985. Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in *Kalanchoë daigremontiana*. Planta 163, 272-282.

Smith JAC, Nobel PS. 1986. Water movement and storage in a desert succulent: anatomy and rehydration kinetics for leaves of *Agave deserti*. Journal of Experimental Botany 37, 1044-1053.

Stancato GC, Mazafera P, Buckeridge MS. 2001. Effect of a drought period on the mobilisation of non-structural carbohydrates, photosynthetic efficiency and water status in an epiphytic orchid. Plant Physiology and Biochemistry 39, 1009-1016.

Strickler SR, Bombarely A, Mueller LA. 2012. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. American Journal of Botany 99, 257-266.

Sørensen I, Domozych D, Willats WG. 2010. How have plant cell walls evolved? Plant Physiology 153, 366-372.

Taiz L, Zeiger E, Moller IM, Murphy A. 2014. Plant physiology and development. Sunderland, MA: Sinauer Associates.

Tan J, Wang HL, Yeh KW. 2007. Pseudobulb-specific gene expression of *Oncidium* orchid at the stage of inflorescence initiation. In: Chen W-H, Chen H-H, eds. Orchid Biotechnology. Singapore: World Scientific Publishing, 185-210.

Tenhaken R. 2015. Cell wall remodeling under abiotic stress. Frontiers in Plant Science 5, 771.

Théroux-Rancourt G, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK, McElrone AJ, Brodersen CR. 2017. The bias of a two-dimensional view: comparing two-dimensional and three-dimensional mesophyll surface area estimates using noninvasive imaging. New Phytologist 215, 1609-1622.

Tosens T, Niinemets Ü, Westoby M, Wright IJ. 2012. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. Journal of Experimental Botany 63, 5105-5119.

Turner NC. 2018. Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany 69, 3223-3233.

Tyree MT, Jarvis PG. 1982. Water in tissues and cells. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, eds. Physiological Plant Ecology II. Berlin, Heidelberg: Springer, 35-77.

Vander Willigen C, Farrant JM, Pammenter NW. 2001. Anomalous pressure volume curves of resurrection plants do not suggest negative turgor. Annals of Botany 88, 537-543.

Vázquez-Sánchez M, Terrazas T, Grego-Valencia D, Arias S. 2017. Growth form and wood evolution in the tribe Cacteae (Cactaceae). Willdenowia 47, 49-67.

Vollenweider P, Menard T, Arend M, Kuster TM, Günthardt-Goerg MS. 2016. Structural changes associated with drought stress symptoms in foliage of Central European oaks. Trees 30, 883-900.
von Willert DJ, Eller BM, Werger MJ, Brinckmann E, Ihlenfeldt HD. 1992. Life strategies of succulents in deserts: with special reference to the Namib Desert. Cambridge: Cambridge University Press.

Walter H, Stadelmann E. 1974. A new approach to the water relations of desert plants. In: Brown R, ed. Desert Biology. Vol. II. New York: Academic Press, 213-310.

Wang CY, Chiou CY, Wang HL, Krishnamurthy R, Venkatagiri S, Tan J, Yeh KW. 2008. Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227, 1063-1077.

Wang HL, Yeh KW, Chen PR, Chang CH, Chen JM, Khoo KH. 2006. Isolation and characterization of a pure mannan from Oncidium (cv. Gower Ramsey) current pseudobulb during initial inflorescence development. Bioscience, Biotechnology, and Biochemistry 70, 551-553.

Wang L, Shang H, Liu Y, Zheng M, Wu R, Phillips J, Bartels D, Deng X. 2009. A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica. Plant Biology 11, 837-848.

Webb MA, Arnott HJ. 1982. Cell wall conformation in dry seeds in relation to the preservation of structural integrity during desiccation. American Journal of Botany 69, 1657-1668.

Westermair M. 1884. Ueber Bau und Funktion des pflanzlichen Hautgewebesystems. Jahrbücher für Wissenschaftliche Botanik 14, 43-81.

Willats WG, McCartney L, Mackie W, Knox JP. 2001. Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology 47, 9-27.

Willis KJ, ed. 2017. State of the World’s Plants 2017. Report. Richmond, UK: Royal Botanic Gardens, Kew.

Winter K, Holtum JA, Smith JAC. 2015. Crassulacean acid metabolism: a continuous or discrete trait? New Phytologist 208, 73-78.

Xiong D, Flexas J, Yu T, Peng S, Huang J. 2017. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytologist 213, 572-583.

Xiong D, Nadal M. 2020. Linking water relations and hydraulics with photosynthesis. The Plant Journal 101, 800-815.

Xu H, Zhao Y, Suo, Y, Guo Y, Man Y, Jing Y, He X, Lin J. 2021. A label-free, fast and high-specificity technique for plant cell wall imaging and composition analysis. Plant Methods 17, 1-15.

Xuan Y, Zhou ZS, Li HB, Yang ZM. 2016. Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Ecotoxicology and Environmental Safety 132, 153-163.

Yang X, Cushman JC, Borland AM, et al. 2015. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist 207, 491-504.

Yang X, Hu R, Yin H, et al. 2017. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications 8, 1-15.

Yang X, Liu D, Tschaplinski TJ, Tuskan GA. 2019. Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany 70, 6539-6547.

Young AJ, Guo D, Desmet PG, Midgley GF. 2016. Biodiversity and climate change: Risks to dwarf succulents in Southern Africa. Journal of Arid Environments 129, 16-24.

Zeng Y, Himmel ME, Ding SY. 2017. Visualizing chemical functionality in plant cell walls. Biotechnology for Biofuels 10, 1-16.

Zhang T, Tang H, Vavylonis D, Cosgrove DJ. 2019. Disentangling loosening from softening: insights into primary cell wall structure. The Plant Journal 100, 1101-1117.

Zhao W, Fernando LD, Kirui A, Delige F, Wang T. 2020. Solid-state NMR of plant and fungal cell walls: a critical review. Solid State Nuclear Magnetic Resonance 107, 101660.

Zhao Y, Man Y, Wen J, Guo Y, Lin J. 2019. Advances in imaging plant cell walls. Trends in Plant Science 24, 867-878.

Zotz G. 2016. Plants on plants - The biology of vascular epiphytes. Switzerland: Springer International Publishing.
Boxes

Box 1. Ecology of succulents

Drought can lead to different degrees of water stress in plants, defined as “situations in which plant water potential and turgor are reduced enough to interfere with normal functioning”, although the “exact cell water potential at which this occurs depends on the kind of plant” (Kramer, 1983). Many drought-resistant plants (sensu Levitt, 1980) are drought tolerant and are able to track soil water potential to exceptionally low values (Walter and Stadelmann, 1974; Pockman and Sperry, 2000; Griffiths and Males, 2017); this category includes “true” xerophytes and the extreme case of resurrection plants, which are additionally desiccation tolerant. However, most succulent plants do not tolerate low water potentials (Ψ) and are therefore regarded as drought avoiders, with stored water delaying or completely preventing the effects of water stress at the cellular/tissue level (Eggli and Nyffeler, 2009; Ogburn and Edwards, 2010); this review focuses on drought-avoiding succulents. Succulence may be linked to other ecological strategies, most notably halophytism (Kadereit et al., 2003; Flowers and Colmer, 2008), although halophytic succulents are functionally distinct from drought-avoiding succulents. Despite being traditionally associated with arid and hyper-arid deserts (“true” deserts sensu Laity, 2008), drought-avoiding succulents need to refill their water stores periodically and are therefore dependent on seasonally predictable rainfall typical of semi-arid habitats (von Willert et al., 1992). Thus, the hotspots of succulent diversity tend to occur in semi-arid habitats and desert fringes (Burgess and Shmida, 1988; Ogburn and Edwards, 2010). Drought-avoiding succulents are also well represented in xeric microhabitats within relatively hydric habitats (Fig. 1H-J), as is the case with many epiphytes (Zotz, 2016) and plants in some alpine niches (Körner, 2003).
Box 2. Cell wall remodelling

The primary cell wall is a dynamic system whose properties can be tightly controlled via cell wall remodelling, which involves controlled modification, rearrangement, degradation and/or reconstruction of the cell wall in both growing and mature cells in response to various stimuli (Barnes and Anderson, 2018; Anderson and Kieber, 2020). Cell wall extension and contraction are generally regarded as a consequence of cell wall remodelling through the processes of cell wall loosening (i.e. cell wall stress relaxation and increased extensibility) and/or softening (i.e. reduced stiffness and increased deformability; Cosgrove, 2018; Zhang et al., 2019). Cell wall loosening is thought to be mediated by expansins, a class of non-enzymatic proteins which weaken non-covalent bonds in the cellulose-hemicellulose network and allow for slippage among cell wall components, whereas the activity of several hemicellulose- and pectin-modifying enzymes can lead to cell wall softening and secondary loosening (Cosgrove, 2016, 2018). These enzymes comprise xyloglucan endo-transglycosylases/hydrolases (XTHs), pectin methylesterases (PMEs), pectin acetylenes (PAEs), polygalacturonases (PGs) and pectate lyases (PLs), among others (Eklöf and Brumer, 2010; Sénéchal et al., 2014). There has been a growing interest in cell wall remodelling in response to abiotic stress due to its potential applications in near-future climate change scenarios (e.g. Le Gall et al., 2015; Tenhaken, 2015; Ezquer et al., 2020). A large proportion of plant genes are involved in cell wall synthesis, assembly and remodelling (~15% of the genome in Arabidopsis; AGI, 2000; Carpita et al., 2001), and shifts in expression patterns of these genes in response to different stresses have been widely reported (Houston et al., 2016), which highlights the relevance of cell walls in stress response.
Box 3. Cell wall storage polysaccharides

Cell wall storage polysaccharides (CWSPs) are apoplastic polysaccharides associated with the cell wall which can be repurposed for energy storage and other functions (Meier and Reid, 1982). They comprise mannans, xyloglucans and (arabino)galactans and are mobilized from the cell wall via various enzymatic activities (Buckeridge et al., 2000; Buckeridge, 2010). In many cases, CWSPs occur as a special deposition inside the ordinary primary cell wall. Among mannan CWSPs, insoluble “pure” mannans have been linked to increased hardness and are abundant in seeds, whereas soluble mannans, formed by substitution with galactosyl residues (i.e. galacto(gluco)mannans) and/or acetylation, have been reported in succulent-like storage organs, such as orchid pseudobulbs and underground organs of geophytes, where they are believed to play a role in cellular water relations and water storage (Stancato et al., 2001; Wang et al., 2006; Ranwala and Miller, 2008; Chua et al., 2013).
Figure captions

Figure 1. Succulence can occur in any plant organ, with leaf succulents and stem succulents being the most familiar. (A-G) Examples of drought-avoiding succulent plants from arid and semi-arid regions of the world: (A) Lithops ruschiiorum (Aizoaceae); (B) Crassula deceptor (Crassulaceae); (C) Anacampseros filamentos (Anacampserotaceae); (D) Aloe striata (Asphodelaceae); (E) Carnegiea gigantea (Cactaceae); (F) Hoodia gordonii (Asclepiadoideae, Apocynaceae); (G) Agave shawii (Asparagaceae). (H-J) Examples of drought-avoiding succulent plants from xeric microhabitats: (H) Sempervivum montanum (Crassulaceae); (I) Peperomia galapagensis (Piperaceae); (J) Dendrobium kratense (Orchidaceae). All photos from iNaturalist (see photo credits below).

Figure 2. Three-dimensional molecular model of the type I primary cell wall typical of most angiosperms (except the commelinids), showing the molecular interactions between the cell wall polysaccharides. Boxes show some representatives of the two groups of non-cellulosic cell wall polysaccharides, and of cell wall structural proteins (not included in the 3D model). Modified from Carpita et al. (2015) [The Cell Wall. In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. 2nd edition. 45-110. © 2015 John Wiley and Sons, Ltd]. Created with BioRender.com.

Figure 3. (A-F) Drought-response in succulent tissues of Aloe helenae (Asphodelaceae). (A) Morphology of a succulent leaf. (B,C) Section stained with toluidine blue of a leaf under (B) well-watered and (C) severe drought conditions; note the extreme degree of shrinking of the hydrenchyma upon dehydration. (D) Close-up of the shaded area, showing highly convoluted collapsible cell walls in the hydrenchyma, in contrast with the mostly smooth cell walls in the chlorenchyma. (E) In situ detection of highly de-methyl-esterified HGs using the monoclonal antibody COS (green signal); note the loss of signal in hydrenchyma cell walls compared with chlorenchyma (arrowhead). (F) In situ detection of acetylated mannans using the monoclonal antibody CCRCM-170 (red signal), with calcofluor white used to stain cellulose in cell walls (blue signal); note the intracellular accumulation of granular mannans (arrowhead). Hyd: hydrenchyma; Chl: chlorenchyma. (G-I) Drought-response in succulent tissues of Facheiroa sp. (Cactaceae). (G) Morphology of a succulent stem of F. cephaliomelana [© Pierre Braun, CC-BY-SA-4.0]. (H,I) Stem sections of F. ulei stained with Safranin O/Fast Green FCF of cortex hydrenchyma under (H) well-watered and (I) severe drought conditions. (A-C) Modified from Ahl et al. (2019b); (H, I) modified from Mauseth (2020).
Figure 4. Diagram of the hypothetical cell wall folding process in succulent tissues during drought conditions. (A) Detail of contact region between two cells in a succulent tissue. From a highly hydrated state, initial decreases in relative water content may result in different responses among different succulent lineages: cell wall remodelling may occur in some taxa to increase overall cell wall elasticity and/or to mobilize CWSPs, as seen in *Aloe* (Ahl et al., 2019b), whereas other taxa may exhibit constitutively highly elastic cell walls and may not need any modifications at this stage. (B) As relative water content decreases further during extended drought and the cells lose volume, the cell walls experience buckling due to local mechanical stress (in red), which triggers a subcellular response that initiates localized cell wall remodelling (orange arrows). (C) Cell wall remodelling results in patterning of softened and/or loosened regions along the cell wall (in blue), which may act as hinges and facilitate the regular cell wall folding process. Created with BioRender.com.
Photo credits

Photo credits for Fig. 1, all from iNaturalist.

A) *Lithops ruschiorum*, obs. #3179166, © John Barkla (CC-BY-4.0)

https://www.inaturalist.org/observations/3179166

B) *Crassula deceptor*, obs. #96923687, © Matt Berger (CC-BY-4.0)

https://www.inaturalist.org/observations/96923687

C) *Anacampseros filamentos*, obs. #18098778, © Kevin Murray (CC-BY-4.0)

https://www.inaturalist.org/observations/18098778

D) *Aloe striata*, obs. #91416316, © Christiaan Viljoen (CC-BY-4.0)

https://www.inaturalist.org/observations/91416316

E) *Carnegiea gigantea*, obs. #38210612, © Matt Berger (CC-BY-4.0)

https://www.inaturalist.org/observations/105300210

F) *Hoodia gordonii*, obs. #97449791, © Matt Berger (CC-BY-4.0)

https://www.inaturalist.org/observations/97449791

G) *Agave shawii*, obs. #21007526, © Alan Rockefeller (CC-BY-4.0)

https://www.inaturalist.org/observations/21007526

H) *Sempervivum montanum*, obs. #6840361, © Julien Renoult (CC-BY-4.0)

https://www.inaturalist.org/observations/6840361

I) *Peperomia galapagensis*, obs. #70609760, © Anja Junghanns (CC-BY-4.0)

https://www.inaturalist.org/observations/70609760

J) *Dendrobium kratense*, obs. #63818588, © Gerard Chartier (CC-BY-4.0)

https://www.inaturalist.org/observations/63818588

Photo credits for Fig. 3G, from Wikimedia Commons.

Facheiroa tenebrosa, © Pierre Braun (CC-BY-SA-4.0)

https://commons.wikimedia.org/wiki/File:Facheiroa_tenebrosa_P.J.Braun_%26_Esteves_Bahia_Brasil.jpg
Figure 1
