Low-momentum NN interactions and all-order summation of ring diagrams of symmetric nuclear matter

L.-W. Siu, J. W. Holt, T. T. S. Kuo and G. E. Brown

Department of Physics and Astronomy, Stony Brook University, NY 11794-3800, USA

We study the equation of state for symmetric nuclear matter using a ring-diagram approach in which the particle-particle hole-hole (pphh) ring diagrams within a momentum model space of decimation scale \(\Lambda \) are summed to all orders. The calculation is carried out using the renormalized low-momentum nucleon-nucleon (NN) interaction \(V_{\text{low-k}} \), which is obtained from a bare NN potential by integrating out the high-momentum components beyond \(\Lambda \). The bare NN potentials of CD-Bonn, Nijmegen and Idaho have been employed. The choice of \(\Lambda \) and its influence on the single particle spectrum are discussed. Ring-diagram correlations at intermediate momenta \((k \sim 2 \text{ fm}^{-1}) \) are found to be particularly important for nuclear saturation, suggesting the necessity of using a sufficiently large decimation scale so that the above momentum region is not integrated out. Using \(V_{\text{low-k}} \) with \(\Lambda \sim 3 \text{ fm}^{-1} \), we perform a ring-diagram computation with the above potentials, which all yield saturation energies \(E/A \) and Fermi momenta \(k_F^{(0)} \) considerably larger than the empirical values. On the other hand, similar computations with the medium-dependent Brown-Rho scaled NN potentials give satisfactory results of \(E/A \sim -15 \text{ MeV} \) and \(k_F^{(0)} \sim 1.4 \text{ fm}^{-1} \). The effect of this medium dependence is well reproduced by an empirical 3-body force of the Skyrme type.

PACS numbers: pacs

I. INTRODUCTION

Obtaining the energy per nucleon \((E/A) \) as a function of the Fermi momentum \((k_F) \) for symmetric nuclear matter is one of the most important problems in nuclear physics. Empirically, nuclear matter saturates at \(E/A \sim -16 \text{ MeV} \) and \(k_F \sim 1.36 \text{ fm}^{-1} \). A great amount of effort has been put into computing the above quantities starting from a microscopic many-body theory. For many years, the Brueckner-Hartree-Fock (BHF) theory \[1\,2\,3\] was the primary framework for nuclear matter calculations. However, BHF represents only the first-order approximation in the general hole-line expansion \[4\]. Conclusive studies \[3\,6\,7\] have shown that the hole-line expansion converges at third order (or second order with a continuous single-particle spectrum) and that such results are in good agreement with variational calculations \[8\] of the binding energy per nucleon. Nonetheless, all such calculations have shown that it is very difficult to obtain both the empirical saturation energy and saturation Fermi momentum simultaneously. In fact, such calculations using various models of the nucleon-nucleon interaction result in a series of saturation points which actually lie along a band, often referred to as the Coester band \[9\], which deviates significantly from the empirical saturation point. For this reason it is now widely believed that free-space two-nucleon interactions alone are insufficient to describe the properties of nuclear systems close to saturation density and that accurate results can only be achieved by introducing higher-order effects, e.g. three-nucleon forces \[10\] or relativistic effects \[11\].

In the present work, we shall carry out calculations of the nuclear binding energy for symmetric nuclear matter using a framework based on a combination of the recently developed low-momentum NN interaction \(V_{\text{low-k}} \) \[12\,13\,14\,15\,16\,17\] and the ring-diagram method for nuclear matter of Song et al. \[18\], which is a model-space approach where the particle-particle hole-hole (pphh) ring diagrams for the potential energy of nuclear matter are summed to all orders. In previous studies a model space of size \(\Lambda \sim 3 \text{ fm}^{-1} \) was used to obtain improved results compared with those from the BHF method. Such an improvement can be attributed to the following desirable features in the ring diagram approach. First, the ground-state energy shift \(\Delta E_0 \) in the BHF approach is given by just the lowest-order reaction matrix \((G\text{-matrix})\) diagram (corresponding to diagram (b) of Fig. 4 with the dashed vertex representing \(G \)) which does not include diagrams corresponding to the particle-hole excitations of the Fermi sea. Such excitations represent the effect of long-range correlations. In contrast, the pphh ring diagrams, such as diagrams (c) and (d) in Fig. 4, are included to all orders in the ring-diagram approach. Secondly, the single-particle (s.p.) spectrum used in the ring-diagram approach is different from that in early BHF calculations, where one typically employed a self-consistent s.p. spectrum for momenta \(k \leq k_F \) and a free-particle spectrum otherwise. Thus the s.p. spectrum had a large artificial discontinuity at \(k_F \). The s.p. spectrum used in the ring diagram approach is a continuous one. The importance of using a continuous s.p. spectrum in nuclear matter theory has been discussed and emphasized in Ref. \[6\,7\]. Within the above ring diagram framework, previous calculations \[19\] using G-matrix effective interactions and \(\Lambda \sim 3 \text{ fm}^{-1} \) have yielded saturated nuclear matter that is slightly overbound \((E/A \sim -18 \text{ MeV}) \) and that saturates at too high a density \((k_F \simeq 1.6 \text{ fm}^{-1}) \)
The organization of this paper is as follows. In Sections II and III we outline our model space \(pphh \) ring-diagram calculation for the nuclear binding energy and the concept of Brown-Rho scaling respectively. In Sec. IV we present our computational results. A brief conclusion can be found in Sec. V.
II. SUMMATION OF pphh RING DIAGRAMS

In this section we describe how to calculate the properties of symmetric matter using the low-momentum ring diagram method. We employ a momentum model space where all nucleons have momenta \(k \leq \Lambda \). By integrating out the \(k > \Lambda \) components, the low-momentum interaction \(V_{\text{low}-k} \) is constructed for summing the pphh ring diagrams within the model space.

The ground state energy shift \(\Delta E_0 = E_0 - E_0^{\text{free}} \) for nuclear matter is defined as the difference between the true ground-state energy \(E_0 \) and the corresponding quantity for the non-interacting system \(E_0^{\text{free}} \). In the present work, we consider \(\Delta E_0 \) as given by the all-order sum of the pphh ring diagrams as shown in (b), (c) and (d) of Fig. 1.

We shall calculate the all-order sum, denoted as \(\Delta E_0^{\text{pph}} \), of such diagrams. Each vertex in a ring diagram is the renormalized effective interaction \(V_{\text{low}-k} \) corresponding to the model space \(k \leq \Lambda \). It is obtained from the following \(T \)-matrix equivalence method \cite{12,13,14,15,16,17}. Let us start with the \(T \)-matrix equation

\[
T(k', k, k^2) = V(k', k) + \mathcal{P} \int_0^\Lambda q^2 dq V(k', q) \frac{T(q, k, k^2)}{k^2 - q^2},
\]

where \(V \) is a bare NN potential. In the present work we shall use the CD-Bonn \cite{27}, Nijmegen-I \cite{28} and Idaho(chiral) \cite{29} NN potentials. Notice that in the above equation the intermediate state momentum \(q \) is integrated from 0 to \(\Lambda \). We then define an effective low-momentum \(T \)-matrix by

\[
T_{\text{low}-k}(p', p, p^2) = V_{\text{low}-k}(p', p) + \mathcal{P} \int_0^{\Lambda} q^2 dq V_{\text{low}-k}(p', q) \frac{T_{\text{low}-k}(q, p, p^2)}{p^2 - q^2},
\]

where the intermediate state momentum is integrated from 0 to \(\Lambda \), the momentum space cutoff. The low-momentum interaction \(V_{\text{low}-k} \) is then obtained from the above equations by requiring the \(T \)-matrix equivalence condition to hold, namely

\[
T(p', p, p^2) = T_{\text{low}-k}(p', p, p^2); \quad (p', p) \leq \Lambda.
\]

The iteration method of Lee-Suzuki-Andreozi \cite{17,25} has been used in obtaining the above \(V_{\text{low}-k} \).

With \(V_{\text{low}-k} \), our ring diagram calculations are relatively simple, compared to the \(G \)-matrix calculations of ref. \cite{18}. Within the model space, we use the Hartree-Fock s.p. spectrum calculated with the \(V_{\text{low}-k} \) interaction, and outside the model space we use the free particle spectrum. In other words,

\[
\epsilon_k = \begin{cases}
\hbar^2 k^2/2m + \sum_{h<k} \langle kh|V_{\text{low}-k}|kh \rangle; \quad k \leq \Lambda \\
\hbar^2 k^2/2m; \quad k > \Lambda.
\end{cases}
\]

The above s.p. spectrum is medium \((k_F)\) dependent. Our next step is to solve the model space RPA equation

\[
\sum_{ef} (\epsilon_i + \epsilon_j) \delta_{ij,ef} + \lambda (\bar{n}_i n_j - n_i n_j) \langle ij | V_{\text{low}-k} | ef \rangle \times Y_n (ef, \lambda) = \omega_n Y_n (ij, \lambda); \quad (i,j,e,f) \leq \Lambda,
\]

where \(n_a = 1 \) for \(a \leq k_F \) and \(n_a = 0 \) for \(k > k_F \); also \(\bar{n}_a = (1 - n_a) \). The strength parameter \(\lambda \) is introduced for calculational convenience and varies between 0 and 1. Note that the above equation is within the model space as indicated by \((i,j,e,f) \leq \Lambda \). The transition amplitudes \(Y \) of the above equation can be classified into two types, one dominated by hole-hole and the other by particle-particle components. We use only the former, denoted by \(Y_m \), for the calculation of the all-order sum of the pphh ring diagrams. This sum is given by \cite{18,24,30}

\[
\Delta E_0^{\text{pph}} = \int_0^1 d\lambda \sum_m \sum_{ijkl<\Lambda} Y_m (ij, \lambda) \times Y_m^* (kl, \lambda) \langle ij | V_{\text{low}-k} | kl \rangle,
\]

where the normalization condition for \(Y_m \) is \((Y_m | Y_m^\dagger) = -1 \) and \(Q(i,j) = (\bar{n}_i n_j - n_i n_j) \). In the above, \(\sum \) means we sum over only those solutions of the RPA equation \((\dagger) \) which are dominated by hole-hole components as indicated by the normalization condition.

The all-order sum of the pphh ring diagrams as indicated by diagrams (b-d) of Fig. 1 is given by the above \(\Delta E_0^{\text{pph}} \). Since we use the HF s.p. spectrum, each propagator of the diagrams contains the HF insertions to all orders as indicated by part (a) of the figure. Clearly our ring diagrams are medium dependent; their s.p. propagators have all-order HF insertions which are medium dependent, as is the occupation factor \((\bar{n}_i n_j - n_i n_j)\) of the RPA equation.

III. BROWN-RHO SCALING AND IN-MEDIUM NN INTERACTIONS

Nucleon-nucleon interactions are mediated by meson exchange, and clearly the in-medium modification of meson masses is important for NN interactions. These modifications could arise from the partial restoration of chiral symmetry at finite density/temperature or from traditional many-body effects. Particularly important are the vector mesons, for which there is now evidence from both theory \cite{33,36,37} and experiment \cite{38,39} that the masses may decrease by approximately 10\%-15\% at normal nuclear matter density and zero temperature. This in-medium decrease of meson masses is often referred to as Brown-Rho scaling \cite{31,32}. For densities below that of nuclear matter, it is suggested \cite{32} that the masses decrease linearly with the density \(n \):

\[
\frac{m^*_m}{m_v} = 1 - C \frac{n}{n_0},
\]

where \(m_v \) and \(m^*_m \) are the free and medium mass of the vector meson, respectively, and \(C \) a constant.
where \(m_\pi^2 \) is the vector meson mass in-medium, \(n_0 \) is nuclear matter saturation density and \(C \) is a constant of value \(\sim 0.10 - 0.15 \).

We study the consequences for nuclear many-body calculations by replacing the NN interaction in free space with a density-dependent interaction with medium-modified meson exchange. A simple way to obtain such potentials is by modifying the meson masses and relevant parameters of the one-boson-exchange NN potentials (e.g. the Bonn and Nijmegen interactions). The saturation of nuclear matter is an appropriate phenomenon for studying the effects of dropping masses \([23, 33]\), since the density of nuclear matter is constant and large enough to significantly affect the nuclear interaction through the modified meson masses.

One unambiguous prediction of Brown-Rho scaling in dense nuclear matter is the decreasing of the tensor force component of the nuclear interaction. The two most important contributions to the tensor force come from \(\pi \) and \(\rho \)-meson exchange, which act opposite to each other:

\[
V_\rho^T(r) = -\frac{f_\rho^2}{4\pi} m_\rho \tau_1 \cdot \tau_2 S_{12} f_3(m_\rho r),
\]

\[
V_\pi^T(r) = \frac{f_\pi^2}{4\pi} m_\pi \tau_1 \cdot \tau_2 S_{12} f_3(m_\pi r),
\]

\[
f_3(m r) = \left(\frac{1}{(mr)^3} + \frac{1}{(mr)^2} + \frac{1}{3mr} \right) e^{-mr}.
\]

In Brown-Rho scaling the \(\rho \) meson is expected to decrease in mass at finite density while the pion mass remains nearly unchanged due to chiral invariance. Therefore, the overall strength of the tensor force at finite density will be significantly smaller than that in free space. As we shall discuss later, this decrease in the tensor force plays an important role for nuclear saturation.

The Skyrme effective interaction has been widely used in nuclear physics and has been very successful in describing the properties of finite nuclei as well as nuclear matter \([34]\). This interaction has both 2-body and 3-body terms, having the form

\[
V_{\text{skyrme}} = \sum_{i<j} V(i, j) + \sum_{i<j<k} V(i, j, k).
\]

Here \(V(i, j) \) is a momentum (\(\vec{k} \)) dependent zero-range interaction, containing two types of terms: one with no momentum dependence and the other depending quadratically on \(\vec{k} \). \(V(i, j) \) corresponds to a low-momentum expansion of an underlying NN interaction. Its 3-body term is a zero-range interaction

\[
V(i, j, k) = t_3 \delta(\vec{r}_i - \vec{r}_j) \delta(\vec{r}_j - \vec{r}_k)
\]

which is equivalent to a density-dependent 2-body interaction of the form

\[
V_\rho(1, 2) = \frac{1}{6} t_3 \delta(\vec{r}_1 - \vec{r}_2) \rho(\vec{r}_{av})
\]

with \(\vec{r}_{av} = \frac{1}{2}(\vec{r}_1 + \vec{r}_2) \).

The general structure of \(V_{\text{skyrme}} \) is rather similar to the effective interactions based on effective field theories (EFT) \([22]\), with \(V(i, j) \) corresponding to \(V_{\text{low-k}} \) and \(V(i, j, k) \) to the EFT 3-body force. The Skyrme 3-body force, however, is much simpler than that in EFT. We shall compare in the next section the density dependent effect generated by the medium modified NN interaction with that from an empirical 3-body force of the Skyrme type.

IV. RESULTS AND DISCUSSIONS

In this section, we shall report computational results for the binding energy of symmetric nuclear matter calculated with an all-order summation of low-momentum \(pphh \) ring diagrams. The method is already outlined and discussed in the above sections. As mentioned above, we employ a model space approach. Starting from various bare NN interactions, we first construct the low-momentum interactions \(V_{\text{low-k}} \) with a particular choice of the cutoff momentum \(\Lambda \). The low-momentum \((\leq \Lambda) \) \(pphh \) ring-diagrams are then summed to all-orders as given by Eq. (7) to give the binding energy.

A. Single-particle spectrum and nuclear binding energy

First, we shall look carefully into the role of \(\Lambda \) in our ring-diagram calculation. Let us start with the single particle (s.p.) energy \(\epsilon_k \). Obtaining \(\epsilon_k \) is the first step in our ring-diagram calculation. Within our model space approach, \(\epsilon_k \) is given by the Hartree-Fock spectrum for \(k \leq \Lambda \), while for \(k > \Lambda \), \(\epsilon_k \) is taken as the free spectrum (see Eq. (8)). As emphasized before, the s.p. spectrum obtained in this way will in general have a discontinuity at \(\Lambda \). Such a discontinuity is a direct consequence of having a finite model space. It is of much interest to study the s.p. spectrum as \(\Lambda \) is varied. In Fig. 2 we plot the spectrum for different values of \(\Lambda \) ranging from 2 to 4 fm\(^{-1}\). We observed that with \(\Lambda = 2.0 \) fm\(^{-1}\), the discontinuity at \(\Lambda \) is relatively large; there is a gap of about 50 MeV between the s.p. spectrum just inside \(\Lambda \) and that outside. However, this discontinuity decreases if \(\Lambda \) is increased to around 3 fm\(^{-1}\). At this point, the s.p. spectrum is most “satisfactory” in the sense of being almost continuous. A further increase in \(\Lambda \) will result in an “unreasonable” situation where the s.p. spectrum just inside \(\Lambda \) becomes significantly higher than that outside. This is clearly shown in the data of \(\Lambda = 4.0 \) fm\(^{-1}\). The above results suggest that to have a nearly continuous s.p. spectrum, which is physically desirable, it is necessary to use \(\Lambda \sim 3 \) fm\(^{-1}\).

Next, we shall look into the effect of \(\Lambda \) on the nuclear binding energy. Once the s.p. energies are obtained, the all-order ring-diagram summation can be carried out (see...
Eqs. (6) and (7). Let us first discuss the computational results based on the CD-Bonn potential. Results from various Λ ranging from 2 – 3.2 fm$^{-1}$ are shown in Fig. 3. Let us focus on (i) the overall saturation phenomena and (ii) the numerical values of the binding energy and the saturation momentum.

(i) We observe that the nuclear binding energy exhibits saturation only when Λ is \sim 3 fm$^{-1}$ and beyond. This reflects the importance of ring diagrams in the intermediate momentum region ($k \sim$ 2 fm$^{-1}$). To illustrate, let us compare the results for the cases of $\Lambda = 2$ and 3 fm$^{-1}$. As indicated by Eqs. (24), $V_{\text{low-}k}$ includes only the $k > \Lambda$ pp ladder interactions between a pair of “free” nucleons; there is no medium correction included. Thus the above two cases treat correlations in the momentum region between 2 and 3 fm$^{-1}$ differently: the former includes for this momentum region only pp ladder interactions with medium effect neglected, while the latter includes both pp and hh correlations with medium effect, such as that from the Pauli blocking, included. Our results indicate that the medium effect in the above momentum region is vital for saturation.

For nuclear matter binding energy calculations, there is no first-order contribution from the tensor force (V_T); its leading contribution is second order of the form $\langle 3S_1|V_T |3S_1\rangle$ where Q stands for the Pauli blocking operator and ϵ the energy denominator. Thus the contribution from the tensor force depends largely on the availability of the intermediate states; this contribution is large for low k_F but is suppressed for high k_F. To illustrate this point, we plot the potential energy of nuclear matter from the $1S_0$ and $3S_1 - 3D_1$ channels separately in Fig. 4. The behavior of the potential energy in these two channels differ in a significant way. The $1S_0$ channel is practically independent of the choice of Λ, as displayed in the upper panel of the figure. This indicates that for this channel the effects from medium corrections and hh correlations are not important. Also the PE/A from this channel does not exhibit saturation at a reasonable k_F. In the lower panel of the figure, we display the PE/A for the $3S_1 - 3D_1$ channel where the tensor force is important. As seen, PE/A does not exhibit saturation when using $\Lambda = 2$ fm$^{-1}$. On the contrary, the result using $\Lambda = 3$ fm$^{-1}$ shows a clear saturation behavior. This is mainly because that in the former case the Pauli blocking effect is ignored for the momentum region $2 - 3$ fm$^{-1}$ while it is included for the latter. To have saturation, we should not integrate out the momentum components in the NN interaction that are crucial for saturation. Considering also the effect of Λ on the s.p. spectrum, we believe that $\Lambda = 3.0$ fm$^{-1}$ is a suitable choice for our ring-diagram nuclear matter calculation. Notice that a model space ~ 3 fm$^{-1}$ has been used in other similar ring summation calculations using G-matrix effective interaction [18, 19].

(ii) We have performed a similar ring summation with the Nijmegen I and Idaho potentials. Results with $\Lambda = 3.0$ fm$^{-1}$ are compared with that from CD-Bonn as shown in Fig. 5. The saturation energies for these three potentials are located between -19 and -23 MeV, while the saturation momentum ranges from 1.75 to 1.85 fm$^{-1}$. These quantities are considerably larger than the empirical values of -16 MeV and 1.4 fm$^{-1}$, respectively. We believe that improvements can be obtained if one takes into account the medium dependence of the NN interaction. Namely, instead of using a $V_{\text{low-}k}$ constructed from a bare NN interaction, one should employ a $V_{\text{low-}k}$ constructed from a “scaled” NN interaction according to the nuclear density. Below we shall report how we incorporate such effects into our ring diagram summation.

![Fig. 2](image-url) Dependence of the model-space s.p. spectrum on the decimation scale Λ for symmetric nuclear matter at the empirical saturation density. The CD-Bonn potential is used in the construction of $V_{\text{low-}k}$.

![Fig. 3](image-url) Results for the energy per nucleon (E/A) of symmetric nuclear matter obtained by summing up the $pphh$ ring diagrams to all orders. Low-momentum NN interactions, constructed from the CD-Bonn potential, with various cutoffs Λ are used in the ring diagram summation.
Brueckner-Hartree-Fock formalism showed that there is too much attraction when the σ meson is scaled according to \mathbf{S}. However, a microscopic treatment $\mathbf{33}$ of σ meson exchange in terms of correlated 2π exchange showed that the medium effects on the σ are much weaker than in \mathbf{S}. Therefore, in our ring diagram summation using the Brown-Rho scaled Nijmegen II interaction, we employ a range of scaling parameters C_{σ} between 0.075 and 0.09. Our calculations are shown in Fig. $\mathbf{6}$ With Brown-Rho scaling, the numerical values for both the saturation energy and saturation momentum are greatly improved. Whereas the unscaled potential gives a binding energy $BE/A \simeq 20$ MeV and $k_F^0 \simeq 1.8$ fm$^{-1}$, the scaled potential gives $BE/A \simeq 14 - 17$ MeV and $k_F^0 \simeq 1.30 - 1.45$ fm$^{-1}$ for a σ meson scaling constant $C_{\sigma} \sim 0.08 - 0.09$, in very good agreement with the empirical values. We conclude first, that the medium dependence of nuclear interactions is crucial for a satisfactory description of nuclear saturation and second, that within the framework of one-boson-exchange NN interaction models one can obtain an adequate description of nuclear matter saturation by including Brown-Rho scaled meson masses.

B. Nuclear binding energy with Brown-Rho scaling

The concept of Brown-Rho scaling has already been discussed in Sec. III. The medium effects on the NN interaction resulting from the in-medium modification of meson masses shall have a profound effect on nuclear binding. To incorporate this in our ring-diagram calculation we work with the Nijmegen potential, which is one of the pure one-boson-exchange NN potentials. The bare Nijmegen is first Brown-Rho scaled (see Eq. $\mathbf{8}$) with the dropping mass ratio C chosen to be 0.15. Vector meson masses in a nuclear medium have been widely studied both theoretically and experimentally, but the σ meson mass is not well constrained. Previous calculations $\mathbf{33}$ of nuclear matter saturation within the Dirac-Hartree-Fock formalism showed that there is too much attraction when the σ meson is scaled according to \mathbf{S}. However, a microscopic treatment $\mathbf{33}$ of σ meson exchange in terms of correlated 2π exchange showed that the medium effects on the σ are much weaker than in \mathbf{S}. Therefore, in our ring diagram summation using the Brown-Rho scaled Nijmegen II interaction, we employ a range of scaling parameters C_{σ} between 0.075 and 0.09. Our calculations are shown in Fig. $\mathbf{6}$ With Brown-Rho scaling, the numerical values for both the saturation energy and saturation momentum are greatly improved. Whereas the unscaled potential gives a binding energy $BE/A \simeq 20$ MeV and $k_F^0 \simeq 1.8$ fm$^{-1}$, the scaled potential gives $BE/A \simeq 14 - 17$ MeV and $k_F^0 \simeq 1.30 - 1.45$ fm$^{-1}$ for a σ meson scaling constant $C_{\sigma} \sim 0.08 - 0.09$, in very good agreement with the empirical values. We conclude first, that the medium dependence of nuclear interactions is crucial for a satisfactory description of nuclear saturation and second, that within the framework of one-boson-exchange NN interaction models one can obtain an adequate description of nuclear matter saturation by including Brown-Rho scaled meson masses.

C. Nuclear binding energy with 3-body force of the Skyrme type

As discussed earlier in section III, the widely used Skyrme interaction contains a 3-body term that is equivalent to a density-dependent 2-body interaction. It is of much interest to study whether our result with Brown-Rho scaled Nijmegen potential can be reproduced with the unscaled Nijmegen plus an effective 3-body interaction of the Skyrme type which is characterized by a strength parameter t_3 (see Eq. (14)). In Fig. $\mathbf{6}$ we compare the results using $t_3 = 1250$ with our previous calculations using the Brown-Rho scaled Nijmegen II potential.
with a σ meson scaling constant of $C_\sigma = 0.087$. In all calculations $\Lambda = 3.0$ is used. We note that satisfactory results for the saturation energy and Fermi momentum are obtained using either Brown-Rho scaling or a 3NF of the Skyrme type. However, the nuclear incompressibility is considerably larger in the case of Brown-Rho scaling.

![Image of binding energy graph]

FIG. 7: The binding energy of symmetric nuclear matter from the low-momentum ring diagram summation with $\Lambda = 3$. The signifi-
cant role of the intermediate momentum range (~ 2.0 fm$^{-1}$) for nuclear saturation was discussed. We concluded that in the ring diagram summation, having a sufficiently large model space is important to capture the saturation effect from the intermediate momentum components. Various bare NN potentials including CD-Bonn, Nijmegen and Idaho have been employed, resulting in nuclear saturation with $\Lambda = 3.0$ fm$^{-1}$. However, the resulting binding energy and saturation momentum are still much larger than empirical values. Improvement can be obtained when we take into account the medium modification of NN interaction. We first constructed $V_{\text{low}-k}$ from a medium-dependent Brown-Rho scaled NN potential and then implemented this into the ring-diagram summation. Satisfactory results of $E/A \simeq -15$ MeV and $k_F^{(0)} \simeq 1.4$ fm$^{-1}$ could then be obtained. We showed that these saturation properties are well reproduced by the first ring-diagram approach with the addition of an empirical 3-body force of the Skyrme type.

In the future, it is of much interest to carry out a BCS calculation on nuclear matter with $V_{\text{low}-k}$, particularly for the $^3S_1 - ^3D_1$ channel where earlier calculations using bare NN interactions revealed a gap of ~10 MeV around normal nuclear matter densities\cite{42, 43}. Recently, $V_{\text{low}-k}$ has been applied to obtain the equation of state of neutron matter \cite{41} and the 1S_0 pairing gap \cite{42, 43}. A similar calculation on nuclear matter which incorporates the tensor correlations is obviously important and we plan to investigate it in the future.

Acknowledgement We thank R. Machleidt for many helpful discussions. This work is supported in part by U.S. Department of Energy under grant DF-FG02-88ER40388.

V. CONCLUSION

We have studied the equation of state for symmetric nuclear matter using the low-momentum nucleon-nucleon (NN) interaction $V_{\text{low}-k}$. Particle-particle hole ($pphh$) ring diagrams within a momentum model space $k < \Lambda$ were summed to all orders. The significant role of the intermediate momentum range (~ 2.0 fm$^{-1}$) for nuclear saturation was discussed. We concluded that in the ring diagram summation, having a sufficiently large model space is important to capture the saturation effect from the intermediate momentum components. Various bare NN potentials including CD-Bonn, Nijmegen and Idaho have been employed, resulting in nuclear saturation with $\Lambda = 3.0$ fm$^{-1}$. However, the resulting binding energy and saturation momentum are still much larger than empirical values. Improvement can be obtained when we take into account the medium modification of NN interaction. We first constructed $V_{\text{low}-k}$ from a medium-dependent Brown-Rho scaled NN potential and then implemented this into the ring-diagram summation. Satisfactory results of $E/A \simeq -15$ MeV and $k_F^{(0)} \simeq 1.4$ fm$^{-1}$ could then be obtained. We showed that these saturation properties are well reproduced by the first ring-diagram approach with the addition of an empirical 3-body force of the Skyrme type.

In the future, it is of much interest to carry out a BCS calculation on nuclear matter with $V_{\text{low}-k}$, particularly for the $^3S_1 - ^3D_1$ channel where earlier calculations using bare NN interactions revealed a gap of ~10 MeV around normal nuclear matter densities\cite{42, 43}. Recently, $V_{\text{low}-k}$ has been applied to obtain the equation of state of neutron matter \cite{41} and the 1S_0 pairing gap \cite{42, 43}. A similar calculation on nuclear matter which incorporates the tensor correlations is obviously important and we plan to investigate it in the future.

Acknowledgement We thank R. Machleidt for many helpful discussions. This work is supported in part by U.S. Department of Energy under grant DF-FG02-88ER40388.

[1] H. A. Bethe, Annu. Rev. Nucl. Sci. 21 (1971) 93.
[2] R. Machleidt, Adv. Nucl. Phys. 19 (1989) 189-376.
[3] J. W. Holt and G. E. Brown, “Hans Bethe and the Nuclear Many-Body Problem” in Hans Bethe and His Physics (World Scientific, 2006, edited by G.E. Brown and C.-H. Lee).
[4] B. D. Day, Rev. Mod. Phys. 50 (1978) 495.
[5] B. D. Day, Phys. Rev. C 24 (1981) 1203.
[6] H. Q. Song, M. Baldo, G. Giansiracusa, and U. Lombardo, Phys. Lett. B 411 (1997) 237.
[7] H. Q. Song, M. Baldo, G. Giansiracusa, and U. Lombardo, Phys. Rev. Lett. 81 (1998) 1584.
[8] B. D. Day and R. B. Wiringa, Phys. Rev. C 32 (1985) 1057.
[9] F. Coester, S. Cohen, B.D. Day and C.M. Vincent, Phys. Rev. C1 (1970) 769.
[10] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38 (1988) 1010.
[11] R. Brockmann and R. Machleidt, Phys. Rev. C 42 (1990) 1965.
[12] S. K. Bogner, T. T. S. Kuo and L. Coraggio, Nucl. Phys. A684 (2001) 432.
[13] S. K. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello and N. Itaco, Phys. Rev. C 65 (2002) 051301R.
[14] L. Coraggio, A. Covello, A. Gargano, N. Itaco, T. T. S. Kuo, D. R. Entem and R. Machleidt, Phys. Rev. C 66 (2002) 021303(R).
[15] A. Schwenk, G. E. Brown and B. Friman, Nucl. Phys. A703 (2002) 745.
[16] S. K. Bogner, T. T. S. Kuo and A. Schwenk, Phys. Rep. 386 (2003) 1.
[17] J. D. Holt, T. T. S. Kuo and G. E. Brown, Phys. Rev. C
[18] H. Q. Song, S. D. Yang and T. T. S. Kuo, Nucl. Phys. A462 (1987) 491.
[19] M. F. Jiang, T. T. S. Kuo, and H. Müther, Phys. Rev. C 38 (1988) 2408.
[20] L. Coraggio, A. Covello, A. Gargano, N. Itako, T. T. S. Kuo, Prog. Part. Nucl. Phys. 62 (2009) 135.
[21] J. Kuckei, F. Montani, H. Müther and A. Sedrakian, Nucl. Phys. A723 (2003) 32.
[22] S. K. Bogner, A. Schwenk, R. J. Furnstahl and A. Nogga, Nucl. Phys. A763 (2005) 59.
[23] J. W. Holt, G. E. Brown, J. D. Holt and T. T. S. Kuo, Nucl. Phys. A785 (2007) 322.
[24] L.-W. Siu, T. T. S. Kuo and R. Machleidt, Phys. Rev. C 77, 034001 (2008).
[25] K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64 (1980) 2091.
[26] F. Andreozzi, Phys. Rev. C 54 (1996) 684.
[27] R. Machleidt, Phys. Rev. C 63 (2001) 024001.
[28] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart, Phys. Rev. C 49 (1994) 2950.
[29] D. R. Entem, R. Machleidt, Phys. Rev. C 68 (2003) 041001.
[30] T. T. S. Kuo and Y. Tzeng, Int. Jour. Mod. Phys. E, Vol. 3, No. 2. (1994) 523.
[31] G. E. Brown, M. Rho, Phys. Rev. Lett. 66 (1991) 2720.
[32] G. E. Brown, M. Rho, Phys. Rept. 396 (2004) 1.
[33] R. Rapp, R. Machleidt, J. W. Durso and G. E. Brown, Phys. Rev. Lett. 82 (1999) 1827.
[34] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980), and references quoted therein.
[35] T. Hatsuda and S. H. Lee, Phys. Rev. C 46 (1992) R34.
[36] M. Harada and K. Yamawaki, Phys. Rept. 381 (2003) 1.
[37] F. Klingl, N. Kaiser, and W. Weise, Nucl. Phys. A624 (1997) 527.
[38] D. Trnka et al., Phys. Rev. Lett. 94 (2005) 192303.
[39] M. Naruki et al. Phys. Rev. Lett. 96 (2006) 092301.
[40] H. Müther and W. H. Dickhoff, Phys. Rev. C 72 054313 (2005).
[41] M. Baldo, I. Bombaci, and U. Lombardo, Phys. Lett. B 283 (1992) 8.
[42] A. Schwenk, B. Friman and G.E. Brown, Nucl. Phys. A713 (2003) 191.
[43] K. Hebeler, A. Schwenk and B. Friman, Phys. Lett. B 648 (2007) 176.