Beyond mean-field study of elastic and inelastic electron scattering off nuclei

J. M. Yao*,1,2 M. Bender,3,4 and P.-H. Heenen1

1Physique Nucléaire Théorique, Université Libre de Bruxelles, C.P. 229, B-1050 Bruxelles, Belgium
3School of Physical Science and Technology, Southwest University, Chongqing, 400715 China
4Université de Bordeaux, Centre d'Études Nucléaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France
2CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan, France

(Dated: 8 October 2014)

Background Electron scattering provides a powerful tool to determine charge distributions and transition densities of nuclei. This tool will soon be available for short-lived neutron-rich nuclei.

Purpose Beyond mean-field methods have been successfully applied to the study of excitation spectra of nuclei in the whole nuclear chart. These methods permit to determine energies and transition probabilities starting from an effective intermediate nucleon-nucleon interaction but without other phenomenological ingredients. Such a method has recently been extended to calculate the charge density of nuclei deformed at the mean-field level of approximation [J. M. Yao et al., Phys. Rev. C 86, 014310 (2012)]. The aim of this work is to further extend the method to the determination of transition densities between low-lying excited states.

Method The starting point of our method is a set of Hartree-Fock-Bogoliubov wave functions generated with a constraint on the axial quadrupole moment and using a Skyrme energy density functional. Correlations beyond the mean field are introduced by projecting mean-field wave functions on angular-momentum and particle number and by mixing the symmetry restored wave functions.

Results We give in this paper detailed formulae derived for the calculation of densities and form factors. These formulae are rather easy to obtain when both initial and final states are \(0^+\) states but are far from being trivial when one of the states has a finite \(J\)-value. Illustrative applications to \(^{24}\text{Mg}\) and to the even-mass \(^{58-68}\text{Ni}\) have permitted to analyse the main features of our method, in particular the effect of deformation on densities and form factors. An illustration calculation of both elastic and inelastic scattering form factors is presented.

Conclusions We present a very general framework to calculate densities of and transition densities between low-lying states that can be applied to any nucleus. To achieve better agreement with the experimental data will require to improve the energy density functionals that are currently used and also to introduce quasi-particle excitations in the mean-field wave functions.

PACS numbers: 21.10.Ft, 21.10.Ky, 21.60.Jz, 25.30.Bf, 25.30.Dh

I. INTRODUCTION

Electron scattering off nuclei is a powerful tool for studies of nuclear structure and spectroscopy [1–16]. It allows to determine the charge distribution of nuclear ground states, as well as of the transition charge and current densities from the ground state to excited states. More global properties can be extracted from a detailed knowledge of charge distribution, like charge radii. Parameters characterizing the extension and surface thickness of the nuclear density can also be derived [17, 18]. From the form factors for inelastic electron scattering at low transferred momentum \(q\), the spin and parity of excited states and the multipole transition strengths can be determined in a model-independent manner [4, 10]. At larger values of \(q\), the form factors present an insight into the spatial location of the transition process, which cannot be accessed from the integral over this function provided by the measurement of \(B(EL)\) values in Coulomb excitation or lifetime measurements. Thereby, electron scattering does not only provide a powerful alternative to many other types of nuclear structure studies, but also complements them by giving access to levels and transitions that are undetectable in photoexcitation and \(\gamma\)-ray spectroscopy, such as for instance levels excited by monopole transitions or transitions of high multipolarity.

As all electron-nucleus scattering experiments of the past used fixed or gas targets, only stable and a very few long-lived nuclides could be studied so far. This will change with the set-up of electron-RIB collider experiments. The SCRIT (Self Confining Radioactive Isotope Target) project [19–21] is under construction at RIKEN (Japan) and the ELISc (E Electron-Ion Scattering in a storage ring) project is planned for FAIR (Germany) [22, 23]. When being realised, the charge densities and transition charge densities of short-lived nuclides, in particular neutron-rich nuclei, will be measured at both installations.

Data from electron scattering are often interpreted in terms of parameterized macroscopic density and transition density distributions, such as the ones of Helm [24], Tassie [25] or Friedrich et al. [17, 18]. They all have in common that some functional form of the ground-state or transition charge densities is postulated and its parameters adjusted to reproduce the data. Such analysis provides an insight into the gross features of the ground state and transition charge density distribution and the reso-
lution of their details [6]. For a more detailed analysis, however, it is desirable to calculate the form factors from the same microscopic models that are also used to describe nuclear structure and spectroscopy. Most of them have been used to describe one and/or the other in the past.

- Shell model calculations in small valence spaces have been used to calculate transition densities between states in light nuclei [26]. Some heavier nuclei have been calculated within the framework of the interacting Boson approximation [27]. In both cases, the truncation of the model space requires to introduce effective charges and/or even explicitly calculated core polarization effects [26, 28–31]. The no-core shell model, available only for light nuclei, is better suited in that respect [32, 33].

- Methods based on self-consistent mean fields [34] are a natural choice for such calculations, in particular for heavy nuclei, as they use a model space that comprises all occupied single-particle levels and an effective interaction or energy density functional (EDF) that is designed to reproduce nuclear saturation. Indeed, electron scattering form factors of spherical nuclei have already been studied in the pioneering papers of this field [35–38]. More recent studies emphasize the possible isospin dependence of charge form factors of spherical nuclei [39–42]. With the exception of excitation to collective rotational states in well-deformed nuclei [43–46], pure mean-field calculations, however, are limited to ground-state densities. They also miss correlations from fluctuations in collective degrees of freedom and from symmetry restoration that should be considered for non-spherical nuclei.

- The random phase approximation (RPA) (or the quasi-particle RPA) on top of mean-field calculations has been applied to spherical nuclei to study the ground state and transition charge densities [47–55]. The extension of this framework to the density and transition density for deformed nuclei is, however, not trivial.

- The projection of deformed HF states has been sometimes used to calculate transition densities between states of well-deformed nuclei [44, 56–58], but often making approximations to reduce the numerical cost.

Recently, we have used the framework of the particle-number and angular-momentum projected generator coordinate method (GCM) based on axial Hartree-Fock-Bogoliubov (HFB) states and a non-relativistic Skyrme energy density functional to calculate the ground state density of even-even nuclei [59], demonstrating how the correlations brought by going beyond a mean field approach can quantitatively, even qualitatively alter the density profile predicted by pure mean-field methods.

The same technique has been subsequently implemented in the relativistic framework using covariant energy density functionals [60–62]. Here, we extend the formalism of Ref. [59] to transition densities between low-lying excited states and the corresponding form factors as accessible by electron scattering. The emphasis of this first exploratory study is on the impact of static and dynamic quadrupole deformations on the transition density between low-lying collective states. Similar developments based on an angular-momentum and parity projected GCM based on (non-paired) HF states, also using Skyrme interactions have been recently reported in Ref. [63], but limited to the simple case of elastic and inelastic transitions between 0^+ states.

The paper is organized as follows. In Sec. II we present the relevant formulae for the description of electron scattering off nuclei and the formalism for the calculations of nuclear density distribution and transition density for low-lying states in the framework of projected GCM based on axially deformed HFB states. In Sec. III, we present an illustrative calculation of both elastic and inelastic scattering form factors for 24Mg. Section IV details an application to the transition densities in even-mass 58–68Ni. The static and dynamic deformation effects on nuclear charge densities, transition charge densities and form factors will be discussed in detail. Section V summarizes our findings, and four appendices provide further technical details on the calculation of nuclear form factors and the transition density.

II. FORMALISM

A. Beyond mean-field description of nuclear states

Our beyond-mean-field method restores two of the symmetries relevant for nuclear spectroscopy that are broken by the self-consistent mean field HFB method by projection on particle number and angular momentum. Fluctuations in shape degrees of freedom are described by the superposition of projected HFB states with different intrinsic deformations. The same formalism that is used to calculate operator matrix elements between projected states can be used to calculate projected densities and their form factors. Before entering into the details of their calculation, we first recall the main features of the method.

1. Quadrupole deformed HFB states

A set of deformed HFB states is generated by solving the HFB equations including a constraint on the axial quadrupole moment using an updated version of the code first described in [64]. The states are restricted to be time-reversal invariant and reflection symmetric, which implies that they are eigenstates of parity with eigenvalue $+1$. The HFB equations are complemented
by the Lipkin-Nogami prescription to avoid the unphysical breakdown of pairing correlations at low density of single-particle levels around the Fermi energy.

The single-particle wave functions are discretized on a three-dimensional Cartesian coordinate-space mesh [65]. The step size of 0.8 fm ensures a good accuracy in the solution of the mean-field equations.

Throughout this study, we use the Skyrme parametrization SLy4 [66] together with a pairing energy functional of surface character [67] with parameters $\rho_0 = 0.16 \text{fm}^{-3}$ for the switching density and $V_0 = -1000 \text{MeVfm}^3$ for the pairing strength. A soft cutoff at ± 6 MeV around the Fermi energy is used when solving the HFB equations as described in Ref. [67].

2. Projected GCM states

The GCM wave function [68] is constructed as a superposition of both particle-number and angular-momentum projected HFB wave functions corresponding to different deformations $|q\rangle$

$$|J\mu\rangle = \sum_q F_{\mu,q} J M \hat{P}_M^J \hat{P}_M^N \hat{P}_N^Z |q\rangle,$$

where μ labels different collective states for a given angular momentum J. This ansatz can cover a wide variety of situations, such as small fluctuations around a spherical or well-deformed minimum of a deep and steep potential well, wide fluctuations in soft nuclei, or mixing of states in different minima of the energy surface.

The operators \hat{P}_N and \hat{P}_M project on proton and neutron number,

$$\hat{P}_N = \frac{1}{2\pi} \int_0^{2\pi} d\varphi e^{i\varphi(N-N)}$$

and \hat{P}_M^J extracts eigenstates of total angular momentum J with z component M

$$\hat{P}_M^J = \frac{j^2}{8\pi^2} \int d\Omega \mathcal{D}_M^J(\Omega) \hat{R}(\Omega),$$

where $\hat{R}(\alpha,\beta,\gamma) \equiv e^{-i\alpha J_x} e^{-i\beta J_y} e^{-i\gamma J_z}$ is the rotation operator and $\mathcal{D}_M^J(\alpha,\beta,\gamma)$ the Wigner D-function. Both depend on the Euler angles, for which we will use the shorthand notation $\Omega \equiv (\alpha,\beta,\gamma)$ whenever possible. The volume element of the integration over Euler angles is given by $d\Omega \equiv d\alpha d\beta \sin(\beta) d\gamma$. Only a $K = 0$ component can be picked by \hat{P}_M^J from an HFB state that is axially symmetric around the z axis. Therefore, the index K will be dropped for simplicity.

The weight factors $F_{\mu,q}$ and the energies of the states $|J\mu\rangle$ are obtained by solving a Hill-Wheeler-Griffin equation [68]

$$\sum_q \left(\mathcal{H}_{\mu,q}^J - E_{\mu,q}^J \right) F_{\mu,q}^J = 0,$$

for each value of J, where the norm kernel $\mathcal{N}_{\mu,q}^J = \langle q'| \hat{P}_M^J \hat{P}_N^Z |q\rangle$ and the energy kernel $\mathcal{H}_{\mu,q}^J$ is a functional of mixed densities [69]. More details about the calculations can be found in Ref. [70] and references given therein.

As the projected mean-field states do not form an orthogonal basis and the weights $F_{\mu,q}^J$ in Eq. (1) are not orthogonal functions, a set of orthonormal collective wave functions $g_{\mu,q}^J$ is constructed as [68]

$$g_{\mu,q}^J = \frac{1}{\sqrt{|\langle q'| \hat{P}_M^J \hat{P}_N^Z |q\rangle|}} F_{\mu,q}^J$$

but the modulus square of $g_{\mu,q}^J$ does not represent the probability to find the deformation q in a GCM state $|J\mu\rangle$. In a GCM based on axial states, however, the $g_{\mu,q}^J$ do nevertheless provide a good indication about the dominant configurations in the collective states $|J\mu\rangle$.

B. Form factors in electron scattering

1. General framework

Our aim is to show how to calculate form factors and transition densities in the framework of our model. We will therefore not enter into the details of the process of scattering electrons off nuclei itself and limit the presentation to those elements of the formalism that are necessary to compute densities, transition densities and their form factors in a form that can then be compared to experiment.

We use the framework of the plane-wave Born approximation (PWBA). The incident and outgoing electrons are described by plane waves $e^{ik_i \cdot r}$ and $e^{ik_f \cdot r}$ with momenta k_i and k_f and energies E_{i}^e and E_{f}^e, respectively. The differential cross section for elastic scattering from a spin-less nucleus, neglecting the transverse electric and magnetic contributions, is then given by [2–4, 7]

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_M}{d\Omega} \sum_{L \geq 0} |F_L(q)|^2,$$

where $|F_L(q)|^2$ is the product of the Mott cross section

$$\frac{d\sigma_M}{d\Omega} = f_{\text{rec}} \left(\frac{Z \alpha}{2E_{i}^e} \right)^2 \frac{\cos^2(\theta/2)}{\sin^4(\theta/2)},$$

describing the cross section off a point-like target with charge Z [1, 71] times the sum of form factors $F_L(q)$ that represent its modification by the nucleus having a finite size and internal structure. We note that contributions from both elastic and inelastic processes are included in $F_0(q)$. In this work, we will not discuss the inelastic part, which corresponds to $0^0 \rightarrow 0^+$ transitions.

The cross section depends on the momentum transfer

$$q = |k_f - k_i| \approx 2 \sqrt{E_{i}^e E_{f}^e} \sin(\theta/2),$$

where $k_i(E_{i}^e)$ and
\(k_f(E_f^i) \) are the momenta (energies) of the incoming and outgoing electron, and \(\theta \) the angle between \(k_i \) and \(k_f \). \(\alpha = e^2/(hc) \approx 1/137 \) is the fine-structure constant. The recoil of the target nucleus leads to a correction factor \(f_{\text{rec}} \)

\[
 f_{\text{rec}} = \left[1 + \frac{2 E_f^i \sin^2(\theta/2)}{M} \right]^{-1} ,
\]
with \(M \) being its mass. The longitudinal Coulomb (CL) form factor \(F_L(q) \) for an angular momentum transfer \(L \) is the Fourier-Bessel transform of the transition density \(\rho_{J_{\mu_i},L}(r) \) from an initial state \(|J_i M_i \mu_i \rangle \) to a final nuclear state \(|J_f M_f \mu_f \rangle \)

\[
 F_L(q) = \frac{\sqrt{4\pi}}{Z} \int_0^\infty dr \ r^2 \ \rho_{J_{\mu_i},L}(r) j_L(qr) ,
\]
where the coefficient \(\sqrt{4\pi}/Z \) is chosen so that the elastic part \((J_f = J_i, \mu_f = \mu_i) \) of the form factor \(F_0(q) \) is unity at \(q = 0 \). In this expression, \(\rho_{J_{\mu_i},L}(r) \) is the reduced transition density that will be related to GCM matrix elements in the next section.

In electron scattering off nuclei, the Coulomb attraction accelerates the electrons when they approach the nucleus and the electron wave is focused onto the nucleus. As a consequence, an experiment actually samples the nucleus and the electron wave is focused onto the nucleus. This is determined by the asymptotic values of the kinematic variables. This can be corrected for by plotting the experimental data measured for a given \(q \) [4, 10, 26] as a function of the corresponding "effective" momentum transfer \(q_{\text{eff}} \)

\[
 q_{\text{eff}} = q \left(1 + \frac{3Z e^2}{2E_f^i R_{\text{ch}}} \right) ,
\]
where \(R_{\text{ch}} \) is the equivalent hard sphere radius of the nucleus that is related to its rms charge radius \(r_{\text{ch}} \) by \(R_{\text{ch}} = \sqrt{5/3} r_{\text{ch}} \). Values for \(r_{\text{ch}} \) used in what follows are taken from a compilation of experimental data [72]. It was concluded in Ref. [26] that the Coulomb distortion effect of the scattered electrons is mostly taken into account by this prescription and that there is no significant advantage to replacing PWBA calculations for inelastic scattering with more involved distorted-wave Born approximation (DWBA) calculations, in particular when considering the limitations in precision of both data and their theoretical modeling.

A correction for the finite size of the proton is introduced by folding all calculated point proton densities with a Gaussian form factor [35], for example

\[
 \rho_{\text{ch}}(r) = \left(\frac{1}{a \sqrt{\pi}} \right)^3 \int d^3 r' \ \exp \left[-\frac{(r - r')^2}{a^2} \right] \rho_p(r') ,
\]
where \(a = \sqrt{2/3} (\sigma_p^2)^{1/2} = 0.65 \) fm. When high precision is required, more detailed parametrizations of the proton and neutron charge distributions have to be used together with relativistic corrections, cf. [26, 34] and references therein.

A correction for the spurious center-of-mass (COM) motion related to the breaking of translational invariance by the nuclear mean field should also be introduced. A rigorous way to remove it is to project on the COM, which, however, is difficult to achieve in combination with angular-momentum projection for deformed states. As has been shown in such calculations for spherical mean-field states [73–75], the relative importance of the c.m. correction quickly fades away for heavy nuclei. A more economical approximation still in use [63] is the harmonic oscillator approximation first proposed in Ref. [76], where the calculated charge form factor is corrected by folding it with a COM motion correction \(F_{\text{ch,corr}}(q) = F_{\text{ch}}(q) G_{\text{cm}}(q) \) obtained in harmonic oscillator approximation

\[
 G_{\text{cm}}(q) = \exp \left[q^2 b^2/(4A) \right] ,
\]
where \(A = N + Z \) and \(b \) being a suitable oscillator length parameter [26]. As we will show below in Fig. 5, already for \(^{24}\text{Mg} \) the effect of the COM motion correction is too small to be relevant for the purpose of our discussion.

2. Transition density between GCM states

To calculate form factors (9) for elastic and inelastic electron scattering and transition matrix elements, we need to determine the reduced transition density \(\rho_{J_{\mu_i},L}(r) \) as a function of the radial coordinate \(r \). We now derive its relation to the 3D transition density \(\rho_{\alpha_i}(r) \) between the initial \(|\alpha_i\rangle \) and a final \(|\alpha_f\rangle \) GCM states

\[
 \rho_{\alpha_i}(r) = \langle \alpha_f | \hat{\rho}(r) | \alpha_i \rangle = \sum_{q \, q} F_{\mu_i,q} F_{\mu_f,q} \rho_{\alpha_i q} \rho_{\alpha_f q}^* (r) ,
\]
where we have introduced the shorthand notations \(\alpha \equiv \{JM\mu\} \) and \(\sigma \equiv \{JM\} \). With the exception of the appendices, we restrict the discussion to axial states and \(\sigma \equiv \{JM0\} \). The density operator is defined as \(\hat{\rho}(r) \equiv \sum_i \delta(r - r_i) \), where \(r \) is the position at which the transition density is calculated, and \(r_i \) the position of the \(i \)-th nucleon.

The kernel of the 3D transition density between two axial HFB states projected on particle numbers \(N \), \(Z \) and angular momentum \(J \) is determined by

\[
 \rho_{\sigma_i q}^* (r) = \langle q' | \hat{P}_{0 M}^{J_f} \hat{\rho}(r) \hat{P}_{0 M}^{J_i} | q \rangle .
\]

The calculation of a matrix element like Eq. (14) can be simplified for an operator that is a spherical tensor by eliminating one of the two rotations [70, 77, 78]. The density operator, however, is not a spherical tensor operator, the evaluation of its matrix elements is considerably more complicated as both rotations in Eq. (14) will have to be carried out numerically.
Inserting the explicit expressions for the projection operators into Eq. (14), one obtains for the transition density kernel (see Appendix B for further details),

\[
\rho_{q'q}^{\sigma J,K\sigma\pi}(r) = \frac{j_J}{8\pi^2} \int d\Omega' D_{M\sigma}^{J}(\Omega') \sum_{K} D_{M,K}^{J,\ast}(\Omega') \hat{R}(\Omega') \rho_{q'q}^{J,K\sigma}(r),
\]

where \(\rho_{q'q}^{J,K\sigma}(r) \) for axially deformed nuclei is simplified as

\[
\rho_{q'q}^{J,K\sigma}(r) = \frac{j_J}{2} \int_0^\pi d\beta \sin(\beta) d_{K,0}^{J}(\beta)
\times \langle q'|\hat{\rho}(r)\hat{P}N\hat{\rho}^2\hat{R}_q(\beta)|q \rangle,
\]

The calculation of the density (16) requires the determination of non-diagonal matrix elements of the density operator between a rotated and a non-rotated state analogous to the calculation of projected matrix elements of tensor operators \([70, 77, 78]\). As shown in Ref. [77], when \(x \)-signature is preserved, the integrant \(\rho_{q'q}(r, \beta) = \langle q'|\hat{\rho}(r)\hat{P}_N\hat{\rho}^2\hat{R}_q(\beta)|q \rangle \) presents a symmetry in \(\beta \) with respect to \(\pi/2 \)

\[
\rho_{q'q}(x, y, z, \pi - \beta) = \rho_{q'q}(-x, y, z, \beta),
\]

which can be used to reduce the number of density overlaps to be calculated explicitly by a factor of two.

Compared to the calculation of operator matrix elements, the unfamiliar element in the calculation of the projected transition density kernels (15) is that the integration over \(\Omega' \) cannot be carried out analytically. Instead, Eq. (15) involves the rotation of the density \(\rho_{q'q}^{J,K\sigma}(r) \) as a whole.

In a 3D coordinate space representation as used here, a rotation requires an interpolation of the rotated function, as the rotated coordinates of the mesh points do in general not fall back on the mesh. In our case, the integration over \(\cos(\beta) \) is discretized using a Gauss-Legendre quadrature with 24 points in the interval \([-1, +1]\), which is sufficient for the low values of \(\beta \) considered here. The corresponding rotations \(\hat{R}_q(\beta) \) in (16) are carried out with the same accurate Lagrange-mesh technique \([79, 80]\) that is also used to evaluate operator matrix elements in our codes.

To perform the rotation of \(\rho_{q'q}^{J,K\sigma}(r) \) in Eq. (15), it turned out that, instead of a rotation of the density followed by an integration over Euler angles, it is advantageous to expand \(\rho_{q'q}^{J,K\sigma}(r) \) into spherical harmonics first. Using the transformation of spherical harmonics under rotation and some further angular-momentum algebra that is detailed in Appendix C, the integrals over Euler angles \(\Omega' \) in Eq. (15) can be transformed into integrals over spatial angles that are much easier to carry out

\[
\rho_{q'q}^{\sigma J,q'}(r) = \frac{j_J}{j_J} \sum_{K,\lambda,\nu} \langle J_f0\lambda K|J_fK \rangle \langle J_J M_J \lambda,\nu'|J_J M_J \rangle \times \rho_{q'q;\lambda,K}(r) Y_{\lambda,\nu'}(\hat{r}),
\]

where \(\rho_{q'q;\lambda,K}(r) \) is given by

\[
\rho_{q'q;\lambda,K}(r) = \int d\hat{r}' \rho_{q'q}(r, \hat{r}') Y_{\lambda K}(\hat{r}').
\]

Finally, the 3D transition density of an axially deformed nucleus is given by

\[
\rho_{\mu_i}^{J_J,J,K,\mu_i}(r) = \frac{j_J}{j_J} \sum_{K,\lambda,\nu} \langle J_f0\lambda K|J_fK \rangle \langle J_f M_f \lambda,\nu|J_f M_f \rangle \times Y_{\lambda,\nu}(\hat{r}) \int d\hat{r}' \rho_{q'q;\lambda,K}(r, \hat{r}') Y_{\lambda K}(\hat{r}'),
\]

where we have introduced a configuration-mixing pseudo GCM density \(\rho_{\mu_i}^{J_J,J,K,\mu_i}(r) \)

\[
\rho_{\mu_i}^{J_J,J,K,\mu_i}(r) \equiv \sum_{q,q'} F_{\mu_i q}^{J_J} F_{q'q}^{J_J0} \rho_{q'q}(r).
\]

After some further algebraic manipulations, one obtains the expression of the radial part of the 3D transition density, namely the reduced transition density \(\rho_{\mu_i}^{J_J,J,K,\mu_i}(r) \), cf. (C8)

\[
\rho_{\mu_i}^{J_J,J,K,\mu_i}(r) = (-1)^{i-1} \frac{j_J}{j_J} \sum_{K} \langle J_f0\lambda K|J_fK \rangle \times \int d\hat{r}' \rho_{q'q;\lambda,K}(r, \hat{r}') Y_{\lambda K}(\hat{r}'),
\]

that is experimentally accessible via electron scattering.

Compared to the direct evaluation of Eq. (15), the expansion in spherical harmonics has the practical advantage to separate the radial dependence of \(\rho_{\mu_i}^{J_J,J,K,\mu_i}(r) \), which is specific to each state, from its angular dependence that is completely determined by the angular momentum quantum numbers of the states.

The integration over the angular part of \(r \) in Eq. (22) is discretized using a Gauss-Legendre quadrature with 20 points for the cosine of the polar angle \(\cos(\theta) \) and a trapezoidal rule with 20 points for the azimuthal angle \(\varphi \). To carry out the integral, the density \(\rho_{q'q}(r) \) that is calculated on a equidistant Cartesian mesh has to be interpolated to the mesh points in spherical coordinates by using the Lagrange-mesh interpolation \([79]\). The step size \(dx \) of the original Cartesian mesh is kept for the radial coordinate \(r \).

3. Transition densities in some special cases

The expression for the inelastic scattering transition density (TD), given by Eq. (20) simplifies greatly if the

1 This pseudo GCM density summarizes all the information related to the GCM calculation but it is not an observable.
initial state is a 0^+ state
\[\rho_{0^+_i}^{0^+_f}(r) = \int d\mathbf{r}' \rho_{0^+_i}^{J_{0^+_f}0^+_f}(r, \mathbf{r}') Y_{J_{0^+_f}0^+_f}(\mathbf{r}') \]
\[= Y_{J_{0^+_f}0^+_f}(\mathbf{r}) \int d\mathbf{r}' \rho_{0^+_i}^{J_{0^+_f}0^+_f}(r, \mathbf{r}') Y_{J_{0^+_f}0^+_f}(\mathbf{r}') . \tag{23} \]

As expected, the angular part of this TD is given by $Y_{J_{0^+_f}0^+_f}(\mathbf{r})$. The reduced transition density becomes
\[\rho_{0^+_i,L}^{J_{0^+_f}L}(r) = J_f \int d\mathbf{r} \rho_{0^+_i}^{J_{0^+_f}0^+_f}(r, \mathbf{r}') Y_{J_{0^+_f}0^+_f}(\mathbf{r}) \delta_{J,L} . \tag{24} \]

For a well-deformed nucleus, that can be described by a single axial HFB configuration \[\{q_0\}\] and assuming that the overlap between the rotated wave function and the original one can be approximated by a $\delta(q-q_0)$ function, the pseudo GCM density $\rho_{J_{0^+_f}L}^{J_{0^+_f}J_i}(r)$ reduces to the intrinsic density, projected on particle numbers, $\rho_{0^+_i}^{NZ}(r) \equiv \langle \{q_0\}|\rho(r)|\{q_0\} \rangle$. The transition density $\rho_{0^+_i,L}^{J_{0^+_f}L}(r)$ in Eq. (22) is then simply given by
\[\rho_{0^+_i,L}(r) = \int d\mathbf{r} \rho_{0^+_i}^{NZ}(r) Y_{LO}(\mathbf{r}) , \tag{25} \]
showing that we recover the rigid rotor model for well-deformed nuclei. The quality of this approximation is quickly deteriorating with increasing L-values, as illustrated in Refs. [10, 57].

Putting $\alpha_i = \alpha_f = \alpha$ in Eq. (20), the 3D density for the GCM state $|\alpha\rangle$ is given by
\[\rho_\alpha(r) = \sum_{i \lambda} Y_{i\lambda}(\mathbf{r}) \langle J_M\lambda M|JM \rangle \sum_{K} \langle J0\lambda K|JK \rangle \]
\[\times \int d\mathbf{r}' \rho_{i\alpha}^{JJ0K}(r, \mathbf{r}') Y_{\alpha K}(\mathbf{r}') . \tag{26} \]

For the ground state 0^+_1, it is just the average of the pseudo GCM density $\rho_{11}^{000}(r, \mathbf{r}')$ over the angular coordinates
\[\rho_{0^+_1}^{0^+_1}(r) = \frac{Y_{00}(\mathbf{r})}{\sqrt{4\pi}} \int d\mathbf{r}' \rho_{11}^{000}(r, \mathbf{r}') \]
\[= \frac{1}{8\pi^2} \int d\Omega' \hat{R}(\Omega') \rho_{11}^{000}(r) , \tag{27} \]
which obviously is spherically symmetric. This density has been recently determined for various light systems using the symmetry-restored GCM method [59–61].

4. Multipole transition matrix elements

The multipole transition matrix elements that are frequently calculated in angular-momentum projected GCM calculations are related to the transition density (22) through
\[M_{f_{J_L}i_{L'}}^{J_Li_{L'}} = \int_0^\infty dr r^{L_L} \rho_{f_{J_L}i_{L'}}^{J_Li_{L'}}(r) \]
\[= \tilde{J}_f \sum_{q'q} F_{f_{J_L}i_{L'}}^{J_Li_{L'}}(r) Y_{J_L}(\mathbf{r}) Y_{J_L}(\mathbf{r}) . \tag{28} \]

The electric multipole transition strengths $B(EL : \alpha_i \rightarrow \alpha_f)$ are then given by the square of the proton part of the transition matrix element $M_{f_{J_L}i_{L'}}^{J_Li_{L'}}$ (abbreviated with M_E). More details will be given in Appendix D.

There have been efforts to deduce the multipole transition matrix elements M_L^p and M_L^n of protons and neutrons by combining Coulomb excitation and (p, p') measurements [81], which, however, requires model assumptions at several stages of the analysis. While their experimental determination remains debatable, it turns out that the comparison between the calculated M_L^p and M_L^n sheds light on the relative contributions by the neutrons and protons to the nuclear excitation, and therefore provide an insight into the isospin nature of the calculated excitation modes. The deviation of a factor η defined as
\[\eta = \frac{M_L^p/M_L^n}{N/Z} \tag{30} \]
from 1.0 is then interpreted as the measure of the isovector character of the excitation [81]. This quantity provides a tool to study the isospin nature of the excitations, as the multipole moments of neutrons can be easily calculated in the same way as the ones of protons.

III. ILLUSTRATIVE APPLICATION TO 24Mg

The nucleus 24Mg has been used as a testing ground for many implementations of beyond-mean-field models [70, 77, 78, 80, 82, 83]. The results presented here are an extension of previous studies. In particular, the excitation spectra are the same as those reported for axial calculations in Ref. [70].

The energy curves obtained after projection on particle numbers only and after simultaneous projections on particle numbers and angular momentum $J = 0, 2$, and 4 are plotted in panel (a) of Fig. 1. They are drawn as a
displays the transition proton density (TPD) \(\rho_{\alpha}(r) \) (in fm\(^{-3}\)) in the \(y = 0 \) plane for the \(0^+_1 \) (a), \(2^+_1 \) (b), \(4^+_1 \) (c) states (with \(M = 0 \)) in \(^{24}\text{Mg}\).

FIG. 1: (color online) (a) Total energy (normalized to the \(0^+_1 \) state) for the particle-number-projected HFB states (N\&Z) and for the particle-number and angular-momentum projected states (curves for \(J = 0, 2, \) and 4) for \(^{24}\text{Mg}\) as a function of the intrinsic mass quadrupole deformation of the mean-field states. The solid square dots indicate the lowest GCM solutions, which are plotted at their average deformation \(\bar{\beta}_{J\mu} \). (b) Collective wave functions \(g_{\mu, q} \) (cf. Eq. (5)) of the \(0^+_1, 2^+_1, \) and \(4^+_1 \) states.

Contour plots of the proton densities \(\rho_{\alpha}(r) \), Eq. (26), in the \(y = 0 \) plane are shown in Fig. 2 for the \(M = 0 \) orientation of the \(J^\pi = 0^+, 2^+, \) and \(4^+ \) states. As expected, the density of the \(0^+_1 \) state is spherical after projection. The densities of the \(2^+_1 \) and \(4^+_1 \) states are a superposition of spherical harmonics with \(\lambda \)-values ranging from 0 to 2\(J \), see Eq. (26). Their elongation along the \(z \)-axis is larger than along the \(x \) and \(y \)-axes giving to the shapes a prolate-like form. The dimensionless quadrupole deformations \(\beta(\lambda) \) determined from the spectroscopic quadrupole moments \(Q_s(J_\mu) \) of \(K = 0 \) states are \(\beta(\lambda) = 0.55 \) for the \(2^+_1 \) and 0.63 for the \(4^+_1 \) states, respectively. The spectroscopic quadrupole moment \(Q_s(J_\mu) \) is given by the expectation value of the quadrupole operator \(Q_{20}(r) = r^2 Y_{20}(r) \), multiplied by a coefficient \(\sqrt{16\pi/5} \).

\[
Q_s(J_\mu) = \sqrt{\frac{16\pi}{5}} (JJ_\mu |\hat{Q}_{20}| J_\mu) \tag{33}
\]

The elastic C0 form factor \(|F_0(q)|^2 \) for the ground state of \(^{24}\text{Mg}\) is plotted in Fig. 4. The GCM calculation reproduces the position of the form factor minima and is in agreement with the data at low \(q \)-values. However, our result underestimates largely the form factor after the first minimum. A similar discrepancy was found in Ref. [63] in the case of \(^{12}\text{C}\). There, it has been argued that the spreading of the collective wave function on many deformations creates a too large smoothings of the one-body density and decreases the weights of the large-\(g \) components of the transition density. In the case of \(^{12}\text{C}\), the pure HF form factor was slightly in better agreement with the data. To estimate the effect of deformation on the form factors, we also show the results obtained from single-configuration calculations based on either \(\beta_2 = 0 \)

\[
\beta_2 = \sqrt{\frac{5}{16\pi}} \frac{4\pi}{3R^2 A} \langle q | 2z^2 - \hat{x}^2 - \hat{y}^2 | q \rangle, \tag{31}
\]

where \(R = 1.2A^{1/3} \text{ fm} \). The energies of the first GCM states are also indicated by dots centered at their mean deformations \(\bar{\beta}_{J\mu} \) defined as

\[
\bar{\beta}_{J\mu} = \sum_q \beta_2(q) |g_{\mu, q}|^2. \tag{32}
\]

Although \(\bar{\beta}_{J\mu} \) is not an observable, in axial calculations it often provides a good indication about the dominant mean-field configurations in a GCM state.

The corresponding collective wave functions are shown in panel (b) of Fig. 1. The \(0^+_1, 2^+_1, \) and \(4^+_1 \) states are a mixing of projected prolate and oblate deformed configurations, with a dominance of the prolate ones.

The spreading of the collective wave function on many deformations creates a too large smoothings of the one-body density and decreases the weights of the large-\(g \) components of the transition density. In the case of \(^{12}\text{C}\), the pure HF form factor was slightly in better agreement with the data. To estimate the effect of deformation on the form factors, we also show the results obtained from single-configuration calculations based on either \(\beta_2 = 0 \)
scattering from the ground state to the 2^+_1 (a) and the 4^+_1 (b) states with $M = 0$ in 24Mg.

The C0 form factor obtained by particle-number and with only one single configuration of $\beta_2 = 0.55$ and the form factor of transition proton density from full GCM calculations are given for comparison. The inset shows the corresponding transition densities. Data are taken from Ref. [85] (circles) and Ref. [84] (squares).

well established that 24Mg is deformed, the discrepancy between the GCM result and experiment at large q-values points towards missing components in the ground-state wave function.

In Refs. [17, 18], Friedrich and collaborators have performed a detailed analysis of the relation between various parametric forms of charge density distributions and the resulting form factors. They conclude that the first zero of $|F_0(q)|^2$ determines an extension parameter of the charge distribution. Indeed, their analysis shows that, when comparing two different C0 form factors, a minimum at lower q-values corresponds to a larger extension of the nuclear density. By contrast, the surface diffuseness of the charge distribution is related to the height of the first maximum of $|F_0(q)|^2$. For each of the three calculations shown in Fig. 4, the first minimum of $|F_0(q)|^2$ is located at nearly the same value of q, indicating similar extensions. The value of $|F_0(q)|^2$ at the first maximum, however, is significantly larger for the spherical configuration and corresponds to a lower surface thickness, as can be seen on the plot of the density.

The C2 longitudinal inelastic form factor is plotted in Fig. 5 for the transition from the ground state to the 2^+_1 state in 24Mg. Results obtained by projecting a single deformed HFB state with $\beta_2 = 0.55$ on $J = 0$ and $J = 2$ are compared with the full projected GCM calculation and with experimental data. The spreading of the GCM wave function over deformation has little effect. As for $|F_0(q)|^2$, the GCM $|F_2(q)|^2$ form factor is too low at large q-values. A possible cause for this deficiency could be a
lack of components not included in the mean-field basis. However, since we are using effective interactions, a shortfall of the EDF cannot be excluded either. To estimate the spurious effect of the COM motion, we have introduced a correction in the form given by Eq. (12). Although too small, this correction is going into the right direction.

Figure 6 displays the q-dependent transition quadrupole matrix element $M_2(q^2)$, Eq. (A15), for the transition from the ground state to the 2^+_1 state. The calculated values agree well with the available data. According to Eqs. (A13) and (A15), the transition strength $B(E2)$ is given by the square of $M_2(q^2)$ in the $q \to 0$ limit. The $B(E2 \uparrow)$ value determined in this way from the inelastic scattering data at low-q region is $420 \pm 25 \, e^2 \text{fm}^4$ [85], which is slightly overestimated by our calculation that gives a value of about $450 \, e^2 \text{fm}^4$.

The elastic and transition longitudinal form factors $|F_L(q)|^2$ from the ground state to the $J^+_1 (L = J = 0, 2, 4)$ states are shown in Fig. 7. The maximum value of $|F_L(q)|^2$ decreases by two order of magnitudes with L. However, each L-value dominates the total form factor one after the other for increasing values of q.

![Figure 6](image-url)

FIG. 6: (color online) q-dependent transition quadrupole matrix element $M_2(q^2)$, Eq. (A15), for the $E2$ transition from the ground state to the 2^+_1 state in ^{24}Mg, in comparison with available data. The $M_2(q^2)$ in the $q \to 0$ limit is related to the $B(E2)$ value via $M_2(0) = \sqrt{B(E2)}/c$. Data are taken from Ref. [85] (squares) and Ref. [84] (circles and triangles).

![Figure 7](image-url)

FIG. 7: (color online) The elastic and transition longitudinal form factors $|F_L(q)|^2$ from ground state to the $J^+_1 (L = J = 0, 2, 4)$ states in ^{24}Mg. The corresponding transition densities are plotted in the inset.

![Figure 8](image-url)

FIG. 8: (color online) Same as Fig. 1, but for ^{58}Ni.

![Figure 9](image-url)

FIG. 9: (color online) Comparison between the spectrum obtained for ^{58}Ni using our method and the experimental results. Data are taken from Ref. [88].

IV. APPLICATION TO EVEN-MASS $^{58-68}\text{Ni}$

The stable Ni isotopes ($A = 58$ to 62) have been extensively studied in the 1960’s. The data have been extended to heavier isotopes over the last ten years, going up to potentially neutron magic numbers $N = 40$ and $N = 50$. There is now a large set of data putting into evidence the complexity of the evolution of the Ni shell structure with the number of neutrons (see for instance the discussions in Refs. [86–88]).

Let us start with ^{58}Ni. The results obtained at the successive steps of our method are plotted in Fig. 8. The
energy curve obtained from particle-number projection of mean-field wave functions presents a soft spherical minimum. After projection on angular momentum, two minima, close in energy, are obtained for $J = 0, 2$ and 4 by the projection of prolate and oblate mean-field configurations. The collective wave functions g^j_μ resulting from configuration mixing are spread over a large range of deformations (see panel (b) of Fig. 8). As a consequence, the mean deformation $\bar{\beta}_J$ is close to zero and does not bring valuable information. By contrast, the positive $\bar{\beta}_j_\mu$ of the first excited states indicates that they are dominated by prolate mean-field configurations.

There have been claims in the literature that ^{58}Ni is a spherical vibrator, see for instance Refs. [89, 90]. The calculated energy pattern that we obtain, shown in Fig. 9, has indeed some of the characteristics expected for a vibrator [91]. The first 4^+ and second 2^+ levels are at about two times the energy of the 2^+_1 state. There are, however, two near-degenerate 0^+ levels at the expected energy of the two-phonon state instead of just one. Looking at transition probabilities, the first excited 0^+ has a strong deexcitation to the second 2^+ state, which is incompatible with a simple vibrator. The second excited 0^+ decays predominantly to the first 2^+ and would thus be a better candidate for a two-phonon state, but the overall pattern of $B(E2)$ values is very different from what would be expected. The available data for ^{58}Ni are too sparse to draw firm conclusions, but they do not seem to be well described by the assumption of a simple vibrator either. In fact, there seems to be a general rule that the more information about a potential anharmonic vibrator becomes available, the less this interpretation can be retained [91, 92].

The shell-model description of this Ni isotope, and also of all others up to ^{68}Ni, shows that a correct reproduction of both energies and $B(E2)$ values of the low-lying states requires to include the full fp-shell, see the discussion in Ref. [87]. In its present form, our beyond mean-field method does not allow to include all the relevant shell-model configurations: multiple quasi-particle excitations that break time reversal invariance are not contained in the model space used in this study. However, deformed configurations include many spherical multi-particle-multi-hole excitations. The spreading of the GCM wave functions over a large range of deformations is an economic way to include spherical orbitals arising from shells excited at sphericity (see Fig. 13).

The elastic scattering form factor for ^{58}Ni is shown in Fig. 10. The results obtained with the full GCM basis are compared to those corresponding to the projection of a single configuration, either spherical or corresponding to the mimima at $\beta_2 = \pm 0.21$ of the projected energy curve. All these form factors are quite close, with slight differences at q-values beyond the first maximum. The position of the zeros is reproduced rather well, but the heights of the first and second diffraction maxima are underestimated.

The ground-state charge density distribution is plotted in Fig. 11 for the same four calculations as in Fig. 10. The small differences between these calculations above $q = 1.2 \text{fm}^{-1}$ is reflected in differences between the densities in the interior region ($r < 2.0 \text{fm}$). The GCM re-
result is similar to a previous result obtained from a one-dimensional Bohr Hamiltonian (1DBH) calculation determined by the HFB method and using the Gogny D1 force [95].

To analyze the effect of static deformations, we compare in Fig. 12 the elastic form factor and the charge distribution calculated using projected deformed configurations with increasing values of β_2 from spherical to $\beta_2 = 0.7$. The height of the first and second diffraction maxima is not affected by small deformations. However, it starts to significantly decrease with deformation for β_2 values larger than 0.2. Moreover, the C0 form factor drops faster in the low-q region if the deformation is increased, as shown in the inset of Fig. 12. This behaviour can be understood by looking to the relation (A16) between the C0 form factor and the rms charge radii r_{ch} for low-q values and from the effect of deformation on the change radius of a uniformly charged liquid drop, $r_{\text{ch}}/r_{\text{ch}}^{\text{sph}} \approx (1 + \frac{3}{2} \beta_2^2)$. Panel (b) of Fig. 12 illustrates the effect of deformation on the charge density distribution. Increasing the deformation pushes charge from the inside of the surface (around $r = 3$ fm) to the outside (around $r = 6$ fm).

The origin of the change of behaviour of $|F_0(q)|^2$ at $\beta_2 \approx 0.3$ can be traced back to the single-particle spectra. These are plotted in Fig. 13. The shell structure for neutrons and for protons is very similar. At $\beta_2 \approx 0.3$, a downsloping proton level from the $1f_{7/2}$ spherical shell crosses an upsloping level from the $2p_{3/2}$ shell. It indicates that the gradual population of the $2p_{3/2}$ orbital beyond this point might be responsible for the decrease of the form factor at large q-values.

In the next figures, we show results obtained for the even Ni isotopes up to $N = 40$. Figure 14 shows the evolution with N of the excitation energy of the first 2^+_1 state and of the $B(E2)$ value to the ground state. Although both the $E(2^+_1)$ and $B(E2)$ values are systematically overestimated in our calculation, their evolution as a function of the neutron number is rather well re-produced. We expect that the discrepancy with experiment is mainly due to the time-reversal invariance that is imposed to the mean-field wave functions and that limits the model space of the present calculation to purely collective states. Non-collective time-reversal-invariance-breaking 2-qp excitations are indeed present in the shell model calculations that are in better agreement with data. It can be expected that such configurations will decrease the 2^+ excitation energies and make them less collective, resulting in a decrease of the $B(E2)$-values.

The calculated C2 form factor $|F_2(q)|^2$ and the q-
The isotopic dependence of the quadrupole transition matrix element $M_2(q^2)$ for the quadrupole transition from the ground state to the 2^+_1 state are displayed in Fig. 15. The isotopic dependence of the form factor is very weak, with a decrease of the height of the first maximum with N. The quadrupole transition matrix element $M_2(q)$ at $q \to 0$ decreases in the same way, which corresponds to the smooth decrease of the calculated $B(E2)$ value, cf. Fig. 14.

In Fig. 16, the neutron and proton densities for the transition from the 2^+_1 state to the ground state are shown for $^{58-64}$Ni. The radial profiles are similar for all isotopes with a large peak at large radii and a smaller one at low values of r. The height of the first peak for the neutron transition density decreases with N, and nearly disappears at $N = 40$, in contrast with the second peak.

The ratio η between the values of the quadrupole matrix element for neutrons to that for protons is given in Tab. I for $^{58-64}$Ni. This ratio provides a measure of the isovector character of the transition. It is close to one in our calculation, indicating that the transitions are predominantly isoscalar.

The radial transition charge density (TCD) from the ground state to the 2^+_1 state is compared to the experimental data [9] for $^{58-68}$Ni in Fig. 17. The shape of TCD of $^{58-64}$Ni is reproduced by the GCM calculation. However, we overestimate the height of the surface peak and/or the tail part of the TCD. This deficiency can be traced back to the overestimated $B(E2; 2^+_1 \to 0^+_1)$ values, as shown in Fig. 14. In Fig. 18 the GCM inelastic Coulomb form factors $|F_L(q)|^2$ is compared to the experimental data for the transitions from the ground state to $J_L^+(L = J = 2, 4)$ state. Our calculation reproduces rather well the shapes of the quadrupole and

![Fig. 15](image1.png)

FIG. 15: (color online) (a) The C2 form factor and (b) q-dependent transition quadrupole matrix element for the quadrupole transition from ground state to 2^+_1 state in $^{58-68}$Ni.

![Fig. 16](image2.png)

FIG. 16: (color online) Calculated transition neutron and proton densities from the 2^+_1 state to the ground state for $^{58-64}$Ni.

![Fig. 17](image3.png)

FIG. 17: (color online) Calculated transition charge densities from the ground state to 2^+_1 state for $^{58-68}$Ni, in comparison with available data [9].

η	58Ni	60Ni	62Ni	64Ni	66Ni	68Ni
This work	1.02	1.05	1.06	1.06	1.03	1.02
Ref. [81]	1.01	1.02	1.12	0.92		
Ref. [97]	1.10	1.31	1.36	1.41		
Ref. [98]	1.10	1.09	1.33	1.02		

TABLE I: Isovector character η [cf. Eq. (30)] of the 2^+_1 state of even-even Ni isotopes.
hexadecapole transition form factors, but systematically underestimates the hexadecapole ones.

V. SUMMARY AND OUTLOOK

We have presented how to determine densities and transition densities, as well as the corresponding form factors, within the beyond mean-field model that we develop since many years. The light deformed nucleus 24Mg and the even-mass $^{58-68}$Ni have been used as examples. Depending on the structure of the nucleus, static deformation, or dynamic shape fluctuations, or both, might be important for the description of the ground-state and transition densities.

The framework that we have developed is very general and can be applied to any nucleus and any kind of transitions for which calculations using the GCM are available. This gives some hope that applications to odd-mass nuclei will be available in a not too distant future [103]. For a better description of low-lying excited states in spherical even-even nuclei, it would be desirable to add non-collective time-reversal-breaking n-quasiparticle states to the GCM basis.

Leptonic probes have the advantage that the interaction mechanism and the nucleonic form factors are precisely known, which reduces the theoretical uncertainties. But with additional modeling, also the scattering of hadronic probes off nuclei could be described.

To improve the quality of the results obtained in our model, one certainly needs to construct a new energy functional, which should be adjusted to the data on nuclear charge radii at the beyond-mean-field level. As has been shown in Ref. [104], the charge radii, in particular of light nuclei, become systematically larger in angular-momentum projected GCM, which poses a problem when using a parametrization adjusted at the mean-field level. Elastic and inelastic form factors seem to be tools very sensitive to the momentum composition of the collective wave functions should provide stringent tests of nuclear models.

Acknowledgments

Fruitful discussions with S. Baroni, P.-G. Reinhard and K. Washiya are gratefully acknowledged. We also thank H. Mei for critical checking of the formulae for transition densities. This research was supported in parts by the PAI-P6-23 of the Belgian Office for Scientific Policy, the F.R.S.-FNRS (Belgium), the National Science Foundation of China under Grants No. 11305134 and 11105111, by the European Union’s Seventh Framework Programme ENSAR under grant agreement n262010, and by the CNRS/IN2P3 through the PICS No. 5994.

Appendix A: Form factors of electron scattering off nuclei in PWBA

We suppose that the nucleus makes a transition from the initial state $|\alpha_i\rangle$ to the final state $|\alpha_f\rangle$, where we introduce the shorthand notation α representing $JM\mu$. In the plane-wave Born approximation (PWBA), the longitudinal form factor, normalized to the nuclear charge Z, is given by the Fourier-Bessel transformation of the transition density $\rho_{\alpha_i}^{\alpha_f}(r)$, cf. Eq. (13),

$$|F(q)|^2 = \frac{1}{Z^2 j_i^2} \sum_{M_i,M_f} \left| \int d^3r \rho_{\alpha_i}^{\alpha_f}(r) e^{iqr} \right|^2$$

$$= \frac{4\pi}{Z^2 j_i^2} \sum_{M_i,M_f} \sum_{LM} (\alpha_f | \hat{M}_{LM} | \alpha_i) Y^{*}_{LM}(\hat{q})^2.$$ (A1)

FIG. 18: (color online) Calculated inelastic Coulomb form factors $|F_L(q)|^2$ for the transition from the ground state to J^P_i ($L = J = 2, 4$) state in $^{58-68}$Ni, in comparison with available data, taken from Ref. [99] (up triangles), Ref. [100] (squares and diamonds), Ref. [101] (circles) and Ref. [102] (left and right triangles).
The multipole operator \(\hat{M}_{LM}(q) \) has been defined following Refs. [99, 105],

\[
\hat{M}_{LM}(q) = \int d^3 r \ j_L(qr) \ Y_{LM}(\hat{r}) \hat{\rho}(r) ,
\]

(A2)

where \(j_L(qr) \) is a spherical Bessel function and where we have used the relation

\[
e^{iqr} = 4\pi \sum_{LM} i^L j_L(qr) Y_{LM}^*(\hat{q}) Y_{LM}(\hat{r}) .
\]

(A3)

By using the orthogonality of the spherical harmonics, one can show that the radial dependence of \(|F(q)|^2\) is given by [3, 99, 106]

\[
|F(q)|^2 = \frac{1}{4\pi} \int d\hat{q} \ |F(q)|^2 = \frac{4\pi}{Z^2 j_f^2} \sum_{L=0}^{\infty} \left| \langle J_f \mu_f || \hat{M}_{LM}(q) || J_i \mu_i \rangle \right|^2 .
\]

(A4)

Comparing with Eq. (6), one finds the form factor \(F_L(q) \) for an angular momentum transfer \(L \) [105],

\[
F_L(q) = \frac{\sqrt{4\pi}}{Z} \left| \langle J_f \mu_f || \hat{M}_{LM}(q) || J_i \mu_i \rangle \right| .
\]

(A5)

Using its definition provided by Eq. (A2), the matrix element of the multipole operator \(\hat{M}_{LM} \) between an initial \(|\alpha_i\rangle \) and a final \(|\alpha_f\rangle \) state

\[
\langle \alpha_f | \hat{M}_{LM} | \alpha_i \rangle = \int d^3 r \ j_L(qr) Y_{LM}(\hat{r}) \rho_{\alpha_f}^\alpha(r)
\]

is related to the reduced matrix element \(\langle J_f \mu_f || \hat{M}_{LM}(q) || J_i \mu_i \rangle \) by the Wigner-Eckart theorem [108]

\[
\langle J_f \mu_f || \hat{M}_{LM}(q) || J_i \mu_i \rangle = (-1)^{2L} j_f \frac{\langle \alpha_f | \hat{M}_{LM} | \alpha_i \rangle}{\langle J_f M_f || \hat{J}_f || J_i M_i \rangle} ,
\]

(A6)

where \(\langle J_f M_f || \hat{J}_f || J_i M_i \rangle \) is a Clebsch-Gordan coefficient.

In other words, one can define a reduced transition density \(\rho^{\alpha_f}_{\alpha_i}(r) \) as a function of radial coordinate \(r \) through the 3D transition density \(\rho_{\alpha_f}^\alpha(r) \)

\[
\langle \alpha_f | \hat{\rho}(r) Y_{LM} | \alpha_i \rangle = \int d\hat{r} \ \rho^{\alpha_f}_{\alpha_i}(r) Y_{LM}(\hat{r}) .
\]

(A7)

The left-hand-side of Eq. (A8) is given by

\[
\langle \alpha_f | \hat{\rho}(r) Y_{LM} | \alpha_i \rangle = \int d\hat{r} \ \rho_{\alpha_f}^\alpha(r) Y_{LM}(\hat{r}) .
\]

(A9)

The reduced transition density \(\rho^{\alpha_f}_{\alpha_i}(r) \) with angular momentum transfer \(L \) is therefore given by

\[
\rho^{\alpha_f}_{\alpha_i}(r) = \hat{J}_f^{-1} \langle J_f \mu_f || \hat{\rho}(r) Y_{LM} || J_i \mu_i \rangle ,
\]

(A10)

where the factor \(\hat{J}_f^{-1} \) is introduced such that the integration of \(r^{L+2} \rho^{\alpha_f}_{\alpha_i}(r) \) over the radial coordinate \(r \) gives the value of the transition matrix element of multipolarity \(L \), cf. Eq. (28).

In terms of the reduced transition density, the longitudinal form factor \(F_L(q) \) for angular momentum transfer \(L \) in Eq. (A5) has the form

\[
F_L(q) = \frac{\sqrt{4\pi}}{Z} \int_0^\infty dr \ r^2 \rho^{\alpha_f}_{\alpha_i}(r) j_L(qr) .
\]

(A11)

We note that our convention for the reduced transition density differs from the one of Eq. (5) of Ref. [71] by a factor of \(\sqrt{4\pi}/Z \).

According to the asymptotic behavior of the spherical Bessel function \(j_L(qr) \) [4]

\[
\lim_{qr \to 0} j_L(qr) = \frac{(qr)^L}{(2L+1)!!} \left[1 - \frac{1}{L+3/2} \left(\frac{qr}{2} \right)^2 \right. \]

\[
\left. + \frac{1}{2(L+3/2)(L+5/2)} \left(\frac{qr}{2} \right)^4 - \ldots \right] ,
\]

(A12)

the Coulomb form factor of inelastic scattering in the \(q \to 0 \) limit is given by [4, 107]

\[
F_L(q) = \frac{\sqrt{4\pi}}{Z} \frac{q^L}{(2L+1)!!} \sqrt{B(EL)} \times \left[1 - \frac{q^2 R_{\text{tr}}^2}{8(2L+3)(2L+5)} - \ldots \right] ,
\]

(A13)

where the effective transition radii \(R_{\text{tr}}^n \), \(n = 2, 4 \), are defined as

\[
R_{\text{tr}}^n = \frac{\int dr \ r^{L+n+2} \rho^{\alpha_f}_{\alpha_i}(r)}{\int dr \ r^{L+2} \rho^{\alpha_f}_{\alpha_i}(r)} .
\]

(A14)

From these properties, one can extract the multipolarity \(L \) of the transition, the transition strength \(B(EL) \), and the transition radius \(R_{\text{tr}}^n \) from the data for the Coulomb form factor in the low-\(q \) region. Usually, one introduces a \(q \)-dependent multipole transition matrix element \(M_L^q(q) \) for graphical comparisons of matrix elements and Coulomb form factors at small \(q \) values

\[
M_L(q^2) = \frac{Z}{\sqrt{4\pi}} \frac{(2L+1)!!}{q^L} F_L(q) .
\]

(A15)

For elastic scattering, \(L = 0 \), \(\alpha_f = \alpha_i = \alpha \) and the Coulomb form factor becomes in the \(q \to 0 \) limit

\[
F_0(q) = \frac{\sqrt{4\pi}}{Z} \int_0^\infty dr \ r^2 \rho^{\alpha_f}_{\alpha_i}(r) \sin(qr) = \frac{\sqrt{4\pi}}{Z} \int_0^\infty dr \ r^2 \rho^{\alpha_f}_{\alpha_i}(r) \frac{1}{qr} \left[qr - \frac{(qr)^3}{3!} + \ldots \right]
\]

\[
= 1 - \frac{q^2}{3!} r_{\text{ch}} + \ldots ,
\]

(A16)
where \(r_{\text{ch}} \) is the rms charge radius of the state \(|J\mu\rangle \).

Appendix B: Derivation of transition density between GCM states

In this section, we derive the form of the transition density between two arbitrary GCM states for the general case of triaxially deformed nuclei. In this case, the wave function of GCM state is given by

\[
|\alpha\rangle = \sum_{K,q} F_{\mu,q}^{J^0} \hat{P}_{MK}^{J} \hat{P}^N \hat{P}^Z |q\rangle .
\]

(S1)

Sandwiching the density operator \(\hat{\rho}(r) \equiv \sum_i \delta(r - r_i) \) between the wave functions of the initial \(|\alpha_i\rangle \) and final \(|\alpha_f\rangle \) GCM states, one obtains the 3D transition density \(\rho_{i\alpha_f}^{\sigma q}(r) \)

\[
\rho_{i\alpha_f}^{\sigma q}(r) = \sum_{K,q} \sum_{q',q''} F_{\sigma q'}^{J^0} F_{\mu q''}^{J^0} \rho_{i\alpha_f}^{\sigma q''}(r) ,
\]

(S2)

where we have introduced the shorthand notation \(\sigma \equiv \{JMK\} \). The kernel of the 3D transition density \(\rho_{i\alpha_f}^{\sigma q}(r) \) reads

\[
\rho_{i\alpha_f}^{\sigma q}(r) = \langle q'| \hat{P}_{K,M_i}^{J_i} \hat{\rho}(r) \hat{P}_{K,M_i}^{J_i'} \hat{P}^N \hat{P}^Z |q\rangle
\]

\[
= \frac{j^2 \tilde{j}^2}{(8\pi^2)^2} \int d\Omega' d\Omega D_{J_i K M_i}^{J_i'}(\Omega') D_{J_0 K M_i}^{J_i}(\Omega) \times \langle q'| \hat{R}(\Omega') \hat{R}^i(\Omega') \hat{P}^N \hat{P}^Z \hat{R}(\Omega) \hat{R}^i(\Omega)|q\rangle .
\]

(S3)

For any HFB state \(|\alpha_i\rangle \), one has

\[
\langle q'| \hat{R}(\Omega') \hat{R}^i(\Omega')|q\rangle = \langle q'| \hat{\rho}(\Omega')|\rangle = \hat{R}^i(\Omega') \langle q'| \hat{\rho}(\Omega')|q\rangle ,
\]

(S4)

where \(\hat{R}(\Omega') \equiv \hat{R}^i(\Omega') \). Decomposing the rotation operator \(\hat{R}(\Omega) \equiv \hat{R}(\Omega^r) \hat{R}(\Omega^t) \), \(\hat{R}^i(\Omega) = \hat{R}^i(\Omega') \hat{R}^i(\Omega^t) \) and using the properties of Wigner D-functions

\[
D_{K_i M_i}^{J_i}(\Omega) = \sum_K D_{K_i K}^{J_i}(\Omega') D_{K M_i}^{J_i}(\Omega') ,
\]

(S5)

the kernel \(\rho_{i\alpha_f}^{\sigma q}(r) \) of the 3D transition density in (S2) can be simplified

\[
\rho_{i\alpha_f}^{\sigma q}(r) = \frac{j^2 \tilde{j}^2}{(8\pi^2)^2} \int d\Omega' d\Omega' D_{J_i K M_i}^{J_i'}(\Omega') \langle q'| \hat{\rho}(\Omega')|q\rangle \times \hat{R}^i(\Omega') \hat{P}^N \hat{P}^Z \hat{R}(\Omega)|q\rangle,
\]

(S6)

where the \(\rho_{q'q''}^{J_i KK_i}(r) \) is defined as

\[
\rho_{q'q''}^{J_i KK_i}(r) = \langle q'| \hat{\rho}(r) \hat{P}_{KK_i}^{J_i} \hat{P}^N \hat{P}^Z |q\rangle.
\]

(S7)

Appendix C: Expansion in terms of spherical harmonics

To separate the radial dependence of the 3D transition density from its trivial angular part, inspired by Ref. [57] we expand \(\rho_{q'q''}^{J_i KK_i}(r) \) in Eq. (B7) in terms of spherical harmonics

\[
\rho_{q'q''}^{J_i KK_i}(r) = \sum_{\lambda\nu=0}^{\infty} \rho_{q'q'';\lambda\nu}^{J_i KK_i}(r) Y_{\lambda\nu}(\hat{r}) ,
\]

(C1)

where the radial part \(\rho_{q'q'';\lambda\nu}^{J_i KK_i}(r) \) is given by

\[
\rho_{q'q'';\lambda\nu}^{J_i KK_i}(r) = \int d\hat{r} \rho_{q'q'';\lambda\nu}^{J_i KK_i}(r) Y_{\lambda\nu}(\hat{r}) .
\]

(C2)

In this case, the rotation \(\hat{R}^i(\Omega') \) of \(\rho_{q'q''}^{J_i KK_i}(r) \) in Eq. (B6) can be evaluated analytically

\[
\hat{R}^i(\Omega') \rho_{q'q''}^{J_i KK_i}(r) = \sum_{\lambda\nu=0}^{\infty} D_{\lambda\nu;\lambda'\nu'}(\Omega') \rho_{q'q'';\lambda'\nu'}^{J_i KK_i}(r) Y_{\lambda\nu'}(\hat{r}) .
\]

(C3)

The kernel \(\rho_{i\alpha_f}^{\sigma q}(r) \) of the 3D transition density in Eq. (B6) becomes

\[
\rho_{i\alpha_f}^{\sigma q}(r) = \frac{j^2 \tilde{j}^2}{8\pi^2} \sum_{K,L,M_i} \int d\Omega' D_{J_i K M_i}^{J_i'}(\Omega') D_{J_0 K M_i}^{J_i}(\Omega) \times \rho_{q'q'';\lambda\nu}^{J_i KK_i}(r) Y_{\lambda\nu'}(\hat{r}),
\]

(C4)

By substituting the expression for \(\rho_{i\alpha_f}^{\sigma q}(r) \) into Eqs. (A8), (A9), and (A10), one finds as an expression for the reduced transition density

\[
\rho_{J_i;\mu_i;L}(r) = (-1)^{2L} \frac{j^2 \tilde{j}^2}{j^3} \sum_{K L} \sum_{q,q'} F_{\mu_i q}^{J_i K} F_{\mu_i q'}^{J_i K} \times \sum_{\lambda\nu=0}^{\infty} \rho_{q'q'';\lambda\nu}^{J_i KK_i}(r) \int d\hat{r} Y_{\lambda\nu}(\hat{r}) Y_{\lambda\nu'}(\hat{r}).
\]

(C5)
With the help of the orthogonality relation of the spherical harmonics, \[
\int d\mathbf{r} \, Y_{LM}(\mathbf{r}) Y_{L'M'}(\mathbf{r}) = (-1)^{\delta_{LL} - \delta_{MM'}} (-1)^{\delta_{LL'}},
\]
and the symmetry relation \(\langle J_f M_f L - M | J_i M_i \rangle \),

\[
(\mathbf{j}_i - \mathbf{j}_f) \rightarrow \mathbf{j}_i \rightarrow \mathbf{j}_f \rightarrow \mathbf{j}_f - \mathbf{j}_i \rightarrow \mathbf{j}_i
\]

\[
= (-1)^{2L-M+J_f-J_i} \frac{\mathbf{j}_f}{J_f} \langle J_i M_i L | J_f M_f \rangle
\]
of the Clebsch-Gordan coefficients, the reduced transition density can be simplified to

\[
\rho_{J_i J_f, L}(r) = (-1)^{J_i - J_f} \frac{1}{J_f} \sum_{K_i, K_f} \sum_{q, p, q'} F_{\mu_i, \mu_f}^J K_i F_{\mu_f, \mu_f}^J K_f \times \sum_{K_f} \langle J_f K_f L | J_i K_i \rangle \rho_{J_f, L}^i K_i (r) \langle J_i K_i | J_f K_f \rangle.
\]

(C6)

where we have replaced the phase factor \((-1)^{4L-2M+J_f-J_i} \) by \((-1)^{J_i - J_f} \). Substituting Eq. (C2) into the above equation, one finds as the final expression for the reduced transition density of triaxially deformed nuclei \(J_i J_f, L(r) \) in Eq. (C7) is simplified as

\[
\rho_{J_i J_f, L}(r) = (-1)^{J_i - J_f} \frac{1}{J_f} \sum_{K_i, K_f} \sum_{q, p, q'} F_{\mu_i, \mu_f}^J K_i F_{\mu_f, \mu_f}^J K_f \times \sum_{K_f} \langle J_f K_f L | J_i K_i \rangle \rho_{J_f, L}^i K_i (r) \langle J_i K_i | J_f K_f \rangle.
\]

(C7)

When axial symmetry about the z axis is imposed on the intrinsic states \(|q\rangle \), all components with \(K_i \neq 0 \) and \(K_f \neq 0 \) vanish. In this case, the reduced transition density \(\rho_{J_i J_f, L}(r) \) in Eq. (C7) is

\[
J_f \rho_{J_i J_f, L}(r) = (-1)^{J_i - J_f} \frac{1}{J_f} \sum_{K_i, K_f} \sum_{q, p, q'} F_{\mu_i, \mu_f}^J K_i F_{\mu_f, \mu_f}^J K_f \times \sum_{K_f} \langle J_f 0 K | J_i K \rangle \int d\mathbf{r} \, \rho_{J_f, L}^i (r) \langle J_i K_i | J_f K_f \rangle.
\]

(C8)

where the pseudo GCM density \(\rho_{J_i J_f, K}^i (r) \) has been defined in Eq. (21).

Appendix D: Multipole transition matrix elements

With the reduced transition density \(\rho_{J_i J_f, L}(r) \) (C7), one can calculate the multipole \((L) \) transition matrix element straightforwardly

\[
M_{J_i J_f, L}^{j_i j_f} = \int dr \ r^{2+L} \rho_{J_i J_f, L}(r.
\]

(D1)

By defining the transition operator of multipolarity \(L \) as \(Q_{L\nu} = r^L Y_{L\nu} \), the corresponding transition matrix element \(M_{J_i J_f, L}^{j_i j_f} \) becomes

\[
M_{J_i J_f, L}^{j_i j_f} = (-1)^{J_i - J_f} \frac{1}{J_f} \sum_{K_i, K_f, q, q'} F_{\mu_i, \mu_f}^J K_i F_{\mu_f, \mu_f}^J K_f \times \sum_{K_f} \langle J_f K_f L - \nu | J_i K_i \rangle (-1)^{K_i - K_f} \times \langle q | \hat{Q}_{L\nu} \hat{P}_K \hat{P}_N \hat{P}_Z | q \rangle.
\]

(D2)

With the help of the relation between Clebsch-Gordan coefficients and 3j-symbols [108], one finds

\[
\langle J_f K_f L - \nu | J_i K_i \rangle = (-1)^{2J_f + J_i + K_i} \frac{1}{K_f} \left(\begin{array}{ccc} J_f & L & J_i \\ -K_f & \nu & K \end{array} \right).
\]

(D3)

The multipole transition matrix element is finally given by

\[
M_{J_i J_f, L}^{j_i j_f} = (-1)^{J_i - J_f} \frac{1}{J_f} \sum_{K_i, K_f, q, q'} F_{\mu_i, \mu_f}^J K_i F_{\mu_f, \mu_f}^J K_f \times \sum_{K_f} \langle J_f K_f L - \nu | J_i K_i \rangle (-1)^{J_f - K_f + 2K} \left(\begin{array}{ccc} J_f & L & J_i \\ -K_f & \nu & K \end{array} \right) \times \langle q | \hat{Q}_{L\nu} \hat{P}_K \hat{P}_N \hat{P}_Z | q \rangle.
\]

(D4)

It can be easily shown that the electric multipole transition strength is given by

\[
B(EL : J_i \mu_i \rightarrow J_f \mu_f) = |M_{J_i J_f, L}^{j_i j_f}|^2,
\]

(D5)

provided that the operator \(\hat{Q}_{L\nu} \) is replaced by the electric one \(\hat{Q}_{L\nu} = e \mathbf{r} \cdot \mathbf{L} \).
[1] R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
[2] K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Rev. Mod. Phys. 28, 432 (1956).
[3] T. de Forest, Jr. and J. D. Walecka, Adv. Phys. 15, 1 (1966).
[4] H. Überall, Electron Scattering from Complex Nuclei, Parts A and B, Academic Press, New York, 1971.
[5] R. C. Barrett, Rep. Prog. Phys. 37, 1 (1974).
[6] B. Dreher, J. Friedrich, K. Merle, H. Rothhaar, G. Lührs, Nucl. Phys. A235, 219 (1974).
[7] T. W. Donnelly and J. D. Walecka, Annu. Rev. Nucl. Part. Sci. 25, 329 (1975).
[8] J. L. Friar and J.W. Negele, Adv. in Nucl. Phys. 8, 219 (1975).
[9] J. Heisenberg, Adv. Nucl. Phys. 12, 61 (1981).
[10] J. Heisenberg and H. P. Blöck, Ann. Rev. Nucl. Part. Sci. 33, 569 (1983).
[11] T. W. Donnelly and I. Sick, Rev. Mod. Phys. 56, 461 (1984).
[12] I. Sick, in Advanced Methods in the Evaluation of Nuclear Scattering Data, Lecture Notes in Physics Vol. 125, 137 (1985).
[13] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).
[14] B. Frois and C. N. Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987).
[15] P. E. Hodgson, Hyperfine Interactions 74, 75 (1992).
[16] J. D. Walecka, Electron Scattering for Nuclear and Nucleon Structure, (Cambridge University Press, Cambridge, 2004).
[17] J. Friedrich and N. Voegler, Nucl. Phys. A459, 192 (1982).
[18] J. Friedrich, N. Voegler, and P.-G. Reinhard, Nucl. Phys. A459, 10 (1986).
[19] M. Wakasugi, T. Suda, and Y. Yano, Nucl. Instrum. Methods Phys. Res., Sect. A532, 216 (2004).
[20] T. Suda and M. Wakasugi, Prog. Part. Nucl. Phys. 55, 417 (2005).
[21] T. Suda, M. Wakasugi, T. Emoto, K. Ishii, S. Ito, K. Kurita, A. Kuwajima, A. Noda, T. Shirai, T. Tamae, H. Tongu, S. Wang, and Y. Yano, Phys. Rev. Lett. 102, 102501 (2009).
[22] H. Simon, Nucl. Phys. A787, 102c (2007).
[23] A. N. Antonov et al., Nucl. Instrum. Methods Phys. Res., Sect. A637, 60 (2011).
[24] R. H. Helm, Phys. Rev. 104, 1466 (1956).
[25] L. J. Tassie, Aust. J. Phys. 9, 407 (1956).
[26] B. A. Brown, R. Radhi, and B. H. Wildenthal, Phys. Rep. 101, 313 (1983).
[27] A. E. L. Dieperink, F. Iachello, A. Rinat, and C. Creswell, Phys. Lett. B76, 135 (1978); A. E. L. Dieperink, Nucl. Phys. A358, 189c (1981).
[28] Y. Horikawa, T. Hoshino, and A. Arima, Nucl. Phys. A278, 297 (1977).
[29] H. Sagawa, O. Schöten, and B. A. Brown, Nucl. Phys. A462, 1 (1987).
[30] A. Yokoyama and K. Ogawa, Phys. Rev. C 39, 2458 (1989).
[31] R. A. Radhi and A. Bouchebak, Nucl. Phys. A716, 87 (2003).
[32] S. Karataglidis and K. Amos, Phys. Lett. B650, 148 (2007).
[33] R. A. Radhi, A. A. Abdullah, and A. H. Raheem, Nucl. Phys. B798, 16 (2008).
[34] M. Bender, P-H. Heenen, and P-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
[35] J. W. Negele, Phys. Rev. C 1, 1260 (1970).
[36] L. D. Miller and A. E. S. Green, Phys. Rev. C 5, 241 (1972).
[37] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).
[38] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[39] Z. Wang and Z. Ren, Phys. Rev. C 70, 034303 (2004).
[40] A. N. Antonov, D. N. Kadrev, M. K. Gaidarov, E. Moya de Guerra, P. Sarriguren, J. M. Udías, V. K. Lukyanov, E. V. Zemlyanaya, and G. Z. Krumova, Phys. Rev. C 72, 044307 (2005).
[41] X. Roca-Maza, M. Centelles, F. Salvat, and X. Viñas, Phys. Rev. C 78, 044332 (2008).
[42] X. Roca-Maza, M. Centelles, F. Salvat, and X. Viñas Phys. Rev. C 87, 014304 (2012).
[43] J. W. Negele and G. Rinker, Phys. Rev. C 15, 1499 (1977).
[44] E. Moya de Guerra, Ann. Phys. (NY) 128, 286 (1980).
[45] P. Sarriguren, E. Graca, D. W. L. Sprung, E. Moya de Guerra, and D. Berdichevsky, Phys. Rev. C 40, 1414 (1989).
[46] D. Berdichevsky, P. Sarriguren, E. Moya de Guerra, M. Nishimura, and D. W. L. Sprung, Phys. Rev. C 38, 338 (1988).
[47] A. Faessler, S. Krewald, A. Plastino, and J. Speth, Z. Phys. A 276, 91 (1976).
[48] P-G. Reinhard and S. Drechsel, Z. Phys. A 290, 85 (1979).
[49] D. Gogny, in Nuclear Physics with Electromagnetic Interactions, H. Arenhövel and D. Drechsel [eds.], Lecture Notes in Physics, Vol. 108 (Springer-Verlag, New York, 1979), p. 88.
[50] J. Dechargé, M. Girod, D. Gogny and B. Grammaticos, Nucl. Phys. A358, 203c (1983).
[51] H. Esbensen and G. F. Bertch, Phys. Rev. C 28, 355 (1983).
[52] F. Barranco and R. A. Broglia, Phys. Rev. Lett. 59, 2724 (1987).
[53] M. B. Johnson and G. Wenes, Phys. Rev. C 38, 386 (1988).
[54] T. Sil and S. Shlomo, Phys. Scr. 78, 065202 (2008).
[55] G. P. A. Nobre, F. S. Dietrich, J. E. Escher, I. J. Thompson, M. Dupuis, J. Terasaki, and J. Engel, Phys. Rev. C 84, 064609 (2011).
[56] Y. Abgrall, P. Gabinski, and J. Labarsouque, Nucl. Phys. A232, 235 (1974).
[57] Z. Zaringhalam and J. W. Negele, Nucl. Phys. A288, 417 (1977).
[58] E. Moya de Guerra and A. E. L. Dieperink, Phys. Rev. C 18, 1596 (1978).
[59] J. M. Yao, S. Baronii, M. Bender, and P-H. Heenen, Phys. Rev. C 86, 014310 (2012).
[60] J. M. Yao, H. Mei, and Z. P. Li, Phys. Lett. B723, 459 (2013).
[61] X. Y. Wu, J. M. Yao, and Z. P. Li, Phys. Rev. C 89,
017304 (2014).
[62] H. Mei, K. Hagino, J. M. Yao, and T. Motoba, arXiv:1406.4604 [nucl-th] (2014).
[63] Y. Fukuoka, S. Shinhara, Y. Funaki, T. Nakatsukasa, and K. Yabana, Phys. Rev. C 88, 014321 (2013).
[64] J. Terasaki, P.-H. Heenen, H. Flocard, and P. Bonche, Nucl. Phys. A600, 371 (1996).
[65] P. Bonche, H. Flocard, and P.-H. Heenen, Comput. Phys. Comm. 171, 49 (2005).
[66] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A635, 231 (1998); Nucl. Phys. A643, 441(E) (1998).
[67] C. Rigollet, P. Bonche, H. Flocard, and P.-H. Heenen, Phys. Rev. C 59, 3120 (1999).
[68] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Heidelberg, 1980).
[69] D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 78, 064323 (2008).
[70] M. Bender and P.-H. Heenen, Phys. Rev. C 78, 024309 (2008).
[71] J. Heisenberg, J. Lichtenstadt, C. N. Papanicolas, and J. S. McCarthy, Phys. Rev. C 25, 2292 (1982).
[72] I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).
[73] K. W. Schmid and F. Grümmer, Z. Phys. A337, 267 (1990).
[74] K. W. Schmid and P.-G. Reinhard, Nucl. Phys. A530, 283 (1991).
[75] R. R. Rodríguez-Guzmán and K. W. Schmid, Eur. Phys. J. A 19, 45 (2004).
[76] L. J. Tassie and F. C. Barker, Phys. Rev. 111, 940 (1958).
[77] J. M. Yao, J. Meng, P. Ring and D. Vretenar, Phys. Rev. C 81, 044311 (2010); J. M. Yao, K. Hagino, Z. P. Li, J. Meng, and P. Ring, Phys. Rev. C 89, 054306 (2014).
[78] T. R. Rodríguez and J. L. Egido, Phys. Rev. C 81, 064323 (2010).
[79] D. Baye and P.-H. Heenen, J. Phys. A19, 2041 (1986).
[80] A. Valor, P. H. Heenen, and P. Bonche, Nucl. Phys. A671, 145 (2000).
[81] Y. Terrien, Nucl. Phys. A199, 65 (1973); Nucl. Phys. A215, 29 (1973).
[82] R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo, Nucl. Phys. A709, 201 (2002).
[83] T. Nikić, D. Vretenar, and P. Ring, Phys. Rev. C 73, 034308 (2006); Phys. Rev. C 74, 064309 (2006).
[84] G. C. Li, M. R. Yearian, and I. Sick, Phys. Rev. C 9, 1861 (1974).
[85] A. Johnston and T. E. Drake, J. Phys. A 7, 898 (1974).
[86] J. N. Orce, B. Crider, S. Mukhopadhyay, E. Peters, E. Elhami, M. Scheck, B. Singh, M. T. McEllistrem and S. W. Yates, Phys. Rev. C 77, 064301 (2008).
[87] R. Broda, T. Pawwat, W. Kras, R. V. F. Janssens, S. Zhu, W. B. Walters, B. Fornal, C. J. Chiara, M. P. Carpenter, N. Hoteling, W. Iskra, F. G. Kondev, T. Lauritsen, D. Seweryniak, I. Stefanescu, X. Wang, and J. Wrzesiski, Phys. Rev. C 86, 064312 (2012).
[88] J. M. Allmond, B. A. Brown, A. E. Stuchbery, A. Galindo-Uribarri, E. Padilla-Rodal, D. C. Radford, J. C. Batchelder, M. E. Howard, J. F. Liang, B. Manning, R. L. Varner, and C.-H. Yu, Phys. Rev. C 90, 034309 (2014).
[89] R. F. Simoes, D. S. Monteiro, L. K Ono, A. M. Jacob, J. M. B Shorto, N. Added, and E. Crema, Phys. Lett. B527, 187 (2002).
[90] A. M. Stefanini, D. Ackermann, L. Corradi, D. R. Napoli, C. Petrache, P. Spolaore, P. Bednarczyk, H. Q. Zhang, S. Beghini, G. Montagnoli, L. Mueller, F. Scarlassara, G. F. Segato, F. Soramel, and N. Rowley, Phys. Rev. Lett. 74, 864 (1995).
[91] P. E. Garrett and J. L. Wood, J. Phys. G 37, 064028 (2010).
[92] P. E. Garrett, K. L. Green, and J. L. Wood, Phys. Rev. C 78, 044307 (2008).
[93] J. R. Ficenec, W. P. Trower, J. Heisenberg, and I. Sick, Phys. Lett. B32, 460 (1970).
[94] I. Sick, J. B. Bellicard, M. Bernheim, B. Frois, M. Huet, Ph. Leconte, J. Mougey, Phan Xuan-Ho, D. Royer, and S. Turck, Phys. Rev. Lett. 35, 910 (1975).
[95] M. Girod and D. Gogny, Phys. Lett. B64, 5 (1976).
[96] B. Pritsychenko, J. Choquette, M. Horoi, B. Karamy, and B. Singh, At. Data Nucl. Data Tables 98, 798 (2012).
[97] A. Chaumeaux, V. Layly and R. Schaeffer, Ann. Phys. (NY) 116, 247 (1978).
[98] R. M. Lombard, G. D. Alkhazov, and O. A. Domchenkov, Nucl. Phys. A360, 233 (1981).
[99] M. A. Duguay, C. K. Bockelman, T. H. Curtis, and R. A. Eisenstein, Phys. Rev. 163, 1259 (1967).
[100] Y. Torizuka, Y. Kojima, M. Oyamada, K. Nakahara, K. Sugiyama, T. Terasawa, K. Itoh, A. Yamaguchi, and M. Kimura, Phys. Rev. 185, 1499 (1969).
[101] B. Frois, S. Turck-Chieze, J. B. Bellicard, M. Huet, P. Leconte, X.-H. Phan, I. Sick, J. Heisenberg, M. Girod, K. Kumar, and B. Grammaticos, Phys. Lett. B122, 347 (1983).
[102] M. R. Braunstein, J. J. Kraushaar, R. P. Michel, J. H. Mitchell, R. J. Peterson, H. P. Blok, and H. de Vries, Phys. Rev. C 37, 1870 (1988).
[103] B. Averb, M. Bender, and P.-H. Heenen, arXiv:1406.5984v1 [nucl-th] (2014).
[104] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. C 78, 054312 (2008).
[105] R. Raphael and M. Rose, Phys. Rev. C 1, 547 (1970).
[106] J. L. Friar and W. C. Haxton, Phys. Rev. C 31, 2027 (1985).
[107] M. Rosen, R. Raphael, and H. Überall, Phys. Rev. 163, 927 (1967).
[108] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, 1988).