Complete Genome Sequence of the Barley Pathogen Xanthomonas translucens pv. translucens DSM 18974T (ATCC 19319T)

Sebastian Jaenicke, a Boyke Bunk, b Daniel Wibberg, c Cathrin Spröer, b Lena Hersemann, d Jochen Blom, a Anika Winkler, c Sarah Schatschneider, c* Stefan P. Albaum, a Roland Kölliker, d Alexander Goesmann, a Alfred Pühler, a Jörg Overmann, b Frank-Jörg Vorhölter* c

Justus-Liebig-University Giessen, Bioinformatics and Systems Biology, Giessen, Germany; Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; Center for Biotechnology CeBiTec, Bielefeld University, Bielefeld, Germany; Agroscope, Molecular Ecology, Zurich, Switzerland

* Present address: Sarah Schatschneider, Evonik Nutrition and Care GmbH, Halle, Germany; Frank-Jörg Vorhölter, MVZ Dr. Eberhard and Partner Dortmund, Dortmund, Germany.

S.J. and B.B. contributed equally to this work.

We report here the complete 4.7-Mb genome sequence of Xanthomonas translucens pv. translucens DSM 18974T, which causes black chaff disease on barley (Hordeum vulgare). Genome data of this X. translucens type strain will improve our understanding of this bacterial species.

Received 4 October 2016 Accepted 7 October 2016 Published 1 December 2016

Accession number(s). This whole-genome shotgun project has been deposited in DDBJ/ENA/GenBank under the accession LT604072. The version described in this paper is the first version, LT604072.1.

ACKNOWLEDGMENTS

We sincerely thank Simone Severitt and Nicole Heyer for technical assistance. The project benefited from the financial support of the German Federal Ministry of Education and Research, BMBF, for the project “Bielefeld-Gießen Center for Microbial Bioinformatics—BiGi” (grant 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI). The funders had no role in study design, data collection, and interpretation, or in the decision to submit the work for publication. We acknowledge support for the article processing charge by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
FUNDING INFORMATION
This work, including the efforts of Daniel Wibberg, Anika Winkler, Alfred Pühler, and Frank-Jörg Vorhölter, was funded by Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) (031A533).

REFERENCES
1. Duveiller E, Maraite H. 1993. Xanthomonas campestris pathovars on cereals: cause of leaf streak or black chaff diseases, p. 76–79. In Swings JG, Civerolo EL (ed), Xanthomonas. Chapman and Hall, London, United Kingdom.
2. Rademaker JL, Norman DJ, Forster RL, Louws FJ, Schultz MH, de Bruijn FJ. 2006. Classification and identification of Xanthomonas translucens isolates, including those pathogenic to ornamental asparagus. Phytopathology 96:876–884. http://dx.doi.org/10.1094/PHYTO-96-0876.
3. Becker A, Katzen F, Pühler A, Ielpi L. 1998. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152. http://dx.doi.org/10.1007/s002530051269.
4. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H. 1985. Genetic manipulation of streptomycetes—a laboratory manual. John Innes Foundation, Norwich, United Kingdom.
5. Arnold M, Wibberg D, Blom J, Schatschneider S, Winkler A, Kutter Y, Rücker C, Albersmeier A, Albaum S, Goessmann A, Zange S, Heesemann J, Pühler A, Hogardt M, Vorhölter FJ. 2015. Draft genome sequence of Pseudomonas aeruginosa strain WS136, a highly cytotoxic ExoS-positive wound isolate recovered from pyoderma gangrenosum. Genome Announc 3(4):. http://dx.doi.org/10.1128/genomeA.00680-15.
6. Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595. http://dx.doi.org/10.1093/bioinformatics/btp698.
7. Meyer F, Goessmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Pühler A. 2003. GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195. http://dx.doi.org/10.1093/nar/gkg312.
8. Wichmann F, Vorhölter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kölker R. 2013. The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. Mol Plant Pathol 14:576–588. http://dx.doi.org/10.1111/mpp.12030.
9. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Zakrzewski M, Goessmann A. 2009. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10:154. http://dx.doi.org/10.1186/1471-2105-10-154.
10. Boch J, Bonas U, Lahaye T. 2014. TAL effectors—pathogen strategies and plant resistance engineering. New Phytol 204:823–832. http://dx.doi.org/10.1111/nph.13015.