Estimation of Individual Leaf Area by Leaf Dimension using a Linear Regression for Various Tropical Plant Species

A C Tay and J Z L Ling
Department of Civil and Construction Engineering, Curtin University Malaysia, Miri, Sarawak, Malaysia

Email tayaichen@curtin.edu.my

Abstract. Leaf area estimation is significant to assess leaf development and plant growth. A simple and efficient model (Regression model) was developed to estimate leaf area of various tropical plant species using leaf dimension (length x width). The objective of this study was to determine a relation between leaf area and leaf dimension to get the best fit line of a linear regression. A total of twenty plant species were selected at Miri, Sarawak, Malaysia. The leaf shape and plant growing environment were investigated as a background data. The leaf shapes were elliptic, acuminate, aristate, obtuse, lobed, linear, peltate and lanceolate. The recorded plant growing environment were location, soil pH and sunlight exposure. The plants grew at a slope or flat, shaded or high exposure of sunlight with the soil pH between 4.8 and 7.3. A regression equation for each leaf was established with coefficient of determination (R²) of 0.9. It strongly proved that the leaf areas of all the plant species are well correlated with leaf dimension (length x width). The linear regression is not influenced by different leaf shape and growing environment. Generally, the plant grew at high exposure of sunlight indicated higher leaf area. There is no obvious trend of leaf area at different soil pH. From the R² values, it concluded that the leaf area of individual plant can be estimated by the linear regression established in this study by determining the leaf length and width.

1. Introduction
Leaf area is an important parameter to determine biophysical condition such as light interception, photosynthesis and evapotranspiration [1]. Leaf area can be estimated accurately by establishing its regression model from the measurement of leaf length and leaf width [2]. The regression model is a non-destructive analysis technique because this technique does not destroy the plant, and the plant growth can be determined periodically [3]. Leaf area estimation is useful for a phenology study which the plant development could be assessed in responding to environment. This phenology study may contribute to the field of conservation, agriculture, ecology and evolution [4]. Phenological stages responding to environmental factors provide a consistent ecological biometric identification of climate change [5]. The aim of this research was to develop a linear regression analysis models to analyse relationship between leaf area and leaf dimension (length x width) for various tropical plant species. These linear regression analysis models are able to be used for plant leaf area estimation.

2. Materials and Methods
A total of twenty plant species were selected at Miri, Sarawak, Malaysia. The leaf shape and plant growing environment were investigated as background data. The plant growing environment recorded were location, soil pH and growing sunlight condition.

2.1. Plant species
The selected plant species were adult plant with 90% fully expanded leaves which are healthy and active in photosynthesis. The scientific name of selected plant species are listed in Table 1. For each plant species, total of thirty (30) leaves collected were in the different sizes ranging from the smallest to the biggest. The leaf shapes collected were linear, elliptic, acuminate, obtuse, lobed, peltate, lanceolate, aristate (Table 1).

No	Plant species	Leaf shape	Soil pH	Growing environment
1	Annona muricate	Elliptic	6.7	Near to the small drainage, whole-day sunlight exposure
2	Arbutus menziesii	Elliptic	5.9	Roadside, whole-day sunlight exposure
3	Artocarpus integer	Elliptic	6.5	Roadside, whole-day sunlight exposure
4	Bougainvillea glabra	Acuminate	7.3	Down-slope area, expose to sunlight during afternoon time only
5	Cassia fistula	Aristate	6.3	Flat ground, whole-day sunlight exposure
6	Citrus limon	Elliptic	6.8	Flat ground, whole-day sunlight exposure
7	Duranta erecta	Aristate	5.3	Compete with other same species, under shaded area with less sunlight exposure
8	Excoecaria cochinchinensis	Elliptic	7.0	Compete with other same species, under shaded area with less sunlight exposure
9	Gardenia jasminoides	Elliptic	5.5	Compete with other same species, whole-day sunlight exposure
10	Hibiscus rosa-sinensis	Aristate	7.2	Shaded area with less sunlight exposure
11	Hypoestes phyllostachya	Obtuse	5.3	Compete with other same species, under shaded area with less sunlight exposure
12	Jatropha integerrima	Lobed	6.9	Roadside, whole-day sunlight exposure
13	Lantana camara	Obtuse	6.0	Compete with other same species under shaded area with less sunlight exposure
14	Mangifera indica	Linear	6.4	Roadside, whole-day sunlight exposure
15	Nephelium lappaceum	Obtuse	7.0	Compete with other same species, under shaded area with less sunlight exposure
16	Photinia fraseri	Elliptic	6.6	Sunlight exposure during afternoon time only
2.2. Growing environment
A pH meter was used to measure soil pH for each plant species by digging up 2 – 3 inches hole into the soil. The hole was filled with rain water to create a pool for pH measurement. The soil pH ranged between 4.8 and 7.3 (Table 1). The location and sunlight condition were observed for the plant which the leaves were collected. The sunlight condition of sampling areas were shaded, less exposure or whole-day exposure as shown in Table 1.

2.3. Leaf dimension
Leaf length and width were measured using a ruler for every single leaf. The leaf length was measured from leaf apex until the leaf edge connecting to petiole. The leaf width was measured from left to right for its wide margin. The leaf dimension was obtained by multiplying leaf length and leaf width (LW).

2.4. Linear regression
The ImageJ software was used to analyse the leaf image captured for adaxial and abaxial surfaces to measure actual leaf area. From the data obtained or the leaf area and leaf dimension, the relation between leaf area and leaf dimension was plotted to get the best fit line of a linear regression. A coefficient of determination (R^2) was identified to indicate the estimation of leaf area via leaf dimension related to the actual leaf area.

3. Results and Discussion
A regression equation for each plant species was established with coefficient of determination (R^2) of 0.9 (Table 2). It showed that the linear regression models with leaf dimension (LW) is accurate to be used for leaf area estimation for all the selected tropical plant species in this experiment. If R^2 closes to 1.0, it indicated a more accurate leaf area estimation [6]. Among all the plant species, *Arbutus menziesii*, *Cassia fistula* and *Viburnum suspensum* (Figure 1) were the plant species indicating the highest R^2. The leaves of both *Arbutus menziesii* and *Viburnum suspensum* were in elliptic shape. The leaf of *Cassia fistula* was in aristate shape. *Jatropha integerrima* which the leaf was in lobed shape showed the lowest R^2, 0.9436. The plant species were under different growing environment such as various soil pH and sunlight condition, however, they could perform in a strong relation in the linear regression [7, 8].

Table 2. Linear regression relation between actual leaf area (A) and leaf dimension (LW).

No	Plant species	Regression equation	Coefficient of determination, R^2
1	*Annona muricate*	A = 0.7181 LW + 1.4882	0.9869
2	*Arbutus menziesii*	A = 0.6502 LW + 0.3589	0.9952
3	*Artocarpus integer*	A = 0.7211 LW - 2.126	0.9942
4	*Bougainvillea glabra*	A = 0.636 LW - 0.7235	0.9925
5	*Cassia fistula*	A = 0.7341 LW + 0.4823	0.9945
6	*Citrus limon*	A = 0.7642 LW + 0.0628	0.9902
Plant Name	Equation	R²	
----------------------------	---------------------------------------	-------	
7 Duranta erecta	A = 0.6107 LW + 0.2933	0.9687	
8 Excoecaria cochinensis	A = 0.7135 LW - 0.4776	0.9941	
9 Gardenia jasminoides	A = 0.6142 LW + 0.7824	0.9864	
10 Hibiscus rosa-sinensis	A = 0.6776 LW - 1.2945	0.9867	
11 Hypoestes phyllostachya	A = 0.6342 LW + 0.6808	0.9769	
12 Jatropha integerrima	A = 0.5115 LW + 3.0722	0.9436	
13 Lantana camara	A = 0.6485 LW + 0.0771	0.9829	
14 Mangifera indica	A = 0.9528 LW - 11.78	0.9922	
15 Nephelium lappaceum	A = 0.6177 LW + 0.1912	0.9937	
16 Photinia fraseri	A = 0.7545 LW - 0.7981	0.9828	
17 Plectranthus verticillatus	A = 0.973 LW - 1.1596	0.9932	
18 Psidium guajava	A = 0.6873 LW + 1.2865	0.9871	
19 Viburnum suspensum	A = 0.6971 LW - 0.192	0.9948	
20 Xanthostemon sp.	A = 0.6107 LW + 0.9614	0.9737	

Figure 1. Relationship between leaf area (A) and leaf dimension (LW) for (a) *Arbutus menziesii*, (b) *Cassia fistula* and (c) *Viburnum suspensum*.

4. Conclusion

The equation derived can be used to estimate the actual leaf area of the plant. The best correlation in linear regression derived between actual leaf area with the leaf dimension (length x width) is applicable for all different plant species [9, 10]. The linear regression analysis model that using LW as independent variable is suitable for all species at any growing environment [11, 12]. Among all the leaf shapes, the elliptic leaf shape plant was more prone to develop a high efficient linear regression analysis model. Lobed leaf shape plant was observed to create a less accurate leaf area estimation models.

References

[1] Niinemets U 2010 A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance *Ecological Research* 25 693

[2] Kandiannan et al 2002 Allometric model for leaf area estimation in black pepper (*Piper nigrum* L.) *Journal Agronomy & Crop Science* 188 138

[3] Rouphael et al 2007 Leaf area estimation of sunflower leaves from simple linear measurements *Photosynthetica* 45 306
[4] Scheifinger et al 2002 Atmospheric mechanisms governing the spatial and temporal variability of phenological observations in Central Europe International Journal of Climatology 22 1739

[5] Ianovici N 2012 Researches on anatomical adaptations of the alpine plants - Plantago atrata Annals of West University of Timișoara, Biology 15 1

[6] Rouphael et al 2007 Leaf area estimation of sunflower leaves from simple linear measurements Photosynthetica 45 306

[7] Bianco et al 2008 Estimation of the leaf area of Sida cordifolia and Sida rhombifolia using linear dimensions of the leaf blade Planta Daninha 26 807

[8] Brito-Rocha et al 2016 Regression models for estimating leaf area of seedlings and adult invididuals of Neotropical rainforest tree species Brazilian Journal of Biology 76 983

[9] Leroy et al 2006 Practical methods for non-destructive measurement of tree leaf area Agroforestry system 71 2

[10] Souza M C and Habermann G 2014 Non-destructive equations to estimate the leaf area of Styrax pholii and Styrax ferrugineus Brazilian Journal of Biology 74 1

[11] Antunes et al 2008 Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora) Annals of Applied Biology 153 33

[12] Zhang L and Pan L 2011 Allometric models for leaf area estimation across different leaf-age groups of evergreen boardleaved trees in a subtropical forest Photosynthetica 49 219