A further multiplicity result for Lagrangian systems of relativistic oscillators

BIAGIO RICCERI

Dedicated to Professor Adrian Petruşel on his 60th birthday

Abstract. This is our third paper, after [4] and [5], about a joint application of the theory developed by Brezis and Mawhin in [1] with our minimax theorems ([2], [3]) to get multiple solutions of problems of the type

\[
\begin{aligned}
(\phi(u'))' &= \nabla_x F(t,u) & \text{in } [0,T] \\
u(0) &= u(T), \ u'(0) = u'(T)
\end{aligned}
\]

which are global minima of a suitable functional over a set of Lipschitzian functions. A challenging conjecture is also formulated.

Key words: periodic solution; Lagrangian system of relativistic oscillators; minimax; multiplicity; global minimum; non-convex range.

2010 Mathematics Subject Classification: 34A34; 34C25; 49J35; 49J40.

1. Introduction

In what follows, \(L, T\) are two fixed positive numbers. For each \(r > 0\), we set \(B_r = \{x \in \mathbb{R}^n : |x| < r\}\) (\(\cdot, \cdot\) being the Euclidean norm on \(\mathbb{R}^n\)) and \(\overline{B}_r\) is the closure of \(B_r\). The scalar product on \(\mathbb{R}^n\) is denoted by \((\cdot, \cdot)\).

We denote by \(A\) the family of all homeomorphisms \(\phi\) from \(B_L\) onto \(\mathbb{R}^n\) such that \(\phi(0) = 0\) and \(\phi = \nabla \Phi\), where the function \(\Phi : \overline{B}_L \to]-\infty, 0]\) is continuous and strictly convex in \(\overline{B}_L\), and of class \(C^1\) in \(B_L\). Notice that \(0\) is the unique global minimum of \(\Phi\) in \(B_L\).

We denote by \(B\) the family of all functions \(F : [0,T] \times \mathbb{R}^n \to \mathbb{R}\) which are measurable in \([0,T]\), of class \(C^1\) in \(\mathbb{R}^n\) and such that \(\nabla_x F\) is measurable in \([0,T]\) and, for each \(r > 0\), one has \(\sup_{x \in B_r} |\nabla_x F(\cdot,x)| \in L^1([0,T])\), with \(F(\cdot,0) \in L^1([0,T])\). Clearly, \(B\) is a linear subspace of \(\mathbb{R}^{[0,T] \times \mathbb{R}^n}\).

Given \(\phi \in A\) and \(F \in B\), we consider the problem

\[
\begin{aligned}
(\phi(u'))' &= \nabla_x F(t,u) & \text{in } [0,T] \\
u(0) &= u(T), \ u'(0) = u'(T)
\end{aligned}
\]

\((P_{\phi,F})\)

A solution of this problem is any function \(u : [0,T] \to \mathbb{R}^n\) of class \(C^1\), with \(u'([0,T]) \subset B_L\), \(u(0) = u(T), u'(0) = u'(T)\), such that the composite function \(\phi \circ u'\) is absolutely continuous in \([0,T]\) and one has \((\phi \circ u')'(t) = \nabla_x F(t,u(t))\) for a.e. \(t \in [0,T]\).

Now, we set \(K = \{u \in \text{Lip}([0,T],\mathbb{R}^n) : |u'(t)| \leq L \ for \ a.e. \ t \in [0,T], u(0) = u(T)\}\), \(\text{Lip}([0,T],\mathbb{R}^n)\) being the space of all Lipschitzian functions from \([0,T]\) into \(\mathbb{R}^n\).

Clearly, one has

\[
\sup_{[0,T]} |u| \leq LT + \inf_{[0,T]} |u| \quad (1.1)
\]

for all \(u \in K\).
Next, consider the functional $I : K \rightarrow \mathbb{R}$ defined by

$$I(u) = \int_0^T (\Phi(u'(t)) + F(t, u(t)))dt$$

for all $u \in K$.

In [1], Brezis and Mawhin proved the following result:

THEOREM 1.1 ([1], Theorem 5.2). - *Any global minimum of I in K is a solution of problem $(P_{\phi, F})$.*

On the other hand, very recently, in [6], we established the following:

THEOREM 1.2 ([6], Theorem 2.2). - *Let X be a topological space, let E be a real normed space, let $I : X \rightarrow \mathbb{R}$, let $\psi : X \rightarrow E$ and let $S \subseteq \text{conv}$ be a convex set weakly-star dense in E^*. Assume that $\psi(X)$ is not convex and that $I + \eta \circ \psi$ is lower semicontinuous and inf-compact for all $\eta \in S$.

Then, there exists $\tilde{\eta} \in S$ such that the function $I + \tilde{\eta} \circ \psi$ has at least two global minima in X.

The aim of this paper is to establish a new multiplicity result for the solutions of problem $(P_{\phi, F})$ as a joint application of Theorems 1.1 and 1.2.

Notice that [4] and [5] are the only previous papers on multiple solutions for problem $(P_{\phi, F})$ which are global minima of I in K.

2. The result

Here is our result:

THEOREM 2.1. - Let $\phi \in \mathcal{A}$, $F, G \in \mathcal{B}$ and $H \in C^1(\mathbb{R}^n)$. Assume that:

(a) there exists $q > 0$ such that

$$\lim_{|x| \rightarrow +\infty} \frac{\inf_{t \in [0, T]} F(t, x)}{|x|^q} = +\infty$$

and

$$\lim_{|x| \rightarrow +\infty} \frac{\sup_{t \in [0, T]} |G(t, x)| + |H(x)|}{|x|^q} < +\infty;$$

(b) there are $\gamma \in \{\inf_{R^n}, H, \sup_{R^n}, H\}$, with $H^{-1}(\gamma)$ at most countable, and $v, w \in H^{-1}(\gamma)$ such that

$$\int_0^T G(t, v)dt \neq \int_0^T G(t, w)dt.$$

Then, for each $\alpha \in L^\infty([0, T])$ having a constant sign and with $\text{meas}(\alpha^{-1}(0)) = 0$, there exists $(\lambda, \mu) \in \mathbb{R}^2$ such that the problem

$$\begin{cases}
(\phi(u'))' = \nabla_x \left(F(t, u) + \lambda G(t, u) + \mu \alpha(t) H(u) \right) & \text{in } [0, T] \\
u(0) = u(T), \quad u'(0) = u'(T)
\end{cases}$$

has at least two solutions which are global minima in K of the functional

$$u \rightarrow \int_0^T (\Phi(u'(t)) + F(t, u(t)) + \lambda G(t, u(t)) + \mu \alpha(t) H(u(t)))dt.$$

PROOF. Fix $\alpha \in L^\infty([0, T])$ having a constant sign and with $\text{meas}(\alpha^{-1}(0)) = 0$. Let $C^0([0, T], \mathbb{R}^n)$ be the space of all continuous functions from $[0, T]$ into \mathbb{R}^n, with the norm $\sup_{[0, T]} |u|$. We are going to apply Theorem 1.2 taking $X = K$, regarded as a subset of $C^0([0, T], \mathbb{R}^n)$ with the relative topology, $E = \mathbb{R}^2$ and $I : K \rightarrow \mathbb{R}$, $\psi : K \rightarrow \mathbb{R}^2$ defined by

$$I(u) = \int_0^T (\Phi(u'(t)) + F(t, u(t)))dt.$$
\[
\psi(u) = \left(\int_0^T G(t, u(t)) dt, \int_0^T \alpha(t) H(u(t)) dt \right)
\]

for all \(u \in K \). Fix \((\lambda, \mu) \in \mathbb{R}^2\). By Lemma 4.1 of [1], the function \(I(\cdot) + \langle \psi(\cdot), (\lambda, \mu) \rangle \) is lower semicontinuous in \(K \). Let us show that it is inf-compact too. First, observe that if \(P \in \mathcal{B} \) then, for each \(r > 0 \), there is \(M \in L^1([0, T]) \) such that

\[
\sup_{x \in B_r} |P(t, x)| \leq M(t)
\]

for all \(t \in [0, T] \). Indeed, by the mean value theorem, we have

\[
P(t, x) - P(t, 0) = \langle \nabla_x P(t, \xi), x \rangle
\]

for some \(\xi \) in the segment joining \(0 \) and \(x \). Consequently, for all \(t \in [0, T] \) and \(x \in B_r \), by the Cauchy-Schwarz inequality, we clearly have

\[
|P(t, x)| \leq r \sup_{y \in B_r} |\nabla_x P(t, y)| + |P(t, 0)|.
\]

So, to get (2.1), we can choose \(M(t) := r \sup_{y \in B_r} |\nabla_x P(t, y)| + |P(t, 0)| \) which is in \(L^1([0, T]) \) since \(P \in \mathcal{B} \).

Now, by \((a_1)\), we can fix \(c_1, \delta > 0 \) so that

\[
|G(t, x)| + |H(x)| \leq c_1|x|^q
\]

for all \((t, x) \in [0, T] \times (\mathbb{R}^n \setminus B_\delta)\). Then, set

\[
c_2 := c_1 \max \{ |\lambda|, |\mu||\alpha| \}_{L^\infty(0,T)} \}
\]

and, by \((a_1)\) again, fix \(c_3 > c_2 \) and \(\delta_1 > \delta \) so that

\[
F(t, x) \geq c_3|x|^q
\]

for all \((t, x) \in [0, T] \times (\mathbb{R}^n \setminus B_{\delta_1})\). On the other hand, for what remarked above, there is \(M \in L^1([0, T]) \) such that

\[
\sup_{x \in B_{\delta_1}} (|F(t, x)| + |\lambda G(t, x)| + |\mu \alpha(t) H(x)|) \leq M(t)
\]

for all \(t \in [0, T] \). Therefore, from (2.2), (2.3) and (2.4), we infer that

\[
F(t, x) \geq c_3|x|^q - M(t)
\]

and

\[
|\lambda G(t, x)| + |\mu \alpha(t) H(x)| \leq c_2|x|^q + M(t)
\]

for all \((t, x) \in [0, T] \times \mathbb{R}^n\). Set

\[
b := T\Phi(0) - 2 \int_0^T M(t)dt.
\]

For each \(u \in K \), with \(\sup_{[0,T]} |u| \geq LT \), taking (1.1), (2.5) and (2.6) into account, we have

\[
I(u) + \langle \psi(u), (\lambda, \mu) \rangle \geq T\Phi(0) + \int_0^T F(t, u(t)) dt - \int_0^T |\lambda G(t, u(t))| dt - \int_0^T |\mu \alpha(t) H(u(t))| dt
\]

\[
\geq T\Phi(0) + c_3 \int_0^T |u(t)|^q dt - \int_0^T M(t)dt - c_2 \int_0^T |u(t)|^q dt - \int_0^T M(t)dt
\]

\[
\geq (c_3 - c_2) T \inf_{[0,T]} |u|^q - b \geq (c_3 - c_2) T \left(\sup_{[0,T]} |u| - LT \right)^q + b.
\]
Consequently
\[
\sup_{[0,T]} |u| \leq \left(\frac{I(u) + \langle \psi(u), (\lambda, \mu) \rangle - b}{(c_3 - c_2)T} \right)^\frac{1}{p} + LT. \tag{2.7}
\]

Fix \(\rho \in \mathbb{R} \). By (2.7), the set
\[
C_\rho := \{ u \in K : I(u) + \langle \psi(u), (\lambda, \mu) \rangle \leq \rho \}
\]
turns out to be bounded. Moreover, the functions belonging to \(C_\rho \) are equi-continuous since they lie in \(K \). As a consequence, by the Ascoli-Arzelà theorem, \(C_\rho \) is relatively compact in \(C^0([0,T], \mathbb{R}^n) \). By lower semicontinuity, \(C_\rho \) is closed in \(K \). But \(K \) is closed in \(C^0([0,T], \mathbb{R}^n) \) and hence \(C_\rho \) is compact. The inf-compactness of \(I(\cdot) + \langle \psi(\cdot), (\lambda, \mu) \rangle \) is so shown. Now, we are going to prove that the set \(\psi(K) \) is not convex. By \((a_2), \) the set \(\{ \int_0^T G(t,x)dt : x \in H^{-1}(\gamma) \} \) is at most countable since \(H^{-1}(\gamma) \) is so. Hence, since \(\int_0^T G(t,v)dt \neq \int_0^T G(t,w)dt \), we can fix \(\lambda \in]0,1[\) so that
\[
\int_0^T G(t,x)dt \neq \int_0^T G(t,w)dt + \lambda \left(\int_0^T G(t,v)dt - \int_0^T G(t,w)dt \right) \tag{2.8}
\]
for all \(x \in H^{-1}(\gamma) \). Since \(K \) contains the constant functions, the points
\[
\left(\int_0^T G(t,v)dt, \gamma \int_0^T \alpha(t)dt \right)
\]
and
\[
\left(\int_0^T G(t,w)dt, \gamma \int_0^T \alpha(t)dt \right)
\]
belong to \(\psi(K) \). So, to show that \(\psi(K) \) is not convex, it is enough to check that the point
\[
\left(\int_0^T G(t,w)dt + \lambda \left(\int_0^T G(t,v)dt - \int_0^T G(t,w)dt \right), \gamma \int_0^T \alpha(t)dt \right)
\]
does not belong to \(\psi(K) \). Arguing by contradiction, suppose that there exists \(u \in K \) such that
\[
\int_0^T G(t,u(t))dt = \int_0^T G(t,w)dt + \lambda \left(\int_0^T G(t,v)dt - \int_0^T G(t,w)dt \right), \tag{2.9}
\]
\[
\int_0^T \alpha(t)H(u(t))dt = \gamma \int_0^T \alpha(t)dt. \tag{2.10}
\]
Since the functions \(\alpha \) and \(H \circ u - \gamma \) do not change sign, (2.10) implies that \(\alpha(t)(H(u(t)) - \gamma) = 0 \ a.e. \ in [0,T] \). Consequently, since \(\text{meas}(\alpha^{-1}(0)) = 0 \), we have \(H(u(t)) = \gamma \ a.e. \ in [0,T] \) and hence \(H(u(t)) = \gamma \) for all \(t \in [0,T] \) since \(H \circ u \) is continuous. In other words, the connected set \(u([0,T]) \) is contained in \(H^{-1}(\gamma) \) which is at most countable. This implies that the function \(u \) must be constant and so (2.9) contradicts (2.8). Therefore, \(I \) and \(\psi \) satisfy the assumptions of Theorem 1.2 and hence there exists \((\hat{\lambda}, \hat{\mu}) \in \mathbb{R}^2 \) such that the function \(I(\cdot) + \langle \psi(\cdot), (\hat{\lambda}, \hat{\mu}) \rangle \) has at least two global minima in \(K \). Thanks to Theorem 1.1, they are solutions of Problem (P), and the proof is complete. \(\triangle \)

REMARK 1. Of course, \((a_2)\) is the leading assumption of Theorem 2.1. The request that \(H^{-1}(\gamma) \) must be at most countable cannot be removed. Indeed, if we remove such a request, we could take \(H = 0 \), \(G(t,x) = \langle x, \omega \rangle \), with \(\omega \in \mathbb{R}^n \setminus \{0\} \) and \(F(t,x) = \frac{2}{p}|x|^p \), with \(p > 1 \). Now, observe that, by Proposition 3.2 of [1], for all \(\lambda \in \mathbb{R} \), the problem

\[
\begin{cases}
(\phi(u'))' = |u|^{p-2}u + \lambda\omega & \text{in } [0,T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}
\]
has a unique solution. To the contrary, the question of whether the condition $\int_0^T G(t, v) dt \neq \int_0^T G(t, w) dt$ (keeping $v \neq w$) can be dropped remains open at present. We feel, however, that it cannot be removed. In this connection, we propose the following

CONJECTURE 2.1. - There exist $\phi \in A$, $F \in B$, $H \in C^1(\mathbb{R}^n)$, $\alpha \in L^\infty([0, T])$, with $\alpha \geq 0$ and $\text{meas}(\alpha^{-1}(0)) = 0$, and $q > 0$ for which the following assertions hold:

(b1) \[\lim_{|x| \to +\infty} \inf_{t \in [0, T]} \frac{F(t, x)}{|x|^q} = +\infty \]

and

(b2) the function H has exactly two global minima;

(b3) for each $\mu \in \mathbb{R}$, the functional

\[u \to \int_0^T (\Phi(u'(t)) + F(t, u(t)) + \mu \alpha(t)H(u(t))) dt \]

has a unique global minimum in K.

Acknowledgement. The author has been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, PIACERI 2020-2022, Linea di intervento 2, Progetto MAFANE.
References

[1] H. BREZIS and J. MAWHIN, Periodic solutions of Lagrangian systems of relativistic oscillators, Commun. Appl. Anal., 15 (2011), 235-250.

[2] B. RICCERI, Well-posedness of constrained minimization problems via saddle-points, J. Global Optim., 40 (2008), 389-397.

[3] B. RICCERI, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2 (2017), 99-152.

[4] B. RICCERI, Multiple periodic solutions of Lagrangian systems of relativistic oscillators, in “Current Research in Nonlinear Analysis - In Honor of Haim Brezis and Louis Nirenberg”, Th. M. Rassias ed., 249-258, Springer, 2018.

[5] B. RICCERI, Another multiplicity result for the periodic solutions of certain systems, Linear Nonlinear Anal., 5 (2019), 371-378.

[6] B. RICCERI, Multiplicity theorems involving functions with non-convex range, submitted to Stud. Univ. Babeş-Bolyai Math.

Department of Mathematics and Informatics
University of Catania
Viale A. Doria 6
95125 Catania, Italy

e-mail address: ricceri@dm.unict.it