NONLINEAR DIFFERENTIAL EQUATIONS IN ABSTRACT BANACH SUBSPACE OF $BC(\mathbb{R})$.

MOHAMMED BACHIR*, HAIFA BEN FREDJ†

Abstract. We prove results of existence of a solution (resp. existence and uniqueness of a solution) for nonlinear differential equations of type $x'(t) + G(x, t)x(t) = F(x, t)$, in an abstract Banach subspace X of the space of bounded real-valued continuous functions, satisfying some general and natural property. In our work, the functions F and G jointly depend on the variables $(x, t) \in X \times \mathbb{R}$. Several examples will be given, in various function spaces, to illustrate our results. The vector-valued framework is also considered.

2010 Mathematics Subject Classification: 34G20, 34D23, 47H10.

Keyword, phrase: Nonlinear differential equations, Global attractivity, Periodic and pseudo almost periodic functions, Schauder and Banach-Picard fixed point theorems, Spaces of real and vector-valued continuous functions.

1. Introduction

Let X be a Banach subspace of the Banach space $(BC(\mathbb{R}), \| \cdot \|_{\infty})$ of all real-valued bounded continuous functions equipped with the sup-norm and let $F, G : X \to X$ be two functions. The goal of this paper is to give existence of solutions $x \in X$ (under some conditions on the space X and the functions F and G) to the first order differential equations of type:

$$(E) \quad x'(t) + G(x, t)x(t) = F(x, t), \quad \forall t \in \mathbb{R}$$

where, $F(x, t) := F(x)(t)$ and the same for G. We prove in our main result (Theorem 1) an existence result by using the Schauder’s fixed point theorem and another result of existence and uniqueness by using the Banac'h-Picard theorem. Our formalism encompasses several examples of spaces X of $BC(\mathbb{R})$ in particular the space $PAP(\mathbb{R})$ of all pseudo almost periodic functions (we will give the precise definition in Section 2.2) which has attracted the interest of many authors in recent years. For references in this area, we refer for example to the non-exhaustive list of works [1, 2, 4, 8, 9, 10, 11, 12, 13]. Our contributions in this paper are axed in the following directions:

— The equations treated in the litterature in the $PAP(\mathbb{R})$ space (see for instance the above references), are of the the form $x'(t) + a(t)x(t) = H(x(t), t)$,
where a is a function depending only on t and H is a function defined on $\mathbb{R} \times \mathbb{R}$. In other words, the map $x \mapsto a(\cdot)x$ is a linear operator. In our results, we deal with operators not necessarily linear, that is, we replace $a(t)$ with a more general function $G(x, t)$ depending on both x and t. Moreover, the function H is also replaced by a more general function depending on x and t. For example for any $\alpha, \beta \in L^1(\mathbb{R})$ such that $0 < \|\alpha\|_1 \leq 1$ (where $\|x\|_1 = \int_{-\infty}^{+\infty} |x(s)| ds$ and $x \ast \alpha(t) = \int_{-\infty}^{+\infty} x(s)\alpha(s-t) ds$ denotes the convolution of x and α), the pseudo almost periodic functions

\[
F(x, t) = \frac{1}{3}(\sin(t) + \sin(\sqrt{2}t) + (1 + t^2)^{-1}x \ast \alpha(t))
\]

\[
G(x, t) = 3 + \sin(2t) + (1 + t^2)^{-1}\cos(x \ast \beta(t)),
\]

can not be written in the form $H(x(t), t)$ for some function H defined on $\mathbb{R} \times \mathbb{R}$. However, with these functions, our results apply and give at least one pseudo almost periodique solution to the equation (E) (see examples in Section 2.2 for details).

Our approach unifies several spaces of functions. We deal with abstract Banach subspace X of $BC(\mathbb{R})$ including some classical spaces as the space of all continuous w-periodic functions, the space of all almost periodic functions or the space all pseudo almost periodic functions (see Proposition 1). Thus, depending on the type of functions F and G, the solutions will exist in the adequate corresponding type of space (see examples in Section 2.2). It is the interest of working in an abstract subspace X of $BC(\mathbb{R})$ satisfying a natural condition that we call (H_0) in this paper. Moreover, our result hold also for Banach subspaces X of vector-valued functions, that is, Banach spaces of functions from \mathbb{R} into a Banach space E of finite dimension.

This paper is organized as follows. In section 2, we give our first main result of existence of solutions of the equation (E) under some general hypothesis (Theorem 1) and we will then give several examples to illustrate this result. In Section 3 we give our second main theorem consisting on the attractivity of solutions (Theorem 2). Finally, in Section 4, we will discuss the case of vector valued function spaces.

2. The main result

Let X be a Banach subspace of $BC(\mathbb{R})$. The set $B_X(0, r)$ denotes the closed ball of X centred at 0 with radius $r > 0$. For each $l, r > 0$, we define the following closed convex subsets of X:

\[
B_{[l, r]} := \{x \in X : x(t) \in [l, r], \forall t \in \mathbb{R}\},
\]

\[
X_{[l, +\infty]} := \{x \in X : x(t) \in [l, +\infty], \forall t \in \mathbb{R}\},
\]
We need to introduce, the following well defined operator for each $l > 0$ (see Lemma 2):

$$T : BC(\mathbb{R}) \times BC(\mathbb{R})_{[t, +\infty[} \rightarrow BC(\mathbb{R})$$

$$(f, g) \mapsto [t \mapsto \int_{-\infty}^t e^{-s} g(s) du f(s) ds],$$

It is classical and easy to see that for every $(f, g) \in BC(\mathbb{R}) \times BC(\mathbb{R})_{[t, +\infty[}$, the function $T(f, g)$ is differentiable and satisfies:

$$(1) \quad T(f, g)'(t) = -g(t)T(f, g)(t) + f(t), \quad \forall t \in \mathbb{R}.$$

We consider the following conditions $(H_0), (H_1)$ and (\tilde{H}_1):

(H_0) the subspace X is invariant under T in the sense that for each $l > 0$,

$$T(X \times X_{[t, +\infty[}) \subset X.$$

The property (H_0) is satisfied by several classical Banach subspaces of $BC(\mathbb{R})$, see examples in Section 2.2.

(H_1) The functions $F, G : (X, \| \cdot \|_{\infty}) \rightarrow (X, \| \cdot \|_{\infty})$ are continuous and satisfies:

- $\inf_{x \in X, t \in \mathbb{R}} G(x, t) > 0$ and there exists $k, M \in \mathbb{R}$ such that F and G are bounded on $B_{[k, M]}$ and that $k \leq \frac{F(x, t)}{G(x, t)} \leq M$ for all $(x, t) \in B_{[k, M]} \times \mathbb{R}$.

- for every sequence $(x_n) \subset X$, if (x_n) converges on each compact of X in $BC(\mathbb{R})$, then $(F(x_n))$ and $(G(x_n))$ are relatively compact in $(X, \| \cdot \|_{\infty})$.

Notice that if we assume that F and G are bounded on the whole space X and $\inf_{x \in X, t \in \mathbb{R}} G(x, t) > 0$, then we can take in the hypothesis (H_1)

$$k := \inf_{(x, t) \in X \times \mathbb{R}} \frac{F(x, t)}{G(x, t)} \quad \text{and} \quad M := \sup_{(x, t) \in X \times \mathbb{R}} \frac{F(x, t)}{G(x, t)}.$$

Notice also that the second point of (H_1) is crucial and ensures that the Schauder fixed point theorem applies. This condition is automatically satisfied in the subspace $X = C_w(\mathbb{R})$ of all w-periodic continuous functions since in this case the uniform convergence on each compact of \mathbb{R} is equivalent to the uniform convergence on \mathbb{R}. It is also satisfied on other spaces, in general and various situations (see Section 2.2 for some examples) and has already been used in the literature (see for instance the condition (H_3) in [9] and the condition $(E5)$, page 248 in [7]).

(\tilde{H}_1) The functions $F, G : (X, \| \cdot \|_{\infty}) \rightarrow (X, \| \cdot \|_{\infty})$ are Lipschitz,

$$l := \inf_{x \in X, t \in \mathbb{R}} G(x, t) > 0,$$

and there exists $k, M \in \mathbb{R}$ such that, $k \leq \frac{F(x, t)}{G(x, t)} \leq M$ for all $(x, t) \in B_{[k, M]} \times \mathbb{R}$,

$$r := \sup_{x \in B_{[k, M]}} \| F(x) \|_{\infty} < +\infty.$$
and
\[
\max\left(\frac{r}{l}, \frac{1}{l}\right)(L_F + L_G) < 1,
\]
where L_F and L_G denotes the constant of Lipschitz of F and G respectively.

The hypothesis (H_1) and (\tilde{H}_1) are easily satisfied by several examples (see the examples in Section 2.2).

Notice that the set $B_{[k,M]}$ is a closed convex subset of X.

Theorem 1. Under the hypothesis (H_0) and (H_1) (resp. (\tilde{H}_0) and (\tilde{H}_1)), the equation (E) has at least one solution x^* in $B_{[k,M]}$ (resp. has a unique solution x^* in $B_{[k,M]}$), where k and M are given by the hypothesis (H_1).

The proof of the above theorem will be given in the following section.

Remark 1. If moreover the function F is assumed to be a positive function, then we have that $k \geq 0$ and in this cases there exists at last one positive solution $x^* \in X$.

Remark 2. Theorem 1 is also true under the same hypothesis for the following equation (replacing G by $-G$):
\[
(E) \quad x'(t) - G(x,t)x(t) = F(x,t), \quad t \in \mathbb{R}.
\]
To see this, just follow the same proof of Theorem 1 using the operator \tilde{T} instead of T, where:
\[
\tilde{T} : BC(\mathbb{R}) \times BC([t, +\infty[) \rightarrow BC(\mathbb{R})
\]
\[
(f, g) \mapsto \left[t \mapsto \int_t^{+\infty} e^{\int_s^t g(u)du} f(s)ds \right],
\]
and the operator $\tilde{\Gamma}(x) := \tilde{T}(G(x), -F(x))$ for all $x \in X$, instead of Γ in Lemma 3.

2.1. **The proof of Theorem 1.** In order to prove Theorem 1 we need some intermediate results, the proof will be given at the end of this section. Let us start with the following general lemmas.

Lemma 1. Let $g \in BC(\mathbb{R})$ such that $\inf_{t \in \mathbb{R}} g(t) > 0$. Then, we have that
\[
\int_{-\infty}^t g(s)e^{-\int_s^t g(u)du} ds = 1.
\]

Proof. Since $\inf_{t \in \mathbb{R}} g(t) > 0$, then clearly we have that
\[
\int_{-\infty}^t g(u)du = +\infty.
\]
It follows that
\[
\int_{-\infty}^{t} g(s)e^{-\int_{s}^{t} g(u)du} ds = \int_{-\infty}^{t} g(s)e^{\int_{s}^{t} g(u)du} ds = \left[e^{\int_{s}^{t} g(u)du}\right]_{-\infty}^{t} = 1 - e^{-\int_{-\infty}^{t} g(u)du} = 1.
\]

Lemma 2. Let \(l, r, r' > 0\) be a strictly positive real numbers. Then, the following assertions hold.

(i) For every \((f, g) \in BC(\mathbb{R}) \times BC([l, +\infty]),\) the function \(T(f, g)\) is Lipschitz on \(\mathbb{R}\) with a constant of Lipschitz less than \(\|f\|_{\infty}(\frac{r}{l} + 1)\). Consequently, the family \(\mathcal{F} := \{T(f, g) : (f, g) \in B_{BC(\mathbb{R})}(0, r) \times BC([l, r'])\}\) is uniformly equi-continuous on \(\mathbb{R}\).

(ii) The operator \(T\) is Lipschitz on \(B_{BC(\mathbb{R})}(0, r) \times BC([l, +\infty]),\) that is, for every \((f_{1}, g_{1}), (f_{2}, g_{2}) \in B_{BC(\mathbb{R})}(0, r) \times BC([l, +\infty]),\) we have that
\[
\|T(f_{1}, g_{1}) - T(f_{2}, g_{2})\|_{\infty} \leq \max\left(\frac{r}{l}, 1\right)(\|g_{1} - g_{2}\|_{\infty} + \|f_{1} - f_{2}\|_{\infty}).
\]

Proof. (i) Let us prove that \(T(f, g)\) is Lipschitz on \(\mathbb{R}\). First, it is easy to see that since \(\inf_{t \in \mathbb{R}} g(t) \geq l,\) then
\[
\|T(f, g)\|_{\infty} \leq \frac{\|f\|_{\infty}}{l}.
\]
On the other hand, from the formula (1), we have that for every \((f, g) \in BC(\mathbb{R}) \times BC([l, +\infty]):\)
\[
T(f, g)'(t) = -g(t)T(f, g)(t) + f(t), \quad \forall t \in \mathbb{R}.
\]
Thus, we have that
\[
\|T(f, g)\|_{\infty} \leq \|g\|_{\infty}\|T(f, g)\|_{\infty} + \|f\|_{\infty} \leq \|f\|_{\infty}(\|g\|_{\infty} + 1).
\]
Hence, by the mean value theorem, \(T(f, g)\) is Lipschitz with a constant of Lipschitz less that \(\|f\|_{\infty}(\|g\|_{\infty} + 1).\) It follows that the family \(\mathcal{F} := \{T(f, g) : (f, g) \in B_{BC(\mathbb{R})}(0, r) \times BC([l, r'])\}\) is uniformly equi-continuous on \(\mathbb{R}\).

(ii) First, recall that the function \(x \mapsto e^{x}\) is \(e^{b}\)-Lipschitz on any interval \([-\infty, b],\) by the mean value theorem. Let \(g_{1}, g_{2} \in BC([l, +\infty]).\) Since \(g_{1}, g_{2} \geq l,\) we have that \(-\int_{s}^{t} g_{1}(u)du \leq -l(t - s)\) and \(-\int_{s}^{t} g_{2}(u)du \leq -l(t - s),\) for every \(s \leq t.\) It follows from the fact that \(x \mapsto e^{x}\) is \(e^{-l(t-s)}\)-Lipschitz on the
intervalle \([-\infty, -l(t-s)]\) that,
\[
|e^{-\int_s^t g_1(u)du} - e^{-\int_s^t g_2(u)du}| \leq e^{-l(t-s)}|\int_s^t g_1(u)du - \int_s^t g_2(u)du|.
\]

Thus, for every \(t, s \in \mathbb{R}\) such that \(s \leq t\), we have that
\[
|e^{-\int_s^t g_1(u)du} - e^{-\int_s^t g_2(u)du}| \leq (t-s)e^{-l(t-s)}\|g_1 - g_2\|_\infty.
\]

Now, using the above inequality we have that
\[
|\int_{-\infty}^t e^{-\int_s^t g_1(u)du} f_1(s)ds - \int_{-\infty}^t e^{-\int_s^t g_2(u)du} f_2(s)ds| \leq \int_{-\infty}^t |e^{-\int_s^t g_1(u)du} - e^{-\int_s^t g_2(u)du}||f_1(s)||ds \\
+ \int_{-\infty}^t e^{-\int_s^t g_2(u)du}|f_1(s) - f_2(s)|ds \\
\leq r\|g_1 - g_2\|_\infty \int_{-\infty}^t (t-s)e^{-l(t-s)}ds \\
+ \|f_1 - f_2\|_\infty \int_{-\infty}^t e^{-l(t-s)}ds \\
= \frac{r}{l^2}\|g_1 - g_2\|_\infty + \frac{1}{t}\|f_1 - f_2\|_\infty.
\]

Thus,
\[
\|T(f_1, g_1) - T(f_1, g_1)\|_\infty \leq \max\left(\frac{r}{l^2}, \frac{1}{t}\right)(\|f_1 - f_2\|_\infty + \|g_1 - g_2\|_\infty).
\]

This ends the proof of (ii). \(\Box\)

Lemma 3. Under the hypothesis \((H_0)\) and \((H_1)\) (resp. the hypothesis \((H_0)\) and \((H_1)\)), the operators \(\Gamma\) defined for all \(x \in B_{[k,M]} \subset X\) by
\[
\Gamma(x) := T(F(x), G(x)) = [t \mapsto \int_{-\infty}^t e^{-\int_s^t G(x,u)du}F(x,s)ds],
\]
satisfies the following assertions:

(a) \(\Gamma\) maps \(B_{[k,M]}\) into \(B_{[k,M]}\).

(b) \(\Gamma\) is norm-to-norm continuous and satisfies: for every sequence \((x_n) \subset B_{[k,M]}\), if \((x_n)\) converges uniformly on each compact of \(\mathbb{R}\) to some point of \(BC(\mathbb{R})\), then \((\Gamma(x_n))\) is relatively compact in \(B_{[k,M]}\) \(\|\cdot\|_\infty\) (resp. \(\Gamma\) is \(\|\cdot\|_\infty\)-to-\(\|\cdot\|_\infty\) contractant).

(c) \(\Gamma(B_{[k,M]}))\) is equi-continuous at each point of \(\mathbb{R}\). Moreover, the set \(\Gamma(B_{[k,M]})(t) := \{\Gamma(x)(t) : x \in B_{[k,M]}\} \subset [k,M]\) is relatively compact in \(\mathbb{R}\).

Proof. Assume \((H_0)\) and \((H_1)\) and let us set \(r := \sup_{x \in B_{[k,M]}}\|F(x)\|_\infty\) and \(l := \inf_{x \in X, t \in \mathbb{R}} G(x,t) > 0\). Since \(T\) satisfies \((H_0)\), the operator \(\Gamma\) maps \(B_{[k,M]}\)
into X as follows:
\[\Gamma : B_{[k,M]} \rightarrow B_X(0,r) \times X_{[t,\infty[} \rightarrow X \]
\[x \mapsto (F(x), G(x)) \mapsto \Gamma(x) = T(F(x), G(x)). \]

(a) Let us prove that Γ maps $B_{[k,M]}$ into $B_{[k,M]}$. Indeed, by assumption we have that
\[k \leq \frac{F(x,s)}{G(x,s)} \leq M, \forall(x,t) \in B_{[k,M]} \times \mathbb{R}, \]
we get using Lemma 1 that for every $x \in B_{[k,M]}$ and every $t \in \mathbb{R}$
\[k = \int_{-\infty}^{t} kG(x)(s)e^{-\int_{t}^{s} G(x,u)du}ds \]
\[\leq \Gamma(x)(t) = \int_{-\infty}^{t} e^{-\int_{t}^{s} G(x,u)du}F(x,s)ds \]
\[\leq \int_{-\infty}^{t} MG(x)(s)e^{-\int_{t}^{s} G(x,u)du}ds \]
\[= M. \]
Thus, $\Gamma(x) \in B_{[k,M]}$.

(b) Using part (ii) of lemma 2, we get that for every $x, y \in B_{[k,M]}$,
\[\|\Gamma(x) - \Gamma(y)\|_{\infty} = \|T(F(x), G(x)) - T(F(y), G(y))\|_{\infty} \]
\[\leq \max(\frac{r}{L_{F}}, \frac{1}{l})(\|F(x) - F(y)\|_{\infty} + \|G(x) - G(y)\|_{\infty}). \]

(2) It follows using the hypothesis (H_1), that Γ is continuous and that for every sequence $(x_n) \subset B_{[k,M]}$, if (x_n) converges on each compact subset of \mathbb{R} to some point of $BC(\mathbb{R})$, then $(\Gamma(x_n))$ is relatively compact in $(B_{[k,M]}, \| \cdot \|_{\infty})$.

(c) We obtain that $\Gamma(B_{[k,M]}) \subset B_{[k,M]}$ is equi-continuous at each point of \mathbb{R} by using Lemma 2 with $r := \sup_{x \in B_{[k,M]}} \|F(x)\|_{\infty}$, $l := \inf_{x \in X, t \in \mathbb{R}} G(x, t) > 0$ and $r' := \sup_{x \in B_{[k,M]}, t \in \mathbb{R}} G(x, t) > 0$. Moreover, it is clear that the set $\Gamma(B_{[k,M]})(t) := \{\Gamma(x)(t) : x \in B_{[k,M]}\} \subset [k, M]$ is relatively compact in \mathbb{R}.

Now, if we assume that the hypothesis (\tilde{H}_1) holds, then F and G are $\| \cdot \|_{\infty}$-to-$\| \cdot \|_{\infty}$ Lipschitz functions and so using the inequality (2) we get that
\[\|\Gamma(x) - \Gamma(y)\|_{\infty} \leq \max(\frac{r}{L_{F}}, \frac{1}{l})(L_{F} + L_{G})\|x - y\|_{\infty}, \]
which implies that Γ is contractant by the assumption (\tilde{H}_1).

Now, we give the proof of Theorem 1. Let us denote, $\text{co}(\| \cdot \|_{\infty}) (\Gamma(B_{[k,M]}))$ the norm-closed convex hull of $\Gamma(B_{[k,M]})$.

□
Proof of Theorem 1. We treat two situations:
• Under the hypothesis \((H_0)\) and \((H_1)\). By Lemma 3, \(\Gamma(B_{[k,M]}) \subset B_{[k,M]}\) and so
 \[K := \text{co} \parallel \cdot \parallel_\infty(\Gamma(B_{[k,M]})) \subset B_{[k,M]}\].
Then, \(\Gamma(K) \subset \Gamma(B_{[k,M]}) \subset K\) and we have that the operator \(\Gamma : K \to K\) is well defined and continuous. We are going to prove that \(\Gamma(K)\) is relatively compact for the norm \(\parallel \cdot \parallel_\infty\). Using part \((c)\) of Lemma 3, we see that \(K\) (as a closed convex hull) is also equi-continuous at each point of \(\mathbb{R}\) and that \(K(t) := \{x(t) : x \in K\} \subset [k,M]\) is relatively compact in \(\mathbb{R}\). Thus, from the Arzela-Ascoli theorem, we have that the restriction of \(K\) to any interval \([-m,m]\) of \(\mathbb{R}\) \((m \in \mathbb{N})\) is relatively compact in the space \((C([-m,m]), \parallel \cdot \parallel_\infty)\) of all continuous functions on \([-m,m]\). Now, let \((x_n)\) be any sequence of \(K\). Then, we have that the restriction of \((x_n)\) to each interval \([-m,m]\) has a subsequence \((x_{\mu(n)})\) converging uniformly on this interval. Using the Cantor diagonal process, there exists a subsequence \((x_{\mu(n)})\) converging uniformly on each compact subset of \(\mathbb{R}\). Then, by Lemma 3, there exists a subsequence that we will denote again \((x_{\mu(n)})\) such that \(\Gamma(x_{\mu(n)})\) norm converges in \(BC(\mathbb{R})\). Thus, \(\Gamma(K)\) is relatively compact for the norm \(\parallel \cdot \parallel_\infty\). Using the Schauder fixed point theorem we get a fixed point \(x^* \in K \subset B_{[k,M]}\) for \(\Gamma\), which satisfies the equation \((E)\) by the formula \((1)\).

• Under the hypothesis \((H_0)\) and \((\tilde{H}_1)\). In this situation the operator \(\Gamma\) is contractant by Lemma 3, so the Banach-Picard theorem applies and gives a unique fixed point \(x^* \in B_{[k,M]}\) for \(\Gamma\), which is the unique solution of the equation \((E)\) in the set \(B_{[k,M]}\) by the formula \((1)\).

\[\square\]

2.2. Examples and properties. In this section, we give examples satisfying our results. The hypothesis \((H_0)\) is satisfied for several classical subspace of \(BC(\mathbb{R})\). We give in Proposition 1 (see below) some examples of classical spaces satisfying this property. We need to introduce some definitions.

For a fixed \(w \in \mathbb{R}\), we denote \(C_w(\mathbb{R})\) the Banach subspace of \(BC(\mathbb{R})\) consisting on all continuous \(w\)-periodic functions.

Definition 1. A continuous function \(f : \mathbb{R} \to \mathbb{R}\) is called (Bohr) almost periodic if for each \(\varepsilon > 0\), there exists \(l_\varepsilon > 0\) such that every interval of length \(l_\varepsilon\) contains at least a number \(\tau\) with the following property:
\[
\sup_{t \in \mathbb{R}} |f(t + \tau) - f(t)| < \varepsilon.
\]

The number \(\tau\) is then called an \(\varepsilon\)-period of \(f\). The collection of all almost periodic functions \(f : \mathbb{R} \to \mathbb{R}\) will be denoted by \(AP(\mathbb{R})\). It is known that the space \(AP(\mathbb{R})\) is a Banach subspace of \(BC(\mathbb{R})\) (see for instance [7]). Clearly, for every \(w \in \mathbb{R}\), we have that \(C_w(\mathbb{R}) \leftrightarrow AP(\mathbb{R})\) (a Banach subspace). A
classical example of an almost periodic function which is not periodic is given by the following function
\[f(t) = \sin t + \sin \sqrt{2}t. \]
The space of continuous ergodic functions is defined as follows:
\[PAP_0(\mathbb{R}) := \{ g \in BC(\mathbb{R}) : \lim_{r \to +\infty} \frac{1}{2r} \int_{-r}^{r} |g(t)|\,dt = 0 \}. \]
Clearly, \(PAP_0(\mathbb{R}) \) is a Banach subspace of \(BC(\mathbb{R}) \). It is easy to see that \(AP(\mathbb{R}) \cap PAP_0(\mathbb{R}) = \{0\} \) (see for instance [7]). Then, we define the Banach subspace of \(BC(\mathbb{R}) \) of all pseudo almost periodic function denoted \(PAP(\mathbb{R}) \), as follows:
\[PAP(\mathbb{R}) := AP(\mathbb{R}) \oplus PAP_0(\mathbb{R}). \]
Finally, we introduce the following space of all pseudo \(w \)-periodic functions denoted \(PP_w(\mathbb{R}) \) by
\[PP_w(\mathbb{R}) := C_w(\mathbb{R}) \oplus PAP_0(\mathbb{R}). \]
Clearly, \(PP_w(\mathbb{R}) \) is a Banach subspace of \(PAP(\mathbb{R}) \) for every \(w \in \mathbb{R} \). Finally, \(BC_U(\mathbb{R}) \) denotes the Banach subspace of \(BC(\mathbb{R}) \) of uniformly continuous functions.

Proposition 1. The following classical spaces \(X := BC(\mathbb{R}), BC_U(\mathbb{R}), C_w(\mathbb{R}), AP(\mathbb{R}), PAP_0(\mathbb{R}), PAP(\mathbb{R}) \) and \(PP_w(\mathbb{R}) \), satisfy the hypothesis \((H_0)\).

Proof. The result is clear and easy for \(X = BC(\mathbb{R}), C_w(\mathbb{R}) \). For \(X = BC_U(\mathbb{R}) \), we use the point \((i)\) of Lemma 2. The proof for \(X = AP(\mathbb{R}) \) can be found in [8, Lemma 1.3]. For \(X = PAP_0(\mathbb{R}) \), just follow the proof of [5, Lemma 1.3]. The proof for \(X = PAP(\mathbb{R}) \) is given in step 2 of the proof of [3, Theorem 1] and finally the proof for \(X = PP_w(\mathbb{R}) \) can be given in the same way. \(\square \)

Given two functions \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \), their convolution \(f \ast g \), if it exists, is defined by
\[f \ast g(t) = \int_{-\infty}^{+\infty} f(s)g(s-t)\,ds. \]
One can generate various types of almost periodic functions using the convolution.

Proposition 2. (see [7, Proposition 3.4 and Proposition 5.3]) The following assertions hold.

(i) Let \(x \in AP(\mathbb{R}) \) and \(\alpha \in L^1(\mathbb{R}) \). Then \(x \ast \alpha \in AP(\mathbb{R}) \).
(ii) Let \(x \in PAP_0(\mathbb{R}) \) and \(\alpha \in L^1(\mathbb{R}) \). Then \(x \ast \alpha \in PAP_0(\mathbb{R}) \).
(iii) Let \(x \in PAP(\mathbb{R}) \) and \(\alpha \in L^1(\mathbb{R}) \). Then \(x \ast \alpha \in PAP(\mathbb{R}) \).

Now, we give a general way to construct Lipschitz functions \(F : PAP(\mathbb{R}) \to PAP(\mathbb{R}) \).
Definition 2. (see [5]) Let $\Omega \subset \mathbb{R}$. A continuous function $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is called pseudo almost periodic in t uniformly with respect $x \in \Omega$, if the two following conditions are satisfied:

(i) $\forall x \in \Omega, f(x, \cdot) \in PAP(\mathbb{R})$.

(ii) for all compact set $K \subset \Omega$, we have that: $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall t \in \mathbb{R}$, $\forall x, y \in K$:

$$|x - y| \leq \delta \implies |f(x, t) - f(y, t)| \leq \varepsilon.$$

The set of all such functions will be denoted $PAP_U(\Omega \times \mathbb{R})$.

Lemma 4. (see [6]) Let $f \in PAP_U(\mathbb{R})$ and $x \in PAP(\mathbb{R})$. Suppose that bounded subset B of \mathbb{R}, f is bounded on $B \times \mathbb{R}$. Then, the function $[t \mapsto f(x(t), t)] \in PAP(\mathbb{R})$.

Using the above lemma, we deduce easily the following proposition.

Proposition 3. Let $f \in PAP_U(\mathbb{R})$ be a Lipschitz function with respect to the first variable, that is, there exists $L_f \geq 0$ such that:

$$|f(s, t) - f(s', t)| \leq L_f |s - s'|, \ \forall s, s', t \in \mathbb{R}.$$

Then, the function F defined by $F(x) := f(x(\cdot), \cdot)$ is a Lipschitz function for the norm $\| \cdot \|_\infty$ that maps $(PAP(\mathbb{R}), \| \cdot \|_\infty)$ into $(PAP(\mathbb{R}), \| \cdot \|_\infty)$.

The above proposition says that each Lipschitz function $f \in PAP_U(\mathbb{R})$ induce a Lipschitz function $F : (PAP(\mathbb{R}), \| \cdot \|_\infty) \to (PAP(\mathbb{R}), \| \cdot \|_\infty)$. However, the converse is not true in general. Indeed, for any fixed $\alpha \in L^1(\mathbb{R}) \setminus \{0\}$, the $\| \alpha \|_1$-Lipschitz function $F : (PAP(\mathbb{R}), \| \cdot \|_\infty) \to (PAP(\mathbb{R}), \| \cdot \|_\infty)$, defined by

$$F(x, t) := \sin(t) + \sin(\sqrt{2} t) + (1 + t^2)^{-1} x * \alpha(t)$$

cannot, under any circumstances, be written in the form $f(x(t), t)$ for some $f \in PAP_U(\mathbb{R})$. This prove that there are many more continuous (Lipschitz) functions $F : (PAP(\mathbb{R}), \| \cdot \|_\infty) \to (PAP(\mathbb{R}), \| \cdot \|_\infty)$, than those which come from the functions $f \in PAP_U(\mathbb{R})$ as in Proposition 3.

Now, we give simple examples satisfying our theorems. We start with the example announced in the introduction.

Example 1. Let $\alpha, \beta \in L^1(\mathbb{R})$ be such that $0 < \|\alpha\|_1 \leq 1$.

$$F(x, t) = \frac{1}{3} (\sin(t) + \sin(\sqrt{2} t) + (1 + t^2)^{-1} x * \alpha(t))$$

$$G(x, t) = 3 + \sin(2t) + (1 + t^2)^{-1} \cos(x * \beta(t)).$$

The hypothesis (H_0) is satisfied by Proposition 1. We are going to prove that the hypothesis (H_1) is also satisfied. Indeed, clearly, $F, G : PAP(\mathbb{R}) \to PAP(\mathbb{R})$ are $\| \alpha \|_1$-Lipschitz and $\| \beta \|_1$-Lipschitz respectively (Notice that F is not bounded but F and G are bounded on bounded sets). We have that
Thus, to some x that for every $\|x\|_\infty \leq \frac{1}{\|\alpha\|_1}$, we have that
\[
\frac{|F(x, t)|}{G(x, t)} \leq \frac{1}{3} (2 + \|x\|_\infty \|\alpha\|_1) \\
\leq 1 \\
\leq \frac{1}{\|\alpha\|_1}.
\]

Thus,
\[
\frac{-1}{\|\alpha\|_1} \leq \frac{F(x, t)}{G(x, t)} \leq \frac{1}{\|\alpha\|_1}, \quad \forall (x, t) \in B_{\frac{1}{\|\alpha\|_1}} \times \mathbb{R}.
\]

Now, let $(x_n) \subset PAP(\mathbb{R})$ be a sequence converging on each compact of \mathbb{R} to some $x \in BC(\mathbb{R})$. Then, there exists a constant $M \geq \|x\|_\infty$ such that $\|x_n\|_\infty \leq M$ for all $n \in \mathbb{N}$. Then, for every $\varepsilon > 0$, there exists $A_\varepsilon > 0$ such that for every $|t| \geq A_\varepsilon$, we have that $(1 + t^2)^{-1} \leq \frac{2M}{\|\alpha\|_1}$. Thus,
\[
(1 + t^2)^{-1} |x_n \ast \alpha(t) - x \ast \alpha(t)| \leq 2M \|\alpha\|_1 (1 + t^2)^{-1} < \varepsilon, \quad \forall |t| \geq A_\varepsilon.
\]

On the other hand, there exists $N \in \mathbb{N}$ such that for every $n \geq N$, we have that $\sup_{t \in [-A_\varepsilon, A_\varepsilon]} |x_n(t) - x(t)| < \varepsilon$. Hence,
\[
\sup_{t \in \mathbb{R}} (1 + t^2)^{-1} |x_n \ast \alpha(t) - x \ast \alpha(t)| \leq 2\varepsilon, \quad \forall n \geq N.
\]

Hence, we get that the sequence $(F(x_n))$ norm converges in $BC(\mathbb{R})$ and so it is relatively compact in $PAP(\mathbb{R})$. The same argument hold for $(G(x_n))$.

Thus, the hypothesis (H_0) and (H_1) are satisfied, so Theorem 1 gives at last one solution $x^* \in PAP(\mathbb{R})$ for the equation (E).

Example 2. (Example in the space $PP_w(\mathbb{R}) \subset PAP(\mathbb{R})$ under the hypothesis (H_1)) As a simple consequence of Theorem 1, we obtain that the following equation has a positive solution $x^* \in PAP(\mathbb{R})$

\[
x'(t) + G(x, t) x(t) = F(x, t)
\]

where $F, G : PP_w(\mathbb{R}) \to PP_w(\mathbb{R})$ are defined by $G(x, t) = e^{|x|_{0, 1} + \frac{1}{1 + t^2} \sin(x(t))}$ and $F(x, t) := 3 + \sin(|x|_{0, 1} + \frac{1}{1 + t^2} \cos(x(t)))$, where $|x|_{0, 1} := \int_0^1 |x(s)| ds \leq \|x\|_\infty$.

- The space $PP_w(\mathbb{R})$ satisfies (H_0) by Proposition 1.
- The hypothesis (H_1) is satisfied. Indeed, clearly we have that

\[
\inf_{x \in X, f \in \mathbb{R}} G(x, t) \geq e^{-1} > 0.
\]
Let us set $G_0(x, t) := \|x\|_{0,1} + \frac{1}{1+t^2} \sin(x(t))$, we have that
\[
|G_0(x, t) - G_0(y, t)| \leq \|x - y\|_{0,1} + \frac{1}{1+t^2}|\sin(x(t)) - \sin(y(t))|
\leq \|x - y\|_{0,1} + \frac{1}{1+t^2}|x(t) - y(t)|
\leq 2\|x - y\|_{\infty}.
\]
Then, G_0 is Lipschitz from $PP_w(\mathbb{R})$ into $PP_w(\mathbb{R})$. Since $t \rightarrow e^t$ is continuous, it follows that G is continuous from $PP_w(\mathbb{R})$ into $PP_w(\mathbb{R})$. On the other hand, it is clear that G is bounded on bounded sets. Finally, let $(x_n) \subset X$ be a sequence converging on each compact of \mathbb{R}. Notice that $\|x_n\|_{0,1} - \|x_m\|_{0,1} \leq \|x_n - x_m\|_{0,1} \leq \sup_{t \in [0,1]} |x_n(t) - x_m(t)|$. On the other hand, we see that for every $A \geq 1$, we have that
\[
\sup_{t \in \mathbb{R}} \left| \frac{1}{1+t^2} \sin(x_n(t)) - \frac{1}{1+t^2} \sin(x_m(t)) \right| \leq \max(\sup_{t \in [-A,A]} |x_n(t) - x_m(t)|, \frac{2}{1+A^2}).
\]
It follows that
\[
\|G_0(x_n) - G_0(x_m)\|_{\infty} \leq \sup_{t \in [0,1]} |x_n(t) - x_m(t)| + \max(\sup_{t \in [-A,A]} |x_n(t) - x_m(t)|, \frac{2}{1+A^2}).
\]
So, $\limsup_{n,m \to +\infty} \|G_0(x_n) - G_0(x_m)\|_{\infty} \leq \frac{2}{1+A^2}$ for every $A \geq 1$. Sending A to $+\infty$, we get that $(G_0(x_n))$ norm converges and by the continuity of the function $t \rightarrow e^t$, we have that $(G(x_n))$ norm converges.

As above, we see that $(F(x_n))$ norm converges. Now, it is clear $0 \leq F(x, t) \leq 5$ for every $x \in PP_w(\mathbb{R})$ and every $t \in \mathbb{R}$. Thus, we can take
\[
0 \leq k := \inf_{(x,t) \in X \times \mathbb{R}} \frac{F(x, t)}{G(x, t)} \quad \text{and} \quad M := \sup_{(x,t) \in X \times \mathbb{R}} \frac{F(x, t)}{G(x, t)},
\]
and so the hypothesis (H_1) is satisfied. Using Theorem 1 we get that there exists at last one positive solution of the equation (E).

Example 3. (Example in the space $C_{2\pi}(\mathbb{R})$ under the hypothesis (\tilde{H}_1).)

We have the following simple example.
- $G : C_{2\pi}(\mathbb{R}) \to C_{2\pi}(\mathbb{R})$, defined by $G(x, t) = 4 + (1 + \|x\|_{0,1})(1 + \sin(t))$, is a 2-Lipschitz (on the variable x) and satisfies $\inf_{x \in X, t \in \mathbb{R}} G(x, t) \geq l = 4$ (where $\|x\|_{0,1} := \int_0^1 |x(s)| ds \leq \|x\|_{\infty}$).
- $F : C_{2\pi}(\mathbb{R}) \to C_{2\pi}(\mathbb{R})$, defined by $F(x, t) := 2 + \sin(t) + \cos(x(t))$, is 1-Lipschitz (on the variable x) and is bounded by $r = 4$.

Since \(\max\left(\frac{L_F}{L_G}, \frac{1}{L_G}\right) (L_F + L_G) = \frac{3}{4} < 1 \), then \(\tilde{H}_1 \) is satisfied. This permit to give thanks to Theorem 1 a continuous \(2\pi \)-periodic solution to the equation \((E) \). Moreover, there exists a unique solution in \(B_{[0,1/2]} \).

3. Global attractivity of solutions

In this section, we give a result on the attractivity of solutions of the equation \((E) \).

Definition 3. A solution \(x^* \) of the equation \((E) \), is said to be globally attractive if for any other solution \(x \) of \((E) \), we have that \(\lim_{t \to +\infty} |x(t) - x^*(t)| = 0 \).

Consider the following condition:

\((C) \) the functions \(F, G : X \to X \) satisfies \((H_1) \) and moreover: there exists \(L_F, L_G \geq 0 \) such that

\[
(i) \quad |F(x, t) - F(y, t)| \leq L_F|x(t) - y(t)| \quad \text{and} \quad |G(x, t) - G(y, t)| \leq L_G|x(t) - y(t)|, \quad \forall x, y \in X \text{ and } t \in \mathbb{R}.
\]

\((ii) \quad l > L_G \max(M, -k) + L_F, \) where \(l > 0, k \) and \(M (k \leq M) \) are given by the hypothesis \((H_1) \).

Notice that general examples of functions satisfying the point \((i) \) above, are given by Proposition 3 (see also Example 4).

Theorem 2. Under the hypothesis \((H_0) \) and \((C) \), there exists at last one solution \(x^* \in X \) for the equation \((E) \), which is globally attractive.

Proof. By Theorem 1, there exists at last one solution \(x^* \in B_{[k,M]} \), this implies that \(\|x^*\|_\infty \leq \max(M, -k) \). Suppose that \(x \) is another solution of \((\tilde{E}) \). In this case, we have that for every \(t \in \mathbb{R} \)

\[
x'(t) = -G(x, t)x(t) + F(x, t),
\]

\[
(x^*)'(t) = -G(x^*, t)x^*(t) + F(x^*, t).
\]

It follows that \(|x'(t)| \leq \|G(x)\|_\infty \|x\|_\infty + \|F(x)\|_\infty < +\infty \) for every \(t \in \mathbb{R} \) and so \(x \) is a Lipschitz function on \(\mathbb{R} \) by the mean value theorem. Similarly, \(x^* \) is a Lipschitz function on \(\mathbb{R} \). Let us denote \(sgn(t) \) the number which is equal to 1 if \(t \geq 0 \) and -1 otherwise. Consider the following Lyapunov functional:

\[
W(t) = |x(t) - x^*(t)|, \quad \forall t \in \mathbb{R}.
\]
After calculating the Dini derivative of W, we get,

\[
D^+ W(t) = \begin{cases}
 & \text{sgn}(x(t) - x^*(t)) \left(x'(t) - (x^*)'(t) \right) \\
 & + (G(x^*, t) - G(x^*, t))x^*(t) + F(x, t) - F(x^*, t) \\
 & + \text{sgn}(x(t) - x^*(t)) \left[-(G(x, t)(x(t) - x^*(t)) \right] \\
 & + (G(x^*, t) - G(x, t))x^*(t) + F(x, t) - F(x^*, t) \\
 & \leq -l|x(t) - x^*(t)| + (L_G\|x^*\|_\infty + L_F)|x(t) - x^*(t)| \\
 & \leq -(l - (L_G \max(M, -k) + L_F))|x(t) - x^*(t)|.

\end{cases}
\]

An integration of the above inequality, gives

\[
W(t) + \int_0^t (l - (L_G \max(M, -k) + L_F))|x(t) - x^*(t)|ds \leq W(0).
\]

Since $W(t) \geq 0$ for every $t \in \mathbb{R}$, it follows that

\[
\limsup_{t \to +\infty} \int_0^t |x(t) - x^*(t)|ds \leq \frac{W(0)}{l - (L_G \max(M, -k) + L_F)} < +\infty.
\]

Since $x, x^* \in X$ are uniformly continuous on \mathbb{R} (in fact Lipschitz), we obtain that $\lim_{t \to +\infty} |x(t) - x^*(t)| = 0$.

Example 4. (Example of globally attractive solution in the space $\text{PAP}(\mathbb{R})$ under the hypothesis (C).)

- $G : \text{PAP}(\mathbb{R}) \to \text{PAP}(\mathbb{R})$, defined by
 \[
 G(x, t) = 4 + \sin(t) + \sin(\sqrt{2}t) + \frac{1}{1 + t^2}\cos(x(t)),
 \]
 is 1-Lipschitz (on the variable x) and $l := \inf_{x \in X, t \in \mathbb{R}} G(x, t) \geq 1 > 0$.

- $F : \text{PAP}(\mathbb{R}) \to \text{PAP}(\mathbb{R})$, defined by
 \[
 F(x, t) := \frac{1}{10}[2 + \cos(t) + \frac{1}{1 + t^2}\sin(x(t))],
 \]
 is $1/10$-Lipschitz (on the variable x) and $0 \leq F(x, t) \leq 4/10$.
 We have that
 \[
 0 = k \leq \frac{F(x, t)}{G(x, t)} \leq M = 4/10.
 \]

As in the Example 2 the hypothesis (H_1) is satisfied. Since $\max(M, -k) = 4/10$, $L_G \leq 1$, $L_F \leq 1/10$ we have $l \geq 1 > 4/10 + 1/10 \geq \max(M, -k)L_G + L_F$, then the condition (C) is satisfied and so by Theorem 2 there exists at least one positive solution in $\text{PAP}(\mathbb{R})$ which is globally attractive.
4. The vector valued framework

The results of existence of solutions developed in Section 2 can be easily extended to the vector-valued framework. We will just present the outline of the procedure to follow, since the proofs are similar to those given in Section 2.

Let \((E, \| \cdot \|)\) be a finite dimensional Banach space (for example \(E = \mathbb{R}^n\)) and \(E^*\) its dual. Let \(X\) be a Banach subspace of the Banach space \((BC(\mathbb{R}, E), \| \cdot \|_\infty)\) of all \(E\)-valued bounded continuous functions equipped with the sup-norm and let \(e^* \in E^*\) and \(F, G: X \rightarrow X\) be two functions. The goal of this section is to give existence of solutions \(x \in X\) to the first order differential equations of type (under conditions similar to those given in Section 2):

\[
\tilde{E}: x'(t) + e^*(G(x(t))x(t) = F(x, t), \quad \forall t \in \mathbb{R}.
\]

By \(B_X(0, c)\) we denote the closed ball of \(X\) centred at 0 with radius \(c > 0\).

For each \(l, r > 0\) and \(e^* \in E^*\), we define the following closed convex subsets of \(X\):

\[X_{[l, +\infty[, e^*} := \{ x \in X : e^*(x(t)) \in [l, +\infty[, \forall t \in \mathbb{R} \},
\]

As in Section 2, we introduce the following well defined operator, for each \(l > 0\) and each \(e^* \in E^*\):

\[T : BC(\mathbb{R}, E) \times BC(\mathbb{R}, E)_{[l, +\infty[, e^*} \rightarrow BC(\mathbb{R}, E)
\]

\[T(f, g) \mapsto \int_{-\infty}^{t} e^{-\int_{s}^{t} e^*(g(u))du} f(s)ds,
\]

and we have that for every \((f, g) \in BC(\mathbb{R}, E) \times BC(\mathbb{R}, E)_{[l, +\infty[, e^*}\), the function \(T(f, g)\) is differentiable and satisfies:

\[T(f, g)'(t) = -e^*(g(t))T(f, g)(t) + f(t), \quad \forall t \in \mathbb{R}.
\]

We consider the following conditions \((HV_0)\), \((HV_1)\) and \((HV_1)\):

- \((HV_0)\): The subspace \(X\) is invariant under \(T\) in the sense that for each \(l > 0\) and every \(e^* \in E^*\), \(T(X \times X_{[l, +\infty[, e^*}) \subset X\).
- \((HV_1)\): The functions \(F, G: (X, \| \cdot \|_\infty) \rightarrow (X, \| \cdot \|_\infty)\) are continuous, \(e^* \in E^*\) and:
 - \(\inf_{x \in X, t \in \mathbb{R}} e^*(G(x, t)) > 0\) and there exists \(c > 0\) such that \(F, G\) are bounded on \(B_X(0, c)\) and \(\| \frac{F(x, t)}{e^*(G(x, t))} \| \leq c\) for all \((x, t) \in B_X(0, c) \times \mathbb{R} \).
 - for every sequence \((x_n) \subset X\), if \((x_n)\) converges on each compact of \(\mathbb{R}\) in \(BC(\mathbb{R}, E)\), then \((F(x_n))\) and \((G(x_n))\) are relatively compact in \((X, \| \cdot \|_\infty)\).
Notice that if we assume that F and G are bounded on the whole space X and $\inf_{x \in X, t \in \mathbb{R}} e^*(G(x, t)) > 0$, then we can take in the hypothesis (HV_1)

$$c := \sup_{(x,t) \in X \times \mathbb{R}} \frac{\|F(x,t)\|}{e^*(G(x,t))},$$

(HV_1) The functions $F, G : (X, \| \cdot \|_\infty) \to (X, \| \cdot \|_\infty)$ are Lipschitz,

$$l := \inf_{x \in X, t \in \mathbb{R}} e^*(G(x,t)) > 0,$$

and there exists $c > 0$ such that, $\|F(x,t)\| \leq c$ for all $(x,t) \in B_X(0,c) \times \mathbb{R},$

$$r := \sup_{x \in B_X(0,c)} \|F(x)\|_\infty < +\infty$$

and

$$\max\left(\frac{r}{l}, \frac{1}{l}\right)(L_F + L_G) < 1,$$

where L_F and L_G denotes the constant of Lipschitz of F and G respectively.

Theorem 3. Under the hypothesis (HV_0) and (HV_1) (resp. (HV_0) and (HV_1)), the equation (EV) has at least one solution x^* in $B_X(0,c)$ (resp. has a unique solution x^* in $B_X(0,c)$).

The proof of the above theorem is similar to those given for Theorem 1.

In the case of $X = PAP(\mathbb{R}, \mathbb{R}^n)$ for example (see [7], for the definition of vector-valued pseudo almost periodic), there exists a canonical way to choose a function G satisfying the property (HV_1) from the real-valued framework. It suffices to choose functions $H : PAP(\mathbb{R}, \mathbb{R}^n) \to PAP(\mathbb{R})$, and $(e, e^*) \in \mathbb{R}^n \times (\mathbb{R}^n)^*$ such that $e^*(e) = 1$ and pose $G : PAP(\mathbb{R}, \mathbb{R}^n) \to PAP(\mathbb{R}, \mathbb{R}^n)$ by setting $G(x,t) := H(x,t)e$.

Remark 3. The above theorem is also true under the same hypothesis for the following equation (replacing G by $-G$):

$$(\tilde{E}) \quad x'(t) - e^*(G(x,t))x(t) = F(x,t), t \in \mathbb{R}.$$

To see this, just follow the same proof of Theorem 1 using the operator \tilde{T} instead of T, where :

$$\tilde{T} : BC(\mathbb{R}, E) \times BC(\mathbb{R}, E)|_{t, +\infty}, e^* \to BC(\mathbb{R}, E)$$

$$(f, g) \mapsto [t \mapsto \int_t^{+\infty} e^{\int_s^t e^*(g(u))du} f(s)ds].$$

and the operator $\tilde{\Gamma}(x) := \tilde{T}(e^* \circ G(x), -F(x))$ for all $x \in X$, instead of Γ in Lemma 3.
Acknowledgment

This research has been conducted within the FP2M federation (CNRS FR 2036) and SAMM Laboratory of the University Paris Panthéon-Sorbonne.

References

1. M. Amdouni, F. Cherif, *The pseudo almost periodic solutions of the new class of lotka-volterra recurrent neural networks with mixed delays*. Chaos, Solitons & Fractals, 113, 79-88 (2018).

2. D. Bekolle, K. Ezzinbi, S. Fatouj, D. E. H. Danga, and F. M. Bessene. *Attractiveness of pseudo almost periodic solutions for delayed cellular neural networks in the context of measure theory*. Neurocomputing, 435, 253-263 (2021).

3. H. Ben Fredj, F. Cherif, *Positive pseudo almost periodic solutions to a class of hematopoiesis model: oscillations and dynamics*. J. Appl. Math. Comput. 63, 479-500 (2020).

4. J-B. Baillon, J. Blot, G. M. N’Guérékata, D. Pennequin *On C(n)- Almost Periodic Solutions to Some Nonautonomous Differential Equations in Banach Spaces*, annales societatis mathematicae polonae, Series I: commentationes mathematicae roczniki polskiego towarzystwa matematycznego, Seria I: prace matematyczne XLVI(2), 263-273 (2006).

5. Z. Chuanyi, *Almost periodic type functions and ergodicity*. Springer Science & Business Media (2003).

6. P. Cieutat, S. Fatouj, and G. M. N’Guérékata, *Composition of pseudo almost periodic and pseudo almost automorphic functions and applications to evolution equations*. Applicable Analysis, 89 (1) 11-27 (2010).

7. T. Diagana, *Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces*. Springer, Cham (2013).

8. H.S. Ding, Q.L. Liu, J.J. Nieto *Existence of positive almost periodic solutions to a class of hematopoiesis model*. Appl. Math. Model. 40, 3289-3297 (2016).

9. H.S. Dinga, J. Llianga, G. M. N’Guérekatab, TJ. Xiaobo *Mild pseudo-almost periodic solutions of nonautonomous semilinear evolution equations*. Mathematical and Computer Modelling 45, 579-584 (2007).

10. B. Liu, *New results on the positive almost periodic solutions for a model of hematopoiesis*. Nonlinear Anal. Real World Appl. 17, 252-264 (2014).

11. W. Liu, J. Huang, Q. Yao, *Stability Analysis of Pseudo-Almost Periodic Solution for a Class of Cellular Neural Network with D Operator and Time-Varying Delays*. Mathematics 9, 1951 (2021).

12. Y. Li, S. Shen, *Pseudo almost periodic synchronization of Clifford-valued fuzzy cellular neural networks with time-varying delays on time scales*. Advances in Dynamical Systems and Applications, (1), 1-22 (2020).

13. Y. Wu, Y. Xia, and S. Deng, *Existence and stability of pseudo almost periodic solutions for a delayed multispecies logarithmic population model with feedback control*. Qualitative Theory of Dynamical Systems, 20 (1), 1-22, (2021).

* Laboratoire SAMM 4543, Université Paris 1 Panthéon-Sorbonne, France
Email address: Mohammed.Bachir@univ-paris1.fr

† MaPSFA, ESSTHS, University of Sousse-Tunisia
Email address: halfabenfredj@essths.u-sousse.tn