SUPPLEMENTARY MATERIAL

N-Myc and Sp Regulate Phosphatidylserine Synthase-1 Expression in Brain and Glial Cells

Guergana Tasseva1,2, Laura Cole1,3 and Jean E. Vance1,2,

1Group on the Molecular and Cell Biology of Lipids and Departments of 2Medicine and 3Biochemistry, University of Alberta, Edmonton, AB, Canada

Supplementary Tables

Suppl. TABLE S1: Primers for amplification of -1408/+197 bp region of the $Pss1$ promoter. Numbering is relative to the transcriptional start site. A reverse primer (+197 bp at the 5’-position) was used with indicated forward primers to generate eight promoter fragments with restriction sites for HindIII and Smal at the 5’ and 3’ positions, respectively.

Forward primer 5’-position:	Sequence (sense orientation: 5’→3’)
-1408	5’-TCC CCC GGG GGA ATG TCA CTG TAG CCC ACG ATG-3’
-1008	5’- TCC CCC GGG GGA CCA CCT TCC CAG GGT CTT TTC-3’
-808	5’- TCC CCC GGG GGA AGT AGG GTA CGC CAG CTC TCA-3’
-508	5’- TCC CCC GGG GGA CCA CGG ATC GAG CCC GAA CCT-3’
-398	5’- TCC CCC GGG GGA GGT CTC GCG CTC CTG CCT CAC-3’
-309	5’- TCC CCC GGG GGA GGC CGG CAC CGC CCC CCA CGT-3’
-208	5’- TCC CCC GGG GGA GGG GTT TGC AGG CCC TGG AGC-3’
-99	5’- TCC CCC GGG GGA GGC TGC CTT CTC CCC CTG CTC-3’

Reverse primer 5’- CCC AAG CTT GGG CCA CTT GCT GCT CGT TGA TCA-3’
Suppl. TABLE S2: Site-directed mutagenesis of promoter binding motifs. Binding sequences for Sp (mSp), Myc (mMyc), Tal1/E47 (mE), AP-2 (mAP2), AML-3 (mAML3) and IK-1 (mIK1) in the -398/+197 Pss1 promoter region were mutated and cloned into pGL3-Basic vector. Location of mutated motif is shown in Suppl. Fig. 2A.

Construct name	Modifications into core binding motifs
-398_mSp	5'-CCGCC-3' replaced by 5'-CCGAGC-3'
-398_mMyc	5'-CACGTG-3' replaced by 5'-CTCGAG-3'
-398_mE	5'-CATCTG-3' replaced by 5'-GCTCCC-3'
-398_mAP2	5'-GCCCTGGG-3' replaced by 5'-GTTTGGG-3'
-398_mAML3	5'-TGGGGTT-3' replaced by 5'-TGAAGTT-3'
-398_mIK1	5'-TTC-3' replaced by 5'-TTAAC-3' }
Supplementary Figure Legends

Suppl. FIG 1: Binding of nuclear proteins from C3H10T1/2 cells to the promoter. Nuclear extracts (NE) from C3H10T1/2 cells were used in EMSAs with 32P-labeled promoter fragments: -356/-302, -308/-250, -260/-198) and -213/-150 (10 µg protein/reaction). Protein-DNA complexes were resolved on 6% non-denaturing polyacrylamide gels and visualized by autoradiography. For competition assays, prior to addition of probe, extracts were pre-incubated with corresponding unlabeled oligonucleotide [10- and 100-fold molar excess (10x s and 100x s, respectively)] or non-specific oligonucleotide (100x ns) [100-fold molar excess relative to labeled probe]. Unlabeled -213/-150 bp fragment was used as non-specific oligonucleotide competitor with -356/-302 bp and -308/-250 bp probes. Unlabeled -356/-302 bp fragment was used as non-specific competitive oligonucleotide with -260/-198 bp and -213/-150 bp probes. The arrows indicate specific protein-DNA complexes. Results are representative of at least 3 independent experiments with similar results.

Suppl. FIG 2: Functional cis-elements in the Pss1 promoter. (A): nucleotide sequence of the mouse Pss1 proximal promoter with transcriptional start site (+1) and initiation codon ATG (underlined/bold). Predicted binding sites for transcription factors are indicated. Mutations in Sp1 and non-canonical E-box binding sites are indicated with asterisks. (B): nuclear extracts from C3H10T1/2 cells were used in EMSAs with 32P-labeled -308/-278 bp fragment (5 µg protein/reaction). Protein-DNA complexes were resolved by 5% non-denaturing polyacrylamide gel electrophoresis and visualized by autoradiography. Lane 1: probe alone; lane 2: nuclear extract+probe; lanes 3-5: nuclear extract incubated for 10 min with unlabeled -308/-278 bp fragment prior to addition of probe. For competition assays, wild-type Sp1 consensus
oligonucleotide (wtSp1cs) or mutated Sp1 consensus oligonucleotide (mSp1 cs) were added at 200-fold molar excess relative to probe. Lanes 6-8 (supershift): nuclear extract incubated with anti-
Sp antibodies (1 μg/reaction) for 20 min prior to addition of probe; arrow indicates supershifted
Sp1/DNA complex. Data are representative of 3 independent experiments with similar results. (C):
C3H10T1/2 cells were transiently transfected with pGL3-Basic vector containing wild-type (WT)
or mutated -398/+197 bp sequences upstream of the luciferase coding region. Mutations were
introduced to disrupt binding to Sp1 (mSp), the non-canonical E-box (mE), AP-2 (mAP2), AML3
(mAML) and IK-1 (mIK1) response elements. Luciferase activity was measured 48 h after
transfection relative to β-galactosidase activity [relative luciferase units (RLU)]. Data are means ±
S.D. of triplicate measurements of one experiment representative of 3 independent experiments. *,
P<0.01 v. WT.

Suppl. FIG 3: Correlation of Pss1 transcript levels in mouse tissues with binding of nuclear
factors to -308/-274 region of the Pss1 promoter. (A): nuclear extracts from brain and liver were
isolated from mice between birth (day 0) and day 21. EMSAs were performed with 20 μg protein
and [32P]-labeled -308/-274 bp fragment. Protein-DNA complexes were resolved by 6% non-
denaturing polyacrylamide gel electrophoresis and detected by autoradiography. Data are
representative of 2-3 independent experiments with similar results. (B): Pss1 transcript levels in
brain and liver from neonatal and 21-day-old mice. mRNA levels of Pss1 and four reference genes
cyclophilin A, CypA; beta-actin, ActB; glyceraldehyde 3-phosphate dehydrogenase, Gapdh;
hypoxanthine phosphoribosyltransferase-1, Hprt1) were measured by real-time qPCR. The graph
shows normalized Pss1 transcript levels using geNorm software (http://medgen.ugent.be). Data are
means ± S.D. from at least 3 independent experiments.
Suppl. FIG 4: *Pss1* and *Pss2* mRNA levels in neurons and astrocytes. Primary cortical neurons (white bars) and astrocytes (grey bars) were isolated from 1-day-old rats. *Pss1* and *Pss2* mRNA levels were quantified by qPCR relative to the amount of cyclophilin A mRNA (left) or β-actin mRNA (right). Results are averages ± S.D. of 3 independent experiments.

Suppl. FIG 5: Nuclear extracts from rat and mouse (brain and cerebral cortex) exhibit similar binding patterns with promoter fragments. Nuclear extracts from whole brain and cerebral cortex (B and C, respectively) of 1-day-old rats and mice were used in binding reactions with [32P]-labeled -308/-274 bp or -272/-251 bp fragments of the mouse *Pss1* promoter. Protein-DNA complexes were resolved by 5% (left panel) or 6% (right panel) non-denaturing polyacrylamide gel electrophoresis and visualized by autoradiography. Left: 10 µg protein; right: 20 µg protein. Arrows indicate protein-DNA complexes. Data are representative of at least 3 independent experiments.
Suppl. FIG 2

A.

\[
\begin{align*}
-600 & \text{GCGCGCAGGC GTCGGAGAGG TCTGAGCTAC AGCTGAGCCG GACGTATAAC CCGGTGGAGG} +401 \\
& \text{Sp1(c)} \\
-400 & \text{GCGCGCTGCC CAGGCAGCTA GGGGGGCTGAC AGCTGAGCCG} -341 \\
-340 & \text{GTACCTCTGC AGACGGCGCA TACGGGGGAC GGGGGCCGCC CACGTGGCTGC} -201 \\
& \text{Sp1(c)} \quad \text{NMybShift} \\
-280 & \text{GGCTGGA/GTG GGGAGAAAACGG CCGGGGAGG GACCGGGCGG GGGACGGAGA -221} \\
& \text{non-canonical E-box} \\
-220 & \text{CAGACCTGCAG TGGGATTGGAGA CAGCCGCTGG AGCCGTGTGC CGGGGTCCCA GGATGACCA -161} \\
& \text{AP-2 FAML-3 (+)} \\
-100 & \text{CTCCGCGGTA ATGSGGGAG GGTGAGACT CTCAGATGTG CCGCTACTAG GCTGCTTCTT -101} \\
-100 & \text{GACGCTGCT GTCGGCCGC AGGCGGGCAG GGGGGGGGCG GGGGGGGCG CCGCTCTCGG} +41 \\
+40 & \text{GGGGGTCTC TCTCTGCAG ACGACCTTC TACGGGGC ACGCCGGC CGCGGTACAG +20} \\
& \text{NF-kB} \\
+21 & \text{GACACCTGCAG TGGGATTGGAGA CAGCCGCTGG AGCCGTGTGC CGGGGTCCCA GGATGACCA -69} \\
+81 & \text{CAGAGGCGAGCAGGAGAGAAGAGATGATTGCTCTCTCTCCGAGGAGAGAGAGCTCAGG} \\
& \text{CAAGATGATATGACTGAGGATAGTGATTCGAGTTCCGCGATCATACGAGGAGAGAGAGAGATGAGA} +197
\end{align*}
\]

B.

Nuclear Extract:

\[\text{Sp1 supershift}\]

Lane: 1 2 3 4 5 6 7 8

C.

Luciferase Activity (RLU)

	WT	mSp	mE	mSp/mE	mE/mK1	mSp/mK1	mE/mK1
	60	50	40	30	20	10	0

* indicates significant difference.
Suppl. FIG 3

days after birth:	0	5	10	21
(-308/-274)Pss1 probe				

A.

- **Brain**
- **Liver**

B.

- ![Brain mRNA Levels](chart)
- ![Liver mRNA Levels](chart)
Suppl. FIG 4
