On Narrow Operators from L_p into Operator Ideals

Jinghao Huang, Marat Pliev and Fedor Sukochev

Abstract. It is well known that every l_2-strictly singular operator from L_p, $1 < p < \infty$ to any Banach space X with an unconditional basis is narrow. In this article, we extend this result to the setting of Banach spaces without an unconditional basis. We show that if $1 \leq p, r < \infty$, then every ℓ_2-strictly singular operator T from L_p into the Schatten–von Neumann r-class C_r is narrow. This is a noncommutative complement to results in Mykhaylyuk et al. (in Israel J Math 203:81–108, 2014).

Mathematics Subject Classification. Primary 47B38, 46E30, 47B07.

Keywords. Narrow operators, ℓ_2-strictly singular operators, operator ideals.

1. Introduction

Let $F(0,1)$ be a separable symmetric function space of (classes of equivalent) Lebesgue measurable functions on $(0,1)$. Suppose that A is a measurable subset of $(0,1)$. By a sign on A we mean an element $x \in L_\infty(0,1)$ with $\text{supp } x = A$ which takes values in $\{-1, 0, 1\}$. We say that $x \in F(0,1)$ is a mean zero sign on A if x is a sign on A and $\int_0^1 x \, d\mu = 0$. Let X be a Banach space and $L(F(0,1), X)$ be the space of all bounded linear operators from $F(0,1)$ into X. We say that a linear operator $T \in L(F(0,1), X)$ is narrow if for every $\varepsilon > 0$ and every measurable set $A \subset (0,1)$, there exists a mean zero sign x on A, such that $\|Tx\|_X < \varepsilon$. The notion of narrow operators was formally introduced by Plichko and Popov [18] for operators acting on symmetric function spaces (in fact, the study of operators of this type goes back to Bourgain, Ghoussoub and Rosenthal, see [18,19,22] and references therein).

In 1990, Plichko and Popov [18] asked whether every ℓ_2-strictly singular operator $T : L_p \rightarrow X$ is necessarily narrow (see also [19] and [20], Problem...
1.6]). Here, an operator T is said to be ℓ_2-strictly singular if it is not an isomorphism when restricted to any isomorphic copy of ℓ_2 in L_p.

When $1 \leq p < 2$ and $p < r$, it is proved in [13, Theorem 5] that every operator $T : L_p \to \ell_r$ is narrow. It is also known that when $1 \leq r < 2$ and $1 \leq p < \infty$, every operator $T : L_p \to \ell_r$ is narrow [18, Proposition 2].

The remaining cases were settled in [16]. Precisely, [16, Theorem A] shows that every $T : L_p \to \ell_r$ is narrow when $1 \leq p < \infty$ and $1 \leq r \neq 2 < \infty$ or $1 \leq p < 2$ and $r = 2$. Moreover, when $p > 2$ and $r = 2$, there exists a non-narrow operator $T : L_p \to \ell_2$ [16, Example 1.1]. Finally, [16, Theorem B] asserts that every ℓ_2-strictly singular operator $T : L_p \to X$ is necessarily narrow provided that X has an unconditional basis.

The main objective of this paper is to establish a noncommutative generalization of [16, Theorems A and B] for the situation where we deal with ℓ_2-strictly singular operators $T : L_p \to X$ if the space X does not possess an unconditional basis. For all unexplained notions and notations we refer the reader to [1,11,12].

Let E be a separable symmetric sequence space $[2,14]$, that is, a Banach space of sequences such that the standard unit vectors e_n’s, $n = 1, 2, 3, \ldots$, (defined by $e_n(j) = \delta_{n,j}$) form a normalized, 1-symmetric basis of E. Let C_E be the ideal in $B(\ell_2)$ corresponding to E (see [2,14]), i.e., the Banach space of all compact operators x on ℓ_2 for which $s(x) \in E$, normed by

$$\|x\|_{C_E} = \|s(x)\|_E.$$

Here, $s(x) = \{s_n(x)\}_{n=1}^\infty$ is the sequence of s-numbers of x, i.e., the eigenvalues of $|x| = (x^*x)^{1/2}$ arranged in a non-increasing ordering, counting multiplicity. In the case when $E = \ell_p$, the ideal C_{ℓ_p} is denoted simply by C_p.

Let $\{e_{ij}\}_{i,j \geq 1}$ be the matrix unit of C_E. Let T_E be the upper triangular part of C_E, i.e., $x \in T_E$ if and only if $x := (x_{ij}) \in C_E$ with $x_{ij} = 0$ when $i > j$.

Note that all preceding results in this area are established only for spaces X either with unconditional bases or for Banach lattices [19], whereas the spaces C_E do not even possess the local unconditional structure [7]. In particular, it follows from [10] that the ideal C_E has an unconditional basis if and only if it coincides with the Hilbert–Schmidt ideal.

Our approach to the study of narrow operators $T : L_p \to X$ when $X = T_E$ or $X = C_E$ is based on a fundamental fact that the spaces T_E admit the finite-dimensional unconditional (Schauder) decomposition (UFDD) given by elements $\{\text{span}\{e_{ij}\}_{1 \leq i \leq j}\}_{j \geq 1}$ (see for details [2, Proposition 4.9]). Recall also that T_E is isomorphic to C_E when E has non-trivial Boyd indices [2, Theorem 4.7] (see also [3, Proposition 2] and [15]).

This setting has been already explored in [8], where assuming the so-called 2-co-lacunary property (see [25]), the authors of the present article obtained a noncommutative version of [18, Proposition 2]. Precisely, since C_r, $r \leq 2$, is 2-co-lacunary, it follows from [8, Theorem 4.3 and Remark 4.4] that every ℓ_2-strictly singular operator $T : L_p \to C_r$ is narrow when $1 \leq p < \infty$ and $1 \leq r \leq 2$. However, the case of $r > 2$ remains unresolved and this case cannot be treated by methods from [8].
The following theorem is a noncommutative analogue of [16, Theorem A], which answers Plichko and Popov’s question for Banach spaces C_r, $r > 2$ and resolves the unanswered cases in [8]. Our proof is motivated by an extended version of reproducibility hatched within noncommutative analysis in [4]. Based on a careful analysis of approach used in [16], we obtain a slight extension of [16, Proposition 3.1] concerning on the reproducibility (with respect to non-narrow operators) of the Haar basis in L_p (see Proposition 2.2 below). Our approach is applicable to a much wider class of operator ideals than the class of (Schatten–von Neumann ideals) C_r, $2 < r < \infty$. The main result of the present paper, Theorem 1.1 below, is stated for ideals C_E, for which the symmetric space E is satisfying an upper r-estimate (see, e.g. [12]), which extends and complements results in [6,8,13,16,18].

Theorem 1.1. Let $2 < r < \infty$ and let $F(0,1)$ be a separable symmetric function space having the Khintchine property. If E is a separable symmetric sequence space satisfying an upper r-estimate, then every ℓ_2-strictly singular operator $T : F(0,1) \to T_E$ is narrow.

Recall that $T_p := T_{C_p}$ is isomorphic to C_p when $p > 1$ [2, Theorem 4.7] (see also [3, Proposition 2] and [15]) and L_p has the Khintchine property when $p \in [1,\infty)$ (see, e.g. [12] or [21]). Combining Theorem 1.1 with [8, Theorem 4.3], we obtain the following corollary. Note that [16, Theorem A] does not hold if we replace ℓ_2 with C_r (i.e., there exist operators $T : L_p \to C_2$, $p > 2$, which are not narrow, see e.g. Remark 3.4 below or [16, Theorem A and Example 1.1]).

Corollary 1.2. Let $1 \leq p, r < \infty$. Every ℓ_2-strictly singular operator $T : L_p \to C_r$ is narrow.

The authors thank Professor Popov for discussion concerning results presented in [16] and [19]. We also thank the anonymous reviewer for his/her careful reading and helpful comments.

2. Proof of Theorem 1.1

Let $S(0,1)$ be the space of all Lebesgue measurable functions on $(0,1)$ equipped with Lebesgue measure m i.e. functions which coincide almost everywhere are considered identical.

For $x \in S(0,1)$, we denote by x^* the decreasing rearrangement of the function $|x|$. That is,

$$x^*(t) = \inf \{s \geq 0 : m(\{|x| > s\}) \leq t\}, \quad t > 0.$$

Definition 2.1. Let $E(0,1) \subset S(0,1)$ be a Banach space. We say that $(E(0,1), \|\cdot\|_E)$ is a symmetric function space on $(0,1)$ if whenever $x \in E(0,1)$ and $y \in S(0,1)$ are such that $y^* \leq x^*$, then $y \in E(0,1)$ and $\|y\|_E \leq \|x\|_E$.

We recall some basic terminology concerning Schauder decomposition [11, Chapter 1, Section g]. Let X be a Banach space. A sequence $(X_n)_{n=1}^{\infty}$
of closed subspaces of X is called a Schauder decomposition of X if every $x \in X$ has a unique representation of the form

$$x = \sum_{n=1}^{\infty} x_n$$

with $x_n \in X_n$ for every $n \geq 1$.

If $\{X_n\}_{n=1}^{\infty}$ is a Schauder decomposition of X and if for any $x = \sum_{n=1}^{\infty} x_n \in X$ and any sequence $\epsilon = \{\epsilon_n = \pm 1\}_{n=1}^{\infty}$, the series

$$\sum_{n=1}^{\infty} \epsilon_n x_n$$

converges in X [1, Lemma 2.4.2], then the sequence $\{X_n\}_{n=1}^{\infty}$ is said to form an unconditional Schauder decomposition of X. Moreover, the operator $M_\epsilon x := \sum_{i=1}^{\infty} \epsilon_n x_n$ is bounded and $\sup_\epsilon \|M_\epsilon\| < \infty$ (see e.g. [4] or [1, Proposition 3.1.3]).

Recall that a Schauder basis $\{x_n\}_{n=1}^{\infty}$ of a Banach space X is said to be K-reproducible for some $K \geq 1$, if for every isometric embedding of X into a space Y with a basis $\{y_k\}_{k=1}^{\infty}$ and every $\epsilon > 0$, there exists a block basis $\{z_n\}_{n=1}^{\infty}$ of $\{y_k\}_{k=1}^{\infty}$ which is $K + \epsilon$-equivalent to $\{x_n\}_{n \geq 1}$. When $K = 1$, the basis is said to be precisely reproducible. It is well-known that the Haar system in an arbitrary separable symmetric function space on $(0,1)$ is precisely reproducible [12, Theorem 2.c.8] (see also [17]).

In noncommutative analysis, there is a more useful notion of reproducibility. A Schauder basis $\{x_n\}_{n=1}^{\infty}$ of a Banach space X is said to be precisely finite-dimensional decomposition (FDD)-reproducible, if for every isometric embedding of X into a space Y with a finite-dimensional decomposition $\{Y_n\}_{n \geq 1}$ and every $\epsilon > 0$, there exists an increasing sequence $\{q_n\}_{n \geq 1}$ of positive integers and a basic sequence of elements $z_n = \sum_{q_n \leq k \leq q_{n+1} - 1} \lambda_k y_k$ ($y_k \in Y_k, \lambda_k \in \mathbb{R}$), which is $(1 + \epsilon)$-equivalent to $\{x_n\}$. It was observed in [4, Theorem 5.2] that [12, Theorem 2.c.8] can be improved, that is, the Haar system in an arbitrary separable symmetric function space is precisely FDD-reproducible.

In [16, Proposition 3.1], Mykhaylyuk et al. considered the reproducibility of the $(L_p$-normalized) Haar system $\{h_n\}_{n \geq 1}$ with respect to non-narrow operators. Note that [16, Proposition 3.1] can be easily generalized from the case of L_p-space, $1 \leq p < \infty$, to the case where $F(0,1)$ is an arbitrary separable symmetric space on $(0,1)$. The following proposition is a slight generalization of [16, Proposition 3.1] with respect to the FDD-reproducibility.

Proposition 2.2. [16, Proposition 3.1] Suppose that $F(0,1)$ is an arbitrary separable symmetric function space, X is a Banach space with a basis (e_n), $T \in L(F(0,1), X)$ satisfies $\|Tx\|_X \geq 2\delta$ for each mean zero sign $x \in F(0,1)$ on $(0,1)$ and some $\delta > 0$. Let $\{X_n = \text{span}\{e_k\}_{k=1}^{n-1}\}_{n=1}^{\infty}$ be a finite-dimensional decomposition of X, where $\{q_n\}_{n \geq 1}$ is an arbitrary increasing sequence of positive integers.
Then, for each $\varepsilon > 0$, there exist an operator $S \in L(F(0,1), X)$, an increasing sequence $\{p_n\}_{n \geq 1}$ of positive integers, a normalized basis (u_n) such that $u_n = \sum_{p_k \leq n \leq p_n + 1 - 1} \lambda_k x_k$ ($x_k \in X_k, \lambda_k \in \mathbb{R}$), and real numbers (a_n) such that

1. $\|S u_n\|_X = a_n$ for each $n \in \mathbb{N}$ with $a_1 = 0$;
2. $\|S x\|_X \geq \delta$ for each mean zero sign $x \in F(0,1)$ on $(0,1)$;
3. there exists a linear isometry $V : F(0,1) \to F(0,1)$, which sends signs to signs, so that $\|S x\|_X \leq \|TV x\|_X + \varepsilon$ for every $x \in F(0,1)$ with $\|x\|_{F(0,1)} = 1$;
4. there are finite codimensional subspaces X_n's of $F(0,1)$ such that $\|S x\|_X \leq \|TV x\|_X + \frac{1}{n}$ for every sign x, then $|a_n| \geq \delta$ for each $n \geq 2$.

Proof. The proof is almost a verbatim repetition of that in [16, Proposition 3.1]. The only difference is that we need to consider a subsequence of the basis projections in the Banach space X while the proof in [16, Proposition 3.1] simply proceeded with the set of all basis projections.

More precisely, let $(P_n)_{n=1}^\infty$ be the basis projections in X with respect to the basis $\{e_k\}_{k \geq 1}$ and $P_0 = 0$. Recall that $X_n = \text{span}\{e_k\}_{k=q_n}^{q_{n+1}-1}$ for every $n \geq 1$. Let

$$Q_n = P_{q_n+1-1} \quad \text{and} \quad Q_0 = 0.$$

In particular, Q_n is the projection onto $\text{clm}\{X_k\}_{k=1}^n$. Now, the claim of Proposition 2.2 can be obtained from the proof of [16, Proposition 3.1] (see also [19, Proposition 9.10]) by simply replacing P_n with Q_n throughout. Since our other arguments repeat [16, Proposition 3.1] we omit further details. \hfill \Box

The following proposition is well known to experts [16,19]. We include a proof below for completeness.

Proposition 2.3. Let T and S be as in Proposition 2.2. If T is ℓ_2-strictly singular, then S is also ℓ_2-strictly singular.

Proof. Assume by contradiction that S is not ℓ_2-strictly singular. That is, there exists a sequence $(x_n)_{n=1}^\infty$ in $F(0,1)$ which is equivalent to the natural basis of ℓ_2, and a constant $c > 0$ such that

$$c^{-1} \|(\lambda_n)\|_{\ell_2} \leq \left\| \sum_{n=1}^\infty \lambda_n x_n \right\|_{F(0,1)} \leq c \|(\lambda_n)\|_{\ell_2}, \quad \forall (\lambda_n) \in \ell_2 \quad (2.1)$$

and a constant $C > 0$ such that

$$C^{-1} \|(\lambda_n)\|_{\ell_2} \leq \left\| S \left(\sum_{n=1}^\infty \lambda_n x_n \right) \right\|_X \leq C \|(\lambda_n)\|_{\ell_2}, \quad \forall (\lambda_n) \in \ell_2. \quad (2.2)$$

Let $k \in \mathbb{N}$ be so large that $\frac{1}{k} (1 + \frac{1}{k})^2 \leq \frac{1}{2} c^{-1} C^{-1}$. By (4) of Proposition 2.2, there is a finite codimensional subspace X_k of $F(0,1)$ such that

$$\|S x\| \leq \|TV x\| + \frac{1}{k}, \quad (2.3)$$
for every $x \in X_k$ with $\|x\| = 1$.

Since every subspace with finite codimension in a Banach space is complemented [23, Lemma 4.21], it follows that there exists a bounded projection P from $F(0, 1)$ onto X_k. Since (x_n) is weakly null, it follows that $(1 - P)x_n$ is weakly null. Since X_k is finite-codimensional, it follows that $(1 - P)x_n \to 0$ in $\|\cdot\|_{F(0, 1)}$. Therefore, passing to a subsequence if necessary, we may assume that the sequence

$$\{y_n := P(x_n)\}_{n \geq 1} \subset X_k$$

is $(1 + \frac{1}{k})$-equivalent to the basic sequence $\{x_n\}$ and is $c(1 + \frac{1}{k})$-equivalent to the natural basis of ℓ_2. By (2.1) and (2.2), we have

$$c^{-1}(1 + \frac{1}{k})^{-1} \|\lambda\|_{\ell_2} \leq \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0, 1)} \leq c(1 + \frac{1}{k}) \|\lambda\|_{\ell_2}, \forall (\lambda_n) \in \ell_2.$$ (2.4)

Passing to a subsequence if necessary, we may assume that

$$C^{-1}(1 + \frac{1}{k})^{-1} \|\lambda\|_{\ell_2} \leq \left\| S(\sum_{n=1}^{\infty} \lambda_n y_n) \right\|_X \leq C(1 + \frac{1}{k}) \|\lambda\|_{\ell_2}, \forall (\lambda_n) \in \ell_2.$$ (2.5)

For any $\sum_{n=1}^{\infty} \lambda_n y_n \in F(0, 1)$ such that $\|\sum_{n=1}^{\infty} \lambda_n y_n\|_{F(0, 1)} = 1$, we have

$$c^{-1}C^{-1} \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0, 1)} \leq (1 + \frac{1}{k})C^{-1} \|\lambda\|_{\ell_2} \leq (1 + \frac{1}{k})^2 \left\| S(\sum_{n=1}^{\infty} \lambda_n y_n) \right\|_X \leq (1 + \frac{1}{k})^2 \left\| TV(\sum_{n=1}^{\infty} \lambda_n y_n) \right\|_X + \frac{1}{k}(1 + \frac{1}{k})^2.$$ (2.6)

Recall that $\frac{1}{k}(1 + \frac{1}{k})^2 \leq \frac{1}{2}c^{-1}C^{-1}$. For any $\sum_{n=1}^{\infty} \lambda_n y_n \in F(0, 1)$ such that $\|\sum_{n=1}^{\infty} \lambda_n y_n\|_{F(0, 1)} = 1$, we have

$$\frac{1}{2}c^{-1}C^{-1} \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0, 1)} = c^{-1}C^{-1} \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0, 1)} - \frac{1}{2}c^{-1}C^{-1} \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0, 1)}$$

$$= c^{-1}C^{-1} \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0, 1)} - \frac{1}{2}c^{-1}C^{-1}$$
\[\leq c^{-1}C^{-1} \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0,1)} - \frac{1}{k}(1 + \frac{1}{k})^2 \]

\[\leq (1 + \frac{1}{k})^2 \left\| TV \left(\sum_{n=1}^{\infty} \lambda_n y_n \right) \right\|_X, \quad (2.6) \]

and, therefore,

\[\frac{1}{2}c^{-1}C^{-1} \left\| V \left(\sum_{n=1}^{\infty} \lambda_n y_n \right) \right\|_{F(0,1)} = \frac{1}{2}c^{-1}C^{-1} \left\| \sum_{n=1}^{\infty} \lambda_n y_n \right\|_{F(0,1)} \]

\[\leq \left(1 + \frac{1}{k} \right)^2 \left\| TV \left(\sum_{n=1}^{\infty} \lambda_n y_n \right) \right\|_X \]

\[\leq \left(1 + \frac{1}{k} \right)^2 \left\| T \right\| \left\| V \left(\sum_{n=1}^{\infty} \lambda_n y_n \right) \right\|_{F(0,1)}. \]

Hence, \(T \) is an isomorphism on \(\operatorname{span} \{ Vy_n \}_{n=1}^{\infty} \). However, by (2.4) and the fact that \(V \) is an isometry, \(\operatorname{span} \{ Vy_n \}_{n=1}^{\infty} \) is isomorphic to \(\ell_2 \), which contracts the assumption that \(T \) is \(\ell_2 \)-strictly singular. \(\square \)

Throughout this section by \((h_n)_{n=1}^{\infty} \) is denoted the \(L_\infty \)-normalized Haar system. Let

\[r_m := \sum_{k=1}^{2^m} h_{2^m+k}, \quad m = 0, 1, \ldots \]

be \(m \)th Rademacher function.

We say that a symmetric function space \(E(0,1) \) has the Khintchine property if the Rademacher system in \(E(0,1) \) is equivalent to the natural basis of \(\ell_2 \). In particular, \(L_p(0,1), p \geq 1 \), has the Khintchine property (see e.g. [12,21]).

2.1. Proof of Theorem 1.1

Before proceeding to the proof of Theorem 1.1, we need one more auxiliary result.

Proposition 2.4. Let \(F(0,1) \) be a separable symmetric function space having the Khintchine property and \(E \) be a separable symmetric sequence space. Let \(T_E \) be the upper triangular part of the separable symmetric ideal \(C_E \) corresponding to \(E \). Let \(S: F(0,1) \to T_E \) be defined as in Proposition 2.2 by taking \(X = T_E \) with FDD \(X_n := \operatorname{span} \{ e_{in} \}_{i \leq n} \).

Assume, in addition, that \(S \) is an \(\ell_2 \)-strictly singular operator. There exists a subsequence \((n_m)_{m \geq 1} \) of \(\mathbb{N} \) such that

\[\|Sr_{n_m} - y_m\|_{T_E} \leq \frac{\delta}{2m}. \]
where \((y_m)\) is a sequence of elements in \(T_E\) which are disjointly supported from the left and the right.\(^1\)

Proof. Let

\[
P_N = \sum_{i=1}^{N} e_{ii}. \tag{2.7}
\]

By Proposition 2.2, \((Sr_n)\) is a sequence in \(T_E\), which are disjointly supported from the right. Indeed, every non-zero element in \(X_n\) has its right support equal to \(e_{nn}\). By Proposition 2.2, \(r(Sh_n) \leq \sum_{k=p_{n+1}-1}^{p_n} e_{ii}\) for some strictly increasing sequence \(\{p_n\}_{n \geq 1}\). Therefore, \(Sr_n\)'s are disjointly supported from the right.

Let \(n_1 = 1\) and let \(y_1 = Sr_1\). By Proposition 2.2, there exists a positive integer \(N_1\) large enough such that

\[
P_{N_1}Sr_1P_{N_1} = Sr_1.
\]

We claim that \(P_{N_1}Sr_n \to 0\) in \(T_E\) as \(n \to \infty\). Otherwise, if

\[
\liminf_{n \to \infty} \|P_{N_1}Sr_n\|_{T_E} > \delta', > 0,
\]

then, passing to a subsequence of \((r_n)\) if necessary, we obtain the existence of an integer \(m\) with \(m \leq N_1\) such that

\[
\liminf_{n \to \infty} \|(P_m - P_{m-1})Sr_n\|_{T_E} \geq \frac{\delta'}{N_1} > 0.
\]

Indeed, if \(\liminf_{n \to \infty} \|(P_m - P_{m-1})Sr_n\|_{T_E} < \frac{\delta'}{N_1}\) for all \(m \leq N_1\), then by the triangle inequality, we have \(\liminf_{n \to \infty} \|P_mSr_n\|_{T_E} < \delta\), which is a contradiction. Passing to a subsequence, we may assume that \(\|(P_m - P_{m-1})Sr_n\|_{T_E} \geq \frac{\delta'}{N_1}\) for all \(n\). Denoting \(e_{mm}(Sr_n)(e_{mm}(Sr_n))^* = e_{mm}(Sr_n)(Sr_n)^*e_{mm} = ae_{mm}\) for some \(a \geq 0\), we have

\[
\frac{\delta'}{N_1} \leq \|(P_m - P_{m-1})Sr_n\|_{T_E} = \|e_{mm}Sr_n\|_{T_E}
= \|s(e_{mm}Sr_n)\|_{E} = \|s(e_{mm}Sr_n(e_{mm}Sr_n)^*)^{1/2}\|_{E}
= \|s(ae_{mm})^{1/2}\|_{E} = a^{1/2}.
\]

Hence, \(e_{mm}(Sr_n)(Sr_n)^*e_{mm} = ae_{mm} \geq \left(\frac{\delta'}{N_1}\right)^2 e_{mm}\). Moreover, since \(Sr_n\)'s are disjointly supported from the right, it follows that for any \((\alpha_n) \in \ell_2\), we have

\(^1\) Let \(z \in C_E\). We denote by \(l(z)\) (resp. \(r(z)\)) the left (resp., right) support of \(x\). Let \(x, y \in C_E\). If \(l(x)l(y) = y\) (resp., \(r(x)r(y) = 0\)), then \(x\) and \(y\) are said to be disjointly supported from the left (resp., disjointly supported from the right).
\[s \left((P_m - P_{m-1}) \sum_{n=1}^{\infty} \alpha_n Sr_n \right) \overset{(2.7)}{=} s \left(e_{mm} \sum_{n=1}^{\infty} \alpha_n Sr_n \right) \]
\[= s \left(e_{mm} \sum_{n=1}^{\infty} \alpha_n Sr_n (e_{mm} \sum_{n=1}^{\infty} \alpha_n Sr_n)^* \right)^{1/2} \]
\[= s \left(e_{mm} \sum_{n=1}^{\infty} |\alpha_n|^2 (Sr_n)^* e_{mm} \right)^{1/2} \]
\[\geq s \left(\sum_{n=1}^{\infty} |\alpha_n|^2 \left(\frac{\delta'}{N_1} \right)^2 e_{mm} \right)^{1/2} \]
\[= \left(\frac{\delta'}{N_1} \| (\alpha_n) \|_{\ell_2} : 0, 0, 0, \ldots \right). \quad (2.8) \]

Hence, for any \((\alpha_n) \in \ell_2\), we have
\[
\frac{\delta'}{N_1} \| (\alpha_n) \|_{\ell_2} \overset{(2.8)}{\leq} \left\| (P_m - P_{m-1}) \sum_{n=1}^{\infty} \alpha_n Sr_n \right\|_{T_E} \leq \left\| P_{N_1} \sum_{n=1}^{\infty} \alpha_n Sr_n \right\|_{T_E} \leq \left\| \sum_{n=1}^{\infty} \alpha_n S r_n \right\|_{T_E} \leq \| S \| \left\| \sum_{n=1}^{\infty} \alpha_n r_n \right\|_{F(0,1)} \leq c(p) \| (\alpha_n) \|_{\ell_2},
\]
where \(c(p)\) is a positive constant depending on \(p\). This contradicts the fact that \(S\) is \(\ell_2\)-strictly singular. Hence,
\[P_{N_1} S r_n \to 0, \]
in \(T_E\) as \(n \to \infty\). There exists a positive integer \(n_2\) such that
\[\| P_{N_1} S r_{n_2} \|_{T_E} \leq \frac{\delta}{4}. \]

By Proposition 2.2, there exists a positive integer \(N_2\) sufficiently large such that
\[Sr_{n_2} = P_{N_2} S r_{n_2}. \]

We have
\[\| S r_{n_2} - (P_{N_2} - P_{N_1}) S r_{n_2} \|_{T_E} = \| P_{N_1} S r_{n_2} \|_{T_E} \leq \frac{\delta}{4}. \]

Observe that \((P_{N_2} - P_{N_1}) S r_{n_2}\) and \(y_1\) are disjointly supported from the left and the right. We define \(y_2 := (P_{N_2} - P_{N_1}) S r_{n_2}\).

Continuing the procedure, we construct a sequence of integers \((n_m)\) and a sequence \((y_m)\) of elements in \(C_E\) which are disjointly supported from the left and the right such that
\[\| S r_{n_m} - y_m \|_{T_E} \leq \frac{\delta}{2m}. \]

This completes the proof. \(\square\)

Now, we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let \(r > 2 \). Let \(\{e_{ij}\}_{j \geq 1} \) be the natural Schauder basis of \(T_E \) (e.g. in the induced rectangular ordering [15]). Suppose that \(T \in L(F(0,1), T_E) \) is not narrow. Without loss of generality, we may assume that there exists a positive number \(\delta \) such that \(\|Tx\|_{T_E} \geq 2\delta \) for any mean zero sign \(x \) on \((0,1)\). Applying Proposition 2.2 by taking \(\varepsilon < \|T\| \), \(X = T_E \) and \(X_n = \text{span}\{e_{i,n}\}_{1 \leq i \leq n} \), we can choose an operator \(S \in L(F(0,1), T_E) \) such that

\[
\|S\| \leq 2 \|T\|, \tag{2.9}
\]

and for which conditions (1)–(4) in Proposition 2.2 hold. By Proposition 2.3, \(S \) is \(\ell_2 \)-strictly singular. By Proposition 2.4, we may assume that there exists a subsequence \((n(m))_{m \geq 1} \) of \(\mathbb{N} \) such that \(n(m) \)'s are odd numbers and \((Sr_{n(m)}) \) is equivalent to a basic sequence of elements in \(T_E \) which are disjointly supported from the left and the right. We consider

\[
\{h_{2^n(m)+i}\}_{m \geq 1, 1 \leq i \leq 2^n(m)}.
\]

Let \(C > 0 \) and \(N \in \mathbb{N} \). We denote

\[
I_m^k := \text{supp} \ h_{2^n+k} = \left[\frac{k-1}{2^m}, \frac{k}{2^m} \right).
\]

We define

\[
f := C \sqrt{\frac{2^{n+1}}{N}} \sum_{m=1}^{2^n+1} \sum_{k=1}^{2^n+1} \bar{r}_{2^n+1+k} = C \sqrt{\frac{2^{n+1}}{N}} \sum_{m=1}^{2^n+1} r_{n(m)}.
\]

Since \(Sr_{n(m)} \) is equivalent to a sequence of elements in \(T_r \) which are disjointly supported from the left and the right and \(E \) satisfies an upper \(r \)-estimate with \(r > 2 \), we have

\[
\|Sf\|_{T_E} = \left\| \frac{C}{\sqrt{N}} \sum_{m=1}^{2^{n+1}} S(r_{n(m)}) \right\|_{T_E} \leq \frac{C}{\sqrt{N}} \left(\sum_{m=1}^{2^{n+1}} \|S(r_{n(m)})\|_{T_E}^r \right)^{1/r}
\]

\[
\leq \frac{C}{\sqrt{N}} \|S\| \left(\sum_{m=0}^{N} \|r_{n(m)}\|_{F(0,1)}^r \right)^{1/r} \leq 2C \|T\| (N+1)^{1/r} N^{-\frac{1}{r}}. \tag{2.9}
\]

Since \(r > 0 \), it follows that

\[
\|Sf\|_{T_E} \to 0, \text{ as } N \to \infty.
\]

Our goal is to select a subset \(J \) of \(\{2^{n(m)} + k\}_{m \geq 1, 0 \leq i \leq 2^n(m) - 1} \) such that

\[
g = \frac{C}{\sqrt{N}} \sum_{n \in J} \bar{r}_n \text{ is close enough to a sign.}
\]

Set

\[
A := \left\{ \omega \in [0,1] : \max_{j \in \{2^{n(m)} + k\}_{m \geq 1, 1 \leq k \leq 2^n(m)}} \left| \frac{C}{\sqrt{N}} \sum_{i=2^{n(m)}+k}^{2^{n(m)}+k} \bar{r}_i(\omega) \right| > 1 \right\},
\]

and

\[
\tau(\omega) = \begin{cases}
\min \left\{ j \in \{2^{n(m)} + k\}_{m \geq 1, 1 \leq k \leq 2^n(m)} : \left| \frac{C}{\sqrt{N}} \sum_{i=2^{n(m)}+k}^{2^{n(m)}+k} \bar{r}_i(\omega) \right| > 1 \right\}, & \text{if } \omega \in A, \\
2^n(N) + k, & \text{if } \omega \notin A \text{ and } \omega \in I_{n(N)}^k.
\end{cases}
\]
Observe that if $\tau(\omega) = 2^{n(m)} + k$, then $\omega \in I^k_{n(m)}$ (see, e.g. the argument in [16, p.94] and [19]). Further, if there exists $\omega \in I^k_{n(m)}$ with $\tau(\omega) \geq 2^{n(m)} + k$, then we have

$$\tau(\xi) \geq 2^{n(m)} + k$$ \hspace{2cm} (2.10)

for every $\xi \in I^k_{n(m)}$. Indeed, since $\omega \in I^k_{n(m)}$, for every $z < 2^{n(m)} + k$ and every $\xi \in I^k_{n(m)}$, we have $h_z(\omega) = h_z(\xi)$. Thus,

$$\left| \frac{C}{\sqrt{N}} \sum_{p=2^n+1, j \leq 2^{n(m)}+k-1} \bar{h}_p(\xi) \right| = \left| \frac{C}{\sqrt{N}} \sum_{p=2^n+1, j \leq 2^{n(m)}+k-1} \bar{h}_p(\omega) \right| \leq 1.$$

Hence, $\tau(\xi) \geq 2^{n(m)} + k$.

Now, we define a set

$$J := \{ j = 2^{n(m)} + k \leq 2^{n(N)} + 1 : \exists \omega \in I^k_{n(m)} \text{ with } \tau(\omega) \geq j \}$$

$$= \{ j = 2^{n(m)} + k \leq 2^{n(N)} + 1 : \forall \xi \in I^k_{n(m)} \text{ with } \tau(\xi) \geq j \}.$$

Let $g : [0, 1] \rightarrow \mathbb{R}$ be defined as

$$g(\omega) = \frac{C}{\sqrt{N}} \sum_{2^{n(m)} + k \leq \tau(\omega)} \bar{h}_{2^{n(m)} + k}(\omega).$$

Observe that for every $\omega \in [0, 1]$, we have

$$\left\{ j = 2^{n(m)} + k : \omega \in I^k_{n(m)} \right\} \cap J$$

$$= \left\{ j = 2^{n(m)} + k : \omega \in I^k_{n(m)} \right\} \cap$$

$$\times \left(\bigcup_{\omega_1 \in [0, 1]} \left\{ j = 2^{n(m)} + k \leq \tau(\omega_1) : \omega_1 \in I^k_{n(m)} \right\} \right)$$

$$= \bigcup_{\omega_1 \in [0, 1]} \left\{ j = 2^{n(m)} + k \leq \tau(\omega_1) : \omega_1, \omega \in I^k_{n(m)} \right\}$$

$$= \left\{ j = 2^{n(m)} + k \leq \tau(\omega) : \omega \in I^k_{n(m)} \right\}.$$

Since

$$\bar{h}_{2^{n(m)} + k}(\omega) = 0,$$ \hspace{2cm} (2.11)

for any $\omega \notin I^k_{n(m)}$, it follows that for any $\omega \in [0, 1]$, we have

$$g(\omega) = \frac{C}{\sqrt{N}} \sum_{j \in \{ j = 2^{n(m)} + k \leq \tau(\omega) : \omega \in I^k_{n(m)} \}} \bar{h}_j(\omega)$$

$$= \frac{C}{\sqrt{N}} \sum_{j \in \{ j = 2^{n(m)} + k : \omega \in I^k_{n(m)} \} \cap J} \bar{h}_j(\omega)$$

$$\stackrel{(2.11)}{=} \frac{C}{\sqrt{N}} \sum_{j \in \{ j = 2^{n(m)} + k : \omega \in I^k_{n(m)} \} \cap J} \bar{h}_j(\omega)$$

$$+ \frac{C}{\sqrt{N}} \sum_{j \in \{ j = 2^{n(m)} + k : \omega \notin I^k_{n(m)} \} \cap J} \bar{h}_j(\omega) = \frac{C}{\sqrt{N}} \sum_{j \in J} \bar{h}_j(\omega).$$ \hspace{2cm} (2.12)
By the unconditionality of the decomposition \(\{X_n = \text{span}\{e_{i,n}\}\}_{1 \leq i \leq n} \) of \(T_E \) [2, Lemma 4.5], we have

\[
\|Sg\|_{TE} \overset{(2.12)}{=} \left\| \frac{C}{\sqrt{N}} \sum_{j \in J} S \hat{h}_j \right\|_{TE} \leq c_E \left\| \frac{C}{\sqrt{N}} \sum_{m=1}^{2N+1} \left(\sum_{k=1}^{2n(m)} S \hat{h}_{2n(m)+k} \right) \right\|_{TE} = c_E \|Sf\|_{TE} \leq c_E \cdot 2C \|T\| (N+1)^{1/r} N^{-1/2},
\]

where \(c_E > 0 \) depends on \(E \) only.

Assume that \(N \) is an odd number. By the definition of \(\tau(\omega) \) and \(g(\omega) \), for every \(\omega \in A \), we have

\[
1 < |g(\omega)| < 1 + \frac{C}{\sqrt{N}}, \tag{2.14}
\]

and for every \(\omega \in [0,1] \setminus A \),

\[
g(\omega) \neq 0. \tag{2.15}
\]

Indeed, since \(N \) is odd (that is, \(N-1 \) is even), it follows that \(\sum_{j=1}^{N-1} r_{n_j} \neq \pm 1 \) everywhere, and therefore, for \(\omega \in I_k^{n(N)} \), we have

\[
g(\omega) = \frac{C}{\sqrt{N}} \sum_{1 \leq k_1 \leq 2^{n(m)}} \hat{h}_{2^{n(m)}+k_1} (\omega)
\]

\[
= \frac{C}{\sqrt{N}} \sum_{1 \leq k_1 \leq 2^{n(N)}} \hat{h}_{2^{n(m)}+k_1} (\omega)
\]

\[
= \frac{C}{\sqrt{N}} \sum_{1 \leq k_1 \leq 2^{n(m)}} \hat{h}_{2^{n(m)}+k_1} (\omega) + \frac{C}{\sqrt{N}} \sum_{2^{n(N)}+1 \leq j \leq 2^{n(N)}+k} \hat{h}_j (\omega)
\]

\[
= \frac{C}{\sqrt{N}} \sum_{j=1}^{N-1} r_{n_j} (\omega) + \frac{C}{\sqrt{N}} \sum_{2^{n(N)}+1 \leq j \leq 2^{n(N)}+k} \hat{h}_j (\omega) \neq 0.
\]

Now, we define a function \(g \) by setting

\[
\tilde{g}(\omega) = \text{sgn}(g(\omega)).
\]

By (2.14), we have

\[
\|g - \tilde{g}\|_{F(0,1)} \leq \left\| \frac{C}{\sqrt{N}} \chi_A + \chi_{[0,1] \setminus A} \right\|_{F(0,1)}.
\]

By the Central Limit Theorem, for a sufficiently large odd number \(N \), we have

\[
\mu([0,1] \setminus A) = \mu \left\{ \omega : \left| \frac{1}{\sqrt{N}} \sum_{m=1}^{N} \sum_{k=1}^{2^{n(m)}} \hat{h}_{2^{n(m)}+k} \right| \leq \frac{1}{C} \right\}
\]
Thus,
\[
\|\chi_{[0,1]}|A\|_{F(0,1)} \leq \|\chi_{(0,\frac{1}{C})}\|_{F(0,1)}.
\]
Hence, we have
\[
\|g - \tilde{g}\|_{F(0,1)} \leq \frac{C}{\sqrt{N}} + \|\chi_{(0,\frac{1}{C})}\|_{F(0,1)}.
\]
Thus, by (2.9) and (2.13), we have
\[
\|S\tilde{g}\|_{T_E} \leq \|Sg\|_{T_E} + \|S\| \|g - \tilde{g}\|_{F(0,1)}
\leq c_E \cdot 2^C \|T\| (N + 1)^{1/r} N^{-1/2} + 2 \|T\| \left(\frac{C}{\sqrt{N}} + \|\chi_{(0,\frac{1}{C})}\|_{F(0,1)} \right).
\]
Since \(r > 2\), it follows that for every \(\delta > 0\), there exists a sufficiently large positive number \(C\) and a sufficiently large odd number \(N\) such that
\[
\|S\tilde{g}\|_{T_E} \leq \delta.
\]
It remains to observe that \(\tilde{g}\) is a mean zero sign on \([0,1]\). Indeed, since \(N\) is an odd number, it follows from (2.14) and (2.15) that the support of \(\tilde{g}\) is equal to \([0,1]\). Observe that for every \(\omega \in [0,1]\) and every \(2^n(m) + k \leq 2^{n(N)+1}, k \leq 2^{n(m)}\), we have
\[
\tilde{h}_{2^n(m) + k}(\omega) = -\tilde{h}_{2^n(m) + (2^n(m) - k)+1}(1 - \omega).
\]
Thus, \(g(\omega) = -g(1 - \omega)\) for every \(\omega \in [0,1]\), and
\[
\mu(\{\omega \in [0,1] : g(\omega) > 0\}) = \mu(\{\omega \in [0,1] : g(\omega) < 0\}).
\]
Thus, \(\tilde{g}\) is a mean zero sign on \([0,1]\), which contradicts (2) of Proposition 2.2.

3. Remarks

It is shown in [6, Theorem 1.1] that if \(T\) is a regular operator from \(L_p\) into an order continuous Banach lattice \(F\), then \(T\) is \(\ell_2\)-strictly singularity” \(\Rightarrow\) “\(T\) is narrow”. Note that [16, Theorem B] is stated for \(\ell_2\)-strictly singular operator \(T : L_p \to X\) when \(1 < p < \infty\) and \(X\) has an unconditional basis. However, a careful analysis of its proof shows that it still holds for any \(p \in [1, \infty)\) (see also [19, p.110]). By a verbatim repetition of the proof in [16, Theorem B] by replacing [16, Proposition 3.1] with Proposition 2.2, we obtain the following result for general Banach spaces, which provides an alternative proof for Theorem 1.1.

Theorem 3.1. Let \(F(0,1)\) be a separable symmetric function space having the Khintchine property and let \(X\) be a Banach space having an unconditional finite-dimensional decomposition. Then every \(\ell_2\)-strictly singular operator \(T : F(0,1) \to X\) is narrow.
The class of Banach spaces having unconditional finite-dimensional decompositions is very wide. For example, the operator ideal C_E has an UFDD when E has non-trivial Boyd indices [2, Corollary 4.6]. Let $E(0, 1)$ be a symmetric function space on the unit interval $(0, 1)$ and let $E(R)$ be the non-commutative operator space [14] affiliated with the hyperfinite II_1-factor R. Then, $E(R)$ has an UFDD [4, 24]. This opens an avenue for further extensions of Theorem 1.1.

Definition 3.2. Let $E(\mathcal{M}, \tau)$ be a noncommutative symmetric space and Y be an F-space. We call $T : E(\mathcal{M}, \tau) \to Y$ a narrow operator if for each projection $p \in \mathcal{M}$ and $\varepsilon > 0$, there exists a self-adjoint element $x \in E(\mathcal{M}, \tau)$ such that $x^2 = p$, $\tau(x) = 0$ and $\|T(x)\|_Y < \varepsilon$.

Assume that $E(0, 1)$ is a symmetric function and X is a Banach space. It is clear (see e.g. the proof of [8, Corollary 4.5]) that if all elements of $L(E(0, 1), X)$ are narrow, then every element of $L(E(\mathcal{M}), X)$ is narrow for an arbitrary atomless finite von Neumann algebra \mathcal{M} equipped with a faithful normal tracial state τ. The following result is a direct consequence of Corollary 1.2.

Corollary 3.3. Let \mathcal{M} be an atomless finite von Neumann algebra equipped with a faithful normal tracial state τ_1. Let $1 \leq p, r < \infty$. Every ℓ_2-strictly singular operator $T : L_p(\mathcal{M}) \to C_r$ is narrow.

Recall that a Banach space X is said to have infratype $q > 1$ [19, p.216] if there exists a constant $C > 0$ such that for each $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have

$$\min_{\theta_k = \pm 1} \left\| \sum_{k=1}^{n} \theta_k x_k \right\| \leq C \left(\sum_{k=1}^{n} \|x_k\|^q \right)^{1/q}.$$

It is clear that if a Banach space has type q then it has infratype q. Note that if $q < 2$, then the notions of type and infratype coincide [26].

Remark 3.4. Assume that $1 \leq p < 2$ and $r > p$. Recall that C_r has type $\min\{r, 2\}$ (see, e.g. [5]), and therefore, has infratype $\min\{r, 2\}$. By [19, Theorem 9.8], we obtain that all operators from L_p into C_r are narrow.

Assume that $p \geq 2$. Note that there exists a non-narrow operator $T : L_p \to \ell_2$ [16, Example 1.1]. Since ℓ_2 is a complemented subspace of C_r, it follows that there exists a non-narrow operator from L_p into C_r.

When $p = r = 1$, it is shown in [9] that all operators from L_1 into C_1 are Dunford–Pettis, and therefore, narrow.

The case for $1 < p < 2$ and $1 \leq r \leq p$ seems to be open, i.e., we do not know whether there exists a non-narrow operator from L_p into C_r when $1 < p < 2$ and $1 \leq r \leq p$.

Funding Information Open Access funding enabled and organized by CAUL and its Member Institutions.
Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Albiac, F., Kalton, N.: Topics in Banach space theory, Graduate Texts in Mathematics 233, Springer (2006)
[2] Arazy, J.: Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces. Integr. Equa. Oper. Theo. 1(4), 453–495 (1978)
[3] Arazy, J., Lindenstrauss, J.: Some linear topological properties of the spaces C_p of operators on Hilbert space. Compos. Math. 30, 81–111 (1975)
[4] Dodds, P., Ferleger, S., de Pagter, B., Sukochev, F.: Vilenkin systems and generalized triangular truncation operator. Integrul Equ. Oper. Theory 40, 403–435 (2001)
[5] Fack, T.: Type and cotype inequalities for noncommutative L^p-spaces. J. Oper. Theory 17, 255–279 (1987)
[6] Flores, J., Ruiz, C.: Domination by positive narrow operators. Positivity 7, 303–321 (2003)
[7] Gordon, Y., Lewis, D.: Absolutely summing operators and local unconditional structure. Acta Math. 133, 27–48 (1974)
[8] Huang, J., Pliev, M., Sukochev, F.: ℓ_2-strictly singular operators on the predual of a hyperfinite von Neumann algebra. Proc. Amer. Math. Soc. (2022). https://doi.org/10.1090/proc/15737
[9] Huang, J., Pliev, M., Sukochev, F.: A noncommutative Gretsky–Ostroy Theorem and its applications, Accepted for publication in Proc. Amer. Math. Soc.
[10] Lewis, D.R.: An isomorphic characterization of the Schmidt class. Compos. Math. 30(3), 293–297 (1975)
[11] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer-Verlag, Berlin (1977)
[12] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97. Springer-Verlag, Berlin (1979)
[13] Kadets, V., Popov, M.: On the Liapunov convexity theorem with applications to sign embeddings, Natsional’na Akademiya Nauk Ukraini. Institut Matematiki. Ukraïns’kii Zhurnal 44, 1192–1200 (1992)
[14] Kalton, N., Sukochev, F.: Symmetric norms and spaces of operators. J. Reine Angew. Math. 621, 81–121 (2008)
[15] Kwapien, S., Pelczynski, A.: The main triangle projection in matrix spaces and its applications. Studia Math. 34, 43–68 (1970)
[16] Mykhaylyuk, V., Popov, M., Randrianantoanina, B., Schechtman, G.: Narrow and \(\ell_2 \)-strictly singular operators from \(L_p \). Israel J. Math. 203, 81–108 (2014)
[17] Novikov, I., Semenov, E.: Haar Series and Linear Operators, Mathematics and its Applications, 367. Kluwer Academic Publishers Group, Dordrecht (1997)
[18] Plichko, A., Popov, M.: Symmetric function spaces on atomless probability spaces. Dissertationes Math. (Rozprawy Mat.) 306, 1–85 (1990)
[19] Popov, M., Randrianantoanina, B.: Narrow operators on function spaces and vector lattices, 45, De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (2013)
[20] Randrianantoanina, B.: On sign embeddings and narrow operators on \(L_2 \). Problems and recent methods in operator theory, 209–218, Contemp. Math., 687, Amer. Math. Soc., Providence, RI (2017)
[21] Rodin, V., Semyonov, E.: Rademacher series in symmetric spaces. Anal. Math. 1(3), 207–222 (1975)
[22] Rosenthal, H.: Convolution by a biased coin, The Altgeld Book, University of Illinois, II (1975/6)
[23] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991)
[24] Sukochev, F., Ferleger, S.: Harmonic analysis in (UMD)-spaces: applications to the theory of bases. Math. Note. 58(6), 1315–1326 (1995)
[25] Sukochev, F., Zhou, D.: 2-co-lacunary sequences in noncommutative symmetric Banach spaces. Proc. Am. Math. Soc. 148(5), 2045–2058 (2020)
[26] Talagrand, M.: Type, infratype and the Elton-Pajor theorem. Invent. Math. 107, 41–59 (1992)

Jinghao Huang
Institute for Advanced Study in Mathematics
Harbin Institute of Technology
Harbin 150001
China
e-mail: jinghao.huang@unsw.edu.au

Jinghao Huang and Fedor Sukochev
School of Mathematics and Statistics
University of New South Wales
2052 Kensington
Australia
e-mail: f.sukochev@unsw.edu.au

Marat Pliev
Southern Mathematical Institute of the Russian Academy of Sciences
Vladikavkaz 362027
Russia
e-mail: plimarat@yandex.ru
Fedor Sukochev
North Caucasus Center for Mathematical Research
362025 Vladikavkaz
Russia

Received: November 20, 2021.
Revised: January 15, 2022.
Accepted: August 3, 2022.