Large area, patterned growth of 2D MoS2 and lateral MoS2–WS2 heterostructures for nano- and opto-electronic applications

Citation for published version (APA):
Sharma, A., Mahlouji, R., Wu, L., Verheijen, M. A., Vandalon, V., Balasubramanyam, S., Hofmann, J. P., Kessels, W. M. M., & Bol, A. A. (2020). Large area, patterned growth of 2D MoS2 and lateral MoS2–WS2 heterostructures for nano- and opto-electronic applications. Nanotechnology, 31(25), Article 255603. Advance online publication. https://doi.org/10.1088/1361-6528/ab7593

Document license:
CC BY

DOI:
10.1088/1361-6528/ab7593

Document status and date:
Published: 03/04/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Large area, patterned growth of 2D MoS$_2$ and lateral MoS$_2$–WS$_2$ heterostructures for nano- and opto-electronic applications

To cite this article: Akhil Sharma et al 2020 Nanotechnology 31 255603
Large area, patterned growth of 2D MoS$_2$ and lateral MoS$_2$–WS$_2$ heterostructures for nano- and opto-electronic applications

Akhil Sharma1, Reyhaneh Mahlouji1, Longfei Wu2, Marcel A Verheijen1,3, Vincent Vandalon1, Shashank Balasubramanyam1, Jan P Hofmann2, W M M (Erwin) Kessels1 and Ageeth A Bol1

1 Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
2 Laboratory of Inorganic Materials and Catalysis, Department Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
3 Eurofins Materials Science, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands

E-mail: a.a.bol@tue.nl

Received 5 January 2020
Accepted for publication 12 February 2020
Published 7 April 2020

Abstract
The patterned growth of transition metal dichalcogenides (TMDs) and their lateral heterostructures is paramount for the fabrication of application-oriented electronics and optoelectronics devices. However, the large scale patterned growth of TMDs remains challenging. Here, we demonstrate the synthesis of patterned polycrystalline 2D MoS$_2$ thin films on device ready SiO$_2$/Si substrates, eliminating any etching and transfer steps using a combination of plasma enhanced atomic layer deposition (PEALD) and thermal sulfurization. As an inherent advantage of ALD, precise thickness control ranging from a monolayer to few-layered MoS$_2$ has been achieved. Furthermore, uniform films with exceptional conformality over 3D structures are obtained. Finally, the approach has been leveraged to obtain in-plane lateral heterostructures of 2D MoS$_2$ and WS$_2$ thin films over a large area which opens up an avenue for their direct integration in future nano- and opto-electronic device applications.

Supplementary material for this article is available online

Keywords: PEALD, MoS$_2$, patterned growth, lateral heterostructures, large area

(Some figures may appear in colour only in the online journal)

Introduction
Layered two-dimensional (2D) transition metal dichalcogenides (TMDs) offer an exciting platform for myriad optoelectronic applications owing to their ultra-thin bodies and extraordinary broad spectrum of electrical, mechanical, and optical properties [1–3]. The integration of atomically thin TMDs also gives rise to extremely interesting new physical phenomena, such as interband tunneling, optospintronics etc [4, 5]. Amongst the family of TMDs, MoS$_2$ is one of the most studied materials due to its high earth abundance, stability in ambient and amenability to get aligned in heterostructure based architectures [6]. A massive effort has been put into studying various properties of mechanically-exfoliated MoS$_2$ on the lab scale [7–11], however, the lack of homogeneous spatial distribution and low yield hinders the scalable production of 2D layers with the exfoliation method. Therefore, there is a quest for developing scalable growth techniques capable of producing high quality films with precise thickness control over large areas. To address this, bottom-up synthesis methods have been employed to produce 2D TMDs over...
large areas. Amongst these methods, chemical vapor deposition (CVD) is the most widely accepted technique [12–15], and is capable of producing high quality material with large grain size, yet it is difficult to achieve accurate control over thickness and uniformity. Moreover, the direct, large-area production of high quality TMDs on device-ready substrates with CVD remains a challenge, as the highest quality CVD material is often obtained on sapphire substrates. To be able to deposit high quality TMDs on device-ready substrates is one of the foremost prerequisites for realizing high performance electronic devices. Generally, the CVD grown TMDs are transferred to a relevant substrate using a polymer-based transfer technique which often results in polymer contamination causing interface degradation. Subsequently, the device fabrication proceeds with post patterning of transferred material involving usage of a masking layer (usually photo/electron beam resists), followed by an etching step which might further exacerbate the magnitude of degradation. One of the possible solutions to evade this issue is the patterned growth of TMDs directly on device-ready substrates which will not only reduce the device fabrication steps (i.e. typical reactive ion etching of TMDs), but also minimize the degree of possible polymer contamination inferred by the transfer process.

The patterned growth of TMDs is an important aspect for realizing advanced electronic device architectures as manifested by a recent widespread attention in the literature [16–21]. The majority of work available in the literature is based on either surface functionalization or use of pre-patterned seeded areas. The first methodology relies often on the selective blocking of TMD growth by using pristine graphene or hydrophobic polymers [16–18]. For instance, Bersch et al. have demonstrated a method based on surface modification by using a hydrophobic polymer functional layer (PFL) to preclude TMD nucleation and growth resulting in selective area growth of MoS2 [18]. Other approaches to achieve patterned growth of MoS2 is the pre-patterning of parent MoO3 material using lithography or shadow mask, and subsequent sulfurization which can produce contamination free, high quality MoS2 films with pristine surfaces [19, 22, 23]. Han et al. have demonstrated the synthesis of MoS2 monolayer islands at pre-defined locations by sulfurization of lithographically patterned bead shaped MoO3 seeds prepared by physical vapor deposition [19]. This approach has been referred to as seeded growth of MoS2 monolayers. However, small regions of multilayer material and poor pattern fidelity (irregularity in shape of flakes) were observed which is an undesirable attribute for practical applications. Young et al. have used SiN stencils to produce resist free, templated Mo films which are subsequently sulfurized to yield a MoS2 monolayer on controlled locations with sub-micron feature sizes on sapphire substrates [20]. Although, high quality and layer-controlled MoS2 films are produced by this technique, the preparatory need of the focused ion beam to pattern SiN membranes increases the overall complexity of the process and makes it challenging for industrial implementation. Additionally, the pattern scaling remains limited due to the lateral dimensions of the SiN membrane. An interesting approach by Song et al. based on pre-patterning of an Au–Mo alloy as parent material and subsequent thermal sulfurization enabled the easy transfer of patterned few-layered MoS2 to arbitrary substrates [21]. However, clustering of metal source and co-existence of unreacted Au–Mo alloy after sulfurization might deteriorate the opto-electronic properties. Given this background, it is clear that the controllable synthesis of TMDs with high crystallinity and of desired thickness, at specific locations is imperative for their successful fabrication and subsequent device integration. It is worth mentioning that the precise thickness control down to atomic scale during synthesis of TMDs is crucial as the properties of TMDs are directly governed by number of 2D layers.

Another application-oriented merit of patterned growth for 2D TMDs is the possibility to realize lateral heterostructures. These heterostructures have gained significant attention in recent years due to their potential applications for the next generation nano-electronic device schemes and more specifically as the main building blocks for tunneling field effect transistors (TFETs) [24–26]. Many groups have addressed the formation of lateral heterostructures using methods like CVD based edge epitaxy and lithography patterning [27–34]. These heterostructures are composed of a central TMD crystal surrounded by a dissimilar TMD crystal on their periphery. A wide variety of applications ranging from p–n junctions, localized photoluminescence enhancement, photovoltaics and photodetector etc have been demonstrated using these heterostructures [28–30, 33]. Although very high quality TMD heterostructures (i.e. seamless, sharp and coherent) have been obtained by using the above mentioned synthesis methods, the lack of precise control over their thickness, uniformity and geometry calls for additional alternative scalable methods.

Here, we demonstrate an atomic layer deposition (ALD) based approach to achieve transfer-free patterned growth of 2D MoS2 at predefined locations with atomic thickness control on a wafer scale in combination with high pattern fidelity. The key distinguishing feature of our approach is the use of ALD, which, inherently yields atomic-scale thickness control combined with excellent uniformity and conformality; a combination of properties not reported so far for the synthesis of lateral heterostructures. Moreover, the combination of top-down nanoscale patterning with a bottom-up chemical method eliminates the need of film transfer and any reactive ion etching step to achieve patterned growth of polycrystalline 2D MoS2. The top-down nanoscale patterning of MoO3 (deposited by PEALD) has been attained by employing electron beam lithography (EBL). The patterned MoO3 thin film serves as parent material for the controlled growth of mono- to few layered polycrystalline MoS2 at predefined locations on SiO2/Si substrates. The use of PEALD allows for low temperature processing (50 °C), which is indispensable for the primary steps in processing on top of a resist, enabling high pattern fidelity and eliminating the need of any etching step. In the second phase, the patterned MoO3 is sulfurized at high temperature (900 °C) using H2S + Ar gas. The work-flow proposed and demonstrated in this work yields thickness-controlled, large-area polycrystalline MoS2 films.
directly on device-ready substrates without the need for a transfer process. The excellent conformity over 3D structures inherent to ALD will be demonstrated in a separate experiment on a 3D nano-trench structure. In literature, it has been shown that the integration of 2D TMDs on unconventional substrates with tailored geometry/functionality can offer vast opportunities for a variety of applications including gas sensor, photo detection and imaging, optoelectronics etc [35–37]. Furthermore, our PEALD based approach provides a route towards formation of seamless in-plane lateral heterostructures of 2D MoS2 and WS2 layers in a controlled way on technologically relevant SiO2/Si substrates. We thus show a proof-of-principle by forming atomically thin 2D lateral heterostructures grown on predefined locations and with desirable shape over a large area, demonstrating the feasibility of our approach towards integration of heterostructures for nanoelectronics and opto-electronic applications.

The first three sections of this paper discuss the PEALD enabled patterned growth of MoS2 and the detailed characterization of the obtained layers, including the uniformity and conformity. The final section of paper demonstrates the formation of lateral heterostructures of MoS2 and WS2 thin layers and the related characterization. Our work presents a supplementary path to the range of approaches adopted in literature for obtaining lateral heterostructures targeting towards future generation devices and integrated circuits.

Experimental methods

Thin film growth

The MoO3 (WO3) thin films were deposited at 50 °C in an Oxford Instruments FlexAL™ ALD reactor on 4-in Si wafers with a thermally grown 90 or 450 nm thick SiO2 layer on top. The Mo (W) precursor employed was [(NtBu)2(NMe2)2Mo] and [(NtBu)2(NMe2)2W)], (98%, Strem Chemicals) and was contained in a stainless-steel canister which was heated to 50 °C. At this temperature, the vapor pressure of the precursor is reported to be 0.13 Torr [38]. The delivery lines were kept at 90 °C to avoid condensation of the precursor while the reactor walls were heated to 50 °C. For the precursor delivery to the deposition chamber, a 100 sccm Ar (>99.999% purity) bubbling flow was employed. An intermediate Ar purge step with 100 sccm of Ar flow was applied after each precursor and plasma exposure steps. As the co-reactant, an O2 plasma was employed as generated in an inductively coupled plasma (ICP) source using 50 sccm O2 gas. The plasma power was 100 W with a reactor pressure of 6.6 mTorr during the plasma step. The ALD recipe was established with the half-ALD cycle consisting of precursor dosing for 6 s followed by 6 s purge. The second half cycle consisted of 8 s of plasma exposure followed by 6 s purge. The detailed characterization of the PEALD process at 50 °C for MoO3 can be found in the previous work from our group [39].

The film thickness evolution during deposition was monitored by in situ spectroscopy ellipsometry (J A Woollam M2000F, 1.25–5 eV). For MoO3 films, a general oscillator model in the SE modeling was used to analyze the thickness evolution during PEALD process. A combination of Tauc-Lorentz and Gaussian oscillators were used to account for the interband absorption and absorption below the band gap at low photon energy (∼1 eV) respectively.

Thermal sulfurization, patterning and lateral heterostructures

MoO3 and WO3 thin films were sulfurized in a tube furnace at 900 °C under atmospheric pressure. A combination of H2S + Ar gas (10% H2S) was used as sulfurization gas. The recipe employed for thermal sulfurization is shown in figure S1 available online at stacks.iop.org/NANO/31/255603/mmedia (supporting information). The patterned MoO3 films were obtained by using conventional EBL. Poly (methyl methacrylate) (PMMA) type A4 was used as e-beam resist. For lift-off of PMMA layer, acetone (∼99.5%) was used as the solvent. A Cauchy dispersion model was used to extract the thickness of the PMMA from the SE data. Finally, the fabrication scheme for lateral heterostructures is provided in the figure S7 (supporting information).

Characterization

Raman spectroscopy (RS) and photoluminescence (PL) spectroscopy measurements were performed with a Renishaw InVia Raman microscope equipped with a 514 nm laser, integrated switchable gratings with 600 or 1800 lines/mm, and a CCD detector. For each Raman scan, 5 accumulations with acquisition time of 10 s were taken using a laser power of <0.2 mW focused on a ∼1 µm region. Atomic force microscopy (AFM) was also employed to study the surface topology of the as-deposited films. The images were acquired at room temperature on a Veeco dimension 3100 system operated in tapping mode using Al coated Si tip (PointProbe Plus-NCHR) having a radius <7 nm. Images were processed in Gwyddion software and RMS roughness was obtained statistically from a scan area of 500 × 500 nm2. The patterned structures before and after sulfurization process were characterized with a Zeiss Axio Imager 2 Optical microscope. To determine the elemental composition, x-ray photoelectron spectroscopy (XPS) was performed using a Thermo Scientific K-alpha spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with a monochromatic Al Kα x-ray radiation source (hv = 1486.6 eV). For the XPS point and line scan analyses, a 400 µm and 50 µm diameter spots were used respectively. The photoelectrons were collected at a take-off angle of 60°. The samples were neutralized during the XPS analysis using an electron flood gun in order to correct for differential or non-uniform charging. All peaks in the XPS survey scans are referenced to the binding energy of the C 1s peak of adventitious carbon (284.8 eV) for charge correction and quantification of the survey scans have been performed using Avantage software. The selectivity of MoS2 line bars was determined by energy dispersive x-ray spectroscopy (EDX) with an EDAX UMSII EDX spectrometer integrated in a scanning electron microscope (FEI Nova 600i DualBeam system). The film microstructure was studied by Transmission Spectroscopy ellipsometry.

Nanotechnology 31 (2020) 255603

A Sharma et al.
electron microscopy (TEM) analysis using a probe corrected JEOL ARM 200 F operated at 80 kV, using both the bright field TEM mode and the high angle annular dark field (HAADF) scanning TEM mode. Atomic resolution imaging of the poly-crystalline MoS2 film was performed in HAADF-STEM mode using a camera length of 20 cm; at this camera length, some diffraction contrast is present, enhancing the visibility of the crystal dimensions. For the top planar view images, MoOx films were grown on SiNx TEM windows, coated with ~5 nm ALD SiO2, which were subsequently thermally sulfurized at 900 °C. Selected area electron diffraction (SAED) patterns were acquired from a 1.3 μm diameter area on each sample. The conformality of the MoS2 ALD process was determined on substrate coupons with high aspect ratio (HAR) nanostructures. These HAR nanostructures were created by etching PECVD grown SiO2 on a Si wafer. The SiO2 nanostructures were then coated with a SiNx layer deposited by high-temperature CVD, onto which a SiO2 thin film was deposited using ALD. Prior to focused ion beam (FIB) sample preparation, the MoS2 sample was coated with a layer of spin-on epoxy to fill the remaining gaps in the trenches and to protect the film from curtaining damage during the subsequent lift-out FIB sample preparation.

Results and discussion

ALD enabled patterned growth of MoS2

A simplified scheme of the process flow which we used to obtain the patterned MoS2 films is given in figures 1(a)-(f). As shown, firstly, the SiO2/Si substrates are spin-coated with Poly (methyl methacrylate) (PMMA) and subsequently patterned using EBL (figures 1(a) and (b)). Thereafter, MoOx is deposited using low temperature PEALD (50 °C) which covers the patterned regions and the surrounding PMMA as depicted in figure 1(c). Next, the resist and unwanted MoOx are removed using standard lift-off techniques resulting in isolated patterns of MoOx (figure 1(d)). These MoOx patterns are thermally sulfurized at 900 °C (figure 1(e)), resulting in patterned MoS2 squares (10 × 10 μm2) (see figure 1(f)). It is to be noted that any residual PMMA remaining after the lift-off process is removed in the subsequent high temperature thermal sulfurization process which ensures pristine MoS2 films.

It is important to realize here that the low growth temperature (50 °C) during PEALD (figure 1(c)) is the key to attain high fidelity patterned MoS2 films. The conventional polymers (such as PMMA) used for lithography have a low glass transition temperature, low plasma etch resistance and therefore might suffer from reflooding issues and plasma damage during a standard ALD process at higher temperature. However, it has been demonstrated earlier that the use of low temperatures during PEALD enables metal oxide deposition on polymer substrates including PMMA without any reflooding issues [40]. In our case, since we also use low temperature (50 °C) during PEALD, we were able to deposit MoOx on PMMA without damage/reflooding of PMMA. In order to investigate this, we monitored the change in thickness of PMMA during MoOx deposition using *in situ* spectroscopic ellipsometry (figure S2 in supporting information). It was observed that the PMMA thickness was slightly reduced only during few initial PEALD cycles and thereafter MoOx could be deposited without any damage to the PMMA layer underneath.

The assessment of patternability attained for MoS2 (figure 1(f)) was performed using Raman spectroscopy. Figure 2(a) shows the Raman spectra for the patterned region with and without MoS2. It is clearly evident that the characteristic Raman signal is visible only for regions with MoS2 which confirms the patternability achieved using the process flow as described above. Furthermore, notably the MoS2 squares retain the pre-defined geometry and therefore yield high fidelity of the targeted patterns which is difficult to
achieve with some methods based on the ‘seeded growth’ as described previously (see figure S3 in supporting information). In order to assess the homogeneity of the film on the patterned areas, we performed a mapping of the spatial distribution of the out-of-plane Raman vibrational mode (A1g) using a diffraction-limited beam spot and a step size of ~200 nm. The out-of-plane (A1g) Raman mode is one of the characteristic vibrational modes observed for MoS2 (discussed below). Figure 2(b) shows the area map for fitted peak intensity of the A1g vibrational mode across the area shown in the optical micrograph (inset of figure 2(a)). A homogeneous Raman signal is obtained over the entirety of the patterned area and no signal is observed outside the pattern, displaying an excellent selectivity of the MoS2 films while retaining the pre-defined geometry. Further, in order to demonstrate the versatility of our process, we developed a pattern containing the acronym ‘PMP’ of our research group ‘Plasma and Material Processing’ surrounded by a monolayer MoS2. The corresponding PL map is shown in the inset of figure 2(b). The Raman frequency difference (Δ) of 20.6 cm⁻¹ (not shown) registers the presence of a monolayer on the patterned area (as discussed later).

Additionally, a SEM-EDX line scan was performed on sub-μm features (line bars) containing MoS2 film (figures 2(c) and (d)), which clearly shows the presence of Mo species only in the patterned areas and confirms the nanoscale patternability of our process. These results demonstrate the viability of our ALD based process as an effective route to achieve patternable large area synthesis of mono-to-few layered 2D MoS2 thin films.

Patterned polycrystalline 2D MoS2 films

The parent patterned MoO3 films with different thicknesses were obtained by varying the number of ALD cycles (10–60) during the PEALD process. This subsequently resulted into systematic controllability over thickness of resultant MoS2 films. The thicknesses of the initial patterned MoO3 (before sulfurization) films as assessed by in situ spectroscopic ellipsometry during the PEALD process are given in the supporting information (table S1 in supporting information). To confirm the precise controllability over number of layers in MoS2 films, AFM was used to measure the height of patterned MoS2 films. Figures 3(a) and (b) shows the AFM images for the monolayer (10 ALD cycles) and few layered (60 cycles) samples respectively. The measured heights were ~1 nm and 4.5 nm respectively. The larger measured height of ~1 nm than expected for a monolayer (0.65 nm) might be attributed to the effect of distinct tip-sample and tip-substrate interactions as reported in the literature [41]. Concurrently, the 4.5 nm (60 cycles) thick sample indicates 7–8 layers, which is in accordance with the Raman analysis (Δ = 25.8 cm⁻¹) (as discussed below) and therefore confirms the precise thickness control achievable with ALD. The topography of the films was also studied using AFM. The corresponding images are shown in figure S4 (supporting information) which reveals smooth polycrystalline films with a roughness in the range of 0.2–0.3 nm which is comparable to the roughness of the underlying Si substrate.

The thickness and crystalline quality of patterned MoS2 films with varied thickness were characterized by Raman spectroscopy. Figure 3(c) shows the progression of the Raman vibrational modes with increasing thickness of the MoS2 film on SiO2/Si substrates. The two characteristic vibrational modes (i.e. A1g and E1g) are clearly visible for all the samples investigated. The frequency difference (Δ) between the two vibrational modes generally increases with increasing number of layers present in the MoS2 film and thus is used as an indicator to determine the number of layers [42].
In our case, ‘Δ’ increases monotonically (20.6–26.2 cm\(^{-1}\)) with increasing number of MoO\(_x\) ALD cycles (from 10 to 60 cycles) which indicates the formation of monolayer to thick film (≈7 to 8 layers). Thus, by controlling the number of MoO\(_x\) ALD cycles, a systematic control over the thickness of the final MoS\(_2\) films is attained. It is noteworthy that the value of ‘Δ’ increases in a continuous manner with increasing number of ALD cycles, i.e. a value of 21.1 cm\(^{-1}\) is obtained (for 12 cycles) amidst formation of a monolayer (20.6 cm\(^{-1}\)) to bilayer (22.3 cm\(^{-1}\)) after 10 and 15 cycles, respectively. This is a consequence of the typical sub-monolayer film growth per ALD cycle.

Furthermore, it has been reported that the structural defects in the MoS\(_2\) film can be quantified by assessing a low frequency peak at ≈227 cm\(^{-1}\) in the Raman spectrum [43]. This peak is assigned to the longitudinal acoustic phonons at the M point of the Brillouin zone and denoted as LA(M) [43, 44]. The Raman spectra in figure 3(c) do not show the LA(M) mode in all the samples investigated, pointing towards a good quality of the films obtained after thermal sulfurization. Moreover, the full width half maximum (FWHM) values of the in-plane vibrational peak (E\(_{1g}\)) for all samples remain in the range of 4.6–5.0 cm\(^{-1}\), which is comparable with the typical CVD grown polycrystalline material [45–47].

The photoluminescence (PL) results are in line with the Raman analysis and the corresponding spectra are shown in figure 3(d). A strong signal at ≈674 nm and a weak shoulder at ≈623 nm are observed for a monolayer (10 ALD cycles) material, which corresponds to the A and B excitonic peaks associated with the direct band gap transitions [48]. The PL intensity subsequently becomes weaker with increasing number of layers in the MoS\(_2\) films owing to a transition to thick MoS\(_2\) with an indirect band gap [9].

The microstructure of patterned MoS\(_2\) films was characterized by high resolution transmission electron microscopy (HRTEM) analysis. The cross-sectional HAADF-STEM image for few-layered (~8 to 9 layers) MoS\(_2\) film (70 cycles) shown in figures 4(a) and (b) reveals the ordered in-plane oriented layers grown on SiO\(_2\)/Si substrate corroborating the good quality of the MoS\(_2\) film. The STEM image shown in

Figure 3. (a) and (b) AFM images of the polycrystalline mono and few-layered MoS\(_2\) films. The insets in both images show the measured height at the edge of the patterns of 1 and 4.5 nm for the mono and few-layered films respectively. (c) Raman spectra showing the progression of two vibrational modes with increasing thickness of MoS\(_2\) film. The regions with two predominant vibrational modes and LA (M) mode at low Raman frequency region (≈227 cm\(^{-1}\)) are highlighted in gray. The inset shows the increasing frequency difference (Δ) as a function of increasing film thickness (increasing number of ALD cycles for parent MoO\(_x\) film). (d) Photoluminescence (PL) spectra showing strong emission for a monolayer (10 cycles) associated with the A and B exciton at 1.85 eV and 2.0 eV, respectively. The intensity thereafter reduces as the thickness of MoS\(_2\) film increases with the increasing number of ALD cycles for parent MoO\(_x\) films.
The uniform surface coverage of polycrystalline MoS$_2$ film with grain size in the few to 50 nm range is clearly displayed. The polycrystalline nature of MoS$_2$ film is further confirmed by SAED (Figure 4(c)) which shows the closed rings corresponding to randomly oriented nanodomains. The presence of the 110 and 010 rings and the absence of a 002 ring reflects the $\langle 002 \rangle$ texture of the film.

Further, the HAADF-STEM image in Figure 4(d) reveals the hexagonal arrangement of atoms, again displaying the in-plane orientation of the MoS$_2$ layers of the 2-H phase. An additional analysis of this image is presented in Figure S5 (supporting information). The chemical composition of the films before and after sulfurization was examined by x-ray photoelectron spectroscopy (XPS). It is noteworthy to mention that the MoO$_x$ films deposited at 50 $^\circ$C before sulfurization are sub-stoichiometric in nature. This is evident from a clearly observable shoulder on the Mo3d peak corresponding to oxygen vacancies in agreement with earlier reports [38].

After sulfurization, the oxidation state of the Mo in MoS$_2$ films was found to be predominantly Mo$^{4+}$ based on the binding energy position for Mo3d peaks. The stoichiometry of the MoS$_2$ after sulfurization ranged between 2.0 and 2.2 for all samples which confirms the good quality of the films. A more comprehensive discussion of the XPS results, high-resolution spectra of Mo3d, S2p, O1s peaks with detailed peak assignments can be found in Figure S6 (supporting information).

Large area and conformal 2D MoS$_2$ films

As mentioned earlier, ALD is capable of producing films with wafer scale uniformity and high conformality on intricate structures. We therefore assessed both these attributes for our resultant MoS$_2$ films as well. In order to confirm the wafer scale uniformity of our process, a Raman line scan was performed over 9 points (1 cm apart) on a 10 cm wafer strip. Figure 5(a) shows the Raman vibrational modes corresponding to measured points for a sample with 7–8 layers

Figure 4. (a) Cross-sectional HAADF-STEM image showing a few layered (7–8 layered) MoS$_2$ film on SiO$_2$/Si substrate. (b) The magnified image clearly reveals the individual layers stacked on each other with interlayer distance of \sim0.6 nm (as highlighted). (c) Top view STEM image showing the uniform coverage of the polycrystalline MoS$_2$ film. The inset shows a selective area electron diffraction pattern from the same sample which confirms the polycrystalline, textured nature of the film. (d) High resolution STEM image showing the hexagonal atomic arrangement and the corresponding FFT pattern (inset) clearly displaying the sixfold symmetry of MoS$_2$.

The consistent Raman peaks along the scanned region reveal the homogenous crystalline nature of the MoS₂ film. In addition, figure 5(b) shows the integrated intensity ratio between two Raman vibrational modes across the measured points for samples with varying number of ALD cycles confirms the uniform nature of the film over large area. The wafer strip (~10 cm in length) with different measurement points is shown in the inset. (c) The cross-sectional TEM image shows the conformal MoS₂ coating on high-aspect ratio nanostructures. Note: the highlighted areas (—) were damaged during FIB preparation of the sample due to insufficient filling of voids by the protective epoxy film (i.e. part of the TEM sample preparation) as shown. (d) The magnified image of a curved section from one of the trench structures clearly reveals the conformal coverage of layered MoS₂ on the planar surface and side wall and thus registering the conformal nature of our PEALD based approach. The inset shows the bottom planar part of the same trench structure where the similar conformal coverage of MoS₂ is obtained.

Figure 5. (a) The plot shows the homogenous Raman spectral features throughout the 9 different scanned areas on the wafer strip (~10 cm) which is shown as inset of (b). The resultant MoS₂ film is 7–8 layers obtained in this case with 60 cycles of ALD processed for the parent MoOₓ film. (b) A consistent intensity ratio between two Raman vibrational modes across the measured points for samples with varying number of ALD cycles confirms the uniform nature of the film over large area. The wafer strip (~10 cm in length) with different measurement points is shown in the inset. (c) The cross-sectional TEM image shows the conformal MoS₂ coating on high-aspect ratio nanostructures. Note: the highlighted areas (—) were damaged during FIB preparation of the sample due to insufficient filling of voids by the protective epoxy film (i.e. part of the TEM sample preparation) as shown. (d) The magnified image of a curved section from one of the trench structures clearly reveals the conformal coverage of layered MoS₂ on the planar surface and side wall and thus registering the conformal nature of our PEALD based approach. The inset shows the bottom planar part of the same trench structure where the similar conformal coverage of MoS₂ is obtained.

(60 ALD cycles). The consistent Raman peaks along the scanned region reveal the homogenous crystalline nature of the MoS₂ film. In addition, figure 5(b) shows the integrated intensity ratio between two peaks (I(E₂g)/I(A₁g)) for samples with varying MoS₂ thickness over the 9 measured points. This integrated ratio increases slightly with increasing number of layers which is attributed to the optical field enhancement phenomenon affecting both vibrational modes equally with increasing number of layers [49]. The intensity ratios for the investigated samples with different thicknesses (i.e. 10 cycles, 30 cycles, 60 cycles) over the measured points remain spatially homogeneous which demonstrates both the high quality and large area uniformity of MoS₂ films.

The conformality of the films was investigated using high-aspect ratio (HAR) nano-sized trench structures with varying aspect ratios (depth = 394 nm and width = 44-650 nm) as shown in figure 5(c). It is evident that the 7–8 layer thick MoS₂ uniformly coats the trench structures. A magnified image of a trench structure (figure 5(d)) shows an excellent conformality on both the side walls and planar areas of the HAR structure. A markedly high conformality of 88% (side walls with respect to planar area) was evaluated for a trench structure.
with an aspect ratio (AR) of 12 (AR = depth/width). Recently, Martella et al have demonstrated a high degree of conformality for MoS2 growth on nano-trench patterns using a similar approach as ours by combining ALD and CVD [35]. It has been shown that MoS2 bending on curvatures of trenches dramatically affects the electron phonon coupling as characterized by resonant Raman scattering and thus paves the path to manipulation of opto-electronic properties of TMDs. Likewise, some next generation 3D applications based on 2D materials might get benefit from this particular aspect attainable by ALD [36]. Based on the above results, it can be concluded that ALD enables a way to synthesize layer controlled 2D MoS2 films in combination with high uniformity and excellent conformality over 3D structures.

Lateral growth of 2D heterostructures

The integration of atomically thin TMDs to create lateral heterostructures is an extremely interesting area of research for numerous future applications [4, 5]. However, despite the high technological relevance, there is still a lack of feasible methods to obtain sharp and seamless lateral stitching of heterostructures. In this context, we have leveraged our technique based on EBL and low temperature PEALD (as discussed above) to realize lateral heterostructures of MoS2 and WS2 thin films. To this purpose, we have implemented a two-step process flow identical to that as shown in figure 4 by combining the patterns of MoS2 and WS2 in a lateral fashion. The detailed description along with the simplified schematic of the process used are given in supporting information (figure S7). Figures 6(a) and (b) show the schematic cross-section and optical microscopy image of the fabricated lateral heterostructure patterns, respectively. The interface abruptness between WS2 and MoS2 was assessed by performing a Raman line scan encompassing 20 μm across the interface with a step size of 0.1 μm. The corresponding spatial distribution of intensity for out-of-plane (A1g) Raman vibrational modes for both WS2 and MoS2 is plotted in figure 6(c) which shows a smooth transition at the interface of heterojunction. This smooth transition is mainly attributed to the limited incident beam spot size (∼1 μm) which was further supported by modeling the shape of the line profiles using a normalized Gaussian distribution with Heaviside step function. The full width half maximum (FWHM) of the numerical fit for both Mo3d and W4f line profiles was on average 570.1 ± 30 nm similar to the expected diffraction limited radius of the spot size used in the Raman experiment, clearly ascertaining that the interface is sharper than 1 μm. In addition, figure 6(d) shows the XPS line scan which was performed along 700 μm over the patterns (as shown in figure 6(b)) with a step size of 5 μm. The observed periodic profiles for Mo3d and W4f scans are in complete accordance.

Figure 6. (a) Schematic cross-section of the as-fabricated structures (b) Top-view optical microscope image of the final lateral WS2/MoS2 hetero-structures with dimensions of 100 × 100 μm² (scale bar is 100 μm) (c) Raman line scan of a WS2/MoS2 heterojunction. The black and red dots represent the intensity of the A1g vibrational mode for MoS2 and WS2 respectively, while the solid line is the numerical fitting. The inset shows the region of interest probed by Raman line scan. (d) The XPS line scan across several lateral features (length of 700 μm) showing the intensity of Mo3d and W4f signals and solid line representing the numerical fit.
with the Raman line scan results and reconfirm the formation of a seamless interface. Moreover, a homogeneous line profile obtained for S2p (not shown here) for both WS2 and MoS2 regions clearly indicates towards the formation of stoichiometric thin films.

A cross sectional HAADF-STEM image of the junction in low magnification mode is shown in figure 7(a) in which the two well-defined regions of WS2 and MoS2 can be distinguished. The individual regions of WS2 and MoS2 in higher magnification mode are shown in figures 7(b) and (c) respectively. The images clearly indicate the layered structure of MoS2 and WS2 processed by the two-step synthesis technique (as mentioned earlier). In addition to HAADF-STEM images, STEM-EDX elemental mapping of the hetero-structure is provided in figure 7(d). Despite the partial overlap (~30 nm) of W and Mo, figures 7(e) and (f) respectively reveal the predominance of WS2 on the left side and MoS2 on the right side of the heterojunction further confirming the precise pattern fidelity by means of EBL. The partial overlap observed at the heterojunction is most likely due to misalignment of the adjacent patterns during EBL process used and further process optimization should mitigate this.

Conclusion

In this paper, we have demonstrated a PEALD based approach coupled with EBL which can enable patternable synthesis of 2D MoS2 over a large area without the need of a transfer process and etching. The approach has also been leveraged to obtain in-plane lateral heterostructures of 2D WS2 and MoS2 thin films which paves a path towards a broad range of future nano- and opto-electronic applications. In addition, the large area uniformity and a high conformality of the in-plane oriented layered MoS2 over intricate 3D structures have been demonstrated owing to the innate characteristics of ALD. Raman and PL spectroscopy have revealed the precise thickness control and polycrystalline nature of patterned MoS2 films with high fidelity attained by our PEALD based process. Overall, a powerful technique with high controllability and scalability has been developed which could be readily extended to form other 2D materials based heterostructures for ultrathin electronics.

Acknowledgments

This work has been funded by the European Research Council (Grant Agreement No. 648787-ALDof2DTMDs). Further, this work has also been supported by NWO and Technology Foundation STW through the VIDI program on ‘Novel bottom-up nanofabrication techniques for future carbon-nanoelectronics’. Solliance and the Dutch province of Noord Brabant are acknowledged for funding the TEM facility. The authors gratefully acknowledge J van Gerwen, C A A van Helvoirt, J J L M Meulendijks, C O van Bommel and
J J A Zeebregts for their technical assistance. Dr Beatriz Bar-
cones is acknowledged for carrying out the FIB sample
preparation for TEM analysis. The authors are also thankful
to LAM Research for providing substrates with HAR trench
nanostuctures.

ORCID iDs

Akhil Sharma † https://orcid.org/0000-0003-1837-3262

Marcel A Verheijen † https://orcid.org/0000-0002-8749-7755

W M M (Erwin) Kessels † https://orcid.org/0000-0002-7630-8226

Ageeth A Bol † https://orcid.org/0000-0002-1259-6265

References

[1] Huang X, Zeng Z and Zhang H 2013 Metal dichalcogenide
nanosheets: preparation, properties and applications Chem.
Soc. Rev. **42** 1934–46

[2] Zhang H 2015 Ultrathin two-dimensional nanomaterials ACS
Nano **9** 9451–69

[3] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C-J, Muller D and Park J 2015 High-mobility three-
atom-thick semiconducting films with wafer-scale homogeneity Nature **520** 650–60

[4] Nourbakhsh A, Zubaib A, Dresselhaus M S and Palacios T
2016 Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application Nano Lett. **16** 1359–66

[5] Gmitra M and Fabian J 2015 Graphene on transition-metal
dichalcogenides: a platform for proximity spin–orbit physics and optospintronic Phys. Rev. B **92** 135403–1

[6] Ganatra R and Zhang Q 2014 Few-layer MoS2: a promising
layered semiconductor ACS Nano **8** 4074–99

[7] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Two-dimensional atomic
crystals Proc. Natl Acad. Sci. USA **102** 10451–3

[8] Chhowalla M, Shin H S, Eda G, Li J-L, Loh K P and Zhang H
2013 The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. **5** 263–75

[9] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Photoluminescence from chemically exfoliated MoS2 Nano Lett. **11** 5111–6

[10] Coleman J N et al 2011 Two-dimensional nanosheets produced
by liquid exfoliation of layered Mater. Sci. **31** 568–71

[11] Yao Y, Lin Z, Li Z, Song X, Moon K-S and Wong C-P 2012
Large-scale production of two-dimensional nanosheets J. Mater. Chem. **22** 13494–9

[12] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrizova J-C, Ajayan P M and Lou J 2013 Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers Nat. Mater. **12** 754–9

[13] van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G-H, Heinz T F, Reifman D R, Muller D A and Hone J 2013 Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide Nat. Mater. **12** 554–61

[14] Chen J et al 2016 Chemical vapor deposition of high-quality
large-sized MoS2 crystals on silicon dioxide substrates Adv. Sci. **3** 1500033

[15] Ling X, Lee Y-H, Lin Y, Fang W, Yu L, Dresselhaus M S and Kong J 2014 Role of the seeding promoter in MoS2 growth by chemical vapor deposition Nano Lett. **14** 464–72

[16] Xi L et al 2016 Parallel stitching of 2D materials Adv. Mater. **28** 2322–9

[17] Chen X, Park Y J, Das T, Jang H, Lee J-B and Ahn J-H 2016 Lithography-free plasma-induced patterned growth of MoS2 and its heterojunction with graphene Nanoscale **8** 15181–8

[18] Brian M B, Sarah M E, Yu-Chuan L, Kehao Z, Ganesh R B, Aleksander F P, Michael L III and Joshua A R 2017 Selective-area growth and controlled substrate coupling of transition metal dichalcogenides 2D Mater. **4** 025083

[19] Han G H et al 2015 Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations Nat. Commun. **6** 6128

[20] Young J R et al 2017 Uniform large-area growth of nanotemplated high-quality monolayer MoS2 Appl. Phys. Lett. **110** 263103

[21] Song I, Park C, Hong M, Baik J, Shin H-J and Choi H C 2014
Patternable large-scale molybdenum disulfide atomic layers grown by gold-assisted chemical vapor deposition Angew. Chem. Int. Ed. **53** 1266–9

[22] Woods J M, Jung Y, Xie Y, Liu W, Liu Y, Wang H and Chai J 2016 One-step synthesis of MoS2/WSe2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films ACS Nano **10** 2004–9

[23] Xue Y et al 2016 Scalable production of a few-layer MoS2/WSe2 vertical heterojunction array and its application for photodetectors ACS Nano **10** 573–80

[24] Li M O, Yan R, Jena D and Xing H G 2016 In two-
dimensional heterojunction interlayer tunnel FET (Thin-
TFET): From theory to applications 2016 IEEE Int. Electron Devices Meeting (IEDM) (3–7 December 2016)pp 2.1–4

[25] Roy T, Tosun M, Cao X, Fang H, Lien D-H, Zhao P, Chen Y-Z, Chueh Y-L, Guo J and Javey A 2015 Dual-gated MoS2/WSe2 van der waals tunnel diodes and transistors ACS Nano **9** 2071–9

[26] Itaïkhameh H, Tan Y, Novakovic B, Klimeck G, Rahman R and Appenzeller J 2015 Tunnel field-effect transistors in 2D transition metal dichalcogenide materials IEEE J. Exploratory Solid-State Comput. Devices Circuits **1** 12–8

[27] Taghiniahd J, Eftekhar A A and Adibi A 2019 Lateral and
vertical heterostructures in two-dimensional transition-metal dichalcogenides [Invited] Opt. Mater. Express **9** 1590–607

[28] Li M-Y et al 2015 Epitaxial growth of a monolayer WSe2/MoS2 lateral p-n junction with an atomically sharp interface Science **349** 524–8

[29] Gong Y et al 2014 Vertical and in-plane heterostructures from
MoS2/MoS2 monolayers Nat. Mater. **13** 1135

[30] Gong Y et al 2015 Two-step growth of two-dimensional
WS2/MoS2 heterostructures Nano Lett. **15** 6135–41

[31] Sahoo P K, Memaran S, Xin Y, Balicas L and Gutiérrez H R 2018 One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy Nature **553** 63

[32] Zhang Z, Chen P, Duan X, Zang K, Luo J and Duan X 2017
Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices Science **357** 788–92

[33] Sahoo P K et al 2019 Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response ACS Nano **13** 12372–84

[34] Duan X et al 2014 Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Nat. Nanotechnol. **9** 1024

[35] Martella C, Ortolani L, Cianci E, Lamperti A, Morandi V and Molle A 2019 Large-area patterning of substrate-conformal MoS2 nano-trenches Nano Res. **12** 1851–4

[36] Sungwoo J, Joon K S, Hyeong-Jun K, Hyung J D, Soo-Yeon C and Hee-Tae J 2017 Highly periodic metal dichalcogenide nanostructures with complex shapes, high resolution, and high aspect ratios Adv. Funct. Mater. **27** 1703842
[37] Lee W et al 2018 Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging Nat. Commun. 9 1417

[38] Vos M F J, Macco B, Thissen N F W, Bol A A and Kessels W M M 2016 Atomic layer deposition of molybdenum oxide from (NiBu)2(NMe2)2Mo and O2 plasma J. Vac. Sci. Technol. A 34 01A103

[39] Macco B, Vos M F J, Thissen N F W, Bol A A and Kessels W M M 2015 Low-temperature atomic layer deposition of MoOx for silicon heterojunction solar cells Phys. Status Solidi 9 393–6

[40] Kääriäinen T O, Lehti S, Kääriäinen M L and Cameron D C 2011 Surface modification of polymers by plasma-assisted atomic layer deposition Surf. Coat. Technol. 205 S475–9

[41] Song J-G et al 2013 Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition ACS Nano 7 11333–40

[42] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS2 ACS Nano 4 2695–700

[43] Mignuzzi S, Pollard A J, Bonini N, Brennan B, Gilmore I S, Pimenta M A, Richards D and Roy D 2015 Effect of disorder on Raman scattering of single-layer MoS2 Phys. Rev. B 91 195411

[44] Elisha M, Andy G, Jonathan M, Mike C and Ravi S S 2017 A Raman metrology approach to quality control of 2D MoS2 film fabrication J. Phys. D: Appl. Phys. 50 184005

[45] Yi-Hsien L et al 2012 Synthesis of large-area MoS2 atomic layers with chemical vapor deposition Adv. Mater. 24 2320–5

[46] Yu Y, Li C, Liu Y, Su L, Zhang Y and Cao L 2013 Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films Sci. Rep. 3 1866

[47] Zhang J et al 2014 Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes ACS Nano 8 6024–30

[48] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G and Wang F 2010 Emerging photoluminescence in monolayer MoS2 Nano Lett. 10 1271–5

[49] Bera A and Sood A K 2014 Insights into vibrational and electronic properties of MoS2 using raman, photoluminescence, and transport studies MoS2: Materials, Physics, and Devices ed Z M Wang (Cham: Springer International Publishing) pp 155–215