A New Ridge-Type Estimator for the Gamma Regression Model

Adewale F. Lukman
Landmark University

Issam Dawoud
Al-Aqsa University

B. M. Golam Kibria
Florida International University

Zakariya Y. Algamal
University of Mosul

Benedicta Aladeitan
Landmark University

Follow this and additional works at: https://digitalcommons.fiu.edu/all_faculty

Recommended Citation
Lukman, Adewale F.; Dawoud, Issam; Kibria, B. M.Golam; Algamal, Zakariya Y.; and Aladeitan, Benedicta, "A New Ridge-Type Estimator for the Gamma Regression Model" (2021). *All Faculty*. 473.
https://digitalcommons.fiu.edu/all_faculty/473

This work is brought to you for free and open access by FIU Digital Commons. It has been accepted for inclusion in All Faculty by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
Research Article

A New Ridge-Type Estimator for the Gamma Regression Model

Adewale F. Lukman1,2, Issam Dawoud3, B. M. Golam Kibria4, Zakariya Y. Algamal5, and Benedicta Aladeitan1

1Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria
2Department of Biostatistics and Epidemiology, University of Medical Sciences, Ondo, Nigeria
3Department of Mathematics, Al-Aqsa University, Gaza, State of Palestine
4Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA
5Department of Statistics and Informatics, University of Mosul, Mosul, Iraq

Correspondence should be addressed to Adewale F. Lukman; adewale.folaranmi@lmu.edu.ng

Received 26 January 2021; Accepted 4 June 2021; Published 21 June 2021

Academic Editor: Francisco Ayuga

Copyright © 2021 Adewale F. Lukman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The known linear regression model (LRM) is used mostly for modelling the QSAR relationship between the response variable (biological activity) and one or more physiochemical or structural properties which serve as the explanatory variables mainly when the distribution of the response variable is normal. The gamma regression model is employed often for a skewed dependent variable. The parameters in both models are estimated using the maximum likelihood estimator (MLE). However, the MLE becomes unstable in the presence of multicollinearity for both models. In this study, we propose a new estimator and suggest some biasing parameters to estimate the regression parameter for the gamma regression model when there is multicollinearity. A simulation study and a real-life application were performed for evaluating the estimators' performance via the mean squared error criterion. The results from simulation and the real-life application revealed that the proposed gamma estimator produced lower MSE values than other considered estimators.

1. Introduction

The gamma regression model (GRM) is generally adopted to model a skewed response variable that follows a gamma distribution with one or more independent variables. It is used in modelling the real-life data problems of several fields such as the medical sciences, health care economic, and automobile insurance claim [1]. When the positively skewed response variable follows a gamma distribution with a given set of independent variables, then it is preferred to use the gamma regression model [2–4]. As in linear regression models, the explanatory variables independence assumption rarely holds in practice, so the multicollinearity problem exists in the gamma regression models which means the maximum likelihood estimator (MLE) is unstable and gives high variances [5]. Consequently, constructing confidence intervals or testing the regression parameters of the model becomes difficult [6]. A lot of authors proposed different estimators for handling multicollinearity. The ridge estimator given by Hoerl and Kennard [7] is an alternative to MLE to overcome the multicollinearity in the linear regression model. The estimator has been extended to the generalized linear models (GLM) (see [8, 9]). Also, Månsson and Shukur [10] and Månsson [11] introduced the ridge estimator to the Poisson regression model and the negative binomial regression model, respectively. Kurtoglu and Ozkale [12] extend the Liu estimator of Liu [13] to the gamma regression model. Batah et al. [14] proposed a modified Jackknife ridge estimator by combining the ideas of the generalized ridge estimator and Jackknifed ridge estimator. Also, Algamal [3] developed the modified Jackknifed ridge gamma regression estimator. Recently, the modified version of the ridge regression estimator with two biasing parameters was proposed for both the LRM and GRM [15, 16]. Kibria and Lukman [17] proposed a new estimator called the ridge-type estimator and applied to the popular linear regression model.
The main objective portrayed in this article is to extend the new ridge-type estimator of Kibria and Lukman [17] to the GRM. The article organization is as follows: in Section 1, we proposed the new ridge-type gamma estimator, and then we derived its properties. Also, we have done the theoretical comparisons and have explained the estimation of the biasing parameter in Section 2. A simulation study is conducted to investigate and compare the performance of the new gamma estimator and some existing estimators in Section 3. We also analyzed a real-life data in Section 4. Finally, we have provided some concluding remarks in Section 5.

2. The Statistical Methodology

Consider the response variable y_i which follows the known gamma distribution with the parameter of the nonnegative shape and the parameter of the nonnegative scale b with probability density function:

$$f(y_i) = y_i^{a - 1} e^{-(y_i/b)} \Gamma(a) b^a, \quad y_i \geq 0,$$

(1)

where $E(y_i) = ab = \theta_i$ and $\text{Var}(y_i) = ab^2 = (\theta_i / a)\theta_i = e^{\gamma \beta}$.

The log-likelihood function of (1) is

$$I(\beta) = \sum_{i=1}^{n} \left[\left(a - 1 \right) \ln(y_i) - \frac{y_i}{b} - a \ln(b) - \ln(\Gamma(a)) \right].$$

(2)

Equation (2) is solved iteratively since it is nonlinear in β using the Fisher scoring method as follows:

$$\beta^{t+1} = \beta^t + \Gamma^{-1}(\beta^t) S(\beta^t),$$

(3)

where t is the iteration degree, $S(\beta) = \partial I(\beta) / \partial \beta$ and $\Gamma^{-1}(\beta) = -\left(E(\gamma^2 I(\beta) / \partial \beta \partial \beta^t) \right)$. The last step for the estimated coefficients is considered as

$$\tilde{\beta}_{\text{MLE}} = D^{-1} X' \hat{W} X,$$

(4)

where $D = X' \hat{W} X$, $\hat{W} = \text{diag}(\hat{\theta}_i^2)$ matrix, $\hat{\theta}_i = \exp(x_i \tilde{\beta}_{\text{MLE}})$, and \hat{z} is called the vector in ith element, $\hat{z} = \hat{\theta}_i + (y_i - \hat{\theta}_i / \hat{\theta}_i^2)$. \hat{W} and \hat{z} are obtained by procedure of the Fisher scoring iterative (see [12, 18]). The matrix form of the covariance, the matrix of the mean squared error (MMSE), as well as the mean square error (MSE) are obtained by Algamal and Asar [19] and written, respectively, as follows:

$$\text{MMSE}(\tilde{\beta}_{\text{MLE}}) = \text{Cov}(\tilde{\beta}_{\text{MLE}}) = \phi D^{-1},$$

(5)

where $\phi = (\gamma - \nu) \sum_{i=1}^{n} (y_i - \hat{\theta}_i^2 / \hat{\theta}_i^2)$.\n
$$\text{MSE}(\tilde{\beta}_{\text{MLE}}) = \text{tr}(\text{MMSE}(\tilde{\beta}_{\text{MLE}})) = \phi \sum_{j=1}^{p} \frac{1}{\gamma_j},$$

(6)

where γ_j is considered as an jth eigenvalue of the given matrix $D = X' \hat{W} X$ and the notation X' is the transpose of X. The gamma ridge estimator (GRE) is considered as

$$\tilde{\beta}_{\text{GRE}} = D_k^{-1} \tilde{\beta}_{\text{MLE}}, \quad k > 0,$$

(7)

where $D_k = (1 + kD^{-1})$ and k is the biasing parameter. The MMSE and MSE of GRE are given by

$$\text{MMSE}(\tilde{\beta}_{\text{GRE}}) = \text{Cov}(\tilde{\beta}_{\text{GRE}}) + \text{Bias}(\tilde{\beta}_{\text{GRE}}) \text{Bias}(\tilde{\beta}_{\text{GRE}})' = \phi D_k^{-1} D_k^{-1} k^2 D_k^{-1} D_k^{-1}$$

$$\text{MSE}(\tilde{\beta}_{\text{GRE}}) = \text{tr}(\text{MMSE}(\tilde{\beta}_{\text{GRE}})), \quad = \phi \sum_{j=1}^{p} \frac{\alpha_j}{\gamma_j} + k^2 \sum_{j=1}^{p} \frac{\alpha_j}{\gamma_j + k^2},$$

(8)

where $\alpha = P^t \beta$ such that P is the matrix of eigenvectors of D. The gamma Liu estimator (GLE) is given by

$$\tilde{\beta}_{\text{GLE}} = F_d \tilde{\beta}_{\text{MLE}}, \quad 0 < d < 1,$$

(9)

where $F_d = (D + d)^{-1} (D + d)$ and d is the biasing parameter. The MMSE and MSE of GLE are given by

$$\text{MMSE}(\tilde{\beta}_{\text{GLE}}) = \text{Cov}(\tilde{\beta}_{\text{GLE}}) + \text{Bias}(\tilde{\beta}_{\text{GLE}}) \text{Bias}(\tilde{\beta}_{\text{GLE}})' = \phi F_d D^{-1} F_d$$

$$+ (1 - d)^2 (D + d)^{-1} \beta \beta' (D + d)^{-1}, \quad \text{MSE}(\tilde{\beta}_{\text{GLE}}) = \text{tr}(\text{MMSE}(\tilde{\beta}_{\text{GLE}}))$$

$$= \phi \sum_{j=1}^{p} \frac{(\gamma_j + d)^2}{\gamma_j} + (1 - d)^2 \sum_{j=1}^{p} \frac{\alpha_j}{\gamma_j + k^2}.$$

(10)

2.1. The New Gamma Estimator. For the known linear regression model, Kibria and Lukman [17] proposed the following new ridge-type estimator and called as the Kibria–Lukman (KL) estimator, which is defined as

$$\tilde{\beta}_{\text{KL}} = W(k) M(k) \tilde{\beta}_{\text{OLS}}, \quad k > 0,$$

(11)

where $W(k) = (1 + k(X'X)^{-1})^{-1}, M(k) = (1 - k(X'X)^{-1}),$ and $\tilde{\beta}_{\text{OLS}} = (X'X)^{-1}X'Y$.\n
In this study, we extend the KL estimator to the GRM and referred to the estimator as gamma KL estimator (GKL) which is written as follows:

$$\tilde{\beta}_{\text{GKL}} = D_k^{-1} R_k \tilde{\beta}_{\text{MLE}},$$

(12)

where $R_k = (1 - kD^{-1})$.\n
The bias and covariance matrix form of GKL estimator are gotten respectively as:

$$\text{Bias}(\tilde{\beta}_{\text{GKL}}) = (D_k^{-1} R_k - 1) \beta,$$

(13)

where $E(\tilde{\beta}_{\text{MLE}}) = \beta$.
\[
\text{Cov}(\tilde{\beta}_{\text{GKL}}) = \phi D_k^{-1}R_k D_k^{-1}R_k' D_k^{-1}. \tag{14}
\]

So, the MMSE and MSE in terms of eigenvalues are defined, respectively, as

\[
\text{MMSE}(\tilde{\beta}_{\text{GKL}}) = \text{Cov}(\tilde{\beta}_{\text{GKL}}) + \text{Bias}(\tilde{\beta}_{\text{GKL}})\text{Bias}(\tilde{\beta}_{\text{GKL}})' = \phi D_k^{-1}R_k D_k^{-1}R_k' D_k^{-1} + (D_k^{-1}R_k - 1)\beta\beta'(D_k^{-1}R_k - 1)',
\]

\[
\text{MSE}(\tilde{\beta}_{\text{GKL}}) = \text{tr}(\text{MMSE}(\tilde{\beta}_{\text{GKL}})) = \phi \sum_{j=1}^{p} (y_j - k)^2 + 4k^2 \sum_{j=1}^{p} \alpha_j^2.
\tag{15}
\]

2.2. The Theoretical Comparison for the Estimators. Some needed lemmas are stated as follows for comparing the estimators in theoretical.

Lemma 1. Suppose \(n \times n\) matrices \(F\) is positive definite (p.d.) as well as \(A\) is p.d. (or \(A\) is nonnegative); then, \(F > A\) if \(\lambda_{\max}(AF^{-1}) < 1\), where \(\lambda_{\max}(A^{-1})\) is the max eigenvalue for the matrix \(AF^{-1}\) [20].

Lemma 2. Suppose \(R\) is an \(n \times n\) matrix which is p.d. and \(a\) be a vector; then, \(R - aa'\) is p.d. i.f. \(a' R^{-1}a < 1\) [21].

Lemma 3. Suppose that \(a_i = L_i y, i = 1, 2\) be the given two linear estimators of \(a\). Also, suppose \(I = \text{Cov}(\tilde{a}_i) - \text{Cov}(a_i)\) is p.d., where \(\text{Cov}(\tilde{a}_i) = (L_i X - I)\alpha\), \(i = 1, 2\). Consequently,

\[
\Delta(\tilde{a}_1 - \tilde{a}_2) = \text{MMSE}(\tilde{a}_1) - \text{MMSE}(\tilde{a}_2) = \sigma^2 I + b_1b_1' - b_2b_2' \text{ is p.d.,}
\tag{16}
\]

if \(b_2'\sigma^2 I + b_1' b_2 < 1\), where \(\text{MMSE}(\tilde{a}_i) = (L_i X - I)\alpha + b_i b_i'\) [22].

2.2.1. Comparison of GKL and MLE

Theorem 1. \(\tilde{\beta}_{\text{GKL}}\) is better than \(\tilde{\beta}_{\text{MLE}}\) if

\[
\beta'(D_k^{-1}R_k - 1)' \left[\phi \left(D_k^{-1} - D_k^{-1}R_k \right) \right]' \left(D_k^{-1}R_k - 1 \right) \beta < 1.
\tag{17}
\]

Proof. The difference of the dispersion is

\[
\text{Cov}(\tilde{\beta}_{\text{MLE}}) - \text{Cov}(\tilde{\beta}_{\text{GKL}}) = \phi \left(D_k^{-1} - D_k^{-1}R_k \right) \left(D_k^{-1}R_k' D_k^{-1} \right). \tag{18}
\]

We observed that \(D_k^{-1} - D_k^{-1}R_k \left(D_k^{-1}R_k' D_k^{-1} \right)\) is positive definite (p.d.) since \((y_j + k)^2 - (y_j - k)^2 = 4y_jk > 0\), for \(k > 0\). By Lemma 3, the proof is done.

2.2.2. Comparison of GKL and GRE

Theorem 2. \(\tilde{\beta}_{\text{GKL}}\) is superior to \(\tilde{\beta}_{\text{GRE}}\) if

\[
\beta'(D_k^{-1}R_k - 1)' \left[V_1 + (D_k^{-1} - 1)\beta\beta' \left(D_k^{-1} - 1 \right) \right] \left(D_k^{-1}R_k - 1 \right) \beta, \lambda_{\max}(AF^{-1}) < 1,
\tag{19}
\]

where

\[
V_1 = \phi \left(D_k^{-1}D_k' \right) - \phi \left(D_k^{-1} \right) \left(D_k^{-1} \right) - (A - kD_k^{-1})D_k^{-1},
\tag{20}
\]

\[
F = 2D_k^{-1}D_k'.
\]

Proof. We observed that \(D_k^{-1} - D_k^{-1}R_k \left(D_k^{-1}R_k' D_k^{-1} \right)\) is positive definite (p.d.) since \((y_j + k)^2 - (y_j - k)^2 = 4y_jk > 0\), for \(k > 0\). By Lemma 3, the proof is done.

2.2.3. Comparison of GKL and GLE

Theorem 3. \(\tilde{\beta}_{\text{GKL}}\) is superior to \(\tilde{\beta}_{\text{GLE}}\) if

\[
\beta'(D_k^{-1}R_k - 1)' \left[V_2 + (1 - d) \beta\beta' (D_k^{-1} - 1) \right] \left(D_k^{-1}R_k - 1 \right) \beta \leq 1,
\tag{22}
\]

where \(V_2 = \phi (F_dD^{-1}F_d' - D_k^{-1}R_kD_k^{-1}R_k' D_k^{-1})\).

Proof. The difference of the dispersion is

\[
V_2 = \phi \left(F_dD^{-1}F_d' - D_k^{-1}R_kD_k^{-1}R_k' D_k^{-1} \right).
\tag{23}
\]

We observed that \(F_dD^{-1}F_d' - D_k^{-1}R_kD_k^{-1}R_k' D_k^{-1}\) is p.d. since \((y_j + d)^2 - (y_j - d)^2 = 4y_jd > 0\) for \(k > 0\) and \(0 < d < 1\). By Lemma 3, the proof is done.

2.2.4. Estimation of Parameter \(k\). The optimal value of \(k\) in \(\tilde{\beta}_{\text{GKL}}\) is adopted from the KL estimator of the study of Kibria and Lukman [17] as follows:
where ϕ and β^*_i are defined as follows: $\phi = \exp(X\beta)$ and β^*_i is chosen such that $\sum_{i=1}^p \beta_i^2 = 1$ [1, 23, 24]. Following Kibria [25] and Kibria and Banik [26], the given explanatory variables are obtained as follows:

$$x_{ij} = (1 - \rho^2)^{1/2} w_{ij} + \rho w_{i+1},$$

$i = 1, 2, \ldots, n; j = 1, 2, \ldots, p, p + 1,$

where w_{ij} are generated from standard normal and ρ^2 is the correlation between the explanatory variables. The values of ρ in this study are chosen to be 0.95, 0.99, and 0.999. We obtained the mean function for $p = 4$ and 7 explanatory variables, respectively, for the following sample sizes: 20, 50, and 200. For each replicate, we compute the mean square error (MSE) of the estimators by using the following equation:

$$\text{MSE}(\beta^*_i) = \frac{1}{1000} \sum_{i=1}^{1000} (\beta^*_i - \beta)^T (\beta^*_i - \beta),$$

where β^*_i would be any of the following estimators (MLE, GRE, GLE, and GLK). The smaller the mean square error value is, the better the estimator is. The biasing parameters for GRE and GLE are obtained as follows:

$$\kappa = \min \left(\frac{\phi}{(2\beta_{j}^* + (\phi/y_j))} \right)^p,$$

$$\theta = \exp(X\beta)$$

and

$$\beta^*_i = \min \left(\frac{2\beta_{j}^2 + (\phi/y_j)}{2\beta_{j}^2 + (\phi/y_j)} \right)^p.$$

We examined two shrinkage parameters for the proposed estimator. They are defined as follows:

$$\kappa_1 = \min \left(\frac{\phi}{(2\beta_{j}^2 + (\phi/y_j))} \right)^p,$$

$$\kappa_2 = \sqrt{\kappa_1}.$$
According to Algamal [3, 19]; the response variable, \(y \), follows a gamma distribution. Using the chi-square goodness of fit test, author examined that the response variable is well fitted to the gamma distribution with test statistic (p value) given as 9.3657 (0.07521). Algamal [19] reported that the correlation coefficient between the following variables, Mor21v and Mor21e, SpMax3_Bh(s) and ATS8v, SpMaxA_D and MW and finally MW and ATS8v, is greater than 0.9 and interpreted as high correlation. The eigenvalues of \(X'WX \) are 7.6687E + 8, 1.3238E + 6, 85791, 5523.6, 358.71, 250.51, 148.46, 42.731, 27.239, 18.015, 9.1197, 8.6175, 5.7748, 2.4292, 1.6532, and 0.3659, respectively. Thus, the condition number, CN is computed as follows:

\[
CN = \frac{\max(\text{eigenvalue})}{\min(\text{eigenvalue})} = 45777.7
\]

which indicates the presence of severe multicollinearity [19]. The results of the gamma regression model and the mean square error are presented in Table 4.

The result in Table 4 agrees with the simulation results. The performance of the MLE is the worst in terms of possessing the highest MSE. The proposed estimator with

\(\phi \)	\(n \)	\(\rho \)	MLE	GRE-k	GLE-d	GKL \((k_{min})\)	GKL \((k_2)\)
0.95	20	0.99	2.008	0.949	1.643	1.193	0.942
0.999	0.95	1.265	0.643	1.025	0.763	0.601	
0.999	0.95	3.154	1.758	3.113	2.025	1.357	
0.999	0.99	3.514	1.758	3.113	2.025	1.357	
0.999	0.999	154.076	63.790	150.439	79.217	61.203	
0.95	0.999	154.076	63.790	150.439	79.217	61.203	
0.95	0.95	2.797	1.389	2.297	1.208	1.155	
0.999	0.99	11.034	5.410	10.200	6.003	2.205	
0.999	0.95	15.677	6.753	14.558	8.226	4.568	
0.999	0.999	154.076	63.790	150.439	79.217	61.203	
0.999	0.95	2.797	1.389	2.297	1.208	1.155	
0.999	0.99	11.034	5.410	10.200	6.003	2.205	
0.999	0.95	15.677	6.753	14.558	8.226	4.568	

Table 1: Estimated mean squared error when \(p = 4 \).

Table 2: Estimated mean squared error when \(p = 7 \).

\(\phi \)	\(n \)	\(\rho \)	MLE	GRE-k	GLE-d	GKL \((k_{min})\)	GKL \((k_2)\)
0.95	20	0.99	2.193	3.473	2.784	1.635	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.99	17.213	6.962	15.174	10.464	6.451	
0.999	0.95	2.193	3.473	2.784	1.635		
0.95	0.999	17.213	6.962	15.174	10.464	6.451	
0.95	0.999	172.420	63.921	164.530	102.441	55.631	
0.95	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
0.999	0.95	2.193	3.473	2.784	1.635		
0.999	0.999	172.420	63.921	164.530	102.441	55.631	
Table 3: Description of the variable.

Variable names	Description
Mor21v	Signal 21/weighted by van der Waals volume
Mor21e	Signal 21/weighted by Sanderson electronegativity
IC3	Information content index
MW	Molecular weight
SpMaxA_D	Normalized leading eigenvalue from topological distance matrix
ATS8v	Broto–Moreau autocorrelation of lag 8 weighted by van der Waals volume
GATS4p	Geary autocorrelation of lag 4 weighted by polarizability
SpMax8_Bh(p)	Largest eigenvalue n. 8 of Burden matrix weighted by polarizability.
SpMax3_Bh(s)	Largest eigenvalue n. 3 of Burden matrix weighted by l-state.
P_VSA_e_3	P_VSA-like on Sanderson electronegativity, bin 3
TDB08m	3D topological distance-based descriptors; lag 8 weighted by mass
RDF100m	Radial distribution function: 100/weighted by mass
MATS7v	Moran autocorrelation of lag 7 weighted by van der Waals volume
MATS2s	Moran autocorrelation of lag 2 weighted by l-state
HATS6v	Leverage-weighted autocorrelation of lag 6/weighted by van der Waals volume

Figure 1: Estimated MSE vs. different values of (a) \(n \), (b) \(\rho \), (c) \(\varphi \), and (d) \(p \).
the biasing parameter \(\hat{k}_2 \) in this order has the least mean square error followed by \(\hat{k}_{\min} \), GRE-k and GLE-d estimators. Recall in the simulation study GKL with \(\hat{k}_2 \) as the shrinkage parameter performed the best.

5. Some Concluding Remarks

The Kibria–Lukman [17] estimator was developed to circumvent the problem of multicollinearity for the linear regression model. This estimator is in the class of the ridge regression and the Liu-type regression estimator, and it has a single biasing parameter. In gamma regression model, multicollinearity is also a threat for the performance of the maximum likelihood estimator (MLE) in the estimation of the regression coefficients. The gamma ridge (GRE) and the gamma Liu estimator (GLE) has been introduced in the previous study to mitigate the problem of multicollinearity. Since, Kibria and Lukman [17] claimed that the KL estimator outperforms the ridge and Liu estimator in the linear regression model, which motivated us to develop the gamma KL (GKL) estimator for the effective estimation in the GRM. We derived the statistical properties of GKL estimator and compared it theoretically with the MLE, GRE, and GLE. Furthermore, a simulation study and a chemical data analysis were conducted in support of the theoretical study. The simulation and application result show that GKL with \(\hat{k}_2 \) as the shrinkage parameter performed the best. In conclusion, the use of the GKL estimator is preferred when multicollinearity exists in the known gamma regression model.

Data Availability

The data used to support the findings of this study are available upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Amin, M. Qasim, and M. Amanullah, “Performance of Asar and Genç and Huang and Yang's two-parameter estimation methods for the gamma regression model,” *Iranian Journal of Science and Technology, Transactions A: Science*, vol. 43, no. 6, pp. 2951–2963, 2019.

[2] A. M. Al-Aboud and D. H. Young, “Improved deviance goodness of fit statistics for a gamma regression model,” *Communications in Statistics-Theory and Methods*, vol. 15, no. 6, pp. 1865–1874, 1986.

[3] Z. Y. Algamal, "Developing a ridge estimator for the gamma regression model," *Journal of Chemometrics*, vol. 32, no. 10, p. e3054, 2018.

[4] M. Wasef Hattab, "A derivation of prediction intervals for gamma regression," *Journal of Statistical Computation and Simulation*, vol. 86, no. 17, pp. 3512–3526, 2016.

[5] E. Dunder, S. Gumustekin, and M. A. Cengiz, “Variable selection in gamma regression models via artificial bee colony algorithm,” *Journal of Applied Statistics*, vol. 45, no. 1, pp. 8–16, 2016.

[6] S. Perez-Melo and B. M. G. Kibria, “On some test statistics for testing the regression coefficients in presence of multicollinearity: a simulation study,” *Stats*, vol. 3, no. 1, pp. 40–55, 2020.

[7] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased estimation for nonorthogonal problems,” *Technometrics*, vol. 12, no. 1, pp. 55–67, 1970.

[8] R. L. Schaefer, L. D. Roi, and R. A. Wolfe, “A ridge logistic estimator,” *Communications in Statistics-Theory and Methods*, vol. 13, no. 1, pp. 99–113, 1984.

[9] B. Segerstedt, “On ordinary ridge regression in generalized linear models,” *Communications in Statistics-Theory and Methods*, vol. 21, no. 8, pp. 2227–2246, 1992.

[10] K. Månsson and G. Shukur, “A Poisson ridge regression estimator,” *Economic Modelling*, vol. 28, no. 4, pp. 1475–1481, 2011.

[11] K. Månsson, “On ridge estimators for the negative binomial regression model,” *Economic Modelling*, vol. 29, no. 2, pp. 178–184, 2012.

[12] F. Kurtoglu and M. R. Ozkale, “Liu estimation in generalized linear models: application on gamma distributed response variable,” *Statistical Papers*, vol. 57, no. 4, pp. 911–928, 2016.

[13] K. Liu, “A new class of biased estimate in linear regression,” *Communications in Statistics Theory and Methods*, vol. 22, no. 2, pp. 393–402, 1993.

[14] F. S. M. Batah, T. V. Ramanathan, and S. D. Gore, “The efficiency of modified jackknife and ridge type regression estimators.”
estimators-a comparison,” *Surveys in Mathematics and Its Applications*, vol. 3, pp. 111–122, 2008.

[15] A. F. Lukman, K. Ayinde, S. Binuomote, and O. A. Clement, “Modified ridge-type estimator to combat multicollinearity: application to chemical data,” *Journal of Chemometrics*, vol. 33, no. 5, p. e3125, 2019.

[16] A. F. Lukman, K. Ayinde, B. M. G. Kibria, and E. T. Adewuyi, “Modified ridge-type estimator for the gamma regression model,” *Communications in Statistics-Simulation and Computation*, pp. 1–15, 2020.

[17] B. M. G. Kibria and A. F. Lukman, “A new ridge-type estimator for the linear regression model: simulations and applications,” *Scientifica*, vol. 2020, Article ID 9758378, 16 pages, 2020.

[18] J. W. Hardin and J. M. Hilbe, *Generalized Linear Models and Extensions*, Stata Press, College Station, TX, USA, 2012.

[19] Z. Y. Algamal and Y. Asar, “Liu-type estimator for the gamma regression model,” *Communications in Statistics-Simulation and Computation*, vol. 49, no. 8, pp. 2035–2048, 2018.

[20] S. G. Wang, M. X. Wu, and Z. Z. Jia, *Matrix Inequalities*, Chinese Science Press, Beijing, China, 2nd edition, 2006.

[21] R. W. Farebrother, “Further results on the mean square error of ridge regression,” *Journal of the Royal Statistical Society: Series B (Methodological)*, vol. 38, no. 3, pp. 248–250, 1976.

[22] G. Trenkler and H. Toutenburg, “Mean squared error matrix comparisons between biased estimators-an overview of recent results,” *Statistical Papers*, vol. 31, no. 1, pp. 165–179, 1990.

[23] A. F. Lukman, K. Ayinde, S. K. Sek, and E. Adewuyi, “A modified new two-parameter estimator in a linear regression model,” *Modelling and Simulation in Engineering*, vol. 2019, Article ID 6342702, 10 pages, 2019.

[24] A. F. Lukman, K. Ayinde, B. Aladeitan, and R. Bamidele, “An unbiased estimator with prior information,” *Arab Journal of Basic and Applied Sciences*, vol. 27, no. 1, pp. 45–55, 2020.

[25] B. M. G. Kibria, “Performance of some new ridge regression estimators,” *Communications in Statistics-Simulation and Computation*, vol. 32, no. 1, pp. 419–435, 2003.

[26] B. M. G. Kibria and S. Banik, “Some ridge regression estimators and their performances,” *Journal of Modern Applied Statistical Methods*, vol. 15, no. 1, pp. 206–238, 2016.

[27] Z. Y. Algamal and M. H. Lee, “A novel molecular descriptor selection method in QSAR classification model based on weighted penalized logistic regression,” *Journal of Chemometrics*, vol. 31, no. 10, p. e2915, 2017.

[28] A. F. Lukman, A. Zakariya, G. B. M. Kibria, and K. Ayinde, “The KL estimator for the inverse Gaussian regression model,” *Concurrency Computat Pract Exper*, p. e6222, 2021, in press.