INTRODUCTION

Arterial stiffness in large arteries is a significant predictor of cardiovascular morbidity and mortality. Previous studies have shown that abnormal vascular tone plays a significant role for ischemic stroke and coronary heart disease. With the advance in noninvasive ultrasound techniques, the direct visualization and measurement of the arterial wall structure, including the presence of plaques, became possible. The intima-media thickness (IMT) of the common carotid artery (CCA) is demonstrated a strong and sensitive surrogate marker of the earliest changes of atherosclerosis. Aortic distensibility is an elasticity index of the aorta, and it can reflect aortic stiffness. As the aortic elasticity decreased, aortic distensibility is also decreased, and stiffness index became elevated. Aortic distensibility can be measured by obtaining the cyclic diameter changes of the ascending aorta on transthoracic echocardiography (TTE). Aortic distensibility can also be evaluated by obtaining the cyclic diameter change...
of the descending thoracic aorta during a transesophageal echocardiography (TEE). Based on these measurements on TEE, elastic modulus and Young’s circumferential static elastic modulus of the descending thoracic aorta can be calculated. The previous studies have shown that aortic stiffness and IMT are associated with ischemic stroke, but the differences of these parameters, according to the type of stroke, has been poorly studied. Therefore, the aim of the present study was to investigate the differences of aortic stiffness and IMT between advanced cerebral infarction (CI) and earlier manifested transient ischemic attack (TIA).

METHODS

STUDY POPULATION
The present study was an retrospective observational study performed in a single tertiary center. From April 2007 to December 2010, a total of 635 patients with acute stroke underwent comprehensive echocardiographic examination including TTE, TEE, and carotid ultrasound. One hundred thirty five patients were excluded from the present study, and the reasons of exclusion were as follows; 121 patients who suspected cryptogenic stroke with intra or extracardiac shunt including patent foramen ovale (117 patients), atrial septal defect (2 patients), or pulmonary arteriovenous malformation (2 patients), 11 with left atrial thrombus, 3 patients with vegetations on left side cardiac valves. A total of 500 patients were enrolled finally and divided into 2 groups: the TIA group (n = 230, 62.4 ± 12 years, 144 males) versus the CI group (n = 270, 63.4 ± 11 years, 181 males). The type of stroke was classified into TIA and CI by a neurologist based on neurologic examination and magnetic resonance imaging study. TIA was defined as a brief episode of neurologic dysfunction, resulting from a focal temporary cerebral ischemia, not associated with CI, and CI was defined as the focal brain necrosis due to complete and prolonged ischemia with radiologic lesion.

MEASUREMENT OF ECHOCARDIOGRAPHIC PARAMETERS ON TTE
All echocardiographic parameters were measured by standardized method according to the guideline of American Society of Echocardiography.

MEASUREMENT OF AORTIC STIFFNESS ON TEE
All consecutive patients were taken TEE using a multiplane 5-MHz TEE probe (Sequoia, Siemens, Malvern, PA, USA) after mild sedation with intravenous midazolam. TEE probe was advanced to the mid to lower esophageal level (about 30 to 35 cm from the incisors), and then slowly withdrawn to the aortic arch level to scan the descending thoracic aorta. Digital cine loops and continuous video recordings form transverse and longitudinal images of the descending thoracic aorta were obtained for subsequent off-line analysis. IMT was measured in a region free of plaque at the level of the aortic far wall of 26 to 30 cm from the incisors and was defined as the mean value of the thickness of 3 points in longitudinal image.

Distensibility of the aorta was evaluated by measuring the systolic (SD) and diastolic diameter (DD) of the descending thoracic aortic diameters. SD and DD were measured at the time of maximum aortic anterior motion and at the peak of the QRS complex, respectively. The following aortic elastic indices were calculated:

Aortic strain = (SD - DD) / DD
Aortic stiffness index (β) = ln [systolic blood pressure (SBP) / diastolic blood pressure (DBP)] / [(SD - DD) / DD], where SBP and DBP are the systolic and diastolic blood pressures measured at pre-examination, and “ln” is the natural logarithm.

Aortic distensibility = 2 × (SD - DD) / [(SBP - DBP) × DD]

MEASUREMENT OF CAROTID IMT
Carotid B-mode ultrasound was performed on both common carotid arteries using a 10 MHz linear probe (VIVID 7, GE, Milwaukee, WI, USA). Images were interpretation of the one last centimeters of the CCA, prior to the carotid bulb, consisted first to describe the presence or absence of plaques of atheroma, defined as a focal widening relative to adjacent segments, protruding the lumen of more than 1.5 mm, with or without calcifications. On a longitudinal two-dimensional ultrasound image of the carotid artery, the anterior (near) and posterior (far) walls of the carotid artery appear as two bright white lines separated by a hypoechogetic space. End-diastolic images were frozen, the far wall IMT was identified as the region between the lumen-intima interface and the media-adventitia interface.

STATISTICAL ANALYSIS
Data were reported as the mean ± standard deviations. In the univariate analysis, risk factors for different end-points were analyzed using a chi-square test for discrete variables and Student’s t-test for continuous variables. Multiple logistic regression analysis was used to determine the model with independent predictive factors. A p-value < 0.05 was considered statistically significant. The software for statistical analysis was SPSS 15.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

BASELINE CHARACTERISTICS
The results are summarized in Table 1. The prevalence of hypertension, diabetes, and dyslipidemia were significantly higher in the CI group than in the TIA groups.

ECHOCARDIOGRAPHIC PARAMETERS
Echocardiographic findings are summarized in Table 2. Left atrial volume was significantly larger, and the ratio of early (E) and late diastolic velocity (A) (E/A) and the ratio of E and ear-
ly diastolic velocity of mitral septal annulus (E') (E/E') were significantly higher in the CI group than in the TIA group. Intra-cardiac thrombus or unexpected hyper-mobile materials on heart valve were not seen in this examination.

LABORATORY FINDINGS

Laboratory findings are summarized in Table 3. The levels of total and low density lipoprotein cholesterol were significantly higher in the CI group than in the TIA group. Other laboratory findings were not different between the groups.

ARTERIAL STIFFNESS AND IMT

The results of aortic stiffness index and IMT between the groups were summarized in the Table 4.

The IMT of the descending thoracic aorta and carotid artery were significantly thicker in the CI group than in the TIA group. Aortic stiffness index β of the descending thoracic aorta was also significantly higher in the CI group compared to the TIA group. On multivariate regression analysis, aortic stiffness index β, carotid IMT, and dyslipidemia were independently associated with CI, whereas aortic IMT was not associated with CI (Table 5).

Aortic stiffness index β showed significant moderate correlation with the IMT of the descending thoracic aorta, right, and left carotid artery ($r = 0.279, p = 0.014$, $r = 0.412, p < 0.001$, $r = 0.441, p < 0.001$, respectively) (Fig. 1).
In the present study, the authors evaluated the differences of aortic stiffness and IMT between CI and TIA, and the main finding of the present study was that aortic stiffness was significantly increased and IMT of the aorta and carotid artery were significantly thicker in patients with CI than TIA. Based on these observations, therefore, it is suggested that CI is associated with more advanced degree of atherosclerotic and atherosclerotic process than TIA.

Arterial stiffness is the most important cause of cardiovascular complications and a major contributor to atherosclerosis, and thus, it is associated with the development of stroke and myocardial infarction. Direct measurement of arterial stiffness requires invasive techniques, which are unsuitable for a routine clinical practice. In previous studies, it has been demonstrated that pulsatile changes in ascending aortic diameter can be measured during a routine transthoracic echocardiography. Non-invasively evaluated \(\beta \) index as a determinant of aortic stiffness is comparable with invasive methods with a high degree of accuracy. Decreased arterial distensibility was associated with older age, hypertension, and African American ethnicity. Additionally, known atherosclerotic risk factors, such as current smoking and higher high density lipoprotein cholesterol levels, were related with arterial stiffness.

Ischemic stroke, including TIA and CI, is well known amongst the atherosclerotic disease of the cerebral arterial system. In the present study, the prevalence of diabetes, hypertension, and dyslipidemia were more frequent in the CI group than in the TIA group. Although both TIA and CI are subtypes of ischemic stroke, atherosclerotic progression was different between the groups in the present study. Generally, CI was regarded to relatively severe symptomatic form with radiologic lesion, compare to that of TIA. Atherothrombotic infarcts are often preceded by TIA. A TIA is a focal neurological deficit that lasts less than 24 hours and resolves. The mechanism of TIAs is not clear until now. It may be caused by critical

| Table 4. Aortic stiffness index and intima-media thickness of the patients |
|-------------------|-------------------|-------------------|-------------------|
| | TIA group (n = 230) | CI group (n = 270) | \(p \)-value |
| Aortic stiffness index \(\beta \) | 7.02 ± 4.3 | 7.99 ± 2.7 | 0.043 |
| Descending aortic IMT (mm) | 1.45 ± 0.39 | 1.53 ± 0.41 | 0.040 |
| Right carotid IMT (mm) | 0.75 ± 0.18 | 0.80 ± 0.20 | 0.011 |
| Left carotid IMT (mm) | 0.79 ± 0.22 | 0.84 ± 0.22 | 0.005 |

TIA: transient ischemic attack, CI: cerebral infarction, IMT: intima-media thickness

| Table 5. Relative risk of cerebral infarction as compared to transient ischemic attack on linear regression analysis |
|-------------------|-------------------|-------------------|-------------------|
| | RR | 95% CI | \(p \)-value |
| Hypertension | 0.994 | 0.663-1.490 | 0.975 |
| Diabetes | 1.473 | 0.972-2.232 | 0.068 |
| Dyslipidemia | 0.476 | 0.312-0.725 | 0.008 |
| Aortic stiffness index \(\beta \) | 1.073 | 1.008-1.142 | 0.027 |
| Descending aortic IMT | 0.802 | 0.416-1.545 | 0.510 |
| Left carotid IMT | 2.882 | 1.116-7.444 | 0.029 |

RR: relative risk, CI: confidence interval, IMT: intima-media thickness

Fig. 1. Correlations between aortic stiffness index \(\beta \) and intima-media thickness (IMT) of carotid and descending thoracic aorta. CCA: common carotid artery.
vascular risk factor? Am J Epidemiol 1994;140:669-82.
2. Martace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, Asmar R, Reneman RS, Hoeks AP, Breteler MM, Wittmer JC. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006;113:657-63.
3. Turrotolomonado A, Di Sciacca R, Di Raimondo D, Serio A, D’Aguiannino G, Finno A, Licata G. Arterial stiffness index in acute ischemic stroke: relationship with stroke subtype. Atherosclerosis 2010;211:187-94.
4. Blankenhorn DH, Rooney JA, Curry PJ. Noninvasive assessment of atherosclerosis. Prog Cardiovasc Dis 1984;26:293-307.
5. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 1986;74:1399-406.
6. Bots ML. Carotid intima-media thickness as a surrogate marker for cardiovascular disease in intervention studies. Curr Med Res Opin 2006;22:2181-90.
7. Nemes A, Soliman OI, Geleijnse ML, Anwar AM, van der Beek NA, van Doorn PA, Gavaller H, Csjöbæk E, ten Cate FJ. Increased arterial stiffness in glycogenosis type 2 (Pompe’s disease). Int J Cardiol 2007;120:138-41.
8. Geroulakos G, O’Gorman DJ, Kalodiki E, Sheridan DJ, Nicolaides AN. The carotid intima-media thickness as a marker of the presence of severe symptomatic coronary artery disease. Eur Heart J 1994;15:781-5.
9. Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy BI. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension 1995;26:485-90.
10. Lehmann ED, Parker JR, Hopkins KD, Taylor MG, Goulding RG. Validation and reproducibility of pressure-corrected arterial distensibility measurements using pulse-wave-velocity Doppler ultrasound. J Biomed Eng 1993;15:221-8.
11. Young W, Gofman JW, Tandy R, Malamud N, Waters ESG. The quantitation of atherosclerosis: III. The extent of correlation of degree of atherosclerosis within and between the coronary and cerebral vascular beds. Am J Cardiol 1960;6:300-8.
12. Dijk JM, van der Graaf Y, Grobbee DE, Bots ML, SMART Study Group. Carotid stiffness indicates risk of ischemic stroke and TIA in patients with internal carotid artery stenosis: the SMART study. Stroke 2004;35:2238-62.
13. Sugioka K, Hozumi T, Sciacca RR, Miyake Y, Titova I, Gaspard G, Sacco RL, Homma S, Di Tullio MR. Impact of arterial stiffness on ischemic stroke in elderly patients. Stroke 2002;33:2077-81.
14. Heiss G, Starrett AR, Barnes R, Chambliss LE, Skoló M, Alzola C. Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol 1991:134:250-6.
15. Eren M, Gorgulu S, Uluh N, Celik S, Dagdeviren B, Tezel T. Relation between arterial stiffness and left ventricular diastolic function in patients with hypertension, diabetics, or both. Heart 2004;90:37-43.
16. Geroulakos G, O’Gorman D, Nicolaides A, Sheridan D, Ekelles R, Shaper AG. Carotid intima-media thickness: correlation with the British Regional Heart Study risk score. J Intern Med 1994;235:431-3.
17. Stefanadis C, Wooley CF, Bush CA, Kolibash AJ, Boudoulas H. Aortic distensibility abnormalities in coronary artery disease. Am J Cardiol 1987;59:1300-4.
18. Mitchell JR, Schwarz CJ. Relationship between arterial disease in different sites. A study of the aorta and coronary, and iliac arteries. Br Med J 1962;1:1293-301.
19. Abhayaratna WP, Barnes ME, O’Rourke ME, Gersh BJ, Seward JB, Miyasaka Y, Bailey KR, Tsang TS. Relation of arterial stiffness to left ventricular diastolic function and cardiovascular risk prediction in patients > or = 65 years of age. Am J Cardiol 2006;98:1387-92.

- Acknowledgements
This work was supported by a grant of the new investigator funded by the Chonnam National University (2011-0588).

REFERENCES
1. Arnett DK, Evans GW, Riley WA. Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol 1994;140:669-82.
2. Martace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, Asmar R, Reneman RS, Hoeks AP, Breteler MM, Wittmer JC. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006;113:657-63.
3. Turrotolomonado A, Di Sciacca R, Di Raimondo D, Serio A, D’Aguiannino G, Finno A, Licata G. Arterial stiffness index in acute ischemic stroke: relationship with stroke subtype. Atherosclerosis 2010;211:187-94.
4. Blankenhorn DH, Rooney JA, Curry PJ. Noninvasive assessment of atherosclerosis. Prog Cardiovasc Dis 1984;26:293-307.
5. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 1986;74:1399-406.
6. Bots ML. Carotid intima-media thickness as a surrogate marker for cardiovascular disease in intervention studies. Curr Med Res Opin 2006;22:2181-90.
7. Nemes A, Soliman OI, Geleijnse ML, Anwar AM, van der Beek NA, van Doorn PA, Gavaller H, Csjöbæk E, ten Cate FJ. Increased arterial stiffness in glycogenosis type 2 (Pompe’s disease). Int J Cardiol 2007;120:138-41.
8. Geroulakos G, O’Gorman DJ, Kalodiki E, Sheridan DJ, Nicolaides AN. The carotid intima-media thickness as a marker of the presence of severe symptomatic coronary artery disease. Eur Heart J 1994;15:781-5.
9. Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy BI. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension 1995;26:485-90.
10. Lehmann ED, Parker JR, Hopkins KD, Taylor MG, Goulding RG. Validation and reproducibility of pressure-corrected arterial distensibility measurements using pulse-wave-velocity Doppler ultrasound. J Biomed Eng 1993;15:221-8.
11. Young W, Gofman JW, Tandy R, Malamud N, Waters ESG. The quantitation of atherosclerosis: III. The extent of correlation of degree of atherosclerosis within and between the coronary and cerebral vascular beds. Am J Cardiol 1960;6:300-8.
12. Dijk JM, van der Graaf Y, Grobbee DE, Bots ML, SMART Study Group. Carotid stiffness indicates risk of ischemic stroke and TIA in patients with internal carotid artery stenosis: the SMART study. Stroke 2004;35:2238-62.
13. Sugioka K, Hozumi T, Sciacca RR, Miyake Y, Titova I, Gaspard G, Sacco RL, Homma S, Di Tullio MR. Impact of arterial stiffness on ischemic stroke in elderly patients. Stroke 2002;33:2077-81.
14. Heiss G, Starrett AR, Barnes R, Chambliss LE, Skoló M, Alzola C. Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol 1991:134:250-6.
15. Eren M, Gorgulu S, Uluh N, Celik S, Dagdeviren B, Tezel T. Relation between arterial stiffness and left ventricular diastolic function in patients with hypertension, diabetics, or both. Heart 2004;90:37-43.
16. Geroulakos G, O’Gorman D, Nicolaides A, Sheridan D, Ekelles R, Shaper AG. Carotid intima-media thickness: correlation with the British Regional Heart Study risk score. J Intern Med 1994;235:431-3.
17. Stefanadis C, Wooley CF, Bush CA, Kolibash AJ, Boudoulas H. Aortic distensibility abnormalities in coronary artery disease. Am J Cardiol 1987;59:1300-4.
18. Mitchell JR, Schwarz CJ. Relationship between arterial disease in different sites. A study of the aorta and coronary, and iliac arteries. Br Med J 1962;1:1293-301.
19. Abhayaratna WP, Barnes ME, O’Rourke ME, Gersh BJ, Seward JB, Miyasaka Y, Bailey KR, Tsang TS. Relation of arterial stiffness to left ventricular diastolic function and cardiovascular risk prediction in patients > or =65 years of age. Am J Cardiol 2006;98:1387-92.
20. Hertzer NR, Young JR, Beven EG, Graor RA, O’Hara PJ, Ruschhaupt WF 3rd, deWolfe VG, Maljovec LC. Coronary angiography in 506 patients with extracranial cerebrovascular disease. Arch Intern Med 1985;145:849-52.

21. Yoon HJ, Hyun DW, Kwon TG, Kim KH, Bae JH. Prognostic significance of descending thoracic aorta intima-media thickness in patients with coronary atherosclerosis. Korean Circ J 2007;37:365-72.