Web-based design for lecturer performance reporting applications

D R Ramdania*, M Irfan, R Saprudin, C N Alam, M A Ramdhani and D Yusli
Department of Informatics, UIN Sunan Gunung Djati, Bandung, Indonesia

*Corresponding author’s email: diena.rauda@uinsgd.ac.id

Abstract. A lecturer as an educator in a college institution obtains professional appreciation for their work through certification of lecturer who is rewarded in the form of lecturer allowance. To obtain a lecturer allowance, lecturers are required to report their academic activities. The purpose of this study is to describe the design of web-based lecturer performance reporting applications. In this study the application is modelled with UML modelling (Unified Modelling Language) that describes a system design. The object of research that used as a user of the application is a lecturer of Private Islamic Higher Education. The results of application design show that the system can work well; can process data of lecturer activities among others: education, research, community service, and supporting which then converted to semester unit value (SKS). This lecture performance reporting application is user friendly, easy access, good system security, and have a good data base.

1. Introduction
Lecturers are professional educators who are tasked with planning and implementing the learning process, assessing learning outcomes, conducting guidance and training, as well as conducting research and community service. In general, information on lecturer performance, among others: performance in education, research, community service, and other supporting performance [1]. The importance of a lecturer performance report in those four fields is to conclude whether a lecturer meets the specified performance as a lecturer responsibility.

The lecturer data performance information reporting system that available at this time is manually uses the Ms. Access® offline application. To improve the reporting of performance information, it is necessary to design a Web-based lecturer performance report to improve the information system that is currently running. Information system implementation has been proven to improve information services in universities[2-3].

Similar studies that had been conducted regarding the performance of lecturers are among others: the web-based application of lecturer performance assessment in the teaching and learning process: a case study at the Padang Institute of Technology's internal quality assurance agency [4]; development of web-based information systems for lecturer performance in an effort to improve lecturer competence at Indo Global Mandiri University [5]; Information system for lecturer performance at the Kejuangan 45 University [6]; construction of web-based applications for evaluating lecturers' performance in the process of learning and teaching at Atma Jaya University Yogyakarta [7]; and the application of info form as a data collection media for the results of the performance of e-Learning lecturers [8]. This study discusses the design of web-based lecturer performance application reports based on the lecturer requirements to obtain lecturer certification benefits.
2. Methods
Software development method that used in this research is Prototype model that is carried out by identifying system requirements [9], with stages: 1) define the overall objective and identify known needs, 2) rapid design as the basis to create a prototype, and 3) test and evaluate the prototype and then make additions and improvements to the prototype that has been made.

In this study the application was modelled using UML (Unified Modelling Language) modelling which in this case is a visual modelling language that describes a system analysis and design that will be built into visual forms [10-11]. Analytical, logical, conceptual, and operational verification method are used to reach reliability of this research [12].

3. Results and Discussion
Along with the development of the role of communication information technology that processes information to be on time and on target [13]. Information systems containing the information technology and human activities which are computerized [14], which is used to manage and support business process [15]. Information system process the data in an organized form [16], information system has good flexibility to be developed into another system [3]. In the previous research, information systems have advantages in term of: the data easy to access [17], time efficiently [18], accurate result [19], supporting decisions precisely [20], more economical [21], wide accessibility [22], improve user understanding [23], improve productivity [24], better process for data and information [25], and as organized data storage [26].

3.1 System Design
System design uses a website which is one of the media for delivering information and publications that are easily accessible from anywhere, anytime without being limited by geographical areas that can be used by companies, academic and personal institutions. Based on the content, the website can be interpreted as a collection of several pages that display information from data in the form of text, images, animation, sound and video and or a combination of all types of media, both static and dynamic pages that each page is linked to page networks (hyperlinks) [27].

3.1.1 System Architecture. Information system architecture is a mapping of information needs within an organization [9]. System architecture for the lecturer performance report application is presented in Figure 1.

![Figure 1. Architecture of Lecturer Performance Reporting Application.](image)

3.1.2 Use Case Diagram. The function of the application (that describes interaction between actors and systems) in this study are illustrated through use case diagrams, where there are three actors, namely:
(a) Lecturers, acting as users who create, manage, and print individual lecturer performance reports; (b) Assessors who assess and review reports that made by their guidance lecturers; and (c) Administrator (admin), in this case by KOPERTAIS (Islamic Higher Education Coordination) who has full access to manage all data of lecturers and assessors.

3.1.3 Class Diagram. Class diagrams describe the structure and description of classes, packages and objects and their relationships with each other. The design of the constructed class diagram of this research is presented in Figure 2.

![Class Diagram of Lecturer Performance Reporting Application](image)

Figure 2. Class Diagram of Lecturer Performance Reporting Application.

3.2 Database Implementation
A database is a collection of data or fact that systematically stored that can be processed or manipulated using an application program to create the important information. The database design of lecturer performance reporting application is presented in Figure 3.

3.3 User Interface of Application
a. Login page: the login page functions is to access the application using the lecturer's NIP (Employee ID number) or NIDN (National Lecturer Number) as the username and password, and access rights are used to select users as lecturers, lecturers and KOPERTAIS admin (Figure 4);
b. Lecturer Main Menu (Figure 5);
c. Lecturer Profile page (Figure 6);
d. Lecturer Identity Page (Figure 7);
e. Education Field Performance Pages (Figure 8);
f. Research Field Performance Pages (Figure 9);
g. Community Service Performance Page (Figure 10);
h. Other Support Field Performance Pages (Figure 11);
i. Print Lecturer Workload Plans (Figure 12);
j. Master Data Assessors page (Figure 13); and
k. Lecturer Data Master Page (Figure 14)
Figure 3. Design Database.

Figure 4. Login form.

Figure 5. Lecturer Dashboard.

Figure 6. Lecturer Profile Form.

Figure 7. Lecturer Identity Form.

Figure 8. Education Performance.

Figure 9. Research Performance.

Figure 10. Community Service Performance.
Figure 1. Other Lecturer Performance.

Figure 2. Print Results of Lecturer Performance Load Plan.

Figure 3. Assessor Master Data.

Figure 4. Lecturer Master Data.

Based on the results of direct system testing that conducted by assessors, the lecturer performance reporting system can work well, while direct testing by user (lecturer) shows that the user feels this application is better than the existing system.

4. Conclusions

Lecturer Performance Reporting Application can facilitate every lecturer who registered in KOPERTAIS region II for West Java and Banten in making lecturer performance reports automatically. The advantages of this system are among others: 1) facilitate lecturers to make plans for lecturer performance in accordance with the Tri Dharma (Lecturer responsibility) of Higher Education in accordance with the rules of the constitution, and 2) Facilitate the employment or human resources division of KOPERTAIS in managing data collection of lecturer performance reports teaching at higher education especially under the supervision of KOPERTAIS region II West Java and Banten.

For further development, the system can be developed to be a better lecturer performance reporting system that synchronize with Ms. Access-based lecturer performance which is still be used, and providing features for calculating lecturer performance data as directly as the lecturer rubric.

5. References

[1] Adiguna M A and Muhajirin A 2017 Penerapan Logika Fuzzy Pada Penilaian Mutu Dosen Terhadap Tri Dharma Perguruan Tinggi JOIN (Jurnal Online Inform) 2 1 16–19
[2] Darmalaksana W, Ramdhani M A, Cahyana R and Amin A S 2018 Strategic Design of Information System Implementation at University,” Int. J. Eng. Technol. 7 2.29 787–791
[3] Aulawi H, Ramdhani M A, Slamet C, Ainissyifa H and Darmalaksana W 2017 Functional Need Analysis of Knowledge Portal Design in Higher Education Institution Int. Soft Comput. 12 2 132–141
[4] Son H and Faisal R 2017 Aplikasi Penilaian Kinerja Dosen pada Proses Belajar Mengajar Berbasis Web: Studi Kasus di Badan Penjamin Mutu Internal Institut Teknologi Padang J. Teknol. dan Sist. Komput. 5 2 89–93
[5] Saputra T and Saputra R W 2018 Pengembangan Sistem Informasi Kinerja Dosen Berbasis Web dalam Upaya Meningkatkan Kompetensi Dosen di Universitas Indo Global Mandiri J. Inform. Glob. 4 2 42–53

[6] Rochman A, Fuad H and Muhibin E 2015 Sistem Informasi Kinerja Dosen pada Universitas Kejuangan 45 J. SISFOTEK Glob. 5 1 43–48

[7] Salubongga C 2010 Pembangunan Aplikasi Berbasis Web untuk Evaluasi Kinerja Dosen pada Proses Belajar dan Mengajar di Universitas Atma Jaya Yogyakarta (Yogyakarta: Universitas Atma Jaya Yogyakarta)

[8] Handayani I, Mutmainah S and Rosmawati O 2017 Penerapan Rinfo Form sebagai Media Pengumpulan Data Hasil Kinerja Dosen iLearning Technomedia J. 2 1 47–66

[9] Ramdhan M A, Maylawati D S, Amin A S and Aulawi H 2018 Requirements Elicitation in Software Engineering Int. J. Eng. Technol. 7 2.29 772–775

[10] Bhkati D D 2016 Pemodelan Sistem Informasi Keuangan Daerah Pada Direktorat Evaluasi Pendanaan Dan Informasi Keuangan Daerah JOIN (Jurnal Online Inform.) 1 2 98–106

[11] Maylawati D S, Ramdhani M A and Amin A S 2018 Tracing the Linkage of Several Unified Modelling Language Diagrams in Software Modelling Based on Best Practices Int. J. Eng. Technol. 7 2.29 776–780

[12] Sulhendi H Y, Ramdhani M A and Irwansyah F S 2018 Verification Concept of Assessment for Physics Education Student Learning Outcome Int. J. Eng. Technol. 7 3.21 321–325

[13] Maulana M Y 2013 Needs Analysis in Designing Information System Based On Open Lesson for Teaching Quality Improvement of Teachers International Conference on ICT for Smart Society 1–4

[14] Pamaragung A, Suryadi K and Ramdhani M A 2006 Enhancing the implementation of e-Government in Indonesia through the high-quality of virtual community and knowledge portal Proceeding of the European Conference on e-Government, ECEG 341–348

[15] Ramdhan M A 2013 Metodologi Penelitian untuk Riset Teknologi Informasi (Bandung: UIN Sunan Gunung Djati)

[16] Maylawati D S, Darmalaksana W and Ramdhani M A 2018 Systematic Design of Expert System Using Unified Modelling Language IOP Conf. Ser. Mater. Sci. Eng. 288 1 012047

[17] Irvan R, Taufiq M, Slamet C, Andrian R, Aulawi H and Ramdhan M A 2018 Early Warning System in Mobile-Based Impacted Areas Int. J. Eng. Technol. 7 3.4 118–121

[18] Slamet C, Rahman A, Sutedi A, Darmalaksana W, Ramdhani M A and Maylawati D S 2018 Social Media-Based Identifier for Natural Disaster IOP Conf. Ser. Mater. Sci. Eng. 288 1 012039

[19] Slamet C, Andrian R, Maylawati D S, Darmalaksana W and Ramdhani M A 2018 Web Scraping and Naïve Bayes Classification for Job Search Engine IOP Conf. Ser.: Mater. Sci. Eng 288 1 1–7

[20] Gerhana Y A, Zulfikar W B, Ramdani A H and Ramdhani M A 2018 Implementation of Nearest Neighbor using HSV to Identify Skin Disease IOP Conf. Ser. Mater. Sci. Eng. 288 1 012153

[21] Rahman C, Slamet C, Darmalaksana W, Gerhana Y A and Ramdhani M A 2018 Expert System for Deciding a Solution of Mechanical Failure in a Car using Case-based Reasoning IOP Conf. Ser. Mater. Sci. Eng. 288 1 012011

[22] Slamet C, Rahman A, Ramdhani M A and Darmalaksana W 2016 Clustering the Verses of the Holy Qur’an Using K-Means Algorithm Asian J. Inf. Technol. 15 24 5159–5162

[23] Maylawati D S, Ramdhani M A, Zulfikar W B, Taufik I and Darmalaksana W 2017 Expert system for predicting the early pregnancy with disorders using artificial neural network 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017

[24] Zulfikar W B, Jumadi, Prasetyo P K and Ramdhani M A 2018 Implementation of Mamdani Fuzzy Method in Employee Promotion System IOP Conf. Ser. Mater. Sci. Eng. 288 1 012147

[25] Maylawati D S, Ramdhani M A, Rahman A and Darmalaksana W 2017 Incremental technique with set of frequent word item sets for mining large Indonesian text data 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017 1–6
[26] Taofik A, Ismail N, Gerhana Y A, Komarujaman K and Ramdhani M A 2018 Design of Smart System to Detect Ripeness of Tomato and Chili with New Approach in Data Acquisition IOP Conference Series: Materials Science and Engineering 288 1 012018

[27] Hariyanto A 2015 Membuat Web Profil Sekolah dan PPDB Online, 2nd ed. (Yogyakarta: Lokomedia)

Acknowledgments
The authors expressed the appreciation and thank you to the Research and Publishing Center of UIN Sunan Gunung Djati Bandung, which has provided funding support for the publication of this article.