Increased symptoms of post-traumatic stress in school students soon after the start of the COVID-19 outbreak in China

Hanmei Xu 1†, Hang Zhang 1†, Lijuan Huang 1, Xiaolan Wang 1, Xiaowei Tang 1, Yanping Wang 1, Qingqing Xiao 1, Ping Xiong 1, Rongqin Jiang 1, Jie Zhan 1, Fang Deng 1, Mingya Yu 1, Dong Liu 1, Xuejun Liu 1, Chunli Zhang 1, Wenjun Wang 1, Lu Li 1, Hongmei Cao 1, Wenchao Zhang 1, Hongping Zhou 1, Wo Wang 1 and Li Yin 1,16*

Abstract
Background: The outbreak of Coronavirus Disease 2019 (COVID-19) caused psychological stress in Chinese adults population. But we are unaware of whether the pandemic causes psychological stress on children.

Methods: We used the Children's Impact of Event Scale questionnaire (CRIES-13) to investigate the degree of Post-traumatic Stress (PTSD) symptoms caused by the pandemic in students selected from schools in Sichuan, Jiangsu, Henan, Yunnan, and Chongqing provinces of China.

Results: A total of 7769 students (3692 male and 4077 female), aged 8–18 years, were enrolled in the study, comprising 1214 in primary schools, 2799 in junior high schools and 3756 in senior high schools. A total of 1639 students (21.1%) had severe psychological stress reactions. A large proportion of senior high school students (23.3%) experienced severe psychological stress, and they had the highest median total CRIES-13 score. Female students were more likely to experience severe psychological stress and had higher median CRIES-13 total scores than males.

Conclusion: COVID-19 has placed psychological stresses on primary and secondary school students in China. These stresses are more likely to reach severe levels among female students and senior high school students.

Keywords: Post-traumatic stress, COVID-19, School students, CRIES-13, Stress, China

Background
Studies have shown an increased incidence of post-traumatic stress in survivors of large-scale disasters compared with the general population [1–4]. Disasters can be defined as destructive occurrences that disrupt and overwhelm entire communities and affect millions worldwide in a given year [5]. Children who have experienced disasters are more vulnerable than adults to mental and psychological disorders, including post-traumatic stress disorder (PTSD) [6–8]. Disasters can severely affect their emotional status, resulting in stress reactions that are different from those experienced by adults. Unlike adults who are able to regulate their emotions, children are more likely to limit or suppress their emotions [9, 10]. In addition, children may develop serious psychological and mental illnesses that occur sooner and last longer than those in adults [11–13]. And there is ample evidence of gender differences in post-traumatic symptomatology and women are found more likely to develop symptoms than men [3].

* Correspondence: yli009@163.com
† Hanmei Xu and Hang Zhang contributed equally to this work.
1 Mental Health Center, West China Hospital of Sichuan University, No. 28 South Dianxin Street, Chengdu 610041, Sichuan, China
16 Institute for System Genetics, Frontiers Science Center for Disease-related Molecular Network, Chengdu 610041, Sichuan, China

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
In the twenty-first century, a number of infectious diseases have challenged global public health [14]. During the epidemic of severe acute respiratory syndrome in February 2003, many adult patients developed post-traumatic stress symptoms, PTSD, anxiety, depression, and other mental illnesses [15–18]. The current Coronavirus Disease 2019 (COVID-19) pandemic also has constituted a global public health disaster [19]. After COVID-19 outbreak in China, our governments issued the first-level public health alert and recommended that all citizens stay at home [20]. The Ministry of Chinese Education estimated that more than 220 million children and adolescents were confined to their homes. In such crisis time, it is necessary to explore whether the COVID-19 pandemic would cause psychological stress on children and adolescents.

Therefore, we investigated the prevalence of post-traumatic stress symptoms in primary and secondary school students from several provinces and regions in China at one month after the start of the COVID-19 outbreak in order to elucidate the effects of the pandemic on the psychological stress in children and adolescents.

Methods

Subjects

We recruited 7769 students, from those in first grade of primary school (8 years) to those in the third grade of senior high school (18 years), in Sichuan(6727 students, 2 elementary school, 3 middle school), Jiangsu(767 students, 3 elementary school, 1 middle school), Shandong(159 students, 1 elementary school, 1 middle school), Henan(10 students, 1 elementary school), Yunnan(43 students, 1 middle school), and Chongqing(63 students, 2 elementary school). Participants were stratified into primary school students (grades 1–6), junior high school students (grades 7–9), and senior high school students (grades 10–12). We excluded students with a history of substance abuse and those suffering from mental illnesses (totally 4.5%), as well as those who could not understand the questionnaire.

The minimal sample size required for this study was calculated based on the typical sample size for questionnaire-based surveys of the occurrence of post-traumatic stress after disasters. Based on a PTSD prevalence of 32.2% in China after the outbreak of COVID-19 [19], we calculated a minimal sample of 2097 for a power of 0.8, type I error of 0.05 and allowable error of 0.02. We increased this by 10% to 2330 to compensate for missing or uncooperative participants. Ultimately, our sample was much larger (7769).

Measurement

Between 1 February 20 and 1 March 12,020, approximately one month after the outbreak of COVID-19 in China, we collected demographic data including age, sex, grade, family structure, occupation of parents and family members, etc. Psychopathological data was collected using the Children’s Revised Impact of Event Scale (CRIES) [21]. After obtaining the informed consent of the participants and their parents, the questionnaire were distributed by parents. Questionnaires couldn’t be submitted until they completed all questions, so there is no missing value in our sample.

The CRIES-13 measures symptoms of intrusion (4 items), avoidance (4 items), and arousal (5 new items). Answer item is set as “not at all”, “rarely”, “sometimes”, and “often” [21, 22]. The CRIES-13 total score is used to judge the severity of the psychological impact caused by a traumatic event. A total score ≥ 30 is considered to indicate severe psychological stress [22–24].

Statistical analysis

All statistical analyses were performed using SPSS 25.0 (IBM, Armonk, NY, USA), and the significance level was set as α = 0.05. We analyzed participant data and compared CRIES-13 scores across groups using the Chi-squared, Mann-Whitney U, and Kruskal-Wallis H tests. Post-hoc comparisons were conducted after adjusting the level of significance using Bonferroni correction.

We performed stepwise binary logistic regression using the forward likelihood ratio (LR) method in order to identify factors influencing perceived stress. We considered the influence of sex, age, grade, family structure, occupation of parents, past history of psychological illness (history of psychological consultations or use of psychotropic drug therapy), recent diagnosis of COVID-19, and exposure to coronavirus infection within the previous 30 days. Questions about infection exposure addressed the number of visits to Hubei province and surrounding areas, contact with patients diagnosed with COVID-19, incidence/occurrence of cold, fever, cough, nasal congestion, runny nose, sore throat, and diarrhea, and participation in large gatherings, such as dinner parties. Exposure was also assessed based on contact with family members who were doctors and frontline workers, as well as relatives within three generations who had been diagnosed with COVID-19 or were suspected of COVID-19. We also included data on whether participants had received therapy against COVID-19, or had fever and other mild symptoms.

In order to reduce information bias, we used blind method (blinded to data analyst) to collect data, and two psychiatrists carried out strict quality control of the questionnaire. Because we strictly enforce the inclusion criteria and exclusion criteria, there are such restrictions on participants to avoid confounding bias due to other diseases. At the same time, our study did logical regression analysis to minimize the impact of confounding factors.
Results

Demographic and clinical characteristics of subjects

Our survey included a total of 7769 students (4077 female) from 5 different provinces in China (Table 1). All participants were between 8 and 18 years old (median 15 years), and were stratified into three groups based on their grade: primary school students (15.62%, median age 11 years), junior high school students (36.03%, median age 13 years), and senior high school students (48.35%, median age 16 years). In total, 24 participants (13 males and 11 females) were diagnosed with COVID-19, and 27 (16 males and 11 females) were suspected of being infected with the disease. There were significant differences in gender distribution among different grades (χ² = 32.234, p < 0.001).

We collected information about the family structure and occupation of the parents of all participants. A large proportion of participants lived in three-generational households (35.6%) and in families with three individuals including the respondent (33.6%), and lived with single

Table 1 Demographic characteristics of school students, stratified by sex and grade

Characteristic	Total (n = 7769)	Sex	Grade	Z/χ²	p						
	Male (n = 3692)	Female (n = 4077)	Primary (n = 906)	Junior High (n = 2799)	Senior High (n = 3756)	H/χ²	p				
Median age (years)	15	15	15	-1.910	0.056*	11.00	13.00	16.00	6159.783	0.000*	
Sex (Male/Female)	-	-	-	-	-	611/603	1420/1379	1661/2095	32.234	0.000*	
Grade (Primary school/Junior high school/Senior high school)	1214/1299/3756	160/451/161	148/455/1379/2095	32.324	0.000*	-	-	-	-		
Family structure	50.179	0.000*	384.706	0.000*							
Single parent	794	346	448	72	252	470					
Two parents	2608	1339	1269	160	1064	1384					
Three-generation	2762	1350	1412	601	952	1209					
Other	1605	657	948	381	531	693					
Occupation of parents	34.448	0.000*	781.740	0.000*							
Medical staff	160	86	74	7	108	45					
Police	58	31	27	0	40	18					
Civil servant	287	151	136	7	164	116					
Teacher	195	102	93	12	114	69					
Freelancer	1838	906	932	270	637	931					
Farmer	1073	477	596	349	185	539					
Researcher	12	8	4	0	8	4					
Worker	1575	677	898	299	360	916					
Self-employed	1586	797	789	166	761	659					
Others	985	457	528	104	422	459					
Family members	Infected (Yes/No)	165/1604	70/3622	95/3982	1.757	0.185	9/1205	56/2743	100/1366	16.607	0.000*
Doctor (Yes/No)	272/7497	145/3547	127/3950	3.785	0.052	14/1200	166/2633	92/3664	81.008	0.000*	
Frontline worker (Yes/No)	111/7658	51/3641	60/4017	0.112	0.738	18/1196	27/3733	30.627	0.000*		
Respondent diagnosed with COVID-19	24/7745	13/3679	11/4066	0.426	0.514	6/1208	4/2795	14/3742	4.355	0.113	
Respondent had contact with suspected COVID-19 patient (Yes/No)	27/7742	16/3676	11/4066	1.497	0.221	6/1208	4/2795	17/3739	5.336	0.069*	
Respondent received COVID-19 therapy (Yes/No)	157/7612	72/3620	85/3992	0.178	0.673	19/1195	34/2765	104/3652	21.075	0.000*	
parents (10.2%). Others had different family structures such as living in more than three-generational households (20.7%). The most frequent parental occupations were freelancers (23.7%), self-employed workers (20.4%), migrant workers (20.3%), and farmers (13.8%). A smaller proportion were medical workers (2.1%), police officers (0.7%), civil servants (3.7%), and teachers (2.5%). A total of 165 students had family members who had been diagnosed with COVID-19. Participants were also exposed to the virus via family members who were doctors (272 students) and frontline workers (111 students).

Total CRIES-13 score

The stress response of participants to the COVID-19 pandemic was measured based on CRIES-13 total score. A total of 1639 (21.1%) students experienced severe symptoms of psychological stress (total score ≥ 30; Table 2). These symptoms were more serious in senior high school students (23.3%) compared to primary students (20.3%) and junior high school students (18.4%) ($\chi^2 = 23.5, p < 0.001$). A higher proportion of female students suffered severe psychological stress than male students (22.3% vs 19.7%; $\chi^2 = 8.03, p = 0.005$).

To understand the degree of impact of COVID-19, we compared total CRIES-13 scores among primary school, junior high school, and senior high school students using the Kruskal-Wallis H test. We found a significant difference among the three groups ($H = 75.512, p < 0.001$; Table 2); median total CRIES-13 score was the highest for senior high school students (21), followed by the junior high school (19) and primary students (18).

After adjusting the level of significance using Bonferroni correction, a post-hoc comparison found that total CRIES-13 scores were significantly lower for primary school students (18.00) than for senior high school students (21.00) ($p = 0.006$; Table 4). Across all three student groups, female students had higher total scores than males (median 21 vs 19; $Z = -5.739, p < 0.001$; Table 2).

Factor scores on the CRIES-13

We observed significant differences among the three groups of students in intrusion ($H = 103.14, p < 0.001$), arousal ($H = 183.669, p < 0.001$), and avoidance factor scores ($H = 45.492, p < 0.001$) (Table 2). Post-hoc comparisons of the intrusion factor showed that junior high school students had higher scores than primary students ($Z = -7.933, adjusted p < 0.001$), while senior high school students had higher scores than primary students ($Z = -10.120, adjusted p < 0.001$) and junior high school students ($Z = -2.463, adjusted p = 0.041$; Table 3). Pairwise comparison of the arousal factor showed that junior high school students had higher scores than primary students ($Z = -5.200, adjusted p < 0.001$), and senior high school students had higher scores than primary students ($Z = -12.382, adjusted p < 0.001$) and junior high school students ($Z = -9.214, adjusted p < 0.001$). In contrast, primary school students had higher avoidance factor scores than junior high school students ($Z = 6.7, adjusted p < 0.001$) and senior high school students ($Z = 4.327, adjusted p < 0.001$), and the scores of junior high school students were lower than those of senior high school students ($Z = -3.499, adjusted p < 0.001$; Table 3).

Across all three student groups, we found that female students had higher intrusion factor ($Z = -6.76, p < 0.001$) and arousal factor scores ($Z = -3.15, p < 0.001$) than males, but lower avoidance factor scores ($Z = -3.15, p = 0.002$; Table 2).

Factors influencing individual stress response

We performed logistic regression to determine the factors affecting total CRIES-13 scores and stress responses. Our results showed that stress response was influenced by the sex of the participant ($p = 0.024$), school grade ($p = 0.001$), past history of psychological counseling ($p < 0.001$), exposure to infection via relatives ($p = 0.009$), and a recent diagnosis of COVID-19 ($p = 0.006$; Table 4).

Table 2 CRIES-13 scores of students, stratified by sex and grade
Median scores
(n = 7769)
Total
Intrusion factor
Avoidance factor
Arousal factor
Distribution by total score, n (%)
< 30
≥ 30
Individuals suffering from cold, fever, cough, nasal congestion, runny nose, sore throat, and diarrhea within 30 days of taking part in the survey also had a heightened stress response ($p = 0.002$).

Discussion

In this study, we examined the early effects of the COVID-19 pandemic on the mental and psychological health of 7769 school students in China using the CRIES-13. Based on total CRIES-13 scores, 1639 students (21.1%) experienced symptoms of severe psychological stress, indicating an urgent need to understand the impact of such events on the mental health of children and adolescents.

Women are more likely to experience acute stress reactions and to be at higher risk of PTSD than men [25–31]. In addition, women often show higher scores than men on the invasion and avoidance factors of the CRIES-13 [32, 33]. Studies had also found that women showed more active than men in neural networks associated with fear and arousal [34]. This is consistent with our findings.

Some studies have shown that older individuals respond differently to stressful events compared with younger ones [32, 33, 35–39]. Similarly, studies of children exposed to war violence showed older children more vulnerable to stress [40]. Consistent with these results, we found that the largest proportion of students experiencing severe psychological stress were in senior high school. However, a survey of 8236 US children in grades 4–12 at 6 months after the 9/11 attacks found that primary school students (grades 4–5) were at higher risk of post-traumatic stress symptoms than junior and senior high school students [41]. This discrepancy may reflect that different grades of students may have different degrees of stress disorder under the influence of

Table 3	The post-hoc comparison of CRIES-13 scores by grade					
	Primary & Senior High	Junior High & Senior High	Primary & Junior High			
	z	Adjusted p	z	Adjusted p	z	Adjusted p
Total	−7.469	0.000*	−6.616	0.000*	−2.368	0.054
Intrusion factor	−10.120	0.000*	−2.463	0.041*	−7.933	0.000*
Avoidance factor	4.327	0.000*	−3.499	0.000*	6.7	0.000*
Arousal factor	−12.382	0.000*	−9.214	0.000*	−5.200	0.000*

Table 4	Logistic regression analysis to identify factors that influence risk of severe psychological stress in students				
Variable	B	SE	Wald chi-square	OR (95% CI)	p
Sex (Male/Female)	0.128	0.057	5.113	1.136 (1.017–1.270)	0.024*
Grade					
Primary	−0.146	0.083	3.073	0.864 (0.735–1.017)	0.080
Junior High	−0.234	0.064	13.200	0.940 (0.697–0.898)	0.000*
Occupation of parents					
Medical staff	0.179	0.215	0.689	1.196 (0.784–1.824)	0.406
Police	0.280	0.327	0.732	1.323 (0.697–2.512)	0.392
Civil servant	0.171	0.169	1.029	1.186 (0.853–1.651)	0.310
Teacher	−0.396	0.230	2.957	0.673 (0.429–1.057)	0.085
Freelancer	0.183	0.100	3.341	1.201 (0.987–1.462)	0.068
Farmer	0.328	0.111	8.741	1.388 (1.117–1.725)	0.003*
Researcher	0.754	0.631	1.429	2.126 (0.617–7.325)	0.232
Worker	0.151	0.104	2.135	1.163 (0.950–1.425)	0.144
Self-employed	0.145	0.103	1.958	1.156 (0.944–1.415)	0.162
Psychological consultations (Yes/No)	0.646	0.131	24.389	1.908 (1.477–2.466)	0.000*
Relatives infected by COVID-19 (Yes/No)	0.451	0.173	6.779	1.570 (1.118–2.206)	0.009*
Respondent had contact with suspected COVID-19 patient (Yes/No)	−1.514	0.778	3.877	0.220 (0.048–2.206)	0.006*
Respondent diagnosed with COVID-19 (Yes/No)	1.937	0.703	7.594	1.570 (1.118–1.632)	0.006*
Respondent received COVID-19 therapy (Yes/No)	0.119	0.189	0.400	1.127 (0.778–1.632)	0.527
Respondent had cold, fever, cough etc. in the previous 30 days (Yes/No)	0.435	0.142	9.344	1.544 (1.169–2.040)	0.002*
different events. Future research should focus on more different events.

We found that senior high school students had higher scores on arousal and invasion factors on the CRIES-13, but primary school students had higher avoidance factor scores. This suggests that senior high school students are more likely to feel frightened or anxious, experience flashback reactions associated with the event, and manifest symptoms of arousal. The immaturity of the cognitive process in younger children can make them less susceptible to recurring intrusive thoughts and other cognitive impacts of trauma [42, 43]. A maladaptive cognitive style in adolescents and older children may compromise their ability to regulate emotions, rendering them more vulnerable to PTSD [44].

Based on the regression analysis, we found that the occurrence of cold-related symptoms within one month of participating in the survey significantly influenced stress response. Based on studies of the spread of various viruses, psychosocial factors are related to infection rates. C-reactive protein (CRP) is an acute-phase reactant downstream of the pro-inflammatory cytokines released during influenza infection [45]. Studies have shown that a marker of peripheral inflammation, plasma CRP, may be prospectively associated with PTSD symptom emergence, suggesting that inflammation may predispose to PTSD [46]. On the other hand, the increasing number of patients and suspected cases, and the increasing number of outbreak-affected provinces and countries have elicited public worry about becoming infected [47]. As we know, the most common symptoms associated with COVID-19 are fever, cough, dyspnea, expectoration, headache, and myalgia or fatigue [48]. This is similar to the symptoms of the common cold [49]. Particularly, the relevance of perceived threat for health and life and the experienced feelings of vulnerability as mediating factors [50]. It was reported that mental health symptoms may have been common during the COVID-19 outbreak among the general population in China, especially among infected individuals, people with suspected infection, and people who might have contact with patients with COVID-19 [51]. This is consistent with our research results.

Although previous studies have explored the impact of the SARS epidemic on mental health, this is the first study addressing the post-traumatic symptoms of COVID-19 on children and adolescents. Using a relatively large sample ranging widely in age, we conducted a cross-sectional study of the psychological stress status of students who were not from Hubei province at one month after the outbreak of COVID-19 in China [19]. However, this may have caused a bias since the participants were selected from schools in certain regions in China, resulting in findings that may not be generalizable across all children and adolescents. In addition, the survey involved substantially more high school students than primary school students. No strict sampling was another bias of our research, but it was really difficult and almost impossible to do so in COVID-19 crisis.

Even though the timing of the survey may help identify participants who require psychological and clinical intervention, the cross-sectional design meant that we could not assess how persistent the post-traumatic stress symptoms are. Besides, the external validity of our survey is limited, the reasons are: Firstly, most of our samples were from Sichuan. Secondly, we did not use strict sampling and used only online self-rating method without structured mental health examination. These may reduce the representativeness and reliability of the results. But it was really difficult to conduct doctor rating scale and structured mental health examination in COVID-19 pandemic crisis. Lastly, our questionnaires were filled in voluntarily. Only those students whose parents would like to let their children fill in would fill in our questionnaire. In this way, parents and students who were not interested in mental health problems couldn’t be included. This, however, is also a feature of this survey as in a natural state, parents and students interested in their mental health were investigated. Our findings also may have some clinical implications for identification of children and adolescents with high risk for psychological stress after COVID-19.

Conclusions
In conclusion, our results showed that COVID-19 has placed psychological stresses on primary and secondary school students in China. These stresses are more likely to reach severe levels among female students and senior high school students.

Abbreviations
COVID-19: Coronavirus Disease 2019; CRIES-13: the Children’s Impact of Event Scale questionnaire; PTSD: Post-Traumatic Stress Disorder; DSM-IV: the Diagnostic and Statistical Manual of Mental Disorders IV; LR: likelihood ratio; CRP: C-reactive protein

Acknowledgements
We would like to acknowledge the contribution of all of colleagues and volunteers for their support in this study.

Authors’ contributions
LY conceived and designed the experiments. HM X, HZ, LJ H, XL W, XW T, YP W, QQ X, PX, RQ J, JZ, FD, MY Y, DL, XJ L, CL Z, WJ W, LL, HM C, WC Z, HP Z, WW helped collect the data. HM X, HZ analyzed the data. HM X, HZ and LY wrote and revised the manuscript. All authors have read and approved the manuscript.

Funding
This work was supported by the National Nature Science Foundation of China (81801357), the Science and Technology Education Program of the Sichuan Province (2020JDKP0013, 2020YFS0259), and the Chengdu Key Technology R&D Program (2019-YF05–00284-SN). The above mentioned funding bodies had no further role in the study design, collection, analysis
and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Availability of data and materials
The data that support the findings of this study are available on request from the corresponding author (Li Yin, yl009@163.com). The data are not publicly available due to privacy or ethical restrictions.

Declarations

Ethics approval and consent to participate
This study was approved by the Ethics Committee of West China Hospital of Sichuan University. The research had been performed in accordance with the Declaration of Helsinki. Written informed consents had been attained from all the participants and their guardians based on the principle of self determination. The participant/rights were fully respected and preserved in the whole process of this study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Mental Health Center, West China Hospital of Sichuan University, No. 28 South Dianxin Street, Chengdu 610041, Sichuan, China.
2. Chengdu Engineering Technical Vocational School, Chengdu 610300, Sichuan, China.
3. Chengdu Vocational & Technical College of Industry, Chengdu, Sichuan 610218, China.
4. Xuchuan Middle School, Zigong 643000, Sichuan, China.
5. The Fourth People’s Hospital of Chengdu, Chengdu 610036, Sichuan, China.
6. Jiangsu Academy of Educational Sciences, Nanjing 210013, Jiangsu, China.
7. Wenguang Second Central Primary School, Donghai County, Liyangyang 222315, Jiangsu, China.
8. Jiangsu Shuangjian Primary School, Rudong County, Nantong 226404, Jiangsu, China.
9. The Sixth Middle School of Jianshui County, Honghe Prefecture, Jianshui County 654300, Yunnan, China.
10. Egongyan Primary School, Jiulongpo District, Chongqing 404000, China.
11. The 12th Elementary School of Nanyang City, Nanyang 473002, Henan, China.
12. Hou Central School, Xuzhou 221000, Jiangsu, China.
13. The primary School Attached to SouthWest University, Chongqing 400700, China.
14. Chengdu Shuangliu Yongan Middle School, Chengdu 610219, Sichuan, China.
15. University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
16. Institute for System Genetics, Frontiers Science Center for Disease-related Molecular Network, Chengdu 610041, Sichuan, China.

Received: 25 October 2020 Accepted: 23 June 2021

Published online: 03 July 2021

References

1. Neria Y, Nandi A, Galea S. Post-traumatic stress disorder following disasters: a systematic review. Psychol Med. 2008;38(4):467–80. https://doi.org/10.1017/S0033291707001353.
2. Zeng EI, Bordeaux Silverstein L. China earthquake relief: participatory action work with children. Sch Psychol Int. 2011;32(5):498–511. https://doi.org/10.1111/j.1467-8624.2010.01453.x.
3. Baum N, Rahav G, Sharon M. Heightened susceptibility to secondary traumatization: a meta-analysis of gender differences. Am J Orthopsychiatry. 2014;84(1):1–22.
4. Furr JM, Corser JS, Edmunds JM, Kendall PC. Disasters and youth: a meta-analytic examination of posttraumatic stress. J Consult Clin Psychol. 2010;78(6):765–80. https://doi.org/10.1037/a0021482.
5. International Federation of Red Cross and Red Crescent Societies. World disasters report. Oxford: Oxford University Press; 1998.
6. Norris FH, Stone LB, Baker CK, Murphy AD. Early physical health consequences of disaster exposure and acute disaster-related PTSD. Anxiety Stress Coping. 2006;19(2):95–110. https://doi.org/10.1080/10615800600652209.
7. Becker-Bleas KA, Turner HA, Finkelhor D. Disasters, victimization, and children’s mental health. Child Dev. 2010;81(4):1040–52. https://doi.org/10.1111/j.1467-8624.2010.01453.x.
8. Adams ZW, Danielson CK, Sumner JA, McCauley JL, Cohen JR, Ruggiero KJ. Comorbidity of PTSD, major depression, and substance use disorder among adolescent victims of the 2011 tornadoes in Alabama and Joplin, Missouri. Psychiatry. 2015;78(2):170–85. https://doi.org/10.1002/j.2215-1997.2015.78.2.10.1002/j.2215-1997.2015.78.2.10.1501488.
9. Kennard J, Smith A, Spence SH, Liley RP, Newcombe P, Dob R, et al. Dissociation in children’s trauma narratives: an exploratory investigation. J Anxiety Disord. 2007;21(3):456–66. https://doi.org/10.1016/j.janxdis.2006.05.007.
10. Pfefferbaum B. Posttraumatic stress disorder in children: a review of the past 10 years. J Am Acad Child Adolesc Psychiatry. 1997;36(11):1503–11.
11. Pynoos RS, Steinberg AM, Layne CM, Briggs EC, Ostrowski SA, Fairbank JA. DSM-V PTSD diagnostic criteria for children and adolescents: a developmental perspective and recommendations. J Trauma Stress. 2009;22(3):391–8. https://doi.org/10.1002/jts.20450.
12. Fairbank JA, Fairbank DW. Epidemiology of child traumatic stress. Curr Psychiatry Rep. 2009;11(4):289–95. https://doi.org/10.1007/s11920-009-0042-9.
13. Aliche E, van der Schoot TA, van Ginkel JR, Kleber RJ. Looking beyond posttraumatic stress disorder in children: posttraumatic stress reactions, posttraumatic growth, and quality of life in a general population sample. J Clin Psychiatry. 2006;67(9):1455–61. https://doi.org/10.4088/JCP.v67n0913.
14. Laaser U, Brand H. Global health in the 21st century. Glob Health Action. 2014;7(1):23694. https://doi.org/10.3402/gha.v7.23694.
15. Cheng SK, Tsang JS, Ku KH, Wong CW, Ng YK. Psychiatric complications in patients with severe acute respiratory syndrome (SARS) during the acute treatment phase: a series of 10 cases. Br J Psychiatry. 2004;184(4):359–60. https://pscr.doi.org/10.1192/bjp.184.4.359.
16. Chua SE, Cheung Y, McAlonan GM, Cheung C, Wong JW, Cheung EP, et al. Stress and psychological impact on SARS patients during the outbreak. Can J Psychiat. 2004;49(6):385–90. https://doi.org/10.1177/000632230404900607.
17. Cheng SK, Wong CW, Tsang J, Wong KC. Psychological distress and negative appraisals in survivors of severe acute respiratory syndrome (SARS), Psychiatr Med. 2004;34(7):1187–95. https://doi.org/10.1057/pssm.2004.2272.
18. Wu KK, Chan SK, Ma TM. Posttraumatic stress, anxiety, and depression in survivors of severe acute respiratory syndrome (SARS). J Trauma Stress. 2005;18(1):39–42. https://doi.org/10.1002/jts.20004.
19. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
20. Guerrero RM, Pier DE, de Gusmao CM, Bemson-Leung ME, Mashi KP, Unzon DK, et al. Increased pediatric functional neurological symptom disorders after the Boston marathon bombings: a case series. Pediatr Neurol. 2014;51(5):619–23. https://doi.org/10.1016/j.pediatrneurol.2014.07.011.
21. Lau JT, Yeung NC, Yu XN, Zhang J, Mak WW, Liu WW, et al. Validation of the Chinese version of the Children’s revised impact of event scale (CRIES) among Chinese adolescents in the aftermath of the Sichuan earthquake in 2008. Compr Psychiatry. 2013;54(1):85–90. https://doi.org/10.1016/j. comppsych.2012.06.007.
22. Perris S, Meiser-Stedman R, Smith P. The children’s revised impact of event scale (CRIES):validity as a screening instrument for PTSD. Behav Cogn Psychother. 2005;33:487–98.
23. Dyregrov A, Kuterovac G, Barath N. Factor analysis of the impact of event scale with children in war. Scand J Psychol. 1996;37(4):339–51. https://doi.org/10.1111/j.1467-9450.1996.tb00667.x.
24. Christensen DM, Hansen M. Accounting for sex differences in PTSD: a multi-variable mediation model. Eur J Psychotraumatol. 2020;11:202003976. https://doi.org/10.1080/20011147-9505.1996.800667.x.
