Supplementary material

VASCULOMETABOLIC AND INFLAMMATORY EFFECTS OF ALDOSTERONE IN OBESITY

SHORT TITLE: ALDOSTERONE IN THE OBESE

Charlotte D.C.C. van der Heijdena,b, MD, Rob ter Horsta,b, Inge C.L. van den Munckhofa, MD, Kiki Schraaa, Jacqueline de Graafa, MD, PhD, Leo A.B. Joostena,b,c, PhD, Jan A.H. Danserd, MD, PhD, Mihai G. Neteaa,b,f, MD, PhD, Jaap Deinuma, MD, PhD, Joost Ruttena, MD, PhD, Niels P. Riksena,b, MD, PhD

aDepartment of Internal Medicine, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
bRadboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
cDepartment of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
dDepartment of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015 GD, The Netherlands
fDepartment for Genomics & Immunoregulation, Life and Medical Sciences 12 Institute (LIMES), University of Bonn, 53115 Bonn, Germany

Key words: aldosterone, obesity, renin-angiotensin-aldosterone system, atherosclerosis, inflammation, metabolomics.

Correspondence:

Niels P. Riksen, MD, PhD
Department of Internal Medicine 463
Radboud university medical center
PO Box 9101
6500 HB Nijmegen
The Netherlands
E-mail: niels.riksen@radboudumc.nl
Phone: +31-24-3618819
Fax: +31-24-3616519
EXTENDED METHODS

Baseline characteristics and sample collection

All subjects filled out questionnaires about life style, previous diagnosis of hypertension and diabetes and medication use. Waist circumference was measured at the level of the umbilicus to the nearest 0.1cm. Hip circumference was measured at the level of the trochanter major. Systolic and diastolic blood pressure were measured after 30 minutes of supine rest. Hypertension was defined when by systolic blood pressure (SBP) level was ≥140 mmHg and/or diastolic blood pressure (DBP) was ≥ 90 mmHg or if the participant was currently under treatment for hypertension. Diabetes mellitus type 2 (DM 2) was defined as a fasting glucose level > 7.0 mmol/L or if the participant was currently under treatment for diabetes mellitus. The metabolic syndrome was defined following the criteria of the National Cholesterol Education Program (NCEP). We used the sum of metabolic syndrome factors (MetS) in our analysis, since the presence of the metabolic syndrome greatly enhances the risk for the development of atherosclerosis (15).

Blood samples were obtained in the morning following an overnight fast, plasma and serum were frozen at -80°C until further analysis. Blood glucose, triglycerides (TG), total cholesterol, high density lipoprotein cholesterol (HDL-C) and Apolipoprotein B (ApoB) were measured using standard laboratory procedures.

Vascular measurements

Vascular measurements were performed after an overnight fast or in the afternoon six hours after a standardized breakfast. Participants abstained from caffeinated products and smoking for twelve hours before the visit. All measurements were performed in a quiet, temperature-controlled room with the patients in supine position. After a resting period of at least 30 minutes, baseline resting diameter, distensibility and wall thickness of the carotid artery were
assessed by a well-trained sonographer. A 7.5-MHz transducer of a Mylab Class C ultrasound device (Esaote Biomedica, Genoa, Italy) connected to a computer with a data acquisition board (Art.lab). Ultrasound parameters were set to optimize longitudinal B-mode images of the lumen/arterial wall interface. The cIMT and diameter measurements were performed in the proximal 1cm straight portion of the carotid artery in three different angles (90°, 120° and 180°) for 6 seconds. The measurements were recorded during the diastolic phase.

Measurement of the cIMT was performed using an automatic boundary detection system based on RF processing-based measurement (Art.lab, Esaote Europe BV, Maastricht, Netherlands) (1). Analysis of the cIMT and diameter was performed by an independent blinded researcher. The primary outcome variable was defined as the mean cIMT of the 3 different angles (18). Subsequently the presence of plaque and the thickness of plaques in the common carotid, internal carotid, or external carotid artery or at the carotid bulbus were measured. The presence of plaque was defined as focal thickening of the wall of at least 1.5x the mean cIMT or a cIMT >1.5mm, according to the Mannheim intima-media thickness consensus (2).

Ex vivo stimulation

Whole blood stimulation was performed using 100ul of heparin blood and 400ul of stimuli in flat-bottom 48-well plates (Greiner). Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque density gradient (Oosting et al., 2015). Cells were resuspended in medium (RPMI 1640) supplemented with gentamicin 10 mg/mL, glutamine 10 mM and pyruvate 10 mM. PBMC stimulations were performed in round-bottom 96-wells plates (Greiner) with 5x10^5 cells/well for either 24 hours or 7 days in the presence of 10% human pool serum at 37°C and 5% CO2. Supernatants were collected and stored in −20°C until used for ELISA. TNF-α, IL-1β, IL-6, IL-1Ra, IL-17 and IL-22 were measured using kits from R&D systems, the IFN-γ and IL-10 kits were obtained from Sanquin.
Circulating mediators

Cytokines and circulating mediators were measured in human EDTA plasma using Enzyme Linked Immunosorbent Assay (ELISA). Adiponectin, leptin, resistin, AAT, hsCRP, and IL-18BP were measured using Set kits from R&D Systems following manufacturer’s instructions. IL-6 and IL-18 were measured by Simple Plex cartridges using the ELLA (Protein Simple, San Jose).

Lipodomics

We used a high-throughput Nuclear Magnetic Resonance (NMR) metabolomics platform (Nightingale's Biomarker Analysis Platform) (3) for the quantification of 231 lipid and metabolite measures. The NMR metabolomics platform has previously been used in various epidemiological studies (4, 5). In this study we focused on the lipoproteins with total lipid concentrations of 14 lipoprotein subclasses, lipoprotein particles sizes, apolipoproteins and cholesterol. Groups of lipoprotein particle characteristics were made based on a correlation between variables of r>0.75.

Metabolomics

Blood was collected in EDTA tubes and plasma was extracted. Plasma samples were frozen and stored at -80°C before extraction. Prior to extraction plasma samples were allowed to thaw on ice for 30-60 minutes. 20 µL of serum/plasma was aliquoted into a labeled 2 mL microtube and then 180 µL of aq. 80% LCMS-grade methanol was added. The samples were thoroughly mixed on a vortex mixer for 15 seconds to precipitate protein and afterwards allowed to incubate for 1 hour at 4°C. Samples were centrifuged (room temperature)
at > 14,000g for 15 minutes to pellet the precipitate. 100 µL of the supernatant was transferred to a fresh microtube tube. Samples were stored at -80°C prior to shipping.

Flow injection electrospray time-of-flight mass spectrometry was performed by General Metabolomics (1 Broadway, Cambridge MA 02142) to identify metabolic features based on m/z. Details of the procedure can be found in Fuhrer et al. The total number of m/z signals that could be assigned to one or more metabolites was 1339 for the 300-OB cohort.

Assessment of fat distribution and hepatic steatosis

Abdominal fat distribution and liver fat content were determined by magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS), respectively. Both MR examinations were performed on a 3.0 T Magnetom Skyra or Trio (Siemens, Erlangen, Germany). Subjects were scanned in a supine position with their arms positioned parallel to the lateral sides of the body. At the L4-L5 level, sixteen axial T1-weighted MRI slices of 0.5 cm were acquired for each subject, with breathing commands to avoid motion-induced artifacts.

To determine liver fat content, a voxel of 27 cm³ was positioned in the right lobe of the liver, avoiding the biliary tree and large blood vessels. A STEAM(6) localization sequence without water suppression was used for data acquisition. To minimize relaxation effects on signal intensity, long repetition time (TR = 3s) and short echo time (TE = 20 ms) were used. Six scans were averaged during for 15 seconds.

VAT, SAT, sSAT and dSAT analysis

After data acquisition, data were analyzed with HIPPO FAT (version 1.3, V. Positano) software developed in the IDL 6.0 environment. Due to the T1-weighting, fatty tissues are represented with signal intensity in these images.
VAT, SAT, dSAT and sSAT volumes were measured on 8 separate slices, with an interslice distance of 5 mm, around the L4-L5 intervertebrate level. HIPPO FAT enables the automatic separation of SAT from VAT by generating three contour lines at each image provided by an active fuzzy clustering algorithm (8): (1) one line along the outer margin of the SAT, (2) one line along the inner margin of the SAT and (3) one line around the smallest possible region in the visceral region that included all VAT. A histogram of signal intensities in the VAT region was provided, in which a Gaussian curve automatically fitted the high-intensity peak, which identified the visceral fat.

After automatic segmentation, the analyst checked and -when needed- manually adjusted both the contour lines and the shape of Gaussian curve by eyeballing. The MRI scan allows visualization of the scarpa fascia as a fine black line. To divide sSAT from dSAT, a line was drawn manually over the scarpa fascia. Adipose tissue pixels between this line and the outer margin of the SAT were defined as sSAT. dSAT was defined by the total subcutaneous adipose tissue pixels minus the superficial subcutaneous adipose tissue pixels (dSAT = SAT – sSAT).

Interclass correlation coefficients for inter-observer comparisons were 0.799 for VAT, 0.999 for SAT, 0.998 for dSAT and 0.999 for sSAT based on N=11.

Quantification of hepatic fat content

Using the jMRUI software v3.0 package and the AMARES algorithm(9) the MR spectra were post processed to determine water (4.7 ppm) and methylene (1.3 ppm) resonance areas. Intrahepatic triglyceride content was expressed as the fraction of the methylene signal in the combined signal of methylene and water. Based on the European guidelines (10) we considered NAFLD to be present when the ratio methylene to methylene and water was higher than 5.6%.

Statistics

Regression analysis
Prior to analysis, aldosterone and renin levels were normalized using the rank-based inverse normal transformation (INT). Circulating markers, blood cell composition, cytokine production capacity, lipidomics, metabolomics, fat distribution and liver fat were transformed using the same technique. The following R code was used (R programming language):

```
transformed = rank(original)
transformed = qnorm(transformed / (length(transformed) + 0.5)),
```

where “transformed” indicated the transformed data and the original data is coded as “original”.

To evaluate associations between aldosterone or renin and various other measurements, a rank-based regression technique was applied using the “Rfit” package (Kloke and McKean, The R Journal Vol. 4/2, December 2012) in the “R” programming language. Rfit is a regression method that is more robust to outliers in response space than the standard linear models. Aldosterone or renin levels were compared to sets of measurements (e.g. metabolomics, circulating cytokine levels) or individual measurements (e.g. insulin levels). P-values were calculated by testing the null hypothesis that $\beta = 0$. All comparisons were corrected for multiple testing within each set of measurements using the Benjamini Hochberg False Discovery Rate (FDR) procedure (Benjamini, Yoav; Hochberg, Yosef (1995). Journal of the Royal Statistical Society, Series B. 57 (1): 289–300. MR 1325392). The covariates included in the analysis were age, sex, BMI, smoking, systolic and diastolic blood pressure (SBP and DBP) and season (correction of seasonality is described in Ter Horst et al (11)). The resulting formula looks like:

```
parameter1 ~ intercept + $\beta_1$*age + $\beta_2$*sex + $\beta_3$*smoking + $\beta_4$*SBP + $\beta_5$*DBP + $\beta_6$*season + $\beta_7$*parameter2. Here, parameter1 and parameter2 are the two parameters we want to associate.
```
When analyzing for associations with uric acid and white blood cell counts we added creatinine and the use of diuretic drugs as covariates to the analysis, as a surrogate marker for low circulating volume.

To evaluate the strength of the significant associations, the correlations coefficients of renin and aldosterone with the different parameters of interest were calculated using the “cor” function of the “stats” package in R. The data were corrected for the different covariates listed above using a linear regression model. The linear assumptions of this model are different from the rank based model mentioned above, however the correlation coefficients should still give a good impression of the strength of the associations. Standardized Regression Coefficients (beta) were calculated based on objects of class ‘lm’ using the ‘lm.beta’ function part of the ‘QuantPsyc’ package in the R programming language. The covariates previously described to be corrected for in the regression were included.

Metabolite set enrichment analysis

Using metaboanalyst.ca v4.0 (12) we performed an enrichment analysis of the metabolites showing a significant (FDR<0.05), positive association with aldosterone levels.

SUPPLEMENTARY TABLE 1. Associations of aldosterone (and renin) with inflammatory and metabolic parameters in individuals not using antihypertensive medication.

Circulating markers of inflammation	No antihypertensives (55% of cohort)	No diuretic antihypertensives (80% of cohort)		
	FDR (aldo)₁	FDR (renin)₁	FDR (aldo)₁	FDR (renin)₁
VEGF	ns	ns	ns (p=0.20)	ns
IL-6	ns	ns	ns (p=0.20)	ns (p=0.09)
Adiponectin	ns	ns	ns	ns (p=-0.13)
AAT	ns	ns	ns	ns
IL-18	ns	ns	ns	ns
---------	--------	--------	--------	--------
IL-18BP	ns	ns	ns	ns (p=0.09)
CRP	ns	ns	ns	ns
Resistin	ns	ns	ns	ns
Leptin	ns	ns	ns	ns
Cell subtypes	p<0.01	p<0.05	p<0.01	p<0.05
leukocytes				
lymfocytes	p<0.05	p<0.05	p<0.05	ns (p=0.06)
neutrofils	ns (p=0.07)	p<0.05	p<0.05	ns (p=0.06)
monocytes	ns	ns	ns	ns (p=0.06)
trombocytes	ns	ns (p=0.14)	ns	ns (p=0.06)
Metabolic syndrome components	ns (p=0.05)	ns	p<0.05	ns (p=0.11)
triglycerides				
glucose	ns	ns	p<0.05	p<0.05
waist (cm)	ns	ns	ns	ns
HDL cholesterol	ns	ns	ns	ns
systolic blood pressure	ns	ns	ns	ns
Lipodomics	ns (p=0.12)	ns	p<0.05	ns (p=0.14)
Large and XL VLDL particles	ns (p=0.19)	ns	ns	ns
Fat distribution	ns (p=0.12)	ns (p=0.08)	ns (p=0.09)	p<0.05
Liver fat	ns	ns	ns	ns (p=0.08)
VAT	ns (p=0.12)	ns (p=0.08)	ns	p<0.05
SAT	ns	ns (p=0.08)	ns	ns

FDR < 0.05 is considered significant, FDR ≤ 0.20 is described as ‘ns’ with p-value, FDR > 0.20 is noted ‘ns’ without p-value.
SUPPLEMENTARY TABLE 2. Association of aldosterone with various metabolites.

After Benjamini FDR correction for multiple testing, aldosterone positively correlated with 165 metabolites.

METABOLITE	FDR	
X676_DOCOSATRIENOIC.ACID_333.279039	1.87E-06	
X845_3S.5R.6S.7E.9X..7.M_389.217866	4.39E-05	
X470_CYCLOHEXANEUNDECANOL_267.232787	4.39E-05	
X401_3METHYLCYCLOPENTADE_237.222054	6.11E-05	
X749_C24.5_357.27974	9.11E-05	
X772_3B.ALLOTETRAHYDROCOR_365.233253	9.21E-05	
X532_ESTRIOL_287.164659	9.21E-05	
X734_PROPOFOL.GLUCURONIDE_353.160592	9.89E-05	
X751_NORENDOXIFEN_358.181114	0.000105	
X753_C24.4_359.295167	0.000119	
X609_.R..2.HYDROXYSTERCUL_309.242757	0.000148	
X672_C22.4_331.263905	0.000168	
X448_HYPOGEIC.ACID_253.217675	0.000179	
X1244_GLYCEROL.1..9Z.OCTAD_645.450669	0.000202	
X670_CARNOSIC.ACID_331.190751	0.000209	
X378_C14.0_227.20125	0.000216	
X744_C24.6_355.264024	0.000216	
X581_2.HYDROXYESTRADIOL.3_301.179366	0.000265	
X864_3..HYDROXY.T2.TRIOL_397.186691	0.000287	
X944_LYSOPE.0.0.14.0_424.247398	0.000296	
X951_TARAXACOLIDE.1.O.B.D_427.197037	0.000349	
X663_PICROCROCIN_329.160714	0.000462	
X587_ARACHIDONIC.ACID_303.232849	0.000477	
X735_PROSTAGLANDIN.F2A_353.233159	0.00049	
X595_8.11.14.EICOSATRIENO_305.248262	0.00049	
X562_NONADECA.10.Z..ENOIC_295.264072	0.00065	
X320_SEDOHEPTULOSE..1.3.7_209.067473	0.000658	
X625_13.HDOHE_313.25304	0.000707	
X1123_DIDE.O.METHYL.4.O.AL_508.166513	0.00072	
X634_L.CITRONELLOL.GLUCOS_317.196812	0.000878	
X945_PALIPERIDONE_425.2004	0.000898	
X369_C14.1_225.185602	0.000917	
X509_MILTIRONE_281.155681	0.001001	
X521_ANDROSTENEDIONE_285.186208	0.001268	
X792_6.EPI.7.ISOCUCURBIC_373.186837	0.001268	
X969_POLYSORBATE.60_433.280878	0.001377	
X504_12S.HHT_279.196541	0.001377	
X742_GAMMA.CROCETIN_355.191595	0.0016	
X441_C16.2_251.201338	0.001851	
Compound	RT (min)	
----------------------------------	----------	
X1166_ESTRIOL.3.SULFATE.16_543.153378	0.008553	
X771_20.CARBOXY.LEUKOTRIE_365.197182	0.008893	
X1129_O.6.DEOXY.A.L.GALACT_510.183575	0.008893	
X912_BETA.D.XYLOPYRANOSYL_413.129765	0.00924	
X770_2R.6X_7.METHYL.3_M_365.181688	0.009361	
X895_ACIDISSIMINOL.EPOXID_408.218027	0.009361	
X707_AMP_346.055773	0.0094	
X877_ACETYL.TRIBUTYL.CITR_401.218813	0.009738	
X1081_7.METHYL.1.4.5.NAPHT_483.15143	0.009738	
X314_ETHYL.BETA.D.GLUCOPY_207.086994	0.009803	
X85_DEOXYRIBOSE_133.050605	0.00999	
X1108_LIMONEXIC.ACID_501.175786	0.010234	
X461_Z..Z..5.TETRADE_263.23791	0.01069	
X1034_MANGOSTENONE.B_461.197012	0.01086	
X282_C12.1_197.154167	0.010916	
X791_WIKSTROMOL_373.129971	0.011156	
X674_2.6.DIMETHYL.7.OCTEN_333.191873	0.011156	
X1089_GLIMEPIRIDE_489.216394	0.011903	
X949_ADN_426.021894	0.011903	
X867_PIPAZETHATE_398.15361	0.012532	
X928_KANZONOL.F_419.185383	0.013384	
X333_GLYCYL.HISTIDINE_211.08369	0.013415	
X508_5.7.DIMETHoxyISOFLAV_281.08259	0.013581	
X946_CINNZEYLANINE_425.217945	0.013929	
X671_9.10.13.TRIHYDROYST_331.248955	0.013962	
X927_KUWANON.A_419.149139	0.013962	
X817_MISOPROSTOL_381.264409	0.015178	
X1150_16.17.DIHYDRO.16A.17_527.213262	0.015533	
X1005_ACUMINOSIDE_447.221834	0.015577	
X922_SIMVASTATIN_417.264717	0.015769	
X659_POLYOXYETHYLENE.40.M_327.290188	0.016927	
X1075_11.OXO.AN DrosterONE_479.227988	0.017419	
X1012_SOFA Lcone_449.196978	0.019298	
X1085_EGONOL.GLUCOSIDE_487.161916	0.019564	
X1186_APIUMOSIDE_569.164211	0.021414	
X1223_CHOLESTANE.3.7.12.25_611.378678	0.022429	
X720_8.ISO.15.KETO.PGE2_349.202571	0.022429	
X1025_ATROVIRINONE_455.169676	0.023684	
X705_METHYL..10..SHOGAOL_345.243847	0.023949	
X790_GENIPOSIDIC.ACID_373.113821	0.024705	
X855_VESNARINONE_394.177271	0.024774	
X920_CUDRAFLAVONE.A_417.135896	0.025718	
X526_R.S..NORLAUDANOSOLI_286.11081	0.026107	
X1218_PRODELPHINIDIN.A1_607.109878	0.026474	
X876_CORTISONE.ACETATE_401.197138	0.027009	
X643_1.ACETOXY.2.HYDROXY_323.222702	0.027724	
Compound	m/z	DP
---------------------------	----------	-------
X863_METHYL_3.4.DIHYDROXY	397.150484	0.027785
X610_C20.1_309.279734		0.02807
X743_5.7.MEGASTIGMADIEN_9	355.21242	0.02807
X644_C21.1_323.295321		0.028623
X911_5...3...45_TRIHYDRO	413.110295	0.028623
X524_AVOCADENE_285.242691		0.029042
X669_HEMIARIENSIN_399.144852		0.029713
X859_1.HEXANOL.ARABINOSYL	395.191322	0.030295
X741_XANTHOXYLOL_355.120233		0.030955
X788_NEODIOSPYRIN_373.07392		0.030955
X176_10.UNDECENAL_167.143917		0.031641
X799_RESOLVIN.D2_375.217104		0.031641
X968_1.1..ETHYLIDENEBISTR	433.188126	0.032405
X1015_ENTEROCIN.900_450.24159		0.032836
X1018_8.BUTANOYLNEOSOLANIO	451.197995	0.033171
X685_LISURIDE_337.203174		0.033171
X586_3A.16B.DIHYDROXYANDR	303.198069	0.033172
X973_E.3174_435.134048		0.035177
X602_OBTUSILACTONE.A_307.227411		0.035591
X1291_PC.15.0.18.4.6Z.9Z.1	738.508	0.037546
X591_SYNDESINE_304.152334		0.037754
X506_N..1.DEOXY.1.FRUCTOS	280.102811	0.040345
X1102_TAUROURSODEOXYCHOLIC	498.288985	0.041402
X505_C18.2_279.233414 (LINOLEIC ACID)		0.043274
X1044_DOLICHLY.B.D.GLUCOSY	465.226528	0.044345
X833_CORCHOIONOL.C.9.GLUC	385.186653	0.045711
X433_C16.3_249.185841		0.0462
X486_3HYDROXYTETRADECANE_	273.169985	0.046356
X673_1.5.DIBUTYL METHYL.H_333.155429		0.046912
X807_6.GINGERDIOL.3.5.D_379.212944		0.047408
X808_BISNORCHOLIC.Acid_379.250323		0.047408
X541_GLYCEROL.1.5.HYDROX	289.201368	0.048199
X1045_ANDROSTERONE.GLUCURO_465.248721		0.048416
X1050_DUKUNOLIDE.D_467.170444		0.049692

1. Brands PJ, Hoeks AP, Willigers J, Willekes C, Reneman RS. An integrated system for the non-invasive assessment of vessel wall and hemodynamic properties of large arteries by means of ultrasound. European journal of ultrasound : official journal of the European Federation of Societies for Ultrasound in Medicine and Biology. 1999;9(3):257-66.
2. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovascular diseases. 2012;34(4):290-6.
3. Soininen P, Kangas AJ, Wurtz P, Tukiainen T, Tynkkynen T, Laatikainen R, et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst. 2009;134(9):1781-5.
4. Wurtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131(9):774-85.
5. Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikainen LP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature genetics. 2012;44(3):269-76.
6. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magnetic resonance in medicine. 1989;9(1):79-93.
7. Positano V, Gastaldelli A, Sironi AM, Santarelli MF, Lombardi M, Landini L. An accurate and robust method for unsupervised assessment of abdominal fat by MRI. Journal of magnetic resonance imaging : JMRI. 2004;20(4):684-9.
8. Positano V, Cusi K, Santarelli MF, Sironi A, Petz R, Defronzo R, et al. Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. Journal of magnetic resonance imaging : JMRI. 2008;28(2):403-10.
9. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35-43.
10. European Association for the Study of the L, European Association for the Study of D, European Association for the Study of O. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Journal of hepatology. 2016;64(6):1388-402.
11. Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, et al. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell. 2016;167(4):1111-24 e13.
12. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486-W94.