Evaluation of urban water security based on DPSIR model

Sha Shi¹, Xueting Tao², Xiaona Chen², Hao Chen¹, Arniza Fitri³ and Xiaojia Yang²

¹ School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
² School of Yaohu, Nanchang Institute of Technology, Nanchang 330099, China
³ Department of Civil Engineering, Faculty of Engineering and Computer Science, Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia

*Corresponding E-mail: shisha2016@nit.edu.cn

Abstract. Assessment of urban water security is an important scientific basis for the sustainable utilization of urban water resources. This study established an evaluation model for urban water security based on DPSIR model, entropy method and comprehensive index method. The model was applied to Gong Qingcheng City (GQCC) in Jiangxi Province, China. An indicator system is developed based on four aspects including social development, water resources status, water pollution and water resources management, as well as summing up predecessors’ experience. This study analysed per capita domestic water consumption; ratio of ecological water compensation; percentage of water conservancy and public infrastructure investment; and water consumption per ten thousand yuan of industrial output value; where ratio of urban sewage treatment are the main effects on urban water security. The results of single index evaluation show that the change of stress subsystem was most dramatic from 2013 to 2017, while others were relatively stable. This indicates that positive interventions were urgently needed to relieve pressure of the stress subsystem. The results of comprehensive index evaluation show that water security at GQCC was in a critical state. In this paper, the causal relationship between social development and water security was clarified while the main factors and other factors affecting urban water security was identified. Finally, a reference for the formulation of urban development planning based on water resources demand was provided.

Keywords: Comprehensive index method, DPSIR model, Entropy method, Evaluation, Urban water security.

Track Name: Land, Water, Forests and Food Security

1. Introduction

Urban water security includes water shortage, water pollution, water ecological degradation, water management and water disaster [1-10], etc. As a part of urban water space and ecological water environment, lakes are great significance for urban water security [14-15]. The conclusions of the scientific evaluation of urban water security are great scientific significance for urban development planning and improving the relationship between city and lake. However, there is no unified standard
for the evaluation system of the urban water security at present, and the research is changing from qualitative to quantitative, from single evaluation to multi-method and multi-discipline comprehensive evaluation [16]. In this paper, DPSIR model framework and comprehensive evaluation method are used to evaluate the water security of lakeside cities. It has been done in order to solve the problems of difficult index selection and single index system, so that could improve the accuracy of evaluation results. Finally, the evaluation results can achieve multi-angle, objectivity, pertinence and applicability. DPSIR model framework is a conceptual model of evaluation index system widely used in environmental system [17]. It divides the natural system into five criterion layers (driving forces, Pressure, State, Impact and Responses, and under each criterion layer) and many indicators. Based on the interaction chain of "society-economy-nature", the analysis and evaluation are carried out. The DPSIR model framework fully selects evaluation indicators from five criterion layers to build the risk evaluation index database based on the DPSIR model framework. The selection of indicators is more comprehensive and the evaluation index system is more complete [18].

In this paper, Gong Qingcheng City (GQCC) of Jiangxi Province, China, is selected as the study area. By using DPSIR model framework to build index system, comprehensive evaluation method is adopted to obtain comprehensive index of water security. Urban water security of Gong Qingcheng City (GQCC) is then analysed, and therefore can provide reasonable suggestions for urban planning at Gong Qingcheng City.

2. Methods and Data

2.1 Index system construction
The selection of index is particularly important in the process of constructing the index system and it must be objective and reasonable. This study selects and analyses the index system of urban water security by using DPSIR conceptual model. The specific index system is shown in Table 1.

Criteria	Alternatives	Unit	Attribute	Description
Drive	Annual growth rate of GDP	%	Positive	Represents the level of regional economic development
	Natural population growth rate	%	Negative	Represents the increase of population with the increase of water demand
	Water resources per unit area	$10^4 \text{m}^3/\text{km}^2$	Positive	Represents the finiteness of water resources
Pressure	Water consumption per 10,000 yuan of industrial output value	m$^3/(10^4\text{yuan})$	Negative	Represents the pressure of regional socio-economic development on water resource consumption
	Agricultural water consumption rate	%	Negative	Represents the demand for water resources in agriculture
	Ratio of ecological water compensation	%	Negative	Represents the amount of water resources needed to maintain the ecological environment
	Per capita domestic water consumption	L/d	Negative	Represents the pressure of water pollution
	Discharge of wastewater of 10,000 yuan of output value	m$^3/(10^4\text{yuan})$	Negative	Represents the content of organic substances in water
	COD concentration in wastewater	mg/L	Negative	
State	Per capita water resources	m$^3/cap$	Positive	Represents the consumption of water resources
	Utilization rate of water	%	Negative	Represents the consumption and
resources

Criteria	Alternatives	2013	2014	2015	2016	2017
Drive	Annual growth rate of GDP	10.50	10.50	9.90	9.60	9.20
	Natural population growth rate	6.72	6.82	6.79	6.93	7.76
	Water resources per unit area	71.15	81.02	100.24	111.18	115.47
Pressure	Water consumption per 10,000 yuan of					

2.2 Study area and data sources

Administrative Region of Gong Qingcheng City (GQCC) in Jiangxi Province is shown in Figure 1. The original data of water security evaluation in GQCC, Jiangxi Province from 2013 to 2017 are shown in Table 2. Data sources are Jiangxi Statistical Yearbook (2014-2018), Jiujiang Statistical Yearbook (2014-2018) and Jiangxi Water Resources Bulletin (2014-2018).
industrial output value
Agricultural water consumption rate 54.46 52.32 47.15 48.97 48.16
Ratio of ecological water compensation 0.72 0.70 0.81 0.83 0.83
Per capita domestic water consumption 158 158 158 158 157
Discharge of wastewater of 10,000 yuan of output value 36.00 25.00 57.00 60.96 76.08
COD concentration in wastewater 3.85 4.04 2.5 4.5 5.26

State
Per capita water resources 2796 3173 3910 4317 4460
Utilization rate of water resources 19.59 16.97 12.46 10.91 10.49
Full factor water quality compliance rate 68.90 63.80 80.40 80.40 87.50
GDP per capita 8.01 8.89 9.32 7.58 8.85

Impact
Rate of urbanization 67.54 69.29 70.81 63.63 65.18
Green coverage rate in built-up areas 49.52 48.74 47.84 47.65 42.29

Response
Ratio of urban sewage treatment 82.76 82.59 96.89 113.49 125.93
Comprehensive utilization rate of industrial solid waste 47.93 100.00 100.00 100.97 125.93
Percentage of water conservancy and public infrastructure investment 6.47 4.71 3.93 3.90 3.54
Number of College Students per 10,000 166 173 184 191 190

2.3 Evaluation criteria
The key of evaluation work is the establishment of the standard value which directly affects the quality of evaluation results. There are 3 criteria to determine the standard value: (1) the standard value of the existing international or national standards, (2) the standard value is determined based on the development plans of the study areas or condition of environmental protection, (3) indicators without any standard reference should be determined according to previous experience, average value or peak value of the research area. On this basis, this study selects standard values based on the specific situation in GQCC, Jiangxi province as shown in Table 3.

Table 3. Evaluation standard values.

Criteria	Alternatives	Attribute	Standard value	Source
Drive	Annual growth rate of GDP	Positive	9.9	Five-year average value of Gongqingcheng
	Natural population growth rate	Negative	8	Refer to leading domestic cities
	Water resources per unit area	Positive	95.8	Five-year average value of Gongqingcheng
	Water consumption per 10,000 yuan of industrial output value	Negative	100	Five-year average value of Gongqingcheng
	Agricultural water consumption rate	Negative	55	The critical value
	Ratio of ecological water compensation	Negative	0.83	The highest value of Gongqingcheng in 5 years
Pressure	Per capita domestic water consumption	Negative	220	The highest value of Gongqingcheng in 5 years
	Discharge of wastewater of 10,000 yuan of output value	Negative	51	The highest value of Gongqingcheng in 5 years
	COD concentration in wastewater	Negative	4.3	The highest value of Gongqingcheng in 5 years
State	Per capita water resources	Positive	3700	Five-year average value of Gongqingcheng
	Utilization rate of water resources	Negative	40	Internationally recognized values
	Full factor water quality compliance rate	Positive	76.2	Five-year average value of Gongqingcheng
Impact	GDP per capita	Positive	8.5	Gongqingcheng Five-year average value of Gongqingcheng
---------	----------------	----------	-----	--
	Rate of urbanization	Negative	65	Fifth census
	Green coverage rate in built-up areas	Positive	45	National ecological assessment standards

Response	Ratio of urban sewage treatment	Positive	95	National environmental protection model city assessment standards
	Comprehensive utilization rate of industrial solid waste	Positive	89.5	Energy conservation and emission reduction targets
	Percentage of water conservancy and public infrastructure investment	Positive	3	Extrapolating from developed countries
	Number of College Students per 10,000	Positive	100	Extrapolating from developed countries

2.4 Calculation of index weight

2.4.1 Standardization

Range method is used to standardize the primary data in order to avoid the impact caused by the difference of index in unit and dimension. Specifically, the indexes are divided into positive index and negative index. The formula is as follows:

Positive index:

\[A_{ij} = \frac{x_{ij} - \min (x_{ij})}{\max (x_{ij}) - \min (x_{ij})} \]

(1)

Negative index:

\[A_{ij} = \frac{\max (x_{ij}) - x_{ij}}{\max (x_{ij}) - \min (x_{ij})} \]

(2)

Where, \(x_{ij} \) is the original data of the \(i \)-th evaluation object on the \(j \)-th evaluation index, \(A_{ij} \) is the standardized value of the \(i \)-th evaluation object on the \(j \)-th evaluation index, \(A_{ij} \in [0,1] \).

2.4.2 Entropy method

Entropy method is a commonly weighting method. It analyses the weight according to the influence of the index on the system. For example, the smaller entropy of the indicator, the greater amount of information and the degree of variation to the system, which can play a greater role in the overall comprehensive evaluation.

First, formula (3) was used to determine the index proportion \(R_{ij} \):

\[R_{ij} = A_{ij} / \sum_{j=1}^{m} A_{ij} \]

(3)

Then, calculate the entropy of the \(i \)-th index \(e_i \):

\[e_i = -\frac{1}{\ln n} \sum_{j=1}^{n} (R_{ij} - \ln R_{ij}) \]

(4)

Further, calculate the difference coefficient of the \(i \)-th index \(g_i \):
Finally, calculate the weight of i-th index \(\omega_{ij} \):

\[
\omega_{ij} = g_i / \sum_{j=1}^{m} g_i
\]

Where, \(i = 1, 2, 3, \ldots, n \), \(j = 1, 2, 3, \ldots, m \), \(R_{ij} \) is the proportion of the index value in all objects of the same index, \(e_i \) is the index j entropy value in the evaluation problem of m evaluation indicators and n evaluation objects, \(g_i \) is the difference coefficient of the i-th index, \(\omega_{ij} \) is the entropy value of the j-th index.

The weight which is obtained from entropy method is shown in Table 4.

Criteria	Alternatives	Entropy	Difference coefficient	Weight
Drive	Annual growth rate of GDP	0.8141	0.1859	0.0392
	Natural population growth rate	0.8688	0.1312	0.0277
	Water resources per unit area	0.8041	0.1959	0.0413
Pressure	Water consumption per 10,000 yuan of industrial output value	0.6737	0.3263	0.0688
	Agricultural water consumption rate	0.8239	0.1761	0.0371
	Ratio of ecological water compensation	0.5952	0.4048	0.0854
	Per capita domestic water consumption	0.1344	0.8656	0.1826
	Discharge of wastewater of 10,000 yuan of output value	0.8040	0.1960	0.0413
	COD concentration in wastewater	0.8015	0.1985	0.0419
State	Per capita water resources	0.8068	0.1932	0.0407
	Utilization rate of water resources	0.8216	0.1784	0.0376
	Full factor water quality compliance rate	0.8084	0.1916	0.0404
	GDP per capita	0.8163	0.1837	0.0387
Impact	Rate of urbanization	0.7929	0.2071	0.0437
	Green coverage rate in built-up areas	0.8668	0.1332	0.0281
Response	Ratio of urban sewage treatment	0.6820	0.3180	0.0671
	Comprehensive utilization rate of industrial solid waste	0.8621	0.1379	0.0291
	Percentage of water conservancy and public infrastructure investment	0.6638	0.3362	0.0709
	Number of College Students per 10,000	0.8182	0.1818	0.0383

2.5 The method of water security evaluation
Based on the single factor evaluation method, the comprehensive index method divides the evaluation object into multiple measurable indexes. After selecting the corresponding evaluation criteria for the indexes, the weighted evaluation of each index is carried out. Finally, the comprehensive score of the evaluation object is obtained, which is the water security index in this paper.
Let x_i be the actual value of the evaluation index, p_i be the safety index of index i, s_i be the standard index of index i, and $0 \leq p_i \leq 1$.

For the positive index, the safety value is the standard value:

$$ p_i = \begin{cases}
1 & x_i \geq s_i \\
\frac{x_i}{s_i} & x_i < s_i
\end{cases} \quad (7) $$

For the negative index, the unsafe value is the standard value:

$$ p_i = \begin{cases}
0 & x_i \geq s_i \\
1 - \frac{x_i}{s_i} & x_i < s_i
\end{cases} \quad (8) $$

The comprehensive index model is shown in the following formula:

$$ E = \sum_{i=1}^{n} W_i \cdot P(x_i) \quad (9) $$

Where, E is the comprehensive index of urban water security evaluation, n is the total number of indicators, W_i is the weight of each index, and $P(x_i)$ is the security index of each index.

3. Results and Discussion

3.1 Results

According to the previous research, the status of water safety in GQCC, Jiangxi province can be evaluated by the value of E and ranked as corresponding five levels, as presented in Table 5. Table 6 presents the safety index in GQCC.

Safety class	Range	Gradient ramp
safe	$0.8 \leq E \leq 1$	
	$0.6 \leq E < 0.8$	
critical	$0.4 \leq E < 0.6$	
	$0.2 \leq E < 0.4$	
dangerous	$0 \leq E < 0.2$	

Table 5. The range of safety class

Alternatives	Safety index				
	2013	2014	2015	2016	2017
Annual growth rate of GDP	1	1	1	0.97	0.93
Natural population growth rate	0.16	0.15	0.15	0.13	0.03
Water resources per unit area	0.74	0.85	1	1	1
Water consumption per 10,000 yuan of industrial output value	0	0	0	0.18	0.26
Agricultural water consumption rate	0.01	0.05	0.14	0.11	0.12
Ratio of ecological water compensation	0.13	0.16	0.02	0	0
Per capita domestic water consumption	0.28	0.28	0.28	0.28	0.29
Discharge of wastewater of 10,000 yuan of output value	0.29	0.51	0	0	0

Table 6. The safety index in GQCC
The values of water security index in GQCC, Jiangxi province are determined by using entropy weight method (EWM). There are 5 indicators with the weighted value of over 0.05, including water consumption per capita, ecological water replenishment ratio, proportion of investment in water conservancy and other infrastructure, industrial water consumption amount per unit output value of 10,000 yuan and urban disposal rate of sewage. It suggests that these 5 indicators pose a more significant impact on urban water security when other weighted indicators value are mostly around 0.04. The percentage of industrial solid wastes utilized, coverage rate of afforestation in developed area and the rate of natural increase (RNI) stay at the bottom of the list, with the weight values of 0.0291, 0.0281 and 0.0277 respectively, having a moderate impact on water security.

3.3 Trends of Criterion Layer
Based on the analysis of five subsystems in the evaluation criterion layer of urban water security, comparatively significant fluctuation can be detected in pressure and situation subsystem while driving force, response and influence subsystem remained stable.

As shown in Figure 2, during the five-year period, the weighted values of the driving force system were fluctuated between 0.07 and 0.08, similarly, the value for impact system stayed almost unchanged at 0.028. In addition, the response system was the most efficient in view of its gentle upward trend, reflecting that GQCC has made continuous efforts to improve and maintain the water security environment as well as popularize relevant knowledge. More dramatically, the weighted value of pressure system changed in the shape of “S”, the data of state subsystem declined after the highest point at 2015 but shown an upward trend in general. In a conclusion, the evaluation value of response subsystem occupied the highest point, followed by the state, pressure driving force and influence system respectively.
3.4 Trends of Water Security
According to the formula (9), the comprehensive evaluation index of water security in GQCC from 2013 to 2017 can be calculated (see figure 3). During this five-year period, the trend of index values changed in the shape of “S”, reaching the highest point at 2015, that is 0.543. To sum up, the water security index in GQCC is at a critical safety state, suggesting that water security situation is still not promising.

4. Conclusion
By the analysis of index values, some conclusions can be made that: (1) there are five main factors to urban water security which are water consumption per capita, ecological water replenishment ratio, proportion of investment in water conservancy and other infrastructure, industrial water consumption amount per unit output value of 10,000 yuan and urban disposal rate of sewage; (2) from 2013 to 2017, the change in pressure system was the most prominent while other systems were relatively stable, indicating that intervention measures are urgently needed to alleviate the pressure subsystem; (3) the water security index of GQCC is in a critical safety state. According to the above evaluation results, it can be known that the water security of GQCC requires more indicators to support the response subsystem for alleviating the threat of pressure subsystem and promoting the sustainable urban water security development.

Hence, we put forward some suggestions as following: (1) fully use the lakes in GQCC, strengthen the implementation of the water system connection project, improve the storage network system of unified and coordinated water resources allocation, and alleviate the water pressure of industry and
residents; (2) strictly implement the management of water resources and promote the formulation and implementation of water-saving standards and water quotas in various fields, especially in the industrial sector; (3) By speeding up the construction of information infrastructure for water monitoring, especially paying attention to the standards of "quality" and "quantity" of industrial pollution discharge, we can minimize the harm of water pollution to the water environment and promote the transformation of water environment management guided by environmental quality; (4) GQCC need to optimize the spatial pattern and improve usage efficiency of urban space, and land, scientifically plan and construct new and old urban areas, reduce the shortage of water resources caused by excessive population density, and optimize the allocation of water resources.

References
[1] Robert C and Brear S 2016 Urban Water Security (independent consultant and environmental advisor, London, UK) chapter 2 pp25-34
[2] Maulud K N A, Fitri A, Mohtar W H M W, Jaafar W S W M, Zuhairi N Z, and Kamarudin M K A 2021 A study of spatial and water quality index during dry and rainy seasons at Kelantan River Basin, Peninsular Malaysia Arabian Journal of Geosciences 14(2) pp 1-19
[3] Fitri A, Maulud K N A, Pratiwi D, Phelia A, Rossi F and Zuhairi N Z 2020 Trend of Water Quality Status In Kelantan River Downstream, Peninsular Malaysia Jurnal Rekayasa Sipil (JRS-Unand) 16 (3) pp 178-184
[4] Fitri A, Maulud K N A, Rossi F, Dewantoro F, Harsanto P, and Zuhairi N Z 2021 Spatial and Temporal Distribution of Dissolved Oxygen and Suspended Sediment in Kelantan River Basin In 4th International Conference on Sustainable Innovation 2020 – Technology, Engineering and Agriculture (ICoSITEA 2020) Atlantis Press pp 51-54
[5] Fitri A, Hashim R, Song K I, and Motamedi S 2015. Evaluation of morphodynamic changes in the vicinity of low-crested breakwater on cohesive shore of Carey Island, Malaysia Coastal Engineering Journal 57 (04) pp 1550023.
[6] Fitri A, Hashim R, Abolfathi S, & Abdul Maulud K N 2019 Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast Water 11 (8) pp 1721
[7] Fitri A, Hashim R, and Motamedi S 2017 Evaluation and Validation of Nearshore Current at the Coast of Carey Island, Malaysia Pertanika Journal of Science & Technology 25 (3)
[8] Fitri A, Yao L, and Sufiawi B 2019 Evaluation of Mangrove Rehabilitation Project at Carey Island Coast, Peninsular Malaysia based on Long Term Geochemical Changes In IOP Conference Series: Earth and Environmental Science IOP Publishing 365 (1) pp 012055
[9] Fitri A, and Yao L 2019 The impact of Parameter Changes of a Detached Breakwater on Coastal Morphodynamic at Cohesive Shore; A Simulation In IOP Conference Series: Earth and Environmental Science IOP Publishing 365 (1) pp 012054
[10] Yao L, Li J, Shi S, and Fitri A 2019 Simulation Take-off Angle of a Ski Jump Energy Dissipater. In IOP Conference Series: Earth and Environmental Science IOP Publishing 365 (1) pp 012057
[11] Chen H, Yao L, and Fitri A 2019 The Influence Mechanism Research of Inflow Temperature in Different Time Scale on the Water Temperature Structure In IOP Conference Series: Earth and Environmental Science IOP Publishing 365 (1) pp 012058
[12] Hashim R, Roy C, Shamshirband S, Motamedi S, Fitri A, Petković D, and Song K I 2016 Estimation of wind-driven coastal waves near a mangrove forest using adaptive neuro-fuzzy inference system Water resources management 30 (7) pp 2391–2404
[13] Hashim R, Fitri A, Motamedi S, Hashim A M 2013 Modelling of Coastal Hydrodynamic Associated with Coastal Structures: A Reviews Malaysian Journal of Science 32 pp 149-154
[14] Fitri A, Hasan Z A and Ghani A A 2011 Effectiveness of Aman Lake as flood retention ponds in flood mitigation effort: study case at USM Main Campus, Malaysia 3rd International Conference on Managing Rivers in 21st Century: Sustainable Solutions for Global Crisis of Flooding, Pollution and Water Scarcity (Rivers 2011) Penang Malaysia
[15] Fitri A, Hasan Z A and Ghani A A 2011 Determining the Effectiveness of Harapan Lake as Flood Retention Pond in Flood Mitigation Effort In Proceedings of 2011 4th International Conference on Environmental and Computer Science (ICECS 2011).
[16] Hoekstra A Y, Buurman J, and van Ginkel K C H 2018 J. Urban water security: A review Environmental Research Letters 13 (5) pp 053002
[17] Shikun S, Yubao W, Jing Liu et. al. 2016 Sustainability assessment of regional water resources under the DPSIR framework Journal of Hydrology p1-9
[18] Hongmei X, Labua J 2011 Study on regional water security assessment based on DPSIR model Journal of Safety and Environment 11 (1) pp 96-100

Acknowledgments

The authors would like to thank the Department of Education in Jiangxi Province (Grant No. GJJ180953) to financially support in completing this study. We also would like to thank the Belt and
Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2018492011) and the Science and Technology Research Project of the Science and Technology Department of Jiangxi Province (Grant No. 20192ACBL20041).