Three Adenovirus E3 Proteins Cooperate to Evade Apoptosis by Tumor Necrosis Factor-related Apoptosis-inducing Ligand Receptor-1 and -2**

Chris A. Benedict‡, Paula S. Norris‡, Theodore I. Prigozy§, Jean-Luc Bodmer¶, Jeffrey A. Mahr§, Charlese T. Garnett¶, Fabio Martinoni¶, Jürg Tschopp¶, Linda R. Gooding, and Carl F. Ware**

From the ¶Division of Molecular Immunology and the §Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, the ¶Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, and the ¶Institute of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland

Received for publication, September 8, 2000
Published, JBC Papers in Press, October 24, 2000, DOI 10.1074/jbc.M008218200

Adenoviruses, as well as other DNA viruses, have developed distinct strategies to counteract host immune defenses and cellular responses to viral infection. These strategies include blocking cellular apoptosis at critical junctions in the death-signaling cascade, suppressing the interferon response, and inhibiting presentation of viral antigens (reviewed in Refs. 1 and 2). The E3 region of the adenovirus genome contains seven expressed open reading frames, most of which encode proteins with immunomodulatory functions, and viral deletion mutants lacking E3 genes induce stronger pro-inflammatory responses in animal models (3). Although the E3 region is dispensable for viral replication in tissue culture, emerging data reveal that several E3 genes are involved in the evasion of host immune defenses. Uncovering the mechanism by which E3 genes temper host immune responses could lead to the development of novel anti-inflammatory therapeutic strategies.

The E3-10.4K and 14.5K open reading frames encode type 1 transmembrane glycoproteins that form a heteromeric complex (4–6). Both viral 10.4K and 14.5K proteins are required to down-regulate epidermal growth factor receptor (EGF-R)1 and some related tyrosine kinase receptors from the surface of infected cells (5, 7). More recently, the E3-10.4K/14.5K complex has been shown to mediate the down-regulation of cell surface Fas (8–10), a proapoptotic member of the tumor necrosis factor receptor (TNFR) superfamily. Other members of the TNFR family, such as the LTβR and TNFR1 were not modulated by the 10.4K/14.5K complex. Loss of cell surface Fas results in the desensitization of virus-infected cells to apoptosis induced by Fas signaling, thus counteracting a key defense pathway of cytotoxic T cells and NK cells. It is not clear whether the targeting of both EGF-R and Fas, which show no primary sequence homology, reflects independent or linked functions of the E3-10.4K/14.5K complex. This issue of receptor specificity exhibited by the E3 protein complex prompted us to address whether additional death domain-containing receptors in the TNFR family are targeted by adenovirus.

Cell surface receptors for the TNF-related apoptosis-inducing ligand (TRAIL) are members of the TNFR superfamily, and currently four membrane-anchored TRAIL receptors have been described (reviewed in Refs. 11 and 12). TRAIL-R1 (DR4) and TRAIL-R2 (DR5) both contain a cytoplasmic death domain that when ligated or overexpressed recruits the adaptor FADD, allowing direct activation of the caspase cascade and apoptosis (13–15). In contrast, neither TRAIL-R3 (DR1) nor TRAIL-R4 (Dr2) induce cell death because they lack a death domain. TRAIL-R3 is linked to the cell surface via a glycosylphosphatidylinositol (GPI) anchor (15–17), whereas ligation of TRAIL-R4, which is unable to recruit FADD, can initiate anti-apoptotic signals through the activation of the transcription factor

* This work was supported in part by United States Public Health Service Grants AI03368 and PO1CA69381 from the National Institutes of Health (to C. F. W.), Swiss National Science Foundation Grant 31-47279.96 (to J. T.), National Institutes of Health Training Grant T32AG06252 (to C. A. B.), and NRSA Fellowship Grant 1F2A10414-01AI (to P. S. N.). This is manuscript 378 from the La Jolla Institute for Allergy and Immunology. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

** To whom correspondence should be addressed: Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Dr., San Diego, CA 92121. Tel.: 858-678-4660; Fax: 858-558-3595; E-mail: carl_ware@lji.ai.org.

† The abbreviations used are: EGF-R, epidermal growth factor receptor; Ad2, adenovirus type 2; Ara-C, arabinofuranosylcytosine; CTL, cytotoxic T lymphocytes; FADD, Fas-associated death domain-containing protein; GPI, glycosylphosphatidylinositol; LAM-1, lysosome-associated membrane protein-1; NF-κB, nuclear factor-κB; NK cells, natural killer cells; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; SAEC, small airway epithelial cells; TRAIL, TNF-related apoptosis-inducing ligand; TRAIL-R, TRAIL receptor; TNF, tumor necrosis factor; TNFR, TNF receptor; VSV, vesicular stomatitis virus; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; m.o.i., multiplicity of infection; FACS, fluorescence-activated cell sorter; DD, death domain.
NF-xB (18). However, TRAIL-R3 and TRAIL-R4 expression correlates poorly with the sensitivity of tumor cell lines to TRAIL-mediated death (19). These findings, and the fact that TRAIL-R1 and TRAIL-R2 can activate NF-xB in addition to inducing apoptosis (16, 20), suggest a complex hierarchy in the regulation of TRAIL signaling. Additionally, TRAIL has been implicated in both CTL and NK cell killing of target cells (21–23), suggesting a possible role for this cytokine in the innate response to viral pathogens.

Here we report that adenovirus infection results in the down-regulation of TRAIL-R1 and TRAIL-R2 from the cell surface causing desensitization of infected cells to TRAIL-mediated apoptosis. The E3-6.7K protein (24, 25) is required in addition causing desensitization of infected cells to TRAIL-mediated innate response to viral pathogens.

The pBluescriptII-Ad2E3 recombinant virus was constructed as previously (27, 28) and was kind gifts of W. Wold (St. Louis University, St. Louis, MO). Briefly, rec700 is a recombinant Ad5 subtype virus containing the Ad2 10.4K protein (EcoRI-D fragment, map position 73–86) and the Ad5 14.5K and 14.7K proteins. All viral deletion mutants were generated from this parent recombinant "wild-type" virus. TRAIL-R3:Fc (Alexis Biochemicals, San Diego, CA) was used as an engineered PCRIII (Invitrogen)-based vector containing the signal peptide of the heavy chain of human IgG (PS089). The TRAIL-R2:Fc construct was amplified using the primers 5′-gcgtcgtcgtcgtcgtcgtcgt-3′ and 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ using Pfu polymerase. The amplified PCR product was digested with BamHI and PstI-FLAG sequence and a 3′ PstI site allowing subsequent ligation into a PCRIII-derived vector (Invitrogen, Carlsbad, CA) cut with XhoI. The E3-14.5K expression plasmid was generated by amplifying the 14.5K coding sequence from Ad5 genomic DNA using Pfu polymerase (Strategene, San Diego, CA) (primers, 5′-gcgtcgtcgtcgtcgtcgtcgt-3′ and 5′-gaactggacacactgactacgc-3′), digested with BamHI and EcoRI, and ligating the fragment into pCDNA3.1(-). Flag-14.5K was generated by amplification of the mature 14.5K coding sequence from E3-14.5K (primers, 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ and 5′-gaactggacacactgactacgc-3′) with Pfu polymerase. The amplified PCR product was cut with EcoRI and ligated into PS497 (provided by F. Martinon and J. Tschopp), an engineered PCRIII (Invitrogen)-based vector containing the signal peptide of human IgG, fused an N-terminal FLAG epitope tag. VSV-6.7K was constructed by amplifying the Ad2 E3-6.7K coding sequence from isolated adenoviral genomic DNA (primers, 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ and 5′-gaactggacacactgactacgc-3′) using Pfu polymerase. The amplified PCR product was digested with EcoRI and ligated into PL507, an engineered PCRIII-based vector containing an N-terminal start codon fused to the VSV epitope tag. Flag-6.7K was generated in exactly the same manner as VSV-6.7K, however, the EcoRI-digested PCR product was ligated into PL508, an engineered PCRIII-based vector containing an N-terminal start codon fused to the FLAG epitope tag.

The Flag-tagged full-length TRAIL-R2 expression construct was generated by PCR amplification of the mature coding sequence of TRAIL-R2 cDNA, using human IgG fused to an N-terminal FLAG epitope tag. VSV-TRAIL-R2 construct was amplified using the primers 5′-gcgtcgtcgtcgtcgtcgtcgt-3′ and 77 and the resulting product was subcloned as a BamHI-PstI fragment in PS089. The TRAIL-R2ADD deletion mutant (ΔLeu 348–Ser 424) was generated using a dual stage PCR approach. In the first PCR round, two overlapping fragments corresponding to the 5′ end and 3′ end of TRAIL-R2 devoid of the DD sequence were amplified using the primers 5′-cacaatgtctctgagcc-3′ and 77 for the 5′ end and 5′-ctgtctctgagcc-3′ for the 3′ end fragment. The two PCR products obtained were allowed to anneal and were re-amplified using 5′ and 77 to generate FLAG-TRAIL-R2ADD, which was subcloned as a BamHI-PstI fragment in PS089. TRAIL-R2:GPI was obtained by sub-cloning the 5′ TAPE tandem repeats of human TRAIL-R3 (amino acids 157–259) as a SalI-NolI fragment in replacement of the human IgG1 Fc cassette of a TRAIL-R2 construct (described in Ref. 16). Retroviral Vector Plasmids—pBPN-10.4K/14.5K was constructed by amplification of the E3-10.4K/14.5K coding sequence from Ad2-E3 using Pfu polymerase (Strategene) and the following primers: 5′-gcgtcgtcgtcgtcgtcgtcgt-3′ and 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ using Pfu polymerase. The amplified PCR product was digested with BamHI and PstI and ligated into pBABE-puro. The sequences of all constructs were verified using the primers 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ and 5′-ctgtaagctttcagtcatctccacctgtgactc-3′. The pBABE-6.7K plasmid was generated by amplification of the Ad2 E3-6.7K coding sequence from isolated adenoviral genomic DNA using the following primers: 5′-atgagcaattcaagta-3′ and 5′-actc-3′. The anti-FLAG and anti-VSV antibody were obtained from Sigma (St. Louis, MO) and the anti-FLAG and anti-VEGF antibody were obtained from Sigma.

Plasmids

Plasmids Used in 293T Transfections—The pBluescriptII-Ad2E3 region plasmid (Ad2-E3) has been described previously (9) and was a generous gift from Hans-Gerhard Burgert (Max Von Pettenkofer-Institut, Munich, Germany). The E3-10.4K expression plasmid was generated by excising the Ad2 10.4K coding sequence from pMAM-10.4K (gift of W. Wold) with SalI and ligating the fragment into pCDNA3.1(-) (Invitrogen, Carlsbad, CA) cut with XhoI. The E3-14.5K expression plasmid was generated by amplifying the 14.5K coding sequence from Ad5 genomic DNA using Pfu polymerase (Strategene, San Diego, CA) (primers, 5′-gcgtcgtcgtcgtcgtcgtcgt-3′ and 5′-gaactggacacactgactacgc-3′), digested with BamHI and EcoRI, and ligating the fragment into pCDNA3.1(-). Flag-14.5K was generated by amplification of the mature 14.5K coding sequence from E3-14.5K (primers, 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ and 5′-gaactggacacactgactacgc-3′) with Pfu polymerase. The amplified PCR product was cut with EcoRI and ligated into PS497 (provided by F. Martinon and J. Tschopp), an engineered PCRIII (Invitrogen)-based vector containing the signal peptide of human IgG, fused an N-terminal FLAG epitope tag. VSV-6.7K was constructed by amplifying the Ad2 E3-6.7K coding sequence from isolated adenoviral genomic DNA (primers, 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ and 5′-gaactggacacactgactacgc-3′) using Pfu polymerase. The amplified PCR product was digested with EcoRI and ligated into PL507, an engineered PCRIII-based vector containing an N-terminal start codon fused to the FLAG epitope tag.

The Flag-tagged full-length TRAIL-R2 expression construct was generated by PCR amplification of the mature coding sequence of TRAIL-R2 cDNA, using human IgG fused to an N-terminal FLAG epitope tag. VSV-TRAIL-R2 construct was amplified using the primers 5′-cacaatgtctctgagcc-3′ and 77 for the 5′ end and 5′-ctgtctctgagcc-3′ for the 3′ end fragment. The two PCR products obtained were allowed to anneal and were re-amplified using 5′ and 77 to generate FLAG-TRAIL-R2ADD, which was subcloned as a BamHI-PstI fragment in PS089. TRAIL-R2:GPI was obtained by sub-cloning the 5′ TAPE tandem repeats of human TRAIL-R3 (amino acids 157–259) as a SalI-NolI fragment in replacement of the human IgG1 Fc cassette of a TRAIL-R2 construct (described in Ref. 16). Retroviral Vector Plasmids—pBPN-10.4K/14.5K was constructed by amplification of the E3-10.4K/14.5K coding sequence from Ad2-E3 using Pfu polymerase (Strategene) and the following primers: 5′-gcgtcgtcgtcgtcgtcgtcgt-3′ and 5′-gctgcgtgcgtgcgtgcgtgcgt-3′ using Pfu polymerase. The amplified PCR product was digested with BamHI and PstI-FLAG sequence and a 3′ PstI site allowing subsequent ligation into a PCRIII-derived vector (Invitrogen, Carlsbad, CA) cut with XhoI. The E3-6.7K coding sequence was then excised from PCRII-Topo with EcoRI and ligated into pBabe-puro (29) to generate pBABE-6.7K. pBABE-FLAG-6.7K was generated by digesting FLAG-6.7K with SmaI and EcoRV to excise the N-terminal FLAG-tagged 6.7K gene, and this fragment was ligated into SnaBI-digested pBABE-puro. The sequences of all constructs were verified unambiguously using an ABI Prism 310 genetic analyzer automatic sequencer (PerkinElmer Life Sciences).

Cell Line Assays

Cell viability was determined using an MTT-based assay as described previously (30) with the following modifications. For adenovirus infection, cells were infected at a m.o.i. of ~30 in 100 μl volume; virus was allowed to adsorb for 90 min and then 100 μl of media containing cytokine (FLAG-tagged FasL or TRAIL), 80 units/ml human interferon-γ, and 20 μg/ml cytotoxic 1-β-β-arabinofuranosylcytosine (Ara-C) (Sigma) were added (13). One μg/ml anti-FLAG M2 antibody was added to wells containing FasL (2 μg/ml for TRAIL-containing wells) to enhance the activity of the FLAG-tagged cytokines. Fresh Ara-C was added to wells every 12–18 h, and cell viability was determined with MTT 48 h after infection. All cytokine concentrations were performed in
triplicate, and error bars represent standard deviations. Retrovirally transduced cells (5 x 10^5) were assayed for viability with MTT 72 h after addition of cytokines. Fold differences in sensitivity to TRAIL and FasL mediated killing were determined using IC_{50} concentrations of cytokine calculated from cell viability plots.

Retrovirus Production and Cell Transduction

Retroviral vectors were generated as described previously (31) based on the method of Soneoka et al. (32) and were pseudotyped with the vesicular stomatitis virus G protein (VSV-G). HT29.14S cells (1.5 x 10^6) were transduced multiple times in vector supernatant containing 8 µg/ml Polybrene. The volume of vector supernatant was kept constant for all wells by the addition of growth medium. Retroviral vector titers were 1–2 x 10^8 colony-forming units/ml when determined on HT29.14S cells, and transduction efficiency was ~99% as gauged by resistance to puromycin (pBabe-6.7K) or staining with 5-bromo-4-chloro-3-indolyl b-d-galactopyranoside (X-gal) (pBMN-LacZ virus made in parallel). Cells were harvested for analysis by FACS or plated into 96-well dishes for killing assays ~48 h after transduction.

Detection of Receptor Surface Levels by Flow Cytometry

HT29.14S and SAEC were infected with adenovirus at a m.o.i. ~30, and cells were detached from plastic with 5 mM EDTA in PBS 18 h after infection. Cells were resuspended in FACS binding buffer (PBS + 2% fetal bovine serum + 0.02% sodium azide), and 1 x 10^6 cells were used for each staining. Cells were incubated in 50 µl of FACS buffer plus appropriate antibodies (all antibodies used at 10 µg/ml) for 1 h, at which time cells were washed and incubated in either goat anti-rabbit Fab’/2 (for detection of TRAIL-R1, TRAIL-R2, and TRAIL-R3), goat anti-mouse Fab’/2 (for detection of Fas and EGF-R), or biotinylated rabbit anti-goat IgG followed by streptavidin (for TRAIL-R4). All secondary detection reagents were conjugated to R-phycocerythrin and were from Southern Biotechnology Associates (Birmingham, AL). Cells were analyzed on a FACS-Calibur (Becton Dickinson, Mountain View, CA), and each histogram represents 5 x 10^6 gated on forward and side-angle light scatter. HT29.14S cells transduced with retroviral vectors were analyzed by the same methods. In all presented figures, dotted histograms represent any receptors analyzed, indicating that the E3-10.4K/14.5K was significantly more pronounced than in HT29.14S cells. Although various studies have analyzed E3-mediated down-regulation of TRAIL-R1, TRAIL-R2, Fas, and EGF-R upon infection with adenovirus (8), were infected with either wild-type adenovirus (rec700) or viral deletion mutants lacking functional E3 region proteins as follows: 10.4K (dl752), 14.5K (dl759), 14.7K (dl762), or both 10.4K/14.5K (dl799). After infection, cells were analyzed by FACS for surface levels of TRAIL-R1, TRAIL-R2, TRAIL-R3, TRAIL-R4, and Fas and EGF-R (Fig. 1a). Infection with wild-type virus resulted in significant down-regulation of TRAIL-R1, TRAIL-R2, Fas, and EGF-R, but surface levels of TRAIL-R3 and TRAIL-R4 were not down-regulated. TRAIL-R1 and TRAIL-R2 surface levels decreased and 60%, respectively, after viral infection (based on peak mean fluorescence), as compared with a 96% decrease in the levels of Fas and 88% for EGF-R. Three viral deletion mutants (dl752, dl759, and dl799) were incapable of down-regulating any receptors analyzed, indicating that the E3-10.4K/14.5K complex was necessary for TRAIL receptor down-regulation as has been shown previously for both Fas and EGF-R. By contrast, infection with a virus deleted for E3-14.7K (14.7K is encoded by various polycistronic E3-transcripts which also encode 10.4K/14.5K (34)) was similar to the effect of wild-type virus, indicating the E3-14.7K protein is not required for TRAIL receptor down-regulation.

Confocal Microscopy

The subcellular distribution of down-modulated receptors was analyzed by confocal imaging of immunofluorescently labeled HeLa cells. HeLa cells (3 x 10^5) were infected with virus at a m.o.i. of 100 in permanox chamber slides (Nalge Nunc, Naperville, IL). Twelve hours after infection, the cells were washed with PBS and fixed in 4% formaldehyde. After washing with 0.2 glycine, the cells were permeabilized with 0.1% saponin. The cells were then incubated with anti-FLAG (M2, Sigma, 5 µg/ml) or anti-VSV (for analysis of total transcribed VSV-6.7K) antibody and protein G beads overnight at 4 °C. Samples were then analyzed by SDS-PAGE on 18% Tris glycerine gels and transferred to polyvinylidene difluoride membrane. Membranes were incubated with anti-VSV antibody (1:5000) followed by rabbit anti-mouse horseradish peroxidase-conjugated antibody. Protein bands were visualized with the Super-Signal detection kit (Pierce). The membranes were then stripped and reprobed with anti-FLAG or rabbit polyclonal anti-10.4K antibody to visualize FLAG-14.5K and 10.4K, respectively.

Results

Adenovirus Infection Results in Down-regulation of Cell Surface TRAIL-R1 and TRAIL-R2 via an E3-10.4K/14.5K-dependent Mechanism—HT29.14S cells, which have been shown previously to down-regulate cell surface Fas and EGF-R upon infection with adenovirus (8), were infected with either wild-type adenovirus (rec700) or viral deletion mutants lacking functional E3 region proteins as follows: 10.4K (dl752), 14.5K (dl759), 14.7K (dl762), or both 10.4K/14.5K (dl799). Infection with wild-type virus resulted in significant down-regulation of TRAIL-R1, TRAIL-R2, Fas, and EGF-R, but surface levels of TRAIL-R3 and TRAIL-R4 were not down-regulated. TRAIL-R1 and TRAIL-R2 surface levels decreased and 60%, respectively, after viral infection (based on peak mean fluorescence), as compared with a 96% decrease in the levels of Fas and 88% for EGF-R. Three viral deletion mutants (dl752, dl759, and dl799) were incapable of down-regulating any receptors analyzed, indicating that the E3-10.4K/14.5K complex was necessary for TRAIL receptor down-regulation as has been shown previously for both Fas and EGF-R. By contrast, infection with a virus deleted for E3-14.7K (14.7K is encoded by various polycistronic E3-transcripts which also encode 10.4K/14.5K (34)) was similar to the effect of wild-type virus, indicating the E3-14.7K protein is not required for TRAIL receptor down-regulation.

Although various studies have analyzed E3-mediated down-regulation of cell surface receptors, all these experiments have been performed using transformed human cell lines. To determine whether cell surface levels of TRAIL receptors decrease in cells that represent the normal target tissue for adenoviral infection in vivo, primary small airway epithelial cells (SAEC) were infected with wild-type virus or dl799 (Fig. 1b). Infection with wild-type virus resulted in TRAIL-R1 and TRAIL-R2 down-regulation, as well as Fas and EGF-R, from the cell surface. Notably, TRAIL receptor down-regulation in SAEC was significantly more pronounced than in HT29.14S cells. TRAIL-R1 was undetectable, and TRAIL-R2 was reduced by 93% of normal levels (Fig. 1b). TRAIL-R3 and TRAIL-R4 levels were unaffected by wild-type virus, and infection with dl799 caused no down-regulation of the receptors examined. These data indicate that modulation of TRAIL-R1 and TRAIL-R2 by adenovirus occurs in primary cells that are targeted during host infection. Similar results were seen in infected primary normal human bronchial epithelial cells, HeLa, 293T, and 293-HEK cells (data not shown).

Subcellular Localization of Fas and TRAIL Receptors in Infected Cells—The steady-state levels of TRAIL-R1 and TRAIL-R2 on the plasma membrane were reduced within 4 h.
after viral infection (data not shown), suggesting that the adenovirus E3 proteins stimulate TRAIL receptor internalization rather than interfering with their biosynthesis, similar to what has been shown for Fas (8, 10). The intracellular distribution of Fas and TRAIL-R2 was analyzed in HeLa cells infected with either wild-type virus or dl799. The infected cells were double-labeled with antibodies directed against Fas or TRAIL-R2 and lysosome-associated membrane protein-1 (LAMP-1), a marker of late endosomes and lysosomes (35). Confocal imaging (Fig. 2) of cells infected with wild-type virus revealed that both Fas and TRAIL-R2 were abundant in perinuclear vesicles (Fig. 2, a and g). In contrast, both Fas and TRAIL-R2 were absent from these compartments in cells infected with dl799 (Fig. 2, d and j), and both Fas and TRAIL-R2 co-localized with LAMP-1 (Fig. 2, c and i). However, not all internalized Fas and TRAIL-R2 were present in LAMP-1-positive vesicles. Consistent with the presence of Fas and TRAIL-R2 in late endocytic compartments, these two proteins extensively co-localized in cells infected with wild-type virus (Fig. 2o) suggesting both receptors have a similar endocytic pathway.

The E3-10.4K/14.5K Proteins Are Not Sufficient for Down-regulation of TRAIL Receptors—To assess whether the E3-10.4K/14.5K proteins alone were sufficient for down-regulation of TRAIL-R1 and TRAIL-R2 from the cell surface, expression vectors were transfected into 293T cells that modestly overexpress Fas (293T-Fas), and receptor surface levels were examined by FACS (Fig. 3a). As expected co-transfection of E3-10.4K plus E3-14.5K expression vectors resulted in down-regulation of both Fas and EGF-R from the surface of 293T-Fas cells (Fig. 3a), whereas transfection of either vector alone did not affect Fas or EGF-R levels (data not shown). Surprisingly, transfection with both E3-10.4K and 14.5K did not alter the cell surface levels of TRAIL-R1 and TRAIL-R2 (Fig. 3a). This result indicated that an additional viral protein(s) acts in concert with the E3-10.4K/14.5K complex to down-regulate TRAIL receptors.

The E3-6.7K Protein Is Required to Down-regulate TRAIL Receptors from the Cell Surface—The E3-6.7K protein was identified as a potential candidate for assisting in TRAIL receptor down-regulation by its structure as an integral membrane protein (24, 25); however, no function for the E3-6.7K protein has been previously identified. An E3-6.7K-expressing retroviral vector (pBABE-6.7K) was generated to test whether this protein might function in concert with E3-10.4K/14.5K in the down-regulation of TRAIL-R1 and TRAIL-R2. HT29.14S cells were transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4). Transduction of HT29.14S cells transduced with either control retroviral vector expressing LacZ (Vector), vectors expressing E3-10.4K/14.5K (pBMN-10.4K/14.5K) and/or E3-6.7K (pBABE-6.7K). Cells transduced with pBMN-10.4K/14.5K or pBABE-6.7K were then compared with cells transduced with both vectors for surface receptor levels by flow cytometry (Fig. 4).

![Fig. 1. Down-regulation of TRAIL-R1 and TRAIL-R2 by adenovirus requires E3-10.4K/14.5K.](http://www.jbc.org/)

![Fig. 2. Intracellular distribution of Fas and TRAIL-R2.](http://www.jbc.org/)

![Fig. 3. Down-regulation of surface receptors by adenovirus.](http://www.jbc.org/)

![Fig. 4. Transduction of HT29.14S cells.](http://www.jbc.org/)
tion (28% of normal levels). Significant TRAIL-R2 down-regulation was only observed when HT29.14S was co-transduced with pBMN-10.4K/14.5K and pBABE-6.7K (44% of normal levels). Neither TRAIL-R1 nor TRAIL-R2 surface levels were affected by transduction with pBABE-6.7K alone (Fig. 4). The surface levels of TRAIL-R3 and TRAIL-R4 were not affected by transduction with any combination of E3 protein-expressing vectors. These data indicate that the E3-6.7K protein is required for the down-modulation of the death domain-containing TRAIL receptors seen in adenovirus infection.

E3-6.7K Is Detectable on the Cell Surface and Forms a Complex with E3-10.4K/14.5K—The E3-10.4K and 14.5K proteins have previously been shown to exist as a heteromeric complex on the cell surface composed of one 14.5K monomer and two alternatively processed, disulfide-bridged forms of 10.4K (36, 37). E3-6.7K has been reported to reside in the endoplasmic reticulum, based upon the sensitivity of this protein to digestion by endoglycosaminidase H (25). Our functional analysis of E3-6.7K led us to hypothesize that the E3-6.7K protein might associate with the E3-10.4K/14.5K complex. Epitope-tagged versions of E3-14.5K (FLAG-14.5K) and E3-6.7K (FLAG-6.7K and VSV-6.7K) were generated to facilitate biochemical analysis of protein-protein interactions and cell surface expression. FLAG-14.5K and FLAG/VSV-6.7K were capable of down-regulating Fas and TRAIL-R2 equivalent to the untagged proteins when co-expressed with E3-10.4K, indicating that epitope tagging of these two E3 proteins did not disrupt their function (data not shown). 293T cells were transfected with various combinations of the E3 protein expression vectors and were analyzed for protein cell surface expression by flow cytometry (Fig. 5, upper panel), or cell lysates were subjected to immunoprecipitation for analysis of protein complex formation (Fig. 5, lower panel). Flow cytometry analysis revealed that the E3-6.7K protein is expressed on the surface of transfected cells (Fig. 5, a and b) and that co-expression of E3-10.4K/14.5K does not affect the surface levels of E3-6.7K. Additionally, E3-6.7K cannot supplant the function of E3-10.4K in helping to transport E3-14.5K to the cell surface (see Fig. 5d). Western blot analysis of immunoprecipitated cell lysates revealed that E3-6.7K co-immunoprecipitates with E3-10.4K/14.5K. E3-6.7K also co-precipitated with E3-14.5K in the absence of E3-10.4K, suggesting a direct interaction between these two proteins. E3-6.7K did not immunoprecipitate with E3-10.4K in the absence of E3-14.5K (data not shown).

E3 Protein-mediated Down-regulation of TRAIL-R2 Is Dependent upon Sequences in the Cytoplasmic Tail of the Receptor—In an attempt to elucidate which sub-domains of TRAIL-R2 are required for down-regulation by E3-10.4K/14.5K, we generated various mutants of the cytoplasmic domain of TRAIL-R2 that lack either the C-terminal 16 amino acids of the cytoplasmic tail (TRAIL-R2ΔC16), the entire death domain (TRAIL-R2ΔDD), or a chimeric TRAIL-R2/R3 receptor encoding the extracellular domain of TRAIL-R2 fused to the domain of TRAIL-R3 coding for the addition of the GPI link to the cell surface (TRAIL-R2-GPI). The mutant TRAIL-R2 expression plasmids were transfected into 293T cells either with

Fig. 2. Fas and TRAIL-R2 co-localize in intracellular vesicles after adenovirus infection. HeLa cells were infected with wild-type (rec700) or dl799(10.4K/14.5K) virus and stained with antibodies against Fas, TRAIL-R2, and LAMP-1. a–c, g–i, and m–o represent cells infected with wild-type virus, and d–f and j–l represent cells infected with dl799. The images as follows: a–f, anti-Fas (green) and anti-LAMP-1 (red); g–l, anti-TRAIL-R2 (green) and anti-LAMP-1 (red); and m–o, anti-Fas (green) and anti-TRAIL-R2 (red). The last panel in each row is a merged image of the previous two panels where yellow indicates the co-localization of the two analyzed proteins.
or without the Ad2-E3 plasmid, and cell surface receptor levels were analyzed by FACS (Fig. 6). Full-length TRAIL-R2 was included as a positive control for Ad2-E3 down-regulation. Interestingly, the cell surface levels of the TRAIL-R2 mutants were unaffected by co-expression of Ad2-E3 (Fig. 6), indicating that the cytoplasmic tail of TRAIL-R2 plays a critical role in the susceptibility of the receptor to down-regulation by E3 proteins. More specifically, the results seen with the TRAIL-R2 DC16 mutant indicate that the C-terminal 16 amino acids are required for sensitivity of TRAIL-R2 to down-regulation, and the determinant of specificity does not reside in the death domain.

Adenovirus E3 Proteins Are Required to Reduce the Sensitivity of Infected Cells to Apoptosis by TRAIL and FasL—To test whether the down-modulation of death receptors from the cell surface by E3-6.7K/10.4K/14.5K results in the desensitization to ligand-induced apoptosis, HT29.14S cells transduced with pBMN-LacZ, serves as “vector” negative control, E3-10.4K/14.5K (pBMN-10.4K/14.5K), and/or E3-6.7K (pBABE-6.7K) and were analyzed by flow cytometry to determine receptor cell surface levels.

Next, adenovirus-infected cells were tested for sensitivity to TRAIL and FasL-mediated apoptosis. HT29.14S cells infected with viral mutants lacking E3-10.4K/14.5K showed an ~6-fold increased sensitivity to killing by TRAIL when compared with cells infected with wild-type virus, virus deleted for 14.7K (dl762), or mock-infected cells (Fig. 7b). Similar data were seen when infected cells were analyzed for their sensitivity to FasL-mediated killing, although, analogous to the retroviral transduction experiments, desensitization to FasL (~20-fold) was more dramatic than TRAIL. As was observed for TRAIL, infection with deletion mutant viruses also increased the sensitivity of HT29.14S cells to FasL (~2–3-fold). Together, these data suggest that the E3 protein complex acts to counteract the increased sensitivity of cells to TRAIL and FasL that occurs during viral infection.

DISCUSSION

This report identifies the specific targeting of the proapoptotic receptors for TRAIL by adenovirus and is the first example of a viral defense strategy directed toward this group of death receptors. The E3-6.7K protein is required for the specific down-regulation of TRAIL receptors seen during adenoviral infection, providing an additional mechanism that potentially blocks the host innate and immune responses to viral infection. The adenoviral genome contains several distinct proteins that regulate cellular apoptosis including E1b-19K, E1b-55K, E3-14.7K, and E3-10.4K/14.5K. Each viral protein has evolved a different mechanism to modulate apoptotic signaling pathways. E1b-19K, a functional homologue of the human BCL-2 protein, is thought to interfere with apoptosis at the level of the...
mitochondria (reviewed in Ref. 38), whereas E1b-55K suppresses p53-mediated apoptosis (39). Both of these E1b proteins function to block cell death mediated through the intrinsic cellular apoptotic pathway (reviewed in Ref. 40). Contrary to the E1b proteins, the E3-encoded proteins appear to act on components of the extrinsic apoptotic pathways, which are initiated by signaling through the death domain-containing receptors of the TNFR superfamily. E3-14.7K is a cytosolic protein that has been shown to inhibit TNF-mediated apoptosis (41) by a still unknown mechanism, although recently 14.7K has been implicated in modulating the transcription factor NF-κB through interactions with IKK/γ/NEMO (42), which may induce protection against TNF-mediated death. The commitment of adenoviral genes dedicated to blocking apoptosis signaling by death receptors indicates an indispensable role for this pathway in immune control of adenovirus infection in vivo.

The E3-6.7K protein has the predicted structure of a type III integral membrane protein, a family of transmembrane proteins that encode no cleavable signal peptide but contain a signal anchor sequence for targeting and insertion into the membrane of the endoplasmic reticulum, a compartment that

Fig. 5. E3-10.4K/14.5K/6.7K are expressed on the cell surface and form a trimolecular complex. Upper panel, 293T cells were transfected with E3 protein expression vectors (VSV-6.7K, FLAG-6.7K, E3-10.4K, E3-14.5K, and FLAG-14.5K) and were subjected to analysis by flow cytometry. Histograms a and c were samples incubated with anti-VSV antibody to detect the N-terminal epitope-tagged VSV-6.7K protein. b and d were samples incubated with anti-FLAG antibody to detect either FLAG-6.7K or FLAG-14.5K, respectively. Lower panel, 293T cells were transfected with various combinations of E3 protein expression vectors (FLAG-14.5K, VSV-6.7K, and E3-10.4K). +/+ indicates the presence or absence of the designated expression vectors in the various transfections. Cell lysates were precipitated using anti-FLAG antibody followed by SDS-PAGE and Western blot. For Western blots of immunoprecipitated proteins, anti-FLAG antibody was used to detect either FLAG-6.7K or FLAG-14.5K, respectively.

Fig. 6. TRAIL-R2 down-regulation by E3 proteins is dependent upon the cytoplasmic tail of the receptors. 293T cells were transfected with either wild-type TRAIL-R2 or various TRAIL-R2 mutants in the presence (gray histogram) or absence (black histogram) of the Ad2-E3 plasmid. All receptor constructs were detected using anti-FLAG antibody, except TRAIL-R2:GPI where anti-TRAIL-R2 antibody was used.

E3-6.7K has previously been reported to reside (25). In contrast, the E3-10.4K/14.5K proteins are type I membrane proteins that are thought to localize primarily to the plasma membrane (4), raising the question of where this trimolecular protein complex resides in the infected cell. Our data prove that the E3-6.7K protein can be expressed on the cell surface and interacts directly with the E3-10.4K/14.5K complex (see Fig. 6), suggesting that the trimolecular complex exists on the plasma membrane. E3-6.7K is highly expressed on the cell surface in the absence of E3-10.4K/14.5K, indicating there is no requirement for additional viral proteins to assist in its transport to the plasma membrane as is the case for E3-10.4K/14.5K (4). However, there are detectable levels of E3-10.4K and E3-14.5K in both the endoplasmic reticulum (where E3-6.7K has been described to be localized previously) and Golgi of adenovirus-infected cells (4), raising the possibility that the E3 complex may reside in multiple cellular compartments. We are currently examining the subcellular localization of the E3-10.4K/14.5K/6.7K complex to understand better the mechanism for TRAIL receptor down-regulation.

Although the E3-10.4K/14.5K complex was known to down-regulate both Fas and EGF-R prior to this study, little was known about the mechanism of action for these proteins. Various deletion mutants were generated in the cytoplasmic tail of TRAIL-R2 to analyze the role of this receptor domain in E3 protein-mediated down-regulation, and none of the mutants were susceptible to down-regulation. Notably, even TRAIL-R2ΔC16, which deletes the last 16 amino acids of the receptor cytoplasmic tail, but still encodes the entire death domain (DD), was unable to be down-regulated by adenovirus. These data delineate that the DD, which is highly conserved between Fas and TRAIL receptors, is not the exclusive target of the E3 complex. Additionally, the E3-10.4K/14.5K/6.7K complex is unable to down-regulate the DD encoding receptors DR5/TRAMP and TNFR-1 from the surface of HT29.14S cells (data not shown), further highlighting the specificity of E3 proteins for Fas and TRAIL-R. The inability of the TRAIL-R2ΔDD mutant to be down-regulated by the E3 complex suggests a positional requirement for the C-terminal 16 amino acids of TRAIL-R2 in determining sensitivity to E3-mediated down-regulation. Interestingly, all of the TRAIL-R2 mutants are expressed on the cell surface of transfected 293T cells at significantly higher levels than wild-type TRAIL-R2 (see Fig. 7). Since the total
protein levels of the TRAIL-R2 mutants were equivalent to that of wild-type receptor in 293T cells (data not shown), this result indicates that the overall steady-state distribution of the mutants is altered. A significant fraction of TRAIL-R2 is normally present in intracellular compartments (43), and our data suggest that manipulation of the TRAIL-R2 cytoplasmic tail can result in a redistribution of TRAIL-R2 to the cell surface, similar to what has been shown for the LTβR (44). Our continuing efforts to dissect the role trafficking and subcellular localization of TRAIL-R1 and R2 in E3-mediated down-regulation should help to elucidate further the mechanism of action of these viral proteins.

Although the trimeric E3 protein complex clearly reduces the sensitivity of cells to TRAIL killing when expressed in trans (see Fig. 7a), the role of these proteins in desensitizing cells to TRAIL in the context of a viral infection appears a bit more complicated. As has been shown previously for FasL, infection of cells with viral mutants lacking E3-10.4K and 14.5K dramatically sensitizes them to TRAIL-induced apoptosis. Down-regulation of TRAIL-R1 and -R2 by the E3 complex counteracts this sensitivity, reducing it to the level of mock-infected cells. The desensitization (when compared with uninfected cells) of adenovirus-infected HT29.14S cells to FasL killing is likely to be due to the more pronounced down-regulation of Fas in this cell line when compared with TRAIL-R1 and -R2. Quite interestingly, down-regulation of TRAIL-R1 and -R2 is most dramatic in primary small airway epithelial cells (see Fig. 1b), suggesting that these cells would be largely resistant to TRAIL-mediated apoptosis if infected in vivo. However, because most primary cells are not killed by TRAIL in tissue culture models, we have been prohibited from assaying for TRAIL sensitivity in this cell line.

Based on our studies in HT29.14S cells, it appears that E3-6.7K is absolutely required for down-regulation of TRAIL-R2, but that E3-10.4K/14.5K can function alone to down-regulate TRAIL-R1, albeit at significantly reduced efficiency when compared with the trimeric E3 complex. If TRAIL is important in mediating innate immune responses against pathogens in vivo, then perhaps the TRAIL receptor family has co-evolved to counteract viral strategies directed at quelling this response, and this is a possible explanation for differences seen in E3-induced down-regulation of the two proapoptotic receptors for TRAIL. However, cell-specific issues regarding the extent of receptor down-regulation are likely to play a role as well, and this notion is supported by the observation that E3-10.4K/14.5K complex alone is insufficient to down-regulate TRAIL-R1 in 293T cells in the absence of E3-6.7K (Fig. 3e).

TRAIL has been implicated in the killing of target cells by both CTL and NK cells (21–23). Cell lines that were insensitive to killing by FasL and TNF were susceptible to death mediated by TRAIL (23), suggesting that the TRAIL signaling pathway is independent of Fas and TNF. Thus, TRAIL may serve as an additional armament of CTL or NK cells in the initial defense mounted against viral infection (reviewed in Ref. 45). The E1A gene product of adenovirus sensitizes infected cells to NK cell killing (46, 47), further supporting the hypothesis discussed above that a role for the E3 complex may be to compensate for the increased sensitivity of infected cells to apoptosis induced by other viral genes. Taken together, these data indicate that the inhibition of TRAIL killing by E3-10.4K/14.5K/6.7K may be critical for adenovirus to evade several host cytotoxic effector mechanisms in vivo. The apoptotic strategies, together with the E3-p19K gene that alters antigen presentation by blocking major histocompatibility complex transport to the cell surface, may underlie the success of adenovirus to maintain a persistent infection.

Acknowledgments—We thank Cheryl McLaughlin and Danielle Franco for assistance with the manuscript; Pascal Schneider and Patrizia Vinciguerra for providing TRAIL-R2 expression constructs; Hans-Gerhard Burght for providing the Ad2-E3 vector; Davide Mauri for providing reagents; and Vincent Piguet and Doug Green for extremely helpful discussions about the manuscript.

REFERENCES

1. Mahr, J. A., and Gooding, L. R. (1999) Immunol. Rev. 168, 121–130
2. Shisler, J. L., and Gooding, L. R. (1998) Trends Microbiol. 6, 337–339
3. Sparger, T. E., Tripp, R. A., Dillehay, D. L., Hermiston, T. W., Wold, W. S., and Gooding, L. R. (1996) J. Virol. 70, 2431–2439
4. Stewart, A. R., Tollefsen, A. E., Krajcsi, P., Yei, S. P., and Wold, W. S. (1995) J. Virol. 69, 172–181
5. Tollefsen, A. E., Stewart, A. R., Yei, S. P., Saha, S. K., and Wold, W. S. (1991) J. Virol. 65, 3095–3105
6. Gooding, L., Ranheim, T., Tollefsen, A., Aquino, L., DurkenHughes, P., Horton, T., and Wold, W. S. (1993) J. Virol. 67, 4114–4123
7. Carlin, C. R., Tollefsen, A. E., Brady, H. A., Hoffman, B. L., and Wold, W. S. (1989) Cell 57, 135–144
8. Shisler, J., Yang, C., Waller, B., Ware, C., and Gooding, L. (1997) J. Virol. 71, 8299–8306
9. Elsing, A., and Burght, H. G. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 10519–10517
10. Tollefsen, A. E., Hermiston, T. W., Lichtenstein, D. L., Colle, C. F., Tripp, R. A., Dimitrov, T., Toth, K., Wells, C. E., Doherty, P. C., and Wold, W. S. (1998) Nature 392, 726–730
11. Ashkenazi, A., and Dixit, V. M. (1999) Curr. Opin. Cell Biol. 11, 255–260
12. Griffith, T. S., and Lynch, D. H. (1998) Curr. Opin. Immunol. 10, 559–563
13. Schneider, P., Thome, M., Burns, K., Bodmer, J. L., Hofmann, K., Kataoka, T., Holler, N., and Tschopp, J. (1997) Immunity 7, 831–836
14. Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentsz, R., Ehner, R., Ni, J., and Dixit, V. M. (1997) Science 276, 111–113
15. Sheridan, J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C. L., Baker, K., Wood, W. I., Goddard, A. D., Godowski, P., and Ashkenazi, A. (1997) Science 277, 818–821
16. Schneider, P., Bomer, J. L., Thome, M., Hofmann, K., Holler, N., and Tschopp, J. (1997) FEBS Lett. 416, 329–334
17. Pan, G., Ni, J., Wei, Y. F., Yu, G., Gentz, R., and Dixit, V. M. (1997) Science 277, 815–818
18. Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., and Goodwin, R. G. (1997) Immunity 7, 813–820
19. Griffith, T. S., Rauch, C. T., Smolak, P. J., Waugh, J. Y., Boiani, N., Lynch, D. H., Smith, C. A., Goddwin, R. G., and Kubin, M. Z. (1999) J. Immunol. 162, 2597–2605
20. Chaudhary, P. M., Eby, M., Jasmin, A., Bookwalter, A., Murray, J., and Hood, L. (1997) Immunity 7, 821–830
21. Johnsen, A. C., Haux, J., Steinkjer, B., Nonstad, U., Egeberg, K., Sundan, A., Ashkenazi, A., and Espevik, T. (1999) Cytokine 9, 664–672
22. Kayagaki, N., Yamaguchi, N., Nakayama, M., Kawasaki, A., Akiba, H., Okumura, K., and Yagita, H. (1999) J. Immunol. 162, 2639–2645
23. Thomas, W. D., and Hersey, P. (1998) J. Immunol. 161, 2195–2200
24. Wilson-Rawls, J., Saha, S. K., Krajesi, P., Tollefson, A. E., Gooding, L. R., and Wold, W. S. (1990) Virology 178, 204–212
25. Wilson-Rawls, J., and Wold, W. S. (1993) Virology 195, 6–15
26. Browning, J. L., Miatkowski, K., Sizing, I., Griffiths, D. A., Zafari, M., Benjamin, C. D., Meier, W., and Mackay, F. (1996) J. Exp. Med. 183, 867–878
27. Welt, W. S., Deutscher, S. I., Takemori, N., and Bhat, B. M. (1986) Virology 150, 169–180
28. Brady, H. A., and Welt, W. S. (1987) Nucleic Acids Res. 15, 9397–9416
29. Morgenstern, J. P., and Land, H. (1990) Nucleic Acids Res. 18, 3587–3596
30. Roseney, I. A., Butrovich, K. D., Glass, A. A., Borbergrou, S., Benedict, C. A., Whibleck, J. C., Cohen, G. H., Eisenberg, R. J., and Ware, C. F. (2000) J. Biol. Chem. 275, 14307–14315
31. Benedict, C. A., Tun, R. Y. M., Rubinstein, D. B., Guillaume, T., Cannon, P. M., and Anderson, W. F. (1998) Hum. Gene Ther. 10, 545–557
32. Soneoka, Y., Cannon, P. M., Ramsdale, E. E., Griffiths, J. C., Romano, G., Kingsman, S. M., and Kingsman, A. J. (1995) Nucleic Acids Res. 23, 628–633
33. Benedict, C., Butrovich, K., Lurain, N., Corbeil, J., Rooney, L., Schneider, P., Tschopp, J., and Ware, C. (1999) J. Immunol. 162, 6967–6970
34. Cladras, C., Bhat, B. M., and Wold, W. S. (1985) Virology 140, 44–54
35. Griffiths, G., Hofack, B., Simons, K., Mellman, I., and Kornfeld, S. (1988) Cell 52, 329–341
36. Hoffmann, P., Yaffe, M. B., Hoffman, B. L., Ye, S., Wold, W. S., and Carlin, C. (1992) J. Biol. Chem. 267, 13480–13487
37. Krajcsi, P., Tollefsen, A. E., Anderson, C. W., Stewart, A. R., Carlin, C. R., and Wold, W. S. (1992) Virology 187, 131–144
38. Turner, R., Rapp, U., App, H., Greene, M., Debashi, K., and Reed, J. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 1227–1231
39. Turner, B., Rapp, U., App, H., Greene, M., Debashi, K., and Reed, J. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 1227–1231
40. Gooding, L. R., Elmore, L. W., Tollefsen, A. E., Brady, H. A., and Wold, W. S. (1988) Cell 53, 341–346
41. Li, Y., Kang, J., Friedman, J., Tarassishin, L., Ye, J., Kovalenko, A., Wallach, D., and Horwitz, M. S. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1042–1047
42. Zhang, X. D., Agustin, V. D., Nguyen, T., Gray, C. P., and Hersey, P. (2000) J. Immunol. 164, 3961–3970
43. Force, W. R., Glass, A. A., Benedict, C. A., Cheung, T. C., Lama, J., and Ware, C. F. (2000) J. Biol. Chem. 275, 11121–11129
44. Biron, C. A., Nguyen, K. B., Pien, G. C., Coussens, L. P., and Salazar, T. P. (1999) Annu. Rev. Immunol. 17, 189–220
45. Klefstrom, J., Kovanen, P. E., Somersalo, K., Hueber, A. O., Littlewood, T., Evan, G. I., Greenberg, A. H., Saksela, E., Timonen, T., and Alitalo, K. (1999) Oncogene 18, 2181–2188
46. Cook, J. L., Potter, T. A., Bellgrau, D., and Routes, B. A. (1996) Oncogene 13, 833–842
Three Adenovirus E3 Proteins Cooperate to Evade Apoptosis by Tumor Necrosis Factor-related Apoptosis-inducing Ligand Receptor-1 and -2

Chris A. Benedict, Paula S. Norris, Theodore I. Prigozy, Jean-Luc Bodmer, Jeffrey A. Mahr, Charlese T. Garnett, Fabio Martinon, Jürg Tschopp, Linda R. Gooding and Carl F. Ware

J. Biol. Chem. 2001, 276:3270-3278.
doi: 10.1074/jbc.M008218200 originally published online October 24, 2000

Access the most updated version of this article at doi: 10.1074/jbc.M008218200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 47 references, 21 of which can be accessed free at http://www.jbc.org/content/276/5/3270.full.html#ref-list-1