Role of Structure and Glycosylation of Adsorbed Protein Films in Biolubrication

Deepak H. Veeregowda1, Henk J. Busscher1, Arjan Vissink2, Derk-Jan Jager2, Prashant K. Sharma1*, Henny C. van der Mei1

1 Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands, 2 Department of Oral Maxillofacial Surgery, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands

Abstract

Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy), we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation of adsorbed protein films, providing an important clue to design effective therapeutics to restore biolubrication in patients with insufficient biolubrication.

Introduction

Water forms the basis of all biological lubrication systems in the human body, but is unable to provide sufficient lubrication without biological lubricant additives, such as hydrophilic sugars [1] and mucins [2]. Insufficient biolubrication can yield severe discomfort, and especially occurs in the elderly and patients with Sjögren’s syndrome, a syndrome which includes dryness of the mouth impeding proper speech and mastication [3–5], dry, irritated eyes [6], vaginal dryness [7] and excessive friction and wear of articulating cartilage surfaces in hips and knees [8]. Interestingly, many Sjögren’s patients suffer from more than one symptom of insufficient biolubrication [9]. Patients suffering from Sjögren’s syndrome scored significantly lower on six out of eight points of a commonly applied health related quality of life questionnaire than a general population as well as for the summary scores of that questionnaire for physical and mental functioning [10]. This suggests that insufficient biolubrication constitutes a physical condition affecting the entire body, related to the general absence of secretion of an appropriate biological lubricant.

Often, biological lubricants form an adsorbed, so-called conditioning film that provides low friction with an opposing surface, due to the immobilization of water by adsorbed hydrophilic sugars [1,11–13], or repulsion between polymer-brush bearing surfaces [14–16]. Lubricating films in the human body should be able to withstand high pressures, such as articulating cartilage surfaces in the hip or knee [17], while ocular lubricating films function in the absence of high pressures [18]. Adsorbed salivary conditioning films in the oral cavity are required to provide lubrication between the tongue and lingual tooth surfaces to facilitate speech, which occurs under low pressures of up to 150 kPa [19], but at the same time should withstand mastication forces on molar surfaces, which can yield pressures as high as 86 MPa [20], which is higher than the pressures occurring in articular joints [17].

Another unique feature of the oral cavity is that the adsorbed lubricating film is not solely perturbed by disease, but perturbations of its structure and composition occur several times per day during speaking, eating, drinking and tooth brushing. Recently, it has been demonstrated that the hydrophilicity of adsorbed salivary conditioning films in the oral cavity is preserved after chemical
perturbation from oral health care products by a mechanism
called “polar-apolar layering” [21], in which polar or a-polar
salivary proteins are thought to adsorb in case a perturbation
increases or decreases the hydrophilicity of the tooth surface,
respectively. To this end, the oral cavity is equipped with different
salivary glands (parotid, submandibular, sublingual, and other
minor glands), all excreting different proteins. Mucinous glyco-
proteins in adsorbed lubricating films are currently considered to
yield both significant structural strength to adsorbed films as well
as the necessary hydrophilicity to preserve sufficient amounts of
water in the interface [11,18,22–24], although the role of
glycoproteins in specific, has only been speculated upon.

In this study, we provide a comprehensive analysis of
biolubrication in the human oral cavity, encompassing lubricating
properties of conditioning films adsorbed from saliva excreted by
the various major salivary glands, perturbation of the lubricating
properties of salivary conditioning films by detergents and the
corresponding changes in in vivo lubrication determined through
sensory perception of tooth surfaces in a group of volunteers, with
the aim of establishing the role of structural properties and
glycosylation of conditioning films in biolubrication, taking the
oral cavity as a model system.

Results
Structure and lubricity of ex vivo adsorbed conditioning
films from different salivary glands and volunteers

Differences in structural properties of adsorbed films from
different salivary glands to hydroxyapatite and day-to-day and
person-to-person variations were examined. Stimulated parotid,
submandibular and fresh, whole saliva were separately collected
from three volunteers (Figure S1). Reconstituted whole saliva
was collected and pooled from a group of 20 volunteers. Subsequently,
adsorption of the different salivas from individual volunteers and
reconstituted whole saliva on hydroxyapatite was observed in vitro
during 30 min using a quartz crystal microbalance with dissipation
(QCM-D), after which the adsorbed films were imaged using
collodial probe atomic force microscopy (AFM) (Figure 1). QCM-
D indicated that, regardless of its source, adsorbed saliva yields a
decrease in resonance frequency and an increase in dissipation.
Note that adsorption of submandibular saliva as well as of fresh,
whole saliva yields larger globules of adsorbed proteins than does
daesorption from parotid saliva and reconstituted whole saliva, as
visualized by AFM. The visco-elasticity of these salivary films is
indicated by the ratio (Δf3/Δf0) and will be referred to in this
manuscript as “structural softness” according to convention within
the QCM community, as for instance by Hook et al. [25]. The
structural softnesses of adsorbed conditioning films from the
different salivas from individual volunteers and reconstituted
whole saliva are summarized in Figure 2A. Major day-to-day and
person-to-person variations are evident, while adsorption from
reconstituted whole saliva yielded the least soft films with the
smallest day-to-day variation. In general, adsorbed films from
fresh whole saliva and submandibular saliva were softest. The
softness of adsorbed films from parotid saliva was most variable
across volunteers and from day-to-day. Comparable observations
can be made with respect to day-to-day and person-to-person
variations in the coefficient of friction (COF; Figure 2B), measured
by lateral force colloidal probe AFM. Friction is generally low for
films adsorbed from fresh, whole saliva and submandibular saliva,
while highest on films from pooled, reconstituted whole saliva.
However, these films showed the least day-to-day variations, while
films from parotid saliva were most variable with respect to their
COF across volunteers and from day-to-day. Note that the COF is
initially high, but decreases with increasing loading force to stable
values above a loading force of around 20 nN, regardless of the
salivary source. The colloidal AFM tip experiences repulsive forces
upon approach of the adsorbed films that depend on the salivary
source and range up to 120 nm from the hydroxyapatite surface
(Figure 2C). In general, the adsorbed films from parotid saliva are
significantly (p<0.05, two tailed Student t-test) more variable from
day-to-day and person-to-person than films adsorbed from
submandibular saliva or fresh, whole saliva. Adsorbed films from
reconstituted whole saliva show significant differences (p<0.05,
two tailed Student t-test) in softness, coefficient of friction and
repulsive force with respect to fresh, whole saliva but it clearly
yields less variability between different experiments than the day-
to-day and person-to-person variations between experiments with
salivas from volunteers. Therefore, the remainder of this study was
carried out with pooled, reconstituted whole saliva.

Structure, composition and lubricity of perturbed salivary
films in vitro
Salivary films in the oral cavity are perturbed at least twice a
day by detergents from toothpaste formulations, after which
continued adsorption of salivary proteins occurs. This series of
events was simulated in the QCM chamber by first adsorbing
proteins from reconstituted whole saliva, followed by rinsing with
buffer, sodium lauryl sulphate (SLS) or sodium hexametaphosphate
(NaHMP), after which reconstituted whole saliva was
perfused again through the chamber (Figure 3). Rinsing with
buffer or detergent solutions was accompanied by increases in
resonance frequency and decreases in dissipation, whereas
continued adsorption of saliva yielded decreases and increases in
resonance frequencies and dissipation, respectively. Note that
continued salivary protein adsorption after rinsing with NaHMP
stimulated the formation of large proteinaceous globules, not
present after rinsing with SLS. Although the negative frequency
shifts are comparable after continued salivary protein adsorption,
a distinct influence of whether rinsing was done with buffer, SLS
or NaHMP solutions becomes evident on the structural softness,
coefficient of friction and the repulsive force experienced by the
AFM colloidal probe (Figure 4). The structural softness of newly
adsorbed films on top of conditioning films exposed to NaHMP or
SLS is less compared with conditioning films formed on top of
buffer exposed films (Figure 4A). At the same time, the coefficients
of friction of adsorbed films after NaHMP exposure are lower than
on films newly formed after buffer or SLS exposure (Figure 4B).
Concurrently, films adsorbed on NaHMP exposed conditioning
films repel the colloidal AFM tip strongest and over a considerably
larger distance than observed for buffer or SLS (Figure 4C).

X-ray photoelectron spectroscopy (XPS) was applied to
determine the degree of glycosylation (%Oglyco) of the different
films in vitro (Figures S2 and Table S1). Glycosylation was higher
after continued adsorption of salivary proteins on SLS or NaHMP
exposed conditioning films, respectively (Figure 5A), which was
accompanied by a decrease in water contact angles on the films
(Figure 5B). Both the increase in the degree of glycosylation as well
as the decrease in water contact angle was largest for continued
adsorption after exposure to NaHMP.

Clinically registered intra-oral contact angles and sensory
perception of adsorbed films on teeth in vivo
Clinically registered water contact angles on the front incisors
of human volunteers showed a significantly larger decrease after
brushing with a NaHMP containing toothpaste formulations than
after use of a SLS containing one (see also Figure 5B). This
correspondence between in vitro and in vivo effects of both detergents stimulated us to investigate whether volunteers could sense these changes. To this end, volunteers were asked to score the smoothness of their teeth, as probed by the tongue, prior to and after brushing with a SLS or NaHMP containing toothpaste (Figure 5C). Mouthfeel improved significantly (p < 0.1) to similar scores immediately after brushing with an SLS or NaHMP containing paste, and this effect lasted at least up to 3 h after brushing. However, volunteers continued to report a significantly smoother mouthfeel 3 h after use of the NaHMP containing formulation than after use of the SLS containing one.

Discussion

Biolubrication is important throughout life, but its importance is felt more in its absence, as upon aging, disease or after injury. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication in the elderly and diseased. The oral cavity is an excellent model to study biolubrication as it constitutes a far more accessible site of the human body to derive lubricating fluid from than for instance the joint space or the vagina. Making use of the dynamics of the oral cavity with its daily perturbations due to tooth brushing and different glandular secretions, this study establishes for the first time the combined role of glycosylation and structure in biolubrication. In vitro, adsorbed salivary conditioning films were more lubricious when the structural softness and hydrophilicity increased. Importantly, it could be demonstrated that glycosylation contributed to the lubricating properties of the films. It is considered intriguing, that also in vivo hydrophilicity of tooth surfaces related with the smooth mouthfeel perception in a group of volunteers. Topographic images of salivary films revealed features (Figures 1 and 3) with a height of utmost 30–80 nm at an average roughness of 7±3 nm, unlikely to be probed by the tongue possessing roughness features itself with dimensions ranging up to tens of micrometers. Moreover, it has been demonstrated that the perception limit for roughness differences by the tongue is limited to 500 nm [26]. Thus it is concluded that the tongue senses changes in shear developing due to differences in the structure and glycosylation of the lubricating, adsorbed salivary film covering our teeth rather than roughness of the film.
With respect to biolubrication, both whole saliva as well as submandibular saliva yielded structurally softer and more lubricious adsorbed films than parotid saliva. Since the submandibular gland is known to excrete saliva that is more rich in glycosylated mucins [27], this is consistent with the role of glycosylation in establishing biolubrication. Reconstituted whole saliva from a pool of volunteers that had been freeze-dried and thawed showed the highest friction. Freeze-thawing does not alter the concentration of lower-molecular weight proteins in saliva which has been freeze-dried and stored at \(-20^\circ C\) or \(-80^\circ C\) for a period of 6 months [28]. However, based on the current results, an impact on the prevalence of high-molecular weight proteins by handling, including centrifugation, may not be ruled out [27,28]. Nevertheless, reconstituted whole saliva from a pool of donors was preferred as it provides much more reproducible results than any of the glandular salivas, including whole saliva from an individual donor. Moreover, the coefficients of friction measured for salivary films adsorbed from reconstituted whole saliva correspond well with those measured \textit{in vivo}, using an intra-oral device, attached to orthodontic brackets [29].

It has been shown that on the mucosal surfaces of patients showing reduced salivary secretion, proteins like mucins and statherin were retained, but that without the presence of water functional integrity of these proteins is uncertain [30]. Water is needed for biolubrication, but needs a structural component in order to be maintained at an interface, especially when under pressure. The maximum normal force applied by the AFM in our studies corresponds with a mean pressure of 60 MPa and a maximal one of 90 MPa as calculated by a Hertzian model, which is in line with the maximum pressure of 86 MPa found on molar surfaces [20]. Our study shows that adsorbed glycosylated proteins are pivotal in providing biolubrication to adsorbed salivary films. Glycosylated proteins are known to bind water due to their hydrophilic properties and adsorbed to a surface will provide a scaffold that maintains water despite external pressures on the adsorbed film. Salivary glands secrete different types of low- and high-molecular weight proteins [27,31] and according to the Vroman effect [32] describing protein adsorption from blood, these proteins will adsorb in a well defined sequence. First, small, low-molecular weight proteins will adsorb as their higher diffusional speed allows them to reach a surface faster than larger, high-molecular weight proteins. However, larger proteins have multiple binding sites with a surface and after their arrival at a surface will slowly displace the smaller, low-molecular weight proteins. A similar sequence of events has been suggested for oral salivary protein adsorption and secretory IgA and low-molecular weight proline-rich proteins were found to be displaced by higher-molecular weight proteins [33,34]. Schematically, an adsorbed

Figure 2. Structural softness, lubricity and repulsive forces of \textit{ex vivo} adsorbed salivary films from different volunteers. (A) Day-to-day and person-to-person variations in the structural softness of 30 min old adsorbed films on hydroxyapatite-coated quartz crystals from parotid (PAR), submandibular (SM), fresh whole (WS) and reconstituted whole saliva from a pool of donors (RWS), taken as the ratio of dissipation (ΔD3) and frequency shift (Δf3) of the third harmonic resonance frequency of the QCM crystal. (B) The coefficient of friction (COF) as a function of the normal force applied between a colloidal probe and films formed from salivas collected from different salivary glands and volunteers (see also Figure S1). Data pertaining to salivas collected at different days are indicated by multiple lines, with colors corresponding with the labels in Figure 2A. (C) Repulsive force as a function of the approach distance between a colloidal probe and films formed from salivas collected from different glands and volunteers. Data pertaining to salivas collected at different days are indicated by multiple lines, with colors corresponding with the labels in Figure 2A. The distance D of the repulsive forces (inserts) is taken as the distance where the colloidal probe starts to experience a repulsive force \(>0.1\) nN.

DOI:10.1371/journal.pone.0042600.g002
salivary protein film may look as presented in Figure 6A. Glycosylated, high-molecular weight mucins adsorb in loops and trains and provide a scaffold to contain and maintain water at the surface, while adsorbed smaller proteins like proline-rich proteins, histatins, lysozymes, amylases may be found underneath the loops and between the trains.

The adsorbed film as proposed in Figure 6A can be perturbed chemically and structurally by oral detergents. Although it is known that salivary films cannot be fully desorbed by tooth brushing and detergent action, it is unlikely that this statement relates to the smaller, low-molecular weight proteins and we envisage significant detachment of these proteins by detergents like SLS and NaHMP. Detergents are unlikely to desorb high-molecular weight proteins, but will probably break a number of bonds to cause more extensive looping of these adsorbed proteins (schematics in Figure 6B). SLS and NaHMP are both powerful detergents, but since NaHMP yields large scale reduction in the film mass, NaHMP is clearly the stronger detergent as confirmed by XPS analysis of dehydrated salivary film thickness [34]. NaHMP can thus cause greater detachment of trains, allowing more extensive looping of glycosylated proteins than does SLS, but not desorption of an entire molecule in line with the higher degree of glycosylation of these films found in XPS, close to the degree of glycosylation found for adsorbed films of pig gastric mucin only (see footnote to Table S1). Continued exposure of such films to saliva may allow adsorption of small proteins in between high-molecular weight trains that have remained on the surface. Loops with glycosylated groups will then extend for a considerable period of time into solution (Figure 6C), holding water molecules, providing long range repulsion towards the opposing surfaces and yielding low coefficient of friction \textit{in vitro} and a smoother mouthfeel after use of a NaHMP containing toothpaste formulation \textit{in vivo}. Eventually loops of high-molecular weight glycosylated proteins will displace adsorbed, smaller proteins and train-formation occurs again, eventually leading to surface thermodynamic homeostasis [21], although it has been demonstrated that adsorbed film perturbation by NaHMP \textit{in vivo} may last minimally 24 h [35].

In summary, using a combination of QCM-D, AFM, XPS and water contact angle measurements \textit{in vitro} and \textit{in vivo}, we have demonstrated that biolubrication in the oral cavity is probably due to a combination of structure and the degree of glycosylation of adsorbed salivary protein films. Lubricating properties \textit{in vitro} were confirmed by intra-oral, clinical contact angle measurements and mouthfeel evaluation \textit{in vivo}. Therewith this is the first comprehensive study to demonstrate that biolubrication results from a combination of changes in structure and degree of glycosylation, relating smooth mouthfeel with lubrication at the molecular level. This may be an important clue to design effective therapeutics to restore biolubrication in the elderly and diseased. Most artificial salivas only contain mucins and the restoration of biolubrication achieved is highly temporary. Preparations containing low-
Figure 4. Structure and lubricity of the salivary conditioning films formed after perturbation by detergents.

A Structural softness of salivary films adsorbed on conditioning films exposed to buffer (RWS), SLS (SLS+RWS) and NaHMP (NaHMP+RWS) and after final buffer rinsing, i.e. at the very end of an adsorption experiment (see also Figure 3). Error bars represent the standard deviations over five independent measurements of the structural softness. Statistically significant (p<0.05, two tailed Student t-test) differences in properties of the SLS+RWS and NaHMP+RWS films with respect to RWS are indicated by *signs. Differences in the properties of the NaHMP+RWS with respect to SLS+RWS is indicated by #sign.

B Coefficient of friction as a function of the normal force applied for salivary films adsorbed on films exposed to buffer (RWS), SLS (SLS+RWS) and NaHMP (NaHMP+RWS). The COF during compression and de-compression of the films is represented by closed and open symbols, respectively. Error bars represent the standard deviations over 18 independent COF measurements.

C Example of the repulsive force as a function of the approach distance for the different films.

doi:10.1371/journal.pone.0042600.g004
involved the following questions: 1. How do you like the smoothness of your teeth? 2. How do you like the clean feeling of your teeth? 3. How do you like the moist feeling of your teeth? 4. Overall, how do you like the feeling of your mouth? Scoring was done on a five point scale according to: −2 = extremely bad smoothness, −1 = bad smoothness, 0 = neutral, 1 = good smoothness, and 2 = extremely good smoothness. Error bars represent the standard deviations over the scores obtained from 64 volunteers after use of an SLS containing toothpaste and 12 volunteers after use of a NaHMP containing toothpaste. Statistically significant (p<0.1) differences with respect to pre-brushing are indicated by *signs for each formulation, while #sign indicates significant differences between the SLS and NaHMP containing toothpaste.

doi:10.1371/journal.pone.0042600.g005

molecular weight proteins as well may yield adsorbed films according to the architecture Figure 6C that are more stable and yield long-term relief of insufficient biolubrication.

Materials and Methods

Saliva collection

Human whole saliva from twenty healthy volunteers (10 male and 10 female subjects, average age 30±8 years) was collected into ice-chilled cups after stimulation of salivary flow by chewing Parafilms® according to the draining/spitting method described by Navazesh and Christensen [36]. The medical ethical committee approved collection of human saliva (approval no. M09.069162 and UMCG IRB #20081109) and patients gave their informed consent. After the saliva was pooled and centrifuged at 12,000 g for 15 min at 4°C, phenylmethylsulfonylfluoride was added to a final concentration of 1 mM as a protease inhibitor. The solution was again centrifuged, dialyzed for 24 h at 4°C against demineralized water, and freeze dried for storage at −20°C in order to provide for a stock. Finally, a lyophilized stock was prepared by mixing freeze dried material originating from a total of 21 of saliva. Note that recently it has been shown that freeze-thawing does not alter saliva which has been stored on ice, at −20°C or −80°C for a period of 6 months [28]. Reconstituted, human whole saliva (RWS) was prepared from the lyophilized stock by dissolution of 1.5 mg/ml in buffer (2 mM potassium phosphate, 1 mM CaCl₂, 50 mM KCl, pH 6.8) for experiments.

Parotid saliva was collected by citric acid stimulation and submandibular saliva was collected without any stimulation in ice-cooled beakers from three healthy volunteers (average age of 29±3 years). These saliva’s were collected by applying an intra-oral device (Figure S1) suitable to separately collect parotid, and submandibular saliva [for details see Veerman et al. [37]]. All saliva’s were collected in the morning and used directly after collection in QCM-D experiments without any further interference. The collection of whole saliva, submandibular and parotid saliva from each volunteer was repeated on three different days.

Quartz crystal microbalance with dissipation

The visco-elasticity or structural softness and formation kinetics of adsorbed salivary films was studied using a QCM-D device, model Q-sense E4 (Q-sense, Gothenburg, Sweden). Hydroxyapatite-coated quartz crystals, with a sensitivity constant of 17.7 ng/cm² for a 5 MHz sensor-crystal, were used as substrata. Before each experiment, the hydroxyapatite coated crystals were rinsed in ethanol (100%) for 15 min, followed by drying with N₂ and an UV/ozone treatment. At the start of each experiment, the sensor-crystal was incubated in buffer under flow. When stable base lines for the shifts in resonance frequency, Δf and dissipation, ΔD, at third harmonics were achieved, saliva from the ice-cooled beaker...
collected directly from the intra-oral devices was introduced in the system by perfusion from the inlet to the outlet reservoir by a peristaltic pump (Ismatec SA, Glattbrugg, Switzerland). All salivas were perfused through the QCM-D chamber at 25 °C for 30 min with a shear rate of approximately 3 s⁻¹ followed by 15 min buffer rinsing to remove unbound proteins. This represents a low oral salivary flow rate as determined by Watanabe et al. [38]. Frequency and dissipation were measured real-time during perfusion.

For reconstituted whole saliva additional experiments were done, and adsorption was also monitored using QCM-D for 2 h, after which the chamber was perfused with SLS (2500 ppm) or NaHMP (2500 ppm) solutions or buffer for 2 min, followed by another 2 h of salivary flow to form a new film on top of the detergent-exposed one. In between each step as well as at the end of an experiment in preparation for other experiments, the chamber was perfused with buffer for 15 min.

After these experiments, hydroxyapatite crystals were removed from the QCM-D device and kept hydrated for immediate use in further experiments (see below).

Colloidal probe atomic force microscopy

Coefficient of friction, surface topography and repulsive force range toward a colloidal AFM probe [39] were measured with an AFM (Nanoscope IV Dimension X UP 3100) equipped with a Dimension Hybrid XYZ SPM scanner head (Veeco, New York, USA) on the different adsorbed salivary conditioning films. To this end, rectangular, tipless cantilevers (length (l), width (w) and thickness (t) of 300, 35 and 1 μm, respectively) were calibrated for their exact torsional and normal stiffness using AFM Tune IT v2.5 software [40]. The normal stiffness \(K_n \) was in the range of 0.01 to 0.04 N/m, while the torsional stiffness \(K_t \) was in the range of 2 to 4 × 10⁻⁹ N m/ rad.

Subsequently, a silica particle of 4.74 μm diameter (d) (Bangs laboratories, Fishers, IN, USA) was glued to a cantilever with an epoxy glue (Pattex, Brussels, Belgium) using a micromanipulator (Narishige group, Tokyo, Japan) to prepare a colloidal probe. The deflection sensitivity (z) of the colloidal probe was recorded on bare hydroxyapatite in buffer to calculate the applied normal force \(F_n \) using

\[
F_n = \Delta V_n \times z \times K_n
\]

where \(\Delta V_n \) is the voltage output from the AFM photodiode due to normal deflection of the colloidal probe.

The torsional stiffness and geometrical parameters of the colloidal probe were used to calculate the friction force \(F_f \) [41,42] according to

\[
F_f = \frac{\Delta V_L \times K_t}{2 \delta (d + t/2)}
\]

where \(t \) is the thickness of the cantilever, \(\delta \) is the torsional detector sensitivity of the AFM and \(\Delta V_L \) corresponds to the voltage output.
from the AFM photodiode due to lateral deflection of the colloidal probe. Lateral deflection was observed at a scanning angle of 90 degrees over a distance of 5 μm and a scanning frequency of 1 Hz. The scanning angle, distance and frequency were kept constant throughout all friction force measurements.

The colloidal probe was incrementally loaded and unloaded up to a maximal normal force of 60 nN in buffer. At each normal force, 10 friction loops were recorded to yield the average friction force. The coefficient of friction was measured by dividing the friction force with the respective normal force.

Repulsive force-distance curves between a colloidal probe and the films were obtained at a trigger threshold force of 5 nN and at a velocity of 10 μm/s. Repulsive force range D between the colloidal probe and the film was determined after correcting with the force range between the same colloidal probe and the hard, uncoated hydroxyapatite surface [43], for 40 repulsive force-distance curves. All the surface topography imaging by colloidal probe was performed at 1 nN of normal force.

X-ray photoelectron spectroscopy

The degree of glycosylation of the adsorbed salivary films was determined by using XPS (S-probe, Surface Science Instruments, Mountain View, CA, USA). First, films adsorbed on hydroxyapatite-coated quartz crystals as removed from the QCM-D chamber, were dried in the pre-vacuum chamber of the XPS, and then subjected to a vacuum of 10⁻⁷ Pa. X-rays (10 kV, 22 mA), at a spot size of 250×1000 μm, were produced using an aluminum anode. Scans of the overall spectrum in the binding energy range of 1–1100 eV were made at low resolution (pass energy 150 eV). The area under each peak was used to yield elemental surface concentrations for C, O, N, Ti and Ca after correction with sensitivity factors provided by the manufacturer. The O₁S peak was split into three components, i.e. for oxygen involved in amide groups (C=O–N; 531.3 eV), carboxyl groups (C–O–H; 532.7 eV) and oxygen arising from the hydroxyapatite crystal. Accordingly, the fraction of the O₁S peak at 532.7 eV (%O_{532.7}) was used to calculate the amount of oxygen involved in glycosylated moieties (%O_{glyco})

\[
%O_{glyco} = %O_{532.7} + %O_{total}
\]

where %O_{total} is the total percentage of oxygen.

Contact angle measurements in vitro

Hydroxyapatite-coated quartz crystals with adsorbed protein films were allowed to air dry 45 min in order to obtain stable, so-called “plateau” water contact angles [44] of the advancing type, as measured by the sessile drop technique using a home-made contour monitor.

Intra-oral contact angle measurements and mouthfeel evaluation

Ten volunteers were provided with a tube of a SLS (Crest regular®, Proctor and Gamble, Ohio, USA) or NaHMP (Crest vivid white night®, Procter and Gamble, Ohio, USA) containing toothpaste, along with an Oral B 40 (Oral B 40 Regular Toothbrush, Oral-B Laboratories Inc., California, USA) tooth brush. Volunteers were instructed to brush their teeth twice a day according to their habitual routine with the assigned toothpaste and not to use any other oral health care products. During the subsequent week, volunteers visited the dental clinic on three separate days for intra-oral water contact angle measurements at three times each day: pre-brushing in the morning, post-brushing (immediately after brushing) in the morning, and 3 h after brushing (pre-lunch). For morning evaluations, volunteers reported to the clinic prior to morning tooth brushing and before breakfast, eating or drinking.

Water contact angles were measured on the front incisors of the volunteers employing the sessile drop technique [45]. Small water droplets (1–2 μl) were placed on the tooth surface and a color slide was taken, from which the height and base-width of the droplets were measured and the contact angle was calculated. After water contact angles were taken, volunteers brushed with their assigned paste for one minute and thoroughly rinsed their mouth with tap water and water contact angles were measured again, as described above. Volunteers reported back after 3 h prior to lunch, allowing at least 1 h since eating and drinking.

Prior to contact angle measurements, volunteers filled out a questionnaire (Figure 5C) to score their mouthfeel.

Statistical Analysis

The properties of the films adsorbed from the different salivas were pair-wise compared using a two tailed Student t-test. Mouthfeel scores were treated as continuous response variables and analysed using a linear mixed-effects model to adjust for the fact that repeated responses from a given volunteer may be correlated. Significance was established using the ANOVA F-test and Tukey’s pair-wise comparison.

Supporting Information

Figure S1 Procedure for collecting salivas from volunteers. (A) The Lashley cup for collecting parotid saliva. The Lashley cup (see insert) consists of an inner and outer chamber. The inner chamber is used for collecting saliva, while a slight underpressure is put on the outer chamber to stick the cup to the oral mucosa. The Lashley cup is placed over the orifice of the parotid duct. In the tube connected with the inner chamber flow of parotid saliva is clearly visible. In our study, parotid saliva was collected simultaneously from the right and left parotid gland under citric acid stimulation. The parotid saliva was collected into an ice-cooled beaker. (B) The segregator (see insert) for collecting the submandibular and sublingual saliva from the floor of the mouth. The central chamber of the segregator covers the orifices of the submandibular duct (Wharton’s duct), while the lateral chambers cover the orifices of the sublingual ducts (ducts of Rivinus) that drain directly into the floor of the oral cavity. Besides the Rivinii ducts, the sublingual gland has also a Bartholin’s duct that drains via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva. As the flow rate of sublingual saliva is very low, this contribution will be minor. With regard to the very viscous sublingual saliva, a far too low volume of saliva was collected via the same orifice as the Warthon duct, due to which the submandibular saliva is contaminated with some sublingual saliva.

Figure S2 O_{1s} photo-electron peak for salivary conditioning films formed after perturbation by detergents. (A) unperturbed salivary conditioning film from saliva (RWS) after exposure to buffer only. (B) salivary conditioning film after exposure to SLS and continued saliva (RWS) flow. (C) salivary conditioning film after exposure to NaHMP and continued saliva (RWS) flow. The
O$_1s$ photo-electron peak is decomposed in three components, due to oxygen involved in amide groups (C=O-N; binding energy 531.3 eV), carboxyl groups (C-O-H; 532.7 eV) and oxygen involved in other chemical functionalities in the substrate.

(Fig)

Table S1 Elemental surface compositions of adsorbed salivary conditioning films from different sources on hydroxyapatite crystal surfaces, together with the %O$_{glass}$. Data for stimulated parotid (PAR), submandibular (SM) and whole saliva (WS) are given separately for each volunteer.

Author Contributions
Conceived and designed the experiments: PKS HJB HCvdM AV. Performed the experiments: DHV DJJ. Analyzed the data: DHV PKS HJB HCvdM. Contributed reagents/materials/analysis tools: DJJ AV. Wrote the paper: DHV PKS HJB HCvdM. Designed the saliva tapping device: DJJ AV.

References
1. Lee S, Spencer ND (2008) Sweet, hairy, soft, and slippery. Science 319: 573–576.
2. Viswanath V, de Jong HP, Buscher HJ, Arends J, Gravenmaje EJ (1986) Wetting properties of human saliva and saliva substitutes. J Dent Res 65: 1121–1124.
3. Marotti A (2007) in xPharm: The Comprehensive Pharmacology Reference, eds SJ, Enna, David B, Buhl (Elsevier, New York), pp 1–4.
4. Hahn J, Behr M, Handel G, Barger R (2009) Saliva substitutes for the treatment of radiation-induced xerostomia: a review. Supp Cancer Care 17: 1331–1343.
5. Stewart CM, Berg KM, Cha S, Reeves WM (2008) Salivary dysfunction and quality of life in Sjogren syndrome: A critical oral-systemic connection. J Am Dent Assoc 139: 291–299.
6. Alperk EK, Lindley KB, Ayhanraya RS, Swaney R, Baer AN, et al. (2011) Treatment of Sjogren’s syndrome-associated dry eye: An evidence-based review. Ophthalmology 118: 1292–1252.
7. Schoof N (2003) Caring for women living with Sjogren’s syndrome. J Obstet Gynecol Neonatal Nurs 32: 589–593.
8. Peace CT, Shattels W, Barrett NK, Maini RN (1993) The arthropyth of Sjogren’s syndrome. Rheumatolog 32: 609–613.
9. For RJ (2005) Sjogren’s syndrome. Lancet 366: 321–331.
10. Meijer JM, Meiners PM, Slater JJRH, Spijkervet FKL, Kallenberg CGM, et al. (2010) Molecular mechanisms of aqueous lubrication, and wear of lubricin on model surfaces: Polymer brush-like behavior at physiological pressures by polyzwitterionic brushes. Science 323: 1698–1701.
11. Coles JM, Chang DP, Zauscher S (2010) Molecular mechanisms of aqueous lubrication by mucinous glycoproteins. Curr Opin Colloid Interfaces 26: 5552–5560.
12. Vroman L (2008) Finding seconds count after contact with blood (and that is all I do). Colloids Surf B 62: 1–4.
13. Pratt-Terpstra HJ, Buscher HJ (1991) Adsorption of salivary mucins onto enamel and artificial solid substrata and its influence on oral streptococcal adhesion. Biofouling 3: 199–207.
14. Swenden IE, Lindin L, Elofson U, Arnebrant T (2008) Studies on the exchange of early pellicle proteins by mucin and whole saliva. J Colloid Interface Sci 321: 52–59.
15. Buscher HJ, White DJ, Van der Mei HC, Baig AA, Kozak KM (2002) Hexametaphosphate effects on tooth surface conditioning film chemistry—in situ and in vivo studies. J Clin Dent 13: 38–43.
16. Navazesh M, Christensen CM (1982) A comparison of whole mouth resting and stimulated salivary measurement procedures. J Dent Res 61: 1158–1162.
17. Veerman EC, Van der Keybus PA, Viswanath S, Nieuw Amerongen AV (1996) Human glandular salivas: their separate collection and analysis. Eur J Oral Sci 104: 346–352.
18. Watanabe S, Dawes C (1990) Salivary flow rates and salivary film thickness in five-year-old children. J Dent Res 69: 1150–1153.
19. Denny P, Hagen FH, Hardt M, Liu L, Yan W, et al. (2008) The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res 7: 1994–2006.
20. Vroman L (2008) Finding seconds count after contact with blood (and that is all I do). Colloids Surf B 62: 1–4.
21. Van der Mei HC, White DJ, Van der Mei HC, Baig AA, Kozak KM (2002) Hexametaphosphate effects on tooth surface conditioning film chemistry—in situ and in vivo studies. J Clin Dent 13: 38–43.
22. Navazesh M, Christensen CM (1982) A comparison of whole mouth resting and stimulated salivary measurement procedures. J Dent Res 61: 1158–1162.
23. Veerman EC, Van der Keybus PA, Viswanath S, Nieuw Amerongen AV (1996) Human glandular salivas: their separate collection and analysis. Eur J Oral Sci 104: 346–352.
24. Watanabe S, Dawes C (1990) Salivary flow rates and salivary film thickness in five-year-old children. J Dent Res 69: 1150–1153.
25. Hooft F, Rodahl M, Kasemo B, Brezinskii P (1998) Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding. Proc Natl Acad Sci USA 95: 12721–12726.
26. Massie BS, Billingon RW, Pearson GJ (2004) The in vivo perception of roughness of restorations. Br J Dent 196: 42–43.
27. Wala A, Stolher K, Watenberg A, Hawirecke E, Mayer HE, et al. (2006) Proteome analysis of glanular parotid and submandibular/sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics 6: 1631–1639.
28. Schipper R, Loef A, De Groot J, Harthoon L, Drausfield E, et al. (2007) SELDI-TOF-MS of saliva: Methodology and pre-treatment effects. J Chrom B Biomed Sci Appl 847: 45–53.
29. Iwasaki LR, Beatty MW, Randall CJ, Nickel JC (2003) Clinical ligation forces and intraoral friction during sliding on a stainless steel archwire. Am J Orthod Dentofac Orthop 123: 408–415.
30. Pramanik R, Oalal SM, Challacombe SJ, Uruphart D, Proctor GB (2010) Protein and mucin retention on oral mucosal surfaces in dry mouth patients. Eur J Oral Sci 118: 245–253.
31. Denuy P, Hagen FH, Hardt M, Liao L, Yan W, et al. (2008) The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res 7: 1994–2006.
32. Vroman L (2008) Finding seconds count after contact with blood (and that is all I do). Colloids Surf B 62: 1–4.
33. Prati-Terpstra HJ, Buscher HJ (1991) Adsorption of salivary mucins onto enamel and artificial solid substrata and its influence on oral streptococcal adhesion. Biofouling 3: 199–207.
34. Swenden IE, Lindin L, Elofson U, Arnebrant T (2008) Studies on the exchange of early pellicle proteins by mucin and whole saliva. J Colloid Interface Sci 321: 52–59.
35. Buscher HJ, White DJ, Van der Mei HC, Baig AA, Kozak KM (2002) Hexametaphosphate effects on tooth surface conditioning film chemistry—in situ and in vivo studies. J Clin Dent 13: 38–43.
36. Navazesh M, Christensen CM (1982) A comparison of whole mouth resting and stimulated salivary measurement procedures. J Dent Res 61: 1158–1162.
37. Veerman EC, Van der Keybus PA, Viswanath S, Nieuw Amerongen AV (1996) Human glandular salivas: their separate collection and analysis. Eur J Oral Sci 104: 346–352.
38. Watanabe S, Dawes C (1990) Salivary flow rates and salivary film thickness in five-year-old children. J Dent Res 69: 1150–1153.
39. Ducker W, Senden T, Pasley M (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353: 239–241.
40. Petersson T, Noodgen N, Rutland MW, Feiler A (2007) Comparison of different methods to calibrate torsional spring constant and photodetector for atomic force microscopy friction measurements in air and liquid. Rev Sci Instrum 78: 093702–093708.
41. Petersson T, Naderi A, Maksuca R, Claesson P (2008) Lubrication properties of bottle-brush polyelectrolytes: An AFM study on the effect of side chain and charge density. Langmuir 24: 3336–3341.
42. Petersson T, Dedinaite A (2006) Normal and friction forces between mucin and mucin-chitosan layers in absence and presence of SDS. J Colloid Interface Sci 324: 246–256.
43. Weisentorn AL, Khorsandi M, Kaas S, Gotos G, Butt HJ (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4: 106–113.
44. Absolom DR, Lamberti FV, Policova Z, Zingg W, Van Oss CJ, et al. (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46: 90–97.
45. Perdock JF, Van der Mei HC, Buscher HJ (1991) Clinical effects of commercially available mouthrinse on the development of plaque, gingivitis and enamel surface free energy. Biofouling 3: 209–221.

Biolubrication by Protein Films