Prevention of Postpartum Weight Retention during One Year after Childbirth by Prenatal Nutrition Education: A Randomized Controlled Trial

Seyed Saeed Mazloomy
Mahmoodabad, Sajedeh Molavi1, Azadeh Nadjarzadeh2,3, Farahnaz Mardanian4, Roya Riahi5, Nahid Ardian6, Kobra Salehi7, Masoomeh Goodarzi-Khoigani5

Department of Health Education and Promotion, Social Determinants of Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Social Determinants of Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences.

Address for correspondence: Dr. Masoomeh Goodarzi-Khoigani, PhD, Child Growth and Development Research Center; Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Department of Midwifery and Reproductive Health, Nursing and Midwifery Care Research Center, School of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran.

E-mail: masoomeh.goodarzi.khi@gmail.com

Access this article online
Website: www.ijpvmjournal.net/www.ijpm.ir
DOI: 10.4103/ijpvm.IJPVM_37_20
Quick Response Code:

How to cite this article: Mazloomy Mahmoodabad SS, Molavi S, Nadjarzadeh A, Mardanian F, Riahi R, Ardian N, et al. Prevention of postpartum weight retention during one year after childbirth by prenatal nutrition education: A randomized controlled trial. Int J Prev Med 2021;12:117.

Abstract

Background: It seems that 14–25% of the women retain at least 5 kg weight from 6 to 12 months after delivery and gestational weight gain is the most important reason of weight retention. Thus, we assessed the effect of prenatal nutrition education program on the retained weights at 8, 26, and 52 weeks after delivery in primiparous women. Methods: This randomized controlled trial was implemented among 192 primiparous pregnant women in five hospitals, fifteen community health centers, and fifteen private offices. Self-developed questionnaire was used to collect the participants’ characteristics. A 72-hr dietary recall was applied to evaluate the food intakes before and after intervention. The pregnancy physical activity questionnaire determined the physical activity score. The participants’ weights at 8, 26, and 52 weeks after delivery were measured by a digital beam. Results: The means of postpartum weight decreased in both groups, but nutrition education was significantly effective on reducing postpartum weight in intervention group ($\beta = -3.112$, SE = 0.7384, $P < 0.001$). Also, the women in intervention group had less retained weight compared to control during the follow-up ($\beta = -3.35$, SE = 0.75, $p < 0.001$). The proportion of pregnant women in intervention group who reached to their pre-gravid weight was more than control during the follow-up (OR = 2.86, 95% CI: 1.62, 5.07). Conclusions: Nutrition education considering an individualized calorie-appropriate diet for each pregnant woman and based on the national guideline is effective on postpartum weight retention and reaching to pre-gravid weight.

Keywords: Clinical trial, gestational weight gain, Iran, pregnancy, prenatal education

Background

Postpartum weight retention (PPWR) is defined as the difference between weight at some time after delivery and pre-pregnancy weight. It seems that fourteen to twenty-five percent of the women retain at least 5 kg weight from 6 to 12 months after delivery[1] and gestational weight gain (GWG) is the most important reason of weight retention.[2] Thus, researchers have designed nutrition and physical activity interventions during the pregnancy, postpartum period, or both to control PPWR.[3] Huang et al.’s trial including diet and physical activity was performed from pregnancy to six months after delivery (EP group) and from 24–48 hours after birth to six months postpartum (EPP) while the comparison group received the routine program. The average weight retention at six months postpartum was 2.34 in EP group, 4.06 in EPP group compared to 5.08 kg in control group.[4] Another study also decreased GWG and the PPWR through prenatal nutrition and physical activity intervention.[5] We found only two studies[6,7] which decreased PPWR through nutritional interventions. In Wolff et al.’s survey, the maintained weight in experimental group was 6.9 kg lesser than that in the control, four weeks after delivery.[8] In Ruesten et al.’s study, adherence to Norwegian food guidelines during pregnancy, reduced the weight retention six months after delivery.[7] Although the life style interventions including physical activity and nutrition is increasing, the role of dietary instructions such as obedience to gestational dietetic recommendations on postpartum weight retention, should be revealed. Considering that nutrition education is simpler, more affordable, and without the complications caused by the prenatal exercise. Additionally, prenatal nutrition training will not have a negative effect on breastfeeding. Thus, in the present article which is part of an intervention for
improving gestational weight gain,[8] we assessed the effect of prenatal nutrition education program on the retained weights at 8, 26, and 52 weeks after delivery in primiparous women. The determination of percentage of women who reached to pre-gravid weight is another aim.

Methods

This randomized clinical trial (with the registration number IRCT2016012026129N[1]) was performed from 6 to 10th weeks until the end of pregnancy among 192 primiparous women between May 2015 and September 2016. Eighty-six participants were considered for each group based on \[n = \frac{Z_{1-\alpha/2} + Z_{1-\beta}}{2S^2} \Delta^2 \]. The significance level of 0.05, \(\beta \) of 20%, and the standard deviation of 7 (S) for at least a 3 kg difference (\(\Delta \)) in gestational weight gained between two groups determined the sample size. Five hospitals, fifteen community health centers, and fifteen private offices were selected according to the stratified sampling. Originally Iranian pregnant women aged 18 years old and older who their BMI was lower than 40 kg/m² were entered. Pregnant women with a history of diabetes, weight-related complications, using a special regimen, anemia, urinary tract diseases, chronic disease and addiction were excluded. [10]

Health care providers medically examined participants and then an intended person described the study aims for them whereas took the written consent, too. After that, we arranged the satisfied pregnant women in two groups, randomly. The random provision software[2] verified the assigned codes to each person and these codes were preserved in sequentially numbered letters. Then, pregnant women opened the next closed letters to determine the allocated place in intervention or control group. Our participants in two groups received the regular prenatal care while training sessions were considered for the experiment group. Obstetricians and midwives were not aware of randomization theme and educational items and details. But, instructor and participants were not blind because of the nature of intervention. Research Ethics Committee for Health Sciences, at the Public Health School of Shahid Sadoughi University of Medical Sciences (4326) and the Research and Technology of Isfahan University of Medical Sciences (294048) approved this trial. The study protocol was approved by the Ethics Committee of the Public Health College of Shahid Sadoughi University (IR.SSU.SPH.REC.1395.13).

Instrument

Participants’ characteristics were collected through a self-developed questionnaire administered by the study researchers. Postpartum weight retention is the difference between weight at 8, 26, and 52 weeks postpartum and pre-pregnancy weight.

A 72-hr dietary recall was applied to evaluate the food intakes at 6–10 and 35 weeks of gestation. Its validity and reliability have been confirmed previously by researchers.[11] Nutrient intakes were extracted through nutritionist 4 software while the responsible nutritionist was not aware of contents of trial. Since the amount of physical activity score is one of the most important confounding variables, the pregnancy physical activity questionnaire[12] was used which its validity and reliability have been confirmed in Iranian pregnant women.[13]

Nutrition education intervention

The basic assessment[11] and questionnaire scores were considered for intervention while the responsible nutritionist estimated a calorie-appropriate diet for each person in interventional group immediately after entering the study. Our training sessions lasted 45-60 minutes at 6-10, 18, and 26 weeks of gestation. At the first session, one educational leaflet[14] was assigned to each pregnant woman in the experimental group. The content of the intervention program included the following four main points: (1) various and well-adjusted diet based on food groups; (2) weight gaining in accordance to IOM; (3) healthy eating. Pregnant women in the interventional group were recommended to consume low-fat dairy product, high fiber bread rather than white bread, and vegetables in place of pickles. Energy intake was estimated based on the basic assessment and 50–55% of that was dedicated to the total carbohydrate intake, preferably complex carbohydrates. Energy from fat intake was limited in the range of 25–30% of total energy. We considered 25–30% for fat intake and fifty to twenty percent for protein intake, too. Pregnant women were advised to consume the mono-saturated fatty acids instead of the saturated and trans-fatty acids. The experimental group wrote their daily received food during one month to enhance self-efficacy and to examine their compliance. At the second session, the instructor described the practical ways to increase self-efficacy (goal setting techniques). The groups of two to eight persons were formed during the second and third sessions to perform group discussion, role-playing, and brain storm strategies. Two telephone numbers were also assigned to answer the questions to control the stress. Computer-based curriculums were applied to instruct healthy cooking ways during the third session. The education intervention was performed by the first author. We measured the participants’ weights at each educational session and after 8, 26, 52 weeks postpartum through a digital beam [Figure 1].

Statistical analysis

Continues variables described as mean ± standard deviation and categorical data as number (percentage). Normality of continues variables outcomes were investigated using Q-Q

1It was registered by the Iranian Registry of Clinical Trials.

2Random Allocation Software (version 1.0.0.) was developed by Saghazi, M, the professor of anesthesiology, Isfahan University of Medical Sciences in 2006.
plot. Baseline comparison across groups was conducted by independent sample t test or chi-square test as appropriate. Linear regression was used to investigate the effect of intervention on the desired outcomes using generalized estimating equation (GEE) method. The model was included intervention effect (control as reference group), time effect (in week), pre-pregnancy weight as baseline value, and interaction effect of time and intervention (week*group).
When the interaction effect of week*group was not significant, results was reported according the model without it. Effect of intervention on returning to pre-gravid weight was evaluated using generalized estimating equation

Table 1: Comparison of participants’ characteristics and baseline values according to study groups

Variable	Intervention (n=86)	Control (n=92)	P
Age (years)	26.45±4.00	26.73±3.97	0.64
Pre-gravid weight (kg)	62.72±11.66	60.27±9.73	0.12*
Pre-gravid BMI (kg/m²)	23.75±4.15	23.15±3.71	0.30*
years of education	14.62	14.15	0.66
Family income (Rials)			
<6000000	22 (25.60%)	19 (20.70%)	0.57**
6000000-1200000	40 (46.50%)	58 (63.00%)	
>12000000	24 (27.90%)	15 (16.30%)	
First trimester- physical activity (met/hour)	31.02±11.55	30.01±11.02	0.61*
Third -trimester physical activity (met/hour)	29.92±10.78	27.89±10.50	0.54*
Duration of breast-feeding	18.8±6.5	17.1±7.2	0.70

Table 2: Comparison of desired outcomes according to study groups

Variable	Intervention	Control	P
Participant’ mean weight	Mean±Std.Deviation	Mean±Std. Deviation	
After 8 weeks	66.47±10.39	66.96±11.01	0.77
After 26 weeks	66.27±11.36	66.25±11.19	0.58
After 52 weeks	63.11±11.63	63.45±0.68	0.85
The mean of retained Weight	Mean±Std.Deviation	Mean±Std. Deviation	
After 8 weeks	3.35±5.07	6.68±5.66	<0.001
After 26 weeks	2.17±5.21	5.89±5.69	<0.001
After 52 weeks	-0.01±5.07	2.95±5.08	<0.0001
Percentage of reaching to pre-gravid weight	Number (percent)	Number (percent)	
After 8 weeks	26 (33.80%)	16 (18.80%)	0.04
After 26 weeks	26 (33.80%)	16 (18.80%)	0.03
After 52 weeks	44 (56.4%)	22 (25.9%)	<0.001
	34 (43.6%)	63 (74.1%)	

Figure 2: The effect of intervention on the desired outcomes.
Results
Baseline characteristics between two study groups were not significantly different [Table 1]. The participants’ mean weight, the postpartum retained weight, and percentage of women who reached to pre-pregnancy weight during the follow-up have been shown in Table 2. Table 3 represents the effect of intervention on interested outcomes. The first part provides the effect of intervention on the means of postpartum weight during follow-up using linear regression model in a generalized estimating equation approach. The results adjusted for pre-pregnancy weight. Regarding non-significant interaction effect of trial groups and time of follow-up (p = 0.647), there was no significant difference in pattern of decreasing in postpartum weight between two groups (model 1) [Figure 2].

The third part in Table 3 shows effect of intervention on returning to pre-gravid weight using generalized estimating equation (GEE) modification of logistic regression. The Odds of returning to pre-gravid weight significantly increased within 52 weeks following the intervention in both group (OR = 0.976, 95% CI: 0.20,0.61) (model 2). The women in intervention were more likely to attain their pre-gravid weight compared to controls during the follow-up (OR = 2.86, 95% CI:1.62, 5.07).

Discussion
This single blind randomized controlled trial was effective on PPWR and the proportion of participants who returned to their pre-gravid weights or below on the 8th, 26th, and 52nd weeks after childbirth, respectively. Similarly, Ruesten et al.7 found that higher adherence to official Norwegian food guidelines during pregnancy seems to be associated with lower postpartum weight retention 6 months postpartum. Also, Wolff et al.1 showed that their prenatal nutrition intervention was effective to control the postpartum retained weight in obese participants (−4.5 vs. 2.4 kg, 95% CI of...
Mazloomy Mahmoodabad, et al.: Prevention of postpartum weight retention by prenatal nutrition education

International Journal of Preventive Medicine 2021, 12: 117

Conclusions

Nutrition education considering an individualized calorie-appropriate diet for each pregnant woman and based on the national guideline is effective on postpartum weight retention and reaching to pre-gravid weight. Therefore, attention should be devoted to support nutrition education for pregnant women to get reliable and truthful information from healthcare providers.

Declaration of patient consent

The authors certify that they have obtained all appropriate pregnant women consent forms. In the forms the pregnant women have given their consent for their clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Acknowledgments

We thank the Public Health College of Shahid Sadoughi University of Medical Sciences (4326) and the Vice of Research and Technology of Isfahan University of Medical Sciences 29404 for providing the financial support and settings.

Financial support and sponsorship

The Public Health College of Shahid Sadoughi University of Medical Sciences.

Conflicts of interest

There are no conflicts of interest.

Received: 04 Feb 20 Accepted: 27 Oct 20

Published: 29 Sep 21

References

1. Siega-Riz AM, Herring AH, Carrier K, Everson KR, Dole N, Deierlein A. Sociodemographic, perinatal, behavioral, and psychosocial predictors of weight retention at 3 and 12 months postpartum. Obesity 2010;18:1996-2003.
2. Nehring I, Schmoll S, Beyerlein A, Hauner H, von Kries R. Gestational weight gain and long-term postpartum weight retention: A meta-analysis. Am J Clin Nutr 2011;94:1225-31.
3. Waxman A. WHO global strategy on diet, physical activity and health. Food Nutr Bull 2004;25:292-302.
4. Huang TT, Yeh CY, Tsai YC. A diet and physical activity intervention for preventing weight retention among Taiwanese childbearing women: A randomised controlled trial. Midwifery 2011;27:257-64.
5. Phelan S, Phipps MG, Abrams B, Darroch F, Grantham K, Schaffler A, et al. Does behavioral intervention in pregnancy reduce postpartum weight retention? Twelve-month outcomes of the Fit for Delivery randomized trial. Am J Clin Nutr 2014;99:302-11.
6. Wolff S, Legarth J, Vangsgaard K, Toubro S, Astrup A. A randomized trial of the effects of dietary counseling on gestational weight gain and glucose metabolism in obese pregnant women. Int J Obes 2008;32:495-501.
7. Von Ruesten A, Brantsæter AL, Haugen M, Meltzer HM, Mehlig K, Winkvist A, et al. Adherence of pregnant women...
Mazloomy Mahmoodabad, et al.: Prevention of postpartum weight retention by prenatal nutrition education
International Journal of Preventive Medicine 2021, 12: 117

8. Goodarzi-Khoigani M, Mahmoodabad SSM, Moghadam MHB, Nadjarzadeh A, Mardanian F, Fallahzadeh H, et al. Prevention of insulin resistance by dietary intervention among pregnant mothers: A randomized controlled trial. Int J Prev Med. 2017;8:85.

9. Asadian A, Soheilipour S, Talehan R, Feizi A. The comparative effect of surgery and surgery along with radio-frequency in the improvement of patients with nocturnal snoring in Isfahan, Iran. J Res Med Sci 2012;17:1-7.

10. Goodarzi-Khoigani M, Moghadam MH, Nadjarzadeh A, Mardanian F, Fallahzadeh H, Mazloomy-Mahmoodabad S. Impact of nutrition education in improving dietary pattern during pregnancy based on Pender’s health promotion model: A randomized clinical trial. Iran J Nurs Midwifery Res 2018;23:18-25.

11. Yang YJ, Kim MK, Hwang SH, Ahn Y, Shim JE, Kim DH. Relative validities of 3-day food records and the food frequency questionnaire. Nutr Res Pract 2010;4:142-8.

12. Chmitorz A, von Kries R, Rasmussen KM, Nehring I, Ensenauer R. Do trimester-specific cutoffs predict whether women ultimately stay within the Institute of Medicine/National Research Council guidelines for gestational weight gain? Findings of a retrospective cohort study. Am J Clin Nutr 2012;95:1432-7.

13. Kazemi AF, Hajian S, Shariﬁ N. The psychometric properties of the Persian version of the pregnancy activity questionnaire. Int J Womens Health Reprod Sci 2019;7:54-60.

14. Bakhshandeh M, Pooraram H, Torkestani F, Torabi P, Abedini MD. The National Comprehensive Guidline for Mothers is an Eating Guide with Practical Educational Points Specifically Developed to Promote Healthy Eating during Pregnancy and Breast Feeding. Tehran; 2013.

15. Olson CM, Strawderman MS, Reed RG. Efficacy of an intervention to prevent excessive gestational weight gain. Am J Obstet Gynecol 2004;191:530-6.

16. Nuss H, Freeland-Graves J, Clarke K, Klohe-Lehman D, Milani TJ. Greater nutrition knowledge is associated with lower 1-year postpartum weight retention in low-income women. J Am Diet Assoc 2007;107:1801-6.

17. Fowles ER, Walker LO. Correlates of dietary quality and weight retention in postpartum women. J Community Nurs 2006;23:183-97.

18. Herring SJ, Cruice JF, Bennett GG, Darden N, Wallen JJ, Rose MZ, et al. Intervening during and after pregnancy to prevent weight retention among African American women. Prev Med Rep 2017;7:119-23.

19. Ronnberg A, Hanson U, Ostlund I, Nilsson K. Effects on postpartum weight retention after antenatal lifestyle intervention–A secondary analysis of a randomized controlled trial. Acta Obstet Gynecol Scand 2016;95:999-1007.

21. Rong K, Yu K, Han X, Szeto IM, Qin X, Wang J, et al. Pre-pregnancy BMI, gestational weight gain and postpartum weight retention: A meta-analysis of observational studies. Public Health Nutr 2015;18:2172-82.

22. Begum F, Colman I, McCargar LJ, Bell RC. Gestational weight gain and early postpartum weight retention in a prospective cohort of Alberta women. J Obstet Gynaecol Canada 2012;34:637-47.