Material design of indium-based compounds: Possible candidates for charge, valence, and bond disproportionation and superconductivity
Chang-Jong Kang and Gabriel Kotliar
Phys. Rev. Materials 3, 015001 — Published 10 January 2019
DOI: 10.1103/PhysRevMaterials.3.015001
Material design of indium based compounds: possible candidates for charge, valence, and bond disproportionation and superconductivity

Chang-Jong Kang and Gabriel Kotliar

1 Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
(Dated: December 13, 2018)

We design and investigate the physical properties of new indium compounds AInX3 (A = alkali metals, X = F or Cl). We find nine new In based materials in their ground state and are thermodynamically stable but are not reported in ICSD (Inorganic Crystal Structure Database). We also discuss several metastable structures. This new series of materials display multiple valences, charge and bond disproportionation, and dimerization. The most common valence of In is 3+. We also find two rare alternatives, one has In4+ with In-In dimerization and the other shows valence disproportionation to In1+ and In3+ with bond disproportionation. We study the possibility of superconductivity in these new In compounds and find that CsInF3 has a transition temperature about 24 K with sufficient hole doping and pressure.

I. INTRODUCTION

Progress in theory and algorithms, coupled with increased computational power is now accelerating the discovery of new materials with useful physical properties. A notable recent success is the theory led discovery of high temperature superconductivity of hydrogen sulfide under pressure1–5, which has set the record of the highest critical temperature reached so far. Other examples of recent predictions are existence of a metallic layer in a new family (112) of iron based superconductors6–8, the prediction and synthesis of missing half-Heusler compounds9–11, the prediction of new high-pressure phase materials such as FeO212, calcium carbides13, and Na2He14, which were also confirmed experimentally. For reviews see Refs.15–20. Theory and computation are thus beginning to play a decisive role in the search for new materials.

In this paper we apply material design methodology to find new indium halide compounds. There are multiple motivations for this study. One is the intrinsic interest in finding new mixed valent compounds, a condition that is very rare in the solid state, but has been a focus on interest for many years21. With an eye on possible applications, halide perovskites, such as CsPbI322, are remarkable photovoltaic23,24 materials. They have also been studied as analogs, as they have very similar band structures25,26 of the high temperature superconductor BaBiO327. Another motivation is to make predictions in a new arena that will test a material design methodology, which assigns a likelihood that a material will form.

Indium compounds tend to form in an oxidation state of In3+, and the valences In1+ and In2+ are not typical28–30. We find nine new indium fluoride/chloride compounds where indium is in a valence 2+ or 1+, which have a very high probability to form within the framework of Adler et al.31 and are thermodynamically stable within the density functional theory PBE (Perdew-Burke-Ernzerhof) functional. For a given compound we identify potential low-energy crystal structures for the indium fluoride/chloride compounds, as candidate structures and find the relation between the crystal structure and the valence state of indium. These indium fluoride/chloride compounds display multiple valences, charge and bond disproportionation, and indium-indium dimerization. The new indium fluoride/chloride compounds have too large of a band gap (of the order of \(\sim 4 \) eV) to be useful for photovoltaic materials, but could be useful for other applications. In particular, hole-doped CsInF3 under pressure will exhibit superconductivity with transition temperature of 24 K.

II. OUTLINE

In the beginning, we would like to summarize a material design workflow introduced in Ref. [31]. The material design process is initiated by the qualitative ideas including some physical idea of a model that one would like to explore or test, ways to enhance desirable physical properties of a material, and comparisons of a class of compounds that exhibit the similar physical properties. The initial intuitions (zeroth order step) could be refined with simplified quantitative calculations using a model Hamiltonian or other computational tools like \(\text{ab initio} \) density functional theory (DFT). In this work, we have used DFT as a main computational tool to design a new material. Note that the “theoretical” material design workflow progresses in reverse order from experimental solid state synthesis.

The first step is the quantitative calculation of the electronic structure. It explores how to go from a well defined crystal structure of a material to exhibit physical or chemical properties. The second step is a prediction of the crystal structure given a fixed chemical composition. There are a number of structure prediction techniques32 with DFT total energy calculations, and the prediction techniques require having an accurate method for calculating the total energy of a material in the DFT level. The third step is testing for thermodynamic
stability: given the lowest energy crystal structure of the fixed composition, check whether it is stable against decomposition to all other compositions in the chemical system. The third step requires the knowledge of all other known stable compositions, their crystal structures and total energies, which is now facilitated by materials databases, such as Materials Project33,34, OQMD35,36, and AFLOWlib37,38. Here, we have used the Materials Project database for analysis of thermodynamic stability and estimated the existence probability31 based on the database.

Once the (thermodynamically) stable crystal structure is found, the electronic structure is calculated again with more elaborated DFT methods like hybrid functionals, the modified Becke-John (mBJ) exchange potential, and GW methods to obtain more accurate physical properties.

This paper is organized as follows: the detail computational method of each step for material design is provided in Sec. III. The computational results are presented in sequence of the material design workflow. Section IV A summarizes the initial qualitative idea (zeroth order step) and its validation (first step). The prediction of crystal structures (second step) of the indium halide compounds and their thermodynamic stabilities (third step) are presented in Sec. IV B and Sec. IV C, respectively. The details of electronic structures and superconducting properties (post-process) are provided in Sec. IV D. The paper closes with brief summary and conclusions in Sec. V.

III. Method

A. Prediction of crystal structure

To obtain low-energy crystal structures of AInX\textsubscript{3} (A = alkali metals, X = F or Cl), we employed the \textit{ab initio} evolutionary algorithm39 implemented in USPEX40 combined with DFT pseudopotential code VASP41,42. The initial structures were randomly generated according to possible space groups. In these calculations, the structural optimization of all the newly generated structures were carried out by VASP with an energy cutoff of 520 eV and the exchange-correlation functional of generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE)43 with the projector augmented wave (PAW) method44,45.

B. Thermodynamic stability

After low-energy crystal structures were obtained, corresponding total energies were calculated by using DFT pseudopotential code VASP41,42. For the Brillouin-zone integration, the equal \textit{k}-grid density was used for all materials by adopting the Monkhorst-Pack sampling grid with a reciprocal spacing of 64 \textit{k}-points per Å-1. We used the empirical correction schemes employed in Materials Project31,33,46-49 to get an accurate formation energy. In addition, the Materials Project database was used for analysis of thermodynamic stability and the existence probability31.

C. Electronic structure

The all-electron full-potential linearized augmented plane-wave (FP-LAPW) method implemented in WIEN2\textsubscript{k}50 was adopted to calculate the electronic structure. GGA(PBE) exchange-correlation functional was chosen to calculate the electronic structure. To get the precise band gap, we utilized the modified Becke-John (mBJ) exchange potential51, which is rather accurate and computationally cheaper than GW method. The Brillouin zone integration was done with a 17×17×17 \textit{k}-mesh and the plane-wave cutoff was \(R_{\text{mt}}K_{\text{max}} = 7\). The maximum \(L\) value for the waves inside the atomic spheres, \(L_{\text{max}} = 10\), and the largest \(G\) in the charge Fourier expansion \(G_{\text{max}} = 12\) were used in the calculations.

D. Phonon dispersion and electron-phonon coupling calculations

We used the linear response method52 implemented in Quantum Espresso53 for phonon calculations. All pseudopotentials used in the calculations were adopted from Standard Solid State Pseudopotentials54,55. We used a 10 × 10 × 10 \textit{k}-grid and a Gaussian smearing of 0.03 Ry for the electronic integration. The dynamical matrices were calculated on a 4 × 4 × 4 phonon-momentum grid. A 20 × 20 × 20 \textit{k}-grid was used for the electron-phonon coupling calculations. The standard exchange-correlation functionals like local-density approximation (LDA) and generalized gradient approximation (GGA) neglect the long-range exchange interaction. This nonlocal correlation could play an significant role in electron-phonon interaction56. To incorporate the long-range exchange interaction, the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06)57 was used and the electron-phonon coupling constant was calculated from the HSE06 deformation potential introduced in Ref. [56].

IV. Computational Results and Discussion

A. Initial idea and its validation

We conceived the idea that new indium halide compounds have physical and chemical similarities with BaBiO\textsubscript{3}27, a high temperature superconductor, and CsPbI\textsubscript{3}22, a high performance photovoltaic material. To
justified the initial idea briefly, we assumed that new indium halide compounds have the ideal cubic perovskite structure. To get an unknown lattice constant of the perovskite structure, we performed the structural relaxation with VASP. After obtaining the relaxed crystal structures for the indium halide compounds, the electronic structures were obtained from the DFT calculations. Comparing the electronic structures, we could conclude that the indium halide compounds have similar physical properties exhibited in BaBiO$_3$ and CsPbI$_3$. Therefore, the indium halide compounds could be possible candidates for high-temperature superconductors or photovoltaic materials.

B. Crystal structure and total energy profile

The possible candidates for low-energy crystal structures of AlnX$_3$ (A = alkali metals, X = F or Cl) obtained by USPEX are summarized in Fig. 1. Alkali metal A and F strongly have 1+ and 1- valence states, respectively, hence In should have 2+ valence state in order for the system to be charge neutral. The 2+ valence state for In is very unique because In usually has 3+ valence state.

For CsInF$_3$, five space groups $C2/m$-a, $R3$, $P1$-a, $Fm-3m$, and $I4/m$ are candidates for the lowest energy structure and have tiny energy differences within 1 meV/atom (which corresponds to \sim10 K in temperature) to each other (Fig. 2). The details of the energy differences could be found in Table I. They could be identified from structural distortions (breathing and/or tilting of InF$_6$ octahedra) in the ideal cubic perovskite structure and have different sizes of InF$_6$ octahedra (Fig. 1). One has short In-F bond length (\sim2.12 Å) and it leads for In having 3+ valence state. On the other hand, the other has long In-F bond length (\sim2.68 Å) and it results in In 1+ valence state. Therefore, the different In-F bond lengths (bond disproportionation) trigger charge/valence disproportionation. We would like to note that the crystal structure of CsInF$_3$ with the space group $C2/m$-a is quite similar to that of BaBiO$_3$, which has also the monoclinic structure with a space group $C2/m$ at low temperature. For BaBiO$_3$, the Bi atoms occupy two distinct Wyckoff sites with average Bi-O distances of 2.28 and 2.12 Å, respectively, and results in valence disproportionation of Bi$^{3+}$ and Bi$^{5+}$.
The crystal structure with the space group $I4/\text{mmm-}a$ has the lowest energy for LiInF$_3$ and NaInF$_3$, however, it has higher energy as alkali metal gets heavier as shown in Fig. 2. The other crystal structures listed in Fig. 1 have significant energy differences among them in LiInF$_3$ but these energy differences go smaller as alkali metal becomes heavier. For CsInF$_3$, these energy differences are within 13 meV/atom and energy differences among five candidate structures (with space groups $C2/m-a$, $R\bar{3}$, $P\bar{1}$-a, $Fm\bar{3}m$, and $I4/m$) are only within 1 meV/atom. The energy difference between the lowest and the next lowest energy is gradually reduced as alkali metal becomes heavier: 45, 20, 13, 11, and 0.01 meV/atom for Li, Na, K, Rb, and Cs compounds, respectively (see Table I). Judging from these energy differences, AInF$_3$ is likely synthesized into the space group $I4/\text{mmm-}a$ for both Li and Na and $I4/\text{mmm-}b$ for both K and Rb compounds if they are thermodynamically stable (their ther-
modynamic stabilities will be discussed later on). However, synthesis of CsInF₃ quite depends on the synthesis method and condition due to the quite small energy difference. It could be one of five candidate structures (with space groups \(C2/m\)-a, \(R3\), \(P1\)-a, \(Fm\bar{3}m\), and \(I4/m\)) depending on the synthesis condition. Or otherwise, it exists in several different polymorphs. Note that charge-ordered thallium halide perovskites CsTlX₃ (X = F or Cl) is successfully synthesized. CsTlF₃ has a cubic phase (\(Fm\bar{3}m\)). On the other hand, CsTlCl₃ exists in two different polymorphs: a tetragonal phase (\(I4/m\)) and a cubic phase (\(Fm\bar{3}m\))\(^{25}\).

The possible candidates for low-energy crystal structures of AlnCl₃ have been also investigated along with AlnF₃. Since fluorine and chlorine atoms belong to the same halogen group in the periodic table, AlnCl₃ is expected to have close resemblances to AlnF₃ structurally and electronically. To check the possible low-energy crystal structures for AlnCl₃, we examined total energies of the crystal structures listed in Fig. 1 and the results are shown in Fig. 3. For both LiInCl₃ and NaInCl₃, four space groups, \(R3\), \(P1\)-a, \(C2\), and \(C2/m\)-c, are candidates for the lowest energy structure and have tiny energy differences only within 5 meV/atom. The details of the energy differences could be found in Table II. These four space groups, \(R3\), \(P1\)-a, \(C2\), and \(C2/m\)-c, possess two different sizes of InCl₄ octahedra (bond disproportionation, see Fig. 1). It leads for In to have In\(^{1+}\) and In\(^{3+}\) valence states and shows charge/valence disproportionation. For AlnCl₃ (\(A = K\), \(Rb\), \(Cs\)), two space groups, \(C2/m\)-b and \(P1\)-b, are candidates for the lowest energy structure. Energy differences between the two space groups are 7.8, 4.6, and 2.8 meV/atom for \(K\), \(Rb\), and \(Cs\) compounds, respectively (see Table II). These two space groups possess symmetrically equivalent In atoms in the unit cell, hence charge/valence disproportionation is not available for the space groups (bond disproportionation is not available as well). The coordination number of In in both \(C2/m\)-b and \(P1\)-b space groups is 3, which is quite distinct from the others listed in Fig. 1. The space group \(I4/m\bar{m}m\)-a has higher energy as alkali metal gets heavier as shown in Fig. 3. Besides, energy differences among space groups except for \(I4/m\bar{m}m\)-a are significant for LiInCl₃ and go smaller as alkali metal becomes heavier. These two tendencies are also realized in AlnF₃ compounds (Fig. 2).

C. Thermodynamic stability

We construct the ternary phase diagrams for AlnF₃ compounds as shown in Fig. 4. All lowest-energy AlnF₃ compounds are thermodynamically stable (Table I). The determinant reactions for AlnF₃ are

\[
\text{LiF} + \text{In} + 2 \text{LiInF}_4 \rightarrow 3 \text{LiInF}_3,
\]
\[
3 \text{NaF} + \text{In} + 2 \text{InF}_3 \rightarrow 3 \text{NaInF}_3,
\]
\[
4 \text{K}_3\text{InF}_6 + 3 \text{KIn}_2\text{F}_7 + 5 \text{In} \rightarrow 15 \text{KInF}_3,
\]
\[
5 \text{RbF} + 3 \text{In} + 2 \text{RbIn}_3\text{F}_{11} \rightarrow 9 \text{RbIn}_3\text{F}_3,
\]
\[
3 \text{CsF} + \text{In} + 2 \text{InF}_3 \rightarrow 3 \text{CsInF}_3.
\]

Given the above determinant reactions, we can estimate the energy above/below hull (\(E_{\text{hull}}\)) for AlnF₃ and the results are shown in Table I. Since all lowest-energy AlnF₃ compounds have substantial energies below hull, they are most likely to form.

We are now in a position to discuss the possibility of synthesis of suggested AlnF₃ materials. To do that, we made a probabilistic model to estimate the existence probability of a material\(^{31}\). If a material has a significant energy below hull, the existence probability becomes larger, indicating synthesis of the material would be likely possible. LiInF₃, NaInF₃, KInF₃, and RbInF₃ have energy below hull of -30, -54, -21, and -50 meV/atom, respectively, which correspond to the existence probability of 0.56, 0.64, 0.52, and 0.62, respectively. Since these existence probabilities are large enough, these AlnF₃ compounds are expected to be synthesized in laboratory. Especially CsInF₃ phases have energies below hull of order of -100 meV/atom, which corresponds to the existence probability of 0.78. Since five candidate structures have small energy differences among them (within

Space group	\(E_{\text{hull}}\) (meV)	\(\Delta E\) (meV)	Prob.
LiInF₃	-30.362	0	0.56
NaInF₃	14.860	45.222	0.39
KInF₃	-54.183	0	0.64
RbInF₃	-33.838	20.345	0.57
CsInF₃	-20.501	0	0.52
C2/m-a (No. 12)	-39.109	10.618	0.59
I4/m (No. 87)	-114.999	0.012	0.78
R3 (No. 148)	-114.995	0.016	0.78
P1-a (No. 2)	-114.983	0.028	0.78
Fm3m (No. 225)	-114.228	0.783	0.77
1 meV/atom), existence probabilities for the structures are almost same as 0.78 (see Table. I). As mentioned before, synthesis of the crystal structure quite depends on the synthesis method and condition. In the case of CsInF$_3$, one of five candidate structures would be chosen and synthesized depending on the synthesis condition. Or otherwise, it exists in several different polymorphs.

Figure 5 shows the ternary phase diagrams for AInCl$_3$ compounds. The determinant reactions for AInCl$_3$ are

- $\text{Li}_3\text{InCl}_6 + \text{In}_2\text{Cl}_3 \rightarrow \text{3 LiInCl}_3$
- $\text{Na}_3\text{InCl}_6 + \text{In}_2\text{Cl}_3 \rightarrow \text{3 NaInCl}_3$
- $\text{K}_3\text{InCl}_6 + \text{In}_2\text{Cl}_3 \rightarrow \text{3 KInCl}_3$
- $6 \text{RbCl} + \text{InCl}_3 + \text{In}_2\text{Cl}_3 \rightarrow 6 \text{RbInCl}_3$
- $\text{Cs}_3\text{In}_2\text{Cl}_9 + \text{In} \rightarrow \text{3 CsInCl}_3$

Given the above determinant reactions, we can estimate the energy above/below hull (E_{Hull}) for AInCl$_3$ and the results are shown in Table II. All lowest-energy AInCl$_3$ compounds are thermodynamically stable except for KInCl$_3$. KInCl$_3$ has energy above hull of 0.617 meV/atom and the corresponding existence probability is 0.43, which is quite significant. Therefore, KInCl$_3$ is marginally stable and is still expected to be synthesized in laboratory. The other AInCl$_3$ compounds have energy below hull of -23, -4, -79, and -20 meV/atom for Li, Na, Rb, and Cs compounds, which correspond to the existence probability of 0.53, 0.45, 0.70, and 0.52, respectively. Since these existence probabilities are large enough, these AInCl$_3$ compounds are expected to be synthesized in laboratory. Both LiInCl$_3$ and NaInCl$_3$ have tiny energy differences (within 5 meV/atom) among four candidate space groups, $C2$, $C2/m-c$, $R3$, and $P1$-a. For RbInCl$_3$ and CsInCl$_3$, two candidate space groups, $P1$-b and $C2/m-b$, also have tiny energy differences (within 5 meV/atom) between them. Therefore, AInCl$_3$ ($A = \text{Li, Na, Rb, Cs}$) could be synthesized into one of candidate structures depending on the synthesis condition. Or otherwise, they exist in several different polymorphs. For

Space group	E_{Hull} (meV)	ΔE (meV)	Prob.
LiInCl_3			
$C2$ (No. 5)	-23.552	0	0.53
$C2/m-c$ (No. 12)	-23.228	0.304	0.53
$R3$ (No. 148)	-21.669	1.863	0.52
$P1$-a (No. 2)	-21.648	1.885	0.52
NaInCl_3			
$C2$ (No. 5)	-4.727	0	0.45
$C2/m-c$ (No. 12)	-3.410	1.316	0.45
$R3$ (No. 148)	0.114	4.841	0.44
$P1$-a (No. 2)	0.130	4.857	0.44
KInCl_3			
$C2/m-b$ (No. 12)	0.617	0	0.43
$P1$-b (No. 2)	8.450	7.833	0.41
RbInCl_3			
$P1$-b (No. 2)	-79.011	0	0.70
$C2/m-b$ (No. 12)	-74.430	4.581	0.69
CsInCl_3			
$P1$-b (No. 2)	-17.336	2.776	0.51
$C2/m-b$ (No. 12)	-20.112	0	0.52
$I4/m$ (No. 87)	-11.657	8.455	0.48
CsInCl₃, the third lowest-energy structure (I4/m) has a small energy difference of ~8 meV with the lowest one and still has a possibility to form due to the considerable existence probability of 0.48 as shown in Table II.

D. Electronic structure and superconductivity

We have calculated the electronic structures of AInF₃ compounds and found several similarities and differences among them. In Fig. 6, we present two representative electronic structures of I4/mmm-a LiInF₃ and C2/m-a CsInF₃. The similarities and differences in the electronic structures of AInF₃ will be discussed later.

Figure 6 shows that both LiInF₃ and CsInF₃ have the insulating phase with a indirect band gap of 4.37 and 4.06 eV, respectively, based on the mBJ method (GGA results give 2.30 and 3.05 eV, respectively). In addition, In s and F p orbitals are well separated in the energy window and it leads to small hybridization between In s and F p orbitals. The only notable hybridization is between In s and F pσ orbitals and produces the low-lying bonding state located at -8 ~ -6 eV as shown in Fig. 6. However, the low-lying bonding state has dominant F pσ character and quite small In s character (see the density of states in Fig. 6). Due to the quite small hybridization between In s and F p orbitals, we can mention that LiInF₃ and CsInF₃ have In²⁺ (5s¹) and multivalent In¹⁺ (5s²) and In³⁺ (5s⁰) configurations, respectively. We would like to note that charge disproportionation in BaBiO₃ (2Bi¹⁺ → Bi³⁺ + Bi⁵⁺) was questioned due to the significant hybridization between Bi 6s and O 2p orbitals. The alternative scenario of oxygen hole pairs condensation (2Bi³⁺L → Bi³⁺L² + Bi³⁺, where L represents a ligand hole) was proposed in the case of CsInF₃, however, hybridization between In s and F p orbitals is quite small. Hence, the ligand hole pairs condensation scenario is safely ruled out and valence/charge disproportionation is clearly realized.

The electronic structures of other low-energy AInF₃ compounds including I4/mmm-a NaInF₃, I4/mmm-b KInF₃, and I4/mmm-b RbInF₃ (not shown) are quite similar to that of I4/mmm-a LiInF₃ except for the different size of the band gap. The sizes of the indirect band gap for Na, K, and Rb compounds obtained from the mBJ method are 3.89, 3.91, and 3.67 eV, (GGA results give 1.77, 1.90, and 1.90 eV), respectively, which are smaller than that for LiInF₃. For CsInF₃, the five candidate structures, which are C2/m-a, I4/m, R3, P1-a, and Fm3m, also have the similar electronic structure in the following manners: (i) In s and F p orbitals are well separated in the energy window (In s and F p orbitals lie -1 ~ 7 eV and -7 ~ -4 eV, respectively), (ii) quite small hybridization between In s and F p orbitals is realized, (iii) multivalent In¹⁺ (5s²) and In³⁺ (5s⁰) valence skip configuration is clearly shown, and (iv) the five candidate structures have the similar band gaps of ~4.0 eV (GGA results give almost same band gaps of ~3.0 eV).

Both I4/mmm-a LiInF₃ and C2/m-a CsInF₃ show the insulating behavior, however, the insulating mech-
anism is different (the insulating mechanism of the Na, K, and Rb compounds is essentially same as the Li compound). As shown in Fig. 6(b), C2/m-a CsInF3 exhibits the mix-valent In1+(5s2) and In3+(5s0) character66, where In1+ has the completely filled s-band and In3+ has the (nearly) empty s-band (there is small amount of In3+ s-orbital character in the occupied band due to the small hybridization between In s and F p\textsubscript{σ} orbitals). Therefore, the insulating mechanism in C2/m-a CsInF\textsubscript{3} is straightforward: the mix-valent character makes the insulating phase. For the case of I\textsubscript{4}/mmm-a LiInF\textsubscript{3}, In3+(5s1) character is clearly shown in Fig. 6(a), where In2+ has the half-filled s-band, which is not straightforward to understand the band gap formation. In order to investigate the insulating mechanism in I\textsubscript{4}/mmm-a LiInF\textsubscript{3} thoroughly, we plot the charge density with the energy range between -2 and 0 eV (the Fermi level is set to be zero) in Fig. 7(b), which corresponds to the sσ-bonding character. Therefore, two adjacent In atoms are dimerized with the bond length of 2.75 Å to produce sσ(bonding) and ssσ*(anti-bonding) states, and each s-electron in In2+ completely fills the sσ-bonding state (Fig. 7(a)). The band gap size in I\textsubscript{4}/mmm-a LiInF\textsubscript{3} indicates the splitting between sσ(bonding) and ssσ*(anti-bonding) states.

The electronic structures of all AlInCl\textsubscript{3} compounds show the insulating behavior as well (not shown). AlInCl\textsubscript{3} could be classified into two groups: LiInCl\textsubscript{3} and NaInCl\textsubscript{3} are in the same group and KInCl\textsubscript{3}, RbInCl\textsubscript{3}, and CsInCl\textsubscript{3} belong to the other group. For each group, they share the same low-energy candidate structures: both LiInCl\textsubscript{3} and NaInCl\textsubscript{3} have the four candidate structures with space groups of C2, C2/m-c, R\textsubscript{3}, and P1\textsubscript{1}-a, and KInCl\textsubscript{3}, RbInCl\textsubscript{3}, and CsInCl\textsubscript{3} have the two candidate structures with space groups of P1\textsubscript{1}-b and C2/m-b. Not only the electronic structures but also the size of the band gap are almost same among the candidate structures for each AlInCl\textsubscript{3} compound. The band gaps obtained from the mBJ method are 3.5, 3.5, 4.2, 4.3, and 4.3 eV for Li, Na, K, Rb, and Cs compounds, respectively (GGA gives the band gaps of 2.8, 2.7, 2.9, 3.0, and 3.0 eV, respectively). For both LiInCl\textsubscript{3} and NaInCl\textsubscript{3}, their four candidate structures possess two different sizes of InCl\textsubscript{6} octahedra (bond disproportionation) and show the multi-valent In1+(5s2) and In3+(5s0) valence skip configuration. Note that In s and Cl p orbitals are well separated in the energy window and small hybridization between them is realized. Since Cl p orbital has higher energy than F p orbital, hybridization between In s and Cl p\textsubscript{σ} orbitals is somewhat bigger than that between In s and F p\textsubscript{σ} orbitals. However the hybridization between In s and Cl p is still quite small, hence the ligand hole pairs condensation scenario is safely ruled out and valence/charge disproportionation is clearly realized. Interestingly, two s bands originating from In1+ and In3+ atoms are almost flat (their bandwidths are smaller than 1 eV) and are located at near the Fermi level and ∼4 eV, respectively. For KInF\textsubscript{3}, RbInF\textsubscript{3}, and CsInF\textsubscript{3} compounds, their candidate structures with space groups of P1\textsubscript{1}-b and C2/m-b have symmetrically equivalent In atoms in the unit cell. Therefore, valence/charge disproportionation is not possible in their candidate structures. Alkali metal (K, Rb, Cs) and Cl atoms strongly have the valence states of 1+ and 1-, respectively, leading for In atoms to have 2+ valence state. The insulating mechanism of these compounds is essentially same as one discussed in LiInF\textsubscript{3}, and the band gap is formed between the fully occupied

![FIG. 6.](Color Online) Electronic structures of (a) I\textsubscript{4}/mmm-a LiInF\textsubscript{3} and (b) C2/m-a CsInF\textsubscript{3} calculated by the mBJ method. In2+ s-orbital character is marked in red in (a) and In3+ and In1+ s-orbital characters are marked in red and blue in (b), respectively, in the band structures.

![FIG. 7.](Color Online) Insulating mechanism of I\textsubscript{4}/mmm-LiInF\textsubscript{3}. (a) Systematic band diagram for a band gap opening. Two s orbitals from two adjacent In2+ atoms form ssσ-bonding to open the band gap. (b) Electronic charge density corresponding to the ssσ-bonding. The distance between two adjacent In2+ atoms is 2.75 Å.
is mechanically unstable with imaginary phonon softening at X and R points (not shown) even with sufficient doping. The unstable phonon mode at R point is the F octahedron breathing mode as shown in Fig. 8(d). With sufficient doping and at high pressure, the structure distortions and valence disproportionation realized in CsInF₃ (the second row of Fig. 1) could be suppressed and CsInF₃ crystallizes in the simple cubic perovskite structure accompanied by entering the metallic phase. It bears a close resemblance to the phase diagram of BaBiO₃.

Figure 8(a) shows the phonon dispersion of 0.5 hole-doped cubic perovskite CsInF₃ under pressure P = 32 GPa (Hole-doped CsInF₃ is possible through a certain amount of oxygen substitution for fluorine, for example, CsIn(F₁₋ₓOₓ)₃, or Cs vacancy could introduce hole doping). The F vibrational mode has the highest energy due to its small mass. However, at particular phonon momentum q (especially at q = M, R), this F vibrational mode shows quite significant phonon softening indicating fairly large electron-phonon coupling. The phonon momentum q and mode ν dependent electron-phonon coupling strength λᵥν are 7.24 and 0.19 for the soft phonon modes shown in Figs. 8(c) and (d), respectively. The total electron-phonon coupling constant λ is 1.80 and the logarithmic average phonon frequency ωlog = 157 K. The McMillan-Allen-Dynes formula with μ* = 0.10 (0.15) gives Tc = 21 (18) K.

Conventional electronic descriptions based on LDA/GGA underestimates the electron-phonon coupling constant λ in Ba₁₋ₓKₓBiO₃ and fail to explain its high-temperature superconductivity. Yin et al. found that static correlation (which is captured within GW or hybrid HSE06 functional) enhances the electron-phonon coupling constant λ and describes the transition temperature Tc properly. Motivated by the above study, the effect of static correlation on superconductivity in CsInF₃ is also tested. Since the F stretching phonon mode (Fig. 8(c)) is the most important to account for

TABLE III. Phonon related physical parameters for 0.5 hole-doped simple cubic CsInF₃ under pressure P = 32 GPa.

REPME (eV/Å)	GGA	HSE06
λ	1.80	3.48
ωlog (K)	157	124
Tc (K)	21 (18)	24 (22)

As discussed earlier, all AInX₃ (A = alkali metals, X = F or Cl) compounds have the insulating behavior with a significant band gap of approximately 4 eV (based on the mBJ method). Hence, these compounds are not suitable for photovoltaic materials (appropriate band gap size is ranged from 1 to 2 eV) without any band gap tuning like, for example, applying strain or pressure.

Now, we discuss the possible superconductivity in these new In compounds. As shown in Fig. 6, hole doping gives the higher electronic density of states than electron doping in both LiInF₃ and CsInF₃. Therefore, hole doping would be expected to give higher superconducting transition temperature Tc than electron doping.

We calculated the electron-phonon coupling constant λ in 10 % hole-doped I4/mmm-a LiInF₃. We found that λ = 0.324 and the logarithmic average phonon frequency ωlog = 304 K. It gives the superconducting transition temperature Tc = 0.293 (0.02) K when we used the effective Coulomb repulsion parameter μ* = 0.10 (0.15) in the McMillan-Allen-Dynes formula.

The emergence of superconductivity was reported in charged doped cubic perovskite BaBiO₃ and CsTiX₃ (X = F or Cl) materials. Therefore, the simple cubic perovskite CsInF₃ (Pm3m; No. 221) is also tested for possible superconductivity. At ambient pressure, it

ssσ bonding and totally empty ssσ* anti-bonding states.
superconductivity, we calculated a reduced electron-phonon matrix element (REPMEM)\(^5\)\(^6\) for the phonon mode. Table III shows that static correlation enhances the REPME by a factor of \(\sim 1.4\) and gives rise to larger electron-phonon coupling constant \(\lambda = 3.48\) and \(T_c \approx 24\) K. These results encourage the pursuit of experimental synthesis.

V. SUMMARY AND CONCLUSIONS

Using computational methods we identified nine new In compounds AInX\(_3\) (A = alkali metals, X = F or Cl) and investigated their crystal structures and physical properties. Two distinct insulating mechanisms are realized in the new In compounds. For the compounds that have different sizes of InX\(_6\) octahedra (bond disproportionation), which are CsInF\(_3\), LiInCl\(_3\), and NaInCl\(_6\), they show multivalent In\(^{3+}\) (5s\(^0\)) and In\(^{1+}\) (5s\(^2\)) valence skip configuration. The insulating phase is induced from bond and valence disproportionation. The other In compounds, AInF\(_3\) (A = Li, Na, K, Rb) and AInCl\(_3\) (A = K, Rb, Cs), have symmetrically equivalent In sites in their unit cell and hence both bond and valence disproportionation are not possible. These In compounds have the divalent valence state of In, which is very rare but thermodynamically stable. In these compounds, two adjacent In atoms are dimerized to produce \(ss\sigma\) bonding and \(ss\sigma^*\) antibonding states. Each s-electron in In\(^{2+}\) completely fills the \(ss\sigma\) bonding states. Therefore, the band gap sizes in these compounds indicate the splitting between \(ss\sigma\) bonding and \(ss\sigma^*\) antibonding states.

These compounds are a new arena for investigating charge, valence, and bond disproportionation. They are similar to the CsTlX\(_3\) (X = F or Cl), which had also been predicted theoretically and synthesized experimentally\(^{25,26}\), but do not have the toxicity problems associated with Tl, and therefore can be synthesized more easily. All these AInX\(_3\) compounds are insulators with a sizable indirect band gap of the order of \(\sim 4\) eV, which makes them unsuitable for photovoltaic materials. We also studied the possible superconductivity in these new In compounds. With sufficient doping and at high pressure, CsInF\(_3\) crystallizes in the simple cubic perovskite structure and has significant superconducting transition temperature \(T_c \approx 24\) K.

ACKNOWLEDGMENTS

We thank Ran Adler, Ian Fisher, Martha Greenblatt, and Xiaoyan Tan for fruitful discussions. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-09-1-0583.

* ck620@physics.rutgers.edu

1 D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H.
We have performed USPEX simulations for several AInX materials including LiInF$_3$, RbInF$_3$, CsInF$_3$, RbInCl$_3$, CsInCl$_3$, and CsInBr$_3$. From the lowest energy is within 10 meV/atom for each material and made a structure set as shown in Fig. 1.
The charge density difference between In^{1+} and In^{3+} atoms in $C2/m$-CsInF$_3$ is small (~ 0.21 e) in the DFT calculations. Note that there is no real difference in d occupations even in well-known charge-order transition metal oxides. See the Ref. [67] in more detail.

Y. Quan, V. Pardo, and W. E. Pickett, Phys. Rev. Lett. 109, 216401 (2012).

P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

V. Meregalli and S. Y. Savrasov, Phys. Rev. B 57, 14453 (1998).