A Calabi-Yau threefold with non-Abelian fundamental group

Arnaud Beauville

The aim of this note is to answer a question of I. Dolgachev by constructing a Calabi-Yau threefold whose fundamental group is the quaternionic group H with 8 elements. The construction is very reminiscent of Reid’s unpublished construction of a surface with $p_g = 0$, $K^2 = 2$ and $\pi_1 = H$; I explain below the link between the two problems.

1. The example

Let $H = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternionic group, and V its regular representation. We denote by \hat{H} the group of characters $\chi : H \to \mathbb{C}^*$; it is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. The group H acts on $\mathbb{P}(V)$\footnote{I use Grothendieck’s notation, i.e. $\mathbb{P}(V)$ is the space of hyperplanes in V.} and on $S^2 V$; for each $\chi \in \hat{H}$, we denote by $(S^2 V)_\chi$ the eigensubspace of $S^2 V$ with respect to χ, i.e. the space of quadratic forms Q on $\mathbb{P}(V)$ such that $h \cdot Q = \chi(h) Q$ for all $h \in H$.

Theorem. For each $\chi \in \hat{H}$, let Q_χ be a general element of $(S^2 V)_\chi$. The subvariety \tilde{X} of $\mathbb{P}(V)$ defined by the 4 equations $Q_\chi = 0 (\chi \in \hat{H})$ is a smooth threefold, on which the group H acts freely. The quotient $X := \tilde{X}/H$ is a Calabi-Yau threefold with $\pi_1(X) = H$.

Let me observe first that the last assertion is an immediate consequence of the others. Indeed, since \tilde{X} is a Calabi-Yau threefold, one has $h^{1,0}(\tilde{X}) = h^{2,0}(\tilde{X}) = \chi(\mathcal{O}_{\tilde{X}}) = 0$, hence $h^{1,0}(X) = h^{2,0}(X) = \chi(\mathcal{O}_X) = 0$. This implies $h^{1,0}(X) = 1$, so there exists a nonzero holomorphic 3-form ω on X; since its pull-back to \tilde{X} is everywhere nonzero, ω has the same property, hence X is a Calabi-Yau threefold. Finally \tilde{X} is a complete intersection in $\mathbb{P}(V)$, hence simply connected by Lefschetz’ theorem, so the fundamental group of X is isomorphic to H.

So the problem is to prove that H acts freely and \tilde{X} is smooth. We will need to write down explicitly the elements of $(S^2 V)_\chi$. As a H-module, V is the direct sum of the 4 one-dimensional representations of H and twice the irreducible two-dimensional representation ρ. Thus there exists a system of homogeneous coordinates $(X_1, X_\alpha, X_\beta, X_\gamma; Y, Z; Y', Z')$ such that

$$g \cdot (X_1, X_\alpha, X_\beta, X_\gamma; Y, Z; Y', Z') = (X_1, \alpha(g)X_\alpha, \beta(g)X_\beta, \gamma(g)X_\gamma; \rho(g)(Y, Z); \rho(g)(Y', Z'))$$.

To be more precise, I denote by α (resp. β, resp. γ) the nontrivial character which is $+1$ on i (resp. j, resp. k), and I take for ρ the usual representation via
Pauli matrices:

\[\rho(i)(Y,Z) = (\sqrt{-1}Y, -\sqrt{-1}Z) \quad \rho(j)(Y,Z) = (-Z,Y) \quad \rho(k)(Y,Z) = (-\sqrt{-1}Z, -\sqrt{-1}Y). \]

Then the general element \(Q_\chi \) of \((S^2V)_\chi\) can be written

\[
Q_1 = t_1^1 X_1^1 + t_2^1 X_\alpha^2 + t_3^1 X_\beta^2 + t_4^1 X_\gamma^2 + t_5^1 (YZ' - Y'Z),
\]

\[
Q_\alpha = t_1^\alpha X_1 X_\alpha + t_2^\alpha X_\beta X_\gamma + t_3^\alpha YZ + t_4^\alpha Y'Z' + t_5^\alpha (YZ' + ZY'),
\]

\[
Q_\beta = t_1^\beta X_1 X_\beta + t_2^\beta X_\alpha X_\gamma + t_3^\beta (Y^2 + Z^2) + t_4^\beta (Y'^2 + Z'^2) + t_5^\beta (YY' + ZZ'),
\]

\[
Q_\gamma = t_1^\gamma X_1 X_\gamma + t_2^\gamma X_\alpha X_\beta + t_3^\gamma (Y^2 - Z^2) + t_4^\gamma (Y'^2 - Z'^2) + t_5^\gamma (YY' - ZZ').
\]

For \(t := (t_1^X) \) fixed, let \(\mathcal{X}_t \) be the subvariety of \(P(V) \) defined by the equations \(Q_\chi = 0 \). Let us check first that the action of \(H \) on \(\mathcal{X}_t \) is fixed point free for \(t \) general enough. Since a point fixed by an element \(h \) of \(H \) is also fixed by \(h^2 \), it is sufficient to check that the element \(-1 \in H\) acts without fixed point, i.e. that \(\mathcal{X}_t \) does not meet the linear spaces \(L_+ \) and \(L_- \) defined by \(Y = Z = Y' = Z' = 0 \) and \(X_1 = X_\alpha = X_\beta = X_\gamma = 0 \) respectively.

Let \(x = (0,0,0,0; Y,Z; Y',Z') \in \mathcal{X}_t \cap L_+ \). One of the coordinates, say \(Z \), is nonzero; since \(Q_1(x) = 0 \), there exists \(k \in \mathbb{C} \) such that \(Y' = kY \), \(Z' = kZ \). Substituting in the equations \(Q_\alpha(x) = Q_\beta(x) = Q_\gamma(x) = 0 \) gives

\[
(t_3^\alpha + t_5^\alpha k + t_4^\alpha k^2) YZ = (t_3^\beta + t_5^\beta k + t_4^\beta k^2) (Y^2 + Z^2) = (t_3^\gamma + t_5^\gamma k + t_4^\gamma k^2) (Y^2 - Z^2) = 0
\]

which has no nonzero solutions for a generic choice of \(t \).

Now let \(x = (X_1; X_\alpha, X_\beta, X_\gamma; 0,0,0,0) \in \mathcal{X}_t \cap L_+ \). As soon as the \(t_i^X \)'s are nonzero, two of the \(X \)-coordinates cannot vanish, otherwise all the coordinates would be zero. Expressing that \(Q_\beta = Q_\gamma = 0 \) has a nontrivial solution in \((X_\beta, X_\gamma) \) gives \(X_\alpha^2 \) as a multiple of \(X_1^2 \), and similarly for \(X_\beta^2 \) and \(X_\gamma^2 \). But then \(Q_1(x) = 0 \) is impossible for a general choice of \(t \).

Now we want to prove that \(\mathcal{X}_t \) is smooth for \(t \) general enough. Let \(Q = \bigoplus_{\chi \in \hat{H}} (S^2V)_\chi \); then \(t := (t_1^X) \) is a system of coordinates on \(Q \). The equations \(Q_\chi = 0 \) define a subvariety \(\mathcal{X} \) in \(Q \times P(V) \), whose fibre above a point \(t \in Q \) is \(\mathcal{X}_t \). Consider the second projection \(p : \mathcal{X} \to P(V) \). For \(x \in P(V) \), the fibre \(p^{-1}(x) \) is the linear subspace of \(Q \) defined by the vanishing of the \(Q_\chi \)'s, viewed as linear forms in \(t \). These forms are clearly linearly independent as soon as they do not vanish. In other words, if we denote by \(B_\chi \) the base locus of the quadrics in \((S^2V)_\chi\) and put \(B = \cup B_\chi \), the map \(p : \mathcal{X} \to P(V) \) is a vector bundle fibration above \(P(V) \to B \); in particular \(\mathcal{X} \) is non-singular outside \(p^{-1}(B) \). Therefore it is enough to prove that \(\mathcal{X}_t \) is smooth at the points of \(B \cap \mathcal{X}_t \).
Observe that an element x in B has two of its X-coordinates zero. Since the equations are symmetric in the X-coordinates we may assume $X_\beta = X_\gamma = 0$. Then the Jacobian matrix \(\frac{\partial Q_x}{\partial X_\psi}(x) \) takes the form
\[
\begin{pmatrix}
2t_1^1 X_1 & 2t_2^1 X_\alpha & 0 & 0 \\
t_1^\alpha X_\alpha & t_1^\beta X_1 & 0 & 0 \\
0 & 0 & t_1^\beta X_1 & t_2^\beta X_\alpha \\
0 & 0 & t_2^\gamma X_\alpha & t_1^\gamma X_1
\end{pmatrix}.
\]
For generic t this matrix is of rank 4 except when all the X-coordinates of x vanish; but we have seen that this is impossible when t is general enough.

2. Some comments

As mentioned in the introduction, the construction is inspired by Reid’s example of a surface of general type with $p_g = 0$, $K^2 = 2$, $\pi_1 = H$ [R]. This is more than a coincidence. In fact, let \tilde{S} be the hyperplane section $X_1 = 0$ of \tilde{X}. It is stable under the action of H (so that H acts freely on \tilde{S}), and one can prove as above that it is smooth for a generic choice of the parameters. The surface $S := \tilde{S}/H$ is a Reid surface, embedded in X as an ample divisor, with $h^0(X, O_X(S)) = 1$.

In general, let us consider a Calabi-Yau threefold X which contains a rigid ample surface — i.e. a smooth ample divisor S such that $h^0(O_X(S)) = 1$. Put $L := O_X(S)$. Then S is a minimal surface of general type (because $K_S = L|_S$ is ample); by the Lefschetz theorem, the natural map $\pi_1(S) \to \pi_1(X)$ is an isomorphism. Because of the exact sequence
\[
0 \to O_X \to L \to K_S \to 0
\]
the geometric genus $p_g(S) := h^0(K_S)$ is zero.

One has $K_S^2 = L^3$; the Riemann-Roch theorem on X yields
\[
1 = h^0(L) = \frac{L^3}{6} + \frac{L \cdot c_2}{12}
\]
by Miyaoka theorem [Mi] one has $L \cdot c_2 > 0$ (the strict inequality requires playing around a little bit with the index theorem), hence $K_S^2 \leq 5$.

With a few exceptions, the possible fundamental groups of surfaces with $p_g = 0$ and $K_S^2 = 1$ or 2 are known (see [B-P-V] for an overview). In the case $K_S^2 = 1$, the fundamental group is cyclic of order ≤ 5; if $K_S^2 = 2$, it is of order ≤ 9; moreover the dihedral group D_8 cannot occur. I believe that the symmetric group S_3 cannot occur either, though I do not think the proof has been written down. If this is true, the quaternionic group H is the only non-Abelian group which occurs in this range.
On the other hand, little is known about surfaces with \(p_g = 0 \) and \(K_\mathcal{S}^2 = 3, 4 \) or 5. Inoue has constructed examples with \(\pi_1 = H \times (\mathbb{Z}_2)^n \), with \(n = K^2 - 2 \) (loc. cit.); I do not know if they can appear as rigid ample surfaces in a Calabi-Yau threefold.

Let us denote by \(\tilde{X} \) the universal cover of \(X \), by \(\tilde{L} \) the pull back of \(L \) to \(\tilde{X} \), and by \(\rho \) the representation of \(G \) on \(H^0(\tilde{X}, \tilde{L}) \). One has \(\text{Tr} \rho(g) = 0 \) for \(g \neq 1 \) by the holomorphic Lefschetz formula, and \(\text{Tr} \rho(1) = \chi(\tilde{L}) = |G| \chi(L) = |G| \). Therefore \(\rho \) is isomorphic to the regular representation. Looking at the list in loc. cit. one gets a few examples of this situation, for instance:
- \(G = \mathbb{Z}_5 \), \(\tilde{X} \) is a quintic hypersurface in \(\mathbb{P}^4 \);
- \(G = (\mathbb{Z}_2)^3 \) or \(\mathbb{Z}_4 \times \mathbb{Z}_2 \), \(\tilde{X} \) is an intersection of 4 quadrics in \(\mathbb{P}^7 \) as above;
- \(G = \mathbb{Z}_3 \times \mathbb{Z}_3 \), \(\tilde{X} \) is a hypersurface of bidegree \((3, 3)\) in \(\mathbb{P}^2 \times \mathbb{P}^2 \).

Of course when looking for Calabi-Yau threefolds with interesting \(\pi_1 \) there is no reason to assume that it contains an ample rigid surface. Observe however that if we want to use the preceding method, i.e. find a projective space \(\mathbb{P}(V) \) with an action of \(G \) and a smooth invariant linearly normal Calabi-Yau threefold \(\tilde{X} \subset \mathbb{P}(V) \), then the line bundle \(\mathcal{O}_{\tilde{X}}(1) \) will be the pull-back of an ample line bundle \(L \) on \(X \), and by the above argument the representation of \(G \) on \(V \) will be \(h^0(L) \) times the regular representation. This leaves little hope to find an invariant Calabi-Yau threefold when the product \(h^0(L) |G| \) becomes large.

REFERENCES

[B-P-V] W. Barth, C. Peters, A. Van de Ven: Compact complex surfaces. Ergebnisse der Math., Springer-Verlag (1984).

[Mi] Y. Miyaoka: The Chern classes and Kodaira dimension of a minimal variety. Adv. Studies in Pure Math. 10, 449-476, Kinokuniya-North Holland (1987).

[R] M. Reid: Surfaces with \(p_g = 0 \), \(K^2 = 2 \). Unpublished manuscript (1979).