14-3-3 Proteins are Potential Regulators of Liquid–Liquid Phase Separation

Xianlong Huang1,2 · Zhiwen Zheng1,2 · Yixin Wu1,2 · Meng Gao1,2 · Zhengding Su1,2 · Yongqi Huang1,2

Accepted: 29 January 2022 / Published online: 10 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid–liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.

Keywords Protein–protein interaction · Scaffold protein · Intrinsically disordered region · Condensate · Regulation

Abbreviations
IDRs intrinsically disordered regions
PTMs post-translational modifications
LLPS liquid–liquid phase separation
PML promyelocytic leukemia
hnRNPs heterogeneous nuclear ribonucleoproteins
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

Introduction
The 14-3-3 proteins are ubiquitously expressed in various tissues and mediate many cellular signaling pathways. The name “14-3-3” was given because these proteins elute in the 14th fraction of bovine brain homogenate on the DEAE cellulose column and the 3.3 fraction in the subsequent starch gel electrophoresis [1]. They interact with numerous protein targets, including kinases, phosphatases, transmembrane receptors, and transcription factors [2, 3]. Through these protein–protein interactions, 14-3-3 proteins participate in cell cycle regulation, gene expression control, apoptosis, signal transduction, and many other vital biological processes [4–6]. Dysregulation of 14-3-3 protein expression has been observed in several cancers [7]. Furthermore, 14-3-3 proteins have chaperone activity which may play a role in neurodegenerative disease progression [8]. Since 14-3-3 proteins are potential therapeutic targets, many 14-3-3 modulators have been

These authors contributed equally: Xianlong Huang, Zhiwen Zheng, Yixin Wu

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s12013-022-01067-3.
The binding targets of 14-3-3 proteins usually carry specific motifs containing phosphorylated serine or threonine. Most of these motifs are embedded in intrinsically disordered regions (IDRs) [11, 12]. In contrast to traditional folded protein domains, IDRs do not fold into stable three-dimensional structures in the free state. Their amino acid compositions significantly differ from those of folded proteins. Generally, IDRs lack bulky hydrophobic amino acids and are enriched in charged amino acids [13, 14]. While IDRs are unfolded, they perform critical functions. Structural disorder facilitates post-translational modifications (PTMs), association/dissociation kinetics, conformational changes, and so on [15, 16]. Consequently, numerous IDRs are involved in cellular regulation and signal transduction [17–19].

Recently, IDRs have become a theme of many research efforts because they are closely associated with liquid–liquid phase separation (LLPS), which underlies the formation of membraneless organelles and cellular condensates [20–25]. Increasing evidences suggest that many types of biomolecular condensates, such as stress granules, P granules, and nuclear speckles, are formed through LLPS [24, 26–29]. Enriching interacting components inside droplets has been shown to promote protein aggregation [30–32], enzyme reaction [33, 34], gene expression [35–37], and virus replication [38, 39]. LLPS is driven by multivalent interactions and can be readily regulated by effector molecules or PTMs [22, 29, 40].

To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. However, the high LLPS propensity of 14-3-3 binding partners and the bivalent nature of 14-3-3 proteins suggest that 14-3-3 proteins could be potentially involved in LLPS regulation. In this review, we first summarized the interacting modes of 14-3-3 and mechanism of LLPS, and then we proposed that 14-3-3 proteins could be recruited into the droplets and regulate the phase separation behavior of their binding partners.

Structure and Function of 14-3-3 Proteins

The 14-3-3 proteins are a family of highly conserved scaffold proteins. They are expressed in various types of tissues [41–45]. In mammals, seven 14-3-3 isoforms encoded by different genes have been identified: α/β, γ, ε, δ/ζ, η, θ, and σ, where α and δ are the phosphorylated forms of 14-3-3β and ζ, respectively [46–48]. The length of human 14-3-3 isoform varies from 245 residues to 255 residues. Each 14-3-3 protein sequence contains a divergent N terminus, a divergent C terminus, and a conserved core region. A phylogenetic tree generated from sequence alignment is shown in Fig. 1a. 14-3-3 proteins form stable homodimers or heterodimers with a cup-shaped structure (Fig. 1b). Each protomer consists of nine antiparallel α-helices where α1 and α2 of one protomer interact with α3 and α4 of the other protomer to form the dimer interface [49, 50].

14-3-3 proteins interact with their binding partners primarily through the amphipathic binding grooves constituted by α-helices α3, α5, α7, and α9 (Fig. 1b). Three distinct 14-3-3 binding motifs are identified: motif I [RXXp(S/T)XP/G], motif II [RX(F/Y)XP(S/T)X(P/G)], and motif III [p(S/T) X1,2-COOH], where p(S/T) is a phosphorylated serine or threonine, and X is any type of residue [51–55]. The three conserved basic residues Lys49, Arg56, and Arg127 within the amphipathic groove form ionic and hydrogen bonds with the phosphorylated residue (Fig. 1c) [49]. Although the sequences of the seven 14-3-3 isoforms are highly conserved, they bind to the same target with different affinities. Interestingly, their binding affinities obey a hierarchized profile with conserved relative K_D ratios [56].

It should be noted that not all interactions with 14-3-3 proteins require the above-mentioned phosphorylated motifs. Some non-phosphorylated peptides also bind to 14-3-3 proteins with high affinity [57, 58]. If a protein contains multiple motifs, they could occupy both amphipathic grooves within a 14-3-3 dimer simultaneously [59–62]. Besides the amphipathic grooves, the last two C-terminal α-helices are also shown to contribute to interactions with some partners [63–65].

So far, hundreds of 14-3-3 binding proteins have been identified [66–68]. Affinity-purification/mass spectrometry combined with domain-based cluster analysis suggested that 14-3-3 proteins can potentially engage around 0.6% of the human proteome [69]. Overall, the 14-3-3 binding proteins show great structural and functional diversity. A recent Gene Ontology analysis of 14-3-3 partners showed that 25% are non-receptor Ser/Thr protein kinases, 20% are DNA binding proteins, 12% are cell cycle proteins, 10% are RNA-binding proteins, and several other categories [12]. Therefore, 14-3-3 binding proteins are extensively involved in cell cycle regulation, apoptosis, autophagy, signal transduction, and gene expression control [4–6].

14-3-3 proteins regulate the function of their targets through several modes [70]: (i) A 14-3-3 dimer can act as a scaffold to bring two interacting proteins in close proximity, thus mediating the formation of protein complexes. For example, 14-3-3β mediates the interaction between Bcr and Raf [71] and 14-3-3ζ stabilizes interaction between α4 integrin and paxillin [72]. (ii) 14-3-3 proteins can occlude interactions between the target proteins and their effectors. Interaction between BAD and Bcl-2 promotes apoptosis. Datta et al. found that phosphorylation of BAD at Ser136 and Ser112 recruits 14-3-3 proteins, which disrupts the
binding of BAD to Bcl-2 and thereby promotes cell survival [73]. (iii) 14-3-3 proteins can induce conformational changes on the target proteins, altering their activity. A well-studied example is the serotonin N-acetyltransferase, an enzyme that controls the daily rhythm in melatonin synthesis. 14-3-3 proteins increase the activity of serotonin N-acetyltransferase by modulating the structure of the substrate-binding sites [74, 75]. Sometimes, different modes may work synergetically to modulate the activity of the 14-3-3 binding partners. For example, the binding site of 14-3-3ζ on the kinase domain of ASK1 is in close proximity to the kinase active site. Therefore, 14-3-3ζ may inhibit the activity of ASK1 by blocking its accessibility and/or affecting its conformation [76].

By participating in numerous signaling pathways, dysregulation of 14-3-3 proteins is involved in many diseases [7, 8]. Expression levels of the majority of 14-3-3 isoforms are elevated in many tumors, such as meningioma [77], astrocytoma [78], glioblastoma [79], lung cancer [80, 81], breast cancer [82, 83], and hepatocellular carcinoma [84, 85]. Because 14-3-3σ is a tumor suppressor, its expression in tumors is negatively regulated [77, 86]. By interacting with GSK-3β, LRRK2, or FOXO3a, or colocalizing with α-synuclein in the Lewy bodies or tau in the neurofibrillary tangles, 14-3-3 proteins are associated with Alzheimer’s disease and Parkinson’s disease [87–93]. Furthermore, 14-3-3 proteins are also associated with other neurological disorders, such as lissencephaly, schizophrenia, bipolar disorder, Williams syndrome, and Down syndrome [94, 95].

Liquid–Liquid Phase Separation: Function and Mechanism

Many proteins are able to undergo LLPS when the concentration exceeds a threshold value, in particular under crowded conditions. LLPS usually results in formation of liquid droplets in which proteins are enriched. The protein concentration inside the droplets can be tens of folds higher than that of the surrounding dilute phase [96, 97]. The phase separation behavior of a protein can be readily affected by several environmental conditions, such as salt concentration, pH, and temperature [98, 99].

LLPS can be driven by multivalent interactions [22, 29]. Tandem repeats of binding element are multivalent, which is well exemplified by the nephrin–NCK–N-WASP system [100]. Multivalence can also be achieved by oligomerization, as in NPM1 or SynGAP [101, 102]. Furthermore, IDRs form dynamic, multivalent interactions, such as cation–π
interactions, electrostatic interactions, and hydrophobic interactions [103–105]. The interaction mode between multivalent molecules can be described by the stickers-and-spacers model [22, 106], in which stickers are groups of residues forming attractive interactions, while spacers connect the stickers and influence their interactions.

As indicated by the stickers-and-spacers model, LLPS will be altered if the strength of interaction, the valence of molecules, the distribution of stickers, or the length of spacers is changed. PTM is a universal way to regulate LLPS [22, 40, 107, 108]. PTM can induce conformational changes or alter electrostatic interactions and hydrophobic interactions, thereby promoting or suppressing LLPS. Phosphorylation [109–113], methylation [98, 111, 114–116], acetylation [117, 118], polyubiquitination [119, 120], and PARylation [121, 122], have been shown to alter LLPS of many proteins.

Proteins within a droplet can be generally divided into two classes [123]. The first class is scaffolds or drivers, which are multivalent and essential for LLPS. The second class is clients or regulators. Clients and regulators are dispensable for LLPS and are recruited into the droplets via interactions with the scaffolds or drivers. In promyelocytic leukemia (PML) nuclear bodies, the PML protein represents the scaffold, while SUMO-1, Daxx, and Sp100 are the clients and dynamically exchanged at the PML nuclear bodies [124, 125]. It has been shown that partition of clients into droplets varies with the scaffolds concentration or valency [123]. Recently, Orti et al. systematically analyzed the features of drivers, clients, and regulators, and observed some difference among them in disorder content, sequence composition, and prevalence of PTMs [126].

Accumulated evidences suggest that LLPS underlies the formation of various membraneless compartments, such as stress granules, P granules, nuclear speckles, and nucleoli [24, 26–29]. Thus, LLPS plays critical roles in many cellular processes, including assembly of mitotic spindle [127], cellular stress response [128, 129], gene expression [35–37], and RNA splicing [130]. Furthermore, LLPS is also associated with pathological processes, such as protein aggregation and virus replication [30–32, 38, 39]. Consequently, misregulation of LLPS may lead to the occurrence of diseases [31, 97, 131–133].

14-3-3 Proteins are Potential Regulators of Phase Separation

As discussed above, 14-3-3 proteins participate in numerous signaling pathways and regulate various biological processes, where LLPS may occur. However, the involvement of 14-3-3 proteins in LLPS has not been investigated. Since LLPS of 14-3-3 proteins has not been reported, we first predicted their LLPS propensities using the FuzDrop server [134]. FuzDrop prediction gives the probability of LLPS (\(p_{LLPS} \)) for human 14-3-3 binding partners. According to FuzDrop, proteins with \(p_{LLPS} \) greater than 0.61 likely form droplets spontaneously. \(p_{LLPS} \) values for all proteins are provided in Supplementary Table S1.

Fig. 2 LLPS propensity prediction of 14-3-3 binding partners using FuzDrop [134]. a Statistical analysis of LLPS probability (\(p_{LLPS} \)) for 14-3-3 binding partners. According to FuzDrop, proteins with \(p_{LLPS} \) greater than 0.61 likely form droplets spontaneously. \(p_{LLPS} \) values for all proteins are provided in Supplementary Table S1. b FuzDrop predicted droplet-promoting propensity profiles (\(p_{DP} \)) of p53, hnRNPA1, SARS-CoV-2 nucleocapsid protein, tau, and YAP. Residues with \(p_{DP} > 0.60 \) are likely to mediate LLPS.
14-3-3 binding sites which may be occupied by a 14-3-3 dimer. Upon 14-3-3 proteins binding, significant conformational changes may occur within the 14-3-3 binding partners. Therefore, LLPS of the 14-3-3 binding partners may be modulated (Mode I in Fig. 3b). 14-3-3 proteins could also act as cross-linkers by binding to multiple partners simultaneously, thus increasing the valence of interaction for LLPS and promoting phase separation (Mode II in Fig. 3b). PTMs are key factors regulating LLPS. 14-3-3 proteins could modulate LLPS of their binding partners by facilitating the occurrence of PTMs by recruiting enzymes (Mode III in Fig. 3b). In the following text, we summarized

Protein	UniProt ID	Function	Phase separation properties	References
APC P25054	Cellular signaling	LLPS in vitro; LLPS with Axin in cells.	[206]	
CEP152 O94986	Scaffold protein	LLPS with Cep63 in vitro and in cells.	[208]	
CHAF1A Q13111	DNA binding protein	LLPS in cells	[209]	
DACT1 Q9NYF0	Cellular signaling	LLPS in cells	[210]	
DCP1A Q9NPI6	mRNA decapping factor	LLPS in cells.	[211]	
DDX3X O00571	RNA helicase	LLPS in vitro and in cells.	[118]	
EDC3 Q96F86	Scaffold protein	LLPS in vitro.	[212–215]	
ERC1 Q8IUD2	Scaffold protein	LLPS in cells.	[216]	
GIT1 Q9Y2X7	GTPase activator	LLPS in vitro and in cells.	[217]	
H1.2 P16403	DNA binding protein	LLPS in vitro	[218]	
hnRNPA1 P09651	RNA-binding protein	LLPS in vitro and in cells.	[32, 176, 177, 179]	
hnRNPA2 P22626	RNA-binding protein	LLPS in vitro, in cells, and in C. elegans.	[116, 219–222]	
NPM1 P06748	Nucleolar chaperone	LLPS in vitro and in cells.	[101, 229–231]	
p53 P04637	Transcription factor	LLPS in vitro and in cells.	[35, 164–168]	
PCNT O95613	Scaffold protein	LLPS in cells	[232]	
PLK4 O00444	Serine/threonine-protein kinase	LLPS in vitro and in cells.	[233, 234]	
RAD52 P43351	DNA repair protein	LLPS in vitro and in cells.	[235, 236]	
SARS-CoV-2 nucleocapsid protein P0DTC9	RNA-binding protein	LLPS in vitro and in cells.	[38, 39, 189–199, 237, 238]	
SOX-2 P48431	Transcription factor	LLPS in vitro.	[239]	
SRM2 Q9UQ35	Splicing factor	LLPS with SON in cells.	[240]	
SynGAP F6SEU4	Cellular signaling	LLPS with PSD-95 in vitro and in cells	[102, 241, 242]	
tau P10636	Microtubule-associated protein	LLPS in vitro and in cells.	[30, 96, 97, 99, 104, 105, 154–157, 159, 160, 179, 243–251]	
TFE3 P19532	Transcription factor	LLPS in cells.	[252]	
TFEB P19484	Transcription factor	LLPS in vitro and in cells.	[253]	
UBQLN4 Q9NR5	Cellular signaling	LLPS in vitro.	[254]	
USP42 Q89H9	Deubiquitinating enzyme	LLPS in vitro and in cells.	[255]	
YAP P46937	Transcription factor	LLPS in vitro and in cells.	[203, 204]	
the phase separation properties of five representative 14-3-3 binders and discussed how 14-3-3 proteins could play a role.

Microtubule-Associated Protein Tau

Tau is a microtubule-associated protein mainly distributed in axons. Its primary function is to regulate the assembly and spatial organization of microtubule [136, 137]. Tau also plays a role in cellular signaling and chromosome stability [138, 139]. Because hyperphosphorylation and abnormal aggregation of tau have been observed in a number of neurodegenerative diseases, tau is considered as an important target for neurodegenerative disease treatment [140–143]. The interactions between 14-3-3 and tau have been recognized for a long time and may contribute to tau aggregation [144–146]. Crystal structures and binding affinity characterization show that tau segments embracing phosphorylated residues pSer214 and pSer324 bind to the amphipathic grooves of 14-3-3 [60]. However, amphipathic groove-specific binding ligands are not able to completely inhibit binding of tau to 14-3-3 [147]. Moreover, Stefanoska et al. showed that an N-terminal 11-amino acid-long motif (residues 18–28) modulates interactions between tau and 14-3-3 [148]. Recently, it was found that LLPS is an intrinsic property of tau and may be involved in its function and aggregation [149–153]. For example, tau droplets can concentrate tubulin and nucleate microtubule bundles as well as regulate the activity of microtubule-severing enzymes and the movement of molecular motors [154, 155]. LLPS also promotes tau aggregation or formation of toxic oligomers [30, 96, 97, 99, 156, 157].

Tumor Suppressor p53

The tumor suppressor p53 protein is a transcription factor. Its inactivation is found in many cancer types. 14-3-3 proteins regulate the transcriptional activity, stability, and cellular localization of p53 [6]. So far, three 14-3-3 binding sites located in the disordered C-terminal domain of p53 have been characterized experimentally [6]. Early studies have demonstrated that p53 is uptaken into membrane-less cellular bodies, such as Cajal bodies and promyelocytic leukemia protein bodies [162, 163]. Droplets of p53 were first reported by Boija et at. when they mixed...
p53 with transcriptional coactivator MED1 [35]. Later, anomalous liquid condensates of p53 were observed by Safari et al. when they explored the aggregation process of p53 at near-physiological conditions and in crowded environments [164]. p53 also forms droplets when over-expressed in yeast [165]. While experiments using recombinant p53 suggest that electrostatic interactions between the negatively charged N-terminal domain and the positively charged C-terminal domain play a key role in mediating p53 droplet formation [166], some mutations are found to markedly promote p53 condensation in cancer cells [167, 168]. Though the function of p53 condensates remains elusive [169], formation of p53 droplets may be related to p53 aggregation [164, 165, 168, 170].

Oligomerization is a key factor in LLPS as it generates multivalent interactions and enhances intermolecular interactions [109, 132, 171]. Interactions with 14-3-3 proteins are found to enhance the tetramerization of p53 [172]. In this context, 14-3-3 proteins are expected to enhance the LLPS propensity of p53 and have an effect on the subsequent functioning process (mode II in Fig. 3a).

Heterogeneous Nuclear Ribonucleoprotein hnRNPA1

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of RNA-binding proteins that regulate diverse biological processes. hnRNPA1 is concentrated in the nucleus and involved in mRNA processing. During stress, hnRNPA1 is sequestered in the cytoplasm and forms stress granules with other RNA-binding proteins and mRNA [173]. A 14-3-3 binding motif is located on the N-terminus, where phosphorylation on Ser4/6 is required for hnRNPA1/14-3-3 interactions [174]. 14-3-3 can mediate re-entry of hnRNPA1 into the nucleus or cooperate with hnRNPA1 to control splicing of genes under stress conditions [174, 175].

hnRNPA1 consists of two folded RNA recognition motifs and a low complexity domain. While LLPS of hnRNPA1 is mainly driven by the low complexity domain via aromatic-aromatic and aromatic-arginine interactions, the folded RNA recognition motifs modify the phase behavior through intramolecular electrostatic interactions between the low complexity domain and the RNA recognition motifs [32, 176]. LLPS of hnRNPA1 has been suggested to contribute to the assembly of stress granules and the formation of amyloid-like fibers [32, 177, 178]. Since conditions that favor LLPS also enhance hnRNPA1 aggregation, it is suggested that LLPS is on pathway to its aggregation [179].

14-3-3 proteins have been shown to regulate the component of stress granules. MK2-induced phosphorylation of tristetraprolin at Ser52 and Ser178 promotes formation of tristetraprolin/14-3-3 complexes, resulting in exclusion of tristetraprolin from arsenite-induced stress granules [180]. Moreover, 14-3-3 proteins were able to regulate the distribution of hMex-3B in P-bodies and stress granules [181]. Importantly, both tristetraprolin and hMex-3B are predicted to undergo phase separation spontaneous with \(p_{\text{LLPS}} \) values of 0.9986 and 0.9988, respectively. Modulating the component of stress granules by 14-3-3 or building up physical cross-linking between hnRNPA1 may influence the material properties or functions of stress granules (mode II in Fig. 3a).

SARS-CoV-2 Nucleocapsid Protein

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the worldwide pandemic of the coronavirus disease 2019 (COVID-19) [182]. The SARS-CoV-2 genome encodes about 30 proteins, among which the nucleocapsid (N) protein is the most abundant viral protein in infected cells [183–185]. N protein is a multifunctional protein. It packages viral RNA into virions and plays a critical role in virus transcription and assembly [186].

14-3-3 proteins have been reported to regulate the shuttling of SARS-CoV N protein between the nucleus and the cytoplasm [187]. Recently, Tugaeva et al. characterized the interactions between N protein and 14-3-3 proteins [188]. They found that N protein interacts with all seven human 14-3-3 isoforms with \(K_d \) values in low micromolar range. The main binding site for N protein to bind 14-3-3 is phosphorylated Ser197, which is located in the central IDR.

The phase separation propensity of N protein has been subjected to extensive studies. N protein undergoes LLPS with RNA where the N-terminal RNA-binding domain, the central IDR, and C-terminal dimerization domain play an essential role [39, 189–194]. LLPS of N protein is modulated by phosphorylation at the serine/arginine-rich region by CDK1, GSK-3β, or SRPK1 [38, 193, 195]. The N protein/RNA condensates recruit RNA polymerase complex of SARS-CoV-2, which may provide a mechanism for efficient transcription of viral RNA [38]. N protein also phase separates with G3BP or hnRNPA2 into stress granules [190, 193, 196, 197]. Furthermore, LLPS of N protein may be associated with the dysfunctional inflammatory responses and antiviral immunity [194, 198]. Consequently, modulating the phase separation propensity of N protein could be a potential treatment for COVID-19 [39, 199].

Though the influence of 14-3-3 on LLPS of N protein has not been investigated so far, binding of 14-3-3 to N protein is expected to modify the conformation of the central IDR or introduce intermolecular crossing-linking, which could play a role in modulating the phase separation propensity of N protein (mode I and mode II in Fig. 3a). Recruitment of 14-3-3 into N protein condensates may also
regulate the signaling pathways involved in immune response.

Transcriptional Coactivator YAP

The Yes-associated protein (YAP) is a key transcriptional coactivator of the Hippo pathway [200]. Unphosphorylated YAP is located in the nucleus and interacts with the TEAD transcription factors [201]. Upon association with TEAD, YAP induces expression of genes involved in anti-apoptotic processes [202]. On the contrary, when YAP is phosphorylated by LATS1-2, it binds to 14-3-3 proteins and remains in the cytosol [202]. Therefore, 14-3-3 proteins play a role in regulating the Hippo pathway.

To date, there are two studies showing that YAP undergoes phase separation. In one study, Yu et al. found that interferon-γ promotes phase separation of YAP after anti-PD-1 therapy in tumor cells [203]. YAP droplets induced by interferon-γ are localized in the nucleus and recruit TAZ, TEAD4, EP300, and MED1, forming a transcriptional hub for gene expression. Therefore, disrupting LLPS of YAP suppresses tumor cell growth [203]. In the other study, Cai et al. investigated the phase separation behavior of YAP under hyperosmotic stress [204]. In hyperosmotically stressed cells, YAP condensates are observed in both cytoplasm and nucleus. Importantly, the components of cytoplasmic and nuclear YAP condensates are different. Cytoplasmic YAP condensates concentrate kinase, including LATS1 and NLK, whereas nuclear YAP condensates contain transcription factor and transcription regulator, such as TEAD1 and TAZ. While both studies confirm the essential role of C-terminal IDR of YAP in LLPS, formation of YAP condensates is regulated by Ser127 and Ser128 phosphorylation [204]. The Ser127 phosphorylation creates a binding site for 14-3-3 proteins and promotes formation of cytoplasmic YAP condensates, whereas phosphorylation on Ser128 abolishes YAP/14-3-3 binding and suppresses LLPS of YAP in the cytoplasm [204, 205]. Therefore, 14-3-3 proteins may play a critical role in regulating the formation of cytoplasmic YAP condensates which sequester YAP from the nucleus (mode I and II in Fig. 3a).

Conclusions and Perspectives

In the past ten years, our understanding on LLPS has achieved rapid development. Increasing studies show that LLPS plays a fundamental role in formation of membraneless organelles and cellular condensates, and dysregulation of LLPS is closely related to human diseases. 14-3-3 proteins interact with various targets and form an interacting hub for many cellular signaling pathways. While numerous investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To reveal the potential correlation between 14-3-3 proteins and LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 protein may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underlying mechanisms.

Data Availability

All data are included in the article and its supplementary information files.

Acknowledgements This work was supported by the National Natural Science Foundation of China [grant 32000883 to M.G.], and funding from Hubei University of Technology [Y.H.]

Author Contributions Y.H. and Z.S. had the idea for the article; X.H., Z.Z., and Y.W. performed the literature search and data analysis; X.H., Z.Z., Y.W., Y.H., and M.G. drafted the work; Y.H., M.G., and Z.S. critically revised the work.

Compliance with Ethical Standards

Conflict of Interest The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Moore, B. W., Perez, V. J. (1967). Specific acid proteins in the nervous system. In F. D. Carlson (Ed.), Physiological and biochemical aspects of nervous integration. Prentice-Hall, Englewood Cliffs, NJ.

2. Obsil, T., & Obsilova, V. (2011). Structural basis of 14-3-3 protein functions. *Seminars in Cell and Developmental Biology*, 22, 663–672. https://doi.org/10.1016/j.semcdb.2011.09.001.

3. Obsilova, V., & Obsil, T. (2020). The 14-3-3 proteins as important allosteric regulators of protein kinases. *International Journal of Molecular Sciences*, 21, 8824 https://doi.org/10.3390/ijms21228824.

4. Aitken, A. (2006). 14-3-3 proteins: a historic overview. *Seminars in Cancer Biology*, 16, 162–172. https://doi.org/10.1016/j.semcancer.2006.03.005.

5. Mackintosh, C. (2004). Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. *Biochemical Journal*, 381, 329–342. https://doi.org/10.1042/BJ20031332.

6. Falicchio, M., Ward, J. A., Macip, S., & Doveston, R. G. (2020). Regulation of p53 by the 14-3-3 protein interaction.
phase separates into RNA-rich polymerase-containing condensates. Nature Communications, 11, 6041. https://doi.org/10.1038/s41467-020-19843-1.

39. Zhao, M., Yu, Y., Sun, L. M., Xing, J. Q., Li, T., Zhu, Y., Wang, M., & Yu, Y., et al. (2021). GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications, 12, 2114. https://doi.org/10.1038/s41467-021-22297-8.

40. Hofweber, M., & Dormann, D. (2019). Friend or foe: Post-translational modifications as regulators of phase separation and RNP granule dynamics. Journal of Biological Chemistry, 294, 7137–7150. https://doi.org/10.1074/jbc.M118.001189.

41. Baxter, H. C., Fraser, J. R., Liu, W. G., Forster, J. L., Clokie, S., Steinacker, P., Otto, M., & Bahn, E., et al. (2002). Specific 14-3-3 isoform detection and immunolocalization in prion diseases. Biochemical Society Transactions, 30, 387–391.

42. Boston, P. F., Jackson, P., & Thompson, R. J. (1982). Human cDNA coding for brain-speciﬁc GABA receptor subunits. Proceedings of the National Academy of Sciences of the United States of America, 79, 8519–8524. https://doi.org/10.1073/pnas.79.19.8519.

43. Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D., & von Mering, C. (2015). Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics, 15, 3163–3168. https://doi.org/10.1002/pmic.201400441.

44. Thul, P. J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., & Asplund, A., et al. (2017). A sub-cellular map of the human proteome. Science, 356, eaal3321. https://doi.org/10.1126/science.aal3321.

45. Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., & Kampf, C., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347, 1260419. https://doi.org/10.1126/science.1260419.

46. Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R., & Takahashi, Y. (1988). Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proceedings of the National Academy of Sciences of the United States of America, 85, 7084–7088. https://doi.org/10.1073/pnas.85.19.7084.

47. Toker, A., Sellers, L. A., Amess, B., Patel, Y., Harris, A., & Aitken, A. (1992). Multiple isoforms of a protein kinase C inhibitor (KCIP-1/14-3-3) from sheep brain. Amino acid sequence of phosphorylated forms. European Journal of Biochemistry, 206, 453–461. https://doi.org/10.1111/j.1432-1033.1992.tb16946.x.

48. Aitken, A., Howell, S., Jones, D., Madrazo, J., & Patel, Y. (1995). 14-3-3 alpha and delta are the phosphorylated forms of raf-activating 14-3-3 beta and zeta. In vivo stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys MOTIF. Journal of Biological Chemistry, 270, 5706–5709. https://doi.org/10.1074/jbc.270.11.5706.

49. Yang, X., Lee, W. H., Sobott, F., Papapigoriou, E., Robinson, C. V., Grossmann, J. G., Sundstrom, M., & Doyle, D. A., et al. (2006). Structural basis for protein-protein interactions in the 14-3-3 protein family. Proceedings of the National Academy of Sciences of the United States of America, 103, 17237–17242. https://doi.org/10.1073/pnas.0605779103.

50. Liu, D., Bienkowski, J., Petosa, C., Collier, R. J., Fu, H., & Liddington, R. (1995). Crystal structure of the zeta isoform of the 14-3-3 protein. Nature, 376, 191–194. https://doi.org/10.1038/376191a0.

51. Yaffe, M. B., Rittinger, K., Volinia, S., Caron, P. R., Aitken, A., Jeffers, H., Gamblin, S. J., & Smerdon, S. J., et al. (1997). The structural basis for 14-3-3-phosphopeptide binding specificity. Cell, 91, 961–971. https://doi.org/10.1016/s0092-8674(00)80487-0.

52. Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L. C., Smerdon, S. J., Gamblin, S. J., & Yaffe, M. B. (1999). Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Molecular Cell, 4, 153–166. https://doi.org/10.1016/s1097-2765(00)80363-9.

53. Ganguly, S., Wellner, J. L., Ho, A., Chemineau, P., Malpau, B., & Klein, D. C. (2005). Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proceedings of the National Academy of Sciences of the United States of America, 102, 1222–1227. https://doi.org/10.1073/pnas.0406871102.

54. Aitken, A., Ait Blal, H., Alm, T., & Asplund, A., et al. (2017). A sub-cellular map of the human proteome. Proceedings of the National Academy of Sciences of the United States of America, 114, E9811–E9820. https://doi.org/10.1073/pnas.1714491114.
65. Karlberg, T., Honnyak, P., Pinto, A. F., Milanova, S., Ebrahim, M., Lindberg, M., Pullen, N., & Nordstrom, A., et al. (2018). 14-3-3 proteins activate Pseudomonas exotoxin-S and -T by cha-}

66. Johnson, C., Tinti, M., Wood, N. T., Campbell, D. G., Toth, R., Dubois, F., Geraghty, K. M., & Wong, B. H., et al. (2011). Visualization and biochemical analyses of the emerging mammalian 14-3-3 phosphoproteome. *Molecular Cell Proteomics, 10* (M110), 005751. https://doi.org/10.1074/mcp.M110.005751.

67. Tinti, M., Johnson, C., Toth, R., Ferrier, D. E., & Mackintosh, C. (2012). Evolution of signal multiplexing by 14-3-3-binding 2R-}

68. Uhart, M., & Bustos, D. M. (2013). Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation. *PLoS One, 8*, e57503. https://doi.org/10.1371/journal.pone.0057503.

69. Jin, J., Smith, F. D., Stark, C., Wells, C. D., Fawcett, J. P., Kulkarni, S., Metalnikov, P., & O’Donnell, P., et al. (2004). Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytokines regulation and cellular organization. *Current Biology, 14*, 1436–1450. https://doi.org/10.1016/j.cub.2004.07.051.

70. Obsilova, V., Kopecka, M., Kosek, D., Kylarova, S., Rezaibova, L., & Obsil, T. (2014). Mechanisms of the 14-3-3 protein function: regulation of protein function through con-}

71. Braselmann, S., & McCormick, F. (1995). Ber and Raf form a complex in vivo via 14-3-3 proteins. *The EMBO Journal, 14*, 4839–4848.

72. Deakin, N. O., Bass, M. D., Warwood, S., Schoelermann, J., Mostafavi-Pour, Z., Knight, D., Ballestrem, C., & Humphries, E. (2009). Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. *International Journal of Cancer, 113*, 359–363. https://doi.org/10.1002/ijc.20492.

73. Datta, S. R., Katsov, A., Hu, L., Petros, A., Fesik, S. W., Yaffe, M. B., & Greenberg, M. E. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phospho-

74. Obsil, T., Ghirlando, R., Klein, W., D. C., Ganguly, S., Cao, L., Yang, X. L., Zhao, W. D., & Zhang, X. (2010). The expression of seven 14-3-3 isoforms in human meningioma. *Brain Research, 1336*, 98–102. https://doi.org/10.1016/j.brainres.2010.04.009.

75. Qi, W., Liu, X., Qiao, D., & Martinez, J. D. (2005). Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. *International Journal of Cancer, 113*, 359–363. https://doi.org/10.1002/ijc.20492.

76. Raeugrnt, P., Wongkotsila, A., Lirdprapamongkol, K., Svasi, J., Geater, S. L., Phukaloun, M., Suwivat, S., & Thongsuksai, P. (2014). Prognostic significance of 14-3-3-gamma overexpression in advanced non-small cell lung cancer. *Asian Pacific Journal of Cancer Prevention, 15*, 3513–3518. https://doi.org/10.7314/apjc.2014.15.8.3513.

77. Qi, W., Liu, X., Qiao, D., & Martinez, J. D. (2005). Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. *International Journal of Cancer, 113*, 359–363. https://doi.org/10.1002/ijc.20492.

78. Pfammatter, P., Kopecka, M., Kosek, D.,考核va, S., Rezaibova, L., & Obsil, T. (2014). Mechanisms of the 14-3-3 protein function: regulation of protein function through con-}

79. Liu, Y., Tian, R. F., Li, Y. M., Liu, W. P., Cao, L., Yang, X. L., Cao, W. D., & Zhang, X. (2010). The expression of seven 14-3-3 isoforms in human meningioma. *Brain Research, 1336*, 98–102. https://doi.org/10.1016/j.brainres.2010.04.009.
92. Soulie, C., Nicole, A., Delacourte, A., & Ceballos-Picot, I. (2004). Examination of stress-related genes in human temporal versus occipital cortex in the course of neurodegeneration: involvement of 14-3-3 zeta in this dynamic process. Neuroscience Letters, 365, 1–5. https://doi.org/10.1016/j.neulet.2004.03.090.

93. Pair, F. S., & Yacoubian, T. A. (2021). 14-3-3 proteins: novel pharmacological targets in neurodegenerative diseases. Trends in Pharmacological Sciences, 42, 226–238. https://doi.org/10.1016/j.tips.2021.01.001.

94. Cho, E., & Park, J. Y. (2020). Emerging roles of 14-3-3gamma in neurological disorders. International Journal of Biochemistry and Molecular Biology, 3, 152–164.

95. Kanaan, N. M., Hamel, C., Grabinski, T., & Combs, B. (2020). Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nature Communications, 11, 2809. https://doi.org/10.1038/s41467-020-16580-3.

96. Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K. M., Bennett, R. E., Dujardin, S., Laskowski, P. R., & MacKenzie, D., et al. (2015). Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Molecular Cell, 57, 936–947. https://doi.org/10.1016/j.molcel.2015.01.013.

97. Ambadjou, S., Biermat, J., Riedel, D., Mandelkow, E., & Zweckstetter, M. (2017). Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nature Communications, 8, 275. https://doi.org/10.1038/s41467-017-00480-0.

98. Li, P., Banjade, S., Cheng, H. C., Kim, S., Chen, B., Guo, L., Llaguno, M., & Hollingsworth, J. V., et al. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature, 483, 336–340. https://doi.org/10.1038/10879.

99. Mitrea, D. M., Cika, J. A., Guy, C. S., Ban, D., Banerjee, P. R., Stanley, C. B., Nourse, A., & Deniz, A. A., et al. (2016). Nucleophosmin integrates within the nucleolus via multiple-mod interactions with proteins displaying R-rich linear motifs and rRNA. Elife, 5, e13571. https://doi.org/10.7554/elife.13571.

100. Zeng, M., Shang, Y., Araki, Y., Guo, T., Huganir, R. L., & Zhang, M. (2016). Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell, 166, 1165–1175. https://doi.org/10.1016/j.cell.2016.07.008.

101. Wang, J., Choi, J. M., Holehouse, A. S., Lee, H. O., Zhang, X., Jahn, M., Maharana, S., & Lemaire, R., et al. (2018). A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell, 174, 688–699. https://doi.org/10.1016/j.cell.2018.06.006.

102. Boyko, S., Qi, X., Chen, T. H., Surewicz, K., & Surewicz, W. K. (2019). Liquid-liquid phase separation of tau protein: the crucial role of electrostatic interactions. Journal of Biological Chemistry, 294, 11054–11059. https://doi.org/10.1074/jbc.A119.009198.

103. Lin, Y., Fichou, Y., Zeng, Z., Hu, N. Y., & Han, S. (2020). Electrostatically driven complex coacervation and amyloid aggregation of tau are independent processes with overlapping conditions. ACS Chemical Neuroscience, 11, 615–627. https://doi.org/10.1021/acschemneuro.9b00627.

104. Choi, J. M., Holehouse, A. S., & Pappu, R. V. (2020). Physical principles underlying the complex biology of intracellular phase transitions. Annual Review of Biophysics, 49, 107–133. https://doi.org/10.1146/annurev-biophys-121219-081629.
stressed granule disassembly in a context-specific manner. Science, 372, eabf6548. https://doi.org/10.1126/science.abf6548. ARTN eabf6548.

121. Altmeyer, M., Neelen, K. J., Teloni, F., Pozdnayakova, I., Pellegriino, S., Grothe, M., Rask, M. D., & Streicher, W., et al. (2015). Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nature Communications, 6, 8088. https://doi.org/10.1038/ncomms9088.

122. Leung, A. K. L. (2020). Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. Trends in Cell Biology, 30, 370–383. https://doi.org/10.1016/j.tcb.2020.02.002.

123. Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., & Rosen, M. K. (2016). Compositional control of phase-separated cellular bodies. Cell, 166, 651–663. https://doi.org/10.1016/j.cell.2016.06.010.

124. Dellaire, G., Eskiw, C. H., Dehghani, H., Ching, R. W., & Bazett-Jones, D. P. (2006). Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. Journal of Cell Science, 119, 1034–1042. https://doi.org/10.1242/jcs.028117.

125. Weidtkamp-Peters, S., Lenser, T., Bargiev, D., Gerstner, N., Hofmann, T. G., Schwanitz, G., Hoischen, C., & Maul, G., et al. (2008). Dynamics of component exchange at PML nuclear bodies. Journal of Cell Science, 121, 2731–2743. https://doi.org/10.1242/jcs.031922.

126. Ortí, F., Navarro, A. M., Rabinovich, A., Pozdniyakova, I., Pellegriino, S., Grothe, M., Rask, M. D., & Streicher, W., et al. (2015). Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nature Communications, 6, 8088. https://doi.org/10.1038/ncomms9088.

127. Leung, A. K. L. (2020). Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. Trends in Cell Biology, 30, 370–383. https://doi.org/10.1016/j.tcb.2020.02.002.

128. Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., & Rosen, M. K. (2016). Compositional control of phase-separated cellular bodies. Cell, 166, 651–663. https://doi.org/10.1016/j.cell.2016.06.010.

129. Riback, J. A., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., & Rosen, M. K. (2016). Compositional control of phase-separated cellular bodies. Cell, 166, 651–663. https://doi.org/10.1016/j.cell.2016.06.010.

130. Wang, A., Conicella, A. E., Schmidt, H. B., Martin, E. W., Leung, A. K. L. (2020). Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. Trends in Cell Biology, 30, 370–383. https://doi.org/10.1016/j.tcb.2020.02.002.

131. Leung, A. K. L. (2020). Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. Trends in Cell Biology, 30, 370–383. https://doi.org/10.1016/j.tcb.2020.02.002.

132. Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R., & Rosen, M. K. (2016). Compositional control of phase-separated cellular bodies. Cell, 166, 651–663. https://doi.org/10.1016/j.cell.2016.06.010.
150. Rai, S. K., Savastano, A., Singhe, P., Mukhopadhyay, S., & Zweckstetter, M. (2021). Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. *Protein Science, 30*, 1294–1314. https://doi.org/10.1002/pro.4093.

151. Wegmann, S. (2019). Liquid-liquid phase separation of tau protein in neurobiology and pathology. *Advances in Experimental Medicine and Biology, 1184*, 341–357. https://doi.org/10.1007/978-981-32-9358-8_25.

152. Kosik, K. S., & Han, S. (2019). Tau condensates. *Advances in Experimental Medicine and Biology, 1184*, 327–339. https://doi.org/10.1007/978-981-32-9358-8_24.

153. Zeng, Y., Yang, J., Zhang, B., Gao, M., Su, Z., & Huang, Y. (2021). The structure and phase of tau: from monomer to amyloid filament. *Cellular and Molecular Life Sciences, 78*, 1873–1886. https://doi.org/10.1007/s00018-020-03681-x.

154. Hernandez-Vega, A., Braun, M., Scharrel, L., Jahnel, M., Wegmann, S., Hyman, B. T., Alberni, S., & Diez, S., et al. (2017). Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. *Cell Reports, 20*, 2304–2312. https://doi.org/10.1016/j.celrep.2017.08.042.

155. Tan, R., Lam. A. J., Tan, T., Han, J., Nowakowski, D. W., Vershinin, M., Simo, S., & Ori-MckKenney, K. M., et al. (2019). Microtubules gate tau condensation to spatially regulate microtubule functions. *Nature Cell Biology, 21*, 1078–1085. https://doi.org/10.1038/s41556-019-0375-5.

156. Lin, Y., Fichou, Y., Longhini, A. P., Llanes, L. C., Yin, P., Ash, P. E. A., Lei, S., Shattuck, J., Boudeau, S., Carlomagno, Y., Zeng, Y., Yang, J., Zhang, B., Gao, M., Su, Z., & Huang, Y. (2019). EFhd2 affects tau liquid-liquid phase separation. *Experimental Medicine and Biology*, 1078–1085. https://doi.org/10.1007/s10535-019-0375-5.

157. Lin-Shiao, E., & Tanim, K., et al. (2021). Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. *Chemical Science, 12*, 7334–7349. https://doi.org/10.1039/d1sc01739j.

158. Alexander, K. A., Cote, A., Nguyen, S. C., Zhang, L., Gholaraladami, O., Agudelo-Garcia, P., Lin-Shiao, E., & Tanim, K., et al. (2021). p53 mediates target gene association with nuclear speckles for amplified RNA expression. *Molecular Cell, 81*, 1666–1681. https://doi.org/10.1016/j.molcel.2021.03.006.

159. Yang, D. S., Saied, A., Davtayan, A., Fathi, M., Shermar, B. M., Safari, M. S., Klindziuk, A., & Barton, M. C., et al. (2021). Mesosopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. *Proceedings of the National Academy of Sciences of the United States of America, 118*, e2015618118. https://doi.org/10.1073/pnas.2015618118.

160. Zhou, M., Li, W., Li, J., Xie, L., Wu, R., Wang, L., Fu, S., & Su, W., et al. (2020). Phase-separated condensate-aided enrichment of biomolecular interactions for high-throughput drug screening in test tubes. *Journal of Biological Chemistry, 295*, 11420–11434. https://doi.org/10.1074/jbc.RA120.012981.

161. Rajagopalan, S., Jainta, A. M., Wells, M., Veprinets, D. B., & Fersht, A. R. (2018). 14–3–3 activation of DNA binding of p53 by enhancing its association into tetramers. *Nucleic Acids Research, 36*, 5983–5991. https://doi.org/10.1093/nar/gkn598.

162. Low, Y. H., Asi, Y., Foti, S. C., & Lashley, T. (2021). Heterogeneous nuclear ribonucleoproteins: implications in neurological disease. *Molecular Neurobiology, 58*, 631–646. https://doi.org/10.1007/s12035-020-02137-4.

163. Roy, R., Duric, D., Li, H., Liu, B. Q., Skehel, J. M., Mauri, F., Cuervo, L. V., & Barbaresci, M., et al. (2014). HnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/Stat6 signalling. *Nucleic Acids Research, 42*, 12483–12497. https://doi.org/10.1093/nar/gku953.

164. Cloutier, A., Skhreta, L., Toutant, J., Durand, M., Thibault, P., & Chabot, B. (2018). HnRNP A1/A2 and Sam68 collaborate with SRSF10 to control the alternative splicing response to oxaliplatin-mediated DNA damage. *Scientific Reports, 8*, 2206. https://doi.org/10.1038/s41598-018-20360-x.

165. Martin, E. W., Thomasen, F. E., Milkovic, N. M., Cuneo, M. J., Grace, C. R., Nourse, A., Linsorilf-Larsen, K., & Mittag, T. (2021). Interplay of folded domains and the disordered low-complexity domain in mediating hnRNP A1 phase separation. *Nucleic Acids Research, 49*, 2931–2943. https://doi.org/10.1093/nar/gka063.

166. Lin, Y., Propper, D. S., Rosen, M. K., & Parker, R. (2015). Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. *Molecular Cell, 60*, 208–219. https://doi.org/10.1016/j.molcel.2015.08.018.
178. Shin, Y., Berry, J., Pannucci, N., Haataja, M. P., Toettcher, J. E., & Brangwynne, C. P. (2017). Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell, 168, 159–171. https://doi.org/10.1016/j.cell.2016.11.054.

179. Tsou, P. S., Quan, M. D., Choi, K. J., Dao, K. M., Ferreon, J. C., & Ferreon, A. C. M. (2021). Electrostatic modulation of hnRNP A1 low-complexity domain liquid-liquid phase separation and aggregation. Protein Science, 30, 1408–1417. https://doi.org/10.1002/pro.4108.

180. Stoecklin, G., Stubbs, T., Kedersha, N., Wax, S., Rigby, W. F., Blackwell, T. K., & Anderson, P. (2004). MK2-induced tristeprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. The EMBO Journal, 23, 1313–1324. https://doi.org/10.1038/sj.emboj.7600146.

181. Courchet, J., Buchet-Poyau, K., Potemski, A., Bres, A., Jariel-Encontre, I., & Billaud, M. (2008). Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules. Journal of Biological Chemistry, 283, 32131–32142. https://doi.org/10.1074/jbc.M802927200.

182. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., & Tao, Z. W., et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579, 265–269. https://doi.org/10.1038/s41586-020-2008-3.

183. Bojkova, D., Klann, K., Koch, B., Widera, M., Krause, D., Ciesek, S., Cinatl, J., & Munch, C. (2020). Proteinomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 583, 469–472. https://doi.org/10.1038/s41586-020-2332-7.

184. Bouhaddou, M., Memon, D., Meyer, B., White, K. M., Rezelj, V. V., Corzana-Marrero, M., Polacco, B. J., & Melnyk, J. E., et al. (2020). The global phosphorylation landscape of SARS-CoV-2 infection. Cell, 182, 685–712. https://doi.org/10.1016/j.cell.2020.06.034.

185. Sender, R., Bar-On, Y. M., Gleizer, S., Bernshtein, B., Flammholz, A., Phillips, R., & Milo, R. (2021). The total number and mass of SARS-CoV-2 virions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2024815118. https://doi.org/10.1073/pnas.2024815118.

186. McBride, R., van Zyl, M., & Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6, 2991–3018. https://doi.org/10.3390/v6082991.

187. Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., & Lal, S. K. (2005). The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. Journal of Virology, 79, 11476–11486. https://doi.org/10.1128/JVI.1.17.11476-11486.2005.

188. Tugaeva, K. V., Hawkins, D., Smith, J. L. R., Bayfield, O. W., Ker, D. S., Syssoev, A. A., Klychnikov, O. I., & Antson, A. A., et al. (2021). The mechanism of SARS-CoV-2 nucleocapsid protein recognition by the human 14-3-3 proteins. Journal of Molecular Biology, 433, 166875. https://doi.org/10.1016/j.jmb.2021.166875.

189. Chen, H., Cui, Y., Han, X., Hu, W., Sun, M., Zhang, Y., Wang, P. H., & Song, G., et al. (2020). Liquid-liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Research, 30, 1143–1145. https://doi.org/10.1038/s41422-020-00408-2.

190. Perdikari, T. M., Murphy, A. C., Ryan, V. H., Watters, S., Naik, M. T., & Fawzi, N. L. (2020). SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hRNPs. The EMBO Journal, 39, e106478. https://doi.org/10.15252/embj.2020106478.

191. Iserman, C., Roden, C. A., Boereke, M. A., Sealfon, R. S. G., McLaughlin, G. A., Jungreis, I., Fritch, E. J., & Hou, Y. J., et al. (2020). Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Molecular Cell, 80, 1078–1091. https://doi.org/10.1016/j.molcel.2020.11.041.
stress-induced phosphorylation by NLK at Ser128 activates YAP. *EMBO Reports*, 18, 72–86. https://doi.org/10.15252/embr.201642681.

206. Nong, J., Kang, K., Shi, Q., Zhu, X., Tao, Q., & Chen, Y. G. (2021). Phase separation of Axin organizes the beta-catenin destruction complex. *Journal of Cell Biology*, 220, e202012112. https://doi.org/10.1083/jcb.202012112.

207. Li, T. M., Ren, J., Husmann, D., Coan, J. P., Gozani, O., & Chua, K. F. (2020). Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient beta-catenin degradation. *Scientific Reports*, 10, 17425. https://doi.org/10.1038/s41598-020-74080-2.

208. Ahn, J. I., Park, J. E., Meng, L., Zhang, L., Kim, T. S., Kruhlak, M. J., Kim, B. Y., & Lee, K. S. (2020). Phase separation of the Cep3-Cep152 complex underlies the formation of dynamic supramolecular self-assemblies at human centrosomes. *Cell Cycle*, 19, 3437–3457. https://doi.org/10.1080/15384101.2020.1843777.

209. Ma, X., Chen, T., Peng, Z., Wang, Z., Liu, J., Yang, T., Wu, L., & Liu, G., et al. (2021). Histone chaperone CAF-1 promotes HIV-1 latency by leading the formation of phase-separated suppressive nuclear bodies. *The EMBO Journal*, 40, e106632. https://doi.org/10.15252/embj.2020106632.

210. Esposito, M., Fang, C., Cook, K. C., Park, N., Wei, Y., Spadazzi, C., Bracha, D., & Gunaratna, R. T., et al. (2021). TGF-beta-induced DACT1 biomolecular condensates repress Wnt signaling to promote bone metastasis. *Nature Cell Biology*, 23, 257–267. https://doi.org/10.1038/s41556-021-00641-w.

211. Jalilah, A. P., Pitchaiya, S., Xiao, L., Bawa, P., Jiang, X., Bedi, K., Parolia, A., & Cieslik, M., et al. (2020). Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. *Molecular Cell*, 79, 978–990. https://doi.org/10.1016/j.molcel.2020.08.004.

212. Damman, R., Schutz, S., Luo, Y., Weingarth, M., Sprangers, R., & Baldus, M. (2019). Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. *Nature Communications*, 10, 4536. https://doi.org/10.1038/s41467-019-12402-3.

213. Schutz, S., Noldeke, E. R., & Sprangers, R. (2017). A synergistic network of interactions promotes the formation of intrinsically processing bodies and protects mRNA against decapping. *Nucleic Acids Research*, 45, 6911–6922. https://doi.org/10.1093/nar/gkx353.

214. Tibble, R. W., Depauw, A., Kowalska, J., Jemielity, J., & Gross, J. D. (2021). Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation. *Nucleic Acids Research*, 17, 615–623. https://doi.org/10.1093/nar/gkaa014.

215. Fromm, S. A., Kamenz, J., Noldeke, E. R., Neu, A., Zocher, G., & Depaix, A., et al. (2019). In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery. *Angewandte Chemie*, 53, 7354–7359. https://doi.org/10.1002/anie.201402885.

216. Sala, K., Corbetta, A., Minici, C., Tonoli, D., Murray, D. H., Cammarota, E., Ribolla, L., & Ramella, M., et al. (2019). The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase. *Scientific Reports*, 9, 13530. https://doi.org/10.1038/s41598-019-49630-y.

217. Zhu, J., Zhou, Q., Xia, Y., Lin, L., Li, J., Peng, M., Zhang, R., & Zhang, M. (2020). GTF/PXX condensates are modular and ideal for distinct compartmentalized cell signaling. *Molecular Cell*, 79, 782–796. https://doi.org/10.1016/j.molcel.2020.07.004.

218. Holmuller, E., Geigges, S., Niedermeier, M. L., Kammer, K. M., Kienle, S. M., Rosner, D., Scheffner, M., & Marx, A., et al. (2021). Site-specific ubiquitylation acts as a regulator of linker histone H1. *Nature Communications*, 12, 3497. https://doi.org/10.1038/s41467-021-23636-5.
phase separation in centrosome assembly. Journal of Cell Science, 134, jcs258897. https://doi.org/10.1242/jcs.258897.

233. Park, J. E., Zhang, L., Bang, J. K., Andresson, T., DiMaio, F., & Lee, K. S. (2019). Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nature Communications, 10, 4959. https://doi.org/10.1038/s41467-019-12619-2.

234. Vitello, E., Moreau, P., Nunes, V., Mettouchi, A., Maiato, H., Ferreira, J. G., Wang, I., & Ballard, M. (2019). Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nature Communications, 10, 52. https://doi.org/10.1038/s41467-018-07965-6.

235. Oshidari, R., Huang, R., Medghalchi, M., Tse, E. Y. W., Ashgriz, N., Lee, H. O., Wyatt, H., & Mekhail, K. (2020). DNA repair by Rad52 liquid droplets. Nature Communications, 11, 695. https://doi.org/10.1038/s41467-020-14546-z.

236. Min, J., Wright, W. E., & Shay, J. W. (2019). Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes and Development, 33, 814–827. https://doi.org/10.1101/gad.324905.119.

237. Dang, M., Li, Y., & Song, J. (2021). ATP biphosphatase modulates LLPS of SARS-CoV-2 nucleocapsid protein and specifically binds its RNA-binding domain. Biochemical and Biophysical Research Communications, 541, 50–55. https://doi.org/10.1016/j.bbrc.2021.01.018.

238. Cubuk, J., Alston, J. J., Incicco, J. J., Singh, S., Stuchell-Berretton, M. D., Ward, M. D., Zimmerman, M. I., & Vithani, N., et al. (2021). The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nature Communications, 12, 1936. https://doi.org/10.1038/s41467-021-21953-3.

239. Krainer, G., Welsh, T. J., Joseph, J. A., Espinosa, J. R., Wittmann, S., de Csillery, E., Sridhar, A., & Toprakcioglu, Z., et al. (2021). Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature Communications, 12, 1085. https://doi.org/10.1038/s41467-021-21181-9.

240. Ilik, I. A., Malszyczyk, M., Lubke, A. K., Schade, C., Meierhofer, D., & Aktas, T. (2020). SON and SRRM2 are essential for nuclear speckle formation. Elife, 9, e60579. https://doi.org/10.7554/elife.60579.

241. Cinar, H., Oliva, R., Lin, Y. H., Chen, X., Zhang, M., Chan, H. S., & Winter, R. (2020). Pressure sensitivity of SynGAP/PSD-95 condensates as a model for postsynaptic densities and its biophysical and neurological ramifications. Chemistry, 26, 11024–11031. https://doi.org/10.1002/chem.201905269.

242. Araki, Y., Hong, I., Gamache, T. R., Ju, S., Collado-Torres, L., Shin, J. H., & Huganir, R. L. (2020). SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. Elife, 9, e56273. https://doi.org/10.7554/elife.56273.

243. Zhang, X., Lin, Y., Eschmann, N. A., Zhou, H., Rauch, J. N., Hernandez, I., Guzman, E., & Kosik, K. S., et al. (2017). RNA stores tau reversibly in complex coacervates. PLOS Biology, 15, e2002183. https://doi.org/10.1371/journal.pbio.2002183.

244. Ferreon, J. C., Jain, A., Choi, K. J., Tsui, P. S., MacKenzie, K. R., Jung, S. Y., & Ferreon, A. C. (2018). Acetylation disfavors tau phase separation. International Journal of Molecular Sciences, 19, 1360. https://doi.org/10.3390/ijms19051360.

245. Lin, Y., McCarty, J., Rauch, J. N., Delaney, K. T., Kosik, K. S., Fredrickson, G. H., Shea, J. E., & Han, S. (2019). Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. Elife, 8, e42571. https://doi.org/10.7554/elife.42571.

246. Ukmarr-Godec, T., Hutten, S., Grieshop, M. P., Rezaci-Ghaleh, N., Cima-Omori, M. S., Biernat, J., Mandelkow, E., & Soding, J., et al. (2019). Lysine-RNA-interactions drive and regulate biomolecular condensation. Nature Communications, 10, 2909. https://doi.org/10.1038/s41467-019-10792-y.

247. Rane, J. S., Kumar, A., & Panda, D. (2020). The acetyl mimicking mutation, K274Q in tau, enhances the metal binding affinity of tau and reduces the ability of tau to protect DNA. ACS Chemical Neuroscience, 11, 291–303. https://doi.org/10.1021/acschemneuro.9b00455.

248. Singh, V., Xu, L., Boyko, S., Surewicz, K., & Surewicz, W. K. (2020). Zinc promotes liquid-liquid phase separation of tau protein. Journal of Biological Chemistry, 295, 5850–5856. https://doi.org/10.1074/jbc.AC120.013166.

249. Zhang, X., Vigers, M., McCarty, J., Rauch, J. N., Fredrickson, G. H., Wilson, M. Z., Shea, J. E., & Han, S., et al. (2020). The prione-rich domain promotes Tau liquid-liquid phase separation in cells. Journal of Cell Biology, 219, e202006054. https://doi.org/10.1083/jcb.202006054.

250. Savastano, A., Flores, D., Kadavath, H., Biernat, J., Mandelkow, E., & Zweckstetter, M. (2021). Disease-associated tau phosphorylation hinders tubulin assembly within tau condensates. Angewandte Chemie, 60, 726–730. https://doi.org/10.1002/anie.202011157.

251. Siegert, A., Rankovic, M., Favretto, F., Ukmarr-Godec, T., Strohaker, T., Becker, S., & Zweckstetter, M. (2021). Interplay between tau and alpha-synuclein liquid-liquid phase separation. Protein Science, 30, 1326–1336. https://doi.org/10.1002/pro.4025.

252. Wang, B., Gan, W., Han, X., Liu, N., Ma, T., & Li, D. (2021). The positive regulation loop between NRP1 and NONO-TF3 fusion promotes phase separation and aggregation of NONO-TF3 in NONO-TF3 iRCC. International Journal of Biological Macromolecules, 176, 437–447. https://doi.org/10.1016/j.ijbiomac.2021.02.061.

253. Chen, D., Wang, Z., Zhao, Y. G., Zheng, H., Zhao, H., Liu, N., & Zhang, H. (2020). Inositol phosphatase multikinase inhibits liquid-liquid phase separation of TFE3 to negatively regulate autophagy activity. Developmental Cell, 55, 588–602. https://doi.org/10.1016/j.devcel.2020.10.010.

254. Gerson, J. E., Linton, H., Xing, J., Satter, A. B., Kakos, F. S., Ryoo, J., Liggans, N., & Sharkey, L. M., et al. (2021). Shared and divergent phase separation and aggregation properties of brain-expressed ubiquilins. Scientific Reports, 11, 287. https://doi.org/10.1038/s41598-020-78775-4.

255. Liu, S., Wang, T., Shi, Y., Bai, L., Wang, S., Guo, D., Zhang, Y., & Qi, Y., et al. (2021). USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death and Differentiation, 28, 2482–2498. https://doi.org/10.1038/s41418-021-00763-6.