Understanding and Optimization of Hard Magnetic Compounds from First Principles

Takashi MIYAKE1,2, Yosuke HARASHIMA3,4, Taro FUKAZAWA1,2 and Hisazumi AKAI2,3

1CD-FMat, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
2ESICMM, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
3Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
4Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.

ABSTRACT

First-principles calculation based on density functional theory is a powerful tool for understanding and designing magnetic materials. It enables us to quantitatively describe magnetic properties and structural stability, although further methodological developments for the treatment of strongly-correlated 4f electrons and finite-temperature magnetism are needed. Here, we review recent developments of computational schemes for rare-earth magnet compounds, and summarize our theoretical studies on Nd₇Fe₁₄B and RFe₂₁-type compounds. Effects of chemical substitution and interstitial dopants are clarified. We also discuss how data-driven approaches are used for studying multinary systems. Chemical composition can be optimized with fewer trials by the Bayesian optimization. We also present a data-assimilation method for predicting finite-temperature magnetization in wide composition space by integrating computational and experimental data.

KEY WORDS

permanent magnet, rare earth, first-principles calculation, materials informatics
2 第一原理計算
密度関数理論（DFT）は、第一原理計算の標準的な方
法である。DFTでは、多電子系の全エネルギーは電子密度
\(n(r) \) の汎関数として表される。

\[
E[n] = T[n] + \int \frac{f(r)}{2m} \left\{ \frac{1}{r} \right\}^{\frac{1}{2} \nabla^2} \psi^2(r) \psi^2(r) \, dr + E_{\text{ext}}[n] + \int \left[Z_i Z_j \psi_i^*(r) \psi_j(r) \right] \left(\frac{1}{r} \right) \, dr + \frac{1}{2} \sum_{ij} \frac{Z_i Z_j \psi_i^*(r) \psi_j(r)}{r_{ij}} \tag{1}
\]

ここで、右辺第1項は、相互作用しない原子密度が\(n \)の仮想的な電子系の運動エネルギー、第2項は電子間の静電相互作用（ハートリー項）、第3項は同じ電子系の相互作用である。\(E_{\text{ext}} \)には、ハートリー項の全ての電子間相互作用の効果が含まれている。その厳密な表現は知られておらず、局所密度近似（LDA）や一般化勾配近似（GGA）がよく採用される。基底状態の電子密度は、（1）式を最小化することによって得られる。それには次のKohn-Sham方程式を自己無染着に解けばよい。

\[
\left\{ \frac{-\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(r) \right\} \psi(r) = \epsilon \psi(r) \tag{2}
\]

\[
v_{\text{eff}}(r) = \int \frac{n(r')}{|r-r'|} \, dr' + \frac{\delta E_{\text{ext}}[n]}{\delta n(r)} + v_{\text{ext}}(r) \tag{3}
\]

\[
n(r) = \sum | \psi(r) |^2 \tag{4}
\]

電子密度, 電子数, 電子密度、磁気モーメントは、基底状態の電子密度, 電子密度, 電子密度、磁気モーメントを（1）式に代入すると全エネルギーが得られ, 原子位置に対して全エネルギーを最小化する条件から最適構造が得られる。また磁性を扱うため、スピン分極系に対して一般化されたDFTが用いられる1). キュリー温度 (\(T_C \)) 結晶場数, スピン波分散, 交換スフィンクスは、Kohn-Sham方程式を自己無染着に解いた後に計算される16,20)。第一原理から\(T_C \)を評価するための一般化的な方法は以下の通りである。まず磁性スフィンクスの方法21)によって、サイクル間交換結合\(J_{ij} \)を計算し、ここから古典ハイゼンベルク模型を導出す。

キュリー温度は、平均場近似やモニタカルロシミュレーションを用いてこのモデルを解くことによって評価される。平均場近似では\(T_C \)を過大評価されることに注意が必要である。非化学量論組成では周期性が破れるため大きなニュットセルが必要である。"}

Fig. 1 Magnetism in a rare-earth magnet compound.

Fig. 2 In the coherent potential approximation, random alloy is replaced with an impurity problem.
Fig. 3 Intersite exchange coupling for the ferromagnetic state and LMD (local moment disorder) state.

Fig. 4 Curie temperatures (T_C) of $R_2Fe_{14}B$, $R_2Co_{14}B$, R_4Fe_{17}, R_2Co_{17} and $R_2Fe_{11}Ti$.
結晶場係数 α_i から次式で評価される。

$$K_i = -3J(1/2)\alpha_i \langle \tau^2 \rangle A_{2g}$$ (5)

ここで、J は全角運動量、α_i はスチームス因子、$\langle \tau^2 \rangle$ は R-4F軌道の正であり、A_{2g} は希土類密度である。

これらの従来の方法を超える理論手法の開発は継続的に行われている。最近のトッカピーの一つの有限温度磁性が挙げられる。有限温度では局所磁気モーメントは特定の方向に整列しており、熟や光によって様々な方向に分布している。この効果を考慮する方法として、LMD（DLM）振幅に偏置した磁気異方性の温度依存性の第一原理計算が進行研究されてきた(46)。永久磁石分野では最近、DFT-DLM法がYCO_5の有限温度磁性に適用された(47)。さらに、R-4F電子に対する近似として軌道分極補正を考慮したSIKを採用した上で、RCO_5 ($R = Y, \text{Lu}$) にも適用された(48)。また、磁気異方性への適用も報告されている(49,50)。

結晶磁気異方性エネルギーに対する別の理論手法として、有効ハミルトニアンに基づいたアプローチが知られている。その簡単な方法は、古典スピン密度を用いたものである(51)。古典スピン密度型と第一原理計算を組み合わせた方法は、NdFe_2Bに適用された(52-54,55)。最近の進展は宮所らによる解釈を参照されており、古典スピン密度型では量子効果を考慮していないが、結晶場ハミルトニアンを用いるとR-4F電子の量子効果を調べることができる。佐藤らは、実験的結晶場ハミルトニアンを用いてNdFe_2Bの磁気異方性定数を調べた(56)。その結果、実験で観測されるκとKの温度依存性を再現することに成功し、有限温度における交換相場と結晶場の相乗効果について議論した。また三浦らは、結晶場理論に基づいた磁気異方性定数の直接的な表現を導出した(57)。一方、吉岡らは、第一原理計算によりRFe_2B, SmFe_2B, およびSmFe_2N_5における結晶場係数を評価し、それを反映した結晶場ハミルトニアンを用いて有限温度磁性を調べ、中間励起の効果を議論した。

R-4F電子のより正確な取り扱いとして、DFT+DMFTによる方法も開発されている(58)。Pourovskiiらは、多電子系を相互作用する不純物問題にマップし、不純物問題のR-4F状態をハバーハンド近似で自己無限欠損を求める方法を開発し、得られたエネルギー準位を再現するために結晶場係数を決定した。彼らは、この方法を$\text{RFe}_2\text{B}(\text{N})$および$\text{RCO}_5$に適用し、高次の結晶場係数が予想外に大きいことを見出した。これら計算では、有効相互作用パラメータ（UおよびJ）は経験パラメータとして扱われていることに注意する必要がある。これらのパラメータを評価するための第一原理手法は近年積極的に研究されている(59,60)。

本節でこれまでに述べた計算手法では構造が固定されている。しかし、田中らと合田の最近の研究によれば、bcc-Feのキュリ温度はフォノンの影響で顕著に変化する(61)。希土類磁石化物の磁性におけるフォノンの影響は未解明の問題で、今後の進展が期待される。

3 NdFe_2BおよびRF_{2}Bの磁性と安定性

1970年代にSmCO_5磁石を越える鉱基永久磁石の開発が期待された。この時、SmFe_3のCoをFeに置き換えたSmFe_3が新規磁石の主相候補と見なされた。しかし、SmFe_3が一見して一般にRF_{2}BのT_Cが低い。実用材料に用いることが模板。T_Cが低い理由として、ギャップ構造を形成する2つのFe(6e)の間隔が小さいことが考えられた。(結晶構造の詳細はAppendix Aを参照)。逆に考えれば、この距離を大きくすれば強磁性を強化できると期待できる。佐川はこの考えに基づき、小さい原子をNdFe_3に導入すれば体積が増加し強磁性が実現できると期待してホウ素を加え、NdFeB磁石の開発に成功した(56)。その後、金森はNdFe_2Bにおけるホウ素の役割について電子論的に考察した(62)。金森は、ホウ素が化学効果によって隣接する鉄原子の局所磁気モーメントを小さくすることを指摘した。この効果はコバルト化と呼ばれる。コバルト化した鉄原子は、周囲の鉄原子の局所磁気モーメントを増加させ、系全体の磁気モーメントの増加につながることが期待される。

ダノベル磁性はキュリ温度に及ぼす影響を調べるために、深澤らはNdFe_2Bの第一原理計算を実施し、J_Cを計算した(63)。その結果、ダノベル酸点のJ_Cは強磁性で、35 meVと大きな値である。またダノベル距離を増加するとJ_Cは減少することがわかった。ダノベル距離を2.4 Aから2.6 Aに伸ばせばキュリ温度は上昇するが、その効果は弱く、2%の上昇にとどまる。一方、ダルクは全く異なるアプローチでキュリ温度を解析した(64)。彼らは、101個のR-Fe化合物のT_Cの実験データとして利用してカーネル回帰によって磁気学習モデルを構築した。その際、遷移金属原子の性質（原子数、共有半径、イオン化電位など）、希土類原子の性質、構造に関する性質（遷移金属密度、遷移金属間の最近接距離など）を含む27個の記述子を用いた。サブグループ関連性解析の結果、27個の記述子の中で最も重要な記述子は希土類密度であること、その一方で、ダノベル磁性の重要性は低いことが明らかになった。これらの第一原理計算と機械学習の結果は、佐川の当初の期待とは合致しない。

立沢らは、第一原理計算によりNdFe_2BにおけるBの役割を調べた(65)。彼らは、NdFe_2B、NdFe_3BおよびNdFe_4Bの磁化を計算した。ここでNdFe_4Bは、構造をNdFe_2Bのものに固定して、そこからBを除去した仮想的な系であり、NdFe_4Bと比較すると組成は同じだが、結合長や化合物角など、構造パラメータが異なる。NdFe_3BとNdFe_4Bの計算結果を比較したところ、Fe(6e)およびFe(4e)サイトで局所磁気モーメントがホウ素の存在により小さくなることが分かった。これらのサイトはホウ素の最近接次近接、磁気モーメントの減少はコバルト化の概念を支持する。また、コパルト化された鉄サイトの周囲のいくつかの鉄サイトで磁気モーメントが若干増加しており、これも金森が指摘した電子論的な効果を示す。磁気モーメントを決定する主な役割の重要な役を果たす。
ントに目を向けると、Nd₃Fe₁₂B の値は Nd₅Fe₁₈B のものよりも小さく、この系では化学効果で磁気モーメントが増加しないことがわかった。Nd₃Fe₁₂B の磁気モーメントは Nd₅Fe₁₈ よりも大きく、磁気体生成効果による増大が見られるが、体積あたりの磁化を換算すると減少することもわかった。すなわち、この結果は、ホウ素が磁性を強化に直接的な役割を果たしていないことを意味する。ただし、生成エネルギーの比較から、ホウ素の導入により 2-17 相よりも 2-14-1 相が安定化することが示され、強磁性体の実現にホウ素が不可欠な役割を果たしていることも分かった。

ThMn₂₃ 構造を持つ RFe₃ 型化合物は、理論・実験の両面から最近よく研究されている⑲。この化合物の課題の一つは安定性である。RFe₃ は熱力学的に不安定で、鉄サイトの一部を別の元素に置換することで安定化する。しかし、安定化元素の導入は通常、磁化の低下を招く。そのため、高い磁性を保ちながら構造を安定化する元素の探索が必要な問題である。

原稿では、安定元素を系統的に変えた NdFe₃M (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) の第一原理計算を行った(35)。その結果によれば、典型的な安定元素である Ti の場合、ThMn₂₃ 構造が安定になるが、磁気モーメントが顕著に低下する。逆に言えば、Ti の濃度を減らすことができれば、磁気モーメントが顕著に増加することが期待される⑳。その他の安定化元素を比較すると、生成エネルギーと磁気モーメントの両方とも、M 元素の選択が敏感である。後期遷移金属 (M = Ti-Mn) の場合には、いずれの元素においても磁気モーメントは NdFe₃ よりも顕著に低下する。この領域における磁気モーメントの M 依存性はフリーディの仮想束縛状態の概念によって定性的に説明することができる。これに比べて、後期遷移金属では磁気モーメントが大きく、特に NdFe₃Co では NdFe₃ の磁気モーメントに匹敵する。コバルトは、大きな磁気モーメントのみならず ThMn₂₃ 構造の安定化やキュリー温度の上昇をもたらし、物性改善に効果的である。(低濃度領域では、Co より Cr の方がキュリー温度の上昇に効果的であること第一原理計算で示されている⑳)。

RFe₃ 系化合物の生成エネルギーは R に依存する⑳。純物質を基準にした生成エネルギーは R の原子半径 rₚ と強く相関し、rₚ が減少するとつくって生成エネルギーが低下する。Th₃Zn₁₉ 構造を参照系とすると、生成エネルギーは rₚ = 1.75 Å で最小値を示す。すなわち、SmFe₃ は NdFe₃ より安定性に優れ、 DyFe₃ はさらに安定である。また、SmFe₃ の Sm の一部を Y, Gd, Zr で置換することにより ThMn₂₃ 構造の安定性が向上することが期待されている。生成エネルギーは R イオンの価数にも依存し、4 値の Ce は ThMn₂₃ 体の安定性に有利であるとも示された⑳。

安定化元素や希土類元素に加えて、2h 率を占める元素の影響に大きく影響を与える⑳。第一原理計算で仮想的に量入型元素 X の原子番号 Z を連続的に変化させると、Z = 6 -7 において磁気モーメントが顕著に増加する。この変化は形状密度から説明することができる。X-2p 軌道のエネルギー準位は、Fe-3d 軌道と混成する。混成軌道のエネルギー準位は Z の増加と共に低下する。その結果、混成軌道が徐々に占める位置を示す。Z = 6 において 2p や Fe-3d と混成する。Nd-5d 成分も含まる。Nd-5d のスピンは系全体の磁気モーメントと反平行であるため、混成軌道の占有率が増加する。Ndサイトの磁気モーメントは減少する。この変化は、Nd と周間の Fe のサイト間交換結合の変化と関連していることが第一原理計算を用いた解析で見つけられた⑳。この交換結合は重畳磁場の温度依存性に強く影響するので、侵入型元素により有限温度の磁気異方性が影響を受ける可能性が示唆される。

本稿の結果は、R-T 化合物における磁気とホウ素の違いに言及する。格子間位に置換するホウ素はキュリー温度と磁化を顕著に增大させる⑳。しかし、磁気異方性にも大きな影響を与えるが⑳、これはサイトにより希土類近傍の電子密度が変化することに起因する⑳。ただし、誘導される電荷は化学結合を形成するほど強くはない。そのため、ホウ素の添加に対して nitride ではなく nitrogenation という用語がしばしば用いられる。これに対して、上の通り、ホウ素は R-T 系において構造相転移を誘起する。

4 マテリアルズ・インフォマティクス

マテリアルズ・インフォマティクス (MI) が 10 年間で急激に発展しているが、その産業の段階から第一原理計算は主導的役割を果たしてきた。材料や化学を変えたハイブリッド計算を行い、Materials Project⑳、Open Quantum Materials Database (OQMD)⑳、AFLOW⑳等のデータベースが開発された。また、各材料データから材料特性を効率的に予測し、理解するために機械学習が導入される。

永久磁石分野でも MI 研究が近年増加している⑳。Körnerらは ThMn₂₃ 構造⑳、YₙNiₙInₙ 構造⑳、1-13-X 系⑳のハイブリッド計算を実行した。Nievesらは脱気希土類永久磁石開発のためのデータベースを構築している⑳。またこれには独立し、樫谷らは希土類フリーキース性材料のデータベースを開発した⑳。

磁性材料の機械学習に関する論文もいくつか報告されている。一つは、前節で述べた、約 100 種類の希土類遷移金属化合物の Tc のカーネル回帰である⑳。カーネル回帰では物理間の距離から測定することができる。この性質を用いて、Nguyenらはアンサンブル学習に基づいて非線形密度推定器 (dissimilarity voting machine) を提案し、希土類遷移金属化合物の分類に適用した (Fig. 5)⑳。Nelson と Sanvitoは、約 2500 個の既知の強磁性化合物の Tc の実験データを用いて、複数の回帰モデルの性能を比較し、最終のモデルを用いる約 500 キログラムの Tc の予測で示した⑳。Longらは、ランダムフォレストを用いて強磁性化合物と反磁性化合物を分類し、またキュリー温度の予測モデルを構築した⑳。

MIにおいて、記述子の設計は重要な課題である。Phamらは、環境影響評価 (OFM) と呼ばれる記述子を提案した⑳。
OFM では、物質の局所構造をポロノイ分割により定義し、ポロノイ多面体中の中心に位置する原子の電子配置と類接原子の電子配置を用いて行列表示する。OFM の性能は、約 4000 個の遷移金属化合物の生成エネルギーと磁気モーメントに対してテストされている。Pham らは、OFM を用いてNd-Fe-B 化合物のスクリーニングを行い、合成可能性のある未知相を発見した（Fig. 6）(98)。その他の MI の磁石応用としては、Halder らによる、第一原理計算と機械学習を用いた Ce 基 2-17-X 系の磁気特性の予測が挙げられる(99)。

以下、データ駆動手法による発表を 2 つ紹介する。一つはペイズ最適化である。元素置換は磁気特性を改良する手段としてよく用いられる。しかし、置換元素の数（種類）が増えると探索空間が指数関数的に広くなり、化学組成の最適化が困難になる。このような問題に対してペイズ最適化は有効である。簡単な例を Fig. 7 に示す。横軸は記述子で表現された物質空間で、我々の問題では化学組成に対応する。いま 4 個のデータを取得済みで、高いスコアを得るために次にどうするかを考える。探索空間が 1 次元の場合は、記述子の値をしきい値変化させる手続きを繰り返すことで問題は解決する。高次元ではこの方法では手に負えない。ペイズ最適化では、平均値に加えてモデルの不確実性を考慮して、次の候補を選択する。Fig. 7 が典型的な状況である。この場合、平均値のみを考慮すると次の候補として最高のスコアをもつ組成は選択されず、不確実性まで考慮した探索が重要になる。文献 100) では、RFه.系化合物の組成最適化にペイズ最適化が用いられた。具体的には、(R, Z)(Fe, Co)2y, Fe, (R = Nd, Sm, Y; Z = Zr, Dy) の組成最適化が実施され、生成エネルギー、飽和磁化、キュリー温度を目的変数として、50 回の試行回数で 3630 組成のうちトップ 10 の組成を見つける成功率を調べた。1000 回の独立したセッションにより統計をとった結果、ペイズ最適化では成功率が 95% を超える高い成功率が得られた。この値はランダムサンプリングの値（12.9%）よりはるかに高く、ペイズ最適化の有効性を示している。

組成最適化を行う直接的な方法としては、パソコンを用
任意の温度・組成における磁化を評価した。Fig. 9 に 0 K と 400 K での磁化を示す。0 K では Co 濃度と Co 濃度の増加に対し磁化が単調に減少するのに対して、400 K では Co を部分置換することで磁化が増強される様子が見とれる。

5 おわりに

第一原理計算は磁性材料開発の強力な手段として普及しているが、改良すべき課題も残っている。磁性は本質的に量子多体効果の帰結であり、現在の理論手法の精度は依然として限られている。特に稀土類 4F 電子の理論的取り扱いは改良が必要である。有限温度の磁性と安定性の定量的記述と発展段階にある。

これとは別の方針として材料探索手法の開発も急がれる。第一原理計算と機械学習を組み合わせた手法は、過去 10 年間に急速に発展した。機械学習は、とりわけ組成最適化において威力を発揮する。しかし、全く新しい物質を開発するには、現在の技術は不十分である。近年、結晶構造予測や未知相の探索手法が精力的に研究され、磁性体への応用も報告されている。多元化合物の状態図などの熱力学的特性に関するデータ駆動手法を合わせて開発が期待される。

Appendix A DFT-GGA による最適構造

NdFe₂B の構造の空間群は P₄/mmm (No. 136) で、格子定数の計算値は a = 8.791 Å, c = 12.141 Å である。内部座標は Table 1 の通りである。

Sm₃Fe₁₇ (Th₂Zn₁₇ 構造) の空間群は R₃m (No. 166) で、格子定数の計算値は a = 8.526 Å, c = 12.455 Å である。内部座標は Table 2 の通りである。

SmFe₂N₃ の構造の空間群は R₃m (No. 166) で、格子定数の計算値は a = 8.675 Å, c = 12.556 Å である。内部座標は Table 3 の通りである。

SmFe₂ (ThMn₁₇ 構造) の空間群は I₄/mmm (No. 139) で、格子定数の計算値は a = 8.497 Å, c = 4.687 Å である。内部座標は Table 4 の通りである。

2022 年 1 月
Table 1 The inner coordinate for Nd₂Fe₁₄B\(^{③}\).

atom	site	x	y	z
Nd	4f	0.266	0.266	0
Nd	4g	0.142	-0.142	0
Fe	16k₃	0.225	0.567	0.127
Fe	16k₄	0.037	0.360	0.177
Fe	8l₁	0.098	0.098	0.205
Fe	8l₂	0.317	0.317	0.246
Fe	4e	1/2	1/2	0.114
Fe	4c	0	1/2	0
B	4g	0.375	-0.375	0

Table 2 The inner coordinate for Sm₂Fe₁₇\(^{③}\).

atom	site	x	y	z
Sm	6c	0	0	0.3407
Fe	18f₁	0.2927	0	0
Fe	18h₃	0.5006	-0.5006	0.1571
Fe	9d	1/2	0	1/2
Fe	6c	0	0	0.0965

Table 3 The inner coordinate for Sm₂Fe₁₇N\(^{③}\).

atom	site	x	y	z
Sm	6c	0	0	0.3434
Fe	18f₁	0.2822	0	0
Fe	18h₃	0.5052	-0.5052	0.1528
Fe	9d	1/2	0	1/2
Fe	6c	0	0	0.0945
N	9e	1/2	0	0

Table 4 The inner coordinate for SmFe₁₈\(^{③}\).

atom	site	x	y	z
Sm	2a	0	0	0
Fe	8f	1/4	1/4	1/4
Fe	8i	0.3588	0	0
Fe	8j	0.2696	1/2	0

謝辞
本稿で紹介した研究の一部は、支部科学系元素戦略性材料研究推進（課題番号JPMXP0112101004）、および「富岳」成果創出加速プログラム「大規模計算とデータ駆動手法による高機能永久磁石の開発」（課題番号hp200125、hp210179）の一環として実施された。

文献
1) G. Hoffer, K. Stmat: IEEE Trans. Magn., 2 (1966) 487-489.
2) K. Stmat, G. Hoffer, J. Olson, et al.: J. Appl. Phys., 38 (1967) 1001-1002.
3) M. Sagawa, S. Fujimura, N. Togawa, et al.: J. Appl. Phys., 55 (1984) 2083-2087.
4) K. Ohashi, T. Yokoyama, R. Osugi, et al.: IEEE Trans. Magn., 23 (1987) 3101-3103.
5) K. Ohashi, Y. Tawara, R. Osugi, et al.: J. Less Common Met., 139 (1988) L1-L5.
6) F. De Boer, Y. K. Huang, D. De Mooij, et al.: J. Less Common Met., 135 (1987) 199-204.
7) D. De Mooij, K. Buschow: J. Less common Met., 136 (1988) 207-215.
8) T. Iriyama, K. Kobayashi, N. Imaoka, et al.: IEEE Trans. Magn., 28 (1992) 2326-2331.
9) J. Coey, H. Sun: J. Magn. Magn. Mater., 87 (1990) L251-L254.
10) T. Miyake, K. Terakura, Y. Harashima, et al.: J. Phys. Soc. Jpn., 83 (2014) 043702.
11) Y. Hirayama, Y. Takahashi, S. Hirosawa, et al.: Scripta Materialia, 95 (2015) 70-72.
12) P. Hohenberg, W. Kohn: Phys. Rev., 136 (1964) B864.
13) W. Kohn, L. J. Sham: Phys. Rev., 140 (1965) A1133.
14) U. von Barth, L. Hedin: J. Phys. C: Solid State Phys., 5 (1972) 1629.
15) M. Pant, A. Rajagopal: Solid State Commun., 10 (1972) 1157-1160.
16) T. Miyake, H. Akai: J. Phys. Soc. Jpn., 87 (2018) 041009.
17) Y. Toga, M. Matsumoto, S. Miyashita, et al.: Phys. Rev. B, 94 (2016) 174433.
18) Y. Toga, M. Nishino, S. Miyashita, et al.: Phys. Rev. B, 98 (2018) 054418.
19) T. Fukazawa, H. Akai, Y. Harashima, et al.: J. Magn. Magn. Mater., 469 (2019) 296-301.
20) T. Fukazawa, H. Akai, Y. Harashima, et al.: Phys. Rev. B, 103 (2021) 024418.
21) A. I. Liechtenstein, M. Katsnelson, V. Antropov, et al.: J. Magn. Magn. Mater., 67 (1987) 65-74.
22) J. Korringa: Physica, 13 (1947) 392-400.
23) W. Kohn, N. Rostoker: Phys. Rev., 94 (1954) 1111.
24) P. Soven: Phys. Rev., 156 (1967) 809.
25) C. Takahashi, M. Ogura, H. Akai: J. Phys.: Condens. Matter., 19 (2007) 365233.
26) H. Akai: Scripta Materialia, 154 (2018) 300-304.
27) M. Matsumoto, H. Akai: Phys. Rev. B, 101 (2020) 144402.
28) H. Akai, P. Dederichs: Phys. Rev. B, 47 (1993) 8739.
29) B. Györffy, A. Pindor, J. Staunton, et al.: J. Phys. F: Met. Phys., 15 (1985) 1337.
30) V. Heine: “Electronic structure from the point of view of the local atomic environment” In: Solid State Physics. Vol. 35. Elsevier (1980) 1-127.
31) A. Oswald, R. Zeller, P. Braspennin, et al.: J. Phys. F: Met. Phys., 15 (1985) 193.
32) X. Wang, R. Wu, D. S. Wang, et al.: Phys. Rev. B, 54 (1996) 161.
33) J. P. Perdew, Y. Wang: Phys. Rev B, 45 (1992) 13244.
34) A. Filippetti, N. A. Spaldin: Phys. Rev. B, 67 (2003) 125109.
35) A. Georges, G. Kotliar, W. Krauth, et al.: Rev. Mod. Phys., 68 (1996) 13.
36) O. Gránás, I. Di Marco, P. Thunström, et al.: Comput. Mater. Sci., 55 (2012) 295-302.
37) K. Stevens: Proc. Phys. Soc. Sect. A, 65 (1952) 209.
38) M. T. Hutchings: “Point-charge calculations of energy levels of magnetic ions in crystalline electric fields” In: Solid State Physics. Vol. 16. Elsevier (1964) 227-273.
39) M. Matsumoto, R. Banerjee, J. B. Staunton: Phys. Rev. B, 90 (2014) 054421.
40) C. E. Patrick, J. B. Staunton: Phys. Rev. B, 97 (2018) 224415.
41) C. E. Patrick, S. Kumar, G. Balakrishnan, et al.: Phys. Rev. Lett., 120 (2018) 097202.
42) C. E. Patrick, J. B. Staunton: Phys. Rev. Mater., 3 (2019) 101401.
43) R. F. Evans, W. J. Fan, P. Chureemart, et al.: J. Phys.: Condens. Matter., 26 (2014) 103202.
44) M. Nishino, Y. Toga, S. Miyashita, et al.: Phys. Rev. B, 95 (2017) 094429.
45) Q. Gong, M. Yi, R. F. Evans, et al.: Phys. Rev. B, 99 (2019) 214409.
46) S. Miyashita, M. Nishino, Y. Toga, et al.: Scripta Materialia, 154 (2018) 259-265.
47) S. Miyashita, M. Nishino, Y. Toga, et al.: Sci. Technol. Adv. Mater. (in Printing).
48) R. Sasaki, D. Miura, A. Sakuma: Appl. Phys. Express, 8 (2015) 043004.
49) D. Miura, R. Sasaki, A. Sakuma: Appl. Phys. Express, 8 (2015) 113003.
50) D. Miura, A. Sakuma: AIP Advances, 8 (2018) 075114.
51) T. Yoshioka, H. Tsuchiura: Appl. Phys. Lett., 112 (2018) 162405.
52) T. Yoshioka, H. Tsuchiura, P. Novák: Phys. Rev. B, 102 (2020) 184410.
53) S. Yamashita, D. Suzuki, T. Yoshioka, et al.: Phys. Rev. B, 102 (2020) 214439.
54) P. Delange, S. Biermann, T. Miyake, et al.: Phys. Rev. B, 96 (2017) 155132.
55) L. Pourovskii, J. Boust, R. Ballou, et al.: Phys. Rev. B, 101 (2020) 214433.
56) F. Aryasetiawan, M. Imada, A. Georges, et al.: Phys. Rev. B, 70 (2004) 195104.
57) F. Aryasetiawan, K. Karlsson, O. Jepsen, et al.: Phys. Rev. B, 74 (2006) 125106.
58) T. Miyake, F. Aryasetiawan: Phys. Rev. B, 77 (2008) 085122.
59) M. Imada, T. Miyake: J. Phys. Soc. Jpn., 79 (2010) 112001.
60) F. Nilsson, R. Sakuma, F. Aryasetiawan: Phys. Rev. B, 88 (2013) 125123.
61) T. Tanaka, Y. Gohda: npj Comp. Mater., 6 (2020) 1-7.
62) Y. Gohda: Sci. Technol. Adv. Mater., 22 (2021) 113-123.
63) M. Sagawa: Commemorative lecture of 2012 japan prize (2012).
64) J. Kanamori: Prog. Theor. Phys. Suppl., 101 (1990) 1.
65) J. Kanamori: J. Alloys Compd., 408 (2006) 2-8.
66) T. Fukazawa, H. Akai, Y. Harashima, et al.: IEEE Trans. Magn., 55 (2019) 1-5.
67) H. C. Dam, V. C. Nguyen, T. L. Pham, et al.: J. Phys. Soc. Jpn., 87 (2018) 113801.
68) D. N. Nguyen, T. L. Pham, V. C. Nguyen, et al.: J. Phys.: Mater., 2 (2019) 034009.
69) D. N. Nguyen, T. L. Pham, V. C. Nguyen, et al.: J. Phys.: Conf. Ser., 129 (2019) 012009.
70) Y. Tatetsu, Y. Harashima, T. Miyake, et al.: Phys. Rev. Mater., 2 (2018) 074410.
71) Y. Harashima, K. Terakura, H. Kino, et al.: Phys. Rev. B, 92 (2015) 184426.
72) Y. Hirayama, T. Miyake, K. Hono: JOM, 67 (2015) 1344-1349.
73) A. Gabay, G. Hadjipanayis: Scripta Materialia, 154 (2018) 284-288.
74) Y. Harashima, K. Terakura, H. Kino, et al.: J. Appl. Phys., 120 (2016) 203904.
75) Y. Harashima, K. Terakura, H. Kino, et al.: JPS Conf. Proc., 5 (2015) 011021.
76) T. Fukazawa, H. Akai, Y. Harashima, et al.: J. Phys. Soc. Jpn., 87 (2018) 044706.
77) Y. Harashima, T. Fukazawa, H. Kino, et al.: J. Appl. Phys., 124 (2018) 163902.
78) Y. Harashima, T. Fukazawa, T. Miyake: Scripta Materialia, 179 (2020) 12-15.
79) T. Fukazawa, H. Akai, Y. Harashima, et al.: J. Appl. Phys., 122 (2017) 053901.
80) M. Matsumoto, H. Akai, Y. Harashima, et al.: J. Appl. Phys., 119 (2016) 213901.
81) Y. Yang, X. Zhang, L. Kong, et al.: Solid State Commun., 78 (1991) 317-320.
82) A. Sakuma: J. Phys. Soc. Jpn., 61 (1992) 4119-4124.
83) A. Jain, S. P. Ong, G. Hautier, et al.: APL Mater., 1 (2013) 011002.
84) J. E. Saal, S. Kirklin, M. Aykol, et al.: JOM, 65 (2013) 1501-1509.
85) S. Curtarolo, W. Setyawan, G. L. Hart, et al.: Comput. Mater. Sci., 58 (2012) 218-226.
86) S. Curtarolo, W. Setyawan, W. Wang, et al.: Comput. Mater. Sci., 58 (2012) 227-235.
87) H. Zhang: Electronic Structure. (2020) Available from: http://iopscience.iop.org/article/10.1088/2516-1075/abb225.
88) W. Körner, G. Krugel, C. Elsässer: Sci. Rep., 6 (2016) 1-9.
89) W. Körner, G. Krugel, D. F. Urban, et al.: Scripta Materialia,
154 (2018) 295-299.
90) G. Krugel, W. Körner, D. F. Urban, et al.: Metals, 9 (2019) 1096.
91) P. Nieves, S. Arapan, J. Maudes-Raedo, et al.: Comput. Mater. Sci., 168 (2019) 188-202.
92) M. Sakurai, R. Wang, T. Liao, et al.: Phys. Rev. Mater., 4 (2020) 114408.
93) D. N. Nguyen, D. A. Dao, T. Miyake, et al.: J. Chem. Phys., 153 (2020) 114111.
94) J. Nelson, S. Sanvito: Phys. Rev. Mater., 3 (2019) 104405.
95) T. Long, N. M. Fortunato, Y. Zhang, et al.: Mater. Res. Lett., 9 (2021) 169-174.
96) T. L. Pham, H. Kino, K. Terakura, et al.: Sci. Technol. Adv. Mater., 18 (2017) 756.
97) T. L. Pham, N. D. Nguyen, V. D. Nguyen, et al.: J. Chem. Phys., 148 (2018) 204106.
98) T. L. Pham, D. N. Nguyen, M. Q. Ha, et al.: IUCrJ, 7 (2020) 1036-1047.
99) A. Halder, S. Rom, A. Ghosh, et al.: Phys. Rev. Appl., 14 (2020) 034024.
100) T. Fukazawa, Y. Harashima, Z. Hou, et al.: Phys. Rev. Mater., 3 (2019) 053807.
101) Y. Harashima, K. Tamai, S. Doi, et al.: Phys. Rev. Mater., 5 (2021) 013806.
102) M. Kuz’min: Phys. Rev. Lett., 94 (2005) 107204.
103) T. Ishikawa, T. Fukazawa, T. Miyake: Phys. Rev. Mater., 4 (2020) 104408.