Synthesis of MgB$_2$ from elements

N. N. Kolesnikov*, M. P. Kulakov,
Institute of Solid State Physics of Russian Academy of Sciences, Chernogolovka, Moscow District, 142432 Russia

Abstract

Superconducting at 40 K MgB$_2$-samples were obtained by direct reaction from elements in molybdenum crucibles under argon pressure. Pressure allows to provide annealing at temperature up to 1400$^\circ$C, that resulting in rise of T_c and compactness of the ceramics, suggesting that there is a homogeneity range of composition for the compound.

PACS: 74.70; 74.72

Keywords: ceramics, magnesium boride

1. Introduction

Recent findings of superconductivity (SC) in MgB$_2$ [1,2] gave interest to its synthesis, doping, and phase formation and equilibrium in the system. There were reports on MgB$_2$ synthesis in sealed Ta-tubes [2], and on sintering in Ta-foils [3] with slightly different results in properties of obtained ceramics. The first attempts to sputter MgB$_2$ films [4] gave only 12 K for the SC-transition, and that contradicts to the existing phase T-x diagram of Mg-B system [5].

We report here a method of MgB$_2$ synthesis in Mo-crucibles under argon pressure, and give some properties of obtained ceramics, which support an idea of homogeneity range existing for MgB$_2$ composition.

2. Experiment

For the synthesis, we used amorphous boron powder and lump metal magnesium, both with purity better than 99.95%. Boron powder was pelletized under the load about 2 ton/cm2 and placed at the bottom of Mo-crucible. Lump magnesium was laid up on the B-pellets, and the crucible (Fig. 1) was closed with a threaded cap. The inner crucible diameter was of 12.5 mm in most cases, but it could be enlarged up to 50 mm with the same wall thickness of 3 mm. The crucible was placed into the medium-pressure furnace with a resistive heater. Argon pressure is necessary at the synthesis because of Mg-vapor pressure being equal to 1 bar at 1100$^\circ$C and about 8 bar at 1400$^\circ$C, so magnesium loss during synthesis is inevitable in non-sealed systems. The furnace was preliminarily pumped out down to 10$^{-5}$ bar for 2 hours and then filled with Ar up to 10-12 bar. Actual Ar pressure was ~20 bar at 1000$^\circ$ and 27 bar at 1400$^\circ$C.

On heating, Mg melts at 650$^\circ$C, and reaction with Boron starts around 900$^\circ$C, that giving rise to the local in-crucible temperature and partial magnesium vaporization. In result, Mg-melt fills the cap threads and encapsulates the charge completely to react with boron, forming MgB$_2$. We found that the load more than 2 ton/cm2 at pelletizing was ineffective, so as in this case dense ceramics at the reaction front blocked the Mg-supply to the front, and the reaction stopped, leaving the core parts of the boron charge untouched. In all other cases, the synthesized ceramics of MgB$_2$ sagged on to the bottom of the crucible as a dense cylinder which could be extracted afterwards, so as magnesium melt did not react with molybdenum. The heating could be continued up to 1400$^\circ$C with results, which are described in the next section.

Powder X-ray analysis of obtained ceramic samples was made with the Siemens D-500 diffractometer in the interval 20$^\circ$ < 20 < 80$^\circ$ with steps of 0.02$, Cu-K\alpha$ radiation being applied.

SC-transition temperature was determined by registering AC-susceptibility in the temperature interval of 4.2 to 100 K. Also the standard 4-probe method was used to obtain the resistance dependence on temperature.

The density of samples was measured by hydrostatic weighing in toluene at 25$^\circ$C.

* Corresponding author: fax: 7-(096)-52-49701, E-mail: nkolezn@issp.ac.ru
3. Results and discussion

The syntheses gave us compact ceramic cylinders (Fig. 2) with volume of about 30% of inner crucible volume. The output could be larger, if we had used crystalline boron for the starting material. The measured density was 2.42 g/cm3 for syntheses at 1000°C with subsequent rapid cooling, and only 2.23 g/cm3 after MgB$_2$ heating up to 1400°C and then keeping this temperature for an hour. This drop in density was due to Mg-evaporation and formation of numerous small voids (5-30 microns) in the ceramics.

The powder X-ray diffraction pattern (Fig. 3) shows, besides MgB$_2$, the presence of small amounts of elemental magnesium and magnesium oxide MgO. The elemental Mg comes from the condensation of equilibrium Mg-gas phase on cooling, whereas MgO, as we believe, is due to Mg-gettering of oxygen adsorbed on boron powder. In the case of 1400°C-annealing, along with Mg-evaporation the formation of MgB$_4$ is registered by XRD-data on occurrence of two the most intensive reflections of the phase.

The SC-properties of the obtained MgB$_2$ samples also reflect to some extent the synthesis conditions. The ceramics sintered at 1000°C reveals the SC transition at 36 K by AC-susceptibility (Fig. 4), whereas the ceramics annealed at 1400°C shows the SC transition at 38 K by AC-susceptibility and 40 K by resistance (Fig. 4, 5). We believe this trend in transition temperature to originate from the existence of the homogeneity range in the composition of MgB$_2$. The more the composition is shifted to B-side, the more high T$_c$ the phase reveals. This conclusion is in compliance with very low T$_c$ ~ 12 K for Mg-enriched films [4], and with higher T$_c$ for 1400°C-annealed ceramics in our experiments. It is worth noting that doping MgB$_2$ with copper at 1000°C, as in [3], gives actually the same result in T$_c$ as the high-temperature annealing (Fig. 4). Evidently, the intentional large-scale Cu-doping of MgB$_2$ gives only the phase composition shift to the B-side with possible appropriate rise of T$_c$. The repetition of the experiment, made in [3], in our conditions resulted in accumulation of Cu-rich phase MgCu$_2$ just before the front of MgB$_2$ formation, because the first one is low-melting (~819°C) and insoluble in the second.

Both the known T-x diagram of the Mg-B system [5] and its computational elucidation [6] do not suggest such a homogeneity range. We also are unable to make difference between two borders of supposed range (one with excess of Mg and the other with co-existing MgB$_4$) using our XRD-data: both give the same result $a_0=3.086(4)$, $c_0=3.520(0)$. It is also doubtful that the difference will be found by micro-probe analysis, so as Mg-counts drop only ~ 35% when the probe moves from MgB$_2$ to the pure boron phase [7]. Nevertheless, the ceramics from the sides look externally very much unlike: the one synthesized at 1000°C is brownish-black and somewhat loose for touch, whereas the other one annealed at 1400°C has light-bronze color and is very tough to break. As considered in [8], that reflects very different carrier in such samples. The study needs to be continued.

4. Conclusion

It is shown that MgB$_2$ ceramics is proven to be produced on relatively large scale in Mo-crucible under moderate argon pressure. Ceramics synthesized at 1000°C seems black and loose, and has slightly lower T$_c$, than the one annealed at 1400°C which is very durable mechanically. As yet, there are no other parameters to differentiate these two ceramics.

Acknowledgments

We are grateful to Prof. V.V. Ryazanov for providing us with resistivity and susceptibility measurements, and to I. I. Zverkova for help with X-ray analysis.

References

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, et al. Nature 410 (2001) 63.
[2] S. L. Bud’ko, G. Lapertot, C. Petrovic, et al. Phys. Rev. Lett. 86 (2001) 1877.
[3] Y.P. Sun, W.H. Song, J.M. Dal, et al. Chin. Phys. Lett. 18 (2001) 587.
[4] A. Brinkman, D. Mijatovic, G. Rijnders, et al. Cond-mat/0103198.
[5] A.A. Nayeb-Hashemi and J. B. Clark, in: Phase Diagrams of Binary Mg-Alloys (ASM International, Materials Park, Oh.) (1988).
[6] Zi-Kui Liu, D. J. Schlam, Qi-Li, and X.X. Xi. Cond-mat/0103335.
[7] C. E. Cunningham, C. Petrovic, G. Lepertot, et al. Cond-mat/0103390.
[8] A. M. Cambell. Science 292 (2001) 65.
Figure captions

1. Molybdenum crucible (cross section)
2. MgB$_2$ ceramics (a scale in cm)
3. X-ray diffraction pattern of MgB$_2$ powder
4. AC-susceptibility of MgB$_2$ ceramics
5. Resistance of 1400$^\circ$-annealed MgB$_2$ ceramics as function of temperature
