Assessing graph-based read mappers against a novel baseline approach highlights strengths and weaknesses of the current generation of methods

Ivar Grytten1*, Knut D. Rand2, Alexander J. Nederbragt1,3, Geir K. Sandve1,

1Department of informatics, University of Oslo, Oslo, Norway
2Department of Mathematics, University of Oslo, Oslo, Norway
3Department of Biosciences, University of Oslo, Oslo, Norway

* ivargry@ifi.uio.no

Abstract

Graph-based reference genomes have become popular as they allow read mapping and follow-up analyses in settings where the exact haplotypes underlying a high-throughput sequencing experiment are not precisely known. Two recent papers show that mapping to graph-based reference genomes can improve accuracy as compared to methods using linear references. Both of these methods index the sequences for most paths up to a certain length in the graph in order to enable direct mapping of reads containing common variants. However, the combinatorial explosion of possible paths through nearby variants also leads to a huge search space and an increased chance of false positive alignments to highly variable regions.

We here assess two prominent graph-based read mappers against a novel hybrid baseline approach that combines an initial path determination with a tuned linear read mapping method. We show, using a previously proposed benchmark, that this simple approach is able to improve accuracy of read-mapping to graph-based reference genomes.

Our method is implemented in a tool, Two-step Graph Mapper, which is available at \url{https://github.com/uio-bmi/two_step_graph_mapper} along with data and scripts for reproducing the experiments.

Introduction

Graph-based reference genomes are increasingly used as references in next-generation sequencing experiments, such as in variant calling \cite{1, 2} and peak calling \cite{3}. A key step in all such analysis pipelines is the alignment of raw sequencing reads to the reference. Recently, two tools for mapping reads to graph-based reference genomes have been proposed – \textit{vg} \cite{2} and a tool created by \textit{Seven Bridges} \cite{4} (from here on we refer to this tool as Seven Bridges). Both show improved mapping accuracy as compared to the linear reference-based method BWA-MEM \cite{5}. While \textit{vg} indexes all paths up to a certain length in the graph – a tedious process that takes more than a day for a human whole-genome graph – Seven Bridges uses a faster approach in which they only index short kmers (21 base pair sequences at 7 base pairs intervals). This enables indexation of a human whole-genome graph in only minutes. Both methods ignore the most complex regions in the graph in order to reduce the number of kmers to index.

There currently exists no comparison of the mapping accuracy of \textit{vg} and Seven Bridges. Furthermore, there exists no study on how these two tools perform compared to linear mapping approaches tuned for accuracy and not speed, or to simpler schemes
for graph-based read mapping. We here present a novel hybrid graph-mapping approach and use this as a baseline to highlight strengths and potential for improvement for the current generation of graph-based mapping approaches. We compare *vg* and Seven Bridges to a tuned linear mapping approach, and to our novel two-step approach, and show that graph-based read mapping can be improved by separating the problem into rough path estimation and subsequent mapping of each individual read.

Results

In the following, we assess graph-mappers by looking at *vg* and Seven Bridges. All assessments are done by following the approach that *vg* and Seven Bridges used for evaluating their tools [4]. We simulate 10 million single-end reads from chromosome 20 of an Ashkenazi Jewish male NA24385, sequenced by the Genome in a Bottle Consortium [6] (see Methods). We simulate uniformly across the genome, and some reads will naturally be simulated from segments containing non-reference alleles (about 10.6% of the reads). We refer to these as reads with variants. Reads that are simulated from segments identical to the linear reference genome will be referred to as reads without variants. Mapping accuracies are compared using ROC-plots parameterized by the mapping quality of all the simulated reads. Scripts and data generating the figures in this section are provided at https://github.com/uio-bmi/two_step_graph_mapper.

vg outperforms Seven Bridges on previously proposed benchmarks

In Figure 1, we compare the mapping accuracy of *vg* and Seven Bridges on the simulated reads, using two different ways of simulating reads – using *vg sim* with 1% substitution rate and 0.2% indel rate as used by *vg* in their evaluation [2] and by using the tool Mitty with an error model giving about 0.26% substitution rate, as used by Seven Bridges in their evaluation [4]. *vg* performs better than Seven Bridges on both error rates. From here on, we thus focus on *vg* when discussing capabilities and limitations of the current generation of graph-based mapping approaches, and use simulated reads with 1% substitution rate and 0.2% indel rate (as used by *vg* in their evaluation).

Part of the performance difference between graph-based and linear methods can be attributed to method tuning

As shown in Figure 2, *vg* performs better than BWA-MEM when BWA-MEM is run with default parameters. However, BWA-MEM is by default tuned for speed and not for maximum accuracy. By tuning BWA-MEM and adjusting the MAPQ scores by also running Minimap 2 (see Methods), BWA-MEM goes from performing worse than *vg* on all reads to be performing about as well as *vg*. From here on, we use this tuned version of BWA-MEM, referred to as *linear mapper*, when comparing graph-based and linear mapping approaches.

Graph-based mapping results in higher accuracy on reads with variants, but lower accuracy on reads without variants

As seen in Figure 3, *vg* achieves markedly higher accuracy on reads with variants than the linear mapper (tuned BWA-MEM). However, as also noted in [2], the mapping accuracy of *vg* is lower than the linear mapper on reads that do not contain variants.
Figure 1. Comparison of mapping accuracy on reads mapped by \textit{vg} and Seven Bridges by ROC-plots parameterized by the mapping quality of reads simulated two ways: Using \textit{vg sim} with base pair substitution rate 1\% and indel rate 0.2\% (what \textit{vg} used when evaluating their methods) and by using Mitty to simulate reads using the error model “hiseq-2500-v1-pcr-free”, which is what Seven Bridges used in their evaluation (average substitution rate of 0.26\%).

Figure 2. Comparison of the mapping accuracies of “Linear mapper” (BWA-MEM with tuned parameters using Minimap 2 to adjust MAPQ scores), \textit{vg} and untuned BWA-MEM (running with default parameters).

As a result of this, \textit{vg} ends up not performing better than the linear mapper when assessed on the full set of reads.

Re-aligning the reads to an estimated linear path through the graph improves accuracy

We find that using the initial graph alignments to predict a linear path through the graph, and then re-aligning all the reads to this linear path using the linear mapper
increases mapping accuracy. In Figure 4, we show the results of this approach. As seen in the figure, this two-step approach performs almost as well as \(vg \) on reads containing variants and clearly better than \(vg \) on reads not containing variants, resulting in better overall performance on all reads.

A novel two-step approach using an initial rough path estimation is sufficient to improve mapping accuracy

The results from the previous section indicate that the \(vg \) mapping accuracy can be improved by predicting a path and re-aligning all the reads to this path using the linear mapper. We argue that this idea works as long as we are able to predict an approximate path in the first step. We suggest that the path-prediction in itself can be done by initial rough graph-mapping, and we here propose two simple methods for doing this. Neither of these methods relies on creating a graph mapping index (in contrast to \(vg \)). The first method maps all the reads to the linear reference using a
linear mapper. The alignments are subsequently re-aligned locally to the graph. The second method traverses the graph and iteratively maps linear sequences from the graph onto the reads using Minimap 2\cite{18}. Proof-of-concept implementations of both methods are provided in the Python package Rough Graph Mapper \url{https://github.com/uio-bmi/rough_graph_mapper}.

As seen in Figure 5, the use of either method as part of the two-step approach leads to better mapping accuracy than \textit{vg} for non-variant reads, and almost as good accuracy as \textit{vg} on variant-reads. Since the initial rough mapping does not require a graph index, we argue that this two-step approach is a promising direction for computationally efficient graph-based read mapping. Our two-step approach is implemented in a tool Two-step Graph Mapper, which is available at \url{https://github.com/uio-bmi/two_step_graph_mapper}.

![Figure 5](image)

Figure 5. Comparison of mapping accuracies of the two-step approach using two methods for rough initial alignment, the linear mapper, \textit{vg} and Seven Bridges.

Discussion

We observe higher accuracy for \textit{vg} than Seven Bridges in our comparisons. We feel these comparisons are an unfortunate omission in the Seven Bridges paper. Both \textit{vg} and Seven Bridges perform worse than linear mapping on reads not containing variants, and a tuned version of BWA-MEM achieves about the same accuracy as \textit{vg} on the full set of reads. We further show that a two-step approach of predicting a path through the graph and mapping to this path using the linear mapper results in higher accuracy, even when using a rough graph-mapper for the initial prediction of the path. Our two-step approach achieves about the same accuracy as \textit{vg} on reads containing variants and higher accuracy than \textit{vg} on reads not containing variants (which contribute to about 90% of the simulated reads). We believe this is because the use of a predicted path limits the search space dramatically in the final mapping.

Read alignment serves as an intermediate step for several distinct investigations. The aligned reads may be used as input for variant callers in order to determine genotypes or somatic mutations, they can be used as input for peak callers to determine locations of epigenetic modifications or protein binding to DNA, and they can be used as input for transcriptome analysis methods to quantify differential gene expression or alternative splicing. The consequences of different categories of mis-mapped reads (e.g. reads originating from genomic regions of high or low variation) may vary between these settings. We have in this work restricted our focus...
to assessing the accuracy of read mapping per se. It would be interesting to explore how the mis-mapping profiles of the different approaches affect the following analysis step for each such setting.

Our current path prediction algorithm is fairly simple and naive, but illustrates the point. As future work, it would be interesting to implement more sophisticated path prediction algorithms, e.g. including haplotype information or correlations between variants in the graph. We note that our two-step approach only performs well when there are sufficient reads for predicting the path (i.e. high enough coverage). In the simulations, we deliberately only simulated reads from one chromosome in order to get high enough coverage (20x) without needing hundred of millions of reads. The coverage used (20x) is lower than than the typical coverage for most modern next generation sequencing experiments, such as whole genome sequencing, RNA-seq and the coverage within peaks in a ChIP-seq experiment. With lower coverage, we expect the accuracy to drop down to that of a linear sequence aligner, since our path prediction algorithm defaults to the linear reference genome path when there is not enough reads covering a variant. With higher coverage, we expect the accuracy to increase. Our current implementation only predicts one path through the graph, but in reality, reads coming from a diploid individual will follow two paths. It should be trivial to instead estimate two paths in the first step of our two-step approach, and align reads to both paths in the final step.

For linear reference genomes, the sole objective of mapping is to align reads back to the genomic locations they originate from. In contrast, mapping against graph-based reference genomes can serve a dual purpose: estimating the underlying haplotypes (two paths through the graph) and correctly placing each read along these haplotype paths. The driving idea of our two-step approach is to separate these as two separate algorithmic problems. This allows a rough mapping approach to be used initially for estimating the haplotype and thus limit the search space for a subsequent step of placing reads along this path using any linear mapper. It is important to note that although the path-estimation in the first step of the two-step approach implicitly estimates variants present in the graph, the intention of this step is not to do variant calling – instead variant calling can be performed as a follow-up step based on the aligned reads.

Our results support previous findings showing that graph-based approaches enable improved mapping of reads containing variants. At the same time, the comparative performance of our simple two-step approach indicates that there is room for further algorithmic improvement. In addition to serving as a baseline for highlighting characteristics of the current generation of full read mappers, we also believe that our two-step approach represents a promising alternative direction for computationally efficient graph-based read mapping.

Methods

Assessment of mapping methods

We compared vg and Seven Bridges, which to our knowledge are the only published tools for mapping reads to graph-based reference genomes. We did not run Hisat2, which to our knowledge is only able to use graphs with SNPs and not indels. We also considered to include running BWA-MEM on an index created by CHOP [7], which is a tool for indexing paths through known haplotypes in the graph, but we were unable to build the CHOP index for a whole human genome human graph in reasonable run-time. When using vg to simulate reads, we used base pair substitution rate 0.01 and indel rate 0.02. When using Mitty, we used the built-in error model
hiseq-2500-v1-PCR-free. All evaluations were run with vg version 1.12.1, BWA-MEM version 0.7.17-r1194-dirty, Minimap 2 version 2.13, Seven Bridges graph aligner bpa-0.9.1.1-3, and Mitty version 2.28.3. We ran vg with default parameters, but when running BWA-MEM, we tuned it and used Minimap in order to adjust the MAPQ scores returned by BWA-MEM (see the next section for details).

The benchmark we ran is similar to one run by vg in [2] and the one run by Seven Bridges in [4]. In all analyses, we used a graph created from variants from the 1000 Genomes Project having allele frequency > 1% (about 14 m variants), since this graph gave the best results for vg and seems to be very similar to the graph that Seven Bridges used in their evaluation.

All reads were simulated from chromosome 20 only, in order to get high coverage without having to simulate very many reads. We only simulated single-end reads.

ROC-plots were generated by running the same scripts used by vg to create ROC-plots in [2]. All scripts, data and graphs used to perform the benchmarks along with instructions on how to re-run the analysis are available from the readme page at https://github.com/uio-bmi/two_step_graph_mapper.

Tuning BWA-MEM performance

We observe worse performance by BWA-MEM with default parameters compared to vg, even on reads not containing variants. This has also been noted in [2] where vg running on a linear reference genome is shown to outperform BWA-MEM running on the same reference. From our experience, a cause of this is that BWA-MEM is tuned for speed (not only performance), mainly by not trying to align shorter “chains” by default. This makes BWA-MEM miss a lot of suboptimal alignments (when they exist), which in turn makes it overestimate the MAPQ score. Changing the -D parameter of BWA-MEM to a low number partly solves this, by telling BWA-MEM to also try to align shorter chains. However, after such tuning, there are still cases where BWA-MEM fails to find suboptimal alignments. This typically happens when all the longest chains cover a sequencing error in the read. We did not find a way of tuning BWA-MEM to consider shorter chains in such cases, but we found that Minimap 2 (even though it generally performs worse than BWA-MEM on short reads) in most cases was able to find all suboptimal alignments and use that to correctly assign low MAPQ scores when reads were multimapping. Thus, we chose to also run Minimap 2 on the same reads and for every read, simply select the MAPQ score chosen by Minimap 2 when Minimap 2 assigned a lower MAPQ score than BWA-MEM.

We did not tune vg in order to try to improve its performance, since it seems that vg with default parameters is already tuned to perform well (we did not see any cases of vg missing alignments that BWA-MEM found).

Two-step graph mapping

Step 1: Estimating a path through the graph

In order to predict a path through the graph, some initial graph-alignments are needed. We have proposed two simple ways for performing this initial mapping, which are explained more in detail in the next section. In this first step, we use the rough graph alignments to predict a path through the graph. We do this by greedily traversing the graph by always following the edges with most reads aligned to them (edges going to linear reference nodes are given a bonus, default is 1). We then extract the sequence of this path, and use BWA (bwa index with default parameters) to index it.
Step 2: Aligning the reads

In this step, we simply align all the reads to the indexed path using the tuned version of BWA-MEM. After the reads have been aligned to this predicted path, their coordinates will be relative to this path, thus differing from the linear reference genome (e.g. hg19) coordinates. We have implemented a simple method for translating the coordinates back to linear reference genome coordinates (similar to vg annotate) that simply moves the alignments to the graph and finds the closest position on the linear reference path going through the graph.

Rough mapping of reads to the graph

We have shown two methods for rough mapping of the reads to the graph for the first step of the approach:

Method 1: First, we map all the reads to the linear reference genome using the linear mapper (tuned BWA-MEM). We then move these reads to their corresponding position in the graph, which is possible since the graph contains the linear reference genome. We then re-align each read locally to the graph.

Method 2: All reads are first attempted aligned by Method 1. For every edge in the graph, the number of aligned reads (with MAPQ 60) across that edge are counted and stored, so that each edge gets a count of the number of reads aligned over that edge. Reads that do not align well (MAPQ score lower than 60) are indexed using Minimap 2. The graph is then traversed from the start node, and at every junction, the next node is chosen by preferring the edge with most reads aligned to it (edges going to nodes representing the linear reference genome are given a bonus, default is 1). When traversing the graph, the sequence of the path traversed is stored, and at every n base pairs (default 5), the last m base pairs from the traversed path (default is half of the read length) are extracted and mapped against the sequences that did not align well in the first step (these are already indexed by Minimap 2). Each matching read is attempted aligned at this position in the graph, and if successfully aligned, the edge counts are increased according to the edges taken by that read. After traversing the graph, a set of potential graph-alignments are returned. These are then merged with the graph-alignments from those aligned in the beginning by running Method 1. The final set of alignments will have some reads mapping to multiple positions, and will need to be filtered before predicting a final path in the two-step approach.

References

[1] Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G, Zink F, Hjorleifsson KE, Jonasdottir A, Jonasdottir A, Jonsdottir I. Graphtyper enables population-scale genotyping using pangenome graphs. Nature genetics. 2017 Nov;49(11):1654.

[2] Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones W, Garg S, Markello C, Lin MF, Paten B. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature biotechnology. 2018 Aug 20.

[3] Grytten I, Rand KD, Nederbragt AJ, Storvik GO, Glad IK, Sandve GK. Graph Peak Caller: calling ChiP-Seq Peaks on Graph-based Reference Genomes. bioRxiv. 2018 Jan 1:286823.
[4] Rakovevic G, Semenyuk V, Lee WP, Spencer J, Browning J, Johnson IJ, Arsenijevic V, Nadj J, Ghose K, Suciu MC, Ji SG. Fast and accurate genomic analyses using genome graphs. Nature Publishing Group; 2019 Jan 14.

[5] Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997. 2013 Mar 16.

[6] Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y, Mason CE, Alexander N, Henaff E. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Scientific data. 2016 Jun 7;3:160025.

[7] Mokveld TO, Linthorst J, Al-Ars Z, Reinders M. CHOP: Haplotype-aware path indexing in population graphs. bioRxiv. 2018 Jan 1:305268.

[8] Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 May 10;1:7.