Closed inflationary universe with tachyonic field

Leonardo Balart, Sergio del Campo, Ramón Herrera, and Pedro Labraña
Instituto de Física, Pontificia Universidad Católica de Valparaíso
Av. Brazil 2950, Valparaíso, Chile, Casilla 4950, Valparaíso.

In this article we study closed inflationary universe models by using a tachyonic field theory. We determine and characterize the existence of an universe with $\Omega > 1$, and which describes a period of inflation. We find that considered models are less restrictive compared to the standard ones with a scalar field. We use recent astronomical observations to constrain the parameters appearing in the model. Obtained results are compared to those found in the standard scalar field inflationary universes.

PACS numbers: 98.80.Bp, 98.80.Cq

I. INTRODUCTION

The existence of Doppler peaks and their respective localization tend to confirm the inflationary paradigm, associated with a flat universe with $\Omega \simeq 1$, as corroborated by the existence of an almost scale invariant power spectrum, with $n_s \sim 1$ [1, 2].

The recent temperature anisotropy power spectrum, measured with the Wilkinson Microwave Anisotropy Probe (WMAP three-year data) at high multipoles, is in agreement with an inflationary Λ- dominated CDM cosmological model. However, the low order multipoles have lower amplitudes than expected from this cosmological model [3], and the mismatch in these amplitudes may indicate the need for new physics. Speculations for explaining this discrepancy has been invoked in the sense that the low quadrupole observed in the CMB is for explaining this discrepancy has been invoked in the context of an open scenario, it is assumed that the curvature, as well as in the spectrum, are indeed reliable and robust predictions of inflation [5].

In the context of an open scenario, it is assumed that the universe has a lower-than-critical matter density and, therefore, a negative spatial curvature. Several authors [3, 10, 11, 12], following previous speculative ideas [13, 14], have proposed alternative models, in which open universes may be realized, and their consequences, such as density perturbations, have been explored [15]. The only available semi-realistic model of open inflation with $1 - \Omega \ll 1$ is rather unpleasant since it requires a fine-tuned potential of very peculiar shape [12, 10]. The possibility to create an open universe from the perspective of the brane-world scenarios also has been considered [17].

The possibility to have inflationary universe models with $\Omega > 1$ has been analyzed in [8, 18, 19]. In this paper we would like to describe this kind of models.

One normally considers the inflation phase driven by the potential or vacuum energy of a scalar field, whose dynamics is determined by the Klein-Gordon action. However, more recently and motivated by string theory, other non-standard scalar field actions have been used in cosmology. In this context the deep interplay between small-scale non-perturbative string theory and large-scale brane-world scenarios has raised the interest in a tachyon field as an inflationary mechanism, especially in the Dirac-Born-Infeld action formulation as a description of the D-brane action [20]. In this scheme, rolling tachyon matter is associated with unstable D-branes. The decay of these D-branes produces a pressureless gas with finite energy density that resembles classical dust. Cosmological implications of this rolling tachyon were first studied by Gibbons [21] and in this context it is quite natural to consider scenarios where inflation is driven by the rolling tachyon. In recent years the possibility of an inflationary phase described by the potential of a tachyon field has been considered in a quite diverse topics [22, 23]. In the context of an open inflationary scenario, a universe dominated by tachyon matter is studied in Ref. [24].

In this paper we adopt the point of view considered by Linde [8] but in which a tachyon field theory is considered. More precisely, we suppose that a closed universe appears from nothing at the point in which $\dot{a} = 0, \phi = 0$, and a potential energy density is $V(\phi)$. We solve the Friedmann and tachyon field equations considering that the acceleration of the universe is sufficient for producing inflationary period. It should be clear from the beginning that the tachyon potential considered by us satisfies
\[dV/d\phi < 0 \quad \text{for} \quad \phi > \phi_0 \quad \text{and} \quad V(\phi \to \infty) \to 0. \]

On the other hand, we assume that the potential becomes extremely

large in the vicinity of \(\phi < \phi_0 \) since the closed universe

appeared at this point.

The paper is organized as follows. In Sec.II we review

briefly the cosmological equations in the tachyon models. Sec.III

presents a toy model in some detail. We get the value of the tachyon

field, when inflation begins. We also obtain the probability of the creation of a close

universe from nothing. In Sec.IV we consider a model with

a tachyonic exponential potential. In Sec.V the cosmological perturbations are investigated. Finally, in Sec.VI

we summarize our results.

II. COSMOLOGICAL EQUATIONS IN THE

TACHYON MODELS

The action for our model is given by \[25\]

\[S = S_{grav} + S_{tach} \]

\[= \int -g d^4x \left[\frac{R}{2\kappa} - V(\phi)\sqrt{1 - \partial^\mu \phi \partial_\mu \phi} \right], \]

(1)

where \(\kappa = 8\pi G = 8\pi M_p^2 \) (here \(M_p \) represent the Planck

mass) and \(V(\phi) \) is the scalar tachyon potential.

The energy density \(\rho \) and pressure \(p \) for tachyonic field

are given by

\[\rho = \frac{V(\phi)}{\sqrt{1 - \dot{\phi}^2}}, \]

(2)

and

\[p = -V(\phi)\sqrt{1 - \dot{\phi}^2}, \]

(3)

respectively.

The Friedmann-Robertson-Walker metric is described by

\[ds^2 = dt^2 - a(t)^2 d\Omega_k^2, \]

(4)

where \(a(t) \) is the scale factor, \(t \) represents the cosmic

time and \(d\Omega_k^2 \) is the spatial line element corresponding to the hypersurfaces of homogeneity, which could be represented as a three-sphere, a three-plane or a three-hyperboloid, with values \(k = 1, 0, -1 \), respectively. From now on we will restrict ourselves to the case \(k = 1 \) only. Using the metric (4) in the action (1), we obtain the following field equations:

\[\left(\frac{\ddot{a}}{a} \right)^2 = -\frac{1}{a^2} + \frac{\kappa}{3}\frac{V(\phi)}{\sqrt{1 - \dot{\phi}^2}}, \]

(5)

and

\[\ddot{a} = -\frac{\kappa}{6}(\rho + 3p) = \frac{\kappa}{3}\frac{V(\phi)}{\sqrt{1 - \dot{\phi}^2}} \left(1 - \frac{3}{2} \dot{\phi}^2 \right), \]

(6)

where the dot over \(\phi \) and \(a \) denotes derivative with respect to the time \(t \). For convenience we will use the units in which \(c = h = 1 \).

III. CONSTANT POTENTIAL

In the spirit of Ref. [8], we study a closed inflationary universe, where inflation is driven by a tachyon field. First let us consider a simple tachyon model with the following step-like effective potential: \(V(\phi) = V = \text{constant} \) for \(\phi > \phi_0 \), and \(V(\phi) \) is extremely steep for \(\phi < \phi_0 \). We consider that the birth of the inflating closed universe can be created "from nothing", in a state where the tachyon field takes the value \(\phi_{in} \leq \phi_0 \) at the point with \(\ddot{a} = 0, \dot{\phi} = 0 \) and the potential energy density in this point is \(V(\phi_{in}) \geq V = \text{const} \). If the effective potential for \(\phi < \phi_0 \) grows very sharply, then the tachyon field instantly falls down to the value \(\phi_0 \), with potential energy \(V(\phi_0) = V \), and its initial potential energy \(V(\phi_{in}) \) becomes converted to the kinetic energy. Since this process happens instantly we can consider \(\ddot{a} = 0 \), so that tachyon field arrives to the the plateau with a velocity given by:

\[\dot{\phi}_0 = \sqrt{1 - \left(\frac{V}{V(\phi_{in})} \right)^2}. \]

(8)

Thus, in order to study the inflation in this scenario, we have to solve Eqs. (5) and (6) in the interval \(\phi \geq \phi_0 \), with initial conditions \(\dot{\phi} = \dot{\phi}_0, \quad a = a_0 \) and \(\ddot{a} = 0 \). These equations have different solutions, depending on the value of \(\phi_0 \). In particular, if we insert Eq. (3) into Eq.(5), we obtain:

\[\frac{\ddot{a}}{a} = \frac{\kappa}{6} V(\phi_{in}) \left[3 \left(\frac{V}{V(\phi_{in})} \right)^2 - 1 \right]. \]

(9)

Then, we notice that there are three different scenarios, depending on the particular value of \(V(\phi_{in}) \). First, in the particular case when

\[\frac{V}{V(\phi_{in})} = \frac{1}{\sqrt{3}} \quad \text{or} \quad \sqrt{3} \phi_0^2 = \frac{2}{3}, \]

(10)

we see that the acceleration of the scale factor is \(\ddot{a} = 0 \). Since initially \(\dot{a} = 0 \), then the universe remain static and the tachyon field moves with constant speed given by Eq. (8).

In the second case we have:

\[0 < \frac{V}{V(\phi_{in})} < \frac{1}{\sqrt{3}} \quad \text{or} \quad \frac{2}{3} < \phi_0^2 < 1. \]

(11)
In this case the universe start moving with negative acceleration ($\ddot{a} < 0$) from the state $\dot{a} = 0$. Then, in the tachyon field equation describing negative friction, we have a term which make the moving of ϕ even faster, so that \ddot{a} becomes more negative. This universe rapidly collapses.

The third case corresponds to:

$$\frac{1}{\sqrt{3}} < \frac{V}{V(\phi_{m})} < 1 \quad \text{or} \quad 0 < \dot{\phi}^{2} < \frac{2}{3} \quad (12)$$

In this case we have $\ddot{a} > 0$, and the universe enters into an inflationary stage.

In what follows, we are going to make a simple analysis of the cosmological equations of motion for cases where

the condition $\left(12\right)$ is satisfied. The tachyon field satisfies the equation

$$\frac{\ddot{\phi}}{1 - \dot{\phi}^{2}} + \frac{3}{a} \dot{\phi} = 0 \quad , \quad (13)$$

which implies

$$\dot{\phi}^{2}(t) = \frac{1}{1 + Ca\dot{\phi}(t)} \quad , \quad (14)$$

where C is a positive integration constant defined as

$$C = \frac{1 - \dot{\phi}_{0}^{2}}{\dot{\phi}_{0}^{2}a_{0}^{6}} \quad , \quad (15)$$

and with $\dot{\phi}^{2} < 1$.

Here $\dot{\phi}_{0}$ is the initial velocity of the field ϕ, immediately after it rolls down to the flat part of the potential. The effect of the tachyonic field in this model is reflected in the change of the slope of the tachyonic field ϕ, when compared to standard case, where $\dot{\phi} = \dot{\phi}_{0}[a_{0}/a(t)]^{3}$.

The behavior of the tachyon field expressed by Eq.\((14)\) implies that the evolution of the universe rapidly falls into an exponential regimen (inflationary stage) where the scale factor becomes $a \sim e^{-Ht}$ with $H = \sqrt{\frac{\kappa V}{3}}$. When the universe enters the inflationary regime, the tachyon field moves by an amount $\Delta \phi_{inf}$ and then stops. From Eq.\((14)\) we get:

$$\Delta \phi_{inf} = \frac{1}{3H} \sinh^{-1} \left(\frac{1}{\sqrt{C}} \right)$$

$$= \frac{1}{3H} \ln \left(\frac{1}{\sqrt{C}} + \sqrt{1 + \frac{1}{C}} \right) \quad . \quad (16)$$

Note that, when $\dot{\phi}_{0} \ll 1 \quad (a_{0} = 1)$, we obtain $\Delta \phi_{inf} \approx \frac{\dot{\phi}_{0}}{3H}$, which coincides with the result obtained in [8].

At early time, before inflation take place, we can write conveniently the equation for the scale factor as follows:

$$\ddot{a}(t) = \frac{2\kappa}{3} V a(t) \beta(t) \quad . \quad (17)$$

Here, we have introduced a small time-dependent dimensionless parameter $\beta(t)$:

$$\beta(t) = \frac{1}{2} \frac{1}{\sqrt{1 - \dot{\phi}^{2}}} \left(1 - \frac{3}{2} \frac{\dot{\phi}^{2}}{\dot{\phi}_{0}^{2}} \right) \quad . \quad (18)$$

Certainly $\beta(t) \ll 1$ when $\dot{\phi}^{2}(t) \rightarrow 2/3$.

Now we proceed to make a simple analysis of the scale factor equation \((19)\) and the tachyon Eq.\((17)\) for $\beta(0) \equiv \beta_{0} \ll 1$.

At the beginning of the process, we have $a(t) \approx a_{0}$ and $\beta(t) \approx \beta_{0}$, then Eq.\((17)\) takes the form:

$$\ddot{a}(t) = \frac{2\kappa}{3} a_{0}V \beta_{0} \quad , \quad (19)$$

and hence for small t the solution of this equation is given by

$$a(t) = a_{0} \left(1 + \frac{\kappa \beta_{0} V}{3} t^{2} \right) \quad . \quad (20)$$

From Eqs.\((14)\) and \((20)\) we find that at a time interval where $\beta(t)$ becomes twice as large as β_{0}, Δt_{1} is given by

$$\Delta t_{1} = \left[\left(1 - \frac{\dot{\phi}^{2}}{\dot{\phi}_{0}^{2}} \right) \frac{1}{2\kappa V \dot{\phi}_{0}^{2}} \right]^{1/2} \times$$

$$\left[(2 - 3\dot{\phi}^{2}) + \frac{\dot{\phi}_{0}^{2}}{2} (11 - 6\dot{\phi}^{2}) + \frac{3}{2} \frac{\dot{\phi}^{2}}{\dot{\phi}_{0}^{2}} \right]^{-1/2} \quad . \quad (21)$$

Consequently the tachyonic field increases by the amount

$$\Delta \phi_{1} \sim \dot{\phi}_{0} \Delta t_{1} \sim \frac{1}{\sqrt{\kappa V}} \quad , \quad (22)$$

where we have kept only the first term in the expansion of Δt_{1}. Note that this result depends on the value of V, i.e. the increase of the tachyonic field is less restrictive than the one used in the standard scalar field in which $\Delta \phi_{1} = \text{const.} \sim -1/(2\sqrt{\pi})$ [8]. After the time $\Delta t_{2} \approx \Delta t_{1}$, where now the tachyonic field increases by the amount $\Delta \phi_{2} \approx \Delta \phi_{1}$, the rate of growth of $a(t)$ also increases. This process finishes when $\beta(t) \rightarrow 1/2$. Since at each interval Δt_{i} the value of β doubles, the number of intervals n_{int} after which $\beta(t) \rightarrow 1/2$ is

$$n_{int} = -1 \frac{\ln \beta_{0}}{\ln 2} \quad . \quad (23)$$
Therefore, if we know the initial velocity of the tachyon, we can estimate the value of the tachyon field at which the inflation begins:

\[\phi_{inf} \sim \phi_0 - \left(1 + \frac{\ln \beta_0}{\ln 2}\right) \frac{1}{\sqrt{\kappa V}}. \] \hspace{1cm} (24)

This expression indicates that our result for \(\phi_{inf} \) is sensitive to the choice of particular value of the potential energy \(V \), apart from the initial velocity of the tachyonic field \(\phi \) immediately after it rolls down to the plateau of the potential energy.

Note that if the tachyon field starts its motion with a small velocity, the inflation begins immediately. However, if the tachyon moves with a large initial velocity the inflation is delayed, but once the inflation begins, it never stops. This can be explained by the constancy of the potential, and as we will see, in the next section this particular problem disappears when we consider a more realistic tachyon model.

We return to describing a model of quantum creation for a closed inflationary universe model. The probability of the creation of a closed universe from nothing is given by Ref. \[26\]

\[P \sim e^{-2|S|} = \exp\left(-\frac{\pi}{H^2}\right) \sim \exp\left(-\frac{3\pi}{\kappa V(\phi)}\right). \] \hspace{1cm} (25)

We first estimate the conditional probability that the universe is created with an energy density equal to \(\sqrt{3} V - \beta_0 V \). Assuming that this energy is smaller than \(V(\phi_{in}) = \sqrt{3} V \), for the probability we get

\[P \sim e^{-2|S|} \sim \exp\left(-\frac{3M_p^4}{8(\sqrt{3} - \beta_0)V} + \frac{3M_p^4}{8\sqrt{3} V}\right) \]

\[\sim \exp\left(-\frac{M_p^4 \beta_0}{8V}\right), \] \hspace{1cm} (26)

where we have used that \(\beta^2 \ll 1 \). This implies that the process of quantum creation of an inflationary universe is not exponentially suppressed if \(\beta_0 < 8V/M_p^4 \).

IV. EXPONENTIAL POTENTIAL

Now we proceed with a more realistic case, a model in which the effective potential is given by

\[V(\phi) \simeq V_0 e^{-\lambda \phi}, \] \hspace{1cm} (27)

where \(\lambda \) and \(V_0 \) are free parameters and the parameter \(\lambda \) is related with the tachyon mass \[22\]. In the following we will take \(\lambda > 0 \) (in units \(M_p \)). We will also assume that the effective potential sharply rises to indefinitely large values in a small vicinity of \(\phi = \phi_0 \), see Fig.

![FIG. 1: The plot shows the tachyonic potential as a function of the tachyonic field \(\phi \). We have taken \(V_0 = 10^{-7} \kappa^{-2} \) and \(\lambda = 10^{-7} \kappa^{-1/2} \) in units where \(\kappa=1 \).](image)

We assume that the whole process is divided in three parts. The first part corresponds to the creation of the (closed) universe “from nothing” in a state where the tachyon field takes the value \(\phi_{in} \leq \phi_0 \) at the point with \(\dot{\phi} = 0, \phi = 0 \), and where the potential energy is \(V(\phi_{in}) \). If the effective potential for \(\phi < \phi_0 \) grows very sharply, then the tachyon field instantly falls down to the value \(\phi_0 \), with potential energy \(V(\phi_0) \), and the initial potential energy becomes converted to the kinetic energy, see the previous section. Then we have:

\[\dot{\phi}_0^2 = 1 - \left(\frac{V(\phi_0)}{V(\phi_{in})}\right)^2. \] \hspace{1cm} (28)

Following the discussion of the previous section we suppose that the following initial condition is satisfied:

\[V(\phi_0) < V(\phi_{in}) < \sqrt{3} V(\phi_0), \] \hspace{1cm} (29)

which guarantees that the model arrives to an inflationary regimen. As it was mentioned previously, in all other cases the universe remains either static, or it collapses rapidly.

The second and third parts of the process are described by Eqs. \(6\) and \(7\) in the interval \(\phi \geq \phi_0 \) with initial conditions \(\phi = \phi_0, a = a_0 \) and \(\dot{a} = 0 \). In particular, the second part of the process corresponds to the motion of the tachyon field before the beginning of the inflation stage, and it is well described by the following approximation of the equations of motion:
According to our previous result, the tachyon field gets the value \(\phi_{\text{inf}} \)
which \(\beta(t) \) satisfying \(\beta(t) \ll 1 \), as before.

The third part corresponds to the stage of inflation where \(\dot{\phi} \) is small enough and the scale factor \(a(t) \) grows up exponentially. This part is well described by the following approximation of the equation of motion [27]:

\[
\frac{\ddot{\phi}}{1 - \dot{\phi}^2} = -2 \frac{\dot{a}}{a} \dot{\phi},
\]

\[
\ddot{a} = \frac{2\kappa}{3} a V(\phi) \beta(t),
\]

which \(\beta(t) \) satisfying \(\beta(t) \ll 1 \), as before.

In summary, the whole process could be described as follows: the tachyon field starts its motion at \(\phi = \phi_0 \), with \(\phi_{\text{inf}} < \phi_0 \), then the field immediately moves to the value \(\phi_0 \) and acquires a non-null velocity \(\dot{\phi}_0 \). After that the tachyon field starts to move subjected to the equations of motion, and the potential in Eq. (7) can be neglected so that the only contribution to the evolution of \(\phi \) is the dissipative term. Therefore, during the period when the condition (24) is satisfied, \(\dot{\phi} \) satisfies Eq. (14), which means that \(\dot{\phi} \) drops down while the size of the universe is increasing. This initial behavior for \(\dot{\phi} \) is in very good agreement with the phase portrait (with numerical results) for tachyonic cosmology described in Ref. [28]. As a result of this process we arrive to an inflationary regime, described by the Eqs. (32) and (33).

Now, we are going to describe the process in more details. Let us consider the second stage, where the tachyon field satisfies Eq. (34) and the scale factor satisfies Eq. (35). Following the scheme of section III we solve the equation for \(a(t) \) by considering \(\beta(t) \ll 1 \). Then at the beginning of the process, when \(a \approx a_0 \) and \(\beta \approx \beta_0 \), Eq. (35) takes the form:

\[
\ddot{a}(t) = \frac{2\kappa}{3} a_0 V(\phi_0) \beta_0,
\]

and the tachyon field satisfies Eq. (14). The amount of the increasing of the tachyon field during the time \(\Delta t \) which make the value of \(\beta \) two times greater than \(\beta_0 \) is:

\[
\Delta \phi \approx \frac{1}{\sqrt{V(\phi_0)}}.
\]

This process continues until \(\dot{\phi} \) is small enough so that the universe begins to expand in an exponential way, characterizing the inflationary era. We take that the inflation begins when \(\beta(t) \) approaches to 1/2. Then, according to our previous result, the tachyon field gets the value:

\[
\phi_{\text{inf}} \sim \phi_0 - \left(1 + \frac{\ln \beta_0}{\ln 2} \right) \frac{1}{\sqrt{\kappa V(\phi_0)}}.
\]

In order to find analytical solution to the equation of the tachyon field in the inflationary era, we are going to focus to the approximation of flat space for the Friedmann equations. Then we can use the result of Ref. [27].

The tachyon field satisfies the following equation:

\[
\dot{\phi} = \frac{\lambda}{3} e^{\lambda \phi/2},
\]

where \(\gamma^2 = V_0 \kappa/3 \). Notice that \(\dot{\phi} \) increases during the inflationary era, what differs from \(\dot{\phi} \) in the previous period, see Eq. (14). The scale factor has the following behavior during this period:

\[
\frac{a(t)}{a_i} = e^{\gamma [C - (\lambda^2/12\gamma) t]},
\]

where \(a_i \) is the value of the scale factor at the beginning of inflation and \(C = e^{-\lambda \phi/2} \). From Eq. (38) we notice that the scale factor passes through an inflection point which marks the end of inflation. This happen when \(\dot{\phi}_{\text{end}} = \sqrt{2/3} \), which implies that the value of the potential at the end of inflation is \(V_{\text{end}} = \frac{2}{\lambda^2} \). The values of the tachyon potential at the beginning and at the end of inflation are related by the number of the e-folds \(N \), see Ref. [27]:

\[
(2N + 1) V_{\text{end}} = V(\phi_{\text{inf}}).
\]

Then, by using Eq. (30) and Eq. (39), we can related the value of \(\beta_0 \) with the number of e-folds, \(N \)

\[
\beta_0 = \frac{1}{2} \left[\frac{(2N + 1) \lambda^2}{\sqrt{V(\phi_0)}} \frac{\ln(2)}{2\kappa} \right].
\]

Note that, just as before, if the tachyon field starts its motion with sufficiently small velocity (large \(\beta \)), inflation begins immediately and we have a large number of e-folds. On the other hand, if the tachyon field it starts with a large initial velocity \(\phi_0 \approx \sqrt{2/3} \), corresponding to \(\beta_0 \approx 0 \), the beginning of inflation takes more time and we obtain a lower value of \(N \). Eventually, if \(\beta_0 \) is too small, we can arrive to the situation where

\[
V(\phi_{\text{inf}}) < V_{\text{end}} = \frac{\lambda^2}{2\kappa},
\]

and the universe can never inflate.

As an example, we take a particular set of the parameters appearing in the tachyon potential [27]. We also use the COBE normalized value for the amplitude of scalar
density perturbations in order to evaluate λ, thus we have $\lambda = 10^{-5}\kappa^{-1/2}$ and we take $V_0 = 10^{-7}\kappa^{-2}$.

Note that, if the field starts with a large velocity $\dot{\phi}_0$, the universe starts to inflate in a late time and a lower value of the number of e-folding is obtained (see Fig. (2)).

Now, let us analyze the quantum probability of creation of a given sort of universe. From the discussion of section III, we know that the probability of the universe with $\beta_0 \neq 0$ will be exponentially suppressed, unless the universe is created very close to the threshold value $V(\phi_{in}) = \sqrt{3} V(\phi_0)$, with

$$\beta_0 < \frac{\kappa^2 V(\phi_0)}{8\pi^2}. \quad (42)$$

If we assume that $\phi_0 \sim 10^5\kappa^{1/2}$, then in order to satisfy Eq. (42) we have $\beta_0 < 2.2 \cdot 10^{-10}$. Following Ref. [8], we can argue that the probability for start with the value $\beta_0 \ll 2.2 \cdot 10^{-10}$ is suppressed, due to the small phase space corresponding to these values of β_0. Thus, it is most probable to have $\beta_0 \sim 2.2 \cdot 10^{-10}$, and in that case if we set $\phi_0 = 1.1 \cdot 10^5\kappa^{1/2}$ which satisfies the condition Eq. (42) and we obtain $\mathcal{N} = 60$, this leads to $\Omega = 1.1$. On the other hand, if we take $\phi_0 = 0.5 \cdot 10^5\kappa^{1/2}$, we get $\mathcal{N} = 171$ and the universe becomes flat.

V. PERTURBATIONS

Even though the study of scalar density perturbations in closed universes is quite complicated, it is interesting to give an estimation of the standard quantum scalar field fluctuations in this scenario. In particular, the spectra of scalar perturbations for a flat space, generated during tachyon inflation, expressed in terms of the slow-roll parameters defined in Ref. 29, becomes 30:

$$\frac{\delta \rho}{\rho} = [1 - 0.11 \epsilon_1 + 0.36 \epsilon_2] \frac{\kappa H}{2\pi \sqrt{2}\epsilon_1}, \quad (43)$$

where the slow-roll parameters are given by:

$$\epsilon_1 \simeq \frac{1}{2\kappa} \left(\frac{V_{,\phi\phi}}{V}\right)^2, \quad (44)$$

$$\epsilon_2 \simeq \kappa^{-1} \left[-2 \frac{V_{,\phi\phi}}{V} + 3 \left(\frac{V_{,\phi}}{V}\right)^2 \right]. \quad (45)$$

Certainly, in our case, Eq. (43) is an approximation and must be supplemented by several different contributions in the context of a closed inflationary universe [8]. However, one may expect that the flat-space expression gives a correct result for $N > 3$.

If one interprets perturbations produced immediately after the creation of closed universe (at $N \sim O(1)$) as perturbations on the horizon scale $l \sim 10^{29} cm$, then the maximum at $N \sim 10$ would correspond to the scale $l \sim 10^{24} cm$, and the maximum at $N \sim 15$ would correspond to the scale $l \sim 10^{22} cm$, which is similar to the galaxy scale.

One interesting parameter to consider is the so-called spectral index n_s, which is related to the power spectrum of density perturbations $P_R (k)$. For modes with a wavelength much larger than the horizon ($k \ll aH$), the spectral index n_s is an exact power law, expressed by $P_R (k) \propto k^{n_s - 1}$, where k is the comoving wave number. It is also interesting to give an estimate of the tensor spectral index n_T. In tachyon inflationary models the scalar spectral index and the tensor spectral index are given by

$$n_s = 1 - 2\epsilon_1 - \epsilon_2, \quad (46)$$

and $n_T = -2\epsilon_1$, in the slow-roll approximation [30].

One of the features of the 3-year data set from WMAP is that it hints at a significant running in the scalar spectral index $dn_s/d\ln k = \alpha_s$ [2]. From Eq. (46) we obtain that the running of the scalar spectral index for our model becomes

$$\alpha_s = \frac{dn_s}{d\ln k} \simeq 2 \frac{V_{,\phi\phi}}{V} [2 \epsilon_1 , \phi + \epsilon_2 , \phi], \quad (47)$$

where we have used that $d\ln k = -dN$. Using the exponential potential from Eq. (47) we find that,

$$\alpha_s = \frac{dn_s}{d\ln k} \simeq -2 \frac{\lambda^4}{\kappa^2 V_0} \epsilon_2 \lambda \phi = -2 \frac{\lambda^4}{\kappa^2 V(\phi)} \epsilon_2. \quad (48)$$

Note the difference that occurs with respect to a standard scalar field (with an exponential potential) where $\alpha_s = 0$, since $n_s = Cte. = 1 - M_P^2 \lambda^2$ [31].
In models with only scalar fluctuations, the marginalized value for the derivative of the spectral index is approximated to $dn_s/d\ln k = \alpha_s \sim -0.05$ for WMAP three-year data only [2].

Noted that, from Eq. [18], the scalar potential becomes $V(\phi_s) \sim 6.3\alpha_s^2/k$, where ϕ_s represents the value of the tachyonic field when the scale $k_0 = 0.002$ Mpc$^{-1}$ leaves the horizon. For $\lambda \sim 10^{-3}k^{-1/2}$, we have for the scalar potential, when the scale is k_0 was leaving the horizon, becomes, $V(\phi_s) \sim 10^{-5}k^{-2}$. This value of the scalar potential is in agreement with Ref. [22], where a chaotic potential with a standard scalar field is used.

Using the WMAP three-year data [2] and the SDSS large scale structure surveys [33], an upper bound $\alpha_s(k_0)$ has been found, where $k_0=0.002$ Mpc$^{-1}$ corresponds to $L = \tau_0k_0 \approx 30$, with the distance to the decoupling surface $\tau_0 = 14.400$ Mpc. SDSS measures galaxy distributions at red-shifts $a \sim 0.1$ and probes k in the range 0.016 h Mpc$^{-1} < k < 0.011$ h Mpc$^{-1}$. The recent WMAP three-year data results give the values for the scalar curvature spectrum $P_{\phi}(k_0) = 25\delta^2_H(k_0)/4 \approx 2.3 \times 10^{-9}$ and the spectral index $n_s \approx 0.95$. These values allow us to find the constraints on the parameters of our model. Furthermore, from the numerical solution we can obtain their values. In particular, for $k_0=0.002$ Mpc$^{-1}$, we have $n_s \approx 0.96$ and $n_T \approx -0.03$. Notice that those indices are very close to the Harrison-Zel’dovich spectrum [34].

VI. CONCLUSION AND FINAL REMARKS

In this work we have studied a closed inflationary universe model in a tachyonic field theory. In the context of Einstein’s GR theory, this model was studied by Linde [5]. Firstly, we have assumed a tachyonic scalar potential to be constant. Secondly, we have analyzed a closed universe model with a tachyonic exponential potential. For these two parts, in which the potential is very sharp at small values of the field, $\phi < \phi_0$, we have found extra ingredients in the tachyonic theory, compared to its analog in standard scalar field theory. Specifically, we obtain a large stage of initial inflation for a closed universe, and this stage depends on the value of the potential energy V. In this way, we have found that our model, which takes into account a tachyonic theory, is less restrictive that the one used in standard scalar field theory.

Also, we have found that, after the tachyonic field starts moving subjected to the equations of motion, the potential term in Eq. [7] becomes irrelevant, and the only contribution to the evolution of ϕ is the dissipative term. Therefore, during this period, ϕ satisfies the Eq. [14], which means that ϕ drops down, since the size of the universe is increasing in this period, if the condition [29] is satisfied. This initial behavior for ϕ is in good agreement with the phase portrait (with numerical results) for the tachyonic cosmology described in Ref. [28].

We have also found that, for an exponential potential, the inclusion of the tachyonic field changes some characteristic of the running spectral index α_s and becomes $\alpha_s \neq 0$, in contrast to the standard case where $\alpha_s = 0$. From the normalization of the WMAP three-year data, the potential becomes of the order of $V(\phi_s) \sim 10^{-10}M_p^4$ when it leaves the horizon at the scale of $k_0 = 0.002$ Mpc$^{-1}$. In particular, we expect that the Planck mission will significantly enhance our understanding of α_s by providing high quality measurements of the fundamental power spectrum over a large wavelength range that WMAP. Summarizing, we have been successful in describing a closed inflationary universe in a tachyonic field theory.

Acknowledgments

We thank Olivera Miskovic for a careful reading of the manuscript. L. B. is supported from PUCV through Proyecto de Investigadores Jóvenes año 2006. S. del C. is supported by the COMISION NACIONAL DE CIENCIAS Y TECNOLOGIA through FONDECYT Grant No. 1070306, and also was partially supported by PUCV Grant No. 123.787/2007. R. H. is supported by the “Programa Bicentenario de Ciencia y Tecnología” through the Grant “Inserción de Investigadores Postdoctorales en la Academia” No. PSD/06. P. L. is supported by the COMISION NACIONAL DE CIENCIAS Y TECNOLOGIA through FONDECYT Postdoctoral Grant No. 3060114.

[1] H. V. Peiris et al., Astrophys. J. Suppl. 148, (2003) 213; D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, (2003) 175.

[2] L. Page et al., astro-ph/0603449.

[3] C. L. Bennett et al., Astrophys. J. Suppl. 148, (2003) 1.

[4] G. Efstathiou, Mon. Not. Roy. Astron. Soc. 343, (2003) L95.

[5] C. MacTavish et al., Astrophys.J. 647, (2006) 799.

[6] D. Eisenstein et al, Astrophys.J. 633, (2005) 560.

[7] J. P. Uzan, U. Kirchner and G. F. R. Ellis, Mon. Not. Roy. Astron. Soc. 344, (2003) L65.

[8] A. Linde, JCAP 0305, (2003) 002.

[9] M Sasaki, T. Tanaka, K. Yamamoto and J. Yokoyama, Phys. Lett. 317B, (1993) 510.

[10] M. Bucher et al, Phys. Rev. D 52, (1995) 3314 ; M. Bucher and N. Turok, Phys. Rev. D 52, (1995) 5538.

[11] A. Linde, Phys. Lett. B, 351, (1995) 99; A. Linde and A. Mezhvilian, Phys. Rev. D 52, (1995) 6789.

[12] A. Linde, Phys. Rev. D 59, (1999) 023503; A. Linde, M. Sasaki and T. Tanaka, Phys. Rev. D 59, (1999) 123522.

[13] J.R. Gott, Nature 295, (1982) 304.

[14] J.R. Gott and T.S. Statler, Phys. Lett. 136B, (1984) 157.
[15] U. Moschella and R. Schaeffer, Phys. Rev. D 57, (1998) 2147.
[16] S. del Campo and R. Herrera, Phys. Rev. D 67, (2003) 063507.
[17] M. Bouchmadi and P. F. González-Días, Phys. Rev. D 65, (2002) 063510; S. del Campo, R. Herrera and J. Saavedra, Phys. Rev. D 70, (2004) 023507.
[18] M. White and D. Scott, Astrophy J. 459, (1996) 415.
[19] G. Ellis, W. Stoerger, P. McEwan and P. Dunsby, Gen. Rel. Grav. 34, (2002) 1445; G. Ellis, W. Stoerger, P. McEwan and P. Dunsby, Gen. Rel. Grav. 34, (2002) 1461; S. del Campo, R. Herrera and J. Saavedra, Int. J. Mod. Phys. D 14, (2005) 1; S. del Campo and R. Herrera, Class. Quant. Grav. 22, (2005) 2687.
[20] A. Sen, JHEP 9808, (1998) 012; A. Sen, JHEP 9910, (1999) 008; M. R. Garousi, Nucl. Phys. B584, (2000) 284; E. A. Bergshoeff, M. de Roo, T. C. de Wit, E. Eyras and S. Panda, JHEP 0005, (2000) 009; J. Kluson, Phys. Rev. D 62, (2000) 126003; D. Kutasov and V. Niarchos, Nucl. Phys. B 666, (2003) 56.
[21] G. W. Gibbons, Phys. Lett. B 537, (2002) 1.
[22] M. Fairbairn and M. H. G. Tytgat, Phys. Lett. B 546, (2002) 1.
[23] D. Choudhury, D. Ghoshal, D. P. Jatkar and S. Panda, Phys. Lett. B 544, (2002) 231; L. Kofman and A. Linde, JHEP 0207, (2002) 004; X. z. Li, J. g. Hao and D. j. Liu, Chin. Phys. Lett. 19, (2002) 1584; F. Leblond and A. W. Peet, JHEP 0304, (2003) 048; S. Nojiri and S. D. Odintsov, Phys. Lett. B 571, (2003) 1; S. Kachru, R. Kallosh, A. Linde, J. M. Maldacena, L. McAllister and S. P. Trivedi, JCAP 0310, (2003) 013; Z. K. Guo and Y. Z. Zhang, JCAP 0408, (2004) 010; D. J. Liu and X. Z. Li, Phys. Rev. D 70, (2004) 123504; J. M. Aguirregabiria and R. Lazkoz, Phys. Rev. D 69, (2004) 123502; J. M. Aguirregabiria and R. Lazkoz, Mod. Phys. Lett. A 19, (2004) 927; G. Calcagni, Phys. Rev. D 69, (2004) 103508; X. H. Meng and P. Wang, Class. Quant. Grav. 21, (2004) 2527; K. Hotta, Prog. Theor. Phys. 112, (2004) 653; K. Hotta, JHEP 0603, (2006) 070.
[24] L. Balart, S. del Campo, R. Herrera, P. Labrana and J. Saavedra, Phys. Lett. B 647, (2007) 1.
[25] A. Sen, JHEP 0204, (2002) 048; JHEP 0207, (2002) 065.
[26] K. Koyama and J. Soda, Phys. Lett. B 483, (2000) 432.
[27] M. Sami, P. Chingangbam and T. Qureshi, Phys. Rev. D 66, (2002) 043530.
[28] Z. Guo, Y. Piao, R. Cai and Y. Zhang, Phys.Rev.D68, (2003) 043508.
[29] D. J. Schwarz, C. A. Terrero-Escalante and A. A. Garcia, Phys. Lett. B 517, (2001) 243.
[30] D. A. Steer and F. Vernizzi, Phys. Rev. D 70, (2004) 043527.
[31] G. Ballesteros, J.A. Casas and J.R. Espinosa, JCAP 0603, (2006) 001.
[32] K. Bhattacharya , S. Mohanty and A. Nautiyal, astro-ph/0607049.
[33] M. Tegmark et al., Phys. Rev. D 69, (2004) 103501.
[34] E. R. Harrison, Phys. Rev. D 1, (1970) 2726; Ya. B. Zel'dovich Mon. Not. Roy. Astron. Soc. 160, (1972) 1.