Factors associated with dexamethasone efficacy in COVID-19. A retrospective investigative cohort study

Robin Arcani1,2 | Raphaël Cauchois1,2 | Pierre Suchon3 | Rodolphe Jean1 | Pierre-André Jarrot1,2 | Quentin Gomes De Pinho1 | Jean-Baptiste Dalmas1 | Estelle Jean4 | Baptiste Andre4 | Véronique Veit4 | Marie Koubi1 | Gilles Kaplanski1,2

1Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
2Center for Cardiovascular and Nutrition Research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University, Marseille, France
3Hematology Laboratory, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
4Department of Internal Medicine, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France

Correspondence
Robin Arcani, Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), 147 Boulevard Baille, 13005 Marseille, France.
Email: robin.arcani@ap-hm.fr

Abstract
Dexamethasone has demonstrated efficacy in reducing mortality in COVID-19. However, its practical use is badly defined. We aimed to investigate factors associated with dexamethasone efficacy in real life. Our retrospective study was conducted in two university hospitals between September and November 2020 and included all the consecutive hospitalized patients with a laboratory-confirmed SARS-CoV-2 infection assessed by RT-PCR, treated with intravenous dexamethasone (6 mg/day). Among 111 patients, 10.6% necessitated a transfer into the intensive care unit (ICU) and the 28-day mortality rate was 17.1%. The 28-day mortality rate was significantly lower in patients who demonstrated improvement at 48 h (hazard ratio [HR]: 0.17, 95% confidence interval [CI]: 0.04–0.78, \(p = 0.02\)) and 96 h (HR: 0.07, 95% CI: 0.02–0.31, \(p = 0.0005\)) after dexamethasone initiation. Apart from well-known risk factors (age, hypertension, active cancer, severe lesions on chest computed tomography [CT] scan), we found that a high viral load in nasopharyngeal swab (Cycle threshold <30) at dexamethasone initiation was associated with higher 28-day mortality (66.6% vs. 36.7%, \(p = 0.03\)). Patients who did not receive antibiotics at dexamethasone initiation had a higher rate of transfer into the ICU (55.6% vs. 23.5%, \(p = 0.045\)) with a trend towards higher mortality in case of severe or critical lesions on CT scan (75.0% vs. 25.0%, \(p = 0.053\)). Patients who did not improve within 2–4 days after steroid initiation have a bad prognosis and should receive additional anti-inflammatory drugs. Our data suggest better efficacy of dexamethasone in patients with a low or negative viral load, receiving broad-spectrum antibiotics.

KEYWORDS
antibiotics, COVID-19, dexamethasone, intensive care unit, mortality

1 INTRODUCTION

Since December 2019, COVID-19, the disease due to the new coronavirus,1 SARS-CoV-2, has induced more than 5 million deaths around the world.2 The course of COVID-19 is characterized by the succession of several phases.3 The early infection presents with constitutional symptoms (fever, dry cough) and a high viral load. Then occurs pneumonia characterized by dyspnea with or without hypoxia and blood inflammation of various severity. The last stage is characterized by the occurrence of an acute respiratory syndrome.
(ARDS), systemic inflammation, and disseminated coagulation, usually with a low viral load. Several drugs aiming at decreasing inflammation have been tried to treat moderate to severe COVID-19 pneumonia with conflicting results and to date, only corticosteroids, especially dexamethasone, demonstrated a significant reduction of mortality in patients receiving oxygen in a large randomized controlled trial. In France, dexamethasone is now the standard of care in patients hospitalized with moderate to severe COVID-19 pneumonia associated with excessive systemic inflammation. However, corticosteroids in this context may be associated with delayed viral clearance such as observed in other coronavirus-induced severe pneumonia, increased opportunistic infection, hyperglycemia and other side effects. Data are still lacking on the precise timing of initiation and practical use of dexamethasone in COVID-19. In this retrospective study, we aimed to investigate factors associated with dexamethasone efficacy in real life.

2 | METHODS

2.1 | Patients

We retrospectively included all consecutive adult patients (aged ≥18 years) admitted with a laboratory-confirmed SARS-CoV-2 infection assessed by RT-PCR on nasopharyngeal swabs and treated with intravenous dexamethasone (6 mg/day) between September and November 2020 in two internal medicine departments (La Conception and La Timone, University Hospital of Marseille, France). Patients were not included if they had been previously hospitalized in the intensive care unit (ICU) or if they had an ongoing hematological malignancy. Clinical, biological, radiological, and follow-up data of these patients were collected from electronic medical records. We assessed the clinical status of patients using the National Early Warning Score (NEWS 2). We considered that the patients had a good clinical response to the treatment if they reached at least 2 of the following items: (1) decrease of the fraction of inspired oxygen (\(F_\text{O}_2\)) requirement ≥8%, (2) decrease of C-reactive protein (CRP) >20%, (3) decrease of NEWS ≥1. We registered day 1 of dexamethasone therapy as D1 dexamethasone. Viral load was analyzed by repeated semi-quantitative RT-PCR from nasopharyngeal swabs. Negative results for viral RNA detection were defined as a cycle threshold (Ct) value ≥35. Patients were considered to have a low viral load when the Ct value was ≥30 and <35 in nasopharyngeal swabs. The \(F_\text{O}_2\) was estimated by the mechanical ventilator or by the high-flow nasal cannula and was calculated in patients receiving oxygen by low-flow nasal cannula according to the formula: \(F_\text{O}_2 = 21 + [4 \times \text{oxygen flow in liter/min}]\). Patients underwent a low-dose chest computed tomography (CT) and were classified into five different grades based on the extent of lung parenchymal lesions (minimal <10%, moderate: 10%–25%, intermediate: 25%–50%, severe: 50%–75% and critical >75%). Soluble urokinase Plasminogen Activator Receptor (suPAR) level was assessed by immunoturbidimetry.

2.2 | Laboratory tests

Viral RNA was extracted from 200 μl of naso- and oro-pharyngeal swab fluid and/or sputum, using the EZ1 Virus Mini Kit v2.0 (Qiagen®). For the detection of SARS-CoV-2 RNA we used two different RT-PCR systems with a hydrolysis probe and the Light-Cycler Multiplex RNA Virus Master kit (Roche Diagnostics®). The first system targets the envelope protein (E)-encoding gene and uses a synthetic RNA positive control (supplied by the Charité virology institute—Universitätsmedizin Berlin, Berlin, Germany). The second system was designed in-house, targets the spike protein-encoding gene (forward primer: 5’-AAACCTTGTCGGCTTTTGTTG-3’; reverse primer: 5’-TGCTGATTCCTCTCTTGTTCC-3’; probe: 5’-CGCCACACAGATTGCATCGT-3’), and uses a synthetic RNA positive control ordered from Eurogentec®.

2.3 | Ethical

This study was approved by the Institutional Review Board of Assistance Publique—Hôpitaux de Marseille (GDPR number PADS21-4). The study was conducted according to the Declaration of Helsinki.

2.4 | Statistical analysis

Quantitative variables were described using medians and interquartile range (IQR); categorical variables were described using numbers and percentages. Quantitative data were compared using the Student t or Mann–Whitney U test, while qualitative data were compared with the Chi-square or Fisher’s exact test when appropriate. Survival and cumulative “survival or transfer into ICU” were estimated by means of the reverse Kaplan–Meier method and they were compared between groups using stratified log-rank tests. The tests were two-sided. All p values <0.05 were considered significant. All analyses were performed with R software (R Foundation for Statistical Computing).

3 | RESULTS

3.1 | Characteristics of the population

One hundred and eleven patients were included. The main characteristics of the population are presented in Table 1. The median age was 73 years (IQR: 61–82, range: 42–98), with 63 male patients (56.8%). The main comorbidities were obesity (55.4%), hypertension (52.3%), type 2 diabetes (32.4%) and cardiovascular diseases (22.5%).

Twenty-six patients (23.4%) had a "do-not-resuscitate" status. Lung CT showed typical lesions of COVID-19 in 105 out of 109 patients, consisting in minimal, moderate, intermediate, severe, and critical lesions in 11%, 33.9%, 29.4%, 20.2%, and 1.8%, respectively.
3.2 | Evolution of patients receiving dexamethasone

Nine patients of the 85 eligible patients (10.6%) necessitated a transfer into the ICU, four of them (4.7%) requiring invasive mechanical ventilation. The 28-day mortality rate was 17.1%. The main characteristics of dexamethasone management and adverse events are presented in Table 2.

The patients received dexamethasone for a median of 7 days (IQR: 6–9, range: 2–15). On dexamethasone, patients' oxygen flow requirement decreased after a median of 3 days (IQR: 1–6) following the initiation of the treatment. At D1 dexamethasone, the median FiO2 was 37% (IQR: 33–51), increased to 40.5% (IQR: 33–49, p = 0.88) after 48 h and remained at 37% (IQR: 25–50, p = 0.23) after 96 h. FiO2 requirement significantly dropped in patients 144 h after the initiation of dexamethasone (37% vs. 29%, p = 0.005). The oxygen supplementation was stopped after a median of 7 days (IQR: 4–12) following dexamethasone initiation. Fever rapidly disappeared (median: 1 day, IQR: 0–3) after the initiation of dexamethasone. NEWS 2 significantly decreased in patients 48 h (5 vs. 4, p = 0.011) and 96 h (5 vs. 3, p < 0.0001) after the initiation of dexamethasone, whereas CRP level decreased in 2 days in median (IQR: 1–3): 117.5 mg/L (IQR: 69–177) at D1 dexamethasone versus 56.5 mg/L (IQR: 29–97) after 48 h. Fifty-eight patients (52.3%) developed one or more adverse events under dexamethasone: 35 patients (31.5%) needed insulin for glucose control, 29 patients (26.1%) had hypokalemia, 19 patients (17.1%) had hypertension or cardiac failure and 12 patients (10.8%) developed infections. On D1 dexamethasone, 82 patients (73.9%) were receiving antibiotics and 63 of 108 patients (58.3%) had an RT-PCR Ct value ≥30.

3.3 | Early predictive response to dexamethasone

After adjustment for risk factors such as age and hypertension, the 28-day mortality rate was significantly lower in patients who had a good response (as defined in the method section) at 48 h [hazard ratio (HR): 0.17, 95% confidence interval (CI): 0.04–0.78, p = 0.02] and 96 h (HR: 0.07, 95% CI: 0.02–0.31, p = 0.0005) after dexamethasone initiation (Figure 1).

Similarly, the composite score consisting in 28-day mortality rate and/or transfer into the ICU was lower in patients with a good response at 48 h (HR: 0.17, 95% CI: 0.06–0.51, p = 0.002) and 96 h (HR: 0.02, 95% CI: 0.01–0.1, p < 0.0001) after dexamethasone initiation (Figure 2).

3.4 | Factors associated with an early good response after dexamethasone

The factors associated with a good response (as defined in the method section) at 48 h after dexamethasone initiation were a younger age (68 vs. 76 years, p = 0.025) and a low viral load in nasopharyngeal swab (Ct >30) at D1 dexamethasone (58.9% vs. 38.4%, p = 0.049). The factors associated with a good response at
96 h after dexamethasone initiation were a low viral load in nasopharyngeal swab (Ct >30) at D1 dexamethasone (82.1% vs. 42.9%, \(p < 0.001 \)), the presence of antibiotics at D1 dexamethasone (72.4% vs. 48.0%, \(p = 0.025 \)) and a higher blood eosinophilic count at D1 dexamethasone (39/mm\(^3\) vs. 8.1/mm\(^3\), \(p = 0.014 \)). Circulating suPAR or suPAR >6 ng/ml were not associated with the good response at 48 h or 96 h after dexamethasone initiation.

3.5 | Factors associated with mortality and ICU requirement after dexamethasone

The risk factors associated with mortality on dexamethasone treatment were: age (83 years [range: 73–98] vs. 68.5 years [range: 42–96], \(p < 0.0001 \)), hypertension (73.7% vs. 47.8%, \(p = 0.04 \)), active cancer (15.8% vs. 2.2%, \(p = 0.03 \)), severe lesions on low-dose chest CT scan (43.8% vs. 19.1%, \(p = 0.0002 \)), secondary infection following dexamethasone therapy (26.3% vs. 8.7%, \(p = 0.04 \)) and a high viral load in nasopharyngeal swab (Ct <30) at D1 dexamethasone (66.6% vs. 36.7%, \(p = 0.03 \), Figure 3). The absence of antibiotics at the time of dexamethasone initiation seemed to be associated with a higher mortality in patients with severe or critical lesions on CT scan (75.0% vs. 25.0% death on antibiotics, \(p = 0.053 \)).

The risk factors associated with ICU requirement on dexamethasone were underlying immunosuppression (22.2% vs. 2.9%, \(p = 0.045 \)) and the absence of antibiotics at D1 dexamethasone (55.6% vs. 23.5%, \(p = 0.045 \), Figure 4). In patients transferred to the ICU, 3 (33%) were diagnosed with a bacterial infection shortly after ICU admission (Pseudomonas Aeruginosa: 1, Enterococcus Faecium: 1, Enterobacter Cloacae: 1) and 7 patients (78%) received at least one new line of antibiotics after ICU admission.

4 | DISCUSSION

In our cohort, the 28-day mortality rate was 17.1%, whereas transfer into the ICU was necessary for 10.6%, and 4.7% of patients required invasive mechanical ventilation. These results are comparable to those reported in the RECOVERY trial in which the incidence of
death was 23.3% and the rate of patients who progressed to mechanical ventilation was 5.7% in patients receiving oxygen without invasive mechanical ventilation and confirm that steroid treatment is effective compared to historical standard-of-care in patients with moderate to severe pneumonia requiring oxygen supplementation associated with systemic biological inflammation.5

In this study, we observed that the viral load, at the time of dexamethasone initiation, was associated with mortality. The higher the viral load, the higher the mortality, in accordance with previous reports.15

We observed, however, that dexamethasone was associated with significant side effects that were not reported in the RECOVERY trial but were expectable and should be considered in patients with other comorbidities such as type 2 diabetes, hypertension, or cardiovascular diseases.

Steroid treatment during COVID-19 has been controversial and in several hundred patients treated in China, no benefit was reported, initially leading the WHO to recommend against corticosteroid treatment.16–19 This may be due to heterogeneity in the doses and timing of the treatment. In the RECOVERY study, for example, no benefit and possibly detrimental effects were observed in patients who did not require oxygen treatment.5 Conversely, the patients who mostly benefited from steroid treatment were those admitted into the ICU requiring invasive mechanical ventilation.5 This may be expectable when considering that the severity of pneumonia parallels the severity of lung and systemic inflammation.20 Patients not requiring oxygen may, firstly, be not severe enough to require immunomodulation or secondly, too early in their disease, possibly still in the course of the viral phase. In favor of this hypothesis, we observed in our cohort, that the 28-day mortality rate was significantly lower when dexamethasone was initiated in patients with a low or negative viral load (Ct ≥ 30). Natural control of viral replication usually occurs after 7–10 days of infection, but in real life, the beginning of the disease may be difficult to precisely ascertain and carriage may be prolonged in older or immunocompromised patients, suggesting that longitudinal checking of the viral load may be useful before considering dexamethasone initiation. In addition, we observed that transfer into the ICU was less frequent in patients...
who received large-spectrum antibiotics at D1 dexamethasone, notably in those with severe CT-scan lung lesions, suggesting that a part of hospitalized patients with COVID-19 may have underlying bacterial co-infections as recently reported by others21–25 and supported by the fact that 3/9 of our patients who needed transfer into the ICU had a concomitant proven bacterial infection. These data should be interpreted with caution, and we are concerned by the risk of inducing antibio-resistance through the large prescription of broad-spectrum antibiotics, but our observations, as well as recent reports, suggest that the use of empirical antibiotics may be considered prior or concomitantly to dexamethasone initiation, especially in previously immunocompromised patients or in those with extended pulmonary lesions.

At the time of severe COVID-19 pneumonia, patients have a low viral load but develop an excessive inflammatory response, especially in the lungs and demonstrate increased concentrations of circulating pro-inflammatory cytokines such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, IL-18, chemokines, interferons.2,3,20,26,27 This “cytokine storm” contributes to lung injury and the development of ARDS.20,22 To fight the cytokine storm, anticytokine treatments including one cytokine have been used in severe COVID-19 with controversial results.4 Contrary to targeted anticytokine strategies, corticosteroids have a broad spectrum of anti-inflammatory activity through inhibition of nuclear factor-kappa B.29,30 Depending on the disease timing, various inflammatory pathways may be involved in COVID-19, explaining that dexamethasone may be more efficient than treatments targeting only one cytokine. However, as reported by several studies, including the RECOVERY trial, dexamethasone does not appear to control all the patients and a significant percentage of them will undergo invasive mechanical ventilation, prolonged disease, and death.5,31 One of the most important findings of this study is the fact that patients who did not have a good response to treatment 48 and 96 h after the initiation of dexamethasone (consisting in decreased oxygen requirement, CRP, or NEWS2) had higher mortality and ICU transfer rates. Thus, a poor response to treatment appeared to be predictable very early, 2–4 days, after the initiation of dexamethasone. Patients may then necessitate the addition of other treatments, such as tocilizumab, baricitinib or anakinra, or completely different drug associations to control their disease.32–35

We acknowledge limitations to this study. First, it is retrospective, based on a limited number of patients which did not allow us to perform multivariate analysis. Second, the RT-PCR analysis was not quantitative as in another previous report,15 however, this semi-quantitative technique is routinely used in patient care and is easy to compare along time for each individual patient.

In conclusion, our data suggest a better efficacy of dexamethasone in patients with a low or negative viral load, under antibiotics therapy. If the clinical condition does not improve within the 4 first days of treatment, additional therapy should be considered.

AUTHOR CONTRIBUTIONS

Conceptualization: Robin Arcani, Raphaël Cauchois, Rodolphe Jean, Marie Koubi, Gilles Kaplanski. Methodology: Robin Arcani, Raphaël Cauchois, Quentin Gomes De Pinho, Jean-Baptiste Dalmas, Estelle Jean, Baptiste Andre, Véronique Veit, Marie Koubi, Gilles Kaplanski. Validation: Robin Arcani, Raphaël Cauchois, Pierre Suchon, Estelle Jean, Baptiste Andre, Véronique Veit, Marie Koubi, Gilles Kaplanski. Formal analysis: Robin Arcani, Pierre Suchon, Gilles Kaplanski. Investigation: Robin Arcani, Rodolphe Jean, Pierre-André Jarrot, Quentin Gomes De Pinho, Jean-Baptiste Dalmas, Estelle Jean, Baptiste Andre, Véronique Veit, Marie Koubi. Writing—Original draft preparation: Robin Arcani, Raphaël Cauchois, Pierre Suchon, Marie Koubi, Gilles Kaplanski. Writing—Reviews and editing: all the authors. All authors contributed to the study’s conception and design. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID

Robin Arcani http://orcid.org/0000-0002-5567-354X

REFERENCES

1. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. Accessed February 3 2021. https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
2. WHO Coronavirus (COVID-19) Dashboard., Accessed April 25 2021. https://covid19.who.int
3. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical–therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405–407. doi:10.1016/j.healun.2020.03.012
4. Stasi C, Fallani S, Voller F, Silvestri C. Treatment for COVID-19: an overview. Eur J Pharmacol. 2020;889:173644. doi:10.1016/j.ejphar.2020.173644
5. Lim WS, Emberson JR, Mafham M, et al, RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N Engl J Med.2020;384:693-704. doi:10.1056/NEJMoa2021436
6. HSCP. Coronavirus SARS-CoV-2. traitement par dexaméthasone des patients oxygénoréquérants. Haut Conseil de la Santé Publique;2020. Accessed February 3 2021. https://www.hscp.fr/explor.cgi/avisrapportsdomaine?clefr=955
7. Arabi YM, Mandoorah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir Crit Care Med. 2018;197(6):757-767. doi:10.1164/rccm.201706-1172OC
8. Li H, Chen C, Hu F, et al. Impact of corticosteroid therapy on outcomes of patients with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: a systematic review and meta-analysis. Leukemia. 2020; 34(6):1503-1511. doi:10.1038/s41375-020-0848-3
9. van Paassen J, Vos JS, Hoekstra EM, Neumann KMI, Boot PC, Arbous SM. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care. 2020;24(1): 696. doi:10.1186/s13054-020-03400-9
10. Sakai R, Tanaka E, Nishina H, Suzuki M, Yamanaka H, Harigai M. Risk of opportunistic infections in patients with antineutrophil
cytoplasmic antibody-associated vasculitis, using a Japanese health insurance database. *Int J Rheum Dis.* 2019;22(11):1978-1984. doi:10.1111/1756-185X.13662

11. Elena C, Chiara M, Angelica B, et al. Hyperglycemia and diabetes induced by glucocorticoids in nondiabetic and diabetic patients: revision of literature and personal considerations. *Curr Pharm Biotechnol.* 2018;19(15):1210-1220. doi:10.2174/1389201012666190102143505

12. National Early Warning Score (NEWS) 2. RCP London. Published December 19, 2017. Accessed February 3 2021. https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2

13. Clinical management of COVID-19. Accessed February 6 2021. https://www.who.int/publications-detail-clinical-management-of-covid-19

14. EVAg | European Virus Archive - GLOBAL. Accessed February 11 2022. https://www.european-virus-archive.com/

15. Pujadas E, Chaudhry F, McBride R, et al. SARS-CoV-2 viral load predicts COVID-19 mortality. *Lancet Respir Med.* 2020;8(9):e70. doi:10.1016/S2213-2600(20)30354-4

16. Yuan M, Xu X, Xia D, et al. Effects of corticosteroid treatment for non-severe COVID-19 pneumonia: a propensity score-based analysis. *Shock.* 2020;54(5):638-643. doi:10.1097/SHK.0000000000001574

17. Ma Y, Zeng H, Zhan Z, et al. Corticosteroid use in the treatment of COVID-19: a multicenter retrospective study in Hunan, China. *Front Pharmacol.* 2020;11:19811. doi:10.3389/fphar.2020.01198

18. Li Q, Li W, Jin Y, et al. Efficacy evaluation of early, low-dose, short-term corticosteroids in adults hospitalized with non-severe COVID-19 pneumonia: a retrospective cohort Study. * Infect Dis Ther.* 2020;9(4):823-836. doi:10.1007/s40121-020-00332-3

19. Liu J, Zhang S, Dong X, et al. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. *J Clin Invest.* 2020;130(12):6417-6428. doi:10.1172/JCI140617

20. Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. *Nat Med.* 2020;26(10):1636-1643. doi:10.1038/s41591-020-1051-9

21. Rawson TM, Moore LSP, Zhu N, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. *Clin Infect Dis.* 2020;71(9):2459-2468. doi:10.1093/cid/ciaa530

22. Elabbadi A, Turpin M, Gerotziafas GT, Teulier M, Voiriot G, Fartoukh M. Bacterial coinfection in critically ill COVID-19 patients with severe pneumonia. *Infection.* 2021;49(3):559-562. doi:10.1007/s10438-020-01553-x

23. Bardi T, Pintado V, Gomez-Royo M, et al. Nosocomial infections associated to COVID-19 in the intensive care unit: clinical characteristics and outcome. *Eur J Clin Microbiol Infect Dis.* 2021;40(3):495-502. doi:10.1007/s10096-020-04142-w

24. Goncalves Mendes Neto A, Lo KB, Wattoo A, et al. Bacterial infections and patterns of antibiotic use in patients with COVID-19. *J Med Virol.* 2021;93(3):1489-1495. doi:10.1002/jmv.26441

25. Rothe K, Feili S, Schneider J, et al. Rates of bacterial co-infections and antimicrobial use in COVID-19 patients: a retrospective cohort study in light of antibiotic stewardship. *Eur J Clin Microbiol Infect Dis.* 2021;40(4):859-869. doi:10.1007/s10096-020-04063-8

26. Fajgenbaum DC, June CH. Cytokine storm. *N Engl J Med.* 2020;383(23):2255-2273. doi:10.1056/NEJMra2026131

27. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm: what we know so far. *Front Immunol.* 2020;11:11. doi:10.3389/fimmu.2020.01446

28. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. *J Clin Invest.* 130(5):2620-2629. doi:10.1172/JCI137244

29. McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. *Endocr Rev.* 1999;20(4):435-459. doi:10.1210/edrv.20.4.0375

30. Monaco C, Andreakos E, Kiriakidis S, et al. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. *Proc Natl Acad Sci USA.* 2004;101(15):5634-5639. doi:10.1073/pnas.040106101

31. Jeronimo CMP, Farias MEL, Val FFA, et al. Methylprednisolone as adjunctive therapy for patients hospitalized with COVID-19 (Metcovid): A randomised, double-blind, Phase IIb, Placebo-controlled Trial. *Clin Infect Dis.* Published online August 12, 2020. doi:10.1093/cid/ciaa1177

32. Horby PW, Pessoa-Amorim G, Peto L, et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial. *MedRxiv.* Published online February 11, 2021. doi:10.1101/2021.02.11.21249258

33. Pontali E, Volpi S, Signori A, et al. Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia. *J Allergy Clin Immunol.* 2021;147(4):1217-1225. doi:10.1007/jaci.2021.01.024

34. Kaplanis G, Bontemps D, Esnault P, et al. Combined anakinra and ruxolitinib treatment to rescue extremely ill COVID-19 patient: a pilot study. *Autoimmun Rev.* 2021;20(2):102726. doi:10.1016/j.autrev.2021.102726

35. Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. *Lancet Respir Med.* 2021;9(12):1407-1418. doi:10.1016/s2273-2600(21)00331-3

How to cite this article: Arcani R, Cauchois R, Suchon P, et al. Factors associated with dexamethasone efficacy in COVID-19. A retrospective investigative cohort study. *J Med Virol.* 2022;94:3169-3175. doi:10.1002/jmv.27712