Prioritization of Lean Six Sigma Success Factors using Pareto Analysis

Anand S Patel* and Kaushik M Patel

Mechanical Engineering Department, Institute of Technology, Nirma University, Ahmedabad-382481, India

*E-mail: anand.patel@nirmauni.ac.in

Abstract. In the era of Globalization and technological intervention, organizations are forced to innovate the product and deliverer at a competitive price in the shortest possible time. Hence the organizations have to adopt drastic and quick changes to improve productivity at optimum resources by adopting emerging strategies. Lean Six Sigma (LSS) has grown as one of the continuous improvement strategies in the recent past, evolving from the merger of Lean philosophy and Six Sigma methodology. Lean aims to reduce waste, whereas Six Sigma mainly focuses to reduce the variation. However, the implementation of LSS and sustenance of it is a massive challenge for the organizations. Therefore, this paper aims to understand and to explore the factors responsible for successful implementation of LSS from the literature. The eleven success factors are prioritized as vital few through Pareto analysis. Top Management commitment and involvement, Training and Education, Cultural change, Project Management skills, and link LSS with the business strategy analyzed as the five most significant factors in implementing LSS. This study will help the academicians, researchers, and professionals explore the factors as a research domain and implement LSS more smoothly.

Keyword: Lean Six Sigma, Success factors, Pareto analysis

1. Introduction

Since the Industrial Revolution, the world has changed a lot and continued to be changing more & more with the drastic pace of technological development, innovation, and interventions in the manufacturing sector and the service sector. Organizations experience stiff global competition due to the rapid changes and are compelled to innovate and adopt the new technology in the product and services. ‘Quality’ of product and services has emerged as one of the crucial requirements for the organizations, along with cost and delivery. Henceforth, strategies evolved over a period and adopted by the organizations in the last few decades.

Lean Six Sigma (LSS) is one strategy, which has evolved worldwide as a continuous improvement strategy in the last twenty years [1]. Lean and Six Sigma methodology came into existence separately in the last century and became popular improvement strategies. Based on the ample research and literature, both the methodologies focus on product and process improvements, particularly in the last twenty years [2]. According to Laureani and Antony, “LSS is a business improvement methodology that aims to maximize shareholder value by improving quality, speed, customer satisfaction, and costs: it achieves this by merging tools and principles from both Lean and Six Sigma” [3]. Sambo and Dalu reported that large-scale industries successfully employed such strategies compared to small and
medium scale industries because of structured and robust decision-making approaches [4]. Small and Medium-scale Enterprises (SMEs) lacks in the implementation of such continuous improvement strategies due to the constraint of resources in general [5]. Therefore, it is evident to explore the factors responsible for successful implementation of strategies like LSS in industries and studying their importance through research. The current study's primary focus is to identify the factors for successful implementation of LSS from the literature and finding out the vital few factors through Pareto analysis.

This paper is organized as follows. The research methodology is stated in the second section. The third section summarized the success factors for LSS implementation through a literature study. Analysis of factors through the Pareto principle is presented in the fourth section. The last section discusses the managerial implications of the current study with concluding remarks.

2. Research Methodology

Through this paper, an attempt is made to understand and to point out the factors for successful implementation of LSS in industries. The methodology followed for the current study includes a three-step approach, i.e., planning, conducting, and analysis & reporting. The planning part covers the study's objective and the selection of databases for the study. The articles were searched from the Scopus database, focusing on the study's objective, and articles published between 2005-2019. The keywords searched were "Lean Six Sigma," "critical success factors," "enabler," and "driver" in the title, in abstract, and keywords of the article. Fifty-three articles were found from the search. The selected articles were further screened based on the inclusion and exclusion parameters. The only peer-reviewed articles published in peer-reviewed academic journals are included in the study. Articles written in English considered for the study as English is used as a medium for communication worldwide. The conference papers, editorial notes, preface, books, reports, thesis, and working papers were excluded from the study, which has reduced the number of articles to thirty. The authors examined the selected articles in detail and, based on the study's relevance, finally considered twenty-two articles for further study. The research methodology followed is shown in figure 1.

Figure 1. Research Methodology
3. Literature Study

The historical developments in LSS and the gist of success factors for LSS implementation are presented in this section.

3.1. Evolution of Lean Six Sigma

The majority of the Japanese industries experienced numerous difficulties after the Second World War like deficiency of capital, skilled work-force, and restricted assets. One such industry was automobile manufacturer Toyota Motor Cooperation. Eiji Toyoda and Taiichi Ohno visited Ford’s plant in the USA to develop competitive manufacturing capabilities. However, Toyota developed its production system known as the Toyota Production System (TPS). TPS’s prime focus was on quality product, waste elimination, and reduced delivery time at the lowest cost [6]. Through TPS, the company achieved flexibility in production, reduction in inventory, defects, with minimal human efforts [7]. Through the research study, i.e., the International Motor Vehicle Programme of Massachusetts Institute of Technology, the term 'lean' first came into existence and was first coined by Krafcik [8,9]. However, globally, it got the attention through a book titled “The Machine that Changed the World” by Womack et al. [10]. Womack and Jones identified the five lean principles as customer-defined value, optimizing the value stream, smooth single piece flow through eliminating waste, pull concept, and perfection in product [11].

In the mid-1980s, Motorola, one of the US electronic product manufacturers, observed a higher defect rate compare to Japanese firm and created a structured statistics-based methodology known as Six Sigma methodology [12]. The prime focus was to minimize the variation in the products. The problem-solving methodology was four stages, i.e., Measure, Analyse, Improve and Control (MAIC) [13]. Motorola estimated a reduction in the defects by 94% on semiconductor products in six years from 1987 [14]. Later, Jack Welch adopted the Six Sigma program at General Electric and added one stage as Define (D) in the approach made it as DMAIC [15]. Since its inception, the Six Sigma methodology has been widely adopted in industries with broader application areas. Antony (2007) stated three generations of the Six Sigma developments in the implementation in his article. The first generation focused on reducing variation and defects. The second generation focused on improving performance through cost reduction and better product design, and the third generation focused on value creation for its stakeholders [16]. Due to the tremendous success of the Six Sigma program at Motorola and General Electric, plenty of US organizations adopted the Six Sigma program, such as Bank of America, DuPont, Commonwealth Health Corporation, Dow Chemical, 3M, Ford, American Express, and US Military [17].

Lean emphasis getting the things with the right quantity to the right place, at the right time, in the right quality through eliminating waste, whereas Six Sigma methodology emphasizes on minimizing the variation (defects) and understand the customer requirements. Despite great success, it was reported that Lean was not suitable for multi-facet problems, which demands statistical analysis, and all problems could not be resolved through the Six Sigma project [17]. Henceforth, an integrated approach from both the popular methodologies, i.e., Lean and Six Sigma, evolved in the early part of the twenty-first century termed "Lean Six Sigma"[18]. Taghizadegan defined LSS as “a business strategy in which the focus is to improve the bottom line and increase customer satisfaction”[19]. LSS has been widely adopted to enhance the quality of products and processes and profitability by the manufacturing and service industries since its inception [20]. Therefore, LSS emerged as a research domain and got attention from the researchers, academicians, and practitioners on aspects like frameworks, success and failure factors, and applicability in diverse filed.

3.2. Lean Six Sigma Success Factors

The emergence and importance of LSS and the research methodology adopted in the current study are explained in the previous section. This section attempts to identify the success factors for LSS implementation from the literature. According to Rockart (1979), the ‘Critical Success Factor (CSF)’ is the critical piece of information to the decision-makers to solved problems based on the
Different researchers termed the CSFs as vital issues comprehensively. A study on 'Success Factors' by Daniel in 1961 [21], Boynton and Zmud (1984) stated that the CSFs are critical issues for future success [22]. Different researchers termed the CSFs as enabler [23], driver [24], determinants [25], and facilitators [26]. Table 1 reports the various identified success factors from the literature for further analysis.

Table 1. Lean Six Sigma Success Factors

Sr. No.	LSS Success Factors	Reference Number
1	Awareness	[27] [28] [29] [3]
2	Benchmarking	[30]
3	Communication / Effective sharing – result sharing	[27] [31] [32] [33] [30] [1] [3] [34] [35]
4	Competencies of Master Black Belt, Black Belt	[34]
5	Continuous improvement	[27]
6	Cultural change / Quality Driven culture	[27] [28] [31] [32] [33] [36] [30] [37] [1] [38] [3] [34] [35]
7	Customer focus (participation, integration, satisfaction)	[27] [31] [30] [39] [38]
8	Employee knowledge & Skills	[27] [28] [33] [37] [40]
9	Employee retention	[30]
10	Employee satisfaction	[30]
11	Extending LSS to supply chain / suppliers	[28] [32] [33] [30] [37] [1]
12	Financial capability & accountability	[41] [34] [42]
13	Focus on results	[27]
14	Formation of cross-functional teams/Team work	[28] [36]
15	Information and knowledge sharing	[42]
16	Inventory Control	[30]
17	IT and innovation	[32]
18	Leadership	[27] [28] [32] [36] [41] [30] [39] [3] [42]
19	Linking Lean Six Sigma to the Business strategy	[27] [28] [31] [32] [33] [36] [30] [37] [40] [1] [3] [42]
20	Linking Lean Six Sigma to customers	[28] [32] [33] [36] [30] [37] [1] [3] [42]
21	Linking Lean Six Sigma to employees	[28] [32] [33] [30] [37]
22	LSS projects selection/prioritization	[3] [42]
23	Maturity level of LSS deployment	[27] [29]
24	Organisation infrastructure	[28] [31] [32] [37] [40] [1] [3] [42]
25	Prior implementation of quality improvement programs	[38]
26	Process Management	[30]
27	Product Design	[30]
28	Project prioritization, Project Management Skill	[27] [28] [31] [32] [33] [30] [41] [37] [40] [43] [1] [3] [34]
29	Resource allocation & Financial resources	[27] [29]
30	Reward system, Recognition system	[27] [28] [33] [30] [34] [35] [42]
31	Role of Quality department	[30]
32	Selection of top talented people	[31] [41] [3] [42]
33	Strategic planning	[27]
34	Supportive performance management and IT systems	[38]
35	Top Management Commitment and Involvement	[27] [28] [31] [32] [33] [36] [30] [29] [37] [40] [1] [38] [3] [34] [35] [42]
36	Top-down & bottom-up project selection	[38]
37	Training and Education	[27] [28] [31] [32] [33] [36] [30] [29] [37] [40] [43] [1] [38] [3] [34] [35] [42]
38	Understanding tools / techniques / methods	[32] [33] [30] [37] [1]
39	Vision and Plan Statement	[1]
4. Pareto Analysis of Success Factors

The identified LSS success factors through literature study are further analyzed through Pareto analysis. Pareto analysis is one of the quality control tools also adopted in the execution of LSS projects. Italian economist Vilfredo Pareto came up with the concept of 'vital few, trivial many,' also known as the '80-20' rule. Through Pareto analysis, a vital few are identified with significant impact as trivial many for the quality-related issues and helps to prioritize. The frequency of occurrence for the 39 extracted LSS success factors from 22 articles and percentage and cumulative frequencies calculated, as shown in table 2. The Pareto analysis of the LSS success factors can be easily understood from the figure 2.

Table 2. Calculation of Frequencies of LSS Success Factors

Sr. No.	LSS Success Factors	Frequency	Percentage of Frequency	Cumulative percentage of Frequency
1	Training and Education	17	9.77	9.77
2	Top Management Commitment and Involvement	16	9.20	18.97
3	Cultural change /Quality Driven culture	13	7.47	26.44
4	Project prioritization, Project Management Skill	13	7.47	33.91
5	Linking Lean Six Sigma to the Business strategy	12	6.90	40.80
6	Communication / Effective sharing – result sharing	9	5.17	45.98
7	Linking Lean Six Sigma to customers	9	5.17	51.15
8	Leadership	8	4.60	55.77
9	Organization infrastructure	8	4.60	60.34
10	Reward system, Recognition system	7	4.00	64.37
11	Extending LSS to supply chain /suppliers	6	3.40	67.82
12	Customer focus (participation, integration, satisfaction)	5	2.90	70.69
13	Employee knowledge & Skills	5	2.90	73.56
14	Linking Lean Six Sigma to employees	5	2.90	76.44
15	Understanding tools / techniques / methods	5	2.90	79.31
16	Awareness	4	2.30	81.61
17	Selection of top talented people	4	2.30	83.90
18	Financial capability & accountability	3	1.7	85.63
19	Formation of cross-functional teams/Teamwork	2	1.1	86.78
20	LSS projects selection/prioritization	2	1.1	87.93
21	Maturity level of LSS deployment	2	1.1	89.08
22	Resource allocation & Financial resources	2	1.1	90.23
23	Benchmarking	1	0.6	90.80
24	Competencies of Master Black Belt, Black Belt	1	0.6	91.38
25	Continuous improvement	1	0.6	91.95
26	Employee retention	1	0.6	92.53
27	Employee satisfaction	1	0.0	93.10
28	Focus on results	1	0.6	93.68
29	Information and knowledge sharing	1	0.6	94.25
30	Inventory Control	1	0.6	94.83
31	IT and innovation	1	0.6	95.40
32	Prior implementation of other quality improvement programs	1	0.6	95.98
33	Process Management	1	0.6	96.55
34	Product Design	1	0.6	97.13
35	Role of Quality department	1	0.6	97.70
36	Strategic planning	1	0.6	98.28
37	Supportive performance management and IT systems	1	0.6	98.83
38	Top-down & bottom-up project selection	1	0.6	99.43
39	Vision and Plan Statement	1	0.6	100.00
Total		**174**	**100**	
5. Managerial Implication
The analysis reveals the 11 success factors (28 percent) as 'vital few' accounted for 68 percent of the total. The most critical success factors of LSS implementation for an organization are "Training and Education," "Top Management Commitment and Involvement," "Cultural change," "Project Management Skill," "Linking Lean Six Sigma to the Business strategy," "Communication," "Linking Lean Six Sigma to customers," "Leadership," "Organisation infrastructure," "Reward system, Recognition system," and "Extending LSS to supply chain /suppliers." These prioritized 11 success factors provide meaningful insights to the professionals during the implementation of LSS.

6. Conclusion
An attempt is made to explore the factors responsible for successful implementation of LSS in an organization. The well-defined research methodology followed to get insights on LSS and identified the success factors from the literature study. Through Pareto analysis, the most important 11 success factors for LSS implementation are reported. Authors believe that these can be useful in preparing for a framework for LSS implementation for organisation in the future.

7. References
[1] Timans W, Antony J, Ahaus K and Van Solingen R 2012 Implementation of Lean Six Sigma in small- and medium-sized manufacturing enterprises in the Netherlands Journal of the Operational Research Society 63 339–53
[2] Chugani N, Kumar V, Garza-Reyes J A, Luis R-L, Upadhyay A and Authors F 2017 Investigating the Green Impact of Lean, Six Sigma, and Lean Six Sigma: A Systematic Literature Review International Journal of Lean Six Sigma 8 7–32
[3] Laureani A and Antony J 2012 Critical success factors for the effective implementation of Lean Sigma International Journal of Lean Six Sigma 3 274–83
[4] Samble R U and Dalu R S 2011 Six Sigma implementation in Indian medium scale automotive enterprises; a review and agenda for future research International Journal of Six Sigma and Competitive Advantage 6 224–42
[5] Kumar M, Antony J and Tiwari M K 2011 Six Sigma implementation framework for SMEs-a roadmap to manage and sustain the change International Journal of Production Research 49 5449–67
[6] Danese P, Manfe V and Romano P 2018 A Systematic Literature Review on Recent Lean Research: State-of-the-art and Future Directions International Journal of Management Reviews 20 579–605
[7] Bhamu J and Sangwan K S 2014 Lean manufacturing: Literature review and research issues International Journal of Operations and Production Management 34 876–940
[8] Krafcik J K F 1988 Triumph of the lean production system Sloan Management Review 30 41–52
[9] Hallgren M and Olhager J 2009 Lean and Agile manufacturing: External and internal drivers and performance outcomes International Journal of Operations and Production Management 29 976–99
[10] Womack J P, Jones D T and Roos D 1990 The Machine that Changed the World (New York)
[11] Womack J P and Jones D T 1996 Lean Thinking Banish Waste and Create Wealth in Your Cooperation (New York)
[12] Snee R D 2005 Six-Sigma: the evolution of 100 years of business improvement methodology *International Journal of Six Sigma and Competitive Advantage* 1 4–20
[13] Brady J E and Allen T T 2006 Six Sigma Literature: A Review and Agenda for Future Research *Quality and Reliability Engineering International* 22 335–67
[14] Montgomery D C and Woodall W H 2008 An overview of six sigma *International Statistical Review* 76 329–46
[15] Hoerl R W 2001 Six Sigma Black Belts: What Do They Need to Know? *Journal of Quality Technology* 33 391–406
[16] Antony J 2007 Is six sigma a management fad or fact? *Assembly Automation* 27 17–9
[17] Antony J, Snee R D and Hoerl R W 2017 Lean Six Sigma: Yesterday, Today and Tomorrow *International Journal of Quality & Reliability Management* 34 1073–93
[18] Sheridan J H 2000 Lean Sigma Synergy *Industry Week* 249 81–2
[19] Taghizadegan S 2006 *Essentials of Lean Six Sigma* (UK: Elsevier Inc.)
[20] Gijo E V, Antony J and Sunder M V 2019 Application of Lean Six Sigma in IT support services – a case study *The TQM Journal* 31 417–35
[21] Rockart J F 1979 Chief Executives Define Their Own Data Needs *Harvard Business Review* 57 81–93
[22] Boynton A C and Zmdr R W 1984 Assessment of Critical Success Factors *Sloan Management Review* 25 17–27
[23] Dubey R, Gunasekaran A, Childe S J, Fosso Wamba S and Papadopoulos T 2016 Enablers of Six Sigma: contextual framework and its empirical validation *Total Quality Management & Business Excellence* 27 1346–72
[24] Salonitis K and Tsinopoulos C 2016 Drivers and Barriers of Lean Implementation in the Greek Manufacturing Sector *Procedia CIRP* 57 189–94
[25] Dora M, Kumar M and Gellynck X 2016 Determinants and barriers to lean implementation in food-processing SMEs - A multiple case production analysis *Production Planning & Control* 27 1–23
[26] Psychogios A G and Tsonisorn L K 2012 Towards an integrated framework for Lean Six Sigma application: Lessons from the airline industry *Total Quality Management & Business Excellence* 23 397–415
[27] Swarnakar V, Singh A R, Antony J, Kr Tiwari A, Cudney E and Furterer S 2020 A multiple integrated approach for modelling critical success factors in sustainable LSS implementation *Computers and Industrial Engineering* 150 1–24
[28] Patel S, Desai D A, Narkhede B E, Maddutely K and Raut R 2019 Lean Six Sigma: Literature review and implementation roadmap for manufacturing industries *International Journal of Business Excellence* 19 447–72
[29] Kader Ali N N, Choong C W and Jayaraman K 2016 Critical success factors of Lean Six Sigma practices on business performance in Malaysia *International Journal of Productivity and Quality Management* 17 456–73
[30] Lande M, Shrivastava R L and Seth D 2016 Critical success factors for Lean Six Sigma in SMEs (small and medium enterprises) *The TQM Journal* 28 613–35
[31] Juliani F and de Oliveira O J 2019 Lean Six Sigma principles and practices under a management perspective *Production Planning & Control* 31 1223–44
[32] Stankalla R, Koval O and Chromjakova F 2018 A review of critical success factors for the successful implementation of Lean Six Sigma and Six Sigma in manufacturing small and medium-sized enterprises *Quality Engineering* 30 453–68
[33] Alhuraish I, Robledo C and Kobi A 2017 A comparative exploration of lean manufacturing and six sigma in terms of their critical success factors *Journal of Cleaner Production* 164 325–37
[34] Jayaraman K and Teo L K 2010 A conceptual framework for critical success factors of Lean Six Sigma: Implementation on the performance of electronic manufacturing service industry *International Journal of Lean Six Sigma* 10 191–215
[35] Mustapha M R, Abu Hasen F and Muda M S 2019 Lean Six Sigma implementation: multiple case studies in a developing country *International Journal of Lean Six Sigma* 10 523–39
[36] Tsonisorn L K and Psychogios A G 2016 Road towards Lean Six Sigma in service industry: a multi-factor integrated framework *Business Process Management Journal* 22 812–34
[37] Douglas A, Douglas J and Ochieng J 2015 Lean Six Sigma implementation in East Africa: Findings from a pilot study *The TQM Journal* 27 772–80
[38] Psychogios A G, Atanasovski J and Tsonisorn L K 2012 Lean Six Sigma in a service context: A multi-factor application approach in the telecommunication industry *International Journal of Quality and Reliability Management* 29 122–39
[39] Habidin N F and Yusof S M 2013 Critical success factors of lean six sigma for the malaysian automotive industry *International Journal of Lean Six Sigma* 4 60–82
[40] Abu Bakar F A, Subari K and Mohd Daril M A 2015 Critical success factors of Lean Six Sigma deployment: a current review *International Journal of Lean Six Sigma* 6 339–48
[41] Laureani A and Antony J 2018 Leadership—a critical success factor for the effective implementation of Lean Six Sigma *Total Quality Management & Business Excellence* 29 502–23
[42] Ruben R Ben, Vinodh S and Asokan P 2018 Lean Six Sigma with environmental focus: review and framework *International Journal of Advanced Manufacturing Technology* 94 4023–37
[43] Näslund D 2013 Lean and six sigma – critical success factors revisited *International Journal of Quality and Service Sciences* 5 86–100