Data article

Relative importance of wildlife and livestock transmission route of brucellosis in southwestern Uganda

Pius Mbuya Ninaa,b,d,*, Herwig Leirsc, Samuel Mugishab, Patrick Van Dammea,e

a Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
b College of Natural Sciences, Department of Biology, Makerere University, Kampala, Uganda
c Department of Evolutionary Ecology, University of Antwerp, Belgium
d Department of Environmental Sciences and Management, International University of East Africa, Kampala, Uganda
e Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 23 November 2016
Received in revised form
20 March 2018
Accepted 25 May 2018
Available online 29 May 2018

\textbf{A B S T R A C T}

The data in brief provides a descriptive summary of the field data collected using Eco-health approach in order to support local effort aimed at creating information base for taking evidence-based decisions, especially in regard to wildlife conservation outside protected area and range resource management. The data were collected between June 2012 and July 2014 on a range of issues including wild animals, livestock, household income and cost of diseases control in cattle. In a nutshell the data article shows spatial pattern of a declining brucellosis prevalence in cattle linked to animal population density with increasing distance away from the Lake Mburo National Park (LMNP) boundary in southwestern Uganda. It is the trend of animal distribution in private land that the pastoralist communities perceived as influencing economic losses associated with diseases affecting cattle production. The pastoralists strongly believe that wild ungulates grazing with cattle outside the park on a daily basis present a potential risk of disease transmission which adversely affects their cherished source of livelihood. This article refers to “Brucellosis in cattle and...
Specifications Table

Subject area	Agricultural and Biological Sciences
More specific subject area	Ecohealth approach to disease control at wildlife-livestock nexus
Type of data	Tables, text file and a figure
How data was acquired	Two data sets were obtained one focusing on serological surveys and another on socio-economics of pastoralist households. The first set of data were collected through serological surveys where blood samples were collected from cattle at household level and analyzed for brucellosis in cattle [4]. Another data set contained socio-economic data which were collected through interviews with respondents from randomly selected households. The households were mapped prior to the study using a hand-held GPS receiver for easy identification. Cattle blood sample were from the same homesteads selected for the interviews. We also surveyed wild animals' distribution outside protected area using established transect lines [3].
Data format	Raw, filtered and analyzed
Experimental factors	Sera were collected from 1962 cattle between August 2012 and June 2013 from 330 homesteads that were proportionately distributed in samples of 55 across six zones along a distance gradient from LMNP. All blood samples were centrifuged and the sera stored at −80 °C in the microbiology laboratory of Mbarara University, Mbarara before carrying out screening and subsequent confirmatory tests for brucellosis.
Experimental features	An indirect multi-species immunosorbent assay (iELISA) using Brucella S-LPS antigen was developed. Serial testing of the cattle sera for anti-B. abortus antibodies was conducted using the Rose Bengal Plate Test (RBPT) [1], and later confirmed with iELISA. A confirmatory positive sample was one that tested positive for both RBPT and I-ELISA (titers 1:80).
Data source location	Kiruhura District of western Uganda
Data accessibility	Data are contained within this article

Value of the data

- The data variables indicate unique circumstances of brucellosis transmission in cattle and household income that might inform a monitoring plan for local disease control.
- The data provides information evidencing strong concerns the local communities have regarding the presence of wild species of animals on their private farms and ranches around Lake Mburo National Park in southwestern Uganda.
- Therefore, the data in this article allows other interested researchers access and use of raw facts in different ways that might extend statistical analysis and subsequently lead to a more comprehensive understanding of pastoralists’ development trajectory at the wildlife-livestock nexus.
1. Methods and materials

1.1. Data

The dataset in this article contains variables such as spatial pattern of wild animals outside the park, livestock species reared in Lake Mburo conservation area and economic losses pastoralist communities incur due to limitations imposed on cattle production by diseases. The Fig. 1 illustrates the study design adopted for animal surveys during the study that generated the data presented herein. Tables 1–4 show the spatial pattern of wild animals’ distribution and proportions of cattle.
breeds in each distance zone along a gradient from LMNP. Similarly, Tables 5–7 provide descriptive summary and statistics of major cattle diseases in the study area, brucellosis prevalence in cattle and symptomatic abortions.

Experimental design, materials and methods

A population survey of wild ungulates was carried out along 3 transect lines in order to determine any spatial association between location of animals and homesteads from Lake Mburo National Park (LMNP) boundary.

Wild ungulates sighted on livestock grazing farms/ranches along a distance gradient from the LMNP were counted and recorded from June 2012 to July 2014, using a standard method described by Buckland et al. [2] for estimating animal density and abundance. Three transect lines about 8 km apart were laid perpendicular to the northern boundary of LMNP, since wild animals were dispersed to the ranches and farms located on the northern side of the park (Fig. 1).
Table 4
Pooled data on density of wild ungulates and livestock per transect (T) and control (C) lines collected between June 2012 and March 2013.

Species of wild animals	Distance from Park Boundary in Km					
	0–4	4–8	8–12	12–16	16–20	20–24
Zebra - Equus burchelli [T]	53.25	75.25	40.5	36.75	18.5	0.5
Zebras - Equus burchelli [C]	71.75	10.5	16.25	27.25	4.75	0
Bushbucks - Trogelophus scriptus [T]	17.25	4.75	6	3.5	1.25	1
Bushbucks - Trogelophus scriptus [C]	10.25	2	4	2.75	0.75	0
Impalas - Aepyceros melampus [T]	47.75	27.25	25	6.5	1.5	0
Impalas - Aepyceros melampus [C]	10.25	96.25	26.75	22.25	2.25	1.75

Domestic animals grazing in the fields

Species	Distance (Km)	Tested	Seropositive	% Prevalence
Cows - Mixed Breeds [T]	173.25	292	176	60.27
Cows - Mixed Breeds [C]	328.75	291	151	51.89
Goats - Mixed Breeds [T]	73.5	292	152	52.05
Goats - Mixed Breeds [C]	35.25	292	114	39.04
Sheep - Local Breed [T]	4.5	292	94	32.19
Sheep - Local Breed [C]	7.75	292	79	27.15

Note: Both wild species and domesticated animals sighted along each of the transects were counted and recorded along T = transect lines walked and C = control lines passing across the transect lines.

Table 5
Diseases of great concern to the pastoralist communities around Lake Mburo National Park.

Major diseases	Spatial ranking of cattle diseases (0 - 24 km)					
	0 - 4 (n = 60)	4 - 8 (n = 58)	8 - 12 (n = 64)	12 - 16 (n = 60)	16 - 20 (n = 62)	20 - 24 (n = 62)
Tick & Tick-borne diseases	40(66.7%)	42(72.4%)	47(73.5%)	43(71.7%)	45(72.6%)	44(72.6%)
Brucellosis	14(33.3%)	13(22.4%)	13(20.3%)	10(16.7%)	8(12.9%)	9(12.9%)
Foot and mouth	2(3.3%)	2(3.4%)	2(3.1%)	3(5%)	4(6.5%)	4(6.5%)
Others	4(6.7%)	1(1.7%)	2(3.1%)	4(6.6%)	5(8.1%)	5(8.1%)

Table 6
Brucellosis sero-prevalence in cattle reared within Lake Mburo Conservation Area.

Distance (km)	Tested	Seropositive	% Prevalence			
Minimum	Maximum	Mean ± SE				
-------	--------	------------				
0 - 4	292	176	60.27	0	5	3.26 ± 0.12
4 - 8	291	151	51.89	1	5	2.80 ± 0.11
8 - 12	292	152	52.05	1	5	2.81 ± 0.11
12 - 16	292	114	39.04	0	4	2.11 ± 0.13
16 - 20	292	94	32.19	0	4	1.74 ± 0.14
20 - 24	291	79	27.15	0	3	1.45 ± 0.14

Acknowledgements

This study was interventional community-based socio-economic and serological surveys carried out with the funds from IDRC – Canada, project No. 106152-001 through the Department of Biology, Makerere University. The authors also appreciate the support of the assistant district veterinary officers at Sanga, Kanyaryeru and Nyakashashara sub-counties. Data analysis and manuscript preparation was done at the University of Antwerp, Belgium, supported by VLIR-UOS via HEFS Platform.
Our sincere thanks go to Prof. Jean Pierre Van Geertruyden and Lemey Gwen of University of Antwerp for all coordination work.

Funding sources

This work is part of a Ph.D. thesis of Mr. Pius Mbuya Nina and received partial funding from IDRC - Canada, through Zoonotic Project at the Department of Biology, Makerere University - Uganda.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.135.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.135.

References

[1] G.G. Alton, L.M. Jones, R.D. Angus, J.M. Verger, Techniques for the Brucellosis Laboratory, INRA Publication, Paris, ISEN France, 1988.
[2] S.T. Buckland, D.R. Anderson, K.P. Burnham, J.L. Lake, D.L. Borchers, L. Thomas, Introduction to Distance Sampling: Estimating Abundance of Biological Populations, Oxford University Press, Oxford (2001) 432.
[3] P.M. Nina, S. Mugisha, G.I. Basuta, K.E, Diseases affecting livestock production mediate landscape scale of a changing pasture regime in Lake Mbuuro Conservation Area Uganda, Int. J. Biol. Res. 3 (1) (2015) 12–18.
[4] P.M. Nina, S. Mugisha, L. Herwig, G.I. Basuta, P. Van Damme, Brucellosis in cattle and micro-scale spatial variability of pastoral household income from dairy production in south western Uganda, Acta Trop. 175 (2017) 130–137.

Table 7

Distance in km	H/steads	Abortions per km²	Abortions in 100 cattle
0 – 4	60	144.75	10.52(9.76–11.26)
4 – 8	58	136.25	8.25(7.45–9.05)
8 – 12	64	116.75	8.30(7.83–8.77)
12 – 16	60	45.25	4.64(3.66–5.62)
16 – 20	62	29.75	2.96(2.04–3.88)
20 – 24	62	20	2.27(1.75–2.79)

Note: Selected homesteads within each distance zone were the data collection points.

harvest call (ZIUS2013VOA0902).