Approximate Completely Positive Semidefinite Rank

Paria Abbasi1 Andreas Klingler2 Tim Netzer1

1Department of Mathematics, University of Innsbruck
2Institute for Theoretical Physics, University of Innsbruck

Effective Methods in Algebraic Geometry Conference (MEGA)
June 2021
What Is It About?

It is about a special matrix cone called the cone of completely positive semidefinite matrices (CPSD) and in particular, the related rank. The cone CPSD is a canonical non-commutative generalization of the intensively-studied completely positive cone (CP) and both together are subcones of doubly non-negative cone (DNN).

\[\text{CP}^n \subseteq \text{CPSD}^n \subseteq \text{DNN}^n \]
Doubly Non-Negative Cone

$$\mathcal{PSD}^n = \{ A \in S^n \mid \exists x_1, x_2, \cdots, x_n \in \mathbb{R}^m, \text{for some } m \geq 1; A_{ij} = \langle x_i, x_j \rangle \}$$
Doubly Non-Negative Cone

\[\mathcal{P}_{SD}^n = \{ A \in S^n \mid \exists x_1, x_2, \ldots, x_n \in \mathbb{R}^m, \text{ for some } m \geq 1; A_{ij} = \langle x_i, x_j \rangle \} \]

\[\mathcal{DNN}^n = \mathcal{P}_{SD}^n \cap \mathbb{R}^{n \times n} \]

\[= \{ A \in S^n \mid \exists x_1, x_2, \ldots, x_n \in \mathbb{R}^m, \text{ for some } m \geq 1 \text{ with } \angle(x_i, x_j) \leq \pi/2; A_{ij} = \langle x_i, x_j \rangle \} \]

- Proper Cone
- smallest possible \(m = \text{rank}(A) \leq n \)
Completely Positive Cone

\[A \in DNN_n \quad \xrightarrow{\exists \text{iso.}} \quad A \in CP^n \]

\[CP_n = \{ A \in S_n | \exists x_1, x_2, \ldots, x_n \in \mathbb{R}_{m+}^n, \text{for some } m \geq 1; A_{ij} = \langle x_i, x_j \rangle \} \]

\[\text{Proper Cone} \quad \text{CP}-\text{rank}(A) = \min \{ m \geq 1 | \exists x_1, \ldots, x_n \in \mathbb{R}_m^+; A = (\langle x_i, x_j \rangle)_{i,j=1}^n \} \]

\[\leq n \leq 4 \quad [\text{Shaked-Monderer, Berman, Bo-}] \quad \leq \frac{(n+1)^2}{2} - 4 \quad n \geq 5 \quad [\text{mze, Jarre and Schachinger}] \]
Completely Positive Cone

\[A \in \mathcal{DNN}^n \rightarrow \exists \text{iso.} \rightarrow A \in \mathcal{CP}^n \]

\[\mathcal{CP}^n = \{ A \in \mathcal{S}^n \mid \exists x_1, x_2, \ldots, x_n \in \mathbb{R}_+^m, \text{ for some } m \geq 1; A_{ij} = \langle x_i, x_j \rangle \} \]
Completely Positive Cone

\[\mathcal{CP}^n = \{ A \in S^n \mid \exists x_1, x_2, \cdots, x_n \in \mathbb{R}_+^m, \text{ for some } m \geq 1; A_{ij} = \langle x_i, x_j \rangle \} \]

- **Proper Cone**

- **\(CP\)-rank(\(A \)) = \min \{ m \geq 1 \mid \exists x_1, \cdots, x_n \in \mathbb{R}_+^m; A = (\langle x_i, x_j \rangle)_{i,j=1}^n \} \]
 \[
 \leq n \quad n \leq 4 \quad \text{[Shaked-Monderer, Berman, Bomze, Jarre and Schachinger]}
 \]
 \[
 \leq \left(\frac{n+1}{2} \right) - 4 \quad n \geq 5
 \]
Completely Positive Semidefinite Cone

\[x_i = (x_{i1}, \ldots, x_{im})^T \in \mathbb{R}^m \rightarrow D_i = \text{Diag}(x_{i1}, \ldots, x_{im})\] and \[x_i^T x_j = \text{tr}(D_i D_j)\]

\[A = (\langle x_i, x_j \rangle)_{i,j=1}^n \in \mathcal{CP}^n \rightarrow A = (\langle D_i, D_j \rangle)_{i,j=1}^n\] and \[D_i \in \mathcal{PSD}^m\]
Completely Positive Semidefinite Cone

\[x_i = (x^i_1, \ldots, x^i_m)^T \in \mathbb{R}^m \rightarrow D_i = \text{Diag}(x^i_1, \ldots, x^i_m) \text{ and } x_i^T x_j = \text{tr}(D_i D_j) \]

\[A = (\langle x_i, x_j \rangle)_{i,j=1}^n \in \mathcal{CP}^n \rightarrow A = (\langle D_i, D_j \rangle)_{i,j=1}^n \text{ and } D_i \in \mathcal{PSD}^m \]

\(\mathcal{CPSD}^n = \{ A \in S^n \mid \exists X_1, \ldots, X_n \in \mathcal{PSD}^m, \text{ for some } m \geq 1; A_{ij} = \underbrace{\langle X_i, X_j \rangle}_{\text{tr}(X_i X_j)} \} \)
The set of completely positive semidefinite matrices is a proper subset of the cone of positive semidefinite matrices, which in turn is a proper subset of the cone of positive matrices. It is closed for $n \in \{4\}$ (J.E. Maxfield and H. Minc), but not closed for $n \geq 10$ as shown by the non-closure of a certain affine section of the cone of completely positive semidefinite matrices (K. Dykema, V. I. Paulsen, and J. Prakash). It is still unknown for $n \in \{5, \ldots, 9\}$.
Set of $CPSD$ matrices is pointed, full-dimensional convex cone, but closed?
Set of \mathcal{CPSD} matrices is pointed, full-dimensional convex cone, but closed?

It is closed for $n \in [4]$ ($\mathcal{CP}^n = \mathcal{DN}^n$ [J.E. Maxfield and H. Minc]), not closed for $n \geq 10$ shown by non-closure of a certain affine section of \mathcal{CPSD}^n [K. Dykema, V.I. Paulsen and J. Prakash]

Still unknown for $n \in \{5, \cdots, 9\}!$
Completely Positive Semidefinite Cone

Lemma
For each $n \geq 10$, $CPSD^n$ is not a semialgebraic set.
Lemma

For each $n \geq 10$, \mathcal{CPSD}^n is not a semialgebraic set.

$$\mathcal{CPSD}^n = \bigcup_{r \in \mathbb{N}} \mathcal{CPSD}_{\leq r}^n = \bigcup_{r \in \mathbb{N}} \{ A = (\langle X_i, X_j \rangle)_{i,j}^n \mid X_1, \ldots, X_n \in \mathcal{PSD}^r \},$$

$$\mathcal{CPSD}_{\leq r}^n \subseteq \mathcal{CPSD}_{\leq r+1}^n \quad \forall r \geq 1$$

Lemma

For each $n, r \geq 1$, the set $\mathcal{CPSD}_{\leq r}^n$ is closed and semialgebraic.
Completely Positive Semidefinite Rank

For $A \in \text{CP}SD^n$,

$$\text{CP}SD\text{-rank}(A) = \min\{m \geq 1 | \exists \{X_i\}_{i=1}^n \subseteq \text{PSD}^m; A = (\langle X_i, X_j \rangle)_{i,j=1}^n\}$$
Completely Positive Semidefinite Rank

For $A \in \mathcal{CP}^n$,

$$\mathcal{CPSD}\text{-rank}(A) = \min \{ m \geq 1 \mid \exists \{X_i\}_{i=1}^n \subseteq \mathcal{PSD}^m; A = (\langle X_i, X_j \rangle)_{i,j=1}^n \}$$

$A \in \mathcal{CP}^n$, \quad $\mathcal{CPSD}\text{-rank}(A) \leq \mathcal{CP}\text{-rank}(A) \leq n^2/2 + O(n)$
Completely Positive Semidefinite Rank

For $A \in \mathcal{CPSD}^n$,

$$\text{CPSD-rank}(A) = \min\{m \geq 1| \exists \{X_i\}_{i=1}^n \subseteq \mathcal{PSD}^m; A = (\langle X_i, X_j \rangle)_{i,j=1}^n\}$$

$$A \in \mathcal{CP}^n, \quad \text{CPSD-rank}(A) \leq \text{CP-rank}(A) \leq \frac{n^2}{2} + O(n)$$

Is there any upper bound on the CPSD-rank of general \mathcal{CPSD}^n-matrices in terms of matrix size?

$$\left\{ \begin{array}{ll}
\leq n & 1 \leq n \leq 4 \\
\text{Unknown} & 5 \leq n \leq 9 \\
\text{No} & n \geq 10
\end{array} \right.$$
Completely Positive Semidefinite Rank

For $A \in \mathbb{CPSD}^n$,

$$\mathbb{CPSD}\text{-rank}(A) = \min\{m \geq 1 | \exists \{X_i\}_{i=1}^n \subseteq \mathbb{PSD}^m; A = (\langle X_i, X_j \rangle)_{i,j=1}^n\}$$

$$A \in \mathbb{CP}^n, \quad \mathbb{CPSD}\text{-rank}(A) \leq \mathbb{CP}\text{-rank}(A) \leq n^2/2 + O(n)$$

Is there any upper bound on the \mathbb{CPSD}-rank of general \mathbb{CPSD}^n-matrices in terms of matrix size?

$$\begin{cases} \leq n & 1 \leq n \leq 4 \\ \text{Unknown} & 5 \leq n \leq 9 \\ \text{No} & n \geq 10 \end{cases}$$

For $n \geq 10$ the cpsd-rank of elements from \mathbb{CPSD}^n is unbounded.
Completely Positive Semidefinite Rank

For $A \in \mathcal{CP}_{SD}^n$,

\[
\text{CP}_{SD}\text{-rank}(A) = \min \{ m \geq 1 | \exists \{X_i\}_{i=1}^n \subseteq \mathcal{P}SD^m; A = (\langle X_i, X_j \rangle)_{i,j=1}^n \}
\]

\[
A \in \mathcal{CP}^n, \quad \text{CP}_{SD}\text{-rank}(A) \leq \text{CP}\text{-rank}(A) \leq \frac{n^2}{2} + O(n)
\]

Is there any upper bound on the CP_{SD}-rank of general \mathcal{CP}_{SD}^n-matrices in terms of matrix size?

\[
\begin{cases}
\leq n & 1 \leq n \leq 4 \\
\text{Unknown} & 5 \leq n \leq 9 \\
\text{No} & n \geq 10
\end{cases}
\]

For $n \geq 10$ the cpsd-rank of elements from \mathcal{CP}_{SD}^n is unbounded.

If such a bound exists $\rightarrow \exists r; \mathcal{CP}_{SD}^n = \mathcal{CP}_{SD}^{n \leq r}$ \rightarrow $\mathcal{CP}_{SD}^n = \text{cl}(\mathcal{CP}_{SD}^{n})$ \underline{fails for $n \geq 10$}
Completely Positive Semidefinite Rank

For \(A \in \text{CPSD}^n \),

\[
\text{CPSD-rank}(A) = \min\{m \geq 1 \mid \exists \{X_i\}_{i=1}^n \subseteq \text{PSD}^m; A = (\langle X_i, X_j \rangle)_{i,j=1}^n\}
\]

\[
A \in \text{CP}^n, \quad \text{CPSD-rank}(A) \leq \text{CP-rank}(A) \leq n^2/2 + O(n)
\]

Is there any upper bound in terms of matrix size on the \(\text{CPSD} \)-rank of general \(\text{CPSD}^n \)-matrices?

\[
\begin{cases}
\leq n & 1 \leq n \leq 4 \\
\text{Unknown} & 5 \leq n \leq 9 \\
\text{No} & n \geq 10
\end{cases}
\]

For \(n \geq 10 \) the cpsd-rank of elements from \(\text{CPSD}^n \) is unbounded.

How about the approximate case? Can we find an approximation of the \(\text{CPSD} \)-matrices of relatively small \(\text{CPSD} \)-rank?
Theorem. Let $M = (\langle A_i, A_j \rangle)_{i,j=1}^n \in \mathcal{CPSD}^n$, set $\ell := \max_i \text{tr}(A_i)$ and $L := \max_i M_{ii}$. Then for every $0 < \varepsilon < \frac{1}{2} \min\{\ell^2, L\}$ there exists some $N \in \mathcal{CPSD}^n$ with

$$\text{cpsd-rank}(N) \leq \min \left\{ n \left\lfloor \frac{9L\ell^2}{2\varepsilon^2} \right\rfloor, \frac{(6\ell)^4 \log \left(n \left\lfloor \frac{18L\ell^2}{\varepsilon^2} \right\rfloor + 1 \right)}{\varepsilon^2} \right\}$$

and

$$|M_{ij} - N_{ij}| < \varepsilon \quad \text{for all } i, j \in [n].$$
Theorem. Let $M = (\langle A_i, A_j \rangle)_{i,j=1}^n \in \mathbb{C}^{n \times n}$, set $\ell := \max_i \text{tr}(A_i)$ and $L := \max_i M_{ii}$. Then for every $0 < \varepsilon < \frac{1}{2} \min\{\ell^2, L\}$ there exists some $N \in \mathbb{C}^{n \times n}$ with

$$\text{cpsd-rank}(N) \leq \min \left\{ n \left[\frac{9L\ell^2}{2\varepsilon^2} \right], \frac{(6\ell)^4 \log \left(n \left[\frac{18L\ell^2}{\varepsilon^2} \right] + 1 \right)}{\varepsilon^2} \right\}$$

and

$$|M_{ij} - N_{ij}| < \varepsilon \quad \text{for all } i, j \in [n].$$

- For the first upper bound we make use of the Approximate Carathéodory Theorem
Theorem. Let \(M = (\langle A_i, A_j \rangle)_{i,j=1}^{n} \in \mathcal{CPSD}^n \), set \(\ell := \max_i \text{tr}(A_i) \) and \(L := \max_i M_{ii} \). Then for every \(0 < \varepsilon < \frac{1}{2} \min\{ \ell^2, L \} \) there exists some \(N \in \mathcal{CPSD}^n \) with

\[
\text{cpsd-rank}(N) \leq \min \left\{ n \left[\frac{9L\ell^2}{2\varepsilon^2} \right], \frac{(6\ell)^4 \log \left(n \left[\frac{18L\ell^2}{\varepsilon^2} \right] + 1 \right)}{\varepsilon^2} \right\}
\]

and

\[
|M_{ij} - N_{ij}| < \varepsilon \quad \text{for all } i, j \in [n].
\]

- For the first upper bound we make use of the *Approximate Carathéodory* Theorem
- Further, the second bound is obtained by applying the JL-Lemma
Theorem. Let $M = (\langle A_i, A_j \rangle)_{i,j=1}^n \in \mathcal{CPSD}^n$, set $\ell := \max_i \text{tr}(A_i)$ and $L := \max_i M_{ii}$. Then for every $0 < \varepsilon < \frac{1}{2} \min \{ \ell^2, L \}$ there exists some $N \in \mathcal{CPSD}^n$ with

$$\text{cpsd-rank}(N) \leq \min \left\{ n \left[\frac{9L\ell^2}{2\varepsilon^2} \right], \frac{(6\ell)^4 \log \left(n \left[\frac{18L\ell^2}{\varepsilon^2} \right] + 1 \right)}{\varepsilon^2} \right\}$$

and

$$|M_{ij} - N_{ij}| < \varepsilon \quad \text{for all } i, j \in [n].$$

- For the first upper bound we make use of the *Approximate Carathéodory* Theorem
- Further, the second bound is obtained by applying the JL-Lemma
- Which of the bounds is better depends on our setup
 - fix n and ε getting smaller, first upper bound better
 - fix ε and $n \to \infty$, second upper bound significantly smaller
Some Remarks and Examples

- First approximation procedure can be used to generate a completely positive approximation: for \(M = (\langle D_i, D_j \rangle)_{i,j=1}^n \in \mathcal{CP}^n \subseteq \mathcal{CPSD}^n \), the approximation \(N \) is completely positive and

\[
\mathcal{CPSD}-\text{rank}(N) \leq \mathcal{CP}-\text{rank}(N) \leq n \left[\frac{9L\ell^2}{2\varepsilon^2} \right]
\]
Some Remarks and Examples

First approximation procedure can be used to generate a completely positive approximation: for \(M = (\langle D_i, D_j \rangle)_{i,j=1}^n \in \mathcal{CP}^n \subseteq \mathcal{CPSD}^n \), the approximation \(N \) is completely positive and

\[
\mathcal{CPSD}\text{-rank}(N) \leq \mathcal{CP}\text{-rank}(N) \leq n \left\lfloor \frac{9L\ell^2}{2\varepsilon^2} \right\rfloor
\]

- \(M \in \mathcal{CP}^n \) with \(M_{ii} = 1 \) → Gram representation by non-negative unit vectors \(\{x_i\}_{i=1}^n \) with \(L = 1 \) and \(\ell = \max_i \|x_i\|_1 \)

\[
\mathcal{CP}\text{-rank}(N) \leq n \left\lfloor \frac{9 \max_i \|x_i\|_1^2}{2\varepsilon^2} \right\rfloor < \binom{n+1}{2} - 4
\]
Some Remarks and Examples

- First approximation procedure can be used to generate a completely positive approximation: for \(M = (\langle D_i, D_j \rangle)_{i,j=1}^n \in \mathcal{CP}^n \subseteq \mathcal{CP}^{SD}^n \), the approximation \(N \) is completely positive and

\[
\mathcal{CP}^{SD}\text{-rank}(N) \leq \mathcal{CP}\text{-rank}(N) \leq n \left\lfloor \frac{9L\ell^2}{2\varepsilon^2} \right\rfloor
\]

- \(M \in \mathcal{CP}^n \) with \(M_{ii} = 1 \rightarrow \) Gram representation by non-negative unit vectors \(\{x_i\}_{i=1}^n \) with \(L = 1 \) and \(\ell = \max_i \|x_i\|_1 \)

\[
\mathcal{CP}\text{-rank}(N) \leq n \left\lfloor \frac{9 \max_i \|x_i\|_1^2}{2\varepsilon^2} \right\rfloor < \left(\frac{n + 1}{2} \right) - 4
\]

- \(\mathcal{I} = (\langle E_{ii}, E_{jj} \rangle) \in \mathcal{CP}^{SD}^n \), \(\mathcal{CP}^{SD}\text{-rank}(\mathcal{I}) = n, \ell = L = 1 \)

\[
\mathcal{CP}^{SD}\text{-rank}(N) \leq \frac{6^4 \log \left(n \left\lfloor \frac{18}{\varepsilon^2} \right\rfloor + 1 \right)}{\varepsilon^2} < n
\]
Let $M \in \mathcal{CPSD}^n$ with Gram representation consisting of orthogonal projections $P_1, \ldots, P_n \in \mathcal{PSD}^m$. Further set $L := \max_i M_{ii}$. Then for all $0 < \varepsilon < \frac{1}{2} L^2$ there exists some $N \in \mathcal{CPSD}^n$ with

$$\text{CPSD-rank}(N) \leq \min \left\{ n \left\lceil \frac{9L^3}{2\varepsilon^2} \right\rceil, \frac{(6L)^4 \log \left(n \left\lceil \frac{18L^3}{\varepsilon^2} \right\rceil + 1 \right)}{\varepsilon^2} \right\}$$

and

$$|M_{ij} - N_{ij}| < \varepsilon \quad \text{for all } i, j \in [n].$$
Some Remarks and Examples

Let $M \in \mathcal{CP}SD^n$ with Gram representation consisting of orthogonal projections $P_1, \ldots, P_n \in \mathcal{PSD}^m$. Further set $L := \max_i M_{ii}$. Then for all $0 < \varepsilon < \frac{1}{2}L^2$ there exists some $N \in \mathcal{CP}SD^n$ with

$$\mathcal{CP}SD\text{-rank}(N) \leq \min \left\{ n \left\lceil \frac{9L^3}{2\varepsilon^2} \right\rceil, \frac{(6L)^4 \log \left(n \left\lceil \frac{18L^3}{\varepsilon^2} \right\rceil + 1 \right)}{\varepsilon^2} \right\}$$

and

$$|M_{ij} - N_{ij}| < \varepsilon \quad \text{for all } i, j \in [n].$$