Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system

Jianbo Bai1, Yang Li and Jianhao Chen

College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China

1bai_jianbo@163.com

Abstract. The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.

1. Introduction

Although traditional PID controllers have been most commonly used in HVAC (Heating Ventilation and Air-conditioning) systems, it has sometimes been difficult to compensate fully for load disturbance and to keep controlled variables close to set point values within the prescribed range \cite{1-3}, especially for water chiller units, the most important unit in HVAC systems, whose control performance will have a great impact on the whole operation of an HVAC system. In order to obtain good control performance, an adaptive control method based on control performance assessment for a water chiller unit was proposed in this paper.

Currently many adaptive control methods have been applied in various engineering areas, such as robots, industrial chemistry, power system operation, military weapons, etc., and they normally have better control effect \cite{4-6}. Although these adaptive control methods have many advantages, the water chiller unit has complex and time-delayed characteristic, frequently adjusting controller parameters will reduces its stability. In the paper, a control performance assessment criteria was used combined with the adaptive control method for control of the water chiller unit. When the control performance is lower than the threshold \cite{7}, the adaptive control will be implemented to update controller parameters. Otherwise, the controller parameters will be kept unchanged.

In the paper, the minimum variance was chosen as the control performance assessment benchmark, which has been widely used in the control area. Many scholars have conducted in-depth study on the method, which was first put forward by Harris in the 1960s \cite{8}, it provides a scientific basis to the assessment of the controller performance in the engineering area.

2. Modeling of a water chiller unit

An water chiller unit contains four major components (Figure 1): evaporator, compressor, condenser, throttle valve \cite{9-10}. The main function of the unit is to produce enough refrigerating capacity, and complete heat transfer with chilled water in the evaporator, so the mathematical model of the loop can be obtained by the law of energy conservation and thermodynamics equations. The evaporator's heat...
exchange procedures can be decomposed into three parts: the change of chilled water temperature, the heat transfer between refrigerant and cooling water, the heat transfer between chilled water and external environment, just as shown in Figure 2.

\[C_1 \frac{dt_w}{dt} = c_w m_w (t_w - t_{w0}) + m_z r_z + \frac{t_b - t_{w0}}{r} \]

(1)

In Eq.(1), \(C_1 \) is the capacity coefficient of the chilled water in the evaporator; \(t_{w0} \) is the outlet temperature of chilled water in the evaporator (°C); \(t_{w1} \) is the inlet temperature of chilled water in the evaporator (°C); \(m_w \) is the mass flow rate of chilled water in the evaporator (kg/s); \(t_b \) is the temperature of external environment (°C); \(r \) is the thermal resistance between external environment and evaporator \((\text{K} \cdot \text{m}^2)/\text{W})\); \(c_w \) is the specific heat capacity of the chilled water \((\text{J}/(\text{kg} \cdot \text{K}))\); \(m_z \) is the mass flow rate of refrigerants (kg/s); \(\tau \) is the running process time (s); \(r_z \) is the latent heat of vaporization of refrigerant (kJ/kg).

When the operation condition of the water chiller unit changes, Eq.(1) can be converted into the formula below:

\[C_1 \frac{dD_{t_w}}{dt} = c_w m_w (D_{t_w} - D_{t_{w0}}) + D m_z r_z + \frac{D t_b - D t_{w0}}{r} \]

(2)

Combined the actual parameters of air conditioning system with Eq.(2), the mathematical model of water chiller unit can be calculated, and the adaptive control method with performance evaluation proposed in this paper can be used to complete the simulation.

In order to verify the validity of the water chiller unit mathematical model, assign the same input signal to the simulation model and the water chiller unit of an HVAC system, and comparing the simulation results with the experimental results, the following are respectively the output curves under 30%, 40%, 50% power of compressor, as shown in Figure 3.

The simulation and experimental results under 30%, 40%, 50% power of compressor show that the gap between mathematical model data and experimental data is not greater than 0.5 °C. With the increase of the compressor power, the gap is becoming more and more smaller. As mentioned above, the mathematical model is accurate generally, it can represent the water chiller unit under normal working conditions, and also can be used for the research of advanced control algorithm.
3. Control performance evaluation

With the rapid development of industrial technology, the research on industrial control systems becomes more and more deeply, especially for the control units in HVAC systems. HVAC systems normally have time-varying, nonlinear, time-delayed and multivariable coupling features and are often disturbed by load change [11-13].

Industrial controllers often can achieve good control effect at the beginning, but with the increase of the running years, the control performance will gradually decline. Therefore, it is important to accurately evaluate the current performance of the control system [14].

The water chiller unit in an HVAC system was selected as the research object in this article, whose mathematical model can be obtained by combining with the mathematical model calculation methods in the 2nd chapter. To simulate the normal working condition of the chiller unit, the setting outlet temperature of chilled water will be changed from 24 °C to 7 °C in the 40 sampling time, the simulation model is shown in Figure 4.

The PID controller parameters of water chiller unit simulation model is $K_p = 10$, $K_i=2.1$, $K_d=2$. The assessment result shows that the current water chiller control loop performance indicator is 0.7. It usually selects 0.6 as the control performance threshold in engineering applications [15], so the current PID parameters can meet the demand of the current condition although they are not the optimal...
parameters and the optimal PID control parameters are $K_p = 12$, $K_i = 1.65$, $K_d = 0.8$. The comparison with two groups of control parameters is shown in Figure 5.

Figure 4. Performance evaluation simulation model for water chiller unit in Simulink.

Figure 5. The contrast of current PID parameters and the optimal PID parameters.

4. **Adaptive controller based on performance evaluation**

In this paper, the adaptive control method determines whether to adjust the controller parameters according to the current control performance evaluation results. The control performance assessment result was calculated by the input and output of controlled variables. But the water chiller unit model parameters in the working process will continue to change because of outside disturbance and load change [16]. In order to realize the accurate control, the control system must have the online identification function, which selecting recursive least squares method to complete identification and establishing the adaptive control simulation model of water chilled unit to verify the control performance. The working principle of adaptive control method was shown as follows(Figure 6),
Figure 6. Working principle of the adaptive control method.

4.1. Recursive least squares method
Recursive least squares method complete the first time identification based on the given initial value. As time goes on, recursive least squares algorithm will continuously obtain new estimate values [17].

4.2. Adaptive control method simulation result
The water chiller unit of an air conditioning system was selected as the research object in this paper, the mathematical model and performance assessment process has been proposed. With the passage of time, the model of the water chiller unit was changing, associating with the online identification method, the simulation model can be shown in Figure 7.

Figure 7. Adaptive control simulation model of water chiller unit.

In Figure 7, the water chiller unit simulation model is divided into three main parts: adaptive control, online identification and performance assessment. The identification result is shown as $T=8$,
$K=0.228, \tau=0.466$, which are very close to the actual parameters of the controlled object. And the performance result is shown as 0.68, the output of simulation model is shown in Figure 8.

![Figure 8. Chiller water unit simulation curve.](image)

The setting value of outlet temperature was decreased first from 25°C to 15°C, and then to 10°C. The black line is the setting value, the pink line show the control performance of the common PID control method and the red line shows the adaptive control method.

With the long-time use of chiller unit, the characteristic parameters will also change. So the conventional PID controller can’t achieve good control effect, the chiller unit simulation curve after parameters changed is shown in the Figure 9, it can be seen that the performance of the proposed method is better than the conventional PID controller.

![Figure 9. Chiller water unit simulation curve after parameters changed.](image)

In a word, compared with the conventional PID control method, the adaptive control method based on the performance evaluation proposed in this paper has a faster regulation speed and more accurate control results.

5. Conclusions
In the paper, an adaptive control method based on the minimum variance performance assessment was proposed and a water chiller unit was selected as the controlled object. First, the adaptive control method identifies the current mathematical model according to the input and output values of the controlled object. Then, the method will calculate the current performance result based on the mathematical model. Third, the control performance was compared with the performance threshold and whether to adjust the controller parameters were determined. The simulation results show that the control method has better control performance than PID controllers. The proposed method can be used in HVAC systems.

Acknowledgement
The authors gratefully acknowledge the financial support provided by Natural Science Foundation of China (51676063) and the Natural Science Foundation of Jiangsu Province, China, No. BK20141154.
References

[1] Ko B S, Edgar T F 2004 PID control performance assessment: The single-loop case[J] Aiche Journal 50(6) 1211–1218
[2] Farris D R, McDonald T E 1980 Adaptive optimal control - an algorithm for direct digital control[J] ASHRAE Transactions 86(1) 880-893
[3] Seem J E 1997 Implementation of a new pattern recognition adaptive controller developed through optimization[J] ASHRAE Transactions 103(1) 494-506
[4] Ying Yu 2006 The fuzzy adaptive control research applied in the variable air volume (VAV) air conditioning system [D] Xi'an University of Architecture and Technology
[5] Harris T J 1989 Assessment of Control Loop Performance[J] Canadian Journal of Chemical Engineering 67(5) 856-861
[6] Farzam Shahni, G M Malwatkar 2011 Assessment minimum output variance with PID controllers Journal of Process Control 21(4) 678-681
[7] Biao Huang 2002 Minimum variance control and performance assessment of time-variant processes Journal of Process Control 12(6) 707-719
[8] Xiaoyan Liu 2010 Optimization of PID controller performance monitoring and assessment technology research [D] Zhejiang University
[9] A. Beghi, R. Brignoli, L. Cecchinato, G. Menegazzo, M. Rampazzo, F. Simmini, August 2016 Data-driven Fault Detection and Diagnosis for HVAC water chillers Control Engineering Practice 53 79-91
[10] Paul Ortega Sotomayor, José Alberto Reis Parise, January 2016 Characterization and simulation of an open piston compressor for application on automotive HVAC systems operating with R134a, R1234yf and R290 International Journal of Refrigeration 61 100-116
[11] Feifei Qi 2014 The simulation study of variable air volume air conditioning system with variable frequency control [D] South China University of Technology
[12] Ko B S, Edgar T F 2004 PID control performance assessment: The single-loop case[J] Aiche Journal 50(6) 1211–1218
[13] Shengwei Wang, Dian-ce Gao, Yongjun Sun, Fu Xiao, January 2013 An online adaptive optimal control strategy for complex building chilled water systems involving intermediate heat exchangers Applied Thermal Engineering 50(1, 10) 614-628
[14] Christopher A. Harrison, S. Joe Qin, July 2009 Minimum variance performance map for constrained model predictive control, Journal of Process Control 19(7) 1199-1204
[15] Muhammad Saeed Aslam, July 2016 Maximum likelihood least squares identification method for active noise control systems with autoregressive moving average noise Automatica 69 1-11
[16] Miguel Galriñho, Cristian R. Rojas, Håkan Hjalmarsson 2015 A Least Squares Method for Identification of Feedback Cascade Systems* IFAC-PapersOnLine 48(28) 98-103
[17] Hamid Mehrabi, Behzad Voosoghi, September 2015 Recursive moving least squares Engineering Analysis with Boundary Elements 58 119-128