Clinicopathologic and Prognostic Significance of LGR5, a Cancer Stem cell Marker in Peritoneal Metastasis of a Colorectal Origin
Chukwuemeka Ihemelandu
Georgetown - Howard Universities

OBJECTIVES/SPECIFIC AIMS: Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is expressed on Wnt/β-catenin-dependent adult stem cell populations of the colon. Cancer stem cells are hypothesized to be the driving force behind tumor progression and metastasis, making them attractive therapeutic targets. Our aim was to analyze the clinicopathologic and prognostic significance of LGR5 expression in a cohort of colorectal cancer patients with peritoneal metastasis. METHODS/STUDY POPULATION: A total of 49 Formalin-fixed paraffin-embedded (FFPE) tissue blocks of primary or metastatic tumors and their respective normal tissues were collected from the tissue bank for time period 2009–2015. LGR5 expression was assessed at the protein level through immunohistochemical (IHC) staining of tissue microarray (TMA) consisting of pairs of tumor and normal colon tissue. The correlation between LGR5 expression and clinicopathologic parameters and prognosis was assessed by statistical analysis. RESULTS/ANTICIPATED RESULTS: Of the 49 patient sample, 30 (61.22%) were female vs. 19 (38.78%) males. Age range at initial diagnosis ranged from 31.7 years to 84.4 years, with a median age of 61.29 years. Duration of follow-up ranged from 1–9 years with a median of 5 years. LGR5 expression was higher in colorectal cancer than normal mucosa. In univariate survival analysis overexpression of LGR5 was significantly associated with improved survival (p = 0.002). Of significance, LGR5 positivity was an independent prognostic marker for better prognosis in a multivariate survival analysis adjusting for prognostic variables age, stage, gender, tumor histology and grade (HR 2.67, 95% CI 1.01-7.00, P = 0.046). DISCUSSION/SIGNIFICANCE OF IMPACT: Our data suggests that the pathogenic mechanism of germine histone mutations is distinct from that of the published cancer-associated somatic histone mutations, which may converge on control of cell proliferation. Further clarification of the pathophysiology in these patients can elucidate the roles of histones and histone PTMs in human development and non-syndromic neurodegeneration. In addition, it provides a framework for targeted therapy development for this and related progressive neurologic disorders.

Determining mechanisms underlying hippocampal network disruption in early amyloid pathology
Adam Caccavano1, P. Lorenzo Bozelli, Katherine Conant and Stefano Vicini
1Georgetown - Howard Universities

OBJECTIVES/SPECIFIC AIMS: Alzheimer’s disease (AD) is the leading cause of dementia, and a rapidly growing public health crisis as life expectancy increases. Two hallmark symptoms of the disease are memory impairment and the pathological accumulation of amyloid beta protein. The hippocampus is a brain region critical for the consolidation of new memories, and one of the first regions in which amyloid accumulation is observed. Our lab and others have observed a disruption to hippocampal network activity that is critical for memory consolidation in amyloid-accumulating mice. However, the mechanisms and neuronal micro-circuitry underlying this disruption are under-explored, a critical gap that warrants exploration if we are to understand memory disruption in the disease. In this study we have investigated the hypothesis that a preferential disruption to inhibitory PV neurons and the extracellular matrix that surrounds this cell type underlies downstream network alterations.

METHODS/STUDY POPULATION: We have employed the 5xFAD mouse model of familial Alzheimer’s disease crossed with transgenic lines that selectively fluoresce in different neuronal sub-types. In a multi-modal approach, we have investigated behavioral, electrophysiological, and biochemical alterations between 3-month-old amyloid-accumulating 5xFAD mice and littermate controls.

RESULTS/ANTICIPATED RESULTS: We observe a 35% increase in the incidence of synchronous hippocampal oscillations known as sharp wave ripples (SWRs) in amyloid-accumulating mice versus littermate controls (n = 28, p = 0.01), as well as a 95% increase in the power of slow gamma oscillations (p = 0.002). This hyperexcitability of the hippocampal network is correlated with an impairment in hippocampal-dependent memory, assayed with the Barnes Maze, a behavioral test of spatial memory (172% increase in latency to find escape hole, n = 8, p = 0.01). To elucidate the micro-circuitry that