Chirality Effects in Peptide Assembly Structures

Yongfang Zheng*, Kejing Mao, Shixian Chen and Hu Zhu*

Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China

Peptide assembly structures have been widely exploited in fabricating biomaterials that are promising for medical applications. Peptides can self-organize into various highly ordered supramolecular architectures, such as nanofibril, nanobelt, nanotube, nanowire, and vesicle. Detailed studies of the molecular mechanism by which these versatile building blocks assemble can guide the design of peptide architectures with desired structure and functionality. It has been revealed that peptide assembly structures are highly sequence-dependent and sensitive to amino acid composition, the chirality of peptide and amino acid residues, and external factors, such as solvent, pH, and temperature. This mini-review focuses on the regulatory effects of chirality alteration on the structure and bioactivity of linear and cyclic peptide assemblies. In addition, chiral self-sorting and co-assembly of racemic peptide mixtures were discussed.

Keywords: peptide self-assembly, chirality effects, chirality switching, co-assembly, bioactivity

INTRODUCTION

Molecular self-assembly refers to the process in which basic structural units spontaneously form stable and ordered structures through non-covalent bond interactions, such as hydrophobic interactions, hydrogen bonds, van der Waals interactions, and electrostatic interactions. Self-assembly is ubiquitous and plays a vital role in biological systems: phospholipids form biological membranes through self-assembling; DNA strands form double helix structures through hydrogen bonds; proteins fold into correct structures; protein misfolding and aggregation lead to neurodegenerative diseases. Meanwhile, self-assembly is a very important “bottom-up” strategy for constructing supramolecular materials. Many biomolecules have been demonstrated to self-organize into well-ordered nanostructures. Among them, peptides have become widely used building blocks in constructing supramolecular architectures due to their easy synthesis and modification, good biocompatibility, biodegradability, and easy availability for “bottom-up” fabrication.

Although a lot of progresses have been made in studying the molecular mechanism of peptide assembly, it remains a challenge to accurately regulate the assembly structure of peptides to achieve pre-designed structure and function. Chirality, an inherent property of peptides, has been recognized as a vital factor that can exert essential impacts on peptide assembly structures. Since the thalidomide incident in the 1950s, the importance of molecular chirality has been recognized. Therefore, in the development of peptide biomaterials, the chirality of peptides and amino acid residues is an important factor that has been taken into consideration by researchers. It has been suggested that amino acids and peptides with different chirality have different effects on protein adsorption (Wang et al., 2011), peptide assembly (Qing et al., 2014; Hou et al., 2020), and cell
behaviors (Yao et al., 2013; Ma et al., 2020). With the rapid
development of supramolecular chemistry and the promising
application of peptide assembly structures in the field of
biomedicine, the influence of molecular chirality on the structure
and function of peptide assemblies has been a key and hot
research field. In this mini review, we focus on the chirality effects
in peptide assemblies. We summarized the recent advances in
the structurally regulatory effects of chirality alteration on linear
and cyclic peptide assemblies. Chiral self-sorting and co-assembly
of mixed racemic peptides were discussed. Besides, we analyzed
the influence of the chirality effects on the biological activities of
peptide assembly structures.

MANUSCRIPT FORMATTING

The Effects of Chirality Switching on
Assembly Structures of Linear Peptides

Introducing D-amino acids into L-peptides can distort their
main chains and destroy their original secondary structure. The
effects of D-amino acid substitution on α-helix structure have
been studied for collagen-mimicking peptides. It was suggested
that D-amino acid substitution could break α-helix structure
by inducing kink structure, and the helix-destabilizing ability
was highly dependent on the steric hindrance of amino acid
side chains (Imperiali et al., 1992; Krause et al., 2000; Punitha
et al., 2009). Chirality alteration of amino acid residues can
break the secondary structure of peptides, thereby destroying
their assembly structures. Peptide EAK16 self-assembled into
nanoﬁbers, while E D AK16 and D E A D K16 could not undergo
self-organization to form a well-ordered structure, as D-amino
acid incorporation drastically disrupted its β-sheet structure
(Luo et al., 2011). We studied the effects of chirality switching
of a single amino acid residue at different positions and with
various side chain moieties on peptide assembly structure using
scanning tunneling microscope (STM) that is a very useful tool
in studying peptide assembly structures at the single-molecule
level (Yu et al., 2018, 2020; Zheng et al., 2019a,b). The molecular
observations revealed that chirality switching of single amino acid
was able to break the β-sheet structure and destabilize the surface-
mediated peptide assemblies, and this disturbance effect was
site-dependent and positively correlated with the steric hindrance
of amino acid side chains (Zheng et al., 2019b). The above results
indicate that heterochirality leads to weakening self-assembly
propensity for some sequences.

In contrast, for some sequences, they can still form ordered
nanostructures after D-amino acid incorporation, just with the
morphology and handedness of their assembly structures being
changed. The effects of amino acid chirality alteration on the
assembly structures of diphenylalanine (FF) and its derivatives
have been investigated. It was suggested that replacing one Phe
of FF with its D-enantiomer preserved its ability to self-assemble
into nanotubes and the heterochirality made the nanotubes more
homogeneous and stable (Kralj et al., 2020), while switching
the chirality of one Phe of FF derivatives, such as Fmoc-FF-
Fmoc and Nap-FF, changed the morphology of their assembly
structures (McAulay et al., 2019; Gil et al., 2020). The Rudra
group explored the effects of multiple and consecutive amino
acid chiral mutations on the assembly structure of peptide Ac-
(FKFE)2-NH2 (Clover et al., 2020). The results showed that the
heterochiral analogs of the model peptide, composed of two FKFE
repeat motifs with opposite chirality, self-assembled into helical
tapes with a width of 108 ± 55 nm and a pitch of 900–1200 nm.
As shown in Figure 1A, the dimension and pitch greatly exceeded
those of the fibers formed by the homochiral analogs. According
to the results from molecular dynamics simulation, the authors
postulated that chirality alteration caused a kink structure
between the two repeat motifs and introduced an internal
strain, which countered the natural twist of the β-sheet structure
and made it ﬂattening, resulting in a much longer pitch. The
supramolecular chirality of peptide assemblies can be regulated
by the chirality of single amino acid residue. Xu and coworkers
designed three pairs of enantiomeric peptides (I L I I K and I D I I K,
I L D K and I D D K, and I L D I K and I D D I K) by altering the
chirality of α-carbon and side-chain β-carbon atoms of the short
 amphiphilic peptide I3K. It was shown that all the peptides
self-assembled into twisted ﬁbers, just with different twisted
handedness which was found to be controlled by the chirality of
the C-terminal hydrophilic Lys head (Figure 1B) (Wang M. et al.,
2017). The assembly structures of fatty chain-modiﬁed dialanine
with homochirality and heterochirality have been characterized,
showing that the handedness of the ﬁbers was dependent on the
chirality of the terminal alanine (Fu et al., 2013; Li et al., 2013).
These results indicate the signiﬁcance of the chirality of terminal
amino acid residues in determining supramolecular chirality. On
the contrary, Feng and coworkers studied the assembly structures
of dipeptides derivatives by connecting two dipeptide arms (FF,
AA, FA, and AF) with different chirality to para-disubstituted
phenyl group, and found that the supramolecular chirality was
only determined by the amino acid residue adjacent to the
benzene core and irrespective of the chirality of C-terminal amino
acid residue (Qin et al., 2021). In addition, the handedness of
the nanofibers formed by bola-type dipeptides (AF) was dictated
by the phenylalanine residue, not by the terminal amino acid
residues (Zheng et al., 2020).

Unexpectedly, some sequences showed a divergent trend
that heterochirality made them prone to self-organization. It
has been demonstrated that chirality conversion of the first
N-terminal amino acid residue of the non-assembling L-peptides
VFF, FFV, and LFF from L to D enables them to form β-sheet
structure and self-assemble into hydrogels (Marchesan et al.,
2012a,b). Taking LFF as an example, the authors investigated
the molecular mechanism by combining molecular modeling
and X-ray diffraction (XRD), and found that D L FF formed a
phenylalanine zipper structure that promoted its self-assembling,
and it was not accessible for the homochiral LFF due to steric
hindrance from the side chain of the L-leucine (Marchesan et al.,
2012b). In 2018, Marchesan et al. designed a series of heterochiral
tripeptides −Phe−X−Phe (X stands for hydrophobic amino
acids in D conﬁguration) (Garcia et al., 2018). They speculated
that this alternating arrangement of L- and D-amino acid could
make all the hydrophobic amino acid side chains located on
one side of the main chain of the peptide. As a result, the
side chains function as a hydrophobic part, and the main

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org
2
June 2021 | Volume 9 | Article 703004

Zheng et al. Chirality Effects in Peptide Assemblies
chains act as a hydrophilic part, which gives the heterochiral tripeptides amphiphilicity and facilitates their self-assembling and the formation of hydrogels. The experimental results were consistent with the prediction showing that the heterochiral tripeptides self-assembled into fibrillar hydrogels, while most homochiral tripeptides formed amorphous aggregates.

The overall configuration of peptide has a significant impact on its self-assembled structure. L-peptide and D-peptide can form fibers with different handedness (Koga et al., 2005). In general, L-peptide forms left-handed helical structure, while its enantiomer D-peptide forms right-handed helical structure. Nevertheless, there are many exceptions. For example, peptide ILQINS, the key segment of hen egg white lysozyme, and serum amyloid A (SAA) truncated peptides SAA$_{1-12}$ and SAA$_{2-12}$ formed unexpected right-handed twisted fibers (Rubin et al., 2010; Lara et al., 2014).

The Effects of Chirality Switching on Assembly Structures of Cyclic Peptides

Compared with linear peptides, literature reports on the chirality effects in assembly structures of cyclic peptides are far fewer. There are a few reports on the chirality effects on cyclic dipeptides, the simplest cyclic peptide (Govindaraju et al., 2011; Jeziorna et al., 2015). As in linear peptides, chirality switching of amino acid residues can regulate morphology and macroscopic propensities of cyclic peptide assemblies. For example, cyclo-(YA) formed nanotubes and nanowires, while cyclo-(YD)A) formed microtubes (Jeziorna et al., 2015). The 2D mesosheets formed by cyclo-(Phg-DPhg) are more thermodynamically stable than the mesosheets formed by cyclo-(Phg-Phg) (Govindaraju et al., 2011). For cyclic peptides with more than two amino acid residues that can self-organize into ordered structures, most of them are composed of alternating D- and L-amino acid residues. In 1974, according to theoretical analysis, Santis et al. (1974) predicted that cyclic peptides comprised of an even number of alternating D- and L-amino acid residues with all side chains pointing to the outside of the ring would stack through main chain–main chain hydrogen bonds. Therefore, the self-assembled cyclic peptides almost take the arrangement of alternating D- and L-amino acid residues and exclusively self-assemble into nanotubes (Insua and Montenegro, 2020; Song et al., 2020). In 2018, Li et al. introduced an in-tether chiral group to linear peptides and designed a type of cyclized helical peptides that only consist of L-amino acid residues. It has been revealed that this kind of peptide can self-assemble into well-ordered nanostructures, and their assembly behaviors can be governed by
the in-tether chiral center (Hu et al., 2018, 2020). For unmodified
L-cyclic peptides, more explorations are needed to clarify their
assembly propensity and the effects of chirality alteration on
their assembly structures, which can not only broaden the
building blocks of peptide assemblies, but also contribute to
understanding the chirality effects in assembly structures of
peptides with limited rotation and structural rigidity.

Chiral Self-Sorting and Co-assembly of
Mixed Enantiomeric Peptides

In recent years, researchers have paid more and more attention
to the assembly structures of racemic peptide mixtures. Chiral
selectivity is ubiquitous in nature, so it is expected that proteins
and peptides tend to prefer homochiral molecular interactions.
Studies of L- and D-stereoisomers of amyloid peptides, such as a
22-residue segment of β2-microglobulin and β-amylloid peptide
(Aβ40), showed that amyloid fibril formation was stereospecific:
L-enantiomer was deposited on L-seeds, and enantiomers did
not cross-react with each other (Esler et al., 1999; Wadai et al.,
2005; Gupta et al., 2020). However, it has been demonstrated
that mixing enantiomers can change the kinetics, morphology,
and mechanical properties of peptide self-assemblies (Nagy-
Smith et al., 2017; McAulay et al., 2019; Bera et al., 2020;
Qin et al., 2021). For example, the racemic mixture of Fmoc
monosubstituted cyclo-(EE) and its D-analog formed quickly
recoverable thixotropic hydrogel with a significantly shortened
thixotropic recovery time compared with the hydrogels formed
by either enantiomer alone (Wang L. et al., 2017). In addition,
the racemic gel formed by diphenylalanine-based derivative
enantiomers was more mechanically robust than the gels formed
by either pure enantiomer (Qin et al., 2021). On the contrary, He
and coworkers got the opposite results showing that the hydrogel
formed by a racemic mixture of ferrocene-diphenylalanine (Fc-
D) and coworkers got the opposite results showing that the hydrogel
formed from either peptide alone (Nagy et al., 2011; Nagy-Smith et al.,
2012; Kar et al., 2014; Nagy-Smith et al.,
2017; Jeena et al., 2019). The Nilsson group demonstrated that
enantiomeric amino acids can co-assemble into nanostructures
with enhanced mechanical rigidity. The Gazit group explored
the assembly behaviors of the mixed aromatic amino acid
enantiomers (Phe and Trp) via diverse experimental techniques
(Bera et al., 2020). It was revealed that enantiomeric amino acids
co-assembled into nanostructures with different morphology
and kinetics compared with the pure enantiomers. As shown in
Figure 2B, the pure enantiomers formed unbranched fibers,
while the mixed enantiomers co-assembled into crystalline
flake-like structure that was mechanically more robust than
the enantiopure fibers. In addition to the peptides taking β
configuration that can co-assemble with their enantiomers, the
enantiomeric interactions of mixed enantiomers that take helix
structure have also been studied. For example, the Nanda group
found that mixing a collagen mimetic peptide (PPG)10 and its
D-analog (DPDPG)10 drastically lowered the solubility, as they
assembled into sheets and precipitated from the buffer solution,
while in the same condition, individual enantiomer was soluble
(Xu et al., 2013). Combining the results of experiments and
computational simulation, the authors postulated that this helix
peptide favored heterochiral association, since left- and right-
handed molecular screws could interdigitate and pack more
tightly (Figure 2C). In addition, phenol-soluble modulin α3
(PSMα3) and its D-analog, which take α-helical structure, can
co-assemble into fibers with cross-α packing pattern supported
by fiber diffraction data (Yao et al., 2019).

Regulation of Chirality Effects on the
Bioactivity of Peptide Assembly
Structures

Introducing D-amino acids into self-assembled L-peptides is
widely used to improve the enzymatic stability of their assembly
structures, while it can also affect their biological functions.
Chirality of amino acid residues/peptides can regulate the cell
cytotoxicity of peptide assemblies. It was revealed that F3DC
could also self-assemble into nanotubes like its L-enantiomer, but
the heterochirality completely alleviated its amyloid cytotoxicity
(Kralj et al., 2020). Fibers formed by fatty chain-modified
L-VsAsKs showed higher cytotoxicity than the fibers formed
by its D-analog, which was ascribed to the stronger affinity
between the L-peptide and lipid (Sato et al., 2019). Ryu and
coworkers designed a mitochondria-targeting peptide derivative
Mito-FF, which was achieved by conjugating diphenylalanine
with triphenyl phosphonium (TPP), a well-known mitochondria-
targeting moiety. Mito-FF and its enantiomer Mito-DPF co-
assembled into nanofibers with diameter significantly larger than
the nanofibers formed by Mito-FF. It was found that the co-
assembled structure showed enhanced mitochondrial disruption,
higher cellular cytotoxicity, and higher tumor inhibition due to its larger size (Jeena et al., 2019). Chirality of amino acid residues/peptides can affect the regulation of peptide assemblies on cell behaviors. Feng and coworkers constructed fibrillar hydrogels with opposite handedness through a series of phenylalanine derivative enantiomers and studied their regulatory effects on cell behaviors. The results suggested that left-handed helical nanofibers formed by L-enantiomer increased cell adhesion and proliferation, while right-handed helical nanofibers formed by D-enantiomer had the opposite effects (Liu et al., 2014). They also studied the difference of molecular and supramolecular chirality effects on cell differentiation and spreading, finding that amplification of chirality from chiral molecules to chiral assemblies dramatically increased the regulatory effect on cell behaviors by supramolecular helical handedness (Dou et al., 2019). In addition, stem cell lineage diversification was shown to be directed by the chirality of fibrillar matrix. Left-handed matrix formed by L-phenylalanine derivative was conductive for osteogenic lineage, while right-handed matrix formed by its D-analog was conductive for adipogenic lineage (Wei et al., 2019). These different regulatory effects on cells were suggested to be closely related to stereospecific interactions between peptide assemblies and proteins (Dou et al., 2019, 2020; Wei et al., 2019; Sun et al., 2021).

CONCLUSION

In the process of investigating the chirality effects in peptide assemblies, most studies have focused on the impacts of amino acid chiral mutations on the assembly structure of peptides in the early days. In recent years, enantiomeric peptide interactions and constructing peptide assemblies with designed handedness have been paid much more attention. In this mini-review, we summarized the recent progresses in exploring the effects of chirality on the structure and bioactivity of peptide assemblies. In terms of structure, most studies focus on the effects of chirality alteration on the morphology, size, and secondary structure of peptide assemblies, while the molecular mechanisms for these effects are relatively less explored. It is worth noting that many researchers have combined Molecular Dynamics (MD) calculations with experimental data and successfully elucidated the molecular basis for the changes in the assembly structures of peptides caused by chirality conversion.

![FIGURE 2](image_url)
(Wang M. et al., 2017; Clover et al., 2020). Therefore, the combination of computational approaches and an arsenal of experimental techniques is supposed to be a useful tool to undercover the chirality effects in peptide assemblies on the molecular level. In terms of biological function, incorporating D-amino acids into self-assembled peptides was originally to enhance their resistance to enzymatic degradation. However, it can be seen from the above results that chirality is a key factor that can greatly change the morphology, size, and handedness of peptide assemblies and can even disrupt them. It has been demonstrated that these parameters are closely related to the bioactivity of peptide assemblies (Haass and Selkoe, 2007; Liu et al., 2018). In addition, due to the stereoselectivity of interactions between biomolecules, such as peptide–peptide interactions and peptide–lipid interactions (Ishigami et al., 2015; Chen et al., 2019), D-amino acid incorporation will affect the interactions between peptide self-assembled materials and their surrounding environment. As a result, D-amino acid substitution will inevitably affect the biological function of peptide assemblies due to its structural dependence on supramolecular structures and the chirality-dependent interactions between biomolecules. Therefore, the influence of chirality conversion on the biological performances of peptide assemblies should be comprehensively evaluated, not just from the aspect of enzyme stability.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial and intellectual contribution to the work and approved it for publication.

FUNDING

This review writing was funded by the Open Project Fund provided by the Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS (No: NSKF202014), Natural Science Foundation of China (U1805234 and 22007013), Natural Science Foundation of Fujian Province of China (2019J01264), Program for Innovative Research Team in Science and Technology in Fujian Province University, 100 Talents Program of Fujian Province, and Scientific Research Start-up Fund for High-Level Talents in Fujian Normal University.

REFERENCES

Bera, S., Xue, B., Rehak, P., Jacoby, G., Ji, W., Shimon, L. J. W., et al. (2020). Self-Assembly of Aromatic Amine Enantiomers into Supramolecular Materials of High Rigidity. *ACS Nano* 14, 1694–1706. doi: 10.1021/acsnano.9b07307

Chen, K., Sheng, Y. B., Wang, J., and Wang, W. (2019). Chirality-dependent adsorption between amphiphatic peptide and POPC membrane. *Int. J. Mol. Sci.* 20:4760. doi: 10.3390/ijms20194760

Clover, T. M., O’Neill, C. L., Appavu, R., Lokhande, G., Gaharwar, A. K., Posey, A. E., et al. (2020). Self-Assembly of Block Heterochiral Peptides into Helical Tapes. *J. Am. Chem. Soc.* 142, 19809–19813. doi: 10.1021/jacs.9b09755

Dou, X., Mehwish, N., Zhao, C., Liu, J., Xing, C., and Feng, C. L. (2020). Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications. *Acc. Chem. Res.* 53, 852–862. doi: 10.1021/acs.accounts.0c00112

Dou, X., Wu, B., Liu, J., Zhao, C., Qin, M., Wang, Z., et al. (2019). Effect of chirality on cell spreading and differentiation: from chiral molecules to chiral self-assembly. *ACS Appl. Mater. Interfaces* 11, 38568–38577. doi: 10.1021/acsami.9b15710

Eder, W. P., Stimson, E. R., Fishman, J. B., Ghilardi, J. R., Vinters, H. V., Mantyht, P. W., et al. (1999). Stereochemical specificity of Alzheimer’s disease beta-amyloid assembly. *Biopolymers* 49, 505–514. doi: 10.1002/(sici)1097-0282(199905)49:5<505::aid-apid8>3.3.co;2-9

Fu, Y. T., Li, B. Z., Huang, Z. B., Li, Y., and Yang, Y. G. (2013). Terminal Is Important for the Helicity of the Self-Assemblies of Dipeptides Derived from Alanine. *Langmuir* 29, 6013–6017. doi: 10.1021/la400910g

Garcia, A. M., Iglesias, D., Parisi, E., Styan, K. E., Waddington, L. J., Degnaniti, C., et al. (2018). Chirality Effects on Peptide Self-Assembly Unraveled from Molecules to Materials. *Chem. 4*, 1862–1876. doi: 10.1016/j.chempr.2018.05.016

Gil, A. M., Casanovas, J., Mayans, E., Jimenez, A. L., Puiggali, J., and Aleman, C. (2020). Heterochirality Restricts the Self-Assembly of Phenylalanine Dipeptides Capped with Highly Aromatic Groups. *J. Phys. Chem. B* 124, 5913–5918. doi: 10.1021/acs.jpcb.0c04513

Govindaraju, T., Pandeewar, M., Jayaramulu, K., Jaipuria, G., and Atreya, H. S. (2011). Stereoselective self-assembly of designed cyclic dipptide (Phg-Phg) into two-dimensional nano- and mesosheets. *Supramol. Chem.* 23, 467–492. doi: 10.1080/10601028.2010.550685

Gupta, D., Sasmal, R., Singh, A., Joseph, J. P., Miglani, C., Agasti, S. S., et al. (2020). Enzyme-responsive chiral self-sorting in amyloid-inspired minimalist peptide amphiphiles. *Nanoscale* 12, 18692–18700. doi: 10.1039/d0nr04581k

Haass, C., and Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. *Nat. Rev. Mol. Cell Biol.* 8, 101–112. doi: 10.1038/nrm2101

Hou, K., Zhao, J., Wang, H., Li, B., and Tang, Z. (2020). Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. *Nat. Commun.* 11:4790. doi: 10.1038/s41467-020-18525-2

Hu, K., Ji, W. X., Xiong, W., Li, H., Zhang, P. Y., Yin, F., et al. (2018). Tuning peptide self-assembly by an in-tether chiral center. *Sci. Adv.* 4:eaa5907. doi: 10.1126/sciadv.aar5907

Hu, K., Xiong, W., Sun, C., Wang, C., and Li, Z. (2020). Self-Assembly of Constrained Cyclic Peptides Controlled by Ring Size. *CCS Chem.* 2, 42–51. doi: 10.10365/ccschem.020.201900047

Imperiali, B., Fisher, S. L., Moats, R. A., and Prins, T. J. (1992). A conformational study of peptides with the general structure Ac-L-Xaa-Pro-D-Xaa-L-Xaa-NH2: spectroscopic evidence for a peptide with significant beta-Turn character in water and in dimethyl sulfoxide. *J. Am. Chem. Soc.* 114, 3182–3188. doi: 10.1021/ja00035a002

Insua, I., and Montenegro, J. (2020). 1D to 2D Self Assembly of Cyclic Peptides. *J. Am. Chem. Soc.* 142, 300–307. doi: 10.1021/jacs.9b10582

Ishigami, T., Suga, K., and Umakoshi, H. (2015). Chiral recognition of L-amino acids on liposomes prepared with L-phospholipid. *ACS Appl. Mater. Inter.* 7, 21065–21072. doi: 10.1021/acsami.5b07198

Jeena, M. T., Jeong, K., Go, E. M., Cho, Y., Lee, S., Jin, S., et al. (2019). Heterochiral Assembly of Amphiphilic Molecules Inside the Mitochondria for Supramolecular Cancer Therapeutics. *ACS Nano* 13, 11022–11033. doi: 10.1021/acsnano.9b02522

Jeziora, A., Stopczuk, K., Skorupaska, E., Luberda-Durnas, K., Oszajca, M., Lasocha, W., et al. (2015). Cyclic Dipeptides as Building Units of Nano- and Micronoves: synthesis, Properties, and Structural Studies. *Cryst. Growth Des.* 15, 5138–5148. doi: 10.1021/cg5b01121

Kar, K., Arduini, I., Drombosky, K. W., van der Wel, P. C. A., and Wetzl, R. (2014). D-Polyglutamine Amyloid Recruits L-Polyglutamine Monomers and Kills Cells. *J. Mol. Biol.* 426, 816–829. doi: 10.1016/j.jmb.2013.11.019

Koga, T., Matsuoka, M., and Higashi, N. (2005). Structural control of self-assembled nanofibers by artificial beta-sheet peptides composed of D- or L-isomer. *J. Am. Chem. Soc.* 127, 17596–17597. doi: 10.1021/ja0558387

Kralj, S., Bellotto, O., Parisi, E., Garcia, A. M., Iglesias, D., Semeraro, S., et al. (2020). Heterochirality and Halogenation Control Phe-Phe Hierarchical Assembly. *ACS Nano* 14, 16951–16961. doi: 10.1021/acsnano.0c06041
Chiral Effects in Peptide Assemblies

Krause, E., Bienert, M., Schmieder, P., and Wenschuh, H. (2000). The helixdestabilizing propensity scale of D-amino acids: the influence of side chain steric effects. J. Am. Chem. Soc. 122, 4865–4870. doi: 10.1021/ja9940524

Lara, C., Reynolds, N. P., Berryman, J. T., Xu, A., Zhang, A., and Mezzenga, R. (2014). ILQINS Hexapeptide, Identified in Lysosome Left-Handed Helical Ribbons and Nanotubes, Forms Right-Handed Helical Ribbons and Crystals. J. Am. Chem. Soc. 136, 4732–4739. doi: 10.1021/ja505045z

Li, Y., Li, B., Fu, Y., Lin, S., and Yang, Y. (2013). Solvent-Induced Handness Inversion of Dipetide Sodium Salts Derived from Alanine. Langmuir 29, 9721–9726. doi: 10.1021/la40174w

Liu, G.-F., Zhang, D., and Feng, C.-L. (2014). Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. Angew. Chem. Int. Ed. Engl. 53, 7789–7793. doi: 10.1002/anie.201403249

Liu, J., Yuan, F., Ma, X., Auphedeous, D.-I. Y., Zhao, C., Liu, C., et al. (2018). The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. Angew. Chem. Int. Ed. Engl. 57, 6475–6479. doi: 10.1002/anie.201801462

Luo, Z. L., Wang, S. K., and Zhang, S. G. (2011). Fabrication of self-assembling D-form peptide nanofiber scaffold -EAK16 for rapid hemostasis. Biomaterials 32, 2013–2020. doi: 10.1016/j.biomaterials.2010.11.049

Ma, Y., Shi, L., Yue, H., and Gao, X. (2020). Recognition at chiral interfaces: from molecules to cells. Colloids Surf. B Biointerfaces 195:111268. doi: 10.1016/j.colsurfb.2020.111268

Marchesan, S., Easton, C. D., Kushkahi, F., Waddington, L., and Hartley, P. G. (2012a). Tripeptide self-assembled hydrogels: unexpected twists of chirality. Chem. Commun. 48, 2195–2197. doi: 10.1039/c2cc16609h

Marchesan, S., Waddington, L., Easton, C. D., Winkler, D. A., Goodall, L., Forsythe, J., et al. (2012b). Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale 4, 6752–6760. doi: 10.1039/c2nr23006a

Mcaulay, K., Dietrich, B., Su, H., Scott, M. T., Rogers, S., Al-Hilaly, Y. K., et al. (2019). Using chirality to influence supramolecular gelation. Chem. Sci. 10, 7801–7806. doi: 10.1039/c9sc02239b

Nagy, K. J., Giano, M. C., Jin, A., Pochan, D. J., and Schneider, J. P. (2011). Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J. Am. Chem. Soc. 133, 14975–14977. doi: 10.1021/ja206742m

Nagy-Smith, K., Beltramo, P. J., Moore, E., Tycko, R., Forust, E. M., and Schneider, J. P. (2017). Molecular, local, and network-level basis for the enhanced stiffness of hydrogel networks formed from coassembled racemate peptides: predictions from pauling and corey. ACS Cent. Sci. 3, 586–597. doi: 10.1021/acscentsci.7b00115

Pauling, L., and Corey, R. B. (1953). 2. Ripple sheet-structures of polypeptide chains, and a note about the pleated sheets. Proc. Natl. Acad. Sci. U.S. A. 39, 253–256. doi: 10.1073/pnas.39.4.253

Punitha, V., Raman, S. S., Parthasarathi, R., Subramanian, V., Rao, J. R., Nair, M., et al. (2009). Molecular dynamics investigations on the effect of d amino acids substitution in a triple-helix structure and the stability of collagen. J. Phys. Chem. B 113, 8998–8992. doi: 10.1021/jp808690m

Qin, M. G., Zhang, Y. Q., Xing, C., Yang, L., Zhao, C. L., Dou, X. Q., et al. (2021). Effect of Stereochirality on Chemotaxis and Gelation Properties of Supramolecular Self-Assemblies. Chem. Sci. 27, 3119–3129. doi: 10.1039/d2sc004533

Sun, N., Dou, X., Wang, Z., Zhang, D., Ni, N., Wang, J., et al. (2021). Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. Bioact. Mater. 6, 990–997. doi: 10.1016/j.bioactmat.2020.09.027

Swanekamp, R. J., DeMaio, J. T. M., Bowerman, C. J., and Nilsson, B. L. (2012). Coassembly of enantiomeric amphiphatic peptides into amyloid-Inspired ribbed beta-sheet fibrils. J. Am. Chem. Soc. 134, 5556–5559. doi: 10.1021/ja301642c

Wadai, H., Yamaguchi, K., Takahashi, S., Kanno, T., Kawai, T., Naiki, H., et al. (2005). Stereoscopic amyloid-like fibril formation by a peptide fragment of beta(2)-microglobulin. Biochemistry 44, 157–164. doi: 10.1021/bi0485880

Yang, L., Jin, X., Ye, L., Zhang, A.-Y., Bezuenda, H., and Feng, Z.-G. (2017). Rapidly Recoverable Thixotropic Hydrogels from the Racemate of Chirality Ofm Monosubstituted Cyclo(Glu-Glu) Derivatives. Langmuir 33, 13821–13827. doi: 10.1021/acs.langmuir.7b03327

Zheng, Y. F., Xu, J., Qu, F. Y., Lin, Y. C., Zou, Y. M., et al. (2019a). Site-specific determination of TTR-related functional peptides by using scanning tunneling microscopy. Nano Res. 11, 577–585. doi: 10.1007/s12274-017-1825-7

Zhang, G., Zhang, L. W., Rao, H. J., Wang, Y. F., Li, Q., Qi, W., et al. (2020). Molecular recognition of human islet amyloid polypeptide assembly by selective oligomerization of thioflavin T. Sci. Adv. 6:eabc1449. doi: 10.1126/sciadv.abc1449

Yu, L. L., Zheng, Z. W., Luo, W. D., Dupont, R. L., Xu, Y., Wang, Y. B., et al. (2020). Molecular recognition of human islet amyloid polypeptide assembly by selective oligomerization of thioflavin T. Sci. Adv. 6:eabc1449. doi: 10.1126/sciadv.abc1449

Zhang, G., Zheng, Y. F., Xu, J., Qu, F. Y., Lin, Y. C., Zou, Y. M., et al. (2018). Site-specific determination of TTR-related functional peptides by using scanning tunneling microscopy. Nano Res. 11, 577–585. doi: 10.1007/s12274-017-1825-7

Zhang, N., Sun, D., Tang, Z., Zhang, D., Ni, N., Wang, J., et al. (2021). Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. Bioact. Mater. 6, 990–997. doi: 10.1016/j.bioactmat.2020.09.027

Zhang, Y. F., Xu, M., Xu, Y. L., Qu, F. Y., Lin, Y. C., Xu, J., et al. (2019a). Identifying Terminal Assembly Propensity of Amyloid Peptides by Scanning Tunneling Microscopy. ChemPhysChem 20, 103–107. doi: 10.1002/cphc.201800875

Zhang, Y. F., Xu, M., Xu, Y. L., Zou, Y. M., Yang, Y. L., and Wang, C. (2019b). Steric Dependence of Chirality Effect in Surface-Mediated Peptide Assemblies Identified with Scanning Tunneling Microscopy. Nano Lett. 19, 5404–5409. doi: 10.1021/acs.nanolett.9b01904

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Copyright © 2021 Zheng, Mao, Chen and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.