Uncovering Lymphatic Transport Abnormalities in Patients with Lipedema

Presenter: Daniel J. Gould, MD, PhD
Co-Authors: Bassim El-Sabawi, BS; Patrick M. Colletti, MD; Ketan M. Patel, MD
Affiliation: University of Southern California, Los Angeles, CA

INTRODUCTION: Lipedema is a chronic disorder characterized by localized adiposity, typically isolated to the lower extremities (LEs). The interplay between the deposition of fatty tissue associated with lipedema and impairments of lymphatic flow remains unclear. The purpose of this study is to evaluate lymphoscintigraphic findings in patients with a clinical diagnosis of lipedema in order to better characterize their lymphatic flow and whether impairments in flow contribute to the burden of disease.

METHODS: Patients with a clinical diagnosis of lipedema receiving lymphoscintigraphy between January, 2015 and January, 2017 were included in this study. Patient demographics, clinical characteristics, and lymphoscintigraphic findings were extracted. Kleinhans’ transport index (TI) was utilized to assess lymphatic flow in these patients. Scores range from 0 to 45 with higher scores indicating greater impairments in flow and transport indices greater than 9 denoting pathologic lymphatic transport.

RESULTS: A total of 8 patients (16 LEs) with a clinical diagnosis of lipedema received lymphoscintigraphic evaluation. Mean age was 55.6 and mean BMI was 35.5 kg/m². No patients had a history of cancer diagnosis, lymph node dissection, or radiation. Severity of lipedema was classified as stage 1 in 2 patients (25%), stage 2 in 2 patients (25%), stage 3 in 2 patients (25%), and stage 4 in 2 patients (25%). Visualization of at least 1 inguinal lymph node occurred in all LE and paraaortic lymph nodes were visualized in 15 (93.8%) LE. Dermal backflow was observed in 5 (31.3%) LEs. Mean TI was 8.81 (SD + 9.04). Overall, 6 (37.5%) LEs had a pathologic TI index (TI > 9) including 1 LE with stage 1, 2 LEs with stage 2, and 3 LEs with stage 3 lipedema. Mean differences in TI scores between each LE in patients was 5.00 (SD + 5.10) with 4 (50%) patients having differences of 5 or greater between legs.

CONCLUSION: Preliminary data suggests that a significant number of patients with a clinical diagnosis of lipedema have impaired lymphatic flow. Interestingly, despite the symmetric clinical profile of the disease, half of the patients in this study had notable asymmetric lymphatic flow on lymphoscintigraphy. Understanding the lymphatic component of this disease may help guide surgical treatment.
University of Wisconsin (UW) solution for 3 hours prior to transplant. Experimental group (n=24) flaps were perfused with MP/HBOC for 17 hours at a subnormothermic temperature of 21°C. Flaps were monitored daily for clinical evidence of viability and biopsied per protocol with an end point of 17 hours for ex vivo only, 14 days for autotransplants and 60 days for allotransplants. The allotransplanted animals were placed on systemic triple immune suppression and maintained at therapeutic levels for the duration of the study. Histologic analysis was blinded and reviewed by an expert veterinarian pathologist at conclusion of the study.

RESULTS: Twenty-four porcine myocutaneous flaps are designated to experimental groups and 24 to the control group. We anticipate results will be similar to previous porcine myocutaneous flaps exposed to 14 hours of CSP (n=4) or MP/HBOC (n=4). Results indicated significantly attenuated markers of IRI, significant apoptosis on TUNEL staining, and endothelial damage in the CSP group when compared to subnormothermic MP/HBOC.

CONCLUSION: If VCA can be preserved for up to 17 hours or more and be protected from ischemic damage following allotransplantation, the achievement will have a profound clinical application in VCA as well as solid organ transplantation. Based on promising preliminary data, we believe efficient tissue oxygenation promoted by subnormothermic (21°C) MP/HBOC in VCA will (1) extend graft preservation times and improve donor access across geographic spans, (2) enable increased efficacy of ex-vivo targeted graft manipulation and (3) ensure graft quality and viability prior to transplantation.

External Volume Expansion (EVE) Increases Vascularization of Subcutaneous Scaffolds

Presenter: Giorgio Giatsidis, MD
Co-Authors: Julien Succar, MD; Anthony Haddad, MD; Hajime Matsumine, MD, PhD; Dennis P. Orgill, MD, PhD
Affiliation: Brigham and Women’s Hospital - Harvard Medical School, Boston, MA

INTRODUCTION: External Volume Expansion (EVE) has been shown to promote angiogenesis, adipogenesis and expansion of subcutaneous tissue in skin. In this study we evaluate the effects of EVE on an acellular scaffold implanted subcutaneously to investigate whether EVE promotes vascularization and recellularization of the scaffold.

METHODS: 36 wild-type mice (n = 18 per group) underwent either EVE through a previously optimized protocol or no EVE (control) for five days before receiving a subcutaneous graft of an acellular matrix (0.5cc). Grafts were collected at 6 weeks (n = 8 per group), and 12 weeks (n = 10 per group) after surgery and analyzed through histology (H&E and CD 31 staining).

RESULTS: At macroscopic observation grafts placed in an site previously stimulated with EVE showed a better preserved morphology. Recipient site preparation with EVE significantly improved vascularization of the acellular grafts compared to controls (+60%, p<0.05) and significantly enhanced proliferation/migration of adipocytes inside the graft.

CONCLUSION: EVE can be effectively used to improve vascularization and recellularization of subcutaneous acellular grafts. Further research in this field might lead to innovative reconstructive therapies that do not rely on autologous tissue (fat).

Directional Freezing and Vitrification of Whole Limbs for Future Transplantation and Organ Banking

Presenter: Or Friedman, MD
Co-Author: Eyal Gur, MD
Affiliation: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv

INTRODUCTION: According to the World Health Organisation, less than 10% of humanities needs for transplantable organs are being met. No data is available for vascularized composite tissue allotransplantations (VCA), yet these cases are further complicated by the need for an instantly available and compatible recipient. VCA containing skin, fat, blood vessels, bone, bone marrow and nerve are the ultimate tool available to date in reconstructive surgery. Widespread use of this tool