Study on Morphometric and Meristic Characters of Acanthopagrus bifasciatus (Forsskål, 1775) from Southern Red Sea, Egypt

Usama M. Mahmoud¹, FahmyI. El-Gammel², Saher F. Mehanna³, Samia M. El-Mahdy⁴

¹ Zoology Department, Faculty of Science, Assiut University.
² ³ ⁴ National Institute of Oceanography and Fisheries

Abstract: Based on 120 males (225 – 550mmTL) and 62 females (217 – 547 mm TL) of Acanthopagrus bifasciatus collected from southern red Sea (Hurghada to shalateen), the morphometric and meristic characters were investigated. The results proved that, sexual dimorphism in A. bifasciatus from the Red Sea sector of Egypt was possible by using morphometric indices. Morphometric characters of the aforementioned species showed allometric growth except AIVCFL for males and CD, DIDCFL, VIAOFL, and DIVOFL for females. No sexual dimorphism was found to be in meristic characters of Acanthopagrus bifasciatus.

Keywords: Red Sea, Egypt, Acanthopagrus bifasciatus, morphometric, meristic.

1. Introduction

Morphometric characters of fishes were found to be of taxonomic importance in sex, race and species identification by many investigators (Mekkawy, 1987&1994; Mahmoud, 1988, 1991& 1993; Harabawy, 1993& 2000; Kahlilet. al. 1983& 1984; Oliveira and Almada, 1995; Osman, 2000; Mekkawy and Mohammad, 2011; Abbaspouret. al., 2013 and Safi et. al., 2014).

The meristic characters were also found to be valid in sex, race and species identification (Mahmoud and Mekkawy, 1991; Mahmoud, 1991, 1993& 1997; Turan, 2004; Mekkawy and Mohammad, 2011 and Abbaspour et. al., 2013).

The present study aimed to display sexual dimorphism in the morphometrics and meristics of Acanthopagrus bifasciatus from the Southern Red Sea of Egypt.

2. Materials and Methods

Morphometrics: A total of 120 males (225 – 550mm in total length) and 62 females (217 – 547 mm in total length) of Acanthopagrus bifasciatus were collected from commercial harbors of southern red Sea (Hurghada to shalateen) during the period January 2015 – December 2015. The fish specimens were transported in ice chest to the laboratory where measurements started immediately.

For each fish, nineteen morphometric measurements were made on the left side up to the nearest millimeter using divider and a measuring board. They are diagrammatically represented in Fig. (1), the numbers in the figure correspond with those given below:

1- Total length (TL)
2- Fork length (FL)
3- Standard length (SL)
4- Head length (HL)
5- Head depth (HD)
6- Body depth (BD)
7- Eye diameter (ED)
8- Snout Length (SNL)
9- Dorsal fin base length (DFBL)
10- Anal fin base length (AFBL)
11- Caudal peduncle depth (CD)
12- Distance between anal fin insertion and dorsal caudal fin origin (AIDCFL)
13- Distance between dorsal fin insertion and ventral caudal fin origin (DIVCFL)
14- Distance between anal fin insertion and ventral caudal fin origin (AIVCFL)
15- Distance between dorsal fin insertion and dorsal caudal fin origin (DICDFL)
16- Distance between ventral fin insertion and anal fin origin (VIAOFL)
17- Distance between dorsal fin insertion and ventral fin origin (DIVOF)
18- Distance between dorsal fin origin and anal fin insertion (DOAIFL)
19- Distance between the ventral fin origin and the anal fin origin (VOAOF)

Meristics

The following meristic counts were recorded:
1- Number of the Dorsal fin soft rays (DFR)
2- Number of the Anal fin soft rays (AFR)
3- Number of the Caudal fin soft rays (CFR)
4- Number of the Pectoral fin soft rays (PFR)

Statistical analysis: The basic statistics of certain morphometric indices (relative to total length, TL) and meristic characters were estimated. The allometric coefficients of the raw morphometric characters and their relationships with fish size (TL) were estimated using power function equation and linear regression model respectively. The type of allometry was evaluated by testing the significance of the allometric coefficients (b) (b=1, b<1 and b>1 for isometry, negative allometry and positive allometry respectively) that
serves as criterion for the intensity of differential increase in the morphological characters relative to a certain reference length. The means of meristic characters considered is testified by T-test to discriminate between males and females of Acanthopagrus bifasciatus.

Statistical analyses for morphometric and meristic data were performed using the SPSS version 16 software package and Excel (Microsoft office, 2010).

3. Results

The mean (x)± standard deviation (SD) and the range (R) of morphometric indices of Acanthopagrus bifasciatus considered in the present investigation are given in Table 1. This table gives a preliminary idea about sexual dimorphism of the aforementioned species. The relationship between the morphometric measurements and fish size (TL) were best described by the linear regression equations (Table 2).

The patterns of variations in the morphometric characters of Acanthopagrus bifasciatus were considered in terms of their mode of growth i.e., their type of allometry. Except for AIVCFL for males and CD, DIDCFL, VIAOFL and DIVOFL for females, all characters of the Acanthopagrus bifasciatus exhibited allometric growth (Table 3).

The frequencies, means and standard errors of DFR, CFR, AFR and PFR of Acanthopagrus bifasciatus are given in Table 4. No sexual dimorphism was found in the meristic characters of the aforementioned species.

4. Discussion

In the present investigation, sexual dimorphism was revealed in some morphometric indices of Acanthopagrus bifasciatus studied. Sex, race and species identification was studied by several investigators (Mahmoud, 1991, 1993& 2002; Mekkawy and Mahmoud, 1992; Myers et. al., 2004; Cadrin, 2005; Mekkawy and Mohammad, 2011; Abbaspoure et. al., 2013 and Safi et. al., 2014).

In the present investigation, it was possible to elucidate sexual dimorphism according to the type of allometry of the morphometric measurements considered. Many authors used the type of allometry to display sexual dimorphism in fish species comprising Mormyrus kanumme (Mekkawy, 1987), Clarias lazera (Mahmoud, 1988), Labeohorie and Labeoforskalii (Mahmoud, 1991) Bagrus bayed and Bagrusdocmac (Mahmoud, 1993) and Oreochromismossambicus (Olivera and Almada, 1995).

In the present study, no sexual dimorphism was found in the meristic characters of Acanthopagrus bifasciatus. This result is in agreement with results on some fish species comprising Labeohorie and Labeoforskalii (Mahmoud, 1991).

Figure 1: Schematic illustration of measurements taken on the body of Acanthopagrus bifasciatus from the Southern Red Sea, Egypt.
Table 1: Mean (\bar{x}), standard deviation (SD) and range (R) of morphometric indices (relative to total length, TL) of *Acanthopagrus bifasciatus* from Southern Red Sea, Egypt.

Morphometric index (%)TL	Males	Females		
	\bar{x} ± SD.	R	\bar{x} ± SD.	R
FL	91.66 ± 2.08	82 - 96	92.18 ± 1.46	89 - 95
SL	78.18 ± 2.50**	68 - 84	79.53 ± 1.52**	76 - 83
HL	26.35 ± 1.39**	23 - 30	27.50 ± 1.55**	25 - 32
HD	29.7 ± 2.37*	24 - 36	30.09 ± 2.19	26 - 35
BD	42.18 ± 2.37*	31 - 49	41.44 ± 1.63	38 - 46
ED	5.03 ± 0.65	4 - 7	4.88 ± 0.40	4 - 6
SNL	15.43 ± 1.41**	12 - 18	15.67 ± 1.39	11.82 - 18
DFBFL	44.39 ± 1.91**	40 - 50	43.53 ± 1.77	40 - 47
AFBL	13.59 ± 1.10	9 - 17	13.13 ± 1.01	11 - 17
CD	12.68 ± 0.87**	10 - 15	12.81 ± 0.75	11 - 15
AIDCFL	17.45 ± 1.14**	15 - 21	17.18 ± 0.84*	14 - 19
DIVCFL	17.75 ± 0.90**	15 - 20	17.97 ± 1.11*	15 - 20
AIVCFL	11.73 ± 1.01**	10 - 15	11.89 ± 1.25*	9 - 16
DDCFL	10.81 ± 0.88	8 - 13	10.79 ± 1.15	8 - 14
VIAOFL	22.89 ± 1.84**	18 - 27	23.43 ± 1.90*	19 - 27
DIVOFL	43.01 ± 1.86**	38 - 48	42.74 ± 1.75	38 - 47
DOAFL	52.12 ± 1.95**	46 - 56	51.91 ± 1.75	47 - 57
VOAFL	25.78 ± 1.77**	22 - 31	26.08 ± 1.75	23 - 30

** Correlation with TL is significant at the 0.01 level.
* Correlation with TL is significant at the 0.05 level.
- For abbreviations refer to materials and methods.

Table 2: The relationship between some parameters of morphometric characters and total length (TL) of *Acanthopagrus bifasciatus* from Southern Red Sea, Egypt for future prediction of missing parameters.

The equation	Males	Females	
R**			
FL = -0.43 + 0.93*TL	0.99	FL = -0.78 + 0.94*TL	0.99
SL = -1.70 + 0.83*TL	0.98	SL = -1.36 + 0.83*TL	0.99
HL = -0.94 + 0.29*TL	0.96	HL = -2.07 + 0.32*TL	0.93
HD = -1.17 + 0.33*TL	0.91	HD = -2.60 + 0.36*TL	0.88
BD = 1.10 + 0.39*TL	0.95	BD = 0.14 + 0.41*TL	0.94
ED = 0.71 + 0.03*TL	0.76	ED = 0.42 + 0.04*TL	0.71
SNL = -0.21 + 0.16*TL	0.88	SNL = -0.21 + 0.16*TL	0.75
DFBFL = 1.61 + 0.40*TL	0.91	DFBFL = 0.99 + 0.41*TL	0.93
AFBL = 0.40 + 0.12*TL	0.88	AFBL = 0.63 + 0.12*TL	0.76
CD = -0.28 + 0.14*TL	0.94	CD = -0.28 + 0.13*TL	0.88
AIDCFL = -0.10 + 0.17*TL	0.93	AIDCFL = -0.70 + 0.19*TL	0.93
DIVCFL = -0.50 + 0.19*TL	0.96	DIVCFL = -0.35 + 0.19*TL	0.87
AIVCFL = 0.06 + 0.12*TL	0.88	AIVCFL = -0.52 + 0.13*TL	0.74
DDCFL = 0.30 + 0.10*TL	0.87	DDCFL = 0.30 + 0.10*TL	0.65
VIAOFL = -1.24 + 0.26*TL	0.96	VIAOFL = -1.59 + 0.27*TL	0.85
DIVOFL = -0.28 + 0.44*TL	0.96	DIVOFL = 0.01 + 0.43*TL	0.93
DOAIFL = 0.45 + 0.51*TL	0.97	DOAIFL = 0.96 + 0.50*TL	0.95
VOAIFL = -0.97 + 0.28*TL	0.94	VOAIFL = -1.36 + 0.29*TL	0.88

(**) correlation is significant at the 0.01 level.
- For abbreviations refer to materials and methods.
Table 3: The allometric coefficient (b) of morphometric measurements of each of males and females of *Acanthopagrus bifasciatus* from Southern Red Sea, Egypt.

Morphometric measurements*	Male (b) a	Female (b) a	**R**	Male (b) R**	Female (b) R**
FL	1.02± 0.83	0.99	1.02	0.82	0.99
SL	1.06± 0.53	0.99	1.05	0.61	0.99
HL	1.08± 0.17	0.98	1.18	0.09	0.98
HD	1.08± 0.19	0.96	1.22	0.08	0.96
BD	0.93± 0.64	0.97	1.01	0.40	0.98
ED	0.60± 0.52	0.87± 0.78	0.18	0.88	0.18
SNL	1.00± 0.15	0.93	1.02	0.14	0.88
DFBL	0.92± 0.27	0.99	0.98	0.51	0.97
AFBL	0.93± 0.21	0.94	0.90	0.25	0.90
CD	1.07± 0.08	0.97	1.02	0.11	0.95
AIDCFL	0.98± 0.20	0.96	1.11	0.09	0.97
DIVCL	1.08± 0.11	0.98	1.07	0.12	0.95
AIVCFL	0.97± 0.14	0.94	1.08	0.07	0.87
DIDCFL	0.93± 0.16	0.94	0.94	0.15	0.84
VIOAFL	1.14± 0.10	0.96	1.19	0.07	0.94
DIVOFL	1.03± 0.36	0.99	1.00	0.43	0.97
DOAFL	0.98± 0.58	0.99	0.94	0.73	0.98
VOAFL	1.10± 0.14	0.97	1.13	0.12	0.95

(-) = Negative allometric growth.
(+)= Positive allometric growth.
(I) = Isometric growth.

Correlation is significant at the 0.01 level.

* For abbreviations refer to materials and methods.

Table 4: Certain meristic characters of *Acanthopagrus bifasciatus* from southern Red Sea, Egypt

Males	N				
DFR	12	13	12	13	4.45
CFR	17	18	19	20	3.03
AFR	10	11	10	11	5.94
PFR	12	13	14	15	2.22

* For abbreviations refer to materials and methods.

References

[1] Abbaspour, R.; Rahbar, M. and Karimi, J. M. (2013): Comparative survey of morphometric-meristic male and female *Anjak* fish (*Schizocypris brucei*, Annandale and Hora, 1920) of Hamoun Wetland in South East Iran. Middle-East Journal of Scientific Research 14 (5): 620-623, 2013.

[2] Cadrin, S. (2005): Theme session K on multidisciplinary approaches to the identification of stock structure of small pelagic: Implications for assessment and sustainable management, conveners, Emma Hatfield (UK) and Doug Ha, Annual Report (Canada).

[3] Harabawy, A. S. A. (1993): Biological, biometrics and electrophoretic studies on two Bagarid fishes *Bagrus nahapayi* (Forskal, 1775) and *Bagrus macracanthus* (Forskal, 1775) from the Nile at Assiut, Egypt. M. Sc. Thesis, Assiut University Egypt.

[4] Harabawy, A. S. A. (2002): Biological and taxonomic studies on some fish species of the genus *Lethrinius* (family: *Lethriniidae*) from the Red Sea, Egypt and the genus *Abraus* (family: *Cyprinidae*) from the Baltic drainage. Ph. D. Thesis, Assiut University, Egypt.

[5] Khalil, A.; Yoakim, E. G. and Mekkawy, I. A. A. (1983): Biometric studies on the Nile charcodid fish, *Alestes abies* from Assiut. *Assiut Vet. Med. J.*, 11: 53-58.

[6] Khalil, A.; Yoakim, E. G. and Mahmoud, U. M. (1984): Biometric and meristic studies on the Nile cypriovid fish, *Labeomiloticus*, from Lake Nasser. Assiut Vet. Med. J., 12 (24): 71-78.

[7] Mahmoud, U. M. (1988): Taxonomic studies on some Nile Siluriform fishes. Ph. D. dissertation, Assiut University, Egypt.

[8] Mahmoud, U. M. (1991): Bivariate and multivariate size allometry and sexual dimorphism of *Labeline red* and *Labeorex*, from the Nile at Assiut, Egypt. Bull. Fac. Sci., Egypt, 20 (2-E): 39-59.

[9] Mahmoud, U. M. (1993): On the shape and ontogeny of *Bagrus nahapayi* (Forskal, 1775) and *Bagrus macracanthus* (Forskal, 1775) from the Nile at Assiut, Egypt. Vet. Med. J., 28(56): 44-70.

[10] Mahmoud, U. M. and Mekkawy, I. A. A. (1991): Studies on certain meristic characters of the *Synodontis* species from the Nile at Egypt. Bull. Fac. Sci., Assiut Univ., 20: 1-11.

[11] Mekkawy, I.A.A. (1987): Taxonomic studies on some Nile Mymorrhiform fishes. Ph.D. Thesis, Assiut University, Egypt.

[12] Mekkawy, I. A. A. (1991): Multivariate analysis of the morphometric and meristic characters of the Nile charcodid fish, *Alestis nur*, from the Nile at Egypt. Assiut Vet. Med. J., 26: 35-52.

[13] Mekkawy, I.A.A. (1994): Description of *O. ismania* sp. n., and its hybrid with *O. n.*, (Linnaeaus, 1758) Perciformes, Cichlidae from Egypt. Bull. Fac. Sci., Assiut University, 23(2E): 1-27.

[14] Mekkawy, I. A. A. (1997): Meristic and morphometric patterns of three Egyptian *Bagrus* species. J. Egypt. Ger. Soc. Zool., 22: 93-121.

[15] Mekkawy, I. A. A. and Mahmoud, U. M. (1992): Morphometric and meristic studies of four *Labeo* species from the sheet at Egypt. J. Egypt. Ger. Soc. Zool., 7: 485-513.

[16] Mekkawy, I. A. A. and Mohammad, A. S. (2011): Morphometrics and meristics of the three epinephelinelike species *Cephalopholis argus* (Bleek and Schneider, 1801), *Cephalopholis miniata* (Forsskal, 1775) and *Cephalopholis argus* (Forsskal, 1775) from the red sea, Egypt. J. Biol. Sci., 11: 10-21.
[17] Myers, K. W.; Walker, R. V.; Davis, N. D. and Burnger, R. L. (2004): A history of U. S. High Seas Salmon and Steelhead stock identification Research, NPAFC Technical Report No. 5.

[18] Oliveira, R. F. and Almada, V. C. (1995): Sexual dimorphism and allometry of external morphology in Oreochromismossambicus. J. Fish. Biol.; 46:1055–1064.

[19] Osman, A. G. M. (2000): Taxonomical and biological studies of some species of genus Epinephelus (Family: Serranidae) from the Red Sea, Egypt. M. Sc. Thesis, Al-Azhar University, Cairo.

[20] Safi, A.; Khan, M. A. and Khan, M. Z. (2014): Study of some morphometric and meristic characters of striped piggy fish, Pomadasysstridens (Forsskal, 1775) from Karachi Coast, Pakistan. The Journal of Zoology Studies, 1(4): 1-6.

[21] Turan, C. (2004): Stock identification of Mediterranean horse mackerel (Tachurusmediterraneus) using morphometric and meristic characters. ICES J. Mar. Sci., 61:774-781.