Original Article

Novel Thiazolidinone-Azole Hybrids: Design, Synthesis and Antimycobacterial Activity Studies

Barbaros Eroglu, Keriman Ozadali-Sari*, Oya Unsal-Tan, Sriram Dharmarajan, Perumal Yogeeswari and Ayla Balkan

*Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey. Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science – Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Andhra Pradesh, India.

Abstract

To develop novel antimycobacterial agents, a new series of thiazolidinone-azole hybrids 4a-b, 5a-b and 6-13 were designed and synthesized. Thiazolidin-4-ones (4a-b and 5a-b) were obtained by the reaction of Schiff bases and hydrazones (2a-b and 3a-b) with mercaptoacetic acid. 5-Benzylidene derivatives (6-13) were gained by treatment of 5a-b with appropriate benzaldehydes according to Knoevenagel condensation. To evaluate their structures 1H NMR, IR, mass spectrometry and elemental analysis data were used. The target compounds were screened for their antimycobacterial activity against M. tuberculosis H37Rv strain using the microplate alamar blue assay method. Among them, 6, 10 and 12 (MIC: 14.27-14.74 μM) were found as most active compounds in the series. It was seen that both phenylamino and benzylidene substitutions on thiazolidin-4-one ring caused an improvement in the antimycobacterial activity.

Keywords: Thiazolidin-4-one; Triazole; Imidazole; Antimycobacterial activity.

Introduction

Tuberculosis (TB) is one of the most common infectious diseases known to man. According to the WHO report in 2012, there were almost 9 million new cases of tuberculosis and 1.4 million tuberculosis deaths (1). The problems with current TB treatment are complex and include: a prolonged standard course regimen of six months, which often result in patient noncompliance; emergency of extremely drug-resistant tuberculosis (XDR-TB) strains; lack of effective drugs against the latent state (2-4). Therefore, there is an urgent need for antitubercular agents with improved properties such as enhanced activity against MDR strains, reduced toxicity, shortened duration of treatment.

Thiazolidin-4-one is an important scaffold known to be associated with several biological activities. It is known that (-) 2-(5-carboxypentyl) thiazolidin-4-one (actithiazic acid) isolated from the culture broth of a strain of streptomyces has antimycobacterial activity (5). This discovery has prompted researchers to focus on new thiazolidin-4-one derivatives as potential antimycobacterial agents (6-10). On the other hand, it has been extensively reported that many structurally diverse compounds having azole moieties such as imidazole (11-14), triazole (15-17), thiazole (18, 19), oxazole (20), pyrazole (21, 22), isoxazole (23), oxadiazole (24) showed antimycobacterial activity. In recent years, one of the important strategies used in antitubercular
drug development studies is hybridization of the biologically active structures. Considering this strategy, it was reported to achieve a highly active molecule by hybridization of thiazolidin-4-one ring with various active structures (25).

These facts have led us to study on thiazolidinone-azole hybrid compounds which are expected to show antitubercular activity.

Experimental

Chemistry

Melting points were determined with a Thomas-Hoover Capillary Melting Point Apparatus (Philadelphia, PA, USA) and are uncorrected. ATR-FTIR spectra were obtained using the MIRacle ATR accessory (Pike technologies) in conjunction with a Spectrum BX FTIR spectrometer (Perkin Elmer) and were reported in cm$^{-1}$. The 1H NMR (400 MHz) spectra (DMSO-d$_6$) were recorded on a Varian Mercury 400 FT NMR spectrophotometer (Varian Inc, Palo Alto, CA, USA) using TMS as an internal reference (Chemical shift represented in δ ppm). The ESI-MS spectra were measured on a micromass ZQ-4000 single quadruple mass spectrometer. Elemental analyses (C, H, N) were performed on Leco CHNS 932 analyzer (USA).

General procedure for the preparation of Schiff bases 2a-b and hydrazones 3a-b

Equimolar amounts of an appropriate benzaldehyde and anilin/phenylhydrazone were refluxed in methanol in presence of acetic acid (1 drop) as a catalytic reagent for 4 h. The solvent was evaporated and the crude mixture was used without any purification in the next step.

A mixture of Schiff bases or hydrazones 2a-b or 3a-b (1 mmol) and excess of mercaptoacetic acid (1 mL) was heated at 60-80 ºC until the reaction was completed. Ethyl acetate (5 mL) was added, the organic layer was washed with saturated NaHCO$_3$ (3x20 mL), water (1x10 mL), dried with Na$_2$SO$_4$ and concentrated to give an oily residue. The oily residue was purified by column chromatography on silica gel using hexane-ethyl acetate as eluent (3:7).

3-phenyl-2-[4-(1H-1,2,4-triazol-1-yl)phenyl]-1,3-thiazolidin-4-ones 4a-b and 3-(phenylamino)-2-[4-(1H-1,2,4-triazol/imidazol-1-yl)phenyl]-1,3-thiazolidin-4-ones 5a-b

A mixture of Schiff bases or hydrazones 2a-b or 3a-b (1 mmol) and excess of mercaptoacetic acid (1 mL) was heated at 60-80 ºC until the reaction was completed. Ethyl acetate (5 mL) was added, the organic layer was washed with saturated NaHCO$_3$ (3x20 mL), water (1x10 mL), dried with Na$_2$SO$_4$ and concentrated to give an oily residue. The oily residue was purified by column chromatography on silica gel using hexane-ethyl acetate as eluent (3:7).

3-phenyl-2-[4-(1H-1,2,4-triazol-1-yl)phenyl]-1,3-thiazolidin-4-one 4a

$\text{53\% yield, mp 176-8}^\circ \text{C. } ^1\text{H NMR (DMSO-d}_6, 400 \text{ MHz); } \delta 9.25 (1H; s; triazole), 8.21 (1H; s; triazole), 7.77 (2H; d; Ar-H$_2$, J: 8.4 Hz), 7.60 (2H; d; Ar-H$_2$" and H$_s$; J: 8.4 Hz), 7.36-7.28 (4H; m; Ar-H$_2$" and H$_s$; J: 8.4 Hz), 7.16-7.14 (1H; m; Ar-H$_2$"), 6.61 (1H; s; thiazol., H$_2$), 4.08 (1H; d; thiazol., H$_s$, J: 1.6 Hz, J: 15.6 Hz), 3.92 (1H; d; thiazol., H$_s$; J: 15.6 Hz), IR; cm$^{-1}$ 1674 (C=O). ESI-MS (m/z); 345 [M+Na$^+$], 323 [M+H$^+$]. Anal. Calcd. for C$_{17}$H$_{14}$N$_4$OS: C, 63.34; H, 4.38; N, 17.38; S, 9.94. Found: C, 62.28; H,
Table 1. Antimycobacterial activities of 4a-b, 5a-b and 6-13

Compounds	X	R	MIC* (μM)
4a	N	-	77.64
4b	CH	-	155.76
5a	N	-	74.18
5b	CH	-	37.20
6	N	H	14.70
7	N	Br	49.60
8	N	CH3	56.94
9	N	Cl	27.17
10	CH	H	14.74
11	CH	Br	49.70
12	CH	CH3	14.27
13	CH	Cl	27.23
INH	N	H	0.36
Rifampin	N	Br	0.12
Ethambutol	N	CH3	7.65
Ciprofloxacin	N	Cl	4.71

4.45; N, 17.60; S, 9.62.

3-phenyl-2-[4-(1H-imidazol-1-yl)phenyl]-1,3-thiazolidin-4-one 4b
47% yield, mp 75-77°C. 1H NMR (DMSO-d$_6$, 400 MHz); δ 8.22 (1H; s; imidazole), 7.71 (1H; s; imidazole), 7.57-7.52 (4H; m; Ar-H$_2”$, H$_3”$, H$_5”$ and H$_6”$), 7.36-7.28 (4H; m; Ar-H$_2’$, H$_3’$, H$_5’$, and H$_6’$), 7.17-7.13 (1H; m; Ar-H$_2’’$), 7.07 (1H; s; imidazole), 6.60 (1H; s; thiazol., H$_2$), 4.07
(1H; dd; thiazol., H$_{5a}$: J = 1.2 Hz, J = 15.6 Hz), 3.90 (1H; d; thiazol., H$_{5b}$: J = 15.6 Hz). IR; cm$^{-1}$ 1681 (C=O). ESI-MS (m/z): 344 [M+Na]$^+$, 322 [M+H]$^+$. Anal. Calcd. for C$_{18}$H$_{15}$N$_3$OS: C, 67.27; H, 4.70; N, 13.07; S, 9.98. Found: C, 62.48; H, 4.57; N, 13.43; S, 10.08.

3-(phenylamino)-2-[4-(1H-1,2,4-triazol-1-yl)phenyl]-1,3-thiazolidin-4-one 5a
48% yield, mp 228-30 °C (dec.).1H NMR (DMSO-d$_6$, 400 MHz); δ 9.32 (1H; s; triazole), 8.25 (1H; s; triazole), 8.22 (1H; s; NH), 7.88 (2H; d; Ar-H" and H"$'$: J = 8.4 Hz), 7.60 (2H; d; Ar-H$_2$" and H$_2$"$'$: J = 8.4 Hz), 7.16 (2H; t; Ar-H$_3$ and H$_3$"$'$), 6.75 (1H; t; Ar-H$_4$ and H$_4$"$'$), 5.95 (1H; d; thiazol., H$_2$: J = 1.2 Hz), 3.98 (1H; dd; thiazol., H$_5a$: J = 1.6 Hz, J = 15.6 Hz), 3.79 (1H; d; thiazol., H$_5b$: J = 15.6 Hz). IR; cm$^{-1}$ 3220 (NH), 1696 (C=O). ESI-MS (m/z): 360 [M+Na]$^+$, 338 [M+H]$^+$. Anal. Calcd. for C$_{17}$H$_{15}$N$_5$OS: C, 60.52; H, 4.48; N, 20.76; S, 9.50. Found: C, 60.31; H, 4.61; N, 20.54; S, 9.65.

3-(phenylamino)-2-[4-(1H-imidazol-1-yl)phenyl]-1,3-thiazolidin-4-one 5b
45% yield, mp 163-4 °C. 1H NMR (DMSO-d$_6$, 400 MHz); δ 8.28 (1H; s; imidazole), 8.22 (1H; s; NH), 7.77 (1H; s; imidazole), 7.66 (2H; d; Ar-H$_2$" and H$_2$"$'$: J = 8.8 Hz), 7.54 (2H; d; Ar-H$_3$ and H$_3$"$'$: J = 8.8 Hz), 7.16 (2H; t; Ar-H$_3$ and H$_3$"$'$), 7.11 (1H; s; imidazole), 6.75 (1H; t; Ar-H$_4$), 6.67 (2H; d; Ar-H$_4$ and H$_4$": J = 8.8 Hz), 5.94 (1H; d; thiazol., H$_5$: J = 1.6 Hz), 3.97 (1H; dd; thiazol., H$_5a$: J = 1.6 Hz, J = 15.6 Hz), 3.79 (1H; d; thiazol., H$_5b$: J = 15.6 Hz). IR; cm$^{-1}$ 3170 (NH), 1681 (C=O). ESI-MS (m/z): 359 [M+Na]$^+$, 337 [M+H]$^+$. Anal. Calcd. for C$_{18}$H$_{18}$N$_4$OS: C, 64.27; H, 4.79; N, 16.65; S, 9.53. Found: C, 64.47; H, 4.58; N, 16.83; S, 9.76.

General procedure for the preparation of 5-benzylidene/3-substitutedbenzylidene-3-(phenylamino)-2-[4-(1H-1,2,4-triazol/imidazol-1-yl)phenyl]-1,3-thiazolidin-4-ones 6-13
A mixture of 3-(phenylamino)-2-[4-(1H-1,2,4-triazol/imidazol-1-yl)phenyl]-1,3-thiazolidin-4-ones 5a-b (10 mmol) and 4-nonsubstituted/substitutedbenzaldehyde (10 mmol) was refluxed in 30 mL of ethanol in the presence of potassium hydroxide (15 mmol) for 8 h. The solvent was evaporated under reduced pressure and obtained oily residue was crystallized from appropriate solvent.

5-Benzylidene-3-(phenylamino)-2-[4-(1H-1,2,4-triazol-1-yl)phenyl]-1,3-thiazolidin-4-one 6
38% yield, mp 156-7 °C. 1H NMR (DMSO-d$_6$, 400 MHz); δ 9.29 (1H; s; triazole), 8.46 (1H; s; NH), 8.22 (1H; s; triazole), 7.88 (2H; d; Ar-H$_2$" and H$_2$"$'$: J = 8.4 Hz), 7.59 (2H; d; Ar-H$_3$ and H$_3$"$'$: J = 8.4 Hz), 7.15 (1H; s; CH=), 7.46 (2H; d; Ar-H$_4$" and H$_4$": J = 8.4 Hz), 7.35 (1H; t; Ar-H$_5$), 7.15 (2H; t; Ar-H$_5$ and H$_5$"), 6.75 (1H; t; Ar-H$_6$), 6.65 (2H; d; Ar-H$_6$ and H$_6$": J = 8.0 Hz), 6.33 (1H; s; CH). IR; cm$^{-1}$ 3266 (NH), 1676 (C=O). ESI-MS (m/z): 448 [M+Na]$^+$, 426 [M+H]$^+$. Anal. Calcd. for C$_{24}$H$_{19}$N$_5$OS: C, 67.74; H, 4.50; N, 16.46; S, 7.53. Found: C, 67.37; H, 4.54; N, 16.05; S, 6.81.

5-(4-Bromobenzylidene)-3-(phenylamino)-2-[4-(1H-1,2,4-triazol-1-yl)phenyl]-1,3-thiazolidin-4-one 7
57% yield, mp 192-3 °C. 1H NMR (DMSO-d₆, 400 MHz); δ 9.30 (1H; s; triazole), 8.50 (1H; s; NH), 8.23 (1H; s; triazole), 7.88 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.65 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.59 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.51 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.48 (1H; s; CH=), 7.15 (2H; t; Ar-H′″ and H″′), 6.75 (1H; t; Ar-H′″), 6.44 (2H; d; Ar-H′″ and H″′, J = 7.6 Hz), 6.35 (1H; s; CH). IR; cm⁻¹ 3266 (NH), 1618 (C=O). ESI-MS (m/z); 544 [M+K+2]⁺, 528 [M+Na+2]⁺. Anal. Caled. for C₂₅H₁₂BrN₂O. S. 1/2 H₂O: C, 55.18; H, 3.86; N, 13.41; S, 6.14. Found: C, 54.84; H, 3.73; N, 13.41; S, 6.64.

5-(4-Chlorobenzylidene)-3-(phenylamino)-2-[4-(1H-imidazol-1-y)phenyl]1,3-thiazolidin-4-one 9

43% yield, mp 163-4 °C. 1H NMR (DMSO-d₆, 400 MHz); δ 9.29 (1H; s; triazole), 8.47 (1H; s; NH), 8.22 (1H; s; triazole), 7.88 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.65 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.59 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.51 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.48 (1H; s; CH=), 7.15 (2H; t; Ar-H′″ and H″′), 6.75 (1H; t; Ar-H′″), 6.65 (2H; d; Ar-H′″ and H″′, J = 7.2 Hz), 6.35 (1H; s; CH). IR; cm⁻¹ 3268 (NH), 1676 (C=O). ESI-MS (m/z); 500 [M+K+2]⁺, 482 [M+Na+2]⁺. Anal. Caled. for C₂₅H₁₂ClN₂O₂. S. H₂O: C, 61.47; H, 4.08; N, 14.93; S, 6.84. Found: C, 61.94; H, 3.99; N, 15.22; S, 6.82.

5-Benzylidene-3-(phenylamino)-2-[4-(1H-imidazol-1-y)phenyl]1,3-thiazolidin-4-one 10

41% yield, mp 189-90 °C. 1H NMR (DMSO-d₆, 400 MHz); δ 8.48 (1H; s; NH), 8.26 (1H; s; imidazole), 7.74 (1H; s; imidazole), 7.68 (2H; d; Ar-H′″ and H″′, J = 8.4 Hz), 7.57-7.45 (7H; m; CH=, Ar-H″′, H‴′, H‴′, H‴′, H‴′, H‴′, and H‴″), 7.36 (1H; t; Ar-H‴′), 7.18 (2H; t; Ar-H‴′ and H‴′, J = 7.2 Hz), 7.09 (1H; s; imidazole), 6.76 (1H; t; Ar-H‴′), 6.66 (2H; d; Ar-H‴′ and H‴′, J = 8.0 Hz), 6.33 (1H; s; CH). IR; cm⁻¹ 3288 (NH), 1696 (C=O). ESI-MS (m/z); 447 [M+Na⁺], 425 [M+H⁺]. Anal. Caled. for C₂₅H₁₄BrN₂O.S. H₂O: C, 70.73; H, 4.75; N, 13.20; S, 7.55. Found: C, 70.67; H, 4.99; N, 13.72; S, 7.43.

5-(4-Methylbenzylidene)-3-(phenylamino)-2-[4-(1H-imidazol-1-y)phenyl]1,3-thiazolidin-4-one 11

61% yield, mp 223-4 °C. 1H NMR (DMSO-d₆, 400 MHz); δ 8.62 (1H; s; NH), 8.53 (1H; s; imidazole), 7.89 (1H; s; imidazole), 7.74 (2H; d; Ar-H″′ and H‴′, J = 8.4 Hz), 7.68 (2H; d; Ar-H″′ and H‴′, J = 8.4 Hz), 7.59 (2H; d; Ar-H″′ and H‴′, J = 8.8 Hz), 7.53 (2H; d; Ar-H″′ and H‴′, J = 9.2 Hz), 7.51 (1H; s; CH=), 7.31 (1H; s; imidazole), 7.18 (2H; t; Ar-H‴′ and H‴′), 6.78 (1H; t; Ar-H‴′), 6.68 (2H; d; Ar-H‴′ and H‴′, J = 8.0 Hz), 6.36 (1H; CH). IR; cm⁻¹ 3266 (NH), 1696 (C=O). ESI-MS (m/z); 527 [M+Na₂⁺], 505 [M+H⁺]. Anal. Caled. for C₂₅H₁₄BrN₂O₃. H₂O: C, 53.86; H, 4.52; N, 10.05; S, 5.75. Found: C, 54.00; H, 4.12; N, 10.43; S, 5.85.

5-(4-Methylbenzylidene)-3-(phenylamino)-2-[4-(1H-imidazol-1-y)phenyl]1,3-thiazolidin-4-one 12

47% yield, mp 215-6 °C. 1H NMR (DMSO-d₆, 400 MHz); δ 8.47 (1H; s; NH), 8.23 (1H; s; imidazole), 7.75 (1H; s; imidazole), 7.70 (2H; d; Ar-H″′ and H‴′, J = 8.4 Hz), 7.55 (2H; d; Ar-H″′ and H‴′, J = 8.4 Hz), 7.49 (1H; s; CH=), 7.47 (2H; d; Ar-H″′ and H‴′, J = 8.0 Hz), 7.29 (2H; d; Ar-H″′ and H‴′, J = 8.4 Hz), 7.18 (2H; t; Ar-H‴′ and H‴′), 7.11 (1H; s; imidazole), 6.77 (1H; t; Ar-H‴′), 6.68 (2H; d; Ar-H‴′ and H‴′, J = 8.0 Hz), 6.32 (1H; s; CH), 3.44 (3H; s; CH₃). IR; cm⁻¹ 3288 (NH), 1695 (C=O). ESI-MS (m/z); 477 [M+K⁺], 439 [M+H⁺]. Anal. Caled. for C₂₅H₁₄N₂O₂. S. H₂O: C, 65.80; H, 5.52; N, 11.81; S, 6.76. Found: C, 65.25; H, 5.21; N, 11.73; S, 6.74.
5-(4-Chlorobenzylidene)-3-(phenylamino)-2-[4-(1H-imidazol-1-yl)phenyl]-1,3-thiazolidin-4-one 13
53% yield, mp 217-8 °C.

H NMR (DMSO-d$_6$, 400 MHz); δ 8.51 (1H; s; NH), 8.28 (1H; s; imidazole), 7.77 (1H; s; imidazole), 7.74 (2H; d; Ar-H$_2$ and H$_5$, J: 8.4 Hz), 7.68 (2H; d; Ar-H$_5$ and H$_7$, J: 8.4 Hz), 7.59 (2H; d; Ar-H$_7$ and H$_7$, J: 8.8 Hz), 7.53 (2H; d; Ar-H$_2$ and H$_6$, J: 9.2 Hz), 7.51 (1H; s; CH=), 7.18 (2H; t; Ar-H$_3$ and H$_5$), 7.11 (1H; s; imidazole), 6.78 (1H; t; Ar-H$_3$ and H$_5$), 6.68 (2H; d; Ar-H$_6$ and H$_7$, J: 8.0 Hz), 6.36 (1H; s; CH). IR; cm$^{-1}$ 3268 (NH), 1697 (C=O).
ESI-MS (m/z); 483 [M+Na+2]$^+$, 461 [M+H+2]$^+$.

Anal. Calcd. for C$_{25}$H$_{19}$ClN$_4$O$_3$: C, 64.16; H, 4.31; N, 11.97; S, 6.85. Found: C, 64.27; H, 5.02; N, 11.21; S, 6.51.

Antimycobacterial Activity Assay
The target compounds were tested for their antimycobacterial activity in vitro against M. tuberculosis H$_{37}$R$_v$ using the microplate alamar blue assay (MABA) method (27) in duplicate. Isoniazid, rifampin, ethambutol and ciprofloxacin were used as positive and DMSO as negative control. Compound stock solutions were prepared in DMSO. Sterile deionized water (200 μL) was added to all outer-perimeter wells of sterile 96-well plates to minimize evaporation of the medium in the test wells during incubation. The wells received 100 μL of Middlebrook 7H9GC broth and two fold serial dilutions of the target compounds/positive controls were prepared in a volume of 100 μL directly on the plate. 100 μL of MTB inoculum was added to the wells. The plates were sealed with parafilm and were incubated at 37 °C for five days. 50 μL of a freshly prepared 1:1 mixture of Alamar Blue (Accumed International, Westlake, Ohio) reagent and 10% Tween 80 was added to the plates and incubated at 37 °C for 24 h. A blue colour in the well was interpreted as no growth, and a pink colour was scored as growth. The MIC was determined as the lowest drug concentration which prevented a colour change from blue to pink.

Antimycobacterial Activity

Chemistry
The starting compounds, 4-[(1H-1,2,4-triazol/imidazol-1-yl)benzaldehydes 1a-b were synthesized in accordance with the method described in the literature (26). The intermediate compounds, Schiff bases and hydrazones (2a-b and 3a-b), were obtained by condensation of 1a-b with anilin or phenylhydrazine respectively. Reaction of 2a-b and 3a-b with mercaptoacetic acid yielded the thiazolidin-4-ones 4a-b and 5a-b (Figure 1). Compounds 6-13 were gained by treatment of 5a-b with appropriate benzaldehydes according to Knoevenagel condensation as outlined in Figure 2. The structures of the target compounds (4a-b, 5a-b and 6-13) were confirmed by IR, 1H NMR, mass spectrometry and elemental analysis.

In the IR spectra of compound 4a-b and 5a-b, the presence of the C=O stretching bands at around 1680 cm$^{-1}$ indicated the thiazolidin-4-one ring closure. In the 1H NMR spectra of these compounds, the signals of nonequivalence methylenic protons of the thiazolidin-4-one ring were observed as two doublets at around 4.0 ppm (H$_A$) and as doublet at around 3.9 ppm (H$_B$) because of geminal (J_{AB} of 15.6 Hz) and long range coupling (J_{Ax} of 1.6 Hz) with C$_2$ proton. Furthermore, the signal of the C$_2$ proton of the thiazolidin-4-one ring was seen as singlet or doublet at around 7.5 ppm proved benzylidene substitution to the thiazolidin-4-one ring. In the mass spectra, all compounds displayed molecular ion peaks which confirmed their molecular weight.

Results and Discussion

Antimycobacterial Activity
The target compounds (4a-b, 5a-b and 6-13) were evaluated for their antimycobacterial activity in-vitro against Mycobacterium tuberculosis H$_{37}$R$_v$ using the microplate alamar blue assay method (27) in duplicate. The results of the antimycobacterial activity (MIC values) were reported in Table 1.
Synthesis and antimycobacterial activities of new thiazolidinones

When Table 1 were examined, it was seen that introduction of phenylamino group (5a with MIC of 74.18 μM and 5b with MIC of 37.20 μM) instead of phenyl group (4a with MIC of 77.64 μM and 4b with MIC of 155.76 μM) to 3th position of thiazolidin-4-one ring contributed to the activity, although this contribution was very limited for triazole substituted derivatives.

These results led us to focus on 3-(phenylamino)-1,3-thiazolidin-4-ones. As a continuation of our study, we condensed several benzaldehydes to obtain 5-(substitutedbenzylidene)-3-(phenylamino)-1,3-thiazolidin-4-ones (6-13). When we compared the activity results of 5a and 5b with 6-9 and 10-13 respectively, it was observed that benzylidene substitution to the 3-(phenylamino)-1,3-thiazolidin-4-ones enhanced the activity (except 11). However 12 (MIC: 14.27 μM) was the most active derivative in this series, introducing the substituents at the 4th position of the benzylidene ring decreased the activity in generally. According to the activity results of 6 and 10 (with MIC of 14.70 and 14.74 μM respectively), it can be assumed that non-substitutedbenzylidene structure is a favorable moiety for the activity. Comparing the compounds bearing triazole moiety (6-9) with that of imidazole analogues (10-13), it was seen that the type of the azole ring did not cause any remarkable difference on the activity except methyl substituted derivatives (8 with MIC of 56.94 μM and 12 with MIC of 14.74 μM). Furthermore, none of the compounds in the series were found as active as standard compounds (Table 1).

In summary, a series of novel thiazolidin-4-one derivatives 4a-b, 5a-b and 6-13 were designed, synthesized to evaluate their antimycobacterial activity. Among the target compounds, 6, 10 and 12 were found as most active compounds in the series. It was seen that both phenylamino and benzylidene substitutions on thiazolidin-4-one ring caused an improvement in the antimycobacterial activity.

References

(1) World Health Organization Global tuberculosis report, http://wwwwho.int/tb/publications/global_report/en/ (2012).
(2) Huebner RE and Castro KG. The changing face of tuberculosis. Annu. Rev. Med. (1995) 46: 47-55.
(3) Datta M, Radhamani MP, Selvaraj R, Paramasivan CN, Gopalan BN, Sudeendra CR and Prabhakar R. Critical assessment of smears-positive pulmonary tuberculosis patients after chemotherapy under the district tuberculosis programme. Tuber. Lung Dis. (1993) 74: 180-6.
(4) Forget EJ and Menzies D. Adverse reactions to first-line antituberculosis drugs. Expert Opin. Drug Saf. (2006) 5: 231-49.
(5) Grundy WE, Whitman AL, Rdzok EG, Rdzok EJ, Hanes ME and Sylvester JC. Acitriazic acid. 1. Microbiological studies. Antibiot. Chemother. (1952) 2: 399-408.
(6) Kucukguzel SG, Oruc EE, Rollas S, Sahin F and Ozbek A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem. (2002) 37: 197-206.
(7) Aridoss G, Amirthaganesan S, Kim MS, Kim JT and Jeong YT. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkylr-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem. (2009) 44: 4199-4210.
(8) de Aquino TM, Liesen AP, da Silva REA, Lima VT, Carvalho CS, de Faria AR, de Araújo JM, de Lima JG, Alves AJ, de Melo EJT and Gôes AJS. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg. Med. Chem. (2008) 16: 446-56.
(9) Jaju S, Palkar M, Maddi V, Ronad P, Mamledesai S, Satyanarayana D and Ghatole M. Synthesis and antimycobacterial activity of a novel series of isonicotinylhydrazide derivatives. Arch. Pharm. (2009) 342: 723-31.
(10) Srivastava T, Gaikwad AK, Haq W, Sinha S and Katti SB. Synthesis and biological evaluation of 4-thiazolidinone derivatives as potential antimycobacterial agents. Arkivoc (2005): 120-30
(11) Gupta P, Hameed S and Jain R. Ring-substituted imidazoles as a new class of anti-tuberculosis agents. Eur. J. Med. Chem. (2004) 39: 805-814.
(12) Khan A, Sarkar S and Sarkar D. Bactericidal activity of 2-nitroimidazole against the active replicating stage of Mycobacterium bovis BCG and Mycobacterium tuberculosis with intracellular efficacy in THP-1 macrophages. Int. J. Antimicrob. Agents (2008)32:40-5.
(13) Li X, Manjunatha UH, Goodwin MB, Knox JE, Lipinski CA, Keller TH, Barry CE 3rd and Dowd CS. Synthesis and antimycobacterial activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy) benzylxoy)-6,7-dihydro-5H-imidazo [2,1-b][1,3] oxazines, analogues of PA-824. Bioorg. Med. Chem. Lett. (2008) 18: 2256-62.
(14) Pandey J, Tiwari VK, Verma SS, Chaturvedi V,
Bhatnagar S, Sinha S, Gaikwad AN and Tripathi RP. Synthesis and antitubercular screening of imidazole derivatives. *Eur. J. Med. Chem.* (2009) 44: 3350-5.

(15) Wilkinson BL, Bornaghi LF, Wright AD, Houston TA and Poulsen SA. Anti-mycobacterial activity of a bis-sulfonamide. *Bioorg. Med. Chem. Lett.* (2007) 17 (5): 1355-7.

(16) Gill C, Jadhav G, Shaikh M, Kale R, Ghawalkar A, Nagargoje D and Shiradkar M. Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. *Bioorg. Med. Chem. Lett.* (2008) 18: 6244-7.

(17) Castagnolo D, Radi M, Dessi F, Manetti F, Satti M, Meleddu R, De Logu A and Botta M. Synthesis and biological evaluation of new enantiomerically pureazole derivatives as inhibitors of Mycobacterium tuberculosis. *Bioorg. Med. Chem. Lett.* (2009) 19: 2203-5.

(18) Turan-Zitouni G, Özdemir A, Asim Kaplancikli Z, Benkli K, Chevallet P and Akalin G. Synthesis and antituberculosis activity of new thiazolylhydrazone derivatives. *Eur. J. Med. Chem.* (2008) 43: 981-5.

(19) Mallikarjuna BP, Sastry BS, Suresh Kumar GV, Rajendra Prasad Y, Chandrashekar SM and Sathisha K. Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadazole ring systems--a novel class of potential antibacterial, antifungal and antitubercular agents. *Eur. J. Med. Chem.* (2009) 44: 4739-46.

(20) Mai A, Artico M, Esposito M, Ragn R, Shardella G and Massa S. Synthesis and biological evaluation of enantiomerically pure pyrrolyl-oxazolidinones as a new class of potent and selective monoamine oxidase type A inhibitors. *Farmaco* (2003) 58: 231-41.

(21) Mamolo MG, Zampieri D, Falagiani V, Vio L, Fermeglia M, Ferrone M, Pricl S, Banfi E and Scialino G. Antifungal and antimycobacterial activity of new N-1-[(1-aryl-2-(1H-imidazol-1-yl and 1H-1,2,4-triazol-1-yl)-ethylidene]-pyridine-2-carboxamidrazone derivatives: a combined experimental and computational approach. *Arkivoc* (2004): 231-50.

(22) Castagnolo D, Manetti F, Radi M, Bechi B, Pagano M, De Logu A, Meleddu R, Satti M and Botta M. Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: part 2. Synthesis of rigid pyrazolones. *Bioorg. Med. Chem.* (2009) 17: 5716-21.

(23) Tangallapally RP, Sun D, Rakesh, Budha N, Lee RE, Lenaerts AJ and Meibohm B. Discovery of novel isoxazolines as anti-tuberculosis agents. *Bioorg. Med. Chem. Lett.* (2007) 17: 6638-42.

(24) Mamolo MG, Zampieri D, Vio L, Fermeglia M, Ferrone M, Pricl S, Scialino G and Banfi E. Antimycobacterial activity of new 3-substituted 5-(pyridin-4-yl)-3H-1,3,4-oxadiazol-2-one and 2-thione derivatives. Preliminary molecular modeling investigations. *Bioorg. Med. Chem.* (2005) 13: 3797-809.

(25) Jain AK, Vaidya A, Ravichandran V, Kashaw SK and Agrawal RK. Recent developments and biological activities of thiazolidinone derivatives: A review. *Bioorg. Med. Chem.* (2012) 20: 3378-95.

(26) Mečiarová M, Toma Š, Magdolen P. Ultrasound effect on the aromatic nucleophilic substitution reactions on some haloarenes. *Ultrason. Sonochem.* (2003) 10: 265-70.

(27) Collins LA and Franzblau SG. Microplate Alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. *Antimicrob. Agents Ch.* (1997) 41: 1004-9.

This article is available online at http://www.ijpr.ir