Supporting information for “Near unity mass accommodation coefficient of organic molecules of varying structure”

Jan Julin¹, Paul M. Winkler², Neil M. Donahue³, Paul E. Wagner² and Ilona Riipinen¹,³

¹Department of Applied Environmental Science and Bolin Centre for Climate Research, SE-10691 Stockholm, Stockholm University, Sweden.
²Fakultät für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria
³Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213, USA

Number of pages: 9
Number of figures: 4
Number of tables: 1
Nonane condensational growth model calculations

The condensational growth of nonane was calculated by numerically solving the coupled differential equations for particle mass, temperature at droplet surface and far away from the droplet, the particle concentration and the partial pressure of the nonane vapor. The differential equations were solved using the freely available solver DVODE. The droplet population is assumed monodisperse and no nucleation or chemical reactions are taking place, and the initial droplet radius was set to the value of the first experimentally measured radius. The difference between nonane partial pressure far from the droplet and at droplet surface is the driving force for the mass transport, and the temperature difference between the temperature far from the droplet and at droplet surface is the driving force for heat transport.

The mass flux I from a droplet with radius a is given by

$$I = \frac{4\pi a p M \beta_m D}{RT_\infty} C \ln \left(\frac{1 - \frac{p_{v\infty}}{p}}{1 - \frac{p_{va}}{p}} \right),$$

where p is the total pressure, M is the molar mass, β_m is the transition regime correction factor, D is the diffusion constant, R is the gas constant, T_∞ is the temperature far from the droplet, $p_{v\infty}$ and p_{va} are the partial vapor pressures far from the droplet and at the droplet surface, respectively, and C accounts for the temperature dependence of the diffusion coefficient. C has the form

$$C = \frac{T_\infty - T_a}{T_\infty} - \frac{2 - \mu}{T_{\infty}^{2-\mu} - T_a^{2-\mu}},$$

where T_a is the temperature at the droplet surface and μ is the parameter that appears in the temperature dependent diffusion coefficient, $D(T) = D_N(p_N/p)(T/T_N)^\mu$. The mass accommodation coefficient enters the equations through the correction factor β_m, for which we used the Fuchs-Sutugin expression.
The Knudsen number Kn_m is defined as the ratio of the mean free path of the nonane vapor and the droplet radius.

The heat flux from the droplet is given by

$$ Q = 2\pi a(k_a + k_\infty)(T_a - T_\infty)\beta_T + HI, $$ \hspace{1cm} (S4)

where k_a and k_∞ are the thermal conductivities of the gas mixture at the droplet surface and far from the droplet, respectively, H is the specific enthalpy of the nonane vapor and β_T is a transition regime correction factor, given by

$$ \beta_T = \frac{1 + Kn_T}{1 + \left(\frac{4}{3} \alpha_T + 0.337\right) Kn_T + \frac{4}{3} \alpha_T Kn_T^2}, $$ \hspace{1cm} (S5)

where α_T is the thermal accommodation coefficient which in the present work is assumed to be 1, and Kn_T is the ratio of the mean free path of the inert gas (air) molecules and the droplet radius.

The droplet is assumed to be in (quasi) equilibrium with the vapor at the surface, and so the vapor partial pressure at the surface is given by

$$ p_{va} = p_{v,sat} \exp\left(\frac{2\sigma M}{RT_a \rho_l a}\right), $$ \hspace{1cm} (S6)

where σ is the surface tension, ρ_l is the liquid density and $p_{v,sat}$ is the saturation vapor pressure, for which we used three different values based on parameterizations of the form\(^4\text{--}^6\)

$$ \ln p_{v,sat} = A_1 + \frac{A_2}{T_a - A_3} + A_4 \ln T_a + A_5 T_a. $$ \hspace{1cm} (S7)

The saturation vapor pressure parameter values are collected in Table S1. Corresponding expressions for the latent heat of vaporization were taken from the same sources. Temperature-dependent expressions for various other nonane properties were used as well.
Winkler6 were used, while expressions according to Yaws7 were used for the specific heat capacity of the liquid and liquid density. The specific heat capacities of the nonane vapor and air were assumed to be temperature-independent.

References

1. Brown, P. N.; Byrne, G. D.; Hindmarsh A. C. VODE, A Variable- Coefficient ODE Solver. *SIAM J. Sci. Stat. Comput.* **1989**, 10 (5), 1038-1051.

2. Kulmala, M.; Vesala, T. Condensation in the continuum regime. *J. Aerosol Sci.* **1991**, 22 (3), 337-346.

3. Wagner, P. E. Aerosol growth by condensation. In *Aerosol Microphysics II*; Marlow, W. H., Ed.; Springer: Berlin, 1982; pp. 129-178.

4. King, M. B.; Al-Najjar, H. A method for correlating and extending vapour pressure data to lower temperatures using thermal data: Vapour pressure equations for some n-alkanes at temperatures below the normal boiling point. *Chem. Eng. Sci.* **1974**, 29 (4), 1003-1011.

5. Kulmala, M.; Vesala T.; Kalkkinen, J. Data for phase transitions in aerosol systems. *Manuscript for laboratory use*, University of Helsinki, 1991.

6. Winkler, P. M. Experimental study of condensation processes in systems of water and organic vapors employing an expansion chamber. Ph. D. thesis, Universität Wien, Fakultät für Naturwissenschaften und Mathematik, 2004.

7. Yaws, C., Ed. *Chemical Properties Handbook*; McGraw-Hill: New York, 1999.
Table S1: Saturation vapor pressure parameter values, parameterizations according to eq. S7.

	A_1	A_2	A_3	A_4	A_5
King & Al-Najjara	133.672	-9467.4	0.0	-17.5683	0.0152556
Kulmala et al.b	48.3313	-6363.03	0.0	-3.60267	0.0
Winklerb	98.8613	-8201.13	0.0	-11.8717	0.00903284
Figure S1: Schematic illustration of the initial setup for the cluster case. 100 incoming molecules with two angles of approach were simulated: 1) molecules sent directly towards the cluster centre of mass and 2) molecules aimed at the circle depicted in the figure. See also the Methods section in the main text.
Figure S2: Naphthalene density profile and the surface/bulk division. Vertical lines denote the locations of the surface/bulk boundary when the location is defined as a fraction of the bulk condensed phase density. Of the studied systems naphthalene has the widest surface.
Figure S3: Nonane density profile (in arbitrary units). The surface peak is due to the surface monolayer of molecules that are oriented along the surface normal. The tightly-packed peak has higher density than the bulk liquid phase.
Figure S4: Density profiles of the dicarboxylic acids.