Predictive Factors of Histological Response after Preoperative Concomitant Radiochemotherapy in Middle and Low Rectal Cancer

Asmae Ouabdelmoumen¹, Ali Sbai¹, Fouad Elmejjatti¹, Zohour Bourhaleb², Naima Abda³, Loubna Mezouar¹

¹ Departement of Radiotherapy, Center of oncology HassanII, University Hospital MOHAMED VI, km 8 route Jerada, BP:2013, Oued Ennachef, 60000 Oujda, Morocco. ² Departement of Radiotherapy, University Hospital IBN ROCHD, quartier des Hôpitaux, rue Sebta, 20360 Casablanca, Morocco. ³ Laboratory of Epidemiology and Public Health, Medical Faculty of Oujda, Mohammed Premier University, Morocco.

Abstract

Objective: The aim of our study was to identify potential predictive factors beyond pathologic response after neoadjuvant radiochemotherapy. Patients and Methods: Between January 2009 and December 2014, 40 patients with rectal carcinoma were included in the study. The treatment consisted of radiation ranging between 39 and 50.4 Gy associated with a concomitant chemotherapy with capecitabine. The correlation between histological response (complete response and downstaging) and potential predictive factors were investigated. Results: Complete response was 15% (06 patients), tumor regression of 32.5% (13 patients), and the absence of tumor response of 52.5% (21 patients). In univariate analysis, the circumferential extension of the tumor was significantly associated with tumor downstaging (p = 0.007) and complete tumor response (p = 0.001). However, the delay between the RCT and the surgery was a significant predictor for downstaging (p = 0.02). Conclusion: the parietal circumferential extension was a potential predictor of pathologic complete response (PCR) and downstaging after neoadjuvant chemoradiation. The time between the radiochemotherapy and the surgery was a significant predictor for downstaging. Delaying surgery beyond 8 weeks seems to result in the highest probability of PCR.

Keywords: Rectal cancer- adenocarcinoma- neoadjuvant radiochemotherapy- histologic response- predictive factors

Asian Pac J Cancer Care, 3 (3), 65-70

Submission Date: 06/23/2018 Acceptance Date: 08/26/2018

Introduction

Colorectal cancer (CRC) is the fourth most frequently diagnosed malignancy in both sexes and the second most common cause of cancer death in the world [1]. The advent of neoadjuvant radiotherapy in association with TME (Total Mesorectal Excision) surgery described by RJ Heald in 1982 [2]. has transformed the management of locally advanced forms (T3 T4 and/or N +) of middle and low rectal cancer, with a significant gain on local recurrence and an improvement in overall survival [3]. The association of chemotherapy with radiotherapy has further improved the carcinological and functional prognosis of this disease, favoring tumor regression (downstaging) or even tumor sterilization in some cases [4]. An interval of six to eight weeks between the end of radiochemotherapy (RCT) and surgery is recommended to optimize this tumor response and minimize toxicity [5]. In the literature, the tumor response correlates with recurrence-free survival and overall survival [6]. However, not all patients have the same sensitivity to this RCT: some tumors may not respond well to this treatment when others respond well.

The aim of this retrospective study was to identify the potential clinical, pathological, and therapeutic that could predict tumor response (complete pathologic response or downstaging to neoadjuvant RCT).

Materials and Methods

Between January 2009 and December 2014, 90 patients underwent preoperative RCT at the radiotherapy
department at University Hospital Mohamed VI, Oujda, Morocco.

Inclusion criteria for this study were included
biopsy-proven rectal cancer, the tumor of the lower and middle rectum, classified as cT3-T4 with or without regional lymph node metastasis and no evidence of distant metastasis. Among reviewed 90 patients, 50 patients were excluded for the following reasons: patients had no curative surgery (the tumor is unresectable or the patients refuse surgery), and patients who were transferred to other hospitals could not be traced by medical records. Therefore, 40 patients who met the inclusion criteria were analyzed in this study.

Patients underwent Pre-therapeutic staging workups, including digital rectal examination, full blood counts, biochemical tumor markers (but the concentration of pre-therapeutic ACE was not routinely required in all patients), colonoscopy with biopsy, chest radiography, abdominopelvic computed tomography (CT), pelvic magnetic resonance imaging (MRI). Endorectal ultrasonography (ERUS) was executed for one patient. The preoperative clinical stage was determined by CT scan, MRI, physical examination, or a combination of these.

Clinical and pathological characteristics of a population are described in Table 1. The study population was mostly females (57.5%) and had a median age of 56 years (range, 33 to 84 years). All patients had a tumor within 10 cm from the anal verge: 57.5% of the tumors were in the lower rectum and 42.5% in the middle rectum. The tumors had a mean diameter of 3 cm (range, 1 to 5 cm). The tumors were classified as cT3-T4 with or without hemorrhagic content. The tumors had a median number of retrieved and invaded LNs, with an average of 5 LNs invaded per patient. The tumors were classified based on the tumor regression grading (TRG) of Dworak et al. (Table 2) [8].

The univariate analysis indicated that the circumferential extent of the tumor was significantly associated with the histological response, whether complete or partial (downstaging), as a function of various potential predictive factors: age, sex, circumferential extent of tumor, tumor fixation, Distance from anal verge, Tumor differentiation, Hemoglobin level, clinical T classification, clinical lymph node (N) classification, radiation dose, and time between RCT and surgery. Multivariate analysis could not be done due to the lack of power due to low numbers. The analysis was performed with IBM SPSS statistics trial ver. 20.0 (IBM, Armonk, NY, USA). A p-value of < 0.05 was considered to indicate a significant difference.

Results
Pathologic examination of resected specimens revealed a complete histopathological response (PCR) in 06 patients (15%). Downstaging to ypT2 or less was observed in 19 patients (47.5%). Twenty-one patients (52.5%) showed no downstaging of either T or N stage and were classified as non-responders (Table 3). The tumor was classified as ypT0 in 6 patients (15%), ypT1 in 4 (10%), ypT2 in 9 (22.5%), ypT3 in 19 (47.5%) and ypT4 in two (5%).

The univariate analysis indicated that the circumferential extent of the tumor was significantly associated with tumor downstaging (p = 0.007) and with a complete tumor response (p = 0.001). However, a delay between RCT and surgery ≥ 8 weeks was a significant predictive factor for downstaging (p = 0.02). Other variables (sex, age, Tumor localization, tumor fixation, anemia, Distance from the anal verge, Tumor differentiation, clinical T classification, clinical lymph node (N) classification, radiation dose) were not significantly correlated with downstaging (Table 4 and 5).
Table 1. Clinical and Pathological Characteristics of Patients

Variables	Results
Sex	
Male	17 (42.5 %)
Female	23 (57.5 %)
Age Mean [min-max]	56.4 [33-84]
Circumferential extent ≤ 50 %	27 (67.5 %)
Circumferential extent > 50 %	13 (32.5 %)
Fixation fixed	10 (25 %)
Fixation Not fixed	30 (75 %)
Distance from anal verge	
Middle rectum	17 (42.5 %)
Lower rectum	23 (57.5 %)
Hemoglobin level < 12 g/dl	
Yes	21 (52.5 %)
No	19 (47.5 %)
Tumor differentiation	
Well	22 (55 %)
Moderate	18 (45 %)
Poor	4 (10 %)
Clinical T stage	
T3	38 (95 %)
T4	2 (5 %)
Clinical N stage	
N0	26 (65 %)
N+	14 (35 %)

Table 2. Dworak Regression Grade [9]

Grade	Description
0	No regression
1	Dominant tumor mass with obvious fibrosis and/or vasculopathy
2	Dominantly fibrotic changes with few tumor cells or groups (easy to find)
3	Very few (difficult to find microscopically) tumor cells in fibrotic tissue or without mucous substance.
4	No tumor cells, only fibrotic mass (total regression or response)

Table 3. Comparison between Pre Treatment Radiological TN Stage and Post Treatment Pathological Stage (ypT ypN stage).

PRE (cTN)	POST (ypTN)	TOTAL								
T0N0	T0N+	T1N0	T1N+	T2N0	T2N+	T3N0	T3N+	T4N0	T4N+	
4	0	0	2	7	0	6	6	0	0	25
2	0	0	2	0	2	3	4	0	0	13
0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	1	1
TOTAL	6	0	2	2	7	2	9	10	1	40

Discussions

The factors that predict the response to neoadjuvant radiation chemotherapy in rectal cancer has not yet been well determined. Some recent studies also have investigated potential predictors of PCR and downstaging.

Tumor circumferential can serve as an important predictor of pathological tumor response. This was demonstrated in the study by Das et al. [11]. In this study, the results of the univariate and multivariate analysis indicate that the circumferential extent of tumor (less than 60%) predicts significantly the complete response rate and downstaging. These results agree with those of our study, the circumferential extent of a tumor was significantly predicted for PCR and downstaging with a p of 0.001 and 0.007 respectively.

The interval from the end of radiation to surgery has been of special interest and has been directly addressed by multiple studies as well as a meta-analysis [12]. Although the exact ideal interval to optimize PCR has not been identified, the overall conclusion from these studies is that PCR rates improve with delaying surgery by more than 6–8 weeks after the end of RCT. In this context, curative surgical treatments performed at six weeks from the end of the RCT may have interrupted ongoing necrosis, which means that some patients may achieve complete tumor regression if waiting times were longer [13]. Kalady et al. in 2009 [14] had shown that interval
Table 4. Unifactorial Analysis of the Complete Histological Response

Variables	pCR	No pCR	P	
Sex	Male	3	4	0.51
	Female	3	20	
Age	Mean [min-max]	54.83 [38-70]	56.68 [33-84]	0.76
Circumferential extent	Mean [min-max]	32.5 [25-40]	69.56 [25-100]	0.001
Fixation	Fixed	1	9	0.52
	Not fixed	5	25	
Distance from anal verge	Middle rectum	4	13	0.19
	Lower rectum	2	21	
hemoglobin level < 12 g/dl	Yes	2	19	0.28
	No	4	15	
Tumor differentiation	Well	3	19	0.56
	Moderate to poor	3	15	
Clinical T stage	T3	6	32	0.71
	T4	0	2	
Clinical N stage	N0	4	22	0.65
	N+	2	12	
Radiation dose	< 50 Gy	3	17	0.66
	≥ 50 Gy	3	17	
delay between RCT and surgery	< 8 semaines	1	13	0.3
	≥ 8 semaines	5	21	

Table 5. Unifactorial Analysis of the Tumor Response (Downstaging)

Variables	Downstaging	No downstaging	P	
Sex	Male	8	9	0.60
	Female	11	12	
Age	Mean [min-max]	60.63 [37-84]	52.57 [33-75]	0.60
Circumferential extent	Mean [min-max]	52.89 [25-100]	74.05 [25-100]	0.007
Fixation	fixed	3	7	0.18
	Not fixed	16	14	
Distance from anal verge	Middle rectum	8	9	0.60
	Lower rectum	11	12	
hemoglobin level < 12 g/dl	Yes	7	14	0.58
	No	12	7	
Tumor differentiation	Well	9	13	0.27
	Moderate to poor	10	8	
Clinical T stage	T3	19	19	0.26
	T4	0	2	
Clinical N stage	N0	13	13	0.46
	N+	6	8	
Radiation dose	< 50 Gy	9	11	0.50
	≥ 50 Gy	10	10	
delay between RCT and surgery	< 8 weeks	2	12	0.02
	≥ 8 weeks	17	9	
4. Mohiuddin M RW, Marks GJ and Marks JW. High-dose preoperative radiation and the challenge of sphincter-preservation surgery for cancer of the distal 2 cm of the rectum. https://www.ncbi.nlm.nih.gov/pubmed/?term=High-dose+preoperative+radiation%2C+sphincter-preservation+surgery+for+cancer+of+the+distal+2+cm+of+the+rectum1998; [pp. 569–74].

5. Dhadda AS ZAaBE. Regression of rectal cancer with radiotherapy with or without concurrent capecitabine – optimising the timing of surgical resection. Clin Oncol (R Coll Radiol). 2009; pp. 23–31.

6. Benzioni E ID, Terrosu G, Bresadola V, Cojiatti A, Cerato F, et al. Prognostic value of tumour regression grading and depth of neoplastic infiltration within the perirectal fat after combined neoadjuvant chemo-radiotherapy and surgery for rectal cancer. J Clin Pathol 2006; :59 (5), pp. 505–12.

7. Park JH, Yu CS, Kim JH, Kim TW and Kim JC. Randomized phase 3 trial comparing preoperative and postoperative chemoradiotherapy with capcitabine for locally advanced rectal cancer. Cancer 2011; ;117(16),: pp. 3703–12.

8. CC. SLaC. TNM seventh edition: what’s new, what’s changed: communication from the International Union Against Cancer and the American Joint Committee on Cancer.2010; . pp. 5336-39.

9. Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. International journal of colorectal disease. 1997;12(1):19-23.

10.de Campos-Lobato LF, Stoechi L, da Luz Moreira A, Kalady MF, Geisler D, Dietz D, et al. Downstaging without complete pathologic response after neoadjuvant treatment improves cancer outcomes for cIIH but not cIIH rectal cancers. Annals of surgical oncology. 2010;17(7):1758-66.

11. Jonas J ME, Cavallaro A, Colasanti M, Sautter-Bihl ML, Frenzel H, et al. T-level downstaging and complete pathologic response after preoperative long-term radiochemotherapy for locally advanced rectal cancer. https://www.ncbi.nlm.nih.gov/pubmed/?term=T-level+downstaging+and+complete+pathologic+response+after+preoperative+long-term+radiochemotherapy+for+locally+advanced+rectal+cancer2007; ;65-71.

12. Das PS J, Rodriguez-Bigas MA, Feig BW, Chang GJ, Wolff RA, et al. Predictors of Tumor Response and Downstaging in Patients Who Receive Preoperative Chemoradiation for Rectal Cancer. Cancer 2007; ;109(9):1750-55.

13. Petrelli F SG, Sarti E and Barni S. Increasing the interval between neoadjuvant chemoradiotherapy and surgery in rectal cancer: a meta-analysis of published studies. Ann Surg. 2016;,: 263 (3):458-64.

14. Habr-Gama APR, Nadalin W, Nahas SC, Ribeiro U Jr, Silva E Sousa AH Jr, et al. Long-term results of preoperative chemoradiation for distal rectal cancer correlation between final stage and survival. J Gastrointest Surg 2005; ;9 (1):90–101.

15. Kalady MF DC-LL, Stoechi L, Geisler DP, Dietz D, Lavery IC, et al. Predictive factors of pathologic complete response after neoadjuvant chemoradiation for rectal cancer. Ann Surg 2009;,: 250 (4):582-89.

16. Sloothaak DAM GD, Van Leersum NJ, Punt CJ, Buskens CJ, Bemelman WA, et al. Optimal time interval between neoadjuvant chemoradiotherapy and surgery for rectal cancer. British Journal of Surgery. 2013;,:100 (7):933–39.

17. Probst CP BA, Aquina CT, Tejani MA, Wexner SD, Garcia-Aguilar J, et al. Extended intervals after neoadjuvant therapy in locally advanced rectal cancer: the key to improved tumor response and potential organ preservation. J Am Coll Surg. 2015; ,;221(2):430–40.
18. Brown G, Evans J. Timing of surgery following chemoradiotherapy in rectal Cancer. Indian journal of medical and paediatric oncology : official journal of Indian Society of Medical & Paediatric Oncology. 2014;35(4):235-6.

19. Al-Sukhni E AK, Mattson DM, Gabriel E, Nurkin SJ. Predictors of Pathologic Complete Response Following Neoadjuvant Chemoradiotherapy for Rectal Cancer. Ann Surg Oncol 2016; 23 (4): 1/17-86.

20. Zeng WQ LJ, Wang Z, Zhang XM, Hu JJ, Hou HR, et al. Clinical parameters predicting pathologic complete response following neoadjuvant chemoradiation for rectal cancer. Chin J Cancer 2015;34 ((10)): 468-74.

21. Lee JH KS, Kim JG, Cho HM, Shim BY. Preoperative chemoradiotherapy (CRT) followed by laparoscopic surgery for rectal cancer: predictors of the tumor response and the long-term oncologic outcomes. Int J Radiat Oncol Biol Phys. 2011; 81 (2): 431-8.

22. Wallin UD, Lowry A, Luepker R, Mollgren A. CEA: a predictor for pathologic complete response after neoadjuvant therapy for rectal cancer. Dis Colon Rectum 2013; 56 ((7)): 859-68.

23. Huh JW KH, Kim YJ. Clinical prediction of pathological complete response after preoperative chemoradiotherapy for rectal cancer. Dis Colon Rectum 2013; 56 ((6)): 698-703.

24. Park YA, Sohn SK, Seong J, Baik SH, Lee KY, Kim NK, et al. Serum CEA as a predictor for the response to preoperative chemoradiation in rectal cancer. Journal of surgical oncology. 2006;93(2):145-50.

25. Farnault B M-ZL, De Chaisemartin C, Esterni B, Lelong B, Viret F et al. Predictive factors of tumour response after neoadjuvant chemoradiation for locally advanced rectal cancer and correlation of these factors with survival. 2011; 279-86. p.

26. Yang KL, Liang WY, Kuo YL, Lin JK, Lin TC, et al. Carcinoembryonic antigen (CEA) level, CEA ratio, and treatment outcome of rectal cancer patients receiving preoperative chemoradiation and surgery. 2013; 43. p.

27. Kleiman A A-KA, Farsi A, Kezouh A, Vuong T, Gordon PH, et al. Normalization of CEA levels post-neoadjuvant therapy is a strong predictor of pathologic complete response in rectal cancer. J Gastrointest Surg 2015; 19 ((6)): 1106–12.

28. Garland ML VR, Bunkley N, Pears M, Bissett IP. Clinical tumor size and nodal status predict pathologic complete response following neoadjuvant chemoradiotherapy for rectal cancer. Int J Colorectal Dis 2014; 29 ((3)): 301–7.

29. Kim IY YS, Kim YW. Neutrophil-lymphocyte ratio predicts pathologic tumor response and survival after preoperative chemoradiation for rectal cancer. BMC Surg 2014; 14: 94.

30. Park CH KH, Cho YB, Yun SH, Lee WY, Park YS, et al. Predicting tumor response after preoperative chemoradiation using clinic parameters in rectal cancer. World J Gastroenterol 2011; 17: 5310–6.

31. Elmessiry MM AG, Elzeiny MM, Gebaly AA, Awad AT, Attia GE, et al. Predictors of tumor response to neoadjuvant chemoradiation in locally advanced rectal cancer Egyptian patients. 2015; 21–8. p.

32. Lin AY WW, Shia J, Minsky BD, Temple LK, Guillem JG, et al. Predictive clinicopathologic factors for limited response of T3 rectal cancer to combined modality therapy. Int J Colorectal Dis 2008; 23 (3): 243-9.

33. Deng Y CP, Lan P, Wang L, Chen W, Cui L, et al. Modified FOLFOX6 With or Without Radiation Versus Fluorouracil and Leucovorin With Radiation in Neoadjuvant Treatment of Locally Advanced Rectal Cancer: Initial Results of the Chinese FOWARC Multicenter, Open-Label, Randomized Three-Arm Phase III Trial. J Clin Oncol; 34 (27): 3300-7.

34. Wiltshire KL WI, Swallow C, Oza AM, Cummings B, Pond GR, et al. Preoperative radiation with concurrent chemoradiation for resectable rectal cancer: effect of dose escalation on pathologic complete response, local recurrence-free survival, disease-free survival, and overall survival. Int J Radiat Oncol Biol Phys 2006; 64 (3): 709-16.

35. Mass M B-TR, Lambregts DM, Lammering G, Nelemans PJ, Engelen SM, et al. Wait-and see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol; 2011; 29(35): 4633-40.