The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation

Lu Tang1 · Shanpeng Chen1

Received: 12 May 2021 / Accepted: 20 December 2021 / Published online: 8 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The main purpose of this paper is to study the single traveling wave solutions of the fractional coupled nonlinear Schrödinger equation. By using the complete discriminant system method and computer algebra with symbolic computation, a series of new single traveling wave solutions are obtained, which include trigonometric function solutions, Jacobi elliptic function solutions, hyperbolic function solutions, solitary wave solutions and rational function solutions. As you can see, we give all the classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. The obtained results substantially improve or complement the corresponding conditions in the literature (Esen and Sulaiman in Optik 167:150-156, 2018), (Eslami in Appl. Math. Comput. 258:141-148, 2016), (Han et al. in Phys. Lett. 395:127217, 2021). Finally, in order to further explain the propagation of the fractional coupled nonlinear Schrödinger equation in nonlinear optics, two-dimensional and three-dimensional graphs are drawn.

Keywords Fractional coupled nonlinear Schrödinger equation · Complete discriminant system method · Computer algebra · Traveling wave solutions

1 Introduction
It is well known that nonlinear evolution equations (NLEEs) model various physical phenomena and play an important position in the investigation of numerous fields, such as combustion theory, fluid dynamics, ecological system, signal processing, nonlinear optics, engineering, statistical mechanics, and plasma physics. As a result, it is one of the critical problems to seek the exact solutions of these NLEEs in nonlinear science. However, due to the complexity of NLEEs, giving all the exact solutions of a NLEE with a unified technique seems to be impossible. Over the decades, a lot of efficient methods have been established and developed to fabricate exact solutions through the efforts of many mathematicians, such as the bifurcation theory and planar portraits analysis method (Tang 2021), G'/G-expansion method (Tang and Chen 2022), the extended simplest equation method

Lu Tang
tanglumath@163.com

1 School of Mathematical Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
(Elsayed et al. 2019), the Riccati sub equation method (Khodadad and Nazari 2017), the Jacobi elliptic function method (Parks et al. 2002; Tchier et al. 2016), Painlevé analysis (Bountis and Vanhaecke 2016; Marinakis and Bountis 2000; Tzirtzilakis et al. 2002a; Tzirtzilakis et al. 2002b; Weiss et al. 1983), exp-function method (Hosseini et al. 2019; Dehghan et al. 2011; Manafian 2015), Lax pairs (Ma and Strampp 1999), Bäcklund transformation (Huang 2013), \(\tan(\phi/2) \)-expansion method, (Manafian et al. 2020; Manafian 2016; Llhan et al. 2020), bilinear transformation (Manafian et al. 2020), the multiple rogue wave solutions method (Lu et al. 2020), the F-expansion method (Li et al. 2020), etc.

In the current study, the fractional coupled nonlinear Schrödinger equation (FCNLSE) is considered in the following form (Zhang et al. 2018; EI-Shiekh and Gaballah 2020; Abdou et al. 2020)

\[
\begin{align*}
\mathcal{D}_t^\alpha \psi_1 + \mathcal{D}_x^{2\beta} \psi_1 + \delta(|\psi_1|^2 + \gamma |\psi_2|^2)\psi_1 &= 0, \\
\mathcal{D}_t^\alpha \psi_2 + \mathcal{D}_x^{2\beta} \psi_2 + \delta(\gamma |\psi_1|^2 + |\psi_2|^2)\psi_2 &= 0,
\end{align*}
\tag{1.1}
\]

where \(i \) is imaginary unit, \(i^2 = -1 \), \(\alpha, \beta \in (0, 1] \), \(\psi_1 = \psi_1(x, t) \) and \(\psi_2 = \psi_2(x, t) \) are complex functions, which represent the wave amplitudes in two polarizations, \(x \) represents the normalized propagation and \(t \) denotes the retard time. \(\delta \) represents self-focusing and \(\gamma \) denotes cross-phase modulation are nonzero constants. When \(\alpha = \beta = 1 \), it is known to all that Eq. (1.1) is the coupled nonlinear Schrödinger equation (Sulaiman and Bulut 2020; Boyd 1992).

The FCNLSE is a classical nonlinear model which can describe lots of physical nonlinear systems. The equation can be applied to many fields, such as biology, fluid mechanics, nonlinear optics, circulation system of chemical industry, heat pulses in solids and so on. Due to the importance of FCNLSE, the equation has been investigated by many researchers (Younis 2013; Bekir et al. 2015; Wen 2020; Du et al. 2019; Zhang et al. 2011; Guo and Liu 2020). As a result, it is an important work to seek the exact solutions of the fractional differential equation. So far, lots of effective methods have been established about the traveling wave solutions of the FCNLSE (Gadzhimuratov et al. 2020; Xie et al. 2018; Li et al. 2021; EI-Shiekh 2019). In Ref. (Esen and Sulaiman 2018), Esen and his co-workers considered the space-time fractional \((1 + 1) \)-dimensional coupled nonlinear Schrödinger equation, a series of exact solutions including dark, mix dark-bright and mixed singular optical solitons are obtained via the extended sinh-Gordon equation expansion method. By applying the Kudryashov method, the traveling wave solutions to the time FCNLSE were derived by Eslami (Eslami 2016). The traveling wave solutions of Eq. (1.1) were obtained by Han and his collaborators (Han et al. 2021) by using the bifurcation theory and planar portraits analysis method. Although there are lots of methods to construct the exact solutions of the FCNLSE, the discriminant system method to study the exact solutions of the FCNLSE, it seems as far as we know, not available in the literature. Especially in recent years, with the development of computer algebra theory, by using the mathematical software Maple or Mathematica, a series of traveling wave solutions can be obtained by solving complex algebraic equations. In 1996, with the help of computer algebra, a complete discrimination system of high-order polynomials has been derived by Yang and his co-workers (Yang et al. 1996). As a matter of fact, it is a powerful tool to seek traveling wave solutions of NLEEs. Therefore, a range of solutions of different forms are obtained (Zheng and Lai 2008).

In this paper, the complete discriminant system method is employed to seek exact solutions of the FCNLSE, with the assistance of computer algebra and symbolic computation, according to the root-classifications, a series of new traveling wave
solutions are obtained. As you can see, although there are many references about the traveling wave solutions of FCNLSE, the classification of all single wave solutions of this equation has not been reported in the above literature as far as we know. The obtained results in this paper improve or complement the corresponding conditions in the literature (Esen and Sulaiman 2018; Eslami 2016; Han et al. 2021).

The organization of this paper is as follows. In Sect. 2, we review the definition of conformable fractional derivatives. In Sect. 3, the description of the complete discriminant system method is given. In Sect. 4, by applying the complete discriminant system method, the new traveling wave solutions to Eq. (1.1) are obtained by adapting the inverse transformation. The last section summarizes the results of the current study.

2 An overview of the conformable derivative

It is known to all that the fractional derivative has a long history. Theoretical speaking, it can be traced back to the time on September 30, 1965. There is a story about the fractional derivative. The day on September 30, 1965 is a special day when L’Hospital asked Leibniz the problem about the order of derivative turns into non-integer. On the other words, “Can the definition of integer derivative be extended to non-integer order derivative?” Hence, the time on September 30, 1965 is supposed to be the birth date of fractional derivative. Over 300 years of development, there are many definitions about fractional derivative, such as Caputo derivative (Sabrina et al. 2020), Atangana-Baleanu derivative (Sarwar 2020), Conformable derivative (Shi and Zhang 2020; Ganaini and Alamr 2019), Riemann-Liouville derivative (Das et al. 2018; Choi et al. 2017) and so on. As is known to all that Riemann-Liouville fractional derivative is the classical fractional derivative which has been widely used. But unfortunately, we can easy find that the Riemann-Liouville fractional derivative which modified by Jumarie does not obey the chain rule (Jumarie 2006). The conformable derivative which is defined in Ref. (Khalil et al. 2014) not only satisfies chain rule but also Leibniz formula. Therefore, we just consider conformable derivative in the current study.

First of all, the conformable derivatives can be defined as follows (Chen et al. 2020; Tang 2020; Hammad and Khalil 2014; Khalil et al. 2014; Ghanbari et al. 2019; Rezazadeh et al. 2020).

Definition 2.1 Let \(u : [0, +\infty) \rightarrow \mathbb{R} \), \(\alpha \in (0, 1] \). The conformable derivative of \(u \) of order \(\alpha \) is defined as

\[
T_\alpha(u)(t) = \lim_{\epsilon \to 0} \frac{u(t + \epsilon t^{1-\alpha}) - u(t)}{\epsilon}, \quad \forall \ t \geq 0, \tag{2.1}
\]

the function \(u \) is \(\alpha \)-conformable differentiable at a point \(t \) if the limit in Eq. (2.1) exists.

Theorem 2.2 Assume that \(u, v : (0, \infty) \rightarrow \mathbb{R} \) be differentiable and also \(\alpha \) differentiable functions, then chain rule holds

\[
T_\alpha(uv)(t) = t^{1-\alpha}v(t)\alpha-1v'(t)T_\alpha(u(t))|_{t=v(t)}. \tag{2.2}
\]
3 Analysis of the method

Considering the nonlinear partial differential equation in the form:

\[G(u, D^\alpha_t u, D^\beta_x u, D^\gamma_t D^\delta_x u, D^\delta_t D^\beta_x u, \ldots) = 0, \quad 0 < \alpha, \beta < 1. \]

(3.1)

First of all, by traveling wave transformations and some other suitable transformations, the Eq. (3.1) can be transferred into a nonlinear ordinary differential equation as follows:

\[u_\xi^2 = F(u), \]

(3.2)

where \(u_\xi := \frac{d}{d\xi} u \) and \(F(u) = a_2 u^2 + a_1 u + a_0 \) is the double degree polynomial with the parameters \(a_2, a_1, a_0 \). Then integrating the above (3.2), we can obtain

\[\xi - \xi_0 = \int \frac{du}{\sqrt{F(u)}}, \]

(3.3)

where \(\xi_0 \) is the integration constant. Therefore, we need to solve Eq. (3.3). However, it is a challenging work to decide the range of the parameters, which can be accomplished by complete discrimination system functions. We can derive its complete discrimination system

\[\Delta = a_1^2 - 4a_2a_0. \]

(3.4)

Finally, according to the root-classifications, the parameters mentioned above can be obtained from the integral Eq. (3.3). And then by an inverse transformation, we can obtain the exact solutions of the original partial differential equation.

4 Traveling wave solutions for FCNLSE

In this section, we consider the traveling wave solutions for the Eq. (1.1), we assume that Eq. (1.1) has the following traveling wave transformation

\[\psi_1(x, t) = Z_1(\xi)e^{\eta}, \quad \psi_2(x, t) = Z_2(\xi)e^{\eta}, \quad \xi = m \left(\frac{x^\beta}{\beta} - c \frac{t^\alpha}{\alpha} \right), \quad \eta = -\lambda \frac{x^\beta}{\beta} + \mu \frac{t^\alpha}{\alpha} + \eta_0, \]

(4.1)

where \(m, c, \lambda \) and \(\mu \) are undetermined real constants, \(\eta_0 \) is an arbitrary constant.

Substituting (4.1) into Eq. (1.1), decomposes real parts and imaginary parts of Eq. (1.1), the FCNLSE can be reduced into

\[
\begin{aligned}
m^2Z_1'' + \delta Z_1^3 + \delta \gamma Z_2^2Z_1 - (\lambda^2 + \mu)Z_1 &= 0, \\
m^2Z_2'' + \delta Z_2^3 + \delta \gamma Z_1^2Z_2 - (\lambda^2 + \mu)Z_2 &= 0, \\
c &= -2\lambda.
\end{aligned}
\]

(4.2)

Suppose that there is a linear relationship between \(Z_1 \) and \(Z_2 \), namely \(Z_2 = kZ_1 (k \neq 0) \), substituting \(Z_2 = kZ_1 (k \neq 0) \) into the first Equation of (4.2), we can obtain the following form:

\[m^2Z_1'' + (\delta + \delta \gamma k^2)Z_1^3 - (\lambda^2 + \mu)Z_1 = 0. \]

(4.3)
Thus,

\[
Z''_1 = -\frac{\delta + \delta \beta k^2}{m^2} Z'_1 + \frac{\lambda^2 + \mu}{m^2} Z_1. \tag{4.4}
\]

By multiplying (4.4) with \(Z'\), we derive

\[
Z'_1 Z''_1 = -\frac{\delta + \delta \beta k^2}{m^2} Z'_1 Z'_1 + \frac{\lambda^2 + \mu}{m^2} Z_1 Z'_1. \tag{4.5}
\]

Integrating Eq. (4.4) once, we obtain

\[
(Z'_1)^2 = a_4 Z'_4 + a_2 Z'_2 + a_0, \tag{4.6}
\]

where \(a_4 = -\frac{\delta + \delta \beta k^2}{2m^2}, \quad a_2 = \frac{\lambda^2 + \mu}{m^2}, \quad a_0 \) is a integral constant.

By a suitable transformation as follows

\[
\begin{cases}
Z_1 = \pm \sqrt{(4a_4)^{-\frac{1}{3}} W}, \\
b_1 = 4a_2 (4a_4)^{-\frac{2}{3}}, \\
b_0 = 4a_0 (4a_4)^{-\frac{1}{3}}, \\
\xi_1 = (4a_4)^{\frac{1}{3}} \xi,
\end{cases}
\tag{4.7}
\]

then the Eq. (4.6) can be rewritten as

\[
(W_{\xi_1})^2 = W (W^2 + b_1 W + b_0). \tag{4.8}
\]

Integrating Eq. (4.8) once, we derive

\[
\pm(\xi_1 - \xi_0) = \int \frac{dW}{\sqrt{W (W^2 + b_1 W + b_0)}}, \tag{4.9}
\]

where \(\xi_0\) is the integration constant. Denoting \(F(W) = W^2 + b_1 W + b_0\), thus we can establish the second order complete discrimination system as

\[
\Delta = b_1^2 - 4b_0. \tag{4.10}
\]

According to the root-classifications of (4.10), there are four cases to be discussed.

Case 1 Suppose that \(\Delta = 0\). As for \(W > 0\), we have

\[
\pm(\xi_1 - \xi_0) = \int \frac{dW}{(W + \frac{b_1}{2}) \sqrt{W}}. \tag{4.11}
\]

If \(b_1 > 0\), it follows from Eq. (4.11), we can obtain

\[
W = \frac{b_1}{2} \tan^2 \left[\frac{1}{2} \sqrt{\frac{b_1}{2}} (\xi_1 - \xi_0) \right]. \tag{4.12}
\]

According to the Eqs. (4.7), (4.12) and \(Z_2 = kZ_1 (k \neq 0)\), the solution of Eq. (1.1) can be obtained as follows (see Fig. 1)
If $b_1 < 0$, it follows from Eq. (4.11), we can obtain

$$
W = -\frac{b_1}{2} \tanh^2 \left[\sqrt{-\frac{b_1}{2}} \times \frac{1}{2} (\xi_1 - \xi_0) \right]
$$

and

$$
W = -\frac{b_1}{2} \coth^2 \left[\sqrt{-\frac{b_1}{2}} \times \frac{1}{2} (\xi_1 - \xi_0) \right].
$$

According to the Eqs. (4.7), (4.14) and $Z_2 = kZ_1 (k \neq 0)$, the solution of Eq. (1.1) can be obtained as follows (see Figs. 2 and 3)
The classification of single traveling wave solutions for the…

Fig. 2 The graphics of $\psi_{1,2}(x,t)$ in Eq. (4.15) at $\lambda = \gamma = k = m = 1, \mu = -2, \delta = -1, c = 2, \xi_0 = 0, a = \beta = \frac{1}{2}$

Fig. 3 The graphics of $\psi_{1,3}(x,t)$ in Eq. (4.16) at $\lambda = \gamma = k = m = 1, \mu = -2, \delta = -1, c = 2, \xi_0 = 0, a = \beta = \frac{1}{2}$
If \(b_1 = 0 \), it follows from Eq. (4.11), we can obtain

\[
W = \frac{4}{(\xi_1 - \xi_0)^2}.
\]

(4.17)

Thus, the solution of Eq. (1.1) can be obtained as follows (see Fig. 4)

\[
\psi_{1,2}(x,t) = \pm \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}} \tanh \left\{ \frac{2^{-\frac{7}{6}} \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}}}{\frac{2 m^2}{m^2}} \left(\frac{-2\delta-2\delta y k^2}{m^2} \right) \right\} \exp \left(i \left(\frac{-\lambda^2+\mu}{\delta y} + \frac{\mu}{\alpha} + \eta_0 \right) \right),
\]

(4.15)

\[
\psi_{2,2}(x,t) = \pm k \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}} \tanh \left\{ \frac{2^{-\frac{7}{6}} \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}}}{\frac{2 m^2}{m^2}} \left(\frac{-2\delta-2\delta y k^2}{m^2} \right) \right\} \exp \left(i \left(\frac{-\lambda^2+\mu}{\delta y} + \frac{\mu}{\alpha} + \eta_0 \right) \right).
\]

(4.16)

\[
\psi_{1,3}(x,t) = \pm \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}} \coth \left\{ \frac{2^{-\frac{7}{6}} \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}}}{\frac{2 m^2}{m^2}} \left(\frac{-2\delta-2\delta y k^2}{m^2} \right) \right\} \exp \left(i \left(\frac{-\lambda^2+\mu}{\delta y} + \frac{\mu}{\alpha} + \eta_0 \right) \right),
\]

(4.18)

\[
\psi_{2,3}(x,t) = \pm k \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}} \coth \left\{ \frac{2^{-\frac{7}{6}} \sqrt{-\frac{\lambda^2+\mu}{\delta-\delta y k^2}}}{\frac{2 m^2}{m^2}} \left(\frac{-2\delta-2\delta y k^2}{m^2} \right) \right\} \exp \left(i \left(\frac{-\lambda^2+\mu}{\delta y} + \frac{\mu}{\alpha} + \eta_0 \right) \right).
\]

Fig. 4 The graphics of \(\psi_{1,4}(x,t) \) in Eq. (4.18) at \(\gamma = k = m = 1, \delta = -1, c = 2, \xi_0 = 0, \alpha = \beta = \frac{1}{2} \).
\[
\psi_{1,4}(t, x) = \pm 2^\frac{1}{6} \left(\frac{-\Delta - \delta y k^2}{2\omega^2} \right)^{-1/6} \left[\left(\frac{-2\Delta - 2\delta y k^2}{m^2} \right) \xi - \xi_0 \right]^{-1} \times \exp \left(i \left(-\frac{\lambda y}{\beta} + \frac{\mu}{\alpha} + \eta_0 \right) \right),
\]
\[
\psi_{2,4}(t, x) = \pm 2^\frac{1}{6} k \left(\frac{-\Delta - \delta y k^2}{2\omega^2} \right)^{-1/6} \left[\left(\frac{-2\Delta - 2\delta y k^2}{m^2} \right) \xi - \xi_0 \right]^{-1} \times \text{times exp} \left(i \left(-\frac{\lambda y}{\beta} + \frac{\mu}{\alpha} + \eta_0 \right) \right). \tag{4.18}
\]

Case 2 Suppose that \(\Delta > 0 \) and \(b_0 = 0 \). As for \(W > -b_1 \), we have
\[
\pm (\xi_1 - \xi_0) = \int \frac{dW}{W \sqrt{W + b_1}}. \tag{4.19}
\]
If \(b_1 > 0 \), it follows from Eq. (4.19), we can obtain
\[
\begin{aligned}
W &= \frac{b_1}{2} \tanh^2 \left[\sqrt{\frac{b_1}{2}} \times \frac{1}{2} (\xi_1 - \xi_0) \right] - b_1, \\
W &= \frac{b_1}{2} \coth^2 \left[\sqrt{\frac{b_1}{2}} \times \frac{1}{2} (\xi_1 - \xi_0) \right] - b_1. \tag{4.20}
\end{aligned}
\]
According to the Eqs. (4.7), (4.20) and \(Z_2 = kW_1 (k \neq 0) \), the solution of Eq. (1.1) can be obtained as follows:
\[
\begin{aligned}
\psi_{1,5}(x, t) &= \pm \sqrt{\frac{\lambda^2 + \mu}{-\delta - \delta y k^2}} \times \exp \left(i \left(-\frac{\lambda y}{\beta} + \frac{\mu}{\alpha} + \eta_0 \right) \right) \\
&\times \left\{ \tanh^2 \left[2^{-\frac{1}{6}} \sqrt{\frac{\lambda^2 + \mu}{m^2}} \left(\frac{2m^2}{\delta - \delta y k^2} \right)^{1/3} \left(\frac{-2\Delta - 2\delta y k^2}{m^2} \right)^{1/3} (\xi - \xi_0) \right] - 2 \right\}^{\frac{1}{2}}, \tag{4.21}
\end{aligned}
\]
\[
\begin{aligned}
\psi_{2,5}(x, t) &= \pm k \sqrt{\frac{\lambda^2 + \mu}{-\delta - \delta y k^2}} \times \exp \left(i \left(-\frac{\lambda y}{\beta} + \frac{\mu}{\alpha} + \eta_0 \right) \right) \\
&\times \left\{ \coth^2 \left[2^{-\frac{1}{6}} \sqrt{\frac{\lambda^2 + \mu}{m^2}} \left(\frac{2m^2}{\delta - \delta y k^2} \right)^{1/3} \left(\frac{-2\Delta - 2\delta y k^2}{m^2} \right)^{1/3} (\xi - \xi_0) \right] - 2 \right\}^{\frac{1}{2}}, \tag{4.22}
\end{aligned}
\]
If \(b_1 < 0 \), it follows from Eq. (4.19), we can obtain
\[
W = -\frac{b_1}{2} \tan^2 \left[-\frac{b_1}{2} \times \frac{1}{2} (\xi_1 - \xi_0) \right] - b_1. \tag{4.23}
\]
According to the Eqs. (4.7), (4.23) and \(Z_2 = kZ_1 (k \neq 0) \), the solution of Eq. (1.1) can be obtained as follows:

\[
\psi_{1,7}(x, t) = \pm \sqrt{-\frac{\lambda^2 + \mu}{-\delta - \delta y k^2}} \times \exp \left(i \left(-\lambda \frac{v}{\beta} + \mu \frac{n}{a} + \eta_0 \right) \right) \\
\times \left\{ \tan^2 \left[\frac{2 \frac{7}{2}}{\frac{7}{2}} \sqrt{-\frac{\lambda^2 + \mu}{m^2} \left(-\frac{2 \delta - 2 \delta y k^2}{m^2} \right) \left(-\frac{2 \delta - 2 \delta y k^2}{m^2} \right) \frac{1}{3} \left(-\frac{2 \delta - 2 \delta y k^2}{m^2} \right) \frac{1}{3} \xi - \xi_0 \right] \right] + 2 \right\}^{\frac{1}{2}},
\]

\[
\psi_{2,7}(x, t) = \pm k \sqrt{-\frac{\lambda^2 + \mu}{-\delta - \delta y k^2}} \times \exp \left(i \left(-\lambda \frac{v}{\beta} + \mu \frac{n}{a} + \eta_0 \right) \right) \\
\times \left\{ \tan^2 \left[\frac{2 \frac{7}{2}}{\frac{7}{2}} \sqrt{-\frac{\lambda^2 + \mu}{m^2} \left(-\frac{2 \delta - 2 \delta y k^2}{m^2} \right) \left(-\frac{2 \delta - 2 \delta y k^2}{m^2} \right) \frac{1}{3} \left(-\frac{2 \delta - 2 \delta y k^2}{m^2} \right) \frac{1}{3} \xi - \xi_0 \right] \right] + 2 \right\}^{\frac{1}{2}}. \tag{4.24}
\]

Case 3 Suppose that \(\Delta > 0 \) and \(b_0 \neq 0 \) and \(\omega_1 < \omega_2 < \omega_3 \). Then, we adopt the assumption that one of \(\omega_1, \omega_2, \omega_3 \) is zero and the rest of them are two different real roots of \(F(W) = 0 \). Taking the transformation \(W = \omega_1 + (\omega_2 - \omega_1) \sin^2 \theta \), it is clear that

\[
\pm (\xi_1 - \xi_0) = \frac{2}{\sqrt{\omega_3 - \omega_1}} \int \frac{d\theta}{\sqrt{1 - n_1^2 \sin^2 \theta}}, \tag{4.25}
\]

where \(n_1^2 = \frac{\omega_3 - \omega_0}{\omega_3 - \omega_1} \). It follows from Equation (4.25), we obtain

\[
W = \omega_1 + (\omega_2 - \omega_1) \sin^2 \left(\sqrt{\omega_3 - \omega_1} \left(\frac{1}{2} (\xi_1 - \xi_0) \right), n_1 \right). \tag{4.26}
\]

According to the Eqs. (4.7), (4.26) and \(Z_2 = kZ_1 (k \neq 0) \), the solution of Eq. (1.1) can be obtained as follows

\[
\psi_{1,8}(x, t) = \pm \left(\frac{-2 \delta - 2 \delta y k^2}{m^2} \right) \frac{1}{2} \left\{ \omega_1 + (\omega_3 - \omega_1) \sin^2 \left[\sqrt{\omega_3 - \omega_1} \left(\frac{1}{2} (\xi_1 - \xi_0) \right), n_1 \right] \right\}^{\frac{1}{2}} \\
\times \exp \left(i \left(-\lambda \frac{v}{\beta} + \mu \frac{n}{a} + \eta_0 \right) \right),
\]

\[
\psi_{2,8}(x, t) = \pm k \left(\frac{-2 \delta - 2 \delta y k^2}{m^2} \right) \frac{1}{2} \left\{ \omega_1 + (\omega_3 - \omega_1) \sin^2 \left[\sqrt{\omega_3 - \omega_1} \left(\frac{1}{2} (\xi_1 - \xi_0) \right), n_1 \right] \right\}^{\frac{1}{2}} \\
\times \exp \left(i \left(-\lambda \frac{v}{\beta} + \mu \frac{n}{a} + \eta_0 \right) \right). \tag{4.27}
\]

For another transformation \(W = -\frac{\omega_1 \sin^2 \theta + \omega_3}{\cos^2 \theta} \), it follows from Eq. (4.25), we obtain

\[
W = \frac{-\omega_2 \sin \left(\sqrt{\omega_3 - \omega_1} \left(\frac{1}{2} (\xi_1 - \xi_0) \right), n_1 \right) + \omega_3}{\sqrt{\omega_3 - \omega_1} \left(\frac{1}{2} (\xi_1 - \xi_0) \right), n_1}. \tag{4.28}
\]

According to the Eqs. (4.7), (4.28) and \(Z_2 = kZ_1 (k \neq 0) \), the solution of Eq. (1.1) can be obtained as follows:
The classification of single traveling wave solutions for the…

\[\psi_{1,9}(x, t) = \pm \left(-\frac{2\delta - \delta \gamma k^2}{m^2} \right)^{-\frac{1}{2}} \left\{ \frac{-\omega_z \sin^2 \left[\frac{\sqrt{m^2 - n_0^2}}{2} \left(\frac{\Delta}{m^2} \right)^{1/3} \xi - n_0 \right] m_1 + \omega_z}{\cos^2 \left[\frac{\sqrt{m^2 - n_0^2}}{2} \left(\frac{\Delta}{m^2} \right)^{1/3} \xi - n_0 \right] m_1} \right\}^{1/2} \times \exp \left(i \left(-\frac{x}{\beta} + \frac{\mu}{a} + \eta_0 \right) \right). \]

\[\psi_{2,9}(x, t) = \pm k \left(-\frac{2\delta - \delta \gamma k^2}{m^2} \right)^{-\frac{1}{2}} \left\{ \frac{-\omega_z \sin^2 \left[\frac{\sqrt{m^2 - n_0^2}}{2} \left(\frac{\Delta}{m^2} \right)^{1/3} \xi - n_0 \right] m_1 + \omega_z}{\cos^2 \left[\frac{\sqrt{m^2 - n_0^2}}{2} \left(\frac{\Delta}{m^2} \right)^{1/3} \xi - n_0 \right] m_1} \right\}^{1/2} \times \exp \left(i \left(-\frac{x}{\beta} + \frac{\mu}{a} + \eta_0 \right) \right). \]

Case 4 Suppose that \(\Delta < 0 \). Taking the transformation \(W = \sqrt{b_0} \tan \frac{\theta}{2} \), it is clear that

\[\pm (\xi_1 - \xi_0) = (b_0)^{-\frac{1}{2}} \int \frac{d\theta}{\sqrt{1 - n_2^2 \sin^2 \theta}}. \]

(4.30)

where \(n_2^2 = \frac{2\sqrt{b_0^2 - b_1^2}}{4b_0} \), it follows from Eq. (4.30), we obtain

\[W = \frac{2\sqrt{b_0}}{1 + cn \left(\frac{b_0 \left(\xi_1 - \xi_0 \right)}{n_2} \right)^{1/2}} - \sqrt{b_0}. \]

(4.31)

According to the Eqs. (4.7), (4.31) and \(Z_2 = kZ_1(k \neq 0) \), the solution of Eq. (1.1) can be obtained as follows

\[\psi_{1,10}(x, t) = \pm \left(\frac{2m^2 a_0}{-\delta - \delta \gamma k^2} \right)^{\frac{1}{2}} \times \exp \left(i \left(-\frac{x}{\beta} + \frac{\mu}{a} + \eta_0 \right) \right) \]

\[\times \left[\frac{2}{1 + cn \left(\frac{32m^2 a_0^2}{-\delta - \delta \gamma k^2} \right)^{1/2} \left(\frac{\Delta}{m^2} \right)^{1/3} \xi - n_0 \right] m_2 \right]^{1/2}, \]

\[\psi_{2,10}(x, t) = \pm k \left(\frac{2m^2 a_0}{-\delta - \delta \gamma k^2} \right)^{\frac{1}{2}} \times \exp \left(i \left(-\frac{x}{\beta} + \frac{\mu}{a} + \eta_0 \right) \right) \]

\[\times \left[\frac{2}{1 + cn \left(\frac{32m^2 a_0^2}{-\delta - \delta \gamma k^2} \right)^{1/2} \left(\frac{\Delta}{m^2} \right)^{1/3} \xi - n_0 \right] m_2 \right]^{1/2}. \]

(4.32)
5 Concluding remarks

It is known to all that the nonlinear Schrödinger equation is an example of a universal nonlinear model that describes many physical nonlinear systems. In this paper, the complete discriminant system method is employed to seek exact solutions of the FCNLSE, by using the mathematical software Maple, combining computer algebra with symbolic computation, we obtain a series of new traveling wave solutions, including trigonometric function solutions, Jacobi elliptic function solutions, hyperbolic function solutions, solitary wave solutions, rational function solutions. The complete discriminant system method is employed to seek traveling wave solutions of FCNLSE, it seems as far as we know, not available in the literature. Therefore, the research in this paper has an important application and scientific research value.

Acknowledgements This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20115134110001. The authors would like to thank the anonymous reviewers for their helpful suggestions and constructive comments for improving the paper.

Declarations

Conflict of interest The authors declare that there is no conflict of interest regarding the publication of this paper. The authors declare that this paper is original.

References

Abdou, M.A., Owyed, S., Abdelaty, A., et al.: Optical soliton solutions for a space-time fractional perturbed nonlinear Schrödinger equation arising in quantum physics. Results Phys. 16, 102895 (2020)
Bekir, A., Guner, O., Bhrawy, A.H., Biswas, A.: Solving nonlinear fractional differential equations using exp-function and G'/G-expansion methods. Rom. J. Phys 60, 360–378 (2015)
Bountis, T., Vanhaecke, P.: Lotka-Volterra systems satisfying a strong painlevé property. Phys. Lett. A. 380, 3977–3982 (2016)
Boyd, R.W.: Nonlinear Optics. Academic, San Diego (1992)
Chen, C., Jiang, Y.L., Wang, Z.L., et al.: Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity. Optik 222, 165331 (2020)
Choi, J.H., Kim, H., Zhang: Soliton solutions for the space-time nonlinear partial differential equations with fractional-orders. Chin. J. Phys. 55, 556–565 (2017)
Das, A., Ghosh, N., Ansari, K.: Bifurcation and exact traveling wave solutions for dual power Zakharov-Kuznetsov-Burgers equation with fractional temporal evolution. Comupt. Math. Appl. 75, 59–69 (2018)
Dehghan, M., Manafian, J., Saadatmandi, A.: Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method. Int. J. Mod. Phys. B. 25, 2965–2981 (2011)
Du, L.X., Sun, Y.H., Wu, D.S.: Bifurcations and solutions for the generalized nonlinear Schrödinger equation. Phys. Lett. A 383, 126028 (2019)
El-Shiekh, R.M.: Classes of new exact solutions for nonlinear Schrödinger equations with variable coefficients arising in optical fiber. Results Phys. 13, 102214 (2019)
El-Shiekh, R.M., Gaballah, M.: Solitary wave solutions for the variable-coefficient coupled nonlinear Schrödinger equations and Davey-Stewartson system using modified sine-Gordon equation method. J. Ocean Eng. Sci. 5, 180–185 (2020)
Elsayed, M.E., Reham, M.A., Biswas, A., et al.: Dispersive solitons in optical fibers and DWDM networks with Schrödinger-Hirota equation. Optik 199, 163214 (2019)
Esen, A., Sulaiman, T.A., et al.: Optical solitons to the space-time fractional (1 + 1)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)
Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)
The classification of single traveling wave solutions for the…

Gadzhimuradov, T.A., Agalarov, A.M., Radha, R., Tamil Arasan, B.: Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 99, 1295–1300 (2020)

Ganaini, S.E., Alamr, M.O.: New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves. Comupt. Math. Appl. 78, 2094–2106 (2019)

Ghanbari, B., Osman, M.S., Baleanu, D.: Generalized exponential rational function method for extended Zakharov-Kuznetsov equation with conformable derivative. Mod. Phys. Lett. A. 34, 1950155 (2019)

Guo, Q., Liu, J.: New exact solutions to the nonliener Schrödinger equation with variable coefficients. Results Phys. 16, 102857 (2020)

Hammad, M.A., Khalil, R.: Conformable fractional heat differential equation. Int. J. Pure Appl. Math. 94, 215–221 (2014)

Han, T.Y., Li, Z., Zhang, X.: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation. Phys. Lett. A 395, 127217 (2021)

Hosseini, K., Ansari, R., Samadani, F., et al.: High-order dispersive cubic-quintic Schrödinger equation and its exact solutions. Optik 136, 203–207 (2019)

Huang, Y.: New no-traveling wave solutions for the Liouville equation by Bäcklund transformation method. Nonlinear Dyn. 71, 87–90 (2013)

Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comupt. Math. Appl. 51, 1367–1376 (2006)

Khalil, R., Horani, A., Yousef, A., et al.: A new definition of fractional derivative. J. Comp. Appl. Math. 264, 65–70 (2014)

Khodadad, F.S., Nazari, F., et al.: Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity. Opt. Quant. Electron. 49, 384 (2017)

Li, C.C., Chen, L.W., Li, G.H.: Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method. Optik 224, 165527 (2020)

Li, Y., Lu, D.C., Arshad, M., Xu, X.: New exact traveling wave solutions of the unstable nonlinear Schrödinger equations and their applications. Optik 226, 165386 (2021)

Lihan, O.A., Manafian, J., Alizadeh, A., Baskonus, H.M.: New exact solutions for nematics in liquid crystals by the tanh(d/2)-expansion method arising in fluid mechanics. Eur. Phys. J. Plus. 125, 313 (2020)

Lu, Q.C., Lihan, O.A., Manafian, J., Avazpour, L.: Multiple rogue wave solutions for a variable-coefficient Kadomtsev-Petviashvili equation. Int. J. Comput. Math. 98, 1457–1473 (2020)

Ma, W.X., Strandw, W.: An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A. 185, 277–286 (1999)

Manafian, J.: On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus. 130, 1–20 (2015)

Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(tanΦ/2)\expansion method. Optik 227, 4222–4245 (2016)

Manafian, J., Lihan, O.A., Mohammed, S.A.: Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. Aims Math. 5, 2461–2483 (2020)

Manafian, J., Lihan, O.A., Mohammed, S.A., et al.: Cross-kink wave solutions and semi-inverse variational method for (3 + 1)-dimensional potential-YTSF equation. East Asian J. Appl. Math. 10, 549–565 (2020)

Marinakis, V., Bountis, T.: Special solutions of a new class of water wave equations. Comm. Appl. Anal. 4, 343–445 (2000)

Parks, E.J., Duffy, B.R., Abbott, P.C.: The Jacobi elliptic function method for fingding periodic wave solutions to nonlinear evolution equations. Phys. Lett. A. 295, 280–286 (2002)

Rezazadeh, H., Abazari, R., Khater, M.A., et al.: New optical solitons of conformable resonant nonlinear Schrödinger’s equation. Open Phys. 18, 761–769 (2020)

Sabrina, S.D., Caruso, N.D., Tarzia, D.A.: Explicit solutions to fractional Stefan-like problems for Caputo and Riemann-Liouville derivatives. Nonlinear Sci. Numer. Simul. 90, 105361 (2020)

Sarwar, S.: New Rational Solutions of fractional-order Sharma-Tasso-Olever equation with Atangana-Baleanu derivative arising in physical sciences. Results Phys. 19, 103621 (2020)

Shi, D.D., Zhang, Y.F.: Diversity of exact solutions to the conformable space-time fractional MEW equation. Appl. Math. Lett. 99, 105994 (2020)

Sulaiman, T.A., Bulut, H.: Optical solitons and modulation instability analysis of the (1 + 1)-dimensional coupled nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 025003 (2020)

Tang, L.: Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Results Phys. 18, 103289 (2020)

Tang, L.: Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation. Optik 245, 167750 (2021)
Tang, L., Chen, S.P.: Traveling wave solutions for the diffusive Lotka-Volterra equations with boundary problems. Appl. Math. Comput. 413, 126599 (2022)

Tcier, F., Aslan, E.C., Inc, M.: Optical solitons in parabolic law medium: Jacobi elliptic function solution. Nonlinear Dyn. 85, 2577–2582 (2016)

Tzirtzilakis, E., Marinakis, V., Apokis, C., Bountis, T.: Soliton-like solutions of higher order water wave equations of the Kdv type. J. Math. Phys. 43, 6151–6165 (2002)

Tzirtzilakis, E., Xenos, M., Marinakis, V., Bountis, T.: Interactions and stability of solitary waves in shallow water. Chaos Solitons Fract. 14, 87–95 (2002)

Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

Wen, Z.S.: The generalised bifurcation method for deriving exact solutions of nonlinear space-time fractional partial differential equations. Appl. Math. Comput. 366, 124735 (2020)

Xie, Y.Y., Yang, Z.Y., Li, L.F.: New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation. Phys. Lett. A. 382, 2506–2514 (2018)

Yang, L., Hou, X.Y., Zeng, Z.B.: Compete discrimination system for polynomial. Sci China Ser E. 26, 628–646 (1996)

Younis, M.: The first integral method for time-space fractional differential equations. J. Adv. Phys. 2, 220–223 (2013)

Zhang, Z.Y., Liu, Z.H., Miao, X.J., et al.: Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Phys. Lett. A. 375, 1275–1280 (2011)

Zhang, Y.J., Yang, C.Y., Yu, W.T., et al.: Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 94, 1351–1360 (2018)

Zheng, Y., Lai, S.Y.: Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations. Phys. Lett. A. 372, 4141–4143 (2008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.