Involvement of integrin-activating peptides derived from tenascin-C in colon cancer progression

Motomichi Fujita, Hideo Suzuki, Fumio Fukai

ORCID number: Motomichi Fujita 0000-0001-7502-9797; Hideo Suzuki 0000-0002-1469-7449; Fumio Fukai 0000-0002-5646-167X.

Author contributions: All authors contributed equally to the conception of this study, drafting, critical revision, and editing of the manuscript, and final approval of the submission.

Conflict-of-interest statement: The authors declare no conflicts of interests in regards to this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Abstract

Tenascin-C (TNC) is an adhesion modulatory protein present in the extracellular matrix that is highly expressed in several malignancies, including colon cancer. Although TNC is considered a negative prognostic factor for cancer patients, the substantial role of the TNC molecule in colorectal carcinogenesis and its malignant progression is poorly understood. We previously found that TNC has a cryptic functional site and that a TNC peptide containing this site, termed TNIIIA2, can potently and persistently activate beta1-integrins. In contrast, the peptide FNIII14, which contains a cryptic bioactive site within the fibronectin molecule, can inactivate beta1-integrins. This review presents the role of TNC in the development of colitis-associated colorectal cancer and in the malignant progression of colon cancer, particularly the major involvement of its cryptic functional site TNIIIA2. We propose new possible prophylactic and therapeutic strategies based on inhibition of the TNIIIA2-induced beta1-integrin activation by peptide FNIII14.

Key Words: Tenascin-C; TNIIIA2; Beta1-integrin; Integrin activation; Colitis-associated colorectal cancer; Colon cancer

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Exposure of the cryptic functional site TNIIIA2 from the Tenascin-C (TNC) molecule and its potent and sustained activation of beta1-integrins appear to be associated with the development of colon cancer and its malignant progression. Inhibition of the biological function of TNIIIA2 derived from TNC molecule may be a
INTRODUCTION

Extracellular matrix (ECM) proteins such as fibronectin (FN), collagen, and laminin provide a scaffold for cell adhesion and subsequently influence various physiological cellular processes, including cell differentiation, survival/proliferation, and migration. As one of the major components of the tumor microenvironment, the ECM affects the behavior of cells in the cancer microenvironment, such as cancer-associated fibroblasts (CAFs) and immune cells, resulting in cancer development[1]. It therefore plays major roles in carcinogenesis and the malignant progression of cancer.

Integrins are a family of heterodimeric transmembrane glycoproteins composed of alpha- and beta-subunits that directly interact with components of the ECM. These integrins primarily mediate cell adhesion, migration, survival, proliferation, and differentiation. In contrast to membrane receptors for humoral factors such as cytokines and chemokines, integrins are unique in their ability to alter the binding affinity for ECM ligands. Integrins exist mainly in two different structural states, an inactive conformation lacking ligand-binding affinity and an active one with high affinity[2]. On the other hand, integrin signaling contributes to the malignant progression of many cancers. For example, integrin alpha5beta1, a major FN receptor, is highly expressed in glioma/glioblastoma, with its expression levels reported to be associated with poor survival in glioma/glioblastoma patients[3]. Alpha5-integrin promotes cell proliferation and the dissemination of glioblastoma cells[4], modulates angiogenesis[5], and contributes to temozolomide chemoresistance[6]. Thus, the integrin alpha5beta1-mediated adhesive interaction of glioma cells may be associated with the acquisition of a highly aggressive phenotype in glioma/glioblastoma. Therefore, inhibition of integrin functions might be a promising therapeutic approach for cancer.

Tenasin-C (TNC) is a hexameric, multimodular ECM glycoprotein. It is poorly expressed in normal adult tissues but highly expressed in both inflammatory lesions and the tumor microenvironment[3,7-10]. TNC is an endogenous activator of toll-like receptor 4, which triggers and amplifies inflammatory responses[11]. In addition, TNC binds to integrin alphavbeta3 and alpha9beta1 to drive inflammatory responses by inducing the synthesis of proinflammatory cytokines, including interleukin (IL)-6, IL-1beta, and tumor necrosis factor-alpha[12]. TNC is highly expressed and is thought to act as a major driving regulator of acute and chronic inflammatory diseases, including cardiac disease[13], arthritis[14], nephritis[15], sepsis[16], stroke[17], asthma[18], chronic obstructive pulmonary disease[19], and viral infections[20]. Therefore, TNC may be a promising biomarker of disease activity and a therapeutic target in these inflammatory diseases.

Furthermore, the expression levels of TNC are associated with poor prognosis in patients with malignant tumors, such as glioma and breast and colon cancers[3,8,10]. Accumulating evidence indicates a relationship between TNC and tumor progression. For example, TNC plays key roles in several processes of tumor progression related to proliferation[21,22], migration, invasion[23-25], angiogenesis[26,27], immunosuppression[28,29], cancer stemness[30,31], and apoptosis resistance[32], supporting the belief that TNC contributes to cancer progression and aggression. In addition, TNC has been linked to carcinogenesis[33-36]. Analysis of the Rip1-Tag2 model of pancreatic beta-cell carcinogenesis, which drives a multistage carcinogenesis process, revealed that TNC contributes to multiple steps linked to carcinogenesis[34,35]. Moreover, Li et al[36] revealed that the expression levels of TNC are higher in adenomatous colon polyps and colon carcinoma in situ than in non-neoplastic colonic mucosa and are also correlated with TMN stages of colon cancer, further indicating that TNC might contribute to carcinogenesis and progression[36].
TNC contains several characteristic domains, such as a central domain, heptad repeats, epidermal growth factor (EGF)-like repeats, FN type III repeats (FN-III repeats), and a fibrinogen globe (Figure 1), which can interact with ECM proteins, soluble factors, and cell receptors and express various functions of TNC. In addition, human TNC contains nine alternative splicing sites in FN-III repeats, and 511 possible splice variants can theoretically be generated through alternative splicing[37]. This alternative splicing could control the versatile biological functions of TNC by modulating its interaction with specific binding partners, as well as by exposing post-translational sites and proteolytic cleavage sites[37]. However, the substantial role of the TNC molecule in colorectal carcinogenesis and its malignant progression has remained elusive.

This review presents the role of TNC in the malignant progression of colon cancer and the development of colitis-associated colorectal cancer (CAC), with a particular focus on the major involvement of TNIIIA2, the cryptic functional site of TNC. We propose new possibilities for prophylactic and therapeutic strategies based on peptide TNIIIA2-mediated inhibition of the TNIIIA2-induced beta1-integrin activation.

PATHOLOGICAL SIGNIFICANCE OF ELEVATED TNC EXPRESSION IN MALIGNANT TUMORS

Most ECM proteins harbor functionally cryptic functional sites that are buried within their molecular structures. These cryptic sites, called matricryptic sites, are revealed via structural/conformational changes triggered by interactions with adjacent cells or other ECM components and by remodeling/processing by ECM-degrading proteases, including matrix metalloproteinases (MMPs) and cathepsins. The proteases capable of degrading ECM proteins are highly upregulated in a wide variety of cancers[38-40]. ECM degradation often occurs in malignant tumors, and ECM protein fragments with biological functions are released through cleavage by inflammatory proteases[41,42]. ECM fragments with functional matricryptins show unique biological functions that are not detected in their parental ECM proteins[43]. ECM proteins such as TNC are proteolytically cleaved by several inflammatory proteases, including MMPs and cathepsins[39,40,42-44]. Proteolytic degradation of TNC has been detected in lung and colon cancer, and early-stage non-small cell lung cancer patients with TNC degradation show significantly worse prognosis and higher recurrence than those without TNC degradation[39,45,46]. Increased MMP-2 activity has been observed in patients with degraded TNC[39], indicating that exposure of the TNC functional cryptic site by several inflammatory proteases may be associated with the malignant progression of cancer. Saito et al[47] previously found that TNC harbors a cryptic and functional site comprising the amino acid residues in the sequence YTITIRGV within the FN type III repeat A2[47]. A 22-mer peptide containing this functional sequence of TNC, termed peptide TNIIIA2, can potently activate beta1-integrins, a state that is sustained for a long period of time[48] (Figure 1).

The mode of beta1-integrin activation induced by TNIIIA2 is entirely distinct from that induced by “inside-out” signaling, which is the commonly considered mode of integrin activation. Saito et al[47] have found that syndecan-4, one of the transmembrane heparin sulfate proteoglycans, serves as a membrane receptor for TNIIIA2 and that engagement with TNIIIA2 induces a lateral association with beta1-integrins, resulting in stabilization of the active conformation of beta1-integrin[47]. Based on this unique mechanism of integrin activation, this TNIIIA2-induced integrin activation is more potent and persistent than other known integrin activators, such as the various cytokines and chemokines that stimulate the “inside-out” signaling pathway[48]. Because TNC variants containing the alternatively spliced domain type III-A2 are highly expressed in malignant tumors[49], the activation of beta1-integrin induced by TNIIIA2 may be related to some forms of cancer pathogenesis. We previously found that TNIIIA2 contributes to the ability of glioblastoma to acquire aggressive properties such as excessive survival/proliferation, disseminative migration, and anoikis resistance through activation of beta1-integrin[50-52]. More recently, we reported that TNIIIA2 establishes inflammatory environments via the NOD-like receptor family pyrin domain-containing 3/caspase-1/IL-1beta pathway[53]. These findings suggest that the pathological significance of high TNC expression in inflammation and cancer may lie in activating beta1-integrins based on TNIIIA2 function.
INVolvement of TNC in COlon cancer

Colorectal cancer is the third most common type of gastrointestinal tract tumor worldwide and the third leading cause of death among men and women\cite{54}. Because of recent substantial progress in diagnostic methods and advances in primary and adjuvant treatments, including standard chemotherapy and targeted treatments, the incidence and mortality of colorectal cancer has been improving\cite{55,56}, with a 5-year overall survival rate for colorectal cancer of about 60\%\cite{57,58}. However, patients with metastatic colorectal cancer, which comprise 20\% of patients with new colorectal cancer diagnoses, show a high mortality rate, with a 5-year overall survival rate of approximately 20\%\cite{59-62}. Recently, systemic therapy involving molecular targeted drugs as well as cytotoxic drugs has been adopted for unresectable colorectal cancer. Combination with molecular targeted drugs such as bevacizumab, cetuximab, or panitumumab is recommended, depending on the RAS status\cite{63}. However, although these drugs are effective, they have various problems, including certain adverse events, and eventually become ineffective. Therefore, further investigation is still necessary to develop novel strategies for colorectal cancer, and it is important to elucidate the molecular mechanisms that enable colorectal cancer to acquire malignant properties.

TNC is highly expressed in colon cancer, and high expression levels of TNC in tissue specimens are correlated with distant metastasis, tumor recurrence, advanced TNM stage, and poor prognosis\cite{10,36}. Moreover, colon cancer cells highly expressing TNC show high metastatic potential and are associated with lymph nodes with metastasis\cite{36}. In addition, serum TNC levels, particularly those of large-spliced variants, are higher in patients with colon cancer compared with controls\cite{64}. Such levels are also correlated with tumor depth, lymph node metastasis, and disease progression\cite{64}. Therefore, the levels of TNC in tissue and serum may be a diagnostic or prognostic biomarker in colon cancer. Furthermore, the Wnt/beta-catenin signaling pathway plays a central role in carcinogenesis, and its mutation and activation are found in almost all patients with colon cancers\cite{65}. Because TNC is a Wnt/beta-catenin target gene in human colon tumors\cite{66}, the deregulation of Wnt/beta-catenin signaling might lead to the overexpression of TNC in colon cancer. Experimental observations indicated that TNC secreted by myofibroblasts might act as a proinvasive factor for colon cancer cells\cite{67}. Furthermore, TNC promotes proliferation, migration, and invasion and also upregulates cancer stem cell markers via the Hedgehog signaling pathway\cite{31}. However, the biochemical functions of TNC in the malignant progression of colon cancer have not yet been established.
MMP-2 is highly expressed in colon cancer tissues and its expression levels increase with an increase in the tumor stage[68]. Furthermore, the expression levels of MMP-2 are correlated with lymph vessel invasion and disease progression in colon cancer[69]. MMP-7 is another Wnt/beta-catenin target gene[70] and both MMP-2 and MMP-7 can degrade TNC[71]. Furthermore, TNC variants containing the alternatively spliced domain types III-A1, -2, and -4 are highly expressed in colon cancer[49]. It is presumed that the functional cryptic site TNIIIA2 of TNC may be released into the tumor microenvironment of colon cancer and contribute to its pathogenesis. Supporting this hypothesis, peptide TNIIIA2 has been shown to act directly on colon cancer cells to enhance their in vitro invasive potential by inducing MMP secretion[72]; peptide TNIIIA2 or TNC promotes colon cancer cell invasion by upregulating MMPs[72]. The cell invasion induced by peptide TNIIIA2 or TNC is completely suppressed by anti-TNIIIA2 antibody or MMP-2 inhibitor[72]. Moreover, an in vivo observation involving a spontaneous metastasis mouse model mimicking hematogenous metastasis exhibited that peptide TNIIIA2 boosted the metastasis of colon cancer cells to the lung[72]. Taken together, the activation of beta1-integrin by peptide TNIIIA2 (one of the biochemical functions of TNC) may help to promote colon cancer cell metastasis via induction of MMP (Figure 2).

Alterations in the density, distribution, and composition of the ECM are common in malignancies. This process creates the tumor microenvironment that helps to confer cancer cells with malignant properties such as tumorigenesis and metastasis[1]. These alterations increase stiffness in the tumor microenvironment, which promotes pro-tumorigenic mechanosignaling. The increased ECM stiffness of colon cancer has been associated with cancer progression[73]. Through analysis of clinical specimens, a gradient of increasing ECM stiffness was observed from healthy to perilesional and colon cancer areas, which might predispose invasion[74]. Furthermore, the expression levels of lysyl oxidase (LOX), which catalyzes the covalent cross-linking of collagens and elastin, are closely correlated with the progression of colon cancer[75]. Compared with control cells or cells expressing a catalytically inactive LOX, colon cancer cells expressing LOX exhibit increased mechanosignaling, ECM stiffness, metastasis, and tumor burden in in vivo models via activation of beta1-integrin and the focal adhesion kinase-SRC signaling pathway[76], indicating that beta1-integrin activation might be associated with malignant progression via increased ECM stiffness in colon cancer. In a recent insightful study on the role of TNC in ECM stiffness in the tumor microenvironment, Barnes et al[77] demonstrated that the glycosylation/ECM-integrin loop induces glioblastoma aggression in a tissue tension-dependent manner, with human recurrent glioblastomas showing an increase in TNC-enriched stiffened ECM and enhanced integrin mechanosignaling[77]. It has also been pointed out that glioblastoma cells expressing a V737N beta1-integrin autoaggregating mutant exhibit increased mechanosignaling and ECM stiffness and facilitate tumor growth[77]. It is unlikely that at least the antiadhesive effect of TNC, which has been considered a major biochemical function of this protein, is responsible for the ECM stiffening and consequent enhanced integrin signaling. However, it remains unclear whether proadhesive activity (a biochemical function of TNC) is directly associated with ECM stiffness in the tumor microenvironment of colon cancer. Further investigations are required to determine whether activation of beta1-integrin by peptide TNIIIA2 could actually increase ECM stiffness in colon cancer.

Beta1-integrin is also highly expressed in colon cancer compared with normal mucosa. High expression levels of beta1-integrin have been associated with poor prognosis, and increased expression of beta1-integrin is independently correlated with decreased overall survival and disease-free survival in colon cancer patients[78]. In addition, alpha5-integrin, which is coupled with beta1-integrin, also shows upregulated expression in colon cancer and is expressed mainly in the tumor stroma of clinical samples[79]. Moreover, alpha5beta1-integrin expression is considered a significant independent prognostic factor. Experimental evidence indicates that overexpression of alpha5-integrin accelerates proliferation and suppresses apoptosis in colon cancer cells, with colon cancer cells overexpressing alpha5-integrin found to promote tumor growth in a murine xenograft tumor model[80]. In addition, blockade of alpha5-integrin inhibits cell attachment and induces apoptosis in colon cancer cells via Akt suppression[81]. Integrin alpha5beta1 also confers anoikis resistance in colon cancer cells via association with EGF receptor and the subsequent activation of ERK and Akt as well as suppression of the caspase signaling pathway[82]. Furthermore, depletion of alpha5-integrin expression in fibroblasts suppresses the tumorigenic activity of colon cancer in in vivo experiments, as determined by the co-injection of human colon cancer cells and human normal colonic fibroblast cells into immunocompromised mice[79]. This result indicated that CAFs expressing alpha5-integrin have a
Figure 2 Schematic model of the effect of TNIIIA2 on the metastasis of colon cancer cells. Peptide TNIIIA2 boosts the infiltration of colon cancer cells via matrix metalloproteinases production in vitro and promotes pulmonary metastasis in a spontaneous metastasis mouse model. Created with BioRender.com. MMP: Matrix metalloproteinases.

tumor-promoting effect in colon cancer. Pharmacological experiments have demonstrated that the non-peptidic alpha5beta1 integrin antagonist K34c suppresses the clonogenic survival of colon cancer cells[83]. In addition, ATN-161, a peptidic antagonist of integrin alpha5beta1 and alphavbeta3, reduced tumor vascularization, and combination therapy of ATN-161 and fluorouracil suppressed liver metastases in a murine model of colon cancer[84]. Therefore, integrin alpha5beta1 might be a promising target for cancer therapeutics.

INVOLVEMENT OF TNC IN CAC

A link between chronic inflammation and the pathogenesis of many malignancies has been well documented. Examples include Helicobacter pylori infection-associated gastric cancer and hepatitis virus infection-associated hepatocellular carcinoma[85,86]. In particular, inflammatory bowel disease (IBD) patients, including Crohn’s disease and ulcerative colitis, have an increased risk of developing CAC[87-89], which is a subtype of colorectal cancer[90]. Although the incidence of CAC seems to have decreased in recent years because of more frequent surveillance, improved surveillance techniques, and more effective IBD drugs for controlling inflammation, patients with IBD still have higher rates of death from colon cancer[91]. Indeed, a Scandinavian population-based study recently showed that patients with IBD and colorectal cancer had an increased risk of mortality compared with those with sporadic colorectal cancer[92,93]. Therefore, there is still an unmet medical need for the prevention and treatment of CAC. Unlike sporadic colorectal cancer, CAC onset does not show an adenoma-carcinoma sequence, but rather an inflammation-dysplasia-carcinoma sequence[94,95]. Nonetheless, the molecular basis of CAC onset is largely unknown. Thus, research into the molecular mechanisms underlying CAC onset is urgently needed for the development of novel therapeutics.

Several studies have reported that TNC is associated with ulcerative colitis and Crohn’s disease[96-99]. A genome-wide association study of African Americans found that single-nucleotide polymorphisms within the TNC gene are associated with IBD risk[100]. Ning et al[101] reported that TNC is highly expressed in the inflamed stromal area of the intestinal mucosa of IBD patients[101]. They also showed particularly high levels of serum TNC in patients with severe IBD compared with those with mild or moderate IBD[101]. Riedl et al[96] determined that the serum levels of TNC are correlated with clinical and histological parameters of disease activity in IBD patients[96]. Moreover, high levels of TNC mRNA in the mucosa of ulcerative colitis have been associated with a poor response to infliximab therapy, an effective treatment for moderate-to-severe IBD, indicating that TNC may contribute to therapeutic resistance against IBD. Therapy resistance may participate in the malignant progression of IBD due to a lack of inflammatory control, resulting in an increased risk of CAC onset.
Indeed, TNC derived from intestinal myofibroblasts promotes the onset of CAC in an azoxymethane (AOM)/dextran sulfate sodium (DSS) model via angiogenesis[102]. Thus, TNC might contribute to the development and/or malignant progression of CAC. Identification of the biological functions of the TNC responsible for the development of CAC would enable the design of agents with prophylactic and therapeutic potential for these diseases. However, the biochemical functions of TNC in CAC onset have not yet been established.

ECM remodeling is often augmented in these pathological lesions, and proteolytic cleavage of ECM proteins is performed by several inflammatory proteinases, including MMPs and cathepsins. Indeed, increased expression levels of several MMPs have been observed in IBD and are associated with disease activity in IBD, indicating that degradation of the ECM, including TNC, might occur at high levels in IBD and during CAC onset[103]. Therefore, it is conceivable that the functional cryptic site TNIIIA2 might be exposed by the high levels of TNC molecules in the lesion and act as a specific pathogenic factor in the development of CAC. Supporting this assumption, our recent work demonstrated the presence of TNC and peptide TNIIIA2 in the stromal area of dysplastic lesions in AOM/DSS mice[104]. Assuming that peptide TNIIIA2 acts mainly on preneoplastic epithelial cells and fibroblasts, which are abundant in the stromal area of dysplastic lesions, our in vitro experiments focused on the effects of beta1-integrin activation on both preneoplastic epithelial cells and fibroblasts. Interestingly, although beta1-integrin activation by peptide TNIIIA2 promoted cell adhesion, it had no direct effect on the growth of preneoplastic epithelial cells[104]. Similarly, peptide TNIIIA2 had no direct effect on the growth of fibroblasts, but fibroblasts stimulated by peptide TNIIIA2 released tumoral factors, or possibly factors, that drive the malignant transformation of preneoplastic epithelial cells in a paracrine manner, as judged by anchorage-independent cell growth and focus formation[104]. These factors secreted from peptide TNIIIA2-activated fibroblasts are also able to promote the survival/proliferation of colon cancer cells[104]. Furthermore, peptide FNIII14, a peptidic factor that induces a conformational change in beta1-integrin from the active to the inactive state[105], suppressed not only the TNIIIA2-induced dysregulated survival/proliferation of preneoplastic epithelial cells in vitro, but also polyp development in an AOM/DSS mouse model[104]. These results suggest that beta1-integrin activation by peptide TNIIIA2 in fibroblasts may be an important target for the prevention of CAC (Figure 3).

Several studies have demonstrated that cells in the tumor microenvironment, such as CAFs and immune cells, influence tumor progression. Among them, CAFs are key determinants of cancer development and progression[106-108]. Sasaki et al[109] demonstrated that CAC incidence is abrogated in CC chemokine ligand 5-knockout mice treated with AOM/DSS and coincides with lower accumulation of fibroblasts in dysplastic lesions compared with wild-type mice[109]. These fibroblasts express heparin-binding EGF-like growth factor to stimulate the proliferation of tumor cells in CAC mice[109]. In addition, epiregulin derived from fibroblast promotes the proliferation of intestinal epithelial cells through activation of the ERK signaling pathway, augmenting CAC growth[110]. These studies indicate that CAFs might be responsible for CAC development and progression. However, there is increasing evidence that TNC is upregulated in CAFs and that a high TNC expression as a CAF marker in tumor stroma is correlated with worse prognosis in several malignancies, such as breast ductal carcinoma[7], esophageal squamous cell carcinoma[9], colorectal cancer[10], and prostate cancer[111]. Taken together with our results, the evidence indicates that fibroblasts produce TNC in the tumor microenvironment and that this TNC might activate CAFs to promote tumor onset and progression.

Risk factors for CAC development include pancolitis, a younger age of IBD onset, a long disease duration, chronic cholestatic liver disease, family history[112], and stricture formation[113]. Intestinal fibrosis is a common complication in IBD, particularly Crohn’s disease, and the resulting clinically relevant strictures have been observed in about one-third of patients[114]. Intestinal fibrosis is likely to involve increased ECM stiffness, and this stiffness could perpetuate fibrogenesis[114], leading to the development of fibrotic strictures. More recently, accumulating evidence has linked increased ECM stiffness to several malignancies, with recent studies showing that cancer progression and aggression are correlated with the stiffness of a TNC-enriched ECM[115] (please see the previous section). In IBD, increased ECM stiffness has been observed in strictures, and the increased ECM stiffness enhances adhesive properties, such as the formation of focal adhesion and actin stress fibers of colonic fibroblasts[116]. Moreover, increased expression levels of TNC have been reported in lesions of ulceration in ulcerative colitis[98]. Erdem et al[117] reported the possible
involvement of increased expression levels of TNC in the development of ulcerative colitis-related strictures[117]. Given that peptide TNIIIA2 can induce potent and persistent activation of beta1-integrin as well as its clustering[47,48], peptide TNIIIA2 in stromal lesions might contribute to the development of colitis-related strictures through increased ECM stiffness, leading to increased risk of CAC onset. Although further research is required to determine whether beta1-integrin activation by peptide TNIIIA2 actually increases ECM stiffness, TNIIIA2-targeting agents such as an anti-TNIIIA2 antibody might be a promising strategy for the prophylaxis or treatment of CAC development and malignant progression.

Several studies have suggested that integrin inactivation could be a promising strategy for controlling CAC development and progression. ATN-161, a peptidic antagonist of integrin alpha5beta1 and alphavbeta3, suppressed disease activity by blocking angiogenesis in IL-10-deficient mice that develop spontaneous Crohn’s disease-like colitis[118] as well as in a CD4+CD45RBhigh T-cell transfer model that induced chronic pancolitis[119]. Furthermore, ATN-161 also inhibits CAC development via inhibition of integrin alphavbeta3-mediated angiogenesis in a chemically induced AOM/DSS mouse model of intestinal and colon carcinogenesis[102], although no recent development status of ATN-161 is available. More recently, Terasaki et al [120] showed that fucoxanthin induces anoikis in colonic adenocarcinoma through attenuation of beta1-integrin signaling, which blocks CAC development in AOM/DSS mice[120]. Taken together, beta1-integrin activation might become a promising target for preventing and treating CAC, and inactivation of beta1-integrin by peptide FNIII14, which can neutralize the detrimental effects of peptide TNIIIA2 on beta1-integrin activation, might be a novel and promising strategy for the management of CAC development and malignant progression.

CONCLUSION

Although TNC is considered a negative prognostic factor in several malignancies, the
substantial role of TNC molecule in the development of colorectal cancer and its malignant progression has remained elusive. We suggest that one of the pathological roles of TNC, which is highly expressed in colon cancer, may be in activating beta1-integrins through TNIIIA2 function. This hypothesis and the previous findings open the door to prophylactic and therapeutic strategies for colon cancer that involve inhibition of TNIIIA2-induced beta1-integrin activation by peptide FNIII14.

REFERENCES

1. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11: 5120 [PMID: 33037194 DOI: 10.1038/s41467-020-18794-x]

2. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11: 288-300 [PMID: 20308986 DOI: 10.1038/nrm2871]

3. Midwood KS, Hassenet T, Langlois B, Orend G. Advances in tenascin-C biology. Cell Mol Life Sci 2011; 68: 3175-3199 [PMID: 21818551 DOI: 10.1007/s00018-011-0783-6]

4. Blandin AF, Noutel F, Renner G, Mercier MC, Choulier L, Vauchelles R, Ronde P, Carreiras F, Etienne-Selloum N, Verbe G, Leong-Rebel I, Martin S, Donentwill M, Lehmann M. Gioloma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 2016; 376: 328-338 [PMID: 27063097 DOI: 10.1016/j.canlet.2016.04.007]

5. Dudavski Stanković N, Bicker F, Keller S, Jones DT, Harter PN, Kienzl A, Gillmann C, Arnold P, Golabiewska A, Keunen O, Giese A, von Deimling A, Bäuerle T, Mittelbronn M, Ye W, Pfister SM, Schmidt MH. EGFL7 enhances surface expression of integrin αvβ3 to promote angiogenesis in malignant brain tumors. EMBO Mol Med 2018; 10 [PMID: 30665025 DOI: 10.15252/emmm.201709420]

6. Janouškova H, Maglott A, Leger DY, Bossert C, Noutel F, Guerin E, Guenot D, Pinel S, Chastagner P, Plenat F, Entz-Werle N, Lehmann-Che J, Godet J, Martin S, Teisinger J, Donentwill M. Integrin α5β1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma. Cancer Res 2012; 72: 3463-3470 [PMID: 22593187 DOI: 10.1158/0008-5472.CAN-11-4199]

7. Yang Z, Ni W, Cui C, Fang L, Xuan Y. Tenascin C is a prognostic determinant and potential cancer-associated fibroblasts marker for breast ductal carcinoma. Exp Mol Pathol 2017; 102: 262-267 [PMID: 28225108 DOI: 10.1016/j.yexmp.2017.02.012]

8. Ishihara A, Yoshida T, Tamaki H, Sakakura T. Tenascin expression in cancer cells and stroma of human breast cancer and its prognostic significance. Clin Cancer Res 1995; 1: 1035-1041 [PMID: 9816077]

9. Yang ZT, Yeo SY, Yin YX, Lin ZH, Lee HM, Xuan YH, Cui Y, Kim SH. Tenascin-C, a Prognostic Determinant of Esophageal Squamous Cell Carcinoma. PLoS One 2016; 11: e0145807 [PMID: 26731558 DOI: 10.1371/journal.pone.0145807]

10. Yang Z, Zhang C, Qi W, Cui C, Cui Y, Xuan Y. Tenascin-C as a prognostic determinant of colorectal cancer through induction of epithelial-to-mesenchymal transition and proliferation. Exp Mol Pathol 2018; 105: 216-222 [PMID: 30170017 DOI: 10.1016/j.yexmp.2018.08.009]

11. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 2009; 15: 774-780 [PMID: 19561617 DOI: 10.1038/nm.1987]

12. Marzedo AM, Midwood KS. Tenascins: Tenascin-C as a Clinically Relevant, Endogenous Driver of Innate Immunity. J Histochem Cytochem 2018; 66: 289-304 [PMID: 29385356 DOI: 10.1369/jhcc.2018.0221554187574443]

13. Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319: C781-C796 [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020]

14. Hasegawa M, Yoshida T, Sudo A. Tenascin-C in Osteoarthritis and Rheumatoid Arthritis. Front Immunol 2020; 11: 577015 [PMID: 33103102 DOI: 10.3389/fimmu.2020.577015]

15. Izumi K, Miyazaki N, Okada H, Tsujimoto A, Matsumoto-Miyazaki J, Naito Y, Yoshida G, Murata I, Nagashima K, Ohno H, Imanaka-Yoshida K, Okura H, Ohashi H, Takemura G, Tenascin-C expression in renal biopsies from patients with tubulointerstitial nephritis and its relation to disease activity and prognosis. Int J Clin Pathol 2020; 13: 1842-1852 [PMID: 32782713]

16. Yuan W, Zhang W, Yang X, Zhou L, Hanghua Z, Xu K. Clinical significance and prognosis of serum tenascin-C in patients with sepsis. BMC Anesthesiol 2018; 18: 170 [PMID: 30442110 DOI: 10.1186/s12871-018-0634-1]

17. Okada T, Suzuki H. The Role of Tenascin-C in Tissue Injury and Repair After Stroke. Front Immunol 2020; 11: 607587 [PMID: 33552066 DOI: 10.3389/fimmu.2020.607587]

18. Yasuda M, Harada N, Harada S, Ishimori A, Katsura Y, Iiogawa Y, Matsuno K, Makino F, Ito J, Ono J, Tobino K, Akiba H, Atsuta R, Izuhara K, Takahashi K. Characterization of tenascin-C as a novel biomarker for asthma: utility of tenascin-C in combination with perioxidin or immunoglobulin E. Allergy Asthma Clin Immunol 2018; 14: 72 [PMID: 30473714 DOI: 10.1186/s13223-018-0306-7]
19 Löffahl M, Kaarteenaho R, Lippi-Blanco E, Torning G, Sköld MC. Tenascin-C and alpha-smooth muscle actin positive cells are increased in the large airways in patients with COPD. Respir Res 2011; 12: 48 [PMID: 21496259 DOI: 10.1186/1465-9921-12-48]

20 Mills JT, Schwenzer A, Marsh EK, Edwards MR, Sabroe I, Midwood KS, Parker LC. Airway Epithelial Cells Generate Pro-inflammatory Tenascin-C and Small Extracellular Vesicles in Response to TLRII Stimulation and Rhinovirus Infection. Front Immunol 2019; 10: 1987 [PMID: 3197021 DOI: 10.3389/fimmu.2019.01987]

21 Cai J, Lu W, Du S, Guo Z, Wang H, Wei W, Shen X. Tenascin-C Modulates Cell Cycle Progression to Enhance Tumour Cell Proliferation through AKT/FOXO1 Signalling in Pancreatic Cancer. J Cancer 2018; 9: 4449-4462 [PMID: 30519351 DOI: 10.7150/jca.25926]

22 Sarkar S, Mirzaei R, Zemp FJ, Wei W, Senger DL, Robbins SM, Yong VW. Activation of NOTCH Signaling by Tenascin-C Promotes Growth of Human Brain Tumor-Initiating Cells. Cancer Res 2017; 77: 3231-3243 [PMID: 2841688 DOI: 10.1158/0008-5472.CAN-16-2171]

23 Sun Z, Schwenzer A, Rupp T, Murdamoothoo D, Vegaillante R, Lefebvre O, Klein A, Hussenet T, Orend G. Tenascin-C Promotes Tumor Cell Migration and Metastasis through Integrin α9β1-Mediated YAP Inhibition. Cancer Res 2018; 78: 950-961 [PMID: 29259017 DOI: 10.1158/0008-5472.CAN-17-1597]

24 Cai J, Du S, Wang H, Xin B, Wang J, Shen W, Wei W, Guo Z, Shen X. Tenascin-C induces migration and invasion through JNK/e-Jun signalling in pancreatic cancer. Oncotarget 2017; 8: 7446-74422 [PMID: 29088796 DOI: 10.18632/oncotarget.20160]

25 Sun Z, Velázquez-Quesada I, Murdamoothoo D, Ahwessco C, Yilmaz A, Spengel C, Averous G, Erne W, Oberndorfer F, Osztalowd A, Kain R, Bourdon C, Mangin P, Deligne C, Midwood K, Abou-Faycal C, Lefebvre O, Klein A, van der Heyden M, Chenard MP, Christofori G, Mathelin C, Loustau T, Hussenet T, Orend G. Tenascin-C increases lung metastasis by impacting blood vessel invasions. Matrix Biol 2019; 83: 26-47 [PMID: 31288048 DOI: 10.1016/j.matbio.2019.07.001]

26 Cai HP, Wang J, Xi SY, Ni XR, Chen YS, Yu YJ, Cen ZW, Yu ZH, Chen FR, Guo CC, Zhang J, Ke C, Chen ZP. Tenascin-c-mediated vasculogenic mimicry formation via regulation of MMP2/MMP9 in glioma. Cell Death Dis 2019; 10: 879 [PMID: 31754182 DOI: 10.3389/fimmu.2019.01987]

27 Rupp T, Langlois B, Kozorowska MM, Radwanska A, Sun Z, Hussenet T, Lefebvre O, Murdamoothoo D, Arnold C, Biniööskel ML, Hyenne V, Naudin E, Velázquez-Quesada I, Schilling O, Van Obberghen-Schilling E, Orend G. Tenascin-C Orchestrates Glioblastoma Angiogenesis by Modulation of Pro- and Anti-angiogenic Signaling. Cell Rep 2016; 17: 2607-2619 [PMID: 27922685 DOI: 10.1016/j.celrep.2016.11.012]

28 Mirzaei R, Sarkar S, Dzikowski L, Rawji KS, Khan L, Faissher A, Bose P, Yong VW. Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. Oncoimmunology 2018; 7: e1478647 [PMID: 30288344 DOI: 10.1080/2162402X.2018.1478647]

29 Jachetti E, Caputo S, Mazzoleni S, Brambillasca CS, Parigi SM, Grioni M, Piras IS, Restuccia U, Calcinotto A, Freschi M, Bachi A, Galli R, Bellone M. Tenascin-C Protects Cancer Stem-like Cells from Immune Surveillance by Arresting T-cell Activation. Cancer Cell Int 2018; 18: 2095-2108 [PMID: 25808872 DOI: 10.1158/0008-5472.CAN-14-2346]

30 Yang Z, Zhang C, Feng G, Yi Q, Cui Y, Xuan Y. Tenascin-C is involved in promotion of cancer stemness via the Akt/HIF1ɑ axis in esophageal squamous cell carcinoma. Exp Mol Pathol 2019; 109: 104239 [PMID: 30094401 DOI: 10.1016/j.yexmp.2019.03.007]

31 Yang Z, Zhang C, Feng G, Quan M, Cui Y, Xuan Y. Tenascin-C predicts poor outcomes for patients with colorectal cancer and drives cancer stemness via Hedgehog signaling pathway. Cancer Cell Int 2020; 20: 122 [PMID: 32322169 DOI: 10.1186/s12935-020-01188-w]

32 Shi M, He X, Wei W, Wang J, Zhang T, Shen X. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway. Apoptosis 2015; 20: 843-857 [PMID: 25690319 DOI: 10.1007/s10495-015-1106-4]

33 Esposito I, Penzel R, Chaib-Harrireche M, Barcena U, Bergmann F, Riedl S, Kayed H, Giese N, Kleeff J, Friess H, Schirmacher P. Tenascin C and annexin II expression in the process of pancreatic carcinogenesis. J Pathol 2006; 208: 673-685 [PMID: 1645033 DOI: 10.1002/path.1935]

34 Saupé F, Schwenzer A, Jia Y, Gasser I, Spengel C, Langlois B, Kammerer M, Lefebvre O, Hlushchuk R, Rupp T, Marko M, van der Heyden M, Cremel G, Arnold C, Klein A, Simon-Assmann P, Djovon V, Neville-Méchine A, Esposito I, Slotta-Huspenina J, Janssen KP, de Wever O, Christofori G, Hussenet T, Orend G. Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model. Cell Rep 2013; 5: 482-492 [PMID: 24139798 DOI: 10.1016/j.celrep.2013.09.014]

35 Spengel C, Gasser I, Saupé F, Janssen KP, Arnold C, Klein A, van der Heyden M, Mutterer J, Neville-Méchine A, Chenard MP, Guenot D, Esposito I, Slotta-Huspenina J, Ambartsoumian N, Simon-Assmann P, Orend G. Spatial organization of the tenascin-C microenvironment in experimental and human cancer. Cell Adh Migr 2015; 9: 4-13 [PMID: 25611571 DOI: 10.1080/19336918.2015.1005452]

36 Li M, Peng F, Li G, Fu Y, Huang Y, Chen Z, Chen Y. Proteomic analysis of stromal proteins in different stages of colorectal cancer establishes Tenascin-C as a stromal biomarker for colorectal cancer metastasis. Oncotarget 2016; 7: 37226-37237 [PMID: 27191989 DOI: 10.18632/oncotarget.9362]

37 Glibin SP, Midwood KS. Tenascin-C: Form vs function. Cell Adh Migr 2015; 9: 48-82 [DOI: 10.4161/19336918.2014.987587]
Fujita M et al. TNC-derived peptide TNIIIA2 in colon cancer

38 Passlick B, Sienel W, Seen-Hibler R, Wöckel W, Thetter O, Mutschler W, Pantel K. Overexpression of matrix metalloproteinase 2 predicts unfavorable outcome in early-stage non-small cell lung cancer. *Clin Cancer Res* 2006; 6: 3944-3948 [PMID: 16503982]

39 Cai M, Onoda K, Takao M, Kyoko Y, Shimpoo H, Yoshida T, Yada I. Degradation of tenascin-C and activity of matrix metalloproteinase-2 are associated with tumor recurrence in early stage non-small cell lung cancer. *Clin Cancer Res* 2002; 8: 1152-1156 [PMID: 11948127]

40 Mai J, Sameni M, Mikkelsen T, Sloane BF. Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas. *Biochem Biophys Res Commun* 2002; 383: 1407-1413 [PMID: 12437133 DOI: 10.1015/bc.2002.159]

41 Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. *Semin Cancer Biol* 2020; 62: 192-200 [PMID: 31518697 DOI: 10.1016/j.semcancer.2019.09.004]

42 Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. *J Pathol* 2003; 200: 448-464 [PMID: 12845612 DOI: 10.1002/path.1400]

43 Davis GE, Bayless KJ, Davis MJ, Meininge GA. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. *Am J Pathol* 2000; 156: 1489-1498 [PMID: 10793060 DOI: 10.1016/S0002-9440(10)6020-1]

44 Shimshoni E, Yabblecovitch D, Baram L., Dotan I., Sagi I. ECM remodelling in IBD: innocent bystander or partner in crime? *Gut* 2015; 64: 367-372 [PMID: 25416065 DOI: 10.1136/gutjnl-2014-308048]

45 Sakai T, Kawakatsu H, Hirot A, Yokoyama T, Sakakura T, Saito M. Specific expression of tenascin in human colonic neoplasms. *Br J Cancer* 1993; 67: 1058-1064 [PMID: 7684238 DOI: 10.1038/bjc.1993.194]

46 Kusagawa H, Onoda K, Namikawa S, Yada I, Okada A, Yoshida T, Sakakura T. Expression and degeneration of tenascin-C in human lung cancers. *Br J Cancer* 1998; 77: 96-102 [PMID: 9459152 DOI: 10.1038/bjc.1998.15]

47 Saito Y, Imazeki H, Miura S, Yoshimura T, Okutsu H, Harada Y, Ohwaki T, Nagao O, Kamiya S, Hayashi R, Kodama H, Handa H, Yoshida T, Fukai F. A peptide derived from tenascin-C induces beta1 integrin activation through syndecan-4. *J Biol Chem* 2007; 282: 34929-34937 [PMID: 17901052 DOI: 10.1074/jbc.M705608200]

48 Tanaka R, Seki Y, Saito Y, Kamiya S, Fujita M, Okutsu H, Iyoda T, Takai T, Owaki T, Yajima H, Taira J, Hayashi R, Kodama H, Matsunaga T, Fukai F. Tenascin-C-derived peptide TNIIIA2 highly enhances cell survival and platelet-derived growth factor (PDGF)-dependent cell proliferation through potentiated and sustained activation of integrin α5β1. *J Biol Chem* 2014; 289: 17699-17708 [PMID: 24808173 DOI: 10.1074/jbc.M113.546622]

49 Dueck M, Riedl S, Hinz U, Sundara A, Möller P, Herfahrt C, Faissner A. Detection of tenascin-C isoforms in colorectal mucosa, ulcerative colitis, carcinomas and liver metastases. *Int J Cancer* 1999; 82: 477-483 [PMID: 10404058 DOI: 10.1002/(sici)1097-0215(19990812)82:4<477::aid-ijc2>3.0.co;2-5]

50 Fujita M, Yamamoto T, Iyoda T, Fujisawa T, Nagai R, Kudo C, Casada M, Kodama H, Fukai F. Autocrine Production of PDGF Stimulated by the Tenascin-C-Derived Peptide TNIIIA2 Induces Hyper-Proliferation in Glioblastoma Cells. *Int J Mol Sci* 2019; 20 [PMID: 31261783 DOI: 10.3390/ijms20133183]

51 Fujita M, Yamamoto T, Iyoda T, Fujisawa T, Casada M, Nagai R, Kudo C, Otsuka K, Kamiya S, Kodama H, Fukai F. Aggressive Progression in Glioblastoma Cells through Potentiated Activation of Integrin α5β1 by the Tenascin-C-Derived Peptide TNIIIA2. *Mol Cancer Ther* 2019; 18: 1649-1658 [PMID: 31189613 DOI: 10.1158/1535-7163.MCT-18-1251]

52 Fujita M, Casada M, Iyoda T, Nagai R, Kudo C, Yamamoto T, Osada S, Kodama H, Fukai F. Anotokis resistance conferred by tenascin-C-derived peptide TNIIIA2 and its disruption by integrin inactivation. *Biochem Biophys Res Commun* 2021; 536: 14-19 [PMID: 33360093 DOI: 10.1016/j.bbrc.2020.12.050]

53 Iyoda T, Fujita M, Fukai F. Biologically Active TNIIIA2 Region in Tenascin-C Molecule: A Major Contributor to Elicit Aggressive Malignant Phenotypes From Tumors/Tumor Stroma. *Front Immunol* 2020; 11: 610096 [PMID: 33362799 DOI: 10.3389/fimmu.2020.610096]

54 Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. *CA Cancer J Clin* 2021; 71: 7-33 [PMID: 33433946 DOI: 10.3322/caac.221654]

55 Leisin TR, Corley DA, Jensen CD, Schotteling JE, Quinn VP, Zaubere AG, Lee JK, Zhao WK, Udalsnova N, Ghi NR, Lee AT, Quesenberry CP, Fireman BH, Douben CA. Effects of Organized Colorectal Cancer Screening on Cancer Incidence and Mortality in a Large Community-Based Population. *Gastroenterology* 2018; 155: 1383-1391.e5 [PMID: 30031768 DOI: 10.1053/j.gastro.2018.07.017]

56 Chibaudel B, Tournigand C, Bonnetain F, Richa H, Benetkiewicz M, Andrie T, de Gramont A. Therapeutic strategy in unsectable metastatic colorectal cancer: an updated review. *Ther Adv Med Oncol* 2015; 7: 153-169 [PMID: 26673925 DOI: 10.1177/1758834015572343]

57 Ji K, Zhang M, Chu Q, Gan Y, Ren H, Zhang L, Wang L, Li X, Wang W. The Role of p-STAT3 as a Prognostic and Clinicopathological Marker in Colorectal Cancer: A Systematic Review and Meta-Analysis. *PLoS One* 2016; 11: e0160125 [PMID: 27504822 DOI: 10.1371/journal.pone.0160125]

58 Dyson JK, Rutter MD. Colorectal cancer in inflammatory bowel disease: what is the real magnitude of the risk? *World J Gastroenterol* 2012; 18: 3839-3848 [PMID: 22876036 DOI: 10.3748/wjg.v18.i29.3839]
Pathol Res Pract 2020; 8: 1220-1229 [PMID: 32694081]

Baker AM, Bird D, Lang G, Cox TR, Erler JT. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 2013; 32: 2747-2755 [PMID: 23868308]

Barnes JM, Kaulshik S, Bainer RO, Sa JK, Woods EC, Kai F, Przybila L, Lee M, Lee HW, Tung JC, Maller O, Barrett AS, Lu KV, Lakins JN, Hansen KC, Obernier K, Alvarez-Buylla A, Bergers G, Phillips JJ, Nam DH, Bertozzi CR, Weaver VM. A tension-mediated glyocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma. Nat Cell Biol 2018; 20: 1203-1214 [PMID: 30202050]

Buer J, Casalot X, Fabre C, Marpeau P, Cariou E, Marquet F, Denoix J, Poupart Y, Brasseur C, Chouayak P, Rüegg M, Hari G, Mougin E, Lhomme P, Hoffmann C, Signoretti S, Poncet D, Zucali R, Blanpain C, Ciofani G, Ferrara N, Duffau P. A self-renewal mechanism for human glioblastoma. Nature 2013; 501: 376-380 [PMID: 24007261]

Buchert M, Domenge C, Antoniou A, et al. Overexpression of the matrix metalloproteinase-2 (MMP-2) in colorectal cancer and correlation with invasiveness of the tumor. World J Gastroenterol 2006; 12: 2983-2987 [PMID: 16867178]

Cancer Sci 2015; 106: 324-327 [PMID: 25800101] DOI: 10.1111/cas.12595

Takeda A, Otani Y, Iseki H, Takeuchi H, Aikawa K, Tabuchi S, Shinozuka N, Saeki T, Okazaki Y, Koyama I. Clinical significance of large tenasin-C spliced variant as a potential biomarker for colorectal cancer. Pathol Res Pract 2015; 211: 267-275 [PMID: 25800101] DOI: 10.1016/j.prp.2004.02.012

Beiter K, Hendlmeyer M, Brabietz H, Hlubek F, Hayel J, Knoll C, Kirchner T, Jung A. beta-Catenin regulates the expression of its nuclear accumulation in human colorectal cancers. Cancer Sci 2015; 106: 324-327 [PMID: 25800101] DOI: 10.1111/cas.12595

Taniguchi H, Yamazaki K, Yoshino T, Muro K, Yatabe Y, Watanabe T, Ebi H, Ochiai A, Baba E, Tsuchiura K. Japanese Society of Medical Oncology. Japanese Society of Medical Oncology Clinical Guidelines: RAS (KRAS/NRAS) mutation testing in colorectal cancer patients. Cancer Sci 2015; 106: 324-327 [PMID: 25800101] DOI: 10.1111/cas.12595

Barnes JM, Kaulshik S, Bainer RO, Sa JK, Woods EC, Kai F, Przybila L, Lee M, Lee HW, Tung JC, Maller O, Barrett AS, Lu KV, Lakins JN, Hansen KC, Obernier K, Alvarez-Buylla A, Bergers G, Phillips JJ, Nam DH, Bertozzi CR, Weaver VM. A tension-mediated glyocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma. Nat Cell Biol 2018; 20: 1203-1214 [PMID: 30202050] DOI: 10.1038/s41561-018-0183-3

Baker AM, Bird D, Lang G, Cox TR, Erler JT. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 2013; 32: 1863-1868 [PMID: 22641262] DOI: 10.1038/onc.2012.202

Barnes JM, Kaulshik S, Bainer RO, Sa JK, Woods EC, Kai F, Przybila L, Lee M, Lee HW, Tung JC, Maller O, Barrett AS, Lu KV, Lakins JN, Hansen KC, Obernier K, Alvarez-Buylla A, Bergers G, Phillips JJ, Nam DH, Bertozzi CR, Weaver VM. A tension-mediated glyocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma. Nat Cell Biol 2018; 20: 1203-1214 [PMID: 30202050] DOI: 10.1038/s41561-018-0183-3

Baker AM, Bird D, Lang G, Cox TR, Erler JT. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 2013; 32: 1863-1868 [PMID: 22641262] DOI: 10.1038/onc.2012.202

Barnes JM, Kaulshik S, Bainer RO, Sa JK, Woods EC, Kai F, Przybila L, Lee M, Lee HW, Tung JC, Maller O, Barrett AS, Lu KV, Lakins JN, Hansen KC, Obernier K, Alvarez-Buylla A, Bergers G, Phillips JJ, Nam DH, Bertozzi CR, Weaver VM. A tension-mediated glyocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma. Nat Cell Biol 2018; 20: 1203-1214 [PMID: 30202050] DOI: 10.1038/s41561-018-0183-3

Baker AM, Bird D, Lang G, Cox TR, Erler JT. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 2013; 32: 1863-1868 [PMID: 22641262] DOI: 10.1038/onc.2012.202

Liu QZ, Gao XH, Chang WJ, Gong HF, Fu CG, Zhang W, Cao GW. Expression of ITGB1 predicts prognosis in colorectal cancer: a large prospective study based on tissue microarray. Int J Clin Exp Pathol 2015; 8: 12802-12810 [PMID: 26722470]

Wei B, Tan F, Pei H, Tan F. Matrix Stiffness and Colorectal Cancer. Onco Targets Ther 2020; 13: 2747-2755 [PMID: 32280247] DOI: 10.2147/OTT.S231010

Liu C, Pei H, Tan F. Matrix Stiffness and Colorectal Cancer. Onco Targets Ther 2020; 13: 2747-2755 [PMID: 32280247] DOI: 10.2147/OTT.S231010

Nebuloni M, Albarello L, Andolfo A, Magagnotti C, Genovese L, Locatelli I, Tonon G, Longhi E, Cerri M, Ferrari F, Zamboni M, Buero J, Resche-Rigon M, Andreoletti L, Maisonneuve P, Cottureau A, Orend G, Orner G, Dashwood RH, Heath JK, Ernst M, Janssen KP. A hypermorphic epithelial beta-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis Model Mech 2015; 8: 1361-1373 [PMID: 26398937] DOI: 10.1242/dmm.019844

Siri A, Knauper V, Veirana N, Caocci F, Murphy G, Zardi L. Different susceptibility of small and large human tenasin-C isofoms to degradation by matrix metalloproteinases. J Biol Chem 1995; 270: 8650-8654 [PMID: 7536739] DOI: 10.1074/jbc.270.15.8650

Suzuki H, Ozawa T, Hayashi R, Ito Y, Watanabe Y, Yatabe Y, Watanabe H, Okada Y, Isihashi K, Iyoda T, Tanaka Y, Fukan F. The Promoting Effect of the Extracellular Matrix Peptide TNCIIIA2 Derived from Tenasin-C in Colon Cancer Cell Infiltration. Int J Mol Sci 2017; 18: 379-387 [PMID: 25239346] DOI: 10.3390/ijms18010018

Lang G, Cox TR, Erler JT. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 2013; 32: 1863-1868 [PMID: 22641262] DOI: 10.1038/onc.2012.202

Wei B, Zhou X, Liang C, Zheng X, Lei P, Fang J, Han X, Wang L, Qi C, Wei H. Human colorectal cancer progression correlates with LOX-induced ECM stiffening. Int J Biol Sci 2017; 13: 1450-1457 [PMID: 29209148] DOI: 10.7150/ijbs.21230

Fujita M, et al. TNC-derived peptide TNIIIA2 in colon cancer.
Fujita M et al. TNC-derived peptide TNIIIA2 in colon cancer

79 Lu L, Xie R, Wei R, Cai C, Bi D, Yin D, Liu H, Zheng J, Zhang Y, Song F, Gao Y, Tan L, Wei Q, Qin H. Integrin α5 subunit is required for the tumor supportive role of fibroblasts in colorectal adenocarcinoma and serves as a potential stroma prognostic marker. *Mol Oncol* 2019; 13: 2697-2714 [PMID: 31600854 DOI: 10.1002/1878-0261.12583]

80 Yu M, Chu S, Fei B, Fang X, Liu Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. *Exp Cell Res* 2019; 382: 1114-116 [PMID: 31020709 DOI: 10.1016/j.yexcr.2019.10.06091]

81 Murillo CA, Rychahou PG, Evers BM. Inhibition of alpha5 integrin decreases PI3K activation and cell adhesion of human colon cancers. *Surgery* 2004; 136: 143-149 [PMID: 15300173 DOI: 10.1016/j.surg.2004.04.006]

82 Guha D, Saha T, Bose S, Chakraborty S, Dhar S, Khan P, Adhikary A, Das T, Sa G. Integrin-EGFR interaction regulates anokines resistance in colon cancer cells. *Apoptosis* 2019; 24: 958-971 [PMID: 31641961 DOI: 10.1007/s10495-019-01573-5]

83 Janouskova H, Ray AM, Noulet F, Lelong-Rebel I, Choulier L, Schaffner F, Lehmann M, Martin S, Teisinger J, Dountenwil M. Activation of p53 pathway by Notlin-3a inhibits the expression of the therapeutic target α5 integrin in colon cancer cells. *Cancer Lett* 2013; 336: 307-318 [PMID: 23523610 DOI: 10.1016/j.canlet.2013.03.018]

84 Stoeckling O, Liu W, Reimnuth N, Fan F, Parry GC, Parikh AA, McCarty MF, Bucana CD, Mazar AP, Ellis LM. Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. *Int J Cancer* 2003; 104: 496-503 [PMID: 12584749 DOI: 10.1002/ijc.558]

85 Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yarnaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. *N Engl J Med* 2001; 345: 784-789 [PMID: 11556297 DOI: 10.1056/NEJMoa011999]

86 Saito I, Miyamura T, Ohbayashi A, Harada H, Katayama T, Kikuchi S, Watanabe Y, Koi S, Onji M, Ohta Y. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. *Proc Natl Acad Sci USA* 1990; 87: 6547-6549 [PMID: 2168552 DOI: 10.1073/pnas.87.17.6547]

87 Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and cancer risk. A population-based study. *N Engl J Med* 1990; 323: 1228-1233 [PMID: 2215606 DOI: 10.1056/NEJM199010132321802]

88 Jess T, Loftus EV Jr, Velayos FS, Harmsen WS, Zinsmeister AR, Smyrk TC, Schleck CD, Tremaine WJ, Melton LJ 3rd, Muknholm P, Sandborn WJ. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from Olmsted county, Minnesota. *Gastroenterology* 2006; 130: 1039-1046 [PMID: 16618397 DOI: 10.1053/j.gastro.2005.12.037]

89 Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. *Gut* 2001; 48: 526-535 [PMID: 11247898 DOI: 10.1136/gut.48.4.526]

90 Feagins LA, Souza RF, Spechsjer SJ. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. *Nat Rev Gastroenterol Hepatol* 2009; 6: 297-305 [PMID: 19404270 DOI: 10.1038/nrgastro.2009.44]

91 Bewtra M, Kaiser LM, TenHave T, Lewis JD. Crohn's disease and ulcerative colitis are associated with elevated standardized mortality ratios: a meta-analysis. *Inflamm Bowel Dis* 2013; 19: 599-613 [PMID: 23388544 DOI: 10.1097/MIB.0b013e31827279ac]

92 Olien O, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, Ekbom A, Sørensen HT, Ludvigsson JF. Colorectal cancer in Crohn's disease: a Scandinavian population-based cohort study. *Lancet Gastroenterol Hepatol* 2020; 5: 475-484 [PMID: 32066530 DOI: 10.1016/S2468-1253(20)30005-4]

93 Olien O, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, Ekbom A, Sørensen HT, Ludvigsson JF. Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study. *Lancet* 2020; 395: 123-131 [PMID: 31292014 DOI: 10.1016/S0140-6736(19)32545-0]

94 Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. *Gastroenterology* 2011; 140: 1807-1816 [PMID: 21530747 DOI: 10.1053/j.gastro.2011.01.057]

95 Zisman TL, Rubin DT. Colorectal cancer and dysplasia in inflammatory bowel disease. *World J Gastroenterol* 2008; 14: 2662-2669 [PMID: 18461651 DOI: 10.3748/wjg.v14.i26.2662]

96 Riedl S, Tandara A, Reinhagen M, Hind U, Faissern A, Bodenmüller H, Buhr HJ, Herfarth C, Möller P. Serum tenasin-c is an indicator of inflammatory bowel disease activity. *Int J Colorectal Dis* 2001; 16: 285-291 [PMID: 11686525 DOI: 10.1007/s000580100312]

97 Spenu C, Lefevre O, Lacroute J, Méchine-Neuville A, Barreau F, Blottièvre HM, Dulcos B, Arnold C, Hassanet T, Hemmerlé J, Gullberg D, Kedzinger M, Sørokin L, Orend G, Simon-Assmann P. The laminin response in inflammatory bowel disease: protection or malignancy? *PLoS One* 2014; 9: e111336 [PMID: 25347196 DOI: 10.1371/journal.pone.0111336]

98 Geboes K, El-Zine MY, Dalle I, El-Haddad S, Rutgeerts P, Van Eyken P. Tenascin and strictures in inflammatory bowel disease: an immunohistochemical study. *Int J Surg Pathol* 2001; 9: 281-286 [PMID: 12574843 DOI: 10.1176/10689696100900404]

99 Riedl S, Kadmon M, Tandara A, Hind U, Möller P, Herfarth C, Faissern A. Mucosal tenasin c content in inflammatory and neoplastic diseases of the large bowel. *Dis Colon Rectum* 1998; 41: 86-92 [PMID: 9501316 DOI: 10.1007/BF02236901]

100 Brant SR, Okou DT, Simpson CL, Cutler DJ, Haritunians T, Bradfield JP, Chopra P, Prince J, Begum F, Kumar A, Huang C, Venkateswaran S, Datta LW, Wei Z, Thomas K, Herrinton LJ, Klapperth J, Quirion AJ, Seminero J, Liu Z, Alexander JS, Baldassano RN, Dudley-Brown S,
Cross RK, Dassopoulos T, Denson LA, Dhere TA, Dryden GW, Hanson JS, Hou JK, Hussain SZ, Hyams JS, Isaacs KL, Kader H, Kappelman MD, Katz J, Kellermayer R, Kirschner BS, Kuenneerle JF, Kwon JH, Lazarev M, Li E, Mack D, Mannon P, Moulton DE, Newberry RD, Osumtukon BO, Patel AS, Saeed SA, Targar SR, Valentine JF, Wang MH, Zonca M, Rioux JD, Duerr RH, Silverberg MS, Cho JH, Hakonarson H, Zwick ME, McGovern DP, Kugathasan S. Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease. Gastroenterology 2017; 152: 206-217.e2 [PMID: 27693347 DOI: 10.1053.j.gastro.2016.09.032]

101 Ning L, Li S, Gao J, Ding L, Wang C, Chen W, Shan G, Zhang F, Yu J, Xu G. Tenascin-C Is Increased in Inflammatory Bowel Disease and Is Associated with Response to Infliximab Therapy. Biomed Res Int 2019; 2019: 1475705 [PMID: 31886172 DOI: 10.1155/2019/1475705]

102 Kawamura T, Yamamoto M, Suzuki K, Suzuki Y, Kamishima M, Sakata M, Kurachi K, Setoh M, Konno H, Takeuchi H. Tenascin-C Produced by Intestinal Myofibroblasts Promotes Colitis-associated Cancer Development Through Angiogenesis. Inflamm Bowel Dis 2019; 25: 732-741 [PMID: 30517646 DOI: 10.1093/ibd/zyz368]

103 Kofla-Dlubacz A, Matusiwickz M, Krzystek-Korpacka M, Iwaniczak B. Correlation of MMP-3 and MMP-9 with Crohn's disease activity in children. Dig Dis Sci 2012; 57: 706-712 [PMID: 21997756 DOI: 10.1007/s10620-011-1936-2]

104 Fujita M, Ito-Fujita Y, Iyoda T, Sasada M, Okada Y, Ishibashi K, Osawa T, Kodama H, Fukai F, Suzuki H. Peptide TNNIA2 Derived from Tenascin-C Contributes to Malignant Progression in Colitis-Associated Colorectal Cancer via β1-Integrin Activation in Fibroblasts. Int J Mol Sci 2019; 20 [PMID: 31195598 DOI: 10.3390/ijms20112752]

105 Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide. Molecules 2020; 25 [PMID: 32708610 DOI: 10.3390/molecules25143339]

106 Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell 2010; 17: 135-147 [PMID: 20138012 DOI: 10.1016/j.ccc.2009.12.041]

107 Mukaida N, Sasaki S. Fibroblasts, an inconspicuous but essential player in colon cancer development and progression. World J Gastroenterol 2016; 22: 5301-5316 [PMID: 27340347 DOI: 10.3748/wjg.v22.i33.5301]

108 Sahai E, Asatsurov I, Cukierman E, DeNardo DG, Egoblad M, Evans RM, Fearon D, Greten FR, Higorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Prue E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tisty TD, Tuveson DA, Watt FM, Weaver V, Wearratana AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20: 174-186 [PMID: 31980749 DOI: 10.1038/s41568-019-0238-1]

109 Sasaki S, Baba T, Shinagawa K, Matushima K, Mukaida N. Crucial involvement of the CCL3L1-CCR5 axis-mediated fibroblast accumulation in colitis-associated carcinogenesis in mice. Int J Cancer 2014; 135: 1297-1306 [PMID: 24510316 DOI: 10.1002/ijc.28779]

110 Neufert C, Becker C, Türeci Ö, Waldner MJ, Backert I, Floh K, Atreya I, Leppkes M, Jefremow A, Sans M, Spencer DM, Beck I, Doñate F, Plunkett ML, de la Motte C, Redline R, Shaw H. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell 2010; 17: 135-147 [PMID: 20138012 DOI: 10.1016/j.ccc.2009.12.041]

111 Mukaida N, Sasaki S. Fibroblasts, an inconspicuous but essential player in colon cancer development and progression. World J Gastroenterol 2016; 22: 5301-5316 [PMID: 27340347 DOI: 10.3748/wjg.v22.i33.5301]

112 Neufert C, Becker C, Türeci Ö, Waldner MJ, Backert I, Floh K, Atreya I, Leppkes M, Jefremow A, Sans M, Spencer DM, Beck I, Doñate F, Plunkett ML, de la Motte C, Redline R, Shaw H. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell 2010; 17: 135-147 [PMID: 20138012 DOI: 10.1016/j.ccc.2009.12.041]

113 Neufert C, Becker C, Türeci Ö, Waldner MJ, Backert I, Floh K, Atreya I, Leppkes M, Jefremow A, Sans M, Spencer DM, Beck I, Doñate F, Plunkett ML, de la Motte C, Redline R, Shaw H. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell 2010; 17: 135-147 [PMID: 20138012 DOI: 10.1016/j.ccc.2009.12.041]

114 Rieder F, Fiocchi C, Rogler G. Mechanisms, Management, and Treatment of Fibrosis in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152: 340-350.e6 [PMID: 27720839 DOI: 10.1053/j.gastro.2016.09.047]

115 Miroshnikova YA, Mowk JG, Barnes JM, Pickow MW, Lakins JN, Kim Y, Lobo K, Persson AL, Reis GF, McKnight TR, Holland EC, Phillips JJ, Weaver VM. Tissue mechanics promote IDH1-dependent HIF1α-tenascin-C feedback to regulate glioblastoma aggression. Nat Cell Biol 2016; 18: 1336-1345 [PMID: 27820595 DOI: 10.1038/nch2016.135289]

116 Johnson LA, Rodansky ES, Sauder KL, Horowitz JC, Mih JD, Tschumperlin DJ, Higgins PD. Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflamm Bowel Dis 2013; 19: 891-903 [PMID: 23502354 DOI: 10.1097/MIB.0b013e3182813297]

117 Erdem E, Kochan K, Paker N, Golden Y, Degirmenci AS, Kocaç F, Gonen C. The correlation between tenasin-C expression, and formation of intestinal stricture. North Clin Istanbul 2014; 1: 127-131 [PMID: 28058317 DOI: 10.14744/nci.2014.13008]

118 Danese S, Sans M, Spencer DM, Beck I, Dohate F, Plunkett ML, de la Motte C, Redline R, Shaw
DE, Levine AD, Mazar AP, Fiocchi C. Angiogenesis blockade as a new therapeutic approach to experimental colitis. *Gut* 2007; 56: 855-862 [PMID: 17170016 DOI: 10.1136/gut.2006.114314]

119 Chidlow JH Jr, Langston W, Greer JJ, Ostanin D, Abdelbaqi M, Houghton J, Senthilkumar A, Shukla D, Mazar AP, Grisham MB, Kevil CG. Differential angiogenic regulation of experimental colitis. *Am J Pathol* 2006; 169: 2014-2030 [PMID: 17148665 DOI: 10.2353/apath.2006.051021]

120 Terasaki M, Ikuta M, Kojima H, Tanaka T, Maeda H, Miyashita K, Mutoh M. Dietary Fucoxanthin Induces Anoikis in Colorectal Adenocarcinoma by Suppressing Integrin Signaling in a Marine Colorectal Cancer Model. *J Clin Med* 2019; 9 [PMID: 31905803 DOI: 10.3390/jcm9010090]

121 Cianfrocca ME, Kimmel KA, Gallo J, Cardoso T, Brown MM, Hudes G, Lewis N, Weiner L, Lam GN, Brown SC, Shaw DE, Mazar AP, Cohen RB. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumors. *Br J Cancer* 2006; 94: 1621-1626 [PMID: 16705310 DOI: 10.1038/sj.bjc.6603171]

122 Matric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. *Oncotarget* 2017; 8: 86947-86968 [PMID: 29156849 DOI: 10.18632/oncotarget.20372]

123 Alday-Parejo B, Stupp R, Rüegg C. Are Integrins Still Practicable Targets for Anti-Cancer Therapy? *Cancers (Basel)* 2019; 11 [PMID: 31336983 DOI: 10.3390/cancers11070978]

124 Nwagwu CD, Immidi setti AV, Bukanowska G, Vogelbaum MA, Carbonell AM. Convection-Enhanced Delivery of a First-in-Class Anti-β1 Integrin Antibody for the Treatment of High-Grade Glioma Utilizing Real-Time Imaging. *Pharmaceutics* 2020; 13 [PMID: 33396712 DOI: 10.3390/pharmaceutics13010040]
