Case Series

Photoacoustic imaging for non-invasive examination of the healthy temporal artery – systematic evaluation of visual function in healthy subjects

Rafi Sheikh,1 Björn Hammar,1 Magdalena Naumovska,1 Ulf Dahlstrand,1 Bodil Gesslein,1 Tobias Erlöv,2 Magnus Cinthio2 and Malin Malmsjö1

1Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skane University Hospital, Lund, Sweden
2Faculty of Engineering LTH, Department of Biomedical Engineering, Lund University, Lund, Sweden

ABSTRACT.

Purpose: Photoacoustic (PA) imaging has the potential to become a non-invasive diagnostic tool for giant cell arteritis, as shown in pilot experiments on seven patients undergoing surgery. Here, we present a detailed evaluation of the safety regarding visual function and patient tolerability in healthy subjects, and define the spectral signature in the healthy temporal artery.

Methods: Photoacoustic scanning of the temporal artery was performed in 12 healthy subjects using 59 wavelengths (from 680 nm to 970 nm). Visual function was tested before and after the examination. The subjects’ experience of the examination was rated on a 0–100 VAS scale. Two- and three-dimensional PA images were generated from the spectra obtained from the artery.

Results: Photoacoustic imaging did not affect the best corrected visual acuity, colour vision (tested with Sahlgren’s Saturation Test or the Ishihara colour vision test) or the visual field. The level of discomfort was low, and only little heat and light sensation were reported. The spectral signature of the artery wall could be clearly differentiated from those of the subcutaneous tissue and skin. Spectral unmixing provided visualization of the chromophore distribution and overall architecture of the artery.

Conclusions: Photoacoustic imaging of the temporal artery is well tolerated and can be performed without any risk to visual function, including the function of the retina and the optic nerve. The spectral signature of the temporal artery is specific, which is promising for future method development.

Key words: giant cell arteritis – human – photoacoustic imaging – temporal arteritis – ultrasound

Introduction

Surgical biopsy and histopathological analysis of the temporal artery are considered the gold standard in the diagnosis of giant cell arteritis (GCA). However, although this technique has high specificity, it has low sensitivity (Luqmani, Lee et al. 2016), and is associated with complications such as injury to the facial and trigeminal nerve, and peri- and postoperative haemorrhage (Guffey Johnson, Grossniklaus et al. 2009; Borchers & Gershwin 2012; Gunawardene & Chant 2014). Attempts have been made to implement non-invasive imaging techniques, in particular ultrasonography, for the diagnosis of GCA. However, ultrasound is highly operator-dependent (Hauenstein, Reinhard et al. 2012), and the sensitivity and specificity in the diagnosis of GCA have proved inadequate (Arida, Kyprianou et al. 2010; Borchers & Gershwin 2012; Buttgereit, Dejaco et al. 2016; Luqmani, Lee et al. 2016).

Photoacoustic (PA) imaging is currently one of the most rapidly developing biomedical imaging techniques, providing non-invasive, high-resolution images (Valluru & Willmann 2016). It is unique in that it uses pulsed laser light and optical absorption detected by ultrasound to provide high-resolution images with high spatial resolution. PA imaging provides an
absorption spectrum of the tissue that depends on the molecular composition, and thus has a greater ability to discriminate between small differences in tissue composition than previously tested techniques. Another advantage of PA technology is that it is user-independent, since the spectral signature obtained is an objective measure. Encouraging results have been obtained in animal studies, showing detailed images of small blood vessels with high resolution (Jeon, Song et al. 2017). However, no clinical studies have been performed to evaluate the suitability of PA imaging for diagnosing GCA. We have recently adapted the PA technique for use in humans and resolved problems associated with motion artefacts and disturbances from other endogenous chromophores, in a previous study including seven patients undergoing surgery for suspected GCA (Sheikh et al., 2019). However, detailed investigation of safety regarding visual function or patient tolerability was not performed in that pilot study.

The main aim of the present study was to examine the temporal artery in 12 healthy subjects with PA imaging, and to evaluate the effects on visual function in detail, in terms of the visual acuity, colour vision and visual field, in order to confirm the safety of the method. Best corrected visual acuity was measured with the Snellen letter chart (Ortho-KM, Lund, Sweden). Colour vision was measured using the VisualSonics Vevo LAB 3.1.0 software and MATLAB R2017b (MathWorks Inc., Natick, MA, USA). Further details of the method can be found in Sheikh et al. (Sheikh et al., 2019).

Visual function was tested before and after PA imaging to evaluate the safety of the method. Best corrected visual acuity was measured with the Snellen letter chart (Ortho-KM, Lund, Sweden). Colour vision was measured with both Sahlgren's Saturation Test (SST, VISUMETRICS AB, Göteborg, Sweden) and the Ishihara colour vision test (Luxvision, US Ophthalmic, Doral, USA), since combining these tests allows discrimination between congenital and acquired defects (Frisen & Kalm 1981). Neither visual acuity nor colour vision was affected by PA examination. The visual field was measured with a Humphrey visual field analyzer, using the 24-2 test protocol (Carl Zeiss Meditec AG, Jena, Germany). A slight improvement was seen in the results after PA imaging, which could be due to a learning effect. Detailed results are given in Table 1.

We anticipated that the risk of PA imaging affecting visual function would be minimal since the PA probe is

Table 1. Visual function before and after PA imaging, expressed as median values (range)

	Right eye		Left eye			
	Before PA	After PA	p-value	Before PA	After PA	p-value
Visual acuity, logMAR (units)	0.0 (0.0 to 0.39)	0.0 (0.0 to 0.40)	>0.99	0.0 (0.0 to 0.10)	0.0 (0.0 to 0.10)	0.77
Colour vision, Ishihara (number of correct plates)	25 (1 to 25)	24 (2 to 25)	0.33	25 (2 to 25)	25 (1 to 25)	0.91
Colour vision, SST (points)	5 (0 to 20)	5 (0 to 15)	0.70	5 (0 to 20)	5 (0 to 10)	0.28
Visual field (mean deviation in decibels)	−1.95 (−4.10 to 1.00)	−1.38 (−2.06 to 0.84)	0.30	−0.71 (−2.92 to 0.16)	−0.56 (−2.17 to 0.49)	0.21
applied to the temple area, and the subjects' eyes were covered with eye shields that absorb all wavelengths. Diffusely scattered light can reach the eye from the temple region, although the energy levels are too low to cause any damage to the retina or the optic nerve. Flickering light was visually perceived by eight of the twelve

Fig. 1. The graphs above show the PA spectra obtained from the temporal artery, the subcutaneous tissue and the overlying skin. The results are presented as median values ± two standard deviations. Statistical analysis was performed using two-way analysis of variance (ANOVA) for repeated measures. Significance was defined as: p < 0.05 (*). A clear difference can be seen between the spectral signatures of the artery and the surrounding tissues. The images below show representative examples of an ultrasound image (left) and a photoacoustic image (right), obtained at 930 nm, of a cross-section of the temporal artery, in which the regions of interest for spectral analysis: artery wall (green), subcutaneous tissue (magenta), and skin (blue) and indicated. The size bar is 1 mm.
subjects. However, it was of very short duration and was not perceived as worrisome by the subjects. We therefore concluded that PA imaging was safe with regard to visual function.

The subjects’ experience of the PA examination was assessed using a visual analog scale (VAS) ranging from 0 to 100. The results show that the level of discomfort was low (median 8, range 1 to 17). Only little heat was felt from the probe (5, range 1 to 37), and only little light sensation was reported (22, range 5 to 80) on the VAS 0–100 scale. None of the examined subjects reported any negative experiences of the PA examination.

Photoacoustic imaging showed that the artery could be clearly delineated in the 3D scans. The multiwavelength 3D images were analysed using the spectral unmixing function in the Vevo LAB 3.1.0 software, providing clear visualization of the overall artery architecture and its extension. The spectral signature of the artery wall was clearly differentiated from those of the subcutaneous tissue (p < 0.05 in the wavelength range 830–895 nm) and skin (p < 0.05 in the wavelength range 795–940 nm) (Fig. 1). This is one of the first studies on human vasculature using PA imaging. A few studies have previously been reported on PA imaging of blood vessels in humans, for example, vessels of the skin (Zafar, Breathnach et al. 2015; Xu, Yang et al. 2016), coronary arteries (Daeichin, Wu et al. 2016), the radial artery (Bok, Hysi et al. 2017; Karlas, Reber et al. 2017), the tibialis posterior and dorsalis pedis arteries (Taruttis et al., 2016), the carotid artery (Kruizinga et al., 2014), the digital arteries (Hai, Zhou et al. 2015) and the palmar digital arteries (Matsumoto, Asao et al. 2018).

Limitations of the present study were that all the participants in this study had similar skin types (Fitzpatrick type I and II), and it was not possible to determine the effect of spectral colouring due to superficial tissue chromophores such as melanin. Melanin is an endogenous chromophore that may affect light propagation through the skin. Other factors that may affect the spectrum are the arterial depth, that is, the amount of tissue the light must propagate through, and the amount of haemoglobin and its oxygenation status.

There is some noise in the data, as can be seen from the irregularity of the plots in Fig. 1. The standard deviation in the results was high, particularly when the arteries were imaged with laser wavelengths shorter than 800 nm. This could be due to small variations in the energy between the laser pulses, motion artefacts, or the scattering of light by blood and other chromophores. Post-processing of the measured data, using spectral unmixing together with Monte Carlo simulations, may be necessary/useful to compensate for the variations in chromophores and measurement depth between patients. The problem of motion artefacts could be solved by the application of software to correct for motion artefacts in the image, or the use of electrocardiography to trigger image capture to compensate for arterial pulsation.

In conclusion, the present study shows that PA imaging of the temporal artery is well tolerated and safe with regard to visual function. The artery wall was clearly delineated, and unique spectral signatures were obtained for the artery, compared to the surrounding tissues. Further studies will be required to determine whether PA imaging can be used to identify anomalies in the temporal artery for the diagnosis of GCA. The next step in the development of PA imagining into a clinical diagnostic tool will require a larger clinical trial in which patients with suspected GCA are examined before undergoing surgical biopsy.

References

Arida A, Kyprianou M, Kanakis M & Sfikakis PP (2010): The diagnostic value of ultrasound-derived edema of the temporal artery wall in giant cell arteritis: a second meta-analysis. BMC Musculoskelet Disord 11: 44.

Ashwandner M, Daikeler T, Kesten F et al. (2013): Temporal artery compression sign—a novel ultrasound finding for the diagnosis of giant cell arteritis. Ultraschall Med 34: 47–50.

Bok T-H, Hysi E & Kolios MC (2017): Preliminary photoacoustic imaging of the human radial artery for simultaneous assessment of red blood cell aggregation and oxygen saturation in vivo. Proc. 2017 IEEE International Ultrasonics Symposium. Borchers AT & Gershwin ME (2012): Giant cell arteritis: a review of classification, pathophysiology, epidemiology and treatment. Autoimmun Rev 11: A544–554.

Buttgereit F, Dejaco C, Matteson EL & Dasgupta B (2016): Polymyalgia rheumatica and giant cell arteritis: a systematic review. JAMA 315: 2442–2458.

Daeichin V, Wu M, De Jong N, van der Steen AF & van Soest G (2016): Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque. Ultrasound Med Biol 42: 2017–2025.

Frisen L & Kalm H (1981): Sahlgren’s saturation test for detecting and grading acquired dyschromatopsia. Am J Ophthalmol 92: 252–258.

Gaffney Johnson J, Groseniklaus HE, Margo CE & Foulis P (2009): Frequency of unintended vein and peripheral nerve biopsy with temporal artery biopsy. Arch Ophthalmol 127: 703.

Hauensiepen AM & Chant H (2014): “Facial nerve injury during temporal artery biopsy. Ann R Coll Surg Engl 96: 257–260.

Hai P, Zhou Y, Liang J, Li C & Wang LV (2015): Photoacoustic tomography of vascular compliance in humans. J Biomed Opt 20: 126008.

Hauenstein C, Reinhard M, Geiger J, Markl M, Hetzel A, Treszl A, Vaith P & Bley TA (2012): Effects of early corticosteroid treatment on magnetic resonance imaging and ultrasonography findings in giant cell arteritis. Rheumatology (Oxford) 51: 1999–2003.

Jeon S, Song HB, Kim J, Lee BJ, Managuli R, Kim JH, Kim JH & Kim C (2017): In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach. Sci Rep 7: 4318.

Karlas A, Reber J, Diet G et al. (2017): Flow-mediated dilatation test using photoacoustic imaging: a proof-of-concept. Biomed Opt Express 8: 3395–3403.

Kruizinga P, van der Steen AF, de Jong N, Springel G, Robertus JL, van der Lugt A & van Soest G (2014): Photoacoustic imaging of carotid artery atherosclerosis. J Biomed Opt 19: 110504.

Luqmani R, Lee E, Singh S et al. (2016): The role of ultrasound compared to biopsy of temporal arteries in the diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. Health Technol Assess 20: 1–238.

Matsumoto Y, Asao Y, Yoshikawa A et al. (2018): Label-free photoacoustic imaging of human palmar vessels: a structural morphological analysis. Sci Rep 8: 786.

Sheikh R, Cinthio M, Dahlstrand U et al. (2019): Clinical translation of a novel photoacoustic imaging system for examining the temporal artery. IEEE Trans Ultrason Ferroelcct Freq Control 66: 472–480.

Taruttis A, Timmermans AC, Wouters PC, Kacprowsicz M, van Dam GM & Ntziachristos V (2016): Photoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281: 256–263.
Valluru KS & Willmann JK (2016): “Clinical photoacoustic imaging of cancer. Ultrasoundography 35: 267–280.
Xu D, Yang S, Wang Y, Gu Y & Xing D (2016): Noninvasive and high-resolving photoacoustic dermoscopy of human skin. Biomed Opt Express 7: 2095–2102.
Zafar H, Breathnach A, Subhash HM & Leahy MJ (2015): Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes. J Biomed Opt 20: 051021.

Received on February 7th, 2020.
Accepted on July 2nd, 2020.

Correspondence:
Malin Malmsjö, Professor and Senior Consultant
Clinical Sciences
Lund University and Skåne University Hospital
Ögonklinik A
Kioskgatan 1
SE-221 85 Lund
Sweden
Tel: +46 722 335060
Fax: +46 462 115074
Email: malin.malmsjo@med.lu.se

Acknowledgements: This study was supported by Inga-Britt and Arne Lundberg's Research Foundation, the Swedish Government Grant for Clinical Research (ALF), the EU Horizon 2020 Programme for Research and Innovation, Skåne University Hospital (SUS) Research Grants, Skåne County Research Grants, Crown Princess Margaret's Foundation (KMA), the Foundation for the Visually Impaired in the County of Malmöhus, The Nordmark Foundation for Eye Diseases at Skåne University Hospital, the Lund Laser Centre at Lund University, Lund University grant for Research Infrastructure, and the Swedish Eye Foundation. We thank Bo Baldetorp, Head of Department of Clinical Sciences Lund, for valuable advice and Helen Sheppard linguistic help.

The corresponding author is a member of the Nordic Ophthalmological Societies only.