ReLU Fields: The Little Non-linearity That Could

ANIMESH KARNEWAR, University College London, UK
TOBIAS RITSCHEL, University College London, UK
OLIVER WANG, Adobe Research, USA
NILOY J. MITRA, Adobe Research, USA and University College London, UK

Fig. 1. We present a method to represent complex signals such as images or 3D scenes, both volumetric (left) and surface (right), on regularly sampled grid vertices. Our method is able to match the expressiveness of coordinate-based MLPs while retaining reconstruction and rendering speed of voxel grids, without requiring any neural networks or sparse data structures. As a result it converges significantly faster (inset plot).

In many recent works, multi-layer perceptions (MLPs) have been shown to be suitable for modeling complex spatially-varying functions including images and 3D scenes. Although the MLPs are able to represent complex scenes with unprecedented quality and memory footprint, this expressive power of the MLPs, however, comes at the cost of long training and inference times. On the other hand, bilinear/trilinear interpolation on regular grid-based representations can give fast training and inference times, but cannot match the quality of MLPs without requiring significant additional memory. Hence, in this work, we investigate what is the smallest change to grid-based representations that allows for retaining the high fidelity result of MLPs while enabling fast reconstruction and rendering times. We introduce a surprisingly simple change that achieves this task — simply allowing a fixed non-linearity (ReLU) on interpolated grid values. When combined with coarse-to-fine optimization, we show that such an approach becomes competitive with the state-of-the-art. We report results on radiance fields, and occupancy fields, and compare against multiple existing alternatives. Code and data for the paper are available at https://geometry.cs.ucl.ac.uk/projects/2022/relu_fields.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. © 2022 Association for Computing Machinery. 0730-0301/2022/7-ART13 $15.00 https://doi.org/10.1145/3528233.3530707
In this paper, we revisit regular grid-based models and look for the minimum change needed to make such grids perform on par with “neural” representations. As the key takeaway message, we find that simply using a Rectified Linear Unit (ReLU) non-linearity on top of interpolated grid values, without any additional learned parameters, optimized in a progressive manner already does a surprisingly good job, with minimal added complexity. For example, in Figure 1 we show results in the context of representing volumes (left) and surfaces (right) and on regularly sampled grid vertices for reconstruction, respectively. As additional benefits, these grid-based 3D-models are amenable to generative modeling, and to local manipulation.

In summary, we present the following contributions: (i) we propose a minimal extension to grid-based signal representations, which we refer to as ReLU Fields; (ii) we show that this representation is simple, does not require any neural networks, is directly differentiable (and hence easy to optimize), and is fast to optimize and evaluate (i.e. render); and (iii) we empirically validate our claims by showing applications where ReLU Fields plug in naturally: first, image-based 3D scene reconstruction; and second, implicit modeling of 3D geometries.

2 Related Work

Discrete sample based representations. Computer vision and graphics have long experimented with different representations for working with visual data. While working with, images are ubiquitously represented as 2D grids of pixels, while due to the memory requirements: 3D models are often represented (and stored) in a sparse format, e.g., as meshes, or as point clouds. In the context of images, since as early as the sixties [Billingsley 1966], different ideas have been proposed to make pixels more expressive. One popular option is to store a fixed number (e.g., one) of zero-crossing for explicit edge boundary information [Bala et al. 2003; Laine and Karras 2010; Ramanarayanan et al. 2004; Tumblin and Choudhury 2004], by using curves [Parilov and Zorin 2008], or augmenting pixels/voxels with more than one color [Agus et al. 2010; Pavić and Kobbelt 2010]. Another idea is to deform the underlying pixel grid by explicitly storing discontinuity information along general curves [Tarini and Cignoni 2005]. Loviscach [2005] optimized MLP maps, such that the thresholded values match a reference. Similar ideas were also being explored for textures and shadow maps [Sen 2004; Sen et al. 2003], addressing specific challenges in sampling. ReLU Field grid implicitly stores discontinuity information by varying grid values such that when interpolated and passed through a ReLU it represents a zero crossing per grid cell.

In the 2D domain, the regular pixel grid format of images has proven to be amenable to machine learning algorithms because CNNs are able to naturally input and output regularly sampled 2D signals as pixel grids. As a result, these architectures can be easily extended to 3D to operate on voxel grids, and therefore can be trained for many learning-based tasks, e.g., using differentiable volume rendering as supervision [Henzler et al. 2019; Nguyen-Phuoc et al. 2019; Sitzmann et al. 2019; Tulsiani et al. 2017]. However, such methods are inefficient with respect to memory and are hence typically restricted to low spatial resolution.

Learned neural representations. Recently, coordinate-based MLPs representing continuous signals have been shown to be able to dramatically increase the representation quality of 3D objects [Groueix et al. 2018] or reconstruction quality of 3D scenes [Mescheder et al. 2019; Mildenhall et al. 2020]. However, such methods incur a high computational cost, as the MLP has to be evaluated, often multiple times, for each output signal location (e.g., pixel) when performing differentiable volume rendering [Chan et al. 2021b; Mildenhall et al. 2020; Niemeyer and Geiger 2021; Schwarz et al. 2020]. In addition, this representation is not well suited for post-training manipulations as the weights of the MLP have a global effect on the structure of the scene. To fix the slow execution, sometimes grid-like representations are fit post-hoc to a trained Neural Radiance Fields (NeRF) model [Garbin et al. 2021; Hedman et al. 2021; Reiser et al. 2021; Yu et al. 2021b], however such methods are unable to reconstruct scenes from scratch.

As a result, there has been an interest in hybrid methods that store learned features in spatial data structures, and accompany this with
an MLP, often much smaller, for decoding the interpolated neural
feature signal at continuous locations. Examples of such methods
store learned features on regular grids [Nguyen-Phuoc et al. 2020;
Sitzmann et al. 2019], sparse voxels [Liu et al. 2020; Martel et al.
2021], point clouds [Aliev et al. 2020], local crops of 3D grids [Jiang et al. 2020], or on intersecting axis-aligned planes (triplane) [Chan et al. 2021a].

Concurrent work Investigating representations suitable for effi-
ciently representing complex signals is an active area of research.
In this section, we discuss three concurrent works: DVGo [Sun et al.
2021], Plenoxels [Yu et al. 2021a] and NGP [Müller et al. 2022].

Reporting a finding similar to ours, DVGo proposes the use of a
“post-activated” (i.e., after interpolation) density grid for modelling
high-frequency geometries. They model the view-dependent ap-
pearance through a learned feature grid which is decoded using an
MLP. They in-fact show comprehensive experimental evaluation,
on multiple datasets comparing to multiple baselines, for the task
of image-based 3D scene reconstruction.

Plenoxels proposes the use of sparse grid structure for modeling
the scene with ReLU activation and, similar to our experiments, also
uses spherical harmonic coefficients [Yu et al. 2021b] for modeling
view-dependent appearance.

NGP [Müller et al. 2022] proposes a hierarchical voxel-hashing
scheme to store learned features and using a small MLP decoder for
converting them into geometry and appearance. Their reconstruction
times are about significantly lower than the others because of their
impressively engineered GPU (low-level cuda) implementation.

We believe that our work differs from these concurrent efforts in
that, our motivation is to investigate the minimal change to existing
voxel grids that can boost the per-capita signal modelling capacity
of the grids when the signals contain sharp c1-discontinuities. And
hence as such, we are not focused only on 3D scene reconstruc-
tion, and similar to NGP, also consider other applications where
grids are the de-facto representation, where ReLU Fields might help.
Our method is orthogonal to, and fully compatible with, the sparse
data structures proposed in Plenoxels and NGP, and we expect
the improvements gained by such approaches to be directly applic-
able to our work. The power and complexity of other methods,
however, comes at the cost of not being able to load the resulting
assets into legacy 3D modelling or volume visualization software
(backward-compatibility), which is possible for our results, as long
as the software can load signed data and apply transfer functions.

3 Method
It’s Just a Little ReLU

We look for a representation of \(n \)-valued signals on an \(m \)-dimensional
coordinate domain \(\mathbb{R}^m \). For simplicity, we explain the method for
\(m = 3 \). Our representation is strikingly simple. We consider a reg-
ular \((m = 3)\)-dimensional \((r \times r \times r)\)-grid \(G \) composed of \(r \) voxels
along each side. Each voxel has a certain size defined by its diagonal
norm in the \((m = 3)\)-dimensional space and holds an \(n \)-dimensional
vector at each of its \((2^m)^3 = 8\) vertices. Importantly, even though
they have matching number of dimensions, these values do not
have a direct physical interpretation (e.g., color, density, or occu-
pancy), which always have some explicitly-defined range, e.g., \([0, 1]\)
or \([0, +\infty)\). Rather, we store unbounded values on the grid; and thus
for technical correctness, we call these grids “feature”-grids instead
of signal-grids. The features at grid vertices are then interpolated
using \((m = 3)\)-linear interpolation, and followed by a single non-
linearity: the ReLU, i.e., function \(\text{ReLU}(x) = \max(0, x) \) which maps
negative input values to 0 and all other values to themselves. Note
that this approach does not have any MLP or other neural-network
that interprets the features, instead they are simply clipped before
rendering. Intuitively, during optimization, these feature-values at
the vertices can go up or down such that the ReLU clipping plane
best aligns with the c1-discontinuities within the ground-truth sig-
nal. Figure 3 illustrates this concept.

As a didactic example, we fit an image into a 2D ReLU Field grid
similar to [Sitzmann et al. 2020], where grid values are stored as
floats in the \((-\infty, +\infty)\) range. For any query position, we interpo-
late the grid values before passing through the ReLU function (see
Algorithm 1). Since the image-signal values are expected to be in
the \([0, 1]\) range, we apply a hard-upper-clip on the interpolated
values just after applying the ReLU. We can see in Fig. 2 that ReLU
Field allows us to represent sharp edges at a higher fidelity than
bilinear interpolation (without the ReLU) at the same resolution
grid size. One limitation of this representation is that it can only
well represent signals that have sparse c1-discontinuities, such as
this flat-shaded images and as we show later, 3D volumetric density.
However, other types of signals, such as natural images, do not

\begin{algorithm}
\caption{Fetching a 2D ReLU Field.}
\begin{algorithmic}[1]
\Procedure{ReLUField2D}{G, x}
\State \(x_g := \text{FLOOR}(x) \)
\State \(x_f := \text{FRAC}(x) \)
\State \(y_{00} := \text{FETCH}(G, x_g + (0,0)) \)
\State \(y_{01} := \text{FETCH}(G, x_g + (0,1)) \)
\State \(y_{10} := \text{FETCH}(G, x_g + (1,0)) \)
\State \(y_{11} := \text{FETCH}(G, x_g + (1,1)) \)
\State \(y := \text{BiLinear}(y_{00}, y_{01}, y_{10}, y_{11}, x_f) \)
\State \textbf{return} \(\text{ReLU}(y) \)
\EndProcedure
\end{algorithmic}
\end{algorithm}
We now demonstrate two different applications of ReLU Fields; NeRF-like 3D scene reconstruction (Sec. 4.1), and 3D object reconstruction via occupancy fields (Sec. 4.2).

4 Applications

We now demonstrate two different applications of ReLU Fields; NeRF-like 3D scene reconstruction (Sec. 4.1), and 3D object reconstruction via occupancy fields (Sec. 4.2).

4.1 Radiance Fields

In this application, we discuss how ReLU Field can be used in place of the coordinate-based MLP in NeRF [Mildenhall et al. 2020]. Input to this approach are a set of images \(I = \{I_1, \ldots, I_n\} \) and corresponding camera poses \(C = \{C_1, \ldots, C_n\} \), where each camera pose consists of \(C = \{R, T, H, W, F\} \); \(R \) is the rotation-matrix (\(R \in \mathbb{R}^{3 \times 3} \)), \(T \) is the translation-vector (\(T \in \mathbb{R}^3 \)), \(H, W \) are the scalars representing the height and width respectively, and \(F \) denotes the focal length. We assume that the respective poses for the images are known either through hardware calibration or by using structure-from-motion [Schonberger and Frahm 2016].

We denote the rendering operation to convert the 3D scene representation \(S \) and the camera pose \(C \) into an image as \(R(S, C) \). Thus, given the input set of images \(I \) and their corresponding camera poses \(C \), the problem is to recover the underlying 3D scene representation \(S \) such that when rendered from any \(C_j \in C \), \(S \) produces rendered image \(I_j \) as close as possible to the input image \(I_i \), and produces spatio-temporally consistent \(I_j \) for poses \(C_j \notin C \).

Scene representation We model the underlying 3D scene representation \(S \), which is to be recovered, by a ReLU Field. The vertices of the grid store, first, raw pre-reLU density values in \((−\infty, \infty)\) that model geometry, and, second, the second-degree Spherical Harmonics (SH) coefficients [Wizadwongsa et al. 2021; Yu et al. 2021b] that model view-dependent appearance. The relu is only applied to pre-reLU density, not to appearance.

We directly optimize values at the vertices to minimize the photometric loss between the rendered images \(I \) and the input images \(I \). The optimized grid \(G^* \), corresponding to the recovered 3D scene \(S \), is obtained as:

\[
G^* = \arg \min_G \sum_{i=1}^n \left\| I_i - R(G, C_i) \right\|_2^2. \tag{1}
\]

Implementation details Similar to NeRF, we use the EA (emission-absorption) raymarching model [Henzler et al. 2019; Max 1995; Mildenhall et al. 2020] for realizing the rendering function \(R \). The grid is scaled to a single global AABB (Axis-Aligned-Bounding-Box) that is encompassed by the camera frustums of all the available poses \(C \), and is initialized with uniform random values. We optimize the vertex values using Adam [Kingma and Ba 2014] with a learning rate of 0.03, and all other default values, for all examples shown.

We perform the optimization progressively in a coarse-to-fine manner similar to Karras et al. [2018]. Initially, the feature grid is optimized at a resolution where each dimension is reduced by a factor of \(2^4 \). After a fixed number of iterations at each stage \(N \), the grid resolution is doubled and the features on the feature-grid \(G \) are tri-linearly upsampled to initialize the next stage. This proceeds until the final target resolution is reached.

Evaluation We perform experiments on the eight synthetic Blender scenes used by NeRF [Mildenhall et al. 2020], viz. Chair, Drums, Ficus, Hotdog, Lego, Materials, Mic, and Ship and compare our method to prior works, baselines, and ablations. We also show an extension of ReLU Fields to one of their real world captured scenes, named Flowers.

First, we compare to the mlp-based baseline NeRF [Mildenhall et al. 2020]. For the purpose of these experiments though, we use the public nerf-pytorch version [ner 2021] for comparable training-time comparisons since all our implementations are in PyTorch. For disambiguation, we refer to this PyTorch version as NeRF-PT and the original one as NeRF-TF and report scores for both. Second, we compare to two versions of traditional grids where vertices store scalar density and second-degree SH approximations of the appearance, namely Grid (i.e., \(128^3 \) grid) and GridL (i.e., \(256^3 \) grid). Finally, we compare to our approach at the same two resolutions, RLEF Field and RelUFielddL. The above four methods are optimized with the same progressive growing setting with \(N = 2000 \), and all the same hyperparameters except the grid resolution. We report PSNR and LPIPS [Zhang et al. 2018] computed on a held-out test-set of Image-Pose pairs different from the training-set (\(I, C \)). All training times were recorded on 32GB-V100 GPU while the inference times were computed on RTX 2070 Super. Our method is implemented entirely in PyTorch and does not make use of any custom GPU kernels.

Table 1 summarizes results from these experiments. We can see that traditional physically-based grid baselines Grid and GridL perform the worst, while our method has comparable performance to NeRF-PT and is much faster to reconstruct and render. This retains the utility of grid-based models for real-time applications without compromising on quality. Figure 4 demonstrates qualitative results from these experiments.

Ablations We ablate the components described in 4.1, and also include the results in Table 1 in the last two columns, RFLong is a normal ReLU Field optimized for a much longer time (comparable to NeRF-PT’s training time). We see minor improvement over the default settings, however we can see that the optimization time plays less of a role than the resolution of the grid itself (RelUFielddL outperforms RelUFieldd). RFLong is trained without progressive growing for the same number of total steps. We see that it yields a much lower reconstruction quality, indicating that progressive growing is critical for the grid to converge to a good reconstruction.

Real scene extension Similar to the real-captured-360 scenes from the NeRF, we also show an extension of ReLU Fields to modeling real scenes. In this example, we model the background using a “MultiSphereGrid” representation, as proposed by Attal et al. [2020]. Please note that the background grid is modeled as a regular bilinear grid without any ReLU. For simplicity, we use an Equi-rectangular projection (ERP) instead of Omni-directional stereo (ODS) for mapping the Image-plane to the set of background spherical shells. Fig. 5 shows qualitative results for this extensions after one hour of optimization. Here, we can see that the grid does a good job of representing the complex details in the flower, while the background is modeled reasonably well by the shells.
Fig. 4. Qualitative comparison between NeRF-PT, GridL and ReLUFieldL. Grid-based versions converge much faster, and we can see significant sharpness improvements of ReLUFieldL over GridL, for example in the leaves of the plant. See also supplementary video.
4.2 Occupancy Fields

Another application of coordinate-based MLPs is as a representation of (watertight) 3D geometry. Here, we fit a high resolution ground-truth mesh, as a 3D occupancy field [Mescheder et al. 2019] into a ReLU Field. One might want to do this in order to, for example, take advantage of the volumetric-grid structure to learn priors over geometry, something that is harder to do with meshes or coordinate-based MLPs directly.

Occupancy representation The core ReLU Field representation used for this application only differs from the radiance fields setup (see Sec. 4.1) as follows: First, since we are only interested in geometry, we do not store any SH coefficients on the grid, and simply model volumetric occupancy as a probability from $[0, 1]$. Second, as supervision, we use ground truth point-wise occupancy values in 3D (i.e., 1, if the point lies inside the mesh, and 0 otherwise), rather than rendering an image and applying the loss on the rendered image. Finally, since the ground truth occupancy values are binary, we use a binary cross entropy (BCE) loss. Thus, we obtain the optimized grid G^* as,

$$
G^* := \arg \min_G \sum_{x \in B} \text{BCE}(O(x), \text{ReLUField3D}(\tanh(G), x))
$$

where, O is the ground truth occupancy, x denote sample locations inside an axis-aligned bounding box B. BCE denotes the binary cross entropy loss, and G represents the ReLU Field grid. Note that we use the tanh to limit the grid values in $(-1, 1)$, although other bounding functions, or tensor-normalizations can be used.

We initialize the grid with uniform random values. The supervision signal comes from sampling random points inside and around the tight AABB of the GT high resolution mesh, and generating the occupancy values for those points by doing an inside-outside test on the fly during training. For rendering, we directly show the depth rendering of the obtained occupancy values. We define the grid-extent and the voxel size by obtaining the tight AABB ensuring a tight fit around the GT mesh.

Evaluation Figure 6 shows the qualitative results of the different representations used for this task. We can see that a ReLUField in this case yields higher quality reconstructions than a standard Grid,

![composite background layer](image)

Table 1. Evaluation results on 3D synthetic scenes. Metrics used are PSNR (↑) / LPIPS (↓). The column NeRF-TF* quotes PSNR values from prior work [Mildenhall et al. 2020], and as such we do not have a comparable runtime for this method.

Scene	NeRF-TF*	NeRF-PT	Grid	GridL	ReLUField	ReLUFieldL	RFLong	RFNoPro
PSNR	LPIPS	PSNR	LPIPS	PSNR	LPIPS	PSNR	LPIPS	PSNR
Chair	33.00	0.04	33.75	0.03	25.53	0.12	27.08	0.11
Drums	25.01	0.09	23.82	0.12	19.85	0.20	20.70	0.17
Ficus	30.13	0.04	28.96	0.04	22.10	0.13	23.61	0.11
Hotdog	36.18	0.12	33.52	0.06	28.53	0.12	29.83	0.10
Lego	32.54	0.05	28.36	0.08	23.76	0.17	23.97	0.15
Materials	29.62	0.06	29.23	0.04	21.87	0.18	22.74	0.13
Mic	32.91	0.02	33.08	0.02	25.87	0.08	25.91	0.08
Ship	28.65	0.20	29.22	0.14	23.86	0.25	22.54	0.24

Average | 31.01 | 0.07 | 29.99| 0.07 | 23.92 | 0.16 | 24.54 | 0.14 |

Time (recon) | — | 11h:21m:00s | 00h:03m:41s | 00h:10m:02s | 00h:03m:41s | 00h:10m:36s | 10h:51m:29s | 00h:07m:11s |
Time (render) | — | 16,363.0 ms | 9.0 ms | 99.1 ms | 9.1 ms | 99.5 ms | 9.1 ms | 9.1 ms |

Table 2. Evaluation results on modeling 3D geometries as occupancy fields. Metric used is Volumetric-IoU [Mescheder et al. 2019]. The baseline MLP is our implementation of OccupancyNetworks [Mescheder et al. 2019].

Scene	MLP	Grid	ReLUField
Thai Statue	0.867	0.827	0.901
Lucy	0.920	0.883	0.935
Bimba	0.983	0.978	0.987
Grog	0.961	0.947	0.971
Lion	0.956	0.970	0.979
Ramses	0.973	0.961	0.978
Dragon	0.886	0.761	0.896

Average volumetric-IoU | 0.935 | 0.903 | 0.949 |

Fig. 5. Qualitative results for the real-captured scene extension of ReLU Fields on Flowers. We decompose the scene into a series of spherical-background shells and a foreground ReLU Field layer, which are alpha-composited together to give final novel view renderings. The top-left visualization shows the composite of the background spherical shells un-projected onto a 2D image-plane.
5 Discussion

5.1 Limitations

Our approach has some limitations. First, the resulting representations are large. A ReLU Field of size 128^3 used for radiance fields (i.e., with SH coefficients) takes 260Mb, and the large version at 256^3 takes 2.0 Gb of storage. We believe that combining ReLU Field with a sparse data structure would see significant gains in performance and reduction in the memory footprint. However, in this work we emphasize the simplicity of our approach and show that the single non-linearity alone is responsible for a surprising degree of quality improvement.

ReLU Field also cannot model more than one “crease” (i.e., discontinuity) per grid cell. While learned features allow for more complex signals to be represented, they do so at the expense of high compute costs. The purpose of this work is to refocus attention on what is actually required for high fidelity scene reconstruction. We believe that the task definition and data are responsible for the high quality results we are seeing now, and show that traditional approaches can yield good results with minor modifications, and neural networks may not be required. However, this is just one data-point in the space of possible representations, for a given specific task we expect that the optimal representation may be a combination of learned features, neural networks, and discrete signal representations.

5.2 Conclusion

In summary, we presented ReLU Field, an almost embarrassingly simple approach for representing signals; storing unbounded data on N-dimensional grid, and applying a single ReLU after linear interpolation. This change can be incorporated at virtually no computational cost or complexity on top of existing grid-based methods, and strictly improve their representational capability. Our approach contains only values at grid vertices which can be directly optimized via gradient descent; does not rely on any learned parameters, special initialization, or neural networks; and performs comparably with state-of-the-art approaches in only a fraction of the time.

Acknowledgments

The authors would like to thank the reviewers for their valuable suggestions. The research was partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 956585, gifts from Adobe, and the UCL AI Centre.
