SUMMARY
Introduction/Objective Increasing spondyloarthritis (SpA) prevalence in the last several decades cannot be attributed to disease manifestations alone. The objective of this paper is to review the prevalence of SpA and its subtypes: ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis (ReA), SpA related to inflammatory bowel disease (IBD) and undifferentiated SpA (UnSpA).
Methods MEDLINE literature search was done via PubMed, Google Scholar, and Embase databases, using terms for spondyloarthritis, and prevalence, with an additional hand searching. Results As compared with southern European countries, northern European countries (Scotland, Sweden, France) showed lower SpA prevalence rates (0.21–0.45% vs. 1.06% and 1.35% in Italy and Turkey, respectively). The lowest world SpA prevalence was in African and Southeast Asian countries (0–0.19%), and the highest was in Alaska (2.5%). The widest variability in PsA prevalence was in Europe (northern 0.02–0.19%, southern 0.42%). The lowest world PsA prevalence was in Japan (0.001%), followed by China (0.01–0.10%). The European ReA prevalence ranged from 0.04% in Greece to 0.10% in Serbia and Germany, and the European UnSpA prevalence varied from 0.02% in Serbia to 0.67% in Germany; the highest world UnSpA prevalence was in Lebanon (3.4%). Studies aimed at estimating the SpA prevalence differed in sampling strategy and confirmation criteria, different cutoffs for age groups inclusion, presentation of standardized or row results, etc.
Conclusion Variation in the SpA prevalence cannot be attributed to genetic or geographic distribution only. Differences in methodology of studies add to the diversification, described more in-depth in this review. Keywords: epidemiology; prevalence; spondyloarthritis; ankylosing spondylitis; psoriatic arthritis

INTRODUCTION
Spondyloarthritis (SpA) comprises ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis (ReA), SpA related to inflammatory bowel diseases (IBD), such as Crohn’s disease or ulcerative colitis, and undifferentiated SpA (UnSpA). Common SpA clinical features are spinal, sacroiliac, and peripheral joint inflammation, enthesitis and some extra-articular manifestations (uveitis, skin or mucosal changes, cardiovascular or pulmonary changes).
SpA prevalence estimates range widely both in developed and developing countries, from 0.03% in the APLAR region (New Zealand in Oceania to Jordan in the Middle East) to 2.5% in Russian and Alaskan Eskimos [1, 2, 3] (Figure 1). Particularly, African black people populations have shown virtually non-existent SpA prevalence, as in Sub-Saharan Africa, Zimbabwe, and Nigeria [4, 5].

Differences in the prevalence of SpA and its subtypes, apart from geographic, racial, and cultural influences, could also be due to differences in the methodology used in studies (various sampling and case identification strategy with different classification criteria, diverse age groups included, presentation of row or standardized results, etc.). For example, in the last decades, PsA has been identified by a number of different criteria [6, 7]. This study aimed to review the estimates of prevalence of SpA and its subtypes: AS, PsA, ReA, IBD SpA, and UnSpA, specifically emphasizing differences in methodology and variations in geography.

METHODS
Review involved a search of MEDLINE literature via PubMed, Google Scholar, and Embase databases with the terms spondyloarthritis, spondyloarthropathy, ankylosing spondylitis, psoriatic arthritis, reactive arthritis, inflammatory bowel disease spondyloarthritis, undifferentiated spondyloarthritis, and prevalence, with an additional hand search. A total of 15,325 titles and abstracts were reviewed; the full text of 292 articles was read thoroughly; and data for 67 reports are presented and compared here.
SPONDYLOARTHRITIS PREVALENCE

The Asian SpA prevalence ranged from 0.03% in Manila to 1.05–1.3% in Turkey [1, 8–13]. The SpA standardized prevalence in the whole APLAR region was 0.19% [1]. The SpA prevalence in Europe ranged from 0.21% in Scotland to 1.9% in Germany [14–23]. In Serbia, it was 0.32% [17] (Table 1). The estimated SpA prevalence in the United States was 0.35–1.31% [24, 25]. The Australian urban SpA prevalence was 0.21%, but was 0.50% in Australian Aboriginals [1].

Comparison of the world SpA prevalence was limited by methodology discrepancies: various sample sizes, different age limitations (15, 18, 20 years), and different presentation of the achieved results (row or standardized) (Table 1). However, the prevalence was lower in tropical zone countries [Africa or South Asia and Southeastern Asia (Philippines, Pakistan, Malaysia, Thailand, China)] than in northern countries, with the highest rate in Alaska (Figure 1) [2, 4, 7–10]. However, prevalence was lower in northern Europe (Scotland, Sweden, France) than in southern Europe (Italy and Turkey) (Figure 1), which contrasted with the reported rheumatoid arthritis prevalence [12, 13, 14, 16, 18, 21, 26]. Inequalities in methodologies of SpA studies are described in Table 1.

ANKYLOSING SPONDYLITIS PREVALENCE

A wide range of AS prevalence was reported as well (Table 2, Figure 2). The highest AS prevalence was found in Canadian Indigenous Haida people, 6% [27]. However, no AS cases were found in African countries: Zimbabwe, Nigeria, and Togo [28, 29, 30]. For Southeast Asian and Pacific regions, AS prevalence estimates ranged from 0.01% in Japan to 0.49% in Turkey [12, 31, 32, 33] (Table 2). The European AS prevalence ranged from 0.08% in France and Serbia to 0.86% in Germany [23] [15, 17, 18, 21, 22, 34–40] and was 1.1–1.4% in Norway (Table 2, Figure 2). The AS population prevalence in the United States was estimated at 0.35% and 0.52% (e.g., 0.13% for Caucasians only [24, 25, 41]). The Alaskan Eskimo AS prevalence was 0.4% [3].
Spondyloarthritis and subtypes prevalence

AS prevalence estimates were lower in African and South and Southeast Asian countries than in northern Europe and the United States [25, 27–33, 40] (Figure 2). Differences in the studies are further evaluated in Table 2.

PSORIATIC ARTHRITIS PREVALENCE

The widest variability in SpA prevalence was for PsA and was the highest in Europe: 0.42% in Italy [21] (Figure 3). As one of the SpA-related diseases, PsA was not found in certain African countries either (in accordance with the virtual non-existence of SpA), and the non-existence of PsA was confirmed by the studies from Uganda and Sub-Saharan Africa [29, 42]. PsA prevalence was low in Southeast Asia and Pacific regions as well: 0.001% in Japan and 0.10% in China [43, 44]. Europe had the widest PsA prevalence range, lower in the northern than southern part, ranging from 0.02% in Sweden to 0.42% in Italy [15, 17, 21, 23, 34, 36, 37, 45–50] (Figure 3, Table 3). The PsA prevalence was 0.09% in Serbia. The prevalence ranged from 0.07–0.25% in the United States and was 0.12% in Minnesota and 0.10% in Alaskan Eskimos [3, 41, 51, 52]. The prevalence in South America was 0.07% [53].

Differences in PsA prevalence studies are described in more detail in Table 3.

REACTIVE ARTHRITIS PREVALENCE

Results of the ReA prevalence estimation studies cannot be generalized because of periodic and geographic variations in “disease trigger factors,” such as Salmonella, Shigella, Yersinia, and Campylobacter bacteria species, as well as Chlamydia and Mycoplasma subspecies. In fact, only a few ReA prevalence studies were performed, mostly under the SpA disease prevalence estimation. The ReA prevalence was 0.04% in Greece, 0.09% in Italy and 0.10% in Serbia and Germany [17, 19, 21, 23].

INFLAMMATORY BOWEL DISEASE SPONDYLOARTHRITIS PREVALENCE

The prevalence of IBD SpA (Crohn’s disease or ulcerative colitis) has not been studied much, and was less frequently reported than IBDs themselves. According to the few reported studies, the IBD SpA prevalence ranged from 0.01% in Sweden to 0.03% in Serbia, 0.04% in Greece and 0.09% in Italy [17, 18, 19, 21]. It was 0.05–0.25% in the United States [25].

Prevalence related to IBD type was evaluated by one US study: the prevalence of ulcerative colitis SpA was 0.03% and Crohn’s disease 0.01% [41]. Karrreman et al. [54] found a SpA prevalence of 13% in IBD patients, with the pooled prevalence for AS of 3%, peripheral arthritis 13% and sacroilitis 10%.
UNDIFFERENTIATED SPONDYLOARTHRITIS PREVALENCE

The UnSpA impact and its clinical manifestations are not yet fully understood. In general, UnSpA should be considered in patients presented with inflammatory back pain or peripheral joint arthritis, enthesopathy or alternative buttock pain, not accompanied by some SpA-disease specific features such as spondylitis, psoriasis, Crohn’s disease, ulcerative colitis, or previously proven urogenital or gastrointestinal infection.

The highest UnSpA prevalence was in Lebanon, 3.4% [55]. In Asia, the representative China had 0.24% prevalence [56]. In Europe, the UnSpA prevalence estimate for Serbia was 0.02%, Greece, 0.03%, France, 0.04%, Sweden, 0.10%, and Germany, 0.67% [15, 17, 18, 19, 23]. The UnSpA prevalence in the United States was 0.37% and in Alaskan Eskimos 1.3% [3, 25, 57].

DISCUSSION

Although historically considered sporadic cases of rheumatoid arthritis and reported at the beginning as “rheumatoid spondylitis” or “seronegative variants of RA,” AS and PsA have over time been shown not only as separate diseases, but also diseases of constantly increasing impact and importance. When the SpA concept was promoted for several seronegative diseases characterized by certain common features, thereby enabling different diseases to be classified into a unified diagnosis a few decades ago, they may have been classified as SpA.

SpA prevalence has increased in the past decades. With the universal health system in France, the AS prevalence was estimated at 0.005% in 1994, 0.08% in 2001 (French population study) and 0.43% in 2015 (French population-based study) [15, 16, 58].

The 21st century European studies showed high SpA prevalence as well: Sweden 0.45%, France 0.43%, Greece 0.49%, Lithuania 0.84%, Turkey 1.05%, Italy 1.06%, and Portugal 1.6%. In the last century, SpA prevalence even

Table 2. Ankylosing spondylitis prevalence

Reference	Country	Year	Age	Method	Prevalence [%]
EUROPE					
Saraux [15]	France	2001	18+	Questionnaire	0.08*
Zlatković-Švenda [17]	Serbia	2008	18+	Questionnaire	0.08*
Hanova [34]	Czech Republic	2003	16+	Register	0.09
Haglund [18]	Sweden	2011	15+	Register	0.12
Kaipainen [35]	Finland	1997	30+	Sample	0.15
Trontzas [36]	Greece	2005	19+	Questionnaire	0.24*
Anagnostopoulos [37]	Greece	2010	19+	Questionnaire	0.29
Alamanos [38]	Greece	2002	16+	Register	0.29*
Backlund [39]	Norway	2005	20+	Register Urban	0.26
Gran [40]	Norway	1985			1.1–1.4
De Angelis [21]	Italy	2007	18+	Questionnaire	0.37
Bruges-Armas [22]	Portugal	2002	50+	Questionnaire	0.6
Braun [23]	Germany	1998	18+	Blood donors	0.86
AFRICA					
Stein [28]	Zimbabwe	1990		Population	0.00
Adebajo [29]	Nigeria	1991		Population	0.00
Mijiyawa [30]	Togo	1993		Population	0.00
APLAR region (south-east Asia and Pacific)					
Hukuda [31]	Japan	2001	A	Register	0.01
Dai [10]	Shanghai	2003	16+	Urban	0.11*
		1985	16+	Rural	0.22
		1995	16+	Urban	0.2
		2005	16+	Urban	0.2*
Chou [33]	Taiwan	1994	20+	Urban	0.4
				Suburban	0.19
				Rural	0.54
Onen [12]	Turkey	2008	20+	Urban	0.49*
Alexeeva [2]	Chukotka, Russia	1994	P	Population	1.1
NORTH AMERICA					
Boyer [3]	Alaska	1994	20+	Register	0.4
Strand [24]	USA	2013	18+	Pt records	0.35
Helmick [25]	USA, Caucasians	2005	18+	NHIS	0.52*
Lawrence [41]	USA, Caucasians	1998	A	Sample	0.13*
Goffton [27]	Canada, Haida People	1964	15+	Population	6.2

*Prevalence estimates standardized for age and sex in terms of the country population; P – population; A – adult
Figure 2. Ankylosing spondylitis prevalence in the world given in percentages;
NOTE: The specific population estimate may not represent the full population estimate for a particular country (see Table 2)

Table 3. Psoriatic arthritis prevalence

Reference	Country	Year	Age	Method	Prevalence [%]
EUROPE					
Hellgren [45]	Sweden	1969	P		0.02
van Romunde [46]	Netherlands	1984	20+	Sample	0.05
Zlatković-Švenda [17]	Serbia	2008	18+	Questionnaire	0.09
Pedersen [47]	Denmark	2002	Twins	Questionnaire	0.15
Madland [48]	Norway	2002	A	Register	0.19*
Hanova [34]	Czech Republic	2003	16+	Register	0.05*
Saraux [15]	France	2001	18+	Questionnaire	0.19*
Braun [23]	Germany	1998	18+	Blood donors	0.29
Alamanos [49]	Greece	2001	A	Register	0.06*
Trontzas [37]	Greece	2005	19+	Questionnaire	0.17*
Anagnostopoulou [38]	Greece	2010	A	Questionnaire	0.35
Salaffi [50]	Italy	2005	18+	Questionnaire	0.37
De Angelis [21]	Italy	2007	18+	Questionnaire	0.42
AFRICA					
Adebajo [29]	Subsaharian Africa	1990			0.00
Lamurezo [42]	Uganda	1980			0.00
APLAR region (south-east Asia and Pacific)					
Hukuda [43]	Japan	2001	A	Register	0.001
Zeng [44]	China	2006	A	Study	0.01–0.1
NORTH AMERICA					
Lawrence [41]	USA white race	1998	A	Sample	0.07*
Geilfand [51]	2005	P	Sample	Questionnaire	0.25
Shibeeb [52]	Minesota	1991	A	Register	0.16*
Boyer [3]	Alaska	1994	20+	Register	0.1
SOUTH AMERICA					
Soriano [53]	Argentina	2006	P	Register	0.07

*Prevalence estimates standardized for age and sex in terms of the country population
A – adult; P – population
exceeded rheumatoid arthritis (as one of the most prevalent inflammatory rheumatic diseases) in Japan, Germany, Turkey, Lithuania, China, Italy, Australian Aboriginals and the United States, but was similar to the rheumatoid arthritis prevalence in France and Serbia [17, 59]. This fact could be explained by a better understanding of the SpA concept both by the patients and physicians, as well as by introducing new classification criteria, the European Spondyloarthropathy Study Group Classification criteria (ESSG) [60]. The newest Assessment of SpondyloArthritis international Society (ASAS) classification criteria was used by several studies, reporting high SpA prevalence estimates as well: 0.43% in France (0.36% for axial SpA and 0.12% for peripheral SpA), 1.35% in Turkey and 0.70% for axial SpA alone in the United States [13, 16, 24, 61].

The first study on the prevalence of pooled SpA and its subtypes was conducted in 2016 by Stolwijk et al. [62]. The general population pooled prevalence of SpA ranged from 0.20% in Southeast Asia to 1.61% in northern Arctic communities; the AS prevalence ranged from 0.02% in Sub-Saharan Africa to 0.35% in northern Arctic communities; and the PsA prevalence ranged from 0.01% in the Middle East to 0.19% in Europe [62]. However, only a few studies from this meta-analysis were truly representative of the general population, due to a high risk of bias in addition to other methodological variations described more in depth in the article [62].

The limitation of our review is that we could not track the human leukocyte antigen B27 (HLA-B27) prevalence in all studies included, and connect its range with prevalence differences. According to the DESIR (DEvenir des Spondyarthopathies Indifférenciées Récentes) cohort, diagnostic delays are less common in HLA-B27-positive than in B27-negative patients [63]. High HLA-B27 prevalence is generally positively correlated with SpA prevalence, especially axial SpA [64]. Our review found the highest SpA prevalence in Alaskan Eskimos, 2.5% [3], of whom 25–40% are HLA-B27–positive [64]. In the current review, second-place SpA prevalence was found in Russian Chukotka Eskimos, 2.5%, with HLA-B27 prevalence at 34%. The highest AS prevalence (6%) was found in Haida Indians living in the Queen Charlotte Islands of Canada, of whom 50% are HLA-B27–positive [27]. However, although the HLA-B27 prevalence varies from 10–16% in northern European countries, the latest studies have shown an AS prevalence of 0.12% in Sweden, 0.15% in Finland and 0.26% in Norway [18, 35, 39, 64].

CONCLUSION

In conclusion, although the wide SpA prevalence range in different geographic regions could partially be attributed in part to HLA-B27 positivity, other factors may also play the role, such as geographic differences [59]. In addition, prevalence variations could only partially be due to genetic or environmental factors or geographic distribution and are certainly affected by differences in case definition and case confirmation strategy as well as by other variations in applied methodologies [65, 66].

Conflict of interest: None declared.
REFERENCES

1. Davatchi F. Rheumatic diseases in the APLAR region. APLAR J Rheumatol. 2006; 9(5–10).

2. Alexeeva L, Krylov M, Vturin V, Myilov N, Erdesz S, Benevolenskaya E. Prevalence of spondyloarthropathies and HLA-B27 in the native population of Chukotka, Russia. J Rheumatol. 1994; 21(12):2298–300.

3. Boyko EG, Templin DW, Corroni-Huntley JC, Everett DF, Lawrence RC, Heyse SF, et al. Prevalence of spondyloarthropathies in Alaskan Eskimos. J Rheumatol. 1994; 21(12):2292–7.

4. Mijiyawa M, Oniankitan O, Khan MA. Spondyloarthritis and subtypes prevalence a population based study. Ann Rheum Dis. 2002; 61(6):551–3.

5. Zlatkovic-Svenda M, Kerimovic-Morina D, Stojanovic R, Sipetic-Grujicic S, Guillemin F. Prevalence of spondyloarthropathies in the indigenous Sub-Saharan African population of Chukotka, Russia. Rheumatol Int. 2006; 26(1):53–9.

6. Zlatkovic-Svenda M, Dadonic J, Guillemin F. Prevalence survey of rheumatoid arthritis, ankylosing spondylitis, and gout in Shanghai, China: a COPCORD study. J Rheumatol. 2003; 30(10):2245–51.

7. Zeng QY, Chen R, Darmawan J, Xiao ZY, Chen SB, Wigley R, et al. Rheumatic diseases in China. Arthritis Res Ther. 2005; 11:R17.

8. Onen F, Akar S, Birlik M, Sari I, Balci A, Birlik M, et al. Prevalence of ankylosing spondylitis and related spondyloarthritis in an urban area of Izmir, Turkey. J Rheumatol. 2008; 35(1):305–9.

9. Hanova P, Pavelka K, Holcova A, Pikhart H. Incidence and prevalence of psoriatic arthritis in the Czech Republic. Scand J Rheumatol. 2001; 30(4):271–7.

10. Papadopoulos NG, Voulgari PV, Karakatsanis A, Alamanos Y, Papamitsi V, Dadoniene J, Guillemin F. Prevalence of spondyloarthropathies in Greece: a population-based study of prevalence, clinical pattern, and management. The ESORDIG study. Clin Rheumatol. 2005; 24(6):583–9.

11. Alamanos Y, Papamitsi V, Dadoniene J, Guillemin F. Prevalence of spondyloarthropathies in Greece: a population-based study of prevalence, clinical pattern, and management. The ESORDIG study. Clin Rheumatol. 2005; 24(6):583–9.

12. Anagnostopoulos I, Zinaras E, Alexiou I, Papathanasiou A, Degas E, Koutroupas A, et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskel Disord. 2001; 2:9.

13. Zlotnick-Svenda M, Mccarthy-Nicol D, Stojanovic R, Sipetic-Grujicic S, Guillemin F. Prevalence of spondyloarthropathies in Serbia: a EULAR endorsed study. Ann Rheum Dis. 2015; 74(10):1940–2.

14. Hlagunz E, Bremerander A, Petersson I, Strombeck B, Bergman S, Jacobsson L, et al. Prevalence of spondyloarthropathies and its subtypes in southern Sweden. Ann Rheum Dis. 2011; 70(6):943–8.

15. Tontrassas Anondriakos A, Miyakis S, Pantelidou K, Vafiadou E, Garantziotou V, et al. Seronegative spondyloarthropathies in Greece: a population-based study of prevalence, clinical pattern, and management. The ESORDIG study. Clin Rheumatol. 2005; 24(6):583–9.

16. Anagnostopoulos I, Zinaras E, Alexiou I, Papathanasiou A, Degas E, Koutroupas A, et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskel Disord. 2001; 2:9.

17. Zlotnick-Svenda M, Mccarthy-Nicol D, Stojanovic R, Sipetic-Grujicic S, Guillemin F. Prevalence of spondyloarthropathies in Serbia: a EULAR endorsed study. Ann Rheum Dis. 2015; 74(10):1940–2.

18. Hlagunz E, Bremerander A, Petersson I, Strombeck B, Bergman S, Jacobsson L, et al. Prevalence of spondyloarthropathies and its subtypes in southern Sweden. Ann Rheum Dis. 2011; 70(6):943–8.

19. Trontzas P, Andrianiakos A, Miyakis S, Pantelidou K, Vafiadou E, Garantziotou V, et al. Seronegative spondyloarthropathies in Greece: a population-based study of prevalence, clinical pattern, and management. The ESORDIG study. Clin Rheumatol. 2005; 24(6):583–9.

20. Anagnostopoulos I, Zinaras E, Alexiou I, Papathanasiou A, Degas E, Koutroupas A, et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskel Disord. 2001; 2:9.

21. Zlotnick-Svenda M, Mccarthy-Nicol D, Stojanovic R, Sipetic-Grujicic S, Guillemin F. Prevalence of spondyloarthropathies in Serbia: a EULAR endorsed study. Ann Rheum Dis. 2015; 74(10):1940–2.

22. Hlagunz E, Bremerander A, Petersson I, Strombeck B, Bergman S, Jacobsson L, et al. Prevalence of spondyloarthropathies and its subtypes in southern Sweden. Ann Rheum Dis. 2011; 70(6):943–8.

23. Trontzas P, Andrianiakos A, Miyakis S, Pantelidou K, Vafiadou E, Garantziotou V, et al. Seronegative spondyloarthropathies in Greece: a population-based study of prevalence, clinical pattern, and management. The ESORDIG study. Clin Rheumatol. 2005; 24(6):583–9.

24. Anagnostopoulos I, Zinaras E, Alexiou I, Papathanasiou A, Degas E, Koutroupas A, et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskel Disord. 2001; 2:9.

25. Zlotnick-Svenda M, Mccarthy-Nicol D, Stojanovic R, Sipetic-Grujicic S, Guillemin F. Prevalence of spondyloarthropathies in Serbia: a population-based study of prevalence, clinical pattern, and management. The ESORDIG study. Clin Rheumatol. 2005; 24(6):583–9.

26. Hlagunz E, Bremerander A, Petersson I, Strombeck B, Bergman S, Jacobsson L, et al. Prevalence of spondyloarthropathies and its subtypes in southern Sweden. Ann Rheum Dis. 2011; 70(6):943–8.

27. Anagnostopoulos I, Zinaras E, Alexiou I, Papathanasiou A, Degas E, Koutroupas A, et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskel Disord. 2001; 2:9.

28. Trontzas P, Andrianiakos A, Miyakis S, Pantelidou K, Vafiadou E, Garantziotou V, et al. Seronegative spondyloarthropathies in Greece: a population-based study of prevalence, clinical pattern, and management. The ESORDIG study. Clin Rheumatol. 2005; 24(6):583–9.
Преваленција спондилоартритиса и његових подтипова – да ли је заиста упоредива?

Мирјана И. Златковић-Швенда1,2, Роксанда М. Стојановић1, Сандра Б. Шипетић-Грујичић3, Марија М. Радак-Перовић1, Франисц Гилман4

1Универзитет у Београду, Медицински факултет, Институт за реуматологију, Београд, Србија; 2Универзитет у Источном Сарајеву, Медицински факултет, Република Српска, Босна и Херцеговина; 3Универзитет у Београду, Медицински факултет, Институт за епидемиологију, Београд, Србија; 4Универзитет у Лорени, Универзитетска болница, INSERM-CIC-EC EA 4360 APEMAC, Марс, Француска

Увод/Циљ
Пораст преваленције спондилоартритиса у поседних неколико деценија не може се приписати само манифестацијама болести.

САЈЕТАК
Увод/Циљ
Пораст преваленције спондилоартритиса у поседних неколико деценија не може се приписати само манифестацијама болести.

Методе
Претражена је литература са базама података PubMed, Google Scholar и Embase за додатно ручно претрађивање у односу на термин спондилоартритиси и његове подтипове у комбинација са преваленцијом.

Резултати
У земљама северне Европе (Шкотска, Шведска, Француска) имају ниже стопе преваленције СпА (0,21–0,45%) у поређењу са јужним (Италија – 1,06% и Турска – 1,35%). Најнижа преваленција СпА у свету забележена је у афричким и југосточним азијским земљама (0–0,19%), а највиша у Аљасци (2,5%). Највећа варијабилност у преваленцији ПсА забележена је у Европи (северни део 0,02–0,19%, јужни 0,42%). Најнижа преваленција ПсА у свету забележена је у Јапану – 0,001%, а затим у Кини 0,01–0,1%.

Закључак
Варијабилност у преваленцији СпА и ПсА у свету јесте велика због генетских и географских разлика. Методе

DOI: https://doi.org/10.2298/SARH180110009Z