FOOD SCIENCE & TECHNOLOGY | RESEARCH ARTICLE

The adoption of sustainable agricultural practices by smallholder farmers in Ethiopian highlands: An integrative approach

Vine Mutyasira1*, Dana Hoag2 and Dustin Pendell3

Abstract: The adoption of Sustainable Agricultural Practices (SAPs) remains high on the policy and research agenda in most of sub-Saharan Africa. This paper adopts an integrative approach to investigate how psycho-social and socioeconomic factors influence the uptake of SAPs by smallholder farmers in Ethiopian Highlands. The study applies the Theory of Planned Behavior theoretical framework, as well as the Ordered Probit model and Partial Least Squares Structural Equation Modeling (PLS-SEM) to model farmers' adoption decisions. The results show that socioeconomic factors such as access to agricultural loans and off-farm income, household labor availability and livestock ownership increase the probability of adopting two or more SAPs. The results further show that farmers' intentions and personal norms significantly influence the number of SAPs adopted at farm-level. These results imply that efforts to promote the widespread adoption of SAPs by smallholder farmers should focus on enhancing farmers' access to agricultural loans and off-farm income, through increased integration into the non-farm rural economy and addressing liquidity constraints through affordable rural financing schemes. The adoption of SAPs would greatly enhance farmers' ability to implement SAPs. Our results also suggest that efforts to achieve widespread uptake of sustainable practices should focus on raising farmers' general awareness and knowledge to change their perceptions and attitudes towards sustainable farming practices.

© 2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

ABOUT THE AUTHOR

My research interests focus on the interface between agricultural production and the natural resource base, with particular interest in exploring sustainable pathways to enhancing agricultural productivity and intensification, without compromising on equally important social, ecological and welfare goals. I have done research in Zimbabwe, Malawi, Zambia Ethiopia, Mozambique and the United States, working with international research institutions such as the International Maize and Wheat Improvement Centre (CIMMYT) and the International Livestock Research Institute (ILRI). My quest is to understand why smallholder farms have remained small in terms of scale economies, level of technological innovations, degree of commercialization or the general lack of zeal in adopting new and “better” farming systems. With the IPCC projecting a gloomy picture of climate change and its impacts on smallholder agriculture, I have also developed a keen interest in understanding the reasons why many African smallholder farmers are seemingly reluctant to adopt and invest in climate-smart practices agriculture and known adaptation strategies.

PUBLIC INTEREST STATEMENT

Sustainable agricultural practices (SAPs) are farming practices such as conservation tillage, soil and water conservation, legume crop rotations, improved seed varieties and use of animal manure. These practices are part of the packages that seek to improve agricultural productivity while minimizing negative impacts on the environment. However, the uptake of these practices by smallholder farmers has generally been sluggish in most sub-Saharan Africa. This research investigates the factors that would facilitate or hinder farmers’ ability to implement SAPs on their farms. Our results indicate improving farmers’ access to agricultural loans and off-farm income, as well as interventions to increase livestock ownership and access to labor resources; would greatly enhance farmers’ ability to implement SAPs. Our results also suggest that efforts to achieve widespread uptake of sustainable practices should focus on raising farmers’ general awareness and knowledge to change their perceptions and attitudes towards sustainable farming practices.
can further be enhanced by raising farmers' general awareness and knowledge to change their perceptions and attitudes towards sustainable farming practices.

Subjects: Environment & Agriculture; Development Studies, Environment, Social Work, Urban Studies; Social Sciences; Development Studies

Keywords: Ethiopia; ordered probit; structural equation model; sustainable agricultural practices (SAPs); theory of planned behavior (TPB)

1. Introduction

Over the past decade, there have been several efforts to promote sustainable intensification of smallholder farming systems (Barnes, Lucas, & Maio, 2016; Mutyasira et al., 2018a). Several sustainable agricultural practices (SAPs), including conservation tillage, soil and water conservation, legume crop rotations, improved seed varieties and use of animal manure (Kassie, Jaleta, Shiferaw, Mmbando, & Mekuria, 2013, Kassie, Zikhali, Pender, & Köhlin, 2010; Teklewold, Kassie, & Shiferaw, 2013) have been promoted by research and development organizations to promote climate-smart agriculture, restore soil health and bolster resilience of smallholder farming systems. Yet, the adoption of conservation practices is lagging among smallholder farmers in many parts of the world (Kassie et al., 2009; Somda et al., 2002; Wollni, Lee, & Thies, 2010). Consequently, a substantial amount of attention has been paid to factors that influence the adoption of conservation practices by farmers. Meta-analytic reviews have shown that a wide range of socioeconomic, institutional and agro-ecological factors influences farm-level adoption decisions (Knowler & Bradshaw, 2007).

Most empirical studies have generally focused on the economic factors influencing farmers’ ability to adopt SAPs (Kassie et al., 2013; Teklewold et al., 2013; Wollni et al., 2010). Relatively less research has focused on understanding farmers’ willingness to invest in SAPs and the intrinsic factors influencing farmers’ conservation behavior (Mills et al., 2017). Behavioral approaches have pointed out the inadequacies of the traditional economic approaches to understanding farmer’s conservation behavior, particularly given that conservation-related decisions are not always made on an economically rational basis (Burton, 2004; Chouinard et al., 2008; Neill & Lee, 2001; Stern, 2000). There are suggestions that non-economic and intrinsic factors such as farmers’ attitudes, norms and stewardship motives may influence individual decision-making processes (Lynne, Shonkwiler, & Rola, 1988), and hence interventions to promote SAPs must target changing farmer’s behavior (Clayton & Myers, 2010; Schultz, 2011). Thus, behavioral approaches have been used to examine farmers’ pro-environmental behavior (Ahnström et al., 2009; Quinn & Burbach, 2008; Wilson, 1996), uptake of conservation technologies (Beedell & Rehman, 1999; Lynne et al., 1995), uptake of organic farming (Läpple & Kelley, 2013) and general perceptions toward SAPs (Füsün Tatlıdil, Boz, & Tatlıdil, 2009).

Understanding farmers’ conservation behavior is complex. Developing a clear picture on the drivers and processes shaping the uptake of SAPs therefore requires a strong understanding of the psycho-social factors influencing farmers’ willingness to adopt SAPs, and the socioeconomic factors affecting their ability to implement these practices on their farms. This study adopts an integrative approach, examining how both socioeconomic and psycho-social factors, such as attitudes and personal norms, influence adoption of SAPs by smallholder farmers in Ethiopia. The findings will assist in the design of more effective policy instruments to remove adoption hurdles as well as crafting tailored extension services that resonate with realities of the farmer and thus help foster behavioral change. We use the theory of planned behavior (TPB) as our framework to understand the main behavioral constructs underpinning farmers’ behavior regarding SAPs. Structural equation modeling techniques are used to derive summated indices of the behavioral latent variables, as well as to examine their significance in explaining farmers’ intentions. An ordered probit regression model is used to examine the relative importance of socioeconomic and psycho-social variables as predictors of the number of SAPs adopted by farmers.
The following section discusses the study's theoretical framework, dissecting the key psychological constructs influencing intentions. Section 3 summarizes the estimation procedure and econometric techniques employed in the study. Section 4 describes the study area and data collection techniques. The main results of the study are detailed in Section 5, while Section 6 concludes with main implications of the research for policy.

2. Theoretical framework

The study uses the TPB (Ajzen, 1991) as the main theoretical framework to analyze farmers’ general attitudes toward sustainable farming practices. The theory argues that a person’s intention (INT) is a good predictor of their actual behavior. According to this theory, a person’s attitude (ATT) toward a behavior, subjective norms (SN) and their perceived behavioral control (PBC) are the key antecedents of INT (Figure 1). ATT is the extent to which a person has a favorable or unfavorable evaluation of a behavior. Subjective norm refers to an individual’s perceived social pressure to perform a certain behavior. It comprises beliefs about social expectations and the motivation to comply with those expectations. Finally, PBC is the extent to which an individual feels able to perform the behavior (Ajzen, 1991). This component addresses the issue of incomplete volitional control over individual actions (Armitage & Conner, 2001). Empirically, the model is specified as follows:

$$ INT = \beta_1 ATT + \beta_2 SN + \beta_3 PBC + \epsilon $$

(1)

where the βs are empirically estimated weights or path coefficients depicting the relative importance of each of the three constructs and ϵ is the error term. The parameters can be derived from multiple regression in a structural equation model. The relative importance of ATT, SN and PBC will vary across contexts and type of behaviors under consideration (Ajzen, 1991). Generally, INT is stronger when individuals exhibit positive attitudes, face favorable social environments and have confidence in their ability to perform a given behavior (Ajzen, 2011). Also, the greater the INT, the more likely one is to perform a behavior in question (Läpple & Kelley, 2013).

The key strength of the TPB is its applicability to a variety of behaviors in different contexts (Ajzen, 2011; Meijer et al., 2015). Its overall validity and usefulness has been confirmed by several meta-analytic reviews (Armitage & Conner, 2001; Godin & Kok, 1996). This paper thus focuses mostly on the TPB constructs, but also incorporates insights from other behavioral theories such as the Value-Belief-Norm theory (Stern et al., 1999), which focuses on how internalized values and moral norms (personal norms) influences individual behavior; and the Technology Acceptance Model (Davis, 1989), which explains an individual's technology acceptance as a function of perceived usefulness and perceived ease of use.

![Figure 1. Representation of Ajzen's theory of planned behavior.](https://doi.org/10.1080/23311932.2018.1552439)
3. Estimation procedure

The first stage of the modeling process involves estimation of the partial least squares structural equation modeling (PLS-SEM) to examine the relationship between the three TPB constructs. TPB constructs are latent, and thus cannot be observed or measured directly. Instead, a set of measures are derived from a list of questions to act as indicators for an underlying latent variable. The structural equation model therefore comprises an outer sub-model, which specifies the relationships between the latent variables and their observed indicators; an inner sub-model is then added, which assesses the relationship between the dependent and independent latent variables along with their respective path coefficients (Wong, 2013). A partial least square approach to structural equation modeling is adopted in this paper because it makes no assumptions about data distribution (Sarstedt et al., 2014). The model maximizes the variance explained and minimizes the overall error term (Hair, Ringle, & Sarstedt, 2011).

The second stage involves estimating an econometric model to assess the relative importance of socioeconomic and psycho-social variables in explaining farmers’ behavior and uptake of SAPs. The behavioral constructs of the TPB, whose indices are developed from the structural equation model explained earlier, are included as independent variables in the model along with a set of socioeconomic variables synthesized from economic theory and related studies (Knowler & Bradshaw, 2007). The number of SAPs adopted by the farmer is used as the dependent variable in the model, thus circumventing problems associated with defining a cutoff point between adoption and non-adoption (D’souza, Cyphers, & Phipps, 1993; Wollni et al., 2010). An ordered probit model is used for empirical estimation given the ordinal nature of the dependent variable (Daykin & Moffatt, 2002). While a Poisson regression model would be a natural choice for count data, its underlying assumption that all the events have same probability (Wollni et al., 2010) makes it unsuitable for modeling the adoption of SAPs. The adoption of SAPs is likely to follow a path whereby the probability of adopting the first technology will be different from that of the second and subsequent technologies given that the farmer would have gained experience from the previous technologies and probably developed more positive ATT toward SAPs in general.

Empirically, the model is estimated in a random utility framework (Greene & Hensher, 2008), in which the dependent variable depicts whether the farmer adopts none \(S_i = 0 \), one \(S_i = 1 \), two \(S_i = 2 \), three \(S_i = 3 \), four \(S_i = 4 \) or five \(S_i = 5 \) different SAPs. Following Wollni et al. (2010), we assume that farmer \(i \) choose to adopt a certain number of SAPs to maximize an underlying utility function \(U_i \):

\[
U_i = V_i(\beta' x_i) + u_i \text{ for } i = 1, \ldots, n.
\] \hspace{1cm} (2)

Where \(V \) is the observed portion of the utility function, \(x_i \) is a vector of exogenous covariates, \(\beta \) is a vector of parameters to be estimated. Finally, the unobserved portion of utility function is represented by independently and identically distributed (i.i.d) random error \(u_i \) with mean zero (Wollni et al., 2010). While the utility level of an individual farmer \(U_i \) is unobserved, a latent utility is observed in discrete form through a censoring mechanism (Daykin & Moffatt, 2002):

\[
S_i = 0 \text{ if } U_i \leq \alpha_1, \\
S_i = 1 \text{ if } \alpha_1 < U_i \leq \alpha_2, \\
S_i = 2 \text{ if } \alpha_2 < U_i \leq \alpha_3, \\
S_i = 3 \text{ if } \alpha_3 < U_i \leq \alpha_4, \\
S_i = 4 \text{ if } \alpha_4 < U_i \leq \alpha_5, \\
S_i = 5 \text{ if } U_i > \alpha_5
\] \hspace{1cm} (3)

Where \(\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 \) are unknown cutoff or threshold parameters that are estimated using \(\beta \). The parameter \(\beta \) does not contain an intercept term since the intercept term is normalized to zero, allowing the threshold parameters to be free parameters (Daykin & Moffatt, 2002). Assuming the random error, \(u_i \), is normally distributed (Wollni et al., 2010), the following probabilities can be derived:
where \(\Phi(\cdot) \) is the standard normal cumulative distribution function. The parameters \(\alpha \) and \(\beta \) are estimated by maximum likelihood using the following log-likelihood function:

\[
L = \sum_{i=1}^{n} \sum_{s=1}^{j} \log(\Phi(\alpha_j - \beta x_i) - \Phi(\alpha_1 - \beta x_i))
\]

Since the coefficients of the ordered probit regression model are difficult to interpret (Greene & Hensher, 2008), we estimated the marginal effects of change in the regressors on the adoption probabilities. Following Chen et al. (2002), the marginal effects are estimated as follows:

\[
\frac{\delta(S_i = j)}{\delta x_n} = \left[\Phi \left(\alpha_{j-1} - \sum_{a=1}^{a} \beta_a x_n \right) - \Phi \left(\alpha_j - \sum_{a=1}^{a} \beta_a x_n \right) \right] \beta_n
\]

where \(j \) represents the number of SAPs adopted by the farmer.

4. Study area and data

Ethiopia is generally classified into 18 major agro-ecological zones and 49 sub-zones (Tesfa & Mekuria, 2014). The highland regions in Ethiopia are characterized by soils of high agricultural potential, as well as relatively steady rainfall, ranging from 600 to 2,700 mm per year. However, the same areas are characterized by land degradation and soil erosion, attributable to overgrazing, deforestation and high population densities in general (Pender et al., 2001; Tesfa & Mekuria, 2014). Hence, the study area provides an excellent case study for investigating the uptake of SAPs by farmers. The study was conducted in four regions of Ethiopian highlands—Tigray, Amhara, Oromia and the Southern Nations, Nationalities, and Peoples (SNNP), representing the South Tigray, North Shewa, Bale and Hadjia zones, respectively. Climatic conditions vary across regions. The Tigray region, for instance, is generally characterized by frequent droughts, while Oromia and SNNP regions generally have relatively good agro-ecological potential. The Amhara region, located in the central and north-western part of Ethiopia, receives annual rainfall ranging from 300 mm in the east to over 2,000 mm in the west (Benin, 2006; Headey, Dereje, & Taffesse, 2014).

The study was conducted in four regions of Ethiopian highlands. A cross-sectional survey of 600 smallholder farmers was carried out in Endamehoni, Basona-Worena, Sinana and Lemo woredas (districts) of Tigray, Amhara, Oromia and the SNNP regions, respectively (Figure 2). Three kebeles (wards), which are the smallest administrative unit in Ethiopia, were selected in each of the four districts. These included two of International Livestock Research Institute (ILRI)’s Africa RISING research wards, and one non-project wards. A total of 12 wards were therefore selected based on opportunities for sustainable intensification. A total of 50 households were randomly selected in each village, based on farmer lists provided by government extension officers and ILRI field facilitators in the respective wards. Overall, a total sample of 600 households was surveyed across the four regions.

Data collection was done using a structured questionnaire, and household interviews were administered by a team of government extension officers and ILRI field facilitators. Table 1 provides summary statistics of the variables used in the subsequent analysis.

The questionnaire included a list of statements based on the constructs of the TPB model, which were used to elicit information on farmers’ attitudes toward SAPs, the perceived social pressure to adopt SAPs, PBC over use of SAPs, as well as their overall intentions implement SAPs on their farms.
Figure 2. Study areas.

Figure 3. Indicator loadings and path coefficients of key behavioral constructs.
ATT was measured directly by four questions on the instrument (ATT1, ATT2, ATT3, ATT4). The four questions asked the farmer the degree to which they agreed with the notion that using SAPs increased farm yields, incomes, soil fertility and the farmer’s reputation in community. Subjective norm was captured by four items (SN1, SN2, SN3, SN4) referring to the opinions of important people and fellow farmers in the community, as shown in Table 2. PBC was measured by three items (PBC1, PBC2, PBC3) capturing the extent to which farmers were confident in their ability to implement SAPs on their farms. Finally, INT was measured by a three of statements (INT1, INT2, INT3) that capture a person’s readiness to adopt SAPs. These questions were worded following (Ajzen, 2002) recommendation. In total, 14 questions directly based on the theory were used to create indices of each of the four constructs. Farmers’ responses to these measurement items were captured on a 5-point Likert scale which ranged from 1 = strongly disagree to 5 = strongly agree, indicating the degree to which they agreed with the set of statements. Table 2 provides descriptive statistics of the measurement items used in the study.

5. Results

5.1. Psycho-social factors influencing farmers’ sustainability behavior

The first step in PLS-SEM involved the assessment of the reliability and validity of the key latent variables and indicators. This preliminary diagnostic step showed that all the indicators used were high in individual indicator reliability, indicating that they loaded higher in their respective constructs than they would in other constructs (Table A1). Table 3 shows the Cronbach’s alpha, composite reliability and average variance extracted (AVE) measures for each of the four constructs.

From the results, both the Cronbach’s alpha and composite reliability, which are alternative measures of internal consistency and reliability, showed high internal consistency among all the constructs (Hair et al., 2011). Generally, the closer these values are to 1, the greater the internal consistency of the indicators (items) in the constructs (Gliem & Gliem, 2003). The AVE shows high levels of convergent validity, except for the SN, which is slightly lower than the acceptable threshold of 0.5 (Sarstedt et al., 2014). However, the Fornell–Larcker Criterion (Fornell & Larcker, 1981) asserts that discriminant validity is achieved when the square root of AVE is greater than its inter-construct correlations. The Fornell–Larcker Criterion results (Table A2) show that discriminant validity was well established across all the constructs. Other diagnostic tests include the variance

Table 1. Descriptive statistics of socioeconomic variables used in analysis
Variable

Dependent variables
Soil and water conservation
Legume crop rotations
Organic manure
Conservation tillage
Improved varieties
Independent variables
Agricultural loans
Tropical livestock units (TLU)
Off-farm income
Group membership
Land size
Farming experience
Household labor
inflation factor (VIF) to ascertain degree of multicollinearity. Ideally, VIF values of 5 or lower are desirable to avoid the collinearity problems (Hair et al., 2011). These results indicate that both the inner and outer model VIF values were less than 5 (Table A3).

Table 2. Descriptive statistics of psycho-social variables used in analysis

Construct	Items	Description	Mean	Std. Dev.
Attitude	ATT1	I think SAPs increase my crop yields	4.41	0.60
	ATT2	I think SAPs increase farm incomes	4.36	0.61
	ATT3	I think SAPs improve a farmer’s reputation in community	4.11	0.69
	ATT4	I think SAPs improve fertility of my soil	4.42	0.57
Subjective norm	SN1	Most farmers important to me apply SAPs on their farms	3.62	0.90
	SN2	People important to me would think that using SAPs would be a good idea	3.82	0.83
	SN3	Most farmers in my community expect me to use SAPs on my farm	3.62	0.83
	SN4	When it comes to choosing farming practices, I want to be like other farmers in my community	3.67	0.92
Perceived behavioral control	PBC1	I would be able to practice at least one of the SAPs	4.13	0.70
	PBC2	I have the resource to implement SAPs	3.71	0.97
	PBC3	I have the knowledge to try out or practice SAPs	3.81	0.88
Intention	INT1	I intend to use SAPs	4.08	0.62
	INT2	I will try to adopt at least one of the SAPs	4.17	0.61
	INT3	I am planning to adopt SAPs	4.08	0.69

Note: respondents were asked to rate their agreement on all measurement items using a 1–5 scale.

Table 3. Cronbach’s alpha, composite reliability and average variance extracted

	Cronbach’s alpha	Composite reliability	Average variance extracted
Attitude	0.80	0.87	0.63
Intention	0.85	0.91	0.77
Perceived behavioral control	0.59	0.79	0.55
Subjective norm	0.68	0.78	0.47
Having established the validity of the structural model, the next step was to examine the path coefficients and to test the theoretical relationships (Figure 3). The inner model path coefficients suggest that PBC has the strongest effect on farmers’ intentions to implement SAPs (0.51), followed by A (0.26), and SN (0.03).

Bootstrapping was used to obtain t-statistics to test the statistical significance of both the indicators (outer model) and structural model constructs (inner model). Two-tailed t-tests of significance at 5% level were carried out, with t-statistic values larger than 1.96 indicating significance. Table 4 shows results of the structural path significance tests. The hypothesized path relationship between ATT and INT, and the relationship between PBC and INT, were both statistically significant at 5% level while the relationship between SN and INT was not significant. Therefore, farmers’ attitudes and their PBC are both moderately strong predictors of farmer’s intentions to adopt SAPs. Subjective norm does not seem to have a direct effect on farmers’ intentions to use SAPs. Bootstrapping was also used to derive t-statistics in the outer model, and the results showed that all the factor loadings were statistically significant at 5% level. The full results are provided in Figure A1.

5.2. Determinants of SAPs adoption

The study investigated the key factors influencing the uptake of SAPs by farmers. The majority of the farmers’ revealed that access to farming knowledge and advice (38.5%), access to agricultural credit (20%), availability of land (23.2%), availability of labor (8.4%) and access to farm equipment and tools (3.1%), as well as security of farm tenure (2%) would influence their decisions to implement SAPs on their farm.

An ordered probit econometric model was estimated to identify the factors influencing the number of SAPs adopted, as a proxy for extent of adoption. Model was estimated using maximum likelihood in STATA. The likelihood ratio test \(\chi^2(12) = 107.61, p = 0.000 \) indicated that the null hypothesis, that slope coefficients are jointly equal to zero, was rejected. The results of the ordered probit model are presented in Table 5.

The results show that the number of SAPs adopted by households increases with access to agricultural loans. Having access to agricultural loans increases the probability of adopting more than two SAPs increases by 7.4%; the cumulative of the probabilities of adopting two, three, four and five SAPs (Table 5). Access to off-farm income was also found to have a significant positive impact on the number of SAPs adopted by farmers, although the marginal effects were quite small. These results are consistent with a-priori expectations. One of the critical barriers to successful adoption and scaling up of sustainable farming practices and technologies is the fact that they often require significant initial investments while benefits could be realized in a few seasons (Giller et al., 2009). Improved access to loans and off-farm income should help alleviate liquidity constraints and thus enhance access to complimentary technical, mechanical and capital inputs (Deressa et al., 2009; Mutyasira et al., 2018b).

Relationship	Path coefficient	T-statistic
Attitude effect on intention	0.26	5.78**
Perceived behavioral control effect on intention	0.51	11.29**
Subjective norm effect on intention	0.03	0.80

** indicates significance at 5%
Table 5. Ordered probit results

| Variables | Coefficients | Std. Err. | Prob (Y = 0|X) | Prob (Y = 1|X) | Prob (Y = 2|X) | Prob (Y = 3|X) | Prob (Y = 4|X) | Prob (Y = 5|X) |
|--------------------|--------------|-----------|---------|---------|---------|---------|---------|---------|---------|
| Agricultural loans | 0.226** | (0.120) | 0.005* | 0.016* | 0.021* | 0.006 | 0.037* | 0.010 |
| TLU | 0.0955*** | (0.021) | 0.002***| 0.003***| 0.004* | 0.002 | 0.007***| 0.002***|
| Off-farm income | 1.49e-05* | (7.60e-06)| 0.000* | 0.000* | 0.000** | 0.000 | 0.000* | 0.000* |
| Group membership | 0.494*** | (0.106) | 0.008***| 0.018***| 0.019***| 0.008 | 0.032***| 0.009***|
| Land size | -0.271*** | (0.037) | 0.004***| 0.007***| 0.008***| 0.005 | 0.012***| 0.004***|
| Farming experience | 0.00308 | (0.004) | 0.000 | 0.001 | 0.001 | 0.000 | 0.001 | 0.0003 |
| Household labor | 0.0735* | (0.041) | 0.002 | 0.006* | 0.007* | 0.001 | 0.013* | 0.003* |
| Personal norms | 0.260*** | (0.094) | 0.005** | 0.014***| 0.016***| 0.004 | 0.029***| 0.007** |
| Intention | 0.127** | (0.053) | 0.003** | 0.008** | 0.009** | 0.002 | 0.016** | 0.004** |
| Constant cut1 | -0.478 | (0.395) | | | | | | |
| Constant cut3 | 1.143*** | (0.386) | | | | | | |
| Constant cut4 | 1.991*** | (0.391) | | | | | | |
| Constant cut5 | 3.518*** | (0.411) | | | | | | |
| Observations | 452 | | | | | | | |

*** p < 0.01, ** p < 0.05, * p < 0.1
Farmers’ membership in farmer groups and other producer associations was found to positively influence the number of SAPs adopted on farms. If a household has a member who belongs to a farmer group, their probability of adopting two or more SAPs increases by 6.8%. Farmer groups and commodity associations act as platforms for social networking and learning where farmers can share their knowledge, know-how and experiences with SAPs, which can positively influence perceptions and therefore adoption of these practices. By nature, some of the SAPs tend to be knowledge-intensive (Giller et al., 2009; Wall, 2007), and thus social learning will be crucial in shortening the learning curve. For instance, social capital was found to be a critical driver behind the adoption of water conservation practices by small-scale farmers in central Chile (Jara-Rojas, Bravo-Ureta, & Díaz, 2012). Also, related to this result, we found that availability of household labor resources positively influenced the number of SAPs adopted by farmers. The results showed that each additional unit of family labor increases the probability of adopting two or more SAPs by 2.4%. This result is consistent with studies that have shown how labor constraints impede the adoption of sustainable agricultural technologies, a typical example being the case of System of Rice Intensification in Madagascar (Moser & Barrett, 2003).

Tropical livestock units (TLU) had a positive and significant effect on the number of SAPs adopted by farmers. Each additional increase in TLU owned by the households increases the probability of adopting two or more SAPs by 1.4%. The positive contribution of livestock to using sustainable farming practices most probably comes through the increased availability of animal traction, which enables farmers to mechanize conservation tillage through implements such as direct seeders, reduce labor drudgery in erosion control activities such as gathering stones for stone bunds, as well as improved availability of animal manure. Also, households who own more livestock are likely to have more income from sales of livestock and livestock products. This income could be used to purchase improved seeds and other complimentary inputs. However, farm size was found to have a negative effect on the number of SAPs adopted by farmers. The results indicate that households who have smaller landholdings have a higher probability of implementing more than two SAPs. Although this is contrary to several studies that show how larger farms have a greater propensity to implement soil management and conservation practices (Reig-Martínez, Gómez-Limón, & Picazo-Tadeo, 2011), this result could imply that smallholder farmers in Ethiopia are implementing SAPs such as improved varieties, legume intercropping and rotations as agricultural intensification strategies in response to land constraints. A similar result was found in Tanzania where households who owned less land were more likely to adopt conservation tillage and legume intercropping (Kassie et al., 2013).

Perhaps the most interesting result of this study is the significance of the psychological factors. Results showed that INT was a strong predictor of the number of SAPs that farmers implemented on their farms. This result fits well within the psycho-social and behavioral literature that has demonstrated significance of intentions as a predictor of actual behavior (Armitage & Conner, 2001). Our results show that a unit increase in the magnitude of INT increases the probability of adopting two or more SAPs by 3.1%. The INT variable reflected farmers’ attitudes toward and their PBC over implementation of SAPs. Therefore, the broader implication is that if farmers view SAPs favorably and are confident that they have the knowledge and resources to try them out on their own, then there would be strong intentions to adopt SAPs (Wauters et al., 2010). However, if farmers believe that SAPs are not compatible with the farming systems they are accustomed to and that adopting SAPs would require making huge changes in their current practices (Giller et al., 2009), this could result in reluctance to adopt SAPs. This implies that changing farmers’ perceptions and attitudes toward sustainable farming practices is central in the quest to promote the widespread adoption of SAPs. Increased awareness, field schools and on-farm demonstrations of alternative sustainable practices and technologies should assist in this regard.

Personal norm was another psychological variable included in the model. It captured the extent to which a farmer felt the conviction and obligation to implement SAPs as a farmer, land owner or community member. Our results suggest that personal norm was positively and significantly linked
to the number of SAPs adopted by farmers. A unit increase in the strength of farmers’ intrinsic drive to incorporate sustainable practices on their farms increases the probability of adopting two or more SAPs by 5.6%. This is consistent with observations in some studies that farmers could be driven by stewardship motives to adopt sustainable farming practices (Chouinard et al., 2008; Hayes & Lynne, 2004).

6. Conclusions and policy implications
The general lack of spontaneous adoption of SAPs and technologies among smallholder farmers has been a major concern for researchers. Several research enquiries have attempted to understand the factors impeding or facilitating the uptake of SAPs and their continued utilization by farmers on a bigger scale. Research has predominantly focused on economic drivers, with little emphasis on the psycho-social and behavioral factors affecting farmers’ technology preferences and general attitudes toward sustainable farming practices. This study adopted an integrative approach, analyzing how a mix of economic and psycho-social factors affect the adoption of a set of SAPs by smallholder farmers in Ethiopian highlands. The study found that both economic and non-economic factors were significant predictors of the numbers of SAPs that are adopted by farmers. Significant economic drivers of adoption included access to agricultural loans, off-farm income, farmer organizational membership, farm size and household labor resources. Consistent with other studies, the research also found that farmers’ norms and intentions were strong predictors of the number of SAPs they end up adopting on their farms. Although no variable we looked at increased the probability of adopting two or more SAPs by more than 8%, collectively, these findings will be important in the promotion of SAPs and in tailoring current interventions to specific needs of farmers. Interdisciplinary and holistic approaches should form part of effective strategies for promoting SAPs among smallholder farmers, focusing on both economic and psycho-social factors. Strategies to improve adoption rates could include provision of financial incentives to help offset initial investment and opportunity costs, addressing liquidity constraints through promotion of alternative off-farm income sources, strengthening of farmers organization to induce learning-from-peers effects, promoting small-scale mechanization options to address seasonal labor constraints, as well as innovation to enhance the productivity of the livestock sector, probably through improved access to animal health facilities and introduction of improved breeds. Emphasis should also be placed on tailored extension services that provide relevant information on SAPs and thus help dispel common misconceptions and shorten the learning circle.

Acknowledgements
The authors would like to acknowledge the International Livestock Research Institute (ILRI) for kindly supporting the data collection process in Ethiopia. Specifically, we want to thank Dr Kindu Mekonnen, Dr Peter Thorne and Dr Girma Tesfahun Kassie for their technical support and helping supervise the data collection activities in Ethiopia.

Funding
This work was supported by the USAID-funded Africa RISING program (ILRI), the Norman E. Borlaug Leadership Enhancement in Agriculture Program (LEAP) Fellowship, as well as Colorado State University, Department Agricultural and Resource Economics. The content is solely the responsibility of the author/s and does not necessarily represent the official views of USAID, Africa RISING program or that of the Borlaug LEAP Fellowship.

Competing Interests
The authors declares no competing interests.

Author details
Vine Mutyasira
E-mail: vinemutyasira@gmail.com
Dana Hoag
E-mail: Dana.Hoag@Colostate.Edu
Dustin Pendell
E-mail: dpendell@ksu.edu

1 Department of Agricultural Economics and Extension, University of Zimbabwe, Harare, Zimbabwe.
2 Department of Agricultural and Resource Economics, Colorado State University, Fort Collins, CO 80523, USA.
3 Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506, USA.

References
Ahnström, J., Höckert, J., Hl, B., Ca, F., Skelton, P., & Hallgren, L. (2009). Farmers and nature conservation: What is known about attitudes, context factors and actions affecting conservation? Renewable Agriculture and Food Systems, 24(1), 38–47. doi:10.1017/S1742170508002391
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. doi:10.1016/0749-5979(91)90020-T
Ajzen, I. (2002). Constructing a TpB questionnaire: Conceptual and methodological considerations. Time, 2002, 1–13. doi:10.1002/hep.22759

Citation information
Cite this article as: The adoption of sustainable agricultural practices by smallholder farmers in Ethiopian highlands: An integrative approach, Vine Mutyasira, Dana Hoag & Dustin Pendell, Cogent Food & Agriculture (2018), 4: 1552439.
Aizen, I. (2011). The theory of planned behaviour: Reactions and reflections. *Psychology & Health, 26*(9), 1113–1127. Routledge. doi:10.1080/08870446.2011.613995

Armitage, C. J., & Conner, M. (2001). Efficacy of the theory of planned behaviour: A meta-analytic review. *British Journal of Social Psychology, 40*(4), 471–499. Blackwell Publishing Ltd. doi:10.1348/014466601164939

Barnes, A. P., Lucas, A., & Maio, G. (2016). Quantifying ambivalence towards sustainable intensification: An exploration of the UK public’s values. *Food Security, 8*(3), 609–619. Springer Netherlands. doi:10.1007/s12571-016-0565-y

Beedell, J. D. C., & Rehman, T. (1999). Exploring farmers’ conservation behaviour: Why do farmers behave the way they do? *Journal of Environmental Management, 50*(3), 163–176. doi:10.1006/jema.1999.0296

Benin, S. (2006). Policies and programs affecting land management practices, input use, and productivity in the highlands of Amhara Region, Ethiopia. In J. Pender, F. Place, & S. K. Ehiu (Eds.), *Strategies for sustainable land management in the East African highlands* (pp. 217–256). International Food Policy Research Institute. doi:10.2499/0896297577587

Burton, R. J. F. (2004). Reconceptualising the “behavioural approach” in agricultural studies: A socio-psychological perspective. *Journal of Rural Studies, 20*(3), 359–371. doi:10.1016/j.jrurstud.2003.12.001

Chen, K., Ali, M., Veerman, M., Unterschultz, J., & Le, T. (2002). Relative importance rankings for pork attributes by Asian-origin consumers in California: Applying an ordered probit model to a choice-based sample. *Journal of Agricultural and Applied Economics, 34*(1), 67–79. doi:10.1017/S1074070800002157

Chouinard, H. H., Paterson, T., Pr, W., & Am, O. (2012). Understanding and promoting human care for nature. *Environmental Conservation, 39*(2), 222–225. doi:10.1017/S0376892910000045

D’Souza, G., Cyphers, D., & Phillips, T. (1993). Factors affecting the adoption of sustainable agricultural practices. *Agricultural and Resource Economics Review, 22*(2), 159–165. Elsevier. doi:10.1017/S1074070800000474

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly, 13*(3), 319–349. doi:10.2307/249261

Daykin, A. R., & Moffatt, P. G. (2002). Analyzing ordered responses: A review of the ordered probit model. *Understanding Statistics, 1*(3), 157–166. Lawrence Erlbaum Associates, Inc. doi:10.1207/S15328315US1003_02

Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T., & Yesuf, M. (2009). Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. *Global Environmental Change, 19*(2), 248–255. doi:10.1016/j.gloenvcha.2009.01.002

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research, 18*(1), 39. American Marketing Association. doi:10.2307/3151312

Füsüt Tatlıdil, F., Boz, İ., & Tatlıdil, H. (2005). *Farmers’ perception of sustainable agriculture and its determinants: A case study in Khamraman-maras province of Turkey*. Environment, Development and Sustainability, 7(6), 1091–1106. Springer Netherlands. doi:10.1007/s10686-008-9168-x

Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. *Field Crops Research, 114*(1), 23–34. doi:10.1016/j.fcr.2009.06.017

Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. *Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education*. Retrieved July 10, 2017 from: https://chollaworks.fupad.gov.tr/doi/10.1007/s12571-008-9171-1

Green, H. H., & Henscher, D. A. (2008). Modeling ordered choices: A primer and recent developments. *SSRN Electronic Journal*. doi:10.2139/ssrn.1213093

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). *PLS-SEM: Indeed a silver bullet*. *The Journal of Marketing Theory and Practice, 19*(2), 139–152. doi:10.2753/JMTP1069-6775190202

Hayes, W. M., & Lynne, G. D. (2004). Towards a center-piece for ecological economics. *Ecological Economics, 49*(3), 287–301. doi:10.1016/j.ecolecon.2004.01.014

Headey, D., Dereje, M., & Toffesse, A. S. (2014). Land constraints and agricultural intensification in Ethiopia: A village-level analysis of high-potential areas. *Food Policy, 48*, 129–141. doi:10.1016/j.foodpol.2014.01.008

Jara-Rojas, R., Bravo-Ureta, B. E., & Díaz, J. (2012). Adoption of water conservation practices: A socio-economic analysis of small-scale farmers in central Chile. *Agricultural Systems, 110*, 54–62. doi:10.1016/j.agsy.2012.03.008

Kassie, M., Zikhali, P., Manjur, K., & Edwards, S. (2009). Adoption of sustainable agriculture practices: Evidence from a semi-arid region of Ethiopia. *Natural Resources Forum, 33*(3), 189–198. Blackwell Publishing Ltd. doi:10.1111/j.1177-8846.2009.01224.x

Kassie, M., Zikhali, P., Pender, J., & Kohlin, G. (2010). The economics of sustainable land management practices in the Ethiopian highlands. *Journal of Agricultural Economics, 61*(3), 605–627. Blackwell Publishing Ltd. doi:10.1111/j.1477-9552.2010.00263.x

Kassie, M., woolto, M., Shiferaw, B., Mbundo, F., & Mekuria, M. (2008). Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. *Technological Forecasting and Social Change, 80*(3), 525–540. doi:10.1016/j.techfore.2012.08.007

Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. *Food Policy, 32*(1), 25–48. doi:10.1016/j.foodpol.2006.01.003

Löpple, D., & Kelley, H. (2013). Understanding the uptake of organic farming: Accounting for heterogeneities among Irish farmers. *Ecological Economics, 88*, 11–19. doi:10.1016/j.ecolecon.2012.12.025

Lynne, G. D., Cff., C., Hodges, A., & Rohmani, M. (1995). Conservation technology adoption decisions and the theory of planned behavior. *Journal of Economic
Mutyasira et al., Cogent Food & Agriculture (2018), 4: 1552439
https://doi.org/10.1080/23311932.2018.1552439

Psychology, 16(4), 581–598. doi:10.1016/j.0167-4870(95)00031-6

Lynne, G. D., Shonkwiler, J. S., & Rola, L. R. (1988). Attitudes and farmer conservation behavior. American Journal of Agricultural Economics, 70(1), 12. Oxford University Press. doi:10.2307/1241971

Meijer, S. S., Catacutan, D., Gw, S., & Nieuwenhuis, M. (2015). Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. Journal of Environmental Psychology, 43, 1–12. doi:10.1016/j.jenvp.2015.05.008

Mills, J., Gaskell, P., Ingram, J., Dwyer, J., Reed, M., & Short, C. (2017). Engaging farmers in environmental management through a better understanding of behaviour. Agriculture and Human Values, 34(2), 283–299. Springer Netherlands. doi:10.1007/s10460-016-9705-4

Moser, C. M., & Barrett, C. B. (2003). The disappointing adoption dynamics of a yield-increasing, low external-input technology: The case of SRI in Madagascar. Agricultural Systems, 76(3), 1085–1100. doi:10.1016/S0308-521X(02)00041-0

Mutyasira, V., Hoag, D., Pendell, D., Manning, D.T., & Berhe, M. (2018a). Assessing the relative sustainability of smallholder farming systems in Ethiopian highlands. Agricultural Systems, 167. doi:10.1016/j.agsy.2018.08.006

Mutyasira, V., Hoag, D., Pendell, D., & Manning, D. (2018b). Is sustainable intensification possible? Evidence from Ethiopia. Sustainability, 10(11), 4174. Multidisciplinary Digital Publishing Institute. doi:10.3390/SU10114174

Neill, S. P., & Lee, D. R. (2001). Explaining the adoption and disadoption of sustainable agriculture: The case of cover crops in Northern Honduras. Economic Development and Cultural Change, 49(4), 793–820. The University of Chicago Press. doi:10.1086/452525

Pender, J., Gebremedhin, B., Benin, S., & Ehui, S. (2001). Strategies for sustainable agricultural development in the Ethiopian highlands. American Journal of Agricultural Economics, 83(5), 1231–1240. Oxford University Press Agricultural & Applied Economics Association. doi:10.2307/1244813

Quinn, C., & Burbach, M. E. (2008). Personal characteristics preceding pro-environmental behaviors that improve surface water quality. Great Plains Research (University of Nebraska Press), 103–114. doi:10.2307/23779774

Reig-Martinez, E., Gómez-Limón, J. A., & Picazo-Todeo, A. J. (2011). Ranking farms with a composite indicator of sustainability. Agricultural Economics, 42(5), 561–575. Blackwell Publishing Inc. doi:10.1111/j.1574-0862.2011.00536.x

Sarstedt, M., Cm, R., Smith, D., Reams, R., & Hair, J. F., Jr. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115. doi:10.1016/j.jfbs.2014.01.002

Schultz, P. W. (2011). Conservation means behavior, Conservation Biology, Blackwell Publishing Inc., 25(6), 1080–1083. doi:10.1111/j.1523-1739.2011.01766.x

Soma, J., Aj, N., Nasso, S., & Sanou, S. (2002). Soil fertility management and socio-economic factors in crop-livestock systems in Burkina Faso: A case study of composting technology. Ecological Economics, 41(2–3), 175–183. doi:10.1016/S0921-8009(02)00208-2

Stern, P. C., Dietz, T., Abel, T., Ga, G., & Kalof, L. (1999). A Value-Belief-Norm theory of support for social movements: The case of environmentalism. Human Ecology Review (Society for Human Ecology), 81–97. doi:10.1016/j.jfbs.2014.01.002

Stern, P. C. (2000). New environmental theories: Toward a coherent theory of environmentally significant behavior. Journal of Social Issues, 56(3), 407–424. Blackwell Publishers Inc. doi:10.1111/0022-4537.00175

Teklewold, H., Kassie, M., & Shiferaw, B. (2013). Adoption of multiple sustainable agricultural practices in rural Ethiopia. Journal of Agricultural Economics, 64(3), 597–623. Blackwell Publishing Ltd. doi:10.1111/1477-9552.12011

Tesfa, A., & Meikuriaw, S. (2014). The effect of land degradation on farm size dynamics and crop-livestock farming system in Ethiopia: A review. Open Journal of Soil Science, 4(1), 1–5. Scientific Research Publishing. doi:10.4236/ojss.2014.41001

Wall, P. C. (2007). Tailoring conservation agriculture to the needs of small farmers in developing countries. Journal of Crop Improvement, 19(1–2), 137–155.

Taylor & Francis Group. doi:10.1300/J411v19n01_01

Wauters, E., Bielders, C., Poesen, J., Govers, G., & Mathijs, E. (2010). Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy, 27(1), 86–94. doi:10.1016/j.landusepol.2009.02.009

Wilson, G. A. (1996). Farmer environmental attitudes and ESA participation. Geoforum, 27(2), 115–131. doi:10.1016/0016-7185(96)00010-3

Wollni, M., Lee, D. R., & Thies, J. E. (2010). Conservation agriculture, organic marketing, and collective action in the Honduran hillsideis. Agricultural Economics, 41(3–4), 373–384. Blackwell Publishing Inc. doi:10.1111/j.1574-0862.2010.00445.x

Wong, K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin. Retrieved August 7, 2017 from: http://www.academia.edu/download/43189928/Smartpls.pdf.
Appendix

Table A1. Indicator loadings across constructs

Indicator	Attitude	Intention	Perceived behavioral control	Subjective norm
ATT1	0.82	0.30	0.21	0.17
ATT2	0.83	0.31	0.21	0.14
ATT3	0.77	0.39	0.30	0.25
ATT4	0.75	0.36	0.28	0.15
INT1	0.33	0.85	0.50	0.24
INT2	0.39	0.90	0.56	0.22
INT3	0.41	0.89	0.54	0.23
PBC1	0.36	0.44	0.67	0.15
PBC2	0.20	0.40	0.78	0.37
PBC3	0.16	0.49	0.77	0.23
SN1	0.24	0.07	0.14	0.58
SN2	0.19	0.08	0.12	0.61
SN3	0.14	0.19	0.32	0.72
SN4	0.16	0.26	0.25	0.81

Table A2. Fornell–Larcker Criterion analysis for checking discriminant validity

Construct	Attitude	Intention	Perceived behavioral control	Subjective norm
Attitude	0.79			
Intention	0.43	0.88		
Perceived behavioral control	0.32	0.61	0.74	
Subjective norm	0.23	0.26	0.33	0.68

The bold figures show that average variance extracted is greater than its inter-construct correlations, which implies discriminant validity.
Variable	VIF
ATT1	2.53
ATT2	2.61
ATT3	1.40
ATT4	1.40
INT1	1.93
INT2	2.27
INT3	2.16
PBC1	1.12
PBC2	1.37
PBC3	1.28
SN1	1.51
SN2	1.51
SN3	1.27
SN4	1.14
Attitude	1.14
Perceived behavioral control	1.21
Subjective norm	1.15

Figure A1. Bootstrapping results showing t-statistics.
