Ten-year longitudinal investigation of astigmatism: The Yamagata Study (Funagata)

Hiroyuki Namba1,*, Akira Sugano2, Takanori Murakami1,3, Hirosi Utsunomiya1, Hidenori Sato4, Koichi Nishitsuka1, Kenichi Ishizawa5, Takamasa Kayama6, Hidetoshi Yamashita1

1 Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Yamagata University, Yamagata City, Yamagata, Japan, 2 Ideganka Hospital, Yamagata City, Yamagata, Japan, 3 Department of Ophthalmology, Yamagata Prefectural Central Hospital, Yamagata City, Yamagata, Japan, 4 Faculty of Medicine, Genome Informatics Unit, Institute for Promotion of Medical Science Research, Yamagata University, Yamagata City, Yamagata, Japan, 5 Faculty of Medicine, Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University, Yamagata City, Yamagata, Japan, 6 Faculty of Medicine, Department of Advanced Medicine, Yamagata University, Yamagata City, Yamagata, Japan

* h-nanba@med.id.yamagata-u.ac.jp

Abstract

Despite numerous investigations into ocular or corneal astigmatism, the dynamic nature of astigmatism remains poorly understood. To reveal potential associations between age and astigmatism, 264 Japanese participants who underwent systemic and ophthalmological examinations in Funagata Town (Yamagata Prefecture, Japan) were evaluated over a 10-year period. Astigmatism was evaluated with regard to the cylinder power, cylinder axis, and vector analyses. Whereas the refractive cylinders showed age-related increases in patients in their 40s to 60s, the corneal cylinders did not change over 10 years. Nevertheless, cylindrical axis of the cornea demonstrated a continuous shift toward against-the-rule (ATR) astigmatism. Vector analyses revealed that the astigmatic shift toward ATR progressed continually after patients reached their 40s, although the shift did not accelerate with age. These novel insights may pave the way for the development of potential strategies for vision correction, including refractive surgeries, and vision-quality maintenance in the elderly.

Introduction

The human eye functions as an optical system that focuses visual images onto the retina. Astigmatism lowers the vision quality by distorting images and causing visual disturbances and blurring in uncorrected or corrected eyes [1–3]. Previous findings have indicated that anterior corneal astigmatism is compensated for by internal optics, and in part, by the posterior corneal surface [4,5]. Previous data have also shown that the prevalence of astigmatism increases [6–9] and that the axes of astigmatism shift from with-the-rule (WTR) toward against-the-rule (ATR) with aging [10–17]. However, the underlying mechanisms and processes remain poorly understood. It has been reported that analyzing data separately regarding the magnitude and axis of astigmatism is insufficient to assess the dynamic changes in astigmatism. The dynamic
nature of astigmatism has been investigated using graphical vector analysis [18], the polar value method [19], and power vector analysis [20]. In present study, we addressed this problem by vector analysis using the Alpins method. [21–23] Optical deterioration with age is expected to cause severe problems in aging societies. The purpose of this study was to investigate astigmatic changes in Japanese adults over a period of 10 years. From the perspective of optical corrections, including surgical procedures, a better understanding of the causes of astigmatism may reduce the likelihood of unfavorable results and should help in developing improved strategies for maintaining vision quality in the elderly.

Methods

Subjects

This study was performed as part of the Yamagata Study (Funagata), a population-based epidemiologic study examining systemic and ophthalmologic disorders in adult Japanese individuals aged 35 years and older. Details regarding the study participants and the research methods used were described previously [17,24–30]. Systemic and ophthalmic data were obtained from residents living in Funagata Town once every 5 years. Results obtained from 2005 to 2007 (phase 1), from 2010 to 2012 (phase 2), and from 2015 to 2017 (phase 3) were examined. Before the examinations started, written informed consents were obtained from all study participants. This study adhered to the tenets of the Declaration of Helsinki. The Yamagata Study (Funagata) was approved by the Ethical Review Committee of Yamagata University Faculty of Medicine, Yamagata, Japan. Patients were excluded from this study if they had a history of any ocular surgery, corneal scarring, other corneal pathology (e.g. pterygium), or wearing contact lenses upon slit-lamp examination. Patients who had conditions or a history of surgeries that could potentially influence astigmatism were excluded from this study, based on information gathered when obtaining patient medical histories. Subjects with missing or insufficient data were also excluded. The subjects were divided into five age groups, i.e. 39 years, 40–49 years, 50–59 years, 60–69 years, and ≥ 70 years at the beginning of phase 1.

Examination

The refractive spherical and cylindrical power, corneal cylindrical power, and intraocular pressure were measured with an auto-ref/kerato/tonometer (TONOREF II, Nidek Co., Ltd., Aichi, Japan). Refractive and corneal astigmatisms were defined as being WTR when the steepest meridian was within 90 ± 30°, or as being ATR when the steepest meridian was from 0 to 30° and 150 to 180°. Otherwise, the astigmatisms were defined as being oblique. The axial length was measured by performing partial-coherence laser interferometry using an OA-1000 optical biometer (TOMEY Corp., Aichi, Japan). Only the data obtained from the right eye of each individual were included to avoid the influence of interdependence between eyes. Physical characteristics, such as height and weight, were measured while subjects were wearing light clothing, without shoes. To avoid the use of interdependent data between two eyes from the same subject, data from only the right eyes were used.

Vector analysis

As described in previous reports [22], the refractive and keratometric astigmatism, at phase 1 and 3, were plotted on single-angle polar diagrams. Vector differences between phase 1 and 3 were also plotted. Additionally, double-angle vector investigations were performed to estimate orthogonal astigmatism. The polar values of the refractive and keratometric astigmatism were
calculated by the following equation on the double-angle diagram:

\[\text{Polar value} = K \cos \left(\frac{180}{2} \theta \right) \]

where \(K \) represents the refractive or keratometric cylinder magnitude (D, diopters), and \(\theta \) represents the steepest meridian (degree). Positive polar values indicate WTR astigmatism, whereas negative polar values indicate ATR astigmatism.

Statistical analyses

The data were analyzed using statistical SPSS analysis software, version 21.0 (https://www.ibm.com/analytics/spss-statistics-software, IBM Corp, Armonk, NY, USA). P-values less than 0.05 were considered to reflect significant differences. In cross-sectional investigation, the difference in astigmatism magnitudes and polar values of each age group were examined by Kruskal–Wallis tests. When performing longitudinal investigations of astigmatism, time-dependent changes were estimated by Friedman tests. Changes in polar values between phase 1 and 2, and between phase 2 and 3 were compared by performing Mann-Whitney tests. Linear regression analyses were performed in investigating the association between baseline age and change magnitude of astigmatism over 10 years.

Results

Demographic characteristics

The ophthalmological examinations included 1114 patients in phase 1. In those patients, 783 patients also attended in phase 2, and the 329 patients participated in all of the phase 1 to 3. Forty-five patients were excluded for the reason of pseudophakia, pterygia, or other abnormalities. From the mean value and standard deviation of spherical equivalent, \(-0.97 \pm 2.31 \) diopters (D), we excluded additional 20 patients whose spherical equivalent were less than \(-5.59 \) D, and more than \(3.64 \) D. As a result, data from 264 subjects (118 men and 146 women) were available for this study. The characteristics are summarized in Table 1. The mean age was \(56.9 \pm 8.9 \) years.

Table 1. Patient demographics.	N (%)	Mean	Standard deviation
Age (years)			
35–39	9 (3.4)	56.9	8.9
40–49	44 (16.7)		
50–59	118 (44.7)		
60–69	71 (26.9)		
70–79	22 (8.3)		
Sex			
Male	118 (44.7)		
Female	146 (55.3)		
Height (cm)	157.2	9.5	
Weight (kg)	59.7	11.3	
BMI (kg/m²)	24.1	3.3	
IOP (mmHg)	12.7	2.9	
Axial length (mm)	23.5	1.1	

Abbreviations: BMI, body mass index; IOP, intraocular pressure.

https://doi.org/10.1371/journal.pone.0261324.t001
Table 2. Age-related variations and time-dependent changes in the refractive and keratometric cylinder magnitudes.

Age group	Phase 1	Phase 2	Phase 3	P-value, Friedman test		
RC (D)	Mean	SD	Mean	SD	SD	P-value, Friedman test
Total	0.75	0.59	0.98	0.70	1.06	< 0.001
35–39	0.83	0.50	0.81	0.53	0.67	0.50
40–49	0.63	0.59	1.05	0.85	0.86	0.66
50–59	0.69	0.51	0.90	0.59	0.99	0.60
60–69	0.87	0.68	1.04	0.69	1.31	0.80
≥70	0.95	0.68	1.13	0.92	1.11	0.68

Age group	Phase 1	Phase 2	Phase 3	P-value, Friedman test		
KC (D)	Mean	SD	Mean	SD	SD	P-value, Friedman test
Total	0.76	0.71	0.75	0.56	0.72	0.56
35–39	0.92	0.45	0.92	0.53	1.08	0.91
40–49	0.75	0.58	0.81	0.65	0.69	0.53
50–59	0.60	0.42	0.67	0.49	0.65	0.47
60–69	0.90	1.01	0.78	0.60	0.76	0.54
≥70	1.10	0.92	0.85	0.64	0.84	0.84

Abbreviations: SD, standard deviation; RC, refractive cylinder; KC, keratometric cylinder; D, diopters.

Fig 1. Time-dependent changes in the distribution of the astigmatism during phase 1 (baseline; Base) and phase 3 (10 years later; 10 Y) among the different age groups. In accordance with the meridians, subjects were divided into three astigmatism groups, namely the WTR, oblique, and ATR groups. (A) Changes in refractive astigmatism. (B) Changes in keratometric astigmatism.
distribution during phase 1 (baseline) and phase 3 (10 years later). Fig 1A shows the changes in the refractive axis, with the axis changing rapidly toward ATR in subjects in their 40s and 50s. Investigating corneal astigmatisms (Fig 1B) revealed a continuous shift toward ATR, except in the youngest group.

Investigating astigmatism

As described previously [21–23] we described refractive and keratometric astigmatism on single-angle polar plots in accordance with Alpins method (Fig 2). The mean refractive cylinder was 0.23 D at an axis of 117˚ in phase 1, and 0.37 D at an axis of 137˚ in phase 3. The mean keratometric astigmatism was 0.51 D at an axis of 84˚ in phase 1, and 0.8 D at an axis of 74˚ in phase 3. The vector differences were 0.20 D at an axis of 118˚ and 0.26 D at an axis of 92˚, respectively.

To investigate polar change over 10 years, polar analyses in double-angle plots were examined. Table 3 summarizes the mean polar values in each phase calculated as above. The results for each age group are also presented. The keratometric polar values significantly decreased in a time-dependent manner in subjects aged 40–49 (p < 0.001), 50–59 (p < 0.001), and 60–69 years (p < 0.001), as determined by Friedman tests. These data indicate that a time-dependent shift toward ATR occurred. However, the refractive and keratometric polar values did not differ significantly in the group of subjects aged < 39 and ≥ 70 years.

Change in the polar values between phase 1 and 2, and between phase 2 and 3 are summarized on Table 4. Any polar values did not change between the two periods except for the refractive value of subjects aged ≤ 39, indicating that astigmatic shift toward ATR did not accelerate with age.

Discussion

In this study, we investigated associations of astigmatism with age. Three main findings resulted from this work, namely, (i) KC values did not increase with age, although RC values
did; (ii) the astigmatic shifts toward ATR were seen from 40s to 60s; and (iii) the astigmatic shift toward ATR did not accelerate with age.

Previous studies focused on refractive astigmatism showed that the prevalence of astigmatism increased with age in adult subjects [6–9]. Similarly, in our cross-sectional and longitudinal investigations, RC values showed age-related increases in subjects in their 40s, 50s, and 60s, indicating that the astigmatic magnitude increased in the whole eye. Nevertheless, KC values did not change with aging. The astigmatic magnitude of the cornea appeared to be stable. Similarly, Sanfilippo et al. [12] showed that the prevalence of refractive astigmatism increases with age after the age 50 years, although corneal astigmatism was stable until the age of 80. Herein, the age-related changes in the astigmatic meridians were also estimated (Fig 1).

Although astigmatic meridians of the cornea and whole eye appeared to change with age, they shifted differently. The keratometric meridian shifted continuously toward ATR, whereas the refractive meridian changed rapidly toward ATR in subjects in their 40s and 50s. Therefore, corneal astigmatism appears to shift toward ATR without an increase in the cylinder power, whereas the cylinder power of the crystalline lens appears to increase with age. Nevertheless, in terms of assessing dynamic changes in astigmatism, separate estimations of the cylinder power and meridian must be insufficient.

To solve the problem, we used the Alpins vector analysis as recommended in the Journal of Refractive Surgery. [21–23] Table 3 summarizes the mean polar values of the subjects, which indicate the presence of refractive and keratometric orthogonal astigmatism. Both refractive and keratometric values decreased with age during all three phases. Namely, astigmatism in the whole eye and cornea shifted toward ATR in our cross-sectional investigation, consistent with previous studies [10–17]. Longitudinal investigations also revealed time-dependent decreases in both values in the groups of subjects aged from 40s to 60s. Although these findings may have been caused by the small size of the subpopulation, the astigmatic shift toward ATR appeared to start significantly after the subjects reached 40 years of age. Previous findings also supported a general shift from a predominance of WTR astigmatism to a predominance of ATR astigmatism in adults older than 40 years [12,13,15,16]. The age-related shift towards

| Table 3. Age-related variations and time-dependent changes in the refractive and keratometric polar values. |
|---|---------------------------------|---------------------------------|---------------------------------|---|
Age group	Phase 1	Phase 2	Phase 3	P-value, Friedman test			
Refractive polar values (D)	Mean	SD	Mean	SD	Mean	SD	< 0.001
Total	-0.39	0.61	-0.51	0.71	-0.63	0.71	
35–39	0.23	0.75	0.03	0.89	0.10	0.59	0.412
40–49	-0.32	0.55	-0.41	0.64	-0.53	0.60	0.002
50–59	-0.43	0.50	-0.58	0.62	-0.73	0.63	< 0.001
60–69	-0.54	0.55	-0.63	0.58	-0.82	0.68	0.001
≥70	-0.37	0.74	-0.37	0.74	-0.52	0.64	0.943
P-value, Kruskal–Wallis test	0.121	0.023	0.001				
Keratometric polar values (D)	Mean	SD	Mean	SD	Mean	SD	< 0.001
Total	0.25	0.63	0.06	0.67	-0.04	0.68	
35–39	0.87	0.47	0.50	0.75	0.59	0.44	0.156
40–49	0.45	0.63	0.28	0.67	0.12	0.66	< 0.001
50–59	0.27	0.52	0.14	0.60	0.02	0.60	< 0.001
60–69	0.11	0.54	-0.03	0.60	-0.14	0.61	< 0.001
≥70	0.02	0.53	-0.07	0.70	-0.23	0.51	0.099
P-value, Kruskal–Wallis test	0.004	0.060	0.007				

Abbreviation: SD, standard deviation; D, diopters.

https://doi.org/10.1371/journal.pone.0261324.t003
ATR was not seen in subjects aged ≥ 70 years. Although the cause of these results is unclear, it is possible that they might have been influenced by cataract progression in the refractive value. Data from previous studies revealed that cataracts cause changes in orthogonal astigmatism, which depend on the severity and type of the cataract [31,32] Díez Ajenjo et al. [32] reported that nuclear cataracts or posterior subcapsular cataracts may lead to increased WTR astigmatism. Although our data showed that both the refractive and keratometric astigmatism shifted toward ATR from phase 1 to phase 3, the mean polar changes did not differ among two consecutive periods, i.e. from phase 1 to phase 2 or from phase 2 to phase 3 (Table 4). These findings indicate that the shift toward ATR may progress continually and that they did not accelerate with age, at least in periods examined in this research.

Previous data have shown that the shift towards ATR is due to a change in corneal curvature [11,12–14,33], but the details of the underlying mechanism remain unclear. Some reports have presented evidence suggesting that age-related changes in corneal physiology may influence the elasticity and rigidity of the cornea. For example, Daxer et al. [34] reported that the mean radius, axial period, and intermolecular Bragg spacing of collagen fibrils is greater in subjects older than 65 years than in younger subjects. These changes in collagen fibrils may result from glycation-induced cross-linking of collagen molecules, which was described by Malik et al. [35]. Thickening of Descemet’s membrane may also influence the corneal curvature [33]. Additionally, data from many studies have suggested that eyelid tension may influence the corneal curvature [36–39]. Read et al. [36] reported associations between the angle of the eyelid fissure and the corneal cylinder axis and sphere. In addition, Vihlen et al. [37] reported that eyelid tension decreases with age, consistent with an astigmatic shift occurring after 40 years of age. Thus, ophthalmologists should be prepared for performing refractive surgeries, considering these changes.

Questions arise, such as whether WTR or ATR is better for vision quality, or if the astigmatic shift from WTR to ATR is favorable. Although previous studies were conducted in attempt to answer these questions, they showed discordant results. Nevertheless, many studies have shown that near vision tends to be better in individuals with low-myopic ATR astigmatism than in those with WTR astigmatism [40–42]. Rhim et al. [43] performed an experimental study of pseudophakic eyes. They found that the focus moves nearer in subjects with ATR

| Table 4. Comparisons of changes in the polar values between two periods. |
|---------|----------------|----------------|----------------|----------------|----------------|
Age group	Phase 1 to phase 2	Phase 2 to phase 3	P-value, Mann-Whitney U test		
Refractive polar changes (D)	Mean	SD	Mean	SD	
Total	-0.12	0.59	-0.15	0.56	0.303
35–39	-0.20	0.83	0.08	0.76	0.040
40–49	-0.09	0.56	-0.11	0.51	0.856
50–59	-0.15	0.56	-0.15	0.54	0.463
60–69	-0.09	0.51	-0.19	0.53	0.446
70–79	0.00	1.02	-0.14	0.81	0.663
Keratommetric polar changes (D)	Mean	SD	Mean	SD	
Total	-0.15	0.52	-0.12	0.55	0.587
35–39	-0.37	0.71	0.08	0.70	0.694
40–49	-0.18	0.50	-0.16	0.59	0.829
50–59	-0.13	0.52	-0.12	0.54	0.966
60–69	-0.14	0.53	-0.11	0.53	0.540
70–79	-0.10	0.44	-0.16	0.47	0.597

Abbreviations: SD, standard deviation; D, diopters.

https://doi.org/10.1371/journal.pone.0261324.t004
astigmatism and farther away in subjects with WTR astigmatism, based on eyelid squinting. ATR astigmatism, induced by aging, may play a role in near vision in the elderly.

Our study provides a basis for considering age-related changes in visual function and astigmatic changes in the years following refractive surgery. This study had strengths compared to previous reports. First, previous reports included mostly cross-sectional studies, whereas our study included a longitudinal investigation, enabling us to investigate age-related changes observed in the same individual over time. Second, we evaluate astigmatism using vector analyses. This allowed us to assess dynamic changes in astigmatism over a period. Our study also had some limitations. First, due to some limitations in the patient histories, we were unable to exclude some conditions. Except for the conditions revealed by slit-lamp or other ophthalmological examinations, we had no choice but to depend on taking the medical histories of patients (e.g. habitual use of contact lenses, eye drops). Second, some unmeasured factors may be potentially associated with astigmatism, such as sleeping habits, the frequency of near work, or biological parameters not included in serological tests. Third, the data obtained by corneal topography or tomography were not included in present study. To gain more detailed information of astigmatism. Although we, and other researchers have reported cross-sectional data [29,44], longitudinal studies are expected.

In conclusion, astigmatism of the cornea and whole eye shifted toward ATR with increasing age. Therefore, we should pay attention to the shift that occurs after refractive surgeries, including cataract surgeries using multifocal or toric intraocular lenses. Our results provide baseline data for the maintenance and improvement of visual function, especially in elderly individuals. Further studies are needed to understand dynamic astigmatic changes better, and a wider range of data collected over an extended period of time will help in improving the maintenance of vision quality.

Acknowledgments
The authors thank the participants, and the associate staff of the Yamagata Study (Funagata).

Author Contributions

Conceptualization: Hiroyuki Namba, Kenichi Ishizawa, Takamasa Kayama, Hidetoshi Yamashita.

Data curation: Hiroyuki Namba, Akira Sugano, Takanori Murakami, Hiroshi Utsunomiya, Koichi Nishitsuka.

Formal analysis: Hiroyuki Namba, Hidenori Sato.

Investigation: Hiroyuki Namba, Hidenori Sato.

Methodology: Hiroyuki Namba.

Project administration: Hiroyuki Namba, Akira Sugano, Koichi Nishitsuka, Kenichi Ishizawa, Takamasa Kayama, Hidetoshi Yamashita.

Validation: Kenichi Ishizawa, Takamasa Kayama, Hidetoshi Yamashita.

Writing – original draft: Hiroyuki Namba.

References
1. Morlet N, Minassian D, Dart J. Astigmatism and the analysis of its surgical correction. Br J Ophthalmol. 2001; 85: 1127–1138. https://doi.org/10.1136/bjo.85.9.1127 PMID: 11520769
2. Sawides L, Marcos S, Ravikumar S, Thibos L, Bradley A, Webster M. Adaptation to astigmatic blur. J Vis. 2010; 10: 22.

3. Remón L, Monsoriu JA, Furlan WD. Influence of different types of astigmatism on visual acuity. J Optom. 2017; 10: 141–148.

4. Artal P, Guirao A. Contributions of the cornea and the lens to the aberrations of the human eye. Opt Lett. 1998; 23: 1713–1715. https://doi.org/10.1364/ol.23.001713 PMID: 18091893

5. Dubbelman M, Sicam VA, Van der Heijde GL. The shape of the anterior and posterior surface of the aging human cornea. Vision Res. 2006; 46: 993–1001.

6. Katz J, Tielsch JM, Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci. 1997; 38: 334–340.

7. Cheng CY, Hsu WM, Liu JH, Tsai SY, Chou P. Refractive errors in an elderly Chinese population in Taiwan: the Shihpai Eye Study. Invest Ophthalmol Vis Sci. 2003; 44: 4630–4638. https://doi.org/10.1167/ios.03-0169 PMID: 14578378

8. Raju P, Ramesh SV, Arvind H, George R, Baskaran M, Paul PG, et al. Prevalence of refractive errors in a rural South Indian population. Invest. Ophthalmol Vis Sci. 2004; 45: 4268–4272. https://doi.org/10.1167/ios.04-0221 PMID: 15557431

9. Guzowski M, Wang JJ, Rochtchina E, Rose KA, Mitchell P. Five-year refractive changes in an older population: the Blue Mountains Eye Study. Ophthalmology 2003; 110: 1364–1370. https://doi.org/10.1016/S0161-6420(03)00465-2 PMID: 12867393

10. Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T; Tajimi Study Group. Refractive errors in an elderly Japanese population: the Tajimi Study. Ophthalmology 2008; 115: 363–370. https://doi.org/10.1016/j.ophtha.2007.03.075 PMID: 18243904

11. Liu Y C, Chou P, Wojciechowski R, Lin PY, Liu CJ, Chen SJ, et al. Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study. Invest Ophthalmol Vis Sci. 2011; 52: 9651–9657. https://doi.org/10.1167/ iovs.11-7641 PMID: 22110083

12. Sanfilippo PG, Yazar S, Kearns L, Sherwin JC, Hewitt AW, Mackey DA. Distribution of astigmatism as a function of age in an Australian population. Acta Ophthalmol. 2015; 93: e377–e385.

13. Baldin WR, Mills DA. longitudinal study of corneal astigmatism and total astigmatism. Am J Optom Physiol Opt. 1981; 58: 206–210. https://doi.org/10.1097/00006324-198103000-00004 PMID: 7223852

14. Hayashi K, Hayashi H, Hayashi F. Topographic analysis of the changes in corneal shape due to aging. Cornea 1995; 14: 527–532. PMID: 8536468

15. Namba H, Kawasaki R, Sugano A, Nishitsuka K, Murakami T, Nishitsuka K, et al. Age-related changes in ocular aberrations and the Yamagata Study (Funagata). Cornea 2017; 36: S34–S40. https://doi.org/10.1097/ICO.0000000000001386 PMID: 28937417

16. Rozema JJ. Hershko S, Tassignon MJ; for EVICR.net, Project Gullstrand Study Group. The components of adult astigmatism and their age-related changes. Ophthalmic Physiol Opt. 2019; 39: 183–193. https://doi.org/10.1111/opo.12616 PMID: 30994201

17. Namba H, Kawasaki R, Sugano A, Murakami T, Nishitsuka K, Kato T, et al. Cross-sectional and longitudinal investigation of the power vector in astigmatism: the Yamagata Study (Funagata). Cornea 2018; 37: 53–58. https://doi.org/10.1097/ICO.0000000000001418 PMID: 29095754

18. Jaffe NS, Clayman HM. The pathophysiology of corneal astigmatism after cataract extraction. Trans Am Acad Ophthalmol Otolaryngol. 1975; 79: OP615–OP630.

19. Naeser K. Conversion of keratometer readings to polar values. J. Cataract Refract Surg. 1990; 16: 741–745. https://doi.org/10.1016/s0886-3350(13)81018-8 PMID: 2258811

20. Thibos L.N., Wheeler W. & Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci. 1997; 74: 367–375. https://doi.org/10.1097/00006324-199706000-00019 PMID: 9255814

21. Alpins NA. Astigmatism analysis by the Alpins method. J Cataract Refract Surg. 2001; 27: 31–49. https://doi.org/10.1016/s0886-3350(00)00798-7 PMID: 11165856

22. Alpins NA. Vector analysis of astigmatism changes by flattening, steepening, and torque. J Cataract Refract Surg. 1997; 23: 1503–1514. https://doi.org/10.1016/s0886-3350(97)80021-1 PMID: 9456408

23. Reinstein DZ, Archer TJ, Randleman JB. JRS standard for reporting astigmatism outcomes of refractive surgery. J Refract Surg. 2014; 30: 654–659. https://doi.org/10.3928/1081597X-20140903-01 PMID: 25291747

24. Tomimaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 1999; 22: 920–924. https://doi.org/10.2337/diacare.22.6.920 PMID: 10372242
25. Kawasaki R, Wang JJ, Rochtchina E, Taylor B, Wong TY, Tominaga M, et al. Cardiovascular risk factors and retinal microvascular signs in an adult Japanese population: the Funagata Study. Ophthalmology 2006; 113: 1378–1384. https://doi.org/10.1016/j.ophtha.2006.02.052 PMID: 16877076

26. Tanabe Y, Kawasaki R, Wang JJ, Mitchell P, Daimon M, et al. Angiotensin-converting enzyme gene and retinal arteriolar narrowing: the Funagata Study. J Hum Hypertens. 2009; 23: 788–793. https://doi.org/10.1038/jhuh.2009.27 PMID: 19369957

27. Nishitsuka K, Kawasaki R, Kanno M, Tanabe Y, Saito K, Honma K, et al. Determinants and risk factors for central corneal thickness in Japanese persons: the Funagata Study. Ophthalmic Epidemiol. 2011; 18: 244–249. https://doi.org/10.3109/09286586.2011.594206 PMID: 21961514

28. Namba H, Kawasaki R, Narumi M, Sugano A, Homma K, Nishi K, et al. Ocular higher-order wavefront aberrations in the Japanese adult population: the Yamagata Study (Funagata). Invest Ophthalmol Vis Sci.2015; 56: 90–97.

29. Namba H, Sugano A, Nishi K, Murakami T, Nishitsuka K, Konta T, et al. Age-related variations in corneal geometry and their association with astigmatism: The Yamagata Study (Funagata). Medicine 2018; 97: e12894.

30. Daimon M, Sato H, Sasaki S, Toriyama S, Emi M, Muramatsu M, et al. Salt consumption-dependent association of the GNB3 gene polymorphism with type 2 DM. Biochem Biophys Res Commun. 2008; 374: 576–580.21. https://doi.org/10.1016/j.bbrc.2008.07.065 PMID: 18656447

31. Pesudovs K, Elliott DB. Refractive error changes in cortical, nuclear, and posterior subcapsular cataracts. Br J Ophthalmol. 2003; 87: 964–967. https://doi.org/10.1136/bjo.87.8.964 PMID: 12881335

32. Díez Ajenjo MA, García Domene MC, Peris Martínez C. Refractive changes in nuclear, cortical and posterior subcapsular cataracts. Effect of the type and grade. J Optom. 2015; 8: 86–92. https://doi.org/10.1016/j.joptom.2014.07.006 PMID: 25192610

33. Faragher RG, Mulholland B, Tuft SJ, Sandeman S, Khaw PT. Aging and the cornea. Br J Ophthalmol. 1997; 81: 814–817. https://doi.org/10.1136/bjo.81.10.814 PMID: 9486017

34. Daxer A, Misof K, Grabner B, Ettl A, Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci. 1998; 39: 644–648. PMID: 9501878

35. Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM. Ageing of the human corneal stroma: structural and biochemical changes. Biochim. Biophys. Acta 1992; 1138: 222–228. https://doi.org/10.1016/0925-4439(92)90041-k PMID: 1547284

36. Read SA, Collins MJ, Carney LG. The influence of eyelid morphology on normal corneal shape. Invest Ophthalmol Vis Sci. 2007; 48: 112–119. https://doi.org/10.1177/0145538006292612 PMID: 17197524

37. Vihlen FS, Wilson G. The relation between eyelid tension, corneal toxicity, and age. Invest Ophthalmol. Vis. Sci. 1983; 24: 1367–1373. PMID: 6618796

38. Cadera W, Orton RB, Hakim O. Changes in astigmatism after surgery for congenital ptosis. J Ped Ophthalmol Strabismus 1992; 29: 85–88. PMID: 1588481

39. Moon NJ, Lee HI, Kim JC. The changes in corneal astigmatism after botulinum toxin-a injection in patients with blepharospasm. J Korean Med Sci. 2006; 21: 1351–1355 (2006). https://doi.org/10.3346/jkms.2006.21.1.131 PMID: 16479079

40. Verzella F, Calossi A. Multifocal effect of against-the-rule myopic astigmatism in pseudophakic eyes. Refract Corneal Surg. 1993; 9: 58–61. PMID: 8481374

41. Nagpal KM, Desai C, Trivedi RH, Vasavada AR. Is pseudophakic astigmatism a desirable goal? Indian J Ophthalmol. 2000; 48: 213–216. PMID: 11217253

42. Nanavaty MA, Vasavada AR, Patel AS, Raj SM, Desai TH. Analysis of patients with good uncorrected distance and near vision after monofocal intraocular lens implantation. J Cataract Refract Surg. 2006; 32: 1091–1097. https://doi.org/10.1016/j.jcrs.2006.03.021 PMID: 16857493

43. Rhim JW, Eom Y, Park SY, Kang SY, Song JS, Kim HM. Eyelid squinting improves near vision in against-the-rule and distance vision in with-the-rule astigmatism in pseudophakic eyes: an eye model experimental study. BMC Ophthalmol. 2020; 20: 4. https://doi.org/10.1186/s12886-019-1297-5 PMID: 31886509

44. Vitályos G, Kolozsvári BL, Németh G, Losonczy G, Hassan Z, Pásztor D, et al. Effects of aging on corneal parameters measured with Pentacam in healthy subjects. Sci Rep. 2019; 9: 3419. https://doi.org/10.1038/s41598-019-39234-x PMID: 30833606