Making decisions about radiological imaging in pregnancy

Rebecca Wiles, Beth Hankinson, Emily Benbow, Andrew Sharp

What you need to know

- Consider imaging when the risk of potential pathology outweighs the potential risk of imaging
- In radiography and computed tomography (CT), the risk of childhood cancer induction is very low if imaging is above the diaphragm or below the knee. If intravenous contrast agent is used in CT, test thyroid function in the child after birth via heel prick
- Ultrasound and magnetic resonance imaging have no known risks for the fetus, although they have theoretical risks. Avoid contrast agents for both these modalities

Globally, ultrasound has been used in pregnancy for decades. The use of other imaging modalities—such as plain radiography, computed tomography (CT), and magnetic resonance imaging (MRI)—in pregnancy is increasing. Imaging plays an important role in the investigation of many conditions in pregnancy, but also has potential to cause harm. Concerns about harm to the fetus and mother can make decisions to image difficult for patients and clinicians. However, risk is often lower than expected and, especially in many acute situations, is outweighed by the benefit.

This article outlines the potential fetal and maternal risks from commonly used imaging modalities. We also present frequently encountered emergency clinical scenarios, along with imaging suggestions for each situation, with the aim of enabling referring clinicians and patients to make informed shared decisions.

Imaging modalities and types of radiation covered include:

- Ultrasound—uses high frequency sound to produce images
- Ionising radiation—uses high energy electromagnetic radiation to produce images. X rays (used in plain radiography and CT) and gamma rays (used in nuclear medicine studies) are the most commonly used forms of ionising radiation in medical imaging.
- MRI—uses strong magnetic fields and radio waves to produce images.

The following aspects are beyond the scope of this article:

- Elective scenarios which could potentially wait until after pregnancy; however, the principles discussed can be applied to all pregnant patients
- Issues that are primarily the role of radiology departments—eg, dose modification techniques, and prevention or management of inadvertent fetal imaging (when patients are unaware they are pregnant)
- Postpartum imaging and imaging in patients who are breastfeeding.

What is the evidence?

Evidence used to create this article includes experimental animal studies, observational epidemiological studies on human subjects, and, in the case of ionising radiation, studies from atomic bomb survivors in Japan. Most human studies are retrospective.

What potential risk does imaging in pregnancy pose to the fetus?

Different imaging modalities have different effects on human tissues, and as such, pose different risks (and levels of risk) to the fetus (table 1). High dose ionising radiation such as CT is generally of more concern than ultrasound, MRI, and low dose ionising radiation such as plain radiography.
Modality	Consideration
Ultrasound	**Potential indications in pregnancy**
	Obstetric imaging
	Suspected acute abdominal/pelvic pathology
	Heart imaging (echocardiography)
Evidence based summary	No evidence of adverse maternal, fetal, perinatal, or childhood outcome.
of risk	Theoretical risk from heating and movement effects but no adverse outcomes
	have been found from these in human studies.
IV contrast use (microbubbles)	Used rarely (some echocardiography, characterisation of liver and renal lesions).
	Microbubbles can burst and cause cavitation. They enter the placenta, and
	placental damage risk has not been well investigated.
Recommendations	Generally safe, but keep as low as reasonably achievable principle.
	- only request if clinically indicated
	Generally avoid ultrasound contrast unless benefits clearly outweigh the risks
Ionising radiation	**Potential indications in pregnancy**
	X rays:
	- Plain radiographs—e.g., chest radiographs for acute respiratory presentations and extremities in trauma
	- CT—e.g., CT head in suspected intracranial haemorrhage, CT pulmonary
	angiography (CTPA) in suspected pulmonary embolism, and CT abdomen in trauma
	- Gamma rays: ventilation/perfusion (VQ) scans in suspected pulmonary
	embolism
Evidence based summary	Fetal malformation, growth restriction, intellectual disability, or death,
of risk	should not occur with radiation levels used in diagnostic imaging.
	UK guidelines suggest this threshold is 100 mGy
	US guidelines suggest 50 mGy.
	Theoretically, cancer induction can occur with any dose of ionising radiation,
	and as such no threshold exists below which this cannot occur.
	Risk is dependent on dose and body part imaged. See table 2 for childhood
	cancer risk with ionising radiation
IV contrast use (iodinated contrast)	Used in most body imaging including CTPA and CT abdomen studies.
	Not routinely used in brain imaging unless vascular assessment required
	(e.g., CT venogram and angiogram studies).
	Contrast crosses the blood-placental barrier but no evidence suggests that IV
	CT contrast administered at any time in pregnancy causes harm to the fetus.
	A theoretical risk exists for neonatal hypothyroidism.
Recommendations	Always keep doses as low as reasonably achievable.
	Low fetal dose procedures (e.g., radiography and CT above the diaphragm or
	below the knees) pose minimal risk of childhood cancer induction—1 in 10
	000-100,000—and can be justified when clinically indicated.
	Only consider higher fetal dose procedures (e.g., CT which covers the
	pelvis) when information cannot be obtained without ionising radiation, and
	if serious detriment to the patient’s health is likely without the scan.
	If performed, fetal dose should not exceed 50-100 mGy.
	See table 2 for more detail about dose and fetal risk.
	IV contrast can be used if clinically indicated—if used, screen babies for
	neonatal hypothyroidism in their first week of life.

Table 1 | Fetal risks associated with, and guidelines for, the use of specific imaging modalities in pregnancy
Is there a role for abdominal shielding?
Abdominal lead shielding was historically used for ionising radiation that did not directly expose the fetus (e.g., chest radiography and CT pulmonary angiography (CTPA)). However, as most of the fetal dose in these investigations is from internal (rather than external) scatter, abdominal shielding is unlikely to be of benefit.\(^\text{18}\) Additionally, if the shield is inadvertently in the field of view during the scan, automatic exposure control can cause increased dose.\(^\text{18}\)

Guidelines from the American Association of Physicists in Medicine\(^\text{19}\) and British Institute of Radiology\(^\text{20}\) suggest avoiding routine shielding, but recommend considering it case by case if it offers patient reassurance after adequate counselling about the above.

When does imaging pose a maternal risk?

Ultrasound
A meta-analysis performed on behalf of the World Health Organization found no evidence of adverse maternal outcome following ultrasound in pregnancy and it can be considered safe.\(^\text{2}\)

Ionising radiation
Breast tissue is particularly susceptible to the effects of ionising radiation\(^\text{24}\) and pregnant (and breastfeeding patients) are theoretically at increased risk because breast tissue is actively undergoing glandular proliferation.\(^\text{18}\) However, a retrospective population based cohort study with a short term follow-up period (<12 years) did not show an increased risk of breast cancer in patients exposed to CT chest or VQ scanning in pregnancy.\(^\text{22}\)

MRI
Usual MRI safety considerations for all patients apply. In pregnancy, the relatively long scan times (20 minutes to one hour) and claustrophobia may be difficult, particularly in late pregnancy. Consider reduced scan times and alternative (e.g. oblique) positioning.

Difficulties in interpretation
False negative and false positive findings can occur in pregnancy because of altered anatomy and physiology. For example, haemodynamic circulation causing difficulties in pulmonary artery opacification on CTPA,\(^\text{23}\) and displacement or compression of structures by the gravid uterus can make visualising suspected acute abdominal pathology on ultrasound difficult.\(^\text{24}\)

Incidentalomas
As with all patients, imaging presents a risk of detecting incidental findings, which may lead to further investigations and may increase patient anxiety unnecessarily.\(^\text{25}\)

How are shared decisions made?
For ultrasound, MRI, and low dose ionising radiation (tables 1 and 2) discussion may be relatively straightforward.

Table 1 | Fetal risks associated with, and guidelines for, the use of specific imaging modalities in pregnancy (Continued)

Modality	Consideration
MRI	Potential indications in pregnancy
	Brain imaging
	Fetal imaging
	Acute abdominal pain
Evidence based summary of risk	No conclusive evidence that MRI causes fetal harm.\(^\text{7}\)\(^\text{14}\)\(^\text{15}\) Theoretical risks of fetal hyperthermia\(^\text{2}\) and inner ear damage\(^\text{6}\) can be mitigated by scanner modifications.\(^\text{15}\)
IV contrast use (gadolinium based contrast)	Contrast crosses the blood placental barrier. Limited evidence shows that MRI contrast use in pregnancy is associated with “a broad set of [neonatal] rheumatological, inflammatory, or infiltrative skin conditions” and of stillbirth or neonatal death.\(^\text{16}\)
Recommendations	MRI can be considered safe in pregnancy. Some bodies, such as the UK government’s Medicines and Healthcare Products Regulatory Agency, advise caution in scanning in the first trimester (though it is advised this can be done when the benefits outweigh the risks).\(^\text{15}\) Others, such as the American College of Radiologists, suggest that patients in the first trimester of pregnancy should not be treated differently from those in later stages of pregnancy.\(^\text{14}\) Generally avoid IV gadolinium unless it will change management during pregnancy or no method of obtaining information is available.\(^\text{10}\)\(^\text{17}\)

* Meta-analysis cited found a weak association between ultrasound exposure and non-right handedness in boys, though not when boys and girls were analysed together.\(^\text{1}\)
* Already offered to all newborns in Europe, Australia, New Zealand, and North America to assess for congenital hypothyroidism.\(^\text{2}\)

BMJ: first published as 10.1136/bmj-2022-070486 on 25 April 2022. Downloaded from http://www.bmj.com/ on 25 July 2022 by guest. Protected by copyright.
Table 2 | Typical fetal doses and risks of childhood cancer for some common diagnostic ionising radiation modalities used in pregnancy

Examination	Typical fetal dose (mGy) from a single scan	Risk of childhood cancer per examination
Radiography		
Teeth	0.001-0.01	<1 in 1 000 000
Neck		
Chest		
Extremity		
Mammography		
CT Chest	0.01-0.1	1 in 1 000 000 to 1 in 10 000
Pulmonary angiogram		
Radiography	0.1-1.0	1 in 100 000 to 1 in 10 000
Abdomen		
Pelvis		
Hip		
CT Chest and liver		
Nuclear medicine		
VQ scan		
Radiography	1.0-10.0	1 in 10 000 to 1 in 1000
Lumbar spine		
CT		
Lumbar spine		
Abdomen (not pelvis)		
CT Abdomen and pelvis	10.0-50.0	1 in 1 000 to 1 in 200
PET/CT		
Whole body		

Based on data summarised by the UK’s Health Protection Agency, The Royal College of Radiologists, and The Royal College of Radiographers.11

Doses apply to early stages of pregnancy when the fetus is small.

Risk of childhood cancer has been rounded up to 1 in 10 000 per mGy.

For comparison, natural childhood cancer risk is ~1 in 500.

Common clinical scenarios

Trauma

A 27 year old woman is brought to the emergency department by ambulance following a high speed road traffic collision. She is 30 weeks pregnant.

She has a Glasgow coma scale score of 15, pulse rate 125 beats/min, blood pressure 120/70 mm Hg, and respiratory rate 25 breaths/min.

She has pain in the left lower chest wall and left flank and left flank guarding and bruising. She says her baby is moving normally and the obstetric team has no immediate concern about the fetus. The surgical team is called and imaging is considered. The patient wants to know about risks to her baby from CT scanning.

Trauma is the leading non-obstetric cause of maternal mortality and can also cause fetal loss, so early identification of injury is important.30 Consider radiology when the risk from trauma is likely to be higher than the risk from imaging.

Chest radiography and focused assessment with sonography in trauma may help to rule in some injuries (eg, pneumothorax, large volume haemoperitoneum) and expose the fetus to minimal or no radiation. However, these modalities may not rule out potentially life threatening injury, which could put the patient and fetus at risk (eg, active bleeding, organ injury, fractures).

When potentially life threatening thoracic or abdominal injury is suspected, CT scan is the imaging modality of choice and intravenous (IV) contrast is usually required (fig 1).
Discuss with the patient the risk of missing life threatening pathology versus the relatively small risk of childhood cancer induction from CT. Table 2 gives approximate risks (note, doses, and risk in table 2 are for single scans, but trauma protocols can
involve dual phase scanning. Offer reassurance that the fetus is not at definite risk from any IV contrast administration, but because of the theoretical risk of hypothyroidism, neonatal heel prick is advised (table 1).

Once life threatening injury to the patient is excluded, consider obstetric ultrasound to look for fetal, placental, and uterine injury.

Headache

A 35 year old woman attends an out-of-hours GP service with headache and vomiting that started suddenly, 24 hours earlier. She is 17 weeks pregnant and has no headache history. She has diplopia but no fever or meningism. Vital observations and urine dipstick are unremarkable. The GP recommends urgent assessment in the emergency department and advises that this will likely include imaging. The patient wishes to discuss imaging options.

Headache in pregnancy is common and usually the result of primary headache disorders (eg, tension headache or migraine).

After 20 weeks’ gestation, pre-eclampsia is also a common cause and associated with hypertension with or without proteinuria.

Consider urgent radiological investigations if there is clinical suspicion of a life threatening diagnosis (eg, subarachnoid haemorrhage, venous sinus thrombosis).

CT is quick, widely available, can readily detect acute haemorrhage, and post contrast imaging is possible. MRI is more sensitive than CT for detecting most intracranial pathology; however, it is slower, less readily available, more prone to artefact, and post contrast imaging (using gadolinium) is generally not recommended in pregnancy (table 1).

If CT is clinically indicated and would be the usual first choice in a non-pregnant patient, the authors recommend not delaying CT (ie, avoid considering MRI as first line purely on the basis of fetal risk).

Advise the patient that the radiation dose to the fetus from CT scanning of the head is negligible (table 2). If CT is negative, further investigation with MRI, post contrast CT, or lumbar puncture may be required, depending on the suspected diagnosis.

Suspected pulmonary embolism

A 32 year old woman attends the emergency department following sudden onset chest pain and dyspnoea six hours earlier. She is 25 weeks pregnant. She has no relevant medical history, fever, cough, or alteration in her sense of taste or smell.

Her pulse rate is 105 beats/min and her respiratory rate 18 breaths/min. Other observations, examination, electrocardiogram, routine blood tests, and chest radiograph are normal. The clinical team suspects pulmonary embolism, and imaging is discussed. The patient is concerned about implications for her baby. She asks, “What difference will a scan make if I have a blood clot in my lungs?”

The risk of missing pulmonary embolism or of anticoagulating a patient without pulmonary embolism puts the patient (and therefore fetus) at risk of illness or death, so imaging is recommended.

If the patient has clinical signs of deep vein thrombosis (DVT), perform lower limb vein ultrasound. In the absence of signs of DVT, guidelines for imaging of suspected pulmonary embolism in pregnancy are conflicting. Some suggest lower limb vein ultrasound to avoid ionising radiation. Others advise doing this only if the patient also has clinical signs of DVT.

Direct imaging is most commonly performed with CTPA (fig 2) or VQ scanning. Choosing between these studies is controversial and varies between institutions because each modality has relative risks and benefits (table 3).
Reassure the patient that whichever modality is used, the risks of harm to the pregnant woman and fetus are likely to be less than those of missing a pulmonary embolism.

Acute abdominal pain

A 30 year old woman attends the emergency department with right iliac fossa pain which started in the mid abdomen. She is 30 weeks pregnant.

Fig 2 | CTPA in a patient in the first trimester of pregnancy showing acute pulmonary embolism in the left pulmonary artery (arrow). Pregnancy makes the breast tissue dense and glandular (ie, at increased risk from ionising radiation).

Table 3 | Imaging for suspected pulmonary embolism in pregnancy

Modality	Fetal dose	Maternal breast dose	Availability	Use in presence of other lung pathology	Likelihood of non-diagnostic result	Other considerations
CTPA	Low. May be lower than VQ. 0.01-0.1 mGy (1 in 10 000 to 1 in 100 000 risk of childhood cancer)	May be higher than VQ 10-60 mGy	Good—common test performed widely	Advised	12%, 95% confidence interval (CI) 8 to 17	IV contrast used (table 1)
VQ	Low. May be higher than CTPA 0.1-1 mGy (1 in 10 000 to 1 in 10 000 risk of childhood cancer)	May be lower than CTPA 0.98-1.07 mGy	May be limited, especially out of hours	Not advised	14%, 95% CI 10 to 18	Perfusion scan can be performed first. If normal, ventilation scan is not needed

* A Cochrane review41 and further meta-analysis40 pooled data regarding maternal and fetal doses for CTPA and VQ and advised caution in interpreting results of studies because of a lack of high quality data.
pregnant. On examination, she has tenderness and guarding in the right iliac fossa. Blood tests show elevated white cell count and C reactive protein levels. Urine dipstick is normal. Acute appendicitis and adnexal torsion are considered the most likely differential diagnoses. The patient asks, “Do I need an MRI? Isn’t ultrasound good enough?”

Early diagnosis of acute abdominal or pelvic pathology can prevent maternal and fetal harm. The risk of not treating some conditions (eg, acute appendicitis or adnexal torsion) while difficult to quantify, is likely to be higher than the risk of imaging.

Ultrasound is safe in pregnancy. It is often the first modality used for abdominal and pelvic pain in a non-emergency situation. However, its usefulness is dependent on the skill or experience of the operator and views of deep structures can be poor owing to anatomical displacement. Ultrasound for acute appendicitis has 50-100% sensitivity and 33-92% specificity in pregnant patients. MRI (fig 3) is potentially more accurate—eg, for acute appendicitis, sensitivity is 92% and specificity 98%. It is, however, more time consuming and not as readily available as ultrasound, particularly out of hours.
Fig 3 | MRI in a pregnant patient showing right adnexal torsion. (a) and (b) Coronal balanced fast field echo images, (c) axial T2 weighted images. The patient has a right sided abdominal mass with a thick irregular wall and central fluid signal (large arrow in (a)) and abdominal free fluid (arrowheads in (c)), both of which had been detected on ultrasound. The known intrauterine pregnancy is also shown (small arrow (a)). An additional finding on MRI, not detected on ultrasound, was the twisted adnexal pedicle (arrows in (b) and (c)) connecting the uterus to the mass, confirming the diagnosis of adnexal torsion for which surgery in pregnancy was required.
If MRI is being considered, advise patients that there is no known harm to the fetus (table 1) but that scan times are at least 20 minutes (potentially longer) and scanners are small, which may be uncomfortable. Avoid IV contrast (table 1).

If MRI is not available, CT can be considered but involves pelvic irradiation, so only if there is no alternative. The risks are discussed above, under “Trauma.”

Education into practice

- How often do you assess whether patients of pre-menopausal age could be pregnant before requesting imaging?
- How do you communicate imaging risk to pregnant patients? What alternatives to imaging do you offer?
- What local protocols and pathways does your institution use when imaging pregnant patients? If no pathway is available for imaging suspected pulmonary embolism in pregnancy based on local availability of radiological services, how might you consider implementing one?

How patients were involved in the creation of this article

EB is a patient representative in the Liverpool Babies Patient and Public Involvement and Engagement Group. She provided a patient perspective on imaging in pregnancy. This included the discussion surrounding how to discuss risk with patients and the use of straightforward terminology, without being patronising. She produced the “Information for Patients” section of the article.

The article was also reviewed by an external patient representative. As a result, the language was worded to ensure clear information to the reader, acknowledging that the reader (be they a medical professional or patient) may not be familiar with some radiological and other technical terms.

How this article was created

The authors searched for UK and international guidelines (from both radiological and obstetric and gynaecological societies and faculties) regarding imaging pregnant patients with ultrasound, ionising radiation, and MRI. Guidelines for imaging in specific conditions were also reviewed. The authors performed a literature search of patient information leaflets discussing the subjects relevant to the study—imaging in pregnancy and the investigation of specific conditions in pregnancy.

Information resources for patients

Radiological practice may vary in different institutions, so some of the information in these resources may not apply to all situations.

Ionising radiation

- X ray and nuclear medicine:
 - The Heath Physics Society (a non-profit scientific professional organisation based in the US) offers information for patients about how radiation can affect them. The section on their website “The Unborn Child” gives in depth information for pregnant patients, focussing on x ray and nuclear medicine: https://www.radiationanswers.org/radiation-and-me/radiation-reproduction/unborn-child.html
 - X ray and CT:
 - This is a patient information leaflet produced by the New South Wales Agency for Clinical Innovation in Australia. It includes specific information about the small risk of ionising radiation to the fetus and relates this to background radiation risk. This leaflet is also available in Arabic, Chinese, Greek, Korean, and Vietnamese: https://act.health.nsw.gov.au/__data/assets/pdf_file/0003/273450/risk-of-x-rays-and-ct-scans-in-pregnancy-patient-factsheet-o.pdf

- CT:
 - RadiologyInfo is a public information website developed and funded by the Radiological Society of North America and the American College of Radiology. This webpage gives quick, easy-to-read, basic information about CT in pregnancy: https://www.radiologyinfo.org/en/info/safety-ct-pregnancy

MRI

- NHS Greater Glasgow and Clyde Health Board in the UK has produced a patient information leaflet regarding MRI in pregnancy. This is a simple one page guide reassuring patients that MRI likely poses no risks to the fetus: https://www.mriphysics.scot.nhs.uk/wp-content/uploads/2019/12/Info_for_pregnant_patients_final_v_Dec_19.pdf

Investigation of suspected venous thromboembolism

- Oxford University Hospitals NHS Foundation Trust and Royal Devon and Exeter NHS Foundation Trust in the UK have produced comprehensive patient information leaflets about the investigation of suspected VTE. Both give context of background radiation when explaining the risk of the tests. Local practice will vary (particularly with the availability of nuclear medicine scanning) and as such this should be taken into account when considering the use of these patient resources:
 - https://www.ouh.nhs.uk/patient-guide/leaflets/files/65147Pclots.pdf
 - https://www.rdehospit.nhs.uk/media/wuf4p4ix/patient-information-leaflet-scanning-for-suspected-pulmonary-embolism-and-deep-vein-thrombosis-pe-dvt-in-pregnancy-and-the-postnatal-period-dde-20-083-001.pdf

Understanding risk

- The Royal College of Obstetricians and Gynaecologists has produced a patient information leaflet explaining how risk is explained in healthcare. This is a generic article, rather than pregnancy specific, but pregnant patients may find some of the themes useful:
 - https://www.rcog.org.uk/or-for-the-public/browse-all-patient-information-leaflets/understanding-how-risk-is-discussed-in-health-care/

Contributorship and the guarantor: RW conceived the article. RW and AS are guarantors. EB and RW wrote the “Information resources for patients” section. RW, AS, and BH wrote the rest of the article.

We thank Rashika Fernando, consultant radiologist at Liverpool University Hospitals NHS Foundation Trust, for contributing one of the images.

Competing interests: AC has received payment from Roche for giving an invited talk about the role of blood biomarkers sP1/PGF in predicting fetal growth restriction at a luncheon symposium at an international conference in 2019. He received travel and accommodation expenses and an honorarium for his lecture. RW, BH, and EB declare no competing interests.

Provenance and peer review: commissioned; externally peer reviewed.

1 Kwan ML, Miglioretti DL, Marov T, et al. Radiation-Induced Cancers Study Team. Trends in medical imaging during pregnancy in the United States and Ontario, Canada, 1996 to 2016. JAMA Netw Open 2019;2:e197249. doi: 10.1001/jamanetworkopen.2019.7249.pmid: 3139541
2 Torloni MR, Wiedmendovska N, Meradji M, et al. ISUOG-WHO Fetal Growth Study Group. Safety of ultrasonography in pregnancy: WHO systematic review of the literature and meta-analysis. Ultrasound Obstet Gynecol 2009;33:599-608. doi: 10.1002/uog.6338.pmid: 1929181
3 Streffer C, Shore R, Kornemann G, et al. Biological effects after prenatal irradiation (embryo and fetus). A report of the International Committee on Radiological Protection. Ann ICRP 2003;33:5-206.pmid: 12963090
4 International Commission on Radiological Protection. The 2007 Recommendations of the International Committee on Radiological Protection. ICRP publication 103. ICRP 2007;73:1-332.pmid: 1808257
5 Yip YP, Capriotti C, Talagala SL, Yip JN. Effects of MRI exposure at 1.5 T on early-embryonic development of the chick. J Magn Reson Imaging 1994;4:742-8. doi: 10.1002/jmri.1880040518.pmid: 7981520
6 Sztrok B, Jani JC, Munro E, et al. Safety of MRI imaging at 1.5 T in fetuses: a retrospective case-control study of birth weights and the effects of acoustic noise. Radiology 2015;275:530-7. doi: 10.1148/radiol.14151862.pmid: 2557159
7 Committee opinion no. 723: guidelines for diagnostic imaging during pregnancy and lactation(co-relation). Obstet Gynecol 2018;132:786.doi: 10.1097/AOG.0000000000002858.pmid: 3013440
Sadro C, Bernstein MP, Kanal KM. Imaging of trauma: Part 2, Abdominal trauma and pregnancy—ACR practice guideline. American College of Radiology. ACR practice guideline for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation. 2008.

Royal College of Radiologists. Protection of pregnant patients during diagnostic medical exposures to ionizing radiation. United Kingdom: Health Protection Agency, The Royal College of Radiologists and The Royal College of Radiographers, 2009. doi: 10.2214/AJR.09.35478

Socol M, Ako K, Katagiri Y. Thyroid dysfunction in neonates born to mothers who have undergone hysterolaparoscopy involving an oil-soluble iodinated contrast medium. Horm Res Pediatr. 2015;84:370-5. doi: 10.1158/0033-7587.8.003.2014-0305. pmid: 26402163

The Australian and New Zealand College of Radiologists. Indicated contrast medium guideline. 2018.

Kanai E, Bankovich AJ, Bell C, et al. Expert Panel on MR Safety. ACR guidance document on MR safe practices. J Mag Reson Imaging. 2013;37:501-30.

Medicines and Healthcare products Regulatory Agency. Safety guidelines for magnetic resonance imaging equipment in clinical use. 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/958486/MRI_guidance_2021-4-03c.pdf

Ray JG, Vermeulen MJ, Bharatha A, Montanara WJ, Park AL. Association between MR exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:95-62.

Royal College of Radiologists. Guidance on gadolinium-based contrast agent administration to adult patients London. 2019. https://www.rcr.ac.uk/publication/guidance-gadolinium-based-contrast-agent-administration-adult-patients.pdf

Tindra N, Drezen D, Khatt NL, Akim EA, Zeman RK. Imaging pregnant and lactating patients. Radiographics. 2015;35:175-65. doi: 10.1148/rg.2015150031. pmid: 26466183

American Association of Physicists in Medicine. AAPM position statement on the use of patient goniadial and fetal shielding. 2019.

British Institute of Radiology, Institute of Physics and Engineering in Medicine, Public Health England, Royal College of Radiologists, Society and College of Radiographers, the Society for Radiological Protection. Guidance on using shielding on patients for diagnostic radiology applications. 2020.

PRESTON DL, Mattsson A, Holmberg E, Shore R, Hidhret NG, Boice JD. Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res. 2002;158:220-35. doi: 10.1667/0033-7587(2002)158[0220:REOBCR]2.0.CO;2. pmid: 1205999

Barton KR, Park AL, Frials M, Ray GS. Risk of early-onset breast cancer among women exposed to thoracic computed tomography in pregnancy or early postpartum. J Thorac Haematol. 2018;16:876-85. doi: 10.1111/jth.13980. pmid: 29450965

Ridge CA, Mhurcheartaigh JN, Dodd JD, Skehan SJ. Pulmonary CT angiography protocol adapted to the hemodynamic effects of pregnancy. AJR Am J Roentgenol. 2011;197:1058-63. doi: 10.2214/ajr.110.30535. pmid: 21953666

Masselli G, Brunelli R, Monti R, et al. Imaging for acute pelvic pain in pregnancy: Insights Imaging 2018;9:16-29. doi: 10.1007/s13244-018-0815-2. pmid: 29635757

O’Sullivan JW, Muntinga T, Gregg S, Ioannidis JP. Prevalence and outcomes of incidental imaging findings: umbrella review. BMJ. 2018;361:k2387. doi: 10.1136/bmj.k2387. pmid: 2991908

Murji A, Croser R, Rasouli P. Non-obstetric diagnostic imaging in pregnancy. CMAJ. 2015;187:1309. doi: 10.1503/cmaj.141091. pmid: 2621661

Royal College of Obstetricians and Gynaecologists. Presenting information on risk (Clinical Governance Advice No. 7). 2008.

Royal College of Obstetricians and Gynaecologists. Understanding how risk is discussed in healthcare. 2015.

American College of Radiology. ACR practice guideline for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation. 2008.

Sadro C, Bernstein MP, Kanal KM. Imaging of trauma: Part 2, Abdominal trauma and pregnancy—a radiologist’s guide to doing what is best for the mother and baby. AJR Am J Roentgenol. 2012;199:1207-19. doi: 10.2214/AJR.12.9939. pmid: 23169710

Royal College of Radiologists. Standards of practice and guidance for trauma radiology in severely injured patients. 2015. doi: 10.2214/AJR.12.9939

National Institute for Health and Care Excellence. Hyptension in pregnancy: diagnosis and management. NICE guideline NG133. 2019. nice.org.uk/guidance/ng133

National Institute for Health and Care Excellence. Venous thromboembolic diseases: diagnosis, management and thrombophilia testing. NICE guideline NG158. 2020. https://www.nice.org.uk/guidance/ng158

American College of Radiologists. ACR Appropriateness Criteria. Suspected pulmonary embolism. Variant 3: suspected pulmonary embolism. Pregnant patient. 2016.