Heterokairy as an anti-predator strategy for parasitic species

Frédéric B. Muratori
Biodiversity Research Centre; Earth & Life Institute; Université de Louvain; Louvain-la-Neuve, Belgium

Key words: heterokairy, niche-shift, anti-predator strategy, plasticity, aphid parasitoids, cecidomyiidae, nematomorpha

Heterokairy refers to plasticity in the timing of onset of developmental events at the level of an individual. When two developmental stages do not share the same ecological niche, referred to as ‘ontogenetic niches’, the control of the niche shift through a change in developmental timing can be advantageous for the individual (e.g., when mortality risk is different in the two niches). Heterokairy can arise either from plasticity in developmental rate (ontogenetic shift) or by a purely behavioral decision (behavioral shift). Parasitic species living inside of their hosts often inherit the predators of their hosts. To cope with the predation risk on their hosts, parasites and parasitoids show either host-manipulation abilities or either host-leaving strategies. Nevertheless, leaving the host should be associated with developmental costs, since the parasitic individuals are usually unable to parasitize another host. This process is thus related to the classical trade-off between size and developmental time. Recent studies provided examples of behavioral heterokairy in invertebrates. The goal of this publication is to review and discuss recent results on developmental plasticity in parasitic species in an evolutionary perspective.

Heterokairy: Definition

Phenotypic plasticity in development time allows individuals to deal with unpredictable environments.1 Heterokairy refers to plasticity in the timing of developmental events at the level of an individual.2 “Heterokairy” is the individual equivalent of evolutionary “heterochrony,”3 and can arise either from plasticity in developmental rate (ontogenetic shift)4,5 or by a purely behavioral decision.6,7 Exposure to predators have been shown to deal with unpredictable environments.1 Heterokairy refers to plasticity in the timing of onset of developmental events at the level of an individual.2 “Heterokairy” is the individual equivalent of evolutionary “heterochrony,”3 and can arise either from plas-

Correspondence to: Frédéric B. Muratori; Email: frederic.muratori@uclouvain.be
Submitted: 04/03/10; Accepted: 04/03/10
Previously published online:
www.landesbioscience.com/journals/cib/article/11977

Parasitic species living inside of their hosts often inherit the predators of their hosts.7 Parasitoids are organisms that develop inside or on another organism (host); they feed on the host tissues and kill the host as a direct or indirect result of its development. For a long time, parasitic species were considered to live in a predictable environment (hosts) that does not require adaptive phenotypic plasticity. Thomas et al.7 challenged this view by discussing the state-dependent strategies adopted by parasitic species to maximize their reproductive success according to external conditions.7 The environment of parasites is made up of at least two dimensions, which are ecologically different: the host (i.e., the immediate environment) and the habitat of the host (i.e., the ecosystem).7 For instance, it is frequently observed that parasite virulence is higher when the host is in poor condition or experiencing stressful conditions.8 It may be possible for parasites to perceive the external environment of their hosts, such as the predation risk of their hosts, and adjust their strategy accordingly. Free-living crustaceans can evaluate the abundance of fish predators, without the need to see them directly, by detecting components of the fish mucus in the water.9

The role of predation in the evolutionary ecology of animal communities has long been a focus of ecological research but, to date, sparse attention has been given to the responses of parasites...
when their hosts are victims of predation.6 One option for parasitic species to reduce the risk of mortality by predation of its host is to reduce the encounter rate with potential predators of host by altering the behavior of the host,20,21 a process known as “host manipulation.”23 A step further is the induction of unusual patterns in the host’s behavior in order to reduce encounters with parasitoid specific natural enemies, such as hyperparasitoids, a process known as “usurpation.”24-26 The option would be to leave the endangered host.

Heterokairy as an Antipredator Strategy for Parasitic Species

Host-leaving event leads to “heterokairy” since the individual will end its endoparasitic development to enter another step of development. Timing of the onset of developmental events is plastic according to the mortality risks within and outside of the host.

One example of such anti-predatory strategy has been found for the hairworm *Paragordius tricuspidatus* (Nematomorpha: Gordiida). These worms parasitize mainly crickets, which they manipulate to commit “induced suicide” by jumping into the water. In the water, the worm comes out to freely live its adult life.23 First, it has been shown that if a parasitized cricket that enters the water is eaten by a fish or a frog, the hairworm is able to escape not only from its insect host but also from the digestive tract of the predator.27 The worm emerges alive from the mouth, gills or nose of the predators and continues its life cycle without any apparent fitness costs.28 Moreover, worm emergence from the host has been shown to be induced by predatory notonectid.6

Recently, it has been shown that the predation on host induced early emergence in the endoparasitic fly *Endaphis fugitiva* (Diptera: Cecidomyiidae).7 As a larva, this aphid parasitoid develops inside the host body and emerges as a mature larva to pupate in the soil.28 Plasticity in the timing of emergence allows the parasitoid to respond to mortality risk occurring while inside its host. Artificial injuries on host, as well as predator attack on host, induced parasitoid larvae to leave the host. When a parasitized aphid is bitten by a predatory Hemerobiid larva, the parasitoid larva quickly flees from its host. Moreover, it has been observed that the predator goes on feeding on the remains of the host’s body, while the parasitoid is emerging. This allows the parasitoid larvae to perform jumps and escape from further direct predator attack.29

Costs of Heterokairy and Evolutionary Processes

Whether to grow larger at the cost of longer development time, or to develop more rapidly at the cost of reduced size is a classical trade-off in life history evolution. However, it might be that the developmental constraints on some parasitic species will influence the evolution of heterokairy. Indeed, in a few hymenopterous endoparasitoid clades (e.g., Microgastrinae, Braconidae), parasitoid larvae consume only a small fraction of available host tissues (primarily fat body and hemolymph) and emerge from the still living host by perforating the host cuticle with their mandibles and pupating externally.30 It is hypothesized that developmental constraints might come from differences in the way species feed on host tissues: leading some species to emerge when fixed critical size is reached, while other species have to

Table 1. Species for which heterokairy have been shown

Sp	Order	Effect of mortality risk	Mortality risk	Cue	References
Coregonus sp.	Fish	Early hatching of eggs	bacterial infection	water borne chemical cues from infected eggs	Wedekind, 2002
Bufo americanus	Amphibia	Early hatching of eggs	infection by Saprolegniaeae water mold	unknown	Gomez-Mestre, et al. 2006
Rana sylvatica	Amphibia	Early hatching of eggs	infection by Saprolegniaeae water mold	unknown	Gomez-Mestre, et al. 2006
Hyla regilla	Amphibia	Early hatching of eggs	predation by leeches	chemical cue(s) from predator and injured eggs	Chivers, et al. 2001
Rana cascadae	Amphibia	Early hatching of eggs	predation by leeches	chemical cue(s) from predator	Chivers, et al. 2001
Agalychnis callidrya	Amphibia	Early hatching of eggs	predation by wasps, predation by snakes	hypothetically mechanical stimulus	Warkentin 1995, 2000
Ambystoma texanum & A. barbouri	Amphibia	Delayed hatching of eggs	predation of larva by flatworms	water-borne chemical cues from predator	Sih & Moore, 1993
Scytodes pallida	Arachnida	Early hatching of eggs	predation by jumping spiders	Chemical cue(s) on draglines of the predatory spider	Li, 2002
Endaphis fugitiva	Insecta	Precocious emergence of mature larva	predation by brown lacewing	unknown	Muratori, et al. 2010
Paragordius tricuspidatus	Nematomorpha	Speed up emergence time	predation by notonectid larva	unknown	Sanchez, et al. 2008; Ponton, et al. 2006
consume the entire host before emergence.15 It might be that the evolution of heterokairy has been driven by the selective advantages of individuals that freed themselves from the constraint of total consumption of the host body before shifting to the next developmental step.

Organisms should switch life history stages when their mortality/growth ratio is lower in the following stage than the current stage.8 Obviously, mortality risk due to host predation should be frequent enough to induce a selective pressure on the parasitic individual. Therefore, predators should not be able to discriminate between parasitized and unparasitized hosts. In the Endaphis system, we tested this assumption by studying the behavior of a single aphid predator foraging in a patch containing 3 healthy and 3 parasitized hosts (n = 13). We showed that the probability of being attacked was not related to the presence of a parasitoid larva in the host (Fig. 1). The binomial response (attack or leave) of the predator to aphid encounter was not statistically different between the healthy and parasitized hosts (Wald = 0.872, df = 1, p = 0.35; Generalized Estimating Equations, binomial distribution, logit link function, “geepack” for R32). This suggests that selective pressure on the parasitoid is not reduced by discrimination abilities from the predator.

If mortality risk is high enough, the benefit of saving its life against the costs associated with early emergence as well as the development and maintenance of sensory machinery is clearly biased towards the selection of responsive parasitoids. Working on the spitting spider system, Li showed that hatchings from predator exposed eggs were smaller than unexposed ones.15 Muratori et al. did not find costs associated to early emergence in hairworms (Paragordius tricuspidatus), which produce similar offspring as controls.16 While costs associated with heterokairy have been shown in many vertebrate systems,8,11 studies on induced niche-shift in invertebrate parasitic species are unfortunately too scarce to draw any conclusions.

Emphasis has been placed on studying adaptive developmental plasticity in the context of anti-predator defenses, but it is also likely to be effective in response to environmental heterogeneity in other factors (abiotic, pathogens, competition).9 Several sources of selection for plasticity in itself might have had a positive effect on the conservation of this trait. On the evolutionary point of view, it might be that adaptive niche shift is a process common for concealed species that emerge as larvae to pulate outside their shelter/host. For example, Endaphis fugax belongs to the Cecidomyiidae family in which both predatory, parasitoid and phytophagous species are found.29 Many of the phytophagous Cecidomyiids are galling insects. It would be interesting to test if adaptive niche-shift is present in these species.

![Figure 1](image-url). Number of attacks on healthy and Endaphis parasitized hosts by the aphid predator, Micromus timidus. The aphid predator does not discriminate parasitized host, which keeps a strong selection pressure on the parasitoid for induced emergence response.

References

1. DeWitt TJ, Langerhans RB. Integrated Solutions to Environmental Heterogeneity: Theory of Multimoment Reaction Norms. in DeWitt TJ, Scheiner SM, (Eds.,) Phenotypic Plasticity: functional and conceptual approaches. 2004, Oxford University Press.
2. Buggren W, Warburton S. Comparative developmental physiology: An interdisciplinary convergence. Annu Rev Physiol 2005; 67:203-23.
3. Warkentin KM. Oxygen, gills and embryo behavior: mechanisms of adaptive plasticity in hatching. Comp Biochem Physiol A 2007; 148:720-31.
4. Rowe L, Ludwig D. Size and timing of metamorphosis in complex life cycles: time constraints and variation. Ecology 1991; 72:413-27.
5. Spicer JJ, Buggren WW. Development of physiological regulatory systems: altering the timing of crucial events. Zoology 2003; 106:91-9.
6. Sanchez MI, Ponton F, Misce D, Hughes DP, Thomas F. Hairworm response to notonectid attacks. Anim Behav 2008; 75:823-6.
7. Muratori FR, Boëlle S, Messing RH. Induced niche shift as an anti-predator response for an endoparasitoid. Proc R Soc B 2010; on line first. doi: 10.1098/rspb.2009.2029.
8. Chivers DP, Kiesecker JM, Marco A, DeVito J, Anderson MT, Blaustein AR. Predator-induced life history changes in amphibians: egg predation induces hatching. Oikos 2001; 92:135-42.
9. Gomez-Mestre I, Touchon JC, Warkentin KM. Amphibian embryo and parental defences and a larval predator reduce egg mortality from water mold. Ecology 2006; 87:2570-81.
10. Gomez-Mestre I, Touchon JC, Saccosio VL, Warkentin KM. Generic variation in pathogen-induced early hatching of toad embryos. J Evol Biol 2008; 21:791-800.
11. Warkentin KM. Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc Natl Acad Sci USA 1995; 92:3507-10.
12. Warkentin KM. Wasp predation and wasp-induced hatching of red-eyed treefrog eggs. Anim Behav 2000; 60:503-10.
13. Wedekind C. Induced hatching to avoid infectious egg disease in whitefish.Curr Biol 2002; 12:69-71.
14. Werner EE, Hall DJ. Ontogenetic habitat shifts in bluegill. The foraging rate-predation risk trade-off. Ecology 1988; 69:1352-66.
15. Li DQ. Hatching responses of subsocial spitting spiders to predation risk. Proc R Soc B 2002; 269:2155-61.
16. Ponton F, Duneau D, Sanchez M, Courriel A, Terekhin AT, Budilova EV, et al. Effect of parasite-induced behavioral alterations on juvenile development. Behav Ecol 2009; 20:1020-5.
17. Thomas F, Brown SP, Sukhdeo M, Renaud F. Understanding parasite strategies: a state-dependent approach? Trends Parasitol 2002; 18:387-90.
18. Brown MJF, Loosli R, Schmid-Hempel P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 2000; 91:421-7.
19. Forward RB, Rittschof D. Alteration of photoreponses involved in diel vertical migration of a crab larva by fish mucus and degradation products of mucopolysaccharides. J Exp Mar Biol Ecol 2000; 245:277-92.
20. Levey EP. The influence of non-host predators on parasite induced behavioral changes in a freshwater snail. Oikos 1998; 81:531-7.
21. Lafferty KD, Thomas F, Poulin R. Evolution of host phenotype manipulation by parasites and its consequences. In: Poulin R, Morand S, Skorping A, (Eds...) Evolutionary Biology of Host-Parasite Relationships: Theory Meets Reality. Amsterdam; Elsevier Science 2000; 117-27.
22. Haine ER, Rigaud T. Conflict between parasites with different transmission strategies infecting an amphipod host. Proc R Soc B 2005; 272:2305-10.
23. Thomas F, Schmidt-Rhaesa A, Martin G, Manu C, Durand P, Renaud F. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts? J Evol Biol 2002; 15:356-61.
24. Brodeur JS, McNeil J. Seasonal microhabitat selection by an endoparasite through adaptive modification of host behavior. Science 1989; 244:226-8.
25. Harvey JA, Kos M, Nakamatsu Y, Tanaka T, Dicke M, Vet L, et al. Do parasitized caterpillars protect their parasites from hyperparasitism? A test of the ‘escape-parasitoid hypothesis’. Anim Behav 2008; 76:791-8.
31. Harvey JA, Strand MR. The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology 2002; 83:2439-51.

32. Harvey JA, Kadash K, Strand MR. Differences in larval feeding behavior correlate with altered developmental strategies in two parasitic wasps: implications for the size-fitness hypothesis. Oikos 2000; 88:621-9.

33. Yan J. geepack: Yet another package for generalized estimating equations. R-News 2002; 2/3:12-4. http://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf.