Association of RAGE rs1800625 Polymorphism and Cancer Risk: A Meta-Analysis of 18 Case-Control Studies

Yuzhong Xu*
Zhenhua Lu*
Na Shen
Xiong Wang

* Yuzhong Xu and Zhenhua Lu contributed equally to this work

Corresponding Author: Xiong Wang, e-mail: wangxiong@tjh.tjmu.edu.cn

Source of support: Departmental sources

Background: Accumulating evidence suggests that the rs1800625 polymorphism in RAGE promoter region might be associated with cancer risk; however, data from different studies show conflicting results. Here, a meta-analysis was conducted to evaluate the associations between RAGE rs1800625 polymorphism and cancer risk.

Material/Methods: We searched Embase (Excerpta Medica Database), PubMed, and CNKI (Chinese National Knowledge Infrastructure) databases until March 15, 2019 to identify potential studies for the meta-analysis.

Results: Eighteen eligible studies were included in the current meta-analysis, representing 6246 cases and 6819 controls. Pooled analysis showed positive correlation between the RAGE rs1800625 polymorphism and susceptibility of cancer in recessive genetic model [CC versus TC+TT: odds ratio (OR)=1.397, 95% confidence interval (CI): 1.031–1.894, \(P=0.031\)]. Subgroup analysis revealed this association in the Asian, but not Caucasian population, and this correlation was not detected in either breast or lung cancer. Sensitivity analysis indicated unstable results, which should be interpreted with caution. No publication bias was observed.

Conclusions: In conclusion, the RAGE rs1800625 polymorphism was associated with increased overall cancer risk in Asians in recessive genetic model. However, large-scale and well-designed studies in different populations and diverse cancer types are needed for a precise conclusion.

MeSH Keywords: Disease Susceptibility • Meta-Analysis • Polymorphism, Genetic

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/916260
Background

Receptor for advanced glycation end product (RAGE), also called as advanced glycation end product receptor (AGER), is a transmembrane receptor expressed in a number of cells, belonging to the immunoglobulin superfamily of receptors. Advanced glycation end product (AGE) is a ligand that binds RAGE to amplify immune and inflammatory responses. A number of other ligands of RAGE were reported recently, including amyloid-β, amphoterin, collagen IV, S100 proteins, and integrin Mac-1 [1]. RAGE-ligand interactions are known to elicit oxidative stress, evoked inflammatory, proliferative, angiogenic reactions, and essential processes in the pathogenesis of various types of cancers [2]. Moreover, RAGE was reported to be increased in several solid tumors [3,4].

The RAGE gene is located on chromosome 6p21.3, containing 1.7 kb in the 5' flanking region and 11 exons ranging 3.27 kb in length. RAGE gene polymorphisms are correlated with the level of circulating RAGE [5]. To date, several RAGE polymorphisms have been identified including rs2070600 (82G>S), rs1800624 (~374 T>A), and rs1800625 (~429 C>T), and were found to be correlated with susceptibility to cancers [6]. The RAGE rs1800625 polymorphism has been widely reported to be correlated with cancer risk, including breast, lung, gastric, cervical, and hepatocellular carcinoma. However, these studies showed controversial results in different types of cancer, or even within the same type of cancer. Some meta-analysis studies summarized this correlation with limited studies and cancer types [7,8]. Yin et al. [7] reported positive correlation between the RAGE rs1800625 polymorphism and lung cancer risk; however, only 2 studies were included. In another meta-analysis by Zhao et al. [8], no remarkable correlation was found in either breast or lung cancer.

The current meta-analysis study pooled 18 eligible case-control studies to evaluate the association between RAGE rs1800625 polymorphism and cancer risk in different ethnic populations and different cancer types.

Material and Methods

Literature search

Embase (Excerpt Medica Database, a biomedical and pharmacological bibliographic database), PubMed, and CNKI (Chinese National Knowledge Infrastructure) databases were searched until March 15, 2019 to explore eligible studies with the keywords “RAGE OR AGER OR receptor for advanced glycation end products” and “polymorphism OR rs1800625 OR ~429T>C OR ~429A>G OR ~429T/C OR ~429A/G” and “cancer OR tumor OR carcinoma OR metastasis”. Reference lists were manually examined to explore relevant publications.

Inclusion and exclusion criteria

Inclusion criteria included: 1) case-control study, 2) association between RAGE rs1800625 polymorphism and cancer risk, 3) sufficient genotype information. Exclusion criteria included: 1) reviews, 2) insufficient genotype information, 3) duplicated study, 4) study deviated from Hardy-Weinberg equilibrium (HWE).

Data extraction

To independently carry out meta-analyses, the following data were extracted from all eligible articles: year, first author name, region, sample size, ethnicity, male ratio, age, cancer type, genotyping method, genotype, minor allele frequency (MAF), and P value for HWE.

Statistical analysis

All data were analyzed using STATA 12.0 (STATA Corporation, College Station, TX, USA). The odds ratio (OR) and 95% confidence intervals (CIs) were calculated to determine the correlation between RAGE rs1800625 polymorphism and cancer risk determined with Z test. Four genetic models were applied: allelic (C versus T), dominant (CC+TC versus TT), recessive (CC versus TC+TT), and additive (CC versus TT) genetic models. HWE of the control group was evaluated by χ² test. I² statistic and Cochran Q test were applied to examine the heterogeneity, and random effect model was applied in this meta-analysis. Meta regression analysis was used to estimate the risk factors of heterogeneity. Sensitivity analysis was conducted through sequential deletion of a single study. Funnel plot, Begg's test, and Egger's test were applied to determine publication bias.

Results

Characteristics of the included 18 case-control studies

The study selection was carried out as shown in Figure 1. A total of 62 studies were screened from the databases. Studies not related to polymorphism (N=8), not related to cancer (N=21), not relevant to rs1800625 polymorphism (N=8), without control (N=1), with insufficient frequency information (N=2), and reviews (N=4) were excluded. Finally, 18 studies with 6246 cases and 6819 controls were included in this meta-analysis [9–26]. The characteristics of the included 18 studies are listed in Tables 1 and 2.
Flow chart of selection process for RAGE rs1800625 polymorphism and cancer risk

Potentially relevant studies identified and (n=62)

Studies excluded due to following reasons:
1. Not about polymorphism (n=8)
2. Not with cancer (n=21)
3. Not with rs1800625 (n=8)

Studies excluded due to following reasons:
1. Reviews (n=4)
2. Without control group (n=1)
3. In-sufficient frequency information (n=2)

Studies further identified in the meta-analysis (n=25)

Studies further identified in the meta-analysis (n=18)

Table 1. Characteristics of 18 studies included in this meta-analysis.

Author	Year	Region	Ethnicity	Cancer	Method	Sample size	Age Case	Age Control
Hu D et al.	2019	Mainland China	Asian	Gastric cancer	PCR-LDR	369	493	--
Lee CY et al.	2018	Taiwan	Asian	Cervical cancer	TaqMan	201	320	48.8±13.5
Yamaguchi K et al.	2017	Japan	Asian	Lung cancer	TaqMan	189	303	64.3±11.0
Li T et al.	2017	Mainland China	Asian	Gastric cancer	PCR-RFLP	200	207	54.43±11.77
Wang D et al.	2017	Mainland China	Asian	Hepatocellular carcinoma	PCR-LDR	540	540	51.5±6.7
Yue L et al.	2016	Mainland China	Asian	Breast cancer	PCR-LDR	524	518	53.76±12.62
Wang H et al.	2015	Mainland China	Asian	Lung cancer	PCR-RFLP	275	126	59.8±10.4
Su SC et al.	2015	Taiwan	Asian	Hepatocellular carcinoma	TaqMan	265	300	62.99±11.97
Su S	2015	Taiwan	Asian	Oral squamous cell carcinoma	TaqMan	618	592	--
Chocholatý M et al.	2015	Czech Republic	Caucasian	Renal cell carcinoma	PCR-RFLP	214	154	63±11
Pan H et al.	2014	Mainland China	Asian	Breast cancer	PCR-LDR	509	504	55.63±10.14
Pan H et al.	2013	Mainland China	Asian	Lung cancer	PCR-LDR	819	803	57.35±10.51
Wang X et al.	2012	Mainland China	Asian	Lung cancer	PCR-RFLP	562	764	--
Xu Q et al.	2012	Mainland China	Asian	Cervical cancer	TaqMan	488	715	54.6±5.7
Hashemi M et al.	2012	Iran	Caucasian	Breast cancer	ARMS-PCR	71	93	45.25±11.75
Krechler T et al.	2010	Czech Republic	Caucasian	Pancreas cancer	PCR-RFLP	99	154	64±11
Tesarová P et al.	2007	Czech Republic	Caucasian	Breast cancer	PCR-RFLP	120	92	61.2±11.9
Tóth EK et al.	2007	Hungary	Caucasian	Colorectal cancer	PCR-RFLP	183	141	65.7±10.5

PCR-RFLP – polymerase chain reaction-restriction fragment length polymorphism; PCR-LDR – polymerase chain reaction-ligase detection reaction; ARMS-PCR – amplification refractory mutation system-polymerase chain reaction.
In the overall analysis, the RAGE rs1800625 polymorphism was correlated with increased cancer risk in the recessive genetic model (CC versus TC+TT: OR=1.397, 95% CI: 1.031–1.894, \(P=0.031 \)), but not in the allelic (C versus T), dominant (CC+TC versus TT), or additive (CC versus TT) genetic models (Figure 2, Table 3).

Stratification based on ethnicity revealed similar results in Asian but not in the Caucasian population. Moreover, stratification by cancer type did not find any significant correlation in either breast or lung cancer (Table 3).

Association of the RAGE rs1800625 polymorphism and cancer risk

In the overall analysis, the RAGE rs1800625 polymorphism was correlated with increased cancer risk in the recessive genetic model (CC versus TC+TT: OR=1.397, 95% CI: 1.031–1.894, \(P=0.031 \)), but not in the allelic (C versus T), dominant (CC+TC versus TT), or additive (CC versus TT) genetic models (Figure 2, Table 3).
Meta-regression analysis was carried out to screen risk factors of the heterogeneity considering publication year, ethnicity (Asian versus Caucasian), and genotyping method (polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP), PCR-ligase detection reaction (LDR), and amplification refractory mutation system (ARMS)-PCR, versus TaqMan) as possible covariates. However, none of these mentioned covariates remarkably contributed to the heterogeneity (data not shown).

Sensitivity analysis

Sensitivity analysis indicated that the positive correlation found in recessive genetic model in pooled analysis and in Asian subgroup was unstable (Figure 3). After omitting the studies by Wang et al. (2017), Pan et al. (2013), or Xu et al. (2012), the RAGE rs1800625 polymorphism was not correlated with cancer risk in recessive genetic model.

Publication bias

Egger’s and Begg’s tests were applied to determine publication bias, and no publication bias existed (Figure 4, Table 4), indicating that this meta-analysis was reliable.

Discussion

The objective of this meta-analysis was to investigate any possible relationship of the RAGE rs1800625 polymorphism with cancer susceptibility. We found that the RAGE rs1800625 polymorphism might be closely associated with increased risk of human cancer in the Asian population. However, subgroup analysis did not support this positive correlation in either lung or breast cancer in Asians. Sensitivity analysis revealed unstable results, and therefore, these conclusions should be interpreted with caution.
Heterogeneity represents a major problem in meta-analyses. Herein, we performed stratified analysis by cancer type and ethnicity. Decreased heterogeneity was observed in Caucasian population in all 4 genetic models, and in breast cancer in some genetic models. These results suggest that ethnicity and cancer type may partially explain the source of heterogeneity, although we failed to confirm our hypothesis with statistical evidence in the meta-regression analysis considering ethnicity, publication year, and genotyping method as possible covariates. Moreover, even in the same subgroup of lung cancer, Wang et al. [16] and Pan et al. [19] both recruited squamous cell cancer, small cell cancer, and adenocarcinoma. Wang et al. [21] only studied non-small cell lung cancer (NSCLC) and Yamaguchi et al. [11] only focused on adenocarcinoma. These studies might contribute to the existence of heterogeneity. Different cancer types might affect the overall result. In the current meta-analysis, gastric, cervical, lung, breast, hepatocellular carcinoma, pancreas, and colorectal cancers were included. However, only breast and lung cancers were included in 4 different studies, and gastric cancer, cervical cancer, and hepatocellular carcinoma were included in 2 studies. Stratified analysis

Table 3. Meta-analysis of RAGE rs1800625 polymorphism and cancer susceptibility.

Genetic model	P_c	I^2	OR	95% CI	P_z
Overall					
C vs. T	0.000	74.8%	1.139	0.982, 1.321	0.085
CC+TC vs. TT	0.002	69.6%	1.105	0.976, 1.252	0.240
CC vs. TT+TT	0.002	56.4%	1.397	1.031, 1.894	0.031

Ethnicity

Ethnicity					
Asian					
C vs. T	0.000	81.0%	1.139	0.956, 1.357	0.146
CC+TC vs. TT	0.000	77.2%	1.090	0.898, 1.324	0.384
CC vs. TT+TT	0.000	66.6%	1.491	1.018, 2.183	0.040
CC vs. TT	0.000	69.4%	1.465	0.960, 2.236	0.077

Caucasian					
C vs. T	0.373	5.8%	1.128	0.901, 1.412	0.294
CC+TC vs. TT	0.532	0.0%	1.141	0.862, 1.511	0.355
CC vs. TT+TT	0.600	0.0%	1.156	0.770, 1.736	0.485
CC vs. TT	0.562	0.0%	1.354	0.715, 2.565	0.353

Disease

Disease					
Lung cancer	0.000	85.7%	1.125	0.807, 1.567	0.487
CC+TC vs. TT	0.004	77.3%	1.075	0.771, 1.498	0.671
CC vs. TT+TT	0.000	84.9%	1.523	0.631, 3.679	0.350
CC vs. TT	0.000	87.4%	1.521	0.561, 4.128	0.410

Breast					
C vs. T	0.062	59.1%	1.105	0.827, 1.477	0.500
CC+TC vs. TT	0.087	54.4%	1.127	0.828, 1.533	0.448
CC vs. TT+TT	0.561	0.0%	1.075	0.633, 1.826	0.789
CC vs. TT	0.463	0.0%	1.126	0.661, 1.920	0.662

Cochran Q test and I^2 statistical test were applied to examine the heterogeneity, and random effect model was applied in this meta-analysis. The correlation between RAGE rs1800625 polymorphism and cancer risk was determined using Z test.

Heterogeneity represents a major problem in meta-analyses. Herein, we performed stratified analysis by cancer type and ethnicity. Decreased heterogeneity was observed in Caucasian population in all 4 genetic models, and in breast cancer in some genetic models. These results suggest that ethnicity and cancer type may partially explain the source of heterogeneity, although we failed to confirm our hypothesis with statistical evidence in the meta-regression analysis considering ethnicity, publication year, and genotyping method as possible covariates. Moreover, even in the same subgroup of lung cancer, Wang et al. [16] and Pan et al. [19] both recruited squamous cell cancer, small cell cancer, and adenocarcinoma. Wang et al. [21] only studied non-small cell lung cancer (NSCLC) and Yamaguchi et al. [11] only focused on adenocarcinoma. These studies might contribute to the existence of heterogeneity.

Different cancer types might affect the overall result. In the current meta-analysis, gastric, cervical, lung, breast, hepatocellular carcinoma, pancreas, and colorectal cancers were included. However, only breast and lung cancers were included in 4 different studies, and gastric cancer, cervical cancer, and hepatocellular carcinoma were included in 2 studies. Stratified analysis
Figure 3. Sensitivity analysis for meta-analysis of the RAGE rs1800625 polymorphism and cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.

Several potential limitations existed in the current meta-analysis. First, selection bias might exist, as eligible articles in English language were screened. In this meta-analysis, only 5 articles were included for the Caucasian population, and this bias might influence the null result for Caucasian population. Second, we only performed stratified analysis for lung and breast cancers but not all types of cancer, due to limited number of studies. Third, not all published studies on the correlation between the RAGE rs1800625 polymorphism with cancer risk.
for comparison with other types of cancer. Fifth, only about 28\% of the studies included Caucasian population; therefore, it is not surprising that stratification analysis showed similar results in Asian, but not Caucasian population. The Caucasian population is not representative and therefore it is hard to extrapolate the result to the general population. Sixth, there were significant age differences between case and control groups in some studies and no adjustment was made in our analysis to account for this.

Table 4. Publication bias analysis of this meta-analysis.

Genetic model	Test	t	95\% CI	P
C vs. T	Begg’s test	0.37	-1.858, 2.634	0.719
CC+TC vs. TT	Egger’s test	0.32	-1.916, 2.588	0.756
CC vs. TC+TT	Begg’s test	0.54	-0.879, 1.483	0.595
CC vs. TT	Egger’s test	0.86	-0.749, 1.765	0.404

Figure 4. Funnel plots of the associations between the RAGE rs1800625 polymorphism and cancer risk.

Conclusions

The RAGE rs1800625 polymorphism was associated with increased overall cancer risk in Asians in a recessive genetic model. However, this polymorphism might not be correlated with lung or breast cancer risk in Asians. Nonetheless, large-scale and well-designed studies in different populations and diverse cancer types are needed for a precise conclusion.
Conflict of interest
None.

References:

1. Nankali M, Karimi J, Goodarzi MT et al: Increased expression of the receptor for advanced glycation end-products (RAGE) is associated with advanced breast cancer stage. Oncol Res Treat, 2016; 39: 622–28
2. Taguchi A, Blood DC, del Toro G et al: Blockade of RAGE-ampitherin signalling suppresses tumour growth and metastases. Nature, 2000; 405: 354–60
3. Ishiguro H, Nakaiwa N, Miyoshi Y et al: Receptor for advanced glycation end products (RAGE) and its ligand, amphtherin are overexpressed and associated with prostate cancer development. Prostate, 2005; 64: 92–100
4. Kuniyasu H, Oue N, Wakiwaka A et al: Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol, 2002; 196: 165–70
5. Huang Q, Mi J, Wang X et al: Genetically lowered concentrations of circulating sRAGE might cause an increased risk of cancer. Meta-analysis using Mendelian randomization. J Int Med Res, 2016; 44: 179–91
6. Xia W, Xu Y, Mao Q et al: Association of RAGE polymorphisms and cancer risk: A meta-analysis of 27 studies. Med Oncol, 2015; 32: 442
7. Yin NC, Lang XP, Wang XD, Liu W: AGER genetic polymorphisms increase risks of breast and lung cancers. Gen Mol Res, 2015; 14: 1777–87
8. Zhao DC, Lu HW, Huang ZH: Association between the receptor for advanced glycation end products gene polymorphisms and cancer risk: A systematic review and meta-analysis. J BUON, 2015; 20: 614–24
9. Hu D, Liu Q, Lin X et al: Association of RAGE gene four single nucleotide polymorphisms with the risk, invasion, metastasis and overall survival of gastric cancer in Chinese. J Cancer, 2019; 10: 504–9
10. Lee CY, Ng SC, Hsiou YH et al: Impact of the receptor for advanced glycation end products genetic polymorphisms on the progression in uterine cervical cancer. J Cancer, 2018; 9: 3886–93
11. Yamaguchi K, Iwamoto H, Sakamoto S et al: AGER rs2070600 polymorphism elevates neutrophil-lymphocyte ratio and mortality in metastatic lung adenocarcinoma. Oncotarget, 2017; 8: 94382–92
12. Wang D, Qi X, Liu F et al: A multicenter matched case-control analysis on seven polymorphisms from HMGB1 and RAGE genes in predicting hepatocellular carcinoma risk. Oncotarget, 2017; 8: 50109–16
13. Li T, Qin W, Liu Y et al: Effect of RAGE gene polymorphisms and circulating sRAGE levels on susceptibility to gastric cancer: A case-control study. Cancer Cell Int, 2017; 17: 19
14. Yue L, Zhang Q, He L et al: Genetic predisposition of six well-defined polymorphisms in HMGB1/RAGE pathway to breast cancer in a large Han Chinese population. J Cell Mol Med, 2016; 20: 1966–73
15. Su SC, Hsieh MJ, Chou YE et al: Effects of RAGE Gene polymorphisms on the risk and progression of hepatocellular carcinoma. Medicine, 2015; 94: e1396
16. Wang H, Li Y, Yu W et al: Expression of the receptor for advanced glycation end-products and frequency of polymorphism in lung cancer. Oncol Lett, 2015; 10: 51–60
17. Su S, Chien M, Lin C et al: RAGE gene polymorphism and environmental factor in the risk of oral cancer. J Dent Res, 2015; 94: 403–11
18. Chocholaty M, Jachymova M, Schmidt M et al: Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer. Tumour Biol, 2015; 36: 2121–26
19. Pan H, Niu W, He L et al: Contributory role of five common polymorphisms of RAGE and APE1 genes in lung cancer among Han Chinese. PLoS One, 2013; 8: e69018
20. Xu Q, Xue F, Yuan B et al: The interaction between RAGE gene polymorphisms and HPV infection in determining the susceptibility of cervical cancer in a Chinese population. Cancer Biomark, 2012; 11: 147–53
21. Wang X, Cui E, Zeng H et al: RAGE genetic polymorphisms are associated with risk, chemotherapy response and prognosis in patients with advanced NSCLC. PLoS One, 2012; 7: e43734
22. Hashemi M, Moazeni-Roodi A, Arbabi F et al: Genotyping of –374TA/-429A/G, and 63 bp Ins/del polymorphisms of RAGE by rapid one-step hexaprim er amplification refractory mutation system polymerase chain reaction in breast cancer patients. Nucleosides Nucleotides Nucleic Acids, 2012; 401–10
23. Krecnik T, Jachymova M, Mestek O et al: Soluble receptor for advanced glycation end-products (sRAGE) and polymorphisms of RAGE and glyoxalase I genes in patients with pancreas cancer. Clin Biochem, 2010; 43: 882–86
24. Tesarova P, Kalousova M, Jachymova M et al: Receptor for advanced glycation end-products (RAGE) – soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest, 2007; 25: 720–25
25. TothEK, Kocsis I, Madaras B et al: The 8.1 ancestral MHC haplotype is strongly associated with colorectal cancer risk. Int J Cancer, 2007; 121: 1744–48
26. Pan H, He L, Wang B, Niu W: The relationship between RAGE gene four common polymorphisms and breast cancer risk in northeastern Han Chinese. Sci Rep, 2014; 4: 4335
27. Zhang S, Hou X, Zi S et al: Polymorphisms of receptor for advanced glycation end products and risk of epithelial ovarian cancer in Chinese patients. Cell Physiol Biochem, 2013; 31: 525–31
28. Kadar K, Kovacs M, Karadi I et al: Polymorphisms of TNF-alpha and LT-alpha genes in multiple myeloma. Leuk Res, 2008; 32: 1499–504