Batch Exploration with Examples for Scalable Robotic Reinforcement Learning

Annie S. Chen*, HyunJi Nam*, Suraj Nair*, Chelsea Finn
Stanford University
{asc8, hjnam, surajn}@stanford.edu
* equal contribution

Abstract—Learning from diverse offline datasets is a promising path towards learning general purpose robotic agents. However, a core challenge in this paradigm lies in collecting large amounts of meaningful data, while not depending on a human in the loop for data collection. One way to address this challenge is through task-agnostic exploration, where an agent attempts to explore without a task-specific reward function, and collect data that can be useful for any downstream task. While these approaches have shown some promise in simple domains, they often struggle to explore the relevant regions of the state space in more challenging settings, such as vision based robotic manipulation. This challenge stems from an objective that encourages exploring everything in a potentially vast state space.

To mitigate this challenge, we propose to focus exploration on the important parts of the state space using weak human supervision. Concretely, we propose an exploration technique, Batch Exploration with Examples (BEE), that explores relevant regions of the state-space, guided by a modest number of human provided images of important states. These human provided images only need to be collected once at the beginning of data collection and can be collected in a matter of minutes, allowing us to scalably collect diverse datasets, which can then be combined with any batch RL algorithm. We find that BEE is able to tackle challenging vision-based manipulation tasks both in simulation and on a real Franka robot, and observe that compared to task-agnostic and weakly-supervised exploration techniques, it (1) interacts more than twice as often with relevant objects, and (2) improves downstream task performance when used in conjunction with offline RL.

I. INTRODUCTION

Learning from large and diverse datasets is a paradigm that has seen remarkable success in several domains, from computer vision [1] to natural language [2], [3], with favorable properties like broad generalization. Towards extending this success to robotics, we aim to study how we can acquire large amounts of useful robotic interaction data, a problem that remains a significant challenge. On one hand, having humans explicitly collect meaningful interaction data, e.g. through teleoperation [4], can be difficult to do at scale. On the other hand, while random exploration techniques can be run at a much larger scale [5], they collect lower quality interaction with the environment due to the lack of human supervision.

One general approach to this challenge is to use task-agnostic exploration [6], [7], [8], [9], which leverages some form of intrinsic reward to meaningfully explore in an unsupervised and scalable manner. While these approaches have been successful in video games and simulated control domains, they can struggle with the requirement of exploring everything in real, high-dimensional scenes, such as those in vision-based robotic manipulation problems. In such settings, there will often be certain regions of the state space that are more important to explore than others. For example, in the case of robotic manipulation, exploring the interactions between the end-effector and objects is likely more important than exploring all possible arm configurations. While one could build heuristics into the algorithm to bias it away from irrelevant exploration (e.g. penalizing videos with only arm motion), such approaches require designing a potentially complex heuristic for each use case. Rather, we aim to provide a general framework for guided exploration, which leverages easy to collect supervision and which can, in principle, be applied in any domain.

Our key insight is that by leveraging some weak human supervision, we can allow the agent to focus on semantically relevant parts of the state space, greatly accelerating the collection of useful data. Specifically, a human can communicate a prior over relevant states by providing a handful of examples of “interesting” or “meaningful” states ahead of time, which a learning based agent can then use to guide their exploration. Moreover, such human provided examples can be provided regardless of domain or use case, enabling much greater
flexibility than a domain-specific heuristic. Another advantage of such an exploration approach is that it seamlessly integrates with offline or “batch” reinforcement learning [10], where an agent learns from an offline dataset of interaction. Together they provide a scalable approach to robot learning, where first in the batch exploration phase, weak human supervision is used to collect a large and diverse dataset of meaningful interaction, and second in the batch reinforcement learning phase, policies can be learned from this data and used for downstream task execution.

Concretely, our main contribution is a batch exploration framework, **Batch Exploration with Examples (BEE)**, which leverages weak supervision to efficiently explore and can enable scalable collection of robotic datasets (Figure 1). BEE starts with a modest number of examples of relevant states provided by a human, which only takes a few minutes to collect. BEE then learns to estimate whether a state is relevant or not, and explores around states which it estimates are relevant. It selects exploratory actions via model-based RL, where it learns a model of the environment online and plans actions under the model to explore. We observe that BEE is able to explore effectively in challenging high-dimensional robotic environments, and unlike standard task agnostic exploration techniques, is able to guide its exploration towards relevant states. Across a range of simulated vision based manipulation tasks, BEE interacts more than twice as often with relevant objects than prior state-of-the-art unsupervised and weakly supervised exploration methods, and as a result collects higher quality data, enabling better downstream task performance. Additionally, by using both weak human supervision and offline model-based RL, BEE can be applied to hard exploration problems from pixels on a Franka robot.

II. RELATED WORK

Learning from diverse offline datasets has shown promise as a technique for learning robot policies that can generalize to unseen tasks, objects, and domains [11], [12], [13], [14], [15], [5], [16], [17]. However collecting such large and diverse datasets in robotics remains an open, and challenging problem.

A vast number of prior works have collected datasets for robotic learning under a range of problem settings and supervision schemes. One class of approaches uses humans in the loop and collects datasets of task demonstrations via teleoperation [4], [16] or kinesthetic teaching [18], [19]. While these methods can produce useful data, they are difficult to perform at scale, across diverse tasks and environments. Alternatively, many other works have explored collecting large robotic datasets without humans in the loop for tasks like object re-positioning [11], [14], [5], pushing [20], [21] and grasping [12], [22], [23]. While these present a scalable approach to data collection, the unsupervised nature of the exploration policy results in only a small portion of the data containing meaningful interactions. While heuristics and scripted policies like those employed in grasping can enable more meaningful interactions, designing them for a broad range of tasks can require significant engineering effort.

One way to maintain the scalability of random exploration, but acquire more relevant interaction, is to have an agent learn to explore under an intrinsic reward signal, which is task-agnostic but encourages more meaningful interaction. These intrinsic rewards come in many forms, including approaches that optimize for visiting novel states [6], [24], [25], [26], [27], the learning progress of the agent [28], [29], model uncertainty [30], [31], [7], [8], [9], information gain [31], auxiliary tasks [32], generating and reaching goals [33], [34], and state distribution matching [35]. Additionally, a number of these approaches [32], [33], [34], [36] have been demonstrated on real robotics problems. However all of these methods struggle with the issue of having to explore *everything* about a potentially vast state space when only some portion of it is relevant. We aim to mitigate this challenge by introducing mild supervision into the exploration problem, which we observe empirically yields much more useful exploration than task-agnostic strategies.

A seemingly obvious approach to incorporating supervision into the exploration problem is to include a task-specific extrinsic reward function which is then combined with the exploration objective. In fact most applications of intrinsic motivation in RL do exactly this, and treat the intrinsic reward as an additional reward bonus. Other works also leverage more complex approaches to combining value functions and exploration [37], [38], [39]. Unlike these works, we aim to not rely on any supervision in the loop of RL, as is needed when providing a reward function online. Like this work, some prior works have explored how out of the loop weak supervision can be leveraged to acquire better exploratory behavior, ranging from demonstrations [40], binary labels about state factors of variation [41], and semantic object labels [42] to accelerate exploration. Unlike these approaches, our proposed supervision can be collected in a matter of minutes and leads to efficient exploration in real visual scenes of robot manipulation.

Our method draws inspiration from prior work on reward learning [43], [44] and adversarial imitation learning [45]. These approaches aim to tackle the *task-specification problem*, and learn a discriminator over human provided goal state images or demonstrations, which is used to acquire a reward function. In contrast, our work focuses on how to incorporate scalable sources of supervision into robotic exploration and data collection. We show that an ensemble of such classifiers can be useful to guide exploration, and this data can easily be used with any offline reinforcement learning algorithm. By considering the two stage batch exploration + batch reinforcement learning approach, our work depends far less on the accuracy of the specific classifiers used during data collection, and can potentially learn multiple downstream tasks from a single dataset.

III. THE BATCH EXPLORATION + BATCH RL FRAMEWORK

We begin by describing the batch exploration + batch reinforcement learning framework, with the goal of a *scalable*, data-driven approach to robotic learning, illustrated in Figure 2. First, in the batch exploration phase, a human
provides some weak supervision to the agent to indicate what regions of the state space it should explore. Second, in the batch exploration phase, the agent uses the supervision to guide its exploration to collect and store the relevant data without needing a human in the loop. Third, in the batch reinforcement learning phase, the collected datasets can be used with any model-based or model-free offline RL algorithm to learn a policy or model. This offline RL phase either can use self-supervised RL techniques (e.g. goal-conditioned model-free RL [46] or visual foresight [11], [14]) or can label the offline dataset with rewards and then use standard batch RL algorithms [10], [47], [48], [49], [50], [51]. Lastly, the policy can then be applied to any downstream tasks for which the initial guidance was relevant.

The core benefit of this framework is scalability. Depending on the type of weak supervision provided by the human, the first step can be completed in a matter of minutes, and is done before ever running the robot. The second step can then be run with the robot completely unsupervised, for potentially days on end. The third step requires no environment interaction, and even if using additional reward labeling, this reward labeling can be done completely offline using any crowd sourcing tools (without needing into the loop reward specification). We begin by describing the first two steps of this framework, corresponding to batch exploration.

Batch Exploration. During the batch exploration phase, let the agent be exploring in a fixed horizon controlled Markov process (CMP) \mathcal{M} defined by the tuple $\mathcal{M} = (S, A, p, \mu, T)$, where S is the state space, A is the action space, $p(s_{t+1} | s_t, a_t)$ represents the stochastic environment dynamics, $\mu(s_0)$ represents the initial state distribution, and T denotes the episode horizon. Additionally, let $S^* \subset S$ represent a subset of the state space which is relevant to explore. Formally, for a set of downstream tasks \mathcal{T}, let the relevant states S^* correspond to the set of all states that have nonzero support under the state marginal distribution $\rho_{\pi_j^*}(s)$ of the optimal policy π_j^* for all possible downstream tasks $j \in \mathcal{T}$, that is:

$$S^* = \bigcup_{j \in \mathcal{T}} \text{supp} \rho_{\pi_j^*}(s) \quad \text{where} \quad \rho_{\pi_j}(s) = \mathbb{E}_{s_0 \sim \mu, s_{t+1} \sim p(\cdot | s_t, a_t), \alpha_t \sim \pi(\cdot | s_t)} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{s_t = s\} \right]$$

(1)

In the first stage of batch exploration, a human provides some context information C to guide the agent towards exploring the relevant states. While this context information can take many forms, in this work, we consider the case where it is a set of K states $[\tilde{s}_1, ..., \tilde{s}_K]$ sampled uniformly from S^*.

In the second stage of batch exploration, the agent aims to learn an exploration policy $a_t \sim \pi_{exp}(\cdot | s_t, C)$ conditioned on the human provided context to maximize an exploratory reward $R_{exp}(s_t, C)$, which gives high reward for visiting states in S^*, that is find π_{exp} which maximizes the expected exploratory reward, that is

$$\max_{\pi_{exp}} \mathbb{E}_{s_{t+1} \sim p(\cdot | s_t, a_t), a_t \sim \pi_{exp}(\cdot | s_t, C), s_0 \sim \mu} [R_{exp}(s_t, C)]$$

(2)

The exact reward function implementation will depend on the form of the context C, which we discuss further in Section IV. The policy π_{exp} is trained online for N transitions while periodically updating on batches sampled from the memory, and after the N transitions all of its collected experience is combined to form the resulting dataset \mathcal{D} containing tuples $[(s_t, a_t, s_{t+1})_1, ..., (s_t, a_t, s_{t+1})_N]$. This complete dataset can then be used for batch RL.

Batch Reinforcement Learning. Given the dataset \mathcal{D}, collected by the agent, a number of downstream offline RL approaches can be applied. One approach might be to learn a goal-conditioned policy on the collected data as is, optimizing for a policy in the augmented MDP $\mathcal{M} = (S, A, p, G, R, \gamma, T)$ which includes a set of goal states...
Algorithm 1 BEE\((\bar{s}_1, ... , \bar{s}_K)\)

1: Randomly initialize \(\theta, \phi_1, ..., \phi_L\)
2: Initialize \(D \leftarrow \emptyset\)
3: /* BEE reward is max score over discriminators */
4: Let \(R_{exp}(s, C) = \max_{\phi_1} \phi_1(f_{enc}(s)), ..., \phi_L(f_{enc}(s))\)
5: for \(ep = 1, 2, ..., E\) do
6: /* Plan and execute actions under BEE reward */
7: while not done do
8: \(z_t \sim f_{enc}(s_t)\)
9: \(s_{t+1} \sim \text{LATENTMPC}(z_t, f_{dyn}, R_{exp})\)
10: \(s_{t+1:t+H+1} \sim p(\cdot | s_t, z_t, s_{t+H})\)
11: \(D \leftarrow D \cup \{ (s_t, z_t), ..., (s_{t+H+1}) \}\)
12: for num updates \(U\) do
13: /* Train dynamics model \(p_g\) */
14: \(s_{t:t+H} \sim \text{LATENTMPC}(s_t, f_{dyn}, R_{exp})\)
15: Update \(f_{enc}, f_{dec}\) according to Eq. 3
16: Update \(f_{dyn}\) according to Eq. 5
17: /* Train relevance discriminators \(\phi_i\) */
18: for each \(\phi_i\) do
19: \(s \sim D, s^* \sim [\bar{s}_1, ..., \bar{s}_K]\)
20: Update \(\phi_i\) according to Eq. 3
21: return dataset \(D\)

A. Acquiring Human Supervision

The first step of BEE is collecting weak supervision to guide exploration. In this work this supervision comes in the form of a handful of relevant states \([\bar{s}_1, ..., \bar{s}_K]\) sampled uniformly from \(\mathcal{S}^*\). For example, if the relevant region of the state space involves interacting with dishes, these relevant states would consist of images of the robot around and interacting with dishes. On a real robot, these images can be collected in a matter of minutes by manually placing the robot in a relevant configuration. See the bottom left of Figure 3 for examples of provided states for exploring interactions with a desk drawer.

B. Exploring with BEE

Online exploration with BEE has two central components, which involve (a) determining whether a state is relevant or not, and (b) selecting actions which will enable the agent to reach and explore relevant states. To tackle (a) we leverage an ensemble of relevance discriminators, and address (b) using a model-based planning approach, both of which we detail next.

Relevance Discriminator. To determine which states are relevant, BEE learns an ensemble of \(L\) discriminators online which differentiate between the agent’s growing dataset \(D\) of collected experience and the relevant states provided by the human. Given states \(s \sim D\) as negatives and human provided relevant states \([\bar{s}_1, ..., \bar{s}_K]\) as positives, BEE encodes each using a neural network state encoder \(f_{enc}\), then trains each fully connected network \(\phi_i\) as a binary classifier for each element of the ensemble, shown in Figure 3. That is, for human examples \(s^* \sim [\bar{s}_1, ..., \bar{s}_K]\) and agent experience \(s \sim D\), each discriminator \(\phi_i\) is trained according to:

\[
\max \mathbb{E}_{s^*} \left[\log(\phi_i(f_{enc}(s^*))) \right] + \mathbb{E}_s \left[\log(1 - \phi_i(f_{enc}(s))) \right].
\]

(3)

Throughout learning, each discriminator in the ensemble is randomly initialized and samples different balanced mini-batches of human provided states and agent observations.

As identified in prior work [24], [43], [44], [45], a core challenge in training discriminators on a handful of human provided relevant states and agent observations is when the discriminators may overfit and provide a sparse or difficult to optimize reward signal. This issue is exacerbated in our setting by the relatively small (10-100) number of human examples. To address this, we leverage a number of regularization techniques to allow the ensemble of discriminators to provide smooth predictions and prevent overfitting to the limited number of human provided relevant states. First, we utilize...
mix-up regularization [53], which encourages convexity in the discriminator predictions. Second, we utilize random cropping of both human and agent input images when training the discriminators, to prevent overfitting to the small number of human provided states. Lastly, we add spectral normalization to the discriminators to prevent overfitting. Details on mix-up, cropping, and spectral normalization are in Appendices I / III.

Now that we’ve described how the discriminators are trained, how do they translate to our exploratory reward R_{exp}? We would like to select action sequences which explore around states which either the ensemble $[\phi_1, \ldots, \phi_L]$ estimates are relevant, or states for which the ensemble has high uncertainty. Therefore, rather than exploring under the mean ensemble score, we use an optimistic estimate given by the maximum discriminator score over the ensemble models: $R_{exp}(s, C) = \max[\phi_1(f_{enc}(s)), \ldots, \phi_L(f_{enc}(s))]$, which captures both the predicted relevance and the uncertainty.

Learned Dynamics and Planning. To plan actions to maximize the exploratory reward, we take a model-based planning approach, due to its sample efficiency and ability to handle the non-stationary reward R_{exp}. The learned latent dynamics model p_{th} consists of three components, (1) an encoder $f_{enc}(z_t|s_t; \theta_{enc})$ that encodes the state s_t into a latent distribution from which z_t is sampled, (2) a decoder $f_{dec}(s_t|z_t; \theta_{dec})$ that reconstructs the observation, providing a reconstruction s_t, and (3) a deterministic forward dynamics model in the latent space $f_{dyn}(z_{t+1}|z_t, a_t; \theta_{dyn})$ which learns to predict the future latent state z_{t+1} from z_t and action a_t (See Figure 4). In our experiments we work in the setting where states are images, so $f_{enc}(z_t|s_t)$ and $f_{dec}(s_t|z_t)$ are convolutional neural networks, and $f_{dyn}(z_{t+1}|z_t, a_t)$ is a recurrent neural network. The encoder and decoder weights $\{\theta_{enc}, \theta_{dec}\}$ are optimized under the standard VAE loss, that is maximizing the lower bound on the likelihood of the data:

$$\max_{\theta_{enc}, \theta_{dec}} \mathbb{E}_{f_{enc}(z|s)}[\log f_{dec}(s|z)] - \beta D_{KL}[f_{enc}(z|s)||p(z)]$$

(4)

The forward dynamics weights θ_{dyn} are optimized to minimize the mean squared error loss with the next latent state, that is

$$\min_{\theta_{dyn}} \mathbb{E}_{f_{enc}(z_{t+1}|s_t, a_t, t+H)}[\|z_{t+1:t+H} - f_{dyn}(z_t, a_t, t+H-1)\|^2_2]$$

(5)

where H indicates the prediction horizon. Exact architecture and training details for all modules are in Appendices I / III.

BEE then uses sampling based planning, specifically the cross-entropy method (CEM) [54], in conjunction with this latent dynamics model to plan sequences of actions to maximize the exploratory reward R_{exp}. Concretely, it first encodes its current observation into a latent space z_t using the learned encoder f_{enc}. On each iteration of CEM it then samples M action sequences of length H, which it feeds through the latent dynamics model f_{dyn}, resulting in predicted future states $z_{t+1:t+H+1}$, which are ranked according to R_{exp} (See Figure 4). A detailed overview of the latent MPC procedure is in Appendix I.

V. Experiments.

In our experiments we aim to assess how effectively BEE can explore relevant regions of the state space compared to state-of-the-art approaches in task-agnostic and weakly supervised exploration. Concretely, we ask the following experimental questions: 1) Does BEE yield improved interaction with relevant objects, while being robust to irrelevant distractor objects? 2) Does using data collected from BEE lead to better downstream task performance than using data collected via state-of-the-art task-agnostic and weakly supervised exploration techniques? 3) How does BEE perform on hard
exploration tasks on a real robotic system from images? Next, we describe our experimental domains and comparisons in Section V-A, then explore the above three questions in Sections V-B, V-C, and V-D. For video results, see the supplemental website at https://sites.google.com/view/batch-exploration.

A. Experimental Domains and Comparisons.

Experimental Domains. Our experiments focus on tabletop robot manipulation from raw image observations. Specifically, we first consider a suite of hard exploration manipulation tasks with a simulated Sawyer robot. The simulator is built off of the MetaWorld environment [55] and MuJoCo physics engine [56], and contains a scene with 3 small blocks, where the exploration objective is to interact with a particular block, a scene with a varying number of distractor towers and a door, where the exploration objective is to interact with the door, and a scene with a drawer and a number of distractor blocks, and the exploration objective is to interact with the drawer. Additionally we consider a real Franka robot operating over a desk, with the exploration objective of interacting with a small corner drawer, as shown in Figure 5.

Comparisons. We compare BEE to two state-of-the-art exploration methods. First we compare to Disagreement, which uses model disagreement as the exploration objective for planning [7], [9]. This method uses an ensemble of five latent dynamics models, and uses the variance in their predictions as the reward for planning, similar to [9]. Second, we consider state marginal matching [35] (SMM), which also uses the human provided weak supervision. Specifically, it fits a density model to the human provided relevant states $p^\ast(s)$, and plans under the standard SMM reward $R(s) = \log p^\ast(s) - \log p(s)$ where $p(s)$ is the distribution over the policies visited states. Lastly, we compare to Random, a completely random exploration policy. For more implementation details, please refer to the Appendix I.

B. Does BEE Interact More With Relevant Objects?

We begin by measuring how much BEE and the comparisons interact with relevant objects specified by the human, shown in Figure 6. We include guided exploration (100 human provided images) toward each of the 3 small blocks, as well as to the door under varying numbers of distractors, and to the drawer. We report the percentage of episodes in which the agent moved the target object more than a threshold every 100 episodes, with the first 100 episodes corresponding to random interaction. We observe that over all domains and targets BEE interacts with the relevant object more than twice as often as the prior methods (Figure 6 (left)). Furthermore, we observe that BEE can be used to guide exploration towards not just a single object, but multiple target objects, and find that BEE interacts with both more than the other methods (Figure 6 (right)). We also observe that the model disagreement method explores more effectively than random; but when there are many distractors, it interacts more with the distractors than with the relevant object. SMM exhibits poor performance likely due to the learned density models struggling to scale to high dimensional image observations.

C. Does BEE Data Enable Better Downstream Performance?

For downstream batch RL using the collected data, we consider the model-based self-supervised RL setting. Specifically, we consider the visual foresight algorithm [11], [14], which learns a model of the dynamics from an unlabeled batch of interaction data, then uses this model with planning to reach goals. We train a visual dynamics model using Stochastic Variational Video Prediction (SV2P) [57]. The model is trained on the full dataset D collected in the batch exploration phase to predict future states, i.e. $(s_{t+1:t+H} \mid s_t, a_{t+H-1})$. The architecture and losses used are identical to the original SV2P paper [57], and can be found in Appendix II. For downstream task planning, we use the SV2P model in conjunction with sampling based planning (CEM), to plan sequences of actions to reach a goal image, under the planning

![Fig. 6: Interaction with Target Objects. Interaction with each target over learning. Specifically, we plot the % of the last 100 episodes where the agent moves the target object more than some fixed threshold (y-axis). For each relevant object, a sample human provided goal image is shown in the top left. We observe that given a single target object, BEE interacts with the target object more than twice as often as the comparisons in all domains (left). We also observe that given two targets, BEE is able to effectively explore them both (right).]
Fig. 7: Examples of predicted trajectories that are ranked high during online data collection on the robot for BEE vs. Disagreement. BEE rankings effectively discriminate target and non-target interaction, with the high-ranked trajectory under BEE going to the target object (corner drawer) even in the earlier steps of the episode. High-ranked states under Disagreement do not involve the target object.

Table I: Downstream success rates using planning with collected data. We compare the downstream task performance of using the data generated by BEE for batch RL using the visual foresight method. We observe that across 4 out of 5 tasks BEE is the top performing method. All results are averaged over 1000 trials.

	Open	Push Door (3)	Push Door (5)	Push Green	Push Blue
BEE (Ours)	0.42	0.63	0.65	0.47	0.50
Disagreement	0.36	0.59	0.69	0.45	0.44
SMM	0.29	0.58	0.70	0.43	0.46
Random	0.31	0.60	0.65	0.45	0.45

Fig. 8: Performance on a Real Robot. On the desk interaction task with a real Franka robot, we report the percentage of episodes in which the agent interacts with the target drawer (left, middle), as well as the success rate over 20 trials in the downstream task of closing the drawer (right). We observe that BEE interacts an order of magnitude more with the drawer than Disagreement, and yields a 20% improvement in downstream planning.

VI. LIMITATIONS AND FUTURE WORK

We have presented batch exploration with examples (BEE) as a technique for scalable collection of diverse robotic datasets which guides exploration with weak human supervision. While we observe increased interaction with target objects and improved downstream performance in simulated and real robot domains, limitations remain. First, a core aspect of BEE is leveraging weak human supervision in the form of a handful of "relevant states" to explore. However, how exactly these states are selected can potentially have a large impact on the quality of exploration. Specifically, if the distribution of states is too narrow, BEE may simply visit only those exact states. On the other hand, if the distribution of states is too broad, BEE may only explore some subset of it. While we found BEE to be generally insensitive to this choice, studying more closely how best to generate the human supervision for BEE is an interesting direction for future work. Second, like any adversarial RL method, overly powerful discriminators can result in a sparse and difficult to
optimize reward signal. While we found mix-up regularization, spectral normalization, and cropping to be effective in this work, better regularization for reward discriminators, e.g., instance noise or techniques from Wasserstein GANs [58], could improve BEE’s effectiveness. Despite these challenges, BEE provides a important step towards enabling the collection of larger and more diverse robotic datasets, which may be key to learning general purpose robotic agents.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[2] J. Chen, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT). Minneapolis, Minnesota: Association for Computational Linguistics, June 2019.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Aggarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” arXiv:2005.14165, 2020.

[4] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M.adero, A. Tung, J. Gao, J. Emmons, A. Gupta, E. Orbay, S. Savarese, and L. Fei-Fei, “Roboturk: A crowdsourcing platform for robotic skill learning through imitation,” in Conference on Robot Learning, 2018.

[5] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bacher, K. Schmeckpeper, S. Singh, S. Levine, and C. Finn, “Robonet: Large-scale multi-robot learning,” in Conference on Robot Learning, 2019.

[6] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos, “Unifying count-based exploration and intrinsic motivation,” in Advances in neural information processing systems, 2016.

[7] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by self-supervised prediction,” in ICML, 2017.

[8] D. Pathak, D. Gandhi, and A. Gupta, “Self-supervised exploration via disagreement,” arXiv:1906.04161, 2019.

[9] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak, “Planning to explore via self-supervised world models,” in ICLM, 2020.

[10] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review, and perspectives on open problems,” ArXiv, vol.abs/2005.01643, 2020.

[11] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in IEEE International Conference on Robotics and Automation (ICRA), 2017.

[12] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours,” in IEEE international conference on robotics and automation (ICRA), 2016.

[13] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning synergies between pushing and grasping with self-supervised deep reinforcement learning,” Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2018.

[14] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual foresight: Model-based deep reinforcement learning for vision-based robotic control,” arXiv:1812.00568, 2018.

[15] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto, “Robot learning in homes: Improving generalization and reducing dataset bias,” in Advances in Neural Information Processing Systems, 2018.

[16] S. Cabi, S. Gómez Colmenarejo, A. Novikov, K. Konyushkova, S. Reed, R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, et al., “Scaling data-driven robotics with reward sketching and batch reinforcement learning,” arXiv:1909.12200, 2019.

[17] A. Mandlekar, F. Ramos, B. Fei-Fei, A. Garg, and D. Fox, “Iris: Implicit reward without interaction at scale for learning control from offline robot manipulation data,” 2020.

[18] P. Sharma, L. Pinto, and A. Gupta, “Multiple interactions made easy (mime): Large scale demonstrations data for imitation,” arXiv:1810.07121, 2018.

[19] A. Xie, F. Ebert, S. Levine, and C. Finn, “Improvisation through physical understanding: Using novel objects as tools with visual foresight,” in Robotics Science and Systems, 2019.

[20] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million ways to be pushed. a high-fidelity experimental dataset of planar pushing,” 2016.

[21] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to poke by poking: Experimental learning of control physics,” in Advances in neural information processing systems, 2016.

[22] Y. Chebotar, K. Hausman, Z. Su, A. Molchanov, O. Kroemer, G. S. Sukhatme, and S. Schaal, “Bigs: Biotac grasp stability dataset,” 2016.

[23] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection,” The International Journal of Robotics Research, vol. 37, no. 4-5, 2018.

[24] J. Fu, J. Co-Reyes, and S. Levine, “Ex2: Exploration with exemplar models for deep reinforcement learning,” in Advances in neural information processing systems, 2017.

[25] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study of count-based exploration for deep reinforcement learning,” in Advances in neural information processing systems, 2017.

[26] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random network distillation,” in International Conference on Learning Representations, 2019.

[27] A. Ecoeflet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-explore: a new approach for hard-exploration problems,” arXiv:1901.10995, 2019.

[28] M. Lopes, T. Lang, M. Toussaint, and P. yves Oudeyer, “Exploration in model-based reinforcement learning by empirically estimating learning progress,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012.

[29] P.-Y. Oudeyer, “Computational theories of curiosity-driven learning,” arXiv:1802.10546, 2018.

[30] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motivation (1990–2010),” IEEE Transactions on Autonomous Mental Development, vol. 2, no. 3, 2010.

[31] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel, “Vime: Variational information maximizing exploration,” in Advances in Neural Information Processing Systems, 2016.

[32] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-explore: a new approach for hard-exploration problems,” arXiv:1901.10995, 2019.

[33] R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, et al., “Learning synergies between pushing and grasping with self-supervised deep reinforcement learning,” Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2018.

[34] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual foresight: Model-based deep reinforcement learning for vision-based robotic control,” arXiv:1812.00568, 2018.

[35] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto, “Robot learning in homes: Improving generalization and reducing dataset bias,” in Advances in Neural Information Processing Systems, 2018.

[36] S. Cabi, S. Gómez Colmenarejo, A. Novikov, K. Konyushkova, S. Reed, R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, et al., “Scaling data-driven robotics with reward sketching and batch reinforcement learning,” arXiv:1909.12200, 2019.

[37] A. Mandlekar, F. Ramos, B. Fei-Fei, L. Fei-Fei, A. Garg, and D. Fox, “Iris: Implicit reward without interaction at scale for learning control from offline robot manipulation data,” 2020.

[38] P. Sharma, L. Pinto, and A. Gupta, “Multiple interactions made easy (mime): Large scale demonstrations data for imitation,” arXiv:1810.07121, 2018.

[39] A. Xie, F. Ebert, S. Levine, and C. Finn, “Improvisation through physical understanding: Using novel objects as tools with visual foresight,” in Robotics Science and Systems, 2019.
with the drawer open to random amounts between 0 and 0.14.

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Hindsight experience replay,” ArXiv, vol. abs/1707.01495, 2017.

S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without exploration,” in International Conference on Machine Learning, 2019.

Y. Wu, G. Tucker, and O. Nachum, “Behavior regularized offline reinforcement learning,” arXiv:1911.11361, 2019.

R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel: Model-based offline reinforcement learning,” arXiv:2005.09591, 2020.

T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma, “Mopo: Model-based offline policy optimization,” in Advances in Neural Information Processing Systems, 2020.

A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforcement learning,” in Advances in Neural Information Processing Systems, 2020.

A. V. Nair, V. Pong, M. Dalal, B. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with imagined goals,” in Advances in Neural Information Processing Systems, 2018.

H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” ArXiv, vol. abs/1710.09412, 2018.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on Robot Learning, 2020.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, “Stochastic variational video prediction,” arXiv:1710.11252, 2017.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with imagined goals,” in Advances in Neural Information Processing Systems, 2018.

H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” ArXiv, vol. abs/1710.09412, 2018.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on Robot Learning, 2020.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, “Stochastic variational video prediction,” arXiv:1710.11252, 2017.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with imagined goals,” in Advances in Neural Information Processing Systems, 2018.

H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” ArXiv, vol. abs/1710.09412, 2018.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on Robot Learning, 2020.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, “Stochastic variational video prediction,” arXiv:1710.11252, 2017.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with imagined goals,” in Advances in Neural Information Processing Systems, 2018.

H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” ArXiv, vol. abs/1710.09412, 2018.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on Robot Learning, 2020.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, “Stochastic variational video prediction,” arXiv:1710.11252, 2017.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with imagined goals,” in Advances in Neural Information Processing Systems, 2018.

H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” ArXiv, vol. abs/1710.09412, 2018.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on Robot Learning, 2020.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, “Stochastic variational video prediction,” arXiv:1710.11252, 2017.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with imagined goals,” in Advances in Neural Information Processing Systems, 2018.

H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” ArXiv, vol. abs/1710.09412, 2018.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.

T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on Robot Learning, 2020.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, “Stochastic variational video prediction,” arXiv:1710.11252, 2017.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual reinforcement learning with imagined goals,” in Advances in Neural Information Processing Systems, 2018.

H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” ArXiv, vol. abs/1710.09412, 2018.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media, 2013.
closed. We do not reset the drawer position between episodes, so if an episode ends with the drawer open, the next episode will start with it open.

Downstream Planning: For all control experiments, evaluation is done by using model predictive control with SV2P models trained on the full datasets collected from each of five seeds in the batch exploration phase (a total of 10k episodes) along with 5k random episodes for 100k iterations. For evaluating control on the real robot, for each method we train the SV2P model on the 1000 episodes collected in the batch exploration phase and no random data. We plan 10 actions and execute them in the environment five times for a 100 step trial. Each stage of planning uses the cross entropy method with two iterations, sampling 200 10-step action sequences, sorting them by the mean pixel distance between the goal and the predicted last state of each trajectory, refitting to the top 40, and selecting the lowest cost trajectory.

SV2P Training: SV2P learns an action-conditioned video prediction model by sampling a latent variable and subsequently generating an image prediction with that sample. The architecture and losses used here are identical to the original SV2P paper [57]. This architecture is shown in Figure 9, which is taken from the original paper. The models are trained to predict the next fifteen frames given an input of five frames. All other hyperparameters used for training are default values used in the codebase of the original paper.

For all control experiments, evaluation is done by using model predictive control with SV2P models trained on the full datasets collected from each of five seeds in the batch exploration phase (a total of 10k episodes) along with 5k random episodes for 100k iterations. For evaluating control on the real robot, for each method we train the SV2P model on the 1000 episodes collected in the batch exploration phase and no random data. We plan 10 actions and execute them in the environment five times for a 100 step trial. Each stage of planning uses the cross entropy method with two iterations, sampling 200 10-step action sequences, sorting them by the mean pixel distance between the goal and the predicted last state of each trajectory, refitting to the top 40, and selecting the lowest cost trajectory.

SV2P Training: SV2P learns an action-conditioned video prediction model by sampling a latent variable and subsequently generating an image prediction with that sample. The architecture and losses used here are identical to the original SV2P paper [57]. This architecture is shown in Figure 9, which is taken from the original paper. The models are trained to predict the next fifteen frames given an input of five frames. All other hyperparameters used for training are default values used in the codebase of the original paper.

Downstream Task Evaluation: In the Open Drawer task, the goal image involves the gripper over the drawer handle, which is open to 0.15 distance. Success is defined by opening the drawer at least 0.15 radians, measured at the end of each 50-step episode. For the robot downstream task, we labeled the data collected by BEE and Disagreement and trained a reward classifier on 100 examples (labeled as 1) of the drawer open and 200 examples of the drawer closed (labeled as 0), with the gripper sometimes but not always near the drawer. We then conducted planning using this same classifier as the cost for both methods. Success is defined as pushing the drawer closed.

APPENDIX III

Architecture Details

In this section, we go over implementation details for our method as well as our comparisons.

During data collection, for each domain (block, door, and drawer domains in simulation as well as the real robot domain), all comparisons are trained on an Nvidia 2080 RTX, and all input observations are [64, 64, 3]. Each domain leverages an identical architecture, which is described as follows.

All comparisons use an encoder \(f_{\text{enc}} \) with convolutional layers (channels, kernel size, stride): \[(32, 4, 2), (32, 3, 1), (64, 4, 2), (64, 3, 1), (128, 4, 2), (128, 3, 1), (256, 4, 2), (256, 3, 1)\] followed by fully connected layers of size \([512, 2 \times L]\) where \(L \) is the size of the latent space (mean and variance). We use a latent space size of 256. All layers except the final are followed by ReLU activation.

The decoder \(f_{\text{dec}} \) takes a sample from the latent space of size \(L \) and feeds it through fully connected layers \([128, 128, 128] \) followed by de-convolutional layers (channels, kernel size, stride): \[([128, 5, 2], (64, 5, 2), (32, 6, 2), (3, 6, 2)]\]. All layers are followed by ReLU activation except the final layer, which is followed by a Sigmoid.

The dynamics model \(f_{\text{dyn}} \) is an LSTM layer \([128]\) followed by a fully connected network with layers \([128, 128, 128]\), which are all followed by ReLU activation except the final layer. For all domains, BEE and SMM learn just one dynamics model while Disagreement learns five of these.

For BEE, we learn an ensemble of three relevance discriminators. These take a sample from the latent space of size \(L \) and feed it through fully connected layers \([128, 64, 64]\), followed by de-convolutional layers (channels, kernel size, stride): \[([128, 5, 2], (64, 5, 2), (32, 6, 2), (3, 6, 2)]\]. We apply spectral normalization after each layer followed by a ReLU activation (except the final layer, which is followed by a Sigmoid instead).

For SMM, we learn two separate VAEs: one to represent the density over the policy’s visited states while the other fits a density model to the human provided relevant states. These two VAEs have the same architecture: they both use an encoder \(g_{\text{enc}} \) that takes in a sample from the latent space of size \(L \) and feeds it through fully connected layers \([150, 150]\), which are followed by ReLU activations. This is followed by a fully connected layer \([L_2]\) for the mean and variance each, where \(L_2 \) is the size of the latent space. We use \(L_2 = 100 \). The decoder \(g_{\text{dec}} \) takes in a sample from the latent space of size \(L_2 \) and feeds it through fully connected layers \([150, 150, L]\), where all layers except the last are followed by a ReLU activation.