Background

Helicobacter pylori is a gram-negative, spiral-shaped bacterium of the genus Epsilonproteobacteria (1). More than 50% of the world’s population is infected with the bacterium, and the infection usually appears in the early years of life (2). The spiral shape allows this bacterium to enter between the mucous layers that cover the stomach. The bacterium breaks down urea molecules, a chemical that produces ammonia and carbon dioxide. Ammonia forms a sheath around the bacteria that protects it against stomach acid. Therefore, the production of large amounts of urease enzyme is essential for the survival and pathogenicity of *H. pylori* (3), which has been identified by the World Health Organization as a human carcinogen of group 1. This bacterium causes severe gastritis and peptic ulcers in all infected people (4). The prevalence of *H. pylori* varies based on race, social class, socioeconomic status, health, and age (5). Today, there are several diagnostic and therapeutic methods for *H. pylori*, there is also treatment resistance that calls for the introduction of new drug combinations (6). In a study conducted in Iran, resistance to metronidazole was very high (57.4%), which is almost consistent with the results of other Asian countries (46.6%); however, the average resistance in Iran is lower than that in African countries (97.55%). Furthermore, the average resistance to ciprofloxacin in Iran is 18.5% due to the small number of studies (7). The enzyme urease has a molecular weight of 540 kDa and consists of two large subunits: UreA with 26.50 kDa and UreB with 61 kDa with a gene size of 1.70 kPa. Urease is a nickel metallic enzyme that hydrolyzes the conversion of urea to ammonium and carbon dioxide. *H. pylori* activated urease depends on the presence of UreA/B gene structures to form the 550 kDa holoenzyme while Ure1E/F subgenes and UreB/I/G genes are required for high expression of urease activity and bacterial establishment in the stomach, respectively.

UreB is the most effective and common immunogen of all *H. pylori* strains that can elicit a protective immune response in the body against *H. pylori* (8). Oxadiazole derivatives have a wide range of biological activities including inhibitory properties (9). The increasing need to produce pharmaceutical compounds and replace compounds with resistant drugs has become a necessity; therefore, the purpose of this study was to investigate the molecular docking studies of oxadiazole compounds as potential urease inhibitors of *H. pylori*.

Methods

Ligand Preparation

Our previously synthesized compounds were reused (10). The initial structure of the compounds was plotted by ChemDraw Pro 12.0 software, then the crystallographic structure of the compounds was drawn using Chem3D 17.0 software, and finally optimized with the Molecular Mechanics Models in kcal.mol⁻¹ command (11). The total energy of each compound after optimization is specified and listed in Figure 1.
Protein Preparation
Crystallized structure of the urea enzyme of *H. pylori* was downloaded from the protein database with code (PDB ID: 1e9z) and the resolution of 3 angstroms (Å). To ensure the structure’s health, its crystallography was observed by Visual Molecular Dynamics software. Further, the second structure of the protein was examined through Chimera software.

Molecular Docking
The docking process of compounds 4a-4d to the urease binding site was performed using AutoDock Vina software and Discovery Studio 4.5. Polar hydrogens were added to the compounds and proteins, then the partial charge of the compounds was added, and the partial charge of the protein was added by the Kollman method. Finally, ligand and junction interactions were investigated and analyzed by Discovery Studio 4.5 Client software. All docking calculations were performed using the genetic optimization algorithm and Lamarck traits, which are configured as follows: the maximum number of energy assessments was 25,000,000, and an initial population of 150 was randomly assigned. In addition, the maximum number of generations, the mutation rate, and the crossover rate were 27,000, 0.02, and 0.8, respectively, along with an elitism value. For local search, the so-called Solis algorithm was used with a maximum of 1000 repetitions per search. This process was performed by considering the protein and the ligand as inflexible and flexible, respectively. Grid box with dimensions 120 × 120 × 120 which includes the whole protein, the distance of grade 1 Å, and other parameters (X-Center: 120.00, Y-Center: 100.00, Z-Center: 66.00) was considered, and the best conformity with the lowest amount of binding energy was selected as a result after docking (12).

Results
According to Table 1, all affinities of the compounds were calculated, and the best compounds with low ΔG (-ΔG) were selected to continue experiments and investigate chemical interactions. As demonstrated in Figure 2, the highest amount of hydrogen bonds was related to the 4c compound with the amino acid serine: 567, glutamic acid: 371, threonine: 374, and glutamine: 378, among which the compound bonds were the case. Regarding the 4d compound, the highest amount of carbon-hydrogen bonds was related to Lysine: 445 and Glutamine: 471.

Discussion
Compounds with 1,3,4-oxadiazole cores have occupied a specific place in medicinal and synthetic chemistry because of their extensive range of biological activities such as antibacterial, antifungal, anti-inflammatory, antiviral, anticancer, enzyme inhibitor, anticonvulsant, and anti-diabetic properties (13). These properties make it a desirable medicinal backbone that can be used to construct biologically-useful molecules. This study evaluated the *in silico* effects of 4 syntheses of 1, 3, 4-oxadiazole derivatives against the human pathogen *H. pylori*. Drug resistance of *H. pylori* has been increasing over the past few decades (14). According to a study by Moran-Gilad et al, *H. pylori* resistance rate was 54%, 31%, 10%, 4%, and 2% to clarithromycin, metronidazole, amoxicillin, and Lysine: 445 and Glutamine: 471.

Table 1. AutoDock Vina Results of 1, 3, 4-Oxadiazole Compounds (4a-4d)

No.	Affinity (kcal/mol)	Carbon-Hydrogen Bond	Pi-Alkyl Bond	Pi-Anion Bond	Hydrogen Bond	Halogen Bond	Pi-Cation Bond
4a	-7.3	Asparagine: 111	Alanine: 94	-	-	-	-
4b	-6.8	-	-	-	-	-	-
4c	-8.3	-	Alanine: 563	Valine: 560	-	-	-
4d	-7.0	Lysine: 445	Alanine: 16	Valine: 33	Isoleucine: 568	-	-
urease enzyme is one of the most important enzymes associated with bacterial activity, so the inhibition of this enzyme will kill bacteria. Alternative drug structures are a basic and important need in the treatment of pathogenic strains of bacteria. Hence, the need to make and synthesize alternative drugs has increased gradually. Newly synthesized structures containing the central nucleus of 1, 3, 4-oxadiazole can be used for a variety of biological activities. It appears that oxadiazole subordinates will be a supportive structure for conceivable improvement of unused drugs, but this result must be confirmed by other broad clinical trials that will be a portion of our future plans.

Conclusions

Helicobacter pylori urease enzyme is one of the most important enzymes associated with bacterial activity, so the inhibition of this enzyme will kill bacteria. Alternative drug structures are a basic and important need in the treatment of pathogenic strains of bacteria. Hence, the need to make and synthesize alternative drugs has increased gradually. Newly synthesized structures containing the central nucleus of 1, 3, 4-oxadiazole can be used for a variety of biological activities. It appears that oxadiazole subordinates will be a supportive structure for conceivable improvement of unused drugs, but this result must be confirmed by other broad clinical trials that will be a portion of our future plans.

Acknowledgments

The author appreciates all professors who participated voluntarily in this investigation.

Conflict of Interests

None.

References

1. Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera *Campylobacter* and *Helicobacter*. Microbiol Mol Biol Rev. 2011;75(1):84-132. doi: 10.1128/mmbir.00035-10.
2. Hoi HT. *H. pylori* bacteria--cause of peptic ulcer and some treatments. J Crit Rev. 2020;7(14):887-90.
3. Keogan D. The Development of Metallohydroxamates as Novel Anti-Bacterial and Anti-Leishmanial Agents [thesis], Royal College of Surgeons in Ireland; 2018.
4. Butt J, Epplein M. *Helicobacter pylori* and colorectal cancer-a bacterium going abroad? PLoS Pathog. 2019;15(8):e1007861. doi: 10.1371/journal.ppat.1007861.
5. Kakooza S. Prevalence and factors associated with *Helicobacter pylori* infection among adults between 18 and 40 years at Butembe Health Centre III Kyankwanzi district, Uganda. Stud J Health Res Afr. 2021;2(6):7. doi: 10.51168/sjhafriatica.v2i6.37.
6. Saleem N, Howden CW. Update on the management of *Helicobacter pylori* infection. Curr Treat Options Gastroenterol. 2020;1-12. doi: 10.1007/s11938-020-00300-3.
7. Bakhshi S, Ghazvini K, Beheshti A, Ahadi M, Shykhli M. Review of antibiotic resistance of *Helicobacter pylori* in Iran and the world. Med J Mashhad Univ Med Sci. 2017;60(4):648-61. doi: 10.22038/mjums.2017.10191. [Persian].
8. Nasr-Esfahani M, Doosti A, Sazegar H. Evaluation of the immune response against *Helicobacter pylori* in Infused BALB/c Mice by pcDNA3.1(+)-ureA. Folia Med (Plovdiv). 2020;62(1):37-45. doi: 10.3897/folmed.62.e47932.
9. Ghameshlouei S, Zarrabi Abrabi N, Souldozi A, SarveAbrabi Y. Evaluation of the antibacterial and investigation of the molecular docking of new derivatives of 1, 3, 4-oxadiazole as inhibitors of quorum sensing system in the human pathogen *Pseudomonas aeruginosa*. Avicenna J Clin Microbiol Infect. 2021;8(1):27-33. doi: 10.34172/ajcmi.2021.06.
10. Zarrabi Ahrabi N, Souldozi A, SarveAhrabi Y. Synthesis of new three-component derivatives of 1,3,4-oxadiazole and evaluation of their in vitro antibacterial and antifungal properties. Med Lab J. 2021;15(5):13-8. doi: 10.29252/mlj.15.5.13. [Persian].

11. Ghameshlouei S, Zarrabi Ahrabi N, SarveAhrabi Y. In vitro and in silico evaluation of biological activity of a new series of oxadiazole compounds against esp gene expression in Enterococcus faecalis biofilm. Gene Cell Tissue. 2021;8(2):e112403. doi: 10.5812/gct.112403.

12. Morris GM, Lim-Wilby M. Molecular docking. In: Kukol A, ed. Molecular Modeling of Proteins. Totowa, NJ: Humana Press; 2008. p. 365-82. doi: 10.1007/978-1-59745-177-2_19.

13. SarveAhrabi Y, Zarrabi Ahrabi N, Souldozi A. Synthesis and antimicrobial evaluation of new series of 1,3,4-oxadiazole containing cinnamic acid derivatives. Avicenna J Clin Microbiol Infect. 2021;8(1):11-6. doi: 10.34172/ajcmi.2021.03.

14. Flores-Treviño S, Mendoza-Olazarán S, Bocanegra-Ibarias P, Maldonado-Garza HJ, Garza-González E. Helicobacter pylori drug resistance: therapy changes and challenges. Expert Rev Gastroenterol Hepatol. 2018;12(8):819-27. doi: 10.1080/17474124.2018.1496017.

15. Domanovich-Asor T, Motro Y, Khalifin B, Craddock HA, Perlitz A, Moran-Gilad J. Genomic analysis of antimicrobial resistance genotype-to-phenotype agreement in Helicobacter pylori. Microorganisms. 2020;9(1):2. doi: 10.3390/microorganisms9010002.

16. Khan FA, Rehman AU, Abbasi MA, Afridi SG, Khan A, Lodhi MA, et al. Structural basis of binding and justification for the urease inhibitory activity of acetamide hybrids of N-substituted 1,3,4-oxadiazoles and piperidines. J Mol Struct. 2021;1223:129141. doi: 10.1016/j.molstruc.2020.129141.

17. Mao WJ, Lv PC, Shi L, Li HQ, Zhu HL. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg Med Chem. 2009;17(21):7531-6. doi: 10.1016/j.bmc.2009.09.018.

18. Kataria R, Khatkar A. Molecular docking, synthesis, kinetics study, structure-activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chem. 2019;13(1):45. doi: 10.1186/s13065-019-0562-2.