Effects of erythropoiesis-stimulating agents on fatigue- and anaemia-related symptoms in cancer patients: systematic review and meta-analyses of published and unpublished data

J Bohlius *,1, T Tonia 1, E Nüesch 1,2, P Jüni 1,3, M F Fey 4, M Egger 1 and J Bernhard 4

1Institute of Social and Preventive Medicine (ISPM), University of Bern, Finkenhubelweg 11, 3012 Bern, Switzerland; 2Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; 3Department of Clinical Research, CTU Bern, University of Bern, Finkenhubelweg 11, 3012 Bern, Switzerland and 4Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland

Background: Erythropoiesis-stimulating agents (ESAs) reduce the need for red blood cell transfusions; however, they increase the risk of thromboembolic events and mortality. The impact of ESAs on quality of life (QoL) is controversial and led to different recommendations of medical societies and authorities in the USA and Europe. We aimed to critically evaluate and quantify the effects of ESAs on QoL in cancer patients.

Methods: We included data from randomised controlled trials (RCTs) on the effects of ESAs on QoL in cancer patients. Randomised controlled trials were identified by searching electronic data bases and other sources up to January 2011. To reduce publication and outcome reporting biases, we included unreported results from clinical study reports. We conducted meta-analyses on fatigue- and anaemia-related symptoms measured with the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) and FACT-Anaemia (FACT-An) subscales (primary outcomes) or other validated instruments.

Results: We identified 58 eligible RCTs. Clinical study reports were available for 27% (4 out of 15) of the investigator-initiated trials and 95% (41 out of 43) of the industry-initiated trials. We excluded 21 RTCs as we could not use their QoL data for meta-analyses, either because of incomplete reporting (17 RCTs) or because of premature closure of the trial (4 RCTs). We included 37 RCTs with 10581 patients; 21 RCTs were placebo controlled. Chemotherapy was given in 27 of the 37 RCTs. The median baseline haemoglobin (Hb) level was 10.1 g dl–1; in 8 studies ESAs were stopped at Hb levels below 13 g dl –1 and in 27 above 13 g dl –1. For FACT-F, the mean difference (MD) was 2.41 (95% confidence interval (95% CI) 1.39–3.43; P < 0.0001; 23 studies, n = 6108) in all cancer patients and 2.81 (95% CI 1.73–3.90; P < 0.0001; 19 RCTs, n = 4697) in patients receiving chemotherapy, which was below the threshold (≥3) for a clinically important difference (CID). Erythropoiesis-stimulating agents had a positive effect on anaemia-related symptoms (MD 4.09; 95% CI 2.37–5.80; P = 0.001; 14 studies, n = 2765) in all cancer patients and 4.50 (95% CI 2.55–6.45; P < 0.0001; 11 RCTs, n = 2436) in patients receiving chemotherapy, which was above the threshold (≥4) for a CID. Of note, this effect persisted when we restricted the analysis to placebo-controlled RCTs in patients receiving chemotherapy. There was some evidence that the MDs for FACT-F were above the threshold for a CID in RCTs including cancer patients receiving chemotherapy with Hb levels below 12 g dl–1 at baseline and in RCTs stopping ESAs at Hb levels above 13 g dl–1. However, these findings for FACT-F were not confirmed when we restricted the analysis to placebo-controlled RCTs in patients receiving chemotherapy.

Conclusions: In cancer patients, particularly those receiving chemotherapy, we found that ESAs provide a small but clinically important improvement in anaemia-related symptoms (FACT-An). For fatigue-related symptoms (FACT-F), the overall effect did not reach the threshold for a CID.

*Correspondence: Dr J Bohlius; E-mail: jbohlius@ispm.unibe.ch

Received 1 April 2013; revised 27 February 2014; accepted 10 March 2014; published online 17 April 2014

© 2014 Cancer Research UK. All rights reserved 0007 – 0920/14

www.bjcancer.com | DOI:10.1038/bjc.2014.171

33
Erythropoiesis-stimulating agents (ESAs) reduce the need for red blood cell transfusions (Bohlius et al, 2006b; Ludwig et al, 2009; Tonelli et al, 2009) and may improve quality of life (QoL); however, they increase the risk of thromboembolic events and death. A large meta-analysis based on individual patient data (IPD) from 53 randomised controlled trials (RCTs) demonstrated a statistically significant, 17% higher risk of mortality during the active study phase in cancer patients who received ESAs compared with controls (Bohlius et al, 2009a,b). An increased risk of mortality was also reported in each of the more recent systematic reviews and meta-analyses, which were not funded by the pharmaceutical industry (Bennett et al, 2008; Tonelli et al, 2009; Tonia et al, 2012; Grant et al, 2013) but in none of the systematic reviews and meta-analyses sponsored by the pharmaceutical industry (Aapro et al, 2008b; Glasy et al, 2010). Several meta-analyses have shown that ESAs increase the risk of thromboembolic events in cancer patients (Bohlius et al, 2006a,b; Seidenfeld et al, 2006; Aapro et al, 2008b, 2009; Bennett et al, 2008; Ludwig et al, 2009; Tonelli et al, 2009); the effects of ESAs on tumour progression remain uncertain (Aapro et al, 2012).

The impact of ESAs on QoL is controversial. Positive findings from observational studies (Glasy et al, 1997; Demetri et al, 1998; Gabrilove et al, 2001; Quirt et al, 2001; Cella et al, 2003) and clinical trials (Littlewood et al, 2001; Fallowfield et al, 2002; Chang et al, 2005; Wilkinson et al, 2006) have not been confirmed in more recent RCTs (Smith et al, 2008; Hoskin et al, 2009; Engert et al, 2010; Fujisaka et al, 2011; Nitz et al, 2011). Previous meta-analyses have demonstrated that ESAs effectively reduce fatigue-related symptoms in cancer patients (Minton et al, 2008, 2010; Tonelli et al, 2009). However, these meta-analyses were restricted to the published literature and may be compromised by publication and outcome reporting biases (Egger and Smith, 1998; Dwan et al, 2011; Redmond et al, 2013). Publication bias refers to the fact that studies with positive results are more likely to be published compared with studies with negative results (Egger and Smith, 1998). Outcome reporting bias refers to the selective reporting of outcomes in a published study, where mainly the most statistically significant results or the ones meeting the authors’ assumptions are reported (Dwan et al, 2011; Redmond et al, 2013). Meta-analyses including only published results may be prone to bias and overestimate treatment effects.

We aimed to critically evaluate and quantify the effects of ESAs on QoL in cancer. We systematically reviewed and meta-analysed RCTs that compared ESAs with controls in cancer patients. Our objectives were to examine the effects of ESAs on patient-rated fatigue- and anaemia-related symptoms and to identify groups of patients who may benefit most from treatment with ESAs. To reduce potential publication bias and outcome reporting biases, we included unpublished and unreported data.

We updated literature searches from our previous meta-analyses on ESAs (Bohlius et al, 2006a,b, 2009a,b) in Medline, Embase, Cochrane Central Register of Controlled Trials and databases of conference proceedings for the years 2008 to January 2011 (for details, see Supplementary Webappendix Table 1). We screened the reference lists of relevant meta-analyses and clinical trials registries (http://clinicaltrials.gov/; http://www.isrctn.org/). Four reviewers (AM, JF, NR and TT) worked in pairs and independently determined study eligibility. Data on study characteristics, study quality and outcomes were extracted by one reviewer (TT) and checked for accuracy by another (JB). Our primary sources of data extraction were the published study documents. We complemented these data with information from study protocols and reports, which we had obtained from ESA manufacturers (Amgen, Thousand Oaks, CA, USA; Johnson & Johnson, New Brunswick, NJ, USA; Hoffmann-La Roche, Basel, Switzerland) and clinical study groups for a previous IPD meta-analysis (Bohlius et al, 2009a,b). For that meta-analysis, we had identified published and unpublished trials through electronic searches of published abstracts and articles, screening of clinical trials registries and Oncologic Drugs Advisory Committee hearing documents, and contacting ESA manufacturers and experts in the field. We had obtained clinical study reports as requested for 98% (48 out of 49) of the trials initiated by the ESAs manufacturers and 36% (5 out of 14) of the trials run by clinical study groups, for details see Bohlius et al (2009a,b). In addition, we searched for QoL results in clinical trials registries (http://clinicaltrials.gov/; http://www.isrctn.org/).

Outcomes. Our primary outcomes were fatigue- and anaemia-related symptoms measured with the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) subscale and the FACT-Anaemia (FACT-An) subscale. The FACT-F includes 13 fatigue-related questions (range of scale 0–52). The FACT-An (range of scale 0–80) includes the 13 fatigue-related items plus 7 anaemia-related questions, for example, dizziness, headaches, pain in chest and trouble walking. These instruments are widely used in ESA trials, are highly responsive to change, and have good convergent and discriminant validity (Cella, 1997, 2007; Yellen et al, 1997; Cella et al, 2002b). Secondary outcomes included changes in the cancer-specific FACT-G total score (range 0–108) and the subscales on physical, functional and social/family well-being (range 0–28) and emotional well-being (range 0–24). For sensitivity analyses, we included the fatigue- and anaemia-related subscales from studies that used instruments other than FACT-F and FACT-An, that is, EORTC QLQ-C30 (Aaronson et al, 1993), SF-36 (Ware and Sherbourne, 1992), FACT-An subscale non-fatigue items (Cella, 1997), FACT-An full scale (Cella, 1997) and visual analogue scales (VAS) assessing energy, daily activities and overall health or QoL. For each instrument, we predefined the specific domain that best corresponded to fatigue- and anaemia-related symptoms, physical, functional, social/family, emotional well-being and overall QoL as measured by FACT-F, FACT-An, FACT-G and its subscales. We defined a clinically important difference (CID) as a mean difference (MD) of ≥3 for FACT-F (Cella et al, 2002b) and ≥4 for FACT-An (D Cella, personal communication, March 2010). For standardised effect sizes, an effect size of 0.20–0.50 s.d. units was considered small but clinically important, whereas effect sizes of 0.50–0.80 and >0.80 were considered to be moderate and large differences, respectively (Sloan and Dueck, 2004; Sloan et al, 2006).

Statistical methods. Results from individual studies were expressed either as differences in mean changes from baseline to study end or as effect sizes. Effect sizes were calculated as the differences in mean values at the end of treatment divided by the pooled s.d. (Cohen’s d) (Cohen, 1988). If the required data were not reported, we used approximations (Reichenbach et al, 2007) to calculate differences or s.d. Data were analysed according to the intention-to-treat...
approach, using the last observation carried forward if data were missing. In sensitivity analyses, we analysed the data measured closest to week 12, a time point frequently considered in ESA trials. We used random-effects meta-analyses to combine trials and quantified heterogeneity with the I^2 statistic (Higgins et al., 2003).

In stratified analyses, we aimed to identify patient characteristics, treatment strategies and aspects of study design associated with the effect of ESAs on QoL, see Supplementary Webappendix Table 2. Tests of interactions and trends were obtained from univariate random-effects meta-regression models (Thompson and Sharp, 1999). Analyses were conducted in the entire data set, including all RCTs, only in chemotherapy trials and only in placebo-controlled RCTs in patients receiving chemotherapy. We investigated the association between trial size and treatment effects in funnel plots and regression tests (Sterne and Egger, 2001). To adjust for potential publication bias, we used the trim and fill method (sensitivity analysis) (Duval 2005). Results are presented as MDs or standardised MDs (SMDs) with 95% confidence intervals (95% CIs). We estimated treatment response as the proportion of patients achieving a CID (threshold 3 for FACT-F and 4 for FACT-An subscales). To estimate this treatment response, we used the inverse of the absolute difference between placebo-controlled RCTs in patients receiving chemotherapy.

Finally, we included 37 studies with 10,581 patients randomised (Abels, 1993; Case et al., 1993; Henry and Abels, 1994; Thatcher et al., 1999; Littlewood et al., 2001; Huddart et al., 2002; Kotasek et al., 2002, 2003; Osterborg et al., 2002; Vansteenkiste et al., 2002; Boogaerts et al., 2003; Hedenus et al., 2003; Iconomou et al., 2005; Milroy et al., 2003; P-174; Chang et al., 2005; Debus et al., 2005; Mystakidou et al., 2005; O’Shaughnessy et al., 2005; Savonije et al., 2005; Witzig et al., 2005; Wilkinson et al., 2006; Charu et al., 2007; Witzig et al., 2009).

RESULTS

Number of eligible, included and excluded studies. We identified 58 eligible RCTs. Clinical study reports were available for 27% (4 out of 15) of the trials run by clinical study groups and 95% (41 out of 43) of the trials initiated by the ESAs manufacturers. Of the 58 eligible RCTs, we excluded 21 RTCs for the following reasons: QoL data were not reported because of premature closure of the trials (Machtay et al., 2007; Thomas et al., 2008; AGO-OVAR 2.7; CR002305); or data reporting was too incomplete to allow any analysis (Rose et al., 1994; Dammacco et al., 2001; Qurt et al., 2001; Thomas et al., 2002; INT-1; INT-3; Leyland-Jones et al., 2005; Goss et al., 2005; Aapro et al., 2008a; Suzuki et al., 2008; EPO-GER-20; Gupta et al., 2009; Ray-Coquard et al., 2009; Yoshizaki et al., 2010; Untch et al., 2011; CDR0000069148; Moebus et al., 2013) (Figure 1).

Finally, we included 37 studies with 10,581 patients randomised (Abels, 1993; Case et al., 1993; Henry and Abels, 1994; Thatcher et al., 1999; Littlewood et al., 2001; Huddart et al., 2002; Kotasek et al., 2002, 2003; Osterborg et al., 2002; Vansteenkiste et al., 2002; Boogaerts et al., 2003; Hedenus et al., 2003; Iconomou et al., 2005; Milroy et al., 2003; P-174; Chang et al., 2005; Debus et al., 2005; Mystakidou et al., 2005; O’Shaughnessy et al., 2005; Savonije et al., 2005; Witzig et al., 2005; Wilkinson et al., 2006; Charu et al., 2007; Witzig et al., 2009).
Characteristics of included studies. Characteristics of included studies are shown in Table 1 and Supplementary Webappendix Tables 3–5. Quality of life was the primary end point in 11 (30%) studies, a secondary end point in 25 trials, and was not mentioned as a study end point in one study. Most studies (n = 23) used the FACT-F subscale and/or (n = 14) the FACT-An subscale. Among the studies not reporting FACT-F or FACT-An, three studies reported the total score of the full FACT-An scale (47 items); one study used EORTC QLQ-C30, one SF-36 and five studies used VAS. Twenty-one (57%) studies were placebo controlled, 11 (30%) reported sample size calculations for a QoL end point, 9 (24%) defined a QoL hypothesis, 4 (11%) reported definitions for a clinically important change and 4 (11%) reported percentages of patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Chemotherapy was given in 27 of the 37 studies included (73%). Radiotherapy or radiochemotherapy was given in two studies and no anticancer treatment was given in six (16%). In one study, <70% of the included patients received chemotherapy (P = 0.134). The analysis of FACT-An included (P = 0.001) the FACT-An subscale. Among 14 studies, patients completing QoL questionnaires (submission rates). Ch...
Percentage of patients achieving a CID and NNT. We estimated the percentage of patients achieving a CID and corresponding NNTs based on hypothetical control groups. With a hypothetical response rate of 20% in the control group, the response rate in patients receiving ESAs is 27% (95% CI 24%–30%) for FACT-F and 29% (95% CI 25%–34%) for FACT-An with corresponding NNTs of 14 (95% CI 10–26) and 10 (95% CI 7–19). With a hypothetical response rate of 40% in the control group, the response rate in patients receiving ESAs is 49% (95% CI 45–52) for FACT-F and 52% (95% CI 47%–57%) for FACT-An with corresponding NNTs of 11 (95% CI 8–19) and 8 (95% CI 5–14).

Table 1. Characteristics of included randomised controlled trials (Continued)

Characteristic	N of studies (%)
Baseline Hb	
< 10 g dl⁻¹	14 (37.84)
10–12 g dl⁻¹	17 (45.95)
> 12 g dl⁻¹	6 (16.22)
Tumour type	
Solid	20 (54.05)
Haematological	5 (13.51)
Solid and haematological	12 (32.43)
Anticancer treatment	
Chemotherapy	27 (72.97)
Radiotherapy	2 (5.41)
No anticancer therapy	6 (16.22)
Other/unclear	2 (5.41)
Duration of ESA treatment	
< 9 Weeks	2 (5.41)
9–16 Weeks	18 (48.65)
≥ 17 Weeks	4 (10.81)
Until end of chemotherapy	13 (35.14)
Planned weekly ESA dose	
<40 000 U epo x/a or 30,000 U epo β or 100 µg darbepo	9 (24.32)
= 40 000 U epo x/a or 30,000 U epo β or 100 µg darbepo	9 (24.32)
>40 000 U epo x/a or 30,000 U epo β or 100 µg darbepo	13 (35.14)
Other (e.g., weight based or Hb based)	6 (16.22)
Frequency of ESA administration	
TIW	19 (51.35)
QW	11 (29.73)
≤ Q2W	6 (16.22)
Other	1 (2.70)
Target Hb	
≤ 13 g dl⁻¹	8 (21.62)
> 13–15 g dl⁻¹	27 (72.97)
Not reported	2 (5.41)
Placebo controlled	
Yes	21 (56.76)
No	16 (43.24)
Study completed?	
Terminated/halted	7 (18.92)
Completed	30 (81.08)

DISCUSSION

We found that ESAs provide a small but clinically important improvement in anaemia-related symptoms (FACT-An), which was confirmed when the analysis was restricted to placebo-controlled RCTs in patients receiving chemotherapy. For fatigue-related symptoms (FACT-F), the overall effect did not reach the threshold for a CID. For FACT-F, there was some evidence that treatment effects were above the threshold for a CID in RCTs in patients receiving chemotherapy. For fatigue-related symptoms (FACT-An), the overall effect did not reach the threshold for a CID. For FACT-An, there was some evidence that treatment effects were above the threshold for a CID in RCTs in patients receiving chemotherapy. For FACT-F, there was some evidence that treatment effects were above the threshold for a CID in RCTs in patients receiving chemotherapy. For FACT-An, there was some evidence that treatment effects were above the threshold for a CID in RCTs in patients receiving chemotherapy.

We estimated the percentage of patients achieving a CID and NNTs based on hypothetical control groups. With a hypothetical response rate of 20% in the control group, the response rate in patients receiving ESAs is 27% (95% CI 24%–30%) for FACT-F and 29% (95% CI 25%–34%) for FACT-An with corresponding NNTs of 14 (95% CI 10–26) and 10 (95% CI 7–19). With a hypothetical response rate of 40% in the control group, the response rate in patients receiving ESAs is 49% (95% CI 45–52) for FACT-F and 52% (95% CI 47%–57%) for FACT-An with corresponding NNTs of 11 (95% CI 8–19) and 8 (95% CI 5–14).
influence of placebo effects (a potential bias in self-reported measures such as fatigue- and anaemia-related symptoms), we conducted additional analyses restricted to (1) chemotherapy RCTs regardless of blinding and (2) only placebo-controlled chemotherapy RCTs. However, there were only few placebo-controlled RCTs reporting QoL outcomes for patients receiving chemotherapy, which limited our ability to conduct stratified analyses in this setting. For example, both in the overall analyses and in those restricted to chemotherapy studies, FACT-F results were more favourable in studies that chose QoL as primary end point, compared with those that chose QoL as secondary end point. Only one study evaluating FACT-F as primary end point in patients receiving chemotherapy was placebo controlled, and so we cannot gauge the extent to which the effect observed for primary vs secondary end point was confounded by lack of blinding. The design of the included studies did not permit us to estimate the relative benefit of ESAs in Hb responders vs non-responders. This would have required RCTs that identified responders in a run in period and then randomised these responders to either stop or continue ESAs. Finally, decreased QoL in cancer patients is affected by factors other than anaemia. Correction of a single factor, as did the studies included in our meta-analyses, may not have adequately reflected the complex pathophysiological and psychological dimensions of patient-reported QoL.

Several limitations of our study underscore the need for open access to all clinical trials results including study protocols, amendments, reports and IPD as currently discussed at the European Medicines Agency (Eichler et al, 2012). First, the quality...
of reporting QoL data was low. Both in the published articles and the clinical study reports key information such as percentage of patients completing QoL questionnaires was missing or not clearly reported for the majority of studies. Critical review of clinical study documents by the academic community may help to improve the quality of reporting in these reports, which will only be possible with open access to these documents. Second, we identified another 16 trials (Kotaske et al, 2002, 2003; Thomas et al, 2002; Vansteenkiste et al, 2002; Boogaerts et al, 2003; Hedenus et al, 2003; Goss et al, 2005; Mystakidou et al, 2005; Witzig et al, 2005; Wilkinson et al, 2006; Aapro et al, 2008a; Gordon et al, 2008; Krazowski, 2008; Pirker et al, 2008; Strauss et al, 2008; EPO-GER-20, 2009a) measuring FACT-An that did not or only incompletely report their FACT-An results and could therefore not be included in our analyses. Access to IPD may have permitted to include these studies in our analysis and it is possible that including these studies would change the results of our analyses. We unsuccessfully tried to retrieve the IPD and hence evaluated unpublished aggregated QoL data found in clinical study reports. However, for results, which were not reported in these documents, we made no additional attempts to obtain these results from the investigators. We also assessed whether QoL results had been published in clinical trials registries, which was not the case. Finally, our analyses are based on aggregated data and therefore analyses of variables at patient level, such as Hb at baseline and stage of disease, are prone to ecological bias (Berlin et al, 2002). This limitation could be overcome with a meta-analysis based on IPD, but this was not available for the current analyses.

When judging the efficacy of ESAs on fatigue- and anemia-related symptoms, it is important to differentiate clinical from statistical significance. The concept of CIDs has been developed to address this problem (Cella et al, 2002a). However, defining CIDs is not straightforward. Depending on the clinical context and the methods selected, the threshold for CID could be set at different levels. For our primary analyses, we used the definition of Cella et al (2002b), which was developed to combine anchor- and distribution-based methods in populations similar to those we studied. Notably, the CIDs defined for FACT-F and FACT-An refer to changes from baseline to end of treatment. In our analyses, we used this yardstick to measure the differences in mean changes between groups from baseline to treatment, according to current practice in QoL studies (Tonelli et al, 2009; Minton et al, 2010).

Harmful effects of ESAs should be balanced against potential benefits. Previous meta-analyses have consistently shown that ESAs increase the risk of thromboembolic events in cancer patients by approximately factor 1.6 (Bohlius et al, 2006a,b; Seidenfeld et al, 2006; Aapro et al, 2008b, 2009; Bennett et al, 2008; Ludwig et al, 2009; Tonelli et al, 2009). Literature-based and IPD meta-analyses showed increased mortality (Bohlius et al, 2009a,b) or shortened overall survival in patients receiving ESAs (Bennett et al, 2008; Tonelli et al, 2009). Whether ESAs are safe for patients undergoing chemotherapy is a matter of debate. Our meta-analyses, and those of others based on IPD, have shown that ESAs increased short-term mortality in patients receiving chemotherapy by approximately 10% (Bohlius et al, 2009a,b; Ludwig et al, 2009), not reaching conventional levels of statistical significance. Statistically, the estimated mortality increase in chemotherapy trials can be explained by the same underlying effect as that in non-chemotherapy trials (Bohlius et al, 2009a,b). Clinically, the increase in mortality associated with ESAs may be less pronounced, or even absent, in patients receiving chemotherapy than in those undergoing other anticancer treatments. Two recent studies in cancer patients receiving chemotherapy did not find evidence for survival differences in patients receiving ESAs compared with controls (Engert et al, 2010; Moebus et al, 2013). In these studies, cancer patients were receiving chemotherapy with a curative intent and ESAs were stopped at Hb levels of 12 g dl$^{-1}$ (Engert et al, 2010) and 14 g dl$^{-1}$ (Moebus et al, 2013). Nevertheless, current evidence does not allow to conclude that ESAs are safe in patients receiving chemotherapy. Basic science studies have evaluated the presence of erythropoietin (EPO) receptors and its functionality in tumour cells (Arcasoy et al, 2005; Szenajch et al, 2010; Kumar et al, 2012). Interestingly, researchers without funding from ESA manufacturers were more likely to identify EPO receptors on cancer cells, EPO-induced signalling events or EPO-induced harmful changes of cellular function; or to conclude that ESAs had potentially harmful effects on cancer cells as compared with investigators receiving funding or being employed by ESA manufacturers (Bennett et al, 2010). Similarly, of the seven meta-analyses on the effects of ESAs in cancer patients conducted since 2008 none of the meta-analyses with funding from ESA manufacturers identified an increased mortality risk (Aapro et al, 2008b; Glaspy et al, 2010). In contrast, each of the meta-analyses conducted by researchers not receiving funding from ESA manufacturers found an increased risk either for on study mortality or overall survival.

Figure 3. Funnel plots for FACT-F (A) and FACT-An (B). Closed circles = results from published literature, open circles = results from clinical study reports.
Table 2. Stratified analyses for FACT-F in (i) all included RCTs, (ii) RCTs in patients receiving chemotherapy and (iii) placebo-controlled RCTs in patients receiving chemotherapy

FACT-F	All RCTs	Chemotherapy RCTs	Placebo-controlled chemotherapy RCTs						
	Studies/ESA/ control	MD (95% CI)	P-value*	Studies/ESA/ control	MD (95% CI)	P-value*	Studies/ESA/ control	MD (95% CI)	P-value*
Overall	23/3389/2719	2.41 (1.39 to 3.43)		19/2566/2131	2.81 (1.73 to 3.90)		10/1543/1171	1.78 (0.82 to 2.73)	
Anticancer treatment	0.218	NA	NA						
Chemotherapy	0.063	NA	NA						
Radiotherapy	0.079	NA	NA						
None	0.042	0.362	0.153						
Anticancer treatment (condensed)	0.025*	0.005*	0.225*						
Chemotherapy	0.023*	0.044*	0.134**						
Radiotherapy, none	0.008	0.053	0.105						
Baseline Hb	0.054	0.083	NA						
Disease stage	0.023*	0.015*	0.034**						
QoL primary end point	0.027	0.091	0.724						
Source of data	0.907	0.537	0.446						
Full publication	0.362	0.476	NA						
Study industry funded	0.008	0.083	NA						

Abbreviations: CI = confidence interval; ESA = erythropoiesis-stimulating agents; FACT-F = Functional Assessment of Cancer Therapy-Fatigue subscale; Hb = haemoglobin; MD = mean difference; NA = not applicable; QoL = quality of life; RCT = randomised controlled trial. Frequency: ≤Q2W = every second week or less frequent, QW = once per week, TNW = three times per week, other = frequency changing during the study. Planned weekly ESA dose: high = >40 000 U epoetin α/s or 30 000 U epoetin β or 100 μg darbepoetin, middle = 40 000 U epoetin α/s or 30 000 U epoetin β or 100 μg darbepoetin, low = <40 000 U epoetin α/s or 30 000 U epoetin β or 100 μg darbepoetin, other = weight based or Hb based.

*B-value: refers to test for interaction unless otherwise specified.
*BTest for trend.
*Not used for interaction/trend test.

This observation highlights the importance of conflicts of interest both in the clinical and the basic sciences. In the case of ESAs and mortality in cancer patients, this led to misleading results and conclusions in meta-analyses funded by the pharmaceutical industry. Of note, in our analyses we found no evidence that results from industry-funded studies differed from those not funded by the industry. However, this may be due to a lack of power in a setting were >90% of studies were funded by the industry.
These observations on the harmful effects of ESAs in cancer patients led to different recommendations of medical societies and authorities in the USA and Europe (Information for Health Professions, 2007; Aapro and Link, 2008; Rizzo et al, 2010; Schrijvers et al, 2010). The FDA and the American Societies of Clinical Oncology (ASCO) and Hematology (ASH) recommend the use of ESAs only in anaemic cancer patients receiving chemotherapy (Rizzo et al, 2010) with palliative treatment intent (Information for Health Professions, 2007) up to Hb level 12 g dl⁻¹ (Information for Health Professions, 2007) with the goal of

Table 3. Stratified analyses for FACT-An in (i) all included RCTs, (ii) RCTs in patients receiving chemotherapy and (iii) placebo-controlled RCTs in patients receiving chemotherapy

FACT-An	All RCTs	Chemotherapy RCTs	Placebo-controlled chemotherapy RCTs						
	Studies/ESA control	MD (95% CI)	P-value	Studies/ESA control	MD (95% CI)	P-value	Studies/ESA control	MD (95% CI)	P-value
Overall	14/446/1299	4.09 (2.37 to 5.80)	0.709	11/1310/1126	4.50 (2.55 to 6.45)	4.55 (1.29 to 7.80)			
Anticancer treatment		NA		NA	NA	NA			
Chemotherapy	11/3130/1126	4.50 (2.55 to 6.45)	0.709	11/1310/1126	4.50 (2.55 to 6.45)	4.55 (1.29 to 7.80)			
Radiotherapy	11/126/133	1.60 (-2.24 to 5.44)	-	NA	NA	NA			
None	1/14/20	3.90 (-4.56 to 8.44)	-	NA	NA	NA			
Uncleara	1/16/20	0.60 (-9.64 to 8.44)	-	NA	NA	NA			
Anticancer treatment (condensed)		0.458		NA	NA	NA			
Chemotherapy	11/1310/1126	4.50 (2.55 to 6.45)	0.709	11/1310/1126	4.50 (2.55 to 6.45)	4.55 (1.29 to 7.80)			
Radiotherapy, none	2/140/153	1.99 (-1.50 to 5.49)	-	NA	NA	NA			
Unclearb	1/16/20	0.60 (-9.64 to 8.44)	-	NA	NA	NA			
Baseline Hb	0.389	0.567	0.695	NA	NA	NA			
>12 g dl⁻¹		4.50 (2.55 to 6.45)	0.709		4.50 (2.55 to 6.45)	0.695			
<10 g dl⁻¹		3.76 (0.87 to 6.64)	0.709		3.76 (0.87 to 6.64)	0.709			
Disease stage		0.06a	0.064a	0.277a					
>70% not metastatic/advanced		2.028/212	2.028/212	2.028/212	2.028/212	2.028/212			
>70% metastatic/advanced		2.028/212	2.028/212	2.028/212	2.028/212	2.028/212			
Other		2.028/212	2.028/212	2.028/212	2.028/212	2.028/212			
Unknown		2.028/212	2.028/212	2.028/212	2.028/212	2.028/212			
Frequency		0.992c	0.801d	0.64e					
QW		4.11 (0.96 to 7.25)	0.709		4.11 (0.96 to 7.25)	0.709			
TIV		4.09 (1.84 to 6.34)	0.709		4.09 (1.84 to 6.34)	0.709			
Target Hb		0.25		NA	NA	NA			
>13-15 g dl⁻¹		5.12 (2.63 to 6.41)	0.709		5.12 (2.63 to 6.41)	0.709			
≤13 g dl⁻¹		1.13 (-1.22 to 3.47)	0.709		1.13 (-1.22 to 3.47)	0.709			
Placebo control		0.985		NA	NA	NA			
Qol primary and point		0.471		NA	NA	NA			
Yes		5/473/248	0.471		5/473/248	0.471			
No		9/120/935	0.471		9/120/935	0.471			
Source of data		0.229		0.24	0.259				
Full publication		7/568/591	0.229		7/568/591	0.229			
Clinical study report		7/688/980	0.229		7/688/980	0.229			
Study industry funded		0.864		0.777	NA				
Yes		13/403/1236	0.864		13/403/1236	0.864			
No		1/63/63	0.864		1/63/63	0.864			

Abbreviations: CI = confidence interval; ESA = erythropoiesis-stimulating agents; FACT-An = Functional Assessment of Cancer Therapy-Anaemia subscale; Hb = haemoglobin; MD = mean difference; NA = not applicable; Qol = quality of life; RCT = randomised controlled trial. Frequency: ≤ QCW = every second week or less frequent, QCW = once per week, TIV = three times per week, other = frequency changing during the study. Planned weekly ESA dose: high >40 000 U epoetin a/d or 30 000 U epoetin b or 100 µg darbepeoetin, middle = 40 000 U epoetin a/d or 30 000 U epoetin b or 100 µg darbepeoetin, low = <40 000 U epoetin a/d or 30 000 U epoetin b or 100 µg darbepeoetin, other = weight based or Hb based.

*a-p-value: refers to test for interaction unless otherwise specified.
*bNot used for interaction/trend test.
*cTest for trend.
avoiding red blood cell transfusions (Information for Health Professions, 2007; Rizzo et al, 2010). The FDA and ASCO/ASH explicitly do not recommend the use of ESAs to improve QoL because they consider the evidence inconclusive (Information for Health Professions, 2007; Rizzo et al, 2010). Similarly, in 2007, the FDA removed the claim for ESA-related QoL improvements in patients with chronic kidney disease from the product labels because of a lack of evidence from well-conducted trials. In contrast, the European Organization for Research and Treatment of Cancer (Aapro and Link, 2008) and the European Society of Medical Oncology (Schrijvers et al, 2010) recommend the use of ESAs to improve QoL in cancer patients.

Our overall analyses showed a small yet clinically important improvement for FACT-An, which was confirmed when the analysis was restricted to placebo-controlled RCTs in patients receiving chemotherapy. Of 100 patients treated, approximately 10 to 13 patients will have a clinically important improvement of anaemia-related symptoms, which can be attributed to ESA treatment. However, in patients treated with a curative approach it is unlikely that the observed benefits will outweigh the negative effects of ESAs on short-term mortality and thromboembolic events. Studies in cancer patients receiving chemotherapy with a palliative intent and receiving ESAs in accordance to current guideline recommendations (i.e., starting ESAs at Hb <10 g dl–1 and stopping at 12 g dl–1) and reporting QoL outcomes were not available. In this setting, the impact of ESAs on QoL remains unclear.

CONCLUSION

We found that ESAs provide a small but clinically important improvement in anaemia-related symptoms (FACT-An). For fatigue-related symptoms (FACT-F), the overall effect did not reach the threshold for a CID.

ACKNOWLEDGEMENTS

Annette Mettler (AM) and Nadège Robert (NR) screened references and assessed studies for eligibility. Martin Adam developed the Epidata format for data extraction. We thank Kali Tal for her editorial work. This study was funded by OncoSuisse, grant number OCS-02232-04-2008.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Aapro M, Kelkemann W, Constantinescu SN, Leyland-Jones B (2012) Effects of erythropoietin receptors and erythropoiesis-stimulating agents on disease progression in cancer. Br J Cancer 106(7): 1249–1258.
Aapro M, Leonard RC, Barnadas A, Marangolo M, Untch M, Malamos N, Mayordomo J, Reichert D, Pedrini JL, Ukarma L, Scherag A, Burger HU (2008a) Effect of once-weekly epoetin beta on survival in patients with metastatic breast cancer receiving anthracycline- and/or taxane-based chemotherapy: results of the Breast Cancer-Anemia and the Value of Erythropoietin (BRAVE) study. J Clin Oncol 26(4): 592–598.
Aapro M, Ostervälder B, Scherag A, Burger HU (2009) Epoetin-beta treatment in patients with cancer chemotherapy-induced anaemia: the impact of initial haemoglobin and target haemoglobin levels on survival, tumour progression and thromboembolic events. Br J Cancer 101(12): 1961–1971.
Aapro, M., Scherag, A., Burger, HU (2008b) Effect of treatment with epoetin-beta on survival, tumour progression and thromboembolic events in patients with cancer: an updated meta-analysis of 12 randomised controlled studies including 2301 patients. Br J Cancer 99(1): 14–22.
Aapro MS, Link H (2008) September 2007 update on EORTC guidelines and anaemia management with erythropoiesis-stimulating agents. Oncologist 13(Suppl 3): 33–36.
Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtmann H, Fleishman SB, de Haes JC (1993) The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85(5): 356–370.
Abels R (1993) Erythropoietin for anaemia in cancer patients. Eur J Cancer 29A(Suppl 2): 52–58.
AGO-OVAR 2.7. Reinduction Chemotherapy Containing Carboplatin and Paclitaxel With or Without Epoetin Alpha in Recurrent Platinum Sensitive Ovarian Cancer, Cancer of the Fallopian Tube or Peritoneum. Study terminated and unpublished (ClinicalTrials.gov Identifier: NCT00189371).
Arcasoy MO, Amin K, Chou SC, Haroon ZA, Varia M, Raleigh JA (2005) Erythropoietin and erythropoietin receptor expression in head and neck cancer: relationship to tumor hypoxia. Clin Cancer Res 11(1): 20–27.
Bennett CL, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Gleason KJ, Barnato SE, Elverman KM, Courtney DM, McCoy JM, Edwards BJ, Tigue CC, Raisch DW, Yarnold PR, Dorr DA, Kuzel TM, Tallman MS, Trifilio SM, West DP, Lai SY, Henke M (2008) Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 299(8): 914–924.
Bennett CL, Lai SY, Henke M, Barnato SE, Armitage JO, Sartor O (2010) Association between pharmaceutical support and basic science research on erythropoiesis-stimulating agents. Arch Intern Med 170(16): 1490–1498.
Berlin JA, Santanna J, Schmid CH, Szczesu LA, Feldman HI (2002) Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 21(3): 371–387.
Bolhuis J, Schmidlin K, Brillant C, Schwarzer G, Trelle S, Seidenfeld J, Zwalen M, Clarke M, Weingart O, Kluge S, Piper M, Rades D, Steensma DP, Djulbegovic B, Fey MF, Ray-Coquard I, Machhty M, Moebus V, Thomas G, Untch M, Schumacher M, Egger M, Engert A (2009a) Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomised trials. Lancet 373(9674): 1532–1542.
Bolhuis J, Schmidlin K, Brillant C, Schwarzer G, Trelle S, Seidenfeld J, Zwalen M, Clarke M, Weingart O, Kluge S, Piper M, Napoli M, Rades D, Steensma D, Djulbegovic B, Fey MF, Ray-Coquard I, Moebus V, Thomas G, Untch M, Schumacher M, Egger M, Engert A (2009b) Erythropoietin or Darbepoetin for patients with cancer–meta-analysis based on individual patient data. Cochrane Database Syst Rev 3: CD007303.
Bolhuis J, Wilson J, Seidenfeld J, Piper M, Schwarzer G, Sandrock J, Trelle S, Weingart O, Bayliss S, Brunskill S, Djulbegovic B, Benet CL, Langensiepen S, Hyde C, Engert E (2006a) Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst Rev 3: CD003407.
Bolhuis J, Wilson J, Seidenfeld J, Piper M, Schwarzer G, Sandrock J, Trelle S, Weingart O, Bayliss S, Djulbegovic B, Bennett CL, Langensiepen S, Hyde C, Engert E (2006b) Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9535 patients. J Natl Cancer Inst 98(10): 708–714.
Borgers M, Coiffier B, Kainz C (2003) Impact of epoetin beta on quality of life in patients with malignant disease. Br J Cancer 88(7): 988–995.
Case Jr DC, Bukowski RM, Carey RW, Fishkin EH, Henry DH, Jacobson RJ, Jones SE, Keller AM, Kugler JW, Nichols CR (1993) Recombinant human erythropoietin therapy for anemic cancer patients on combination chemotherapy. J Natl Cancer Inst 85(10): 801–806.
CDR0000069148. Chemotherapy and Radiation Therapy With or Without Epoetin Alpha in Treating Patients With Stage IIIA or Stage IIIB Non-Small Cell Lung Cancer, completed, unpublished study (ClinicalTrials.gov Identifier: NCT00028933).
Cella D (1997) The Functional Assessment of Cancer Therapy-Anemia (FACT-An) Scale: a new tool for the assessment of outcomes in cancer anemia and fatigue. Semin Hematol 34(3 Suppl 2): 13–19.
Cella D (2007) The Functional Assessment of Chronic Illness Therapy-Fatigue (FACT-F) Scale: Summary of development and validation. FACTCancer.org: Elmhurst, IL.
Cella D, Bullinger M, Scott C, Barofsky I (2002a) Group vs individual approaches to understanding the clinical significance of differences or changes in funnel plot. Mayo Clin Proc 77(4): 384–392.

Cella D, Eton DT, Lai JS, Peterman AH, Merkel DE (2002b) Combining anchor and distribution-based methods to derive minimal clinically important differences on the Functional Assessment of Cancer Therapy (FACT) anemia and fatigue scales. J Pain Symptom Manage 24(6): 547–561.

Cella D, Zagar MJ, Vandoros C, Gagdon DD, Hurtz HJ, Nortier JW (2003) Epoetin alfa treatment results in clinically significant improvements in quality of life in anemic cancer patients when referred to the general population. J Clin Oncol 21(2): 366–373.

Chang J, Couture F, Young S, McWatters KL, Lau CY (2005) Weekly epoetin alfa maintains hemoglobin, improves quality of life, and reduces transfusion in breast cancer patients receiving chemotherapy. J Clin Oncol 23(12): 2597–2605.

Charu V, Belani CP, Gill AN, Bhatt M, Tomita D, Rossi G, Ben-Jacob A (2007) Efficacy and safety of every-2-week darbepoetin alfa in patients with anemia of cancer: a controlled, randomized, open-label phase II trial. Oncologist 12(6): 727–737.

Christoudoulou C, Dafni U, Aravantinos G, Koutras A, Samantas E, Karina M, Janinis J, Papakostas P, Skarlos D, Kalofonos HP, Fountzilas G (2009) Effects of epoetin-alpha on quality of life of cancer patients with solid tumors receiving chemotherapy. Anticancer Res 29(2): 693–702.

Cohen J (1988) Statistical Power Analysis for the Behavioral Sciences. 2nd edn. Lawrence Erlbaum: Hillsdale, NJ.

CR002305. A Phase III Clinical Trial of PROCRIT (Epoetin Alfa) Versus Debus J, Hindermann S, Morr H, Metzger J, Sebastian M, Angermund R, Dwan K, Altman DG, Cresswell L, Blundell M, Gamble CL, Williamson PR (2005) Weekly epoetin alfa and survival in patients with non-myeloid malignancies during cancer chemotherapy in ontology. J Pain Symptom Manage 19(3): 210–212.

Dwan K, Altman DG, Cresswell L, Blundell M, Gamble CL, Williamson PR (2011) Comparison of protocols and registry entries to published reports for randomised controlled trials. Cochrane Database Syst Rev: MR000031.

Drings P (2005) Epoetin alfa (EPO) and survival in patients with non-resectable NSCLC-Interim results. Lung Cancer 49(Suppl 3): S57.

Eichler HG, Abadie E, Breckenridge A, Leufkens H, Rasi V, Bonnell C, Ziegler KM, Aronson N (2011) Epoetin and Darbepoetin for Managing Anemia in Patients Undergoing Cancer Treatment: Comparative Effectiveness Update. Agency for Healthcare Research and Quality (US): Rockville, MD, 2013 April Report No.: 13-EHC077-EF. AHRQ Comparative Effectiveness Reviews.

Elkin B, Segraves R, Bui T, Lippman SM, Fossa SD, Lipton A (2002) Pathways of Erythropoietic and hematopoietic control analysis; results from a study-level meta-analysis of survival and other safety outcomes. Br J Cancer 86(4): 509–15.

Fallowfield L, Gagnon D, Zagari M, Cella D, Bresnahan B, Littlewood TJ, Egger M, Smith GD (1999) Bias in selection and collection of studies. BMJ 316(7124): 61–66.

Eichler HG, Abadie E, Breckenridge A, Leufkens H, Rasi V (2012) Open clinical trial data for all A view from regulators. PLoS Med 9(4): e1001202.

Engert A, Josting A, Haverkamp H, Villalobos M, Lillie T, Taylor K, Belch A, Altes A, Martellini G, Watson D, Matcham J, Rossi G, Littlewood TJ (2003) Efficacy and safety of darbepoetin alfa in anemic patients with lymphoproliferative malignancies: a randomized, double-blind, placebo-controlled study. Br J Haematol 122(3): 394–403.

Fujisaka Y, Sugiyama T, Saito H, Nagase S, Kudoh S, Endo M, Sakai H, Ohashi Y, Saijo N (2011) Randomised, phase III trial of epoetin-beta to treat chemotherapy-induced anemia according to the EU regulation. Br J Cancer 105(9): 1267–1272.

Furukawa TA, Leucht S (2011) How to obtain NNT from Cohen’s d: comparison of two methods. PLoS One 6(4): e19070.

Gabriyelov JL, Cleeled CS, Livingston RB, Sarokin B, Winer E, Einhorn LH (2001) Clinical evaluation of once-weekly dosing of epoetin alfa in chemotherapy patients: improvements in hemoglobin and quality of life are similar to three-times-weekly dosing. J Clin Oncol 19(11): 2875–2882.

Gajewski J, Bukowski R, Steele D, Taylor C, Tchelmedjyan S, Vadhan-Raj S (1997) Impact of therapy with epoetin alfa on clinical outcomes in patients with nonmyeloid malignancies during cancer chemotherapy in community oncology practice. Procrit Study Group. J Clin Oncol 15(3): 1218–1234.

Glavsky J, Crawford J, Vansteenkiste J, Henry D, Ruo S, Bowers P, Berlin JA, Tomita D, Bridges K, Ludwig H (2010) Erythropoiesis-stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes. Br J Cancer 102(2): 301–315.

Gordon D, Nichols G, Ben-Jacob A, Tomita D, Lillie T, Miller C (2008) Treating anemia of cancer with every-4-week darbepoetin alfa: final efficacy and safety results from a phase II, randomized, double-blind, placebo-controlled study. Oncologist 13(6): 715–724.

Goss G, Feld R, Beziaj A, Perry G, Melosky B, Smith C, Snee M, Plante R, Lau C (2005) Impact of maintaining HB with epoetin alfa on time to progression (TTP), overall survival (OS), quality of life (QOL) and transfusion reduction in limited disease SCLC patients. Lung Cancer 49(5S3): 0–154.

Grant MD, Piper M, Bohlius J, Tomita D, Robert N, Vats V, Bonnell C, Ziegler KM, Aronson N (2011) Epoetin and Darbepoetin for Managing Anemia in Patients Undergoing Cancer Treatment: Comparative Effectiveness Update. Agency for Healthcare Research and Quality (US): Rockville, MD, 2013 April Report No.: 13-EHC077-EF. AHRQ Comparative Effectiveness Reviews.

Guerra P, Singh PK, Bisti SS, Bhatt ML, Pant M, Gupta R, Singh S, Negi MP (2009) Role of recombinant human erythropoietin in patients of advanced cervical cancer treated ‘by chemoradiotherapy’. Cancer Biol Ther 8(1): 13–17.

Hedens M, Adriansson M, San MJ, Kramer MH, Schipperus MR, Jurenen E, Taylor K, Belch A, Altes A, Martinelli G, Watson D, Matcham J, Rossi G, Littlewood TJ (2003) Efficacy and safety of darbepoetin alfa in anemic patients with lymphoproliferative malignancies: a randomized, double-blind, placebo-controlled study. Br J Haematol 122(3): 394–403.

Hendrix DH, Abels RI (1994) Recombinant human erythropoietin in the treatment of cancer and chemotherapy-induced anemia: results of double-blind and open-label follow-up studies. Semin Oncol 21(2 Suppl 3): 21–28.

Henderson E, Ganly P, Charu V, Dibenotiedo J, Tomita D, Lillie T, Taylor K (2009) Randomized, double-blind, placebo-controlled trial of every-3-week darbepoetin alfa 300 micrograms for treatment of chemotherapy-induced anemia. Curr Med Res Opin 25(9): 2109–2120.

Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414): 557–560.

Hoskin PJ, Robinson M, Slevin N, Morgan D, Harrington K, Gaffney C (2009) Effect of epoetin alfa on survival and cancer treatment-related anemia and fatigue in patients receiving radical radiotherapy with curative intent for head and neck cancer. J Clin Oncol 27(34): 5751–5756.

Huddart RA, Welch RS, Chan S, Perren T, Atkinson R (2002) A prospective randomised comparative-group evaluation of epoetin alfa for the treatment of anemia in UK cancer patients receiving platinum-based chemotherapy. [Miscellaneous]. Ann Oncol Abstract Book of the 27th ESMO Congress; Nice, France; 18–22 October.

Iconomou G, Koutras A, Rigopoulos A, Vagenakis AG, Kalofonos HP (2003) Effect of recombinant human erythropoietin on quality of life in cancer patients receiving chemotherapy: results of a randomized, controlled trial. J Pain Symptom Manage 25(6): 512–518.

Information for Health Professions. Erythropoiesis-Stimulating Agents (ESA): [Aranesp (darbepoetin), Epogen (epoetin alfa), and Procrit (epoetin alfa)] (2007) http://www.fda.gov/Drugs/DrugSafety/ PostmarketDrugSafetyInformationforPatientsandProviders/ ucm126481.htm2007, last accessed: 8 November 2012.

INT-1. in: Safety concerns associated with Aranesp (darbepoetin alfa) Amsen, Inc. and Procrit (epoetin alfa) Ortho Biotech, LP, for the treatment of anemia associated with cancer chemotherapy. Department of Health and

www.bjcancer.com | DOI:10.1038/bjc.2014.171

43
Erythropoiesis-stimulating agents and quality of life in cancer patients

Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Oncologic Drugs Advisory Committee.

INT-3: in Safety concerns associated with Aranesp (darbepoetin alfa) Amgen, Inc. and Procrit (epoetin alfa) Ortho Biotech, LP, for the treatment of anemia associated with cancer chemotherapy. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Oncologic Drugs Advisory Committee.

Kotasek D, Albertsson M, Mackey J. Darbepoetin Alfa 980291 Study Group (2003) Early intervention with epoetin alfa maintains metastatic breast cancer receiving first-line chemotherapy: a survival study. J Clin Oncol 21(25): 5960–5972.

Kumar SM, Zhang G, Bastian BC, Arcasoy MO, Karandare P, Pushparajan A, Acs G, Xu X (2012) Erythropoietin receptor contributes to melanoma cell survival in vivo. Oncogene 31(13): 1649–1660.

Littlewood TJ, Bajetta E, Nortier JW, Vercaemen E, Rapoport B (2001) Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy: results of a randomized, double-blind, placebo-controlled trial. J Clin Oncol 19(11): 2865–2874.

Leyland-Jones B, Semiglavzov V, Pawlicki M, Pienkowski T, Tjulandin S, Manikhas G, Mahsson A, Roth A, Dodwell D, Baselga J, Biaikov M, Valuckas K, Vonnys E, Liu X, Vercaemen E (2005) Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy: a survival study. J Clin Oncol 23(25): 5960–5972.

Ludwig H, Crawford J, Osterborg A, Vansteenkiste J, Henry DH, Fleishman A, Minton O, Richardson A, Sharpe M, Hotopf M, Stone P (2008) A systematic review of darbepoetin alfa administered once every 3 (Q3W) or 4 (Q4W) weeks in patients with solid tumors. Proc Ann Soc Clinical Oncol 21: 356a.

Mackey J, Albertsson M, Mackey J. Darbepoetin Alfa 980291 Study Group (2003) Early intervention with epoetin alfa maintains metastatic breast cancer receiving first-line chemotherapy: a survival study. J Clin Oncol 21(25): 5960–5972.

Machtay M, Pajak TF, Suntharalingam M, Shenouda G, Hershock D, Stripp DC, Cmelak AJ, Schulsinger A, Fu KK (2007) Radiotherapy with or without erythropoietin for anemic patients with head and neck cancer: a randomized trial of the Radiation Therapy Oncology Group (RTOG 99-03).

Minton O, Richardson A, Sharpe M, Hotopf M, Stone P (2008) A systematic review and meta-analysis of the pharmacological treatment of cancer-related fatigue. J Natl Cancer Inst 20 100(16): 1155–1166.

Minton O, Richardson A, Sharpe M, Hotopf M, Stone P (2010) Drug therapy for the management of cancer-related fatigue. Cochrane Database Syst Rev 7: CD006704.

Moebus V, Jackisch C, Schneeweiss A, Huober J, Lueck HJ, du Bois A, Minton O, Richardson A, Sharpe M, Hotopf M, Stone P (2008) Erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomized trials. Lancet 373(9674): 1532–1542.

Osterborg A, Brandberg Y, Molostova V, Isosvaa G, Ahtakoski K, Hedenus M, Messinger D (2002) Randomized, double-blind, placebo-controlled trial of recombinant human erythropoietin, epoetin beta, in hematologic malignancies. J Clin Oncol 20(10): 2486–2494.

P-174 in: Safety concerns associated with Aranesp (darbepoetin alfa) Amgen, Inc. and Procrit (epoetin alfa) Ortho Biotech, LP, for the treatment of anemia associated with cancer chemotherapy. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Oncologic Drugs Advisory Committee.

Pirker R, Ramlau RA, Schuette W, Zatloukal P, Ferreira I, Lillie T, vansteenkiste JF (2008) Safety and efficacy of darbepoetin alfa in previously untreated extensive-stage small-cell lung cancer treated with platinum plus etoposide. J Clin Oncol 26(14): 2342–2349.

Pronzato P, Cortesi E, van der Rijt CC, Bols A, Moreno-Nogueira JA, de Oliveira CF, Barrett-Lee P, Ostler PJ, Rosso R (2010) Epoetin alfa improves anemia and anemia-related patient-reported outcomes in patients with breast cancer receiving myelotoxic chemotherapy: results of a European, multicenter, randomized, controlled trial. Oncologist 15(9): 935–943.

Quirt I, Robeson C, Lau CY, Kovacs M, Burdette-Radoux S, Dolan S, Tang SC, McKenzie M, Couture F (2001) Epoetin alfa therapy increases hemoglobin levels and improves quality of life in patients with cancer-related anemia who are not receiving chemotherapy and patients who are receiving chemotherapy. J Clin Oncol 19(21): 4126–4134.

Rai-Coquard I, Dussart S, Guillot C, Mayeur D, Debourdeau P, Ghesquiere H, Bachelot T, Le CA, Anglaret B, Agostini C, Guastalla JP, Lancery B, Ieron P, Desseigne F, Blay JY (2009) A risk model for severe anemia to select cancer patients for primary prophylaxis with epoetin alpha: a prospective randomized controlled trial of the ELYPSE study group.

Ann Oncol 20(6): 1105–1112.

Redmond S, von Elm E, Blumle A, Genger M, Gsponer T, Egger M (2013) Cohort study of trials submitted to ethics committee identified discrepant reporting of outcomes in publications. J Clin Epidemiol 66(12): 1367–1375.

Reichenbach S, Sterchi R, Scherer M, Trelle R, Burgi E, Burgi U, Dieppe PA, Juni P (2007) Meta-analysis: chondroitin for osteoarthritis of the knee or hip. Ann Intern Med 146(5): 580–590.

Rizzo JD, Brouwers M, Hurley P, Seidenfeld J, Arcasoy MO, Piriker R, Ramlau RA, Schuette W, Zatloukal P, Ferreira I, Lillie T, vansteenkiste JF (2008) Safety and efficacy of darbepoetin alfa in previously untreated extensive-stage small-cell lung cancer treated with platinum plus etoposide. J Clin Oncol 26(14): 2342–2349.

Rizzi JD, Brouwers M, Hurley P, Seidenfeld J, Arcasoy MO, Spivak J, Bennett CL, Bohlus J, Anchukov D, Boede MG, Jakobowski AA, Regan DH, Somerfield MR (2010) American Society of Clinical Oncology/American Society of Hematology clinical practice guideline update on the use of epoetin and darbepoetin in adult patients with cancer. J Clin Oncol 28(33): 4996–5010.

Rose E, Rai K, Revicki D, Brown R, Reblando J and the EPO in Anemia of CLL Study Group (1994) Clinical and health status assessments in anemic chronic lymphocytic leukemia (CLL) patients treated with epoetin alfa (EPO). Blood 84(10 Suppl 1): 526a.

Savonije JH, van Groeningen CJ, van BA, Honkoa AH, van Felius CL, Wormhoudt LW, Giaccone G (2005) Effects of early intervention with epoetin alfa on transfusion requirement, hemoglobin level and survival during platinum-based chemotherapy: Results of a multicenter randomised controlled trial. Eur J Cancer 41(11): 1560–1569.

Schrijvers D, De SH, Roila F (2010) Erythropoiesis-stimulating agents in the treatment of anaemia in cancer patients: ESMO Clinical Practice Guidelines for use. Ann Oncol 21(Suppl 5): 2744–2747.

Seidenfeld J, Piper M, Bohlus J, Aminzadeh O, Trelle S, Engert A, Skoetz N, Schwarzer G, Wilson J, Brunskill S, Hyland J, Connel N, Ziegler KM, Aronson N (2006) Comparative Effectiveness of Epoetin and Darbepoetin for Managing Anaemia in Patients Undergoing Cancer Treatment [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); AHRQ Comparative Effectiveness Reviews.

O'Shaughnessy JA, Vukelja SJ, Holmes FA, Savin M, Jones M, Royall D, George M, Von HD (2005) Feasibility of quantifying the effects of epoetin alfa therapy on cognitive function in women with breast cancer undergoing adjuvant or neoadjuvant chemotherapy. J Clin Breast Cancer 5(6): 439–446.
Sloan JA, Dueck A (2004) Issues for statisticians in conducting analyses and translating results for quality of life end points in clinical trials. *J Biopharm Stat* 14(1): 73–96.

Sloan JA, Frost MH, Berzon R, Dueck A, Guyatt G, Moinpour C, Sprangers M, Ferrans C, Cell D (2006) The clinical significance of quality of life assessments in oncology: a summary for clinicians. *Support Care Cancer* 14(10): 988–998.

Smith JR RE, Aapro MS, Ludwig H, Pinter T, Smakal M, Ciuleanu TE, Chen L, Lillie T, Glaspy JA (2008) Darbepoetin alpha for the treatment of anemia in patients with active cancer not receiving chemotherapy or radiotherapy: results of a phase III, multicenter, randomized, double-blind, placebo-controlled study. *J Clin Oncol* 26(7): 1040–1050.

Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. *J Clin Epidemiol* 54(10): 1046–1055.

Strauss HG, Haensgen G, Dunst J, Hayward CR, Burger HU, Scherhag A, Koelbl H (2008) Effects of anemia correction with epoetin in patients receiving radiochemotherapy for advanced cervical cancer. *Int J Gynecol Cancer* 18(3): 515–524.

Suzuki Y, Tokuda Y, Okamoto R, Nakagawa K, Ando K, Iwata H, Tobinai K, Tanigawara Y, Hotta T, Saijo N (2008) Randomized, placebo-controlled phase II study of darbepoetin alfa (DA) administered every three weeks (Q3W) in patients with chemotherapy induced anemia (CIA). *Ann Oncol* 19(Suppl 8): viii277.

Szenajch J, Wcislo G, Jeong JY, Szczylik C, Feldman L (2010) The role of erythropoiesis-stimulating agents and quality of life in cancer patients: results of a multicenter, Phase III, randomized, double-blind, placebo-controlled study. *Jpn J Clin Oncol* 39(3): 163–168.

Untch M, von Minckwitz G, Konecny GE, Conrad U, Fett W, Kurzeder C, Luck HJ, Stickeler E, Urbaczky H, Liedtke B, Beckmann MW, Salat C, Harbeck N, Muller V, Schmidt M, Haselmueller S, Lenhard M, Neldjudo V, Lebeau A, Loibl S, Fasching PA. Arbeitsgemeinschaft Gynäkologische Onkologie PREPARARE investigators (2011) PREPARARE trial: a randomized phase III trial comparing preoperative, dose-dense, dose-intensified chemotherapy with epirubicin, paclitaxel, and CMF versus a standard-dose epirubicin-cyclophosphamide followed by paclitaxel with or without darbepoetin alfa in primary breast cancer–outcome on prognosis. *Ann Oncol* 22(9): 1999–2006.

Vatansekkiste J, Pirker R, Massuti B, Barata F, Font A, Fiegel M, Siena S, Gateley J, Tomita D, Colowick AB, Musil J (2002) Double-blind, placebo-controlled, randomized phase III trial of darbepoetin alfa in lung cancer patients receiving chemotherapy. *J Natl Cancer Inst* 94(16): 1211–1220.

Ware JR, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. *Med Care* 30(6): 473–483.

Wilkinson PM, Antonopoulos M, Lahousen M, Lind M, Kosmis P (2006) Epoetin alfa in platinum-treated ovarian cancer patients: results of a multinational, multicentre, randomised trial. *Br J Cancer* 94(7): 947–954.

Winquist E, Julian JA, Moore MJ, Nabad A, Sathya J, Wood L, Venner P, Levine M (2009) Randomized, double-blind, placebo-controlled trial of epoetin alfa in men with castration-resistant prostate cancer and anemia. *J Clin Oncol* 27(4): 644–646.

Witzig TE, Silberstein PT, Loprinzi CL, Sloan JA, Novotny PJ, Mailliard JA, Rowland KM, Alberts SR, Krock JE, Levitt R, Morton RF (2005) Phase III, randomized, double-blind study of epoetin alfa compared with placebo in anemic patients receiving chemotherapy. *J Clin Oncol* 23(12): 2606–2617.

Wright JR, Ung YC, Julian JA, Pritchard KI, Whelan TJ, Smith C, Szechter B, Roa W, Maltoy L, Rudinskas L, Gagno B, Okawara GS, Levine MN (2007) Randomized, double-blind, placebo-controlled trial of epoetin beta in non-small-cell lung cancer with disease-related anemia. *J Clin Oncol* 25(9): 1027–1032.

Yellen SB, Cella DF, Webster K, Blendowski C, Kaplan E (1997) Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. *J Pain Symptom Manage* 13(2): 63–74.

Yoshizaki A, Kumagai S, Sugiyama T, Goto I, Saito H, Ariyoshi Y, Saijo N, Ohashi Y (2010) A phase III, randomized double-blind placebo controlled study of epoetin beta in luing and gynecological cancer receiving platinum-based chemotherapy: Japan Erythropoietin study group. *Ann Oncol* 21(Suppl8): viii385.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)