Modelling FGM materials. An accurate function approximation algorithms

J Majak¹, M Mikola¹, M Pohlak¹, M Eerme¹ R Karunanidhi¹,²

¹Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia
²Department of Automotive and Aeronautical Engineering Hamburg University of Applied Sciences, Berliner Tor 9, 20099, Hamburg, Germany
juri.majak@taltech.ee

Abstract. The study is focused on development of an accurate and cost effective function approximation techniques for modelling functionally graded materials. Different grading functions (exponential, power law) are expanded into Haar wavelet series based on higher order Haar wavelet approach. The proposed techniques can be utilized also for modelling load cases, complex boundary conditions, grading functions etc.

1. Introduction
Recently, the Haar wavelet method (HWM) and higher order Haar wavelet method (HOHWM) have been utilized with success for solving wide class of engineering problems [1-7]. The differential governing equations of the structures, solved using HWM or HOHWM, involve often set of functions describing loading, boundary conditions, varying stiffness, geometry, density and material properties. In order to provide comprehensive approach, it is reasonable to treat these function in terms of Haar wavelets i.e. to expand these functions into Haar wavelet series [8-10]. Most commonly the functions accompanying the governing equations are expanded into Haar wavelets. However, here is reason to be careful, because it is shown in [11] that in the case where function is expanded into Haar wavelets the order of convergence with respect to mesh/resolution is equal to one. Since the order of convergence of the HWM is equal to two [12] and HOHWM higher, such an approach may lead to loss of accuracy of the solution, especially in the case of use of HOHWM. Thus, more accurate Haar wavelet based approach is needed to overcome possible loss of accuracy of the solution.

Current study is focused on approximation of grading functions of the functionally graded (FG) materials using higher order Haar wavelet method based function approximation. The HOHWM was introduced by authors for solving differential equations as improvement of the HWM [13]. Based on HOHWM, the higher order approach for functions approximation was introduced in [14]. Herein the latter higher order function approximation technique is extended for modelling grading functions of the FG materials. As result the generalized algorithm can be used for solving governing equations covering different grading functions (exponential, power law, four parameter functions, etc.). In the current study the second order derivatives of the grading functions are expanded into Haar wavelets providing fourth order convergence with respect to mesh.

2. Haar wavelets
The Haar wavelets are introduced as [1]
h_i(x) = \begin{cases}
1 & \text{for } x \in [\xi_1(i),\xi_2(i)) \\
-1 & \text{for } x \in [\xi_2(i),\xi_3(i)), \\
0 & \text{elsewhere}
\end{cases} \tag{1}

where \(i = m + k + 1, m = 2^j \) is a maximum number of square waves deployed in interval \([A,B]\) and the parameter \(k \) indicates the location of the particular square wave,

\[
\xi_1(i) = A + 2k\mu\Delta x, \quad \xi_2(i) = A + (2(k + 1))\mu\Delta x, \quad \xi_3(i) = A + 2(2(k + 1))\mu\Delta x,
\]

\[
\mu = M / m, \quad \Delta x = (B - A) / (2M), \quad M = 2^j. \tag{2}
\]

The parameters \(j \) and \(J \) stand for the resolution and maximum resolution, respectively. Any square integrable and finite function in the interval \([A,B]\) can expanded into Haar wavelets.

3. Approximation of grading functions of the FG materials

Based on idea of higher order Haar wavelet method introduced by authors in [13] an accurate function approximation is derived for four simple and widely used grading functions described in the following subsections.

3.1. Exponential grading function

Due to its simplicity, the exponential grading function is widely used. In the case of axially graded materials the exponential functions are utilized commonly for describing the elasticity modulus \(E(x) \) and the density \(\rho(x) \) as

\[
E(x) = E(0) * e^{2\beta x / L}, \quad \rho(x) = \rho(0) * e^{2\beta x / L}. \tag{3}
\]

In (3) \(L \) is a length of the beam and \(\beta \) is a grading parameter, \(E(0) \) and \(\rho(0) \) stand for the reference values of the elasticity modulus and density at \(x = 0 \). However, in order to provide unique approach for handing different grading functions, herein the volume fraction of the first constituent \(V_1 \) is expanded into Haar wavelet. The modulus of elasticity and the density can be expressed in terms of volume fraction \(V_1 \) as

\[
E = (E_1 - E_2)V_1 + E_2, \quad \rho = (\rho_1 - \rho_2)V_1 + \rho_2, \tag{4}
\]

where the indexes 1 and 2 refers to the constituents (materials) 1 and 2, respectively. In the case of exponential grading function (3), the volume fractions of the constituents (materials) \(V_1 \) and \(V_2 \) can be derived as

\[
V_1 = \frac{e^{2\beta - e^{2\beta x / L}}}{e^{2\beta - 1}}, \quad V_2 = \frac{e^{2\beta x / L - 1}}{e^{2\beta - 1}}. \tag{5}
\]

The higher order Haar wavelet expansion can be introduced as

\[
\int^n f(x) = \sum_{i=1}^{2^M} b_i h_i(x), \quad n = 0,1,2,..., \tag{6}
\]

where \(b_i \) and \(h_i(x) \) stand for the wavelet coefficients and Haar functions, respectively. In the case of \(n = 0,1,2,... \) the functions itself, its first derivative, second derivative, etc. is expanded into series of the Haar functions. In the following the value \(n = 2 \) is utilized in order to provide fourth order convergence

\[
\frac{e^{2\beta - e^{2\beta x / L}}}{e^{2\beta - 1}} = \sum_{i=1}^{2^M} b_{i2} p_{2,i} + d_1 x + d_2. \tag{7}
\]
In (7) \(p_{2,l} \) stand for second order integrals of the Haar functions (1). Two integration constants \(d_1 \) and \(d_2 \) can be determined by satisfying equation (5) in boundary points \(x = 0 \) and \(x = L \), respectively. The Haar wavelet expansion coefficients \(b_i \) can be determined by satisfying the equation (7) in grid points. In the case of uniform mesh used the grid points \(x_l \) are given as \(x_l = \frac{2l-1}{4M}, \quad l = 1, \ldots, 2M. \) (8)

The volume fraction \(V_1(x) \) can be calculated for each coordinate \(x \) value by substituting the coefficients \(b_i \), integration constants \(d_1 \) and \(d_2 \) in (7). The volume fraction \(V_2(x) \) can be evaluated as \(1 - V_1(x) \).

The detailed expressions of the coefficients \(b_i \), integration constants \(d_1 \) and \(d_2 \) are omitted for conciseness sake.

3.2. Power law grading function

The power law relation for describing FG materials is given as [15]

\[
E = (E_1 - E_2) \left(1 - \frac{x}{L}\right)^k + E_2, \quad \rho = (\rho_1 - \rho_2)(1 - \frac{x}{L})^k + \rho_2. \tag{9}
\]

In (9) \(k \) is a grading parameter. Despite to presence of one parameter in both, exponential and power law grading function, the power law function is more flexible/general. In exponential grading function (3) the parameter \(\beta \) value is determined by mechanical characteristic value at the point \(x = L \). However, in the case of power law grading function (9) the values of the mechanical characteristics in boundary points are provided and the parameter \(k \) remains as design parameter. Varying the value of the parameter \(k \) allow to obtain different distributions of the mechanical characteristics. The higher order Haar wavelet expansion can be employed for the volume fraction of the constituent (material) 1 as

\[
\left(1 - \frac{x}{L}\right)^k = \sum_{l=1}^{2M} b_{2l} p_{2,l} + d_1 x + d_2. \tag{10}
\]

Similarly, to above, the second order derivative of the volume fraction function is expanded into Haar wavelet and grading function is expressed in terms of second integrals of Haar functions. The elasticity modulus and density can be evaluated by substituting (10) in (9).

3.3. Four parameter power law grading function

In order to provide higher flexibility for describing the distribution of the FGM, the following four parameter model is considered for approximation of the volume fraction \(V_1 \) [15]

\[
V_1 = C \left[1 - \frac{x}{L} + \alpha \frac{x^\beta}{L^\gamma} \right]^\gamma, \tag{11}
\]

where parameters \(C, \alpha, \beta \) and \(\gamma \) control the volume fraction \(V_1 \) variation through the length of the axially graded structure. The higher order Haar wavelet expansion is given as

\[
C \left[1 - \frac{x}{L} + \alpha \frac{x^\beta}{L^\gamma} \right]^\gamma = \sum_{l=1}^{2M} b_{4l} p_{4,l} + d_1 x + d_2. \tag{12}
\]

Note, that four parameter grading function can be utilized for design optimization of FGM structures.
Four parameter trigonometric grading function

Four parameter trigonometric grading function can be considered as an alternative to four parameter power law grading function. The corresponding volume fraction V_1 can be expressed as

$$V_1 = C \left[\frac{1}{2} - \frac{a}{2} \sin \left(\frac{n \pi x}{L} + \phi \right) \right]^Y.$$

(13)

Expanding the second order derivative of the volume fraction (13) into Haar wavelet series and integrating twice one obtains approximation of the function V_1 as

$$C \left[\frac{1}{2} - \frac{a}{2} \sin \left(\frac{n \pi x}{L} + \phi \right) \right]^Y = \sum_{i=1}^{2M} b_i p_{2i} + d_1 x + d_2.$$

(14)

The approximations used for above four grading functions are second order polynomials including global and local terms.

4. Numerical results

The values of the grading functions, its absolute errors and convergence rates corresponding to the exponential, power law and four parameter grading functions are given in tables 1 and 2, respectively. In Table 1 the approximation results are given for exponential and power law grading functions.

Table 1. Approximation for exponential and power law grading functions ($\beta = -0.549306, k = 1.5$).

2M	Function value at point x=L/2	Converg. rate	Absolute error	Function value at point x=L/2	Absolute error	Converg. rate
4	0.365989778	3.57E-05	0.353652500	9.91E-05	0.353652500	9.91E-05
8	0.366023040	2.40E-06	0.353549500	4.6608	0.353549500	4.6608
16	0.366025287	1.50E-07	0.353553000	3.3869	0.353553000	3.3869
32	0.366025428	9.40E-09	0.353553400	2.36E-08	0.353553400	2.36E-08
64	0.366025437	5.87E-10	0.353553400	1.40E-09	0.353553400	1.40E-09
128	0.366025437	3.67E-11	0.353553400	9.26E-11	0.353553400	9.26E-11

Table 2. Approximation for four parameter grading functions ($C = 1, \alpha = 1, \beta = \theta = 2, \phi = \frac{\pi}{2}, \gamma = 1, \eta = 1.2$).

2M	Function value at point x=L/2	Converg. rate	Absolute error	Function value at point x=L/2	Absolute error	Converg. rate
4	0.561810700	6.89E-04	0.653466700	1.04E-03	0.653466700	1.04E-03
8	0.562454300	4.57E-05	0.654447800	6.07E-05	0.654447800	6.07E-05
16	0.562497100	2.86E-06	0.654504800	3.74E-06	0.654504800	3.74E-06
32	0.562499800	1.79E-07	0.654508300	2.33E-07	0.654508300	2.33E-07
64	0.562500000	1.12E-08	0.654508500	1.45E-08	0.654508500	1.45E-08
128	0.562500000	6.99E-10	0.654508500	9.08E-10	0.654508500	9.08E-10
It can be observed from Table 1 that the order of convergence tends to four as expected and the absolute error reduces up to 10^{-13}. The results in Tables 2 are similar, high accuracy and fourth order rate of convergence is achieved. Thus, the obtained results can be used for HWM and also HOHWM (s=1) where convergence is not higher than four (convergence rate of the HOHWM is equal to 2+2s, where s is method parameter).

In future study the functions approximations developed, are planned to apply for structural analysis and design optimization of engineering structures [16-21] and production processes [22-25]. An another challenging research area is fractional calculus [26]. From one side, fractional calculus allows to describe a number of real world problems more naturally/objectively. For example, modelling the behavior of the viscoelastic material. From other side, the mainstream numerical methods cannot by applied directly for fractional calculus, but need adaption, refinement. The proposed function approximation technique can be applied for expansion of the fractional derivatives included in differential equations of integer order derivatives used for approximation of fractional derivatives. Solution of fractional differential and integro-differential equations is foreseen.

5. Conclusions
An accurate function approximation technique is proposed for modelling grading functions of the FG materials, based on idea of higher order Haar wavelet method. According to proposed approach the second order derivative of the grading function is expanded into Haar wavelet series. The two complementary integration constants are determined by using function values on boundary. As result fourth order convergence with respect to mesh was achieved. The obtained results are accurate enough utilizing with HWM and HOHWM (s=1). The proposed approach covers obviously further increase of accuracy by increasing the order of derivative expended into Haar wavelet series in formula (6).

6. References
[1] Lepik Ü, Hein H 2014 Haar wavelets: with applications (International Publishing Switzerland: Springer)
[2] Majak J, Pohlak M, Eerme M 2009 Application of the Haar Wavelet-based discretization technique to problems of orthotropic plates and shells. Mechanics of Composite Materials 45(6) pp 631-642.
[3] Hein H, Feklistova L 2011 Computationally efficient delamination detection in composite beams using Haar wavelets. Mechanical Systems and Signal Processing 25(6) pp 2257-2270
[4] Xie X, Jin G, Ye T, Liu Z 2014 Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method. Applied Acoustics 85 pp 130-142.
[5] Jin G, Xie X, Liu Z 2014 The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory, Composite Structures 108 pp 435–448.
[6] Islam SU, Aziz I, Al-Fhaid AS 2014 An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. Journal of Computational and Applied Mathematics 260 pp 449–469.
[7] Aziz I, Islam SU, Khana F 2014 A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. Journal of Computational and Applied Mathematics 272 pp 70–80
[8] Xie X, Jin G, Li W, Liu Z 2014 A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures Composite Structures 111, pp 20-30
[9] L. Wang, Y.Ma, Z. Meng 2014 Haar wavelet method for solving fractional partial differential equations numerically Applied Mathematics and Computation 227 pp 66–76
[10] Hsiao CH, 2015 A Haar wavelets method of solving differential equations characterizing the dynamics of a current collectionsystem for an electric locomotive Applied Mathematics and Computation 265 pp 928–935
[11] E. Babolian, A. Shahsavaran 2009 Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets Journal of Computational and Applied Mathematics 225 pp 87–95

[12] Majak J, Shvartsman BS, Kirs M, Pohlak M, Herranen H 2015 Convergence theorem for the Haar wavelet based discretization method. Composite Structures 126 pp 227-232

[13] Majak J, Pohlak M, Karjust K, Eerme M, Kurnitski J, Shvartsman BS 2018 New higher order Haar wavelet method: Application to FGM structures. Composite Structures, 201, pp 72-78.

[14] Majak, J, Eerme M, Haavajõe A, Karumanidhi R, Scholz D, Lepik A 2020 Function approximation using haar wavelets AIP Conference Proceedings 2293 Article number 230004 International Conference on Numerical Analysis and Applied Mathematics 2019 Greece; 23-28 September 2019 Code 165330 DOI 10.1063/5.0026543

[15] Alshabatat NT and Naghshineh K 2014 Optimization of Natural Frequencies and Sound Power of Beams Using Functionally Graded Material Advances in Acoustics and Vibration, Article ID 752361, https://doi.org/10.1155/2014/752361

[16] Lellep J, Majak J 1997 On optimal orientation of nonlinear elastic orthotropic materials Structural Optimization 14(2-3) pp 116-120

[17] Zhang WH, Domaszewski M, Bassir H 1999, Developments of sizing sensitivity analysis with the ABAQUS code. Structural Optimization 17, 2 pp 219-225.

[18] Guessasma S, Bassir D, Hedjazi L 2015 Influence of interphase properties on the effective behaviour of a starch-hemp composite. Materials and Design 65, pp 1053-1063.

[19] Nahas M, Alzahrani M 2020 Optimal Stochastic Distribution of CNTS in a Cantilever Polymer Microbeam Using Artificial Neural Networks. Mechanics of Composite Materials 56, pp 665–672.

[20] Cui D, Li DK 2019 Optimization of Extension-Shear Coupled Laminates Based on the Differential Evolution Algorithm. Mechanics of Composite Materials 54, pp 799–814.

[21] Plotnikova SV, Kulikov GM, Shape Control of Composite Plates with Distributed Piezoelectric Actuators in a Three-Dimensional Formulation. Mechanics of Composite Materials 56 pp 557–572.

[22] Sell R, Otto T 2008. Remotely controlled multi robot environment. Proc. of 19th EAEIE Annual Conf.: 19th EAEIE Annual Conference, Tallinn, Estonia, June 29 - July 2, 2008. Tallinn, pp 20–25. DOI: 10.1109/EAEIE.2008.4610152.

[23] Kuts V, Otto T, Tähemaa T, Bukhari K, Patarai T 2018. Adaptive industrial robots using machine vision. ASME 2018 International Mechanical Engineering Congress and Exposition, 2: IMECE2018, November 9-15, Pittsburgh, PA, USA. ASME. DOI: 10.1115/IMECE2018-86720.

[24] Kaganski S, Majak J, Karjust K, Toompalu S 2017 Implementation of Key Performance Indicators Selection Model as Part of the Enterprise Analysis. Procedia CIRP 63, pp 283-288, 50th CIRP Conference on Manufacturing Systems, CIRP CMS 2017 Taiwan; Code 137078

[25] Snatkin A, Eiskop T, Karjust K, Majak J 2015 Production monitoring system development and modification Proceedings of the Estonian Academy of Sciences, 64 4 pp 567-580

[26] Majak J, Shvartsman B, Pohlak M, Karjust K, Eerme M, Tungel, E 2017 Solution of fractional order differential equation by the Haar Wavelet method. Numerical convergence analysis for most commonly used approach AIP Conference Proceedings 1738, 8 June 2016, Article number 480110 International Conference of Numerical Analysis and Applied Mathematics 2015, ICNAAM 2015 Greece 23-29 September 2015, Code 122034.

Acknowledgments
The research was supported by Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts, ZEBE, TK146 funded by the European Regional Development Fund (grant 2014-2020.4.01.15-0016).