Measurement of outdoor Radon Concentrations in Soil Samples collected from Karabuk University in Turkey by using CR-39 Detector

Khalid H. Mahdi, A. Mustafa Erer, Ulvi Kanbur, Savaş Ağduk, Serkan Oguz and Necla Çakmak
Karabuk University, Science Faculty, Department of Physics, Karabuk, Turkey
E-mail: khalidaal-shabeeb@karabuk.edu.tr

Abstract. In this work, radon gas concentration in (35) samples of soil collected from Karabuk University in Turkey was measured by using nuclear track detector (CR-39). The content of radium, the rate of surface exhalation and the rate of mass exhalation have been assessed. The concentrations of radon were varied from (16.348 Bq.m\(^{-3}\)) to (196.988 Bq.m\(^{-3}\)). Results indicate that the equivalent content of radium varied from (0.386245 Bq.kg\(^{-1}\)) to (4.654255 Bq.kg\(^{-1}\)). The exhalation rate for surface varied from (0.002007 Bq.m\(^{-1}\).h\(^{-1}\)) to (0.023031 Bq.m\(^{-1}\).h\(^{-1}\)). The exhalation rate for mass varied from (0.000319 Bq.kg\(^{-1}\).h\(^{-1}\)) to (0.00366 Bq.kg\(^{-1}\).h\(^{-1}\)). All the obtained results found to be less than the corresponding limits for the world. Thus, based on the radon gas concentration and radiation, the equivalent content of radium (C\(_{Ra}\)), exhalation rate for the area (E\(_{Area}\)) and exhalation rate for the mass (E\(_{Mass}\)) in this area have no risk to the human’s health.

Keywords: Radon gas, nuclear track detector CR-39, soil, equivalent content of radium, exhalation rate for surface, exhalation rate for mass.

1. Introduction

Radon gas (\(^{222}\text{Rn}\)) is the most variable and largest radiation that contributed to public exposure. It was found that the ratio of radon and it’s daughters dose per year about (55%) of natural public exposure by inhalation of air, which the high levels of it can cause lung cancer [1] because Radon is a radioactive gas (alpha particle emitter) has a decay constant of (0.1812 day\(^{-1}\)) with t\(_{1/2}\) of (3.825 days) [2]. When radon exposure increased, the risk of lung cancer will increases, which has a linear relation with doses, it has been found that the risk of lung cancer increases (16%) per every (100 Bq/m\(^3\)) increase in radon concentration[3]. The \(^{238}\text{U}\) series generate radon (\(^{222}\text{Rn}\)) as a daughter of radium(\(^{226}\text{Ra}\)), which has another isotopes are the thoron (\(^{220}\text{Rn}\)) and actinon (\(^{219}\text{Rn}\)) which are daughters of \(^{232}\text{Th}\) and \(^{235}\text{U}\) series, respectively[4]. Radon is an inert gas heavier than the air, without any color and smell or taste, which is usually stay close to the ground floors [5]. Two different methods were used to measure the radon concentration. The first one is the passive method by integrative sampling for long time exposure using a suitable detector (like CR-39 in this work) and the second method is the continuous active radon sampling (like continuous radon monitor), the first
method requires no electrical power as in the case of the second [6]. There are many studies about radionuclides and radon concentration emitted from soil samples in Turkey, which starts in 1983[7] by using Gamma spectroscopy and CR-39 detectors (for indoor and outdoor radon), there are two studies for Karabuk Governorate[8,9], but for Karabuk University area, this is the first study about radon concentration outdoor in it.

2. Experimental Part

2.1. Calculation of Radon gas concentrations

Thirty-five soil samples were collected from Karabuk University as shown in table-1 and Figure-1. These samples were dried by the oven (at a temperature of 80°C for 2h) and grinded into a powder with size of (200 µm) by using a sieve, then 10 gm was taken for exposure. The sealed-cup technique was used in this work, the sample a weight of put in a small cup, then covered with a large cup that contain CR-39 detector with a thickness of (250 μm). And an area of (1cm²) at the top of it, as shown in Figure-2, the exposure time was (60) days to attained secular equilibrium. Then the chemical etching for the detectors was current by using (NaOH) solution with the normality of (6.25N) at(60°C) for five hours. The tracks in CR-39 of alpha particles concentration emitted from Radongas from soil samples were measured using an optical microscope (Nikon type 168 Japan made) with a magnification of (400X). The numbers of the tracks were measured to get track density (ρ), which is given as[3]:

\[
\rho = \frac{N_{ave}}{A}
\]

(1)

Where \(N_{ave}\) is an average number of total tracks and A is an area of field view. The Radon gas concentration in the soil samples was obtained by the comparison between track densities registered on the detectors of the samples and that of the standard soil samples which are shown in Figure (3), using the following relation [10]:

\[
C_X = \frac{C_s \rho_s}{\rho_x}
\]

(2)

\[
C_x = \frac{\rho_s}{\text{slope}}
\]

(3)

Where \(C_X\) is alpha particles concentration in the unknown sample, \(C_s\) is the alpha particles concentration in the standard sample, \(\rho_s\) is track density of the unknown sample (track/mm²) and \(\rho_x\) is track density of the standard sample (track/mm²).

2.2 Calculation of Radiation indices

The equivalent content of radium in the soil sample in the unit (Bq/kg) is given as[11]

\[
C_{Ra} (\text{Bq.kg}^{-1}) = \frac{\rho \cdot h \cdot A}{K \cdot T_e \cdot M}
\]

(4)

where, \(\rho\) is track density (track/mm²), A is the area of the surface sample (0.001589 m²), K (calibration constant) equal to the slope/exposure time(7.026/60=0.117), h is the distance from the surface of the sample to the detector(13.5 cm), M is sample mass of (0.01kg), \(T_e\) is the effective exposure time(h), which given as[11]:

\[
T_e = T - \frac{1}{\lambda (1-e^{-\lambda T})}
\]

(5)

Where \(\lambda\) is the decay constant of radon (0.1814 day⁻¹) and \(T\) is exposure time.

The area surface exhalation rate and the mass exhalation rate are given as[11,12]

\[
E_{Area} = \frac{C \cdot V \cdot \lambda}{A(T+\lambda^{-1}(e^{-\lambda T-1}))} \text{ (Bq.m}^{-2}. \text{h}^{-1})
\]

(6)
\[E_{\text{Mass}} = \frac{C \cdot V \cdot \lambda}{M[T+\lambda^{-1}(e^{-\lambda T}-1)]} \text{ (Bq.kg}^{-1} \cdot \text{h}^{-1}) \] (7)

Where \(C\) is the radon activity or integrated radon exposure (Bqm\(^{-3}\)h), \(V\) is volume of cup (m\(^3\)), \(T\) is Time of exposure (hrs), \(M\) is Mass (kg) of the sample in cup, \(\lambda\) is the decay constant for radon (h\(^{-1}\)).

Figure 1. Map Satellite for Karabuk University sites.

Table 1. Locations, codes and radon concentration of soil samples taken from some points of Karabük University.

No	x-coordinate	y-coordinate	Location and Sample code	Tracks density(track/mm\(^2\))	Radon concentration (Bq/m\(^3\))
1	32.654611	41.213097	Science Faculty (TCFB1)	1210.718	172.467
2	-	-	Fertilizer (CRL2)	1001.281	142.633
3	32.655861	41.208527	Central Research Labs.	697.167	99.312
4	32.657718	41.206220	Stadium (ST1)	1382.752	196.988
5	32.652134	41.216106	Rector Office (RO2)	596.752	85.007
6	32.655796	41.210864	Literature Faculty (LF2)	530.765	75.608
7	32.652001	41.214480	Medicine Faculty (MF1)	734.464	104.625
8	32.654999	41.214022	Technology Faculty (TCFC1)	963.984	137.320
9	32.657936	41.210555	Original soil (1)	748.809	106.668
10	32.654755	41.214170	Technology Faculty (TCFA2)	611.097	87.051
11	32.651310	41.214005	Original soil (2)	774.630	110.346
12	32.655366	41.212142	Social Centre (SC)	1196.373	170.424
13	32.656388	41.210405	Technology Centre (TCC1)	875.045	124.650
14	32.657159	41.208329	Library (L1)	872.172	124.242
15	32.652694	41.214406	Medicine Faculty (MF2)	493.468	70.295
16	32.659887	41.205894	Engineering Faculty	533.634	76.016
Figure 2. The sealed-cup technique for radon exposure.
Figure 3. The relation of track density and radon concentration for standard soil samples.

3. Results and Discussion

The results of radon concentrations emitted from soil samples selected from Karabuk University, was obtained by using the equation (3) are presented in table (1). From this table, it can be noticed that the highest radon concentration was found in a Stadium soil sample (196.988 Bq/m\(^3\)), while the lowest value was found in TOKI-1(The residential complex) equal to (16.348Bq/m\(^3\)).We also find that there are some values of radon concentrations close to the highest value, which is in the Science Faculty (TCFB1) and Social Centre (SC) soil samples (172.467Bq/m\(^3\)) and (170.424Bq/m\(^3\)) respectively, that means they are the same soil, although that the radon concentration in fertilizer sample was (142.329 Bq/m\(^3\)) and for the original soil samples (106.441 Bq/m\(^3\)), which is in agreement with other studies that done by other researchers like Ereeset al in 2006 for Western Turkey[13],Kamand Bozkurt in 2007 for Kastamonu[14], Kam et.al., in 2010 for Çanakkale[15],Kurnazet. al., in 2011 for Trabzon[16], Tabaret. al., in 2013 for Dikili[17], Sogukpinaret., al., in 2014 for Eskisehir[18],Ozen et. al., in 2018 for Rize[19] and Asliet. al., in 2019 for Karabuk[9].However, all results of radon concentrations in this work were less than the recommended value of (200 Bq/m\(^3\)) and certified by (ICRP, 1993)[20]. Table 2, presents results for radiation induces like the equivalent content of radium ranged from (0.386245) to (4.654255) Bq/m\(^2\).h,which were to be less than the permissible value of (370 Bq/kg) as recommended by the Organization for Economic Cooperation and Development[21], the exhalation rates for the area were varied from (0.002007Bq/m\(^2\).h) to (0.023031Bq/m\(^2\).h) and exhalation rates for mass varied from (0.000319) to (0.00366)Bq/kg.h.It should be mentioned thatthe observed values of the radon exhalation rate in thepresent work were below the world average of (2.5 Bq/m\(^2\).h)[22].

Table 2. The effective radium content, area surface exhalation rate and mass exhalation rate.

No	Radon concentration (Bq/m\(^3\))	Equivalent content of Radium (Bq/kg)	Area exhalation rate (Bq/m\(^2\).h)	Mass exhalation rate (Bq/kg.h)
1	172.467	4.074887	0.020164	0.003204
2	142.633	3.369990	0.016676	0.002650
3	99.312	2.346440	0.011611	0.001845
4	196.988	4.654255	0.023031	0.003660
5	85.007	2.008475	0.009939	0.001579
4. Conclusions

Radon concentration, radium content, exhalation rates for the area (surface) and mass were obtained for selected soil samples collected from different locations in Karabuk University in Turkey. The results were found to be less than their corresponding permissible and certified world values. Thus, the present results revealed that the area is safe as far as the health effect is concerned, except the highest values which within the statistical ranges, the approximate values of the radon concentration refer to the soil of one source, which is transferred from another place for the purposes of agriculture, especially since the concentration values of the radon emitted from the original mountain the soil was far from it,which in agreement with other studies. From this, we conclude that we must know the sources of these soils and examine them radiographically before using them in agriculture or construction material and conduct other tests, such as X-rays fluorescent for these soils to find out their composition, which is an evident through the shape and the color forthem,that they are transported soils.

Acknowledgment:
N. Çakmak would like to acknowledge the support of the Karabuk University, Scientific research project's Unit with project code No.: FDT-2020-2348.
References

[1] Dey G K and Das P K 2012 Indian Academy of Sciences 121 (1) 237.
[2] Deka P C Subir S Bhattacharjee B Goswami T D Sarma B K and Ramachandran T V 2003 Radiation Measurements 36 431.
[3] Chauhan R P Nain M and Kant K 2008 Radiation Measurements 43 445.
[4] Hana Nafie Aziz Naoum 2002 Determination of Uranium Concentrations In a number of teeth Using CR-39 Detector Master Thesis University of Mosul.
[5] Mohammed F M Mahdi K AL-Jobori SH M and Bilal Kareem Enzi B K 2018 International Journal of Science and Research (IJSR) 7 (4) 1679.
[6] Kotrappa P Dempsey J Hickey J R and Stiffs L R 1988 J. of Health Physics 54 4756.
[7] Metin M Aydin B Attila A and Nilgun C 2010 Journal of Environmental Radioactivity 101(11) 952.
[8] Rıdvan B Hüseyin A andMustafa E 2011 Journal of Radioanalytical and Nuclear Chemistry 289 (2) 297.
[9] Aslı K Şeref T Aybaba H Elif G Muhammet K Aydan A Erer A M and Onur M 2019 Radiochimica Acta 108 (7).
[10] Mahdi Kh H Ishnayyin H G and Haider L M 2015 J. Chem. Bio. Phy. Sci. Sec. C 5 (3) 3336.
[11] Zubair M Shakir Khan M and Verma D 2012 Iran. J. Radia. Res. 10 (2) 83.
[12] Abd-Elzaher M 2012 American Journal of Applied Science 9 (10) 1653.
[13] Erees F S Yener G and Ozbal S O 2006 Radiation Measurements 41 (3) 354.
[14] Kam E and Bozkurt A 2007 Applied Radiation and Isotopes 65 (4) 440.
[15] Kam E Bozkurt A and llgar R 2010 Environmental Monitoring and Assessment 168 685.
[16] Kurnaz A Küçükömeroğlu B Çevik U and Çelebi N 2011 Applied Radiation and Isotopes 69 (10) 1554.
[17] Tabar E Kumru M N İçhedef M and Saç M M 2013 International Journal of Radiation Research 11 (4).
[18] Sogukpinar H Algin E Asici C Altinoz M and Cetinkaya H 2014 Radiation Protection Dosimetry 162(3) 410.
[19] Özen S A Celik N and Dursun E and Taskın H 2018 Environmental Geochemistry and Health 40 1111.
[20] ICRP 1993 International Commission on Radiological Protection Against Radon-222 at Home and work Publication 65 Pergamon Elsevier 35 242.
[21] Organization for Economic Cooperation and Development (OECD), 1979 Nuclear Energy Agency, Paris, France.
[22] UNSCEAR. 2000 Report of the United Nations Scientific Committee on the Effect of Atomic Radiation to the General Assembly. ANNEXB Exposures from natural radiation sources.