Conjugate vaccines have reduced pneumococcal disease in vaccinated children and unvaccinated adults, but non-vaccine serotypes are of concern, particularly if antibiotic resistant. We reviewed *Streptococcus pneumoniae* collected via: (i) the British Society for Antimicrobial Chemotherapy (BSAC) surveillances from 2001–2014; (ii) Public Health England’s (PHE) invasive isolate surveillance from 2005–2014 and (iii) referral to PHE for resistance investigation from 2005–2014. Serotype 15A increased in all series, with many representatives showing triple resistance to macrolides, tetracyclines and penicillin. 15A was consistently among the 10 most prevalent serotypes from 2011 in PHE and BSAC invasive isolate/bacteraemia surveillance but never previously; 26–33% of these invasive 15A isolates had triple resistance. BSAC respiratory isolates were only serotyped in 2013/14 and 2014/15 (October to September); 15A was most prevalent serotype in both periods, comprising 9–11% of isolates, 38–48% of them with triple resistance. Serotype 15A represented 0–4% of *S. pneumoniae* referred to PHE for reference investigation annually until 2008 but rose to 29% (2013) and 32% (2014). Almost all multidrug-resistant 15A isolates were sequence type (ST) 63 variants, whereas susceptible 15A isolates were clonally diverse. The rise of serotype 15A suggests that pneumococcal conjugate vaccines will need ongoing adaptation.

Introduction

Seven-valent pneumococcal conjugate vaccine (Prevenar 7, PCV7) first became available internationally in 2000, and protects against invasive *Streptococcus pneumoniae* infection by serotypes 4, 6B, 9V, 14, 18C, 19F and 23F. Numerous countries have reported that deployment reduced the incidence of invasive (i.e. blood and cerebrospinal fluid (CSF)) *S. pneumoniae* disease both in children, who are vaccinated, and in elderly adults, who benefit through reduced carriage and transmission of virulent serotypes by children [1-4]. Antibiotic resistance was historically concentrated in five PCV7-targeted serotypes (6B, 9V, 14, 19F and 23F) [5] and several countries have reported reductions in the prevalence of resistance as these were displaced [6]. United Kingdom (UK) experience conforms to these general patterns [7], with the caveat that penicillin-non-susceptible *S. pneumoniae* were uncommon before the vaccine’s introduction to the childhood schedule in 2006/07, meaning that little further fall occurred; macrolide resistance was reduced, reflecting displacement of a resistant serotype 14 lineage [8,9].

The success of PCV7 was partly offset by rises in other serotypes; notably 19A, where multidrug resistance to antibiotics became frequent [10,11]. This was countered by replacing PCV7 with a 13-valent conjugate vaccine (PCV13), additionally covering serotypes 1, 3, 5, 6A, 7F and 19A. PCV13 replaced PCV7 in the UK in April 2010 and this switch was followed by (i) reduced infant carriage of these additional serotypes [12], and (ii) a further 56% reduction in invasive disease incidence from a post-PCV7 baseline [13]. Again, however, rises are being seen in other, non-vaccine, serotypes, principally 8, 10A, 12F, 15A and 24F [13]. Serotype 15A is of particular interest since multidrug-resistant isolates belonging to this serotype have been reported as far apart as east Asia [14-16], North America [17,18], Norway [19], Italy [20] and Australia [21]. Here, we explore the rise...
Rank	1	2	3	4	5	6	7	8	9	10	% for top 10\(^a\)	
2001 (n = 227)											71.4%	
14	8	9V	23F	3	4	6B	12F	NA	NA	1		69.5%
2002 (n = 220)											72.0%	
14	9V	6B	19F	23F	NA	NA	1	22F	8	4	7F	6A
2003 (n = 239)											67.2%	
14	9V			1	4	8	23F	3	19F	6B	18C	
2004 (n = 241)											67.5%	
14	9V	6A	23F	6A	4	6B	7F	NA	NA	8	18C	
2005 (n = 230)											73.6%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2006 (n = 231)											73.6%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2007 (n = 216)											71.6%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2008 (n = 201)											68.7%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2009 (n = 213)											70.4%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2010 (n = 249)											69.4%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2011 (n = 230)											66.8%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2012 (n = 229)											3.2%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2013 (n = 235)											3.6%	
14	9V	8	7F	23F	3	4	6A	NA	NA	8	18C	
2014 (n = 247)											3.2%	

NA: not applicable.

Green: covered by PCV7; yellow: additional types covered by PCV13; pink: not covered by any conjugate vaccine.

\(^a\) When there is a tie for tenth rank, only one of the tied serotypes is counted into the percentage total for the top 10.
of serotype 15A *S. pneumoniae* in the UK and Ireland at epidemiological and molecular levels, using data from both the British Society for Antimicrobial Chemotherapy (BSAC) and Public Health England (PHE) surveillances.

Methods

British Society for Antimicrobial Chemotherapy surveillance

The BSAC Bacteraemia and Respiratory Surveillance Programmes have been described previously [22-24]. Both collect isolates from across the UK and Republic of Ireland. The Bacteraemia programme runs on the calendar year. Until 2009 we asked participating laboratories to send up to 10 consecutive bloodstream *S. pneumoniae* isolates per annum from each of 25 hospital laboratories; from 2010 we have similarly sought seven consecutive bloodstream isolates per annum from each of 40 hospital laboratories. Isolates have been serotyped throughout, and results were reviewed across the years 2001 to 2014, inclusive. The Respiratory Programme runs on an October–September year, designated e.g. 2013/14, so that isolates from each winter peak of respiratory disease are not split between calendar years. It examines consecutive isolates from lower respiratory tract infections (LRTIs) in non-hospitalised patients or those hospitalised for less than 48 hours. Until 2013/14 the BSAC Respiratory Surveillance Programme did not routinely serotype isolates, therefore only 2013/14 and 2014/15 data were reviewed. In both these years the surveillance sought 14 consecutive LRTI *S. pneumoniae* isolates from each of the same 40 laboratories contributing to the Bacteraemia surveillance. Actual numbers of isolates collected in both surveillances were somewhat below these targets (see Results) and, in most years, one or two recruited laboratories failed to collect, and were subsequently dropped and replaced by alternative sites. Hospital laboratory mergers, mostly in the past 5 years, have also meant that participating microbiology laboratories increasingly source isolates from multiple hospitals, augmenting representativeness.

Public Health England reference laboratory submissions

Besides surveillance isolates from invasive infections, PHE receives variable numbers of *S. pneumoniae* as reference submissions from respiratory and other non-sterile sites, principally eye and ear infections. Most are sent for investigation because the sender perceives them to have unusual resistance patterns, although senders’ definitions of unusual vary and may be contingent on the site of the infection. Over 95% of isolates are from laboratories in England, Wales and Northern Ireland, with the remaining ca 5% largely from Scotland and the Republic of Ireland. Data were reviewed across the period 2005 to 2014.

Identification, serotyping and susceptibility testing

All surveillance and referred isolates were confirmed as forming alpha-haemolytic colonies on horse blood agar and being inhibited by a 5 µg optochin (ethylhydrocortreine hydrochloride) disc (Oxoid-Thermofisher, Basingstoke, UK). Isolates with atypical colonial morphology, or which could not be serotyped (below), were confirmed as being lysed within 30 min by 2% sodium deoxycholate, and being catalase-negative when tested with 3% hydrogen peroxide. For serotyping, isolates were grown overnight in Todd Hewitt broth at 35°C with 5% CO2, harvested by centrifugation at 453 g for 30 min, then re-suspended in a small residual volume of broth and subjected to slide agglutination tests with standard antisera (Statens Serum Institut, Copenhagen, Denmark) [26]. Agar dilution susceptibility tests were performed in accordance with BSAC guidelines [27], using IsoSensitest agar (Oxoid-Thermofisher) supplemented with 5% defibrinated horse blood and incubated at 35–37°C in a 5% CO2 atmosphere. ‘Triple resistance’ was defined as resistant to erythromycin (minimum inhibitory concentration (MIC) > 0.5 mg/L) and tetracycline (MIC > 2 mg/L), and non-susceptible to penicillin (MIC > 0.06 mg/L), based on EUCAST breakpoints [28].

DNA extraction, sequencing and bioinformatic analysis

Isolates were grown on horse blood agar (PHE Media Services) and treated by the Qiagen-recommended method for lysis of Gram-negative bacteria (Qiagen, Manchester, UK), which is effective for *S. pneumoniae* and simpler than the Gram-positive protocol. DNA was extracted from the lysates using a QIAasympophy SP automated instrument (Qiagen) and a QIAasympophy DSP DNA Mini Kit, using a tissue extraction protocol. DNA concentrations were measured using the Quant-IT Broad Range DNA Kit (Life Technologies, Paisley, UK) and GloMax 96 Microplate Luminometer (Promega, Southampton, UK). After adjusting to a concentration of 10–30 ng/µL, DNA was sent for whole genome sequencing (WGS) by Illuma methodology. The resulting data were automatically analysed using a bespoke bioinformatic pipeline for *S. pneumoniae*, developed by PHE. Among other things, this (i) checks species
identification by a kmer method and (ii) automatically assigns MLST sequence types (STs), identified by mapping the reads against all *S. pneumoniae* allele variants held in the MLST database [29], using a modification of the short-read sequence typing (SRST) software [30]. Resistance genes affecting susceptibility for macrolides and tetracyclines were identified, and their sequences reviewed.

Results

Serotype trends, British Society for Antimicrobial Chemotherapy bacteraemia surveillance

Prior to widespread UK deployment of PCV7 in the 2006/07 season, *S. pneumoniae* belonging to its target serotypes accounted for around half (44.4–53.6% in each of the years 2001 to 2006 inclusive) of all the *S. pneumoniae* collected in the BSAC bacteraemia surveillance but these declined to 4.7% of isolates by 2013 and 2.0% in 2014. Serotype 14 was the most common type in 6 of the 7 years from 2001 to 2007, comprising 13–20% of all isolates (Table 1) and accounting for 61% of all erythromycin-resistant isolates. By 2013, however, serotype 14 had only a single representative (0.4%), and none in 2014. Other serotypes became relatively more frequent as the PCV7 types declined, notably 7F and 19A, whereas serotype 1 had been expanding since 2001. These three types are within the spectrum of PCV13 and have declined, with variable rapidity, following its replacement of PCV7 in 2010. A further PCV13 type, serotypes 3, shows much less evidence of decline, as also noted elsewhere [13].

Serotype 15A isolates were encountered in each year from 2010 and the serotype was in the top 10 from 2011 onwards, whereas previously the type was sporadic. Other types that had long been encountered at moderate to low prevalence also became more prominent.

Table 2

Major serotypes and associations with resistance among *Streptococcus pneumoniae* from the British Society for Antimicrobial Chemotherapy Respiratory Surveillance, United Kingdom and Republic of Ireland, 2013/14 and 2014/15 (n=805)

Serotype	October 2013 to September 2014	October 2014 to September 2015				
	Count	% of total isolates	No (%) with triple resistance	Count	% of total isolates	No (%) with triple resistance
15A	34	9.1	13 (38.2%)	46	10.7	22 (47.8%)
23B	26	6.9	1 (3.8%)	21	4.9	0
3	22	5.9	0	26	6.0	0
11A	21	5.6	1 (4.8%)	34	7.9	1 (2.9%)
23A	21	5.6	0	30	7.0	4 (13.3%)
22F	19	5.1	0	17	4.0	0
6C	18	4.8	0	12	2.8	0
19A	17	4.5	5 (29.4%)	14	3.3	4 (28.6%)
24F	16	4.3	0	12	2.8	1 (8.3%)
35F	14	3.7	0	14	3.3	0
10A	14	3.7	0	12	2.8	0
31	14	3.7	0	16	3.7	0
16F	12	3.2	1 (8.3%)	19	4.4	0
35B	11	2.9	0	3	0.7	0
17F	11	2.9	0	16	3.7	0
19F	11	2.9	3 (27.3%)	14	3.3	5 (35.7%)
33F	11	2.9	0	18	4.2	0
8	10	2.7	0	12	2.8	1 (8.3%)
Other serotypes, with ≥10 isolates in one or both years	73	19.4	3 (4.9%)	85	(21.7)	10 (2.3%)
PCV7 serotypes	17	4.5	NA	20	4.6	NA
PCV13 serotypes	63	16.8	NA	67	15.6	NA
Total	375	100	27 (7.2%)	430	100	49 (11.4%)

NA: not applicable; PCV: pneumococcal conjugate vaccine.

In 2013/14, three 6B isolates had triple resistance; the 10 ‘Other serotype’ isolates with triple resistance in 2014/15 comprised three nontypeable, two 12F and single representatives of 6B, 7F, 9N, 9V and 23.
including serotypes 8, and (albeit with considerable year-on-year variation) 22F.

Triple resistance was seen in just 60/3,206 isolates (1.97%) throughout the period reviewed and its prevalence exceeded 10% only among isolates of serotypes 37 (2/3 isolates), 6B (13/90 isolates, 14.4%) and, most strikingly, 15A (13/50, 26.0%). Triple-resistant serotype 15A *S. pneumoniae* were received in every year from 2011, although never previously. This observation, along with increasing numbers of 15A isolates among PHE reference submissions (below), prompted the present analysis.

Table 3
Predominant serotypes among *S. pneumoniae* serotyped by the Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England from invasive infections, 2005–2014 (n = 45,645)

Rank	1	2	3	4	5	6	7	8	9	10
2005	14	1	8	9V	4	23F	3	6B	7F	19F
n = 4,662	701	528	357	333	327	271	250	248	208	195
2006	14	1	9V	8	23F	4	3	6B	7F	19F
n = 4,857	660	611	337	321	300	288	268	256	249	210
2007	1	14	9V	8	23F	4	3	6A	23F	6B
n = 4,673	583	449	351	348	316	278	238	237	231	197
2008	1	14	9V	8	23F	4	3	6A	23F	6B
n = 4,978	592	474	372	359	328	307	239	238	206	189
2009	1	7F	8	3	22F	19A	6A	14	9V	23F
n = 5,000	553	501	490	438	423	393	189	148	131	118
2010	7F	19A	8	1	3	22F	12F	33F	6C	11A
n = 4,881	675	640	445	362	362	361	361	361	361	102
2011	7F	19A	8	1	3	22F	12F	33F	6C	11A
n = 4,549	665	538	424	391	382	348	139	131	126	124
2012	8	19A	22F	19A	19A	19A	19A	22F	19A	19A
n = 4,092	485	456	369	357	276	243	176	155	148	125
2013	8	7F	22F	19A	3	15A	12F	1	24F	33F
n = 3,995	545	415	362	320	293	274	203	174	153	141
2014	8	12F	22F	19A	15A	15A	7F	9N	33F	24F
n = 3,959	599	336	334	243	229	224	219	219	170	168

PCV: pneumococcal conjugate vaccine.
Green: covered by PCV7.
Yellow: additional types covered by PCV13.
Pink: not covered by any conjugate vaccine.
99% of isolates are from England, Wales and Northern Ireland, with the remaining few from Scotland, Crown Dependencies, Republic of Ireland and elsewhere.

Serotypes among British Society for Antimicrobial Chemotherapy respiratory isolates
Unlike those collected in the BSAC Bacteraemia Surveillance, *S. pneumoniae* from the BSAC Respiratory Surveillance were not routinely serotyped until 2013/14, when 15A proved to be the most frequent serotype (Table 2), comprising 34.9% of all 375 isolates collected, with a similar pattern in 2014/15, when 15A comprised 46/430 (10.7%) of isolates. What is more, 15A was one of only four serotypes (the others being 6B, 19A and 19F) where triple resistance was seen in over 10% of representatives. Overall, triple resistance was seen in 13/34 (38.2%) serotype 15A isolates vs
Serotypes that reached a top-10 ranking in any surveillance year in Republic of Ireland and elsewhere.

99% of isolates are from England, Wales and Northern Ireland, with the remaining few from Scotland, Crown Dependencies, Republic of Ireland and elsewhere. Serotypes that reached a top-10 ranking in any surveillance year in Table 3 are line-listed.

Serotype	Total	Triple resistance	% Triple resistance
15A	330	104	31.5
6B	420	51	12.1
19F	401	45	11.2
19A	987	83	8.4
23F	360	15	4.2
24F	124	5	4.0
9V	562	19	3.4
14	1,145	27	2.4
6A	366	3	0.8
8	1,197	3	0.3
6C	205	2	1.0
9N	261	1	0.4
3	777	2	0.3
33F	239	2	0.8
1	1,195	1	0.1
22F	761	1	0.1
12F	474	1	0.2
4	334	0	0
7F	1,155	0	0
All others	2,258	0	0
All isolates and serotypes	13,551	469	3.5

99% of isolates are from England, Wales and Northern Ireland, with the remaining few from Scotland, Crown Dependencies, Republic of Ireland and elsewhere. Serotypes that reached a top-10 ranking in any surveillance year in Table 3 are line-listed.

14/341 (4.1%) of all other isolates in 2013/14 (p<0.001, logistic regression adjusted for clustering by centre); there was an even sharper difference, 24/46 (52.2%) vs 25/384 (6.5%) (p<0.001, in 2014/15.

Also notable was the fact that PCV7 serotypes accounted for only 17/375 (4.5%) of all the respiratory S. pneumoniae in 2013/14 and PCV13 types for just 63/375 (16.8%); corresponding figures in 2014/15 were 18/430 (4.3%) for PCV7 types and 68/430 (15.8%) for PCV13 types. The sole previous season when S. pneumoniae from the Respiratory Programme were typed was 2005/06, immediately before UK introduction of PCV7 [24]. Then, among 749 isolates, 312 (41.7%) belonged to PCV7 types and 450 (60.1%) to PCV13 types (assuming all serogroup 7 isolates belonged to serotype 7F) whereas 36 (4.8%) belonged to serogroup 15, which was not split to its component (15A/B/C/F) serotypes. The declines in PCV7 types, PCV13 types, and the rise in serotype 15A (compared with all serotype 15 in 2005/06) were all highly significant (p<0.001, logistic regression adjusted for clustering by centre).

As in the BSAC series, serotype 15A first appeared in the top 10 in 2011. It then advanced to seventh rank by 2012 and sixth rank in both 2013 and 2014, accounting for 5.7% of isolates (224/3,959) in the latter year. Again, the proportion of resistance was striking: among the 330 tested, fully 104 (31.5%) of bloodstream 15A S. pneumoniae for all years pooled had triple resistance, whereas triple resistance rates for all other isolates that ever featured in the top 10 were under 12.5% (Table 4). Proportions of serotype 15A isolates, taking 2005–2014 pooled, rose with the patient’s age, from 1.3% in the 0–5 year age group to 1.4% in the 6–35 year age group, 0.6% in the 36–45 year age group, 1.7% in the 46–55, 56–65 and 66–75 year age groups, reaching 2.4% in the 76–85 year age group and 3.1% among the over-85 year-olds (p<0.001). Triple resistance was represented among serotype 15A S. pneumoniae throughout the surveillance period reviewed, with proportions as follows: 2005, 0/3 isolates with triple resistance; 2006, 1/4; 2007, 2/10; 2008, 4/13; 2009 7/13; 2010, 18/34; 2011, 10/33; 2012, 15/50; 2013, 19/63 and 2014, 33/114.

The isolates tested for antibiotic susceptibility and resistance (n=13,551, annual range 1,159–2,966 p.a.) are a subset of those in Table 3 and comprise all isolates from hospitals that participate in the EARS-net surveillance along with those bloodstream isolates where the referring laboratory specifically sought susceptibility testing. Inclusion of the latter group may over-represent resistant organisms, although there is no reason why it should do so disproportionately within particular serotypes.

Serotype trends, isolates referred to Public Health England for investigation of resistance

Between 2005 and 2014, 1,536 S. pneumoniae from respiratory, ear and eye infections were referred to PHE (Table 5) for investigation of unusual resistance. These submissions constitute a heavily biased sample and lack a denominator, but do provide a rolling snapshot of S. pneumoniae isolates that sending laboratories
Table 5
Predominant serotypes among respiratory, ear and eye isolates of Streptococcus pneumoniae received by the Public Health England Colindale reference service, 2005–2014 (n=1,536)

	Number of Isolates of indicated serotype in year:	Grand total	No with triple resistance	% with triple resistance																			
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014			
Serotype 19F	15	31	41	50	55	35	23	14	12	14	290	232	80.0										
Serotype 19A	2	10	15	27	45	44	28	17	8	17	213	169	79.3										
Serotype 15A	0	4	3	8	23	22	17	26	31	31	165	137	83.0										
Serotype 6B	5	18	39	35	25	13	4	7	3	2	151	104	68.9										
Non-typeable rough	3	8	16	23	33	18	10	15	5	2	133	81	60.9										
Serotype 9V	7	36	25	15	18	10	0	0	1	2	114	16	14.0										
Serotype 14	9	18	21	6	11	11	4	2	3	1	86	30	34.9										
Serotype 23F	7	9	6	16	16	9	3	2	1	3	72	35	48.6										
Serotype 35B	1	3	4	9	7	6	9	4	7	4	54	9	16.7										
No serotype data	1	2	0	0	0	6	1	1	5	26	42	22	52.4										
Serotype 6A	0	3	5	5	3	6	1	2	0	1	26	7	26.9										
Serotype 11A	0	0	1	4	3	3	5	2	4	23	23	12	52.2										
Serotype 3	0	1	3	0	3	4	1	2	4	21	21	3	14.3										
Serotype 1	0	0	1	2	3	5	1	1	1	0	14	1	7.1										
Serotype 13	0	2	0	1	6	1	0	0	1	11	11	0	0.0										
All other types a	8	5	5	9	16	17	15	10	13	23	121	38	31.4										
Total	58	150	185	207	268	210	120	108	97	133	1,536	896	58.3										
15A as % typed	0.0	2.7	1.6	3.9	8.6	10.8	14.3	24.3	33.7	29.0	11.0												

95% of isolates were from England, Wales and Northern Ireland with the remainder from Scotland, Crown Dependencies, Republic of Ireland or elsewhere.

a Not accounting for > 10 isolates in total over the surveillance period.
b Excludes ‘no data row’ above from denominator.

(mostly in England and Wales) consider to be concerning. Overall, 896/1,536 (58.3%) had triple resistance. In the earlier years members of serotypes 19F, 9V, 6B and 14 dominated, collectively accounting for 82.8–92.4% of referrals from 2005 to 2007, before declining from the start of the ‘PCV7 era’. Serotype 19A accounted for a growing proportion of referrals from 2005, peaking at 23.3% in 2011, while serotype 15A represented just 0–4% of submissions throughout the period 2005 to 2008 but thereafter increased progressively, becoming the most commonly referred serotype in 2012. In 2013, it accounted for 31/92 of all submissions where typing was undertaken, and for 31/107 in 2014. These proportions were greater than ever previously achieved by any other serotype. Fully 83.0% of serotype 15A isolates (137/165) had the triple resistance vs 68.9–80.0% among serotype 9V, 19A and 19F referrals, with lower proportions for other serotypes (Table 4).

Genomic sequencing and phenotypes of serotype 15A isolates
Genomic sequencing was performed on 156 serotype 15A S. pneumoniae. These represented a diversity of resistance patterns, and including 50 with triple resistance; a limitation was that all 156 sequenced isolates dated from 2013 and 2014. MLST types were deduced from the sequence data, and 78 (50%) of the isolates were identified as belonging to ST63 (n=61) or its single or double locus variants (n=17). All of these 78 ST63-related isolates were resistant to erythromycin (also clindamycin, not shown) and 49 (62.8%) had the triple resistance profile (Table 6). The macrolide and clindamycin resistance correlated with the consistent presence of erm(B) genes, as detected by WGS. All 78 ST63-related isolates were found also to carry the tetracycline-resistance determinant, tet(M); those (n=65, 83.3%) that expressed tetracycline resistance had the intact gene, whereas those (n=13, 16.7%) that were tetracycline-susceptible (all of them classical ST63 isolates) had a deletion of two nucleotides at codon 339, generating a premature stop codon and thereby inactivating the gene. Most of the 49 isolates with triple resistance were susceptible to alternative agents: 37 remained susceptible to ampicillin, 47 to moxifloxacin, 48 to ceftaxime and all 49 to vancomycin, all based on EUCAST breakpoints. Sequence types (STs) 3811 (n=19), 58 and its single locus variants (SLVs) (n=21), and 73 and its SLVs (n=11) were all heavily represented among all these, just one isolate had triple resistance and three or fewer were non-susceptible to any one of erythromycin, tetracycline or penicillin.

WGS data were available for a further 141 non-15A S. pneumoniae, predominantly investigated owing to multidrug resistance. Six had ST63-related profiles and
these all had triple resistance; three expressed serotype 19F, one serotype 21 and one 23F; the final isolate was typed using antisera as serotype 20 but was predicted to be serotype 11A based on WGS; review suggests that the original serotype determination was in error. The association with 19F (a PCV7 serotype) is notable (see Discussion), but members of this serotype were highly variable in terms of ST; among a total of 25 serotype 19F isolates sequenced, 22 with triple resistance, we recorded 12 different known STs, along with two new variants. No single ST had more than four representatives.

Discussion

Deployment of PCVs has had clear public health benefits. The incidence of invasive pneumococcal disease has been reduced not only in vaccinated children, but also in elderly adults, who benefit from herd immunity [31]. There is also evidence of impact on non-invasive disease: thus, PCV7 deployment in the UK in 2006 also was followed by a 19% reduction in hospital admissions for community-acquired pneumonia (CAP) among children aged <2 years, reversing a rising trend that had persisted during the preceding decade [32]. A similar reduction was reported in Italy [33]. Moreover, a Cochrane review concluded that PCV7 reduced the incidence of acute otitis media in healthy vaccinated children, although with less impact for those with a history of the illness or deemed to be ‘high risk’ [34]. Lastly, active PCV13 vaccination was recently shown to achieve a 50% reduction in the incidence of bacteraemia and non-invasive pneumonia in elderly adults, again reflecting displacement of vaccine serotypes [35].

A limitation to this pattern of successes is, however, that the PCV vaccines cover only the most prevalent pneumococcal serotypes, leaving scope for expansion of other types. Deployment of PCV7 was followed by increased prevalence of serotype 19A isolates, many of them multidrug-resistant, and, although serotype 19A is now covered by PCV13, a niche may be created for yet further types. Internationally, several groups have remarked on the increased prevalence of multidrug-resistant serotype 15A and 35B isolates [14-21] and a recent PHE analysis of invasive pneumococcal infections, using the data series of Table 3, noted 15A to be among several serotypes now increasing in numbers and proportion in the UK [13]. The present analysis extends these findings, confirming that serotype 15A *S. pneumoniae* are of growing importance, as also shown (i) in the BSAC bacteraemia series (Table 1), which overlaps the PHE series but also includes Scotland and Ireland, (ii) the BSAC series LRTI (Table 2), which is the sole UK surveillance to test *S. pneumoniae* from their predominant disease setting, and (iii) among PHE reference submissions, which provide a rolling snapshot of resistance phenotypes causing concern to microbiologists at sending laboratories, which are predominantly in England, Wales and Northern Ireland, although with a few isolates received from elsewhere (Table 5). By 2013 and 2014, serotype 15A was consistently (i) among the top 10 serotypes in both the PHE and BSAC surveillances of invasive *S. pneumoniae* (Tables 1 and 3), (ii) was the top serotype among respiratory isolates (Table 2) and (iii) accounted for almost one third of all the *S. pneumoniae* sent for reference investigation as ‘unusually’ resistant. Critically, and unlike other rising pneumococcal serotypes (8, 10A, 11A, 12F, and 24F – see Tables 1, 3 and ref [13]) serotype 15A isolates were commonly resistant or non-susceptible to multiple antibiotics, including macrolides, clindamycin, tetracycline and penicillin. While none of the surveillances captures clinical outcomes, the fact that serotype 15A is rising in invasive infections implies that these organisms are virulent.

Around one third of serotype 15A isolates had ‘triple resistance’ (i.e. to macrolides and tetracycline together with intermediate penicillin resistance), a higher proportion than for other serotypes (Table 4). This proportion did not change substantially over time (although assessment is complicated by small total numbers of isolates in the earlier years), indicating that the serotype was gaining prominence both generally and as a resistant type, again implying that the surface polysaccharides of serotype 15A support virulence.

Triple resistance among serotype 15A isolates was strongly associated (p < 0.0001, Fisher’s exact of chi-squared tests) with ST63 and its variants and extremely rare among serotype 15A isolates belonging to other

Table 6

Sequence types in relation to resistance of serotype 15A *Streptococcus pneumoniae* subjected to genomic sequencing (n = 156)

Number (%) non-susceptible (intermediate or resistant)	Erythromycin	Tetracycline	Penicillin	Triple resistance
ST63	61	61 (100%)		35 (57.4%)
ST63 SLV and DLV	17	17 (100%)	17 (100%)	14 (82.4%)
Other 15A×	78	2 (2.6%)	3 (3.8%)	1 (1.3%)

SLV: single locus variant; ST: sequence type.

× Includes 21 ST58 and SLVs, 19 ST3811, 11 ST73 and SLVs and 27 isolates belonging to sequence types with four representatives or fewer.
Acknowledgements

A considerable number of people have contributed to the success of this study. We are grateful to Dr Elizabeth Miller of Public Health England’s (PHE) Immunisation Division, and to the members of the British Society for Antimicrobial Chemotherapy’s Resistance Surveillance Standing Committee for helpful discussion. We are also grateful to Tony McNiff for help in data extraction and analysis and to the many PHE staff who undertook laboratory testing of these isolates, also to the NHS and Irish laboratories that have contributed isolates and data to the various surveillance programmes used here. This publication made use of the Streptococcus pneumoniae MLST website (http://pubmlst.org/spneumoniae/) sited at the University of Oxford [29]. The development of this site has been funded by the Wellcome Trust.

Conflict of interest

DML has shares in Pfizer and GSK, who make pneumococcal conjugate vaccines, and occasionally lectures and does contract and consultancy work for both companies. Other authors declare no conflict of interest.

Authors’ contributions

CS, MK: molecular characterisation of isolates; NF/TH: Public Health England reference surveillance and typing of S. pneumoniae, on which this analysis is predicated; RR/SM/RJ: British Society for Antimicrobial Chemotherapy’s Resistance Surveillance Standing Committee and to the members of the British Society for Antimicrobial Chemotherapy; DP: Public Health England reference investigation of resistant S. pneumoniae, on which this analysis is predicated; RP, RH, NW: reference investigation of resistant S. pneumoniae on which analysis is predicated; PS: extraction and consolidation of data series; MD: Bioinformatic analysis of sequence data; DML: primary observation of rise of 15A S. pneumoniae, wrote manuscript. All authors commented upon and contributed to improving the manuscript.

References

1. Isaacman DJ, Fletcher MA, Fritzell B, Ciuryla V, Schranz J. Indirect effects associated with widespread vaccination of infants with heptavalent pneumococcal conjugate vaccine (PCV7; Prevnar). Vaccine. 2007;25(33):4240-7. DOI: 10.1016/j.vaccine.2006.09.011 PMID: 17049677
2. Rodrigo C, Bewick T, Sheppard C, Greenwood S, Macgregor V, Trotter C, et al. Pneumococcal serotypes in adult non-invasive and invasive pneumonia in relation to child contact and child vaccination status. Thorax. 2014;69(2):168-73. DOI: 10.1136/thoraxjnl-2013-203987 PMID: 24048505
3. Myint TT, Madhava H, Balmer P, Christopoulou D, Attal S, Menegas D, et al. The impact of 7-valent pneumococcal conjugate vaccine on invasive pneumococcal disease: a literature review. Adv Ther. 2013;30(2):127-51. DOI: 10.1007/s12325-013-0007-6 PMID: 23397339
4. Isaacman DJ, Strutton DR, Kalpas EA, Horowicz-Mehler N, Stern LS, Casciano R, et al. The impact of indirect (herd) protection on the cost-effectiveness of pneumococcal conjugate vaccine. Clin Ther. 2008;30(2):341-57. DOI: 10.1016/j.clinthera.2008.02.003 PMID: 18343273
5. Song JH, Dagan R, Klugman KP, Fritzell B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine. 2012;30(17):2728-37. DOI: 10.1016/j.vaccine.2012.01.091 PMID: 22330126
6. Dagan R, Klugman KP. Impact of conjugate pneumococcal vaccines on antibiotic resistance. Lancet Infect Dis. 2008;8(8):785-95. DOI: 10.1016/S1473-3099(08)70281-1 PMID: 19022193
7. Miller E, Andrews NJ, Waight PA, Slack MP, George RC. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect Dis. 2011;11(10):760-8. DOI: 10.1016/S1473-3099(11)70090-1 PMID: 21621466
8. Henderson KL, Muller-Pebody B, Blackburn RM, Johnson AP. Reduction in erythromycin resistance in invasive pneumococci from young children in England and Wales. J Antimicrob Chemother. 2010;65(2):399-70. DOI: 10.1093/jac/dkp427 PMID: 20077730
9. Clarke SC, Scott KJ, McChlery SM. Erythromycin resistance in invasive serotype 14 pneumococci is highly related to clonal type. J Med Microbiol. 2004;53(PT 11):1101-3. DOI: 10.1099/jmm.0.45737-0 PMID: 15499387
10. Reinert R, Jacobs MR, Kaplan SL. Pneumococcal disease caused by serotype 15A: review of the literature and implications for future vaccine development. Vaccine. 2010;28(26):4249-59. DOI: 10.1016/j.vaccine.2010.04.020 PMID: 20416266
11. Liñares J, Arduany C, Pallares R, Fenoll A. Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period. Clin Microbiol Infect. 2010;16(5):402-10. DOI: 10.1111/j.1469-0691.2010.03182.x PMID: 20132251
12. van Hoek AJ, Sheppard CL, Andrews NJ, Waight PA, Slack MP, Harrison TG, et al. Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England. Vaccine. 2014;32(34):4349-55. DOI: 10.1016/j.vaccine.2014.03.017 PMID: 24657717
13. Waigt PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MP, Miller E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis. 2015;15(5):535-43. DOI: 10.1016/S1473-3099(15)00447-7 PMID: 25801458

14. Ozawa D, Yano H, Endo S, Hidaka H, Kakuta R, Okitsu N, et al. Impact of the seven-valent pneumococcal conjugate vaccine on acute otitis media in Japanese children: Emergence of Serotype 15A Multidrug-resistant Streptococcus pneumoniae in Middle Ear Fluid Isolates. Pediatr Infect Dis J. 2015;34(9):e217-21. DOI: 10.1097/INF.0000000000000776 PMID: 26083590

15. Suga S, Chang B, Asada K, Akeda H, Nishi J, Okada K, et al. Nationwide population-based surveillance of invasive pneumococcal disease in Japanese children: Effects of the seven-valent pneumococcal conjugate vaccine. Vaccine. 2015;33(35):4054-60. DOI: 10.1016/j.vaccine.2015.07.069 PMID: 26235372

16. Ho PL, Chiu SS, Law PY, Chan EL, Lai EL, Chow KH. Increase in the nasopharyngeal carriage of non-vaccine serogroup 15 Streptococcus pneumoniae after introduction of children pneumococcal conjugate vaccine in Hong Kong. Diagn Microbiol Infect Dis. 2008;62(1):22-8. DOI: 10.1016/j.diagmicrobio.2014.11.006 PMID: 25481278

17. Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern GV. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. Antimicrob Agents Chemother. 2014;58(8):4844-89. DOI: 10.1128/AAC.03344-14 PMID: 25136018

18. Golden AR, Adam HJ, Gilmour MW, Baxter MR, Martin I, Nichol KA, et al. Assessment of multidrug resistance, clonality and virulence in non-PCV-13 Streptococcus pneumoniae serotypes in Canada, 2011-13. J Antimicrob Chemother. 2015;70(7):1960-8. DOI: 10.1093/jac/dkt212 PMID: 25760905

19. Steens A, Bergsaker MA, Aaberge IS, Rønning K, Hope R, et al. BSAC Working Parties on Resistance Surveillance. Survey, laboratory and statistical analysis of antimicrobial resistance in Streptococcus pneumoniae from: http://www.eucast.org/ [Accessed 15 July 2016]. Available from: http://www.eurosurveillance.org

20. Waight PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MP, Miller E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis. 2015;15(5):535-43. DOI: 10.1016/S1473-3099(15)00447-7 PMID: 25801458

21. Arguedas A, Soley C, Abdelnour A. Preventer experience. Vaccine. 2011;29(Suppl 3):C26-34. DOI: 10.1016/j.vaccine.2011.06.104 PMID: 21896350

22. Koshiy M, Murray J, Bottle A, Sharland M, Saxena S. Impact of the seven-valent pneumococcal conjugate vaccination (PCV7) programme on childhood hospital admissions for bacterial pneumonia and empyema in England: national time-trends study, 1997-2008. Thorax. 2010;65(9):770-4. DOI: 10.1136/thx.2010.17802 PMID: 20805169

23. Ansaldi F, Sticchi L, Durando P, Carloni R, Oreste P, Vercelli M, et al. Decline in pneumonia and acute otitis media after the introduction of childhood pneumococcal vaccination in Liguria, Italy. J Int Med Res. 2008;36(6):255-60. DOI: 10.1177/030006050803600602 PMID: 19094434

24. Fortanier AC, Venekamp RP, Boonacker CW, Hak E, Schilder AG, Sanders EA, et al. Pneumococcal conjugate vaccines for preventing otitis media. Cochrane Database Syst Rev. 2014(4):CD001480. PMID: 24696098

25. van der Linden M, Perniciaro S, Imöhl M. Increase of serotypes 15A and 23B in IPD in Germany in the PCV13 vaccination era. BMC Infect Dis. 2015;15(3):207. DOI: 10.1186/s12879-015-0941-9 PMID: 25940580

26. Fraço N, Hiller NI, Powell E, Earl J, Ahmed A, Sá-Leão R, et al. Virulence potential and genome-wide characterization of drug resistant Streptococcus pneumoniae clones selected in vivo after the 7-valent pneumococcal conjugate vaccine era. J Antimicrob Chemother. 2015;70(7):1960-8. DOI: 10.1093/jac/dkt212 PMID: 25760905

27. Ardanuy C, de la Campa AG, García E, Fenoll A, Calatayud L, Rodríguez-Avial I, et al. Multidrug-resistant pneumococci in Spain. Emerg Infect Dis. 2014;20(11):1848-56. DOI: 10.3201/eid2014.131215 PMID: 25340616

28. Sanz JC, Cercenado E, Marín M, Ramos B, Ardanuy C, Frazão N, Hiller NL, Powell E, Earl J, Ahmed A, Sá-Leão R, et al. Multidrug-resistant pneumococci in Spain. Emerg Infect Dis. 2014;20(11):1848-56. DOI: 10.3201/eid2014.131215 PMID: 25340616

29. Rodriguéz-Avial I, et al. Multidrug-resistant pneumococci (serotype 8) causing invasive disease in HIV+ patients. Clin Microbiol Infect. 2011;17(7):1094-8. DOI: 10.1111/j.1469-0691.2011.03495.x PMID: 21463396

License and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) License. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is the copyright of the authors, 2016.