Flavourful SMEFT likelihood for Higgs and electroweak data

Adam Falkowski1 and David Straub2

1Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
2Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

We perform an updated fit to LHC Higgs data and LEP electroweak precision tests in the framework of the Standard Model Effective Field Theory (SMEFT). We assume a generic structure of the SMEFT operators without imposing any flavour symmetries. The implementation is released as part of the public global SMEFT likelihood. This allows one to fit parameters of a broad class of new physics models to combined Higgs, electroweak, quark flavour, and lepton flavour observables.

I. INTRODUCTION

After the discovery of the 125 GeV boson [1, 2], the Higgs searches at the LHC have turned into precision tests of the Standard Model (SM). The SM predicts the coupling strength between each fundamental particle and the Higgs in terms of that particle’s mass, without any adjustable parameters. Beyond the SM (BSM), however, these couplings can be modified, therefore measurements of Higgs production cross sections and decay rates may reveal the fundamental theory underlying the SM. It is beneficial to describe Higgs coupling modifications in the model-independent language of effective field theory (EFT) [3–5]. Assuming new physics decouples, that is to say the masses of non-SM particles are parametrically larger than the weak scale, the relevant effective theory at energies $E \sim m_h \approx 125$ GeV is the so-called SMEFT. That theory has the same particle content and local symmetry as the SM, but it admits the interaction terms (operators) in the Lagrangian with canonical dimensions larger than four. The Higgs data can be interpreted as constraints on Wilson coefficients of the higher-dimensional operators.

Advantages of the SMEFT are not restricted to LHC Higgs physics. The theory offers a universal framework to describe a vast spectrum of precision measurements performed in weak scale colliders such as the LHC, Tevatron, or LEP. In particular, it is a perfect language to describe the so-called electroweak precision tests, that is accurate measurements of Z and W boson properties. A straightforward observation is that SMEFT operators may simultaneously affect both Higgs and electroweak observables. Therefore it makes sense to combine the two sets in order to increase the constraining power of data [6–16]. This work represents another step forward in this direction.

In this paper we construct a likelihood for Wilson coefficients of dimension-6 SMEFT operators using a large set of Higgs and electroweak observables. Compared to the previous analyses of this sort, the main novelties are:

1. The pattern of dimension-6 operators is left generic, and we do not impose simplifying assumptions concerning their flavour structure. This makes the analysis considerably more difficult, but the advantage is that our results are more general. The likelihood we provide can thus be used to constrain a variety of BSM models [17] beyond the $U(3)^5$ or minimal flavour violation paradigm. In particular, it can be applied to models addressing the so-called $b \rightarrow s\ell\ell$ anomalies [18, 19], which must always involve a highly non-trivial flavour structure.

2. All code employed for our analysis is open source. This allows the community to scrutinize, reproduce, and modify our analysis, e.g. when new data becomes available. We follow the standard Wilson coefficient exchange format (WCxf) [20], such that our results can be easily imported by other analysis codes.

3. We include the most recent Higgs signal strength combinations from ATLAS and CMS based on up to 80 fb$^{-1}$ of the Run-2 data.

Simultaneously to interpretations of high-energy collider data, much progress has been made on the front of low-energy observables measured at energies well below the weak scale. In Refs. [21, 22] a treasure trove of such data was recast as constraints on the flavour-generic SMEFT. Moreover, a public code smelli* providing a likelihood function in SMEFT Wilson coefficient space was released [23], based on the flavio observable calculator [24] and the wilson tool for running and matching Wilson coefficients [25]. Besides electroweak precision tests, the code includes information

*Electronic address: adam.falkowski@th.u-psud.fr
†Electronic address: straub@protonmail.com
*For details, see https://smelli.github.io
from quark flavour physics, lepton flavour physics, low-energy parity violation, and other low-energy precision tests. It is desirable to include the Higgs observables into the same framework, as many dimension-6 operators generated by typical BSM models are currently probed only via LHC Higgs searches. As a part of this work, the combined Higgs and electroweak likelihood was incorporated into the global SMEFT likelihood package sme11i, which allows users to perform combined fits of BSM models to Higgs, electroweak, flavour, and other low-energy data.

This paper is organized as follows. In Section II we briefly review the SMEFT framework in order to fix our conventions and notation. In Section III we summarize the data used in this analysis and describe our methodology. In Section IV we give the best fit and confidence intervals for the Wilson coefficients affecting the Higgs and/or electroweak observables at the level. Section V contains two simple example applications of our flavourful likelihood: one designed to connect and compare to previous work, and the other illustrating the relevance of allowing for a general flavour structure of dimension-6 operators.

II. SMEFT FRAMEWORK

We briefly review the SMEFT framework to fix our notation. We consider the extension of the SM by all independent dimension-6 operators \(Q_i \) invariant under the SM gauge symmetries \[\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_\text{SM} + \sum_i C_i Q_i. \] (1)

We work in the Warsaw basis of operators \[[27], \] selecting the weak basis for fermions where the down-type quark and charged lepton mass matrices are diagonal (coinciding with the \textit{Warsaw} basis as defined in the WCxf \[[20] \]). In our conventions the Wilson coefficients \(C_i \) have dimensions \(\text{mass}^{-2} \). Operators with dimensions higher than six, as well as dimension-5 operators (which only generate tiny neutrino masses and have no observable effect on Higgs or electroweak phenomenology) are ignored in this analysis. We also ignore CP violating operators, which affect our observables only at the quadratic level in the corresponding Wilson coefficients. The electroweak parameters \(g_L, g_Y, \) \(v \) are defined in the \(\alpha-m_Z-G_F \) scheme. We take into account only tree-level effects of dimension-6 operators, except in the observables where the SM contribution itself appears first at one loop. In this approximation, the operators affecting the Higgs and electroweak precision data are shown in Table I. The only four-fermion operator entering is the operator \([Q_{ll}]_{1221} \) that interferes with the SM amplitude in muon decay and thus modifies the relation between the muon lifetime (defining the Fermi constant \(G_F \)) and the electroweak parameters.\(^\dagger\)

III. EXPERIMENTAL DATA AND FIT METHODOLOGY

We summarize the experimental data used in our analysis.

\(^\dagger\)The operators \([Q_{ll}]_{ijij} \) and \([Q_{ll}]_{jiij} \) are indistinguishable. In our conventions, only the ones with \(i \leq j \) are included in the Lagrangian. Another convention encountered in the literature is that both are included and multiplied by the same Wilson coefficient, in which case our results for \([C_{ll}]_{1221} \) have to be multiplied by 1/2.
• The Z and W pole observables. These are mostly unchanged compared to the analysis of Ref. [28], see Table 1 therein for the original references. The only new pieces of experimental information are i) the PDG combination for the W mass [29], which includes the recent ATLAS measurement [30]; ii) The measurements of $\Gamma(W\to\gamma\nu)/\Gamma(W\to e\nu)$ in D0 [31] and of $\Gamma(W\to\mu\nu)/\Gamma(W\to e\nu)$ in LHCb [32]. On the other hand, we no longer use the V_{tb} determination from Ref. [33] to constrain the Wtb vertex, as other dimension-6 operators beyond those in Table 1 may affect that measurement.

• The total and differential cross sections for WW pair production measured in LEP-2 (Tables 5.3 and 5.6 of Ref. [34]). These are unchanged compared to the analysis of Ref. [35].

• Combination of Run-1 ATLAS and CMS measurements of the Higgs signal strength measurements in 21 different channels (Table 8 of Ref. [36] with the correlation matrix in Fig. 27, plus the $\mu\mu$ signal strength). In addition, we use ATLAS [37] and CMS [38] Run-1 measurements of the signal strength in the $Z\gamma$ channel.

• Combined ATLAS measurement of the signal strength based on the 80 fb$^{-1}$ of run-2 data (Table 6 of Ref. [39] with the correlation matrix in Fig. 6). We also include signal strength measurements in the $\mu\mu$ [40] and $Z\gamma$ [41] channels.

• Combined CMS measurement of signal strengths based on the 35.9 fb$^{-1}$ of run-2 data (Table 3 of Ref. [42] with the correlation matrix in the auxiliary material). We also include signal strength measurements in the $Z\gamma$ [43] and $c\bar{c}$ channels [44].

In order to take into account the correlations, we have to treat the experimental likelihoods as (multivariate) Gaussians. To this end, we symmetrize asymmetric uncertainties.

SMEFT corrections to electroweak observables are calculated analytically at tree level. For most of the Higgs observables they are determined numerically using the SMTsim model implementation [45] in Madgraph [16]. The exceptions are the $gg\to h$ and $h\to\gamma\gamma$ processes where we use analytic formulas, taking into account 1-loop effects due to modified Yukawa and $hV_{\mu}V_{\mu}$ couplings. Logarithmically enhanced one-loop corrections proportional to the dimension-6 Wilson coefficient are included in our code via the renormalization group running effects [47]. Finite loop corrections (see e.g. [48–51]) other than that described above are ignored in our analysis. Our calculation of the Higgs corrections (µ) to fermions [52, 53]. We take into account the interference effects in $h\to V^{(*)}V^{(*)}\to 4f$ decays [54, 55].

Having expressed all observables as linear functions of SMEFT Wilson coefficients, $O_{th}(C_i)$, we construct the likelihood function $L(C_i) = e^{-\chi^2(C_i)/2}$, with

$$\chi^2(C_i) = x(C_i)^T S^{-1} x(C_i)$$

where S is the experimental covariance matrix and

$$x(C_i) = O_{th}(C_i) - O_{exp}$$

is the difference between the observables predicted in the SMEFT and measured experimentally. Given the precision of SM calculations of the observables in question, we can neglect all theory uncertainties and thus obtain a likelihood function that only depends on Wilson coefficients, and not on nuisance parameters.

IV. CONFIDENCE INTERVALS FOR WILSON COEFFICIENTS

In this section we present marginalized 1 σ confidence intervals for the Wilson coefficients entering into our combined likelihood. This exercise illustrates, in a model-independent fashion, the constraining power of the current Higgs and electroweak data.

The electroweak and Higgs constraints dramatically differ in accuracy: for the former the typical precision is $O(0.1\%)$, while for the latter it is $O(10\%)$. In the Warsaw basis the two sets of constraints probe an overlapping set of Wilson coefficients, which leads to large correlations. For the sake of illustration, it is more transparent work with certain linear combinations of Wilson coefficients, such that the strongly constrained combinations are isolated from the weakly constrained ones [4] [57]. With this in mind, we define the following linear combinations of the Warsaw coefficients:

δg^i differ by $1/\nu^2$ from the ones defined in Refs. [22, 28].
vertex corrections are larger \([28]\). While LEP-1 measures the total hadronic width with a per mille precision, it does

strength significantly. With the above assumptions, 31 independent combinations of Wilson coefficients

t much better constrained by dijet observables \([58]\), and after taking that into account it cannot affect the Wilson coefficient \(c\) in the fit would lead to flat directions. We also ignore the contributions to Higgs observables proportional to the

is negligible unless the shift of the Yukawa strongly exceeds the SM Yukawa. Leaving these parameters

contributions to the total Higgs width (thus affecting all observed branching fractions uniformly), and their effect

exceptions from this rule, however. First, the uncertainty for the combinations \(\delta g\)’s are independently constrained with a good accuracy, except for one weakly constrained
direction in the space of the light quark vertex corrections \([28]\).

We now present the best fit for the Wilson coefficients after a couple of simplifying but physically reasonable

assumptions. First, we ignore the dependence of the likelihood on the Wilson coefficients affecting only the Yukawa

couplings of the light fermions: \([c_{\bar{u}q}, c_{d\phi}, c_{u\phi}]\), \(i = 1, 2\), and \([c_{\phi WB}]\). Currently, these are probed mostly via their contributions to the total Higgs width (thus affecting all observed branching fractions uniformly), and their effect is negligible unless the shift of the Yukawa couplings largely exceeds the SM Yukawa. Leaving these parameters in the fit would lead to flat directions. We also ignore the contributions to Higgs observables proportional to the Wilson coefficient \(c_G\), which enters into our likelihood via its contributions to the \(tt\bar{t}\) production. This parameter is much better constrained by dijet observables \([58]\), and after taking that into account it cannot affect the \(tt\bar{t}\) signal strength significantly. With the above assumptions, 31 independent combinations of Wilson coefficients are left as free parameters in the fit.

Our results are shown in Table \([II]\). As advertised, the combinations \(\delta g\) are more strongly constrained, at the level \(|\delta g| \lesssim 10^{-2} - 10^{-3}\), compared to the remaining ones that are probed only by the Higgs data. There are a few exceptions from this rule, however. First, the uncertainty for the combinations \(\delta g^{2g}\) corresponding to light quark vertex corrections are larger \([28]\). While LEP-1 measures the total hadronic width with a per mille precision, it does

basis Wilson coefficients:

\[\begin{align*}
\delta g^W_L &= c^{(3)}_{\phi WB} + f(1/2, 0) - f(-1/2, -1), \\
\delta g^Z_L &= -\frac{1}{2} c^{(3)}_{\phi WB} - \frac{1}{2} c^{(1)}_{\phi WB} + f(-1/2, -1), \\
\delta g^Z_R &= -\frac{1}{2} c^{(1)}_{\phi WB} + f(0, -1), \\
\delta g^Z_u &= -\frac{1}{2} c^{(3)}_{\phi q} - \frac{1}{2} c^{(1)}_{\phi q} + f(1/2, 2/3), \\
\delta g^Z_d &= -\frac{1}{2} c^{(3)}_{\phi q} - \frac{1}{2} c^{(1)}_{\phi q} + f(-1/2, -1/3), \\
\delta g^Z_u &= -\frac{1}{2} c_{\phi W} + f(0, 2/3), \\
\delta g^Z_d &= -\frac{1}{2} c_{\phi W} + f(0, -1/3),
\end{align*}\]

where

\[f(T^3, Q) = \left\{-Q \frac{g_L g_Y}{g_L^2 - g_Y^2} c_{\phi WB} - 1 \left(\frac{1}{4} c_{HD} + \frac{1}{2} \Delta_{G'} \right) \left(T^3 + Q \frac{g_Y^4}{g_L^4 - g_Y^4}\right) \right\} 1,
\]

and \(\Delta_{G'} = [c^{(3)}_{H11}] + [c^{(3)}_{H12}] - \frac{1}{4} [c_{H1}]_{122}\). In fact, \(v^2 \delta g^V f\) are the vertex corrections parametrizing deviations from the SM prediction of the \(V = Z, W\) boson couplings to fermion \(f\). Since they are probed by the LEP electroweak precision tests, almost all \(\delta g\)’s are independently constrained with a good accuracy, except for one weakly constrained
direction in the space of the light quark vertex corrections \([28]\).

We also define another set of linear combinations of the Warsaw basis Wilson coefficients

\[\begin{align*}
\delta c_z &= c_{\phi WB} - \frac{1}{4} c_{\phi D} - \frac{3}{2} \Delta_{G'}, \\
c_z &= \frac{1}{2g_L^2} \left(\frac{1}{4} c_{HD} + 2 \Delta_{G'} \right), \\
c_{gg} &= \frac{4}{g_Y^2} c_{\phi G}, \\
c_{\gamma \gamma} &= \frac{4}{g_Y^2} c_{\phi G} + \frac{1}{g_Y^2} c_{\phi B} - \frac{1}{g_L g_Y} c_{\phi WB}, \\
c_{zz} &= \frac{4}{g_L^2} c_{\phi W} + \frac{g_Y^2}{g_L^2} c_{\phi B} + g_L g_Y c_{\phi WB} \left(\frac{g_Y^4}{g_L^4 + g_Y^4}\right)^2, \\
c_{z\gamma} &= \frac{4}{g_Y^2} c_{\phi W} - c_{\phi B} - \frac{g_L^2}{2g_L g_Y} c_{\phi WB} \left(\frac{g_Y^4}{g_L^4 + g_Y^4}\right).
\end{align*}\]
not resolve all light quark couplings to Z independently, leading to an approximate flat direction that is only lifted by less precise measurements. Second, some of the Wilson coefficients affecting Higgs observables only are strongly constrained when they compete with the SM loop-induced processes (C_{gg}, $C_{\gamma\gamma}$), or with small SM Yukawa couplings ($[C_{u\gamma}]_{22}$, $[C_{e\gamma}]_{33}$, $[C_{d\gamma}]_{33}$).

The best fit point has $\Delta \chi^2 = \chi_{\text{SM}}^2 - \chi_{\text{min}}^2 \approx 36.7$. This translates to a p-value of approximately 20% for the SM hypothesis. Thus there is no significant hint of physics beyond the SM in the fit, even though some of the individual couplings in Table II display pulls (defined simply as the number of Gaussian standard deviations away from 0) of order 3σ.

The correlation matrix is shown in Fig. 1. The change of variables in Eq. (4) and Eq. (6) disentangles most of the large correlations present if the original Warsaw basis variables. Some $O(1)$ correlations remain, however. Notably, there are large correlations between the combinations c_{zz} and $c_{z\Box}$. This is due to the fact that the current Higgs data poorly disentangle different possible Lorentz structures of the Higgs couplings to electroweak gauge bosons. This situation can be somewhat improved by including in the analysis, in addition to the signal strength, transverse-momentum distributions in the gluon fusion or invariant mass distributions in the associated Higgs production [53, 59–61]. We note that for strongly correlated Wilson coefficients the best fit values and the magnitude of the errors may be sensitive to including in the observables quadratic ($O(\Lambda^{-4})$) effects in Wilson coefficients. Indeed, for c_{zz} and $c_{z\Box}$ we find that the error change by $\sim 50\%$ upon including the quadratic corrections, with smaller or negligible effects for other Wilson coefficients.

In closing we remark that it is possible to further relax the assumptions of this global fit without losing a stable

Coeff. central unc. pull $[\sigma]$
C_W 0.19 ± 1.9 0.1
$c_{\gamma\gamma}$ −0.056 ± 0.11 0.5
c_{gg} −0.017 ± 0.014 1.2
$c_{z\Box}$ 4.9 ± 6.2 0.8
$c_{z\gamma}$ −0.6 ± 0.63 1.0
c_{zz} −12.0 ± 16.0 0.8
δc_{z} 0.49 ± 1.5 0.3
δg_{L}^{W1} −0.09 ± 0.053 1.7
δg_{L}^{W2} −0.24 ± 0.083 2.9
δg_{L}^{W3} 0.26 ± 0.1 2.6
δg_{L}^{Z1} −0.0074 ± 0.0052 1.4
δg_{L}^{Z2} −0.0014 ± 0.018 0.1
δg_{L}^{Z3} −0.0054 ± 0.01 0.5
δg_{R}^{Z1} −0.17 ± 0.66 0.3
δg_{R}^{Z2} 0.43 ± 0.57 0.8
δg_{R}^{Z3} 0.052 ± 0.027 1.9
δg_{R}^{Z4} 1.5 ± 1.0 1.4
δg_{R}^{Z5} 0.27 ± 0.73 0.4
δg_{R}^{Z6} 0.33 ± 0.11 3.1
δg_{R}^{Z7} −0.0086 ± 0.0056 1.5
δg_{R}^{Z8} −0.0018 ± 0.021 0.1
δg_{R}^{Z9} 0.0084 ± 0.01 0.8
δg_{R}^{Z10} 0.14 ± 0.5 0.3
δg_{R}^{Z11} −0.027 ± 0.072 0.4
δg_{R}^{Z12} 1.3 ± 0.85 1.5
δg_{R}^{Z13} −0.056 ± 0.084 0.7
$[C_{u\nu}]_{33}$ −0.18 ± 2.7 0.1
$[C_{d\nu}]_{33}$ 0.016 ± 0.049 0.3
$[C_{e\nu}]_{22}$ 0.004 ± 0.0054 0.8
$[C_{e\nu}]_{33}$ −0.0018 ± 0.019 0.1
$[C_{\nu}]_{12}$ −0.68 ± 0.2 3.3

TABLE II: Best-fit values and pulls of Wilson coefficient combinations in units of TeV$^{-2}$.

minimum. Namely, it is possible to leave also the Wilson coefficient \([c_{u\phi}]_{22} \) as a free parameter in the fit. This is thanks to the direct measurement of the \(h \to c\bar{c} \) signal strength at the LHC, which constrains the possible magnitude of charm Yukawa coupling modifications due to \([c_{u\phi}]_{22} \). In the relaxed 32-parameter fit the results are mostly unchanged with respect to those displayed in Table II, except for a threefold increase of the error on the parameter \(C_z \). That increase happens because introducing \([c_{u\phi}]_{22} \) opens an approximately flat direction corresponding to simultaneously increasing both the total Higgs width and the \(hV_{\mu}V_{\mu} \) couplings. The flat direction is lifted precisely thanks to the direct \(h \to c\bar{c} \) measurement \[44\].

V. APPLICATIONS

A. Oblique parameters

Our first example application is the fit to oblique parameters starting from our general likelihood. To this end we assume that, at the energy scale \(\mu \sim m_Z \), only two Wilson coefficients \(c_{\phi WB} \) and \(c_{\phi D} \) are non-negligible. We set all the remaining parameters to zero, and minimize the resulting two-dimensional likelihood. This procedure is directly related to the classic assumption that new physics enters via the so-called oblique \(S \) and \(T \) parameters \[62, 63\], with the identification

\[
\begin{align*}
c_{\phi WB} &= \frac{g_L g_Y}{16\pi v^2} S, \\
c_{\phi D} &= -\frac{g_L^2 g_Y^2}{2\pi (g_L^2 + g_Y^2) v^2} T.
\end{align*}
\]
Obviously, this simple example is not using the full flavourful power of our approach. Nevertheless it is useful to present here in order to connect and compare to previous works. For the Wilson coefficients at the scale m_Z we find

$$c_{ϕB} = 0.0030 \pm 0.0028 \text{ TeV}^{-2}, \quad c_{ϕD} = -0.0184 \pm 0.0094 \text{ TeV}^{-2},$$

with the correlation coefficient $\rho = -0.74$. This translates to $S = 0.039 \pm 0.038, T = 0.071 \pm 0.036$. The best fit contours are shown in Fig. 2 for the combined likelihood, and for the electroweak and Higgs likelihoods separately. It can be seen that the LHC Higgs data contribute to constraining the S parameter, mostly via measurements of the $h \to γγ$ rate [13].

B. Custodial vector resonance model

Another example we consider here consists in an $SU(2)$ triplet $V^I_μ$ of massive vector resonances coupled to the SM Higgs, lepton l and quark q doublets as

$$\mathcal{L} \supset \frac{1}{2} V^I_μ \left(ig_H H^I \tau^I D_μ H - ig_H D_μ H^I \tau^I H + \sum_i g_{l,i} \bar{l}_i τ^I γ^μ l_i + \sum_i g_{q,i} \bar{q}_i τ^I γ^μ q_i \right),$$

where i is the generation index, and we allow the couplings to be flavour-non-universal. This kind of resonances and interactions arises e.g. in composite Higgs or warped extra-dimensional scenarios. The parameter space of our simplified model is characterized by 7 couplings $g_κ$ and the resonance mass M. Assuming $U(3)_q \times U(3)_l$ flavour symmetry would reduce the number of independent couplings to three: g_H, g_l and g_q. Integrating out the massive resonance leads to the following Wilson coefficients of the operators in Table II

$$[c_{ϕl}^{(3)}]_{ii} = -\frac{g_H g_l,i}{4M^2}, \quad [c_{ϕq}^{(3)}]_{ii} = -\frac{g_H g_q,i}{4M^2}, \quad c_{ϕ} = -3 \frac{g_H^2}{8M^2}, \quad [c_{ϕ}^{(3)}]_{ii} = -\frac{g_H^2 y_{f,i}}{4M^2},$$

where $y_{f,i} = \sqrt{2} m_{f,i}$ is the Yukawa coupling of the fermion $f_i, f = u, d, l, i = 1 \ldots 3$. As usual, only the ratios coupling/mass are available to a low-energy observer. Thus the SMEFT parameter space describing our simplified model is 7-dimensional in the generic case, and 3-dimensional in the $U(3)_q \times U(3)_l$ limit. We ignore the effects of the operator O_H, which only affects double Higgs production and is very weakly constrained at present. Four-fermion
TABLE III: Constraints on 1-dimensional subspaces of the parameter space of the model defined by Eq. (9). We show separately the limits (in units of 1/TeV) obtained using the Higgs, the electroweak, and the combined data. The 1σ limits in each column are obtained by leaving a single resonance-fermion coupling free, and setting the remaining fermion couplings to zero. In the 2nd and 5th column we assume generation-independent couplings to leptons and quarks, respectively. We assume the resonance couples to a single fermionic generation. In all cases the resonance-Higgs couplings g_H is assumed ten times the corresponding fermionic coupling.

	g_l/M	g_{l1}/M	g_{l2}/M	g_{l3}/M	g_{q1}/M	g_{q2}/M	g_{q3}/M
Higgs	0 ± 0.07	0 ± 0.06	0 ± 0.06	0 ± 0.06	0 ± 0.06	0 ± 0.06	0 ± 0.06
Electroweak	0.04 ± 0.06	-0.03 ± 0.06	-0.06 ± 0.06	0 ± 0.07	0 ± 0.04	0 ± 0.06	0 ± 0.06
Combined	-0.04 ± 0.06	-0.02 ± 0.05	-0.06 ± 0.06	0 ± 0.05	0 ± 0.03	0 ± 0.04	0 ± 0.05

On the other hand, for generic flavour-dependent couplings the limits can be weaker:

$$g_H = 0.00 \pm 0.64 \text{ TeV}^{-1}, \quad \frac{g_l}{g_H} = -0.012 \pm 0.032, \quad \frac{g_{l1}}{g_H} = 0.041 \pm 0.024, \quad \frac{g_{l2}}{g_H} = -0.004 \pm 0.066,$$

$$\frac{g_{q1}}{g_H} = -0.06 \pm 0.25, \quad \frac{g_{q2}}{g_H} = 0.07 \pm 0.26, \quad \frac{g_{q3}}{g_H} = -0.046 \pm 0.092.$$

We see for the resonance coupling to the Higgs field the limits are fairly independent on how the former couples to fermions. This is because the limit is set mostly by the Higgs data. However, the limits on resonance coupling to the SM fermions are sensitive to whether or not $U(3)_q \times U(3)_l$ is assumed. The difference is most dramatic for the couplings to the first two generation of quarks, which are allowed to be an order of magnitude larger in the generic case than in the $U(3)_q \times U(3)_l$ case.

VI. SUMMARY

In this paper we presented an updated fit of the dimension-6 SMEFT operators to combined Higgs and electroweak precision data. We include the most recent ATLAS and CMS combinations of run-2 Higgs data, and also complemented the LEO electroweak data with a couple of recent measurements in hadronic machines. The analysis is based on an open source Python code, which allows the readers to easily to scrutinize, reproduce, or update our analysis. The code and conventions follow the WCxf format, so that our results can easily be imported by other analysis programs.

At the physics level, the main improvement compared to earlier works is that we allow for a completely general flavour structure of dimension-6 operators. Thanks to that, the likelihood we provide can be used to constrain a broad class of BSM models beyond the $U(3)^5$ or minimal flavour violation paradigm.

Acknowledgments

AF is partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreements No 690575 and No 674896. DS thanks Michael Spannowsky and Michael
Trott for useful discussions. This research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG Excellence Cluster Origins (www.origins-cluster.de).

[1] ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1–29 [1207.7214].
[2] CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30–61 [1207.7235].
[3] D. Carini, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [1202.3144].
[4] A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [1202.3415].
[5] J. R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [1202.3697].
[6] T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D87 (2013) 015022 [1211.4580].
[7] A. Pomarol and F. Riva, Towards the Ultimate SM Fit to Close in on Higgs Physics, JHEP 01 (2014) 151 [1308.2803].
[8] B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [1304.3369].
[9] T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia, Determining Triple Gauge Boson Couplings from Higgs Data, Phys. Rev. Lett. 111 (2013) 011801 [1304.1151].
[10] J. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157 [1410.7703].
[11] A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalons triple gauge couplings in effective field theory approach, Phys. Rev. Lett. 116 (2016) 011801 [1508.00581].
[12] A. Butter, O. J. P. Eboli, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [1604.03105].
[13] L. Berthier, M. Bjorn and M. Trott, Incorporating doubly resonant W^\pm data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [1606.06993].
[14] J. Ellis, C. W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [1803.03252].
[15] A. Biekrtter, T. Corbett and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, SciPost Phys. 6 (2019) 064 [1812.07587].
[16] J. De Blas et al., HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models, 1910.14012.
[17] J. de Blas, J. C. Criado, M. Perez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [1711.10391].
[18] LHCh collaboration, R. Aaij et al., Search for lepton-universality violation in $B^+ \to K^+ \ell^+ \ell^-$ decays, Phys. Rev. Lett. 122 (2019) 191801 [1903.09252].
[19] LHCh collaboration, R. Aaij et al., Test of lepton universality with $B^0 \to K^0 \ell^+ \ell^-$ decays, JHEP 08 (2017) 055 [1705.05802].
[20] J. Aebischer et al., WCxt: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun. 232 (2018) 71–83 [1712.05298].
[21] M. Gonzalez-Alonso and J. Martin Camach, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, JHEP 12 (2016) 052 [1605.07114].
[22] A. Falkowski, M. Gonzalez-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [1706.03783].
[23] J. Aebischer, J. Kumar, P. Stangl and D. M. Straub, A Global Likelihood for Precision Constraints and Flavour Anomalies, 1810.07698.
[24] D. M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, 1810.08132.
[25] J. Aebischer, J. Kumar and D. M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C78 (2018) 1026 [1804.05033].
[26] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B268 (1986) 621–653.
[27] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [1008.4884].
[28] A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [1503.07872].
[29] PARTICLE DATA GROUP collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D98 (2018) 030001.
[30] ATLAS collaboration, M. Aaboud et al., Measurement of the W-boson mass in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Eur. Phys. J. C78 (2018) 110 [1701.07240].
