Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction

Cao, Yuehan; Guo, Lan; Dan, Meng; Doronkin, Dmitry E.; Han, Chunqiu; Rao, Zhiqiang; Liu, Yang; Meng, Jie; Huang, Zeai; Zheng, Kaibo

Total number of authors: 13

Published in: Nature Communications

Link to article, DOI: 10.1038/s41467-021-21925-7

Publication date: 2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Cao, Y., Guo, L., Dan, M., Doronkin, D. E., Han, C., Rao, Z., Liu, Y., Meng, J., Huang, Z., Zheng, K., Chen, P., Dong, F., & Zhou, Y. (2021). Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nature Communications, 12(1), [1675]. https://doi.org/10.1038/s41467-021-21925-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Modulating electron density of vacancy site by single Au atom for effective CO$_2$ photoreduction

Yuehan Cao 1,2,7, Lan Guo2,7, Meng Dan2,3, Dmitry E. Doronkin4, Chunqiu Han2, Zhiqiang Rao2, Yang Liu2,3, Jie Meng3,5, Zeai Huang2, Kaibo Zheng3,5, Peng Chen2,6, Fan Dong 6 & Ying Zhou 1,2

The surface electron density significantly affects the photocatalytic efficiency, especially the photocatalytic CO$_2$ reduction reaction, which involves multi-electron participation in the conversion process. Herein, we propose a conceptually different mechanism for surface electron density modulation based on the model of Au anchored CdS. We firstly manipulate the direction of electron transfer by regulating the vacancy types of CdS. When electrons accumulate on vacancies instead of single Au atoms, the adsorption types of CO$_2$ change from physical adsorption to chemical adsorption. More importantly, the surface electron density is manipulated by controlling the size of Au nanostructures. When Au nanoclusters downsize to single Au atoms, the strong hybridization of Au 5d and S 2p orbits accelerates the photo-electrons transfer onto the surface, resulting in more electrons available for CO$_2$ reduction. As a result, the product generation rate of Au$_x$/Cd$_{1-x}$S manifests a remarkable at least 113-fold enhancement compared with pristine Cd$_{1-x}$S.

1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China. 2 The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu, China. 3 The Division of Chemical Physics and Nano-Lund, Lund University, Lund, Sweden. 4 Institute for Chemical Technology and Polymer Chemistry and Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany. 5 Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark. 6 Research Center for Environmental Science and Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. 7 These authors contributed equally: Yuehan Cao, Lan Guo. $^{✉}$email: yzhou@swpu.edu.cn
As a representative greenhouse gas, carbon dioxide (CO₂) has brought out serious environmental problems needing to solve urgently. Photocatalytic CO₂ conversion technology has attracted extensive interest, since the conversion of CO₂ into high value-added chemicals could potentially be achieved under relatively mild conditions, which facilitates its resource utilization. Generally, photocatalytic CO₂ conversion is a typical photoreduction reaction, which needs electrons to participate in. Different from other photoreduction reactions, such as hydrogen evolution reaction (two electrons), photocatalytic CO₂ conversion is an inherently multi-electron reduction process. To this end, photocatalysts are required to offer abundant electrons for the CO₂ molecule to promote its transformation in the reaction process.

Previous studies suggest that metals, especially noble metals, have been commonly introduced to enhance the surface electron density of photocatalysts. It is generally agreed that the photocatalytic performance is greatly dependent on the metal center and its local coordination. Since the local electron density will be redistributed after introducing metal and the majority of electrons are accumulated around the metal and its surrounding atoms, many efforts have focused on changing the metal center and/or ligands to achieve high efficiency for CO₂ photoreduction. With in-depth research, it is further found that electron transfer is tremendously dependent on the size of metal nanostructures or the type of local coordination. For instance, Wu et al. reported that the electrons have transferred from single Pt atoms to sulfur-doped carbon support and the direction of electron transfer will be reversed after loading Pt nanoclusters. Meanwhile, Dai et al. found that the types of vacancies (boron or nitrogen vacancies) could affect the electron transfer direction between Pt nanoparticles and BN nanosheets. Hence, it is speculated that the electrons may be localized at other sites instead of metal nanostructures. Indeed, previous studies suggest that the interaction of adsorbed CO₂ molecule and metal site is relatively weak since the formed metal–C or metal–O bonds are weaker than the highly stable C–O bonds in CO₂ molecules. This will lead to the easy cleavage of metal–C or metal–O bonds during the reaction process, hindering the further transformation of CO₂. The above considerations suggest that controlling the size of metal nanostructures and/or the type of vacancies might realize the accumulation of electrons at other sites instead of metal nanostructures, which is likely to promote the adsorption and conversion of CO₂.

For this purpose, CdS is selected to be a model material due to the easy-fabricated vacancies and favorable solar light response. According to the pre-experiments in Supplementary Fig. 1, Au is chosen as the dopant metal. We have designed and fabricated a series of Au-anchored CdS photocatalysts and reported a conceptually different mechanism for modulating surface electron density to promote the conversion of CO₂. As displayed in Fig. 1, when the type of vacancies changes from S vacancies to Cd vacancies, the direction of electron transfer will be reversed after anchoring single Au atoms, resulting in the accumulation of electrons in neighboring Cd vacancies instead of single Au atoms. Benefiting from this, CO₂ could be chemically bonded on the Cd vacancies instead of physical adsorption on single Au atoms to promote its effective activation.

Results

Catalyst characterization. Based on the above considerations, the CdS with Cd vacancies (Cd₁₋ₓS) is first prepared by the hydrothermal method. X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) images (cf. Fig. 2a and Supplementary Fig. 2a, b) of the synthesized sample display that hexagonal CdS with the nanoparticle morphology is fabricated. Meanwhile, the electron paramagnetic resonance (EPR) signals with the g factor of 1.99 and 2.03 are observed for the synthesized sample (cf. Supplementary Fig. 3), which are ascribed to sulfur atoms surrounding Cd vacancies in hexagonal CdS. According to the element analysis, the ratios of Cd and S are quantitated as 0.76:1 (cf. Supplementary Table 1). The above results confirm the existence of Cd vacancies in the synthesized sample. After Au loading, XRD patterns of both 1%Au/Cd₁₋ₓS and 2%Au/Cd₁₋ₓS samples have rarely changed compared with Cd₁₋ₓS (cf. Fig. 2a). For 1%Au/Cd₁₋ₓS, there are no Au nanostructures observed in TEM and HRTEM images (cf. Supplementary Fig. 2c, d). Hence, to reveal the atomic-resolution structure of 1%Au/Cd₁₋ₓS sample, aberration-corrected high-angle annular dark-field scanning TEM is shown in Fig. 2b. The bright spots corresponding to heavy Au atoms (marked by yellow circles) are homogeneously dispersed, indicating that the Au atoms are atomically dispersed on the Cd₁₋ₓS. Meanwhile, the element mapping of the 1%Au/Cd₁₋ₓS sample shows the uniform distribution of Au, Cd, and S elements. With the increase of loading content, some nanoparticles are observed in TEM and HRTEM images of 2%Au/Cd₁₋ₓS sample (cf. Supplementary Fig. 2e, f). The interplanar distance in these nanoclusters is ca 1.15 Å corresponding to the (222) planes of metallic Au. This is indicated that part of single Au atoms is aggregated together to form the Au nanoclusters with the increase of loading content. According to the size distributions of Au nanoclusters and element mapping in Supplementary Fig. 4, the Au nanoclusters are homogeneously distributed on Cd₁₋ₓS and the sizes of Au nanoclusters are mainly in the range of 1–3 nm. The above results indicate that the single Au atoms (Au₅₅₄) and Au clusters (Au₅₅₅) are successfully introduced in the 1%Au/Cd₁₋ₓS and 2%Au/Cd₁₋ₓS samples, respectively. To distinguish Au nanostructures in different samples, 1%Au/Cd₁₋ₓS and 2%Au/Cd₁₋ₓS samples are referred as Au₅₅₄/Cd₁₋ₓS and Au₅₅₅/Cd₁₋ₓS for simplicity in the following study.

To investigate the coordination environments of Au in the Au₅₅₄/Cd₁₋ₓS sample, Au₁−₁-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra are presented in Fig. 2d, e. The white line peak of Au₅₅₄/Cd₁₋ₓS sample is different from that of the reference Au foil. The EXAFS spectrum shows that Au₅₅₄/Cd₁₋ₓS exhibits a peak near 1.7 Å without any significant Au–Au contribution between 2 and 4 Å, confirming the atomic dispersion of Au on Cd₁₋ₓS. The quantitative structural parameters of Au in the Au₅₅₄/Cd₁₋ₓS sample (cf. Supplementary Table 2) demonstrate that one Au atom is bonded with two or three S atoms to form the Au–S bonds. To further identify the loading position of single Au atoms, EPR spectra are carried out in Supplementary Fig. 5. The intensities of EPR signals assigned to Cd vacancies decreased after introducing single Au atoms, indicating that part of Cd vacancies are covered by single Au atoms. Furthermore, the models of Au-loaded Cd₁₋ₓS surface with different sites (surface S and Cd vacancy) are constructed by density functional theory (DFT) method (cf. Supplementary Table 3). The calculated formation energy of single Au atom anchored on Cd vacancy is -5.30 eV, which is much more negative than that on surface S atoms (Eₖ = -1.89 eV). It is hence suggested that single Au atoms are anchored on the Cd vacancies to form the Au–S bonds in the Au₅₅₄/Cd₁₋ₓS sample.

Similarly, the CdS with S vacancies (Cd₁₋ₓS) is synthesized by the hydrothermal method (cf. Supplementary Fig. 6). There are no EPR signals assigned to S vacancies observation in the synthesized sample (cf. Supplementary Fig. 7). To confirm the existence of S vacancies, the Cd K-edge XANES and EXAFS spectra of Cd₁₋ₓS and pristine CdS samples are shown in
Supplementary Fig. 8. The white line peak of the CdS$_{1-x}$ is similar to that of the CdS and both of them are different from that of the reference Cd foil. According to the EXAFS spectra, the CdS sample shows bulk crystalline CdS. In the case of the CdS$_{1-x}$ sample, intensity of the first coordination shell is lower than that of CdS, implying fewer S-neighbors than in the bulk CdS. Combined with the element analysis, the ratio of Cd and S are quantitated as 1:0.73 (cf. Supplementary Table 1). It is confirmed that there are S vacancies in the CdS$_{1-x}$ sample.

Furthermore, the same impregnation method is employed to synthesize the 1%Au/CdS$_{1-x}$ and 2%Au/CdS$_{1-x}$ (cf. Supplementary Fig. 6). The XANES and EXAFS spectra of CdS$_{1-x}$ and 1%Au/CdS$_{1-x}$ are shown in Supplementary Fig. 9 and 10. It is found that the intensity of the first coordination shell in CdS$_{1-x}$ sample increases after loading Au, suggesting that part of S vacancies are filled with Au (cf. Supplementary Fig. 9). Meanwhile, in the case of 1%Au/CdS$_{1-x}$, there are no significant peaks assigned to Au–Au bonds found in the range of 2–4 Å, confirming the atomic dispersion of Au on CdS$_{1-x}$ (cf. Supplementary Fig. 10). The above results suggest that single Au atoms are anchored on the S vacancies. Hence, the 1%Au/CdS$_{1-x}$ sample is referred to AuSA/CdS$_{1-x}$.

In brief, the CdS samples with different types of vacancies (Cd and S vacancies) are successfully fabricated and the introduced single Au atoms are anchored on the vacancies. In the case of the Au-anchored Cd$_{1-x}$S systems, with the increase of loading content, Au has changed from single atoms into nanoclusters.

Photocatalytic CO$_2$RR measurement. As depicted in Fig. 3 and Supplementary Fig. 11, photocatalytic CO$_2$ reduction tests are carried out to evaluate the effect of Au on photoreduction efficiency. Cd$_{1-x}$S shows low CO and CH$_4$ generation rates of 0.2 and 0.1 μmol g$^{-1}$ h$^{-1}$, respectively. After anchoring Au nanoclusters, the product generation rates are enhanced. It is interesting that with the introduction of single Au atoms, the CO, CH$_4$, and H$_2$ generation rates are highly promoted to 32.2, 11.3, and 7.9 μmol g$^{-1}$ h$^{-1}$, respectively. It manifests a remarkable 161-fold and 113-fold enhancement over Cd$_{1-x}$S as well as 5-fold, 4-fold, and 2-fold enhancement compared with AuNC/Cd$_{1-x}$S. For CdS$_{1-x}$ systems (cf. Fig. 3b), the introduction of Au brings out an enhancement of CO$_2$ photoreduction efficiency as well. Among all the samples, Au$_{SA}$/CdS$_{1-x}$ reveals the highest CO$_2$ photoreduction efficiency with the CO, CH$_4$, and H$_2$ generation rates of 3.7, 0.4, and 0.2 μmol g$^{-1}$ h$^{-1}$, which is a 2-fold, 4-fold, and 2-fold enhancement compared over the pristine CdS$_{1-x}$. The
above results indicate that, compared with S vacancies, single Au atoms bring much more significant improvement for CO2 photoreduction efficiency when they are anchored on Cd vacancies. Meanwhile, when Au changes from single atoms into nanoclusters, the CO2 photoreduction efficiency is gradually decreased. Furthermore, the photocatalytic CO2RR performance of AuSA/Cd1-xS is relatively satisfactory compared with that of other metal sulfide, CdS-based, and noble-metal-based photocatalysts in the published works (cf. Supplementary Table 4). To confirm that the CO and CH4 products are generated from the CO2 conversion driven by AuSA/Cd1-xS, the isotope labeling is conducted using 13CO2 as the reactant for qualitative analysis. Supplementary Fig. 12 displays that the generated CO and CH4 originate from the CO2 conversion driven by AuSA/Cd1-xS sample instead of desorption of adsorbed species from the surface. Besides, the peak at m/z = 32 is detected, which is assigned to generated oxidation product O2. With a comparison of XRD, TEM, and HRTEM images between fresh and used AuSA/Cd1-xS samples (cf. Supplementary Fig. 13 and 14), the single Au atoms are not aggregated during the reaction process, indicating good stability.

Discussion

CO2 adsorption during photocatalysis. To uncover the main factors of enhanced photocatalytic CO2 reduction performance, solar light absorption is first investigated by UV-vis spectroscopy (cf. Supplementary Fig. 15). The absorption edges of AuSA/Cd1-xS and AuNC/Cd1-xS have barely changed compared with Cd1-xS. For the CdS1-xS system, the introduction of Au does not change the absorption edge as well. This suggests that solar light absorption is not the determining factor in the photocatalytic CO2 reduction performance. After light illumination, the excited electrons will finally transfer to the surface of the catalyst and combine with the adsorbed species to promote their conversion. The conversion of CO2 involves the following steps. The adsorption of CO2 on the surface of photocatalyst is the prerequisite step, which is relatively difficult due to the closed-shell electronic configuration of CO2. Then, adsorbed CO2 will obtain electrons from the surface to generate the carbon active species (e.g., CO2−, HCO3−, CO32−). These first two steps are aimed to activate the C–O bond of CO2 molecule. Finally, these species will be further transformed into the desired products (e.g., CO, CH4), which need abundant electrons to take part in to promote their effective transformation. Hence, the adsorption behavior of CO2 not only determines the occurrences of reaction, but significantly affects the conversion efficiency.

Based on these considerations, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is performed to detect the generated intermediates during the CO2 adsorption process on the surfaces of Cd1-xS and CdS1-xS systems (cf. Fig. 4 and Supplementary Fig. 16). For pristine Cd1-xS (cf. Fig. 4a), there are some absorption bands assigned to bicarbonate (HCO3−; δ(COH): 1200 and 1166 cm−1), monodentate carbonate (m-CO32−; ν(C–O): 1140–1030 cm−1) and carboxylate (CO2−; ν(O–C–O): 1266 cm−1) detected with the prolonged time of adsorption. Meanwhile, the band assigned to COOH* is detected at 1634 cm−1 suggesting that the adsorbed CO2 is combined with H* and partly converted to the COOH*. After anchoring Au clusters, the intensities of absorption bands assigned to HCO3−, CO2−, and COOH* have decreased. There is a new band appearing at 1043 cm−1, which is assigned to COO* (cf. Fig. 4b). This indicates that the formed COOH* is converted to COO*. Different from it, some of the absorption bands (HCO3− and COOH*) almost disappear over AuSA/Cd1-xS. It should be noted that there is a new band detected at 1110 cm−1 assigned to H2CO* and COH*. The intensity of the absorption bands assigned to COO* is much lower than that over AuNC/Cd1-xS, revealing that the majority of formed COOH* are quickly converted into HCO* and then transform into H2CO*. The conversion pathway of CO2 over different samples in Au/Cd1-xS systems during the adsorption process could be deduced as follows:

\[
\begin{align*}
\text{CO}_2 & \rightarrow \text{HCO}_2^- + \text{CO}_2^- + \text{COOH}^- \\
\text{CO}_2 & \rightarrow \text{CO}_2^- + \text{COOH}^- \rightarrow \text{CO}^+ + \text{HCO}^- \rightarrow \text{H}_2\text{CO} \rightarrow \text{H}_2\text{CO}^- \\
\text{CO}_2 & \rightarrow \text{CO}_2^- + \text{COOH}^- \rightarrow \text{CO}_2^- + \text{CO}_2^- + \text{COOH}^- \rightarrow \text{CO}_3^2- \\
\end{align*}
\]

It is indicated that the introduction of Au significantly promotes the further conversion of CO2 on Cd1-xS surface. When Au nanoclusters downsize to single Au atoms, the carbon active species can be deeply converted into H2CO*, which is beneficial for the subsequent reaction. Different from the Cd1-xS system, with the introduction of Au nanostructures, there are no absorption bands assigned to new intermediates appearing on CdS1-xS surface in the process of CO2 adsorption (cf. Supplementary Fig. 16). It could be concluded that the introduction of Au has a slight effect in the CO2 adsorption and conversion on CdS1-xS surface.

The above discussions suggest that the types of vacancies and the size of Au nanostructures present a different effect on the intermediates in the CO2 adsorption process. In previous studies, reaction sites have possibly affected the generation of intermediates. Based on it, Au nanostructures (Au site) and...
vacancies (vacancy site) are selected to be the different CO₂ adsorption sites. The CO₂ adsorption models on Au/Cd₁₋ₓS and Au/CdS₁₋ₓ are constructed by the DFT method (cf. Fig. 5 and Supplementary Fig. 17 and 18). The corresponding adsorption energies are summarized in Supplementary Table 5. For the pristine CdS₁₋ₓ, CO₂ will spontaneously adsorb on the S vacancies due to the negative adsorption energy. After anchoring single Au atoms, the adsorption energies change slightly compared with that of pristine CdS₁₋ₓ. According to the comparison of adsorption energies, CO₂ prefers to adsorb on single Au atoms instead of S vacancies. Similarly, in the case of pristine Cd₁₋ₓS, CO₂ will also spontaneously adsorb on the Cd vacancies (E_ads = -0.43 eV). With the introduction of single Au atoms, the adsorption energy has significantly decreased, implying that single Au atoms promote the adsorption of CO₂ on Cd₁₋ₓS surface. It should be noted that CO₂ is more likely to adsorb on the Cd vacancies instead of single Au atoms due to the more negative adsorption energy. To further identify the adsorption site in AuSA/Cd₁₋ₓS, the different surfaces are probed by N₂ sorption (cf. Supplementary Fig. 19). The specific surface area of Cd₁₋ₓS (25.4 m²/g) has increased after anchoring single Au atoms (33.9 m²/g). It is suggested that the introduction of single Au atoms enhances the amount of adsorption site. However, the CO₂ adsorption capacity of Cd₁₋ₓS is decreased from 72.9 to 66.2 μmol g⁻¹ (cf. Supplementary Fig. 20) after introducing single Au atoms. It is hence confirmed that the real adsorption sites of CO₂ in AuSA/Cd₁₋ₓS should be the vacancies instead of single Au atoms. Furthermore, combined with in situ DRIFTS spectra, CO is used as the probe to identify the reactive reaction site of CO₂ reduction on AuSA/Cd₁₋ₓS surface (cf. Supplementary Fig. 21). The absorption bands at 2170 and 2109 cm⁻¹ are assigned to gaseous CO⁴⁷. Furthermore, the absorption band assigned to C=O bond and S–O are detected on the surface (ν(C=O): 1621 cm⁻¹; ν(S–O): 1209 and 1162 cm⁻¹)⁴⁷–⁵¹. It is suggested that the CO molecule adsorbs on the Cd vacancy sites and combines with the S atoms to form C=O–S bonds. Meanwhile, there are some absorption bands detected at 1100 and 1044 cm⁻¹, which are assigned to HCO* and H₂CO*. The
Above results indicate that when CO adsorbs on Cd vacancy, it will combine with H^* to further convert into HCO* and H$_2$CO*, which is in accordance with the observations in DRIFTS spectra of the CO$_2$ adsorption process.

Furthermore, according to the partial density of states (PDOS) (cf. Fig. 5f), it is observed that the interaction between CO$_2$ and single Au atoms in the Au$_{SA}$/Cd$_{1-x}$S is weak. Different from it, there is a strong interaction between CO$_2$ and Cd vacancies in the Au$_{SA}$/Cd$_{1-x}$S (cf. Fig. 5c). More importantly, the C and O atoms of CO$_2$ molecule are bonded with two S atoms of the surface to form the S–C and S–O bonds (cf. Fig. 5b). As a result, the electrons transfer from the surface to the bonded CO$_2$ molecule (0.52 e) to promote its activation, resulting in C–O bond elongation of both C–O bonds. To further prove the effect of different adsorption sites in the CO$_2$ adsorption behavior, isotope labeling is carried out on Au$_{SA}$/Cd$_{1-x}$S, and Au$_{SA}$/Cd$_{1-x}$S$_x$ using 13CO$_2$ instead of 12CO$_2$ for the DRIFTS analysis (cf. Fig. 4b and Supplementary Fig. 16d). It is observed that, compared with using 12CO$_2$ as reactants, similar absorption bands are detected on both Au$_{SA}$/Cd$_{1-x}$S and Au$_{SA}$/Cd$_{1-x}$S$_x$ under 13CO$_2$ atmosphere. Meanwhile, the positions of all the absorption bands have a 13C frequency shift toward low wavenumber in varying degrees (2–16 cm$^{-1}$). In the process of 12CO$_2$ adsorption (cf. Fig. 4c), there is an absorption band detected at 1280 cm$^{-1}$ on both Au$_{SA}$/Cd$_{1-x}$S and Au$_{SA}$/Cd$_{1-x}$S$_x$, which is assigned to the vibration of C–O bonds in CO$_2$ (adsorption state of CO$_2$). In the process of 13CO$_2$ adsorption, there is a small 13C frequency shift (6 cm$^{-1}$) occurring on the surface of Au$_{SA}$/Cd$_{1-x}$S. It should be noted that there is a 13C frequency shift (16 cm$^{-1}$) of this absorption band detected on the surface of Au$_{SA}$/Cd$_{1-x}$S. It is indicated that, compared with Au$_{SA}$/Cd$_{1-x}$S surface, the adsorbed CO$_2$ obtains more electrons from Au$_{SA}$/Cd$_{1-x}$S surface to weaken the C–O bond, leading to a larger 13C frequency shift. Meanwhile, according to the value of 13C frequency shift, more than one C–O bonds might be bonded to the surface[11,52]. Based on the above discussions, it is speculated that CO$_2$ molecule is physically adsorbed on single atoms of Au$_{SA}$/Cd$_{1-x}$S$_x$ surface. The formation of bonds and effective electron transfer between surface and CO$_2$ indicate that CO$_2$ molecule is chemically adsorbed on Cd vacancies of Au$_{SA}$/Cd$_{1-x}$S$_x$ surface. In brief, when the type of vacancies changes from S vacancies to Cd vacancies, the CO$_2$ adsorption sites change from single Au atoms to the vacancies. Benefiting from this, CO$_2$ could be chemically bonded on the Cd vacancies instead of physical adsorption on single Au atoms. The strong interaction between CO$_2$ and adsorption sites (Cd vacancies) profits the formation of stable electron-transfer channels. As a result, CO$_2$ could obtain more electrons from the adsorption sites to promote its deep transformation.

To identify the internal factors affecting adsorption sites, the charge population of Cd$_{1-x}$S and Cd$_{1-x}$S$_x$ surfaces after anchoring Au nanostructures is explored by DFT calculations (cf. Fig. 6a and 6b). For the Au anchored on Cd vacancies, the electrons (0.23 e) will transfer from single Au atoms to Cd$_{1-x}$S to enhance the surface electron density. More importantly, the majority of electrons are localized at the neighboring Cd vacancy site. On the contrary, the direction of electron transfer between Au and Cd$_{1-x}$S$_x$ is reversed, resulting in the localization of electrons at single Au atoms (0.40 e). To further identify the electron transfer between Au and Cd$_{1-x}$S or Cd$_{1-x}$S$_x$, X-ray photoelectron
spectroscopy (XPS) spectra are presented in Fig. 6. For Cd_{1-x}S system (cf. Fig. 6c–h), the peaks indexed to the Cd–S bond in Cd 3d and S 2p spectra have a shift toward low binding energy (0.2–0.3 eV) compared with the pristine Cd_{1-x}S, indicating that Cd_{1-x}S receives electrons from the single Au atoms. While for CdS_{1-x} system (cf. Fig. 6i–n), the peaks corresponding to the Cd–S bond barely change after anchoring single Au atoms. It should be noted that the peaks in Au 4f spectra of AuSA/CdS_{1-x} system are located at 87.8 and 84.1 eV and the binding energies are much lower (c.a. 0.5 eV) than that of AuSA/Cd_{1-x}S. This suggests that the electrons are localized at single Au atoms instead of CdS_{1-x} in AuSA/CdS_{1-x} system. To identify the internal factors affecting the direction of electron transfer between single Au atoms and Cd_{1-x}S or CdS_{1-x}, the potential energy plots are given in Supplementary Fig. 22. In the case of AuSA/CdS_{1-x}, the potential energy of CdS_{1-x} is much lower than that of single Au atoms. Benefiting from it, there is a driving force promoting electron transfer from CdS_{1-x} to single Au atoms. Opposite to that, the potential energy of single Au atoms is lower than that of Cd_{1-x}S, resulting in the reversal of electron transfer direction. Hence, it is observed that the electrons are localized at the single Au atoms when they anchor on S vacancies. After single Au atoms anchored on Cd vacancies, the electrons will conversely transfer from single Au atoms to Cd_{1-x}S and accumulate on Cd vacancies.

Photo-induced carrier transfer during photocatalysis. According to the DFT and XPS spectra (cf. Supplementary Fig. 23–25), it is found that with the increased content of Au, the electron transfer is gradually weakened for both Cd_{1-x}S and CdS_{1-x} systems. Hence, to further identify the underlying roles of Au content on the surface electron density, the Au/Cd_{1-x}S system is selected as the representative in the following discussion. In general, electron transfer might be related to the local electronic structure. According to PDOS in Supplementary Fig. 26, compared with the AuNC/Cd_{1-x}S, the hybridization between Au 5d and S 2p orbits in Au–S bonds is much stronger for AuSA/Cd_{1-x}S. As a result, more electrons are transferring from Au 5d orbits in single Au atoms to Cd_{1-x}S compared with Au clusters (cf. Supplementary Fig. 27). This is identified by XPS analysis in Supplementary Fig. 25. The peaks indexed to the Cd–S bond in Cd 3d and S 2p spectra for AuSA/Cd_{1-x}S have a shift toward low binding energy (0.2–0.3 eV) and the Au 4f spectrum shifts to high binding energy (0.4–0.6 eV) compared with AuNC/Cd_{1-x}S. It is indicated that the interaction between single Au atoms and Cd vacancies is much stronger than that with Au.
Fig. 7 Photo-induced carrier transfer and energy barriers in the process of CO₂RR based on DFT calculations. a Transient photocurrent response and b SPV spectra of Cd₁−ₓS, Au₅₄/Cd₁−ₓS, and Au₅₄NC/Cd₁−ₓS samples. c Energy barriers of CO₂ reduction on Au₅₄/Cd₁−ₓS and Au₅₄NC/Cd₁−ₓS. d Reaction profiles of CO₂ transition into COOH on Au₅₄/Cd₁−ₓS and Au₅₄NC/Cd₁−ₓS.

clusters. Benefiting from it, under light illumination, it is observed that the lifetimes of photogenerated electrons in Cd₁−ₓS are decreased from 2.95 to 0.44 ns (Au₅₄/Cd₁−ₓS) and 2.22 (Au₅₄NC/Cd₁−ₓS) (cf. Supplementary Fig. 28). It could be concluded that, compared with Au nanoclusters, the stronger interaction between single Au atoms and Cd vacancies significantly accelerates electron transfer to the surface to enhance the surface electron density under light illumination. Meanwhile, the intensity of transient photocurrent response is significantly increased with the introduction of Au (cf. Fig. 7a). Au₅₄/Cd₁−ₓS sample reveals the highest intensity compared with Au₅₄NC/Cd₁−ₓS and Cd₁−ₓS. It is suggested that single Au atoms offer a significantly higher enhancement in the surface electron density of Cd₁−ₓS compared with Au clusters. This is further identified by the surface photovoltage (SPV) in Fig. 7b. It should be noted that two peaks are appearing in the SPV spectra of Cd₁−ₓS. The peak at c.a. 400 nm corresponds to the electrons transferring from the top of valence band to the bottom of conduction band. The other one at c.a. 500 nm is assigned to COOH absorption band assigned to COOH on Au₅₄/Cd₁−ₓS and Au₅₄NC/Cd₁−ₓS.

As presented in Fig. 7c and Supplementary Fig. 31, the processes of CO₂ reduction on Au₅₄/Cd₁−ₓS and Au₅₄NC/Cd₁−ₓS are further simulated by DFT calculations. Most of the energy barriers on Au₅₄/Cd₁−ₓS are lower than that of Au₅₄NC/Cd₁−ₓS, indicating that single Au atoms greatly facilitate CO₂ reduction compared with Au nanoclusters. More interestingly, the energy barrier of the first step (CO₂+H→COOH) on Au₅₄/Cd₁−ₓS is remarkably decreased by 91.1% relative to that over Au₅₄NC/Cd₁−ₓS. This suggests that the accumulated electrons in Cd vacancies on Au₅₄/Cd₁−ₓS not only promote the activation of CO₂ molecule, but also facilitate its further transformations. It is identified that there is no significant absorption band assigned to COOH* observed among in situ DRIFTS test over Au₅₄/Cd₁−ₓS. Furthermore, extra electron is introduced to create an electron-rich condition in the process of CO₂ transition into COOH in Fig. 7d. Interestingly, the energy barrier on Au₅₄/Cd₁−ₓS presents a larger decrease (41%) compared with that on Au₅₄NC/Cd₁−ₓS (34%). It is suggested that, compared with Au₅₄NC/Cd₁−ₓS, the enhancement of surface electron density much more facilitates the occurrence of CO₂ reduction catalyzed by Au₅₄/Cd₁−ₓS.

In summary, we have designed and fabricated a series of Au/Cd₅₄ photocatalysts. On the one hand, the types of vacancies highly affect the direction of electron transfer. That is the electrons will transfer from Cd₅₄ to Au in Cd₅₄ system. Quite different from it, the direction of electron transfer has been reversed in Cd₁−ₓS system, resulting in the accumulation of electrons in Cd vacancies. Hence, the adsorption of CO₂ is enabled in vacancy sites instead of Au sites. More importantly, there is a stable electron-donation channel forming between CO₂ and Cd vacancies, accelerating the transfer of accumulated electrons to CO₂ for its effective activation. On the other hand, under light illumination, when Au nanostructures change from Au nanoclusters to single Au atoms, the surface electron density is significantly increased and promotes much more electrons accumulating on the surface as well as the Cd vacancies, which is beneficial for the subsequent reaction. As a result, the CO and CH₄ generation rates of Au₅₄/Cd₁−ₓS manifest a remarkable 160-fold and 113-fold enhancement compared with Cd₁−ₓS as well as the H₂ generation rate is promoted from 0 to 7.9 μmol g⁻¹ h⁻¹.
Methods
Synthesis of CdS and CdSxS. The CdS and CdSxS were synthesized via a modified hydrothermal method. The CdS was synthesized by a modified hydrothermal method: first, CdCl2·3H2O (4 mM) was dissolved in 20 mL aqueous solution (pH = 1, marked as solution A). Meanwhile, another 20 mL aqueous Na2S·9H2O (8 mM) solution was prepared, marked as solution B. Then, solution B was added dropwise into solution A under continuous stirring. The mixed solution was transferred into a Teflon-lined stainless steel autoclave (inner volume: 50 mL) and held at 140 °C for 18 h in an oven. After cooling to room temperature naturally, the product was centrifuged and washed with water and ethanol several times. Finally, the obtained product was dried overnight at 60 °C under vacuum condition. The synthesis process of CdS and CdSxS were the same as that of CdS except that 1 and 4 mM of Na2S·9H2O were added in solution B.

Synthesis of Au/CdS and Au/CdSxS. The Au/CdS and Au/CdSxS were synthesized by the impregnation method. For 1% Au/CdS, 100 mg of CdS was dispersed in 30 mL water and adding 0.2 mL HAuCl4 solution (5 mg/mL). Then, the mixed solution was stirred at 70 °C for 6 h. The product was centrifuged and washed with water and ethanol several times and dried overnight at 60 °C under vacuum condition. The synthesis procedure of 2% Au/CdS was the same as that of 1% Au/CdS, except that 0.4 mL of HAuCl4 solution was used in the experiment. Meanwhile, Au/CdSxS samples were synthesized by the same method using CdSxS instead of CdS.

Photocatalytic performance measurement. Photocatalytic CO2 reduction performance test was carried out in a closed gas system (volume: 276 mL) at atmospheric pressure and ambient temperature. First, 30 mg of photocatalyst was dispersed with H2O in a petri dish (ø = 6 cm) and dried at 70 °C under vacuum condition. Then, petri dish was put on a stainless steel breaker with 1 mL of deionized water in the reactor, which was filled with the CO2 (concentration: 1000 ppm; carrier gas: Ar). A 300 W Xe lamp was used as the UV-vis light source for 10 min under Ar atmosphere. After cooling to room temperature naturally, the product was centrifuged and washed with water to methane.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 19 October 2020; Accepted: 19 February 2021;
Published online: 15 March 2021

References
1. Yi, Q., Li, W., Feng, J. & Xie, K. Carbon cycle in advanced coal chemical engineering. Chem. Soc. Rev. 44, 5409–5445 (2015).
2. Shi, R. et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11, 3028 (2020).
3. Zhao, Y. et al. Two-dimensional-related catalytic materials for solar-driven conversion of CO2 into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019).
4. Li, Y. et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019).
5. Hao, L. et al. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 31, 1900546 (2019).
6. Chen, F. et al. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 32, 1908350 (2020).
7. Hu, C. et al. Coupling piezocatalysis and photocatalysis in Bi9O15Nb2O3 (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 30, 1908168 (2019).
8. Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuInS2 layers. Nat. Energy 4, 690–699 (2019).
9. Kim, W., Seok, T. & Choi, W. NaF-nanoparticles: enhanced photocatalytic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy. Environ. Sci. 5, 6666–6670 (2012).
10. Vanghees, O. K., Paulose, M., LaTempe, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbons. Nano Lett. 9, 731–737 (2009).
11. Cao, Y. et al. B-O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion. ACS Appl. Mater. Inter. 12, 9935–9943 (2020).
12. Van Deelen, T. W., Hernández Mejía, C. & Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).
13. Linn, H. F. & Andersson, G. G. Metal clusters on semiconductor surfaces and application in catalysis with a focus on Au and Ru. Adv. Mater. 32, 1904122 (2020).
14. Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).
15. O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Sentieie, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).
16. Yan, Q. et al. Reversing the charge transfer between platinum and sulfurdoped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019).
17. Zhu, W. et al. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nat. Commun. 8, 13291 (2017).
18. Ghuman, K. K. et al. Photoexcited surface frustrated lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 138, 1206–1214 (2016).
19. Wang, S., Guan, B. Y., Lu, Y. & Lou, X. W. D. Formation of hierarchical In2S3–CdSxS heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139, 17305–17308 (2017).
20. Cheng, L., Xiang, Q., Liao, Y. & Zhang, H. CdS-based photocatalysts. Energ. Environ. Sci. 11, 1362–1391 (2018).
21. Zhang, K., Kim, W., Ma, M., Shi, X. & Park, J. H. Tuning the charge transfer and conduction band separation for superb CO2 photoreduction. J. Mater. Chem. A 3, 4803–4810 (2015).
22. Jin, J., Yu, J., Liu, G. & Wong, P. K. Single crystal CdS nanowires with high efficient and stable visible light CO2 photoreduction. J. Mater. Chem. A 3, 10927–10934 (2013).
23. Sankar, M. et al. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 120, 3890–3958 (2020).
24. Wan, J. et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30, 1705369 (2018).
25. Ishida, T., Murayama, T., Taketoshi, A. & Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 120, 464–525 (2020).
26. Taylor, A. L., Filipovich, G. & Lindeberg, G. K. Identification of Cd vacancies in neutron-irradiated CdS by electron paramagnetic resonance. Solid State Commun. 9, 945–947 (1971).
27. Cavenett, B. C. Optically detected magnetic resonance (O.D.M.R.) investigations of recombination processes in semiconductors. Adv. Phys. 30, 475–538 (1981).
28. Nakaoka, Y. & Nosaka, Y. Electron spin resonance study of radicals produced on irradiated CdS powder. J. Am. Chem. Soc. 99, 9893–9897 (1995).
29. O’Keefe, M. et al. Sub-angstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215–241 (2001).
30. Wei, Y. et al. Fabrication of inverse opal TiO2-supported Au@CdS core-shell nanoparticles for efficient photocatalytic CO2 conversion. Appl. Catal. B: Environ. 179, 422–432 (2015).
31. Wei, Y. et al. 3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J. Mater. Chem. A 3, 11074–11085 (2015).
32. Cai, S., Zhang, M., Li, J., Chen, J. & Jia, H. Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of...
photothermocatalytic CO2 reduction to solar fuels. Sol. RRL 5, 2000313 (2021).

33. Jiao, X. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017).

34. Dong, C. et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 9, 1252 (2018).

35. Zhou, J. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 14, 81–90 (2021).

36. Zhang, P., Wang, S., Guan, B. Y. & Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy. Environ. Sci. 12, 164–168 (2019).

37. Zhou, B. P., Wang, S., Yang, P., Huang, C. & Wang, X. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 8, 4928–4936 (2018).

38. Zhao, G. et al. Efficient photocatalytic CO2 reduction over Co(I) species modified CdS in aqueous solution. Appl. Catal. B: Environ. 226, 252–257 (2018).

39. Baltrusaitis, J., Schuttle, J., Zeitz, E. & Grassian, V. H. Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J. 170, 471–481 (2011).

40. Ulagappan, N. & Frei, H. Mechanistic study of CO2 photoreduction in Ti silicate molecular sieve by FT-IR Spectroscopy. J. Phys. Chem. A 104, 7834–7839 (2000).

41. Wang, T. et al. Photo-reduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect. Nano Energy 9, 50–60 (2014).

42. Yates, J. T. & Cavanagh, R. R. Search for chemisorbed HCO: the interaction of formaldehyde, glyoxal, and atomic hydrogen with Rh. J. Catal. 74, 97–109 (1982).

43. Ewing, G. E., Thompson, W. E. & Pimentel, G. C. Infrared detection of the HCO radical HCO. J. Chem. Phys. 32, 927–932 (1960).

44. Wu, J. & Huang, C. W. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China 4, 120–126 (2010).

45. Liu, Y., Chen, S., Quan, X. & Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015).

46. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

47. Smith, M. L., Kumar, N. & Spivey, J. J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. J. Phys. Chem. C. 116, 7931–7939 (2012).

48. Yu, Y. et al. Promotive effect of SO2 on the activity of a deactivated commercial selective catalytic reduction catalyst: an in situ DRIFTS study. Ind. Eng. Chem. Res. 53, 16229–16234 (2014).

49. Xu, W., He, H. & Yu, Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J. Phys. Chem. C. 113, 4426–4432 (2009).

50. Wu, Q., Gao, H. & He, H. Conformational analysis of sulfate species on Ag/Al2O3 by means of theoretical and experimental vibration spectra. J. Phys. Chem. B 110, 8320–8324 (2006).

51. Shimizu, K.-i, Higashimata, T., Tsuzuki, M. & Satsuma, A. Effect of hydrogen addition on SO2 tolerance of silver-alumina for SCR of NO with propane. J. Catal. 239, 117–124 (2006).

52. Sheng, H. et al. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 140, 4363–4371 (2018).

53. Cao, Y. et al. Dual functions of O-atoms in the g-C3N4/BO0.2N0.8 interface: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic molecular oxygen activation. ACS Appl. Mater. Inter. 12, 34432–34440 (2020).

54. Guo, L. et al. Promoting charge carriers transfer of Co-S bonds in Co/CdS for enhanced photocatalytic CO2 reduction. Chin. Sci. Bull. 65, 522–532 (2019).

Acknowledgements
We gratefully acknowledge financial support from the National Natural Science Foundation of China (U1862111), Sichuan Provincial International Cooperation Project (2019YF01064), and International Collaboration Project of Chengdu City (2017-GH02-00014-HZ). Y. Z. thanks for the Cheung Kong Scholars Programme of China. We acknowledge the National Supercomputing Center in Shenzhen for calculation support. We thank the Synchrotron radiation source at KIT, Karlsruhe, and PETRA III at DESY, Hamburg for providing the beamtime at CAT-ACT and P65 beamlines, correspondingly. We also thank Dr. Anna Zimina (KIT) and Dr. Edmund Welte (DESY) for help during measurements.

Author contributions
Y.Z. conceived the research and designed the experiments. Y.Z. and M.D. designed the synthesis. Y.C. and L.G. performed the synthesis, characterization, and photocatalysis. Y.C. performed the DFT calculations. D.E.P. performed the XAS in terms of XANES and EXAFS test. C.H. performed the SPV tests. Y.L. and J.M. performed the TEM and EDS mapping with support from K.Z. Y.C. and Z.R. performed in situ DRIFTS test with support from Z.H. P.C. performed the EPR tests with support from E.D. Y.C. wrote the manuscript with support from Y.Z. All authors analyzed the data and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21925-7.

Correspondence and requests for materials should be addressed to Y.Z.

Peer review information Nature Communications thanks Pavel Afanasiev, Ekaterina Kozlova, and other, anonymous, reviewer(s) for their contributions to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21925-7.

https://doi.org/10.1038/s41467-021-21925-7