Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
With almost yearly Ebola virus outbreaks occurring in central Africa, the need for protective immunisation is more evident than ever. Large-scale vaccination of at-risk populations in countries where the virus is endemic has been considered to reduce the impact of outbreaks and restrict propagation from the first or first few individuals who contract the disease. In time, vaccination of entire populations in endemic countries could be considered, and could even prevent zoonotic transmission of the Ebola virus to humans. As such, licensed vaccines would reduce the immediate and long-term fatality associated with the Ebola virus infection,\(^5\) the suffering of Ebola virus disease survivors plagued by long-term medical complications,\(^6\) as well as the economic burden associated with Ebola virus outbreaks.

The current COVID-19 pandemic has highlighted the ability of emerging pathogens to disrupt existing supply chains, global public health, and economies. Having multiple licensed vaccines, produced by several manufacturers in distinct locations is important to prevent vaccine shortage. In line with this rationale, developing more licensed vaccine regimens for each target pathogen of importance is of high value to prevent societal disruption from infectious disease outbreaks and save lives.

We declare no competing interests.

Hugues Fausther-Bovondo, *Gary Kobinger
gary.kobinger@crchudequebec.ulaval.ca
Centre de Recherche en Infectiologie de l’Université Laval, Université Laval, Quebec City, QC G1V 4G2, Canada (HF-B, GK)

1 Matz KM, Marzi A, Feldmann H. Ebola vaccine trials: progress in vaccine safety and immunogenicity. Expert Rev Vaccines 2019; 18: 1229–42.
2 Sindelar S. Clinical development of Ebola vaccines. Ther Adv Vaccines 2015; 3: 125–38.
3 Henao-Restrepo AM, Longini IM, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 2015; 386: 857–66.
4 Anuna A, Mbara P, Minikulu L, et al. Ebola virus disease outbreak-Democratic Republic of the Congo, August 2018-November 2019. MMWR Morb Mortal Wkly Rep 2019; 68: 1162–65.
5 Pollard AJ, Launay O, Leiever J-D, et al. Safety and immunogenicity of a two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Europe (EBOVAC2): a randomised, observer-blind, participant-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis 2020; published online Nov 17. https://doi.org/10.1016/S1473-3099(20)30476-X.
6 Wong G, Richardson JS, Pitel S, et al. Immune parameters correlate with protection against Ebola virus infection in rodents and nonhuman primates. Sci Transl Med 2012; 4: 158ra146.
7 Mennechet FJD, Paris O, Ouoba AR, et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 2019; 18: 597–613.
8 Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular and innate response, what’s important? Hum Vaccin Immunother 2014; 10: 2875–84.
9 Keita M, Diallo B, Mesfin S, et al. Subsequent mortality in survivors of Ebola virus disease in Guinea: a nationwide retrospective cohort study. Lancet Infect Dis 2019; 19: 1202–08.
10 Clark DV, Kibouka H, Milard M, et al. Long-term sequelae after Ebola virus disease in Bundibugyo, Uganda: a retrospective cohort study. Lancet Infect Dis 2015; 15: 905–12.

Immunity to Ebola virus: the full picture is being revealed

In The Lancet Infectious Diseases, Ruth Thom and colleagues\(^1\) report substantial information concerning naturally acquired immunity following an infection with Zaire ebolavirus.\(^1\)

Their report shows strong and stable humoral and cellular responses among the majority of 117 Ebola survivors enrolled in Guinea. Between 3 and 14 months after infection, 113 (96%) of the 117 survivors had detectable titres of neutralising IgG antibodies to Ebola virus Mayinga and 101 (87%) of 116 produced interferon \(\gamma\) after re-stimulation of peripheral blood mononuclear cells with glycoprotein. In a longitudinal analysis done on a subgroup of 96 (82%) of the survivors, these responses were stable for up to 3 years after discharge from the Ebola treatment centre. These results are consistent with the immune profile of a subgroup of 35 individuals from the Postebogui Guinean survivors cohort, in which all participants had Ebola virus-specific IgG antibodies and showed robust specific T-cell memory responses up to 25 months after discharge from an Ebola treatment centre.\(^1\) In these studies, none of the unexposed people or healthy donors tested positive for Ebola virus-specific antibodies. Thom and colleagues did not test the hypothesis that long-term persistence of the immune responses in survivors could be due to re-exposure from immune privileged sites; however, the presence of Ebola virus RNA in semen long after discharge from Ebola treatment centre is now well documented.\(^3\,4\)

The authors argue that the mean neutralising titre assessed in survivors is much higher than the immune response observed 1 month after one dose of the recombinant vesicular stomatitis virus-Zaire Ebola virus envelope glycoprotein vaccine (rVSVΔG-ZEBOV-GP) in a phase 1 trial. This comparison is challenged by a vaccine study in Guinea where 83% of 1053 frontline workers express a seroresponse 1 month after vaccination, with...
a nine-fold increase in neutralising antibody titres from baseline. In the same study, seroresponse persisted 180 days after vaccination in 84.2% (95% CI 74.4–90.7) of individuals who seroresponded after 28 days. By contrast, the cellular response after a natural infection appears much higher than after vaccination. Another study in Guinea, which compared immune responses between ten rVSV-ZEBOV vaccinees and 25 survivors, found high and equivalent antibody titres 6 months after vaccination or natural infection. Overall, these studies of vaccine immunogenicity implemented in operational conditions are consistent with the results generated by early vaccine trials done in healthy adults in the USA, Canada, and Spain.

The report by Thom and colleagues also provides useful information regarding the immune responses in contacts of Ebola virus disease cases. Although no distinction between asymptomatic and paucisymptomatic presentations of the infection can be made, both neutralising antibodies and cellular responses were identified in six (9%) of the 66 contacts. This figure compares well with the seropositivity observed in asymptomatic and paucisymptomatic contacts in Guinea (3.3% vs 8.3%) and Sierra Leone (2.6% vs 12.0%).

In summary, on the one hand, we have accumulated sufficient clinical and immunological data from survivors of the 2013–2016 West African Ebola epidemic in favour of acquired immunity to Ebola virus lasting at least a few years after a natural infection. On the other hand, studies of correlates of protection for Ebola vaccines that support an induced immunity have, so far, only followed patients for up to 6 months. Natural acquired immunity could provide protection to people who have been exposed to and infected with Ebola virus for at least a few years, even if antibody concentrations decrease with time, owing to backup memory B cells and cellular immunity.

I declare no competing interests.

Jean-François Etard
jean-francois.etard@ird.fr

Translational Research on HIV and Infectious Diseases, French National Research Institute for Sustainable Development, Inserm, Montpellier University, Montpellier, France

1 Thom R, Tipton T, Streecker T, et al. Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infect Dis 2020; published online Oct 13. https://doi.org/10.1016/S1473-3099(20)30736-2.
2 Wedernann A, Foucut E, Hocini R, et al. Long-lasting severe immune dysfunction in Ebola virus disease survivors. Nat Commun 2020; 11: 1–11.
3 Subtil F, Delaunay C, Keita AK, et al. Dynamics of Ebola RNA persistence in semen: a report from the Postebogui cohort in Guinea. Clin Infect Dis 2017; 64: 1788–90.
4 Keita AK, Vidal N, Touré A, et al. A 40 months follow-up of Ebola virus disease survivors in Guinea (PostEbogui) reveals longterm detection of Ebola viral RNA in semen and breast milk. Open Forum Infect Dis 2019; 6: ofz482.
5 Baum Y, Joan-Giner A, Hitchings M, et al. Humoral and cellular immune response induced by rVSVΔG-ZEBOV-GP vaccine among frontline workers during the 2013–2016 West Africa Ebola. Vaccine 2020; 38: 4877–84.
6 Koch T, Rottsteigge M, Rübel P, et al. Ebola virus disease survivors show more efficient antibody immunity than vaccinees despite similar levels of circulating immunoglobulins. Viruses 2020; 12: 915.
7 Halperin SA, Das R, Ondero MT, et al. Immunogenicity, lot consistency, and extended safety of rVSVΔG-ZEBOV-GP vaccine: a phase 3 randomized, double-blind, placebo-controlled study in healthy adults. J Infect Dis 2019; 220: 1227–35.
8 Hegnauer DG, Kemp TL, Martin BK, et al. Safety and immunogenicity of the rVSVΔG-ZEBOV-GP Ebola virus vaccine candidate in healthy adults: a phase 1b randomised, multicentre, double-blind, placebo-controlled, dose-response study. Lancet Infect Dis 2017; 17: 854–66.
9 Diallo MSK, Rabilloud M, Ayouda A, et al. Prevalence of infection among asymptomatic and paucisymptomatic contact persons exposed to Ebola virus in Guinea: a retrospective, cross-sectional observational study. Lancet Infect Dis 2019; 19: 308–16.
10 Glynn JR, Rower H, Johnson S, et al. Asymptomatic infection and unrecognized Ebola virus disease in Ebola-affected households in Sierra Leone: a cross-sectional study using a new non-invasive assay for antibodies to Ebola virus. Lancet Infect Dis 2017; 17: 645–53.

Optimising dengue pre-vaccination screening

As the world is grappling with the global COVID-19 pandemic, dengue epidemics continue to rage relentlessly in the tropics and subtropics. About 100 million dengue cases are reported every year, often overwhelming already fragile health-care systems, with the highest burden in southeast Asia followed by Latin America. Dengue and COVID-19 have in common that epidemic transmission is driven by population densities, and both are rapidly spread via travellers. The difference between the two diseases is the mode of transmission. The four dengue virus serotypes are transmitted by *Aedes* spp mosquitoes, which mainly proliferate in the climatic conditions of the tropics and subtropics, whereas severe acute respiratory syndrome coronavirus 2 is transmitted via respiratory droplets ubiquitously.

While the scientific community is racing towards developing a vaccine against COVID-19, we already have a vaccine at hand against dengue. First licensed in 2015, the tetravalent live attenuated dengue vaccine developed by Sanofi Pasteur (CYD-TDV, with the trade name of Dengvaxia) was evaluated in more than 30,000 children in ten countries in Asia and Latin