BLOW–UP SOLUTIONS FOR NON–SCALE–INVARIANT NONLINEAR SCHRÖDINGER EQUATION IN ONE DIMENSION

MASARU HAMANO *, MASAHIRO IKEDA AND SHUJI MACHIHARA

Abstract. In this paper, we consider the mass-critical nonlinear Schrödinger equation in one dimension. Ogawa–Tsutsumi [Proc. Amer. Math. Soc. 111 (1991), no. 2, 487–496] proved a blow-up result for negative energy solution by using a scaling argument for initial data. In general, an equation with a linear potential does not have a scale invariant, so the method by Ogawa–Tsutsumi cannot be used directly to that. In this paper, we prove a blow-up result for the equation with the linear potential by modifying the argument of Ogawa–Tsutsumi.

Mathematics subject classification (2020): Primary 35Q55; Secondary 35B44.
Keywords and phrases: Nonlinear Schrödinger equation, linear potential, blow-up.

REFERENCES

[1] R. ADAMI, C. CACCIAPUOTI, D. FINCO, AND D. NOJA, Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differential Equations 257 (2014), no. 10, 3738–3777, MR3260240.
[2] J. P. ANGULO AND N. GOLOSHCHAPOVA, Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph, Adv. Differential Equations 23 (2018), no. 11-12, 793–846, MR3857871.
[3] J. B. BAILLON, T. CAZENAVE, AND M. FIGUEIRA, Équation de Schrödinger avec non-linéarité intégrale, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 16, A939–A942, MR0433026.
[4] V. BANICA AND N. VISCIGLIA, Scattering for NLS with a delta potential, J. Differential Equations 260 (2016), no. 5, 4410–4439, MR3437592.
[5] C. CACCIAPUOTI, D. FINCO, AND D. NOJA, Ground state and orbital stability for the NLS equation on a general starlike graph with potentials, Nonlinearity 30 (2017), no. 8, 3271–3303, MR3685669.
[6] T. CAZENAVE, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003, xiv+323 pp, MR2002047.
[7] V. D. DINH, On nonlinear Schrödinger equations with attractive inverse-power potentials, Topol. Methods Nonlinear Anal. 57 (2021), no. 2, 489–523, MR4359723.
[8] V. D. DINH, On nonlinear Schrödinger equations with repulsive inverse-power potentials, Acta Appl. Math. 171 (2021), Paper No. 14, 52 pp, MR4198524.
[9] R. FUKUIZUMI, M. OHTA, AND T. OZAWA, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 5, 837–845, MR2457813.
[10] J. GINIBRE AND G. VELLO, On a class of nonlinear Schrödinger equations, III. Special theories in dimensions 1, 2 and 3, Ann. Inst. H. Poincaré Sect. A (N.S.) 28 (1978), no. 3, 287–316, MR0498408.
[11] R. T. GLASSEY, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794–1797, MR0460850.
[12] N. GOLOSHCHAPOVA, Dynamical and variational properties of the NLS- equation on the star graph, J. Differential Equations 310 (2022), 1–44, MR4352601.
[13] N. GOLOSHCHAPOVA AND M. OHTA, Blow-up and strong instability of standing waves for the NLS equation on a star graph, Nonlinear Anal. 196 (2020), 111753, 23 pp, MR4066749.
[14] R. H. GOODMAN, P. J. HOLMES, AND M. I. WEINSTEIN, Strong NLS soliton-defect interactions, Phys. D 192 (2004), no. 3-4, 215–248, MR2065079.
[15] M. Ikeda, Global dynamics below the ground state for the focusing semilinear Schrödinger equation with a linear potential, J. Math. Anal. Appl. 503 (2021), no. 1, Paper No. 125291, 63 pp, MR4256194.

[16] M. Ikeda and T. Inui, Global dynamics below the standing waves for the focusing semilinear Schrödinger equation with a repulsive Dirac delta potential, Anal. PDE 10 (2017), no. 2, 481–512, MR3619878.

[17] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), no. 1, 113–129, MR0877998.

[18] V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires, J. Phys. A 32 (1999), no. 4, 595–630, MR1671833.

[19] V. Kostrykin and R. Schrader, Laplacians on metric graphs: eigenvalues, resolvents and semigroups, Quantum graphs and their applications, 201–225, Contemp. Math., 415, Amer. Math. Soc., Providence, RI, 2006, MR2277618.

[20] T. Ogawa and Y. Tsutsumi, Blow-up of H^1 solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc. 111 (1991), no. 2, 487–496, MR1045145.

[21] T. Tao, M. Visan, and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1281–1343, MR2354495.