A CARTAN TYPE IDENTITY FOR ISOPARAMETRIC HYPERSURFACES IN SYMMETRIC SPACES

NAOYUKI KOIKE

(Received April 2, 2013, revised August 19, 2013)

Abstract. In this paper, we obtain a Cartan type identity for curvature-adapted isoparametric hypersurfaces in symmetric spaces of compact type or non-compact type. This identity is a generalization of Cartan-D’Atri’s identity for curvature-adapted (=amenable) isoparametric hypersurfaces in rank one symmetric spaces. Furthermore, by using the Cartan type identity, we show that certain kind of curvature-adapted isoparametric hypersurfaces in a symmetric space of non-compact type are principal orbits of Hermann actions.

1. Introduction. An isoparametric hypersurface in a (general) Riemannian manifold is a connected hypersurface whose sufficiently close parallel hypersurfaces are of constant mean curvature (see [12] for example). In this paper, we assume that all isoparametric hypersurfaces are complete. It is known that all isoparametric hypersurfaces in a symmetric space of compact type are equifocal in the sense of [37] and that, conversely all equifocal hypersurfaces are isoparametric (see [12]). Also, it is known that all isoparametric hypersurfaces in a symmetric space of non-compact type are complex equifocal in the sense of [18] and that, conversely, all curvature-adapted complex equifocal hypersurfaces are isoparametric (see [19, Theorem 15]), where the curvature-adaptedness implies that, for a unit normal vector v, the (normal) Jacobi operator $R(\cdot, v)v$ preserves the tangent space invariantly and commutes with the shape operator A for v, where R is the curvature tensor of the ambient space. It is known that principal orbits of a Hermann action (i.e., the action of a symmetric subgroup of G) of cohomogeneity one on a symmetric space G/K of compact type are curvature-adapted and equifocal (see ([11])). Hence they are isoparametric hypersurfaces. On the other hand, we [20, 23] showed that the principal orbits of a Hermann action (i.e., the action of a (not necessarily compact) symmetric subgroup of G) of cohomogeneity one on a symmetric space G/K of non-compact type are curvature-adapted and complex equifocal, and they have no focal point of non-Euclidean type on the ideal boundary of G/K. Hence they are isoparametric hypersurfaces.
For an isoparametric hypersurface M in a real space form N of constant curvature c, it is known that the following Cartan’s identity holds:

\[
\sum_{\lambda \in \text{Spec}A \setminus \{\lambda_0\}} c + \frac{\lambda \lambda_0}{\lambda - \lambda_0} \times m_\lambda = 0
\]

for any $\lambda_0 \in \text{Spec}A$, where A is the shape operator of M and $\text{Spec}A$ is the spectrum of A, m_λ is the multiplicity of λ. Here we note that all hypersurfaces in a real space form are curvature-adapted. In general cases, this identity is shown in algebraic method. Also, it is shown in geometrical method in the following three cases:

(i) $c = 0$, $\lambda_0 \neq 0$,
(ii) $c > 0$, λ_0 : any eigenvalue of A,
(iii) $c < 0$, $|\lambda_0| > \sqrt{-c}$.

In detail, it is shown by showing the minimality of the focal submanifold for λ_0 and using this fact.

Let $H \curvearrowright G/K$ be a cohomogeneity one action of a compact group $H (\subset G)$ on a rank one symmetric space G/K and M a principal orbit of this action. Since the H-action is of cohomogeneity one, it is hyperpolar. Hence M is an equifocal (hence isoparametric) hypersurface (see [13]). In 1979, D’Atri [8] obtained a Cartan type identity for M in the case where M is amenable (i.e., curvature-adapted). On the other hand, in 1989–1991, Berndt [1, 2] obtained a Cartan type identity (in algebraic method) for curvature-adapted hypersurfaces with constant principal curvature in rank one symmetric spaces other than spheres and hyperbolic spaces. Here we note that, for a curvature-adapted hypersurface in a rank one symmetric space of non-compact type, it has constant principal curvature if and only if it is isoparametric.

In this paper, we obtain the Cartan type identities for curvature-adapted isoparametric hypersurfaces in symmetric spaces and, furthermore, by using the Cartan type identity, we prove that certain kind of curvature-adapted isoparametric hypersurfaces in a symmetric space of non-compact type are principal orbits of Hermann actions. Let M be a hypersurface in a symmetric space $N = G/K$ of compact type or non-compact type and v a unit normal vector field of M. Set $R(v_x) := R(\cdot, v_x, v_x)|_{T_xM}$, where R is the curvature tensor of N. For each $r \in \mathbb{R}$, we define a function τ_r over $[0, \infty)$ by

\[
\tau_r(s) := \begin{cases}
\frac{\sqrt{s}}{\tan (r \sqrt{s})} & (s > 0) \\
\frac{1}{r} & (s = 0)
\end{cases}
\]

Also, for each $r \in \mathbb{C}$, we define a complex-valued function $\hat{\tau}_r$ over $(-\infty, 0]$ by

\[
\hat{\tau}_r(s) := \begin{cases}
\frac{i \sqrt{-s}}{\tan (br \sqrt{-s})} & (s < 0) \\
\frac{1}{r} & (s = 0)
\end{cases}
\]
where i is the imaginary unit. First we prove the following Cartan type identity for a curvature-adapted isoparametric hypersurface in a simply connected symmetric space of compact type.

Theorem A. Let M be a curvature-adapted isoparametric hypersurface in a simply connected symmetric space $N := G/K$ of compact type. For each focal radius r_0 of M, we have

$$\sum_{(\lambda, \mu) \in S_{r_0}^x} \frac{\mu + \lambda \tau_{r_0}(\mu)}{\lambda - \tau_{r_0}(\mu)} \cdot m_{\lambda, \mu} = 0,$$

where $S_{r_0}^x := \{ (\lambda, \mu) \in \text{Spec} A_x \times \text{Spec} R(v_x) : \text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I) \neq \{0\}, \lambda \neq \tau_{r_0}(\mu) \}$ and $m_{\lambda, \mu} := \dim(\text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I))$.

Remark 1.1.
(i) If $\text{Ker}(A_x - \lambda_0 I) \cap \text{Ker}(R(v_x) - \mu_0 I) = \{0\}$, we have $\tau_{r_0}(\mu_0) = \lambda_0$.
(ii) If G/K is a sphere of constant curvature c, then $\text{Spec} R(v_x) = \{c\}$ and $\hat{\tau}_{r_0}(c)$ is equal to the principal curvature corresponding to r_0. Hence the identity (1.2) coincides with (1.1).
(iii) In the case where G/K is a rank one symmetric space of compact type, the identity (1.2) coincides with the identity obtained by D’Atri [8] (see [8, Theorems 3.7 and 3.9]).
(iv) In the case where G/K is a rank one symmetric space of compact type other than spheres, the identity (1.2) is different from the identity obtained by Berndt [1, 2].

Next, in this paper, we prove the following Cartan type identity for a curvature-adapted isoparametric C^ω-hypersurface in a symmetric space of non-compact type, where C^ω means the real analyticity.

Theorem B. Let M be a curvature-adapted isoparametric C^ω-hypersurface in a symmetric space $N := G/K$ of non-compact type. Assume that M has no focal point of non-Euclidean type on the ideal boundary $N(\infty)$ of N. Then M admits a complex focal radius and, for each complex focal radius r_0 of M, we have

$$\sum_{(\lambda, \mu) \in S_{r_0}^x} \frac{\mu + \lambda \hat{\tau}_{r_0}(\mu)}{\lambda - \hat{\tau}_{r_0}(\mu)} \cdot m_{\lambda, \mu} = 0,$$

where $S_{r_0}^x := \{ (\lambda, \mu) \in \text{Spec} A_x \times \text{Spec} R(v_x) : \text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I) \neq \{0\}, \lambda \neq \hat{\tau}_{r_0}(\mu) \}$ and $m_{\lambda, \mu} := \dim(\text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I))$.

Remark 1.2.
(i) The notion of a complex focal radius was introduced in [18]. This quantity indicates the position of a focal point of the complexification $M^C \subset G^C/K^C$ of a submanifold M in a symmetric space G/K of non-compact type (see [19]).
(ii) If $\text{Ker}(A_x - \lambda_0 I) \cap \text{Ker}(R(v_x) - \mu_0 I) = \{0\}$, we have $\hat{\tau}_{r_0}(\mu_0) = \lambda_0$.
(iii) If G/K is a hyperbolic space of constant curvature c, then $\text{Spec} R(v_x) = \{c\}$ and $\hat{\tau}_{r_0}(c)$ is equal to the principal curvature corresponding to r_0. Hence the identity (1.3) coincides with (1.1).
(iv) In the case where G/K is a rank one symmetric space of non-compact type and r_0 is a real focal radius, the identity (1.3) coincides with the identity obtained by D’Atri [8] (see [8, Theorems 3.7 and 3.9]).

(v) In the case where G/K is a rank one symmetric space of non-compact type other than hyperbolic spaces, the identity (1.3) is different from the identity obtained by J. Berndt [1, 2].

(vi) For a curvature-adapted and isoparametric hypersurface M in G/K, the following conditions (a)–(c) are equivalent:

(a) M has no focal point of non-Euclidean type on $N(\infty)$,

(b) M is proper complex equifocal in the sense of [20],

(c) $\text{Ker}(A_x \pm \sqrt{-\mu I}) \cap \text{Ker}(R(v_x) - \mu I) = \{0\}$ holds for each $\mu \in \text{Spec} R(v_x) \setminus \{0\}$.

(vii) Principal orbits of a Hermann type action of cohomogeneity one on G/K are curvature-adapted isoparametric C^ω-hypersurface having no focal point of non-Euclidean type on $N(\infty)$ (see [20, Theorem B] and the above (iii)).

The proof of Theorem B is performed by showing the minimality of the focal submanifold $F := \{\exp^+((\text{Re} r_0)v_x + (\text{Im} r_0)Jv_x) ; x \in M^C\}$ of the complexification M^C of M (see Figure 1), where \exp^+ is the normal exponential map of the submanifold M^C in G^C/K^C, J is the complex structure of G^C/K^C and v is a unit normal vector field of M (in G/K). Here we note that $\exp^+((\text{Re} r_0)v_x + (\text{Im} r_0)Jv_x)$ is equal to the point $\gamma_x^C(r_0)$ of the complexified geodesic γ_x^C in G^C/K^C. In the case where G/K is of rank greater than one and M is not homogeneous, the proof of the minimality of F is performed by showing the minimality of the lift $\tilde{F} := (\pi \circ \phi)^{-1}(F)$ of F to the path space $H^0([0, 1], g^C)$, where ϕ is the parallel transport map for G^C (which is an anti-Kaehlerian submersion of $H^0([0, 1], g^C)$ onto G^C) and π is the natural projection of G^C onto G^C/K^C (which also is an anti-Kaehlerian submersion). Here we note that the minimality of F is trivial in the case where M is homogeneous. By using Theorem B, we prove the following fact for the number of distinct principal curvatures

![Figure 1](image_url)
of a curvature-adapted isoparametric C^∞-hypersurfaces in a symmetric space of non-compact type.

By using Theorem B, we prove the following main result.

Theorem C. Let M be a curvature-adapted isoparametric C^∞-hypersurface in a symmetric space N of non-compact type. Assume that M has no focal point of non-Euclidean type on $N(\infty)$. Then M is a principal orbit of a Hermann action.

Remark 1.3. In this theorem, are indispensable both the condition of the curvature-adaptedness and the condition for the non-existenceness of non-Euclidean type focal point on the ideal boundary. In fact, we have the following examples. Let G/K be an irreducible symmetric space of non-compact type such that the (restricted) root system of G/K is non-reduced. Let $g = \mathfrak{h} + \mathfrak{p}$ ($g = \text{Lie } G$, $\mathfrak{h} = \text{Lie } K$) be the Cartan decomposition associated with a symmetric pair (G, K) and \mathfrak{a} a maximal abelian subspace of \mathfrak{p}. Also, let Δ_+ be the positive root system of G/K with respect to \mathfrak{a} and Π the simple root system of Δ_+, where we fix a lexicographic ordering of the dual space \mathfrak{a}^* of \mathfrak{a}. Set $n := \sum_{\lambda \in \Delta_+} g_\lambda$ and $N := \exp n$, where g_λ is the root space for λ and \exp is the exponential map of G. If G/K is of rank one, then any orbit of the N-action on G/K is a full irreducible curvature-adapted isoparametric C^∞-hypersurface but it has a focal point of non-Euclidean type on $N(\infty)$ (see [25]). On the other hand, it is a principal orbit of no Hermann action. Thus, in this theorem, is indispensable the condition for the non-existenceness of a focal point of non-Euclidean type on the ideal boundary. Let H_λ be the element of \mathfrak{a} defined by $(H_\lambda, \bullet) = \lambda(\bullet)$. Assume that the (restricted) root system of G/K is of type (BC_n). Take an element λ of Π such that 2λ belongs to Δ_+, and one-dimensional subspaces l of $\mathbb{R}H_\lambda + \mathfrak{g}_e$. Set $S := \exp(\mathfrak{a} + n) \ominus l$, where \exp is the exponential map of G and $(\mathfrak{a} + n) \ominus l$ is the orthogonal complement of l in $\mathfrak{a} + n$. Then S is a subgroup of $AN := \exp(\mathfrak{a} + n)$ and any orbit of the S-action on G/K is a full irreducible isoparametric C^∞-hypersurface but it is not curvature-adapted (see [25]). Furthermore, we can find an orbit having no focal point of non-Euclidean type on $N(\infty)$ among orbits of the S-action. On the other hand, it is a principal orbit of no Hermann action. Thus the condition of the curvature-adaptedness is indispensable in this theorem.

In Section 2, we recall basic notions. In Section 3, we prove Theorem A. In Section 4, we define the mean curvature of a proper anti-Kaehlerian Fredholm submanifold and prepare a lemma to prove Theorem B. In Section 5, we prove Theorems B and C.

2. Basic notions

In this section, we recall basic notions which are used in the proof of Theorems A and B. First we recall the notion of an equifocal hypersurface in a symmetric space. Let M be a complete (oriented embedded) hypersurface in a symmetric space $N = G/K$ and fix a global unit normal vector field v of M. Let γ_v be the normal geodesic of M with $\gamma_v(0) = x$, where $x \in M$ and $\gamma_v'(0)$ is the velocity vector of γ_v, at 0. If $\gamma_v(s_0)$ is a focal point of M along γ_v, then s_0 is called a focal radius of M at x. Denote by $\mathcal{FR}_{M,x}$ the set of all focal radii of M at x. If M is compact and if $\mathcal{FR}_{M,x}$ is independent of the choice
of x, then it is called an \textit{equivocal hypersurface}. This notion is the hypersurface version of an equivocal submanifold defined in \cite{37}.

Next we recall the notion of a complex equivocal hypersurface in a symmetric space of non-compact type. Let M be a complete (oriented embedded) hypersurface in a symmetric space $N = G/K$ of non-compact type and fix a global unit normal vector field v of M. Let g be the Lie algebra of G and θ be the Cartan involution of G with $\text{Fix} \theta = K$, where $\text{Fix} \theta$ is the fixed point group of θ. Denote by the same symbol θ the involution of g induced from θ. Set $p := \ker(\theta + \text{id})$. The subspace p is identified with the tangent space $T_x N$ of N at eK, where e is the identity element of G. Let M be a complete (oriented embedded) hypersurface in N. Fix a global unit normal vector field v of M. Denote by A the shape operator of M (for v). Take $X \in T_x M$ ($x = gK$). The M-Jacobi field Y along γ_x with $Y(0) = X$ (hence $Y'(0) = -A_x X$) is given by

$$Y(s) = (P_{\gamma_x|[0,s]} \circ (D_{svx}^{\text{co}} - sD_{sxv}^{\text{ii}} \circ A_x))(X),$$

where $P_{\gamma_x|[0,s]}$ is the parallel translation along $\gamma_x|[0,s]$, D_{svx}^{co} (resp. D_{sxv}^{ii}) is given by

$$D_{svx}^{\text{co}} = g_s \circ \cos(\text{lad}(s g_s^{-1} v_x)) \circ g_s^{-1}$$

(resp. $D_{sxv}^{\text{ii}} = g_s \circ \sin(\text{lad}(s g_s^{-1} v_x)) \circ g_s^{-1}$).

Here lad is the adjoint representation of the Lie algebra g of G. All focal radii of M at x are caught as real numbers s_0 with $\ker(D_{s_0 v_x}^{\text{co}} - s_0 D_{s_0 v_x}^{\text{ii}} \circ A_x) \neq \{0\}$. So, we \cite{18} defined the notion of a complex focal radius of M at x as a complex number z_0 with $\ker(D_{z_0 v_x}^{\text{co}} - z_0 D_{z_0 v_x}^{\text{ii}} \circ A_x) \neq \{0\}$, where $D_{z_0 v_x}^{\text{co}}$ (resp. $D_{z_0 v_x}^{\text{ii}}$) is a \mathbb{C}-linear transformation of $(T_x N)^{\mathbb{C}}$ defined by

$$D_{z_0 v_x}^{\text{co}} = g_z \circ \cos(\text{lad}^{\mathbb{C}}(z_0 g_z^{-1} v_x)) \circ (g_z^{-1})^{-1}$$

(resp. $D_{z_0 v_x}^{\text{ii}} = g_z \circ \frac{\sin(\text{lad}^{\mathbb{C}}(z_0 g_z^{-1} v_x))}{\text{lad}^{\mathbb{C}}(z_0 g_z^{-1} v_x)} \circ (g_z^{-1})^{-1}$),

where g_z (resp. $\text{lad}^{\mathbb{C}}$) is the complexification of g_s (resp. lad). Also, we call $\ker(D_{z_0 v_x}^{\text{co}} - z_0 D_{z_0 v_x}^{\text{ii}} \circ A_x)$ the focal space of the complex focal radius z_0 and its complex dimension the \textit{multiplicity} of the complex focal radius z_0. In \cite{19}, it was shown that, in the case where M is of class C^0, complex focal radii of M at x indicate the positions of focal points of the extrinsic complexification $M^{\mathbb{C}} (\hookrightarrow G^{\mathbb{C}}/K^{\mathbb{C}})$ of M along the complexified geodesic γ_x^G, where $G^{\mathbb{C}}/K^{\mathbb{C}}$ is the anti-Kaehlerian symmetric space associated with G/K. See \cite{19} (also \cite{26}) about the detail of the definition of the extrinsic complexification. Denote by $\mathcal{C} FR_x$ the set of all complex focal radii of M at x. If $\mathcal{C} FR_x$ is independent of the choice of x, then M is called a \textit{complex equivocal hypersurface}. Here we note that we should call such a hypersurface an equi-complex focal hypersurface but, for simplicity, we call it a complex equivocal hypersurface. This notion is the hypersurface version of a complex equivocal submanifold defined in \cite{18}.
A CARTAN TYPE IDENTITY FOR ISOPARAMETRIC HYPERSURFACES

Next we recall the notion of an anti-Kaehlerian equivocal hypersurface in an anti-Kaehlerian symmetric space. Let \(J \) be a parallel complex structure on an even dimensional pseudo-Riemannian manifold \((M, \langle \cdot, \cdot \rangle)\) of half index. If \(\langle JX, JY \rangle = -\langle X, Y \rangle \) holds for every \(X, Y \in TM \), then \((M, \langle \cdot, \cdot \rangle, J)\) is called an anti-Kaehlerian manifold. Let \(N = G/K \) be a symmetric space of non-compact type and \(G^C/K^C \) the anti-Kaehlerian symmetric space associated with \(G/K \). See [19] about the anti-Kaehlerian structure of \(G^C/K^C \). Let \(f \) be an isometric immersion of an anti-Kaehlerian manifold \((M, \langle \cdot, \cdot \rangle, J)\) into \(G^C/K^C \). If \(\tilde{J} \circ f_\ast = f_\ast \circ J \), then \(M \) is called an anti-Kaehlerian submanifold immersed by \(f \). Let \(A \) be the shape tensor of \(M \). We have \(A_{\tilde{J}v}X = A_v(JX) = J(A_vX) \), where \(X \in TM \) and \(v \in T^\perp M \). If \(A_vX = aX + bJX \) \((a, b \in \mathbb{R})\), then \(X \) is called a \(J \)-eigenvector for \(a + bi \). Let \(\{e_i\}_{i=1}^n \) be an orthonormal system of \(T_vM \) such that \(\{e_i\}_{i=1}^n \cup \{je_i\}_{i=1}^n \) is an orthonormal base of \(T_vM \). We call such an orthonormal system \(\{e_i\}_{i=1}^n \) a \(J \)-orthonormal base of \(T_vM \). If there exists a \(J \)-orthonormal base consisting of \(J \)-eigenvectors of \(A_v \), then we say that \(A_v \) is diagonalizable with respect to a \(J \)-orthonormal base. Then we set \(\operatorname{Tr}_J A_v := \sum_{i=1}^n \lambda_i \) as \(A_v e_i = (\text{Re} \lambda_i)e_i + (\text{Im} \lambda_i)J e_i \) \((i = 1, \ldots, n)\). We call this quantity the \(J \)-trace of \(A_v \).

If, for each unit normal vector \(v \in M \), the shape operator \(A_v \) is diagonalizable with respect to a \(J \)-orthonormal tangent base, if the normal Jacobi operator \(R(v) \) preserves the tangent space \(T_vM \), then \(A_v \) and \(R(v) \) commute, then we call \(M \) a curvature-adapted anti-Kaehlerian submanifold, where \(R \) is the curvature tensor of \(G^C/K^C \). Assume that \(M \) is an anti-Kaehlerian hypersurface \((i.e., \text{codim} M = 2) \) and that it is orientable. Denote by \(\exp^+ \) the normal exponential map of \(M \). Fix a global parallel orthonormal normal base \(\{v, Jv\} \) of \(M \). \(\exp^+(av_v + bJv_v) \) is a focal point of \((M, x) \), then we call the complex number \(a + bi \) a complex focal radius along the geodesic \(\gamma_v \). Assume that the number \((which may be 0 and \infty) \) of distinct complex focal radii along the geodesic \(\gamma_v \) is independent of the choice of \(x \in M \). Furthermore assume that the number is not equal to 0. Let \(\{r_{i,x}; i = 1, 2, \ldots\} \) be the set of all complex focal radii along \(\gamma_v \), where \(|r_{i,x}| < |r_{i+1,x}| \) or \(|r_{i,x}| = |r_{i+1,x}| \) and \(\text{Re} r_{i,x} > \text{Re} r_{i+1,x} \) or \(|r_{i,x}| = |r_{i+1,x}| \) and \(\text{Re} r_{i,x} = \text{Re} r_{i+1,x} \) and \(\text{Im} r_{i,x} + \text{Im} r_{i+1,x} = 0 \). Let \(r_i \) \((i = 1, 2, \ldots)\) be complex-valued functions on \(M \) defined by assigning \(r_{i,x} \) to each \(x \in M \). We call this function \(r_i \) the \(i \)-th complex focal radius function for \(v \). If the number of distinct complex focal radii along \(\gamma_v \) is independent of the choice of \(x \in M \), complex focal radius functions for \(v \) are constant on \(M \) and they have constant multiplicity, then \(M \) is called an anti-Kaehlerian equivocal hypersurface. We \((19)\) showed the following fact.

Fact 3. Let \(M \) be a complete embedded \(C^\infty \)-hypersurface in \(G/K \). Then \(M \) is complex equivocal if and only if \(M^C \) is anti-Kaehler equivocal.

Next we recall the notion of an anti-Kaehlerian isoparametric hypersurface in an infinite dimensional anti-Kaehlerian space. Let \(f \) be an isometric immersion of an anti-Kaehlerian Hilbert manifold \((M, \langle \cdot, \cdot \rangle, J)\) into an infinite dimensional anti-Kaehlerian space \((V, \langle \cdot, \cdot \rangle, \tilde{J})\).

See [19, Section 5] about the definitions of an anti-Kaehlerian Hilbert manifold and an infinite dimensional anti-Kaehlerian space. If \(\tilde{J} \circ f_\ast = f_\ast \circ J \) holds, then we call \(M \) an
anti-Kaehlerian Hilbert submanifold in $(V, \langle , \rangle, \tilde{J})$ immersed by f. If M is of finite codimension and there exists an orthogonal time-space decomposition $V = V_{\pm} \oplus V_+$ such that $\tilde{J}V_{\pm} = V_{\mp}$, $(V, \langle , \rangle)_{V_{\pm}}$ is a Hilbert space, the distance topology associated with $(\langle , \rangle)_{V_{\pm}}$ coincides with the original topology of V and, for each $v \in T^\perp M$, the shape operator A_v is a compact operator with respect to $f^* (\langle , \rangle)_{V_{\pm}}$, then we call M an anti-Kaehlerian Fredholm submanifold (rather than anti-Kaehlerian Fredholm Hilbert submanifold). Let $(M, \langle , \rangle, J)$ be an orientable anti-Kaehlerian Fredholm hypersurface in an anti-Kaehlerian space $(V, \langle , \rangle, \tilde{J})$ and A be the shape tensor of $(M, \langle , \rangle, J)$. Fix a global unit normal vector field v of M. If there exists $X(\neq 0) \in T_x M$ with $A_v X = aX + bJX$, then we call the complex number $a + bi$ a J-eigenvalue of A_v (or a complex principal curvature of M at x) and call X a J-eigenvector of A_v for $a + bi$. Here we note that this relation is rewritten as $A_v^C X^{(1,0)} = (a + bi)X^{(1,0)}$, where $X^{(1,0)} := \frac{1}{2}(X - iJX)$. Also, we call the space of all J-eigenvectors of A_v for $a + b\sqrt{-1}$ a J-eigenspace of A_v for $a + bi$. We call the set of all J-eigenvalues of A_v, the J-spectrum of A_v, and denote it by $\text{Spec}_J A_v$. $\text{Spec}_J A_v \setminus \{0\}$ is described as follows:
\[
\text{Spec}_J A_v \setminus \{0\} = \{ \lambda_i ; i = 1, 2, \ldots \}
\]
\[
\left(|\lambda_i| > |\lambda_{i+1}| \quad \text{or} \quad "|\lambda_i| = |\lambda_{i+1}| \quad \text{and} \quad \text{Re} \lambda_i > \text{Re} \lambda_{i+1}" \right).
\]
Also, the J-eigenspace for each J-eigenvalue of A_v, other than 0 is of finite dimension. We call the J-eigenvalue λ_i the i-th complex principal curvature of M at x. Assume that the number (which may be ∞) of distinct complex principal curvatures of M is constant over M. Then we can define functions $\tilde{\lambda}_i (i = 1, 2, \ldots)$ on M by assigning the i-th complex principal curvature of M at x to each $x \in M$. We call this function $\tilde{\lambda}_i$ the i-th complex principal curvature function of M. If the number of distinct complex principal curvatures of M is constant over M, each complex principal curvature function is constant over M and it has constant multiplicity, then we call M an anti-Kaehlerian isoparametric hypersurface. Let $\{e_1\}_{i=1}^\infty$ be an orthonormal system of $(T_x M, \langle , \rangle)$, and $\{e_1\}_{i=1}^\infty \cup \{J e_1\}_{i=1}^\infty$ is an orthonormal base of $T_x M$, then we call $\{e_1\}_{i=1}^\infty$ a J-orthonormal base. If there exists a J-orthonormal base consisting of J-eigenvectors of A_v, then A_v is said to be diagonalized with respect to the J-orthonormal base. If M is anti-Kaehlerian isoparametric and, for each $x \in M$, the shape operator A_v is diagonalized with respect to a J-orthonormal base, then we call M a proper anti-Kaehlerian isoparametric hypersurface.

In [18], we defined the notion of the parallel transport map for a semi-simple Lie group G as a pseudo-Riemannian submersion of a pseudo-Hilbert space $H^0([0, 1], g)$ onto G. See [18] in detail. Also, in [19], we defined the notion of the parallel transport map for the complexification G^C of a semi-simple Lie group G as an anti-Kaehlerian submersion of an infinite dimensional anti-Kaehlerian space $H^0([0, 1], g^C)$ onto G^C. See [19] in detail. Let G/K be a symmetric space of non-compact type and $\phi : H^0([0, 1], g^C) \to G^C$ the parallel transport map for G^C and $\pi : G^C \to G^C/K^C$ the natural projection. We [19] showed the following fact.
FACT 4. Let M be a complete anti-Kaehlerian hypersurface in an anti-Kaehlerian symmetric space G^C/K^C. Then M is anti-Kaehlerian equifocal if and only if each component of $(\pi \circ \phi)^{-1}(M)$ is anti-Kaehlerian isoparametric.

Next we recall the notion of a focal point of non-Euclidean type on the ideal boundary $N(\infty)$ of a hypersurface M in a Hadamard manifold N which was introduced in [23] for a submanifold of general codimension. Assume that M is orientable. Let v be a unit normal vector field of M and $\gamma_{v_x} : [0, \infty) \to N$ the normal geodesic of M of direction v_x. If there exists an M-Jacobi field Y along γ_{v_x} satisfying $\lim_{t \to \infty} ||Y(t)||/t = 0$, then we call $\gamma_{v_x}(\infty) (\in N(\infty))$ a focal point of M on the ideal boundary $N(\infty)$ along γ_{v_x}, where $\gamma_{v_x}(\infty)$ is the asymptotic class of γ_{v_x}. Also, if there exists an M-Jacobi field Y along γ_{v_x} satisfying $\lim_{t \to \infty} ||Y(t)||/t = 0$ and $\text{Sec}(v_x, Y(0)) \neq 0$, then we call $\gamma_{v_x}(\infty)$ a focal point of non-Euclidean type of M on $N(\infty)$ along γ_{v_x}, where $\text{Sec}(v_x, Y(0))$ is the sectional curvature for the 2-plane spanned by v_x and $Y(0)$. If, for any point x of M, $\gamma_{v_x}(\infty)$ and $\gamma_{-v_x}(\infty)$ are not a focal point of non-Euclidean type of M on $N(\infty)$, then we say that M has no focal point of non-Euclidean type on the ideal boundary $N(\infty)$. According to [19, Theorem 1] and [23, Theorem A], we have the following fact.

FACT 5. Let M be a curvature-adapted and isoparametric C^ω-hypersurface in a symmetric space $N := G/K$ of non-compact type. Then the following conditions (i) and (ii) are equivalent:

(i) M has no focal point of non-Euclidean type on the ideal boundary $N(\infty)$.

(ii) Each component of $(\pi \circ \phi)^{-1}(M^C)$ is proper anti-Kaehlerian isoparametric.

3. Proof of Theorem A. In this section, we shall prove Theorem A. Let M be a curvature-adapted isoparametric hypersurface in a simply connected symmetric space G/K of compact type, v a unit normal vector field of M and $C(\subset T^*_x M)$ the Coxeter domain (i.e., the fundamental domain (containing 0) of the Coxeter group of M at x). The boundary ∂C of C consists of two points and it is described as $\partial C = \{r_1 v_x, r_2 v_x\} (r_2 < 0 < r_1)$. We may assume that $|r_1| \leq |r_2|$ by replacing v with $-v$ if necessary. Note that the set $\mathcal{F}R_M$ of all focal radii of M is equal to $\{k r_1 + (1-k)r_2 : k \in \mathbb{Z}\}$. Set $F_i := \{\gamma_{v_x}(r_i) : x \in M\}$ ($i = 1, 2$), which are all of focal submanifolds of M. The hypersurface M is the r_i-tube over F_i ($i = 1, 2$). Let π be the natural projection of G onto G/K and ϕ the parallel transport map for G. Let \tilde{M} be a component of $(\pi \circ \phi)^{-1}(M)$, which is an isoparametric hypersurface in $H^0([0, 1], g)$. The set $\mathcal{P}C_{\tilde{M}}$ of all principal curvatures other than zero of \tilde{M} is equal to $\{\frac{1}{k r_1 + (1-k)r_2} : k \in \mathbb{Z}\}$. Set $\lambda_{2k-1} := \frac{1}{k r_1 + (1-k)r_2} (k = 1, 2, \ldots)$ and $\lambda_{2k} := -\frac{1}{(k-1)r_1 + kr_2} (k = 1, 2, \ldots)$. Then we have $|\lambda_{i+1}| < |\lambda_i|$ or $\lambda_i = -\lambda_{i+1} > 0$ for any $i \in \mathbb{N}$. Denote by m_i the multiplicity of λ_i. Denote by $A (resp. \tilde{A})$ the shape operator of M for v (resp. \tilde{M} for v^\perp), where v^\perp is the horizontal lift of v to \tilde{M} with respect to $\pi \circ \phi$. Fix $r_0 \in \mathcal{F}R_M$. The focal map $f_{r_0} : M \to G/K$ is defined by $f_{r_0}(x) := \gamma_{v_x}(r_0) (x \in M)$. Let $F := f_{r_0}(M)$, which is either F_1 or F_2. Denote by A^F the shape tensor of F and ψ_t the geodesic flow of G/K.
PROOF OF THEOREM A. Define a set S_x by

$$S_x := \{(\lambda, \mu) \in \text{Spec} A_x \times \text{Spec} R(v_x); \text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I) \neq \{0\}\}.$$ \hfill (1.1)

Since M is curvature adapted, we have

$$T_x M = \bigoplus_{(\lambda,\mu) \in S_x} \left(\text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I)\right).$$ \hfill (1.2)

Define a distribution D on M by

$$D_x := \bigoplus_{(\lambda,\mu) \in S_x} \left(\text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I)\right).$$ \hfill (1.3)

Let $X \in \text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I)$ and Y be the Jacobi field along γ_{vr_0} with $Y(0) = X$ and $Y'(0) = -A_{r_0,v_x} X$. This Jacobi field Y is described as

$$Y(s) = \left(\cos(s r_0 \sqrt{\mu}) - \frac{\lambda \sin(s r_0 \sqrt{\mu})}{\sqrt{\mu}}\right) P_{\gamma_{r_0}[0,s]}(X).$$ \hfill (2.1)

Since $Y(1) = f_{r_0} X$, we have

$$f_{r_0} X = \left(\cos(r_0 \sqrt{\mu}) - \frac{\lambda \sin(r_0 \sqrt{\mu})}{\sqrt{\mu}}\right) P_{\gamma_{r_0}}(X),$$ \hfill (2.2)

which is not equal to 0 because $(\lambda,\mu) \in S_{r_0}$. From this relation, we have $T f_{r_0}(X) F = P_{\gamma_{r_0}}(D)$. On the other hand, we have

$$\nabla_X Y_{\gamma_{r_0}} = \frac{1}{r_0} Y'(1) = -\left(\sqrt{\mu} \sin(r_0 \sqrt{\mu}) + \lambda \cos(r_0 \sqrt{\mu})\right) P_{\gamma_{r_0}}(X).$$ \hfill (2.3)

From (2.1) and (2.2), we have

$$A^F_{\gamma_{r_0}} f_{r_0} X = \frac{\mu + \lambda t_{r_0}(\mu)}{\lambda - t_{r_0}(\mu)} f_{r_0} X.$$
Hence we can derive the following relation:

\[
\text{Tr} A^F_{\phi_0(v_x)} = - \sum_{(\lambda, \mu) \in S^1_0} \frac{\mu + \lambda \tau_0(\mu)}{\lambda - \tau_0(\mu)} \times m_{\lambda, \mu},
\]

where \(S^1_0\) and \(m_{\lambda, \mu}\) are as in the statement of Theorem A. On the other hand, it is not difficult to show the existence of a transnormal function on \(G/K\) having \(M\) and \(F\) as a regular level and a singular level, respectively. Hence, according to [28, Theorem 1.3], \(F\) is austere and hence minimal. Therefore, we obtain the desired identity from (3.3). \(\square\)

4. The mean curvature of a proper anti-Kaehlerian Fredholm submanifold. In this section, we define the notion of a proper anti-Kaehlerian Fredholm submanifold and its mean curvature vector. Let \(M\) be an anti-Kaehlerian Fredholm submanifold in an infinite dimensional anti-Kaehlerian space \(V\) and \(A\) be the shape tensor of \(M\). Denote by the same symbol \(J\) the complex structures of \(M\) and \(V\). If \(A_v\) is diagonalized with respect to a \(J\)-orthonormal base for each unit normal vector \(v\) of \(M\), then we call \(M\) a proper anti-Kaehlerian Fredholm submanifold. Assume that \(M\) is such a submanifold. Let \(v\) be a unit normal vector of \(M\). If the series \(\sum_{i=1}^{\infty} m_i \lambda_i\) exists, then we call it the \(J\)-trace of \(A_v\) and denote it by \(\text{Tr}_J A_v\), where \(\{\lambda_i : i = 1, 2, \ldots\} = \text{Spec}_J A_v \setminus \{0\}\) (\(\lambda_i\)'s are ordered as stated in Section 2) and \(m_i = \frac{\dim \ker(A_v - \lambda_i I)}{\lambda_i I} (i = 1, 2, \ldots)\), where \(\lambda_i I\) means \((\text{Re} \lambda_i) I + (\text{Im} \lambda_i) J\). Note that, if \(\sharp(\text{Spec}_J A_v)\) is finite, then we promise \(\lambda_i = 0\) and \(m_i = 0\) \((i > \sharp(\text{Spec}_J A_v \setminus \{0\}))\), where \(\sharp(\cdot)\) is the cardinal number of \((\cdot)\). Define a normal vector field \(H\) of \(M\) by \((H_x, v) = \text{Tr}_J A_v (x \in M, v \in T^\perp_x M)\). We call \(H\) the mean curvature vector of \(M\).

Let \(G/K\) be a symmetric space of non-compact type and \(\phi : H^0([0, 1], g^C) \to G^C\) be the parallel transport map for the complexification \(G^C\) of \(G\) and \(\pi\) be the natural projection of \(G^C\) onto the anti-Kaehlerian symmetric space \(G^C/K^C\). We have the following fact, which will be used in the proof of Theorem B in the next section.

Lemma 4.1. Let \(M\) be a curvature-adapted anti-Kaehlerian submanifold in \(G^C/K^C\) and \(A\) (resp. \(\tilde{A}\)) be the shape tensor of \(M\) (resp. \((\pi \circ \phi)^{-1}(M))\). Assume that, for each unit normal vector \(v\) of \(M\) and each \(J\)-eigenvalue \(\mu\) of \(R(v)\), \(\ker(A_v - \sqrt{-1} \mu I) \cap \ker(R(v) - \mu I) = \{0\}\) holds. Then the following statements (i) and (ii) hold:

(i) \((\pi \circ \phi)^{-1}(M)\) is a proper anti-Kaehlerian Fredholm submanifold.

(ii) For each unit normal vector \(v\) of \(M\), \(\text{Tr}_J \tilde{A}_v = \text{Tr}_J A_v\) holds, where \(v^L\) is the horizontal lift of \(v\) to \((\pi \circ \phi)^{-1}(M)\) and \(\text{Tr}_J A_v\) is the \(J\)-trace of \(A_v\).

Proof. We can show the statement (i) in terms of [19, Lemmas 9, 12 and 13]. By imitating the proof of [18, Theorem C], we can show the statement (ii), where we also use the above lemmas in [19]. \(\square\)

5. Proofs of Theorems B and C. In this section, we first prove Theorem B. Let \(M\) be a curvature-adapted isoparametric \(C^\infty\)-hypersurface in a symmetric space \(G/K\) of non-compact type. Assume that \(M\) admits no focal point of non-Euclidean type on the ideal boundary of \(G/K\). Denote by \(A\) the shape tensor of \(M\) and \(R\) the curvature tensor of \(G/K\).
Let \(v \) be a unit normal vector field of \(M \), which is uniquely extended to a unit normal vector field of the extrinsic complexification \(M^C(\subset \mathbb{C}^C/K^C) \) of \(M \). Since \(M \) is a curvature-adapted isoparametric hypersurface admitting no focal point of non-Euclidean type on the ideal boundary \(N(\infty) \), it admits a complex focal radius. Let \(r_0 \) be one of complex focal radii of \(M \). The focal map \(f_{r_0} : M^C \to G^C/K^C \) for \(r_0 \) is defined by \(f_{r_0}(x) := \exp^\pm(r_0v_x)(:= y_0^C(r_0)) \) \((x \in M^C)\), where \(r_0v_x \) means \((\text{Re}r_0)v_x + (\text{Im}r_0)Jv_x \) \((J : \text{the complex structure of } G^C/K^C)\). Let \(F := f_{r_0}(M^C) \), which is an anti-Kaehlerian submanifold in \(G^C/K^C \) (see Figure 1). Without loss of generality, we may assume \(o := eK \in M \). Denote by \(\tilde{A} \) and \(A^F \) the shape tensor of \(M^C \) and \(F \), respectively. Let \(\psi_t \) be the geodesic flow of \(G^C/K^C \). Then we have the following fact.

Lemma 5.1. For any \(x \in M (\subset M^C) \), the following relation holds:

\[
\text{Tr}_F A^F_{\psi_0}\left(\frac{\gamma_0}{r_0}\right) = \frac{-r_0}{|r_0|} \sum_{(\lambda, \mu) \in S^0_c} \frac{\mu + \lambda \tilde{r}_0(\mu)}{\lambda - \tilde{r}_0(\mu)} \times m_{\lambda, \mu},
\]

where \(S^0_c \) and \(m_{\lambda, \mu} \) are as in the statement of Theorem B.

Proof. Let \(S_c := \{(\lambda, \mu) \in \text{Spec}A_{v_x} \times \text{Spec}R(v_x) : \text{Ker}(A_{v_x} - \lambda I) \cap \text{Ker}(R(v_x) - \mu I) \neq \{0\}\} \). Since \(M \) is curvature adapted, we have \(T_{x_k}M = \bigoplus_{(\lambda, \mu) \in S^0_c}(\text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I)) \) and \(D_x^+ \) the orthogonal complement of \(D_x \) in \(T_xM \). The tangent space \(T_x(M^C) \) is identified with the complexification \(T_xM^C \). Under this identification, the shape operator \(A_{v_x} \) is identified with the complexification \(A^C \) of \(A_x \). Let \(X \in \text{Ker}(A_x - \lambda I)^C \cap \text{Ker}(R(v_x) - \mu I)^C \) \((\lambda, \mu) \in S^0_c\) and \(Y \) be the Jacobi field along \(y_{v_0}y_{v_x} \) with \(Y(0) = X \) and \(Y'(0) = -\lambda \tilde{r}_0v_xX = -\lambda ((\text{Re}r_0)X + (\text{Im}r_0)JX) \), where \(y_{v_0}y_{v_x} \) is the geodesic in \(G^C/K^C \) with \(y_{v_0}v_0(0) = r_0v_x = (\text{Re}r_0)v_x + (\text{Im}r_0)Jv_x \). This Jacobi field \(Y \) is described as

\[
Y(s) = \left(\cos(is\sqrt{-\mu}) - \frac{\lambda \sin(i\sqrt{-\mu})}{\sqrt{-\mu}} \right) P_{y_{v_0}v_0}(X).
\]

Since \(Y(1) = f_{r_0}*X \), we have

\[
f_{r_0}*X = \left(\cos(is\sqrt{-\mu}) - \frac{\lambda \sin(i\sqrt{-\mu})}{\sqrt{-\mu}} \right) P_{y_{v_0}v_0}(X)
\]

which is not equal to 0 because \((\lambda, \mu) \in S^0_c\). This relation implies that \(T_{f_{r_0}(x)}F = P_{y_0}v_0(D^C_x) \).

On the other hand, we have

\[
\tilde{\nabla}_{f_{r_0}*X} \psi_{y_0}\left(\frac{r_0}{|r_0|}v_x \right) = \frac{1}{|r_0|}Y'(1)
\]

\[
= -\frac{1}{|r_0|} \left(i\sqrt{-\mu} \sin(i\sqrt{-\mu}) + \lambda \cos(i\sqrt{-\mu}) \right) P_{y_0}v_0(X).
\]

From (5.1) and (5.2), we have

\[
A^F_{\psi_0}\left(\frac{r_0}{|r_0|}v_x \right) f_{r_0}*X = \frac{-\frac{\mu}{|r_0|}}{\lambda - \tilde{r}_0(\mu)} \left(\mu + \lambda \tilde{r}_0(\mu) \right) f_{r_0}*X.
\]
The desired relation follows from this relation.

\[\kappa(\lambda, \mu) := \frac{\kappa(\lambda + \mu, \nu)}{\lambda - \nu} \quad (\lambda, \mu \in \mathbb{R}). \]

Lemma 5.2. Let \((\lambda_1, \mu_1) \in S_0^\ell\). Then we have

1. \((\exp_{G^C} r_0 v_x)_x^{-1} \psi_{[\rho]} \left(\frac{r_0}{n_0} v_x \right) = \frac{r_0}{n_0} v_x\)
2. \((\exp_{G^C} r_0 v_x)_x^{-1} \left(\ker(A_{v_0}) \cap \ker(R(v_x) - \mu I) \right) = \bigoplus_{(\lambda, \mu) \in S_0^\ell} \left(\ker(A_{v_0} - \lambda I) \cap \ker(R(v_x) - \mu I) \right)^C\)

where \(S_0^\ell \cap \ker(R(v_x) - \mu I) \neq \emptyset\).

Proof. The relation of (i) is trivial. Let \((\lambda, \mu) \in S_0^\ell \cap \ker(R(v_x) - \mu I)\). The restriction \(f_{r_0, v_x}^{G^C} \cap \ker(R(v_x) - \mu I)^C\) of \(f_{r_0, v_x}\) is equal to \(P_{\rho_0, v_x} \cap \ker(R(v_x) - \mu I)^C\) up to constant multiple by (5.1). Also, we have \(P_{\gamma_0, v_x} = (\exp_{G^C} r_0 v_x)_x\). These facts together with (5.3) deduce

\[(\exp_{G^C} r_0 v_x)_x \left(\ker(A_{v_0} - \lambda I) \cap \ker(R(v_x) - \mu I) \right) = f_{r_0, v_x} \left(\ker(A_{v_0} - \lambda I) \cap \ker(R(v_x) - \mu I) \right)^C \subset \ker(A_{v_0}) \cap \ker(A_{v_0} - \mu I) \right)^C \]

From this fact, the relation of (ii) follows. Now we shall show the statement (iii). Let \(r_0 = a_0 + b_0 \sqrt{-1} \in \mathbb{C}\). Suppose that \(\kappa(\lambda_1, \mu_1) = \pm \sqrt{-1}\). By squaring both sides of this relation, we have

\[(\hat{r}_0 (\mu_1)^2 + \mu_1) (\hat{\nu}_0^2 + \mu_1) = 0. \]

Hence we have \(\lambda_1 = \pm \sqrt{-1}\). Thus the statement (iii) is shown.

Denote by \(\hat{R}\) the curvature tensor of \(G^C / K^C\). By using these lemmas, we prove Theorem B. According to Lemma 5.1, we have only to show \(\text{Tr}_A F = 0 \quad (x \in M)\). In the case where \(M\) is homogeneous, we can show this relation by imitating the process of the proof of [15, Corollary 1.1].

Simple proof of Theorem B in Rank One Case. We have only to show \(\text{Tr}_A F = 0\). Assume that \(G / K\) is of rank one. Define a complex linear function \(\Phi : T_{r_0(v_x)}^+ F \to \mathbb{C}\) by \(\Phi(w) = \text{Tr}_A F (w \in T_{r_0(v_x)}^+ F)\). Since \(M\) is curvature-adapted, we have \(T_A M = \bigoplus_{(\lambda, \mu) \in S_0^\ell} \left(\ker(A_{v_0} - \lambda I) \cap \ker(R(v_x) - \mu I) \right)\). Set

\[S_0^\ell := \{ (\lambda, \mu) \in \text{Spec} \hat{A}_{v_0} \times \text{Spec} \hat{R}(v_x); \ker(A_{v_0} - \lambda I) \cap \ker(R(v_x) - \mu I) \neq \{0\} \}\]

where \(\lambda \neq \hat{r}_0 (\mu_1)\).
(\gamma \in M^C). Define a distribution \(\hat{D} \) on \(M^C \) by
\[
\hat{D}_\gamma := \bigoplus_{(\lambda,\mu) \in \hat{S}^r_0} (\text{Ker}(\hat{A}_{\gamma} - \lambda I) \cap \text{Ker}(\hat{R}(v_\gamma) - \mu I)) \quad (\gamma \in M^C)
\]
and \(\hat{D}^\perp \) the orthogonal complementary distribution of \(\hat{D} \) in \(T(M^C) \). Also, define a distribution \(\hat{D} \) on \(M \) by \(D_x := \bigoplus_{(\lambda,\mu) \in \hat{S}^r_0} (\text{Ker}(A_x - \lambda I) \cap \text{Ker}(R(v_x) - \mu I)) \) (\(x \in M \)) and \(D^\perp \) the orthogonal complementary distribution of \(D \) in \(TM \). Under the identification of \(T_x(M^C) \) with \((T_xM)_1 \), \(\hat{D}_x \) is identified with the complexification \((D_x)_1 \) of \(D_x \). The focal map \(f_{r_0} \) is a submersive of \(\hat{S}^r \) onto \(F \) and the fibres of \(f_{r_0} \) are integral manifolds of \(\hat{D}^\perp \). Let \(L \) be the integral manifold of \(\hat{D}^\perp \) through \(x \) and set \(L_{\mathbb{R}} := L \cap M \). It is shown that \(L \) is the extrinsic complexification of \(L_{\mathbb{R}} \). Set \(Q := \{ \psi_{r_0}(\frac{r_0}{|r_0|}v_x) ; x \in L \} \) and \(Q_{\mathbb{R}} := \{ \psi_{r_0}(\frac{r_0}{|r_0|}v_x) ; x \in L_{\mathbb{R}} \} \). It is shown that \(Q \) is the extrinsic complexification of \(Q_{\mathbb{R}} \) and that \(Q \) is a complex hypersurface without geodesic point in \(T^L_{f_{r_0}(x)}F \), that is, it is not contained in any complex affine hyperplane of \(T^L_{f_{r_0}(x)}F \). According to Lemma 5.1, we have
\[
\Phi(\psi_{r_0}(\frac{r_0}{|r_0|}v_x)) = -\frac{r_0}{|r_0|} \sum_{(\lambda,\mu) \in \hat{S}^r_0} \frac{\mu + \lambda \tilde{r}_0(\mu)}{\lambda - \tilde{r}_0(\mu)} \times m_{\lambda,\mu}.
\]
Let \((\tilde{\lambda}, \tilde{\mu}) \) be a pair of continuous functions on \(L_{\mathbb{R}} \) such that \((\tilde{\lambda}(y), \tilde{\mu}(y)) \in \hat{S}^r_y \) for any \(y \in L \). Since \(G/K \) is of rank one, \(\tilde{\mu} \) is constant on \(L_{\mathbb{R}} \). The complex focal radius having \(\text{Ker}(A_x - \tilde{\lambda}(y) I) \cap \text{Ker}(R(v_x) - \tilde{\mu}(y) I) \) as a part of the focal space is the complex number \(z_0 \) satisfying \(\text{Ker}(D_0^{C^0} - z_0 D_0^{C^0} \circ A_0^C) \cap \text{Ker}(A_x - \tilde{\lambda}(y) I) \cap \text{Ker}(R(v_x) - \tilde{\mu}(y) I) \neq \{0\} \), that is, it is equal to \((1/\sqrt{\tilde{\mu}(y)}) \arctan(\sqrt{\frac{\tilde{\lambda}(y)}{\tilde{\mu}(y)}}) \), which is independent of the choice of \(y \in L_{\mathbb{R}} \) by the isoparametricity (hence complex equifocality) of \(M \). Hence \(\tilde{\lambda} \) is constant on \(L_{\mathbb{R}} \). Therefore \(\Phi \) is constant along \(Q_{\mathbb{R}} \). Since \(\Phi \) is of class \(C^0 \) and \(Q_{\mathbb{R}} \) is a half-dimensional totally real submanifold in \(Q \), \(\Phi \) is constant along \(Q \). Furthermore, this fact together with the linearity of \(\Phi \) imply \(\Phi \equiv 0 \). In particular, we have \(\text{Tr} A^F_{\psi_{r_0}(v_x)} = 0 \). \(\square \)

Proof of Theorem B (General Case). According to Lemma 5.1, we have only to show \(\text{Tr} A^F_{\psi_{r_0}(\frac{r_0}{|r_0|}v_x)} = 0 \) (\(x_0 \in M \)). We shall show this relation by investigating the focal submanifold of \((\pi \circ \phi)^{-1}(M^C) \) corresponding to \(r_0 \), where \(\phi : H^0([0, 1], g^C) \to G^C \) is the parallel transport map for \(G^C \) and \(\pi \) is the natural projection of \(G^C \) onto \(G^C/K^C \). Let \(M^C \) be the complete extension of \((\pi \circ \phi)^{-1}(M^C) \). Let \(v^L \) be the horizontal lift of \(v \) to \(\tilde{M}^C \). Since \(\pi \circ \phi \) is an anti-Kaehlerian submersion, the complex focal radii of \(M^C \) (hence \(M \)) are those of \(\tilde{M}^C \). Let \(r_0 \) be a complex focal radius of \(M \) (hence \(\tilde{M}^C \)). The focal map \(\tilde{f}_{r_0} \) for \(r_0 \) is defined by \(\tilde{f}_{r_0}(x) = x + r_0 v^L_x \) (\(x \in \tilde{M}^C \)). Set \(\tilde{F} := \tilde{f}_{r_0}(\tilde{M}^C) \). Denote by \(\tilde{A} \) (resp. \(A^F \)) the shape tensor of \(\tilde{M}^C \) (resp. \(\tilde{F} \)). Let \(\text{Spec} \tilde{A}_{\tilde{x}_0} \setminus \{0\} = \{ \lambda_i ; i = 1, 2, \ldots \} \) ("\(|\lambda_i| > |\lambda_{i+1}| \) or "\(|\lambda_i| = |\lambda_{i+1}| \) & \(\text{Re}\lambda_i > \text{Re}\lambda_{i+1} \) or "\(|\lambda_i| = |\lambda_{i+1}| \) & \(\text{Re}\lambda_i = \text{Re}\lambda_{i+1} \) & \(\text{Im}\lambda_i = -\text{Im}\lambda_{i+1} > 0 \)"). The set of all complex focal radii of \(M^C \) (hence \(M \)) is equal to \(\{1/\lambda_i; i = 1, 2, \ldots \} \). We have \(r_0 = 1/\lambda_{i_0} \) for some \(i_0 \). Define a distribution \(\tilde{D}_i \) (\(i = 0, 1, 2, \ldots \)) on \(\tilde{M}^C \) by
\((\tilde{D}_0)_u := \text{Ker}\tilde{\Lambda}_{\tilde{g}}^{\perp} \) and \((\tilde{D}_i)_u := \text{Ker}(\tilde{\Lambda}_{\tilde{g}}^{\perp} - \lambda_i I) \) \((i = 1, 2, \ldots)\), where \(u \in \tilde{M}^c \). Since \(M \) is a curvature-adapted isoparametric submanifold admitting no focal point of non-Euclidean type on \(N(\infty) \), \(\tilde{M}^c \) is proper anti-Kaehlerian isoparametric by Fact 5. Therefore, we have \(T\tilde{M}^c = \tilde{D}_0 \oplus (\bigoplus_{i} \tilde{D}_i) \) and \(\text{Spec}_j\tilde{\Lambda}_{\tilde{g}}^{\perp} \) is independent of the choice of \(u \in \tilde{M}^c \). Take \(u_0 \in \tilde{M}^c \) with \((\pi \circ \phi)(u_0) = x_0\). Let \(X_i \in (\tilde{D}_i)_{u_0} \) \((i \neq i_0)\) and \(X_0 \in (\tilde{D}_0)_{u_0} \). Then we have \(\tilde{f}_{r_0}X_i = (1 - r_0\lambda_i)X_i \) and \(\tilde{f}_{r_0}X_0 = X_0 \). Hence we have \(T\tilde{f}_{r_0}(u_0)\tilde{F} = (\tilde{D}_0)_{u_0} \oplus (\bigoplus_{i \neq i_0} (\tilde{D}_i)_{u_0}) \) and \(\text{Ker}(\tilde{f}_{r_0})_{u_0} = (\tilde{D}_0)_{u_0} \), which implies that \(\tilde{D}_0 \) is integrable. On the other hand, we have \(\tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0})\tilde{f}_{r_0}X_i = (\lambda_i r_0)/|r_0|X_i \) and \(\tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0})\tilde{f}_{r_0}X_0 = 0 \), where \(\tilde{\psi} \) is the geodesic flow of \(H^0([0, 1], \mathfrak{g}^C) \). Therefore, we obtain \(\tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0})\tilde{f}_{r_0}X_i = \frac{\lambda_i |r_0|}{\lambda_i - \lambda_i} \tilde{f}_{r_0}X_i \). Hence we have

\[
\text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}) = \sum_{i \neq 0} \frac{\lambda_i |r_0|}{\lambda_i - \lambda_i} \times m_i, \quad \text{where} \quad m_i := \frac{4}{\dim \tilde{D}_i}.
\]

According to Theorem 2 of [19], each leaf of \(\tilde{D}_0 \) is a complex sphere. Let \(L \) be the leaf of \(\tilde{D}_0 \) through \(u_0 \) and \(u_0^* \) be the anti-podal point of \(u_0 \) in the complex sphere \(L \). Similarly we can show

\[
\text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}) = \sum_{i \neq 0} \frac{\lambda_i |r_0|}{\lambda_i - \lambda_i} \times m_i. \quad \text{Thus we have} \quad \text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}) = \text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}^*).
\]

On the other hand, it follows from \(\tilde{\psi}_{[r_0]}(\frac{m_i}{\lambda_i}v_{u_0}^*) = -\tilde{\psi}_{[r_0]}(\frac{m_i}{\lambda_i}v_{u_0}) \) that \(\text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}) = -\text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}^*). \)

Hence we obtain

\[
(5.4) \quad \text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}) = 0.
\]

It follows from (i) and (ii) of Lemma 5.2 that \(F := f_{r_0}(M^C) \) is a curvature adapted anti-Kaehlerian submanifold. Also, it follows from (iv) of Remark 1.2, (5.3), (i) and (iii) of Lemma 5.2 that, for each unit normal vector \(w \) of \(F \) and each \(\mu \in \text{Spec}_jR(w) \setminus \{0\} \), Ker\((A^F_w \pm \sqrt{-\mu}I) \cap \text{Ker}(R(w) - \mu I) = \{0\} \) holds. Therefore, it follows from Lemma 4.1 that \(\tilde{F} \) is a proper anti-Kaehlerian Fredholm submanifold and, for each unit normal vector \(w \) of \(F \), we have \(\text{Tr}_J A^F_w = \text{Tr}_J A^F_w \). It is clear that \(\tilde{\psi}_{[r_0]}(\frac{m_i}{\lambda_i}v_{u_0}) \) is the horizontal lift of \(\psi_{[r_0]}(\frac{m_i}{\lambda_i}v_{u_0}) \) to \(\tilde{f}_{r_0}(u_0) \). Hence we have

\[
(5.5) \quad \text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}) = \text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}^*).
\]

From (5.4) and (5.5), we have \(\text{Tr}_J \tilde{A}_{\tilde{F}(0)}(\frac{m_i}{\lambda_i}v_{u_0}) = 0 \). This completes the proof. \(\square \)

Now we prepare the following lemma to prove Theorem C.

Lemma 5.3. Let \(M \) be a curvature-adapted isoparametric \(C^\infty \)-hypersurface in a symmetric space \(N := G/K \) of non-compact type. Assume that \(M \) has no focal point of non-Euclidean type on \(N(\infty) \). Then, for any complex focal radius \(r \) of \(M \), we have

\[
\text{Spec} \left(A_{r|\text{Ker}R(v_i)} \right) \subset \left\{ \frac{1}{\text{Re } r}, 0 \right\}
\]
and
\[
\text{Spec} \left(A_x |_{\text{Ker}(R(v_x) - \mu I)} \right) \subset \left\{ \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}r)}, \sqrt{-\mu} \tanh(\sqrt{-\mu}r) \right\}
\]
for \(\mu \in \text{Spec} R(v_x) \setminus \{0\} \), where \(x \) is an arbitrary point of \(M \).

PROOF. For simplicity, we set \(D_\mu := \text{Ker}(R(v_x) - \mu \text{id}) \) for each \(\mu \in \text{Spec} R(v_x) \). Let \(r_0 \) be the complex focal radius of \(M \) with \(\text{Re} r_0 = \max \text{Re} r \), where \(r \) runs over the set of all complex focal radii of \(M \). Let \((\lambda, \mu) \in S_{r_0}^* \setminus \{(0, 0)\} \) and \(r \) a complex focal radius including \(\text{Ker}(A_\mu - \lambda I) \cap D_\mu \) as the focal space, that is, \(\lambda = \hat{\tau}(\mu) \) (see (ii) of Remark 1.2).

Set \(c_{\lambda, \mu} := -\frac{\mu + \sqrt{\lambda}}{\lambda - r_0(\mu)} \). We shall show \(\text{Re} c_{\lambda, \mu} \leq 0 \). The argument divides into the following three cases:

(i) \(\mu = 0 \), (ii) \(0 < \sqrt{-\mu} < |\lambda| \), (iii) \(|\lambda| < \sqrt{-\mu} \).

First we consider the case (i). Then we have \(c_{\lambda, \mu} = \frac{\lambda}{1 - \lambda r_0} \). Also, we can show \(\lambda = 1/r \).

Hence we have
\[
(5.6) \quad c_{\lambda, \mu} = \frac{1}{r - r_0}.
\]

Furthermore, we have \(\text{Re} c_{\lambda, \mu} \leq 0 \) from the choice of \(r_0 \). Next we consider the case (ii). Since \(\lambda = \hat{\tau}(\mu) \) and \(\lambda \) is a real number with \(|\lambda| > \sqrt{-\mu} \), we can show \(\lambda = \hat{\tau}(\mu) = \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}r)} \) and \(r \equiv \text{Re} r \mod (\pi i)/\sqrt{-\mu} \). Hence we have \(c_{\lambda, \mu} = \hat{\tau}(r_0 - \text{Re} r)(\mu) \), where we note that \(\text{Re} r \not\equiv r_0 \mod (\pi i)/\sqrt{-\mu} \) because \((\lambda, \mu) \in S_{r_0}^* \). Therefore, we obtain
\[
(5.7) \quad \text{Re} c_{\lambda, \mu} = \frac{\sqrt{-\mu}}{\text{tanh}(\sqrt{-\mu}r_0)} \text{tanh}(\sqrt{-\mu}(\text{Re} r - r_0)) \frac{1}{\text{tan}^2(\sqrt{-\mu}r_0) + \text{tan}^2(\sqrt{-\mu}r_0)} \leq 0.
\]

because \(\text{Re} r \leq r_0 \). Next we consider the case (iii). Since \(\lambda = \hat{\tau}(\mu) \) and \(\lambda \) is a real number with \(|\lambda| < \sqrt{-\mu} \), we can show \(\lambda = \hat{\tau}(r_0 - \text{Re} r)(\mu) \) and \(r \equiv \text{Re} r \mod \left(\frac{\pi}{\sqrt{-\mu}}\right) \). Hence we have \(c_{\lambda, \mu} = \hat{\tau}(r_0 - \text{Re} r + \frac{\pi}{\sqrt{-\mu}})(\mu) \). Therefore, we obtain
\[
(5.8) \quad \text{Re} c_{\lambda, \mu} = \frac{\sqrt{-\mu}}{\text{tanh}(\sqrt{-\mu}(\text{Re} r - r_0))} \text{tanh}(\sqrt{-\mu}(r_0 - \text{Re} r))(\mu) \frac{1}{\text{tan}^2(\sqrt{-\mu}(r_0 - \text{Re} r)) + \text{tan}^2(\sqrt{-\mu}(r_0 - \text{Re} r))} \leq 0.
\]

Thus \(\text{Re} c_{\lambda, \mu} \leq 0 \) is shown in general. Hence, from the identity in Theorem B, \(\text{Re} c_{\lambda, \mu} = 0 \) \((\lambda, \mu) \in S_{r_0}^* \) follows, where we note that \(c_{0, 0} = 0 \). In case of (i), it follows from (5.6) that \(\text{Re} \left(\frac{1}{r_0} \right) = 0 \). Hence we have \(\text{Re} r \equiv \text{Re} r_0(< \infty) \) or \(r = \infty \). If \(\text{Re} r = \text{Re} r_0(< \infty) \), then we have \(\lambda = 1/r = 1/\text{Re} r_0 = \hat{\tau}(r_0)(0) \) (which does not happen if \(r_0 \) is real because \((\lambda, 0) \in S_{r_0}^* \)). Also, if \(r = \infty \), then we have \(\lambda = 0 \). Thus we have
\[
(5.9) \quad \text{Spec}(A_x |_{D_0}) \subset \left\{ \frac{1}{\text{Re} r_0}, 0 \right\}.
\]

In case of (ii), it follows from (5.7) that \(\text{Re} r = \text{Re} r_0 \). Hence we have \(\lambda = \hat{\tau}(r_0)(\mu) \) (which does not happen if \(r_0 \equiv \text{Re} r_0 \mod (\pi i)/\sqrt{-\mu} \) because \((\lambda, \mu) \in S_{r_0}^* \)). In case of (iii), it
follows from (5.8) that \(\text{Re} r = \text{Re} r_0 \). Hence we have \(\lambda = \tilde{r}_{(\text{Re} r_0 + \frac{i}{2\sqrt{-\mu}})}(\mu) \) (which does not happen if \(r_0 \equiv \text{Re} r_0 + \frac{i}{2\sqrt{-\mu}} \pmod{\pi i}/\sqrt{-\mu} \)) because \(\lambda, \mu \in S^1_{r_0} \). Hence we have

\[
\text{Spec}(A_x \mid D_{\mu}) \subset \left\{ \frac{\sqrt{\mu}}{\tanh(\sqrt{-\mu}R_0)}, \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}R_0)} \right\}.
\]

This completes the proof. \(\square \)

Next we prove Theorem C in terms of this Lemma and its proof.

Proof of Theorem C. According to the proof of Lemma 5.3, the real parts of complex focal radii of \(M \) coincide with one another. Denote by \(s_0 \) this real part. Then, according to Lemma 5.3, we have

\[
\text{Spec}(A_x \mid D_{\mu}) \subset \left\{ \frac{1}{s_0} \right\}
\]

and

\[
\text{Spec}(A_x \mid D_{\mu}) \subset \left\{ \frac{\sqrt{\mu}}{\tanh(\sqrt{-\mu}S_0)}, \frac{\sqrt{-\mu}}{\tanh(\sqrt{-\mu}S_0)} \right\} \quad (\mu \in \text{Spec}(R(v_x) \setminus \{0\})).
\]

Set \(D_0^V := \text{Ker} \left(A_x \mid D_{\mu} - \frac{1}{s_0} \text{id} \right) \), \(D_0^H := \text{Ker} A_x \mid D_{\mu} \),

\[
D_0^V := \text{Ker} \left(A_x \mid D_{\mu} - \frac{\sqrt{\mu}}{\tanh(\sqrt{-\mu}S_0)} \text{id} \right)
\]

and

\[
D_0^H := \text{Ker} \left(A_x \mid D_{\mu} - \frac{\sqrt{\mu}}{\tanh(\sqrt{-\mu}S_0)} \text{id} \right).
\]

According to (ii) of Remark 1.2, if \(D_0^V \oplus \left(\bigoplus_{\mu \in \text{Spec}(R(v_x) \setminus \{0\})} D_0^V \right) \neq \{0\} \), then \(s_0 \) is a (real) focal radius of \(M \) whose focal space is equal to \(D_0^V \oplus \left(\bigoplus_{\mu \in \text{Spec}(R(v_x) \setminus \{0\})} D_0^V \right) \neq \{0\} \). Let \(\eta_{sv} \) \((s \in \mathbb{R})\) be the end-point map for \(sv \). Set \(M_{sv} := \eta_{sv}(M) \). Set \(F := M_{sv} \). If \(s_0 \) is a (real) focal radius of \(M \), then \(F \) is the only focal submanifold of \(M \), and if \(s_0 \) is not a (real) focal radius of \(M \), then \(F \) is a parallel submanifold of \(M \). Without loss of generality, we may assume that \(\epsilon K \in F \). Define a unit normal vector field \(v^s \) of \(M_{sv} \) \((0 \leq s < s_0)\) by \(v^s_{\eta_{sv}(x)} = \gamma^s_{sv}(x) \) \((x \in M)\). Denote by \(A^t \) \((0 \leq s < s_0)\) the shape operator of \(M_{sv} \) \((\text{for} v^s)\) and \(A^f \) the shape tensor of \(F \). Set \((D_0^V)^t := (\eta_{sv})_*(D_0^V) \) \((0 \leq s < s_0)\) and \((D_0^H)^t := (\eta_{sv})_*(D_0^H) \) \((0 \leq s < s_0, \mu \in \text{Spec}(R(v_x) \setminus \{0\})\). Also, set \((D_0^V)^f := (\eta_{sv})_*(D_0^V) \) \((s \in \mathbb{R})\) and \((D_0^H)^f := (\eta_{sv})_*(D_0^H) \) \((s \in \mathbb{R}, \mu \in \text{Spec}(R(v_x) \setminus \{0\})\). Easily we have

\[
T_{\eta_{sv}(x)} F = (D_0^V)^t_{\eta_{sv}(x)} \bigoplus \left(\bigoplus_{\mu \in \text{Spec}(R(v_x) \setminus \{0\})} (D_0^H)^f_{\eta_{sv}(x)} \right).
\]

Also, we can show

\[
A^f_{\eta_{sv}(x)}|_{(D_0^H)^f_{\eta_{sv}(x)}} = 0 \quad (0 \leq s < s_0)
\]

and

\[
A^f_{\eta_{sv}(x)}|_{(D_0^V)^f_{\eta_{sv}(x)}} = \mu \tanh(\sqrt{-\mu}(s_0 - s)) \text{id} \quad (0 \leq s < s_0).
\]
FIGURE 3.

\[D_x^H := (D_0^H)_x \oplus \left(\bigoplus_{\beta \in \Delta_+ \cap \mathbb{R}_x} (D_\beta^H)_x \right) \]

\[(D_H^s)_{\psi}(s) := \left(\bigoplus_{\beta \in \Delta_+ \cap \mathbb{R}_x} (D_\beta^H)^s_{\psi}(s) \right) \]

Hence we have

\[A^F_{\psi_{t_0}(v_x)} | (D_0^H)_{\psi_{t_0}(x) = 0} = 0 \]

and

\[A^F_{\psi_{t_0}(v_x)} | (D_0^H)_{\psi_{t_0}(x)} = 0 \]

where \(\psi \) is the geodesic flow of \(G/K \). From these relations and (5.11), we obtain \(A^F_{\psi_{t_0}(v_x)} = 0 \). Since this relation holds for any \(x \in M \), \(F \) is totally geodesic. Denote by \(\exp^\perp \) the normal exponential map for \(F \). Since the real parts of complex focal radii of \(M \) coincide with one another, the normal umbrella \(\exp^\perp(T^\perp F) \) do not intersect with one another. From this fact, an involutive diffeomorphism \(\tau : G/K \to G/K \) having \(F \) as the fixed point set is well-defined by \(\tau(\exp^\perp(w)) := \exp^\perp(-w) \) \((w \in T^\perp F)\). For each \(s \in \mathbb{R} \setminus \{s_0\} \), the restriction \(\tau|_{M_s} \) of \(\tau \) to \(M_s \) coincides with the end-point map \(\eta_{2(s_0 - s)^v} \) for \(2(s_0 - s)^v \). Since \(F \) is totally geodesic, we see that \(\eta_{2(s_0 - s)^v} \) (hence \(\tau|_{M_s} \)) is an isometry of \(M_s \). From this fact, it follows that \(\tau \) is an isometry of \(G/K \). Hence \(F \) is reflective. Furthermore, by imitating the proof of [16, Proposition 1.12], we can show that \(F \) is an orbit of a Hermann action on \(G/K \) as follows. Take \(\text{Exp} \) \(Z_0 \in F \), where \(\text{Exp} \) is the exponential map of \(G/K \) at \(o \). Set \(m := \text{Ad}(\text{exp}(-Z_0))(\text{exp}(-Z_0))^{-1}(T_{\text{Exp} Z_0} F) \), where \(\text{Ad} \) is the adjoint operator of \(G \). Define a subalgebra \(\mathfrak{t}' \) of \(\mathfrak{g} \) by \(\mathfrak{t}' := \{ X \in \mathfrak{t} ; \text{ad}(X)m = m \} \) and set \(\mathfrak{h} := \mathfrak{t}' + m \), which is a subalgebra of \(\mathfrak{g} \). Set \(H := I(\text{exp} Z_0)(\text{exp}(h)) \), where \(I(\text{exp} Z_0) \) is the inner automorphism of \(G \) by
exp Z_0. Easily we can show that T_{\exp Z_0}(H \exp Z_0) = T_{\exp Z_0} F and hence H \exp Z_0 = F. Define an involution \hat{\tau} of G by \hat{\tau}(g) := \tau \circ g \circ \tau^{-1} (g \in G). It is easy to show that (Fix \hat{\tau})_0 \subset H \subset Fix \hat{\tau}. Thus H \lhd G/K is a Hermann action. Let H^C be the complexification of H and M^C(\subset G^C/K^C) be the complete complexification of M. See [22] about the definition of the complete complexification of M. Since both H^C \cdot o and M^C are anti-Kaehler equifocal submanifolds having F^C as a focal submanifold, they are equal to one of the partial tubes over F^C stated in Section 5 in [22]. Thus they coincides with each other. Furthermore, from this fact, we can derive H \cdot o = M. This completes the proof.

REFERENCES

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141.
[2] J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9–26.
[3] J. Berndt and L. Vanhecke, Curvature adapted submanifolds, Nihonkai Math. J. 3 (1992), 177–185.
[4] J. Berndt and M. Bruck, Cohomogeneity one actions on hyperbolic spaces, J. Reine Angew. Math. 541 (2001), 209–235.
[5] J. Berndt, S. Console and C. Olmos, Submanifolds and holonomy, Chapman & Hall/CRC Res. Notes Math. 434, Chapman & Hall/CRC, Boca Raton, FL, 2003.
[6] J. Berndt and H. Tamaru, Homogeneous codimension one foliations on noncompact symmetric space, J. Differential Geom. 63 (2003), 1–40.
[7] J. Berndt and H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces with a totally geodesic singular orbit, Tohoku Math. J. 56 (2004), 163–177.
[8] J. E. D’Atri, Certain isoparametric families of hypersurfaces in symmetric spaces, J. Differential Geom. 14 (1979), 21–40.
[9] H. Ewert, Equifocal submanifolds in Riemannian symmetric spaces, Doctoral thesis.
[10] L. Giaatti, Complex extensions of semisimple symmetric spaces, Manuscripta Math. 120 (2006), 1–25.
[11] O. Goertsches and G. Thorbergsson, On the geometry of the orbits of Hermann actions, Geom. Dedicata 129 (2007), 101–118.
[12] E. Heintze, X. Liu and C. Olmos, Isoparametric submanifolds and a Chevalley type restriction theorem, Integrable systems, geometry, and topology, 151–190, AMS/IP Stud. Adv. Math. 36, Amer. Math. Soc., Providence, RI, 2006.
[13] E. Heintze, R. S. Palais, C. L. Terng and G. Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology, & physics, 214–245, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995.
[14] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Pure Appl. Math. 80, Academic Press, Inc., New York-London, 1978.
[15] W. Y. Hsiang and H. B. Lawson Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1–38.
[16] T. Kimura and M. S. Tanaka, Stability of certain minimal submanifolds in compact symmetric spaces of rank two, Differential Geom. Appl. 27 (2009), 23–33.
[17] N. Koike, On proper Fredholm submanifolds in a Hilbert space arising from submanifolds in a symmetric space, Japan. J. Math. (N.S.) 28 (2002), 61–80.
[18] N. Koike, Submanifold geometries in a symmetric space of non-compact type and a pseudo-Hilbert space, Kyushu J. Math. 58 (2004), 167–202.
[19] N. Koike, Complex equifocal submanifolds and infinite dimensional anti-Kaehlerian isoparametric submanifolds, Tokyo J. Math. 28 (2005), 201–247.
[20] N. KOIKE, Actions of Hermann type and proper complex equifocal submanifolds, Osaka J. Math. 42 (2005), 599–611.
[21] N. KOIKE, A splitting theorem for proper complex equifocal submanifolds, Tohoku Math. J. 58 (2006), 393–417.
[22] N. KOIKE, The homogeneous slice theorem for the complete complexification of a proper complex equifocal submanifold, Tokyo J. Math. 33 (2010), 1–30.
[23] N. KOIKE, On curvature-adapted and proper complex equifocal submanifolds, Kyungpook Math. J. 50 (2010), 569–536.
[24] N. KOIKE, Hermann type actions on a pseudo-Riemannian symmetric space, Tsukuba J. Math. 34 (2010), 137–172.
[25] N. KOIKE, Examples of a complex hyperpolar action without singular orbit, Cubo A Math. 12 (2010), 127–143.
[26] N. KOIKE, The complexifications of pseudo-Riemannian manifolds and anti-Kaehler geometry, arXiv:math.DG/0807.1601v3.
[27] A. KOLLROSS, A Classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2001), 571–612.
[28] R. MIYAOKA, Transnormal functions on a Riemannian manifold, Differential Geom. Appl. 31 (2013), 130–139.
[29] T. MURPHY, Curvature-adapted submanifolds of symmetric spaces, Indiana Univ. Math. J. 61 (2012), 831–847.
[30] B. O’NEILL, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York, 1983.
[31] R. S. PALAIS, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340.
[32] R. S. PALAIS AND C. L. TERNG, Critical point theory and submanifold geometry, Lecture Notes in Math. 1353, Springer-Verlag, Berlin, 1988.
[33] R. SZÖKE, Adapted complex structures and geometric quantization, Nagoya Math. J. 154 (1999), 171–183.
[34] R. SZÖKE, Involutive structures on the tangent bundle of symmetric spaces, Math. Ann. 319 (2001), 319–348.
[35] R. SZÖKE, Canonical complex structures associated to connections and complexifications of Lie groups, Math. Ann. 329 (2004), 553–591.
[36] Z. TANG, Multiplicities of equifocal hypersurfaces in symmetric spaces, Asian J. Math. 2 (1998), 181–214.
[37] C. L. TERNG AND G. THORBERGSSON, Submanifold geometry in symmetric spaces, J. Differential Geom. 42 (1995), 665–718.
[38] Q. M. WANG, Isoparametric functions on Riemannian manifolds I, Math. Ann. 277 (1987), 639–646.
[39] B. WU, Isoparametric submanifolds of hyperbolic spaces, Trans. Amer. Math. Soc. 331 (1992), 609–626.