Shear accelerated crystallization in a supercooled atomic liquid

Zhen Shao,1,2 Jonathan P. Singer,1,2 Yanhui Liu,2,3 Ze Liu,2,3 Huiping Li,2,3 Manesh Gopinadhan,1,2 Corey S. O’Hern,2,3 Jan Schroers,2,3∗ and Chinedum O. Osuji1,2,†

1Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511
2Center for Research on Interface Structures and Phenomena, Yale University, New Haven CT 06511
3Department of Mechanical Engineering and Materials Science, Yale University, New Haven CT 06511

(Dated: July 9, 2014)

A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disc. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the non-deformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate \(\dot{\gamma}_c \approx 0.3 \text{ s}^{-1} \) which corresponds to Péclet number, \(Pe \sim O(1) \). The observation of shear accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of non-trivial shear-related effects during thermoplastic deformation of similar systems.

PACS numbers: 81.05.Kf,61.43.Fs,61.25.Mv,64.70.pe

The ability of flow fields to modify the structure and phase behavior of condensed matter has been well described in a variety of systems. Plastic strain in solid metals results in texture development [1] while steady or reciprocating shear can orient microstructures in polymer melts [2,3], colloidal suspensions [4,5], block copolymers [6,7] and lyotropic surfactant mesophases [8]. Likewise, shear can suppress or enhance phase stability [9] and in particular, shear enhanced crystallization has been experimentally observed in a broad range of materials.

The acceleration of crystallization in macromolecular systems under shear is understood to originate in the flow alignment of chains which reduces the entropy of the melt and biases the system towards the ordered arrangement of elongated strands that characterizes the crystalline state. The effect is particularly acute during nucleation and is parameterized by the Weissenberg number \((We) \) which is the dimensionless product of the shear rate and the characteristic relaxation time of the polymer chains, \(We = \dot{\gamma} \tau_d \). For \(We > 1 \) the system undergoes a coil-stretch transition. The large relaxation time of entangled polymer melts means that this can occur at relatively low shear rates [10].

Shear induced crystallization in colloidal systems occurs in regimes of flow where the suspension microstructure can be significantly perturbed by the flow field. The transition to such a regime is described by the dimensionless Péclet number, \(Pe = \dot{\gamma} \tau_d \) which captures the relative importance of advective and diffusive mass transport, with \(\tau_d \) the timescale for particle diffusion. An ordered structure of packed particle layers is often observed in hard sphere suspensions at modest shear rates with \(Pe \gg 1 \) [11,12]. Such structures may accelerate crystallization by encouraging nucleation, while the shear field can also enhance the growth rate of existing nuclei. Conversely, excessive shear flow can “shear melt” colloidal crystals.

As canonical examples, mesoscopic systems such as polymer melts and colloidal suspensions highlight the balance of timescales that defines the emergence of shear-induced crystallization, and allow quantitative assessment of this effect. By comparison, apart from recent computational work involving molecular dynamics [13,14], this topic has remained largely unexplored in atomic systems. Experimental progress has been impeded in large part due to the practical difficulties associated with the prohibitively high shear rates needed to enter regimes of flow with \(Pe \sim O(1) \) for fast relaxing atomic liquids and melts. To date, deviations in the crystallization of metals from the quiescent case have been observed only in an extreme case during splat-cooling where strain rates up to 10⁶ s⁻¹ are present [18].

Here, we present systematic and quantitative experimental evidence that shear can accelerate crystallization in an atomic melt at substantially lower shear rates than mentioned above. We consider a bulk metallic glass (BMG) forming alloy and identify a critical shear rate of \(\dot{\gamma} = 0.3 \text{ s}^{-1} \) above which substantial shear-related effects can be observed in the kinetics of isothermal crystallization subsequent to flow, and below which the material displays behavior similar to that of the quiescent case. Using the Volgel-Fulcher-Tammann (VFT) form for the temperature dependence of the viscosity we correlate this critical shear rate with \(Pe \sim O(1) \). The ability to observe shear-induced effects at experimentally accessible shear rates is linked to the highly viscous nature of the melt in the supercooled state. The modest shear rates at which flow influences crystallization suggests that shear accelerated crystallization must be properly accounted for as a practical matter in BMG forming operations.
FIG. 1. Left: A short rod of the BMG is pressed to a flat disc using a loading rate of 15kN/min for 180s at 270 °C. Right: Normalized compression as a function of time for selected loading rates. h_f is the final thickness of the disc.

The system under investigation here is a Pt-based alloy, Pt$_{57.5}$Cu$_{14.7}$Ni$_{5.3}$P$_{22.5}$. Samples were subjected to shear via deformation during uniaxial compression from a rod-like pellet to a thin disc. In a forming experiment, a rod of the BMG is placed between two flat platens that are maintained at a constant temperature of 270 °C as depicted in Fig. 1. For Pt$_{57.5}$Cu$_{14.7}$Ni$_{5.3}$P$_{22.5}$, this temperature is in the supercooled liquid regime, which is bounded by the glass transition temperature, $T_g = 235$ °C, and the crystallization temperature, $T_x = 305$ °C. In the supercooled state, the alloy is a sluggish liquid with a viscosity η ranging from $10^6 - 10^{12}$ Pa.s [19]. A 3-minute load profile with a constant loading rate ranging from 1.5 to 15000 N/min was applied. This resulted in deformation of the alloy sample into a thin disc, with a reduction in thickness ranging from a factor of $\approx 3X$-30X depending on the loading rate. In all cases the shear strain rates exceeded the compressional strain rates for the majority of the deformation, $\dot{\gamma} = \dot{\varepsilon}_{xz} \gg \dot{\varepsilon}_{zz}$.

The crystallization kinetics of the sheared material were characterized by thermal analysis of the pressed disc using differential scanning calorimetry (DSC) in which heat flow was recorded during isothermal annealing at 270 °C. Data were collected for different radial positions for a single loading profile, and for wedge-shaped sections of discs prepared at the different loading rates shown in Table 1. In the first case pressed discs produced at a loading rate of 15 kN/min were sectioned into several circular annuli to provide radial resolution of the crystallization behavior with each annulus evaluated separately by DSC. In the second case, wedge-shaped sections were cut from discs produced at different loading rates and individually characterized by DSC. This provided a description of the crystallization behavior integrated over the radially dependent shear rates produced by each loading profile. For experimental convenience and more accurate detection, the crystallization time is defined as the time when the heat flow reaches its maximum. t_x defined in this manner corresponds to the time when the extent of crystallization is $\sim 50\%$ due to the near-symmetric shape of the crystallization peak in the thermogram.

The quiescent sample provides a baseline against which the crystallization behavior of deformed samples can be compared as it is exposed to the same thermal treatment (3 minutes at 270 °C) but not subjected to any deformation. Data are shown in Fig. 2a for $\dot{\gamma} = 0$. Crystallization for the quiescent case occurs with a highly reproducible crystallization time of 20 minutes that agrees well with published data for this alloy [19] after properly taking into consideration the 3 minute latent period.[20] For the pressed disc the crystallization time for material sampled from the center of the disc out to $r/7$, (r is the radius of the disc) is also 20 minutes (purple trace in Fig. 2a). The crystallization kinetics for this center material are thus effectively indistinguishable from that of the quiescent sample. Data taken from successive circular annuli show a progressive decrease of the crystallization time from near-quiescent to a minimum of 10 minutes.

The effects of different shear rates produced by varying the loading rate are shown in Fig. 2b. Sample wedges provide data that reflects the integrated effect of the radially dependent shear rates provided by each deformation profile. Material deformed with the highest loading rate of 15 kN/min crystallizes after only 7 minutes of additional heating, about three times faster than the quiescent case. t_x approaches that of the quiescent sample on decreasing loading rates, with $t_x = 18$ minutes for samples pressed at the lowest loading rate of 1.5N/min.

As discussed above, during deformation, the sample experiences different shear rates as a function of radial position and the applied loading rate. The data unambiguously demonstrate that the crystallization times are a strong function of position and loading rate and thus we can conclude that the crystallization kinetics are accelerated by shear. One may speculate that heat evolved during deformation of the system could contribute to a speeding up of crystallization. We can estimate the relevance of this effect by calculating the heat evolved through viscous dissipation on deformation of the sample (Supplementary Material). The rate of heat transport out of the material significantly exceeds the rate of generation, resulting in an effectively isothermal deformation. We can therefore exclude heat evolved during flow

Sample	Loading rate (N/min)	h_f (µm)	t_x(min)
1	0	2500	20
2	1.5	724	17.7
3	15	219	9.7
4	150	165	9.3
5	1500	106	7.7
6	15000	75	7.9
as the origin of the accelerated crystallization behavior. We propose instead that crystallization is accelerated due shear-driven local ordering in volume elements of the material where the shear rate exceeds the critical shear rate for $Pe \sim O(1)$. Such local ordering would be expected to speed crystallization by lowering the barrier for formation of a critical nucleus during subsequent isothermal annealing. Viewed another way, for $Pe > 1$, the atomic scale structure of the liquid is dictated by the shear field and not by diffusion.

The Péclet number is defined by the relative magnitude of the diffusive versus advective transport rates. Under quiescent conditions mass transport occurs by diffusion alone, with a characteristic timescale τ_d set by the diffusivity D and the characteristic atomic length scale a, $\tau_d = a^2/D$. The advective timescale due to shear is given by the inverse shear rate, $\tau_d = \dot{\gamma}^{-1}$ and so $Pe = \dot{\gamma} a^2/D$. We define a critical shear rate $\dot{\gamma}_c$ as that at which the atomic transport by advection dominates diffusive transport. For $Pe > 1$ and $\dot{\gamma} > \dot{\gamma}_c$, the microstructure of the melt is dictated by the advection and crystallization kinetics become a function of the shear rate. The critical shear rate can be approximated in terms of the melt viscosity through the Stokes-Einstein relation $D = k_B T/3\pi \eta a$. The melt viscosity exhibits a VFT temperature dependence, $\eta = \eta_0 \exp [F^* T_0/(T - T_0)]$ where F^*, η_0 and T_0 are empirical constants obtained by fitting temperature dependent viscosity data. The temperature dependence of the critical shear rate for flow-dominated crystallization is then given by Eq. (1).

$$\dot{\gamma}_c = \frac{k_B T}{3\pi \eta_0 a^3} \exp \left[-\frac{F^* T_0}{T - T_0} \right]$$

For $Pt_{57.5}Cu_{14.7}Ni_{13.5}P_{22.5}$, $\eta_0 = 4 \times 10^{-5}$ Pa.s, $T_0 = 336$ K and $F^* = 16.4$. Based on atomic radii of 177, 145, 149 and 98 pm for Pt, Cu, Ni and P, we calculate a volume-weighted average atomic size (diameter) of $a = 0.32$ nm, and calculate $\dot{\gamma}_c(T)$, Fig. 3. For the experimental temperature of 543 K $\dot{\gamma}_c \approx 1.7$.

Further consideration of the above treatment requires establishing the relationship between the applied loading rate and radially-dependent local shear rates. We hypothesize that strain accumulated at shear rates above $\dot{\gamma}_c$ should provide a strong correlation with the change in the crystallization kinetics. The spatial dependence of the instantaneous shear rate from the deviatoric component of the strain rate in a disc subjected to compression by parallel plates under no-slip boundary conditions can be written analytically as a function of the compression rate and the original dimensions, Eq. (2). This quantifies the instantaneous flow field, and as expected, the maximum shear rates occur at the outermost edges (top and bottom) of the disc (Supplementary Material). A more complete description however must account for the physical transport of volume elements during flow as material is advected during deformation. This requires tracking the mechanical and displacement histories of individual fluid parcels. For this we employ a finite element method (Supplementary Material).

$$\dot{\gamma}(r,z) = \frac{3h}{\sqrt{2h}} \left[(r/h)^2 (z/h)^2 + 3 \left(1 - (z/h)^2 \right) \right]^{1/2}$$

We calculate the volume averaged accumulated strain that fluid elements at a given radial position encountered throughout their flow history. Specifically we consider strain accumulated only when the fluid parcels experience strain rates larger than $\dot{\gamma}_c$, Eq. 3. Data from finite
element calculations employing simulated loading rates of Sample 4 are used to determine $\dot{\gamma}_c$ by performing a sensitivity analysis. The distribution of accumulated strain is shown in Fig. 4. Although the instantaneous shear rates are largest at the periphery of the disc (Eq. [4]), the accumulated strain displays a different distribution as the volume elements at the peripheries are constantly refreshed due to the generation of new surface during the deformation of the disc. The maximum accumulated strain therefore occurs slightly inward of the maximum in the instantaneous shear rate.

We consider the dependence of the crystallization time t_x on strain γ_{ac} accumulated above a given strain rate $\dot{\gamma}_a$, with accumulated strain averaged over each of 4 annuli that collectively represent the full radial extent of the sample. The gradient $n = d\gamma_x/d\dot{\gamma}_a$ exhibits a sigmoidal shape. $\dot{\gamma}_c$ is defined as the point at which there is a maximum in the rate of change of this dependence as a function of the shear rate $\dot{\gamma}_a$, signaling the point at which the sensitivity of the dependence is greatest, that is $\dot{\gamma}_a$ for which $dn/d\dot{\gamma}_a$ exhibits a maximum. In this manner we estimate $\dot{\gamma}_c=0.3$ s$^{-1}$, inset Fig. 4 (expected $\dot{\gamma}_{ac}^c(r, z)$ in Supplementary Material). The experimental t_x for the 4 annuli are plotted as a function of γ_{ac}^c, Fig. [8]. t_x shows a marked dependence on γ_{ac}^c, with a linear decrease over a broad range of accumulated critical strain after a sharp decrease from the quiescent value.

$$\gamma_{ac}^c = \int_{t: \dot{\gamma}>\dot{\gamma}_c} \int h' R \int \dot{\gamma}(r,h,t) r dr dh dt$$

(3)

Our experimentally determined $\dot{\gamma}_c=0.3$ s$^{-1}$ differs from the predicted value of 1.7 for $Pe = 1$ based on Eq. [1]. The lack of exact agreement is not surprising however given the uncertainty associated with the parameters in the VFT description of the dynamics and the exponential dependence on two of these parameters, F^* and T_0. Additionally, estimating the diffusivity using the Stokes-Einstein equation may represent an oversimplification.

[23, 24] The correlation between increasing accumulated critical strain and rate of crystallization is intuitive in the context of the earlier discussion. Similar observations have been made for polymer melts crystallized during or subsequent to shear, with similarly strong correlations between the normalized crystallization rate and the accumulated strain or applied shear rate. However simple models which can correctly account for the observed behavior are not available. The persistence of this situation despite the practical significance of flow induced crystallization in melt-processed commodity-scale polymers such as polyolefins reflects the complexity of the underlying phenomena.

In the present case we have shown that an atomic melt may also display strong shear-induced crystallization behavior which we quantitatively link to flow above a critical shear rate corresponding to $Pe \approx 1$. We propose that local ordering driven by shear is responsible for this effect, in much the same manner as observed in mesoscopic systems such as colloidal suspensions [5]. X-ray diffraction (XRD) of as-pressed discs reveals a broad amorphous hump centered at 2$\theta = 40^\circ$ that is characteristic of the glass, with no discernable differences in the structure of the pressed discs as a function of radial position (Fig. 5). XRD of fully crystallized material likewise does not display any significant differences across the disc. We therefore have no indication of crystallite formation during shear which suggests that the en-
hancement of subsequent nucleation and growth during isothermal annealing is the result of very subtle changes in the structure of the supercooled liquid. We speculate that the multi-component nature of the amorphous alloys may also play a role in this regard. The complex composition that is often a prerequisite for the suppression of crystallization in bulk glass formers \[20\] requires non-polymorphic crystallization in which the composition of the crystal is different than that of its surrounding melt. In addition to local ordering driven by advection, for non-polymorphic crystallization, shear flow may act to speed nucleation by encouraging local compositional heterogeneities which develop due to polydispersity in the size of the constituent atoms. We note that accelerated crystallization kinetics were also observed in another BMG-former, Zr$_{44}$Al$_{10}$Ti$_{11}$Cu$_{10}$Ni$_{10}$Be$_{25}$, as described in Supplementary Material.

In conclusion, we have observed enhanced crystallization kinetics under shearing when deforming a metallic glass in its supercooled liquid state. The model that we propose assumes a transition from diffusion to an advective dominated mass transport at a critical shear rate. The strain rates present in our experiments are comparable with deformation rates encountered during thermoplastic forming \[29\]. We therefore anticipate that significant shear-crystallization effects will be relevant during thermoplastic forming of BMGs, particularly in the vicinity of T_g where the strong divergence of viscosity drives γ_c down to small values, Fig. 3. This may take on added significance in confinement where finite size effects come into play \[30\] \[31\]. It is likely that crystallization in shear bands during deformation of metallic glasses \[32\] \[34\] occurs subject to the same considerations as detailed here. Indeed, the comparison to shear induced crystallization in polymers by enhanced atomic diffusivity through shear has been advanced for this scenario \[33\].

This work was supported by NSF MRSEC DMR-1119826. Facilities use was supported by YINQE. J.S., Z.L., H.L and Y.L contributed equally to this work.

[1] V. Segal, Mat. Sci. Eng. A-Struct. 197, 157 (1995).
[2] R. Lagasse and B. Maxwell, Polym. Eng. Sci. 16, 189 (1976).
[3] L. Li and W. H. de Jeu, Macromolecules 36, 4862 (2003).
[4] L. B. Chen, C. F. Zukoski, B. J. Ackerson, H. J. M. Hanley, G. C. Straty, J. Barker, and C. J. Glinka, Phys. Rev. Lett. 69, 688 (1992).
[5] Y. L. Wu, D. Derks, A. van Blaaderen, and A. Imhof, P. Natl. Acad. Sci. 106, 10564 (2009).
[6] K. I. Winey, S. D. Patel, R. G. Larson, and H. Watanabe, Macromolecules 26, 2542 (1993).
[7] Z.-R. Chen, J. A. Kornfield, S. D. Smith, J. T. Grothaus, and M. M. Satkowski, Science 277, 1248 (1997).
[8] J. Penfold, E. Staples, A. K. Lodhi, I. Tucker, and G. J. T. Tiddy, J. Phys. Chem. B 101, 66 (1997).
[9] A. Onuki, J. Phys.: Condens. Matter 9, 6119 (1997).
[10] A. Elmounni and H. H. Winter, Rheol. Acta 45, 793 (2006).
[11] J. Vermant and M. Solomon, J. Phys.: Condens. Matter 17, R187 (2005).
[12] X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, Science 333, 1276 (2011).
[13] A. V. Mokshin and J.-L. Barrat, J. Chem. Phys. 130, 034502 (2009).
[14] A. V. Mokshin and J.-L. Barrat, Phys. Rev. E 82, 021505 (2010).
[15] A. Kerrache, N. Mousseau, and L. J. Lewis, Phys. Rev. B 84, 014110 (2011).
[16] A. Mokshin and J.-L. Barrat, Bull. Russ. Acad. Sci. Phys. 75, 686 (2011), ISSN 1062-8738.
[17] A. V. Mokshin, B. N. Galimzyanov, and J.-L. Barrat, Phys. Rev. E 87, 062307 (2013).
[18] B. Lohwongwatanakul, J. Schroers, and W. L. Johnson, Phys. Rev. Lett. 96, 075503 (2006).
[19] B. A. Legg, J. Schroers, and R. Busch, Acta Mater. 55, 1109 (2007).
[20] J. Schroers and W. L. Johnson, J. Appl. Phys. 88, 44 (2000).
[21] I. Gallino, J. Schroers, and R. Busch, J. Appl. Phys. 108, 063501 (2010).
[22] J. Engmann, C. Servais, and A. S. Burbidge, J. Non-Newton. Fluid. 132, 1 (2005).
[23] J. A. Hodgdon and F. H. Stillinger, Phys. Rev. E 48, 207 (1993).
[24] U. Geyer, W. L. Johnson, S. Schneider, Y. Qiu, T. A. Tombrello, and M.-P. Macht, Appl. Phys. Lett. 69, 2492 (1996).
[25] S. Acierno, B. Palomba, H. H. Winter, and N. Grizzuti, Rheol. Acta 42, 243 (2003).
[26] A. L. Greer, Nature 366, 303 (1993).
[27] A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).
[28] K. F. Kelton, Philos. Mag. Lett. 77, 337 (1998).
[29] J. Schroers, T. M. Hodges, G. Kumar, H. Raman, A. J. Barnes, Q. Pham, and T. A. Waniuk, Mater. Today 14, 14 (2011).
[30] M. Gopinadhan, Z. Shao, Y. Liu, S. Mukherjee, R. C. Sekol, G. Kumar, A. D. Taylor, J. Schroers, and C. O. Osuji, Appl. Phys. Lett. 103, 11912 (2013).
[31] Z. Shao, M. Gopinadhan, G. Kumar, S. Mukherjee, Y. Liu, C. S. O’Hern, J. Schroers, and C. O. Osuji, Appl. Phys. Lett. 102, 221901 (2013).
[32] H. Chen, Y. He, G. Shiflet, and S. Poon, Nature 367, 541 (1994).
[33] J.-J. Kim, Y. Choi, S. Suresh, and A. Argon, Science 295, 654 (2002).
[34] M. H. Lee, D. H. Bae, D. H. Kim, W. T. Kim, D. J. Sordelet, K. B. Kim, and J. Eckert, Scripta Mater. 58, 651 (2008).
[35] M. Mavridis, G. D. Bruce, G. J. Vancso, G. C. Weatherly, and J. Vlachopoulos, J. Rheol. 36, 27 (1992).
[36] M. J. Adams, I. Aydin, B. J. Briscoe, and S. K. Sinha, J. Non-Newton. Fluid. 71, 41 (1997).
[37] G. T. Taylor and H. Quinney, P. Roy. Soc. Lond. A Mat. 143, 307 (1934).
[38] J. Mason, A. Rosakis, and G. Ravichandran, Mechanics of Materials 17, 135 (1994).
SUPPLEMENTARY MATERIAL

Finite Element Simulation

Simulations were performed using the finite element method (FEM) in a similar manner as used in prior studies of squeeze flow. For this study, the commercial FEM software Marc was used, and the simulation was conducted for a Newtonian fluid cylinder with typical dimensions for a pressed piece (\(h_i = d_i = 2.5 \) mm). Simulation was conducted with no-slip (appropriate for the creep flow of BMG) moving boundaries with a fixed velocity, which is one of the two ways that these problems are simulated (other being constant load) and terminated when the disk reached a height similar to that experimentally observed. Despite the use of adaptive remeshing, the massive deformations (\(h_i/h_f \sim 2 - 20 \)) involved eventually led to divergence in the simulation below final thicknesses of 125 \(\mu \)m, which led to the most accurate comparison being with the lowest of the sectioned loading rates (Sample 4, 150 N/min loading rate, \(h_f = 165 \) \(\mu \)m). To track the shear rate experienced by a given element through the various remeshings and also correct for the fact that the actual experimental conditions were constant load rate rather than constant wall velocity, a MATLAB wrapper was written that at every time step (i) changed the wall velocity to match experimentally observed values (a valid scaling for a Newtonian fluid), (ii) tracked the accumulated shear and shear rate as a function of position, and (iii) mapped these onto the appropriate mesh point for the next deformation step.

The spatial dependence of the instantaneous shear rate from the deviatoric component of the strain rate in a disc subjected to compression by parallel plates under no-slip boundary conditions can be written analytically as a function of the compression rate and the original dimensions, Equation 4. Instantaneous shear fields produced using the analytical expression and the FEM, and accumulated critical strain are shown in Figure 6.

\[
\dot{\gamma}(r, z) = \frac{3}{\sqrt{2\pi}} \left[\left(r/h \right)^2 (z/h)^2 + 3 \left(1 - (r/h)^2 \right)^2 \right]^{1/2} \tag{4}
\]

As a result, we can neglect the first term on the right of Eq. 4 i.e. the heat generation from plastic work in our squeezing flow can be neglected. In fact, for the squeezing thin film process, the heat conductance is dominated along z-axis, then the steady-state solution of Eq. 4 can be easily obtained and the temperature difference in the liquid film can be found within 1 K.

\[
\dot{\gamma}(r, z) = \frac{3h}{\sqrt{2\pi}} \left(\frac{r}{h} \right)^2 \left(\frac{z}{h} \right)^2 + 3 \left(1 - \left(\frac{r}{h} \right)^2 \right)^2 \tag{5}
\]

Heat evolved during flow

Considering the plastic work contribution to heat generation, the heat conduction equation is modified to

\[
\dot{T} = \alpha \nabla^2 T + \frac{\beta \sigma \cdot \dot{\varepsilon}^p \rho c_p}{\rho c_p} \tag{6}
\]

where we neglected the thermoelastic effect for Newton fluid and \(\frac{\beta \sigma \cdot \dot{\varepsilon}^p}{\rho c_p} \) is the generated heat due to irreversible mechanical work. \(\sigma \) is the stress, \(\dot{\varepsilon}^p \) is the plastic strain rate, \(\beta \) is the work rate to heat rate conversion fraction and it is simply assumed to be a constant in the range 0.85-1.00. For squeezing flow between parallel plates with no-slip boundary condition, the generalized shear rate is given by Eq. 5

\[
\frac{\partial T}{\partial t} = \frac{9\beta \gamma h^2}{4\alpha \rho c_p T_0} \left[\dot{\varepsilon}^2 \tilde{z}^2 + 3(1 - \tilde{z}^2)^2 \right] + \nabla^2 \tilde{T} \tag{7}
\]

where

\[
\tilde{T} = \frac{T}{T_0}, \quad \tilde{r} = \frac{r}{h}, \quad \tilde{z} = \frac{z}{h}, \quad \tilde{t} = \frac{t}{(T_0/h^2)} \tag{8}
\]

and

\[
\nabla^2 = \frac{1}{\tilde{r} \partial \tilde{r}} \left(\tilde{r} \frac{\partial}{\partial \tilde{r}} \right) + \frac{\partial^2}{\partial \tilde{z}^2} \tag{9}
\]

Substituting the values of \(\beta = 1 \) and experimental parameters of \(\eta = 10^6 \text{ Pa.s}, \alpha = 10^{-5}, c_p \sim 500 \text{ J/(kg.K)} \), \(\rho = 15 \text{ g/cm}^3, T_0 = 543 \text{ K} \) and taking the sample compressed at the maximum loading rate of 15 kN/min, \(\dot{h} = 5 \mu \text{m/s} \) we note that the dimensionless prefactor of the first term in Eq. 7 has a value of

\[
\frac{9\beta \gamma h^2}{4\alpha \rho c_p T_0} = \frac{9 \times 1 \times 10^6 \times (5 \times 10^{-6})^2}{4 \times 10^{-5} \times 543 \times (15 \times 10^3) \times 500} = 1.4 \times 10^{-9} \ll 1
\]
FIG. 6. Left: Analytical solution of shear rate distribution at \(t=3 \) min using Equation 4 where \(z_f \) and \(r_f \) are the final height and radii of the disc, under the assumption of a fixed compression rate \(\dot{h} \). \(h = 0 \) corresponds to the mid-plane of the sample. Center: Shear rate distribution from finite element calculation. Right: Distribution of accumulated critical strain for \(\dot{\gamma}_c=0.3 \) s\(^{-1}\).

Shear enhanced crystallization in Zr-based BMG

A Zr-based BMG with composition \(\text{Zr}_{44}\text{Al}_{10}\text{Ti}_{11}\text{Cu}_{10}\text{Ni}_{10}\text{Be}_{25} \) with nominal \(T_g \) and \(T_x \) of 350 and 471 °C was pressed at 410 °C for 180 s using a loading rate of 45 kN/min. The sample was thereafter crystallized isothermally at 410 °C to determine the crystallization time, relative to the undeformed material. Data are shown in Figure 7. The crystallization time is shortened from roughly 53 minutes to 36 minutes as a result of the processing.

FIG. 7. Isothermal crystallization data at 410 °C for Zr-based BMG. Data shown for a pristine sample and a disc pressed using a 45 kN/min loading rate.