Analysis of RPGR gene mutations in 41 Chinese families affected by X-linked inherited retinal dystrophy

Xiaozhen Liu 1,2, Ruixuan Jia 1,2, Xiang Meng 1,2, Likun Wang 3* and Liping Yang 1,2*

1Department of Ophthalmology, Peking University Third Hospital, Beijing, China, 2Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China, 3Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China

Background: This study analyzed the phenotypes and genotypes of 41 Chinese families with inherited retinal dystrophy (IRD) and RPGR gene mutations.

Methods: This retrospective analysis evaluated a cohort of 41 patients who were subjected to a specific Hereditary Eye Disease Enrichment Panel (HEDEP) analysis. All (likely) pathogenic variants were determined by Sanger sequencing, and co-segregation analyses were performed on the available family members. All cases were subjected to Sanger sequencing for RPGR open reading frame 15 (ORF15) mutations.

Results: A total of 41 probands from different families with a clinical diagnosis of retinitis pigmentosa (RP; 34 cases) and cone-rod dystrophy (CORD; 7 cases) were included in this cohort. According to clinical information, 2, 18, and 21 cases were first assigned as autosomal dominant (AD), sporadic, and X-linked (XL) inheritance, respectively. Several cases of affected females who presented with a male phenotype have been described, posing challenges at diagnosis related to the apparent family history of AD. Mutations were located in RPGR exons or introns 1–14 and in ORF15 of 12 of 41 (29.3%) and 29 of 41 (70.7%) subjects, respectively. Thirty-four (likely) pathogenic mutations were identified. Frameshifts were the most frequently observed variants, followed by nonsense, splice, and missense mutations. Herein, a detailed description of four RP patients carrying RPGR intronic mutations is reported, and in vitro splice assays were performed to confirm the pathogenicity of these intronic mutations.

Conclusion: Our findings provide useful insights for the genetic and clinical counseling of patients with XL IRD, which will be useful for ongoing and future gene therapy trials.

KEYWORDS inherited retinal dystrophies, female carriers, hereditary eye disease enrichment panel, RPGR gene, in vitro splice assay
Introduction

X-linked retinitis pigmentosa (XL RP) is the most severe subtype of RP (OMIM 268000) and accounts for 10%–20% of all RP cases (Breuer et al., 2002; Bader et al., 2003). Male patients with XL RP generally develop a more severe phenotype, whereas female carriers of XL RP show a wide spectrum of clinical features that can vary from asymptomatic to severe symptoms similar to those observed in male patients (Wu et al., 2010; Nanda et al., 2018; Talib et al., 2018). At present, mutations in three genes, RP2 (OMIM #312600), OFD1 (OMIM #312610), and RPGR (OMIM #312610), have been reported to result in XL RP (Breuer et al., 2002; Bader et al., 2003). Among them, RPGR variations remain the most common genetic cause, and are found in approximately 30%–80% of XL RP cases (Vervoort et al., 2000; Pelletier et al., 2007). Previous studies have indicated that RPGR variants are also responsible for other XL inherited retinal dystrophies (IRDs), including cone dystrophy 3 (COD3, OMIM #602093), cone-rod dystrophy 2 (CORD2, OMIM #120970) (Mears et al., 2000; Ebenezer et al., 2005), and macular degeneration (Ayyagari et al., 2002).

RPGR was previously identified in the RP3 region of Xp11.4 (Meindl et al., 1996; Roepman et al., 1996). The two main isoforms are the constitutively expressed RPGR^1–19 isoform, which consists of 19 exons, and the retina-specific RPGR^557 isoform, which shares exons 1 to 14 with RPGR^1–19, and includes a terminal exon (open reading frame 15, ORF15). ORF15 consists of exon 15 and extends into intron 15, encoding a highly repetitive and purine-rich 567-aa protein. Approximately 60% of disease-causing mutations in RPGR are found in ORF15 (Vervoort et al., 2000; Breuer et al., 2002).

This study reports the clinical and genetic findings in a Chinese cohort of 40 male probands and a female proband with RP (34 cases) or CORD (7 cases) caused by variations in RPGR. Among them, we report two families with a provisional diagnosis of autosomal dominant RP (ADRP) associated with affected female carriers and characterized by a phenotypic manifestation in these patients. We describe four patients with RP who carried RPGR intronic mutations in detail and confirmed the pathogenicity of these intronic mutations using an in vitro splice assay.

Materials and methods

Patients

This study recruited 40 male Chinese probands and a female proband of Han ethnicity affected with IRD, including RP and CORD, whose genetic causes were RPGR mutations, from the Department of Ophthalmology, Peking University Third Hospital. This study conforms to the tenets of the Declaration of Helsinki. All experiments involving DNA from a patient and their relatives were approved by the Peking University Third Hospital Medical Ethics Committee (No. 2012093). Written informed consent was obtained from all participants or guardians on behalf of minors. The ethics committee approved the consent procedure.

Detailed medical and family histories were obtained from probands and/or their family members. All patients underwent standard ophthalmic examinations, including best-corrected visual acuity (BCVA), slit-lamp biomicroscopy, intraocular pressure measurement, dilated indirect ophthalmoscopy and fundus photography, electroretinography (ERG), and visual field tests, if possible. The patients underwent a systematic physical examination before genetic testing. Inheritance patterns were classified based on criteria described by Stone et al. with minimal modification (Stone et al., 2017): (i) autosomal dominant (AD; a minimum of three generations with at least one instance of male-to-male transmission); (ii) autosomal recessive (AR; several affected patients in a single sibship with healthy parents); (iii) X-linked (affected males in multiple sibships connected to each other through unaffected or mildly affected females and no male-to-male transmission); and (iv) uncertain inheritance (sporadic patients and multiple kindreds).

Molecular genetics analysis

Blood samples were obtained from all probands and their family members. Genomic DNA (gDNA) was extracted using standard protocols (D2492, Omega Bio-Tek). The patients were subjected to a specific hereditary eye disease enrichment panel (HEDEP) for targeted exon enrichment analysis, which captured 483 IRD genes (Liu et al., 2021). Next-generation sequencing (NGS) was performed using an Illumina HiSeq X platform (Illumina, San Diego, CA, USA). HEDEP sequencing data were analyzed as previously described (Zhang et al., 2016; Liu et al., 2021).

Sanger sequencing and mutation screening of RPGR ORF15

All variants considered (likely) pathogenic by NGS in this study were validated further by PCR-based Sanger sequencing. The primers used in this study are listed in Supplementary Table S1. Touchdown PCR amplification consisted of a denaturizing step at 95°C for 5 min, followed by 35 cycles of amplification (at 95°C for 30 s, at 64–57°C for 30 s starting from 64°C, decreasing by 0.5°C every cycle for 14 cycles, which was maintained at 57°C for 21 cycles, followed by 72°C for 40 s), with a final extension at 72°C for 5 min. Purified PCR products were sequenced using the ABI BigDye Terminator cycle sequencing kit on an ABI 3130XL genetic analyzer (ABI Applied Biosystem, Foster City, CA, USA). Sanger sequencing was also used to determine whether the variant co-segregated with the disease phenotype in available family members.

RPGR ORF15 (NG 009553.1; NM001034853) was not effectively covered by NGS and was therefore amplified and sequenced using primers located outside the repetitive stretch as described previously.
Family ID	Gender	Clinical diagnosis	Inheritance from phenotype	Family history	Age (years)	BCVA	First symptoms	Cataract(age)	Myopia	Fundus appearance	ERG					
							L.E. (age)	R.E. (age)		L.E.	R.E.	RPE degeneration	OD	AA	PD	MD
P01	M	RP	Sporadic	NO	45	7	0.01 0.01	Night blindness	Yes (38)	No	Widespread	Waxy	Yes	Mid-pupillary	Whole	Diminished
P02	M	RP	Sporadic	NO	12	3	0.6 0.6	Night blindness	No	No	No	No	No	Mildly reduced	Whole	Diminished
P03	M	RP	Sporadic	NO	13	4	0.5 0.5	Night blindness	No	No	No	No	No	Significantly reduced	Whole	Diminished
P04	M	RP	XL	Yes	32	6	0.3 0.4	Night blindness	No	No	No	No	No	Widespread	Waxy	Diminished
P05	M	RP	XL	Yes	28	5	0.4 0.4	Night blindness	No	No	No	No	No	Mild	Waxy	Diminished
P06	M	RP	XL	Yes	40	8	0.1 0.1	Night blindness	Yes (35)	No	No	No	No	Mildly reduced	Waxy	Diminished
P07	M	RP	XL	Yes	30	5	0.2 0.2	Night blindness	No	No	No	No	No	Significantly reduced	Normal	Diminished
P08	M	RP	Sporadic	NO	9	4	0.7 0.7	Night blindness	No	No	No	No	No	Mildly reduced	No	Diminished
P09	M	RP	XL	Yes	14	3	0.4 0.4	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P10	M	RP	XL	Yes	10	2	0.6 0.5	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P11	M	RP	Sporadic	Yes	17	3	0.4 blind (15)	Night blindness	No	No	No	No	No	Significantly reduced	Waxy	Diminished
P12	M	CORD	XL	Yes	10	4	0.7 0.7	Night blindness	No	No	No	No	No	Mildly reduced	No	Diminished
P13	M	RP	Sporadic	NO	9	3	0.6 0.6	Night blindness	No	No	No	No	No	Mildly reduced	No	Diminished
P14	M	RP	Sporadic	NO	31	5	0.3 0.3	Night blindness	No	No	No	No	No	Mildly reduced	No	Diminished
P15	M	RP	XL	Yes	30	5	0.1 0.1	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P16	M	RP	XL	Yes	7	3	0.6 0.6	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P17	M	RP	XL	Yes	35	7	0.1 0.1	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P18	M	RP	Sporadic	Yes	11	3	0.1 0.1	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P19	M	RP	AD	Yes	27	5	0.3 0.3	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P20	M	RP	AD	Yes	36	5	0.25 0.25	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P21	M	RP	Sporadic	NO	39	6	0.1 0.1	Night blindness	No	No	No	No	No	Mildly reduced	Waxy	Diminished
P22	M	RP	XL	Yes	45	6	0.01 0.01	Night blindness	Yes	No	No	No	No	Mildly reduced	Waxy	Diminished
P23	M	RP	XL	Yes	43	7	0.01 0.01	Night blindness	Yes (40)	No	No	No	No	Mildly reduced	Waxy	Diminished
P24	M	RP	XL	Yes	38	5	0.1 0.1	Night blindness	Yes (37)	No	No	No	No	Mildly reduced	Waxy	Diminished

(Continued on following page)
TABLE 1 (Continued) Clinical information of 41 Chinese X-linked inherited retinal dystrophy families caused by RPGR mutations.

Family ID	Gender	Clinical diagnosis	Inheritance from phenotype	Family history	Age (years)	BCVA	First symptoms	Cataract(age)	Myopia	Fundus appearance	ERG				
							At entry	Onset L.E. (age)	R.E. (age)		L.E. R.E. RPE degeneration	OD	AA	PD	MD
P25	M	RP	XL	Yes	40	20	0.3	0.1	Night blindness	Yes (35)	No	Mild Waxy Yes Whole	Severe Diminished		
P26	M	RP	XL	Yes	39	6	0.1	LP	Night blindness	Yes (37)	No	Widespread Waxy Yes Whole	Severe Diminished		
P27	F	RP	XL	Yes	48	4	HM	LP	Night blindness	Yes (34)	(-17D)	Widespread Waxy Yes Whole	Severe Diminished		
P28	M	RP	XL	Yes	36	3	0.4	0.4	Night blindness	No	No	Widespread Waxy Yes Whole	Severe Diminished		
P29	M	RP	XL	Yes	42	5	0.1	0.1	Night blindness	No	No	Widespread Waxy Yes Whole	Severe Diminished		
P30	M	RP	XL	No	44	3	0.1	0.1	Night blindness	No	No	Widespread Waxy Yes Whole	Severe Diminished		
P31	M	RP	Sporadic	No	30	4	0.3	blind(0.3)	Night blindness	Yes (46)	(-4D)	(-4D) Widespread Waxy Yes Whole	Severe Diminished		
P32	M	CORD	Sporadic	No	36	2	0.4	0.4	Night blindness	No	No	Mild Waxy Yes Whole	Severe Significantly reduced		
P33	M	CORD	XL	Yes	64	3	blind(0.06)	blind(0.06)	Night blindness	No	No	Widespread Waxy Yes Whole	Severe Diminished		
P34	M	CORD	XL	Yes	45	11	0.02	0.02	Poor retinal atrophy	Yes (40)	No	No Widespread Waxy Yes Whole	Severe Diminished		
P35	M	CORD	XL	Yes	34	5	0.3	0.3	Night blindness	No	No	Widespread Waxy Yes Whole	Severe Diminished		
P36	M	CORD	Sporadic	No	30	10	0.1	0.1	Night blindness	Yes (48)	No	Widespread Waxy Yes Whole	Severe Diminished		
P37	M	RP	Sporadic	No	46	1	0.3	0.3	Night blindness	Yes (42)	No	Widespread Waxy Yes Whole	Severe Diminished		
P38	M	RP	XL	Yes	6	3	0.6	0.6	Night blindness	No	No	Rudy No Periphraxy Mild	Mildly reduced		
P39	M	CORD	Sporadic	No	46	3	0.01	0.01	Night blindness	No	No	Widespread Waxy Yes Whole	Severe Diminished		
P40	M	RP	Sporadic	No	12	10	0.2	0.2	Night blindness	No	No	Rudy No Periphraxy Severe	Significantly reduced		
P41	M	RP	Sporadic	No	35	7	0.3	0.3	Night blindness	No	No	Widespread Waxy Yes Whole	Severe Diminished		

BCVA, best corrected visual acuity; HM, hand movement; LP, light perception; L.E., left eyes; F, female; M, male; MD, macular degeneration; R.E., right eyes; XL, X-linked; RP, retinitis pigmentosa; CORD, cone-rod dystrophy; OD, optic disc; AA, artery attenuation; PD, pigment deposits. Age at entry corresponded to the age of the first visit to the center; onset age was defined as the self-reported age of the patient’s first symptoms.
Family ID	Exon (nucleotide changes)	HGVS g. Name	HGVS c. Name	HGVS p. Name	ClinVar IDs	Classification	gnomAD Allele frequency	Reported/ novel
P01	IVS4	NC_000023.10:g.38180277T>C	NM_000328.3:c.310 + 3A>G	p.?	98780	Pathogenic	NA	Yes
P02	IVS1	NC_000023.10:g.3818279T>A	NM_000328.3:c.29-2A>T	p.?	NA	Likely pathogenic	NA	Yes
P03	IVS6	NC_000023.10:g.38176567A>T	NM_000328.3:c.619 + 2T>A	p.?	975129	Likely pathogenic	NA	Yes
P04	IVS14	NC_000023.10:g.38146501G>C	NM_000328.3:c.1754-3C>G	p.?	1065689	Likely pathogenic	NA	Yes
P05	ORF15	NC_000023.10:g.38146066_38146079del	NM_01034853.2:c.2173_2186del	p.Gln725Glyfs*40	NA	Pathogenic	NA	Yes
P06	E13	NC_000023.10:g.38105024G>C	NM_000328.3:c.1541C>G	p.Ser514*	1213922	Pathogenic	NA	Yes
P07	ORF15	NC_000023.10:g.38146087_38146091del	NM_01034853.2:c.2164_2168del	p.Glu722Lysfs*46	NA	Pathogenic	NA	Yes
P08	ORF15	NC_000023.10:g.38145557C>A	NM_01034853.2:c.2695G>T	p.Glu899*	866316	Pathogenic	NA	Yes
P09	E11	NC_000023.10:g.38156552G>A	NM_000328.3:c.1399C>T	p.Glu467*	NA	Pathogenic	NA	Yes
P10	ORF15	NC_000023.10:g.38146018_38146019del	NM_01034853.2:c.2236_2237del	p.Glu746Argfs*23	438142	Pathogenic	NA	Yes
P11	ORF15	NC_000023.10:g.38145848_38145849del	NM_01034853.2:c.2405_2406del	p.Glu802Glyfs*32	91389	Pathogenic	NA	Yes
P12	ORF15	NC_000023.10:g.38145848_38145849del	NM_01034853.2:c.2405_2406del	p.Glu802Glyfs*32	91389	Pathogenic	NA	Yes
P13	E14	NC_000023.10:g.38147175_38147176del	NM_01034853.2:c.2491G>T	p.Glu831*	1297121	Pathogenic	NA	Yes
P14	ORF15	NC_000023.10:g.38145761C>A	NM_01034853.2:c.2275G>T	p.Glu758*	NA	Pathogenic	NA	Yes
P15	ORF15	NC_000023.10:g.38145997C>A	NM_01034853.2:c.2275G>T	p.Glu758*	NA	Pathogenic	NA	Yes
P16	ORF15	NC_000023.10:g.38146018_38146019del	NM_01034853.2:c.2236_2237del	p.Glu746Argfs*23	438142	Pathogenic	NA	Yes
P17	E5	NC_000023.10:g.38178216C>G	NM_000328.3:c.3356C>T	p.Glu112Ala	NA	Pathogenic	NA	Yes
P18	ORF15	NC_000023.10:g.38145848_38145849del	NM_01034853.2:c.2405_2406del	p.Glu802Glyfs*32	91389	Pathogenic	NA	Yes
P19	ORF15	NC_000023.10:g.38145251C>A	NM_01034853.2:c.3001G>T	p.Glu1001*	NA	Pathogenic	NA	Yes
P20	ORF15	NC_000023.10:g.38145523_38145524del	NM_01034853.2:c.2730_2731del	p.Glu911Glufs*167	NA	Pathogenic	NA	Yes
P21	ORF15	NC_000023.10:g.38145848_38145849del	NM_01034853.2:c.2405_2406del	p.Glu802Glyfs*32	91389	Pathogenic	NA	Yes
P22	E8	NC_000023.10:g.3813971G>C	NM_000328.3:c.851C>G	p.Ser284*	NA	Pathogenic	NA	Yes
P23	ORF15	NC_000023.10:g.38145992C>A	NM_01034853.2:c.2260G>T	p.Glu754*	868644	Likely pathogenic	NA	Novel
P24	ORF15	NC_000023.10:g.38146018_38146019del	NM_01034853.2:c.2236_2237del	p.Glu746Argfs*23	438142	Pathogenic	NA	Yes
P25	ORF15	NC_000023.10:g.38146018_38146019del	NM_01034853.2:c.2236_2237del	p.Glu746Argfs*23	438142	Pathogenic	NA	Yes
P26	ORF15	NC_000023.10:g.38145848_38145849del	NM_01034853.2:c.2405_2406del	p.Glu802Glyfs*32	91389	Pathogenic	NA	Yes
P27	E6	NC_000023.10:g.38176581C>G	NM_000328.3:c.607C>G	p.Ala203Pro	NA	Pathogenic	NA	Yes
P28	ORF15	NC_000023.10:g.38145827_38145828del	NM_01034853.2:c.2426_2427del	p.Glu809Glufs*25	183262	Pathogenic	NA	Yes
P29	ORF15	NC_000023.10:g.38145848_38145849del	NM_01034853.2:c.2405_2406del	p.Glu802Glyfs*32	91389	Pathogenic	NA	Yes
P30	E11	NC_000023.10:g.38156606C>A	NM_000328.3:c.1345C>T	p.Arg449*	866558	Pathogenic	NA	Yes
P31	E5	NC_000023.10:g.38178178C>A	NM_000328.3:c.373C>T	p.Glu125*	NA	Pathogenic	NA	Yes
P32	ORF15	NC_000023.10:g.38145807_38145810del	NM_01034853.2:c.2442_2445del	p.Gly817Lysfs*2	620582	Pathogenic	NA	Yes
The forward primer was 5′-CAGAGATCCTATCAGATGACC-3′, and the reverse primer was 5′-TGTCCTGACTGCCCCATAATCG-3′, with a PCR product of 1630 bp. PCR products were sequenced using three reverse primers (5′-GTTTGCCATATTTCACAGATCC-3′, 5′-TCCTTCCTCTCTTCTCCCTCCCA-3′, and 5′-CCCTTCCTCTCTTCTCCCTCA-3′). Sequencing results were analyzed by Sequencher (Gene Codes Corporation, Ann Arbor, MI, USA).

High throughput data analysis and variant classification

HEDEP sequencing data were analyzed as described previously (Liu et al., 2021). Sequence changes were classified according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology variant interpretation guidelines. In this study, only variants identified as pathogenic or likely pathogenic were reported.

Splice prediction analysis

The pathogenicity of RPGR intronic mutations was assessed using a population-based genome dataset (the Single Nucleotide Polymorphism Database). The potential effect of the variants on RNA splicing was assessed using the Human Splice Finder (HSF) tool (Desmet et al., 2009).

In vitro splice assay

For use in the RNA splicing assay, a shortened RPGR intron DNA sequence around the splice acceptor site (intron A, 200 bp) was generated and combined with another shortened intron DNA sequence around the splice donor site (intron B, 200 bp). Introns A and B were combined to generate a shortened RGPR intron. The plasmid pmCherryN1 was linearized using the SbfI restriction enzyme (R3733S, New England Biolabs), followed by purification with a gel extraction kit (D2500, Omega). The shortened RGPR intron was cloned into the SbfI site in pEASY-Basic Seamless Cloning and Assembly Kit (CU201, TransGen Biotech) and then transformed into Top10-competent bacteria. Clones were amplified in liquid Luria-Bertani (LB) broth, followed by the extraction of plasmid DNA (D6943, OMEGA). Site-directed mutagenesis was performed on the plasmid using the StarMut Site-directed Mutagenesis Kit (T111, Genstar, Beijing, China). The resulting DNA was sequenced to confirm nucleotide changes. HEK293T cells were cultured in regular Dulbecco’s modified Eagle’s medium (DMEM; C11995500BT, Gibco) and seeded on coated glass slides in 6-well plates. The cells were transfected with recombinant vectors using PEI (B600070, ProteinTech Group, Chicago, IL, USA), according to the manufacturer’s protocol.
After 24 or 72 h of transfection, mCherry expression was observed using a fluorescence microscope (Nikon, Japan).

Statistical analysis

The results were evaluated using a two-tailed unpaired Student’s t-test and are presented as the mean ±SEM. GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA) was used for the statistical analyses. Statistical significance was set at \(p < 0.05 \).

Results

Clinical phenotypes of the Chinese RPGR-IRD cohort

In this cohort, 40 male Chinese probands and one female proband from 41 families with a clinical diagnosis of RP (34 cases) or CORD (7 cases) were found to harbor a disease-causing mutation in the *RPGR* gene. Table 1 provides an overview of the cohort’s primary clinical information. According to their clinical information, the inheritance pattern of 2 cases was assigned as AD without male-to-male transmission, with 18 cases assigned as sporadic, and 21 cases assigned as XL. Apart from the proband of family P25 (proband P25), whose onset age was 20 years, the average age at the onset of the first symptom was 4.85 years (range = 1–11 years). Apart from proband P33, all probands complained that night blindness was present at disease onset, and three patients suffering from CORD, simultaneously complained of poor visual acuity. Twenty-seven patients had progressive visual acuity. Eighteen patients at study entry experienced a sudden decline in central vision in their 20 and 30s, with a BCVA for light perception (LP) of 0.25. Three patients suffered from unilateral or bilateral blindness; among them, the left eye of proband P11 was blind owing to untreated retinal detachment when he was 14, the right eye of proband P31 was blind when he was 50, and proband P31 suffered from bilateral blindness when he was 60. Fundus examination and imaging results of all probands are listed in Table 1. Four
probands (P09, P11, P27, and P31) complained of high myopia; the mothers of probands P09 and P11, as carriers, also suffered from high myopia and/or poor visual acuity. The mother of proband P18, who was diagnosed as an RPGR carrier, also complained of high myopia.

Molecular diagnosis of the Chinese RPGR-IRD cohort

We identified RPGR (likely) causative variants in 41 Chinese probands affected by RP or CORD (Table 2). All samples were subjected to HEDEP analysis, and (likely) pathogenic variants in the RPGR exons or introns 1–14 were identified in 12 patients. All patients in this cohort were subjected to direct PCR-based Sanger sequencing of the entire RPGR ORF15. We identified (likely) pathogenic variants of RPGR ORF15 in 29 unsolved cases. All identified RPGR variants were segregated with IRD phenotypes among the available family members. Proband P27 had RPGR variants that might have been inherited from her affected father; however, her father was not subjected to HEDEP or other genetic testing methods. The other 40 male probands had RPGR variants inherited from their mothers. Thirty-four mutations were identified in this cohort (Table 2), of which one was novel and 21 were first reported in our previous study (Liu et al., 2021). In this study, 29 patients carried variants in RPGR ORF15, 4 had intronic variants, and 8 harbored variants in exons 1–14. In terms of the type of mutation, frameshifts were the most frequently observed variants in this cohort (n = 15), followed by nonsense mutations (n = 13), splice variants (n = 4), and missense mutations (n = 2).
Revision of inheritance pattern in two RP families

The presence of affected carriers in XL RP families can misleadingly suggest AD inheritance (De Silva et al., 2021). As illustrated in Figure 1, the pedigrees of patients P19 and P20 showed that males and females were affected, with individuals affected in each generation, suggesting AD inheritance. However, there was no male-to-male transmission; therefore, XL inheritance was not excluded. Genetic testing confirmed that RPGR ORF15 variants resulted in RP phenotypes in these two families; therefore, their inheritance pattern was revised to XL.

Several RPGR-related RP carriers with a severe male pattern

In family P19, the proband was a 27-year-old man with night blindness since childhood, progressive decline in visual acuity, tunnel vision, and visual field defects. Sequencing analysis identified c.3001G>T (p. Glu945*), an ORF15 mutation.
which was the same pathogenic mutation found in his mother (individual III:3), two aunts (individuals III:1 and III:4), and two affected male cousins (Table 2; Figure 1A). In this family, III:3, an RPGR variant carrier, complained of night blindness since childhood, and her BCVA was 0.05 bilaterally. Fundus examination revealed classic symptoms of RP, consisting of retinal arteriolar attenuation, waxy pallor of the optic discs, and scattered bone spicule pigmentation around the mid-peripheral retina or the whole retina (Figure 1B). Individual III:4, a female carrier, also suffered from RP, whereas individual III:1 was unaffected. In family P20, the proband, an RP patient, had an RPGR frameshift mutation, c.2730_2731del (p. Glu911Glyfs*167), inherited from his mother (individual II:1). The same pathogenic mutation was also identified in his uncle (individual II:2), aunt (individual II:3), and older sister (individual III:1, Figure 1C). In this family, individual II:1, as an RPGR variant carrier, complained of night blindness since childhood and suffered from a sudden decline in vision in her 40s. Fundus examination revealed classic symptoms of RP (Figure 1D). Individuals II:3 and III:1 were female carriers both affected by RP. Another individual, III:9, a 24-year-old woman, also complained of night blindness, although she had not yet undergone a genetic screening test. Clinical diagnosis and genetic testing confirmed that individual II:2 was affected by RPGR-related XL RP.

In family P27, the proband was a 68-year-old woman with end-stage disease. Her vision was hand movement (HM) in the left eye and LP in the right eye (Table 1). This proband began suffering from night blindness at the age of 4 years, and complained of high myopia (-7D) bilaterally. She had undergone cataract surgery bilaterally at the age of 54 years. She had a 40-year-old son (individual IV:1) with the same RPGR variant carrier, complained of night blindness since childhood and suffered from a sudden decline in vision in her 40s. Fundus examination revealed classic symptoms of RP (Figure 1D). Individuals II:3 and III:1 were female carriers both affected by RP. Another individual, III:9, a 24-year-old woman, also complained of night blindness, although she had not yet undergone a genetic screening test. Clinical diagnosis and genetic testing confirmed that individual II:2 was affected by RPGR-related XL RP.

In family P27, the proband was a 68-year-old woman with end-stage disease. Her vision was hand movement (HM) in the left eye and LP in the right eye (Table 1). This proband began suffering from night blindness at the age of 4 years, and complained of high myopia (-7D) bilaterally. She had undergone cataract surgery bilaterally at the age of 54 years. She had a 40-year-old son (individual IV:1) with the same
mutation, c.607G>C (p. Ala203Pro) in exon 6 (Figure 2A). Proband P27 had an XL RP male phenotype fundus appearance similar to that of the affected son (Figure 2B). The proband’s ERG responses were completely extinguished (Figure 2C) and SD-OCT imaging demonstrated thinning of the outer retinal layer (Figure 2D). In this family, several individuals, including her father (individual II:1), the father’s younger twin brother (individual II:2), her son (individual IV:1), and her nephew (individual IV:3) were diagnosed with RP. Sequencing analysis indicated that IV:3 carried the RPGR hemizygous variant, c.607G>C (p. Ala203Pro), whereas his mother, as well as the proband’s younger sister (individual III:3), was unaffected, although the younger sister had the same heterozygous variant as the proband.

Four patients with RPGR intronic mutations

Figure 3 shows the clinical information of the four RP patients and their genetic diagnoses. These four probands were male, and their ages ranged from 12 to 45 years old. All probands complained of night blindness since childhood and all had poor visual acuity, with BCVA ranging from 0.01 to 0.6. Probands P01, P03, and P04 suffered from a progressive loss of visual acuity, whereas proband P01 also suffered from a sudden decline in central vision 15 years prior. Probands, except for P04, had no family history of a similar disorder, and the grandfather (maternal) of proband P04 was also affected by night blindness. Fundus examination and imaging revealed the classic symptoms...
of RP, and full-field ERG showed markedly reduced rod responses in all patients. The observed phenotypes were consistent with a diagnosis of RP in all patients. Genetic analysis showed that all probands had intronic variants in the RPGR gene, which were inherited from their mother (Figure 4), although she did not manifest any symptoms despite being an RPGR carrier.

Intronic variants, including c.310 + 3A>G, c.29-2A>T, c.619 + 2T>A, and c.1754-3C>G, have been previously reported to be disease-causing (Buraczynska et al., 1997; Wang et al., 2018; Liu et al., 2021). Splice prediction analysis using HSF indicated that the pathogenic variants c.310 + 3A>G and c.619 + 2T>A may influence the donor splice site, whereas c.29-2A>T and c.1754-3C>G may influence the acceptor splice site (Supplementary Data). Additionally, these intronic pathogenic variants were investigated using in vitro splicing assays. Shortened versions of introns 4, 1, 6, and 14 were created for the splice assay (Figure 5). A wild-type (WT) or mutant variant of the shortened intron was created and inserted into the mCherry coding sequence of a reporter construct (Figure 5A). Sanger sequencing results of reporter plasmids with the four intronic variants are shown in Figures 5B–E. If not successfully spliced, the presence of the intron would result in a premature stop codon and therefore would not lead to mCherry expression. Successful splicing would enable the complete removal of the intron and would therefore lead to mCherry expression. As illustrated in Figure 6A, mCherry expression was observed in HEK293T cells transfected with WT-intron-pmCherryN1, whereas mCherry expression was not observed in HEK293T cells transfected with mutant-intron-pmCherryN1. After 72 h of transfection, the number of mCherry+ cells per 5,000 µm² in HEK293T cells transfected with mutant-intron-pmCherryN1 plasmids was statistically (p < 0.001) lower than that in 293T cells transfected with WT-intron-pmCherryN1 plasmids (Figure 6B), indicating that these four intronic variants disrupted RPGR splicing.

Discussion

This study describes the natural history of 34 RP cases and 7 CORD cases associated with RPGR mutations in a large...
Chinese cohort (40 male probands and 1 female proband from 41 different families), thereby confirming that the inheritance mode of these families was XL. We found that 70.73% (29/41) of the cases carried RPGR ORF15 mutations. All RPGR mutations causing a CORD phenotype were found in exon ORF15. In this study, we identified 34 disease-causing mutations, of which one was novel and 21 were first reported in our previous study (Liu et al., 2021). These results expand the IRD mutation spectrum and provide new targets for the diagnosis and treatment of IRD.

Previously, when patients were diagnosed with XL IRDs, PCR-based Sanger sequencing was used directly to screen the disease-causing mutations in RPGR and RP2 for these patients (Yang et al., 2014), because the majority of XLRP cases are attributed to mutations in RPGR (30%–80% of XLRP patients (Vervoort et al., 2000; Pelletier et al., 2007)) and RP2 (7%–18% of XLRP patients (Sahel et al., 2014)). However, as a result of family planning over the past 30 years in China, some patients are the only child in a family, making it impossible to determine the exact inheritance pattern and recurrence risk in offspring. In this cohort, we found that 18 families had sporadic inheritance. A previous study (Martin-Merida et al., 2019) of a large cohort of 877 cases of sporadic retinitis pigmentosa (sRP) showed that 84.5% (279/330) of the solved sRP cases carried homozygous or compound heterozygous variants in the AR gene. This result indicates that the majority of sRP cases have an AR inheritance. In this cohort, genetic testing showed that 18 sporadic cases were revised as XL inheritance, which may result from the following facts: 1) the parents of these probands were unaffected and did not carry any disease-causing variant whereas the probands were affected by a new pathogenic mutation; and 2) the mother and the other female elders, but no males, carried a disease-causing variant, resulting in the affected probands inheriting this variant from their mother.

Despite the XL inheritance of RPGR, typical RP characteristics were observed in female carriers (Wu et al., 2010; Nanda et al., 2018; Salvetti et al., 2021). Therefore, the XL RP cases might be mistaken as having an AD inheritance mode, resulting in an incorrect prediction of recurrence risks and errors in patient prognosis. Previous studies reported that mutations in exons 1–14 and ORF15 can result in severe RP phenotypes in female carriers (Nanda et al., 2018). In this cohort, several female carriers in two families with a clinical diagnosis of AD RP carried c.3001G>T (p. Glu945*) and c.2730_2731del (p. Glu911Glyfs*167) in the RPGR ORF15. The p. Glu945* mutation was first reported in our previous study of family P19. Different from her two affected sisters, individual III:3, who had this heterozygous mutation, was unaffected, indicating that, in a given family, the same RPGR mutation can result in different phenotypes, even in female carriers. In family P27, c.607G>C (p. Ala203Pro) caused typical RP phenotypes in the proband, but not in individual III:3. Previous studies (Aguirre et al., 2002; Koenekoop et al., 2003; Nanda et al., 2018; Kurata et al., 2019; Salvetti et al., 2021) showed that the intrafamilial spectrum of severity in female carriers of XL retinal disorders partially resulted from X-chromosome inactivation.

Based on the Drosophila model, Dobyns (2006) proposed a penetrance and severity index for X-linked diseases, as opposed to the terminology of X-linked dominant, semidominant, or recessive inheritance. Random X-inactivation can result in a mosaic pattern of cells expressing WT and mutant genes (Lyon, 2002). Although a previous study (Talib et al., 2018) indicated that random X-inactivation cannot fully explain the clustering of nearly complete penetrance in several families based on their investigation of the phenotypes of 125 female carriers of phenotypic variants in RPGR, the intrafamilial variability of severity is likely to be due to genetic and/or environmental modifiers as well as potentially skewed X inactivation. Previously, a large number of RPGR variants were reported to result in a Severe “Male Pattern” in female carriers (Nanda et al., 2018; Salvetti et al., 2021) and variants c.3001G>T (p. Glu945*), c.2730_2731del (p. Glu911Glyfs*167), and c.607G>C (p. Ala203Pro) were reported to be associated with RP phenotypes in female carriers. A previous study (Talib et al., 2018) also indicated that 23% of female RPGR carriers displayed complete RP or CORD phenotypes, and our study also found several female carriers with RP, indicating that affected female RPGR carriers are not uncommon. Even in a single family, patients with the same variants may have different phenotypes, for example, in family P19, individual III:4, a female carrier, also suffered from RP, whereas III:1 was unaffected, illustrating the clinical heterozygosity of IRD and emphasizing the significance of genetic testing. Currently, several gene therapy trials for RPGR-XLRP male patients are ongoing or have been completed (https://clinicaltrials.gov), and affected female carriers should be recruited for, and may benefit from, gene therapy.

RPGR ORF15 is a hotspot for pathogenic mutations (Vervoort et al., 2000; Breuer et al., 2002) and splice site pathogenic variants are uncommon within any part of the RPGR (Cehajic-Kapetanovic et al., 2020). The pathogenicity of c.310 + 3A>G, c.29-2A>T c.619 + 2T>A, and c.1754-3C>G has been validated in previous studies (Buraczynska et al., 1997; Wang et al., 2018; Liu et al., 2021). However, few functional studies have validated the pathogenicity of the intronic variants of RPGR. The splicing process is a complex event that is important for proper protein synthesis, and splicing mutations may occur in introns and exons, which disrupt existing splice sites, create new sites, or activate cryptic sites (Anna and Monika, 2018). The most common mutations affect +1 and +2 residues at the 5′ donor splice site and –1 and –2 residues at the 3′ acceptor splice site (Anna and Monika, 2018). There are a large number of online tools that can be used to predict the pathogenicity of splicing variants (Anna and Monika, 2018); however, the exact splicing effect should be tested at different levels: DNA, RNA, RNA-protein interactions, or at the protein level (Thery et al., 2011; Fredericks et al., 2015). Analysis of RNA extracted from a patient’s cells or tissues is the simplest and most effective method to determine whether the selected variant affects splicing (Anna and Monika, 2018). In this study, RNA from the patients’ retinal tissues was not available. Therefore, the minigene assay may be
an alternative method. In the minigene assay, an amplified fragment of an analyzed gene, such as a specific exon with surrounding intronic sequences with and without mutations, is cloned into a special expression plasmid, enabling the analysis of pre-mRNA splicing. Because of the large size of RPGR introns, we developed a simplified molecular assay in which we designed reporter constructs to investigate the effect of variants on RNA splicing in vitro, according to a previous study (Cehajic-Kapetanovic et al., 2020). By comparing the mutant and WT constructs, we found that a single nucleotide variation influenced splicing, also indicating the practicability of our approach, which can be used to validate splicing effects and validate which exons would be skipped.

In summary, the findings in this cohort provide useful insights for the genetic and clinical counseling of XL RP and CORD patients, which would be useful for ongoing and future gene therapy trials. Herein, we also describe the genotype and phenotype correlations of several female RPGR carriers who showed a male phenotype, reminding us of the significance of genetic testing in this scenario. Our study highlights the potential value of a molecular splice assay to confirm a new disease-causing intronic variant of RPGR.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. further inquiries can be directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and approved by Peking University Third Hospital Medical Ethics Committee. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

Author contributions

LXZ: design of study, data collection, data analysis, preparation and review of the manuscript. YLP and WLK: design of study, data analysis, and manuscript preparation and review. JRX and MX: data collection and analysis.

Funding

This work was supported by the National Natural Science Foundation of China (grant no: 81770966 to LY), the Beijing Natural Science Foundation of China (grant no: 19JCZDJC64000(Z)), and the Capital’s Funds for Health Improvement and Research (grant no: 2022-2G-4254 to LW). The sponsors and/or funding organizations had no role in the design or conduct of this research.

Acknowledgments

The authors thank Dr. He Huang for his helpful insight when developing the project and revising this manuscript and we thank all patients and their family members participating in this work.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.999695/full#supplementary-material

References

Aguirre, G. D., Yashar, B. M., John, S. K., Smith, J. E., Breuer, D. K., Hiriyanna, S., et al. (2002). Retinal histopathology of an XLRP carrier with a mutation in the RPGR exon ORF15. Exp. Eye Res. 75 (4), 431–443. doi:10.1006/exer.2002.2037

Anna, A., and Moniaka, G. (2018). Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 59 (3), 253–268. doi:10.1007/s13353-018-0444-7

Ayyagari, R., Demirci, F. Y., Liu, J., Bingham, E. L., Stringham, H., Kaksik, L. E., et al. (2002). X-linked recessive atrophic macular degeneration from RPGR mutation. Genomics 80 (2), 166–171. doi:10.1006/geno.2002.6815

Bader, I., Brandau, O., Achatz, H., Apfelstedt-Sylla, E., Hergersberg, M., Lorenz, B., et al. (2003). X-Linked retinitis pigmentosa: RPGR mutations in most families with definite X linkage and clustering of mutations in a short sequence stretch of
ORF15. Am. J. Hum. Genet.

mechanisms, phenotypic features and novel therapies. et al. (2021). The X-linked retinopathies: Physiological insights, pathogenic (11), 1151 hypomorphic phenotype of X-linked retinitis pigmentosa. Am. J. Hum. Genet. 61 (6), 1287–1392. doi:10.1016/s0002-9293(18)30759-2

Cehaʃi-Keøatanoviñ, I., McClements, M. E., Whiøeldi, J., Shanks, M., Clouston, P., and Maclaren, R. E. (2020). Association of a novel intronic variant in RPG with hypomorphopic phenotype of X-linked retinitis pigmentosa. JAMA Ophthalmol. 138 (11), 1151–1158. doi:10.1001/jamaophthalmology.2020.3634

De Silva, S. R., Arno, G., Robson, A. G., Fakin, A., Pontikos, N., Mohamed, M. D., et al. (2021). The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog. Retin. Eye Res. 82, 100899. doi:10.1016/j.preteyeres.2020.100899

Desmet, F. O., Hamroun, D., Lalande, M., Collod-Beroud, G., Claustres, M., and Beroud, C. (2009). Human splicing finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37 (9), e67. doi:10.1093/nar/gkp215

Debyss, W. B. (2006). The pattern of inheritance of X-linked traits is not dominant or recessive, just X-linked. Acta Paediatr. Suppl. 95 (451), 11–15. doi:10.1080/08035332060618759

Ebeneter, N. D., Michaelides, M., Jenkins, S. A., Audo, I., Webster, A. R., Cheetham, M. E., et al. (2005). Identification of novel RPG ORF15 mutations in X-linked progressive cone-rod dystrophy (XLCORD) families. Invest. Ophthalmol. Vis. Sci. 46 (6), 1891–1898. doi:10.1167/iovs.04-1482

Fredericks, A. M., Cygan, K. J., Brown, B. A., and Farbrorther, W. G. (2015). RNA-binding proteins: Splicing factors and disease. Biomolecules 5 (2), 893–909. doi:10.3390/biom5020893

Koøenkoop, R. K., Loyer, M., Hand, C. K., Al Mahdi, H., Dembinska, O., Boñesz, R., et al. (2003). Novel RPG mutations with distinct retinitis pigmentosa phenotypes in French-Canadian families. Am. J. Ophthalmol. 136 (4), 678–687. doi:10.1016/s0002-9394(03)00331-3

Kurata, K., Hosono, K., Hayashi, T., Mizobuchi, K., Katagiri, S., Miyamichi, D., et al. (2019). X-Linked retinitis pigmentosa in Japan: Clinical and genetic findings in male patients and female carriers. Int. J. Mol. Sci. 20 (6), E1518. doi:10.3390/ijms20061518

Liu, X., Tao, T., Zhao, L., Li, G., and Yang, L. (2021). Molecular diagnosis based on comprehensive genetic testing in 800 Chinese families with non-syndromic inherited retinal dystrophies. Clin. Exp. Ophthalmol. 49 (1), 46–59. doi:10.1111/coe.13875

Lyon, M. F. (2002). X-chromosome inactivation and human genetic disease. Acta Paediatr. Suppl. 91 (439), 107–112. doi:10.1111/j.1651-2227.2002.tb03120.x

Martin-Merida, I., Avila-Fernandez, A., Del Pozo-Valero, M., Blanco-Kelly, F., Zurita, O., Perez-Carro, R., et al. (2019). Genomic landscape of sporadic retinitis pigmentosa: Findings from 877 Spanish cases. Ophthalmologica 126 (8), 1181–1188. doi:10.1159/000503687

Mears, A. J., Hiøiyanna, S., Vervoort, R., Yashar, B., Gieser, L., Fahrer, S., et al. (2000). Remapping of the R15 locus for X-linked cone-rod degeneration to Xp11.4-p21.1, and identification of a de novo insertion in the RPG with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat. Genet. 13 (1), 35–42. doi:10.1038/ng0596-35

Nanda, A., Salveti, A. P., Clouston, P., Downes, S. M., and MacLaren, R. E. (2018). Exploring the variable phenotypes of RPG carrier females in assessing their potential for retinal gene therapy. Genes (Basel) 9 (12), E643. doi:10.3390/genes9120643

Pelleiter, V., Jambou, M., Delphin, N., Zinovieva, E., Stum, M., Gigurel, N., et al. (2007). Comprehensive survey of mutations in RP and RPG in patients affected with distinct retinal dystrophies: Genotype-phenotype correlations and impact on genetic counseling. Hum. Mutat. 28 (1), 81–91. doi:10.1002/humu.20417

Roeøman, R., van Duininøen, G., Rosenøerg, T., Pinckers, A. J., Bleøaker-Wagemakers, L., Bergen, A. A., et al. (1996). Positional cloning of the gene for X-linked retinitis pigmentosa 3: Homology with the guanine-nucleotide-exchange factor RCC1. Hum. Mol. Genet. 5 (7), 1035–1041. doi:10.1093/hmg/5.7.1035

Sahel, J. A., Marazovø, K., and Audo, I. (2014). Clinical characteristics and current therapies for inherited retinal degenerations. Cold Sprøing Harb. Perspect. Med. 5 (2), a017111. doi:10.1101/cshperspect.a017111

Salveti, A. P., Nanda, A., and MacLaren, R. E. (2021). RPG-related X-linked retinitis pigmentosa carriers with a severe "male pattern. Ophthalmologica: 244 (1), 60–67. doi:10.1159/000505368

Stone, E. M., Andorf, J. L., Whitmore, S. S., Deluca, A. P., Giacalone, J. C., Streb, L. M., et al. (2017). Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmol. Vis. Sci. 59 (10), 4123–4133. doi:10.1167/iovs.17-23453

Vervoort, R., Lennon, A., Bird, A. C., Tulloch, B., Audo, I., Streb, L. M., et al. (2014). Novel and recurrent ADIPOREL mutations in 319 Chinese families with inherited retinitis pigmentosa: Findings from 877 Spanish cases. PLoS One 9 (1), e85752. doi:10.1371/journal.pone.0085752

Wang, L., Zhang, J., Chen, N., Wang, L., Zhang, F., Ma, Z., et al. (2018). Application of whole exome and targeted panel sequencing in the clinical molecular diagnosis of 319 Chinese families with inherited retinal dystrophy and comparison study. Genes (Basel) 9 (7), E360. doi:10.3390/genes9070360

Wu, D. M., Khanøa, H., Atmaca-Søømer, P., Sieøøng, P. A., Brønhøm, K., Oðøman, M., et al. (2010). Long-term follow-up of a family with dominant X-linked retinitis pigmentosa. Eye (Lond) 24 (5), 764–774. doi:10.1038/eye.2009.270

Yang, L., Yin, X., Feng, L., You, D., Wu, L., Chen, N., et al. (2014). Novel mutations of RPG in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation. PLoS One 9 (1), e85752. doi:10.1371/journal.pone.0085752

Zhang, J., Wang, C., Shen, Y., Chen, N., Wang, L., Liøig, L., et al. (2016). A mutation in ADIPOREL causes nonsyndromic autosomal dominant retinitis pigmentosa. Hum. Genet. 135 (12), 1375–1387. doi:10.1007/s00439-016-1730-2