DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia

Daniel J Erasmus Corresp., 1, Emily A Yurkowski 1, Dezene PW Huber Corresp. 2

1 Biochemistry and Molecular Biology, University of Northern British Columbia, Prince George, British Columbia, Canada
2 Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada

Corresponding Authors: Daniel J Erasmus, Dezene PW Huber
Email address: erasmus@unbc.ca, huber@unbc.ca

Anthropogenic pressures on aquatic systems have placed a renewed focus on biodiversity of aquatic macroinvertebrates. By combining classical taxonomy and DNA barcoding we identified 39 species of caddisflies from the Crooked River, a unique and sensitive system in the southernmost arctic watershed in British Columbia. Our records include three species never before recorded in British Columbia: *Lepidostoma togatum* (Lepidostomatidae), *Ceraclea annulicornis* (Leptoceridae), and possibly *Cheumatopsyche harwoodi* (Hydropsychidae). Three other specimens may represent new occurrence records and a number of other records seem to be substantial observed geographic range expansions within British Columbia.
DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia

Daniel J. Erasmus\(^1\)*, Emily A. Yurkowski\(^1\), and Dezene P. W. Huber\(^2\)*

\(^1\)Biochemistry and Molecular Biology and
\(^2\)Ecosystem Science and Management Program

University of Northern British Columbia, Prince George, British Columbia, Canada

*Corresponding authors: daniel.erasmus@unbc.ca, huber@unbc.ca

Abstract

Anthropogenic pressures on aquatic systems have placed a renewed focus on biodiversity of aquatic macroinvertebrates. By combining classical taxonomy and DNA barcoding we identified 39 species of caddisflies from the Crooked River, a unique and sensitive system in the southernmost arctic watershed in British Columbia. Our records include three species never before recorded in British Columbia: *Lepidostoma togatum* (Lepidostomatidae), *Ceraclea annulicornis* (Leptoceridae), and possibly *Cheumatopsyche harwoodi* (Hydropsychidae). Three other specimens may represent new occurrence records and a number of other records seem to be substantial observed geographic range expansions within British Columbia.

INTRODUCTION

With accelerating anthropogenic climate change there is a renewed interest in assessing biodiversity in freshwater ecosystems (Parmesan 2006). Freshwater ecosystems are especially under cumulative threats with increased demand for fresh water by industrial activities in riparian zones (Meyer et al. 1999). Assessing insect biodiversity is a challenging, but vital,
activity in the face of these changes in order to understand aquatic food webs, ecosystem
services, and for use in aquatic environmental monitoring (Burgmer et al. 2007; Dobson and Frid
2009; Cairns and Pratt 1993).

Trichoptera taxonomy is primarily based on male adult morphology, which often requires
experts for definitive identification. Taxonomy of the larvae is complicated and often
problematic as it is not always possible to distinguish between species of the same genus
(Burington 2011, Ruiter et al 2013). DNA barcoding and the use of sequence databases,
combined with classical taxonomy, can help to speed up this process by allowing rapid surveys
of novel regions (Ruiter et al 2013, DeSalle et al. 2005, Jinbo et al. 2011, Pauls et al. 2010, Zhou
et al 2007). The Barcode Of Life Database (BOLD) currently contains DNA barcodes for more
than 260,000 species including ~4555 Trichoptera species, and facilitates the identification of
species based on subunit I of the cytochrome oxidase I (COI) DNA gene. In addition, recent
comprehensive work on barcode-assisted Trichoptera taxonomy (Zhou et al. 2009, 2010a,b,
2011, 2016) provides a solid foundation for biodiversity surveys of caddisflies in North America.
Trichoptera, Ephemeroptera (mayflies), Plecoptera (stoneflies), and often aquatic Diptera (true
flies) are used in well-developed protocols as indicators of aquatic ecosystem health (Lenat and
Barbour 1994). Due to their taxonomic richness, differential susceptibility to pollutants, and
abundance in almost all water bodies worldwide, shifts in their numbers, relative ratios, or
taxonomic diversity both temporally and/or geographically are used to observe stability and
disturbance of ecosystems (Houghton 2004; Pond 2012). Monitoring work is best accomplished
with good information on which species are present. Due to a lack of historical sampling in some
areas, managers often must rely on regional (often province- or state-level) checklists that may or
may not represent the taxonomic and functional diversity of smaller areas or specific sensitive
The Crooked River (Figure 1) is the southernmost lotic system in British Columbia that ultimately drains into the Arctic Ocean. It flows north from Summit Lake (which is just on the north side of the continental divide) to McLeod Lake, connecting a series of lakes along the way. From there its water flows via other systems to eventually end up in the Williston Reservoir – a massive hydroelectric reservoir in the Rocky Mountain Trench that represents one of the largest anthropogenic landscape modifications on earth.

The Crooked River is named for all the oxbows due to its slow meandering flow. This river is also fed by underground springs, such as Livingston Springs in Crooked River Provincial Park. This well-known spring supplies the river with water year round and moderates annual temperature shifts. An extinct volcano (Teapot Mountain) is situated at its headwaters, and likely provides mineral nutrient inputs. As a *bona fide* spring creek, the Crooked River has a very flat gradient with swamp and marshland along much of its shoreline. During freshet the river floods these marshes bringing more nutrients into the system. These factors result in high productivity and a fairly stable year-round temperature which make the Crooked River unique compared to neighbouring systems. Nearby river systems are more typical of British Columbia – they are best described as oligotrophic freestone rivers that are highly susceptible to drastic changes in discharge from spring freshets and that show considerable annual temperature variation. The watershed has been logged for years resulting in a network of resource roads and bridges. A major highway and a rail line also run along much of its length, and are at times only a few meters from the river’s main channel. However, even with its unique nature and high levels of anthropogenic impacts, our searches have revealed no recorded biodiversity surveys on the Crooked River.
Besides that, to our knowledge no comprehensive recent assessment has been done on Trichoptera in central or northern British Columbia. As the Crooked River is such a unique and nutrient-rich system we questioned whether it may provide habitat to species not yet reported for British Columbia. The aim of this study was to provide a comprehensive list of the Trichoptera biodiversity in a unique and vulnerable river as a baseline for future work and management.

METHODS AND MATERIALS

We collected specimens on a biweekly basis from eight locations (CR2 – 54.484°N, -122.721°W, CR2B – 54.484°N, -122.721°W, CR3 – 54.643°N, -122.743°W, CR4 – 54.388°N, -122.633°W, CR5 – 54.478°N, -122.719°W, CR6 – 54.328°N, -122.669°W, CR100BR – 54.446°N, -122.653°W, CR108 – 54.458°N, -122.722°W) along the edge of the Crooked River, British Columbia between May and August 2014 using both hand and kick-net methods. This study focused mainly on larvae to ensure that we collected caddisflies from the Crooked River only and not from nearby water bodies. We completed collections under the British Columbia Ministry of Environment Park Use Permit #107171 where required. We preserved specimens in 80% ethanol upon collection. We identified all 2204 caddisfly specimens that we collected to the lowest possible taxonomic ranking (genus or family) based on published morphological keys (Wiggins 1977; Clifford 1991; Schmid 1998). We selected morpho-species and 214 specimens were subsequently sent to the Biodiversity Institute of Ontario (BIO) and its Barcode of Life Database (http://www.boldsystems.org) in Guelph, Ontario, to have their barcode region (COI) sequenced for further classification. We received back 185 useable sequences (>400 bp., <5 miscalls, no contamination detected). We vouchered all specimens set for sequencing at the Centre for Biodiversity Genomics at the University of Guelph. Initial species identification was
based on a 650 bp sequence in CO1 5’ region using the BOLD platform with MUSCLE sequence alignments and a Kimura-2-parameter distance model. The data for all collected specimens are available as dataset dx.doi.org/10.5883/DS-CRTRI.

Neighbor joining analyses were performed on *Cheumatopsyche harwoodi*, *Lepidostoma togatum* and *Ceraclea annulicornis* specimens from the Crooked River compared to con- and heterospecific sequence data from the Barcode Of Life Database (BOLD). Evolutionary distances were computed using the Kimura 2-parameter method bootstrapped (5000 replications) after a MUSCLE alignment and were visualized in MEGA6.0 (Saitou and Nei, 1987; Felsenstein, 1985; Kimura, 1980; Tamura et al., 2013). We cross-referenced the Crooked River Trichoptera species list that we obtained from analysis of our BOLD data using checklists, museums records and databases from the following: Canadian National Collection of Insect, Arachnids and Nematodes (http://www.canacoll.org/); Strickland Museum at the University of Alberta; Beaty Biodiversity Museum at the University of British Columbia; Electronic Atlas of the Wildlife of British Columbia (http://ibis.geog.ubc.ca/biodiversity/efauna/); Nature Reserve (http://www.natureserve.org/); Canadensys (http://www.canadensys.net/), Global Biodiversity Information Facility (http://www.gbif.org/); the Royal Ontario Museum, and the Royal British Columbia Museum (http://search-collections.royalbcmuseum.bc.ca/Entomology).

RESULTS & DISCUSSION

We used morphological keys to identify all 2204 collected specimens to family or genus, after which we used successful barcodes and database searches to deduce the species identities of 185 individuals based on previous database annotations. In total we detected 41 caddisfly species – found in 20 genera within 11 families – in the Crooked River system (Table 1). All barcode
data are publicly available at BOLD (dx.doi.org/10.5883/DS-CRTRI). Thirty five of the 41 species we identified were assigned to known species via database matches using a 2% threshold for delineating species within Trichoptera, which is considered to be a reliable approach (Zhou et al. 2009). COI sequences of specimens from the Crooked River with DNA sequences matching 99.67% and 99.13% to *Lepidostoma cinereum* and *Neophylax rickeri* respectively, were assigned to the aforementioned species.

Among the 34 specimens identified to species with 100% database matches are *Cheumatopsyche harwoodi*, *Lepidostoma togatum* and *Ceraclea annulicornis*, all three are new species records for British Columbia.

There are currently six species within the genus *Cheumatopsyche* known from British Columbia: *C. analis*, *C. campyla*, *C. gracilis*, *C. oxa*, *C. pettiti* and *C. smithi* (http://ibis.geog.ubc.ca/biodiversity/efauna, Cannings 2007). We found a larva of *Cheumatopsyche harwoodi* (synonym *C. enigma* Ross, Morse, & Gordon, 1971) at CR4 on May 16th 2014. Based on morphological keys we were only able to classify our specimen to genus level. This is not surprising as morphology-based taxonomy of *Cheumatopsyche* larvae is exceedingly difficult (Wiggins 1996). In some cases *C. harwoodi* larvae are indistinguishable from other species within the genus (Burington 2011). Based on our phylogenetic tree-based analysis the Crooked River *C. harwoodi* sequence groups with *C. harwoodi* sequences from Ontario (JF434099, JF434097), New Brunswick (KR146677), and Manitoba (HM102631); and not with any of the known species of *Cheumatopsyche* in British Columbia (Figure 2). The Crooked River specimen also aligns 100% with a DNA sequence of *C. harwoodi* from Alberta (HM102632), but also with a *C. gracilis* sequence from Wyoming (HQ560573) (Figure 2).
To identify a species based on DNA sequence, an accurate morphological identification to species of a physical specimen is required – and ideally replicated a number of times. Currently BOLD has 178 barcodes for specimens identified as *C. harwoodi* and the Crooked River specimen aligns very closely to these with less than 0.6% difference within the species as a whole, well below the 2% threshold suggested by Zhou and co-workers in 2009. There are currently only two barcodes for *C. gracilis* and both these barcodes group with the various *C. harwoodi* sequences. These two *C. gracilis* specimens are also quite different, with a 1.3% difference based on our analysis. The preponderance of evidence, then, points to one of three possibilities. First, the two *C. gracilis* specimens in BOLD are actually misidentified *C. harwoodi* and our specimen is also *C. harwoodi*. Second, the specimens represent different species but that difference is not reflected in the DNA barcode. And third, the taxonomic status of both species should be reconsidered as potentially being one species. A more definitive identification might be possible as BOLD is populated with more *C. gracilis* sequences that helps delineate the two species.

On 14 July 2014 we found a larva for *Lepidostoma togatum* \{synonyms *L. canadense* (Banks, 1899) *L. pallidum* (Banks, 1897) *Mormomyia togatum* Hagen, 1861, *Pristosilo canadensis* Banks, 1899, *Silo pallidus* Banks, 1897\} at CR3. The DNA sequence of this specimen aligns clearly with *L. togatum* sequences (Figure 3). Based on museum and database records in Canada *L. togatum* is known to be present in the Northwest Territories, Alberta and the Maritime Provinces of Canada. Our report is the first for this species west of the Rocky Mountains.

On 13 August 2014 we found a specimen of *Ceraclea annulicornis* \{(synonyms: *Athripsodes annulicornis* (Stephens, 1836), *C. futilis* (Banks, 1914), *C. recurvata* (Banks, 1908),
Leptocerus annulicornis Stephens, 1836, *L. futilis* (Banks, 1914) at CR3 (Figure 1). The phylogenetic tree-based analysis using sequences from Manitoba, Ontario, and New Brunswick strongly suggest our specimen is *C. annulicornis* (Figure 4).

We found specimens belonging to three genera that had no significant matches at the species level on either the Barcode of Life Database or at NCBI; therefore we only provide genus-level identifications (Table 1). A specimen we putatively assign as *Micrasema* had only one match in BOLD Genbank Accession# KR145307 (Zhou et al., 2016), but much further south, on southern Vancouver Island. Images of this specimen are publicly available at BOLD (BIOUG18683-F08).

A specimen putatively belonging to the genus *Hydroptila* had a number of 100% matches to the Crooked River *Hydroptila* sp. in the BOLD database (Zhou et al., 2016), but none identified to species. Sequence alignments revealed 86% and 84.74% similarity to *H. rono* and *H. xera* respectively; both species are known to be present in British Columbia. The other two known *Hydroptila* spp. in British Columbia, *H. arctica* and *H. consimilis*, are substantially dissimilar from our specimen (81% and 82% match, respectively). Images of our specimen are publicly available at BOLD (BIOUG18683-A06).

A third specimen putatively assigned to *Lepidostoma* resides in a BIN with only two members (BOLD:ACL5324) –the Crooked River specimen and one other from British Columbia (Genbank Accession # KX142483). Images of this specimen (adult) are publicly available at BOLD (BIOUG18683-G10).

These three specimens are thus most likely also new species records for British Columbia. All known species in British Columbia belonging to *Micrasema* and *Hydroptila* have DNA barcodes in BOLD, and ten of the 12 *Lepidostoma* species known to be in British
Columbia have DNA barcodes in BOLD. Only *L. quercina* and *L. stigma* do not, and it is possible that our specimen belongs to one of these two species.

The presence of 41 species (20 genera, 11 families) of caddisflies in the Crooked River is comparable to other rivers and regions. For instance, collection from the Churchill, Manitoba area – including the Churchill River, tundra ponds, lakes, and small streams – revealed 68 species (Zhou *et al*. 2009). Collection from the Ochre River, Manitoba revealed 33 species (8 families, 17 genera) (Cobb and Flannagan 1990). Broad-scale sampling across northern Canada from the Ogilvie Mountains in the Yukon to Goose Bay in Newfoundland revealed 56 species (Cordero *et al*. 2017). To our knowledge, there is no study that provides comprehensive species checklist of caddisflies for a specific tributary in British Columbia to which we could compare our data more regionally.

In summary, our assessment of the Trichoptera inhabiting the Crooked River revealed three new species records for British Columbia *Lepidostoma togatum, Ceraclea annulicornis* and possibly *Cheumatopsyche harwoodi*. Our results also suggest at least two, and possibly three, new species records. This baseline biodiversity data is vital for ongoing monitoring and management of this unique and highly impacted system and provides new data for managers and conservationists working in this understudied system.

ACKNOWLEDGEMENTS: We thank Claire Shrimpton for assistance in the field. Museum databases were provided by the Beaty Biodiversity Museum at the University of British Columbia (Karen Needham and Chris Ratzlaff), the Royal British Columbia Museum (Claudia Copley and Joel Gibson), the Strickland Museum at the University of Alberta (Bryan Brunet and Felix Sperling), and the Royal Ontario Museum (Doug Currie, Antonia Guidotti, Brad Hubley,
Thank you to the reviewers, especially Dr. Ralph Holzenthal, for their feedback and comments as it improved the manuscript immensely.

REFERENCES

Burgmer T., Hillebrand, H., and Pfenninger, M. 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151:93–103

Burrington, Z. L. 2011. Larval Taxonomy, Phylogeny And Historical Biogeography Of The Genus Cheumatopsyche (Trichoptera: Hydropsychidae) In North America. MSc thesis, Clemson University, Clemson SC.

Cairns, J. Jr. and Pratt, J. R. 1993. A History of Biological Monitoring Using Benthic Macroinvertebrates. In -Freshwater Biomonitoring and Benthic Macroinvertebrates, D. M. Rosenberg and V. H. Resh, eds., Chapman & Hall, NY. p. 10-27

Clifford, H. F. 1991. Aquatic Invertebrates of Alberta. The University of Alberta Press, Edmonton, AB, 314-352.

Cobb, D.G., and Flannagan, J. F. 1990. Trichoptera and substrate stability in the Ochre River, Manitoba. Hydrobiologica 206: 29-38.

Cordero, R. D. Sánchez-Ramírez, S. and Currie, D. C. 2017. DNA barcoding of aquatic insects reveals unforeseen diversity and recurrent population divergence patterns through broad-scale sampling in northern Canada. Polar Biology 40:1687-1695
DeSalle, R., Egan, M. G., and Siddall, M. 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. *Philosophical Transactions of the Royal Society B: Biological Sciences* 360: 1905-1916.

Dobson, M. and Frid, C. 2009. Rivers. In -Ecology of Aquatic systems. Oxford University Press, Oxford, UK. p. 45-83.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. *Evolution* 39:783-791.

Falsenst. Houghton, D. C. 2004. Biodiversity of Minnesota caddisflies (Insect: Trichoptera): Delineation and characterization of regions. *Environmental Monitoring and Assessment* 95: 153-181.

Jinbo, U. Kato, T. and Motomi ITO. 2011. Current progress in DNA barcoding and future implications for entomology. *Entomological Science* 14: 107-124.

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution* 16:111-120.
Lenat, D. R., and Barbour, M. T. 1994. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: rapid bioassessment. In - Biological monitoring of aquatic systems. Edited by S. L. Loeb and A. Spacie. Lewis Publishers, NY, USA.

McKay, B. 2000. Crooked River Rats: The Adventures of Pioneer Rivermen. Hancock House Publishers Ltd., Surrey, British Columbia, Canada.

Meyer, J., L., Sale, M. J., and Mulholland, P. J. 1999. Impacts of climate change on aquatic ecosystem functioning and health. JAWRA 35: 1373-1386.

Parmesan, C. 2006. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 37: 637-669.

Pauls, S. U. Blahnik, R. J. Zhou, X. Wardwell, C. T. and Holzenthal, R. W. 2010, DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera:Hydropsychidae). J. N. Am. Benthol. Soc. 29(3):1058-1074

Pond, G. J. 2012. Biodiversity loss in Appalachian headwater streams (Kentucky, USA): Plecoptera and Trichoptera communities. Hydrobiologia 679: 97-117.
Ruiter, D. E. Boyle, E. E. and Zhou X. 2013. DNA barcoding facilitates associations and diagnoses for Trichoptera larvae of the Churchill (Manitoba, Canada) area. *BMC Ecology* 13: 5

Saitou N. and Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 4:406-425.

Schmid, F. 1998. *The Insects and Arachnids of Canada. Part 7. Genera of the Trichoptera of Canada and Adjoining or Adjacent United States.* NRC Research Press, Ottawa, Ontario, Canada. p.319.

Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution* 30: 2725-2729.

Wiggins, G. B. 1977. *Larvae of the North American Caddisfly Genera (Trichoptera).* University of Toronto Press, Toronto, Ontario, Canada. p. 381.

Zhou, X. Kjer, K. M. and Morse, J. C. 2007. Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta:Trichoptera) using DNA sequences. *J. N. Am. Benthol. Soc.* 26(4):719-742
Zhou, X., Adamowicz, S. L., Jacobus, L. M., DeWalt, R. E., and Hebert, P. D. N. 2009. Towards a comprehensive barcode library for arctic life - Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. *Frontiers in Zoology* **6**:30.

Zhou, X., Jacobus, L. M., DeWalt, R. E., Adamowicz, S. J., Hebert, P. D. N. 2010a. Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada): insights into biodiversity patterns from DNA barcoding. *J. N. Am. Benthol. Soc.* **29**: 814-837.

Zhou, X., Robinson, J.L., Geraci, C.J., Parker, C.R., Flint Jr, O.S., Etnier, D.A., Ruiter, D., DeWalt, R.E., Jacobus, L.M. and Hebert, P.D. 2011. Accelerated construction of a regional DNA-barcode reference library: caddisflies (Trichoptera) in the Great Smoky Mountains National Park. *J. N. Am. Benthol. Soc.* **30**(1), pp.131-162.
Zhou, X., Frandsen, P.B., Holzenthal, R.W., Beet, C.R., Bennett, K.R., Blahnik, R.J., Bonada, N., Cartwright, D., Chuluunbat, S., Cocks, G.V. and Collins, G.E., 2016. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life. *Phil. Trans. R. Soc. B*, 371(1702), p.20160025.
Figure 1: Map of sampling sites along the Crooked River, British Columbia. CR2: 54.485265°N, -122.717974°W; CR2B: 54.484474°N, -122.721257°W; CR3: 54.642963°N, -122.743021°W; CR4: 54.387709°N, -122.633217°W; CR5: 54.477975°N, -122.719000°W; CR6: 54.328038°N, -122.669236°W; CR100BR: 54.446455°N, -122.653129°W; CR108: 54.458511°N, -122.721828°W.
Figure 2: Phylogenetic tree of *Cheumatopsyche* spp. collected from the Crooked River and congeneric COI-5P DNA sequences of *Cheumatopsyche* species with DNA barcodes. Evolutionary history is based on the Neighbour-Joining Method bootstrapped (5000 replicates) and the Kimura-2 method to calculate distances. Each species is identified by the geographic region of collection, species, and Genbank accession number for the COI-5P DNA sequence.
Figure 3: Phylogenetic tree of *Lepidostoma* spp. collected from the Crooked River and congeneric COI-5P DNA sequences of *Lepidostoma* species with DNA barcodes. Evolutionary history is based on the Neighbour-Joining Method bootstrapped (5000 replicates) and the Kimura-2 method to calculate distances. Each species is identified by the geographic region of collection, species, and Genbank accession number for the COI-5P DNA sequence.
Figure 4: Phylogenetic tree of *Ceraclea* spp. collected from the Crooked River and congeneric COI-5P DNA sequences of *Ceraclea* species with DNA barcodes. Evolutionary history is based on the Neighbour-Joining Method bootstrapped (5000 replicates) and the Kimura-2 method to calculate distances. Each species is identified by the geographic region of collection, species, and Genbank accession number for the COI-5P DNA sequence.
Table 1: Trichoptera collected along the Crooked River, British Columbia and associated COI DNA barcode-assigned identifications along with date ranges of collection. Locations of collection sites are given in the footnotes. All sequence data are available in public repositories as listed, and all specimens are vouchered at the University of Guelph – Centre for Biodiversity Genomics.
Family	Genus	Species	Sample IDs	BIN	NCBI accession	Collection site(s)	Collection date range	Notes
Brachycentridae	*Brachycentrus*	*americanus*	BIOUG18684-B11 and 22 others	BOLD:ABX653 5	KX144627	CR2, CR2B, CR4, CR108	11-JUN to 13-AUG	
		occidentalis	BIOUG18683-H05 and 5 others	BOLD:AAE028 1	KX144012	CR3, CR100BR	04-JUN to 13-AUG	
	Micrasema	*bactro*	BIOUG18683-F09.1	BOLD:AAC465 0	KX143689	CR4	11-JUN	
		sp.	BIOUG18683-F08	BOLD:ACC491 2	KX142261	CR2	18-JUN	Potential new BC record
Hydropsychidae	*Arctopsyche*	*grandis*	BIOUG18683-A11.1 and 6 others	BOLD:ABB304 9	KX143192	CR2, CR108	09-JUL to 13-AUG	
		Cheumatopsycha	BIOUG18684-B10	BOLD:AAA569 5	KX144608	CR100BR	28-JUL	
		analis	BIOUG18684-B09	BOLD:AAA231 6	KX141182	CR4	16-MAY	New BC record
		harwoodi	BIOUG18684-E05	BOLD:ACE526 2	KX142965	CR108	09-JUL	
		sp.	BIOUG18684-E08 and 4 others	BOLD:AAA389 1	KX142829	CR3	29-JUL to 13-AUG	
Family	Genus	Species	Collection Code	BOLD	Accession Number	Sequence Type	Code	Record Dates
-----------------	-------	-------------	-----------------	-----	-----------------	---------------	------	-----------------
Hydropsyche	alhedra	BIOUG18683-H03 and 2 others	BOLD:AAC1650	KX143172	CR4, CR108	04-JUN to 11-JUN		
	alternans	BIOUG18683-C12 and 14 others	BOLD:AAA3236	KX140968	CR3, CR100BR	10-JUN to 13-AUG		
	cockerelli	BIOUG18683-A03	BOLD:AAC3057	KX143078	CR4	16-MAY		
	morosa	BIOUG18684-E01 and 5 others	BOLD:AAA3679	KX143491	CR3	28-JUL		
	slossonae	BIOUG18684-E06 and 12 others	BOLD:AAA2527	KX143429	CR2, CR4, CR100BR, CR108	11-JUN to 13-AUG		
Hydroptilidae	arctica	BIOUG18683-F10.1	BOLD:AAE5200	KX141605	CR108	25-JUN		
	sp.	BIOUG18683-A06	BOLD:AAK3416	KX142062	CR2	18-JUN	Potential new BC record	
Lepidostomatidae	pluviale	BIOUG18684-D07.1 and 3 others	BOLD:ACF2295	KX142857	CR100BR	18-JUN to 13-AUG		
	sp.	BIOUG18683-G10	BOLD:ACL5324	KX144650	CR2	4-AUG	Potential new BC record	
	togatum	BIOUG18684-D02	BOLD:AAA2325	KX144002	CR3	14-JUL	New BC record	
	cinereum	BIOUG18683-C07.1 and 3 others	BOLD:AAK7943	KX142572	CR2, CR2B, CR4	25-JUN to 4-AUG		
Family	Genus	Species	Collection ID	BOLD Accession Number	GenBank Accession Numbers	Start Date - End Date		
------------	-------------	---------------	---------------	------------------------	---------------------------	-----------------------		
Leptoceridae	Ceraclea	alagma	BIOUG18683-F06 and two others	BOLD:AAA5876	KX143301, CR6, CR100BR, CR108	16-MAY to 14-JUL		
		annulicornis	BIOUG18683-B02	BOLD:AAA5429	KX142035, CR3	13-AUG	New BC record	
	cancellata	BIOUG18684-A01	BOLD:ABZ0710	KX143326, CR4	4-AUG			
	nigronervosa	BIOUG18683-H09 and 1 other	BOLD:AAC3781	KX141154, CR100BR	10-JUN			
	resurgens	BIOUG18683-F07.1 and 2 others	BOLD:ACG9704	KX142221, CR3	14-JUL to 28-JUL			
Limnephilidae	Amphicosmoecus	canax	BIOUG18683-D09 and 5 others	BOLD:AAE2491	KX143314, CR2B, CR4, CR100BR	11-JUN to 9-JUL		
	Clistoronia	magna	BIOUG18683-F05 and 1 other	BOLD:AAC1848	KX141495, CR3, CR4	28-JUL to 13-AUG		
	Dicosmoecus	atripes	BIOUG18683-G05 and 2 others	BOLD:AAC5045	KX140940, CR4	11-JUN		
		gilvipes	BIOUG18684-H07 and six others	BOLD:AA19526	KX142636, CR2B, CR4, CR100BR	16-MAY to 9-JUL		
	Limnophilus	externus	BIOUG18683-F12 and 1 other	BOLD:AAA2803	KX141731, CR2B, CR6	11-JUN to 18-JUN		
Taxon	Sample Code	GenBank Accession Numbers	Collection Dates					
---------------------------	-------------------	---------------------------	------------------					
Onocosmoecus unicolor	BIOUG18684-H04	KX142875, CR4, CR108	11-JUN to 4-AUG					
Psychoglypha alasensis	BIOUG18683-G07	KX141905, CR4, CR5	9-MAY to 4-AUG					
subborealis	BIOUG18683-D11.1	KX144814, CR4	9-JUL to 4-AUG					
Philopotamidae Wormalidia	Gabbiella	BIOUG18684-C03	21-JUL to 13-AUG					
Phryganeidae Agrypnia	Improba	BIOUG18683-C01	13-AUG					
Polycentropodidae Neureclipsis	Bimaculata	BIOUG18683-A08	14-JUL to 28-JUL					
Plectrocnemia cinerea	BIOUG18684-A08	KX141515, CR6	14-JUL					
Rhyacophilidae Rhyacophila	Brunnea	BIOUG18683-B12	18-JUN to 2-AUG					
Neophylax rickeri	BIOUG18683-G08	KX144032, CR4	4-JUN					

1- determined from morphological keys and BOLD database match.