Novel relaxation time approximation: a consistent calculation of transport coefficients with QCD-inspired relaxation times

Gabriel S. Rocha, Gabriel S. Denicol

Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil

Maurício N. Ferreira

Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil

Jorge Noronha

Illinois Center for Advanced Studies of the Universe & Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA

Received July 26, 2022

We use a novel formulation of the relaxation time approximation to consistently calculate the bulk and shear viscosity coefficients using QCD-inspired energy-dependent relaxation times and phenomenological thermal masses obtained from fits to lattice QCD thermodynamics. The matching conditions are conveniently chosen to simplify the computations.

1. Introduction

Nuclear matter in extreme conditions can be investigated through ultra-relativistic heavy-ion collisions. In particular, obtaining the transport coefficients of the quark-gluon plasma, throughout the QCD phase diagram, is a very challenging task that is currently beyond the reach of first-principles techniques [1]. In this contribution, we compute the transport coefficients of an effective kinetic model [2, 3] with a temperature-dependent mass whose equation of state mimics lattice QCD thermodynamics [4]. We use the new relaxation time approximation (RTA) of the relativistic Boltzmann equation proposed in [5] and impose alternative matching conditions such that

*Presented at the XXIXth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (QUARK MATTER 2022)
the interaction energy [6] depends only on the temperature even out of equilibrium.

2. The quasi-particle model

The relativistic Boltzmann equation for quasi-particles with a temperature-dependent mass, $M(T)$, is given by [7],

$$p^\mu \partial_\mu f_p + \frac{1}{2} \partial_i M^2(T) \partial_i f_p = C[f_p],$$ \hspace{1cm} (1)

where $f_p = f(x,p)$ is the single particle distribution function. Above, $\partial_i(f_p) = \partial f_p / \partial p_i$, and $C[f_p]$ is the collision integral.

In the limit of vanishing net-charge, the main dynamical equation is the continuity equation for the energy-momentum tensor, $T^{\mu\nu}$,

$$\partial_\mu T^{\mu\nu} = 0.$$ \hspace{1cm} (2)

In the presence of a thermal mass, $T^{\mu\nu} \equiv \langle p^{\mu} p^{\nu} \rangle + g^{\mu\nu}B$, where B is the interaction energy [3]. $g^{\mu\nu}$ denotes the metric, $\langle \cdots \rangle = \int dP \cdots f_p \int dP = g \int d^3p / [(2\pi)^3 E_p]$, with g being the degeneracy factor and $E_p = \sqrt{p^2 + M^2}$.

The interaction energy B satisfies the following dynamical equation,

$$\partial_\mu B = -\frac{1}{2} \partial_\mu M^2 \langle 1 \rangle,$$ \hspace{1cm} (3)

which is valid both in and out of equilibrium. We consider Maxwell-Boltzmann statistics so that in equilibrium $f_p = \exp(-\beta u^\mu p^\mu) \equiv f_{0p}$, with $\beta = 1/T$ and u, being the fluid 4-velocity (which satisfies $u_\mu u^\mu = 1$).

The temperature dependence of the mass is obtained such that the equation of state of the model describes lattice QCD results [4]. Plots for $B(T)$ and $M(T)$ can be seen in Refs. [2, 3]. Qualitatively, $M(T)/T$ is very large at low temperatures and saturates at $M(T)/T \approx 1.1$ at high temperatures.

3. Matching conditions and the collision term

The energy-momentum tensor can be decomposed in terms of the 4-velocity u^μ as follows

$$T^{\mu\nu} = \varepsilon u^\mu u^\nu - P \Delta^{\mu\nu} + h^\mu u^\nu + h^\nu u^\mu + \pi^{\mu\nu},$$ \hspace{1cm} (4)

where ε is the total energy density, P is the total isotropic pressure, h^μ is the energy diffusion, $\pi^{\mu\nu}$ is the shear-stress tensor, and we defined the projection operator $\Delta^{\mu\nu} = g^{\mu\nu} - u^\mu u^\nu$. They are obtained from moments
of \(f_p \) as explained in [7]. In general, \(\varepsilon_0 \) and \(P_0 \) may have non-equilibrium corrections, such that \(\varepsilon = \varepsilon_0 + \delta \varepsilon \), \(P = P_0 + \Pi \), respectively.

The meaning of \(u^\mu \) and \(\beta \) for non-equilibrium states is determined by matching conditions [7]. The most widely used prescription is the one introduced by Landau [8], where \(\delta \varepsilon = 0 \) and \(h^\mu = 0 \). In the present work, we choose a new prescription in order to simplify Eq. (3). Specifically, we impose

\[
\langle 1 \rangle \equiv \langle 1 \rangle_0 ,
\]

where \(\langle \cdots \rangle_0 \equiv \int dP \cdots f_0 p \), which defines the temperature for non-equilibrium states. In this matching, \(\delta \varepsilon \neq 0 \). To define the 4-velocity, a further condition is needed. However, since we only consider a fluid at vanishing chemical potential, our results will not depend on this particular choice.

With prescription (5), the interaction energy can be determined solely as a function of \(T \) and Eq. (3) can be solved as if the system were in equilibrium,

\[
\frac{\partial B(T)}{\partial T} = -dM^2 \frac{2\pi^2}{M(T)} \frac{\partial M(T)}{\partial T} ,
\]

which can be readily integrated since \(M(T) \) is known, and the boundary condition \(B(0) = 0 \) is given. Above, \(K_1 \) is the first modified Bessel function of the second kind.

Novel relaxation time approximation

In contrast to the traditional RTA [9], in the new prescription proposed in Ref. [5] the conservation laws hold at the microscopic level even when considering momentum-dependent relaxation times and arbitrary matching conditions. In practice, we approximate the collision term as

\[
C[f_p] \approx -\frac{E_p}{\tau_R} f_{0p} \left[\phi_p - \frac{\langle E_p \tau_R^2 \rangle_0}{\langle \tau_R^2 \rangle_0} E_p - \frac{\langle \phi_p E_p \tau_R p^{(\mu)} \rangle_0}{\langle \tau_R^4 \rangle_0} \frac{p^{(\mu)} \langle \mu \rangle_0}{3} \right] ,
\]

where \(\phi_p \equiv (f_p - f_{0p})/f_{0p} \). We parametrize the energy dependence of the relaxation time as \(\tau_R = t_R (E_p/T)^\gamma \), where the parameter \(\gamma \) encodes the information of the underlying microscopic interaction, and \(t_R > 0 \). For instance, it has been argued that \(\gamma = 1/2 \) in QCD effective theories [10]. Above, we defined the space-like projection \(p^{(\mu)} = \Delta^{\mu\nu} p_\nu \).

4. Transport coefficients

In first order theories, equation (2) is complemented by constitutive relations for the non-equilibrium currents (\(\delta \varepsilon, \Pi, \pi^{\mu\nu} \)). In kinetic theory,
they can be calculated using the Chapman-Enskog expansion \cite{7} which, when truncated at first order, leads to the following relativistic Navier-Stokes formulation of hydrodynamics,

\[\delta \varepsilon = \chi \theta, \quad \Pi = -\zeta \theta, \quad \pi^{\mu \nu} = 2\eta \sigma^{\mu \nu}. \]

(8)

Using (7), the transport coefficients read \cite{3}

\[\zeta = \frac{1}{3} \left\langle (\Delta ^{\mu \nu} p^{\mu} p^{\nu}) A_{p} \frac{\tau_{R}}{E_{p}} \right\rangle_0 - \left\langle \frac{\tau_{R}}{E_{p}} A_{p} \right\rangle_I_{3,0} / I_{1,0}, \]

\[\chi = - \left(A_{p} \tau_{R} E_{p} \right)_{0} + \left\langle \frac{\tau_{R}}{E_{p}} A_{p} \right\rangle_I_{3,0} / I_{1,0}, \quad \eta = \frac{\beta}{15} \left\langle (\Delta ^{\mu \nu} p^{\mu} p^{\nu})^2 \frac{\tau_{R}}{E_{p}} \right\rangle_0, \]

(9)

where \(A_{p} = -\beta c_{s}^{2} E_{p}^{2} - \frac{\beta}{3} \Delta ^{\lambda \sigma} p_{\lambda} p_{\sigma} - \beta^{2} M^{\frac{\partial M}{\partial \beta}} c_{s}^{2}, \) and \(c_{s}^{2} \equiv (\partial P_{0}/\partial \varepsilon_{0}) = (1/\beta)(I_{10} + I_{21})/[I_{30} + \frac{1}{3} I_{10}(\partial M/\partial \beta)] \) is the speed of sound squared, which is expressed in terms of \(I_{n q} = 1/[(2q + 1)!!] \left\langle (-\Delta ^{\lambda \sigma} p_{\lambda} p_{\sigma})^{q} E_{p}^{2q-2n} \right\rangle_0. \)

In Fig. 1 we plot the coefficients as functions of temperature for different values of the parameter \(\gamma, \) as well as the temperature dependence of the mass. For all values of \(\gamma \) investigated, \(\zeta \geq 0 \) and \(\chi \leq 0. \) In both figures, it is seen that the absolute values of the coefficients grow with \(\gamma. \) At low temperatures, where the effective mass is large, \(M/T \to \infty, \) all three normalized coefficients behave as \((M/T)^{\gamma - 1}. \) For \(\gamma = 1, \eta = t_{R}(\varepsilon_{0} + P_{0}), \) at all temperatures. In the opposite limit, \(M/T \to 0, \) \(\zeta = -(1/3)\chi \propto M(T)(d/dT) (M(T)/T) \) and \(\eta \sim \Gamma(\gamma + 5)/120. \)

\textit{Entropy production}

The entropy current for classical quasiparticles is \(S^{\mu} = \int dP p^{\mu} f_{p} (1 - \ln f_{p}). \) We note that the entropy production does not depend on the choice of matching conditions \cite{3}. To first order in the Chapman-Enskog expansion, one finds

\[\partial_{\mu} S^{\mu} \simeq \zeta_{s} \theta^{2} + 2\eta \sigma^{\mu \nu} \sigma_{\mu \nu}, \quad \zeta_{s} = \left\langle \frac{\tau_{R}}{E_{p}} [A_{p}]^{2} \right\rangle_0 = \zeta + c_{s}^{2} \chi. \]

(10)

Since both \(\zeta_{s} \) and \(\eta \) are non-negative, so is the entropy production. The coefficient \(\zeta_{s} \) can be used to provide a matching-invariant interpretation of bulk viscosity and, indeed, for Landau matching conditions \(\zeta_{s} = \zeta. \) This coefficient behaves similarly to \(\zeta \) as a function of temperature, with the difference that, as \(M/T \to 0, \zeta_{s} \propto [M(T)(d/dT) (M(T)/T)]^{2}, \) thus displaying a steeper descent at high temperatures in Fig. 1.

\footnote{Even though this is not achieved at high temperatures, where \(M/T \to 1.1 \) \cite{3}, these expansions serve as estimates.}
5. Conclusion

In this work we have computed the first-order transport coefficients of an effective kinetic model with temperature-dependent mass, using the new relaxation time approximation proposed in Ref. [5]. We have used an alternative matching condition [Eq. (5)] to simplify the computations, which in turn imply that there are nonzero out-of-equilibrium corrections to the energy density. We find that all transport coefficients are significantly affected by the choice of the parameter γ, which defines how the relaxation time depends on energy. Consistency with the second law of thermodynamics is demonstrated and used to derive a matching-invariant bulk viscosity coefficient. In future work, we intend to compute the transport coefficients that appear in other theories of hydrodynamics [11, 12] using the present model.

Acknowledgements

G.S.R. and G.S.D thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for support. G.S.D. also thanks Fundação Carlos Cha-
gas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) process No. E-26/202.747/2018 for support. M.N.F is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grants 2017/05685-2 and 2020/12795-1. J.N. is partially supported by the U.S. Department of Energy, Office of Science, Office for Nuclear Physics under Award No. DE-SC0021301.

REFERENCES

[1] H. B. Meyer, “Transport Properties of the Quark-Gluon Plasma: A Lattice QCD Perspective,” Eur. Phys. J. A, vol. 47, p. 86, 2011.
[2] M. Alqahtani, M. Nopoush, and M. Strickland, “Quasiparticle equation of state for anisotropic hydrodynamics,” Phys. Rev. C, vol. 92, no. 5, p. 054910, 2015.
[3] G. S. Rocha, M. N. Ferreira, G. S. Denicol, and J. Noronha, “Determining the transport coefficients of the quark-gluon plasma using a new relaxation time approximation of the Boltzmann equation,” arXiv:2203.15571 2022.
[4] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, “The QCD equation of state with dynamical quarks,” JHEP, vol. 11, p. 077, 2010.
[5] G. S. Rocha, G. S. Denicol, and J. Noronha, “Novel Relaxation Time Approximation to the Relativistic Boltzmann Equation,” Phys. Rev. Lett., vol. 127, no. 4, p. 042301, 2021.
[6] S. Jeon and L. G. Yaffe, “From quantum field theory to hydrodynamics: Transport coefficients and effective kinetic theory,” Phys. Rev. D, vol. 53, pp. 5799–5809, 1996.
[7] G. Denicol and D. H. Rischke, Microscopic Foundations of Relativistic Fluid Dynamics. Springer, 2021.
[8] L. Landau and E. Lifshitz, “Fluid Mechanics,” Course of Theoretical Physics, Pergamon Press, London, vol. 6, 1959.
[9] J. L. Anderson and H. Witting, “A relativistic relaxation-time model for the Boltzmann equation,” Physica, vol. 74, no. 3, pp. 466–488, 1974.
[10] K. Dusling, G. D. Moore, and D. Teaney, “Radiative energy loss and v 2 spectra for viscous hydrodynamics,” Physical Review C, vol. 81, no. 3, p. 034907, 2010.
[11] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke, “Derivation of transient relativistic fluid dynamics from the Boltzmann equation,” Phys. Rev. D, vol. 85, p. 114047, 2012, [Erratum: Phys.Rev.D 91, 039902 (2015)].
[12] F. S. Bemfica, M. M. Disconzi, and J. Noronha, “Causality and existence of solutions of relativistic viscous fluid dynamics with gravity,” Phys. Rev. D, vol. 98, no. 10, p. 104064, 2018.