Ionic liquid gating induced two superconductor-insulator phase transitions in spinel oxide \(\text{Li}_{1\pm \delta}\text{Ti}_2\text{O}_4 \)

Zhongxu Wei,1,2,∗ Qian Li,1,∗ Ben-Chao Gong,3,∗ Xinjian Wei,1,2,4,5,∗ Wei Hu,1,2 Zhuang Ni,1,2 Ge He,6 Mingyang Qin,1,2 Anna Kusmartseva,7 Fedor V. Kusmartsev,7,8 Jie Yuan,4,9 Beiyi Zhu,4 Qihong Chen,7 Jian-Hao Chen,4,10,5 Kai Liu,3 and Kui Jin1,2,9,∗

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
4International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
5Beijing Academy of Quantum Information Sciences, Beijing 100193, China
6Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
7Department of Physics, Loughborough University, Loughborough LE11 3TU, UK
8College of Art and Science, Khalifa University, PO Box 127788, Abu Dhabi, UAE
9Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
10Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China

The associations between emergent physical phenomena (e.g., superconductivity) and orbital, charge, and spin degrees of freedom of 3d electrons are intriguing in transition metal compounds. Here, we successfully manipulate the superconductivity of spinel oxide \(\text{Li}_{1\pm \delta}\text{Ti}_2\text{O}_4 \) (LTO) by ionic liquid gating. A dome-shaped superconducting phase diagram is established, where two insulating phases are disclosed both in heavily electron-doping and hole-doping regions. The superconductor-insulator transition (SIT) in the hole-doping region can be attributed to the loss of Ti valence electrons. In the electron-doping region, LTO exhibits an unexpected SIT instead of a metallic behavior despite an increase in carrier density. Furthermore, a thermal hysteresis is observed in the normal state resistance curve, suggesting a first-order phase transition. We speculate that the SIT and the thermal hysteresis stem from the enhanced 3d electron correlations and the formation of orbital ordering by comparing the transport and structural results of LTO with the other spinel oxide superconductor MgTi2O4, as well as analysing the electronic structure by first-principles calculations. Further comprehension of the detailed interplay between superconductivity and orbital ordering would contribute to the revealing of unconventional superconducting pairing mechanism.

I. INTRODUCTION

Clarifying the competition and cooperation between superconductivity and other collectively orders is a promising way to unveil the mechanism of high-temperature superconductivity [1–4]. Similar to the cuprate and iron-based superconductors, the superconductivity of spinel oxide \(\text{Li}_{1\pm \delta}\text{Ti}_2\text{O}_4 \) (LTO) originates from 3d orbitals in Ti in LTO are much less occupied, given that the Ti sublattice in stoichiometric \(\text{LiTi}_2\text{O}_4 \) consists of equal amounts of \(\text{Ti}^{3+} \) and \(\text{Ti}^{4+} \) [7]. Although the measurements of inelastic neutron scattering [8], specific heat [9], and Andreev reflection spectroscopy [10] provide evidences for Bardeen-Cooper-Schrieffer like superconductivity in LTO, the photoelectron spectroscopy [11] and the theoretical studies made by Anderson et al. [12] prefer unconventional pairing mechanisms, such as polaron and resonating valence bond pictures. Complicated interactions among charge, orbital, and spin in LTO also induce many novel phenomena, e.g., orbital-related state [13, 14], pseudogap [15], anisotropic electron-phonon coupling [16], and anomalous upper critical field [17]. Therefore, it is essential to elaborately depict the detailed interplay between superconductivity and related collectively orders in LTO.

Carrier density is crucial for superconductivity [18], which can be effectively tuned by chemical doping. In order to dope LTO with holes, previous works have attempt to reduce the \(\text{Li}^+ \) content by exposing LTO to air [19, 20] and soaking LTO in hydrochloric acid [21, 22], leading to a first increase and then decrease in the zero resistance transition temperature (\(T_{c0} \)). However, when holes are injected by \(\text{Li}^+ \) deintercalation and \(\text{O}^{2-} \) intercalation based on ionic liquid gating (ILG), \(T_{c0} \) decreases monotonically [23]. On the other hand, by tuning the oxygen pressure during sample fabrication, it is found that an increase in \(\text{O}^{2-} \) content will induce a transition from \(\text{Li}_4\text{Ti}_2\text{O}_7 \) to \(\text{Li}_4\text{Ti}_3\text{O}_12 \) along with a superconductor-insulator transition (SIT) [24]. Therefore, the roles of \(\text{Li}^+ \) and \(\text{O}^{2-} \) in hole-doping discussed by various approaches are distinct and desire further investigation. In contrast, the study of electron-doped LTO is rather fewer. Typically, when electrons are introduced into LTO by ILG, the superconductivity is significantly suppressed and followed by an insulator behavior [25]. Up to now, the origin of this SIT is still an open question. Overall, it is worthy to systematically dope LTO and perform detailed measurements to clarify the issues above.

In this paper, we systematically dope LTO films with elec-
trons and holes by ILG, and successfully manipulate the superconductivity. A phase diagram of LTO is established in which a dome-shaped superconducting phase locates between two insulating phases, as shown in Fig. 1(d). With increasing hole-doping level, T_c of LTO first increases and then drops, followed by an irreversible SIT which can be explained by the loss of Ti valence electrons. Furthermore, in situ x-ray diffraction (XRD) measurements show that the c-axis lattice constant in the insulating region decreases by 5%, indicating that a novel chemical phase may be induced. With enhancing electron-doping level, the superconductivity is gradually suppressed, and finally an unexpected reversible SIT occurs despite an increase in electron density. In addition, a thermal hysteresis appears in the temperature-dependent resistance [$R(T)$] curve of the electron-doped LTO. Different to the case of hole-doping, the lattice constant changes slightly during the whole electron-doping process. Based on the transport and structural results as well as electronic structure by first-principles calculations, we suggest that the SIT in electron-doped LTO, along with the thermal hysteresis, can be attributed to the enhanced $3d$ electron correlations and the formation of orbital ordering.

II. EXPERIMENTAL METHODS

The (001)-oriented LTO films S1-S5 with thickness ~200 nm are epitaxially grown on (001)-oriented MgAl$_2$O$_4$ (MAO) substrates by pulsed laser deposition [13, 24]. Figure 1(a) shows the configuration of the ILG device, where LTO is patterned to carry out resistance measurements. In the ILG experiment, LTO and Pt electrode are covered by the ionic liquid, N,N-diethyl-N-methyl-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEME-TFSI) mixed with lithium bis(trifluoromethanesulfonyl)imide ([Li][TFSI]). For a negative gate voltage (V_G), O$^{2-}$ accumulates on the surface of the film and then enters into the film [27], while Li$^+$ escapes from the film to the liquid [Fig. 1(b)] [23, 25]. To balance the charge, holes are injected into the film. In contrast, applying positive V_G results in O$^{2-}$ deintercalation [28, 29] and Li$^+$ intercalation [30, 31], which corresponds to electron-doping [Fig. 1(c)]. The amount of doped charge is denoted by the quantity Q, which is calculated by temporal integral of the leak current (I_Q) (see Supplemental Material [26] for calculation method). In situ XRD measurements are used to identify the structural phase and the lattice constant.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the $R(T)$ of sample S1 with negative V_G. With the increase of $|Q|$, the normal-state resistance increases monotonously. The inset in Fig. 2(a) exhibits the detailed superconducting transition, and Fig. 2(b) summarizes the evolution of T_c as well as the onset transition temperature (T_c^{onset}). At first, both T_c and T_c^{onset} increase, then T_c drops to zero while T_c^{onset} remains almost constant. The almost unchanged T_c^{onset}, together with the inhomogeneous superconducting transition, may be caused by inhomogeneous gating which is hard to avoid for thick films and has been observed in other systems [32]. The evolution of T_c observed here reconciles the difference in experimental results between ILG and other methods, such as soaking samples in hydrochloric acid and exposing samples to air [19–23].

At a higher doping level where Ti loses almost all valence electrons, a phase transition from superconductor to insulator is expected. Sample S2 has been doped with large amount of holes and the phase transition is achieved [Fig. 2(c)]. When V_G is removed, the superconductivity of S2 cannot recover, suggesting an irreversible SIT. Such a SIT may be accompanied by a chemical phase change, such as the transition from LTO to insulating Li$_4$Ti$_5$O$_{12}$ when we dope LTO with holes through increasing its O$^{2-}$ content [24]. Figure 2(d) shows the in situ θ-2θ XRD spectra performed in sample S3 at room temperature. With hole-doping, the (004) diffraction peak of LTO ($c = 8.40$ Å) disappears, while a new diffraction peak emerges. The new diffraction peak corresponds to a c-axis lattice constant of 7.98 Å, which is much smaller than the lattice constant of Li$_4$Ti$_5$O$_{12}$ (8.36 Å) [33]. After removing the ionic liquid, the XRD pattern remains unchanged and the resistance of S3 exceeds the range of a multimeter (MΩ), which is consistent with the irreversibility of the SIT observed in transport.
by high Li-deficiency, e.g., partial Ti substitution of new phase: One is the change in Ti-sublattice induced by the injected O atom, which is similar to the distortion of Cu-O octahedra in La$_2$CuO$_{4+y}$ [34].

The transport measurements of electron-doped S1 and S2 are carried out before samples are doped with holes. The $R(T)$ of S1 with positive V_G shows many interesting behaviors, as indicated in Fig. 3(a). Different to the case of hole-doping, the resistance of electron-doped S1 in the high temperature region (>200 K) changes slightly and keeps positive dR/dT during the whole gating process. In the middle temperature region (80 to 200 K), the resistance that originally shows metallic behavior turns to exhibit insulating behavior as Q increases, and a robust thermal hysteresis emerges. The thermal hysteresis is also observed in electron-doped sample S2 and S5, as shown in Fig. 3(c) and Supplemental Material [26]. The appearance of thermal hysteresis implies the occurrence of a first-order phase transition, which is usually accompanied by changes in symmetry of electron charge, spin, and/or orbital. At lower temperature (<80 K), LTO regains metallic behavior and finally enters the superconducting state. The inset in Fig. 3(a) shows the detailed superconducting transition and T_c of S1.

FIG. 3. (a) The $R(T)$ curves of sample S1 under various Q with positive V_G. Inset: In situ XRD patterns of sample S4. (b) The Q-dependent T_c and T_{c0} of S1. (c) The $R(T)$ curves of sample S2 under different Q. (d) In situ XRD patterns of sample S3. The gating experiment is carried out at room temperature with a V_G interval of -0.2 V. Two rounds of scanning are performed at each V_G except for initial 0 V (one round) and final -2 V (one round). The time interval for each curve is 8.5 minutes.

In order to clarify the mechanism of the SIT in electron-doped LTO, we perform in situ XRD measurements on sample S4 with positive V_G at room temperature. Figure 3(d) shows the in situ $\theta-2\theta$ patterns. The c-axis lattice constant of S4 is 8.37 Å, which is slightly smaller than that of S3 but still falls in the reasonable range of LTO lattice constant [13, 24]. When V_G increases to 3.5 V, the diffraction peak moves to a higher angle, corresponding a decrease of lattice constant from 8.37 to 8.35 Å. Here the lattice constant varies by 0.24%, much less than the 5% in the case of hole-doping. Furthermore, the diffraction peak returns to its original position when V_G decreases, which demonstrates again that the effect of electron-doping is reversible and the mechanisms of SIT observed in...
electron- and hole-doping regions are different.

The transport and structural results in heavily electron-doped LTO are reminiscent of the so-called “robust” insulating spinel oxide MTO with a complicated orbital ordering at low temperature [35]. Nevertheless, superconductivity can be achieved in MTO by suppressing orbital ordering [36]. Similar to the case of LTO, the lattice constant of the insulating MTO decreases by 0.23% compared with the superconducting MTO [36]. Besides, the insulating MTO layer, in SrTiO$_3$/MTO/SrTiO$_3$ heterostructure, shows a clear thermal hysteresis in $R(T)$ curves [Inset of Fig. 3(c)], while the superconducting MTO layers exhibit no signs of thermal hysteresis [36]. Therefore, LTO and MTO are expected to share the same origin of the SIT. It is well accepted that the electron correlations are significant in insulating MTO, given that energy bands split at low temperature due to the orbital ordering [35, 37], and the Hubbard interaction term should be included in theoretical calculations to reproduce the insulating character [36]. As a result, the SIT in electron-doped LTO likely stems from the enhanced 3d electron correlations.

In order to further confirm the role of electron correlations in the SIT, first-principles electronic structure calculations have been performed (see Supplemental Material [26] for computational details). It is found that the undoped LTO tends to relax to the nonmagnetic state with equilong Ti-Ti distances [38], even if the initial state is set to a magnetic singlet state with dimerized Ti-Ti bonds as in MTO [35, 39]. The calculated finite electronic states at the Fermi level, as Fig. 4(a) shows, indicates the metallic character and is consistent with previous theoretical study [40]. The t_{2g} orbitals of Ti around the Fermi level is found nearly degenerate without showing up the orbital ordering [Fig. 4(b)]. Once enough electrons are introduced into LTO, dramatic changes take place. At the doping concentration of 0.5e/Ti, the nominal valence of Ti in doped LTO is equivalent to that in MTO, thus a Hubbard U of 2.5 eV as in MTO [36] is included to describe the correlation effect among Ti 3d electrons. In this case, the magnetic singlet state with dimerized Ti-Ti bonds is more stable than the nonmagnetic state. Figure 4(c) displays the corresponding density of states for the doped LTO in the magnetic singlet state. The finite band gap indicates the metal-insulator transition in electron-doped LTO, which is consistent with our resistance measurements [Fig. 3(c)]. Moreover, the integrated charge densities near the Fermi level show clear orbital ordering in the Ti sublattice [Fig. 4(d)], reproducing the scenario of MTO [36, 41]. It is worth noting that the electron-doped LTO is always a nonmagnetic metal without the inclusion of Hubbard U (see Supplemental Material [26], Fig. S2). These calculation results suggest that electron-doping in LTO enhances the electron correlations, which favors the orbital ordering accompanied with the SIT.

Finally, we discuss the origin of the thermal hysteresis observed in electron-doped LTO. On microscopic scale, the appearance of thermal hysteresis indicates the formation of clusters with symmetry breaking [42–44]. The symmetry breaking in clusters is usually associated with the change in degrees of freedom of electron orbital [45–47], spin [42, 48], and charge [49, 50]. Previous works such as crystal structure [35, 51] and optical measurements [46] have shown that the appearance of thermal hysteresis in MTO bulk corresponds to the formation of orbital ordering. Since LTO and MTO have many common features, the thermal hysteresis in LTO may also be attributed to the orbital ordering. This inference is reasonable because the pristine LTO has orbital-related state below 50 K [13], and our calculations support the appearance of orbital ordering in electron-doped LTO [Fig. 4(d)]. We note T_{c0} of electron-doped LTO drops dramatically after thermal hysteresis emerges [Fig. 3(b)], indicating a possible competition between superconductivity and orbital ordering.

IV. CONCLUSION

In conclusion, we perform systematic transport and in situ XRD measurements of LTO films based on ILG, and obtain a detailed phase diagram. Two superconductor-insulator phase transitions are found at both high electron- and hole-doping level. Combining the experimental results and theoretical calculations, we argue that the irreversible SIT in hole-doping region is triggered by the decrease of valence electrons, while the reversible SIT in electron-doping region is caused by the enhanced d-d electron correlations. The thermal hysteresis in electron-doped LTO likely stems from orbital ordering. The detailed interplay between superconductivity and orbital ordering deserves further study, which not only complements the effects of 3d electrons behavior on superconductivity but also helps to understand the orbital-selective pairing in iron-based superconductors [52].
This work was supported by the National Key Basic Research Program of China (2017YFA0302900, 2017YFA0303003, 2018YFB0704102, 2018YFA0305604, and 2019YFA0308402), the National Natural Science Foundation of China (11674374, 11774424, 11834016, 11804378, and 11961141008), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB25000000), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH008, QYZDY-SSW-SLH001, and QYZDB-SSW-JSC035), CAS Interdisciplinary Innovation Team, Beijing National Science Foundation (Z190008, Z200005), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (19XNLG13). Computational resources are provided by the Physical Laboratory of High Performance Computing at Renmin University of China. G. H. thank the Alexander von Humboldt Foundation for support from a research fellowship.

ACKNOWLEDGMENTS

[1] J. Paglione and R. L. Greene, High-temperature superconductivity in iron-based materials, Nat. Phys. 6, 645 (2010).
[2] K. Jin, N. P. Butch, K. Kirshenbaum, J. Paglione, and R. L. Greene, Link between spin fluctuations and electron pairing in copper oxide superconductors, Nature (London) 476, 73 (2011).
[3] G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys. 83, 1589 (2011).
[4] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature (London) 518, 179 (2015).
[5] D. P. Tunsstell, J. R. M. Todd, S. Arumugam, G. Dai, M. Dalton, and P. P. Edwards, Titanium nuclear magnetic resonance in metallic superconducting lithium titanate and its lithium-substituted derivatives Li_{1+x}Ti_{2-x}O_4 (0 < x < 0.10), Phys. Rev. B 50, 16541 (1994).
[6] C. L. Chen, C. L. Dong, K. Asokan, J. L. Chen, Y. S. Liu, J.-H. Guo, W. L. Yang, Y. Y. Chen, F. C. Hsu, C. L. Chang, and M. K. Wu, Role of 3d electrons in the rapid suppression of superconductivity in the dilute V doped spinel superconductor LiTi_2O_4, Supercond. Sci. Technol. 24, 115007 (2011).
[7] D. C. Johnston, Superconducting and normal state properties of Li_{1+x}Ti_{2-x}O_4 spinel compounds. I. preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility, J. Low Temp. Phys. 25, 145 (1976).
[8] M. A. Green, M. Dalton, K. Prassides, P. Day, and A. D. Neumann, Lattice vibrations of the superconducting oxide spinels (Li,Mg)_{1+x}Ti_{2-x}O_4, J. Phys.: Condens. Matter 9, 10855 (1997).
[9] C. P. Sun, J.-Y. Lin, S. Mollah, P. L. Ho, H. D. Yang, F. C. Hsu, Y. C. Liao, and M. K. Wu, Magnetic field dependence of low-temperature specific heat of the spinel oxide superconductor LiTi_2O_4, Phys. Rev. B 70, 054519 (2004).
[10] H. Tang, P. Y. Zou, L. Shan, A. F. Dong, G. C. Che, and H. H. Wen, Electrical resistivity and andreev reflection spectroscopy of the superconducting oxide spinel LiTi_2O_4, Phys. Rev. B 75, 184521 (2006).
[11] P. Edwards, R. Egdoll, I. Fragala, J. Goodenough, M. Harrison, A. Orchard, and E. Scott, A study of the spinel materials LiTi_2O_4 and Li_{4/3}TiO_{3/3}O_4 by photoelectron spectroscopy, J. Solid State Chem. 54, 127 (1984).
[12] P. W. Anderson, The resonating valence bond state in La_2CuO_4 and superconductivity, Science 235, 1196 (1987); P. W. Anderson, G. Baskaran, Z. Zou, and T. Hsu, Resonating-valence-bond theory of phase transitions and superconductivity in La_2CuO_4-based compounds, Phys. Rev. Lett. 58, 2790 (1987).
[13] K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. Shin, Y. Jiang, H. S. Yu, J. Yuan, L. Shan, F. V. Kusmartsev, R. L. Greene, and I. Takeuchi, Anomalous magnetoresistance in the spinel superconductor LiTi_2O_4, Nat. Commun. 6, 7183 (2015).
[14] D. Chen, Y.-L. Jia, T.-T. Zhang, Z. Fang, K. Jin, P. Richard, and H. Ding, Raman study of electron-phonon coupling in thin films of the spinel oxide superconductor LiTi_2O_4, Phys. Rev. B 96, 094501 (2017).
[15] Y. Okada, Y. Ando, R. Shimizu, E. Minamitani, S. Shiraki, S. Watanabe, and T. Hitsugui, Scanning tunnelling spectroscopy of superconductivity on surfaces of LiTi_2O_4 (111) thin films, Nat. Commun. 8, 15975 (2017).
[16] G. He, Y. Jia, X. Hou, Z. Wei, H. Xie, Z. Yang, J. Shi, J. Yuan, L. Shan, B. Zhu, H. Li, L. Gu, K. Liu, T. Xiang, and K. Jin, Anisotropic electron-phonon coupling in the spinel oxide superconductor LiTi_2O_4, Phys. Rev. B 95, 054510 (2017).
[17] Z. Wei, G. He, W. Hu, Z. Feng, X. Wei, C. Y. Ho, Q. Li, J. Yuan, C. Xi, Z. Wang, Q. Chen, B. Zhu, F. Zhou, X. Dong, L. Pi, A. Kusmartseva, F. V. Kusmartsev, Z. Zhao, and K. Jin, Anomalies of upper critical field in the spinel superconductor LiTi_2O_4, Phys. Rev. B 100, 184509 (2019).
[18] J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Superconducting dome in a gate-tuned band insulator, Science 338, 1193 (2012).
[19] M. Rygula, S. Kemmler-Sack, T. Nissel, and R. P. Hübner, Influence of the electron concentration on the superconducting properties of the spinel system Li_{1−x}Ti_{2}O_{4}, Ann. Physik 505, 685 (1993).
[20] E. G. Moshopoulou, Superconductivity in the spinel compound LiTi_2O_4, J. Am. Ceram. Soc. 82, 3317 (1999).
[21] E. Moshopoulou, P. Bordet, J. Capponi, C. Chaillout, B. Souletie, and A. Sulpice, Evolution of structure and superconductivity with lithium content in Li_{1−x}Ti_{2}O_{4}, J. Alloy. Compd. 195, 81 (1993).
[22] E. Moshopoulou, P. Bordet, A. Sulpice, and J. Capponi, Evolution of structure and superconductivity of Li_{1−x}Ti_{2}O_{4} single crystals without Ti cation disorder, Physica C 235-240, 747 (1994).
[23] S. Maruyama, J. Shin, X. Zhang, R. Suchoski, S. Yasui, K. Jin, R. L. Greene, and I. Takeuchi, Reversible electrochemical modulation of the superconducting transition temperature of LiTi_2O_4 ultrathin films by ionic liquid gating, Appl. Phys. Lett. 107, 142602 (2015).
[24] Y. Jia, G. He, W. Hu, H. Yang, Z. Yang, H. Yu, Q. Zhang, J. Shi, Z. Lin, J. Yuan, B. Zhu, L. Gu, H. Li, and K. Jin, The effects of oxygen in spinel oxide Li_{1−x}Ti_{2−x}O_{4−δ} thin films, Sci. Rep. 8, 3995 (2018).
