Countable Tightness, Elementary Submodels and Homogeneity

Ramiro de la Vega

December 31, 2021

Abstract

We show (in ZFC) that the cardinality of a compact homogeneous space of countable tightness is no more than 2^{\aleph_0}.

1 Introduction

A space X is said to have countable tightness ($t(X) = \aleph_0$) if whenever $A \subseteq X$ and $x \in \overline{A}$, there is a countable $B \subseteq A$ such that $x \in \overline{B}$. A space X is homogeneous if for every $x, y \in X$ there is a homeomorphism f of X onto X with $f(x) = y$. It is known (see [3]) that any compact space of countable tightness contains a point with character at most 2^{\aleph_0}; if the space is also homogeneous then it follows that $|X| \leq 2^{2^{\aleph_0}}$. In [1], Arhangel’skii conjectured that in fact $|X| \leq 2^{\aleph_0}$ for any such space. The main goal of this paper is to give a proof (in ZFC) to Arhangel’skii’s conjecture. This is achieved in Theorem 3.2. As a corollary of this we also confirm a conjecture of I. Juhász, P. Nyikos and Z. Szentmiklóssy (see [4]), stating that it is consistent that every homogeneous T_5 compactum is first countable.

Our main tool will be the “Elementary Submodels technique”: Given a topological space (X, τ), let M be an elementary submodel of $H(\theta)$ (i.e. the set of all sets of hereditary cardinality less than θ) for a “large enough” regular cardinal θ. Then one uses properties of $X \cap M$, $\tau \cap M$ and M itself to get results about (X, τ). A model M is countably closed if any countable sequence of elements of M is in M (i.e. $M^\omega \subseteq M$). For more details and a good introduction to the technique see [2]. Let us just say that in each
specific application, one takes θ large enough for $H(\theta)$ to contain all sets of interest in the context under discussion. In this sense we will just say $M \prec V$. In Section 2, we prove some basic facts in the context of elementary submodels of countably tight compact spaces; we also give answer (Theorem 2.2) to a question of L.R. Junqueira and F. Tall.

2 Elementary submodels

Fix a compact Hausdorff space (X, τ) with $t(X) = \aleph_0$ and fix a countably closed $M \prec V$ with $X, \tau \in M$. Let $Z = X \cap M \subseteq X$ with the subspace topology.

One of the main goals of this section is to show that Z is a retract of X. The following result suggests what the retraction will be.

Lemma 2.1 For every $x \in X$ there is a $q_x \in Z$ such that for all $U \in \tau \cap M$ either $q_x \notin U$ or $x \in U$.

Proof. Fix $x \in X$ and assume there is not such a q_x. Then for each $q \in Z$ we can fix a $U_q \in \tau \cap M$ such that $q \in U_q$ and $x \notin U_q$. Since Z is compact we get that $Z \subseteq \bigcup_{q \in Q} U_q$ for some finite $Q \subseteq Z$. On the other hand $x \notin \bigcup_{q \in Q} U_q \in M$ so by elementarity there is an $x' \in (X \cap M) \setminus \bigcup_{q \in Q} U_q$ which is impossible. ♠

Just by elementarity and the fact that X is Hausdorff it is immediate that $\tau \cap M$ separates points in $X \cap M$. We prove now that in fact $\tau \cap M$ separates points in Z.

Lemma 2.2 If $p_0, p_1 \in Z$ and $p_0 \neq p_1$ then there are $U_0, U_1 \in \tau \cap M$ such that $p_0 \in U_0$, $p_1 \in U_1$ and $U_0 \cap U_1 = \emptyset$.

Proof. Given $p_0, p_1 \in Z$ with $p_0 \neq p_1$ we use regularity of X to fix $U'_i, V_i \in \tau$ for $i \in 2$ such that $p_i \in V_i$, $\overline{V_i} \subseteq U'_i$ and $U'_0 \cap U'_1 = \emptyset$. Since $t(X) = \aleph_0$, there are countable $A_0, A_1 \subseteq M$ such that $A_i \subseteq V_i$ and $p_i \in \overline{A_i}$ for $i \in 2$. Since M is countably closed we have that $A_0, A_1 \in M$ and hence by elementarity $M \models \exists U_0, U_1 \in \tau [\overline{A_0} \subseteq U_0, \overline{A_1} \subseteq U_1, U_0 \cap U_1 = \emptyset]$. ♠

Corollary 2.1 For every $x \in X$ there is a unique $q_x \in Z$ such that for all $U \in \tau \cap M$ either $q_x \notin U$ or $x \in U$.
Definition 2.1 In view of the last result we define the function $r_M : X \to Z$ by $r_M(x) = q_x$ for $x \in X$.

Lemma 2.3 r_M is continuous.

Proof. Fix $W \in \tau$ (not necessarily in M) with $W \cap Z \neq \emptyset$, fix $x \in r_M^{-1}(W)$ and let $q = r_M(x)$. We need to show that there is a $V \in \tau$ such that $x \in V \subseteq r_M^{-1}(W)$.

For each $p \in Z \setminus W$ we use Lemma 2.2 to get $U_p, V_p \in \tau \cap M$ such that $p \in U_p, q \in V_p$ and $U_p \cap V_p = \emptyset$. Since $Z \setminus W$ is closed (and hence compact) we get that $Z \setminus W \subseteq U := \bigcup_{p \in P} U_p$ for some finite $P \subseteq Z \setminus W$. Clearly $q \in V := \bigcap_{p \in P} V_p$ and $U \cap V = \emptyset$. Also by elementarity we have that $U, V \in M$.

Since $q \in V \in M$ we get (from the definition of r_M) that $x \in V$. To see that $V \subseteq r_M^{-1}(W)$, fix $y \in V$ and note that if $r_M(y)$ was in $Z \setminus W$ then it would be in U and since $U \in M$ we would get that $y \in U$; but this is impossible since $U \cap V = \emptyset$ and hence $r_M(y) \in W$.

It is clear that $r_M(x) = x$ for all $x \in Z$. So we actually have that r_M is a retraction. Looking closer at the last proof, we see that $q \in V \cap Z \subseteq W \cap Z$, so we also showed the following

Corollary 2.2 The set $\{U \cap Z : U \in \tau \cap M\}$ is a base for the topology of Z.

For reference, we summarize our results in the following

Theorem 2.1 Let (X, τ) be a compact space of countable tightness and let $M \prec V$ be countably closed with $X, \tau \in M$. Then $\tau_M : X \to X \cap M$ is a retraction and $\{U \cap X \cap M : U \in \tau \cap M\}$ is a base for $X \cap M$.

In [5], Junqueira and Tall define the space X_M as the set $X \cap M$ with the topology τ_M generated by $\{U \cap M : U \in \tau \cap M\}$. They ask (Problem 7.22) if there is a consistent example of a compat T_2 space X with countable tightness and a countably closed M such that X_M is not normal. A consequence of Theorem 2.1 is that X_M is a subspace of X; this was already proved in [5] (Theorem 2.11). In the next theorem we make use of this fact to give a negative answer to their question.
Theorem 2.2 If \((X, \tau)\) is a compact Hausdorff space of countable tightness and \(M\) is countably closed then \(X \cap M\) \((= X_M)\) is normal.

Proof. Fix two disjoint closed \(E, F \subseteq X \cap M\). We claim that \(\overline{E}\) and \(\overline{F}\) are still disjoint. Therefore, since \(X \cap M\) is compact (and hence normal), \(\overline{E}\) and \(\overline{F}\) (and hence \(E\) and \(F\)) can be separated.

Now suppose (seeking a contradiction) that \(p \in \overline{E} \cap \overline{F}\). Since \(X\) is countably tight, there are countable \(C_E \subseteq E\) and \(C_F \subseteq F\) such that \(p \in \overline{C_E} \cap \overline{C_F}\). Since \(C_E\) and \(C_F\) are countable, they are in \(M\) and thus by elementarity there is a \(q \in X \cap M\) with \(q \in \overline{C_E} \cap \overline{C_F}\). But this is impossible since \(E\) and \(F\) are closed and disjoint in \(X \cap M\). Hence \(E \cap F = \emptyset\).

\[\blacklozenge\]

3 Homogeneity

The following lemma was proved in \cite{3}.

Lemma 3.1 If \(X\) is a compact \(T_2\) space of countable tightness then there are a countable set \(S \subseteq X\) and a non-empty closed \(G_\delta\) set \(H\) in \(X\) with \(H \subseteq S\).

In general, given a point \(p \in X\) one cannot expect to get \(p \in H\) in the previous lemma. For example if \(X = \kappa \cup \{\infty\}\) is the one point compactification of an uncountable discrete \(\kappa\) then \(p = \infty\) is a counter example. In this space the closure of any countable set is countable, but on the other hand any \(G_\delta\) subset containing \(p\) must be uncountable. However the following is obvious.

Corollary 3.1 If \(X\) is a compact homogeneous \(T_2\) space of countable tightness and \(p \in X\) then there are a countable set \(S \subseteq X\) and a closed \(G_\delta\) set \(H\) in \(X\) with \(p \in H\) and \(H \subseteq S\).

Now we are ready to prove our first important result.

Theorem 3.1 Suppose \((X, \tau)\) is a compact homogeneous Hausdorff space of countable tightness. Then \(w(X) \leq 2^{\aleph_0}\).

Proof. By Corollary 3.1 and regularity of \(X\) we can fix functions \(\psi : X \times \omega \to \tau\) and \(S : X \to [X]^{\aleph_0}\) such that for all \(x \in X\) and \(n \in \omega\):

\[\]
1. \(x \in \psi(x, n) \) and \(\psi(x, n + 1) \subseteq \psi(x, n) \).
2. \(H(x) := \bigcap_{m \in \omega} \psi(x, m) = \bigcap_{m \in \omega} \psi(x, m) \subseteq S(x) \).

Now fix a countably closed \(M \prec V \) with \(X, \tau, \psi, S \in M \) and \(|M| \leq 2^{\aleph_0} \).

Let \(Z = X \cap M \) and \(r_M : X \rightarrow Z \) as in Section 2. We know (by Theorem 2.1) that \(w(Z) \leq |\tau \cap M| \leq 2^{\aleph_0} \). We will show that in fact \(X = Z \) and hence \(w(X) \leq 2^{\aleph_0} \).

Fix now \(x \in X \) and let \(p = r_M(x) \in Z \). By Theorem 2.1 for each \(n \in \omega \) we can find \(U_n \in \tau \cap M \) such that \(\psi(p, n + 1) \cap Z \subseteq U_n \cap Z \subseteq \psi(p, n) \cap Z \).

Also by countable tightness of \(X \) we can fix \(A \in [X \cap M]^{\aleph_0} \) such that \(p \in \overline{A} \).

Now since \(A, \psi, H \) and \(< U_n : n \in \omega > \) are all in \(M \) (since \(M \) is countably closed), we get by elementarity that there must be a \(q \in X \cap M \) such that

1. \(q \in \bigcap_{n \in \omega} U_n \).
2. \(q \in \overline{A} \).
3. \(\overline{A} \cap \bigcap_{n \in \omega} U_n = \overline{A} \cap H(q) \).

Since \(p \) satisfies conditions 1 and 2, we get that \(p \in H(q) \) and hence \(x \in H(q) \) by definition of \(r_M \). But on the other hand \(S(q) \subseteq X \cap M \) and \(H(q) \subseteq \overline{S(q)} \) and therefore \(x \in Z \). This shows that \(X = Z \) which is what we wanted.

\[\blacksquare \]

Remark 3.1 With more work one can show that in fact \(X \subseteq M \), showing then that \(|X| \leq 2^{\aleph_0} \). However we shall use a different (perhaps simpler) strategy to get this result.

The following is a well known fact about compact homogeneous spaces. In fact it was shown in [6] that it also holds for any compact power homogeneous space.

Lemma 3.2 If \(X \) is compact and homogeneous, then \(|X| \leq w(X)^{\pi \chi(X)} \).

Putting together the two previous results and the fact that \(\pi \chi(X) \leq t(X) \) for any compact space, we immediately get our main result.

Theorem 3.2 If \(X \) is compact, homogeneous and \(t(X) = \aleph_0 \) then \(|X| \leq 2^{\aleph_0} \).

Using the fact that \(|X| = 2^{\chi(X)} \) for compact homogeneous spaces, we get:
Corollary 3.2 \((2^{\aleph_0} < 2^{\aleph_1})\) If \(X\) is compact, homogeneous and \(t(X) = \aleph_0\) then \(X\) is first countable.

In [6], J. van Mill asked whether every \(T_5\) (i.e. hereditarily normal) homogeneous compact space has cardinality \(2^{\aleph_0}\). In [4], I. Juhász, P. Nyikos and Z. Szentmiklóssy proved that the answer is yes in forcing extension resulting by adding \((2^{\aleph_1})^V\) Cohen reals. They also showed that after adding \(\aleph_2\) Cohen reals, every \(T_5\) homogeneous compact space has countable tightness. Putting this together with Theorem 3.2 and assuming for example that \(2^{\aleph_0} = \aleph_2\) and \(2^{\aleph_1} = \aleph_3\) in the ground model, we get a confirmation of a conjecture proposed by them in the same paper.

Theorem 3.3 It is consistent that every homogeneous \(T_5\) compact space is first countable.

References

[1] A. V. Arkhangel’skiı̆, Topological homogeneity. Topological groups and their continuous images (Russian), Uspekhi Mat. Nauk 42:2 (1987) 69-105 (English translation: Russian Math. Surveys 42:2 (1987) 83-131).

[2] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988) 17-72.

[3] I. Juhász, On the minimum character of points in compact spaces, Topology. Theory and applications II (Pécs, 1989), 365-371.

[4] I. Juhász, P. Nyikos and Z. Szentmiklóssy, Cardinal restrictions on some homogeneous compacta, Preprint.

[5] L.R. Junqueira and F.D. Tall, The topology of elementary submodels, Top. Appl. 82 (1998) 239-266.

[6] J. van Mill, On the cardinality of power homogeneous compacta, Top. Appl. 146-147 (2005) 421-428.