Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India

Karthikeyan Perumal (pkarthikeyangold@gmail.com)
Alagappa University https://orcid.org/0000-0002-8782-4146

Joseph Antony
Alagappa University

Subagunasekar M
Saveetha Institute of Medical and Technical Sciences: Saveetha University

Research

Keywords: Heavy metals, toxicity, pollution indices, marine sediments

Posted Date: February 16th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-197854/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India

Karthikeyan Perumal1*, Joseph Antony1, Subagunasekar Muthuramalingam2

1School of Marine Sciences, Department of Oceanography and Coastal Area Studies, Alagappa University, Karaikudi- 630 003, Tamil Nadu, India
2Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Chennai - 602105, Tamil Nadu, India

Corresponding author

Karthikeyan Perumal1*
School of Marine Sciences
Department of Oceanography and Coastal Area Studies
Alagappa University
Karaikudi- 630 003, Tamil Nadu, India
Mobile: +91 8668190204
Email: pkarthikeyangold@gmail.com
Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India

Abstract

Background: The concentration of heavy metals and their spatial distribution in surface sediments collected from the Thondi coast, Palk Bay, South India were analysed in this study. The sediment grain size, pH, EC, and heavy metal concentrations (Mn, Fe, Cr, Zn, Cd, Ni, Cu, and Pb) were determined and the values for the geoaccumulation index (I_{geo}), enrichment factor (EF), potential contamination index (C_p), potential ecological risk index (PERI), contamination factor (CF), modified contamination degree (mCd), degree of contamination (C_d), and potential contamination factors (C_p) were calculated based on their background values to determine the pollution level of the study area. The sediment grain size, pH, EC, and heavy metal concentrations were determined and the values for the pollution indices were calculated based on their background values to determine the pollution level.

Results: The pollution indices, namely EF, CF, C_d, mCd, C_p, and PERI, except for I_{geo}, revealed that the heavy metal contamination was due to Cd, while a moderate level of contamination was caused by Cu, Zn, Pb, and Cr. The principal component analysis and correlation matrix analysis showed a strong positive loading for Cd due to its high level of contamination in the study area. Anthropogenic inputs such as municipal wastewater, domestic sewage discharge, fishing harbour activities, and industrial and aquaculture wastes led to the increased Cd concentration in the study area. Moreover, the pollution load index revealed that the sediments were polluted by heavy metals.

Conclusion: The findings of this study revealed that the increased concentration of heavy metals in the study area increases the toxicity in the marine environment, thus affecting the ecosystem.

Keywords: Heavy metals; toxicity; pollution indices; marine sediments

Background

The presence of toxic heavy metal pollutants in the aquatic ecosystem is mainly introduced through various natural and anthropogenic sources. Some of the main natural sources include the weathering processes (rocks and soils), atmospheric deposition of particles, and aeolian sediments. Anthropogenic sources, on the other hand, include sewage waste dumping, mining activities, agricultural activities, discharge of industrial wastes into water bodies, and many other human activities that discard metal pollutants into the aquatic environment [1-4]. Anthropogenic sources have a high impact on the accumulation of heavy metal pollutants in the marine environment. The heavy metals are continuously accumulated in the rivers and deposited in the marine sediment as a sink. The major issues related with the persistence of heavy metals are toxicity, bioaccumulation, and biomagnification which lead to indelible effects on the ecosystem, human health, and other living organisms [1, 5-9]. Therefore, it is essential to assess the distribution of these pollutants and their level of contamination to construe the mechanism of accumulation and transportation of these pollutants into the aquatic environment as well as obtain necessary information for the supervision, maintenance, and use of coastal areas.

In recent years, the increasing level of heavy metals detected in the sediment bed has become a major concern [10-13]. Several studies have revealed that marine sediments are highly polluted due to these heavy metals [14-16]. Therefore, the evaluation of heavy metal distribution in the surface sediments is useful for determining the pollution levels in the marine ecosystem of the southeast coast of India. In previous studies, many researchers focused on the heavy metal distribution and pollution status of the marine sediments (near the shore and shelf) in various regions along the Bay of Bengal in India [17-28]. This study, however, investigates the heavy metal pollution levels of the surface sediments along the Thondi coast, Bay of Bengal, South India. Therefore, it is essential to consider the key factors such as spatial distribution, sediment quality assessment, and concentration of heavy metal pollutants in the study area.

In this study, 24 surface sediment samples were collected around the coastal area of Thondi and analysed for sediment types and chemical composition. The main objectives of this study are to (1) measure the concentration of heavy metals (Fe, Mn, Cr, Zn, Cu, Cd, Ni, and Pb) in the study area; (2) assess the level of
heavy metal contamination using enrichment factors (EF), potential contamination index (C_p), geoaccumulation index (Igeo), potential ecological risk index (PERI), contamination factor (CF), modified contamination degree (mCd), degree of contamination (Cd), and potential contamination factors (Cp); and (3) identify the relationship between the contaminants in the sediment and their possible sources in the study area using Pearson’s correlation coefficient and principal component analysis (PCA).

Description of the study area

Thondi lies within the latitude of 9°43′26″N and longitude of 79°02′55″E and is situated in the Palk Bay, Tamil Nadu, South India (Fig. 1). The Palk Bay area is known for its rich marine biodiversity and resources such as seagrass, shrimps, seaweeds, lobsters, mollusks, coelenterates, holothurians, echinoderms, crabs, shellfishes, squids, and finfish. Seagrasses play a vital role in the production of commercially valuable fish in this region as it provides food and shelter for various marine organisms and is involved in the recycling of nutrients. This region generally receives rainfall from the north-east and south-west monsoons. The shore water has an average depth of 1-2 m and the seawater is rich in nutrients with moderately high turbidity. The wave action along the Thondi coast is minimal and the sediments are muddy. Since the area serves as a treasure of various economically important marine resources, many socioeconomic and developmental activities such as agriculture, aquaculture, and fishing are performed. Due to these economic activities, the coastal areas receive an abundance of untreated solids and liquid waste. This area is rich in valuable marine algae such as the marine brown algae (Turbinaria conoides and Sargassum whittii), red algae (Gracilaria edulis, Hypnea musciformis, G. verrucosa, G. corticata; Sarconema filiforme, Kappaphycus alvarizii, and Acanthophora muscoides), and green algae (Ulva lactuca, U. reticulata, Caulerpa scalpelliformis, and Chaetomorpha linum).

Materials and methods

Surface sediment sample collection

In total, 24 samples of surface sediment were collected from the bottom of the sea at various depths of 1-2 m from eight transects around the shelf zone of the research area during January 2020 (Fig. 1). The surface sediment samples were obtained using a Van Veen grab surface sampler. Stations 1, 4, 7, and 10 were located near the estuaries, boating areas, fish market, and other areas affected by various anthropogenic activities. Several sampling sites were selected to cover the entire study area. The samples were kept in a plastic container, packed in a cooler bag at 4°C, and transported to the research laboratory for sample processing. The texture, organic matter, and heavy metal concentrations of the surface sediment samples were analysed using standard procedures.

Texture analysis

Textural analyses were performed in the laboratory using the sieving and pipetting method. For the removal of organic matter, sediment samples were initially pre-treated with H2O2 solution and the samples were wet-sieved in a mechanical sieve shaker using a 62 μm-sized mesh for 15 min. The samples that passed through the sieve shaker were identified as mud, while the retained sample on the sieve was identified as sand. The finer fraction of the mud was identified as silt and clay (> 0.063 mm) and determined using the pipette method. The sediment texture (Table 1) was classified based on the mud content classification proposed by [29,30], and the modified classification by [31].

Geochemical analysis

Approximately 1 g of surface sediment sample was treated with HNO3, 30% H2O2 and HCl to determine the concentration of elements (Mn, Cr, Cu, Pb, Ni, and Zn) according to the 3050B method [32]. After sample preparation, the measurement of metal concentrations was performed using ICP-MS located at the NGRI-CSIR analytical instrument facility in Hyderabad. Cd and Fe were measured separately using a flame atomic absorption spectrometer. In this study, the accuracy of the process with that of the analytical procedures was compared using reference sediment materials (MESS-1) provided by the National Research Council of Canada. By comparing the measured and certified values, the recovery values of the elements were as follows: Fe (97.93%), Mn (95.70%), Cr (97.37%), Cu (96.41%), Ni (94.78%), Cd (92.22%), Pb (100%), and Zn (97.91%). The inaccurate percentage was less than 4%.

3
Assessment of sediment pollution levels
The level of heavy metal contamination from both natural and anthropogenic sources in the Thondi coast, Palk Bay of Tamil Nadu, Southeast India was determined based on the complete assessment of sediment samples in the study area. Seven measurements, namely EF, CF, Cd, mCd, RI, Igeo, and Cp, were used to obtain the relative pollution level of the sampling sites.

Enrichment factor
Enrichment factor (EF) is used to analyse the impact of anthropogenic sources in the sediment and the level of contamination in the study area. The geochemical normalisation of the sediment heavy metal data in relation to the content of conservative elements such as Al, Si, or Fe was used to identify the anomalous metal concentration. Several studies have effectively utilised Fe to normalise the heavy metal contaminants. Therefore, in this study, Fe was utilised as a normaliser due to its abundance in the Earth’s mineral crust and absence of anthropogenic impact [33-36]. The estimation of EF is based on the assessment of the trace element enrichment in the sediment [37]. It is defined based on the following formula [38]
\[
EF = \left(\frac{C_x}{Fe} \right)_{\text{sample}} / \left(\frac{C_x}{Fe} \right)_{\text{background}} \quad \ldots (1)
\]
Where Cx, Sample and Cx, background represent the concentration of selected metals (Mn, Cr, Cu, Ni, Cd, Pb, and Zn) in the sediment samples. (Cx/Fe)background is the ratio of the background values of Fe. The EF values for Fe (56,300 mg kg\(^{-1}\)), Mn (950 mg kg\(^{-1}\)), Cr (100 mg kg\(^{-1}\)), Cu (55 mg kg\(^{-1}\)), Ni (75 mg kg\(^{-1}\)), Cd (0.2 mg kg\(^{-1}\)), Pb (12.5 mg kg\(^{-1}\)), and Zn (70 mg kg\(^{-1}\)) that were previously reported for sedimentary rocks were used as background values [39]. The results obtained were indicative of different levels of pollution. The elemental enrichment classification of the sediment is based on the following: (i) 0 – 1 = background concentration or no enrichment; (ii) 1 – 3 = minor, (iii) 3 – 5 = moderate, (iv) 5 – 10 = moderately severe, (v) 10 – 25 = severe, (vi) 25 – 50 = very severe, and (vii) > 50 = extremely severe.

Contamination factor
[40] proposed the use of CF to assess the contamination status of the surface sediment based on the following equation:
\[
CF = C_{\text{metal}} / C_{\text{background}} \quad \ldots (2)
\]
The CF values according to the four classes are depicted as follows: (i) CF < 1 = low, (ii) 1 < CF < 3 = moderate, (iii) 3 < CF < 6 = considerable, and (iv) CF > 6 = very high

Degree of contamination
The degree of contamination (Cd) represents the sum of all the CF values for all the sampling sites. It was previously proposed by [40] as shown below:
\[
Cd = \sum_{i=1}^{n} CF \quad \ldots (3)
\]
The degree of contamination is depicted as follows: (i) Cd < 6 = low, (ii) 6 < Cd < 12 = moderate, (iii) 12 < Cd < 24 = considerably high, and (iv) Cd > 24 = high.

Modified contamination degree
Modified contamination degree is the summation of measured CFs for the sediment pollutant samples to the number of pollutants analysed. This measure was proposed by [41] to investigate an unlimited number of heavy metals and is represented in Equation 4.
\[
mCd = \frac{\sum_{i=1}^{n} CF}{n} \quad \ldots (4)
\]
where n is the number of pollutants investigated and \(\sum_{i=1}^{n} CF\) is the sum of CF. Modified contamination degree classifies the contamination level of sediment based on the following quantitative values: (i) mCd < 1.5 = nil to very low, (ii) 1.5 ≤ mCd < 2 = low, (iii) 2 ≤ mCd < 4 = moderate, (iv) 4 ≤ mCd < 8 = high, (v) 8 ≤ mCd < 16 = very high, (vi) 16 ≤ mCd < 32 = extremely high, and (vii) mCd ≥ 32 = ultra-high.
Pollution load index (PLI)

The pollution load index (PLI) of a specific site or a zone is assessed according to the index described by [42]. This tool is used to assess the heavy metal pollution [43] and is calculated based on the formula shown below:

\[
\text{PLI for a station} = \sqrt{\text{CF}_1 \times \text{CF}_2 \times \text{CF}_3 \cdots \cdots \times \text{CF}_n} \quad (5)
\]

where \(n \) is the number of heavy metals, CFs, CF is \(\frac{C_{\text{metal}}}{C_{\text{background}}} \), \((C_{\text{metal}}) \) corresponds to the metal concentration of the sample, and \(C_{\text{background}} \) is the background metal concentration.

\[
\text{PLI for zone} = \sqrt{\text{Station}_1 \times \text{Station}_2 \cdots \cdots \times \text{Station}_n} \quad (6)
\]

Potential ecological risk index (RI)

Potential RI evaluates the environmental behaviour and characteristics of heavy metal contaminants in the sediments. This method was previously proposed by [40] and its primary objective is to specify the agents that cause contamination. The PERI is the summation of all risk factors for the detection of heavy metal contaminants in the sediment. Hakanson proposed a standardised toxic response factor of 5, 1, 2, 5, 5, and 30 for Cu, Zn, Cr, Ni, Pb, and Cd, respectively. The PERI is calculated based on the following equations:

\[
E_{ri}^i = T_{ri}^i \times CF \quad (7)
\]

\[
\text{RI} = \sum_{i=1}^{n} E_{ri}^i \quad (8)
\]

Where CF = contamination factor and \(T_{ri}^i \) = toxic response factor which represents the toxicity of a particular trace element. The conditions used to denote the risk factors and RI according to [40] are classified into nine categories of ecological risk as follows: (i) \(E_{ri}^i < 40 \) = low, (ii) \(40 < E_{ri}^i < 80 \) = moderate, (iii) \(80 < E_{ri}^i < 160 \) = considerably high, (iv) \(160 < E_{ri}^i < 320 \) = high, (v) \(E_{ri}^i > 320 \) = very high, (vi) RI < 95 = low, (vii) 95 < RI < 190 = moderate, (viii) 190 < RI < 380 = considerably high, and (ix) RI > 380 = very high.

Geoaccumulation index (I_{geo})

I_{geo} is used to analyse the level of pollution of trace elements and the contamination degree in marine sediments [44]. It was initially described by [46] as follows:

\[
I_{geo} = \log_2 \left[\left(\frac{C_n}{1.5 \times B_n} \right) \right] \quad (9)
\]

where \(C_n \) = the trace metals calculated and \(B_n \) = background value (average value of crustal abundance) of a particular element. To decrease the possibility of variation in the background values for a specific trace element in the environment and minor anthropogenic influences, the concentration of each geochemical background value is multiplied by the factor of 1.5 [45]. The sediment classification is based on the \(I_{geo} \) value [46] as follows: (i) \(I_{geo} > 5 \) = extreme contamination, (ii) \(4 - 5 \) = strong to extreme contamination, (iii) \(3 - 4 \) = strong contamination, (iv) \(2 - 3 \) = moderate to strong contamination, (v) \(1 - 2 \) = moderate contamination, (vi) \(0 - 1 \) = uncontaminated to moderate contamination, (vii) \(< 0 \) = uncontaminated.

Potential contamination index

The potential contamination index is calculated using the formula described below:

\[
C_p = \frac{(\text{Metal})_{\text{sample Max}}}{(\text{Metal})_{\text{background}}} \quad (10)
\]

where \((\text{Metal})_{\text{sample Max}} \) is the highest concentration value of an element in the sediment, and \((\text{Metal})_{\text{background}} \) represents the background concentration value of the element. This method was proposed by [47, 48], whereby the \(C_p \) values are classified into three levels of contamination: (i) \(C_p < 1 \) = low, (ii) \(1 < C_p < 3 \) = moderate, and (iii) \(C_p > 3 \) = severe.

Statistical analysis

Pearson’s correlation coefficient and PCA statistical analyses were utilised to determine the relationship between the contaminants in the sediment and their potential sources. The statistical software IBD-SPSS (version 20.0) was employed in this study. Pearson’s correlation coefficient is used to measure the statistical strength of the relationships between various pairs of contaminants in the samples. PCA, on the other hand, is a multivariate statistical analysis method commonly used in environmental studies. The inverse distance weighted (IDW) approach using ArcGIS 10.2 software was employed for the analysis of the spatial distribution characteristics of heavy metals in the sediments.
Results
The results of the physicochemical parameters analysed during sample collection in the study area are displayed in Table 2. In total, 24 samples of surface sediment were collected from the Thondi coast of Palk Bay for analysis. The results of the heavy metal concentrations are shown in Table 3.

Classification sedimentary
The shelf region of the study area contains two different types of sediment, namely slightly muddy sand and muddy sand. The samples collected from stations 4, 5, 6, and 7 were slightly muddy sand and those collected from stations 1, 2, 3, 8-24 were muddy sand sediments (Fig. 2).

Spatial distribution of heavy metal contaminants
The basic descriptive statistics (Min, Max, Average, and SD) for the heavy metal concentrations measured at 24 locations (Fig. 1) are summarised in Table 3. In general, the concentration of heavy metals in the sediments decreased in the following sequence: Fe > Mn > Cr > Zn > Cu > Ni > Pb > As > Cd. The concentration of metals in the sediment were as follows: 42,516 – 62,413 mg kg$^{-1}$ (Fe), 425 – 896 mg kg$^{-1}$ (Mn), 231 – 378 mg kg$^{-1}$ (Cr), 20.1 – 35.6 mg kg$^{-1}$ (Ni), 0.6 – 2.5 mg kg$^{-1}$ (Cd), 10.2 – 19.5 mg kg$^{-1}$ (Pb), and 214 – 298 mg kg$^{-1}$ (Zn) (Table 3).

Enrichment factors
The EF values for the heavy metal contaminants in the sediments are listed in Fig. 3 & Table 5 and ranked according to the ascending order of Ni < Mn < Cu < Pb < Cr < Zn < Cd. Cd displayed the highest EF value among the seven metals investigated and was classified as moderately severe enrichment with an average value of 6.24. Zn and Cr displayed a moderate enrichment (average values of 3.89 and 3.12, respectively), while Cu and Pb were classified as minor enrichment (average values of 1.08 and 1.22, respectively). The values of Mn ranged from 0.48 to 1.08 and it had an average value of 0.78, displaying no enrichment to minor enrichment. Similarly, Ni had values ranging from 0.26 to 0.63 (average value of 0.40), with no enrichment.

Contamination factor
The contamination factor (CF) values for the heavy metals in the sediments are shown in Table 5. The average CF value for Ni (0.37), Mn (0.72), Fe (0.94), and Cu (0.99) was <1, thus indicating that the sediment samples had a low level of contamination. The average CF value of Pb (1.13) and Cr (2.90) was 1 – 3, thereby indicating that the sediments were moderately contaminated. The average CF value of Zn (3.61) and Cd (5.83) was 3 – 6 and this indicated that the sediments had considerable contamination. In this study, the average CF values of heavy metals were ranked based on the following order: Ni < Mn < Fe < Cu < Pb < Cr < Zn < Cd. The changes in CF values at different locations are displayed in Fig. 4.

Geoaccumulation index
The calculated I_{geo} values of the heavy metals are shown in Figure 5, 5a & Table 5. The I_{geo} value of the sediment surface in the study area was 9.2 – 9.37 (average 9.3)(Fe), 5.43 – 5.75 (average 5.6) (Mn), 4.19 – 4.4 (average 4.3) (Cr), 3.06 – 3.49 (average 3.3) (Cu), 3 – 3.25 (average 3.1) (Ni), –1.13 to – 0.49 (average –0.8) (Cd), 1.93 – 2.21 (average 2.1) (Pb), and 4 – 4.14 (average 4.1)(Zn). The results were classified as “extremely contaminated” for Fe (9.3) and Mn (5.6), “strongly to extremely contaminated” for Cr (4.3) and Zn (4.1), “strongly contaminated” for Ni (3.1) and Cu (3.3), “moderately to strongly contaminated” for Pb (2.1), and “uncontaminated” for Cd (–0.8). The heavy metal pollution level tends to be higher in the study area, whereby, the average I_{geo} values of metals were ranked based on the following order: Cd < Pb < Ni < Cu < Zn < Cr < Mn < Fe. These results suggest that anthropogenic sources have considerable effects on Fe, Mn, Cr, Zn, Cu, Ni, and Pb in the sediments and therefore, require more attention for the monitoring of Fe, Mn, Zn, Cr, and Cu pollution.

Potential ecological risk factor (E^1_r) and index (RI)
The results of the potential ecological risk factor, E^1_r, and PERI for heavy metals in the sediments are shown in Table 5. The average E^1_r values of Cu (5), Zn (4), Cr (2), Ni (1.84), and Pb (6) was less than 40, whereby the ecological risk for each heavy metal was classified as low-potential. In contrast, there was a high...
ecological risk for Cd (174.88) in the sediments that were mainly due to the discharge of municipal sewage waste in the study area. The PERI values of Zn (87), Cu (119), and Pb (135) indicated that there was a considerable ecological risk, followed by Ni (44.53) and Cr (48) which indicated a moderate ecological risk, and lastly, Cd (4197) which indicated a very high ecological risk.

Contamination degree (C_d), modified contamination degree (mC_d), pollution load index (PLI), and potential contamination index (CI)

The calculated values of C_d, mC_d, PLI, and C_p values for the heavy metals are shown in Figures 6A, B, C, and D & Table 6. The C_d values within the range of $12 < C_d < 24$ (minimum-14.62, maximum-23.9, and average-17.429) indicated that there was a substantial degree of contamination at all the stations, in which the sediments in the study area had a considerable degree of contamination. The overall degree of pollution at different sampling sites and C_d data are shown in Table 6. The results indicate that the degree of contamination was nil to very low at nine stations, namely stations 3 (15.35), 6 (14.72), 7 (15.18), 10 (15.1), 11 (14.7), 12 (15.1), 18 (15.3), 20 (14.62), and 21 (14.84), and moderate at stations 1 (19.82), 2 (19.36), 4 (23.9), 5 (21.53), 8 (16.52), 9 (16.14), 13 (16.85), 14 (19.63), 15 (18.51), 16 (19.12), 17 (17.17), 19 (22.27), 22 (17.27), 23 (18.07), and 24 (17.25). The main factors affecting the moderate contamination mC_d values of stations 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 19, 22, 23, and 24 were based on the CF values of Cr (3.23), Cd (4.18), and Zn (2.65) that were attributed to the anthropogenic pollution at these sites. The average value of mC_d was less than 1, thus indicating that the studied areas have been severely affected by anthropogenic contamination. The PLIs of the heavy metals are shown in Table 6 and the values ranged from 10.30 to 16.74, with an average of 11.97. These results revealed that the sediments in the study area were polluted by heavy metals. [42] reported that the PLI values were less than 1 for the heavy metals in all the sampling stations, thus indicating that the levels of the heavy metals investigated in this study were within the baseline level for all the stations. For instance, the PLI values for all the zones investigated ranged from 0.05 to 2.30 (Fig. 6C). The value of Cd was higher (41) due to the effects of external sources such as industrial activities, agricultural runoff, and other anthropogenic contaminants.

Pearson’s correlation matrix

Pearson’s correlation analysis defines the relationship between the heavy metals and their major contributors in the environment [49-51]. Pearson’s correlation coefficients for sand, mud, OM, Fe, Mn, Cr, Cu, Ni, Cd, Pb, and Zn components are shown in Table 7 & Figure 7. Sediment sand, mud, and OM displayed a strong positive correlation with all the elements investigated. For instance, Fe was strongly correlated with Mn ($r^2 = 0.310$), Cu ($r^2 = 0.911$), Cd ($r^2 = 0.455$), and Pb ($r^2 = 0.596$) and weakly correlated with Cr, Ni, and Zn. On the other hand, Mn was strongly correlated with Cr ($r^2 = 0.428$), Cu ($r^2 = 0.499$), Ni ($r^2 = 0.276$), and Cd ($r^2 = 0.864$) and weakly correlated with Pb and Zn. Additionally, Cr was strongly correlated with Cd ($r^2 = 0.392$), Pb ($r^2 = 0.476$), and Zn ($r^2 = 0.777$) and weakly correlated with Cu ($r^2 = 0.180$) and Ni ($r^2 = 0.167$), while Ni was strongly correlated with Pb ($r^2 = 0.844$), and Zn ($r^2 = 0.653$) and weakly correlated with Cd ($r^2 = 0.263$).

Principal component analysis

Multivariate analysis is commonly used to distinguish factors such the natural and anthropogenic contributions of the elements according to the various levels of relationship [17, 18, 50-52]. In this study, PCA was employed to ascertain possible relationships of the variables and their input sources among the pollutants. The Kaiser–Meyer–Olkin (KMO) and Bartlett’s values obtained in the study were 0.624 and 72 (df = 24, $p < 0.001$), respectively, thereby indicating that PCA could be used for the reduction of dimensions. The PCA plots for various parameters investigated in this study were obtained using the rotated matrix analysis (Fig. 8) and varimax normalisation was used to calculate the variables. Therefore, the 11 variables from the surface sediments of the study area were summarised by five PCs (principal components), with the cumulative percentage of 19.176, 37.647, 55.463, 67.459, and 78.918, respectively. These five components accounted for 19.176%, 18.471%, 17.817%, 11.996%, and 11.459% of the variances as listed in Table 8. The loading plot for each of the PCs for the sediment samples is shown in Fig. 8.
Discussion

The classification suggests that the muddy sand sediments observed in many stations were due to the poor wave action and shallow regions in the area [53]. The high value of Fe (62,413 mg kg$^{-1}$) was observed due to the convergence of ephemeral streams and the presence of rich mangrove ecosystems along the southern part of the study area at station 1 [54]. The red inorganic pigment used for painting boats is based on iron (III) oxide (Fe$_2$O$_3$). Iron oxide leads to the co-precipitation of heavy metals which subsequently, increases the metal concentration in the sediment [55]. It is worth noting that the concentration of Fe in the east coast of India was higher than that of the study area. However, in this study, the maximum concentration of Fe was greater than the average crustal values [56]. The highest value of Mn (896 mg kg$^{-1}$) was detected at station 1 due to the presence of mangrove vegetation along the coast. Overall, the concentrations of Fe and Mn indicate that both these elements are predominantly regulated by the riverine input and existence of the mangrove vegetation [20]. The main source of Mn is anthropogenic inputs such as industrial effluents and emissions [57]. For instance, the concentration of Mn in the Pitchavaram Mangrove region, east coast of India, was higher than that of the study area [58]. The concentration of Ni ranged from 20.1 to 35.6 mg kg$^{-1}$ in the study area and it was mainly derived from the wind-blown dust, vegetation, and weathering of rocks and soils [17]. The concentration of Ni in the southeast coast of India, however, was higher than that of the study area and the average crustal values [56]. The concentration of Cr ranged from 231 to 378 mg kg$^{-1}$ and the average concentration of Cr in the sediment was 290.3 mg kg$^{-1}$. This value was higher than the average crustal value, thus indicating the input of Cr to the study area [56]. Both natural and anthropogenic sources were responsible for the accumulation of Cr in the sediment. The values of Cd ranged from 0.6 to 2.5 mg kg$^{-1}$ and the mean Cd concentration was higher (1.2 mg kg$^{-1}$) than the average crustal value, thus indicating that the input of Cd was likely from both natural and anthropogenic sources, especially from the municipal sewage wastes nearby the study area. Nevertheless, it was previously reported that the concentration of Cd in the sediments was the main indicator of anthropogenic activity [59,56]. Municipal wastewater, for instance, has a higher concentration of Cd, particularly from the fishing harbour activities, domestic sewage, oil, fish, and industrial and aquaculture wastes in the Rammnad District in Tamil Nadu. The concentration of Zn was observed to be higher at station 1 (298 mg kg$^{-1}$) and lower at station 17 (214 mg kg$^{-1}$). The anticorrosive paint used on the boat mainly consists of ZnSO$_4$ [60, 61]. Ocean currents and transportation activities erode this paint and increase the concentration of Zn in the shelf sediments. Additionally, emissions and effluents from the industries represent the main sources of zinc [57].

Cu was present in all the sediments and the values ranged from 31 to 84 mg kg$^{-1}$, with an average concentration of 54.7 mg kg$^{-1}$. The confluence point of the river was found to be rich in Cu, thus indicating that the presence of trace elements in the marine environment was mainly due to the riverine runoff and drainage of untreated industrial wastes into the river. This inference was obtained from the low concentration of heavy metals and crustal average values detected in the nearby sampling areas. For instance, e-wastes such as waste from electroplating and printed circuit boards increased the levels of Zn, Pb, Cu, Cd, and Hg in the sediments collected from Hong Kong coastal areas [62]. Likewise, on the coast of Bangladesh, heavy metal contamination was mainly due to industrial pollutants [63]. The untreated effluents and solid wastes from many commercial and small-scale industries such fertilisers, sugar, paint, tobacco, jute, plastic, refinery, textiles, paper, and ship-wrecking set up along the coastline and riverbank areas contributed to metal pollution [64-66]. Heavy metals such as Ni, Pb, Zn, Cu, and Cr, derived from both natural and anthropogenic sources, are thought to be related to sedimentary phases such as organic matter and carbonate [67-69]. The heavy metal concentration in this study was compared with other coastal regions in India and other countries. The heavy metal concentrations of Cu, Cr, Zn, Cd, and Pb in this study surpassed the crustal average and mean values of heavy metals in other coastal areas (Table 4).

According to the classification by [46], the majority of heavy metals showed minor to extremely severe enrichment in the sediments or displayed no enrichment to moderate enrichment. In all the stations, the mean EF values for Cd showed moderately severe enrichment, thereby indicating that Cd was mainly derived from anthropogenic inputs. The higher concentration of Cd was mainly due to sewage discharge, mining agriculture, and industrial activities [17, 70-73]. Moreover, Cd is highly toxic to animals and plants and it has no proven essential biological function [74]. The ranking of RI for the heavy metals in the sediments was Ni <
Cr < Zn < Cu < Pb < Cd. As previously mentioned, the major potential ecological risk of heavy metals in the surface sediment was from Cd and this observation was mainly due to the effects of anthropogenic activities such as the use of phosphate fertilisers and swine manure in irrigation [75].

The report by [76] indicated that the heavy metal, Cd, originates from agricultural soil contamination, municipal sewage waste, mining effluent, and sludges as well as from the erosion of phosphorites, sulfide ores, hydrothermal mineralised rocks, and black shale deposits. In contrast, the values for Fe, Cr, Mn, Cu, Pb, Ni, and Zn were lower, thus indicating that there was no pollution based on the comparison with the worldwide sediment values. The difference in the indices, however, was due to the difference in the sensitivity of these indices in determining the pollutants in sediments [77]. The PLI values obtained for the sediments revealed that the sediments have been polluted by heavy metals. The values of both mC₄ and PLI suggest the effect of anthropogenic sources on the levels of heavy metal pollution in the sediments [78, 79, 41, 40]. In Fig. 6D, the potential contamination index (Cₚ) values of Fe, Mn, Ni, and Pb suggest a low level of contamination, while Cu and Zn indicated moderate contamination. In contrast, Cr and Cd showed a severe contamination level due to various sources such as domestic sewage, oil and fish, industrial, aquaculture waste, fishing harbor activities, and aquaculture waste in the study area.

The metals Cd, Cr, Ni, Cu, and Pb were significantly correlated as they were related to anthropogenic sewage and wastewater. The level of Fe indicated that the trace metal elements were acquired from their source [80], in which the same hydrogeochemical process redistributes these trace elements into the sediments [81]. Lastly, the significant and positive correlation observed for Mn with Cr, Ni, and Cu components substantiate their presence in the sediment [82]. It should be noted that Cr, Ni, Cu, and Pb are extensively recognised to have anthropogenic activities, whereby Cu, Pb, and Ni are commonly derived from anthropogenic sewage and wastewater, while Cr is generally associated with industrial activities in the area [83].

The main elements, quantities, initialisation of variables, and their respective variances are shown in Table 8 and Figure 8. The principal components (PCs), which corresponded to five Eigenvalues, were greater than 1. The five PCs accounted for 78.918% of the total variance in the data and displayed the different factors (sources) influencing sediment pollution in the study region. In PC1 which accounted for 19.176% of the total variance, sand and Cd contributed to the strong positive loadings. The results for EF (moderately severe enrichment), CF (considerable contamination), Cₚ (severe contamination level), and RI (very high ecological risk) suggest that the presence of Cd was due to high anthropogenic inputs. Therefore, it is assumed that PC1 primarily represents the contribution of pollutants by anthropogenic sources. In PC2 (18.471% of the total variance), Mn, Zn, and Fe contributed to the strong positive loadings. The CF (low level of contamination for Fe and Mn, and considerable contamination for Zn), Cₚ (low level of contamination for Mn and Fe, and moderate contamination for Zn), and RI (considerable ecological risk for Zn) values suggest that Mn, Zn, and Fe are influenced by low levels of pollutants. Therefore, PC2 most likely represents pollutants of low anthropogenic sources. For PC3 (17.817% of the total variance), a strong positive loading was observed for Pb. The results for EF (minor enrichment), CF (moderate contamination), CI (low contamination), I₉₀ (moderate to strong contamination), and PERI (considerable ecological risk) suggest that levels of Mn, Zn, and Fe are influenced by low levels of pollutants. Therefore, it can be assumed that PC3 primarily represents contaminants of low anthropogenic sources. PC4 (11.996% of the total variance), on the other hand, showed strong positive loadings for Cr and Ni. The results for EF (no enrichment for Ni and moderate enrichment for Cr), CF (moderate contamination for Cr and low contamination for Ni), CI (low contamination for Ni), I₉₀ (strong to moderate contamination for Cr and strong contamination for Ni), and PERI (considerable ecological risk for Cr) indicate that the levels of Ni and Cr contributed to the low, moderate, and strong contamination in the sediments. Therefore, PC4 primarily represents contamination from low, moderate, and strong anthropogenic sources. Lastly, PC5 (11.459% of the total variance) displayed strong positive loadings for OM and Fe, and moderate loadings for mud. The results for CF (low contamination), CI (low contamination), and I₉₀ (extreme contamination) suggest that Fe contributed to low contamination. Therefore, PC5 most likely represents contamination from low anthropogenic sources.
Conclusion
The evaluation of heavy metals in the surface sediments along the Thondi coast in Palk Bay was undertaken, whereby sand, mud, organic matter, and heavy metals such as Fe, Mn, Cr, Cu, Ni, Cd, Pb, and Zn were analysed. The mean concentration of heavy metals was shown to decrease in the following order: Fe > Mn > Cr > Zn > Cu > Ni > Pb > As > Cd. The sedimentary texture observed in most of the stations was muddy sand due to the shallow depth and poor wave action in the study area. The pollution indices such as EF, CF, mCd, CI, Eri, and PERI indicated that Cd was responsible for the high contamination level in the study area, except for Igeo. The PCA results also confirmed that Cd had a high contamination level, as indicated by the strong positive loadings. The main source of Cd was due to anthropogenic inputs such as municipal wastewater, domestic sewage discharge, fishing harbor activities, and industrial and aquaculture wastes. Based on the results obtained for EF, CF, mCd, CI, Eri, and PERI, it was found that the presence of heavy metals such as Cu, Zn, Pb, and Cr led to moderate contamination in the study area. The PLI results suggest that the sediments in the study area were polluted by heavy metals. The findings of this study revealed that the study area frequently receives heavy metal contaminants from different sources and if the concentration of these heavy metals continues to increase, the toxicity will also increase, thus affecting the entire food chain within the marine ecosystem. Therefore, to protect the marine ecosystem, illegal discharges into the marine environment should be properly monitored and effluents from the industries, municipal, and domestic areas should be pretreated before its discharge into the coastal areas.

Acknowledgement
The authors are grateful to thank the Head of the Department, School of Marine Sciences, Department of Oceanography and Coastal Area Studies, Alagappa University, Karaikudi- 630 003.

Authors’ contributions
Karthikeyan Perumal: Conceptualization, Supervision. Investigation, Methodology, Writing - original draft, Writing - review & editing; Joseph Antony: Data curation, Formal analysis; Subagunasekar M: Software; Data analysis; Investigation.

Funding
No funding

Availability of data and material
http://dx.doi.org/10.17632/66fvpkww3r.2

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing Interest
The authors declare that they have no competing interests.

Author details
1School of Marine Sciences, Department of Oceanography and Coastal Area Studies, Alagappa University, Karaikudi- 630 003, Tamil Nadu, India
2Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Chennai - 602105, Tamil Nadu, India

References
1. Demirak A, Yilmaz F, Tuna AL, Ozdemir N. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere. 63, 1451–1458. https://doi.org/10.1016/j.chemosphere.2005.09.033
2. Khaled A, Nemr AE, Sikaily AE. (2006). An assessment of heavymetal contamination in surface sediments of the Suez Gulf using geoaccumulation indexes and statistical analysis. Chem Ecol. 22, 239–252. https://doi.org/10.1080/02757540600658765
3. Singh KP, Mohan D, Singh VK, Malik A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges. J Hydrol. 312, 14–27. https://doi.org/10.1007/s10661-005-6395-6
4. Ghrefat H, Yusuf N. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere. 65, 2114–2121. https://doi: 10.1016/j.chemosphere.2006.06.043.
5. Naser HA. (2013). Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar Pollut Bull. 72, 6–13. https://doi.org/10.1016/j.marpolbul.2013.04.030
6. Ozkan EY, Buyukisik B. (2012). Geochemical and statistical approach for assessing heavy metal accumulation in the southern Black Sea sediments. Ekoloji, 21(83). 11–24. https://doi.org/10.5053/ekoloji.2012.832
7. Wang WX, Rainbow PS. (2008). Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp Biochem Physiol Part C Toxicol Pharmacol. 148, 315-323. https://doi.org/10.1016/j.cbpc.2008.04.003
8. DeForest D, Brix K, Adams W. (2007). Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol. 84, 236–246. https://doi.org/10.1016/j.aquatox.2007.02.022
9. Jarup L. (2003). Hazards of heavy metal contamination. Brazilian Medical Bulletin. 68, 425–462. https://doi.org/10.1093/bmb/ldg032
10. Paneer Selvam A, Laxmi Priya S, Kakolee B, Hariharan G, Purvaja R, Ramesh R. (2012). Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake, southwest coast of India. Environ Monit Assess. 184, 5899–5915. https://doi: 10.1007/s10661-011-2389-8
11. Ratheesh Kumar CS, Joseph MM, Gireesh Kumar TR, Renjith KR, Manju M, Chandramohanakumar N. (2010). Spatial variability and contamination of heavy Metals in the inter-tidal systems of a tropical environment. Int J Environ Res. 4 (4), 691–700. https://doi:10.22059/IJER.2010.255
12. Harikumar PS, Nasiru P, Mujeeburaahman P. (2009). Distribution of heavy metals in the core sediments of a tropical wetland system. Int J Environ Sci Te. 6 (2), 225–232.
13. Carral E, Villares R, Puente X, Carballeira A. (1995). Influence of watershed lithology on heavy metal levels in estuarine sediments and organisms in galicia (north-west spain). Mar Pollut Bull. 30, 604-608. https://doi.org/10.1016/0025-326X(95)00017-H
14. Pande N, Nayak GN. (2013). Understanding distribution and abundance of metals with space and time in estuarine mudflat sedimentary environment. Environ Earth Sci. 70, 2561–2575. https://doi.org/10.1007/s12665-013-2298-y
15. Jayaraju N, Sundara Raja Reddy BC, Reddy KR. (2009). Metal pollution in coarse sediments of Tuticorin coast, Southeast coast of India. Environ. Geol. 56, 1205–1209. http://dx.doi.org/10.1007/s00254-008-1220-5.
16. Fatoki OS, Mathabatha S. (2001). An assessment of heavy metal pollution in the East London and Port Elizabeth harbours. Water SA, 27(2) (2001), 233–240. http://DOI: 10.4314/wsa.v27i2.4997
17. Anbuselvan N, Senthil Nathan D, Sridharan M. (2018). Heavy metal assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution. Mar Pollut Bull. 131, 712–726. http://doi: 10.1016/j.marpolbul.2018.04.074
18. Krishnakumar S, Ramasamy S, Chandrasekar N, Simon Peter T, Gopal V, Godson PS, Magesh NS. (2017).Trace element concentrations in reef associated sediments of Koswari Island, Gulf of Mannar biosphere reserve, southeast coast of India. Mar Pollut Bull. 117. 515-522. https://doi.org/10.1016/j.marpolbul.2017.02.016
19. Magesh NS, Chandrasekar N, Krishnakumar S, Simon Peter T. (2017). Trace element contamination in the nearshore sediments of the Tamiraparani estuary, Southeast coast of India. Mar Pollut Bull. 116 (2017), 508–516. https://doi.org/10.1016/j.marpolbul.2017.01.005
20. Kasilingam K, Suresh Gandhi M, Krishnakumar S, Magesh NS. (2016). Trace element concentration in surface sediments of Palk Strait, southeast coast of Tamil Nadu, India. Mar Pollut Bull. 111, 500–508. https://doi.org/10.1016/j.marpolbul.2016.06.051
21. Jayaprakash M, Gopal V, Anandasabari K, Kalaivanan R, Sujitha SB, Jonathan MP. (2016). Enrichment and toxicity of trace metals in near-shore bottom sediments of Cuddalore, SE coast of India. Environ Earth Sci. 75:1303. https://doi.org/10.1007/s12665-016-6082-7

22. Solai A, Suresh Gandhi M, Kasilingam K, Sriraman E. (2013). Heavy Metal Accumulation in the Surface Sediments off Pondicherry, Bay of Bengal, South East Coast of India. Int J Innov Res in Sci Eng Tech. 2 (10).

23. Alagarsamy R, Zhang J. (2010). Geochemical characterization of major and trace elements in the coastal sediments of India. Environ Monit Assess. 161, 161–176. http://dx.doi.org/10.1007/s10661-008-07352

24. Jayaraju N, Sundara Raja RBC, Reddy KR. (2009). Metal pollution in coarse sediments of Tuticorin coast, Southeast coast of India. Environ Geol. 56, 1205–1209. https://doi.org/10.1007/s00254-008-1220-5

25. Jayaprakash M, Jonathan MP, Srinivasalu S, Ram-Mohan V, Rajeshwara-Rao N, (2008). Acid-leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: An approach towards regular monitoring. Estuar Coast Shelf Sci. 76 (2008), 692–703. https://doi.org/10.1016/j.ecss.2007.07.035

26. Jonathan MP, Ram-Mohan V, Srinivasalu S. (2004). Geochemical variations of major and trace elements in recent sediments, off the Gulf of Mannar, southeast coast of India. Environ Geol. 45, 466–480. https://doi.org/10.1007/s00254-003-0898-7

27. Selvaraj K, Ram Mohan V, Jonathan MP, Siddartha R, Srinivasalu S. (2003). Distribution of non-detrital trace metals in sediment cores from Ennore Creek. Southeast coast of India. J Geol Soc India. 62, 191–204.

28. Achyuthan H, Richardmohan D, Srinivasalu S, Selvaraj K. (2002). Trace metals in the sediment cores of estuary and tidal zones from northern part of southeast coast of India. Indian J Mar Sci. 31, 141–149

29. Reineck HE, Sieffert W. (1980). Faktoren der Schlickbildung im Sahlenburger Watt und Neuwerker Watt. Die KuK ste. 35. pp. 26–51

30. Pejrup M. (1988). The triangular diagram used for classification of estuarine sediments: a new approach. In: de Boer PL, Van Gelder A, Nio SD. (Eds.), Tide-influenced Sedimentary Environments and Facies. Reidel, Dordrecht, pp. 289–300

31. Fleming BW. (2000). A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res. 20, 1125–1137. https://doi.org/10.1016/S0278-4343(00)00015-7

32. US EPA. (1996). Guidance on Use of Modeled Results to Demonstrate Attainment of the Ozone NAAQS, EPA-454/B-95-007

33. Ahmad IZ, Ahmad A, Mabood A, Tabassum H. (2017). Effects of Different Metal Stresses on the Antioxidant Defense Systems of Medicinal Plants. In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Springer, Singapore, pp. 215-256

34. Mucha AP, Vasconcelos MTSD, Bordalo AA. (2003). Macrobenthic community in the Doura estuary: relations with trace metals and natural sediment characteristics. Environ Pollut. 121, 169–180. https://doi.org/10.1016/S0269-7491(02)00229-4

35. Neto BJA, Smith BJ, McAllister JJ. (2000). Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ Pollut. 109, 1–9. https://doi.org/10.1016/s0269-7491(99)00233-x

36. Schiff KC, Weisberg SB. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Mar Environ Res. 48, 161–176. https://doi.org/10.1016/S0141-1136(99)00033-1

37. Muller G. (1981). The heavy metal pollution of the sediments of the Neckar and its tributaries. Chem Ztg 6: 64-157

38. Ergin M, Saydam C, Basturk O, Erdem E, Yoruk R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the North-eastern Sea of Marmara. Chem Geol. 91, 269–285. https://doi.org/10.1016/0009-2541(91)90004-B

39. Taylor SR, McLennan SM. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241. https://doi.org/10.1029/95rg00262

40. Hakanson L. (1980). An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Res. 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

41. Abraham GM, Parker RJ. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess. 136:227–238. https://doi.org/10.1007/s10661-007-9678-2
42. Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Meeresunters 33:566–575
43. Ogbeibu AE, Omoigberale MO, Ezewa IM, Eziza JO, Igwe JO. (2014). Using pollution load index and geoaccumulation index for the assessment of heavy metal pollution and sediment quality of the Benin River, Nigeria. Natural Environment, 2(1), 1–9.
44. Forstner U, Ahlf W, Calmano W, Kersten M. (1990). Sediment Criteria Development. In: Sediments and Environmental Geochemistry, Heling, D., P. Rothe, U. Forstner and P. Stoffers (Eds.). Springer Verlag, Berlin, New York
45. Muller G. (1969). Index of geoaccumulation in sediments of the Rhine River. Umschau in Wissenschaft und Technik, 79, 778–783.
46. Muller G. (1979). Heavy metals in the sediment of the Rhine – Changes seity. Umschau in Wissenschaft und Technik, 79, 778–783.
47. Shepard FP. (1954). Nomenclature based on sand-silt-clay ratios. J Sediment Resear. 24, p. 151-158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D
50. Shepard FP. (1954). Nomenclature based on sand-silt-clay ratios. J Sediment Resear. 24, p. 151-158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D
51. Kalaivanan R, Jayaprakash M, Nethaji S, Arya V, Giridharan L. (2017) Geochemistry of Core Sediments from Tropical Mangrove Region of Tamil Nadu: Implications on Trace Metals. Journal of Earth Science & Climatic Change, 08 (02). https://doi:10.4172/2157-7617.1000385
52. Gopal V, Krishnakumar S, Simon Peter T, Nethaji S, Suresh Kumar K, Jayaprakash M, Magesh NS. (2016) Assessment of trace element accumulation in surface sediments off Chennai coast after a major flood event. Mar Pollut Bull. 114 (2), 1063–1071. https://doi.org/10.1016/j.marpolbul.2016.10.019
53. Shepard FP. (1954). Nomenclature based on sand-silt-clay ratios. J Sediment Resear. 24, p. 151-158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D
54. Sundararajan M, Natesan U. (2010). Geochemistry of core sediments from Mulipallam creek, South East coast of India. Environ Earth Sci. 61 (5), 947-961. https://doi.org/10.1007/s12665-009-0414-9
55. Muthu Raj S, Jayaprakash M. (2008). Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environ Geol. 56, 207–217. https://doi.org/10.1007/s00254-007-1156-1
56. Taylor SR. (1964). Abundance of Chemical Elements in the Continental Crust: A New Table. Geochim Cosmochim Acta. 28, 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2
57. Kelin LA, Long M, Nash N, Kirschner S. (1974). Sources of metals in New York City waste water. J Water Poll Control. 46:2653–2662
58. Ramanathan AL, Subramanian V, Ramesh R, Chidambaram S, James A. (1999). Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), Southeast coast of India. Environ Geol. 37 (3), 223–233. https://doi.org/10.1007/s002500050380
59. Shen GT, Boyle EA. (1988). Determination of lead, cadmium and other trace metals in annually-banded corals. Chem Geol. 47, 47-62. https://doi.org/10.1016/0016-7037(88)90005-8
60. Lin YP, Teng TP, Chang TK. (2002). Multivariate analysis of soil heavy metals pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban Planning 62, 19–35
61. Yasar D, Aksu AE, Uslu O. (2001). Anthropogenic pollution in Izmit Bay: heavy metal concentrations in surface sediments. Turkish J Eng Env Sci. 25, 299–313
62. Wang SL, Xu XR, Sun YX, Liu JL, Li HB. (2013). Heavy metal pollution in coastal areas of South China: A review. Mar Pollut Bull. 76 (1-2), 7–15. https://doi: 10.1016/j.marpolbul.2013.08.025
63. Sharifuzzaman SM, Rahman H, Ashkeuzzaman SM, Islam MM, Chowdhury SRS, Hossain HM. (2016). Heavy Metals Accumulation in Coastal Sediments, Hasegawa et al. (eds.), Environmental Remediation Technologies for Metal Contaminated Soils. https://doi:10.1007/978-4-431-55759-3_2, 21-42
64. Rasul MG, Faisal I, Khan MMK. (2006). Environmental pollution generated from process industries in Bangladesh. Int J Environ Pollut. 28:144–161. https://doi: 10.1504/IJEP.2006.010881
65. Kashem MA, Singh BR. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Wat Air Soil Pollut. 115:347–361.
66. Islam KL, Hossain MM. (1986). Effect of ship scrapping on the soil and sea environment in the coastal area of Chittagong, Bangladesh. Mar Pollut Bull. 17, 462–463. https://doi.org/10.1016/0025-326X(86)90836-2
67. Chakraborty P, Babu PV. (2015). Environmental controls on the speciation and distribution of mercury in surface sediments of a tropical estuary, India. Mar Pollut Bull. 95 (1), 350–357. https://doi.org/10.1016/j.marpolbul.2015.02.035
68. Tessier A, Campbell PGC, Bisson M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 51, 844–851
69. Goldberg ED. (1954). Marine geochemistry 1. Chemical scavengers of the sea. J Geol. 249–265
70. Karthikeyan P, Vennila G, Nanthakumar G, Aswini M. (2020). Dataset for spatial distribution and pollution indices of heavy metals in the surface sediments of Emerald Lake, Tamil Nadu, India. Data in Brief, 28, 104877. https://doi.org/10.1016/j.dib.2019.104877
71. Zhang WF, Ma WQ, Ji YX, Fan MS, Oenema O, Zhang FS. (2008). Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr Cycling Agroecosyst. 80(2): 131–144. https://doi.org/10.1007/s10705-007-9126-2
72. Ranjan RK, Ramanathan AL, Singh G, Chidambaram S. (2008). Assessment of metal enrichments in tsunamiogenic sediments of Pichavaram mangroves, southeast coast of India. Environ Monit Asses. 147, 389–411. https://doi.org/10.1007/s10661-007-0128-y
73. Srikanth R, Madhumohan Rao A, Shravan Kumar CH, Khanum A. (1993). Lead, cadmium, nickel, and zinc contamination of ground water around Hussain Sagar Lake, Hyderabad, India. Bull Environ Contam Toxicol. 50, 138-143. https://doi.org/10.1007/BF00196552
74. Alloway BJ. (1990). Heavy metals in soils. John Wiley and Sons, Inc. New York, ISBN 0470215984
75. Rodríguez Martín JA, Ramos-Miras JJ, Boluda R. (2013) Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 200–201:180–188. https://doi.org/10.1016/j.geoderma.2013.02.014
76. GESAMP (Joint Group of Experts on Scientific Aspects of Marine Pollution) 1985. Atmospheric transport of contaminants into the Mediterranean region. Reports and Studies GESAMP 26. World Meteorological Organisation, 53 pp
77. Praveena SM, Ahmed A, Radiojevic M, Abdullah MH, Aris AZ. (2007). Factor-cluster analysis and enrichment study of mangrove sediments-an example from Mengkabong, Sabah. Malaysian J Anal Sci. 11 (2), 421-430
78. Cheng Q, Wang R, Huang W, Wang W, Li X. (2015). Assessment of heavy metal contamination in the sediments from the Yellow River Wetland National Nature Reserve (the Sanmenxia section), China. Environ Sci Pollut Res. 22(11), 8586–8593. https://doi.10.1007/s11356-014-4041-y
79. Varol M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater. 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051
80. Bhuiyan MA, Parver L, Isalm MA, Dampare SB, Suzuki S. (2009). Heavy metal pollution of coal mine affected agricultural soils in the northern part of Bangladesh. J Hazard Mater. 173, 384–392. https://doi:10.1016/j.jhazmat.2009.08.085
81. Bai J, Xiao R, Cui B, Zhang K, Wang Q, Liu X. (2011). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River estuary, South China. Environ Pollut. 159, 817–824. https://doi.org/10.1016/j.envpol.2010.11.004
82. Fianko JR, Laar C, Osei J, Anim AK, Gibrilla A, Adomako D. (2013). Evaluation of some heavy metal loading in the Kpeshi lagoon, Ghana. Appl. Water Sci. 3, 311–319. https://doi.org/10.1007/s13201-013-0083-4.
83. Li LY, Hall KY, Yuan G, Mattu D, McCallum Chen M. (2009). Mobility and bioavailability of trace metals in the water-sediment system of the highly urbanized brunette watershed. Water Air Soil Pollut. 197, 249–266. https://doi.org/10.1007/s11270-008-9808-7
84. Kumar SB, Padhi RK, Mohanty AK, Satpathy KK. (2017). Elemental distribution and trace metal contamination in the surface sediment of south east coast of India. Mar Pollut Bull. 114(2), 1164–1170. https://doi.org/10.1016/j.marpolbul.2016.10.038

85. Krishnakumar S, Ramasamy S, Chandrasekar N, Peter TS, Godson PS, Gopal V, Magesh NS. (2017). Spatial risk assessment and trace element concentration in reef associated sediments of Van Island, southern part of the Gulf of Mannar, India. Mar Pollut Bull. 115(1-2), 444–450. https://doi.org/10.1016/j.marpolbul.2016.10.067

86. Kasilingam K, Suresh Gandhi M, Krishnakumar S, Magesh NS. (2016). Trace element concentration in the surface sediment of south east coast of India. Mar Pollut Bull. 114(2), 1164–1170. https://doi.org/10.1016/j.marpolbul.2016.10.038

87. Sundaramanickam A, Shanmugam N, Cholan S, Kumaresan S, Madeswaran P, Balasubramanian T. (2016). Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India. Environ Pollut. 218, 186–195. https://doi.org/10.1016/j.envpol.2016.07.048

88. Fahad IA, Adel RU, Abdullah SAF. (2014). Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis, Arab J Geosci. https://doi.org/10.1007/s12517-014-1298-x

89. Fernandez-Cadena JC, Andrade S, Silva-Coello CL, De la Iglesia R. (2014). Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Mar Pollut Bull. 82(1-2), 221–226. https://doi.org/10.1016/j.marpolbul.2014.03.016

90. Magesh NS, Chandrasekar N, Krishna Kumar S, Glory M. (2013). Trace element contamination in the estuarine sediments along coast-Gulf of Mannar, southeast coast of India. Mar. Pollut. Bull. 73, 355–361. https://doi.org/10.1016/j.marpolbul.2013.05.041

91. Sany TSB, Salleh A, Rezayi M, Saadati N, Narimany L, Tehrani GM. (2013). Distribution and contamination of heavymetal in the coastal sediments of Port Klang, Selangor, Malaysia. Water Air Soil Pollut. 224, 1476. https://doi.org/10.1007/s11270-013-1476-6

92. Bodin N, NGom-Ka R, Ka S, Thiaw OT, Tito de Morais L, Le Loch F, Rozuel-Chartier E, Auger D, Chiffouleau JF. (2013). Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere 90, 150–157. https://doi.org/10.1016/j.chemosphere.2012.06.019

93. El-Said GF, Youssef DH. (2013). Ecotoxicological impact assessment of some heavy metals and their distribution in some fractions of mangrove sediments from Red Sea, Egypt. Environ Monit Assess. 185, 393–404. https://doi.org/10.1007/s10661-012-2561-9

94. Behera BC, Mishra RR, Patra JK, Sarangi K, Dutta SK, Thatoi HN. (2013). Impact of heavy metals on bacterial communities from mangrove soils of the Mahanadi Delta (India). Chem Ecol. 29, 604–619. https://doi.org/10.1080/02757550.2013.810719

95. Gao X, Chen CTA. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 46(6), 1901–1911. https://doi.org/10.1016/j.watres.2012.01.007

96. Jonathan MP, Ram Mohan V. (2003). Heavy metals in sediments of the inner shelf off the Gulf of Mannar, South East Coast of India. Mar Pollut Bull. 46, 258–268. https://DOI: 10.1016/s0025-326x(02)00484-8

97. Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci. 87(2), 253–264. https://doi.org/10.1016/j.ecss.2009.12.019

98. Cuong DT, Karuppiah S, Obbard JP. (2007). Distribution of heavy metals in the dissolved and suspended phase of the sea-surface microlayer, seawater column and in sediments of Singapore’s coastal environment. Environ Monit Assess. 138(1-3), 255–272. https://doi.org/10.1007/s10661-007-9795-y

99. Stephen-Pichaimani V, Jonathan MP, Srinivasulu S, Rajeshwara-Rao S, Mohan SP. (2008). Enrichment of trace metals in surface sediments from the northern part of Point Calimere, SE coast of India. Environ Geol. 55, 1811–1819. https://doi.org/10.1007/s00254-007-1132-9

100. Caeiro S, Costa MH, Ramos TB. (2005). Assessing Heavy Metal Contamination in Sado Estuary Sediment: An Index Analysis Approach. Ecol Indic. 5: 151–169. https://doi.org/10.1016/j.ecolind.2005.02.001

101. Morillo J, Usero J, Gracia I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55(3), 431–442. https://doi.org/10.1016/j.chemosphere.2003.10.047
Figure 1

Location of the research area with designated sampling points. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 2

Shepard classification of the sediments
Figure 3

Spatial distribution visualisation of the EF index for heavy metals detected in the sediments.
Figure 4

CF values of heavy metals detected in the sediments.
Figure 5

Igeo calculations for the heavy metals in the sediments. (Bottom panel) a. Igeo calculations for the Zn and Fe in the sediments.
Figure 6

(A) Contamination degree, (B) modified contamination degree, and (C) Potential contamination index (CI) in the sediments, and (D) Potential contamination index (Cp) of the heavy metal contaminants in the sediments.
Correlation coefficients (R) at p<0.05 between different metals and Sand% and OM in the sediment

Figure 7
Correlation coefficients (R) at p<0.05 between different metals and Sand% and OM in the sediment
Figure 8

Varimax rotation of the heavy metal components