Abstract. Motivated by a fundamental geometrical object, the cut locus, we introduce and study a new combinatorial structure on graphs.

Math. Subj. Classification (2000): 57R70, 53C20, 05C10

1 Introduction

The motivation of this work comes from a basic notion in riemannian geometry, that we shortly present in the following. In this paper, by a surface we always mean a complete, compact and connected 2-dimensional riemannian manifold without boundary.

The cut locus $C(x)$ of the point x in the surface S is the set of all extremities (different from x) of maximal (with respect to inclusion) shortest paths (geodesic segments) starting at x; for basic properties and equivalent definitions refer, for example, to [13] or [16]. The notion was introduced by H. Poincaré [15] and gain, since then, an important place in global riemannian geometry.

For surfaces S is known that $C(x)$, if not a single point, is a local tree (i.e., each of its points z has a neighbourhood V in S such that the component $K_z(V)$ of z in $C(x) \cap V$ is a tree), even a tree if S is homeomorphic to the sphere. A tree is a set T any two points of which can be joined by a unique Jordan arc included in T.

All our graphs are finite, connected, undirected, and may have multiple edges or loops.

S. B. Myers [14] established that the cut locus of a real analytic surface is (homeomorphic to) a graph, and M. Buchner [3] extended the result for manifolds of arbitrary dimension. For not analytic riemannian metrics on S, Brainard...
cut loci may be quite large sets, see the work of J. Hebda [6] and of the first author [9]. Other contributions to the study of this notion were brought, among others, by M. Buchner [2], [4], H. Gluck and D. Singer [5], J. Hebda [7], J. Itoh [8], K. Shiohama and M. Tanaka [17], T. Zamfirescu [18], [19], A. D. Weinstein [20].

We show in another paper [10] that for every graph G there exists a surface S_G and a point x in S whose cut locus $C(x)$ is isomorphic to G; rephrasing, every graph can be realized as a cut locus.

If G has an odd number q of generating cycles then any surface S_G realizing G is non-orientable, but if q is even then one cannot generally distinguish, by simply looking to the graph G, whether S_G is orientable or not: explicit examples show that both possibilities can occur [11]. In other words, seen as a graph, the cut locus does not encode the orientability of the ambient space.

This is our main motivation to endow graphs with a combinatorial structure – that of cut locus structure, or shortly CL-structure.

In this paper we treat combinatorial aspects of this new notion: in Section 2 we introduce and discuss this notion, in Section 3 we give two planar representations of CL-structures, and in the last section we enumerate all such structures on “small” graphs.

In a second paper [10] we show that every CL-structure actually corresponds to a cut locus on a surface, while in a subsequent one [11] we consider the orientability of the surfaces realizing CL-structures as cut loci. In particular, any graph endowed with a CL-structure does encode the orientability of the ambient space where is lives as a cut locus. An upper bound on the number of CL-structures on a graph is given in [12].

At the end of this section we recall a few notions from graph theory, in order to fix the notation.

Let G be a graph with vertex set $V = V(G)$ and edge set $E = E(G)$. Denote by B the set of all bridges in the graph G; i.e., edges whose removal disconnects G. Each non-vertex component of $G \setminus B$ is called a 2-connected component of G.

A k-graph is a graph all vertices of which have degree k.

The power set \mathcal{E} of E becomes a \mathbb{Z}_2-vector space over the two-element field \mathbb{Z}_2 if endowed with the symmetric difference as addition. \mathcal{E} can be thought of as the space of all functions $E \to \mathbb{Z}_2$, and called the (binary) edge space of G. The (binary) cycle space is the subspace \mathcal{Q} of \mathcal{E} generated by
(the edge sets of) all simple cycles of G. If G is seen as a simplicial complex, Q is the space of 1-cycles of G with mod 2 coefficients.

2 Cut locus structures

Definition 2.1 A G-patch on the graph G is a topological surface P_G with boundary, containing (a graph isomorphic to) G and contractible to it.

Remark 2.2 Every boundary component of a patch is homeomorphic to a circle, as a 1-dimensional manifold without boundary.

Definition 2.3 A G-strip (or a strip on G, or simply a strip, if the graph is clear from the context), is a G-patch with 1-component boundary; i.e., whose boundary is one topological circle; see Figure 1 (a).

The next remark gives the geometrical background for the notion of cut locus structure.

Remark 2.4 Consider a point x on a surface S, and a geodesic segment $\gamma : [0, l] \rightarrow S$ parameterized by arclength, with $\gamma(0) = x$ and $\gamma(l) \in C(x)$. For $\varepsilon > 0$ smaller than the injectivity radius at x, and hence smaller than l, the point $\gamma(l - \varepsilon)$ is well defined. Since $S \setminus C(x)$ is contractible to x along geodesic segments, and thus homeomorphic to an open disk, the union over all γs of those points $\gamma(l - \varepsilon)$ is homeomorphic to the unit circle, and therefore the set $\bigcup_\gamma \{ \gamma(l - \mu) : 0 \leq \mu \leq \varepsilon \}$ is a $C(x)$-strip.

Definition 2.5 A cut locus structure (shortly, a CL-structure) on the graph G is a strip on the cyclic part G^{cp} of G.

Remark 2.6 We show in another paper [10], with geometrical tools, the converse to Remark 2.4: every CL-structure can be obtained (with some suitable surface and point on the surface) as described in Remark 2.4.

Remark 2.7 Each G-strip defines a circular order around each vertex of G, and thus a rotation system. Conversely, one can alternatively define a G-strip as the graph associated to a rotation system, together with a 2-cell embedding having precisely one face. We choose not to follow this way, and to keep in our presentation as much as possible of the geometrical intuition.
Figure 1: A strip and its elementary decomposition.
Definition 2.8 An elementary strip is an edge-strip (arc-strip) or a point-strip; i.e., a strip defined by the graph with precisely one edge (arc) of different extremities, respectively by the graph consisting of one single vertex.

Definition 2.9 An elementary decomposition of a G-patch P_G is a decomposition of P_G into elementary strips such that:
- each edge-strip corresponds to precisely one edge of G;
- each point-strip corresponds to precisely one vertex of G; see Figure 1 (b) and (c).

Remark 2.10 Our notion of “G-patch” is equivalent to that of “fibered surface” introduced by M. Bestvina and M. Handel: “a fibered surface is a compact surface F with boundary which is decomposed into arcs and into polygons that are modeled on k-junctions, $k = 1, 2, 3, ...$. The components of the subsurface fibered by arcs are strips. Shrinking the decomposition elements to points produces a graph G, where vertices (of valence k) correspond to (k-) junctions and strips to edges. We can think of G as being embedded in F, representing the spine of F” [1]. We choose the most (in our opinion) appropriate name for our purpose, and thus different from theirs.

In order to easier handle a CL-structure, we associate to it an object of combinatorial nature. To this goal, denote by \mathcal{P} and \mathcal{A} the set of all point-strips, respectively edge-strips, of a CL-structure \mathcal{C} on the graph G.

Definition 2.11 Consider an elementary decomposition of the G-strip P_G such that each elementary strip has a distinguished face, labeled $\bar{0}$. The face opposite to the distinguished face will be labeled $\bar{1}$. Here, 0 and 1 are the elements of the 2-element group (\mathbb{Z}_2, \oplus).

To each pair $(v, e) \in V \times E$ consisting of a vertex v and an edge e incident to v, we associate the \mathbb{Z}_2-sum $\bar{s}(v, e)$ of the labels of the elementary strips $\nu \in \mathcal{P}$, $\varepsilon \in \mathcal{A}$ associated to v and e; i.e., $\bar{s}(v, e) = \bar{0}$ if the distinguished faces of ν and ε agree to each other, and $\bar{1}$ otherwise. Therefore, to any cut locus structure \mathcal{C} we can associate a function $s_\mathcal{C} : E \to \{\bar{0}, \bar{1}\}$,

$$s_\mathcal{C}(e) = \bar{s}(v, e) \oplus \bar{s}(v', e), \quad (1)$$

where v and v' are the vertices of the edge $e \in E$.

We call the function $s_\mathcal{C}$ defined by (1) the companion function of \mathcal{C}.

The value $s_\mathcal{C}(e)$ above can be thought of as the switch of the edge e.

5
Figure 2: Equivalent CL-structures (a), (b) and (c), and schematic representation (d). The edge-strip at (a) corresponds to a rectangular band whose base is π-rotated “to the left” with respect to the top; the edge-strip at (b) corresponds to a rectangular band whose base is π-rotated “to the right” with respect to the top; the edge-strip at (c) corresponds to a rectangular band whose base is $(2k + 1)\pi$-rotated “to the left” with respect to the top.

Definition 2.12 Assume first that the graph G is 2-connected. Two CL-structures C, C' on G are called equivalent if their companion functions are equivalent: i.e., s_C and $s_{C'}$ are equal, up to a simultaneous change of the distinguished face for all elementary strips in G (i.e., either $s_C = s_{C'}$, or $s_C = \overline{1} \oplus s_{C'}$).

If G is not 2-connected, the CL-structures C, C' on G are called equivalent if their companion functions are equivalent on every 2-connected component of G. See Figure 2.

Definition 2.13 An edge-strip P_e (or simply an edge e) in a CL-structure C is called switched if $s_C(e) = \overline{1}$.

Proposition 2.14 If two CL-structures on the same graph G are equivalent then the corresponding G-strips are homeomorphic surfaces.

Proof: We may assume that G is cyclic.

Assume, moreover, that we have two CL-structures on G, whose companion functions are equivalent on every 2-connected component of G. The desired homeomorphism can be constructed inductively, extending it with each new “gluing” of an elementary strip, see Figure 2.
3 Representations of CL-structures

We propose two ways to planary represent a CL-structure \(C \) on the graph \(G \).

Definition 3.1 The graph representation of \(C \) starts with some planar representation of \(G \), and afterward points out the CL-structure, see Figure 3 (a).

Definition 3.2 The natural representation of \(C \) starts by representing in the plane each vertex-strip such that its distinguished face is “up”, and afterward connects the vertex-strips by edge-strips. The idea is illustrated by Figure 3 (b) and (c).

Remark 3.3 Consider the natural representation of a CL-structure on a cubic graph. We shall overwrite an “x” to the drawn image of an edge if its strip is switched, and an “=” to the drawn image of an edge if its strip is not-switched. See Figures 4 and 3.

Remark 3.4 Neither the natural representation, nor the graph representation, of a CL-structure on a graph is unique.

Proposition 3.5 For any planar cubic graph \(G \) and any CL-structure on \(G \), the natural representation and the graph representation coincide, up to planar homeomorphisms.

Proof: This follows from the definitions above. \(\square \)

Example 3.6 If the 3-graph \(G \) is not planar, Proposition 3.5 is not true. An easy example, obtained from a flat torus of rectangular fundamental domain (see the procedure described in Remark 2.4), is illustrated by Figure 5.

Directly from the definitions we have the following.

Lemma 3.7 In any natural representation of a strip, each cycle-patch contains at least one switched edge-strip.

We can give four open questions.
Figure 3: Representations of CL-structures. a) *Graph representation* of a strip. b) Intermediate step to obtain (c). c) *Natural representation* for the strip at (a). Additional points x, y are indicated to make clear the transformation.
Figure 4: Schematic representation of the strip in Figure 1 (a).

Figure 5: CL-structure obtained from a flat torus of rectangular fundamental domain.
Figure 6: All 3-graphs with 2 generating cycles.

Question 3.8 Characterize the companion functions of CL-structures in the set $S = \{ s : E \to \{\bar{0}, \bar{1}\} \}$.

Question 3.9 A planar graph is, by definition, a graph which can be represented in the plane without crossings (self-intersections). As we have seen in Example 3.6, there are CL-structures on (not cubic) planar graphs whose natural representations in the plane necessarily produce crossings. What is the minimal number of such crossings which guarantees a planar natural representation?

The same question can be asked for non-planar graphs too, where the (minimal number of necessary) crossings of the graphs is a new parameter.

Question 3.10 How many CL-structures can coexist on the same graph?

Some (not sharp) upper bound will be given in [11].

Question 3.11 Which of the graphs with q generating cycles has the largest number of different CL-structures?

We shall address in the following section the last two questions above, for graphs with two and three generating cycles.

4 CL-structures on small graphs

We present in this section all distinct cut locus structures on 3-graphs with $q = 2, 3$ generating cycles.

The following statement can be obtained by straightforward inductive constructions.
Lemma 4.1 There are precisely 2, respectively 6, distinct 3-graphs with 2, respectively 3, generating cycles, see Figures 6 and 7.

Theorem 4.2 a) There are precisely 3 non-equivalent CL-structures on the 3-graphs with 2 generating cycles, see Figures 8 and 9.

b) There are precisely 17 non-equivalent CL-structures on the 3-graphs with 3 generating cycles, see Figures 10 – 15.

Proof: We employ the natural representation of CL-structures. It is straightforward to generate all patches on the graphs in Figures 6 – 7, to keep only
the strips (by the use of Lemma 3.7, and to use Definition 2.12 and the symmetries of the graphs to identify equivalent CL-structures. □

Our last result shows that the case of CL-structures on 3-graphs is, in some sense, sufficient. For, define the degree of a graph as the maximal degree of its vertices.

Theorem 4.3 Any CL-structures on a graph with \(q \) generating cycles and degree larger than 3 can be obtained from CL-structures on 3-graphs with \(q \) generating cycles, by contracting non-switched edge-strips.

Proof: Fix \(q \); we consider only graphs with \(q \) generating cycles, and proceed by induction over the number of vertices of degree larger that 3. Denote by \(D(G) \) this number for the graph \(G \).

Assume the cyclic graph \(G \) has \(D(G) \geq 1 \), and choose a vertex \(v \) in \(G \) with \(\text{deg}(v) = d > 3 \).

Let \(C \) be a CL-structure on \(G \), and denote by \(v_1, ..., v_d \) the neighbours of \(v \) in \(G \), and by \(T \) the subtree of \(G \) rooted at \(v \), with leaves \(v_1, ..., v_d \). Let \(G^- \) be the complement of \(T \) in \(G \), and \(C^- \) be the union of patches naturally induced by \(C \) on \(G^- \). Let \(s_C^- \) be the restriction of the companion function \(s_C \) of \(C \) to \(G^- \).

Replace \(T \) in \(G \) by a tree \(T_3 \) of leaves \(v_1, ..., v_d \), all of whose internal vertices have degree 3 (\(T_3 \) is generally not unique), and denote by \(G^u \) the
Figure 11: 4 CL-structures on the graph in Figure 7 (ii).

Figure 12: 4 CL-structures on the graph in Figure 7 (iii).

Figure 13: 3 CL-structures on the graph in Figure 7 (iv).
Figure 14: Unique CL-structure on the graph in Figure 7 (v).

Figure 15: 4 CL-structures on the graph in Figure 7 (vi).
new graph. Now complete C^- to a CL-structure C^v on G^v, by extending s_{c^-} on the internal edges of T_3 with $\bar{0}$, and on the external edges of T_3 with the original values of s_c. Observe that C^v is indeed a CL-structure on G^v, and $D(G^v) = D(G) - 1$, so the proof is complete. \hfill \Box

Acknowledgement C. Vîlcu was partially supported by the grant PN II Idei 1187 of the Romanian Government.

References

[1] M. Bestvina and M. Handel, *Train-tracks for surface homeomorphisms*, Topology 34 (1995), 109-140

[2] M. A. Buchner, *Stability of the cut locus in dimensions less than or equal to 6*, Invent. Math. 43 (1977), 199-231

[3] M. A. Buchner, *Simplicial structure of the real analytic cut locus*, Proc. Amer. Math. Soc. 64 (1977), 118-121

[4] M. A. Buchner, *The structure of the cut locus in dimension less than or equal to six*, Compos. Math. 37 (1978), 103-119

[5] H. Gluck and D. Singer, *Scattering of geodesic fields I and II*, Ann. Math. 108 (1978), 347-372, and 110 (1979), 205-225

[6] J. Hebda, *Metric structure of cut loci in surfaces and Ambrose’s problem*, J. Differ. Geom. 40 (1994), 621-642

[7] J. Hebda, *Cut loci of submanifolds in space forms and in the geometries of Möbius and Lie*, Geom. Dedicata 55 (1995), 75-93

[8] J. Itoh, *Some considerations on the cut locus of a riemannian manifold*, in *Geometry of geodesics and related topics* (Tokyo, 1982), 29-46, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1984

[9] J. Itoh, *The length of a cut locus on a surface and Ambrose’s problem*, J. Differ. Geom. 43 (1996), 642-651

[10] J. Itoh and C. Vîlcu, *Every graph is a cut locus*, to appear

[11] J. Itoh and C. Vîlcu, *Orientable realizations of graphs as a cut loci*, to appear

[12] J. Itoh and C. Vîlcu, *On the number of cut locus structures on graphs*, to appear
[13] S. Kobayashi, *On conjugate and cut loci*, Global differential geometry, MAA Stud. Math. 27 (1989), 140-169

[14] S. B. Myers, *Connections between differential geometry and topology I and II*, Duke Math. J. 1 (1935), 376-391, and 2 (1936), 95-102

[15] H. Poincaré, *Sur les lignes géodésiques des surfaces convexes*, Trans. Amer. Math. Soc. 6 (1905), 237-274

[16] T. Sakai, *Riemannian Geometry*, Translation of Mathematical Monographs 149, Amer. Math. Soc. 1996

[17] K. Shiohama and M. Tanaka, *Cut loci and distance spheres on Alexandrov surfaces*, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sém. Congr., vol. 1, Soc. Math. France, 1996, 531-559

[18] T. Zamfirescu, *Many endpoints and few interior points of geodesics*, Invent. Math. 69 (1982) 253-257

[19] T. Zamfirescu, *On the cut locus in Alexandrov spaces and applications to convex surfaces*, Pac. J. Math. 217 (2004) 375-386

[20] A. D. Weinstein, *The cut locus and conjugate locus of a riemannian manifold*, Ann. Math. 87 (1968), 29-41

Jin-ichi Itoh
Faculty of Education, Kumamoto University
Kumamoto 860-8555, Japan
j-itoh@gpo.kumamoto-u.ac.jp

Costin Vălcu
Institute of Mathematics “Simion Stoilow” of the Romanian Academy
P.O. Box 1-764, Bucharest 014700, Romania
Costin.Vilcu@imar.ro