Prevalence of intestinal parasitic infection and its associated factors among primary school students in Ethiopia: A systematic review and meta-analysis

Moges Agazhe Assemie, Daniel Shitu, Yidersail Hune, Pammla Petrucka, Ayele Mamo Abebe, Animut Takele Telanyeh, Mekdes Marew Ambaw, Daniel Bekele Ketema, Temesgen Getaneh, Belayneh Mengist, Muluneh Alene, Samuel Derbie Habtegiorgis

1 Biostatistics Unit, Department of Public Health, College of Health Science, Debre Markos University, Debre Markos, Ethiopia, 2 Reproductive Health Unit, Department of Public Health, College of Health Science, Debre Markos University, Debre Markos, Ethiopia, 3 Department of Human Nutrition, College of Health Science, Debre Markos University, Debre Markos, Ethiopia, 4 College of Nursing, University of Saskatchewan, Saskatoon, Canada, 5 School of Life Sciences and Bioengineering, Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania, 6 Department of Pediatrics and Child Health, College of Health Science, Debre Berhan University, Debre Berhan, Ethiopia, 7 Epidemiology Unit, Department of Public Health, College of Health Science, Debre Markos University, Debre Markos, Ethiopia, 8 Department of Agricultural Economics, College of Agriculture and Resource Management, Dilla University, Dilla, Ethiopia, 9 Department of Midwifery, College of Health Science, Debre Markos University, Debre Markos, Ethiopia

* agazhemoges@gmail.com

Abstract

Introduction

Intestinal parasitic infection are a major public health concern affecting both children and adolescents in Ethiopia. The aim of this systematic review and meta-analysis was to determine pooled prevalence and associated factors of intestinal parasitic infection in this target group.

Method

We systematically retrieved available articles on the prevalence of intestinal parasitic infection following database searches using PubMed, Scopus, Cochrane Library, and Science Direct between March 1 and May 27, 2020. Two authors independently extracted all relevant data using a standardized Microsoft Excel data extraction form. Heterogeneity among included studies was assessed with the Higgins I^2 tests. The pooled estimates and associated factors were assessed with a random-effects model using Stata/se Version 14.

Result

We retrieved 30 eligible articles with a pooled sample size of 14,445 primary school children with response rate of 97.8%. Entamoeba spp (16.11%), Ascaris lumbricoides (13.98%), hookworm (12.51%) and Giardia lamblia (9.98%) are the top causes of intestinal parasitic infection among primary school children in Ethiopia. The pooled prevalence for at least one...
intestinal parasitic infection was 46.09 (95% CI: 38.50, 53.68). Heterogeneity was assessed by doing subgroup analysis by study province/region. Thus, the highest prevalence of 66.6% (95% CI: 55.5, 77.7) occurred in Tigray region, which was followed by Southern Nations, Nationalities, and Peoples’ Region at 50.8% (95% CI: 33.1, 68.5). No latrine availability (OR = 4.39: 2.50, 7.73), no fingernail hygiene (OR = 2.37: 1.67, 3.35), open defecation (OR = 1.67:1.64,4.36), no formal maternal education (OR = 2.02: 1.18,3.47), rural residence (OR = 1.88: 1.46, 2.41), no habit of wearing shoes (OR = 2.66: 1.79, 3.96), non-pipe source of drinking water (OR = 1.99: 1.42,2.76), no regular hand washing practices (OR = 3.45:1.85,6.47), and no habit of washing fruits and vegetables (OR = 1.59:1.01,2.49) were associated with parasitic infection.

Conclusions
The prevalence of intestinal parasitic infection was high (46%). Attention should be given to promoting personal hygiene, latrine utilization, wearing shoes, avoiding eating raw food, creating awareness for those mothers who lack formal education. Moreover, future research ideally will expand on the topic by conducting research in regions which have no prior research.

Author summary
Intestinal parasitic infections are distributed virtually with high prevalence rates in many regions, especially in low and middle income countries which intimately linked to age group, poverty and inadequate access to water, sanitation and hygiene. It is now a day’s one of the neglected tropical disease. We had searched different individual studies on intestinal parasitic infections to generate the pooled effect and recommend for the concerned body. We head included 30 different articles with a sample size of 14,445 and we have found a pooled prevalence of 46.09%. This finding indicates the prevalence of parasitic infection was almost near to half. Therefore every concerned body should give emphasize to prevent and control parasitic infection infestation.

Introduction
Intestinal parasitosis refers to a group of diseases caused by one or more species of protozoa, cestodes, trematodes or nematodes distributed with high prevalence throughout the world [1]. Amoebiasis, ascariasis, hookworm infection, and Trichuris are among the most common parasitic infections [2, 3]. More than 550 million school children live in areas where intestinal parasitic infections (IPI) are endemic with 450 million of the illnesses occurring in sub-Saharan Africa of which Ethiopia is second only to Nigeria in prevalence [2, 4–7] Parasitic infections are preventable neglected tropical infections [8], yet it is common among primary school children in communities where socioeconomic status and hygienic condition are poor [2, 9]. The effects of IPI are not limited to morbidity and mortality, but also extend to nutritional problems (i.e., stunted growth, low vitamin A, iron deficiency anemia, loss of weight, chronic blood loss), psychological and social wellbeing [10, 11], as well as compromised mental development (i.e, impaired growth, decreased school attendance, cognitive impairment, decreased
educational achievement and adult productivity) [12, 13]. Additionally, IPI increases susceptibility to diarrhea, infections like HIV, and other infectious diseases [14].

Although there were many studies investigating prevalence of IPI among primary school children, the reported findings were inconsistent and highly variable (ranging from 10.9% to 81.0%) [15–17]. Additionally, no systematic review and meta-analysis has been done to enhance the quality and consistency of the evidence. The aim of this systematic review and meta-analysis is to determine the pooled prevalence of IPI and associated factors among primary school children in Ethiopia using available evidence. This study will inform policy makers and program planners in their efforts to design a school-centric survey and implement efficient interventions to decrease the burden and impacts of IPI among primary school children.

Methods

Search strategy
Two authors (SDH and DS) independently searched all articles that reported the prevalence of IPIs from Medline/PubMed, Google Scholar, Science Direct, HINARI, and Cochrane Library (S1 Table). Our search was extended by hand searches for grey literature and retrieving reference lists of eligible articles. The literature search occurred between March 1 and May 27, 2020 using common Boolean words: prevalence AND intestinal parasitic infection OR parastic infection AND associated factors AND primary school children AND Ethiopia. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to present this systematic review and meta-analysis.

Eligibility criteria

Inclusion criteria. Criteria were established for eligibility before beginning the search. All observational published and unpublished articles reporting the prevalence of at least one IPI among primary school children in Ethiopia were included.

Exclusion criteria. Case reports and reviews were excluded. Moreover, articles which were not fully accessible, after at least two email contacts with the primary authors, were excluded because of the inability to assess the quality of articles in the absence of full text.

Data extraction
Independently two authors (YH and MMA) extracted all data using a uniform extraction format prepared in Microsoft Excel. The data extraction format included first author, publication year, study area, sample size, age of participant, response rate, and prevalence of IPI. Any disagreements among authors during extraction were resolved by discussion and mutual agreement with the help of a third author (ATT).

Outcome measurements
This systematic review and meta-analysis had two objectives. The first objective was to determine the reported prevalence of IPI which is ascertained using the formal-ether concentration technique following standard protocol. The prevalence was calculated by dividing the number of infected children with at least one IPI by the total number of participants who have been included in the study (sample size) multiplied by 100. The second objective of the study was to identify the factors associated with the IPI. The odds ratios of associated factors were calculated using the two by two tables with binary outcomes sex (male/female), residence (urban/rural), age of children (≤10 years/>10 years), family size (<5/≥5), habit of eating raw meat.
(always/sometimes), waste disposal (open/not open), defecation (latrine/open field), latrine availability (yes/no), maternal education (literate/illiterate), habit of eating raw vegetables (always/sometimes), habit of washing fruit and vegetables (yes/no), habit of washing hands after toilet (yes/no), hand washing before meal (yes/no), source of drinking water (pipe/not pipe), habit of wearing shoes (yes/no), and hygiene of fingernails (yes/no).

Quality assessment
To assess the quality of studies, we used the Newcastle-Ottawa Scale quality assessment tool adapted for cross-sectional studies. The tool has three main sections. The first section has the potential for five stars and assesses the methodological quality of each study. The second section of the tool evaluates the comparability of the studies and has potentially two stars. The last part of the tool has a potential for three stars to measure the quality of the original articles with respect to their statistical analysis. Articles attaining the score of 5 and above out of 10 were considered as high quality and included for analysis [18] (S2 Table).

Statistical data analysis
The analysis was done by STATA/se Version 14.0 statistical software. We presented results with tables and forest plots. Heterogeneity among studies was assessed by calculating p-values for Higgins I^2 - statistics. The pooled prevalence of IPI was estimated with a random effect model by generating the pooled 95% confidence interval using the Der Simonian and Laird’s methods. Moreover, univariate meta-regression model was conducted by taking the publication year and the sample size of the studies to identify the possible sources of heterogeneity. Publication bias was also assessed using funnel plot and Egger’s regression intercept tests at 5% significant level. In addition, to minimize the random variations between the point estimates of the primary studies, subgroup analysis was done based on region of studies, publication year, and/or sample size.

Results
Description of identified studies
The review of electronic databases and reference lists from relevant studies yielded 782 potential articles. After excluding 473 articles because of duplication, the remaining articles were screened based on the pre-set eligibility criteria. Then, after reviewing the titles and abstracts of 309 articles, 245 articles were excluded. From the remaining 64 articles, only 30 articles were found eligible and included in the final meta-analysis after reading the full texts and assessing for meeting the inclusion criteria (Fig 1).

Characteristics of original articles
The characteristics of 30 articles included in this systematic review and meta-analysis was summarized in Table 1. All studies included were cross-sectional study design. The sample size of the included studies range from 172 (in Addis Ababa) [19] to 2,372 (in Bahir Dar and Mecha District) [20]. A total of 14,455 primary school children with a response rate of 97.8% participated to estimate the pooled prevalence of IPI. Of the total nine regions and two city administrations in Ethiopia, five regions and one city administration were include; specifically, Addis Ababa [19], Amhara [15, 17, 20–32], Oromia [16, 33–35], Tigray [36, 37], SNNPR [38–43] and Benishangule Gumuz [44]. The highest prevalence (81.0%) was reported in a study conducted in Chencha town, Gamo Gofa Zone (SNNPR) [39] while the lowest prevalence (10.9%) was noted from a study in Gondar town, North West Ethiopia (Amhara) [25].
Meta-analysis

Species of intestinal parasitic infection. The highest prevalent IPI species among primary school students were Entamoeba spp. with a prevalence of 16.11% (95% CI: 10.79, 21.43) followed by Ascaris lumbricoides 13.98% (95% CI: 9.30, 18.67) whereas the least prevalent parasite reported was Strongloids stecolaris 1.56% (95% CI: 0.88, 2.24) (Table 2).

Fig 1. Describe the flow chart of selecting articles eligible for systematic review and meta-analysis.

https://doi.org/10.1371/journal.pntd.0009379.g001
Table 1. Characteristics of 30 studies reporting the prevalence of intestinal parasite infection.

Authors	Pub/year	Area	Sample	Response rate (%)	Prevalence (%)
Sitotaw et al[17]	2019	Amhara (Jawi)	422	96.2	57.9
Nguyen et al[21]	2012	Amhara (Angolela)	664	100	37.2
Feleke[20]	2016	Amhara (Mecha & BDR)	2372	94.54	61.7
Alegi et al[23]	2015	Amhara (Durbete)	403	95.29	54.95
Amare et al[24]	2013	Amhara (Gondar)	405	100	22.7
Worku N et al[25]	2009	Amhara (Gondar)	322	100	10.9
Hailegebriel[22]	2017	Amhara (Bahir Dar)	390	92.1	65.5
Gashaw et al[26]	2015	Amhara (Enfranz)	550	100	66.4
Alemu et al [15]	2016	Amhara (Hayayint)	273	100	30.8
Dessie et al[28]	2019	Amhara (Glomekeda)	422	100	29.9
Gelaw et al[39]	2013	Amhara	326	93.25	34.2
Melaku et al[45]	2019	Amhara (Bahir dar)	211	100	60.2
Asemahagn[31]	2014	Amhara (Motta)	358	98.3	68.4
Abdi et al[32]	2017	Amhara (Zegie)	422	96.68	69.1
Sisay et al[33]	2019	Oromia (Zwa)	384	100	22.6
Tefera et al[33]	2017	Oromia (Babile)	632	100	14.4
Begna[34]	2016	Oromia (Bale zone)	492	100	26.6
Reji P et al[46]	2011	Oromia (Adama)	358	100	35.5
Geleta et al[35]	2018	Oromia (Arsi Negele)	295	100	39.6
Mengist et al[19]	2015	Addis Ababa	172	97.8	37.8
Gebretsadik[44]	2017	BG(Asoasa)	407	97.77	35.44
Mahmud et al[36]	2013	Tigray(Mekelle)	600	97.2	72
Kidane et al[37]	2014	Tigray (Wukro)	384	100	60.7
Zerdo et al[47]	2017	SNNP (Gamo Goffa)	406	100	36.8
Wolde et al[43]	2015	SNNP (Sidam zone)	450	98.8	64.3
Birmekha, et al[12]	2017	SNNP (Gurage zone)	614	100	40.2
Alemu et al[41]	2018	SNNP (Arbaminich)	405	96.54	46.5
Alemayehu et al[38]	2017	SNNP (Wolaita zone)	515	97.6	72.2
Alemu et al[40]	2019	SNNP (Birbir town)	355	98.87	27.1
Abossie et al[39]	2014	SNNP (Chencha town)	422	94.79	81

https://doi.org/10.1371/journal.pntd.0009379.t001

Table 2. Subgroup analysis of intestinal parasite infection by parasite species.

Parasite species	Study Number	Participants	Prevalence with 95% CI
Entamoeba spp.	15	6159	16.11(10.79, 21.43)
Ascaris lumbricoides	16	6550	13.98(9.30, 18.67)
Hookworm	16	6720	12.51(8.73, 16.28)
Giardia lamblia	13	5283	9.98(6.91, 13.05)
Hymenolepis nana	14	5770	7.82(5.24, 10.40)
Schistosoma mansoni	5	2189	5.37(1.86, 8.89)
Trichuris trichiura	14	5802	3.51(2.31, 4.70)
Enteroobius vermicularis	10	4151	2.34(1.16, 3.52)
Taenia spp.	8	3450	1.60(0.77, 2.44)
Strongyloides stercoralis	8	3296	1.56(0.88, 2.24)

https://doi.org/10.1371/journal.pntd.0009379.t002
The pooled prevalence of at least one IPI among primary school children was found to be 46.09% (95% CI: 38.50, 53.68) ($I^2 = 99.0\%$, $p < 0.001$) (Fig 2).

Subgroup analysis

To investigate the source of heterogeneity between studies, we performed subgroup analysis by region where the study conducted. The highest prevalence was observed in Tigray region with a prevalence of 66.6% (95% CI: 55.5, 77.7), followed by SNNPR at 50.8% (95% CI: 33.1, 68.5), and the lowest was noted in Oromia region at 27.58% (95% CI: 18.6, 36.6). In addition, we conducted subgroup analysis by sample size below and above mean. The prevalence of IPI was relatively similar to the overall pooled prevalence across the category above and below the mean sample size 45.99% (95% CI: 36.68, 61.48). Finally, subgroup analysis was done for publication year, with the finding that before 2017 a higher prevalence was seen compared to studies published after 2017 (inclusive) (Table 3).

To determine the extent of publication bias, we performed the funnel plot for symmetry by visual inspection, and it appeared quite symmetrical (Fig 3) indicating the absence of publication bias. To confirm the status of publication bias we also performed Egger’s objectivity test, which also did not show presence of publication bias ($p > 0.758$).

Factors associated with intestinal parasite infection

In this systematic review and meta-analysis, hygiene of fingernail was reported from seven articles, place of defecation from six articles, latrine availability from seven articles, maternal education from eight articles, residence from four articles [4], habit of shoe wearing from eleven articles, source of drinking water from nine articles, washing habit from seven articles, and habit of washing fruit and vegetables from three articles were associated with IPI. However, family size reported from five articles, age of children from eleven articles, habit of eating raw meat from four articles, habit of swimming from seven articles, habit of eating raw vegetables from five articles, hand washing before meals from three articles and waste disposal sites from three articles were not associated with IPI (Table 4).

The association between shoes wearing habit and intestinal parasitic infection was determined from eleven articles with sample size of 6,229 [16, 17, 22, 28, 31, 32, 35, 40, 41, 44, 48]. Thus, we found those individual who do not regularly wear shoes was 2.7 times more likely to develop IPI (OR: 2.66, 95% CI: 1.79, 3.97) as compared to those who habitually wear shoes (Table 4).

The association between fingernail hygiene and intestinal parasitic infection was determined from seven studies with a sample size of 5,155 [16, 17, 22, 28, 35, 48, 49]. The result of this analysis shows significant association between fingernail hygiene and IPI. The likelihood of parasitic infection is 2.4 times higher among students who had no fingernail hygiene as compared to their counterparts who have good fingernail hygiene (OR: 2.37, 95% CI: 1.67, 3.35) (Table 4).

The association between washing fruits and vegetables and IPI was determined from three papers with a sample size of 945 participants [32, 40, 41] which was found to be significant. Students not washing fruits and vegetables were 68% (OR: 1.68, 95% CI: 1.23, 2.30) more likely to be infected by intestinal parasites as compared to their counterparts (Table 4).

The association between maternal education and IPI was determined from eight articles with sample of 3,279 participants [22, 31, 35, 39, 40, 42, 44, 46]. The finding of meta-analysis indicates the significant association between maternal education and IPI. Those students who had an educated mother were two times less likely to be infected by intestinal parasite (OR: 2.02, 95% CI: 1.17, 3.48) as compared to uneducated one (Table 4).
The association between defecation habits and IPI was determined from six studies with 4,337 participants [17, 20, 28, 31, 32]. This meta-analysis indicated significant association between the defecation habits and IPI. Students who use open defecation were 2.7 times (OR: 2.70) more likely to have intestinal parasitic infection compared to those who use proper facilities.

Fig 2. Forest plot of the pooled prevalence of intestinal parasitic infection.

https://doi.org/10.1371/journal.pntd.0009379.g002
2.67, 95% CI: 1.64, 4.37) higher to be infected by parasites as compared to those utilizing latrines (Table 4).

The association between hand washing habits and IPI was determined from six studies with a sample size of 4,337 [16, 17, 20, 28, 31, 32]. We had found significant association between hand washing and IPI. Students, who did not have regular hand washing habits, had more than triple the likelihood (OR: 3.45, 95% CI: 1.85, 6.47) of being infected by intestinal parasite as compared to those participating in regular hand washing (Table 4).

Table 3. Subgroup analysis of intestinal parasite infection by Region.

Variables	Characteristics	No. of Studies	Participants	Prevalence(95% CI)
Region				
Amhara	14	7540	47.84 (37.14, 58.52)	
SNNP	7	3194	50.84 (33.14, 68.53)	
Oromia	5	2161	27.58 (18.62, 36.55)	
Tigray	2	984	66.60 (55.54, 77.66)	
Addis Ababa	1	172	37.80 (30.55, 45.05)	
Benishangul Gumuz	1	404	35.44 (30.78, 40.10)	
Sample size				
Below mean(482)	22	7989	44.81 (36.69, 52.93)	
Above mean(482)	8	6466	45.99 (36.68, 61.48)	
Publication year				
Before 2017	15	8278	48.97 (37.99, 59.95)	
After 2017(inclusive)	15	6177	43.19 (33.07, 53.31)	

https://doi.org/10.1371/journal.pntd.0009379.t003

Fig 3. Funnel plot with 95% confidence limits of the pooled prevalence of intestinal parasitic infection.

https://doi.org/10.1371/journal.pntd.0009379.g003
The association between residence and IPI was determined from four articles with 1,295 participants [17, 19, 31, 40]. Those who live in the rural area were 87% (OR: 1.87, 95% CI: 1.45, 2.41) more likely to develop IPI as compared to those living in urban areas (Table 4).

The association between IPI and source of drinking water were determined from nine articles [17, 31, 32, 35, 39–42, 50]. Non pipe source of drinking water is statistically associated with IPI. Thus, students who drank water from non-pipe sources were 99% (OR = 1.99, 95% CI: 1.99, 2.79) more likely to become infected with parasite as compared to pipe sources users (Table 4).

The association between IPI and latrine availability was determined from seven studies. We found latrine availability is statistically associated with IPI, with students who had no latrine being four times (OR = 4.39, 95% CI: 2.50, 7.73) more likely to be infected by intestinal parasites as compared to those with latrine availability (Table 4).

Discussion

The findings display the prevalence of IPI among the primary school children in the country Ethiopia. Entamoeba spp (16.11%), Ascaris lumbricoides (13.98), Hookworm (12.51%) and Giardia lamblia (9.98%) are among the most prevalent parasitic infections among primary school children.

The overall pooled prevalence of IPI was 46.09%. This finding was in line with the studies conducted in Kenya (43%) [51], Nigeria (42.6%) [52], and Palestine (32.0–41.5%) [53]. On the other hand, studies that showed higher prevalence than our findings were done in West Africa (63.1%) [54], South Africa (68%) [55], Tanzania (63.91%) [56], Nigeria (67.4%) [57, 58], and Mkhanyakude District, Burkina Faso (84.7%) [59]. However, our results were higher than studies conducted in South Africa (37.5%) [60], Eastern Region of Nepal (31.5%) [61], Northwestern Iran (10.6%) [62], Tehran, Iran (18.4%) [63], and Yemen (31.8%) [64]. These variations could be due to socio-demographic characteristics, sample sizes, methodology used, and economic status.
Primary school children wearing shoes regularly were less likely to develop IPI than those not wearing shoes. This finding was supported by different studies in different areas [65–67], as a result of soil-transmitted helminthes infections (STHI) being a common source of IPI in humans. This trend could be explained by STHIs are transmitted by skin penetration that shoes are an effective way to block infection with STHI that penetrate the skin.

School children who did not maintain fingernail hygiene were more likely to be infected by IPI as supported by a study in Yemen [68]. This finding may arise because being rural community dwellers had lower awareness and more frequent contact with soil as well limited access to water and unable to maintain fingernail hygiene. Poor fingernail hygiene is also associated with poor socioeconomic status as there may be a lack of hygiene materials like water and soap. Students belonging to uneducated mothers at a higher risk of IPI in our study, which is a similar finding to studies in Turkey and El Beheira, Egypt [69, 70]. This finding could reflect that educated mothers had better knowledge about IPI prevention and potentially better economic status enabling them to embrace the entire prevention process with available materials like soap/ash, water, shoes and other necessities. Additionally, in the current study, rural residents were 87% more likely to be infected by intestinal parasites, which is similar to findings from studies in Zambia and Nepal [71, 72]. This situation may arise because rural community dwellers had lower awareness and more frequent contact with soil as well limited access to safe water and latrine. Moreover, there might be more likelihood of travel to lakes and ponds placing these people at greater risk.

Like other studies we were also found fruit and vegetable washing affected the prevalence of IPI [73], which might relate to the level of cleanliness and soil transmission risks. Open defecation and the availability latrines were other potential causes of IPI in our findings, which is similar to a study done in Zambia [71]. This finding could reflect that those communities who experience unclean environments due to open defecation are more likely to transmit parasites through soil, water, fomites, foods, or other means. Similar to other studies, hand washing habits, before meals, after toileting, and post-contact with dirty objects were significantly associated with IPI [65, 74].

Limitations of the study
One of the limitations of this study was that it did not consider all the regions in Ethiopia due to lack of availability of articles.

Conclusion
In this meta-analysis, the prevalence of intestinal parasitic infection in primary school children in Ethiopia was high (46%). Attention should be given to promoting personal hygiene, latrine utilization, wearing shoes, avoiding eating raw foods, and creating awareness for those mothers who lack formal education. Moreover, the researchers try to conduct research on regions which have no prior research.

Supporting information
S1 Table. Sample searches for the databases to assess the prevalence and associated factors of intestinal parasitic infection among primary school children in Ethiopia. (TIF)

S2 Table. Assessing the quality of the 30 included studies on intestinal parasitic infection among primary school children in Ethiopia. (TIF)
Author Contributions

Conceptualization: Moges Agazhe Assemie.

Data curation: Mekdes Marew Ambaw, Temesgen Getaneh, Samuel Derbie Habtegiorgis.

Formal analysis: Daniel Shitu, Yidersail Hune, Ayele Mamo Abebe, Animut Takele Telayneh, Daniel Bekele Ketema, Samuel Derbie Habtegiorgis.

Investigation: Moges Agazhe Assemie.

Methodology: Animut Takele Telayneh, Mekdes Marew Ambaw, Daniel Bekele Ketema, Belayneh Mengist, Muluneh Alene, Samuel Derbie Habtegiorgis.

Software: Moges Agazhe Assemie.

Supervision: Mekdes Marew Ambaw.

Validation: Daniel Shitu, Yidersail Hune, Pammla Petrucka, Ayele Mamo Abebe, Temesgen Getaneh, Belayneh Mengist, Muluneh Alene, Samuel Derbie Habtegiorgis.

Visualization: Moges Agazhe Assemie.

Writing – original draft: Daniel Shitu, Yidersail Hune, Pammla Petrucka, Ayele Mamo Abebe, Animut Takele Telayneh, Mekdes Marew Ambaw.

Writing – review & editing: Daniel Bekele Ketema, Temesgen Getaneh, Belayneh Mengist, Muluneh Alene, Samuel Derbie Habtegiorgis.

References

1. Tadesse A, Araya G, Abraham A, Arega A, Alemayehu W, Negesse D, et al. Intestinal Parasitosis for the Ethiopian Health Center Team. In: Initiative EPHT, editor. Hawassa University: Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education.; 2008.

2. World Health organization. Helminth control in school age children: a guide for managers of control programmes - 2nd ed. In: World Health Organisation AA, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: bookorders@who.int), editor. 2011.

3. World Health Organization. Public health significance of intestinal parasitic infections. in: Bulletin of the World Health Organization, editor. The WHO Expert Committee on Prevention and Control of Intestinal Parasitic Infections met in Geneva, Switzerland, on 3–7 March 1986. Members: D. Bunnag, B. D. Cabrera, D. W. T. Crompton; Z. Fan (absent), H. M. Gilles, O. O. Kale, S. P. Kan-Chua, W. L. Kilama, P. D. Marsden, A. Martinez-Palomo, N. Ozeretskovskaya, and M. G. Schultz. WHO Secretariat: D. Barua, P. C. Beaver, A. Davis, and Z. S. Pawlowski.1987.

4. Organization) WWH. Guideline: Preventive chemotherapy to control soil-transmitted helminth infections in at-risk population groups geneva: World health organization; 2017. Licence: Cc by-nc-sa 3.0 igo. 2017.

5. WHO. Investing to overcome the global impact of neglected tropical diseasesworld health organization, 20 avenue appia, 1211 geneva 27, switzerland. 2015.

6. Tigabu A, Taye S, Aynalem M, Adane K. Prevalence and associated factors of intestinal parasitic infections among patients attending Shahura Health Center, Northwest Ethiopia. BMC research notes. 2019; 12(1):333. https://doi.org/10.1186/s13104-019-4377-y PMID: 31186041

7. Pickering AJ, Njenga SM, Steinbaum L, Swarthout J, Lin A, Arnold BF, et al. Effects of single and integrated water, sanitation, handwashing, and nutrition interventions on child soil-transmitted helminth and Giardia infections: A cluster-randomized controlled trial in rural Kenya. PLoS medicine. 2019; 16(6): e1002841. https://doi.org/10.1371/journal.pmed.1002841 PMID: 31242190

8. Ismail K. Prevalence of Intestinal Parasitic Infection among School Children in Taif. Insights Biomed 2018; 3(2):10.

9. Periago MV, García R, Astudillo OG, Cabrera M, Abril MC. Prevalence of intestinal parasites and the absence of soil-transmitted helminths in Arlatu, Santiago del Estero, Argentina. Parasites & vectors. 2018; 11(1):636. https://doi.org/10.1186/s13071-018-3232-7 PMID: 30547815
10. Nematian J NEGA, Asgari AA., Prevalence of intestinal parasitic infections and their relation with socio-economic factors and hygiene habits in Tehran primary school students. Acta Tropica. 2004. https://doi.org/10.1016/j.actatropica.2004.06.010 PMID: 15533285

11. Casapia M JS, Nunez C, Rahme E, Gyorkos TW., Parasite risk factors for stunting in grade 5 students in a community of extreme poverty in Peru International Journal of Parasitology. 2006.

12. Hotez AF P., Savioli L., Molyneux D. H. Rescuing the bottom billion through control of neglected tropical diseases The Lancet. 2009; 373:1570.

13. Nokes DAPB C. Does helminth infection affect mental processing and educational achievement? Parasitology Today. 1994; 10:14. https://doi.org/10.1016/0169-4758(94)90348-4 PMID: 15275558

14. UNICEF. The World Bank Joint Child Malnutrition Estimates: Levels and trends in child malnutrition. 2012.

15. Alemu M, Anley A, Tedla K. Magnitude of Intestinal Parasitosis and Associated Factors in Rural School Children, Northwest Ethiopia. Ethiopian journal of health sciences. 2019; 29(1):223–8. https://doi.org/10.4314/ehjs.v29i1.14 PMID: 30700960

16. Sisay A, Lemma B. Assessment on the prevalence and risk factors of gastrointestinal parasites on schoolchildren at Bochosa Elementary School, around Lake Zwai, Ethiopia. BMC research notes. 2019; 12(1):410. https://doi.org/10.1186/s13104-019-4446-2 PMID: 31307520

17. Sitotaw B, Meekuriaw H, Damtse D. Prevalence of intestinal parasitic infections and associated risk factors among Jawi primary school children, Jawi town, north-west Ethiopia. BMC infectious diseases. 2019; 19(1):341. https://doi.org/10.1186/s12879-019-3971-x PMID: 31023271

18. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of non-randomized studies in meta-analyses. European journal of epidemiology. 2010; 25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z PMID: 20652370

19. Mengist HM, Taye B, Tsegaye A. Intestinal parasitosis in relation to CD4+ T cells levels and anemia among HAART initiated and HAART naive pediatric HIV patients in a model ART center in Addis Ababa, Ethiopia. PloS one. 2015; 10(2).

20. Felleke BE. Nutritional status and intestinal parasite in school age children: a comparative cross-sectional study. International journal of pediatrics. 2016; 2016. https://doi.org/10.1155/2016/1962128 PMID: 27656219

21. Nguyen NL, Gelaye B, Aboset N, Kumie A, Williams MA, Berhane Y. Intestinal parasitic infection and nutritional status among school children in Angola, Ethiopia. Journal of preventive medicine and hygiene. 2012; 53(3):157. PMID: 23362622

22. Hailegebriel T. Prevalence of intestinal parasitic infections and associated risk factors among students at Dona Berber primary school, Bahir Dar, Ethiopia. BMC infectious diseases. 2017; 17(1):362. https://doi.org/10.1186/s12879-017-2466-x PMID: 28535750

23. Alelign T, Degarege A, Erko B. Prevalence and factors associated with undernutrition and anaemia among school children in Durbete Town, north-west Ethiopia. Archives of Public Health. 2015; 73(1):34. https://doi.org/10.1186/s13071-015-0084-x PMID: 26261719

24. Amare B, Ali J, Moges B, Yismaw G, Belyhun Y, Gebretsadik S, et al. Nutritiona l status, intestinal parasite infection and allergy among school children in North-west Ethiopia. BMC pediatrics. 2013; 13(1):7. https://doi.org/10.1186/1471-2431-13-7 PMID: 23311926

25. Worku N, Erko B, Torben W, Belay M, Kasssu A, Fetene T, et al. Malnutrition and intestinal parasitic infections in school children of Gondar, North West Ethiopia. Ethiopian medical journal. 2009; 47(1):9–16. PMID: 19743775

26. Gashaw F, Aemero M, Legesse M, Petros B, Teklehaiananot T, Medhin G, et al. Prevalence of intestinal helminth infection among school children in Maksegnit and Enfranz Towns, northwestern Ethiopia, with emphasis on Schistosoma mansoni infection. Parasites & vectors. 2015; 8(1):2466. https://doi.org/10.1186/s13071-015-1178-6 PMID: 26520794

27. Amare B, Ali J, Moges B, Belyhun Y, Gebretsadik S, et al. Nutritional status, intestinal parasite infection and allergy among school children in Northwest Ethiopia. BMC Pediatrics. 2013; 13(1):7. https://doi.org/10.1186/1471-2431-13-7 PMID: 23311926
30. Yimer M. Performance evaluation of three laboratory diagnostic methods for intestinal parasitic infections at rural Bahir Dar, Northwest Ethiopia: A cross-sectional study. Journal of Health Sciences. 2019; 9(1).

31. Asemahagn MA. Parasitic infection and associated factors among the primary school children in Motta town, western Amhara, Ethiopia. Am J Pub Health. 2014; 2:248–54.

32. Abdi Merem Nibret, Munshea Endalkachew, Abaineh. Prevalence of intestinal helminthic infections and malnutrition among school children of the Zegie Peninsula, northwestern Ethiopia. Journal of infection and public health. 2017; 10(4):84–92. https://doi.org/10.1016/j.jiph.2016.02.009 PMID: 27026133

33. Tefera E, Mohammed J, Mitiku H. Nutritional Status of School Children in Babile Town, Eastern Ethiopia. East African Journal of Health and Biomedical Sciences. 2017; 1(2):1–10.

34. Begna T, Solomon T, Yohannes ZENEBE EA. Intestinal parasitic infections and nutritional status among primary school children in Delo-mena district, South Eastern Ethiopia. Iranian journal of parasitology. 2016; 11(4):549. PMID: 28127367

35. Geleta A, Siraj Z, Lambiyo T, Azerefege E, Hailemariam M. Intestinal Parasite Infections among School Children in Arsi Negelle Town, Southern Ethiopia. 2018.

36. Mahmoud MA, Spigt M, Mulugeta Bezabih A, Dinant G-J, Blanco Velasco R. Risk factors for intestinal parasitosis, anaemia, and malnutrition among school children in Ethiopia. Pathogens and global health. 2013; 107(2):58–65. https://doi.org/10.1179/204773213Y.0000000074 PMID: 23683331

37. Kidane E, Menkir S, Kebede A, Desta M. Prevalence of intestinal parasitic infections and their associations with anthropometric measurements of school children in selected primary schools, Wukro Town, Eastern Tigray, Ethiopia. Int J Curr Microbiol Appl Sci. 2014; 3(3):11–29.

38. Alemayehu B, Tomass Z, Wadilo F, Leja D, Liang S, Erko B. Epidemiology of intestinal helminthiasis among school children with emphasis on Schistosoma mansoni infection in Wolaita zone, Southern Ethiopia. BMC public health. 2017; 17(1):587. https://doi.org/10.1186/s12889-017-4499-x PMID: 28633651

39. Abossie A, Seid M. Assessment of the prevalence of intestinal parasitic and associated risk factors among primary school children in Chencha town, Southern Ethiopia. BMC public health. 2014; 14 (1):166. https://doi.org/10.1186/1471-2458-14-166 PMID: 24528627

40. Alemu G, Abossie A, Yohannes Z. Current status of intestinal parasitic infections and associated factors among primary school children in Birbir town, Southern Ethiopia. BMC infectious diseases. 2019; 19 (1):270. https://doi.org/10.1186/s12879-019-3879-5 PMID: 30890146

41. Alemu G, Aschalew Z, Zerihun E. Burden of intestinal helminths and associated factors three years after initiation of mass drug administration in Arbaminch Zuria district, southern Ethiopia. BMC infectious diseases. 2018; 18(1):435. https://doi.org/10.1186/s12889-018-3330-3 PMID: 30157789

42. Birmeka M. Intestinal Parasitic Infection and Nutritional Status of Elementary Schoolchildren Aged 7–14 in Enemorena-Ener District, Gurage Zone, Ethiopia. EC Nutrition. 2017. 9:129–41.

43. Wolde M, Berhan Y, Chala A. Determinants of underweight, stunting and wasting among schoolchildren. BMC Public Health. 2015; 15(1):8. https://doi.org/10.1186/s12889-014-1337-2 PMID: 25595201

44. Gebretsadik G. Prevalence of intestinal parasites and associated risk factors among schoolchildren of Honesha district (Woreda) in Benishangul-Gumuz regional state, western Ethiopia. J Fam Med Health Care. 2016; 2(4):57–64.

45. Melaku M, Bayayibign B, Gelaye W. The Performance evaluation of three laboratory diagnostic methods for intestinal parasitic infections at rural Bahir Dar, Northwest Ethiopia: a cross-sectional study. Journal of Health Sciences. 2018.

46. Reji P, Belay G, Erko B, Legesse M, Belay M. Intestinal parasitic infections and malnutrition amongst first-cycle primary schoolchildren in Adama, African journal of primary health care & family medicine. 2011; 3(1).

47. Zerdo Z, Yohannes T, Tariku B, Teshome T. Association between nutritional status and soil-transmitted helminthes re-infection among school-age children in Chencha district, southern Ethiopia: a cross-sectional study. Transl Biomed. 2017; 8(2):111.

48. Feleke DG, Wage EK, Getachew T, Gedefie A. Intestinal parasitic infections and associated factors among street dwellers in Dessie town, North-East Ethiopia: a cross sectional study. BMC research notes. 2019; 12(1):262. https://doi.org/10.1186/s13104-019-4302-4 PMID: 31077232

49. Gebretsadik D, Metaferia Y, Seid A, Fenta GM, Gedefie A. Prevalence of intestinal parasitic infection among children under 5 years of age at Dessie Referral Hospital: cross sectional study. BMC research notes. 2018; 11(1):771. https://doi.org/10.1186/s13104-018-3888-2 PMID: 30373668

50. Weidengus G. Current status of intestinal parasites and associated risk factors among schoolchildren of Homesha District in Northwest Ethiopia. Int J Curr Res. 2017; 9(7):54369–74.
51. KILUU KS. Prevalence of intestinal parasitic infections and transmission risk factors in primary school children in Mbeere north sub-county, embu county, kenya: Kenyatta University. 2019.

52. Dahal AS, Francis EO, Francis JE, Wamutas FI. Soil-transmitted helminths and associated risk factors among elementary school pupils in Dadin Kowa, Jos. Nigerian Medical Journal: Journal of the Nigerian Medical Association. 2019; 60(4):181. https://doi.org/10.4103/nmj.NMJ_62_19 PMID: 31831936

53. Bdir S, Adwan G. Prevalence of intestinal parasitic infections in Jenin Governorate, Palestine: a 10–year retrospective study. Asian Pacific Journal of Tropical Medicine. 2010; 3(9):745–7.

54. Fan C-K, Lee L-W, Liao C-W, Huang Y-C, Lee Y-L, Chang Y-T, et al. Toxoplasm a gondii infection: relationship between seroprevalence and risk factors among primary schoolchildren in the capital areas of Democratic Republic of São Tomé and Príncipe, West Africa. Parasites & vectors. 2012; 5(1):141. https://doi.org/10.1186/1756-3305-4-151 PMID: 22794195

55. Samie A, Guerrant R, Barrett L, Bessong P, Igumbor E, Obe C. Prevalence of intestinal parasitic and bacterial pathogens in diarrhoeal and non-diarroheal human stools from Vhembe district, South Africa. Journal of health, population, and nutrition. 2009; 27(6):739. https://doi.org/10.3329/jhpn.v27i6.4325 PMID: 20099757

56. Mugono M, Konje E, Kuhn S, Mwogoro FJ, Monoro D, Mazigo HD, Intestinal schistosomiasis and geo-helminths of Ukara Island, North-Western Tanzania: prevalence, intensity of infection and associated risk factors among school children. Parasites & vectors. 2014; 7(1):612.

57. Opara KN, Udoidung NI, Opara DC, Okon OE, Edosomwan EU, Udoh AJ. The impact of intestinal parasitic infections on the nutritional status of rural and urban school-aged children in Nigeria. International Journal of MCH and AIDS. 2012; 1(1):73. https://doi.org/10.21106/jima.8 PMID: 27621960

58. Gyang VP, Chuang T-W, Liao C-W, Akinwale OP, Orok A, et al. Intestinal parasitic infections: current status and associated risk factors among school aged children in an archetypal African urban slum in Nigeria. Journal of Microbiology, Immunology and Infection. 2019; 52(1):106–13.

59. Erismann S, Diagboug a S, Odermatt P, Knoblauch AM, Gerold J, Shrestha A, et al. Prevalence of intestinal parasitic infections and associated risk factors in the Plateau Central and Centre-Ouest regions of Burkina Faso. Parasites & vectors. 2016; 9(1):554. https://doi.org/10.1186/s13071-016-1835-4 PMID: 27786399

60. Kabuyaya M, Chimbai MJ, Manyangadze T, Mukaratirwa S. Schistosomiasis risk factors based on the infection status among school-going children in the Ndumo area, uMkhanyakude district, South Africa. Southern African Journal of Infectious Diseases. 2017; 32(2):67–72.

61. Sah RB, Bhattarai S, Yadav S, Baral R, Jha N, Pokharel PK. A study of prevalence of intestinal parasites and associated risk factors among the school children of Itahari, Eastern Region of Nepal. Tropical parasitology. 2013; 3(2):140. https://doi.org/10.4103/2229-5070.122143 PMID: 24470999

62. Salahi K, Javadi A, Saraei M. Prevalence of intestinal parasites and risk factors with emphasis on Enterobius vermicularis in children of daycares and preparatory schools of the city of Khodabandehe, Northwestern Iran. Indian Journal of Medical Specialities. 2019; 10(2):89.

63. Nemtian J, Nemtian E, Gholamerezanbehad A, Asgari AA. Prevalence of intestinal parasitic infections and their relation with socio-economic factors and hygienic habits in Tehran primary school students. Acta tropica. 2004; 92(3):179–86. https://doi.org/10.1016/j.actatropica.2004.06.010 PMID: 15533285

64. Sady H, Al-Mekhlafi HM, Mahmoud MA, Lim YA, Mahmud R, Surin J. Prevalence and associated factors of schistosomiasis among children in Yemen: implications for an effective control programme. PLoS neglected tropical diseases. 2013; 7(8). https://doi.org/10.1371/journal.pntd.0002377 PMID: 23991235

65. Bish D, Verma AK, Bharadwaj HHD. Intestinal parasitic infestation among children in a semi-urban Indian population. Tropical parasitology. 2011; 1(2):104. https://doi.org/10.4103/2229-5070.86946 PMID: 23508675

66. Marques RC, Bernardi JV, Dorea CC, Dorea JG. Intestinal Parasites, Anemia and Nutritional Status in Young Children from Transitioning Western Amazon. International Journal of Environmental Research and Public Health. 2020; 17(2):577. https://doi.org/10.3390/ijerph17020577 PMID: 31963189

67. Organization WH. Guideline: preventive chemotherapy to control soil-transmitted helminth infections in at-risk population groups: World Health Organization; 2017.

68. Al-Mekhlafi HM. Giardia duodenalis infection among rural communities in Yemen: A community-based assessment of the prevalence and associated risk factors. Asian Pacific journal of tropical medicine. 2017; 10(10):987–95. https://doi.org/10.1016/j.apjtm.2017.09.011 PMID: 29111195

69. Radwan EH, Hassan AAER, Lotfy WM, Abd El-Mawood A, Mashal HM The Prevalence of Intestinal Parasite Infection in El Behara Schoolchildren. International Journal of Limnology. 2019; 1(1):33.

70. Doni NY, Gurses G, Simsek Z, Zeyrek FY. Prevalence and associated risk factors of intestinal parasites among children of farm workers in the southeastern Anatolian region of Turkey. Annals of Agricultural and Environmental Medicine. 2015; 22(3).
71. Tembo S, Mubita P, Sitali L, Zgambo J. Prevalence, Intensity, and Factors Associated with Soil-Transmitted Helminths Infection among Children in Zambia: A Cross-sectional Study. The Open Public Health Journal. 2019; 12(1).

72. Kunwar R, Acharya L, Karki S. Decreasing prevalence of intestinal parasitic infections among school-aged children in Nepal: a systematic review and meta-analysis. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2016; 110(6):324–32. https://doi.org/10.1093/trstmh/trw033 PMID: 27268711

73. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The lancet. 2006; 367(9521):1521–32.

74. Ziegelbauer K, Speich B, Mäusezahl D, Bos R, Keiser J, Utzinger J. Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS medicine. 2012; 9(1):e1001162. https://doi.org/10.1371/journal.pmed.1001162 PMID: 22291577