Pass, Brendan

Generalized barycenters and variance maximization on metric spaces. (English)

Zbl 1503.60009

J. Fixed Point Theory Appl. 25, No. 1, Paper No. 5, 12 p. (2023).

Summary: We show that the variance of a probability measure \(\mu \) on a compact subset \(X \) of a complete metric space \(M \) is bounded by the square of the circumradius \(R \) of the canonical embedding of \(X \) into the space \(P(M) \) of probability measures on \(M \), equipped with the Wasserstein metric. When barycenters of measures on \(X \) are unique (such as on CAT(0) spaces), our approach shows that \(R \) in fact coincides with the circumradius of \(X \) and so this result extends a recent result of Lim-McCann from Euclidean space. Our approach involves bi-linear minimax theory on \(P(X) \times P(M) \) and extends easily to the case when the variance is replaced by very general moments. As an application, we provide a simple proof of Jung’s theorem on CAT\((k)\) spaces, a result originally due to Dekster and Lang-Schroeder.

MSC:

60B05 Probability measures on topological spaces
60D05 Geometric probability and stochastic geometry
58C35 Integration on manifolds; measures on manifolds
49Q22 Optimal transportation
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

Keywords:

variance maximization; probability measures; bi-linear minimax theory

Full Text: DOI arXiv

References:

[1] Alexander, S., Kapovitch, V., Petrunin, A.: Alexandrov Geometry: Preliminary Version no. 1. Preliminary Version of a Book. arXiv:1903.08539
[2] Dekster, BV, The Jung theorem in metric spaces of curvature bounded above, Proc. Am. Math. Soc., 125, 8, 2425-2433 (1997) · Zbl 0885.52009 · doi:10.1090/S0002-9939-97-03841-2
[3] Granas, A.; Dugundji, J., Fixed point theory. Springer monographs in mathematics (2003), New York: Springer-Verlag, New York · Zbl 1025.47002 · doi:10.1007/978-0-387-21593-8
[4] Jung, H., Ueber die kleinste kugel, die eine räumliche figur einschliesst, Journal für die reine und angewandte Mathematik, 123, 21-257 (1901) · Zbl 32.0296.05
[5] Kim, Y-H; Pass, B., Wasserstein barycenters over Riemannian manifolds, Adv. Math., 307, 640-683 (2017) · Zbl 1373.60006 · doi:10.1016/j.aim.2016.11.026
[6] Kim, Y-H; Pass, B., A canonical barycenter via Wasserstein regularization, SIAM J. Math. Anal., 50, 2, 1817-1828 (2018) · Zbl 1387.49024 · doi:10.1137/17M1123055
[7] Lang, U.; Schroeder, V., Jung’s theorem for Alexandrov spaces of curvature bounded above, Ann. Global Anal. Geom., 15, 3, 263-275 (1997) · Zbl 0974.53028 · doi:10.1023/A:1006574402955
[8] Lim, T.; McCann, RJ, Isodiametry, variance, and regular simplices from particle interactions, Arch. Rational Mech. Anal., 241, 533-576 (2021) · Zbl 1470.49038 · doi:10.1007/s00205-021-01632-9
[9] Lim, T.; McCann, RJ, Geometrical bounds for the variance and recentered moments, Math. Oper. Res. (2022) · Zbl 1493.62274 · doi:10.1287/moor.2021.1125
[10] Popoviciu, T.: Sur les equations alg ébriques ayant toutes leurs racines réelles. Mathematica (Cluj), pp. 129-145 (1935) · Zbl 61.0998.05
[11] Yokota, T., Convex functions and barycenter on CAT(1)-spaces of small radii, J. Math. Soc. Jpn., 68, 3, 1297-1323 (2016) · Zbl 1351.53057 · doi:10.2969/jmsj/06831297
[12] Yokota, T., Convex functions and \((p)\)-barycenter on \(\{(\mathrm{rm CAT}(1)\})\)-spaces of small radii, Tsukuba J. Math., 41, 1, 43-80 (2017) · Zbl 1378.53056 · doi:10.21099/tkbjm/1506353559

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.