Maximum Eccentric Connectivity Index
for Graphs with Given Diameter

Pierre Hauweele1, Alain Hertz2, Hadrien Mélot1,
Bernard Ries3, Gauvain Devillez1

1 Computer Science Department - Algorithms Lab
University of Mons, Mons, Belgium

2 Department of Mathematics and Industrial Engineering
École Polytechnique - Gerad, Montréal, Canada

3 Department of Informatics
University of Fribourg, Fribourg, Switzerland

January 3, 2022

Abstract
The eccentricity of a vertex v in a graph G is the maximum distance between v and any other vertex of G. The diameter of a graph G is the maximum eccentricity of a vertex in G. The eccentric connectivity index of a connected graph is the sum over all vertices of the product between eccentricity and degree. Given two integers n and D with $D \leq n - 1$, we characterize those graphs which have the largest eccentric connectivity index among all connected graphs of order n and diameter D. As a corollary, we also characterize those graphs which have the largest eccentric connectivity index among all connected graphs of a given order n.

1 Introduction

Let $G = (V, E)$ be a simple connected undirected graph. The distance $d(u, v)$ between two vertices u and v in G is the number of edges of a shortest path in G connecting u and v. The eccentricity $\epsilon(v)$ of a vertex v is the maximum distance between v and any other vertex, that is $\max\{d(v, w) \mid w \in V\}$. The diameter of G is the maximum eccentricity among all vertices of G. The eccentric connectivity index $\xi^e(G)$ of G is defined by

$$\xi^e(G) = \sum_{v \in V} \deg(v)\epsilon(v).$$

This index was introduced by Sharma et al. in [3]. Alternatively, ξ^e can be computed by summing the eccentricities of the extremities of each edge:

$$\xi^e(G) = \sum_{vw \in E} \epsilon(v) + \epsilon(w).$$

*Corresponding author: email alain.hertz@gerad.ca; tel. +1-514 340 6053.
We define the weight of a vertex by $W(v) = \deg(v)\epsilon(v)$, and we thus have $\xi^c(G) = \sum_{v \in V} W(v)$. Morgan et al. [2] give the following asymptotic upper bound on $\xi^c(G)$ for a graph G of order n and with a given diameter D.

Theorem 1 (Morgan, Mukwembi and Swart, 2011 [2]). Let G be a connected graph of order n and diameter D. Then,
\[\xi^c(G) \leq D(n - D)^2 + O(n^2). \]

In what follows, we write $G \simeq H$ if G and H are two isomorphic graphs, and we let K_n and P_n be the complete graph and the path of order n, respectively. We refer to Diestel [1] for basic notions of graph theory that are not defined here. A lollipop $L_{n,D}$ is a graph obtained from a path P_D by joining an end vertex of this path to K_{n-D}. Morgan et al. [2] state that the above asymptotic bound is best possible by showing that $\xi^c(L_{n,D}) = D(n - D)^2 + O(n^2)$.

The aim of this paper is to give a precise upper bound on $\xi^c(G)$ in terms of n and D, and to completely characterize those graphs that attain the bound. As a result, we will observe that there are graphs G of order n and diameter D such that $\xi^c(G)$ is strictly larger than $\xi^c(L_{n,D})$.

Morgan et al. [2] also give an asymptotic upper bound on $\xi^c(G)$ for graphs G of order n (but without a fixed diameter), and show that this bound is sharp by observing that it is attained by $L_{n,\frac{n}{2}}$.

Theorem 2 (Morgan, Mukwembi and Swart, 2011 [2]). Let G be a connected graph of order n. Then,
\[\xi^c(G) \leq \frac{4}{27}n^3 + O(n^2). \]

We give a precise upper bound on $\xi^c(G)$ for graphs G of order n, and characterize those graphs that reach the bound. As a corollary, we show that for every lollipop, there is another graph G of same order, but with a strictly larger eccentric connectivity index.

2 Results for a fixed order and a fixed diameter

The only graph with diameter 1 is the clique, and clearly, $\xi^c(K_n) = n(n-1)$. Also, the only connected graph with 3 vertices and diameter 2 is P_3, and $\xi^c(P_3) = \xi^c(K_3) = 6$. The next theorem characterizes the graphs with maximum eccentric connectivity index among those with $n \geq 4$ vertices and diameter 2. Let M_n be the graph obtained from K_n by removing a maximum matching (i.e., $\lfloor \frac{n}{2} \rfloor$ disjoint edges) and, if n is odd, an additional edge adjacent to the unique vertex that still has degree $n-1$. In other words, all vertices in M_n have degree $n-2$, except possibly one that has degree $n-3$. For illustration, M_6 and M_7 are drawn in Figure [1].

Theorem 3. Let G be a connected graph of order $n \geq 4$ and diameter 2. Then,
\[\xi^c(G) \leq 2n^2 - 4n - 2(n \text{ mod } 2) \]

with equality if and only if $G \simeq M_n$ or $n = 5$ and $G \simeq H_1$ (see Figure [7]).

Proof. Let G be a graph of order n and diameter 2, and let x be the number of vertices of degree $n-1$ in G. Clearly, $W(v) = n-1$ for all vertices v of degree $n-1$, while $W(v) \leq 2(n-2)$ for 2.
for all other vertices \(v \). Note that if \(n - x \) is odd, then at least one vertex in \(G \) has degree at most \(n - 3 \). Hence,

\[
\xi^c(G) \leq x(n - 1) + 2(n - x)(n - 2) - 2((n - x) \mod 2)
\]

\[
= 2n^2 - 4n + x(3 - n) - 2((n - x) \mod 2).
\]

For \(n = 4 \) or \(n \geq 6 \), this value is maximized with \(x = 0 \). For \(n = 5 \), both \(x = 1 \) (i.e., \(G \simeq H_1 \)) and \(x = 0 \) (i.e., \(G \simeq M_5 \)) give the maximum value \(28 = 2n^2 - 4n + (3 - n) - 2((n - 1) \mod 2) = 2n^2 - 4n - 2(n \mod 2) \).

Before giving a similar result for graphs with diameter \(D \geq 3 \), we prove the following useful property.

Lemma 4. Let \(G \) be a connected graph of order \(n \geq 4 \) and diameter \(D \geq 3 \). Let \(P \) be a shortest path in \(G \) between two vertices at distance \(D \), and assume there is a vertex \(u \) on \(P \) such that \(\epsilon(u) \) is strictly larger than the longest distance \(L \) from \(u \) to an extremity of \(P \). Finally, let \(v \) be a vertex in \(G \) such that \(d(v, u) = \epsilon(u) \) and let \(v = v_1 - v_2 - \ldots - v_{\epsilon(u)+1} = u \) be a path of length \(\epsilon(u) \) linking \(v \) to \(u \) in \(G \). Then

- vertices \(w_1, \ldots, w_{\epsilon(u)-L} \) do not belong to \(P \);
- vertex \(w_{\epsilon(u)-L} \) has either no neighbor on \(P \), or its unique neighbor on \(P \) is an extremity at distance \(L \) from \(u \);
- if \(\epsilon(u) - L > 1 \) then vertices \(w_1, \ldots, w_{\epsilon(u)-L-1} \) have no neighbor on \(P \).

Proof. No vertex \(w_i \) with \(1 \leq i \leq \epsilon(u) - L \) is on \(P \), since this would imply \(d(u, w_i) \leq L \), and hence \(d(u, v) = d(u, w_1) \leq L+i-1 \leq \epsilon(u)-1 \). Similarly, no vertex \(w_i \) with \(1 \leq i \leq \epsilon(u) - L - 1 \) has a neighbor on \(P \), since this would imply \(d(u, w_i) \leq L + 1 \), and hence \(d(u, v) = d(u, w_1) \leq L + 1 + i - 1 \leq \epsilon(u) - 1 \). If vertex \(w_{\epsilon(u)-L} \) has at least one neighbor on \(P \), then this neighbor is necessarily an extremity of \(P \) at distance \(L \) from \(u \), else we would have \(d(u, w_{\epsilon(u)-L}) \leq L \), which would imply \(d(u, v) = d(u, w_1) \leq L + (\epsilon(u) - L - 1) = \epsilon(u) - 1 \). We conclude the proof by observing that if both extremities of \(P \) are at distance \(L \) from \(u \), then \(w_{\epsilon(u)-L} \) is adjacent to at most one of them since \(D \geq 3 \). \(\square \)
Let \(n, D \) and \(k \) be integers such that \(n \geq 4, 3 \leq D \leq n-1 \) and \(0 \leq k \leq n-D-1 \), and let \(E_{n,D,k} \) be the graph (of order \(n \) and diameter \(D \)) constructed from a path \(u_0 - u_1 - \ldots - u_D \) by joining each vertex of a clique \(K_{n-D-1} \) to \(u_0 \) and \(u_1 \), and \(k \) vertices of the clique to \(u_2 \). (see Figure \([\star]\)). Observe that \(E_{n,D,0} \) is the lollipop \(L_{n,D} \) and that \(E_{n,D,n-D-1} \) can be viewed as a lollipop with a missing edge between \(u_0 \) and \(u_2 \). Also, if \(D = n - 1 \), then \(k = 0 \) and \(E_{n,n-1,0} \simeq P_n \).

Lemma 5. Let \(n, D \) and \(k \) be integers such that \(n \geq 4, 3 \leq D \leq n-1 \) and \(0 \leq k \leq n-D-1 \), then

\[
\xi_c(E_{n,D,k}) = 2 \sum_{i=0}^{D-1} \max\{i, D-i\} + (n - D - 1)(2D - 1 + D(n - D)) + k(2D - n - 1 + \max\{2, D - 2\}).
\]

Proof. The sum of the weights of the vertices outside \(P \) is

\[
\sum_{v \in V \setminus V(P)} W(v) = k(n - D + 1)(D - 1) + (n - D - 1 - k)(n - D)D,
\]

\[
= k(2D - n - 1) + (n - D - 1)(n - D)D.
\]

We now consider the weights of the vertices in \(P \). The weight of \(u_0 \) is \(D(n - D) \), the weight of \(u_1 \) is \((D - 1)(n - D + 1)\), and the weight of \(u_2 \) is \((k + 2) \max\{2, D - 2\}\). The weight of \(u_i \) for \(i = 3, \ldots, D - 1 \) is \(2 \max\{i, D - i\} \), and the weight of \(u_D \) is \(D \). Hence, the total weight of the vertices on \(P \) is

\[
(n - D)D + (n - D + 1)(D - 1) + (k + 2) \max\{2, D - 2\} + 2 \sum_{i=3}^{D-1} \max\{i, D-i\} + D
\]

\[
= \left((n - D - 1)D + D \right) + \left((n - D - 1)(D - 1) + 2(D - 1) \right)
\]

\[
+ \left(k \max\{2, D - 2\} + 2 \max\{2, D - 2\} \right) + 2 \sum_{i=3}^{D-1} \max\{i, D-i\} + D
\]

\[
= 2 \sum_{i=0}^{D-1} \max\{i, D-i\} + (n - D - 1)(2D - 1) + k \max\{2, D - 2\}
\]

By summing up all weight in \(G \), we obtain the desired result. \(\Box \)

In what follows, we denote \(f(n, D) = \max_{k=0}^{n-D-1} \xi_c(E_{n,D,k}) \). It follows from the above lemma that

\[
f(n, D) = \begin{cases}
14 + \left(n - 4 \right) \left(3n - 4 + \max\{0, 2D - n + 1\} \right) & \text{if } D = 3; \\
2 \sum_{i=0}^{D-1} \max\{i, D-i\} + \left(n - D - 1 \right) \left(2D - 1 + D(n - D) + \max\{0, 3D - n - 3\} \right) & \text{if } D \geq 4.
\end{cases}
\]

Lemma \([\star]\) allows to know for which values of \(k \) we have \(\xi_c(E_{n,D,k}) = f(n, D) \).
Corollary 6. Let \(n \) and \(k \) be integers such that \(n \geq 4 \), and \(0 \leq k \leq n - 4 \).

- If \(n < 7 \), then \(\xi^c(E_{n,3,k}) \leq f(n,3) = 2n^2 - 5n + 2 \), with equality if and only if \(k = n - 4 \).
- If \(n > 7 \), then \(\xi^c(E_{n,3,k}) \leq f(n,3) = 3n^2 - 16n + 30 \) with equality if and only if \(k = 0 \).
- If \(n = 7 \), then all \(\xi^c(E_{n,3,k}) \) are equal to 65 for \(k = 0, \ldots, n - 4 \).

Corollary 7. Let \(n, D \) and \(k \) be integers such that \(n \geq 5, 4 \leq D \leq n - 1 \) and \(0 \leq k \leq n - D - 1 \).

- If \(n < 3(D - 1) \), then \(\xi^c(E_{n,D,k}) = f(n,D) \) if and only if \(k = n - D - 1 \).
- If \(n > 3(D - 1) \), then \(\xi^c(E_{n,D,k}) = f(n,D) \) if and only if \(k = 0 \).
- If \(n = 3(D - 1) \), then \(\xi^c(E_{n,D,k}) = f(n,D) \) if and only if \(k \in \{0, \ldots, n - D - 1\} \).

The graph \(H_2 \) of Figure 1 has 6 vertices, diameter 3, and is not isomorphic to \(E_{6,3,k} \), while \(\xi^c(H_2) = f(6,3) = 44 \). Similarly, the graph \(H_3 \) of Figure 1 has 7 vertices, diameter 3, and is not isomorphic to \(E_{7,3,k} \), while \(\xi^c(H_3) = f(7,3) = 65 \). In what follows, we prove that all graphs \(G \) of order \(n \) and diameter \(D \geq 3 \) have \(\xi^c(G) \leq f(n,D) \). Moreover, we show that if \(G \) is not isomorphic to a \(E_{n,D,k} \), then equality can only occur if \(G \cong H_2 \) or \(G \cong H_3 \). So, for every \(n \geq 4 \) and \(3 \leq D \leq n - 1 \), let us consider the following graph class \(\mathcal{C}_n^D \):

\[
\mathcal{C}_n^D = \begin{cases}
\{E_{n,3,n-4}\} & \text{if } n = 4,5 \text{ and } D = 3; \\
\{E_{n,3,2}, H_2\} & \text{if } n = 6 \text{ and } D = 3; \\
\{E_{n,3,0}, \ldots, E_{n,3,3}, H_3\} & \text{if } n = 7 \text{ and } D = 3; \\
\{E_{n,3,0}\} & \text{if } n > 7 \text{ and } D = 3; \\
\{E_{n,D,n-D-1}\} & \text{if } n < 3(D - 1) \text{ and } D \geq 4; \\
\{E_{n,D,0}, \ldots, E_{n,D,n-D-1}\} & \text{if } n = 3(D - 1) \text{ and } D \geq 4; \\
\{E_{n,D,0}\} & \text{if } n > 3(D - 1) \text{ and } D \geq 4.
\end{cases}
\]

Note that while Morgan et al. [2] state that the lollipops reach the asymptotic upper bound of the eccentric connectivity index, we will prove that they reach the more precise upper bound only if \(D = n - 1, D = 3 \) and \(n \geq 7 \), or \(D \geq 4 \) and \(n \geq 3(D - 1) \).

Theorem 8. Let \(G \) be a connected graph of order \(n \geq 4 \) and diameter \(3 \leq D \leq n - 1 \). Then \(\xi^c(G) \leq f(n,D) \), with equality if and only if \(G \) belongs to \(\mathcal{C}_n^D \).

Proof. We have already observed that all graphs \(G \) in \(\mathcal{C}_n^D \) have \(\xi^c(G) = f(n,D) \). So let \(G \) be a graph of order \(n \), diameter \(D \) such that \(\xi^c(G) \geq f(n,D) \). It remains to prove that \(G \) belongs to \(\mathcal{C}_n^D \).

Let \(P = u_0 - u_1 - \cdots - u_D \) be a shortest path in \(G \) that connects two vertices \(u_0 \) and \(u_D \) at distance \(D \) from each other. In what follows, we use the following notations for all \(i = 0, \ldots, D \):

- \(\alpha_i \) is the number of vertices outside \(P \) and adjacent to \(u_i \);
- \(\delta_i = \max\{i, D - i\} \);
- \(r_i = \epsilon(u_i) - \delta_i \).

Also, let \(r^* = \max_{i=1}^{D-1} r_i \). Note that \(r^* \geq 2 \) and \(r_i \leq \left\lfloor \frac{D}{2} \right\rfloor \) for all \(i \), and \(r_0 = r_D = 0 \) since \(\epsilon(u_0) = \epsilon(u_D) = \delta_0 = \delta_D = D \). Since \(P \) is a shortest path linking \(u_0 \) to \(u_D \), no vertex outside \(P \) can have more than three neighbors in \(P \). We consider the following partition of the vertices outside \(P \) in 4 disjoint sets \(V_0, V_1, V_2^{D-1}, V_3^D \), and denote by \(n_0, n_1, n_2^{D-1}, n_3^D \) their respective size:
• V_0 is the set of vertices outside P with no neighbor on P;
• $V_{1,2}$ is the set of vertices outside P with one or two neighbors in P;
• V_{3}^{D-1} is the set of vertices v outside P with three neighbors in P and $\epsilon(v) \leq D - 1$;
• V_{3}^{D} is the set of vertices v outside P with three neighbors in P and $\epsilon(v) = D$.

Clearly, all vertices v outside P can have $\epsilon(v) = D$ except those in V_{3}^{D-1}. The maximum degree of a vertex in V_0 is $n - D - 2$, while it is $n - D$ for those in $V_{1,2}$ and $n + D + 1$ for those in $V_{3}^{D-1} \cup V_{3}^{D}$. For a vertex $v \in V_{1,2} \cup V_{3}^{D-1} \cup V_{3}^{D}$, let

$$\rho(v) = \max\{r_i \mid u_i \text{ is adjacent to } v\}$$

$$\rho^* = \max_{v \in V_{1,2} \cup V_{3}^{D-1} \cup V_{3}^{D}} \rho(v)$$

Hence, $r^* \geq \rho^*$. We first show that the total weight of the vertices in $V_0 \cup V_{1,2}$ is at most

$$D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D}) - 2Dr^* + D \min\{1, \rho^*\}.$$

• If $r^* = 0$, then the largest possible weight of the vertices in $V_0 \cup V_{1,2}$ occurs when all of them have two neighbors in P (i.e., $n_0 = 0$ and no vertex in $V_{1,2}$ has one neighbor on P). In such a case, $n_0 + n_{1,2} = n - D - 1 - n_{3}^{D-1} - n_{3}^{D}$, and all these vertices have degree $n - D$. Hence, their total weight is at most $D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D})$.

• If $r^* > 0$ and $\rho^* > 0$, then let i be such that $r_i = r^*$. It follows from Lemma 3 that there is a path $w_1 - \ldots - w_{\epsilon(u_i)+1}$ such that w_1, \ldots, w_{r_i-1} have no neighbor on P and w_{r_i} has at most one neighbor on P. Hence, the largest possible weight of the vertices in $V_0 \cup V_{1,2}$ occurs when $r^* - 1$ vertices have 0 neighbor on P, one vertex has one neighbor on P, and $n - D - 1 - n_{3}^{D-1} - n_{3}^{D} - r^*$ vertices have 2 neighbors in P. Hence, the largest possible weight for the vertices in $V_0 \cup V_{1,2}$ is

$$D(n - D - 2)(r^* - 1) + D(n - D - 1) + D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D} - r^*)$$

$$= D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D}) - 2Dr^* + D.$$

• If $r^* > 0$ and $\rho^* = 0$, then consider the same path $w_1 - \ldots - w_{\epsilon(u_i)+1}$ as in the above case. If w_{r_i} has no neighbor on P, then there are at least r^* vertices with no neighbor on P and the largest possible weight for the vertices in $V_0 \cup V_{1,2}$ is

$$D(n - D - 2)(r^*) + D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D} - r^*)$$

$$= D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D}) - 2Dr^*.$$

Also, if there are at least two vertices in $V_{1,2}$ with only one neighbor on P, then the largest possible weight for the vertices in $V_0 \cup V_{1,2}$ is

$$D(n - D - 2)(r^* - 1) + 2D(n - D - 1) + D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D} - r^* - 1)$$

$$= D(n - D)(n - D - 1 - n_{3}^{D-1} - n_{3}^{D}) - 2Dr^*.$$

So assume w_{r_i} is the only vertex in $V_{1,2}$ with only one neighbor on P. We thus have $d(u_i, w_{r_i}) = \delta_i + 1$. We now show that this case is impossible. We know from Lemma 4 that w_{r_i} is adjacent to u_0 or (exclusive) to u_D. Since $\rho(v) = 0$ for all vertices v outside P, we know that u_i has no neighbor outside P. Hence, $w_{\epsilon(u_i)}$ is u_{i-1} or u_{i+1},
say \(u_{i+1} \) (the other case is similar). Then \(w_{r^*} \) is not adjacent to \(u_0 \) else there is \(j \) with \(r^* + 1 \leq j < \epsilon(u_i) - 1 \) such that \(w_j \) is outside \(P \) and has \(w_{j+1} \) as neighbor on \(P \), and since \(w_j \) must have a second neighbor \(u_\ell \) on \(P \) with \(\ell \geq i + 2 \), we would have

\[
i + 2 \leq \ell = d(u_0, u_\ell) \leq d(w_{r^*}, w_j) + 2 \leq (d(w_{r^*}, u_i) - 2) + 2 = i + 1.
\]

Hence, \(w_{r^*} \) is adjacent to \(u_D \). Then there is also a path linking \(u_i \) to \(w_1 \) going through \(u_{i-1} \) else \(d(u_0, w_1) = d(u_0, u_1) + d(u_1, w_1) > i + \delta_i \geq D \). Let \(Q \) be such a path of minimum length. Clearly, \(Q \) has length at least equal to \(\epsilon(u_i) \). So let \(w_1^* \) be the subpath of \(Q \) of length \(\epsilon(u_i) \) and having \(u_i \) as extremity (i.e., \(w_{\epsilon(u_i)} = u_{i-1} \) and \(w_{\epsilon(u_i)+1} = u_i \)). Applying the same argument to \(w_{r^*}^* \), as was done for \(w_{r^*} \), we conclude that \(w_{r^*}^* \) has \(u_0 \) as unique neighbor on \(P \). We thus have two vertices in \(V_{1,2} \) with a unique neighbor on \(P \), a contradiction.

The total weight of the vertices in \(V_{3}^{D-1} \cup V_{3}^{D} \) is at most \((n - D + 1)((D - 1)n_{3}^{D-1} + D n_{3}^{D})\), which gives the following upper bound \(B \) on the total weight of the vertices outside \(P \):

\[
B = D(n - D)((n - D - 1)n_{3}^{D-1} - n_{3}^{D}) + (n - D + 1)((D - 1)n_{3}^{D-1} + D n_{3}^{D})
\]

\[
- 2D r^* + D \min \{1, r^*\}
\]

\[
= (n - D - 1)D(n - D) + n_{3}^{D-1}(2D - n - 1) + D n_{3}^{D} - 2D r^* + D \min \{1, r^*\}.
\]

This bound can only be reached if all vertices outside \(P \) are pairwise adjacent. But Lemma [1] shows that this cannot happen if \(r^* > 0 \). Indeed, consider a vertex \(v \) in \(V_{1,2} \cup V_{3}^{D} \cup V_{3}^{D-1} \) with \(r(v) > 0 \). There is a vertex \(u_i \) in \(P \) adjacent to \(v \) such that \(r(v) = r_i = \epsilon(u_i) - \delta_i > 0 \). We know from Lemma [4] that there is a shortest path \(w_1 - w_2 - \ldots - w_{\epsilon(u_i)+1} = u_i \) linking \(u_i \) to a vertex \(w_1 \) with \(d(w_1, w_1) = \epsilon(u_i) \) and such that \(w_1, \ldots, w_{\epsilon(v)} \) do not belong to \(P \). In what follows, we denote \(Q^v \) such a path. If \(v \) is adjacent to a \(w_j \) with \(1 \leq j \leq \epsilon(v) \), then the path \(u_i - v - w_j - \ldots - w_1 \) links \(u_i \) to \(w_1 \) and has length at most \(\epsilon(v) + 1 < r_i + \delta_i = \epsilon(u_i) \), a contradiction. Hence \(v \) has at least \(r(v) \) non-neighbors outside \(P \). Also, as shown in Lemma [4], \(w_1, \ldots, w_{\epsilon(v)-1} \) belong to \(V_0 \), while \(w_{\epsilon(v)} \) belongs to \(V_0 \cup V_{1,2} \). In the upper bound \(B \), we have assumed that \(\epsilon(w_1) = \ldots = \epsilon(w_{\epsilon(v)}) = D \). Hence, if \(v \in V_{1,2} \cup V_{3}^{D} \), we can gain \(2D \) units on \(B \) for every \(w_j, j = 1, \ldots, \epsilon(v) \) (for \(v \) and \(D \) for \(w_j \), while the gain is \(2D - 1 \) (\(D - 1 \) for \(v \) and \(D \) for \(w_j \)) if \(v \in V_{3}^{D-1} \).

We can gain an additional \(2D \) for every \(v \in V_{3}^{D} \). Indeed, consider such a vertex \(v \) and let \(w^* \) be a vertex at distance \(D \) from \(v \). Note that \(w^* \) is not on \(P \) and has at most one neighbor on \(P \) else \(d(v, w^*) \leq D - 1 \). Hence, if \(r(v) = 0 \), we can gain \(2D \) (one \(D \) for \(v \) and one \(D \) for \(w \)) in the above upper bound. So assume \(r(v) > 0 \), and consider again the shortest path \(Q^v = w_1 - w_2 - \ldots - w_{\epsilon(u_i)+1} = u_i \), with \(r(v) = r_i \). Also, let \(W = \{w_1, \ldots, w_{\epsilon(v)}\} \). To gain an additional \(2D \), it is sufficient to determine a vertex in \((V_0 \cup V_{1,2}) \setminus W \) which is not adjacent to \(v \). So assume no such vertex exists, and let us prove that such a situation cannot occur. Note that \(w^* \notin V_{3}^{D} \cup V_{3}^{D-1} \) (since it has at most one neighbor on \(P \)), which implies \(w^* \in W \).

- If a vertex \(w_j \in W \) has a neighbor \(x \in V_0 \cup V_{1,2} \) outside \(W \), then \(v \) is adjacent to \(x \), and the path \(v - x - w_j - \ldots - w^* \) has length at most \(1 + r(v) \leq 1 + \lfloor \frac{D}{2} \rfloor < D \), a contradiction.
• If a vertex $w_j \in W$ has a neighbor $x \in V_3^D \cup V_3^{D-1}$, then $d(u_i, w_1) \leq d(u_i, x) + d(x, w_1) \leq \delta_i - 1 + r_i < \epsilon(u_i)$, a contradiction.

Since G is connected and $w_1, \ldots, w_{\rho(u) - 1}$ have no neighbors outside Q^ρ, we know that $w_{\rho(u)}$ is adjacent to the extremity of P at distance δ_i from u_i (and to no other vertex on P). Hence, the vertices on P and those in W induce a path of length $D + \rho(v) > D$ in G, a contradiction.

In summary, the following value is a more precise upper bound on the total weight of the vertices outside P:

$$B - \sum_{v \in V_1,2 \cup V_3^D} 2\rho(v) - \sum_{v \in V_3^{D-1}} (2D - 1)\rho(v) - 2Dn_3^D$$

$$\leq (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D - 2Dr^* + D \min\{1, \rho^*\}$$

$$- \sum_{v \in V_1,2 \cup V_3^D \cup V_3^{D-1}} (2D - 1)\rho(v).$$

Let us now consider the vertices on P. We have $W(u_0) = D(1 + o_D)$, $W(u_D) = D(1 + o_D)$, and $W(u_i) = \epsilon(u_i)(2 + o_i)$ for $i = 1, \ldots, D - 1$. Since $\epsilon(u_i) = \delta_i + r_i$, the total weight of the vertices on P is

$$2D + D(o_0 + o_D) + \sum_{i=1}^{D-1} (\delta_i + r_i)(2 + o_i)$$

$$= 2 \sum_{i=0}^{D-1} \delta_i + 2 \sum_{i=1}^{D-1} r_i + \sum_{i=1}^{D-1} r_i o_i + \delta_i o_i.$$

Each edge that links a vertex v outside P to a vertex u_i in P contributes for $r_i \leq \rho(v)$ in the sum $\sum_{i=1}^{D-1} r_i o_i$. Hence,

$$\sum_{i=1}^{D-1} r_i o_i \leq \sum_{v \in V_1,2} 2\rho(v) + \sum_{v \in V_3^D \cup V_3^{D-1}} 3\rho(v) \leq \sum_{v \in V_1,2 \cup V_3^D \cup V_3^{D-1}} 3\rho(v).$$

Since $2\sum_{i=1}^{D-1} r_i \leq 2r^*(D - 1)$, we get the following valid upper bound on the total weight of the vertices on P:

$$2 \sum_{i=0}^{D-1} \delta_i + \sum_{i=0}^{D} \delta_i o_i + 2r^*(D - 1) + \sum_{v \in V_1,2 \cup V_3^D \cup V_3^{D-1}} 3\rho(v).$$

Summing up the bounds for the vertices outside P with those on P, we get the following upper bound for the total weight of the vertices in G:

$$(n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D + 2 \sum_{i=0}^{D-1} \delta_i + \sum_{i=0}^{D} \delta_i o_i$$

$$- \sum_{v \in V_1,2 \cup V_3^D \cup V_3^{D-1}} (2D - 4)\rho(v) - 2r^* + D \min\{1, \rho^*\}.$$
• If $r^* = 0$, then $A_2 = 0$, which implies $A_1 + A_2 = A_1$.
• If $\rho^* > 0$, then $A_2 \leq 4 - 2D - 2r^* + D = 4 - D - 2r^* < 0$, which implies $A_1 + A_2 < A_1$.
• If $r^* > 0$ and $\rho^* = 0$, then $A_2 = -2r^* < 0$, which implies $A_1 + A_2 < A_1$.

In summary, the best possible upper bound is A_1 and is attained only if $r^* = 0$, $n_0 = 0$, $\epsilon(v) = D$ for all vertices in $V_{1,2}$, and the vertices outside P are pairwise adjacent. We now have to compare A_1 with $f(n, D)$.

Let us start with $D = 3$. In that case, we have $f(n, 3) = 14 + (n - 4)(3n - 4 + \max\{0, 7 - n\})$, while $A_1 = (n - 4)3(n - 3) + n_3^3(5 - n) - 3n_3^2 + 14 + \sum_{i=0}^3 \delta_i o_i$. Hence, the difference is:

$$f(n, 3) - A_1 = (n - 4)(5 + \max\{0, 7 - n\}) - n_3^2(5 - n) + 3n_3^3 - \sum_{i=0}^3 \delta_i o_i.$$

We have

$$\sum_{i=0}^3 o_i \leq 3(n_3^3 + n_3^3) + 2(n - 4 - n_3^2 - n_3^2) = 2(n - 4) + n_3^2 + n_3^3.$$

Since $o_0 + o_3 \leq n - 4$ to avoid a path of length 2 joining u_0 to u_3, we have

$$\sum_{i=0}^3 \delta_i o_i \leq 3(n - 4) + 2(n - 4 + n_3^2 + n_3^3).$$

Hence,

$$f(n, 3) - A_1 \geq (n - 4) \max\{0, 7 - n\} - n_3^2(7 - n) + n_3^3.$$

This difference is minimized if and only if $n_3^3 = 0$, while $n_3 = 0$ if $n > 7$, $n_3 = 0, 1, 2$ or 3 if $n = 7$, and $n_3 = n - 4$ if $n < 7$. In all such cases, we get $f(n, 3) - A_1 = 0$.

• If $n = 4$, there is no vertex outside P, and $G \simeq E_{4,3,0}$ which is the unique graph in C_4^3.

• If $n = 5$, $n_3^3 = 1$, which means that the unique vertex outside P is adjacent to 3 consecutive vertices on P. Hence, $G \simeq E_{5,3,1}$ which is the unique graph in C_5^3.

• If $n = 6$, $n_3^2 = 2$, which means that both vertices outside P are adjacent to 3 consecutive vertices on P. If one of them is adjacent to u_0, u_1, u_2, while the other is adjacent to u_1, u_2, u_3, we have $G \simeq H_2$. Otherwise, we have $G \simeq E_{6,3,2}$.

• If $n = 7$, $n_3^2 \in \{0, 1, 2, 3\}$ and $n_1, 2 = 3 - n_3^2$. If $n_1, 2 > 0$ then the vertices in $V_{1,2}$ are all adjacent to u_0 and u_1 or all to u_2 and u_3, since they are pairwise adjacent, and they all have eccentricity 3. So assume without loss of generality, they are all adjacent to u_0 and u_1. Then the vertices in V_3^2 are all adjacent to u_0, u_1, u_2, else the vertices in $V_{1,2}$ would have eccentricity 2. But G is then equal to $E_{7,3,0}, E_{7,3,1}$ or $E_{7,3,2}$. If $n_1 = 0$, then the three vertices outside P are all adjacent to three consecutive vertices on P. If they are all adjacent to u_0, u_1, u_2, or all to u_1, u_2, u_3, then $G \simeq E_{7,3,3}$, else $G \simeq H_3$.

• If $n > 7$, all vertices outside P are adjacent to u_0, u_1, or to u_2, u_3 (so that they all have eccentricity 3). Hence, $G \simeq E_{n,3,0}$.

Assume now $D \geq 4$. We have

$$f(n, D) = 2 \sum_{i=0}^{D-1} \delta_i + (n - D - 1) \left(2D - 1 + D(n - D) + \max\{0, 3D - n - 3\}\right)$$
and
\[A_1 = 2 \sum_{i=0}^{D-1} \delta_i + (n - D - 1)D(n - D) + n_3^{D-1}(2D - n - 1) - Dn_3^D + \sum_{i=0}^{D} \delta_i o_i. \]

Hence, the difference is:

\[f(n, D) - A_1 = (n - D - 1)(2D - 1 + \max \{0, 3D - n - 3\}) - n_3^{D-1}(2D - n - 1) + Dn_3^D - \sum_{i=0}^{D} \delta_i o_i. \]

We have
\[\sum_{i=0}^{D} o_i \leq 3(n_3^{D-1} + n_3^D) + 2(n - D - 1 - n_3^{D-1} - n_3^D) = 2(n - D - 1) + n_3^{D-1} + n_3^D. \]

Let \(p \) be the number of vertices linked to both \(u_1 \) and \(u_{D-1} \).

- If \(D \geq 5 \), then \(p = 0 \), else \(d(u_0, u_D) \leq 4 < D \).
- If \(D = 4 \), then no vertex outside \(P \) linked to \(u_1 \) and \(u_{D-1} \) can also be linked to \(u_0 \) or to \(u_D \) since \(d(u_0, u_D) \) would be strictly smaller than 4. Since no vertex outside \(P \) can be linked to both \(u_0 \) and \(u_D \) (else \(d(u_0, u_D) < 3 \)) we have \(o_0 + o_D \leq n - D - 1 - p \) and \(o_1 + o_{D-1} \leq n - D - 1 + p \). Hence, \(o_2 \leq n_3^{D-1} + n_3^D \).

So,
\[\sum_{i=0}^{D} \delta_i o_i \leq D(n - D - 1 - p) + (D - 1)(n - D - 1 + p) + (D - 2)(n_3^{D-1} + n_3^D) \]
\[= (n - D - 1)(2D - 1) + (D - 2)(n_3^{D-1} + n_3^D) - p. \]

This value is maximized for \(p = 0 \).

Hence, in all cases, we have
\[\sum_{i=0}^{D} \delta_i o_i \leq (n - D - 1)(2D - 1) + (D - 2)(n_3^{D-1} + n_3^D). \]

Hence,
\[f(n, D) - A_1 \geq (n - D - 1) \max \{0, 3D - n - 3\} - n_3^{D-1}(3D - n - 3) + 2n_3^D. \]

This difference is minimized if and only if \(n_3^D = 0 \), while \(n_3^{D-1} = 0 \) if \(n > 3(D - 1) \), \(n_3^{D-1} \in \{0, \ldots, n - D - 1\} \) if \(n = 3(D - 1) \), and \(n_3^{D-1} = n - D - 1 \) if \(n < 3(D - 1) \). In all such cases, we get \(f(n, D) - A_1 = 0 \).

- If \(n < 3(D - 1) \), then all vertices outside \(P \) are adjacent to 3 consecutive vertices on \(P \). They are all adjacent to \(u_0, u_1, u_2 \), or all adjacent to \(u_{D-2}, u_{D-1}, u_D \), else \(d(u_0, u_D) \leq 3 < D \). Hence, we have \(G \simeq E_{n,D,n-1} \).
- If \(n = 3(D - 1) \), \(n_3^{D-1} \in \{0, \ldots, n - D - 1\} \) and \(n_{1,2} = 2D - 2 - n_3^{D-1} \). If \(n_{1,2} > 0 \) then the vertices in \(V_{1,2} \) are all adjacent to \(u_0 \) and \(u_1 \) or all to \(u_{D-1} \) and \(u_D \), since they are pairwise adjacent, and they all have eccentricity \(D \). So assume without loss of generality, they are all adjacent to \(u_0 \) and \(u_1 \). Then the vertices in \(V_{3}^{D-1} \) are all adjacent to \(u_0, u_1, u_2 \), else \(d(u_0, u_D) \leq 3 < D \). But \(G \) is then equal to \(E_{n,D,n_3^D} \). If \(n_{1,2} = 0 \), then all vertices outside \(P \) are adjacent to \(u_0, u_1, u_2 \), or all of them are adjacent to \(u_{D-2}, u_{D-1}, u_D \), else \(d(u_0, u_D) \leq 3 < D \). Hence, \(G \simeq E_{n,D,n-1} \).
• If \(n > 3(D - 1) \), all vertices outside \(P \) are adjacent to \(u_0, u_1 \), or to \(u_2, u_3 \) (so that they all have eccentricity \(D \)). Hence, \(G \simeq E_{n,D,0} \).

\[
\square
\]

3 Results for a fixed order and no fixed diameter

We now determine the connected graphs that maximize the eccentric connectivity index when the order \(n \) of the graph is given, while there is no fixed diameter. Clearly, \(K_3 \) and \(P_3 \) are the only connected graphs of order \(n = 3 \) and \(\xi^c(K_3) = \xi^c(P_3) = 6 \). For \(n > 3 \), \(\xi^c(M_n) = 2n^2 - 4n - 2(n \mod 2) > n^2 - n = \xi^c(K_n) \), which means that the optimal diameter is not \(D = 1 \).

- If \(n = 4 \), \(f(4, 3) = 14 < \xi^c(M_4) = 16 \), which means that \(M_4 \) has maximum eccentric connectivity among all connected graphs with 4 vertices.
- If \(n = 5 \), \(f(5, 3) = 27, f(5, 4) = 24 \) and \(\xi^c(M_5) = 30 \), which means that \(M_5 \) and \(H_1 \) have maximum eccentric connectivity index among all connected graphs with 5 vertices.
- If \(n = 6 \), \(f(6, 3) = 44, f(6, 4) = 42, f(6, 5) = 38 \) and \(\xi^c(M_6) = 48 \), which means that \(M_6 \) has maximum eccentric connectivity index among all connected graphs with 6 vertices.

Assume now \(n \geq 7 \). We first show that lollipops are not optimal. Indeed, consider a lollipop \(E_{n,D,0} \) of order \(n \) and diameter \(D \).

- If \(D = n - 1 \), then \(G \simeq P_n \) which implies

\[
\xi^c(E_{n,n-1,0}) = \sum_{i=1}^{D-1} 2 \max\{i, D - i\} + 2D = \frac{3D^2 + D \mod 2}{2} \\
\leq \frac{3D^2 + 1}{2} = \frac{3n^2}{2} - 3n + 2 < 2n^2 - 4n - 2 \leq \xi^c(M_n).
\]

- If \(D < n-1 \) then either \(n < 3(D-1) \), and we know from Corollary \([7]\) that \(\xi^c(E_{n,D,n-D-1}) > \xi^c(E_{n,D,0}) \), or \(n \geq 3(D - 1) \), in which case we show that \(\xi^c(E_{n,D+1,n-D-2}) > \xi^c(E_{n,D,0}) \). Since \(2 \sum_{i=0}^{D-1} \max\{i, D - i\} = \frac{3D^2 + D \mod 2}{2} \), we know from Lemma \([5]\) that

\[
\xi^c(E_{n,D+1,n-D-2}) = 2 \sum_{i=0}^{D} \max\{i, D + 1 - i\} \\
+ \left(n - D - 2 \right) \left(2(D + 1) - 1 + (D + 1)(n - D - 1) \right) \\
+ \left(n - D - 2 \right) \left(2(D + 1) - n - 1 + (D + 1) - 2 \right) \\
= \frac{3(D + 1)^2 + (D + 1) \mod 2}{2} + \left(n - D - 2 \right) \left(3D + D(n - D) \right)
\]

and

\[
\xi^c(E_{n,D,0}) = 2 \sum_{i=0}^{D-1} \max\{i, D - i\} + \left(n - D - 1 \right) \left(2D - 1 + D(n - D) \right) \\
= \frac{3D^2 + D \mod 2}{2} + \left(n - D - 1 \right) \left(2D - 1 + D(n - D) \right).
\]
Simple calculations lead to

$$\xi^c(E_{n,D+1,n-D-2}) - \xi^c(E_{n,D,0}) = n - 2D + (D - 1) \mod 2 \geq n - 2 \left(\frac{n}{3} + 1\right) = \frac{n}{3} - 2 > 0.$$

Hence, the remaining candidates to maximize the eccentric connectivity index when \(n \geq 7\) are \(M_n\) and \(E_{n,D,n-D-1}\). Let

$$g(n) = \max_{D=\left\lceil \frac{n+1}{3} \right\rceil} \xi^c(E_{n,D,n-D-1}).$$

We can rewrite \(\xi^c(E_{n,D,n-D-1})\) as follows:

$$\xi^c(E_{n,D,n-D-1}) = D^3 - D^2(n + \frac{5}{2}) + D(n^2 + 5n - 1) - n^2 - 3n + 4 + D \mod 2.$$

It is then not difficult to show that \(g(n) = \xi^c(E_{n,D^*,n-D^*-1})\) with \(D^* = \left\lceil \frac{n+1}{3} \right\rceil + 1\), and simple calculations lead to

$$g(n) = \frac{1}{54}(8n^3 + 21n^2 - 36n + \begin{cases}
0 & \text{if } n \mod 6 = 0 \\
6n + 1 & \text{if } n \mod 6 = 1 \\
32 & \text{if } n \mod 6 = 2 \\
27 & \text{if } n \mod 6 = 3 \\
6n + 28 & \text{if } n \mod 6 = 4 \\
59 & \text{if } n \mod 6 = 5
\end{cases}).$$

We then have \(g(7) = 66 < 68 = \xi^c(M_7)\), which means that \(M_7\) has the largest eccentric connectivity among all graphs with 7 vertices. Also, \(g(8) = 96 = \xi^c(M_8)\), which means that both \(E_{8,4,3}\) and \(M_8\) have the largest eccentric connectivity index among all graphs with 8 vertices. For graphs of order \(n \geq 9\), we have \(\frac{8n^3+21n^2-36n}{54} > 2n^2 - 4n\), which means that \(E_{n,D^*,n-D^*-1}\) is the unique graph with largest eccentric connectivity index among all graphs with \(n\) vertices. These results are summarized in Table 1, where \(\xi^c_{n*}\) stands for the largest eccentric connectivity index among all graphs with \(n\) vertices.

\(n\)	\(\xi^c_{n*}\)	optimal graphs
3	6	\(K_3\) and \(P_3\)
4	16	\(M_4\)
5	30	\(M_5\) and \(H_1\)
6	48	\(M_6\)
7	68	\(M_7\)
8	96	\(M_8\) and \(E_{8,4,3}\)
\(\geq 9\)	\(g(n) = E_{n,\lceil \frac{n+1}{3} \rceil +1,n-\lceil \frac{n+1}{3} \rceil -2}\)	

Note finally that Tavakoli et al. [4] state that \(g(n) = \xi^c(E_{n,D,n-D-1})\) with \(D = \left\lceil \frac{n}{3} \right\rceil + 1\) while we have shown that the best diameter for a given \(n\) is \(D = \left\lceil \frac{n+1}{3} \right\rceil + 1\). Hence for all \(n \geq 9\) with \(n \mod 3 = 0\), we get a better result. For example, for \(n = 9\), they consider \(E_{9,4,4}\) which has an eccentric connectivity index equal to 132 while \(g(9)=134\).
4 Conclusion

We have characterized the graphs with largest eccentric connectivity index among those of fixed order n and fixed or non-fixed diameter D. It would also be interesting to get such a characterization for graphs with a given order n and a given size m. We propose the following conjecture which is more precise than the one proposed in [5]

Conjecture. Let n and m be two integers such that $n \geq 4$ and $m \leq \left(\frac{n-1}{2}\right)$. Also, let

$$D = \left\lfloor \frac{2n + 1 - \sqrt{17 + 8(m - n)}}{2} \right\rfloor$$

and

$$k = m - \left(\frac{n - D + 1}{2}\right) - D + 1$$

Then, the largest eccentric connectivity index among all graphs of order n and size m is attained with $E_{n,D,k}$. Moreover,

- if $D > 3$ then $\xi^c(G) < \xi^c(E_{n,D,k})$ for all other graphs G of order n and size m.
- if $D = 3$ and $k = n - 4$, then the only other graphs G with $\xi^c(G) = \xi^c(E_{n,D,k})$ are those obtained by considering a path $u_0 - u_1 - u_2 - u_3$, and by joining $1 \leq i \leq n - 3$ vertices of a clique K_{n-4} to u_0, u_1, u_2 and the $n - 4 - i$ other vertices of K_{n-4} to u_1, u_2, u_3.

References

[1] Diestel, R. *Graph Theory*, second edition ed. Springer-Verlag, 2000.

[2] Morgan, M.J., Mukwembi, S., and Swart, H.C. On the eccentric connectivity index of a graph. *Discrete Mathematics* 311 (2011), 1229 – 1234.

[3] Sharma, V., Goswani, R., and Madan, A.K. Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure Property and Structure Activity Studies. *J. Chem. Inf. Comput. Sci.* 37 (1997), 273 – 282.

[4] Tavakoli, M., Rahbarinia, F., Mirzavaziri, M., and Ashrafi, R. Complete solution to a conjecture of Zhang-Liu-Zhou. *Transactions on Combinatorics* 3 (2014), 55 – 58.

[5] Zhang, J., Liu, Z., and Zhou, B. On the maximal eccentric connectivity indices of graphs. *Appl. Math. J. Chinese Univ.* 29 (2014), 374 – 378.