Resumo
Objetivou-se com esta pesquisa avaliar o efeito da Aflatoxina B₁ (AFB₁) na digestibilidade dos nutrientes e no perfil hematológico de equinos. O ensaio durou 40 dias, sendo 12 dias para adaptação e 28 dias para experimentação. No período experimental, os cavalos foram distribuídos em delineamento inteiramente casualizado, com três tratamentos, com quatro animais cada. Os tratamentos utilizados foram 0 μg/kg (controle), 50 μg/kg e 100 μg/kg de AFB₁ adicionados ao concentrado da dieta basal. A dieta basal continha alimentos naturalmente contaminados com micotoxinas. Um ensaio de digestibilidade foi realizado no final do período experimental, pelo método de coleta parcial de fezes utilizando o LIPE® como indicador. Amostras de sangue foram coletadas uma vez por semana, durante o ensaio para avaliações hematológicas e bioquímicas. Os resultados dos parâmetros hematológicos, bioquímicos e do ensaio de digestibilidade foram submetidos à análise de variância (ANOVA) e comparados pelo teste de Tukey a 5% de significância. As aflatoxinas da dieta aumentaram a contagem de leucócitos, principalmente os neutrófilos maduros. A creatina quinase e a fosfatase alcalina (P<0,05) apresentaram maior atividade nos equinos alimentados com dietas com maior toxicidade. A digestibilidade dos nutrientes não foi alterada pelos níveis de micotoxinas presentes nas dietas (P>0,05).

Palavras-chave: digestibilidade, equinos, hematologia, micotoxina

Abstract
This study aimed to evaluate the effect of aflatoxin B₁ (AFB₁) on the digestibility of nutrients and the hematological profile of horses. The assay lasted 40 days, with 12 days for adaptation and 28 days for experimentation. In the experimental stage, the horses were distributed in a completely randomized design, including three treatment groups with four animals in each group. The treatments used included 0 μg/kg (control), 50 μg/kg, and 100 μg/kg of AFB₁, added to a concentrate in the basal diet. The basal diet contained mycotoxins from naturally contaminated
feed. A digestibility essay was carried out at the end of the experimental period through partial feces collection, with LIPE® as an indicator. Blood samples were collected once a week during the assay for hematological and biochemical evaluations. The results of the hematological and biochemical parameters were submitted to analysis of variance (ANOVA) and compared by the Tukey test at 5% significance. The aflatoxins in the diet increased the leukocyte count, especially that of mature neutrophils. Creatine kinase and alkaline phosphatase ($P < 0.05$) activities were higher in horses fed more toxic diets. The digestibility of nutrients was unaffected by the level of mycotoxins in the diet ($P > 0.05$).

Keywords: digestibility, equine, hematology, mycotoxin

Introdução

A dieta dos equinos é composta basicamente por forragens em pastagens e feno e por cereais, oferecidos na forma de concentrado nutricional balanceado. Esses alimentos estão continuamente sujeitos à contaminação por fungos produtores de micotoxinas, seja antes, durante ou após a colheita, bem como no processo de armazenagem. As micotoxinas são metabólitos secundários, de baixo peso molecular, produzidos principalmente por fungos do gênero *Fusarium* e *Aspergillus*. As micotoxinas, principalmente as aflatoxinas, são consideradas fatores genotóxicos potencialmente perigosos, que causam danos ao DNA e levam ao desenvolvimento de doenças no homem e em animais(1).

Os equinos são vulneráveis à intoxicação por micotoxinas, principalmente às fumonisinas, pois, dentre os herbívoros, os equinos são mais suscetíveis quando comparados aos ruminantes. Isto ocorre porque nos ruminantes, uma vez que o alimento contaminado chega ao rúmen, a microbiota atua como uma barreira de proteção contra os metabólitos tóxicos produzidos pelas plantas e micotoxinas. Os equinos possuem o intestino delgado como o local primário de absorção de compostos xenobióticos, anterior ao processo fermentativo no intestino grosso, tornando-os mais suscetíveis que os ruminantes às micotoxinas(2).

Keller *et al*. (3) analisaram amostras de diferentes concentrados comerciais, aveia e rações produzidas em fazendas no Rio de Janeiro e verificaram que os gêneros mais frequentemente isolados foram *Aspergillus* (43%), *Penicillium* (26%) e *Fusarium* (11%). Os autores recomendaram estabelecer limites máximos de contagens fúngicas para espécies potenciais produtoras de aflatoxinas e fumonisinas nas dietas e alimentos para os equídeos.

Embora apresentem reconhecida importância em saúde pública e na sanidade animal, não há uma regulamentação uniforme para os limites de micotoxinas nos diferentes países, em particular nos países do MERCOSUL (Brasil/Argentina)(4). Esse fato reforça a necessidade do desenvolvimento de pesquisas sobre a avaliação toxicológica de micotoxinas nas espécies animais. Acresce de importância o fato de que a legislação brasileira, diferentemente de outros países, estabelece um limite máximo para as aflatoxinas de 50 µg kg^{-1} para a alimentação animal e não estabelece limites para as demais micotoxinas(5).
Assim, este trabalho tem por objetivo verificar a influência das micotoxinas, em especial a aflatoxina B₁, nos parâmetros hematológicos e na digestibilidade dos nutrientes de dietas dos equinos.

Material e Métodos

O experimento foi realizado na Escola de Sargentos das Armas, em Três Corações - MG, Brasil, em conformidade com os Princípios de Ética em Experimentação Animal, sendo aprovado pelo Comitê de Ética em Experimentação Animal (Protocolo Nº. 1212031017). O período experimental total foi de 40 dias, dividido em duas fases, sendo uma pré-experimental de 12 dias e a fase experimental de 28 dias. Foram utilizados 12 cavalos adultos da raça Brasileiro de Hipismo (9 fêmeas e 3 machos), com idade entre 5 e 8 anos e peso corporal médio de 458,02 ± 22,09 kg. Os animais foram distribuídos, de forma homogênea, em delineamento inteiramente casualizado, em esquema de parcela sub-dividida, com três tratamentos com quatro animais cada, sendo o animal a unidade experimental. Os tratamentos experimentais utilizados foram: Tratamento I = Dieta controle (0 μg/kg de AFB₁); Tratamento II = Dieta com 50 μg/kg de AFB₁ e Tratamento III = Dieta com 100 μg/kg de AFB₁. A AFB₁ foi adicionada na dieta base (Tabela 1).

Componentes da dieta	Tratamentos		
	T I	T II	T III
Feno Tifton/alfalfa (g)	7.400	6.900	6.600
Concentrado Comercial (g)	4.000	4.000	4.000
Concentração de micotoxinas na dieta (μg)			
Aflatoxina B₁	0	50	100
Zearalenona	2.758,1	2.687,5	2.655,2
Desoxinivalenol	21.564,7	20.689,9	20.289,0
Fumonisinas	2.240,0	2.240,0	2.240,0
Total da dieta diária (g)	11.400	10.900	10.600

A dieta base experimental foi composta por feno de tifton-85 (*Cynodon spp*) e alfafa (*Medicago sativa*), concentrado comercial (S Line -280, Royal Horse®), sal mineral e água à vontade, elaborada segundo o NRC⁶ para cavalos adultos.

Os cavalos permaneceram livres em seus paddocks durante o dia, sendo que à noite foram alojados em baias individuais. Os animais foram arraçoados conforme o regime alimentar da Unidade Militar, sendo 2 kg de concentrado às 05:00 h e 2 kg às 17:00 h; feno de alfafa às 10:00 h e de tifton-85 às 13:00 h e 20:00 horas. Diariamente, durante o
período experimental, às 17 horas, 1 kg de concentrado contendo AFB, foi preparado e fornecido aos animais, de acordo com o tratamento preconizado. Antes do período pré-experimental, todos os alimentos foram analisados e as concentrações de micotoxinas na dieta basal foram: 5.620 µg / kg de DON, 708 µg / kg de ZEA e 560 µg / kg de FB
. As micotoxinas foram quantificadas por cromatografia líquida de alta eficiência (CLAE) pelo Laboratório de Micologia da Universidade Federal de Minas Gerais.

A aflatoxina B, utilizada foi produzida a partir da fermentação de arroz por uma suspensão de esporos de Aspergillus parasiticus (NRRL 2999), no Laboratório de Micologia da UFRRJ, conforme método descrito por Shotwell et al.,(7) O conteúdo de AFB foi extraído e purificado através de uma coluna de Aflazon Mycosep® (Romer Labs Diagnostic GmbH., Tulln, Austria), de acordo com as instruções do fabricante, e uma aliquota (200 µl) foi derivatizada com 700 µl de ácido trifluoroacético-ácido acético-água (20:10:70, v/v). A aflatoxina derivatizada foi quantificada por Cromatografia Líquida de Alta Eficiência (CLAE), no Laboratório de Micologia e Micotoxinas da Universidade Federal de Minas Gerais, seguindo metodologia proposta por Trucksses et al.,(8)

As aflatoxinas foram quantificadas pela injeção de 20 µL de extrato de cada frasco em um sistema de HPLC, que consiste em uma bomba JASCO modelo LC-2000 (Tóquio, Japão) conectada a um detector de fluorescência programável JASCO modelo FP-2020 e um módulo de dados JASCO modelo 6937-j041A (ChromNAV). As separações cromatográficas foram realizadas em uma coluna de fase reversa C18 de aço inoxidável (Supelcosil™ LC-ABZ, 150 x 4,6 mm, tamanho de partícula de 5 µm) conectada a uma pré-coluna (Supelguard™ LC-ABZ, 20 x 4,6 mm, tamanho de partícula de 5 µm). A fase móvel era água: metanol: acetonitrila (4: 1: 1, v / v / v) a uma vazão de 1,0 ml min⁻¹. A fluorescência dos derivados da aflatoxina foi registrada em comprimentos de onda de excitação e emissão de λ 360 nm e λ 460 nm, respectivamente. As curvas padrão foram construídas com diferentes níveis de AFB,. Esta toxina foi quantificada pela correlação das alturas dos picos dos extratos da amostra com as das curvas padrão. O limite de detecção do método analítico foi de 0,4 ng g⁻¹.

A concentração de AFB obtida foi de 4,25 mg / kg, sendo diluída diariamente no concentrado comercial para obtenção das concentrações desejadas de acordo com o tratamento.

Ao final da fase experimental, os animais foram submetidos ao ensaio de digestibilidade pelo método de coleta parcial de fezes, utilizando-se o LIPE® como indicador externo, segundo metodologia descrita por Saliba(9) e Saliba et al.(10) Durante seis dias, do 21º ao 26º dia da fase experimental, foi administrada uma cápsula de 500 mg de LIPE®, no arraçoamento das 17:00 horas. Após 48 horas, iniciou-se a coleta de fezes, diretamente na ampola retal, no mesmo horário, durante cinco dias. As amostras diárias, por animal, formaram uma amostra composta ao final do período de coleta, que foi congelada a -18º C. A concentração de LIPE® nas fezes foi determinada por espectroscopia de infravermelho e a produção fecal foi estimada pela seguinte equação:

\[
\text{Produção Fecal (PF), g/dia} = \frac{\text{Quantidade de marcador ingerida pelo animal (g)}}{\text{Concentração de LIPE nas fezes , (g/%MS)}}
\]
As amostras de fezes e dos alimentos utilizados foram analisadas quanto aos teores de matéria seca, nitrogênio e extrato etéreo, segundo metodologia descrita em Silva & Queiroz\cite{11}, no Laboratório de Nutrição Animal da UFMG. As análises da fibra em detergente ácido (FDA) e da fibra em detergente neutro (FDN) foram realizadas de acordo com a metodologia descrita em Van Soest et al.\cite{12} A digestibilidade dos nutrientes foi estimada pela fórmula:

$$\text{Digestibilidade Aparente (\%) = } \frac{(\text{Nutriente ingerido}) - (\text{Nutriente excretado nas fezes})}{(\text{Nutriente ingerido})} \times 100$$

Antes, durante e após o período experimental foram realizadas análises clínicas, hematológicas e bioquímicas dos cavalos para verificar as condições de saúde, principalmente quanto à presenca de lesão hepática. Durante todo o período experimental, as condições clínicas dos animais foram monitoradas, diariamente, por um veterinário.

Durante quatro semanas, uma vez por semana, às 8h da manhã, foram coletadas amostras de sangue, iniciando-se no 1º dia do experimento, sendo a primeira coleta a amostra controle. As demais coletas se seguiram nos 7º, 14º, 21º e 28º dias de experimentação, tendo como objetivo a verificação da higidez dos animais com o monitoramento da função hematológica, renal e hepática. Para avaliação hematológica, as amostras de sangue foram coletadas em tubo a vácuo com EDTA. Foram realizadas as análises do volume globular (VG) pelo método de microhematócrito e a determinação do hemograma com o auxílio de um contador automático (Horiba ABX Micros 60®), sendo realizadas as seguintes análises: contagem global de leucócitos; contagem de hemácias, determinação dos teores de hemoglobina; cálculo do volume corpuscular médio (VCM); cálculo da concentração de hemoglobina corpuscular média (CHCM), cálculo da concentração de linfócitos, monócitos e neutrófilos maduros.

Para avaliação da bioquímica sanguínea, amostras de sangue foram coletadas em tubos a vácuo contendo fluoreto de sódio para determinação de glicose e em tubos a vácuo sem anticoagulante para determinação do colesterol, uréia, creatinina, γ-glutamil transferase (GGT), creatina quinase (CK), aspartato aminotransferase (AST), lactato desidrogenase (LDH) e fosfatase alcalina (FA). Após a coleta, as amostras foram centrifugadas a 7.000 rpm, por 10 minutos, para separação do plasma e soro. Aliquotas de 1,0 mL foram retiradas com pipeta automática e armazenadas a -20°C, em tubos de polipropileno de 1,5mL, até o momento da análise. Posteriormente, as análises foram realizadas pelo método enzimático/colorimétrico em espectrofotômetro (SB 190 – CELM®), sendo que as análises de colesterol, proteína total e albumina foram realizadas em analisador automático pelo método espectrofotométrico (Labmax Progress, Labtest Diagnóstica S.A., Lagoa Santa, Brasil). Em todas as análises foram utilizados kits diagnóstico (Labtest®), sendo que todas as análises foram realizadas no Laboratório de Bioquímica da Escola de Sargentos das Armas.

Os resultados foram avaliados quanto à normalidade pelo teste de Lilliefors e a homogeneidade pelo teste de Cochran e Bartlett. Os dados das variáveis hematológicas,
bioquímicas e da digestibilidade dos nutrientes foram submetidos à análise de variância (ANOVA) em esquema de parcela sub-dividida e as médias foram comparadas pelo teste de Tukey a 5% de significância, utilizando o Sistema de Análises Estatísticas e Genéticas – SAEG(13).

Resultados

Os níveis de aflatoxina nas dietas não influenciaram o consumo de matéria seca e a digestibilidade dos nutrientes (P>0.05) (Tabela 2).

Tabela 2. Consumo e coeficientes médios de digestibilidade aparente dos nutrientes em equinos alimentados com dietas com diferentes concentrações de AFB1 (% base na MS)

Variáveis	Tratamentos	Média	DP	CV (%)		
	Controle	50 µg kg⁻¹	100 µg kg⁻¹			
Consumo de Matéria Seca¹	2,5	2,3	2,4	2,4	0,2	6,8
Matéria Seca²	74,0	74,7	75,0	74,6	0,7	0,8
Proteína Bruta²	73,9	73,7	74,2	73,9	2,0	3,0
Extrato Etéreo²	81,5	81,8	82,6	81,9	1,1	1,3
Fibra em Detergente Neutro²	73,3	73,6	73,7	73,5	0,3	0,4
Fibra em Detergente Ácido²	69,0	68,0	67,1	68,0	2,0	2,9

¹% do Peso Corporal; ²Digestibilidade; %: Abreviações: DP, desvio padrão; CV, coeficiente de variação.

Tabela 3. Valores médios da hematologia de equinos alimentados durante 28 dias com diferentes níveis de AFB1 na dieta

Variáveis	Média	CV (%)	P-valor	Valores de Referência	
		AFB1	Tempo	AFB1 x Tempo	
Volume Globular (%)	33,8	5,9	0,334	0,001 NS	38-42¹
Eritócitos (10⁶ µL⁻¹)	7,5	5,9	NS	0,001 NS	7-11¹
Hemoglobina (g dL⁻¹)	11,4	5,5	0,253	0,000 NS	11-17¹
VCM (fL)	45,4	0,9	NS	0,003 NS	42-47¹
CHCM (%)	33,7	1,2	NS	0,000 NS	31-38,6²
Leucócitos totais (10³ µL⁻¹)	7,9	8,5	0,078	0,000 0,325 NS	6-11¹
Linfócitos (10³ µL⁻¹)	3,5	16,3	NS	0,003 0,124 NS	2-5,5¹
Monócitos (10³ µL⁻¹)	1,4	17,7	NS	0,028 0,025 NS	0,2-0,8¹
Neutrófilos maduros (10³ µL⁻¹)	2,9	12,3	0,000	0,001 0,027 NS	2,3-8,6³

¹Hodgson et al.(14); ²Carlson(15); ³Robinson and Sprayberry(16); Abreviações: CV: Coeficiente de Variação; VCM: Volume Corpuscular Médio; CHCM: Concentração de Hemoglobina Corpuscular Média.
Os resultados hematológicos das amostras de sangue semanais mostraram uma influência dos intervalos de tempo de coleta para todas as variáveis avaliadas (P <0,05) (Tabela 3). A AFB₁ teve uma influência direta nas concentrações dos neutrófilos maduros e a aflatoxina, em função do tempo, nas concentrações de monócitos e neutrófilos maduros (P <0,05). As demais variáveis hematológicas não foram afetadas pela presença de AFB₁ na dieta (P > 0,05).

A concentração média de leucócitos e linfócitos totais não foi afetada pela presença de AFB₁ na dieta. No entanto, a presença da AFB₁ influenciou as concentrações de monócitos e neutrófilos maduros (P <0,05) (Tabela 4). A concentração de monócitos foi influenciada pelos tempos de coleta e também houve interação da AFB₁ no decorrer desse tempo (P <0,05). Mudanças irregulares na concentração de monócitos foram observadas nos cavalos do grupo controle e nos cavalos alimentados com dieta com 100 µg kg⁻¹ de AFB₁. No entanto, a interação da AFB₁ com os tempos de coleta foi mais claramente demonstrada nos cavalos alimentados com dieta com 100 µg kg⁻¹ de AFB₁, com redução da concentração de monócitos ao longo dos 28 dias do período experimental.

Tabela 4. Concentração média de Monócitos e Neutrófilos maduros em equinos alimentados durante 28 dias com diferentes concentrações de AFB₁ na dieta
Tempo (dias)

Zero
7
14
21
28
Zero
7
14
21
28
Monócitos
Neutrófilos maduros

As médias nas linhas seguidas de diferentes letras maiúsculas, diferiram no teste de Tukey (P <0,05). As médias na coluna seguidas de diferentes letras minúsculas, diferiram no teste de Tukey (P <0,05):

¹Coeficiente de Variação (CV): 17.6 %. ²CV: 12.3 %
A presença de AFB$_1$ na dieta influenciou diretamente a concentração de neutrófilos maduros (P <0,05). Essa concentração foi influenciada pelos tempos de coleta, isoladamente, e também pela interação da AFB$_1$ no decorrer desse tempo (P <0,05). Os equinos alimentados com dieta contendo 100 µg kg$^{-1}$ de AFB$_1$ apresentaram maior concentração média de neutrófilos maduros do que os outros grupos; entretanto, a resposta não foi linear, sendo que a concentração de neutrófilos maduros aos 28 dias foi inferior à apresentada aos 21 dias para o tratamento em questão.

Os resultados da bioquímica sérica (Tabela 5) demonstraram que houve efeito do tempo entre as coletas para todas as variáveis (P <0,05). Não houve interação da AFB$_1$ no intervalo de tempo entre as coletas, bem como não houve efeito direto da AFB$_1$ nas variáveis estudadas (P> 0,05), exceto para a atividade das enzimas creatina quinase (CK) e fosfatase alcalina (FAL).

Tabela 5. Valores médios da bioquímica sérica de equinos alimentados durante 28 dias com diferentes níveis de AFB$_1$ na dieta

Variáveis	Média	CV (%)5	P-valor	Valores de referência		
			AFB$_1$ Tempo	AFB$_1$ x Tempo		
Proteinas totais (g dL$^{-1}$)	5,33	22,39	0,073	0,000	0,133	5,2-7,92
Albuminas (g dL$^{-1}$)	2,11	22,98	NS	0,000	0,144	2,6-3,72
Globulinas (g dL$^{-1}$)	3,21	22,44	0,092	0,000	0,126	2,6-4,02
Colesterol (mg dL$^{-1}$)	86,18	20,25	0,211	0,000	0,090	75-1501
Ureia (mg dL$^{-1}$)	29,46	20,40	0,243	0,000	NS	22-424
Creatinina (mg dL$^{-1}$)	0,95	14,65	0,245	0,000	NS	1,2-1,84
GGT (U L$^{-1}$)	7,73	21,81	0,268	0,182	0,331	9-264
AST (U L$^{-1}$)	288,73	24,01	0,058	0,208	NS	197-4544
CK (U L$^{-1}$)	295,42	32,41	0,023	0,000	0,440	116-2904
LDH (U L$^{-1}$)	845,17	37,97	0,090	0,319	NS	162-4122
FAL (U L$^{-1}$)	67,68	20,93	0,012	0,026	NS	100-5003

1Robinson and Sprayberry$^{(14)}$; 2Gonzalez and Silva$^{(17)}$; 3Kerr$^{(18)}$; 4Padilha et al.$^{(19)}$; 5Coeficiente de Variação.

A atividade sérica da creatina quinase (CK) e da fosfatase alcalina (FAL) foi influenciada pela concentração de AFB$_1$ na dieta, apresentando maior atividade no tratamento com 100 µg kg$^{-1}$ de AFB$_1$ (Tabela 6).
Discussão

O consumo médio de matéria seca foi de aproximadamente 24,0 g kg\(^{-1}\)d\(^{-1}\) do peso corporal, adequado para equinos com média de 450 kg, segundo o NRC\(^6\). A presença de micotoxinas nas concentrações observadas nas dietas experimentais e as possíveis interações entre elas não foram suficientes para alterar o consumo e o coeficiente de digestibilidade aparente dos nutrientes estudados. A recusa alimentar não foi observada, indicando que nas condições deste estudo não ocorreram alterações significativas nas variáveis analisadas.

Esses resultados são semelhantes aos encontrados por Khol-Parisini et al.\(^{20}\), que observaram algum atraso no consumo da ração contaminada, sem impacto no consumo voluntário de forragem. Nesse estudo, os equinos consumiram 2 kg de aveia / dia,
contendo 20,2 mg / kg de DON, correspondendo a uma ingestão diária entre 6,9 a 9,5 mg/100 kg de peso durante 14 dias. Da mesma forma, Schulz et al.(21) não observaram efeitos adversos à saúde de equinos alimentados, por um período de 21 dias, com feno naturalmente contaminado com concentrações de DON variando de 9,37 a 18,6 mg / kg na MS, que correspondeu a uma ingestão diária de 5 a 75 mg / kg de peso corporal. Neste estudo, a ingestão média diária de micotoxinas em μg por kg / PC variou de 0 a 0,2 para AFB₁; 4,8 a 5,0 para FB₁; 5,7 a 6,1 para ZEA e 43,9 a 47,6 para DON. Embora os níveis de micotoxinas por kg/PV utilizados neste trabalho tenham sido baixos, o tempo de duração do período experimental pode não ter sido longo o suficiente para provocar efeitos no metabolismo dos animais, considerando as variáveis estudadas.

Não foi observada interação da AFB₁ nos valores de Volume Globular (GV), eritrócitos, hemoglobina, MCV e MCHC, apenas efeito dos tempos de coleta para essas variáveis (P <0,05). Os valores encontrados estiveram dentro dos limites fisiológicos para a espécie equina(16-18).

O efeito imunogênico da aflatoxina ou tricotecenos, como o desoxinivalenol (DON) nos leucócitos ou mesmo um efeito aditivo ou sinérgico entre as micotoxinas, tem sido investigado(22,23). A maior concentração de neutrófilos maduros nos equinos alimentados com dietas com 50 e 100 μg kg⁻¹ de AFB₁ sugere uma maior resposta imunológica desses grupos. No entanto, as médias semanais dos equinos alimentados com 100 μg kg⁻¹ de AFB₁ na dieta mostraram que não houve diferença significativa em relação aos equinos do grupo controle. Nos três tratamentos houve redução na concentração de neutrófilos maduros ao longo dos 28 dias, sendo essa redução mais significativa nos equinos alimentados com a dieta basal e com a dieta de 50 μg kg⁻¹ de AFB₁.

A presença de DON nas dietas é importante porque pode induzir danos ao fígado e diminuição da resposta imune(24,25) e essa resposta pode ser maior nos animais que recebem a dieta com maior concentração de AFB₁, devido a um possível efeito aditivo ou sinérgico. No entanto, os cavalos alimentados com dieta rica em AFB₁ apresentaram maior concentração de neutrófilos maduros, sugerindo que os cavalos foram tolerantes aos efeitos adversos dessa micotoxina, nas concentrações utilizadas, no período observado. Esse achado está de acordo com a revisão realizada por Caloni e Cortinovis(26) e Cortinovis et al.(27), que verificaram que equinos alimentados por 40 dias com cevada naturalmente contaminada com DON entre 36 e 44 mg kg⁻¹ não apresentaram efeitos adversos, como a recusa de alimentação ou qualquer alteração dos parâmetros bioquímicos e hematológicos sanguíneos. Caloni e Cortinovis(26) revisando a intoxicação experimental por AFB₁ em equinos, relataram que, embora inconclusiva, a aflatoxicose pode ocorrer com concentrações entre 0,5 e 1,0 mg / kg na matéria seca das dietas. Essas concentrações induzem alterações clínicas e danos hepáticos dependendo da duração do tempo de exposição.

Esperava-se que níveis mais elevados de AFB₁ tivessem algum efeito na função hepática e renal, com reflexos na produção de proteínas do sangue e na atividade enzimática. (1,28). Entretanto, a quantidade máxima de AFB₁ ingerida pelos cavalos de acordo com o tratamento experimental foi de 9,4 μg / kg de MS, por um período de 28 dias, sugerindo que nas condições estudadas a quantidade ingerida pode não ter sido suficiente para causar qualquer mudança nos parâmetros avaliados, nem mesmo uma possível ação.
A aflatoxina B1 é uma ameaça silenciosa para os animais, especialmente cavalos. Assim, recomenda-se que precauções apropriadas devem ser tomadas para proteger esses animais.
Digestibilidade e efeitos hematológicos da aflatoxina B1 em equinos
Braga A.C. et al.

(EQUILAB). Aos integrantes da Escola de Sargentos do Exército (ESA), em especial ao Comandante (Gen Martinelli), ao Curso de Cavalaria/Seção de Equitação, ao Posto Médico/Laboratório Clínico e à Seção Veterinária, pelo apoio incondicional na realização desta pesquisa.

Conflito de interesses

Os autores declaram não haver conflito de interesses.

Referências

1. Buszewska-Forajta M. Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon (Oxford), 2020;182:34–53.

2. Fink-Gremmels J, Spronk L. Hygienic quality of feed: implications of feed contamination with moulds and mycotoxins on equine health and performance. In: European Equine Health and Nutrition Congress. Belgium: European Equine Health and Nutrition Congress.; 2013. p. 63–7.

3. Keller KM, Queiroz BD, Keller LAM, Ribeiro JMM, Cavaglieri LR, González-Pereyra ML, Dalcer AM, Rosa CAR. The mycobiota and toxicity of equines feeds. Vet Res Commun. 2007;(31):1037–45.

4. Anvisa/MS. Resolução de Diretoria Colegiada – RDC N° 07, de 18 de fevereiro de 2011. Ministério da Saúde - MS Agência Nac Vigilância Sanitária - ANVISA. 2011;2011:8.

5. Ministério da Agricultura Pecuária e Abastecimento (MAPA). Portaria MAPA/SNAD/SFA n° 7, de 09 de novembro de 1988. Diário Of da União. 1988;09 nov.(Seção 1):21.968.

6. National Research Council - NRC. Nutrient requirements of horses. Washington, D.C: National Academies Press, 6ª ed Rev; 2007. p. 341.

7. Shotwell OL, Hesseltine CV, Stubblefield RD, Sorenson WG. Production of aflatoxin on rice. Appl Microbiol. 1966;(14):425–9.

8. Trucksess MW, Stack ME, Nesheim S, Albert R, Romer T. Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1 and G2 in corn, almonds. Brazil nuts, peanuts, and pistachio nuts: Collaborative study. J AOAC Int. 1994;77:1512–21.

9. Saliba EOS. Uso de indicadores: Passado, presente e futuro. Proceedings of Conference of Markers on Animal Nutrition.2005. Belo Horizonte, Brazil, pp. 4–22.

10. Saliba EOS, Faria EP, Rodrigues NM, Moreira GR, Sampaio, I.B.M.; Saliba J,S.; Gonçalves, L.C.; Borges, I.; Borges, A.L.C. Use of Infrared Spectroscopy to Estimate Fecal Output with Marker Lipe® Case Study. Int J Food Sci Nutr Diet.2015. S4:001, 1-10.

11. Silva DJ, Queiroz A. Análise de alimentos: métodos químicos e biológicos. 3ª. Universidade Federal de Viçosa, editor. UFV-Viçosa-MG; 2002. 235 p.

12. Van Soest PJ, Robertson JB, Lewis B. Development of a comprrehensive sytem of feed analyses and its application to forages. J Anim Sci. 1991;74:3583–97.

13. Sistema de análises estatísticas e genéticas - SAEG. Viçosa-MG: Universidade Federal de Viçosa; 2007. p. 301.

14. Hodgson DR, McKeever KH and McGowan CM. The athletic horse: principles and practice of equine sports medicine. In: Hodgson, D.R.; Rose RJ, editor. Hematology and Biochemistry. 2nd ed. Philadelpia: Elsevier Saunders; 2014. p. 63–79.

15. Carlson GP. Coleta de amostras e interpretação dos exames laboratoriais. In: Smith B., editor. Tratado
26. Calonzi F, Cortinovis C. Toxicological effects of aflatoxins in horses. Vet J. 2011;188:270–3. Available from: http://dx.doi.org/10.1016/j.tvjl.2010.06.002

27. Cortinovis C, Battini M, Calonzi F. Deoxynivalenol and T-2 Toxin in Raw Feeds for Horses. J Equine Vet Sci. 2012;32:72–4. Available from: http://dx.doi.org/10.1016/j.jevs.2011.08.002

28. Riet-Correa F, Rivero R, Odriozola E, Adrien ML, Medeiros RMT, Schild AL. Mycotoxicoses of ruminants and horses. J Vet Diagnostic Investig. 2013;25:692–708.

29. Maziero MT, Bersot LS. Micotoxinas em alimentos produzidos no Brasil. Rev Bras Prod Agroindustriais. 2015;12(1):89–99.

30. Fazio F, Assenza A, Tosto F, Casella S, Piccione G, Caola G. Training and haematochemical profile in Thoroughbreds and Standardbreds: A longitudinal study. Livest Sci. 2011;141:221–6. Available from: http://dx.doi.org/10.1016/j.livsci.2011.06.005

31. Ramasamy S, Wang E, Hennig B, Merrill AH. Fumonisin B1 alters sphingolipid metabolism and disrupts the barrier function of endothelial cells in culture. Toxicology and Applied Pharmacology. 1995;133:343–8.

32. Abdul NS, Marnewick JL. Fumonisin B1-induced mitochondrial toxicity and hepatoprotective potential of rooibos: An update. J Appl Toxicol. 2020; Available from: https://doi.org/10.1002/jat.4036

33. Sloet van Oldruitenborgh-Oosterbaan MM. Appropriate blood variables helpful in diagnosing (sub) clinical disease in the horse. In: Lindner A, editor. Conference on Equine Sports Medicine and Science. Cordoba, Spain: Wageningen Academic Publishers; 1998. p. 14–33.

34. Zaher DM, Mohammed IG, Omar HA, Aljareh SN, Al-Shamma SA, Ali AJ, Zaiž B, Iqba J. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch Pharm. 2020;353. Available from: https://doi.org/10.1002/ardp.202000011
35. Voss KA, Smith GW, Haschek WM. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol. 2007;137:299–325.

36. Kamle M, Mahato D K, Devi S, Lee KE, Kang SG, Kumar P. Human Health and their Management Strategies. Toxins (Basel). 2019;1–23.

37. Trueman KF, Lumsden JH, Mcsherry BJ. Examination of the origin of increased equine serum alkaline phosphatase concentrations. Can Vet J.1983;24:108–11.