On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

A. Achterberg\(^\dagger\), M. Ackermann\(^\alpha\alpha\), J. Adams\(^\hbar\), J. Ahrens\(^\pounds\), D. W. Atlee\(^\ddagger\), J. N. Bahcall\(^s\), X. Bai\(^r\), B. Baret\(^\mathbf{f}\), M. Bartelt\(^\ddagger\), S. W. Barwick\(^\kappa\), R. Bay\(^\mathbf{c}\), K. Beattie\(^\mathbf{d}\), T. Becka\(^\pounds\),
J. K. Becker\(^\ddagger\), K.-H. Becker\(^\ddagger\), J.-H. Becker\(^z\), P. Berghaus\(^\mathbf{c}\), D. Berley\(^\mathbf{i}\), E. Bernardini\(^\alpha\alpha\), D. Bertrand\(^\mathbf{e}\), D. Z. Besson\(^\mathbb{f}\), E. Blaufuss\(^\mathbb{I}\),
D. J. Boersma\(^o\), C. Bohm\(^u\), S. Böser\(^\alpha\alpha\), O. Botner\(^x\),
A. Bouchta\(^x\), J. Braun\(^o\), C. Burgess\(^u\), T. Burgess\(^u\),
T. Castermans\(^q\), D. Chirkin\(^d\), J. Clem\(^r\), B. Collin\(^w\),
J. Conrad\(^x\), J. Cooley\(^o\), D. F. Cowen\(^w\), M. V. D’Agostino\(^c\),
A. Davour\(^x\), C. T. Day\(^d\), C. De Clercq\(^\mathbf{f}\), P. Desiati\(^o\),
T. DeYoung\(^w\), J. Dreyer\(^j\), M. R. Duvoort\(^y\), W. R. Edwards\(^d\),
R. Ehrlich\(^i\), R. W. Ellsworth\(^i\), P. A. Evenson\(^r\), A. R. Fazely\(^b\),
T. Feser\(^p\), K. Filimonov\(^c\), T. K. Gaisser\(^r\), J. Gallagher\(^n\),
R. Ganugapati\(^o\), H. Geenen\(^z\), L. Gerhardt\(^k\), A. Goldschmidt\(^d\),
J. A. Goodman\(^i\), M. G. Greene\(^w\), S. Grullon\(^o\), A. Groß\(^j\),\(^*\),
R. M. Gunasingha\(^b\), A. Hallgren\(^x\), F. Halzen\(^o\), K. Han\(^h\),
K. Hansø\(^o\), D. Hardtke\(^c\), R. Hardtke\(^t\), T. Harenberg\(^z\),
J. E. Hart\(^w\), T. Hauschildt\(^r\), D. Hays\(^d\), J. Heise\(^v\), K. Helbing\(^d\),
M. Hellwig\(^p\), P. Herquet\(^q\), G. C. Hill\(^o\), J. Hodges\(^o\),
K. D. Hoffman\(^i\), K. Hoshina\(^o\), D. Hubert\(^f\), B. Hughey\(^o\),
P. O. Hulth\(^u\), K. Hultqvist\(^u\), S. Hundertmark\(^u\), A. Ishihara\(^o\),
J. Jacobsen\(^d\), G. S. Japaridze\(^a\), A. Jones\(^d\), J. M. Joseph\(^d\),
K.-H. Kampert\(^z\), A. Karle\(^o\), H. Kawai\(^g\), J. L. Kelley\(^o\),
M. Kestel\(^w\), N. Kitamura\(^o\), S. R. Klein\(^d\), S. Klepser\(^\alpha\alpha\),
G. Kohnen\(^q\), H. Kolanoski\(^\alpha\alpha\), L. Köpke\(^p\), M. Krasberg\(^o\),
K. Kuehn\(^k\), H. Landsman\(^o\), R. Lang\(^\alpha\alpha\), H. Leich\(^\alpha\alpha\),
M. Leuthold\(^\alpha\alpha\), I. Liubarsky\(^m\), J. Lundberg\(^x\), J. Madsen\(^t\),
K. Mase\(^g\), H. S. Matis\(^d\), T. McCauley\(^d\), C. P. McParland\(^d\),
A. Meli\(^j\), T. Messarius\(^l\), P. Mészáros\(^w\), R. H. Minor\(^d\),

Preprint submitted to Elsevier Science 21 March 2022
P. Miočinović, H. Miyamoto, A. Mokhtarani, T. Montaruli, A. Morey, R. Morse, S. M. Movit, K. Münich, R. Nahnhauer, J. W. Nam, P. Nießen, D. R. Nygren, H. Ögelman, Ph. Olbrechts, A. Olivas, S. Patton, C. Peña-Garay, C. Pérez de los Heros, D. Pieloth, A. C. Pohl, R. Porrata, J. Pretz, P. B. Price, G. T. Przybylski, K. Rawlins, S. Razzaque, F. Refflinghaus, E. Resconi, W. Rhode, M. Ribordy, S. Richter, A. Rizzo, S. Robbins, C. Rott, D. Rutledge, H.-G. Sander, S. Schlenstedt, D. Schneider, D. Seckel, S. H. Seo, S. Seunarine, A. Silvestri, A. J. Smith, M. Solarz, C. Song, J. E. Sopher, G. M. Spiczak, C. Spiering, M. Stamatikos, T. Stanev, P. Steffen, D. Steele, T. Stezelberger, R. G. Stokstad, M. C. Stoufer, S. Stoyanov, K.-H. Sulanke, G. W. Sullivan, T. J. Sumner, I. Taboada, O. Tarasova, A. Tepe, L. Thollander, S. Tilav, P. A. Toale, D. Turčan, N. van Eijndhoven, J. Vandenbroucke, B. Voigt, W. Wagner, C. Walck, H. Waldmann, M. Walter, Y.-R. Wang, C. Wendt, C. H. Wiebusch, G. Wikström, D. R. Williams, R. Wischniewski, H. Wissing, K. Woschnagg, X. W. Xu, G. Yodh, S. Yoshida, J. D. Zornoza and P.L. Biermann

aCTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
bDept. of Physics, Southern University, Baton Rouge, LA 70813, USA
cDept. of Physics, University of California, Berkeley, CA 94720, USA
dLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
eUniversité Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
fVrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium
gDept. of Physics, Chiba University, Chiba 263-8522 Japan
hDept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
iDept. of Physics, University of Maryland, College Park, MD 20742, USA
jDept. of Physics, Universität Dortmund, D-44221 Dortmund, Germany
kDept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA
Abstract

The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper.

The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.
1 Introduction

With AMANDA-II, different searches for high energy neutrino point sources have been performed [1,2,3], showing that neither the all sky search for hot spots in the neutrino sky nor the search at predefined and astrophysically motivated source positions has led to a discovery of a statistically significant neutrino signal. This however does not exclude the possibility that the signal of a superposition of generically equal sources, each contributing below the individual significance threshold, sums up to a significant signal for that specific source type. In case of no detection, the stacked signal may be used to obtain a limit on neutrino emission from that generic source type. Source stacking methods have been applied in gamma-ray astronomy, e.g., in searches for non-blazar AGN classes at GeV photon energies [4,5].

AGN belong to the most promising potential neutrino sources. Since the detailed mechanism of neutrino production in AGN is still unknown, in this paper a neutrino-production-model free attempt to classify the sources according to their geometrical properties and electromagnetic emission is introduced. Based on this classification, we develop an AGN stacking analysis to search for TeV neutrinos.

In Sec. 2, we describe in detail the adopted systematic classification of AGN based on an axisymmetric model [6]. Possible neutrino production scenarios in AGN are reviewed in Sec. 3. Pion production and subsequent decay results in correlated neutrino and photon production. Neutrino fluxes from these reactions are expected to be of the same order of magnitude as the gamma-ray fluxes. However, photons interact in the source environment possibly leading to a different photon spectrum than the neutrino spectrum. In Sec. 4, we define catalogs of AGN classes based on our classification, and select from them interesting neutrino candidate sources. Hence, we order sources according to their photon flux at different energies. In Sec. 5, a procedure is presented to

---

1 Deceased
2 affiliated with Institut für Physik, Humboldt Universität zu Berlin, D-12489 Berlin, Germany
3 on leave of absence Università di Bari, Dipartimento di Fisica, I-70126, Bari, Italy
4 affiliated with Dept. of Chemistry and Biomedical Sciences, Kalmar University, S-39182 Kalmar, Sweden
determine the optimum number of sources from each catalog to be included in the stacking analysis. This procedure is applied to determine source samples to be analyzed with the AMANDA neutrino telescope, located at the South Pole [7]. Thus selected sources in AMANDA’s field of view are in the Northern sky. Assuming hypothetical distributions of the source strength as a function of the ordered source number we determine under which conditions a gain in sensitivity is obtained with the source stacking method with respect to other methods [1,8]. In Sec. 6, we illustrate our method by evaluating the signal from the resulting source samples using a data set collected by AMANDA in the year 2000 [1].

2 AGN classification

In this section we describe a possible classification of AGN useful to define catalogs of sources to be stacked. Historically, a large variety of AGN (like Seyfert galaxies, radio galaxies or quasars) have been named due to their appearance from Earth-based telescopes. The observational differences among the various AGN types can be partially explained with a geometrically axisymmetric model as the result of different inclination angles, defined as the angle between the line of sight and the AGN axis [6]. A pictorial scheme of an AGN showing the basic ingredients of the axisymmetric model is shown in Fig. 1. It consists of a rotating supermassive black hole, two jets with matter outflowing along the rotation axis and an accretion disk of matter perpendicular to the rotation axis. Aside from these geometrical differences, others will be outlined below.

We describe the AGN classification illustrated in Fig. 2 based on the morphology of the host galaxy, the luminosity and the inclination angle. AGN are generally divided into radio-loud and radio-weak sources as indicated in the first branching of the scheme. Radio-loud AGN (left branch of Fig. 2) can be classified according to radio jet lengths: compact objects, where the jets get stuck in dense matter [9], are discussed with more detail in Sec. 2.1 and AGN with fully evolved jets of a length of 100 kpc up to several Mpc in Sec. 2.2.

Typically, AGN spectra are composed of a thermal part, the so-called blue bump with the maximum at optical-UV frequencies, and a non-thermal part extending over up to 20 orders of magnitude in frequency. The blue bump is interpreted as thermal radiation of the warm inner accretion disk. The low energy component of the non-thermal spectrum in the radio to soft X-ray regime is assumed to be due to synchrotron radiation of electrons gyrating in a magnetic field. The origin of the high-energy component, if present, can be explained by hadronic or leptonic models (see Sec. 3). The non-thermal high energy photon emission is known to be highly variable on a wide range of time
scales, from less than one hour to months [10]. Within the thermal spectrum, some emission lines can be found.

Emission lines are classified as broad lines or as narrow lines. The axisymmetric model assumes that broad lines are due to fast moving dust clouds ($v \approx 1000 \text{ km/s} - 5000 \text{ km/s}$) near the accretion disk. On the other hand, narrow lines originate in slowly moving dust clouds ($v \approx 500 \text{ km/s}$) outside the torus. Depending on the angle of observation, the broad line emission from the clouds at the center may or may not be hidden by the torus. This model is confirmed by broad line observations in scattered light from some AGN, which show in direct light only narrow lines [11].

The radio emission of AGN is assumed to originate mostly in relativistic jets where it is caused by synchrotron radiation of electrons moving along the jet. AGN are called radio-loud if the ratio of the radio flux at 5 GHz to the optical flux is larger than 10 [6]. Radio-loud AGN are located in elliptical galaxies, while radio-weak AGN are located in spiral galaxies [12], and rarely in ellipticals.

Observations and jet models [13] show a flat radio spectrum for the flux density $F$ ($F \propto \nu^\alpha$, $\alpha > -0.5$)\(^5\) for the radio core, i.e. for the inner part of the jet. In contrast, radio lobes and hot spots located at the outer end of the jet typically show a steeper spectrum with spectral indices from $-0.5$ to $-0.6$ in hot spots and from $-0.8$ to $-1.0$ in lobes.

For the radio-weak AGN (right branch of Fig. 2), a luminosity dependent classification in optical wavelengths yields the division into quasars and Seyfert galaxies. The intrinsically stronger objects are the radio-weak quasars and the Radio Intermediate Quasars (RIQ) [14]. The radio-weak quasars are seen from moderate inclination angles ($20^\circ - 60^\circ$), the RIQ are interpreted as the same objects, but seen from smaller angles. The radio emission of RIQ is relativistically beamed, similarly to blazars (see Sec 2.2) [14]. The weaker objects are the Seyfert galaxies, classified as Seyfert I galaxies, if the core and the broad line region are visible, or Seyfert II galaxies, if the core is obscured by the torus [15]. Up to now, no Seyfert-like object with beamed emission has been observed.

\(^5\) The spectral index $\alpha$ usually is determined between 2.7 GHz and 5 GHz.
Fig. 1. Scheme of an AGN with a black hole in the center and an accretion disk perpendicular to the direction of two jets along its rotation axis. The different inclination angles of the line of sight with respect to the jet for blazars, steep spectrum radio quasars and radio galaxies are indicated by arrows. Image adapted from [6].

Fig. 2. AGN classification according to host galaxy, luminosity and inclination angle.

2.1 GPS and CSS

There is a substantial fraction of sources (≈ 1/3 when selecting the strongest sources at 5 GHz) which shows, for frequencies above a certain turnover value, a steep radio spectrum from the compact radio core. If the turnover is in the MHz range, the source is classified as Compact Steep Spectrum source (CSS), if it is in the GHz range, the source is a GHz Peaked Source (GPS). These
sources are significantly smaller than usual AGN: the GPS show linear sizes below 1 kpc, the CSS in the range of 1-15 kpc. GPS and CSS are not distinct source classes, since there is a continuous transition from the compact GPS to the slightly larger CSS. As pointed out in [9], the turnover frequency $\nu_m$ decreases with growing source size $l$ as

$$\nu_m \propto l^{-0.65}.$$  \hspace{1cm} (1)

The extremely high power of the GPS/CSS suggests a central engine similar to those of other AGN to provide sufficient energy.

The source compactness can be explained by the assumption that jets get stopped by interactions with dense matter. The most common interpretation of the turnover observed for this source class is the model of synchrotron self-absorption, although free-free absorption on thermal electrons is not excluded. The sharpness of the maxima found implies that the zone of the bulk radio emission is very small [16], presumably located at the outer end of the jet. GPS/CSS could be young states of radio-loud AGN evolving into larger radio sources. The population statistics of GPS/CSS and extended radio-loud AGN are in agreement with this picture, provided they stay in the compact state for a significant part of their lifetime.

For neutrino production, this class is of particular interest if proton acceleration takes place within the central part of the jet. As a matter of fact, the dense matter surrounding the source provides an ideal target for pion production. Since jets get stopped in the interaction zone, the predicted neutrino production is isotropic or only slightly beamed. Thus, the inclination angle is considered to have only small effects on the expected neutrino flux on Earth from these sources.

2.2 Radio-loud AGN with 100 kpc scale jets

Two different jet morphologies have been observed for radio-loud AGN with extended jets correlated with the radio luminosity at 178 MHz [17]. These AGN can be distinguished according to their luminosity: the critical value of the luminosity is $L_{178} = 2.5 \cdot 10^{26}$ W/Hz (see Fig. 2), corresponding to a bolometric luminosity of $10^{46}$ erg/s [18,19]. High luminosity AGN are characterized by powerful jets extending far outside the host galaxy. The increasing jet luminosity at the outer end produces extended radio lobes and the so-called hot spots. These objects appear as Flat Spectrum Radio Quasars (FSRQ), as Steep Spectrum Radio Quasars (SSRQ) or as FR-II radio galaxies [17]. Low luminosity AGN, divided in BL Lacs or as FR-I radio galaxies, have fainter jets. They show decreasing radio emission with growing distance from the
central black hole and have no hot spots.

This classification of radio-loud AGN assumes a typical value of the Lorentz factor $\gamma \approx 10$ for the bulk motion in the jet [6]. This value can also explain the apparent superluminal motion of radio knots in blazar jets [20].

Radio-loud AGN show different appearances for different inclination angles. This is due to the relativistic Doppler boost of the emission from the jet and the obscuration of the inner core by the torus. For large viewing angles to the jet axis (close to 90°), the torus obscures the inner part of the AGN. Hence, the broad line region and the thermal continuum radiation of the accretion disk cannot be seen. In this case, the AGN is called a radio galaxy.

If the opening angle of the torus is large enough, there is a range for the inclination angle, where the inner core is visible and the relativistic Doppler factor is smaller than 1. In this case the core is seen with its blue bump from the inner accretion disk and broad emission lines are present in the spectrum. The radio spectrum of these objects is still steep and lobe-dominated. Only high luminosity objects show this morphology, then appearing as SSRQ with a bright optical core and strong broad emission lines. The lack of similar low luminosity objects is still a matter of debate. Possibly, the inner core is obscured by the torus until the inclination angle is so small that the emission becomes Doppler boosted [19].

For very small inclination angles ($\lesssim 12^\circ$), the jet radiation is Doppler boosted due to the relativistic motion of the bulk outflow towards the observer. These objects are characterized by a flat radio spectrum, strong variability and polarization. FSRQ and BL Lac objects can be combined into the blazar class since both are characterized by strong beaming effects. The flat radio spectra of blazars can be explained by the dominance of the boosted flat-spectrum core over the non-boosted steep-spectrum radio lobes and will be used as selection criterion for blazars. A flat spectral index in radio is an indication of optical thickness [13].

BL Lac objects are low-luminosity objects with a FR-I type jet, while FSRQ are considered as the high luminosity objects (FR-II jet). The BL Lac objects are commonly divided into high-energy cutoff BL Lac (HBL) and low-energy cutoff BL Lac (LBL), referring to the maximum energy of the electron synchrotron spectrum. HBL are relatively weak in radio flux, strong in X-ray flux and bolometrically less luminous than LBL. A distinction between these classes is usually made by taking into account whether the radio-to-X-ray spectral index $\alpha_{\nu X}$ (with $F(\nu) \propto \nu^{\alpha_{\nu X}}$) is bigger (LBL) or smaller (HBL) than -0.75 [6]. The high energy $\gamma$ emission of HBL and LBL differs: all confirmed AGN TeV sources are HBL [21]. In contrast, the stronger AGN GeV (EGRET)

---

6 However, there are indications of TeV radiation from BL Lacertae (LBL) and
sources consist of LBL and FSRQ, and only 2 of the 6 confirmed TeV $\gamma$ AGN have been detected by EGRET, with only moderate fluxes [22].

3 Selection of neutrino source candidates

Accelerated proton interactions with ambient photons or matter lead to neutrino production through the reactions:

$$p\gamma \rightarrow \Delta^+ \rightarrow n\pi^+$$
$$pp \rightarrow \pi^\pm + N$$
$$\pi^\pm \rightarrow \mu^\pm\nu_\mu \rightarrow e^\pm\nu_e\nu_\mu\nu_\mu,$$

and similar reactions for neutrons. These processes are always accompanied by neutral pion production. Neutrino and gamma ray fluxes are expected to be of the same order of magnitude. Since in most scenarios, proton and target photon spectra fall steeply with energy, higher resonances and multi-pion production represent a small correction to pion production. The acceleration of the protons is assumed to be due to shock acceleration which may take place in the relativistic jet [20,23] or in the accretion disk [24,25]. Due to low plasma density in AGN jets, the $p\gamma$ interactions are likely to be dominant over $pp$ [20]. This is also indicated by the lack of absorption lines in AGN X-ray spectra [26]. An exception from this consideration is given, if $pp$ interactions take place at the inner edge of the accretion disk [25].

If acceleration takes place in the disk, electromagnetic cascades initiated by photons from neutral pion decay would lead to a non-thermal X-ray spectrum. However, measured AGN X-ray spectra and the diffuse X-ray flux show the dominance of a thermal flux peaked around 100 keV [27]. This discrepancy might be solved by assuming that the non-thermal X-ray spectrum contributes only 30% to the measured X-ray flux [26]. That implies that hadronic interactions are not dominant. Hence, the resulting neutrino spectrum would be reduced by the same factor. Due to this discrepancy, the disk model is disfavored as a dominant process for neutrino production.

For the jet as well as for the disk, the theory of diffusive shock acceleration suggests a power law spectrum with a differential spectral index $\alpha \approx 2$ for protons [28,29,30]. Neutrinos and photons are produced with the same index if multi-pion production is not dominant. However, the energy of photons produced by neutral pion decay may be redistributed to photons of lower energy by synchrotron pair cascades. The photon escape energy depends on

M87 (misaligned BL Lac or FR-I) weakening the association.
the optical depth. Hence, the spectra of neutrinos and photons can differ considerably, while the bolometric luminosity remains correlated [31].

Hadronic jet models have been proposed to explain the high energy $\gamma$ emission from the jet. A comparison to purely leptonic models can be found in [20]. Purely leptonic models usually explain the high energetic (TeV) radiation by inverse Compton scattering of photons. Models in which the photons originate as synchrotron radiation are classified as Synchrotron Self Compton (SSC); those in which the photons are ambient are classified as External Compton (EC). The EC model requires high densities of external photons to be Compton up-scattered to higher energies. These photon densities then constrain the escape energy of photons to values below 300 GeV. Thus, the leptonic EC model cannot explain the observed TeV sources [20]. In the SSC models, the ratio between GeV and radio luminosity is constrained, predicting a larger number of GeV blazars than observed by EGRET. Additionally, keV and TeV fluxes are correlated. Many observations confirm these correlations and apparently favor the SSC model. However, recent observations indicate the existence of orphan flares for 1ES 1950+650 [32] and for Mrk 421 [10,33], where the TeV flux flares but the X-ray flux does not.

In hadronic models, the emission of high energetic photons in the jet is not assumed to be directly from photohadronic processes. A non-negligible optical depth makes TeV photons cascade to lower energies. Thus, an additional mechanism for high energy gamma production is necessary. In proton initiated cascade models (PIC), it is assumed that electrons scatter on some target photons acquiring higher energies. In the SS-PIC (self synchrotron PIC) model, the target photons are those emitted in the cascades. The EC-PIC (external Compton PIC) assumes external photons to be scattered up to higher energies by the inverse-Compton process [20].

Another possibility to explain observed high energy $\gamma$ emissions is given by the Synchrotron-Proton Blazar model proposed by Mücke and Protheroe [34]. It assumes relativistic protons to emit synchrotron radiation at higher energies than the one from gyrating electrons. This model explains the observed double hump energy spectrum and predicts neutrino emission spectra for HBL and LBL [35]. The emission of TeV $\gamma$-rays via synchrotron radiation requires protons to reach extremely high energies, which is possible only if the interaction rate is sufficiently low. Hence, in TeV emitters $p\gamma$ and $pp$ interactions must be less frequent than in blazars without intense TeV photon emission. This results in predictions of neutrino fluxes for HBL being 6 orders of magnitude less than for LBL.

In summary, to select source candidates, we assumed the common origin of neutrinos and photons from pion decay and the classification described before. Since the optical depths of AGN are unknown, escaping photons can be of
significantly lower energy. This is taken into account by the selection of source candidates at various energies where data are available (radio, IR, optical, keV, GeV, TeV). Moreover, we assume that the observed photon flux is proportional to the TeV neutrino signal. While this selection does not depend on detailed AGN models, other explicitly model dependent selections are possible, e.g. based on the concept of the jet-disk symbiosis [13,18] used in [36].

4 Selection of neutrino candidate sources from catalogs of AGN classes

We consider catalogs of AGN classes and apply some selection rules, described in Tab. 1, in order to obtain 'statistically complete catalogs' of sources in a well-defined part of the sky above a flux threshold. In this selection we did not consider the variability in time of emissions from AGN. As a matter of fact, most of the available photon data were not collected at the same time as the considered AMANDA data set. Future multi-wavelength campaigns and simultaneous collection of photon and neutrino data will allow approaches that also account for time dependencies.

To all the considered catalogs we applied the requirement that the galactic latitude $b$ is larger than $10^\circ$ (except for radio-weak quasars, where the catalog itself requires $|b| > 30^\circ$). This cut excludes the galactic plane in order to avoid biasing AGN samples with galactic sources. Moreover, a minimum declination of $10^\circ$ is required since we look for neutrino induced upgoing muons. We also consider a threshold on the distance corrected flux, to exclude intrinsically weak nearby sources which might otherwise migrate into the catalog due to their distance. The formula used for the correction is given in appendix A. We stress that some blazar sources have been removed from our catalogs by a cut on the distance corrected flux. The sources that were removed only due this cut are listed in Table B.11. Among these there are some well-known nearby AGN, e.g. NGC 1275 would be in the IR-blazar and in both keV-blazar samples and Mrk 501 would be in both keV samples. The occurrence of these sources in various samples confirms our assumption that these sources migrate into the samples due to their proximity and should not be considered as generic sources. These nearby sources with such high fluxes would bias a stacking analysis, hence they should be analyzed as individual sources [1].

In the following sections we describe with more details the catalogs for the considered classes of sources in Tab.1 to which we apply selection rules. Then we consider for which of these selected sources there exist measurements of the photon flux that we assume to be correlated to neutrino fluxes and give our lists of candidate neutrino sources for the various classes.
4.1 Blazars

As explained in Section 3, blazars are characterized by a flat radio spectrum, which we use as the selection criterion here to create a 'blazar list'. For radio sources with high fluxes at 5 GHz ($\lambda = 6$ cm), Kühr et al. [37] worked out a complete catalog of radio sources with flux larger than about 1 Jy\(^7\). A second version also covers sources below this threshold, using data available up to 1981 [38]. In the Northern sky, this catalog contains the “strong surveys” S1-S5 with a threshold of 0.8 Jy and below. The selection rules select from the blazar catalog about 150 sources.

Since blazar jets are in the direction of the observer, blazars are interesting candidate sources of neutrinos that could be produced in the jet. Corresponding to different assumptions on the optical depth of blazar jets, the neutrino flux is assumed to be proportional to the photon flux that are measured by various experiments in different energy ranges: HEGRA and Whipple in the...

\(^7\) 1Jy = 10\(^{-26}\)Ws\(^{-1}\)m\(^{-2}\), in older papers also called f.u. for flux unit.
For the sources in our list we look for catalogs of the measured photon flux in various bands to order them according to their photon emissions.

**IR-loud blazars:** the Infrared Astronomical Satellite (IRAS) provides a survey at wavelengths 12\(\mu\)m, 25\(\mu\)m, 60\(\mu\)m and 100\(\mu\)m. The Faint Source catalog IRAS F, covering most parts of the sky outside the galactic plane, includes 173,044 sources [39]. We find in total 12 sources in the IRAS F catalog that satisfy our selection criteria and match sources in our original ‘blazar list’. The IR selected sample is given in Table B.1.

**X-ray blazars:** in the X-ray regime, there are only a few all-sky surveys. We make the hypothesis that soft and hard X-ray emissions are positively correlated with TeV neutrino production. For hard X-rays (0.25-25 keV) there exist only the HEAO-A measurements performed in the 1970s with low sensitivity and relatively poor angular resolution. This resulted in the 1H catalog [40] containing 842 sources. The X-ray satellite ROSAT performed an all-sky survey in the 0.2-2 keV band, with high sensitivity and good angular resolution in the range of a few tens of arc-seconds. The strongest sources found in the all-sky survey are listed in the 1RXS catalog [41], which contains in total 18,811 sources. For these antipodal satellites, two separate candidate lists are constructed from 1RXS and 1H sources that match our ‘blazar list’. This resulting selections are listed in Table B.3 for HEAO-A and in Table B.2 for ROSAT.

**GeV blazars:** in the GeV range, the most sensitive data are those collected by the EGRET experiment on board the CGRO satellite [42]. The third EGRET catalog (3EG) [22] contains in total 271 sources of which 66 have been identified as blazars and additional 27 sources with lower confidence. We select EGRET sources that are reliably identified with a blazar in our list (class ‘A’ in the 3EG catalog), while weakly identified sources (class ‘a’ in the 3EG catalog) are accepted if an independent analysis confirms this identification [43]. The sources are sorted according to the maximum flux detected by EGRET. This yields the source subsample observable by AMANDA presented in Table B.4.
We include a further sample (see in Table B.5) selected among the unidentified EGRET sources (these have not yet been identified with sources detected at other wavelengths). Although a large fraction of these sources is likely to be galactic, some may be extragalactic. To select presumably extragalactic sources, aside from the usual galactic plane exclusion, we check that sources do not show features typical for galactic sources. Selected sources are listed in Table B.5. These sources show a high variability, even higher than that of the identified AGN, and a large energy output that can be explained, even if they are also AGN.

**TeV blazars:** up to now, only 6 blazars have been firmly detected emitting TeV photons, of which 5 are in the field of view of AMANDA [21]. All TeV blazars show extreme variability in flux, such that a flux ranking becomes impossible. The sources all have a quite weak radio flux and do not fulfill our radio selection criteria for blazars. Furthermore, due to absorption by the IR background, only nearby sources can contribute to the TeV photon flux. These conditions prevent the use of our selection scheme for TeV blazars. But since in optically thin sources, TeV photons are strictly correlated to TeV neutrinos, we consider all observable TeV blazars, listed in Table B.6, for the source stacking analysis.

![Graph](image1)

Fig. 3. Relative strength at the selection energy of strongest sources in blazar samples (a) and in non-blazar samples (b).

---

8 Three different types of presumably galactic sources have been considered: two are concentrated on the galactic plane with \(|b| < 5^\circ\), while the third is associated with the Gould belt [44]. The latter form the so-called Local Gamma-Ray Population characterized by constant fluxes below \(2.4 \cdot 10^{-7} \text{s}^{-1} \text{cm}^{-2}\) and a soft spectrum (photon spectral index \(\gamma \approx 2.45\)); they reach galactic latitudes up to \(30^\circ\).
4.2 GPS and CSS

For defining a catalog of compact sources, we follow the selection of O’Dea [9]. The catalog contains former selections of CSS by Fanti et al. [45] and of GPS by Stanghellini et al. [46]. Since CSS and GPS are characterized by a maximum in the radio flux at a size-dependent frequency, the selection of these sources is done at several frequencies: 178 MHz, 2.7 GHz and 5 GHz depending on the peak location.

From the original CSS samples, all sources have been removed which do not fulfill all the selection criteria in the original paper [45]. The same has been done for CSS and GPS sources when the requirements of the more recent analysis [9] are not fulfilled. Additionally, we put a cut on the absolute power at 5 GHz, similar to the cut on the power at 178 MHz for the CSS sources indicated in Tab. 1. The typical spectra of sources are plotted in Fig. 4. In total 40 sources are selected of which 9 are GPS, 23 are CSS and 8 sources fulfill selection rules for both classes.

Fig. 4. Schematic plot of radio spectra of sources fulfilling the CSS and GPS selection rules. On the left: a typical spectrum of a CSS selected at 178 MHz. In the middle: a CSS spectrum with the maximum near 2.7 GHz. On the right: a GPS spectrum selected at 5 GHz. For the sources selected at 2.7 GHz, the back-extrapolation of the steep spectrum component to 178 MHz is relevant for the selection.

Since CSS and GPS were selected at three different radio frequencies, we cannot use the intensity in the radio. Since there are only few X-ray or IR data for these sources, the only possibility to get a suitable source ranking is to use data in the optical band taken from [9]. The underlying hypothesis we make is that the TeV neutrino flux is proportional to the optical flux. Our resulting neutrino source catalog is displayed in Table B.7.

4.3 FR-I and FR-II-radio galaxies

As the distinction between FR type I and type II radio galaxies is made at 178 MHz, it is adequate to select radio galaxies from observations at this
frequency. Data at this frequency can be found in the 3C catalog in its revised version (3CRR) [47]. The classification into FR-I and FR-II galaxies depends on the availability of the redshift for the source and is taken from [48]. The selection results in a catalog of 24 FR-I and 122 FR-II galaxies. Additionally, 16 compact sources fulfill the selection. They belong to the CSS source class as discussed in 4.2 above and are removed from the FR-I and FR-II samples.

For the selection of the neutrino candidate list, the radio flux at 178 MHz is assumed to be proportional to the TeV neutrino flux. Hence, we use these fluxes to sort the samples of radio galaxies. The results are listed in Table B.8 for FR-I and in Table B.9 for FR-II galaxies. Since FR-I/II radio galaxy jets do not point towards us, the observable neutrino flux produced in the jets is expected to be weaker for these sources than for blazars. Nonetheless, neutrino production in the disk is expected to be isotropic compared to the case of jet emission. This enhances the observation probability since it is not required that the observer is in the direction of the jet.

4.4 Radio-weak Quasars

A complete catalog of quasars selected at optical to UV wavelengths is given by the Bright Quasar Survey (BQS) [49]. A quasar is identified by an excess of UV flux. The catalogs presented by Sanders et al. [50] contain in total 109 sources, of which 59 sources are radio-weak quasars in the sky viewable by AMANDA.

Multi-wavelength investigations of the BQS sample show a second maximum in the photon spectrum at IR wavelengths for some of the quasars [50]. Hence, in the usual assumption that photon flux features are correlated to neutrino production at the source, we include in our list the radio-weak quasars selected according to their photon flux at 60 µm. The full quasar catalog selected from the BQS according to the IR flux is given in Table B.10.

For the resulting samples of CSS/GPS, FR-I/-II radio galaxies and radio-weak quasars, the relative source strengths at the selection energies are displayed in Fig. 3(b). The flux of the strongest source is normalized to 1.
5 Optimization of the number of sources and the bin size

5.1 The statistical optimization procedure

The different hypotheses on the neutrino flux from the sources in our catalogs determine the relative source strength within each class but leave the normalization free. We have normalized the signal by relating the sensitivity of the point source analysis to the signal of the strongest source in each sample. We consider here data taken by AMANDA during the year 2000 [1].

In the point source analysis, a search was performed for a statistically significant excess from any direction. For this purpose, any position on a grid of rectangular search bins is evaluated by considering the background expectation calculated from the average number of events in the corresponding zenith range. No point sources were detected; the observed excesses were equivalent to those in a randomized distribution. In the considered data set, we find by multiplication of the sensitivity\(^9\) with the effective area, the lifetime of the analysis [1] and the bin efficiency for a circular search bin of 3.5\(^\circ\) radius that the sensitivity (90% C.L.) corresponds roughly to three neutrinos in a 3.5\(^\circ\) bin. This motivates the choice of the normalization of the neutrino flux for the most intense source that would produce a neutrino signal \(S_1 \leq 3\) events in the considered AMANDA data set. Hence, for this source stacking analysis, we optimized the number of sources using \(S_1 = 1, 2, 3\) events (also using the bin efficiency for 3.5\(^\circ\)). Significantly higher signal normalizations would imply that the most intense source must be correlated with the position of a few spots, where an excess has been observed. These excesses are most probably due to statistic fluctuations. Since we do our selection independent of the results from that data set, such a coincidence is not assumed. On the other hand, for \(S_1 < 1\), the expected signal is too faint to result in a notable contribution in the source stacking analysis. For the small numbers considered, Poisson statistics has to be applied. With our normalizations, the assumed neutrino fluxes for the sources in our catalogs agree with the limits of the current diffuse analyses [51,52].

Since the sensitivity of the AMANDA-II detector is almost independent of the declination, in the optimization procedure we approximate the background to be constant in the considered declination range. A total amount of 699 events in the year 2000 neutrino sample results in a background of 111.25/sr for that year.

A given number of sources \(N_{src}\) corresponds to a mean number of expected signal events, \(S\), and a mean number of expected background events, \(BG\).

\(^9\) We define the sensitivity as the average upper limit in case of no signal.
Using Poisson statistics, we optimize for the median significance which will be reached in 50% of the experiments being performed under these assumptions. First, we calculate the median number of events $n$ under signal hypothesis as a function of the number of sources to be included. Then we calculate the Poisson probability to observe at least $n$ events with the assumption of pure background. Rescaled to the corresponding number of standard deviations of a Gaussian, $\delta$, we get the median significance as a function of the number of sources to be included. The optimum number of sources, as determined by this median significance procedure, corresponds to the highest value of $\delta$.

The same procedure is applied to the size of circular search bins, varying the signal according to the point spread function (PSF) and the background according to the area covered by the search bins. The PSF is evaluated for the most likely case of an $E^{-2}$ spectrum. Since the PSF is not completely independent of the declination, we use the PSF averaged over all declinations. In Fig. 5 the average PSF obtained by considering an isotropic source distribution over the sky with $\delta > 10^\circ$ is plotted for various spectral indices. The declination dependence of the median of the PSF is shown in Fig. 6 for an $E^{-2}$ spectrum. The resolution slightly improved for larger values of the declination.

The optimum number of sources and the optimum bin size are not independent of each other. Thus, we follow an iterative procedure. First we evaluate the number of sources with rough estimates for signal and background. Then we optimize the bin size for the given number of sources, and finally, we check the number of sources again.

The results for the optimum values have been checked by a second procedure which will be called maximum observation probability procedure. A minimum significance $\delta$ was predefined and the probability to observe at least this significance is optimized. As the expected signal is rather small, a value of $3\sigma$ was chosen for $\delta$. 

![Graph](image)  

**Fig. 5.** Cumulative Point Spread Function after quality cuts for various spectral indices in year 2000 sample.
Fig. 6. Median PSF of AMANDA for data collected in 2000 as a function of sin(DEC).

Fig. 7. Median significance as expected under the considered hypothesis as a function of the number of GeV blazars to be stacked. The highest value of the median significance corresponds to the optimum number of sources.

5.2 The resulting samples

We use the total number of events and the PSF from the year 2000 point source sample [1] for the optimization to determine samples from our catalogs to be analyzed for a cumulative neutrino flux. Our procedures may be applied to other data sets easily. The resulting parameters for year 2000 data are listed in Table 2.

In Fig. 7, we plot the median significance as a function of the number of EGRET blazars to be included for signal normalizations $S_1$ ranging from 1 to 4. The highest normalization of $S_1 = 4$ signal events from the strongest source is unlikely, as it implies a median significance above $3\sigma$ for the single source search. Hence, $S_1 = 4$ has not been taken into account when evaluating the optimum.

For most source classes, we find an optimum of about 10 sources. With one
exception, the source stacking analysis is more sensitive in testing the corresponding hypotheses than the point source analysis of single sources. Usually, the observed peaks are asymmetric: if more sources than the optimum number are included, the expected significance falls only slowly. On contrast the significance falls quite steeply if fewer sources are included.

The exceptions are found for FR-I and for FR-II radio galaxies, where the results are completely different. As there is a luminous FR-I galaxy in our neighborhood, M87, the whole FR-I flux would be strongly dominated by M87. The detection of TeV photons from this non-blazar AGN by HEGRA [53] and H.E.S.S. [54], theoretically predicted in [55], also supports the uniqueness of this source. Thus, the optimization suggests just to analyze the neutrino flux from that source only. In other words, the analysis of the strongest source only is more sensitive to our hypothesis than source stacking for the corresponding catalog. However, for two reasons we decided to analyze additionally a FR-I sample without M87. First, there is always the possibility that a single source does not contribute to the neutrino flux due to a reason not considered at selection. Second, in the opposite case, if M87 would be identified as a neutrino point source, the cumulative signal of the other sources contains information whether the M87 neutrino flux would be a specific feature of that source or a general characteristic of FR-I galaxies. Thus, we analyze a FR-I sample without M87 additionally. Then we find an optimum value of 20 sources to be included.

The situation of FR-II galaxies is opposite to that of FR-I galaxies. There are a lot of sources at higher redshifts with similar luminosities. This results in an monotonically increasing sensitivity while including more sources. Eventually, the coverage of the sky by search bins reaches a significant fraction of the sky and the techniques of point source analysis become less suitable to analyze the signal. If the energy spectrum of the signal differs from the atmospheric background, diffuse techniques searching for global excess of high energy neutrinos should be more sensitive to FR-II galaxies. However, since point source analysis and diffuse analyses are using complementary techniques and a point source analysis can give more information about the origin of the excess, a source stacking analysis of FR-II galaxies may also be useful. Since our optimization fails, we have to define the most suitable value for the number of FR-II sources to analyze. For that, we use a local saddle point at 17 sources for the cutoff where the sensitivity grows only marginally if further sources are included.

The unidentified EGRET blazars show nearly constant values for observation probability and median significance between 15 and 35 sources.

The hard X-ray sources are restricted to three sources due to the poor sensitivity of HEAO-A, an experiment of the 1970s.
We cross-checked the procedure based on the mean significance to that based on the maximum observation probability. The deviations between the results from the two procedures are within the corresponding uncertainties of the determination of the optimum.

For the optimum bin size, we find results between $2.6^\circ$ for the unidentified GeV sources and $3.0^\circ$ for the single source M87. As expected [56], the bin size decreases with the size of the sample.

| source class               | $N_{src}^{MS}$ | $N_{src}^{DP}$ | listed in | Bin size [deg.] |
|----------------------------|----------------|----------------|-----------|-----------------|
| IR blazars (IRAS)          | $11^{+0}_{-1}$ | $11^{+0}_{-1}$ | table B.1 | $2.8 \pm 0.2$  |
| keV blazars (ROSAT)        | $8 \pm 1$     | $9 \pm 1$     | table B.2 | $2.8 \pm 0.2$  |
| keV blazars (HEAO-A)       | $3 \pm 0$     | $3 \pm 0$     | table B.3 | $2.9 \pm 0.2$  |
| GeV blazars                | $8 \pm 1$     | $9 \pm 1$     | table B.4 | $2.8 \pm 0.2$  |
| unidentified GeV sources   | $22 \pm 5$    | $20 \pm 5$    | table B.5 | $2.6 \pm 0.2$  |
| TeV blazars                | $5^*$         | $5^*$         | table B.6 | $2.8 \pm 0.2$  |
| GPS and CSS                | $8 \pm 1$     | $8 \pm 2$     | table B.7 | $2.8 \pm 0.2$  |
| FR-I radio galaxies        | $1 \pm 0$     | $1 \pm 0$     | table B.8 | $3.0 \pm 0.2$  |
| FR-I without M87           | $20^{+3}_{-5}$ | $19 \pm 4$    | table B.8 | $2.6 \pm 0.2$  |
| FR-II radio galaxies       | $122$         | $17^{+105}_{-5}^{**}$ | table B.9 | $2.6 \pm 0.2^{***}$ |
| Radio-weak quasars         | $11^{+1}_{-3}$ | $11^{+1}_{-3}$ | table B.10| $2.8 \pm 0.2$  |

Table 2

Resulting parameters for the source stacking analysis. $N_{src}^{MS}$ and $N_{src}^{DP}$ stand for the optimum number of sources determined with the median significance procedure and, respectively, the maximum observation probability procedure.

* All sources included without optimization, see above.

** This value was taken for the analysis. Only a saddle point. The observation probability increases again, when including all sources ($\rightarrow$ diffuse analysis). See Sec. 5.2.

*** Bin size evaluated for 17 sources.

5.3 The relation between flux distribution and the optimum number of sources

As described above, the optimization of the number of sources can lead to two special cases, where either the source stacking analysis degenerates to a point source analysis of a single candidate source, or to a diffuse analysis where the arrival direction of the neutrino becomes irrelevant. If the flux falls only slowly from the strongest source to the weakest, as is the case for FR-II
radio galaxies, then we cannot find an optimum number of sources. So the probability to observe a signal always increases when more sources are added. In the other extreme, as was found for FR-I radio galaxies, if the strongest source is expected to contribute most of the flux and the other sources are substantially weaker, then the sample of sources to be stacked degenerates to a single source. Here we investigate the conditions on the flux distribution for these degeneracies to occur. We consider the flux $F$ of the $N^{th}$ source, $F(N)$. Motivated by the nearly linear decrease of $F(N)$ in the double logarithmic plots in Fig. 3, we assume a power law,

$$F(N) \propto N^\alpha.$$  \hspace{1cm} (2)

For $\alpha \geq -1$, the finiteness of the total flux requires a cut-off or a steepening. For different values of $\alpha$, we evaluate the optimum number of sources and determine the range of values for $\alpha$, where the two degeneracies occur. The maximum number of considered sources is set to 100. This corresponds to a coverage of about 10% of the sky viewable by AMANDA, assuming a bin size of $2.6^\circ$. For significantly more sources, the sky get densely covered by candidate sources and the directional information cannot be used and diffuse methods are more useful.

For a slowly falling flux distribution with $\alpha > -0.65$, we cannot find an optimum number and all sources have to be included. In the range $-0.65 > \alpha > -2$, a non-degenerate optimum number of sources is found and for $\alpha < -2$, only the strongest source has to be selected. The thresholds depend on the detector parameters, although for $\alpha > -0.5$, $S/\sqrt{BG}$ diverges, i.e. the degeneracy occurs generally for these values. An improved angular resolution can explore the range $-0.65 < \alpha < -0.5$ for a source stacking analysis.

A fit of $\alpha$ on the flux distributions of our samples results in $\alpha = -0.6$ for FR-II radio galaxies and for IRAS blazars, a 2-point index $\alpha = -4.1$ for the two strongest FR-I radio galaxies and $-0.7 \geq \alpha \geq -1.1$ for the other samples. For all samples, the results of the optimization are in agreement with our classification according to $\alpha$.

6 The results for the year 2000

The sources we selected are listed in Table B.4-B.10 in the appendix. We apply the source stacking method to the data collected by AMANDA in the year 2000 using the event sample from the previous point source analysis [1] corresponding to a detector lifetime of 197 days. The selection of well reconstructed events was optimized for high sensitivity to point sources. In Fig. 8,
the reconstructed arrival directions of the individual events of this data set are shown in a sky map. The zenith distribution of these events is displayed in Fig. 9 in comparison with the simulated angular distribution of atmospheric neutrinos. Since the event selection was not optimized for purity, the excess of measured events close to the horizon is expected as the contribution of poorly reconstructed atmospheric muons. The detector response with this event selection was simulated for various spectral indices. The energy spectrum folded with the Earth absorption factor and with the detector response is shown in Fig. 10. A uniform source density on the Northern Sky was used in the simulation, corresponding to a mean zenith angle of 33.4°. For an $E^{-2}$ power law spectrum, as expected from Fermi acceleration, that means 90% of the signal events are between the AMANDA energy threshold at 50 GeV and 350 TeV.

Fig. 8. Reconstructed arrival direction of 1557 selected events in the year 2000 sample [1]. The events below $\delta = 0^\circ$ are dominated by atmospheric muons.

Fig. 9. Distribution of the zenith angle in the considered data set in comparison with the expectation of atmospheric neutrinos from simulations.

Results obtained on a more complete set of data collected in the years 2000-2003 will be reported in [3]. Moreover, this method and the list of sources we derived will serve as the starting point for stacking analyses performed with the IceCube neutrino telescope [57] which is currently under construction. AMANDA will be integrated into IceCube. The source stacking method will be adapted to the better performance of the larger detector in terms of effective area and angular resolution. Application of this method for other neutrino telescopes [58,59,60,61,62] is conceivable.

24
Fig. 10. Energy spectra folded with the response of the AMANDA detector for hypothetical source spectra with the spectral indices $-1$, $-2$ and $-3$.

In this analysis, only the cumulative result for a class of sources is evaluated, not the signal for individual sources. The AMANDA collaboration follows a strict blindness policy, i.e. an analysis has to be developed blindly with respect to the data. This prevents statistical fluctuations to affect the final steps of the analysis. In the context of the source stacking analysis, the selection of sources was done independently of the AMANDA data itself. No signal was evaluated until the source samples and all analysis parameters were fixed.

The number of observed events in our search bins has to be compared with the background, mainly atmospheric neutrinos. Since the background is independent of the right ascension, for each position in the sky it can be evaluated from the events in the same declination band. If two sources of the same sample are very close to each other, their search bins may overlap. Then, the background expectation is corrected for the overlap and events in the overlapping area contribute only once to the cumulative signal.

The probability to observe the measured number of events under the hypothesis of pure background is evaluated by Poisson statistics. The correctness of the analysis was tested with two procedures. First, to test the correct evaluation of the significance, a collection of data sets with randomized right ascension was created and the significance of the signal from the stacked sources in these randomized data sets was determined. As expected for randomized data sets, the significance follows a Gaussian with a width of one centered at zero. Additionally, hypothetical source lists with random source positions were evaluated using the original data set. The results of the point source analysis of the considered data set [1] and the unfolded neutrino spectrum obtained from that data set [8] suggest that the data sample is strongly dominated by atmospheric neutrinos. If this holds, a difference of the significance distribution to that of randomized data sets, which follows a Gaussian (see above), would indicate that our assumption of a flat background in right ascension is not correct. Also in this case, the observed significance distribution follows our expectation. The significance distribution for both tests is shown in Fig. 11.
No statistically significant signal was found, in this limited data sample, above pure background; only upper limits could be derived. To calculate these limits we used Feldman-Cousins [63] confidence intervals and Poisson statistics. Systematic errors, estimated to be at the ±30% level, were not taken into account. The measured event rates, the background expectation and the resulting upper limits in terms of event counts and integral neutrino fluxes above 10 GeV are presented in Table 3 and visualized in Figure 12. A dedicated analysis of systematics for a multi-year dataset is currently in preparation. For most of the declination range, the sensitivity (90% C.L.) of the point source analysis for the considered data set is about $2 \cdot 10^{-8}\text{cm}^{-2}\text{s}^{-1}$ [1]. A comparison with the limit per source obtained from stacking (see Table 3) shows the progress reached by the source stacking method.

7 Summary

We have performed a systematic classification of AGN. This is the basis of a source stacking analysis of TeV neutrinos with the AMANDA neutrino telescope. Neutrinos are assumed to be produced in optically thick jets or accretion disks. The optical depths of these sites and consequently the average energy of photons leaving the source are unknown. We therefore select the sources according to the photon flux at different energies. Most of the available photon data were not collected at the same time as the considered AMANDA data set. Thus, the time variability of AGN was not considered in this analysis.
Table 3
Results for the year 2000 data: Number of sources $N_{src}$, measured number of events $N_{\nu}^{obs}$, the corresponding background $N_{\nu}^{bg}$ and the 90% C.L. limits on the event counts ($n_{lim}$) and on the integral flux for an $E^{-2}$ spectrum above 10 GeV ($f_{lim}$) in units of $10^{-8}$ cm$^{-2}$ s$^{-1}$. $f_{lim}/N_{src}$ represents the limit per source.

| sample                        | $N_{src}$ | $N_{\nu}^{obs}$ | $N_{\nu}^{bg}$ | $n_{lim}$ | $f_{lim}$ | $f_{lim}/N_{src}$ |
|-------------------------------|-----------|-----------------|----------------|-----------|-----------|------------------|
| IR blazars                    | 11        | 7               | 10.17          | 3.0       | 2.0       | 0.18             |
| keV blazars (ROSAT)           | 8         | 4               | 6.68           | 2.4       | 1.6       | 0.2              |
| keV blazars (HEAO-A)          | 3         | 2               | 2.47           | 3.5       | 2.8       | 0.9              |
| GeV blazars                   | 8         | 6               | 5.3            | 6.3       | 4.0       | 0.5              |
| unid. GeV sources             | 22        | 15              | 14.9           | 7.6       | 5.6       | 0.25             |
| TEV blazars                   | 5         | 4               | 4.53           | 4.1       | 2.8       | 0.56             |
| GPS and CSS                   | 8         | 7               | 6.14           | 6.4       | 4.3       | 0.54             |
| FR-I galaxies                 | 1         | 0               | 0.56           | 1.9       | 1.3       | 1.3              |
| FR-I without M87              | 20        | 9               | 11.50          | 3.9       | 2.7       | 0.14             |
| FR-II galaxies                | 17        | 10              | 13.42          | 3.7       | 2.7       | 0.16             |
| radio-weak quasars            | 11        | 4               | 7.55           | 1.9       | 1.3       | 0.12             |

Fig. 12. Limits on the neutrino flux from an average source in the generic AGN classes using data from the year 2000. The average sensitivity to single point sources is indicated by horizontal lines for this data set [1] as well as for a 4 year data set [3].

With the hypothesis that the TeV neutrino flux is proportional to the corresponding photon flux, we have optimized the number of sources to be included.

For most source classes, an optimum of 8 – 12 sources to be stacked has been found. For these, the source stacking analysis is more sensitive than the point
source analysis of a single source. Exceptions have been found for FR-I and FR-II radio galaxies. While FR-I galaxies are dominated by the single source M87, there are too many FR-II galaxies with a similar flux in order to converge at a reasonably small number of sources to be stacked.

For the data of the year 2000, no significant deviation from the background expectation was found. In a next step, the stacking method will be applied to several years of AMANDA data. Optimizing the method to an angular resolution of less than 1° and better background rejection, it will be adapted to the 1 km$^3$ IceCube array [57]. Starting with the selection of southern sky sources, it is also applicable to other neutrino telescopes [58,59,60,61,62].
A The distance correction of fluxes

The distance dependence of a measured flux $F_{\nu}$ at the observer’s frequency $\nu$ of a source with luminosity $L_{\nu'}$ is given by

$$F_{\nu}d\nu = L_{\nu'} \frac{1}{4\pi d_l(z)^2} d\nu', \quad (A.1)$$

with the luminosity distance $d_l$ and the frequency at the source $\nu' = \nu(1 + z)$. The luminosity distance as a function of redshift is given by

$$d_l(z) = \begin{cases} 
\frac{(1+z)c}{H_0} \sin \left\{ |\Omega_k|^{0.5} \cdot I(z) \right\}, & \text{if } \Omega_k < 0, \\
\frac{(1+z)c}{H_0}, & \text{if } \Omega_k = 0, \\
\frac{(1+z)c}{H_0} \sinh \left\{ |\Omega_k|^{0.5} \cdot I(z) \right\}, & \text{if } \Omega_k > 0,
\end{cases} \quad (A.2)$$

see [64]. $I(z)$ is given by

$$I(z) = \int_0^z \left[ (1 + z')^2 \cdot (1 + \Omega_m z') - \Omega_\Lambda z'(2 + z') \right]^{-0.5} dz', \quad (A.3)$$

with the normalized curvature $\Omega_k$. We used $\Omega_m = 0.27$, $\Omega_\Lambda = 0.75$ according to [65] and $h = 0.71$ according to [66].

For a power law spectrum with spectral index $\alpha$, the redshift results in

$$L_{\nu'}d\nu' = L_{\nu(1+z)} \cdot (z + 1)^{\alpha+1} d\nu. \quad (A.4)$$

Finally, the correction to $z = 0.1$ for a source at redshift $z$ is given by

$$F_{z=0.1} = F \cdot \left( \frac{d_l(z)}{d_l(z = 0.1)} \right)^2 \cdot \left( \frac{z + 1}{0.1 + 1} \right)^{\alpha+1}. \quad (A.5)$$

B Source catalogs for AMANDA
| radio source | IR source       | $F_{5\text{GHz}}$ | SI  | $F_{12\mu m}$ | $F_{25\mu m}$ | $F_{60\mu m}$ | $F_{100\mu m}$ | $z$  | $F_{5\text{GHz}}^{z=0.1}$ |
|--------------|-----------------|-------------------|-----|---------------|---------------|---------------|----------------|-----|-------------------------|
| 1Jy 0851+20  | IRAS F08519+2017| 2.62              | 0.11| 0.2838        | 0.4335        | 0.8911        | 1.1580         | 0.306| 36.8                    |
| 1Jy 1404+28  | IRAS F14047+2841| 2.95              | 0.80| 0.1850        | 0.3994        | 0.7288        | 0.9376         | 0.077| 1.7                     |
| 1Jy 1641+39  | IRAS F16413+3954| 10.81             | 0.54| 0.1068        | 0.2918        | 0.5999        | 1.3840         | 0.594| 756                     |
| 1Jy 1308+32  | IRAS F13080+3237| 1.53              | 0.20| 0.1744        | 0.2710        | 0.4198        | 0.5760         | 0.996| 525                     |
| 1Jy 2200+42  | IRAS F22006+4202| 4.77              | -0.13| 0.1393        | 0.2495        | 0.4029        | 1.9690         | 0.070| 2.2                     |
| 1Jy 1732+38  | IRAS F17326+3859| 1.13              | 0.85| 0.0964        | 0.1688        | 0.3280        | 0.6699         | 0.970| 246                     |
| 1Jy 1803+78  | IRAS F18036+7827| 2.62              | 0.25| 0.0931        | 0.1826        | 0.3083        | 0.7386         | 0.684| 301                     |
| 1Jy 0735+17  | IRAS F07352+1749| 1.99              | 0.05| 0.1868        | 0.1907        | 0.2519        | 0.5198         | 0.424| 66.3                    |
| 1Jy 0716+71  | IRAS F07162+7126| 1.12              | 0.22| 0.1121        | 0.1260        | 0.2374        | 0.7825         | 0.300| 15.7                    |
| 1Jy 0235+16  | IRAS F02358+1623| 2.85              | 1.03| 0.1105        | 0.1068        | 0.2344        | 0.9074         | 0.851| 403                     |
| 1Jy 1418+54  | IRAS F14180+5437| 1.09              | 0.38| 0.0659        | 0.0857        | 0.2121        | 0.5459         | 0.151| 2.7                     |

Table B.1
Strongest IR sources in blazar catalog. $F_{5\text{GHz}}$ stands for the radio flux at 5 GHz, while the mean IR flux at 12, 25, 60 and 100 µm is labeled $F_{12\mu m}$ ... $F_{100\mu m}$. SI is the spectral index $\alpha$ determined between 2.7 GHz and 5 GHz. $z$ is the cosmological redshift. The distance corrected radio flux flux is given by $F_{5\text{GHz}}^{z=0.1}$. The IR data has been taken in the 1980s.
## Table B.2
ROSAT sources identified with strong radio blazars. The mean X-ray flux as measured by ROSAT in 1990/1991 (6 month of observation time) is given by $F_X$. The hardness ratios HR I and HR II display the ratio between low and high energy X-rays: $HR = (n_{HE} - n_{LE})/(n_{HE} + n_{LE})$. For HR I the low energy range is $0.1 - 0.4$ keV and the high energy range is $0.5 - 2.0$ keV. For HR II the intervals are $0.5 - 0.9$ keV and $0.9 - 2.0$ keV. SI is the spectral index $\alpha$ determined between 2.7 GHz and 5 GHz. $F_{5GHz}$ stands for the radio flux at 5 GHz. SI is the spectral index $\alpha$ determined between 2.7 GHz and 5 GHz with $F_v \propto v^\alpha$. The distance corrected radio flux flux is given by $F_{5GHz}^{z=0.1}$.

| X-ray source                  | Radio source | $F_X$ [cnt/s] | HR I  | HR II | $F_{5GHz}$ [Jy] | SI     | z   | $F_{5GHz}^{z=0.1}$ |
|-------------------------------|--------------|--------------|-------|-------|-----------------|--------|-----|-------------------|
| 1RXS J172320.5+341756         | S4 1721+343  | 1.0160       | 0.20  | 0.07  | 0.934           | -0.43  | 0.206 | 5.2               |
| 1RXS J225358.0+160855         | 1Jy 2251+158 | 0.6094       | 0.96  | 0.26  | 17.42           | 0.64   | 0.859 | 3100              |
| 1RXS J084125.1+705342         | 1Jy 0836+710 | 0.5308       | 0.62  | 0.19  | 2.59            | -0.32  | 2.16  | 15300             |
| 1RXS J115324.4+493108         | 1Jy 1150+497 | 0.3699       | 0.26  | 0.07  | 1.12            | -0.48  | 0.334 | 22.1              |
| 1RXS J164258.9+394822         | 1Jy 1641+399 | 0.3253       | -0.18 | -0.05 | 10.81           | 0.54   | 0.594 | 756               |
| 1RXS J192748.0+735757         | 1Jy 1928+738 | 0.2772       | 0.86  | 0.25  | 3.34            | -0.01  | 0.36  | 73.1              |
| 1RXS J220315.6+314535         | 1Jy 2201+315 | 0.2424       | 0.94  | 0.28  | 2.32            | 0.24   | 0.298 | 29.9              |
| 1RXS J092702.8+390221         | 1Jy 0923+392 | 0.2376       | -0.16 | 0.38  | 8.73            | 1.03   | 0.698 | 756               |
| 1RXS J072153.2+712031         | 1Jy 0716+714 | 0.1925       | 0.12  | 0.19  | 1.12            | 0.22   | 0.30  | 14.7              |
| 1RXS J163813.1+572028         | 1Jy 1637+574 | 0.1158       | 0.03  | 0.24  | 1.42            | 0.35   | 0.750 | 202               |
| 1RXS J074541.2+314249         | S2 0742+31   | 0.1147       | 0.81  | 0.57  | 0.96            | -0.23  | 0.462 | 43.6              |
| 1RXS J220244.4+421626         | 1Jy 2200+420 | 0.1144       | 0.98  | 0.44  | 4.77            | -0.13  | 0.070 | 2.2               |
| 1RXS J083454.3+553417         | 1Jy 0831+557 | 0.1027       | 0.58  | 0.03  | 5.65            | -0.46  | 0.242 | 39.7              |
| 1RXS J135703.6+191915         | 1Jy 1354+195 | 0.1005       | 0.42  | 0.69  | 1.56            | -0.07  | 0.720 | 239               |
| HEAO-A source (1950 coord) | radio source (1950 coord) | $F_X$ [cnt/s] | $F_{5\text{GHz}}$ [Jy] | SI | $z$ | $F_{5\text{GHz}}^{z=0.1}$ [Jy] |
|---------------------------|---------------------------|--------------|----------------------|----|-----|------------------|
| 1H0717+714                | 1Jy 0716+714              | 0.0030       | 1.12                 | 0.22 | 0.30 | 14.7             |
| 1H1154+294                | S3 1156+29                | 0.0029       | 0.89                 | -0.44 | 0.73 | 167              |
| 1H1922+746                | 1Jy 1928+73               | 0.0027       | 3.34                 | -0.01 | 0.36 | 73.1             |

Table B.3
HEAO-A sources identified with strong radio blazars: The mean flux measured by HEAO-A is given by $F_X$, and $F_{5\text{GHz}}$ stands for the radio flux at 5 GHz. All data have been taken within an 6 month interval in 1977-1978, though the observation times of individual sources are shorter. SI is the spectral index $\alpha$ determined between 2.7 GHz and 5 GHz with $F_v \propto \nu^\alpha$. The cosmological redshift is given by $z$ and the distance corrected radio flux flux is given by $F_{5\text{GHz}}^{z=0.1}$. 
| GeV source (2000 coord) | radio source (1950 coord) | $F_{5\text{GHz}}$ | SI | $F_{\text{max GeV}} \times 10^{-8}$ | $F_{\text{mean GeV}} \times 10^{-8}$ | $z$ |
|------------------------|---------------------------|-----------------|-----|---------------------|---------------------|-----|
| 3EG J0450+1105         | 1Jy 0446+112              | 1.23            | 0.56| 109.5               | 14.9                | 1.207 |
| 3EG J1635+3813         | 1Jy 1633+382              | 4.02            | 0.73| 107.5               | 58.4                | 1.814 |
| 3EG J0530+1323         | 1Jy 0528+134              | 3.97            | 0.47| 93.5                | 93.5                | 2.060 |
| 3EG J0237+1635         | 1Jy 0235+164              | 2.85            | 1.03| 65.1                | 25.9                | 0.940 |
| 3EG J2254+1601         | 1Jy 2251+158              | 17.42           | 0.64| 53.7                | 53.7                | 0.859 |
| 3EG J1200+2847         | S3 1156+29                | 0.89            | -0.44| 50.9               | 7.5                | 0.73  |
| 3EG J2202+4217         | 1Jy 2200+420              | 4.77            | -0.13| 39.9               | 11.1                | 0.069 |
| 3EG J1608+1055         | 1Jy 1606+106              | 1.49            | 0.42| 34.9                | 25.0                | 1.226 |
| 3EG J1614+3424         | 1Jy 1611+343              | 2.67            | 0.10| 26.5                | 26.5                | 1.401 |
| 3EG J0829+2413         | S3 0827+24                | 0.94            | 0.05| 24.9                | 24.9                | 2.05  |
| 3EG J0204+1458         | 1Jy 0202+149              | 2.47            | -0.43| 23.6               | 8.7                | 0.405 |
| 3EG J2232+1147         | 1Jy 2230+114              | 3.61            | -0.50| 19.2               | 19.2                | 1.037 |
| 3EG J1738+5203         | 1Jy 1739+522              | 1.98            | 0.68| 18.2                | 18.2                | 1.375 |
| 3EG J0721+7120         | 1Jy 0716+714              | 1.12            | 0.22| 17.8                | 17.8                | 0.300 |
| 3EG J0737+1721         | 1Jy 0735+178              | 1.99            | 0.05| 16.4                | 16.4                | 0.424 |
| 3EG J0958+6533         | 1Jy 0954+658              | 1.46            | 0.35| 15.4                | 6.0                | 0.368 |
| 3EG J2358+4604         | 1Jy 2351+456              | 1.42            | -0.05| 14.3               | 14.3                | 1.992 |
| 3EG J0239+2815         | 1Jy 0234+285              | 1.44            | -0.24| 13.8               | 13.8                | 1.21  |
| 3EG J0917+4427         | S4 0917+449               | 0.80            | 0.66| 13.8                | 13.8                | 2.18  |
| 3EG J0853+1941         | 1Jy 0851+202              | 2.62            | 0.11| 10.6                | 10.6                | 0.306 |
| 3EG J0845+7049         | 1Jy 0836+710              | 2.59            | -0.32| 10.2               | 10.2                | 2.172 |
| 3EG J0952+5501         | 1Jy 0954+556              | 2.28            | -0.19| 9.1                | 9.1                | 0.901 |

Table B.4
3EG sources identified with strong radio blazars: $F_{5\text{GHz}}$ is the radio flux at 5 GHz, SI is the spectral index $\alpha$ determined between 2.7 GHz and 5 GHz. The maximum and the mean flux as measured by EGRET in 1991-1995 are listed under $F_{\text{max GeV}}$ resp. $F_{\text{mean GeV}}$. $z$ is the cosmological redshift. The EGRET catalog uses the reference system of the year 2000.
| EGRET source | $F_{\text{max}}^{\text{GeV}}$ | $F_{\text{mean}}^{\text{GeV}}$ | $|b|$ | 3EG Id. flag |
|--------------|-----------------|-----------------|-----|---------------|
|              | [10$^{-8}$ $s^{-1}$ cm$^{-2}$] | [10$^{-8}$ $s^{-1}$ cm$^{-2}$] |       |               |
| 3EG J2243+1509 | 73.1            | 9.9             | 37.49 |               |
| 3EG J2255+1943 | 62.2            | 5.8             | 35.43 | a             |
| 3EG J1835+5918 | 60.6            | 60.6            | 25.07 |               |
| 3EG J1212+2304 | 50.8            | 3.3             | 80.32 |               |
| 3EG J1850+5903 | 46.7            | 12.6            | 23.18 |               |
| 3EG J0439+1555 | 42.9            | 4.8             | 19.98 |               |
| 3EG J0010+7309 | 42.3            | 42.3            | 10.54 |               |
| 3EG J1822+1641 | 40.6            | 7.1             | 13.84 |               |
| 3EG J2314+4426 | 40.4            | 13.9            | 15.10 |               |
| 3EG J2352+3752 | 37.5            | 6.1             | 23.54 | a             |
| 3EG J1825+2854 | 34.3            | 6.5             | 18.03 |               |
| 3EG J0407+1710 | 32.1            | 7.3             | 25.06 |               |
| 3EG J1824+3441 | 28.7            | 8.1             | 20.14 |               |
| 3EG J1308+8744 | 23.9            | 7.6             | 29.38 |               |
| 3EG J1733+6017 | 22.9            | 8.7             | 32.94 |               |
| 3EG J1227+4302 | 21.7            | 4.6             | 73.33 |               |
| 3EG J1347+2932 | 21.0            | 9.6             | 77.50 |               |
| 3EG J0910+6556 | 18.3            | 5.9             | 38.56 |               |
| 3EG J1323+2200 | 18.1            | 5.2             | 81.15 | a             |
| 3EG J0215+1123 | 18.0            | 9.3             | 46.37 |               |
| 3EG J0329+2149 | 17.2            | 7.4             | 27.88 |               |
| 3EG J0245+1758 | 16.9            | 8.8             | 37.11 |               |
| 3EG J0426+1333 | 14.0            | 14.0            | 23.82 |               |
| 3EG J0917+4427 | 13.8            | 13.8            | 44.19 | a             |
| 3EG J2248+1745 | 12.9            | 12.9            | 36.17 |               |

Table B.5
Unidentified and weakly identified extragalactic EGRET sources, possibly blazars. SI is the spectral index $\alpha$ determined between 2.7 GHz and 5 GHz. $F_{5GHz}$ is the radio flux at 5 GHz, SI is the spectral index $\alpha$ determined between 2.7 GHz and 5 GHz. The maximum and the mean flux as measured by EGRET in 1991-1995 are listed under $F_{\text{max}}^{\text{GeV}}$ resp. $F_{\text{mean}}^{\text{GeV}}$. 

34
| X-ray source      | other name | $F_{\text{TeV}}$ | 5 GHz flux | z     |
|-------------------|------------|------------------|------------|-------|
| 1ES 1101+38.4     | Mrk 421    | 0.04-7.4         | 0.72       | 0.0300|
| 1ES 1652+39.8     | Mrk 501    | 0.33-6           | 1.38       | 0.0336|
| H 1426+428        | -          | 0.03-0.08        | 0.04       | 0.1290|
| 1ES 1959+650      | -          | 0.05-2.20        | 0.25       | 0.0470|
| 1ES 2344+514      | -          | 0.03             | 0.23       | 0.0440|

Table B.6
TeV blazars with $\delta > 10^\circ$. The TeV fluxes are listed in units of the flux of the Crab nebula, $dJ_\gamma/dE = (2.79 \pm 0.02 \pm 0.5) \cdot 10^{-7} (E/\text{TeV})^{-2.59 \pm 0.03 \pm 0.05}$. $F_{5\text{GHz}}$ stands for the radio flux at 5 GHz, while the cosmological redshift is given by $z$. 
| Coordinate name (1950 coord) | other name | Sample | Mag | z  | $F_{5GHz}$ | $\theta$ | $\nu_m$ | $\log P_{5GHz}$ | Size |
|-----------------------------|------------|--------|-----|----|-----------|--------|--------|----------------|------|
| 0248+430                   | n. a.      | G      | 15.5| 1.316| 1.24      | 0.06   | 5000   | 27.9           | 0.474 |
| 0134+329                   | 3C 48      | C      | 16.1| 0.367| 5.3       | 0.50   | 80     | 27.3           | 2.255 |
| 0738+313                   | n. a.      | G      | 16.1| 0.630| 3.62      | 0.010  | 5300   | 27.6           | 0.061 |
| 1458+718                   | 3C 309.1   | C      | 16.8| 0.905| 3.5       | 2.11   | 40     | 28.0           | 14.831|
| 1345+125                   | 4C 12.50   | G      | 17.0| 0.122| 3.05      | 0.080  | 400    | 26.0           | 0.160 |
| 1328+307                   | 3C 286     | C      | 17.2| 0.849| 7.4       | 3.2    | 80     | 28.2           | 21.966|
| 0740+380                   | 3C 186     | C      | 17.6| 1.063| 0.3       | 2.2    | 40     | 27.2           | 16.330|
| 1328+254                   | 3C 287     | C      | 17.7| 1.055| 3.2       | 0.048  | 50     | 28.1           | 0.355 |
| 0538+498                   | 3C 147     | C      | 17.8| 0.545| 8.2       | 0.55   | 150    | 27.9           | 3.101 |
| 1442+101                   | OQ 172     | CG     | 17.8| 3.535| 1.20      | 0.02   | 900    | 29.3           | 0.185 |
| 0221+276                   | 3C 67      | C      | 18.0| 0.309| 0.9       | 2.5    | 50     | 26.3           | 10.100|
| 2352+495                   | n. a.      | G      | 18.4| 0.237| 1.49      | 0.050  | 700    | 26.3           | 0.168 |
| 2249+185                   | 3C 454     | C      | 18.5| 1.758| 0.8       | 0.66   | 40     | 28.1           | 5.562 |
| 0518+165                   | 3C 138     | C      | 18.8| 0.760| 4.1       | 0.60   | 100    | 27.8           | 3.942 |
| 0345+337                   | 3C 93.1    | C      | 19.0| 0.244| 0.8       | 0.25   | 60     | 26.0           | 0.858 |
| 1153+317                   | 4C 31.38   | C      | 19.0| 1.557| 1.0       | 0.9    | 100    | 28.0           | 7.397 |
| 1203+645                   | 3C 268.3   | C      | 19.0| 0.371| 1.1       | 1.36   | 80     | 26.6           | 6.175 |
| 1323+321                   | 4C 32.44   | CG     | 19.0| 0.369| 2.39      | 0.06   | 500    | 26.9           | 0.272 |
| 1443+77                    | 3C 303.1   | C      | 19.0| 0.267| 0.5       | 1.7    | 100    | 26.0           | 6.219 |
| 1819+39                    | 4C 39.56   | C      | 19.0| 0.4    | 1.0       | 0.44   | 100    | 26.6           | 2.091 |
| 1358+624                   | 4C 62.22   | CG     | 19.9| 0.429| 1.80      | 0.07   | 500    | 26.9           | 0.347 |
| 0127+233                   | 3C 43      | C      | 20.0| 1.459| 1.1       | 2.60   | 20     | 28.0           | 21.054|
| 0428+205                   | OF 247     | CG     | 20.0| 0.219| 2.38      | 0.250  | 1100   | 26.4           | 0.793 |
| 1117+146                   | 4C 14.41   | G      | 20.0| 0.362| 1.00      | 0.08   | 500    | 26.5           | 0.358 |
| 1829+29                    | 4C 29.56   | C      | 20.0| 0.842| 1.1       | 3.1    | 100    | 27.3           | 21.212|

Table B.7
GPS and CSS sources fulfilling our selection rules. In Sample, G means GPS and C means CSS. Mag is the optical magnitude. The cosmological redshift is given by $z$, while $F_{5GHz}$ stands for the radio flux at 5 GHz. $\theta$ is the angular size of the source. $\nu_m$ is the turnover frequency and $P_{5GHz}$ stands for log of power at 5 GHz (assuming isotropic emission). The linear size of the sources is listed in kpc. The data were compiled from previous catalogs in 1998.
| Source  | $F_{178\,MHz}$ | SI  | δ     | RA    | z   |
|---------|----------------|-----|-------|-------|-----|
| 3C 274.0 | 1050.0         | -0.76 | 12.6667 | 12.4667 | 0.004 |
| 3C 84.0  | 61.3           | -0.78 | 41.3167 | 3.26667 | 0.017 |
| 3C 433.0 | 56.2           | -0.75 | 24.85 | 21.35 | 0.101 |
| 3C 310.0 | 55.1           | -0.92 | 26.2 | 15.0333 | 0.054 |
| 3C 338.0 | 46.9           | -1.19 | 39.65 | 16.4333 | 0.029 |
| 3C 465.0 | 37.8           | -0.75 | 26.75 | 23.5833 | 0.029 |
| 3C 83.1  | 26.0           | -0.64 | 41.6667 | 3.23333 | 0.025 |
| 3C 264.0 | 26.0           | -0.75 | 19.8833 | 11.7 | 0.020 |
| 3C 66.0  | 24.6           | -0.62 | 42.75 | 2.33333 | 0.021 |
| 3C 386.0 | 23.9           | -0.59 | 17.15 | 18.6 | 0.017 |
| 3C 272.1 | 19.4           | -0.60 | 13.15 | 12.3667 | 0.003 |
| 3C 288.0 | 18.9           | -0.85 | 39.1 | 13.6 | 0.246 |
| 3C 315.0 | 17.8           | -0.72 | 26.3 | 15.1833 | 0.108 |
| 3C 31.0  | 16.8           | -0.57 | 32.1333 | 1.06667 | 0.016 |
| 3C 28.0  | 16.3           | -1.06 | 26.1333 | 0.883333 | 0.195 |
| 3C 442.0 | 16.1           | -0.96 | 13.5833 | 22.2 | 0.026 |
| 3C 305.0 | 15.7           | -0.85 | 63.4667 | 14.8 | 0.041 |
| 3C 231.0 | 14.6           | -0.28 | 69.9167 | 9.85 | 0.000 |
| 3C 296.0 | 13.0           | -0.67 | 11.0333 | 14.2333 | 0.023 |
| 3C 293.0 | 12.7           | -0.45 | 31.6833 | 13.8333 | 0.045 |
| 3C 76.1  | 12.2           | -0.77 | 16.2333 | 3 | 0.032 |
| 3C 449.0 | 11.5           | -0.58 | 39.1 | 22.4833 | 0.017 |
| 3C 346.0 | 10.9           | -0.52 | 17.35 | 16.6833 | 0.161 |
| 3C 314.1 | 10.6           | -0.95 | 70.95 | 15.1667 | 0.119 |

Table B.8
FR-I radio galaxies: $F_{178\,MHz}$ is the mean radio flux at 178 MHz, SI is the spectral index $\alpha$ determined between 178 MHz and 750 MHz, RA and $\delta$ stand for right ascension and declination, respectively in the reference system of 1950. All data were collected before 1985. Note, in the original 3CRR catalog, the spectral index is defined with an opposite sign. The cosmological redshift is given by $z$. 

37
| Source | $F_{178 MHz}$ | SI | $\delta$ | RA | z |
|--------|---------------|----|--------|----|---|
| 3C 123.0 | 189.0 | -0.70 | 29.5667 | 4.55 | 0.218 |
| 3C 295.0 | 83.5 | -0.63 | 52.4333 | 14.15 | 0.461 |
| 3C 196.0 | 68.2 | -0.79 | 48.3667 | 8.15 | 0.871 |
| 3C 452.0 | 54.4 | -0.78 | 39.4167 | 22.72 | 0.081 |
| 3C 33.0 | 54.4 | -0.76 | 13.0667 | 1.1 | 0.059 |
| 3C 390.3 | 47.5 | -0.75 | 79.7167 | 18.75 | 0.056 |
| 3C 98.0 | 47.2 | -0.78 | 10.2833 | 3.93 | 0.030 |
| 3C 438.0 | 44.7 | -0.88 | 37.7667 | 21.88 | 0.290 |
| 3C 20.0 | 42.9 | -0.67 | 51.7833 | 0.67 | 0.174 |
| 3C 219.0 | 41.2 | -0.81 | 45.85 | 9.28 | 0.174 |
| 3C 234.0 | 31.4 | -0.86 | 29.0167 | 9.97 | 0.184 |
| 3C 61.1 | 31.2 | -0.77 | 86.0833 | 2.17 | 0.186 |
| 3C 79.0 | 30.5 | -0.92 | 16.9 | 3.12 | 0.255 |
| 3C 330.0 | 27.8 | -0.71 | 66.0667 | 16.15 | 0.550 |
| 3C 427.1 | 26.6 | -0.97 | 76.35 | 21.07 | 0.572 |
| 3C 47.0 | 26.4 | -0.98 | 20.7 | 1.55 | 0.425 |
| 3C 388.0 | 24.6 | -0.70 | 45.5 | 18.7 | 0.090 |
| 3C 280.0 | 23.7 | -0.81 | 47.6 | 12.9 | 0.997 |
| 3C 228.0 | 21.8 | -1.00 | 14.5667 | 9.78 | 0.552 |
| 3C 109.0 | 21.6 | -0.85 | 11.0667 | 4.17 | 0.305 |
| 3C 55.0 | 21.5 | -1.04 | 28.6167 | 1.9 | 0.734 |
| 3C 268.1 | 21.4 | -0.59 | 73.2833 | 11.95 | 0.973 |
| 3C 225.0B | 21.3 | -0.94 | 13.9833 | 9.65 | 0.582 |
| 3C 192.0 | 21.1 | -0.79 | 24.3 | 8.03 | 0.059 |
| 3C 401.0 | 20.9 | -0.71 | 60.5667 | 19.65 | 0.201 |

Table B.9
FR-II radio galaxies: $F_{178 MHz}$ is the mean radio flux at 178 MHz, SI is the spectral index $\alpha$ determined between 178 MHz and 750 MHz RA and $\delta$ stand for right ascension and declination, respectively in the reference system of 1950. All data were collected before 1985. Note, in the original 3CRR catalog, the spectral index is defined with an opposite sign. The cosmological redshift is given by $z$. 38
| quasar name       | $F_{60\mu m}$ [mJy] | $z$  | $\log \nu f_{14.5}$ |
|------------------|----------------------|------|----------------------|
| PG 0050+124      | 2293                 | 0.061| -13.30               |
| PG 1351+640      | 757                  | 0.087| -13.86               |
| PG 1440+356      | 652                  | 0.077| -13.70               |
| PG 1613+658      | 635                  | 0.129| -13.97               |
| PG 1119+120      | 546                  | 0.049| -13.82               |
| PG 1501+106      | 486                  | 0.036| -13.54               |
| PG 1700+518      | 480                  | 0.292| -13.90               |
| PG 1351+236      | 364                  | 0.055| -13.75               |
| PG 1543+489      | 348                  | 0.400| -14.52               |
| PG 2214+139      | 337                  | 0.067| -13.70               |
| PG 1634+706      | 318                  | 1.334| -14.00               |
| PG 1402+261      | 229                  | 0.164| -14.10               |
| PG 1248+401      | 224                  | 1.030| -14.59               |
| PG 0947+396      | 201                  | 0.206| -14.57               |
| PG 1148+549      | 196                  | 0.969| -14.30               |
| PG 1114+445      | 191                  | 0.144| -14.14               |
| PG 0804+761      | 191                  | 0.100| -13.70               |
| PG 0838+770      | 174                  | 0.131| -14.25               |
| PG 0906+484      | 172                  | 0.118| -14.30               |
| PG 1229+204      | 163                  | 0.064| -13.74               |
| PG 0844+349      | 163                  | 0.064| -13.82               |
| PG 1411+442      | 162                  | 0.089| -13.87               |
| PG 1448+273      | 117                  | 0.065| -13.81               |
| PG 1444+407      | 117                  | 0.267| -14.28               |
| PG 1415+451      | 112                  | 0.114| -14.05               |
| PG 0052+251      | 93                   | 0.155| -14.09               |

Table B.10
Radio-weak quasars from the BQS sorted according to IRAS mean flux at $\lambda = 60\mu m$, $F_{60\mu m}$. The cosmological redshift is given by $z$. The logarithm of the energy flux density at $10^{14.5}$ is given by $\log \nu f_{14.5}$. For the BQS, data were taken until 1983, IRAS data have been taken in the 1980s.
### Table B.11

Nearby intrinsically weak sources. Due to their proximity they nevertheless may contribute significantly to the neutrino flux. We propose to analyze them as individual sources.

| Radio source | other name | Samples (Position) |
|--------------|------------|--------------------|
| 1Jy 0316+41  | NGC 1275   | IR blazars (1), keV blazars (ROSAT (1) and HEAO-A (1)) |
| 1Jy 1652+398 | Mrk 501    | keV blazars (ROSAT (2) and HEAO-A (2)) |
| 1Jy 1222+13  | M 84       | IR blazars (6)     |
| 1Jy 0055+30  | NGC 315    | IR blazars (11)    |
| 1Jy 1807+698 |            | keV blazars (HEAO-A (31)) |
References

[1] J. Ahrens et al., Physical Review Letters 92 (2004) 070201.

[2] M. Ackermann et al., Physical Review D 71 (2005) 077102.

[3] M. Ackermann et al., Proceedings of the 29th ICRC, 2005, astro-ph/0509330.

[4] A. Cillis, R. Hartman and D. Bertsch, Astrophysical Journal 601 (2004) 142.

[5] A. Cillis, D. Torres and O. Reimer, Astrophysical Journal (2005).

[6] C.M. Urry and P. Padovani, The Publications of the Astronomical Society of the Pacific 107 (1995) 803.

[7] http://amanda.uci.edu.

[8] K. Münich et al., Proceedings of the 29th ICRC, 2005, astro-ph/0509330.

[9] C.P. O’Dea, The Publications of the Astronomical Society of the Pacific 110 (1998) 493.

[10] M. Blazejowski et al., Astrophysical Journal 630 (2005) 130.

[11] R. Antonucci and J. Miller, Astrophysical Journal 297 (1985) 621.

[12] M. O’Dowd, C.M. Urry and R. Scarpa, Astrophysical Journal 580 (2002) 96.

[13] H. Falcke and P.L. Biermann, Astronomy & Astrophysics 293 (1995) 665.

[14] H. Falcke, W. Sherwood and A. Patnai, Astrophysical Journal 471 (1996) 106.

[15] M. Cappi et al., Advances in Space Research 25 (2000) 815.

[16] C.P. O’Dea and S.A. Baum, Astronomical Journal 113 (1997) 148.

[17] B.L. Fanaroff and J.M. Riley, Monthly Notices of the Royal Astronomical Society 167 (1974) 31.

[18] H. Falcke, M.A. Malkan and P.L. Biermann, Astronomy & Astrophysics 298 (1995) 375.

[19] H. Falcke, , Gopal-Krishna and P.L. Biermann, Astronomy & Astrophysics 298 (1995) 395.

[20] K. Mannheim, Proceedings of the XXXIInd Rencontres de Moriond, “Very High Energy Phenomena in the Universe”, Les Arcs, France, p. 17, 1997.

[21] T.C. Weekes, ArXiv Astrophysics e-prints (2003), astro-ph/0312179 Planary talk held at the 28th Int. Cosmic Ray Conf.

[22] R.C. Hartman et al., Astrophysical Journal Suppl. Ser. 123 (1998) 79.

[23] P.L. Biermann and P.A. Strittmatter, Astrophysical Journal 322 (1987) 643.
[24] F.W. Stecker et al., Physical Review Letters 66 (1991) 2697.
[25] L. Nellen, K. Mannheim and P. Biermann, Physical Review D (1993) 5270.
[26] F.W. Stecker and M.H. Salamon, Space Sci.Rev. 75 (1996) 341.
[27] J.G. Learned and K. Mannheim, Annu. Rev. Nucl. Part. Sci. 50 (2000) 679.
[28] A. Bell, Monthly Notices of the Royal Astronomical Society 182 (1978) 147.
[29] A. Bell, Monthly Notices of the Royal Astronomical Society 182 (1978) 443.
[30] R.J. Protheroe, Towards the millenium in Astrophysics, Problems and Prospects. Proceedings of International School of Cosmic Ray Astrophysics 10th Course, p. 3.
[31] K. Mannheim, R.J. Protheroe and J.P. Rachen, Physical Review D 63 (2001) 023003.
[32] H. Krawczynsk et al., Astrophysical Journal 601 (2004) 151.
[33] W. Cui et al., High Energy Gamma-Ray Astronomy: 2nd International Symposium, AIP Conference Proceedings, edited by F. Aharonian, H. Völk and D. Horns Vol. 745, pp. 455–461, 2005.
[34] A. Mücke and R.J. Protheroe, Astroparticle Physics 15 (2001) 121.
[35] A. Mücke and R.J. Protheroe, Proc. 27th Int. Cosmic Ray Conf. p. 1153, 2001.
[36] J.K. Becker, P.L. Biermann and W. Rhode, Astroparticle Physics 23 (2005) 355.
[37] H. Kühr et al., Astronomy and Astrophysics Supplement 45 (1981) 367.
[38] H. Kühr et al., MPIfR Preprint 55 (1979/1981).
[39] M. Moshir et al., Bulletin of the American Astronomical Society 22 (1990) 1325.
[40] K.S. Wood et al., Astrophys.J.Suppl. Ser. 56 (1984) 507.
[41] W. Voges et al., Astronomy & Astrophysics 349 (1999) 389.
[42] http://coss.c.gsfc.nasa.gov/
[43] D. Sowards-Emmerd, R.W. Romani and P.F. Michelson, Astrophysical Journal 590 (2003) 109.
[44] H. Gehrels et al., Nature 404 (2000) 363.
[45] R. Fanti et al., Astronomy & Astrophysics 231 (1990) 333.
[46] C. Stanghellini et al., Astronomy and Astrophysics Supplement 131 (1998) 303.
[47] H. Spinrad et al., The Publications of the Astronomical Society of the Pacific 97 (1985) 932.
[48] R. Laing et al., Monthly Notices of the Royal Astronomical Society 204 (1983) 151.

[49] M. Schmidt and R.F. Green, Astrophysical Journal 269 (1983) 352.

[50] D. Sanders et al., Astrophysical Journal 347 (1989) 29.

[51] K. Woschnagg et al., Proceedings of the XXIst International Conference on Neutrino Physics and Astrophysics, Paris, 2004, Nuclear Physics B (Proc. Suppl.) 143 (2005).

[52] J. Ahrens et al., Physical Review Letters 90 (2003) 251101.

[53] F. Aharonian et al., Astronomy & Astrophysics 403 (2003) L1.

[54] M. Beilicke et al., Proceedings of the 29th ICRC, 2005

[55] R. Protheroe, A.C. Donea and A. Reimer, Astroparticle Physics 19 (2003) 559.

[56] D.E. Alexandreas et al., Nuclear Instruments & Methods A 328 (1993) 570.

[57] J. Ahrens et al., Astroparticle Physics 20 (2004) 507.

[58] http://baikalweb.jinr.ru

[59] ANTARES collaboration, astro-ph/9707136 see also http://antares.in2p3.fr

[60] http://www.nestor.rg.gr.

[61] http://nemoweb.lns.infn.it

[62] http://www.km3net.org

[63] G.J. Feldman and R.D. Cousins, Physical Review D 57 (1998) 3873.

[64] S.M. Carroll, W.H. Press and E. L. Turner, Ann. Rev. Astron. Astrophys. 30 (1992) 499.

[65] D.N. Spergel et al., Astrophysical Journal Suppl. 148 (2003) 175.

[66] A. Balbi et al., Astrophysical Journal Letters 588 (2003) L5.