GORENSTEIN HOMOLOGICAL DIMENSIONS AND AUSLANDER CATEGORIES

MOHAMMAD ALI ESMKHANI AND MASSOUD TOUSI

Abstract. In this paper, we study Gorenstein injective, projective, and flat modules over a Noetherian ring R. For an R-module M, we denote by $\text{Gpd}_R M$ and $\text{Gfd}_R M$ the Gorenstein projective and flat dimensions of M, respectively. We show that $\text{Gpd}_R M < \infty$ if and only if $\text{Gfd}_R M < \infty$ provided the Krull dimension of R is finite. Moreover, in the case that R is local, we correspond to a dualizing complex D of \hat{R}, the classes $A'(R)$ and $B'(R)$ of R-modules. For a module M over a local ring R, we show that $M \in A'(R)$ if and only if $\text{Gpd}_R M < \infty$ or equivalently $\text{Gfd}_R M < \infty$. In dual situation by using the class $B'(R)$, we provide a characterization of Gorenstein injective modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with nonzero identity and \hat{R} will denote the completion of a local ring (R, \mathfrak{m}). When discussing the completion of a local ring (R, \mathfrak{m}), we will mean the \mathfrak{m}-adic completion.

Auslander and Bridger [3] introduced the G-dimension, $G - \dim_R M$, for every finitely generated R-module M (see also [2]). They proved the inequality $G - \dim_R M \leq \text{pd}_R M$, with equality $G - \dim_R M = \text{pd}_R M$ when $\text{pd}_R M$ is finite. The G-dimension has strong parallels to the projective dimension. For instance, over a local Noetherian ring (R, \mathfrak{m}), the following conditions are equivalent:

(i) R is Gorenstein.
(ii) $G - \dim_R R/\mathfrak{m} < \infty$.
(iii) All finitely generated R-modules have finite G-dimension.

This characterization of Gorenstein rings is parallel to Auslander-Buchsbaum-Serre characterization of regular rings. G-dimension also differs from projective dimension in that it is defined only for finitely generated modules. Enochs and Jenda defined in [9] Gorenstein projective modules (i.e. modules of G-dimension 0) whether the modules are finitely generated or not. Also, they defined a homological dimension, namely the Gorenstein projective dimension, $\text{Gpd}_R (-)$, for arbitrary (non-finitely generated) modules. It is known that for finitely generated modules, the Gorenstein projective dimension agrees with the G-dimension. Along the same lines, Gorenstein flat and Gorenstein injective modules were introduced in [9,10].

2000 Mathematics Subject Classification. Primary 13D05, 13D07; Secondary 13H10, 13C10, 13C11.

Key words and phrases. Gorenstein flat dimension, Gorenstein projective dimension, Gorenstein injective dimension, cotorsion module, precover, preenvelope.
Let R be a Cohen-Macaulay local ring admitting a dualizing module D. Foxby [12] defined the class $G_0(R)$ to be those R-modules M such that $\text{Tor}_i^R(D, M) = \text{Ext}_i^R(D, D \otimes_R M) = 0$ for all $i \geq 1$ and such that the natural map $M \to \text{Hom}_R(D, D \otimes_R M)$ is an isomorphism, and $I_0(R)$ to be those R-modules N such that $\text{Ext}_i^R(D, N) = \text{Tor}_i^R(D, \text{Hom}_R(D, N)) = 0$ for all $i \geq 1$ and such that the natural map $D \otimes_R \text{Hom}_R(D, N) \to N$ is an isomorphism. In [11] Enochs, Jenda and Xu characterize Gorenstein injective, projective and flat dimensions in terms of $G_0(R)$ and $I_0(R)$.

Let R be a Noetherian ring with dualizing complex D. The Auslander categories $A(R)$ and $B(R)$ with respect to D are defined in [4, 3.1]. In [5], it is shown that the modules in $A(R)$ are precisely those of finite Gorenstein projective dimension (Gorenstein flat dimension), see [5, Theorem 4.1], and the modules in $B(R)$ are those of finite Gorenstein injective dimension, see [5, Theorem 4.4]. This may be viewed as an extension of the results of [11]. Note that, by [4, Proposition 3.4], if R is a Cohen-Macaulay local ring with a dualizing module, then an R-module M is in $A(R)$ if and only if $M \in G_0(R)$ (resp. an R-module M is in $B(R)$ if and only if $M \in I_0(R)$).

The main aim of this paper is to extend the characterization of finiteness of Gorenstein dimensions in [5] to arbitrary local Noetherian rings.

Let R be a local Noetherian ring probably without dualizing complex, and let D denote the dualizing complex of R. We define $A'(R)$ to be those R-modules M such that $R \otimes_R M \in A(R)$ and $B'(R)$ to be those R-modules N such that $\text{Hom}_R(R, N) \in B(R)$. In sections 2, 3, and 4, we characterize Gorenstein injective, projective, and flat modules in terms of the classes $A'(R)$ and $B'(R)$. To be more precise, we show the following results.

Theorem 1.1. Let R be a local Noetherian ring and M an R-module.
(i) (See Theorem 2.5) M is Gorenstein flat if and only if M belongs to $A'(R)$ and $\text{Tor}_i^R(L, M) = 0$ for all injective R-modules L and all $i > 0$.
(ii) (See Corollary 3.3) M is Gorenstein projective if and only if M belongs to $A'(R)$ and $\text{Ext}_i^R(M, P) = 0$ for all projective R-modules P and all $i > 0$.
(iii) (See Theorem 4.8) M is Gorenstein injective if and only if M belongs to $B'(R)$, M is cotorsion and $\text{Ext}_i^R(E, M) = 0$ for all injective R-modules E and all $i > 0$.

Even more generally, by using the classes $A'(R)$ and $B'(R)$, we characterize modules of finite Gorenstein injective, projective and flat dimensions. Namely, we prove the following two results.

Theorem 1.2. (See Theorems 3.4 and 3.5) Let R be a Noetherian ring of finite Krull dimension and M an R-module. Then the following conditions are equivalent:
(i) $\text{Gfd}_R M < \infty$.
(ii) $\text{Pfd}_R M < \infty$.
(More precisely, if $\text{Pfd}_R M < \infty$ or $\text{Gfd}_R M < \infty$, then $\text{Max}\{\text{Gfd}_R M, \text{Pfd}_R M\} \leq \text{dim} R$).
Moreover, if R is local, then the above conditions are equivalent to the following
(iii) $M \in A'(R)$.

Theorem 1.3. (See Theorem 4.10) Let (R, m) be a local Noetherian ring of dimension d and $\text{Ext}_i^R(R, M) = 0$ for all $i > 0$. Then Gorenstein injective dimension of M is finite if and only if M belongs to $B'(R)$. In particular, if $M \in B'(R)$ then $\text{Gid}_R(M) \leq d$.

Setup and notation If M is any R-module, we use $\text{pd}_R M$, $\text{id}_R M$ and $\text{id}_R M$ to denote the usual projective, flat and injective dimension of M, respectively. Furthermore, we write $\text{Gpd}_R M$, $\text{Gfd}_R M$ and $\text{Gid}_R M$ for the Gorenstein projective, Gorenstein flat and Gorenstein injective dimension of M, respectively. Let \mathcal{X} be any class of R-modules and let M be an R-module. An \mathcal{X}-precover of M is an R-homomorphism $\varphi : X \rightarrow M$, where $X \in \mathcal{X}$ and such that the sequence,

$$\Hom_R(X', X) \xrightarrow{\Hom_R(X', \varphi)} \Hom_R(X', M) \rightarrow 0$$

is exact for every $X' \in \mathcal{X}$. If, moreover, $f \varphi = \varphi$ for $f \in \Hom_R(X, M)$ implies f is an automorphism of M, then φ is called an \mathcal{X}-cover of M. Also, an \mathcal{X}-preenvelope and \mathcal{X}-envelope of M are defined “dually”. By $P(R)$, $F(R)$ and $I(R)$ we denote the classes of all projective, flat and injective R-modules, respectively. Furthermore, we let $\overline{P(R)}$, $\overline{F(R)}$ and $\overline{I(R)}$ denote the classes of all R-modules with finite projective, flat and injective dimension, respectively.

We may use the following facts without comment. If R is Noetherian of finite Krull dimension, then $\overline{P(R)} = P(R)$ (see [16, Theorem 4.2.8]). Also, if R is Noetherian then for any $M \in \overline{P(R)}$, we have $\text{pd}_R(M) \leq \dim R$ (see [15, p. 84]).

2. Gorenstein flat dimension

Let R be a local Noetherian ring and let \mathbf{D} denote the dualizing complex of \hat{R}. Let $A(\hat{R})$ denote the full subcategory of $\mathbf{D}_b(\hat{R})$, consisting of those complexes X for which $\mathbf{D} \otimes^L_R X \in \mathbf{D}_b(\hat{R})$ and the canonical morphism

$$\gamma_X : X \rightarrow R \text{Hom}_R(\mathbf{D}, \mathbf{D} \otimes^L_R X),$$

is an isomorphism. Here, $\mathbf{D}_b(\hat{R})$ denote the full subcategory of $\mathbf{D}(\hat{R})$ (the derived category of \hat{R}-modules) consisting of complexes X with $H_n(X) = 0$ for $|n| >> 0$, see [4].

Now, we define $A'(R)$ to be the class of all R-modules M such that $\hat{R} \otimes_R M \in A(\hat{R})$.

Lemma 2.1. Let $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ be an exact sequence of modules over a local Noetherian ring R. Then if any two of M', M, M'' are in $A'(R)$, so is the third.

Proof. The exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ yields, the exact sequence $0 \rightarrow \hat{R} \otimes_R M' \rightarrow \hat{R} \otimes_R M \rightarrow \hat{R} \otimes_R M'' \rightarrow 0$. Now, the conclusion follows by using [5, Theorem 4.1] and [13, Theorem 2.24]. □

Proposition 2.2. Let R be a local Noetherian ring and let M be an R-module. If $\text{Gfd}_R M < \infty$, then $M \in A'(R)$.

Proof. By [13, Proposition 3.10], we have $\text{Gfd}_R(\hat{R} \otimes_R M) < \infty$. Using [5, Theorem 4.1], we conclude that $\hat{R} \otimes_R M$ belongs to $A(\hat{R})$. So, the assertion follows by the definition. □

In the proof of the following lemma we use the method of the proof of [11, Lemma 3.1].

Lemma 2.3. Suppose K is cotorsion of finite flat dimension and suppose M is an R-module. If $\text{Tor}_i^R(E, M) = 0$ for all $i > 0$ and all injective R-modules E, then $\text{Ext}^i_R(M, K) = 0$ for all $i > 0$.

Proof. We prove by induction on $\text{fd}_R K$. First, let K be flat and cotorsion. Then K is a summand of a module of the form $\text{Hom}_R(E, E')$ where E and E' are injective ([8, Lemma 2.3]). It is enough to show that $\text{Ext}^i_R(M, \text{Hom}_R(E, E')) = 0$ for all $i > 0$. We have

$$\text{Ext}^i_R(M, \text{Hom}_R(E, E')) \cong \text{Hom}_R(\text{Tor}^R_i(M, E), E')$$

for all $i \geq 0$. Thus $\text{Ext}^i_R(M, K) = 0$ for all $i > 0$. Now, let K be cotorsion and of finite flat dimension. Let $F_0 \to K$ be a flat cover of K with kernel L. Then L is cotorsion, see [8, Lemma 2.2]. Also, we have the exact sequence

$$\text{Ext}^i_R(M, F_0) \to \text{Ext}^i_R(M, K) \to \text{Ext}^{i+1}_R(M, L).$$

Since K and L are cotorsion, then so is F_0. Hence, by inductive hypothesis $\text{Ext}^i_R(M, K) = 0$ for all $i > 0$. □

Lemma 2.4. Let R be a Noetherian ring and M an R-module.

(i) If R be a local ring and $M \in A^i(R)$, then there exists a monomorphism $M \to L$ with $\text{fd}_R L < \infty$.

(ii) Assume $\psi : M \to L$ is a monomorphism such that $\text{fd}_R L < \infty$ and that $\text{Tor}^i_R(N, M) = 0$ for all injective R-modules N and all $i > 0$. Then M possesses a monic $\overline{F(R)}$-preenvelope $M \to F$, in which F is flat.

(iii) Let R-homomorphism $f : M \to L'$ be an $\overline{F(R)}$-preenvelope. Assume $\varphi : M \to L$ is a monomorphism such that $\text{pd}_R L < \infty$ and that $\text{Ext}^i_R(M, N) = 0$ for all projective R-modules N and all $i > 0$. Then there exists a monic $\overline{F(R)}$-preenvelope $M \to P$, in which P is projective.

Proof. (i) Since M belongs to $A^i(R)$, $\text{Gfd}_R(M \otimes_R \hat{R})$ is finite by the definition and [5, Theorem 4.1]. Therefore, by [5, lemma 2.19], we have an exact sequence of \hat{R}-modules and \hat{R}-homomorphisms $0 \to M \otimes_R \hat{R} \to L$, where flat dimension of L is finite as an \hat{R}-module. So, we obtain an exact sequence $0 \to M \to L$ of R-modules and R-homomorphism, where flat dimension of L is finite as an R-module. Not that every flat \hat{R}-module is also flat as an R-module.

(ii) Using [7, Proposition 5.1], there exists a flat preenvelope $f : M \to F$. We show that f is $\overline{F(R)}$-preenvelope. To this end, let $\psi' : M \to L'$ be an R-homomorphism such that $\text{fd}_R L' < \infty$ and let $0 \to K \to F' \overset{\pi} \to L' \to 0$ be an exact sequence such that $\pi : F' \to L'$ is a flat cover. Then K is of finite flat dimension and also by [8, lemma 2.2], it is cotorsion. Lemma 2.3 implies that $\text{Ext}^i_R(M, K) = 0$ for all $i > 0$. So, we have the exact sequence

$$0 \to \text{Hom}_R(M, K) \to \text{Hom}_R(M, F') \to \text{Hom}_R(M, L') \to \text{Ext}^1_R(M, K) = 0.$$

Therefore, there exists an R-homomorphism $h : M \to F'$ such that $\pi h = \psi'$. Since $f : M \to F$ is flat preenvelope, there exists an R-homomorphism $g : F \to F'$ such that $h = gf$. Hence, there exists the R-homomorphism $\pi g : F \to L'$ such that $\pi gf = \psi'$. Thus f is $\overline{F(R)}$-preenvelope. Consequently, f is monic, because ψ is monic.

(iii) Since $\varphi : M \to L$ is monic, it turns out that $f : M \to L'$ is also monic. Now, let $0 \to K \to P \overset{\pi} \to L' \to 0$ be an exact sequence such that P is projective R-module. It is easy to see that $K \in \overline{P(R)}$. On the other hand, by hypothesis and induction on projective dimension,
By the exact sequence be an exact sequence of R modules and let Hom$_R$ be an injective R-module. Therefore, Ext$_R^i(M, K) = 0$ for all $i > 0$. Hence $f : M \rightarrow L'$ has a lifting $M \rightarrow P$ which is monic and still an $\overline{P(R)}$-preenvelope. □

Theorem 2.5. Let (R, m) be a local Noetherian ring and C an R-module. Then the following conditions are equivalent:

(i) C is Gorenstein flat.

(ii) C belongs to $A'(R)$ and Tor$_i^R(L, C) = 0$ for all injective R-modules L and all $i > 0$.

Proof. (i) \Rightarrow (ii) By Proposition 2.2, C belongs to $A'(R)$. Also, [13, Theorem 3.6], implies the last assertion in (i).

(ii) \Rightarrow (i) By [13, Theorem 3.6], it is enough to show that C admits a right flat resolution

$$X = 0 \rightarrow C \rightarrow F^0 \rightarrow F^1 \rightarrow F^2 \rightarrow \ldots$$

such that Hom$_R(X, Y)$ is exact for all flat R-modules Y (i.e. C admits a co-proper right flat resolution). Lemma 2.4 (i) implies that there exists an exact sequence $0 \rightarrow C \rightarrow L$ of R-modules and R-homomorphisms such that fd$_R L < \infty$. Using Lemma 2.4 (ii), there exists a monomorphism $f : C \rightarrow K$ which is a flat preenvelope. We obtain the short exact sequence $0 \rightarrow C \xrightarrow{f} K \rightarrow B \rightarrow 0$ and so for every flat R-module F' we have the short exact sequence

$$0 \rightarrow \text{Hom}_R(B, F') \rightarrow \text{Hom}_R(K, F') \rightarrow \text{Hom}_R(C, F') \rightarrow 0.$$

Let E be an injective R-module. Since Hom$_R(E, E_R(R/m))$ is a flat R-module, we conclude that

$$0 \rightarrow C \otimes_R E \rightarrow K \otimes_R E \rightarrow B \otimes_R E \rightarrow 0$$

is an exact sequence. So, Tor$_i^R(E, B) = 0$ for all $i > 0$ and all injective R-modules E, because K is a flat R-module. Also, by Lemma 2.1 and Proposition 2.2, we obtain $B \in A'(R)$. Then proceeding in this manner, we get the desired co-proper right flat resolution of C. □

Corollary 2.6. Let (R, m) be a local Noetherian ring of dimension d and let $M \in A'(R)$. Then Gfd$_R(M) = \hat{\text{Gfd}}_R(\hat{R} \otimes_R M)$. In particular, if $M \in A'(R)$ then Gfd$_R M \leq \dim R$.

Proof. By [13, Proposition 3.10], Gfd$_R(\hat{R} \otimes_R M) \leq \hat{\text{Gfd}}_R(M)$. We show that Gfd$_R(M) \leq \hat{\text{Gfd}}_R(\hat{R} \otimes_R M)$ and so [13, Theorem 3.24] completes the proof. As M belongs to $A'(R)$, we get that $\hat{R} \otimes_R M$ belongs to $A(\hat{R})$. So, by [5, Theorem 4.1] Gfd$_R(\hat{R} \otimes_R M)$ is finite. Set Gfd$_R(\hat{R} \otimes_R M) = t$ and let

$$0 \rightarrow C \rightarrow P_{t-1} \rightarrow \ldots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$$

be an exact sequence of R-modules and R-homomorphisms such that P_i’s are projective. We obtain the exact sequence

$$0 \rightarrow \hat{R} \otimes_R C \rightarrow \hat{R} \otimes_R P_{t-1} \rightarrow \ldots \rightarrow \hat{R} \otimes_R P_1 \rightarrow \hat{R} \otimes_R P_0 \rightarrow \hat{R} \otimes_R M \rightarrow 0.$$

By [13, Theorems 3.14], $\hat{R} \otimes_R C$ is a Gorenstein flat \hat{R}-module. Also, Lemma 2.1 and the above exact sequence, imply that C belongs to $A'(\hat{R})$. In view of Theorem 2.5, it is enough to show that Tor$_i^\hat{R}(C, E) = 0$ for all injective R-modules E and all $i > 0$. Let E be an injective R-module and let Hom$_R(\cdot, E_R(R/m))$ denote by $(\cdot)^\vee$. From the natural monomorphism $E \rightarrow (E^\vee)^\vee$, we
conclude that E is a direct summand of $(E^\vee)^\vee$. So, it is enough to show that \(\text{Tor}^R_i((E^\vee)^\vee, C) = 0 \) for all \(i > 0 \). By the next result, \(\text{id}_R((E^\vee)^\vee) \) is finite. It therefore follows from \([13, \text{Theorem 3.14}]\) that \(\text{Tor}^R_i(C \otimes_R \hat{R}, (E^\vee)^\vee) = 0 \) for all \(i > 0 \). Suppose \(F \to C \) is a flat resolution of \(C \). For every \(i > 0 \), we have

\[
\text{Tor}^R_i((E^\vee)^\vee) \cong H_i((F \otimes_R \hat{R}) \otimes_R (E^\vee)^\vee)
\cong H_i(F \otimes_R \hat{R}, (E^\vee)^\vee)
\cong \text{Tor}^R_i(C \otimes_R \hat{R}, (E^\vee)^\vee)
\]

The last isomorphism comes from the fact that \(F \otimes_R \hat{R} \) is a flat resolution of \(C \), considered as an \(\hat{R} \)-module. Thus, \(\text{Tor}^R_i((E^\vee)^\vee) = 0 \) for all \(i > 0 \).

Lemma 2.7. Let \((R, \mathfrak{m}) \) be a local Noetherian ring and let \(K \) be an \(R \)-module such that \(\text{id}_R(K) \) is finite. Let \(\text{Hom}_R(-, E_R(R/\mathfrak{m})) \) denote by \((-)^\vee \). The \(R \)-module \((K^\vee)^\vee \) considered with the \(\hat{R} \)-module structure coming from \(E_R(R/\mathfrak{m}) \), that is, \((\hat{r} f)(x) = \hat{r}(f(x)) \), for all \(\hat{r} \in \hat{R} \), \(f \in \text{Hom}_R(K^\vee, E_R(R/\mathfrak{m})) \) and \(x \in K^\vee \). Then \(\text{id}_R((K^\vee)^\vee) \) is finite.

Proof. We deduce that \(\text{fd}_R(K^\vee) \) is finite. It is easy to see that \(\text{fd}_R(K^\vee \otimes_R \hat{R}) \) is finite. By the adjoint isomorphism, we have the following isomorphism

\[
\text{Hom}_R((K^\vee \otimes_R \hat{R}, E_R(R/\mathfrak{m})) \cong \text{Hom}_R(K^\vee, E_R(R/\mathfrak{m})),
\]

as an \(\hat{R} \)-modules. This ends the proof, because the injective dimension of \(\text{Hom}_R(K^\vee \otimes_R \hat{R}, E_R(R/\mathfrak{m})) \) is finite as an \(\hat{R} \)-module.

3. Gorenstein projective dimension

In this section, we show that Gorenstein projective dimension of an \(R \)-module is finite if and only if its Gorenstein flat dimension is finite.

Proposition 3.1. Let \(R \) be a Noetherian ring with finite Krull dimension and \(C \) be an \(R \)-module. Then \(\text{Gpd}_R(C) \leq \text{Gfd}_R(C) \).

Proof. See \([13, \text{Remark 3.3 and Proposition 3.4}]\). \(\square \)

Theorem 3.2. Let \(R \) be a Noetherian ring of finite Krull dimension and \(M \) an \(R \)-module. Then the following conditions are equivalent:

(i) \(M \) is Gorenstein projective.

(ii) \(\text{Gfd}_R M < \infty \) and \(\text{Ext}_R^i(M, P) = 0 \) for all projective \(R \)-modules \(P \) and all \(i > 0 \).

Proof. Assume that \(M \) is Gorenstein projective. Then \(\text{Gfd}_R M < \infty \), by Proposition 3.1. Also, \([13, \text{Proposition 2.3}]\), implies that \(\text{Ext}_R^i(M, P) = 0 \) for all projective \(R \)-modules \(P \) and all \(i > 0 \).

Next, we show that (ii) \(\Rightarrow \) (i). By \([13, \text{Proposition 2.3}]\), it is enough to show that \(M \) admits a right projective resolution

\[
X = 0 \to M \to P^0 \to P^1 \to P^2 \to \cdots
\]
such that \(\text{Hom}_R(X, Y) \) is exact for every projective \(R \)-module \(Y \) (i.e. \(M \) admits a co-proper right projective resolution).

Since \(\text{Gfd}_R M < \infty \), it follows from [5, Lemma 2.19] that there exists a monomorphism \(M \rightarrow L \) with \(\text{fd}_R L < \infty \).

Let \(i > 0 \). By assumption and induction on projective dimension, \(\text{Ext}^i_R(M, Q) = 0 \) for all \(Q \in P(R) \). On the other hand, we have

\[
\text{Ext}^i_R(M, \text{Hom}_R(E, E')) \cong \text{Hom}_R(\text{Tor}_i^R(M, E), E')
\]

for all injective \(R \)-modules \(E \) and \(E' \). Therefore, \(\text{Tor}_i^R(M, E) = 0 \) for all injective \(R \)-modules \(E \). Note that, for each nonzero \(R \)-module \(N \), there exists an injective \(R \)-module \(E' \) such that \(\text{Hom}_R(N, E') \neq 0 \).

Now, using parts (ii) and (iii) of Lemma 2.4, there exists a monomorphism \(\psi : M \rightarrow Q \) which is a projective preenvelope. We consider the exact sequence

\[
0 \rightarrow M \xrightarrow{\psi} Q \rightarrow B \rightarrow 0,
\]

where \(B = \text{Coker} \psi \). Let \(P \) be a projective \(R \)-module. Applying the functor \(\text{Hom}_R(\cdot, P) \) to the above exact sequence, we see that \(\text{Ext}^i_R(B, P) = 0 \) for all \(i > 0 \) because \(\psi : M \rightarrow Q \) is a projective preenvelope. Also, \(\text{Gfd}_R B < \infty \), by [13, Theorem 3.15]. Then proceeding in this manner, we get the desired co-proper right projective resolution for \(M \).

We can deduce from Proposition 2.2, Corollary 2.6 and Theorem 3.2 the following result.

Corollary 3.3. Let \(R \) be a local Noetherian ring and \(M \) an \(R \)-module. Then the following conditions are equivalent:

(i) \(M \) is Gorenstein projective.

(ii) \(M \in A'(R) \) and \(\text{Ext}^i_R(M, P) = 0 \) for all projective \(R \)-modules \(P \) and all \(i > 0 \).

Theorem 3.4. Let \(R \) be a Noetherian ring of finite dimension \(d \) and \(M \) be an \(R \)-module. Then the following conditions are equivalent:

(i) \(\text{Gfd}_R M < \infty \).

(ii) \(\text{Gpd}_R M < \infty \).

Moreover, if one of the above conditions holds, then \(\text{Gpd}_R M \leq d \).

Proof. (i) \(\Rightarrow \) (ii) We prove the claim by induction on \(\text{Gfd}_R M \). First, let \(M \) be a Gorenstein flat \(R \)-module. Let \(F \) be a flat \(R \)-module. Consider the minimal pure injective resolution

\[
0 \rightarrow F \rightarrow PE^0(F) \rightarrow PE^1(F) \rightarrow \cdots
\]

(see [16, pages 39 and 92]). Note that, by [16, Lemma 3.1.6], \(PE^n(F) \) is flat for all \(n \geq 0 \) and also, by [16, Corollary 4.2.7], \(PE^n(F) = 0 \) for all \(n > d \). Since, every pure injective module is cotorsion, by [13, Proposition 3.22], \(\text{Ext}^j_R(M, PE^i(F)) = 0 \) for all \(i \geq 0 \) and all \(j \geq 1 \). Therefore, \(\text{Ext}^{d+i}_R(M, F) \cong \text{Ext}^i_R(M, PE^d(F)) \) for all \(i \geq 1 \), and so \(\text{Ext}^{d+i}_R(M, F) = 0 \) for all \(i \geq 1 \). Next, let

\[
0 \rightarrow C \rightarrow P_{d-1} \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0
\]
be an exact sequence such that P_i’s are projective. We have $\text{Ext}_R^{d+i}(M,F) \cong \text{Ext}_R^{i}(C,F)$ for all $i \geq 1$, and so $\text{Ext}_R^i(C,F) = 0$ for all $i \geq 1$. On the other hand, using [13, Theorem 3.15], we conclude that $\text{Gfd}_R C < \infty$. Therefore, by Theorem 3.2, C is Gorenstein projective, and hence $\text{Gpd}_R M \leq d$.

Now, let $\text{Gfd}_R M = t > 0$ and let $0 \to K \to P \to M \to 0$ be an exact sequence such that P is projective. By [13, Proposition 3.12], $\text{Gfd}_R K = t - 1$. Hence, induction hypothesis implies that $\text{Gpd}_R M < \infty$.

(ii) \Rightarrow (i) This follows from Proposition 3.1.

Now, if either $\text{Gpd}_R M < \infty$ or equivalently $\text{Gfd}_R M < \infty$, then, by [5, Lemma 2.17], $\text{Gpd}_R M = \text{pd}_R H$, where H is an R-module. This completes the proof. □

Now, we are ready to deduce the main result of this section by using Proposition 2.2, Corollary 2.6 and Theorem 3.4.

Theorem 3.5. Let R be a local Noetherian ring and M an R-module. Then the following conditions are equivalent:

(i) $\text{Gfd}_R M < \infty$.

(ii) $\text{Gpd}_R M < \infty$.

(iii) $M \in A'(R)$.

Moreover, if one of the above conditions holds, then $\text{Gpd}_R M \leq \dim R$.

4. Gorenstein injective dimension

Let R be a local Noetherian ring and let D denote the dualizing complex of \hat{R}. Let $B(\hat{R})$ denote the full subcategory of $D_b(\hat{R})$, consisting of those complexes X for which $R\text{Hom}_\hat{R}(D,X) \in D_b(\hat{R})$ and the canonical morphism

$$\tau_X : D \otimes^L_R R\text{Hom}_\hat{R}(D,X) \to X,$$

is an isomorphism, see [4, 3.1].

Now, we define $B'(R)$ to be the class of all R-modules M such that $\text{Hom}_R(\hat{R},M) \in B(\hat{R})$.

In the Theorem 4.8, we want to characterize Gorenstein injective modules in terms of the class $B'(R)$. To prove Theorem 4.8, we need the following results.

Definition 4.1. (See [6, Definition 5.10]) For every R-module M, we show the large restricted injective dimension by $\text{Ed}_R M$ and define

$$\text{Ed}_R M = \sup \{ i \in \mathbb{N}_0 \mid \exists L \in F(\hat{R}) \mid \text{Ext}_R^i(L,M) \neq 0 \}.$$

Theorem 4.2. (Dimension inequality) Let R be a Noetherian ring of finite Krull dimension. For every R-module M, we have the following inequality:

$$\text{Ed}_R M \leq \text{Gid}_R M \leq \text{id}_R M.$$
Hence, we obtain the exact sequence
\[0 \rightarrow M \rightarrow T \rightarrow K \rightarrow 0 \]
such that \(T \) is injective \(R \)-module and \(\text{Gid}_R K = n - 1 \). By induction, we have \(\text{Ed}_R K \leq \text{Gid}_R K = n - 1 \), and so \(\text{Ext}_R^1(L, K) = 0 \) for all \(L \in \overline{F}(R) \) and all \(j > n - 1 \). For each \(i > n \) and each \(L \in \overline{F}(R) \), we have the following exact sequence
\[0 = \text{Ext}_R^{i-1}(L, K) \rightarrow \text{Ext}_R^i(L, M) \rightarrow \text{Ext}_R^i(L, T) = 0. \]
So \(\text{Ed}_R M \leq n = \text{Gid}_R M \). This ends the proof. \(\square \)

By Theorem 4.2, every Gorenstein injective \(R \)-module over a Noetherian ring of finite Krull dimension is strongly cotorsion (see [16, Definition 5.4.1]). The following example shows that there exists an \(R \)-module with finite Gorenstein injective dimension over a regular local ring which is not cotorsion.

Example 4.3. Let \(R \) be a regular local ring of Krull dimension one which is not complete. By [1, Lemma 3.3], \(\text{Hom}_R(\hat{R}, R) = 0 \). So, \(\hat{R} \) is not a projective \(R \)-module. Therefore, \(\text{pd}_R(\hat{R}) = 1 \) and consequently there exists an \(R \)-module \(M \) such that \(\text{Ext}_R^1(\hat{R}, M) \neq 0 \). On the other hand, \(\text{id}_R M \leq 1 \). So, \(M \) is an \(R \)-module with finite Gorenstein injective dimension which is not cotorsion.

Proposition 4.4. Let \(R \) be a local Noetherian ring and \(M \) an \(R \)-module.

(i) If \(M \) is a Gorenstein injective \(R \)-module, then \(\text{Hom}_R(\hat{R}, M) \) is Gorenstein injective as an \(\hat{R} \)-module.

(ii) If \(M \) is a Gorenstein injective \(R \)-module, then \(M \in B'(R) \).

Proof. (i) Let
\[X = \ldots \rightarrow E_2 \rightarrow E_1 \rightarrow E_0 \xrightarrow{\rho^0} G^0 \rightarrow G^1 \rightarrow \ldots \]
be an exact sequence of injective \(R \)-modules such that \(\text{Hom}_R(I, X) \) is exact for every injective \(R \)-modules \(I \) with \(\ker \rho^0 = M \). If
\[0 \rightarrow G'' \rightarrow E \rightarrow G' \rightarrow 0 \]
is an exact sequence such that \(G' \), \(G'' \) are Gorenstein injective and \(E \) is injective, then Theorem 4.2 yields the short exact sequence,
\[0 \rightarrow \text{Hom}_R(\hat{R}, G'') \rightarrow \text{Hom}_R(\hat{R}, E) \rightarrow \text{Hom}_R(\hat{R}, G') \rightarrow 0. \]
Hence, we obtain the exact sequence
\[Y = \ldots \rightarrow \text{Hom}_R(\hat{R}, E_1) \rightarrow \text{Hom}_R(\hat{R}, E_0) \xrightarrow{\text{Hom}_R(\hat{R}, \rho^0)} \text{Hom}_R(\hat{R}, G^0) \rightarrow \ldots \]
of \(\hat{R} \)-modules and \(\hat{R} \)-homomorphisms in which \(\ker(\text{Hom}_R(\hat{R}, \rho^0)) \cong \text{Hom}_R(\hat{R}, M) \). On the other hand, if \(E \) is an injective \(R \)-module, we can conclude that \(\text{Hom}_R(\hat{R}, E) \) is injective as an \(\hat{R} \)-module,
because $\text{Hom}_R(-, \text{Hom}_R(\hat{R}, E)) \cong \text{Hom}_R(- \otimes_R \hat{R}, E)$. It is enough to show that $\text{Hom}_R(E', Y)$ is exact, for all injective \hat{R}-modules E'. This follows from the following isomorphisms of complexes

$$\text{Hom}_R(E', Y) \cong \text{Hom}_R(E', \text{Hom}_R(\hat{R}, X)) \cong \text{Hom}_R(E', X)$$

and the fact that every injective \hat{R}-module is also injective as an R-module.

(ii) Let M be Gorenstein injective. By (i), $\text{Hom}_R(\hat{R}, M)$ is Gorenstein injective \hat{R}-module. Hence, by [5, Theorem 4.4], $\text{Hom}_R(\hat{R}, M) \in B(\hat{R})$, and so $M \in B'(R)$, by the definition. □

Proposition 4.5. An R-module M is Gorenstein injective if and only if $\text{Ext}_R^i(M, E) = 0$ for all injective R-modules E and for all $i > 0$ and there exists an exact sequence

$$X = \ldots \rightarrow E_2 \rightarrow E_1 \rightarrow E_0 \rightarrow M \rightarrow 0$$

of R-modules and R-homomorphisms with E_i is injective R-module for all $i \geq 0$, such that $\text{Hom}_R(E, X)$ is exact for all injective R-modules E (i.e. M admits a proper left injective resolution).

Proof. It is the dual version of [13, Proposition 2.3] and we leave the proof to the reader. □

Lemma 4.6. (i) Let R be a local Noetherian ring and M a cotorsion R-module such that M belongs to $B'(R)$. Then there exists an epimorphism $L \rightarrow M$ with $\text{id}_R(L) < \infty$.

(ii) Let R be a Noetherian ring and $\varphi : L \rightarrow M$ an R-epimorphism with $\text{id}_R(L) < \infty$ and $\text{Ext}_R^i(N, M) = 0$ for all injective R-modules N and all $i > 0$. Then there exists an epic $\overline{I(R)}$-precover $E \rightarrow M$, in which E is injective.

Proof. (i) Since M belongs to $B'(R)$, then $\text{Hom}_R(\hat{R}, M))$ belongs to $B(\hat{R})$. So, $\text{Hom}_R(\hat{R}, M))$ has finite Gorenstein injective dimension as an \hat{R}-module by [5, Theorem 4.4]. By [5, Lemma 2.18], there are an \hat{R}-module L and an \hat{R}-epimorphism $L \rightarrow \text{Hom}_R(\hat{R}, M)$ such that injective dimension of L as an \hat{R}-module is finite. Since every injective \hat{R}-module is injective as an R-module, injective dimension of L as an R-module is finite. Consider the following exact sequence

$$0 \rightarrow R \rightarrow \hat{R} \rightarrow \hat{R}/R \rightarrow 0,$$

that yields the following exact sequence

$$\text{Hom}_R(\hat{R}, M)) \rightarrow \text{Hom}_R(R, M)) \rightarrow \text{Ext}_R^1(\hat{R}/R, M).$$

On the other hand, since \hat{R}/R is a flat R-module and M is a cotorsion R-module, $\text{Ext}_R^1(\hat{R}/R, M) = 0$. So, the natural R-homomorphism $\text{Hom}_R(\hat{R}, M)) \rightarrow M$ is epic. The result follows.

(ii) By [16, Theorem 2.4.3], there exists an $I(R)$-precover $f : E \rightarrow M$. We claim that f is an $\overline{I(R)}$-precover. Let $\varphi' : L' \rightarrow M$ be an R-homomorphism such that $\text{id}_R(L') < \infty$. Consider an exact sequence

$$0 \rightarrow L' \rightarrow E' \rightarrow K \rightarrow 0$$

such that E' is an injective R-module. It is clear that injective dimension of K is finite. By induction on injective dimension, we can deduce from assumption that $\text{Ext}_R^1(K, M)$ is zero. We
obtain the following exact sequence

\[0 \to \text{Hom}_R(K, M) \to \text{Hom}_R(E', M) \to \text{Hom}_R(L', M) \to \text{Ext}^1_R(K, M) = 0. \]

Hence, we conclude that there exists an \(R \)-homomorphism \(\psi : E' \to M \) such that \(\varphi' = \psi g \). On the other hand, since \(f \) is an \(I(R) \)-precover, there exists an \(R \)-homomorphism \(h : E' \to E \) such that \(\psi = fh \). Hence, there exists an \(R \)-homomorphism \(h'g : L' \to E \) such that \(f(hg) = \varphi' \). It therefore follows that \(f \) is an \(\overline{I(R)} \)-precover. Consequently \(f \) is epic, because \(\varphi \) is epic. \(\Box \)

Lemma 4.7. Let \((R, \mathfrak{m})\) be a local Noetherian ring, \(M \) a cotorsion \(R \)-module, and \(K \) a cotorsion \(\hat{R} \)-module. Then

(i) \(\text{Ext}^i_R(F, M) = 0 \) for all flat \(R \)-modules \(F \) and all \(i > 0 \).

(ii) \(K \) is cotorsion as an \(R \)-module.

(iii) For all \(j > 0 \), \(\text{Ext}^j_R(E, M) = 0 \) for all injective \(R \)-modules \(E \) if and only if \(\text{Ext}^j_R(I, \text{Hom}_R(\hat{R}, M)) = 0 \) for all injective \(\hat{R} \)-modules \(I \).

Proof. (i) See the proof of [16, Proposition 3.1.2].

(ii) Suppose \(F \) is a flat \(R \)-module and \(\text{P}_\bullet \to F \) a projective resolution of \(F \). For all \(i > 0 \), we have

\[
\text{Ext}^i_R(F, K) \cong H^i(\text{Hom}_R(\text{P}_\bullet, K)) \\
\cong H^i(\text{Hom}_R(\text{P}_\bullet \otimes R \hat{R}, K)) \\
\cong \text{Ext}^i_R(F \otimes R \hat{R}, K).
\]

The last isomorphism comes from the fact that \(K \) is a cotorsion \(\hat{R} \)-module and \(F \otimes R \hat{R} \) is flat as an \(\hat{R} \)-module for all flat \(R \)-modules \(F \). This ends the proof of (ii).

(iii) Suppose \(L \) is an \(\hat{R} \)-module and \(\text{F}_\bullet \to L \) is a free resolution of \(L \), considered as an \(\hat{R} \)-module. For every \(j > 0 \), we have

\[
\text{Ext}^j_R(L, \text{Hom}_R(\hat{R}, M)) \cong H^j(\text{Hom}_R(\text{F}_\bullet, \text{Hom}_R(\hat{R}, M))) \\
\cong H^j(\text{Hom}_R(\text{F}_\bullet \otimes R \hat{R}, M)) \\
\cong H^j(\text{Hom}_R(\text{F}_\bullet, M)) \\
\cong \text{Ext}^j_R(L, M)
\]

The last isomorphism follows from the fact that \(M \) is cotorsion and every flat \(\hat{R} \)-module is flat as an \(R \)-module.

\(\Rightarrow \) We know that every injective \(\hat{R} \)-module is injective as an \(R \)-module. So, the result follows from the above isomorphism.

\(\Leftarrow \) By assumption, it is easy to see that

\[
\text{Ext}^i_R(N, \text{Hom}_R(\hat{R}, M)) = 0,
\]

for all \(\hat{R} \)-modules \(N \) of finite injective dimension and all \(i > 0 \). Let \(E \) be an injective \(R \)-module and let \(\text{Hom}_R(-, E_R(R/\mathfrak{m})) \) denote by \((-)^{\vee} \). From the natural monomorphism \(E \to (E^{\vee})^{\vee} \), we conclude that \(E \) is a direct summand of \((E^{\vee})^{\vee} \). So, it is enough to show that \(\text{Ext}^i_R((E^{\vee})^{\vee}, M) = 0 \).
for all $i > 0$. Since, by Lemma 2.7, $\text{id}_{\hat{R}}((E^\vee)^\vee) < \infty$, the result follows from the above isomorphism.

\[\square\]

Theorem 4.8. Let R be a local Noetherian ring and M an R-module. Then the following conditions are equivalent:

(i) M is Gorenstein injective.

(ii) M is cotorsion and $\text{Hom}_R(\hat{R}, M)$ is Gorenstein injective as an \hat{R}-module.

(iii) $M \in B'(R)$, M is cotorsion and $\text{Ext}^i_{\hat{R}}(E, M) = 0$ for all injective R-modules E and all $i > 0$.

Proof. (i) \Rightarrow (ii) This follows from Theorem 4.2 and Proposition 4.4.

(ii) \Rightarrow (iii) By [5, Theorem 4.4], $\text{Hom}_R(\hat{R}, M)$ belongs to $B(\hat{R})$, and so M belongs to $B'(R)$.

Also, Proposition 4.5 implies that

$$\text{Ext}_R^i(I, \text{Hom}_R(\hat{R}, M)) = 0$$

for all injective \hat{R}-modules I and all $i > 0$. The result follows from Lemma 4.7 (iii).

(iii) \Rightarrow (i) In view of Proposition 4.5, it is enough to show that M admits a proper left injective resolution. It follows from Lemma 4.6 (i) and (ii) that there exists an exact sequence

$$0 \rightarrow B \rightarrow E \rightarrow f \rightarrow M \rightarrow 0$$

such that f is an $I(R)$-precover and E an injective R-module. It is enough to show that B satisfies the given assumptions on M.

Let I be an injective R-module. It is easy to deduce from the above exact sequence that $\text{Ext}_{\hat{R}}(I, B) = 0$ for all $i \geq 2$. Also, we have the following exact sequence

$$\text{Hom}_R(I, E) \rightarrow \text{Hom}_R(I, M) \rightarrow \text{Ext}_{\hat{R}}^1(I, B) \rightarrow \text{Ext}_{\hat{R}}^1(I, E) = 0.$$

On the other hand, $\text{Hom}_R(I, f)$ is epimorphism. So $\text{Ext}_{\hat{R}}^1(I, B) = 0$.

Now, we prove that B is a cotorsion R-module. In view of assumption and Lemma 4.7, we conclude that

$$\text{Ext}_{\hat{R}}^i(I, \text{Hom}_R(\hat{R}, M)) = 0$$

for all injective \hat{R}-modules I and all $i > 0$. On the other hand, $M \in B'(R)$ implies that $\text{Hom}_R(\hat{R}, M) \in B(\hat{R})$. Therefore, by [5, Lemma 4.7], $\text{Hom}_R(\hat{R}, M)$ is Gorenstein injective as an \hat{R}-module. Hence, we have an exact sequence

$$0 \rightarrow K \rightarrow E' \rightarrow \text{Hom}_R(\hat{R}, M) \rightarrow 0,$$

of \hat{R}-modules and \hat{R}-homomorphism such that E' is an injective and K is a Gorenstein injective \hat{R}-module. By Theorem 4.2, K is a cotorsion \hat{R}-module. Lemma 4.7 implies that K is cotorsion as an R-module. Now, let $\varphi : \text{Hom}_R(\hat{R}, M) \rightarrow M$ be the natural R-homomorphism. Consider the following diagram

$$\begin{array}{cccccc}
0 & \rightarrow & K & \rightarrow & E' & \rightarrow & \text{Hom}_R(\hat{R}, M) & \rightarrow & 0 \\
& & & \downarrow{\varphi} & & & \\
0 & \rightarrow & B & \rightarrow & E & \rightarrow & M & \rightarrow & 0.
\end{array}$$
Since E' is an injective R-module and $f : E \to M$ is an $\hat{R}(R)$-precover, there exists an R-homomorphism $\psi : E' \to E$ such that the following diagram is commutative.\[
\begin{array}{cccccc}
0 & \to & K & \to & E' & \to & \text{Hom}_R(\hat{R}, M) & \to & 0 \\
& & \downarrow\psi & & \downarrow\varphi & & & \\
0 & \to & B & \to & E & \to & M & \to & 0.
\end{array}
\]
It is easy to see that there exists an R-homomorphism $\theta : K \to B$ such that the following diagram is commutative.\[
\begin{array}{cccccc}
0 & \to & K & \to & E' & \to & \text{Hom}_R(\hat{R}, M) & \to & 0 \\
& & \downarrow\theta & & \downarrow\psi & & \downarrow\varphi & & \\
0 & \to & B & \to & E & \to & M & \to & 0.
\end{array}
\]
Suppose F is a flat R-module. Then we obtain the following commutative diagram
\[
\begin{array}{cccc}
\text{Hom}_R(F, \text{Hom}_R(\hat{R}, M)) & \xrightarrow{\beta} & \text{Ext}^1_R(F, K) & \to & 0 \\
\downarrow\text{Hom}_R(F, \varphi) & & \downarrow\theta_1 & & (\ast) \\
\text{Hom}_R(F, M) & \xrightarrow{\delta} & \text{Ext}^1_R(F, B) & \to & 0.
\end{array}
\]
The natural exact sequence\[
0 \to R \to \hat{R} \to \hat{R}/R \to 0,
\]
yields the exact sequence\[
0 \to \text{Hom}_R(\hat{R}/R, M) \to \text{Hom}_R(\hat{R}, M) \xrightarrow{\varphi} M \to 0,
\]
because M is a cotorsion R-module and \hat{R}/R is a flat R-module. Thus, we obtain the following exact sequence\[
0 \to \text{Hom}_R(F, \text{Hom}_R(\hat{R}/R, M)) \to \text{Hom}_R(F, \text{Hom}_R(\hat{R}, M)) \xrightarrow{\text{Hom}_R(F, \varphi)} \text{Hom}_R(F, M) \to \\
\to \text{Ext}^1_R(F, \text{Hom}_R(\hat{R}/R, M)).
\]
Since M is a cotorsion and \hat{R}/R is a flat R-module,
\[
\text{Ext}^1_R(F, \text{Hom}_R(\hat{R}/R, M)) \cong \text{Ext}^1_R(F \otimes_R \hat{R}/R, M).
\]
On the other hand, $F \otimes_R \hat{R}/R$ is a flat R-module, so $\text{Ext}^1_R(F \otimes_R \hat{R}/R, M)$ is zero R-module. Therefore $\text{Hom}_R(F, \varphi)$ is an epimorphism. By \ast, $\theta_1\beta$ is epic and so θ_1 is epic. Thus, since K is a cotorsion R-module, $\text{Ext}^1_R(F, B)$ is the zero module. This means that B is cotorsion.

Now, we apply the functor $\text{Hom}_R(\hat{R}, -)$ on the following exact sequence\[
0 \to B \to E \to M \to 0,
\]
and obtain the exact sequence\[
0 \to \text{Hom}_R(\hat{R}, B) \to \text{Hom}_R(\hat{R}, E) \to \text{Hom}_R(\hat{R}, M) \to 0.
\]
It is easy to see that $\text{Hom}_R(\hat{R}, E)$ is an injective \hat{R}-module. Since $\text{Hom}_R(\hat{R}, M)$ is Gorenstein injective as an \hat{R}-module, by [13, theorem 2.25], $\text{Hom}_R(\hat{R}, B)$ has finite Gorenstein injective
dimension. So, it follows from [5, Theorem 4.4] that \(B \in B'(R) \). This ends the proof. \(\square \)

The following example shows that the dual version of Theorem 3.4 is not true.

Example 4.9. Let \(R \) be a non-complete local Noetherian domain which is not Gorenstein. By [14, Theorem 2.1], \(\text{Gid}_R(R) = \infty \). On the other hand, by [1, Lemma 3.3], \(\text{Hom}_R(\hat{R}, R) = 0 \). So \(R \) has infinite Gorenstein injective dimension as an \(R \)-module but \(R \notin B'(R) \).

Theorem 4.10. Let \((R, m)\) be a local Noetherian ring of dimension \(d \) and \(\text{Ext}_R^i(\hat{R}, M) = 0 \) for all \(i > 0 \). Then the Gorenstein injective dimension of \(M \) is finite if and only if \(M \) belongs to \(B'(R) \). In particular, if \(M \in B'(R) \) then \(\text{Gid}_R(M) \leq d \).

Proof. \(\Rightarrow \) Let \(\text{Gid}_R M = t \) and

\[
0 \to M \to G^0 \to G^1 \to G^2 \to \ldots \to G^t \to 0
\]

be an exact sequence such that \(G^i \) is Gorenstein injective for all \(0 \leq i \leq t \). Using hypothesis, we obtain the following exact sequence

\[
0 \to \text{Hom}_R(\hat{R}, M) \to \text{Hom}_R(\hat{R}, G^0) \to \ldots \to \text{Hom}_R(\hat{R}, G^t) \to 0.
\]

By Proposition 4.4 (i), \(\text{Gid}_R(\text{Hom}_R(\hat{R}, M)) \) is finite as an \(\hat{R} \)-module and so by [5, Theorem 4.4], \(\text{Hom}_R(\hat{R}, M) \) belongs to \(B(\hat{R}) \). The assertion follows from the definition.

\(\Leftarrow \) Since \(M \) belongs to \(B'(R) \), \(\text{Hom}_R(\hat{R}, M) \) belongs to \(B(\hat{R}) \). Now, by using [5, Theorem 4.4], the Gorenstein injective dimension of \(\text{Hom}_R(\hat{R}, M) \) is finite as an \(\hat{R} \)-module. By [13, Theorem 2.29], \(\text{Gid}_R(\text{Hom}_R(\hat{R}, M)) \leq \text{FID}(R) \), where \(\text{FID}(R) = \sup \{ \text{id}_R(M) \mid M \text{ is an } R \text{-module of finite injective dimension} \} \). It is known that \(\text{id}_R(N) = \text{id}_R(\text{Hom}_R(N, E_R(R/m))) \), for all \(R \)-modules \(N \). So, we have \(\text{Gid}_R(\text{Hom}_R(\hat{R}, M)) \leq d \).

Consider the following exact sequence

\[
0 \to M \to E^0 \to E^1 \to \ldots \to E^{d-1} \to L \to 0,
\]

of \(R \)-modules and \(R \)-homomorphisms such that \(E^i \) is injective \(R \)-module for all \(0 \leq i \leq d - 1 \). We have the following exact sequence,

\[
0 \to \text{Hom}_R(\hat{R}, M) \to \ldots \to \text{Hom}_R(\hat{R}, E^{d-1}) \to \text{Hom}_R(\hat{R}, L) \to 0.
\]

So, by [13, Theorem 2.22], \(\text{Hom}_R(\hat{R}, L) \) is a Gorenstein injective \(\hat{R} \)-module. On the other hand, for any flat \(R \)-module \(F \) and any \(i > 0 \), we have

\[
\text{Ext}_R^i(F, L) \cong \text{Ext}_R^{i+d}(F, M).
\]

Therefore, \(\text{Ext}_R^i(F, L) \) is zero for all \(i > 0 \), because the projective dimension of \(F \) is less than \(d + 1 \). So, \(L \) is cotorsion. It therefore follows from Theorem 4.8 that \(L \) is a Gorenstein injective \(R \)-module. Thus, \(\text{Gid}_R(M) \leq d \). \(\square \)
Acknowledgement. In the first version of the manuscript, we proved our main results for local Cohen-Macaulay rings. We would like to thank Lars Winther Christensen for pointing out that our main results can be extended to non Cohen-Macaulay case.

References

[1] S. Aldrich, E. Enochs, and J. Lopez Ramos, Derived functors of Hom relative to flat covers, Math. Nachr., 242 (2002), 17–26.
[2] M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, vol. 1966/67, Secrétariat mathematique, Paris, 1967.
[3] M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, Providence, R.I., 1969.
[4] L. Avramov and H.B. Foxby, Gorenstein local homomorphisms, Bull. Amer. Math. Soc. (N.S.), 23(1) (1990), 145–150.
[5] L.W. Christensen, A. Frankild, and H. Holm, On Gorenstein Projective, Injective and Flat Dimensions - A Functorial Description with Applications, J. Algebra, to appear (arXiv:math.AC/0403156 v6 13 Dec 2005).
[6] L.W. Christensen, H.B. Foxby, and A. Frankild, Restricted homological dimensions and Cohen-Macaulayness, J. Algebra, 251(1) (2002), 479–502.
[7] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math., 39(3) (1981), 33–38.
[8] E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc., 92 (1984), 179–184.
[9] E. Enochs and O. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611–633.
[10] E. Enochs, O. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10(1) (1993), 1–9.
[11] E. Enochs, O. Jenda and J. Xu, Foxby duality and Gorenstein injective and projective modules, Trans. Amer. Math. Soc., 348(8) (1996), 3223–3234.
[12] H.B. Foxby, Gorenstein dimensions over Cohen-Macaulay rings, Proceeding of the international conference on commutative algebra, W. Bruns(editor), Universität Osnabrück, (1994).
[13] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167–193.
[14] H. Holm, Rings with finite Gorenstein injective dimension, Proc. Amer. Math. Soc., 132(5) (2004), 1279–1283.
[15] M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89.
[16] J. Xu, Flat covers of modules, Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996.

M.A. ESMKHANI, INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS, P.O. Box 19395-5746, Tehran, Iran-and-Department of Mathematics, Shahid Beheshti University, Tehran, Iran.

E-mail address: esmkhani@ipm.ir

M. TOUSI, INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS, P.O. Box 19395-5746, Tehran, Iran-and-Department of Mathematics, Shahid Beheshti University, Tehran, Iran.

E-mail address: mtousi@ipm.ir