Correlated optical, X-ray, and -ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

Rodriguez, J.; Cadolle Bel, M.; Alfonso-Garzón, J.; Siegert, T.; Zhang, X.-L.; Grinberg, V.; Savchenko, V.; Tomsick, J. A.; Chenevez, J.; Clavel, M.

Published in:
Astronomy and Astrophysics

Link to article, DOI:
10.1051/0004-6361/201527043

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rodriguez, J., Cadolle Bel, M., Alfonso-Garzón, J., Siegert, T., Zhang, X.-L., Grinberg, V., Savchenko, V., Tomsick, J. A., Chenevez, J., Clavel, M., Corbel, S., Diehl, R., Domingo, A., Gouiffès, C., Greiner, J., Krause, M. G. H., Laurent, P., Loh, A., Markoff, S., ... Wilms, J. (2015). Correlated optical, X-ray, and -ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni. Astronomy and Astrophysics, 581(2), L9. https://doi.org/10.1051/0004-6361/201527043
Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni*

J. Rodríguez1, M. Cadolle Bel2, J. Alfonso-Garzón3, T. Siegert4, X.-L. Zhang5, V. Savchenko6, J. A. Tomsick7, J. Chenovez8, M. Clavel9, R. Diehl10, A. Domingo11, C. Gouiffès12, J. Greiner4, M. G. H. Krause9, P. Laurent6, A. Loh1, S. Markoff10, J. M. Mas-Hesse3, J. C. A. Miller-Jones11, D. M. Russell12, and J. Wilms13

1 Laboratoire AIM, UMR 7185, CEA/CNRS/Université Paris Diderot, CEA DSM/IRFU/SAp, 91191 Gif-sur-Yvette, France
e-mail: jrodriguez@cea.fr
2 Max Planck Computing and Data Facility, 85748 Garching, Germany
3 Centro de Astrobiología (CSIC-INTA), ESAC Campus, POB 78, 28691 Villanueva de la Cañada, Spain
4 Max Planck Institut für extraterrestrische Physik, 85748 Garching, Germany
5 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139, USA
6 Laboratoire APC, UMR 7164, CEA/CNRS/Université Paris Diderot, 75013 Paris, France
7 Space Science Lab, University of California, Berkeley, CA 94720, USA
8 DTU Space – National Space Institute, Technical University of Denmark, Elektrovej 327-328, 2800 Lyngby, Denmark
9 Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 München, Germany
10 Anton Pannekoek Institute for Astronomy, University of Amsterdam, PO Box 94249, 1090 GE Amsterdam, The Netherlands
11 International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
12 New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
13 Dr. K. Remieis-Sternwarte & Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany

Received 23 July 2015 / Accepted 31 August 2015

ABSTRACT

After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20, 15:50 UTC to June 25, 4:05 UTC, from the optical V band up to the soft γ-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20–40 keV) within three days. The flare recurrence can be as short as ~20 min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A simple 10–400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be only due to variations of a cut-off power-law component. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.

Key words. accretion, accretion disks – X-rays: binaries – radio continuum: stars – stars: black holes – stars: individual: V404 Cygni

1. Introduction

V404 Cyg (hereafter V404) is a low-mass X-ray binary (LMXB) consisting of a black hole (BH) with mass estimates ranging from ~9 to 15 M_\odot, and a 0.7–1.3 M_\odot K3 III companion (Casares & Charles 1994; Shabbaz et al. 1994; Khargharia et al. 2010), located at a parallax distance 2.39 ± 0.14 kpc (Miller-Jones et al. 2009). The inclination of the binary’s rotational axis is 67° ± 3° (Shahbaz et al. 1994; Khargharia et al. 2010), the orbital period 6.5 d (Casares et al. 1992). This transient underwent three periods of outbursts during the twentieth century (Richter 1989), the last, in May 1989, leading to its discovery as an X-ray transient by the Ginga satellite (as GS 2023+338, Makino et al. 1989). V404 showed bright X-ray flares on short time-scales (e.g. Makino et al. 1989; Terada et al. 1994), which makes it an excellent source to study the connections between the accretion and ejection phenomena, which are the probable origin of this behaviour. V404 is one of the closest stellar mass BHs, making it a rare case where quiescence can be studied in detail. Variable remnant activity, attributed to a compact jet, was detected from radio to hard X-rays (e.g. Hynes et al. 2004; Xie et al. 2014). V404 is one of the few sources that defines the radio/X-ray correlation over a wide range of luminosities, down into quiescence (Corbel et al. 2008). The good knowledge of the quiescent state makes understanding new outburst observations paramount as they allow the mechanisms responsible for the increased activity to be probed.

On 2015 June 15 (MJD 57 188), V404 went into outburst again. It was first detected by Swift (BAT and XRT) (Barthelmy et al. 2015) and then with MAXI and INTEGRAL (Negoro et al. 2015; Kuulkers et al. 2015). These early alerts triggered follow-up observations at all wavelengths. Preliminary results all report the detection of the source, variations of specific spectral features, and an extreme flaring activity at all wavelengths.

* Table 1 and Fig. 4 are available in electronic form at http://www.aanda.org
As source intensity and hardness vary strongly on short time-scales, we extracted luminosity/hardness dependent JEM-X, ISGRI, and SPI spectra over specific time intervals of clean data. The spectra from the same time intervals were jointly fitted within XSPEC v12.8.2. Since the instruments’ responses are possibly different for the high intensities observed, only phenomenological spectral fits are presented, and the fit results should be viewed with some caution.

The INTEGRAL/Optical Monitoring Camera (OMC) fluxes and magnitudes were derived from a photometric aperture of 3 × 3 pixels (1 pix. = 17.504′′), slightly circularized, that is, removing one quarter pixel from each corner (standard output from OSA). The photometric aperture was centred on the source coordinates (default centroid algorithm) and did not include any significant contribution from other objects. We removed measurements with a severe problem flag, and, to restrict the noise, only measurements of 50 and 200 s duration were considered.

3. Model-independent description of the flaring

Multi-wavelength LCs of V404 from the V band up to γ-rays are highly structured with several large flares separated by calmer periods seen in all bands (Fig. 1, and see also Fig. 4 for a plot with all energy ranges). In the following, count rates (CR) are given in the ISGRI 20–40 keV range. When the source CR increased above ~150–200 cts/s, an intense X-ray flare systematically followed. In the following, we thus set 1 Crab1 as the typical limit between the off-flare and flaring intervals. We identified 18 main events, that is, peaks that reached at least 6 Crab (labelled with Roman numerals2 in Fig. 1, their main characteristics are given in Table 1), with 11 exceeding 20 Crab during our observations. Flares IV, XI, and XIII are the brightest we observed, reaching 43 Crab. The flares occurred isolated (e.g. III, IV, VI) as well as in groups with peak-to-peak intervals as short as 22 min (Va, Vb) The flares lasted 0.4–2.4 h, except for peaks IV and XIII. The former shows a rather broad profile and has multiple peaks. This event lasted 4.8 h in total and is the longest flare of our observation. The latter reached about 40 Crab. The peak itself lasted about 1.5 h, but was preceded by a ~3 h long, 3 Crab plateau seen only above 13 keV. It was followed by flares XIV and XV, which show decreasing peak values.

1 The ISGRI 20–40 keV CR of the Crab is 165 cts s−1 (Γ = 17.504′′). The dashed horizontal line corresponds to 1 Crab (20–40 keV).

2 V and XII contain two distinct events that are hardly distinguishable in Fig. 1. They appear under the same label in Fig. 1 (to keep it clear), and are named with a/b sub-labels in the text and Table 1.
The latter case we also only retained the hard intervals (SR corresponds to intervals around flares I). The ccf of Fig. 2a) shows a high level of emission with sporadic flares with a maximum 20–40 keV dynamical range of 940 (flare XI). During its flares, V404 became the brightest X-ray object in the sky. In the hard off-flare state the spectral analysis shows two spectral components: a cut-off power law typically attributed to thermal Comptonization and an extra power law at energies beyond 100 keV. Hard tails have now been seen in a large number of systems (e.g. GRS 1915+105, Swift J1753.5−0127, GX 339−4, or Cyg X–1, Rodriguez et al. 2008b, 2015b; Tomsick et al. 2015; Joint et al. 2007), and their origin is still highly debated, although a compact jet origin is favoured in the case of Cyg X–1 (e.g. Russell & Shahbaz 2014; Rodriguez et al. 2015b). It is interesting that the flaring activity seems primarily due only to spectral variations of the cut-off power law. We estimate an integrated luminosity \(\sim 2 \times 10^{31} \) erg s\(^{-1}\), or about 20% \(L_{\text{Edd}}\) for a 9 Ms\(_{\odot}\) BH.

6. Discussion

Over the four days covered by our INTEGRAL ToO, V404 showed a high level of emission with sporadic flares with a maximum 20–40 keV dynamical range of 940 (flare XVI). During its flares, V404 became the brightest X-ray object in the sky. In the hard off-flare state the spectral analysis shows two spectral components: a cut-off power law typically attributed to thermal Comptonization and an extra power law at energies beyond 100 keV. Hard tails have now been seen in a large number of systems (e.g. GRS 1915+105, Swift J1753.5−0127, GX 339−4, or Cyg X–1, Rodriguez et al. 2008b, 2015b; Tomsick et al. 2015; Joint et al. 2007), and their origin is still highly debated, although a compact jet origin is favoured in the case of Cyg X–1 (e.g. Russell & Shahbaz 2014; Rodriguez et al. 2015b). It is interesting that the flaring activity seems primarily due only to spectral variations of the cut-off power law. We estimate an integrated luminosity \(\sim 2 \times 10^{31} \) erg s\(^{-1}\), or about 20% \(L_{\text{Edd}}\) for a 9 Ms\(_{\odot}\) BH.
between the BH and the companion: using the system parameters from Sect. 1 and a 9 M_\odot BH, we estimate $\sim 2.2 \times 10^{52}$ cm or ~ 75 light seconds. Hence, when no delay between the optical and the X-rays is observed (e.g. flare I in Fig. 2a), the mechanism producing the optical emission could be related to X-ray reprocessing, either by an accretion disk or by the companion. The maximum delays expected would be around 60 s (outer disk), and $\lesssim 150$ s (companion located at superior conjunction).

Optical lags $\gtrsim 10$ min could be related to variable jet properties, either as their intrinsic synchrotron emission, or from their interaction with the surrounding medium. Radio and millimeter (mm) flaring activity ascribed to discrete ejections has been reported during this outburst (e.g. Sivakoff et al. 2015; Mooley et al. 2015; Tetarenko et al. 2015b). Delays between event (a $< \text{GRO J1655}$ X-rays and longer wavelengths are expected in the case of adiabatically expanding ejecta (van der Laan 1966; Mirabel et al. 2015; Tetarenko et al. 2015b). Delays between event (a $< \text{GRO J1655}$ states (Fig. 1), indicating that a different mechanism is responsible for the X-ray flaring (similar results were obtained from the 1989 outburst, e.g. Życki et al. 1999). This work was supported by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV-73016 for the Chandra X-Ray Center and Science Instruments. R.D. and X.L.Z. acknowledge support through the Deutsche Forschungsgemeinschaft under DFG project number PR 509/10-1 in the context of the Priority Program 1573 Physics of the Interstellar Medium. The high-energy flares could be due to the shock of the relativistic jets with the dense ambient medium. Then optically thin synchrotron emission would be expected at X-ray energies, while our analysis favours thermal Comptonization. More simultaneous multi-wavelength observations will help distinguish these different possibilities.

Acknowledgements. We warmly thank the referee for the useful report that helped us to improve the quality of this paper. We also thank the INTEGRAL teams and planners for their prompt reaction and the scheduling of these observations. J.R., M.C., S.C. acknowledge funding support from the French Research National Agency: CHAOS project ANR-12-B505-0009 (http://www.chaos-project.fr), and from the UnivEarthS Labex program of Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). XLZ acknowledges funding through DLR 50 OG 1101. M.G.H.K. was supported by the Deutsche Forschungsgemeinschaft under DFG project number PR 509/10-1 in the context of the Priority Program 1573 Physics of the Interstellar Medium. This study is based on observations made with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states, Poland and with the participation of Russia and the USA.

References
Barthelmy, S. D., D’Ai, A., D’Avanzo, P., et al. 2015, GRB Coordinates Network, 17929, 1
Casares, J., & Charles, P. A. 1994, in The Evolution of X-ray Binaries, eds. S. Holt, & C. S. Day, AIP Conf. Ser., 308, 107
Casares, J., Charles, P. A., & Naylor, T. 1992, Nature, 355, 614
Corbel, S., Koerding, E., & Kaastra, P. 2008, MNRAS, 389, 1697
Domínguez, A., Alfonso-Garzon, J., Mas-Hesse, J. M., Rodríguez, J., & Bel, M. C. 2015, Atel, 7717, 1
Fender, R. 2006, in Compact stellar X-ray sources (Cambridge, UK: Cambridge University Press), 381
Fender, R. P., & Pooley, G. G. 1998, MNRAS, 300, 573
Ferrigno, C., Fotopoulou, S., Domínguez, A., et al. 2015, Atel, 7662, 1
Greiner, J., Morgan, E. H., & Remillard, R. A. 1996, ApJ, 473, L107
Hjellming, R. M., & Raper, M. P. 1995, Nature, 375, 464
Hynes, R. I., Charles, P. A., Garcia, M. R., et al. 2004, ApJ, 611, L125
Joinet, A., Jourdain, E., Malzac, J., et al. 2007, ApJ, 657, 400
Khargharia, J., Froning, C. S., & Robinson, E. L. 2010, ApJ, 716, 1105
Kuiukers, E., Motta, S., Kajava, J., et al. 2015, Atel, 7647, 1
Maccarone, T. J. 2000, MNRAS, 336, 1371
Makino, F., Wagner, R. M., Starrfield, S., et al. 1989, IAU Circ., 4786, 1
Miller-Jones, J. C. A., Jonker, P. G., Dhawan, V., et al. 2009, ApJ, 706, L230
Mirabel, I. F., Dhawan, V., Chatterjee, P., et al. 1999, Atel, 7661, 1
Motta, S., Beardmore, A., Oates, S., et al. 2015, Atel, 7666, 1
Munoz-Darias, T., Sanchez, D. M., Casares, J., et al. 2015, Atel, 7659, 1
Negoro, H., Matsumitsu, T., Mihara, T., et al. 2015, Atel, 7646, 1
Remillard, R. A., & McClintock, J. E. 2006, ARA&A, 44, 49
Richter, G. A. 1989, IBVS, 3362, 1
Rodriguez, J., Hannikainen, D. C., Shaw, S. E., et al. 2008a, ApJ, 675, 1436
Rodriguez, J., Shaw, S. E., Hannikainen, D. C., et al. 2008b, ApJ, 675, 1449
Rodriguez, J., Ferrigno, C., Cadelo Bel, M., et al. 2015a, Atel, 7702, 1
Rodriguez, J., Grinberg, V., Grinberg, V., et al. 2008a, Atel, 7607, 17
Russell, D. M., & Shahbaz, T. 2014, MNRAS, 438, 2083
Shahbaz, T., Ringwald, F. A., Bunn, J. C., et al. 1994, MNRAS, 271, L10
Sivakoff, G. R., Tetarenko, A., & Miller-Jones, J. C. 2015, Atel, 7671, 1
Strong, A. W., Diehl, R., Hallinan, H., et al. 2008, A&A, 444, 495
Terada, K., Miotello, S., Kitamoto, S., & Egoushi, W. 1994, PASJ, 46, 677
Terada, K., Miotello, S., Kitamoto, S., & Egoushi, W. 1994, PASJ, 46, 677
Tetarenko, A., Sivakoff, G. R., Gurwell, M. A., et al. 2015a, Atel, 7661, 1
Tetarenko, A., Sivakoff, G. R., Young, K., Wouterloot, J. G. A., & Miller-Jones, J. C. 2015b, Atel, 7708, 1
Tomsick, J. A., Rahou, F., Kalemkhan, M., et al. 2015, ApJ, 808, 85
Tsubono, K., Aoki, T., Asama, K., et al. 2015, Atel, 7701, 1
van der Laan, H. 1966, Nature, 211, 1131
Winkler, C., Courvoisier, J. T.-L., Di Cocco, G., et al. 2003, A&A, 411, L1
Xie, F.-G., Yang, Q.-X., & Ma, R. 2014, MNRAS, 442, L110
Życki, P. T., Done, C., & Smith, D. A. 1999, MNRAS, 300, 561

Page 5 is available in the electronic edition of the journal at http://www.aanda.org
Table 1. List of the >6 Crab flares and their main properties.

Name	Start* (MJD)	Peak time (MJD)	Stop* (MJD)	CR_{3-13 keV} (cts/s)	CR_{20-40 keV} (cts/s)	Properties*
I	57 193.9217	57 193.9356	57 193.9402	184	1215	Multiple
II	57 193.9703	57 193.9981	57 194.0827	181	1234	Multiple
III	57 194.0827	57 194.1152	57 194.1428	1055	3209	Complex
IV	57 194.2232	57 194.3107	57 194.3938	2010	7040	Isolated/Complex
Va	57 194.6273	57 194.6399	57 194.6521	473	3328	Multiple/Complex, preceded by plateau
Vb	57 194.6521	57 194.6579	57 194.6708	852	3999	Multiple/Complex
VI	57 194.6960	57 194.7346	57 194.7473	129	1974	Isolated/Complex
VII	57 194.9788	57 194.9996	57 195.0089	459	2200	Multiple/Complex
VIII	57 195.0089	57 195.0293	57 195.0501	865	4950	Multiple/Complex
IX	57 195.0582	57 195.0826	57 195.1095	320	2386	Multiple/Complex
X	57 195.2318	57 195.2503	57 195.2712	577	3472	Multiple, preceded by succession of ~6 Crab peaks
XI	57 195.4294	57 195.4388	57 195.4450	857	7036	Multiple
XIIa	57 195.4450	57 195.4573	57 195.4665	401	3525	Multiple/Complex
XIIb	57 195.4665	57 195.4723	57 195.4841	1231	6299	Multiple, followed by plateau
XIII	57 197.1373	57 197.1785	57 197.1924	2076	7081	Multiple, preceded by plateau
XIV	57 197.1924	57 197.2020	57 197.2067	1240	4368	Multiple
XV	57 197.2124	57 197.2228	57 197.2310	210	1793	Multiple/Complex
XVI	57 197.3450	57 197.3647	57 197.3705	151	1036	Isolated

Notes. MJD 57 193 is 2015 June 20. (a) Start (resp. stop) time of a flare is defined as the time 20–40 keV CR reaches 165 cts/s (1 Crab) during the increase (resp. decrease), or by the minimum reached before (resp. after) the increase (decrease) for multiple flares. The uncertainty on the times is ±6 × 10^{-4} d. (b) Count rates at the peaks. (c) “Multiple” stands for series of well-defined flares occurring in rapid repetition. “Complex” stands for flares showing various peaks. “Plateau” indicates a >1 Crab plateau. (d) These peaks appear as single peaks in Fig. 1. They are in fact true multiples. (e) The 3–13 keV peak time occurred about 200 s before the 20–40 keV one, indicating a potential hard lag. (f) Data gap at the end of the flare. The stop time is the last point before the gap. (g) The 3–13 keV peak time occurred about 200 s after the 20–40 keV one, indicating a potential soft lag.

Fig. 4. INTEGRAL LCs of V404 over our ∼4-day-long observations. All spectral domains considered for the LC extraction are shown here. The dashed line in the 20–40 keV panel represents the approximate level of L_{Edd} we estimated. MJD 57 193 is 2015 June 20.