On the automorphisms of the Drinfel’d double of a Borel Lie subalgebra

Michaël Bulois and Nicolas Ressayre

June 21, 2021

Abstract

Let \mathfrak{g} be a complex simple Lie algebra with a Borel subalgebra \mathfrak{b}. Consider the semidirect product $I\mathfrak{b} = \mathfrak{b} \rtimes \mathfrak{b}^*$, where the dual \mathfrak{b}^* of \mathfrak{b} is equipped with the coadjoint action of \mathfrak{b} and is considered as an abelian ideal of $I\mathfrak{b}$. We describe the automorphism group $\text{Aut}(I\mathfrak{b})$ of the Lie algebra $I\mathfrak{b}$. In particular we prove that it contains the automorphism group of the extended Dynkin diagram of \mathfrak{g}. In type A_n, the dihedral subgroup was recently proved to be contained in $\text{Aut}(I\mathfrak{b})$ by Dror Bar-Natan and Roland van der Veen in [Bv20] (where $I\mathfrak{b}$ is denoted by $I\mathfrak{u}_n$). Their construction is handmade and they asked for an explanation which is provided by this note. Let \mathfrak{n} denote the nilpotent radical of \mathfrak{b}. We obtain similar results for $I\mathfrak{b} = \mathfrak{b} \rtimes \mathfrak{n}^*$ that is both an Inönü-Wigner contraction of \mathfrak{g} and the quotient of $I\mathfrak{b}$ by its center.

1 Introduction

Given any complex Lie algebra \mathfrak{a}, one can form the associated Drinfeld double $(I\mathfrak{a}, \mathfrak{a})$. Here, $I\mathfrak{a} = \mathfrak{a} \rtimes \mathfrak{a}^*$ is the semidirect product of \mathfrak{a} with its dual \mathfrak{a}^* where \mathfrak{a}^* is considered as an abelian ideal and \mathfrak{a} acts on \mathfrak{a}^* via the coadjoint action.

As mentioned in [Bv20], for applications in knot theory and representation theory, the most important case is when $\mathfrak{a} = \mathfrak{b}$ is the Borel subalgebra of some simple Lie algebra \mathfrak{g}. It is precisely the situation studied here. In addition to [Bv20], several examples of these algebras appear with variations in the literature. In [NW93], Nappi-Wittney use the case when $\mathfrak{g} = \mathfrak{sl}_2$ in conformal field theory. Several authors also consider $I\mathfrak{b} := \mathfrak{b} \rtimes \mathfrak{n}^*$ where \mathfrak{n} is the derived subalgebra of \mathfrak{b}. It is the quotient of $I\mathfrak{b}$ by its center. Note that $\mathfrak{b} \rtimes \mathfrak{n}^*$ is a contraction of \mathfrak{g} (see Section 2.1 for details). In [KZJ07], Knutson and Zinn-Justin meet this algebra for $\mathfrak{g} = \mathfrak{gl}_n$ in the associative setting, see below. In [Fei12, Fei11], Feigin uses $\mathfrak{b} \rtimes \mathfrak{n}^*$ in order to study degenerate flag varieties for $\mathfrak{g} = \mathfrak{sl}_n$. For a general semisimple Lie algebra \mathfrak{g}, in [PY12], Panyushev and Yakimova study the invariants of $\mathfrak{b} \rtimes \mathfrak{n}^*$ under the action of their adjoint group. Finally, in [PY13, Pho20], similar considerations are studied replacing \mathfrak{b} by an arbitrary parabolic subalgebra of \mathfrak{g}.
The aim of this note is to give new interpretations of I_b and $\overline{I_b}$ in the language of Kac-Moody algebras and to completely describe the automorphism groups of I_b and $\overline{I_b}$.

Before describing this group, we introduce some notation. Let r denote the rank of \mathfrak{g} and G the adjoint group with Lie algebra \mathfrak{g}. Let B be the Borel subgroup of G with \mathfrak{b} as Lie algebra. Consider two abelian additive groups: the quotient $\mathfrak{g}/\mathfrak{b}$ and the space $\mathcal{M}_r(\mathbb{C})$ of $r \times r$-matrices.

An important ingredient is the extended Dynkin diagram of \mathfrak{g}. On Figure 1, these diagrams and their automorphism groups are shortly recalled (see Section 2.2). The notation $D(\ell)$ stands for the dihedral group of order 2ℓ, not to be confused with the Dynkin diagram of type $D\ell$.

The following is the main result of the paper.

Theorem 1. The neutral component $\text{Aut}(I_b)^\circ$ of the automorphism group $\text{Aut}(I_b)$ of the Lie algebra I_b decomposes as

$$\mathbb{C}^* \rtimes \left(B \ltimes \frac{\mathfrak{g}}{\mathfrak{b}} \times \mathcal{M}_r(\mathbb{C}) \right).$$

The group of components $\text{Aut}(I_b)/\text{Aut}(I_b)^\circ$ is isomorphic to the automorphism group of the extended Dynkin diagram of \mathfrak{g} and can be lifted to a subgroup of $\text{Aut}(I_b)$.

The details of how these subgroups act on I_b are given in Section 3. Section 4 explain how the semidirect products are formed.

One of the amazing facts is that the extended Dynkin diagram of \mathfrak{g} plays a crucial role in $\text{Aut}(I_b)$. On one hand, we explain this by constructing the extended Cartan matrix of \mathfrak{g} in terms of I_b in Section 3.1. On the other hand, this diagram is the Dynkin diagram of the untwisted affine Lie algebra constructed from the loop algebra of \mathfrak{g}. A second explanation is given by Theorem 3 that realizes I_b as a subquotient of the affine Lie algebra associated to \mathfrak{g}.

More generally, I_b is a degeneration $\lim_{\epsilon \to 0} \mathfrak{g}_+^\epsilon$ with $\mathfrak{g}_+^\epsilon \cong \mathfrak{g} \oplus \mathfrak{b}$ for $\epsilon \in \mathbb{C} \setminus \{0\}$. In Section 2 we explain how to interpret this degeneration in the affine Lie algebra setting. We also study the possible lifting of $\theta \in \text{Aut}(\tilde{D})$ to $\text{Aut}(\mathfrak{g}_+^\epsilon)$, see Section 3.5.

Link with other works. In [KZJ07], Knutson and Zinn-Justin defined a degeneration \bullet of the standard associative product on $\mathcal{M}_n(\mathbb{C})$. Let \mathfrak{b} denote the set of upper triangular matrices. Identifying the vector space $\mathcal{M}_n(\mathbb{C})$ with $\mathfrak{b} \times \mathcal{M}_n(\mathbb{C})/\mathfrak{b}$ in a natural way one gets

$$(R, L) \bullet (V, M) = (RV, RM + LV),$$

for any $R, V \in \mathfrak{b}$ and $L, M \in \mathcal{M}_n(\mathbb{C})/\mathfrak{b}$. The Lie algebra of the group $(\mathcal{M}_n(\mathbb{C}), \bullet)^\times$ of invertible elements of this algebra is $\mathfrak{b} \ltimes \mathcal{M}_n(\mathbb{C})/\mathfrak{b}$, where the product is defined similarly to that of I_b. Note also that a cyclic automorphism (corresponding in our setting to the cyclic automorphism of the extended Dynkin diagram of type A_{n-1} and with the unexpected cyclic automorphism of $[Bv20]$) appears in [KZJ07]. Moreover [KZJ07, Proposition 2], which realizes $(\mathcal{M}_n(\mathbb{C}), \bullet)$ as a subquotient of $\mathcal{M}_n(\mathbb{C}[t])$, is similar to our Theorem 3.
\tilde{A}_1	$\tilde{A}_\ell \ (\ell \geq 2)$	$\tilde{B}_\ell \ (\ell \geq 3)$
$\text{Aut}(\tilde{D}) = \mathbb{Z}/2\mathbb{Z}$	$\text{Aut}(\tilde{D}) = D_{(\ell+1)}$	$\text{Aut}(\tilde{D}) = \mathbb{Z}/2\mathbb{Z}$
\tilde{G}_2	$\tilde{C}_\ell \ (\ell \geq 2)$	$\tilde{D}_\ell \ (\ell \geq 5)$
$\text{Aut}(\tilde{D})$ is trivial	$\text{Aut}(\tilde{D}) = \mathbb{Z}/2\mathbb{Z}$	$\text{Aut}(\tilde{D}) = D_{(4)}$
\tilde{D}_4	\tilde{E}_7	\tilde{F}_4
$\text{Aut}(\tilde{D}) = \mathcal{S}_3$	$\text{Aut}(\tilde{D}) = \mathbb{Z}/2\mathbb{Z}$	$\text{Aut}(\tilde{D})$ is trivial

Figure 1: Extended Dynkin diagrams and their automorphisms
A generalization of \mathfrak{b} is the following: fix a simple Lie algebra \mathfrak{g} and a parabolic subalgebra \mathfrak{p} of \mathfrak{g}. Let $\mathfrak{n}_\mathfrak{p}(\cong \mathfrak{g}/\mathfrak{p})$ be the nilradical of a parabolic subalgebra of \mathfrak{g} opposite to \mathfrak{p}. Then $\mathfrak{q}_\mathfrak{p} := \mathfrak{p} \ltimes \mathfrak{n}_\mathfrak{p}$ is also a degeneration of \mathfrak{g}. In the study of semi-invariants of $\mathfrak{q}_\mathfrak{p}$ some data linked with the extended Dynkin diagram also make appearance in [Yak14 Theorem 5.5] (Borel case) and in [Pho20, Proposition 5.2.1] (general case). In type A_{n-1}, standard parabolics are characterized by an ordered partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ of n. Transforming λ into $\mu := (\lambda_k, \lambda_1, \ldots, \lambda_{k-1})$, the cyclic action of $\mathbb{Z}/n\mathbb{Z}$ coming from the symmetries of the extended Dynkin diagrams described in [Bv20] allows to write $\mathfrak{q}_{\mu\lambda} \cong \mathfrak{q}_{\mu\mu}$. This explains many symmetries noted in [Pho20], see (3.9) in loc. cit.

Motivation and story of the present work. In [Bv20], Bar-Natan and van der Veen constructed an “unexpected” cyclic automorphism of \mathfrak{b} when $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$. The first version of this work was an explanation of this automorphism by using affine Lie algebras. Simultaneously with this first version, A. Knutson mentioned to Bar-Natan his earlier work [KZJ07] with Zinn-Justin.

Acknowledgements. We are very grateful to Dror Bar Natan for useful discussions that had motivated this work. The authors are partially supported by the French National Agency (Project GeoLie ANR-15-CE40-0012).

2 The Lie algebras \mathfrak{b}, \mathfrak{g}_ϵ^+ and $\mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}]$

2.1 Definitions of \mathfrak{b} and \mathfrak{g}_ϵ^+

Let \mathfrak{g} be a complex simple Lie algebra with Lie bracket denoted by $[\ , \]$. Fix a Borel subalgebra \mathfrak{b} of \mathfrak{g} and a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{b}$. Let \mathfrak{b}^- be the Borel subalgebra of \mathfrak{g} containing \mathfrak{h} which is opposite to \mathfrak{b}. Set $\mathcal{V} = \mathfrak{b} \oplus \mathfrak{b}^-$ viewed as a vector space. In this section, we define the Lie bracket $[\ , \]_\epsilon$ on \mathcal{V} depending on the complex parameter ϵ, interpolating between \mathfrak{b} and the direct product $\mathfrak{g} \oplus \mathfrak{h}$.

Let \mathfrak{n} and \mathfrak{n}^- denote the derived subalgebras of \mathfrak{b} and \mathfrak{b}^- respectively. Fix $\epsilon \in \mathbb{C}$. Define the skew-symmetric bilinear bracket $[\ , \]_\epsilon$ on \mathcal{V} by

$$
[x, x']_\epsilon = [x, x'] \quad \forall x, x' \in \mathfrak{b}
$$

$$
y, y' \mapsto \epsilon[y, y'] \quad \forall y, y' \in \mathfrak{b}^-
$$

$$
[x, y]_\epsilon = \epsilon X + \frac{H}{2}, Y \quad \forall x \in \mathfrak{b}, y \in \mathfrak{b}^- \text{ where } [x, y] = X + H + Y \in \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}
$$

Then $[\ , \]_\epsilon$ satisfies the Jacobi identity (see discussion after (3) for a proof). Endowed with this Lie bracket, \mathcal{V} is denoted by \mathfrak{g}_ϵ^+. The linear map

$$
\varphi_\epsilon : \mathfrak{b} \oplus \mathfrak{b}^- \longrightarrow \mathfrak{b} \oplus \mathfrak{b}^- \quad (x, y) \mapsto (x, \epsilon y) \quad \text{for any } x \in \mathfrak{b}, y \in \mathfrak{b}^-
$$
allows to interpret g^ϵ_+ as an Inönü-Wigner contraction [IW53] of g^1_+. Indeed, for any nonzero ϵ, we have

$$[X, Y]_\epsilon = \varphi_\epsilon^{-1}([\varphi_\epsilon(X), \varphi_\epsilon(Y)]_1) \quad \forall X, Y \in \mathcal{V}. \quad (1)$$

We now describe g^1_+. Using the triangular decomposition

$$g = n \oplus \mathfrak{h} \oplus n^-,$$ \quad (2)

one defines the injective linear map

$$\iota^1_{g_+} : \quad g = n \oplus \mathfrak{h} \oplus n^- \rightarrow \quad g^1_+ \quad (\xi, \alpha, \zeta) \mapsto (\xi + \frac{\alpha}{2}, \frac{\alpha}{2} + \zeta)$$

and checks that it is a Lie algebra homomorphism whose image is an ideal of g^1_+. Moreover, the image of

$$\iota^1_{\mathfrak{h}_+} : \quad \mathfrak{h} \rightarrow \quad g^1_+ \quad \alpha \mapsto (-\alpha, \alpha)$$

is the center of g^1_+ and, as Lie algebras,

$$g^1_+ = \iota^1_{g_+}(g) \oplus \iota^1_{\mathfrak{h}_+}(\mathfrak{h}). \quad (3)$$

Observe that we never used the Jacobi identity for $[\ , \]_1$ to prove the isomorphism (3). Hence, we can deduce from it that $[\ , \]_1$ satisfies the Jacobi identity. Then, the expression (1) implies that $[\ , \]_\epsilon$ satisfies the Jacobi identity for any nonzero ϵ. Since this property is closed on the space of bilinear maps, it is satisfied by $[\ , \]_0$ too.

Consider now $I\mathfrak{b}$ with its Lie bracket $[\ , \]_{I\mathfrak{b}}$ defined as follows: \mathfrak{b}^* is an abelian ideal on which \mathfrak{b} acts by the coadjoint action. Denote by $\kappa : g \rightarrow g^*$ the Killing form on g. Since the orthogonal complement of \mathfrak{b} with respect to κ is n, \mathfrak{b}^* identifies with g/n as a \mathfrak{b}-module. Identify g/n with \mathfrak{b}^* in a canonical way (that is by $y \in \mathfrak{b}^- \mapsto y + n$) and denote by $\pi : g \rightarrow \mathfrak{b}^-$ the quotient map. Then $I\mathfrak{b} = \mathfrak{b} \oplus \mathfrak{b}^*$ identifies with $\mathfrak{b} \oplus \mathfrak{b}^- = \mathcal{V}$. Let $[\ , \]_I$ denote the Lie bracket transferred to \mathcal{V} from $[\ , \]_{I\mathfrak{b}}$. Let $x, x' \in \mathfrak{b}$ and $y, y' \in \mathfrak{b}^-$ and decompose $[x, y'] - [x', y]$ as $X + H + Y$ with respect to $g = n \oplus \mathfrak{h} \oplus n^-$. Then

$$[(x, y), (x', y')]_I = ([x, x'], H + Y). \quad (4)$$

We now describe g^0_+. The Lie bracket $[\ , \]_0$ on $\mathcal{V} = g^0_+$ is given by

$$[(x, y), (x', y')]_0 = ([x, x'], \frac{H}{2} + Y). \quad (5)$$

Comparing (4) and (5), one gets that the following linear map η is a Lie algebra isomorphism between g^0_+ and $I\mathfrak{b}$:

$$\eta : \quad \mathcal{V} = \mathfrak{b} \oplus (\mathfrak{h} \oplus n^-) \rightarrow \quad \mathfrak{b} \oplus \mathfrak{b}^* = I\mathfrak{b} \quad (x, h, y) \mapsto (x, \kappa(2h + y, \square)).$$

Replacing \mathfrak{b}^- and \mathfrak{b}^* by n^- and n^* respectively, one defines g^ϵ and one gets the isomorphisms $g \simeq g^\epsilon$ (for any $\epsilon \neq 0$) and $g^0 \simeq I\mathfrak{b}$.
2.2 The affine Kac-Moody Lie algebra

The untwisted affine Kac-Moody Lie algebra \(\mathfrak{g}^{KM} \) is constructed from the simple Lie algebra \(\mathfrak{g} \). We refer to [Kum02, Chapters I and XIII] for the basic properties of \(\mathfrak{g}^{KM} \). Denote by \(\mathfrak{z}(\mathfrak{g}^{KM}) \) the one dimensional center of \(\mathfrak{g}^{KM} \). Consider the Borel subalgebra \(\mathfrak{b}^{KM} \) of \(\mathfrak{g}^{KM} \) and its derived subalgebra \(\mathfrak{n}^{KM} \). By killing the semi-direct product and the central extension from the construction of \(\mathfrak{g}^{KM} \), one gets

\[
\tilde{\mathfrak{g}} := [\mathfrak{g}^{KM}, \mathfrak{g}^{KM}]/\mathfrak{z}(\mathfrak{g}^{KM}) \\
\cong \mathbb{C}[t^{\pm 1}] \otimes \mathfrak{g},
\]

and

\[
\tilde{\mathfrak{b}} := (\mathfrak{b}^{KM} \cap [\mathfrak{g}^{KM}, \mathfrak{g}^{KM}])/\mathfrak{z}(\mathfrak{g}^{KM}) \subset \tilde{\mathfrak{g}} \\
\tilde{\mathfrak{n}} := (\mathfrak{n}^{KM} \cap [\mathfrak{g}^{KM}, \mathfrak{g}^{KM}])/\mathfrak{z}(\mathfrak{g}^{KM}) = [\tilde{\mathfrak{b}}, \tilde{\mathfrak{b}}].
\]

Identify \(\mathfrak{g} \) with the subspace \(\mathbb{C} \otimes \mathfrak{g} \subset \tilde{\mathfrak{g}} \). Note that \(\mathfrak{g}^{KM}/\mathfrak{z}(\mathfrak{g}^{KM}) = \tilde{\mathfrak{g}} + \mathbb{C}d \) where \(d \) acts as the derivation with respect to \(t \).

We consider the set of (positive) roots \(\Phi^+ \) (resp. \(\tilde{\Phi}^+ \)) of \(\mathfrak{g} \) (resp. \(\mathfrak{g}^{KM} \)) and the set of simple roots \(\Delta \) (resp. \(\tilde{\Delta} \)) with respect to \(\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g} \) (resp. \(\mathfrak{h} + \mathbb{C}d + \mathfrak{z}(\mathfrak{g}^{KM}) \subset \mathfrak{b}^{KM} \subset \mathfrak{g}^{KM} \)). We recall the following classical facts:

\[
\mathfrak{n}^{KM} \cong \tilde{\mathfrak{n}} = \bigoplus_{\alpha \in \tilde{\Phi}^+} \tilde{\mathfrak{g}}_\alpha
\]

where \(\tilde{\mathfrak{g}}_\alpha \cong \mathfrak{g}^{KM}_\alpha \) is the root space associated to \(\alpha \). Moreover, \(\tilde{\mathfrak{n}} \) is generated, as a Lie algebra by the subspaces \((\tilde{\mathfrak{g}}_\alpha)_{\alpha \in \tilde{\Delta}} \). The identification of \(\tilde{\Delta} \) with \(\{ \alpha \in \tilde{\Delta} | \alpha(d) = 0 \} \) yields the above-described embedding \(\mathfrak{g} \subset \tilde{\mathfrak{g}} \). Denoting by \(\delta \) the indivisible positive imaginary root in \(\tilde{\Phi} \), we have

\[
\tilde{\Phi} = \{ n\delta + \alpha | \alpha \in \Phi \cup \{0\}, n \in \mathbb{Z} \} \setminus \{0\} \\
\tilde{\Delta} = \Delta \cup \{ \alpha_0 + \delta \}
\]

where \(\alpha_0 \) is the lowest root of \(\Phi \). Note that \(\tilde{\mathfrak{g}}_{\alpha_0} = t^n \mathfrak{h} \ (n \in \mathbb{Z}) \), using the notation \(\tilde{\mathfrak{g}}_0 := \mathfrak{h} \).

Finally, the extended Dynkin diagram can be reconstructed from the combinatorics of \(\tilde{\Delta} \) in \(\tilde{\Phi} \). Indeed, the nodes correspond to the elements of \(\tilde{\Delta} \) and the non-diagonal entries \(a_{\alpha, \beta} \) of the generalized Cartan matrix (encoding the arrows of the diagram) are \(a_{\alpha, \beta} = -\max\{n \in \mathbb{N} | \beta + n\alpha \in \tilde{\Phi} \} \) by Serre relations.

We list in Figure 11 the extended Dynkin diagram \(\tilde{\mathcal{D}}_{\mathfrak{g}} \) in each simple type. The black node corresponds to the simple root \(\alpha_0 + \delta \). We also provide the automorphism group of \(\tilde{\mathcal{D}}_{\mathfrak{g}} \). Note that by the definition of \(\mathfrak{g}^{KM} \) given in [Kum02, §1.1], any \(\theta \in \text{Aut}(\tilde{\mathcal{D}}_{\mathfrak{g}}) \) provides an automorphism \(\theta^{KM} \in \text{Aut}(\mathfrak{g}^{KM}) \) stabilizing both \(\mathfrak{h} + \mathbb{C}d + \mathfrak{z}(\mathfrak{g}^{KM}) \) and \(\mathfrak{b}^{KM} \) and permuting the generators \(e_\alpha, f_\alpha \ (\alpha \in \tilde{\Delta}) \) via \(\theta^{KM}(e_\alpha) = e_{\theta(\alpha)} \) and \(\theta^{KM}(f_\alpha) = f_{\theta(\alpha)} \). Since \(\mathfrak{z}(\mathfrak{g}^{KM}) \) and \([\mathfrak{g}^{KM}, \mathfrak{g}^{KM}] \) are characteristic in \(\mathfrak{g}^{KM} \), i.e. stabilized by any automorphism of Lie algebra, this yields an automorphism \(\tilde{\theta} \in \text{Aut}(\tilde{\mathfrak{g}}) \). Note that some choices have to be made for \(\theta^{KM}(d) \), but the automorphism \(\tilde{\theta} \) only depends on \(\theta \) and on the \(e_\alpha, f_\alpha \ (\alpha \in \tilde{\Delta}) \), since those elements generate \(\tilde{\mathfrak{g}} \).
In a first version of this paper, it was claimed that ð is C[t]-linear. In fact, it is unclear whether this result holds in general. However, we have the following

Lemma 2. Under above notation, there exists \(\lambda \in \{\pm 1\} \) such that

\[
\forall x \in \tilde{g}, \ \tilde{\theta}(tx) = \lambda t\tilde{\theta}(x).
\]

In particular, the automorphism \(\tilde{\theta} \in \text{Aut}(\tilde{g}) \) stabilizes \(t\tilde{n} \).

Moreover, \(\lambda = 1 \) whenever the order of \(\theta \) is odd.

Proof. Note that, since \(\tilde{\theta} \) comes from an element \(\theta^{\text{KM}} \in \text{Aut}(g^{\text{KM}}) \), its action on the semi-group \(\tilde{\Phi}^+ \) stabilizes the semi-group of positive imaginary roots \(\mathbb{N}^* \delta \) and thus fixes its generator \(\delta \). In particular, in the additive group \(\tilde{\Phi} \cup \{0\} \), we have \(\tilde{\theta}(\cdot + \delta) = \delta + \tilde{\theta}(\cdot) \). Defining \(\Psi \) on \(\tilde{g} \) via \(\Psi(x) = \tilde{\theta}^{-1}(t^{-1}\tilde{\theta}(tx)) \), we thus get that \(\Psi_\alpha := \tilde{\Psi}|_{\tilde{g}_\alpha} \) is an invertible linear map on \(\tilde{g}_\alpha \) for any \(\alpha \in \tilde{\Phi} \cup \{0\} \). Since \(\dim \tilde{g}_\alpha = 1 \) for \(\alpha \in \tilde{\Phi} \setminus \mathbb{Z}\delta \), we can thus define \(\lambda_\alpha \) as the element of \(C^* \) such that \(\Psi_\alpha = \lambda_\alpha \text{Id}_{\tilde{g}_\alpha} \).

Let \(\alpha, \beta \in \tilde{\Phi} \cup \{0\}, x_\alpha \in \tilde{g}_\alpha, x_\beta \in \tilde{g}_\beta \). By \(\mathbb{C}[t] \)-bilinearity of the bracket, we get

\[
\Psi_{\alpha+\beta}([x_\alpha, x_\beta]) = \tilde{\theta}^{-1}(t^{-1}[\tilde{\theta}(tx_\alpha), \tilde{\theta}(tx_\beta)]) = [\Psi_{\alpha}(x_\alpha), x_\beta].
\]

(6)

For \(\alpha = 0, x_\alpha = h \in \mathfrak{h} \) and \(\beta \in \tilde{\Phi} \setminus \mathbb{Z}\delta \), we get

\[
\lambda_\beta \beta(h)x_\beta = \Psi_{\beta}(\beta(h)x_\beta) = \beta(\Psi_0(h))x_\beta.
\]

(7)

In particular, \(\Psi_0 \) induces on \(\mathfrak{h}^* \) a linear map \(^t\Psi_0 \) sending \(\beta \) to \(\lambda_\beta \beta \) for each \(\beta \in \mathfrak{h} \subset \tilde{\Phi} \setminus \mathbb{Z}\delta \). If \(\beta, \gamma \in \Delta \) correspond to connected diagrams of the Dynkin diagram of \(\mathfrak{g} \), then \(\beta, \gamma \) and \(\beta + \gamma \) are eigenvectors of \(^t\Psi_0 \) so \(\lambda_\beta = \lambda_\gamma \). By connectivity of the Dynkin diagram, we get that the \(\lambda_\beta \) (\(\beta \in \Delta \)) are all equal to a single value \(\lambda \). Since \(\Delta \) generates \(\mathfrak{h}^* \), we get \(\Psi_0 = \lambda \text{Id}_{\tilde{g}_0} \).

For any \(\beta \in \tilde{\Phi} \setminus \mathbb{Z}\delta \), we can choose \(h \in \mathfrak{h} \) such that \(\beta(h) \neq 0 \). Applying (7) yields \(\lambda_\beta \beta(h)x_\beta = \beta(\lambda h)x_\beta \), that is \(\lambda_\beta = \lambda \).

When \(\alpha = -\beta \in \Delta, n \in \mathbb{Z} \), we get \(\Psi_{n\delta}(tn[x_\alpha, x_{-\alpha}]) = [\Psi_{\alpha}(x_\alpha), tn.x_{-\alpha}] = \lambda tn[x_\alpha, x_{-\alpha}] \).

Since the \(tn[\tilde{g}_\alpha, \tilde{g}_{-\alpha}] (\alpha \in \Delta) \) generate \(\tilde{g}_{n\delta} \), this yields \(\Psi_{n\delta} = \lambda \text{Id}_{\tilde{g}_{n\delta}} \). Finally, we have proved that \(\Psi = \lambda \text{Id}_\delta \) and this yields the first assertion of the Lemma.

Let \(m \) be the order of \(\theta \). The first assertion of the lemma can be rewritten as \(t^{-1}\tilde{\theta}t = \lambda \tilde{\theta} \) where \(t^{\pm 1} \) denotes the multiplication by \(t^{\pm 1} \) in \(\tilde{g} \). This identity to the power \(m \) yields \(\lambda^m = 1 \).

In the setting of [Kum02, Chapter XIII], the Cartan involution \(\omega \) of \(\tilde{g} \) sending each generator \(e_\alpha (\alpha \in \Delta) \) to \(-f_\alpha \) is given by

\[
\omega(t^i x) = t^{-i}\tilde{\omega}(x) \quad (i \in \mathbb{Z}, x \in \mathfrak{g})
\]

where \(\tilde{\omega} \) is the Cartan involution of \(\mathfrak{g} \). As a consequence, \(\omega t = t^{-1} \). Also, \(\omega \circ \tilde{\theta} \circ \omega(e_\alpha) = \omega \circ \tilde{\theta} \circ (-f_\alpha) = -\omega(f_{\theta(\alpha)}) = e_{\theta(\alpha)} \neq \tilde{\theta}(e_\alpha) \) and the same computation gives \(\omega \circ \tilde{\theta} \circ \omega(f_\alpha) = \tilde{\theta}(f_\alpha) \) so \(\omega \theta \omega = \tilde{\theta} \). Then conjugating \(t^{-1}\tilde{\theta}t = \lambda \tilde{\theta} \) by the involution \(\omega \) yields \(t\theta t^{-1} = \lambda \tilde{\theta} \). It follows from these equalities that \(\lambda^2 = 1 \). Hence \(\lambda \in \{\pm 1\} \) with \(\lambda = 1 \) if \(m \) is odd.

Finally, \(\tilde{\theta} \) permutes the generators of \(\tilde{n} \): \((e_{\alpha})_{\alpha \in \Delta} \). Hence \(\tilde{\theta} \) stabilizes \(\tilde{n} \) and \(\tilde{\theta}(t\tilde{n}) = \pm t\tilde{n} = t\tilde{n} \)

\(\Box \)
Remark. We also checked in several cases, including the cyclic automorphism in type A, that $\lambda = 1$. In such cases, $\tilde{\theta}$ then also stabilizes $(t - \epsilon)\tilde{n}$ for any $\epsilon \in \mathbb{C}$.

2.3 Realization of \mathfrak{g}_+^ϵ

The Lie algebras \tilde{b} and \tilde{n} decompose as

\[\tilde{b} = \mathbb{C}[t]b \oplus t\mathbb{C}[t]n^-, \]
\[\tilde{n} = \mathbb{C}[t]n \oplus t\mathbb{C}[t]b^- . \]

Moreover, $(t - \epsilon)\tilde{n}$ is an ideal of \tilde{b}, and $\tilde{b}/((t - \epsilon)\tilde{n})$ is a Lie algebra.

Theorem 3. Let $\epsilon \in \mathbb{C}$. The Lie algebras \mathfrak{g}_+^ϵ and $\tilde{b}/(t - \epsilon)\tilde{n}$ are isomorphic. Similarly, \mathfrak{g}^ϵ is isomorphic to $\tilde{b}/(t - \epsilon)\tilde{b}$.

Proof. From Section 2.1, we have $\mathfrak{g}_+^1 = b \oplus b^-$ as vector spaces. Elements of \mathfrak{g}_+^1 will be written as couples with respect to this decomposition.

Set $\tilde{g}_+^1 := \mathbb{C}[t^{\pm 1}] \otimes \mathfrak{g}_+^1$ and extend ι_0^1 to an injective $\mathbb{C}[t^{\pm 1}]$-linear map $\tilde{g} \to \tilde{g}_+^1$. Consider the subspace $\mathfrak{w} := \mathbb{C}[t]b \oplus t\mathbb{C}[t]b^-$ that is a Lie subalgebra of \tilde{g}_+^1. If $\epsilon \neq 0$, the Inönü-Wigner contraction (\mathbb{I}) on \tilde{g}_+^1 with respect to the decomposition $b \oplus b^-$ gives rise to \mathfrak{g}_+^ϵ $(\epsilon \in \mathbb{C})$. We easily deduce that the linear map

\[\mathfrak{g}_+^\epsilon \to \mathfrak{w}/(t - \epsilon)\mathfrak{w} \]
\[(x,y) \mapsto x + ty + (t - \epsilon)w \quad \text{for any } x \in b \text{ and } y \in b^- , \quad (8) \]

is a Lie algebra isomorphism. For $\epsilon = 0$, it is still a linear isomorphism and, by continuity, a Lie algebra homomorphism.

Set $\tilde{b}_0^- := \iota_0^1(b^-) = \{(h,h)| h \in \mathfrak{h}\} \oplus n^-$. Observe that tb^-_0 is contained in \mathfrak{w}. Indeed, for any $h \in \mathfrak{h}$, the element $t(h,h) = t(h,0) + t(0,h)$ belongs to $\mathbb{C}[t]b \oplus t\mathbb{C}[t]b^-$. In particular, one gets a linear map induced by the inclusions of b and tb^-_0 in \mathfrak{w}:

\[b \oplus tb^-_0 \to \mathfrak{w} . \]

One can easily check that it induces a linear isomorphism $b \oplus tb^-_0 \to \mathfrak{w}/(t - \epsilon)\mathfrak{w}$. Setting $\tilde{b}_m := (b \oplus tb^-_0)_{\text{Lie}}$, the Lie subalgebra of \mathfrak{w} generated by $b \oplus tb^-_0$, we thus get a Lie algebra isomorphism.

\[\tilde{b}_m /((t - \epsilon)\mathfrak{w} \cap \tilde{b}_m) \to \mathfrak{w}/(t - \epsilon)\mathfrak{w} . \quad (9) \]

Since, $b = \{(h,0)| h \in \mathfrak{h}\} \oplus \iota_0^1(n)$ and $\langle \iota_0^1(n) \oplus \iota_0^1(tb^-) \rangle_{\text{Lie}} = \iota_0^1(\langle n \oplus tb^- \rangle_{\text{Lie}}) = \iota_0^1(\tilde{n})$, we have

\[\tilde{b}_m = \{(h,0)| h \in \mathfrak{h}\} \oplus \iota_0^1(\tilde{n}) \cong \iota_0^1(\tilde{b}) \cong \tilde{b} , \quad (10) \]

the middle Lie algebra isomorphism being the identity on $\iota_0^1(\tilde{n})$ and sending $(h,0)$ to $\frac{1}{2}(h,h)$ for each $h \in \mathfrak{h}$. Moreover, $(t - \epsilon)\mathfrak{w} \cap \tilde{b}_m = (t - \epsilon)\iota_0^1(\tilde{n})$. Indeed, $(t - \epsilon)\iota_0^1(\tilde{n})$ is contained in $(t - \epsilon)\mathfrak{w} \cap \tilde{b}_m$, and $b \oplus tb^-_0$ is complementary to $(t - \epsilon)\iota_0^1(\tilde{n})$ in \tilde{b}_m.

8
We finally get the desired Lie isomorphism

\[
\tilde{b}/(t - \epsilon)\tilde{n} \cong \tilde{b}_0/(t - \epsilon)\tilde{n}_0 \cong \mathfrak{n}/(t - \epsilon)\mathfrak{n} \cong \mathfrak{g}^+.
\]

In addition, we can make explicit the isomorphism of Theorem 3:

\[
\gamma_{\epsilon} : \mathfrak{g}^+ \cong \tilde{b}/(t - \epsilon)\tilde{n}
\]

\[
\begin{align*}
(x, 0) &\mapsto x & \text{if } x \in \mathfrak{n} \\
(0, y) &\mapsto ty & \text{if } y \in \mathfrak{n}^{-} \\
(a, b) &\mapsto (a - \epsilon b) + 2t b & \text{if } a, b \in \mathfrak{h}
\end{align*}
\]

and its inverse map is induced by

\[
\theta : \tilde{b} \rightarrow \mathcal{V}
\]

\[
\begin{align*}
P x &\mapsto P(\epsilon)x & \text{if } x \in \mathfrak{n} \\
t R y &\mapsto R(\epsilon)y & \text{if } y \in \mathfrak{n}^{-} \\
Q h &\mapsto \left(\frac{Q\epsilon + Q(0)}{2} h, \frac{Q\epsilon - Q(0)}{2} h\right) & \text{if } h \in \mathfrak{h} (\epsilon \neq 0) \\
&\mapsto (Q(0) h, \frac{1}{2} Q'(0) h) & \text{if } h \in \mathfrak{h} (\epsilon = 0)
\end{align*}
\]

Note that, in order to prove Theorem 3, we could alternatively have checked directly that \(\theta\) is a surjective Lie algebra homomorphism from \(\tilde{b}\) onto \(\mathfrak{g}^+\) with kernel \((t - \epsilon)\tilde{n}\).

3 Some subgroups of Aut(\(Ib\))

3.1 The roots of \(Ib\)

From Sections 2.1 and 2.3, we can interpret the Lie algebra \(Ib\) in the Kac-Moody world via the isomorphism

\[
Ib \rightarrow \tilde{b}/t\tilde{n}
\]

\[
(x, y) \mapsto x + ty \quad \left(\begin{array}{c}
x \in \mathfrak{b}, \\
y \in \mathfrak{b}^{-} \cong \mathfrak{g}/\mathfrak{n} \cong \mathfrak{b}^\ast
\end{array}\right)
\]

From now on, this identification will be made systematically. In particular, we write \(Ib = \mathfrak{b} \oplus t\mathfrak{b}^-\). We first describe some basic properties of \(Ib\) in this language.

Lemma 4. 1. The subalgebra \(\mathfrak{c} := \mathfrak{h} \oplus t\mathfrak{h}\) is a Cartan subalgebra of \(Ib\). Namely, \(\mathfrak{c}\) is abelian and equal to its normalizer.

2. Under the action of \(\mathfrak{c}\), \(Ib\) decomposes as

\[
Ib = \mathfrak{c} \oplus \bigoplus_{\alpha \in \Phi^+} \mathfrak{g}_\alpha \oplus \bigoplus_{\alpha \in \Phi^-} t\mathfrak{g}_\alpha.
\]

For \(\alpha \in \Phi^+\), \(\mathfrak{c}\) acts on \(\mathfrak{g}_\alpha\) with the weight \((\alpha, 0) \in \mathfrak{h}^\ast \times t\mathfrak{h}^\ast\). For \(\alpha \in \Phi^-\), \(\mathfrak{c}\) acts on \(t\mathfrak{g}_\alpha\) with the weight \((\alpha, 0) \in \mathfrak{h}^\ast \times t\mathfrak{h}^\ast\). Here, we identified \(\mathfrak{c}^\ast\) with \(\mathfrak{h}^\ast \times t\mathfrak{h}^\ast\) in a natural way.
3. The set of ad-nilpotent elements of Ib is \(\tilde{n}/t\tilde{n} = n \oplus tb^- \).

4. The center of Ib is \(\mathfrak{z}(Ib) = th \).

5. The derived subalgebra of Ib is \([Ib; Ib] = \tilde{n}/t\tilde{n}\).

Proof. 1-2) The fact that c is abelian and the decomposition in h-eigenspaces are clear from the definition of \tilde{g}. The action of th is zero since it sends \tilde{n} to $t\tilde{n}$ that vanishes itself in Ib. The decomposition of Ib in weight spaces under the action of c follows. Then this decomposition also implies that c is its own normalizer in Ib.

3) The elements of $\tilde{n}/t\tilde{n}$ are clearly ad-nilpotent. From 2), an element with nonzero component in h is not ad-nilpotent.

4) Since th acts as 0 on $\tilde{n}/t\tilde{n}$ and on h, we have $th \subset \mathfrak{z}(Ib)$. The decomposition in weight spaces implies the converse inclusion.

5) The inclusion $[Ib, Ib] \subset \tilde{n}/t\tilde{n}$ is clear. On the other hand we deduce from the weight space decomposition that the subspaces $(\tilde{g}_\alpha)_{\alpha \in \Delta}$ belong to $[Ib, Ib]$. Since they generate \tilde{n} in \tilde{g}, the result follows.

It follows from Lemma 4 and Theorem 3 that $\overline{Ib} \cong Ib/th \cong g^0_+ / \mathfrak{z}(g^0_+) \cong g^0_+$. Then it is straightforward from Lemma 4 and its proof that

- h is a Cartan subalgebra of \overline{Ib}.
- The non-zero h-weights (resp. weight spaces) on \overline{Ib} coincide with the non-zero c-weights (resp. weight space) on Ib via projection. In particular $\Phi(\overline{Ib}) \cong \Phi(Ib) \cong \Phi$.
- $[\overline{Ib}, \overline{Ib}] = \tilde{n}/t\tilde{n}$.

From Lemma 4(2), the set $\Phi(Ib)$ of nonzero weights of c acting on Ib identifies with Φ. It is also useful to embed $\Phi(Ib)$ in $\tilde{\Phi}$ by

\[
\varphi : \quad \Phi(Ib) \quad \longrightarrow \quad \tilde{\Phi}
\]

\[
\alpha \in \Phi^+ \quad \longmapsto \quad \alpha
\]

\[
\alpha \in \Phi^- \quad \longmapsto \quad \delta + \alpha
\]

Indeed, the weight space $(Ib)_\alpha$ identifies with $\tilde{g}_{\varphi(\alpha)}$, for any $\alpha \in \Phi(Ib)$. In particular, for $\alpha, \beta \in \Phi \cup \{0\}$, we have $[Ib_{\varphi^{-1}(\alpha)}, Ib_{\varphi^{-1}(\beta)}] \subset Ib_{\varphi^{-1}(\alpha + \beta)}$ with equality when $\alpha, \beta, \alpha + \beta \notin \{0, \delta\}$. Set also $\Delta(Ib) = \varphi^{-1}(\Delta) = \Delta \cup \{\alpha_0\}$.

Lemma 5.

1. The derived subalgebra of $Ib^{(1)} := [Ib, Ib]$ is

\[
Ib^{(2)} = th \oplus \bigoplus_{\alpha \in \Phi(Ib) \setminus \Delta(Ib)} (Ib)_\alpha
\]

2. Assume that g is not \mathfrak{sl}_2. For $\alpha, \beta \in \Delta(Ib)$ ($\alpha \neq \beta$), the corresponding entry of the generalized Cartan Matrix of g^{KM} is given by

\[
a_{\alpha, \beta} = -\max\{n \in \mathbb{N} \mid \beta + n\alpha \in \Phi(Ib)\}.
\]
Proof. 1) Recall that \(\tilde{n} \) is generated as a Lie algebra by the \((\tilde{g}_\alpha)_{\alpha \in \tilde{\Delta}} \). Thus, for weight reasons, the \((\tilde{g}_\alpha)_{\alpha \in \tilde{\Phi} \setminus \tilde{\Delta}} \) are root spaces included in \([\tilde{n}, \tilde{n}]\). Since \(\tilde{\Delta} \) is a linearly independent set, they are in fact the only root spaces not contained in \([\tilde{n}, \tilde{n}]\). Taking a quotient, this yields \(\bigoplus_{\alpha \in \Phi(Ib) \setminus \Delta(Ib)} (Ib)_\alpha = Ib(2) \).

2) Recall that the statement is valid if we replace \(\Phi(Ib) \) by \(\tilde{\Phi} \), see Section \(2.2 \). It is thus sufficient to show that
\[
\beta + n\alpha \in \tilde{\Phi} \Rightarrow \beta + n\alpha \in \Phi(Ib).
\]

When \(\alpha, \beta \in \Delta \), the statement is clear since \(\Phi^+ \subseteq \Phi(Ib) \).

If \(\beta = \delta + \alpha_0 \), then \(\beta + n\alpha \in \tilde{\Phi} \) means that \(\alpha_0 + n\alpha \in \Phi \). Expressing \(\alpha_0 \) as a linear combination of simple roots, one gets only negative coefficients. Since \(g \) is not \(sl_2 \), some of them remain negative in the expression of \(\alpha_0 + n\alpha \), so this root has to lie in \(\Phi^- \). Thus \(\beta + n\alpha \in \Phi(Ib) \).

If \(\alpha = \delta + \alpha_0 \), then \(\beta + n\alpha \in \tilde{\Phi} \) means that \(\beta + n\alpha_0 \in \Phi \). For height reasons, we must have \(n \in \{0, 1\} \). Then, \(\beta + n\alpha \in \Phi(Ib) \). \(\square \)

Remark. One can observe that the first assertion of Lemma 5 is similar to
\[
[n, n] = \bigoplus_{\alpha \in \Phi^+ \setminus \Delta} b_\alpha.
\]

3.2 The adjoint subgroup of \(Aut(Ib) \)

Let \(G \) be the adjoint group with Lie algebra \(g \). Let \(T \) and \(B \) be the connected subgroups of \(G \) with Lie algebras \(h \) and \(b \). Consider now \(b^- \cong g/n \) equipped with the addition as an abelian algebraic group. The adjoint action of \(B \) on \(g \) stabilizes \(n \) and induces a linear action on \(b^- \cong g/n \) by group isomorphisms. We can construct the semidirect product:
\[
IB := B \rtimes b^-.
\]

By construction the Lie algebra of \(IB \) identifies with \(Ib \). The adjoint action of \(IB \) on \(Ib \) is given by
\[
IB \times Ib \longrightarrow Ib
\]
\[
((b, f), x + ty) \longrightarrow b \cdot x + tb \cdot (y + [f, x] + n) \quad \text{for } b \in B, x \in b \text{ and } f, y \in b^-,
\]

where \(y + [f, x] + n \) is viewed as an element of \(g/n \cong b^- \) and where \(\cdot \) denotes the \(B \)-action on \(b \) and on \(b^- \). It induces a group homomorphism
\[
Ad : IB \longrightarrow Aut(Ib)
\]

with kernel \(Z(IB) \cong (1, b) \). In particular, one gets:

Lemma 6. The image \(Ad(IB) \) is isomorphic to \(B \rtimes g/b \).
Note also that $\text{Ad}(IB) = H \ltimes (N \ltimes \mathfrak{g}/\mathfrak{b})$ where N and H are the connected subgroups of B with respective Lie algebras \mathfrak{n} and \mathfrak{h}. Since $\mathfrak{n} + t\mathfrak{b}^-$ is the set of ad-nilpotent elements of IB, we get the following result from (11).

Lemma 7. 1. The group of elementary automorphisms $\text{Aut}_e(IB) = \exp \text{ad}(\mathfrak{n} + t\mathfrak{b}^-)$ coincides with $N \ltimes \mathfrak{g}/\mathfrak{b}$.

2. $\text{Ad}(IB) = \exp \text{ad}(IB)$

3.3 A unipotent subgroup of $\text{Aut}(IB)$

Let \mathfrak{a} be a Lie algebra. We consider the derived subalgebra $\mathfrak{a}^{(1)} := [\mathfrak{a}, \mathfrak{a}]$, the center $\mathfrak{z} := \mathfrak{z}(\mathfrak{a})$ and the quotient Lie algebra $\bar{\mathfrak{a}} := \mathfrak{a}/\mathfrak{z}$.

Any linear map $u \in \text{Hom}(\mathfrak{a}/\mathfrak{a}^{(1)}, \mathfrak{z})$, defines a linear map $\bar{u} : \mathfrak{a} \rightarrow \mathfrak{a}$ where $X \mapsto X + u(X)$.

Since u takes values in \mathfrak{z} and vanishes on $\mathfrak{a}^{(1)}$, we have

$$[\bar{u}(X), \bar{u}(Y)] = [X + u(X), Y + u(Y)] = [X, Y] = [X, Y] + u([X, Y]) = \bar{u}([X, Y]).$$

In other words, \bar{u} is a morphism of Lie algebras.

On the other hand, any $\theta \in \text{Aut}(\mathfrak{a})$ stabilizes the center of \mathfrak{a}, and hence it induces an automorphism of $\bar{\mathfrak{a}}$. This yields a natural group homomorphism

$$R : \text{Aut}(\mathfrak{a}) \rightarrow \text{Aut}(\bar{\mathfrak{a}}).$$

Lemma 8. Assume that $\mathfrak{z}(\mathfrak{a}) \subset \mathfrak{a}^{(1)}$. Under previous notation, we have an exact sequence of groups

$$0 \rightarrow \text{Hom}(\mathfrak{a}/\mathfrak{a}^{(1)}, \mathfrak{z}) \rightarrow \text{Aut}(\mathfrak{a}) \xrightarrow{R} \text{Aut}(\bar{\mathfrak{a}})$$

where $\text{Hom}(\mathfrak{a}/\mathfrak{a}^{(1)}, \mathfrak{z})$ is seen as the additive vector group.

We denote

$$U := \{ \bar{u} \mid u \in \text{Hom}(IB/IB^{(1)}, \mathfrak{z}(IB)) \}.$$ \hspace{1cm} (13)

This lemma, together with Lemma [4] implies the following results

Corollary 9. 1. (U, \circ) is a normal subgroup of $\text{Aut}(IB)$ of dimension $(\dim \mathfrak{h})^2$

2. $R(\text{Aut}(IB)) = \text{Aut}(IB)/U \subset \text{Aut}(\overline{IB})$.

We will see in Lemma [14] that the last inclusion is actually an equality (i.e. the sequence of Lemma [8] is a short exact sequence for $\mathfrak{a} = IB$)
Proof of Lemma We have

\[(\bar{u} \circ \bar{v})(X) = (X + v(X)) + u(X + v(X)) = X + u(X) + v(X) = \bar{u} + \bar{v}(X)\]

where the middle equality is due to \(v(X) \in \mathfrak{z} \subset a^{(1)} \subset \text{Ker}(u)\). So the map \(u \mapsto \bar{u}\) is semi-group homomorphism from \((\text{Hom}(a/a^{(1)}, \mathfrak{z}), +)\) to \((\text{End}(a), \circ)\). Since \((\text{Hom}(a/a^{(1)}, \mathfrak{z}), +)\) is actually a group, its image is contained in \(\text{Aut}(a)\).

It is clear that the map \(u \mapsto \bar{u}\) is injective and, since \(u\) takes values in \(\mathfrak{z}\), that \(R(\bar{u}) = \text{Id}_{\bar{a}}\).

In order to prove exactness of the sequence at \(\text{Aut}(a)\), there remains to prove the implication

\[\forall \theta \in \text{Aut}(a), R(\theta) = \text{Id}_{\bar{a}} \Rightarrow ((\theta - \text{Id})(\mathfrak{a}) \subset \mathfrak{z}) \text{ and } ((\theta - \text{Id})_{a^{(1)}} = 0)\]

The first property is immediate. The second one follows from the fact that, for such a \(\theta\), we have \(\theta([X, Y]) \in [X + \mathfrak{z}, Y + \mathfrak{z}] = [X, Y]\).

\[\square\]

3.4 The loop subgroup

Lemma 10. The following map is an injective group homomorphism

\[
\begin{align*}
\mathbb{C}^* & \longrightarrow \text{Aut}(Ib) \\
\tau & \longmapsto \left(\begin{array}{l}
\delta_\tau : Ib \longrightarrow Ib \\
x & \longmapsto x \quad \text{if } x \in b \\
\tau y & \longmapsto \tau ty \quad \text{if } y \in b^-
\end{array}\right).
\end{align*}
\]

We denote by \(D \subset \text{Aut}(Ib)\) the image of this map.

Proof. It is a straightforward check on \(b \ltimes t b^-\) that the \(\delta_\tau\) are automorphisms of \(Ib\). \(\square\)

Remark. The map \(\delta_\tau\) corresponds to the variable changing \(t \mapsto \tau t\) in the \(\mathbb{C}[t]\)-Lie algebra \(\mathfrak{b}/t\mathfrak{n}\). Moreover, the Lie algebra of \(D\) acts on \(Ib\) like \(\mathbb{C}d\) where \(d\) is the derivation involved in the definition of \(\mathfrak{g}^{KM}\).

3.5 Automorphisms stabilizing the Cartan subalgebra

For any \(\alpha \in \Delta(Ib)\), fix generators \(e_\alpha\) of \(\tilde{\mathfrak{g}}\), \(\alpha \in \tilde{\Delta}\) giving rise to elements \(X_\alpha \in Ib_\alpha\) in the corresponding root space \((Ib)_\alpha\). Set

\[
\Gamma := \left\{ \theta \in \text{Aut}(Ib) \left| \begin{array}{l}
\theta(\mathfrak{h}) \subset \mathfrak{h} \\
\theta(\{X_\alpha : \alpha \in \Delta(Ib)\}) = \{X_\alpha : \alpha \in \Delta(Ib)\}
\end{array} \right. \right\}.
\]

Note that, since \(c\) is the sum of \(\mathfrak{h}\) with \(\mathfrak{z}(Ib)\) and since the center is characteristic, the elements of \(\Gamma\) also stabilize \(c\).

Proposition 11. The group \(\Gamma\) is isomorphic to the automorphism group of the affine Dynkin diagram of \(\mathfrak{g}\).
Proof. By construction, Γ induces an action on $\Delta(Ib)$. By Lemma 3(2), we have for $g \in \Gamma$ and $\alpha, \beta \in \Delta(Ib)$:

$$a_{\alpha,\beta} = -\max\{n|(ad X_\alpha)^n(X_\beta) \neq 0\} = -\max\{n|g((ad X_\alpha)^n(X_\beta)) \neq 0\} = -\max\{n|(ad X_{g(\alpha)})^n(X_{g(\beta)}) \neq 0\} = a_{g(\alpha),g(\beta)}.$$

Hence g actually induces an automorphism of the extended Dynkin diagram and we thus obtain a group homomorphism

$$\Theta : \Gamma \to Aut(\tilde{D}_g).$$

We claim that Θ is surjective. Indeed, fix an automorphism θ of the group \tilde{D}_b. As was mentioned in Section 2.2, there exists $\tilde{\theta} \in Aut(\tilde{g})$ which stabilizes both \mathfrak{h} and \mathfrak{b} and which permutes the generators \{e_\alpha : \alpha \in \tilde{\Delta}\} and thus $\tilde{\Delta} \cong \Delta(Ib)$ as θ does. By Lemma 2, $\tilde{\theta}$ stabilizes $\tilde{\mathfrak{n}}$, so induces the desired element of $Aut(\mathfrak{b}/t\mathfrak{n})$.

We now prove that Θ is injective. Let θ in its kernel. By the definition of the group Γ, θ stabilizes \mathfrak{h}. Since the restrictions of the elements of $\Delta(Ib)$ span \mathfrak{h}^*, the restriction of θ to \mathfrak{h} has to be the identity. In particular, θ acts trivially on $\Phi(Ib)$ and stabilizes each root space $(Ib)_\alpha$ for $\alpha \in \Phi(Ib)$. But θ stabilizes the set $\{X_\alpha : \alpha \in \Delta(Ib)\}$. Hence θ acts trivially on each \tilde{g}_α for $\alpha \in \Delta(Ib)$. Since $\tilde{\mathfrak{n}}$ is generated by the $(\tilde{g}_\alpha)_{\alpha \in \Delta(Ib)}$, the restriction of θ to $\tilde{\mathfrak{n}}/t\tilde{\mathfrak{n}}$ is the identity map. Finally, θ is trivial and Θ is injective. \hfill \Box

Remark.

1. [Bv20] Theorem 2] is the construction of an explicit order n automorphism of gl_{n+1}. We can also interpret this automorphism in terms of the isomorphism $gl_{n+1} \cong \mathfrak{b}/(t-\epsilon)\mathfrak{n}$ of Theorem 3. Indeed, let θ be the cyclic automorphism of the extended Dynkin diagram in type A_k and let $\tilde{\theta}$ be the automorphism of \tilde{g} associated to θ as in Section 2.2. By Lemma 2 and the subsequent remark, $\tilde{\theta}$ induces an automorphism of $\mathfrak{b}/(t-\epsilon)\mathfrak{n}$. Moreover, it is easily checked that the action on layer 1 in [Bv20] is a cyclic permutation of the generators $(e_\alpha)_{\alpha \in \tilde{\Delta}}$.

2. Consider the trivial vector bundle $\mathcal{V} := \mathcal{V} \times \mathbb{A}^1$ over $\mathbb{A}^1 = \text{Spec}(\mathbb{C}[\epsilon])$. The Lie bracket $[\ , \]_\epsilon$ endows \mathcal{V} with a structure of a Lie algebra bundle meaning that $[\ , \]_\epsilon$ can be seen as a section of the vector bundle $\bigwedge^2 \mathcal{V}^* \otimes \mathcal{V}$ satisfying the Jacobi identity. Consider the group $\text{Aut}(\mathcal{V}, [\ , \]_\epsilon)$ consisting of automorphisms of the vector bundle \mathcal{V} respecting the Lie bracket pointwise. Let $\theta \in \text{Aut}(\tilde{D})$ and assume that the $\tilde{\theta} \in \text{Aut}(\tilde{g})$ is $\mathbb{C}[t]$-linear (i.e. $\lambda = 1$ in Lemma 2). Then it is easy to check that $\tilde{\theta}$ induces an element of $\text{Aut}(\mathcal{V}, [\ , \]_\epsilon)$. In other words, θ lifts to a \mathbb{A}^1-family of automorphisms over the \mathbb{A}^1-family of Lie algebras \mathcal{V}.

1If \tilde{g} is sl_2, Lemma 3(2) does not apply. However, any permutation of $\tilde{\Delta}$ is an automorphism of the extended Dynkin diagram in this case.
4 Description of Aut(Ib)

In this section, we describe the structure of

\[
\text{Aut}(Ib) = \{ g \in \text{GL}(Ib) : \forall X, Y \in Ib \quad g([X,Y]) = [g(X), g(Y)] \}
\]

in terms of the subgroups \(U, \text{Ad}(IB), D \) and \(\Gamma \) introduced in Section 3.

Observe that Aut(Ib) is a Zariski closed subgroup of the linear group GL(Ib).

Theorem 12. We have the following decompositions

\[
\text{Aut}(Ib) = \Gamma \ltimes (D \ltimes (\text{Ad}(IB) \times U)),
\]

\[
\text{Aut}(\overline{Ib}) = \Gamma \ltimes (D \ltimes (\text{Ad}(IB))).
\]

In particular, the neutral component is \(\text{Aut}(Ib)^0 = D \ltimes (\text{Ad}(IB) \times U) \) and \(\Gamma \cong \text{Aut}(\overline{D_g}) \) can be seen as the component group of \(\text{Aut}(Ib) \).

The result is a consequence of the lemmas provided below. Indeed, by Lemma 14 the four subgroups generate Aut(Ib). By Corollary 11 and Lemma 13 below, the subgroup generated by \(U \) and Ad(IB) is a direct product \(U \times \text{Ad}(IB) \). Then the structure of Aut(Ib) follows from Lemma 15. That of Aut(\overline{Ib}) follows the same lines, using Corollary 12. Note that we have identified \(\Gamma, \text{Ad}(IB) \) and \(D \) with their image under \(R \), via Lemma 8.

Since \(D, \text{Ad}(IB) \) and \(U \) are connected and \(\Gamma \) is discrete, \(\text{Aut}(Ib) = \bigsqcup_{g \in R} g\text{Ad}(IB)U \) is a finite disjoint union of irreducible subsets of the same dimension. They are thus the irreducible components of Aut(IB) and the remaining statements of Theorem 12 follow.

Lemma 13. The subgroups \(U \) and \(\text{Ad}(IB) \) are normal in Aut(Ib). Moreover, \(U \cap \text{Ad}(IB) = \{\text{Id}\} \).

Proof. Recall that \(\text{Ad}(IB) \) is generated by the exponentials of \(\text{ad}(x) \) with \(x \in Ib \). Then for any \(\theta \in \text{Aut}(Ib) \),

\[
\theta \text{Ad}(IB)\theta^{-1} = \theta \exp(Ib)\theta^{-1} = \exp(\theta(Ib)) = \exp(Ib) = \text{Ad}(IB).
\]

Let \((b, f) \in IB \) and \(h \in \mathfrak{h} \). Then \(\text{Ad}(b, f)(h) = b \cdot h + t b \cdot ([f, h] + n) \). Assuming that \(\text{Ad}(b, f) = \bar{u} \in U \), we have \(\text{Ad}(b, f)(\mathfrak{h}) \subset \mathfrak{h} + \mathfrak{z} \) so \(\text{Ad}(b)(\mathfrak{h}) \subset \mathfrak{h} \), that is \(b \) belongs to the normalizer of \(\mathfrak{h} \) in \(B \), which turns to be \(T \). In particular, \(b \cdot [f, h] \subset n^- \) and \(\text{Ad}(b, f)(\mathfrak{h}) \subset \mathfrak{h} + (n + tn^-) \). Hence \(u = 0 \) and finally \(\text{Ad}(IB) \cap U = \{\text{Id}\} \). \(\square \)

Lemma 14. We have \(\text{Aut}(Ib) = \Gamma \text{DAd}(IB)U \) and \(\text{Aut}(\overline{Ib}) = \Gamma \text{DAd}(IB) \).

Proof. Let \(\theta \in \text{Aut}(Ib) \). Since the two Cartan subalgebras \(\mathfrak{c} \) and \(\theta(\mathfrak{c}) \) are Ad-conjugate (see [Bou75], §3, n° 2, th. 1), there exists \(\theta_1 \in \text{Ad}(IB)\theta \) which stabilizes \(\mathfrak{c} \).

Then \(\theta_1(\mathfrak{h}) \) is complementary to the center \(t \mathfrak{h} = \theta_1(t\mathfrak{h}) \) in \(\mathfrak{c} \). Thus, there exists \(\theta_2 \in U\theta_1 \) such that \(\theta_2 \) stabilizes \(\mathfrak{h} \).
Since \(\theta_2 \) stabilizes \(c \), it acts on \(\Phi(IB) \). Moreover, \(IB^{(1)} = [Ib, Ib] \) and \(IB^{(2)} = [Ib^{(1)}, Ib^{(1)}] \) are characteristic and stabilized by \(\theta_2 \). So, Lemma \[3\] implies that \(\theta_2 \) stabilizes \(\Phi(IB) \setminus \Delta(IB) \) and hence \(\Delta(IB) \). Arguing as in the proof of Proposition \[11\] we show that the induced permutation is actually an automorphism of the extended Dynkin diagram. Thus there exists \(\theta_3 \in \Gamma \theta_2 \) with the additional property that the induced permutation on \(\Delta(IB) \) and thus on \(\Phi(IB) \) are trivial. Then \(\theta_3 \) acts on each \((Ib)_a \) for \(a \in \Delta(IB) \).

Since \(\Delta \) is a basis of \(h^* \), one can find \(h \in H \subset B \subset IB \) such that \(\text{Ad}(h) \circ \theta_3 \) acts trivially on each \((Ib)_a \) for \(a \in \Delta \). Moreover, \(D \) acts trivially on these roots spaces and with weight 1 on \((Ib)_{a_0} \). This yields \(\theta_4 \in D \text{Ad}(H) \Gamma U \text{Ad}(IB) \theta \) which acts trivially on \(h \) and on each \((Ib)_a \), \(a \in \Delta(IB) \).

Recall now that \(\bar{n}/t\bar{n} \) is generated by the spaces \(((Ib)_a)_{a \in \Delta(IB)} \). Since \(\theta_4 \) acts trivially on \(\bar{n} \) and on \(h \), it has to be trivial. As a consequence, \(\theta \in \text{Ad}(IB) U \Gamma \text{Ad}(H) D = \Gamma D \text{Ad}(IB) U \), the last equality following from Lemma \[13\] and Corollary \[9\].

Recalling that \(\Phi(IB) = \Phi(\overline{IB}) \), the same proof applies for \(\overline{IB} \) instead of \(Ib \), replacing \(c \) by \(h \) and skipping step from \(\theta_1 \) to \(\theta_2 \). \[\square\]

Lemma 15. The intersections \(D \cap (\text{Ad}(IB) \times U) \) and \(\Gamma \cap (D \ltimes (\text{Ad}(IB) \times U)) \) are the trivial group \(\{\text{Id}\} \). Moreover, \((D \ltimes (\text{Ad}(IB) \times U)) \) is normal in \(\text{Aut}(IB) \).

Proof. Let \(\tau \in C^* \), \(b \in B \), \(f \in g/n \) and \(u \in \text{Hom}(Ib/[Ib, Ib], z(IB)) \) such that the associated elements \(\delta_\tau \in D \), \((b, f) \in IB \) and \(\bar{u} \in U \) (see Section \[3\]) satisfy \(\delta_\tau = \text{Ad}(b, f) \circ \bar{u} \). For \(x \in b \), we have

\[
x = \delta_\tau(x) = (\text{Ad}(b, f) \circ \bar{u})(x) = \text{Ad}(b, f)(x + u(x)) = b \cdot x + (b \cdot u(x) + tb \cdot ([f, x] + n)).
\]

In particular, \(b \cdot x = x \) and, whenever \(x \in n \), \(b \cdot [f, x] = 0 \) in \(g/n \). So \(b \in B \) centralizes \(b \) and \(\text{ad}_g f \) normalizes \(n \). As a consequence, \(b = 1_B \), \(f \) is 0 in \(g/b \) and \(u = 0 \). Thus the only element of \(D \cap (\text{Ad}(IB) \times U) \) is the trivial one.

Since \([Ib, Ib] \) is characteristic in \(Ib \), we have a natural group morphism \(p : \text{Aut}(Ib) \to \text{Aut}(Ib/[Ib, Ib]) \). From the description of \([Ib, Ib] \) in Lemma \[3\] it is straightforward that \(D \), \(\text{Ad}(IB) \) and \(U \) are included in \(\text{Ker}(p) \) while \(p_{II} \) is injective. From Lemma \[14\] we then deduce that \(D \ltimes (\text{Ad}(IB) \times U) = \text{Ker}(p) \) and the desired properties follow. \[\square\]

References

[Bou75] N. Bourbaki. *Eléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées*. Actualités Scientifiques et Industrielles, No. 1364. Hermann, Paris, 1975.

[Bv20] Dror Bar-Natan and Roland van der Veen. An Unexpected Cyclic Symmetry of \(Iu_n \). *arXiv:2002.00697*, pages 1–9, Feb 2020.
[Fei11] Evgeny Feigin. Degenerate flag varieties and the median Genocchi numbers. *Math. Res. Lett.*, 18(6):1163–1178, 2011.

[Fei12] Evgeny Feigin. \mathbb{G}_a^M degeneration of flag varieties. *Selecta Math. (N.S.)*, 18(3):513–537, 2012.

[IW53] E. Inonu and E. P. Wigner. On the contraction of groups and their representations. *Proc. Nat. Acad. Sci. U.S.A.*, 39:510–524, 1953.

[Kum02] Shrawan Kumar. *Kac-Moody groups, their flag varieties and representation theory*, volume 204 of *Progress in Mathematics*. Birkhäuser Boston, Inc., Boston, MA, 2002.

[KZJ07] Allen Knutson and Paul Zinn-Justin. A scheme related to the Brauer loop model. *Adv. Math.*, 214(1):40–77, 2007.

[NW93] Chiara R. Nappi and Edward Witten. Wess-Zumino-Witten model based on a nonsemisimple group. *Phys. Rev. Lett.*, 71(23):3751–3753, 1993.

[Pho20] Kenny Phommady. Semi-invariants symétriques de contractions paraboliques. *PhD thesis*, arXiv.2007.14185, 2020.

[PY12] Dmitri I. Panyushev and Oksana S. Yakimova. A remarkable contraction of semisimple Lie algebras. *Ann. Inst. Fourier (Grenoble)*, 62(6):2053–2068, 2012.

[PY13] Dmitri I. Panyushev and Oksana S. Yakimova. Parabolic contractions of semisimple Lie algebras and their invariants. *Selecta Math. (N.S.)*, 19(3):699–717, 2013.

[Yak14] Oksana Yakimova. One-parameter contractions of Lie-Poisson brackets. *J. Eur. Math. Soc. (JEMS)*, 16(2):387–407, 2014.

- ◊ -

17