As the virus evolves, so too must we: a drug developer’s perspective

We need a new paradigm in searching for next-generation countermeasures

Fang Flora Fang*

Abstract

The SARS-CoV-2 virus has been raging globally for over 2 years with no end in sight. It has become clear that this virus possesses enormous genetic plasticity, and it will not be eradicated. Under increasing selective pressure from population immunity, the evolution of SARS-CoV-2 has driven it towards greater infectivity, and evasion of humoral and cellular immunity. Omicron and its expanding army of subvariants and recombinants have impaired vaccine protection and made most antibody drugs obsolete. Antiviral drugs, though presently effective, may select for more resistant strains over time. It may be inevitable, then, that future SARS-CoV-2 variants will be immune to our current virus-directed countermeasures. Thus, to gain control over the virus, we need to adopt a new paradigm in searching for next-generation countermeasures and develop host-directed therapeutics (HDTx) and host-directed antivirals (HDA).

Different from the virus-directed countermeasures, HDTx and HDA may offer variant agnostic treatment to reduce the risk and severity of infections. In addition, they may exert more uniform effects against the genetically diverse SARS-CoV-2 quasispecies, thereby diminishing the risk of selecting resistant variants. Some promising HDTx and HDA approaches are summarized here.

Keyword: COVID19, SARS-CoV-2, Host-directed therapeutics, HDTx, Host-directed antiviral, HAD, Immune evasion, Drug resistance, Pandemic countermeasures
A study demonstrated that the 4th dose of BNT162b2 mRNA vaccine could at best temporarily boost VE against infection to 64% of the peak 3rd-dose level, which declined to 29% of the 3rd-dose level 7 weeks later, although VE against severe disease was maintained at >73% of the 3rd-dose level for 10 weeks [12]. People on treatment for autoimmune diseases tend to respond poorly to vaccination and have a greater need for vaccine boosters. However, in this population, the 4th dose of mRNA vaccine did not improve protection against Omicron and further, it caused flare-ups of autoimmune diseases in some patients [13]. For elderly people, low-quality immune response to vaccination seem to be caused by a T cell repertoire-intrinsic defect that may not be rescued by repeated vaccination [14].

Vaccination has also primed the population for immunity against the wild type (WT) SARS-CoV-2 virus which may compromise the Omicron specific booster vaccines. Consistently, for the 3-dose vaccinees, subsequent BA.1 infections mainly recalled neutralizing antibodies (NAbs) against the WT virus, although some new NAbs against BA.1 were also induced. These NAbs, however, are mostly evaded by BA.2, BA.4 and BA.5 [15].

On Aug 31, 2022, the FDA authorized bivalent booster vaccines that are updated against BA.4 and BA.5. These vaccines have not been subjected to clinical trials; thus their VE remains to be seen. In mice models, the BA.4/5 bivalent booster produced a modest increase (≤ 10 fold) of omicron-specific and cross-reactive NAbs that is similar to the BA.1 bivalent booster, and both of the bivalent boosters exhibited similar protection as the monovalent (Wuhan) booster against the BA.5 challenge in vivo [16].

Fortunately, current vaccines still confer significant protection against severe COVID19 as cellular immunity from vaccination wanes much slower. However, SARS-CoV-2 has been evolving towards evasion of cellular immunity too, albeit at a slower pace and mostly affecting individuals with certain genetic backgrounds [17, 18]. For example, T cell reactivity to an Omicron spike has significantly diminished by >50% in ~20% of individuals [19].

In late 2020 and early 2021, two antibody cocktail drugs (Etesevimab + Bamlanivimab & Imdevimab + Casirivimab) entered the market under EUA. In November 2021, Omicron BA.1 appeared and made these two drugs, as well as several antibody drug candidates still in development, obsolete. Only one drug, Sotrovimab, was still active. Three months later, as BA.2 replaced BA.1, Sotrovimab became obsolete [20]. Since then, two new antibody drugs, Cilgavimab/Tixagevimab and Bebtelovimab, have been granted EUA and they are effective against BA.2 in vitro [21]. However, BA.4 and BA.5 are significantly less sensitive to Cilgavimab/Tixagevimab compared to BA.2, which left Bebtelovimab the only drug equally effective against BA.2, BA.4 and BA.5 [22].
Recently, it was shown that by acquiring just one or two convergent mutations, both BA.2 and BA.5 can become profoundly resistant to the current antibody drugs, including Bebtelovimab [23]. Therefore, it may be a matter of time before Bebtelovimab loses its current status. Although broadly neutralizing antibodies that can inhibit all pre-circulated Omicron variants including BA.5 have been discovered and may offer some new hopes, it does not bode well that when subjected to in vitro selection the BA.5 spike protein became resistant to nearly all of the 40 broadly neutralizing antibodies after making just 2 to 3 changes in its sequence [24].

An inhibitor of the SARS-CoV-2 main protease (Mpro), Paxlovid, has now become the most common COVID19 treatment. Optimism over long-term utility of Paxlovid, however, is tempered by the fact that the “evolutionarily conserved” Mpro pocket targeted by Paxlovid and many other Mpro inhibitors in the current pipeline is in fact highly mutable. Deep mutational scanning has revealed that numerous mutations may cause resistance to the inhibitors with little effect on the Mpro function [25]. Furthermore, as the Mpro inhibitory candidates bind to the same or overlapping sequences in Mpro, they also share the same drug resistance vulnerability [26, 27]. Therefore, it is likely that once SARS-CoV-2 develops resistance to the first drug, Paxlovid, the current pipeline of Mpro inhibitors could become obsolete. In fact, among the circulating SARS-CoV-2 strains, there are already preexisting Paxlovid-resistant variants which are capable of spreading [28, 29].

Remdesivir (RDV) is a nucleoside analog inhibitor of the viral RNA dependent RNA polymerase (RdRp; nsp12 in SARS-CoV-2) that has been approved by the FDA for treatment of severe SARS-CoV-2 infections. At present, RDV resistant mutations are still rare among the 6 million published nsp12-RdRp consensus sequences. However, when subjected to RDV selection in cell cultures, SARS-CoV-2 readily developed RDV-resistant mutations, and the mutations are located either within the “evolutionarily conserved” active site of nsp12 or adjacent to the active site [30].

The situation of vaccines and antibodies is a testament to the uphill battle of keeping up with SARS-CoV-2 as it evolves to evade our current virus-directed countermeasures. As antiviral drugs are being increasingly used, it may be inevitable that SARS-CoV-2 would develop resistance to them as well. Thus, the rapid evolution of SARS-CoV-2 calls for a new hosting-directed paradigm and development of host-directed therapeutics (HDTx) and host-directed antivirals (HDA).

As an RNA virus, SARS-CoV-2 is prone to random mutations and recombinations. A SARS-CoV-2 population in an infection is a heterogenous mixture of genetically diverse quasispecies [31], each of which may have different susceptibility to a virus-directed countermeasure designed to target a single prototype sequence. As a result, a virus-directed countermeasure may exert inconsistent effects against different SARS-CoV-2 quasispecies, and the resistant quasispecies clones would gain growth advantage and be selected over time. By contrast, via modifying the host environment, HDTx and HDA drugs could level the playing field and exert more uniform effects against the SARS-CoV-2 quasispecies, thereby diminishing the risk of selecting resistant variants.

Via strengthening host defense against infections, or via modulating the pathogenic maladaptive inflammatory responses to infections, HDTx may reduce the risk of infection, alleviate the symptoms and organ damages, reduce hospitalization, morbidity, and mortality.

A number of HDTx immune modulating drugs have been used to treat the hyperactive inflammation associated with severe COVID19 in hospitalized patients, including corticosteroids (dexamethasone), IL-6 inhibitors (tocilizumab or sarilumab), and JAK inhibitors (baricitinib or tofacitinib). These drugs are recommended by the current COVID19 treatment guidelines for treatment of severe COVID19 in certain hospitalized patients [32]. In multiple clinical trials, Dexamethasone improved outcomes and reduced mortality in hospitalized patients with COVID19 [33]. In a randomized trial of hospitalized COVID19 patients, tocilizumab and sarilumab resulted similar ~20% reduction of 28-day mortality with ORs being 0.82 (0·71–0·95, p = 0·008) and 0·80 (0·61–1·04, p = 0·09) respectively [34].

In May 2022, baricitinib (Olumiant) was approved by the FDA for hospitalized COVID19 patients. In a phase 3 trial of hospitalized COVID19 patients, baricitinib monotherapy reduced death by Day 28 from 13.3% for the placebo to 8.1%. In a phase 3 trial comparing baricitinib and RDV combo treatment versus placebo plus RDV, hospitalized COVID19 patients treated with the combo drugs recovered faster than those treated with RDV alone (7 days vs. 8 days). The proportion of patients who died by Day 29 was 4.7% for the combo drug group compared to 7.1% for the RDV alone [35]. Another phase 3 clinical trial showed similar survival and improvements of the hospitalized COVID19 patients treated with either baricitinib plus RDV or dexamethasone plus RDV, but dexamethasone was associated with significantly more adverse events [36].

The immune modulatory drugs are only indicated for severe COVID19 cases that require hospitalization, and logically, they are best used in combination with antiviral therapies. As for treating the vast majority of SARS-CoV-2 infections, as well as for preventing SARS-CoV-2
infections, HDA drugs will be the primary therapy in the future.

SARS-CoV-2 infection requires multiple host factors, and the best-characterized ones include: the ACE2 receptor, the heparan sulfate proteoglycan (HSPG) co-receptors that form electrostatic attachments with the virus on the airway surface and exponentially enhance the chance for the virus–ACE2 interaction [37], and the human type II transmembrane serine proteases (TTSPs), including TMPRSS2, TMPRSS11D, and TMPRSS13, that cleave the viral spike protein to activate membrane fusion and endocytosis [38]. Some of the HDTx and HDA approaches under development now target these host factors.

Inhibitors of the human serine proteases, such as aprotanin and Camostat, are effective against respiratory viruses, including SARS-CoV-2 and influenza [39, 40], and have long been safely used to treat inflammatory conditions such as acute pancreatitis, sepsis, and ARDS. Both drugs are being tested in clinical trials for COVID19 treatment. In a recent phase 3 clinical trial, inhaled aprotanin successfully treated hospitalized COVID19 patients by reducing oxygen requirements and shortening hospital stay by 5 days (p = 0.003) [41].

A new TTSP inhibitor, N-0385, have also demonstrated that a HDA candidate can be a potential pan-SARS-CoV-2 prophylactic and therapeutic. N-0385 is a chemical compound that inhibits human TMPRSS2, matriptase, and TMPRSS1. It inhibits various SARS-CoV-2 variants in vitro. In the K18-hACE2 model, intranasal treatment by N-0385 effectively treated severe COVID19 and prevented death, and efficacy was observed even after a single post-infectious treatment [42].

To fortify the resistance barrier against SARS-CoV-2 variants, HDA and HDTx therapies can be synergistically combined as the former can quickly control the viral load and the later may mitigate the pathogenic host responses to the virus. Additionally, HDA and HDTx approaches can be further strengthened through a multi-functional drug design which may enable a drug to simultaneously inhibit multiple essential steps in a viral life cycle as well as to offer variant agnostic treatment. As an example, a multifunctional drug candidate named ResCovidin™, which is under development by Abimmune Biopharma, has been designed to simultaneously mask all the key ports of entry recognized by the SARS-CoV-2 virus—ACE2, HSPG, & TTSPs (unpublished results). Although SARS-CoV-2 may mutate to overcome a certain step, to subvert them all, the virus would have to change into a fundamentally different virus.

To ensure safety of novel HDTx and HDA candidates, the host targets, the drug functional moieties, and the drug delivery methods all need to be carefully chosen and designed. For example, we have deemed ACE2 a safe target, at least when it is located on the airway surface, because this carboxypeptidase has minimal signaling function in the respiratory epithelium and its catalytic pocket is separated from the SARS-CoV-2 binding site, thus one can block the SARS-CoV-2 binding site without impairing ACE2’s normal enzymatic function [43]. Besides specifically targeting the viral binding site on ACE2, the receptor blocking moiety of ResCovidin™ is further designed for both enhanced affinity as well as diminished risk of off-target effects (data not shown). Finally, ResCovidin™ will be delivered through nasal spray or inhalation so that the drug will only function topically on the airway surface, thereby ensuring the best safety and efficacy profile.

The COVID19 pandemic heralds a new era of “super-bugs”, a new paradigm is thus needed to combat them. The success of the mRNA vaccines has strengthened our believe that addressing the biggest public health challenges of our time through bold and innovative scientific endeavors can lead to immeasurable benefits to the world.

Acknowledgements
The author would like to thank Dr. Mang "Mark" Yu and Mr. Charles Fang Yu for critical assistance in this article.

Author contributions
The author wrote, read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 May 2022 Accepted: 13 September 2022 Published online: 10 October 2022

References
1. Mallapaty S. COVID reinfections surge during Omicron onslaught. 2022. https://www.nature.com/articles/d41586-022-00438-3.
2. covSPECTRUM collection #24 Tracking/Designated Lineages. https://cov-spectrum.org/collections/24
3. Jankowiak M, Obermeyer FH, Lemieux JE. Inferring selection effects in SARS-CoV-2 with Bayesian Viral Allele Selection. 2022. Preprint at. https://doi.org/10.1101/2022.05.07.490748v2.
4. Saito A, Tamura T, Zahradnik J, Deguchi S, Tabata K, Kimura I, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75. 2022. Preprint at. https://www.biorxiv.org/content/10.1101/2022.08.07.503115v1.
5. Sugano A, Takaoka Y, Kataguchi H, Kumaoka M, Ohta M, Kimura S, et al. SARS-CoV-2 Omicron BA.2.75 variant may be much more infective than preexisting variants. 2022. Preprint at bioRxiv. https://doi.org/10.1101/2022.08.25.505217

6. Fang FF, Shi PY. Omicron: a drug developer’s perspective. Emerg Microbes Infect. 2022;11:208–11.

7. Zhao H, Nguyen A, Wu D, Li Y, Hassan SA, Chen J, et al. Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. PNAS Nexus. 2022;1:ppac049.

8. Amourzias GD, et al. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2.Viruses. 2022;14:78.

9. Shiraz R, Tripathi S. Enhanced recombination among SARS-CoV-2 Omicron variants contributes to viral immune escape. 2022. Preprint at https://www.biorxiv.org/content/10.1101/2022.08.23.504936v1.

10. Lythgoe KA, Golubchik T, Hall M, House T, MacIntyre-Cockett G, Fryer H, et al. Lineage replacement and evolution captured by the United Kingdom Covid Infection Survey.2022. Preprint at https://medrxiv.org/content/10.1101/2022.01.05.21268323v1.

11. Patalon T, Saciuk Y, Perez A, Perez G, Perez A, Pitzer VE, Patalon T. Short term, relative effectiveness of four doses versus three doses of BNT162b2 vaccine in people aged 60 years and older in Israel: retrospective, test negative, case-control study. BMJ. 2022;377: e071113.

12. Assawasakul T, Sathitratanachewin S, Wichaiwattana P, Wanlapakorn N, Poovorawan Y, Avihingsanon Y, et al. Immunogenicity of the third and fourth BNT162b2 mRNA COVID-19 boosters and factors associated with immune response in patients with SLE and rheumatoid arthritis. Lupus Sci Med. 2022;9:e000726.

13. Saggau C, Martini GR, Rosati E, Meise S, Messner B, Kamps AK, et al. The Predicted impact of the viral mutational landscape on the cytotoxic immune response against SARS-CoV-2. PLoS Comput Biol. 2022;18:e1009726.

14. Saggau C, Saciuk Y, Perez G, Perez A, Pitzer VE, Patalon T. Short term, relative effectiveness of four doses versus three doses of BNT162b2 vaccine in people aged 60 years and older in Israel: retrospective, test negative, case-control study. BMJ. 2022;377: e071113.

15. Cao Y, Yismayi A, Jian F, Song W, Xiao T, Wang L, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608:593–602.

16. Scheaffer SM, Lee D, Whitener B, Ying B, Wu K, Jani H, et al. Bivalent SARS-CoV-2 Spike antibodies confer resistance to remdesivir by distinct mechanisms. Sci Transl Med. 2022;14:eabo0718.

17. Bert NL, Tan A, Kunasegaran K, Chia A, Tan N, Chen Q, et al. Mutations of SARS-CoV-2 variants of concern escaping Spike-specific T cell repertoire determines the quality of the immune response to vaccination. Immunology. 2022. https://doi.org/10.1101/immunobiology.2022.08.003.

18. Stevens LJ, Pruijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, et al. Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. 2022. Preprint at https://www.biorxiv.org/content/10.1101/2022.06.28.497978v1.

19. Flynn JM, et al. Comprehensive fitness landscape of SARS-CoV-2 M PRO reveals insights into viral resistance mechanisms. Elife. 2022;11:e74333.

20. Shachat AM, Zvonarican SN, Huang QY, Lockbaum GJ, Knupp M, Tandeske I, et al. Defining the substrate envelope of SARS-CoV-2 Main protease to predict and avoid drug resistance. Nature Commun. 2022;13:3556.

21. Agost-Beltrán L, de la Hoz-Rodríguez S, Bou-Isete L, Rodríguez S, Fernández-de-la-Pradilla A, González FV. Advances in the development of SARS-CoV-2 Mpro inhibitors. Molecules. 2022;27:2523. https://doi.org/10.3390/molecules27082523.

22. Hu Y, Lewandowski EM, Tan H, Morgan RT, Zhang X, Jacobs LW, et al. Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariants, BA.2.11, BA.2.12.1, BA.4 and BA.5. 2022. Preprint at https://www.biorxiv.org/content/10.1101/2022.08.07.503099v1.

23. Yamasoba D, Kosugi Y, Kimura I, Fujita S, Uriu K, Ito J, et al. Lineage replacement and evolution captured by the United Kingdom Covid Infection Survey. 2022. Preprint at https://www.biorxiv.org/content/10.1101/2022.08.07.503099v1.

24. Stevens LI, Prijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, et al. Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med. 2022;14:eab06718.

25. Chan ER, Jones LD, Linger M, Kovach JD, Torres-Teran MM, Wertz A, et al. COVID-19 infection and transmission includes complex sequence diversity. PLoS Genet. 2022;18:e1012000.

26. NIH COVID-19 treatment guidelines/Immunomodulators. https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/.

27. Galeazzi P, Falco G, Maina G, Palazzolo C, Pili G, Zanetti G, et al. Association between tocilizumab, sarilumab and all-cause mortality in 28 days in hospitalized patients with COVID-19: a network meta-analysis. PLoS ONE. 2022;17(7): e0270668.

28. FDA approves Lilly and Incyte’s OLUMIANT® (baricitinib) for the treatment of certain hospitalized patients with COVID-19. https://investor.lilly.com/news-releases/news-release-details/fda-approves-lilly-and-incytes-olumiant.

29. Wolfe CR, Tomashek KM, Patterson TF, Gomez CA, Marconi VC, Jain MK, et al. Baricitinib versus dexamethasone for adults hospitalised with COVID-19 (ACTT-4): a randomised, double-blind, double placebo-controlled trial. Lancet Respir Med. 2022. https://doi.org/10.1016/S2213-2600(22)00088-1.

30. Stevens LI, Prijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, et al. Mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. 2022. Preprint at https://www.biorxiv.org/content/10.1101/2022.08.07.503099v1.

31. Stevens LI, Prijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, et al. Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med. 2022;14:eab06718.

32. NIH COVID-19 treatment guidelines/Immunomodulators. https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/.

33. Systemic Corticosteroids: Selected Clinical Data. https://www.covid19treatmentguidelines.nih.gov/tables/systemic-corticosteroids-data/.

34. Godolphin PJ, Fisher DJ, Berry LR, Derde LPJ, Diaz AJ, Gordon AC, et al. Association between tocilizumab, sarilumab and all-cause mortality in 28 days in hospitalized patients with COVID-19: a network meta-analysis. PLoS ONE. 2022;17(7): e0270668.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.