Spectral Factorization of Rank-Deficient Polynomial Matrix-Functions

L. Ephremidze and E. Lagvilava

Abstract. A spectral factorization theorem is proved for polynomial rank-deficient matrix-functions. The theorem is used to construct paraunitary matrix-functions with first rows given.

Keywords: Matrix spectral factorization, paraunitary matrix-polynomials, wavelets

AMS subject classification (2010): 47A68, 42C40

Wiener’s spectral factorization theorem [12], [4] for polynomial matrix-functions asserts that if

\[S(z) = \sum_{n=-N}^{N} C_n z^n \]

is an \(m \times m \) matrix-function (\(C_n \in \mathbb{C}^{m \times m} \) are matrix coefficients) which is positive definite for a.a. \(z \in \mathbb{T} \), \(\mathbb{T} := \{ z \in \mathbb{C} : |z| = 1 \} \), then it admits a factorization

\[S(z) = S^+(z)S^-(z) = \sum_{n=0}^{N} A_n z^n \cdot \sum_{n=0}^{N} A_n^* z^{-n}, \quad z \in \mathbb{C}\{0\}, \]

where \(S^+ \) is an \(m \times m \) polynomial matrix-function which is nonsingular inside \(\mathbb{T} \), \(\det S^+(z) \neq 0 \) when \(|z| < 1 \), and \(S^- \) is its adjoint, \(A_n^* = A_n^T \), \(n = 0,1,\ldots,N \). (Respectively, \(S^- \) is analytic and nonsingular outside \(\mathbb{T} \).) \(S^+ \) is unique up to a constant right unitary multiplier.

The factorization (2) is also known under the name of matrix-valued Fejér-Riesz theorem and its simple proof is provided in [2]. Various practical applications of this theorem in system analysis [6] and wavelet design [1] are widely recognized.

In the present paper we consider rank-deficient matrix polynomials and prove the corresponding spectral factorization theorem for them:

Theorem 1. Let \(S(z) \) be an \(m \times m \) (trigonometric) polynomial matrix-function (1) of order \(N \) (\(C_N = C_N^* \neq 0 \)) which is nonnegative definite and of rank \(k \leq m \) for a.a. \(z \in \mathbb{T} \). Then there exists a unique (up to a \(k \times k \) unitary matrix right multiplier) \(m \times k \) matrix-polynomial \(S^+(z) = \sum_{n=0}^{N} A_n z^n \), \(A_n \in \mathbb{C}^{m \times k} \) of order \(N \) (\(A_N \neq 0 \)), which is of full rank \(k \) for each \(z \) inside \(\mathbb{T} \), such that (2) holds.

Remark. If we require of \(S^+ \) to be just a rational matrix-function analytic inside \(\mathbb{T} \) and drop the uniqueness from the condition, then the theorem can be obtained in a standard algebraic manner (see [9]). Hence, as we will see below, the proof of the theorem provides a simple proof of the same theorem for the full rank case, \(k = m \), as well. This proof is even more elementary as compared with the one given in [2] since it avoids an application of the Hardy space theory.
Prior to proving the theorem, we make some simple observations on adjoint functions and prove Lemma 1 on paraunitary matrix-functions. We do not claim that this lemma is new, but include its proof for the sake of completeness.

If f is an analytic $m \times k$ matrix-function in $\mathbb{C}\{z_1, z_2, \ldots, z_n\}$, then its adjoint $f^*(z) = \overline{f(1/z)^T}$ is an analytic $k \times m$ matrix-function in $\mathbb{C}\{z_1^*, z_2^*, \ldots, z_n^*\}$, $z^* := 1/z$, $\infty^* = 0$. Obviously, if f is analytic inside \mathbb{T}, then f^* is analytic outside \mathbb{T} (including infinity). Namely, if $f_{ij}(e^{\theta}) \in L_1^+(\mathbb{T})$, ($f_{ij}$ is the ijth entry of f), then $f_{ji}^*(e^{\theta*}) \in L_1^-(\mathbb{T})$, where $L_1^+(\mathbb{T}) \ (L_1^-(\mathbb{T}))$ is the set of integrable functions defined on \mathbb{T} which have Fourier coefficients with negative (positive) indices equal to zero.

Since f is uniquely determined by its values on \mathbb{T}, and $f^*(z) = \overline{f(z)^T} = (f(z))^*$ for $|z| = 1$, usual relations for adjoint matrix-functions, like $(fg)^*(z) = g^*(z)f^*(z)$ and $(f^{-1})^*(z) = (f^*)^{-1}(z)$, etc., are valid.

Note that if f is a rational $m \times m$ matrix-function, $f \in \mathcal{R}_m$, then

$$[f(e^{\theta})f^*(e^{\theta})]_{ii} \in L_\infty(\mathbb{T}) \implies f_{ij} \text{ are free of poles on } \mathbb{T}, j = 1, 2, \ldots, m,$$

($L_\infty(\mathbb{T})$ stands for the set of bounded functions) since $[f(z)f^*(z)]_{ii} = \sum_{j=1}^m |f_{ij}(z)|^2$ when $|z| = 1$.

$U \in \mathcal{R}_m$ is called paraunitary if

$$U(z)U^*(z) = I_m \quad \text{in the domain of } U \text{ and } U^*,$$

where I_m stands for the m-dimensional unit matrix. Note that $U(z)$ is a usual unitary matrix for each $z \in \mathbb{T}$, since $U^*(z) = \overline{U(z)^T} = (U(z))^*$ when $|z| = 1$ and, consequently,

$$\overline{U(z)^T} = U^{-1}(z), \quad z \in \mathbb{T}.$$ \hfill (5)

Lemma 1. If $U \in \mathcal{R}_m$ is paraunitary and analytic inside \mathbb{T} (its entries are free of poles inside \mathbb{T}), and $U^{-1} \in \mathcal{R}_m$ is analytic inside \mathbb{T} as well, then U is a constant unitary matrix.

Proof. The equation (4) implies that $U_{ij}(z)$, $1 \leq i, j \leq m$, are free of poles on \mathbb{T} (see (3)). Since $U_{ij}(e^{\theta}) \in L_1^+(\mathbb{T})$ and $L_1^+(\mathbb{T}) \ni U_{ji}^{-1}(e^{\theta}) = U_{ji}(e^{\theta*})$ (see (5)), we have $U_{ij}(e^{\theta}) \in L_1^+(\mathbb{T}) \cap L_1^-(\mathbb{T})$. Thus $U_{ij}(z)$ is constant for a.a. $z \in \mathbb{T}$, and hence everywhere in the complex plane. \hfill \square

Proof of Theorem 1. Since S is nonnegative definite on the unit circle, we have $S^*(z) = S(z)$, $z \in \mathbb{C}\{0\}$.

Observe that every polynomial matrix-function always has a constant rank in its domain except for a finite number of points. Without loss of generality, we can assume that the $k \times k$ left-upper submatrix of S, denoted by S_{00}, has the full rank k (a.e.) so that S has the block matrix form

$$S(z) = \begin{pmatrix} S_{00}(z) & S_{01}(z) \\ S_{10}(z) & S_{11}(z) \end{pmatrix},$$

where S_{01}, $S_{10} = S_{01}^*$ and S_{11} are matrix-functions of dimensions $k \times (m-k)$, $(m-k) \times k$, and $(m-k) \times (m-k)$, respectively. Since every $k+1$ rows (columns) of $S(z)$ are
linearly dependent, we have
\begin{equation}
S_{10}(z)S_{00}^{-1}(z)S_{01}(z) = S_{11}(z) \quad \text{(a.e.)}
\end{equation}
Let
\begin{equation}
S_{00}(z) = S_{00}^{+}(z)S_{00}^{-}(z) = S_{00}^{+}(z)(S_{00}^{+})^{*}(z)
\end{equation}
be the polynomial spectral factorization of S_{00} which exists by virtue of the matrix-valued Fejér-Riesz theorem. Define
\begin{equation}
\sigma_{10}(z) := S_{10}(z)(S_{00}^{-}(z))^{-1}
\end{equation}
and let S_{0} have the block matrix form
\begin{equation}
S_{0}(z) = \begin{pmatrix} S_{00}^{+}(z) \\ \sigma_{10}(z) \end{pmatrix}.
\end{equation}
Then $S_{0}^{*}(z) = [S_{00}^{+}(z) \quad (S_{00}^{+}(z))^{-1}S_{01}(z)]$ and, taking (6) into account, one can directly check that
\begin{equation}
S(z) = S_{0}(z)S_{0}^{*}(z).
\end{equation}
Since S_{00}^{+} is a polynomial matrix-function, S_{0} is a rational matrix-function, however it might not be analytic inside \mathbb{T}. If s_{ij} is the ijth entry of S_{0} with a pole at a inside \mathbb{T}, then we can multiply S_{0} by the unitary matrix-function $U(z) = \text{diag}[1, \ldots, u(z), \ldots, 1]$, where $u(z) = (z - a)/(1 - \overline{a}z)$ is the jjth entry of $U(z)$, so that the ijth entry of the product $S_{0}(z)U(z)$ will not have a pole at a any longer keeping the factorization (8):
\begin{equation}
(S_{0}U)(z)(S_{0}U)^{*}(z) = S_{0}(z)S_{0}^{*}(z) = S(z).
\end{equation}
In the same way one can remove every pole of the entries of S_{0} at points inside \mathbb{T}. Thus S can be represented as a product
\begin{equation}
S(z) = S_{0}^{+}(z)S_{0}^{-}(z),
\end{equation}
where S_{0}^{+} is a rational matrix-function which is analytic inside \mathbb{T}, and $S_{0}^{-}(z)$ is its adjoint. Note that $S_{0}^{+}(z)$ remains of full rank k for each $z \in \mathbb{T}$ except possibly a finite number of points.

Now, it might happen so that S_{0}^{+} is not of full rank k inside \mathbb{T} everywhere. If $|a| < 1$ and rank $S_{0}^{+}(a) < k$, then there exists a unitary matrix U such that the product $S_{0}^{+}(a)U$ has all 0’s in the first column. Hence a is a zero of every entry of the first column of the matrix-function $S_{0}^{+}(z)U$ and the product $S_{1}^{+}(z) := S_{0}^{+}(z)U \text{diag}[u(z), 1, \ldots, 1]$, where $u(z) = (1 - \overline{a}z)/(z - a)$, remains analytic inside \mathbb{T}. While the factorization (9) remains true replacing S_{0}^{+} and S_{0}^{-} by S_{1}^{+} and S_{1}^{-}, respectively, the minors of S_{1}^{+} will have less zeros inside \mathbb{T} than the minors of S_{0}^{+}. Thus, continuing this process if necessary, we get the factorization
\begin{equation}
S(z) = S^{+}(z)S^{-}(z),
\end{equation}
where S^{+} is a rational matrix-function which is analytic and of full rank k inside \mathbb{T}.

Now let us show that S^{+} is in fact a polynomial matrix-function of order N. It suffices to show that $z^{N}S^{-}(z)$ is analytic inside \mathbb{T}. Indeed, since S^{+} does not have poles on \mathbb{T} (see (10) and (3)), $z^{N}S^{-}(z)$ should be an analytic (on the whole \mathbb{C}) rational matrix-function in this case, and therefore a polynomial.
It follows form (10) that
\[(11) \quad z^N S^-(z) = ((S^+(z))^T S^+(z))^{-1} \cdot (S^+(z))^T \cdot z^NS(z)\]
and $z^N S^-(z)$ is analytic inside \mathbb{T} since each of the three factors on the right-hand side of (11) is such.

To complete the proof of the theorem, it remains to show that the factorization (2) is unique, i.e. if
\[S(z) = S_1^+(z)S_1^-(z)\]
where S_1^+ is a $m \times k$ polynomial matrix-function which has the full rank k inside \mathbb{T}, then
\[S_1^+(z) = S^+(z)U\]
for some $k \times k$ (constant) unitary matrix U.

Since $S^+(z)$ is of the full rank k for each $z \in \mathbb{C}$ except for some finite number of singular points, there exists a matrix-function $U(z)$ such that
\[(12) \quad S_1^+(z) = S^+(z)U(z)\]
Thus $U(z)$ can be determined by the equation
\[U(z) = ((S^+(z))^T S^+(z))^{-1} (S^+(z))^T(z)S_1^+(z)\]
as a rational function in \mathbb{C}. Note that $U(z)$ is analytic inside \mathbb{T}, and since S^+ and S_1^+ participate symmetrically in the theorem, $U^{-1}(z)$ is analytic inside \mathbb{T} as well.

Due to Lemma 1, it remains to show that $U \in \mathcal{R}^{k \times k}$ is a paraunitary matrix-function. From the equation (12), one can determine $U(z)$ as
\[U(z) = (S^-(z)S^+(z))^{-1} S^-(z)S_1^+(z)\]
and, consequently,
\[U^*(z) = S_1^-(z)S^+(z) (S^-(z)S^+(z))^{-1}.\]
Hence
\[U(z)U^*(z) = (S^-(z)S^+(z))^{-1} S^-(z)S_1^+(z) \cdot S_1^-(z)S^+(z) (S^-(z)S^+(z))^{-1} = \]
\[= (S^-(z)S^+(z))^{-1} S^-(z)S^+(z)S^-(z)S^+(z) (S^-(z)S^+(z))^{-1} = I_k.\]
The proof of the theorem is complete.

Remark. As one can observe, the above proof of the existence of S^+ is constructive. There are several classical algorithms to perform the factorization (7) numerically in the full rank case (a new efficient algorithm of such type is proposed in [5]). Further using the steps described in the proof, one can compute S^+ numerically.

Our next theorem illustrates one of the applications of Theorem 1 in some areas of signal processing. Namely, $m \times m$ paraunitary matrix-functions
\[(13) \quad U(z) = \sum_{n=0}^N \rho_n z^n = \left[u_{ij}(z)\right]_{i,j=1}^m, \quad \rho_n \in \mathbb{C}^{m \times m},\]
defined by (4) play an important role in the theory of wavelets and multirate filter banks [8] where they are known under different names, for example, lossless systems [11], perfect reconstruction m-filters [7], paraunitary m-channel filters [10], and so on.
The positive integers \(m \) and \(N \) are called the size and the length of \(U \), respectively. Sometimes, the first row of a matrix-function \(U \) is called the low-pass filter, and the remaining rows are called the high-pass filters. Theorem 2 allows us to find the set of matching high-pass filters to each low-pass filter. First we give a simple proof of the following lemma which provides additional information about structures of paraunitary matrix-polynomials.

Lemma 2. (cf. [8, Lemma 4.13]) Let (13) be a paraunitary matrix-polynomial of length \(N \) (\(\rho_N \neq 0 \)). Then

\[
\text{det} U(z) = c \cdot z^k, \text{ where } |c| = 1, \text{ and } k \geq N.
\]

Proof. Since \(\text{det} U(z) \cdot \text{det} U^*(z) = 1 \) and \(\text{det} U(z) \) is a polynomial, it follows that \(\text{det} U(z) = cz^k \) for some nonnegative integer \(k \). We have

\[
\sum_{n=0}^{N} \rho_n^* z^{-n} = U^*(z) = U^{-1}(z) = \frac{1}{\text{det} U(z)} \left(\text{Cof} U(z) \right)^T = cz^{-k} \left(\text{Cof} U(z) \right)^T.
\]

Therefore \(k \geq N \), since \(\text{Cof} U(z) \) is a polynomial matrix-function and \(\rho_N^* \) is not the zero matrix. \(\Box \)

Remark. The positive integer \(k \) in (14) is called the degree of \(U \). Generically, a paraunitary matrix-polynomial \(U \) of length \(N \) has the same degree \(N \), although in some specific cases the degree is more than \(N \).

The following theorem was first established in [3] by a different method, however the presented approach gives a new insight to the problem.

Theorem 2. For any polynomial vector-function

\[
U_1(z) = [u_{11}(z), u_{12}(z), \ldots, u_{1m}(z)],
\]

\[
u_{1j}(z) = \sum_{n=0}^{N} \alpha_{jn} z^n, \quad j = 1, 2, \ldots, m, \text{ of length } N \left(\sum_{j=1}^{m} |\alpha_{jn}| > 0 \right) \text{ which is of unit norm on } \mathbb{T}
\]

\[
\|U_1(z)\|_{\mathbb{C}^m}^2 = \sum_{j=1}^{m} \|u_{1j}(z)\|^2 = 1, \quad z \in \mathbb{T},
\]

there exists a unique (up to a constant left multiplier of the block matrix form \(\begin{pmatrix} 0 & 0 \\ 1 & U \end{pmatrix} \)), where \(U \) is a \((m-1) \times (m-1) \) unitary matrix) paraunitary matrix-function \(\hat{U}(z) \) (of size \(m \) and length \(N \)), with determinant \(cz^N \), \(|c| = 1 \), whose first row is equal to (16).

Lemma 3. Let \(\mathbf{v} = (v_1, v_2, \ldots, v_m)^T \in \mathbb{C}^m \) be a vector of unit norm, \(\|\mathbf{v}\|^2 = \mathbf{v}^* \mathbf{v} = \sum_{j=1}^{m} |v_j|^2 = 1 \). Then \(I_m - \mathbf{v} \mathbf{v}^* \) is a nonnegative definite matrix,

\[
I_m - \mathbf{v} \mathbf{v}^* \geq 0,
\]

and

\[
\text{rank} \left(I_m - \mathbf{v} \mathbf{v}^* \right) = m - 1.
\]
Proof. For each column vector $x \in \mathbb{C}^m$, we have
\[
x^*(I_m - vv^*)x = \|x\|^2 - |x^*v|^2 \geq \|x\|^2 - \|x^*\|^2\|v\|^2 = \|x\|^2 - \|x^*\|^2 = 0.
\]
Hence (18) holds and $x^*(I_m - vv^*)x = 0$ if and only if $x = \alpha v$ for some $\alpha \in \mathbb{C}$. Thus (19) holds as well.

Proof of Theorem 2. Due to Lemma 3 and the property (17), the matrix-function
\[(20) \quad S(z) = I_m - U_1^T(z)(U_1^T)^*(z)\]
is positive definite and of rank $m - 1$ for each $z \in \mathbb{T}$. (Note that the order of S is less than or equal to N.) Hence, by virtue of Theorem 1, there exists an $m \times (m - 1)$ matrix-function $S^+(z)$ of full rank $m - 1$, for each z inside \mathbb{T}, such that (2) holds. Consequently,
\[
\begin{bmatrix}
U_1^T(z) & S^+(z)
\end{bmatrix}
\begin{bmatrix}
(U_1^T)^*(z) \\
S^-(z)
\end{bmatrix} = I_m
\]
and
\[
U(z) =
\begin{bmatrix}
U_1(z) \\
(S^+)^T(z)
\end{bmatrix}
\]
is the paraunitary matrix-function we wanted to find. Indeed, clearly $U(z)$ is of size m and length N, and we show that
\[(21) \quad \det U(z) = c \cdot z^N, \quad |c| = 1.
\]

Due to Lemma 2, $\det U(z) = cz^k, |c| = 1$, for some positive integer $k \geq N$. Hence (see (15))
\[(22) \quad \sum_{n=0}^{N} \alpha_{jn}z^{-n} = u_{1j}^*(z) = c \cdot z^{-k} \cdot \text{cof}(u_{1j}(z)), \quad j = 1, 2, \ldots, m.
\]

Since $S^+(0)$ is of rank $m - 1$, then $\text{cof}(u_{1j}(0)) \neq 0$ for at least one $j \in \{1, 2, \ldots, m\}$ so that the first coefficient of the polynomial $\text{cof}(u_{1j}(z))$ differs from 0 for at least one j. Thus it follows from (22) that $k \leq N$ and hence $k = N$, which yields (21). The desired $U(z)$ is found and let us show its uniqueness.

Assume now that $U(z)$ is any $m \times m$ paraunitary polynomial matrix-function, with the first row (16), which satisfies (21), and let $U_{m-1}(z)$ be the $(m - 1) \times m$ matrix-polynomial which is formed by deleting the first row in $U(z)$. It is obvious that $U_{m-1}^T(z)$ is an $m \times (m - 1)$ polynomial spectral factor of (20) so that, by virtue of Theorem 1, we get $U_{m-1}^T(z) = S^+(z)U \iff U(z) = \begin{pmatrix} 1 & 0 \\ 0 & U \end{pmatrix} \begin{pmatrix} U_1(z) \\ (S^+)^T(z) \end{pmatrix}$ immediately after we establish that $U_{m-1}(z)$ is of full rank $m - 1$ for each z inside \mathbb{T}. But $\text{rank} U_{m-1}(z) = m - 1$ for any $z \neq 0$ since (21) implies that $\text{rank} U(z) = m, z \neq 0,$ and $\sum_{n=0}^{N} \alpha_{jn}z^{-n} = u_{1j}^*(z) = cz^{-N} \text{cof}(u_{1j}(z))$ (see (22)), $\alpha_{jN} \neq 0$, implies that $\text{cof}(u_{1j}(0)) \neq 0$, which means that $\text{rank} U_{m-1}(0) = m - 1$.

References

[1] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
[2] L. Ephremidze, G. Janashia, and E. Lagvilava, “A simple proof of matrix-valued Fejér-Riesz theorem”, J. Fourier Anal. Appl. vol. 14, pp. 124–127, 2009 (DOI: 10.1007/s00041-008-9051-z).
[3] P. N. Heller, “Rank m wavelets with n vanishing moments”, SIAM J. Matrix Anal. Appl., 16(2), 502–519, 1995.
[4] H. Helson and D. Lowdenslager, “Prediction theory and Fourier series in several variables”, Acta Math., vol. 99, pp. 165–201, 1958. II, Acta Math., vol. 106, pp. 175–213, 1960.
[5] G. Janashia, E. Lagvilava, and L. Ephremidze “A new method of matrix spectral factorization”, to appear in IEEE Trans. Inform. Theory.
[6] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, Inc. 2000.
[7] S. Mallat, A wavelet Tour of Signal Processing, Academic Press, New York, 1998.
[8] H. L. Resnikoff and R. O. Wells, Wavelet Analysis, Springer-Verlag, 1998.
[9] Y. A. Rozanov, Stationary Random Processes, Holden-Day, San Francisco, 1967.
[10] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, New Jersey, 1993.
[11] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, New Jersey, 1995.
[12] N. Wiener and P. Masani, “The prediction theory of multivariate stochastic processes”, I, Acta Math., vol. 98, pp. 111–150, 1957. II, Acta Math., vol. 99, pp. 93–137, 1958.

Authors’ Addresses:

L. Ephremidze
I. Javakhishvili State University
2, University Street, Tbilisi 0143
Georgia
and A. Razmadze Mathematical Institute
E-mail address: lephremi@umd.edu

E. Lagvilava
A. Razmadze Mathematical Institute
1, M. Aleksidze Str., Tbilisi 0193
Georgia
E-mail address: edem@rmi.ge