Analyzing Inverse Problems with Invertible Neural Networks

Ardizzone et al., ICLR 2019
Example

Forward process:

\[(x_1, x_2) \rightarrow \text{Red}\]

Inverse process:

\[\text{Red} \rightarrow (x_1, x_2)\]
Generative Modelling: Why?

• **Bayesian:**
 Model represents a distribution, not just a point estimate

• **Data augmentation** to train other models:
 Can generate data in a guided way

• Understand the relations between x and y better
Architecture: Invertible Blocks

\[v_1 = u_1 \odot \exp(s_2(u_2)) + t_2(u_2) \]
\[v_2 = u_2 \odot \exp(s_1(v_1)) + t_1(v_1) \]

u: Input to the layer

v: Output of the layer

Neural Network Layers!
Data flow diagram

https://hci.iwr.uni-heidelberg.de/vislearn/wp-content/uploads/2018/07/INN-coupling-layer.png
\[\mathcal{L}_y : \quad f_y(x) \approx y_{\text{true}} \]

\[\mathcal{L}_z : \quad \text{Sample } z \text{ independently of } y \]

\[p(z|y) \overset{!}{=} p_{\text{true}}(z) = \mathcal{N}(0, 1) \]

\[\mathcal{L}_x : \quad \text{Sample } x \text{ correctly} \]

\[p_{x,\text{sampling}} \overset{!}{=} p_{x,\text{true}} \]
$L_{reconstruction}:$

$$f^{-1}(f(x) + \text{noise}) \approx x$$
Comparing distributions: MMD

Goal: Compare distributions p, q when only given samples

$x, x' \sim p$ \quad x, x' indep.

$y, y' \sim q$ \quad y, y' indep.

$$\text{MMD}^2 [\mathcal{F}, p, q] = \mathbb{E}_{x,x'} [k(x, x')] - 2\mathbb{E}_{x,y} [k(x, y)] + \mathbb{E}_{y,y'} [k(y, y')]$$

Inverse Multiquadratic $k(x, x') = 1/(1 + \| (x - x')/h \|^2_2)$
Losses: Summary

- Punish wrong distributions of x and z with MMD
- Punish wrong $x \rightarrow y$ map with MSE
Results

Ground truth INN, all losses INN, only $L_y + L_z$ INN, only L_x
https://hci.iwr.uni-heidelberg.de/vislearn/inverse-problems-invertible-neural-networks/
Questions?
Appendix:
Recent results in generative Modelling
Advances and challenges in deep generative models for de novo molecule generation

- Goal:
 Find new molecules with desired properties
- Still ongoing research
Glow: Better Reversible Generative Models
Analyzing and Improving the Image Quality of StyleGAN

https://www.thispersondoesnotexist.com/