Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Regulation of nucleocytoplasmic trafficking of viral proteins: An integral role in pathogenesis?

Alex J. Fulcher, David A. Jans

Article history:
Received 16 September 2010
Received in revised form 15 March 2011
Accepted 30 March 2011
Available online 16 April 2011

Keywords:
Simian virus 40 T-ag
Human cytomegalovirus ppUL44
Rabies virus P
Phosphorylation
Nuclear import

1. Introduction

The mammalian cell is a highly organised, dynamic structure that compartmentalises its many functions into organelles such as the nucleus, Golgi, and endoplasmic reticulum. The nucleus retains the genetic material for cell maintenance and replication, whereby efficient signal-dependent targeting of cellular proteins into or out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus 40 (SV40) large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue “Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import”. The Publisher apologizes for any inconvenience caused.

© 2011 Elsevier B.V. All rights reserved.
2. Nucleocytoplasmic transport

All transport into and out of the nucleus occurs through the nuclear pore complexes (NPCs), macromolecular structures (~60 MDA) that span the double lipid bilayer of the nuclear envelope (NE) [1–4]. There are approximately 2000 NPCs per "typical" vertebrate cell, depending on the stage of the cell cycle and the cell type. NPC structure is typified by 8-fold symmetry, being made up of multiple proteins called nucleoporins (Nups) [5–8] which occur in multiples of eight [9]. With the exception of certain peripheral, asymmetric Nups, most Nups localise on both sides of a symmetry axis in the plane of the NE [2,9], and can be grouped into several classes based on homology and functional similarity [10], including (i) transmembrane Nups (i.e. POM121 and Gp210 in vertebrates), which anchor the NPC within the NE and are bound by (ii) structural Nups (c. 50% of all Nups), which contribute to the overall architecture of the NPC and represent the scaffold linking the transmembrane Nups and (iii) FG-Nups (c. 33% of all Nups/50% of the NPC mass), which are distinguished by the fact that they contain multiple FxFG (single letter amino acid code, where x is any amino acid) or GLFG motifs separated by varying numbers of charged or polar amino acids [2,11]. Fig. 1 shows the distribution of specific FG-Nups within the NPC, highlighting their position throughout the NPC. A number of studies indicate that FG-Nups are integral to bidirectional active transport through the NPC because of their ability to interact transiently with IMPs [9,12–16].

Translocation through the NPC of proteins >45 kDa is generally mediated by members of the IMP superfamily of nuclear transporters, which includes 6 α and c. 20 β forms in humans. IMPαs are adapters that function as heterodimers with IMPβ1 [1,17–19] in nuclear import, whilst IMPαs can mediate transport in either direction through the NPC, with those mediating nuclear export called exportins (EXPs). IMPαs/EXPs recognise specific sequences, nuclear localisation sequences (NLSs) or nuclear export signals (NESs) respectively within the cargo protein with which they interact, with the monomeric guanine nucleotide binding protein/GTPase Ran a key additional factor (see below) modulating cargo binding [17,20].

Monopartite basic NLSs, such as that from SV40 T-ag (KPRKKRRKRRKK[122] [21,22]) and HCMV pUL44 (PNTKKQK[431] [23]) as well as bipartite NLSs, which comprise two clusters of basic residues such as the HPV E1 NLS (KKR[85]/KKRRKK[125]) [24], are generally recognised by the IMPα/IMPβ1 heterodimer. All IMPαs including IMPβ1, in contrast, are able to mediate import or export of their cargoes without the need for IMPα or other adapters, although the NLS/NES sequences have not been defined in many cases. NESs recognised by EXP-1 (Crm1) [25–27] comprise 3–4 hydrophobic residues interspersed with 1 to 3 non-hydrophobic residues (L-x2-3-(L,M,F,M)-x2-3-L-x-(L,I,V) [17,20]), the classic example being the NES from HIV–1 Rev [LPLLERTL[83]] [28].

As indicated above, IMP-dependent passage through the NPC is effected by transient interactions of the IMPαs with FG-Nups; Nup358 is proposed to play a key role in assembly of the IMP–cargo complex [29,30], with a gradient of increasing affinity postulated to facilitate the passage of IMP–cargo complexes from cytoplasmic to nucleoplasmic side of the NPC (see [31]). In the case of nuclear import, release at the nuclear face requires Ran in its activated GTP-bound form to bind to the IMPαs to dissociate the import complex (Fig. 2 left). Nuclear export is analogous, where the EXP, only when in complex with RanGTP, recognises a NES within a cargo and forms a trimeric export complex (EXP/RanGTP/NES-cargo) that is able to translocate through the NPC through transient interactions with FG-Nups such as Nup98 [32] and the non-FG-Nup Tpr ([33]) on the nuclear side, and Nup214 [34] on the cytoplasmic side (see Fig. 1), where the complex is dissociated via GTP hydrolysis by Ran of GTP to GDP, facilitated by RanGTPase-activating protein (RanGAP) (Fig. 2 right) and Ran binding protein 1 (RanBP1) and/or the RanBP1-like domains of Nup358 [30].

Many viral proteins utilise the host cell nucleocytoplasmic trafficking machinery (Fig. 2) to achieve efficient nuclear import and/or export in order to carry out particular roles in viral replication and pathogenesis, and/or modulate the host cell cycle or innate immune response (see below and Table 1). The next sections examine a number of different viral proteins by way of illustrating the diverse mechanisms regulating viral protein nuclear import/export.

3. Regulation of nuclear transport

General mechanisms by which nucleocytoplasmic trafficking can be regulated include modulation of the levels and distribution of IMPs/EXPs [35,36] as well as the number and/or composition of NPCs [2,11]. Fine-tuning of the localisation/transport of a single protein or group of proteins, however, requires more specific modification, generally of the protein cargo itself rather than of the transport machinery. The best understood mechanism of regulating nuclear transport is through phosphorylation near the NLS/ NES modifying recognition by IMP/EXP [37,38], but modifications such as acetylation, ubiquitylation and sumoylation have also been described [39–41] to regulate nucleocytoplasmic trafficking of cellular proteins such as the tumour suppressors p110 [29] and p53, Survivin, nuclear factor κB, the phosphatase PTEN and the NF-κB essential modulator NEMO [42–48]. It is significant in this context that viral proteins are often highly posttranslationally modified (see Table 1), including through the action of cyclin-dependent kinases (Cdks), which can serve to effect cell cycle-dependent modulation of nucleocytoplasmic trafficking. A specific example is HPV E1, which will be examined in more detail in Section 4.2.

3.1. The cellular nuclear transport machinery as a viral target

The NPC and the Nups that constitute it are thought to be passive in nucleocytoplasmic transport in most situations. However, NPC composition and Nup conformation can have an influence on the transport of IMPs/EXPs as well as cargoes. Since IMPs/EXPs appear to have different affinities for the FG-Nups (see Section 2), the presence or absence of certain FG-Nups may favour one set of transport factors/cargo over another [13–16].

Certain viral proteins are known to act directly or indirectly on the NPC and IMPs/EXPs [49] in order to alter host cell functions. An example with respect to the NPC is the 3C protease from the picornavirus Rhinovirus [50], which is thought to target Nups153, 214 and 358 for specific degradation in order to impair host cell nucleocytoplasmic transport (see Section 2 and Fig. 1), and thereby dampen anti-viral responses [50]; altered NPC structures have also been visualised in cells infected by the closely related poliovirus [51]. 2A protease from both Rhinovirus and poliovirus appears to act...
similarly to 3C in this respect [52–54], implying that the NPC is a key target of picornaviruses to disrupt host cell transport processes, and lead to “host cell shut down” to enable viral replication to proceed unchecked in the cytoplasm.

IMPs/EXPs can also be targets of viral proteins. Ebola virus VP24, for example, binds to and sequesters IMPα1 [55–57] in the cytoplasm, whilst IMPα2 is similarly sequestered by severe acute respiratory syndrome (SARS) coronavirus ORF6 [58]. In both cases, the IMP is prevented from playing its normal role in mediating nuclear import of the STAT (signal transducer and activator of transcription) proteins in response to interferon (IFN), as part of the innate immune response [59]). Thus, it seems that various cytoplasmically replicating RNA viruses disrupt the cellular nuclear transport machinery in order to subvert the host cell transport processes necessary for the anti-viral response.

In the case of DNA viruses that replicate in the nucleus, however, efficient nuclear entry of many viral components is crucial for replication, so that disrupting the host cell nuclear import apparatus would not be a viable strategy to ensure efficient replication. The next section discusses the ways in which IMPs and cellular kinases can be subverted to enable efficient nuclear transport of gene products from DNA viruses that are required in the nucleus for replication.

3.2. Specific switches regulating IMP/EXP mediated trafficking

As indicated, the most common posttranslational modification known to regulate nuclear transport is phosphorylation. A number of viral proteins are known to require specific phosphorylation in different ways for efficient nuclear accumulation, including T-ag (see Section 4.1), HCMV ppUL44, chicken anaemia virus (CAV) VP3 and many others [23,37,38,49]. Phosphorylation can regulate nuclear transport (see Fig. 3) by 1) directly modulating the affinity of an NLS/NES for its IMP/EXP; 2) facilitating masking or unmasking (intra-molecular masking) of an NLS/NES within the protein carrying it; or 3) effecting the binding or release of an NLS/NES binding factor that is not an IMP/EXP (intermolecular masking) [4,38].

Table 1 summarises the mechanisms of regulation of nuclear import/export for a number of viral proteins for which nucleocytoplasmic trafficking is known to be important for the infectious cycle, with Fig. 3 illustrating several specific examples. As can be seen from Table 1, phosphorylation is a key modulator of nuclear transport of viral proteins, but other modifications, such as acetylation and ubiquitinylation, can also modulate nuclear transport.

Phosphorylation-mediated modulation of NLS/NES access, resulting in either inhibition (intramolecular masking) or enhancement of transport (see Table 1), is the most common means to regulate nuclear transport efficiency. The human T-cell leukaemia virus type 2 (HTLV-2) Rex protein (see Fig. 3) is an example; in its premature (p24) form, the N-terminal IMPβ-recognised NLS is masked [107–109], but upon phosphorylation of T104 by protein kinase CK1 (CK1)/glycogen synthase kinase 3 (GSK3) [107], S151/153 is subsequently phosphorylated by CK1 to produce the active p26 form of the protein with an accessible NLS [107–109]. In the case of Kapozi's sarcoma-associated herpes virus LANA2 (latency-associated nuclear
antigen 2), phosphorylation at T^{564} by Akt is believed to promote a conformational change that inhibits Crm1 binding to the NES [118]. A similar mechanism appears to apply to CAV VP3 (see Fig. 3) through the T^{108} phosphorylation site [114,115], although phosphorylation in this case appears to only occur in transformed and not normal cells, making the nuclear targeting module of VP3 an exciting possibility for

Table 1
Selected examples of viral proteins where regulation of nucleocytoplasmic trafficking is implicated in viral pathogenesis.

Viral protein	NLS/NES	IMP/EXP	Regulation of nucleocytoplasmic transport	Role in viral pathogenesis/replication
Adenovirus 12S E1A	$KPPR^{{*1}}$ [60]	IMP$\alpha$$\beta$1, 3, 5, 7 [61]	Acetylation by CBP [62] at K228 [63] reduces the affinity of recognition of the NLS by IMP$\alpha$$\beta$1 up to 10-fold [62]	The K239L mutation prevents adenovirus from immortalising BRK cells, with a 95–98% reduction in foci production compared to WT [64]
Adenovirus 13S E1A	$KPPR^{{*1}}$ [60]	IMP$\alpha$$\beta$1, 3, 5, 7 [61]	Acetylation by CBP [62] at K228 [63] reduces the affinity of recognition of the NLS by IMP$\alpha$$\beta$1 up to 10-fold [62]	As above (?) [64]
Bovine papillomavirus E1	$KKR^{{*1}}$ [65, 66]	IMP$\alpha$$\beta$3, 4, 5, 6 [67]	Asp substitution at the T^{102} and S^{248} Cdk1 [65, 68] and PKC[69] phosphorylation sites respectively reduces the affinity of recognition of the NLS by IMP$\alpha$$\beta$3 up to 5-fold [67]	E1–E102 mutant viruses replicate 30% less effectively than WT [69]
Epstein–Barr virus Nuclear Antigen 1 (NA1)	$EGRP^{{*1}}$ [70]	IMP$\alpha$$\beta$1, 3 [71]	Asp substitution at S^{114} increases recognition to IMP$\alpha$$\beta$1, with 50% accelerated nuclear transport [72]	Nuclear NA1 is largely sequestered from the immune system, preventing NA1 from going to the nucleus which leads to increased epitope presentation to CD4+T cells [73,74]
Herpes simplex virus ICP27	$KPRL^{{*1}}$ [75]	ND	Phosphorylation of S^{114} by PKA reduces the efficiency of nuclear import [76]	ICP27–A114 substitution of S^{114} within HSV-1 virus results in a 2-log reduction in viral replication along with severely reduced gene expression/DNA replication [76,77]
Human cytomegalovirus ppUL44	S^{145}/-/PNTKK QR [23]	IMP$\alpha$$\beta$1 [23]	Asp substitution at the CK2 site S^{145} enhances IMP$\alpha$$\beta$1 binding and increases nuclear transport by 30% [23]	ppUL44 nuclear localisation is essential for viral replication [79,80]; transfection of HCMV-1 infected U13 cells to express a C-terminally truncated form of ppUL44 knocks out virus production up to 97% [80,81]
Human cytomegalovirus pp71 (ppUL82)	Mid-region (a.a. 215–284) [82]	ND	Phosphorylation at T^{227} masks the NLS and/or prevents binding of a cellular protein required for nuclear transport of pp71 [82]	Cytoplasmic ppUL82 causes the HCMV virus to stay in the latent stage [83]
Human papillomavirus–11 E1	$KKR^{{*1}}$ [84]	IMP$\alpha$$\beta$1 [67]	Phosphorylation by ERK/JNK, at S^{39} and S^{39} enhances IMP$\alpha$$\beta$1 binding, possibly through enhancing IMP$\alpha$$\beta$1 binding to the NLS. The A39/A39 double mutant abolishes nuclear accumulation [24,84]	Replication of HPV E1–S88A and E1–S93A mutant viruses is reduced 50 and 75% respectively in a transient replication assay [84]
Simian virus 40 T-ag	S^{107}/-/S111/-/S113/-/T107PKKKRRKQ112	IMP$\alpha$$\beta$1	Phosphorylation of S^{111} by CK2 enhances IMP$\alpha$$\beta$1 binding by c. 50-fold [65–89]	SV40 virus containing T-ag AC112 mutant has > 50% reduced virus viability, with delayed plaque formation seen [91]
Varicella zoster virus IE62	RLRTPRKRXS268Q PV469 [94]	IMP$\alpha$$\beta$17 [94]	Phosphorylation by the viral ORF66 kinase at S^{268} or Asp substitution [55, 56] reduces nuclear import > 30% compared to WT or A686 mutant [97]	Prevention of phosphorylation at S^{268} reduces pathogenesis, where VZV with the IE62-A686 mutant shows reduced incorporation of IE62 into virions, whilst disruption of ORF66 expression results in lower virus production/poor capsid assembly [95–96]
(2) RNA viruses				
Avian retrovirus ASV17 vjun	S^{108}RRKIL233 [99]	IMP$\alpha$$\beta$1 [99]	Phosphorylation by PKC [100] at S^{108} or Asp substitution (D298) reduces the binding affinity 10-fold of IMP$\alpha$$\beta$1 to v-jun [100,101]	S^{108} in v-jun results in tumorigenic activity compared to c-jun, immortalising the host cell to enhance virus survival [100,102,103]
Table 1 (continued)

Viral protein	NLS/NES	IMP/EXP	Regulation of nucleocytoplasmic transport	Role in viral pathogenesis/replication
(2) RNA viruses				
Human T-cell leukaemia virus	MPKTRRQRTIRRARRNRPPI[104]	IMP[105,106]	Phosphorylation by CK1/GSK3 at S[104] enables the S[104] and/or S[105] sites to be phosphorylated by CK1, to produce the functional form of the protein and enhances nuclear import by making the NLS accessible to IMP[7] [107–109]	A[104] and/or A[105] with A[104] substitution reduces p24 production 50–75% compared to WT in a HIV p24 Gag reporter assay; the DD[113] double mutant has 2-fold enhanced biological activity compared to WT [107–109]
(M) protein				
Nipah virus matrix	RRAGKYSVYDYC	ND	Ubiquitinylation at K[258] inhibits nuclear import, simultaneously enhancing nuclear export dependent on two NESs in either side of the NLS [110]	Mutant virus with R or A substituted K258 is deficient in virus budding; ubiquitin depletion from infected cells prevents viral budding [110]
b) Nuclear export				
(1) DNA viruses				
Adenovirus type 5 EIA	VMLAVQEGIDL[111]	Crm1	Phosphorylation by Cdk1/Cdk2 at S[111] enhances Crm1 nuclear export. The A[111] mutant is 75% more nuclear than the D[111] mutant or WT [111]	Viruses with mutated EIA NES (A[111]) have 10–100 fold lower viral replication [111]
BPV E1	Exact sequence unknown S[112] [113]	Crm1	Phosphorylation by cyclinA-Cdk2 at S[111] enhances nuclear export 5 fold compared to WT and thereby nucleocytoplasmic shuttling [68,112]	E[113] substitution of S[113] of E1 in BPV causes 10–20% reduced transient DNA replication compared to WT BPV [112]
CAV VP3	VSLKESL1[108]TTT108	Crm1	Phosphorylation by HIPK2 at T[114] inhibits nuclear export resulting in up to 2-fold higher nuclear accumulation [114,115]; phosphorylation at T[114] only appears to occur in transformed and not non-transformed cells	Production of infectious CAV containing VP3-T108I is 95–98% reduced compared to WT [116]
HPV-11 E1	NVANAVES[107]S[84]	Crm1	Phosphorylation by Cyclin/Cdk [84,117] at S[107] prevents Crm1 binding to the NES, where Ala substitution at S[107] enhances nuclear export/nuclear exclusion [24,84]	Cytoplasmic localisation of E1 is essential for regulation of HPV replication [24,84]
Kaposi’s sarcoma-associated herpes virus LANA2	MVPLVLVR[118]	Crm1	Phosphorylation by Akt or Asp substitution at S[118] prevents Crm1 mediated export [118]	LANA2 appears to be absolutely required in the nucleus for viability/proliferation of KSHV in primary effusion lymphoma cells by repressing anti-viral functions within the PML nuclear bodies [119]
(2) RNA viruses				
Rabies virus P protein	NFE[120,121]	Crm1	Phosphorylation by PKC at S[115] causes conformational change to enhance nuclear export 2-fold, and may simultaneously mask the NES (S[115]KKYK214---/---R260) [120–122]	The attenuated non-lethal chicken embryo cell-adapted strain Ni-CE of the highly pathogenic Nishigahara strain of RV has defects in P protein nuclear export that correlate with loss of pathogenicity due to impaired IFN signalling [123,124]
RSV matrix (M) protein	IPYSGLLLHIVTIV[125]	Crm1	Phosphorylation during viral infection effects nuclear export of M, presumably through conformational changes to enable CRM1 to recognise the NES	Inhibition of CRM1-mediated export by LMB treatment results in a 20-fold significant decrease in virus, whilst mutation of the NES results in non-viable virus [125]

ND, not determined.

Abbreviations: EBV, GABPRE-binding protein; Cdk, cyclin dependent kinase; CK2, protein kinase CK2; dsDNA-PK, double stranded DNA-dependent protein kinase; GSK3, glycogen synthase kinase 3; HIPK2, homeodomain-interacting protein kinase 2; LANA2, latency associated nuclear antigen 2; IKB, leptomycin B; PKC, protein kinase A; PKC, protein kinase C; PML, promyelocytic leukaemia protein; WT, wild type.

Single letter code used for sequences; known/potential kinase sites (in bold blue), acetylation sites (in bold purple and underlined) or ubiquitination sites (in bold orange and underlined) are highlighted, with amino acid position in the protein of interest shown in the superscript.

Source: Refs. [60–67,69–77,80–83,94–96,106,110,116,119,125].

- **tumour-cell specific nuclear targeting. In the case of the SV40 T-ag protein, protein kinase C2 (CK2) phosphorylation at S[111] increases the affinity of recognition of the NLS by IMP/β1, thereby accelerating the nuclear import rate c. 50-fold; this can be further enhanced by phosphorylation of the double-stranded DNA-dependent protein kinase (dsDNA-PK) site S[110], which facilitates phosphorylation at the CK2 site, as well as IMP/β1 recognition/nuclear import [85–90]. In analogous fashion, HCMV ppUL44 is phosphorylated at S[110] by CK2 to enable higher affinity recognition of the NLS by IMP/β1 and increased nuclear import (see Fig. 3; [23]), and a similar mechanism appears to apply to the Adenovirus E1a protein (see Fig. 3), where phosphorylation by Cdk1 at S[111] enhances Crm1-mediated nuclear export [111].**

- **Intermolecular masking occurs when a heterologous protein prevents IMP/EXP recognition of normally accessible NLS/NES sequences in a cargo protein. Inhibitor protein I-8 is an example of a very specific cytoplasmic retention factor which binds to the NLS of the transcription factor NF-κB p65 to prevent IMP/β1 interaction and thereby inhibit nuclear import. Upon activation of signal transduction, e.g. cytokine production during an immune response, I-8 is phosphorylated and degraded to unmask the p65 NLS and enable nuclear import [126,127]. An example of a more general cytoplasmic retention factor that affects nuclear import of a number of different NLS-containing proteins, including SV40 T-ag and HCMV ppUL44 [78] is BRCA1 associated protein 2 (BRAP2). Intermolecular masking of the T-ag NLS by BRAP2 is dependent on phosphorylation**
of T124 by Cdk1 adjacent to the NLS (see Fig. 3 and Table 1), whilst PKA/PKC mediated phosphorylation of T457 within the ppUL44 NLS similarly facilitates interaction with BRAP2 and cytoplasmic retention [78]. Cellular proteins such as p53 and p2105p [78,128–133] which possess NLSs and adjacent phosphorylation sites resembling those of SV40 T-ag and HCMV ppUL44 also appear to be able to be recognised by BRAP2 and inhibited in terms of nuclear import.

The subcellular distribution of viral proteins is able to be precisely regulated by specific cellular mechanisms; this can be seen as representing part of the host cell anti-viral response, but is also able to be exploited by the various viruses to enhance replication. For example, although the inhibition of nuclear import of SV40 T-ag or HCMV ppUL44, by BRAP2 leads to slowing/prevention of viral replication, this may also contribute to viral replication by delaying it until the optimal stage of the cell cycle or cellular signal transduction state, which is achieved by the phosphorylation control of BRAP2 interaction with SV40 T-ag/HCMV ppUL44. The following section describes several specific examples where a physiological role of regulated nucleocytoplasmic trafficking is implicated in viral pathogenesis and/or the viral replication cycle.

4. Selected examples of regulation of subcellular trafficking of viral proteins

4.1. SV40 T-ag and HCMV ppUL44: multiple mechanisms of regulation of nuclear import through protein–protein interactions

SV40 virus replication uniquely is dependent on a single protein – T-ag – whose roles include as an initiation factor for viral DNA replication, dysregulation of the cell cycle and blocking apoptosis [134,135]. T-ag’s three main functional domains are the J domain (a.a. 1–82) that binds to hsc70, the constitutively expressed homologue of heat shock protein hsp70 [136,137], the LxCxE motif (residues 103–107) that confers binding to the retinoblastoma (Rb) family of proteins p105Rb, p107Rb and p130Rb2 [138,139], and a bipartite carboxyl-terminal domain (a.a. 351–450 and 533–626) that binds to the tumour suppressor p53 [137,138], as well as the CREB binding protein (CBP) and the functional homologues, p300 and p400, all of which have roles in cell growth and transformation [140,141]. T-ag’s functions in replication are nuclear, as are the functions of the various host cell target proteins of T-ag; consistent with this, T-ag possesses a functional homologue of T-ag in human cells, through a "rolling circle" mechanism [149] that requires at least 6 essential virally encoded gene products [150,151] which include the DNA holoenzyme complex, which is made up of a catalytic subunit (pUL54), and the phosphoprotein and processivity factor ppUL44 [79]. The ppUL44 N-terminal region possesses the ability to bind dsDNA in the absence of ATP and clamp loaders, and through its ability to bind to pUL54, can link pUL54 to DNA and stimulate DNA polymerase activity [79]. The N-terminal region also possesses dimerisation activity [152,153]. Early in infection, ppUL44 localises to the nucleus – T-ag – whose roles include as an initiation factor for viral DNA replication, dysregulation of the cell cycle and blocking apoptosis [134,135]. T-ag’s three main functional domains are the J domain (a.a. 1–82) that binds to hsc70, the constitutively expressed homologue of heat shock protein hsp70 [136,137], the LxCxE motif (residues 103–107) that confers binding to the retinoblastoma (Rb) family of proteins p105Rb, p107Rb and p130Rb2 [138,139], and a bipartite carboxyl-terminal domain (a.a. 351–450 and 533–626) that binds to the tumour suppressor p53 [137,138], as well as the CREB binding protein (CBP) and the functional homologues, p300 and p400, all of which have roles in cell growth and transformation [140,141]. T-ag’s functions in replication are nuclear, as are the functions of the various host cell target proteins of T-ag; consistent with this, T-ag possesses a functional homologue of T-ag in human cells, through a "rolling circle" mechanism [149] that requires at least 6 essential virally encoded gene products [150,151] which include the DNA holoenzyme complex, which is made up of a catalytic subunit (pUL54), and the phosphoprotein and processivity factor ppUL44 [79]. The ppUL44 N-terminal region possesses the ability to bind dsDNA in the absence of ATP and clamp loaders, and through its ability to bind to pUL54, can link pUL54 to DNA and stimulate DNA polymerase activity [79]. The N-terminal region also possesses dimerisation activity [152,153].

HCMV DNA replication occurs within the nucleus of the infected cell, through a “rolling circle” mechanism [149] that requires at least 6 essential virally encoded gene products [150,151] which include the DNA holoenzyme complex, which is made up of a catalytic subunit (pUL54), and the phosphoprotein and processivity factor ppUL44 [79]. The ppUL44 N-terminal region possesses the ability to bind dsDNA in the absence of ATP and clamp loaders, and through its ability to bind to pUL54, can link pUL54 to DNA and stimulate DNA polymerase activity [79]. The N-terminal region also possesses dimerisation activity [152,153].
through a C-terminally localised NLS ([PNTK]KKQ411) [23], that also appears to be responsible, for “piggy-back” nuclear import of other viral replication fork proteins such as pUL54 and the uracil DNA glycosylase pUL114 [154,155], whereby the proteins may assemble in the cytoplasm on the ppUL44 dimer before nuclear import ([116,157]; Fig. 4). Importantly, ppUL44 is a target for cellular and viral kinases during infection [23,158,159], with several phosphorylation sites, including CK2 (S413) and PKC (T427) sites, N-terminal (a.a. 410–424) to the NLS [23,78] (see Table 1 and Figs. 3 and 4). This constellation of phosphorylation sites N-terminally proximal to the NLS is closely comparable to that of SV40 T-ag (see above) [23].

4.1.1. Positive and negative regulation of nuclear import through specific phosphorylation

Detailed analysis of the transport kinetics of bacterially expressed proteins microinjected into hepatoma cells indicated that the T-ag NLS alone (residues 126–132) conferred a much slower rate of import than the NLS together with the N-terminal flanking residues (a.a. 111–132) which contains the various phosphorylation sites mentioned above [88,89]. Deletion/mutation of the CK2 site S111/112 to prevent phosphorylation decreased the import rate [88], whilst D112 substitution enhanced nuclear import [87,160]; although S111 can function in its absence as a CK2 site, S112 is the main site of CK2 phosphorylation [87]. The mechanism of enhanced nuclear import through the CK2 site is through phosphorylation increasing the affinity of T-ag NLS recognition by the IMPα/β1 heterodimer [85]. Negative charge at S120, the dsDNA-PK site, apart from facilitating CK2 phosphorylation at S111/112, also enhances IMPα/β1 binding to the NLS [90]. That phosphorylation of S111/112 to enhance nuclear accumulation of T-ag is physiologically important in SV40 replication is indicated by the fact that viruses with mutations in the CK2 site (S112 and/or both S111/112) have markedly slower kinetics of DNA replication, and reduced viability (>50%) [93,148].

Significantly, HCMV ppUL44 processivity factor has an NLS comparable to that of SV40 T-ag, together with an adjacent CK2 site (see Table 1) that acts to increase the affinity of recognition by IMPα/β1 and nuclear transport efficiency [23]. Since ppUL44 contributes to nuclear accumulation of other HCMV gene products such as pUL54
and pU1L14 involved in virus replication, the enhancement of pU1L44 nuclear import by CK2 would appear to be crucial to HCMV, with inhibition of CK2 potentially a viable future anti-viral approach to inhibit HCMV replication [23,156,157,161].

That CK2 is exploited by SV40 and HCMV and possibly other viruses, to enhance nuclear localisation of proteins involved in their DNA replication can be understood in terms of CK2 being ubiquitously expressed and constitutively active [162]. Intriguingly, certain viruses have been shown to directly control CK2 localisation as well as up regulate its expression. During HSV-1 infection, for example, the ICP27 protein is known to recruit CK2 from the nucleus to the cytoplasm, resulting in a 3.5-fold increased CK2 activity by 6 h post infection that enhances cytoplasmic localisation of phosphorylated ICP27 and thereby facilitates its role in shutting HSV mRNAs from the nucleus [163]. Analogously, CK2 appears to be recruited from subnuclear structures to regulate intranuclear transport of ribosomal RNA during Adenovirus infection [164]. The implication is that CK2 activity is integral to infection in the case of a number of viruses, with more examples of viruses using CK2 to modulate subcellular localisation likely to be identified in the near future.

In contrast to the effects of phosphorylation at S^{111/112}^{120}, Cdk-phosphorylation or Asp substitution of T^{245} adjacent to the NLS inhibits T-ag nuclear import [78,86]. The mechanism of inhibition of nuclear import is not through preventing IMPα/β1 recognition of the NLS, but rather through negative charge enhancing binding of the cytoplasmic retention factor BRAP2, first identified as a binding partner of BRCA1 in a yeast-2-hybrid screen [165]; negative charge at T^{245} appears to enhance specific binding of BRAP2 to SV40 T-ag, thereby inhibiting nuclear import [78].

Analogously, BRAP2 has also been shown to bind the HCMV processivity factor ppUL44, dependent on negative charge at T^{27} within the NLS (see Table 1 and Fig. 4) [78], making BRAP2 the first example of a cellular negative regulator of nuclear import (NRNI) that inhibits nuclear bound viral cargo in a phosphorylation-dependent manner. Although this has only been shown thus far for gene products from dsDNA viruses, it seems likely that this may apply to other viruses/viral gene products. The fact that BRAP2 may represent a example of a cellular negative regulator of nuclear import (NRNI) that inhibits T-ag nuclear import [78,86]. The mechanism of inhibition of nuclear import is not through preventing IMPα/β1 recognition of the NLS, but rather through negative charge enhancing binding of the cytoplasmic retention factor BRAP2, first identified as a binding partner of BRCA1 in a yeast-2-hybrid screen [165]; negative charge at T^{245} appears to enhance specific binding of BRAP2 to SV40 T-ag, thereby inhibiting nuclear import [78].

Analogously, BRAP2 has also been shown to bind the HCMV processivity factor ppUL44, dependent on negative charge at T^{27} within the NLS (see Table 1 and Fig. 4) [78], making BRAP2 the first example of a cellular negative regulator of nuclear import (NRNI) that inhibits nuclear bound viral cargo in a phosphorylation-dependent manner. Although this has only been shown thus far for gene products from dsDNA viruses, it seems likely that this may apply to other viruses/viral gene products. The fact that BRAP2 may represent a general cellular defence mechanism to stem viral replication is an example of a cellular negative regulator of nuclear import (NRNI) that inhibits nuclear bound viral cargo in a phosphorylation-dependent manner. This site inhibits nuclear transport [92] through modulation of binding αβ–fi

4.2. HPV E1 protein: cell cycle phosphorylation controls levels of nuclear protein

HPV has a particular tropism for squamous mucosal or cutaneous epithelia [180], where infection can trigger hyperproliferation of epithelial keratinocytes and benign warts in the case of certain “lower risk” HPV genotypes (e.g. 6 and 11) [181,182], or can lead to malignant cancer [183,184] in the case of certain “high risk” HPV genotypes (e.g. 16 and 18) [181,182,184]. Most infections are latent, however, where the viral DNA persists in the host as low copy number extrachromosomal plasmids in the basal germinal stratum as a result of low-level expression of the viral genes [180].

E1 is a 70 kDa site-specific ATP-dependent DNA helicase essential for virus replication, which is highly conserved amongst all HPV types, and is essential for viral replication and amplification [185–187]. Together with HPV E2 protein, which increases its affinity for DNA [188–194], E1 is able to bind to a specific binding element in the viral origin to act to facilitate origin DNA unwinding, recruit the host cell DNA polymerase α–primase complex, and thereby initiate viral DNA synthesis [195–201]. E1 performs its role in the nuclear compartment, which it accesses through a bipartite NLS (HPV–11 E1 βKKR/S^{99}/–/S^{99}/–/KKVKRR–25 [24]). Between the basic amino acids of the bipartite NLS is a potent NES (HPV–11 E1 βNNAVANVEES/LRDL/AKEI115 [84]) that confers rapid export out of the nucleus through Crm1 [24,84].

Bovine papillomavirus (BPV) E1 is functionally homologous to HPV E1, being able to substitute for HPV E1 in replicating the HPV genome, and vice versa [185]. Although phosphorylation by Cdk2 at S-phase of the cell cycle promotes BPV E1 nuclear export via Crm1, where phosphorylation/dephosphorylation at S^{25} would appear to enable rapid nuclear-cytoplasmic shuttling [112,113]. Cdk phosphorylation appears to promote nuclear retention in the case of HPV–11 E1 [24,84]. The presence of a NES in E1 presumably relates to the need for the virus to slow viral replication to establish a persistent infection in the basal keratinocytes and maintain low copy number by keeping the nuclear concentration of E1 low. Only once the basal cells differentiate and start to rise to the skin surface does E1 accumulate in the nucleus to enable HPV enter the vegetative stage of its life cycle, when the viral promoters are significantly up-regulated and late gene products produced to enable HPV to have the best chance to reinfect another host [170,201–204].

HPV E1 nuclear localisation is modulated by phosphorylation by MAPks present in the cytoplasm, and Cdds in the nucleus, at specific stages of the cell cycle [24]. E1 has been shown to interact with several cyclin/Cdk complexes in vitro [68,117], as well as directly with cyclin E [117,205], an interaction that is essential for viral replication [117]. The N-terminal domain of E1 possesses a cyclin binding motif (RxL) [117] as well as several Cdk phosphorylation sites, of which S^{93}, S^{95} and S^{107} have been shown through mutational analysis to inhibit transient replication of viral origin-containing plasmids in transfected cells [117]. Phosphorylation of all three serines (see Fig. 5) appears to be required for efficient nuclear localisation that is dependent on active cyclin E/Cdk2 and/or cyclin A/Cdk1 at S^{107} [24,84,117], and MAPks (ERK/JNK) at S^{93}/S^{95} [24]. S^{107} phosphorylation prevents Crm1 recognition of E1’s NES [24,84], whilst phosphorylation probably by MAPks of S^{93} and S^{95} seems likely to facilitate recognition by IMPx1/1 [24], probably in a manner similar to the effect of the CK2 sites near/within the NLSs of T-ag and ppUL44 (see Section 4.1.1. Figs. 4 and 5). Phosphorylation of HPV E1 by Cdk has been shown to be crucial for viral replication; mutation of all four Cdk sites within the protein (including S^{107}) impairs HPV replication in vitro and in vivo, without affecting association with HPV E2 or cyclin E [84,117]. It would thus
appear that precise regulation of nucleocytoplasmic shuttling of HPV E1 is necessary in order to modulate the levels of E1 nuclear activity according to the differentiation state of the host cell; premature nuclear entry of E1 leading to virus production before the cell reaches the skin surface would be counterproductive, and so cell cycle-dependent phosphorylation appears to be exploited to HPV’s advantage to fine tune the levels of E1 in the nucleus in order to optimise its chance of infecting a new host.

4.3. Rabies virus P protein

Although RNA viruses replicate in the cytoplasm, specific gene products from many of them are known to enter the nucleus (see Table 1) and/or alter nuclear transport of key cellular factors directly or indirectly (see Section 3). Nuclear localising proteins from RNA viruses generally interfere with transcription factors involved in signalling related to the innate immune system, though direct binding, or indirect effects [59]. STATs are the key factors involved in the innate immune response targeted by many RNA viruses, including Nipah, Sendai, measles and RV [59,206,207].

RV, genus lyssavirus, family Rhabdoviridae is a neurotropical virus, possessing a small 12 kb, negative stranded RNA genome comprising only five genes [208,209]. Through a leaky scanning translation mechanism, the gene encoding the RV phospho (P)-protein (RPP) produces 5 forms (P1–5, where P1 is the full length protein), which have been implicated in various important functions in the viral life cycle [209,210]. These include as a cofactor in viral genome replication through binding of its N-terminal 19 amino acids (only present in the P1) to the RV polymerase (L), and as a chaperone for nucleoprotein (N) either through direct binding (through a.a. 1–177) or indirectly bound to viral RNA genome (N-RNA) through the C-terminal domain (CTD, a.a. 174–297, present in all forms of RPP). Importantly, however, RPP also plays a key role as an antagonist of the host anti-viral response in part through binding to nuclear factors such as the transcription factor STAT-1 and promyelocytic leukaemia tumour suppressor protein (PML) through the CTD domain (CTD, a.a. 174–297, present in all forms of RPP). Importantly, however, RPP also plays a key role as an antagonist of the host anti-viral response in part through binding to nuclear factors such as the transcription factor STAT-1 and promyelocytic leukaemia tumour suppressor protein (PML) [211–215] also through the CTD. RPP is also able to interact in two distinct modes with the host cell microtubule (MT) system, either through a dynein light chain (DLC) associated sequence (DLC-AS; a.a. 139–151) which confers interaction with DLC8 to enable dynein-facilitated nuclear import of RPP, or through a second distinct MT-association sequence (MT-AS, absent from P1 and P2), in combination with the RPP self-association domain (a.a. 54–139), which mediates dimerisation and causes the retention of associated STAT-1 on MTs, independent of

![Cell cycle-dependent regulation of nuclear localisation for HPV E1 by cellular kinases.](image-url)
DLC8, thereby preventing STAT-1 nuclear import and dampening the host cell response to IFNs [121,210,216].

4.3.1. Distinct roles of RPP P1 and P3 forms in the cytoplasm and nucleus
The key forms of RPP appear to be P1 (1–297) and P3 (53–297), which function predominantly in the cytoplasm and nucleus respectively, with the strong N-terminal NES (NES1) the main basis of predominantly cytoplasmic localisation of P1, in contrast to P3 that lacks it and is predominantly nuclear [120]. P1’s key role is in the cytoplasm, both as a cofactor for replication, and as a binding partner of STAT-1 to prevent its role in IFN signalling, P3, however, can exist in either the nucleus, where its predominant role is to inhibit STAT-1 DNA binding activity, or in the cytoplasm, where, in a dimerised form, it prevents STAT-1 nuclear access by binding it and associating with MTs (Fig. 6). Multiple PKC sites [217] throughout RPP provide additional levels of control, the best understood of which is the PKC site at S210, which appears to function as a switch to inhibit the NLS (a. a. KKYK344 – R360) within the CTD [120,122] and expose a second NES (NES2: NFEQLKM232) normally buried within the CTD (see Fig. 6). Whether other PKC sites (e.g. S63, S64 and S162) within RPP modulate MT interaction and/or regulate dimerisation of the RPP to enable the MT-dependent retention of associated STAT-1, is unknown at this stage. What is clear, however, is that RPP dimerisation is critical for STAT-1 cytoplasmic retention, since deletion of the self-association domain abolishes P3 MT association, instead facilitating MT-enhanced nuclear import via the DLC-AS [210,216]; a heterologous dimerisation domain functionally can substitute for the RPP self-association domain to restore STAT-1 cytoplasmic retention [210].

4.3.2. Nucleocytoplasmic trafficking of forms of P protein contributes to pathogenicity through targeting STAT-1
That nucleocytoplasmic trafficking of RPP is critical to RV infection is implied by analysis of an attenuated non-lethal chicken embryo (CE) cell-adapted strain (Ni-CE) of the highly pathogenic Nishigahara (Ni) strain of RV. A chimeric CE(NiP) virus containing the Ni-P gene in the Ni-CE genetic background, is highly pathogenic, implying that RPP is a key virulence factor, and that mutations in the RPP are likely to be responsible for reduced pathogenicity of Ni-CE compared to Ni [123]. Intriguingly, 4 of a total of 7 amino acid substitutions in the Ni-CE strain, compared to that of Ni, are located within/near NES1 (see Section 4.3.1), correlating with the fact that the Ni-CE RPP P1 is more nuclear in infected cells than the Ni RPP, and thereby less able to prevent STAT-1 nuclear translocation in response to IFN-α treatment.

The implication is that the RPP NES1 plays a critical role in infection by specifically antagonising STAT-1 nuclear translocation to activate IFN-stimulated genes [124,210,218].

Fig. 6. Regulation of nucleocytoplasmic shuttling of RV P3 protein to inhibit activity of the STAT-1 transcription factor in cytoplasmic and nuclear compartments. The prNLS/NES of RPP is shown (top), with the regulatory phosphorylation site (blue), NLS (red) and NES (green), highlighted, as well as the binding partners recognising them according to phosphorylation state ("P" indicating phosphorylation). In the absence of phosphorylation, P3 localises efficiently in the nucleus (1) through its NLS and the dynein light chain association sequence (DLC-AS), which confers binding to the microtubule (MT) motor dynein that acts to enhance IMP facilitated transport to the nucleus, where its role is to prevent DNA binding activity by the STAT-1 signalling molecule. P3 remains in the nucleus because NES2 is inaccessible (2a) until PKC phosphorylation of S210 induces conformation changes to render NES2 accessible to Crm1 (and mask the NLS) to permit Crm1 recognition and nuclear export (2b). Upon oligomerisation and binding to MTs through a MT-associating sequence (MT-AS) distinct from the DLC-AS, P3 remains cytoplasmic, acting to retain STAT-1 in the cytoplasm bound to MTs (3) and prevent its action in the anti-viral response.
Similar mechanisms of regulating viral replication and immune evasion appear to be employed by Nipah virus which possesses 3 forms of the P protein, P (709 a.a.), V, and W proteins (456 and 450 a.a., respectively); all share the same N-terminal domain but vary in the C-terminal domain through frame shifting during translation [219]. The cytoplasmic and nuclear localisation of the gene products forms of the P protein, P (709 a.a.), V, and W proteins (456 and 450 a.a.) of research. In the face of the growing need for therapeutics to combat viral evasion of the innate immune system, as would preventing nucleus/cytoplasm would represent an important step towards pre-inhibit anti-viral responses. Clearly, perturbing the nucleocytoplasmic found in the nucleus and V and P found in the cytoplasm [207,221].

5. Conclusions and future research

Precise regulation of the function of specific viral proteins is central to viral replication and pathogenesis, and as discussed here, nucleocytoplasmic trafficking plays a critical role in the case of many DNA and even RNA viruses (see Table 1). Phosphorylation appears to be the main mechanism by which viral protein nucleocytoplasmic trafficking is regulated during the virus life cycle, involving various cellular kinases as well as virally encoded kinases. The ubiquitously expressed CK2 enhances nuclear localisation of specific proteins involved in replication in the case of DNA tumour viruses such as SV40 and HCMV, whilst Cdks have been shown to play a crucial role in maintaining a persistent HPV infection in the skin through modulating E1 localisation; viruses that encode their own kinases such as VZV (ORF66, see Table 1) are less reliant on cellular kinases for control over subcellular localisation. Clearly, targeting the activity of kinases, such as CK2 and Cdk in order to perturb viral protein subcellular trafficking using specific inhibitors, represents a potential anti-viral strategy, although hampered by the obvious problem of effects on normal cellular functions of conventional kinase inhibitors. Screening for and/or developing compounds that block the nuclear transport of specific viral proteins though disrupting their interaction with IMP/EXP5 seems an intriguing alternative, whereby a counter screening approach could be used to discard inhibitors of general host protein–IMP interaction, in order to identify inhibitors specific to IMP–viral protein interaction without affecting cellular proteins (Wagstaff et al., manuscript in preparation). Along similar lines, a unique approach would be to screen for compounds that stabilise or enhance the interaction with negative regulators of nuclear import such as BRAP2 with the SV40 T-ag or HCMV ppUL44 proteins or p110Rb with SV40 T-ag etc., as to means to inhibit viral protein nuclear import and thereby virus production.

In conclusion, based on the results summarised here (e.g. Table 1) and elsewhere, viral protein nucleocytoplasmic trafficking is central to viral infection/pathogenesis in many cases. Developing reagents directed specifically towards nuclear import/export of viral proteins rather than inhibitors of general transport looms as a fruitful avenue of research. In the face of the growing need for therapeutics to combat the consistently emerging lethal zoonotic viral threats to human health, such as SARS, Ebola and Nipah, as well as more familiar lethal pathogens, such as HIV and influenza, this avenue should probably be exploited in the near future with some urgency.

References

[1] N. Mosammaparast, L.F. Pemberton, Karyopherins: from nuclear-transport mediators to nuclear-function regulators, Trends Cell Biol. 14 (2004) 547–550.
[2] M. Suntharalingam, S.R. Wente, Perceiving through the pore: nuclear pore complex structure, assembly, and function, Dev. Cell 4 (2003) 775–789.
[3] D. Gorlich, U. Kutay, Transport between the cell nucleus and the cytoplasm, Annu. Rev. Cell Dev. Biol. 15 (1999) 607–660.
[4] D.A. Jans, C.X. Xiao, M.H. Lam, Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 22 (2000) 532–544.
[5] S.G. Brohawn, J.R. Partridge, J.R. Whittle, T.J. Schwartz, The nuclear pore complex has entered the atomic age, Structure 17 (2009) 1156–1168.
[6] M.A. D’Angelo, M.W. Hearn, architecture, dynamics and function of nuclear pore complexes, Trends Cell Biol. 18 (2008) 456–466.
[7] D. Gorlich, I.W. Mattaj, Nucleocytoplasmic transport, Science 271 (1996) 1513–1518.
[8] J.E. Himshaw, B.O. Carragher, R.A. Milligan, Architecture and design of the nuclear pore complex, Cell 69 (1992) 1133–1141.
[9] L.J. Terry, S.R. Wente, Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport, Eukaryot. Cell 8 (2009) 1814–1827.
[10] E.J. Tran, S.R. Wente, Dynamic nuclear pore complexes: life on the edge, Cell 125 (2006) 1041–1053.
[11] M.P. Rout, J.D. Atchison, Pore relations: nuclear pore complexes and nucleocytoplasmic exchange, Essays Biochem. 36 (2000) 75–88.
[12] S. Walde, R.H. Kehlenbach, The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport, Trends Cell Biol. 20 (2010) 461–469.
[13] S. Frey, R.P. Richter, D. Gorlich, FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties, Science 314 (2006) 815–817.
[14] R.Y. Lim, N.P. Huang, J. Koser, J. Deng, K.H. Lau, K. Schwarz-Herion, B. Fahrenkrog, U. Aebi, Flexible phenylalanine–glycine nucleoporins as entropic barriers to nucleocytoplasmic transport, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 9512–9517.
[15] R. Peters, Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality, Traffic 6 (2005) 421–427.
[16] M.P. Rout, J.D. Atchison, A. Suprapto, K. Hjertaas, Y. Zhao, B.T. Chait, The yeast nuclear pore complex: composition, architecture, and transport mechanism, J. Cell Biol. 148 (2000) 635–651.
[17] H. Fried, U. Kutay, Nucleocytoplasmic transport: taking an inventory, Cell. Mol. Life Sci. 60 (2003) 1659–1688.
[18] D.S. Goldfarb, A.H. Corbett, D.A. Mason, M.T. Harreman, S.A. Adam, Importin alpha: a multipurpose nuclear-transport receptor, Trends Cell Biol. 14 (2004) 505–514.
[19] L.F. Pemberton, R.M. Paschal, Mechanisms of receptor-mediated nuclear import and nuclear export, Traffic 6 (2005) 187–198.
[20] K. Weiss, Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle, Cell 112 (2003) 441–451.
[21] D. Kalderon, W.D. Richardson, A.F. Markham, A.E. Smith, Sequence requirements for nuclear location of simian virus 40 large-T antigen, Nature 311 (1984) 33–38.
[22] D. Kalderon, B.L. Roberts, W.D. Richardson, A.E. Smith, A short amino acid sequence able to specify nuclear location, Cell 39 (1984) 499–509.
[23] G. Alvisi, D.A. Jans, M. Guo, L. Zhao, A. Ripati, A protein kinase CK2 site flanking the nuclear targeting signal enhances nuclear transport of human cytomegalovirus ppUL44, Traffic 6 (2005) 1002–1013.
[24] J.H. Yu, B.Y. Lin, W. Deng, T.R. Broker, L.T. Chow, Mitogen-activated protein kinases activate the nuclear localization sequence of human papillomavirus type 11 DNA helicase to promote efficient nuclear import, J. Virol. 81 (2007) 5066–5078.
[25] A.W. Johnson, E. Lund, J. Dahlberg, Nuclear export of ribosomal subunits, Trends Biochem. Sci. 27 (2002) 580–585.
[26] J.H. Yu, A. Segrel, A. Bachi, M. Wilm, I.W. Mattaj, PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation, Cell 101 (2000) 187–198.
[27] E. Paraskeva, E. Izaurralde, F.R. Bischoff, J. Huber, U. Kutay, Nucleocytoplasmic transport: taking an inventory, Cell. Mol. Life Sci. 27 (2002) 580–585.
[28] J. Caldecott, S. Walde, R.H. Kehlenbach, The Part and the Whole: functions of nucleoporins in nucleocytoplasmic transport, Trends Cell Biol. 14 (2004) 505–514.
[29] A.W. Johnson, E. Lund, J. Dahlberg, Nuclear export of ribosomal subunits, Trends Biochem. Sci. 27 (2002) 580–585.
K.E. Gustin, P. Sarnow, Inhibition of nuclear import and alteration of nuclear pore complex proteins in poliovirus-infected cells, J. Virol. 82 (2008) 1175–1185.

R.H. Lyons, B.Q. Ferguson, M. Rosenberg, Pentapeptide nuclear localization signal importin alpha3 is required for nuclear localization and keratinocyte differentiation, J. Cell Sci. 123 (2010) 3718–3726.

H. Wang, M.P. Holloway, L. Ma, Z.A. Cooper, M. Ristio, A. Samkari, K.S. Eleniota-Johnson, Y.E. Chin, R.A. Altura, Acetylation directs survival nuclear localization to repress STAT3 oncogenic activity, J. Biol. Chem. 285 (2010) 36129–36137.

M.A. Lohrum, D.B. Woods, R.L. Ludwig, E. Balint, K.H. Vouden, C-terminal ubiquitination of p53 contributes to nuclear export, Mol. Cell Biol. 21 (2001) 8521–8532.

M. Li, C.L. Brooks, F. Wu-Baer, D. Chen, R. Baer, W. Gu, Mono- versus polyubiquitination: differential control of p53 fate by Mdm2, Science 302 (2003) 1972–1976.

L.C. Storyman, X. Wang, A. Alimonti, Z. Chen, J. Tenya-Feldstein, H. Yang, N.P. Pavletich, B.S. Carver, C. Cardon-Cordon, H. Erjmund-Bromage, P. Tempst, S.G. Chi, H.J. Kim, T. Miettinen, X. Jiang, P.P. Pandolfi, Ubiquitination regulates perinuclear import and tumor suppression, Cell 128 (2007) 141–156.

S. Gorelik, D.S. Haines, J. Blomgren, U. on the move, J. Cell. Biol. 153 (2001) 11–19.

T.T. Huang, S.M. Wuerzberger-Davis, Z.H. Wu, S. Miyamoto, Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation upon toxic stress, J. Cell Physiol. 214 (2008) 565–576.

L.J. Terry, E.B. Shows, S.R. Wente, Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport, Science 318 (2007) 1412–1416.

R. Ghildyal, B. Jordan, D. Li, H. Dagher, P.G. Bardin, J.E. Gern, D.A. Jans, Rhinovirus 3C protease can localize in the nucleus and alter active and passive nuclearcytoplasmic transport, J. Virol. 83 (2009) 7349–7352.

G.A. Belov, P.V. Lidsky, O.V. Mikitas, D. Egger, K.A. Lukyanov, K. Bienen, V.I. Agol, Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores, J. Virol. 78 (2004) 10616–10677.

K.E. Gustin, P. Sarnow, Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition, EMBO J. 20 (2001) 240–249.

K.E. Gustin, P. Sarnow, Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus, J. Virol. 76 (2002) 8787–8796.

N. Park, P. Kirtikainen, T. Skern, K.E. Gustin, Differential targeting of nuclear pore core proteins in poxvirus-infected cells, J. Virol. 82 (2008) 1647–1655.

C.F. Basler, G.K. Amarasinghe, Evasion of interferon responses by Ebola and Marburg viruses, J. Interferon Cytokine Res. 29 (2009) 511–520.

M. Matteo, S.P. Reid, L.W. Leung, C.F. Basler, V.E. Volchik, Ebola virus VP24 binding to tyrosine phosphorylated karyopherin alpha1 is required for inhibition of interferon signaling, J. Virol. 84 (2010) 1169–1175.

S.P. Reid, L.W. Leung, A.I. Hartman, O. Martinez, M.L. Shaw, C. Carbonelle, V.E. Volchik, S.T. Nichol, C.F. Basler, Ebola virus VP24 binds karyopherin alpha1 and beta1 to inhibit nuclear import and IFN signaling, J. Virol. 83 (2009) 5653–5662.

M. Frieman, B. Yount, M. Heise, S.A. Kopecky-Bromberg, P. Palese, R.S. Baric, Sumoylating and desumoylating enzymes at nuclear pore complex proteins in poliovirus-infected cells, J. Virol. 82 (2008) 7525–7526.

T.T. Huang, S.M. Wuerzberger-Davis, Z.H. Wu, S. Miyamoto, Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation upon toxic stress, J. Cell Physiol. 214 (2008) 565–576.

L.J. Terry, E.B. Shows, S.R. Wente, Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport, Science 318 (2007) 1412–1416.

R. Ghildyal, B. Jordan, D. Li, H. Dagher, P.G. Bardin, J.E. Gern, D.A. Jans, Rhinovirus 3C protease can localize in the nucleus and alter active and passive nuclearcytoplasmic transport, J. Virol. 83 (2009) 7349–7352.

A.J. Fulcher, D.A. Jans / Biochimica et Biophysica Acta 1813 (2011) 2176–2190.
L. Marcos-Villar, F. Lopitz-Otsoa, P. Gallego, C. Muñoz-Fontela, J. González-Carrasco, C.Y. Hsu, F. Mechali, C. Bonne-Andrea, Nucleocytoplasmic shuttling of bovine papillomavirus E1 helicase downregulates viral DNA replication in S phase, Virology 316 (2003) 279–289.

A. Truant, B.R. Cullen, The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals, Mol. Biol. Cell 7 (1996) 1218–1225.

K. Shimizu, N. Ito, C. Shimizu, T. Masatani, K. Yamada, J. Hosokawa-Muto, M. Sugiyama, Role of interferon antagonist activity of rabies virus major regulatory protein, IE62, J. Virol. 178 (Suppl 1) (1998) S16–S29.

J.H. Scheidtmann, B. Echle, G. Walter, Simian virus 40 large T antigen is phosphorylated by p60-cdc2 and cyclin B-cdc2, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 15790–15795.

M. Nakagawa, D.A. Jans, M. Sugiyama, Role of interferon antagonist activity of rabies virus major regulatory protein, IE62, J. Virol. 79 (2005) 12921–12927.

K. Shimizu, N. Ito, C. Shimizu, T. Masatani, K. Yamada, J. Hosokawa-Muto, M. Sugiyama, Role of interferon antagonist activity of rabies virus major regulatory protein, IE62, J. Virol. 79 (2005) 12921–12927.

K. Shimizu, N. Ito, C. Shimizu, T. Masatani, K. Yamada, J. Hosokawa-Muto, M. Sugiyama, Role of interferon antagonist activity of rabies virus major regulatory protein, IE62, J. Virol. 79 (2005) 12921–12927.

K. Shimizu, N. Ito, C. Shimizu, T. Masatani, K. Yamada, J. Hosokawa-Muto, M. Sugiyama, Role of interferon antagonist activity of rabies virus major regulatory protein, IE62, J. Virol. 79 (2005) 12921–12927.

K. Shimizu, N. Ito, C. Shimizu, T. Masatani, K. Yamada, J. Hosokawa-Muto, M. Sugiyama, Role of interferon antagonist activity of rabies virus major regulatory protein, IE62, J. Virol. 79 (2005) 12921–12927.

K. Shimizu, N. Ito, C. Shimizu, T. Masatani, K. Yamada, J. Hosokawa-Muto, M. Sugiyama, Role of interferon antagonist activity of rabies virus major regulatory protein, IE62, J. Virol. 79 (2005) 12921–12927.
