High-T_c ternary metal hydrides, YKH$_{12}$ and LaKH$_{12}$, discovered by machine learning

Peng Song1, Zhufeng Hou2, Pedro Baptista de Castro3,4, Kousuke Nakano1,3, Kenta Hongo6, Yoshihiko Takano3,4, Ryo Maezono4

1School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

3National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

4University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

5International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy

6Research Center for Advanced Computing Infrastructure, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

(Dated: March 2, 2021)

The search for hydride compounds that exhibit high T_c superconductivity has been extensively studied. Within the range of binary hydride compounds, the studies have been developed well including data-driven searches as a topic of interest. Toward the search for the ternary systems, the number of possible combinations grows rapidly, and hence the power of data-driven search gets more prominent. In this study, we constructed various regression models to predict T_c for ternary hydride compounds and found the extreme gradient boosting (XGBoost) regression giving the best performance. The best performed regression predicts new promising candidates realizing higher T_c, for which we further identified their possible crystal structures. Confirming their lattice and thermodynamical stabilities, we finally predicted new ternary hydride superconductors, YKH$_{12}$ [$C2/m$ (No.12), $T_c=143.2$ K at 240 GPa] and LaKH$_{12}$ [$R3m$ (No.166), $T_c=99.2$ K at 140 GPa] from first principles.

INTRODUCTION

The compressed polyhydrides are good candidates for high T_c superconductor due to the high vibration frequencies provided by the hydrogen atoms, coupled with the introduction of other elements to get necessary pre-compression for the entire system to maintain its metallic and superconducting state even at lower pressure. The potential for high T_c has been confirmed by many theoretical and experimental studies. [1–5]

The structure searching to get higher T_c for these compounds has been made mainly within binary compounds, and some of the synthesis have reported the achievement of high T_c, e.g., LaH$_{10}$ (260 K at 200 GPa), [6] YH$_6$ (224 K at 166 GPa), [7] and TH$_{10}$ (159 K at 174 GPa) [8] etc. Recent theoretical prediction of Li$_2$MgH$_{16}$ (473 K at 250 GPa) and the experimental measurement of carbonaceous sulfur hydride (287 K at \sim267 GPa) indicate that multi component hydrides could have greater potential for higher T_c than binary ones. [6, 10] At present, about 10-20 ternary superconducting hydrides have been proposed, but a small part of them have been experimentally verified ending up with extremely low T_c. [9] 29 According to 'Materials Project (MP) database', [30] the number of ternary compounds amounts around to five times larger than that of binary compounds under ambient conditions, providing us with an exciting field of materials searching. For such problems with a wide search space, data-driven approaches get to be powerful over other methods. For cuprate and iron-based superconductors, their searchings by using machine learning approaches have been reported. [31–33] For the hydrides superconductor, RbH$_{12}$, neural networks have been applied. [34] We shall then employ machine learning techniques to explore ternary polyhydrides for higher T_c.

The compounds to be targeted were first narrowed down according to the following policy: The target ternary system is restricted within those composed as a combination of binary hydrides having higher T_c as reported. From binary hydrides that have been reported to be superconducting, [7] [21] [22] [25] [35–111] there can be about 2,800 possible combinations. Of these, except for those with very low T_c, we can narrow it down to about 1,800 types, and further, except for those with too high hydrogen content, to about 1,700 types. Among these, we limited our search to the Y and La systems which have tendency to achieve higher T_c, getting about 250 combinations of YMH$_x$ and LaMH$_x$ ($M=Ca$, K, and Na). For these target compounds, a procedure for our virtual screening via machine-learning and high-throughput ab
initio calculations is as follows: (1) machine-learning search for the chemical compositions achieving higher \(T_c \), (2) evolutionary crystal structure search for the candidate compositions, (3) stability check for the candidate structures, (4) \textit{ab initio} predictions of \(T_c \) for the stable structures.

(1) For the composition search, as described in the “Method” section, we considered various regression models to predict \(T_c \) values of the ternary hydrides, which were learned with theoretically predicted data on \(T_c \) extracted from available literature. \[7, 9, 11, 15, 18, 26, 35, 124\] Our descriptors entering the regression as input consist of 84 features such as chemical compositions, space group, and pressure-dependent electronic properties, where the composition descriptors were generated using the XenonPy software \[123\] and the pressure-dependent descriptors were computed by the VASP software \[124, 127\]. We checked their prediction performance by using the cross validation and then the best performed model, i.e., the extreme gradient boosting algorithm implemented in the XGBoost package. \[128\] was used for the high-throughput screening of the target ternary compounds. Our XGBoost model predicted ternary compositions, \(\text{YKH}_1 \) and \(\text{LaKH}_1 \), to be candidates for achieving higher \(T_c \) at 200 GPa. (2) For the predicted chemical compositions, we further predicted their crystal structures by using an evolutionary algorithm for crystal structure search implemented in the USPEX code \[129\] coupled with \textit{ab initio} geometry optimizations implemented in the VASP code. \[124, 127\] (3) For the predicted crystal structures, as shown in Fig. 1, we evaluated their thermodynamical and structural stabilities by using convex hull method and \textit{ab initio} phonon calculation. (4) Confirming the stabilities, we finally predicted that the ternary \(\text{YKH}_1 \) and \(\text{LaKH}_1 \) are promising candidates to achieve higher \(T_c \). To the best of our knowledge, this is the first example of the ternary hydride superconductors realized by alkali earth metals \((M=\text{K}, +2\) valence) while preceding studies with alkali metals \((M = \text{Ca}, \text{Mg}, +1\) valence).

\section*{METHOD}

Several ternary superconducting hydrides predicted theoretically so far, such as \(\text{CaYH}_1 \), \(\text{YSH}_6 \), and \(\text{CSH}_7 \), \[13, 25, 115\] were proposed as a composite of two different binary hydrides possibly to form a compound under high pressure. Referring 102 published papers on superconducting hydrides, \[7, 9, 11, 15, 18, 26, 35, 122\] we obtained 533 superconducting data, including 181 high-\(T_c \) hydrides \((T_c \text{ higher than liquid nitrogen})\). Additionally, we collected 150 kinds of binary compounds. Excluding those with very low \(T_c \) \((T_c < 40 \text{ K, McMillan Limit})\), 81 kinds were left. They can form 2,867 ternary combinations excluding the overlap of chemical compositions. Moreover, we excluded those with extremely higher hydrogen concentration, making \(x \leq 16 \) for \(\text{AMH}_x \), \[9\] thereby obtaining 2,366 possible compounds. To make the search space more compact, we selected the candidates only for those with \(A=\text{La and Y} \) because La- and Y-based materials have well been verified as having higher \(T_c \) by not only theoretical predictions, but also experimental observations \[6, 7\]. Resultant candidates, \(\text{YMH}_1 \) and \(\text{LaMH}_1 \), then amount to 238 compounds, which are input compounds entering the regression.

It is difficult to obtain all the structural data from the above pool of published articles. It is rather practical to use chemical compositions as the direct descriptor. In the preceding studies, \[130, 134\] it has been found that \(T_c \) correlates well with (i) space group, \(6, 135\) (ii) density of states \((\text{DOS})\) at the Fermi level, \(D(E_F) \), as a measure of the applied pressure, \[73, 76, 101, 131, 136\] as well as (iii) the chemical composition. \[132, 137\] By the procedures explained below, we finally set up total 84 descriptors corresponding to the above three features: For (i) \([\text{space group}] \), we took the number index for the space group \((e.g., \text{No.166 for } R3\text{m})\) as the descriptor. For (ii) \([\text{pressure}] \), we used the scheme taken in the preceding studies, \[132, 138\] where the descriptors were composed as weighted averages over the quantities for pristine materials composed of each of elements in a compound \((\text{averaging weight is based on the composition ratio}) \). The quantities were evaluated for the structure of each pristine material taken from the Materials Project \[59\] by using VASP \[124, 127\] to get \(\text{DOS} \) at several values of pressure \((\text{detailed computational conditions were provided in S.I. (§)}) \). For the weighted averaging, we took the same manner as in XenonPy. \[123\] The procedure provides total 56 descriptors for (ii) at this stage. For (iii) \([\text{chemical composition}] \), we used a XenonPy utility \[123\] that generates many possible descriptors, from which we picked up 290 descriptors at the first stage.

For total 347 descriptors \[290 \text{(ii)/Chemical composition) + 56 (ii)/pressure dependent DOS) + 1 (i/space group number)}\], we truncated them to avoid overfitting by excluding those with comparably weaker correlation with \(T_c \). The truncation can be performed during the random-forest regressions by monitoring the correlation using the scikit-learn library \[139\] \((\text{with six trees for this purpose})\), finally getting total 84 truncated descriptors \[70 \text{(iii)/Chemical composition) + 13 (ii)/pressure dependent DOS) + 1 (space group number)}\] as listed in S.I. \((§) \).

The above constructed descriptors were thoroughly incorporated into four linear Ridge \((\text{RD})\), \[140\] Bayesian Ridge \((\text{RD})\), \[141\] LASSO \((\text{LS})\), \[140, 142–144\] and Elastic Net \((\text{EN})\) \[140, 145\] and three nonlinear Decision-Tree (DT) \[140\], Random Forest \((\text{RF})\) \[140, 146, 147\], and Extreme Gradient Boosting \((\text{XGBoost})\) \[128, 140\] regressors to predict \(T_c \) for the target compositions \((\text{see Table I}) \); the \((\text{maximum}) \) depths of decision tree for DT, RF, and XGBoost were set to be 21, 16, and 7, respectively. To construct the regressors, 533 data \[7, 9, 11, 15, 18, 26, 35, 122\] are randomly divided into training and test data with with the ratio of 80:20. Hyperparameters in the models were chosen through the Bayesian optimization technique implemented in the Hy-
perOpt software package [148] to minimize the R^2 5-fold cross-validation score. Model performance was judged from R^2, MAE (Mean Absolute Error), and RMSE (Root Mean Squared Error) as given in Table I. Among the above regressors, we found the XGBoost exhibiting the best performance for the test data, i.e., the lowest RMSE, $\Delta T_{\text{RMSE}} \sim 20$ K. Thus, the XGBoost was chosen as our machine learning model for T_c-prediction used in the successive high-throughput virtual screening of the ternary compositions.

Once a trained regression is available, it can immediately predict T_c even for the chemical compositions with unknown T_c by putting corresponding descriptors as the input for the regression. Since we do not know their crystal structures in advance for the predictions, we have to assume their space groups in order to complete input descriptors. Looking over the existing data, we found that a space group, $R\overline{3}m$ (No.166), often gives higher T_c for binary compounds, so we adopted it as a trial. The trial setting was proved to be a fair choice by further verifications (crystal structural predictions and ab initio estimations) in a consistent manner as explained later. On the assumption of space group, we predicted T_c for several choices of XMH_x ($X=Y$ and La). For the candidate chemical composition giving higher T_c, we further predict their crystal structure by using the USPEX code [129] combined with ab initio kernel by VASP. [124–127] It randomly generates the 400 structures among from monomer upto tetramer of AKH_{12} ($A=La$ or Y) as an 'initial generation' for the generic algorithm. Each generation evolves 100 structures according to 40% heredity, 40% random, 10% softmutation, and 10% transmutation. A promising candidate structure is identified when no further evolution occurs for more than 10 generations. The candidate is then subject to further ab initio geometrical optimizations by using the Perdew-Burke-Ernzerhof (GGA-PBE) functional for the exchange-correlation functional. [149] We performed the procedure at the pressure of 100 GPa, 200 GPa, and 300 GPa, to get each optimized structure.

For the predicted crystal structures, we evaluated the structural stability by phonon calculations and thermodynamic stability by the convex hull method. For the phonon evaluations, we used the PhonoPy package [150] combined with ab initio kernel by VASP. [124–127] Convex hull evaluations were made by using a utility implemented in USPEX. [129] By the ab initio phonon calculations, we finally estimated T_c based on the Allen-Dynes formalism, [151] [152] to be compared with our data-driven predictions by the regression for verification. Detailed computational conditions for the phonon calculations are given in S.I. (§).

FIG. 1. Predicted structures for (a) YKH$_{12}$ with $C2/m$ (No.12), and (b) LaKH$_{12}$ with $R\overline{3}m$ (No.166), by the crystal structures search using USPEX.

TABLE I. Comparison of several regression models in terms of R^2, MAE (Mean Absolute Error), and RMSE (Root Mean Squared Error) for the test dataset. Each abbreviation means ‘RD’ (Ridge), ‘BR’ (Bayesian Ridge), ‘LS’ (Lasso), ‘EN’ (Elastic Net), ‘DT’ (Decision Tree), ‘RF’ (Random Forest), and ‘XGB’ (Extreme Gradient Boosting).

	Linear regression	Nonlinear regression
R^2	0.244 0.249 0.403	0.460 0.732 0.842 0.877
MAE	34.66 37.57 34.06	32.24 18.58 16.34 13.53
RMSE	50.34 50.17 44.75	42.56 29.96 23.01 20.29
As we mentioned in the previous section (see Table I), the XGBoost regressor is the best performed machine learning model. Fig. 2 shows the performance of our XGBoost model. Its R^2 values are 0.99 and 0.87 for 426 training and 107 test data, respectively, indicating our regressor is slightly overfitted. But it exhibits a better performance than the other models, especially the linear regressions. Looking at RMSE, the XGBoost value was about 20 K. This cannot matter for our purposes, judging from our XGBoost performance.

Fig. 2. Model performance. Comparison between T_c in database and that interpolated by regression, proving the performance of our XGBoost regression model. Total 533 data are are randomly divided into 426 training data (80%) and 107 test data (20%).

RESULTS AND DISCUSSION

To strengthen the reality of predictions, it is indispensable to estimate the stability of the predicted structures. The thermal stability of the structure is confirmed by comparing a pressure dependence of relative formation enthalpy within the USPEX calculations as shown in Fig. 3. From the analysis, we can identify the pressure range where the structures can stably exist. Under the pressure range, we performed ab initio phonon calculations to examine the lattice stabilities. As shown in Fig. 4, any imaginary modes do not appear ensuring the lattice stability for these structures at the pressure.

For YKH_{12} (at 240 GPa) and LaKH_{12} (at 160 GPa), we further evaluated their electron-phonon couplings and then estimated their T_c values based on the Allen-Dynes formalism. which are listed in Table II. The machine-learning predicted values overestimate ab initio ones by \sim 20K and \sim 60K for YKH_{12} and LaKH_{12}, respectively. These overestimates lie within almost RMSE and three-times RMSE, respectively, which may be thought of as being allowable, judging from our XGBoost performance.

CONCLUSION

We performed a data-driven materials searching for ternary hydrides superconductors within the range of AMH_{12} ($A=$La,Y) composition. The regression over 533 existing superconductors was constructed by the random forest method using 84 descriptors characterizing chemical composition, space group, and pressure. Using the regression, we estimated T_c over 239 compositions to get the prediction of higher T_c achieved by the choice of $M=$K, YKH_{12} and LaKH_{12}. For the predicted compositions, we performed evolutionary structure search to get their crystal structures. For the structures, we confirmed their structural stabilities by using ab initio phonon calculations as well as getting T_c estimated by Allen-Dynes formula. We finally predicted two new ternary hydrides superconductors, YKH_{12} and LaKH_{12}.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Composite} & \textbf{Predicted T_c [K]} & \textbf{Regression} & \textbf{Ab initio} \\
\hline
YKH_{12} & 168.9 & 143.2 & \\
LaKH_{12} & 162.8 & 99.2 & \\
\hline
\end{tabular}
\caption{Comparison of the T_c predictions between the \textit{ab initio} DFT and the XGBoost regression.}
\end{table}
FIG. 3. Relative enthalpies for (a) YKH$_{12}$ and (b) LaKH$_{12}$, showing the pressure range where the compounds are stable.

FIG. 4. Phonon dispersions, phonon DOS, and Eliashberg functions for (a) YKH$_{12}$ at 200 GPa and (b) LaKH$_{12}$ at 160 GPa. No imaginary frequency appears ensuring the lattice stability for each compound.

ACKNOWLEDGMENTS

The computations in this work have been performed using the facilities of Research Center for Advanced Computing Infrastructure (RCACI) at JAIST. K.H. is grateful for financial support from the HPCI System Research Project (Project ID: hp190169) and MEXT-KAKENHI (JP16H06439, JP17K17762, JP19K05029, and JP19H05169). R.M. is grateful for financial supports from MEXT-KAKENHI (19H04692 and 16KK0097), FLAGSHIP2020 (project nos. hp1 90169 and hp190167 at K-computer), Toyota Motor Corporation, I-O DATA Foundation, the Air Force Office of Scientific Research (AFOSR-AOARD/FA2386-17-1-4049:FA2386-19-1-4015), and JSPS Bilateral Joint Projects (with India DST).

[1] N. Ashcroft, Physical Review Letters 92, 187002 (2004).
[2] N. W. Ashcroft, Physical Review Letters 21, 1748 (1968).
[3] M. Eremets, I. Trojan, S. Medvedev, J. Tse, and Y. Yao, Science 319, 1506 (2008).
[4] A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).
[5] D. Szczęśniak and T. Zemla, Superconductor Science and Technology 28, 085018 (2015).
[6] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Physical review letters 122, 027001 (2019).
[7] I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk, et al., arXiv preprint arXiv:1908.01534 (2020).
[8] D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, Current Opinion in Solid State and Materials Science, 100808 (2020).
[9] Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, Physical review letters 123, 097001 (2019).
[10] E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Desbessai, H. Vindana, K. Vencatasamy, K. V. Lawliner, A. Salamat, and R. P. Dias, Nature 586, 373 (2020).
[11] Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, Physical Review B 96, 144518 (2017).
[12] Y. Ma, D. Duan, Z. Shao, D. Li, L. Wang, H. Yu, F. Tian, H. Xie, B. Liu, and T. Cui, Physical Chemistry Chemical Physics 19, 27406 (2017).
SUPPLEMENTAL INFORMATION

Ab initio calculations

The crystal structures predicted for YKH\textsubscript{12} and LaKH\textsubscript{12} at each pressure are given in Table.[III] For electronic structure calculations (required to get pressure-dependent DOS) and phonon calculations (to evaluate dynamical stabilities), we used VASP package [124,127] with GGA-PBE exchange-correlation functionals.[149] Ionic cores are described by ultrasoft pseudo potentials provided in the package. To assist the convergence in the self-consistent field iterations, we used Marzari-Vanderbilt smearing scheme.[153] Resolutions for the plane wave basis set expansions \([\text{Energy cutoff} (E_{\text{cut}})]\) and the Brillouin-zone integration \([k\text{-mesh}]\) were determined so that the resultant energy values could converge within the required accuracies, finally getting \(E_{\text{cut}}=75\) Ry with \((8 \times 8 \times 8)\) \(k\)-mesh for the electronic Brillouin-zone. Phonon calculations are performed by linear-response method[154] with \((4 \times 4 \times 4)\) \(q\)-mesh.

To estimate \(T_c\), we used Allen-Dynes formula implemented in Quantum Espresso package[155] with the effective Coulomb interaction \(\mu^*\) being chosen 0.1 empirically. Denser \(k\)-meshes, \(16 \times 16 \times 16\), were used for the double-delta integrations in electron-phonon calculations. The estimated results are summarized in Table[IV]

Descriptors

Total 84 descriptors used for the regression are listed in Table[V] corresponding to those for (i) [space group], (ii) [pressure], and (iii) [chemical composition]. A descriptor for a composition is composed from that for each atomic species, and \(f_\alpha\) as the descriptor for \(\alpha\),

\[
 f_{\text{ave}} = \sum_\alpha W_\alpha \cdot f_\alpha, \\
 f_{\text{sum}} = \sum_\alpha W_\alpha \cdot f_\alpha, \\
 f_{\text{var}} = \sum_\alpha W_\alpha \cdot (f_\alpha - f_{\text{ave}})^2, \\
 f_{\text{max}} = \max_\alpha \{f_\alpha\}, \\
 f_{\text{min}} = \min_\alpha \{f_\alpha\},
\]

are used, where \(W_\alpha\) is the number of \(\alpha\)-species included in the composition, and \(W_\alpha^*\) is the normalized fraction.

List of estimated and training data

Total 426 training data used to construct the regression are listed in Table[VII] By using the XGBoost regression, we estimated \(T_c\) for a set of chemical compositions as shown in Table[VI]
TABLE III. Crystal structures of YKH\textsubscript{12} and LaKH\textsubscript{12} predicted at each pressure (P). Lattice parameters (a, b and c) are given in unit of Å.

P (GPa)	Atomic coordinates (fractional)				
	Atoms	x	y	z	
YKH\textsubscript{12}	C2/m	240	a = 4.685	b = 4.959	c = 3.412
			K(2c) 0.00000 0.00000 0.50000		
			Y(2b) 0.00000 0.50000 0.00000		
			H(8j) 0.10546 0.13491 0.02245		
			H(8j) 0.11840 0.35836 0.52932		
			β = 94.640°		
LaKH\textsubscript{12}	R\overline{3}m	140	a = b = 5.457	c = 5.844	
			K(3b) 0.00000 0.00000 0.50000		
			La(3a) 0.00000 0.00000 0.00000		
			H(36i) 0.00522 0.29080 0.25260		
LaKH\textsubscript{12}	C2/m	250	a = 8.126	b = 5.479	c = 4.379
			K(4i) 0.12534 0.00000 0.82783		
			La(4i) 0.12649 0.50000 0.34168		
			H(8j) 0.11445 0.17656 0.45546		
			H(8j) 0.11651 0.10279 0.25125		
			H(8j) 0.12613 0.30763 0.96974		
			H(8j) 0.13714 0.36984 0.78838		
			H(8j) 0.24797 0.21751 0.24331		
			H(4g) 0.00000 0.21727 0.00000		
			H(4h) 0.00000 0.26959 0.50000		

TABLE IV. T_c estimated by Allen-Dynes formula using ab initio phonon calculations for YKH\textsubscript{12} [C2/m] and KH\textsubscript{12} [R\overline{3}m] at each pressure. λ and ω_{bg} are the parameters appearing in the formula.

P (GPa)	λ	ω_{bg} [K]	T_c [K]	
YKH\textsubscript{12}	180	1.398	1289.465	137.7
YKH\textsubscript{12}	200	1.400	1324.987	141.1
YKH\textsubscript{12}	240	1.427	1318.072	143.2
YKH\textsubscript{12}	260	1.436	1127.344	123.2
YKH\textsubscript{12}	300	1.587	911.696	109.4
LaKH\textsubscript{12}	140	1.531	854.12	99.2
LaKH\textsubscript{12}	160	1.665	789.38	98.8
TABLE V. Total 84 descriptors used for the regression, corresponding to those for (i) [space group], (ii) [pressure], and (iii) [chemical composition]. Each weighting scheme (ave/sum/var/max/min) is defined in Eqs. [1].

Weighting scheme	Property	Label	Description
ave (i)	atomic_radius_rahm		Atomic radius by Rahm et al.
ave (i)	boiling_point		Boiling temperature
ave (i)	covalent_radius_cordero		Covalent radius by Cordero et al.
ave (i)	covalent_radius_pyykko		Single bond covalent radius by Pyykko et al.
ave/max (i)	covalent_radius_slater		Covalent radius by Slater
ave (i)	en_allen		Allen’s scale of electronegativity
ave/sum (i)	en_ghosh		Ghosh’s scale of electronegativity
ave/sum (i)	first_ion_en		First ionisation energy
ave (i)	fusion_enthalpy		Fusion heat
ave/sum/var (i)	gs_bandgap		DFT bandgap energy of $T = 0$ K ground state
ave/max (i)	gs_volume_per		DFT volume per atom of $T = 0$ K ground state
ave/sum/var/max/min (i)	hhi_p		Herfindahl-Hirschman Index (HHI) production values
ave/sum/min (i)	hhi_r		Herfindahl-Hirschman Index (HHI) reserves values
ave/sum/var (i)	heat_capacity_mass		Mass specific heat capacity
ave (i)	evaporation_heat		Evaporation heat
ave/sum/max/min (i)	lattice_constant		Physical dimension of unit cells in a crystal lattice
ave/min (i)	mendeleev_number		Atom number in mendeleev’s periodic table
ave/sum (i)	melting_point		Melting point
ave/sum/max (i)	molar_volume		Molar volume
ave/sum/max (i)	num_unfilled		Total unfilled electron
ave/sum/max (i)	num_valance		Total valance electron
ave (i)	period		Period in the periodic table
ave (i)	vdw_radius		Van der Waals radius
ave/max (i)	vdw_radius_alvarez		Van der Waals radius according to Alvarez
ave/max (i)	vdw_radius_mm3		Van der Waals radius from the MM3 FF
sum (i)	atomic_radius		Atomic radius
sum (i)	atomic_volume		Atomic volume
sum (i)	c6_gb		C$_6$ dispersion coefficient in a.u
sum/max (i)	covalent_radius_pyykko_triple		Triple bond covalent radius by Pyykko et al.
sum/min (i)	electron_negativity		Tendency of an atom to attract a shared pair of electrons
var/min (i)	en_mulliken		Mulliken’s scale of electronegativity
sum/max (i)	gs_est_bcc_latcnt		Estimated BCC lattice parameter based on the DFT volume
sum/var (i)	num_s_unfilled		Unfilled electron in s shell
sum (i)	specific_heat		Specific heat at 20oC
var (i)	icsd_volume		Atom volume in ICSD database
var/max (i)	vdw_radius_eff		Van der Waals radius from the UFF
max/min (i)	bulk_modulus		Bulk modulus
max (i)	num_p_unfilled		Unfilled electron in p shell
ave/var/min (ii)	s_dos		Density of states of s electron at Fermi surface (state/eV/atom)
ave/min (ii)	Free_energy		Pressure-related free energy
var/max/sum (ii)	p_dos		Density of states of p electron at Fermi surface (state/eV/atom)
max/sum (ii)	element_dos		Density of states at Fermi surface (state/eV/atom)
(iii) spg_number		space group number	
TABLE VI. 28 chemical compositions to estimate T_c by using the XGBoost regression learned with the 426 training data.

No.	T_c [K]	No.	T_c [K]
1	YKH$_{12}$ 168.93	15	LaSH$_{12}$ 74.94
2	LaKH$_{12}$ 162.85	16	LaArH$_{12}$ 74.91
3	YCH$_{12}$ 137.60	17	YBiH$_{12}$ 72.54
4	LaMgH$_{12}$ 135.33	18	YFeH$_{12}$ 64.58
5	LaCH$_{12}$ 132.70	19	LaPH$_{12}$ 60.59
6	LaAcH$_{12}$ 128.99	20	YTaH$_{12}$ 58.93
7	YSeH$_{12}$ 127.01	21	YTiH$_{12}$ 57.21
8	YSH$_{12}$ 123.04	22	LaBiH$_{12}$ 56.59
9	YArH$_{12}$ 99.59	23	LaSbH$_{12}$ 52.38
10	YGeH$_{12}$ 98.60	24	LaSiH$_{12}$ 50.53
11	LaSe$_{12}$ 98.25	25	LaTaH$_{12}$ 42.25
12	YInH$_{12}$ 93.81	26	LaTiH$_{12}$ 39.85
13	YPH$_{12}$ 92.78	27	LaFeH$_{12}$ 24.48
14	LaTeH$_{12}$ 77.93	28	LaGeH$_{12}$ 18.47
TABLE VII: Total 533 training data [7,9,11,15,18,26,35,122] used to construct our regressors (see the main text). The label 'Spg' abbreviates 'Space group' with the numbering. μ is the parameter for the effective Coulomb interactions appearing in Allen-Dynes formula.

No.	Spg.	P (GPa)	T_c (K)	μ				
0	SiH₄	64 $Cmca$	60.0	75.0	0.1			
1	SiH₄	64 $Cmca$	150.0	20.0	0.1			
2	SiH₄	64 $Cmca$	200.0	30.0	0.1			
3	SiH₄	64 $Cmca$	250.0	50.0	0.1			
4	YH₃	225 $Fm\bar{3}m$	17.7	40.0	0.1			
5	YH₃	225 $Fm\bar{3}m$	28.0	9.0	0.1			
6	YH₃	225 $Fm\bar{3}m$	35.0	0.0	0.1			
7	YH₃	225 $Fm\bar{3}m$	45.0	0.0	0.1			
8	YH₃	225 $Fm\bar{3}m$	52.0	6.0	0.1			
9	YH₃	225 $Fm\bar{3}m$	62.0	5.0	0.1			
10	YH₃	225 $Fm\bar{3}m$	67.0	4.0	0.1			
11	YH₃	225 $Fm\bar{3}m$	74.0	3.0	0.1			
12	BaH₂	194 $P6_3/mmc$	60.0	4.0	0.1			
13	Si₂H₆	2 $P\bar{1}$	175.0	65.0	0.1			
14	Si₂H₆	2 $P\bar{1}$	200.0	80.0	0.1			
15	Si₂H₆	221 $Pm\bar{3}m$	275.0	139.0	0.1			
16	Si₂H₆	15 $C2/c$	300.0	34.0	0.1			
17	SiH₆	68 $Ccca$	250.0	107.0	0.1			
18	SiH₄	40 $Ama2$	120.0	22.0	0.1			
19	SiH₄	194 $P6_3/mmc$	200.0	62.0	0.1			
20	HBr	11 $P2_1/m$	140.0	28.0	0.1			
21	HBr	11 $P2_1/m$	160.0	34.0	0.1			
22	HBr	11 $P2_1/m$	180.0	49.0	0.1			
23	HBr	11 $P2_1/m$	200.0	51.0	0.1			
24	HCl	11 $P2_1/m$	240.0	7.0	0.1			
25	HCl	11 $P2_1/m$	280.0	14.0	0.1			
26	HCl	11 $P2_1/m$	320.0	30.0	0.1			
27	HCl	11 $P2_1/m$	360.0	41.0	0.1			
28	GaH₃	223 $Pm\bar{3}n$	120.0	102.0	0.1			
29	GaH₃	223 $Pm\bar{3}n$	160.0	86.0	0.1			
30	GaH₃	223 $Pm\bar{3}n$	200.0	72.0	0.1			
31	GaH₃	223 $Pm\bar{3}n$	240.0	60.0	0.1			
32	PtH₃	225 $Fm\bar{3}m$	77.0	25.0	0.1			
33	PtH₃	225 $Fm\bar{3}m$	90.0	13.0	0.1			
34	PtH₃	225 $Fm\bar{3}m$	115.0	5.0	0.1			
35	PtH₃	225 $Fm\bar{3}m$	145.0	4.0	0.1			
36	B₃H₆	63 $Cmcm$	360.0	125.0	0.13			
37	GeH₆	14 $P2_1/c$	250.0	90.0	0.1			
38	PtH₃	225 $Fm\bar{3}m$	88.0	24.0	0.1			
39	PtH₃	225 $Fm\bar{3}m$	95.0	18.0	0.1			
40	PtH₃	194 $P6_3/mmc$	105.0	16.0	0.1			
41	PtH₃	194 $P6_3/mmc$	120.0	10.0	0.1			
42	PtH₃	225 $Fm\bar{3}m$	140.0	6.0	0.1			
43	PtH₃	225 $Fm\bar{3}m$	160.0	5.0	0.1			
44	PtH₃	225 $Fm\bar{3}m$	200.0	3.0	0.1			
45	KH₆	15 $C2/c$	166.0	70.0	0.1			
46	KH₆	15 $C2/c$	230.0	70.0	0.1			
47	KH₆	15 $C2/c$	300.0	46.0	0.1			
48	NbH₆	66 $Cccm$	0.0001	2.4	0.1			
49	NbH₂	225 $Fm\bar{3}m$	0.0001	2.6	0.1			
50	NbH₂	225 $Fm\bar{3}m$	50.0	1.5	0.1			
51	NbH₄	139 $I4/mmm$	300.0	47.0	0.1			
52	GeH₃	223 $Pm\bar{3}n$	180.0	160.0	0.1			
53	GeH₃	131 $P421/mmc$	180.0	110.0	0.1			
54	GeH₃	66 $Cccm$	180.0	100.0	0.1			
55	BaH₆	123 $P4/mmm$	100.0	38.0	0.1			
56	MgH₂	194 $P6_3/mmc$	180.0	24.0	0.1			
57	MgH₄	63 $Cmcm$	100.0	38.0	0.1			
Element	Molecular Formula	Space Group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)
---------	------------------	-------------	-------	-------	-------	-------	-------	-------
MgH₂	146 R3	140.0	60.0	0.1				
BH	191 P6/mmm	100.0	39.0	0.1				
BH	191 P6/mmm	125.0	32.0	0.1				
BH	191 P6/mmm	150.0	27.0	0.1				
BH	191 P6/mmm	175.0	21.0	0.1				
BH	191 P6/mmm	200.0	19.0	0.1				
LiH₆	127 P4/mnm	150.0	0.0	0.13				
LiH₆	166 R₃m	150.0	38.34	0.13				
LiH₆	166 R₃m	200.0	42.0	0.13				
LiH₆	166 R₃m	250.0	58.0	0.13				
LiH₆	166 R₃m	300.0	82.0	0.13				
LiH₆	97 I422	100.0	31.04	0.13				
LiH₆	97 I422	150.0	35.0	0.13				
LiH₆	97 I422	200.0	37.0	0.13				
BeH₂	63 Cmcm	250.0	44.0	0.1				
BeH₂	63 Cmcm	250.0	42.0	0.1				
BeH₂	63 Cmcm	270.0	45.0	0.1				
BeH₂	63 Cmcm	290.0	37.0	0.1				
BeH₂	63 Cmcm	310.0	33.0	0.1				
BeH₂	129 P4/mmm	350.0	39.0	0.1				
BeH₂	129 P4/mmm	365.0	50.0	0.1				
BeH₂	129 P4/mmm	390.0	30.0	0.1				
H₂S	2 P1	130.0	33.0	0.13				
H₂S	2 P1	140.0	40.0	0.13				
H₂S	2 P1	150.0	56.0	0.13				
H₂S	2 P1	158.0	60.0	0.13				
H₂S	64 Cmca	160.0	82.0	0.13				
H₂S	64 Cmca	170.0	75.0	0.13				
H₂S	64 Cmca	180.0	65.0	0.13				
BeH₂	63 Cmcm	300.0	45.0	0.1				
VH₂	225 Fm3m	0.0	0.5	0.1				
VH₂	62 Pnma	60.0	4.0	0.1				
NbH₃	225 Fm3m	0.0	1.5	0.1				
NbH₃	186 P6/mmc	60.0	0.5	0.1				
H₂S	160 R₃m	130.0	166.0	0.1				
H₂S	229 Im3m	200.0	191.0	0.1				
H₂S	229 Im3m	250.0	179.0	0.1				
XeH	71 I4mm	100.0	29.0	0.12				
XeH	71 I4mm	200.0	17.0	0.12				
XeH	71 I4mm	300.0	13.0	0.12				
XeH₈	63 Cmcm	400.0	26.0	0.12				
XeH₈	63 Cmcm	500.0	20.0	0.12				
XeH₈	63 Cmcm	600.0	16.0	0.12				
AlH₃	11 P2₁/m-Z	250.0	146.0	0.1				
H₂I	62 Pnma	100.0	5.3	0.1				
H₂I	62 Pnma	150.0	4.32	0.1				
H₂I	62 Pnma	200.0	3.67	0.1				
H₂I	62 Pnma	240.0	3.77	0.1				
H₂I	166 R₃m	240.0	33.05	0.1				
H₂I	166 R₃m	260.0	30.82	0.1				
H₂I	166 R₃m	300.0	25.09	0.1				
H₂I	191 P6/mmm	120.0	9.92	0.1				
H₂I	191 P6/mmm	160.0	8.8	0.1				
H₂I	191 P6/mmm	200.0	9.57	0.1				
H₂I	191 P6/mmm	250.0	11.26	0.1				
H₂I	191 P6/mmm	300.0	12.48	0.1				
GeH₄	40 Ama2	250.0	57.0	0.1				
GeH₄	15 C2/c	500.0	84.0	0.1				
OsH	225 Fm3m	100.0	2.1	0.1				
H₂I	63 Cmcm	100.0	7.8	0.1				
H₂I	191 P6/mmm	100.0	17.5	0.1				
H₂I	191 P6/mmm	150.0	20.4	0.1				
InH₃	148 R₃	200.0	40.5	0.1				
	Element	Formula	Density	Melting Point	Boiling Point			
---	---------	---------	---------	---------------	---------------			
121	InH	148 R̅	250.0	39.0	0.1			
122	InH	148 R̅	300.0	38.0	0.1			
123	InH	11 P2₁/m	150.0	27.0	0.1			
124	InH	11 P2₁/m	200.0	40.5	0.1			
125	HCl	12 C2/m	250.0	20.0	0.1			
126	HBr	12 C2/m	120.0	0.01	0.1			
127	BiH	194 P6₃/mmc	250.0	30.0	0.1			
128	BiH	194 P6₃/mmc	300.0	20.0	0.1			
129	BiH	11 P2₁/m	150.0	59.0	0.1			
130	BiH	11 P2₁/m	200.0	60.0	0.1			
131	BiH	11 P2₁/m	250.0	63.0	0.1			
132	BiH	11 P2₁/m	300.0	65.0	0.1			
133	BiH	59 Pmmm	150.0	93.0	0.1			
134	BiH	59 Pmmm	200.0	88.0	0.1			
135	BiH	59 Pmmm	250.0	77.0	0.1			
136	BiH	59 Pmmm	300.0	75.0	0.1			
137	BiH	12 C2/m	200.0	103.0	0.1			
138	BiH	12 C2/m	250.0	101.0	0.1			
139	BiH	12 C2/m	300.0	119.0	0.1			
140	BiH	2 P1̅	200.0	100.0	0.1			
141	BiH	2 P1̅	250.0	107.0	0.1			
142	BiH	2 P1̅	300.0	113.0	0.1			
143	MgH	229 Im3m	300.0	263.0	0.12			
144	MgH	229 Im3m	350.0	260.0	0.12			
145	MgH	229 Im3m	400.0	271.0	0.12			
146	HSe	12 C2/m	300.0	5.0	0.1			
147	HSe	14 P2₁/c	300.0	23.0	0.1			
148	HSe	129 P4/mmm	250.0	39.0	0.1			
149	HSe	129 P4/mmm	300.0	42.0	0.1			
150	HSe	229 Im3m	200.0	116.0	0.1			
151	HSe	229 Im3m	250.0	111.0	0.1			
152	HSe	229 Im3m	300.0	110.0	0.1			
153	H₂Se	229 Im3m	300.0	160.0	0.1			
154	H₂Se	139 I4/mmm	0.0001	0.192	0.1			
155	H₂Se	139 I4/mmm	10.0	0.081	0.1			
156	H₂Se	139 I4/mmm	30.0	0.021	0.1			
157	H₂Se	139 I4/mmm	50.0	0.008	0.1			
158	HH₂	67 Cmma	180.0	8.159	0.1			
159	HH₂	67 Cmma	240.0	6.207	0.1			
160	HH₂	11 P2₁/m	260.0	12.804	0.1			
161	HH₂	11 P2₁/m	280.0	7.962	0.1			
162	CrH	194 P6₃/mmc	0.0	10.6	0.1			
163	CrH	194 P6₃/mmc	60.0	4.3	0.1			
164	CrH	194 P6₃/mmc	120.0	3.3	0.1			
165	CrH	194 P6₃/mmc	200.0	3.1	0.1			
166	CrH	194 P6₃/mmc	81.0	37.1	0.1			
167	CrH	194 P6₃/mmc	120.0	29.5	0.1			
168	CrH	194 P6₃/mmc	160.0	28.2	0.1			
169	CrH	194 P6₃/mmc	200.0	27.2	0.1			
170	PbH	12 C2/m	158.0	76.0	0.1			
171	PbH	12 C2/m	180.0	97.0	0.1			
172	PbH	12 C2/m	230.0	107.0	0.1			
173	PbH	12 C2/m	250.0	106.0	0.1			
174	PbH	12 C2/m	300.0	104.0	0.1			
175	PbH	12 C2/m	350.0	103.0	0.1			
176	SiH	15 C2/c	300.0	29.65	0.13			
177	SiH	14 P2₁/c	400.0	31.57	0.13			
178	SiH	12 C2/m	610.0	106.31	0.13			
179	HS	15 C2/c	200.0	35.3	0.1			
180	HS	12 C2/m	250.0	25.1	0.1			
181	HS	12 C2/m	300.0	38.0	0.1			
182	H₂S₂	1 P1	112.0	70.1	0.1			
183	H₂S₂	1 P1	120.0	75.2	0.1			
184	H₂S₂	1 P1	130.0	79.1	0.1			
185	SnH₄	139	I₄/mmm	220.0	91.0	0.1		
186	SnH₆	119	I₄/m2	220.0	81.0	0.1		
187	SnH₂	12	C₂/m	250.0	93.0	0.1		
188	SnH₄	12	C₂/m	300.0	97.0	0.1		
189	Fe₂S₃	36	Cmcm	173.0	0.3	0.1		
190	AsH₃	63	Cmcm	300.0	21.2	0.1		
191	AsH₅	63	Cmcm	400.0	20.2	0.1		
192	AsH₆	15	C₂/c	350.0	141.0	0.1		
193	AsH₆	15	C₂/c	400.0	143.9	0.1		
194	AsH₆	15	C₂/c	450.0	151.4	0.1		
195	SbH₃	62	Pnma	175.0	14.6	0.1		
196	SbH₅	62	Pnma	215.0	10.5	0.1		
197	SbH₆	62	Pnma	255.0	8.5	0.1		
198	SbH₆	62	Pnma	295.0	6.8	0.1		
199	SbH₇	47	Pnmm	300.0	25.9	0.1		
200	SbH₇	47	Pnmm	400.0	19.8	0.1		
201	SbH₇	194	P₆₃/mmc	150.0	102.2	0.1		
202	SbH₇	194	P₆₃/mmc	200.0	102.3	0.1		
203	SbH₇	194	P₆₃/mmc	250.0	99.9	0.1		
204	SbH₇	194	P₆₃/mmc	300.0	93.9	0.1		
205	PH₂	12	C₂/m	100.0	49.01	0.1		
206	PH₂	12	C₂/m	150.0	55.52	0.1		
207	PH₂	12	C₂/m	200.0	75.59	0.1		
208	PH₂	139	I₄/mmm	100.0	32.47	0.1		
209	PH₂	139	I₄/mmm	150.0	50.6	0.1		
210	PH₂	139	I₄/mmm	200.0	70.36	0.1		
211	RuH₂	225	Pm₃m	100.0	0.41	0.1		
212	RuH₂	221	Pm₃m	100.0	3.57	0.1		
213	RuH₂	223	Pm₃m	200.0	1.25	0.1		
214	TcH₂	139	I₄/mmm	100.0	5.42	0.1		
215	TcH₂	139	I₄/mmm	150.0	6.31	0.1		
216	TcH₂	139	I₄/mmm	200.0	10.65	0.1		
217	TcH₂	63	Cmcm	300.0	8.61	0.1		
218	TcH₂	131	P₄₁/mmc	300.0	9.94	0.1		
219	H₄Te	191	P₆₃/mmc	170.0	104.47	0.1		
220	H₄Te	191	P₆₃/mmc	200.0	99.18	0.1		
221	H₄Te	191	P₆₃/mmc	250.0	91.33	0.1		
222	H₄Te	166	R₃m	270.0	75.66	0.1		
223	H₄Te	166	R₃m	300.0	67.7	0.1		
224	H₄Te	12	C₂/m	200.0	57.98	0.1		
225	H₄Te	12	C₂/m	300.0	46.0	0.1		
226	H₄Te	129	P₄₁/mmm	150.0	28.28	0.1		
227	H₄Te	129	P₄₁/mmm	200.0	18.71	0.1		
228	H₄Te	194	P₆₃/mmc	300.0	44.26	0.1		
229	H₄S₃	62	Pnma	140.0	2.1	0.13		
230	KAuH₂	123	P₄₁/mmm	120.0	0.28	0.11		
231	Ba(AuH₃)₂	79	I₄	0.0001	30.0	0.11		
232	Sr(AuH₃)₂	79	I₄	0.0001	10.0	0.11		
233	MgGeH₆	200	Pm₃	200.0	66.6	0.1		
234	MgGeH₆	200	Pm₃	250.0	59.05	0.1		
235	MgGeH₆	200	Pm₃	300.0	50.29	0.1		
236	MgSiH₆	12	C₂/m	250.0	63.144	0.1		
237	MgSiH₆	12	C₂/m	275.0	58.048	0.1		
238	MgSiH₆	12	C₂/m	300.0	52.651	0.1		
239	Li₂BH₄	175	P₆₃	100.0	98.0	0.1		
240	Li₂BH₄	175	P₆₃	200.0	81.0	0.1		
241	VH	166	R₃m	200.0	2.24	0.1		
242	VH	62	Pnma	200.0	6.12	0.1		
243	VH	225	Pm₃	200.0	4.59	0.1		
244	VH	194	P₆₃/mmc	200.0	18.5	0.1		
245	VH	63	Cmcm	300.0	25.1	0.1		
246	VH	12	C₂/m	300.0	71.4	0.1		
247	TaH₂	62	Pnma	200.0	7.1	0.1		
248	TaH₄	166	R₃m	250.0	31.0	0.1		
Element	Structure	Lattice Parameter	Symmetry	Remarks				
---------	-----------	-------------------	----------	---------				
TaH₂	$F d d 2$	300.0	135.8	0.1				
LaH₄	$I 4/m m m$	300.0	10.0	0.1				
LaH₈	$C 2/m$	300.0	131.0	0.1				
LaH₁₀	$F n 3 m$	210.0	238.0	0.1				
LaH₁₀	$F n 3 m$	250.0	232.0	0.1				
YH₁₀	$I m 3 m$	250.0	215.0	0.1				
YH₁₀	$I m 3 m$	250.0	265.0	0.1				
H₃Cl	166.0	400.0	44.8	0.1				
ArH₂	2 P $\bar{1}$	1400.0	6.0	0.1				
ArH₄	12 $C 2/m$	1500.0	70.0	0.1				
ArH₄	139 $I 4/m m m$	1500.0	72.0	0.1				
ArH₄	62 Pmna	2000.0	51.0	0.1				
ZrH₂	63 Cmcm	120.0	10.6	0.1				
ScH₆	194 P6₃/mmc	300.0	95.03	0.1				
ScH₉	194 P6₃/mmc	400.0	183.1	0.1				
YH₆	229 I m 3 m	120.0	259.6	0.1				
YH₆	176 P6₃/m	150.0	264.2	0.1				
YH₆	225 F n 3 m	400.0	308.3	0.1				
LaH₆	166.0	100.0	231.8	0.1				
CeH₉	194 P6₃/mmc	50.0	60.26	0.1				
GeH₄	12 $C 2/m$	280.0	67.0	0.1				
GeH₄	12 $C 2/m$	300.0	63.0	0.1				
Ge₃H₁₁	119 $I 4 m 2$	285.0	43.0	0.1				
Ge₃H₁₁	119 $I 4 m 2$	300.0	38.0	0.1				
Ge₃H₁₁	119 $I 4 m 2$	320.0	35.0	0.1				
FeH₅	67 Cmca	200.0	48.0	0.1				
FeH₅	139 $I 4/m m m$	200.0	0.1	0.1				
FeH₅	64 Cmca	300.0	0.1	0.1				
AcH₃	63 Cmcm	150.0	0.0	0.1				
Ac₃H₁₀	65 Cmcm	150.0	3.0	0.1				
AcH₄	63 Cmcm	100.0	60.0	0.1				
AcH₅	2 P $\bar{1}$	150.0	74.9	0.1				
AcH₈	12 $C 2/m$	150.0	134.0	0.1				
AcH₈	8 Cm	100.0	152.1	0.1				
AcH₁₀	166 $R 3 m$	200.0	204.1	0.1				
AcH₁₀	166 $R 3 m$	250.0	140.1	0.1				
AcH₁₀	166 $R 3 m$	300.0	83.2	0.1				
AcH₁₂	139 $I 4/m m m$	150.0	123.3	0.1				
AcH₁₂	139 $I 4/m m m$	300.0	83.8	0.1				
ACH₁₆	175 P6₃/m 2	150.0	199.2	0.1				
ACH₁₆	175 P6₃/m 2	250.0	155.9	0.1				
H₃SAr	221 Pm3m	240.0	89.0	0.13				
H₃SAr	221 Pm3m	240.0	22.0	0.13				
ScH₂	191 P6/mmm	300.0	0.0	0.1				
ScH₃	194 P6₃/mmc	400.0	0.0	0.1				
ScH₄	139 $I 4/m m m$	120.0	105.0	0.1				
ScH₄	139 $I 4/m m m$	250.0	72.0	0.1				
ScH₆	229 I m 3 m	250.0	149.0	0.1				
ScH₇	63 Cmcm	300.0	201.0	0.1				
ScH₉	109 $I 4/m d$	300.0	187.0	0.1				
ScH₁₀	63 Cmcm	250.0	129.0	0.1				
ScH₁₂	71 I mm m	350.0	155.0	0.1				
ThH₃	166 $R 3 m$	100.0	0.0	0.1				
ThH₅	10.0 I m m m	10.0	3.8	0.1				
ThH₆	139 $I 4/m m m$	85.0	2.97	0.1				
ThH₇	14 P2₁/c	100.0	61.4	0.1				
ThH₁₀	225 F n 3 m	100.0	221.1	0.1				
ThH₁₀	225 F n 3 m	200.0	182.6	0.1				
ThH₁₀	225 F n 3 m	300.0	155.4	0.1				
H₃Cl	229 I m 3 m	150.0	198.0	0.1				
H₃Cl	229 I m 3 m	175.0	122.0	0.1				
H₃Cl	229 I m 3 m	200.0	95.0	0.1				
\(H_{2}Cl\)	322	\(Im\bar{3}m\)	250.0	77.0	0.1			
\(WH\)	194	\(P6/mmc\)	300.0	4.175	0.1			
\(WH\)	62	\(Pnma\)	300.0	1.484	0.1			
\(WH\)	129	\(P4/mmm\)	140.0	0.065	0.1			
\(WH\)	183	\(P6mm\)	230.0	64.16	0.1			
\(WH\)	183	\(P6mm\)	250.0	64.87	0.1			
\(WH\)	183	\(P6mm\)	270.0	62.41	0.1			
\(WH\)	183	\(P6mm\)	300.0	60.792	0.1			
\(WH\)	12	\(C2/m\)	240.0	31.586	0.1			
\(H_{2}Se\)	221	\(Pm3m\)	200.0	196.0	0.1			
\(H_{2}Se\)	65	\(Cmmm\)	200.0	181.0	0.1			
\(H_{2}Se\)	227	\(Fd\bar{3}m\)	200.0	115.0	0.1			
\(ZrH_{3}\)	161	\(R3c\)	260.0	8.0	0.13			
\(ZrH_{4}\)	70	\(Fdd\bar{2}\)	140.0	78.0	0.13			
\(ZrH_{4}\)	139	\(I4/mmm\)	230.0	47.0	0.13			
\(ZrH_{6}\)	36	\(Cmc21-HP\)	160.0	55.0	0.13			
\(ZrH_{6}\)	36	\(Cmc21-HP\)	215.0	70.0	0.13			
\(ZrH_{6}\)	14	\(P2_{1}/c\)	295.0	153.0	0.13			
\(ZrH_{6}\)	139	\(I4/mmm\)	295.0	114.0	0.13			
\(ZrH_{6}\)	139	\(I4/mmm\)	340.0	107.0	0.13			
\(H_{2}SiP_{0.125}\)	166	\(R3m\)	100.0	136.0	0.1			
\(H_{2}SiP_{0.125}\)	166	\(R3m\)	150.0	168.0	0.1			
\(H_{2}SiP_{0.125}\)	229	\(Im3m\)	200.0	194.0	0.1			
\(H_{2}SiP_{0.125}\)	229	\(Im3m\)	250.0	178.0	0.1			
\(H_{2}SiP_{0.0625}\)	166	\(R3m\)	100.0	131.3	0.1			
\(H_{2}SiP_{0.0625}\)	166	\(R3m\)	150.0	170.5	0.1			
\(H_{2}SiP_{0.0625}\)	229	\(Im3m\)	200.0	212.3	0.1			
\(H_{2}SiP_{0.0625}\)	229	\(Im3m\)	250.0	190.7	0.1			
\(H_{2}SiP_{0.0625}\)	166	\(R3m\)	100.0	126.7	0.1			
\(H_{2}SiP_{0.0625}\)	166	\(R3m\)	150.0	145.4	0.1			
\(H_{2}SiP_{0.0625}\)	229	\(Im3m\)	200.0	161.4	0.1			
\(H_{2}SiP_{0.0625}\)	229	\(Im3m\)	250.0	142.3	0.1			
\(H_{2}SiP_{0.125}\)	166	\(R3m\)	100.0	139.5	0.1			
\(H_{2}SiP_{0.125}\)	166	\(R3m\)	150.0	147.8	0.1			
\(H_{2}SiP_{0.125}\)	229	\(Im3m\)	200.0	136.1	0.1			
\(H_{2}SiP_{0.125}\)	229	\(Im3m\)	250.0	119.4	0.1			
\(TiH_{2}\)	139	\(I4/mmm\)	200.0	11.8	0.1			
\(TiH_{2}\)	139	\(I4/mmm\)	30.0	0.0	0.1			
\(TiH_{2}\)	129	\(P4/mmm\)	200.0	0.1	0.1			
\(TiH_{3}\)	225	\(Fm\bar{3}m\)	80.0	13.3	0.1			
\(TiH_{3}\)	225	\(Fm\bar{3}m\)	100.0	9.7	0.1			
\(TiH_{3}\)	225	\(Fm\bar{3}m\)	150.0	5.0	0.1			
\(TiH_{4}\)	225	\(Fm\bar{3}m\)	200.0	3.5	0.1			
\(TiH_{6}\)	71	\(Immm\)	200.0	77.8	0.1			
\(VH_{3}\)	229	\(Fm\bar{3}m\)	140.0	11.1	0.1			
\(VH_{3}\)	229	\(Fm\bar{3}m\)	150.0	8.0	0.1			
\(VH_{3}\)	229	\(Fm\bar{3}m\)	200.0	2.5	0.1			
\(VH_{3}\)	229	\(Fm\bar{3}m\)	250.0	1.6	0.1			
\(PdH_{2}\)	216	\(F4\bar{3}m\)	200.0	8.86	0.1			
\(PdH_{2}\)	225	\(Fm\bar{3}m\)	200.0	18.78	0.1			
\(FeH_{3}\)	139	\(I4/mmm\)	150.0	45.8	0.1			
\(FeH_{3}\)	139	\(I4/mmm\)	300.0	35.7	0.1			
\(FeH_{6}\)	12	\(C2/m\)	100.0	3.9	0.1			
\(FeH_{6}\)	65	\(Cmmm\)	150.0	42.9	0.1			
\(FeH_{6}\)	65	\(Cmmm\)	300.0	37.3	0.1			
\(H_{2}Se\)	51	\(Pnma\)	150.0	39.0	0.1			
\(H_{2}Se\)	51	\(Pnma\)	200.0	28.0	0.1			
\(H_{2}Se\)	51	\(Pnma\)	300.0	26.0	0.1			
\(H_{2}Se\)	12	\(C2/m\)	265.0	87.0	0.1			
\(H_{2}Se\)	12	\(C2/m\)	270.0	86.0	0.1			
\(H_{2}Se\)	12	\(C2/m\)	300.0	56.0	0.1			
\(YH_{6}\)	229	\(Im3m\)	100.0	233.0	0.1			
\(YH_{6}\)	229	\(Im3m\)	125.0	165.0	0.1			
Z	Chemical Formula	Space Group	a (Å)	c (Å)	β (°)			
----	-----------------	-------------	-------	-------	-------			
375	YH₆	Im3m	200.0	285.0	0.1			
376	YH₆	Im3m	300.0	290.0	0.1			
377	CaYH₂	Pm3m	170.0	210.0	0.1			
378	CaYH₂	Pm3m	200.0	215.0	0.1			
379	CaYH₂	Pm3m	250.0	201.0	0.1			
380	CaYH₂	Fd3m	200.0	226.0	0.1			
381	MgH₆	C2	300.0	73.0	0.1			
382	LiMgH₆	P	300.0	178.0	0.1			
383	Li₂MgH₆	P5m1	300.0	201.0	0.1			
384	Li₂MgH₆	Fd3m	250.0	473.0	0.1			
385	Li₂MgH₆	Fd3m	300.0	357.0	0.1			
386	Li₂MgH₆	Fd3m	500.0	176.0	0.1			
387	Li₂MgH₆	C2	300.0	212.0	0.1			
388	YH₆	Im3m	250.0	300.0	0.11			
389	YH₆	Im3m	350.0	283.0	0.11			
390	YH₆	Fm3m	250.0	311.0	0.11			
391	YH₆	Fm3m	300.0	310.0	0.11			
392	YH₆	Fm3m	350.0	278.0	0.11			
393	YSnH₄	C2/m	200.0	20.0	0.1			
394	FeSeH	C2/m	150.0	0.2	0.1			
395	FeSeH	C2/m	200.0	0.0	0.1			
396	FeSeH	C2/m	250.0	0.0	0.1			
397	FeSeH	C2/m	300.0	0.0	0.1			
398	Fe₂Se₇	Immm	150.0	1.1	0.1			
399	Fe₂Se₇	Immm	200.0	0.8	0.1			
400	Fe₂Se₇	Immm	250.0	3.8	0.1			
401	Fe₂Se₇	Immm	300.0	1.3	0.1			
402	Fe₄SeH₂	Amm2	150.0	0.0	0.1			
403	Fe₄SeH₂	I4/mmm	150.0	8.6	0.1			
404	Fe₄SeH₂	I4/mmm	200.0	9.1	0.1			
405	Fe₄SeH₂	Pm	150.0	34.4	0.1			
406	Fe₄SeH₂	Pm	200.0	36.4	0.1			
407	Fe₄SeH₂	Pm	150.0	0.0	0.1			
408	CeH₉	F43m	90.0	333.111	0.1			
409	CeH₉	F43m	92.0	141.691	0.1			
410	CeH₉	F43m	94.0	142.559	0.1			
411	CeH₉	F43m	96.0	116.405	0.1			
412	CeH₉	F43m	98.0	140.482	0.1			
413	CeH₉	F43m	100.0	141.236	0.1			
414	CeH₉	F43m	150.0	130.651	0.1			
415	CeH₉	F43m	200.0	133.98	0.1			
416	CeH₉	F43m	250.0	97.608	0.1			
417	CeH₉	F43m	300.0	93.647	0.1			
418	CeH₉	Fm3m	92.0	147.143	0.1			
419	CeH₉	Fm3m	94.0	163.133	0.1			
420	CeH₉	Fm3m	96.0	117.656	0.1			
421	CeH₉	Fm3m	98.0	125.005	0.1			
422	CeH₉	Fm3m	100.0	144.022	0.1			
423	CeH₉	Fm3m	150.0	134.382	0.1			
424	CeH₉	Fm3m	200.0	105.745	0.1			
425	CeH₉	Fm3m	250.0	84.766	0.1			
426	CeH₉	Fm3m	300.0	74.129	0.1			
427	LiPH₃	P2/m	200.0	60.4	0.1			
428	LiPH₄	P2₁/m	150.0	0.05	0.1			
429	LiPH₄	Pm	200.0	167.3	0.1			
430	LiPH₄	Pm	250.0	148.3	0.1			
431	LiPH₄	Pm	300.0	128.6	0.1			
432	LiPH₄	Pm	300.0	59.2	0.1			
433	YCaH₂	Pm3m	180.0	229.9	0.1			
434	YCaH₂	Pm3m	200.0	222.0	0.1			
435	YCaH₂	Pm3m	250.0	210.8	0.1			
436	YSH₆	P4₂/mmc	210.0	91.0	0.1			
437	YSH₆	P4₂/mmc	300.0	61.0	0.1			
Compound	Space Group	Volume	Density	Ref.				
----------	-------------	--------	---------	------				
LaSH₆	63 Cmcm	200.0	24.0	0.1				
LaSH₆	63 Cmcm	300.0	35.0	0.1				
PH₃	63 Cmcm	100.0	13.0	0.13				
PH₃	12 C2/m	200.0	67.0	0.13				
UH₂₅	225 Fm̅3m	100.0	58.58	0.1				
UH₂₀	225 Fm̅3m	200.0	21.22	0.1				
UH₂₀	225 Fm̅3m	300.0	11.93	0.1				
UH₂₀	225 Fm̅3m	400.0	9.5	0.1				
UH₂₀	225 Fm̅3m	550.0	15.11	0.1				
S₀₂Si₅₃₈₃	166 R5m	200.0	110.0	0.1				
S₀₃Se₅₃₈₃	156 P₃m1	200.0	54.0	0.1				
S₀₅Se₅₃₈₃	166 R5m	200.0	99.0	0.1				
S₀₆Se₅₃₈₃	166 R5m	200.0	184.0	0.1				
TaH₂	14 P2₁/₃c	100.0	23.0	0.1				
BH₅	15 C2/c	250.0	37.31	0.1				
BH₂₅	15 C2/c	300.0	34.24	0.1				
BH₂₅	15 C2/c	350.0	33.31	0.1				
BH₂₅	15 C2/c	400.0	28.03	0.1				
BH	191 P6/mmm	250.0	4.522	0.1				
NiH₂	225 Fm̅3m	25.0	0.01	0.1				
Al₃H	156 P₃m1	195.0	3.5	0.13				
Al₃H	148 R3	195.0	0.6	0.13				
Al₃H	150 P321	195.0	0.6	0.13				
Al₃H	10 P2/m	195.0	1.2	0.13				
Al₃H	5 C2	195.0	0.4	0.13				
AlH	166 R5m	180.0	57.9	0.13				
AlH	166 R5m	215.0	45.4	0.13				
AlH	166 R5m	335.0	21.2	0.13				
AlH₂₅	223 Pm₃n	105.0	28.5	0.13				
AlH₂₅	223 Pm₃n	150.0	7.7	0.13				
AlH₂₅	223 Pm₃n	210.0	0.3	0.13				
AlH₂₅	223 Pm₃n	290.0	0.0	0.13				
HBS	40 Ama2	200.0	0.0	0.1				
HBS	40 Ama2	300.0	0.8	0.1				
HBS	40 Ama2	400.0	1.9	0.1				
Ca₅BH₃	38 Amm2	300.0	7.0	0.1				
CaBH₄	46 Ima2	300.0	0.1	0.1				
CaBH₅	194 P6mmc	300.0	0.1	0.1				
CaBH₆	205 Pa₃	100.0	114.0	0.1				
CaBH₆	205 Pa₃	200.0	117.0	0.1				
CaBH₆	205 Pa₃	300.0	119.0	0.1				
Ca₅B₂H₇	6 Pm	200.0	63.0	0.1				
Ca₅B₂H₇	6 Pm	300.0	89.0	0.1				
TiPH₃	156 P₃m1	150.0	0.0	0.1				
TiPH₃	166 R5m	250.0	2.22	0.1				
TiPH₃	38 Amm2	250.0	30.51	0.1				
TiPH₄	166 R₃m	100.0	51.57	0.1				
TiPH₄	166 R₃m	200.0	38.09	0.1				
TiPH₄	166 R₃m	250.0	62.36	0.1				
TiPH₄	166 R₃m	300.0	57.06	0.1				
TiPH₅	119 I₄m2	250.0	126.06	0.1				
TiPH₆	8 Cm	250.0	40.89	0.1				
TiPH₇	8 Cm	250.0	51.32	0.1				
TiPH₈	12 C₂m	250.0	66.67	0.1				
TiPH₈	12 C₂m	300.0	54.77	0.1				
BeCH₄	2 P1̅	5.0	6.0	0.1				
BeCH₄	2 P1̅	60.0	8.5	0.1				
BeCH₄	2 β-P1̅	20.0	13.3	0.1				
BeCH₄	2 α-P1̅	40.0	18.1	0.1				
BeCH₄	2 α-P1̅	80.0	28.9	0.1				
Zr₂H₁₅	220 I43d	40.0	0.8	0.1				
ZrH₃	223 Pm₃n	10.0	16.6	0.1				
ZrH₃	223 Pm₃n	20.0	13.8	0.1				
No.	Compounds	Space Group	Temperature (K)	Volume (Å³)	Density (g/cm³)			
-----	------------	-------------	----------------	-------------	----------------			
501	ZrH₃	$Pm\bar{3}m$	40.0	12.4	0.1			
502	TiH₂	$C2/m$	350.0	93.6	0.1			
503	TiH₂	$C2/m$	250.0	103.1	0.1			
504	TiH₂	$P\bar{1}$	200.0	35.0	0.1			
505	TiH₂	$P\bar{1}$	150.0	4.8	0.1			
506	TiH₄	$I4/mmm$	350.0	131.2	0.1			
507	TiH₄	$Fddd$	350.0	21.2	0.1			
508	TiH₄	$I4$	350.0	2.4	0.1			
509	TiH₄	$I4$	50.0	5.4	0.1			
510	TiH₄	$I4/m$	300.0	4.0	0.1			
511	TiH₃	$Ibam$	150.0	2.1	0.1			
512	TiH₃	$Ibam$	250.0	4.7	0.1			
513	TiH₂	$Cmma$	50.0	7.1	0.1			
514	TiH₂	$Cmma$	250.0	5.8	0.1			
515	TiH₂	$I4/mmm$	50.0	0.0	0.1			
516	TiH₂	$I4/mmm$	350.0	22.7	0.1			
517	TiH₂	$I4/mmm$	50.0	5.4	0.1			
518	LiP₂H₄	$R3\bar{3}$	230.0	143.0	0.1			
519	LiP₂H₄	$R3\bar{3}$	300.0	112.0	0.1			
520	LiP₂H₄	$R3\bar{3}$	400.0	84.0	0.1			
521	LiP₂H₄	$R3\bar{3}$	400.0	90.0	0.1			
522	BeP₂H₄	$R3\bar{3}$	400.0	139.0	0.1			
523	NaP₂H₄	$R3\bar{3}$	300.0	0.99	0.1			
524	LiBH₂	$Cmcm$	400.0	2.53	0.1			
525	LiBH₂	$Cmcm$	500.0	9.12	0.1			
526	LiBH₂	$Cmcm$	600.0	10.0	0.1			
527	LiBH₂	$Cmcm$	100.0	98.0	0.1			
528	CSH₇	Cm	150.0	152.0	0.1			
529	CSH₇	$R3m$	200.0	137.0	0.1			
530	CSH₇	$Pmna$	150.0	122.0	0.1			
531	CSH₇	$Pmna$	200.0	123.0	0.1			