SYNTHESIS OF Fe DOPED LiMn$_2$O$_4$ CATHODE MATERIALS FOR Li BATTERY BY SOLID STATE REACTION

SYTEZA MATERIAŁU KATODOWEGO LiMn$_2$O$_4$ DOMIESZKOWANEGO Fe METODĄ REAKCJI W FAZIE STAŁEJ DO ZASTOSOWANIA W BATERIACH Li

LiFe$_{0.1}$Mn$_{0.9}$O$_4$ is expected as a cathode material for the rechargeable lithium-ion batteries. LiMn$_2$O$_4$ has been received attention because this has advantages such as low cost and low toxicity compared with other cathode materials of LiCoO$_2$ and LiNiO$_2$. However, LiMn$_2$O$_4$ has some problems such as small capacity and no long life. LiMn$_2$O$_4$ is phase transformation at around human life temperature. One of the methods to overcome this problem is to stabilize the spinel structure by substituting Mn site ion in LiMn$_2$O$_4$ with transition metals (Al, Mg, Ti, Ni, Fe, etc.). LiFe$_{0.1}$Mn$_{0.9}$O$_4$ spinel was synthesized from Li$_2$CO$_3$, Fe$_2$O$_3$, and MnO$_2$ powder. The purpose of this study is to report the optimal condition of Fe doped LiFe$_{0.1}$Mn$_{0.9}$O$_4$. Li$_2$CO$_3$, Fe$_2$O$_3$, and MnO$_2$ mixture powder was heated up to 1173 K by TG-DTA. Li$_2$CO$_3$ was thermal decomposed, and CO$_2$ gas evolved, and formed Li$_2$O at about 800 K. LiFe$_{0.1}$Mn$_{0.9}$O$_4$ was synthesized from a consecutive reaction Li$_2$O, Fe$_2$O$_3$ and MnO$_2$ at 723 ~1023 K. Active energy is calculated to 178 kJ mol$^{-1}$ at 723 ~1023 K. The X-ray powder diffraction pattern of the LiFe$_{0.1}$Mn$_{0.9}$O$_4$ heated mixture powder at 1023 K for 32 h in air flow was observed.

Keywords: Doped LiMn$_2$O$_4$, Lithium ion battery, cathode material, solid state reaction

1. Introduction

In recent years, lithium-ion batteries (LIB) have been used as power sources for cells of phone, computer, camera, hybrid electric vehicle (HEV) and electric vehicle (EV) [1-3]. Particularly, practical application of automotive LIB is a great deal of attention because it can contribute to global warming by suppressing the emission of CO$_2$ and depletion problem of oil. Energy density is most important in the performance of the rechargeable battery. Energy density of nickel-cadmium battery and lead-acid battery is about 40-50 W h kg$^{-1}$ although LIB is about 140 W h kg$^{-1}$ [2]. In the future, improvement of safety in use and thorough reduction of production cost is required in order to expand the demand. LiMn$_2$O$_4$ is a promising material for the cathode material for LIB because this has several advantages such as low cost, low toxicity, rich resource and high safety compared with other cathode materials such as LiCoO$_2$ and LiNiO$_2$ [4]. However, the major problem with LiMn$_2$O$_4$ is low capacity and low life with phase transformation at around room temperature [5]. One of the methods to overcome this problem is to stabilize the spinel structure by substituting Mn in LiMn$_2$O$_4$ with transition metals (Al, Mg, Ti, Ni, Fe etc.) [6-11]. Also, improving synthesis process is important in order to reducing manufacturing cost. Controlling atmosphere, heating temperature and heating time in the solid state reaction is a factor that contribute to the cost reduction [12]. In this study, we report the solid state reaction method that is easiest synthesis method. The purpose of this study is to report optimal synthesis condition of Fe doped LiFe$_{0.1}$Mn$_{0.9}$O$_4$.

1. Corresponding author: m1471515@ems.u-toyama.ac.jp
2. GRADUATE SCHOOL OF SCIENCE AND ENGINEERING FOR EDUCATION, UNIVERSITY OF TOYAMA
3. GRADUATE SCHOOL OF SCIENCE AND ENGINEERING FOR RESEARCH, UNIVERSITY OF TOYAMA
4. DOI: 10.1515/amm-2015-0236
2. Experimental

Li$_2$CO$_3$, Fe$_2$O$_3$ and MnO$_2$ powder were used as starting materials to synthesize LiFe$_{1-x}$Mn$_x$O$_{4}$. Those powder weighed at a predetermined molar ratio (Li:Fe:Mn = 1:0.1:1.9), and mixed for 1 h in a mortar with pestle.

Thermogravimetric analysis (TG) and differential thermal analysis (DTA) were performed to analyze the weight loss temperature in a TG-DTA system (2000s, NETZCH JAPAN) at a heating rate of 5 K min$^{-1}$ from 25 K to 1173 K with air flow rate of 100 ml min$^{-1}$. We decided the heat treatment temperature of the mixed powder from TG-DTA measurements. Mixture powder was heated at several temperatures for 8 h in furnace.

We carried out TG analysis at a heating rate of 20 K min$^{-1}$ with Air flow rate of 25-150 ml min$^{-1}$ in order to investigate the effect of gas flow rate on the thermal decomposition of Li$_2$CO$_3$. Li$_2$CO$_3$ and Mn$_{1.9}$Fe$_{0.1}$O$_3$ powder weighed at a predetermined molar ratio (Li$_2$CO$_3$:Mn$_{1.9}$Fe$_{0.1}$O$_3$ = 1:2) for starting material.

The crystal structure of the samples was characterized by X-ray powder diffraction (XRD-6100 Shimazu).

3. Results and discussion

The TG-DTA curve of the Li$_2$CO$_3$-Fe$_2$O$_3$-MnO$_2$ mixture powder at 5 K min$^{-1}$ heating rate was shown in Fig. 1. On the TG curves, a weight loss can be observed from 298 K to 973 K. It can be estimated to be a CO$_2$ was released by thermal decomposition of Li$_2$CO$_3$ and a O$_2$ was released by the synthesis of LiFe$_{0.1}$Mn$_{1.9}$O$_4$. Mixture powder was heated at 600-1023 K for 8 h from this result of measurements.

![Fig. 1. TG-DTA curves of Li$_2$CO$_3$-Fe$_2$O$_3$-MnO$_2$ powder at 5 K min$^{-1}$ heating rate](image)

The XRD patterns of the (a) mixture powder, (b) heated at 600 K, (c) 873 K, (d) 923 K, (e) 973 K and (f) 1023 K are shown Fig. 2. Fig. 2(b) can be confirmed peaks of the same starting materials in Fig. 2(a). Fig. 2(c) can be observed peaks of starting materials, intermediate phase Mn$_{1.9}$Fe$_{0.1}$O$_3$ and final phase LiFe$_{0.1}$Mn$_{1.9}$O$_4$. Furthermore, with the increasing of heat treatments temperature, decrease of impurity peaks and increase of LiFe$_{0.1}$Mn$_{1.9}$O$_4$ peak can be confirmed. However, the peak of Mn$_{1.9}$Fe$_{0.1}$O$_4$ at 2θ = 44.8° in (f) was slightly confirmed, it was not possible to obtain a single phase of LiFe$_{0.1}$Mn$_{1.9}$O$_4$ finally.

![Fig. 2. XRD patterns of the heated Li$_2$CO$_3$-Fe$_2$O$_3$-MnO$_2$ powder at several temperatures for 8 h. (a) mixture powder, (b) 600 K, (c) 873 K, (d) 923 K, (e) 973 K and (f) 1023 K](image)

Next, we changed heat treatment time for 1-32 h at 1023 K in order to investigate the influence of heat treatment time. Fig. 3 shows XRD patterns of heated mixture powder at 1023 K for (a) 1 h, (b) 2 h, (c) 4 h, (d) 8 h, (e) 16 h and (f) 32 h. Fig. 3(a) indicated peaks of intermediate phase Mn$_{1.9}$Fe$_{0.1}$O$_3$ and finally phase LiFe$_{0.1}$Mn$_{1.9}$O$_4$. With the increasing of heat treatments time, decrease of intermediate phase peak and increase of LiFe$_{0.1}$Mn$_{1.9}$O$_4$ peak can be confirmed. Finally, as a result of the mixture powder heated at 1023 K for 32 h, impurity peaks were disappeared and a single phase of LiFe$_{0.1}$Mn$_{1.9}$O$_4$ was obtained. The lattice parameters was calculated to 8.247, 8.234(3), 8.231(2) and 8.225(8) Å for LiMn$_{2}$O$_{4}$ (ICDD 88-1030) and Fig. 3(d)-(f), respectively. The lattice parameter decreases from 8.247 to 8.225(8) Å by Fe doped. It is considered that this small difference in lattice parameter is due to difference of the ion radius of Mn and Fe.

![Fig. 3. XRD patterns of heated Li$_2$CO$_3$-Fe$_2$O$_3$-MnO$_2$ powder at different time; (a) 1 h, (b) 2 h, (c) 4 h, (d) 8 h, (e) 16 h, (f) 32 h at 1023 K](image)
Fig. 4 shows TG curves of the Li$_2$CO$_3$-Mn$_{1.9}$Fe$_{0.1}$O$_3$ mixture powder at a heating rate of 20 K min$^{-1}$ with Air flow rate of (a) 25 ml min$^{-1}$, (b) 50 ml min$^{-1}$, (c) 100 ml min$^{-1}$ and (d) 150 ml min$^{-1}$. It can be seen reach more quickly of theoretical decrement of CO$_2$ (0.99 mg) with increasing of Air flow rate. However, it can’t be confirmed difference in Fig. 4(c) and (d). Therefore, the optimal gas flow rate is 100 ml min$^{-1}$ in this study. In addition, the activation energy was 178 kJ mol$^{-1}$ at air flow rate 100 ml min$^{-1}$.

In summary, the optimal condition to achieve reduction of synthesis cost of LiFe$_{0.1}$Mn$_{1.9}$O$_4$ was determined, that is heat treatment at 1023 K for 32 h in Air flow rate 100 ml min$^{-1}$.

The weight loss during synthesis progress of LiFe$_{0.1}$Mn$_{1.9}$O$_4$ was due to thermal decomposition of Li$_2$CO$_3$, formation of intermediate phase Mn$_{1.9}$Fe$_{0.1}$O$_3$ and formation of LiFe$_{0.1}$Mn$_{1.9}$O$_4$ spinel.

4. Conclusions

The XRD pattern of the Li2CO3-Fe2O3-MnO2 mixture powder heated at 1023 K for 8 h was observed intermediate phase Mn1.9Fe0.1O3 at 2θ = 44.8°, it was disappear when heated at 1023 K for 32h.

It could not be confirmed difference of weight loss speed when Air gas flow rate was increased more than 100 ml min$^{-1}$.

Therefore, the optimal condition during synthesis of Fe doped LiFe$_{0.1}$Mn$_{1.9}$O$_4$ spinel cathode material by solid state reaction is heated at 1023 K for 32 h in Air flow rate 100 ml min$^{-1}$.

Acknowledgements

The author is grateful for all support given by Mr.Yamada, Mrs.Hirata and Mrs.Yakumo belong to Center for Instrumental Analysis, University of Toyama.

REFERENCES

[1] E. Tamura, NTS, Next Generation of Rechargeable Lithium Battery, Japan, 2003.
[2] T. Kudo, Uchida Rokakuho, Science of Lithium Ion Battery, Japan, 2010.
[3] Xianyan Zhou et al., Vacuum 99, 49-55 (2014).
[4] Mesfin A. Kebede et al., Sustainable Energy Technologies and Assessments 5, 44-49 (2014).
[5] Xifei Li, Youlong Xu, Chunlei Wang, Journal of Alloys and Compounds 479, 310-313 (2009).
[6] Ze Yang, Jung-Hyun Kim, Yan Wu, Guo-Long Li, Yun-Hui Hang, Electrochimica Acta 117, 76-83 (2014).
[7] T. Kakuda, K. Uematsu, K. Toda, M. Sato, Jurnal of Power Sources 167, 499-503 (2007).
[8] Gui-Ming Song, Wen-Jiang Li, Yu Zhou, Materials Chemistry and Physics 87, 162-167 (2004).
[9] Hyun Joo Bang, V.S. Donepudi, Jai Prakash, Electrochimica Acta 48, 443-451 (2002).
[10] X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Jornal of Alloys and Compounds 509, 3623-3626 (2011).
[11] Bin Chen et al., Int. J. Electrochem. Shi. 7, 6453-6464 (2012).
[12] T.Y.S. Panca Putra, M. Yonemura, S. Torii, T. Ishigaki, T. Kamiyama, Solid State Ionics 262, 83-87 (2014).