Geographical disparities in access to hospital care in Ontario, Canada: a spatial coverage modelling approach

Erjia Ge, Min Su, Ruiling Zhao, Zhiyong Huang, Yina Shan, Xiaolin Wei

ABSTRACT

Objectives Previous studies on geographical disparities in healthcare access have been limited by not accounting for the healthcare provider’s capacity, a key determinant of supply and demand relationships.

Design This study proposed a spatial coverage modelling approach to evaluate disparities in hospital care access using Canadian Institute for Health Information data in 2007.

Setting This study focuses on accessibility of inpatient and emergency cares at both levels of individual hospital and the administrative regions of Local Health Integration Network (LHIN) levels.

Measures We integrated a set of traffic and geographical data to precisely estimate travel time as a measure of the level of accessibility to the nearest hospital by three scenarios: walking, driving and a combination of the both. We estimated population coverage rates, using hospital capacities and population in the catchments, as a measure of the level of the healthcare availability. Hospital capacities were calculated based on numbers of medical staff and beds, occupation rates and annual working hours of healthcare providers.

Results We observed significant disparities in hospital capacity, travel time and population coverage rate across the LHINs. This study included 25 teaching and 148 community hospitals. The teaching hospitals had stronger capacities with 489.209 inpatient and 130.773 emergency patients served in the year, while the population served in community hospitals were 2.64 times higher. Compared with north Ontario, more locations in the south could reach to hospitals within 30 min irrespective of the travel mode. Additionally, Northern Ontario has higher population coverage rates, for example, with 42.6~46.9% for inpatient and 15.7~44% for emergency cares, compared with 2.4~34.7% and 0.35~14.6% in Southern Ontario, within a 30 min catchment by driving.

Conclusion Creating a comprehensive, flexible and integrated healthcare system should be considered as an effective approach to improve equity in access to care.

INTRODUCTION

Healthcare is an important determinant of health and well-being. The 1978 Alma-Ata Declaration created a healthcare revolution that embodied the principles of equity and social justice, with the goal of improving universal and equal access to healthcare worldwide. However, there remain many challenges to achieving ‘Health for All’. Health systems play major roles in widening health inequities. According to the inverse care law, the availability of good quality medical care tends to be inversely related to the need for it.

Access to healthcare services is multidimensional. According to Penchansky and Thomas’s theory, there are five dimensions: (1) Accessibility indicates physical distance or travel time between the healthcare providers’ site and the user; (2) Availability reflects the opportunity to access the right type of healthcare services when needed; (3) Accommodation refers to the relationships between how supply resources are organised to accept clients and the clients’ ability to accommodate these factors and clients’ perception of their appropriateness; (4) Affordability describes the relationships between the price of services and the willingness and ability of users to pay for those services, as well as protection from financial consequences.
of health expenses; and (5) Acceptability reflects the responsiveness of healthcare providers to the social and cultural expectations of individual users and communities. Hospitals, clinics and other healthcare facilities are in constant demand regardless of their geographical settings (for example, urban or rural). The location of healthcare providers is vital to ensure that people have access to primary and secondary care, emergency medicine, preventive care, diagnostics and testing, surgery, psychiatry, public health and other types of healthcare. Proximity and access have been shown to have a strong association with service utilisation.\(^5\)\(^6\) In this study, we focus on the first two dimensions as a starting point to uncover hospital care access.

In terms of healthcare system performance, the spatial elements of accessibility and availability can be converted to accessibility coverage and availability coverage. Accessibility coverage describes how physically accessible resources are for the population.\(^7\) Travel time is recommended by the WHO to assess geographical accessibility. For accessibility coverage, the maximum capacity of the service is determined by the number of people who can reach and use the facilities. Availability coverage refers to what resources are available and in what amount the service is delivered. The availability of resources limits the maximum capacity of the service and thus determines the total service that can be provided to the population. Combining accessibility and availability coverages enables us to define spatial coverage, which simultaneously considers the location and maximum coverage capacity of healthcare facilities, the geographical distribution of the population, the landscape through which the patient needs to cross to reach the health facility and the transportation mode.\(^8\) Further, this method was developed as a standard model, the AccessMod,\(^9\) supported by WHO and is currently used in the studies of access to emergency hospital care in sub-Saharan Africa,\(^10\) primary healthcare network in the Western Province of Rwanda\(^11\) and geographical accessibility to healthcare and malnutrition in Rwanda.\(^12\)

One objective of 2004 Canadian Health Act is “to protect, promote, and restore the physical and mental well-being of Canadian residents and to facilitate reasonable access to health services without financial or other barriers.” However, the healthcare system underwent a series of unprecedented changes in the 1990s as the federal government reduced its financial support to the provinces, which caused hospital closures and medical insurance reductions.\(^13\) There are concerns about whether healthcare access would decline alongside the limited medical resources.\(^14\) Although the Canadian government continues to implement plans for healthcare reform, a nationwide study indicates that disparities of healthcare access are aggregated in urban areas, especially in socio-economically disadvantaged neighbourhoods.\(^5\)

In Ontario, hospital care, including inpatient and emergency care, is publicly funded. According to federal legislation, all residents should have reasonable access to these services.\(^15\) Based on the model of shifting hospital care to primary care, Ontario has cut 18 000 hospital beds and staff in the last 30 years and has substantially reduced its funding for public hospitals.\(^16\) According to Canadian Institute for Health Information (CIHI) data, Ontario has 2.3 hospital beds and 1.4 acute beds per 1000 people. This figure is lower than the average of other provinces with 3.5 beds per 1000 people in 2019. The resource shortage would easily overload Ontario hospitals in densely populated areas where most hospitals regularly operate at 100% of their capacity or greater, even though the widely accepted standard is around 85%.\(^17\) However, variation in supply exists at the Local Health Integration Network (LHIN) level. The numbers of physicians and specialists per 100 000 people can vary widely at 53.9 and 127.3, respectively, in low-supply LHINs to 451.8 and 308.0, respectively, in Toronto Central, a high-supply LHIN.\(^18\)

Rickard and his colleagues used travel time to evaluate geographical accessibility of primary care for neighbourhoods in rural and Northern Ontario, where population of residents is less than 30 000.\(^19\) The study found that 97.8% residents in these neighbourhoods could reach the nearest emergency department in 30 min by car. However, this result did not consider the supply factor. Green and the team used two-step floating catchment area (2SFCA) method to assess geographical accessibility of primary care physicians in Ontario\(^20\) by calculating the ratio of healthcare facilities within a catchment area defined by travel time. Although this method has been commonly used in healthcare accessibility studies,\(^21\)\(^22\)\(^23\) it does not take the healthcare provider’s capacity into account in the assessment. Additionally, 2SFCA does not provide the estimates for population coverage rate in the predefined catchment area, which is crucial for policymakers. Given on these critical methodological gaps, we proposed a geospatial approach by integrating travel times and population coverages to assess disparities in hospital care access. Specifically, this study aims to (1) explore geographical disparities of travel times to the nearest hospital by walking, driving and the mixture of both travel modes; and (2) estimate disparities of hospital coverage rates in the North and South Ontario, and across the 14 different LHINs.

METHODS

Settings

In this study, we applied an ecological design. We aggregated hospital and roads and a series geographical data to assess the disparities in access to hospital across multiple scales in geography, including the individual (250×250 metres pixel), regional (North and South) and LHINs levels.

Data

Hospital service capacity

All teaching and community hospitals in Ontario were included in the geospatial accessibility analysis. Locations
In this study, we categorized hospitals into teaching and community hospitals (also called non-teaching hospitals). Community hospitals were further defined as small, medium or large based on their annual numbers of weighted cases or inpatient days. A large community hospital has at least 8000 inpatients, more than 10,000 weighted cases or at least 50,000 inpatient days per year; a medium community hospital provides care for at least 2000 weighted cases per year and 10,000 inpatient days per year; and a small community hospital provides care for less than 2000 weighted cases.

Geographical accessibility

In this study, we precisely calculated travel times based on the use of different roads, travel speeds on different land cover and land use classes for three different travel modes: walking, driving and a mixture of both. In Scenario 1, patients visit the nearest hospital by driving.

Table 1: Statistical summary for inpatient and emergency care, stratified by the four types of hospitals in Ontario, 2016–2017

Type	Count	Average hospital stay (days)	Average occupancy rate	Total population served	Count	Average acute care beds	Average number of acute stays	Average ED visits	Total population served
Teaching hospitals	25	6 (2)	93.4% (7.3%)	489,209	26	307 (149)	155,977 (10,113)	590,577 (23,379)	130,773
Large community hospitals	46	5 (1)	90.6% (5.9%)	221,719	46	198 (128)	14,342 (9,929)	67,881 (37,619)	150,312
Medium community hospitals	45	5 (2)	83.8% (8.8%)	245,046	43	63 (31)	3819 (2302)	30,490 (13,501)	67,516
Small community hospitals	57	10 (5)	71% (15.4%)	929,589	57	77 (208)	672 (476)	11,423 (7629)	25,295

ED, emergency department.
This is a predominant form of transportation in rural regions.25 The driving speed was determined by maximum road speed limits. Scenario 2 assumes that patients visit the nearest hospital by walking, which is commonly applicable in central or downtown areas. The average walking speed on flat surface was 5 km per hour as suggested in the modelling.21 Scenario 3 considers patients who walk to the nearest parking area and continue travelling with a car. This mixed transportation mode is common for people living in suburban areas.27 We set the three maximum travel time limits, which were 30, 60 and 120 min. We estimated the geographical accessibility to the nearest hospitals by applying the three predefined maximum travel time limits to each of three travel scenarios.

We calculated population coverage rates for each hospital in terms of its location, capacity and catchment population. According to Doherty,26 hospital capacities can only be served by one hospital.9 Using this approach, we calculated the population coverage rates of inpatient and emergency care for each hospital with respect to the three travel scenarios.

Lastly, we implemented zonal analysis to assess geographical disparities in population coverages by LHINs, which assumes patients could seek hospital care only within the LHINs where they live. Thus, we calculated the coverage rates for inpatient and emergency care, separately, for each LHIN based on the total population within their jurisdictional boundaries.

RESULTS
Geographical disparities in estimated travel times
We included 173 hospitals in the study, which included 25 teaching and 148 community hospitals. Except for one teaching hospital and two community hospitals without emergency care, all hospitals offered both inpatient and emergency care. In 2017, the teaching hospitals served over 489,000 inpatient and 130,000 emergency cases. The number of inpatient and emergency cases served in community hospitals was 2.64 times larger than that in teaching hospitals (table 1). Geographically, these hospitals are unevenly distributed with teaching and large community hospitals aggregating in south urban LHINs, such as Mississauga Halton, Toronto Central, Central and Central East, and only a few medium and small hospitals in rural LHINs in Northern Ontario (figure 1).

We estimated travel times from each location to their nearest hospital by the transportation modes of driving, walking and the mixture of both within the maximum travel times of 30, 60 and 120 min, respectively, in the 250×250-metre raster maps (figure 2). Regardless of the transportation mode, patients living in Southern Ontario had better geographical accessibility to hospitals. Patients in the west of Southern Ontario had shorter travel times to the nearest hospital than those in the east. Further, the mixture of driving and walking resulted in shorter travel times to the nearest hospital than the other two travel modes (figure 2).

Geographical disparities in hospital coverage rates
The estimated population coverage rates are presented for inpatient and emergency care, separately, in table 2. We observed that the coverage rates decreased as the catchment areas defined by the maximum travel times increased, regardless of the travel method. For example, the average coverage rates of teaching hospitals for inpatient care decreased from 22.2% to 8.33% in the catchments defined by 30 to 120 min of driving. In contrast to the other three types of hospitals, medium community cover everyone in the catchment. The model uses the least-cost algorithm, in which the location of hospital is selected as an origin and the maximum travel times of 30, 60 and 120 min are used as the limits for determining the extension of the corresponding catchment area. The model assumes that Ontario is a closed system and patients can only be served by one hospital.9 Using this approach, we calculated the population coverage rates of inpatient and emergency care for each hospital with respect to the three travel scenarios.
hospitals’ inpatient care tended to have the highest population coverage rates, ranging from 9.53% to 99.9%, regardless of the catchment size. Compared with inpatient care, emergency care demonstrated a lower coverage rate, except in small community hospitals (table 2).

The zonal analysis results also suggested geographical disparities in population coverage rates between LHINs. We observed higher coverage rates of inpatient care in rural northern LHINs, including North East, North West and North Simcoe Muskoka, but lower rates in urban southern LHINs, including Toronto Central, Central and Mississauga Halton. We observed similar geographical disparities in the coverage rates of emergency care (table 2).

Lastly, the coverage rates calculated based on hospital capacities and the total population of LHIN’s jurisdictions are presented in figure 3. We observed that the coverage rates in northern LHINs were slightly higher than in southern LHINs. The highest coverage rates were found in less densely populated LHINs, such as Champlain in Southeastern Ontario. The inpatient and emergency hospital care offered in Toronto Central LHIN had better population coverages than other urban LHINs.

DISCUSSION

Many previous studies have contributed important findings on geographical access to healthcare. However, they are less successful in interpreting inequities in healthcare access due to the failure to account for healthcare provider capacity when evaluating the relationship between provider (supply) and population (demand).

In this study, we estimated travel times (as a measure of the level of geographical accessibility) to the nearest hospital using three travel modes (walking, driving and a mixture of both), accounting for roads, speed limits and various geographical factors, including elevation, land use, rivers and lakes. We calculated population coverage rates (as a measure of the level of healthcare availability), accounting for hospital locations, capacities and population in catchments. This study is the first to integrate the
Table 2

The average population coverage rates (SD) of inpatient and emergency care within the catchments of 30, 60 and 120 min by driving, walking and the mixture of the both travel modes, respectively, stratified by hospitals and LHINs. Regardless of hospital types and travel modes, the coverage rates decrease with the travel times increase. For both inpatient and emergency care, northern LHINs demonstrate higher coverage rates than those in Southern LHINs.

By hospital type	Inpatient	Emergency care							
	Count of hospitals	Driving	Walking	Mixture	Driving	Walking	Mixture		
Inpatients	30 mins	60 mins	120 mins	30 mins	60 mins	120 mins	30 mins	60 mins	120 mins
Teaching hospitals	25	22.2 (34.5)	18.3 (17.8)	14.7 (12.6)	6.50 (14.2)	20.6 (22.4)	14.7 (12.6)	6.50 (14.2)	20.6 (22.4)
Large community hospitals	46	20.4 (29.8)	17.4 (24.0)	13.6 (21.6)	3.71 (10.1)	10.2 (8.9)	6.30 (11.4)	2.80 (7.42)	1.45 (1.14)
Small community hospitals	45	50.7 (33.9)	32.7 (28.2)	23.4 (24.3)	11.6 (14.6)	5.0 (6.9)	2.8 (3.2)	1.4 (1.4)	0.7 (0.7)
Medium community hospitals	57	20.5 (30.3)	12.4 (25.2)	6.50 (14.2)	2.80 (7.42)	1.45 (1.14)	0.7 (0.7)	0.35 (0.31)	0.18 (0.18)
Small community hospitals	48	7.2 (5.9)	5.6 (5.0)	4.1 (3.5)	2.8 (2.2)	1.5 (1.2)	0.8 (0.7)	0.4 (0.4)	0.2 (0.2)
Emergency care	30 mins	60 mins	120 mins	30 mins	60 mins	120 mins	30 mins	60 mins	120 mins
Teaching hospitals	26	5.71 (19.1)	1.28 (13.6)	34.8 (33.7)	13.6 (21.6)	3.71 (10.1)	10.2 (8.9)	6.30 (11.4)	2.80 (7.42)
Large community hospitals	46	4.93 (15.1)	1.27 (13.7)	5.99 (13.8)	4.38 (14.8)	0.49 (1.50)	1.03 (2.21)	0.49 (1.50)	1.03 (2.21)
Small community hospitals	45	20.5 (30.3)	12.4 (25.2)	6.50 (14.2)	2.80 (7.42)	1.45 (1.14)	0.7 (0.7)	0.35 (0.31)	0.18 (0.18)
Medium community hospitals	57	28.4 (30.4)	16.1 (23.7)	8.2 (12.4)	4.56 (20.5)	2.8 (3.2)	1.4 (1.4)	0.7 (0.7)	0.35 (0.31)

By the LHINs

Inpatient	Count of hospitals	Driving	Walking	Mixture							
Inpatients	1 - Erie St. Clair	4	34.7 (10.6)	16.5 (14.0)	7.9 (12.9)	100 (0.00)	100 (0.00)	84.5 (24.6)	28.5 (11.9)	13.3 (12.1)	6.12 (8.87)
2 - South West	31	6.22 (15.1)	1.25 (31.3)	0.38 (0.42)	7.67 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
3 - Waterloo Wellington	7	2.81 (2.8)	1.38 (2.7)	1.08 (2.9)	100 (0.00)	93.9 (34.7)	70.7 (36.3)	19.5 (27.4)	5.0 (7.4)	1.0 (2.0)	0.1 (0.2)
4 - Hamilton Niagara Haldimand Brant	17	20.5 (20.5)	4.93 (19.1)	1.93 (5.4)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
5 - Central West	11	22.9 (26.8)	8.93 (23.9)	1.12 (2.8)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
6 - Mississauga Halton	22	18.6 (24.8)	7.56 (12.2)	3.54 (5.0)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
7 - North East	11	4.69 (4.0)	2.65 (4.1)	1.12 (2.8)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)

Emergency care

Count of hospitals	Driving	Walking	Mixture								
Inpatients	1 - Erie St. Clair	4	7.58 (5.69)	1.83 (2.13)	1.39 (0.35)	100 (0.00)	100 (0.00)	94.5 (24.6)	28.5 (11.9)	13.3 (12.1)	6.12 (8.87)
2 - South West	29	6.22 (15.1)	1.25 (31.3)	0.38 (0.42)	7.67 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
3 - Waterloo Wellington	7	2.81 (2.8)	1.38 (2.7)	1.08 (2.9)	100 (0.00)	93.9 (34.7)	70.7 (36.3)	19.5 (27.4)	5.0 (7.4)	1.0 (2.0)	0.1 (0.2)
4 - Hamilton Niagara Haldimand Brant	17	20.5 (20.5)	4.93 (19.1)	1.93 (5.4)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
5 - Central West	11	22.9 (26.8)	8.93 (23.9)	1.12 (2.8)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
6 - Mississauga Halton	22	18.6 (24.8)	7.56 (12.2)	3.54 (5.0)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
7 - North East	11	4.69 (4.0)	2.65 (4.1)	1.12 (2.8)	86.5 (30.5)	84.6 (24.7)	7.0 (17.2)	1.3 (2.7)	0.7 (1.4)	0.3 (0.7)	0.1 (0.2)
Table 2 Continued

By hospital type	Count of hospitals	Count of hospitals	Driving 30mins	Driving 60mins	Driving 120 mins	Walking 30mins	Walking 60mins	Walking 120 mins	Mixture 30 mins	Mixture 60 mins	Mixture 120 mins
4 - Hamilton Niagara	15		8.56 (24.6)	1.74 (5.08)	0.15 (0.25)	81.7 (28.5)	52.0 (38.0)	31.0 (32.2)	5.04 (12.7)	1.19 (3.12)	0.12 (0.18)
Haldimand Brant											
5 - Central West	4		1.41 (1.67)	0.26 (0.13)	0.20 (0.12)	100 (0.00)	60.7 (26.6)	18.5 (8.71)	1.21 (1.31)	0.25 (0.13)	0.18 (0.11)
6 - Mississauga Halton	5		0.35 (0.05)	0.14 (0.06)	0.12 (0.05)	93.9 (13.7)	41.2 (13.8)	13.7 (7.94)	0.34 (0.05)	0.14 (0.05)	0.11 (0.04)
7 - Toronto Central	13		0.55 (0.78)	0.20 (0.15)	0.11 (0.04)	68.8 (35.4)	21.3 (26.0)	11.4 (26.7)	0.52 (0.71)	0.19 (0.14)	0.10 (0.04)
8 - Central	9		0.68 (1.14)	0.16 (0.07)	0.11 (0.06)	86.3 (21.2)	29.2 (14.9)	12.0 (11.7)	0.59 (0.91)	0.15 (0.07)	0.10 (0.05)
9 - Central East	10		13.05 (24.0)	2.87 (6.99)	0.21 (0.32)	99.6 (13.0)	61.9 (29.7)	36.2 (31.7)	7.56 (12.0)	1.73 (3.76)	0.17 (0.21)
10 - South East	8		9.07 (6.52)	1.50 (0.70)	0.27 (0.13)	94.4 (10.4)	54.8 (28.8)	32.7 (20.6)	6.14 (3.79)	1.08 (0.43)	0.22 (0.10)
11 - Champlain	22		14.6 (16.7)	6.01 (13.9)	1.78 (4.57)	95.1 (9.40)	59.3 (27.1)	40.7 (30.6)	9.10 (9.55)	3.39 (6.67)	1.08 (2.30)
12 - North Simcoe Muskoka	7		15.7 (10.6)	5.43 (5.97)	0.41 (0.51)	100 (0.00)	69.6 (28.1)	49.6 (32.6)	10.4 (5.79)	3.30 (3.22)	0.31 (0.36)
13 - North East	28		44.4 (32.3)	22.6 (21.5)	11.7 (13.8)	92.9 (14.0)	64.9 (30.1)	48.9 (30.3)	29.9 (24.4)	13.2 (10.2)	6.98 (8.22)
14 - North West	11		44.5 (30.7)	42.2 (31.1)	17.0 (12.1)	82.6 (32.8)	61.8 (35.4)	46.4 (30.4)	35.0 (31.6)	30.3 (26.9)	11.0 (7.40)

LHIN, Local Health Integration Network.
equal demands for hospital care in their catchments. However, the estimates could be more precise if detailed demographic data were available for the catchments. In future study, non-spatial factors, such as sociocultural barriers, socio-economic disadvantages and healthcare needs, should be included to facilitate a more sound and holistic examination of accessibility in public health and healthcare practice.

CONCLUSION
The identified significant geographical disparities in hospital capacity, travel time and population coverage rate suggest creating a comprehensive, flexible and integrated healthcare system should be considered to reduce the inequity in healthcare accesses.

Author affiliations
1 Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
2 School of Public Administration, Inner Mongolia University, Hohhot, Inner Mongolia, China
3 Division of Clinical Public Health, Institute of Health Policy and Evaluation, University of Toronto, Toronto, Ontario, Canada
4 Division of Biostatistics, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
5 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
6 Health Behavior Science, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada

Acknowledgements We would thank the Canadian Institute for Health Information (CIHI) for the provision of emergency healthcare and hospitalisation data and the Ontario Ministry of National Resource and Forestry (OMNRF) for the provision of roads and geographical data.

Contributors EG, MS and XW designed the study and collected the geographical and health administrative data. RZ and ZH conducted geospatial data analyses and modelling. EG, XW and YS interpreted the results and revised the manuscript for important intellectual contents. All authors read, offered interpretation and provided comments on the final draft on the manuscript.

Funding Financial support for this study was provided to EG, ZH, RZ and YS by the Canadian Institute of Health Research (CIHR) through an Operating Grant: Data Analysis Using Existing Databases and Cohorts – Healthy Cities Intervention Research Grant (DA4-170261, 2020–2022).

Disclaimer The opinions, results and conclusions reported in this paper are those of the authors and are independent from the funding source. The study sponsor had no role in the study design; collection, analysis or interpretation of data; report writing or review; approval of the manuscript; or the decision to submit for publication.

Map disclaimer The depiction of boundaries on this map does not imply the expression of any opinion whatsoever on the part of BMJ (or any member of its group) concerning the legal status of any country, territory, jurisdiction or area or of its authorities. This map is provided without any warranty of any kind, either express or implied.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not required.

Ethics approval The study was reviewed and approved by the University of Toronto Health Sciences Research Ethics Board. Informed consent was not required because this study relied on existing public health records rather than direct patient contact, and all health administrative data were aggregated by hospitals and verified by the Canadian Institute for Health Information (CIHI).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be obtained from a third party and are not publicly available. The hospital service data were obtained from the Canadian Institute for Health Information (CIHI). It could be accessible by reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID ids
Erilia Ge http://orcid.org/0000-0002-3622-3287
Yina Shan http://orcid.org/0000-0001-7574-6809
Xiaolin Wei http://orcid.org/0000-0002-3076-2650

REFERENCES
1 WHO. Primary health care: report of the International Conference on Primary Health Care, Alma-Ata, USSR, 6-12 September 1978. World Health Organization 1978. Available: https://apps.who.int/iris/handle/10665/39228 [Accessed 28 April 2019].
2 Walley J, Lawn JE, Tinker A, et al. Primary health care: making Alma-Ata a reality. Lancet 2006;372:1001–7.
3 Gwatkin DR, Bhuiya A, Victora CG. Making health systems more equitable. The Lancet 2004;364:1273–80.
The Ontario physician human resources data centre (OPHRDC). OPHRDC. Available: http://www.phhrdc.org/ [Accessed 6 January 2020].