Every noble work is at first impossible.

Thomas Carlyle

The quest for a therapeutic to ameliorate ischemic and traumatic brain injury is certainly a noble ideal, but, thus far, a futile endeavor. In the previous issue of Critical Care, Loetscher and colleagues [1] provided further evidence that argon may have therapeutic properties for neuronal toxicity by demonstrating protection against both traumatic and oxygen-glucose deprivation injury of organotypic hippocampal cultures in vitro. Their data are of interest as argon is more abundant, and therefore cheaper, than xenon (the latter of which is currently in clinical trials for perinatal hypoxic-ischemic brain injury; TOBYXe; NCT00934700). We eagerly await in vivo data to complement the promising in vitro data hailing argon neuroprotection.

Abstract

Certain noble gases, though inert, exhibit remarkable biological properties. Notably, xenon and argon provide neuroprotection in animal models of central nervous system injury. In the previous issue of Critical Care, Loetscher and colleagues provided further evidence that argon may have therapeutic properties for neuronal toxicity by demonstrating protection against both traumatic and oxygen-glucose deprivation injury of organotypic hippocampal cultures in vitro. Their data are of interest as argon is more abundant, and therefore cheaper, than xenon (the latter of which is currently in clinical trials for perinatal hypoxic-ischemic brain injury; TOBYXe; NCT00934700). We eagerly await in vivo data to complement the promising in vitro data hailing argon neuroprotection.

We recently reported that argon (75%) prevented neuronal injury from OGD in vitro but that the protection afforded was inferior to that of xenon [3]. Xenon has been shown to be neuroprotective in multiple models and species and has now entered clinical trials for neonatal hypoxic-ischemic brain injury (TOBYXe; NCT00934700) [4,5]. If argon is also to be exploited clinically, it too must undergo rigorous examination in different animal models, species, laboratories, and clinically relevant injury settings [6]. While at this stage argon fulfills some criteria, it would be imprudent, in the absence of in vivo data, to hail argon as the elusive neuroprotective agent.

Why has there been a cascade of studies exploring the clinical utility of noble gases [1-5,7,8]? Helium, neon, argon, krypton and xenon, the first five noble gases in the periodic table, contain a full outer shell of electrons, preventing the formation of covalent bonds under biological conditions; thus, they are chemically inert. Due to the uncharged and non-polar nature of their chemical composition, these gases are able to easily partition into the brain and are able to fit snugly into amphiphilic binding cavities within proteins [9]. Depending on the properties of the surrounding electrons, some of the noble gases can create an instantaneous dipole in the atom from a charged binding site, thereby promoting a biological effect, including induction of anesthesia [10]. Neon and helium are thought to create an unfavorable balance between binding energies and repulsive forces and therefore do not produce anesthesia and other biological effects.
In the case of xenon, there are several candidate molecules that may be capable of producing the cytoprotective properties, including the NMDA (N-methyl-D-aspartic acid) subtype of the glutamate receptor [11], the ATP-sensitive potassium channel [12], the two-pore potassium channel [13], and an as-yet-unidentified protein that is upstream of mTOR (mammalian target of rapamycin) [14]. A reduced ability to form induced dipoles with argon (due to its smaller size) may limit the number of available protein-binding sites when compared with xenon. Indeed, there are important pharmacodynamic differences between xenon and argon; in particular, xenon is an anesthetic at atmospheric pressure, argon is not [15]. Nonetheless, argon’s lack of sedative properties may actually be beneficial as it allows administration to patients with acute, focal neurological injury (such as stroke), who would not necessarily benefit from sedation. A second major difference involves costs and consequent ease of administration. Xenon’s cost necessitates administration through cumbersome recirculating and recycling systems; argon is substantially cheaper and thus may be feasibly administered through open circuits.

The development of the noble gases for neuroprotection seemed at first impossible. However, a decade of investigation of the effects of xenon has led to a clinical trial that may yet change clinical care of perinatal asphyxia. The findings of Loetscher and colleagues should encourage the pursuit of argon as a neuroprotective alternative/supplement to xenon. That would be a noble venture!

Abbreviation
OGD = oxygen-glucose deprivation.

Author details
1Department of Leukocyte Biology, National Heart and Lung Institute, Imperial College London, Exhibition Road, London SW7 2AZ.
2Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.
3Department of Anesthesia and Perioperative Care University of California, San Francisco, 521 Parnassus Avenue, Room C-450, San Francisco, CA 94143-0648, USA.

Competing interests
MM has received consultancy fees and funding from Air Products (Allentown, PA, USA) and Air Liquide Santé International (Paris, France) concerning the development of clinical applications for medical gases, including xenon. RDS has received consultancy fees from Air Liquide Santé International concerning the development of clinical applications for xenon. DM has interests for the development of clinical applications of argon.

Published: 22 February 2010

References
1. Loetscher PD, Rossaint J, Rossaint R, Weis J, Fries M, Fahlenkamp A, Ryang YM, Grottké O, Coburn M: Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care Med 2009, 37:1206.
2. Coburn M, Maze M, Franks NP: The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med 2008, 36:588-595.
3. Javad N, Rizvi M, Gu J, Adeyi O, Tao G, Maze M, Ma D: Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett 2009, 460:232-236.
4. Sanders RD, Ma D, Maze M: Xenon: elemental anaesthesia in clinical practice. Br Med Bull 2004, 71:115-135.
5. Ma D, Hessain M, Chow A, Arshad M, Battson RM, Sanders RD, Mehmet H, Edwards AD, Franks NP, Maze M: Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Annu Rev 2005, 58:182-193.
6. Fisher M, Feuerstein G, Howells DW, Hum PD, Kent TA, Savitz SI, Lo EH, STAIR Group: Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009, 40:2244-2250.
7. Pagel PS, Krolkowski JG, Shim YH, Venkatapuram S, Kersten JR, Weihrauch D, Wartier DC, Pratt PF Jr: Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg 2007, 105:562-569.
8. David HN, Haelewyn B, Chazalviel L, Lecocq M, Degoulet P, Risso JJ, Abraini JH: Post-ischemic helium provides neuroprotection in rats subjected to middle cerebral artery occlusion-induced ischemia by producing hypothermia. J Cereb Blood Flow Metab 2009, 29:1159-1165.
9. Bentacron EJ, Trudell Jr, Franks NP: The common chemical motifs within anesthetic binding sites. Anesth Analg 2007, 104:318-324.
10. Trudell Jr, Koblin DD, Eger El 2nd: A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg 1998, 87:411-418.
11. Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR: How does xenon produce anesthesia? Nature 1998, 396:324.
12. Barrrel C, Maze M, Trapp S: Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology 2009, 110:986-995.
13. Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP: Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 2004, 65:443-452.
14. Ma D, Lim T, Xu J, Tang H, Wan Y, Zhao H, Hessain M, Maxwell PH, Maze M: Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol 2009, 20:713-720.
15. Koblin DD, Fang Z, Eger El 2nd, Laster MJ, Gong D, Ionescu P, Halsey MJ, Trudell Jr: Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg 1998, 87:419-424.

Cite this article as: Sanders RD, et al.: Argon neuroprotection. Critical Care 2010, 14:117.