The Potential of Solar Panel Implementation Towards Sustainable Affordable Housing Development

Andrea Eka Lucianto, Herdis Herdiansyah*
School of Environmental Science, Universitas Indonesia, Jakarta 10430, Indonesia

*herdis@ui.ac.id

Abstract. Affordable housing is often associated with low-cost housing that pays lack of attention to the principle of sustainable housing. It is due to having limited price which meet the decree of Minister of Public Works and Public Housing No.552/KPTS/M/2016. However, the application of solar panels in the affordable housing has potential of cost efficiency by replacing the cost of monthly electricity payment with the initial investment and maintenance cost of a solar panel network in the housing. The potential of electricity power in Parung Panjang housing is calculated by applying spatial analysis using GIS. Parung Panjang housing has the total area of 214.1 hectares. The results of spatial analysis showed that the potential of roofs that can be used for solar panel installation is 44.6 hectares. By managing that area and electricity payments, the potential for solar cost of energy is 929.14 IDR/kWh. It is lower than the cost of energy from State Electricity Company of 1,352 IDR/kWh. Besides, the implementation of solar energy in large residential area is more efficient than in a single house and small area.

1. Introduction
Indonesia is a tropical country which located around the equator line. Hence, Indonesia has a huge potential of renewable resources, yet it is still undeveloped, especially for solar renewable resource [4]. In fact, Indonesia is still less in utilizing renewable energy, where 96% of energy is from fossil fuel (18% gas, 30% coal, and 48% fuel) and only about 4% of energy is from renewable energy [2]. In this day, Indonesia has installed solar energy with capacity of 14.0 MWp. In the 2006 president decree, it is stated that Indonesia is planning to have 80 MWp by 2025 [1]. Therefore, this country needs to do a lot of researches about solar energy and implement the result soon. There were some researchers who have done researches that gave information about potential or implementation of solar renewable energy in various locations in Indonesia, for example; photovoltaic for hotels in Nusa Lembongan [3], solar panel in Haluoleo University [5], photovoltaic panel in Medan [6], and solar panel for households in Surabaya [8]. The previous research showed that the implementation of solar panel will provide long-term benefit in single building or small area [10]. This research will focus on the implementation of solar panel in a large residential area.
Perumnas Parung Panjang is a subsidized housing, where the middle-low resident class settled in this area must have a good level of resilience in their electricity needs and implement solar panel for renewable energy that will be profitable in the long term [3]. This research showed the potential of solar panel implementation in large affordable housing area to support green concept in housing. In addition, if this research hypothesis is proven, that energy cost from sunlight is lower than energy cost from State Electricity Company, then the application of solar energy as a source of electricity will for sure help the middle-low resident to increase their economic level in the future.

2. Method

2.1 Study Area
The study area, especially Perumnas Parung Panjang Housing is located in Tangerang, West Java, Indonesia. It is located at 6.345879 °S, 106.569354 °E coordinates. The area is about 214 hectares, and it has around 6,000 households.

2.2. Data Collection
The data consists of roof area and Global Horizontal Irradiation. The roof area data is obtained by digitalized used of Geographic Information System (GIS) from ArcMap 10.1, while Google earth image is used as the base-map of the digitalization. (Figure 1). The Global Horizontal Irradiation data [7] (Figure 2) and Photovoltaic Power Potential data are obtained from Solargis data.

![Figure 1. Roof Area of Parung Panjang Housing](image1.png)

![Figure 2. Global Horizontal Irradiation (GHI) of Indonesia](image2.png)
2.3. Assesment of Solar Panel Potential in Housing

The research methodology for assessment of solar panel potential in housing is presented in Figure 3.

![Flow Chart of Research Methodology](image)

3. Result and Discussion

3.1. Potential of Energy and Estimation of Cost

3.1.1 Power Capacity of Solar System

The power capacity of solar electricity system (Wp) is calculated by using the equation below. The area of PV panel array in Perumnas Parung Panjang housing is 446,224 m2. η_{pv} is the PV panel array efficiency = 12%, Peak Sun Insulation (PSI) = 1,000 W/m2 from Figure 3 [7].

$$W_p = \text{Panel area} \times \text{PSI} \times \eta_{pv} = 446,224 \times 1000 \times 0.12 = 53,546,880 \text{ Wp}$$

The solar panel that will be used is BP3150M. This panel can produces 150 Wp.

$$\frac{53,546,880}{150} = 356,979.2 \approx 356.980 \text{ panels}$$

Cost of solar panel (C) in housing is 1.11 USD every 5 – 10 Wp [9], but for this equation, 10Wp is used, which include sun panel, inverter, and balance of system.

$$C = W_p \times \text{Cost/Wp} = 53,546,880 \times 1.11 / 10 = 5,943,703.68 \text{ USD} \approx 80,239,999,680 \text{ IDR}$$

3.1.2 Life Cycle Cost

The Life Cycle Cost (LCC) is influenced by the long term cost of maintenance (M_{PW}) and cost of total initial investment (C). The investment is 8,023,999,968 IDR and the cost of maintenance per year is assumed at 1%. The discount rate (DR) is 11% and the expected development is 25 years.

$$M_{PW} = \text{Inv} \times \frac{(1+DR)^{T-1}}{DR(1+DR)^{T}}$$

$$M_{PW} = 802,399,997 \times \frac{(1+0.11)^{25-1}}{0.11(1+0.11)^{25}} = 6,557,607,892 \text{ IDR}$$

$$LCC = C + M_{PW} = 80,239,999,680 + 6,557,607,892 = 86,997,607,572 \text{ IDR}$$

3.1.3 Cost of Energy

Cost of Energy (COE) of solar electricity system is based on the Cost Recovery Factor (CRF), LCC and the annual energy production.

$$\text{CRF} = \frac{DR(1+DR)^{T}}{(1+DR)^{T-1}} = 0.1187$$
Cost of Energy (COE) is calculated by using the equation below, where the production of solar panel is 5 kWp.

\[
\text{COE} = \frac{\text{LCC} \times \text{CRF}}{\text{annual kWh}} = 929.14 \text{ IDR/kWh}
\]

3.2. Economical Comparison

Cost of Energy (COE) estimation from State Electricity Company (Perusahaan Listrik Negara, PLN) is 1,352 IDR/kWh per March 2019. The projection of the equation showed that the COE of solar panel in Parung Panjang will be equal with COE of PLN if the project is developed in 9.275 years or 9 years 4 months based on Table 1.

Year	Investment	LCC	CRF	COE
25	80,239,999,680	86,997,607,572	0.1187	929.14
20	80,239,999,680	86,629,774,136	0.1256	978.48
10	80,239,999,680	84,965,519,427	0.1698	1,297.66
9	80,239,999,680	84,682,926,602	0.1806	1,352.36
9.275	80,239,999,680	84,763,602,024	0.1774	1,352.36
8	80,239,999,680	84,369,248,567	0.1943	1,474.62

The results of this research provide information that the implementation of solar panels on a large residential area will give benefits, and it is in line with previous research on single building or small area [3], [4], [5]. However, the benefits of implementation of solar panels in large area are greater than on single building or cluster. In single building or small area, the COE of solar panel is higher than COE in the large area of residential. Thus, it will be more efficient to implement the solar panels in large area based on Table 2.

Location / Scale	COE	Duration
Haluoleo University, Southeast Sulawesi Campus area	0.3 USD/kWh \times 14.495 = 4,348.5 IDR/kWh	25 years
Medan, North Sumatera Single house	€ 0.09/kWh \times 16,292.76 = 1,466.34 IDR/kWh	20 years
Nusa Lembongan, Bali Single hotel	8,500 IDR/kWh	25 years
Surabaya, East Java Single house	0.34 - 0.62 USD/kWh \times 14,495 = 4,928.3 IDR/kWh	20 years
Perumnas Parung Panjang Large residential Area	978.48 IDR/kWh	20 years
PLN (Perusahaan Listrik Negara/ State Electricity Company) All Scale	1,352 IDR/kWh in March 2019	-

4. Conclusion

The COE of solar system in large residential area is lower than the cost of energy in single building or small area. Finally, the results showed that the solar energy can be an alternative source of electricity for housing, especially for large residential area.
Acknowledgments
This research is funded by Decentralization Research - Ministry of Research, Technology and Higher Education of the Republic of Indonesia – Universitas Indonesia (Riset Desentralisasi – Kementrian Riset Teknologi dan Pendidikan Tinggi – Universitas Indonesia) [contract number: NKB-1903/UN2.R3.1/HKP.05.00/2019]. Special thanks are delivered to Ida Nurulita Uswatun Hasanah, Dyah Luhmayangsari Rachmaningsih, and colleagues for all the assistances during the research.

References
[1]. Badan Pengkajian dan Penerapan Teknologi 2018 Outlook Energi Indonesia 2018 BPPT Publisher.
[2]. Erinofiardi; Gokhale, Pritesh; Date, Abhijit; Akbarzadeh, Aliakbar; Bismantolo, Putra; Suryono,
[3]. Ahmad Fauzan; Mainil, Afdhal Kurniawan; Nurmala, Agus 2017 A review on micro hydropower in Indonesia. Elsevier publisher : Energy Procedia 110 (pp 316-321).
[4]. Giriantari IAD, Kumara INS, Santiari DA 2014 Economic Cost Study of Photovoltaic Solar System for Hotel in Nusa Lembongan IGSGTEIS 2014.
[5]. Kumara I.N.S., Ariastina W.G., Sukerayasa I.W., Giriantari I.A.D. 2014 On the Potential and Progress of Renewable Electricity Generation in Bali 6th International Conference on Information Technology and Electrical Engineering (ICITEE) 2014.
[6]. Musaruddin M, Rianse U and Rachman A 2015 Halu Oleo University Indonesia towards the green campus through the application of solar energy to support the electricity generation Inter. J. of Smart Grid and Clean Energy 4 151-158.
[7]. Pangaribuan A B, Rahmat R F, Lidya M S and Zalesak M 2017 Harnessing the hybrid power supply systems of utility grid and photovoltaic panels at retrofit residential single family building in Medan IOP Conf. Series: J. of Physics 801 pp 1-8.
[8]. Solargis. info/pvplanner; 2019. Available from http://www.solargis.info/pvplanner.
[9]. Tarigan Elieser, Djuwari, Purba Lasman 2014 Assesment of PV Power Generation for Household in Surabaya Using SolarGIS-pvPlanner Simulation Elsevier Publisher : Energy Procedia 47 (pp 85 – 93).
[10]. PT. Tritama Mitra Energy 2018 Residential Solar PV Application Presentation TML Energy to Perum Perumnas 16 January 2018.
[11]. Cicih, L.H.M., & Herawandih, E. 2018. The Impact of Micro-Scale Solar Power Supply for Rural Households, in Central Kalimantan Province, Indonesia. ASEAN Journal of Community Engagement. 2 (2), pp.265-280.