Thermal expansion of oxide systems on the basis of ZrO$_2$

Vladimir V. Promakhov
Tomsk State University, Tomsk (Russia)

Svetlana P. Buyakova
Tomsk State University, Tomsk (Russia)

Vanda Illavszky
University of Miskolc, Miskolc (Hungary)

Sergey N. Kulkov
Tomsk State University, Tomsk (Russia) • Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russia) • kulkov@ispms.tsc.ru

László A. Gömze
University of Miskolc, Miskolc (Hungary) • igrex2009@yandex.ru

Received: 27. 08. 2014. • Érkezett: 2014. 08. 27. • http://dx.doi.org/10.14382/epitoanyag.jsbcm.2014.15

Abstract
The structure and phase composition of the ceramic-based system ZrO$_2$–MgO is studied. The dependence between the structural-phase state and the coefficient of thermal expansion of ceramic materials based on solid solutions ZrO$_2$–MgO is demonstrated. The coefficient of thermal expansion of the system increases proportionally to the increase of the MgO content. The thermal expansion of the ZrO$_2$–MgO ceramic materials can be described in the framework of the mixture rule taking into account the phase composition of ZrO$_2$ and the amount of magnesia grains in the matrix.

Keywords: ZrO$_2$–MgO solid solutions, coefficient of thermal expansion, mixture rule

1. Introduction
Today’s industrial progress leads to the need for materials that retain their functional properties when operating under high temperature conditions [1-6]. Good candidates in this respect are the oxide ceramic materials, particularly the ones on the basis of ZrO$_2$–MgO solid solutions. Materials of the ZrO$_2$–MgO system are known to have high melting temperature, chemical resistance, crack resistance and strength, which make possible their operation under high temperature conditions in aggressive media. Of particular importance in such conditions is the thermal expansion of the material. The literature provides the values of the coefficient of thermal expansion for stabilized ZrO$_2$ [7-10], but neither the qualitative nor the quantitative composition of the materials is considered. It is therefore pertinent to study the thermal expansion of the ZrO$_2$–MgO systems of variable composition.

The aim of this paper is to study the structure and phase composition and their relation to the coefficient of thermal expansion of the ZrO$_2$–MgO ceramic materials.

2. Experimental procedure
ZrO$_2$–MgO ceramics of the following compositions have been studied: ZrO$_2$ + 8.6 mole% MgO (hypoeutectoid); ZrO$_2$ + 13.9 mole% MgO (eutectoid); ZrO$_2$ + 25.4 mole% MgO; ZrO$_2$ + 35 mole% MgO; ZrO$_2$ + 43.3 mole% MgO (hypereutectoid).

Specimens were compacted from powders produced by thermal decomposition of salt solutions in low-temperature plasma. Powder compaction was carried out under a pressure of 70 MPa. The compacts were sintered at 1650°C and then subjected to one hour of isothermal exposure in air.

The structure of the obtained ceramics was analyzed by scanning electron microscopy on a microscope Philips SEM 515. The accelerating voltage was 30 kV. Specimens for SEM examination were mirror polished with diamond pastes of different sizes.

3. Results and discussion
The SEM images of the ZrO$_2$–MgO ceramics structure with different magnesia content are given in Fig. 1. The structure

Vladimir V. Promakhov, PhD has finished the Tomsk State University in 2006. He is got scientific degree “Candidate of Technical Sciences” at Institute of Strength Physics and Materials Science SB RAS in 2012. Theme of his Ph.D. work was “Structure and phases in ZrO$_2$-MgO after thermoloading and its mechanical properties” under guidance Prof. Buyakova. V.V. Promakhov is author or co-author of 10 articles and 1 Russian patent.

Prof. Svetlana P. Buyakova
Doctor of Sciences from 2008, full Professor from 2013. She is specialist in materials science of ceramic and ceramic matrix composites based on oxides and carbides. She is author and co-author more than 100 papers. Three Ph.D. students and one person makes they dissertations under her guidance in period 2010-2013. Now, she is chief scientist in IS PARS and professor in Tomsk State University and Tomsk Polytechnic University. Her teaching experience: Introduction to Materials Science, Fundamentals of Materials Engineering, Materials and their Applications.

Vanda Illavszky
is a BSc student at the Materials Science and Engineering Faculty in University of Miskolc (Hungary) and under guidance Prof. Gómza she is participating in the research works which are made under collaboration agreement between Tomsk State University (Russia) and University of Miskolc (Hungary).

Prof. Sergey N. Kulkov
Prof. Kulkov is head of Department of Ceramics in the Institute of Strength Physics and Materials Science of the Russian Academy of Science since 1989. He has got scientific degrees „Doctor of Physics and Mathematical Sciences” in 1990. Since 1992 he’s working as professor both in Tomsk State University and in Tomsk Polytechnic University. In 1997 he had a Soros Professor grant. His research works are represented in 5 books, more than 150 articles, 18 patents and many International Symposiums and Conferences. At present he is head of department „Theory of Strength and Mechanic of Solids”, member of „The American Ceramic Society” of „The APMI - International” and the DYM AT Society (France).

Prof. László A. Gómze
Established (in July 1st, 1999) and head of Department of Ceramics and Silicate Engineering in the University of Miskolc, Hungary. Since then 7 students from the department have successfully completed their PhD theses and 4 of them were managed by Prof. Gómza. He is author or co-author of 2 patents, 5 books and more than 250 scientific papers. Recently, he is the chair of the International Organization Board of ic-cmp3 the 3rd International Conference on Competitive Materials and Technological Processes (2014) and ic-mm2 the 2nd International Conference on Rheology and Modeling of Materials (2015).

The phase composition and crystal structure parameters were studied by X-ray diffraction patterns obtained using filtered CuK$_\alpha$ radiation. The zirconia phase content was estimated by the ratio of the integral intensities of the tetragonal and cubic diffraction lines I(111), and the monoclinic diffraction lines I(111), I(111) and I(111). Thermal expansion was measured using a mechanical dilatometer in air. The specimen temperature was increased at a rate of 10°C/min. The specimens were heated up to 1100°C, which, according to the phase diagram of the ZrO$_2$–MgO system, corresponds to the transition from the low-temperature monoclinic ZrO$_2$ phase to the high-temperature tetragonal modification of ZrO$_2$. The phase composition and crystal structure parameters were studied by X-ray diffraction patterns obtained using filtered CuK$_\alpha$ radiation. The zirconia phase content was estimated by the ratio of the integral intensities of the tetragonal and cubic diffraction lines I(111), and the monoclinic diffraction lines I(111), I(111) and I(111).

Thermal expansion was measured using a mechanical dilatometer in air. The specimen temperature was increased at a rate of 10°C/min. The specimens were heated up to 1100°C, which, according to the phase diagram of the ZrO$_2$–MgO system, corresponds to the transition from the low-temperature monoclinic ZrO$_2$ phase to the high-temperature tetragonal modification of ZrO$_2$.
of the specimens of the hypoeutectoid composition shows lenticular grains of the tetragonal ZrO$_2$ phase, along with grains of the cubic ZrO$_2$ solid solution (Fig. 1a). The structure of the ZrO$_2$ (13.9 mole% MgO) ceramics is represented in Fig. 1b. This composition is characterized by grains of the cubic modification of ZrO$_2$ [11, 12]. The specimens of the hypereutectoid compositions have magnesia inclusions in the ZrO$_2$ matrix. In this case, the content of MgO inclusions increased from 9 to 22% with the magnesia content growth in the ZrO$_2$–MgO system from 25.4 to 43.3 mole%, respectively.

According to X-ray phase analysis data, the X-ray diffraction patterns of the hypoeutectoid ceramics have reflections from three zirconia phases, namely, cubic (C-ZrO$_2$), tetragonal (T-ZrO$_2$) and monoclinic (M-ZrO$_2$) (Fig. 2), with the monoclinic phase content increasing with the growing magnesia content in the initial mixture.

1 — ZrO$_2$ (8.6 mole% MgO); 2 — ZrO$_2$ (13.9 mole% MgO); 3 — ZrO$_2$ (25.4 mole% MgO); 4 — ZrO$_2$ (35 mole% MgO); 5 — ZrO$_2$ (43.3 mole% MgO).

Fig. 2. X-ray diffractograms of the ceramics of the ZrO$_2$–MgO system: 2. ábra A ZrO$_2$–MgO kerámia röntgen-diffraktogramjai

The phase composition of the eutectoid ceramics is represented by the high-temperature cubic modification of ZrO$_2$. The X-ray diffraction patterns of the hypereutectoid ceramics have, along with the ZrO$_2$ reflections, diffraction maxima corresponding to MgO.

Measurements of the coefficient of thermal expansion of the studied materials (Fig. 3) showed that the coefficient of thermal expansion measured in the temperature range 400-1250 K depends linearly on the magnesia content in the initial mixture. The measured thermal expansion coefficients agree well with the values calculated by the mixture rule taking into account the phase composition of the studied materials: the content of the monoclinic ZrO$_2$ modification for the composition with 8.6 mole% MgO is 15%, which determines low values of the coefficient of thermal expansion equal to 6.7 ⋅ 10$^{-6}$ K$^{-1}$, since, according to the literature data, the coefficient of thermal expansion of the monoclinic ZrO$_2$ phase is 6 ⋅ 10$^{-6}$ K$^{-1}$ and that of the cubic ZrO$_2$ phase is 8 ⋅ 10$^{-6}$ K$^{-1}$. The coefficient of thermal expansion of the eutectoid specimens is defined by thermal
expansion of the cubic ZrO$_2$ phase, while the main factor that contributes to the thermal expansion of the hypereutectoid specimens is an increase in the amount of magnesia grains in the zirconia matrix.

In extrapolating the obtained dependence to the zero MgO content, the coefficient of thermal expansion corresponds to the thermal expansion of the monoclinic ZrO$_2$ modification. In extrapolating the obtained dependence to the 100% magnesia content, the coefficient of thermal expansion is 14.9 · 10$^{-6}$ K, which is close to the thermal expansion of magnesia equal to 14.4 · 10$^{-6}$ K. So, the coefficient of thermal expansion of the ZrO$_2$–MgO system is defined by the mixture rule taking into account the phase composition and amount of magnesia inclusions in the ZrO$_2$ matrix.

4. Conclusions

It is found that the coefficient of thermal expansion is governed by the phase composition of the sintered ceramics, with a ratio of the fractions of the high- and low-temperature ZrO$_2$ modifications and the amount of magnesia grains in the ZrO$_2$ matrix. The coefficient of thermal expansion of the system increases proportionally to the increase of the MgO content. The thermal expansion of the ZrO$_2$–MgO ceramic materials can be described in the framework of the mixture rule taking into account the phase composition of ZrO$_2$ and the amount of magnesia grains in the matrix.

5. Acknowledgments

Part of this work has been financially supported by Tomsk State University Competitiveness Improvement Program and RF President Grant MK-5883.2014.8.

References

[1] N. I. Ershova and I. Yu. Kelina: High-temperature wear-resistant materials based on silicon nitride, (2009) Építőanyag, vol. 61, pp. 34–37, http://dx.doi.org/10.14382/epitoanyag-jbscm.2009.6

[2] L. A. Gómmez and L. N. Gómmez: Hetero-modulus nanoparticles reinforced corundum matrix CMC with extreme wear and thermal shock resistances, Mat. Sci. Forum, 2010, vol. 659, pp. 165–170, http://dx.doi.org/10.4028/www.scientific.net/MSF.659.165

[3] V. Latsyk and A. Zelenaya: Crystalisation paths in SiO$_2$–Al$_2$O$_3$–CaO system as genotype of silicate materials, (2013) Építőanyag, vol. 65, pp. 34–38, http://dx.doi.org/10.14382/epitoanyag-jbscm.2013.7

[4] Xiaolei Lia at all: Study on Heat Treatment of Aluminum Nitride (Y$_2$O$_3$) Ceramics Sintered at High Pressure, (2011) Advanced Materials Research, vol. 266, pp. 68–71, http://dx.doi.org/10.4028/www.scientific.net/AMR.266.68

[5] J. Mara: Advanced ceramic materials for next-generation nuclear applications, (2011) IOP Conf. Ser. MSE, vol. 18, http://dx.doi.org/10.1088/1757-899X/18/16/222014

[6] J. Sumita, I. Fujita, T. Shibata, T. Makita, T. Takagi, E. Kunimoto, K. Sawa, W. Kim and J. Park: Study on Fracture Behavior of 2D-C/C Composite for Application to Control Rod of Very High Temperature Reactor, (2011) IOP Conf. Ser. MSE, vol. 18, http://dx.doi.org/10.1088/1757-899X/18/16/222014

[7] A.G., Evans, Perspectives on the development of high-toughness ceramics, J. Am. Ceram. Soc., 1990, vol. 73, no. 2, pp. 187–206

[8] M. Biswas, C. S. Kumibhar, and D. S. Gowtam: Characterization of Nanocrystalline Yttria-Stabilized Zirconia: An In Situ HTXRD Study, (2011) ISRN Nanotechnology, http://dx.doi.org/10.5402/2011/305687

[9] H. Schubert: Anisotropic Thermal Expansion Coefficients of Y$_2$O$_3$-Stabilized Tetragonal Zirconia, (1986) Journal of the American Ceramic Society, vol. 69, pp. 270–271

[10] J.R. Kelly and I. Denry: Stabilized zirconia as a structural ceramic: An overview, (2008) Dental Materials, vol. 24, pp. 289–298, http://dx.doi.org/10.1016/j.dental.2007.05.005

[11] Buyakova, S.P., Promakhov, V.V., and Kulkov, S.N., Thermal tests and their effect on micro- and macrostructure of nanocrystalline ZrO$_2$ Powder Metall. Met. Ceram., 2012, vol. 51, no. 5–6, pp. 267–272.

[12] G. Sedmale, I. Sperberga, A. Hmelov and I. Steins: Characterisation of mullite – ZrO$_2$ ceramics prepared by various methods, (2011) IOP Conf. Ser. MSE, vol. 18, http://dx.doi.org/10.1088/1757-899X/18/22/222014

ZrO$_2$ alapú kerámia rendszerek hőtálgulása

Jelen munkában a szerzők a ZrO$_2$–MgO alapú kerámia rendszerek anyagszerkezete, fázis összetétele és a hőtálgulási együttátható kapcsolatát vizsgálták. Az elvégzett vizsgálatok azt igazolják, hogy az eltérő kémiai összetételű ZrO$_2$–MgO szilárd oldatok hőtálgulási együttáthatója jelentős mértékben függ az anyagszerkezeti szerkezeti fázisoktól. Ugyanakkor az adott vizsgálati hőmérsékleten a MgO tartalom növelésével arányosan növekszik a hőtálgulási együttátható. A kutatás eredményeként a ZrO$_2$–MgO kerámia rendszerekhez tartozó anyagok hőtálgulási együttáthatója a keverék szabály függvényében.

Kulcsszavak: ZrO$_2$–MgO szilárd oldatok, hőtálgulási együttátható, keverék szabály