Insect (Hexapoda) diversity in the oceanic archipelago of Fernando de Noronha, Brazil: updated taxonomic checklist and new records

José Albertino Rafael1, Francisco Limeira-de-Oliveira2, Roger William Hutchings3, Gil Felippe Gonçalves Miranda4, Albert Moreira da Silva Neto5, Alexandre Somavilla6, Alexssandro Camargo7, Angélico Asenjo8, Ángelo Parise Pinto9, Ayr de Moura Bello10, Camila Dalmorna10, Cátia Antunes de Mello-Patitu10, Claudio José Barros de Carvalho3, Daniela Maeda Takiya9, Daniele Regina Parizotto10, Dayse Willkenia Almeida Marques1, Deniss de Oliveira Cavallheiro10, Diego Matheus de Mello Mendes1, Douglas Zeppelini17, Eduardo Carneiro10, Élison Fabrício Bezerra Lima10, Estevam Cipriano Arajúio de Lima5, Fabio Siqueira Pitaluga de Godoi9, Felipe Arley Costa Pessoa9, Fernando Zagury Vaz-de-Mello10, Francisco José Sosa-Duque14, Heliósa Fernandes Flores1, Itana Oliveira Fernandes1, José Osvaldo Silva-Júnior4, Lucas Roberto Pereira Gomes3, Marcela Laura Monné1, Marcelo Cutrim Moreira de Castro1, Marcelo Peixoto Gomes da Silva6, Márcia Souto Couri5, Marco Silva Gottschalk9, Matheus Mickael Mota Soares1, Miguel Angel Monné1, Miriam Silva Rafael1, Mirna Martins Casagrande3, Olaf Hermann Hendrik Mielke1, Paschoal Coelho Grossi10, Paula Jéssica Costa Pinto1, Pedro Reck Bartholomay1, Rafael Sobral10, Raphael Aquino Heleodoro1, Renato José Pires Machado10, Robson Crepes Corrêa10, Rosa Sá Gomes Hutchings1, Rosaly Ale-Rocha1, Sandra Duque dos Santos1, Sheila Pereira de Lima1, Thiago Mahlmann1, Vera Cristina Silva11, Daníel Rodrigues Fernandes1

1 Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, AM, Brazil.
2 Universidade Estadual do Maranhão, Centro de Estudos Superiores de Caxias, Caxias, MA, Brazil.
3 Universidade Federal do Mato Grosso, Cuiabá, MT, Brazil.
4 Instituto Tecnológico Vale, Belém, PA, Brazil.
5 Universidade Federal do Rio de Janeiro, Museu Nacional, Rio de Janeiro, RJ, Brazil.
6 Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Rio de Janeiro, RJ, Brazil.
7 Universidade Federal do Amazonas, Departamento de Zoologia, Manaus, AM, Brazil.
8 Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
9 Universidade Federal de Pelotas, Pelotas, RS, Brazil.
10 Universidade Federal Rural do Pernambuco, Recife, PE, Brazil.
11 Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras, Ribeirão Preto, SP, Brazil.
12 Universidade Federal do Piauí, Campus Amilcar Ferreira Sobral, Floriano, PI, Brazil.
13 Ottawa Research and Development Centre, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, ON, Canada.
14 Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
15 Instituto Leônidas & Maria Deane, Manaus, AM, Brazil.
16 Universidade Federal de Pernambuco, Recife, PE, Brazil.
17 Universidade Federal de São Carlos, São Carlos, SP, Brazil.
18 EcoNoronha S.A, Fernando de Noronha, PE, Brazil.

A R T I C L E I N F O

Article history:
Received 03 June 2020
Accepted 10 August 2020
Available online 25 September 2020
Associate Editor: Eduardo Almeida

Keywords:
Insect orders
Fernando de Noronha oceanic archipelago
Insect fauna
South Atlantic oceanic insects
Taxonomy

A B S T R A C T

Hexapods, commonly known as insects, are a neglected taxonomic group in the Fernando de Noronha archipelago, with unanswered questions about their species richness and the ecological processes in which they are involved (e.g., colonization, introduction, establishment, and extinction). Herein, we provide an updated Hexapod checklist with current nomenclatural combinations. The entomofauna of the Fernando de Noronha archipelago is currently composed of 453 species in 21 orders. The orders, and their respective number of species, are: Blattaria (9), Coleoptera (118), Collembola (29), Dermoptera (3), Diplura (1), Diptera (134), Embioptera (1), Hemiptera (29), Hymenoptera (59), Isoptera (2), Lepidoptera (25), Mantodea (1), Neuroptera (3), Odonata (5), Orthoptera (11), Phasmatodea (1), Phthiraptera (6), Psocoptera (3), Siphonaptera (1), Thysanoptera (10), and Zygentoma (2). The archipelago has 263 new taxon records (family + genera + species). Thirty-eight species (3.39%) were described from local specimens and most of them are likely endemic species. This study more than doubles our knowledge (from the previous 190 records) of the entomofauna in this large Brazilian archipelago. This study also provides a baseline for studies on its conservation status and for implementing future environmental management programs.
Introduction

The Brazilian oceanic archipelago of Fernando de Noronha is located in the equatorial South Atlantic region (latitude 3°45'S to 3°57'S; longitude 32°19'W to 32°41'W) (Fig. 1A). It is under the jurisdiction of the state of Pernambuco, but it is also a federal preservation area (i.e., National Park) under management of the Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio (agency of the Brazilian Ministry of Environment). Fernando de Noronha is located c. 360 km from the nearest coastline (the Brazilian State of Rio Grande do Norte). The archipelago is entirely volcanic in origin and has never been connected to the mainland. The total land area is 18.4 km², of which

Figure 1 Fernando de Noronha archipelago. A: localization on the northeastern coast of Brazil; B: Sueste beach; C: Malaise trap, Townes model (Atalaia trail); D: net sweeping (Rata Island); E: Malaise trap, Gressitt & Gressitt model (Capim-Açu trail); F: bird nests (Rata Island); G: Light trap, UV and mercury lamps (Golfinhos trail); H: pitfall trap (Sancho trail); I: yellow pan trap (Golfinhos trail); J: net sweeping over dunes (area around the Fernando de Noronha harbor).
16.9 km² is the main island (Lopes and Ulbrich, 2015), and the remaining area is distributed among 20 smaller islands, of which Rata Island is the largest with 0.8 km².

The archipelago has suffered major ecological disturbances due to several human interventions. In 1737, fortifications were built, and the archipelago was transformed into a penal colony for almost 200 years. During this period, a large part of the native vegetation was devastated while exotic plants and animals were introduced to serve as food (Teixeira et al., 2003; Serafini et al., 2010). The human population in the archipelago increased significantly in 1942 through military occupation (i.e., World War II). Afterwards, significant changes were observed in the archipelago due to:

• Several insecticide applications campaigns (i.e., DDT) for mosquito-control;
• Wild animal introductions, such as the Teju lizard (Salvator merianae Duméril & Bibron) and the Mocó cavy (Kerodon rupestris Wied-Neuwied);
• Release of birds seized in trade fairs and public markets of Recife (i.e., Saffron finch (Sicalis flaveola (Linnaeus)), House Sparrow (Passer domesticus (Linnaeus)), and the White-bellied seedeeater (Sporophila leucoptera (Vieillot));
• Introduction of domestic species (i.e., cats, cattle, chickens, dogs, goats, horses, and pigs) as well as synanthropic insects carried by humans in ships and airplanes.

Among the impacts caused by these introduced animals were vegetation destruction, dissemination of zoonoses, competition, and predation, which may have led to the local extinction of many native species before they could be recorded in the scientific literature. During the 1980’s, tourism intensified in the archipelago and is now a major economic activity. As a result, the archipelago faces challenges to minimize the impact on its biota, prompting the need for inventories of its fauna and flora. None of the current actions (application of insecticides, introduction of exotic fauna, tourism, etc.) have been or are being monitored for their impact on insect fauna, leaving unanswered questions about species richness and the ecological processes in which they are involved (e.g. introduction, establishment, and extinction).

According to Mohr et al. (2009), the greatest impact was on the flora of the archipelago, with the removal of most of the native forest and the introduction of hundreds of exotic plant species. With each species introduced in the form of seedlings, there came the possibility of introducing several guest species with it. For each native species that faced extinction, there was the possibility of extinction of several associated guest species. The native entomofauna was certainly altered, or even partially extinct, long before it was studied or recorded. However, there is still considerable endemism in the archipelago, with an estimate of around 35% of the plant species and 30% of the insect species being endemic (Carbonell, 1996). There are only a few studies that cover the insects of the Fernando de Noronha archipelago. The first records were of fifty-seven insect species by Kirby (1890), 21 species by Waterhouse (1890), and five species by Ridley (1890), for a total of 83 recorded species. The next publications related to insects of the Fernando de Noronha archipelago: Couri et al. (2008), Oliveira et al. (2009, 2010), Rohde et al. (2010) and Carino and Vasconcelos (2014, 2016) on Diptera; Abrantes et al. (2010), Palacios-Vargas et al. (2013), Lima and Zeppelini (2015), Zeppelini and Oliveira (2016), Brito et al. (2017), Schneider et al. (2018) and Cipola et al. (2019, 2020) on Colembola; and Ribeiro and Lima (2015) on Hymenoptera.

Most of the species recorded from the archipelago were identified around 130 years ago and, unfortunately, some were either misidentified, only identified to genus, or had doubtful identifications based on immature specimens. Due to current knowledge, these records require a nomenclatural and identification update.

This paper is the first of a long-term project that aims to record as many insect species, native and non-native, as possible for the Fernando de Noronha archipelago. This project will contribute with local biodiversity knowledge, which will be useful for the National Park management, for biodiversity monitoring, and for determining community structure, species richness and the ecological services involved. New records and species will be described by different collaborators as soon as the recently collected samples are sorted, distributed, and identified.

The current publication presents an updated checklist of the hexapod orders and families previously recorded from the Fernando de Noronha archipelago with the addition of 263 new records at family, genus or species level, raising the species count for the archipelago to 453.

Material and methods

The Fernando de Noronha archipelago has a tropical oceanic climate (Aw - Köppen classification). The temperature ranges from 23.5°C to 31.5°C, with an annual mean of 27°C (IBAMA, 2006) and annual precipitation of 1,400 mm, but with large interannual variability. It is characterized by a less rainy season, with a mean precipitation of 27.2 mm/month (August–January), and a rainy season, with a mean precipitation of 211.7 mm/month (March–July). The archipelago has a harsh environment, lacking a permanent source of fresh water, with low vegetation diversity, and shallow soil with little water retention (Freitas et al., 2013). Native flora, characterized as seasonally deciduous vegetation, is sparse and primarily represented by bushes and herbs, with several introduced plant species (Teixeira et al., 2003).

Some taxa were previously identified only to genus (Kirby, 1890; Ridley, 1890; Waterhouse, 1890) or are currently identifiable only to family or genus level. These taxa are cited under their respective orders to highlight that they are still under study and will eventually be identified to species in separate publications.

Insect orders, and families within each order, are presented in alphabetical order. The list of species presented here is based on previous literature and the study of material from recent sampling events in the archipelago. Species names are presented in their current nomenclatural status, followed by author and year and when followed by the asterisk *** indicate that the type-locality is the Fernando de Noronha archipelago. After the species names, previous combinations related to previous records from the archipelago, and current synonyms are presented. The number (or approximated number) and sex (when known) of recently collected specimens is listed under “Material examined”. If enough voucher specimens become available, they will be distributed among the main Brazilian collections; otherwise, the specimens are divided between INPA, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas and the collections of each researcher responsible for the taxon (taxa). Collections are: CEMT, Setor de Entomologia da Coleção Zoológica, Universidade Federal de Mato Grosso, Cuiába, Mato Grosso; CERPE, Coleção Entomológica da Universidade Federal Rural
de Pernambuco, Recife, Pernambuco; CHNUFPI, Coleção de História Natural da Universidade Federal do Piauí, Floreano, Piauí; CZMA, Coleção Zootológica do Maranhão, Caxias, Maranhão; DZUP, Coleção Entomológica Padre Jesus Santiago Moure, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro; DZUP, Coleção Entomológica Padre Jesus Santiago Moure, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná; MNRI, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro; MZUP, Museu de Zootologia da Universidade de São Paulo, São Paulo, São Paulo; UFAM, Coleção Paulo F. Bührnheim, Universidade Federal do Amazonas, Manaus, Amazonas; and UFPEL, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul. The collection of the NHMUK, Natural History Museum, London, United Kingdom, is the depositary of the Ridley collection. The author(s) responsible for determining the current nomenclatural status, the combinations related to previous records, and the synonymy accounts for each order is(are) identified between square brackets (i.e., [Responsible:]), after each order name. When there was no specialist available to update the nomenclature, combinations and synonymy in a particular family, the information provided for each taxon is presented as originally cited in the literature and between quotation marks (i.e., ""). Species with doubtful identification and bionomic data from previous papers are discussed under “Remarks”. Whenever possible, the locality names cited in historical records are matched and updated to locality names currently used in the Fernando de Noronha’s main island, with the “old” name presented between “curly brackets” (i.e., {}), based on the information and map of Lea (1888).

Beside scientific publications, this paper includes a few internet species records of pests (Marinho, 2015) and disease vectors (Marinho, 2018). Works citing only insect orders are briefly mentioned only to highlight the occurrence of these taxa in the archipelago.

This project received the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) the collecting license number 62.821. Two short-term insect sampling efforts occurred. The first from 2 to 9 June 2019 and the second from 20 to 27 February 2020. The collected specimens are from the following locations in the archipelago: Abreus trail, Atalaia trail (Fig. 1C), Boldró region, Cachorros beach, Capim-Açu trail (Fig. 1E), mangrove, Caracas region, Golfinhos trail, Rata Island (Figs 1D, F), Sancho trail, Susele beach (Fig. 1B), Vila dos Remédios urban area, and Xaréu dam. Specimens were collected through passive methods, using Malaise traps of different sizes and models [i.e. two Townes (Townes, 1972) (Fig. 1C) and two Gressitt and Gressitt (1962) (Fig. 1D) models], yellow pan traps over the soil (Fig. 1I), pitfall traps buried in the ground at rim level (Fig. 1H), window traps suspended over trails (with hanging shallow troughs containing water and a few drops of liquid soap), bait traps, Shannon traps with fruit and meat baits, modified McPhail traps (using pet bottles) with juice fruits, and CDC UV led light traps. Active collecting used entomological nets (Fig. 1J), electric vacuum aspirators for small insects under bark and stones, light trapping using a white sheet lit by a 250-watt mercury vapor and 40-watt UV lamps (Fig. 1G), animal bait (i.e. horse) to attract hematophagous horse flies and mosquitoes, and selective searching of specimens on soil and vegetation using a soft forceps. Details for each method can be found in Almeida et al. (2012). Additionally, three sites on the main island were selected for continuous collection using interception traps based on the following criteria: accessibility, diversity of vegetation, low degree of exposure to human activities, and geographical position inside the National Park area. Human impact on collecting sites was categorized as low since the three areas are open to tourism with guides and to scientific and management activities only. The three sites are: 1) Dolphins trail, near the information and control desk, using two interception traps, model Townes placed around 100 meters of distance of each other; 2) next to the lookout at dolphins bay, using one interception trap, model Gressitt and Gressitt and; 3) on the Capim-Açu trail, also using one interception trap, model Gressitt and Gressitt (Fig. 1E). Collections were made for nine months, from June 2019 to February 2020.

Specimens were labelled, preserved in small containers with 92–96% ethanol, and temporarily stored in the ICMBio laboratory on the main island. The collected material was later transported to the INPA Invertebrate Collection in Manaus, Amazonas, where each sample was sorted and then sent to the taxon’s specialist.

Results

The checklist presented below more than doubles the number of species records for Fernando de Noronha, from the previous 190 records to 453 records (being 42 identified to family, 138 identified to genus and 273 to species), with 263 new family, genus or species records. There are 21 orders and 179 families currently recorded from the Fernando de Noronha archipelago (Table 1). Thirty-eight species (8.39%) were described from local specimens and most of these are, most likely, endemic to the archipelago. Diptera is the most speciose order (134 species), followed by Coleoptera (118 species) and Hymenoptera (59 species).

Ridley (1890) recorded an unidentified species of Machilis Latreille, 1832 (then as Thysanura, currently Archaeognatha) with the following note “single specimen of a very small brown specimen taken under a stone at the base of the Peak, but by an accident it was destroyed”. Unfortunately, the author did not give any further description which could be associated with a representative of the Archaeognatha. Recent sampling efforts in Fernando de Noronha, focused on the mentioned microhabitat (i.e., under stones), recovered only specimens of Nicoletiidae (Zygentoma, see below), which closely fit the “very small brown” characteristic described by Ridley (1890). Thus, we believe this genus was a misidentification, with this previous record of Machilis referring to a species of Nicoletiidae, very common under stones in the archipelago, and that the order Archaeognatha is not present in Fernando de Noronha.

Several of our recently collected specimens, mostly in the orders Coleoptera, Diptera, Hemiptera, Hymenoptera and Lepidoptera, are yet to be identified. Although unidentified, with some likely to have been previously recorded, most of them surely represent new records for the archipelago.

BLATTARIA [Responsible: J.A. Rafael]

This order has four families, seven genera and nine species recorded from Fernando de Noronha. One species, described from local specimens, seems to be endemic, and three worldwide species are here recorded for the first time. The classification follows Pellens and Grandcolas (2008, 2020).

Blaberidae

Panchlora nivea (Linnaeus, 1758)

Ischnoptera lucida Walker, 1868; Kirby (1890); Alvarenga (1962).

Remarks. “A single immature specimen, probably belonging to this species. Taken under stones, base of Peak” (Kirby, 1890). Adult specimens still need to be found and examined in order to confirm/correct this species record.
Pycnoscelus surinamensis (Linnaeus, 1758)
Leucophaea surinamensis: Kirby (1890); Alvarenga (1962).
Material examined. 1♀.
Remarks. Peridomestic and parthenogenetic species found in gardens, plantations, and chicken/cattle housing (Pellens and Grandcolas, 2008).

Blattidae

Periplaneta americana (Linnaeus, 1758)
Periplaneta americana: Kirby (1890); Alvarenga (1962).
Material examined. 1♀.

Periplaneta australasiae (Fabricius, 1775), *new record*
Material examined. 1 third instar nymph.

Periplaneta fuliginosa (Serville, 1839), *new record*
Material examined. 1♀ collected in urban area.

Corydiidae

Euthyrrhapha pacifica (Coquebert, 1804)
Euthyrrhapha pacifica: Kirby (1890); Alvarenga (1962).

Ectobiidae

Blatella germanica (Linnaeus, 1758), *new record*
Material examined. 2♀ collected in urban commercial food establishments.

Chorisoneura poststriga (Walker, 1868)
Phyllodromia poststriga: Kirby (1890); Alvarenga (1962).
Material examined. +20 specimens.
Remarks. Specimens somewhat yellowish and the only collected Pseudophyllodromiinae with this color in Fernando de Noronha can be conspecific with the specimen(s) identified previously as *C. poststriga* by Kirby (1890). Identification must be confirmed or corrected.

COLEOPTERA

This is the second richest order in the Fernando de Noronha archipelago, with 35 families and 118 species records. Twelve species were described from local specimens and most of them seem to be endemic. Eighty taxa (families, genera or species) are here recorded for the first time.

Aderidae

Aderus sp., *new record*
Material examined. +10 specimens.

Anthribidae

Araecerus fascicularius (De Geer, 1775), *new record*
Material examined. +10 specimens.
Remarks. This cosmopolitan coffee bean weevil affects a wide range of stored products and some field crops.

Bostrichidae

Xyloperthella transvena (Lesne, 1900)
Xylopertha: Waterhouse (1890).

Xylionius transvena: Alvarenga (1962).
Material examined. +50 specimens.
Remarks. “Three specimens. Probably an introduced species. Four millimetres in length; reddish yellow, shining, with the rough anterior...”

Liosilpha incommoda (Kirby, 1890)
Blatta incommoda: Kirby (1890), Alvarenga (1962).

Phyllophaga submarginata (Linnaeus, 1758)
Phyllophaga marginata: Kirby (1890), Alvarenga (1962).
Material examined. +50 specimens.
Remarks. “Three specimens. Probably an introduced species. Four millimetres in length; reddish yellow, shining, with the rough anterior...”

Table 1 Orders and number of families, species, new records and species described based on local specimens in Fernando de Noronha archipelago.

Order	Families	Species	New records	Described species based on local specimens
Blattaria	4	9	3	1
Coleoptera	35	118	80	12
Collembola	12	29	2	2
Dermaptera	3	3	0	
Diplura	1	1	0	
Diptera	40	134	108	
Embioptera	1	1	1	
Hymenoptera	18	29	12	3
Lepidoptera	34	59	21	15
Mantodea	2	2	2	
Neoptera	1	1	1	
Neuroptera	3	3	3	
Oncomara	1	1	1	
Orthoptera	5	11	1	4
Phasmatodea	2	3	3	
Phthiraptera	3	3	3	
Psocoptera	1	1	1	
Siphonaptera	2	10	10	
Thysanoptera	2	2	2	0
Zygentoma	2	3	3	
Total	179	453	263	38

Responsible: A. Asenjo, A. de M. Bello, F.Z. Vaz-de-Mello, J.O. Silva-Júnior, M.L. Monné, M.A. Monné, P.C. Grossi, and R. Sobral
part of the thorax brown and the apex of the elytra pitchy. The elytra finely punctured at the base, strongly punctured posteriorly; the posterior declivity also strongly punctured, with three nodes on its upper margin on each elytron” (Waterhouse, 1890).

Brentidae

Brentus sp. (Brentinae), **new record**
Material examined. 1 specimen.

Coelocephalapion sp. (Apioninae), **new record**
Material examined. 7 specimens.

Buprestidae

Agrilus oceanicus Cobos, 1959*
Agrilus oceanicus: Alvarenga (1962).
Material examined. 3 specimens.

Chrysobothris sp., **new record**
Material examined. 3 specimens.

Micrasta alvarengai Cobos, 1959*
Micrasta alvarengai: Alvarenga (1962)
Material examined. 3 specimens.

Carabidae

Paraclivina sp., **new record**
Material examined. 3 specimens.

Tachys (Paratachys) sp., **new record**
Material examined. 4 specimens.

Cerambycidae

Achryson surinamum (Linnaeus, 1767), **new record**
Material examined. 15♂, 12♀.

Aegomorphus jaspideus (Germar, 1823), **new record**
Material examined. 2♂, 2♀.

Aegomorphus ridleyi (Waterhouse, 1890)*
Acanthoderes ridleyi: Waterhouse (1890); Alvarenga (1962).
Material examined. 2♂, 1♀.

Remarks. “These flew into light in the evening, and were very plentiful. They made a loud squeaking noise when caught” (Waterhouse, 1890).

Anelaphus souzai (Zajciw, 1964)
Anelaphus souzai: Monné (1993)
Material examined. 21♂, 18♀.

Lepturges (Chaeturges) *laetus* Melzer, 1928, **new record**
Material examined. 2♂, 5♀.

Mallodon spinibarbis (Linnaeus, 1758)
Stenodontes spinibarbis: Alvarenga (1962).
Material examined. 1♂, 2♀.

Oredeira sp., **new record**
Material examined. 1 specimen.

Oxymerus aculeatus lebasii Dupont, 1838, **new record**
Material examined. 30♂, 7♀.

Trypanidius isolatus Waterhouse, 1890*
Trypanidius isolatus: Waterhouse (1890); Alvarenga (1962).

Remarks. “These came to light, but were rarer, only two being taken” (Waterhouse, 1890).

Cerylonidae

Euxestus erythacus (Chevolat, 1863), **new record**
Material examined. 1 specimen.

Chrysomelidae

Amblycerus nigromarginatus (Motschulsky, 1874) (Bruchinae)
Amblycerus nigromarginatus: Alvarenga (1962).
Material examined. 4 specimens appear to be conspecific with the specimen identified as *A. nigromarginatus* by Alvarenga (1962).

Chaetocnema ferdanodoensis Sherer, 1960* (Galerucinae Alticini)
Chaetocnema ferdanodoensis: Sherer (1960); Alvarenga (1962).
Material examined. 57 specimens of this leaf beetle species fit the original description; plus 17 specimens: v.1954, Moacir Alvarenga (CEMT).

Longitarsus sp. (Galerucinae, Alticini), **new record**
Material examined. 2 specimens.

Cryptocephalus sp. (Cryptocephalinae), **new record**
Material examined. 1 specimen.

Megacerus (M.) *cf. porosus* (Sharp, 1885) (Bruchinae)
Bruchus porosus: Waterhouse (1890); Alvarenga (1962).
Material examined. +20 specimens fit the photos of the specimens from Fernando de Noronha deposited in the NHMUK.

Remarks. “Two imperfect male specimens, which may be referable to *B. porosus* Sharp from Guatemala, the type of which (unique) is a female. The brown colour is rather more suffused over the elytra, and the punctures are not quite so large. The pectinations of the antennae are very long” (Waterhouse, 1890).

Merobruchus sp. 1 (Bruchinae), **new record**
Material examined. 10 specimens.

Merobruchus sp. 2 (Bruchinae), **new record**
Material examined. 8 specimens.

Pachybrachis sp., **new record**
Material examined. +30 specimens.

Coccinellidae

Azyla sp. **new record**
Material examined. +10 specimens.

Chilocorus nigritus (Fabricius, 1798), **new record**
Material examined. 10 specimens collected on *Malvaviscus* sp.

Hyperaspis sp., **new record**
Material examined. 1 specimen.

Scymnus pernambucensis Giorgi & Gonzáles, 2014, **new record**
Material examined. +20 specimens.

Scymnus (Pullus) *cerinotum* Gordon, 2000, **new record**
Material examined. 13 specimens.

Scymnus (Pullus) *rubicundus* Erichson, 1847
Scymnus sp.: Waterhouse (1890).
Material examined. +60 specimens.
Remarks. “Two examples of a species resembling the Indian *S. xeranipelinus* Mulsant, but a trifle smaller (1½ millim.); uniform brownish yellow, with golden pubescence; punctuation of the elytra close, fine but distinct; metasternum very strongly punctured” (Waterhouse, 1890).

The two specimens from Fernando de Noronha, previously identified as *Scymnus* sp. by Waterhouse (1890), were deposited in the NHMUK and subsequently identified in that collection as *S. rubicundus*. This pilose species is highly variable in colour, from entirely yellow to entirely black with several intermediary patterns. The yellow morph recently collected fits the photos of the specimen from Fernando de Noronha deposited in the NHMUK.

Scymnus (Pullus) sp., **new record**

Material examined. 5 specimens, head entirely yellow.

Corylophidae. new record

Material examined. +20 specimens.

Curculionidae

Ambrosiodmus sp. (Scolytinae), **new record**

Material examined. +30 specimens.

Chalcodermus sp. (Molytinae), **new record**

Material examined. 1 specimen.

Copturomorpha sp. (Conoderinae), **new record**

Material examined. +20 specimens.

Cryptocarens sp. (Scolytinae), **new record**

Material examined. +30 specimens.

Cryptorhynchus sp. 1 (Cryptorhynchinhinae), **new record**

Material examined. 5 specimens.

Cryptorhynchus sp. 2 (Cryptorhynchinhinae), **new record**

Material examined. 14 specimens.

Euplatypus parallelus (Fabricius, 1801) (Platypodinae)

Platypus parallelus: Waterhouse (1890); Alvarenga (1962).

Material examined. +100 specimens.

Remarks. The specimens fit the photos of the specimens from Fernando de Noronha deposited in the NHMUK.

Euscepes postfasciatus (Farmaire, 1849) (Cryptorhynchinhinae), **new record**

Material examined. 1 specimen.

Heilipus sp. (Molytinae), **new record**

Material examined. 1 specimen.

Hypothenemus plumeriae (Nördlinger, 1856) (Scolytinae)

Stephanoderes plumeriae: Alvarenga (1962).

Material examined. +20 specimens.

Pandeletius cf. *albus* (Hustache, 1923) (Entiminae), **new record**

Material examined. 8 specimens: v.1954, Moacir Alvarenga (CEMT).

Pantomorus sp. (Entiminae), **new record**

Material examined. 1 specimen.

Pappista manihoti (Marshall, 1925) (Cryptorhynchinhinae)

Coelosternus manihoti (sic): Alvarenga (1962).

Material examined. 2 specimens.

Remarks. Specimens of this cassava borer weevil, recorded previously by Alvarenga (1962) in Fernando de Noronha, appear to be conspecific with *P. manihoti*.

Pycnarthurum setulosum Waterhouse, 1890* (Scolytinae)

Pyrocarthus setulosum: Alvarenga (1962).

Material examined. 2 specimens match the photos of the specimens from Fernando de Noronha deposited in the NHMUK.

Remarks. “It was bred from the bark of the endemic fig-tree, from a specimen out of the garden of the Residency” (Waterhouse, 1890).

Sitophilus oryzae (Linnaeus, 1763) (Dryophthorinae)

Sitophilus oryzae: Waterhouse (1890); Alvarenga (1962).

Remarks. “Introduced. It is very destructive to the maize-grains, so that in the store-rooms the maize is covered with a thick layer of sand to prevent their attacks” (Waterhouse, 1890).

Stenancylus sp. (Cossoninae), **new record**

Material examined. 2 specimens.

Tomicus sp. (Scolytinae)

Remarks. “This dubious record from Fernando de Noronha was based on “two immature specimens belonging to this or an allied genus; very pale yellow, 1½ millim. in length” (Waterhouse, 1890).

Xyleborinus sp. (Scolytinae), **new record**

Material examined. 5 specimens.

Xyleborus volvulus (Fabricius, 1775) (Scolytinae)

Xyleborus torquatus Eichhoff, 1868: Alvarenga (1962).

Material examined. 33 specimens.

Zascelis sp. (Cryptorhynchinhinae), **new record**

Material examined. 4 specimens.

Dermestidae

Dermestes ater De Geer, 1774

Dermestes felinus Fabricius, 1787: Waterhouse, 1890.

Dermestes ater: Alvarenga (1962).

Dryopidae

Pelonomus sp., **new record**

Material examined. +50 specimens.

Dytiscidae

Copelatus sp. (Copelatinae), **new record**

Material examined. +10 specimens.

Elateridae

Aeolus sp., **new record**

Material examined. 1 specimen.

Cardiophorus insularis Cobos, 1959*

Cardiophorus insularis: Alvarenga (1962).

Material examined. 23 specimens.

Dicrepidius sp., **new record**

Material examined. 12 specimens.

Physorhinus erythrocephalus (Fabricius, 1801)

Physorhinus erythrocephalus: Cobos (1959); Alvarenga (1962).

Material examined. +40 specimens.

Pyrearinus alvarengai (Cobos, 1959)*

Pyrohorus alvarengai: Alvarenga (1962).

Material examined. 1 specimen.
Eucnemidae

Dromaeolus sp., new record
Material examined. 8 specimens.

Histeridae

Carcinops sp., new record
Material examined. 11 specimens, collected in decomposing trunk.

Hybosoridae

Chaetodus cf. venezolanus Martínez, 1994, new record
Material examined. 10 specimens.

Hydrophilidae

Dactylosternum abdominale (Fabricius, 1792)
Dactylosternum abdominale: Waterhouse (1890); Alvarenga (1962).
Material examined. 19 specimens collected in rotten fungi.

Enochrus (*Methydrus*) coarctatus (Gredler, 1863)
Philhydrus marginellus Fabricius, 1792: Waterhouse (1890); Alvarenga (1962).

Pelosoma sp., new record
Material examined. 1 specimen.

Tropisternus (*Strepitornus*) sp., new record
Material examined. 8 specimens.

Laemophloeidae

Rhabdophloeus sp., new record
Material examined. +20 specimens.

Latridiidae

Dienerella sp., new record
Material examined. +15 specimens.

Melolonthidae

Ligyrus cuniculus (Fabricius, 1801), new record
Material examined. 6 specimens; plus 12 specimens: v.1954, Moacir Alvarenga (CEMT).

Philureus valgus (Olivier, 1789), new record
Material examined. 4 specimens.

Strategus sp.

Strategus antaeus: Waterhouse (1890); Alvarenga (1962).
Remarks. It seems likely that the *S. antaeus* records in Waterhouse (1890) were a misidentification. The original biological information based on specimens from Fernando de Noronha is transcribed here: “Its larvae were found under rubbish in the Capim-Açu trail {Sapate} with the fragments of the perfect insect, which we did not succeed in taking alive” (Waterhouse, 1890). *Strategus antaeus* is an Eastern North American species that does not occur south of the United States (Ratcliffe, 1976) and it is likely a misidentification or a lapsus. Since Waterhouse (1890) stated that he compared to “North and Central-American species”, it is possible that it was a species with much broader distribution, reaching Northern Brazil, such as *S. aloeus* (Linnaeus, 1758) (Ratcliffe, 1976), or *S. surinamensis* Burmeister 1847, which is also present in North and Northeastern Brazil and with a more similar size to the true *S. antaeus* (*S. aloeus* is usually bigger). Fragments cited by Waterhouse could not be located in the NHMUK collection and no other specimens from Fernando de Noronha were found in that collection.

Mordellidae (Mordellinae, Mordellini)

Mordella sp. 1, new record
Material examined. +30 specimens.

Mordella sp. 2, new record
Material examined. 2 specimens.

Mordella sp. 3, new record
Material examined. 1 specimen.

Mordellistena sp., new record
Material examined. +100 specimens; plus 6 specimens: v.1954, Moacir Alvarenga (CEMT).

Tomoxia sp., new record
Material examined. 1 specimen.

Mycetophagidae

Litargus tetraspilotus LeConte, 1856, new record
Material examined. 8 specimens.

Typhaea stercorea (Linnaeus, 1758), new record
Material examined. 12 specimens: v.1954, Moacir Alvarenga (CEMT), identified by M. Barclay.

Nitidulidae

Colopterus sp., new record
Material examined. 6 specimens.

Eppuraea (Heptoncus) sp.

Eppuraea? sp.: Waterhouse (1890).
Material examined. +10 specimens.
Remarks. “A single specimen of a very small species (1¾ millim.) somewhat resembling *Eppuraea limbata*, but a little narrower, with the margins not expanded, light brown, finely pubescent, closely and very finely punctured; each elytron having two fine, widely separated, impressed striae. Abdomen covered by the elytra” (Waterhouse, 1890). Although we have not seen Waterhouse’s specimen, recently collected specimens belong to *Eppuraea (Heptoncus)*. Therefore, using a conservative approach, we consider them to be the same species.

Mystrops sp., new record
Material examined. 1 specimen.

Stelidota ferruginea Reitter, 1873, new record
Material examined. 1 specimen.

Oedemeridae

Copidita sp.
Material examined. +50 specimens.
Remarks. “Several examples of a species which I am unable to determine. Yellowish, usually with slight grey shade on the elytra” (Waterhouse, 1890).

Phalacridae, Phalacrinae

Stilbus sp., *new record*
Material examined. 1 specimen.

Ptliidae

Ptiliella sp., *new record*
Material examined. 5 specimens.

Ptinidae

Calymmaderus sp., *new record*
Material examined. 1 specimen.

Petalium sp., *new record*
Material examined. 18 specimens; plus 12 specimens: v.1954, Moacir Alvarenga (CEMT).

Tricorynus sp., *new record*
Material examined. 8 specimens.

Scarabaeidae, (all Aphodiinae)

Ataenius cf. *attenuator*, *new record*
Material examined. 1 specimen.

Ataenius cf. *cribrithorax* Bates, 1887, *new record*
Material examined. 1 specimen.

Ataenius cf. *gracilis* (Melsheimer, 1845), *new record*
Material examined. 1 specimen.

Ataenius noronhai Stebnicka, 2007*
Ataenius scutellaris Harold, 1867: Alvarenga (1962) [misident. see remarks below].

Ataenius sp.: Waterhouse (1890).
Material examined. 5 specimens.
Remarks. This species is very similar to *A. scutellaris*, and several specimens collected by Alvarenga are part of the type-series of *A. noronhai*. Thus, the *A. scutellaris* records of Alvarenga (1962) are actually *A. noronhai*.

Ataenius opatrinus Harold, 1867
Ataenius opatrinus: Alvarenga (1962)
Remarks. This record is dubious (Alvarenga, 1962), likely based on a misidentification. Neither Stebnicka (2001) nor recent collections found any specimens of this species-group in Fernando de Noronha.

Labarrus pseudolividus (Balthasar, 1941), *new record*
Material examined. 2 specimens.

Platytonus cf. *parvulus* (Chevrolat, 1864), *new record*
Material examined. 4 specimens.

Silvanidae

Cathartus quadricollis (Guérin-Méneville, 1829), *new record*
Material examined. 20 specimens.

Staphylinidae

Baeocera sp., *new record*
Material examined. 2 specimens.

Belonuchus sp.
Remarks. This was identified only to genus level based on “a single specimen, closely resembling *B. formosus* Gravenhorst [actually *Belonuchus rufipennis* (Fabricius) (Fauvel, 1877)] of Brazil, but smaller, 2¼ lines [14 mm] in length. It was found in a decomposing rat” (Waterhouse, 1890).

Carpelimus (*Carpelimus*) *nigrita* (Wollaston, 1857)
Trogophloeus sp.: Waterhouse (1890).
Material examined. +10 specimens.
Remarks. NHMUK voucher specimen from Fernando de Noronha was identified as *Trogophloeus nigrita* Wollaston [currently in *Carpelimus* (Gildenkov, 2010)]. The specimen from the NHMUK was photographed by Rafael Sobral and compared with recently collected specimens.

Coproporus sp., *new record*
Material examined. 2 specimens.

Euconnus sp., *new record*
Material examined. 5 specimens.

Euplectus sp., *new record*
Material examined. 20 specimens.

Tenebrionidae

Aesthetus *tuberculatus* Waterhouse, 1890*
Aesthetus *tuberculatus*: Alvarenga (1962).
Material examined. 47 specimens.
Remarks. “These were found under stones and bark in the woods of the Capim-Açu trail {Sapate}” (Waterhouse, 1890). We recently found many specimens on dead trees at night, and observed that this species is unable to fly. The specimens fit the photos of the specimens from Fernando de Noronha deposited in the NHMUK.

Alphitobius *diaperinus* (Panzer, 1796)
Alphitobius *diaperinus*: Alvarenga (1962).

Alphitobius *laevigatus* (Fabricius, 1781)
Alphitobius *laevigatus*: Alvarenga (1962).
Material examined. 2 specimens.

Blapstinus *punctulatus* Solier, 1851
Blapstinus *punctulatus*: Waterhouse (1890).
Blapstinus *punctulatus*: Alvarenga (1962).
Material examined. 1 specimen.
Remarks. The recently collected specimen fits the photo of the specimen from Fernando de Noronha deposited in the NHMUK.

Blapstinus *ridleyi*: Waterhouse, 1890*
Blapstinus *ridleyi*: Alvarenga (1962).

Hemasodes *batesi* (Waterhouse, 1890)*
Epitragus *batesii* (sic): Waterhouse (1890).
Hemasodes *batesii*: Alvarenga (1962).
Remarks. “Numerous examples of this species from the Amazons are labelled in Mr. F. Bates’s collection with the name “E. Batesii, Mäkl.”, but the species does not appear to be described” (Waterhouse, 1890).

Listronychus sp.1, new record
Material examined. 1 specimen.

Listronychus sp.2, new record
Material examined. 1 specimen.

Zopheridae

Aulonium sp., new record
Material examined. 1 specimen.

Hyporrhagus marginatus Fabricius, 1792
Hyporrhagus marginatus: Waterhouse (1890); Alvarenga (1962).
Material examined. 8 specimens appear to be conspecific with the specimen identified as H. marginatus by Waterhouse (1890) and deposited at NHMUK.
Remarks. “A single example of this West-Indian species in the flowers of an acacia in the garden” (Waterhouse, 1890).

Nematidium sp., new record
Material examined. 1 specimen.

COLLEMBOLA [Responsible: E.C.A. de Lima and D. Zeppelini]

This order has twelve families, 14 genera and 29 species recorded from Fernando de Noronha. Two species were described from local specimens and three species are here recorded for the first time. The checklist is based on Lima and Zeppelini (2015), however, some confusion has been observed and some taxonomic updates are necessary. Three genera were previously misidentified (Lima and Zeppelini, 2015) and they are being excluded from the Fernando de Noronha record, namely Cryptopygus Willem, 1901, Desoria Agassiz & Mayer, 1841 and Lepidonella Yosii, 1960.

Bourletiellidae

Prorastriopes sp.
Remarks. Identified only to genus level (Lima & Zeppelini, 2015).

Brachystomellidae

Brachystomella agrosa Wray, 1953
Brachystomella agrosa: Lima and Zeppelini (2015).

Collophoridae

Collophora terrabrasilis (Zeppelini and Brito, 2013)
Collophora terrabrasilis: Lima and Zeppelini (2015); Brito et al. (2017).

Dicyrtomidae

Calvatomina sp.
Remarks. Identified only to genus level (Lima and Zeppelini, 2015).

Entomobryidae

Entomobrya atrocincta Schött, 1896

Entomobrya atrocincta: Lima and Zeppelini (2015); Brito et al. (2017).

Lepidocyrtus nigrosetosus Folsom, 1927, new record
Lepidocyrtus sp. (Setogaster): Lima and Zeppelini (2015).
Pseudosinella flata: Lima and Zeppelini (2015); Brito et al. (2017).

Lepidocyrtus violaceus Fourcroy, 1785
Lepidocyrtus violaceus: Lima and Zeppelini (2015).

Pseudosinella biunguiculata Ellis, 1967
Pseudosinella sp.: Lima and Zeppelini (2015)
Pseudosinella aera: Lima and Zeppelini (2015); Brito et al. (2017)
Pseudosinella biunguiculata: Cipola et al. (2020).

Seira dowlingi (Wray, 1953)
Seira dowlingi: Cipola et al. (2019).

Seira musarum Ridley, 1890*
Seira musarum: Abrantes et al. (2010); Lima and Zeppelini (2015); Brito et al. (2017); Cipola et al. (2019).
Remarks. “Very abundant between the wet bases of the petioles of the bananas, at the base of the Peak and it is most probable that this species was introduced in the bananas” (Ridley, 1890).

Hypogostruridae

Acherontiella sp.
Remarks. Identified to genus level based on a species soon to be described (Lima and Zeppelini, 2015).

Willemia sp.
Remarks. Identified to genus level based on a species soon to be described (Lima and Zeppelini, 2015).

Xenylla yucatana Mills, 1938
Xenylla yucatana: Lima and Zeppelini (2015).

Isotogastruridae

Isotogastrura mucrospatulata Palacios-Vargas, Lima & Zeppelini, 2013
Isotogastrura mucrospatulata: Lima and Zeppelini (2015).
Remarks. This species is known only from sand in the intertidal zone of the Fernando de Noronha islands.

Isototidae

Folsomides sp.
Remarks. Identified only to genus level (Lima and Zeppelini, 2015).

Folsomina sp.
Remarks. Identified only to genus level (Lima and Zeppelini, 2015).

Hemisotoma thermophila (Axelson, 1900)
Hemisotoma thermophila: Lima and Zeppelini (2015).

Isotomiella sp.
Remarks. Identified only to genus level (Lima and Zeppelini, 2015).

Isotomodes sp.
Remarks. Identified only to genus level (Lima and Zeppelini, 2015).

Proisotoma sp.
Remarks. Four morphospecies were identified to genus level (Lima and Zeppelini, 2015).
Neuridae

Arlesia sp.

Remarks. Identified to genus level based on a species soon to be described (Lima and Zeppelini, 2015).

Friesea sp.

Friesea cubensis: Lima and Zeppelini (2015) (error).

Remarks. The **Friesea cubensis** Potapov & Banasko, 1985 record was a misidentification and a new species will soon be described in its place.

Neanuridae

Megalothorax laevis Denis, 1948, **new record**

Megalothorax minimus Lima and Zeppelini (2015).

Remarks. Schneider et al. (2018) and Papác (pers. commun.) confirmed the wide distribution of **M. laevis** in intertropical regions of the Americas (southern parts of Mexico, Panama, Brazil and the Fernando de Noronha islands). Although the species has no other record in Brazil, all **Megalothorax minimus** records from Brazil should be reviewed based on the study of Schneider et al. (2018).

Paronellidae

Cyphoderus agnotus Börner, 1906

Cyphoderus agnotus: Lima and Zeppelini (2015).

Cyphoderus caetetus Zeppelini & Oliveira, 2016

Cyphoderus caetetus: Zeppelini and Oliveira (2016).

Cyphoderus sp.: Lima and Zeppelini (2015).

Cyphoderus innominatus Mills, 1938

Cyphoderus innominatus: Lima and Zeppelini (2015).

Cyphoderus similis Folsom, 1927

Cyphoderus javanus: Lima and Zeppelini (2015).

Sminthuridae

Sminthurides aquaticus Bourlet, 1842

Sminthurides aquaticus: Lima and Zeppelini (2015).

Sphaeridia pumilis (Krausbauer, 1898)

Sphaeridia pumilis: Lima and Zeppelini (2015).

DERMAPTERA [Responsible: R.A. Heleodoro]

This order is represented by three families, three genera and three species.

Anisolabididae

Euborellia annulipes (Lucas, 1847)

Anisolabis antoni (Dohrn, 1864): Kirby (1890); Alvarenga (1962).

Anisolabis janeirensis (Dohrn, 1864): Kirby (1890); Alvarenga (1962).

Material examined. 4 nymphs, 6♂, 5♀ under sargassum; 4 nymphs, 1♂ under *Sula dactylata* Reinbach nest; 2 nymphs, 1♂, 1♀ on main island ground; 1♀ under cattle dung; 1♀ under tree bark.

Remarks. Based on recently collected specimens, the previous records of **E. antoni** and **E. janeirensis** of Kirby (1890) are considered to be misidentifications of *E. annulipes*. This cosmopolitan species is widely spread across the archipelago with no variation in female and male genitalia, which are very different from those described for *E. antoni* and *E. janeirensis*. This is the first record of this species being found under cattle dung and tree bark, denoting an incredible capability to adapt to new micro-habitats.

Labiduridae

Labidura riparia (Pallas, 1773).

Labidura riparia: Kirby (1890); Alvarenga (1962).

Pygidicranidae

Pygidicrana notigera (Stål, 1860)

Pygidicrana notigera: Kirby (1890); Alvarenga (1962).

Material examined. 1♀ nymph, Sancho trail, under tree bark.

Remarks. This is the first record of this species being collected under tree bark.

DIPTERA [Responsible: J.A. Rafael and S.P. de Lima]

The only species of Diplura recorded from the archipelago is probably a misidentification, since the species was described from Mexico. Except for the original record, no other specimens of this order were collected in Fernando de Noronha.

Japygidae

Mixojapyx saussurei (Humbert, 1868), misidentification?

Iapyx saussurii: Kirby (1890); Alvarenga (1962).

Remarks. “A single specimen of what I believe to be a young example of this little animal was obtained under a stone in the Capim-Açu trail (Sapate) woods” (Ridley, 1890). It is doubtful that the specimen was correctly identified. According to Reddel (1985) this genus is widespread in North America and *M. riggii* Silvestri, 1948 is the only species reported from South America. Adult specimens from the Fernando de Noronha archipelago need to be collected and studied in order to confirm or correct this species identity.

AGROMYZIDAE [Responsible: A. Camargo, C. Dalmora, C.A. Mello-Patiú, C.J.B. de Carvalho, D.W.A. Marques, F. Limeira-de-Oliveira, F.S.P. de Godoi, F.A.C. Pessoa, G.F.G. Miranda, H.F. Flores; J.A. Rafael, L.R.P. Gomes, M.S. Couri, M.S. Gottschalk, M.M.M. Soares, M.S. Rafael, R.S. Gomes Hutchings, R.A. Rocha, R.C. Corrêa, R.W. Hutchings, S.D. dos Santos; S.P. de Lima and V.C. Silva]

Presently this is the richest order in the Fernando de Noronha archipelago with 40 families and 134 species recorded. The 108 new records presented here indicate that the group is still under-collected. Most of the records are of synanthropic species and no endemic species were identified so far.

Agromyzidae

Agromyza sp. **new record**

Material examined. 3♂, 4♀.

Agromyza sp. **new record**

Material examined. 3♂.
Asilidae

Ommatius orenoquensis Bigot, 1876, **new record**
Material examined. 3♂, 1♀.

Schildia gracillima (Walker, 1855), **new record**
Material examined. 1♀.

Asteiidae, **new record**
Material examined. 2 specimens.

Bombyliidae, **new record**
Material examined. 1 specimen.

Calliphoridae

Chrysomya megacephala (Fabricius, 1794)
Chrysomya megacephala: Carmo and Vasconcelos (2016).
Material examined. 2♂, 4♀.

Cochliomyia macellaria (Fabricius, 1775)
Cochliomyia macellaria: Couri et al. (2008); Carmo and Vasconcelos (2016).
Material examined. 11♂, 5♀.

Lucilia eximia* (Wiedemann, 1819)
Lucilia eximia: Couri et al. (2008); Carmo and Vasconcelos (2016).
Material examined. 2♀.

Canacidae

Tethina xanthopoda (Williston, 1896), **new record**
Material examined. 12♂, 15♀.

Cecidomyiidae, **new record**
Material examined. +100 specimens.

Ceratopogonidae

Atrichopogon sp., **new record**
Material examined. 115♂, 1009♀ represent at least two morpho species.

Culicoides guyanensis Floch & Abonnenc, 1942, **new record**
Material examined. 2♂, 29♀.

Culicoides paraensis (Goeldi, 1905), **new record**
Material examined. 2♀.

Culicoides venezuelensis Ortiz & Mirsa, 1950, **new record**
Material examined. 10♂, 60♀.

Culicoides spp., **new record**
Material examined. 14♀ represent two morpho species of the group *C. debilipalpis*.

Dasyhelea spp., **new record**
Material examined. More than 150 specimens represent three morpho species.

Forcipomyia spp., **new record**
Material examined. More than 550 specimens represent six morpho species.

Stilobezzia* sp., **new record**
Material examined. 3♂ 4♀.

Chironomidae, **new record**
Material examined. +100 specimens.

Chloropidae

Apallates sp., **new record**
Material examined. 3♂, 6♀.

Eugaurax sp., **new record**
Material examined. 1♀.

Hippelates sp., **new record**
Material examined. 6♂, 15♀.

Liophilipantes sp., **new record**
Material examined. 30♂, 32♀.

Mansonia (Mansonia) fonsecai* (Pinto, 1932), **new record**
Material examined. 1♂.

Nanohippes sp., **new record**
Material examined. 17 specimens.

Mansonia (Mansonia) titillans* (Walker, 1848), **new record**
Material examined. 2♀.

Clusiidae

Sobaroccephala sp., **new record**
Material examined. 10♂, 14♀.

Culicidae

Culex (C) quinquefasciatus Say, 1823
Culex pipiens fatigans Wiedemann, 1828: Alvarenga (1962); Couri et al. (2008).
Material examined. 1♂.

Aedes (Ochlerotatus) taeniorhynchus* (Wiedemann, 1821)
Aedes (Ochlerotatus) taeniorhynchus: Alvarenga (1962).
Material examined. 30♂, 282♀.

Aedes (Stegomyia) aegypti* (Linnaeus, 1762)
Aedes (Stegomyia) aegypti: Cordeiro et al. (2008); Regis et al. (2014).
Material examined. 17 specimens.

Mansonia (Mansonia) fonsceai* (Pinto, 1932), **new record**
Material examined. 1♂.

Mansonia (Mansonia) titillans* (Walker, 1848), **new record**
Material examined. 2♂.

Dolichopodidae

Achradorcera excava (Van Duze, 1924), **new record**
Material examined. 12♂.

Amblypsilopus sp., **new record**
Material examined. 2♂, 3♀.

Asyndetus sp., **new record**
Material examined. 3♂, 1♀.

Chrysotus brevicornis Van Duze, 1933, **new record**
Material examined. 31♂.

Chrysotus crosbyi Van Duze, 1924, **new record**
Material examined. 7♂.
Chrysotus spectabilis (Loew, 1861), **new record**
Material examined. 12♂.

Chrysotus sp., **new record**
Material examined. 19♀.
Remarks. One morpho species of the *C. excisus* group.

Condyllostylus longicornis (Fabricius, 1775)
Psilopus metallifer Walker, 1849: Kirby (1890); Alvarenga (1962).
Material examined. 5♂.

Condyllostylus ornaticauda Van Duzee, 1931, **new record**
Material examined. 26♂, 12♀.

Condyllostylus sp., **new record**
Material examined. 2♂, 2♀.

Dactylomyia sp., **new record**
Material examined. 5♂, 21♀.

Lyroneurus suavis Loew, 1857, **new record**
Material examined. 5♂, 6♀.

Medetera spp., **new record**
Material examined. 5♂, 6♀ represent two morpho species.

Paraclius quadrinotatus Aldrich, 1902, **new record**
Material examined. 1♂.

Paraclius sp., **new record**
Material examined. 34♂, 20♀.
Remarks. One morpho species of the *P. ovatus* group.

Drosophilidae

Chymomyza sp., **new record**
Material examined. 1♂, 1♀.

Drosophila ananassae Doleschall, 1858
Drosophila ananassae: Oliveira et al., 2010.
Material examined. 86♂, 57♀.

Drosophila bromeliae Sturtevant, 1921, **new record**
Material examined. 1♂, 1♀.

Drosophila malerkotiana Parschad & Paika, 1964
Drosophila malerkotiana: Oliveira et al. (2009).
Material examined. 3727♂, 5326♀.

Drosophila melanogaster Meigen, 1830
Drosophila melanogaster: Oliveira et al., 2010.

Drosophila nasuta Lamb, 1914, **new record**
Material examined. 424♂, 485♀.

Drosophila simulans Sturtevant, 1919
Drosophila simulans: Oliveira et al., 2009; Rohde et al., 2010.
Material examined. 19♂, 30♀.

Drosophila zottii Vilela, 1983
Drosophila zottii: Oliveira et al., 2010.

Leucophaena sp., **new record**
Material examined. 252 specimens.
Remarks. Two species identified only to genus level.

Rhinoleucophaena brasiliensis (Lima, 1950), **new record**
Material examined. 297♂, 373♀.

Rhinoleucophaena lopesi Malogolowkin, 1946, **new record**
Material examined. 9♂, 4♀.

Scaptodrosophila latifasciaeformis (Duda, 1940)
Scaptodrosophila latifasciaeformis: Oliveira et al., 2010.
Material examined. 144♂, 42♀.

Zaprionus indians Gupta, 1970
Zaprionus indians: Oliveira et al. (2009).
Material examined. 115♂, 106♀.

Ephyridae

Athryoglossa glaphyropus Loew, 1878, **new record**
Material examined. 1♂, 1♀.

Scatella obscura Williston, 1896, **new record**
Material examined. 3♂, 9♀.

Paralimna decipiens Loew, 1878, **new record**
Material examined. 7♂, 6♀.

Fanniidae

Fannia pusio (Wiedemann, 1830)
Fannia pusio: Couri et al. (2008).
Material examined. 14♂, 549♀.

Hippoboscidae

Microlychnia cf. pusilla (Speiser, 1902), **new record**
Material examined. 2 specimens.
Remarks. Collected in Malaise traps.

Stilbometopa cf. impressa (Bigot, 1885), **new record**
Material examined. 2♀.
Remarks. Collected in Malaise traps.

Stilbometopa cf. podopostyla Speiser, 1904, **new record**
Material examined. 2♀.
Remarks. Collected in Malaise traps.

Hybotidae

Elaphropeza sp., **new record**
Material examined. 4♂, 5♀.

Kerooplataidae, **new record**
Material examined. +10 specimens.

Lauxaniidae

Camptoprosopella equatorialis Shewell, 1939, **new record**
Material examined. 1♂.

Pachyopella cf. flavida (Wiedemann, 1824), **new record**
Material examined. +100♂, +200♀.

Poecilominettia sp. 1, **new record**
Material examined. +100♂, +200♀.

Poecilominettia sp. 2, **new record**
Material examined. +100♂, +200♀.
Remarks. Specimens with femora brown; apical pair of scutellar setae darker around alveoli; abdomen yellow with lateral margin of tergites darker, sternite 8 black.

Lonchaeidae, **new record**
Material examined. +50 specimens.
Milichiidae

Desmometopa sp. 1, new record
Material examined. 7♂, 1♀.
Remarks. Specimens predominantly black, except basal half of palpus yellow; trochanter, first and second tarsomeres yellow; coxae, femora, tibiae and distal tarsomeres brown; tergites 2-3 laterally brown. Gena nearly 1/7 height of the eye. Proboscis nearly 2X the width of the head. Male cerci large and prominent.

Desmometopa sp. 2, new record
Material examined. 1♀.
Remarks. Specimens predominantly dark brown, except frons with black M-shaped vitta, palpus brown, halter whitish, trochanter, first and second tarsomeres yellow; coxae, femora, tibiae and distal tarsomeres brown. Gena nearly 1/9 the height of the eye. Proboscis nearly 1.3X the width of the head.

Desmometopa sp. 3, new record
Material examined. 3♀.
Remarks. Specimens predominantly black, except palpus brown; halter whitish; fore coxa yellow; first, second and third tarsomeres yellow; coxae, femora, tibiae and distal tarsomeres brown; tergites brown. Gena nearly 1/9 the height of the eye. Proboscis nearly 1.5X the width of the head.

Milichiella sp., new record
Material examined. 2♀.
Remarks. 4 fronto-orbital setae. Notch and emargination in posterior margin of eye large. Oral vibrissa well developed, plus 3-4 subvibrissal setae. Proboscis yellow, short. Basal half of palpus yellow. Antenna black. Mesonotum shiny black. 2 dorsocentral setae. Halter light brown. Sternites 6 and 7 rectangular.

Phleomyia sp. 1, new record
Material examined. 1♀.
Remarks. 4 fronto-orbital setae. Vibrissal angle not prominent. Oral vibrissa well developed, plus 2-3 subvibrissal setae. Proboscis short. Palpus brown. Antenna dark brown. 2 dorsocentral setae, close together on posterior slope of mesonotum. Halter brown. Tergites dark brown.

Phleomyia sp. 2, new record
Material examined. 16♀.
Remarks. 4 fronto-orbital setae. Vibrissal angle prominent. Oral vibrissa well developed, plus 2 subvibrissal setae. Proboscis short. Palpus brown. Antenna dark brown. 2 dorsocentral setae, close together on posterior slope of mesonotum. Halter light brown. Tergites dark brown.

Muscidae

Atherigona orientalis Schiner, 1868
Atherigona orientalis: Couri et al. (2008).
Material examined. 148♂, 776♀.

Cyrtoneuropsis rescita (Walker, 1861)
Cyrtoneuropsis rescita: Couri et al. (2008).
Material examined. 42♂, 99♀.

Gymnodia debilis (Williston, 1896)
Brontaea debilis: Couri et al. (2008).
Material examined. 1♀.

Gymnodia quadristigma (Thomson, 1869)
Brontaea quadristigma: Couri et al. (2008).
Material examined. 12♂, 63♀.

Hydrotaea aeneskens (Wiedemann, 1830), new record
Material examined. 3♂, 4♀.

Musca domestica Linnaeus, 1758
Musca domestica: Couri et al. (2008).
Material examined. 6♂, 1♀.

Neodexiopsis cera Snyder, 1958, new record
Material examined. 421♂, 1273♀.

Stomoxys calcitrans (Linnaeus, 1758), new record
Material examined. 2♀.

Synthesiomyia nudiseta (Wulp, 1883)
Synthesiomyia nudiseta: Couri et al. (2008).
Material examined. 2♂, 11♀.

Mycetophilidae, new record
Material examined. +20 specimens.

Phoridae

Chonocephalus sp., new record
Material examined. 5 specimens.

Conicera sp., new record
Material examined. +10 specimens.

Dohrniphora sp., new record
Material examined. 15 specimens.

Megaselea sp., new record
Material examined. +20 specimens.

Metopina sp., new record
Material examined. 4 specimens.

Pipunculidae

Eudorylas sp., new record
Material examined. 3♀.

Psychodidae, new record
Material examined. +20 specimens.

Ropalomeridae

Willistoniella sp., new record
Material examined. 1♀.

Sarcophagidae

Helicobia morionella (Aldrich, 1930), new record
Material examined. 15♂, 11♀.
Oxysarcodexia thornax (Walker, 1849). Oxysarcodexia thornax: Couri et al. (2008); Carmo and Vasconcelos (2016).

Material examined. 64♂, 179♀.

Peckia (P.) chrysostoma (Wiedemann, 1830)
Peckia (P.) chrysostoma: Couri et al. (2008); Carmo and Vasconcelos (2016).

Material examined. 67♂, 122♀.

Sarcophaga calida Wiedemann, 1830
Sarcophaga calida: Kirby, 1890.
Nephochaetopteryx calida: Alvarenga (1962); Couri et al. (2008).

Remarks. Presently incertae sedis according to Carvalho-Filho et al. (2013). This species was not recorded by Couri et al. (2008) and, so far, there are no continental records.

Tricharaea (Sarcophagula) occidua (Fabricius, 1794)
Tricharaea occidua: Couri et al. (2008); Carmo and Vasconcelos (2016).

Material examined. 192♂, 466♀.

Tricharaea (Sarothromyia) femoralis (Schiner, 1868), new record

Material examined. 1♀.

Scatopsidae, new record

Material examined. +50 specimens.

Scenopinidae

Scenopinus sp. 1, new record
Material examined. 1♂, 3♀.

Remarks. Male middle tergites with wide membranous band on posterior margins.

Scenopinus sp. 2, new record
Material examined. 1♂, 2♀.

Remarks. Male middle tergites with narrow membranous band on posterior margins.

Sciaridae, new record

Material examined. +100 specimens.

Sepsidae

Archisepis pusio (Schiner, 1868), new record
Palaeosepis sp.: Couri et al. (2008).
Material examined. 54♂, 40♀.

Microsepsis furcata (Melander & Spuler, 1917), new record
Material examined. 507♂, 200♀.

Sphaeroceridae

Chespiritos sp., new record
Material examined. 2 specimens.

Coproica sp., new record
Material examined. +10 specimens.

Drucius sp., new record
Material examined. 3 specimens.

Parasphaerocera sp., new record
Material examined. +10 specimens.

Stratiomyidae

Euryneura elegans Williston, 1888, new record
Material examined. 15♂, 20♀.

Remarks. Previously recorded at family level based on two unidentified specimens (Couri et al., 2008).

Hermetia illucens (Linnaeus, 1758), new record
Material examined. 1♂.

Microchrysa bicolor (Wiedemann, 1830), new record
Material examined. 9♂, 7♀.

Sargus thoracicus Macquart, 1834, new record
Material examined. 1♀.

Syphidae

Allograptia exota (Wiedemann, 1830), new record
Material examined. 2♂, 2♀.

Copestylum chalybescens (Wiedemann, 1830)
Copestylum neotropicum Thompson, 1976
Temnocera vesiculosa (Fabricius, 1805): Kirby (1890); Alvarenga (1962).

Material examined. 49♂, 23♀.

Remarks. Based on the number of specimens recently collected of C. chalybescens, it seems likely that the records in Kirby (1890) and Alvarenga (1962) as Temnocera vesiculosa (presently a synonym of Copestylum neotropicum) have been based on a misidentification. On this species, Kirby (1890) remarks “Flying over herbage in the sun, and also taken on the flowers of the cabbage in the garden”.

Dioprosopa clavata (Fabricius, 1794), new record
Material examined. 9♂, 9♀.

Eumerus obliquus (Fabricius, 1805), new record
Material examined. 1♀.

Remarks. This genus is originally from the Old World and was introduced into the Americas. Larvae from this genus are known to attack a variety of plants of economic importance (e.g. carrots, narcissus, onions, potatoes) which might explain their introduction to the Americas (i.e., through the transportation of commercial plants attacked by their larvae). This species was identified using the key of Seguy (1961). Eumerus obliquus was previously recorded from Brazil (Marinoni and Morales, 2007; Morales and Marinoni, 2020), but this is the first record from northeastern Brazil.

Ornidia obesa (Fabricius, 1775), new record
Material examined. 2♂.

Palpada vinetorum (Fabricius, 1799), new record
Material examined. 1♂.

Toxomerus dispar (Fabricius, 1794), new record
Material examined. 1♂, 2♀.

Victoriana sp., new record
Material examined. 1♂, 9♀.

Remarks. This species was previously part of the genus Ocyptamus Macquart, 1834, but is nowadays placed in the genus Victoriana (Miranda et al., 2020) and is part of the species group V. attenuata.

Tabanidae

Tabanus occidentalis Linnaeus, 1758, new record
Material examined. 34♂, 23♀.
Remarks. Previously recorded at family level based on one unidentified specimen (Couri et al., 2008).

Tabanus pungens Wiedemann, 1828, **new record**
Material examined. 40 ♀.

Tephritidae, **new record**
Material examined. 25 specimens.

Tipulidae, **new record**
Material examined. +50 specimens.

Ulidiidae

Euxesta aff. stigmatias Loew, 1868, **new record**
Material examined. 2 ♂, 5 ♀.

Euxesta sp. 1, **new record**
Material examined. 20 ♂, 25 ♀.

Euxesta sp. 2, **new record**
Material examined. +20 ♂, 30 ♀.

Notogramma sp., **new record**
Material examined. +20 ♂, 20 ♀.

Xanthacrona bipustulata Wulp, 1899, **new record**
Material examined. 37 ♂, 19 ♀.

EMBIOPTERA [Responsible: P.J.C. Pinto]

Represented by one family, one genus and one unidentified species.

Archemiidae

Pararhagadochir sp., **new record**
Material examined. 28 nymphs, 1 ♂ subadult, 4 ♀.
Remarks. This order was recorded as food for the common small lizard “mabuya”, *Tachylepis atlantica*, but no family was previously identified (Rocha et al., 2009).

HEMIPTERA [Responsible: D.M. Takiya, D.R.R. Fernandes, J.A. Rafael, M.P.G. da Silva]

Represented by the three suborders (Sternorrhyncha, Auchenorrhyncha and Heteroptera), 18 families and 29 species. Three species, described from local specimens, seem to be endemic and 12 taxa (families, genera, and species) are new records.

Suborder **Auchenorrhyncha**

Aleyrodidae, **new record**
Material examined. +20 specimens.
Remarks. Specimens were collected with interception traps and apparently all are conspecific.

Aphididae, **new record**
Material examined. +10 specimens.

Psyllidae, **new record**
Material examined. +200 specimens.
Remarks. Specimens were collected with interception traps and apparently all are conspecific.

Suborder Auchenorrhyncha

Cicadellidae

Agallia configurata Oman, 1933
Agallia configurata: Alvarenga (1962).

Agalliana sticticollis (Stål, 1859)
Galliana sticticollis: Alvarenga (1962).

Balclutha incisa (Matsumura, 1902)
Neosteles incisus: Alvarenga (1962).

Ciminius platensis (Berg, 1879), **new record**
Material examined. 4 ♂, 4 ♀.

Curtara (Curtara) samera DeLong & Freytag, 1972, **new record**
Material examined. 2 ♂.

Scaphytopius (Convelinus) marginelineatus (Stål, 1859)
Scaphytopius marginelineatus: Alvarenga (1962).

Tapajosa fulvopunctata (Signoret, 1854)
Oncometopia marginula (Osborn, 1926): Alvarenga (1962).
Material examined. 2 ♂.

Unerus colonus (Uhler, 1895)
Graminella colonus: Alvarenga (1962).

Cicadidae, **new record**
Material examined. 10 specimens.

Delphacidae

Peregrinus maidis (Ashmead, 1890)
Peregrinus maidis: Alvarenga (1962).

Syndelphax dissipatus (Muir, 1926)
Delphacodes dissipata: Alvarenga (1962).

Dictyopharidae

Nersia florens Stål, 1862
Nersia florins: Alvarenga (1962).
Material examined. 13 specimens.

Membracidae

Nicoria sp., **new record**
Material examined. 1 ♂.
Tropiduchidae, **new record**
Material examined. 6 specimens.

Suborder Heteroptera

Cydnidae, **new record**
Material examined. +20 specimens.

Lygaeidae, **new record**
Material examined. +30 specimens.

Miridae

Creontiades pallidus (Rambur, 1839)
Creontiades pallidus: Carvalho and Becker (1957); Alvarenga (1962).
Material examined. 6 specimens fit this species description.

Garganus insularis Carvalho & Becker, 1957*
Garganus insularis: Carvalho and Becker (1957); Alvarenga (1962).
Material examined. 2 specimens fit this species description.
Remarks. Species originally described from Fernando de Noronha, and recently recorded from Costa Rica (Chérot and Carpintero, 2017).

Pentatomidae

Thyanta (Argosoma) testacea (Dallas, 1851)
Pentatoma testacea: Kirby (1890); Alvarenga (1962).
Material examined. +20 specimens. They seem to belong to this species.
Remarks. According to Rider and Chapin (1991), *T. testacea* is close to *T. patruelis* (Stål, 1859). There seems to be a clear geographical separation between the two species, with *T. testacea* restricted to northern South America and the Lesser Antilles, and *T. patruelis* occurring from northeastern Brazil and southern Peru towards the south. As Alvarenga (1962), we follow the identification of Kirby (1890) for the specimens from Fernando de Noronha.

Rhopalidae

Jadera coturnix rufoculis (Kirby, 1890)*
Lygaeus rufoculis: Kirby (1890); Alvarenga (1962).
Material examined. 7 specimens.
Remarks. “This highly-coloured bug occurred in large numbers upon the ground in the Capim-Açu trail (Sapate) under bushes of *Jacquinia*, but was local, only found in a few spots” (Kirby, 1890).

Rhyparochromidae

Ozophora variegata (Kirby, 1890)*
Heraeus variegatus: Kirby (1890); Alvarenga (1962).
Material examined. 40 specimens.
Remarks. Transferred from *Heraeus* to *Ozophora* by Scudder (1967).
Ligyrocoris baleatus Stål, 1874
Ligyrocoris baleatus: Kirby (1890); Alvarenga (1962).
Material examined. 10 specimens.
Pseudopachybrachius vinctus (Say, 1831)
Ligyrocoris bipunctatus: Kirby, 1890; Kirby (1890); Alvarenga (1962).

Tingidae, new record
Material examined. +20 specimens.

Veliidae

Microvelia pulchella Westwood, 1834
Rhagovelia incerta Kirby, 1890: Kirby (1890); Alvarenga (1962).
Material examined. 1 adult, 5 nymphs.
Remarks. Recently collected specimens were found at Xaréu lake and are probably conspecific with previous records.

HYMENOPTERA [Responsible: A. Somavilla, D.R. Parizotto, D.R.R. Fernandes, I.O. Fernandes, P.R. Bartholomay and T. Mahlmann]

The third richest order in the Fernando de Noronha archipelago, with 34 families and 59 species recorded. Fourteen species were described from local specimens, and most of them seem to be endemic, and 21 taxa (families, genera and species) are new records.

Four species of Apidae were introduced intentionally in the main island: three Meliponini, *Melipona compressipes fasciculata, M. subnitida* and *Scaptotrigona postica* (Kerr and Cabeda, 1985) and one Apini, *Apis mellifera ligustica* (Malagodi et al., 1986).

Agaonidae

Idarnes dispar (Kirby, 1890)*
Ganosoma dispar: Kirby (1890); Alvarenga (1962).
Idarnes dispar: De Santis and Dias, 1975.
Pegoscapus obscurus (Kirby, 1890)*
Blastophaga obscura: Kirby (1890); Alvarenga (1962).
Blastophaga (Secundeilisenia) obscura: De Santis and Dias, 1975.

Aphelinidae, new record
Material examined. +10 specimens.

Apidae

Apis mellifera ligustica (Spinola, 1806)
Apis mellifera ligustica: Malagodi et al. (1986).
Apis mellifera mellifera: Ribeiro and Lima (2015) (error).
Material examined. +20 workers.
Remarks. Species originally from the Italian Peninsula. It has been commercially transported throughout the world and now occurs worldwide (Costa et al., 2012).

Centris aff. trigonoides Lepeletier, 1841, **new record**
Material examined. 6 ♀.

Melipona (*Melikerria*) *fasciculata* Smith, 1854
Melipona compressipes fasciculata: Kerr and Cabeda (1985).
Material examined. +10 workers.
Melipona (*Melipona*) *subnitida* Ducke, 1910
Melipona subnitida: Kerr and Cabeda (1985).
Material examined. +10 workers.
Scaptotrigona postica (Latreille, 1807)
Scaptotrigona postica: Kerr and Cabeda (1985).

Azotidae, new record
Material examined. 3 specimens.

Bethylidae, new record
Material examined. 5 specimens.

Braconidae
Agathis alvarengai De Santis, 1975*
Agathis alvarengai: De Santis (1975).
Apanteles noronhai De Santis, 1975*
Apanteles noronhai: De Santis (1975).
Phanerotoma vidua De Santis, 1975*
Phanerotoma vidua: De Santis (1975).

Braconidae
Apanteles noronhai De Santis, 1975*
Apanteles noronhai: De Santis (1975).

Ceraphronidae, new record
Material examined. 8 specimens.

Chalcididae, new record
Material examined. 21 specimens.

Colletidae
Hylaeus sp., new record
Material examined. 6 specimens.

Crabronidae
Enopllolindenius pugnans (Smith, 1873), new record
Material examined. 2 ♀, 1 ♂.

Diapriidae, new record
Material examined. 11 specimens.

Dryinidae, new record
Material examined. +50 specimens.

Eupelmidae, new record
Material examined. 9 specimens.

Eurytomidae, new record
Material examined. 11 specimens.

Eucharitidae, new record
Material examined. 8 specimens.

Eudorus alvarengai De Santis, 1975*
Eudorus alvarengai: De Santis and Diaz (1975).

Eupelmidae
Eudorus alvarengai De Santis, 1975*
Eudorus alvarengai: De Santis and Diaz (1975).

Figitidae
Odontoeucoila xanthopa Kieffer, 1910
Odontoeucoila xanthopa: De Santis and Diaz (1975).
Zaeucoila robusta (Ashmead, 1894)*
Zaeucoila enneatoma Dia, 1975: De Santis and Diaz (1975); Buffington et al. (2017, synonymy).

Formicidae
Camponotus (Myrmosphincta) sexguttatus (Fabricius, 1793)
Camponotus bimaculatus (Smith, 1858): Kirby (1890); Alvarenga (1962).
Camponotus (Tanaemyrmex) conspicus (Smith, 1858)
Camponotus (Myrmothrix) conspicus: Alvarenga (1962).

Gasteroidae, new record
Material examined. 13 ♀ and 1 queen.

Lasiocampidae
Eucosma rectipennis (Latreille, 1819)
Eucosma rectipennis: Alvarenga (1962).
Remarks. “This species was exceedingly abundant in the houses, making nests in the earth between the bricks of the floor. It is very destructive, devouring all kinds of food, and even ate up the insects captured in the chip-boxes” (Kirby, 1890). Specimens in the NHMUK bearing the label “88/10”, found with label “Pheidole omnivora Kirby” from Fernando [de] Noronha Island in the South Atlantic, are also P. megacephala and Brown was unable
to locate any *Pheidole omnivora* described by Kirby in the literature (Brown Junior, 1981).

Pseudomyrmex cubaensis (Forel, 1901)

Pseudomyrmex cubaensis: Ward (1989).

Pseudomyrmex urbanus (Smith, 1877)

Pseudomyrmex urbanus: Ward (1989).

Solenopsis geminata (Fabricius, 1804)

Solenopsis geminata: Alvarenga (1962).

Tapinoma melanacephalum (Fabricius, 1793)

Tapinoma melanacephala: Alvarenga (1962); Kempf (1972); Micheletti et al. (2020).

*Material examined. 12 ♀.

Tetramorium bicarinatum (Nylander, 1846).

Tetramorium bicarinatum: Micheletti et al. (2020).

Tetramorium guineense (Bernard, 1953)

Tetramorium guineense: Guénard et al. (2017).

Tetramorium simillimum (Smith, 1851).

Tetramorium simillimum: Kempf (1975); Micheletti et al. (2020).

Wasmannia auropunctata (Roger, 1863)

Wasmannia auropunctata: Micheletti et al. (2020).

*Material examined. 430 ♀.

Remarks. “In 2017 the species was identified as electric or little fire ant (*Wasmannia auropunctata*). Locals describe it as a recent introduction, possibly introduced in nursery stock from continental Brazil where it is native” (Micheletti et al., 2020).

Halictidae

Augochlora (*Augochlora*) *laevipyga* (Kirby, 1890)*

Augochlora laevipyga: Alvarenga (1962).

Augochlora (*Augochlora*) *laevipyga*: Mouré (2012).

Halictus alternipes Kirby, 1890:

Halictus alternipes: Alvarenga (1962); Mouré (2012).

*Material examined. 25 ♂, 50 ♀.

Remarks. “These *Halicti* were taken in the flowers of the melons and the *Oxalis*, and play an important part in the fertilization of the flowers in the island” (Kirby, 1890).

Ichneumonidae

Venturia saxatilis De Santis, 1975*

Venturia saxatilis: De Santis (1975).

Megachilidae

Megachile sp., new record

*Material examined. 3 specimens.

Mymaridae

Cosmocomoidea nigriflagellum (Girault, 1914)*

Conotoxus h-luteum: Ogloblin, 1938; De Santis and Diaz (1975); Triapitsyn et al. (2010, synonymy).

Pompilidae

Pompilus nesophilus Kirby, 1890*

Pompilus nesophilus: Kirby (1890); Alvarenga (1962).

Remarks. “Taken flying over paths in the centre of the island, not common and difficult to catch” (Kirby, 1890).

Pteromalidae

Neocatolaccus gahani (Costa Lima, 1938)

Eurydinoteloides gahani: De Santis and Diaz (1975).

Scelionidae, new record

*Material examined. +50 specimens.

Sceliphron asiaticum (Linnaeus, 1758), new record

*Material examined. 1 ♀.

Torymidae

Podagrion sensitivus De Santis, 1975*

Podagrion sensitivus: De Santis and Diaz (1975).

Trichogrammatidae, new record

*Material examined. 10 specimens.

Vespidae

Polistes ridleyi Kirby, 1890*

Polistes ridleyi: Kirby (1890); Alvarenga (1962).

*Material examined. 35 ♀, 01 ♂; plus 5 ♀: v.1954, Moacir Alvarenga (MZUSP). Holotype ♀, 8 ♀, 1 ♂ deposited in the NHMUK were studied.

Remarks. “The insect stings slightly, but only when much irritated; it plays a very important part in the fertilization of the flowers, especially the Cucurbitaceae” (Kirby, 1890). We studied the few specimens of both sexes collected by H. N. Ridley in 1887-1888, and some by M. J. Nicoll, during the Crawford Expedition of 1902, in the NHMUK, London.
ISOPTERA

Represented by two families and at least two genera and two species. Unidentified specimens were previously recorded as food for the small “mabuya” lizard, *Tachylepis atlantica* by Rocha et al. (2009). This is the first time that the families were identified.

Calotermitidae, **new record**
Material examined. 1 specimen.

Nasutitermitidae, **new record**
Material examined. +20 specimens.

LEPIDOPTERA [Responsible: M.M. Casagrande, O.H.H. Mielke, and E. Carneiro]

This order is represented by eight families and at least 25 species. One species, described from local specimens, seems to be endemic, and eight taxa (family, genera or species) are new records. Most of the species are nocturnal, which implies that more nocturnal and diurnal collections are required to properly sample the Lepidoptera fauna in this archipelago.

Crambidae

Asciodes sp., **new record**
Material examined. 1 specimen.

Diaphania hyalinata (Linnaeus, 1767)
Phakellura hyalinata: Kirby (1890); Alvarenga (1962).

Herpetogramma bipunctalis (Fabricius, 1794)
Pachyzacla detritalis (Guénee, 1854); Kirby (1890); Alvarenga (1962).

Herpetogramma phaeopteralis (Guénee, 1854)
Acharana phaeopteralis: Kirby (1890); Alvarenga (1962).

Hymenia perspectalis (Hübner, 1796)
Hymenia perspectalis: Kirby (1890); Alvarenga (1962).

Remarks. It is still necessary to study more material to confirm this species identity.

Loxomorpha flavidissimalis (Grote, 1877)
Opsibotys flavidissimalis: Kirby (1890); Alvarenga (1962).

Remarks. *Loxomorpha flavidissimalis* was confused with *L. cambogialis* in the study of the Fernando de Noronha fauna (Lara-Villalón et al., 2016); these two species cannot be separated solely through external morphology. Specimens from Fernando de Noronha must be dissected and studied in order to ascertain this species identification.

Erebidae

Palpita jairusalis (Walker, 1859)
Margaronia jairusalis: Kirby (1890); Alvarenga (1962).

Samea ecclesialis Guénee, 1854
Samea castellalis Guénee, 1854: Kirby, 1890; Alvarenga, 1962.

Terastia sp., **new record**
Material examined. 1 specimen.

Erebidæ

Anticsia gemmatalis Hübner, 1818
Thermesia gemmatalis: Kirby (1890); Alvarenga (1962).

Erebidae

Eublemma recta (Guénee, 1852)
Anthophila flammicincta Walker, 1865: Kirby (1890); Alvarenga (1962).

Melipotis perpendicularis (Guénee, 1852)
Bolina bivittata Walker, 1857: Kirby (1890); Alvarenga (1962).

Remarks. “The single specimen from Fernando de Noronha has a narrower band than any of the others; but it would require a series to show whether this character is constant in the locality, or a mere individual variation” (Kirby, 1890).

Lycaenidae

*Pyralidae**

Etiella zinckenella (Treitschke, 1832)
Mella zinckenella: Kirby (1890); Alvarenga (1962).

Remarks. Official records of this species for the continent were presented in Czepak et al. (2013) and Specht et al. (2013).

Noctuidae

Bagisara repanda (Fabricius, 1793)
Anonnis disparota Walker, 1857: Kirby (1890); Alvarenga (1962).

Remarks. Still requires confirmation.

Geometridae

Sphingidae

Agrius cingulata (Fabricius, 1775), **new record**
Material examined. 6 specimens.
Tineidae, **new record**

MANTODEA [Responsible: R.A. Heleodoro]

This order is represented by one family, one genus and one species, and is a new record for the archipelago.

Thespiidae

Thespria inflava (Audinet-Serville, 1839), **new record**

Material examined. 6♂, 1 nymph.

NEUROPTERA [Responsible: F.J. Sosa-Duque, R.J.P. Machado]

This order is represented by two families and three species, all new records for the archipelago.

Chrysopidae

Ceraeochrysa cornuta (Navás, 1925), **new record**

Material examined. 1♀, 4♂.

Ceraeochrysa dislepis de Freitas & Penny, 2001, **new record**

Material examined. 3♀, 2♂.

Coniopterygidae

Coniopteryx (Scotoconipteryx) sp., new record

Material examined. +50 specimens.

ODONATA [Responsible: A.P. Pinto]

This order is represented by two families, five genera and five species.

Coenagrionidae (Zygoptera)

Ischnura capreola (Hagen, 1861)

Ischnura (*Ceratura*) *capreola*: Mesquita and Matteo (1991).

Material examined. 19♀, 25♂.

Libellulidae (Anisoptera)

Erythemis vesiculosa (Fabricius, 1775)

Leptemis vesiculosa: Alvarenga (1962); Mesquita and Matteo (1991).

Miathyria marcella (Selys in Sagra, 1857)

Miathyria marcella: Mesquita and Matteo (1991).

Material examined. 4♀, 3♂.

Pantala flavescens (Fabricius, 1798)

Pantala flavescens: Kirby (1890); Mesquita and Matteo (1991).

Material examined. 1♂.

T. binotata (Rambur, 1842) and **T. cophysa** Hagen, 1867 (Calvert, 1906a; Ris, 1913). They are all widespread species in the Western Hemisphere. Furthermore, a species described in the 19th century, **Libellula basalis** Burmeister, 1839, was a homonym of two other species, and later on **L. basalis** Burmeister was synonymized with **T. cophysa** (Calvert, 1906a; but see Calvert, 1906b). In his revision of Libellulidae, Ris (1913) synonymized **Libellula basalis** Burmeister with **T. abdominalis** and mentioned the material from Fernando de Noronha as a synonym for **T. cophysa** (due to a misidentification by W. Kirby) based on the study by Kirby (1897). Decades later, De Marmels and Rácenis (1982) included Kirby’s (1887) **T. basalis** in the synonymy of **Tramea calverti** Muttkowski, 1910. Therefore, because neither Ris (1913) or De Marmels and Rácenis (1982) cited Kirby’s (1890) original study, and it is unclear if they examined those specimens, this Fernando de Noronha record is left identified only to genus level until the original material can be studied.

ORTHOPTERA [Responsible: D.M.M. Mendes and M.A. Monné]

This order is represented by five families and 11 species. Four species, described from local specimens, seem to be endemic. One family is a new record.

Acrididae

Orphulella punctata (De Geer, 1773)

Orphulella punctata: Carbonell (1996).

Material examined. 6♀, 1♂.

Orthoscapheus noronhensis Carbonell, 1996*

Remarks. Specimens were found in the beach (Boldró) vegetation, in dense growths of the herbaceous plant, **Phloxus portulacoides** (Amaranthaceae), but we have no evidence of it feeding on it (Carbonell, 1996).

Stenopola dorsalis (Thunberg, 1827)

Stenopola dorsalis: Kirby (1890); Alvarenga (1962); Carbonell (1996).

Remarks. “Specimens collected on Main and Rat islands, but especially common on the latter” (Kirby, 1890).

Gryllidae

Gryllus (Gryllus) assimilis (Fabricius, 1775)

Gryllus assimilis: Kirby (1890); Alvarenga (1962).

Material examined. 1♀, 1♂.

Remarks. “It is very common in the central district on the paths, and makes a great noise, especially about 4 o’clock in the afternoon” (Kirby, 1890).

Miogryllus verticalis (Serville, 1838)

Gryllus forticeps: Saussure, 1874: Kirby (1890); Alvarenga (1962).

Material examined. 3♂.

Tatalisca pallidocincta (Kirby, 1890)*

Oecanthus (?) *pallidocincta*: Kirby (1890); Alvarenga (1962).

Material examined. 2♂, 1♀.

Gryllotalpidae

Neoscapteriscus abbreviatus (Scudder, 1869)
Scapteriscus abbreviatus: Kirby (1890).

Remarks. “Larva found in burrows in the sand under a *Convera* (*Enteromorpha*) [Algae], in salt water, on the shore of San Antonio Bay, a little above high water. Perfect insect in and about the yards of
the house” (Kirby, 1890). Adult specimens from Fernando de Noronha must be collected and examined in order to confirm/correct this species identity.

Tettigoniidae

Anaulacomera harpago Brunner von Wattenwyl, 1878

Oecella furcifera Kirby, 1890: Alvarenga (1962).

Material examined. 14♂, 6♀.

Remarks. “In all the specimens from Fernando de Noronha the green colour has more or less faded to yellowish brown. When fresh this insect is bright green. It was common on Main Island, and especially on Rat Island” (Kirby, 1890).

Neoconocephalus vernalis (Kirby, 1890)*

Conocephalus vernalis var. *frater*: Kirby, 1890.

Material examined. 2♂.

Remarks. “This grasshopper species was very common everywhere in the Main and Rat Island. It makes a great noise at night. The brown form [= var. *frater*], which flew about with it, was not so common” (Kirby, 1890).

Parapleminia viridinervis (Kirby, 1890)*

Meroncidius viridinervis: Kirby, 1890; Alvarenga (1962).

Material examined. 3♂, 2♀.

Trigonidiidae. new record

Material examined. 2 specimens.

PHASMATODEA [Responsible: R.A. Heleodoro]

This order is being recorded based on a photo taken by Denis de Oliveira Cavalheiro.

Diapheromeridae

Phanocloidea sp., new record

Material examined. Photo of one specimen.

PTHIRIAPTERA [Responsible: D.M.M. Mendes, M.C.M. Castro, A.M. da Silva-Neto].

This order is represented by three families and at least six species (all new records). The associations between lice and birds have not been studied in the archipelago, thus, many new records are expected when such a study is carried out.

Menopodidae

Actornithophilus sp., new record

Material examined. 3 adults, 3 nymphs.

Remarks. As ectoparasites of *Anous minutus atlanticus* (Mathews, 1912), the black noddy bird (trinta-réis preto), in a recently dead specimen.

Bonomiella sp., new record

Material examined. 3 adults, 5 nymphs.

Remarks. As ectoparasites of *Zenaida auriculata noronha* Sharpe, 1890, the eared dove (avoante), brought to ICMBio laboratory by a local inhabitant, checked for ectoparasites and then released.

PSOCOPTERA [Responsible: A.M. da Silva-Neto]

This order is represented by two families and at least three species (all new records).

Lepidopsocidae

Echmepteryx sp., new record

Material examined. 5 specimens.

Soa flaviterminata Enderlein, 1906, new record

Material examined. 2♀.

Remarks. A synanthropic species.

Psocidae, new record

Material examined. +10 specimens.

SIPHONAPTERA [Responsible: J.A. Rafael]

This flea order is represented by one family, one genus and one species, and is being recorded for the first time in Fernando de Noronha based on a cosmopolitan species.

Pulicidae

Ctenocephalides felis felis (Bouché, 1835), new record

Material examined. 2♀ (INPA) on dog.

THYSANOPTERA [Responsible: E.F.B. Lima]

This order is represented by two families, seven genera and ten species, all recorded for the first time in the archipelago.
Phlaeothripidae

Haplothrips gowdeyi [Franklin, 1908], **new record**
Material examined. 3♀.

Nesothrips minor [Bagnall, 1921], **new record**
Material examined. 1♂, 1♀.
Remarks. This is the first record of *Nesothrips minor* for the Neotropical region.

Thripidae

Bregmatothrips venustus Hood, 1912, **new record**
Material examined. 2♀.

Frankliniella brevicaulis Hood, 1937, **new record**
Material examined. 1♀.

Frankliniella insulare [Franklin, 1908], **new record**
Material examined. 1♀.

Neohydatothrips grácilipes (Hood, 1924), **new record**
Material examined. 3♀.
Remarks. This is the first record of *Neohydatothrips grácilipes* in Brazil.

Neohydatothrips inversus (Hood, 1928), **new record**
Material examined. 7♀.

Neohydatothrips portoricensis [Morgan, 1925], **new record**
Material examined. 4♀.

Scolothrips sexmaculatus [Pergande, 1891], **new record**
Material examined. 1♀.

Thrips orientalis [Bagnall, 1915], **new record**
Material examined. 5♀, 3♀.

ZYGENTOMA [Responsible: S.P. de Lima]

This order is represented by two families.

Lepismatidae

Ctenolepis longicaudatum Escherich, 1905
Lepisma corticola Ridley, 1890; Alvarenga (1962).
Lepisma leai Ridley, 1890; Alvarenga (1962).
Remarks. According to Ridley (1890), the specimens described as *L. corticola* were collected “in rotten wood and under stones in the Capim-Açu trail [Sapate] and the base of the Peak. It also occurred on the mainland at Pernambuco in similar localities”. Apparently, it was described based only on the specimens collected on the island. The single specimen described as *L. leai* was somewhat damaged during capture (Ridley, 1890). The two species described from specimens collected in the Fernando de Noronha archipelago were synonymized under the cosmopolitan domestic pest species *C. longicaudatum* by Paclt (1967).

Nicoletiiidae

Material examined. 420 specimens.

Remarks. Several small specimens were collected under stones in Fernando de Noronha and we believe, considering the habitat, that the specimens could correspond to the species previously identified as *Machilis* by Ridley (1890). This species was quite common under stones in the archipelago.

Discussion

Although insects comprise the richest animal taxon in the Fernando de Noronha archipelago (and the World), they have been sorely neglected. Current awareness campaigns are directed chiefly to protect vertebrates. The main island suffered the largest impact on its biodiversity structure, especially the terrestrial fauna, and today most of the known vertebrates (Serafini et al., 2010) and insect species (Couri et al., 2008) are exotic. The current 453 species of insects recorded from the Fernando de Noronha archipelago is far below the actual number living there. There are several new family records and species are still being identified for each family. In view of the environmental changes and anthropic pressure occurring in the archipelago, a species survey needs to be performed as soon as possible.

Based on the present list, 38 species (8.39%) were described from local specimens and most of them are, most likely, endemic species [near one forth of the 30% estimated by Carbonell, 1996]. The low number of endemic species can be a direct effect of human activities related to the small size of the island (Freitas et al., 2013). This shows that Fernando de Noronha has predominantly a continental fauna and can be summarized as mostly an immigrant fauna.

However, there are still many species to be identified and we believe the percentage of endemic species is higher, and closer to Carbonell’s estimate. Presently, we are not able to say which native species disappeared and which exotic species were introduced in the archipelago. Only short-term insect sampling efforts have occurred, a ‘snapshot’ of local species richness that is likely underestimated. Brazilian islands in general were poorly investigated in terms of insect fauna, with only Trindade and Fernando de Noronha being surveyed in the 1950s and 1960s (see Alves et al., 2019). Becker (1998) compiled a list of 77 species/morphospecies, from fourteen hexapod orders, in Trindade (part of the Archipelago of Trindade and Martin Vaz, ca. 1,200 km from continental South America), mostly flying insects, including South American continental species and migrant species well-known as a successful colonizers (Alves et al., 2019). The insect diversity of other small land masses in the South Atlantic have been investigated in the past, where it was possible to identify the native and exotic species, including the islands of West Falkland (78 native and 5 exotic), East Falkland (132 and 22), South Georgia (21 and 8), Tristan da Cunha (38 and 37), Nightingale (34 and 4) and Inaccessible (38 and 12) (Chown et al., 1998). In the remote Gonçalo Alves Island, part of the Tristan da Cunha archipelago (3,200 km from South America, Rio de Janeiro, and 2,900 km from Africa, Cape Town), 99 species of pterygote insects (24 endemics) were recorded and, curiously, the native fauna has a Neotropical origin, while the exotic one has a Holarctic origin (Jones et al., 2003). Comparatively, the updated insect richness in Fernando de Noronha archipelago (18.4 km²) is the highest among the South Atlantic oceanic islands, only surpassed by the Pacific Archipelago of Galápagos (7,882 km²) with more than 1,800 species (Peck et al., 1998). The small size of the Fernando de Noronha archipelago and the unfavorable environment, caused by the lack of permanent fresh water sources and the low vegetation diversity, may act as limiting factors for the establishment of a larger number of species (Freitas et al., 2013). The checklist presented here more than doubles the number of species, from the previous 190 records to the current 453 species records for the archipelago, presenting 263 new records at family, genus, or species level. The high number of new recorded species on the island highlights the lack of studies on the insect fauna of Fernando de Noronha. This checklist is an important step to better understand the entomofauna of the archipelago, as well as provide the basis for monitoring, sustainably using, and preserving this biodiversity. Few insect species from the Fernando de Noronha archipelago have been analyzed for their threatened status (ICMBIO, 2018) and, according to Paulay (1994) and Triantis et al. (2010), this should be a priority since
most of the documented extinctions since the 17th century are of species which were endemic to oceanic and/or remote islands.

This paper shows how much the entomofauna is unknown in Fernando de Noronha. For example, no information on the entomofauna is available on the web. We emphasize the real necessity to receive wide support to continue studying the local poorly known fauna, which is doubled herein and certainly will double again in the near future, thus giving support to applied biological and environmental sciences.

Acknowledgements

We thank the Instituto Nacional de Pesquisas da Amazônia (INPA), for research support. To the Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) and Conselho Nacional de Pesquisas (CNPq), for financial support Edital 001/2015 - CNPq/MCTI/FAPs/PROTAX, CNPq (process number 440.423/2015-5) and for the student scholarships and post-doctoral fellowships. To CNPq for a research grant through edital Universal 01/2016 - MCTI/CNPq (process number 405.630/2016-6) and for research fellowships to J.A.R. (process number 300019/2017-3), C.A.M.P. (process number 308.951/2018-2), C.J.B. de C. (process number 309.873/2016-9), D.M.T. (process number 313.677/2017-4), L.R.P.G. (process number 141030/2018-6), and M.S.G. (process number 314.120/2018-1). ToCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the student scholarships and post-doctoral fellowships. To Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for the Collecting License number 62.821. To the staff at the Parque Nacional Marinho Fernando de Noronha, Ricardo Araújo, Viviane Vilella and Carolina Fonseca for administrative help. To the Autarquia Territorial do Distrito Estadual de Fernando de Noronha (ATDEFN), for the administrative facilities. To Layane Carvalho de Castro for field support, Max Barclay and Michael Geiser helped identify specimens collected in 1954 deposited in CEMT and authorized the photographs of type and non-type specimens deposited in the NHMUK.

Conflicts of interest

The authors declare no conflicts of interest.

Author contribution statement

JAR, FLO and DRRF designed the study. JAR, FLO, DMMM, MSR and PCG conducted the fieldwork and collected the samples. All authors conducted species’ identifications, contributed to the writing, revised the manuscript, and approved the final version.

References

Abrantes, E. A., Bellini, B. C., Bernardo, A. N., Fernandes, L. H., Mendonça, M. C., Oliveira, E. P., Queiroz, G. C., Sautter, K. D., Silveira, T. C., Zeppelini, D., 2010. Synthesis of brazilian collembola: an update to the species list. Zootaxa 2388 (1), 1-22. http://dx.doi.org/10.11646/zootaxa.2388.1.1.

Almeida, L. M., Ribeiro-Costa, C., Marinoni, L., 2012. Cap. 10. Coleta, montagem, preservação e métodos para estudo. In: Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A., Constantino, R. (Eds.), Insetos do Brasil: diversidade e Taxonomia. Holos Editora, Ribeirão Preto, pp. 175-190.

Alvarenga, M., 1962. A entomofauna do arquipélago Fernando de Noronha, Brasil. Arq. Mus. Nac. 52, 21-26.

Alves, R. J. V., Costa, L. A. V., Soares, A., Silva, N. G., Pinto, Â. P., 2019. Open ocean nocturnal insect migration in the Brazilian South Atlantic with comments on flight endurance. PeerJ 7, e7583. http://dx.doi.org/10.7717/peerj.7583.

Becker, J., 1998. Anexo 2. Checklist da fauna de Trindade & Martin Vaz. In: Alves R.J.V. (Ed.), Ilha da Trindade e Arquipélago Martin Vaz: um ensaio geobotânico. Serviço de Documentação da Marinha, Rio de Janeiro, pp. 137-138.

Brito, R. A., Lima, E. C. A., Ferreira, A. S., Oliveira, J. V. L. C., Amorim, T. P. L., Machado, T. G., Lopes, B. C. H., Costa, I. A., Alves, J. L. S., Brito, N. P., Zeppelini, D., 2017. A catalogue of species of Collembola (Hexapoda: Ellipura) deposited in coleção de referência de fauna de solo of the Universidade Estadual da Paraíba, Brazil. Fla. Entomol. 100 (1), 9-14. http://dx.doi.org/10.1653/024.100.0103.

Brown Junior, W. L., 1981. Preliminary contributions toward a revision of the ant genus Pheidole (Hymenoptera: Formicidae). Part I. J. Kants. Entomol. Soc. 54, 523-530.

Buffington, M. L., Gallardo, F. E., Reche, V., Forskage, M., 2017. A revision of Zaeucoila Ashmead (Hymenoptera, Figitidae), parasites of Agromyzidae (Diptera): new species, identity, distribution, and hosts. Proc. Entomol. Soc. Wash. 119 (3), 317-397. https://doi.org/10.4289/0013-8797.119.3.317.

Buchs, S. C., 2011. Range extension of six Neotropical apoid wasps (Hymenoptera: sphecidae and Crabronidae). Check List 7 (4), 411-412. http://dx.doi.org/10.15560/07/4.411.

Calvert, P. P., 1906a. Odonata [Part CXCVI]. In: Godman, F.D., Salvin, O. (Eds.), Biologia Centrali-Americana: Neuroptera. Vol. 50. Porter and Dulaú Co., London, pp. 269–308.

Calvert, P. P., 1906b. Nomenclature of Certain North American Odonata. Entomol. News 17 (1), 30–31.

Carbonell, C. S., 1996. Revision of the Genus Orthoscepus/Bruner 1906, with description of a new species (Acrididae, Ommatolampinae, Abracrinii). J. Orthoptera Res. 5 (5), 29-36. http://dx.doi.org/10.2307/3503574.

Carmo, R. F. R., Vasconcelos, S. D., 2014. First record of the blow fly Chrysomya megacephala (Diptera: Calliphoridae) on a southern Atlantic island: implications for disease transmission in a protected environment. J. Vector Ecol. 39 (1), 228-230. http://dx.doi.org/10.1111/j.1947-7134.2014.12093.x.

Carmo, R. F. R., Vasconcelos, S. D., 2016. Assemblage of Necrophagous Diptera in Atlantic Insular Environments and Response to Different Levels of Human Presence. Neotrop. Entomol. 45 (5), 471-481. http://dx.doi.org/10.1590/s0085-562620160000500011.

Carvalho, J. C. M., Becker, J., 1957. Neotropical Miridae LXXX: on a collection of Miridae from Fernando Noronha Island (Hemiptera). Rev. Bras. Biol. 17 (2), 253-256.

Carvalho-Filho, F. S., Esposito, M. C., Mello-Patiu, C. A., 2013. On the taxonomic status of Neophochaenopteryx calida (Wiedemann) (Diptera, Sarcophagidae). Rev. Bras. Entomol. 57 (2), 234-235. http://dx.doi.org/10.1590/S0013-87972013000200011.

Cheró, F., Carpentero, D. L., 2017. Miscellanea Miridologica IV. Taxonomy and chorology of new or little known taxa of Andean and Neotropical Regions (Heteroptera: miridae). Dugesiana 24 (2), 185-214. https://doi.org/10.32870/dugesiana.v24i2.6674.

Chown, S. L., Gremmen, N. J. M., Gaston, K. J., 1998. Ecological biogeography of southern ocean islands: species-area relationships, human impacts, and conservation. Am. Nat. 152 (4), 562-575. http://dx.doi.org/10.1086/286190.

Cipola, N. C., Cideco, N. N., Bellini, B. C., 2019. New records of Seira dowlingi (Wray, 1953) (Collembola, Entomobryidae, Seirinae) for New World. Entomol. Commun. 1, ec01003. http://dx.doi.org/10.37486/2675-1305.ec01003.
Monné, M. A. 1993. Catalogue of the Cerambycidae (Coleoptera) of the western hemisphere. Part IV. Subfamily Cerambycinae: Tribe Elaphidionini. Sociedade Brasileira de Entomologia, São Paulo, 129 pp.

Moraes, M. N., Marinoni, L., 2020. Syrphidae. In: Catalogo taxonomico da Fauna do Brasil. PNUD, Rio de Janeiro. Available in: http://fauna.jbrj.gov.br/fauna/faunadobrasil/827 (accessed 27 May 2020).

Moure, J. S. 2012. Augochlorini Beebe, 1925. In: Moure, J.S., Urban, D., Melo, G.A.R. (Eds.), Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region - online version. Centro de Referência em Informação Ambiental, Campinas. Available in: http://www.moure.cria.org.br/catalogue (accessed 4 September 2019).

Noyes, J. S., 2019. Universal Chalcidoidea Database. Available in: http://www.nhm.ac.uk/chalcidoids (accessed 5 September 2019).

Oliveira, G. F., Garcia, A. C. L., Rohde, C., 2010. Flutuação populacional das espécies de Drosophilididae na Ilha de Fernando de Noronha, Pernambuco/Brasil. In: Congresso Brasileiro de Genética, 56, 2010, Guarujá. Resumos. São Paulo: FAPESP, pp. 289.

Oliveira, G. F., Melo, K. P. S., Garcia, A. C. L., Rohde, C., 2009. First record of Zaprionus indians (Diptera, Drosophilidae) in Fernando de Noronha, an Oceanic Island of Pernambuco State, Brazil. Drosoph. Inf. Serv. 92, 18-20.

Paclt, J., 1967. Thysanura. Fam. Lepidotrichidae, Maimonidronidae, Lepismatidae. Genera Insectorum 218, 1-86.

Palacios-Vargas, J. G., Lima, E. C. A., Zeppelini, D., 2013. A new species of Isotogastura (Collembola: Isotogastruridae) from northeastern Brazil. Fl. Entomol. 96 (4), 1579-1587. http://dx.doi.org/10.1653/0249.096.0442.

Paulay, G., 1994. Biodiversity on oceanic islands: its origin and extinction. Am. Zool. 34 (1), 134-144. http://dx.doi.org/10.1093/icb/34.1.134.

Peck, S. B., Heraty, J., Landry, B., Sinclair, B. J., 1998. Introduced insect fauna of an oceanic archipelago: The Galápagos Islands, Ecuador. Am. Entomol. 44 (4), 218-237. http://dx.doi.org/10.1093/ae/a44.4.218.

Pellens, R., Grandcolas, P., 2008. Catalogue of Blattaria (Insecta) from Brazil. Zootaxa 1709, 1-109. https://doi.org/10.11646/zootaxa.1709.11.

Pellens, R., Grandcolas, P., 2020. Blattaria. In: Catálogo taxonômico da Fauna do Brasil. PNUD, Rio de Janeiro. Available in: http://fauna.jbrj.gov.br/fauna/faunadobrasil/390 (accessed 8 May 2020).

Ratcliffe, B. C., 1976. A revision of the genus Strategus (Coleoptera: scarabaeidae). Bull. Univ. Nebr. State Mus. 10 (3), 93-204.

Reddel, J., 1985. A checklist and bibliography of the lapygoidea (Insecta: Diplura) of South America. Pearce-Sellards Ser. Tex. Meml. Mus. 42, 1–34.

Regin, I. N., Acioi, R. V., Silveira Junior, J. C., Melo-Santos, M. A. V., Cunha, M. C. S., Souza, F., Batista, C. A. V., Barbosa, R. M. R., Oliveira, C. M. F., Ayres, C. F. J., Monteiro, A. M. V., Souza, W. V., 2014. Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian oceanic island. Acta Trop. 137, 80-87. http://dx.doi.org/10.1016/j.actatropica.2014.04.010.

Ribeiro, M. F., Lima, C. B. S., 2015. Avaliação da criação de abelhas-sem-ferrão em Fernando de Noronha após 30 anos de sua introdução. Magistra 27 (3-4), 484-492.

Rider, D. A., Chapin, J. B., 1991. Revision of the genus Thyanta Stål. 1862 (Heteroptera, Pentatomidae) I. South America. J. N.Y. Entomol. Soc. 99 (1), 1-77.

Ridley, H. N., 1890. Thysanura and Collembola. In: Ridley, H.N. (Ed.), Notes on the Zoology of Fernando de Noronha. Vol. 20. Linn an Society, London, pp. 473-570. https://doi.org/10.1111/j.1096-3642.1886.tb02243.x.

Ris, F., 1913. Libellulines 3, Libellulinen 8. In: Selys Longchamps, W. (Org.), Catalogue Systématique et Descriptif des Collections Zoologique Du Baron Edmond Selys de Longchamps. Vol. 16. Hayez, Bruxelles, pp. 965-1042, pl. viii.