Self-rated health and venous thromboembolism among middle-aged women: a population-based cohort study

Peter Nymberg1 · Emelie Stenman1 · Susanna Calling1 · Jan Sundquist1 · Kristina Sundquist1 · Bengt Zöller1

Published online: 19 November 2019 © The Author(s) 2019

Abstract
Venous thromboembolism (VTE) is one of the most common types of cardiovascular diseases (CVDs) and is associated with increased mortality-risk. Poor-self rated health (SHR) has been associated with elevated inflammatory markers and CVDs. However, little is known about as a predictor of incident VTE. To examine the association between self-rated health, lifestyle and incident VTE among middle-aged women. 6917 women aged 50–64 years, followed for 20 years in the Women’s Health In the Lund Area (WHILA) study. After exclusion of those who medicated with anticoagulants, were living in nursing homes or suffered from cancer, stroke, VTE or CHD before baseline, a cohort of 5626 women remained. Cox regression was used to analyse the relationship between self-rated health and time to VTE, censored for any of the previous mentioned diseases during follow-up. Data were collected by questionnaires, physical examinations and Swedish registers. In total, 220 women were affected by VTE corresponding to an incidence rate of 3.9 per 1000 person-years. Adjustment for self-rated health did not significantly predict incident VTE, and neither did any of the lifestyle-related habits (e.g. physical activity and dietary habits including alcohol consumption), besides smoking. This study supports previous results with varicose veins and waist circumference as strong predictors of VTE. Poor self-rated health does not seem to be a valid predictor of VTE. Among lifestyle-related parameters, smoking was significantly associated with risk of VTE. We could also confirm the effect of the other already known risk factors.

Keywords Venous thromboembolism · Varicose veins · Prevention · Self-rated health · Women

Introduction
The incidence of venous thromboembolism (VTE) exceeds 1 per 1000 persons-years. More than 200,000 new cases of VTE occur in the United States each year, with a corresponding mortality rate of about 30% within 30 days [1]. Among the survivors, 30% develop recurrent VTE [1] and there is an increased mortality risk up to 8 years after the first thrombosis, [1, 2]. Provoked VTE occurs in relation to identifiable risk factors, such as pregnancy, bone fractures, or surgery [1, 3]. Unprovoked VTE shares some known risk factors with other cardiovascular diseases (CVDs) such as obesity, smoking [4–7] and sleep-apnoea [8–10]. Other risk factors for VTE include high body height [11] and varicose veins [1, 12–15]. Varicose veins and VTE has been suggested to share familial susceptibility [16] and a genetic component of the familial clustering has been found for VTE, which makes heredity a potent risk factor [17, 18] The risk of VTE also increases with age, especially among men aged > 50 years [19, 20].

Highlights
- Poor self-rated health does not seem to be useful as a predictor of VTE.
- Varicose veins, smoking and waist circumference showed a association with risk of incident VTE.
- Other lifestyle associated behaviors do not seem to have any strong effect on risk of incident VTE.
- Prevention in those with varicose veins can be important.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11239-019-01995-7) contains supplementary material, which is available to authorized users.

* Peter Nymberg peter.nymberg@med.lu.se
1 Region Skåne, Center for Primary Health Care Research, Jan Waldenströms gata 35, Skåne University Hospital Malmö, University Hospital, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden

© Springer
Poor self-rated health (SRH) has been associated with elevated serum inflammatory markers [21] and has also been shown to be a predictor of depression [22], stroke [23] and other CVDs [24], diabetes [25], lung-cancer [26] and all-cause mortality [27, 28]. Thus, SRH is usually considered a valid and efficient measure of mental and physical health, especially in women [29], although there is still a need to identify the validity limits of SRH for prediction of illness and mortality [30].

A previous study investigating associations between the first VTE-episode and work-related disability showed a reduced risk for VTE when adjusted for good SRH. The authors discussed a possible association between low SRH and an elevated risk of incident VTE [31].

To the authors’ knowledge, there are no previously published studies regarding the longitudinal association between SRH and incident VTE later in life among middle aged women. If such an association exists, it can be useful to identify the validity limits of SRH for prediction of illness and mortality [30].

The main aim of this cohort study was to examine the association between baseline SRH in middle-aged women (50–64 years) and incident VTE. The second aim was to analyze the association between lifestyle habits, i.e. physical activity, diet, smoking, alcohol consumption and VTE. SRH is also better at predicting somatic diseases in women than in men [29].

The same person can occur in several groups

Measurements and definitions

Information about diseases and medication was obtained from the Swedish Hospital Discharge Register, the Hospital Outpatient Register and the Swedish Cancer Register in addition to self-reported data from WHILA study baseline questionnaires and measurements. The definition of VTE includes the following ICD-codes; ICD-7; 463-466, 583.00 334,40, 334,50 682, 684. ICD-8 321, 450-453, 671 (not 671,00) 673,9. ICD-9; 437G, 451-453, 415B, 416 W, 671C, D, E, F, X, 673C, 639G. ICD-10; I20-I25.), cancer (ICD-7; 331, 332, 334.09. ICD-8; 430-434, 436. ICD-9; 440-434, 436. ICD-10; I60-I64 (not I63.6).) or CVD (ICD-7; 420. ICD-8; 410-414. ICD-9; 410-414. ICD-10; I20-I25.), cancer (ICD-7; 140–209) or VTE before baseline, both self-reported and by register. In addition, we excluded women who were living in nursing homes or similar at baseline or medicated with warfarin, dicumarol, or antithrombin (ATC-code; B01AA03, B01AA01, and B01AB02). After exclusion, 5626 women remained (Table 1).

SRH was assessed only at baseline from a single question, in which the participants were asked to rate their perceived health in a 7-graded Likert scale from “Very poor” to “Excellent, could not be better” (1 = very poor, 7 = Excellent). In this study, we classified alternative 1–4 as poor SRH and 5–7 as good SRH. Weight and height were rounded off to the nearest 0.1 kg and 0.5 cm. Body mass index (BMI) was calculated as weight in kilograms divided by height in

Table 1 Number of exclusions and reason for exclusion both by register and self-reported

Total included	6916
No. of living in nursing homes or similar	190
No. of prevalent VTE diagnoses	321
No. of prevalent CHD	104
No. of prevalent stroke	79
No. of prevalent cancer	716
No. of anticoagulant (not ASA)	30
Remaining after exclusion	5626

The same person can occur in several groups
meters squared (kg/m²). BMI was considered as underweight if BMI was < 18.5, normal weight if BMI = 18.5–24.9, overweight if BMI = 25.0–29.9, obese class I if BMI = 30.0–34.9, obese class II if BMI = 35.0–39.9 and obese class III if BMI was > 39.9. BMI class II and class III were put together due to small groups. Subjects were categorized as current smokers (i.e. those who smoked regularly or occasionally) or non-smokers (i.e. former smokers and never smokers). Low physical activity, i.e. less than 30 min vigorous activity 5 days a week [33] was defined as the lower tertile among the answering alternatives (i.e. very low and low) (Table 2).

Diet was defined by questions about intake of fat, sugar, fruit or dietary fiber. If high intake of sugar or fat or low intake of dietary fiber or fruit were reported, we considered the diet as less healthy [32]. If low intake of sugar and fat and high intake of fruit and dietary fiber was reported, we considered the diet as healthy. Education was categorized into three classes; comprehensive school (9 years), upper secondary school (12 years), and university degree. In the multivariate models model, we used waist circumference instead of BMI; this was due to previous studies showing waist circumference as a valid predictor for VTE [34].

Statistical analysis

P-values were calculated with two-sided Student’s t test for continuous variables and with χ²-test for dichotomized variables. Cox proportional hazards regression was used to analyze the relationship between SRH and time to VTE. Hazard ratios (HR) with 95% confidence intervals (CI) were calculated. Those who were diagnosed with hypertension or varicose veins after baseline were censored, as well as those who were affected by stroke, CHD or cancer diagnosis before the VTE during the follow-up time. In the multivariate model, only confounding variables that showed a significantly increased incident VTE-risk in the univariate test were included. In the first model, we adjusted for age. In the second model, we added physical activity, smoking, and waist circumference. In the third model, we completed with varicose veins and hypertension. The proportional hazard assumption was tested with Schoenfeld residuals [35, 36]. Analyses were performed in STATA 14.1.

To test the robustness of the results, we investigated the cohort in different ways, at first without excluding prevalent disease (VTE, CHD, stroke, cancer) before baseline. At the next step, we excluded all the patients both prevalent (VTE, CHD, stroke, cancer) and censured incident (CHD, stroke cancer) before VTE. We got almost the same result regardless of which we excluded, there were only small differences in hazard ratios and levels of significance. When the proportional hazard assumption test was significant in the two first models thus meaning the effect were not constant and changed over the follow-up time. We investigated the material by breaking it up into shorter time span of 5 years (0–5, 5–10, 10–15, 15–20). All the different time spans showed proportionality except for the time span 0-5 years. When excluding only the 0–5 year to get broader time span, there was proportionality in all models between 5 and 20 years follow up.

Results

During a follow-up time of 20.4 years, a total of 220 women were affected by VTE. The sum of the follow-up time was 85,645.836 years corresponding to a VTE incidence rate of 3.9 (95% CI 2.26–2.94) per 1000 person-years. There appeared to be statistically significant differences between women that were affected by incident VTE versus women that were not affected, i.e. differences in weight, height, waist-hip ratio, smoking, high and low activity level, dietary fiber, overall diet, SRH and varicose veins.

Women with incident VTE were on average taller, heavier and had a greater waist-hip ratio than those without incident VTE. There was a higher percentage of smokers and women with a low physical active level in the group with incident VTE. Regarding diet, there were only significant differences between the groups in dietary fiber intake and overall diet. Among women with incident VTE, a higher percentage had a low intake of dietary fiber and a less healthy overall diet. In the incident VTE-group there was also a greater number with varicose veins. The SRH differed significantly between the groups with a higher percentage rating their health as poor in the incident VTE.

Very-high	Hard training several times per week
High	> 3 h of running, skiing swimming
Middle-high	1–2 h/week with running, swimming, gymnastics, 4 h light physical activity/week and total responsibility of household tasks
Middle	Light activity 2–4 h/week walking, gardening dancing. Head of responsibility of household tasks
Low	Mostly sitting, light household work or gardening but not head of responsibility of the tasks
Very low	Hardly any physical activity at all

Table 2 Definition of activity groups
Table 3 Univariate Cox regression with those variables which differed with a statistical significance in the baseline characteristics

Variable	Hazard ratio	95% CI	p	n	Failures
Age	1.05	1.00–1.10	.033	5626	220
Marital					
Unmarried	1.22	.75–1.99	.42	5606	220
Married	Ref				
Divorced	.99	.68–1.44	.961		
Widowed	1.10	.60–2.03	.757		
Education					
7–9 years	1.42	.99–2.00	.052	5523	214
10–12 years	Ref				
> 12 years	1.18	.86–1.63	.294		
Physical activity					
Very low	2.27	.92–5.59	.075	5539	216
Low	1.56	.88–2.74	.125		
Middle	Ref				
Middle-high	1.02	.76–1.35	.914		
High	.76	.33–1.73	.508		
Very high	6.34E–16	0	1.000		
Activity high/low	1.70	1.07–2.74	.026	5539	216
Current smoker	1.43	1.04–1.96	.028	5533	216
Former smoker	.92	.65–1.32	.656		
Height	1.03	1.00–1.06	.013	5482	213
Waist circumference	1.03	1.02–1.04	0	5041	198
Alcohol					
0g/w	1.26	.93–1.70	.135	5398	211
0–12g/w	Ref				
> 12g/w < 130g/w	.77	.48–1.22	.265		
Sugar					
Daily	1.70	.97–3.01	.066	5580	216
Sometimes	Ref				
Avoids	1.05	.78–1.42	.748		
Fat in food					
Much	1.46	.89–2.40	.132	5353	205
Careful with	Ref				
Avoids	1.11	.82–1.49	.509		
Fiber					
Low intake	1.16	.42–3.13	.771	5547	215
Regularly	Ref				
Much	.77	.58–1.03	.078		
Fruit					
Rarely	1	.76–1.32	.985	5594	219
Regularly	Ref				
Much	.76	.24–2.41	.644		
Portion size					
Big	.81	.45–1.46	.481	5240	198
Regular	Ref				
Small	.95	.70–1.30	.753		
Diet	1.38	.94–2.00	.095	5612	220
Family history					
Yes	1.38	.93–2.06	.112	5477	216
No	Ref				
group and this was even more obvious when categorizing into poor or good SRH.

An unadjusted Cox regression analysis was conducted (Table 3) with the aim to investigate if there were any significant associations between the variables that fell out with significance in the former analysis and incident VTE.

Despite a relatively small difference in mean age between the groups at baseline, there was an increased risk for incident VTE for every year older at baseline (HR 1.05, 95% CI 1.00–1.10, \(\text{p} = 0.033 \)). Cox regression analysis of SRH did not show any significant association with VTE-risk except for a decreased risk for those who rated their health as excellent (HR 0.54, CI 0.34–0.85, \(\text{p} = 0.008 \)). When dichotomizing SRH into poor and good respectively, there was an increased risk for those who rated their health as poor (hazard ratio 1.51, CI 1.13–2.03, \(\text{p} = 0.005 \)). When we dichotomized the variable physical activity, there was an increased incident VTE-risk for the low group (HR 1.70, CI 1.07–2.74, \(\text{p} = 0.026 \)). Smoking at baseline was associated with a 43% increased risk of incident VTE (HR 1.43, CI 1.04–1.96, \(\text{p} = 0.028 \)), smokers who had quit smoking at least one month before inclusion had a non-significant decreased risk of incident VTE (0.92, 0.65–1.32, \(\text{p} = 0.656 \)). Waist circumference and varicose veins were associated with an increased risk as well (HR 1.38, CI 1.02–1.86, \(\text{p} = 0.000 \) and HR 2.70, CI 2.47–4.95, \(\text{p} = 0.001 \) respectively). Knowledge about family history of VTE (parents or siblings) was not associated with increased incident VTE-risk (HR 1.38, CI 0.93–2.06, \(\text{p} = 0.112 \)). There was a non-significant trend towards an association between unhealthy diet and risk of incident VTE (HR 1.38, CI 0.44–2.00, \(\text{p} = 0.095 \)). There was no significant association between hypertension before baseline and incident VTE (HR1.17, CI. 0.67–2.05, \(\text{p} = 0.581 \)).

When the Cox regression results were adjusted for age (Table 4), model 1 showed a 51% increased risk for incident VTE if SRH was poor (HR 1.51, CI 1.12–2.02 \(\text{p} = 0.006 \)). When we adjusted for lifestyle-related variables; physical activity, smoking, former smoking and waist circumference in model 2, the association between poor SRH and increased risk of incident VTE decreased to 16% and was not significant (HR 1.16, CI 0.84–1.61 \(\text{p} = 0.370 \)). Even if low physical activity was associated with a significantly increased risk of incident VTE in the unadjusted model, this association was reduced and not significant when adjusting for other variables (HR 1.19, CI 0.62–2.04, \(\text{p} = 0.526 \)). In model 3, adjusting for varicose veins and hypertension, the association between SRH and risk of incident VTE increased to 18% (HR 1.18, CI 0.85–1.65 \(\text{p} = 0.315 \)). Even though the increased risk of age remained, it was not statistically significant in any of the models. In model 3, only the well-known risk factors had significant effect; smoking (HR 1.44, CI 1.02–2.03, \(\text{p} = 0.037 \)), waist circumference (HR 1.03, CI 1.02–1.04, \(\text{p} = 0.000 \)) and varicose veins (HR 2.60 CI 1.40–4.80, \(\text{p} = 0.002 \)). When testing the proportional hazards assumptions for model 1, the global test was significant (\(\text{p} = 0.0390 \)), which means that the hazards were not proportional over time. The second and third model showed proportional hazards (\(\text{p} = 0.1290, \text{p} = 0.1872 \)) in the global test.

Discussion

This is, to our knowledge, the first study that examines SRH as a predictor of incident VTE among middle-aged women in a well-defined cohort. In the multivariate model 3, there was a tendency towards an association between poor SRH and risk.
of incident VTE, but it was not statistically significant. Our results confirmed, however, an association with the already
known risk factors varicose veins, smoking and waist circumference [4, 11, 12, 34].

Braekkan et al. suggested that good SRH could attenuate the risk of VTE among people with a permanent work-
related disability. They discussed the possibility that poor SRH may be affected by other diseases that in turn may
increase the risk of VTE [31]. If poor SRH was a good predictor of incident VTE, we ought to have observed a sig-
nificant association in this cohort comprising only women. However, we did not observe any significant association.

The reason for this assumption is that SRH has been sugges-
ted to be better at predicting different diseases in women
than in men [29]. What is notable, however, is that when we
excluded those who got affected with VTE between baseline
and 5 years follow up, the risk for VTE among those with
poor SRH was increased even in the fully adjusted model
(HR 1.38, CI 0.96–1.99, p = 0.086). This shows that there
may be a significant association during long time follow-up,
but we were unable to capture it in this study. Regarding the
association between varicose veins and VTE, Chang et al. [15]
pointed out, that it is unknown whether this association is
causal or represents a common set of risk factors. Con-
sidering the strong association, it can be argued for the need
of preventive actions in people with varicose veins. This is
especially pertinent since about 40% of adults are affected
by varicose veins, and even a higher share among those who
are obese and women with more than two pregnancies [37].

Low physical activity, i.e. less than 30 min vigorous
activity 5 days a week [33], was significantly associated with
increased risk of incident VTE in the unadjusted model, but
not in the multivariate model 3 (Table 4). This may have
been due to lack of power. There were no significant associa-
tions between self-reported intake of healthy or unhealthy
food, alcohol, portion size and risk of incident VTE, which
is consistent with previous studies among women, even if
there have been suggested associations between unhealthy
food, activity level and overweight/obesity [38, 39]. We nei-
ther noticed any significant associations between hyperten-
sion and risk for VTE, or differences between those who got
affected with incident VTE and those who did not, regarding
hypertension. Healthy food and a proper amount of physi-
cal activity do not seem to prevent VTE, but a healthy way
of living may help to prevent a large waist circumference,
which turned out to be associated with incident VTE in our
study.

Why SRH is associated with arterial CVDs [24] but not
with VTE in the present study may have several explana-
tions. It is possible that the study participants changed their
way of living after baseline measurements including ques-
tionnaires if they became more aware of their negative habits
and changed them [40, 41]. Another explanation could be
that many risk factors are different between VTE and arterial
diseases [7], although some risk factors are shared. It is thus
possible that SRH is a risk factor for arterial diseases but
not for VTE. SRH may also be a weak risk factor for VTE
and that a larger study might find a significant association
with SRH, albeit weaker than for arterial disease. Finally, it
is possible that SRH does not represent an additional risk
factor for VTE once the other risk factors have been taken
into account.

Strengths

This study is comprised of a well-defined cohort and it con-
tained both self-reported and anthropometric values com-
bined with information from registers. We censored par-
ticipants who were affected by cancer or any cardiovascular

Table 4 Multivariate Cox regression with the confounding variables that showed a significantly increased incident VTE-risk in the univar-
iate test (Table 3)

	Total (n)	Failures (n)	Self-rated health (poor/good)	Age	Physical activity (low/high)	Current smoker*	Former smoker*	Waist circumference	Varicose veins (yes/no)	Hypertension (yes/no)	Proportional hazard assumption test
Total (n)	5529	4806	4806								
Failures (n)	216	188	188								
Self-rated health (poor/good)	1.51	1.16	1.18								
CI	1.12–2.02	.84–1.61	.85–1.65								
p	.006	.37	.315								
Age	1.05	1.03	1.03								
CI	1.00–1.09	.98–1.08	.98–1.08								
p	.048	.193	.200								
Physical activity (low/high)	1.19	.88									
CI	.69–2.04	.65–1.19									
p	.526	.421									
Current smoker*	1.44	1.44									
CI	1.02–2.03	1.02–2.03									
p	.037	.037									
Former smoker*	.89	.90									
CI	.61–1.30	.62–1.32									
p	.549	.588									
Waist circumference	1.03	1.03									
CI	1.02–1.04	1.02–1.04									
p	0	0									
Varicose veins (yes/no)	2.6										
CI	1.40–4.80										
p	.002										
Hypertension (yes/no)	1.12										
CI	.63–1.98										
p	.696										
Proportional hazard assumption test	0.039	0.1290	0.1872								

1st model adjusted by age and SRH. 2nd model adjusted by model 1, dichotomized level of physical activity, smoking former smoker and waist circumference. Third model is adjusted by model 2, varicose veins and hypertension

*Reference is non-smoker
disease before the first VTE occurrence during follow-up and diagnosed hypertension and varicose veins after baseline in order to decrease the risk of influences on VTE-risk and poor SRH.

Limitations

A limitation is that SRH was only measured at baseline as SRH may change over time. However, a study by Sargent-Cox et al. reported that SRH in women remained relatively stable compared with increasing age, whereas men’s ratings tended to become more negative [42]. The study was performed in middle-aged women living in a certain area, which limits the generalizability to a wider context, e.g. to men and women in other ages than those enrolled. Due to a limited number of VTE events, we could not compare the occurrence of the different VTE-forms deep vein thrombosis (DVT) and pulmonary embolism (PE) between the groups. For the same reason, we could not perform any sub-analysis with provoked and unprovoked VTE.

Conclusions

Poor self-rated health does not seem to be useful as a predictor of VTE. Lifestyle associated behaviors such as diet, alcohol consumption and physical activity or hypertension do not seem to have any strong effect on risk of incident VTE either. On the other hand, we could confirm the effect of already known risk factors; varicose veins, smoking and waist circumference. Varicose veins showed a strong association with risk of incident VTE, which suggests that it may be important to work preventively in people with varicose veins, for prevention of future VTE or other complications.

Acknowledgements

Open access funding provided by Lund University. The authors wish to thank the Center for Primary Healthcare Research (CPF) statistician Karolina Palmér for the statistical guidance and data management, and science editor Patrick Reilly for his useful comments on the text.

Author contributions

PN: Collaborating with study design, statistical analysis, writing the paper. ES: Writing and editing the paper. SC: Writing and editing the paper. KS: Writing and editing the paper. BZ: Study design, writing and editing paper.

Funding

This work was supported by grants awarded to Dr Bengt Zöller by the Swedish Heart–Lung Foundation, ALF funding from Region Skåne awarded to Dr Bengt Zöller and grants awarded to Dr Bengt Zöller by the Swedish Research Council. ALF funding from Region Skåne awarded to Susanna Callling. The funders had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The WHILA study was approved by the Regional Ethics Committee at Lund University (LU 174-95) and the Data Registry Inspection in Stockholm. Informed consent was obtained from all participants.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Heit JA, Silverstein MD, Mohr DN, Pettersson TM, Lohse CM, O’Fallon WM, Melton LJ 3rd (2001) The epidemiology of venous thromboembolism in the community. Thromb Haemost 86:452–463
2. Flinterman LE, van Hylckama Vlieg A, Cannegieter SC, Rosendaal FR (2012) Long-term survival in a large cohort of patients with venous thrombosis: incidence and predictors. PLoS Med 9:e1001155
3. Anderson FA, Spencer FA (2003) Risk factors for venous thromboembolism. Circulation 107:119–116
4. Holst AG, Jensen G, Prescott E (2010) Risk factors for venous thromboembolism. Circulation 121:1896–1903
5. Chiuve SE, Cook NR, Shay CM, Rexrode KM, Albert CM, Manson JE, Willett WC, Rimm EB (2014) Lifestyle-based prediction model for the prevention of CVD: the Healthy Heart Score. J Am Heart Assoc 3:e000954
6. Pandoni P (2017) Venous and arterial thrombosis: is there a link? Adv Exp Med Biol 906:273–283
7. Gregson J, Kaptoge S, Bolton T, Pennells L, Willett P, Burgess S, Bell S, Sweeting M, Rimm EB, Kabral J et al (2019) Cardiovascular risk factors associated with venous thromboembolism. JAMA Cardiol 4:163–173
8. Lippi G, Mattiauzzi C, Franchini M (2015) Sleep apnea and venous thromboembolism. Thromb Haemost 114:958–963
9. Deflandre E, Degey S, Opsomer N, Brichant J-F, Joris J (2016) Obstructive sleep apnea and smoking as a risk factor for venous thromboembolism events: review of the literature on the common pathophysiologic mechanisms. Obes Surg 26(3):640–648
10. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Flora JS, Hunt CE, Olson LJ et al (2008) Sleep apnea and cardiovascular disease. Circulation 118(10):1080–1111
11. Zoller B, Ji J, Sundquist J, Sundquist K (2017) Body height and incident risk of venous thromboembolism: a cosibling design. Circ Cardiovasc Genet 10(5):e001651
12. Ahti TM, Mäkivaara LA, Luukkaala T, Hakama M, Laurikka JO (2010) Lifestyle factors and varicose veins: does cross-sectional design result in underestimation of the risk? Phlebology 25(4):201–206
13. Müller-Buhl U, Leutgeb R, Engesser P, Achankeng EN, Szczesny I, Laux G (2012) Varicose veins are a risk factor for deep venous thrombosis in general practice patients. VASA Zeitschrift fur Gefasskrankheiten 41(5):360–365
14. Tiwari A, Lester W, Tang TY (2018) Varicose veins and deep venous thrombosis. JAMA 320(5):509–510
27. Sundquist J, Johansson SE (1997) Self reported poor health and low educational level predictors for mortality: a population based follow up study of 39,156 people in Sweden. J Epidemiol Community Health 51(1):35–40
28. DeSalvo KB, Fan VS, McDonell MB, Fihn SD (2005) Predicting mortality and healthcare utilization with a single question. Health Serv Res 40(4):1234–1246
29. Bačak V, Ölafsdóttir S (2017) Gender and validity of self-rated health in nineteen European countries. Scand J Public Health 45(6):647–653
30. Benyamini Y (2011) Why does self-rated health predict mortality? An update on current knowledge and a research agenda for psychologists. Psychol Health 26(11):1407–1413
31. Braekkan SK, Grosse SD, Okoroh EM, Tsai J, Cannegieter SC, Naess IA, Kroksdalen S, Hansen JB, Skjeldstad FE (2016) Venous thromboembolism and subsequent permanent work-related disability. J Thromb Haemost 14(10):1978–1987
32. Samsoe G, Lidfeldt J, Nerbrand C, Nilsson P (2010) The women’s health in the Lund area (WHILA) study—an overview. Maturitas 65(1):37–45
33. World Health Organization (2011) Global recommendations on physical activity for health. World Health Organization, Geneva
34. Borch KH, Braekkan SK, Mathiesen EB, Njolstad I, Wilsaard T, Stormer J, Hansen JB (2010) Anthropometric measures of obesity and risk of venous thromboembolism: the Tromso study. Arterioscler Thromb Vasc Biol 30(1):121–127
35. Kirkwood BR, Sterne JAC, Kirkwood BR (2003) Lifestyle changes after a health dialogue. Results from the Nord-Trondelag Health Study. J Diabetes Complications 17(1):145–153
36. Juul S, Frydenberg M (2014) An introduction to Stata for health researchers, 4th edn. Blackwell Science, Malden
37. Tisi PV (2011) Varicose veins. BMJ Clin Evid 2011:0212
38. Schlesinger S, Neuenschwander M, Schwedhelm C, Hoffmann G, Wall S (2003) Self-rated ill-health strengthens the effect of biological risk factors in predicting stroke, especially for men—an incident case referent study. J Hypertens 21(5):887–896
39. van der Linde RM, Mavaddat N, Luben R, Brayne C, Simmonds RK, Khaw KT, Kinmonth AL (2013) Self-rated health and cardiovascular disease incidence: results from a longitudinal population-based cohort in Norfolk, UK. PLoS ONE 8(6):e65290–e65290
40. Naess S, Eriksen J, Midthjell K, Tambs K (2005) Subjective well-being before and after the onset of diabetes mellitus: results of the Nord-Trondelag Health Study. J Diabetes Complications 19(2):88–95
41. Riise HK, Riise T, Natvig GK, Daltveit AK (2014) Poor self-rated health associated with an increased risk of subsequent development of lung cancer. Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation 23(1):145–153
42. Sundquist J, Sundquist K (2014) Venous thromboembolism and varicose veins share familial susceptibility: a nationwide family study in Sweden. J Am Heart Assoc 3(4):e000850
43. Zöller B, Li X, Olsjsson H, Ji J, Sundquist J, Sundquist K (2015) Family history of venous thromboembolism as a risk factor and genetic research tool. Thromb Haemost 114(5):890–900
44. Roach REJ, Cannegieter SC, Liljering WM (2014) Differential risks in men and women for first and recurrent venous thrombosis: the role of genes and environment. J Thromb Haemost 12(10):1593–1600
45. Zöller B, Li X, Sundquist J, Sundquist K (2011) Age- and gender-specific familial risks for venous thromboembolism. Circulation 124(9):1012–1020
46. Christian LM, Glaser R, Porter K, Malarkey WB, Beversdorf D, Kiecolt-Glaser JK (2011) Poorer self-rated health is associated with elevated inflammatory markers among older adults. Psychoneuroendocrinology 36(10):1495–1504
47. Badawi G, Page V, Smith KJ, Gariety G, Malla A, Wang J, Boyer R, Strychar I, Lesage A, Schmitz N (2013) Self-rated health: a predictor for the three year incidence of major depression in individuals with Type II diabetes. J Affect Disord 145(1):100–105
48. Emmelin M, Weinhehall L, Stegmayr B, Dahlgren L, Stenlund H, Wall S (2003) Self-rated ill-health strengthens the effect of biomedical risk factors in predicting stroke, especially for men—an incident case referent study. J Hypertens 21(5):887–896
49. van der Linde RM, Mavaddat N, Luben R, Brayne C, Simmonds RK, Khaw KT, Kinmonth AL (2013) Self-rated health and cardiovascular disease incidence: results from a longitudinal population-based cohort in Norfolk, UK. PLoS ONE 8(6):e65290–e65290
50. Naess S, Eriksen J, Midthjell K, Tambs K (2005) Subjective well-being before and after the onset of diabetes mellitus: results of the Nord-Trondelag Health Study. J Diabetes Complications 19(2):88–95
51. Riise HK, Riise T, Natvig GK, Daltveit AK (2014) Poor self-rated health associated with an increased risk of subsequent development of lung cancer. Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation 23(1):145–153
52. Sundquist J, Johansson SE (1997) Self reported poor health and low educational level predictors for mortality: a population based follow up study of 39,156 people in Sweden. J Epidemiol Community Health 51(1):35–40
53. DeSalvo KB, Fan VS, McDonell MB, Fihn SD (2005) Predicting mortality and healthcare utilization with a single question. Health Serv Res 40(4):1234–1246

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.