Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by salen CoIII(acetate) complexes

Yongsheng Niu · Hongchun Li

Received: 23 January 2013 / Revised: 6 April 2013 / Accepted: 11 April 2013 / Published online: 24 April 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract A series of CoIII carboxylate based upon N,N,O,O-tetradentate Schiff base ligand framework have been prepared. X-ray diffraction analysis confirms that these Schiff base CoIII carboxylate are all monomeric species with a six-coordinated central Co in their solid structures. The activities and polycarbonate selectivity of these complexes toward the copolymerization of epoxide (cyclohexene oxide and propylene oxide) and carbon dioxide have been investigated in the presence of bis(triphenylphosphine)iminium chloride. Copolymerization experiments indicate that [bis(α-methyl-3,5-di-tert-butyl-salicylaldehyde) ethylenediaminato] CoIIIOOCH_3 exhibits the highest activity and polycarbonate selectivity among these CoIII carboxylate. The resultant copolymer contained almost 100 % carbonate linkages with the molecular weight up to 71.8 kg mol$^{-1}$ as well as narrow polymer dispersity index (polymer dispersity index=1.5). The substituents and the mode of the bridging part between the two nitrogen atoms both exert significant influences upon the progress of the copolymerizations, influencing both the polycarbonate selectivity and the rate of copolymerization.

Keywords Biodegradable · Carbon dioxide · Copolymerization · Polycarbonates · Poly(cyclohexene oxide)

Introduction

The transition metal complexes with Schiff bases as ligands are promising systems for application in the coupling of CO$_2$ with epoxide to aliphatic polycarbonates because the copolymerization of CO$_2$ and epoxide [such as cyclohexene oxide (CHO), propylene oxide (PO)] with discrete metal complex has been well documented [1]. Copolymers of CHO with CO$_2$ are important product with favorable property in comparison to homopoly(cyclohexene oxide), which is also one of the most promising routes for the chemical fixation of carbon dioxide [2–4]. For another, introduction of a CO$_2$ comonomer to the poly(cyclohexene oxide) chain changes the structure, and consequently, the properties of the polymer product are obtained. The effect is dependent on the type of catalytic system used and polymerization conditions [5].

Metal salen complexes have been used for the copolymerization of CO$_2$ with certain monomers to form polycarbonates [6–9]. A particular feature of these complexes is that polymers tend to be isolated with very narrow molecular weight distributions and that the molecular weights of the produced copolymer can be controlled. Typically, these complexes are tolerant toward water and air, so that extensive drying and purification of reagents are unnecessary. (Salen)CrIIIX or (salen)CoIIIX complexes (salen=N,N'-bis(salicylidene)-1,2-diaminalkane), which exhibit outstanding performance and can obtain the carbonate contents reach almost 100 %, are composed of zinc acetate complexes [10], tetrakis(pentafluorophenyl)porphyrin chromium(III) chloride [11] and β-diaminate zinc complexes [12, 13]. (Salen)CrIIIX [14–18] or (Salen)CoIIIX [19–25] complexes [salen=N,N'-bis(salicylidene)-1,2-diaminalkane] exhibit outstanding performance, and the carbonate contents reach almost 100 %. These studies should be very important for designing a highly efficient complex and for understanding the scope and the limitation of these types of transition metal complexes as CHO/CO$_2$ copolymerization catalysts.

Metal salen complexes have received increasing attention for their unusually high catalytic activity on the copolymerization of CO$_2$ with epoxide [1]. The influence of the
phenolate ortho and para substituents as well as the axial group epoxide/CO₂ copolymerization has been studied widely [6, 26, 27]. The cobalt Schiff base complex with axial acetate ligand has been employed to the carbon dioxide fixation field. However, some thought one cobaltate axial acetate ligand has been employed to the carbon dioxide in the direction of the axial ligand. Recently, we reported with Co located slightly above the plane of the salen ligand coordinated cobalt complex is pseudo square-pyramidal 28 hexane, and chloroform were distilled from CaH₂ under distilled from sodium benzophenone. Methylene chloride, Special Gases and used as received. Diethyl ether was

diluted with THF at 25 °C (515 HPLC pump) equipped with a Wyatt interferometric measurements were carried out with a Waters instrument (nitrogen laser, λ=337 nm) were accelerated through 20 kV, and detection voltage was set at 1.60 kV. The laser was adjusted by the experiments slightly above the threshold, and the mass spectra were obtained from the results of 35 laser shots in positive mode. The matrix, trans-3-indoleacrylic acid, was dissolved in purified THF (0.1 mol l⁻¹), and the solution was mixed with the polymer solution in THF (5 mg ml⁻¹) in a 1:1 v/v ratio. Crystallographic data were collected on a Bruker APEX CCD diffractometer with graphite-monochromated Mo Kα radiation (λ=0.71073 Å) at 293 K. The structure was refined by the full-matrix least-squares method on F² using the SHELXTL-97 crystallographic software package. Anisotropic thermal parameters were used to refine all nonhydrogen atoms. Hydrogen atoms were located in idealized positions.

Synthesis of complexes 1–6

Synthesis of complex 1 To a stirred mixture of salen CoII complex (1.16 g, 2.0 mmol) in CH₂Cl₂ (150 ml), the mixture of CH₃COOH (0.12 g, 2.0 mmol, 1 equiv.) and CH₂Cl₂ (20 ml) was added. The solution was stirred under dry oxygen atmosphere at room temperature for 60 min. The solvents were removed in vacuum to leave a crude green dark solid in near 100 % yield. The resulted solid was further treated with the mixture of diethyl ether and hexane, and then dried at 60 °C in vacuum for 24 h. Yield: 89 %. Elemental analysis calcd (%) for C₃₂H₄₆N₂O₄: C, 74.63; H, 8.39; N, 4.40. Found: C, 74.67; H, 8.39; N, 4.43. ¹H NMR (1,4-Dioxane-δ8): 1.12 (s, 6H), 1.32 (s, 18H), 1.71 (s, 18H), 2.14 (s, 2H), 4.13 (m, 4H), 7.41 (s, 2H), 7.49 (s, 2H). ¹³C NMR (1,4-Dioxane-δ8): δ 19.02, 27.14, 30.35, 31.46, 32.48, 40.71, 124.06, 121.22, 126.48, 128.98, 137.48, 142.41, 163.69, 176.27. ESIMS (m/z, M⁺+H): 577.3201; Calcd. for [C₃₄H₅₀N₂O₄Co]⁺: 577.3204.

Synthesis of complex 2 It was synthesized according to the literature method [35]. Yield: 91 %. Elemental analysis calcd (%) for C₃₃H₄₆N₂O₄: C, 74.69; H, 8.11; N, 4.60. found: C, 74.65; H, 8.04; N, 4.55. ¹H NMR (1,4-Dioxane-δ8): 1.31 (s, 18H), 1.73 (s, 18H), 2.09 (s, 3H), 4.12 (m, 4H), 7.39 (s, 2H), 7.45 (s, 2H). ¹³C NMR (1,4-Dioxane-δ8): δ 24.56, 30.75, 30.27, 31.48, 33.49, 58.25, 122.16, 125.42, 127.37, 137.72, 142.41, 151.35, 162.69, 168.70. ESIMS (m/z, M⁺+H): 549.2890; Calcd. for [C₃₃H₄₆N₂O₄Co]⁺: 549.2891.

Experimental section

General methods

All manipulations involving air- and/or water-sensitive compounds were carried out using standard Schlenk techniques under dry argon. CHO was refluxed over CaH₂, and fractionally distilled under an argon atmosphere prior to use. CO₂ (99.995 %) was purchased from Qingdao Institute of

Springer
Synthesis of complex 3. It was synthesized as a similar procedure of complex 1. Yield: 85 %. Elemental analysis calcd (%) for C_{28}H_{35}CoI_{2}N_{2}O_{4}: C, 43.32; H, 4.54; N, 3.61; found: C, 43.28; H, 4.51; N, 3.60. 'H NMR (1,4-Dioxane-d8): 1.10 (s, 6H), 1.37 (s, 18H), 2.09 (s, 3H), 4.02 (m, 4H), 7.49 (s, 2H), 7.55 (s, 2H). 13C NMR (1,4-Dioxane-d8): δ 20.56, 29.67, 30.15, 32.17, 125.16, 128.42, 138.37, 137.12, 151.35, 163.59, 169.71. ESIMS (m/z, M' + H): 716.9882; Calcd. for [C_{28}H_{35}I_{2}N_{2}O_{2}Co]^+: 716.9885.

Synthesis of complex 4. It was synthesized as a similar procedure of complex 1. Yield: 88 %. Elemental analysis calcd (%) for C_{28}H_{35}CoI_{2}N_{2}O_{4}: C, 43.32; H, 4.54; N, 3.61; found: C, 43.29; H, 4.50; N, 3.59. 'H NMR (1,4-Dioxane-d8): 1.06 (s, 6H), 1.31 (s, 18H), 2.07 (s, 3H), 4.05 (m, 4H), 7.45 (s, 2H), 7.51 (s, 2H). 13C NMR (1,4-Dioxane-d8): δ 20.16, 25.63, 30.25, 31.45, 40.15, 89.16, 125.92, 126.37, 139.98, 144.34, 163.13, 164.59, 169.78. ESIMS (m/z, M' + H): 716.9880; Calcd. for [C_{28}H_{35}I_{2}N_{2}O_{2}Co]^+: 716.9885.

Synthesis of complex 5. It was synthesized as a similar procedure of complex 1. Yield: 87 %. Elemental analysis calcd (%) for C_{20}H_{17}CoI_{4}N_{2}O_{4}: C, 26.23; H, 1.87; N, 3.06; found: C, 26.20; H, 1.85; N, 3.07. 'H NMR (1,4-Dioxane-d8): 1.08 (s, 6H), 2.09 (s, 3H), 4.07 (m, 4H), 7.76 (s, 2H), 7.79 (s, 2H). 13C NMR (1,4-Dioxane-d8): δ 21.34, 24.63, 29.24, 89.16, 91.21, 128.12, 136.37, 139.98, 147.74, 1661.31, 165.59, 169.89. ESIMS (m/z, M' + H): 856.6564; Calcd. for [C_{18}H_{14}I_{4}N_{2}O_{2}Co]^+: 856.6566.

Synthesis of complex 6. It was synthesized according to the literature method [35]. Yield: 89 %. Elemental analysis calcd (%) for C_{37}H_{55}CoN_{2}O_{4}: C, 68.29; H, 8.52; N, 4.30; found: C, 67.32; H, 8.67; N, 4.51. 'H NMR (1,4-Dioxane-d8): 1.35 (s, 18H), 1.37 (s, 18H), 1.65 (s, 6H), 2.09 (s, 3H), 7.64 (s, 2H). 13C NMR (1,4-Dioxane-d8): δ 24.54, 30.13, 31.25, 32.46, 31.66, 62.71, 128.12, 128.56, 137.37, 139.88, 145.94, 154.54, 164.37, 170.45. ESIMS (m/z, M' + H): 591.3363; Calcd. for [C_{35}H_{52}N_{2}O_{2}Co]^+: 591.3366.

Representative copolymerization procedure

A 100-ml stainless steel autoclave equipped with a magnetic stirring bar was heated to 120 °C under vacuum for 2 h. After cooled to room temperature, the autoclave was charged with CO_{2}. A mixture of complex and [PPN]Cl was dissolved in 1,4-dioxane under CO_{2} atmosphere. The mixture solution was injected into the autoclave with a syringe under CO_{2} atmosphere, followed by the addition of CHO. The autoclave was heated to a desired temperature in an oil bath and the 1.5 MPa pressure of CO_{2}. The mixture was stirred for the allotted reaction time, then quickly cooled to room temperature and vented in a fume hood. A small aliquot of the resultant copolymerization mixture was removed from the reactor for 'H NMR analysis. The remaining copolymerization mixture was then dissolved in chloroform, quenched with 5 % HCl solution in methanol, and precipitated from methanol. The copolymer was collected and dried in vacuum to constant weight, and the copolymer yield was determined. The carbonate linkages were determined from the relative intensity of the cyclohexyl methine proton signals (4.6 ppm for carbonate linkages and 3.4 ppm for ether linkages) in the 'H NMR spectrum of the polymer. The molar mass and the molar mass distribution of the resulting polymer were determined by GPC.

Results and discussion

Syntheses of complexes

Substituted derivatives of the parent ligand salen were prepared by condensation of salicylaldehyde derivatives with ethylenediamine. Substituted salicylaldehydes were prepared via the Reimer–Tiemann reaction or through lithium aluminum hydride reduction followed by manganese dioxide oxidation of a substituted salicylic acid [37–39]. Stirring the Schiff base ligands with cobaltII acetate tetrahydrate under aerobic conditions afforded the requisite Co^{III} complexes [38]. The nature of the R_1, R_2, and R_3 substituents, the hydrocarbonated chain R, and their abbreviations are also shown in Fig. 1.

![Fig. 1 Salen Co^{III} acetate complexes for cyclohexene oxide/CO_{2} copolymerization](image-url)
The product was sufficiently dried under reduced pressure. Complexes 1–6 were isolated as a solid powder. Numerous attempts to isolate complexes 1–5 in a mixture of methylene chloride and hexane or other solvents were proved to be unsuccessful. Fortunately, the structure of a closely related complex 6 could be elucidated by single crystal X-ray analysis. Crystal suitable for X-ray diffraction was grown from a mixture of methylene chloride and hexane at 20 °C. A single crystal was selected for X-ray analysis (Table 1). As shown in Fig. 2, the structure is indeed a six-coordinate octahedral as the structure of the salen CoIII(2,4-dinitrophenoxy) [35, 36]. X-ray diffraction data showed that the crystal was analogous monomeric structures. The overall geometry around the metal cobalt was a triblock with the two carbon atoms superseeded by that with the three carbon atoms, the catalytic activity is dramatically decreased. The catalytic activity is influenced markedly by the nature of the substituents grafted on the ligands molecules and the length of the diimine bridges between the two nitrogen atoms in the ligands, respectively. These results might be mainly ascribed to the steric bulk effect of the substituents R on the phenolates of the ligand. This agrees well with the literature data [5]. These differences in ligands framework and the length of the diimine bridges between the two nitrogen atoms in the ligands also reflect on the selectivity formation of poly(cyclohexenylene carbonate) (PCHC) over cyclohexene carbonate (CHC) and the resulting copolymer number average molecular weights (\(M_n\)). Complex 1 displays the highest PCHC/CHC selectivity and yields polymer with the highest \(M_n\). However, complex 6 presents the lowest PCHC/CHC selectivity and produces polymer with the lowest \(M_n\). Both the length of the diimine bridges and the substituents on the ligands do not have a clear effect on the microstructure of the resultant polymer. With complexes 1–6 the copolymerization affords products possessing >99% carbonate linkages.

The mole ratio of [PPN]Cl to the complex 1 played an important role in the copolymerization of CHO with CO₂, as

Table 1 Crystal data and structure refinement parameters for complex 6
Empirical formula
Formula weight
Temperature (K)
Wavelength (Å)
Crystal system
Space group
Unit cell dimensions
\(a\) (Å)
\(b\) (Å)
\(c\) (Å)
\(\alpha\) (°)
\(\beta\) (°)
\(\gamma\) (°)
Volume (Å³)
Z
Calculated density(Mg m⁻³)
Absorption coefficient (mm⁻¹)
\(F(000)\)
Crystal size (mm)
Theta range for data collection (°)
Limiting indices \((hkl\) range)
Reflections collected
Independent reflections
\(R_{int}\)
Data/restraints/parameters
Goodness-of-fit on \(F^2\)
Final \(R\) indices
\(R\) indices (all data)
Largest difference in peak and hole (e Å⁻³)
listed in Table 4 (entries 1–4). Although almost negligible yield was observed in the absence of cocatalyst (see entry 1 in Table 4), the addition of cocatalyst [PPN]Cl resulted in the production of the alternating copolymer (see entries 2–4, in Table 4). Optimization of the molar ratio between complex 1 and [PPN]Cl revealed that the highest yield was achieved using 1 equiv. of [PPN]Cl. However, the increase in the ratio of [PPN]Cl to complex 1 above 2 equiv. could increase the reaction activities. The CHC only was obtained. The CHC formation might be based on the presence of a depolymerization reaction that is promoted at higher [PPN]Cl concentrations. It is most likely due to a backbiting reaction starting from an alcoholate chain end that is displaced from the CoIII center in a coordination equilibrium with [PPN]Cl after epoxide ring opening [18].

The influence of reaction temperature on the copolymerization of CHO and CO2 was investigated using complex 1/[PPN]Cl (see entries 3 and 5–7, in Table 4). Dramatic increase in catalytic activity with temperature was observed, and the turnover frequency (TOF) at 80 °C (48.7 h⁻¹) almost doubles that at 60 °C (25.6 h⁻¹) (see entries 3 and 5, in Table 4), which reaches to 52.2 h⁻¹ when the copolymerization is performed at 100 °C (see entry 6, in Table 4). The highest catalytic activity (54.5 h⁻¹) is achieved at 120 °C (see Entry 7, in Table 4). While the yield of copolymer increases with increasing temperature up to about 80 °C, and then decreases with the further increase. Similar results have been observed previously [33]. In agreement with the increase in yield, M_n of the obtained copolymer increases

![Molecular structure of complex 6](image-url)
correspondingly from 21.6 kg mol$^{-1}$ at 60 °C to 38.7 kg mol$^{-1}$ at 80 °C. In the meantime, polymer dispersity index remains narrow and almost constant (PDI=1.2). It is generally known that the homopolymerization of CHO easily takes place at elevated temperatures and is normally observed at catalyst systems with regard to much-studied zinc complexes [10]. Moreover, the polycarbonates obtained at the range of 60–120 °C all have >99 % carbonate linkages. Obviously, the mole ratio of monomer to complex plays an important role on the TOF of copolymerization, as listed in Table 4 (entries 3 and 8–10). For example, in the experiment of entry 3, TOF (10 h) is 48.7 h$^{-1}$ when 1,000 equiv. of CHO are used. As the ratio of CHO to complex decreases to 200 equiv. in entry 8, the reaction activity decreases by almost thrice, compared with entry 3. Meanwhile, PDI also slightly decreases from 1.2 to 1.1,

Entry	Complex	[CHO]/[Cat]	Time (h)	[CHO] (mol l$^{-1}$)	Temperature (°C)	Yielda	TOFb (h$^{-1}$)	Selectivityc (% PPC)	M_n^d (kg mol$^{-1}$)	PDId
1	1	1,000	10	50	60	25.6	25.6	>99	21.6	1.2
2	2	1,000	10	50	60	10.4	12.2	85	9.3	1.4
3	3	1,000	10	50	60	17.0	17.5	97	14.4	1.2
4	4	1,000	10	50	60	18.9	19.7	96	17.1	1.2
5	5	1,000	10	50	60	15.8	16.6	95	14.5	1.3
6	6	1,000	10	50	60	0.44	2.2	20	2.1	1.5

Copolymerizations run in neat cyclohexene oxide (CHO) with [Co]/([PPN]Cl]=1:1 at 1.5 MPa of CO$_2$ in 1,4-dioxane (7 ml)

a Based on isolated poly(cyclohexene carbonate) yield
b Turnover frequency: mol CHO mol Co$^{-1}$ h$^{-1}$
c Determined by 1H NMR spectroscopy (CDCl$_3$, 300 MHz)
d Determined by gel permeation chromatography calibrated with polystyrene standards in tetrahydrofuran at 40 °C

Entry	[PPN]Cl/complex 1	[CHO]/[complex 1]	Time (h)	[CHO] (mol l$^{-1}$)	Temperature (°C)	Yielda	TOFb (h$^{-1}$)	Selectivityc (% PPC)	M_n^d (kg mol$^{-1}$)	PDId
1	0	1,000	10	50	80	Trace	–	–	–	–
2	0.5	1,000	10	50	80	10.4	12.2	99	10.3	1.2
3	1	1,000	10	50	80	48.2	48.7	99	38.7	1.2
4	2	1,000	10	50	80	Trace	–	–	–	–
5	1	1,000	10	50	60	25.6	25.6	>99	21.6	1.2
6	1	1,000	10	50	100	48.0	52.2	92	37.1	1.4
7	1	1,000	10	50	120	46.3	54.5	85	33.9	1.5
8	1	200	10	50	80	85.6	17.3	99	14.9	1.1
9	1	800	10	50	80	56.7	45.8	99	35.6	1.2
10	1	1,200	10	50	80	39.4	47.8	99	37.7	1.2
11	1	1,000	10	30	80	27.4	27.7	99	23.1	1.3
12	1	1,000	10	40	80	39.6	40.2	99	30.1	1.2
13	1	1,000	10	60	80	43.9	46.2	95	35.7	1.3
14	1	1,000	5	50	80	29.2	58.4	99	23.8	1.2
15	1	1,000	20	50	80	70.7	36.1	98	57.8	1.3
16	1	1,000	40	50	80	85.2	22.2	96	71.8	1.5

a Copolymerizations run in neat cyclohexene oxide (CHO) with [Co]/([PPN]Cl]=1:1 at 1.5 MPa of CO$_2$ in 1,4-dioxane (7 ml)
b Based on isolated poly(cyclohexene carbonate) yield
c Turnover frequency: mol CHO mol Co$^{-1}$ h$^{-1}$
d Determined by 1H NMR spectroscopy (CDCl$_3$, 300 MHz)
e Determined by gel permeation chromatography calibrated with polystyrene standards in tetrahydrofuran at 40 °C
and M_n decreases significantly from 38.7 to 14.9 kg mol$^{-1}$. However, the further increases in the ratio of CHO to complex I above 1,000 equiv. could reduce the reaction activities (see entries 3 and 10, in Table 3). Especially, when over 1,000 equiv. of CHO are selected, both drops in catalytic activity and yield of the resultant product are observed (entry 10), which could be attributed to the lowering of the catalytic concentration when overloading monomer.

Besides operation temperature and ratio of monomer to complex, initial CHO concentration is another important issue for the reaction. In our results, it is observed that the catalytic activity increases as the initial CHO concentration increases from 30 to 50 mol l$^{-1}$ (see entries 3, 11, and 12, in Table 4) and decreases then with the further increase in CHO concentration (entry 13 in Table 4). The prolonged reaction does not lead to an observable decrease in selectivity for PCHC formation, which can be explained by the so-called solvent effect. A similar solvent effect was reported for the copolymerization with binary catalyst systems [32, 42].

13C NMR spectroscopy has been extensively used to investigate CHO incorporation into polymer backbones, which can be used to estimate the tacticity of the copolymer [2, 14]. Figure 3 presents a 13C NMR spectrum of the PCHC which can be used to estimate the tacticity of the copolymer investigated CHO incorporation into polymer backbones, especially when overloading monomer (Table 3). The spectrum is very similar to those of PCHC prepared with (salen)CoX catalysts [5]. Clearly, the carbonyl regions at $\delta=153.80–153.66$ and 153.25–153.30 ppm can be assigned to the isotactic and syndiotactic structures of the PCHC chain, respectively [2]. The peaks at 153.25–153.30 ppm are assigned to the central carbonyl carbons of r-centered tetrads, whereas the peaks at 153.80–153.66 ppm are attributed to the central carbonyl carbons of m-centered tetrads [2, 14]. PCHCs revealed a strong contribution correlating to r-centered tetrads (78 %), indicative of syndiotactic PCHC.

MALDI-TOF mass spectrometry is specifically suitable for structural and end-group analysis [5]. Figure 4 displays a spectrum of the resultant PCHC obtained (entry 3 in Table 4). At least two series of signals with regular repeat intervals (repeating units of 142.2 mass units) were observed in the mass spectra. For the first series of peaks at the m/z of 1,931.6, 2,073.8, 2,216.0, 2,358.2, 2,500.4, and 2,642.6, there was a difference of 142.2 in m/z between every two neighboring peaks, which was also seen in the second series at the m/z of 1,947.7, 2,089.9, 2,232.1, 2,374.3, 2,516.5, and 2,658.7. Moreover, in the second series peaks in m/z were correspondingly 16 larger than those in the first series. Additionally, the weight number of propylene carbonate unit is 142.2. Thus, it could be known by calculation that the first series peaks resulted from the copolymerization reaction was initiated by insertion of CHO into a Co-acetate bond of the catalytic species attached to a Co center, and terminated with acetate groups and Na$^+$ ions, and K$^+$ ions instead of Na$^+$ ions for the second series.

On the basis of the information presented so far, some proposed mechanism illustrated that the monomer was inserted to the cobalt–oxygen bond of the propagating end, as shown in Scheme 1. [PPN]Cl coordinated to the metal center in the axial site transferred to the propagating metal–polymer chain, thereby labilizing the metal alkoxide bond and facilitating the insertion of CO$_2$ [3, 6, 17, 18, 21, 24]. The CHO monomer might be first favorably inserted into the Co–OR bond of the Schiff base cobalt complex, followed by the insertion of the CO$_2$ monomer. Subsequent alternating copolymerization of CHO and CO$_2$ affords the alternating repeating unit structure to yield the polycarbonate. The side reaction to yield the cyclic carbonate could take place through the backbiting degradation of the growing polymer–catalyst complex, which may lead to the lower polymer yield. A mechanism similar to that proposed by Darenbourg and Yarbrough using chromium salen and N-MeIm in the copolymerization of CO$_2$ and cyclohexene oxide [14].
Copolymerization of PO and CO$_2$

By use of complex 1 and [PPN]Cl catalyst system, the copolymerization of CO$_2$ and PO ([PO]$_0$/[[PPN]Cl]$_0$/[complex 1]$_0$ = 500/1/1) selectively gave the alternating copolymer in 1,4-dioxane at 60 °C in 24 h (carbonate linkages=99 %, polycarbonate/cyclic carbonate=99/1, M_n=6,400, M_w/M_n=1.21; Table 5, run 2), although the reaction proceeded rather slowly (36.8 % yield). Also at 80 °C, the copolymerization proceeded more rapidly to attain 42.1 % polymer yield in the same reaction time, slightly lowering the selectivity (carbonate linkages=95.8 %, polycarbonate/cyclic carbonate=92/8, M_n=7,800, M_w/M_n=1.31; Table 5, run 3). When the copolymerization was conducted at an elevated temperature, such as

Table 5 Copolymerization of PO and CO$_2$

Entry	Temperature (°C)	Time (h)	Yielda	Selectivityb (% PPC)	M_n (kg mol$^{-1}$)	PDFc
1	40	24	17.7	99	5.3	1.12
2	60	24	22.8	99	6.4	1.21
3	80	24	42.1	92	7.8	1.31
4	100	24	16.7	30	6.9	1.52
5	60	48	76.7	93	13.9	1.26

The reaction was performed in neat PO (14 ml, 200 mmol; [PO]$_0$/[[PPN]Cl]$_0$/[complex 1]$_0$=500:1:1) in a 100-ml autoclave at 1.6 MPa of CO$_2$ in in 1,4-dioxane (5 ml)

a Based on isolated poly(propylene carbonate) yield
b Determined by 1H NMR spectroscopy (CDCl$_3$, 300 MHz)
c Determined by gel permeation chromatography calibrated with polystyrene standards in tetrahydrofuran at 40 °C
100 °C, a significant amount of cyclic carbonate (polycarbonate/cyclic carbonate=30/70) was generated under otherwise similar conditions (Table 5; run 3).

The high selectivity of polycarbonate over cyclic carbonate at 60 °C was maintained after a longer reaction time to attain quantitative formation of the alternating copolymer. The alternating copolymerization of CO₂ and PO by using complex 1 and [PPN]Cl catalyst system was carried out at 60 °C for 48 h and afforded the alternating copolymer almost quantitatively (polycarbonate/cyclic carbonate = 93/7, carbonate linkages = 99 %, $M_n = 13,900$, $M_w/M_n = 1.26$, Table 5, run 5).

Conclusions

In summary, a series of cobalt/Schiff base complexes 1–6 were investigated for the alternating copolymerization of CO₂ with epoxide (CHO and PO) to afford completely alternating polycarbonates with good activity in presence of [PPN]Cl. The resultant polymer has high molecular weight and high carbonate linkages as well as narrow molar mass distribution. The molecular weight of the copolymers is also sensitive to the concentration of CHO in the feed for the complexes. In addition, the solid-state structure of complex 6 was characterized, providing valuable information about the mechanism of the catalytic polymerization reaction. This strategy allows considerable scope for ligand modification and thus might lead to the design of new, efficient, and practical catalysts for the copolymerization of epoxides with CO₂.

Acknowledgment

Gratitude is expressed to the Young Scientists Fund of the National Natural Science Foundation of China (grant no. 51003051), Science-Technology Foundation for Middle-Aged and Young Scientist of Shandong Province, China (grant no. BS2011CL021), and the High-level Talent Initial Funding for Scientific Research of Qingdao Agricultural University (grant no. 630924) for financial support.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Daresnbour D (2007) Chem Rev 107:2388–2410
2. Nakano K, Nozaki K, Miyama T (2001) Macromolecules 34:6325–6332
3. Nozaki K, Nakano K, Miyama T (1999) J Am Chem Soc 121:11008–11009
4. Koinuma H (2007) React Funct Polym 67:1129–1136
5. Cohen CT, Thomas CM, Peretti KL, Lobkovsky EB, Coates GW (2006) Dalton Trans 1:237–249
6. Nakano K, Kobayashi K, Nozaki K (2011) J Am Chem Soc 133:10720–10723
7. Super M, Berluche E, Costello C, Beckman E (1997) Macromolecules 30:368–372
8. Sugimoto H, Ogawa A (2007) React Funct Polym 67:1277–1283
9. Atsushi O (2010) Chem Lett 39:1066–1068
10. Kim I, Kim SM, Ha CS, Park DW (2004) Macromol Rapid Commun 25:888–893
11. Mang S, Cooper AIM, Colclough E, Chauhan N, Holmes AB (2000) Macromolecules 33:303–308
12. Cheng M, Moore DR, Rezek CJ, Chamberlain BM, Lobkovsky EB, Coates GW (2001) J Am Chem Soc 123:8738–8749
13. Moore DR, Cheng M, Lobkovsky EB, Coates GW (2003) J Am Chem Soc 125:11911–11924
14. Daresnsbour DJ, Yarborough JC (2002) J Am Chem Soc 124:6335–6342
15. Paddock RL, Nguyen ST (2001) J Am Chem Soc 123:11498–11499
16. Daresnsbour DJ, Mackiewicz RM, Rodgers JL, Fang CC, Billodeaux DB, Reibenspies JH (2004) Inorg Chem 43:6024–6034
17. Nakano K, Nakamura M, Nozaki K (2009) Macromolecules 42:6972–6980
18. Daresnsbour DJ, Ulsosy M, Karoominium O, Poland RR, Reibenspies JH, Cetinkaya B (2009) Macromolecules 42:6992–6998
19. Shi L, Lu XB, Zhang R, Peng XJ, Zhang CQ, Li JF, Peng XM (2006) Macromolecules 39:5679–5685
20. Liu BY, Gao YH, Zhao X, Yan WD, Wang SX (2010) J Polym Sci Part A: Polym Chem 48:359–365
21. Rao DY, Li B, Zhang R, Wang H, Lu XB (2009) Inorg Chem 48:2830–2836
22. Seong JE, Na SJ, Cyriac A, Kim BW, Lee BY (2010) Macromolecules 43:903–908
23. Ren WM, Zhang X, Liu Y, Li JF, Wang H, Lu XB (2010) Macromolecules 43:1396–1402
24. Noh EK, Na SJ, Kim SW, Lee BY (2007) J Am Chem Soc 129:8082–8083
25. Lu XB, Daresnsbour D (2012) J Chem Soc Rev 41:1462–1484
26. Lu XB, Wang Y (2004) Angew Chem Int Ed 43:3574–3577
27. Niu YS, Zhang WX, Li HC, Chen XS, Sun JR, Zhang XL, Jing XB (2009) Polymer 50:441–446
28. Qin Z, Thomas CM, Lee S, Coates GW (2003) Angew Chem Int Ed Engl 42:5484–5487
29. Nakano K, Kamada T, Nozaki K (2006) Angew Chem Int Ed 45:7274–7277
30. Cohen CT, Chu T, Coates GW (2005) J Am Chem Soc 127:10869–10878
31. Lu XB, Lei S, Wang YM, Zhang R, Zhang YJ, Peng XJ, Zhang ZC, Li B (2006) J Am Chem Soc 128:1664–1674
32. Cohen CT, Coates GW (2006) J Polym Sci A Polym Chem 44:5182–5191
33. Niu YS, Zhang WX, Pan X, Chen XS, Zhuang XL, Jing XB (2007) J Polym Sci A Polym Chem 45:5050–5056
34. Paddock RL, Miyama Y, McKay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023–2026
35. Niu YS, Li HC, Chen XS, Zhang WX, Zhuang XL, Jing XB (2009) Macromol Chem Phys 210:1224–1229
36. Zhuang XL, Oyaizu K, Niu YS, Koshika K, Chen XS, Nishide H (2010) Macromol Chem Phys 211:669–679
37. Postmus CJ, Kaye IA, Craig CA, Matthews RS (1964) J Org Chem 29:2693–2698
38. Ren WM, Liu Y, Wu GP, Liu J, Lu XB (2011) J Polym Sci A Polym Chem 49:4894–4901
39. Wisniewski M, Le BA, Spassky N (1997) Macromol Chem Phys 198:1227–1238
40. Ware DC, Denny WA, Clark GR (1997) Acta Crystallogr Sect C 53:1058–1059
41. Weiss MC, Bursten BB, Peng SM, Goedken VL (1976) J Am Chem Soc 98:8021–8031
42. Sugimoto H, Ohtsuka H, Inoue S (2005) J Polym Sci A Polym Chem 43:4172–4186