Data Article

Mechanical, thermal, morphological, and rheological characteristics of high performance 3D-printing lignin-based composites for additive manufacturing applications

Ngoc A. Nguyen*, Christopher C. Bowland, Amit K. Naskar*

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States

A R T I C L E I N F O

Article history:
Received 12 April 2018
Received in revised form 14 May 2018
Accepted 22 May 2018
Available online 29 May 2018

A B S TR A C T

The article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed. This data is related to our recent research article entitled "A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites" (Nguyen et al., 2018 [1]).

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

S p e c i f i c a t i o n s Table

Subject area	Polymer Physics
More specific subject area	Composite and additive manufacturing
Type of data	Table, image, graph, and movie
How data was acquired	Mechanical analysis (RSA-3 and DMA-Q800, TA instruments), thermal characterization (TGA-Q500 and DSC-Q2000, TA instruments), Fourier

DOI of original article: https://doi.org/10.1016/j.apmt.2018.03.009
* Corresponding authors.
E-mail addresses: nguyenna@ornl.gov (N.A. Nguyen), naskarak@ornl.gov (A.K. Naskar).
transform infrared spectroscopy analysis (PerkinElmer Frontier), optical analysis (Olympus BX50F4), scanning electron microscopy measurements (Hitachi S-4800), rheological measurements (DHR-3, TA instruments), and printing process (LulzBot TAZ printer).

Data format
Analyzed

Experimental factors
The prepared samples were characterized without pretreatment

Experimental features
The lignin based-composites were prepared by melt-mixing without the presence of any solvent. Selected high-loading renewable lignin based-composites were used to prepare the 3D-printing filaments and test their 3D-printing characteristics

Data source location
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

Data accessibility
Data in this article

Value of the data
- The data presented in this article provide some background for lignin valorization via composite and additive manufacturing.
- The relationship of thermal relaxation data within the glassy region and the data of lignin phase separation within the composites can be applied for various polymer-based composite systems.
- The measured rheological data and morphological data of the 3D-printed layers suggest a good method to improve the materials’ 3D-printability and the 3D-printing interlayer adhesion, respectively.

1. Data

First, the mechanical performance data are presented to reveal the effects of lignin and CFs on the synthesized composites. Table 1 and Fig. 1 show the measured Young’s modulus, tensile at break, strain at break, and tensile energy to break of the studied materials.

Second, the thermal characteristics of pristine ABS, lignin, NBR41, and the synthesized composites are shown. The normalized heat flow and heat capacity data are presented in Fig. 2 and 3, and Tables 2 and 3. The measured glass transition temperatures correlated to the data calculated by using the Couchman rule are revealed in Fig. 4 and Table 4.

Next, the measured morphology data are presented to correlate with the thermal and rheological relaxation data. The scanning electron microscopy data are shown in Figs. 5–7. Fig. 8 presents the

Table 1	The measured tensile data of different investigated samples. Note that all samples were molded for the mechanical tests.			
	Young’s modulus (GPa)	Tensile at break (MPa)	Strain at break (%)	Tensile energy to break ($ \times 10^5$ J/m3)
Pristine ABS	1.91 ± 0.32	54.09 ± 3.82	8.3 ± 1.74	39.05 ± 8.28
ABS-Lignin-64	1.82 ± 0.08	20.5 ± 3.34	1.21 ± 0.17	1.43 ± 0.44
ABS-NBR41-73	0.88 ± 0.09	26.13 ± 1.29	151.79 ± 18.81	364 ± 35.35
ABS-NBR41-91	1.91 ± 0.15	41.92 ± 0.74	45.12 ± 13.33	185.8 ± 54.59
ABS-NBR41-Lignin-514	1.41 ± 0.14	39.79 ± 3.54	3.48 ± 0.15	7.92 ± 0.37
ABS-NBR41-Lignin-613	1.19 ± 0.05	31.16 ± 0.72	7.19 ± 0.88	18.2 ± 2.72
ABS-NBR41-Lignin-712	1.36 ± 0.14	35.59 ± 0.98	10.52 ± 1.23	34.06 ± 5.71
ABS-NBR41-Lignin-CF1/8_4141	2.44 ± 0.09	50.76 ± 1.39	2.84 ± 0.17	8.73 ± 0.9
ABS-NBR41-Lignin-CF1/8_5131	2.64 ± 0.14	64.68 ± 2.54	3.85 ± 0.24	16.33 ± 2.13
ABS-NBR41-Lignin-CF1/8_6121	2.31 ± 0.15	53.7 ± 3.68	3.89 ± 0.12	13.93 ± 0.63
Fig. 1. (a) Young's modulus and (b) tensile strength at break of ABS and ABS-NBR41 blends. (c) Tensile strength at break and (d) Strain at break of ABS-Lignin-64 and different ABS-NBR41-Lignin composites. (e) Tensile energy at break (the area under the stress-strain curve) and (f) Tensile strength at break of ABS-NBR41-Lignin-514 and different composites containing 10 wt% CFs and 10 wt% NBR41.
Fig. 2. (a) The normalized heat flow as a function of temperature of pristine ABS, NBR41, lignin and their composites. (b) and (c) The corresponding zoomed in data at low and high temperature ranges for clear observation. Note that the same color codes were used.
Fig. 3. (a) The normalized heat capacity as a function of temperature of pristine ABS, NBR41, lignin and their composites. (b) and (c) The corresponding zoomed in data at low and high temperature ranges for clear observation. Note that the same color codes were used.
frequency dependent loss modulus and phase angle data. Figs. 9–11 and Table 5 exhibit the thermal stability of the synthesized composites.

Finally, the rheological data and 3D-printing characteristics are shown. Examples of selected 3D-printing filaments made from lignin-based composites are presented in Fig. 12. The measured rheology data are shown in Figs. 13 and 14, and Table 6. The 3D-printability of the studied materials is shown in Figs. 15 and 16 and Movies 1–4 (see Supporting Information).

Supplementary material related to this article can be found online at doi:10.1016/j.dib.2018.05.130.

Table 2
The average T_g ($^\circ$C) of different investigated samples measured by DSC. The standard deviation was computed from three individual measurements.

Sample	T_g ($^\circ$C) ± Standard Deviation
ABS	104.1 ± 0.2
ABS-NBR41–73	85.7 ± 1.6/ -6.4 ± 1
ABS-NBR41-Lignin-514	90.5 ± 1.3
ABS-NBR41-Lignin-CF-4141	90.1 ± 0.9
ABS-NBR41–91	-12.8 ± 3.1
Lignin	86.2 ± 1.2
ABS-NBR41-Lignin-613	93.1 ± 0.7
ABS-NBR41-Lignin-CF-5131	90.9 ± 0.3
ABS-NBR41–73 Lignin	92.0 ± 0.9
ABS-NBR41-Lignin-613	95.8 ± 0.6
ABS-NBR41-Lignin-712	94.6 ± 0.7
ABS-NBR41-Lignin-CF-6121	92.3 ± 0.7

Table 3
The measured average changes in heat capacity ($J/g ^\circ$C) of different investigated samples. The standard deviation was computed from three individual measurements.

Sample	Heat Capacity Change ($J/g ^\circ$C) ± Standard Deviation
ABS	0.281 ± 0.009
ABS-NBR41–73	0.205 ± 0.028/ 0.128 ± 0.016
ABS-NBR41-Lignin-514	0.201 ± 0.028
ABS-NBR41-Lignin-CF-4141	0.175 ± 0.016
ABS-NBR41–91	0.548 ± 0.016
Lignin	0.490 ± 0.031
ABS-NBR41-Lignin-613	0.211 ± 0.008
ABS-NBR41-Lignin-CF-5131	0.279 ± 0.020
ABS-NBR41–73 Lignin	0.548 ± 0.016
ABS-NBR41-Lignin-613	0.490 ± 0.031
ABS-NBR41-Lignin-712	0.211 ± 0.008
ABS-NBR41-Lignin-CF-6121	0.279 ± 0.020
ABS-NBR41–91 Lignin	0.286 ± 0.022
ABS-NBR41-Lignin-613	0.205 ± 0.020
ABS-NBR41-Lignin-712	0.246 ± 0.037
ABS-NBR41-Lignin-CF-6121	0.218 ± 0.029

Fig. 4. The measured DSC glass transition temperatures (T_g) of the investigated samples in comparison to T_g computed by using the Couchman rule.

Figures 9–11 and Table 5 exhibit the thermal stability of the synthesized composites.
2. Experimental design, materials and methods

The experimental design, materials, sample preparation, and characterization methods used in this data article were reported recently [1,2]. Pristine ABS and various composites, namely ABS-NBR41-91 (containing 10 wt.% NBR41), ABS-NBR41-73 (30 wt% NBR41), ABS-Lignin-64 (40 wt% lignin), ABS-NBR41-Lignin-514 (10 wt% NBR41 and 40 wt% lignin), ABS-NBR41-Lignin-613 (10 wt% NBR41 and 30 wt% lignin), ABS-NBR41-Lignin-712 (10 wt% NBR41 and 20 wt% lignin), ABS-NBR41-Lignin-CF-4141 (10 wt% NBR41, 40 wt% lignin, and 10 wt% CFs), ABS-NBR41-Lignin-CF-5131 (10 wt% NBR41, 30 wt% lignin, and 10 wt% CFs), and ABS-NBR41-Lignin-CF-6121 (10 wt% NBR41, 20 wt% lignin, and 10 wt% CFs), were characterized.

Table 4

T_g (°C) of investigated samples computed by the Couchman rule [3].
ABS-Lignin-64
94.4
ABS-NBR41-Lignin-712
78

Fig. 5. SEM micrographs of the fractured surface of different samples after performing tensile tests: (a) ABS. (b) ABS-NBR-91. (c) ABS-NBR-73.
In this article, we used the Couchman method [3] to determine the dependence of glass transition temperature on the components within the composites. The molar entropy (S) of the composite can be determined by the molar entropy of independent components (Eq. (1)) [3].

$$S = \sum_{i=1}^{4} X_i S_i + \Delta S_m$$

where X_i and S_i is the mole fraction and molar entropy of component i, respectively; ΔS_m is the excess entropy of mixing.

Using the thermodynamic theory, the entropy of component i at an interested temperature is computed by (Eq. (2)).

$$S_i = S_0^i + \int_{T_{gi}}^{T} C_{pi} \, d\ln T$$

where T_{gi} and C_{pi} is the glass transition temperature and heat capacity of the pristine component, respectively, in which S_0^i is the corresponding entropy.

Combining (Eq. (1)) and (Eq. (2)):

$$S = X_1 \left(S_1^0 + \int_{T_{g1}}^{T} C_{p1} \, d\ln T \right) + X_2 \left(S_2^0 + \int_{T_{g2}}^{T} C_{p2} \, d\ln T \right) + X_3 \left(S_3^0 + \int_{T_{g3}}^{T} C_{p3} \, d\ln T \right) + X_4 \left(S_4^0 + \int_{T_{g4}}^{T} C_{p4} \, d\ln T \right) + \Delta S_m$$

Fig. 6. SEM micrographs of the fractured surface of different samples after performing tensile tests: (a) ABS-Lignin-64. (b) ABS-NBR-Lignin-613. (c) ABS-NBR-Lignin-712.
The entropy S at the glassy state (g) and liquid state (l) are identical. Therefore, (Eq. (3)) is expressed by the following relationship:

$$X_g^1 S^0 + \int_{T_g^1}^{T_g} C_g^0 \frac{d\ln T}{T} + X_g^2 S^0 + \int_{T_g^2}^{T_g} C_g^0 \frac{d\ln T}{T} + X_g^3 S^0 + \int_{T_g^3}^{T_g} C_g^0 \frac{d\ln T}{T} + X_g^4 S^0 + \int_{T_g^4}^{T_g} C_g^0 \frac{d\ln T}{T} + \Delta S_m^g = 0.$$

where T_g is the glass transition temperature of the composite.

The composition of component i in the liquid and glassy state is unchanged. Therefore, $X_l^i = X_g^i$ and $S_l^0 = S_g^0$.

(Eq. (4)) can be simplified to (Eq. (5)).

$$X_1 \left\{ \int_{T_g^1}^{T_g} (C_{p1} - C_{p1}) \frac{d\ln T}{T} \right\} + X_2 \left\{ \int_{T_g^2}^{T_g} (C_{p2} - C_{p2}) \frac{d\ln T}{T} \right\} + X_3 \left\{ \int_{T_g^3}^{T_g} (C_{p3} - C_{p3}) \frac{d\ln T}{T} \right\} + X_4 \left\{ \int_{T_g^4}^{T_g} (C_{p4} - C_{p4}) \frac{d\ln T}{T} \right\} + \Delta S_m^l - \Delta S_m^l = 0.$$

Fig. 7. SEM micrographs of the fractured surface of different samples after performing tensile tests: (a) ABS-NBR41-Lignin-CF-4141. (b) ABS-NBR41-Lignin-CF-5131. (c) ABS-NBR41-Lignin-CF-6121. The red circles indicate the percolation of CFs.
Fig. 8. (a) The loss modulus and (b) the phase angle as a function of angular frequency of three studied 3D-printing materials obtained from the master curve construction at $T_{ref} = 230^\circ$C.

Fig. 9. The measured FTIR data of the investigated samples. The inset shows the presence of hydrogen bonds.
Fig. 10. (a) Thermogravimetric analysis (TGA) of the investigated samples. (b) The corresponding zoomed in data at 5% weight loss (T_5). (c) The derivative of weight loss as a function of temperature. The dashed circle shows the first maximum peak of weight loss (T_{m1}).

Fig. 11. The measured temperature corresponding to 5% weight loss (T_5) and first maximum weight loss (T_{m1}) obtained from TGA scans.
The excess entropy of mixing for ideal mixtures can be negligible so (Eq. (5)) is reduced to (Eq. (6)) [3]

\[X_1 Z T g_1 \Delta C_{p1} \frac{d \ln T}{T} + X_2 Z T g_2 \Delta C_{p2} \frac{d \ln T}{T} + X_3 Z T g_3 \Delta C_{p3} \frac{d \ln T}{T} + X_4 Z T g_4 \Delta C_{p4} \frac{d \ln T}{T} = 0. \]

Therefore,

\[X_1 \Delta C_{p1} \ln \left(\frac{T_g}{T_{g1}} \right) + X_2 \Delta C_{p2} \ln \left(\frac{T_g}{T_{g2}} \right) + X_3 \Delta C_{p3} \ln \left(\frac{T_g}{T_{g3}} \right) + X_4 \Delta C_{p4} \ln \left(\frac{T_g}{T_{g4}} \right) = 0. \]

In this study, the heat capacity was measured per unit mass [3]. If call the \(M_i \) is the mass fraction of component \(i \). The (Eq. (7)) becomes:

\[\ln T_g = \frac{M_1 \Delta C_{p1} \ln T_{g1} + M_2 \Delta C_{p2} \ln T_{g2} + M_3 \Delta C_{p3} \ln T_{g3} + M_4 \Delta C_{p4} \ln T_{g4}}{M_1 \Delta C_{p1} + M_2 \Delta C_{p2} + M_3 \Delta C_{p3} + M_4 \Delta C_{p4}}. \]

Table 5
The measured temperature corresponding to 5% weight loss (\(T_5 \)) and first maximum weight loss (\(T_{m1} \)) obtained from TGA scans.

Sample	\(T_5 \) (°C)	\(T_{m1} \) (°C)
ABS	335.6	408.6
Lignin	251.6	270.4
NBR41	383.2	370.9
ABS-Lignin-64	304.5	332.7
ABS-NBR41-73	345.7	371.1
ABS-NBR41-91	349.6	416.1
ABS-NBR41-Lignin-514	314.2	330.1
ABS-NBR41-Lignin-613	323.4	340.8
ABS-NBR41-Lignin-712	323.7	346.3
ABS-NBR41-Lignin-CF1/8_4141	311.4	326.9
ABS-NBR41-Lignin-CF1/8_5131	317.8	334.3
ABS-NBR41-Lignin-CF1/8_6121	328.6	345.1

Fig. 12. 3D-printing filaments made from three investigated samples: (a) ABS, (b) ABS-NBR41-Lignin-514, (c) ABS-NBR41-Lignin-CF-4141.
Fig. 13. (a) Complex viscosity as a function of angular frequency of three studied 3D-printing materials obtained from the master curve construction at $T_{\text{ref}} = 230^\circ$C. (b) The shear stress as a function of shear rate at $T_{\text{ref}} = 230^\circ$C obtained from the Cox-Merz flow curves.

Fig. 14. The shift factor as a function of temperature data obtained from the master curve construction at $T_{\text{ref}} = 230^\circ$C.
Table 6
The measured shift factor obtained from the master curve construction at $T_{ref} = 230^\circ\text{C}$.

Temperature (°C)	ABS	AB-NB41-AC-514	AB-NB41-AC-CF-4141
170	91.4	61.0	117.7
190	13.1	13.5	21.5
210	3.1	3.8	4.2
230	1.0	1.0	1.0

Fig. 15. (a) An example of a 3D-printing process using the ABS-NBR41-Lignin-CF-4141 composite. (b) An example of 3D-printed samples: ABS, ABS-NBR41-Lignin-514, and ABS-NBR41-Lignin-CF-4141 (from left to right). (c) An example of a 3D-printed ABS-NBR41-Lignin-514 sample used for the tear test. The dashed circle indicates a pre-crack of the sample before doing the tear test. (d) A close view of a 3D-printed ABS-NBR41-Lignin-514 sample used for the tear test showing individual printed layers.

Acknowledgements

This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, was sponsored by the Office of Energy Efficiency and Renewable Energy BioEnergy Technologies Office Program. C. C. B. acknowledges support from Wigner Fellowship Program as part of the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Fig. 16. The side-view optical images (left) and the corresponding side-view SEM images (middle and right) of: (a) ABS. (b) ABS-NBR41-Lignin-514. (c) ABS-NBR41-Lignin-CF-4141.

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.130.

References

[1] N.A. Nguyen, C.C. Bowland, A.K. Naskar, A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites, Appl. Mater. Today 12 (2018) 138–152.

[2] N.A. Nguyen, K.M. Meek, C.C. Bowland, S.H. Barnes, A.K. Naskar, An acrylonitrile–butadiene–lignin renewable skin with programmable and switchable electrical conductivity for stress/strain-sensing applications, Macromolecules 51 (1) (2018) 115–127.

[3] P. Couchman, Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends, Macromolecules 11 (6) (1978) 1156–1161.