Extraction, Isolation and Standardization of Herbal Species Sida

Karmvir1*, Rakesh Kumar Jat 2

1 Research Scholar, Institute of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University Jhunjhunu Rajasthan, 333001, India
2 Principal (Professor), Institute of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University Jhunjhunu Rajasthan, 333001, India

Article Info:

Abstract

The main focus of present study is to find out the various extracts and active constituents from the Sida species which will be very useful in the treatment of many diseases. There are mainly four species (Sida acuta, Sida cardifolia, Sida rhombifolia and Sida spinosa) focused in this research. The aerial part and roots of these species have been collected and authenticated from botany department. The exhaustive solvent extractions have been used based on polarity. The aqueous solvents water, methyl alcohol, ethyl alcohol and acetic acids have been used and non-aqueous solvents petroleum ether, ethyl acetate, chloroform, carbon tetra chloride, hexane, heptanes, benzene, toluene have been used for the extraction of active medicaments. The extracts or residue are further processed for the isolation of active constituents like vascine, ephedrine etc. These were separated and quantified by high performance thin layer chromatography.

Keywords: Sida acuta, Sida cardifolia, vascine ephedrine, Extraction, Thin layer chromatography, High performance liquid chromatography.

1. INTRODUCTION:

Herbal medicinal drug is extensively practiced in worldwide. For lots of years, humans have become to herbal redress to therapy frequent illnesses like allergy, cold, asthma, bronchitis, compulsive obsessive pulmonary diseases, inflammation. Numerous natural drug treatments are being derived immediately or circuitously from flowers that are viewed as an imperative remedy presently in use for curing a variety of human diseases. The eighty percent of world population using herbal plants as medicine and herbal products for the treatment of different types of disease like rheumatoid arthritis, gout, common cold, snake bite, insect bite, wound healing, skin diseases, ulcerative colitis. Some neuropharmacological disorders like depression, schizophrenia, anxiety, convulsions or epilepsy, insomania, mental illness, Parkinsonism etc are treated many herbal plants. The diseases like diabetes mellitus, asthma, hypertension, ulcer ect are better treated with herbal plants and therapy is easy with fewer side effects. The lipid lowering agents are also obtained from herbal plants and used in the the patients. The obesity is also controlled by various herbal formulations in the markets. The collection of plant from hilly stations and then dried them is the major problem in this field. The collected leaves, roots, barks, fruits, seeds are properly dried so that the active constituents should not be destroyed or inactivated during their drying process. Then the material is pulverized under grinding mill or grinder with proper impact and screening of the particles. For the analysis of herals, HPTLC offers a number of advantages. The technique is especially suitable for comparison of samples based on fingerprints. Apart from conveniently performing quantitative determinations based on scanning densitometry or video technology has become a cost and time-effective alternative to HPLC.

For an analytical perspective, herbs and herbal preparations are particularly difficult to standardize. Pharmacological activity is established in many instances but there are also many situations in which claimed activity has not yet been scientifically proven. If a plant based product is introduced to the market, it becomes necessary to define its botanical authentication of the herb based on its phenotype. Possibly phenotype and some understanding about its natural variability resulting from its geographic location, developmental stage, climate and so on. Next, the chemical and biochemical composition of the material should be investigated.
By definition, standardized extracts are extracts of herbs with predefined active constituents and having specified chemical, physical, biological and organoleptic characteristics. A standardized herbal extract involves predetermining one or a number of biochemical constituents as either active or marker compounds. The result involves two very distinct types of extracts.

Sida Cordifolia extract is a semisolid/dry extract of the *Sida cordifolia* plant root, containing 0.8% to 1.2% of the alkaloid ephedrine and 6-8% of total alkaloids. It is considered to be one of the most valuable drugs in Ayurveda. It is used by Ayurveda physicians as an antipyretic in febrile and infectious diseases, and also as an aphrodisiac.

Sida Cordifolia is also useful in the treatment of chronic broncho-pulmonary conditions characterized by bronchospasm and cough.

The importance of *Sida Cordifolia* becomes apparent as it contains ephedrine alkaloids common to the *Ephedra* plant (also known by its Chinese name: Ma-Huang). *Sida Cordifolia* contains lesser quantities of alkaloids than Ma-Huang, and therefore is regarded as a weaker stimulant on cardiovascular and central nervous systems. Furthermore, *Sida Cordifolia* contains other bronchodilating principles which Ma-Huang does not have in particular vasicinone, vasicine, and vasicinol.

VASICINE ALKALOID

SIDA ACUTA

Anatomical description:

Shrubby, much branched, branches slender, terete, minutely stellately hairy, leaves 2.5-6.6 cm long, lanceolate, with rounded base sharply serrate, glabrous on both side, petioles 0.6 cm long, lobes triangular, acute. Corolla nearly twice as long as the calyx, yellow. Fruit 5.6 mm diameter, carpels 5-9, puberulous, not pubescent, strongly reticulated toothed on the dorsal margins. Seeds smooth, black.

Uses:

Root sour and sweet, removes ‘tridosha’ digestive and diuretic, useful in fever, burning of the body and urinary discharges. The root is regarded as cooling, astringent, tonic and useful nervous and urinary diseases and also in disorders of the blood and bile.
2. MATERIALS & METHODS:

(1) Plant material and Chemicals:

Roots and Leaves of Sida species were collected directly from road side to different part of India. Materials were air dried at room temperature and powdered mechanically. The powdered of roots and leaves were used as the plant material for all analysis. Chemicals, instruments, glassware used in the process were listed in table 1.1, 1.2, 1.3 and 1.4

(2) Isolation and Extraction:

Objective of Research Work

1. To collect plant material from different geographical locations.
2. To identify and authenticate of plants species.
3. To carry out pharmacognostical study of Sida species (botanical description of plant, anatomy of Sida species, powder microscopy).
4. To extract the plant ariel part with different solvents.
5. To isolate the active chemical constituents and test pharmacological applications.

Methods for Preparing Extracts of Sida Species

Sida cordifolia root extract

1) Well identified roots were dried and crushed to a coarse powder.
2) This coarse powder (150 g) were extracted by 700 ml 80% methanol at 60-65º temperature for 4-5 hrs.
3) Three successive extractions were done.
4) After every extraction vacuum filtration was done.
5) All washings were combined and reduced under vacuum at temp 60-65ºc till all methanol removed, 300 ml aqueous mass was obtained.
6) To this, dil H2SO4 was added drop wise till pH made 3-4. This aqueous mass was washed with 3 x 300 ml Hexane to remove the fats and waxy materials.
7) This aqueous mass was reduced under vacuum at temp 60-65ºc to obtained a thick paste.
8) This paste was dried in vacuum drier at temp 40-45ºc.
9) Total alkaloidal content was estimated.
10) Weights of extract were found 4.265 gm.

4.2.2 Sida rhombifolia root extract

1) Well identified roots were dried and crushed to a coarse powder.
2) This coarse powder (100 g) were extracted by 600 ml 80% methanol at 60-65º temperature for 3-4 hrs.
3) Three successive extractions were done.
4) After every extraction vacuum filtration was done.
5) All washings were combined and reduced under vacuum at temp 60-65ºc till all methanol removed, 300 ml aqueous mass was obtained.
6) To this, dil H2SO4 was added drop wise till pH made 3-4. This aqueous mass was washed with 3 x 300 ml Hexane to remove the fats and waxy materials.
7) This aqueous mass was reduced under vacuum at temp 60-65ºc to obtain a thick paste.
8) This paste was dried in vacuum drier at temp 40-45ºc.
9) Total alkaloidal content was estimated.
10) Weights of extract were found 4.265 gm.

4.2.3 Sida cordifolia aerial part Extract:

1) Aerial parts were dried under shadow and milled into coarse powder.
2) 450 gm of coarse powder were successively extracted thrice with 2 liters of 80% methanol at 60-65ºc temperature for 3-4 hrs.
3) Vacuum filtration was done after each extraction.
4) All washings were combined; this extracted liquid was transferred to distillation assembly provided with vacuum and agitation system.
5) This extracted liquid was reduced under vacuum at 50-55ºc up to 600 ml(all methanol removed, checked by hydrometer)
6) This aqueous mass was cooled to 20-22ºc and 15 ml dil H2SO4 was added till pH 3-4 and kept for overnight. Some oily waxy and green mass was settle down.
7) This aqueous mass was filtered, and oily marc was again washed with N/10 H2SO4 (30 ml) thrice.
8) All acid washings were combined and filtered.
9) All filtrates (acid washings and filtered aqueous mass) were combined (700 ml).
10) To this equal volume of hexane(700 ml) was added, this was warmed at 45-50ºc and stirred for 20-30 minutes and layers were separated in separating flask. Like this 2-3 successive washings by hexane were done.
11) The aqueous extract was taken in a separating funnel and partitioned with 3 X 500 ml of chloroform to remove the chlorophyll, fats and other pigments.
12) Aqueous layer was taken and reduced under vacuum at 50-55ºc to afford a thick paste (32g).
13) This paste was dissolved in 500 ml solvent mixture (Methanol: Ethylene dichloride (65 : 35)).
14) To this, 100 ml of water was added. The contents were stirred for 10 min and allowed to stand till both the phases were separated (about 3-4 hrs).
15) The lower layer was constituted of EDC soluble components and was washed with 10 ml of water to remove the residual methanol.
16) The EDC was distilled off in a separate distillation vessel. On complete removal of solvent, a paste was obtained in yield 2.3% (10.35 gm). Alkaloidal content was calculated and was found 10.56%.
17) The aqueous methanolic layer was combined with water washing and solvent was recovered and a thick paste in a yield of 4.1% (21.6 gm) was obtained.
18) This paste (7 gm) was combined with EDC paste to get final product. The combined paste was dried in a vacuum drier and the yield was 15.35 gm.
19) Alkaloidal content was calculated and was found 7.14 %.
20) This dried paste packed in double sealed moisture proof polyethylene bags.
Preparation of *Sida Cordifolia* Extract (6-8 % Alkaloid)

Dried aerial parts

Coarse powder 450 gm

three successive extraction with 2 lit solvent mixture (80 parts methanol + 20 parts water, 1600 ml methanol + 400 ml methanol at 60-65°C. temp 3-4 hrs

Filtered combined and evaporated in vacuum at 55°C to 600 ml cooled to 20°C, 15 ml dil H2SO4 was added to make pH 3-4, kept for overnight, oily, waxy and green matters settled down

Filtered

marc (oil, wax and green matter)

Washed with N/10 H2SO4 30 ml, twice

Acidic layer

combined Aqueous layer (700 ml)

700 ml Hexane added, stirred for 20-30 minutes at 50°C, 2-3 times

Hexane layer

Aq layer

Extract with Chloroform (2 X 500 ml)

Reduced under vacuum

Past 32 gm

Alkaloid content calculated (found to < 6%)

Paste redisolve in 500 ml of MeOH : EDC (65 : 35)

Add 100 ml water

Stirred for 10 min

Kept for 4 Hrs in separating funnel

Chloroform layer (Chlorophyl and fatty sub)

MeOH layer

REDUCED IN VACUUM

21.6 gm paste

7 gm of this paste added to EDC paste

EDC layer

REDUCED IN VACUUM

10.35 gm paste (10.5 % alkaloid)

15.35 gm paste (7.1 % alkaloid)
Preparation of *Sida Acuta* Extract (6-8 % Alkaloid)

1. Dried aerial parts
2. Coarse powder 300 gm
 - Three successive extraction with 1.5 lit solvent mixture (80 parts methanol + 20 parts water, 1200 ml methanol + 300 ml methanol at 60-65°C temp, 3-4 hrs
3. Filtered combined and evaporated in vacuum at 55°C to 500 ml
 - Cool to 20°C, 15 ml dil H2SO4 was added to make pH 3-4, kept for overnight, oily, waxy and green matters settled down
4. Filtered marc (oil, wax and green matter)
 - Washed with N/10 H2SO4 30 ml, twice
5. Acidic layer combined Aqueous layer (600 ml)
 - 600 ml Hexane added, stirred for 20-30 minutes at 50°C, 2-3 times
6. Hexane layer
7. Aq layer
8. Chloroform layer (Chlorophyll and fatty sub)
9. Extract with Chloroform (2 X 500 ml)
10. Reduced under vacuum
 - Paste 28 gm
11. Alkaloid content calculated (found to < 6%)
12. Paste redissolve in 400 ml of MeOH : EDC (65 : 35)
 - Add 100 ml water
 - Stirred for 10 min
13. Kept for 4 Hrs in separating funnel
14. MeOH layer
15. Reduced in vacuum
 - 21.8 gm paste
 - 12 gm of this paste added to EDC paste
16. EDC layer
 - 6.12 gm paste (14.08% alkaloid)
 - 16.12 gm paste (7.14 % alkaloid)
3. RESULTS AND DISCUSSION:

S.No	Histological character	Sida cordifolia	Sida acuta	Sida rhombifolia	Sida spinosa
1	Cuticle	Present	Absent	Present	Present
2	Upper epidermis	Single layered round shaped with unicellular trichomes.	Bilayered rectangular shaped	Single layered round shaped	Single layered rectangular shaped with unicellular trichomes.
3	Collenchyma	Present	Absent	Absent	Absent
4	Vascular bundle	Crescent shaped endarch type	Arch shaped thick deposition over vascular bundle	Arch shaped	Radial vascular bundle
5	Endodermis	Oval shaped cells with thick deposition.	Deposition over endodermis	Arch shaped cells present beneath the xylem vessels	Oval shaped cells present beneath the xylem vessels
6	Parenchyma	Parenchyma cells surrounding the vascular bundle	3-4 layers of parenchyma surrounding the vascular bundle	2-3 layers surrounding the endodermis	3 layers of rounded shaped cells beneath the endodermis
7	Lower epidermis	Single layered round shaped with unicellular trichomes.	Round shaped cells with single layered	Single layered, round shaped.	Single layered, round shaped with trichomes

4.3.2 Sida cordifolia root extract

A band (Rf 0.21) corresponding to ephedrine and another band (Rf 0.28) corresponding to vasicine are visible in both reference and solution tracks. Five other bands appear at Rf values of 0.41, 0.61, 0.69, 0.73 & 0.83 at 254 nm.

Four bands appear at Rf values of 0.42, 0.69, 0.73 & 0.80 at 366 nm.

Figure 1: TLC profile of Sida cordifolia root extract

A. under UV light at 254 nm B. under UV light at 366 nm. C. under visible light after spraying with Dragendorff reagent

1. Test solution of Sida cordifolia root extract
2. Vasicine standard
3. Ephedrine standard
Visualization of spots after spraying with ninhydrine reagent under visible light

This confirms the ephedrine violet red spots are visible at Rf 0.19 in both test and reference after spraying with ninhydrine reagent and heating the plate for 5-7 mints.

![TLC plate, spraying with ninhydrine reagent](image)

Figure 2: TLC plate, spraying with ninhydrine reagent

1. Test solution of *Sida cordifolia* root extract
2. Ephedrine standard

4.3.3 *Sida acuta* aerial part extract

A band (Rf 0.19) corresponding to ephedrine is visible in reference track and another band (Rf 0.25) corresponding to vasicine is visible in both reference and solution tracks. Five other bands appear at Rf values of 0.12, 0.23, 0.40, 0.68 and 0.73 at 254 nm. Six bands appear at Rf values of 0.06, 0.13, 0.39, 0.65, 0.73 & 0.82 at 366 nm

![TLC profile of *Sida acuta* aerial part extract](image)

Figure 3: TLC profile of *Sida acuta* aerial part extract

A. under UV light at 254 nm
B. under UV light at 366 nm.
C. under visible light after spraying with Dragendorff reagent
D. under visible light after spraying with DRG followed by Sodium nitrite

1. Test solution of *Sida acuta* aerial part extract
2. Vasicine standard
3. Ephedrine standard
Compiled HPTLC Chromatograms of all Extracts

Figure 4: 1. Chromatogram *Sida spinosa* extract 2. Chromatogram *Sida acuta* extract 3. Chromatogram *Sida rhombifolia* aerial part 4. Chromatogram *Sida rhombifolia* extract root extract

Figure 5: HPTLC Chromatogram *Sida cordifolia* root extract Figure 6: HPTLC Chromatogram *Sida cordifolia* aerial part extract

5. CONCLUSION

From all these studies we can conclude that *Sida cordifolia* aerial part extract can be safely used as substitute of *Sida cordifolia* root extract (because of all parameters are matching).

Sida rhombifolia plant is being commercially cultivated, so its root extract can also be used as substitute of *Sida cordifolia* root extract. With minor adjustment, *Sida rhombifolia* aerial part extract can also be used as substitute of *Sida cordifolia* root extract.

It can be suggested that since *Sida cordifolia* is perennial plant and if its aerial parts only are collected for preparation of extract, the *Sida* cordifolia can be saved from getting extinct. The HPTLC fingerprinting of the two have been found to be similar.

Further commercial cultivation method for this plant should be developed as it is difficult to propagate the plant from seeds. The micro propagation may be tried. For commercial and industrial purpose aerial parts of *Sida cordifolia* can be recommended for following reasons.

- Milling of root is difficult
From a single plant we are getting 50 gm of aerial powder but only 3-4 gram of root powder.

Extraction of aerial part is easy and it takes less time as compared from root extraction.

Also by mixing extracts from aerial parts of *Sida spinosa*, *Sida acuta* & *Sida rhombifolia* and *Sida rhombifolia* root extract in appropriate quantity to match almost all parameters to *Sida cordifolia* extracts, the resultant extract can be used as a substitute of *Sida cordifolia* root extract.

1. Histology of stem of *Sida* species.

From histological study of stem it has been found that there is no marked difference in gross anatomy among the *Sida acuta*, *Sida spinosa* and *Sida rhombifolia*. However, there is a marked difference in histological character between *Sida cordifolia* and *Sida acuta*. Details have been tabulated in table 11. Trichomes are present only in *Sida cordifolia*.

2. Histology of leaf of *Sida* species.

There is marked difference between 4 *Sida* species as far as the histology of leaf is concerned. The differences in histological characters between these *Sida* species have been tabulated in table 12. Anisocytic stomata are present in *Sida cordifolia* and *Sida spinosa*. But in *Sida rhombifolia* and *Sida acuta* paracytic stomata is present.

3. Microscopical evaluation of crude powder.

The diagnostic charactes of *Sida* species are summarized in table 13. In powder microscopy, presence of 'U' shape stone cells in leaf of *Sida rhombifolia* is diagnostic character for its correct identification from other 3 *Sida* species.

4. Powder microscopy of stem of *Sida* species.

There is no significant difference. However, unicellular star shaped trichomes are present in *Sida cordifolia* only and absent in remaining 3 species.

5. The ash value of aerial parts of the *Sida* species have been tabulated in table 16 and the major constituent (metals) have been tabulated in table 17. The ash value and metal contents values of *Sida cordifolia* are higher than rest 3 species. Heavy metals were determined in extracts prepared from *Sida* species. Arsenic, Nickel and Lead were below the permissible limits.

6. The extractive values of aerial parts of the *Sida* species have been tabulated in table 15.

- From the table it has been found that extractive value of *Sida spinosa* is higher than rest of species with respect to solvent water.
- With methanol % of extractive value of *Sida cordifolia* is found to be more than other species and the % of extractive value of *Sida rhombifolia* is less than other species.
- With ethanol % of extractive value of *Sida cordifolia* is found to be more than other species. This shows that ethanol soluble contents are more in *Sida cordifolia* than other species.
- With chloroform % of extractive value of *Sida acuta* is much higher than other species.
- With benzene there is no significant difference in the extractive values of *Sida* species.
- With pet. ether % of extractive value of *Sida rhombifolia* is more than other species.

7. Qualitative analysis

- From the table it has been found that extractive value of *Sida spinosa* is higher than rest of species with respect to solvent water.
- With methanol % of extractive value of *Sida cordifolia* is found to be more than other species and the % of extractive value of *Sida rhombifolia* is less than other species.
- With ethanol % of extractive value of *Sida cordifolia* is found to be more than other species. This shows that ethanol soluble contents are more in *Sida cordifolia* than other species.
- With chloroform % of extractive value of *Sida acuta* is much higher than other species.
- With benzene there is no significant difference in the extractive values of *Sida* species.
- With pet. ether % of extractive value of *Sida rhombifolia* is more than other species.

8. HPTLC analysis

Vasicine (1.1-3%) and ephedrine (0.6-0.8%) are present in *Sida cordifolia* root extract, *Sida cordifolia* aerial part extract and *Sida rhombifolia* root extract.

HPTLC finger printing of *Sida cordifolia* root and its aerial part extract is matching. It means that the extracts prepared from root and aerial parts of *Sida cordifolia* are similar in nature.

HPTLC finger printing of *Sida rhombifolia* root extract, 5 peaks are matching with HPTLC finger printing of *Sida cordifolia* root extract. This means that two extracts are similar in nature.

HPTLC finger printing of *Sida rhombifolia* aerial part extract, 3 peaks particularly Ephedrine and Vasicine are matching with HPTLC finger printing of *Sida cordifolia* root extract. Thus indicating that extracts may have similar properties.

9. Qualitative analysis

Parameters like pH, solubility, organoleptic characteristics, % of ash, heavy metal content and microbiological analysis have been tabulated in table 20. These parameters are almost similar in all *Sida* extracts.

REFERENCES:

1. Bhutani, K. K. “Herbal Medicine – An Enigma and Challenge to Science and Directions for new Initiatives”. Indian J of Natural Product, 2003; 19(1): 3-10.
2. Edwin, E, etal., “The Eastern Pharmacist”, 2005; IV:38-42.
3. Mukherjee, P and Snanta, M.K., Herbal drug development – A modern approach, IJPE, 2002; 33(4).
4. Herbal drug – The manufacturing standardization, characterization – The Eastern Pharmacist, 2000; 33(4):202.
5. Indian Herbal Pharmacopoeia, published by RRL (Jammu Tawi) and IDMA (Mumbai) India, 1998; 67:165.

6. Bhutani. K. K., Finger printing of ayurvedic drugs, Eastern pharmacist, 2000; 21-26.

7. Sethi, P.D., HPTLC Quantitative Analysis of Pharmaceutical Formulation, CBS Publishers and Distributors. 1st Edition New Delhi, India, 1996; 4:57.

8. Awdhesh Oraon, Pharmacognostical investigation on Sida species of chotanagpur, M.Pharma Thesis, B.I.T, Mesra, Ranchi, 2001; 18-19.

9. Oudhia. P., Society for parthenium management, www.celestine-india.com.

10. Indian Herbal Pharmacopoeia Revised New edition, 2002; 384-392.

11. The Ayurvedic Pharmacopoeia of India, part-I, vol. 3. 1st ed. New Delhi: Government of India, Ministry of Health & Family welfare, Department of Indian system of medicine & Homeopathy; 2001; 110-111.

12. Chunekar K.C. Bhavaprabashnighantu Pandey G.S editor, Chaukhamba Bharti Academy; Varanasi. P. 368. 1969

13. Sharma P.V. Dravyaguna – Vijnana, Vol-2, First Edition. Varanasi; Chaukhamba Bharti Academy; P. 734-737. 1969

14. RajpalV., Standardization of Botanicals, Testing & extraction methods of Medicinal herbs, 2005; 2:307-313.

15. The wealth of India- Raw materials, Vol-7. Publications & Information Directorate, Council of Scientific and Industrial Research New Delhi; - P. 324-325. 1992

16. DeepakM. Standardization of Some herbal drugs using chromatographic Techniques. Ph.D Thesis, B.I.T, Mesra, Ranchi. P. 68-76. 1999

17. Sivarajan.V.V., and Balachandran.L, Ayurvedic Drugs and their Plant sources, Oxford and IBH Publishing Co.Pvt Ltd, New Delhi, 71, 1994.

18. Kapoor. L.D., Handbook of Ayurvedic Medicinal Plants, CRC press, Florida, P. 303, 1990.

19. Ghosh. S., and Dutta., J. Indian. Chem. Soc., 1930; 7-P 825.

20. Ghosal.S., Ballav.R., Chauhan . P.S., and Mehta.P, "Alkaloids of Sida cardifolia" J. Phytochemistry; 1975; 14:830-832. https://doi.org/10.1016/0031-9422(75)83057-3

21. The wealth of India- Raw materials, Vol-7. Publications & Information Directorate, Council of Scientific and Industrial Research New Delhi; - P. 324, 1992