Efficacy and tolerability of topiramate-augmentation therapy for schizophrenia: a systematic review and meta-analysis of randomized controlled trials

Yuji Okuyama* Kazuto Oya* Shinji Matsunaga Taro Kishi Nakao Iwata

Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan

*These authors contributed equally to this work

Abstract: This study aimed to perform a comprehensive meta-analysis of topiramate-augmentation therapy in patients with schizophrenia receiving antipsychotic agents. Data published up to June 20, 2016 were obtained from the PubMed, PsycINFO, and Cochrane Library databases. Twelve randomized controlled trials comparing topiramate to placebo or antipsychotic only were included (n=676 patients). The primary outcome was change in overall symptoms. Relative risk (RR) and standardized mean difference (SMD), along with 95% confidence intervals, were calculated using random effects model for each outcome. Topiramate-augmentation therapy was superior to the control for decreasing overall symptoms (SMD = -0.55, 95% confidence interval -0.86 to -0.24; P=0.001; I²=55%, eight comparisons, n=380), positive symptoms (SMD = -0.4), negative symptoms (SMD = -0.47), and Positive and Negative Syndrome Scale general subscale scores (SMD = -0.67). Furthermore, topiramate-augmentation therapy decreased weight (SMD = -0.69) and body mass index (SMD = -0.95) compared with the control. Topiramate was similar to the control with respect to discontinuation due to all causes (RR 1.19), inefficacy (RR 1.71), and adverse events (RR 1.09). Topiramate was associated with higher incidence of paresthesia (RR 2.67) and attention difficulty (RR 8.97) compared with the control. Our results seemed to suggest that topiramate-augmentation therapy improves the psychopathology of schizophrenia with good tolerability and has the additional advantage of weight maintenance. However, there were some limitations (numbers of studies and patients included in the meta-analysis were small, some studies used completer analysis, Chinese studies were included in the meta-analysis, and studies that had a risk of bias were included in the meta-analysis) in this study, we cannot apply the results of this study in daily clinical practice.

Keywords: schizophrenia, topiramate, efficacy, safety, systematic review, meta-analysis

Introduction

Schizophrenia is characterized by positive symptoms, such as hallucinations and delusions, negative symptoms, such as abulia and autism, and cognitive impairments. At its 15-year follow-up, a Dutch cohort study of psychotic disorder reported that two-thirds of patients suffered at least one relapse. Of those patients, one in six failed to recover fully and one in ten committed suicide. A previous meta-analysis that compared relapse rates between antipsychotic and placebo groups at 7–12 months found that antipsychotics significantly reduced relapse rates at 1 year over placebo, measured by the number needed to treat to benefit, which was three. Nonetheless, it appears difficult to maintain drug adherence by outpatients, which leads to relapse and readmission to hospital. In an anonymous online-survey study (n=113), patients with schizophrenia reported discontinuing medication for the following...
reasons: side effects (80%), stigma (31%), mistrusting the physician/therapist (31%), and rejection of medication in general (28%). Therefore, side effects are considered the cardinal reason for poor compliance or noncompliance with antipsychotic medication.

A recent network meta-analysis comparing 15 antipsychotics to placebo found that antipsychotics were superior for reducing overall symptoms of schizophrenia. However, all individual effect sizes were moderate, with the exception of clozapine, which had a large effect size compared with placebo. On the other hand, olanzapine and clozapine have been demonstrated to have a higher risk of metabolic abnormalities compared with other second-generation antipsychotics. For example, olanzapine revealed a higher risk of weight gain compared with amisulpride, aripiprazole, asenapine, lurasidone, paliperidone, and risperidone. Risperidone was also associated with the need for more use of antiparkinsonian medication compared with clozapine, olanzapine, quetiapine, and ziprasidone. When comparing antipsychotics (regarding overall symptoms as efficacy, and weight gain as safety), because the effect size of efficacy is smaller than that of safety, such as weight gain, several guidelines for the management of schizophrenia have recommended that the safer antipsychotic should be used for patients with schizophrenia. However, not all patients with schizophrenia respond to the safer antipsychotics.

Topiramate is approved for the treatment of epilepsy and prophylaxis of migraine by the US Food and Drug Administration. A previous review suggested that topiramate effects on psychopathology may be mediated through glutamatergic neurons, especially those expressing kainic acid and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors, and by inhibition of nitric oxide production. Although the mechanisms for improving metabolic disturbances are unclear, a previous report demonstrated that topiramate enhances insulin action and glucose transport in adipose cells from obese and insulin-resistant rodents. Further, appetite suppression through hypothalamic AMPA-receptor antagonism is thought to contribute to weight loss.

To our knowledge, 12 randomized controlled trials (RCTs) of topiramate have been conducted for the treatment of schizophrenia and related psychoses. There were inconsistent results among these RCTs, however, regarding psychopathology and metabolic outcomes. Although four studies reported that topiramate was superior to control in improving psychopathological outcomes, six studies reported that topiramate was similar to the control in this aspect, and the remaining studies did not report any psychopathological outcomes. To date, two meta-analyses have evaluated topiramate for the treatment of schizophrenia. Somer et al reviewed three RCTs, and reported that topiramate augmentation for clozapine showed trend-level improvement regarding overall symptoms compared with placebo. Mizuno et al conducted a meta-analysis of multiple pharmacological strategies to combat weight gain in antipsychotic-treated schizophrenia patients that included two RCTs of topiramate augmentation. The pooled result showed that topiramate significantly lowered weight compared with the placebo (mean difference −5.20 kg). However, these meta-analyses focused on topiramate augmentation as a strategy only for psychopathology or metabolic adverse events (including weight gain), and the number of topiramate trials included was small. In this updated systematic review and meta-analysis of topiramate-augmentation therapy for patients with schizophrenia and its related disorders, we have incorporated all relevant findings involving various antipsychotics from the 12 published RCTs. Because a meta-analysis can increase the statistical power for group comparisons and overcome the limitation of sample size when larger trials are lacking, a systematic review and meta-analysis is considered to provide the “best evidence” for clinical practice. Moreover, safety outcomes are critical for adherence; therefore, we also evaluated topiramate-discontinuation rates and individual adverse events.

Materials and methods
Inclusion criteria, search strategy, data extraction, and outcomes
This meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We performed a systematic literature review according to the PICO (patients, intervention, comparison, outcome) strategy: patients, schizophrenia and schizophrenia-related disorders; intervention, topiramate in addition to an antipsychotic agent; comparison, versus placebo in addition to an antipsychotic agent or antipsychotic only; and outcome, primary outcome (improvement in overall symptoms) and secondary outcomes (improvement in positive and negative symptoms and Positive and Negative Syndrome Scale [PANSS] general subscale scores, decreasing weight and body mass index [BMI], improvement in Clinical Global Impression – Severity [CGI-S], and depressive symptoms, discontinuation rate, and individual adverse events).
Only those RCTs involving the use of topiramate in patients with schizophrenia and its related disorders were included.

Relevant studies were identified through searches of PubMed, the Cochrane Library, and PsycINFO citations. There were no language restrictions, and we accepted studies retrieved using the keywords “topiramate” and “schizophrenia” published up to June 20, 2016. Additional eligible studies were sought by scrutiny of the reference lists from primary articles and relevant reviews. Two authors (YO and KO) checked the inclusion and exclusion criteria for each of the identified studies, and resolved discrepancies in coding by discussion. The same authors independently extracted, checked, and entered data into RevMan version 5.3 for Windows (Cochrane Collaboration, London, UK). When data required for the meta-analysis were missing, the first/corresponding authors were contacted for additional information. We also assessed the risk of bias in the trials using the Cochrane risk-of-bias criteria (domains of random-sequence generation, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other sources of bias) (http://www.cochrane.org).

Data synthesis
The primary efficacy measure was overall symptom reduction as measured by PANSS total scores and Brief Psychiatric Rating Scale (BPRS) total scores (Table 1). Secondary outcomes were as follows: 1) positive symptoms as measured by PANSS positive subscale scores and Scale for the Assessment of Positive Symptoms (Table 1), 2) negative symptoms as measured by PANSS negative subscale scores and Scale for the Assessment of Negative Symptoms (Table 1), 3) PANSS general subscale scores (Table 1), 4) CGI-S (Table 1), 5) depressive symptoms as measured by the Calgary Depression Scale for Schizophrenia or Montgomery–Åsberg Depression Rating Scale (Table 1), 6) weight (Table 1), 7) BMI (Table 1), and discontinuation rates due to 8) all causes, 9) ineffectiveness, and 10) adverse events.

In addition, we pooled the data for individual adverse events. With regard to tolerability, discontinuations due to worsening mental condition and unsatisfactory response were considered “discontinuation due to ineffectiveness”, and discontinuation due to low leukocyte levels was considered “discontinuation due to adverse events”. For estimation of missing data from individual studies, we imputed the standard deviation (SD) of BPRS-change scores from baseline to end point in Ko et al, from the data of Muscatello et al, and SD of CGI-S and BMI-change scores from baseline to end point scores in Ko et al,...
end point in the study of Ko et al\(^1\) from the SD of Chengappa et al.\(^1\) We converted weights from pounds to kilograms for Chengappa et al.\(^1\) We assumed that the number of patients required for evaluating efficacy outcomes in Behdani et al\(^6\) was the same as the number of patients required for evaluating safety outcomes and the number of patients required for evaluating efficacy outcomes in Afshar et al\(^5\) was the same number of randomized patients for each treatment arm, because the trial used general linear model analysis. We used those estimations to increase sample size for analysis to gain as much statistical power as possible. The median highest topiramate dose for all studies except Ko et al\(^9\) was 238 mg/day, so data from the 200 mg/day topiramate group but not the 100 mg/day topiramate group were used for meta-analysis. For individual adverse events, we considered memory disturbances\(^2\) and forgetfulness\(^1\) as “memory loss”, and sedation\(^17,23\) and drowsiness\(^16\) as “somnolence”.

Statistical analysis

We based our data analyses on intention to treat, observed cases, and crossover studies. This meta-analysis was performed using RevMan. To combine studies, we used the random-effect model described by DerSimonian and Laird.\(^3\) We used this conservative model to address the possibility that underlying effects differed across studies and populations were heterogeneous. For continuous data, we used standardized mean difference (SMD), combining effect size (Hedges’ \(g\)) data and 95% confidence interval (CI). For dichotomous data, relative risk (RR) was estimated along with the 95% CI. When the random-effect model revealed significant between-group differences in dichotomous outcomes, the number needed to harm (NNH) was calculated. Study heterogeneity was measured using \(\chi^2\) and \(I^2\) statistics, with values of \(P<0.05\) and \(I^2\geq50\%\) indicating heterogeneity.\(^3\) In cases where \(I^2\) values were \(\geq50\%\) for primary outcome, sensitivity analyses were performed to determine the reasons for heterogeneity. Finally, funnel plots were visually inspected to explore the possibility of publication bias.

Results

Study characteristics

Searches of the PubMed, Cochrane Library, and PsycINFO databases yielded 116 hits. We excluded eight duplicate studies, 81 studies based on title or abstract review, and 20 studies after full-text reading. Five additional articles\(^17,22,24–26\) were identified by manually searching the review articles.\(^17,39\) Finally, 12 eligible studies\(^15–26\) were accepted (Figure 1). Mean study duration was 13.4 (range 8–24) weeks, and 676 patients were included (schizophrenia 579, schizoaffective disorder 48, psychosis and unipolar or bipolar disorder 49). Patient numbers in each treatment arm were 358 for topiramate and 318 for control (consisting of 258 placebo-treated and 60 treatment as usual). The mean number of patients included in the individual studies was 56. Three studies were published in Chinese.\(^24–26\) We evaluated the methodological quality of the individual studies based on Cochrane risk-of-bias criteria (Figures S1 and S2). Three studies did not employ a placebo control.\(^18,24,25\) One study was a crossover design.\(^21\) Seven studies used a completer analysis.\(^19,22,24–26\) Five studies were at high risk of selective reporting bias.\(^15,18,20,21,24\) One study was sponsored by the pharmaceutical industry.\(^15\) The characteristics of the studies are summarized in Table 2.

Meta-analysis

Efficacy

Topiramate as augmentation to antipsychotic therapy was superior to control (antipsychotic alone or placebo plus antipsychotic) for the reduction of overall symptoms (SMD –0.55,
Table 2 Study, patient, and treatment characteristics of the included double-blinded and open label randomized controlled trials of topiramate augmentation therapy for antipsychotic-treated schizophrenia patients

Study	Study design/total n	Patients (1) diagnosis, (2) age, (3) status	Diagnostic criteria/duration	Age (mean ± SD)	Male (%)	Drug dose, range, mean ± SD, (mg/day)	n	Concomitant drugs (%)	Efficacy outcomes: psychopathology and metabolic symptoms	
CLO trials										
Afshar et al*15	DB-RCT, ITT/32	(1) SZ, (2) 18–45 years, (3) inefficient with long-term APs and treatment with CLO (≥100 mg) for the previous 2 months	DSM-IV-TR/8 weeks	TOP: 37.5±5.7 PBO: 38.1±4.6	TOP: 56 PBO: 68	TOP: start with 50 and up to 300 (highest tolerable dose)	16	CLO: 100 Lorazepam: NR	PANSS total: TOP > PBO PANSS positive: TOP > PBO PANSS negative: TOP > PBO PANSS general: TOP > PBO BMI loss: TOP = PBO	
Behdani et al*16	DB-RCT, ITT/80	(1) SZ, (2) 25–65 years, (3) inefficient with at least 2 APs other than CLO	DSM-IV-TR/17 weeks	TOP: 45.12±9.82 PBO: 46.93±9.83	TOP: 93 PBO: 78	TOP: start with 50 and up to 300, 243 (SD: NR)	40	CLO: 100	PANSS positive: TOP = PBO PANSS negative: TOP = PBO PANSS general: TOP = PBO	
Muscatello et al*10	DB-RCT, CA/60	(1) SZ, (2) 23–58 years, (3) inefficient with CLO (150–650 mg/day) ≥1 year	DSM-IV/24 weeks	TOP: 32.3±4.6 PBO: 31.5±4.9	TOP: 74 PBO: 71	TOP: start with 25 and up to 200 (fixed)	30	CLO: 100 Lorazepam: NR	BPRS: TOP = PBO SAPS: TOP = PBO SANS: TOP = PBO CDDS: TOP = PBO	
OLA trials										
Chen et al*4	DB-RCT, CA/44	(1) SZ, (2) NR, (3) inpatients, first episode, drug-naïve, BMI ≤30	CCMD-3/10 weeks	TOP: 36.9±5.3 Only OLA: 37.1±5.1	TOP: 43 Only OLA: 42	TOP: start with 50 and up to 100–150 (flexible), 100.3±30.3 OLA: 15–20 (flexible), 12.5±7.2	23	OLA: 100	Weight loss: TOP > only OLA BMI loss: TOP > only OLA WHR reduction: TOP > only OLA	
Kim et al*8	OL-RCT, ITT/60	(1) SZ, (2) NR, (3) treated with SGAs (≥3 months)	DSM-IV/12 weeks	TOP: NR	100	TOP: start with 50 and up to 100 (fixed) OLA: 10–20 (flexible), 12.29±4.26 OLA: 10–20 (flexible), 12.43±4.45	30	OLA: 100	PANSS total: TOP + OLA = OLA Weight loss: TOP + OLA > OLA	

(Continued)
Study	Study design/total n	Patients (1) diagnosis, (2) age, (3) status	Diagnostic criteria/duration	Age (mean ± SD)	Male (%)	Drug dose, range, mean ± SD, (mg/day)	n	Concomitant drugs (%)	Efficacy outcomes: psychopathology and metabolic symptoms
Liu et al25	OL-RCT, CA/60	(1) SZ, (2) 18–45 years, (3) treated without SGAs before enrollment for > 3 months, BMI <30	ICD-10/12 weeks	TOP: 24.52±5.35	Only OLA: 25.63±6.21	TOP: start with 25 and up to 200 (fixed) OLA: 10–20 (flexible), 13.76±3.68 OLA: 10–20 (flexible), 13.34±3.75	30	OLA: 100	PANS total: TOP > only OLA PANS positive: TOP = only OLA PANS negative: TOP = only OLA PANS general: TOP > only OLA Weight loss: TOP > only OLA BMI loss: TOP > only OLA
Narula et al21	DB-RCT, CA/72	(1) SZ, (2) 18–65 years, (3) first episode, drug-naive	ICD-10/12 weeks	TOP: 31.21±9.70	PBO: 31±10.09	TOP: start with 50 and up to 100 (fixed) OLA: 5–20 (flexible), 11.47±0.4 PBO: 5–20 (flexible), 11.52±0.41	36	OLA: 100	PANS total: TOP > PBO PANS positive: TOP = PBO PANS negative: TOP = PBO PANS general: TOP > PBO Weight loss: TOP > BPO BMI loss: TOP > BPO
Nickel et al22	DB-RCT, CA/49	(1) Psychosis, unipolar and bipolar disorder, (2) ≥18 years, (3) treated with OLA (≥3 months), weight gain (≥5 kg)	NR/10 weeks	TOP: 35.2±8.2	PBO: 34.5±9.2	TOP: start with 50 and up to 250 within 5 weeks (fixed) OLA: 7.8±3.6 PBO: 7.2±3.1	25	OLA: 100	Weight loss: TOP > PBO
Yang et al26	DB-RCT, CA/60	(1) SZ, (2) 18–55 years, (3) first-episode outpatients, treated without AP before enrollment for > 3 months, BMI <30	CCMD-3/12 weeks	TOP: 25.3±6.3	PBO: 27.0±7.0	TOP: start with 25 and up to 200 (fixed) OLA: 10–20 (flexible), 12.96±3.47 PBO: 12.78±3.76	30	OLA: 100	PANS total: TOP > BPO PANS positive: TOP = BPO PANS negative: TOP = BPO PANS general: TOP > BPO CGI: TOP = BPO Weight loss: TOP > BPO BMI loss: TOP > BPO WHR: TOP > BPO
Various AP trials	DB-RCT, ITT/48	(1) SA, (2) ≥18 years, (3) PANSS total ≥60, CGI-S ≥4, receiving fixed dose and therapeutic levels of Li, VAL, or both (≥2 weeks)	DSM-IV-TR/8 weeks	TOP: 42.6±8.9	PBO: 42.8±6.7	TOP: start with 50 and up to 400 (highest tolerable dose or ≥20% reduction of PANSS total) (flexed), 276±108 Li and VAL: within therapeutic levels APs: NR	32	FGAs: 25	PANS total: TOP = BPO PANS positive: TOP = BPO PANS negative: TOP = BPO YMRS: TOP = BPO MADRS: TOP = BPO CGI-S: TOP = BPO Weight loss: TOP > BPO BMI loss: TOP > BPO Waist loss: TOP = BPO
Topiramate for schizophrenia

Study Details

Study	Year	Country	Diagnosis	Age Range	Duration	Comparator	Dose	n	APs	BMI	Other Treatments	
Ko et al	2009	South Korea	SZ	18–60 years	12 weeks	TOP (100): 34.2±7.62	TOP (200): 35.3±9.75	PBO: 37.6±7.98	PBO: 60	APs: NR	Li and VAL: within therapeutic levels	Blood levels – VAL 61±7 mg/mL, Li 0.7±0.15 mEq/L
Tiihonen et al	2007	Finland	SZ	18–60 years	24 weeks	TOP: 42±11.4	PBO: 45.5±14.4	TOP: start with 25 and up to 300 (fixed)	CLO: 598±179	OLA: 26±5	QUE: 633±208	PBO: 81

Notes:
- Blood levels – VAL 61±7 mg/mL, Li 0.7±0.15 mEq/L; blood levels – VAL 69.4±15 mg/mL, Li 0.69±0.13 mEq/L; because the study did not show detailed information regarding blinding to patients and/or assessors, we included the study as an OL RCT in the meta-analysis; 50 mg/day for the first week, 100 mg/day in week 2, and titrated upward 25 mg/day until the target dose in each treatment arm; results shown as original study reported; number of patients confirmed by a previous study.

Abbreviations:
- APs, antipsychotics; BMI, body mass index; BPRS, Brief Psychiatric Rating Scale; CA, complete analysis; CCMD, Chinese Classification of Mental Disorders; CDSS, Calgary Depression Scale for Schizophrenia; CGI-S, Clinical Global Impression – Severity; CLO, clozapine; CO, crossover; DB, double-blind; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, fourth edition; DSM-IV-TR, DSM-IV, text revision; FGAs, first generation antipsychotics; ICD, International Classification of Diseases; ITT, intention to treat; Li, lithium carbonate; MADRS, Montgomery-Åsberg Depression Rating Scale; n, number of patients; NR, not reported; OL, open-label; OLA, olanzapine; PANSS, Positive and Negative Syndrome Scale; PBO, placebo; QUE, quetiapine; RCT, randomized controlled trial; RIS, risperidone; SA, schizoaffective disorder; SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms; SD, standard deviation; SGAs, second-generation antipsychotics; SZ, schizophrenia; TOP, topiramate; VAL, valproic acid; WHR, waist hip ratio; YMRS, Young Mania Rating Scale.
Okuyama et al

95% CI −0.86 to −0.24; \(P=0.001; F=55\% \), eight comparisons, \(n=380 \) (Figure 2A). Visual inspection of the funnel plot for primary outcome did not suggest publication bias (Figure S3). Topiramate was superior to control for the following secondary outcomes: positive symptoms (SMD −0.4, 95% CI −0.63 to −0.17; \(P=0.001; F=29\% \), eight comparisons, \(n=423 \) (Figure 2B), negative symptoms (SMD −0.47, 95% CI −0.82 to −0.12; \(P=0.01; F=67\% \), eight comparisons, \(n=423 \) (Figure 2C), PANSS general subscale (SMD −0.67, 95% CI −1.06 to −0.28; \(P=0.001; F=66\% \), six comparisons, \(n=332 \) (Figure 3A), weight loss (SMD −0.69, 95% CI −0.88 to −0.49; \(P<0.0001; F=32\% \), nine comparisons, \(n=447 \) (Figure 3B), and BMI reduction (SMD −0.95, 95% CI −1.23 to −0.66; \(P<0.0001; F=32\% \), seven comparisons, \(n=331 \) (Figure 3C). Topiramate was not different from control for depressive symptoms (SMD 0.15, 95% CI −0.71 to 1.01; \(P=0.73; F=75\% \), two comparisons, \(n=91 \)) or CGI-S (SMD −0.24, 95% CI −0.65 to 0.18; \(P=0.26; F=31\% \), three comparisons, \(n=140 \)).

Sensitivity/subgroup analysis

There was significant heterogeneity in overall symptoms among studies (\(F=55\% \), \(P=0.03 \)), so we performed 13 sensitivity analyses for primary outcome (antipsychotic class, blinding, analyzed population, region, control, study duration, topiramate dose, publication year, diagnosis, number of patients, patient status, language, and sponsorship) (Table 3). Significant heterogeneity in overall symptoms among the

A: Overall symptoms

Study	SMD Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Afshar et al16	−1.62	0.41	−2.42	−1.82	−3.97	0
Chengappa et al17	−0.66	0.34	−1.29	−0.58	−2.19	0.02
Ko et al15	0.17	0.17	0.23	0.35	1.81	0.07
Liu25	0.46	0.33	0.36	0.54	1.13	0.26
Muscatello et al20	−0.67	0.31	−1.29	−0.05	−2.53	0.01
Narula et al8	0.01	0.09	0.00	0.02	0.51	0.61
Tihonen et al23	−0.23	0.12	−0.46	−0.13	−1.56	0.12
Yang8	0.97	0.18	0.39	1.66	2.17	0.03
Pooled studies	−0.88	0.16	−1.14	−0.64	−1.74	0.08

B: Positive symptoms

Study	SMD Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Afshar et al16	−1.17	0.35	−2.32	−1.02	−3.05	0
Behdani et al16	−0.29	0.21	−0.85	−0.50	−2.93	0.008
Chengappa et al17	−0.02	0.22	−0.57	0.53	0.12	0.90
Liu25	−0.55	0.31	−1.10	−0.00	−2.87	0.004
Muscatello et al20	−0.84	0.31	−2.13	−0.18	−4.50	0.0001
Narula et al8	−0.41	0.26	−0.75	−0.06	−2.93	0.003
Tihonen et al23	−0.03	0.26	−0.30	−0.53	−2.77	0.006
Yang8	−0.23	0.12	−0.45	−0.00	−2.06	0.04
Pooled studies	−0.40	0.12	−0.63	−0.17	−2.44	0.01

C: Negative symptoms

Study	SMD Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Afshar et al16	−1.40	0.23	−2.43	−0.38	−3.82	0
Behdani et al16	−0.37	0.31	−0.81	0.00	−2.89	0.004
Chengappa et al17	−0.60	0.31	−1.11	0.00	−2.28	0.02
Liu25	−0.14	0.28	−0.68	0.40	−1.83	0.06
Muscatello et al20	−0.88	0.28	−1.76	−0.02	−3.38	0.0008
Narula et al8	−0.36	0.30	−0.93	0.25	−2.25	0.027
Tihonen et al23	−0.28	0.30	−0.87	0.25	−1.99	0.047
Yang8	−0.18	0.29	−0.85	0.25	−3.38	0.0008
Pooled studies	−0.47	0.18	−0.82	−0.12	−2.65	0.01

![Figure 2](forest-plots.png)

Figure 2 Forest plots of psychopathological outcomes.

Abbreviations: SMD, standardized mean difference; CI, confidence interval; TOP, topiramate; CON, control.
various-antipsychotic subgroup, open-label subgroup, Europe–US subgroup, and older publication year (before 2008) subgroup disappeared without significant difference when comparing topiramate to control. On the other hand, significant heterogeneity in the olanzapine subgroup, non-intention-to-treat population subgroup, Asia subgroup, the long-duration subgroup (13 weeks or more), low-dose topiramate subgroup (200 mg/day or less), newer publication year (after 2008) subgroup (13 weeks or more), low-dose topiramate subgroup, diagnosis (schizophrenia) subgroup, not treatment-refractory subgroup, and large number of patients (more than 55) subgroup disappeared when comparing topiramate to control. One study was unique, because it was the only study that was sponsored by the pharmaceutical industry (Table 3).

Safety

Topiramate and control did not differ regarding discontinuation rate due to all causes (RR 1.19, 95% CI 0.79–1.79; P=0.4; I²=1%, ten comparisons, n=561), discontinuation rate due to inefficacy (RR 1.71, 95% CI 0.52–5.66; P=0.38; I²=0, seven comparisons, n=377), or discontinuation rate due to adverse events (RR 1.09, 95% CI 0.14–8.49; P=0.93; I²=0, seven comparisons, n=377). Although topiramate was associated with a lower incidence of weight gain (RR 0.31, 95% CI 0.15–0.64; P=0.002; I²=62%, NNH –2, three comparisons, n=165) (Figure 4A), ≥7% weight gain (RR 0.25, 95% CI 0.12–0.51; P=0.0002; I²=0, NNH –2, two comparisons, n=97) (Figure 4B), and increased appetite (RR 0.26,

Figure 3

Forest plots of psychopathological and anthropometric outcomes.

Abbreviations: PANSS, Positive and Negative Syndrome Scale; SMD, standardized mean difference; CI, confidence interval; TOP, topiramate; CON, control; BMI, body mass index.

A

Study	SMD	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Afshar et al15	-0.99	0.37	0.14	-1.73	-0.26	-2.65	0.01
Behdani et al16	0.08	0.22	0.05	-0.36	0.52	0.37	0.71
Liu25	-0.61	0.28	0.08	-1.16	-0.06	-2.16	0.03
Narula et al21	-1.03	0.26	0.07	-1.54	-0.52	-3.96	0
Tihoenen et al22	-0.71	0.31	0.09	-1.32	-0.11	-3.23	0.02
Yang26	-0.92	0.28	0.08	-1.48	-0.36	-3.24	0
Pooled studies	-0.67	0.20	0.04	-1.06	-0.28	-3.40	0

B

Study	SMD	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Chen et al24	-0.86	0.33	0.11	-1.50	-0.22	-2.64	0.01
Chengappa et al27	-0.89	0.33	0.11	-1.54	-0.23	-2.65	0.01
Kim et al36	-0.62	0.28	0.07	-1.14	-0.10	-2.35	0.02
Ko et al39	-0.39	0.33	0.11	-1.04	0.27	-1.16	0.25
Liu25	-0.80	0.29	0.08	-1.36	-0.24	-2.80	0.01
Narula et al21	-0.56	0.25	0.06	-1.05	-0.07	-2.24	0.03
Nickel et al22	-0.38	0.31	0.10	-0.99	0.23	-1.21	0.23
Tihoenen et al22	-0.28	0.30	0.09	-0.86	0.31	-0.92	0.36
Yang26	-1.50	0.31	0.09	-2.09	-0.90	-4.90	0
Pooled studies	-0.69	0.10	0.01	-0.88	-0.49	-6.95	0

C

Study	SMD	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value
Afshar et al15	-0.53	0.36	0.13	-1.23	0.18	-1.47	0.14
Chen et al24	-1.28	0.34	0.12	-1.96	-0.61	-3.74	0
Chengappa et al27	-0.93	0.33	0.11	-1.58	-0.27	-2.77	0.01
Ko et al39	-1.04	0.35	0.12	-1.72	-0.35	-2.95	0
Liu25	-0.76	0.28	0.08	-1.32	-0.21	-2.69	0.01
Narula et al21	-0.60	0.25	0.06	-1.09	-0.12	-2.42	0.02
Yang26	-1.58	0.31	0.10	-2.18	-0.97	-5.11	0
Pooled studies	-0.95	0.14	0.02	-1.23	-0.66	-6.55	0
Table 3 Sensitivity analysis for overall symptoms of topiramate-augmentation therapy

Variable	Subgroup	Studies (n)	Patients (n)	I² (%)	SMD	95% CI	P-value	Test for subgroup differences	P-value	P (%)
Antipsychotic class	Clozapine	2	75	77	–1	–2.06 to 0.06	0.06	0.04	69.7	
	Olanzapine	3	175	0	–0.69	–1 to –0.39	<0.00001			
	Various APs	3	130	0	–0.13	–0.48 to 0.22	0.47			
Blinding	Double-blind	6	367	69	–0.64	–1.13 to –0.16	0.009	0.49	0	
	Open	2	90	0	–0.42	–0.84 to 0	0.05			
Analyzed population	ITT	2	80	91	–0.68	–2.39 to 1.03	0.43	0.78	0	
	Non-ITT	5	255	0	–0.59	–0.84 to –0.33	<0.00001			
	Crossover	1	45	NA	–0.36	–0.95 to 0.23	0.23			
Region	Asia	5	244	47	–0.72	–1.09 to –0.36	0.0001	0.07	69.2	
	Europe and USA	3	136	23	–0.23	–0.62 to 0.17	0.26			
Control	PBO	7	327	59	–0.54	–0.89 to –0.18	0.003	0.9	0	
	Non-PBO	1	53	NA	–0.58	–1.13 to –0.03	0.04			
Study duration	<13 weeks	6	292	65	–0.58	–1 to –0.17	0.006	0.6	0	
	≥13 weeks	2	88	0	–0.43	–0.85 to 0	0.05			
Topiramate dose	≤200 mg	5	255	0	–0.59	–0.84 to –0.33	<0.00001	0.95	0	
	>200 mg	3	125	83	–0.55	–1.47 to 0.36	0.24			
Publication year	<2008	3	130	0	–0.13	–0.48 to 0.22	0.47	0.008	85.7	
	≥2008	5	250	28	–0.76	–1.07 to –0.45	<0.00001			
Diagnosis	Schizophrenia	7	32	–0.63	–0.91 to –0.36	<0.00001	0.02	82.4		
	Schizoaffective disorder	1	48	NA	–0.43	–0.77	0.58			
Number of patients	n=55	3	125	83	–0.55	–1.47 to 0.36	0.24	0.95	0	
	n>55	5	255	0	–0.59	–0.84 to –0.33	<0.00001			
Patient status	Treatment-refractory	3	120	68	–0.76	–1.44 to –0.08	0.03	0.41	0	
	Not treatment-refractory	5	260	48	–0.44	–0.8 to –0.09	0.01			
Language	English	6	272	66	–0.53	–0.96 to –0.09	0.02	0.81	0	
	Chinese	2	108	0	–0.6	–0.98 to –0.21	0.003			
Sponsorship	Industry	1	32	NA	–1.58	–2.38 to –0.77	0.0001	0.009	85.5	
	Nonindustry	7	348	24	–0.45	–0.7 to –0.2	0.0004			

Abbreviations: APs, antipsychotics; CI, confidence interval; ITT, intention to treat; NA, not applicable; PBO, placebo; SMD, standardized mean difference.

95% CI 0.1–0.66; P=0.005; F=0, NNH =14, two comparisons, n=120) (Figure 4C) than the controls, it was associated with a higher incidence of paresthesia (RR 2.67, 95% CI 1.15–6.19; P=0.02; F=0, NNH not significant, four comparisons, n=248) (Figure 5A) and attention difficulty (RR 8.97, 95% CI 1.17–68.63; P=0.03; F=0, NNH 8, two comparisons, n=120) (Figure 5B) than the controls. There were no significant differences in individual adverse events reported (asthenia, constipation, diarrhea, dizziness, dry mouth, fatigue, headache, insomnia, memory loss, muscle weakness, nausea, psychomotor slowing, psychosis exacerbation, or somnolence) between topiramate and control (Table 4).

Discussion
To the best of our knowledge, the current study is the largest comprehensive systematic review and meta-analysis of topiramate-augmentation therapy for schizophrenia and related diseases. Topiramate augmentation was more efficacious than control (antipsychotic alone or antipsychotic plus placebo) for reducing overall, positive, and negative symptoms, PANSS general subscale scores, weight, and BMI. We did not find any cause for the heterogeneity among individual studies, despite performing 13 sensitivity analyses of overall symptoms. Based on the results of the sensitivity analyses, low-dose topiramate (≤200 mg/day)-augmentation therapy for olanzapine may be useful. The prevalence of metabolic syndrome is at least twice as high in schizophrenia patients compared with the age-adjusted population.40 Given the importance of maintaining medication adherence for schizophrenia, it is often necessary to use a safer but less efficacious antipsychotic. Augmentation therapy should be considered before changing from the safer antipsychotic to one with greater potential efficacy but also higher metabolic risk.41,42 In a prospective study, 27% of patients with schizophrenia...
A: Weight gain

Study	Statistics	Risk ratio	Lower limit	Upper limit	Z-value	P-value
Liu^{25}		0.16	0.07	0.38	-4.18	0
Narula et al^{21}		0.28	0.16	0.49	-4.57	0
Tiilhonen et al^{23}		0.75	0.28	2	-0.58	0.56
Pooled studies		0.31	0.15	0.64	-3.14	0

B: 7% and more weight gain

Study	Statistics	Risk ratio	Lower limit	Upper limit	Z-value	P-value
Chen et al^{24}		0.27	0.09	0.84	-2.27	0.02
Yang^{25}		0.23	0.09	0.59	-3.04	0
Pooled studies		0.25	0.12	0.51	-3.79	0

C: Increased appetite

Study	Statistics	Risk ratio	Lower limit	Upper limit	Z-value	P-value
Liu^{25}		0.36	0.11	1.21	-1.65	0.10
Narula et al^{21}		0.17	0.04	0.71	-2.43	0.01
Pooled studies		0.26	0.10	0.66	-2.83	0

Figure 4 Forest plots of individual adverse events.

Abbreviations: CI, confidence interval; TOP, topiramate; CON, control.

A: Paresthesia

Study	Statistics	Risk ratio	Lower limit	Upper limit	Z-value	P-value
Chengappa et al^{17}		1.67	0.53	5.22	0.88	0.38
Ko et al^{19}		4.24	1.07	16.75	2.06	0.04
Narula et al^{21}		7.21	0.39	134.32	1.32	0.19
Pooled studies		2.67	1.15	6.19	2.29	0.02

B: Attention difficulty

Study	Statistics	Risk ratio	Lower limit	Upper limit	Z-value	P-value
Liu^{25}		8.68	0.49	153.60	1.47	0.14
Narula et al^{21}		9.26	0.52	165.60	1.51	0.13
Pooled studies		8.97	1.17	68.63	2.11	0.03

Figure 5 Forest plots of individual adverse events.

Abbreviations: CI, confidence interval; TOP, topiramate; CON, control.
eventually developed poor adherence. Moritz et al. studied the reasons for antipsychotic nonadherence, and concluded that side effects were the most common reason. Weight gain is also a well-known side effect, especially with second-generation antipsychotics, which are more widely used throughout the world than first-generation antipsychotics for treating schizophrenia. Furthermore, augmentation therapy for clozapine may be particularly important, since clozapine is thought to be the final option for treatment-resistant schizophrenia. Zhou et al. investigated the long-term efficacy of multiple doses and generation of antipsychotics. Since there were some limitations in this study, we could not apply the results of this study in daily clinical practice. Future research should investigate long-term efficacy and generate more safety data for schizophrenia patients receiving topiramate augmentation of antipsychotics.

Conclusion

Our results indicate that topiramate-augmentation therapy is well tolerated, can improve the psychopathology of schizophrenia, and reduces weight gain associated with antipsychotics. Since there were some limitations in this study, we could not apply the results of this study in daily clinical practice. Future research should investigate long-term efficacy and generate more safety data for schizophrenia patients receiving topiramate augmentation of antipsychotics.

Disclosure

The authors report no conflicts of interest in this work, but report the following interests: Dr Okuyama has received speaker’s honoraria from Janssen; Dr Oya has received honoraria from Eisai, Eli Lilly, Janssen, Meiji, Otsuka, and Tanabe-Mitsubishi; Dr Matsunaga has received honoraria from Eisai, Janssen, Novartis, Daiichi Sankyo, Ono, Eli Lilly, Takeda, and Otsuka and has a Fujita Health University School of Medicine research grant and Grant-in-Aid for Young Scientists (B); Dr Kishi has received speaker’s honoraria from Abbvie, Astellas, Daiichi Sankyo, Dainippon Sumitomo, Eisai, Eli Lilly, GlaxoSmithKline, Janssen, Yoshitomi, Otsuka, Meiji, Mochida, Shionogi, Tanabe-Mitsubishi, Tsumura, Novartis, and Pfizer and has a Fujita Health University School of Medicine research grant and Grant-in-Aid for Young Scientists (B); and Dr Iwata has received honoraria from Astellas, Dainippon Sumitomo, Eli Lilly, GlaxoSmithKline, Janssen, Yoshitomi, Otsuka, Meiji, Shionogi, Novartis, and Pfizer. The authors report no conflicts of interest in this work, but report the following interests: Dr Okuyama has received speaker’s honoraria from Janssen; Dr Oya has received honoraria from Eisai, Eli Lilly, Janssen, Meiji, Otsuka, and Tanabe-Mitsubishi; Dr Matsunaga has received honoraria from Eisai, Janssen, Novartis, Daiichi Sankyo, Ono, Eli Lilly, Takeda, and Otsuka and has a Fujita Health University School of Medicine research grant and Grant-in-Aid for Young Scientists (B); Dr Kishi has received speaker’s honoraria from Abbvie, Astellas, Daiichi Sankyo, Dainippon Sumitomo, Eisai, Eli Lilly, GlaxoSmithKline, Janssen, Yoshitomi, Otsuka, Meiji, Mochida, Shionogi, Tanabe-Mitsubishi, Tsumura, Novartis, and Pfizer and has a Fujita Health University School of Medicine research grant and Grant-in-Aid for Young Scientists (B); and Dr Iwata has received honoraria from Astellas, Dainippon Sumitomo, Eli Lilly, GlaxoSmithKline, Janssen, Yoshitomi, Otsuka, Meiji, Shionogi, Novartis, and Pfizer.

Table 4 Discontinuation rates and individual adverse events

Adverse Event	Studies (n)	Patients (n)	P (%)	Risk ratio	95% CI
Discontinuation due to ineffectiveness	7	377	0.00	1.71	0.52–5.66
Discontinuation due to adverse events	7	377	0.00	1.09	0.14–8.49
Asthenia	2	112	0.00	0.98	0.54–1.77
Constipation	3	195	0.49	0.43	0.05–3.68
Diarrhea	2	101	0.00	1.10	0.36–3.4
Dizziness	5	308	0.00	0.56	0.29–1.09
Fatigue	2	106	0.00	0.87	0.51–1.47
Headache	4	236	0.06	0.89	0.3–2.64
Insomnia	2	127	0.00	0.68	0.2–2.27
Memory loss	3	148	0.00	0.99	0.46–2.13
Nausea	4	241	0.00	0.55	0.2–1.5
Psychomotor slowing	2	120	0.00	3.30	0.58–18.93
Psychosis exacerbation	2	123	NA	5.00	0.25–100.97
Somnolence	6	348	0.19	1.09	0.81–1.45

Abbreviations: CI, confidence interval; NA, not applicable.
24. Chen ZX, Xia ML, Xia WJ, Huang HG, Jin L. [Topiramate for prevention of olanzapine-associated weight gain]. Modern Pract Med. 2012;24:979–980. Chinese.

25. Liu JJ. [The efficacy of topiramate in the treatment of antipsychotic-induced weight gain and lipid disorders]. Modern Pract Med. 2011;23:665–667. Chinese.

26. Yang Y. The studying about the effects of topiramate in preventing olanzapine-induced weight gain and glucose and lipid metabolic dysfunction [dissertation]. Chongqing: Chongqing Medical University; 2008. Available at: http://cdmd.cnki.com.cn/Article/CDMD-10631-2008176780.htm.dissertation.

27. Sommer IE, Begemann MJ, Tenmerman A, Leucht S. Pharmacological augmentation strategies for schizophrenia patients with insufficient response to clozapine: a quantitative literature review. Schizophr Bull. 2012;38(5):1003–1011.

28. Mizuno Y, Suzuki T, Nakagawa A, et al. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophr Bull. 2014;40(6):1385–1403.

29. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

30. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–276.

31. Guy W, Bonato RR. Manual for the ECDEU Assessment Battery. 2nd ed. Chevy Chase (MD): National Institute of Mental Health; 1970.

32. Overall J, Gorham D. The brief psychiatric rating scale. Psychol Rep. 1962;10:799–812.

33. Andreasen N. Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: University of Iowa; 1984.

34. Andreasen N. Scale for the Assessment of Negative Symptoms (SANS). Iowa City: University of Iowa; 1984.

35. Addington D, Addington J, Schissel B. A depression rating scale for schizoaffective disorder. J Psychiatr Res. 2009;43(7):57–62.

36. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–389.

37. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188.

38. Higgins JP, Thompson SG, Deeks J, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.

39. Liang H, Li H, Hu Y, Li S, Lu L, Song X. [Effects of topiramate for atypical antipsychotic-induced body weight gain and metabolic adversities: a systematic review and meta-analysis]. Zhonghua Yi Xue Za Zhi. 2016;96(3):216–223. Chinese.

40. De Hert MA, van Winkel R, Van Eyck D, et al. Prevalence of the metabolic syndrome in patients with schizophrenia treated with antipsychotic medication. Schizophr Res. 2006;83(1):87–93.

41. Kishi T, Mukai T, Matsuda Y, Moriwaki M, Iwata N. Efficacy and safety of noradrenalin reuptake inhibitor augmentation therapy for schizophrenia: a meta-analysis of double-blind randomized placebo-controlled trials. J Psychiatr Res. 2013;47(11):1557–1563.

42. Kishi T, Meltzer HY, Iwata N. Augmentation of antipsychotic drug action by azapirone 5-HT1A receptor partial agonists: a meta-analysis. Int J Neuropsychopharmacol. 2013;16(6):1259–1266.

43. Brain C, Sameby B, Allerby K, et al. Twelve months of electronic monitoring (MEMS) in the Swedish COAST-study: a comparison of methods for the measurement of adherence in schizophrenia. Eur Neuropsychopharmacol. 2014;24(2):215–222.

44. Moritz S, Hünseke A, Lincoln TM. Nonadherence to antipsychotics: the role of positive attitudes towards positive symptoms. Eur Neuropsychopharmacol. 2014;24(11):1745–1752.

45. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373(9657):31–41.

46. Woodhead M. 80% of China’s clinical trial data are fraudulent, investigation finds. BMJ. 2016;355:i3596.

47. Correll CU, Maayan L, Kane J, Hert MD, Cohen D. Efficacy for psychopharmacology and body weight and safety of topiramate-antipsychotic cotreatment in patients with schizophrenia spectrum disorders: results from a meta-analysis of randomized controlled trials. J Clin Psychiatry. 2016;77:e746–e756.
Supplementary materials

Figure S1 Risk-of-bias summary.

Study	Random-sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Afshar et al\(^1\)	+	+	?	−	?	?	
Behdani et al\(^2\)	+	?	+	?	+	?	
Chen et al\(^3\)	+	?	?	−	−	?	
Chengappa et al\(^4\)	?	?	+	?	+	+	?
Kim et al\(^5\)	?	?	?	?	+	−	?
Ko et al\(^9\)	+	?	?	−	?	?	?
Liu\(^7\)	+	?	?	−	?	?	?
Muscatello et al\(^8\)	+	+	?	−	−	?	
Narula et al\(^9\)	?	?	?	?	−	?	?
Nickel et al\(^10\)	?	+	?	−	+	?	?
Tihonen et al\(^11\)	+	+	?	−	+	?	
Yang\(^12\)	+	?	?	−	?	?	?

- **Low risk of bias**
- **Unclear risk of bias**
- **High risk of bias**
Topiramate for schizophrenia

Figure S2 Risk-of-bias graph.

Figure S3 Funnel plot of standard error by standard difference in means.

References

1. Afshar H, Roohafza H, Mousavi G, et al. Topiramate add-on treatment in schizophrenia: a randomised, double-blind, placebo-controlled clinical trial. *J Psychopharmacol*. 2009;23(2):157–162.

2. Behdani F, Hebrani P, Ardani AR, Rafee E. Effect of topiramate augmentation in chronic schizophrenia: a placebo-controlled trial. *Arch Iran Med*. 2011;14(4):270–275.

3. Chen ZX, Xia ML, Xia WJ, Huang HG, Jin L. [Topiramate for prevention of olanzapine associated weight gain]. *Modern Pract Med*. 2012;24:979–980. Chinese.

4. Chengappa KN, Kupfer DJ, Parepally H, et al. A placebo-controlled, random-assignment, parallel-group pilot study of adjunctive topiramate for patients with schizoaffective disorder, bipolar type. *Bipolar Disord*. 2007;9(6):609–617.

5. Kim JH, Yim SJ, Nam JH. A 12-week, randomized, open-label, parallel-group trial of topiramate in limiting weight gain during olanzapine treatment in patients with schizophrenia. *Schizophr Res*. 2006;82(1):115–117.

6. Ko YH, Joe SH, Jung IK, Kim SH. Topiramate as an adjuvant treatment with atypical antipsychotics in schizophrenic patients experiencing weight gain. *Clin Neuropharmacol*. 2005;28(4):169–175.

7. Liu JJ. [The efficacy of topiramate in the treatment of antipsychotic-induced weight gain and lipid disorders]. *Modern Pract Med*. 2011;23:665–667. Chinese.

8. Muscatello MR, Bruno A, Pandolfo G, et al. Topiramate augmentation of clozapine in schizophrenia: a double-blind, placebo-controlled study. *J Psychopharmacol*. 2011;25(5):667–674.

9. Narula PK, Rehan HS, Unni KE, Gupta N. Topiramate for prevention of olanzapine associated weight gain and metabolic dysfunction in schizophrenia: a double-blind, placebo-controlled trial. *Schizophr Res*. 2010;118(1–3):218–223.

10. Nickel MK, Nickel C, Muehlbacher M, et al. Influence of topiramate on olanzapine-related adiposity in women: a random, double-blind, placebo-controlled study. *J Clin Psychopharmacol*. 2005;25(3):211–217.

11. Tiihonen J, Halonen P, Wahlbeck K, et al. Topiramate add-on in treatment-resistant schizophrenia: a randomized, double-blind, placebo-controlled, crossover trial. *J Clin Psychiatry*. 2005;66(8):1012–1015.

12. Yang Y. The studying about the effects of atropine in preventing olanzapine-induced weight gain and glucose and lipid metabolic dysfunction [dissertation]. Chongqing: Chongqing Medical University; 2008. Available at: http://cdmd.cnki.com.cn/Article/CDMD-10631-2008176780.htm.dissertation.
