Orbital and intracranial *Nocardi*a *far*cinica infection caused by trauma to the orbit: a case report

Anan Wang, Qihua Xu, Yaohua Wang and Hongfei Liao*

Abstract

Background: Localized and disseminated *Nocardi*a *far*cinica infection is frequently reported in immunocompromised patients. However, orbital nocardiosis is rare, and, to our knowledge, traumatic orbital nocardiosis that affects the brain has never been described. Here, we report a case of traumatic orbital and intracranial *N. farcinica* infection in an immunocompetent patient.

Case presentation: A 35-year-old man, who was immunocompetent, to the best of our knowledge and as per the absence of immunodeficiency symptoms, with orbital trauma caused by the penetration of a rotten bamboo branch developed lesions in the orbit and brain. Subsequently, he underwent debridement and received broad-spectrum antibiotic therapy, but orbital infection occurred, with drainage of pus through the sinus tract. The patient then underwent endoscope-assisted local debridement. Bacterial culture of the sinusal pus was positive for *N. farcinica*, and a combined intracranial infection had developed. The disease was treated effectively by trimethoprim-sulfamethoxazole and ceftriaxone sodium therapy. The patient remained infection free and without complications at the 14-month follow-up.

Conclusions: Traumatic orbital and intracranial infection caused by *N. farcinica* is a rare infectious disease, and atypical presentations easily lead to misdiagnosis. When a patient presents with an atypical orbital infection that is unresponsive to empirical broad-spectrum antibiotics, along with suspicious neurologic symptoms, *Nocardi*a infection should be considered. Identification by bacterial culture is the gold standard. Complete local debridement and appropriate antibiotic treatment are keys to the treatment of the disease.

Keywords: Antibiotic therapy, Endoscope, Local debridement, *Nocardi*a *far*cinica, Orbital infection, Trauma

* Correspondence: liaohongfei6000@163.com
Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang 330000, Jiangxi, China

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The patient was transferred to our hospital without obvious improvement with the abovementioned treatments. CT showed proptosis, increased density in the orbit, and a discontinuous medial wall of the orbital bone in the left eye (Fig. 1b). Magnetic resonance imaging (MRI) showed hyperintensity in the superonasal region of the left eye (Fig. 1c). An ocular examination revealed the absence of light perception, orbital swelling, ptosis, proptosis, ophthalmoplegia, absence of pupillary light reflex, and purulent discharge from the inferonasal conjunctival sinus (Fig. 2a). Fundoscopic examination revealed retinal edema and macular cherry-red spot (Fig. 2b). No obvious abnormalities were found on a general examination, there was no increase in the C-reactive protein (0.8 mg/L, normal range 0–10 mg/L), other than abnormal laboratory exams including leukocytosis (22.62 × 10^9/L, normal range 3.5–9.5 × 10^9/L) and increased neutrophils (18.81 × 10^9/L, normal range 1.8–6.3 × 10^9/L).

Pus from the conjunctival sinus was taken for culturing. Antibiotics such as ceftazidime (2 g every 12 h) and metronidazole (0.5 g every 12 h) were administered immediately. Five days after admission, the patient underwent endoscope-assisted orbitotomy. We made an incision on the sinus and exposed the deep orbital tissue through the sinus tract. To avoid the limitation of a small operating visual field, orbital abscesses and a few orbital foreign bodies were removed using an endoscope. Purulent fluid was obtained for repeated culture. Multiple incisional biopsies were performed and sent for histopathological examination. On the first postoperative day, N. farcinica was cultured from the pus of conjunctival sinus (Fig. 3 a-b). Histological examination of orbital tissues showed chronic pyogenic inflammation on the second postoperative day (Fig. 3c). The patient developed high fever and complained of headache. Laboratory examinations revealed moderate leukocytosis (16.93 × 10^9/L, normal range 3.5–9.5 × 10^9/L), increased neutrophils (14.3 × 10^9/L, normal range 1.8–6.3 × 10^9/L), and elevated C-reactive protein (30.77 mg/L, normal range 0–10 mg/L).

After 1 week of ceftazidime and metronidazole therapy and orbital surgical treatment, the patient was transferred to the infection department and immediately treated with oral trimethoprim-sulfamethoxazole (4 g every 12 h) and intravenous mannitol (25 g every 12 h). MRI of the head, chest, and abdomen showed no abnormalities. A lumbar puncture yielded clear cerebrospinal fluid.
fluid with leukocytes 480/μL (normal range 0–10/μL, 45% neutrophils and 55% lymphocytes), glucose 1.98 mol/L (normal range 2.8–4.4 mol/L), chloride 118.2 mol/L (normal range 120–132 mol/L), protein 1046 mg/L (normal range 150–450 mol/L mg/L), and a positive Pandy’s test. Five days later, antibiotic therapy with 2 g ceftriaxone sodium every 12 h was initiated. The patient responded well to the drug treatment with trimethoprim-sulfamethoxazole (4 g every 12 h) for 28 days, 20% mannitol (25 g every 12 h) for 19 days, and ceftriaxone sodium (2 g every 24 h) for 23 days, and a repeat MRI was performed 1 month postoperatively (Fig. 4a). However, blindness, ptosis, and ophthalmoplegia persisted (Fig. 4b). To prevent the recurrence of infection, the patient was advised to continue trimethoprime-sulfamethoxazole intake for 3 months. The dose in the first 2 months was 4 g every 12 h and subsequently, 3.2 g every 12 h for a month. The patient remained stable over a 14-month follow-up period.

Discussion and conclusions

N. farcinica is an aerobic, gram-positive, filamentous, ubiquitous, soilborne, and weakly acid-fast bacteria [3, 4]. *N. farcinica* infections are usually acquired by direct inhalation of contaminated particles from soil or water; however, these infections are also reported to occur after traumatic injury [5, 6]. Misdiagnosis and mistreatment of *N. farcinica* infection can cause severe damage and even death, because *Nocardia* species can disseminate and are resistant to antibiotics.

Nocardiosis often affects immunocompromised individuals. The patient in this case had no obvious immunodeficiency and was infected due to traumatic orbital injury. Infection by direct orbital injury is rare, as...
most injury-mediated infections occur in the limbs and skin [2]. According to Torres et al., a literature review of nocardiosis showed that traumatic injuries accounted for only 10% of infections [1]. Another review showed that N. farcinica accounted for 5% of all nocardiosis [6]. Additionally, concurrent orbital and intracranial N. farcinica infections due to injury have not been previously reported.

Clinical manifestations of orbital infection usually involve periorbital edema, crepitus, ophthalmoplegia, exophthalmos, chemosis, and visual loss [2, 7]. The case we have reported here had no other specific features, and the symptoms mentioned above are similar to those for subacute local infection. However, the infection in our patient also involved the brain, and the patient experienced high fever and headache. Nocardiosis often disseminates hematogenously to distant organs, such as the lungs, kidneys, joints, and bones [1]. In our patient, the infection did not spread to other organs, possibly because he was young and immunocompetent.

Thus far, isolation and identification of Nocardioid strains is the only reliable diagnostic method. Nocardioid species are strictly aerobic and grow slowly at 35 °C in standard culture medium. Hence, it is important to inform the microbiological laboratory that nocardiosis with soil/environmentally contaminated penetrating traumas should be considered, even among immunocompetent patients, to facilitate the identification of Nocardioid species. N. farcinica grew from cultures of conjunctival pus samples from our patient. Bacteria were not detected in cultures from other body fluids, including orbital abscess secretions, cerebrospinal fluid, and blood, most likely due to the antibiotic therapy. Microscopic examination of Nocardioid revealed that these are gram-positive, thin, branching, filamentous, bacillary, or coccoid bacteria [8]. Identification procedures include biochemical, chemotaxonomic, serological, antimicrobial susceptibility testing, and molecular methods. Molecular techniques are more rapid and precise than other methods [8]. In our case, N. farcinica presented as bacillary or coccoid forms, and bacterial identification was performed using an emerging molecular technique, namely matrix-assisted laser desorption ionization-time of flight mass spectrometry, which is a rapid, sensitive, and economical method for identifying and diagnosing microbial infections [9].

Complete local debridement and appropriate antibiotic therapy are important in the treatment of Nocardioid infections [10]. The infectious lesion was located deep within the orbit, making its exposure difficult. As such, endoscope-assisted debridement was important for excising the abscesses efficiently and accurately. Appropriate antibiotic administration is another critical factor to treat nocardiosis, and susceptibility testing is of vital importance as the susceptibility pattern of Nocardioid species is highly variable. In our case, drug susceptibility test was not performed, because this was the first case of nocardia infection in our hospital, and paper diffusion method reference standard for the drug susceptibility test on Clinical and Laboratory Standards Institute is not available. However, patients must undergo antibiotic therapy immediately after the diagnosis of N. farcinica infection. Trimethoprim-sulfamethoxazole is the first choice for the treatment of N. farcinica infections before obtaining the susceptibility-test result [1, 4]. Empiric combination therapy of trimethoprim-sulfamethoxazole and ceftriaxone is also recommended [6]. The therapy needs to be continued for several months due to the high possibility of infection recurrence, which depends on the immune status of the patient. If the central nervous system is affected, the therapy should be continued at least for 6 months. In our case, the patient was immunocompetent and was treated with antibiotic therapy for 3 months, and there was no recurrence of infection at 14-month follow-up.

In conclusion, due to the low incidence of orbital Nocardioid infections, these are not well characterized and are often not considered in an initial diagnosis. When a patient presents with an atypical orbital infection that is unresponsive to empirical broad-spectrum antibiotics, along with suspicious neurologic symptoms, Nocardioid infection should be considered. Misdiagnosis and inappropriate therapy may result in serious consequences. The present case also highlights the clinical features, diagnosis, and novel management of Nocardioid infection using endoscope-assisted local debridement. Appropriate antibiotic treatment based on susceptibility testing is another critical component of the treatment for N. farcinica infections.

Abbreviations
CT: Computed tomography; MRI: Magnetic resonance imaging

Acknowledgments
Not applicable.

Authors’ contributions
AAW, QHX, and HFL wrote the manuscript and reported the case to the regulatory agency. YHW followed the patient regularly. All authors read and approved the final manuscript.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.
Consent for publication
Written informed consent was obtained from the patient of this case report. A copy of the written consent is available for review by the Editor of this journal.

Competing interests
The author(s) declare that they have no competing interests.

Received: 10 August 2019 Accepted: 29 October 2019
Published online: 08 November 2019

References
1. Torres OH, Domingo P, Pericas R, Boiron P, Montiel JA, Vazquez G. Infection caused by Nocardia farcinica: case report and review. Eur J Clin Microbiol Infect Dis. 2000;19(3):205–12.
2. Kelpin JP, Fahrenkopf MP, Van Pelt AE. Treatment of an uncommon high-pressure orbital injection injury. J Craniofac Surg. 2018;29(7):1829–31.
3. Tachezy M, Simon P, Ichmann C, Vashist YK, Izbicki JR, Gawad KA. Abscess of adrenal gland caused by disseminated subacute Nocardia farcinica pneumonia. A case report and mini-review of the literature. BMC Infect Dis. 2009;9:194.
4. Wei M, Wang P, Qu J, Li R, Liu Y, Gu L, et al. Identification and antimicrobial susceptibility of clinical Nocardia species in a tertiary hospital in China. J Glob Antimicrob Resist. 2017;11:183–7.
5. Vuotto F, Faure K, Queyre V, Dessein R, Pasquet A, Lambert M, et al. Vascular nosocomial Nocardia farcinica infection after arterial stenting in an immunocompetent patient. Can J Infect Dis Med Microbiol. 2011 Spring; 22(1):e10–1.
6. McGuinness SL, Whiting SE, Baird R, Currie BJ, Ralph AP, Anstey NM, et al. Nocardiosis in the Tropical Northern Territory of Australia, 1997–2014. Open Forum Infect Dis. 2016 Oct;3(4):ofw208.
7. Vairaktaris E, Moschos MM, Vassiliou S, Baltatzis S, Kalimeras E, Avgoustidis D, et al. Orbital cellulitis, orbital subperiosteal and intraorbital abscess: report of three cases and review of the literature. J Craniomaxillofac Surg. 2009;37(3):132–6.
8. Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ Jr. Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev. 2006;19(2):259–82.
9. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791.
10. Anagnostou T, Arvanitis M, Kourkoumpetis TK, Desalermos A, Carneiro HA, Mylonakis E. Nocardiosis of the central nervous system: experience from a general hospital and review of 94 cases from the literature. Medicine (Baltimore). 2014;93(1):119–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.